
VORTEX

REFERENCE MANUAL

Specifications Subject to Change Without Notice

@ varian data machines/a varian subsidiary
2722 michelson drive, irvine, california 92664
© 1972 printed in USA

98 A 9952 101

SEPTEMBER 1972

This manual explains the Varian Omnitask Real-Time
Executive (VORTEX) and its use, but it is not intended for
a beginning audience. Prerequisite to an understanding of
this manual is a knowledge of general programming
concepts, and preferably some 620 serie:. or 73 computer
system is desirable.

This manual discusses the following components of the
VORTEX system:

Real-time executive (RTE, section 2)

Input/output control (IOC, section 3)

Job-control processor (JCP, section 4)

Language processors (section 5)

Load-module generator (LMGEN, section 6)

Debugging and snapshot dump programs (section 7)

Source editor (SEDIT, section 8)

File maintenance (FMAIN, section 9)

Input/output utility program (IOUTIL, section 10)

Support library (section 11)

Real-time programming (section 12)

System generation (SGEN, section 13)

System maintenance (SMAIN, section 14)

Operator communication (OPCOM, section 15)

Operation of the VORTEX system (section 16)

Error messages (section 17)

iii

FOREWORD

TABLE OF CONTENTS

SECTION 1
INTRODUCTION

1.1 System Requirements ... 1-1
1.2 System Flow and Organization .. 1-l

1.2.1 Computer Memory .. 1 -2
1.2.2 Rotating Memory Device .. 1-3
1.2.3 Secondary Storage .. 1 -3

1.3 Bibliography ... 1-4

SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.1 Real-Time Executive Macros ... 2-1
2.1.l SCHED (Schedule) Macro ... 2-l
2.1.2 SUSPND (Suspend) Macro ... 2-2
2.1.3 RESUME Macro ... 2-3
2.1.4 DELAY Macro .. 2-3
2.1.5 PMSK (PIM Mask) Macro .. 2-4
2.1.6 TIME Macro .. 2-5
2.1.7 OVLAY (Overlay) Macro .. 2-5
2.1.8 ALOC (Allocate) Macro ... 2· 5
2.1.9 DEALOC (Deallocate) Macro .. 2-7
2.1.10 EXIT Macro ... 2-7
2.1.11 ABORT Macro ... 2-7
2.1.12 IOLINK (1/0 Linkage) Macro ... 2-8

SECTION 3
INPUT /OUTPUT CONTROL

3.1 Logical Units ... 3-1
3.2 RMD File Structure .. 3-4
3.3 1/0 Interrupts ... 3-5
3.4 1/0-Control Macros ... 3-5

3.4.1 OPEN Macro ... 3-7
3.4.2 CLOSE Macro .. 3-8
3.4.3 READ Macro .. 3-8
3.4.4 WRITE Macro .. 3.9
3.4.5 REW (Rewind) Macro ... 3.9
3.4.6 WEOF (Write End of File) Macro .. 3-9
3.4. 7 SREC (Skip Record) Macro .. 3-1 a·
3.4.8 FUNC (Function) Macro ... 3-10
3.4.9 STAT (Status) Macro .. 3-10
3.4.10 DCB (Data Control Block) Macro .. 3-11
3.4.11 FCB (File Control Block) Macro .. 3-11

IV

SECTION 4
JOB-CONTROL PROCESSOR

CONTENTS

4.1 Organization .. 4-l
4.2 Job-Control Processor Directives ... 4-l

4.2.l /JOB Directive .. 4-1
4.2.2 /ENDJOB Directive ... 4-2
4.2.3 /FINI (Finish) Directive .. 4 ·2
4.2.4 IC (Comment) Directive .. 4-2
4.2.5 /MEM (Memory) Directive ... 4-2
4.2.6 /ASSIGN Directive .. 4-2
4.2.7 /SFILE (Skip File) Directive ... 4-2
4.2.8 /SREC (Skip Record) Directive .. 4-3
4.2.9 /WEOF (Write End of File) Directive .. 4-3
4.2.10 /REW (Rewind) Directive ... 4-3
4.2.11 /PFILE (Position File) Directive ... 4-3
4.2.12 /FORM Directive ... 4-3
4.2.13 /KPMODE (Keypunch Mode) Directive ... 4.4
4.2.14 /DASMR (DAS MR Assembler) Directive ... 4-4
4.2.15 /FORT (FORTRAN Compiler) Directive4-4
4.2.16 /CONC (System Concordance) Directive .. .4-4
4.2.17 /SEDIT (Source Editor) Directive .. 4-5
4.2.18 /FMAIN (File Maintenance) Directive ... 4-5
4.2.19 /LMGEN (Load-Module Generator) Directive .. 4 -5
4.2.20 /IOUTIL (1/0 Utility) Directive4-5
4.2.21 /SMAIN (System Maintenance) Directive .. .4-5
4.2.22 /EXEC (Execute) Directive .. 4 -5
4.2.23 /LOAD Directive .. 4-5

4.3 Sample Deck Setups .. 4-6

SECTION 5
LANGUAGE PROCESSORS

5.1 DAS MR Assembler .. 5-l
5.1.1 TITLE Directive .. 5-l
5.1.2 VORTEX Macros .. 5-2
5.1.3 Assembly Listing Format .. 5-7

5.2 Concordance Program .. 5-8
5.2.l Input .. 5-9
5.2.2 Output. ... ······ · .. ·· .. ····································· 5-9

5.3 FORTRAN IV Compiler .. · · ... ··. ··· ·· · · ·· · 5-10
5.3. l TITLE Statement ... 5-10
5.3.2 Execution-Time 1/0 Units ... 5-11

5.4 VORTEX RPG IV System .. 5-13
5.4.1 Introduction ... 5-13
5.4.2 RPG IV 1/0 Units ... 5-13
5.4.3 Compiler and Runtime Execution-.. 5-13

v

CONTENTS

SECTION 6
LOAD-MODULE GENERA TOR

6.1 Organization .. , 6-l
6.1.1 Overlays ... 6·3
6.1.2 Common .. 6-3

6.2 Load-Module Generator Directives ... 6-3
6.2.l TIDB (Task·ldentification Block) Directive .. 6-3
6.2.2 LO (Load) Directive .. 6-4
6.2.3 OV (Overlay) Directive .. 6-4
6.2.4 LIB (Library) Directive .. 6-4
6.2.5 END Directive ... 6- 5

6.3 Sample Decks for LMGEN Operations .. 6- 5

SECTION 7
DEBUGGING AIDS

7.1 Debugging Program .. 7-l
7.2 Snapshot Dump Program ... 7-2

SECTION 8
SOURCE EDITOR

8.1 Organization .. 8-1
8.2 Source-Editor Directives .. 8-2

8.2.1 AS (Assign Logical Units) Directive .. 8-2
8.2.2 AD (Add Records) Directive ... 8-3
8.2.3 SA (Add String) Directive .. 8-3
8.2.4 REPL (Replace Records) Directive ... 8-4
8.2.5 SR (Replace String) Directive .. 8-4
8.2.6 DE (Delete Records) Directive ... 8-4
8.2. 7 SD (Delete String) Directive .. 8-5
8.2.8 MO (Move Records) Directive .. 8-5
8.2.9 FC (Copy File) Directive ... 8-5
8.2.10 SE (Sequence Records) Directive .. 8-6
8.2.11 LI (List Records) Directive ... 8-6
8.2.12 GA (Gang-Load All Records) Directive .. 8-6
8.2.13 WE (Write End of File) Directive .. 8-7
8.2.14 REWI (Rewind) Directive .. 8-7
8.2.15 CO (Compare Inputs) Directive ... 8-7

SECTION 9
FILE MAINTENANCE

9.1 Organization .. 9-l
9.1.1 Partition Specification Table .. 9-1
9.1.2 File-Name Directory .. 9-1
9.1.3 Relocatable Object Modules ... 9-2
9.1.4 Output Listings .. 9-2

9.2 File-Maintenance Directives .. 9-2
9.2. l CREATE Directive .. 9-3
9.2.2 DELETE Directive .. 9-3
9.2.3 RENAME Directive ... 9-4
9.2.4 ENTER Directive ... 9-4
9.2.5 LIST Directive .. 9-4
9.2.6 INIT (Initialize) Directive .. 9-4
9.2.7 INPUT Directive .. 9-5
9.2.8 ADD Directive ... 9-5

vi

CONTENTS

SECTION 10
INPUT /OUTPUT UTILITY PROGRAM

10.1 Organization .. 10-1
10.2 1/0 Utility Directives .. 10-1

10.2.1 COPYF (Copy File) Directive .. 10-1
10.2.2 COPYR (Copy Record) Directive .. 10-2
10.2.3 SFILE (Skip File) Directive ... 10·2
10.2.4 SREC (Skip Record) Directive .. 10-2
10.2.5 DUMP (Format and Dump) Directive ... 10-3
10.2.6 WEOF (Write End of File) Directive .. 10-3
10.2.7 REW (Rewind) Directive : .. 10-3
10.2.8 PFI LE (Position File) Directive ... 10-3
10.2.9 CFILE (Close File) Directive ... 10-3

SECTION 11
SUPPORT LIBRARY

11.1 Calling Sequence ... 11-l
11.2 Number Types and Formats .. 11-l
11.3 Subroutine Descriptions ... 11-2

SECTION 12
REAL-TIME PROGRAMMING

12. l lnterrupts ... 12-l
12.1.l External lnterrupts .. 12-l
12.1.2 Internal Interrupts .. 12-2
12.1.3 Interrupt-Processing Task lnstallation ... 12-3

12.2 Scheduling ... 12-3
12.2.1 System Flow .. 12-3
12.2.2 Priorities12-5
12.2.3 Timing Considerations (Approximate) ... 12-18

12.3 Reentrant Subroutines ... 12-18
12.4 Coding an 110 Driver .. : .. 12-19

12.4.1 1/0 Tables ... 12-19
12.4.2 1/0 Driver System Functions ... 12-20
12.4.3 Adding an I /0 Driver to the System File .. 12-20
12.4.4 Enabling and Disabling PIM Interrupts ... 12-22

vii

CONTENTS

SECTION 13
SYSTEM GENERATION

13.l Organization .. 13-l
13.2 System-Generation Library ... 13-2
13.3 Key-In Loader .. 13-5
13.4 SGEN 1/0 Interrogation ... 13-6

13.4.1 DIR (Directive-Input Unit) Directive .. 13-6
13.4.2 LIB (Library-Input Unit) Directive ... 13-6
13.4.3 ALT (Library-Modification-Input Unit) Directive ... 13-6
13.4.4 SYS (System-Generation-Output Unit) Directive ... 13-7
13.4.5 LIS Directive .. 13-7

13.5 SGEN Directive Processing ... : .. 13-7
13.5.1 MRY (Memory) Directive .. 13-7
13.5.2 EQP (Equipment) Directive .. 13-8
13.5.3 PRT (Partition) Directive .. 13-9
13.5.4 ASN (Assign) Directive ... 13-9
13.5.5 ADD (SGL Addition) Directive ... 13-11
13.5.6 REP (SGL Replacement) Directive ... 13-11
13.5.7 DEL (SGL Deletion) Directive ... 13-11
13.5.8 LAD (Library Addition) Directive ... 13-11
13.5.9 LRE (Library Replacement) Directive .. 13· 12
13.5.10 LOE (Library Deletion) Directive ... 13-12
13.5.11 PIM (Priority Interrupt) Directive .. 13·12
13.5.12 CLK (Clock) Directive ... 13-13
13.5.13 TSK (Foreground Task) Directive .. 13-13
13.5.14 EDR (End Redefinition) Directive .. 13-13

13.6 Building the VORTEX Nucleus ... 13-14
13.6.1 SLM (Start Load Module) Directive .. 13-14
13.6.2 TDF (Build Task-Identification Block) Directive ... 13-14
13.6.3 END Directive ... 13-14

13.7 Building the Library and Configurator ... 13-16
13.7.1 SLM (Start LMP) Directive .. 13-16
13.7.2 TIO (TIDB Specification) Directive .. 13-16
13.7.3 OVL (Overlay) Directive .. 13-17
13.7.4 ESB (End Segment) Directive .. 13-17
13.7.5 END (End Library) Directive .. 13-17

13.8 System Initialization and Output Listings .. 13-17
13.9 System Generation Examples ... 13-18

SECTION 14
SYSTEM MAINTENANCE

14. l Organization .. 14-l
14.1.1 Control Records .. 14-3
14.1.2 Object Modules ... 14·3
14.1.3 System-Generation Library ... 14-3

14.2 System-Maintenance Directives .. 14-3
14.2.1 IN (Input Logical Unit) Directive .. 14-4
14.2.2 OUT (Output Logical Unit) Directive ... 14-4
14.2.3 ALT (Alternate Logical Unit) Directive .. 14-4
14.2.4 ADD Directive ... 14-5
14.2.5 REP (Replace) Directive ... 14-5
14.2.6 DEL (Delete) Directive .. 14-6
14.2.7 LIST Directive ... ~ .. 14-6
14.2.8 END Directive ... 14-6

14.3 System-Maintenance Operation ... 14-6
14.4 Programming Examples14-6

viii

SECTION 15
OPERATOR COMMUNICATION

CONTENTS

15.1 Definitions ... 15-1
15.2 Operator Key· In Requests .. 15-1

15.2.1 SCHED (Schedule Foreground Task) Key-In Request .. 15-2
15.2.2 TSCHED (Time-Schedule Foreground Task) Key-In Request ... 15-2
15.2.3 ATTACH Key-In Request. .. 15-2
15.2.4 RESUME Key-In Request. ... 15-3
15.2.5 TIME Key-In Request .. 15-3
15.2.6 DATE Key-In Request ... 15-3
15.2.7 ABORT Key-In Request. ... 15-3
15.2.8 TSTAT (Task Status) Key-In Request... __ .. 15-3
15.2.9 ASSIGN Key-In Request. ... 15-4
15.2.10 DEVON (Device Down) Key-In Request .. 15-4
15.2.11 DEVUP (Device Up) Key-In Request ... 15-4
15.2.12 IOLIST (List 110) Key-In Request .. 15-5

SECTION 16
OPERATION OF THE VORTEX SYSTEM

16.1 Device Initialization .. 16-1
16.1.1 Card Reader .. 16-1
16.1.2 Card Punch ... 16-l
16.1.3 Line Printer ... 16-1
16.1.4 33/35 ASR Teletype ... 16-,l
16.1.5 High-Speed Paper-Tape Reader ... 16-1
16.1.6 Magnetic-Tape Unit .. 16-l
16.1.7 Magnetic-Drum and Fixed-Head Disc Units ... 16-1
16.1.8 Moving-Head Disc Units ... 16-l
16.1.9 Moving-Head Disc Units (Model 620-35) .. 16-l

16.2 System Bootstrap Loader ... 16·2
16.2.1 Automatic Bootstrap Loader .. 16·2
16.2.2 Control Panel Loading .. 16·2

16.3 Disc Pack Handling .. 16-2
16.3.1 PRT (Partition) Directive .. 16-4
16.3.2 FRM (Format Rotating Memory) Directive ... 16-4
16.3.3 INL (Initialize) Directive ... 16-4
16.3.4 EXIT Directive .. ."16-4

16.4 620-35 Disc Pack Formatting Program .. 16-4

SECTION 17
ERROR MESSAGES

17.1 Error Message Index .. 17-1
17 .2 Real-Time Executive .. 17 · 1
17.3 1/0 Control .. 17-1
17 .4 Job-Control Processor ... 17 · 2
17.5 Language Processors .. 17-2

17.5.1 DAS MR Assembler ... 17-2
17.5.2 FORTRAN IV Compiler and Runtime Compiler ... 17-3
17.5.3 RPG IV Compiler and Runtime Compiler ... 17-4

17 .6 Load-Module Generator .. 17 -4
17. 7 Debugging Program ... 17 -5
17.8 Source Editor .. 17·5
17.9 File Maintelance .. 17-5
17.10 1/0 Utility .. 17-5
17.11 Support Library ... 17-5
17.12 Real-Time Programming .. .17-6
17 .13 System Generation .. 17 · 6
17.14 System Maintenance .. 17-9
17.15 Operator Communication .. 17-9
17.16 RMD Analysis and lnitialization .. 17-9

ix

CONTENTS.

SECTION 18
VORTEX PROCESS INPUT/OUTPUT

18.1 Instruction .. .18· l
18.2 Process Output18-1

18.2.1 Hardware .. .18-1
18.2.2 SGEN Operations18-1
18.2.3 Output Calls .. ,18-2

18.3 Process Input18·3
18.3.1 Hardware .. .18·3
18.3.2 SGEN Operations18-3
18.3.3 Input Calls18-4

18.4 ISA FORTRAN Process Control Subroutines .. .18-5
18.4.1 Input/Output Calls18·5
18.4.2 Bit String Operations .. .18·6

18.5 Errors .. .18 .. 6
18.6 Future Extensions .. 18·6

APPENDIX A
OBJECT MODULE FORMAT

APPENDIX B
1/0 DEVICE RELATIONSHIPS

APPENDIX C
DAT A FORM A TS

APPENDIX D
STANDARD CHARACTER CODES

APPENDIX E
TELETYPE AND CRT CHARACTER CODES

APPENDIX F
VORTEX HARDWARE CONFIGURATIONS

INDEX

x

CONTENTS

LIST OF ILLUSTRATIONS

1-1 VORTEX System Flow .. l · 2
1-2 VORTEX Computer Memory Map ... 1-3
1-3 VORTEX RMD Storage Map ... 1-3
5-1 VORTEX Macro Definitions for DAS MR ... 5-2
5-2 Sample Assembly Listing .. 5-7
5-3 Sample Concordance Listing ... 5-10
5-4 ·FORTRAN 110 Execution Sequences , .. 5-11
6-1 Load-Module Overlay Structure .. 6-2
12-1 Interrupt Line Handlers .. 12-2
12-2 VORTEX Memory Map ... 12-4
12-3 VORTEX Priority Structure, .. 12- 5
12-4 Tl DB Description ... 12- 6
12-5 Driver lnterface .. 12-22
13-1 SGEN Data Flow .. 13-1
13-2 System-Generation Library .. 13-3
13-3 VORTEX Nucleus .. 13-3
13-4 Load-Module Library .. 13-4
13-5 Load-Module Package for Module Without Overlays .. 13·16
13-6 Load-Module Package for Module With Overlays .. 13· 17
13-7 VORTEX Nucleus Load Map ... 13-17
13-8 Library Processor Load Map ... 13-18
13-9 RMD Partition Listing ... 13-18
13-10 Resident-Task Load Map ... 13-18
14-1 SMAIN Block Diagram .. 14-2

LIST OF TABLES

2-1 RTE Service Request Macros .. 2-1
3-1 VORTEX Logical-Unit Assignments ... 3-1
3-2 Valid Logical-Unit Assignments .. 3-3
3-3 FCB Words Under 1/0 Macro Control. .. 3-12
5-1 Directives Recognized by the DAS MR Assemblers ... 5-1
5-2 RTE Macros Available Through FORTRAN IV ... 5-10
7·1 DEBUG Directives .. 7-1
11-1 DAS Coded Subroutines , .. 11·2
11-2 FORTRAN IV Coded Subroutines ... 11-6
12-1 Map of Lowest Memory Sector12-10
13-1 SGEN Key-In Loaders .. 13-5
13-2 Model Codes for VORTEX Peripherals ... 13-8
13-3 Preset Logical-Unit Assignments .. : ... 13-10
13-4 Permissible Logical-Unit Assignments .. 13-10
13-5 TIDB Status Word Bits ... 13-15
15-1 Physical 1/0 Devices ... 15-l
15-2 Task Status (TIDB Words 1 and 2) .. 15-4
16-1 Key-In Loader Programs .. 16-2

XI

CONTENTS

In the directive formats given in this manual:

Boldface type indicates an obligatory parameter.

Italic type indicates an optional parameter.

Upper case type indicates that the parameter is to be
entered exactly as written.

Lower case type indicates a variable and shows where
the user is to enter a legal value for that variable.

A number with a leading zero is octal, one without a
leading zero is decimal, and a number in binary is
specifically indicated as such.

XII

.SECTION 1

INTRODUCTION

The Varian Omnitask Real-Time EXecutive (VORTEX) is a
modular software operating system for controlling, schedul­
ing, and monitoring tasks in real-time multiprogramming
environment. VORTEX also provides for background opera­
tions such as compilation, assembly, debugging, or
execution of tasks not associated with the real-time
functions of the system. Thus, the basic features of
VORTEX comprise:

• Real-time 110 processing

Provision for directly connected interrupts

• Interrupt processing

• Multiprogramming of real-time and background

• Priority task scheduling (clock time or interrupt)
tasks

• Load and go (automatic)

• Centralized and device-independent 110 system
using logical unit and file names

• Operator communications

• Batch-processing job-control language

• Program overlays

Background programming aids: FORTRAN and
RPG IV compilers, DAS MR assembler, load-module
generator, library updating, debugging, and source
editor

• Use of background area when required by fore·
ground tasks

• Disc/drum directories and references

• System generator

1.1 SYSTEM REQUIREMENTS

VORTEX requires the following minimum hardware
configuration:

a. Varian 620/f, 620/f-100 or 73 computers with 12K
read/write memory (16K for foreground and
background)

b. Direct memory access (OMA)

c. 33135 ASR Teletype on a priority interrupt module

d. Real-time clock

e. Memory protection

f. Power failure/restart

g. Optional instruction set

h. Priority Interrupt Module (PIM)

i. Rotating memory on a Pl M with either a buffer interlace
controller (BIC) or priority memory access (PMA)

j. One of the following on a PIM:
(1) Card reader with a BIC
(2) Paper-tape system or a paper-tape reader
(3) Magnetic-tape unit with a BIC

The system supports and is enhanced by the following
optional hardware items:

a. Additional main memory (up to 32K) and/or rotating
memory

b. Automatic bootstrap loader

c. Card reader, if one is not included in the minimum
system with BIC and PIM

d. Card punch with BIC and PIM

e. Line printer with BIC and PIM

f. Paper-tape punch, if one is not included in the
minimum system

The rotating-memory device (RMD) serves as storage for
the VORTEX operating system components, enabling real­
time operations and a multiprogramming environment for
solving real-time and nonreal-time problems. Real-time
processing is implemented by hardware interrupt controls
and software task scheduling. Tasks are scheduled for
execution by operator requests, other tasks, device inter­
rupts, or the completion of time intervals.

Background processing (nonreal-time) operations, such as
FORTRAN compilations or DAS MR assemblies, are under
control of the job-control processor (section 4), itself a
VORTEX background task. These background processing
operations are performed simultaneously with the real-time
foreground tasks until execution of the former is sus­
pended, either by an interrupt or a scheduled task.

1.2 SYSTEM FLOW AND ORGANIZATION

VORTEX executes foreground and background tasks
scheduled by operator requests, interrupts, or other tasks.
All tasks are scheduled, activated, and executed by the

1-1

INTRODUCTION

real-time executive component on a priority basis. Thus, in
the VORTEX operating system, each task has a level of
priority that determines what will be executed first when
two or more tasks come up for execution simultaneously.

The job-control processor component of the VORTEX
system manages requests for the scheduling of background
tasks.

Upon completion of a task, control returns to the real-time
executive. In the case of a background task, the real-time
executive schedules the job-control processor to determine
if there are any further background tasks for execution.

During execution, any foreground task can use any real­
time executive service (section 2.1).

Figure 1-1 is an overview of the flow in the VORTEX
operating system.

1.2.1 Computer Memory

The VORTEX operating system divides computer (main)
memory into five areas (figure 1-2):

a. Real-time executive area

b. User's resident task and subroutine area

c. User's nonresident task allocation area

d. Background task area

e. l 0w-memory block area

The real-time executive area is the highest segment of
memory. It contains the real-time executive, the 1/0 control
component, 1/0 drivers, the load-module loader, interrupt
processors, and the foreground blank common (section 6).

VO R T EX 0 P E RAT I N G SY S T EM
FOREGROUND BACKGROUND

USER OPERATOR REAL-TIME LOAD- FORTRAN
NON- COMMUNICATION EXECUTIVE MODULE ~ .. IV
RESIDENT INTERRUPT SERVICES GENERATOR COMPILER
TASKS

~ +

•
\. - ~

USER
...... ~

JOB-REAL-TIME USER'S
RESIDENT '• . - CONTROL .L --...... EXECUTIVE -. TASKS
TASKS PROCESSOR .

/
' •

• ' t

SYSTEM OPERATOR
NON- I/O COMMUN!- I/O

""'- . DAS MR
RESIDENT CONTROL CATION UTILITY ...-

ASSEMBLER
TASKS PACKAGE

-~

,
USER VDM LIBRARY
SUPPLIED --, I/O r+, SUPPLIED DE- - UP-

DRIVERS BUGGING ,..
DEVICES DEVICES DATING

VTll-1314

Figure 1-1. VORTEX System Flow

1-2

All subroutiaes that reside in this area must be declared at
system-generation time because no modification of the
area is possible at run time. (Maintenance of the
foreground blank common is a user responsibility. The
VORTEX system provides blank-common pointers for use by
the load-module generator.)

Memory
Area

0

512

8.5K

Top of
Memory
-6K I

v
0
R
T
E
x

N
u
c
L
E
u

Top S
of L­
Memory

Interrupt Locations
System Pointers Protected Memory
Literal Pool

Background Unprotected Memory

Nonresident
Foreground

Resident Foreground
User Tasks and
Subroutines

System Tables

1/0 Control Protected Memory

1/0 Drivers

Real-Time Executive

Load-Module Loader
Foreground
Blank Common

Figure 1-2. VORTEX Computer Memory Map

The user's resident task and subroutine area is adjacent to
the real-time executive area. All resident foreground
subroutines must be declared at system-generation time
because no modification of the area is possible at run time.

The user's nonresident task allocation area is for the
execution of tasks that reside on the RMD in the form of
load modules, i.e., fully link-edited, but relocatable. When
such a task is to be executed, it is loaded into this area and
activated. If no nonresident foreground area is available for
loading this task, background area is used, the background
task being suspended and stored on the RMD. When the
background area is again free, the background task is
reloaded and resumed.

The background task area is for the execution of tasks that
are less time-critical, such as compilers, assemblers,

INTRODUCTION

editors, and other general-purpose tasks. Note that this
area is the only unprotected area of memory. Tasks
executing in this area cannot modify the system, i.e., this
area is suitable for the execution of undebugged tasks.

The low-memory block area contains system pointers and
tables, interrupt addresses, and the background literal
pool.

1.2.2 Rotating Memory Device

Al least one RMD (disc or drum) is required for storage of
VORTEX operating system components. The RMD is divided
into a fixed number of variable-length areas called
partitions. These are defined at system-generation time
(section 3).

The following reside on the RMD (figure 1-3):

a. System initializer, loader, and VORTEX nucleus in
absolute format

b. Checkpoint file

c. GO file

d. User library

e. Transient files

f. Relocatable object-module library

g. Relocatable load-module library

1.2.3 Secondary Storage

The VORTEX operating system supports any secondary
storage devices that have been specified at system­
generation time.

System Initializer and
Loader

VORTEX Nucleus in
Absolute Format

Checkpoint File

GO File

User Library

Transient Files

Relocatable Object-Module
Library

Relocatable Load-Module
Library

Figure 1-3. VORTEX RMD Storage Map

1-3

. INTRODUCTION

1.3 BIBLIOGRAPHY

The following gives the stock numbers of manuals pertinent
. to the use of VORTEX and the 731620 computers:

Title

73 Handbook

Document Number

620-100 Computer Handbook
620 FORTRAN IV Reference
620 Training Manual

98 A 9906 010
98 A 9905 003
98 A 9902 037
98 A 9902 503
98 A 9947 032 RPG IV Manual

Maintenance information is in the following VORTEX
Software Performance Specifications:

Document Number Title

89A0156-000 System Overview
89A0203-000 External Specification
89A0231-000 Internal Specification, Vol. I
89A0232-000 Internal Specification, Vol. II
89A0233-000 Internal Specification, Vol. Ill
89A0225 DAS MR Assembler

Internal Spec
89A0214 FORTRAN IV compiler

Internal Spec
89A0211 FORTRAN IV Library

Internal Spec
89A0234 RPG IV Runtime/Loader

Internal Spec
89A0184 RPG IV Compiler

Internal Spec

1-4

SECTION 2

REAL-TIME EXECUTIVE SERVICES

The VORTEX real-time executive (RTE) component
processes, upon request by a task, operations that the task
itself cannot perform, including those involving linkages
with other tasks. RTE service requests are made by macro
calls to V$EXEC, followed by a parameter list that contains
the information required to process the request.

The contents of the volatile A and B registers and the
setting of the overflow indicator are saved during execution
of any RTE macro. After completion of the macro, these
values are returned. The contents of the X register are lost.

There are 32 priority levels in the VORTEX system,
numbered O through 31. Levels O and 1 are for background
tasks and levels 2 through 31 are for foreground tasks. If a
background task is assigned a foreground priority level, or
vice versa, the task automatically receives the lowest valid
priority level for the correct environment. Lower numbers
assign lower priority.

Background and foreground RTE service requests are
similar. However, a level O background RTE request causes
a memory-protection interrupt and the request is checked
for validity. If there is an error, the system prints the error
message EXll with the name of the task and the location
of the violation of memory protection. The background task
is aborted.

Table 2-1. RTE Service Request Macros

Mnemonic Description Level 0 FORTRAN

SCH ED Schedule a task Yes Yes

SUSPND Suspend a task Yes Yes

RESUME Resume a task No Yes

DELAY Delay a task No Yes

PMSK Store Pl M mask register No Yes

TIME Obtain time of day Yes Yes

OVLAY Load and/or execute an Yes Yes
overlay segment

ALOC Allocate a reentrant stack No Yes

DEALOC Deallocate the current re No No
entrant stack

EXIT Exit from a task (upon com- Yes Yes
pletion)

ABORT Abort a task No Yes

IOLINK Link background 110 Yes No

Whenever a task is aborted, all currently active 1/0
requests are completed. Pending 110 requests are de­
queued. Only then is the aborted task released.

There are 12 RTE service request macros. Certain of them
are illegal in unprotected background (level 0) tasks. Table
2-1 lists the RTE macros, indicates whether they are illegal
in icwel 0 tasks, and indicates whether there is a FORTRAN
library subroutine (section 11) provided.

Note: A task name comprises one to six alphanumeric
characters (including $), left-justified and filled out with
blanks. Embedded blanks are not permitted.

2.1 REAL-TIME EXECUTIVE MACROS

This section describes the RTE macros given in table 2-1.

The general form of an RTE macro is

label

where
label

mnemonic

each p(n)

mnemonic,p(l),p(2), .. .,p(n)

permits access to the macro
from elsewhere in the program

is one of those given in table
2-1

is a parameter defined under
the descriptions of the indivi­
dual macros below

The om1ss1on of an optional parameter is indicated by
retention of the normal number of commas unless the
omission occurs at the end of the parameter string. Thus,
in the macro (section 2.1.1)

SCHED 8 I I 106 I:• F ,. I 'TA' I 'SK I I I A '

the first double comma indicates a default value for the
wait option and the second double comma indicates
omission of a protection code.

Error messages applicable to RTE macros are given in
section 17.2.

2.1.1 SCHED (Schedule) Macro

This macro schedules the specified task to execute on its
designated priority level. The scheduling task can pass the

2-1

. REAL· TIME EXECUTIVE SERVICES

two values in the A and B registers to the scheduled task.
The macro has the general form

label SCH ED level, wait, lun, key,' xx',' yy', 'zz'

level is the value from 0 (lowest) to 31
(highest) of the priority level of the
scheduled task

wait

lun

key

xxyyzz

is 0 (default value) if the scheduling and
scheduled tasks obtain CPU time based
on priority levels and 1/0 activity, or 1 if
the scheduling task is suspended until
completion of the scheduled task

is the name or number of the logical unit
whose library contains the· scheduled
task, zero to schedule a resident fore·
ground task, or 106 to schedule a non­
resident task from the foreground
library

is the protection code, if any, required to
address lun (0306 or 'F' to schedule a
nonresident task from the foreground
library)

is the name of the scheduled task in six
ASCII characters, coded in pairs between
single quotation marks and separated by
commas; e.g., the task named BIGJOB
is coded 'Bl','GJ','08' and the task
named ZAP is coded 'ZA','P ',''

The foreground library logical unit and its protection key
are specified by the user at system-generation time.

The FORTRAN calling sequence for this macro is

CALL SCHED(level,wait,lib,key,name)

where lib is the number of the library logical unit
containing the task, and name is the three-word Hollerith
array containing the name of the scheduled task. The other
parameters have the definitions given above.

All tasks are activated at their entry-point locations, with
the A and B registers containing the values to be passed.
The scheduled task executes when it becomes the active
task with the highest priority.

The specified logical unit (which can be a background task,
a foreground task, or any user-defined library on an RMD)
must be defined in the schedule-calling sequence.

Expansion: The task name is loaded two characters per
word. The wait option flag is bit 12 of word 2 (w).

2-2

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 --
Word 0 J S R

Word 1 V$EXEC address

~wlo 0 I
--

Word 2 0 0 0 0 I level

Word 3 key I lun
--

Word 4 Task name

--
Word 5 Task name

--
Word 6 Task name

--

Examples: Schedule the foreground library task named
TSKONE on priority level 5. Use the no-wait option so that
scheduled and scheduling tasks obtain Central-Processor­
Unit (CPU) time based on priority levels and l/'O activity.

FL EQU 106 (LUN assigned to
foreground library FL)

0 3 0 6 (Protection code for FL) KEY EQU

SCHED 5,0,FL,KEY, 'TS', 'KO', 'NE'
(Control return to highest priority)

Note that the KEY line can be coded with the equivalent
ASCII character enclosed in single quotation marks

KEY EQU IF'

The same request in FORTRAN is

DIMENSION N1(3),N2(3)
DAT A N 1 (1) I 2 H FI
DATA N2(1),N2(2),N2(l)/2HTS,2HK0,2HNE/
CALL SCHED(S,0,106,N1,N2)

or

CALL SCHED(5,0,106,2H F,6HTSKONE)

2.1.2 SUSPND (Suspend) Macro

This macro suspends the execution of the task initiating
the macro. The task can be resumed only by an interrupt
or a RESUME (section 2.1.4) macro. The macro has the
general form

label SUSPND susp

where susp is 0 if the task is to be resumed by RESUME, or
1 if the task is to be resumed by interrupt.

The FORTRAN calling sequence for this macro is

CALL SUSPND(susp)

Expansion: The susp flag is bit 0 of word 2 (s).

~
-t -- 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ordO L-~~~~~~~J~S-R~~~~~~~~--1
ord 1 V$EXEC address

ord 2 O 0 O 1 1

Example: Suspend a task from execution. Provide for
resumption of the task by interrupt, which reactivates the
task at the location following SUSPND.

SUSPND

The same request in FORTRAN is

CALL SUSPND (1)

2.1.3 RESUME Macro

This macro resumes a task suspended by the SUSPND
macro. The RESUME macro has the general form

label RESUME 'xx','yy','zz'

where xxyyzz is the name of the task being resumed,
coded as in the SCHED macro (section 2.1.1).

The RTE searches for the named task and activates it when
found. The task will execute when it becomes the task with
the highest active priority. If the priority of the specified
task is higher than that of the task making the request, the
specified task executes immediately.

The FORTRAN calling sequence for this macro is

CALL RESUME(name)

where name is the three-word Hollerith array containing the
name of the specified task.

Expansion: The task name is loaded two characters per
word.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word O J S R

Word 1 V$EXEC address

Word 3 Task name

Word 4 Task name

Word 5 Task name

REAL-TIME EXECUTIVE SERVICES

Example: Resume (reactivate) the task TSKTWO, which
will execute when it becomes the task with the highest
active priority.

RESUME 'TS' , 'KT' , I WO I

(Control return)

Co1'trol returns to the requesting task when it becomes the
task with the highest active priority. Control returns to the
location following RESUME.

The same request in FORTRAN is

DIMENSION N1(3)
DATA N 1 (1) , N 1 (2) , N 1 (3) /2HTS, 2HKT, 2HWO/
CALL RESUME(N1)

or

CALL RESUME(6HTSKTWO)

2.1.4 DELAY Macro

This macro suspends the requesting task for the specified
time, which is given in two increments. The first increment
is the number of 5-millisecond periods, and the second, the
number of minutes. The macro has the general form

where

label DELAY milli, min, type

milli is the number of 5-millisecond
increments delay

min is the number of minutes delay

type is 0 (default value) when the task is to be
suspended for the specified delay,
remain in memory, and automatically
resume following the DELAY macro; 1
when the task is to exit from the
system, relinquishing memory, and,
after the specified delay, be automati -
cally rescheduled and reloaded in a
time-of -day mode; or 2 when the task
is to resume automatically after the
specified delay or upon receipt of an
external interrupt, whichever comes first,
and automatically resume following the
DELAY macro

The FORTRAN calling sequence for this macro is

CALL DELA Y(milli,min, type)

2-3

REAL-TIME EXECUTIVE SERVICES

. where the integer-mode parameters have the definitions
given above.

The maximum value for) either milli or min is 32767. Any
such combination giv@' the correct sum is a valid delay
definition; e.g., for a 90-second delay, the values could be
6000 and 1, respectively, or 18000 and 0. After specified
delay, the task becomes active. When it becomes the
highest-priority active task, it executes.

Note that the resolution of the clock is a user-specified
variable having increments of 5 milliseconds. The time
interval given in a DELAY macro is equal to or greater than
the resolution of the clock. The delay interval is stored in
minute increments and real-time clock resolution incre­
ments. Time is kept on a 24-hour clock.

Expansion: The type flag is bits O and 1 of word 2.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R

Word 1 V$EXEC address

Word 2 I 0 0 I type

Word 3 mill1

Word 4 min

~---~------------·

Examples: Delay the execution of a task for 90 seconds.
At the end of this time, the task becomes active. When it
becomes the highest-priority task, it executes.

DELAY 6000, 1

Delay the execution of a task for 90 seconds or until receipt
of an external interrupt, whichever comes first, at which
time the task becomes active. Such a technique can test
devices that expect interrupts within the delay period.

DELAY 18000,0,2

2.1.5 PMSK (PIM Mask) Macro

This macro redefines the PIM (priority interrupt module)
interrupt structure, i.e., enables and/or disables PIM
interrupts. The macro has the general form

2-4

label

where
pim

mask

opt

PMSK pim,mask,opt

is the number (1 through 8) of the PIM
being modified

indicates the changes to the mask, with
the set bits indicating the interrupt lines
that are either to be enabled or disabled,
depending on the value of opt, and with
the other lines unchanged

is O (default value) if the set bits in mask
indicate newly enabled interrupt lines,
or 1 if the set bits in mask indicate
newly disabled interrupt lines

The FORTRAN calling sequence for this macro is

CALL PMSK,pim,mask,opt

where the integer-mode parameters have the definitions
given above.

The eight bits of the mask correspond to the eight priority
interrupt lines, with bit 0 corresponding to the highest­
priority line.

VORTEX operates with all PIM lines enabled unless altered
by a PMSK macro. Normal interrupt-processing allows all
interrupts and does one of the following: a) posts (in the
Tl DB) the interrupt occurrence for later action if it is
associated with a lower-priority task, or b) immediately
suspends the interrupted task and schedules a new task if
the interrupt is associated with a higher-priority task.
PMSK provides control over this procedure.

Note: VORTEX (through system generation) initializes all
undefined PIM locations to nullify spurious interrupts that
may have been inadvertently enabled through the PMSK
macro.

Expansion: The opt flag is bit 0 of word 2 (o).

--
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

--
Word 0 J S R

--
Word 1 V$EXEC address

Word 2 lo 0 I 0 0 o! ~I
Word 3 p1m I mask

Examples: Enable interrupt lines 3, 4, and 5 on PIM 2.
Leave all other interrupt lines in the present states.

PMSK 2,070

The same request in FORTRAN is

CALL PMSK(2,56,0)

Disable the same lines.

PMSK 2,070,1

2.1.6 TIME Macro

This macro loads the current time of day in the A and B
registers with the B register containing the minute, and the
A register the 5-millisecond, increments. The macro has the
form

label TIME

The FORTRAN calling sequence for this macro is

CALL TIME(min,milli)

where min is the hours and minutes in 1-minute integer
increments, and milli is the seconds in 5-millisecond
integer increments.

Expansion:

~
.-t -- 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R

Word 1 V$EXEC address

Word 2 0 1 0 1 0

Example: Load the current time of day in the A (5-
m ill isecond increments) and B (1-minute increments)
registers.

TIME
(Return with time in A

and B registers)

2.1.7 OVLAY (Overlay) Macro

This macro loads and/or executes overlays within an
overlay-structured task. It has the general form

label

where
type

OVLAY type, 'xx', 'yy', 'zz'

is 0 (default value) for load and execute,
or 1 for load and return following the re­
quest

xxyyzz

REAL-TIME EXECUTIVE SERVICES

is the name of the overlay segment,
coded as in the SCHED macro (section
2.1.1)

The FORTRAN calling sequence for this macro is

CALL OVLAY(type,reload,name)

where type is a constant or name whose value has the
definition given above, reload is a constant or name with
the value zero to load or non-zero to load only if not
currently loaded, and name is a three-word Hollerith array
cmtaining the overlay segment name.

FORTRAN overlays must be subroutines if called by a
FORTRAN call.

Expansion: The overlay segment name is loaded two
characters per word. The type flag is bit 0 of word 2 (t).

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R

Word 1 V$EXEC address

Word 2

Word 3 Overlay segment name

Word 4 Overlay segment name

Word 5 Overlay segment name

When the load and execute mode is selected in the OVLAY
macro, RTE executes a JSR instruction to enter the overlay
segment. Therefore, the return address of the root segment
is available to the overlay segment in the X register.

Example: Find, load, and execute overlay segment
OVSGOl without return.

OVLAY 0 , 'ov, I SG I , ' 0 1 I

(No return)

The same request in FORTRAN is

DIMENSION N1(3)
DATA N1(1),N1(2),N1(3)/2HOV,2HSG,2H01/
CALL OVLAY(O,O,N1)

or

CALL OVLAY(0,0,6HOVSG01)

2.1.8 ALOC (Allocate) Macro

This macro allocates space in a push-down (LIFO) stack of
variable length for reentrant subroutines. The macro has
the general form

label ALOC address

2-5

. REAL-TIME EXECUTIVE SERVICES

where address is the address of the reentrant subroutine to
be executed.

The FORTRAN calling sequence for this macro is

EXTERNAL ALOC(subr)

where subr is the name of the DAS MR assembly language
subroutine.

The first location of the LIFO stack is V$LOC, and that of
the current position in the stack is V$CRS. The first word of
the reentrant subroutine, whose address is specified in the
general form of ALOC, contains the number of words to be
allocated. If fewer than five words are specified, five words
are allocated.

'Control returns to the location following ALOC when a
· DEALOC macro (section 2.1.7) is executed in the called

~. subroutine. Between ALOC and DEALOC, (1) the subroutine
• cannot be suspended, (2) no IOC calls (section 3) can be
made, and (3) no RTE service calls can be made.

Reentrant subroutines are normally included in the
resident library at system-generation time so they can be
concurrently accessed by more than one task. The
maximum size of the push-down stack is also defined at
system-generation time.

Expansion:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R

Word 1 V$EXEC address

Word 2 0 I I 0

Word 3 Reentrant subroutine address

Reentrant subroutine: The reentrant subroutine called by
ALOC contains, in entry location x, the number of words to
be allocated. Execution begins at x + 1. The reentrant
subroutine returns control to the calling task by use of a
DEALOC macro.

The reentrant stack is used to store register contents and
allocate temporary storage needed by the subroutine being
called. The location V$CRS contains a pointer to word 0 of
the current allocation in the stack. By loading the value of
the pointer into the X (or B) register, temporary storage
cells can be referenced by an assembly language M field of
5, 1 for the first cell; 6, 1 for the second; etc.

2-6

A stack allocation generated by the ALOC macro has the
format:

--

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
--

Word 0 Contents of the A register
--

Word 1 Contents of the B register
i--

Word 2 Contents of the X register
i--

ovf~
--

Word 3 Contents of the P register
--

Word 4 Stack·control pointer (for RTE use only)
i--

Word 5 For reentrant subroutine use (temporary storage)

Word n

where ovfl is the overflow indicator bit.

The current contents of the A and B registers are stored in
words 0 and 1 of the stack and are restored upon execution
of the DEALOC macro. The same procedure is used with the
setting of the overflow indicator bit in word 3 of the stack.
The contents of word 2 (X register) point to the location of
the reentrant subroutine to be executed following the
setting up of the stack. The contents of word 3 (bits 14-0)
point to the return location following ALOC.

Example: Allocate a stack of six words. Provide for
deallocation and returning of control to the location
following ALOC.

SUB1

EXT
ALOC

NAME
DATA

DEALOC
END

SUB1
SUB1

SUB1
6

(Return control)

Each time SUBl is called, six words are reserved in the
reentrant stack. Each time the reentrant subroutine makes
a DEALOC request (section 2.1.7), six words are deallo­
cated from the reentrant stack.

2.1.9 DEALOC (Deallocate) Macro

This macro deallocates the current reentrant stack,
restores the contents of the A and B registers and the
setting of the overflow indicator to the requesting task, and
returns control to the location specified in word 3 (P
register value) of the reentrant stack (section 2.1.6). The
macro has the form

label DEALOC

Expansion:

Word 0

Word 1

Word 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

J S R

V$EXEC address

0 0 1 1 1 ~
-it--

--.1.c=-___ _.:=.i.._ _____ ___...::::::_ ____ ~

Example: Release the current reentrant stack, restore the
contents of the volatile registers and the setting of the
overflow indicator and return control to the location
specified in word 3 of the stack.

DEALOC
END

2.1.10 EXIT Macro

(Reentrant subroutine)

Thi1s macro is used by a task to signal completion of that
task. The requesting task is terminated upon completion of
its I /0. The macro has the form

label EXIT

The FORTRAN calling sequence (no parameters specified)
is

CALL EXIT

If the task making the EXIT is in unprotected background
memory, the macro schedules the job-control processor
(JCP) task (section 4).

Expansion:

~:rdO
ord 1

Word 2

----------------··----

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

J S R

V$EXEC address

0 0 1 0
___i.:::::::__ ___ ..=,__ _____ __,_=:_

REAL-TIME EXECUTIVE SERVICES

Example: Exit from a task. The task making the EXIT call
is terminated upon completion of its 1/0 requests.

EXIT (No return)

2.1.11 ABORT Macro

This macro aborts a task. Active I /0 requests are
ccmpleted, but pending I /0 requests are dequeued. The
mc..-:ro has the general form

label ABORT 'xx','yy','zz'

where xxyyzz is the name of the task being aborted, coded
as in the SCHED macro (section 2.1.1).

The FORTRAN calling sequence for this macro is

CALL ABORT(name)

where name is the three-word Hollerith array containing the
name of the task being aborted.

Expansion: The task name is loaded two characters per
word.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
~----,---------- --- --

Word 0 J S R
f--------- -- - -- -- - - -------- --··-·-

Word 1 V$EXEC address

Word 2 0 1 0 1

Word 3 Task name

Word 4 Task name

Word 5 Task name
.___ ___ __._ ________ ------- -- --- ·- ----

Example: Abort the task TSK and return control to the
location following ABORT.

ABORT 'TS I, 'K I, I

(Control return)

The same request in FORTRAN is

DIMENSION N1(3)
DATA N1(1),N1(2),N1(3)/2HTS,2HK ,2H I
CALL ABORT(N1)

or

CALL ABORT(GHTSK

2-7

. REAL-TIME EXECUTIVE S1::RVICES

2.1.12 IOLINK (1/0 Linkage) Macro

This macro enables background tasks to pass buffer
address and buffer size parameters to the system back­
ground global FCBs. It has the general form

label

where
lungsd

bu floe

bufsiz

IOLINK lungsd,bufloc, bufsiz

is the logical unit number of the global
system device

is the address of the input/output buffer

is the size of the buffer (maximum and
default value: 120)

Global file control blocks: There are eight global FCBS
(section 3.4.11) in the VORTEX system reserved for
background use. System background and user programs
can reference these global FCBs. JCP directive /PFILE
(secti~n-4.2.i2) stores the protection code and file name in
the correspo.nding FCB before opening/rewinding the
logical unit. The IOLINK service request passes the buffer
address and the size of the record to the corresponding
logical-unit FCB. The names of the global FCBs are SIFCB,
PIFCB, POFCB, SSFCB, BIFCB, BOFCB, GOFCB, and
LOFCB, where the first two letters of the name indicate the
logical unit.

2-8

Expansion:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 J S R

Word 1 V$EXEC address

Word 2 ><Jo 0 1 1 0 ol lungsd

Word 3 bufloc

Word 4 bufsiz

Exarrole: Pass the address and size specifications of a
40-wor j buffer at address BUF to the Pl global FCB.

PI

BUF

EQU
EXT

4
PIFCB
(Pl logical-unit number 4)

IOLINK PI,BUF,40
READ PIFCB,PI,0,1

BSS
END

(Read 40 ASCII words from Pl)

40

If the Pl file is on an RMD, reassign the Pl to the proper
RMD partition, and then position the Pl file using JCP
directive /PFILE.

SECTION 3

INPUT /OUTPUT CONTROL

The VORTEX input/output-control component (IOC)
processes all requests for I /0 to be performed on
peripheral devices. The IOC comprises an I /0-request
processor, a find-next-request processor, an I /0-error
processor, and 1/0 drivers. The IOC thus provides a
common 1/0 system for the overall VORTEX operating
system and eliminates the programmer's need to under­
stand the computer hardware.

The contents of the volatile A and B registers and the
setting of the overflow indicator are saved during execution
of any IOC macro. After completion of the macro, these
data are returned. The contents of the X register are lost.

If a physical-device failure occurs, the 1/0 drivers perform
error recovery as applicable. Where automatic error
recovery is possible, the recovery operation is attempted
repeatedly u_ntil the permissible number of recovery tries
has been reached, at which time the 1/0 driver stores the
error status in the user 1/0-request block, and the I /0-error
processor posts the error on the OC logical unit The user
can then try another physical device or abort the task.

3.1 LOGICAL UNITS

A logical unit is an 1/0 device or a partition of a rotating­
memory device (RMD). It is referenced by an assigned
number or name. The logical unit permits performance of
110 operations that are independent of the physical-device
con1tsurations by making possible references to the logical-

unit number. The standard interfaces between the program
and the IOC, and between the IOC and the 1/0 driver,
permit substitution of peripheral devices in 1/0 operations
without reassembling the program.

VORTEX permits up to 256 logical units. The numbers
a~.::;igned to the units are determined by their
reassignability:

a. Logical-unit numbers 1-100 are used for units that can
be reassigned through the operator communications
component (OPCOM, section 15) or the job-control
processor (JCP, section 4).

b. Logical-unit numbers 101-179 are used for units that
are not reassignable.

c. Logical-unit numbers 180-255 are used for units that
can be reassigned through OPCOM only.

d. Logical-unit number 0 indicates a dummy device. The
IOC immediately returns control from a dummy device
to the user as if a real 1/0 operation had been
completed.

VORTEX logical-unit assignments for all systems are
specified in table 3-1. All logical-unit numbers that are not
listed are available to the reassignability scheme above.

Table 15-1 shows the scheme of system names for physical
devices. Table 3-2 shows the possible logical-unit
assignments.

Table 3-1. VORTEX Logical-Unit Assignments

Number Name Description Function

0 DUM Dummy For 1/0 simulation

oc Operator For system operator
communication communication with immediate

return to user control;
Teletype or CRT only

2 SI System input For inputs of all JCP control
directives to any device

3 so System output For display of all input
control directives and output
system messages; Teletype or
CRT only

4 Pl Processor input For input of source statements
from all operating system
language processors

INPUT /OUTPUT CONTROL

Table 3-1. VORTEX Logical-Unit Assignments
(continued)

Number Name Description Function

5 LO List output For output of operating system
input control directives,
system operations messages,
and operating system language
processors' output listings

6 Bl Binary input For input of object-module
records from operating system
processors

7 BO Binary output For output of object-module
records from operating system
language processors

8 SS System scratch For system scratch use; all
operating system language
processors that use an inter-
mediate scratch unit input
from this unit

9 GO Go unit For output of the same infor-
mation as the BO unit by the
system assembler and compiler;
RMD partition only

10 PO Processor output For processor output; all
operating system language
processors that use an inter-
mediate scratch unit output to
this unit; PO and SS are
assigned to the same device
at system-generation time

11 DI Debugging input For all debugging inputs

12 DO Debugging output For all debugging outputs

101 cu Checkpoint unit For use by VORTEX to
checkpoint a background task;
partition protection key S;
RMD partition only

102 SW System work For generation of a load module
by the system load-module
generator component; or for
cataloging, loading, or
execution· by other system
components; partition protec-
tion key B; RMD partition only

103 CL Core-resident For all core-resident system
library entry points; partition protec-

tion key C; RMD partition only

3-2

INPUT /OUTPUT CONTROL

Table 3-1. VORTEX Logical-Unit Assignments
(continued)

Number Name Description Function

104 OM Object-module For the VORTEX system object-
library module library; partition

protection key D; RMD partition
only

105 BL Background library* For the VORTEX system background
library; partition protection
key E; RMD partition only

106 FL Foreground library~· For the VORTEX system fore-
ground library; partition
protection key F; RMD
partition only

•:• Other units can be assigned as user foreground libraries
provided they are specified at system-generation time.
However, there is only one background library in any case.

Table 3-2. Valid Logical-Unit Assignments

Logical Unit oc SI so Pl LO Bl BO SS GO
Unit No. 1 2 3 4 5 6 7 8 9

Device

Dummy DUM DUM DUM DUM DUM
Card punch CP CP
Card reader CR CR CR
CRT device CT CT CT CT CT
RMD (disc/drum) D D D D D D D

partition
Line printer LP
Magnetic-tape unit MT MT MT MT MT MT MT
Paper-tape reader/ PT PT PT PT PT

punch
Teletype TY TY TY TY TY

Logical Unit PO DI DO cu SW CL OM BL FL
Unit No. 10 11 12 101 102 103 104 105 106

Device

Dummy DUM OUM
Card punch CP
Card reader CR
CRT device CT CT CT
RMD (disc/drum) D D D D D D D

partition
Line printer LP LP
Magnetic-tape unit MT
Paper-tape reader/ PT

punch
Teletype TY TY TY

3-3

INPUT /OUTPUT CONTROL.

3.2 RMD FILE STRUCTURE

Each RMD (rotating-memory device) is divided into up to
20 memory areas called partitions. Each partition is
referenced by a specific logical-unit number. The bounda­
ries of each partition are recorded in the core-resident
partition specification table (PST). The first word of the
PST contains the number of VORTEX physical records per
track. The second word of the PST contains the address of
the bad-track table, if any, or zero. Subsequent words in
the PST comprise the partition entries. Each PST entry is in
the format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word O Beginning partition address

Word 1 ppb Protection key

Word 2 Number of bad tracks in the
partition

Word 3 Ending partition address + 1

The partition protection bit, designated ppb in the above
PST entry map, when set, requires the correct protection
key to read/write from this partition.

Note that PST entries overlap. Thus, word 3 of each PST
entry is also word 0 of the following entry. The length of the
PST is 3n + 2, where n is the number of partitions in the
system. The relative position of each PST entry is recorded
in the device specification table (DST) for that partition.

The bad-track table, whose address is in the second word
of the PST, is a bit string constructed at system-generation
time and thereafter constant. The bits are read from right
to left within each word, and forward through contiguous
words, with set bits flagging bad tracks on the RMD.

Each RMD partition can contain a file-name directory of
the files contained in that partition. The beginning of the
directory is in the first sector of that partition. The
directory for each partition has a variable number of
entries arranged in n sectors, 19 entries per sector. Sectors
containing directory information are chained by pointers in
the last word of each sector. Thus, directory sectors need
not be contiguous. (Note: Directories are not automati·
cally created when the partitions are defined at system- ·"l!f

generation time. It is possible to use a partition with no

3.4

directory, e.g., by a foreground program that is collecting
data in real time.) Each directory entry is in the format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 File name
--

Word l File name

Word 2 File name
--

Wo11 3 Current position of file
--

Word 4 Beginning file address
--

Word 5 Ending file address

The file name comprises six ASCII characters packed two
characters per word. Word 3 contains the current address
at which the file is positioned, is initially set to the ending
file address, and is manipulated by the OPEN and CLOSE
macros (sections 3.4.1 and 3.4.2). The extent of the file is
defined by the addresses set in words 4 and 5 when the file
is created, and which remain constant.

At system-generation time, the first sector of each partition
is assigned to the file-name directory and a zero written

;;..- into the first word. Once entries are made in the file-name
directory, the first word of each sector contains a count of
the entries in that sector.

The last entry in each sector is a one-word entry containing
either the value 01 (end of directory), or the address of the
next sector of the file-name directory.

The file-name directories are created and maintained by
the VORTEX file-maintenance component (section 9) for
IOC use. User access to the directories is via the IOC, which
references the directories in response to the I /0 macros
OPEN and CLOSE. The file-maintenance component sets
words 0, 1, 2, 4, and 5 of each directory entry, which then
remain constant and unaffected by IOC operations. The
IOC can modify only the current position-of-file parameter.

In the case of a file containing a directory, an OPEN is
required before the file is accessible. The macro searches
the file directory for the entry corresponding to the name in
the file-control block (FCB) in use. When the entry is found,
the file boundary addresses and the current position-of -file
value from the directory entry are stored in the FCB. If the
OPEN macro

a. Specifies the option to rewind, the FCB current position
is set equal to the address of the beginning of file.

b. Specifies the option not to rewind, the FCB current
position is set equal to the address of the position of file.

I

Once a file is thus opened, READ and WRITE operations
are! enabled. The IOC references the file by the file
boundary values set by the OPEN, rather than by the file
name. READ and WRITE operations are under control of
the FCB current position value, the extent of the file, and
the current record number.

A CLOSE macro disables the IOC and user access to the file
by zeroing the four file-position parameters in the FCB. If
the CLOSE macro

a. Specifies the option to update, the current position-of -
file value in the directory entry is set to the value of the
FCB current position, allowing reference by a later
OPEN.

b. Specifies the option not to update, the file-directory
entry remains unmodified.

Special directory entries: A blank entry is created when a
file name is deleted, in which case the file name is ******
and words 3 through 5 give the extent of the blank file. A
zero entry is created when one name of a multiname file is
deleted, in which case the deleted name is converted to a
blank entry and all other names of the multiname file are
set to zero.

3.3 1/0 INTERRUPTS

VORTEX uses a complete, interrupt-driven 1/0 system, thus
optimizing the allocation of CPU cycles in the multipro­
gramming environment.

3.4 1/0-CONTROL MACROS

1/0 requests are written in assembly language programs as
I /0 macro calls. The DAS MR assembler provides the
following 1/0 macros to perform 1/0 operations, thus
simplifying coding:

·~·'--:,::!:,_

OPEN Open file

CLOSE Close file
. f

\

READ Read one record

WRITE Write one record j

REW Rewind

WEOF Write end of file
I

SREC Skip one record

FUNC Function

STAT Status

INPUT /OUTPUT CONTROL

DCB Generate data control block

FCB Generate file control block

The IOC performs a validity check on all 1/0 requests. It
then queues (according to the priority of the requesting
task) each valid request to the controller assigned to the
specified logical unit. Finally, the IOC schedules the
appropriate 1/0 driver to service the queued request.

The assembler processes the 1/0 macro to yield a macro
exp,msion comprising data and executable instructions in
the form of assembler language statements.

Certain 1/0 operations require parameters in addition to
those in the 1/0 macro. These parameters are contained in
a table, which, according to the operation requested, is
called either a file control block (FCB, section 3.4.11) or a
data control block (DCB, section 3.4.10). Embedded but
omitted parameters (e.g., default values must be indicated
by the normal number of commas.

Error messages applicable to these macros are given in
section 17.3.

110 Macros: The general form of 110 macros is:

label name cb, lun, wait, mode

where the symbols have the definitions given in section
3.4.1.

If the cb is for an FCB, it is mandatory. If it is for a DCB,
it is optional.

The expansion of an 110 macro is:

Bit 15 14

Word 0

Word 1

Word 2 c

Word 3 w

Word 4
I----

Word 5

Word 6

where
c

Status

e

13 12 11 10 9 8 7 6 5 4 3 2 1 0

J S R

V$10C address

Status I e cc I Priority'''

Mode I Op -code Log1cal--unit number
·-----i

FCB or DCB address
- -------1

User task 1dent1f1cat1on block address'''

IOC thread address''

set indicates completion of 1/0 tasks

is the status of the I /0 request

set indicates an irrecoverable I /0
error

3-5

INPUT/OUTPUT CONTROL

cc

Priority

w

Mode

Op-code

*

is the completion code

is the priority level of the task mak­
ing the request

is the wait/immediate-return option

is the mode of operation

specifies the 1/0 operation to be per­
formed

indicates an item whose initial value
is zero

The wait option causes the task to be suspended until its

1/0 is complete. The immediate option causes control to be

returned immediately to the task after the 1/0 request is

queued. Therefore, to multiprogram effectively within

VORTEX, the wait option is preferred.

Word 2 contains the following information:

a. Bit 15 indicates whether the 1/0 request is complete.

b. Bits 14 through 9 contain one of the error-message
status codes described in section 17 .3.

c. Bit 8 indicates an irrecoverable 110 error.

d. Bits 7 through 5 contain a completion code: 000
indicates a normal return; 101, an error; 110, an end of
file, beginning of device, or beginning of tape; and
111, end of device, or end of tape.

e. Bits 4 through 0 indicate the priority level of the task
making the request.

Word 5 initially points to the user's task identification
block. Upon completion of a READ or WRITE macro
(sections 3.4.3 and 3.4.4), the IOC sets word 5 to the actual
number of words transmitted.

Status macro: The general form of the status (STAT)
macro is:

label STAT req,err ,aaa,bbb,busy

where the symbols have the definitions given in section
3.4.9.

The normal return is to the first word following the macro
expansion.

3-6

The expansion of the STAT macro is:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2] 0
·-··--····

Word 0 J S R

Word 1 V$10C address

Word 2 Address of the 1/0 macro
!------------

Word 3 Address of the 1/0 error routine

Word 4 aaa
i--

Wor, 5 bbb

Word 6 Address of the busy or 1/0-not-complete routi ne
--·--- --

where aaa is the address of the end of file, beginning of
device or beginning of tape and bbb is the address of the
end of the tape or end of device.

Control block macro: The general form of the DCB macro
is:

label DCB

-1-.Q.

@buff, fun

where the symbols have the definitions given in section
3.4.10.

The expansion of the DCB macro is:

Bit 15 14 13 12
11 10 9 8 7 6 5 4 3 2~ 11 0

Record length i j

Address of user data area ; "'~\

Function code ,. ,,. r

Word O

Word 1
r-

Word 2

The function code applies only to 1/0 drivers that allow:

a. The line printer to slew to top of form or to space
through the channel selection for paper-tape form
control.

b. The paper-tape punch to punch leader.

c. The card punch to eject a blank card as a separator.

The general form of the FCB macro is:

label FCB r/,buff,acc,key, 'xx', 'yy', 'zz'

where the symbols have the definitions given in section
3.4.11.

The expansion of the FCB macro is:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word O Record length

Word 1 Address of user data area

Word 2 Access method I Protection key

Word 3 Current record number

Word 4 ~--Current of-file address

Word 5 Beginning file address

Word 6 Ending file address

Word 7 File name

Word 8 File name

Word 9 File name

The access method (word 2, bits 15 through 8) specifies
one of the four methods of reading or writing a file:

a. Direct access by logical record: The 1/0 driver uses
the contents of FCB word 3 as the number of the logical
record within a file to be processed, but does not alter
word 3 after reading or writing. Word 3 is set by the
user to the desired record number prior to each read/
write.

b. Sequential access by logical record: The I /0 driver
uses the contents of word 3 as the number of the logical
record within a file to be processed, then increments
the contents of word 3 by one. Word 3 is set initially
to ~ef!W when the FCB macro expands. Successive
reading and writing thus accesses records

sequentially. -i_ C:iP\:-;N-:.-.:- is d ;_,, o""' '··

c. Direct access by physical record: The I /0 driver uses
the contents of FCB word 3 as the number of the
VORTEX physical record to be processed within a file
(120-word length), but does not alter word 3 after a
read or write. Word 3 is set by the user to the desired
record number prior to each read/write.

d. Sequential access by physical record: The 1/0 driver
uses the contents of FCB word 3 as the number of the
VORTEX physical record to be processed within a file
(120-word length), then increments the contents of
word 3 by one. Word 3 is set initially to zero when the
FCB macro expands. Successive reading and writing
thus accesses records sequentially.

3.4.1 OPEN Macro

This macro, which applies only to RMDs or magnetic-tape
units, enables 110 operations on the devices by initializing
the file information in the specified FCB. The macro has
the general form

where

INPUT /OUTPUT CONTROL

label OPEN fcb,lun, wait, mode

fcb is the address of the file control block

lun is the number of the logical unit being
opened

wait is 1 for an immediate return, or 0
(default value) for a return suspended
until the I /0 is complete

mode is 0 (default value) for rewinding or 1 for
not rewinding In the former case, word
3 (current record number) of the FCB
is set to 1, word 4 (current position·
of-file address) is set to the current
position-of· file address given by the
RMD file directory, and rewinds the
magnetic-tape unit. In the latter case,
the current position-of-file address given
by the RMD file directory is copied into
word 4, converted to a record num­
ber and stored in word 3 of the FCB, thus
initializing the user FCB, enabling

"'<!_eadTiig, or writing from a previously
specified location, and the magnetic­
tape position is left unchanged
(not rewound).

OPEN must precede any other 1/0 request (except REW)
because the FCB file information must be complete before
any file-oriented 1/0 is possible. If a file has already been
opened, an OPEN will be accepted.

The OPEN macro is file-oriented, while the REW macro is
oriented to the logical unit. An REW destroys information
completed by a previous OPEN on the same logical unit.

The OPEN macro changes words 3, 4, 5, and 6 of the FCB
(section 3.4.11).

If an attempt is made to apply the OPEN macro to any
device other than an RMD or a magnetic-tape unit, the 1/0
request is processed internally by the IOC but not by an
110 driver. The IOC indicates the status as 110 complete.

Example: Read a 120-word record from the file FILElO on
logical unit 18, an RMD partition with sequential, record­
oriented access. BUFF is the address of the user's buffer
area. Use the wait and rewind options, and set the logical­
unit protection key to 1.

3-1

INPUT /OUTPUT CONTROL

X1 EQU 18 (LUN assigned to unit Xl)
RL EQU 120 (Record length 120)
WAIT EQU 0 (Wait option)
REW EQU 0 (Rewind option)
KEY EQU 1 (Logical-unit protection key)
SEQR EQU 1 (Sequential, record-oriented access)
OPEN OPEN FCB, X 1 , WAIT, REW
READ READ FCB,X1 ,WAIT

FCB FCB RL, BUFF, SEQR, KEY, 'FI', 'LE' ,'1 O'

3.4.2 CLOSE Macro

This macro, which applies only to RMDs or magnetic-tape
units, updates information in the specified FCB file. This
records and retains the current position within the file. The
mode option ignores the updating, thus retaining the
previously defined position in the file. The macro has the
general form

label CLOSE fcb, lun, wait, mode

where

fcb

lun

wait

mode

is the address of the FCB

is the number of the logical unit being
closed

is 1 for an immediate return, or 0
(default value) for a return suspended
until the 1/0 is complete

is 0 (default value) for not updating, or 1
for updating. In the former case, there
is no change to the current position-of­
file address in the RMD file directory,
words 3, 4, 5, and 6 of the FCB are set to
zero, and the magnetic-tape position is
left unchanged (not rewound). In the
latter case, the contents of FCB word
3 (current record number) are converted
to an address and stored in the current
position-of-file address in the RMD file
directory, words 3, 4, 5, and 6 of the FCB
are set to zero, and an end- of-file mark
written on the magnetic tape.

The CLOSE macro cannot be used if there is no such file
defined in the FCB (section 3.4.11).

If an attempt is made to apply the CLOSE macro to any
device other than an RMD or magnetic-tape unit, the 110
request is processed internally by the IOC, but not by an
I /0 driver. The IOC indicates the status as 110 complete.

Example: Close the file MATRIX on logical unit 180, an
RMD partition with sequential, record-oriented access. Use
the wait and update options.

3-8

SEQR EQU 1 (Sequential, record-oriented access)
UPDATE EQU 1 (Update option)
WAIT EQU 0 (Wait option)

CLOSE CLOSE FCB,180,WAIT,UPDATE

FCB FCB ,,SEQR,, 'MA', 'TR', 'IX'

3.4.~ READ Macro

This macro retrieves a record of specified length
from the specified logical unit, and places it in
the specified area of main memory. The macro has

the general form

label READ cb,lun,wait,mode

where

cb

lun

wait

mode

is the address of the data control block,
or of the file control block

is the number of the logical unit from
which the record is read

is 1 for an immediate return, or 0
(default value) for a return suspended
until the I /0 is complete

specifies the 110 mode: 0 (default value)
for system binary, 1 for ASCII, 2 for
BCD, or 3 for unformatted I /0

The number of words read is stored in word 5 of the 1/0
macro.

Example: Read a record from logical unit 4, a magnetic­
tape unit. Use system binary mode and the immediate
return option. The record length is 60 words, and the
address of the user's data area is BUFF.

IM EQU
BIN EQU
MT EQU
RECL EQU

(Immediate return)
o (System binary mode)
4 (LUN assigned to magnetic-tape unit)
6 o (Record length 60 words)

MTRD READ TAPE,MT,IM,BIN

TAPE DCB
BUFF BSS

RECL, BUFF (Data control block)
6 0 (User data area)

Note that the READ macro had a mode value of zero. Since
this is the default value, the macro could have been coded:

MTRD READ TAPE,MT,IM

3.4.4 WRITE Macro

This macro takes a record of specified length from the
specified area of main memory, and transmits it to the
specified logical unit. The macro has the general form

label WRITE cb,lun, wait, mode

where the parameters have the same definitions and take
the same values as in the READ macro (section 3.4.3).

The number of words written is stored in word 5 of the 1/0
macro.

Example: Obtain a system binary record 60 words in
length from the user's data area BUFF, and transmit it to
logical unit 16, a magnetic-tape unit. Use the immediate­
return option.

IM EQU (Immediate return)
BIN EQU 0 (System binary mode)
MT EQU 16 (LUN assigned to mag-

netic-tape unit)

RECL EQU 60 (Record length 60 words)

MTWT WRITE TAPE, MT, IM, BIN

TAPE DCB
BUFF BSS

RECL, BUFF (Data control block)
6 0 (User data area)

3.4.5 REW (Rewind) Macro

This macro, which applies only to magnetic-tape or
rotating-memory devices, repositions the specified logical
unit to the beginning-of-unit position. It has the general
form

or

where

label REW fcb, lun, wait

label REW dcb,lun,wait

fcb is the address of the FCB

deb

lun

wait

is the address of the DCB

is the number of the logical unit being
rewound

is 1 for an immediate return, or 0
(default value) for a return suspended
until the I /0 is complete

INPUT /OUTPUT CONTROL

Note that the DCB address is an optional parameter, but
that the fCB address is mandatory.

To reposition a named file on an RMD, use the OPEN
~o (section 3.4. p·

!
Magnetif;-tape devices: REW rewinds the specified unit
and, upon successfl.fl completion of the task, returns a
beginning-of-device '(BOD) status.

f("tating-memory devices: REW places the start-RMD­
partition and end-RMD-partition addresses in words 5 and
6, respectively, of the FCB (section 3.4.11). I <" ,

Examples: Rewind logical unit 23, a magnetic-tape unit.
Use the wait option, here specified by default.

MT EQU 2 3 (LUN assigned to magnetic-tape
unit)

REWT REW ,MT

Rewind logica• unit 10. an RMD partition. Use the wait
option, here specified by default. Note that the REW for an
RMD must have an associated FCB (section 3.4.11).

DI SC EQU 1 0 (LUN assigned to RMD partition)
RECL EQU 120

REWD REW FCB.DISC

FCB FCB RECL,BUFF,,, 'SY', 'ST', 'EM'
(section 3.4.11)

BUFF BSS 120

3.4.6 WEOF (Write End of File) Macro

This macro writes an end of file on the specified logical
unit. It has the general form

where

label WEOF 1 cb,lun,wait
!

cb is the address of the control block

tun is the number of the affected logical unit

wait is 1 for an immediate return, or 0
(default value) for a return suspended
until the I /0 is complete

3-9

. INPUT /OUTPUT CONTROL

Example: Write an end of file on logical unit 10. Use the
wait option, here specified by default.

TAPE EQU 10

EOF WEOF ,TAPE

3.4. 7 SREC (Skip Record) Macro

This macro, which applies only to magnetic-tape or
rotating-memory devices, skips one record in either
direction on the specified logical unit. It has the general
form

where

label SREC cb,lun,wait,mode

cb is the address of the control block

lun is the number of the logical unit being
manipulated

wait is 1 for an immediate return, or 0
(default value) for a return suspended
until the 110 is complete

mode specifies the direction of the skip: O
(default value) for a forward skip, or 1 for
a reverse skip

If applied to an RMD, SREC adds or subtracts from the
value of word 3 of the FCB (section 3.4.11).

If an attempt is made to apply this macro to a device other
than a magnetic-tape or rotating-memory unit, the 110
request is proce~sed internally by the IOC but not by an
1/0 driver. The IOC indicates the status as 1/0 complete.

Example: Skip back one record on logical unit 57, a
magnetic-tape unit. Use the immediate-return option.

MT
REV
IM

EQU
EQU
EQU

5 7 (LUN assigned to magnetic-tape unit)
1 (Reverse)

(Immediate return)

SKIP SREC ,MT,IM,REV

3.4.8 FUNC (Function) Macro

This macro performs a miscellaneous function on a
specified logical unit. The function (when present) cannot

3-10

be defined by any of the preceding 1/0 control functions.
The macro has the general form

label

where

deb

lun

wait

FUNC dcb,lun,wait

is the address of the data control block

is the number of the logical unit being
manipulated

is 1 for an immediate return, or 0
(default value) for a return suspended
until the I /0 is complete

FUNC causes certain 110 drivers to perform special
functions specified by the function code fun in a DCB
macro (section 3.4.10):

1/0 Driver Function Function
Code

Card punch 0 Eject blank card

Paper-tape punch 0 Punch 256 blank frames
for leader

Line printer and 0 Advance paper to top. of
Teletype printer next form, or on Tele-

type 3 lines x
1 Advance paper one line
2 Advance paper two lines

If an attempt is made to apply the FUNC macro to any
other device, the 110 request is processed internally by the
IOC but not by an 110 driver. The IOC indicates the status
as 110 complete.

Example: Skip two lines on the printer, which is logical
unit 5. Use the wait option, here specified by default.

LP
CNT

UPSP

DCB

EQU
EQU

FUNC

DCB

5
2

(LUN assigned to line printer)
(Paper-tape channel 2)

DCB,LP

, ,CNT

3.4.9 STAT (Status) Macro

This macro examines the status word in an I /O macro to
determine the result of an 1/0 function request. The STAT

macro has the general form
t.'Ot

req,err ,aaa,bbb,busy label STAT

where

req

err

aaa

bbb

busy

is the address of the 1/0 macro (e.g.,
READ)

is the address of the I /0-error routine

is the address of the end of file,
beginning of device, or beginning of tape

is the address of the end of device or end
of tape

is the address of the 1/0-not-complete
routine

All parameters (except the label) are mandatory. The
contents of the overflow indicator and the A and B registers
are saved. Upon normal completion, control returns to the
user at the first word after the end of the macro expansion.

CAUTION

Foreground tasks should not loop to check for
completion of 1/0 tasks because this inhibits all
lower-level tasks.

Example: Rewind logical unit 12, a magnetic-tape unit,
and check for beginning of device (load point). Use the
immediate-return option.

MT
IM

EQU
EQU

12 (LUN assigned to magnetic-tape unit)
1· (Immediate return)

REW REW , MT, IM (DCB can be omitted for REW)

BUSY STAT REW,ERR,BOT,EQT,BUSY

BOT
ERR
EQT

3.4.10 DCB (Data Control Block) Macro

This macro generates a DCB as required by 1/0 macro
requests to devices other than RMDs. Note that not all

INPUT /OUTPUT CONTROL

such requests (e.g., rewinding a magnetic-tape unit)
require a DCB. The macro has the general form

label

where

rl

DCB rl,buff, fun

is the length, in words, of the record to
be transmitted

buff is the address of the user's data area

fun is the function code for a FUNC request
and is unused for other requests (section
3.4.8)

Example: Read a record from logical unit 4, a magnetic­
tape unit. Use system binary mode and the immediate­
return option. The record length is 60 words, and the
address of the user's data area is BUFF.

IM EQU
BIN EQU
MT EQU
RECL EQU

1 (Immediate return)
O (System binary mode)
4 (LUN assigned to magnetic-tape unit)
6 0 (Record length 60 words)

MTRD READ TAPE,MT,IM,BIN

TAPE DCB RECL, BUFF (Data control block)

3.4.11 FCB (File Control Block) Macro

This macro generates an FCB required by any I /0 macro
request to an RMD. The macro has the general form

where

label FCB rl,buff,acc,key, 'xx', 'yy', 'zz'

r/ is the length, in words, of the record to
be transmitted buff

bv.f.f is the address of the user's data block

ace

key

specifies the access method and is 0
(default value) for the direct access by
logical record, 1 for sequentia access by
logical record, 2 for direct access using
the relative sector number (beginning
with 1) within the file, or 3 for sequential
access using the relative sector number
within the file

is the protection code, if any, required to
address that logical unit. This is a single
alphanumeric ASCII character coded
between single quotation marks (e.g.,
the protection code H would be coded
'H'); or as the eight-bit octal equivalent,

3 11

INPUT /OUTPUT CONTROL

xxyyzz

in which case no quotation marks are
used (e.g., 0310 for the protection code
H). The default value is binary zero (not
the character 0).

is the name of the file being referenced.
The file name is one to six ASCII
characters, coded in pairs between
single quotation marks and separated
by commas, e.g., the file named ARRIBA
is coded 'AR','Rl','BA'. Embedded
blanks are illegal.

Table 3-3 shows the use of FCB words 3, 4, 5, and 6 for the
110 macros.

Example: Create an FCB for the file FILEXX. Use the
logical-record-oriented, sequential-access method with a

record length of 120 words. The user's data area is BUFF
and the protection code is Z.

SEQR EQU
RECL EQU 120

(Sequential, record·oriented access)
(Record length 120 words)

DISC FCB RECL,BUFF,SEQR, 'Z' I 'FI' I 'LE' I 'XX'

BUFF BSS 120

Note that the protection code character Z is coded between
single quotation marks, i.e., 'Z', but it can also be coded as
the octal value of the ASCII character, in which case no
quotation marks are used, i.e., 0332. Thus, the statement
given in the example above is equivalent to

DISC FCB RECL,BUFF,SEQR,0322, 'FI' I 'LE'' 'XX'

Table 3-3. FCB Words Under I /0 Macro Control

Word OPEN READ WRITE SREC CLOSE REW

Sequential-Access Method

3 Set to lncre- lncre- Adds or Set to Current
position men ts men ts subtracts position record set
of cur- record record one of file to one or
rent rec- number number on direc- beginning
ord by by one by one tory by address of
mode \:· mode logical ('\:..D·
chosen . ., chosen unit

4 Set to Checks 'No Checks No Set to
current end of ·,actiorv end of action ending
position file file address
of file of logi-
as noted cal unit
on direc-
tory

5 Set to No No No No Set to
beginning action action action action beginning
of file address of
address logical
put in· unit
this word'I , ,!: i '')

l ~--\-,."

6 Set to No No' No No Set to ''\ , _· ;
end of action action action action address
file ad· of logi-
dress cal unit

3-12

INPUT /OUTPUT CONTROL

Table 3-3. FCB Words Un..:ter 1/0 Macro Control
(continued)

Word OPEN READ WRITE SREC CLOSE REW

Direct-Access Method

3 Set to No No No Set to Current
position action action action position record set
of cur- of file to one or
rent rec- on direc- beginning
ord by tory by address of
mode mode logical
chosen chosen unit

4 Set to No No No No Set to
current action action action action ending
position address
of file of logi-
as noted cal unit
on direc-
tory

5 Set to No No No No Set to
begin- action action action action beginning
ning of address
file ad- of logi-
dress cal unit

6 Set to No No No No Set to
end of action action action action ending
file ad- address
dress of logi-

cal unit

3 13

SECTION 4

JOB-CONTROL PROCESSOR

The job-control processor (JCP) is a background task that
permits the scheduling of VORTEX system or user tasks for
background execution. The JCP also positions devices to
required files, and makes logical-unit and 1/0-device
assignments.

4.1 ORGANIZATION

The JCP is scheduled for execution whenever an unsolicited
operator key-in request (section 15.2) to the OC logical unit
has a slash (/) as the first character.

Once initiated, the JCP processes all further JCP directives
from the SI logical unit.

If the SI logical unit is a Teletype or a CRT device, the
message JC'°'* is output to indicate the SI unit is waiting
for JCP input. The operator is prompted every 15 seconds
(by a bell for the Teletype or tone for the CRT) until an
input is keyed in.

If the SI logical unit is a rotating-memory-device (RMD)
partition, the job stream is assumed to comprise unblocked
data. In this case, processing the job stream requires an
I ASSIGN directive (section 4.2.6).

A JCP directive has a maximum of 80 characters,
beginning with a slash. Directives input on the Teletype are
terminated by the carriage return.

4.2 JOB-CONTROL PROCESSOR DIRECTIVES

This section describes the JCP directives:

a. Job-initiation/termination directives:
I JOB Start new job
/ENDJOB Terminate job in progress
/FINI Terminate JCP operation
IC Comment
/MEM Allocate extra memory for

background task

b. 1/0-device assignment and control directives:
/ASSIGN Make logical-unit assignment(s)
/SFILE Skip file(s) on magnetic-tape unit
/SREC Skip record(s) on magnetic-tape unit or

/WEOF
/REW

/PFILE
/FORM
/KPMODE

RMD partition
Write end-of-file mark
Rewind magnetic-tape unit or RMD

partition
Position rotating-memory-unit file
Set line count on LO logical unit
Set keypunch mode

c. Language-processor directives:
/DASMR Schedule DAS MR assembler
/FORT Schedule FORTRAN compiler

d. Utility directives:
/CONC Schedule system-concordance program
/SEDIT Schedule symbolic source-editor task

/FMAIN
/LMGEN
/IOUTIL
/SMAIN

Schedule file-maintenance task
Schedule load-module generator
Schedule I /0-utility processor
Schedule system-maintenance task

e. Program-loading directives:
/EXEC Schedule loading and execution of a

load-module from the SW unit file
Schedule loading and execution of a

user background task

JCP directives begin in column 1 and comprise sequences
of character strings having no embedded blanks. The
character strings are separated by commas (,) or by equal
signs (=). The directives are free-form and blanks are
permitted between the individual character strings of the
directive, i.e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator.
Comments can be inserted after a period.

Each JCP directive begins with a slash (/).

The general form of a job-control statement is

lname,p(l),p(2), ... ,p(n)

where
name

eachp(n)

is one of the directive names
given (any other character
string produces an error)

is a parameter required by the
JCP or by the scheduled task
and defined below under the
descriptions of the individual
directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
by equal signs are omitted.

Error messages applicable to JCP directives are given in
section 17.4.

4.2.1 I JOB Directive

This directive initializes all background system pointers
and flags, and stores the job name if one is specified. It
has the general form

/JOB.name

where name is the name of the job and comprises up to
eight ASCII characters (additional characters are permitted
but ignored by the JCP).

4-1

JOB-CONTROL PROCESSOR

The job name, if any, is then printed at the top of each
page for all VORTEX background programs.

Example: Initialize the job TASKONE.

/JOB,TASKONE

4.2.2 /ENDJOB Directive

This directive initializes all background system pointers
and flags, and clears the job name. It has the form

/ENDJOB

Example: Terminate the job in process.

/ENDJOB

4.2.3 /FINI (Finish) Directive

This directive terminates all JCP background operations
and makes an EXIT request to the real-time executive
(RTE) component (!':>ection 2.1.10). It has the form

/FINI

To reschedule JCP after a FINI, input any JCP directive
from the OC unit (section 15).

Example: Terminate JCP operations.

/FINI

4.2.4 IC (Comment) Directive

lhis directive outputs the specified comment to the SO and
LO logical units, thus permitting annotation of the listing. It
is not otherwise processed. It has the general form

/C,comment

where comment is any desired free-form comment.

Example: Annotate a listing with the comment Rewind all
mag tapes.

/C,REWIND ALL MAG TAPES

4.2.5 /MEM (Memory) Directive

fhis directive assigns additional 512-word blocks of main
memory to the next scheduled background task. It has the
general form

!MEM,n

where n is the number of 512-word blocks of main memory
to be assigned.

!MEM permits larger symbol tables for FORTRAN compila­
tions and DAS MR assemblies.

llte total area of the 512-word blocks of memory plus the
background program itself cannot be greater than the total
area available for background and nonresident foreground
tasks. An attempt to exceed this limit causes the scheduled
task to be aborted.

Example: Allocate an additional 1,024 words of main
memory to the next scheduled task.

/MEI-. 2

4.2.6 I ASSIGN Directive

This directive equates and assigns particular logical units
to specific 1/0 devices. It has the general form

where

I ASSIGN,1(1) = r(l),/(2) = r(2), ... ,l(n) = r(n)

·~ach l(n)

each r(n)

1s a logical-unit number (e.g.,
'.02) or name (e.g., SI)

is a logical-unit number or
name, or a physical-device
:;ystem name (e.g., TYOO,
table 15-1)

The logical unit to the left of the equal sign in each pair is
assigned to the unit/device to the right.

If the controller and unit numbers are omitted from the
name of a physical device. controller 0 and unit 0 are
assumed.

An inoperable device, i.e., one declared down by the
;Dl:.VDN operator key-in request (section 15.2.10), cannot
be assigned. A logical unit designated as unassignable
cannot be reassigned.

Example: Assign the Pl logical unit to card reader CROO
and the LO logical unit to Teletype TYOO.

/ASSIGN,PI•CR,LO•TY

4.2.7 /SFILE (Skip File) Directive

This directive, which applies only to magnetic-tape units,
causes the specified logical unit to move the tape forward
the designated number of end-of-file marks. It has the
general form

/SFILE,lun,neof

where

neof

i~> the number or name of the

dtfected logical unit

is the number of end-of.file
marks to be skipped

If the end-of-tape mark is encountered before the required
number of files has been skipped, the JCP outputs to the
SO and LO logical units the error message JC05,nn, where
nn is the number of files remaining to be skipped.

Example: Skip three files on the Bl logical unit.

/SFILE,BI,3

4.2.8 /SREC (Skip Record) Directive

This directive, which applies only to magnetic-tape unit,
causes the specified logical unit to move the tape the
designated number of records in the required direction. It
has the general form

where

/SREC,lun,nrec,direc

lun

nrec

is the number or name of the affected
logical unit

is the number of records to be skipped

direc indicates the direction to be skipped; F
(default value) for forward, or R for
reverse

If a file mark, end of tape, or beginning of tape is
encountered before the required number of records has
been skipped, the JCP outputs to the SO and LO logical
units the error message JC05,nn, where nn is the number
of records remaining to be skipped.

Example: Skip nine records forward on the BO logical
unit.

/SREC,B0,9

4.2.9 /WEOF (Write End of File) Directive

This directive writes an end-of-file mark on the specified
logical unit. It has the general form

/WEOF,lun

where lun is the number or name of the affected logical
unit.

Example: Write an end-of-file mark on the BO logical unit.

/WEOF,BO

4.2.10 /REW (Rewind) Directive

This directive, which applies only to magnetic-tape units,
causes the specified logical unit(s) to rewind to the
beginning of tape. It has the general form

/REW ,lun,/un, .. . ,lun

where lun is the number or name of a logical unit to be
rewound.

JOB-CONTROL PROCESSOR

Example: Rewind the BO and Pl logical units.

/REW,BO,PI

4.2.11 /PFILE (Position File) Directive

This directive, which applies only to RMDs, causes the
specified logical unit to move to the beginning of the
designated file. It has the general form

where

/PFILE,lun,key,name

tun is the number or name of the affected
logical unit. The logical unit must be
one of the system defined logical units
which has a global FCB

key

name

is the protection code required to
address lun

is the name of the file to which the
logical unit is to be positioned

Global file control blocks: There are eight global file
control blocks (FCB, section 3.4.11) in the VORTEX system
that are reserved for background use. System background
and user programs can reference these global FCBs. The
/PFILE directive stores key and name in the corresponding
FCB before opening/rewinding the logical unit. To pass the
buffer address and size of the record to the corresponding
logical-unit FCB, make an RTE IOLINK service request
(section 2.1.12). The names of the global FCBs are SIFCB,
P/FCB, POFCB, SSFCB, B/FCB, BOFCB, GOFCB, and
LOFCB, where the first two letters of the name indicate the
logical unit.

Example: Position the Pl logical unit to beginning of file
FILEXY, whose protection key is$.

/PFILE,PI,$,FILEXY

4.2.12 /FORM Directive

This directive sets the specified line count on the LO logical
unit. This is the number of lines printed by DAS MR
assembler or FORTRAN compiler before a top of form is
issued. The directive has the general form

/FORM,lines

where lines is the number (from 5 to 9999, inclusive) of
lines to be printed before a top of form is issued.

The default value of lines is defined at system-generation
time. If the directive contains a value outside the legal
range, the default value is used.

Example: Set a line-count value of 100.

/FORM, 100

4-3

JOB-CONTROL PROCESS01~

4.2.13 /KPMODE (Keypunch Mode) Directive

This directive specifies the mode, 026 or 029, (BCD or
EBCDIC respectively) in which VORTEX is to read and
punch cards. It has the general form

/KPMODE,m

where m is 0 (default value) for 026 mode, or 1 for 029
mode.

Example: Specify that cards be read and punched in 029
keypunch mode.

/KPMODE,1

4.2.14 /DASMR (DAS MR Assembler) Directive

This directive schedules the DAS MR assembler (section
5.1) with the specified options for background operation on
priority level 1. It has the general form

/DASMR,p(l),p(2), ... ,p(n)

where each p(n), if any, is a single character specifying one
of the following options:

Parameter Presence Absence

B Suppresses binary object Outputs binary object

Outputs binary object Suppresses output of
on GO file binary object on GO file

M Suppresses symbol-table Outputs symbol-table
listing listing

N Suppresses source listing Outputs source listing

The /DASMR directive can contain up to four such
parameters in any order.

The DAS MR assembler reads source records from the Pl
logical unit on the first pass. The Pl unit must have been
set to the beginning of device before the /DASMR directive.
This can be done with an I ASSIGN (section 4.2.6), /SFILE
(section 4.2.7), /REW (section 4.2.10), or /PFILE (section
4.2.11) directive.

A load-and-go operation requires, in addition, an /EXEC
directive (section 4.2.22).

Example: Schedule the DAS MR assembler with no source
listing, but with binary-object output on the GO file.

/JOB,EXAMPLE
/PF ILE, BO, BO .. ,,,
/DASMR, N, L ""'---~

I JOB initializes the GO file to start of file. If BO is assigned
to a rotating memory partition, a /PFILE,BO,,BO must
precede the /DASMR directive to initialize the file (unless
the assembly is part of a stacked job - see paragraph 4.3
for sample deck setup).

4-4

4.2.15 /FORT (FORTRAN Compiler) Directive

This directive schedules the FORTRAN compiler (section
5.3) with the specified options for background operation on
priority level 1. It has the general form

/FORT,p(l),p(2), .. . ,p(n)

where each p(n), if any, is a single character specifying one
of the following options:

Paraneter

B

D

L

M

N

0

x

Presence

Suppresses binary object

Assigns two words to
integer array items and
to integer and logical
variables (ANSI standard)

Outputs binary object
on GO file

Suppresses symbol-table
listing

Suppresses source listing

Outputs object-module
listing

Compiles conditionally

Absence

Outputs binary object

Assigns one word to
integer array items and
to integer and logical
variables

Suppresses output of
binary object on GO file

Outputs symbol-table
listing

Outputs source listing

Suppresses object-module
listing

Compiles normally

The /FORT directive can contain up to seven such
parameters in any order.

Sample deck formats are illustrated in section 4.3.

The FORTRAN compiler reads source records from the Pl
logical unit. The Pl unit must have been set to the
beginning of device before the /FORT directive. This can be
done with an I ASSIGN (section 4.2.6), /SFI LE (section
4.2.7), /REW (section 4.2.10), or /PFILE (section 4.2.11)
directive.

A load-and-go operation requires, in addition, an /EXEC
directive (section 4.2.22).

Example: Schedule the FORTRAN compiler with binary­
object, source, symbol-table, and object-module
listings; normal compilation; and no binary-object output
on the GO file.

/FORT,O

4.2.16 /CONC (System Concordance) Directive

This directive schedules the system concordance program
(section 5.2) for background operation. It has the form

/CONC

The concordance program inputs from the SS logical unit
and uses the same source statements that are input to the

DAS MR assembler. It outputs to the LO logical unit a
listing of all symbols and their referenced locations in the
same input program.

The SS unit is set to the beginning of device before the
/CONC directive.

Example: Schedule the system concordance program.

/ASSIGN,SS•MTOO
/REW,SS
/DAS MR
/PFILE,SS,,SS
/CONC

4.2.17 /SEDIT (Source Editor) Directive

This directive schedules the symbolic source editor (section
8) for background operation on priority level 1. It has the
form

/SEDIT

Example: Schedule the symbolic source editor.

/SEDIT

4.2.18 /FMAIN (File Maintenance) Directive

This directive schedules the file maintenance task (section
9) for background operation on priority level 1. It has the
form

/FMAIN

Example: Schedule the file maintenance task.

/FMAIN

4.2.19 /LMGEN (Load-Module Generator)
Directive

. .
This directive schedules the load-module generator (section
6) for background operation on priority level 1. A memory
map is output unless suppressed. The directive has the
general form

/LMGEN,M

where M, if present, suppresses the output of a memory
map.

Example: Schedule the load-module generator task with·
out a memory map.

/LMGEN,M

JOB-CONTROL PROCESSOR

4.2.20 /IOUTIL (l/O Utility) Directive

This directive schedules the 1/0 utility processor (section
10) for background operation on priority level 0. The
directive has the form

/IOUTIL

Example: Schedule the 1/0 utility processor.

/IOUTIL

4.2.21 /SMAIN (System Maintenance)
Directive

This directive schedules the system maintenance task
(section 14) for background operation on priority level 1.
The directive has the form

/SMAIN

Example: Schedule the system maintenance task.

/SMAIN

4.2.22 /EXEC (Execute) Directive

This directive schedules the load-module loader to load and
execute a load module from the SW logical unit file. Since
this is not a VORTEX system task, execution is on priority
level 0. The directive has the general form

/EXEC,O

where 0, if present, dumps all of background f upon
completion of execution.

Example: Schedule the loading of a user load module
from the SW unit file without a background dump.

/EXEC

Schedule a FORTRAN load-and-go operation.

/FORT,L
/EXEC

4.2.23 I LOAD Directive

This directive schedules a user task, which must be present
in the background library, for background execution on
priority level 0. The directive has the general form

where

!LOAD,name,P(l),p(2), ... ,p(n)

name

each p(n)
(if any)

is the name of the user task
being scheduled

is a parameter required by
the user task

4-5

JOB-CONTROL PROCESSOR

Each parameter specified, if any, will be in the job-control
buffer when the user task is scheduled. The parameter
string, which can extend to the end of the 80-character
buffer, will appear in the buffer exactly as it does in the
input directive. The address of the first word of the
parameter string is in location V$JCB.

Example: Schedule the user task TSKONE with parame­
ters ALPHA! and ALPHA2.

/LOAD,TSKONE,ALPHA1,ALPHA2

4.3 SAMPLE DECK SETUPS

The batch-processing facilities of VORTEX are envoked by
JCP control directives in combination with programs and
data. These elements . form the input job stream to
VORTEX. The input job stream can come from various
peripherals and be carried on various media. These
examples illustrate common job streams and deck-prepara­
tion techniques.

Example 1 - Card Input: Compile a FORTRAN IV main
program (with source listing and octal object listing), and
assemble a DAS MR subprogram. Then load and execute
the linked program.

/JOB,EXAMPLE1
/FORT,L,O

(Source Deck)

/DASMR,L

(Source Deck)

/EXEC
/ENDJOB

Example 2 - Card Input: Assemble a DAS MR program
(with source listing and load-and-execute) and generate a
concordance listing. The DAS MR program is cataloged on
RMD partition DOOK under file name USER! with protec­
tion key U. Assign the Pl logical unit to RMD partition
DOOK, open file name USER! for the assembler, assemble
the program, and execute the program with a dump.

/JOB,EXAMPLE2
/ASSIGN,PI•DOOK
/PFILE,PI,U,USER1
/DASMR,L
/PFILE,SS,,SS
/CONC
/EXEC,D
/ENDJOB

Example 3 - Card Input: Assemble a DAS MR program
(with source listing and object-module output on the BO

4-6

logical unit). Assign the Pl logical unit to magnetic-tape
unit MTOO, the PO logical unit to dummy device, the SS
logical unit to the Pl logical unit, the BO logical unit to
RMD partition DOOJ, and output the object module to file
name USER2 with no protection key. Before assembly,
position the Pl logical unit to the third file. Allocate four
additional 512-word blocks for the DAS MR symbol-table
area.

/JOB,EXAMPLE3
/ASfIGN,PI•MTOO,PO•DUM,SS•PI,BO•DOOJ
/REl-4 PI
/SFILE,PI,2
/PFILE,BO,,USER2
/MEM,4
/DAS MR
/ENDJOB

Example 4 · Card Input: After generation of a VORTEX
system, use FMAIN to initialize and add object modules to
the object-module library (OM) with protection key D.
Assign the Bl logical unit to CROO.

/JOB,EXAMPLE4
/ASSIGN,BI•CROO
/FMAIN
INIT,OM,D
INPUT,BI
ADD,OM,D

(Object Modules)

(2-7-8-9 EOF Card)

/ENDJOB

Example 5 - Card Input: Load and go operation. Compile a
FORTRAN IV main program, a subprogram and assemble a
DASMR subprogram. Output on BO. Execute the linked
programs.

/JOB,EXAMPLE5
/PFILE,BO,,BO
/FORT,L

(Source deck FORTRAN main program)

(Source deck FORTRAN subprogram)

/DASMR,L

/EXEL
/FINI

(Source deck DASMR subprogram)

SECTION 5

LANGUAGE PROCESSORS

The VORTEX operating system supports three language
processors: the DAS MR assembler (section 5.1), the
FORTRAN IV compiler (section 5.3), and the RPG IV
compiler (section 5.4), plus the ancillary concordance
program (section 5.2).

5.1 DAS MR ASSEMBLER

DAS MR is a two-pass assembler scheduled by job-control
directive /DASMR (section 4.2.14). DAS MR uses the
secondary storage device unit for pass 1 output. It reads a
source module from the Pl logical unit and outputs it on
the PO unit. The source input for pass 2 is entered from
the SS logical unit.

When an END statement is encountered, the SS unit is
repositioned and reread. During pass 2, the output can be
directed to the BO and/or GO units for the object module
and the LO unit for the assembly listing. The SS or PO file,
which contains a copy of the source module, can be used as
input to a subsequent assembly.

A DAS MR symbol consists of one to six characters, the
first of which must be alphabetic, with the rest alphabetic
or numeric. Additional alphanumeric characters can be
appended to the first six characters of the symbol to form
an extended symbol up to the limit imposed by a single line
of code. However, only the first six characters are
recognized by the assembler.

Since the DAS MR assembler is used within the VORTEX
system under VORTEX 1/0 control, the VORTEX user can
specify the desired 1/0 devices. However, the PO and SS
logical units must be the same magnetic-tape unit or RMD
partition.

DAS MR has a symbol-table area for 175 symbols at five
words per symbol. To increase this area, input before the
/DASMR directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
100 symbols.

A VORTEX physical record on an RMD is 120 words. Source
records are blocked three 40-word records per VORTEX
physical record, and object modules are blocked two 60-
word modules per record. However, in the case where SI =
Pl = RMD, records are not blocked but assumed to be one
per VORTEX physical record. When an input file contains
more than one source module each new source module
must start at a physical record boundary. Unused portions
of the last physical record of the previous source modules
should be padded with blank records.

Details of the DAS MR assembly language are given in the
Varian 620/f Computer Handbook (document 98 A 9908
001), 620-100 Computer Handbook (98 A 9905 030), and

73 System Handbook (98 A 9906 010). These references
include descriptions of the directives recognized by the
assembler (table 5-1), except for the new directive TITLE,
which is discussed below.

Table 5-1. Directives Recognized by the DAS MR
Assembler

BES IFF
BSS IFT
CALL LOC
COHN MAC
CONT MZE
DATA NAME
DETL NULL
DUP OPSY
EJEC ORG
END PZE
EMAC RETU*
ENTR SET
EQU SPAC
EXT SMRY
FORM TITLE
GOTO

5.1.1 TITLE Directive

This directive changes the title of the assembly listing and
the identification of the object program. It has the general
form

TITLE symbol

where symbol is the new title of the assembly listing; the
label field being ignored by the assembler. There are a
maximum of eight characters in symbol.

At the beginning of assembler pass 1, the title of the
assembly listing and the identification of the object
program are initialized as blanks. When a TITLE directive
is encountered, title and identification assume the symbol
given in the directive.

Examples: Entitle the .assembly listing and object pro­
gram NEWTITLE.

TITLE NEWTITLE

Reinitialize the title and identification, obliterating the old
title.

TITLE

5-1

LANGUAGE PROCESSORS .

5.1.2 VORTEX Macros
The DAS MR assembler contains macro definitions for the
real-time executive (RTE, section 2.1) and 1/0 control (IOC,
section 3.4) macros. Figure 5-1 illustrates these definitions.

5-2

*
M1

F

*
*
*
*
*
*
* READ

*
*
*
*
*
*
*
WRITE

*
*
*
*
*
*
WEOF

*
*
*
*
*
*
REW

*
*
*
*
*
*
*

MAC
EXT
JSR
DATA
FORM
F
DATA
EMAC

V$IOC
V$IOC, 1
0100000
1, 3, 4, 8
p (1) , p (2) , p (3) , i' (4)
p(5), 0, 0

VORTEX READ MACRO DEFINITION
READ

MAC
M1
EMAC

DCB,LUN,W,M
WHERE DCB • FCB OR DCB ADDRESS

LUN • LOGICAL UNIT NO.
W • WAIT OPTION
M • I/O MODE

P(3) ,P(4) ,0,P(2) ,P(1)

VORTEX WRITE MACRO DEFINITION
WRITE

MAC
M1
EMAC

DCB,LUN,W,M
WHERE DCB • FCB OR DCB ADDRESS

LUN • LOGICAL UNIT NO.
W • WAIT OPTION
M • I/O MODE

P(3) ,P(4), 1,P(2) ,P(1)

VORTEX WRITE END OF FILE MACRO DEFINITION
WEOF

MAC
M1
EMAC

DCB,LUN,W
WHERE DCB • FCB OR DCB ADDRESS

LUN • LOGICAL UNIT NO.
W • WAIT OPTION

P(3) ,0,2,P(2) ,P(1)

VORTEX REWIND MACRO DEFINITION
REW DCB,LUN,W

MAC
M1
EMAC

WHERE DCB • FCB OR DCB ADDRESS
LUN • LOGICAL UNIT NO.
W • WAIT OPTION

P(3),0,3,P(2),P(1)

VORTEX SKIP RECORD MACRO DEFINITION
SREC DCB,LUN,W,M

WHERE DCB • FCB OR DCB ADDRESS
LUN • LOGICAL UNIT NO.
W • WAIT OPTION
M • I/O MODE

Figure 5-1. VORTEX Macro Definitions for DAS MR

LANGUAGE PROCESSORS

SREC

*
*
*
*
*
*
FUNC

*
*
*
*
*
*
* OPEN

*
*
*
*
*
*
*
CLOSE

*
*
*
*
*
*
*
*
*
*
*
*

MAC
M1
EMAC

p (3) , p (,,) , 4 , p (2) , p (1)

VORTEX FUNCTION M~CRO DEFINITION
FUNC DCB,LUN,W

MAC
M1
EMAC

WHijRE DCB • FCB OR DCB ADDRESS
LUN • LOGICAL UNIT NO.
W • WAIT OPTION

P(3) ,0,5,P('2) ,P(1)

VORTEX OPEN MACRO DEFINITION
OPEN

MAC
M1
EMAC

FCB,LUN,W,M
WHERE FCB • FCB OR DCB ADDRESS

LUN • LOGICAL UNIT NO.
W • WAIT OPTION
M • I/O MODE

P(3) ,P(4) ,6,P(2) ,P(1)

VORTEX CLOSE MACRO DEFINITION
CLOSE

MAC
M1
EMAC

FCB,LUN,W,M
WHERE FCB • FCB OR DCB ADDRESS

LUN • LOGICAL UNIT NO.
W • WAIT OPTION
M • I/O MODE

P(3),P(4),7,P(2),P(1)

VORTEX STATUS MACRO DEFINITION
STAT FCB,ERR,EOF,EOD,BUSY

WHERE FCB • FCB OR DCB ADDRESS
ERR • ERROR RETURN ADDRESS
EOF • END OF FILE, BEGINNING

OF DEVICE, OR BEGINNING OF
TAPE RETURN ADDRESS

EOD = END OF DEVICE OR END OF TAPE
RETURN ADDRESS

BUSY • BUSY RETURN ADDRESS

STAT MAC

*
*
*
*

EXT
JSR
DATA
EMAC

V$IOST
V$IOST, 1
P(1) ,P(2) ,P(3) ,P(4) ,P(S)

VORTEX DEVICE CONTROL BLOCK MACRO DEFINITION
DCB RL,BUF,CNT

WHERE RL = RECORD LENGTH
* BUF == DATA ADDRESS
* CNT = COUNT
DCB MAC

*
*
*

DATA
EMAC

P(1) ,P(2) ,P(3)

VORTEX FILE CONTROL BLOCK MACRO DEFINITION
FCB RL,BUF,AC,KEY, 'N1', 'N2', 'N3'

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-3

LANGUAGE PROCESSORS

5-4

* WHERE RL • RECORD LENGTH
* BUF • DATA ADDRESS
* AC • ACCESS METHOD
* KEY • PROTECTION KEY
* N 1 • FIRST 2 ASCII FILE NAME
* N2 • SECOND 2 ASCII FILE NAME
* N3 • THIRD 2 ASCII FILE NAME
FCB MAC

F

*
M2

*
*
*
*
*
*
*
*
*
*
SCH ED

F

F

*
*
*
* EXIT

*
*
*
*
SUSPND

F

*
*
*
*
*
*

DATA
FORM
F
DATA
EMAC

MAC

P(1), P(2)

6,2,8
O,P(3),P(4)
0,0,0,0,P(5) ,P(6, .P(7)

EXT V$EXEC
JSR V$EXEC,1
EMAC

VORTEX SCHEDULE MACRO DEFINITION
SCHED PL,W,LUN,KEY, 'N1', 'N2', 'N3'

MAC
M2
FORM
F
FORM
F
DATA
EMAC

WHERE PL • PRIORITY LEVEL
W • WAIT OPTION
LUN • LOGICAL UNIT NO.
KEY • PROTECTION KEY
N1 • FIRST 2 ASCII TASK NAME
N2 • SECOND 2 ASCII TASK NAME
N3 • THIRD 2 ASCII TASK NAME

3,1,6,1,5
0,P(2), 1,0,P(1)
8,8
P(4),P(3)
P(S) ,P(6) ,P(7)

VORTEX EXIT MACRO DEFINITION
EXIT

MAC
M2
DATA 0200
EMAC

VORTEX SUSPEND MACRO DEFINITION
SUSPND T

MAC
M2
FORM
F

EMAC

WHERE T • TYPE OF SUSPENSION

4, 6, 5, 1
0,3,0,P(1)

VORTEX RESUME MACRO DEFINITION
RESUME 'N1', 'N2', 'N3'

WHERE N1 • FIRST 2 ASCII TASK NAME
N2 • SECOND 2 ASCII TASK NAME
N3 • THIRD 2 ASCII TASK NAME

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

LANGUAGE PROCESSORS

RESUME MAC

*
*
*
*
*
* ABORT

*
*
*
*
*
ALOC

*
*
*
*

M2
DATA
EMAC

0400,P(1) ,P(2) ,P(3)

VORTEX ABORT MACRO DEFINITION
ABORT

MAC
M2
DATA
EMAC

'N1','N2','N3'
WHERE N1 • FIRST 2 ASCII TASK NAME

N2 • SECOND 2 ASCII TASK NAME
N3 • THIRD 2 ASCII TASK NAME

OSOO,P(1),P(2),P(3)

VORTEX ALLOCATE MACRO DEFINITION
ALOC ADDR

MAC
M2
DATA
EMAC

WHERE ADDR • ADDRESS OF REENTRANT
SUBROUTINE

0600,P(1)

VORTEX DEALLOCATE MACRO DEFINITION
DEALOC

DEALOC MAC

*
*
*
*
*
*
PMSK

F1

F

*
*
*
*
*
*
*
*

M2
DATA 0700
EMAC

VORTEX PRIORITY INTERRUPT MASK MACRO DEFINITION
PMSK

MAC
M2
FORM
F1
FORM
F
EMAC

NUM,MSK,TYP
WHERE NUM • PIM NUMBER

MSK • PIM LINE MASK
TYP • ENABLE OR DISABLE TYPE

4, 6, 5, 1
0,010,0,P(3)
8,8
P(1),P(2)

VORTEX DELAY MACRO DEFINITION
DELAY T5,TM,DT

WHERE TS • DELAY TIME IN 5 MILLI­
SECOND INCREMENT

TM = DELAY TIME IN 1 MINUTE
INCREMENTS

DT • DELAY TYPE
DELAY MAC

F

*
*
*

M2
FORM
F
DATA
EMAC

4, 6, 4, 2
0,011,0,P(3)
p (1), p (2)

VORTEX TIME REQUEST MACRO DEFINITION
TIME

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-5

LANGUAGE PROCESSORS

5-6

*
TIME MAC

*
*
*
*
*
*
*
*

M2
DATA
EMAC

01200

VORTEX OVERLAY MACRO DEFINITION
OVLAY TF, 'N1 I I 'N2' I 'N3'

WHERE TF • TYPE FLAG
N1 • FIRST 2 ASCII TASK NAME
N2 • SECOND 2 ASCII TASK NAME
N3 • 'C'HIRD 2 ASCII TASK NAME

OVLAY MAC

F

*
*
*
*
*
*
IOLINK

F

M2
FORM
F
DATA
EMAC

4 I 6 I 5 I 1
0,013,0,P(1)
P(2) ,P(3) ,P(4)

VORTEX IOLINK MACRO DEFINITION
IOLINK

MAC
M2
FORM
F
DATA
EMAC

LUN,BUF,NUM
WHERE LUN • LOGICAL UNIT NO.

4 r 6 I 6
0,014,P(1)
P(2) Ip(3)

BUF • USER'S BUFFER LOCATION
NUM • BUFFER SIZE

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5.1.3 ... Assembly Listing Format

Figure 5-2 is a sample listing following the format described
in this section.

Page format: The assembly listing is limited to the
number of lines per page specified by the VORTEX resident

PAGE 23 01/22/12 PROG1 VORTEX

588 EJEC
589 *
590 * SUBROUTINE
591 *

000660 074056 A 592 JCPRT STX
000661 064056 A 593 STB
000662 010412 A 594 LDA
000663 005311 A 595 DAR
000664 054003 A 596 STA

597 IOLINK
000665 006505 A
000666 000604 E
000667 001405 A
000670 000665 R
000671 000051 A
000672 030400 A 598 LDX
000673 015003 A 599 LDA
000674 150463 A 600 ANA
000675 054274 A 601 STA
000676 015002 A 602 LDA
000677 150463 A 603 ANA
000700 144271 A 604 SUB
000701 001010 A 605 JAZ
000702 000714 R
000703 017000 I 606 LDA
000704 054004 A 607 STA

608 WRITE
000705 006505 A
000706 000630 E
000707 100000 A
000710 010403 A
000711 000633 E
000712 000000 A
000713 000000 A
000714 030400 A 609 JCPR1 LDX
000715 015005 A 610 LDA
000716 150463 A 6 11 ANA
000717 144252 A 612 SUB
000720 001010 A 613 JAZ
000721 000733 R
000722 017000 A 614 LDA
000723 054004 A 615 STA

616 WRITE

LANGUAGE PROCESSORS

constant V$PLCT, with each line containing no more than
120 characters. Each page has a page number and title
line followed by one blank line, and then the program
listing containing two lines less than the number specified
by V$PLCT. (This specification can be changed through the
job-control processor (JCP).)

QASMR V$JCP

PRINTS JCP DIRECTIVE ON SO AND LO DEVICE

JSPRX
JCPRB
V$JCB GET BUFFER ADDRESS

•+4 SETUP LOFCB
L0,•,41

V$LUT1 ADRS OF LOG UNIT TBL
so,x
BM377 SO CUR ASSIGNMT
JCTA
SI,X
BM377 SO CUR ASSIGNMT
JCTA so, SI SAME LUN
JCPR1

JCFBCS+3 STORE 'LOFCB' ADRS IN CALL
•+5
LOFCB,S0,0,1 NO - WRITE TO so

V$LUT1
LO,X
BM377 LO CUR ASSIGNMT
JCTA LO,. so SAME LUN
JCPRE YES

JCFCBS+3 STORE 'LOFCB' ADRS IN CALL
•+5
LOFCB,L0,0,1 NO - WRITE TO LO

Figure 5-2. Sample Assembly Listing

5-7

. LANGUAGE PROCESSORS

At the end of the assembly, the following information is
printed after the END statement:

a. A line containing the subheading ENTRY NAMES

b. All entry names (in four columns), each preceded by its
value and a flag to denote whether the symbol is
absolute (A), relocatable (R), or common (C).

c. A line containing the subheading EXTERNAL NAMES

d. All external names (in four columns), each preceded by
its value and a flag to denote that the symbol is external
(E)

e. A line containing the subheading SYMBOL TABLE

f. The symbol table (in four columns), each symbol
preceded by its value and a flag to denote whether the
symbol is absolute (A), relocatable (R), common (C),
or external (E)

g. A line containing the subheading mmmm ERRORS
ASSEMBLY COMPLETE, where mmmm is the
accumulated error count expressed as a decimal
integer, right-justified and left-blank-filled

line format: Beginning with the first character position,
the format for a title line is:

a. One blank

b. The word PAGE

c. One blank

d. Four character positions that contain the decimal page
number

e. Two blanks

f. Eight character positions that contain the current date
obtained from the VORTEX resident constant V$DATE

g. Two blanks

h. Eight character positions that contain the program
identification obtained from the VORTEX resident
constant V$J NAM

i. Two blanks

j. The word VORTEX

k. Two blanks

I. The word DASMR

m. Two blanks

n. Eight character positions that contain the program title
from the TITLE directive

o. Blanks through the 120th character position

5·8

Beginning with the first character position, the format for
an assembly line is:

a. One blank

b. Six character positions to display the location counter
(octal) of the generated data word

c. One blank

d. '.:ix character positions to display the generated data
w1...:-d (octal)

e. One blank

f. One character position to denote the type of generated
data word: absolute (A), relocatable (R), common (C),
external (E), literal (L), or indirect-address pointer
generated by the assembler (I)

g. One blank

h. Four character positions containing the decimal
symbolic source statement line number, right-justified
and left-blank-filled

i. One blank

j. Eighty character positions that contain the image of the
symbolic source statement. (If the symbolic source
statement is not a comment statement, the label,
operation, and variable fields are reformatted into
symblolic source statement character positions 1, 8,
and 16, respectively. If commas separate the label,
operation, and variable fields, they are replaced by
blank characters.)

k. Blanks, if necessary, through the 120th character
position

5.2 CONCORDANCE PROGRAM

The background concordance program (CONC) provides an
indexed listing of all source statement symbols, giving the
number of the statement associated with each symbol and
the numbers of all statements containing a reference to the
symbol. CONC is scheduled by job-control directive /CONC
(section 4.2.16). Upon completion of the concordance
listing, control returns to the JCP via EXIT.

Input to CONC is through the SS logical unit. The
concordance is output on the LO unit. CONC uses system
global file control block SSFCB. If the SS logical unit is an
RMD, a /REW or /PFILE directive (section 10) establishes
the FCB before the /CONC directive is input to the JCP.

CONC has a symbol-table area to process 400 no-reference
symbols at five words per symbol, plus 400 referenced
symbols (averaging five references per symbol) at ten
words per symbol. To increase this area, input before the
/CONC directive a /MEM directive (section 4.2.5), where

each 512-word block enlarges the capacity of the table by
approximately 75 symbols.

CONG processes both packed records (three source
statements per 120-word VORTEX physical record) and
unpacked records (one source statement per record).

5.2.1 Input

CONG receives source-statment input from the SS logical
unit. There is, however, no positioning of the SS unit prior
to reading the first record. The source statements are
identical with those input to the VORTEX assembler and
thus conform to the assembler syntax rules.

As the inputs are read, each source statement is assigned
a line number, 1, 2, etc., which is identical with that
printed on the assembly listing. When a symbol appears in
the label field of a symbolic source statement, the line
number of that source statement is assigned to the symbol.
When the symbol appears in the variable field of a source
statement, the line number of that statement is used as a
reference for the symbol.

5.2.2 Output

CONG outputs the concordance listing on the LO logical
unit. Output begins when one of the following events
occurs:

a. CONC processes the source statement END

b. Another job-control directive is input

c. An SS end of file or end of device is found

d. A reading error is found

e. The symbol-table area is tilled

If the output occurred because the symbol-table area of
memory was full, CONC clears the concordance tables,
outputs error message CNOl, and continues until one of
the other terminating conditions is encountered. In all
other cases, CONC terminates by calling EXIT.

The concordance listing is made in the order of the ASCII
values of the characters comprising the symbols.

Beginning with the first character position, the format for a
title line is:

a. One blank

b. The word PAGE

c. One blank

d. Four character positions that contain the decimal page
number

LANGUAGE PROCESSORS

e. Two blanks

f. Eight character positions that contain the date
obtained from the VORTEX resident constant V$DATE

g. Two blanks

h. Eight character positions that contain the program
identification obtained from the VORTEX resident
constant V$JNAM

i. Two blanks

j. The word VORTEX

k. Two blanks

I. The word CONC

m. Blanks through the 72nd character position

Beginning with the first character position, the format for a
concordance cross-reference listing is:

a. Two blanks

b. Four character positions that contain the decimal line
number of the source statement assigned to the symbol
in item (e) below

c. One blank

d. One character position containing an asterisk C') if
there are no references to that symbol (otherwise
blank)

e. Six character positions containing the symbol being
listed

f. Two blanks

g. Four character positions that contain the decimal line
number of a source statement referencing the symbol
in item (e) above

h. Items (f) and (g) are repeated as necessary for each
source statement referencing the symbol in item (e)
above, where up to nine references are placed on the
first line, and subsequent references on the next
line(s). Continuation lines that may be required for
ten or more references to the same symbol do not
repeat items (a) through (e)

i. Blanks through the 72nd character position of the last
line of the entry

Figure 5-3 illustrates the concordance listing.

S9

LANGUAGE PROCESSORS

PAGE 09/22171 V$0PCM VORTEX CONC

509 B 841 859 879 990 1001 1002 1012 1068 1072
1074 1112 1230 1231

261 B10 *
262 B 11 *
263 B12 *

1206 ODA TE 1180 1182 1190
1937 ONUM 895 928 936 101 7 1182 1190 119 6 1254 1284

1406 14 18

Figure 5-3. Sample Concordance Listing

5.3 FORTRAN IV COMPILER

The FORTRAN IV compiler is a one-pass compiler sched­
uled by job-control directive /FORT (section 4.2.15). The
compiler inputs a source module from the Pl logical unit
and produces an object module on the BO and/or GO units
and a source listing on the LO unit. No secondary storage
is required for a compilation.

If a fatal error is detected, the compiler automatically
terminates output to the BO and GO units. LO unit output
continues. The compiler reads from the Pl unit until an
END statement is encountered or a control directive is
read. Compilation also terminates on detection of an 110
error or an end-of-device, beginning-of-device, or end-of-file
indication from 1/0 control.

The output comprises relocatable object modules under all
circumstances: main programs and subroutines, func­
tion, and block-data subprograms.

FORTRAN IV has conditional compilation facilities imple­
mented by an X in column 1 of a source statement. When
the X appears in the /FORT directive, all source statements
with an X in column 1 are compiled (the X appears on the
LO listing as a blank). When the X is not present, all
conditional statements are ignored by the compiler. X lines
are assigned listing numbers in either case, but the source
statement is printed only when the X is present.

FORTRAN IV has a symbol-table area for 100 symbols (i.e.,
names), if none of the logical units used is assigned to an
RMD device. Each RMD assignment requires buffer space
of 120 words (except when BO = GO = RMD, in which
case BO and GO use the same buffer) and the symbol
capacity is reduced by 24 symbols per buffer. To increase
the symbol-table area, input before the /FORT directive a
/MEM directive (section 4.2.5), where each 512-word block
enlarges the capacity of the table by 100 symbols.

A VORTEX physical record on an RMD is 120 words. Source
records are blocked three 40-word records per VORTEX
physical record, object modules are blocked two 60-word
modules per record, and list modules are output one record
per physical record. However, in the case where SI = Pl =
RMD, records are not blocked but assumed to be one per
VORTEX physical record. When the file contains more than
one source module, each new source module must start at

5-10

a physical record boundary. The unused portion of the last
physical record of the previous module should be padded
with blanks.

Table 5-2 lists the VORTEX real-time executive (RTE)
service request macros available through FORTRAN IV.
These macros are detailed in section 2.1.

Table 5-2. RTE Macros Available Through FORTRAN IV

ABORT
ALOC
DELAY

EXIT
OVLAY
PMSK
RESUME

SCHED
SUSPND
TIME

Excepting the STOP and PAUSE statement, compilation
and execution with the VORTEX operating system is the
same as with the MOS system described in Varian 620
FORTRAN IV Reference Manual (document 98 A 9902 037).
STOP and PAUSE statements output the message

taskname STOP (or PAUSE) n

With VORTEX, the PAUSE statement generates a SUSPND
call to the VORTEX executive.

To resume the suspended task, input operator-communica­
tion key-in request; RESUME (section 15.2.4).

FORTRAN-compiled programs can execute either in fore­
ground or background.

Details of the FORTRAN IV compiler language are given in
the Varian 620 FORTRAN IV Reference Manual, except for
the new statement TITLE, which is discussed below.

5.3.1 TITLE Statement

This FORTRAN statement declares a module name, which
is output to the top of each page of the source listing and to
the object module. It has the general form

TITLE name

where name is the title to be output. The title contains up
to eight characters, and is output in the object text as the
name by which the program is to be referenced by SMAIN.

If a TITLE statement is used, it must be the first source
statement. A TITLE statement forces a page eject on the LO
listing.

5.3.2 Execution-Time I /0 Units

All FORTRAN 1/0 statements (FORTRAN IV manual)
include a FORTRAN unit number (FUN) or name, which
may or may not be identical with the logical unit containing

START

CHECK ACTIVE FCB
CHAIN FOR ONE
ASSOCIATED WITH
FUN

YES

CONSTRUCT AND
EXECUTE IOC CALL

FINISH

NO

LOG VO ERROR

At\ CJ RT

LANGUAGE PROCESSORS

r~>i-•:
the required file(s). fhree- differenct cases of FORTRAN
units must be distinguished as indicated in figure 5-4.

Case 1, non-RMD unit: The logical-unit number is
assigned to the device by SYSGEN (section 13) or by the
JCP I ASSIGN directive (section 4.2.6), where the FORTRAN
unit number is identical with that of the file unit. Thus, to

YES

CONSTRUCT AND
EXECUTE IOC CALL
(FUN= LUN)

FINISH

NO

CASE

CONSTRUCT DCB AND
EXECUTE IOC CALL
(FUN= LUN)

FINISH

NOTE: THE FORTRAN LOGICAL UNIT <FUN) IS NOT NECESSARILY IDENTICAL WITH
THE FILE LOGICAL UNIT (LUN) UNLESS SO INDICATED.
VSOPEN OVERRIDES A /PF ILE ASSIGNMENT.

VT//-1445

Figure 5-4. FORTRAN I /0 Execution Sequences

5 11

LANGUAGE PROCESSORS

rewind the PO logical unit (unit 10, magnetic-tape unit 0),
the job stack can be:

/ASSIGN,PO•MTOO
/FORT

REWIND 10

Case 2, RMD file executing in background only: The JCP
/PFILE directive (section 4.2.11) positions the Pl unit to a
background reassignable logical unit, and loads a global
FCB. As in case 1, the FORTRAN unit number is identical
with that of the file unit. Thus, to read the file FILE! on
logical unit 50 (protection code X) where Pl is logical unit 4,
the job stack can be:

/ASSIGN,PI•50
/PFILE,4,X,FILE1
/FORT

READ (4, ...

~-· . -i "\ ·,

Case 3, J\ RMD file executing in foreground or
background: The CALL V$0PEN statement associates any
specified RMD file with the FORTRAN unit number. The
CALL V$0PEN statement overrides any /PFILE assignment
(case 2). The format of the statement is

where

5-12

CALL V$0PEN(fun,lun,name,mode)

fun

lun

name

mode

is the name or number of the FORTRAN
unit
is the name or number of the file logical
unit
is the name of the 13-word array
containing the file name and the protec·
tion code
is the mode of the 1/0-control OPEN
macro (section 3.4.1)

V$0PEN constructs an FCB in the first ten words of the
specified 13-word array, performs an IOC OPEN on this
FCB, and links it with the active FCB chain. The remaining
three words of the array contain an FC~-chain link, the
FORTRAN unit number, and the file logical unit number.
Thus, to reference file FIL on logical unit 20 (protection
code Q) by the number 2, rewinding upon opening, the job
stack can be:

/FORT

DIMENSION IFCB(13)
DATA IFCB(3)/2H Q/
DATA IFCB(8),IFCB(9),IFCB(10)/2HFI,2HL ,2H I

CALL V$0PEN(2,20,IFCB,O)

File FIL can now be referenced by FORTRAN statements by
using 2 as the designation of the FORTRAN logical unit. For
instance,

READ (2, ...

executes an IOC READ call, reading from FIL using IFCB as
the FCB.

Note: V$0PEN sets the record length to 120 words and
the access method to 3, sequential access using relative
VORTEX physical record number within the file. The user
should not change the record length or access method
parameters in the FCB because the FORTRAN Run-Time
I 10 package has reserved only a 120 word buffer.

Any record in a file opened by V$0PEN can be directly
accessed by operating on the FCB array. Thus, using the
job stack in the previous example, record 61 in file FIL. is
read by inputting

IFCB(4)•61
READ(2, ...

To dissolve an existing association between· an RMD file
and a FORTRAN logical unit, use the CALL V$CLOS
statement of the format.

where

CALL V$CLOS(fun,mode)

fun is the name or number of the FORTRAN
logical unit

mode is the mode of the I /0-control CLOSE
macro (section 3.4.2)

Thus, when the processing of file FIL in the previous
example is complete, to close/update FIL and take IFCB off
the active FCB chain so that FORTRAN statements with fun
= 2 no longer reference Fl L, the job stack can be:

CALL V$CLOS(2,1)

Note: the auxiliary FORTRAN 1/0 statements REWIND
BACKSPACE, and ENDFILE cannot be used with RMD files.
Use instead (where IFCB is the ECB array):

IFCB(4) - 1 instead of REWIND
IFCB(4) • IFCB(4) -1 instead of BACKSPACE
CALL V$CLOS(fun, 1) instead of ENDFILE

5.4 VORTEX RPG IV SYSTEM

5.4.1 Introduction

The VORTEX RPG IV System is a software package for
general data processing applications. It combines versatile
file and record defining capabilities with powerful process­
ing statements to solve a wide range of applications. It is
particularly effective in the processing data for reports. The
VORTEX RPG IV system consists of the RPG IV compiler
and RPG IV runtime/loader program.

The VORTEX RPG IV compiler and the runtime/loader
execute as level zero background programs in unprotected
memory. Both the compiler and the runtime/loader will
operate in 6K of memory with limited work stack space.
The stack space may be expanded and consequently larger
RPG programs compiled and executed by use of the /MEM
directive.

The RPG language, and its compilation and execution
under VORTEX is described in the Varian 620 RPG IV
User's Manual (98 A 9947 031).

LANGUAGE PROCESSORS

5.4.2 RPG IV l/O Units

The RPG IV compiler reads source records from the
Processor Input (Pl) file, write object records on the Binary
Output (BO) file, and lists the source program on the List
Output (LO) file.

The RPG IV runtime/loader will normally load the RPG
object program from the Binary Input (Bl) file. When the
program executes, the READ CARD, PUNCH and PRINT
st2tements are performed on logical units 13, 14, and 15,
rest'ectively. This 110 capbility is enhanced by providing
seven CALL statements for performing input and output to
logical units 16 through 22.

5.4.3 Compiler and Runtime Execution

The RPG compiler and the runtime package should be
cataloged into the background library (BL) using LMGEN.
The compiler and runtime package should be defined as
background unprotected tasks with the names PRGC and
RPGRT, respectively.

The compiler is scheduled from the background library by
the directive

/LOAD,RPGC

The compiler terminates when the required END statement
in the RPG program is encountered. The compiler exits to
the executive. There is no provision for stacking multiple
compilations or for operating in compile-and-go mode.

The compiler rewinds the Pl, BO, and LO files at the
beginning of the compilation.

The runtime/loader is scheduled from the background
library by the directive

/LOAD,RPGRT

The loader expects the RPG object program is on the Binary
Input (Bl), and loads and executes it. If the load directive
contains the name of an RPG program to be loaded in the
form,

/LOAD,RPGRT,name

the runtime/loader will assume the program mentioned is
in the background library and will load it from there. An

· RPG object program may be 'cataloged' into the back­
ground library by creating a directory entry and allocating
file space with FMAIN and copying the RPG object program
into the file with IOUTIL.

5-13

.·SECTION 6

LOAD-MODULE GENERATOR

The load-module generator (LMGEN) is a background task
that generates background and foreground tasks from
relocatable object modules. The tasks can be generated
with or without overlays, and are in a form called load
modules.

To be scheduled for execution within the VORTEX operating
system, all tasks must be generated as load modules.

6.1 ORGANIZATION
LMGEN is scheduled for execution by inputting the job­
control processor (JCP) directive /LMGEN (section 4.2.19).

LMGEN has a symbol-table area for 200 symbols at five
words per symbol. To increase this area, input a /MEM
directive (section 4.2.5), where each 512-word block will
enlarge the capacity of the table by 100 symbols.

INPUTS to the LMGEN comprise:

Load-module generator directives (section 6.2) input
through the SI logical unit.

Relocatable object modules from which the load module
is generated.

Error-recovery inputs entered via the SO logical unit.

Load-module generator directives define the load module
to be generated. They specify the task types (unprotected
background or protected foreground) and the locations of
the object modules to be used for generation of the load
modules. The directives supply information for the catalog­
ing of files, i.e., for storage of the files and the generation
of file-directory entries for them. LMGEN directives also
provide overlay and loading information. The directives are
input through the SI logical unit and listed on the LO
logical unit. If the SI logical unit is a Teletype or a CRT
device, the message LM* '°' is output on it to indicate that
the SI unit is waiting for LMGEN input.

Relocatable object modules are used by LMGEN to
generate the load modules. The outputs from both the DAS
MR assembler and the FORTRAN compiler are in the form
of relocatable object modules. Relocatable object modules
can reside on any VORTEX system logical unit and are
loaded until an end-of-file mark is found. The last execution
address encountered while generating a segment (root or
overlay, section 6.1.1) becomes the execution address for
that segment. (Note: If the load module being generated
is a foreground task, no object module loaded can contain
instructions that use addressing modes utilizing the first
2K of memory.

A VORTEX physical record on an RMD is 120 words. Object­
module records are blocked two 60-word records per

VORTEX physical record. However, in the case of an RMD
assigned as the SI logical unit, object modules are not
blocked but assumed to be one object module record per
physical record.

Error-recovery inputs are entered by the operator on the
SL' logical unit to recover from errors in load-module
generation. Error messages applicable to this component
are given in section 17.6. Recovery from the type of error
represented by invalid directives or parameters is by either
of the following:

a. Input the character C on the SO unit, thus directing
LMGEN to go to the SI unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next LMGEN directive is then input
from the SI unit.

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort the LMGEN task and schedule
the JCP for execution. (Note: An irrecoverable error, e.g.,
1/0 device failure, causes LMGEN to abort. Examine the
1/0 error messages and directive inputs to determine the
source of such an error.)

OUTPUTS from the LMGEN comprise:

Load modules generated by the LMGEN

Error messages

Load-module maps output upon completion of a load­
module generation

Load modules are LMGEN-generated absolute or relocat­
able tasks with or without overlays. They contain all
information required for execution under the VORTEX
operating system. During their generation, LMGEN uses the
SW logical unit as a work unit. Upon completion of the
load-module generation, the module is thus resident on the
SW unit. LMGEN can then specify that the module be
cataloged on another unit, if required, and output the load
module to that unit. Figure 6-1 shows the structure of a
load module.

Error messages applicable to the load-module generator
are output on the SO and LO logical units. The individual
messages, errors, and possible recovery actions are given in
section 17.6.

Load-module maps are output on the LO logical unit upon
completion of the load-module generation, unless sup­
pressed. The maps show all entry and external names and
labeled data blocks. They also describe the items given as
defined or undefined, and as absolute or relocatable, and

6-1

. LOAD-MODULE GENERA TOR .

indicate the relative location of the items. The load-module
map lists the items in the format:

where

6·2

Print position 2345678 9 10 11 12 13 14 15 16

item

b

x
'(
location

item b x y

is a left-justified entry or ex~ernal name or
labeled data block

is a blank

is A for an absolute or R for a relocatable item

location

\J;. · ~~ ·fc-, cM e"'+rl..\ (l""'{~L~l, "" M s.lu st .. (/) r<'' ''"~"" \·~~A·
is the left-justified relative location of the item

Foreground Blank Common

VORTEX Nucleus

Foreground Task

Named Common

Foreground Task

Named Common

Overlay Area

Root Seqment

Named Common

Blank Common

Tables

}
}

Foreground Task

Foreground Task

Background Task

All foreground tasks share the foreground blank common
area but may have their own named common area.

Figure 6-1. Load-Module Overlay Structure

6.1.1 Overlays
!
Load modules can be generated with or without overlays.
Load modules with overlays are generated when task
requirements exceed core allocation. In this case, the task
is divided into overlay segments that can be called as
required. Load modules with overlays are generated by use
of the OV directive (section 6.2.3) and comprise a root
segment and two or more overlay segments (figure 6-1),
but only the root segment and one overlay segment can be
in memory at any given time. Overlays can contain
executable codes, data, or both.

When a load module with overlays is loaded, control
transfers to the root segment, which is in main memory.
The root segment can then call overlay segments as
required.

Called overlay segments may or may not be executed,
depending on the nature of the segment. It can be an
executable routine, or it can be a table called for searching
or manipulation, for example. Whether or not the segment
consists of executable data, it must have an entry point.

The generation of the load module begins with the root
segment, but overlay segments can be generated in any
order.

The root segment can reference only addresses contained
within itself. An overlay segment can reference addresses
contained within itself or within the root segment. Thus, all
entry points referenced within the root segment or an
overlay segment are defined for that segment and
segments subordinate to it, if any.

For an explanation of DAS MR and FORTRAN calls to
overlays see section 2.1. 7.

6.1.2 Common

Common is the area of memory used by linked programs
for data storage, i.e., an area common to more than one
program. There are two types of common: named common
and blank common. (Refer to the FORTRAN IV Reference
Manual, document number 98 A 9902 037, or the DAS MR
COMN directive description in the handbook or 620-100
Computer Handbook, document number 98 A 9905 003 or
73 System Handbook (document number 98 A 9906 010).

Named common is contained within a task and is used for
communication among the subprograms within that task.

Blank common can be used like named common or for
communication among foreground tasks.

The extent of blank common for foreground tasks is
determined at system generation time. The size of the
foreground blank common can vary within each task
without disturbing the positional relationship of entries but
cannot exceed the limits set at system generation time.

LOAD-MODULE GENERATOR

The extent of blank common for background tasks is
allocated within the load module. The size of the back­
ground blank common can vary within each task, but the
combined area of the load module and common cannot
exceed available memory.

Each blank common is accessible only by the correspond­
ing tasks, i.e., foreground tasks use only foreground blank
common, and background tasks use only background
blank common.

All definitions of named and blank common areas for a
givl., load module must be in the first object module
loaded to generate that load module.

6.2 LOAD-MODULE GENERATOR DIRECTIVES

This section describes the load-module generator
directives:

TIDB Create task-identification block
LD Load relocatable object modules
OV Overlay
LIB Library search
END

Load-module generator directives begin in column 1 and
comprise sequences of character strings having no embed­
ded blanks. The character strings are separated by
commas (,) or by equal signs (=). The directives are free­
form and blanks are permitted between the individual
character strings of the directives, i.e., before or after
commas (or equal signs). Although not required, a period
(.) is a line terminator. Comments can be inserted after the
period.

The general form of a load-module generator directive is

name,p(1),p(2), ... ,p(n)

where
name is one of the directive names given above

each p(n)
(if any)

is a parameter required by the directive
and defined below under the descrip­
tions of the individual directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted.

Error messages applicable to load-module generator direc­
tives are given in section 17.6.

6.2.1 TIDB (Task-Identification Block) Directive

This directive must be input before any other LMGEN
directives can be accepted. It permits task scheduling and

6-3

. LOAD-MODULE GENERA TOR

execution, and specifies the overlay and debugging charac­
teristics of the task. The directive has the general form

TIDB,name, type, segments, DEBUG

where

name is the name (1 to 6 ASCII characters)
of the task

type is 1 for an unprotected background task,
or 2 for a protected foreground task

segments is the number (2 to 9999) of overlay
segments in a task with overlays, or O for
a task without. overlays (note that the
number 1 is invalid)

DEBUG is present when debugging is desired

The DEBUG parameter includes the DEBUG object module
as part of the task. If the task is a load module without
overlays, DEBUG is the last object module loaded. If the
task is a load module with overlays, DEBUG is the last
object module loaded in the root segment (section 6.1.1).

Examples: Specify an unprotected background task
named DUMP as having no overlays but with debugging
capability.

TIDB,DUMP,1,0,DEBUG

Specify a protected foreground task named PROC as
having a root segment and four overlay segments.

TIDB,PROC,2,4

6.2.2 LD (Load) Directive

This directive specifies the logical unit from which relocat­
able object modules are to be loaded. It has the general
form

LD,lun,key,file

for loading from RMD logical units, and

LD,lun

for loading from any other logical unit, where

lun

key

file

is the name or number of the logical unit
where the object module resides

is the protection code required to
address lun

is the name of the RMD file

From the object modules, LMGEN generates load modules
(with or without overlays) on the SW logical unit. Loading of

6-4

object modules from the specified logical unit continues
until an end-of ·file mark is encountered.

Successive LD directives permit the loading of object
modules that reside on different logical units.

Examples: Load the relocatable object modules from
logical unit 6 (Bl) until an end-of-file mark is encountered.

LD,6

Open c.. file named DUMP on logical unit 9 (GO) with no
protection code. (LMGEN loads the relocatable object
modules and closes the file.)

LD,9,,DUMP

6.2.3 OV (Overlay) Directive

This directive specifies that the named segment is an
overlay segment. It has the general form

OV,segname

where segname is the name (1 to 6 ASCII characters) of
the overlay segment.

Example: Specify SINE as an overlay segment.

OV,SINE

6.2.4 LIB (Library) Directive

This directive indicates that all load (LD, section 6.2.2)
directives have been input, i.e., all object modules have
been loaded except those required to satisfy undefined
externals. LIB also specifies the libraries to be searched
(and the order in which the search is made) to satisfy all
undefined externals. The directive has the general form

LIB,/un(l), key(l),lun(2),key(2), ... ,lun(n),key(n)

where

each lun(n) is the name or number of a resident·
library RMD logical unit to be searched

each key(n) is the protection code required to
address the preceding logical unit

The search is conducted in the order in which the logical
units are given in the LIB directive. When not specified by
LIB, the core-resident (CL) and object-module (OM)
libraries are searched after all specified libraries have been
searched. However, if LIB specifies the CL and/or OM
libraries, they are searched in the order given in LIB.

If the generation of the load module involves overlays, a LIB
directive follows each overlay generation.

Examples: Specify to the LMGEN a sequence of libraries
to be searched to satisfy undefined externals. Use logical
unit 115, a user library, having protection code M; followed
by logical unit 103, the CL library, having protection code
C; and the OM library, having protection code D. (Because
the last two libraries are searched in any case, note that
the two inputs following are equivalent.) Input

LIB, 115,M, 103,C, 104,D

or, more briefly,

LIB, 115,M

To change the order of search to logical units 104, 115, and
103, input

LIB, 104,D, 115,M, 103,C

or, more briefly,

LIB, 104,D, 115,M

To search only the CL and OM libraries to satisfy undefined
externals, input

LIB

6.2.5 END Directive
This directive terminates the generation of the load module
and, if specified, causes the creation of a file and a
directory entry (section 9) for the load-module contents on
the indicated logical unit. The indicated logical unit, if any,
is an RMD, and thus requires a protection code. The
directive has the general form

END,/un,key

where

lun is the name or number of the logical unit
on which the file containing the load
module will reside

key is the protection code, if any, required to
address
lun

If TIDB (section 6.2.1) specified an unprotected back­
ground task (TIDB directive type = 1), the logical unit, if
any, specified by the END directive must be that of the BL
unit, i.e., unit 105. If TIDB specified a protected foreground
task (TIDB directive type = 2), the logical unit, if any,
specified by the END directive must be that of the FL unit,
i.e., unit 106, or that of any available assigned RMD
partition.

If the END directive does not specify a logical unit, the load
module resides on the SW logical unit only.

If there are still undefined externals, the load module is not
catalogued even if END specifies a legal logical unit. In this
case, the load module resides on the SW unit only.

LOAD-MODULE GENERA TOR

Examples: Specify that the load module is complete (no
more inputs to be made), create a file and a directory entry
on the BL logical unit (105), and catalog the module. The
protection code is E. (Note: The load module will also
reside on the SW unit.)

END I 105 IE

Specify that the load module is complete (no more inputs to
be made) and is to reside on the SW unit only.

6.3 SAMPLE DECKS FOR LMGEN
OPERATIONS

Example 1: Card and Teletype Input

Generate a background task without overlays using LMGEN
with control records input from the Teletype and object
module(s) on cards. Assign the Bl logical unit to card
reader unit CROO. Assign the task name EXC4 and catalog
to the BL logical unit, and load DEBUG as part of the task
from the OM library.

I JOB, EXAMPLE4 (Teletype input)
/ASSIGN,BI•CROO
/LMGEN
TIDB,EXC4,1,0,DEBUG
LD,BI
LIB
END,BL,E
/ENDJOB

Note: The object module deck must be followed by an
end of file (2-7-8-9 in card column 1).

Example 2: Card Input

Generate a foreground task with overlays using LMGEN
with control records and object modules input from the
card reader. Assign the Bl and SI logical units to card
reader unit CROO. Assign the task name EXC5, overlay
names SGMl, SGM2, and SGM3, and catalog to the FL
logical unit.

/JOB,EXAMPLE5
/ASSIGN,BI•CROO~SI•CROO

(Deck)

/LMGEN
TIDB,EXC5,2,3
LD,BI
(Object Module(s) -- root segment)

(End of File)
continued

6·5

. LOAD-MODULE GENERATOR

LIB
OV,SGM1
(Object Module(s))

(End of File)
LIB
OV,SGM2
(Object Module(s))

(End of File)
LIB
OV,SGM3
(Object Module(s))

(End of File)
LIB
END,FL,F
/ENDJOB

6-6

Example 3: Teletype and RMD Input

Generate a foreground task without overlays using LMGEN
with control records input from the Teletype and object
module(s) from an RMD. The object module resides on
RMD 107 under the name PGEX. Assign the task name
EXC6, search the OM library first to satisfy any undefined
externals, and catalog on RMD 120.

/JOB,EXAMPLE6
/LMGEN
TIDB,EXC6,2,0
LD,107,Z,PGEX
LIB,OM,D
END, 120, X
/ENDJOB

SECTION 7

DEBUGGING AIDS

The VORTEX system contains two debugging aids: the
debugging program (DEBUG) and the snapshot dump
program (SNAP).

registers, and restore the contents of these registers before
terminating DEBUG.

7.1 DEBUGGING PROGRAM
The 816-word VORTEX debugging program (DEBUG) is
added to a task load module whenever the DEBUG option
is specified by a load-module generator Tl DB directive
(section 6.2.1). The DEBUG object module is the last object
module loaded if the root segment of the task is an overlay
load module. The load-module generator sets the load­
module execution address equal to that of DEBUG.

When debugging is complete, the input of any job-control
directive (section 6.2) returns control to the VORTEX
system.

INPUTS to DEBUG comprise the directives summarized in
table 7-1 input through the DI logical unit. When DEBUG if
first entered, it outputs on the Teletype or CRT device the
message DG'°' '°' followed by the Tl DB task name and the
address of the first allocatable memory cell. This message
indicates that the system is ready to accept DEBUG
directives on the DI unit. If the load module has been cataloged, DEBUG executes

when the module is scheduled. Otherwise, JCP directive
/EXEC (section 4.2.22) is used to schedule the module and
DEBUG.

During the execution of DEBUG, the A, B, and X
pseudoregisters save the contents of the real A, B, and X

Each DEBUG directive has from 0 to 72 characters and is
terminated by a carriage return. Directive parameters are
separated by commas, but DEBUG treats commas, periods,
and equal signs as delimiters.

Directive

A

Ax

B

Bx

Cx

Gx

lx,y,z

0

Sx,y,z,m

Ty,x

Ty

x

Xy

xxxxxx

xxxxxx,yyyyyy

Table 7-1. DEBUG Directives

Description

Display and change the contents of the A pseudoregister

Change, but do not display, the contents of the A psuedoregister

Display and change the contents of the B pseudoregister

Change, but do not display, the contents of the B pseudoregister

Display and change the contents of memory address x

Load the contents of the pseudoregisters into the respective A, B,
and X registers, and transfer to memory address x

Initialize memory addresses x through y with the value of z

Display and change the overflow indicator

Search memory addresses x through y for the z value, using
mask m

Place a trap at memory address y, starting execution at
address x

Place a trap at memory address y, starting execution at
the last trap location

Display and change the contents of the X pseudoregister

Change, but do not display, the contents of the X pseudoregister

Display the contents of memory address xxxxxx

Display the contents of memory addresses xxxxxx through
yyyyyy

1 1

DEBUGGING AIDS

Numerical data are always interpreted as octal by DEBUG.
Negative numbers are accepted, but they are converted to
their two's complements by DEBUG.

OUTPUTS from DEBUG consist of corrections to registers
and memory, displays, listings on the DO logical unit, and
error messages. Numerical data are always to be inter·
preted as octal.

Examples of DEBUG directive usage: Note that, in the
following examples, operator inputs are in bold type and
the carriage return is represented by the at sign (@). Other
entries, in italics, are program responses to the directives.

Display the contents of a pseudoregister:

A@
(001200)@

Display and change the contents of a pseudoregister:

B@
(001200) 010406@

Change, but do not display, the contents of a
pseudoregister:

X02050@

Display, but do not change, the status of the overflow
indicator:

O@
(000001)@

Display and change the status of the overflow indicator:

O@
(000000) 000001@

Display, but do not change, the contents of memory
address 002050:

C002050@
(102401)@

Display and change the contents of memory address
002050:

C002050@
(102401) 001234@

Display and change the contents of memory address
002050, then display the contents of the next sequential
location:

7-2

C002050@
(102401) 001234,@
(000067)@

Display, but do not change, the contents of memory
address 002050, then display the contents of the next
location:

C002050@
(102401) ,@
(000067)@

Load the contents of the pseudoregisters into the respective
A, B, and X registers, and start execution at memory
addres : 001001:

GOOlOOl@

Initialize memory addresses 000200 through 000210 to the
value 077777:

100020,000210,077777@
i\

Search memory addresses 000200 through 000240 for the
value 000110 using the mask 000770, and display
addresses that compare:

S000200,000240,000110,000770@
000220 (017110)
000234 (000110)
000237 (001110)@

Load the contents of the pseudoregisters and the overflow
indicator status into the respective registers, and start
execution at memory address 001234, specifying a trap
address of 001236. Display the contents of the A, 8, and X
registers and the setting of the overflow indicator when the
trap address is encountered:

T001236,001234@
(001236) 142340 002000 010405 000001@

Display the contents of memory address 001234:

001234@
001234 (001200)@

Display the contents of memory addresses 001234 through
001237:

001234,001237@
001230 005000

Total of 8 vol ues

005000@

7.2 SNAPSHOT DUMP PROGRAM

The 229-word snapshot dump program (SNAP) provides on
the DO logical unit both register displays and the contents
of specified areas of memory. It is added to a task load
module if the task contai,ns a SNAP request and calls the
SNAP external routine. SNAP is entered directly upon
execution of the SNAP display request CALL SNAP. The
SNAP display request is an integral part of the task and is
assembled with the task directives. Thus, no external
intervention is required to output a SNAP display.

SNAP outputs the message SN** followed by the task TIDB
name before listing the requested items. The calling
sequence for a SNAP display is

where
start

end

EXT SNAP
CALL SNAP
DATA start
DATA end

i ', r', -! .. 1
' \ll.f

is the first address whose contents are to
be displayed

is the last address whose contents are to
be displayed

If start is a negative number, there is no memory dump. If
more than one location is specified to be displayed, the
output dump will be in complete lines of eight addresses,

SN** TASK01
001234 017770 001244 037576 000001

DEBUGGING AIDS

e.g., if start is 01231 and end is 01236, the dump will
display the contents of addresses 01230 through 01237,
inclusive. SNAP displays octal data.

If there is an error in the SNAP display request, only the
contents of the A, 8, and X registers and the setting of the
overflow indicator are displayed.

Output examples: with the snap request at 01234, display
th., contents of the A (017770), 8 (001244), and X
(03/576) registers, and the overflow indicator (on).

SN** TASK01
001234 017770 001244 037576 000001

Using the same data, display, in addition, the contents of
memory addresses 001241 through 001255, inclusive.

001240 005000 005000 005000 005000 005000 005000 005000 005000
001250 001000 001244 000000 000000 000000 000000 000000 000000

7 3

SECTION 8

SOURCE EDITOR

The VORTEX operating system source editor (SEDIT) is a
background task that constructs sequenced or listed output
files by selectively copying sequences of records from one or
more input files. SEDIT operates on the principle of
forward-merging of subfiles and has file-positioning capa­
bility. The output file can be sequenced and/or listed.

8.1 ORGANIZATION

SEDIT is scheduled by the job-control processor (JCP,
section 4.2.17) upon input of the JCP directive /SEDIT.
Once activated, SEDIT inputs and executes directives from
the SI logical unit until another JCP directive (first
character = /) is input, at which time SEDIT terminates
and the JCP is again scheduled.

SEDIT has a buffer area for 100 source records in MOVE
operations (section 8.2.8). To increase this, input a /MEM
directive (section 4.2.5), immediately preceding the /SEDIT
directive, where each 512-word block will increase the
capacity of the buffer area by 12 source records.

INPUTS to SEDIT comprise:

a. Source-editor directives (section 8.2) input through the
SI logical unit.

b. Old source records input through the IN logical unit.

c. New or replacement source records input through the
ALT logical unit.

cl. Error-recovery inputs entered via the SO logical unit.

Source-editor directives specify both the changes to be
made in the source records, and the logical units to be
used in making these changes. The directives are input
through the SI logical unit and listed as read on the LO
logical unit, with the VORTEX standard heading at the top
of each page. If the SI logical unit is a Teletype or a CRT
device, the message SE** is output to it before directive
input to indicate that the SI unit is waiting for SEDIT input.

There are two groups of source-editor directives: the
copying group and the auxiliary group. The copying group
directives copy or delete source records input on the IN
logical unit, merge them with new or replacement source
records input on the ALT unit, and output the results on
the OUT unit. Copying-group directives must appear in
sequence according to their positioning-record number
since there is no reverse positioning. (Note that if the
remainder of the source records on the IN unit are to be
copied after all editing is completed, this must be explicitly
stated by an FC directive, section 8.2.9.) Ends of file are
output only when specified by FC or WE directives (sections
8.2. 9 and 8.2.13). The processing of string-editing direc­
tives is different from that of record-editing directives. A

string-editing directive affects a specified record, where
source records on the IN unit are copied onto the OUT unit
until the specified record is found and read into memory
from the IN unit. After editing, this record remains in
memory and is not yet copied onto the OUT unit. This
makes possible multiple field-editing operations on a single ,
s 'Urce record. The auxiliary group directives are those
USt;d for special 110 or control functions.

All source records, whether old, new, or replacement
records, are arranged in blocks of three 40-word records
per VORTEX RMD physical record. Any unused portion of
the last physical record of an RMD file on the IN unit
should be padded with blanks. When necessary, SEDIT will
pad the last RMD record on the OUT unit. When the OUT
file will contain more than one source module for input to a
language processor, the user should insert two blank
records after each END statement to insure that each
source module starts on a physical record boundary.
Record numbers start with 1 and have a maximum of 9999.
Sequence numbers start at any value less than the
maximum 9999, and can be increased by any integral
increment. These specifications for sequence numbers are
given by the SE directive (section 8.2.10).

Error-recovery inputs are entered by the operator on the
SO logical unit to recover from errors in SEDIT operations.
Error messages applicable to this component are given in
section 17.8. Recovery is by either of the following:

a. Input the character C on the SO unit, thus directing
SEDIT to go to the SI unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next SEDIT directive is then input from
the SI unit.

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort the SEDIT task and schedule
the JCP for execution. (Note: If there is an I 10 control
error on the SO unit, SEDIT is terminated automatically.)

OUTPUTS from the SEDIT comprise:

a. Edited source-record sequences output on the OUT
logical unit.

b. Error messages.

c. The listing of the SEDIT directives on the LO logical unit.

d. Comparison outputs (compare-inputs directive, section
8.2.15).

e. Listing of source records on the LO logical unit when
specified by the LIST directive (section 3.2. l).

8 1

SOURCE EDITOR

Error messages applicable to SEDIT are output on the SO
and LO logical units. The individual messages and errors
are given in section 17.8.

The listing of the SEDIT directives is made as the
directives are read. Source records, when listed, are listed
as they are input or output. The VORTEX standard heading
appears at the top of each page of the listing.

LOGICAL UNITS referenced by SEDIT are either fixed or
reassignable units. The three fixed logical units are:

a. The SI logical unit, which is the normal input unit for
SEDIT directives.

b. The SO logical unit, which is used for error-processing.

c. The LO logical unit, which is the output unit for SEDIT
listings.

The three reassignable logical units are:

a. The SEDIT input (IN) logical unit, which is the normal
input unit for source records. This is assigned to the Pl
logical unit when SEDIT is loaded, but the assignment
can be changed by an AS directive with an IN
parameter (section 8.2. l).

b. The SEDIT output (OUT) logical unit, which is the
normal output unit for source records. This is assigned
to the PO logical unit when SEDIT is loaded, but the
assignment can be changed by an AS directive with
an OU parameter.

c. The SEDIT alternate input (ALT) logical unit, which is
the alternate input unit used for new or replacement
source records. This is assigned to the Bl logical unit
when SEDIT is loaded, but the assignment can be
changed by an AS directive with an AL parameter.

8.2 SOURCE-EDITOR DIRECTIVES

This section describes the SEDIT directives:

a. Copying group:
AS Assign logical units
AD Add record(s)
SA Add string
REPL Replace record(s)
SR Replace string
DE Delete record(s)
SD Delete string
MO Move record(s)

b. Auxiliary group:
FC Copy file
SE Sequence records
LI List records
GA Gang-load all records
WE Write end-of-file
REWI Rewind
co Compare records

8-2

SEDIT directives begin in column 1 and comprise se­
quences of character strings having no embedded blanks.
The character strings are separated by commas (,) or by
equal signs (=). The directives are free-form and blanks
are permitted between individual character strings of the
directive, i.e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator.
Comments can be inserted after the period.

The general form of an SEDIT directive is

name,p(l),p(2), ... ,p(n)

where

name is one of the directive names given above
or a longer string beginning with one of
the directive names (e.g., AS or ASSIGN)

each p(n) is a parameter defined below under the
descriptions of the individual directives

Where applicable in the following descriptions, a field
specification of the format (first,last) or (nl,n2,n3) is still
separated from other parameters by parentheses even
though it is enclosed in commas. Note also that the
character string string is coded within single quotation
marks, which are, of course, neither a part of the string
itself nor of the character count for the string.

8.2.1 AS (Assign Logical Units) Directive

This directive specifies a unit assignment for an SEDIT
reassignable logical unit (section 8.1). It has the general
form

AS,nn = lun,key,file

where

nn is IN if the directive is making an
assignment of the IN logical unit, OU
if the OUT logical unit, or AL if the ALT
logical unit

lun is the name or number of the logical unit
being assigned as the IN, OUT, or ALT
unit

key is the protection code, if any, required to
address lun

file is the name of an RMD file, if required

If the SEDIT reassignable units are to retain the assign­
ments made when SEDIT was loaded (default
assignments: IN= Pl, OUT= PO, ALT= Bl), no AS direc­
tive is required. Each AS directive can make only one
reassignment (e.g., if both IN and OUT are to be
reassigned, two AS directives are required).

Any RMD affected by an AS directive is automatically
repositioned to beginning of device.

The AS directive merely fixes parameters in I /0 control
calls within SEDIT. It does not alter 1/0 control assign­
ments in the logical-unit table (table 3-1).

Note: AS resets the corresponding record counter; how­
ever·, no physical rewinding of devices occurs.

Examples: Assign the Pl logical unit as the SEDIT
reassignable IN unit.

AS,IN•PI

or, the unabbreviated form

ASSIGN,INPUT•PI

Assign logical unit 8 as the SEDIT reassignable OUT unit.

AS,OU•8

Assign as the SEDIT reassignable IN unit the file FILEX on
logical unit 111, an RMD partition without a protection key.

AS,IN•111,,FILEX

8.2.2 AD (Add Records) Directive

This directive adds source records. It has the general form

AD,recno

where recno is the number of the record last copied from
the IN logical unit before switching to the ALT unit for
further copying.

The AD directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to and including
the record specified by recno. Then, source records are
copied from ALT onto OUT from the current position of the
unit up to but not including the next end-of-file mark.

Example: Copy records from IN onto OUT from the
current position of IN up to and including IN record 7.
Then, switch to ALT and copy records from the current
position of that unit up to but not including the next end­
of -file mark.

AD,7

SOURCE EDITOR

8.2.3 SA (Add String) Directive

This directive inserts a character string into a source-record
field. It has the general form

SA,recno,(first,last), 'string'

where

rec no

first

last

string

is the number of the source record in
which the character string is to be inser -
ted

is the number of the first character
position to be affected

is the number of the last character
position to be affected

is the string of characters to be inserted
in the field delimited by character po­
sitions first and last in record number
rec no

The SA directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but not
including the record specified by recno. The record recno is
read into the memory buffer. The character string string
shifts into the left end of the specified field first.last, with
characters shifted out of the right end of the field being
lost. There is no check on the length of string and shifting
continues until it is left-justified in the field with excess
characters, if any, being truncated on the right.

The record remains in the memory buffer, thus permitting
multiple string operations on the same record. (If IN is
already positioned at recno because of a previous string
operation, there is, of course, no change in position.)

The record recno is read out of the memory buffer and onto
the OUT unit when an SEDIT directive affecting another
record is input.

The field specification first,last is lost after one manipula­
tion. Subsequent string operations must specify the
character positions based on the new configuration. For
example, for the character string ACDEGbb in positions 1
through 7, addition of the character B in position 2 requires
the field specification (2,7). Then, to add the character F
between E and G, one must specify the field (6, 7) rather
than (5,7) because of the shift previously caused by
insertion of the character B.

Example: Change the erroneous DAS MR source-state­
ment operand in character positions 16-21 of the 32nd
record from LOCXbb to LOC,Xb.

SA,32,(19,20), ','

8-3

SOURCE EDITOR .

8.2.4 . REPL (Replace Records) Directive

This directive replaces one sequence of source records with
another sequence of records. It has the general form

REPL,recno 1, recno2

where

recnol

recno2

is the number of the first record to be
replaced

is the number of the last record to be
replaced

If recno2 is omitted, it is assumed equal to recnol, i.e., one
record will be replaced.

The REPL directive copies source records from the IN
logical unit onto the OUT logical unit beginning with the
current position of the IN unit and continuing up to but not
including the record specified by recnol. Then, records are
read from IN, but not copied onto OUT, up to and including
the record specified by recno2. Thus, the records recnol
through recno2, inclusive, are deleted. Then, source records
are copied from the ALT logical unit from the current
position of the unit up to but not including the next end-of.
file mark.

Example: Copy records from IN onto OUT from the
current position of IN up to and including record 9. Replace
IN records 10 through 20, inclusive, with records on ALT
copying those between the current position of ALT and th~
next end-of.file mark onto OUT. Do not copy the end-of-file
mark.

REPL,10,20

8.2.5 SR (Replace String) Directive

This directive replaces one character string within a source
record with another character string. It has the general
form

SR,recno,(nl,n2,n3),'string'

where

rec no

nl

n2

n3

8-4

is the number of the source record in
which the character string is to be
replaced

is the number of the first character
position of the string to be replaced

is the number of the last character
position of the string to be replaced

is the number of the last character
position of the field in which the string
to be replaced occurs

string is the string of characters to be inserted
in the field delimited by character posi _
tions nl and n3 in record number recno
after shifting out the characters in
positions nl through n2, inclusive

The SR directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but not
including the record specified by recno. The record recno is
read ;,to the memory buffer. Field nl,n3 is then shifted to
the left ond filled with blanks until the field nl,n2 is shifted
out. Then, the character string string shifts into the left
end of the field nl,n3. There is no check on the length of
string and shifting continues until it is left-justified in the
field nl,n3 with excess characters, if any, being truncated
on the right.

The record remains in the memory buffer, thus permitting
multiple string operations on the same record. (If IN is
already positioned at recno because of a previous string
operation, there is, of course, no change in position.)

The record recno is read out of the memory buffer and onto
the OUT unit when a SEDIT directive affecting another
record is input.

The field specification nl,n2,n3 is lost after one manipula­
tion. Subsequent string operations must specify the
character positions based on the new configuration.

Example: Copy records from IN onto OUT up to and
including record 49, and replace the present contents of
character positions 10 through 12, inclusive, in IN unit
source record 50 with the character string XYb.

SR, 5 0, (1 0, 12, 12) , 'XY '

8.2.6 DE (Delete Records) Directive
This directive deletes a sequence of s~urce records. It has
the general form

DE,recnol,recno2

where

recnol

recno2

is the number of the first record to be
deleted

is the number of the last record to be
deleted

If recno2 is omitted, it is assumed equal to recnol, i.e., one
record will be deleted.

The DE directive processing is exactly like that of the REPL
directive (section 8.2.4) except that there is no copying
from the ALT unit after the deletion of the records recnol
through recno2, inclusive.

Examples: Copy records from IN onto the OUT logical unit
up to and including record 49, but delete records 50
through 54, inclusive.

DE,50,54

Position IN at record 2, deleting record 1.

DE, 1

8.2. 7 SD (Delete String) Directive

This directive deletes a character string from a source
record. It has the general form

SD,recno,(nl,n2,n3)

where

rec no

nl

n2

n3

is the number of the source record from
which the character string is to be deleted

is the number of the first character
position of the string to be deleted

is the number of the last character
position of the string to be deleted

is the number of the last character
position of the field in which the string
to be deleted occurs

The SD directive processing is exactly like that of the SR
directive (section 8.2.5) except that now new character
string is shifted into field n2,n3 after the field nl,n2 is
shifted out.

Example: Copy records from IN onto OUT up to and
induding record 99, and delete characters 2 through 4,
inclusive, from record 100, shifting characters 5 through
10, inclusive, three places to the left, with blank fill on the
right.

SD, 100, (2, 4, 1 0)

8.2.8 MO (Move Records) Directive

This directive moves a block of records forward on a unit. It
has the general form

MO,recnol,recno2,recno3

where
recnol

recno2

recno3

is the number of the first record to be
moved

is the number of the last record to be
moved

is the number of the record after which
the block of records delimited by recnol
and recno2 is to be inserted

SOURCE EDITOR

If recno2 is omitted, it is assumed equal to recnol, i.e., one
record will be moved.

The MO directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but not
including the record specified by recnol. The records
recnol through recno2 are then read into a special MOVE
area in memory. The position of IN is now recno2+ 1.
V\'f-)en OUT reaches (by some succeeding directive)
recno3 + 1, the contents of the MOVE area are copied onto
OUT. Multiple MO operations are legal.

Example: Copy records from IN onto OUT up to and
including record 4, save records 5 through 10, inclusive, in
the MOVE area of memory, copy records 11 through 99,
inclusive, from IN onto OUT, and then copy records 5
through 10 from the MOVE area to OUT. This gives a record
sequence on OUT of 1-4, 11-99, 5-10 (FC directive, section
8.2.9.).

MO, 5, 10, 99
FC

8.2.9 FC (Copy File) Directive

This directive copies blocks of files, including end-of-file
marks. It has the general form

FC,nfiles

where nfiles (default value = 1) is the number of files to be
copied.

If the IN logical unit and/or the OUT logical unit is an RMD
partition, nfi/es must be 1 or absent. If OUT is a named file
on an RMD, there will be an automatic close/update.
Whenever an end-of-file mark is encountered, all record
counters are reset to zero.

Examples: Copy files from IN onto OUT up to and
including the next end-of-file mark on the IN unit.

FC

Copy the next six IN files (including end-of-file marks) onto
OUT. This includes the sixth end-of-file mark. (Note: If IN
and/or OUT is an RMD partition, there will be an error.)

FC,6

8-5

. SOURCE EDITOR

8.2.10 SE (Sequence Records) Directive

This directive assigns a decimal sequence number to each
source record output to the OUT logical unit. It has the
general form

SE, (first,last),initial, increment

where

first

last

initial

increment

is the first character position of the
sequence name field

is the last character position of the
sequence number field, where the de­
fault value of first.last is 76,80

is the initial number to be used as a
sequence number (default value = 10)

is the increment to be used between
successive sequence numbers (default
value = 10)

There is also a special form of the SE directive to stop
sequencing:

SE,N

where there are no parameters other than the letter N.

Examples: In the next record output to OUT, place 00010
in character positions 76 through 80, and increment the
field by 10 in each succeeding record.

SE

In the next record output to OUT, place 030 in character
positions 15 through 17, and increment the field by 7 on
each succeeding record.

SE,(15,17),30,7

Stop sequencing.

SE,N

8.2.11 LI (List Records) Directive

This directive lists, on the LO logical unit, the records
copied onto the OUT unit. The LI directive has the general
form

Ll,/ist

where list is A (default value) if all OUT records are to be
listed, C if only changed records are to be listed, or n if
listing is to be suppressed. Source records output to the

8-6

OUT file are listed with their OUT record number at the left
of the print list.

Examples: List all records output to OUT.

LI

Suppress all listing except that of SEDIT directives.

LI,N

8.2.12 GA (Gang-Load All Records) Directive

This directive loads the same character string into the
specified field of every record copied onto the OUT logical
unit. It has the general form

GA,(first,last),'string'

where

first

last

string

is the first character position of the field
to be gang-loaded

is the last character position of the field
to be
gang-loaded, where the default value of
first.last is
73,75

is the string of characters to be gang·
loaded into character positions first
through last, inclusive in all records
copied onto out

There is also a special form of the GA directive to stop
gang-loading:

GA

where there are no parameters in the directive.

In every OUT record, GA clears the specified field, and
loads the string into it. There is no check on the length of
string and shifting continues until it is left-justified in the
specified field with excess characters, if any, being
truncated on the right.

Examples: Load character string VDMbb in character
positions 11 through 15, inclusive, of every record copied
onto OUT.

GA , (1 1 , 1 5) , I VDM I

Stop gang-loading.

GA

8.2.13. WE (Write End of File) Directive

This directive writes an end-of-file mark on the OUT logical
unit. It has the form

WE

without parameters. If OUT is a named file on an RMD,
there will be an automatic close/update.

Example: Write and end-of -file mark on OUT, a magnetic­
tape unit.

WE

8.2.14 REWI (Rewind) Directive

This directive rewinds the specified SEDIT logical unit(s). It
has the general form

REWl,p(l),p(2),p(3)

where each p(n) is a name of one of the SEDIT logical
units: IN, OUT, or ALT. These can be coded in any order.

Example: Rewind all SEDIT logical units.

REWI,IN,ALT,OUT

8.2.15 CO (Compare Inputs) Directive

This directive compares the specified field in the inputs
from the IN logical unit with those from the ALT logical unit

SOURCE EDITOR

and lists discrepancies on the LO logical unit. The directive
has the general form

where

CO, (first, last), limit

first

last

limit

is the first character position of the field
to be compared

is the last character position of the field
to be compared, where the default
value of first.last is 1,80

is the maximum number of
discrepancies to be listed before
aborting the comparison and passing
to the next directive

Any discrepancy between the IN and ALT inputs is listed in
the format

I recordnumber or EOF inrecord
A recordnumber or EOF altrecord

If the comparison terminates by reaching the limit number
of discrepancies, SEDIT outputs on the LO the message

SEDIT COMPARE ABORTED

to prevent long listings of errors, for example, where a card
is misplaced or missing on one input. A normal termination
of a comparison (at the next end-of-file mark) concludes
with the message

SEDIT COMPARE FINISHED

Example: Compare character positions 1 through 80,
inclusive, from the IN and ALT units until either an end of
file is found or there have been 5 discrepancies listed on
the LO.

C0,5

8-7

SECTION 9

FILE MAINTENANCE

The VORTEX file-maintenance component (FMAIN) is a
background task that manages file-name directories and
the space allocations of the files. It is scheduled by the job­
control processor (JCP) upon input of the JCP directive
/FMAIN (section 4.2.18).

Only files assigned to rotating-memory devices (disc or
drum) can be referenced by name.

File space is allocated within a partition forward in
contiguous sectors of the same cylinder, skipping bad
tracks. The only exception to this continuity is the file-name
directory itself, which is a sequence of linked sectors that
may or may not be contiguous.

9.1 ORGANIZATION

FMAIN inputs file-maintenance directives (section 9.2)
received on the SI logical unit and outputs them on the LO
logical unit and on the SO logical unit if it is a different
physical device from the LO unit. Each directive is
completely processed before the next is input to the JCP
buffer.

If the SI logical unit is a Teletype or a CRT device, the
message FM*'°' is output on it before input to indicate that
the SI unit is waiting for FMAIN input.

If there is an error, one of the error messages given in
section 17.9 is output on the SO logical unit, and a record
is input from the SO unit to the JCP buffer. If the first
character of this record is /, FMAIN exits via the EXIT
macro. If the first character is C, FMAIN continues. If the
first character is neither I nor C, the record is processed
as a normal FMAIN directive. FMAIN continues to input
and process records until one whose first character is I is
detected, when FMAIN exits via exit. (An entry beginning
with a carriage return is an exception to this, being
processed as an FMAIN directive).

FMAIN has a symbol-table area for 200 symbols at five
words per symbol. To increase this area, input a /MEM
directive (section 4.2.5), where each 512-word block will
enlarge the capacity of the table by 100 symbols.

9.1.1 Partition Specification Table

Each rotating-memory device (RMD) is divided into up to
20 memory areas called partitions. Each partition is

referenced by a specific logical-unit number. The bounda­
ries of each partition are recorded in the core-resident
partition specification table (PST). The first word of the
PST contains the number of VORTEX physical records per
track. The second word of the PST contains the address of
the bad-track table, if any. Subsequent words in the PST
co:nprise the four-word partition entries. Each PST is in the
format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 Number of 120-word logical records/track

Word 1 Address of bad tracks table (0 if none)

Word 0 Beginning partition track address

Word 1 PPB Not used Protection code

Word 2 Number of bad tracks in partition

Word 3 Ending partition address + 1

The partition protection bit, designated ppb in the above
PST entry map, is unused in file maintenance procedures.

Note that PST entries overlap. Thus, word 3 of each PST
entry is also word 0 of the following entry. The relative
position of each PST entry is recorded in the device
specification table (DST) for that partition.

The bad-track table, whose address is in the second word
of the PST, is a bit string read from left to right within each
word, and forward through contiguous words, with set bits
flagging bad tracks on the RMD. (If there is no bad-track
table, the second word of the PST contains zero.)

9.1.2 File-Name Directory

Each RMD partition contains a file-name directory of the
files contained in that partition. The beginning of the
directory is in the first sector of the partition. The directory
for each partition has a variable number of entries
arranged in n sectors, 19 entries per sector. Sectors
containing directory information are chained by pointers in

9-1

FILE MAINTENANCE

the last word of each sector. Thus, directory sectors need
not be contiguous. Each directory entry is in the format:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 File name

Word 1 File name
.

Word 2 File name

Word 3 Current position of file
-

Word 4 Beginning file address

Word 5 Ending file address

The file name comprises six ASCII characters packed two
characters per word, left justified, with blank fill. Word 3,
which contains the current address at which the file is
positioned, is initially set to the ending file address, and is
manipulated by 110 control macros (section 3). The extent
of the file is defined by the addresses set in words 4 and 5
when the file is created, and remains constant.

The first sector of each partition is assigned to the file­
name directory. FMAIN allocates RMD space forward in
contiguous sectors, skipping bad tracks. Following the last
entry in each sector is a one-word tag containing either the
value 01 (end of directory), or the address of the next
sector of the file-name directory.

The file-name directories are created and maintained by
the file-maintenance component for the use of the 110
control component (section 3). User access to the directo­
ries is via the 110 control component.

Special entries: A blank entry is created when a file name
is deleted, in which case the file name is u*** and words
3 through 5 give the extent of the blank file. A zero entry is
created when one name of a multiname file is deleted, in
which case the deleted name is converted to a blank entry
and all other names of the multiname file are set to zero.

9-2

WARNING

To prevent possible loss of data from the file­
name directory during file-maintenance opera­
tions, FMAIN sets the lock bit (bit 12 of word 2
of the DST, section 3.2) before any directory
operation, thus inhibiting all foreground re­
quests for 110 with the partition being modified.
Upon completion of the directory operation,
FMAIN clears the lock bit. Except for the use of
protection codes, this is the only protection for
the file-name directory. Manipulation of fore­
ground files with FMAIN is at the user's risk. For
example, VORTEX does not prevent deletion of a
file name from a file-name directory that has
been opened and is being written into by a
foreground program. Therefore, foreground files
should be reassigned prior to manipulation by
FMAIN.

9.1.3 Relocatable Object Modules

Outputs from both the DAS MR assembler and the
FORTRAN compiler are in the form of relocatable object
modules. Relocatable object modules can reside on any
VORTEX-system logical unit. Before object modules can be
read from a unit by the FMAIN INPUT and ADD directives
(sections 9.2.7 and 9.2.8), an 1/0 OPEN with rewinding
(section 3.4.1) is performed on the logical unit, i.e., the unit
(except paper-tape or card readers) is first positioned to the
beginning of device or load point for that unit. Object
modu:% can then be loaded until an end-of-file mark is
found.

The system generator (section 13) does not build any
object-module library. FMAIN is the only VORTEX compo­
nent used for constructing user object-module libraries.

A VORTEX physical record on an RMD is 120 words. Object­
module records are blocked two 60-word records per
VORTEX physical record. However, in the case of an RMD
assigned as the SI logical unit, object modules are not
blocked but assumed to be one object-module record per
physical record.

9.1.4 Output Listings

FMAIN outputs four types of listing to the LO logical unit:

Directive listing lists, without modification, all FMAIN
directives entered from the SI logical unit.

Directory listing lists file names from a logical unit file­
name directory in response to the FMAIN directive LIST
(section 9.2.5).

Deletion listing lists file names deleted from a logical
unit file-name directory in response to the FMAIN
directive DELETE (section 9.2.2).

Object-module listing lists the object-module input in
response to the FMAIN directive ADD (section 9.2.8).

All FMAIN listings begin with the standard VORTEX
heading.

The directory listing is further described under the
discussion of FMAIN directive LIST (section 9.2.5), the
deletion listing under DELETE (section 9.2.2), and the
object-module listing under ADD (section 9.2.8).

9.2 FILE-MAINTENANCE DIRECTIVES

This section describes the file-maintenance directives:

CREATE file

RENAME file

LIST file names

DELETE file

ENTER new file name

INIT (initialize) directory

INPUT logical unit for object module

ADD object module

File-maintenance directives comprise sequences of charac­
ter strings having no embedded blanks. The character
strings are separated by commas (,) or by equal signs (=).
The directives are free-form and blanks are permitted
between the individual character strings of the directive,
i.e., before or after commas (or equal signs). Although not
required, a period (.) is a line terminator. Comments can
be inserted after the period.

The general form of a file-maintenance directive is

directive,lun,p(l),p(2), ... ,p(n)

where

directive

lun

each p(n)

is one of the directives listed above in
capital letters

is the number or name of the affected
logical unit

is a parameter defined under the
descriptions of the individual directives
below

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (==) are omitted.

Error messages applicable to file-maintenance directives
are given in section 17.9.

9.2.1 CREATE Directive

This directive creates a new file on the specified logical
unit, allocates RMD space to the file, adds a corresponding
entry to the file-name directory, and sets the current end­
of -file value to one greater than the address of the last
sector assigned to the new file.

The directive has the general form

where

CREATE,lun,key,name, words, records

lun

key

name

words

records

is the number or name of the logical unit
where the new file is to be created

is the protection code, if any, required to
address lun

is the name of the file being created

is the number of words in each record of
the file

is the number of records in the file

FILE MAINTENANCE

Size parameters merely allocate space for the file and do
not limit file use to the specified record size. To each"fecord
in the created file., FMAI N assigns n; records '11120 words
each where n is the smallest integer such that words/120.{
n. The file size is n*records words. This value is converted
to a sector count to make assignments. Neither the file size
value nor the sector count value is saved.

Example: Create the file XFILE with ten records of 120
words each on logical unit 112, whose protection code is K.

CREATE,112,K,XFILE,120,10

9.2.2 DELETE Directive

This directive deletes the designated file and all file-name
directory references to it from the specified logical unit. It
converts the specified file-name directory entry to a blank
entry (name field == * * * * * ·~, section 9.1.2) and all other
directory references to this file to zero entries (all fields =
zero, section 9.1.2), and outputs a listing of deleted file­
names on the LO logical unit. The directive has the general
form

DELETE,lun,key,name

where

lun

key

name

is the number or name of the logical unit
from which the file is being deleted

is the protection code, if any, required to
address lun

is the name of the file being deleted (in
the case of a multi name file, any one
of the names can be used)

The output format has, following the FMAIN heading, a
two-line heading

DELETE LISTING FOR lun
FILE NAME START END CURRENT

where lun is the number of the logical unit from which the
file is being deleted. This heading is followed by a blank
line and a listing of all file-names being deleted, one per
line. Words 0-2 of the file-name directory entry (section
9.1.2) are placed in the FILE NAME column; word 3, in the
CURRENT column; word 4, in the START column; and word
5, in the END column. After the last file name, there is an e
entry describing the blank file created by the deletion,
where the FILE NAME column contains *'~''*o:c~·. the START
column contains the next available address (word 2 of the
PST entry), and both the CURRENT and END columns
contain the last address + 1 (word 3 of the PST entry).

9-3

FILE MAINTENANCE

Example: Delete the file ZFILE (and all file-name directory
entries referencing it) from logical unit 112, whose
protection code is P).

DELETE,112,P,ZFILE

The name ZFILE is replaced in the file-name directory by
•:•(•****, and the space allocation for this blank entry
extended in both directions to include adjacent blank
entries, if any. Any blank entries thus absorbed are
converted to zero entries, as are all other entries that
reference the file ZFILE. All affected file-name directory
entries are listed on the LO logical unit.

9.2.3 RENAME Directive

This directive changes the name of a file, but does not
otherwise modify the file-name directory. The directive has
the general form

where

RENAME, tun, key,old,new

lun

key

old

new

is the number or name of the logical unit
where the file to be renamed is located

is the protection code, if any, required to
address lun

is the old name of the file being renamed

is the new name of the file being
renamed

Following RENAME, old can no longer be used to reference
the file.

Example: On logical unit 112, whose protection code is P,
change the name of the file XFILE to YFILE.

RENAME,112,P,XFILE,YFILE

9.2.4 ENTER Directive

This directive adds a new file name to be used in
referencing an existing file, but does not otherwise modify
the file-name directory. ENTER thus permits multiname
access to a file. The directive has the general form

where

ENTER,lun,key,old,new

lun is the number or name of the logical unit
where the affected file is located

key is the protection code, if any, required to
address lun

old is an old name of the affected file

new

9-4

is the new name by which the file can
also be referenced

Example: On logical unit 113, whose protection code is K,
make the file Xl accessible by using either the name Xl or
the name Yl.

ENTER,113,K,X1,Y1

9.2.5 LIST Directive

This directive outputs on the LO logical unit the file-name
directory of the specified logical unit. The output comprises
the : ile names, file extents, current end-of -file positions,
logical •. mit name or number, and the extent of unassigned _
space in the partition. All number are in octal. The
directive has the general form

LIST,lun,key

where
lun

key

is the number or name of the logical unit
whose contents are to be listed

is the protection code, if any, required to
address lun

The output format has a two-line heading

FILE DIRECTORY FOR LUN lun
FILE NAME START END CURRENT,

where lun is the number or name of the logical unit whose
contents are being listed. This heading is followed by a
blank line and a listing of all file names from the directory,
one name per line. Words 0-2 of the file-name directory
entry (section 9.1.2) are placed in the FILE NAME column;
word 4, in the START column; word 3, in the CURRENT
column; and word 5, in the END column. After the last file
name, if there is any unassigned space in the partition,
there is an entry describing the unassigned space in the
partition, where the FILE NAME column contains ~·uNAs·~.
the START column contains the next available address
(word 2 of the PST entry), and both the CURRENT and
END columns contains the last address + 1 (word 3 of the
PST entry).

Example: List the file-name directory of logical unit 114,
which has no protection code.

LIST,114

9.2.6 INIT (Initialize) Directive

This directive clears the entire file-name directory of the
specified logical unit, deletes all file names in it, and
releases all currently allocated file space in the partition by
reducing the file-name directory to a single end-of-directory
entry. The directive has the general form

INIT,lun,key

where
lun

key

is the number or name of the logical unit
being initialized

is the protection code, if any, required to
address lun

Example: Initialize the file-name directory on logical unit
115, which has protection code X.

INIT,115,X

9.2.7 INPUT Directive

This directive specifies the logical unit from which object
modules are to be input. Once specified, the input logical­
unit number is constant until changed by a subsequent
INPUT directive. The directive has the general form

where

INPUT,lun,key,file

lun is the number or name of the logical unit

key

file

from which object modules are to be input

is the protection code, if any, required to
address lun

is the name of the RMD file containing
the required object module(s)

Neither key nor file are required unless fun is a RMD
partition.

NOTE

There is no default value. Thus, if an attempt is
made to input an object module (ADD directive,
section 9.2.8) without defining the input logical
unit by an INPUT directive, an error message
will be output.

Examples: Specify logical unit 6 as the device from which
object modules are to be input.

INPUT,6

FILE MAINTENANCE

Open and rewind the file ARCTAN on logical unit 104,
which has protection code D.

INPUT,104,D,ARCTAN

9.2.8 ADD Directive

This directive reads object modules from the INPUT unit
(section 9.2.7) and writes them onto the SW logical unit,
checking for entry names and validating check-sums,
r,'cord sizes, loader codes, sequence numbers, and record
str..:ctures. Reading continues until an end of file is
encountered. Entry names are then added to the file-name
directory of the specified logical unit and the object
modules are copied from the SW logical unit onto the
specified logical unit. The directive has the general form

ADD,lun,key

where
lun

key

is the number or name of the logical unit
onto which object modules are to be
written

is the protection code, if any, required to
address lun

The specified logical unit lun references a system or user
object-module library.

The names of the object modules and their date of
generation, size in words (zero for FORTRAN modules),
entry names, and referenced external names are listed on
the LO logical unit.

To recover from errors in object-module processing, reposi­
tion the logical unit to the beginning of the module.

Example: Add object modules to logical unit 104, which
has protection code D.

ADD, 104, D

9 5

SECTION 10

INPUT /OUTPUT UTILITY PROGRAM

The 1/0 utility program (IOUTIL) is a background task for
copying records and files from one device onto another,
changi'ng the size and mode of records, manipulating files
and records, and formatting the records for printing or
display.

10.1 ·ORGANIZATION

IOUTIL is scheduled for execution by inputting JCP
directive /IOUTIL (section 4.2.20) on the SI logical unit. If
the ~I logical unit is a Teletype or a CRT device, the
message IU** is output to indicate that the SI unit is
waiting for IOUTIL input. Once activated, IOUTIL inputs
and executes directives from the SI unit until another JCP
directive (first character = /) is input, at which time
IOUTIL terminates and the JCP is again scheduled.

Error messages applicable to IOUTIL are given in section
17.10. Recovery from an error is by either of the following:

a. Input the character C on the SO unit, thus directing
IOUTIL to go to the SI unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next IOUTIL directive is then input
from the SI unit.

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort IOUTIL and schedule the JCP
for execution.

10.2 1/0 UTILITY DIRECTIVES

This section describes the IOUTIL directives:

COPYF
COPYR
SFILE
SREC
DUMP
WEOF
REW
PFILE
CFILE

Copy file
Copy record
Skip file
Skip record
Format and dump
Write end of file
Rewind
Position file
Close file

IOUTIL directives begin in column 1 and comprise
sequences of character strings having no embedded
blanks. The character strings are separated by commas (,)
or by equal signs (=). The directives are free-form and
blanks are permitted between individual character strings
of the directive, i.e., before or after commas (or equal
signs). Although not required, a period (.) is a line
terminator. Comments can be inserted after the period.

The general form of an IOUTIL directive is

name,p(l),p(2), ... ,p(n)

where
name is one of the directive names given above

each p(n) is a parameter defined below under the
descriptions of the individual directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optknal periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted.

Error messages applicable to IOUTIL directives are given in
section 17.10.

10.2.1 COPYF (Copy File) Directive

This directive copies the specified number of files from the
indicated input logical unit to the given output logical
unit(s). The directive has the general form

where

COPYF,f,iu,im,irl,ou(l),om,orl,ou(2),ou(3), ... ,ou(n)

f

iu

im

irl

is the number of input files to be copied

is the name or number of the input
logical unit im

is 0 for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted input files

is the number of words in each record of
the input files

each ou(n) is the name or number of an output
logical unit

om is 0 for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted output files.

orl is the number of words in each record of
the output files

Any RMD involved with copying files, whether as input or
output medium, must have been previously positioned with
a PFILE directive (section 10.2.8).

If a difference in record lengths irl and orl causes a part­
record to remain when an end of file is encountered, the
part-record is filled with planks and thus transmitted to the
output unit(s).

Example: Copy three files containing 120-word records
from the SW logical unit onto logical units LO, 50, and 51
in 40-word records.

COPYF, 3 , SW, 1 , 120 , LO, 1 , 4 0 , 5 0 , 5 1

10-1

INPUT /OUTPUT UTILITY PROGRAM

10.2.2 COPYR (Copy Record) Directive

This directive copies the specified number of records from
the indicated input logical unit to the given output logical
unit(s). The directive has the general form

where

COPYR,r,iu,im,irl,ou(l),om,orl,ou(2),ou(3), ... ,ou(n)

iu

im

irl

is the number of input records to be
copied, or 0 if copying is to continue to the
end of file

is the name or number of the input
logical unit

is 0 for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted input records

is the number of words in each record of
the input

each ou(n) is the name or number of an output
logical unit

om

orl

is 0 for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted output records

is the number of words in each record of
the output

Any RMD involved with copying records, whether as input
or output medium, must have been previously positioned
with a PFILE directive (section 10.2.8).

If a difference in record lengths irl and orl causes a part­
record to remain when an end-of-file mark is encountered,
the part-record is filled with blanks and thus transmitted to
the output unit(s).

Example: Copy 25 unformatted records of 200 words each
from the SS logical unit to the BO and PO units in binary
format with 40 words per record.

COPYR,25,SS,3,200,B0,0,40,PO

It may be necessary to copy from one file on an RMD
partition to another file on the same partition. This can be
accomplished by assigning two different logical units to this
RMD partition, and then issuing two PFILE directives
(section 10.2.8), positioning one logical unit to the
beginning of one file and the second logical unit to the
beginning of the other file. Additional positioning within
the files can be specified by SREC directives (section
10.2.4).

Example: Copy the first ten records from file EDITl to
record 11 through 20 of file EDIT2. Both files are on RMD
partition DOOK, have record lengths of 120 words, are in
mode 1, and have no protection key (default value = 0).
Assign the Bl and BO logical units to the task.

10-2

/ASSIGN,BI=DOOK
/ASSIGN,BO•DOOK
/IOUTIL
PFILE,BI,,120,EDIT1
PFILE,B0,120,EDIT2
SREC,B0,10
COPYR, 10,BI, 1, 120,BO, 1, 120

10.2.3 SFILE (Skip File) Directive

This dire:-::tive, which applies only to magnetic-tape units,
causes the specified logical unit to move the tape forward
the designated number of end-of-file marks. The directive
has the general form

SFILE,lun,neof

where
lun

neof

is the name or number of the affected
logical unit

is the number of end-of-file marks to be
skipped

If the end-of-tape mark is encountered before the required
number of files has been skipped, IOUTIL outputs to the
SO and LO logical units the error message IU05,nn, where
nn is the number of files remaining to be skipped.

SFILE,PI,3

10.2.4 SREC (Skip Record) Directive

This directive, which applies only to magn8tic-tape units
and RMDs, causes the specified logical unit to skip forward
the designated number of records. The directive has the
general form

SREC,lun,nrec

where
lun

nrec

is the name or number of the affected
logical unit

is the number of records to be skipped

Note that, unlike JCP directive /SREC (section 4.2.8), the
IOUTIL directive SREC cannot skip records in reverse.

If lun designates an RMD partition, the device must have
been previously positioned with a PFILE directive (section
10.2.8).

If a file mark, an end-of-tape mark, or an end-of-device
mark is encountered before the required number of records
has been skipped, IOUTIL outputs to the SO and LO logical
units the error message IU05,nn, where nn is the number of
records remaining to be skipped.

Example: Skip 40 records on the Bl logical unit.

SREC,BI,40

10.2.5 DUMP (Format and Dump) Directive

This directive copies the specified number of records from
the indicated input logical unit, formats them for listing,
and dumps the data onto the output unit in octal format,
ten words per line, with one blank between words. The
directive has the general form

where

DUMP ,r ,iu,im,irl,ou

iu

im

irl

OU

is the number of input records to be
copied

is the name or number of the input
logical unit

is 0 for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted input records

is the number of words in each record of
the input

is the name or number of the output
unit, which cannot be an RMD partition

The first line of the dump contains the record number
before word 1, but subsequent lines do not have the record
number.

Example: Dump 40 binary, 50-word records from the SW
logical unit onto the LO unit.

DUMP,40,SW,0,50,LO

10.2.6 WEOF (Write End of File) Directive

This directive writes an end-of-file mark on each logical unit
specified. The directive has the general form

WEOF,lun,/un, ... ,Jun

where each lun is the name or number of a logical unit
upon which an end-of-file mark is to be written.

Example: Write an end-of-file mark on the BO logical unit
and on the PO logical unit.

WEOF,BO,PO

10.2.7 REW (Rewind) Directive

This directive, which applies only to magnetic-tape units,
causes the specified logical unit(s) to rewind to the
beginning of tape. The directive has the general form

REW,lun,/un, ... ,/un

where each lun is the name or number of a logical unit to
be rewound.

INPUT /OUTPUT UTILITY PROGRAM

Example:. Rewind the Bl and PO logical units.

REW,BI,PO

10.2.8 PFILE (Position File) Directive

This directive, which applies only to rotating-memory
devices, causes the specified logical unit to move to the
beginning of the designated file, and opens the file. The
directive has the general form

where

PFI LE,lun,key ,reel, name

lun

key

reel

name

is the name or number of the affected
logical unit

is the protection code required to
address lun

is the number of words in each record of
the file

is the name of the file to which the logical
unit is to be positioned

Since IOUTIL has only six FCBs, there can be a maximum
of six files open at any given time.

Example: Position the Pl logical unit, using protection
code Z, to the beginning of the file FILEXY, which contains
60-word records.

PFILE,PI,Z,60,FILEXY

10.2.9 CFILE (Close File) Directive

This directive, which applies only to RMD partitions, closes
the specified file. The directive has the general form

where

CFILE,lun,key,name,add

lun

key

name

add

is the name or number of the logical unit
containing the file to be closed

is the protection code required to
address lun

is the name of the tile to be closed

is 0 (default value) if the current end-of­
file address on of the RMD file directory
is to remain unchanged, or 1 if 1t is to be
replaced by the current record (i.e.,actual)
address

103

INPUT /OUTPUT UTILITY PROGRAM

A PFILE directive (section 10.2.8) must have been used to
position lun before the CFILE directive is issued. Closing a
file frees the associated FCB for use with another file. Since
IOUTIL has only six FCBs, there can be a maximum of six
files open at any given time.

10-4

Example: Close the file WORK on the SW logical unit
(protection code B) and update the file directory.

CFILE,SW,B,WORK,1

SECTION 11

SUPPORT LIBRARY

The VORTEX system has a comprehensive subroutine
library directly available to the user. The library contains
mathematical subroutines to support the execution of a
program, plus many commonly used utility subroutines. To
use the library, merely code the proper call in the program,
or, for the standard FORTRAN IV functions, implicitly
reference the subroutine (e.g., A = SQRT(B) generates a
CALL SQRT(B)). All calls generate a reference to the
required routine, and the load-module generator brings the
subroutine into memory and links it to the calling program.

FORTRAN IV: Genera/ form:

statement number CALL S(p(l),p(2), ... ,p(n))

Generated code:

JMPM
DATA
DATA

s
q (1)

q(2)

DATA q(n)
11.1 CALLING SEQUENCE

The subroutines in the support library are called through
DAS MR or FORTRAN IV.

Where q(i) = p(i) if p(i) is a single variable or array name.
Otherwise, q(i) = address of all containing p(l).

11.2 NUMBER TYPES AND FORMATS

DAS MR: General form:

label CALL S,p(l),p(2), ... ,p(n)

Integers uses one 16-bit word. A negative number is in
two's complement form. An integer in the range - 32,767
to + 32,767 can be stored as an integer.

Expansion:

label JMPM
DATA
DATA

DATA

Bit 15
n) s
n+ 1) 0

Bit 1 5
n) 0
n+ 1) 5
n+2) 0
n+3) 0

s
p(1)

p(2)

p(n)

Real numbers use two consecutive 16-bi1 words. For a
positive real number, the exponent (in exce~s 0200 form) is
in bits 14 to 7 of the first word. The mantis~a is in bits 6 to
0 of the first word and bits 14 to O of the second word. The
sign bit of the second word is zero. The r1egative of this
number is created by one's complementing the first word.
Any real number in the range 10 '

8
can be stored as a

single-precision floating-point number havin 5 a precision of
more than six decimal digits.

Single-Precision Float 1ng-Point Numbers

14 13 12 11 10 9 8 7 6 5 4 3 2 0
-------Exponent--------- ----High Mantissa----
-----------------Low Mantissa------------------

Double-precision floating-point numbers use four consecu­
tive 16-bit words. The exponer 1t (in excess 0200 form) is in
bits 7 to 0 of the first word The mantissa of a positive
number is in the second, thirc, and fourth words. Bit 15 of
the second, third and fourth 11ords and bits 15 of 8 of the
first word are zero. The negat ve of this number is created
by one's complementing the s0 icond word. Any real number
in the range 10±3 8 can be ;tored as a double-precision
floating-point number having a precision of more than 13
decimal digits.

Double-Precision Floa1 ing-Point Numbers

14 13 12 11 10 9 8 7 6 5 4 3 2 0
0 0 0 0 0 0 0 --------Exponent-------­
-----------------Hi Jh Mantissa-----------------
-----------------Mii Mantissa------------------
-----------------Lof Mantissa------------------

11 1

SUPPORT LIBRARY

11.3 SUBROUTINE DESCRIPTIONS

The following definitions and notation apply to the
subroutine descriptions given in this section:

Notation

AB

AC

Meaning

Hardware A and B registers

Four-word software accumulator for double­
precision numbers

ACCZ Four-word accumulator for complex numbers
(the real part is in AB and the imaginary
part 1s in subroutine V$8G)

d A double-precision number

Two-word, fixed-point number

An integer

A real number

s A six-character ASCII string

x Hardware X register

z A complex number

):~ ~:< Exponentiation

The external references in table 11-2 refer to items in
tables 11-1 and 11-2. A subroutine with rnore than one
name is indicated by multiple calls under Carling Sequence.

Table 11-1. DAS Coded Subroutines

Name

$HE

$PE

$QE

ALOG

EXP

ATAN

SINCOS

SQRT

FMULDIV

11-2

Given: A contains il,
in A compute il':<>:'i2.

Given: AB contains r,
in AB, compute r':<>:•i.

Given: AB contains rl,
in AB, compute rl "":'r2.

In AB, compute In r. If r - 0,
output message FUNC ARG and
exit with A= B = O and
overflow = 1.

In AB, compute e':' •:•r. If there
is underflow, AB= 0. If
overflow, AB= maximum real
number and the message FUNC
ARG is output. In both
cases, overflow= 1.

In AB, compute arctan r

In AB, compute cos r with
COS, or sin r with SIN

In AB, compute square root of r

Given: AB contains rl, in AB,
compute rl ':'r2 with $QM, or
rl!r2 with $QN. If there is
underflow, AB= 0. If
overflow, AB= maximum value
and the message ARITH OVFL is
output. In both cases,
overflow= 1.

CALL $HE,i2

CALL $PE,i

CALL $QE,r2

CALL ALOG,r

CALL EXP,r

CALL ATAN,r

CALL COS.r
CALL SIN,r

CALL SQRT.r

CALL $QM,r2
CALL $QN,r2

$SE, $HM

$SE, $QM, $QN

ALOG, $QM, EXP, $SE

$EE, $QK, $QM, XDMU,
XDAD, $NML, XDDI,
XDSU, $SE, $PC, $QL,
$QN

XDMU, $QK, $NML, $EE,
$QM, $QN, $SE

$QM, $QL, $Qf'<, $QK,
$SE

$QK, $QL, $QM $QN,
$SE

XDDI, $FSM, $SE

XDMU, $FMS, XDDI,
$SE, $EE, $NML

Table 11-1. DAS Coded Subroutines (continued)

Name

FADDSUB Given: AB contains rl, in AB,
compute rl + r2 with $QK, or
rl - r2 with $QL. If there
is underflow, AB= 0. If
overflow, AB= maximum value
and the message ARITH OVFL is
output. In both cases,
overflow= 1.

SEPMANl I Separate mantissa and
characteristic of r into AB
and X, respectively

FNORMAL In AB, normalize r

XDDIV In AB, compute fl /f2

XDMULT In AB, compute fl ':'f2

XDADD In AB, compute fl + f2

XDSUB In AB, compute fl - f2

XDCOMP In AB, compute negative of f

$FLOAT In AB, convert the i in A
to floating-point and, for
$QS, store result in r

$1FIX In A, convert the r in AB
to i and, for $HS, store
result in i

IABS In A, compute absolute i

ABS In AB, compute absolute r

ISIGN Set the sign of il, in A,
equal to that of i2

SIGN Set the sign of rl, in AB,
equal to that of r2

$HN Given: A holds il,
in A, compute il!i2

$HM

DSINCOS

DA TAN

Given: A holds il, in A,
compute i 1 ~' i2

In AC, compute sin d or cos d

In AC, compute arctan d

CALL $QK,r2
CALL $QL,r2

CALL $FMS
CALL $FSM

CALL $NML

CALL XDDl,f2

CALL XDMU,f2

CALL XDAD,f2

CALL XDSU,f2

CALL XDCO

CALL $PC
CALL $QS,r

CALL $IC
CALL $HS,i

CALL IABS,i

CALL ABS,r

CALL ISIGN,i2

CALL SIGN,r2

CALL $HN,i2

CALL $HM,i2

CALL $DSl,d
CALL $DSIN,d
CALL $DCO,d
CALL $DCOS,d

CALL $DAN
CALL DATAN,d

SUPPORT LIBRARY

$SE, $FSM, $NML, $EE

None

XDCO

XDSU, XDCO

XDAD, XDCO

None

None

None

$SE

$SE, $EE

$SE

$SE

$SE

$SE

$SE, $EE

$SE, $EE

$STO,$DNO, $ZC, $ZK, $ZL,
$SE, $ZM, $ZN, AC
$DLO

$DLO, $STO, $DAD,
$DSU, IF, $SE,
AC. $DMP, $DOI,
POLY

11 3

SUPPORT LIBRARY

Table 11-1. DAS Coded Subroutines (continued)

Name

DEXP In AC, compute exponential d CALL $DEX $DLO, $STO,
CALL DEXP,d $SE, AC, $DNO, $EE,

$ZC, $ZK, $ZL, $ZM, $ZN

DLOG In AC, compute In d CALL DLOG,d $DLO, $STO, $DNO, $EE
CALL $DLN $SE, $ZK, $ZL, $ZM, $ZN

POLY In AC, compute double-precision CAL_ POLY,t,c,y $DLO, $DAD, $DMP
polynomial with t terms,
coefficient list starting at
address c, and argument at
address y

CHEB In AC, compute shifted CALL CHEB,t,c $DLO, $STO, $DAD,
Chebyshev polynomial series $DSU, $DMP
with t + 1 terms and coefficient
list starting at address c

DSQRT In AC, compute square root CALL $DSQ,d $DLO, $STO, $DNO,
of d CALL DSQR,d $DAD, $DMP, $DOI,

$SE, AC

$DFR In AC, compute fractional CALL $DFR,d $DLO, $DNO, $DSU,
part of d $DIT, AC, $SE

IDINT In AC, compute integral CALL $DIT,d $DNO, $SE
part of d CALL IDIN,d

DMULT In AC, compute dl ':'d2 CALL $DMP,d2 $DLO, $STO, $DNO,
CALL $ZM,d2 $DAD, AC, $SE

DDIVIDE In AC, compute dl/d2 CALL $DDl,d2 $DLO, $STO, $DNO,
CALL $ZN,d2 $DSU, AC, $SE

DADDSUB In AC, compute dl + d2 with CALL $DAD,d2 $STO, $DLO, $DNO,
$DAD, or d 1 - d2 with CAL $DSU,d2 AC, $SE, $EE
$DSU CALL $ZK,d2

CALL $ZL,d2

DNORMAL In AC, normalize d CALL $DNO $SE

DLOADAC Load AC with d CALL $DLO,d AC, $SE
CALL $ZF,d

DSTOREAC Store AC in d CALL $STO,d AC, $SE
CALL $ZS,d

RLOADAC Load A with double-precision CALL $ZI AC
mantissa sign word from AC

SINGLE In AB, convert the d in AC to r CALL $RC AC

DOUBLE In AC, convert the r in AB to d CALL $YC AC

DBLECOMP In AC, compute negative of the CALL $ZC AC
din AC

$3S Store AB in memory address m CALL $3S,m $SE

11-4

Name

A2MT

MT2A

EXIT

SUSPND

RESUME

ABORT

ALOC

PMSK

DELAY

TIME

OVLAY

SCH ED

$RTENM

$EE

Table 11-1. DAS Coded Subroutines (wntinued)

Translate in memory a character
string of length n starting
at s and ending at e from
eight-bit ASCII to six-bit
magnetic tape BCD code

Translate in memory a character
string of length n starting at
s and ending at e from six-bit
magnetic tape BCD code to
eight-bit ASCII

Formats and executes an RTE
EXIT macro

Formats and executes an RTE
SUSPND macro with parameter i.

Formats and executes an RTE
RESUME macro to resume task s.

Formats and executes an RTE
ABORT macro to abort task s.

Formats and executes an RTE
ALOC macro to call reentrant
subroutine s.

Formats and executes an RTE
PMSK macro to operate on Pl M
il with line mask i2 and
enable/disable flag i3.

Formats and executes an RTE
DELAY macro with the 5-
millisecond count in il, the
minute count in i2, and delay
mode in i3.

Formats and executes an RTE
TIME macro with the minute
count in i 1 and delay mode
in i2.

Formats and executes an RTE
OVLA Y macro with i 1 = 0 to
execute, i2 = 0 to load, and
s is the overlay name.

Formats and executes an RTE
SCHED macro with il priority,
i2 = wait flag, i3 =
logical-unit number, sl = key
and s2 = task name.

Moves the six-character name
from X to B

Outputs error messages on
the SO device.

CALL A2MT,n,s,e

Ct IL MT2A,n,s,e

CALL EXIT

CALL SUSPND(i)

CALL RESUME(s)

CALL ABORT(s)

CALL ALOC(s)

CALL PMSK(il,
i2,i3)

CALL DELAY(il,
i2,i3)

CALL TIME(il,i2)

CALL OVLAY(il,
i2,s)

CALL SCHED(il, i2,
i3,sl ,s2)

CALL $RTENM

CALL $EE

SUPPORT LIBRARY

None

None

V$EXEC

V$EXEC

V$EXEC, $RTENM

V$EXEC, $RTENM

V$EXEC

V$EXEC

V$EXEC

V$EXEC

V$lXrC, $RTEl~M

V$EXEC, $RTEr JM

None

V$10C, V$10ST,
V$EXEC

11-5

SUPPORT LIBRARY

Table 11-2. FORTRAN IV Coded Subroutines

Name Function Calling Sequence External References

$9E Compute ACCZ':' ':'i CALL $9E(i) $SE, IABS, $8F,
$8M, $8N, $8S

ccos In ACCZ, compute cos z CALL CCOS(z) $SE, CSIN, $8F,
$8K, $8S

CSIN In ACCZ, compute sin z CALL '"':SIN(z) $SE. EXP, $QN,
SIN, $QK, $QM,
COS, $QL, $8F

ClOG In ACCZ, compute In z CALL CLOG(z) $SE, ALOG, $QM,
$QK, $QN, ATAN2,
$8F

CEXP In ACCZ, compute exponential z CALL CEXP(z) $SE. EXP, COS,
$QM, SIN, $8F

CSQRT In ACCZ, compute square root of z CALL CSQRT(z) $SE, SQRT, CABS,
$QK, $QN, $8F

CABS In AB, compute absolute z CALL CABS(z) $SE, SQRT, $QM,
$QK

CON JG In ACCZ, compute con1ugate of z CALL CONJG(z) $SE, $8F

$AK Add r to real part of ACCZ CALL $AK(r) $SE, $8S, $QK, $8F

$AL Subtract r from the real CALL $AL(r) $SE, $8S, $QL, $8F
part of ACCZ

$AM Multiply ACCZ by r CALL $AM(r) $SE, $8S, $QM, $8F

$AN Divide ACCZ by r CALL $AN(r) $SE, $8S, $QM, $8F

$AC Convert AC to z and store in ACCZ CALL $AC $3S, CMPLX

CMPLX load ACCZ with a value having CALL CMPLX(rl ,r2) $SE, $8F
a real part rl and an imaginary
part r2

$8K Add z to ACCZ CALL $8K(z) $SE, $8S, $QK, $8F

$8L Subtract z from ACCZ CALL $8L(z) $SE, $8S, $QL, $8F

$8M Multiply ACCZ by z CALL $8M(z) $SE, $8S, $QM,
$QL, $QK, $8F

$8N Divide ACCZ by z CALL $8N(z) $SE, $8S, $QM,
$QK. $QN, $QL, $8F

$ZD Compute negative of z CALL $ZD $8S. $8F

AIMAG Load AB with the 1mag1nary CALL AIMAG(z) $SE
part of z

11 b

Name

$0C

REAL

$8F

$8S

$XE

$YE

$ZE

DATAN2

DLOGIO

DMOD

DINT

DABS

DMAXl

DMINl

DSIGN

$YK

$YL

$YM

$YN

DBLE

$XC

SUPPORT LIBRARY

Table 11-2. FORTRAN jV Coded Subroutines (continued)

Function

Load AB with the real part of
ACCZ

Load AB with the real part of z

Load ACCZ with z

Store ACCZ in z

Compute d':":'i where d is in AC

Compute d 1 ':":'d2 where d 1 is in AC

In AC, compute arctan (dl/d2)

In AC, compute log d

In AC, compute dl modulo d2

In AC, compute integer
portion of d

In AC, compute absolute d

In AC, select the maximum value
in the set d 1, d?, ... ,dn

In AC, select the minimum value
in the set dl, d2, ... ,dn

Set the sign of d 1 equa I to
that of d2

Add r to AC

Subtract r from AC

Multiply AC by r

Divide AC by r

In AC. convert r to d

In AC, convert i to d where
i is in A

Calling Sequence

CALL $0C

CALL REAL(z)

CALL $8F(z)

CALL $8S(z)

CALL $XE(i)

CALL $YE(r)

CALL $ZE(d2)

CALL DATAN2(dl.d2)

CALL DLOGlO(d)

CALL DMOD(dl,d2)

CALL DINT(d)

CALL DABS(d)

CALL DMAXl(dl.d2,
... ,dn,O)

CALL DM1Nl(dl,d2,
... ,dn,0)

CALL DSIGN(dl,d2)

CALL $YK(r)

CALL $YL(r)

CALL $YM(r)

CALL $YN(r)

CALL DBLE.(r)

CALL $XC

External References

$8S

$SE

$SE

$SE, $3S

$SE. $ZF, MGD, $ZM,
$ H N . $ZN. $1 S

$SE, $ZS. DBLE,
$ZE, $ZF

$SE, $ZS. DEXP,
DLOG. $ZM

$SE, $ZF. $ZS,
$ZI, $ER, $ZN,
$ZL, $ZK, DA·,-AN

$SE, DLOG. $ZM

$SE, DINT, $ZF,
$ZN, $ZS. $ZM,
$ZL. $ZC

$SE. $ZF. $JC $XC

$SE. $ZF. $ZI, $ZC

$SE. $ZF. $ZS
1$FA. $ZL. $ZI

$SE. $ZF. $ZS
1$FA. $ZL. $ZI

$SE. $ZF. $ZI, $ZN

$SE, $ZS. DBLE. $ZK

$SE. $ZS. DBLE.
$ZL. $ZC

$SE. $ZS. DBLE. $ZM

$SE. $ZS. DBLE:..
$ZF, $ZN

$SE. $YC

$PC. $YC

l 1- I

SUPPORT LIBRARY

Name

TANH

ATAN2

A LOG IO

AMOD

AINT

A MAXI

AMINI

AMAXO

AMINO

DIM

FLOAT

SNGL

MAXO

MINO

MAXI

MINI

MOD

INT

IDIM

I I-8

Table 11-2. FORTRAN IV Coded Subroutines (continued)

Function

In AB, compute tanh r

In AB, compute arctan (rI /r2)

In AB, compute log r

In AB, compute rI modulo r2

In AB, truncate r

In AB, select the maximum value
in the set rl ,r2, ... ,rn

In AB, select the minimum value
in the set rI, r2, ... ,rn

In AB, select the maximum value
in the set iI,i2, ... ,in and
convert to r

In AB, select the minimum value
in the set iI,i2, ... ,in and
convert to r

In AB, compute the positive
difference between rI and r2

In AB, convert i to r

In AB, convert d to r

In A, select the maximum value
in the set iI,i2, ... ,in

In A, select the minimum value
in the set il,12, ... ,in

In A, select the maximum value
in the set rI,r2, ... ,rn and
convert to i

In A, select the minimum value
in the set rl ,r2, ... ,rn and
convert to i

In A, compute il modulo i2

In A, truncate r and convert
to I

In A, compute the positive
difference between i 1 and i2

Calling Sequence

CALL TANH(r)

CALL ATAN2(rl ,r2)

CAL. ALOGlO(r)

CALL AMOD(rl ,r2)

CALL Al NT(r)

CALL AMAXI(rl,r2
... ,rn.O)

CALL AMINl(rl,r2
... ,rn,O)

CALL AMAXO(il,i2,
... ,in,O)

CALL AMINO(il,i2.
. _ .. :,in,O)

CALL DIM(rl,r2)

CALL FLOAT(i)

CALL SNGL(d)

CALL MAXO(il,i2.
... ,in,O)

CALL MINO(il,i2.
... ,in,O)

CALL MAXl(rl.r2,
... ,rn,0)

CALL MINl(rl,r2,
... ,rn,O)

CALL MOD(i 1.i2)

CALL INT(r)

CALL IDIM(11.12)

External References

$SE, $QK, EXP,
$QL, $QN

$SE, $ER, ATAN,
$QK, $QL, $QN

$SE, ALOG, $QM

$SE, AINT, $QN,
$QM, $QL

$SE, $IC, $PC

$SE, 1$FA, $<}L

$SE, 1$FA, $QL

$SE, 1$FA, FLOAT

$SE, 1$FA, FLOAT

$SE, $QL

$SE, $PC

$SE, $ZF, $RC

$SE, 1$FA

$SE, 1$FA

$SE, 1$FA, $QL, IFIX

$SE, 1$FA. $QL. IFIX

$SE. $HN. $HM

$SE. $IC

$SE

Name

IFIX

$JC

SUPPORT LIBRARY

Table 11-2. FORTRAN IV Coded Subroutines (continued)

Function

In A. convert r to i

In AC, convert d to i and store
result in A

Calling Sequence

CALL IFIX(r)

CALL $JC

External References

$SE. $IC

$RC, $IC

11 9

SECTION 12

RE.AL-TIME PROGRAMMING

VORTEX real-time applications allow the user to interface
directly with special devices, develop software that is
interrupt-driven, and utilize reentrant subroutines. Four
areas are covered in this section:

Interrupts

Task-scheduling

Coding reentrant subroutines

Coding 1/0 drivers

12.1 INTERRUPTS

12.1.1 External Interrupts

Priority interrupt module (PIM) hardware: A PIM com­
prises a group of eight interrupt lines and an eight-bit
register. The register holds a mask where each set bit
disarms a line. VORTEX allows up to eight PIMs for a
maximum of 64 lines. The system of PIMs and lines is
called the external interrupt system.

The processing of external interrupts is controlled by the
programmed status of the line. The lines are continuously
hardware-scanned, regardless of the status.

If more than one interrupt is detected on a single scan, the
highest-priority line is acknowledged, and, if the PIM is
enabled and the line armed, the interrupt is taken. If no
conflict occurs, the lines are acknowledged on a first-in/
first-out basis. If a signal is received on a disabled PIM, it
is stored by the Pl M, and causes an interrupt when the
PIM is enabled.

Disabling the ext<!rnal interrupt system prevents any
interrupt from entc~ring the computer. Enabling the entire
system allows acknowledgement of all interrupts. Enable/
disable selection on a PIM basis allows for more selected
control of the sys em. Individual line selection prevents
receiving a second interrupt while a line is still processing
the first.

Program-clearing 01 PIM registers causes the PIM to ignore
interrupts received on lines that are busy processing an
interrupt or held oft because of priority.

All Pl Ms and interrupt lines to be used in VORTEX are
specified at system-generation time and their status
specified when VORTEX is loaded and initialized. VORTEX
does not disable any line unless so ·directed by RTC service
request PMSK (section 2.1.5).

When a PIM interrupt signal is acknowledged and the
interrupt taken, the computer executes the instruction in a
selected memory location. Under VORTEX, PIM addresses

are from 0100 to 0277. Linkage to VORTEX interrupt
processing routines is accomplished by a jump-and-mark
instruction in the interrupt location. Unspecified lines are
preset in VORTEX with no-operation instructions that
ignore unspecified or spurious interrupts.

Sine~ VORTEX always includes memory protection, certain
instruction sequences cannot be interrupted and acknowl­
edgement is delayed until they are complete. These include
the instruction following an external control, halt, execu­
tion, or any instruction manually executed in step mode.

VORTEX interrupt line handlers: At system-generation
time, a user specifies all interrupt-driver tasks. These
include those that allow VORTEX to service the interrupt, as
well as those that are directly connected and service the
interrupt themselves. Then, VORTEX constructs a line­
handler for each interrupt in the system (figure 12-1).

Directly connected routines preempt VORTEX and are thus
used only when response time demands it. The rules for the
use of directly connected routines are:

a. All volatile registers used by the routine are restored
before returning to the interrupted task.

b. Interrupts remain disabled during processing.

c. IOC and RTE calls are not allowed.

d. Execution time is minimal.

e. Interrupts are enabled before returning to the
interrupted task through word 0 of the line handler.

Common interrupt handler: The common interrupt han­
dler is the interface between PIM interrupts (via the line
handlers) and system or user interrupt-prncessing tasks.
Upon entry, the contents of the volatile registers are saved
and the interrupt event word is inclusively ORed into the
event word of the specified TIDB. A check ttien determines
whether to return to the interrupted tasks or to enter the
interrupt-processing task, depending upw priority. All
interrupts are enabled upon leaving the common interrupt
handler.

Interrupt-processing tasks: A task is activated by an
interrupt when: (1) task's Tl DB interrupt-E.xpected status
bit is set, (2) the interrupt event word contains a nonzero,
and (3) the task is suspended.

The interrupt-processing task can be memory-resident or
RMD-resident. In either case. the processing task clears the
event word and the interrupt-expected status bit to lock out
further interrupts until processing is complete. The event
word distinguishes different interrupt lines that could
activate the same task.

12-1

REAL-TIME PROGRAMMING

Dedicated Interrupt Addresses Line Handlers TIDBs

0 Thread Word
0 Return Address ORed .

Address 3 Event Word .
Interrupt Stack: 0100

1
0102

3

Jump-and-Mark Instruc­
tion to Line Handler 1

2
3
4 TIDB Location A, B, X, OF, P,

Jump~and-Mark Instruc- and Stack Pointer
tion to Line Handler 2 0

1
(or, if directly con- 2

Return Address
Jump-and-Mark In. ·truction

.

nected interrupt)~3

to Common lnterru~! Handler
Event Word

0 Thread Word

--~~~~~·~ 4 TIDB Location 3 Event Word
Jump-and-Mark Instruc- -0276

7 tion to Line Handler 64 0 Return Address Interrupt Stack:
1
2
3
4

Disable Clock Instruction A, B, X, OF, P,
Jump-and-Mark Instruction and Stack Pointer
to User Code 1--- .
Event word

-- User Code for
Directly
Connected
Interrupt Task l

Figure 12-1. Interrupt Line Handlers

An interrupt-processing task can exit with one of the
following options:

a. Issue a suspend RTE (type 1) service call that suspends
the task and sets the interrupt-expected status bit.
Upon receiving the interrupt, the task continues
execution following the request.

b. Issue a delay RTE (type 2) service call that suspends the
task and sets the interrupt-expected status bit and
time delay. Either one activates the task following the
delay call. (Upon entry, the event word not-zero
indicates an interrupt activation. The user also clears
the time-delay status bit upon reactivation.)

c. If RMD-resident, set the interrupt-expected status bit
and call EXIT to release space. (TIDB must be
resident.)

Timing Considerations: The time necessary to process an
interrupt through the common interrupt handler depends
on when the interrupt occurred:

a. If a task is interrupted and the interrupt-processing
task has a lower priority, the interrupt is posted, and
VORTEX returns control to the interrupted task in
approximately 56 cycles.

b. If a task is interrupted and the interrupt-processing
task has a higher priority, the interrupt is posted, and
VORTEX transfers control to the dispatcher (section

12-2

.1 -
{ --

\.12.3) to start the higher-priority interrupt-processing
task (if all its conditions are met). The posting time is
66 cycles, approximately.

c. If an interrupt occurs during a dispatcher scan, the
posting time is about 32 cycles. VORTEX returns to the
dispatcher to restart the scan.

d. If the real-time clock processor interrupts the interrupt
handler, the common interrupt handler posts the
interrupt and returns to the clock processor in
approximately 40 cycles.

12.1.2 1.nternal Interrupts

VORTEX recognizes and services internal interrupts related
to various hardware components. The processing routines
are all directly connected and are the highest-priority tasks
in the system.

Memory protection interrupt: When the background area
is active, it is run as an unprotected area of memory with
the rest of the system protected. In such a situation,
memory protection interrupts are generated when the
background task attempts to execute a "privileged"
instruction such as external control or halt, or attempts to
jump into, write into, or perform 1/0 on protected memory.
The memory protection routine processes all protection
violation interrupts and is the highest-priority interrupt in
the system.

Power failure/restart interrupt: When comruter power
goes down or comes up, the power failure/restart routines
are executed. On power-down, VORTEX saves the contents
of volatile storage and masks. On power-up, these data are
restored and control returns to the point of interrupt.
During a power failure, 1/0 devices typically reset due to
loss of interrupts. IOC attempts retrials and resumes
normal operation upon resumption of normal power. Data
losses on the RMD due to power failure could cause
VORTEX to malfunction, but other nonsystem-resident
devices are recoverable. The power failure/restart routines
opernte just below memory protection as the second­
highest priority interrupts in the system.

Real-Ume clock interrupt: The real-time clock interrupt
provides the basis for timekeeping in VORTEX. It can be set
to a minimum resolution of 5 milliseconds. However, one
greater than 5 milliseconds (i.e., 10 20 milliseconds)
reduces overhead when the system does not have high­
resolution timekeeping requirements. Upon receipt of an
interrupt, the time-of-day is updated and the TIDBs are
scanned for any time-driven task requiring activation. PIMs
are disabled for approximately 18 cycles during real time
clock interrupt-processing. The clock routine is the third­
highest priority interrupt in VORTEX.

12.1.3 Interrupt-Processing Task Installation

To install an interrupt-processing task that is not directly
connected, at system-generation time provide line handlers
and resident TIDl3s by using a PIM directive (section
13.5.11) with r(n) and s(n) both zero and a TDF directive
(section 13.6.2) using the same task name in both
directives. Additional dummy TIDBs can be added during
system generation. (Once a TIDB is in the system, OPCOM
directive ;ATTACH can be used to connect different
interrupt-processing tasks to an interrupt line.)

Then, code the interrupt-processing task and add the task
via system generation to the VORTEX nucleus as a resident
task.

Then, use the ;ATTACH directive to link the resident task to
the interrupt line.

12.2 SCHEDULING

12.2.1 System Flow

VORTEX is designed around the TIDB (figure 12 2). This
block contains all of the information about a task during
its execution. The setting and clearing of status bits in the
TIDB causes a task to flow through the system. Two
register stacks are saved within the Tl DB: a reentrant
(suspend register) stack, and an interrupt stack.

l~EAL TIME PIWGRAMMING

The dispatcher (section\}:! 31 1~. tlll' p11111e rnov•!r of l.1~.b
through the system. When any function has reached a
termination point or has to wait for an 1/0 operation, the
task gives control to the dispcitcher, which then finds
another task to execute. A task maint.-lins control until it
gives control to the dispatcher, or to the interrupt task if
the interrupt-processing task has a higher priority. The
contents of the interrupted task's volatile registers are
saved in its TIDB interrupt stack and control goes to the
dispatcher, which searches for the highest priority active
task for execution.

Each TIDB is placed in sequence by priority level and
threaded. Two stacks are maintained in the system: a
busy stack and an unused stack. When a task is scheduled
for execution, a TIDB is allocated froni the unused stack
and threaded onto the busy stack accoraing to priority
level.

The status word of each TIDB, starting with the highest·
priority task, is scanned. Depending upon the setting of
status bits, the task is activated, p;:issed over, or made to
i'lctivate a related system task.

Two resident system tasks are activated by the dispatcher
to process functions relating to the execution of a
task: (1) search, allocate, and load (SAL), and (2)
common system errors (ERROR). SAL searches, allocates,
loads, and exits a scheduled task. ERROR posts common
system error messages. These two tasks are not reentered
once they start execution, so the dispatcher holds tasks
requiring identical functions until they are completed.
Then, the highest-priority waiting task is given control of
the required function.

In VORTEX, SAL allocates memory in 512-word blocks
starting with location 512 for background, or the first 512·
word block below the resident task directory for foreground
tasks. A foreground task is allocated into the first such
available area. If space is not available and the background
is in operation, the background task 1s checkpointed on the
RMD checkpoint file and its space allocated to foreground.
Upon release of this space by the foreground tasks, the
background is read in from the RMD and reactivated.

If space is required to load a program and the backgro1md
has already been checkpo1nted, the task waits fo1 a
currently running task to exit and release memory.

The background memory allocation depends on the size of
the background task being loaded. Only the amount
needed is so allocated automatically, although the JCP
/MEM directive can allocate extra memory for a back·
ground task. Figure 12-2 is a VORTEX memory map, figure
12-3 shows the priority structure, figure 12-4 is a descrip
tion of a TIDB, and table 12-1 is a detailed description of
lower memory.

123

REAL-TIME PROGRAMMING

Address

0

512

Allocatable
Memory
P•1ol

Interrupt Location and System Pointers--, }
Background Literal Pool

....__N_o_n_r_;;_e_si_d_e_n_t _B_a_c_k_g_r_o-un_d_T_a··-s_k_s-~ - }

Nonresident Foreground Tasks
~--------···------ -----··--

Resident Foreground User Tasks
and Subroutines

J
M-6K *

M=
Highest
Memory
Address

System Common
Reentrant Stack
System and Unused TIDBs
line Handlers
Common Interrupt Handler
Dispatcher
Executive Call Handler
Real-Time Clock
Memory Protection Prcicessing
Power Failure/Restart
Real- Time Executive St rvices
IOC
Drivers
System Tasks (SAL and ERROR)

If a configuration increases 11emory, the allocatable
memory pool would increase and resident routines would
reside in a higher position in memory.

·~ 5.5·6K is enough room for all VORTEX nucleus compo­
nents, plus four empty TIDB's and three 1/0 drivers. Users
with more 110 devices or a grea er number of TIDB's will
need more than 6K.

Figure 12-2. VORTEX Memory Map

Protected
memory

Unprotected
memory is
allocated
starting at 512

Protected
memory is
allocated
starting from
high memory

Protected
memory

12.2.2 Priorities

Thirty-two priority levels (0 through 31) are provided in the
VORTEX system. Levels 2 to 31 are reserved for protected
foreground usage. Level 25 is reserved for the two VORTEX
system tasks, SAL and ERROR. Levels 24 and 23 are
reserved for I /0 drivers. All other foreground levels are
available to the user. More than one task per level can be
scheduled.

Levels 1 and 0 are reserved for tasks running in the
background allocatable memory and residing in the
background library. Level 1 is reserved for system tasks,
e.g., the job-control processor, the load-module generator,

Priority
Level

31

.
26

REAL-TIME PROGRAMMING

the FORTRAN compiler, the DAS MR assembler, etc. These
tasks run with memory protection disabled and can be
checkpointed when their space is needed by a foreground
task. Level 0 is reserved for unprotected background tasks,
e.g., an undebugged user task. Level 0 tasks cannot modify
or destroy the system (figure 12-3).

Only one background task can be active and in memory at
any given time. If other background tasks have been
scheduled, the active background task must execute an
EXIT service request before the scheduled task(s) can be
loaded and executed. If a background task calls EXIT and
no tasks are scheduled for the background area, and the
requesting task is not the job-control processor, the JCP 1s
scheduled. Otherwise, there is a normal exit

25 VORTEX S.ystem Tasks SAL and ERROR

Foreground
Priority
Levels

Background
Priority
Levels

24 Driver Tasks (Low-Speed Devices)

23 Driver Tasks (High-Speed Devices)

22 .

11

10 Operator Communication Task

9

.
2

1 VORTEX System Proteded Tasks

0 User Unprotected Tasks

Figure 12-3. VORTEX Priority Structure

12-5

REAL-TIME PROGRAMMING

Symbol Word Bits

15 5 0

TBTRD 0 Task Thread

TBST 1 Task Status

TBPL 2 Task Status l Priority Level

TBEVNT 3 Interrupt Event

TBRSA 4 A Register (Reentrant and Suspension Stack)

TBRSB 5 B Register (Reentrant and Suspension Stack)

TBRSX 6 X Register (Reentrant and Suspension Stack)

TBRSP 7 OFI P Register (Reentrant and Suspension Stack)

TBRSTS 8 Temporary Storage (Reentrant and Suspension Stack)

TBENTY 9 Task Entry Address

TBTMS 10 Time Counter - Clock Resolution Increments

TBTMIN 11 Time Counter - Minute Increments

TBISA 12 A Register (Interrupt Stack)

TBISB 13 B Register (Interrupt Stack)

TBISX 14 x Register (Interrupt Stack)

TBISP 15 OFl P Register (Interrupt Stack)

TBISRS 16 Reentrant Stack Address (Interrupt Stack)

TBIO 17 No. of Blocks No. of 1/0 No. of 1/0
Allocated Req. Threaded Req. Active

TBKNl 18 Task Name

TBKN2 19 Task Name
-·

TBKN3 20 Task Name

TB TLC 21 First Addr-ess in Allocatable Memory
-·

TBCPTH 22 Background Task Queue

TBATSK 23 Address of Scheduling TIDB

TBRSE 24 Task Error Code

Figure 12-4. TIDB Description

12-6

REAL-TIME PROGRAMMING

KEY:

Sym!>ol Word Bits Set = Description

TBTRD 0 15-0 Task thread Points to next Tl DB in
chain. Two queues are
maintained in the system:
active and inactive. V$TB
points to the highest-
priority active task.
V$UTB points to next
available inactive TIDB
space. Last Tl DB on
queue has zero in
TBTRD.

TBST 15-0 Task status See table 13-5.

TBPL 2 15 Task opened Bit set when SAL has
opened task but not
loaded it (memory not
available).

14 Unused

13 Load overlay RTE overlay request
made by task with
overlay name in user
request.

12 Background Foreground task wait-
checkpoint ing for background I /0
110 wait to complete so it can

be checkpointed to make
allocatable memory
available.

TBPL 2 11 Allocation Overrides bits 9 and 12

(continued) override flag of TBPL and bit 5 of
TBST. When FN IS routine
of SAL releases memory
and/or a TIDB, sets bit
11 for tasks having bits
9 and 12 of TBPL and bit
5 of TBST set. SAL then
tries to allocate memory;
or scheduler, a TIDB

10 Background Background task being
being check- written on checkpoint
pointed file.

9 TIDB nut Schedule request made
available but no TIDBs available

for allocation ..

8 Unused

7 Unused

Figure 12~4. TIDB Description (continued)

12-7

REAL-TIME PROGRAMMi'NG

Symbol Word Bits Set = Description

6 Unused

5-0 Task priority Specifies priority level
leve1I (0-31) of task to be exe-

cuted.

TBEVNT 3 15-0 Interrupt Matches bits in interrupt-
event handler calling sequence

(interrupt-handler event
inclusively ORed) into

TBEVNT Tl DB word 3 when processed
(continued) by line handler; if a bit

sets while status bits 3
and 14 are set, dispatcher
activates task. Clears
event word before exiting.

TB RSA 4 15-0 A register IOC and RTE calls store
(reentrant volatile register contents
and suspen- in this stack (words 4-8).
sion stack)

TBRSB 5 15-0 R register
(reentrant
and suspen-
sion stack)

TB RSX 6 15-0 X register
(reentrant
and suspen-
s1on stack)

TBRSP 7 15 OF (overflow)
register (re-
entrant and
suspension
stack)

14-0 P register
(reentrant
and suspen-
sion stack)

TBRSTS 8 15-0 Temporary
storage
(reentrant
and suspen-
sion stack)

TBENTY 9 15-0 Task entry Absolute address of first
executable data of a task.

TBTMS IO 15-0 Time counter Words 10 .and 11 indicate
(clock reso- time left before execution.
lution incre- (Clock routine increments
men ts) both words when bit 6 or

7 is set in status 1.)

Figure 12-4. TIDB Description (c.ontinued)

12·8

Symbol Word

TBTMIN 11

TBISA 12

TBISB 3

TBISX 14

TBISP 15

TBISRS 16

TBIO 17

TBKNl ·18

TBKN2. 19

TBKN3 20

REAL-TIME PROGRAMMING

Bits

15-0

15-0

15-0

15-0

15

Set =

Time counter
(minute in­
crements)

A register
(interrupt
stack)

B ·register
(imerrupt

· stack)

X 1egister
(interrup.t
stack)

OF (overflow)
register (inter­
rupt stack)

14-0 P register
(interrupt
stack)

15-0

15-10

9-5

Ret!ntrant
sta,;k point~r

. (interrupt
sta.;k)

Bio ;k allo­
cat on size

Number of
I /0 requests
thr1!aded

Description

Words 12-16 store volatile
register contents during
interrupt by higher-priority
task. (Upon reactivation,
words 12-16, volatile reg­
ister contents, and reen­
trant stack pointer are re­
stored and execution is
continued.)

Number of 512·word blocks
for execution of task.

Incremented by IOC when
I /0 request is received,
and decremented upon com­
pletion. (A task cannot
exit. or abort until counter

- . · is zero.) ·

15-0

15-0

15-0

Number of
active 1/0
requests

Task name

Task name

Task name

Incremented by IOC when
it sets an I /0 driver ac­
tive, and decremented upon
completion.

First two characters of
six-character task name.

Second two characters of
six-character task name.

· Final two characters of
six-character task name.

Figure 12-4. TIDB Description (continued)

12-9

REAL-TIME PROGRAMMING

Symbol Word

TB TLC 21

TBCPTH 22

TBATSK 23

TBRSE 24

Address

00-01

02-017

020,021

022,023

024,025

026,027

030,031

032,033

034,035

12-10

Bits Set = Description

15-0 First address Points to first address
in allocatable allocated for use by task.
memory

15-0 Background Any background task wait-
task queue ing to be loaded in back-

ground allocatable memory
is queued through this
word. (A running back-
ground task can schedule
other background tasks,
but cannot load them
until space is available.)

15-0 Addrnss of Stores this address, and
scheauling upon EXIT or ABORT (if
task'~ TIDB bit 1 of TBST set) reac-

tivates scheduling.

15-0 Task error Upon error, system rou-
tines store error codes
here and set error status
bit (4 of TBST). ERROR
routine decodes and prints
message.

Figure 12-4. TIDB Des-::ription (continued)

Table 12-1. Map of Lowest Memory Sector

Symbolic Name Description

CPU interrupt code (preset to NOP)

Unassigned: available to the user

Memory protection interrupt: halt
(jump-and-mark to V$MPER)

Memory protection interrupt: I 10
(jump-and-mark to V$MPER)

Memory protection interrupt: write
(jump-and-mark to V$MPER)

Memory protection interrupt: jump
(jump-and-mark to V$MPJP)

Memory protection interrupt: over­
flow (jump-and-mark to V$MPER)

Memory protection interrupt: 1/0
overflow (jump-and-mark to V$MPER)

Memory protection interrupt: write
overflow (jump-and-mark to V$MPER)

Address

036,037

040,041

042,043

044,045

046,047

050-053

054

055

056-067

070-073

074

075

076

REAL-TIME PROGRAMMING

Table 12-1. Map of Lowest Memory Sector (continued)

Symbolic Name

V$JNAM

V$LCNT

V$JCFG

V$BIC1

V$DATE

V$PLCT

V$BGLB

V$CRDM

Description

, Memory protection interrupt: jump
overflow (jump-and-mark to V$MPER)

Power-down in_terrupt (jump-and-mark
to V$PFDN)

Power-up interrupt (jump-and-mark
to V$PFUP)

Variable-interval interrupt address
(jump-and-mark to V$CLOK)

Reserved for future VORTEX use

Eight-character job name

Line count (set by a JCP /FORM
directive): used by DAS MR assem­
bler and FORTRAN compiler to deter­
mine the number of lines printed
before a top of form is issued.

JCP flags:
Bits 15-10

Bits 9-5
Bit 4
Bit 3

Bits 2-0

Number of extra mem­
ory blocks to be
allocated with back­
ground task (cleared
after loading)
Unused.
Dump flag if load and go
Dump flag (if set,
the background dumps
after a normal EXIT
or abortion)
Load-and-go flags

BIC in sequence (maximum 10)

Eight-character date set up by
OPCOM directive ;DATE,mm/dd/yy

Permanent line count set up at
system-generation time

Protection code and logical unit
number of the BL unit

l<eypunch (0 = 026, 1 = 029):
Bit 0 SGEN nominal keypunch
Bit 9 Current keypunch speci­

fied by JCP /KPMODE
directive {!JOB, /FINI,
or /ENDJOB resets cur­
rent value to nominal
value)

12-11

REAL-Tl ME PROGRAMMING

Address

077

0100-0117

0120-0137

0140-0157

0160-0177

0200-0217

0220-0237

0240-0257

0260-0277

0300

0301

0302

0303

0304

0305

0306

0307

0310

0311

12-12

Table 12-1. Map of Lowest Memory Sector (continued)

Symbolic Name

V$JCTM

V$CTL

V$CPL

V$CRS

V$TB

V$UTB

V$PTVB

V$FLRS

V$LRSK

V$CKPT

V$0PCL

Description

JCP temporary storage

PIM 1 jump and-mark to individual
line handlers

PIM 2':' jump-and-mark to individual
line handlers

PIM 3':' jump-and-mark to individual
line handlers

PIM 4•:• jump-and-mark to individual
line handlers

PIM 5•:• jump-and-mark to individual
line handlers

PIM 6':' jump-and-mark to individual
line handlers

PIM 7'~ jump-and-mark to individual
line handlers

PIM 8':' jump-and-mark to individual
line handlers

Address of currently executing task
Tl DB (0177777 = dispatcher 037
real-time clock routine)

Priority level of currently executing
task

Address of current reentrant stack
(zero if the curren lly executing
task is not executing a reentrant
subroutine)

Address of highest-priority Tl DB
in the active stack

Address of unused Tl DB stack (zero
if no TIDB are available to be
allocated)

Address of next entry in reentrant
stack

Address of first location of re­
entrant stack

Address of last location of re­
entrant stack + 1

Checkpoint flag (set if background
checkpoi n ted)

Address of Tl DB for OPCOM task

Address

0312

0313

0314

0315

0316

0317

0320

0321

0322

0323

0324

0325

0326

0327

0330-0333

0334-0337

0340

0341

0342

0343

REAL-TIME PROGRAMMING

Table 12-1. Map of Lowest Memory Sector (continued)

Symbolic Name

V$LSAL

V$LER

V$TJCP

V$BTB

V$LUP

V$LLUP

V$1M

V$MPM

V$CAM

V$CRDR

V$TBGT

V$TMS

Description

Address of Tl DB for system SAL task

Address of Tl DB for system ERROR
task

Address of Tl DB for JCP task

Address of current active back­
ground task TIDB (zero if no back­
ground task active)

Address of first unprotected word
(memory address 01000)

Address of last unprotected word
(depends upon size of background
executing task)

Interrupt mask for PIM ,1- (0
1 = disable)

Interrupt mask for PIM Z j

•..
Interrupt mask for Pl M .3"

Interrupt mask for PIM A

Interrupt mask for Pl M .5

Interrupt mask for PIM ,6 ,

Interrupt mask for PIM 7·
J;:

Interrupt mask for PIM ,8

enable,

Memory protection mask (4 words),
0 = unprotected, 1 = protected
(words initially set to 0177777)

Core allocation mask (4 words),
0 = 512-word block available for
allocation, 1 = 512-word block in
use and not available for alloca­
tion (SGEN generates initial mask)

Reserved for future VORTEX use

Address of resident directory

Top of thread of background tasks
waiting for allocation

Time-of-day in 5-millisecond incre­
ments (fractions of a minute stored
in this word; upon reaching 1 minute
V$TMN increments, V$TMS resets)

12-13

REAL-TIME PROGRAMMING

Address

0344

0345

0346

0347

0350

0351

0352

0353

0354 -

0355

0356

0357

0360

0361

0362

0363-0372

0373-0374

0375

0376

0377

0400

12-14

Table 12-1. Map of Lowest Memory Sector (continued)

Symbolic Name

V$TMN

V$LUNT

V$0PCF

V$FGLB

V$FREE

V$CTMS

V$SCV

V$CKB

V$CRM

V$DSTB

V$LIT

V$CTAD

V$SCTL

V$NCTR

V$PIMN

V$SLFG

V$ERFG

V$JOP

V$LUT1

Description

Time-of -day in minutes (full minutes
up to 24 hours stored in this word;
upon reaching 24 hours (24 x 60
minutes), V$TMN resets)

Address of logical-unit name table

OPCOM lockout flag

Protection code and logical-unit
number of the FL unit

Reserved for future VORTEX use

Clock resolution in 5-millisecond
increments (user-specified milli­
second interrupt rate/5) speci­
fied at system-generation time

Selected clock count (1 to 4095)
([user-specified millisecond
interrupt rate] x [1000/V$CKB])

Basic clock interrupt rate in m illi­
seconds

Clock resolut.ion increments for f{ac­
tions of a minute in 5-millisecond
increments

Address of DST block

Last address in background literal
pool

Reserved for future VORTEX use

Base address for controller address
table

Current controller in scan

Number of controllers

External device address table for
Pl Ms

Reserved for future VORTEX use

System SAL task busy flag (1 = busy)

Error task busy flag (1 = busy)

JCP operating flag (1 = busy)

Starting address of logical-unit
table for JCP/OPCOM-assignable
logical units

Address

0401

0402

0403

0404-0407

0410

0411

0412

0413

0414

0415

0416

0417

0420

0421

0422

0423

0424

0425

0426

0427

REAL-TIME PROGRAMMING

Table 12-1. Map of Lowest Memory Sector (continued)

Symbolic Name

V$LUT2

V$LUT3

V$1MIN

V$10A

V$CKIT

V$JCB

V$0CB

V$BVN

V$BFC

V$TFC

V$,PST

ZERO

BSO

BSl

BS2

BS3

BS4

BS5

BS6

Description

Starting address of logical-unit
table for unreassignable logical
units

Starting address of logical-unit
table for OPCOM-assignable logical
units

Clock constant set up by SGEN where
V$1MIN = 32767 - (60000/(5':'V$CTMS))
+ 1

Reserved for future VORTEX use

110 algorithm

Clock interrupted Pl M before it
could be locked out (common inter­
rupt handler and clock-processor
flag)

Address of 41-word JCP buffer (all
system background programs and JCP
input directives into this system
buffer)

Address of 41-word OPCOM buffer
(OPCOM reads operator key-in re­
quests into this buffer; if JCP
is not active and a slash record
is read, OPCOM moves the directive
to V$JCB before scheduling JCP)

Bottom of VORTEX nucleus

Top of foreground area, bottom
of foreground blank common

Top of foreground blank common,
top of VORTEX nucleus core

Maximum RMD partitions in system

Zero word

Bit mask contents 0000001

Bit mask contents 0000002

Bit mask contents 0000004

Bit mask contents 0000010

Bit mask contents 0000020

Bit mask contents 0000040

Bit mask contents 0000100

12-15

REAL· TIME PROGRAMMING

Table 12-1. Map of Lowest Memory Sector (continued)

Address Symbolic Name Description

0430 BS7 Bit mask contents 0000200

0431 BSB Bit mask contents 0000400

0432 BS9 Bit mask contents 0001000

0433 BSlO Bit mask contents 0002000

0434 BSll Bit mask contents 0004000

0435 BS12 Bit mask contents 0010000

0436 BS13 Bit mask contents 0020000

0437 BS14 Bit mask contents 0040000

0440 BS15 Bit mask contents 0100000

0441 BRO Bit mask contents 0177776

0442 BRl Bit mask contents 0177775

0443 BR2 Bit mask contents 0177773

0444 BR3 Bit mask contents 0177767

0445 BR4 Bit mask contents 0177757

0446 BR5 Bit mask contents 0177737

0447 BR6 Bit mask contents 0177677

0450 BR7 Bit mask contents 0177577

0451 BR8 Bit mask contents 0177377

0452 BR9 Bit mask contents 0176777

0453 BRIO Bit mask contents 0175777

0454 BRll Bit mask contents 01737.77

0455 BR12 Bit mask contents -0167777

0456 BR13 Bit mask contents 0157777

0457 BR14 Brt mask contents 0137777

0460 BR15 Bit mask contents 0077777

0461 NEG Bit mask contents 0177777

0462 LHW Left-half word mask (0177400)

0463 RHW Right-half word mask (0000377)

0464 THREE Data word (000003)

12-16

Qo REAL-TIME PROGRAMMING

Table 12-1. Map of Lowest Memory Sector (continued)

Address Symbolic Name Description

0465 FIVE Data word (000005)

0466 SIX Data word (000006)

0467 SEVEN Data word (000007)

0470 NINE Data word (000011)

0471 TEN Data word (000012)

0472 BM17 Bit mask word (000017)

0473 BM37 Bit mask word (000037)

0474 BM77 Bit mask word (000077)

0475 BM177 Bit mask word (000177)

0476 BM777 Bit mask word (000777)

0477 BM1777 Bit mask word (001777)

0500-0777 Background literals and pointers

~:; If PIM is not present, the space is available to the user.

12-17

SECTION 12 REAL-TIME PROGRAMMING

12.2.3 Timing Considerations (Approximate)

Real-time clock interrupt processor: At each incrementa­
tion of the real-time clock, there is a TIDB service scan
requiring

where
x

y

l

x + By + 5z cycles

is 60 when the scan interrupts the
dispatcher, or 73 when it interrupts a
task and must establish a reentrant
stack and store the contents of the
volatile registers

is the number of Tl DBs searched

is the number of tasks having time- or
schedule-delay status bits set

The clock interrupt is disabled during the execution of the
clock processor, and PIM interrupts are disabled for 18
cycles following the initial entry of the clock processor.

Dispatcher interrupt processor: The time required to
begin execution of a task through the dispatcher is a
function of the number of Tl DBs searched before execu-.
tion. The time required to begin execution of the nth task is

t + 14u + 17v + 12w + 18x +25y + z cycles

where

u

v

w

x

y

z

12-18

is 9 or 11, depending on the entry to the
dispatcher

is the number of tasks with task­
suspended bits (TBST bit 14) set

is the number of tasks with events
expected but event word reset

is the number of tasks with error bits
(TBST bit 4) set but ERROR task busy

is the number of tasks with either task­
aborted (TBST bit 13) or task-exited
(TBST bit 12) set but 1/0 not completed

is the number of tasks active but not
loaded

is one of the following value:

48 to activate the ERROR task
56 to activate the SAL task on aborting
or exiting
60 to activate a loaded task that is not
suspended, or to activate the SAL task
to load the requested
61 to activate an interrupted, suspended
task

65 to activate a task when the event
word is set and the interrupt
suspended

Search, allocate, and load:

Open processing requires

where
x

y

z

x + y + z cycles

is 180 for a foreground task, or 187 for a
background task

is the time required for an 1/0 open
request (variable)

is the time required to read one RMD I 10
record (variable)

Load processing requires, for a foreground task,

where
w

x

n

y

z

747 + w + x + ny + 214z cycles

is the memory allocation time (average
1,334 cycles)

is the time required to read one RMD 110
record (variable)

is the number of RMD records read

is the time required to read one RMD
record (variable)

is the number of 16-bit relocation words

For a background task, load processing requires

346 + x cycles

where x is the time required to read one RMD 1/0 record.

Resident-task load processing requires

70 + 16x cycles

where x is the number of entries searched before the
required task name is found.

12.3 REENTRANT SUBROUTINES

The user can write a reentrant subroutine and add it to the
VORTEX nucleus. RTE service requests ALOC and DEALOC
interface between a task and a reentrant subroutine.

A task calls a reentrant subroutine via an ALOC request
that allocates a variable-length push-down reentrant stack
with the external name V$CRS. The reentrant subroutine
address is specified in the ALOC calling sequence. The first
word of the reentrant subroutine contains the number of
words to be allocated.

A reentrant stack generated by the ALOC request has the
format:

Word

V$CRS-~- O A Register

B Register

X Register

P Register

Pointer to Previous Reentrant Stack

Available for Reentrdnl Subroutines

Variable
S11e

When writing a reentrant subroutine, ensure that the entry
location contains the number (~ 5) of words to be
allocated, execution starts at the address (entry address +
1), and that V$CRS contains the reentrant-stack address.
No IOC or RTE calls except DEALOC can be made while in a
reentrant subroutine. The subroutine makes a DEALOC
service request to return control to the calling task.
DEALOC releases the reentrant stack, restores the A, 8,
and OF register contents, and returns control to the
address following the ALOC request. No temporary storage
is available for the reentrant subroutine except that
allocated in the reentrant stack.

Parameters or pointers can be passed to the reentrant
subroutine in the A and/or B registers, as well as in-line
after the ALOC macro.

Two tasks make ALOC calls to RSUB. RSUB reserves six
words of allocatable memory with the sixth word as
temporary storage. The A register (reentrant stack) returns
a value to the calling task. If task A is on priority level 5
and task 8 is on level 6, RSUB running on level 5 is
interrupted and the level 6 task 8 executed. This, in turn,
makes an ALOC request and executes RSUB. RSUB then
executes to completion before RSUB on level 5 can be
completed.

Example:

ALOC
JAZ

END

Task A
RSUB

V$C.RS
RSUB

12.4

SECTION 12 REAL-TIME PROGRAMMING

ALOC
JAZ

END

Task B
RSUB

Reentrant Subroutine

NAME RSUB
EQU 0302
DATA 6
LDX V$CRS

STA 6 I 1

LDA b 1 1

STA (}I 1

DEALOC

END

Allocate six word
stack (one temp-
orary location)

Save A in temp

or ary storage

Get temporary
storage value

Modify return in
A register

Return to location
following ALOC

call

CODING AN 1/0 DRIVER

The IOC (section 3) activates 1/0 drivers. When a user task
makes an I /0 ref]uest, it executes a JSR V$10C,X
instruction with V$10C containing the IOC entry address.
IOC then makes validity checks on the parameters
specified in the request block (RQBLK) that immediately
follows the JSR instruction. IOC queues F?QBLK to the 1/0
driver controller table (CTBL), and activates the corre­
sponding controller-table TIDB The TIDB contains the
entry address for the I 10 driver. To determine the proper
CTBL and corresponding TIDB, IOC obtains tr1e logical unit
number from RQBLK. By referring to the logical-unit table
(LUT), IOC then finds the device assigned to that logical
unit. Each device has a device specification table (DST)
·associated with it, and each DST has a corresponding
controller table.

12.4.1 1/0 Tables

Not all the data discussed in this section are required for
coding every special-purpose driver, but it is presented to
provide maximum flexibility in defining driver interfaces.

When an 1/0 driver is entered, it has the data, system
pointers, and table address necessary for the I /0 d1 iver

12-19

SECTION 12 REAL-TIME PROGRAMMING

processing. At system-generation time, additional working
storage space can be assigned to the 110 driver as an
extension of the controller table. The data available are:

a. V$CTL (lower-memory system symbol defining the
current Tl DB) = address of Tl DB associated with the
I /0 driver controller table.

b. TBRST (word 7 of controller Tl DB)
controller table CTBL.

address of

c. Within CTBL, the following:
(1) CTI DB (word 0) = controller Tl DB address
(V$CTL)
(2) CTDST (word 3) = address of DST
(3) CTRQBK (word 4) = address of RQBLK to be
processed
(4) CTDVAT(word6) =controller device address
(5) CTSTAT (word 8) = temporary storage available
for driver
(6) CTBICB (word 9) = address containing assigned
SIC address (e.g., 020,022)
(7) CTFCB (word 10) = FCB or DCB address for 110
request specified in CTRQBK (word 4)
(8) CTWDS (word 11) = contains, upon exit, number
of words transferred
(9) CTSTSZ (word 13) = number of words per RMD
sector
(10) CTTKSZ (word 14) = number of sectors per RMD
track
(11) CTPSTO (word 15) = base address of the RMD for
unit 0 on this controller
(12) CTPSTl, CTPST2, and CTPST3 (words 16, 17, and
18) = PST addresses for units 1, 2, and 3

d. Device specification table (DST):
(1) DSUNTN (bits 13 and 14 of word 2) = number (0-
3) of this device on its controller
(2) DSPSTI (bits 6-10 of word 2) = RMD partition
number (1-20) used to access the PST

e. Request block (RQBLK): Contains user task I /0
request information. The address of RQBLK is
contained in CTRQBK (word 4 of the controller table).
Word 1 of RQBLK contains the operation code in bits
8-11 and the mode specification in bits 12-14. Word 0
bits 5-14 contain the status.

f. File control block (FCB): The FCB is used for RMD
devices. CTFCB contains the address of FCB.

12-20

(1) FCRECL (word 0) = record length
(2) FCBU FF (word 1) = user buffer
(3) FCACM (word 2) = bits 8-15, access method, and
bits 0-7, protection code
(4) FCCADR (word 3) = current record number
(relative within file)
(5) FCCEOF (word 4) = current EOF record number
(relative within partition)

(6) FCIFE (word 5) beginning-of-file record
number (relative within partition)
(7) FCEFE (word 6) = end-of-file record number
(relative within partition)
(8) FCNAMl, FCNAM2, and FCNAM3 (words 7, 8,
and 9) = file names in ASCII

g. Data control block (DCB): The DCB is used for non­
RMD devices. CTFCB contains the address of DCB.

(l) DCRECL (word 0) = record length
(L) DCBUFF (word 1) = user buffer
(3) DCCNT (word 2) = function count

12.4.2 1/0 Driver System Functions

Each l/O driver under IOC performs certain system pre­
rind post processing functons.

Pre-interrupt processing: If the 1/0 driver uses a SIC, the
driver calls V$BIC to build and execute the initial BIC
transfer instruction. If the SIC is shared, the interrupt line
handler 1s modified to the proper interrupt event word
setting (TBEVNT) and TIDB address. V$BIC performs this
modification if the word immediately following the call (JSR
V$BIC,B) is nonzero, since this is assumed to be the
interrupt event word setting. If it is zero, no line handler
modification 1s performed. The 1/0 driver clears the
interrupt event word (TBEVNT) in the controller Tl DB
immediately preceding a DELAY (type 2) call. To wait for an
interrupt, the I /0 driver executes a DELAY (type 2) call with
<:1 time-out. The return to the driver, either from a time-out
or interrupt is to the address immediately following the
DELAY call.

Interrupt processing: The driver clears the time-delay flag
(!HST bit 6) set by the DELAY call, and checks TBEVNT to
determine if an interrupt occurred (TBEVNT = 0 indicates
a time-out). Following the interrupt processing, the driver
clears TBEVNT and calls DELAY (type 2) for the next
instruction.

Post-interrupt processing (no errors): Upon the comple­
tion of interrupt processing, the driver sets the status bits
(5-14) of RSTPE (word 0) in RQBLK, and enters the number
of words transferred in CTWDS. The driver then relin­
quishes control and exits to IOC by executing JMP V$FNR.

Post-interrupt processing (errors): If an er"ror is encoun­
tered during interrupt processing, the driver 5ets the status
bits (5-14) of RSTPR, according to the typt· of error. The
driver then sets the A register to zero if t11e unit is not
ready, negative if there is a parameter error, or positive if
there is a hardware error. Finally, the driver exits to the IOC
error routine by executing JMP V$ERR.

12.4.3 Adding an 1/0 Driver to the System File

System-generation directives: The following directives
are required for linkages to the controller table, controller
TIDB, 110 driver entry location, DST, PST, and the PIM line
handler (section 13):

Directive

EQP

PIM

ASN

PRT

TDF

Description

DSTs are generated by SGEN, one for
each unit specified by the EQP directive.
All DSTs generated for a controller point
indirectly to the controller table
specified by EQP. The pointer is to the
entry name in the controller table
assembly.

A PIM directive is required for each PIM
line where an interrupt is expected. The
PIM directive causes the system
initializer to enable the mask for that
line (except for the TTY or CRT output
line, in which case it is initially disabled).
If the driver processes both input and
output interrupts, it may be
advantageous for processing to set the
interrupt event word for the input line to
one value (e.g., 01) and the interrupt
event word for the output line to another
value (e.g., 02).

This directive assigns logical units to
physical units. If a new device is being
added and it is necessary to assign that
device to a logical unit when the system
is initialized, an ASN is input. Otherwise,
the JCP or OPCOM ASSIGN directive can
be used. The logical-unit table is
established by these directives.

This directive for RMDs specifies the size
and the mnemonic name of each
partition. A PST and DST are created for
each partition.

This VORTEX nucleus-generation control
record directive defines and builds
controller TIDB. It specifies the name of
the driver, status word (TBST) setting,
and priority level of the driver.

Adding controller tables: A controller table is assembled
as a separate entity and added to the system-generation
library (SGL) for loading at system-generation time. The
controller table name is CT followed by the three- or four­
character ASCII name of the controller, e.g., CTTYOA,
CTMTOl, and CTDOB.

The controller table comprises parameters that are
constant for a controller, and parameters that are variables
for SGEN and can change with system configuration.

Constants are assembled as DATA statements. DATA
statements can be added to the controller table to provide

SECTION 12 REAL-TIME PROGRAMMING

additional working space for an 110 driver. The following
items in the controller table are treated as being constants
for a controller.

(1) CTADNC (word 1) = end of table + 1

(2) CTOPM (word 2) = operation-code mask

(3) CTDST (word 3) = O (set by IOC)

(4) CTRQBK (word 4) = O (set by IOC)

(5) CTIOA (word 7) = I /0 algorithm

(6) CTSTAT (word 8) = 0 (driver use)

(7)CTFCB(word 10) = O(set by IOC)

(8) CTWDS (word 11) = 0 (driver use)

(9) CTFRCT (word 12) = 110 algorithm frequency count

(10) CTSTSZ (word 13) = number of words in an RMD
sector

(11) CTTKSZ (word 14) =number of sectors in an RMD
track

The variable parameters are inserted into the controller
table by SGEN during directive processing. These are
assembled, referencing the external names.

(1) CTIDB (word 0) = name of the related controller TIDB
(TB followed by the same three- or four-character name
used in the controller table, e.g., TBTYOA)

(2) CTRTRY (word 5) = error retry count (# T followed by
the name of the controller, e.g., # TTYOA)

(3) CTDVAD (word 6) = controller device address (#A
followed by the name of the controller, e.g., # ATYOA)

(4) CTBICB (word 9) = address of BIC flag table (B
followed by the name of the controller, e.g., BTYOA)

(5) CTPSTO (word 15) = base address of the PST for RMD
unit 0 (P followed by the four-character device name,
e.g., PDOOA)

(6) CTPSTl (word 16) = base address of the PST for RMD
unit 1 (e.g., PDOlA)

(7) CTPST2 (word 17) = base address of the PST for RMD
unit 2 (e.g., PD02A)

(8) CTPST3 (word 18) = base address of the PST for RMD
unit 3 (e.g., PD03A)

12-21

SECTION 12 REAL-TIME PROGRAMMING

12.4.4 Enabling and Disabling PIM Interrupts mask is enabled or disabled by a driver, the system mask
is updated to reflect the current status. The system mask
configuration is given at low memory address V$1M (0320
for PIMl, 0321 for PIM2, etc.).

EXC 0444 disables all PIM interrupts. EXC 0244 enables all
PIM interrupts that are not masked. There is a PIM
directive for each PIM line at system-generation time. The
system initializer enables PIM lines. The mask is enabled
unless the 1/0 driver specifically disables it. If a PIM
directive is omitted, the linkage between the trap and the
interrupt line handler cannot be established. If a PIM line

EXC 0747 disables the real-time clock interrupt and EXC
0147 enables it.

Figure 12-5 shows the stand and VORTEX driver interface.

KEY:

12-22

Interrupt
Trap
Location

Interrupt Line
Handler (Using
Common Handler)

1

~sk TIDB

2

l/0 Driver

Controller
Table
(for Drivers)

Device
Specification
Tables
(for Drivers)

- ,
I

I

13
I

I
I+ - ~

.._ 4

4
A
4
4
4_

Common
Interrupt
Handler

Controller
Address
Table

I.,.___

l. The trap address corresponding to the PIM number (from PIM directive) points
to the SGEN-generated line handler. The line handler points to the TIDB
(named in PIM directive), using the matching TIDB name (on TDF control
record).

2. The Tl DB name (on TDF control record) points to the task, using the entry name
in the assembly of the task.

3. For OPCOM device drivers only. The task TIDB points to the device controller
table name (on TDF control record), using the entry name in the controller table
assembly.

4. The DSTs are generated by SGEN, one for each unit specified on the EQP
directive. All DSTs generated for a controller point indirectly to the controller
table (named in EQP directive), using the entry in the controller table assembly.

Figure 12·5. Driver Interface

SECTION 13

SYSTEM GENERATION

Building the VORTEX nucleus (section 13.6) The VORTEX system-generation component (SGEN) tailors
the VORTEX operating system to specific user require­
ments. SGEN is a collection of programs on magnetic tape,
punched cards, or disc pack. It includes all programs
(except the key-in loader, section 13.3) for generating an
operating VORTEX system on an RMD.

Building the library and the resident-task configurator
(section 13. 7)

Figure 13-1 is a block diagram of the data flow through
SGEN.

13.1 ORGANIZATION

SGEN is a four-phase component comprising:

1/0 interrogation (section 13.4)

1/0 interrogation specifies the peripherals to:

a. Input VORTEX system routines (LIB unit)

b. Input user routines (ALT unit)

c. Input SGEN directives (DIR unit)

d. Output the VORTEX system generation< SYS unit)

SGEN directive processing (section 13.5)
e. List special information and input user messages (LIS

unit)

DIR INPUT UNIT

SGEN DIRECTIVES

VORTEX

NUCLEUS

(And system
initializer)

LIB INPUT UNIT

System Generat1.:m Library

(Object modules and con­
trol records)

SGEN ROU flNES

FOREGROUND

LIBRARY

BACKGROUND

LIBRARY

ALT INPUT UNIT

User Routines

(Object modules and
control records)

USER

LIBRARIES

______ __...._ __ , _____ ._, ------------'------·-----

SYS OUTPUT UNITS

Figure 13-1. SGEN Data Flow

13-1

SYSTEM GENERATION

1/0 interrogation also specifies that the Teletype on
hardware address 01 is the OC unit. After these peripherals
are assigned, appropriate drivers and 110 controls are
loaded into memory.

Note: SGEN does not build an object-module library. To
construct the VORTEX object-module library (OM) or any
user object-module library, use the file-maintenance
component (FMAIN, section 9).

SGEN directive processing specifies the architecture of the
VORTEX system based on user-supplied information that is
compiled and stored for later use in building the system.
SGEN directives permit the design of systems covering the
entire range of VORTEX applications.

Building the VORTEX nucleus consists of gathering object
modules and control records from the system-generation
library (SGL, section 13.2) and from user input, and
constructing the VORTEX nucleus from these data. SGL
items are input through the LIB input unit, and user items
through the ALT unit according to rules set up by the SGEN
directives_

Building the library and the resident-task configurator
consists of generating load modules from the object
modules and control records input from the SGL and user
data. These load modules are then cataloged and entered
into the foreground, background, and user libraries. During
library building, load modules can be added, deleted, or
replaced as required to tailor the library to any of a wide
variety of formats. After the libraries are completed,
designated load modules are copied into the VORTEX
nucleus to become resident tasks. The resident-task
configuration of SGEN can also be generated without
regeneration of the VORTEX nucleus or libraries (section
13.7).

SGEN directive format requires that, unless otherwise
indicated (e.g., section 13.5), the directives begin in
column 1 and comprise sequences of character strings
having no embedded blanks. The character strings are
separated by commas (,) or by equal signs (=). The
directives are free-form and blanks are permitted between
individual character strings, i.e., before and after commas
(or equal signs). Although not required, a period(.) is a line
terminator. Comments can be inserted after the period. For
greater clarity in the descriptions of the directives, optional
periods, optional blank separators between character
strings, and the optional replacement of commas by equal
signs are omitted.

Numerical data can be octal or decimal. Each octal number
has a leading zero.

Error messages applicable to SGEN are given in section
17.13.

13-2

SGEN errors are divided into five categories according to
type. The category of each error, as well as the specific
error, is given by the error code. Recovery is automatic
where manual intervention is not required. When manual
intervention is necessary, the OC device expects a response
after the error message is posted. The response can be
either a corrected input statement (where the statement in
error was an ASCII record) or the letter 11 C11

• In the latter
case, the corrected input is expected on the input device
where the error occurred, immediately after the 11 C11 is
input. If the input media is magnetic tape or disc pack,
positior;ing to reread an input statement is also automatic.

13.2 SYSTEM-GENERATION LIBRARY

The System-generation library (SGL) is a collection of
system programs (in object-module form) and control
records (in alphanumeric form) from which a VORTEX
system is constructed.

In the case of punched cards or of magnetic tape, the SGL
occupies contiguous records, beginning with the first record
of the medium.

In the case of disc pack, the SGL occupies contiguous
records beginning with the second track. Track 0 contains
the partition-specification table (PST, section 3.2) that
specifies one partition extending from the second track
(track 1) to the end of device.

The SGL and the VORTEX system cannot be on the same
disc pack during system generation.

The SGL is divided into five functional parts, each
separated by CTL control records (figure 13-2).

Part 1 of the SGL comprises a VORTEX bootstrap loader
and an 110 interrogation routine. It also comprises the
SGEN relocatable loader, the basic 110 control routine, and
library of peripheral drivers for the use of SGEN. Part 1.
consists entirely of object modules. It is loaded with device­
sensitive key-in loader (section 13.3) that also serves the
bootstrap loader as a read-next-record routine. The
bootstrap-loader /interrogator is a core-image sequence of
records generated by a VORTEX service routine. Because it
calls the key-in loader to read records, the bootstrap­
loader /interrogator is itself device-insensitive.

Control record CTL,PARTOOOl terminates part 1 of the
SGL.

Part 2 of the SGL contains the directive processor. After
being itself input, the directive processor obtains all input
from the DIR and OC input devices. The system generation
directives are to be placed between the directive processor
and the CTL,PART0002 control record if the CIB and DIR
input units are the same.

Control record CTL,PART0002 terminates part 2 of the
SGL.

PART 1

PART 2

PART 3

PART 4

PART 5

NOTE:

•:• = Alphanumeric
control record

*
{

*

*
*

*

l
•:c

(C

Bootstrap Loader and
1/0 Interrogation

Relocatable Loader and
1/0 Control Routine

~ SGEN Driver Library

CTL,PARTOOOl

Directive Processor

CTL,PART0002

VORTEX Nucleus Processor

SLM,INIT

System Initializer

END

SLM, VORTEX

1- VORTEX Nucleus
I- Library

END

CTL,PART0003

Library Processor

System Library
Routines

CTL,PART0004

Resident-Task Configurator

CTL,ENDOFSGL

Figure 13-2. System-Generation Library

.., ...

~
-I

Part 3 of the SGL comprises all system routines and
control records required to build the VORTEX nucleus
(figure 13-3):

VORTEX nucleus processor -- the SGEN-processing
portion

SLM control record -- indicates the beginning of the
system initializer portion

System-initializer routines -- object modules to be
converted into the system initializer

END control record -- indicates the end of the system­
initializer portion

SLM control record -- indicates the beginning of the
VORTEX nucleus portion

SYSTEM GENERATION

VORTEX nucleus routines -- control records and object
modules to be converted into the VORTEX nucleus

END control record -- indicates the end of the VORTEX
nucleus portion

SLM,INIT

System Initializer

Low Memory Package

END

SLM, VORTEX

All TDF Control Records

Global FCBs

V$0PBF and V$JPBF

RTE Functions

RTE Services

RTE System Tasks

IOC Program

1/0 Controller

1/0 Drivers

END

NOTE:

•:• = Alphanumeric
control record

Tables

Buffers

Figure 13-3. VORTEX Nucleus

Control record CTL,PART0003 terminates part 3 of the
SGL.

Part 4 of the SGL comprises all system routines and
control records required to build load-module libraries
(figure 13-4) on the RMD. The library processor converts
thes~ inputs into load modules, catalogs them, and enters
them into the foreground, background, and user libraries.
The library processor is followed by groups of control
records and object modules, with each group forming a
load-module package (LMP).

Control record CTL,PART0004 terminates part 4 of the
SGL.

Part 5 of the SGL contains the resident-task configurator
portion of SGEN. The configurator copies specified load
modules from the foreground library into the VORTEX
nucleus, i.e., makes them resident tasks.

Control record CTL,ENDOFSGL terminates the SGL.

13-3

SYSTEM GENERATION

REQUIRED

(FOREGROUND)

SYSTEM

TASKS

REQUIRED

(BACKGROUND)

SYSTEM

TASKS

13-4 '

.--

SLM,FGTSKl

TIO, V$0PCM,2,8, 106

V$0PCM Program

ESB

END

SLM,FGTSK2

TID,JCDUMP,2,0, 106

JCDUMP Program
----I

ESB

END

SLM,FGTSK3

TID,RAZl,2,0, 106

RAZI Program

ESB

END

SLM,BGTSKl

TID,JCP,1,0,105

Job-Control Processor

ESB

END
- ·-------1

SLM,BGTSK2

TID,LMGEN, 1,0, 105

Load-Module Generator

ESB

END

SLM,BGTSK3

TID,FMAIN, 1,0, 105

File Maintenance

ESB
1-----

END
---I

SLM,BGTSK4

TID,SMAIN, 1,0, 105

System Maintenance

ESB

END

SLM,BGTSK5

TIO, FORT, 1,0, 105

FORTRAN Compiler

ESB

END

SLM,BGTSK6

TID,CONC, 1,0, 105

Concordance Program

ESB

END

SLM,BGTSK7

TID,IOUTIL, 1,0, 105

1/0 Utility Program

ESB

END

SLM,BGTSK8

TID,SEDIT, 1,0, 105

Source Editor

ESB

END

SLM,BGTSK9

TID,DASMR,1,0, 105

DAS MR Assembler

ESB

END

NOTE:

':' = Alphanumeric
control record

figure 13-4. Load-Module Library

13.3 KEY-IN LOADER

SGEN is initiated on a new or initialized system by
inputting the key-in loader through the CPU. The key-in
loader loads the VORTEX bootstrap loader (part 1 of the
SGL). Key-in loaders are available for loading from
magnetic tape, punched cards, or disc pack. The required
key-in loader is input to memory through the CPU console
and then executed to load the VORTEX bootstrap loader.

Automatic bootstrap loader (ABL) In systems equipped
with an ABL, load the key-in loader from the input medium
into memory starting with address 000000. To execute the
key-in loader, clear the A, B, X, I, and P registers; then
press RESET, set STEP/RUN to RUN, and press START.

Manual loading through the CPU front panel: The key-in
loader can be entered manually as follows using the
appropriate loader given in table 13-1.

a. Press REPEAT.

b. Enter a STA instruction (054000) in the I register.

c. Clear the P register.

d. Enter a key-in loader instruction in the A register.

e. Press STEP.

f. Clear the A register.

g. Repeat steps (d), (e), and (f) for each key-in loader
instruction.

To execute the key-in loader, clear the A, 8, X, I, and P
registers; then press RESET, set STEP/RUN to RUN, and
press START.

Address

000000
000001
000002
000003
000004
000005
000006
000007
000010
000011
000012
000013
000014
000015
000016
000017
000020

Table 13-1. SGEN Key-In Loaders

Magnetic Tape

010030
001010
001106
040030
-001000
000012
000000
006010
000300
050027
104lzz
lOOOzz
001000
000021
l025zz
057027
040027

Card Reader

010054
001010
001106
040054
001000
000012
000000
006010
000300
050053
1002zz
002000
000046
1025zz
002000
000046
1026zz

RMD

010064
140066
001010
001106
001000
000012
000000
006010
000300
050065
1004zz
1002zz
010063
110072
1031zz
lOluzz
000023

Address

000021
000022
000023
000024
000025
000026
000027
000030
000031
000032
000033
000034
000035
000036
000037
000040
000041
000042
000043
000044
000045
000046
000047
000050
000051
000052
000053
000054
000055
000056
000057
000060
000061
000062
000063
000064
000065
000065
000067
000070
Q00071
000072

where

xx
yy
zz

u

v

SYSTEM GENERATION

Magnetic Tape Card Reader RMD

lOllzz
000016
1012zz
100006
001000
000021
000500
177742

even BIC address
odd BIC address
device address

004044
004444
057053
005001
040053
004450
002000
000046
1026zz
004044
004450
002000
000046
1022zz
057053
040053
067053
040053
001000
000013
lOllzz
000000
1016zz
100006
001000
000045
000500
177742

001000
000017
1025zz
150071
001016
000012
lOOOyy
1003zz
010064
110072
1031zz
010065
103lxx
120070
005012
l031yy
lOOOxx
lOOOzz
1014zz
000043
1025zz
150071
001016
000012
060065
040064
010064
140067
001016
100006
050064
040063
001000
100006
000001
000001
000500
000037
000060
000074
007760
OvOOOO

RMD unit number in Sense Instruction
u 0 for unit 0
u = 1 for unit 1

RMD unit number in unit Select Instruction
v 0 for unit 0
v = 4 for unit 1

13-5

SYSTEM GENERATION

13.4 SGEN 1/0 INTERROGATION

Upon successful loading of the bootstrap loader and 110
interrogation, the OC unit outputs the message

IO INTERROGATION

after which the SGEN peripherals are specified by inputting
on the OC unit the five 1/0 directives:

• DIR Specify SGEN directive input unit
·LIB Specify SGL input unit
•ALT Specify SGL modification input unit
•SYS Specify VORTEX system generation output unit
•LIS Specify user communication and list output

unit

These directives can be input in any order. SGEN will
continue to request I /0 device assignments until valid ones
have been made for all five functions.

SGEN drivers are loaded from the SGEN driver library
according to the specifications of the SGEN 1/0 directives.
Errors or problems with reading the drivers will cause the
applicable error messages (section 17.13) to be output.

The general form of a SGEN I /0 directive is

function= driver,device,bic
where

Name*

function is one of the directive names given
above

driver is one of the driver names given below

device is the hardware device address

bic is the BIC address

Type of Device Model Numbers

MTcuA Magnetic-tape unit 620-30,-31A,-318,

-31C,-32,-32A

LPcuA ~ Line printer . 620-77

LPcuD Statos-31 620-75

CRcuA Card reader 620-22,-25

PTcuA Paper-tape reader /punch 620-55A

TYcuA Teletype or CRT 620-06,-08, E2250

DcuAl Rotating-memory 620-47,-43C

DcuA2 Rotating-memory 620-48,-430

DcuA5 Rotating-memory 620-49

DcuB Rotating memory 620-36,-37

DcuC Rotating memory 620-35**

where c stands for the controller number (0, 1, 2 or 3),
and u for the unit number (0, 1, 2, or).

'~*this disc must be formatted first (see section 16.4).

13-6

13.4.1 DIR (Directive-Input Unit) Directive

This directive specifies the unit from which all SGEN
directives (section 13.5) will be input (DIR unit). The
directive has the general form

DIR= driver,device,bic

where
driver

device

bic

is one of the driver names MTcum,
TY cum, or CRcum (m is a model code, as
given in 13.4)

is the hardware device address

is the BIC address (used only, and then
optionally, for magnetic-tape units)

Example: Specify Teletype unit 0 having model code A
and hardware device address 01 as the DIR unit.

DIR•TYOOA,01

13.4.2 LIB (Library-Input Unit) Directive

This directive specifies the unit from which the SGL will be
input (LIB unit). The directive has the general form

where

LIB= driver,device,bic

driver

device

bic

is one of the driver names MTcum,
CRcum, or Dcum

is the hardware device address

is the BIC address (used only, and then
optionally, for magnetic-tape units)

Example: Specify magnetic-tape unit 0 having model code
A and hardware device address 010 (no BIC) as the LIB
unit.

LIB•MTOOA,010

13.4.3 ALT (Library-Modification Input Unit)
Directive

This directive specifies the unit from which object modules
that modify the SGL will be input (ALT unit). The directive
has the general form

ALT= driver,device,bic

where
driver

device

bic

is one of the driver names MTcum or
CRcum

is the hardware device address

is the BIC address (used only, and then
optionally, for magnetic-tape units)

Example: Specify card reader unit 0 having model code A
and hardware device address 030 as the ALT unit.

ALT•CROOA,030

13.4.4 SYS (System-Generation Output Unit)
Directive

This directive specifies the RMD(s) onto which the VORTEX
system will be generated, with the VORTEX nucleus on the
first such device specified. Up to 16 RMDs can be specified.
The directive has the general form

SYS= driverl,devicel,bicl;driver2,device2,
bic2; ... ;drivern, devicen, bicn

where each
driver

device

bic

is an RMD driver name Dcum

is the hardware device address of the
corresponding driver

is the mandatory address of the
applicable BIC

Examples: Specify RMD 0 having model code B, hardware
device address 016, and BIC address 020 as the SYS unit.

SYS•DOOB,016,020

Specify two SYS units: RMD 0 with model code A2,
hardware device address 014, and BIC address 020; and
RMD 0 with model code B, hardware device address 015,
and BIC address 022.

SYS•DOOA2,014,020;DOOB,015,022

A system with 620-35 disc requires a special formatting
program, described in section 16.4. This program formats
disc packs and performs bad-track analysis.

13.4.5 LIS Directive

This LIS (User-Communication and List Output Unit)
directive specifies the unit that will be used for user
communication and list output (LIS unit). The directive has
the general form

where

LIS= driver,device

driver

device

is one of the driver names TYcum or
LPcum

is the hardware device address

The following information appears on the LIS unit:

a. Error messages

b. Load map of each load module

c. Directives input through the DIR unit (section 13.4.1)

d. Partition table for each system RMD

SYSTEM GENERATION

To suppress listing during system generation set "map" to
zero in EDR directive.

Example: Specify line printer 0 having model code A and
hardware device address 035 as the LIS unit.

LIS=LPOOA,035

13.5 SGEN DIRECTIVE PROCESSING

Upon successful loading of the SGEN directive processor,
the OC and LIS (section 13.4.2) units output the message

INPUT DIRECTIVES

to indicate that SGEN is ready to accept SGEN directives
from the DIR unit (section 13.4.1).

The SGEN directives described in this section can be input
in any order, except for the EDR directive (section 13.5.14),
which is input last to terminate SGEN directive input.

In cases of conflicting data, SGEN treats the last informa­
tion input as the correct data.

Errors cause the output of the applicable error messages
(section 17.13).

The general form of an SGEN directive is

aaa,p(1)xp(2)x ... xp(n)

where
aaa

each p(n)

each x

is a three-character SGEN directive
name

is a parameter as indicated in the
specifications forthe individual directives

is a punctuation mark as indicated in
the specifications for the individual di­
rectives

In contrast to most VORTEX system directives, the
punctuation in SGEN directives is exactly as defined in the
specifications for the individual directives, although blanks
are allowed between parameters, i.e., before or after
punctuation marks. SGEN directives begin in column 1 and
can contain up to 80 characters.

SGEN directives are listed on the OC and LIS units.

13.5.1 MRY (Memory) Directive

This directive specifies the memory-related parameters of
SGEN. It has the general form

where

MRY,memory,common

memory

common

is the extent of the memory area
available to VORTEX (minimum 12K =
027777)

is the extent (0 or positive value) of the
foreground blank-common area

l 3 I

SYSTEM GENERATION

Examples: Specify a 16K memory for VORTEX with a
foreground blank-common area from 037600 to 037777.

MRY,037777,0200

Specify an 18,000-word memory for VORTEX with no
foreground blank-common area.

MRY,18000,0

13.5.2 EQP (Equipment) Directive

This directive defines the peripheral architecture of the
system. It has the general form

EQP,name,address,number,bic,retry

where
name

address

number

bic

retry

is the mnemonic for a peripheral
controller

is the controller device address (01
through 077 inclusive)

is the number (1 through 4, inclusive) of
peripheral units attached to the controller

is the BIC address (0 if no BIC applies)

is the number (0 to 99, inclusive) of
retries to be attempted by the 110 driver
when an error is encountered

Acceptable mnemonics for name are:

MTnm
LPnm
CR nm
PT nm
TY nm
CT nm
CPnm
Dnm
ETnA

Magnetic-tape unit
Line printer
Card reader
Paper-tape reader/punch
Teletype
CRT device
Card Punch
RMD
Editor Terminal

where n is the controller number (0, 1, 2, or 3), and m is
the model code (table 13-2).

Controller tables are arranged according to the priority
levels of their task-identification blocks (TIDBs). On any
given level, the tables are arranged in the input sequence
of the corresponding EQP directives. Device-specification
table (DST) entries are unsorted.

The following order is suggested for peripheral controllers:

a. RMDs

b. Operator-communication (OC) device (section 15)

c. Magnetic-tape units

d. Other units

Table 13-2. Model Codes for VORTEX Peripherals

Li·8

Code

TYnA

ETnA

CTnA

CRnA

CPnA

MTnA

On A

DnB
DnC

PTnA

L.PnA

LPnD

Cima
CO ma

Model Number

620-06
620-08

E2250E,F

E2250

620-22,620-25

620-27

620-30
620-31A
620-318
620-31C

620-32
620-32A

620-47,-48,049
620-43C, -43D
620-37, -36
620-35

620-55A

620-77

620-75

Description

ASR Teletype Model 33
ASR Teletype Model 35

Editor Terminal

CRT keyboard/display

Card reader:

Card punch:

Magnetic-tape:
Magnetic-tape:
Magnetic-tape:
Magnetic-tape:

300 or 600 cards/minute

35 cards/minute

9-track,800 bpi, 25ips
7- track, 200-556 bpi
7-track, 200-800 bpi
7-track, 556-800 bpi

Magnetic-tape: 9-track,800bpi, 37 ips
Slave unit with 620-32

Rotating memory
Rotating memory
Rotating memory
Rotating memory

Paper tape reader/punch

Line Printer

Statos 31 Printer I Plotter

Process 110

Note: Other peripheral devices can be added to the system by creating an EQP directive with a unique
physical- unit name for the device. A controller table with the same name is then added to the VORTEX
nucleus by an ADD directive (section 13.5.5).

Example: Define a system containing one model B RMD,
one model A magnetic-tape unit, one model A card reader,
one model A line printer, and one model A Teletype.

EQP,DOB,016,1,020,3
EQP,MTOA,010,1,022,5
EQP,CROA,030,1,024,0
EQP,LPOA,035,1,024,0
EQP,TYOA,01,1,0,0
EQP,PTOA,037,1,0,0
EQP,CPOA,031,1,022,0

13.5.3 PRT (Partition) Directive

This directive specifies the size of each partition on each
RMD. It has the general form

PRT,Dcup(l),s(l),k(l);Dcup(2),s(2),

where each
Dcup(n)

s(n)

k(n)

k(2); ... ;Dcup(n),s(n),k(n)

is the name of the RMD partition with c
being the number (0, 1, 2, or 3) of the
controller, u the unit number (0, 1, 2,
or 3), and p the partition letter (A
through T, inclusive)

is the number (octal or decimal) of
tracks in the partition. The maximum
partition size on a 620-35 rotating
memory is 1365 tracks.

is the protection code (single
alphanumeric character including $)for

the partition, or "' if the partition is
unprotected

At least seven partitions are required for the system
rotating memory. PRT directives are required for every
partition on every RMD in the system. While the partition
specifications can appear in any order, the set of partitions
specified for each RMD must comprise a contiguous group,
e.g., the sequence DOOA, DOOC, DOOD, DOOB is valid, but
the sequence DOOA, OOOC, 0000, DOOE constitutes an
error.

Logical units 101 through 106 inclusive have preassigned
protection codes I ,.Q.2 -= sl 103 =-&. 104 = D,
105 = E, and 1 O = F). (Any attempt to change these

codes is ignored)? t,.1.·L"·.v.' -.'il· ...,,.,, .·' .. '' . ·. ,,, 1 :, , '-i:. · ''·. · • _. ·--·-·-~-"-~:.· I .• .. , -; • -- , . , ~ .
Total number of track{~f a~ pa#iti~n~ and lhe c~pacit; of
VORTEX nucleus (usually 4-5 tracks) must not exceed
rotating-memory track capacity (e.g. for 620-37 disc it is
203 tracks).

SYSTEM GENERATION

Example: Specify the following partitions on two RMDs.

RMD No. Partition Tracks Protection Code

0 A 2 c
0 B 20 F
0 c 25 E
0 D 40 D
0 E 8 s
0 F 18 B
0 G 18 None
0 H 66 None

A 40 None
B 60 R
c 50 None
D 53 x

PRT,DOOA,2,C;DOOB,20,F
PRT,DOOC,25,E;DOOD,40,D;DOOE,8,S
PRT,DOOF,18B;DOOG,18,*;DOOH,66,*
PRT,D01D,53,X;D01C,50,*
PRT,D01A,40,*;D018,60,R

13.5.4 ASN (Assign) Directive

This directive assigns logical units to physical devices. It
has the general form

ASN,lun(l) = dev(1),lun(2) = dev(2), ... ,lun(n) = dev(n)

where each
lun(n)

dev(n)

is a logical unit number (1 through 100
or 107 through 255, inclusive) that can
be followed optionally by a two-character
logical unit name e.g., 107:Y7

is a four-character physical-device name,
e.g., TYOO, DOOG

If a new assignment specifies the same logical unit as a
previous assignment, the old one is replaced and is no
longer valid. All logical units for which physical device
assignments are not explicitly made are considered dummy
units.

Restrictions: Any attempt to change one of the preset
logical unit name:number or name:number:partition rela­
tionships given in table 13-3 will cause an error to be
flagged. Table 13-4 indicates the permissible physical unit
assignments for the first 12 logical units (with PO
automatically set equal to SS).

Example: Specify physical device assignments for logical
units 1-12, inclusive, 107 and 108, and 180 and 181, where

the last two units have, in addition to their numbers, two­
character names.

ASN,1=TY00,2=CR00,3=TY01,4=CROO
ASN,5=LP00,6=MT00,7=DOOI,8=DOOA
ASN,9=DOOH,10=DOOA,11=TY00,12=LPOO
ASN,107=LP00,108=CROO
ASN,180:S6=MT00,181:S8=MT01

Li 9

SYSTEM GENERATION

Table 13-3. Preset Logical-Unit Assignments

Preset logical-unit name/number relationships:

LO

Bl

5

6

GO

PO

9

10

oc = 1

SI = 2

so = 3

Pl = 4

BO = 7

SS = 8

DI

DO

= 11

- 12

Preset logical-unit/RMD-partition relationships:

Logical-Unit Logical-Unit
Name Number

CL 103
FL 106
BL 105
OM 104
cu 101
SW 102
GO 9
SS 8
PO 10
Bl 6
BO 7

'cu file must be as large as background
task's largest part in core at on time (24K
assumed above).

2
SW file must be as large as the largest

single task including overlays (24K assumed
above).

3
GO file must be somewhat larger than the

largest task run in load-and-go mode. If

Minimum
Partition Protection VORTEX Sector
Name Key Allocation

DT DOO JI>

DOO c
DOO b
DOO ;-:
DOO F

-B-C.. 025
F 0106
E 01135
D 0417
..es 0310

1

-S-8 0310
2

0310'3' DOOG
DOOH
DOOH
DOOi
DOOi

None
None Varies
None 0515

4

None Varies
None Varies

system is foreground only or all tasks will be entered in
libraries before execution, this partition may be eliminated.

4
PO file must be large enough for source

images of the largest task to be assembled or
compiled. Source images are stored 3 card images per
sector (1000 cards assumed above). If this function is
assigned to magnetic tape, this partition may be
eliminated.

Table 13-4. Permissible Logical-Unit Assignments

Logical Units

1 (OC)

2 (SI)

3 (SO)

4 (Pl)

5 (LO)

6 (Bl)

7 (BO)

8 (SS)

9 (GO)

10 (PO)

11 (DI)

12 (DO)

Li l<J

Teletype
or CRT

x

x

x
x
x

x
x

Permissible

RMD or
MT

x

x

x

x

x
x
x

x

Physical Units

Line
Printer

x

x

Other Other
Output Input
(CP,PT) (PT,CR)

x

x

x

x

x

x

13.5.5 ADD (SGL Addition) Directive

This directive specifies the SGL control records and object
modules after which new control records and/or object
modules are to be added during nucleus generation. It has
the general form

ADD,p(l),p(2), ... ,p(n)

where each p(n) is the name of a control record or an
object module after which new items are to be added.

When the name of a specified item is read from the SGL,
the program is processed and the message

ADD AFTER p(n)
READY

appears on the QC unit. User response on the QC unit is
either

ALT

if an item is to be added from the SGEN ALT input unit
(section 13.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads a load module from the ALT
unit and adds it to the SGL, then prints on the QC unit the
message

READY

to which the user again responds with either ALT or LIB on
the QC unit.

Example: Specify that items are to be added during
nucleus generation after control records or object modules
named PRQGl, PRQG2, and PRQG3.

ADD,PROG1,PROG2,PROG3

13.5.6 REP (SGL Replacement) Directive

This directive specifies the SGL control records and object
modules to be replaced with new control records and/or
object modules during nucleus generation. It has the
general form

REP,p(l),p(2), ... ,p(n)

where each p(n) is the name of a control record or an
object module to be replaced.

When the name of the specified item is read from the SGL,
the program is skipped and the message

REPLACE p(n)
READY

SYSTEM GENERATION

appears on the QC unit. User response on the QC unit is
either

ALT

if an item is to be replaced by one on the SGEN ALT input
unit (section 13.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads a load module from the ALT
unit and replaces p(n) with it in the SGL, then prints on the
QC unit the message

READY

to which the user again responds with either ALT or LIB on
the OC unit.

Example: Specify that control records or object modules
named PRQGA and PROGB are to be replaced during
nucleus generation.

REP,PROGA,PROGB

13.5.7 DEL (SGL Deletion) Directive

This directive specifies the SGL control records and object
modules that are to be deleted during nucleus generation. It
has the general form

DEL,p(l),p(2), .. . ,p(n)

where each p(n) is the name of a control record or an
object module to be deleted.

When the name of a specified item is read from the SGL,
the item is skipped and processing continues with the
following control record or object module.

Example: Delete, during nucleus generation, all control
records and object modules named PROGl and PROG2.

DEL,PROG1,PROG2

13.5.8 LAD (Library Addition) Directive

This directive specifies the SGL load-module package after
which new load-module packages are to be added during
library generation. It has the general form

LAD,p(l),p(2), .. . ,p(n)

where each p(n) is the name of a load-module package
from an SLM control directive after which new items are to
be added.

l l

SYSTEM GENERATION

When the name of a specified load-module package is read
from the SGL, the program is processed and the message

ADD AFTER p(n)
READY

appears on the QC unit. User response on the QC unit is
either

ALT

if a load-module package is to be added from the SGEN
ALT input unit (section 13.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads a module from the ALT unit
and adds it to the library, then prints on the QC unit the
message

READY

to which the user again responds with either ALT or LIB on
the QC unit.

Example: Specify that items are to be added, during
library generation, after load-module packages named
PRQGl, PRQG2, and PRQG3.

LAD,PROG1,PROG2,PROG3

13.5.9 LRE (Library Replacement) Directive

This directive specifies the SGL load-module package to be
replaced with new load-module package during library
generation. It has the general form

LRE,p(l),p(2), .. . ,p(n)

where each p(n) is the name of a load-module package
from an SLM control directive to 00- replaced.

When the name of the specified load-module package is
read from the SGL, the program is skipped and the
message

REPLACE p(n)
READY

appears on the QC unit. User response on the OC unit is
either

ALT

if module is to be replaced by one on the SGEN ALT input
unit (section 13.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads a module from the ALT unit

13 l~'

and replaces p(n) with it in the SGL, then prints on the OC
unit the message

READY

to which the user again responds with either ALT or LIB on
the OC unit.

Example: Specify that load-module packages named
PROGA or PROGB are to be replaced during library
generation.

LRE,PROGA,PROGB

13.5.10 LOE (Library Deletion) Directive

This directive specifies the SGL load-module packages that
are to be deleted during library generation. It has the
general form

LDE,p(l),p(2), .. . ,p(n)

where each p(n) is the name of a load-module package
from an SLM control directive to be deleted.

When the name of a specified load-module package is read
from the SGL, the load-module package is skipped and
processing continues with the following load module.

Example: Delete, during library generation, all loacl­
module packages named PROGl and PROG2.

LDE,PROG1,PROG2

13.5.11 PIM (Priority Interrupt) Directive

This directive defines the interrupt-system architecture by
specifying the number of priority interrupt modules (PIMs)
in the system, the interrupt levels to be enabled at system­
initialization time, and the interrupts to be manipulated by
user-coded interrupt handlers. The PIM directive has the
general form

Pl M,p(1),q(1),r(1), s(1);p(2),q(2), r(2),

where each
p(n)

q(n)

r(n)

s(n)

s(2); ... ;p(n),q(n), r(n),s(n)

is an interrupt line number comprising
two octal digits with the first being
the PIM number and the second the
line number within the PIM. The two
digits must be preceded by a zero,
e.g., OA2,0l l

is the name (1 to 6 characters) of the
task handling the interr_upt (,.. _,
1
- • (rc.h.. I tf ~J(\4{ .::1~ :-J'\J\f\1 ; l s I

is the content of the interrupt event word ·
in octal notation

is 0 for an interrupt using the common
interrupt- handler, or 1 for a directly
connected interrupt

If an interrupt line is to use the common interrupt handler,
a Tl DB is generated for the related interrupt;processing
routine, which can be in the VORTEX nucleus or in the
foreground library.

If an interrupt line is to have a direct connection, the
interrupt-processing routine must be added to the VORTEX
nucleus. Failure to do so results in an error message.

Example: Specify two interrupt lines, one handled by the
common interrupt handler, the other directly connected.

PIM002,TBMTOA,00001,0;003,TBLPOB,01,1

Note: The only interrupt used by the magnetic-tape 1/0
driver is the motion complete.

13.5.12 CLK (Clock) Directive

This directive specifies the values of all parameters related
to the operation of the real-time clock. It has the general
form

CLK,clock,counter,interrupt

where
clock

counter

interrupt

is the number of microseconds in the
basic clock interval

is the number of microseconds in the
free-running counter increment period

is the number of milliseconds in the user
interrupt interval

The value of interval, when not a multiple of 5 milliseconds,
is increased to the next multiple of 5 milliseconds; e.g., if
interval is 151, the interrupt interval is 155 milliseconds.

Example: Specify a basic clock interval of 100 microsec­
onds, a free-running counter rate of 100 microseconds, and
a user interrupt interval of 20 milliseconds.

CLK, 100, 100, 2 0

13.5.13 TSK (Foreground Task) Directive

This directive specifies the tasks in the foreground library
that are to be made resident tasks. It has the general form

TSK, task(l), task(2), .. . , task(n)

where each task(n) is the name of an RMD foreground·
library task that is to be made a resident task.

If this directive is input as part of a full system generation,
the names are those of tasks that will be built on the
foreground library during the library-building phase (sec­
tion 13.7).

SYSTEM GENERATION

Resident TIDBs are not created for the tasks defined on
the TSK directives to be resident tasks. A TIDB is created
each time a resident task is specified on a SCHED call. A
resident Tl DB is created at system generation for each task
specified on a TDF directive (paragraph 13.6.2.).

Example: Specify that foreground-library tasks RTA, RTB,
and RTC be made resident tasks.

TSK,RTA,RTB,RTC

13.5.14 EDR (End Redefinition) Directive

This directive, which must be the last SGEN directive,
specifies all special system-parameters, or terminates
SGEN directive input. If only a redefinition of resident tasks
is required, the EDR directive is of the form

EDR,R

but if a full SGEN is necessary, the EDR directive has the
general form

where

EDR,S,tidb,stack,part,list,kpun,map[,analysis]

tidb

stack

part

list

kpun

map

analysis

is the number (01 through 0777,
inclusive) of 25-word empty TIDBs
allocated

is the size (0 through 037777, inclusive)
of the storage and reentry stack

allocation, which is equal to the number
of words per reentrant subroutine
multiplied by the number of levels
calling the subroutine

is the maximum number (1 through 20,
inclusive) of partitions on an RDM in the
system

is the number of lines per page for the
list output, with typical values of 44
for the line printer and 61 for the
Teletype

is 26 for 026 keypunch Hollerith code, or
29 for 029 code

is L if map information is to be listed, or
0 if it is to be suppressed

is 0 or blank if a complete bad track
analysis is desired on all RMD's, or 1
if the bad track tables from the last
SGEN are to be reused. If this para meter
is omitted,a full analysis is performed.
A value of 1 may be entered only when

· an analysis has been made on a previous
SGEN effort

u 13

SYSTEM GENERATION

Bad-track or RMD partitioning analysis is performed
following input of the EDR directive. When that process is
complete, the VORTEX nucleus or resident-task processor is
loaded into main memory.

Examples: Specify redefinition of resident tasks only.

where name is the name of the load module that follows the
directive.

Example: Indicate the beginning of the VORTEX nucleus.

SLM, VORTEX

EDR, R 13.6.2 TDF (Build Task-Identification Block)

Specify full system generation with no empty TIDBs, no
stack area, a maximum of five partitions per RMD, 44 lines
per page on the list output, 026 keypunch mode, and a list
map, and no bad track analysis is wanted.

EDR,S,0,0,5,44,26,L

Specify full system generation with 100 empty TIDBs, 0500
addresses in the stack area, a maximum of 20 partitions
per RMD, 30 lines per page on the list output, 029
keypunch mode, and suppression of the list map. Assume
bad track tables from the last SGEN are still good, and
reuse them.

EDR,S,100,0500,20,30,29,0,1

13.6 BUILDING THE VORTEX NUCLEUS

If a full system generation has been requested by the S
form of an EDR directive (section 13.5.14), the nucleus
processor is loaded upon completion of directive process­
ing. Once loaded, the nucleus processor reads the SGL
routines and builds the VORTEX nucleus as specified by
the routines and the SGEN control records.

There are three SGEN control records used in building the
nucleus:

• SLM
• TDF

• END

Start load module
Build task-identification block
End of nucleus library

Normally these control records are used only to replace
existing SGL control records.

VORTEX nucleus processing consists of the automatic
reading of control records and object modules from the
SGL, and, according to the specifications made by SGEN
directives, either ignoring the item or incorporating it into
the VORTEX nucleus. The only manual operations are the
addition and replacement of object modules during system
generation. In these cases, follow the procedures given in
sections 13.5.5 and 13.5.6, respectively.

13.6.1 SLM (Start Load Module) Directive

This directive specifies the beginning of a load module. Its
presence indicates the beginning of the system initializer or
VORTEX nucleus. The directive has the general form

SLM, name

l.3 14

Directive

This directive specifies all parameters necessary to build a
task-identification block in the VORTEX nucleus. It has the
general form

where

TDF ,name,exec,ctrl, stat, levl

name

exec

ctr I

stat

levl

is the name (1 to 6 alphanumeric
characters) given to the TIDB for linking
purposes

is the name (1 to 6 alphanumeric
characters) associated with the execution
address of the task

is the name (1 to 6 alphanumeric
characters)of the controller table required
for Teletype and CRT processing tasks,
or is 0 for any other task

is the 16-bit TIDB status word where the
settings of the individual bits have
the significance shown in table 13-5

is the priority level of the related tasks

Example: Define a foreground resident task PROGl on
priority level 10.

TDF,TIDPR1,PROG1,0,07401,10

The TDF directive causes a resident TIDB to be created for
the specified task. The task itself may or may not be a
resident task, as defined by the status word (stat). See
paragraph 13.5.13 for generation of resident tasks without
resident TIDB.

13.6.3 END Directive

This directive indicates the end of the system initializer or
the VORTEX nucleus. It has the form

END

Example: Indicate the end of the system initializer.

END

Bit

15

14

13

12

11

10

9

8

7

6

5

4

3

2

0

SYSTEM GENERATION

Table 13-5. TIDB Status-Word Bits

When Set Indicates

Interrupt suspended

Task suspended

Task aborted

Task exited

Tl DB resident

Task resident

Foreground task

Protected task

Task scheduled by
time increment

Time delay active

Task checkpointed

Error in task

Task interrupt expected

Overlay task

Task-schedule this task

Task searched, allo­
cated and loaded

Explanation

The task is suspended during the
processing of a higher-priority
task. The contents of volatile
registers are stored in TIDB
words 12-16 (interrupt stack).

The task is suspended because
of 1/0 or because it is wait-
ing to be activated by an inter­
rupt, time delay, or another
task. The task is activated
whenever this bit is zero, or
if Tl DB word 3 has an inter
rupt pending and the task ex­
pects the interrupt.

The task is not activated. All
stacked 110 is aborted, but
currently active 1/0 is com­
pleted.

The task is not activated. All
stacked and currently active
110 is completed.

The TIDB (drivers, task­
interrupt processors, resident
tasks, and time-scheduled tasks)
is resident and not released
when the task is aborted or
exited.

The task is resident and not
released when aborted or
exited.

The task is in protected fore­
ground. A background task is
protected only if bit 8 is set.

The task is protected.

The task becomes nonsuspended
when a specified time interval
is reached. Prerequisite: Resi­
dent TIDB (bit 11).

The clock decrements the time
counter that, upon reaching zero,
clears bit 14.

The background task is check­
pointed and suspended. I /0 is
not activated.

The task contains an error that
will cause an error message to
be output.

A task interrupt is expected.

The task contains overlays.

The scheduling task is suspended
until the scheduled task exits
or aborts.

The task is loaded in memory and
is ready for execution.

l.i J·,

SYSTEM GENERATION

13.7 BUILDING THE LIBRARY AND

CONFIGURATOR

If a full system generation has been requested by the S
form of an EDR directive (section 13.5.14), the library
generator is loaded upon completion of nucleus processing.
If only reconfiguration of resident tasks has been requested
(R form of the EDR directive), the library generator is
loaded immediately after directive processing.

A load module is a logically complete task or operation that
can be executed by the VORTEX system in foreground or
background. It resides in the foreground or background
library, or in the user library. Load modules are constructed
from sets of binary object modules interspersed with
alphanumeric control records. The control records indicate
the beginning and end of data for incorporation into each
load module, and specify certain parameters to the load
module. The group of object modules and control records
used to construct a load module is called a load-module
package (LMP). Figure 13-5 shows an LMP for a load
module without overlays, and figure 13-6 shows an LMP for
a load module with overlays. Each LMP runs from a SLM
control record to an END control record, and includes all
modules and records between.

SLM,namel

TID,name2,. ..

Object Modules Comprising
the Root Segement

ESB

END

NOTE:

':' = Alphanumeric
control record

Figure 13-5. Load Module Package for Module Without
Overlays

There are five SGEN control records used in building the
library:

• SLM
• TIO
• OVL
• ESB
• END

Start load module
Task-identification block specification
Overlay
End of segment

Library processing consists of the automatic reading of
control records and object modules from the SGL, and
construction of the library from these inputs. The only
manual operations are the addition and replacement of
load modules. In these cases, follow the procedures given in
sections 13.5.5 and 13.5.6, respectively.

l i 16

Resident-task configuration takes place upon completion of
library processing. All tasks specified by TSK directives
(section 13.5.13) are copied from the foreground library
into the VORTEX nucleus, thus becoming resident tasks. To
change the resident-task configuration of a previously
generated system, input the TSK directives followed by the
R form of the EDR directive (section 13.5.14), thus
bypassing nucleus and library processing and allowing the
resident-task configurator to alter the existing system.
Note: If a specified program is not found in the
foreground library, configuration continues, but an appro­
priate message is output.

13.7.1 SLM (Start LMP) Directive

This directive indicates the start of an LMP. It has the
general form

SLM, name

where name is the name of the LMP that begins with this
directive.

Example: Indicate the start of the LMP named ABC.

SLM,ABC

13.7.2 TIO (TIDB Specification) Directive

This directive contains the parameters necessary for the
generation of the task-identification block required for each
generated load module. The Tl D directive has the general
form

where

TID,name,mode,ovly ,lun

name

mode

ovly

lun

is the name (one to six alphanumeric
characters) of the task

is 1 if the task is a background task, or 2
if it is a foreground task

is the number of overlay segments, or 0 if
the task has no overlay segments, (note
that the value 1 is invalid)

is the number of the logical unit onto
which the task is to be cataloged

Once a Tl D directive is input and processed, object
modules are input, processed, and output to the specified
logical unit until the ESB directive (section 13.7.4) is found.

Examples: Specify a Tl DB for a task PROGl without
overlays for cataloging oil the BL unit (105).

TI D , PROG 1 I 1 I 0 I 1 0 5

Specify a TIDB for the task PROG2 with four overlay
segments for cataloging on an FL unit (106).

TID,PROG2,1,4,106

SLM,namel

TID,name2, . . .

Object Modules Comprising
the Root Segment

ESB

OVL,name3,. . .

Object Modules Comprising
the First Overlay Segment

ESB

OVL,name4,. ..

Object Modules Comprising
the Second Overlay ~egment
~ - -
Object ModuleS"l:Omprising
the nth Overlay Segment

ESB

END

NOTE:

•:• = Alphanumeric
control record

Figure 13-6. Load Module Package for Module With
Overlays

13.7.3 OVL (Overlay) Directive

This directive indicates the beginning of an overlay
segment. The OVL directive has the general form

OVL,segname

where segname is the name (one to six alphanumeric
characters) of the overlay segment.

Example: Indicate the beginning of the overlay segment
SINE.

OVL,SINE

13.7.4 ESB (End Segment) Directive

This directive indicates the end of a segment, i.e., that all
object modules have been loaded and processed. The
directive has the form

ESB

The ESB directive causes the searching of the CL library,
which was generated during nucleus processing, to satisfy
undefined externals.

The ESB directive concludes both root segments (follow­
ing TIO, section 13.7.2) and overlay segments (following
OVL, section 13.7.3) of a load module.

SYSTEM GENERATION

Example: Indicate the end of a segment.

ESB

13.7.5 END (End Library) Directive

This directive indicates the end of load-module generation.
It has the form

END

Example: Specify the end of load-module generation .

END

13.8 SYSTEM INITIALIZATION AND OUTPUT
LISTINGS

Upon completion of load-module processing, SGEN outputs
on the OC and LIS units the message

VORTEX SYSTEM READY

The system initializer and VORTEX nucleus are then loaded
into memory, the initializer is executed to initialize the
system, and the nucleus is executed to begin system
operation. At this time, the OM library should be loaded
and built on the RMD using FMAIN.

The VORTEX system is now operating with the peripherals
in the status specified by Tl D control records.

If the EDR directive specified a listing, linking information
is listed on the LIS unit during nucleus processing and
library generation. Regardless of the EDR directive, RMD
and resident-task information is listed during nucleus
processing or resident-task configuration, respectively.
Figures 13-7 through 13-10 show the listing formats of load
maps for the VORTEX nucleus, the library processor, the
RMD partitions, and the resident tasks.

CORE RESIDENT LIBRARY

NAME

AAA
BBB

zzz

LOCATION

017285
000100

025863

NONSCHEDULED TASKS

NAME

ABC
DEF

XYZ

LOCATION

022620
014640

011400

Figure 13-7. VORTEX Nucleus Load Map

: I:

SYSTEM GENERATION

LOAD MODULE: ABC

CATALOGED ON: DOOH

NAME LOCATION

MOP A 032556
QRS R 000200

TUV A 032501

LOAD MODULE: CDE

CATALOGED ON: D10A

NAME

GHI
JKL

MNO

R
R

R

LOCATION

000010
000012

000077

Figure 13-8. Library Processor Load Map

RMD PARTITIONING

NAME FIRST LAST BAD
TRACK TRACK TRACKS

DOOA 0007 0008 0000
DOOB 0009 0028 0000
DOOC 0029 0053 0000
DOOD 0054 0093 0000
DOOE 0094 0 101 0000
DOOF 0102 0 119 0000
DOOG 0120 0137 0000
DOOH 0138 0203 0000

D01A 0001 0039 0000
D01B 0040 0099 0000
D01C 0100 0149 0000
D01D 0150 0203 0000

Figure 13-9. RMD Partition Listing

j j 18

CORE RESIDENT TASKS

NAME LOCATIONS

PROG1 014630
PROG2 014630
PROG3 NOT FOUND
PROG4 014500

Figure 13-10. Resident-Task Load Map

13.9 SYSTEM GENERATION EXAMPLES

EXAMPLE 1

Problem: Generate a VORTEX system using the following
hardware:

a. Computer with 16K main memory

b. A model 620-37 disc unit with device address 016

c. Teletype keyboard/printer

d. Card reader

e. Two buffer interlace controllers (BICs) with device
addresses 020 and 022

f. One priority interrupt module (PIM) with device
address 040

and having the characteristics listed below:

a. Foreground common size = 0200

b. Storage/reentry stack area size = 0200

c. NumberofemptyTIDBs = 20

d. Number of disc partitions = 9

e. All eight interrupt lines connected through a common
interrupt handler

f. One user-coded program added to the resident module
(PROGl)

g. JCP replaced with a new version

h. One user-coded load module added to the foreground
library (after LMGEN)

i. The system file listed after system generation

Procedure:

Step

2

3

4

5

User Action

Load and execute the card
reader loader (table 13-1)

On the OC unit, input

DIR = TYOOA,01
LIB= CROOA,030
ALT = CROOA,030
LIS = TYOOA,01
SYS= DOOB,016,020

On the Teletype (DIR unit),
type

CLK, 100, 100,20
MRY,037777,0200
EQP,DOB,016,1,020,3
EQP, TYOA,01, 1,0,0
EQP,CROA,030, 1,0,0
PRT ,DOOA,2, C;DOOB,20, F
PRT,DOOC,25,E;DOOD,40,D
PRT,DOOE,8,S;DOOF, 18,B
PRT,DOOG, 18, •:•;DOOH,52, •:•
PRT ,DOOi, 14, *
ASN, 1 = TY00,2 = TY00,3 = TYOO
ASN,4 = CR00,5 = TYOO, = CROO
ASN,7 = DOOl,8 = DOOH,9 = DOOG
ASN, 10=DOOH,11 = TYOO, 12 = TYOO
ASN,180 = DOOH,181 = DOOi
PIM,00, TBDOB,01,0;02, TBCROA,01,0
PIM,03, TBDOB,01,0;04, TBTYOA,01,0
PIM,05, TBTYOA,02,0
TSK,PROGl
LRE,BGTSKl
LAD,BGTSK2
EDR,S,20,0200,9,44,26,L

Load revised version of
BGTSKl load module in the
card reader, and on DIR
type:

ALT

Load the remainder of the
load module library in the
card reader, and on DIR type

LIB

SYSTEM GENERATION

SGEN Response

Loads the 1/0 interrogation
routine punched cards from
the card reader, and outputs
on the OC unit

1/0 INTERROGATION

Loads the SGEN drivers and
directive processor, and
outputs

INPUT DIRECTIVES

Processes the directives,
partitions the disc, loads
the nucleus processor and
builds the nucleus, loads
the library processor and
builds the library until
load module JCP is encoun­
tered, and outputs

REPLACE JCP
READY

Reads and processes the
new load module, and
outputs:

READY

Processes the load mod­
ule library until the
completion of LMGEN,
and outputs

ADD AFTER BGTSK2
READY

SYSTEM GENERATION

Step

6

7

8

9

EXAMPLE 2

User Action

Load the PROGl load module
in the card reader, and on
DIR type

ALT

Load the PROG2 load module
in the card reader, and on
DIR type

ALT

Load the remainder of the
load module library in the
card reader, and on DIR type

LIB

None

Problem: Replace the current resident tasks in the
foreground library with the tasks listed below in an
operational VORTEX system.

PROGl
ABC
TEST
EFG

Procedure:

Step

2

3

4

User Action

Load and execute the magnetic
tape loader (table 13-1)

On the OC unit, input

DIR= TYOOA,01
LIB= MTOOA,010
ALT= MTOlA,010
LIS = LPOOA,035
SYS= DOOA2,014,020

On the Teletype (DIR unit),
type

TSK,PROGl,ABC
TSK,TEST,EFG
EDR,R

None

SGEN Response

Reads and processes PROGl,
and outputs

READY

Reads and processes PROG2,
and outputs

READY

Processes the remainder of
the load module library,
copies PROGl from the FL
unit to the VORTEX nucleus,
lists the resident task in­
formation, and outputs on
OC and LIS

VORTEX SYSTEM READY

Loads and initializes the
VORTEX nucleus

SGEN Response

Loads the I /0 interrogation
routine from magnetic tape,
and outputs from the OC unit

10 INTERROGATION

Loads the SGEN drivers and
directive processor, and
outputs

INPUT DIRECTIVES

Processes the directives,
loads the resident-task
processor, enters the
PROGl, ABC, TEST, and
EFG load modules from FL,
lists resident information,
and outputs on OC and LIS

VORTEX SYSTEM READY

Loads and initializes
the VORTEX nucleus

SECTION 14

SYSTEM MAINTENANCE

The VORTEX system-maintenance component (SMAIN) is a
background task that maintains the system-generation
library (SGL). The SGL (figure 14-1) comprises all object
modules and their related control records required to
generate a generalized VORTEX operating system.

14.1 ORGANIZATION

SMAIN is scheduled for execution by inputting the job­
control-processor (JCP) directive /SMAIN (section 4.2.21).
Once SMAIN is so scheduled, loaded, and executed, SMAIN
directives can be input from the SI logical unit to maintain
the SGL. No processing of the SGL takes place before all
SMAIN directives are input and processed. Then user­
specified object modules and/or control records are added,
deleted, or replaced to generate a new SGL.

SMAIN has a symbol-table area for 200 symbols at five
words per symbol. To increase this, input a /MEM directive
(section 4.2.5), where each 512-word block will increase the
capacity of the table by 100 symbols.

INPUTS to the SMAIN comprise:

a. System-maintenance directives (section 14.2) input
through the SI logical unit.

b. The old SGL input through the logical unit specified by
the IN directive (section 14.2.1).

c. New or replacement object modules and/or control
records input through the logical unit specified by the
ALT directive (section 14.2.3).

d. Error-recovery inputs entered via the SO logical unit.

System-maintenance directives specify both the changes to
be made in the SGL, and the logical units to be used in
making these changes. The directives are input through the
SI logical unit and listed, when specified, on the LO logical
unit. If the SI logical unit is a Teletype or a CRT device, the
message SM*•) is output to indicate that the SI unit is
waiting for SMAIN input.

The old SGL contains three types of record: 1) control
records and comments (ASCII), 2) the system-generation
relocatable loader (the only SGL absolute core-image
record), and 3) relocatable object modules such as are
output by the DAS MR assembler and the FORTRAN
compiler.

New or replacement object modules and/or control records
have the same specifications as their equivalents in the old
SGL.

Error-recovery inputs are entered by the operator on the
SO logical unit to recover from errors in SMAIN operations.
Error messages applicable to this component are given in
section 17.14. Recovery from the type of error represented
by invalid directives or parameters 1s by either of the
following:

a. Input the character C on the SO unit, thus directing
SMAIN to go to the SI unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next SMAIN directive is then input
from the SI unit.

Recovery from errors encountered while processing object
modules and/or control records is by either of the
following:

a. Input the character R on the SO unit, thus directing a
rereading and reprocessing of the last record.

b. Input the character Pon the SO unit, thus directing a
rereading and reprocessing from the beginning of the
current object module or control record.

In the last two cases, repositioning is automatic if the error
involves a magnetic-tape unit or an RMD. Otherwise, such
repositioning is manual.

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort the SMAIN task and schedule
the JCP for execution.

OUTPUTS from the SMAI N comprise:

a. ThenewSGL

b. Error messages

c. The listing of the old SGL, if requested

d. Directive images

The new SGL contains object modules and control records.
It is similar in structure to the old SGL.

Error messages applicable to SMAIN are output on the SO
and on LO logical units. The individual mE.ssages, errors,
and possible recovery actions are given in sedion 17.14.

The listing of the old SGL is output, if reque:;ted, on the LO
unit. The output consists of a list of all contt ol records and
the contents of all object modules. At the top of each page,
the standard VORTEX heading is output.

T~e image of an object module is represented by the
identification name of the module, the date the module

14-1

SYSTEM MAINTENANCE

LOGICAL UNIT
SPECIF! ED BY
SMAIN DIRECTIVE IN

OLD SYSTEM
GENERATION
LIBRARY (SGL)

LOGICAL UNIT
SPECIF! ED BY
SMAIN DIRECTIVE ALT

NEW OBJECT
MODULES AND
CONTROL
RECORDS

1'111-HM

14-2

SYSTEM INPUT
(SI)

LOGICAL UNIT

SMAIN

SYSTEM OUTPUT
(SO)

LOGICAL UNIT

',GLAND :)MAJ!';

DIRECTIVI:.
LISTINGS

LI) T OUTPUT
(LO)

L')CJCAL UMT

Figure 14-1. SMAIN Block Diagram

LOGICAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE OUT

NEW SYSTE:M
GENERATION
LIBRARY (SGL)

was generated, the size (in words) of the module (0 for a
FORTRAN object module), and the external names refer­
enced by the module, in the following format:

id-name date size entry-names external-names

Directive images are posted onto the LO unit, thus
providing a hardcopy of the SMAIN directives for perma­
nent reference.

14.1.1 Control Records

In SMAIN there are two types of control record:

a. SGL delimiters

b. Object-module delimiters

SGL delimiters divide the SGL into six parts. Each part is
separated from the following part by a control record of the
form

CTL,PARTOOOn

where n is the number of the following part, and the SGL
itself is terminated by a control record of the form

CTL,ENDOFSGL

Within SMAIN directives, these control records are refer­
enced in the following format

PARTOOOn
ENDOFSGL

Object-module delimiters precede and/or follow each group
of object modules within the SGL. Each delimiter is of one
of the forms

SLM,name
TID,name
OVL,name
TDF,name
ESB
END

The control records containing a name can be referenced
by use of the name alone in SMAIN directives. These
control records and their uses are described in the section
on the system-generator component (section 13).

A set of object modules preceded by an SLM control record
and followed by an END control record is known as a load­
module package (LMP). To add, delete, or replace an entire
LMP, merely reference the name associated with the SLM
control record. Thus, if the directive specifies deletion and
includes the name associated with the SLM record, the
entire LMP is deleted. Additions and replacements operate
analogously.

SYSTE:.M MAINTENANCE

14.1.2 Object Modules

Relocatable object-module outputs from the DAS MR
assembler and the FORTRAN compiler are described in
appendix A.

14. l.3 System-Generation Library

The SGL is a collection of system programs in binary-object
form, and of control records in alphanumeric form, from
which a VORTEX system is generated. The structure of the
SGL is described in section 13.

14.2 SYSTEM-MAINTENANCE DIRECTIVES

This section describes the SMAIN directives:

IN
OUT
ALT

ADD
REP
DEL
LIST
END

Specify input logical unit
Specify output le gical unit
Specify alternate input logical
unit for new SGL items
Add items to the SGL
Replace SGL iterns
Delete items from the SGL
List the old SGL
End input of SNIAIN directives

SMAIN directives begin in column 1 .rnd comprise
sequences of character strings having no embedded
blanks. The character strings are separated by commas (.)
or by equal signs (=). The directives are free-form and
blanks are permitted between the individual character
strings of the directive, i.e., before or aftE:r commas (or
equal signs). Although not required, a period (.) is a line
terminator. Comments can be inserted after the period.

The general form of an SMAIN directive is

where

name,p(l),p(2), ... ,p(n)

name is one of the directive narr es given above
(any other character string produces an
error)

each p(n) is a parameter defined bt!low under the
descriptions of the individual directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(.)by equal signs (=)are omitted.

Error messages applicable to SMAIN directives are given in
section 17.14.

14-3

SYSTEM MAINTENANCE

14.2.1 IN (Input Logical Unit) Directive

This directive specifies the logical unit from which the old
SGL is to be input. It has the general form

where

I N,lun, key, filename

lun

key

filename

is the name or number of the logical unit
to be used for the input of the old SGL

is the protection code, if any, required to
address lun

is the name of the input file when lun is
an RMD partition

There is no default value for lun. If it is not specified, any
attempt at SGL processing will cause an error message
output.

Once specified, the value of lun remains constant until
changed by a subsequent IN directive. Each change of lun
requires a new IN directive.

If lun specifies an RMD partition, the RMD is rewound to
the first sector following the partition specification table
(PST, section 3.2) before any processing takes place. The
PST comprises one entry defining the entire RMD.

Examples: The old SGL resides on logical unit 4, the Pl
unit. Specify this unit to be the SGL input unit.

IN, 4

The old SGL resides on logical unit 107, which requires the
protection code G. Specify this unit to be the SGL input
unit.

IN,107,G

14.2.2 OUT (Output Logical Unit) Directive

This directive specifies the logical unit on which the new
SGL is to be output. It has the general form

where

14-4

OUT, lun, key, filename

lun is the name or number of the logical unit
to be used for the output of the new SGL

key is the protection code, if any, required to
address lun

filename is the name of the output file when lun is
an RMD partition

The default value of lun is zero. When lun is zero by
specification or by default, there is no output logical unit.

Once specified, the value of lun remains constant until
changed by a subsequent OUT directive. Each change of
lun requires a new OUT directive.

If lun specifies an RMD partition, the RMD is rewound to
the first sector following the PST before any processing
takes place. The PST comprises one entry defining the
entire RMD.

Examples: Specify the PO logical unit, unit 10, to be the
output unit for the new SGL.

OUT, 10

Specify that there is to be no output logical unit.

OUT,O

14.2.3 ALT (Alternate Logical Unit) Directive

This directive specifies the logical unit from which new
object module(s) and/or control record(s) are to be input to
the new SGL. It has the general form

ALT ,lun, key, filename

where

lun

key

filename

is the name or number of the logical unit
to be used for the input of new items to the
SGL

is the protection code, if any, required to
address lun

is the name of the input file when lun is
an RMD partition

There is no default value for lun. If it is not specified, any
attempt to input new object modules or control records to
the SGL will cause an error message output.

Once specified, the value of lun remains constant until
changed by a subsequent ALT directive. Each change of lun
requires a new ALT directive.

Examples: Specify that new object modules and control
records are to be input to the SGL from the Bl logical unit
only.

ALT,6

Make the same specification where Bl is an RMD partition
without a protection code. Use file FILEX.

ALT,BI, ,FILEX

14.2.4 ADD Directive

This directive permits the addition of object modules and/
or control records during the generation of a new SGL, the
additions being made immediately after each of the items
specified by the parameters of the ADD directive. The
directive has the general form

ADD,p(1),p(2), ... ,p(n)

where each p(n) is the name of an object module or control
record after which additions are to be made.

SMAIN copies object modules and control records from the
old SGL into the new SGL up to and including an item
specified by one of the parameters, p(n), of the ADD
directive. After this item is copied, the message

ADD AFTER p(n)

is output to indicate that SMAIN is waiting for a control
character (Y or N) to be input on the SO logical unit.

If the control character input is Y, SMAIN adds the next
object module or control record contained on the logical
unit specified by the ALT directive (section 14.2.3), then
repeats the message requesting another control character.
This continues until the control character input is N.

If the control character input is N, SMAIN assumes the
additions at this point are complete. It continues copying
from the old SGL and outputs the message

END REPLACEMENTS

The entire process is repeated when the next item specified
by one of the parameters, p(n), of the ADD directive is
found. The items in the directive need not be in the same
order as they appear on the old SGL.

Example: During generation of a new SGL, add object
module(s) and/or control record(s) after the old SGL
control record PARTOOOl and after the old SGL object
module LMP, the added items to be input from the logical
unit specified by the ALT directive. Input

ADD,PART0001,LMP

then, when the message

ADD AFTER PART0001

appears, input the control character Y. SMAIN then inputs
the next item on the logical unit specified by the ALT
directive, and again outputs the message

ADD AFTER PART0001

and awaits another control character. If more is to be
added here, input Y. If no more additions are required at
this point, input N. After receiving the N, SMAIN outputs
the message

SYSTEM MAINTENANCE

END REPLACEMENTS

and continues to read the old SGL and copy it into the new
SGL up to and including the object module LMP. SMAIN
then outputs the message

ADD AFTER LMP

at which time the process is repeated.

Note that PARTOOOl does not have to precede LMP in the
old SGL. If the positions of the items are reversed relative
to their order in the directive, the order of messages will be
reversed. In any case, the items on the logical unit
specified by ALT must be in the order in which they are to
be added to the SGL.

14.2.5 REP (Replace) Directive

This directive permits the replacement of object modules
and/or control records during generation of a new SGL.
The directive has the general form

REP,p(l),p(2), ... ,p(n)

where each p(n) is the name of an object module or control
record that is to be replaced.

SMAIN copies object modules and control records from the
old SGL into the new SGL until it encounters one specified
by one of the parameters, p(n), of the REP directive. SMAIN
then reads the item to be replaced, but does not copy it
into the new SGL. After this is completed, the message

REP p(n)

is output to indicate that SMAIN is waiting for a control
character (Y or N) to be input on the SO logical unit. These
control characters operate just as in the ADD directive
(section 14.2.4), allowing the addition (in this case,
replacement, since the parameter item was not copied into
the new SGL) of new items to the SGL. The items in the
directive need not be in the same order as they appear in
the old SGL.

Example: During generation of a new SGL, replace the old
SGL object module IOCTL with object m0dules and/or
control records from the logical unit specified by an ALT
directive (section 14.2.3). Input

REP,IOCTL

then, when the message

REP IOCTL

appears, continue as for an ADD directive (sedion 14.2.4).

14-5

SYSTEM MAINTENANCE

14.2.6 DEL (Delete) Directive

This directive permits the deletion of object modules and/
or control records during generation of a new SGL. The
directive has the general form

DEL,p(l),p(2), ... ,p(n)

where each p(n) is the name of an object module or control
record that is to be deleted.

SMAIN copies object modules and control records from the
old SGL into the new SGL until it encounters one specified
by one of the parameters, p(n), of the DEL directive. SMAIN
then reads the item to be deleted, but does not copy it into
the new SGL. The items in the DEL directive need not be in
the same order as they appear on the old SGL.

If a listing of the old SGL is specified either by a LIST
directive (section 14.2.7) or by the L parameter of an END
directive (14.2.8), the deleted items are preceded on the
I isting by asterisks (~·).

Example: During generation of a new SGL, delete the
following old SGL items: object module IOST and control
record LMGENCTL.

DEL,IOST,LMGENCTL

14.2. 7 LIST Directive

f"his directive lists, on the LO logical unit, the old SGL as
found on the logical unit specified by the SMAIN directive
IN (section 14.2.1). The LIST directive has the form

LIST

Example: List the old SGL.

LIST

14.2.8 END Directive

This directive indicates that all ADD (section 14.2.4), REP
(section 14.2.5), and DEL (section 14.2.6) directives have
been input. END initiates the SGL maintenance process.
The directive has the general form

END,L

where L, if present, specifies that the old SGL is to be
listed.

Examples: After all ADD, REP, and DEL directives have
been input, initiate SGL maintenance processing.

END

14-6

Initiate the SGL maintenance processing as above, but list
the old SGL.

END,L

14.3 SYSTEM-MAINTENANCE OPERATION

The normal SMAIN operation consists of copying an
existing SGL from the logical unit specified by the IN
directive (section 14.2.1) to the logical unit specified by the
OUT directive (section 14.2.2), making the modifications
specified by the ADD (section 14.2.4), REP (section 14.2.5),
and DEL (section 14.2.6) directives, and thus creating a
new SGL.

Input of the END directive (section 14.2.8) initiates the
r:opying process. All ADD, REP, and DEL directives, if any,
must precede the END directive.

Modifications to the SGL are made through 1he logical unit
specified by the ALT directive (section 14.2.3). Such
modifications are in the form of additions and/or replace­
ments of object modules and/or control records. (These
items can also be deleted, but this process does not, of
course, require input on the ALT unit.)

When an object module is input, SMAIN verifies that there
1s no error with respect to check-sum, record size, loader
codes, sequence numbers, or structure.

14.4 PROGRAMMING EXAMPLES

Example 1: Schedule SMAIN, copy the old SGL from
logical unit 4 onto logical unit 9 without listing the old SGL,
dnd return to the JCP.

/SMAIN
IN, 4
OUT,9
END
/ENDJOB

Example 2: Schedule SMAIN; copy the old SGL from
logical unit 4 onto logical unit 9, listing the old SGL and
deleting object modules A, B, C, D, and E; and return to
the JCP.

/SMAIN
IN,4
OUT,9
DEL,A
DEL,B,C,D,E
END,L
/ENDJOB

Example 3: Schedule SMAIN, list the contents the old SGL
on logical unit 4, and return to the JCP.

/SMAIN
IN,4

LIST
/ENDJOB

Example 4: Schedule SMAIN; copy the old SGL from
logical unit 4 onto logical unit 9 without listing the old SGL;
add object modules or control records from logical unit 6
after control record PART0002 and after object module A;
replace load module LMGEN and control record JCPDEF;
delete object modules B, C, D, and E; and return to the
JCP.

/SMAIN
IN,4
OUT,9
ALT,6
ADD,PART0002,A
REP,LMGEN
DEL,B,C,D,E
REP,JCPDEF
END
/ENDJOB

SYSTEM MAINTENANCE

14-7

SECTION 15

OPERATOR COMMUNICATION

The operator communicates with the VORTEX system
through the operator communication component by means
of operator key-in requests input through the operator
communication (OC) logical unit.

15.1 DEFINITIONS

An operator key-in request is a string of up to 80
characters beginning with a semicolon. The request is
initiated by the operator and is input through the OC unit.
An operator key-in request is independent of I /0 requests
via the IOC (sec..ion 3) and, hence, is known as an
unsolicited request.

The operator communication (OC) logical unit is the logical
unit through which the operator inputs key-in requests.
There is only one OC unit in the VORTEX system. Initially,
the OC unit is the first Teletype, but this assignment can
be changed by use of the ;ASSIGN key-in request (section
15.2.9).

15.2 OPERATOR KEY-IN REQUESTS

This section describes the operator key-in requests:

;SCH ED
;TSCHED
;ATTACH
;RESUME
;TIME
;DATE
;ABORT
;TSTAT
;ASSIGN
;DEVON
;DEVUP
;IOLIST

Schedule foreground task
Time-schedule foreground task
Attach foreground task to PIM line
Resume task
Enter or display time-of-day
Enter date
Abort task
Test task status
Assign logical unit(s)
Device down
Device up
List logical-unit assignments

Operator key-in requests comprise sequences of character
strings having no embedded blanks. The character strings
are separated by commas (,) or by equal signs (=).

However, the key-in requests are free-form and blanks are
permitted between the individual character strings of the
key-in request, i.e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator.
Comments can be inserted after the period. A carriage
return is required to terminate any key-in request, however,
regardless of whether it contains a period.

The general form of an operator key-in request is

where

;request,p(l).p(2),, ... ,p(n)cr

request is one of the key-in requests listed above
in capital letters

eachp(n) is a parameter defined under the
descriptions of the individual key - in
requests below

er is the carriage return, which terminates
all operator key-in requests

Each operator key-in request begins with a semicolon (;)
and ends with a carriage return. Parameters are separated
by commas. A backarrow (-) deletes the preceding
character. A backslash(\) deletes the entin present key-in
request.

Table 15-1 shows the system names of phys cal 110 devices
as used in operator key-in requests.

For greater clarity, optional blank sepa1 3tors between
character strings, and the optional replacerr ent of commas
(,) by equal signs (=) are omitted from the descriptions of
the key-in requests.

Error messages applicable to operator key- ·1 requests are
given in section 17 .15.

Table 15-1. Physical 1/0 Devices

System Name

OUM

CPcu

CR cu

CT cu

Dcup

LPcu

MT cu

Physical Device

Dummy

Card punch

Card reader

Cathode ray tube (CRT) device

Rotating-memory device (RMD)

(disc/drum)

Line printer or Statos-31

Magnetic tape unit

PT cu High-speed paper tape reader/punch

TY cu

Cima
coma

Teletype printer /keyboard

Process 1/0

NOTES

c = Controller number. For each type < ,f device,
controllers are numbered from 0 as req11ired.

u = Unit number. For each controller, mits are
numbered from 0 as required (wi hin the
capacity of the controller).

cu can be omitted to specify unit 0 controller 0,
e.g., CROO or CR.

p = Partition letter. RMD partitions an lettered
from A to T as required to refer to a par titian on
the specified device, e.g., DOOA.

15-1

OPERATOR COMMUNICATION

15.2.1 ;SCHED (Schedule Foreground Task)
Key-In Request

This key-in request immediately schedules the specified
foreground-library task for execution at the designated
priority level. It has the general form

where

;SCHED,task,level,lun,key

task

level

lun

key

is the name of the foreground task to be
scheduled

is the priority level (from 2 to 31) of the
scheduled task

1s the number or name of the
foreground - library rotating memory
logical unit where the scheduled task
resides (0 for scheduling a resident
foreground task)

is the protection code, if any, required to
address lun

A dump of the contents of a library can be obtained by use
of the VORTEX file-maintenance component (section 9).

Operator key-in examples: Schedule on priority level 3
the foreground task DOTASK residing on the FL logical
unit. Use F as the protection key.

;SCHED,DOTASK,3,FL,F

Schedule on priority level 9 the resident foreground task
COPYIO.
;SCHED,COPYI0,9,0,0

15.2.2 ;TSCHED (Time-Schedule Foreground
Task) Key-In Request

This key-in request schedules the specified foreground­
library task for execution at the designated time-of-day and
priority level. It has the general form

where

15-2

;TSCHED, task,level,lun,key, time

task

level

tun

1s the name of the foreground task to be
scheduled

1s the priority level (from 2 to 31) of the
scheduled task

is the number or name of the
foreground library rotating memory
logical unit where the scheduled
task resides (0 for scheduling a resident
foreground task)

key

time

is the protection code, if any, required to
address lun

is the scheduled time in hours (from 00
to 23) and minutes (from 00 to 59), e.g.,
1945 for 7:45p.m.

Operator key-in examples. Schedule for execution at
11 :30 p.m. on priority level 3 the foreground task DOTASK
residing on the US logical unit. Use T as the protection key.

;TSCHED,DOTASK,3,US,T,2330

Schedule for execution at 8:30 a.m. on pri< rity level 9 the
resident foreground task TESTIO.

;TSCHED,TESTI0,9,0,0,0830

15.2.3 ;ATTACH Key-In Request

This key-in request attaches the specified f •reground task
to the designated PIM (priority interrupt n 1odule) line. It
has the general form

where

;ATTACH, task,line,iew,enab/e

task

line

iew

enable

is the name of the foreground task to be
attached to the PIM line

is the two-digit number of the PIM line to
which the task is to be attached, with the
tens digit specifying the PIM number
(1-8) and the units digit the line number

(0-7)on that PIM

is the value (from 01 to 0177777) of the
interrupt event word (section 12) and
identifies the bit(s) to be set in the task
Tl DB when an interrupt occurs on line

is E (default value) to enable the line, or
D to disable it

The task can be resident or nonresident. However, its TIDB
must have been defined at system-generation time.
ATTACH provides a flexible way of alte1 ing interrupt
assignments without having to regenerate thi~ system.

Operator key-in example: Connect task INlf~PT to PIM l,
line 3. Use 020 as the interrupt event word value (i.e., set
bit 4 of the interrupt event word in TIDB if INTRPT is
scheduled due to an interrupt on PIM l, line 3).

;ATTACH,INTRPT,13,020

A PIM directive with the PIM line to be attacl1ed must have
been specified during system generation to ~et up the link
to the interrupt line handler region.

15.2.4 ;RESUME Key-In Request

This key-in request reactivates the specified task for
execution at its specified priority level. It has the general
form

;RESUME, task

where task is the name of the task to be resumed

Operator key-in example: Resume the task DOTASK.

;RESUME,DOTASK

15.2.5 ;TIME Key-In Request

This key-in request enters the specified time, if any, as
system time-of -day. If no time is specified in the key-in
request, ;TIME displays the current time-of-day. The key-in
request has the general form

;TIME, time

where time is the time-of-day in hours (from 00 to 23) and
minutes (from 00 to 59), e.g., 1945 for 7:45 p.m.

The time-of-day output for a ;TIME request without time is
of the form

T hhmm HRS

where hhmm is the time of day in hours and minutes.

Operator key-in example:
3:00 p.m.

;TIME,1500

Set the system time-of-day to

15.2.6 ;DATE Key-In Request

This key-in request enters the specified date as the system
date. It has the general form

;DATE,mm/dd/yy

where
mm is the month (00 to 12)
dd is the day (00 to 31)
yy is the year (00 to 99)

Note that since the entire date is considered one
parameter, there dre no commas other than the one
immediately following DATE. The components of the date
are, however, separated by slashes as shown.

Operator key-in example: Set the system date to 25
December 1971.

OPERA TOR COMMUNICATION

15.2.7 ;ABORT Key-In Request

This key-in request aborts the specified task. It has the
general form

;ABORT,task

where task is the name of the task to be aborted

Operator key-in example: Abort the task DOTASK.

;ABORT,DOTASK

15.2.8 ;TSTAT (Task Status) Key-In Request

This key-in request outputs the status of the specified task,
if any. If no task is specified, ;TSTAT outputs the status of
all tasks queued on the active task identification block
(Tl DB) stack. This request is not applicable to tasks having
no established TIDB. The request has the general form

;TSTAT,task

where task is the name of the task whose status is to be
output.

The status-output for a ;TSTAT key-in request is of the form

where

task Plevel Sstatus TMmin TSmilli

task

level

status

min

mi/Ii

is the name of the task whose status is
being output

is the priority level (from 2 to 31) of the
task

is the status of the task as found in
words 1 and 2 of the Tl DB (table 15-2)

is the value of the counte1 in Tl DB word
11

is the value of the counte1 in Tl DB word
10

The values of min and mi/Ii are printed only 1f bit O and/or
; DATE, 12/25/71 7 of TIDB word 1(table15-2) is set.

15-3

OPERATOR COMMUNICATION

Table 15-2. Task Status (TIDB Words 1 and 2)

TIDB Word Bit Meaning of Set Bit

15 Suspend interrupt
14 Suspend task
13 Abort task
12 Exit from task
11 Tl DB resident
10 Resident task
9 Foreground task
8 Protected task
7 Task scheduled by time-delay
6 Time-delay active
5 Task waiting to be loaded
4 Task error
3 Task interrupt expected
2 Overlay task

Schedule task upon termination
of active task

1 0 Task search-allocated-loaded
2 15 Task opened
2 14 Task loaded in background

(checkpoint) area
2 13 Load overlay
2 12·0 Unused

Operator key-in examples: Request the output of the
status of the task BIGJOB.

;TSTAT,BIGJOB

The output will be

BIGJOB P02 $000100, 000000 TM077777 TS077430

if the status of BIGJOB is such that it is on priority level 2,
contains a status of 0100 in TIDB words 1 and 2, with time
counters (TIDB words 10 and 11) of 077777 and 077430,
respectively. The latter two octal complement counters
show zero minutes and 0340 5-millisecond increments.

Request the output of the status of all foreground tasks
inputs.

;TSTAT

and receive as a typical response

VZDB P24 $047401, 000000 TM077311 TS071000
V$TYA P23 $047411, 000000 TM077005 TS071011
V$TYA P23 $047411, 000000 TM077200 TS076000
VZLPA P22 $047401, 000000 TM077002 TS022000
VZCRA P22 $047401, 000000 TM077000 TS070221
VZMTA P22 S047401, 000000 TM077200 TS071000
VZMTA P22 $047401, 000000 TM077200 TS071000
V$0PCM P10 $005405, 020000 TM077020 TS077033
JCP P01 $044400, 000000 TM077000 TS070005

15-4

15.2.9 ;ASSIGN Key-In Request

This key-in request equates and assigns particular logical
units to specific 1/0 devices. It has the general form

where

;ASSIGN,1(1) = r(l),1(2) = r(2), ... ,l(n) = r(n)

each l(n) is a logical-unit number (e.g., 12) or
name (e.g., SI)

each r(n) is a logical-unit number or name, or a
physical-device system name (e.g., TYOO
or TY, table 15-1)

The logical unit to the left of the equal sign in each pair is
assigned to the unit/device to the right

An inoperable device, i.e., one declared down by ;DEVON
(section 15.2.10), cannot be assigned. A logical unit
designated as unassignable (unit numbers 101 through
179) cannot be reassigned.

Operator key-in examples: Assign the card reader CROO
as the SI logical unit and the Teletype TYOl as the OC unit.

;ASSIGN,SI•CROO,OC•TY01

Assign a dummy device as the Pl unit.

;ASSIGN,PI•DUM

15.2.10 ;DEVON (Device Down) Key-In Request

This key-in request declares the specified physical device
inoperable for system use. It is not applicable to the OC
unit or to devices containing system libraries. The request
has the general form

;DEVDN,device

where device is the system name of the physical device in
four ASCII characters, e.g., LPOO (or LP), TYOl, (table 15-1)

Operator key-in example; Declare TYOl inoperable for
system use.

;DEVDN,TY01

15.2.11 ;DEVUP (Device Up) Key-In Request

This key-in request declares the specified physical device
operational for system use. It has the general form

;DEVUP,device

where device is the system name of the physical device in
four ASCII characters, e.g., LPOO (or LP), TYO 1 (table 15-1)

Operator key-in example: Declare TY02 operational for
system use.

;DEVUP,TY02

15.2.12 ;IOLIST (List 1/0) Key-In Request

This key-in request outputs a listing of the specified logical­
unit assignments, if any. If no logical unit is specified,
;IOLIST outputs all logical-unit assignments. The key-in
request has the general form

;IOLIST,/un(l),lun(2), .. . ,/un(n)

where each lun(n) is the name or number of a logical unit,
e.g., Sl,5.

Where the ;IOLIST key-in request specifies a logical-unit
name, the output is of the form

where

name (number) = device D

name

number

device

D

is the name of the logical unit, e.g., LO

is the number of that logical unit, e.g.,
005

is the name of the physical device
assigned, e.g., LPOO

if present, indicates that the physical
device has been declared down and is
thus inoperable

If the key-in request specifies the number rather than the
name of the logical unit, the output will repeat the number
in both the name and number fields.

In a listing of all assignments, the output uses a name and
number where applicable, and the repeated number where
no name is assigned to the logical unit. Logical units

OPERATOR COMMUNICATION

without names assigned at system-generation time are not
listed and must be individually specified by number.

Operator key-in examples: Request the output of the
logical-unit assignments for the Bl and BO units. Input

;IOLIST,BI,BO

and receive as a typical response

BI (006) = CROO
BO (007) = CPOO D

Request the output of the logical-unit assignment for logical
unit 180. Input

;IOLIST,180

and receive as a typical response

180 (180) = D11H

Request the output of all logical-unit assignments. Input

;IOLIST

and receive as a typical response

DC (0 0 1) == TYOO
SI (002) = TYOO
so { 003) "" TYOO
PI {004) = CROO D
LO {005) == LPOO
BI { 006) CROO D
BO { 007) == PTOO
SS (008) = DOOH
PO {009) = DOOH
cu { 10 0) • DOOE
GO { 101) • DOOG
SW { 102) = DOOF
CL { 103) = DOOA
OM { 104) = DOOD
BL { 105) = DOOC
FL { 10 6) DOOB

15-5

SECTION 16

OPERATION OF THE VORTEX SYSTEM

This section explains the operation of devices in the
VORTEX system, the loading of the system bootstrap and
procedures for changing and initializing the disc pack
during VORTEX operation.

16.1 DEVICE INITIALIZATION

16.1.1 Card Reader (Model 620-25)

a. Turn on the card reader.

b. Place the input deck in the card hopper.

c. Press READY I ALERT.

16.1.2 Card Punch (Model 620-27)

a. Turn on the card punch.

b. Place blank cards in the card hopper.

c. If the visual punch station is empty, insert a card into it
as follows:

(1) Place a card in the auxiliary feed slot.

(2) Clear all registers.

(3) Set the instruction register (I) to 0100131.

(4) Set REPEAT.

(5) Press STEP. The card should move from the
auxiliary feed slot to the visual punch station.

(6) Reset REPEAT.

16.1.3 Line Printer (Model 620-77)

a. Turn on the line printer.

b. Wait for the READY light to come on.

c. Set the ON LINE/OFF LINE switch to ON LINE.

d. For manual paper ejection set to OFF LINE, then press
the TOP OF FORM switch.

16.1.4 33/35 ASR Teletype (Models 620-06, -08)

a. Turn on the Teletype.

b. Set the Teletype in off-line mode and simultaneously
press the CONTROL and D, then the CONTROL and T,
finally the CONTROL and Q keys.

c. Set the Teletype on-line.

16.1.5 High-Speed Paper-Tape Reader
(Model 620-55)

a. Turn on the paper-tape reader.

b. Position the input paper tape in the reader with blank
leader at the reading station and clo~;e the reading
gate.

c. Set the LOAD/RUN switch to RUN.

16.1.6 Magnetic-Tape Unit (Models 6.20-30,-31,-32)

a. Turn on the magnetic-tape unit.

b. Mount the input magnetic tape.

c. Position the magnetic tape to the loading point.

d. Press ON LINE.

16.1.7 Magnetic-Drum and Fixed-Head
Disc Units

(Models 620-47 through 620-49 and 620-43C or D)

a. Turn on the drum unit.

b. Wait for the drum unit to reach operating speed.

16.1.8 Moving-Head Disc Units
(Models 620-36 and -37) ·

a. Place the START /STOP switch in the STOP position.

b. Press POWER ON button and wait for th,~ SAFE light to
come on.

c. Mount the disc pack.

d. Place the START /STOP switch in the STArH position.

e. Wait for the disc unit to reach operating speed (READY
indicator lights).

f. Turn off WRITE PROTECT.

16.1.9 Moving-Head Disc Units (Model 620-35)

a. Mount the disc pack

b. Press POWER-ON button and wait for unit to reach
operating speed and for the heads to emerge

c. Press on-line button.

16-1

OPERATION OF THE VORTEX SYSTEM

16.2 SYSTEM BOOTSTRAP LOADER

System key-in loaders initiate loading of the VORTEX
system from a drum (Models 620-47 through -49) or disc
(Models 620-36 and -37) memory. The key-in loader loads
the system initializer from the RMD to main memory
(locations 000000 to 001127). The system initializer then
loads and initializes the system. Table 16-1 contains the
key-in loader programs.

Address

001130
001131
001132
001133
001134
001135
001136
001137
001140
001141
001142
001143
001144
001145
001146
001147
001150
001151
001152
001153
001154
001155
001156
001157
001160
001161
001162
001163
001164
001165
001166
001167
001170
001171
001172
001173
001174
001175
001176

Table 16-1. Key-In Loader Programs

Drum Disc
-48,-49 -36137
-43C, D

lOOOyy 1004zz
006020 1040zz
000002 1002zz
005001 005001
103lxx 103lzz
006120 1010zz
001127 001141
103lyy 001000
lOOOxx 001135
lOOOzz 1025zz
1032zz 151167
1010xx 001016
000600 001130
001000 lOOOyy
001143 1003zz

005102
1032zz
103lxx
006010
001130
1031yy
lOOOxx
lOOOzz
1014zz
001157
1025zz
151167
001016
001130
001000
000600
007760

Disc
-35

005302
006030
177773
005001
100015
103115
100515
101015
001143
001000
001137
102515
001016
001130
005122
005021
006120
000167
004460
100015
~tooo·it

*Bl 7-0·· lo ~ I Z. o
~-1 \01> 2.2. I
-H>e07e· l 00 D C.0
005041
006150
000007
103115
100415
101415
001171
001000
001165
102515
001016
001130
005144
001040
000600
uJ\aau
' <Jl ~""'~?

where xx = even SIC address, yy = odd BIC address, and
zz = device address.

16-2

16.2.1 Automatic Bootstrap Loader
(Model 620-15)

Where the automatic bootstrap loader option is available,
the appropriate key-in loader is loaded from the required
medium (high-speed paper-tape or Teletype reader) into
locations 001130ff.

To initiate the loader: (1) clear the A, B, X, I, and P
registers; (2) with the computer in STEP, press the RESET
switch on the front panel; (3) place the STEP/RUN switch
in the RUN position; and (4) press and release the LOAD
switch.

16.2.2 Control Panel Loading

The appropriate key-in loader is entered through the
computer control panel as follows:

a. Press REPEAT.

b. Load an STA instruction (054000) into the I register.

c. Load 001130 into the P register.

d. Load a key-in loader instruction into the A register.

e. Lift the STEP/RUN switch to STEP.

f. Clear the A register.

g. Repeat steps (d), (e), and (f) for e<1ch bootstrap
instruction.

To initiate the bootstrap, clear the A, B, X, and I registers,
and load 001130 into the P register. Then, press RESET,
place the STEP/RUN switch in the RUN position, and press
START.

NOTE: To facilitate reloading, the key-in loader may be
dumped out on paper tape and then loaded by the binary
loader (BLD II).

16.3 DISC PACK HANDLING

VORTEX provides for dynamic mounting of disc packs
during program execution by means of a system utility
program called rotating memory analysis and initialization
(RAZI). RAZI handles:

a. A disc pack not previously used with VORTEX that is
replacing a disc pack presently in the system.

b. A disc pack previously formatted under VORTEX that is
replacing a disc pack presently in the system.

The normal RAZI operating procedure is:

a. The task requiring the disc pack change issues an
operator message directing him to switch packs.

b. The task suspends itself.

c. The operator makes the necessary pack changes.

d. The operator schedules and executes RAZI.

e. Upon completion of RAZI, the operator resumes the
suspended task. The task can now perform 1/0 on the
new pack.

RAZI is a foreground program residing in the foreground
library (FL). It is scheduled by a request of the form:

;SCHED,RAZl,p,FL,F

where p is the priority level.

If the SI logical unit is a Teletype or a CRT device, the
message RZ* * is output to indicate that the SI unit is
waiting for RAZI input.

Each directive is completely processed before the next is
entered. All directives are output on the SO and LO devices.
In addition, partitioning information is listed on the LO
device when integration of the requested disc pack is
complete.

OUTPUTS from the RAZI comprise:

a. Error messages

b. The listing of the RAZ/ directives on the SO and LO units

c. Partition description listing

Error messages applicable to RAZI are output on the SO
and LO logical units. The individual messages and errors
are given in section 17.16.

(~/

(The listing of the RAZI directives is made as th~directives'\
are read. The VORTEX standard heading appears at the top ,

(of each page of the listing, and the directives are listed;'
',~i!hout modification.

The partition description listing is output on the LO device
upon completing the integration of a new disc pack into the
VORTEX system. After the VORTEX standard heading,
there are three blank lines followed by the RAZI heading:

PARTITION
NAME

FIRST
TRACK

LAST
TRACK

BAD
TRACKS

OPERATION OF THE VORTEX SYSTEM

followed by one more blank line. Then the information
concerning each partition of the device is output, one
partition per line, as shown in the following example.

PARTITION FIRST LAST BAD
NAME TRACK TRACK TRACKS

D10A 0002 0019 0000
D10B 0020 0052 0001
D10C 0053 0082 0000
D10D 0083 0 118 0000
D10E 0 119 0126 0000
D10F 0127 0 14 1 0000
D10G 0142 0156 0000
D10H 0157 0206 0002
D10I 0207 0242 0000
D10J 0243 0251 0000
D10K 0252 0256 0000

The RAZI directives are:

• PRT Partition

• FRM Format rotating mem,)ry

• INL Initialize

• EXIT

RAZI directives begin in column 1 and compi-ise sequences
of character strings having no embeddeo blanks. The
character strings are separated by comma:> (,) or equal
signs (=. The directives are free-form, ar d blanks are
permitted between the individual character strings of the
directive, i.e., before or after. commas (or equal signs).
Although not required, a period (.) is a lir.e terminafor. ·, -··

\Comments can be inserted after a period.

The general format of a RAZI directive is

name,p(l),p(2), ... ,p(n)

where

name

each p(n)

if any

is one of the directive namt s given above

is a parameter required by the directive
and defined below under descriptions
of the individual directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(.)by equal signs (=)are omitted.

Note: The disc pack containing the VORTEX nucleus
cannot be replaced.

16-3

(,. ·1 '.

OPERATION OF THE VORTEX SYSTEM

16.3.1 PRT (Partition) Directive

This directive specifies the size and protection code for
each RMD partition. It has the general form

where

PRT ,p(l), s(1),k(1),p(2),s(2), k(2), ... ,p(n),s(n), k(n)

each p(n) is the RMD partition letter (A through T,
inclusive)

s(n)

k(n)

is the number (octal or decimal) of
tracks in the partition .v •• :,f i

is the protection code, if any, required to
address
p, or "' if the partition is unprotected

While the parition specifications can appear in any order,
the set of partitions specified for each RMD must comprise
a contiguous group, e.g., the sequence A, C, D, B, but the
sequence A, C, D, E constitutes an error.

Example: Define three partitions on an RMD. The first
occupies ten tracks and uses protection code Q, the second
two tracks\(ll and T2)\rnd code S, and the third 48 tracks
(13 through -50·~-Tndusive})without protection.

PRT, A, 10, Q, B, 2, S, C, 0 6 0, *

16.3.2 FRM (Format Rotating Memory)
Directive

This directive causes RAZI to run a bad-track analysis on
the specified RMD and build a new PST for it. The directive
has the general form

FRM, lu, size, flag

where
lu

size

flag

is the logical-unit name or number to
which the subject RMD is assigned

is the number (octal or decimal) of
tracks on the RMD

is 1 to perform a complete bad-track
analysis and clear the RMD, or O to
merely clear the RMD and verify that it
is cleared

Examples: Clear the RMD assigned to PO, having 203
tracks, and build a PST for it according to previously
defined partition information.

FRM,P0,203,0

Run a complete bad-track analysis on the RMD assigned to
25, having 128 tracks, and build a PST for it according to
previously defined partition information.

FRM, 2 5, 12 8, 1

16-4

620-35 disc in a system require the formatting program
(described in section 16.4) to format disc and analyze bad
tracks.

16.3.3 INL (Initialize) Directive

This directive causes RAZI to incorporate a PST and a bad­
track table from the named RMD into the VORTEX nucleus.
It has the general form

INL,lu,size

where lu and size have the same definition as in the FRM
directive (section 16.3.2).

Example: Read the PST and bad-track table from the unit
assigned to BO, having 128 tracks, and incorporate them
into the VORTEX nucleus.

INL,B0,128

16.3.4 EXIT Directive

This directive terminates RAZI. It has the general form

EXIT

Example: Terminate RAZI.

EXIT

16.4 620-35 DISC PACK FORMATTING
PROGRAM

Each 620-35 disc pack requires formatting before any input
or output operation can be performed on it. Before VORTEX
can be prepared on a 620-35 disc pack or any 620-35 discs
can be used under VORTEX, disc packs must be formatted.
The formatting program forms 120-word sectors, which are
grouped 24 per track. The program also examines the disc
pack for bad tracks.

The formatting program operates in a stand-alone mode. It
may be loaded and executed with either AID 11 or BLD.
Execution begins at location 0500. Upon execution the
formatting program requests some parameters to be input
from the keyboard. The following requests are made. An
inappropriate response causes the request to be repeated.

Request

INPUT BTC NUMBER

Type a value and a carriage return. The
acceptable values are octal 020, 022, 024,
026 and 070

INPUT DEVICE ADDRESS

Type a value in the range from octal 014
through 017 followed by a carriage return

INPUT UNIT NUMBER

Type unit number followed by a carriage
return. Acceptable values are 0 through
3 -- up to four units can be connected
to a single controller

In addition the formatting program performs bad-track
analysis and creates and maintains a bad-track table,
which is entered on each disc pack at the completion of its
formatting. The bad-track table is located on sectors 0
through 2 of the first track. The table is 254 words long,
starting at word 64 of sector 0. The first 64 words of sector
O reserve the necessary space for the PST. The remaining
unused words of sector 2 are filled with zeroes. Each disc
I /0 error will generate a ten-event retry sequence, which

OPERATION OF THE VORTEX SYSTEM

upon failure will set the bad-track flag within the track
header. The program also sets the correpsonding bit in the
bad-track table. No alternate tracks are assigned.

If the first track is determined to be bad, the bad-track
table may not be placed there. The program prints the
error message,

FIRST TRACK BAD

and aborts formatting the current disc pack. The program
returns to the keyboard interrogation routine. After the
bad-track table has been written on the disc pack, the
formatting program resumes the keyboard interrogation to
obtain parameters for formatting the next disc. In this way,
more than one disc pack can be formatted in the same
session. The formatting program may be terminated at this
point when no disc packs (except those Nith bad first
tracks) remain unformatted. If an unsafe condition
(SELECT LOCK light on) occurs, reload and execute the
program. Formatting disc packs is not necessary before
every VORTEX system generation. Head crashes generally
indicate formatting should be done again.

16-5

SECTION 17

ERROR MESSAGES

This section comprises a directory of VORTEX operating
system error messages, arranged by VORTEX cor:nponent.
For easy reference, the number of the subsection contain­
ing the error messages for a component ends with a
number corresponding to that of the section that covers the
component itself, e.g., the file-maintenance error messages
are listed in subsection 17.9 because the file-maintenance
component itself is discussed in section 9.

17.1 ERROR MESSAGE INDEX

Except for the language processors (section 5), VORTEX
error messages each begin with two letters that indicate
the corresponding component:

Messages Are from Listed in

beginning with: component: subsection:

CM Concordance program 17.5
DG Debugging program 17.7
EX Real-time executive 17.2
FM File maintenance 17.9
10 I /0 control 17.3
IU 1/0 utility 17.10
JC Job-control processor 17.4
LG Load-module generator 17.6
oc Operator communication 17.15
SE Source editor 17.8
SG System generator 17.13
SM System maintenance 17.14

DAS MR assembler 17.5

17.2 REAL-TIME EXECUTIVE

Message Condition Action

EXOl,xxxxxx Invalid RTE service Abort task
request by task xxxxxx xxxxxx

EX02,xxxxxx Scheduled task xxxxxx Abort task
name not in specified xxxxxx

load-module library

EX03,xxxxxx Task xxxxxx made Continue
RESUME request but re- scheduling
quested task not found task

EX04,xxxxxx Task xxxxxx made ABORT Continue
request but requested scheduling
task not found task

EX05,xxxxxx Background task xxxxxx Abort task
larger than allocatable xxxxxx

area

EX06,xxxxxx

EX07,X(XXXX

EXlO,xxxxxx

EXl 1,xxxxxx,n

EX12,xxxxxx

Not enough allocatable
space available for
ALOC request

OVLA Y requests a seg­
ment not in library

Scheduled request has
a library task priority
conflict (task priority
0 from foreground
library; task priority
2 from background
library). Scheduled
request specifies a
foreground task to be
executed at priority
0 or 1

Memory protection vio­
lation at address n

1/0 link error (fore­
ground task making
request, or incorrect
logical unit number)

Note: xxxxxx is the name of a task.

17.3 1/0 CONTROL

Message Condition

Abort task
xxxxxx

Abort task
xxxxxx

Schedule
task at
correct
priority

Abort task
xxxxxx

Abort task
xxxxxx

1000,xxxxxx Unit not ready, or unit file protected

1001,xxxxxx Device declared down

1002,xxxxxx Invalid LUN specified

1003,xxxxxx FCBIDCB parameter error

1004,xxxxxx Invalid protection code, er priority O· tcrs"k
-f'equested protected par-titioR

1005,xxxxxx Protected partition specified by unpro­
tected task

1006,xxxxxx 1/0 request error, e.g., 110-complete bit
not set, prior request may be queued

1007,xxxxxx Attempt to read from a write-only device,
or vice versa

1010,xxxxxx File name specified in OPEN or CLOSE
not found

17-1

ERROR MESSAGES

Message Condition

1011,xxxxxx Invalid file extent, record number, address,
or skip parameter

1012,xxxxxx RMD OPEN/CLOSE error, or bad directory
thread

1013,xxxxxx Level 0 program read a JCP (/) directive

1014,xxxxxx Interrupt timed out or no cylinder-search­
complete interrupt

Note: 1000 error message, the user can take the following
action; (a) Make unit ready or (b) ABORT task and then
declare device down through OPCOM directives.

1015,xxxxxx Disc cylinder-search or malfunction error

1016,xxxxxx Disc read/write timing error

1017,xxxxxx

1020,xxxxxx

1021,xxxxxx

1022,xxxxxx

Disc end-of-track error

BICl: abnormal stop, not ready, or time
out error

BIC2: abnormal stop, not ready, or time
out error

BIC3: abnormal stop, not ready, or time
out error

1023,xxxxxx BIC4: abnormal stop, not ready, or time
out error

1024,xxxxxx BIC5: abnormal stop, not ready, or time
out error

1025,xxxxxx BIC6: abnormal stop, not ready, or time
out error

1026,xxxxxx BIC7: abnormal stop, not ready, or time
out error

1027,xxxxxx BIC8: abnormal stop, not ready, or time
out error

1030,xxxxxx Parity error

1031,xxxxxx Reader or tape error

1032,xxxxxx Odd-length record error

Note: xxxxxx is the name of a task or device.

17-2

17.4 JOB-CONTROL PROCESSOR

Message Condition Action

Ignore direc­
tive

JCOl Invalid JCP directive

JC02 Invalid or missing parameter in
a JCP directive; or illegal
separator or terminator

Ignore direc­
tive

JC03

JC04

JC05,nn

JC06

JC07

Specified physical device cannot Ignore direc­
perform the functions of the as- tive
signed logical unit

Invalid protection code or file
name in a JCP directive

End of tape before the number
of files specified by an /SFILE
directive has been skipped; or
end of tape, beginning of tape,
or file mark before the number
of records specified by an /SREC
directive has been skipped where
nn is the number of files (or
records) remaining to be skipped

Ignore direc­
tive

Ignore direc­
tive

An irrecoverable I /0 error Job flushed
while compiling or assembling; to next I JOB
or an error during a load/go directive
operation . . c 'f'e.,,11,~ '""

,·1.f' f'~ F.::·.1. ... J:.J ,'·jt'}i....~'. ..

Invalid or illegal logical/
physical-unit referenced in
JCP directive

Ignore direc­
tive

17.5 LANGUAGE PROCESSORS

17.5.1 DAS MR Assembler

During assembly, the source statements a 'e checked for
syntax errors and usage. In addition, enors can occur
where the program cannot determine the correct meaning
of the source statement.

When an error is detected, the assembler outputs an error
code following the source statement containing the error,
on the LO unit, and continues to the next sta .ement.

The assembler error messages are:

Message

*OP

Condition

First nonblank character of the so ffce statement
invalid (statement is not processed)

Instruction field undefined (two nc operation
(NOP) instructions are generated in the object
module)

Expression contains undefined symbol

Message Condition

*EX Expression contains two consecutive arithmetic
operators

*AD

*FA

*DC

*DD

*VF

*MA

*NS

*NR

*TF

*SZ

*UD

*SE

*E

*R

Address expression error

Floating-point number format error

An 8 or 9 in an octal constant

Invalid redefinition of a symbol or the location
counter

Instruction contains variable subfields either
missing or inconsistent with the instruction type

Inconsistent use of indexing and indirect ad­
dressing

Nested DUP statements

Symbol table full

Tag error (undefined or illegal index register
specifications)

Expression value too large for the size of the
subfield, or a DUP statement specifying more
than three symbolic source statements to be

assembled

Undefined digit in an arithmetic expression

The symbol in the label field has, during pass
2, a value different than that in pass 1

Syntax error (source statement incorrectly
formed)

Relocation error (relocatable item encountered
where an absolute item was expected)

*MQ Missing right quotation mark in character string

'°' = Invalid use of literal

17.5 .. 2 FORTRAN IV Compiler and Runtime
Compiler

During compilation, source statements are checked for
such items as validity, syntax, and usage. When an error is
detected, it is posted on the LO beneath the source
statement. The erros marked T terminate binary output.

All error messages are of the form

ERR xx c(l)-c(l6)

where xx is a number from 0 to 18 (notification error), or T
followed by a number from O to 9 (terminating error); and
c(l)-c(16) is the last character string (up to 16) encoun-

ERROR MESSAGES

tered in the statement being processed. The right-most
character indicates the point of error and the @ indicates
the end of the statement. The possible error messages are:

Notification
Error

0
1
2
3
4
5
6
7
8

9
10

11
12
13

14
15
16
17

18

Terminating
Error
It\
1-1
T2
T3
T4
T5
T6
T7
TB
T9

RUNTIME

Definition

Illegal character input
Construction error
Usage error
Mode error
Illegal DO termination
Improper statement number
Common base lowered
Illegal equivalence group
Reference to nonexecutable
statement
No path to this statement
Multiply defined statement
number
Invalid format construction
Spelling error
Format statement with no
statement number
Function not used as variable
Truncated value
Statement out of order
More than 29 named common
regions
Noncommon data

Definition

·_i .1~·,' " fr t

Constrution error
Usage error
Data pool overflow
Illegal statement
Improper use
Improper satement number
Mode error
Constant too large
Improper DO nesting

When an error is detected during runtime execution of a
program, a message is posted on the LO device of the form:

taskname message

Fatal errors cause the job to be aborted; execution
continues for non-fatal errors. The messages and their
definitions are:

Message

ARITH OVFL

GO TO RANGE

Cause

Arithmetic overflow

Computer GO TO out of
range*

continued

17-3

ERROR MESSAGES

Message

FUNC ARG

FORMAT

MODE

DATA

1/0

Cause

Invalid function argument
(e.g., square root of
negative number)

Error in FORMAT statement*

Mode error (e.g., outputting
real array with I format)(•

Invalid input data (e.g.,
inputting a real number
from external medium with
I format)~'

1/0 error (e.g., parity,
EOF)*

* indicates fatal error; all others non-fatal

17.5.3 RPG IV Compiler and Runtime
Compiler

During compilation, source statements are checked for
such items as validity, syntax and usage. When an error is
detected an arrow is printed pointing to the descripency in
the source statement and an error message is output on
the LO device. Detailed descriptions can be found in the
RPG IV User's Manual (98 A 9947 031)._The possible error
messages are:

Indicator
Invalid
Label
Literal

Message

Name
Relational
Size
Syntax

If an 1/0 error occures during compilation one of the
following message:; is posted on Logical Unit 15 and
compilation is terminated:

Error

RPOl, NNN
RP02, NNN
RP03, NNN
RP04

RP05

Cause

110 error
End of file error
End of device error
End card error (End

card encountered
before procedure
card)

Available memory
exceeded

where NNN is the logical unit number on which the error
occurred.

RUNTIME/LOADER

During the loading or executing of an RPG IV object
program in the background any of the following conditions

17-4

will cause an error. The message is posted on Logical Unit
15 and the task aborted:

Error

RPOl, NNN
RP02, NNN
RP03, NNN
RP04
RP05
RP06
RPO?
RP08
RP09

Cause

110 error
End of file error
End of device error
Program too big
Invalid object record
Checksum error
Sequence error
Program not executable
Work list overflow

RPlO, xxxxxx Invalid call to subroutine
or missing subroutine
where xxxxxx = subroutine
name

CONCORDANCE PROGRAM:

Condition Message

CNOl Symbol table full

17.6 LOAD-MODULE GENERATOR

Message Condition

LGOl Invalid LMGEN directive

LG02

LG03

LG04

LG05

LG06

Invalid or missing parameter
in an LMGEN directive

Check-sum error 1n object
module

READ error in object module

WRITE error in load module

Cataloging error

Action

Ignore
directive

Ignore
directive

Abort loading

Abort loading

Abort loading

Abort loading

LG07 Loader code error in object Abort loading
module

LG08 Sequence error in object module Abort loading

LG09 Structure error in object module Abort loading

LGlO Literal pool overflow or use of Abort loading
literal by foreground program

LGll Invalid redefinition of common- Abort loading
block size during load-module
generation

LG12 Load-module size exceeds avail- Abort loading
able memory

LG13 LMGEN internal tables exceed Abort loading
available memory

continued

Message Condition Action

LG14 Number of overlay segments Abort loading
input not equal to that specified
in TIDB

LG15 Undefined externals

LG16 No program execution address

LGl 7 Attempt to load protected task
on background library or un­
protected task on foreground
library

17.7 DEBUGGING PROGRAM

Message Condition

Load module
generated but
cannot be load­
ed (i.e.,can re­
side on the
SW logical
unit only)

Abort loading

Abort loading

DGOl Invalid DEBUG directive

DG02 Invalid or undefined parameter
in DEBUG directive

17.8 SOURCE EDITOR

Message

SEOl

SE02

SE03

SE04

Condition Action

Invalid SEDIT directive Abort SEDIT

Invalid or missing parameter Input recovery
in SEDIT directive message

Error reported by IOC call

Invalid end of file

Input recovery
message

Input recovery
message

17.9 FILE MAINTENANCE

Message Condition Directory Status

FMOl Invalid FMAIN directive Unaffected

FM02 Name already in directory Unaffected

FM03 Name not in directory Unaffected

FM04 Insufficient space for entry Unaffected

ERROR MESSAGES

FM05 110 error Indeterminate

FM06 Directory structure error, Indeterminate
including writing over the
directory by direct addressing
of an RMD partition

FM07 Check-sum error in object
module

FM08 No entry name in object
module

FM09 Record-size error in object
module

FMlO Loader code error in object
module

FMll Sequence error in object
module

FM12 Nonbinary record in ob1ect
module

FM13 Number of input logical unit •:•
not specified by INPUT

FM14 Insufficient space im memory •'

•:· Messages FM07 through FM14 apply only to the
processing of object modules. The occurrence of any of
these errors requires that the processing of the object
module be restarted after the error condition is removed.

17.10 110 UTILITY

Message Condition

IUOl Invalid IOUTIL directive

IU02 Invalid or missing parameter in ll)UTIL directive

IU03 PFILE directive not used to open .:in RMD file

IU04 110 error

IU05,-) End of file or end of tape before the specified
number of records skipped, or end of tape
before specified number of files skipped (,., '' ,,,, ·- J. ('

17.11 SUPPORT LIBRARY

There are no error messages unique to this section of the
manual.

17-5

ERROR MESSAGES

17.12 REAL-TIME PROGRAMMING

There are no error messages unique to this section of the
manual.

17.13 SYSTEM GENERATION

RECORD-INPUT ERRORS: Errors in input record found
before processing.

17-6

Message

SGOO

SGOl

SG02

SG03

SG04

SGOS

SG06

SG07

SG08

SG09

Condition

Read error (I /0)

Syntax error in SYSGEN directive

Invalid or missing parameter in
SYSGEN directive

Syntax error in control record

Invalid or missing parameter
in control record

Binary-object check-sum error

Binary object sequence error

Binary-object record code error

Unexpected end of file, end
of device, or beginning of
device

Improper ordering of load
module-package control
records

Action

Correct input record, or
indicate that the record
is positioned for rereading

Correct input record, or
indicate that the record
is positioned for rereading

Correct input record, or
indicate that the record
is positioned for rereading

Correct input record, or
indicate that the record
is positioned for rereading

Correct input record, or
indicate that the record
is positioned for rereading

Correct input record, or
indicate that the record
is positioned for rereading

Correct input record, or
indicate that the record
is positioned for rereading

Correct input record, or
indicate that the record
is positioned for rereading

Correct input record, or
indicate that the record
is positioned for rereading

Correct order of records and
continue processing

OUTPUT ERRORS: Errors in the attempt to perform I /O
on an RMD or listing unit.

Message

SGlO

SGll

SG12

SG13

SG14

SG15

Condition

RMD 110 error in directive
processor

RMD 1/0 error in nucleus
processor

RMD 1/0 error during library
generation

RMD I /O error during resident­
task generation

First track on RMD bad (unable
to write PST /bad-track table)

Write error on listing device

SYSTEM-GENERATOR PROCESSING ERRORS: Errors pre­
venting tile correct functioning of the system generator.

Message

SG20

SG21

SG22

SG23

SG24

SG25

SG26

SG27

SG28

Condition

Requested SYSGEN driver not
available

Loading error in directive
processor

Loading error in nucleus proc­
essor

Loading error in library
processor /resident-task
configurator

Stacks exceed available memory

Incomplete system definition
(missing directives)

RMD error (too many sectors
allocated, or nonsequential
partition assignments)

Error while loading SYSGEN
loader, 110 control, or drivers.
Driver not found in SGL

Error while loading SGEN compo
nent

ERROR MESSAGES

Action

Restart directive proc­
essor

Restart nucleus processor

Reload directive proc­
essor

Reload directive proc­
essor

Restart directive
processor

Retry operation

Action

Restart 110 interrogation

Reload directive proc­
essor

Reload nucleus processor

Reload library processor I
resident-task configurator

Reload directive proc
essor

Restart directive
processor

Restart directive
processor

Restart SYSGEN

Reload component

17-7

ERROR MESSAGES

MEMORY ERRORS: Errors of compatibility between allo­
cated memory and a :10rtion of the VORTEX system.

Message

SG30

SG31

SG32

SG33

SG34

Condition

Size of nucleus larger than that
of defined foreground area

Load-module literal pool overflow

Size of load module larger than
defined memory area

Invalid definition of common
during load-module generation

Number of overlays input not
the same as specified by OVL
control record

SYSTEM LOADING AND LINKING ERRORS: Errors that
prevent normal loading or linking of system components.

Message

SG40

SG41

SG42

SG43

SG44

SG45

SG46

17-8

Condition

Loader code error in library
processor

Loaded program contains no
entry name

Unsatisfied external in library
processor

No execution address found in

root segment or overlay

Loader code error in nucleus
processor

Unsatisfied external in nucleus
processor

System peripheral assigned to
to more than one logical-unit
class

Action

Reload directive proc­
essor

Abort current load module
and initiate generation of
next load module

Abort current load module
and initiate generation of
next load module

Abort current load module
and initiate generation of
next load module

Abort current load module
and initiate generation of
next load module

Action

Abort current load module
and initiate generation of
next load module

Abort current load module
and initiate generation of
next load module

Abort current load module
and initiate generation of
next load module

Continue processing of
current load module

Restart directive processor

Restart directive processor

Restart directive processor

ERROR MESSAGES

17.14 SYSTEM MAINTENANCE

Message

SMOl

SM02

SM03

SM04

SM05

SM06

SM07

SM08

SM09

SMlO

SMll

Condition

Invalid SMAIN directive

Record not recognized

Check-sum error in object module

Incorrect size of object-module record (correct: 120
words for RMD input, otherwise 60 words)

Loader code error in object module

Sequence error in object module

Object module contains nonobject-module text record

Error or end of device received after reading operation

Error or end of device received after writing operation

Stack area full

Invalid control record

17.15 OPERATOR COMMUNICATION

Message

OCOl
OC02
OC03
OC04
OC05
OC06

OC07
OCIO

OCll

Description

Request type error.
Parameter limits exceeded.
Missing parameter.
Unknown or undefined parameter.
Attempt to schedule or time schedule OPCOM task.
Attempt to declare OC device or system resident unit

down.
Task specified in TSTAT key-in has no established TIDB.
Attempt to assign unit declared down or assign an

unassignable logical unit/device.
Attempt to allocate TIDB unsuccessful for TSCHED

request.

17.16 RMD ANALYSIS AND INITIALIZATION

Message

RZOI

Condition

Invalid RAZI directive or illegal
separator or terminator

Action

Input corrected directive
on SO, or input C to con­
tinue processing

17-9

. ERROR MESSAGES

Message

RZ02

RZ03

RZ04

RZ05

RZ06

RZ07

RZ08

RZ09

RZlO

RZll

A_:-.t

17-10

Condition

Invalid parameter in a RA41 direc­
tive

Insufficient or conflicting
directive information

New PST incompatible with the
system

Named device cannot be replaced
(system RMD or device busy)

Irrecoverable 110 error on desig­
nated RMD

First track of disc pack bad
(pack unusable)

Directive incompatible with
specified RMD

Irrecoverable 1/0 error on system
RMD (VORT~X nucleus)

I /0 error on LO device

I /0 error on SI device

.. . . '

il9 ..-i 1i H••.,.

Action

Input corrected directive
on SO, or input C to con­
tinue processing

Input corrected directive
on SO, or input C to con­
tinue processing

Restart RAZI by inputting
the next directive on SO,
or input C to continue
processing

Restart RAZI by inputting
the next directive on SO,
or input C- to continue
processing

Restart RAZI by inputting
the next directive on SO,
or input C to continue
processing

Restart RAZI by inputting
the next directive on SO,
or input C to continue
processing

Restart RAZI by inputting
the next directive on SO,
or input C to continue
processing

Restart RAZI by inputting
the next directive on SO,
or input C to continue
processing

Restart RAZI by inputting
the next directive on SO,
or input C to continue
processing

Restart RAZI by inputting
the next directive on SO,
or input C to continue
processing

SECTION 18
VORTEX PROCESS INPUT/OUTPUT

18.1 INTRODUCTION

VORTEX supports a number of VDM devices which are used
in industrial applications for a wide range of monitor and
control purposes. These devices are called 'Process Input/
Output' devices and are listed below:

VDM Model

620-830A/B

620-831A/B

620-850/851

620-860/860A
620-861 /861A

620-87011121
31415
620-870A/B
620-871A/B
620-872A/B

Description

Digital Output Module
User's Guide - VDM 03·996810

Digital Input Module
User's Guide - VDM 03-996811

Analog to Digital Converter
User's Guide - VDM 03-996806

Multiplexor Module
User's Guide - VDM 03-996807

Digital to Analog Module
User's Guide - VDM 03-996805

DATASPEC brochures are also available for all these
devices.

VORTEX configurations which include Process Input/
Output devices differ from others in that each is, to some
degree, 'tailor-made', even though they -are composed of
the standard products listed above. This requires the
VORTEX user to operate with VORTEX 110 features at a
more fundamental level than with most other devices. For
this reason, the operation of Process Input/Output devices
under VORTEX will be presented in considerable detail in
the following sections.

The VORTEX Support Library includes a number of
subroutines (section 18.4) with FORTRAN calling se­
quences defined by the Instrument Society of America
(ISA), which are useful for input, output, and manipulation
of process data.

18.2 PROCESS OUTPUT

18.2.1 Hardware

VORTEX supports combinations of the 620-830A Digital
Output Module and the 620-8308 Digital Output Expansion
Module. VORTEX also supports combinations of the
following DAC (Digital to Analog Converter) modules and

expansion modules: 620-870,-870A,-870B,-871,-871A,-
871B,-872,-872A,-872B,-873,-874,-875.

Eight device addresses (050-057) are available for these
modules. Each address can hold up to four modules, each
module containing two digital output registers or DAC's for
a maximum of 64 registers or DAC's.

For VORTEX operation, a device is defined as the collection
of modules at a single device address, and the word
'device' will have this meaning for the remainder of this
section. The word 'channel' will be used to mean either a
digital output register or a DAC.

Software capabilities for referencing channels directly by
number are provided. For this purpose, channels are
assigned an (octal) number mn, where:

~

m = device address - 050
n = hardware channel number (0-7) within device.

thus, for example, the channel selected by the command

EXC2 0352

would be called channel number 023.

Process output is totally under control of software - no
BIC's, interrupts, or SEN's are used. Therefore, no ready,
complete, or error information is provided by the hardware.

18 .2 .2 SGEN Operations

The following SGEN operations must be performed to in­
clude Process Output capabilities in a VORTEX system:

a. Add EQP directives to SGEN directive input file.

b. Add ASN directives to SGEN directive input file.

c. Add Controller Table object modules to VORTEX
Nucleus.

d. Add Process Output driver object module to VORTEX
Nucleus.

e. Add TDF directives to VORTEX Nucleus.

In the examples in the following discussions, the symbols
'm' and 'n' refer to register number mn.

18-1

VORTEX PROCESS INPUT/OUTPUT

The EQP Directive

Each device must have an EQP directive in the SGEN
directive file, with the following format:

EQP, COmA, OSO+m, 1, 0, 0

For example, the device at address 053 will require the
directive:

EQP, C03A, 053, 1, O, 0

The ASN Directive

Each device must be assigned to a logical unit number by
any ASN directive of the following format:

ASN, lun • Como

For example, assigning the device at address 053 to logical
unit 24 will require the directive:

ASN, 24 • C030

Controller Table

Each device must have a controller table of the following
format:

NAME CTCOmA
EXT TBCOmA

CTCOmA DATA TBCOmA
DATA CTEND
DATA 2
DATA 0
DATA 0
DATA 0
EXT #ACOmA
DATA #ACOmA
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

DATA 0,0,0,0,0 TEMP STORE
DATA 0,0,0,0,0,0,0,0, PREVIOUS OUTPUTS

CTEND EQU *
END

Process Output Driver Program

This is the program named VZCOA.

TDF Directive

This has the format:

TDF,TBCOmA, VZCOA,0,047401,[priority level)

18-2

~" ,,._-·

18.2.3 Output Calls

Output to a Process Output device is by use of the IOC
'WRITE' macro. FORTRAN source programs can request
output by calling one of the ISA process control subroutines
described in section 18.4, which will construct and execute
such a macro.

The macro call has the format (see section 3.4.4):

WRITE pcb, lun, wait, mode

where:

pcb = Name of Process Control Block (PCB)
lun = Logical Unit Number
wait = Wait Flag
mode = Data Mode (ignored)

Data is always output directly, without modification, so the
Data Mode is effectively System Binary.

PCB format is:

Output Word Count C Word 0

Output Buffer Address Word

Address of Channel Number List Word 2

-- .. _

Status Word Address (0 if none) Word 3

Mask Word Address (0 if none) Word 4

Pulse Width Word Address (0 if none) Word 5

The Channel Number List is a sequential list of channel
numbers m(i)n(i) (i = 1,C), where m(i) = m(l) for all i,
and the device address to which the logical unit number is
assigned is 050 + m(i). Thus, a single WRITE call can only
reference those channels assigned to a single device
address.

The Status Word is a word in the calling program in which
status of the IOC call is maintained. This is required by the
ISA subroutines of section 18.4.

The Mask Word is used by the ISA 'Latching' subroutines
DOL and DOLW. 1-bits in this word flag bits that are to be
updated. The device controller table will contain the
previous setting of all bits in the output word and the
output buffer will contain the new settings.

An error 1003 is reported if the Channel Number List
contains a channel mn where m is not in range 0-7, or if m
does not correspond to the device address defined by the
ASN directive at SGEN time.

The Pulse Width Word is used by the ISA 'Momentary'
subroutines DOM and DOMW. It gives the time in VORTEX
basic cycles (5-millisecond) that output points are to
remain set.

Example 1:

A DASMR source program is to output the first 3 words
from buffer OBUF to channels 023, 027, and 021 in a
group of Digital Output Modules which are assigned to
logical unit number 24.

Note that channels 023, 027, and 021 are all assigned to
the module at device address 052 by the channel
numbering convention.

PCB1

PTLIST

WRITE

DATA
DATA
DATA
DATA

DATA

PCB1, 24, 0, 0

3
OBUF
PTLIST
0, 0, 0

023, 027, 021

Example 2:

A FORTRAN program isto _output the fJ.rst 3 y.iord_s p{ OBUF
to analog channels 49, 50, and 53, which are assigned to
logical unit 17. The octal equivalents of these channel
numbers are 061, 062, and 065, so the device address of
the output module is 056 (46 in decimal digits).

INTEGER STAT, PTLIST, OBUF
DIMENSION OBUF (3), -PTLIST (3)
DATA PTLIST/49, 50, 53/

CALL V$0PIO (46, 17, 0, STAT)

CALL AO (3, PTLIST, OBUF, STAT)

18.3 PROCESS INPUT

18.3.1 Hardware

VORTEX supports combinations of the 620-831A Digital
Input Module and the 620-8318 Digital Input Expansion
Module. VORTEX also supports combinations of the 620-
850 and the 620-851 Analog Input Systems, the 620-860
and 620-861 Multiplexor Modules and the 620-860A and
the 620-861A Multiplexor Expansion Modules. These
provide from 1 to 2,048 digital or analog input channels.

VORTEX PROCESS INPUT !OUTPUT

Eight device addresses (060 to 067) are available for these
modules. Each address can handle, through multiplexing,
up to 256 digital channels. To each of these device
addresses will correspond a multiplexor attached to a
different device address in the range (040-077). All Process
Input requires a Buffer Interlace Controller (BIC).

Software capabilities are provided for referencing channels
directly by number. Each channel is assigned an (octal)
number mn by the following rules:

m = device address - 060
n = channel number (0-255) within device. n is

a 3-digit octal number.

Thus, for example, channel number 01003 would be
selected by outputting a 3 as the select code to device
address 061.

A BIC will be used for all input and all input will end with a
BIC complete interrupt. The BIC will op~rate with the
programmable timer.

18.3.2 SGEN Operations

The following SGEN operations must be performed to
·.)~clu_9e_.~r?c~_sslnpu! .c:~pc;iqiJities. in_ Q ... V.ORU:X _system:

a. Add EQP directives to SGEN directive in~iut file.

b. Add ASN directive to SGEN directive inp11t file.

c. Add PIM directive to SGEN directive inpL t file.

d. Add Controller Table object modules to VORTEX
Nucleus.

e. Add Process Input driver object modL le to VORTEX
Nucleus.

f. Add TDF directives to VORTEX Nucleus.

In the example in the following discussion;, the symbols
'm' and 'n' refer to register number mn.

The EQP Directive

Each device must have an EQP directive in the SGEN
directive file, with the following format:

EQP, CimA, 060+m, 1, b, 0

[b = BIC device address J

For example, the device at address 063 using the BIC at
address 020 will require the directive:

EQP, CI3A, 063, 1, 020, 0

18-3

VORTEX PROCESS INPUTtOUTPUT

The ASN Directive

Each device must be assigned to a logical unit number by
an ASN directive of the following format:

ASN, lun • CimO

For example, assigning the device at address 063 to logical
unit number 21 will require the directive:

ASN, 21 • CI 3 0

The PIM Directive

Linkage must be established between the BIC and its
Priority Interrupt Module (PIM) by a PIM directive of the
format:

PIM,pl,~BCimA,1, 0

where: p = PIM number (single octal digit)
I = line number (single octal digit)

Controller Tables

Each device must have a controller table, whose format is
shown below:

NAME CTClmA
EXT TBClmA

CTClmA DATA TBClmA
DATA CTEND
DATA 1
DATA 0
DATA 0
DATA 0
EXT #AClmA

DATA #AClmA
DATA [110 algorithm value - see Internal

Spec., section 3]
DATA 0
EXT !BClmA
DATA !BClmA
DATA 0
DATA 0
DATA 0
DATA [multiplexor device address]
DATA 0, 0 TEMP STORE

CTEND EQU
;;,

END

The 110 algorithm value must be set for the highest
transfer rate (smallest PCB Timer Count) that will be used
in the system.

Digital Input Driver Program

This is the program named VZCIA.

18-4

TDF Directive

This has the format:

TDF, TBCimA, VZCIA, 0, 047401, [priority level)

18.3.3 Input Calls

Input to a Process Input device is by use of the IOC 'READ'
macro. FORTRAN source programs can request input by
calling one of the ISA process control subroutines de­
scribed in section 18.4, which will construct and execute
such a macro.

The macro call has the format (see section 3.4.3)

READ pcb, lun, wait, mode

where:

pcb = Name of Process Control Blllck (PCB)
lun = Logical Unit Number
wait = Wait Flag
mode = Data Mode (ignored)

Data is always input directly, without modif,cation, so the
Data Mode is effectively System Binary.

PCB format is:

Input Word Count C Word 0

Input Buffer Address Word

Address of Channel Number Word 2

Status Word Address (0 if none) Word 3

Op Code Word 4

Timer Count Word 5

The Status Word is a word in the calling program in which
status of the IOC call is maintained. This required by the
ISA subroutines of section 18.4.

The Op Code (OP) is defined thus:

OP = 0:

Sequential Mode. Data is input from channels, beginning
with channel number mOOl, till the input word count C
(Word 0) is satisfied. rn is taken from the channel
number mn specified by word 2.

OP = 1:

Random Mode. Channel mn is repeatedly input the
number of times specified in word 0.

The Timer Count (Word 5) is the desired time, in
microseconds, between inputs. This value is output to the
programmable timer, which will control the BIC input rate.

An error (1003) is reported if m is not in range 0-7, if n (or
C, if in sequential mode) is not in range 0-255, or if m does
not correspond to the device address defined by the ASN
directive at SGEN time.

Example 1:

A DAS MR program is to sample an input channel 100
times at a rate of 1 input/50 microsecond . The channel is
number 5 on device address 062, which is assigned to
logical unit number 22, and the data is to be input into
buffer IBUF. Do not return till 1/0 complete.

READ PCBl, 22, 0, 0

PCBl DATA 100
DATA IBUF
DATA CHNO
DATA 0
DATA 1
DATA 50

CHNO DATA 02005

Example 2:

A FORTRAN program is to input sequentially from channels
04001, 04002, and 04003, which are assigned to logical
unit number 35, storing the input values into IBUF. Do not
return till 1/0 complete. Set the input rate to 1 word/20
microsecond. The device address to which" the input module
is assigned is seen to be 064 (52 in decimal digits, and the
decimal equivalent of 04000 is 2048).

INTEGER STAT, PTLIST
DIMENSION IBUF(3)
DATA PTLIST/2049/

CALL V$0PIO (52, 35, 20, STAT)

CALL AISQW(3, PTLIST, IBUF, STAT)

18.4 ISA FORTRAN PROCESS CONTROL
SUBROUTINES

The Instrument Society of America (ISA) has under
consideration, for acceptance as an ISA standard, a

VORTEX PROCESS INPUT /OUTPUT

number of FORTRAN subprogram calls useful in process
Input/Output applications. VORTEX includes the following
subroutines of this group:

Input/Output Calls

AISQ(W):
AIRD(W):
AO(W):
Dl(W):
DOM(W):
DOL(W):

Analog Input Sequential
Analog Input Random
Analog Output
Digital Input

Digital Output-Momentary
Digital Output-Latching

The (W) option with each of these subroutine names selects
a 'wait' mode, that is, it specifies that rdturn is not be
made from the subroutine until the 1/0 is finished, either
normally or erroneously.

Bit String Manipulation

IOR:
IAND:
NOT:
IEOR:
ISHFT:

Inclusive OR (logical <1dd)
AND (logical multiply)
NOT (logical invert)

Exclusive OR (logical subtract)
Logical Shift

18.4.1 Input/Output Calls

The parameter 'stat' appears in all the following 1/0 calls.
Its contents give the status of the call, as follows:

stat = 1: I 10 correctly completed
2: 110 in execution
3: Invalid channel number
4: BIC timeout error
5: Invalid parameter value

VORTEX provides a FORTRAN call whi<:h establishes
execution-time association between channel numbers and
logical unit numbers, and sets the timer for data input
rate. The format is:

CALL V$0PIO (da, lun, time, stat)

where:

da device address
lun logical unit number
time time, in microseconds, between inputs.

This is loaded into device programmable
timer, which controls BIC rate. It is
ignored on output. Parameters may be
redefined by successive calls to
V$0PIO.

18-5

VORTEX PROCESS INPUT /OUTPUT

Read Analog Input Sequential

CALL AISQ (count, ptlist, ibuf, stat)

or

CALL AISQW (count, ptlist, ibuf, stat)

This call reads count analog inputs into buffer ibuf, starting
with channel OXOOl, where ptlist contains OXYYY, and
reading channels sequentially.

Read Analog Input Random

CALL AIRD (count, ptlist, ibux, stat)

or

CALL AIRDW (count, ptlist, ibuf, stat)

This call reads count analog inputs into buffer ibuf,
inputting from the list of random points ptlist.

Perform Analog Output

CALL AO (count, ptlist, obuf, stat)

or

CALL AOW (count, ptlist, obuf, stat)

This call outputs count analog values from buffer obuf,
outputting to the list of random points ptlist.

Read Digital Input

CALL DI (count, ptlist, ibuf, stat)

or

CALL DIW (count, ptlist, ibuf, stat)

This call reads count words of digital input into buffer ibuf,
inputting from the list of random digital channels ptlist.

Perform Digital Output - Momentary

CALL DOM(count,ptlist,obuf,time, stat)

or

CALLDOMW(count,ptlist,obuf,time,stat)

This call outputs count words of digital output from buffer
obuf, outputting from the list of random digital channels
ptlist. If time = O this completes the operation. Otherwise,
after 5':'time in milliseconds a word of zeros will be output
to every channel in ptlist, thus resetting all channels.

18-6

Perform Digital Output - Latching

CALL DOL (count, ptlist, obuf, mask, stat)

or

CALL DOLW (count, ptl i st, obuf, mask, stat)

This call outputs count words of digital output from buffer
obuf, outputting from the list of random digital channels
ptlist. The d~vice driver program will save the previous word
output to each channel, and change only those bits
specified by 1-bits in mask, which is an integer array
parallel to obuf and ptlist.

18.4.2 Bit String Operations

All these subprograms are defined as Integer Function
Subprograms. In the following descriptions, m and n are
integer mode expressions.

IOR(m, n) = m.OR.n
IAND(m, n) = m.AND.n
NOT(m) NOT.m
IEOR(m, n) = n.XOR.n

ISHFT(m, n) = 0

18.5 ERRORS

Process Output

Inclusive OR (logical sum)
AND (logical product)
NOT (logical invert)
Exclusive OR (logical
difference)
If the absolute value of
m ~ 16
Otherwise

I003 Invalid channel number

Process Input

I003 Invalid channel number
I02X BIC timeout error on BIC number X

18.6 FUTURE EXTENSIONS

Other process control devices besides those in the table of
section 18.1 may be brought into the VORTEX system at
some future time. The procedure for entering a new process
control device is as given for the currently supported
devices: one codes a driver program and controller tables
and enters them into the VORTEX Nucleus at SGEN time,
remembering to increment the one-character suffix on all
names (all names herein end in 'A'; the next type of DAC,
say, would be tagged wi'th '8'). The controller table can be
extended by as many words as desired, to store flags and
fixed device parameters. For variable parameters, say a
gain parameter on an analog input device, the PCB table
can be extended to hold the new parameter. In the
FORTRAN 110 calls, the array PTLIST can be made
2-dimensional if gain or other parameter information is to
be transferred with each point or channel number.

APPENDIX A
OBJECT MODULE FORMAT

Object modules generated by the VORTEX language processors result from assembly or
compilation. The modules are input by the load-module generator and are bound together
into a load module.

The first record of the module contains the size of the program, an eight-character
identification, and an eight-character date; Entry name addresses, if any, appear as the
first data field items of the object module.

A. I RECORD STRUCTURE

Object-module records have a fixed length of sixty 16-bit words. Word 1 is the record
control word. Word 2 contains the exclusive-OR check-sum of word 1 and words 3 to 60.
Words 3 to 11 can contain a program identification block (optional). Words 12 to 60 (or 3
to 60 if there is no program identification block) contain data fields.

Table A-1 illustrates record control word formats.

Table A-1. Record Control Word Format

Bit Binary Value Meaning

15 0 Verify check-sum
1 Suppress check-sum

13-14 11 Binary record
00-10 Nonbinary record

12 0 First record of module
1 Not the first record

11 0 Last record of module
1 Not the last record

10 0
9 0
8 0 Not a relocatable module (absolute)

1 Relocatable module
0-7 Sequence number (modulo 256)

A.2 PROGRAM IDENTIFICATION BLOCK

The program identification (I 0) block appears in words 3 to 11 of the starting record of
each module. Word 3 c~:mtains the program size, words 4 to 7 contain an ASCII eight­
character program identification, from the TITLE statement, and words 8 to 11 contain
an ASCII eight-character date.

A-1

OBJECT MODULE FORMAT

A-2

A.3 DATA FIELD FORMATS

Data fields contain one-, two-, three-, or four-word entries. One-word entries consist of a
control word; two-word entries consist of a control word and a data word; three-word
entries consist of a control word and two data words; and four-word entries consist of a
control word, two name words, and a data word. Data words can contain instructions,
constants, chain addresses, entry addresses, and address offset values.

A.4 LOADER CODES

Loader codes, which have the following format, are among the data in an object module.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Code Subcode Pointer Narre

Code Values

00

01

02

03

04

05-07

Subcode Values

00

01

02

Meaning

Refer to subcode for specific action.

Undefined.

Add the value of the selected pointer to the
data word before loading.

Add the value of the selected pointer to the
first data word (literal value) and enter the
sum in the direct literal pool if bit 11 of
the second data word is zero. Otherwise,
enter it in the indirect literal pool. Add
the address of the literal to the second data
word before loading.

Load the data word(s) absolute. Bits 12 through
0 indicate the number of words minus one (n-1) to
load.

Undefined.

Meaning

Ignore this entry (·me word only).

Set the loading address counter to the sum of the
specified pointer pius the data word.

Chain the current loading address counter value
to the chain whose last address is given by the
sum of the selected pointer plus the data word.
Stop chaining when an absolute zero address is
encountered.

OBJECT MODULE FORMAT

Code Values

03

04-06

07

010

011

Subcode Values

012

013

014-017

Pointer Values

00

01

02

03-036

037

Name Format

Meaning

Complete the postprogram references by adding to
each address the sum of the selected pointer plus
the data word.

Undefined.

Set the program execution address to the sum of the
values of the selected pointer plus the data word.

Define the entry name with entry location as equal
to the value of th1~ selected pointer plus the data
word.

Define a region for the pointer whose size is given
in the data word. If the entry name is not blank,
define the entry point as the base of the region.

Meaning

Enter a load request for the external name. The
chain address is given by the sum of the selected
pointer plus the data word.

Enter the loading address of the external name in
the indirect literal pool. Add the address of the
literal plus the value of the selected pointer to
the data word (command) before loading.

Undefined.

Meaning

Program region.

Postprogram region.

Blank common re~.ion.

Labelled COMMON regions.

Absolute (no relocc1tion).

Names are one to six (six-bit) characters, starting in bit 3 of the control word and ending
with bit 0 of the seconcd name word. Only the right 16 bits of the two name words are
used.

A-3

OBJECT MODULE FORMAT

A-4

A.5 EXAMPLE

The following is a sample background program with the description of the object module
format after the assembly and the core image after loading.

A.5.1

SUBR

DONG

TIME

A.5.2

060400

157631

000016

142730
140715
150314
142640

131263
126661
130255
133271

010000
000647

Source Module

NAME SUBR

EXT BBEN

ENTR

LDA* SUBR

CALL BBEN

STA TIME

JAN DONG

LOA -2

CALL BBEN

INR SUBR

JMP* SUBR

BSS

END

Object Module

Record control word (first and last record, verify check-sum
sequence number 0)

Check-sum word.

(Begin program ID block)

Program size (exclusive of FORTRAN COMMON, literals, and in­
direct address pointers).

Identification in ASCII (assume this program was labeled
EXAMPLE).

Date of creation in ASCII (assume assembled 03-10-69)

(End program ID block)

Define entry name SUBR at relative 0 (code 0, subcode 010,
pointer 0, name SUBR, and data word 0).

054262
000000

100000
000000

060000
100000
017000

100000
002000

100000
000000

100000
054010

100000
001004

040000
000012

060760
000002
010000

100000
002000

040000
000003

060000
000000
047000

100000
001000

040000
100000

001000

OBJECT MODULE FORMAT

Enter absolute data word 0 in memory at relative 0.

Enter literal (indirectly addressed relative 0) in indirect
pointer pool, add address of pointer to load 017000 and en­
ter memory at relative 1.

Enter absolute data word 02000 in memory at relative 2.

Enter absolute data word 000000 in memory at relative 3.

Enter absolute data word 054010 in memory at relative 4.

Enter absolute data word 01004 in memory at relative 5.

Enter relative data word 012 in memory at relative 6.

Enter literal (absolute 2) into literal pool, add address of
literal to load command 010000, and enter in memory at relative
7.

Enter absolute data word 02000 in memory at relative 010.

Enter relative data word 03 in memory at relative 011.

Enter literal (relative 0) into indirect pointer pool, add
address of literal to increment command 047000, and enter in
memory at relative 012.

Enter absolute data word 01000 in memory at relative 013.

Enter relative data word 0100000 in memory at relative 014.

Set loading location for next command, if any, to relative
016.

A-5

OBJECT MODULE f'ORMA T

i\ 6

012003
000212
024556

A.5.3

Enter load request for external name BBEN and chain entry ad­
dress to relative 011.
000011

(The remaining words of this record contain zero).

Core Image

Assume the program originates at 01000, the literal pool limits are 0500-0777, and BBEN
is loaded at 01016.

0500

0501

0777

01000

01001

01002

01003

01004

01005

01006

01007

01010

01011

01012

0 101 3

0 1014

0 1015

01016

100500

000500

000002

000000

017500

002000

0 0 1016

054010

001004

001012

010777

002000

0 0 10 16

047501

001000

101000

DATA

DATA

DATA

ENTH

LDA*

JMPM

STA

JAN

LDA

JMPM

INR*

.JMP

BSS

BSS

*

0500

0500

2

0

0500

0 1016

0 101 5

0 1012

077 7

0 1016

0501

0500

OBJECT MODULE FORMAT

The following six-bit codes are used by the load-module generator in building load
modules. The codes define names created by NAME, TITLE, and EXT directives.

Character Octal Character Octal Character Octal

@ 40 v 66 + 13
A 41 w 67 14
8 42 x 70 15
c 43 y 71 16

D 44 z 72 I 17
E 45 [73 0 20
F 46 \ 74 1 21
G 47] 75 2 22
H 50 76 3 23
I 51 77 4 24
J 52 (blank) 00 5 25
K 53 01 6 26
L 54 " 02 7 27
M 55 # 03 8 30
N 56 $ 04 9 31
0 57 % 05 32
p 60 & 06 33

Q 61 07 <: 34
R 62 (10 35
s 63) 11 > 36
T 64 ::: 12

..,
37 '

u 65

A-7

APPENDIX B
1/0 DEVICE RELATIONSHIPS

Allowable Functions by I /0 Device Type

1/0 Device
Function RMD MT PT CR CP LP TY or CRT

Read binary record x x x x xi

Read alphanumeric record xi x x x x

xi 1 1 x4 Read BCD record x . x- x-

Read unformatted record x1 l x x xi

Write binary record x x x x x4 x4

Write alphanumeric x1 x x x x x
record

x1 1 , x4 x4 Write BCD record x x- x-

Write unformatted record x1 xi x x x4-~ x4

Write end of file x x x x~

Rewind unit x x

Skip one record forward x x

Skip one record backward x x

Perform function zero x x x x

Perform function one x x'·

Perform function two x x

Open a file with rewind x x
option

Open a file with leave x x
option

B-1

1/0 DEVICE RELAT10NSHIPS

13-2

Allowable Functions by I /0 Device Type (continued)

Function
1/0 Device

RMD MT PT CR CP LP TY or CRT

Close a file with leave
option

Close a file with update
option

x

x

x

x

NOlt.S

(1) All modes are read/written in binary mode.
(2) BCD mode is handled like unformatted mode.
(3) Punch 256 frames of leader on paper tape or eject one blank
card on card punch.
(4) All modes are written in alphanumeric mode.
(5) Advances paper to top of form on line printer, or causes
carriage return and feeds three lines on Teletype or CRT.
(6) Advances paper one line.
(7) Advances paper two I in es.
(8) Rings bell on Teletype or beeps on CRT.

/.

"· ..;. f ')

1/0 Errors by 1/0 Device Type

1/0 Device
Code Description RMD MT

000 Unit not ready x x
PT CR

x x
CP

x

LP

x

TY or CRT

x

001 Device down () 0 0 0 0 0 x

002 Illegal LUN speci- () 0 0 0 0 0 0
fied

003 FCB/DCB parameter 0 0 0 0 0 0 0
error

004 Level 0 program 0 0 0 0 0 0 0
references a pro-
tected partition

00~ Level 0 program () 0 0 0 0 0 0
references pro-
tected mernory

1/0 DEVICE RELATIONSHIPS

1/0 Errors by 1/0 Device Type (continued)

1/0 Device
Code Description RMD MT PT CR CP LP TY or CRT

006 I /0 request error 0 0 0 0 0 0 0

~
007 Read request to 0 0 0

write-only device,
or vise versa

010 File name not found x

011 File extent error x

012 RMD directory error x

013 Level 0 program 0 0 0 0
read a JCP (/)
directive on SI

014 Interrupt time out x

015 RMD cylinder-search x
or malfunction error

016 RMD read/write x
timing error

017 RMD address error x

02n BICn error x x x x x

030 Parity error x x

031 Reading error by x x
card reader or
paper tape device

032 Odd-length record x
error

X Error reported by I /0 drivers.

0 Error reported by I /0 control processor.

B-3

J\PPENDIX C
DATA FORMATS

This appendix explains the formats and symbols used by VORTEX for storing information
on paper tape, cards, and magnetic tape.

C.1 PAPER TAPE

Information stored on paper tape is binary, alphanumeric, or unformatted. It 1s separated
into records (blocks of words) by three blank frames. The last frame of e;Kh record
contains an end-of-record mark (1-3-4-8 punch).

C.1.1 Binary Mode

Binary information is stored with three frames per computer word (figure C 1). Note that
channels 6 and 7 are always punched.

C.1.2 Alphanumeric Mode

Alphanumeric information is stored with one frame per character (figure C-2). StandMd
ASCI 1-8 punch levels are used.

C.1.3 Unformatted Mode

The tape is handled as for alphanumeric mode, but without validity-checking.

CHANNEL: ;··-----·--B QXXQXXQXX QXX* B B B Q xx
7 ·); J.-A*k*AA-A * * * B B B B * * ·k

~ ;~;;;;;~;
·k ?.· * B B B B * ?.· *
OXXB B B BQXX

4 ~ xxxxxxxxx xx x * B B BX XX

flMI NG • • • • • • • • •
3 . xxxxxxxxx xx x ·k B B B X xx
:? \ xxxxxxxxx XX X B B B B X xx

\ xxxxxxxxx xx x * B B B X xx
-------- --

WORD l_J LwoRD 2 WORD NFJ_L_Lworw i

l:OR --- RECORD
\....,.._"" ____ BINARY RECORD ..,I GAP

* = HOLE
B =BLANK
X =DATA BIT

FOR== END - OF - RECORD
Q= BLANK

Figure C-1. Paper Tape Binary Record Format

c l

DAT A FORMATS

C-2

CHANNEL:

8
7
6
5
4

TIMING
3
2

VTl/-1375

C.1.4

xxxxx x x * B B B xx
xxxxx xx B B B B xx
xxxxx X X B B B B xx
xxxxx XX B B B B xx
xxxxx xx * B B B xx . .
xxxxx x x * B B B xx
xxxxx xx B B B B xx

* * * B B B ·k *
...._....,.., ..___,____, ~

LASCII CHARACTERS_J J L LASCII CHARACTERS OR
EOR RECORD BINARY WORD

'--ALPHANUMERIC RECC1RD-.-I GAP

* = HOLE: FOR ASCII CHAF ACTER OR DAT A BIT FOR
BINARY INFORMA TIOl'J

B ==BLANK
X DATABIT

EOR == END-OF-RECORD

Figure C-2. Paper Tape Alphanumeric Record Format

Special Characters

An end of file is represented by the ASCll-8 BELL character (1-2-3-8 punch).

When paper tape is punched on a Teletype, tlw ASCll-8 ERROR character flags erroneous
frames punched by the Teletype when it is turr,ed on or off. This notifies the Teletype and
paper-tape reader drivers to ignore the next frame.

When alphanumeric input tapes are punched c.ff-line on a Teletype, there is no means of
spacing the three blank frames after every record. The following procedure gives a tape
that can be read by the paper-tape reader drivE r:

a. Punch the alphanumeric statement.

b. Punch an end of record (RETURN on the Teletype keyboard).

c. Punch three or more frames containir g any of the following characters:

Press CONTROL and:

@
LINE FEED
WRU
EQT
RU
VT
TAB
HERE IS (33 ASR only)

NOTE

ASCll-8 Equivalent

DCO
LINE FEED
WRU
EQT
RU
VTAB
HTAB
NULL

Any of these characters can also be used for leader and trailer.

d. Punch the next alphanumeric statement. Return to step b.

DAT A FORM A TS

C.2 CARDS

Information stored on cards is binary, alphaumeric, or unformatted. Each card holds one
record of information. Hence, there is no end-of-record character for cards.

C.2.1 Binary Mode

Binary information is stored with sixty 16-bit words per card. The information is serial
with bit 15 of the first word in row 12 of column 1, bit 14 in row 11, etc. (figure C-3).

C.2.2 Alphanumeric Mode

Alphanumeric information is stored one charC1cter per card column (figure C-4) u~;ing the
standard punch patterns.

C.2.3 Unformatted Mode

The data are handled, one column per computer word, right-justified, and without
validity-checking.

WORD:

Vl1/-/376

1111111111111111111111111111

222222222222222222222222222

3333333333333333333333333333

44444444444444444444444444444

555555555555555555555555555r.

666666666666666666G6S6666666

7777777777777777777777777777

8888888888888888888888888888

99999999999999999999590999999
1 2 J 4 5 s 1 fl s 10 11 12 13 14 1s 16 11 1rs 1~ :~ 2· :1 :•J 7·1 :, c& 21 2s 29

G'.O F . I STAN DAR') r "c.,,A 5CSI

3 6 7 8 9

Figure C-3. Card Binary Record Format

C3

DATA FORMATS

I 0 0 0 0 0 u 0 0 0 D 0 0 iJ 0 om Di oa ofj orJ oa oB o~J 0 0 ol 0 0 0 0 0
1 I .1 4 i Ii 7 fl 9 1 !l . ' J.'.' ' \ ~; 15 16 17 1?. li :>!.1 } i , ? .~3 i'4 15 76 n 28 2'J lCI J: !.' J' !4 JS 36 31 JB .l9 40 ~I 47 n 44 45 46 4 7 4R '19 ~.o ',I ':7 53 'A ~'i ~:; '.11 :.:i ~ '.'! bO 01 62 (j] 54 65 66 67 o:J G!l 73 ,·1 /7 71 H /~ , .' ~~ /9 80

11 & 1 1111 11 1 111111111R1111 11 1 1 1 1 1 1 11111111 1 1 1 1 111 1 1 1 1 1 I 1 1 1 1 11 1 1111111 11 1 1 1 I 1 1 1 1 1 1

2 2 2 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ?. 2 2 rn 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 ;; 7 2 2 2 2 a 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2

3 3 3 3 33 u 33 3 3 3 3 3 -- 3 3 3 3 3 3 3 3 3 m 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 R 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 J 3 ;a 3 w 3 a 3

4444444414444444444444444404444444~444444444144444444444444414444444444444444444

5555555555955555555ssssssss5Msss555~55555555ssHsssssssssssssssMsssssssssssssssss

666666666666l6666666666666666bJ,l66666666666666666!666666666666666l666G666666GG666

11111111111111H11111111111111111M11111111111111111M111111111111111U1111111111111

s a s s s s s s a s s s s s s s & a s s s a s s s s s a a R s a H s H a s a s s s s a a s s a a s s s a H a a s s a a s s s a s a s B a I a o s I a Is I s!la

9 9 s 9 9 s ~ 9 9 9 9 ~ 9 s 9 9 9 s m 9 9 9 ,, g 9 9 9 9 s 9 9 s 9 9 9 9 o 9 9 9 9 9 9 s 9 9 s s 9 s s 9 9 9 1 3 9 9 s 9 s 9 ~ s s s 9 'i 9 s m 9 9 9 s 9 s s s s
1 7 3 { !'.i 5 I 0 9 ~;: 11 12 13 14 IS 16 17 18 19 20 ~~ n .'I:~ i~ ~lj n 2'11'.I JJ J: !.' -\

llU)Bt:: N0.1 STANDARD 1-0t!M S081

l'IJJ.()<)5"!

C4

Figure C-4. Card Alphanumeric Record Format (I BM 026)

C.2.4 Special Character

A11 end of file is represented on cards by a 2-7-8-9 punch in column l of an otherwise
blank card.

C.3 MAGNETIC TAPE

Information stored on seven track magnetic t<:ipe is either binary or BCD, On nine-track
tape, information 1s always binary.

C.3.1 Seven-Track

For systen 1 binary, ASCII, and unformatted modes, the first frame is read into bits 15-12
of the word, the second frame into bits 11-6, and the third into bits 5-0. For BCD mode,
the first fr<:une is read into bits 11-6 and the second into bits 5-0.

C.3.2 Nine-Track

In all modes, the first frame is read into bits 15-8 of the word, and the second frame into
bits 7-0.

APPENDIX D
STANDARD CHARACTER CODES

IBM 026 Punch IBM 029 Punch
Symbol ASCII Hollerith ASCII Symbol

t 336 7-8 242 "
> 276 6-8 275

272 5-8 247
247 4-8 300 cm
275 3-8 243 .tf..

337 2-8 272
9 271 9 271 9
8 270 8 270 8
7 267 7 267 7
6 266 6 266 6
5 265 5 265 ~-

,)

4 264 4 264 4

3 263 3 263 3
2 262 2 262 2
1 261 1 261 1
(blank) 240 (blank) 240 (blcm k)

& 246 12-7-8 336
< 274 12-6-8 253 +

333 12-5-8 250 (

251 12-4-8 274 <:

?56 12-3-8 256
? 271 12-2-8 333

311 12-9 311
H 310 1?-8 310 H
G 307 12 7 307 G
F 306] 2-6 306 ~

[. :05 1 c~ s 305
[) 30·1 12-4 304 [)

c 303 12-3 303 c
B 302 12-2 302 (3

A 301 12-1 301 A

+ 253 12 246 &

% 245 11-7-8 334 \
273 11-6-8 273
335 11-5-8 251

. ,. 252 11-4-8 252 ...

$ 244 11-3-8 244 $
241 11-2-8 241

R 322 11-9 322 R

Q 321 11-8 321 Q

D-1

STANDARD CHARACTER CODES

IBM 026 Punch IBM 029 Punch

Symbol ASCII Hollerith ASCII Symbol

p 320 11-7 320 p

0 317 11-6 317 0

N 316 11-5 316 N

M 315 11-4 315 M

L 314 11-3 314 L

K 313 11-2 313 K

J 312 11-1 312 J
255 11 255

:ti: 243 0-7-8 277 ?

\ 334 0-6-8 276 ?
II 242 0-5-8 337

250 0-4-8 245 %"
254 0-3-8 254

@ 300 0-2-8 335 l
z 332 0-9 332 z
y 331 0-8 331 y

x 330 0-7 330 x
w 327 0-6 327 w
v 326 0-5 326 v
u 325 0-4 325 u
T 324 0-3 324 T
s 323 0-2 323 s
I 257 0-1 257 I

0 260 0 260 0

D-2

APPENDIX E
TELETYPE AND CRT CHARACTER CODES

Character 620 Internal ASCII Character 620 Internal ASCII

0 260 R 322
1 261 s 323
2 262 T 324
3 263 u 325
4 264 v 326
5 265 w 327
6 266 x 330
7 267 y 331
8 270 z 332
9 271 (blank) 240
A 301 241
B 302 II 242
c 303 # 243
D 304 $ 244
E 305 % 245
F 306 & 246
G 307 247
H 310 (250
I 311) 251
J 312 ... 252
K 313 + 253
L 314 254
M 315 255
N 316 256
0 317 I 257
p 320 272
Q 321 273

< 274 FORM 214
275 RETURN 215

> 2?6 so 216
? 277 SI 217
(~y 300 DCO 220

333 X-ON 221
334 TAPE AUX
335 ON 222
336 X-OFF 223
337 TAPE OFF

l~UIJ()UT 377 AUX 224
NUL 200 ERROR 225
SOM 201 SYNC 226
EOA 202 LEM 227
EOM 203 so 230

:. I

TELETYPE AND CRT CHARACTER CODES

Character 620 Internal ASCII Character 620 Internal ASCII

EQT 204 Sl 231
WRU 205 S2 232
RU 206 S3 233
BEL 207 S4 234
FE 210 S5 235
H TAB 211 S6 236
LINE FEED 212 S7 237
V TAB 213

E-2

APPENDIX F
VORTEX HARDWARE CONFIGURATIONS

Device Interrupt
Device Address Interrupt Address BIC Comments

620-05 045 MP halt error 020 n/a Wired as system
Memory MP 1/0 error 022 n/a priority 1
Protection MP write error 024 n/a

MP jump error 026 n/a
MP overflow 030 n/a

error
MP 1/0 and 032 n/a

overflow error
MP write and 034 n/a

overflow error
MP jump and 036 n/a

overflow error

620-12 Power failure 040 n/a Wired as system
Power Power rest a rt 042 n/a priority 2
Failure/
Restart

620-13 047 RTC variable 044 n/a Wired as system
Real-Time interval priority 4
Clock RTC overflow 046 n/a

Base timer inter-
val rate is 100
microseconds;
free-running clock
rate is 100 micro-
seconds

620-16 040-043 0100-0277 n/a Wired as system
Priority priority 5; assign-
Interrupt ments should be
Module from fastest to
(PIM) slowest

Addresses 064-
067 available for
special use

Special 044 n/a n/a PIMs modified to
PIM enable/disable
Instruction with EXC 044

1-.1

VORTEX HARDWARE CONFIGURATIONS

Device Interrupt
Device Address Interrupt Address BIC Comments

620 020-026 BIC complete 0100-0277 n/a All wired as sys-
Buffer 070-073 tern priority 3
Interlace
Controller Addresses 070-
(BIC) 073 available

for BIC5 and
B IC6; others
created for spe-
cial use

620-47, 014 BIC complete 0100-0277 Yes RMD assigned to
-43C, D highest system
Disc -48, BIC (no other
-49 Drum devices can be
Memory so assigned)

620-37, 016-017 BIC complete 0100-0277 Yes RMD assigned to
-36 Disc Cylinder- 0100-0277 highest system
Memory search complete BIC (no other

devices can be
so assigned)

620-35 015 BIC complete 0100-0277 Yes RMD assigned to
Disc Cylinder- 0100-0277 highest system
Memory search complete BIC (no other

devices can be
so assigned)

620-30, 010-013 BIC complete 0100-0277 Yes
-31A, -318, Tape motion 0100-0277
or -31C,-32 complete
Magnetic
Tape Unit

620-25 030 BIC complete 0100-0277 Yes
Card
Reader

620-77 035-036 BIC complete 0100-0277 Yes
Line
Printer

620-27 031 BIC complete 0100-0277 Yes
Card
Punch

F-2

VORTEX HARDWARE CONFIGURATIONS

Device Interrupt
Device Address Interrupt Address BIC Comments

620-55, 037,034 Character 0100-0277 No
-55A ready
Paper Tape
System

620-6, 001-007 Read buffer 0100·0277 No
·1, -8 ready
Teletype Write buffer 0100-0277

ready

620- Read buffer 0100-0277 No Compatible with
(E-2250) ready Teletype
CRT with Write buffer 0100-0277
E-2184 ready
Controller

Front 00-01 No Wired as system
Panel priority 6; not

used by VORTEX

620/f-10 n/a n/a
Optional
Instruction
Set

620/f-15 n/a n/a
Automatic
Bootstrap
Loader
(PT only)

NOTES

(l) The priority look-ahead option is required if there are more
than eight priority devices in the system.

(2) Pl M assignments are arranged from the fastest devices to the
slowest.

(3) No two output devices are assigned to the same BIC.

F·3

INDEX

ABL: Automatic Bootstrap
Loader, (key-in), 13-5;

initializing, 16-2
ABORT, (OC), 15-3; (RTE), 2-7
AD (add records), (SEDIT), 8-3
ADD, (FMAIN), 9-5; (SGL addition, 13-11;

(SMAIN), 14-5
ALOC (Allocate), RTE, 2-5, 2-6
ALT (library modification input

unit), (SGEN), 13-6; (alternate
logical unit), (SMAIN), 14-4

AS (assign logical unit), (SEDIT), 8-2
ASN (assign), (SGEN), 13-9
Assembly listing format, 5-7
Assembler (DASMR), Section 5
ASSIGN, (JCP), 4-2; (OC), 15-4
ATTACH, (JCP), 4-2

Background library, 1-2, 1-3, 3-3
Bad track table, 9-1, 16-4, 16-5
Bl: Binary Input, 3-2
Bibliography, 1-4
BO: Binary Output, 3-2
Bootstrap, 16-2

C (Comment), (JCP), 4-2
Card punch initialization, 16-1
Card reader, key-in loader for, 13-5;

initializing, 16-1
CLK (clock), (SGEN), 13-12
CO (Compare inputs), (SEDIT), 8 7
Common area, 6-3
compile deck for FORTRAN, 4-6
compilers: language processors,

rnRTRAN. ~; 10;
RPG IV, ti H

Communication, operator, section El
CUNC (concordance), 4-4, 5-8
C()ntrol panel loading, 16-2
control records for SMAIN, 14 3ff,
C~~EATE, (FMAIN}, 9-3

DAS MR. A!>:>t:inlii1H' section 5·
error rne!..:>.ige~. 17 -2

DASMR, (JCP), 4 4
DATE, (OC), 15-3
DE (delete recods), (SEDIT), 84
DEALOC (deallocate), (RTE), 2-7
DEBUG, section 7
debugging, section 7; error messages, l 7-3ff.
decks, for JCP, 4-6ff.
DEL (SGL deletion), (SGEN), 13-11;

(delete), (SMAIN), 14-6
DELAY, (RTE), 2-3
DELETE, (FMAIN), 9-3
DEVDNI (Device down~, (OC), 15-4
DEVUP (Device up), (OC), 15-4
DIR (Directive input unit), (SGEN), 13-6

Directives
assembler, 5-lff.;
DEBUG, 7-1 ff.;
file maintenance, 9-2ff.;
JCP, section 4;
LMGEN, 6-3ff.;
SEDIT, 8-2ff.

Disab1.ng PIM interrupts, 12-22
Disc, key-in loader for, 16-2
Disc pack handling, 16-2ff.; formatting, 16-4
Dispatcher interrupt processor, 12-18
Display memory (DEBUG), 7-1
Drivers (1/0), 12-19ff 13-6
DST: Device Specification Table, 9-1
DUMMY unit, 3-1

EDR (end redefinition), (SGEN), 13-13
Enabling PIM interrupts, 12-22
END, (LMGEN), 6-5; (end library), (LMP), 13-17;

(SGEN), 13-14
ENDJOB, (JCP), 4-2
ENTER, (FMAIN), 9-4
EQP (equipment), (SGEN), 13-8
Error messages, section 17
Error recovery inputs, (LMGEN), 6-1;

(SEDIT), 8-1; (SMAIN), 14-1
ERROR task, 12-3
ESB (end segment), (LMP), 13-17
EXEC (execute), (CCP), 4-5
EXIT, (RAZI), 16-4; (RTE), 2-7
External Interrupts, 12-1

FC (copy file), (SEDIT), 8-5
file maintenance, section 9;

error messages, 17-4
FINI, (JCP), 4-2
FMAIN: file maintenance, (JCP), 4-5
FM~..:· file maintenance, 9-1 ff.
Foreground, 1-2, 3-3
FORM, (JCP), 4-3
FORT, (Fortran), (JCP), 4-4
FRM (format rotating memory), (RAZI), 16-4

GA (gang-load all records), (SEDIT), 8-6
Generation, system section 13
Global file control blocks, 4-3

Hardware, minimum, 1-1

IN (Input logical unit), (SMAIN), 14-4
Initialize, 13-17ff; background pointers, 4-1;

peripheral devices, section 16;
memory (DEBUG), 7-1

INIT (initialize), (FMAIN), 9-4
INL (initialize), (RAZI), 16-4
INPUT, (FMAIN), 9-5
Interrupts, 12-lff.
IOC: Input/Output Control, section 3

INDEX

IOLINK (Linkage), (RTE), 2-8
IOLIST (list 1/0), (QC}, 15-5
IOUTIL, (JCP), 4-5
110 for Fortran, 5-11; RPG, 5-13
1/0 Control error messages, 17-lff.
1/0 devices, table, 15-1
1/0 tables 12-19ff.

JCP; Job Control Processor, section 4
JC** message, (JCP), 4-1
JOB, (JCP), 4-1

Key-in loaders, 13-5
Key-in operator requests, section 15
KPMODE, (Keypunch mode}, (JCP), 4-4

LAD (library addition), (SGEN), 13-11
LO (load), (LMGEN), 6-4
LOE (library deletion), (SGEN), 13-12
LI (list records), (SEDIT), 8-6
Linkage, 1/0 with RTE, 2-8
LIS (list output unit), (SGEN), 13-7
LIB (library), (LMGEN), 6-4;

(library input unit),
(SGEN), 13-6

Library, building the, 13-1
Lineprinter, initializing, 16-1
LIST, (FMAIN), 9-4; (SMAIN), 14-6
LMGEN: Load Module Generator, section 6;

sample, 6-5ff.
LMGEN, (JCP), 4-5
LMP: Load Module Package, 13-16
LO: List Output unit, 3-2
LOAD, (JCP), 4-5
LOAD, RPG, 5-13
Load-module library, fig. 13-4;

building, 13-16ff.
Load-module Overlay structure, 6-2
Lock bit, 9-2
Logical units, for SEOIT, 8-2; VORTEX

assignments, 13·10, 3-Hf.
LRE (library replacement), (SGEN), 13-12

Macro · RTE, 2·1ff, 5-2
Magnetic tape, loader for 13-5;

initializing, 16-1
Maintenance, file, section 9;

system, section 14
MEM (memory), (JCP), 4-2
Memory, map of lowest sector, 12-lOff.
Memory protection interrupt, 12-2
Memory use, 1-3
MO (move records), (SEDIT), 8-5
Model numbers, peripheral devices, 13-6
Moving head disc, initializing 16-1
MRY (memory}, (SGEN), 13-7

Nucleus, building the VORTEX, 13-2, 13-14ff.

OC logical unit, 3-1
Operator communication (QC), section 15;

error messages, 17 -8

OUT (output logical unit), (SMAIN), 14-4
OV (overlay), (LMGEN}, 6-4
OVL (overlay), (LMP), 13-17
OVLA Y (overlay), (RTE), 2-5
Overlays, 6-3

Partitions, disc, 9-1
Peripherals, model codes for, 13-8
Pl: Processor Input file, 3-1
PIM: Priority Interrupt module, 1-1
PIM (Priority Interrupt}, (SGEN), 13-12
PMSK, (RH.). 2-4
Power failure/restart interrupt, 12-3
Priority, task, 2-1, 12-5
PRT (partition), (RAZI), 16-4; (SGEN), 13-9
Pseudoregisters, DEBUG, 7-1
PST: Partition Specification Table, 9-1

RAZI: Rotating-memory analysis and
initialization, 16-2ff.

Real-time clock interrupt, 12-3
Real-time Executive, section 12;

error messages, 16-2ff.
Reentrant Subroutines, 12-18ff.
Relocatable object modules, 6-1, 9-2
RENAME, (FMAIN), 9-4
REP (Replace), (SMAIN), 14-5
REP (SGL Replacement), (SGEN), 13-11
REP (replace), (SMAIN), 14-5
REPL (replace records), (SEDIT), 8-4
Resident-task configurator, 13-1, 13-16
RESUME, (QC), 15-3; (RTE), 2-3
REW (rewind}, (JCP), 4-3
REWI (rewind, (SEDIT), 8-7
RMD: Rotating-Memory Device, disc or durm,

analysis, error messages, 17-8;
fortran I /0, 5-12;
key-in loader for, 13-5;
requirements, 1-3;
structure, 3-4

RPG: Report Program Generator, 5-13
RTE: Real-Time Executive, section 2
RTE Macro, Fortran calling, 5-10

SA (add string), (SEDIT), 8-3;
(RTE) 2-1, 2-2

SAL: Search, Allocate and Load task, 12-3
SCHED (schedule foreground task),

(OC), 15-2
Scheduling, 12-3ff
SD (delete string), (SEDIT), 8-5
SE (sequence records), (SEDIT), 8-6
Sectors, RMD, 9-1
SEDIT: Source EDIT or, section 8
SEDIT (Source Editor), (JCP), 4-5
SFILE (skip file), (JCP), 4-2
SGL: System Generation Library, 13-2
SGL delimiters, 14-3
SI: System Input file, 3-1
SLM (Start Load Module), (SGEN), 13-14
SLM (Start LMP), (LMP), 13-16
SMAIN: System Maintenance, section 14

SMAIN (system maintenance), (JCP), 4-5
SNAP: Snapshot dump program, 7-2
SO: System Output, 3-1
Source records, for SEDIT, 8-1
Source editor, section 8,

error messages, 17-4
SR (Replace string), (SEDIT), 8-4
SREC, (JCP), 4-3
SS: System Scratch file, 3-2
SUSPND, (RTE), 2-2
Symbol table area, FMAIN, 9-1
SYS (system-generation output unit),

(SGEN), 13-7
System Generation, section 13;

error messages, 17-4ff.
System Maintenance, section 14;

error messages, 17-7

Task macros, 2-1
TDF (Building task identification

block), (SGEN), 13-14
Teletype initializing, 16-1
TID (TIBD Specification, (LMP), 13-16
TIDB: Task Identification Block,

12-6 to 12-10, 13-15ff.
TIDB, (LMGEN), 6-3
TIME (QC), 15-3; (RTE), 2-5
Timing considerations, 12-18
Title, Assembler, 5-1; Fortran, 5-10
TSCHED (Time Schedule), (OC), 15-2
TSK (Foreground task), (SGEN), 13-13
TSTAT (Task Status), (QC), 15-3

V$CLOS, Fortran, 5-13
V$0PEN, Fortran, 5-12

WE (Write end of file), (SEDIT), 8-7
WEOF (Write End of file), (JCP), 4-3

INDEX

I

I

I

I

ADDENDl.JM 1
VORTEX Refert::nce Manual

Varian Document 98 A 9952 10 l
September 1972

This addendum I ists changes and supplementary information for the VORTEX Reference
Manual.

Page Action

3-7 Change the FCB expansion at the top left for word 4 to "current END-OF-FILE
address".

3-10 Add to function codes under line printer.
Statos 31 7 Adva nee pope r to bottom of form

8 Normal print size
9 Large print size

Plot data may be transmitted to the Statos 31 by specifying unformatted mode, 3,
in the WRITE macro. Each l bit will cause a dot to be printed in its corresponding
position in the output line. The most significant bit in the first word output
represents the left-most dot position.

3-12 Change table 3-;'3 word 6 REW to "set to ending address of logica I unit. 11

4-5 Add to 4.2.22/EXEC the following paragraph and examples:
When a dump has been specified the dump wi 11 be output to the List Output unit
after the task exits or is aborted. Once the dump has started, it may be
terminated by use of the Operator Communication ;ABORT. When the dump is
aborted in this manner, it is required that the executing task be aborted by
a previous action.

ExCJmple: /EXEC, D

;ABORT ,SW

;ABORT I JPDUMP

;ABORT,SW

5-13 Add as numbering indicates

5. 3. 3 Execution-Time 1/0 Errors

Executes a load module from SVV
unit file requesting background
dump on exit
causes the task to abort and dump
the background

causes the background dump to be
aborted

causes the task to be released and
JCP to be reloaded

The FORTRAN execution-time l/O allows a program to detect 1/0 errors and
end-of-file or end-of-device conditions. Status of a READ or WRITE operation
is available immediately after the operation is complete and before another
1/0 operation is executed. This status is checked by executing a subroutine
or function cal I in the form.

l of 5 Issued: December 1972

Action

CALL IOCH K (status)
where status is the name of an integer variable which is to receive the result
of the status check.

If the last l/O operation had been completed normally, the value of zero
will b~ returned. If an error had occur·ed, the value minus one is returned.
If either an end-of-file or an end-of-dt~vice had occurred, the value positive
one will be returned.

The status may be checked and the resu It tested in a single statement by
use of the form:

where

status

label 1

label 2

label3

IF (IOCHK(status)) label 11 label2, label3

is the name of an integer variable which receives the
result of the status check
is a statement label to which control is transferred, if
and 1/0 error occurred.
is a statement label to which control is to be transferred
if the operation was completed normally
is a statement label to which control is transferred, if an
end-of-file or end-of-device was encountered.

If the program does not check the status of a READ or WRITE operation, FORTRAN
wi 11 abort execution of the task upon the next entry to the execution-time 1/0
routine. At that time the diagnostic message wi 11 be output to the System Output
device. Any data which is input to a read in which an error occurred will be
invalid. After a call to IOCHK is executed, any error status is reset and the program
may proceed with additiona I input and/or output.

12-2 Correct reference in section 12. l. l to 12.2.3 instead of 12.3.

12-3 Correct reference in section 12.2. l to 12.2.3 instead of 12. 3.

13-9 Replace paragraph in section 13.5.3 with the following:

\

Logical units 101 through 106 inclusive have preassigned protection codes. Any
attempt to change these codes is ignored.

Preassigned Prate cti on Codes
Unit Number 101 102
Code S B

2 of 5

103
c

104
D

105
E

106
F

13-10

13-12

16-2

Action

Replace the table 13-3 titled "Preset logical-unit/RMD partition relationships"
with the fol lowing:

Logical Logical Minimum
Unit Unit Partition Protection VORTEX Sector

Name Number Name Key Allocation

CL 103 DOOA c 025
FL 106 DOOB F 0106
BL 105 DOOC E 01135
OM 104 DOOD D 04171
cu l 0 l DOOE s 0310
SW 102 DOOF B 03102

Optiona I logi cal-unit/RMD-partition relationships

GO 9 DOOG none 03103

SS 8 DOOH none varies
4

PO 10 DOOH none 0515
Bl 6 DOOi none varies
BO 7 DOOi none varies

Add in section 13.5.11 under q(n)

TIDB names must be taken from TDF block of SMAIN listing

Change key-in loader locations 1154 through 1157 for the 620-35 as follows:

1154 100021
1155 103120
1156 103221
1157 100020

Add I ocati on 1177 and 1200 for the 620-35 as follows

1177 1000
1200 1146

16-3 Delete paragraph beginning "The listing of the RAZI ... 11 and the last two
I ines from the paragraph fol lowing 11 EXIT".

3 of 5

Page Action

16-4 Add under the definition of s(n) in 16.3. 1 "This value must be greater than zero'"'·

Add immediately prior to examples the following:

Caution: When performing a bad-track analysis or accepting a bod-track table
from an RMD the bad-track table is positioned adjacent to the resident foreground
task area. Unless there already exists on active bad-track table for the prior
RMD, the bad-track table for the new RMD wi 11 be overlayed, if the resident
foreground area is increased by means of a partial SYSGEN. Thus if a partial
SYSGEN is performed which increases the resident foreground size, another
RAZI must be performed.

Add in section 16.3. 1 to the paragraph before example the following:

Consecutive PRT directives redefine partitions, if p(n) has been specfied, or
adds partitions if p (n) is new partition letter.

Under example, delete from the paragraph 11 (11 and 13) 1111 and 11 (13 through 50,
inclusive) 11

•

Add to second paragraph of 16.4 "Execution begins at 01354 11
•

17-1 Replace the definition of 1004 with "Invalid protection code 11
•

17-2 Add to the description of JC06 in section 17.4

17-3

17-5

17-10

... load/go operation; or insufficent symbol table memory (insufficient
/MEM directive); or an EOF was encountered before an END statement.

Add to Terminating Errors "TO 1/0 Error".

Change IU05 error message to IU05, nnnn and add where nnnn = the number
of remaining records when an end-of-fl le or end-of-device occurred.

Add to section 17. 16

RZ 12 No core available to
a I locate for new bad­
track table

RZ13 Total number of tracks
specified in PRT direc­
tive exceeds size of the
device or is incompatible
with the FRM directive

4 of 5

RAZI is terminated Reschedule
when concurrent foreground tasks
re I ease core

Input correct PRT and F RM on SO,
or input C to continue processing

B-1

B-2

Action

On function - Write Unformatted Record - change the 4 to 9 under LP.

Add note (9) as fol lows:

620-77 line printer --All modes are treated as alphanumeric.

620-75 printer/plotter -- Unformatted records are transmitted without
interpretation as plot data

C-4 Add as numbering indicates

C. 4 Statos Printer/Plotter

Information may be output to the 620-75 Statos printer/plotter in alphanumeric
and unformatted modes.

C .4. l Alphanumeric Mode

Information output in alphanumeric mode is assumed to be ASCII characters
packed two to a word. Each character is converted to a dot matrix and the
print line is transmitted to the device. Characters may be printed in two
sizes. The normal print size consists of a 7 by 11 dot matrix and allows 140
characters per line. The large size print consists of a 14 by 22 dot matrix
and allows 70 characters per line. Excess characters will be truncated.

C .4. 2 Unformatted Mode

Information output in unformatted mode is assumed to be plot data. The
information is truncated after 88 words and transmitted to the device
without conversion. Each 1 bit tronsmitted wi 11 cause a dot to be printed
on the output line. The most significant bit of the first word is transmitted
to represent the left-hand dot position on the line.

5 of 5

Page Action

ADDENDUM 2
VORTEX Reference Manual

Varian Document Number 98 A 9952 101
September, 1972

5-11 Change first line of second column to 11 Four different cases of FORTRAN units ••. 11

5-12 Add to 11 Case 3, 11 11 Normal RMD file executi11g in foreground or background"

5-13 Insert immediately preceding 5.4, deleting 11 NOTE 11
:

Case 4, Blocked RMD file executing in foreground or background· the
CALL V$0P NB statement associates any specified RMD file with a
FORTRAN unit number. This statement overrides any/PF! LE statement.
The format is:

CALL V$0PNB (fun, lun, name, mode, recsz, buff, rbwfl)

where:

fun
lun
name
mode
recsz
buff
rbwfl

is the name or number of the FORTRAN unit
is the name or number of the logical unit
is the name of a l4-word FCB array
is the mode of the 1/0 control OPEN macro
is the logical record size in words
is the address of a' blocking buffer array
is the read-before-write flag

The first parameters are iden\io1I in function to those of the CALL VSOPEN
statement. The other three specify blocking information.

An RMD file opened by a CALL VSOP NB statement is processed as though
it were a consecutive series 9f logical records, each one recsz words in
length. These logical records continue across physical re-cord boundaries
with no space wasted (except possibly at the end of file). Input and output
is buffered through the user-~upplied buffer array buff as specified a:.:ove.

It is the user's responsibility to declare the size of the buffer array buff
sufficiently large, remembering that it is a function of the logical re~ord
size~, that it must be a multiple of the basic record size of 120, and

l of 4 Issued: March, 1973

Page Action

that it must be large enough to include enough basic 120-word physical
records to cover a logical record, even though the physical record may
overlap the physical record boundaries. The following tables specify
all conditions, where:

Q (x/y) means the quotient of x/y
R (x/y) means the remainder of x/y

recsz < 120

R (120/recsz)

=O
10

recsz > 120

R (recsz/120)

=0
= l
> 1

Size of Array~

120 words
240 words

Size of Array Buff

recsz
120 * (1 + Q (recsz/120))
120 * (2 + Q (recsz/120))

If recsz is not a multiple or factor of 120 words, the blocking buffer
buff must allow room for an extra 120-word physical record at the start or
end of a logical record.

On a WRITE operation where rec!>Z is not a multiple of 120 words, data
on the RMD can be overwrittenunless a read-before-write is performed.
In some situations, such as initial file creation in a strictly sequential
fashion, this is unnecessary and slow.

The parameter rbwfl allows the user to select this feature~ If rbwfl is
zero, read-before-write is disabled. Any non-zero value enables read­
before-wri te.

Example:

An RMD file opened by CALL V$0PNB can be accessed randomly, as
with CALL V$0PEN, by a replacement statement using the logical
record number.

2 of 4 Issued: March, 1973

Page Action

5.3.3

/FORT
DIMENSION IFCB (14), IBUFF (120)
DATA IFCB (3), IFCB (8), IFCB (9), .IFCB (10) /0, 2HBL, 2HFI, 2HLE/
CALL V$0PNB (2, 10, IFCB, 0, 10, !BUFF, l)
IFCB (4) = 5
READ (2) I
READ (2) J

This sequence causes the unkeyed file named BLFILE on logical unit 10 to
be opened and assigned FORTRAN unit number 2. The first READ statement
causes the entire first 120-word physical record (first 12 logical records) to
be input into blocking buffer IBUFF, and the first word of the fifth logical
record to be transferred to I. The second READ would not require another
physical input for record 6 in I BUFF. This READ statement w.ould simply
transfer the first word of logical record 6 to J.

To flush the blocking buffer, close the file and disassociate the FORTRAN
and logical unit numbers the CALL V$CLSB statement is provided. Its for­
mat is:

CALL V$CLSB (fun, mode)

where:

fun
mode

is the FORTRAN unit number
is the mode of the 1/0 control CLOSE macro

The end-of-file information in a Fl LE NAME DI RECTO RY refers to physical
120-word record number. Therefore, if logical record size is not a multiple
of 120 words, the user may need to define his own end-of-file mark. Close }
and update, Open and Leave, and IOCHK (section 5.3.4) EOF features all
operate on this File Name Directory parameter referring strictly to 120-word
physical record number.

Reentrant Runtime 1/0

The VORTEX runtime 1/0 program processes al I FORTRAN READ, WRITE,
auxiliary 1/0,and open and close statements at execution time. It is composed
of two modules, V$FO RTIO and the reentrant task V$RERR. Both are in the OM
library. V$RERR is also in the nucleus portion of the SGL. SYSGEN then auto­
matically loads V$RERR in the VORTEX nucleus, and all FORTRAN programs
automatically link to it. If V$RERR is not desired in the VORTEX nµcleus, the
SGEN directive DEL, V$RERR must be entered during system generation. Each
FORTRAN program wi II then get its own copy of V$RERR from the OM library.

3 of 4 Issued: March, 1973

Page Action

12-13

13-9

5.3.5 1/0 Checking

After any FORTRAN READ, WRITE, auxiliary 1/0, and open or close CALL,
the status of the operation may be checked by the statement:

CALL IOCHK (I)

where:.

I, on return, has the meanings:

I = -1 Error
I = 0 Normal Completion
I = +l EOF/EOD Detected

IOCHK loads I from a status flag and clears this flag. If IOCHK is not called and
this status flag is not zero, the next FORTRAN statement of any of the types above
will cause a program abort.

IOCHK can be referenced either as a subroutine,subprogram (as above), or as a
function subprogram, e.g., the statement:

IF (IOCHK (I)) 1, 2, 3

In Table 12-1. Address 0320 through 0327 PIM numbers should be 0-7, replacing
1-8.

Replace the second to last paragraph in the first column with:

"Logical units 101 through 106, inclusive, have preassigned protection
codes(lOl =S 102=·B 103=C 104=D 105=E and 106=F) 11

I I I I I •

De I ete the rest of the paragraph .

4 of 4 Issued: March, 1973

EVALUATION QUESTIONNAIRE

TITLE ____________ _
MANUAL NUMBER ________ _

The purpose of this questionnaire is to provide suggestions about how the manual can be improved when it is revised.
It is the goal of the Technicai Publications Department to make each manual as useful as possible and at the same
time eliminate material that is of no practical value to the user or Customer Service Representative in acquiring
initial knowledge of, and in maintaining, the equipment in the field. You, as the person working most closely with
the manual and the equipment, can best provide the input needed by the writer to make the best possible manual for
your use.

l. Please complete the following chart.

CHAPTER/SECTIONS

---------------------------11-----+-----+---+--

-----+---+--+----- -·------ ·-------

2. Please list any errors, omissions, or difficult areas noticed in the manual.---------------

3. Please list any improvements you recommend for this manual.--------------------

4. In an overal I evaluation of this manual, how do you rate it in the fol lowing?

D Above Average D Average

5. Personal Information

96A0424-000A

b. Years with Varian _________ _

c. EDP experience (years)
Years col I ege
Years technical training _____ _

d. NAME

D Below Average

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

varlan data machines /8 varian subsidiary
2722 michelson drive I irvine I california I 92664

ATTN: TECHNICAL PUBLICATIONS

Fold

FIRST CLASS

PERMIT NO. 323

NEWPORT BEACH,

CALIFORNIA

lf:t!:::::::]:t::::::::]ititI!:::!:!:j!]i:i~]

[i:::::::::::::t:::::::::::::::I:I::::::::::::::::::::::I::::::I::I

l:]:t::::::i::::i::: ::::::::::'::::::::::::!:::1:1:1:::1

EfII:Ifl:t:::::t:t:t::::::rrr:::I

n:::::::::::::::::::;:]::::::::::::::t::::::::]::::]:::i:::i

lt::::[:[:::::::[:::::::~::::::::::::::::::::::::::::::::::II::::::~I

1:::::::::::t::::::: ::::::::::::::::::t]::l::::::::::I

Fold

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	07-03
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	09-01
	09-02
	09-03
	09-04
	09-05
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	15-01
	15-02
	15-03
	15-04
	15-05
	16-01
	16-02
	16-03
	16-04
	16-05
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	E-01
	E-02
	F-01
	F-02
	F-03
	I-01
	I-02
	I-03
	a1-01_upd_197209
	a1-02
	a1-03
	a1-04
	a1-05
	a2-01_upd-197303
	a2-02
	a2-03
	a2-04
	replyA
	replyB

