varian data machines @——

VORTEX
REFERENCE MANUAL

Specifications are subject to change without notice. Address comments regarding this document to
Varian Data Machines, Publications Department, 2722 Michelson Drive, ‘Irvine, California, 92664.

varian data machines / a varian subsidiary
2722 michelson drive/p.o. box e/irvine/california/92664

©1974 printed in USA

_@ varian data machines

98 A 9952 103

SEPTEMBER 1974

This manual explains the Varian Omnitask Real-Time
Executive (VORTEX) and its use, but it is not intended for
a beginning audience. Prerequisite to an understanding of
this manual is a knowledge of general programming
concepts, and preferably some Varian Data Machines 620
series or V70 series computer system is desirable.

FOREWORD

SECTION 1 INTRODUCTION

SECTION 2 REAL-TIME EXECUTIVE SERVICES

SECTION 3 INPUT/OUTPUT CONTROL

SECTION 4 JOB-CONTROL PROCESSOR

SECTION 5 LANGUAGE PROCESSORS

SECTION 6 LOAD-MODULE GENERATOR

SECTION 7 DEBUGGING AIDS

SECTION 8 SOURCE EDITOR

SECTION 9 FILE MAINTENANCE

SECTION 10 INPUT/OUTPUT UTILITY PROGRAM

SECTION 11 VSORT (SORT/MERGE)

SECTION 12 DATAPLOT I

SECTION 13 SUPPORT LIBRARY

SECTION 14 REAL-TIME PROGRAMMING

SECTION 15 SYSTEM GENERATION

SECTION 16 SYSTEM MAINTENANCE

SECTION 17 OPERATOR COMMUNICATION

SECTION 18 OPERATION OF THE VORTEX SYSTEM

SECTION 19 VORTEX PROCESS INPUT/OUTPUT

SECTION 20 WRITABLE CONTROL STORE AND
FLOATING-POINT PROCESSOR

varian data machines @———1

varian data machines

FOREWORD

NOTATION IN THIS MANUAL

In the directive formats given in this manual:
« Boldface type indicates an obligatory parameter.
» ltalic type indicates an optional parameter.

« Upper case type indicates that the parameter is to be
entered exactly as written.

» Lower case type indicates a variable and shows where
the user is to enter a legal value for that variable.

a(1),a(2),...,a(n).

Indicates a series of elements separated by commas
repeated and terminated with a period.

If at least one element is required the first element is given
in bold. The parentheses are only part of the format
description.

For example
a(1),a(2),...,a(n).

where
each a(i) is a single alphabetic character
allows :

A,B,C,F,GH.
or
ZY X
or
V. -
as valid in this position.

A number with a leading zero is octal, one without a
leading zero is decimal, and a number in binary is
specifically indicated as such.

SECTION 1
INTRODUCTION
1.1 SYSTEM REQUIREMENTS......cccoimiiniiiiniiicteit sttt s 1-1
1.2 SYSTEM FLOW AND ORGANIZATIONcccoiiiiiiiimiimiieniantiasnessnnessss s s saneassns 1-2
1.2.1 COmMPULEr MEMOTYc.ooiiiiriiiiiieiiie e e e 1-2
1.2.2 Rotating Memory DEevVICe.........ccooviiiiiniinniiniii et 1.3
1.2.3 SecONdAry STOTAEE....cc.ccceeereriiriiiiiiienia ettt e e s 1-3
1.3 BIBLIOGRAPHYovicieitiiiieeieeasesiceeescetiesee st ssar st sbesa b s s a e s s e s e aaaesi e sabesa b e sar b s sbn b 1-4
SECTION 2
REAL-TIME EXECUTIVE SERVICES
2.1 REAL-TIME EXECUTIVE MACROSccccoonoees ettt eeteeeerrea e e et eeeeeaea e e n e s s e 2-1
2.1.1 SCHED (Schedule) Macrocoouivimmmmimiieiinei e 2-1
2.1.2 SUSPND (SuSpend) MAaCKO......ccccoivmiiimniiniinie ettt 2-2
2.1.3 RESUME MaCI0ccuviiiiiieiitiiiiee et iree e st saes s ta e s e nenan s et n st 2-3
2.1.84 DELAY MACIO....uiiieeueeieeeeeseerereeseeeeoseosnessse st nssssasaesas s s e s e s s b e b e e s s e st s 2-3
2.1.5 LDELAY IMACIO..ciiieiiereireieeeeiriressaeessisnessistese s siaseasnsssessbnar e e s s s an e s st ebr e s s e be s s s bn e e 24
2.1.6 PMSK (PIM Mask) MAaCIOcccuiimriimiiiinirniniinests i 24
2.1.7 THME IMACKO cceiiieiiriicrinneeceirerassseaeseent e e reesasbre e s e s ba s e s as e s e b as e e e s s s et s e e r st e b e e s bt 2-5
2.1.8 OVLAY (OVErlay) MACKOccocoiviirirmriiiciiiiei e et sie sttt s sne e 2-5
2.1.9 ALOC (AN0Cate) MACKO.....cccoouiiiiimiiriiiinie st 2-6
2.1.10 DEALOC (Deallocate) Macro......cciiiiiiiiieeniiiiinsinias st 2-7
D111 EXIT IMACKO . ccuieiurieeiieiereresteessteseuassasesseassbe s res et assas s bt s e aa b s s e ar s e s b s e e s ae e st n e nan e s sanneens 2.7
2.1.12 ABORT IMACI0 ... ueeiiiiiieuirieeiiraeranassasreesassssssssastssissasaniasaessseraaesaassatasssssseesessansnens 2-7
2.1.13 |OLINK (170 Linkage) MacrO.......coveirueiireminnmiiinincssen s 2-8
2.1.14 TBEVNT (Set or Fetch TBEVNT) Macro........covmvunneriiinininennnis i 2-8
2.2 ABORT PROCEDUREcueeitiiierieeieiereceineseeeseressestssssssssbnssbasssaasssessaassasssasenasnesenssanes 29
SECTION 3
INPUT/OUTPUT CONTROL
3.1 LOGICAL UNITS . eeiiitieeieieceteerteeesiessiaesteseeasabeseneessase st e sansesssan s eabasesbaaesse e seaanansasassnans 31
3.2 RMD FILE STRUCTURE....coiciiiirteencrerser e tsser s sa s s e s e b st ss s s e s s aas s 34
3.3 170 INTERRUPTS ..cotteetiictreteeieseereessesissnesse s sresessbi bt sssssbe s sae s saseman s enaanbessas s bnabes s sonens 3-5
3.4 SIMULTANEOUS PERIPHERAL OUTPUT
OVERLAP (SPOOL) ..voeieiieceeienteetresiesee st ses s sre s sasisssesbestasansaasasssesbsstas s esesss e snsennasess 35
3.4.1 SPOOL OPeration.........ccccoeroimiiiiinonieiiiiies st 3-6
B.4.2 SPOOL FleS ..ccviviererireeeerrirareesseerersssnsssssta s e s sssessasas s bs st assssasnessanssesnsassassessesaesen 3-6
3.5 1/70-CONTROL MACROScotieeeceieerieerrence sttt s s sar st e e a s be s e nbess 3-7
3.5.1 OPEN MACKO . ceeeeeeiuieeciieeieteeietesseesseteseesabesaesasase et sea st enesesaseressesssaratsbe st aassasansbesaenas 39
3.5.2 CLOSE MACKO....uvveueieiiererieeeieraeieeeesiteste sttt seressts s sbe s s ne e baaa s e e s s b e aa st e enae e s nen s bt s abtes 3-10

varian data machines @_T

TABLE OF CONTENTS

CONTENTS

r——[@ varian data machines

SECTION 3
INPUT/OUTPUT CONTROL (continued)

3.5.3 READ Macro
3.5.4 WRITE Macro
3.5.5 REW (ReWIiNd) MACTO....c.coiiiiiiiieitee e itee e e e i s srrene s st ssa e bt e e sannes
3.5.6 WEOF (Write End of File) MACro......coceeouveieniiriiiicieeeciercteeeresreeesese e
3.5.7 SREC (Skip Record) Macrocccooviiriiiiiniiiiiiiiii e
3.5.8 FUNC (Function) Macro
3.5.9 STAT (StatuS) MACIO c.cceeeieiiiiei e e e st eee e e s s e e n e sasa e sennbes s naraaes
3.5.10 DCB (Data Control Block) Macro
3.5.11 FCB (File Control BIOCK) MAaCI0cceiuriirieirieiientiteecretee e ree e ssnar e nare e sins -

SECTION 4
JOB-CONTROL PROCESSOR

4.1 ORGANIZATION ..ottt et st s e e et s sane s 4-1
4.2 JOB-CONTROL PROCESSOR DIRECTIVES ...ccctioiierricienrcenir e crecc e sir s saenine s 4-1
4.2.1 /JOB DIFECHIVE....oii ittt e s s e 4.2
4.2.2 /ENDJOB Dir€CHVE ...cccueiiitiiiiiiiiie ettt et et s et e e sea e 4.2
4.2.3 /FINI (Finish) DireCtive.........veuiiiiee et cce e e aees s 4.2
4.2.4 /C (Comment) DIreCtivecccouvreieeiiiieeee et 4.2
4.2.5 /MEM (Memory) Dire€Ctive.........ccommiiiniiiiniiiiiicn s e 4-2
4.2.6 /ASSIGN Dir€ChiVe......eoeieee e s 4-2
4.2.7 /SFILE (SKIP File) DIFECHVE.oveeveeeeeeesieseeeeseesseeerieseeesseesensessssenesesssssssssseseaneseaes 4-3
4.2.8 /SREC (Skip Record) Dir€Ctiveccoovuieieiiiiiiiiiiiirireesctes s riva et eeseea e e s snnee s 4-3
4.2.9 /WEOF (Write End of File)

DIFrECHIVE ...t e e 4.3
4.2.10 /REW (Rewind) DirectiVe.........ccoviiiiiiiiiiiiiiieiee ettt e 4-3
4.2.11 /PFILE (Position File) Directive.........ccovomiiiiviieiriiiiiiee et 4-3
4.2.12 /FORM Dir€Ctive.....ccuii ittt 4.4
4.2.13 /KPMODE (Keypunch mode)

DIPECTHIVE ...t ee b e s se s e e 2 e e srsae e snnaee s aaeeeane 4-4
4.2.14 /DASMR (DAS MR Assembler)

DIFECHIVE ...t e e e st e e e ee e eenae e e aaae e 4-4
4.2.15 /FORT (FORTRAN Compiler)

DIF@CTIVE ...ttt eeene 4-5
4.2.16 /CONC (System Concordance)

DIFECHIVE ..ottt et a e e r e st st e e be e st e v naeeas 4-5
4.2.17 /SEDIT (Source Editor)

DIFECHIVE ... eae e et nns 4-5
4.2.18 /FMAIN (File Maintenance)

[T L =T o) (1 OSSP 4-5
4.2.19 /LMGEN (Load-Module Generator)

DHFECHIVE ..ttt et et e et e e 4-6
4.2.20 /IOUTIL (1/0 Utility) DireCtiVe......ceocevcierierieevicsesese et r et e e sve e 4-6
4.2.21 /SMAIN (System Maintenance)

DHFECHIVE ...t et e e s ene e a e e e e eteesneeens 4-6

vi

CONTENTS
SECTION 4
JOB-CONTROL PROCESSOR (continued)
4.2.22 JEXEC (Execute) DireCiVeoceiiiiiieiieieteeeeete ettt 4-6
4.2.23 /LOAD Directive
4.2.24 /ALTLIB (Alternate
Library) DireCtive.......ccocuviiniiiricie et r s 4.7
4.2.25 /DUMP DiIr€CHIVEoeeiiiiii ettt sttt et s ae e e e na e nas 4.7
4.3 SAMPLE DECK SETUPS . c.iiiiiriiiiiciiiiteretaenrssee et essseeseesessesessseseseesassesevassessennosnas 4.7
SECTION 5
LANGUAGE PROCESSORS
5.1 DAS MR ASSeMDIEr ..o 5-1
5.1.1 TITLE DiIreCtiVecoiviuiimiiiiniieicncs ettt 51
5.1.2 VORTEX MACIOS ...coiiuiiiiiiaiiiecieesieesiteeteseteetee et e bee st e s e e sssase e e s s sare s senesbaesnnesnneas 5.2
5.1.3 Assembly Listing Format ... 57
5.2 CONCORDANCE PROGRAM........ccoviiiirireiceeeinneie st ssssn s sne i 5-8
L2 R ' o1V S TSRO 5-9
B.2.2 OURPUL ..o e e e e 5-9
5.3 FORTRAN [V COMPILER. ...ttt s 5-10
5.3.1 TITLE Statementccccceiniiiiiiiiniiiiicie e, ..5-10
5.3.2 Execution-Time 170 UNitS ..ot 5-11
5.3.3 Encode/Decode FUNCLIONS........ccouivvirueeiecenniriieeiesenseeneeesneesseennsssseeneesnessseenesssesinns 9- 14
5.3.4 Runtime /0 EXCEPLIONSccoveiiiieiiiiiiiiiicmiii ittt 514
5.3.5 Reentrant RUNtiMe 170ccoviiiiiiiiiiii e 5-15
5.4 RPG 1V COMPILER..... ottt s st 5-15
L2 30 R 4§ (e [T To] T o O P PPN 5-15
5.4.2 RPG IV I/0 Units....ccovvrevinininenee 5-15
5.4.3 Compiler and Runtime Execution ... 5-15
SECTION 6
LOAD-MODULE GENERATOR
6.1 ORGANIZATION ...ttt ae et e e a e e et e e sabe s e mtae e st e sebaeaeaaanneas 6-1
6.1.1 OVEIIAYS....ccoiiiiiieiee ettt ettt bbb e e sh b eab e e b st ae e ees 6-3
6.1.2 COMIMON ...ttt b e s s sbe s s san e e s aa e sane s e s ents 6-3
6.2 LOAD-MODULE GENERATOR DIRECTIVES.....cccciririieierreeirenenreneranresneesevsseesaesaccsnaeas 6-3
6.2.1 TIDB (Task-ldentification Block)
DIrECHIVE . et e aa e s ren e s e s e aa e 6-4
6.2.2 LD (LOAd) DiIr€CHVE.....coiiireieeie e ccceiei e ettt e e eee e e e e s e e e s e ee s e e snraneenens 6-4
6.2.3 OV (Overlay) Dir€ChiVecooiimiiiii et e 6-4
6.2.4 LIB (Library) Dir€CtiVecccccviiiiiiiiiieeiie et e ssina s se e essente s senen e e sesene s sannn s snnes 6-4
6.2.5 END Directive.......oociiiiiiiiiiiiiiii it 6-5
6.3 SAMPLE DECKS FOR LMGEN
OPERATIONS ...ttt ettt st e s s sbe s snenneneaesreenre s beesneenes 6-5
vii

varian data machines @——

CONTENTS

—-@ varian data machines

SECTION 7
DEBUGGING AIDS
7.1 DEBUGGING PROGRAM......c..cooiiiiiiirieci ettt st et s e s e e s et aeneeeneean 7-1
7.2 SNAPSHOT DUMP PROGRAM ..ottt ettt eaee st es e s e s 7-2
SECTION 8
SOURCE EDITOR
8.1 ORGANIZATION ...ttt ettt e e e e b e ta e e ene e e eaae e e eabeeeasaessaeeesanssamnesrnnes 8-1
8.2 SOURCE-EDITOR DIRECTIVES......coottreeeiieirrrieseeeeeserrareteesreesseesenessaesaeasaesasesseesesnnas 8-2
8.2.1 AS (Assign Logical Units) DireCtive.........cccerrvieeiieeciiieiieceeee et e 8-2
8.2.2 AD (Add Records) DireChiVe..........ccoeveiiiiiiieiiiiii et ecir et eae e aee e 8-3
8.2.3 SA (Add String) Dir€CtiVe.......cccuieciiiiieciiie ettt ee et et 8-3
8.2.4 REPL (Replace Records) Dir€CtiVecceirveeieeriiiieeiiieeceecree ettt ae e 8-4
8.2.5 SR (Replace String) Directive
8.2.6 DE (Delete Records) Dir€CHiVEccccceeriieiiiriiieieeiiiecie e rre s e e e e e -
8.2.7 SD (Delete String) DireCtivecoccceeeuuieeieeceeeeeeeeeee e et -
8.2.8 MO (Move Records) Dir€CtiVeccecuiiiiiiiiiiicieieeaiieiree e et et ere e nna e -
8.2.9 FC (Copy File) DIreCtiVe.......cccociuiiciieitiiiieeceie e eetes e st s saeseen e sreae sanresansenes -
8.2.10 SE (Sequence Records) Dir€CtiVe........ccocvicerriieiiniciireieceiee et -
8.2.11 LI (List ReCOrdS) DiIreCtiVe........ccourieieiieeieeieeeeriiicee s ceee e e etteee e eeee e s eeeessebeeeaesnns .

8.2.12 GA (Gang-Load All Records) Directive
8.2.13 WE (Write End of File)

DIFECTIVE L.ttt e aee e e e e e erae e 87

8.2.14 REWI (ReWind) DiIr€CtIVEcocveiriieeiiiieiecetectee et eae e st eeeeeaeeanenneens 8-7

8.2.15 CO (Compare INputs) DireCtive.........cccooueecimeeieceiccieree e e e 8-7

8.3 EXAMPLE OF EDITING A FILE oot e ae et eesne b e aa e e ens 87
SECTION 9

FILE MAINTENANCE

9.1 ORGANIZATION L..oiniiiiiintitecten ettt sae e s st e e st e st eeeets e eeeeseeneeeeeenenens -
9.1.1 Partition Specification Table.........cccocoiiiiiiirinirerrece e -
9.1.2 File-Name Dir€COrY.........ccooioiiiiieeiirire ettt e e s sae e e eeenene -
9.1.3 Relocatable Object MOQUIESoc.eveeeiiieiieeteeeeee et -
9.1.4 OULPUL LISTINGS .eviniiiiiiiciiicieic ettt et s e e eeeees -
9.2 FILE-MAINTENANCE DIRECTIVES....

9.2.1 CREATE DIreCIVEeieiiiiereerieieieetes et et e ebestssne et s ne e s st et eneeen -
9.2.2 DELETE Directive.

9.2.3 RENAME DIF€CHIVE......ceeceuiemcerrieeseiteieecsecsressesesas et eeeeeeseeeeeaseseeeseaseeeean £
9.2.4 ENTER DiFeCiVe ..ccciiiieiiiiiieece ettt eee st eene s ae et s eeeeeaneneanas
9.2.5 LIST DIr€CHVE ..e.eeoitieti ettt ettt et e et e e e e e e e e eeee s s anneesaaenes -
9.2.6 INIT (INTHANZE) DIFrECHIVEc.eeciveiieiiieiecee ettt ee et e e eee e e reresee e s e e snaeeeseseanes -
9.2.7 INPUT Directive .
0.2.8 ADD Dir€CHIVE. ... eoiueiieieeeeese e tee ettt eee et eebe e b e s sane b seesresneereeenene -

viii

varian data machines @——

CONTENTS

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM
10.1 ORGANIZATION oottt e st s st a s s b e aaasbe e 10-1
10.2 170 UTILITY DIRECTIVES......iiiiiiiireireenirce ettt s e esis s nen s sene e s snns 10-1
10.2.1 COPYF (Copy File) Directive.........cccccciiiiiiiiiiiiieiiiinies e 10-1
10.2.2 COPYR (Copy Record) Directive......ccocoeerriiiiiniiiiiiiinicieeccinci i 10-2
10.2.3 SFILE (SKip File) DireCtiVe.....ccceiirieiiiiiiicn et 10-3
10.2.4 SREC (Skip Record) Dir€Ctivecoovceeriiiiiininciiiniie st 10-3
10.2.5 DUMP (Format and Dump)
DIrECTIVE ...

10.2.6 PRNTF (Print File) Directive....
10.2.7 WEOF (Write End of File)
Directive ..o e
10.2.8 REW (Rewind) Directive
10.2.9 PFILE (Position File)

[T oy U1 PP 10-4

10.2.10 CFILE (Close File) DireCtiveccoceriiiiueeeiiniieiiie st s s ser s b s nes 10-5

10.2.11 PACKB (Pack Binary) DireCtivec.cccccueiiiiiiiiiiiieieeeiie e 105
SECTION 11

VSORT (SORT/MERGE)

11,1 ORGANIZATION L.ttt sttt et e sar e e b s esr e s ne e e sbaesna e s snen e e
11.2 VSORT DIRECTIVES
11.2.1 SORT DireCiVE cocoeeiiiiieiter ettt e e e s e s s araenne
11.2.2 INPUT Directive.....
11.2.3 OUTPUT Directive
11.2.4 WORK1,WORK2,WORK3, Dir€CtiVES....c..crcviireriirieiiiriieiincssirccintssnines s seesssnneeen 11-2
11.2.5 SORTKEY DIir€CtiVe....c.cciiiiiiiiiiiiiin s s 11.2
11.2.6 INEXIT DiIr@CHIVE ...cocuviiiiiiiiiiiicie ettt ettt e e e saa e 11-3
11.2.7 OUTEXIT Dir€CHIVE.eiitieeii ettt ettt ee ettt e e s sbae s s e e 11-3
11.2.8 ENDSORT Dir€CHIVE ..c.ctiiiriiiiiiiie ettt ettt sre e e e sbee e 11-3
11,3 USER EXETS . cieiiiiicrrenie et nrere s r e s vn s re st neshs e st s e neesnneenenenansnnnes

11.3.1 Calling Sequence...
11.3.2 Implementation......
11.4 VSORT MESSAGES

SECTION 12

DATAPLOT 1l
12.1 SYSTEM FLOW OUTLINE ...c.cotiriiinirrcnireircree e nresieetesee e et neeeneeevesneseneentene e 12-1
12.2 HARDWARE REQUIREMENTS ...ttt sressen s br e s s san s s e nasne e, 12-1
12.3 GENERAL DESCRIPTION......ciiiiiiiitieniniiee et siresseessraesetesies e sraessseessbaaeseneesssasmnenas j12-1
12.3.1 DATAPLOT [l Organization..........ccccooeeeeiniineenmricnnrenierresser e eeeeesseeesereseesonesenenee 121
12.3.2 System Considerations.... l2-3
12.3.3 VORTEX Considerationsccocccerviiiiiiiiiniiicciiniecrcesir s e 12-3

CONTENTS

:@l varian data machines

SECTION 12
DATAPLOT I (continued)

12.4 DATAPLOT Il FUNCTIONSoocuiiieirceeeiteteree e steeeceseneresereenaeeeennesanessresnesmerasesrenae
12.4.1 DPINIT (System File Initialization)....
12.4.2 PLOTS (Work Buffer Initialization)occcorniiiiiniiiiciieecnis e
12.4.3 PLOT (Generate POt).........cciiiviirieiiiiriieciinrt e ss e s ae e sre s s ae st esea e
12.4.4 SCALE (Generates Scale Factor)cccoovimericiiincnininiicnin e e
12.4.5 AXIS (Generate Segmental AXIS).......ccccciereirriirreierirrireeesarnreessnreeeesrennnesenneessens
12.4.6 SYMBOL (Generate Symbols)cccooiiiiiiiiiiiciiiineserrnie e seee s e e e e s e
12.4.7 NUMBER (Generate NUMDEr)c.cccciiiiciiiie et crere e e
12.4.8 LINE (Generate Graph Line)
12.4.9 MLTPLE (MURtiple PIOt).....coioiiiiiiiiiieir ettt sne e ae s
12.4.10 FACTOR (AIter PIOt SiZ€)......ccvreiirririccirniierecrer s srresceemr et nrecsrecrs st e assns
12.4.11 WHERE (Locate Coordinates)........cccccooiircieiriresenniinseer et enere e
12.4.12 APPEND (Append File).c....ciiciiicieririieieirierrenieerie e sseseesss e s sra e esesenees
12.4.13 TOPFRM (TOP-Of-FOIM)......eiiiiriiniiecieitre et nireseeeseessse e s s emne s s e sernesreasne s
12.4.14 CUT (Cut PaPEI) .cocieeieciiin ettt sttt s s s ssa s s ssaas s s sn s s srnnn s
12.4.15 ENDCUT (Eject and Cut Paper)..
12.4.16 DPSORT (Sort Plot File).......cocieoiiieeiieeie ittt e
12.4.17 DPPLOT (OUtput FIle) ..cueiiiiieiiieiiieiiir et erae st en e e e s s ere e
12.4.18 DPCLOS (Clos€ POt File).....ccoreeivirrericsineristereseinre s ncstssrr s e nsensassssasanen
12.4.19 ORIG -- Offsetting the Origin Entry Point.......c..coocoeieiiiiiniiiicnecnee 12-14
12,420 VECT -- Vector Entry Point ...t e 12-14
12.4.21 Special SYMBOL Subroutine........... et ere e riete s tee e e e et e re e tr e e e e re e e nne e e s e s eren s 12-15
12.5 PLOT FILE DATA FORMAT
12.5.1 VECIOTS...ceciiiirerreiieree et et serae e s s sre s s es et aesene e s s nr e e s s e e s s s s e e s s e s ane s e s aresnteese srntessmnressas
12.5.2 Characters.........coccciiiinieriiiiiicciin e b

12.5.3 End-of-Plot INAiCAtOrcocoiiiii it

126 EXAMPLE OF APPLICATION OF DATAPLOT H.cvviciieiereenceieeneeencn e cee e 12-16
12.6.1 Program to Generate SiNe WAVcccoivirecriiiriiinescinne e ecan e sree e e seenns 12-16
12.6.2 Program to Generate Communication Network..........ccccooiiriiinicinnininicnnicnens 12-16
12.7 OPERATING PROCEDURES AND ERROR MESSAGES..........cccormmerninireeceisnneneens [12-17
12.7.1 VORTEX Operating Procedurescccoeuerienneeciinnnerinienescscseeessresssenessneseneennn 12:17
12.7.2 Unsorted Plot Filesuoiiiee e e e s e s 12-17
12.7.3 Presorted Plot FileS..........cccoveieeviicrctiteririeeeeseee et tseeesssteseesesabensssssenssssssnsasess 12-17
12.7.4 VORTEX Special ProCedures...........ccceeruiiiiiiiciiiiiireiessine s sssseessseeseressssescssesas 12-17

SECTION 13
SUPPORT LIBRARY

13.1 CALLING SEQUENCE........ociciiirciiir et 13-1
13.2 NUMBER TYPES AND FORMATS........cooiiiititcienr it 13-1
13.3 SUBROUTINE DESCRIPTIONS........cccvnmitiiininii et s 13-2

CONTENTS
SECTION 14
REAL-TIME PROGRAMMING
14.1 INTERRUPTS ...ttt rreestes e sn s sts s e n e s n e e e s e e nacenensnneenensneesneenenennes 14-1
14.1.1 External INterrupts. ...ttt e vt e e e s nn e e e e e eaa e e een 14-1
14.1.2 Internal INterruPts.......ccii i e e 14-3
14.1.3 Interrupt-Processing Task

14.2 SCHEDULING ..ot

14.2.1
14.2.2
14.2.3

14.3 REENTRANT SUBROUTINES. ..o
14.4 CODING AN 1/0 DRIVERcccciiiiiiiiiiinencnicnnne s

14.4.1
14.4.2
14.4.3
14.4.4

14.4.5

14.4.6

15.1 ORGANIZATIONooeeiiic s 15-1
15.2 SYSTEM-GENERATION LIBRARYcooiiiiiiiiiiicieiicnineceeent it 15-2
15.3 KEY-IN LOADERccovtiiiiiitiit it 15-5
15.4 SGEN 1/0 INTERROGATION......cooiiiviiiiiinisniesiesiitsie et ssissssst s sessasaens 15-6

15.4.1

15.4.2
154.3

15.4.4

15.4.5

15.5 SGEN Directive ProCeSSINGccceirereerirvirciririnerieseseeseesesssressesssesssessssessesssessssasensans

15.5.1 MRY (Memory) Directive....

15.5.2 EQP (Equipment) Directive

15.5.3 PRT (Partition) Dir€CtiVEccvecieeiiiiieeiiie ettt s s e s e s
15.5.4 ASN (ASSIgN) Dir€Ctiveocceereeiiiiiiicec ettt cnee e e et e s ea e eaes
15.5.5 ADD (SGL Addition) Dir€CHIVE......ccccoveieiireieiccceieee et ner e e ennees 15-12
15.5.6 REP (SGL Replacement) DireCliVecccoceverieeeeiceieeie et s senesae s 15-12
15.5.7 DEL (SGL Deletion) DirectiVe..........ccccveieiiiieeiieniiiciesciressieeseeseinesereesseesessessanen 15-13
15.5.8 LAD (Library Addition) DireCtive...........ccceeermrvuriciiiiiiiiecies i eceeeeee e sn e e sveae s 15-13
15.5.9 LRE (Library Replacement) DirectiVe..........c.ccccriiiiiieceieiiiiieiicecieeesneeccreeesesassees 15-13
15.5.10 LDE (Library Deletion) Directive......

15.5.11 PIM (Priority Interrupt) Directive

varian data machines [@———

INSEAHATION ..ot e e e e s nenes

System Flow....
PrIOFIEIES .. ettt e e st et e e b s rae st rae s
Timing Considerations (ApproxXimate)........ccccceiieririiiieiiin et

170 TabIS.... oo
170 Driver System FUNCHIONScccooiiiiiiieiiic et scnre e
Adding an 1/0 Driver to the System File...
Enabling and Disabling PIM

INTEITUDES ... st eb e s s b sr et st e sasera et eseneranne 14-24
Directly Connected Interrupt

HANAIEY ..ottt e e s e se s b sas b sa s et eon et e e eneeaes 14-25

SECTION 15
SYSTEM GENERATION

DIR "(Directive-Input Unit)

DIFECHIVE 1.uviiiiiiniirie ettt e e e e e s e e e e ee e e e anennnens 15-6
LIB (Library-Input Unit) Directivesc.ccooveivierienniicrie e cieecir e e 15-6
ALT (Library-Modification

INput Unit) DireCtive.........cooiiiiiicicccin it e be s 15-6
SYS (System-Generation

Output Unit) DIreCtiveccoocriiiiiiiiiciiciiiincis e esessssins s sne s s ert s s stn e s steessasesasasas
LIS DIreCHIVE ...correiiiiicriicirecreiin st s e e e s see e s e e eesan e sas s s e s b e s an e e e e snesanennesenen

xi

CONTENTS

-—@ varian data machines

SECTION 15
SYSTEM GENERAT'ON (continued)

15.5.12 CLK (CIOCK) DIFECHIVEcererrteieiririeeiinrcretcie ittt s e e b svaeeas e sanene s 15-14
15.5.13 TSK (Foreground Task) Directive.......cccoouieiiieiiiiiiiiiie e, 15-15
15.5.14 DEF (Define External) Directive........ccccooiiiiimiini 15-15
15.5.15 EDR (End Redefinition)

[T =103 (1Y PP PP PPPPFPR
15.5.16 Required Dir€Ctivescocoeviiiiiiiiiiiiiin e

15.6 BUILDING THE VORTEX NUCLEUS
15.6.1 SLM (Start Load Module)

[0 T =101 (12U PPRPPTPPPO 15-16
15.6.2 TDF (Build Task-ldentification Block)

[=71 €11 PP PO 15-16
15.6.3 END DireCtIVE ..coiiiiieiee ittt recrceeie et a e e s a e e e 15-17
15.6.4 Memory Parity Considerationscccocovriiiiiiiirinnn 15-17
15.7 BUILDING THE LIBRARY

CONFIGURATOR ..ottt ettt et sne b sn s s sae e snb e sa s st s e e e e ae e 15-17

15.7.1 SLM (Start LMP) Directive......cccccrrmiiinmciiiiiiiii e 15-19
15.7.2 TID (TIDB Specification)

D =YL (172 PPN OPT P IIN 15-19
15.7.3 -OVL (Overlay) Dir€CHiVe.......cccoeeriiiiiiriiiiiii ettt 15-19
156.7.4 ESB (End Segment) Dir€Ctiveccoveiiiiiiiiiiiiiici e 15-20

15.7.5 END (End Library) Directive
15.8 SYSTEM INITIALIZATION AND

OUTPUT LISTINGS. ... ootciiitieeinireeecrneessceiaeseesteeesreeee e asesenssssessss st ssssseansssssssnees 15-20
15.9 SYSTEM GENERATION EXAMPLES......ccoviiiiiiirericie e 15-21

SECTION 16
SYSTEM MAINTENANCE

16.1 ORGANIZATION
16.1.1 Control Records !
16.1.2 Object MOAUIES.....cccoiiciiiiiiiccriciiiie e e
16.1.3 System-Generation Library..........c.oociiiiinin s
16.2 SYSTEM-MAINTENANCE DIRECTIVESccciiiiiiiiiiiiiiin et
16.2.1 IN (Input Logical Unit) Directive........ccoomiiiiiiiiiiiiii e
16.2.2 OUT (Output Logical Unit) Directive
16.2.3 ALT (Alternate Logical Unit)

[T =101 (1Y OO 164
16.2.4 ADD Dir@CHIVE...coiicctieie it e eeeie e eeee e e s reer e s e ses e e eeses e s s bbb e e a e e e s nbe e e e narae s 16-4
16.2.5 REP (Replace) Directive........ccccoomiiiiiiiiiiiiicecn s 16-5

16.2.6 DEL (Delete) DIrCtiVe ...ccooveiieriiiiiiieieieeeee et st e 16-5
16.2.7 LIST DiIFECHIVE ..eviiviieririeieeieeeitieeeseres e teesa et e e st e e sae s s ense s eesreamb e s s s s baas e s e bnse s e nareanans 16-6
16.2.8 END Dir€CHIVE ...ciiieeeiieeieieiesseeee st ercr e e ier e e s er e ere s b s e s sa s e s eaae s s e e s nne e e aanraeaes 16-7
16.3 SYSTEM-MAINTENANCE OPERATION ...ccoooiiiiiiiiiniiiet et 16-7
16.4 PROGRAMMING EXAMPLESooiiiiiirenrerre e st s 16-7

Xii

varian data machines @—

CONTENTS

SECTION 17
OPERATOR COMMUNICATION

17.1 DEFINITIONS ...
17.2 OPERATOR KEY-IN REQUESTS
17.2.1 ;SCHED (Schedule Foreground Task)

KeY-IN REQUEST.......ciiiiiiiiiiiiii i ertr et ne e ettt st e e s st ee e s sbtee e s e enbeeeasnaneeens 17-2
17.2.2 ;TSCHED (Time-Schedule Foreground

Task) Key-INn REQUESt ... s ae e e e e e e e e e meeeaens 17-2
17.2.3 ;ATTACH Key-In ReqUEeSTcciiiiiiiiiee ettt e 17-2
17.2.4 ;RESUME Key-In Request... i17-3
17.2.5 TIME Key-In REQUESTooeiiiiiiiieiie ittt ce e e e s 17-3
17.2.6 ;DATE Key-In ReQUEST...ccoiiiiiiiiiiiii et eneas 17-3
17.2.7 ;ABORT Key-In ReQUESTc.ceiiiiiiie ettt 17-3
17.2.8 ;TSTAT (Task Status) Key-In Request...........cooiiviiiiiiiinieiiriecr e 17-3
17.2.9 ASSIGN Key-In ReqUESTooiiiiiiiiiiii e e e e e e e e eeeeees 17-4
17.2.10 ;DEVDN (Device Down) Key-In

REQUEST ...ttt e et ee et a e e ee e e e rreee e sraenees 17-5
17.2.11 ;DEVUP (Device Up) Key-In

REGUEST ..ttt ettt ettt e et e et a e ea et et e e e e ene et nan e 175
17.2.12 ;IOLIST (List 1/0 Key-In

REQUEST ...ttt sttt e e e e s e s s e e rerereaeae s n e nene e 17-5

SECTION 18

OPERATION OF THE VORTEX SYSTEM

18.1 DEVICE INITIALIZATION ..iiiiiiiitiiiantiteneenesresteareseesessreeseetsnesneesssesasansssnsnsnsssessses
18.1.1 €ard REATENocoveeiieiiicieie et
18.1.2 €ard PUNCN ..ottt
18.1.3 LINE PriNter..c..coiiiiieeie ettt e e e ra e
18.1.4 Statos-31 (Model 70-66XX)...
18.1.5 33/35 ASR TeletyPe..ciccceeiiiiiiie ittt s
18.1.6 High-Speed Paper-TApe Reader..........cccociiiiiiiniiiiniiiiciciie e 18-1
18.1.7 Magnetic-Tape Unit.....cccociiiiieirr e 18-1
18.1.8 Magnetic-Drum and Fixed-Head

[LTl 6 T T ORI
18.1.9 Moving-Head Disc UNitScccoiiiiiiiiiiiiiiiii it
18.1.10 Moving-Head Disc Units
18.1.11 Moving-Head DiSC UNitSccccoiiiiiiiiiiiiii i
18.2 SYSTEM BOOTSTRAP LOADERc..ciiiiiiiiiienrceie et 18-2
18.2.1 Automatic Bootstrap Loader............cocceiiiiiiiiiiiniiii i 18-2
18.2.2 Control Panel Loadingccoooiiviiiiiiiiiii it 18-2
18.3 DISC PACK HANDLINGccooiiiiiiiicrereer i sae s sses s sae s see e s sasnas e 18-3
18.3.1 PRT (Partition) DireCtiVeccociiiiiiiiiiii ittt 184
18.3.2 FRM (Format Rotating Memory)

DHPECTIVE ...eeeeecee ettt ne e e h s et e e e ‘

18.3.3 INL (Initialize) Directive
18.3.4 EXIT DiIreCtiVe.covii it a e e
18.4 70-7500 (620-35) DISC PACK

FORMATTING PROGRAM.......coitiiiiiiitiiinieere ettt s 18-5

Xiii

CONTENTS

_[@ varian data machines

SECTION 18
OPERATION OF THE VORTEX SYSTEM (continued)

18.5 70-7510 (620-34) DISC PACK
FORMATTING PROGRAM........ootiiitiiiicecrie et enese st v se s e
18.6 WRITABLE CONTROL STORE (WCS)

SECTION 19
PROCESS INPUT/OUTPUT

19.2.1 Hardware........cc.oceovierreririneeninnnn.
19.2.2 SGEN Operations

19.2.3 Output Calls........
19.3 PROCESS INPUT .
BT B R T« N T 7 T OO
19.3.2 SGEN Operations...........cccuirerinrccrieciniiiennionieneirssesesses e ssesseessnseesssnsessssnessesnesens 19-3
19.3.3 INPUL CallS coeiiiiiiceie et et e b e ene e neanneenas 19-4
19.3.4 Low-Level Multiplexor Gain COontrol............cccoeiieeieimrieireeei st seee v 195
19.4 ISA FORTRAN PROCESS CONTROL

SUBROUTINES ...ttt rte st sns e re st sre st s e b e s n e bes 19-6
19.4.1 Input/Output Calls................. ...19-6
19.4.2 Bit String Operations.........cocceeirerierieeie e st st e e beeee e sae e 19-8
19.5 ERRORS.....c.oiiciiitetie ittt sas et sa e s s ess b e e s e te e van et e see bt sbesnenenabaan 19-8
19.6 EXTENSIONS ..ottt cee et s e stssaesve e eat s s e sne s sse e besnsesnresseaseasatssreen 19-8

SECTION 20
WRITABLE CONTROL STORE AND FLOATING-POINT
PROCESSOR
20.1 MICROPROGRAMMING SOFTWAREccoocoiriieriretiensesaeteesessisneressemsseseseeraseseensssnens 20-1
20.1.1 Microprogram Assembler
20.1.2 Microprogram SIMUIALOYcocvvueieeiuoueeiieterieeeerereeisste s e e e seeseeeetaneseeeseeeens
20.1.3 Microprogram URIHITYcccooerireniriiicisee ettt ree et esas e se e e etnen
20.1.4 WCS Reload Task, WCSRLD........cccccvivevviinieeeineieeieres e e et aeeseneeeseereneaeessenees 20-2
20.2 STANDARD FIRMWAREcooiiiititeie st st cessaesesteee s s e eseseeneeaseenteenennneens 20-2
20.2.1 Fixed-Point Arithmetic
FIFMWAIE ...ttt ettt st st sn et e s ernneeeeeneenes 20-2
20.2.2 Floating-Point Arithmetic
FIFMWAIE ...t r ettt e st 20-2

20.2.3 Data Transfer FITMWAreccccoeeeiieieeciiitcece s ests e sesseeeseeeeseseees eeeesenenns 20-2
20.2.4 FORTRAN-Oriented FIrMWAreccoooeeiiuiiiineieereier e eres e eceeeseeeeseesneesseeesesenes 20-2
20.2.5 Byte Manipulation FIrmMWarec..ocoouivivviiiinieeeeeeeeece e eeeeee e eeeseeeeee e 20-3
20.2.6 Stack Firmware................ eeeeadet i ar e ei i eSS i Attt e st e e ave e e eearEeee s et et resanteesernnenn 20-3
20.2.7 FirmMWAre MACIOS........ccverrueirmieirieeteeieeetie ettt eseses st ereeesseesassesesnaenseeseeeessnes 20-6

Xiv

APPENDIX A.
ERROR MESSAGES

A.l1 ERROR MESSAGE INDEX
A.2 REAL-TIME EXECUTIVE ...c.cotiiiricine et snec e
A3 170 CONTROL ..ottt sttt
A.4 JOB-CONTROL PROCESSOR
A.5 LANGUAGE PROCESSORS
A.5.1 DAS MR ASSEMDIEccoeiiririeiereeietee e ere e
A.5.2 FORTRAN IV Compiler and Runtime

COMPIIET ..ot e
A.5.3 RPG IV Compiler and Runtime

COMPIIEN ..ottt be s e nene
A.6 LOAD-MODULE GENERATOR.......
A.7 DEBUGGING PROGRAM....... e
A.8 SOURCE EDITOR.....
A9 FILE MAINTEANCEcooociiiirerinininineete et e
ALO 170 UTILITY oot reeireseere st ene s sne s
A.11 SORT ERROR MESSAGES........c.ccesumririiieiereceeeseecseeeere e
A12 DATAPLOT .ottt st sbe sttt et
A.13 SUPPORT LIBRARYcociiieieeiercierieeisteeestesraeseerenesneneseneseens
A.14 REAL-TIME PROGRAMMING........ccoovirrirernreenrninreesisse e
A.15 SYSTEM GENERATIONcovciviiireecintciecee st
A.16 SYSTEM MAINTENANCEccooiiircieeecce e ere e
A.17 OPERATOR COMMUNICATIONccceovirieecririsreereoreeeee e s
A.18 RMD ANALYSIS AND INITIALIZATION
A.18.1 Microprogram Simulator...........ccoevevirieieneieseieeeeeseeeinen
A.18.2 Microprogram ULilityccoereviiieiiiieecececcce et
A.19 PROCESS INPUT/OUTPUTcccoiirieierei sttt

A.21.1 Errors Related to Directives.......coeervveeiveieceesicsieicecr s
A.21.2 Errors Related t0 Programs.........cccccocooveeeevenseiinicienesnnnenns
A.21.3 Errors Related to Memory Size
A.21.4 Errors Related to Hardware

APPENDIX B
170 DEVICE RELATIONSHIPS

APPENDIX C
DATA FORMATS
C.1 PAPER TAPE ..ottt stesrss e et ennas
C.1.1 Binary Mode.........cccoovverervirecrnnnn.
C.1.2 Alphanumeric Mode.......................

C.1.3 Unformatted Mode....
C.1.4 Special Characters
C.2 Cards.......cccrvericeernnnnns e e r e

varian data machines @—

CONTENTS

.............................

CONTENTS

——[@ varian data machines

APPENDIX C
DATA FORMATS (continued)
C.2.1 BiNAry MOGE.....cooueeeieeieiiriciriecere et sh e s s b et C-2
C.2.2 Alphanumberic Mode............ccoiiiiiiiiii Cc-2
C.2.3 Unformatted MOGE......ccuiiiiiiiiicei et e e re e st n e st bn e eann e s e C4
C.2.4 SPECial CRAFACEY ...cc.eiviuireiriicie ittt st s bt an s C-4
C.3 MAGNETIC TAPE ...ttt ettt ettt ettt st s e sra s s abe s e st sn e s e nseeenseeasteeensen C-4
(O T S -V T I Yo L OO IPPRR C4
O3 T (N 11 Y- 0 K - Yol P C4
C.4 STATOS PRINTER/PLOTTERoiiiiieiie ettt sn s e C-4
C.4.1 Alphanumeric MOEc.coouiiiiiiiiiiiii e C-4
C.4.2 Unformatted MOUE......ccuviiiiriiiiiiccien e rra s a e e s e c-4
APPENDIX D
STANDARD CHARACTER CODES
APPENDIX E
ASCII CHARACTER CODES
APPENDIX F
VORTEX HARDWARE CONFIGURATIONS
APPENDIX G
OBJECT MODULE FORMAT
G.1 RECORD STRUCTUREcoiieiieicetcie ettt ettt s e s saa e e snessn e G-1
G.2 PROGRAM IDENTIFICATION BLOCKcovicriiiiiireriiicin ittt s G-1
G.3 DATA FIELD FORMATSoiiiiiiiecietincet ettt st sae s st eaae e ene e G-1
G.4 LOADER CODES......cciiitiiieiteeeeetiseecesees et s seessre s e sn e s sas st saseraeeas e beessabnensaaes G-1
G5 EXAMPLEooiiiiiii ettt st eeie ettt et e bt e e e sa e s e e s e n e n et e a s e b s ra e e b ane G3
G.5.1 S0UIrCE MOAUIE......ooceiiiiiiiiiti ettt sb et ee e rbe e e ne s s e na e anes G-3
G.5.2 ODBJECt MOQUIE ...ttt s n s e G-3
G.5.3 COT@ IMAZE .. .ccuiieieiieeeieteeeee e ere e st bbb e e sb s e s ba et e e b e e s e sranan e e G-5

xvi

varian data machines @—7

CONTENTS

LIST OF ILLUSTRATIONS

Figure 1-1. VORTEX System FIOWccoiiiiiiiiiece st ecn it e 1-2
Figure 1-2. VORTEX Computer Memory Map...... PP PP 1-3
Figure 1-3. VORTEX RMD Storage Mapoc.ccoooeiiiioiiiieeeeeee oo 1-3
Figure 3-1. Spooling SUDSYSEM FIOWccevirieiiiieiieeteiiresrce et re e 3-6
Figure 5-4. FORTRAN /0 EXECULION SEQUENCEScoveeueeuiieeeneeeeeceeiee e s seeee e e e 5-1
Figure 6-1. Load-Module Overlay Structure..............ccocoooiiiiiiiiiiio e 6-2

Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.
Figure 12-7.
Figure 12-8.
Figure 12-9. Sine Wave Plot Generated by DATAPLOT Il..cccccvivreeenivecenieevennneerenneneennns
Figure 12-10. Communication Network Plot Generated by DATAPLOT II. .
Figure 14-1. Interrupt Line HandIErscccococoriuieiieeceeniieiccieceeetee ettt
Figure 14-2. VORTEX MeMOrY Map.....cccocviiiiiiieiiceieeeectectieee et eeeee st eeeeeaesntssneesansseaesnesenas
Figure 14-3. VORTEX Priority STrUCTUIecccoovviiiiiecee et e
Figure 14-4. TIDB DeSCriPtioNcoceeiiciiciiieiesiie sttt sttt e e r e s erseessnnssaeenes
Figure 14-5. Driver Interface....
Figure 15-1. SGEN Data FIOW........ccocoiiiiriniiie e

Figure 15-2. System-Generation Libraryccccecveevieceevccice s SR 15-3
Figure 15-3. VORTEX NUCIEUS.......crvviriiiiirineiietieee e et v ts e e e e rereereeea—— 15-3
Figure 15-4. Load-Module Library..........cccccceoviinsiinnenncrneniineseeveececre e senenearnens e 15-4
Figure 15-5. Load Module Package for Module Without Overlays.........c...cccoveeveveeinecnennn 15-17
Figure 15-6. Load Module Package for Module With Overlays...........c.covveriens UTRT 15-19
Figure 15-7. VORTEX Nucleus Load Mapccccccviriviirinincniiniiniencrennseseseevsesinsssesesarnene

Figure 15-8. Library Processor Load Map.. .
Figure 15-9. RMD Partition LiStiNgcccoueivereriiriniecinese ettt s
Figure 15-10. Resident-Task LOad Map.......ccccocevieiiieiiniieiieiecie ettt ettt
Figure 16-1. SMAIN BIOCK DiB8ramcccoueiecvecreirerienenesienieseesieseeseeessiesseseesses e stestssvesens
Figure 16-2. SMAIN LIST Directive Listing
Figure 20-1. Base and Limit of Stack........c.coceririiniriiiinr et
Figure 20-2. Stack Control BIOCK.........ccoveiiiieiiiriiricce st se e
Figure 20-3. Stack MUIPIY ..c.ccooiiiii e e
Figure 20-4. Stack Divide
Figure 20-5. STaCk PUSHc.oooiiiiiiiiicc st a e s eae e eans

Figure 20-5. StACK POPcociiiiecii ettt st sre e b sene e e enaenaa e

Figure 20-5. Stack Double PUShccccoiiiiiiiiieiccecieeeeeceee et ra e

Figure 20-8. Stack DoubIe POP.......ccooiiereiiiiiierirre s sesn st e ste et sre e e vt nee e sreeneas

Figure C-1. Paper Tape Binary Record FOrmat........cccccivienmeireecieirieeee et C-1
Figure C-2. Paper Tape Alphanumeric Record Format..........cccccooviiiiiiiiiniinecninnreeenen c-2
Figure C-3. Card Binary Record FOrmatccoceiiiininininciiccennie e C-3
Figure C-4. Card Alphanumeric Record Format (IBM 026).......cccccccovvvieivernenceesivereeennane. C-3

X Vil

CONTENTS

Table 2-1. RTE Service Request Macros

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

—@ varian data machines

3-1.
3-1.
3-1.
3-2.
3-3.
5-1.
5-2.

LIST OF TABLES

VORTEX Logical-Unit ASSigNMEeNtsc..occvviiieiiiinieenrirerne e irenesserres e eene 3-1
VORTEX Logical-Unit Assignments (continued)............cccccvvvniiiiiiniciniicininnns 3-2
VORTEX Logical-Unit Assignments (continued)....
Valid Logical-Unit ASSIBNMENTS.........coieeiuiiieirieriee e e s e 3-3
FCB Words Under |/0 Macro Control........cc.ccoeeimmiriniiiciiniiicicncncceene 3-14
Directives Recognized by the DAS MR Assembler........c.ccccoociniivrnviinninnnnnen. 5-1
RTE Macros Available Through FORTRAN IV ..o

-1. DEBUG Dir€CHIVEScoiiiiiiiiicieeniiii e ettt ssans s ssaen e e
. DAS Coded SUbroutings.........cccoriieiiiiiiiieiiieereee et

-1. DAS Coded Subroutines (continUed)............ccccevveiieniviiniiiiiiiiiiiisiinisieieenee,

-1. DAS Coded Subroutines (continued)..
-1. DAS Coded Subroutines (continued)............cccccceeevevvvecicciiiiriiiiiesee e
. DAS Coded Subroutines (continued)............ccccooviieiviniiiicciinincciiiiiiiniciin,
. FORTRAN |V Coded Subroutings..........ccccoeviriiniiianinien e ercrceeeeeee
. FORTRAN IV Coded Subroutines (continued)
. FORTRAN 1V Coded Subroutines (continued)

1. TIDB Description.........cooceiiiiiiiiiiiiiineecciiee s
. TIDB Description (continued)cccoocueiviiiiiiiiinciiiciicris e
. TIDB Description (continued)c..ccccceviiiiiiiiiniiciinneeee e
. TIDB Description (continued)
. Map of Lowest Memory Sector.......c.ccovniiiiiiiiiniiiiii
. Map of Lowest Memory Sector (continued)
. Map of Lowest Memory Sector (continued)
. Map of Lowest Memory Sector (continued)
. Map of Lowest Memory Sector (continued)....
. Map of Lowest Memory Sector (continued)
. Map of Lowest Memory Sector (continued)
. Map of Lowest Memory Sector (continued)

. Model Codes for VORTEX Peripheralsccccceiiiiiiiiiiiieniiiineiecce e

. Model Codes for VORTEX Peripherals (continued)ccccccovvvieiiniiinniinnns 159
. Preset Logical-Unit ASSIENMENTS.........ccoriiiiiiiomniiiie e 15-11
. Permissible Logical-Unit Assignments........ccccovviiiiniiniiiniiniiniiiicceecieas 15-12
. TIDB Status-Word Bits .
. Physical 170 DEeVICES.....cocciiiiiiiiiiiiiii it

. Task Status (TIDB Words 1 and 2)...c...ccccrereeniinriinciniiinnenissmnnionn e 17-4
. Key-In Loader Programs

X Viii

SECTION 1
INTRODUCTION

The Varian Omnitask Real-Time EXecutive (VORTEX) is a
modular software operating system for controlling, schedul-
ing, and monitoring tasks in real-time multiprogramming
environment. VORTEX also provides for background opera-
tions such as compilation, assembly, debugging, or
execution of tasks not associated with the real-time
functions of the system. Thus, the basic features of
VORTEX comprise:

« Real-time 1/0 processing
+ Provision for directly connected interrupts
« Interrupt processing

* Multiprogramming of real-time and background
tasks

« Overlapping output to peripherals with spooling

» Priority task scheduling (clock time or
interrupt)

» Load and go (automatic)

» Centralized and device-independent 1/0 system
using logical unit and file names

« Operator communications

« Batch-processing job-control language

« Program overlays

» Background programming aids: FORTRAN and
RPG 1V compilers, DAS MR assembler, load-module
generator, library updating, debugging, and

source editor.

« Use of background area when required by
foreground tasks

» Disc/drum directories and references
» System generator

1.1 SYSTEM REQUIREMENTS

VORTEX requires the following minimum hardware
configuration:

a. Varian 620/f, 620/f-100 or V70 series computers with
16K read/write memory (24K for foreground and
background usage)

b. 33/35 ASR Teletype on a priority interrupt module

c. Real-time clock (standard on V70 series computers)

varian data machines @—

d. Memory protection (standard on V70 series computers)

e. Power failure/restart (standard on V70 series com-
puters)

f. Priority Interrupt Module (PIM)

g. Rotating memory device (RMD) on a PIM with either
a buffer interlace controller (BIC) or priority memory @
access (PMA) Y

h. One of the following on a PIM:
(1) Card reader with a BIC
(2) Paper-tape system or a paper-tape reader
(8) Magnetic-tape unit with a BIC

The system supports and is enhanced by the following
optional hardware items:

a. Additional main memory (up to 32K) and/or rotating
memory

b. Additional rotating memory devices

c. Automatic bootstrap loader

d. Card reader, if one is not included in the minimum
system with BIC and PIM

e. Card punch with BIC and PIM
f. Line printer with BIC and PIM

g. Paper-tape punch, if one is not included in the
minimum system

h. Process input and output

i. Data communications multiplexor
j- Electrostatic printer/plotter

k. Writable control store

I. Floating-point processor

The rotating-memory device (RMD) serves as storage for
the VORTEX operating system components, enabling real-
time operations and a multiprogramming environment for
solving real-time and nonreal-time problems. Real-time
processing is implemented by hardware interrupt controls
and software task scheduling. Tasks are scheduled for
execution by operator requests, other tasks, device inter-
rupts, or the completion of time intervals.

Background processing (nonreal-time) operations, such as
FORTRAN compilations or DAS MR assembilies, are under
control of the job-control processor (section 4), itself a
VORTEX background task. These background processing
operations are performed simultaneously with the real-time
foreground tasks until execution of the former is sus-
pended, either by an interrupt or a scheduled task.

1-1

— varian data machines

INTRODUCTION

1.2 SYSTEM FLOW AND ORGANIZATION

VORTEX executes foreground and background tasks
scheduled by operator requests, interrupts, or other tasks.
All tasks are scheduled, activated, and executed by the
real-time executive component on a priority basis. Thus, in
the VORTEX operating system, each task has a level of
priority that determines what will be executed first when
two or more tasks come up for execution simultaneously.

The job-control processor component of the VORTEX
system manages requests for the scheduling of background
tasks.

Upon completion of a task, control returns to the real-time
executive. In the case of a background task, the real-time
executive schedules the job-control processor to determine
if there are any further background tasks for execution.

During execution, any foreground task can use any real-
time executive service (section 2.1).

Figure 1-1 is an overview of the flow in the VORTEX operat-
ing system. Section numbers refer to further discussion in this
manual.

1.2.1 Computer Memory

The VORTEX operating system divides computer (main)
memory into five areas (figure 1-2):

a. Real-time executive area

b. User’sresident task and subroutine area
c. User's nonresident task allocation area
d. Background task area

e. Low-memory block area

The real-time executive area is the highest segment of
memory. It contains the real-time executive, the 170 control
component, I/0 drivers, the load-module loader, interrupt
processors, and the foreground blank common (section 6).
All subroutines that reside in this area must be declared at
system-generation time because no modification of the
area is possible at run time. (Maintenance of the
foreground blank common is a user responsibility. The

VORTEX OPERATING SYSTEM
|
FOREGROUND |, BACKGROUND
I
f
USER REAL-TIME | LOAD- FORTRAN
NON- R CATION EXECUTIVE | MODULE | Y
RESIDENT INTERRUPT SERVICES (GENERATOR [* ™ compiLer
TASKS (SECTION 2) | (SECTION 6) (SECTION 5.3)
l
l
|
I
\4 |
|
[JOoB-
EESER T le | REAL-TIME |l CONTROL Z,| USERs
TaSks 7| ExECumvE P | proCESSOR [7| TASKs
: (SECTION 4)
y |
|
|
‘ |
OPERATOR | DAS MR
,S\IYSLEfA 1/0 COMMUNI- | 1/O ASSEMBLER
RESIDENT CONTROL CATION (o |utiry N *(SECTION 5.1)
TASKS (SECTION 3) PACKAGE I (SECTION 10)
(SECTION 17) |
|
i | RPG IV
| »| COMPILER
v ! (SECTION 5.4)
|
|
USER VDM | DE-
SUPPLIED |« > ‘D/SVERS «——»| SUPPLIED | BUGGING |4 > I(JIIERSAR}(ING
: SECTION -
DEVICES DEVICES I (7) (SECTIONS
| 7,8, & 9
[
I
VTII-1314 A

Figure 1-1. VORTEX System Flow

1.2

VORTEX system provides blank-common pointers for use by
the load-module generator.)

Memory
Area
0
Interrupt Locations
System Pointers Protected Memory
Literal Pool
512
Background Unprotected Memory
8.5K
Nonresident
Foreground
Resident Foreground
Top of User Ta.sks and
Memory Subroutines
7k T
v
0 System Tables
R
T 170 Control Protected Memory
E
X 1/0 Drivers
N Real-Time Executive
U
Cc Load-Module Loader
L
E Foreground
u Blank Common
Top s
of
Memory

Figure 1-2. VORTEX Computer Memory Map

The user's resident task and subroutine area is adjacent to
the real-time executive area. All resident foreground
subroutines must be declared at system-generation time
because no modification of the area is possible at run time.

The user’'s nonresident task allocation area is for the
execution of tasks that reside on the RMD in the form of
load modules, i.e., fully link-edited, but relocatable. When
such a task is to be executed, it is loaded into this area and
activated. If no nonresident foreground area is available for
loading this task, background area is used, the background
task being suspended and stored on the RMD. When the
background area is again free, the background task is
reloaded and resumed.

The background task area is for the execution of tasks that
are less time-critical, such as compilers, assemblers,
editors, and other general-purpose tasks. Note that this
area is the only unprotected area of memory. Tasks
executing in this area cannot modify the system, i.e., this
area is suitable for the execution of undebugged tasks.

varian data machines @—-

INTRODUCTION

The low-memory block area contains system pointers and
tables, interrupt addresses, and the background literal
pool.

1.2.2 Rotating Memory Device

At least one RMD (disc or drum) is required for storage of
VORTEX operating system components. The RMD is divided
into a fixed number of variable-length areas called
partitions. These are defined at system-generation time
(section 15).

The following reside on the RMD (figure 1-3):

a. System initializer, loader, and VORTEX nucleus in
absolute format

b. Checkpoint file
c. GOfile

d. User library

e. Transient files
f. Relocatable object-module library

g. Relocatable load-module library

1.2.3 Secondary Storage

The VORTEX operating system supports any secondary
storage devices that have been specified at system-
generation time.

System Initializer and
Loader

VORTEX Nucleus in
Absolute Format

Checkpoint File

GO File

User Library

Transient Files

Relocatable Object-Module
Library

Relocatable Load-Module
Library

Figure 1-3. VORTEX RMD Storage Map

1-3

:@I varian data machines

INTRODUCTION

1.3 BIBLIOGRAPHY

The following gives the stock numbers of Varian manuals
pertinent to the use of VORTEX and the V70/620 com-
puters:

Title Document
Number

V72 Handbook 98 A 9906 20x
V73 Handbook 98 A 9906 01x
620-100 Computer Handbook 98 A 9905 00x
FORTRAN |V Reference Manual 98 A 9902 03x
RPG IV User's Manual 98 A 9947 03x
VTAM Reference Manual 98 A 9952 22x
HASP/RJE Operator’'s Manual 09 A 9952 21x
Microprogramming Guide 98 A 9952 21x
Vortex Installation Manual 98 A 9906 07x

Where x is a revision level number subject to change.

Maintenance information is in the following VORTEX
Software Performance Specifications:

Document
Number Title

89A0156 System Overview

89A0203 External Specification

89A0231 Internal Specification, Vol. |
89A0232 Internal Specification, Vol. i
89A0233 Internal Specification, Vol. 1|
89A0225 DAS MR Assembler Internal
89A0214 FORTRAN IV Compiler Internal
89A0211 FORTRAN |V Library Internal
89A0246 FORTRAN IV Runtime 1/0 Internal
89A0234 RPG IV Runtime/Loader Internal
89A0184 RPG IV Compiler Internal

1-4

SECTION 2
REAL-TIME EXECUTIVE SERVICES

The VORTEX real-time executive (RTE) component
processes, upon request by a task, operations that the task
itself cannot perform, including those involving linkages
with other tasks. RTE service requests are made by macro
calls to VSEXEC, followed by a parameter list that contains
the information required to process the request.

The contents of the volatile A and B registers and the
setting of the overflow indicator are saved during execution
of any RTE macro. After completion of the macro, these
values are returned. The contents of the X register are lost.

There are 32 priority levels in the VORTEX system,
numbered 0 through 31. Levels 0 and 1 are for background
tasks and levels 2 through 31 are for foreground tasks. If a
background task is assigned a foreground priority level, or
vice versa, the task automatically receives the lowest valid
priority level for the correct environment. Lower numbers
assign lower priority.

Background and foreground RTE service requests are
similar. However, a level 0 background RTE request causes
a memory-protection interrupt and the request is checked
for validity. If there is an error, the system prints the error
message EX11 with the name of the task and the location
of the violation of memory protection. The background task
is aborted.

Table 2-1. RTE Service Request Macros

Mnemonic Description Level 0 FORTRAN
SCHED Schedule a task Yes Yes
SUSPND Suspend a task Yes Yes
RESUME Resume a task No Yes
DELAY Delay a task No Yes
LDELAY Delay and reload from No Yes
specified logical unit
PMSK Store PIM mask register No Yes
TIME Obtain time of day Yes Yes
OVLAY Load and/or execute an Yes Yes

overlay segment

ALOC Allocate a reentrant No Yes
stack
DEALOC Deallocate the current No No

reentrant stack

EXIT Exit from a task (upon Yes Yes
completion)

ABORT Abort a task No Yes

IOLINK Link background 1/0 Yes No

Whenever a task is aborted, all currently active 1/0
requests are completed. Pending 1/0 requests are de-
queued. Only then is the aborted task released.

There are 12 RTE service request macros. Certain of them
are illega! in unprotected background (level 0) tasks. Table
2-1 lists the RTE macros, indicates whether they are legal
in level O tasks, and indicates whether there is a FORTRAN
library subroutine (section 13) provided.

Note: A task name comprises one to six alphanumeric
characters (including $), left-justified and filled out with
blanks. Embedded blanks are not permitted.

2.1 REAL-TIME EXECUTIVE MACROS
This section describes the RTE macros given in table 2-1.
The general form of an RTE macro is

label mnemonic,p(1),p(2),....p(n)

where
label permits access to the macro from
elsewhere in the program

mnemonic S one of those given in table 2-1

eachp(n) is a parameter defined under the
descriptions of the individual macros

The omission of an optional parameter is indicated by
retention of the normal number of commas unless the
omission occurs at the end of the parameter string. Thus,
in the macro (section 2.1.1)

SCHED 8,,106,, 'TA','SK','A '
the first double comma indicates a default value for the
wait option and the second double comma indicates

omission of a protection code.

Error messages applicable to RTE macros are givén in
Appendix A.2.

2.1.1 SCHED (Schedule) Macro

This macro schedules the specified task to execute on its
designated priority level. The scheduling task can pass the

21

varian data machines —

varian data machines

REAL-TIME EXECUTIVE SERVICES

two values in the A and B registers to the scheduled task.
The macro has the general form

label SCHED level,wait, lun,key,'xx’,'yy’,'zz’'

where
level is the value from 0O (lowest) to 31
(highest) of the priority level of the
scheduled task

wait is 0 (default value) if the scheduling and
scheduled task obtain CPU time based
on priority levels and 1/0 activity, or 1 if
the scheduling task is suspended until
completion of the scheduled task

lun is the name or number of the logical unit
whose library contains the scheduled
task, zero to schedule a resident
foreground task, or 106 to schedule a
nonresident task from the foreground
library

key is the protection code, if any, required to
address lun (0306 or 'F' to schedule a
nonresident task from the foreground
library). The foreground library logical
unit and its protection key are specified
by the user at system-generation time

is the name of the scheduled task in six
ASCIl characters, coded in pairs
between single quotation marks and
separated by commas; e.g., the task
named BIGJOB is coded 'Bl','GJ',’OB’
and the task named ZAP is coded
'ZA','P

XXyyzz

The FORTRAN calling sequence for this macro is

CALL SCHED(level,wait lib,key,name)

where lib is the number of the library logical unit
containing the task, and name is the three-word Hollerith
array containing the name of the scheduled task. The other
parameters have the definitions given above.

All tasks are activated at their entry-point locations, with
the A and B registers containing the values to be passed.
The scheduled task executes when it becomes the active
task with the highest priority.

The specified logical unit (which can be a background task,
a foreground task, or any user-defined library on an RMD)
must be defined in the schedule-calling sequence.
Expansion: The task name is loaded two characters per
word. The wait option flag is bit 12 of word 2 (w).

2-2

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSR
Word 1 VS$EXEC address
Word 2 w 0O 0 0 0 01 I level
Word 3 key | lun
Word 4 Task name
Word 5 Task name
Word 6 Task name
Examples: Schedule the foreground library task named

TSKONE on priority level 5. Use the no-wait option so that
scheduled and scheduling tasks obtain Central-Processor-
Unit (CPU) time based on priority levels and 170 activity.

FL EQU 106 (LUN assigned to
foreground library FL)

KEY EQU 0306 (Protection code
for FL)
SCHED 5,0,FL,KEY,'TS’', 'KO', 'NE'
. (Control return to highest
. priority)

Note: the KEY line can -be coded with the equivalent ASCII
character enclosed in single quotation marks.

KEY EQU 'F'

The same request in FORTRAN is
DIMENSION N1(3),N2(3)
DATA N1(1)/2H F/

DATA N2(1),N2(2),N2(3)/2HTS, 2HKO, 2HNE/
CALL SCHED(5,0,106,N1,N2)

or

CALL SCHED(5,0,106,2H F, 6HTSKONE)

2.1.2 SUSPND (Suspend) Macro

This macro suspends the execution of the task initiating
the macro. The task can be resumed only by an interrupt
or a RESUME (section 2.1.4) macro. The macro has the
general form

label SUSPND susp

where susp is 0 if the task is to be resumed by RESUME, or
1 if the task is to be resumed by interrupt.
The FORTRAN calling sequence for this macro is
CALL SUSPND(susp)
Expansion: The susp flag is bit O of word 2 (s).

Bit 15 14 13 12 11 10 9 8 7 6 5§ 4 3 2 1 0
Word 0 JSR
Word 1 V$EXEC address

Word 2 0o o oo11|><|s

Example: Suspend a task from execution. Provide for
resumption of the task by interrupt, which reactivates the
task at the location following SUSPND.

SUSPND 1

The same request in FORTRAN is

CALL SUSPND(1)

2.1.3 RESUME Macro

This macro resumes a task suspended by the SUSPND
macro. The RESUME macro has the general form

label RESUME xx','yy','zz’

where xxyyzz is the name of the task being resumed,
coded as in the SCHED macro (section 2.1.1).

The RTE searches for the named task and activates it when
found. The task will execute when it becomes the task with
the highest active priority. If the priority of the specified
task is higher than that of the task making the request, the
specified task executes before the requesting task and
immediately if it has the highest priority .

The FORTRAN calling sequence for this macro is

CALL RESUME(name)

where name is the three-word Hollerith array containing the
name of the specified task.

Expansion: The task name is loaded two characters per
word.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Word 0 JSR

Word 1 V$EXEC address

Word 2 0O 0 01 00

Word 3 Task name

Word 4 Task name

Word 5 Task name

varian data machines @—

REAL-TIME EXECUTIVE SERVICES

Example: Resume (reactivate) the task TSKTWO, which
will execute when it becomes the task with the highest
active priority.

RESUME 'Ts', 'KT', 'WO'
(Control return)

Control returns to the requesting task when it becomes the
task with the highest active priority. Control returns to the
location following RESUME.

The same request in FORTRAN is

DIMENSION N1(3)
DATA N1(1),N1(2),N1(3)/2HTS, 2HKT, 2HWO/
CALL RESUME(N1)

or

CALL RESUME(6HTSKTWO)

2.1.4 DELAY Macro

This macro suspends the requesting task for the specified
time, which is given in two increments. The first increment
is the number of 5-millisecond periods, and the second, the
number of minutes. The macro has the general form

label DELAY milli, min, type

where

milli is the number of 5-millisecond
increments delay

min is the number of minutes delay

type is O (default value) when the task is to be
suspended for the specified delay,
remain in memory, and automatically
resume following the DELAY macro; 1
when the task is to exit from the system,
relinquishing memory, and, after the
specified delay be automatically
rescheduled from the foreground library
in a time-of-day mode; or 2 when the
task is to resume automatically after the
specified delay or upon receipt of an
external interrupt, whichever comes
first, and automatically resume following
the DELAY macro

The FORTRAN calling sequence for this macro is
CALL DELAY(milli,min,type)

where the integer-mode parameters have the definitions
given above.

2-3

varian data machines

REAL-TIME EXECUTIVE SERVICES

The maximum value for either milli or min is 32767. Any
such combination given the correct sum is a valid delay
definition; e.g., for a 90-second delay, the values could be
6000 and 1, respectively, or 18000 and 0. After specified
delay, the task becomes active. When it becomes the
highest-priority active task, it executes.

Note that the resolution of the clock is a user-specified
variable having increments of 5 milleseconds. The time
interval given in a DELAY macro must be equal to or
greater than the resolution of the clock. The delay interval
is stored in minute increments and real-time clock
resolution increments. Time is kept on a 24-hour clock.

Expansion: The type flag is bits O and 1 of word 2.

The FORTRAN calling sequence for this macro is
CALL LDELAY (milli,min, lun,key)

where the integer-mode parameters have the definitions
given in the assembly-language form of the call.

Time is the same as specified for DELAY.

Expansion:
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSR
Word 1 V$EXEC address
Word 2 ><[001001D<|111
Word 3 milli
Word 4 min
Word 5 key | lun

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSR

Word 1 V$EXEC address

Word 2 0 0 1 00 ll><](ype
Word 3 milli

Word 4 min

Examples: Assuming a 5-millisecond clock increment, delay
the execution of a task for 90 seconds. At the end of this
time, the task becomes active. When it becomes the
highest-priority task, it executes.

DELAY 6000, 1

Delay the execution of a task for 90 seconds or until receipt
of an external interrupt, whichever comes first, at which
time the task becomes active. Such a technique can test
devices that expect interrupts within the delay period.

DELAY 18000,0,2
2.1.5 LDELAY Macro
This macro is a type 1 DELAY macro with additional
parameters to specify the logical unit from which the task is

to be reloaded after the delay. The macro has the general
form:

label LDELAY milli,min,lun,key
where

milli is the number of 5-millisecond
increments delay

min is the number of minutes delay

lun is the number of the logical unit from
which the task is to be loaded after the
delay

key is the protection code for the logical unit

2.4

Example: Assuming a 5-millisecond clock increment, delay
the execution of a task for 90 seconds. At the end of this
time, the task becomes active. When it becomes the
highest priority task, it is loaded from logical unit 128
which has protection key A, and executed.

LDELAY 6000,1,128,0301

2.1.6 PMSK (PIM Mask) Macro

This macro redefines the PIM (priority interrupt module)
interrupt structure, i.e., enables and/or disables PIM
interrupts. The macro has the general form

label PMSK pim,mask,opt
where

pim is the number (1 through 8) of the PIM
being modified

mask indicates the changes to the mask, with
the bits indicating the interrupt lines
that are either to be enabled or disabled,
depending on the value of opt, and with
the other lines unchanged

opt is O (default value) if the set bits in mask

indicate newly enabled interrupt lines,
or 1 if the set bits in mask indicate newly
disabled interrupt lines

The FORTRAN calling sequence for this macro is

CALL PMSK(pim,mask,opt)

where the integer-mode parameters have the definitions
given above.

The eight bits of the mask correspond to the eight priority
interrupt lines, with bit O corresponding to the highest-
priority line.

VORTEX operates with all PIM lines enabled unless altered
by a PMSK macro. Normal interrupt-processing allows all
interrupts and does one of the following: a) posts (in the
TIDB) the interrupt occurrence for later action if it is
associated with a lower-priority task, or b) immediately
suspends the interrupted task and schedules a new task if
the interrupt is associated with a higher-priority task.
PMSK provides control over this procedure.

Note: VORTEX (through system generation) initializes all
undefined PIM locations to nullify spurious interrupts that
may have been inadvertently enabled through the PMSK
macro.

Expansion: The opt flag is bit 0 of word 2 (o).

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSR

Word 1 VSEXEC address

Word 2 0o 0 1 000 I 0
Word 3 pim l mask

Examples: Enable interrupt lines 3, 4, and 5 on PIM 2.
Leave all other interrupt lines in the present states.
PMSK 2,070
The same request in FORTRAN is
CALL PMSK(2,56,0)
Disable the same lines.

PMSK 2,070,1

2.1.7 TIME Macro

This macro loads the current time of day in the A and B
registers with the B register containing the minute, and the
A register the 5-millisecond, increments. The macro has the
form

label TIME
The FORTRAN calling sequence for this macro is
CALL TIME(min,milli)
where min is the hours and minutes in 1-minute integer

increments, and milli is the seconds in 5-millisecond
integer increments.

varian data machines

REAL-TIME EXECUTIVE SERVICES

Expansion: The opt flag is bit 0 of word 2 (o).

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Word 0 JSR

Word 1 V$EXEC address

Word 2 o 0 1 010

Example: Load the current time of day in the A (5-
millisecond increments) and B (1-minute increments)
registers.

TIME
(Return with time in A
and B registers)

2.1.8 OVLAY (Overlay) Macro

This macro loads and/or executes overlays within an
overlay-structured task. It has the general form

label OVLAY type,'xx','yy’,'2z’

where

type is 0 (default value) for load and execute,
or 1 for load and return following the
request

XXyyzz is the name of the overlay segment,
coded as in the SCHED macro (section
2.1.1)

The FORTRAN calling sequence for this macro is
CALL OVLAY(type,reload,name)

where type is a constant or name whose value has the
definition given above, reload is a constant or name with
the value zero to load or non-zero to load only if not
currently loaded, and name is a three-word Hollerith array
containing the overlay segment name.

FORTRAN overlays must be subroutines if called by a
FORTRAN call.

Expansion: The overlay segment name is loaded two
characters per word. The type flag is bit O of word 2 (t).

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSR

Word 1 VS$EXEC address

Word 2 0 0o 101 1 I><x
Word 3 Overlay segment name

Word 4 Overlay segment name

Word 5 Overlay segment name

25

varian data machines

REAL-TIME EXECUTIVE SERVICES

When the load and execute mode is selected in the OVLAY
macro RTE executes a JSR instruction to enter the overlay
segment. Therefore, the return address of the root segment
is available to the overlay segment in the X register.

Example: Find, load, and execute overlay segment
OVSGO1 without return.

OVLAY 0,'ov,'sG','01"’
(No return)

The same request in FORTRAN is

DIMENSION N1(3)
DATA N1(1),N1(2),N1(3)/2HOV,2HSG,2H01/
CALL OVLAY(O0,0,N1)

or

CALL OVLAY{(0,0,6HOVSGO1)

External subprograms may be referenced by overlays. If a
subprogram S is called in several overlays, and S is not in
the main segment, each overlay will be built with a
separate copy of S.

When using FORTRAN overlays containing /0 statements
for RMD files defined by CALL VSOPEN for CALL V$OPNB
statements (described in section 5.3.2), the main segment
must contain an 1/0 statement so that the runtime 170
program (VEFORTIO) will be loaded with the main segment.
FCB arrays must be in the main segment or in common, so
they are linked in memory and cannot be in any overlay.

2.1.9 ALOC (Allocate) Macro

This macro allocates space in a push-down (LIFO) stack of
variable length for reentrant subroutines. The macro has
the general form

label ALOC address

where address is the address of the reentrant subroutine to
be executed.

The FORTRAN calling sequence for this macro is
EXTERNAL ALOC(subr)

where subr is the name of the DAS MR assembly language
subroutine.

The first location of the LIFO stack is V$LOC, and that of
the current position in the stack is V$CRS. The first word of
the reentrant subroutine, whose address is specified in the
general form of ALOC, contains the number of words to be
allocated. If fewer than five words are specified, five words
are allocated.

2-6

Controt returns to the location following ALOC when a
DEALOC macro (section 2.1.8) is executed in the called
subroutine. Between ALOC and DEALOC, (1) subroutine
cannot be suspended, (2) no 10C calls (section 3) can be
made, and (3) no RTE service calls can be made.

Reentrant subroutines are normally included in the
resident library at system-generation time so they can be
concurrently accessed by more than one task. The
maximum size of the push-down stack is also defined at
system-generation time.

Expansion:
Bit 15 14 13 12 11 109876543217.‘
Word 0 JSR
Word 1 VSEXEC address
Word 2 0o o0 01 10
Word 3 Reentrant subroutine address

Reentrant subroutine: The reentrant subroutine called by
ALOC contains, in entry location x, the number of words to
be allocated. Execution begins at x + 1. The reentrant
subroutine returns control to the calling task by use of a
DEALOC macro.

The reentrant stack is used to store register contents and
allocate temporary storage needed by the subroutine being
called. The location V$CRS contains a pointer to word 0O of
the current allocation in the stack. By loading the value of
the pointer into the X (or B) register, temporary storage
cells can be referenced by an assembly language M field of
5,1 for the first cell; 6,1 for the second; etc.

A stack allocation generated by the ALOC macro has the
format:

Bit 15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 0
Word 0 Contents of the A register

Word 1 Contents of the B register

Word 2 Contents of the X register

Word 3 ovfl Contents of the P register

Word 4 Stack-control pointer (for RTE use only)

Word 5 For reentrant subroutine use (temporary storage)
W;rd n

where ovfl is the overflow indicator bit.

The current contents of the A and B registers are stored in
words 0 and 1 of the stack and are restored upon execution
of the DEALOC macro. The same procedure is used with the
setting of the overflow indicator bit in word 3 of the stack.
The contents of word 2 (X register) point to the location of
the reentrant subroutine to be executed following the
setting up of the stack. The contents of word 3 (bits 14-0)
point to the return location following ALOC.

Example: Allocate a stack of six words. Provide for
deallocation and returning of control to the location
following ALOC.

EXT SUB1
ALOC SUB1
(Return Control)

NAME SUB1
SUB1 DATA 6

DEALOC

END

Each time SUB1 is called, six words are reserved in the
reentrant stack. Each time the reentrant subroutine makes
a DEALOC request (section 2.1.8), six words are deallo-
cated from the reentrant stack.

2.1.10 DEALOC (Deallocate) Macro

This macro deallocates the current reentrant stack,
restores the contents of the A and B registers and the
setting of the overflow indicator to the requesting task, and
returns control to the location specified in word 3 (P
register value) of the reentrant stack (section 2.1.7). The
macro has the form

label DEALOC
Expansion:
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSR
Word 1 V$EXEC address
Word 2 0 0 0 1 11

Example: Release the current reentrant stack, restore the
contents of the volatile registers and the setting of the
overflow indicator and return control to the location
specified in word 3 of the stack.

. (Reentrant subroutine)
DEALOC
END

varian data machines

REAL-TIME EXECUTIVE SERVICES

2.1.11 EXIT Macro

This macro is used by a task to signal completion of that
task. The requesting task is terminated upon completion of
its 170. The macro has the form

label EXIT
The FORTRAN calling sequence (no parameters specified)
is

CALL EXIT

If the task making the EXIT is in unprotected background
memory, the macro schedules the job-control processor
(JCP) task (section 4).

Expansion:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSR

Word 1 VSEXEC address

Word 2 0 0 0010

Example: Exit from a task. The task making the EXIT call
is terminated upon completion of its 1/0 requests.

EXIT (No return)

2.1.12 ABORT Macro

This macro aborts a task. Active 170 requests are
completed, but pending |/0 requests are dequeued. The
macro has the general form

label ABORT 'xx',yy','zz’

where xxyyzz is the name of the task being aborted, coded
as in the SCHED macro (section 2.1.1).

The FORTRAN calling sequence for this macro is
CALL ABORT(name)

where name is the three-word Hollerith array containing the
name of the task being aborted.

Expansion: The task name is loaded two characters per
word.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSR

Word 1 V$EXEC address

Word 2 0O 0 01 01

Word 3 Task name

Word 4 Task name

Word 5 Task name

2-7

varian data machines

REAL-TIME EXECUTIVE SERVICES

Example: Abort the task TSK and return control to the
location following ABORT.

ABORT '‘rs','K',’ !
. (Control return)

The same request in FORTRAN is

DIMENSION N1(3)
DATA N1(1),N1(2),N1(3)/2HTS,2HK ,2H /
CALL ABORT(N1)

or

CALL ABORT(6HTSK)

2.1.13 IOLINK (1/0 Linkage) Macro

This macro enables background tasks to pass buffer
address and buffer size parameters to the system back-
ground global FCBs. It has the general form

label IOLINK lungsd,bufloc,bufsiz
where
lungsd is the logical unit number of the global
system device
bufloc is the address of the input/output buffer
bufsiz is the size of the buffer (maximum and

default value: 120)

Global file control blocks: There are eight global FCBS
(section 3.5.11) in the VORTEX system reserved for
background use. System background and user programs
can reference these global FCBs. JCP directive /PFILE
(section 4.2.12) stores the protection code and file name in
the corresponding FCB before opening/rewinding the
logical unit. The IOLINK service request passes the buffer
address and the size of the record to the corresponding
logical-unit FCB. The names of the global FCBs are SIFCB,
PIFCB, POFCB, SSFCB, BIFCB, BOFCB, GOFCB, and
LOFCB, where the first two letters of the name indicate the
logical unit.

Expansion:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Word 0 JSR

Word 1 VS$EXEC address

Word 2 ><|0 0 11 00 lungsd

Word 3 bufloc

Word 4 bufsiz

2-8

Example: Pass the address and size specifications of a
40-word buffer at address BUF to the Pl global FCB.

PI EQU 4
EXT PIFCB
. (Pl logical-unit number 4)

IOLINK PI,BUF,40

READ PIFCB,P1,0,1
. (Read 40 ASCIl words
frorn PI)
BUF BSS 40
END

If the PI file is on an RMD, reassign the Pl to the proper
RMD partition, and then position the Pl file using JCP
directive /PFILE.

2.1.14 TBEVNT (Set or Fetch TBEVNT) Macro

This macro fetches or sets the requesting task's event
word, TBEVNT, word 3 of the TIDB. It can also be used to
change other words in the TIDB. However, most changes to
entries in the TIDB could cause irrecoverable errors, so the
TBEVNT macro should be used only with caution. Section
14 gives information about the format and contents of the
TIDB.

This macro has the general form

label TBEVNT value,disp,c/s

where

value is a value or bit mask for the specified
TIDB word. If disp is 0, value 0 - 0177776
changes the TBEVNT word and a value of
0177777 fetches the TBEVNT contents
into the A register. If disp is not zero, it
sets or resets (depending on c/s) the
word specified by disp

disp is the displacement of the word in the
TIDB to be set or reset, or 0 for TBEVNT
(word 3). The defaultis 0.

c/s is the clear or set indicator, if disp is not
0. ¢/s = O for clear (the zero bits of the
value indicate the bits of the specified
word to be set to 0) and 1 for clear (the
one bits in value indicate the bits to be
set to 1). Defaultis 0

varian data machines

Bit

15 14 13 12 11

10 9 87 6 5 4 3 2 10

Word 0

Word 1

Word 2

Word 3

Word 4

Word 5

JSRX

Default values:

disp =

0 c/s = 0

Example: Save the value of TBEVNT in TEMP then set
TBEVNT to 02.

START

TEMP

TBEVNT
STA
TBEVNT

.

BSS

0177777

TEMP (Save TBEVNT)
02 (Set TBEVNT= 2)
1

REAL-TIME EXECUTIVE SERVICES

Example: Reset TBPL (word 2 of TIDB) bit 8 and then set it
again.

TBEVNT
TBEVNT

0177377,2,0
0400,2,1

2.2 ABORT PROCEDURE

Whenever a task is aborted, all currently active 1/0
operations are allowed to complete. All 170 requests that
are threaded (queued, or waiting to be activated) are not
activated. Upon completion of all active 1/0 operations and
after all pending requests are dethreaded, the aborted task
is released.

2-9

_@ varian data machines

varian data machines

SECTION 3
INPUT/OUTPUT CONTROL

The VORTEX input/output-control component (IOC)
processes all requests for 1/0 to be performed on
peripheral devices. The |0C comprises an 1/0-request
processor, a find-next-request processor, an 1/O-error
processor, and [/0 drivers. The |0C thus provides a
common 1/0 system for the overall VORTEX operating
system and eliminates the programmer’'s need to under-
stand the computer hardware.

All 170 with remote devices connected through the Data
Communications Multiplexor (DCM) uses the VORTEX
Telecommunications Access Method (VTAM). VTAM inter-
faces with 10C. Use of VTAM is described in the VTAM
Reference Manual.

The contents of the volatile A and B registers and the
setting of the overflow indicator are saved during execution
of any IOC macro. After completion of the macro, these
data are returned. The contents of the X register are lost.

If a physical-device failure occurs, the 170 drivers perform
error recovery as applicable. Where automatic error
recovery is possible, the recovery operation is attempted
repeatedly until the permissible number of recovery tries
has been reached, at which time the 1/0 driver stores the
error status in the user 1/0-request block, and the 1/0-error
processor posts the error on the OC logical unit. The user
can then try another physical device or abort the task.

3.1 LOGICAL UNITS

A logical unit is an 1/0 device or a partition of a rotating-
memory device (RMD). It is referenced by an assigned
number or name. The logical unit permits performance of
1/0 operations that are independent of the physical-device
configurations by making possible references to the logical-

unit number. The standard interfaces between the program
and the 10C, and between the 10C and the /0 driver,
permit substitution of peripheral devices in |70 operations
without reassembling the program.

VORTEX permits up to 256 logical units. The numbers
assigned to the wunits are determined by their
reassignability:

a. Logical-unit numbers 1-100 are used for units that can
be reassigned through the operator communications
component (OPCOM, section 17) or the job-control
processor (JCP, section 4).

b. Logical-unit numbers 101-179 are used for units that
are not reassignable.

c. Logical-unit numbers 180-255 are used for units that
can be reassigned through OPCOM only.

d. Logical-unit number O indicates a dummy device. The
|0C immediately returns control from a dummy device
to the user as if a real |/0 operation had been
completed.

VORTEX logical-unit assignments for all systems are
specified in table 3-1. All logical-unit numbers that are not
listed are available to the reassignability scheme above.

Table 17-1 shows the scheme of system names for physical
devices. Table 3-2 shows the possible logical-unit
assignments.

Table 3-1. VORTEX Logical-Unit Assignments

Number Name Description
0 DUM Dummy
1 oC Operator

communication

2 S| System input
3 SO System output
4 Pl Processor input

Function
For 1/0 simulation

For system operator
communication with immediate
return to user control;
Teletype or CRT only

For inputs of all JCP control
directives to any device

For display of all input
control directives and output
system messages; Teletype or
CRT only

For input of source statements
from all operating system

language processors (continued)

31

— varian data machines

INPUT/OUTPUT CONTROL

Table 3-1. VORTEX Logical-Unit Assignments

(continued)

Number Name Description Function

10

11

12

101

102

103

LO

Bl

BO

SS

GO

PO

DI

DO

Cu

SW

CL

List output

Binary input

Binary output

System scratch

Go unit

Processor output

Debugging input

Debugging output

Checkpoint unit

System work

" Core" -resident
library

For output of operating system
input control directives,

system operations messages,
and operating system language
processors’ output listings

For input of object-module
records from operating system
processors

For output of object-module
records from operating system
language processors

For system scratch use; all
operating system language
processors that use an inter-
mediate scratch unit input
from this unit

For output of the same infor-
mation as the BO unit by the
system assembler and compiler;
RMD partition only

For processor output; all
operating system language
processors that use an inter-
mediate scratch unit output to
this unit; PO and SS are
assigned to the same device
at system-generation time

For all debugging inputs
For all debugging outputs

For use by VORTEX to
checkpoint a background task;
partition protection key S;
RMD partition only

For generation of a load module
by the system load-module
generator component; or for
cataloging, loading, or

execution by other system
components; partition protec-
tion key B; RMD partition only

For all " core" -resident system
entry points partition protec-
tion key C; RMD partition only

Number Name
104 oM
105 BL
106 FL

Table 3-1. VORTEX Logical-Unit Assignmen
(continued)

Description
Object-module
library

protection

only

Background library*

Foreground library*

protection

partition only

* Other units can be assigned as user foreground libraries

provided they are

specified at system-generation time.

However, there is only one background library in any case.

Logical Unit
Unit No.

Device

Dummy

Card punch

Card reader

CRT device

RMD (disc/drum)
partition

Line printer

Magnetic-tape unit

Paper-tape reader/
punch

Teletype

Remote Teletype

Logical Unit
Unit No.

Device

Dummy

Card punch

Card reader

CRT device

RMD (disc/drum)
partition

Line printer

Magnetic-tape unit

Paper-tape reader/
punch

Teletype

Remote Teletype

Table 3-2. Valid Logical-Unit Assignments

oC sl soO Pl LO Bl BO SS GO
1 2 3 4 5 6 7 8 9
DUM DUM DUM DUM DUM
cp cp
CR CR CR
CT CT CcT CT CT
D D D D D D D
LP
MT MT MT MT MT MT MT
PT PT PT PT PT
Y TY TY TY Y
TC TC TC TC
PO DI DO CU SW CL OM BL FL
10 11 12 101 102 103 104 105 106
DUM DUM
cp
CR
cT CcT CT
D D D D D D D
LP LP
MT
PT
Y TY TY
T TC

Function

For the VORTEX system object-
module library; partition

For the VORTEX system background
library; partition protection
key E; RMD partition only

For the VORTEX system fore-
ground library; partition

varian data machines @——

INPUT/OUTPUT CONTROL

ts

key D; RMD partition

key F; RMD

33

varian data machines

INPUT/OUTPUT CONTROL

3.2 RMD FILE STRUCTURE

Each RMD (rotating-memory device) is divided into up to
20 memory areas called partitions. Each partition is
referenced by a specific logical-unit number. The bounda-
ries of each partition are recorded in the core-resident
partition specification table (PST). The first word of the
PST contains the number of VORTEX physical records per
track. The second word of the PST contains the address of
the bad-track table, if any, or zero. Subsequent words in
the PST comprise the partition entries. Each PST entry is in
the format:

Bit 151413 1211109876543210

Word 0 Beginning partition address

Word 1| ppb Protection key

Word 2 Number of bad tracks in the
partition

Word 3 Ending partition address + 1

Section 9.1 describes the full PST format.

The partition protection bit, designated ppb in the above
PST entry map, when set, requires the correct protection
key to read/write from this partition.

Note that PST entries overlap. Thus, word 3 of each PST
entry is also word 0 of the following entry. The length of the
PST is 3n + 2, where n is the number of partitions in the
system. The relative position of each PST entry is recorded
in the device specification table (DST) for that partition.

The bad-track table, whose address is in the second word
of the PST, is a bit string constructed at system-generation
time and thereafter constant. The bits are read from right
to left within each word, and forward through contiguous
words, with set bits flagging bad tracks on the RMD.

Each RMD partition can contain a file-name directory of
the files contained in that partition. The beginning of the
directory is in the first sector of that partition. The
directory for each partition has a variable number of
entries arranged in n sectors, 19 entries per sector. Sectors
containing directory information are chained by pointers in
the last word of each sector. Thus, directory sectors need
not be contiguous. (Note: Directories are not automati-
cally created when the partitions are defined at system-
generation time. It is possible to use a partition with no

34

directory, e.g., by a foreground program that is collecting
data in real time.) Each directory entry is in the format:

Bit 1514131211 109876543210
Word 0 File name

Word 1 File name

Word 2 Fite name

Word 3 Current position of file

Word 4 Beginning file address

Word 5 Ending file address

The file name comprises six ASCIl characters packed two
characters per word. Word 3 contains the current address
at which the file is positioned, is initially set to the ending
file address, and is manipulated by the OPEN and CLOSE
macros (sections 3.5.1 and 3.5.2). The extent of the file is
defined by the addresses set in words 4 and 5 when the file
is created, and which remain constant.

At system-generation time, the first sector of each partition
is assigned to the file-name directory and a zero written
into the first word. Once entries are made in the file-name
directory, the first word of each sector contains a count of
the entries in that sector.

The last entry in each sector is a one-word entry containing
either the value 01 (end of directory), or the address of the
next sector of the file-name directory.

The file-name directories are created and maintained by
the VORTEX file-maintenance component (section 9) for
10C use. User access to the directories is via the |0C, which
references the directories in response to the 1/0 macros
OPEN and CLOSE. The file-maintenance component sets
words 0, 1, 2, 4, and 5 of each directory entry, which then
remain constant and unaffected by IOC operations. The
I0C can modify only the current position-of-file parameter.

In the case of a file containing a directory, an OPEN is
required before the file is accessible. The macro searches
the file directory for the entry corresponding to the name in
the file-control block (FCB) in use. When the entry is found,

varian data machines

the file boundary addresses and the current position-of-file
value from the directory entry are stored in the FCB. If the
OPEN macro

a. Specifies the option to rewind, the FCB current position
is set equal to the address of the beginning of file.

b. Specifies the option not to rewind, the FCB current
position is set equal to the address of the position of file.

Once a file is thus opened, READ and WRITE operations
are enabled. The |OC references the file by the file
boundary values set by the OPEN, rather than by the file
name. READ and WRITE operations are under control of
the FCB current position value, the extent of the file, and
the current record number.

A CLOSE macro disables the 10C and user access to fhe file
by zeroing the four file-position parameters in the FCB. If
the CLOSE macro

a. Specifies the option to update, the current position-of-
file value in the directory entry is set to the value of the
FCB current position, allowing reference by a later
OPEN.

b. Specifies the option not to update, the file-directory
entry remains unmodified.

Special directory entries: A blank entry is created when a
file name is deleted, in which case the file name is #%# %
and words 3 through 5 give the extent of the blank file. A
zero entry is created when one name of a multiname file is
deleted, in which case the deleted name is converted to a
blank entry and all other names of the multiname file are
set to zero.

3.3 1I/0 INTERRUPTS

VORTEX uses a complete, interrupt-driven 1/0 system, thus
optimizing the allocation of CPU cycles in the multipro-
gramming environment.

INPUT/OUTPUT CONTROL

3.4 SIMULTANEOUS PERIPHERAL OUTPUT
OVERLAP (SPOOL)

The VORTEX spooler is a generalized set of routines which
permit queuing of a task’s output to intermediate RMD
files. This avoids the user task waiting for the device
transfer completion. Total system throughout will be
increased because waiting for transfers to be completed,
both in the use of 1/0 calls with suspended returns and
that of tasks which are terminating, will be minimized.

Also non-resident tasks may transfer to a spooled device
and immediately exit, instead of remaining resident until
completion of the transfer.

At system generation, the user may have the output of
some logical units, such as LO, automatically spooled.
During operation, the operator may assign device outputs
to the spooler through JCP or OPCOM assign directives.

Components

The SPOOL subsystem consists of two components: (1) an
I0C driver to which data output may be assigned and which
transfers output for its associated logical unit to a circular
RMD file or directly to the output listing task, and (2) an
output listing task which accepts messages from this
circular RMD file or directly from the 10C driver and
transfers then to the appropriate output device.

Communication between these two tasks is accomplished
through parameters within the listing rask which are
established by the I0C driver. When these and other
system parameters indicate that the listing task has caught
up with the spoolout task, output messages will be
transferred directly to the listing task, instead of going
through the RMD SPOOL file. (This avoids the overhead of
two RMD transfers).

All data records transferred to the circular RMD file will
contain record length and a key signifying whether the
transfer is to be write or a function as well as other
synchronization data. Data will be transferred to RMD in
an unpacked mode (one record per sector) in order to avoid
delays caused by unwritten still-to-be packed records.
SPOOL file overflow messages will be output when appropri-
ate after allowing the RMD circular file certain amounts of
time to remove its oldest entry.

Figure 3-1 shows a simplified flow of output data through
the SPOOL subsystem.

35

]

{@I varian data machines

INPUT/OUTPUT CONTROL

USER
TRANSFER TO
LOGICAL UNIT

Y

SPOOLER IOC
DRIVER
(VZSPOA)

CONTROLLER
TABLE CTSPnA

TRANSFER iF
SPOOL STREAM

DATA DIRECTLY
TO SPOOLOUT

BUFFER n* IS BUSY
A
RESIDENT RMD FILE
LISTER TASK SPOOL n*

TRANSFER TO
LOGICAL UNIT feg—

180 + n*

* WHERE n IS AN INTEGER FROM ZERO TO SEVEN

VTII-2123
Figure 3-1. Spooling Subsystem Flow

3.4.1 SPOOL Operation

During the system generation, up to eight spool pseudo
devices may be defined. These pseudo-devices, SPOA and
SP7A are dummies which can be assigned to any logical
unit used only for output. Such assignments can be made
permanently at SGEN time, or dynamically through JCP or
OPCOM.

Each pseudo-device, SPiA, has a corresponding RMD file
name, SPOOLi. These files must be defined on an RMD
partition which is permanently assigned to logical unit 107
(named SX). Each spool pseudo-device and file is then
associated with a logical unit (180-187) to which the
LISTER writes unit record output. For example, a user
issuing WRITE request to an LUN assigned to device SPiA,
will have data transferred to file SPOOLi on RMD.

The data will be read from the RMD and written to LUN
180 + i, whose name is Si, as time and the device allow.

3-6

If the output device is not busy when a user request is
made, and if the RMD stream is inactive, the user data is
moved directly to the output device via a SPOOL. buffer. In
this case, the user request is set complete as soon as the
buffer is queued for the device.

If a user's 1/0 requests are made and a spool pseudo-
device number for the appropriate SPOOL. file could not be
found, of if the RMD is inoperative for any reason, the RMD
is bypassed. That is, each user request causes a SPOOL
buffer containing the user’s data to queued directly to the
output device, up to maximum of two buffers per stream. If
the user should issue a request that would require a third
buffer for that stream, then the SPOOL driver enters a
delay loop until the two buffer limit can be satisfied. During
this wait time, the user’s 1/0 is active.

If the output device to which a user is spooling output
should go down or become not ready, data continues to be
accepted and spooled to RMD, but not more than two
SPOOL buffers will be tied up waiting for the device to
become usable. If an RMD is down when this case occurs,
user's requests will be delayed after two buffers are
allocated to the stream.

Should the user fill the RMD file for a stream with data
before the device can catch up, the next user request
remains active until space is available in the RMD.

3.4.2 SPOOL Files

Certain RMD files are required for maximum spooler
operation. Withtout these, the SPOOL subsystem wili
function at a reduced rate. Files SPOOLO through SPOOL?,
where the last digit is the SPOOL stream number, are used
as circular files and may be established at varying lengths
to improve system performance. SPOOL operation will be
slower if RMD files are totally filled with data to be output.

Files must be created after SGEN but before the first user
of the SPOOL program. To establish files in a manner
consistent with SPOOL, an exact procedure must be
followed. If LO is assigned to SPOOL, it must be reassigned
temporarily to a non-spooled device through OPCOM using
a command such as:

;ASSIGN,LO=LP

where LP is not a spooled device. After this step, the actual
file or files must be created using FMAIN in the following
manner:

/FMAIN

INIT,107,S
CREATE, 107, S, SPOOLO, 120,n
CREATE, 107,55, SPOOL1,120,n

CREATE, 107,S,SPOOL7,120,n
/FINI

varian data machines

The last parameter n of the CREATE directives is the
number of records. A CREATE directive is required for each
data stream. As many CREATE directives as data streams
are required.

The number of 120-word records to be established within
the file is given as the last parameter of the CREATE
directive. SPOOL files are circular files; entries are being
placed on one end while being removed from the other end.
When the SPOOL subsystem determines that the file is full,
i.e., that another entry cannot be placed on the file without
destroying one which has not been removed, transfers to
the spooler driver will not be completed until a new file
entry becomes available (the oldest entry has been
removed from the file). As file size is increased, the
likelihood of a full file is decreased. File size should be a
function of expected stream utilization and device output
speed, which determines how quickly entries are moved
from circular spooler files. The 1060 error message
indicates that a file is full. If this message is received
frequently the number of records in that file should be
increased for maximum spooling efficiency.

This procedure for creation of SPOOL files needs to be
done only once. It is performed immediately after comple-
tion of SGEN when the “VORTEX SYSTEM READY’’ mes-
sage is output. If these file sizes are found to be unsatisfac-
tory, the system may be rebooted and file sizes modified
by executing the procedure again.

As part of the SGEN for system’s using the SPOOL. program,
controller table 0 (stream 0) must be included since the
initialization routine is included in its buffers. Additional
controller tables may be included as desired. However,
storage requirements may be varied by using different
controller tables: all even addresses contain four 74-word
buffers, and odd streams contain only two 74-word buffers.
For system with a large amount of SPOOL throughout, it
is recommended that four buffers be specified for controller
tables, otherwise two-buffer tables should be sufficient. For
systems without SPOOL, the DEL, V$SPLC and DEL,
V$SPRM SGEN directive should be input to delete those
resident tasks from the nucleus.

3.5 I/0-CONTROL MACROS

170 requests are written in assembly language programs as
170 macro calls. The DAS MR assembler provides the
following 1/0 macros to perform 1/0 operations, thus
simplifying coding:

INPUT/OUTPUT CONTROL

. OPEN Open file

. CLOSE Close file

. READ Read one record

. WRITE Write one record

. REW Rewind

. WEOF Write end of file

. SREC Skip one record

. FUNC Function

. STAT Status

. DCB Generate data control block
. FCB Generate file control block

The 10C performs a validity check on all 170 requests. It
then queues (according to the priority of the requesting
task) each valid request to the controller assigned to the
specified logical unit. Finally, the 10C schedules the
appropriate 1/0 driver to service the queued request.

The assembler processes the 1/0 macro to yield a macro
expansion comprising data and executable instructions in
the form of assembler language statements.

Certain 1/0 operations require parameters in addition to
those in the 1/0 macro. These parameters are contained in
a table, which, according to the operation requested, is
called either a file control block (FCB, section 3.5.11) or a
data control block (DCB, section 3.5.10). Embedded but
omitted parameters (e.g., default values) must be indicated
by the normal number of commas.

Error messages applicable to these macros are given in
Appendix A.3.

1/0 Macros: The general form of 1/0 macros is:

label name cb,lun,wait,mode

where the symbols have the definitions given in section
3.5.1.

If the cb is for an FCB, it is mandatory. If it is for a DCB, it
is optional.

37

]

varian data machines

INPUT/OUTPUT CONTROL

The expansion of an 1/0 macro is:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
word 0 JSR
Word 1 V$10C address
Word 2 c Status W e cc Priority*
Word 3 w Mode (Op--code Logical--unit number
Word 4 FCB or DCB address
Word 5 User task identification block address*
Word 6 |0C thread address™®
where
c set indicates completion of 1/0 tasks
Status is the status of the 1/0 request
e set indicates an irrecoverable 1/0
error
cc is the completion code
Priority is the priority level of the task

making the request

w is the wait/immediate-return option

Mode is the mode of operation

Op-code specifies the 1/0 operation to be
performed

hd indicates an item whose initial

value is zero

The wait option causes the task to be suspended until its
170 is complete. The immediate option causes control to be
returned immediately to the task after the 1/0 request is
queued. Therefore, to multiprogram effectively within
VORTEX, the wait option is preferred.

Word 2 contains the following information:

a. Bit 15 indicates whether the /0 request is complete.

b. Bits 14 through 9 contain one of the error-message
status codes described in Appendix B.2.

c. Bit8indicates an irrecoverable |/0 error.
d. Bits 7 through 5 contain a completion code: 000
indicates a normal return; 101, an error; 110, an end of

file, beginning of device, or beginning of tape; and
111, end of device, or end of tape.

3-8

e. Bits 4 through 0 indicate the priority level of the task
making the request.

Word 5 initially points to the user’s task identification
block. Upon completion of a READ or WRITE macro
(sections 3.5.3 and 3.5.4), the 10C sets word 5 to the actual
number of words transmitted.

Status macro: The general form of the status (STAT)
macro is:

label STAT req,err,aaa,bbb,busy
where the symbols have the definitions given in section
3.5.9.

The normal return is to the first word following the macro

expansion.

The expansion of the STAT macro is:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSR

Word 1 V$I0C address

Word 2 Address of the 1/Q macro

Word 3 Address of the 170 error routine

Word 4 aaa

Word 5 bbb

Word 6 Address of the busy or 1/0-not-complete routine

where aaa is the address of the end of file, beginning of
device or beginning of tape and bbb is the address of the
end of the tape or end of device.

Control block macro: The general form of the DCB macro
is:

label DCB rl,buff,fun

where the symbols have the definitions given in section
3.5.10.

The expansion of the DCB macro is:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ©
Word 0 Record length

Word 1 Direct Address of user data area

Word 2 Function code

varian data machines

The function code applies only to 1/0 drivers that allow:

a. The line printer to slew to top of form or to space
through the channel selection for paper-tape form
control.

b. The paper-tape punch to punch leader.

c. Thecard punch to eject a blank card as a separator.

The general form of the FCB macro is:
label FCB

rl,buff,acc,key, 'xx",'yy','zz’'

where the symbols have the definitions given in section
3.5.11.

The expansion of the FCB macro is:

C.

INPUT/OUTPUT CONTROL

Direct access by physical record: The 1/0 driver uses
the contents of FCB word 3 as the number of the
VORTEX physical record to be processed within a file
(120-word length), but does not alter word 3 after a
read or write. Word 3 is set by the user to the desired
record number prior to each read/write.

Specifying FCB word three to zero will cause access to
the partition directory. Care should be taken when
supplying this value so that directories are not
accidentally destroyed.

Sequential access by physical record: The 1/0 driver
uses the contents of FCB word 3 as the number of the
VORTEX physical record to be processed within a file
(120-word length), then increments the contents of
word 3 by one. Word 3 is set initially to zero when the
FCB macro expands. Successive reading and writing
thus accesses records sequentially.

3.5.1 OPEN Macro

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 Record length

Word 1 Address of user data area

Word 2 Access method Protection key
Word 3 Current record number

Word 4 Current end-of-fite address

Word 5 Beginning file address

Word 6 Ending file address

Word 7 File name

Word 8 File name

Word 9 File name

The access method (word 2, bits 15 through 8) specifies

one of the four methods of reading or writing a file:

a. Direct access by logical record: The 1/0 driver uses
the contents of FCB word 3 as the number of the logical
record within a file to be processed, but does not alter
word 3 after reading or writing. Word 3 is set by the
user to the desired record number prior to each read/
write. '
Specifying FCB word three to zero will cause access to
the partition directory. Care should be taken when
supplying this value so that directories are not
accidentally destroyed.

. Sequential access by logical record: The 1/O driver
uses the contents of word 3 as the number of the logical
record within a file to be processed, then increments
the contents of word 3 by one. Word 3 is set initially
to zero when the FCB macro expands. Successive
reading and writing thus accesses records
sequentially.

This macro, which applies only to RMDs or magnetic-tape
units, enables |/0 operations on the devices by initializing
the file information in the specified FCB. The macro has

the general form

label OPEN fcb,lun,wait, mode
where

fcb is the address of the file control block

lun is the number of the logical unit being
opened

wait is 1 for an immediate return, or O
(defautt value) for a return suspended
until the |70 is complete

mode is O (default value) for rewinding or 1 for

not rewinding. In the former case, word
3 (current record number) of the FCB is
set to 1, word 4 (current position-of-file
address) is set to the current position-of-
file address given by the RMD file
directory, and rewinds the magnetic-
tape unit. In the latter case, the current
position-of-file address given by the
RMD file directory is copied into word 4,
converted to a record number and
stored in word 3 of the FCB, thus
initializating the user FCB, enabling
reading or writing from a previously
specified location, and the magnetic-
tape position is left unchanged (not
rewound).

OPEN must precede any other 170 request (except REW)
because the FCB file information must be complete before
any file-oriented 1/0 is possible. If a file has already been
opened, an OPEN will be accepted.

39

]

—-@ varian data machines

INPUT/OUTPUT CONTROL

The OPEN macro is file-oriented, while the REW macro is
oriented to the logical unit. An REW destroys information
completed by a previous OPEN on the same logical unit.

The OPEN macro changes words 3, 4, 5, and 6 of the FCB
(section 3.5.11).

If an attempt is made to apply the OPEN macro to any
device other than an RMD or a magnetic-tape unit, the 170
request is processed internally by the 10C but not by an
1/0 driver. The 10C indicates the status as |/0 complete.

Example: Read a 120-word record from the FI10 on logical
unit 18, an RMD partition with sequential, record-oriented
access. BUFF is the address of the user's buffer area. Use
the wait and rewind options, and set the logical-unit
protection key to 1.

X1 EQU 18 (LUN assigned to unit X1)
RL EQU 120 (Record length 120)

WAIT EQU 0 (Wait option)

REW EQU 0 (Rewind option)

KEY EQU 1 (Logical-unit protection key)
SEQR EQU 1 (Sequential, record-oriented

access)
OPEN OPEN FCB,X1,WAIT,REW
READ READ FCB,X1,WAIT

FCB FCB RL,BUFF,SEQR,KEY,'FI',6'10’

3.5.2 CLOSE Macro

This macro, which applies only to RMDs or magnetic-tape
units, updates information in the specified FCB file. This
records and retains the current position within the file. The
mode option ignores the updating, thus retaining the
previously defined position in the file. The macro has the
general form

label CLOSE fcb,lun,wait,mode
where
fcb is the address of the FCB
lun is the number of the logical unit being
closed
wait is 1 for an immediate return, or O

(default value) for a return suspended
until the 170 is complete

3-10

mode is 0 (default value) for not updating, or 1
for updating In the former case, there is
no change to the current position-of-file
address in the RMD file directory, words
3, 4, 5, and 6 of the FCB are set to zero,
and the magnetic-tape position is left
unchanged (not rewound). in the latter
case, the contents of FCB word 3
(current record numper) are converted
to an address and stored in the current
position-of-file address in the RMD file
directory, words 3, 4, 5, and 6 of the FCB
are set to zero, and an end-of-file mark
written on the magnetic tape.

The CLOSE macro cannot be used if there is no such file
defined in the FCB (section 3.5.11).

If an attempt is made to apply the CLOSE macro to any
device other than an RMD or magnetic-tape unit, the 170
request is processed internally by the 10C, but not by an
170 driver. The I0C indicates the status as 1/0 complete.

Example: Close the file MATRIX on logical unit 180, an
RMD partition with sequential, record-oriented access. Use
the wait and update options.

SEQR EQU 1 (Sequential, record-
oriented access)

UPDATE EQU 1 (Update option)

WAIT EQU (Wait option)

CLOSE CLOSE

FCB, 180 ,WAIT,UPDATE

FCB FCB , ,SEQR,, 'MA','TR', 'IX'

3.5.3 READ Macro

This macro retrieves a record of specified length from the
specified logical unit, and places it in the specified area of
main memory. The macro has the general form

label READ cb,lun,wait,mode

where

cbh is the address of the data control block,
or of the file control block

lun is the number of the logical unit from
which the record is read

wait is 1 for an immediate return, or O
(default value) for a return suspended
until the 1/0 is complete

mode specifies the |/0 mode: 0 (default value)
for system binary, 1 for ASCIl, 2 for BCD,
or 3 for unformatted 170

The number of words read is stored in word 5 of the 1/0
macro.

Example: Read a record from logical unit 4, a magnetic-
tape unit. Use system binary mode and the immediate
return option. The record length is 60 words, and the
address of the user’s data area is BUFF.

IM EQU 1 (Immediate return)

BIN EQU 0 (System binary mode)

MT EQU 4 (LUN assigned to
magnetic-tape unit)

RECL EQU 60 (Record length 60 words)

MTRD READ TAPE,MT,IM,BIN

TAPE DCB RECL,BUFF (Data control block)
BUFF BSS 60 (User data area)

Note that the READ macro had a mode value of zero. Since
this is the default value, the macro could have been coded:
MTRD

READ TAPE,MT, IM

3.5.4 WRITE Macro

This macro takes a record of specified length from the
specified area of main memory, and transmits it to the
specified logical unit. The macro has the general form

label WRITE cb,lun,wait,mode

where the parameters have the same definitions and take
the same values as in the READ macro (section 3.5.3).

The number of words written is stored in word 5 of the 170
macro.

Example: Obtain a system binary record 60 words in
length from the user's data area BUFF, and transmit it to
logical unit 16, a magnetic-tape unit. Use the immediate-
return option.

IM EQU 1 (Immediate return)

BIN EQU (System binary mode)

MT EQU 16 (LUN assigned to magnetic-
tape unit)

RECL EQU 60 (Record length 60 words)

MTWT WRITE TAPE,MT,IM,BIN

TAPE DCB RECL,BUFF (Data control block)
BUFF BSS 60 (User data area)

varian data machines @]———

INPUT/OUTPUT CONTROL

3.5.5 REW (Rewind) Macro

This macro, which applies only to magnetic-tape or
rotating-memory devices, repositions the specified logical
unit to the beginning-of-unit position. It has the general
form

label REW cb,lun,wait
where
fcb is the address of the FCB or DCB, which
is optional
lun is the number of the logical unit being
rewound
wait is 1 for an immediate return, or O

(default value) for a return suspended
untii the |/0 is complete

Note that the DCB address is an optional parameter, but
that the FCB address is mandatory.

To reposition a named file on an RMD, use the OPEN
macro (section 3.5.1).

Magnetic-tape devices: REW rewinds the specified unit
and, upon successful completion of the task, returns a
beginning-of-device (BOD) status.

Rotating-memory devices: REW places the start-RMD-
partition and end-RMD-partition addresses in words 5 and
6, respectively, of the FCB (section 3.5.11).

Examples: Rewind logical unit 23, a magnetic-tape unit.
Use the wait option, here specified by default.

MT EQU 23 (LUN assigned to magnetic-
tape unit)

REWT REW MT

Rewind logical unit 10, an RMD partition. Use the wait
option, here specified by default. Note that the REW for an
RMD must have an associated FCB (section 3.5.11).

DISC EQU 10 (LUN assigned to RMD
partition)

RECL EQU 120

REWD REW FCB,DISC

FCB FCB RECL,BUFF,,,'sYy','sT', 'EM'

(section 3.5.11)
BUFF BSS 120

varian data machines

INPUT/OUTPUT CONTROL

3.5.6 WEOF (Write End of File) Macro

This macro writes an end of file on the specified logical
unit. It has the general form

label WEOF cb,lun,wait
where
cb is the address of the control block
lun is the number of the affected logical unit
wait is 1 for an immediate return, or O

(default value) for a return suspended
until the |/0 is complete

Example: Write an end of file on logical unit 10. Use the
wait option, here specified by default.

TAPE EQU 10

EOF WEOF CB, TAPE

3.5.7 SREC (Skip Record) Macro

This macro, which applies only to magnetic-tape, card
reader, or rotating-memory devices, skips one record in
either direction on the specified logical unit. It has the
general form

label SREC cb,lun,wait,mode
where
cb is the address of the control block
lun is the number of the logical unit being

manipulated

wait is 1 for an immediate return, or 0
(default value) for a return suspended
until the I/0 is complete

mode specifies the direction of the skip: O
(default value) for a forward skip, or 1 for
a reverse skip. Reverse skip does not
apply to the card reader.

If applied to an RMD, SREC adds or subtracts from the
value of word 3 of the FCB (section 3.5.11).

If an attempt is made to apply this macro to a device other
than a magnetic-tape or rotating-memory unit, the 1/0
request is processed internally by the IOC but not by an
170 driver. The 10C indicates the status as |/0 complete.

312

Example: Skip back one record on logical unit 57, a
magnetic-tape unit. Use the immediate-return option.

MT EQU 57 (LUN assigned to magnetic-

tape unit)
REV EQU 1 (Reverse)
IM EQU 1 (Immediate return)
SKIP SREC CB,MT, IM,REV

3.5.8 FUNC (Function) Macro

This macro performs a miscellaneous function on a
specified logical unit. The function (when present) cannot
be defined by any of the preceding 1/0 control functions.
The macro has the general form

label FUNC dcb, lun,wait
where
dcb is the address of the data control block
lun is the number of the logical unit being
manipulated
wait is 1 for an immediate return, or 0

(default value) for a return suspended
until the |70 is complete

FUNC causes certain 1/0Q drivers to perform special
functions specified by the function code fun in a DCB
macro (section 3.5.10):

Function
170 Driver Code Function
Card punch 0 Eject blank card
Paper-tape punch 0 Punch 256 blank frames
for leader
Line printer and 0 Advance paper to top of
Teletype printer next form, or on Tele-
type 3 lines x
1 Advance paper one line
2 Advance paper two lines
Statos 31 7 Advance paper to bottom
of form
8 Normal print size*
9 Large print size*

*Only for software character generator.

Function
170 Driver Code Function
Statos 31/42 00 Advance paper to top

of form

01 Advance paper one line

02 Advance paper two lines

07 Advance paper to bottom
of form

08 Step plotter one raster
line

10 Select small/upright

11 Small/ +90 degrees

12 Small/ 180 degrees

13 Smali/ -90 degrees

14 Large/upright

15 Large/ +90 degrees

16 Large/ 180 degrees

17 Large/-90 degrees

20 Cut paper

21 End cut

Plot data may be transmitted to the Statos 31 by specifying
unformatted mode, 3, in the WRITE macro. Each 1 bit will
cause a dot to be printed in its corresponding position in
the output line. The most significant bit in the first word
output represents the left-most dot position.

Statos 31/42 The WRITE macro enables the transfer
of one data buffer to the printer/
plotter and allows for five different
modes of operation:

Mode 1 - Compatible line printer
(70-6701) mode

Mode 3 -- Plot (raster) mode (binary
raster data transfer) ’

Mode 4 - Print mode selectable size
and orientation

Mode 5 - Simultaneous print/plot
mode (ASCIl data transfer)

Mode 6 -- Simultaneous print/plot
mode binary raster data)

All other modes default to mode 1.

If an attempt is made to apply the FUNC macro to any
other device, the 1/0 request is processed internally by the
10C but not by an 1/0 driver. The I0C indicates the status
as 170 complete.

varian data machines @—

INPUT/OUTPUT CONTROL

Example: Skip two lines on the printer, which is logical
unit 5. Use the wait option, here specified by default.

LP EQU 5 (LUN assigned to line

CNT EQU 2 printer) (Paper-tape
channel 2)

UPSP FUNC DCB,LP

DCB DCB , +CNT

3.5.9 STAT (Status) Macro

This macro examines the status word in an 1/0 macro to
determine the result of an 170 function request. The STAT
macro has the general form

label STAT req,err,aaa,bbb busy
where
req is the address of the 1/0 macro (e.g.,
READ)
err is the address of the I/0-error routine
aaa is the address of the end of file,

beginning of device, or beginning of
tape routine

bbb is the address of the end of device or
end of tape routine

busy is the address of the I/0-not-complete
routine

All parameters (except the label) are mandatory. The
contents of the overflow indicator and the A and B registers
are saved. Upon normal completion, control returns to the
user at the first word after the end of the macro expansion.

CAUTION
Foreground tasks should not loop to check for

completion of 1/0 tasks because this inhibits all
lower-level tasks.

3-13

— varian data machines

INPUT/OUTPUT CONTROL

Example: Rewind logical unit 12, a magnetic-tape unit,
and check for beginning of device (load point). Use the
immediate-return option..

MT EQU 12 (LUN assigned to magnetic-
tape unit)

IM EQU 1 (Immediate return)

REW REW ,MT,IM (DCB can be omitted

for REW)

BUSY STAT REW, ERR, BOT,EQT, BUSY

BOT

ERR

3.5.10 DCB (Data Control Block) Macro

This macro generates a DCB as required by 1/0 macro
requests to devices other than RMDs. Note that not all
such requests (e.g., rewinding a magnetic-tape unit)
require a DCB. The macro has the general form

label DCB rl,buff,fun

where

rl is the length, in words, of the record to
be transmitted

buff is the address of the user's data area

fun is the function code for-a FUNC request
and is unused for other requests (section
3.5.8)

Example: Read a record from logical unit 4, a magnetic-
tape unit. Use system binary mode and the immediate-
return option. The record length is 60 words, and the
address of the user's data area is BUFF.

IM EQU 1 (Immediate return)

BIN EQU 0 (System binary mode)

MT EQU 4 (LUN assigned to magnetic-
tape unit)

RECL EQU 60 (Record length 60 words)

MTRD READ TAPE,MT,IM,BIN

TAPE DCB RECL, BUFF (Data control block)

3.5.11 FCB (File Control Block) Macro

This macro generates an FCB required by any 170 macro
request to an RMD. The macro has the general form

3-14

label FCB rl,buff,acc, key,'xx','yy’,'zz'

where

rl is the length, in words, of the record to
be transmitted

buff is the address of the user’s data block

acc specifies the access method and is 0
(default value) for the direct access by
logical record, 1 for sequential 1 access
by logical record, 2 for direct access
using the relative sector number
(beginning with 1) within the file, or 3 for
sequential access using the relative
sector number within the file

key is the protection code, if any, required to
address that logical unit. This is a single
alphanumeric ASCIl character coded
between single quotation marks (e.g.,
the protection code H would be coded
" H") or as the eight-bit octal equivalent,
in which case no quotation marks are
used (e.g., 0310 for the protection code
H). The default value is binary zero (not
the character 0).

Xxyyzz is the name of the file being referenced.
The file name is one to six ASCII
characters, coded in pairs between
single quotation marks and separated
by commas, e.g., the file named ARRIBA
is coded " AR")" RI", " BA" . Embedded
blanks are illegal.

Table 3-3 shows the use of FCB words 3, 4, 5, and 6 for the
1/0 macros.

Example: Create an FCB for the file FILEXX. Use the
logical-record-oriented, sequential-access method with a
record length of 120 words. The user's data area is BUFF
and the protection code is Z.

SEQR EQU 1 (Sequential, record-
oriented access)
RECL EQU 129 (Record length 120
. words)
DISC FCB RECL, BUFF,SEQR, 'Z2"',
. 'FI','LE', 'XX'
BUFF BSS 120

Note that the protection code character Z is coded between

single quotation marks, i.e., 'Z’, but it can also be coded as

the octal value of the ASC!l character, in which case no

quotation marks are used, i.e., 0332. Thus, the statement

given in the example above is equivalent to

DISC FCB RECL, BUFF, SEQR,
0322, 'FI','LE', 'XX'

Word

OPEN

Set to
position
of cur-
rent rec-
ord by
mode
chosen

Set to
current
position
of file
as noted
on direc-
tory

Set to
beginning
of file
address
put in
this word

Set to
end of
file ad-
dress

Set to
position
of cur-
rent rec-
ord by
mode
chosen

Set to
current
position
of file
as noted
on direc-
tory

Set to
begin-
ing of
file ad-
dress

Set to
end of
file ad-
dress

varian data machines

INPUT/OUTPUT CONTROL

Table 3-3. FCB Words Under 1/0 Macro Control

READ

Incre-
ments
record
number
by one

Checks
end of
file

No
action

No
action

No
action

No
action

No
action

No
action

WRITE

SREC CLOSE

Sequential-Access Method

Incre- Adds or Set to
ments subtracts position
record one of file
number on direc-
by one tory by
mode
chosen
No Checks No
action end of action
file
No No No
action action action
No No No
action action action

Direct-Access Method

No No Set to
action action position
of file
on direc-
tory by
mode
chosen
No No No
action action action
No No No
action action action
No No No
action action action

REW

Current
record set
to one or
beginning
address of
logical
unit

Set to

ending
address
of logi-
cal unit

Set to
beginning
address of
logical

unit

Skip first
directory
sector

Set to

ending
address
of logi-
cal unit

Current
record set
to one or
beginning
address of
logical
unit

Set to

ending
address
of logi-
cal unit

Set to
beginning
address
of logi-
cal unit

Skip first
directory
sector

Set to

ending
address
of logi-
cal unit

3-15

—-@ varian data machines

varian data machines

SECTION 4
JOB-CONTROL PROCESSOR

The job-control processor (JCP) is a background task that
permits the scheduling of VORTEX system or user tasks for
background execution. The JCP also positions devices to
required files, and makes logical-unit and 1/0-device
assignments.

4.1 ORGANIZATION

The JCP is scheduled for execution whenever an unsolicited
operator key-in request (section 17.2) to the OC logical unit
has a slash (/) as the first character.

Once initiated, the JCP processes all further JCP directives
from the Sl logical unit.

If the Sl logical unit is a Teletype or a CRT device, the
message JC** is output to indicate the Sl unit is waiting
for JCP input. The operator is prompted every 15 seconds
(by a bell for the Teletype or tone for the CRT) until an
input is keyed in.

If the Si logical unit is a rotating-memory-device (RMD)
partition, the job stream is assumed to comprise unblocked
data. In this case, processing the job stream requires an
/ASSIGN directive (section 4.2.6).

A JCP directive has a maximum of 80 characters,

beginning with a slash. Directives input on the Teletype are
terminated by the carriage return.

4.2 JOB-CONTROL PROCESSOR DIRECTIVES
This section describes the JCP directives:

a. Job-initiation/termination directives:

/JOB Start new job

/ENDJOB Terminate job in progress
/FINI Terminate JCP operation

/C Comment

/MEM Allocate extra memory for

background task
b. 1/0-device assignment and control directives:

/ASSIGN Make logical-unit assignment(s)

/SFILE Skip file(s) on magnetic-tape unit

/SREC Skip record(s) on magnetic-tape unit
or RMD partition

/WEOF Write end-of-file mark

/REW Rewind magnetic-tape unit or RMD
partition

/PFILE Position rotating memory-unit file

/FORM Set line count on LO logical unit

/KPMODE Set keypunch mode

/OPEN Open VTAM line or terminal

/CLOSE Close VTAM line

c. Language-Processor directives:

/DASMR Schedule DAS MR assembler
/FORT Schedule FORTRAN compiler

d. Utility directives:

/CONC Schedule system-concordance program
/SEDIT Schedule symbolic source-editor task
/FMAIN Schedule file-maintenance task

/LMGEN Schedule load-module generator
/I0UTIL Schedule 1/0-utility processor
/SMAIN Schedule system-maintenance task

e. Program-loading directives:

/EXEC Schedule loading and execution of a
load-module from the SW unit
file

/LOAD Schedule loading and execution of a

user background task
/ALTLIB Schedule the next background task
from the specified logical
unit rather than from the
background library
/DUMP Dump background at completion
of task execution

JCP directives begin in column 1 and comprise sequences
of character strings having no embedded blanks. The
character strings are separated by commas (,) or by equal
signs (=). The directives are free-form and blanks are
permitted between the individual character strings of the
directive, i.e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator.
Comments can be inserted after a period.

Each JCP directive begins with a slash (/).

The general form of a job-control statement is

/name,p(1),p(2),...,p(n)

where
name is one of the directive names given (any
other character string produces an
error)
each p(n) is a parameter required by the JCP or by

the scheduled task and defined below
under the descriptions of the individual
directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

4.1

—@ varian data machines

JOB-CONTROL PROCESSOR

For greater clarity in the descriptions of some directives,
optionai periods, optional blank separators between
character strings, and the optional replacement of commas
by equal signs are omitted from descriptions.

Error messages applicable to JCP directives are given
Appendix A.4.

4.2.1 /JOB Directive
This directive initializes all background system pointers

and flags, and stores the job name if one is specified. It
has the general form

/JOB,name
where name is the name of the job and comprises up to
eight ASCII characters (additional characters are permitted
but ignored by the JCP).

The job name, if any, is then printed at the top of each
page for all VORTEX background programs.

Example: Initialize the job TASKONE.

/JOB, TASKONE

4.2.2 /ENDJOB Directive
This directive initializes all background system pointers
and flags, and clears the job name. It has the form

/ENDJOB

Example: Terminate the job in process.

/ENDJOB

4.2.3 /FINI (Finish) Directive

This directive terminates all JCP background operations
and makes an EXIT request to the real-time executive RTE
component (section 2.1.11). It has the form

/FINI

To reschedule JCP after a FINI, input any JCP directive
from the OC unit (section 17).

Example: Terminate JCP operations.

/FINI

4-2

4.2.4 /C (Comment) Directive

This directive outputs the specified comment to the SO and

LO logical units, thus permitting annotation of the listing. It

is not otherwise processed. It has the general form
/C,comment

where comment is any desired free-form comment.

Example: Annotate a listing with the comment Rewind all
mag tapes.

/C,REWIND ALL MAG TAPES

4.2.5 /MEM (Memory) Directive

This directive assigns additional 512-word blocks of main
memory to the next scheduled background task. It has the
general form

/MEM,n

where n is the number of 512-word blocks of main memory
to be assigned.

/MEM permits larger symbol tables for FORTRAN compila-
tions and DAS MR assemblies.

The total area of the 512-word blocks of memory plus the
background program itself cannot be greater than the total
area available for background and nonresident foreground
tasks. An attempt to exceed this limit causes the scheduled
task to be aborted.

Example: Allocate an additional 1,024 words of main
memory to the next scheduled task.

/MEM, 2

4.2.6 /ASSIGN Directive

This directive equates and assigns particular logical units
to specific 170 devices. It has the general form

/ASSIGN, (1) =r(1),I(2) =r(2),...I(n)=r(n)

where

each I(n) is a logical-unit number (e.g., 102) or
name (e.g., SI)

each r(n) is a logical-unit number or name, or a

physical-device system name (e.g., TYOO,
table 15-1)

The logical unit to the left of the equal sign in each pair is
assigned to the unit/device to the right.

varian data machines

If the controller and unit numbers are omitted from the
name of a physical device, controller 0 and unit 0 are
assumed.

An inoperable device, i.e., one declared down by the
;DEVDN operator key-in request (section 17.2.10), cannot
be assigned. A logical unit designated as unassignable
cannot be reassigned.

Example: Assign the Pl logical unit to card reader CROO
and the LO logical unit to Teletype TY0O.

/ASSIGN,PI=CR,LO=TY

4.2.7 /SFILE (Skip File) Directive

This directive, which applies only to magnetic-tape units
and card readers, causes the specified logical unit to move
the tape forward the designated number of end-of-file
marks. It has the general form

/SFILE,lun,neof

where

lun is the number or name of the affected
logical unit

neof is the number of end-of-file marks to be
skipped

If the end-of-tape mark is encountered before the required
number of files has been skipped, the JCP outputs to the
SO and LO logical units the error message JCO5,nn, where
nn is the number of files remaining to be skipped.

Example: Skip three files on the Bl logical unit.

/SFILE,BI,3

4.2.8 /SREC (Skip Record) Directive

This directive, which applies only to magnetic-tape units,
card readers, and RMDs, causes the specified logical unit
to move the tape the designated number of records in the
required direction. In the case of RMDs, word 4 of the FCB
is adjusted the appropriate number of records. It has the
general form

/SREC,lun,nrec,direc

where

lun is the number or name of the affected
logical unit

nrec is the number of records to be skipped

JOB-CONTROL PROCESSOR

direc indicates the direction to be skipped; F
(default value) for forward, or R for
reverse. Reverse skip does not apply to
the card reader.

If a file mark, end of tape, or beginning of tape is

encountered before the required number of records has

been skipped, the JCP outputs to the SO and LO logical
units the error message JCOS5,nn, where nn is the number
of records remaining to be skipped.

Example: Skip nine records forward on the BO logical
unit.

/SREC,BO, 9

4.2.9 /WEOF (Write End of File)
Directive

This directive writes an end-of-file mark on the specified
logical unit. It has the general form

/WEOF lun

where lun is the number or name of the affected logical
unit.

Example: Write an end-of-file mark on the BO logical unit.

/WEOF , BO

4.2.10 /REW (Rewind) Directive
This directive, which applies only to magnetic-tape units
and RMDs, ccauses the specified logical unit(s) to rewind
to the beginning of tape. It has the general form

/REW., lun,iun,...,lun
where lun is the number or name of a logical unit to be
rewound.

Example: Rewind the BO and Pl logical units.

/REW,BO,PI

4.2.11 /PFILE (Position File) Directive
This directive, which applies only to RMDs, causes the

specified logical unit to move to the beginning of the
designated file. It has the general form

43

_@ varian data machines

JOB-CONTROL PROCESSOR

/PFILE,lun,key,name /KPMODE,m
where where m is 0 (default value) for 026 mode, or 1 for 029
mode.
lun is the number or name of the affected
logical unit. The logical unit must be one Example: Specify that cards be read and punched in 029
of the system defined logical units which keypunch mode.
has a global FCB
/KPMODE, 1
key is the protection code required to
address lun
_ . 4.2.14 /DASMR (DAS MR Assembler)
name is the name of the file to which the

logical unit is to be positioned Directive
This directive schedules the DAS MR assembler (section

Global file control blocks: There are eight global file ; e . .
. . 5.1) with the specified options for background operation on
control blocks (FCB, section 3.5.11) in the VORTEX system priority level 1. It has the general form

that are reserved for background use. System background
and user programs can reference these global FCBs. The

/DASMR,p(1),
/PFILE directive stores key and name in the corresponding P(L)p(2),--p(n)
FCB before opening/rewinding the logical unit. To pass the
buffer address and size of the record to the corresponding
logical-unit FCB, make an RTE |OLINK service request

where each p(n), if any, is a single character specifying one
of the following options:

(section 2.1.12). The names of the global FCBs are SIFCB, p t A
PIFCB, POFCB, SSFCB, BIFCB, BOFCB, GOFCB, and arameter Presence bsence
LOFCB, where the first two letters of the name indicate the B Suppresses binary Output binary object
logical unit. object
Example: Position the Pl logical unit to beginning of file L Outputs binary Suppresses output of
FILEXY, whose protection key is $. object on GO file binary object on GO
file
/PFILE,PI,$,FILEXY
M Suppresses symbol- Output symbol-table
table listing listing
4.2.12 /FORM Directive N Suppresses source Outputs source
listing listing
This directive sets the specified line count on the LO logical
unit. This is the number of lines printed by DAS MR The /DASMR directive can contain up to four such
assembler or FORTRAN compiler before a top of form is parameters in any order.

issued. The directive has the general form
The DAS MR assembler reads source records from the Pl

/FORM lines logical unit on the first pass. The Pl unit must have been

set to the beginning of device before the /DASMR directive.

where lines is the number (from 5 to 9999, inclusive) of This can be done with an /ASSIGN (section 4.2.6), /SFILE
lines to be printed before a top of form is issued. (section 4.2.7), /REW (section 4.2.10), or /PFILE (section

4.2.11) directive.
The default value of lines is defined at system-generation

time. If the directive contains a-value outside the legal A load-and-go operation requires, in addition, an /EXEC
range, the default value is used. directive (section 4.2.22).
Example: Set a line-count value of 100. Example: Schedule the DAS MR assembler with no source

listing, but with binary-object output on the GO file.
/FORM, 100

/JOB,EXAMPLE

/PFILE, BO, ,BO

/DASMR,N, L
4.2.13 /KPMODE (Keypunch mode)

Directive /JOB initializes the GO file to start of file. If BO is assigned

to a rotating memory partition, a /PFILE,BO,,BO must pre-

This directive specifies the mode, 026 or 029, (BCD or cede the /DASMR directive to initialize the file (unless the

EBCDIC respectively) in which VORTEX is to read and assembly is part of a stacked job - see section 4.3 for sample
punch cards. It has the general form deck setup).

4-4

4.2.15 /FORT (FORTRAN Compiler)
Directive

This directive schedules the FORTRAN compiler (section

5.3) with the specified options for background operation on
priority level 1. It has the general form

/FORT,p(1),p(2),...,p(n)

where each p(n), if any, is a single character specifying one
of the following options:

varian data machines @—-—

JOB-CONTROL PROCESSOR

A load-and-go operation requires, in addition, an /EXEC
directive (section 4.2.22).

Example: Schedule the FORTRAN compiler with binary-
object, source, symbol-table, and object-module
listings; normal compilation; and no binary-object output
on the GO file.

/FORT, O

4.2.16 /CONC (System Concordance)
Directive

This directive schedules the system concordance program
(section 5.2) for background operation. It has the form

Parameter Presence Absence

B Suppresses binary Output binary object
object

D Assigns two words Assigns one word to
to integer array integer array items
items and to inte- and to integer and
ger and logical logical variables
variables (ANSI
standard)

H Generate code Generate no FPP
using Floating- instructions
Point Processor
(FPP)

L Outputs binary Suppresses output of
object on GO file binary object on GO

file

M Suppresses symbol- Outputs symbol-table
table listing listing

N Suppresses source Outputs source
listing listing

0] Outputs object- Suppresses object-
module listing module listing

X Compiles condi- Compiles normally
tionally

F Generates code Generates subroutine

with calls to
faster firmware
routines (see
section 20.2)

calls

The /FORT directive can contain up to 7 such parameters

in any order.

Sample deck formats are illustrated in section 4.3.

The FORTRAN compiler reads source records from the Pl
logical unit. The Pl unit must have been set to the
beginning of device before the /FORT directive. This can be
done with an /ASSIGN (section 4.2.6), /SFILE (section
4.2.7), /REW (section 4.2.10), or /PFILE (section 4.2.11)
directive.

/CONC

The concordance program inputs from the SS logical unit
and uses the same source statements that are input to the
DAS MR assembiler. It outputs to the LO logical unit a
listing of all symbols and their referenced locations in the
same input program.

The SS unit is set to the beginning of device before the
/CONC directive.

Example: Schedule the system concordance program.
/ASSIGN,SS=MT00

/REW, SS

/DASMR

/PFILE,SS,,SS
/CONC

4.2.17 /SEDIT (Source Editor)
Directive

This directive schedules the symbolic source editor (section
8) for background operation on priority level 1. It has the
form

/SEDIT

Example: Schedule the symbolic source editor.

/SEDIT

4.2.18 /FMAIN (File Maintenance)
Directive

This directive schedules the file maintenance task (section
9) for background operation on priority level 1. It has the
form

45

_@ varian data machines

JOB-CONTROL PROCESSOR

/FMAIN

Example: Schedule the file maintenance task.

/FMAIN

4.2.19 /LMGEN (Load-Module Generator)
Directive

This directive schedules the load-module generator (section

6) for background operation on priority level 1. A memory
map is output unless suppressed. The directive has the

general form
/LMGEN,M

where M, if present, suppresses the output of a memory
map.

Example: Schedule the load-module generator task with-
out a memory map.

/LMGEN,M

4.2.20 /IOUTIL (1/0 Utility) Directive

This directive schedules the 1/0 utility processor (section
10) for background operation on priority level 0. The
directive has the form

/I0UTIL

Example: Schedule the 1/0 utility processor.

/I0OUTIL

4,2.21 /SMAIN (System Maintenance)
Directive

This directive schedules the system maintenance task
(section 16) for background operation on priority level 1.
The directive has the form

/SMAIN

Example: Schedule the system maintenance task.

/SMAIN

4.2.22 /EXEC (Execute) Directive

This directive schedules the load-module loader to load and
execute a load module from the SW logical unit file. Since
this is not a VORTEX system task, execution is on priority
level 0. The directive has the general form

4.6

/EXEC,D

Where D, if present, dumps all of the background upon
completion of execution. The dump format consists of eight
memory locations per line. Both octal and ASCII represen-
tation appear in the dump. During ASCIl dump non-ASCII
characters appear as blanks. ASCII dump is suppressed if
dump is to a TY or CT device.

The dump format consists of eight memory locations per
line as follows:

XXXXXX AAAAAA BBBBBB... HHHHHH

where XXXXXX is the starting memory address location of
the eight following data words and AAAAAA through
HHHHHH are the octal values of those locations. The
occurrence of an asterisk between two lines indicates that
all dump lines between those lines have the same value as
the previous line.

Example: Schedule the loading of a user load module
from the SW unit file without a background dump.

/EXEC

Schedule a FORTRAN load-and-go operation.

/FORT, L
/EXEC

When a dump has been specified the dump will be output
to the List Output unit after the task exits or is aborted.
Once the dump has started, it may be terminated by use of
the Operator Communication ;ABORT. When the dump is
aborted in this manner, it is required that the executing
task be aborted by a previous action.

Example:

/EXEC,D Executes a load module
from SW unit file re-
questing background
dump on exit

3 ABORT ,SW Causes the task to abort
and dump the background

s ABORT , JPDUMP Causes the background
dump to be aborted

;ABORT, SW Causes the task to be

released and JCP to be
reloaded

4.2.23 /LOAD Directive

This directive schedules a user task, which must be present
in the background library or alternate library, for back-
ground execution on priority level 0. The directive has the
general form

/LOAD,name,p(1),p(2),....0(3)

where
name is the name of the user task being
scheduled
each p(n) is a parameter required by
(if any) the user task

Each parameter specified, if any, will be in the job-control
buffer when the user task is scheduled. The parameter
string, which can extend to the end of the 80-character
buffer, will appear in the buffer exactly as it does in the
input directive. The address of the first word of the
parameter string is in location V$JCB.

Example: Schedule the user task TSKONE with parame-
ters ALPHA1 and ALPHA2.

/LOAD, TSKONE , ALPHA 1, ALPHA2

4.2.24 /ALTLIB (Alternate
Library) Directive

This directive replaces the background library with the
specified alternate library unit as the unit from which a
background task is to be loaded. The directive has the
general form:

/ALTLIB, lun,key

where

lun is the number or name of the alternate
library logical unit

key is the protection code required to

address lun

This directive affects the loading of the next task which
would normally be loaded from the background library. It
affects the loading of VORTEX language processors and
utility tasks in addition to user tasks loaded with the /LOAD
directive.

It has no effect on a /EXEC directive. After execution of the
background task, the background library is restored as the
logical unit from which background tasks are to be loaded.

Example: Schedule the user task TSKONE from logical unit
25, protection key N.

/ALTLIB, 25,N
/LOAD, TSKONE

varian data machines @—

JOB-CONTROL PROCESSOR

4.2.25 /DUMP Directive

This directive causes all of background to be dumped upon
completion of execution of a task executed from the
background library or an alternate library. The dump
format is the same as the format for /EXEC,D (see section
4.2.22).

Example: Schedule the execution of user task TSKONE with
a dump at completion of execution.

/DUMP
/LOAD, TSKONE

4.3 SAMPLE DECK SETUPS

The batch-processing facilities of VORTEX are invoked by
JCP control directives in combination with programs and
data. These elements form the input job stream to
VORTEX. The input job stream can come from various
peripherals and be carried on various media. These
examples illustrate common job streams and deck-prepara-
tion techniques.

Example 1 - Card Input: Compile a FORTRAN |V main
program (with source listing and octal object listing), and
assemble a DAS MR subprogram. Then load and execute
the linked program.

/JOB, EXAMPLE 1
/FORT,L,0

(Source Deck)

/DASMR, L

(Source Deck)

/EXEC
/ENDJOB

Example 2 - Card Input: Assemble a DAS MR program
(with source listing and load-and-execute) and generate a
concordance listing. The DAS MR program is cataloged on
RMD partition DOOK under file name USER1 with protec-
tion key U. Assign the Pl logical unit to RMD partition
DOOK, open file name USER1 for the assembler, assemble
the program, and execute the program with a dump.

/JOB, EXAMPLE2
/ASSIGN,PI=DO0OK
/PFILE,PI,U,USER1
/DASMR, L
/PFILE,SS,,SS
/CONC

/EXEC,D

/ENDJOB

4-7

— varian data machines

JOB-CONTROL PROCESSOR

Example 3 - Card Input: Assemble a DAS MR program
(with source listing and object-module output on the BO
logical unit). Assign the Pl logical unit to magnetic-tape
unit MT00, the PO logical unit to dummy device, the SS
logical unit to the Pl logical unit, the BO logical unit to
RMD partition DO0J, and output the object module to file
name USER2 with no protection key. Before assembly,
position the Pl logical unit to the third file. Allocate four
additional 512-word blocks for the DAS MR symbol-table
area.

/JOB, EXAMPLE3
/ASSIGN,PI=MT00,PO=DUM,SS=PI,BO=D00J
/REW,PI

/SFILE,PI,2

/PFILE,BO, ,USER2

/MEM, 4

/DASMR

/ENDJOB

Example 4 - Card Input: After generation of a VORTEX
system, use FMAIN to initialize and add object modules to
the object-module library (OM) with protection key D.
Assign the Bl logical unit to CROO.

/JOB,EXAMPLE#
/ASSIGN,BI=CRO0
/FMAIN
INIT,OM,D
INPUT,BI
ADD,OM,D

4-8

(Object Modules)

(2-7-8-9 EOF Card)

/ENDJOB

Example 5 - Card Input: Load and go operation. Compile a
FORTRAN IV main program, a subprogram and assemble a
DASMR subprogram. Save output on BO. Execute the
linked programs.

/JOB, EXAMPLES
/PFILE,BO, ,BO
/FORT,L

(source deck FORTRAN main program)

(Ssource deck FORTRAN subprogram)

/DASMR, L

(source deck DASMR subprogram)

/EXEC
/FINI

SECTION 5
LANGUAGE PROCESSORS

The VORTEX operating system supports three language
processors: the DAS MR assembler (section 5.1), the
FORTRAN IV compiler (section 5.3), and the RPG IV
compiler (section 5.4), plus the ancillary concordance
program (section 5.2.).

5.1 DAS MR Assembler

DAS MR is a two-pass assembler scheduled by job-control
directive /DASMR (section 4.2.14). DAS MR uses the
secondary storage device unit for pass 1 output. It reads a
source module from the PI logical unit and outputs it on
the PO unit. The source input for pass 2 is entered from
the SS logical unit.

When an END statement is encountered, the SS unit is
repositioned and reread. During pass 2, the output can be
directed to the BO and/or GO units for the object module
and the LO unit for the assembly listing. The SS or PO file,
which contains a copy of the source module, can be used as
input to a subsequent assembly.

A DAS MR symbol consists of one to six characters, the
first of which must be alphabetic, with the rest alphabetic
or numeric. Additional alphanumeric characters can be
appended to the first six characters of the symbol to form
an extended symbol up to the limit imposed by a single line
of code. However, only the first six characters are
recoghized by the assembler.

DAS MR symbols may also be formed from the pound sign,
exclamation mark or dollar sign, in initial and other
positions.

Since the DAS MR assembler is used within the VORTEX
system under VORTEX 1/0 control, the VORTEX user can
specify the desired 1/0 devices. However, the PO and SS
logical units must be the same magnetic-tape unit or RMD
partition.

DAS MR has a symbol-table area for 175 symbols at five
words per symbol. To increase this area, input before the
/DASMR directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
100 symbols.

A VORTEX physical record on an RMD is 120 words. Source
records are blocked three 40-word records per VORTEX
physical record, and object modules are blocked two 60-
word modules per record. However, in the case where S| =
Pl = RMD, records are not blocked but assumed to be one
per VORTEX physical record. When an input file contains
more than one source module each new source module
must start at a physical record boundary. Unused portions
of the last physical record of the previous source modules
should be padded with blank records. Proper blocking may

varian data machines @-—

be ensured by following the END statement of the previous
source module with two blank records.

Details of the DAS MR assembly language are given in the
Varian 620/f Computer Handbook (document 98 A 9908
00x), 620-100 Computer Handbook (98 A 9905 o03x), and
73 System Handbook (98 A 9906 01x). These references
include descriptions of the directives recognized by the
assembler (table 5-1), except for the directive title, which is
discussed below.
Table 5-1. Directives Recognized by the DAS MR

Assembler
BES IFF
BSS IFT
CALL LIST
COMN LOC
CONT MAC
DATA MZE
DETL NAME
DUP NLIS
EJEC NULL
END OPSY
EMAC ORG
ENTR PZE
EQU RETU
EXT SET
FORM SPAC
GOTO SMRY

TITLE

Error messages applicable to the DAS MR assembler are
given in Appendix A.5.1.

5.1.1 TITLE Directive

This directive changes the title of the assembly listing and
the identification of the object program. It has the general
form

TITLE symbol

where symbol is the new title of the assembly listing; the
label field being ignored by the assembler. There are a
maximum of eight characters in symbol.

At the beginning of assembler pass 1, the title of the
assembly listing and the identification of the object
program are initialized as blanks. When a TITLE directive
is encountered, title and identification assume the symbol
given in the directive.

Examples: Entitle the assembly listing and object pro-
gram NEWTITLE.

TITLE NEWTITLE

Reinitialize the title and identification, obliterating the old
title.

TITLE

5-1

varian data machines

LANGUAGE PROCESSORS
5.1.2 VORTEX Macros
The DAS MR assembler contains macro definitions for the
real-time executive (RTE, section 2.1) and 170 control (1OC,
section 3.4) macros. Figure 5-1 illustrates these definitions.
*
M1 MAC
EXT
JSR
DATA
F FORM
F
DATA
EMAC
£ 3
*
* READ
*
*
%*
*
READ MAC
M1
EMAC
*
*
* WRITE
*
*
*
*
WRITE MAC
M1
EMAC
*
%
* WEOF
*
*
*
WEOF MAC
M1
EMAC
%k
*
* REW
*
*
*
REW MAC
M1
EMAC
*
*
* SREC
sk
*
*
*
5-2

v$I0C

V$I0C, 1
0100000
1,3,4,8
P(1),p(2),pP(3)
p(5),0,0

WHERE DCB
LUN

W =
M =

WHERE DCB

LUN
w
M

VORTEX WRITE END OF FILE

DCB,LUN,W
WHERE DCB
LUN
W

DCB,LUN,W
WHERE DCB
LUN
W

VORTEX SKIP RECORD MACRO
DCB,LUN,W,M

WHERE DCB
LUN

4

M

Figure 5-1. VORTEX Macro Definitions for

,P(4)

VORTEX READ MACRO DEFINITION
DCB,LUN,W,M

= FCB OR DCB ADDRESS
LOGICAL UNIT NO.
WAIT OPTION

I/0 MODE

P(3),p(4),0,P(2),P(1)

VORTEX WRITE MACRO DEFINITION
DCB,LUN,W,M

FCB OR DCB ADDRESS
LOGICAL UNIT NO.
WAIT OPTION

= I/0 MODE

P(3),pP(4),1,P(2),P(1)

MACRO DEFINITION

FCB OR DCB ADDRESS
LOGICAL UNIT NO.
WAIT OPTION

P(3),0,2,P(2),P(1)

VORTEX REWIND MACRO DEFINITION

FCB OR DCB ADDRESS
LOGICAL UNIT NO.
WAIT OPTION

P(3),0,3,P(2),P(1)

DEFINITION

FCB OR DCB ADDRESS
= LOGICAL UNIT NO.

= WAIT OPTION

= I/0 MODE

DAS MR

SREC

N * % % % % % % % % % % *
<)
>
e}

* X X X X *

DCB

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

varian data machines @——

LANGUAGE PROCESSORS

MAC
M1 P(3),p(u),48,P(2),P(1)
EMAC

VORTEX FUNCTION MACRO DEFINITION
FUNC DCB,LUN,W
WHERE DCB = FCB OR DCB ADDRESS

LUN = LOGICAL UNIT NO.
W = WAIT OPTION
MAC
M1 P(3),0,5,pP(2),P(1)
EMAC

VORTEX OPEN MACRO DEFINITION
OPEN FCB,LUN,W,M
WHERE FCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.

W = WAIT OPTION
M = I/0 MODE
MAC
M1 P(3),pP(4),6,P(2),P(1)
EMAC

VORTEX CLOSE MACRO DEFINITION
CLOSE FCB,LUN,W M
WHERE FCB = FCB OR DCB ADDRESS

LUN = LOGICAL UNIT NO.
W = WAIT OPTION
M = I/0 MODE
MAC
M1 P(3),p(4),7,p(2),P(1)
EMAC

VORTEX STATUS MACRO DEFINITION
STAT FCB,ERR, EOF,EOD, BUSY
WHERE FCB = FCB OR DCB ADDRESS
ERR = ERROR RETURN ADDRESS
EOF = END OF FILE, BEGINNING
OF DEVICE, OR BEGINNING OF
TAPE RETURN ADDRESS
EOD = END OF DEVICE OR END OF TAPE
RETURN ADDRESS
BUSY = BUSY RETURN ADDRESS

MAC

EXT V$I0ST

JSR vV$IOST, 1

DATA P(1),P(2),P(3),P(4),pP(5)
EMAC

VORTEX DEVICE CONTROL BLOCK MACRO DEFINITION
DCB RL,BUF,CNT
WHERE RL = RECORD LENGTH

BUF = DATA ADDRESS
CNT = COUNT

MAC

DATA P(1),pP(2),P(3)

EMAC

5-3

varian data machines

LANGUAGE PROCESSORS

* VORTEX FILE CONTROL BLOCK MACRO DEFINITION
* FCB RL,BUF,AC,KEY, 'N1','N2"', "N3'
* WHERE RIL = RECORD LENGTH
* BUF = DATA ADDRESS
* AC = ACCESS METHOD
* KEY = PROTECTION KEY
* N1 = FIRST 2 ASCII FILE NAME
* N2 = SECOND 2 ASCII FILE NAME
* N3 = THIRD 2 ASCII FILE NAME
FCB MAC
DATA P(1),P(2)
F FORM 6,2,8
F 0,P(3),pP(4)
DATA 0,0,0,0,P(5),P(6),P(7)
EMAC
*
M2 MAC
EXT V$EXEC
JSR V$EXEC, 1
EMAC
*
*
* VORTEX SCHEDULE MACRO DEFINITION
* SCHED PL,W,LUN,KEY, 'N1', 'N2', 'N3’
* WHERE PL = PRIORITY LEVEL
* W = WAIT OPTION
* LUN = LOGICAL UNIT NO.
* KEY = PROTECTION KEY
* N1 = FIRST 2 ASCII TASK NAME
* N2 = SECOND 2 ASCII TASK NAME
* N3 = THIRD 2 ASCII TASK NAME
SCHED MAC
M2
F FORM 3,1,6,1,5
F 0,pP(2),1,0,P(1)
F FORM 8,8
F p(4),p(3)
DATA P(5),P(6),P(7)
EMAC
*
* VORTEX EXIT MACRO DEFINITION
* EXIT
*
EXIT MAC
M2
DATA 0200
EMAC
*
* VORTEX SUSPEND MACRO DEFINITION
* SUSPND T
* WHERE T = TYPE OF SUSPENSION
SUSPND MAC
M2
F FORM 4,6,5,1
F 0,3,0,P(1)
EMAC
*
* VORTEX RESUME MACRO DEFINITION
* RESUME 'N1','N2','N3'
* WHERE N1 = FIRST 2 ASCII TASK NAME
* N2 = SECOND 2 ASCII TASK NAME
* N3 = THIRD 2 ASCII TASK NAME

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-4

RESUME

* O X X ¥ *

ABORT

* ¥ ¥ X *

ALOC

* ¥ ¥ *

DEALOC

* ¥ X ¥ X *

PMSK

F1

* % X X OF X ¥ ¥

=]
o]
e
>
=

L]

varian data machines @——

LANGUAGE PROCESSORS

MAC

M2

DATA 0400,P(1),P(2),P(3)
EMAC

VORTEX ABORT MACRO DEFINITION
ABORT 'N1','N2','N3'
WHERE N1 FIRST 2 ASCII TASK NAME
" N2 = SECOND 2 ASCII TASK NAME
N3 = THIRD 2 ASCII TASK NAME

MAC

M2

DATA 0500,P(1),P(2),P(3)
EMAC

VORTEX ALLOCATE MACRO DEFINITION

ALOC ADDR
WHERE ADDR = ADDRESS OF REENTRANT
SUBROUTINE
MAC
M2
DATA 0600,P(1)
EMAC

VORTEX DEALLOCATE MACRO DEFINITION
DEALOC

MAC

M2

DATA 0700
EMAC

VORTEX PRIORITY INTERRUPT MASK MACRO DEFINITION
PMSK NUM, MSK, TYP
WHERE NUM = PIM NUMBER

MSK = PIM LINE MASK

TYP = ENABLE OR DISABLE TYPE
MAC
M2
FORM 4
F1 0
FORM 8

P

EMAC

VORTEX DELAY MACRO DEFINITION
DELAY T5,TM,DT
WHERE T5 = DELAY TIME IN 5 MILLI-
SECOND INCREMENT
TM = DELAY TIME IN 1 MINUTE
INCREMENTS
DT = DELAY TYPE

MAC

M2 _

FORM 4,6,4,2

F 0,011,0,P(3)
DATA P(1),P(2)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-5

varian data

LANGUAGE PROCESSORS

% OE X K K X K ¥ X ¥

LDELAY

* ¥ X ¥

TIME

* %X K ¥ OH ¥ X *

(@]
<
-
»
=

o]

H % ¥ ¥ ¥ ¥ ¥

OLINK

* ¥ ¥ K ¥ K ¥

TBEVNT

5-6

machines

VORTEX LDELAY MACRO DEFINITION

LDELAY T5,TM,LUN,KEY
WHERE T5 = DELAY TIME IN 5-MILLISECOND
INCREMENTS
TM = DELAY TIME IN 1-MINUTE
INCREMENTS
LUN = LOGICAL UNIT NUMBER FOR TASK LOAD
KEY = PROTECTION KEY
MAC
M2
DATA 01107,P(1),P(2)
FORM 8,8
F p(4),p(3)
EMAC

VORTEX TIME REQUEST MACRO DEFINITION
TIME

MAC

M2

DATA 01200
EMAC

VORTEX OVERLAY MACRO DEFINITION
OVLAY TF,'N1','N2", "N3'
WHERE TF = TYPE FLAG

N1 = FIRST 2 ASCII TASK NAME

N2 = SECOND 2 ASCII TASK NAME
N3 = THIRD 2 ASCII TASK NAME

MAC

M2

FORM 4,6,5,1

F 0,013,0,P(1)

DATA p(2),p(3),P(4)

EMAC

VORTEX IOLINK MACRO DEFINITION

IOLINK LUN, BUF , NUM
WHERE LUN = LOGICAL UNIT NO.
BUF = USER'S BUFFER LOCATION
NUM = BUFFER SIZE
MAC
M2
FORM 4,6,6
F 0,014,P(1)
DATA P(2),pP(3)
EMAC

VORTEX SET/FETCH EVENT WORD MACRO DEFINITION
TBEVNT VALUE,DISP,C/S
WHERE VALUE

BIT MASK

DISP = DISPLACEMENT OF TIDB WORD
C/S = 0 FOR CLEAR
= 1 FOR SET
MAC
M2

DATA 01700
DATA P(1),P(2),P(3)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5.1.3 Assembly Listing Format

Figure 5-2 is a sample listing following the format described
in this section.

varian data machines @—-—

LANGUAGE PROCESSORS

constant VEPLCT, with each line containing no more than
120 characters. Each page has a page number and title
line followed by one blank line, and then the program
listing containing two lines less than the number specified

by V$PLCT. (This specification can be changed through the

Page format: The assembly listing is limited to the job-control processor (JCP).)

number of lines per page specified by the VORTEX resident

PAGE 23 01/22/72 PROG1 VORTEX DASMR v$Jcp
588 EJEC
589 *
590 SUBROUTINE PRINTS JCP DIRECTIVE ON SO AND LO DEVICE
591 *
000660 074056 A 592 JCPRT STX JSPRX
000661 064056 A 593 STB JCPRB
000662 010412 A 594 LDA V$JCB GET BUFFER ADDRESS
000663 005311 A 595 DAR
000664 054003 A 596 STA *+4 SETUP LOFCB
597 IOLINK LO,*,41
000665 006505 A
000666 000604 E
000667 001405 A
000670 000665 R
000671 000051 A
000672 030400 A 598 LDX V$LUT1 ADRS OF LOG UNIT TBL
000673 015003 A 599 LDA S0,X
000674 150463 A 600 ANA BM377 SO CUR ASSIGNMT
000675 054274 A 601 STA JCTA
000676 015002 A 602 LDA SI,X
000677 150463 A 603 ANA BM377 SO CUR ASSIGNMT
000700 144271 A 604 SUB JCTA SO, SI SAME LUN
000701 001010 A 605 JAZ JCPR1
000702 000714 R
000703 017000 I 606 LDA JCFBCS+3 STORE 'LOFCB' ADRS IN CALL
000704 054004 A 607 STA *+5
608 WRITE LOFCB,S0,0,1 NO - WRITE TO SO
000705 006505 A
000706 000630 E
000707 100000 A
000710 010403 A
000711 000633 E
000712 000000 A
000713 000000 A
000714 030400 A 609 JCPRI LDX V$LUT1
000715 015005 A 610 LDA LO,X
000716 150463 A 611 ANA BM377 LO CUR ASSIGNMT
000717 144252 A 612 SUB JCTA LO, SO SAME LUN
000720 001010 A 613 JAZ JCPRE YES
000721 000733 R
000722 017000 A 614 LDA JCFCBS+3 STORE 'LOFCB' ADRS IN CALL
000723 054004 A 615 STA *+5
616 WRITE LOFCB,LO,0, 1 NO - WRITE TO LO

Figure 5-2. Sample Assembly Listing

5.7

varian data machines

LANGUAGE PROCESSORS

At the end of the assembly, the following information is
printed after the END statement:

a. Alinecontaining the subheading ENTRY NAMES

b. All entry names (in four columns), each preceded by its
value and a flag to denote whether the symbol is
absolute (A), relocatable (R), or common (C).

c. Alinecontaining the subheading EXTERNAL NAMES

d. All external names (in four columns), each preceded by
its value and a flag to denote that the symbol is external
(B)

e. Alinecontaining the subheading SYMBOL TABLE

f. The symbol table (in four columns), each symbol
preceded by its value and a flag to denote whether the
symbol is absolute (A), relocatable (R), common (C),
or external (E)

g. A line containing the subheading mmmm ERRORS
ASSEMBLY COMPLETE, where mmmm is the

accumulated error count expressed as a decimal
integer, right-justified and left-blank-filled

Line format: Beginning with the first character position,
the format for a title line is:
a. Oneblank

b. The word PAGE

¢c. Oneblank

d. Four character positions that contain the decimal page
number

e. Twoblanks

f. Eight character positions that contain the current date
obtained from the VORTEX resident constant VEDATE

g. Twoblanks

h. Eight character positions that contain the program
identification obtained from the VORTEX resident
constant VEJNAM

i. Twoblanks

j. Theword VORTEX

k. Two blanks

I. Theword DASMR

m. Two blanks

n. Eight character positions that contain the program title
from the TITLE directive

o. Blanks through the 120th character position

58

Beginning with the first character position, the format for
an assembily line is:

a. Oneblank

b. Six character positions to display the location counter
(octal) of the generated data word

c. Oneblank

d. Six character positions to display the generated data
word (octal)

e. Oneblank

f. One character position to denote the type of generated
dataword: absolute (A), relocatable (R), common (C),
external (E), literal (L), or indirect-address pointer
generated by the assembler (I)

g. Oneblank

h. Four character positions containing the decimal
symbolic source statement line number, right-justified
and left-blank-filled

i. Oneblank

j. Eighty character positions that contain the image of the
symbolic source statement. (If the symbolic source
statement is not a comment statement, the label,
operation, and variable fields are reformatted into
symblolic source statement character positions 1, 8,
and 16, respectively. If commas separate the label,
operation, and variable fields, they are replaced by
blank characters.)

k. Blanks, if necessary, through the 120th character
position

Error Chaining: If syntax errors occur during an assembly
error, chaining is provided to assist in finding the errors. If
errors occur, the error message at the end of the assembly
contains a decimal value within parentheses corresponding
to the source line number at which the last error occurred.
The line number referenced in turn references the next line
number containing an error. The last line number
containing an error does not have a chaining reference. If
no errors occurred, the error message does not contain a
chaining reference.

5.2 CONCORDANCE PROGRAM

The background concordance program (CONC) provides an
indexed listing of all source statement symbols, giving the
number of the statement associated with each symbol and
the numbers of all statements containing a reference to the
symbol. CONC is scheduled by job-control directive /CONC
(section 4.2.16). Upon completion of the concordance
listing, control returns to the JCP via EXIT.

Input to CONC is through the SS logical unit. The
concordance is output on the LO unit. CONC uses system

varian data machines

global file control block SSFCB. If the SS logical unit is an
RMD, a /REW or /PFILE directive (section 10) establishes
the FCB before the /CONC directive is input to the JCP.

CONC has a symbol-table area to process 400 no-reference
symbols at five words per symbol, plus 400 referenced
symbols (averaging five references per symbol) at ten
words per symbol. To increase this area, input before the
/CONC directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
approximately 75 symbols.

CONC processes both packed records (three source
statements per 120-word VORTEX physical record) and
unpacked records (one source statement per record).

5.2.1 Input

CONC receives source-statment input from the SS logical
unit. There is, however, no positioning of the SS unit prior
to reading the first record. The source statements are
identical with those input to the VORTEX assembler and
thus conform to the assembler syntax rules.

As the inputs are read, each source statement is assigned
a line number, 1, 2, etc., which is identical with that
printed on the assembly listing. When a symbol appears in
the label field of a symbolic source statement, the line
number of that source statement is assigned to the symbol.
When the symbol appears in the variable field of a source
statement, the line number of that statement is used as a
reference for the symbol.

5.2.2 Output

CONC outputs the concordance listing on the LO logical
unit. Output begins when one of the following events
occurs:

a. CONC processes the source statement END

b. Another job-control directive is input

c. An SSend of file or end of device is found

d. Areadingerroris found

e. The symbol-table area is filled
If the output occurred because the symbol-table area of
memory was full, CONC clears the concordance tables,
outputs error message CNO1, and continues until one of
the other terminating conditions is encountered. In all

other cases, CONC terminates by calling EXIT.

The concordance listing is made in the order of the ASCIHI
values of the characters comprising the symbols.

Beginning with the first character position, the format for a
title line is:

LANGUAGE PROCESSORS

a. Oneblank
b. The word PAGE

One blank

d. Four character positions that contain the decimal page
number

e. Two blanks

f. Eight character positions that contain the date
obtained from the VORTEX resident constant V$DATE

g. Two blanks

h. Eight character positions that contain the program
identification obtained from the VORTEX resident
constant VEJNAM

i. Twoblanks

j. Theword VORTEX

k. Two blanks

I. Theword CONC

m. Blanks through the 72nd character position

Beginning with the first character position, the format for a
concordance cross-reference listing is:

a. Two blanks

b. Four character positions that contain the decimal line
number of the source statement assigned to the symbol
in item (e) below

¢. Oneblank

d. One character position containing an asterisk (*) if
there are no references to that symbol (otherwise

blank)

e. Six character positions containing the symbol being
listed

f. Two blanks

g- Four character positions that contain the decimal line
number of a source statement referencing the symbol
in item (e) above

h. Items (f) and (g) are repeated as necessary for each
source statement referencing the symbol in item (e)
above, where up to nine references are placed on the
first line, and subsequent references on the next
line(s). Continuation lines that may be required for
ten or more references to the same symbol do not
repeat items (a) through (e)

i. Blanks through the 72nd character position of the last
line of the entry

Figure 5-3 illustrates the concordance listing.

59

varian data machines

LANGUAGE PROCESSORS

PAGE 1 09/22/71

509 B 8u1 859 879
1074 1112 1230

261 B10 *

262 B11 *

263 B12 *

1206 ODATE 1180 1182 1190

1937 ONUM 895 928 936
1406 1418

V$OPCM VORTEX CONC

1001 1002 1012 1068 1072

1182 1190 1196 1254 1284

Figure 5-3. Sample Concordance Listing

5.3 FORTRAN IV COMPILER

The FORTRAN IV compiler is a one-pass compiler sched-
uled by job-control directive /FORT (section 4.2.15). The
compiler inputs a source module from the Pl logical unit
and produces an object module on the BO and/or GO units
and a source listing on the LO unit. No secondary storage
is required for a compilation.

If a fatal error is detected, the compiler automatically
terminates output to the BO and GO units. LO unit output
continues. The compiler reads from the Pl unit until an
END statement is encountered or a control directive is
read. Compilation also terminates on detection of an /0
error or an end-of-device, beginning-of-device, or end-of-file
indication from 170 control.

The output comprises relocatable object modules under all
circumstances: main programs and subroutines, func-
tion, and block-data subprograms.

Error messages applicable to the FORTRAN IV compiler are
given in Appendix A.5.2.

FORTRAN 1V has conditional compilation facilities imple-
mented by an X in column 1 of a source statement. When
the X appears in the /FORT directive, all source statements
with-an X in column 1 are compiled (the X appears on the
LO listing as a blank). When the X is not present, all
conditional statements are ignored by the compiler. X lines
are assigned listing numbers in either case, but the source
statement is printed only when the X is present.

FORTRAN |V has a symbol-table area for approximately 70
symbols (i.e., names), if none of the logical units used is
assigned to an RMD device. Each RMD assignment
requires buffer space of 120 words (except when BO = GO
= RMD, in which case BO and GO use the same buffer)
and the symbol capacity is reduced by 24 symbols per
buffer. To increase the symbol-table area, input before the
/FORT directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
100 symbols. If a larger symbol-table is used, greater
subexpression optimization is possible.

A VORTEX physical record on an RMD is 120 words. Source
records are blocked three 40-word records per VORTEX
physical record, object modules are blocked two 60-word
modules per record, and list modules are output one record
per physical record. However, in the case where S| = Pl =

5-10

RMD, records are not blocked but assumed to be one per
VORTEX physical record. When the file contains more than
one source module, each new source module must start at
a physical record boundary. The unused portion of the last
physical record of the previous module should be padded
with blanks.

Table 5-2 lists the VORTEX real-time executive (RTE)
service request macros available through FORTRAN IV.
These macros are detailed in section 2.1.

Table 5-2. RTE Macros Available Through FORTRAN IV

ABORT EXIT SCHED
ALOC OVLAY SUSPND
DELAY PMSK TIME
LDELAY RESUME

Excepting the STOP and PAUSE statement, compilation
and execution with the VORTEX operating system is the
same as with the MOS system described in Varian 620
FORTRAN |V Reference Manual (document 98 A 9902 03x).
STOP and PAUSE statements output the message

taskname STOP (or PAUSE) n

With VORTEX, the PAUSE statement generates a SUSPND
call to the VORTEX executive.

To resume the suspended task, input operator-communica-
tion key-in request ;RESUME (section 17.2.4).

FORTRAN-compiled programs can execute either in fore-
ground or background.

Details of the FORTRAN IV compiler language are given in
the Varian FORTRAN |V Reference Manual, except for the
TITLE statement, which is discussed in section 5.3.1.

5.3.1 TITLE Statement

This FORTRAN statement declares a module name, which
is output to the top of each page of the source listing and to
the object module. It has the general form

TITLE name

where name is the title to be output. The title contains up
to eight characters, and is output in the object text as the
name by which the program is to be referenced by SMAIN.

If a TITLE statement is used, it must be the first source
statement. A TITLE statement forces a page eject on the
LO listing.

5.3.2 Execution-Time 1/0 Units

All FORTRAN 1/0 statements (FORTRAN IV manual)
include a FORTRAN unit number (FUN) or name, which

‘ START ’

A

CHECK ACTIVE FCB
CHAIN FOR ONE
ASSOCIATED WITH
FUN

ASSOCIATED NO

FCB FOUND

YES

varian data machines @——

LANGUAGE PROCESSORS

may or may not be identical with the logical unit containing
the required file(s). Four different cases of FORTRAN units
must be distinguished as indicated in figure 5-4.

Case 1, non-RMD unit: The logical-unit number is
assigned to the device by SGEN (section 15) or by the JCP
/ASSIGN directive (section 4.2.6), where the FORTRAN unit
number is identical with that of the file unit. Thus, to

FUN
IS AN RMD
PARTITION

BACKGROUND
PROGRAM

ACTIVE
GLOBAL FCB FOR
FUN

CONSTRUCT AND

EXECUTE IOC CALL LOG /O ERROR

CONSTRUCT AND
EXECUTE IOC CALL

CONSTRUCT DCB AND
EXECUTE I0C CALL

(FUN = LUN) (FUN = LUN)
» J
ABORT
FINISH FINISH FINISH

NOTE: THE FORTRAN LOGICAL UNIT (FUN) IS NOT NECESSARILY IDENTICAL WITH
THE FILE LOGICAL UNIT (LUN) UNLESS SO INDICATED,
V$OPEN OVERRIDES A /PFILE ASSIGNMENT.

VTII-1445

Figure 5-4. FORTRAN 1/0 Execution Sequences

varian data machines

LANGUAGE PROCESSORS

rewind the PO logical unit (unit 10, magnetic-tape unit 0),
the job stack can be:

/ASSIGN,PO=MTO00
/FORT

REWIND 10

Case 2, RMD file executing in background only: The JCP
/PFILE directive (section 4.2.11) positions the Pl unit to a
background reassignable logical unit, and loads a global
FCB. As in case 1, the FORTRAN unit number is identical
with that of the file unit. Thus, to read the file FILE1 on
logical unit 50 (protection code X) where Pl is logical unit 4,
the job stack can be:

/ASSIGN,PI=50
/PFILE,4,X,FILE1
/FORT

READ (4,...

Case 3, normal RMD file executing in foreground or
background: the CALL V$OPEN statement associates any
specified RMD file with the FORTRAN unit number. The
CALL V$OPEN statement overrides any /PFILE assignment
(case 2). The format of the statement is:

CALL VSOPEN(fun,lun,name, mode)

where
fun is the name or number of the FORTRAN
unit, defined in a DATA statement or
Hollerith character string

lun is the name or number of the file logical
unit, defined in a DATA statement or
Hollerith character string

name is the name of the 13-word array
containing the file name and the
protection code

mode is the mode of the 1/0-control open
macro (section 3.5.1)

V$OPEN constructs an FCB in the first ten words of the
specified 13-word array, performs an |0OC OPEN on this
FCB, and links it with the active FCB chain. The remaining
three words of the array contain an FCB-chainlink, the
FORTRAN unit number, and the file logical unit number.
Thus, to reference file FIL on logical unit 20 (protection
code Q) by the number 2, rewinding upon opening, the job
stack can be:

/FORT

DIMENSION IFCB(13)
DATA IFCB(3)/2H Q/
DATA IFCB(8),IFCB(9),IFCB(10)/2HFI,2HL ,2H /

CALL V$OPEN(2,20,IFCB,0)

File FIL can now be referenced by FORTRAN statements by
using 2 as the designation of the FORTRAN logical unit. For
instance,

READ (2,...

executes an |OC READ call, reading from FIL using IFCB as
the FCB.

Note: V$OPEN sets the record length to 120 words and
the access method to 3, sequential access using relative
VORTEX physical record number within the file. The user
should not change the record length or access method
parameters in the FCB because the FORTRAN Run-Time
170 package has reserved only a 120 word buffer.

Any record in a file opened by V$OPEN can be directly
accessed by operating on the FCB array. Thus, using the
job stack in the previous example, record 61 in file FIL is
read by inputting

IFCB(4)=61
READ(2, ...

varian data machines

To dissolve an existing association between an RMD file
and a FORTRAN logical unit, use the CALL V$CLOS
statement of the format.

CALL V$CLOS(fun,mode)

where
fun is the name or number of the FORTRAN
logical unit
mode is the mode of the 1/0-control CLOSE

macro (section 3.5.2)

Thus, when the processing of file FIL in the previous
example is complete, to close/update FIL and take IFCB off
the active FCB chain so that FORTRAN statements with fun
= 2 no longer reference FIL, the job stack can be:

CALL V$CLOs(2,1)

Note: the auxiliary FORTRAN 1/0 statements REWIND
BACKSPACE, and ENDFILE cannot be used with RMD files.
Use instead (where IFCB is the FCB array):

IFCB(4) = 1 For rewind
IFCB(4) = IFCB(#4) -1 For backspace
CALL V$CLOS(fun, 1) For endfile

Case 4, blocked RMD file executing in foreground or
background: the CALL V$OPNB statement associates any
specified RMD file with a FORTRAN unit number. This
statement overrides any /PFILE statement. The format is:

CALL V$OPNB (fun, lun, name, mode, recsz, buff, rbwfl)

where

fun is the name or number of the FORTRAN
unit, which is defined in a DATA
statement or Hollerith character string

lun is the name or number of the logical
unit, which is defined in a DATA
statement or Hollerith character string

name is the name of a 14-word FCB array

mode is the mode of the 1/0 control OPEN
macro

recsz is the logical record size in words

buff is the address of a blocking buffer array

rbwfl is the read-before-write flag

LANGUAGE PROCESSORS

The first parameters are identical in function to those of
the CALL V$OPEN statement. The other three specify
blocking information.

An RMD file opened by a CALL V$OPNB statement is
processed as though it were a consecutive series of logical
records, each one recsz words in length. These logical
records continue across physical record boundaries with no
space wasted (except possibly at the end of file). Input and
output is buffered through the user-supplied buffer array
buff as specified above.

Since actual physical 1/0 is performed on buff, the file must
be large enough to do I/0 on the end of the last logical
record. It is sufficient to allocate RMD space for one more
logical than will ever be used.

It is the user's responsibility to declare the size of the
buffer array buff sufficiently large, remembering that it is a
function of the logical record size recsz, that it must be a
multiple of the basic record size of 120, and that it must be
large enough to include enough basic 120-word physical
records to cover a logical record, even though the physical
record may overlap the physical record boundaries. The
following tables specify all conditions, where:

Q(x/y) means the quotient of x/y
R(x/y) means the remainder of x/y

recsz < 120
R(120/recsz) Size of Array Buff
=0 120 words
#* 0 240 words
recsz = 120
R(recsz/120) Size of Array Buff
= recsz
=1 120 * (1 + Q(recsz/120))
> 1 120 * (2 + Q(recsz/120))

If recsz is not a multiple or factor of 120 words, the
blocking buffer buff must allow room for an extra 120-word
physical record at the start or end of a logical record.

On a WRITE operation where recsz is not a multiple of 120
words, data on the RMD can be overwritten unless a read-
before-write is performed. In some situations, such as
initial file creation in a strictly sequential fashion, this is
unnecessary and slow.

The parameter rbwfl allows the user to select this feature.
If rbwfl is zero, read-before-write is disabled. Any non-zero
value enables read-before-write.

513

varian data machines

LANGUAGE PROCESSORS

Example: An RMD file opened by CALL V$OPNB can be
accessed randomly, as with CALL VSOPEN, by a replace
ment statement using the logical record number.

/FORT

DIMENSION IFCB(14),IBUFF(120)

DATA IFCB(3),IFCB(8),IFCB(9),IFCB(10)
/0, 2HBL, 2HFI, 2HLE/

CALL V$OPNB(2, 10,IFCB, 0,10, IBUFF, 1)

IFCB(4) = 5

READ (2) I

READ (2) J

This sequence causes the unkeyed file name BLFILE on
logical unit 10 to be opened and assigned FORTRAN unit
number 2. The first READ statement causes the entire first
120-word physical record (first 12 logical records) to be
input into blocking buffer IBUFF, and the first word of the
fifth logical record to be transferred to 1. The second READ
would not require another physical input for record 6 in
IBUFF. This READ statement would simply transfer the first
word of logical record 6 to J.

To flush the blocking buffer, close the file and disassociate
the FORTRAN and logical unit numbers the CALL V$CLSB
statement is provided. Its format is:

CALL V$CLSB (fun,mode)
where
fun is the FORTRAN unit number

mode is the mode of the 170 control CLOSE
macro

The end-of-file information in a FILE NAME DIRECTORY
refers to physical 120-word record number. Therefore, if
logical record size is not a multiple of 120 words, the user
may need to define his own end-of-file mark. Close and
update, Open and Leave, and IOCHK (section 5.3.4) EOF
features all operate on this File Name Directory parameter
referring strictly to 120-word physical record number.

5.3.3 Encode/Decode Functions

Using the FORTRAN blocking/deblocking feature with the
logical unit set = 0 (dummy) provides the capability to
transfer data from memory to memory using formatted /0
statements in FORTRAN. This feature is often implemented
in other systems by use of ENCODE, and DECODE
statements, but in VORTEX it is an intrinsic capability of
the blocked 1/0 feature.

Not all the capabilities of the ENCODE and DECODE
statements, which specify a character count so that

“‘new record’’ format specifiers stash (/) and right paren-
thesis ()) position to the end of this count, are available.

5.3.4 Runtime 1/0 Exceptions

The FORTRAN runtime |/0 program allows a program to
detect 1/0 errors and end-of-file or end-of-device condi-
tions. Status of a READ or WRITE operation is available
immediately after the operation is complete and before
another 1/0 operation is executed. This status can be
checked by executing a subroutine or function call in the
form.

CALL IOCHK(status)

where status is the name of an integer variable which is to
receive the result of the status check.

If the last 170 operation had been completed normally, the
value of zero will be returned. If an error had occurred, the
value minus one is returned. If either an end-of-file or an
end-of-device had occurred, the value positive one will be
returned.

The status may be checked and the result tested in a single
statement by use of the form:

IF (IOCHK(status)) label(1), label(2), label(3)

where

status is the name of an integer variable which
receives the result of the status check. A
value of zero indicates normal
completion. A positive non-zero value
indicates an error. A negative non-zero
value indicates EOF or EOD.

label(1) is a statement label to which control is
transferred, ifand 170 error occurred.

label(2) is a statement label to which control is
to be transferred if the operation was
completed normally.

label(3) is a statement label to which control is
transferred, if an end-of-file or end-of-
device was encountered.

If the program does not check the status of a READ or
WRITE operation, FORTRAN will abort execution of the task
upon the next entry to the runtime 1/0 routine. At that
time the diagnostic message will be output to the System
Output device. Any data which is input to a read in which
an error occurred will be invalid. After a call to IOCHK is
executed, any error status is reset and the program may
proceed with additional input and/or output.

5.3.5 Reentrant Runtime 1/0

The VORTEX runtime 1/0 program processes all FORTRAN
READ, WRITE, auxiliary 1/0, and open and close state-
ments at execution time. It is composed of two modules,
V$FORTIO and the reentrant task VSRERR. Both are in the
OM library. VSRERR is also in the nucleus portion of the
SGL. SGEN then automatically loads V$RERR in the
VORTEX nucleus, and all FORTRAN programs automati-
cally link to it. If VSRERR is not desired in the VORTEX
nucleus, the SGEN directive DEL, VSRERR must be entered
during system generation. Each FORTRAN program will
then get its own copy of VBRERR from the OM library.
V$RERR is approximately 3K words long.

5.4 RPG IV COMPILER

5.4.1 Introduction

The VORTEX RPG IV System is a software package for
general data processing applications. It combines versatile
file and record defining capabilities with powerful process-
ing statements to solve a wide range of applications. It is
particularly effective in the processing data for reports. The
VORTEX RPG IV system consists of the RPG IV compiler
and RPG IV runtime/loader program.

The VORTEX RPG IV compiler and the runtime/loader

execute as level zero background programs in unprotected.

memory. Both the compiler and the runtime/loader will
operate in 6K of memory with limited work stack space.
The stack space may be expanded and consequently larger
RPG programs compiled and executed by use of the /MEM
directive.

The RPG language, and its compilation and execution
under VORTEX is described in the Varian 620 RPG IV
User's Manual (98 A 9947 03x).

Error messages applicable to the RPG |1V compiler are given
in Appendix A.

5.4.2 RPG IV 1/0 Units

The RPG IV compiler reads source records from the
Processor Input (PI) file, write object records on the Binary
Output (BO) file, and lists the source program on the List
Output (LO) file.

varian data machines [@-——

LANGUAGE PROCESSORS

The RPG IV runtime/loader will normally load the RPG
object program from the Binary Input (Bl) file. When the
program executes, the READ CARD, PUNCH and PRINT
statements are performed on logical units 13, 14, and 15,
statements for performing input and output to logical units
16 through 22.

5.4.3 Compiler and Runtime Execution

The RPG compiler and the runtime package should be
cataloged into the background library (BL) using LMGEN.

The compiler and runtime package should be defined as
background unprotected tasks with the names PRGC and
RPGRT, respectively.

The compiler is scheduled from the background library by
the directive

/LOAD, RPGC

The compiler terminates when the required END statement
in the RPG program is encountered. The compiler exits to
the executive. There is no provision for stacking multiple
compilations or for operating in compile-and-go mode.

The compiler rewinds the Pl, BO, and LO files at the
beginning of the compilation.

The runtime/loader is scheduled from the background
library by the directive

/LOAD,RPGRT

The loader expects the RPG object program is on the Binary
Input (BI), and loads and executes it. |f the load directive
contains the name of an RPG program to be loaded in the
form,

/LOAD, RPGRT, name

the runtime/loader will assume the program mentioned is
in the background library and will load it from there. An
RPG object program may be 'cataloged’ into the back-
ground library by creating a directory entry and allocating
file space with FMAIN and copying the RPG object program
into the file with IOUTIL.

-—-@ varian data machines

varian data machines

SECTION 6
LOAD-MODULE GENERATOR

The load-module generator (LMGEN) is a background task
that generates background and foreground tasks from
relocatable object modules. The tasks can be generated
with or without overlays, and are in a form called load
modules.

To be scheduled for execution within the VORTEX operating
system, all tasks must be generated as load modules.

6.1 ORGANIZATION

LMGEN is scheduled for execution by inputting the job-

control processor (JCP) directive /LMGEN (section 4.2.19).

LMGEN has a symbol-table area for 200 symbols at five
words per symbol. To increase this area, input a /MEM
directive (section 4.2.5), where each 512-word block will
enlarge the capacity of the table by 100 symbols.

INPUTS to the LMGEN comprise:

« Load-module generator directives (section 6.2) input
through the Sl logical unit.

» Relocatable object modules from which the load module
is generated.

« Error-recovery inputs entered via the SO logical unit.

Load-module generator directives define the load module
to be generated. They specify the task types (unprotected
background or protected foreground) and the locations of
the object modules to be used for generation of the load
modules. The directives supply information for the catalog-
ing of files, i.e., for storage of the files and the generation
of file-directory entries for them. LMGEN directives also
provide overlay and loading information. The directives are
input through the Sl logical unit and listed on the LO
logical unit. If the SI logical unit is a Teletype or a CRT
device, the message LM** is output on it to indicate that
the Sl unit is waiting for LMGEN input.

Relocatable object modules are used by LMGEN to
generate the load modules. The outputs from both the DAS
MR assembler and the FORTRAN compiler are in the form
of relocatable object modules. Relocatable object modules
can reside on any VORTEX system logical unit and are
loaded until an end-of-file mark is found. The last execution
address encountered while generating a segment (root or
overlay, section 6.1.1) becomes the execution address for
that segment. (Note: If the load module being generated

is a foreground task, no object module loaded can contain
instructions that use addressing modes utilizing the first
2K of memory.

A VORTEX physical record on an RMD is 120 words. Object-
~module records are blocked two 60-word records per
VORTEX physical record. However, in the case of an RMD
assigned as the Sl logical unit, object modules are not
blocked but assumed to be one object module record per
physical record.

Error-recovery inputs are entered by the operator on the
SO lvgical unit to recover from errors in load-module
generation. Error messages applicable to this component
are given in Appendix A.6.

Recovery from the type of error represented by invalid
directives or parameters is by either of the following:

a. Input the character C on the SO unit, thus directing
LMGEN to go to the Sl unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next LMGEN directive is then input
from the Sl unit.

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort the LMGEN task and schedule
the JCP for execution. (Note: An irrecoverable error, e.g.,
170 device failure, causes LMGEN to abort. Examine the
|70 error messages and directive inputs to determine the
source of such an error.)

OUTPUTS from the LMGEN comprise:
* Load modules generated by the LMGEN
« Error messages

» Load-module maps output upon completion of a load-
module generation

Load modules are LMGEN-generated absolute or relocat-
able tasks with or without overlays. They contain ali
information required for execution under the VORTEX
operating system. During their generation, LMGEN uses the
SW logical unit as a work unit. Upon completion of the
load-module generation, the module is thus resident on the
SW unit. LMGEN can then specify that the module be
cataloged on another unit, if required, and output the load
module to that unit. Figure 6-1 shows the structure of a
load module.

6-1

varian data machines

LOAD-MODULE GENERATOR

Foreground Blank Common

VORTEX Nucleus

Foreground Task
Foreground Task

Named Common

Foreground Task
Foreground Task

Named Common

Overlay Area

Root Segment

? Background Task

Named Common

Blank Common J

Tables

All foreground tasks share the foreground blank common
area but may have their own named common area.

Figure 6-1. Load-Module Overlay Structure

Error messages applicable to the load-module generator pressed. The maps show all entry and external names and
are output on the SO and LO logical units. The individual labeled data blocks. They also describe the items given
messages, errors, and possible recovery actions are given in as defined or undefined, and as absolute or relocatable,
Appendix A, section A.6. and indicate the relative location of the items. The load-

module map lists the items in the format Four entries per
Load-module maps are output on the LO logical unit upon line:

completion of the load-module generation, unless sup-

Print position 2345678 9 10 11 12 13 14 15 16
item b X b location
where
item is a left-justified entry or external name or

labeled data block

b is a blank
X is A for an absolute or R for a relocatable item
location is the left-justified relative location of the item

6-2

varian data machines

The following appear at the end of the LMGEN map.

[$1AP] Top of indirect address pool, which
begins at 0500

[$LIT] Bottom of literal pool, which begins at
0777

[$PED] Last loaded location. Foreground, word

size of load module. Background, last
location loaded (loading begins at
01000).

6.1.1 Overlays

Load modules can be generated with or without overlays.
Load modules with overlays are generated when task
requirements exceed core allocation. In this case, the task
is divided into overlay segments that can be called as
required. Load modules with overlays are generated by use
of the OV directive (section 6.2.3) and comprise a root
segment and two or more overlay segments (figure 6-1),
but only the root segment and one overlay segment can be
in memory at any given time. Overlays can contain
executable codes, data, or both.

When a load module with overlays is loaded, control
transfers to the root segment, which is in main memory.
The root segment can then call overlay segments as
required.

Called overlay segments may or may not be executed,
depending on the nature of the segment. It can be an
executable routine, or it can be a table called for searching
or manipulation, for example. Whether or not the segment
consists of executable data, it must have an entry point.

The generation of the load module begins with the root
segment, but overlay segments can be generated in any
order.

The root segment can reference only addresses contained
within itself. An overlay segment can reference addresses
contained within itself or within the root segment. Thus, all
entry points referenced within the root segment or an
overlay segment are defined for that segment and
segments subordinate to it, if any.

For an explanation of DAS MR and FORTRAN calls to
overlays see section 2.1.8.

6.1.2 Common

Common is the area of memory used by linked programs
for data storage, i.e., an area common to more than one
program. There are two types of common: named common
and blank common. (Refer to the FORTRAN IV Reference

LOAD-MODULE GENERATOR

Manual, document number 98 A 9902 03x, or ihe DAS MR
COMN directive description in the computer handbook, for
the system being used.

Named common is contained within a task and is used for
communication among the subprograms within that task.

Blank common can be used like named common or for
communication among foreground tasks.

The extent of blank common for foreground tasks is
determined at system generation time. The size of the
foreground blank common can vary within each task
without disturbing the positional relationship of entries but
cannot exceed the limits set at system generation time.

The extent of blank common for background tasks is
allocated within the load module. The size of the back-
ground blank common can vary within each task, but the
combined area of the load module and common cannot
exceed available memory.

Each blank common is accessible only by the correspond-
ing tasks, i.e., foreground tasks use only foreground blank
common, and background tasks use only background
blank common.

All definitions of named and blank common areas for a

given load module must be in the first object module
loaded to generate that load module.

6.2 LOAD-MODULE GENERATOR DIRECTIVES

. TIDB Create task-identification block
. LD Load relocatable object modules

. ov Overlay
. LIB Library search
. END

Load-module generator directives begin in column 1 and
comprise sequences of character strings having no embed-
ded blanks. The character strings are separated by
commas (,) or by equal signs (=). The directives are free-
form and blanks are permitted between the individual
character strings of the directives, i.e., before or after
commas (or equal signs). Although not required, a period
(.) is a line terminator. Comments can be inserted after the
period.

The general form of a load-module generator directive is

name,p(1),p(2),....p(n)

where
name is one of the directive names given above
each p(n) is a parameter required by the
(ifany) directive and defined below

under the descriptions of the
individual directives

6-3

varian data machines

LOAD-MODULE GENERATOR

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted.

Error messages applicable to load-module generator direc-
tives are given in Appendix A.6.

6.2.1 TIDB (Task-ldentification Block)
Directive

This directive must be input before any other LMGEN
directives can be accepted. It permits task scheduling and
execution, and specifies the overlay and debugging charac-
teristics of the task. The directive has the general form

TIDB,name,type,segments, DEBUG

where
name is the name (1 to 6 ASCII characters) of
the task
type is 1 for an unprotected background task

on BL, or 2 for a protected foreground
task or 3 for a background task on an
alternate library

segments is the number (2 to 9999) of overlay
segments in a task with overlays, or O for
a task without overlays (note that the
number 1 is invalid)

DEBUG is present when debugging is desired

The DEBUG parameter includes the DEBUG object module
as part of the task. If the task is a load module without
overlays, DEBUG is the last object module loaded. If the
task is a load module with overlays, DEBUG is the last
object module loaded in the root segment (section 6.1.1).

Examples: Specify an unprotected background task
named DUMP as having no overlays but with debugging
capability.

TIDB,DUMP, 1,0,DEBUG

Specify a protected foreground task named PROC as
having a root segment and four overlay segments.

TIDB,PROC,2,U
6.2.2 LD (Load) Directive
This directive specifies the logical unit from which relocat-

able object modules are to be loaded. It has the general

6-4

form
LD, lun,key,file

for loading from RMD logical units, and
LD,lun

for loading from any other logical unit, where

lun is the name or number of the logical unit
where the object module resides

key is the protection code required to
address lun

file is the name of the RMD file

From the object modules, LMGEN generates load modules

(with or without overlays) on the SW logical unit. Loading of

object modules from the specified logical unit continues
until an end-of-file mark is encountered.

Successive LD directives permit the loading of object
modules that reside on different logical units.

Examples: Load the relocatable object modules from
logical unit 6 (BI) until an end-of-file mark is encountered.

LD,6
Open a file named DUMP on logical unit 9 (GO) with no
protection code. (LMGEN loads the relocatable object

modules and closes the file.)

LD,9, ,DUMP

6.2.3 OV (Overlay) Directive

This directive specifies that the named segment is an
overlay segment. It has the general form

OV,segname
where segname is the name (1 to 6 ASCH characters) of
the overlay segment.
Example: Specify SINE as an overlay segment.

OV, SINE

6.2.4 LIB (Library) Directive

This directive indicates that all load (LD, section 6.2.2)
directives have been input, i.e., all object modules have
been loaded except those required to satisfy undefined
externals. LIB also specifies the libraries to be searched

(and the order in which the search is made) to satisfy all
undefined externals. The directive has the general form

LIB,lun(1),key(1),lun(2),key(2),...,lun(n),key(n)
where

each lun(n) is the name or number of a resident-
library RMD logical unit to be searched

each key(n) is the protection code required to
address the preceding logical unit

The search is conducted in the order in which the logical
units are given in the LIB directive. When not specified by
LIB, the core-resident (CL) and object-module (OM)
libraries are searched after all specified libraries have been
searched. However, if LIB specifies the CL and/or OM
libraries, they are searched in the order given in LIB.

If the generation of the load module involves overlays, a LIB
directive follows each overlay generation.

Examples: Specify to the LMGEN a sequence of libraries
to be searched to satisfy undefined externals. Use logical
unit 115, a user library, having protection code M; followed
by logical unit 103, the CL library, having protection code
C; and the OM library, having protection code D. (Because
the last two libraries are searched in any case, note that
the two inputs foliowing are equivalent.) Input
LIB,115,M,103,C,104,D

or, more briefly,

LIB,115,M

To change the order of search to logical units 104, 115, and
103, input

LIB,104,D,115,M,103,C
or, more briefly,
LIB,104,D,115,M

To search only the CL and OM libraries to satisfy undefined
externals, input

LIB

6.2.5 END Directive

This directive terminates the generation of the load module
and, if specified, causes the creation of a file and a
directory entry (section 9) for the load-module contents on
the indicated logical unit. The indicated logical unit, if any,

varian data machines [@-—

LOAD-MODULE GENERATOR

is an RMD, and thus requires a protection code. The
directive has the general form

END,lun,key

where

lun is the name or number of the logical unit
on which the file containing the load
module will reside

key is the protection code, if any, required to
address lun

If TIDB (section 6.2.1) specified an unprotected back-
ground task (TIDB directive type = 1), the logical unit, if
any, specified by the END directive must be that of the BL
unit, i.e., unit 105. If TIDB specified a protected foreground
task (TIDB directive type = 2), the logical unit, if any,
specified by the END directive must be that of the FL unit,
i.e., unit 106, or that of any available assigned RMD
partition. |f TIDB specified an alternate library background
task (TIDB directive type = 3), the logical unit, if any,
specified by the END directive, may be that of any available
assigned RMD partition.

If the END directive does not specify a logical unit, the load
module resides on the SW logical unit only.

If there are still undefined externals, the load module is not
catalogued even if END specifies a legal logical unit. In this
case, the load module resides on the SW unit only.

Examples: Specify that the load module is complete (no
more inputs to be made), create a file and a directory entry
on the BL logical unit (105), and catalog the module. The
protection code is E. (Note: The load module will also
reside on the SW unit.)

END, 105, E

Specify that the load module is complete (no more inputs to
be made) and is to reside on the SW unit only.

END

6.3 SAMPLE DECKS FOR LMGEN
OPERATIONS

Example 1: Card and Teletype Input

Generate a background task without overlays using LMGEN
with control records input from the Teletype and object
module(s) on cards. Assign the Bl logical unit to card
reader unit CR0OO. Assign the task name EXC4 and catalog
to the BL logical unit, and load DEBUG as part of the task
from the OM library.

/JOB, EXAMPLE4
/ASSIGN,BI=CRO0
/LMGEN
TIDB,EXCU4,1,0,DEBUG
LD,BI

LIB

END,BL,E

/ENDJOB

(Teletype input)

6-5

varian data machines

LOAD-MODULE GENERATOR

Note: The object module deck must be followed by an
end of file (2-7-8-9 in card column 1).

Example 2: Card Input

Generate a foreground task with overlays using LMGEN
with control records and object modules input from the
card reader. Assign the Bl and Sl logical units to card
reader unit CROO. Assign the task name EXC5, overlay
names SGM1, SGM2, and SGM3, and catalog to the FL
logical unit.

/JOB, EXAMPLES
/ASSIGN,BI=CR0O0,SI=CRO0

(Deck)
/LMGEN
TIDB,EXC5,2,3
LD, BI
(Object Module(s) -- root segment)

(End of File)
LIB
oV, SGM1
LD,BI
(Object Module(s))
(End of File)
LIB

6-6

OV, SGM2

LD,BI

(Object Module(s))
(End of File)

LIB

OV, SGM3

LD,BI

(Object Module(s))
(End of File)

LIB

END,FL,F

/ENDJOB

Example 3: Teletype and RMD Input

Generate a foreground task without overlays using LMGEN
with control records input from the Teletype and object
module(s) from an RMD. The object module resides on
RMD 107 under the name PGEX. Assign the task name
EXC6, search the OM library first to satisfy any undefined
externals, and catalog on RMD 120.

/J0OB, EXAMPLEG6
/LMGEN
TIDB,EXC6,2,0
LD,107,%,PGEX
LIB,OM,D

END, 120,X
/ENDJOB

SECTION 7
DEBUGGING AIDS

The VORTEX system contains two debugging aids: the
debugging program (DEBUG) and the snapshot dump
program (SNAP).

7.1 DEBUGGING PROGRAM

The 816-word VORTEX debugging program (DEBUG) is
added to a task load module whenever the DEBUG option
is specified by a load-module generator TIDB directive
(section 6.2.1). The DEBUG object module is the last object
module loaded if the root segment of the task is an overlay
load module. The load-module generator sets the load-
module execution address equal to that of DEBUG.

If the load module has been cataloged, DEBUG executes
when the module is scheduled. Otherwise, JCP directive
/EXEC (section 4.2.22) is used to schedule the module and
DEBUG.

varian data machines

During the execution of DEBUG, the A, B, and X
pseudoregisters save the contents of the real A, B, and X
registers, and restore the contents of these registers before
terminating DEBUG.

When debugging is complete, the input of any job-control
directive (section 6.2) returns control to the VORTEX
system.

INPUTS to DEBUG comprise the directives summarized in
table 7-1 input through the D! logical unit. When DEBUG if
first entered, it outputs on the Teletype or CRT device the
message DG** followed by the TIDB task name and the
address of the first allocatable memory cell. This message
indicates that the system is ready to accept DEBUG
directives on the Di unit.

Each DEBUG directive has from O to 72 characters and is
terminated by a carriage return. Directive parameters are
separated by commas, but DEBUG treats commas, periods,
and equal signs as delimiters.

Table 7-1. DEBUG Directives

Directive Description

A Display and change the contents of the A pseudoregister

Ax Change, but do not display, the contents of the A psuedoregister
B Display and change the contents of the B pseudoregister

Bx Change, but do not display, the contents of the B pseudoregister
Cx Display and change the contents of memory address x

Gx Load the contents of the pseudoregisters into the respec-

tive A, B, and X registers, and transfer to memory address x

Ix,y,z Initialize memory addresses x through y with the value of z

(o] Display and change the overflow indicator

P Read DEBUG directives from Pl unit until EOF

Sx,y,z,m Search memory addresses x through y for the z value, using mask m
Ty,x Place a trap at memory address y, starting execution at address x
Ty) Place a trap at memory address y, starting execution at

the last trap location

X Display and change the contents of the X pseudoregister
Xy Change, but do not display, the contents of the X pseudoregister
XXXXXX Display the contents of memory address xxxxxx

XXXXXX,YYYyyy
yyyyyy

Display the contents of memory addresses xxxxxx through

7-1

— varian data machines

DEBUGGING AIDS

Numerical data are always interpreted as octal by DEBUG.
Negative numbers are accepted, but they are converted to
their two's complements by DEBUG.

OUTPUTS from DEBUG consist of corrections to registers
and memory, displays, listings on the DO logical unit, and
error messages. Numerical data are always to be inter-
preted as octal.

Error messages applicable to the debugging program are
given in Appendix A.7.

Examples of DEBUG directive usage: Note that, in the
following examples, operator inputs are in bold type and
the carriage return is represented by the at sign (@). Other
entries, in jtalics, are program responses to the directives.

Display the contents of a pseudoregister:

A@
(001200)@

Display and change the contents of a pseudoregister:
B@
(001200) 010406@

Change, but do not display, the contents of a
pseudoregister:

X02050@

Display, but do not change, the status of the overflow
indicator:

@
(000001)@

Display and change the status of the overflow indicator:

o@
(000000) 000001@

Display, but do not change, the contents of memory
address 002050:

€002050@
(102401)@

Display and change the contents of memory address
002050:

€002050@
(102401) 001234@

Display and change the contents of memory address
002050, then display the contents of the next sequential
location:

C002050@
(102401) 001234,@
(000067)@

7-2

Display, but do not change, the contents of memory
address 002050, then display the contents of the next
location:

C€002050@
(102401) @
(000067)@

Load the contents of the pseudoregisters into the respective
A, B, and X registers, and start execution at memory
address 001001:

G001001@

Initialize memory addresses 000200 through 000210 to the
value 077777:

1000200,000210,077777@

Search memory addresses (000200 through 000240 for the
value 000110 using the mask 000770, and display
addresses that compare:

$000200,000240,000110,000770@
000220 (017110)

000234 (000110)

000237 (001110)@

Load the contents of the pseudoregisters and the overflow
indicator status into the respective registers, and start
execution at memory address 001234, specifying a trap
address of 001236. Display the contents of the A, B, and X
registers and the setting of the overflow indicator when the
trap address is encountered:

T001236,001234@
(001236) 142340 002000 010405 000001@
Display the contents of memory address 001234:

001234@
001234 (001200)@

Display the contents of memory addresses 001234 through
001237:

001234,001237@
001230 005000
e

005000 @
—

Total of 8 values

7.2 SNAPSHOT DUMP PROGRAM

The 294-word snapshot dump program (SNAP) provides on
the DO logical unit both register displays and the contents
of specified areas of memory. It is added to a task load
module if the task contains a SNAP request and calls the
SNAP external routine. SNAP is entered directly upon
execution of the SNAP display request CALL SNAP. The
SNAP display request is an integral part of the task and is
assembled with the task directives. Thus, no external
intervention is required to output a SNAP display.

SNAP outputs the message SN** followed by the task TIDB
name before listing the requested items. The calling
sequence for a SNAP display is

varian data machines

DEBUGGING AIDS

If start is a negative number, there is no memory dump. If
more than one location is specified to be displayed, the
output dump will be in complete lines of eight addresses,
e.g., if start is 01231 and end is 01236, the dump will
display the contents of addresses 01230 through 01237,
inclusive. SNAP displays octal data.

If there is an error in the SNAP display request, only the
contents of the A, B, and X registers and the setting of the
overflow indicator are displayed.

Output examples: with the snap request at 01234, display
the contents of the A (017770), B (001244), and X
(037576) registers, and the overflow indicator (on).

SN** TASKO1
001234 017770 001244 037576 000001

Using the same data, display, in addition, the contents of
memory addresses 001002 through 001025, inclusive and
request a dump of the active TIDB.

|

EXT SNAP
CALL SNAP
DATA start
DATA end
DATA tidb
where
start is the first address whose contents are to
be displayed
end is the last address whose contents are to
be displayed
tidb is less than zero if dump of task TIDB is
desired, is positive if TIDB dump is to be
suppressed
SN** SW 000500
001023 000000 000000 001023
TIDB LOC 055013 =CONTENTS=
055010 000000 000000 000000
055020 001527 067001 001326
055030 000001 001541 000002
055040 000500 000000 074627
SNAP DUMP
001000 006505 070275 001402
001010 010002 075334 000000
001020 001101 001101 001014

000000

000000 000001 000000 000000 001527
141146 001000 065604 000007 001302
000000 002000 151727 120240 120240
065604 055075 000000 000000 000000
001031 000050 006505 066270 100000
000000 006505 070137 001005 001101
002000 001107 001000 001027 001000

7-3

___ varian data machines

SECTION 8
SOURCE EDITOR

The VORTEX operating system source editor (SEDIT) is a
background task that constructs sequenced or listed output
files by selectively copying sequences of records from one or
more input files. SEDIT operates on the principle of
forward-merging of subfiles and has file-positioning capa-
bility. The output file can be sequenced and/or listed.

8.1 ORGANIZATION

SEDIT is scheduled by the job-control processor (JCP,
section 4.2.17) upon input of the JCP directive /SEDIT.
Once activated, SEDIT inputs and executes directives from
the Sl logical unit until another JCP directive (first
character = /) is input, at which time SEDIT terminates
and the JCP is again scheduled.

SEDIT has a buffer area for 100 source records in MOVE
operations (section 8.2.8). To increase this, input a /MEM
directive (section 4.2.5), immediately preceding the /SEDIT
directive, where each 512-word block will increase the
capacity of the buffer area by 12 source records.

INPUTS to SEDIT comprise:

a. Source-editor directives (section 8.2) input through the
Sl logical unit.

b. 0ld source records input through the IN logical unit.

c. New or replacement source records input through the
ALT logical unit.

d. Error-recovery inputs entered via the SO logical unit.

Source-editor directives specify both the changes to be
made in the source records, and the logical units to be
used in making these changes. The directives are input
through the S| logical unit and listed as read on the LO
logical unit, with the VORTEX standard heading at the top
of each page. If the S| logical unit is a Teletype or a CRT
device, the message SE** is output to it before directive
input to indicate that the Sl unit is waiting for SEDIT input.

There are two groups of source-editor directives: the
copying group and the auxiliary group. The copying group
directives copy or delete source records input on the IN
logical unit, merge them with new or replacement source
records input on the ALT unit, and output the results on
the OUT unit. Copying-group directives must appear in
sequence according to their positioning-record number
since there is no reverse positioning. If the remainder of
the source records on the IN unit are to be copied after all
editing is completed, this must be explicitly stated by an FC
directive, (section 8.2.9). Ends of file are output only when
specified by FC or WE directives (sections 8.2.9 and
8.2.13). The processing of string-editing directives is

varian data machines

different from that of record-editing directives. A string-
editing directive affects a specified record, where source
records on the IN unit are copied onto the OUT unit until
the specified record is found and read into memory from
the IN unit. After editing, this record remains in memory
and is not yet copied onto the OUT unit. This makes
possible mulitiple field-editing operations on a single source
record. The auxiliary group directives are those used for
special [/0 or control functions.

All source records, whether old, new, or replacement
records, are arranged in blocks of three 40-word records
per VORTEX RMD physical record. Any unused portion of
the last physical record of an RMD file on the IN unit
should be padded with blanks. When necessary, SEDIT will
pad the last RMD record on the OUT unit. When the OUT
file will contain more than one source module for input to a
language processor, the user should insert two blank
records after each END statement to insure that each
source module starts on a physical record boundary.
Record numbers start with 1 and have a maximum of 9999.
Sequence numbers start at any value less than the
maximum 9999, and can be increased by any integral
increment. These specifications for sequence numbers are
given by the SE directive (section 8.2.10).

Error-recovery inputs are entered by the operator on the
SO logical unit to recover from errors in SEDIT operations.
Error messages applicable to this component are given in
Appendix A.8. Recovery is by either of the following:

a. Input the character C on the SO unit, thus directing
SEDIT to go to the Sl unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next SEDIT directive is then input from
the S| unit.

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort the SEDIT task and schedule

the JCP for execution. (Note: If there is an 170 control
error on the SO unit, SEDIT is terminated automatically.)

OUTPUTS from the SEDIT comprise:

a. Edited source-record sequences output on the OUT
logical unit.

b. Error messages.

c. Thelisting of the SEDIT directives on the LO logical unit.

d. Comparison outputs (compare-inputs directive, section
8.2.15).

e. Listing of source records on the LO logical unit when
specified by the LIST directive (section 3.2.1).

8-1

varian data machines

SOURCE EDITOR

Error messages applicable to SEDIT are output on the SO
and LO logical units. The individual messages and errors
are given in Appendix A.8.

The listing of the SEDIT directives is made as the
directives are read. Source records, when listed, are listed
as they are input or output. The VORTEX standard heading
appears at the top of each page of the listing.

LOGICAL UNITS referenced by SEDIT are either fixed or
reassignable units. The three fixed logical units are:

a. The Sl logical unit, which is the normal input unit for
SEDIT directives.

b. The SO logical unit, which is used for error-processing.

¢. The LO logical unit, which is the output unit for SEDIT
listings.

The three reassignable logical units are:

a. The SEDIT input (IN) logical unit, which is the normal
input unit for source records. This is assigned to the Pi
logical unit when SEDIT is loaded, but the assignment
can be changed by an AS directive with an IN
parameter (section 8.2.1).

b. The SEDIT output (OUT) logical unit, which is the
normal output unit for source records. This is assigned
to the PO logical unit when SEDIT is loaded, but the
assignment can be changed by an AS directive with
an OU parameter.

c. The SEDIT alternate input (ALT) logical unit, which is
the alternate input unit used for new or replacement
source records. This is assigned to the Bl logical unit
when SEDIT is loaded, but the assighment can be
changed by an AS directive with an AL parameter.

8.2 SOURCE-EDITOR DIRECTIVES
This section describes the SEDIT directives:

a. Copying group:
. AS Assign logical units
. AD Add record(s)
. SA Add string

. REPL Replace record(s)

. SR Replace string

. DE Delete record(s)

. SD Delete string

. MO Move record(s)
b. Auxiliary group:

. FC Copy file

. SE Sequence records

. LI List records

. GA Gang-load all records

. WE Write end-of-file

. REWI Rewind

. co Compare records

8-2

SEDIT directives begin in column 1 and comprise se-
quences of character strings having no embedded blanks.
The character strings are separated by commas (,) or by
equal signs (=). The directives are free-form and blanks
are permitted between individual character strings of the
directive, i.e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator.
Comments can be inserted after the period.

The general form of an SEDIT directive is

name,p(1),p(2),....p(n)
where

name is one of the directive names given above
or a longer string beginning with one of
the directives names (e.g., AS or
ASSIGN)

eachp(n) is a parameter defined below under the
descriptions of the individual directives

Where applicable in the following descriptions, a field
specification of the format (first,last) or (n1,n2,n3). is still
separated from other parameters by parentheses even
though it is enclosed in commas. Note also that the
character string string is coded within single quotation
marks, which are, of course, neither a part of the string
itself nor of the character count for the string.

8.2.1 AS (Assign Logical Units) Directive

This directive specifies a unit assignment for an SEDIT
reassignable logical unit (section 8.1). It has the general
form

AS,nn = lun, key, file

where
nn is IN if the directive is making an
assignment of the IN logical unit, OU if
the OUT logical unit, or AL if the ALT
logical unit

lun is the name or number of the logical unit
being assigned as the IN, OUT, or ALT
unit

key is the protection code, if any, required to
i address lun

file is the name of an RMD file, if required

If the SEDIT reassignable units are to retain the assign-
ments made when SEDIT was loaded (default
assignments: IN =PI, OUT =PO, ALT =Bl), no AS direc-

tive is required. Each AS directive can make only one
reassignment (e.g., if both IN and OUT are to be
reassigned, two AS directives are required).

Any RMD affected by an AS directive is automatically
repositioned to beginning of device.

The AS directive merely fixes parameters in 1/0 control
calls within SEDIT. It does not alter 1/0 control assign-
ments in the logical-unit table (table 3-1).

Note: AS resets the corresponding record counter; how-
ever, no physical rewinding of devices occurs.

Examples: Assign the Pl logical unit as the SEDIT
reassignable IN unit.

AS,IN=PI
or, the unabbreviated form

ASSIGN, INPUT=PI

Assign logical unit 8 as the SEDIT reassignable OUT unit.
AS,0U=8

Assign as the SEDIT reassignable IN unit the file FILEX on
logical unit 111, an RMD partition without a protection key.

AS,IN=111, ,FILEX

8.2.2 AD (Add Records) Directive

This directive adds source records. It has the general form

AD,recno

where recno is the number of the record last copied from
the IN logical unit before switching to the ALT unit for
further copying.

The AD directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to and including
the record specified by recno. Then, source records are
copied from ALT onto OUT from the current position of the
unit up to but not including the next end-of-file mark.

Example: Copy records from IN onto OUT from the
current position of IN up to and including IN record 7.
Then, switch to ALT and copy records from the current
position of that unit up to but not including the next end-
of-file mark.

AD,7

varian data machines @——

SOURCE EDITOR

8.2.3 SA (Add String) Directive

This directive inserts a character string into a source-record
field. It has the general form

SA recno,(first,last),’string’

where

recno is the number of the source record in
which the character string is to be
inserted

first is the number of the first character
position to be affected

last is the number of the last character
position to be affected

string is the string of characters to be inserted

in the field delimited by character
positions first and last in record number
recno

The SA directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but not
including the record specified by recno. The record recno is
read into the memory buffer. The character string string
shifts into the left end of the specified field first,last, with
characters shifted out of the right end of the field being
lost. There is no check on the length of string and shifting
continues until it is left-justified in the field with excess
characters, if any, being truncated on the right.

The record remains in the memory buffer, thus permitting
multiple string operations on the same record. (If IN is
already positioned at recno because of a previous string
operation, there is, of course, no change in position.)

The record recno is read out of the memory buffer and onto
the OUT unit when an SEDIT directive affecting another
record is input.

The field specification first,last is lost after one manipula-
tion. Subsequent string operations must specify the
character positions based on the new configuration. For
example, for the character string ACDEGbb in positions 1
through 7, addition of the character B in position 2 requires
the field specification (2,7). Then, to add the character F
between E and G, one must specify the field (6,7) rather
than (5,7) because of the shift previously caused by
insertion of the character B.

Example: Change the erroneous DAS MR source-state-
ment operand in character positions 16-21 of the 32nd
record from LOCXbb to LOC,Xb.

sA,32,(19,20),"',"

8-3

varian data machines

SOURCE EDITOR

8.2.4 REPL (Replace Records) Directive

This directive replaces one sequence of source records with
another sequence of records. It has the general form

REPL,recnol,recno2

where
recnol is the number of the first record to be
replaced
recno2 is the number of the last record to be
replaced

If recno2 is omitted, it is assumed equal to recnol, i.e., one
record will be replaced.

The REPL directive copies source records from the IN
logical unit onto the OUT logical unit beginning with the
current position of the IN unit and continuing up to but not
including the record specified by recnol. Then, records are
read from IN, but not copied onto OUT, up to and including
the record specified by recno2. Thus, the records recnol
through recno2, inclusive, are deleted. Then, source records
are copied from the ALT logical unit from the current
position of the unit up to but not including the next end-of-
file mark.

Example: Copy records from IN onto OUT from the
current position of IN up to and including record 9. Replace
IN records 10 through 20, inclusive, with records on ALT,
copying those between the current position of ALT and the
next end-of-file mark onto OUT. Do not copy the end-of-file
mark.

REPL, 10,20

8.2.5 SR (Replace String) Directive
This directive replaces one character string within a source
record with another character string. It has the general

form

SR,recno,(n1,n2,n3),'string’

where
recno is the number of the source record in
which the character string is to be
replaced
nl is the number of the first character
position of the string to be replaced
n2 is the number of the last character

position of the string to be replaced

84

n3 is the number of the last character
position of the field in which the string to
be replaced occurs

string is the string of characters to be inserted
in the field delimited by character
positions nl and n3 in record number
recno after shifting out the characters in
positions nl through n2, inclusive

The SR directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but not
including the record specified by recno. The record recno is
read into the memory buffer. Field n1,n3 is then shifted to
the left and filled with blanks until the field n1,n2 is shifted
out. Then, the character string string shifts into the left
end of the field nl,n3. There is no check on the length of
string and shifting continues until it is left-justified in the
field n1,n3 with excess characters, if any, being truncated
on the right.

The record remains in the memory buffer, thus permitting
multiple string operations on the same record. (If IN is
already positioned at recno because of a previous string
operation, there is, of course, no change in position.)

The record recno is read out of the memory buffer and onto
the OUT unit when a SEDIT directive affecting another
record is input.

The field specification n1,n2,n3 is lost after one manipula-

tion. Subsequent string operations must specify the
character positions based on the new configuration.

Example: Copy records from IN onto OUT up to and
including record 49, and replace the present contents of
character positions 10 through 12, inclusive, in IN unit
source record 50 with the character string XYb.

SR,50,(10,12,12), "Xy '

8.2.6 DE (Delete Records) Directive

This directive deletes a sequence of source records. It has
the general form

DE,recnol,recno2

where
recnol is the number of the first record to be
deleted
recno2 is the number of the last record to be
deleted

I1f recno2 is omitted, it is assumed equal to recnol, i.e., one
record will be deleted.

The DE directive processing is exactly like that of the REPL
directive (section 8.2.4) except that there is no copying
from the ALT unit after the deletion of the records recnol
through recno2, inclusive.

Examples: Copy records from IN onto the OUT logical unit
up to and including record 49, but delete records 50
through 54, inclusive.

DE,50,54

Position IN at record 2, deleting record 1.

DE, 1

8.2.7 SD (Delete String) Directive

This directive deletes a character string from a source
record. It has the general form

SD,recno,(n1,n2,n3)

where

recno is the number of the source record from
which the character string is to be
deleted

nl is the number of the first character
position of the string to be deleted

n2 is the number of the last character
position of the string to be deleted

n3 is the number of the last character

position of the field in which the string to
be deleted occurs

The SD directive processing is exactly like that of the SR
directive (section 8.2.5) except that now new character
string is shifted into field n2,n3 after the field ni,n2 is
shifted out.

Example: Copy records from IN onto OUT up to and
including record 99, and delete characters 2 through 4,
inclusive, from record 100, shifting characters 5 through
10, inclusive, three places to the left, with blank fill on the
right.

sD,100,(2,4,10)

varian data machines @——

SOURCE EDITOR

8.2.8 MO (Move Records) Directive

This directive moves a block of records forward on a unit. It
has the general form

MO,recnol,recno2,recno3

where
recnol is the number of the first record to be
moved
recno2 is the number of the last record to be
moved
recno3 is the number of the record after which

the block of records delimited by recnol
and recnoZ2 is to be inserted

If recno2 is omitted, it is assumed equal to recnol, i.e., one
record will be moved.

The MO directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but not
including the record specified by recnol. The records
recnol through recno2 are then read into a special MOVE
area in memory. The position of IN is now recno2+ 1.
When OUT reaches (by some succeeding directive)
recno3 + 1, the contents of the MOVE area are copied onto
OUT. Multiple MO operations are legal.

Example: Copy records from IN onto OUT up to and
including record 4, save records 5 through 10, inclusive, in
the MOVE area of memory, copy records 11 through 99,
inclusive, from.IN onto OUT, and then copy records 5
through 10 from the MOVE area to OUT. This gives a record
sequence on OUT of 1-4, 11-99, 5-10 (FC directive, section
8.2.9.).

MO,5,10,99
FC

8.2.9 FC (Copy File) Directive

This directive copies blocks of files, including end-of-file
marks. It has the general form

FC,nfiles

where nfiles (default value = 1) is the number of files to be
copied.

If the IN logical unit and/or the OUT logical unit is an RMD
partition, nfiles must be 1 or absent. If OUT is a named file

on an RMD, there will be an automatic close/update.
Whenever an end-of-file mark is encountered, all record
counters are reset to zero.

8-5

varian data machines

SOURCE EDITOR

Examples: Copy files from IN onto OUT up to and
including the next end-of-file mark on the IN unit.

FC

Copy the next six IN files (including end-of-file marks) onto
OUT. This includes the sixth end-of-file mark. (Note: If IN
and/or OUT is an RMD partition, there will be an error.)

FC,6

8.2.10 SE (Sequence Records) Directive

This directive assigns a decimal sequence number to each
source record output to the OUT logical unit. It has the
general form

SE, (first,last),initial,increment

where

first is the first character position of the
sequence name field

last is the last character position of the
sequence number field, where the de-
fault value of first,last is 76,80

initial is the initial number to be used as a
sequence number (defaultvalue = 10)

increment is the increment to be used between

successive sequence numbers (default
value = 10)

There is also a special form of the SE directive to stop
sequencing:

SE,N
where there are no parameters other than the letter N.
Examples: In the next record output to OUT, place 00010
in character positions 76 through 80, and increment the
field by 10 in each succeeding record.
SE
In the next record output to OUT, place 030 in character
positions 15 through 17, and increment the field by 7 on
each succeeding record.
SE,(15,17),30,7
Stop sequencing.

SE,N

8-6

8.2.11 LI (List Records) Directive

This directive lists, on the LO logical unit, thé records
copied onto the OUT unit. The LI directive has the general
form

LI, list
where list is A (default vailue) if all OUT records are to be
listed, C if only changed records are to be listed, or n if
listing is to be suppressed. Source records output to the

OUT file are listed with their OUT record number at the left
of the print list.

Examples: List all records output to OUT.
LY
Suppress all listing except that of SEDIT directives.

LI,N

8.2.12 GA (Gang-Load All Records) Directive

This directive loads the same character string into the
specified field of every record copied onto the OUT logical
unit. It has the general form

GA, (first,last),'string’

where

first is the first character position of the field
to be gang-loaded

last is the last character position of the field
to be
gang-loaded, where the default value of
first,lastis
73,75

string is the string of characters to be gang-

loaded into character positions first
through last, inclusive in allrecords
copied onto out

There is also a special form of the GA directive to stop
gang-loading:

GA
where there are no parameters in the directive.

In every OUT record, GA clears the specified field, and
loads the string into it. There is no check on the length of
string and shifting continues until it is left-justified in the
specified field with excess characters, if any, being
truncated on the right.

varian data machines

Examples: Load character string VDMbb in character
positions 11 through 15, inclusive, of every record copied
onto OUT.

GA,(11,15),'VvDM '

Stop gang-loading.

GA

8.2.13 WE (Write End of File)
Directive

This directive writes an end-of-file mark on the OUT logical
unit. It has the form

WE
without parameters. f OUT is a named file on an RMD,

there will be an automatic close/update.

Example: Write an end-of-file mark on OUT, a magnetic-
tape unit.

WE

8.2.14 REWI (Rewind) Directive

This directive rewinds the specified SEDIT logical unit(s). It
has the general form

REWI,p(1),p(2),p(3)
where each p(n) is a name of one of the SEDIT logical
units: IN, OUT, or ALT. These can be coded in any order.
Example: Rewind all SEDIT logical units.

REWI,IN,ALT,OUT

8.2.15 CO (Compare Inputs) Directive

This directive compares the specified field in the inputs
from the IN logical unit with those from the ALT logical unit
and lists discrepancies on the LO logical unit. The directive
has the general form

CO, (first, last),limit

where
first is the first character position of the field
to be compared
last is the last character position of the field

to be compared, where the default value
of first,last is 1,80.

SOURCE EDITOR

limit is the maximum number of
discrepancies to be listed before
aborting the comparison and passing to
the next directive.

Any discrepancy between the IN and ALT inputs is listed in
the format

I recordnumber or EOF inrecord
A recordnumber or EOF altrecord

If the comparison terminates by reaching the limit number
of discrepancies, SEDIT outputs on the LO the message

SEDIT COMPARE ABORTED

to prevent long listings of errors, for example, where a card
is misplaced or missing on one input. A normal termination
of a comparison (at the next end-of-file mark) concludes
with the message

SEDIT COMPARE FINISHED

Example: Compare character positions 1 through 80,
inclusive, from the IN and ALT units until either an end of
file is found or there have been 5 discrepancies listed on
the LO.

co,5

8.3 EXAMPLE OF EDITING A FILE

Following is a sample job stream for editing an existing file
on a magnetic tape onto a new file on magnetic tape. The
input file consists of 80-character records followed by an
end-of-file mark. The job stream and the edit cards are
read through the system input device.

/JOB,EDIT
/ASSIGN,PI=MT00,PO=MT10
/REW,PI,PO
/SEDIT
AS,IN=PI
AS,OUT=PO
AS,ALT=SI
DE, 5
REPL, 8,10
LDA TEMP
(EOF card, 2-7-8-9 punch)
ADD, 17
TBL BSS 5
(EOF card, 2-7-8-9 punch)
FC
REWI, IN,OUT
/ENDJOB

8-7

—

varian data machines

SOURCE EDITOR

The result of running the preceding source editor example
would be the following:

WoOoONOUL&E WD 2

8-8

Input File

* ¥ *

EQU
EQU

.
@ »n
ww

¢
>
=]
e
o
(7}

DATA
LDA
LDB
JBZM
ADD
ANAI
STA
LRLA
STA
TZB
JMP *

€CATALOG ROUTINE

6
9

0

TMX
TMY
ODER
PARMG6
0770
TBL+2
6
TBL+4

CATLOG

Output File

1 *

2 % CATALOG
3 *x

4 A$3 EQU
5 *

6 CATLOG DATA
7 LDA
8 ADD
9 ANAI
10 STA
11 LRLA
12 STA
13 TZB
14 JMP*
15 TBL BSS

ROUTINE

6

0
TEMP
PARMG6
0770
TBL+2
6
TBL+4

CATLOG
5

varian data machines

SECTION 9
FILE MAINTENANCE

The VORTEX file-maintenance component (FMAIN) is a
background task that manages file-name directories and
the space allocations of the files. It is scheduled by the job-
control processor (JCP) upon input of the JCP directive
/FMAIN (section 4.2.18).

Only files assigned to rotating-memory devices (disc or
drum) can be referenced by name.

File space is allocated within a partition forward in
contiguous sectors of the same cylinder, skipping bad
tracks. The only exception to this continuity is the file-name
directory itself, which is a sequence of linked sectors that
may or may not be contiguous.

9.1 ORGANIZATION

FMAIN inputs file-maintenance directives (section 9.2)
received on the SI logical unit and outputs them on the LO
logical unit and on the SO logical unit if it is a different
physical device from the LO unit. Each directive is
completely processed before the next is input to the JCP
buffer.

It the SI logical unit is a Teletype or a CRT device, the
message FM** is output on it before input to indicate that
the Sl unit is waiting for FMAIN input.

If there is an error, one of the error messages given in
Appendix A.9 is output on the SO logical unit, and a record
is input from the SO unit to the JCP buffer. If the first
character of this record is /, FMAIN exits via the EXIT
macro. If the first character is C, FMAIN continues. If the
first character is neither / nor C, the record is processed as
a normal FMAIN directive. FMAIN continues to input and
process records until one whose first character is / is
detected, when FMAIN exits via exit. (An entry beginning
with a carriage return is an exception to this, being
processed as an FMAIN directive).

FMAIN has a symbol-table area for 200 symbols at five
words per symbol. To increase this area, input a /MEM
directive (section 4.2.5), where each 512-word block will
enlarge the capacity of the table by 100 symbols.

9.1.1 Partition Specification Table

Each rotating-memory device (RMD) is divided into up to
20 memory areas called partitions. Each partition is

referenced by a specific logical-unit number. The bounda-
ries of each partition are recorded in the core-resident
partition specification table (PST). The first word of the
PST contains the number of VORTEX physical records per
track. The second word of the PST contains the address of
the bad-track table, if any. Subsequent words in the PST
comprise the four-word partition entries. Each PST is in the
format:

Bit 1514131211 109876543210
Word 0 Number of 120-word logical records/track
Word 1 Address of bad tracks tabie (O if none)
Word 0 Beginning partition track address

Word 1| PPB Not used Protection code

Word 2 Number of bad tracks in partition

Word 3 Ending partition address + 1

3

/IW

The partition protection bit, designated ppb in the above
PST entry map, is unused in file maintenance procedures.

Note that PST entries overlap. Thus, word 3 of each PST
entry is also word O of the following entry. The relative
position of each PST entry is recorded in the device
specification table (DST) for that partition.

The bad-track table, whose address is in the second word
of the PST, is a bit string read from left to right within each
word, and forward through contiguous words, with set bits
flagging bad tracks on the RMD. (If there is no bad-track
table, the second word of the PST contains zero.)

9.1.2 File-Name Directory

Each RMD partition contains a file-name directory of the
files contained in that partition. The beginning of the
directory is in the first sector of the partition. The directory
for each partition has a variable number of entries
arranged in n sectors, 19 entries per sector. Sectors
containing directory information are chained by pointers in

9-1

—

varian data machines

FILE MAINTENANCE

the last word of each sector. Thus, directory sectors need
not be contiguous. Each directory entry is in the format:

Bit 1514131211 109876543210
Word 0 File name

Word 1 File name

Word 2 File name

Word 3 Current position of file

Word 4 Beginning file address

Word 5 Ending file address

The file name comprises six ASCII characters packed two
characters per word, left justified, with blank fill. Word 3,
which contains the current address at which the file is
positioned, is initially set to the ending file address, and is
manipulated by 1/0 control macros (section 3). The extent
of the file is defined by the addresses set in words 4 and 5
when the file is created, and remains constant.

The first sector of each partition is assigned to the file-
name directory. FMAIN allocates RMD space forward in
contiguous sectors, skipping bad tracks. Following the last
entry in each sector is a one-word tag containing either the
value 01 (end of directory), or the address of the next
sector of the file-name directory.

The file-name directories are created and maintained by
the file-maintenance component for the use of the 1/0
control component (section 3). User access to the directo-
ries is via the 170 control component.

Special entries: A blank entry is created when a file name
is deleted, in which case the file name is ***** and words
3 through 5 give the extent of the blank file. A zero entry is
created when one name of a multiname file is deleted, in
which case the deleted name is converted to a blank entry
and all other names of the multiname file are set to zero.

WARNING

To prevent possible loss of data from the file-
name directory during file-maintenance opera-
tions, FMAIN sets the lock bit (bit 12 of word 2
of the DST, section 3.2) before any directory
operation, thus inhibiting all foreground re-
quests for 1/0 with the partition being modified.
Upon completion of the directory operation,
FMAIN clears the lock bit. Except for the use of
protection codes, this is the only protection for
the file-name directory. Manipulation of fore-
ground files with FMAIN is at the user’s risk. For
example, VORTEX does not prevent deletion of a
file name from a file-name directory that has
been opened and is being written into by a
foreground program. Therefore, foreground files
should be reassigned prior to manipulation by
FMAIN.

9-2

9.1.3 Relocatable Object Modules

Outputs from both the DAS MR assembler and the
FORTRAN compiler are in the form of relocatable object
modules. Relocatable object modules can reside on any
VORTEX-system logical unit. Before object modules can be
read from a unit by the FMAIN INPUT and ADD directives
(sections 9.2.7 and 9.2.8), an 1/0 OPEN with rewinding
(section 3.5.1) is performed on the logical unit, i.e., the unit
(except paper-tape or card readers) is first positioned to the
beginning of device or load point for that unit. Object
modules can then be loaded until an end-of-file mark is
found.

The system generator (section 15) does not build any
object-module library. FMAIN is the only VORTEX compo-
nent used for constructing user object-module libraries.

A VORTEX physical record on an RMD is 120 words. Object-
module records are blocked two 60-word records per
VORTEX physical record. However, in the case of an RMD
assigned as the S| logical unit, object modules are not
blocked but assumed to be one object-module record per
physical record.

9.1.4 Output Listings
FMAIN outputs four types of listing to the LO logical unit:

* Directive listing lists, without modification, all FMAIN
directives entered from the Sl logical unit.

» Directory listing lists file names from a logical unit file-
name directory in response to the FMAIN directive LIST
(section 9.2.5).

» Deletion listing lists file names deleted from a logical
unit file-name directory in response to the FMAIN
directive DELETE (section 9.2.2).

+ Object-module listing lists the object-module input in
response to the FMAIN directive ADD (section 9.2.8).

Al FMAIN listings begin with the standard VORTEX
heading.

The directory listing is further described under the
discussion of FMAIN directive LIST (section 9.2.5), the
deletion listing under DELETE (section 9.2.2), and the
object-module listing under ADD (section 9.2.8).

9.2 FILE-MAINTENANCE DIRECTIVES

This section describes the file-maintenance directives:

+ CREATE file * DELETE file
« RENAME file *+ ENTER new file name
« LIST filenames = INIT (initialize) directory

= INPUT logical unit for object module
« ADD object module

varian data machines

File-maintenance directives comprise sequences of charac-
ter strings having no embedded blanks. The character
strings are separated by commas (,) or by equal signs (=).
The directives are free-form and blanks are permitted
between the individual character strings of the directive,
i.e., before or after commas (or equal signs). Although not
required, a period (.) is a line terminator. Comments can
be inserted after the period.

The general form of a file-maintenance directive is

directive,lun,p(1),p(2),....p(n)

where
directive is one of the directives listed above in
capital letters
lun is the number or name of the affected
logical unit
each p(n) is a parameter defined under the

descriptions of the individual directives
below

Numerical data can be octal or decimal. Each octal humber
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted.

Error messages applicable to file-maintenance directives
are given in Appendix A.9.

9.2.1 CREATE Directive

This directive creates a new file on the specified logical
unit, allocates RMD space to the file, adds a corresponding
entry to the file-name directory, and sets the current end-
of-file value to one greater than the address of the last
sector assigned to the new file.

The directive has the general form

CREATE,lun,key,name,words,records

where

lun is the number or name of the logical unit
where the new file is to be created

key is the protection code, if any, required to
address lun

name is the name of the file being created

words is the number of words in each record of
the file

records is the number of records in the file

FILE MAINTENANCE

Size parameters merely allocate space for the file and do
not limit file use to the specified record size. To each record
in the created file. FMAIN assigns n records of 120 words
each where n is the smallest integer such that words/120
is equal to n. The file size is n times records words. This
value is converted to a sector count to make assignments.
Neither the file size value nor the sector count value is
saved.

Example: Create the file XFILE with ten records of 120
words each on logical unit 112, whose protection code is K.

CREATE, 112 ,K,XFILE, 120,10

9.2.2 DELETE Directive

This directive deletes the designated file and all file-name
directory references to it from the specified logical unit. It
converts the specified file-name directory entry to a blank
entry (name field = #%% section 9.1.2) and all other
directory references to this file to zero entries (all fields =
zero, section 9.1.2), and outputs a listing of deleted file-
names on the LO logical unit. The directive has the general
form

DELETE, lun, key,name

where
lun is the number or name of the logical unit
from which the file is being deleted
key is the protection code, if any, required to
address lun
name is the name of the file being deleted (in

the case of a multiname file, any one of
the names can be used)

The output format has, following the FMAIN heading, a
two-line heading

DELETE LISTING FOR lun

FILE NAME START END CURRENT

where lun is the number of the logical unit from which the
file is being deleted. This heading is followed by a blank
line and a listing of all file-names being deleted, one per
line. Words 0-2 of the file-name directory entry (section
9.1.2) are placed in the FILE NAME column; word 3, (in
octal) in the CURRENT column; word 4, (in octal) in the
START column; and word 5, (in octal) in the END column.
After the last file name, there is an entry describing the
blank file created by the deletion, where the FILE NAME
column contains *****% the START column contains the
next available address (word 2 of the PST entry), and both
the CURRENT and END columns contain the last address
+ 1 (word 3 of the PST entry).

9-3

I—

varian data machines

FILE MAINTENANCE

Example: Delete the file ZFILE (and all file-name directory
entries referencing it) from logical unit 112, whose
protection code is P).

DELETE, 112,P,ZFILE

The name ZFILE is replaced in the file-name directory by
wrixxxand the space allocation for this blank entry
extended in both directions to include adjacent blank
entries, it any. Any blank entries thus absorbed are
converted to zero entries, as are all other entries that
reference the file ZFILE. All affected file-name directory
entries are listed on the LO logical unit.

9.2.3 RENAME Directive

This directive changes the name -of a file, but does not
otherwise modify the file-name directory. The directive has
the general form

RENAME lun, key,old,new

where

lun is the number or name of the logical unit
where the file to be renamed is located

key is the protection code, if any, required to
address lun

old is the old name of the file being renamed

new is the new name of the file being
renamed

Following RENAME, old can no longer be used to reference
the file.

Example: On logical unit 112, whose protection code is P,
change the name of the file XFILE to YFILE.

RENAME, 112 ,P,XFILE, YFILE

9.2.4 ENTER Directive

This directive adds a new file name to be used in
referencing an existing file, but does not otherwise modify
the file-name directory. ENTER thus permits multiname
access to a file. The directive has the general form

ENTER,lun, key,old,new

where
lun is the number or name of the logical unit
where the affected file is located
key is the protection code, if any, required to
address lun
old is an old name of the affected file
new is the new name by which the file can

also be referenced

94

Example: On logical unit 113, whose protection code is K,
make the file X1 accessible by using either the name X1 or
the name Y1.

ENTER, 113,K,X1,Y1

9.2.5 LIST Directive

This directive outputs on the LO logical unit the file-name
directory of the specified logical unit. The output comprises
the file names, file extents, current end-of-file positions,
logical-unit name or number, and the extent of unassigned
space in the partition. All number are in octal. The
directive has the general form

LIST,lun, key

where
lun is the number or name of the logical unit
whose contents are to be listed

key is the protection code, if any, required to
address lun

The output format has a two-line heading

FILE DIRECTORY FOR LUN lun

FILE NAME START END CURRENT

where lun is the number or name of the logical unit whose
contents are being listed. This heading is followed by a
blank line and a listing of all file names from the directory,
one name per line. Words 0-2 of the file-name directory
entry (section 9.1.2) are placed in the FILE NAME column;
word 4, (in octal) in the START column; word 3, (in octal)
in the CURRENT column; and word 5, (in octal) in the END
column. After the last file name, if there is any unassigned
space in the partition, there is an entry describing the
unassigned space in the partition, where the FILE NAME
column contains *UNAS*, the START column contains the
next available address (word 2 of the PST entry), and both
the CURRENT and END columns contains the last address
+ 1 (word 3 of the PST entry).

Example: List the file-name directory of logical unit 114,
which has no protection code.

LIST, 114

9.2.6 INIT (Initialize) Directive

This directive clears the entire file-name directory of the
specified logical unit, deletes all file names in it, and
releases all currently allocated file space in the partition by
reducing the file-name directory to a single end-of-directory
entry. The directive has the general form

INIT lun, key
where
lun is the number or name of the logical unit
being initialized
key is the protection code, if any, required to

address tun

varian data machines

Example: Initialize the file-name directory on logical unit
115, which has protection code X.

INIT, 115,X

9.2.7 INPUT Directive

This directive specifies the logical unit from which object
modules are to be input. Once specified, the input logical-
unit number is constant until changed by a subsequent
INPUT directive. The directive has the general form

INPUT lun, key, file

where
lun is the number or name of the logical unit
from which object modules are to be
input
key is the protection code, if any, required to
address lun
file is the name of the RMD file containing

the required object module(s)

Neither key nor file are required unless lun is a RMD
partition.

NOTE

There is no default value. Thus, if an attempt is
made to input an object module (ADD directive,
section 9.2.8) without defining the input logical
unit by an INPUT directive, an error message
will be output.

Examples: Specify logical unit 6 as the device from which
object modules are to be input.

INPUT, 6

FILE MAINTENANCE

Open and rewind the file ARCTAN on logical unit 104,
which has protection code D.

INPUT, 104 ,D,ARCTAN

9.2.8 ADD Directive

This directive reads object modules from the INPUT unit
(section 9.2.7) and writes them onto the SW logical unit,
checking for entry names and validating check-sums,
record sizes, loader codes, sequence numbers, and record
structures. Reading continues until an end of file is
encountered. Entry names are then added to the file-name
directory of the specified logical unit and the object
modules are copied from the SW logical unit onto the
specified logical unit. The directive has the general form

ADD, lun, key
where
lun is the number or name of the logical unit
onto which object modules are to be
written
key is the protection code, if any, required to
address lun

The specified logical unit lun references a system or user
object-module library.

The names of the object modules and their date of
generation, size in words (zero for FORTRAN modules),
entry names, and referenced external names are listed on
the LO logical unit.

To recover from errors in object-module-processing, reposi-
tion the logical unit to the beginning of the module.

Example: Add object modules to logical unit 104, which
has protection code D.

ADD, 104,D

9-5

I@! varian data machines

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM

The 170 utility program (IOUTIL) is a background task for
copying records and files from one device onto another,
changing the size and mode of records, manipulating files
and records, and formatting the records for printing or
display.

10.1 ORGANIZATION

IOUTIL is scheduled for execution by inputting JCP
directive /IOUTIL (section 4.2.20) on the Sl logical unit. If
the S| logical unit is a Teletype or a CRT device, the
message IU** is output to indicate that the SI unit is
waiting for IOUTIL input. Once activated, IOUTIL inputs
and executes directives from the Sl unit until another JCP
directive (first character is a slash) is input, at which time
IOUTIL terminates and the JCP is again scheduled.

Error messages applicable to IOUTIL are given in Appendix
A.10 Recovery from an error is by either of the following:

a. Input the character C on the SO unit, thus directing
IOUTIL to go to the Sl unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next IOUTIL directive is then input
from the Sl unit.

If recovery is not desired, input a JCP directive (section

4.2) on the SO unit to abort IQUTIL and schedule the JCP
for execution.

10.2 1/0 UTILITY DIRECTIVES

This section describes the IOUTIL directives:

. COPYF Copy file

. COPYR Copy record

. SFILE Skip file

. SREC Skip record

. DUMP Format and dump
. PRINTF Print file

. WEOF Write end of file
. REW Rewind

. PFILE Position file

. CFILE Close file

. PACKB Pack binary

IOUTIL directives begin in column 1 and comprise
sequences of character strings having no embedded
blanks. The character strings are separated by commas (,)
or by equal signs (=). The directives are free-form and
blanks are permitted between individual character strings
of the directive, i.e., before or after commas (or equal
signs). Although not required, a period () is a line
terminator. Comments can be inserted after the period.

varian data machines

The general form of an IOUTIL directive is

name,p(1),p(2),...,p(n)

where

name is one of the directive names given
above

each p(n) is a parameter defined below under the
descriptions of the individual directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted.

The IOUTIL buffer is usually 1024 words long. The /MEM

directive can be used to increase this size by increments of
512 words.

10.2.1 COPYF (Copy File) Directive
This directive copies the specified number of files from the
indicated input logical unit to the given output logical

unit(s). The directive has the general form

COPYF f,iu,im,irl,ou(1),om,orl,ou(2),0u(3),...,ou(n)

where
f is the number of input files to be copied
iu is the name or number of the input
logical unit
im is O for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted input files
irl is the number of words in each record of

the input files. If a value of zero is
specified then the record length is set to
the maximum buffer size. Following the
read the actual physical record length
(word 5 of the RQBLK) is used as the
input record length.

each ou(n) is the name or number of an output
logical unit

101

varian data machines

INPUT/OUTPUT UTILITY PROGRAM

om is O for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted output files

orl is the number of words in each record of
the output files. If a value of zero is
specified then the output record length
is equal to the input record length.

Any RMD involved with copying files, whether as input or

output medium, must have been previously positioned with

a PFILE directive (section 10.2.9).

If a difference in record lengths irl and orl causes a partial
record to remain when an end of file is encountered, the
part-record is filled with blanks and thus transmitted to the
output unit(s).

The following relation holds for input/output record
lengths:

Input Output

RCL RCL Output Format

fixed fixed As defined (blocked or
unblocked)

random (0) fixed As defined (blocked or
unblocked)

fixed random (0) Unblocked only

random (0) random (0) Unblocked only

Record lengths of zero are useful in copying mixed ASCI
and binary data from cards to another media or visa versa.
ASCII read must be specified for this operation.

Example: Copy three files containing 120-word records
from the SW logical unit onto logical units LO, 50, and 51
in 40-word records.

COPYF,3,SW,1,120,L0,1,40,50,51

10.2.2 COPYR (Copy Record) Directive

This directive copies the specified number of records from
the indicated input logical unit to the given output logical
unit(s). The directive has the general form

COPYR,r,iu,im,irl,ou(1),om,orl,ou(2),ou(3),...,ou(n)

where
r is the number of input records to be
copied, or O if copying is to continue to
the end of file
iu is the name or number of the input
logical unit
im is 0 for binary, 1 for ASCII, 2 for BCD, or

3 for unformatted input records

10-2

irl is the number of words in each record of
the input files. If a value of zero is
specified then the record length is set to
the maximum buffer size. Following the
read the actual physical record length
(word 5 of the RQBLK) is used as the
input record length.

each ou(n) is the name or number of an output
logical unit

om is O for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted output records

orl is the number of words in each record of

the output files. If a value of zero is
specified then the output record length
is equal to the input record length.

Any RMD involved with copying records, whether as input
or output medium, must have been previously positioned
with a PFILE directive (section 10.2.9).

If a difference in record lengths irl and orl causes a part-
record to remain when an end-of-file mark is encountered,
the part-record is filled with blanks and thus transmitted to
the output unit(s).

Example: Copy 25 unformatted records of 200 words each
from the SS logical unit to the BO and PO units in binary
format with 40 words per record.

COPYR,25,s8s,3,200,B0,0,40,P0

It may be necessary to copy from one file on an RMD
partition to another file on the same partition. This can be
accomplished by assigning two different logical units to this
RMD partition, and then issuing two PFILE directives
(section 10.2.9), positioning one logical unit to the
beginning of one file and the second logical unit to the
beginning of the other file. Additional positioning within
the files can be specified by SREC directives (section
10.2.4).

The following relation holds for input/output record
lengths:

Input Output Output Format

RCL RCL

fixed fixed As defined (blocked or
unblocked)

random (0) fixed As defined (blocked or
unblocked)

fixed random (0) Unblocked only

random (0) random (0) Unblocked only

Record lengths of zero are useful in copying mixed ASCII
and binary data from cards to another media or visa versa.
ASCII read must be specified for this operation.

Example: Copy the first ten records from file EDIT1 to
record 11 through 20 of file EDIT2. Both files are on RMD
partition DOOK, have record lengths of 120 words, are in
mode 1, and have no protection key (default value = 0).
Assign the Bl and BO logical units to the task.

/ASSIGN,BI=D0OK
/ASSIGN,BO=D00K

/IOUTIL

PFILE,BI,, 120,EDIT1
PFILE,BO,,120,EDIT2
SREC,BO, 10

COPYR, 10,BI,1,120,B0, 1,120

10.2.3 SFILE (Skip File) Directive

This directive, which applies only to magnetic-tape units,
and card readers, causes the specified logical unit to move
the tape forward the designated number of end-of-file
marks. The directive has the general form

SFILE,lun,neof

where

lun is the name or number of the affected
logical unit

neof is the number of end-of-file marks to be
skipped

If the end-of-tape mark is encountered before the required
number of files has been skipped, IOUTIL outputs to the
SO and LO logical units the error message 1U05,nn, where
nn is the number of files remaining to be skipped.

Example: Move tape on unit Pl past three end-of-file marks.

SFILE,PI,3

10.2.4 SREC (Skip Record) Directive

This directive, which applies only to magnetic-tape units,
card readers and RMDs, causes the specified logical unit
to skip forward the designated number of records. The
directive has the general form

SREC,lun,nrec

where
lun is the name or number of the affected
logical unit
nrec is the number of records to be skipped

Note that, unlike JCP directive /SREC (section 4.2.8), the
IOUTIL directive SREC cannot skip records in reverse.

varian data machines @——

INPUT/OUTPUT UTILITY PROGRAM

If lun designates an RMD partition, the device must have
been previously positioned with a PFILE directive (section
10.2.9).

If a file mark, an end-of-tape mark, or an end-of-device
mark is encountered before the required number of records
has been skipped, IOUTIL outputs to the SO and LO logical
units the error message 1UO5,nn, where nn is the number of
records remaining to be skipped.

Example: Skip 40 records on the Bl logical unit.

SREC,BI, 40

10.2.5 DUMP (Format and Dump)
Directive

This directive copies the specified number of records from
the indicated input logical unit, formats them for listing,
and dumps the data onto the output unit in octal format,
ten words per line, with one blank between words. The
directive has the general form

DUMP r,iu,im,irl,ou

where

r is the number of input records to be
dumped or is zero if dumping is to
continue to an end-of-file

iu is the name or number of the input
logical unit

im is O for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted input records

irl is the number of words in each record of
the input

ou is the name or number of the output

unit, which cannot be an RMD partition

The first line of the dump contains the record number
before word 1, but subsequent lines do not have the record
number.

If ASCIlI mode is specified by im then an ASCIll scan and
dump will be made in addition to the octal dump. Printable
character bytes will appear to the right of each line of the
octal dump. Non-printable characters will appear as ASCII
blanks. ASCIl scan and dump is suppressed if dump is to a
TY or CT device regardless of the mode.

Example: Dump 40 binary, 50-word records from the SW
logical unit onto the LO unit.

DUMP,40,SwW,0,50,L0

10-3

varian data machines

INPUT/OUTPUT UTILITY PROGRAM

10.2.6 PRNTF (Print File) Directive

This directive prints the specified number of files from the
indicated input logical unit to the list output logical unit(s)
specified. The directive has the general form

PRNTF f,iu,0ou(1),0u(2),...ou(n)
where

f is the number of files to be printed
iu is the name or number of the input
logical unit

each ou(n) is the name or number of a list output
logical unit

If an RMD is specified as the input logical unit, it must
have been previously positioned with a PFILE direct
(section 10.2.9) and only one file may be printed at a time
(i.e., if it is greater than 1, it is defaulted to 1), because the
end-of-file terminates printing.

This directive is designed to print list output files directed
to devices other than a line printer (i.e., magnetic tape or
disc). Therefore, the input file is read in ASCIl mode (1),
132 characters, and the list output records are written also
in ASCII mode.

Example: Print two (2) files on magnetic tape unit 18 on
LO.

/I0UTIL
REW, 18
PRNTF, 2, 18,L0
/ENDJOB

Example: Print an RMD file called SYSOUT in logical unit
25 to LO.

/ASSIGN,PI, 25
/IOUTIL

PFILE,PI,, 120,SYSOUT
PRNTF, 1,PI,LO
/ENDJOB

10.2.7 WEOF (Write End of File)
Directive

This directive writes an end-of-file mark on each logical unit
specified. The directive has the general form

WEOF lun,iun,....lun

where each lun is the name or number of a logical unit
upon which an end-of-file mark is to be written.

104

Example: Write an end-of-file mark on the BO logical unit
and on the PO logical unit.

WEOF , BO, PO

10.2.8 REW (Rewind) Directive

This directive, which applies only to magnetic-tape units,
causes the specified logical unit(s) to rewind to the
beginning of tape. The directive has the general form

REW, lun,lun,....lun

where each lun is the name or number of a logical unit to
be rewound.

Example: Rewind the Bl and PO logical units.

REW,BI,PO

10.2.9 PFILE (Position File)
Directive

This directive, which applies only to rotating-memory
devices, causes the specified logical unit to move to the
beginning of the designated file, and opens the file. The
directive has the general form

PFILE,lun,key,recl,name

where

lun is the name or number of the affected
logical unit

key is the protection code required to
address lun

recl is the number of words in each record of
the file

name is the name of the file to which the

logical unit is to be positioned

Since IOUTIL has only six FCBs, there can be a maximum
of six files open at any given time.

Example: Position the Pl logical unit, using protection
code Z, to the beginning of the file FILEXY, which contains
60-word records.

PFILE,PI,Z%,60,FILEXY

10.2.10 CFILE (Close File) Directive

This directive, which applies only to RMD partitions, closes
the specified file. The directive has the general form

CFILE,lun,key,name,add
where

lun is the name or number of the logical unit
containing the file to be closed

key is the protection code required to
address lun

name is the name of the file to be closed

add is O (default value) if the current end-of-

file address on of the RMD file-directory
is to remain unchanged, or 1 if it is to be
replaced by the current record (i.e.,
actual) address

A PFILE directive (section 10.2.9) must have been used to
position lun before the CFILE directive is issued. Closing a
file frees the associated FCB for use with another file. Since
IOUTIL has only six FCBs, there can be a maximum of six
files open at any given time.

Example: Close the file WORK on the SW logical unit
(protection code B) and update the file directory.

CFILE, SW,B,WORK, 1

10.2.11 PACKB (Pack Binary) Directive

This directive copies the specified humber of files from the

indicated input logical unit to the given output logical

unit(s). It causes each new system binary program to start

on a record boundary. The directive has the general form
PACKB,f,iu,im,irl,ou(1),om,orl,0u(2),...ou(n)

where

f is the number of input files to be copied

iu is the name or number of the input
logical unit.

varian data machines @——

INPUT/OUTPUT UTILITY PROGRAM

im is O for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted input files.

irl is the number of words in each record of
the input files. If a value of zero is
specified then the record length is set to
the maximum buffer size. Following the
read the actual physical record length
(word 5 of the RQBLK) is used as the
input record length.

each ou(n) is the name or number of an output
logical unit.
om is O for binary, 1 for ASCII, 2 for BCD, or
3 for unformatted output files.
orl is the number of words in each record of

the output files. if a value of zero is
specified then the output record length
is equal to the input record length.

The following relation holds for input/output record
lengths:

Input Output Output
RCL RCL Format
fixed fixed As defined (blocked

or unblocked)

random (0) fixed As defined (blocked
or unblocked)

fixed random (0) Unblocked only

random (0) random (0) Unblocked only

Any RMD used in this directive must have been previously
positioned with a PFILE directive (section 10.2.8).

This directive can be used for any output media and any
record length. It is primarily intended to be used for RMD
output of 120 words. Use with non-RMD output may not
produce the intended effect.

Example: Pack one binary file from the card reader onto a
RMD file on logical unit 25 in 120 word blocks:

PACKB,1,CR,0,60,25,0,120

10-5

___@ varian data machines

varian data machines

SECTION 11
VSORT (SORT/MERGE)

The VORTEX Sort/Merge (VSORT) task constructs a sorted
file in the order determined by fields selected by the user.

11.1 ORGANIZATION

VSORT is scheduled as a background task by the Job-
Control Processor (JCP, section 4.2.19) upon input of the
JCP directive

/LOAD, VSORT

Once activated, VSORT inputs the sort parameters from the
Sl logical unit. The maximum number of VSORT directives
is five records. The directive ENDSORT terminates the
input of VSORT directives within five records. Upon
completion of the sort/merge, VSORT exits to JCP.

VSORT has a buffer area large enough for most sort/merge
operations. To increase the size of the buffer, input a
/MEM directive (see section 4.2.3) immediately preceding
the /LOAD,VSORT directive.

Inputs to VSORT comprise

a. VSORT directives (section 11.2) input through the SI
logical unit

b. File to be sorted, input through the INPUT logical unit

Outputs from VSORT comprise
a. Sorted file on the OUTPUT logical unit
b. Listing of VSORT directives on the LO logical unit

c. Listing of VSORT totals for the sort/merge on the LO
logical unit

d. Error messages, if any, on the LO logical unit

Error messages applicable to VSORT are given in Appendix
A.ll.

VSORT performs either a full-record sort or a tag sort. In a
full-record sort the entire records are moved in central
memory in order to accomplish the sort. In a tag sort, only
the concatenated sorting control fields and the record
numbers are manipulated in central memory. VSORT
perform more efficient tag sort unless one of the following
conditions occurs:

a. INPUT fileis notan RMD

b. The file used for INPUT is also used for another file in
the sort, either as a WORK or QUTPUT file

c. A user input exit routine is specified (by the INEXIT
directive)

Workspace Requirements: Each work file must be large
enough to contain a number of work records equal to the
number of input records. For tag sorts, the length of the
work records is equal to the sum of the length of the control
fields plus one word. On full-record sorts, the sum of the
control fields plus one input record length is needed.

Work records are blocked with a blocksize equal to a fourth
or third of the central memory workspace for the merge
phase.

Work space for the sort phase in central memory is
allocated dynamically to overlay the initialization routine
(about 2K), which occupies the highest memory locations of
VSORT. Work space for the merge phase occupies an
additional 1K in central memory. Additional work space
may be allocated for a background sort by using the /MEM
directive (JCP, 4.2.3).

11.2 VSORT DIRECTIVES
This section describes the VSORT directives.

a. Required Group

SORT Sort directives follow

INPUT Define logical unit for input
OUTPUT Define logical unit for output
WORK Define work file(s)

SORTKEY Define sorting field(s)
ENDSORT Begin sorting

b. Optional Group

INEXIT Use input preprocessor
OUTEXIT Use output preprocessor

The general form of a VSORT directive is

name = p(1),p(2),...,p(n) terminator

where
name is one of the VSORT directives
p(n) is a parameter required by VSORT and

defined below under the descriptions of
the individual directives

terminator is ablank or right parenthesis

e

varian data machines

VSORT (SORT/MERGE)

11.2.1 SORT Directive

This directive starts the series of directives. The general for
is

SORT
The word SORT must be followed by at least one blank.

The SORT directive must be the first directive on the first
control record.

11.2.2 INPUT Directive

This directive describes the sort input file which contains

“the records to be sorted. It has the general form

INPUT = (lun,filename, key,recordlength)

where
lun is a 1- to 3-character decimal number
specifying the logical unit of the file
filename is a 1- to 6-character name of the file as
it exists on the RMD file directory
(required for all RMD files)
key is the single character file protection

key, as contained in the file directory for

the file (required only if the filename is

present and the RMD is protected
recordlength is a 1- to 4-digit decimal number

specifying the length in words of the
records in the file.

Example: Describe a sort input file on magnetic tape on
logical unit 18, which has 200-word records.

INPUT=(18,,,200)

11.2.3 OUTPUT Directive

This directive describes the output file which will ultimately
contain the sorted records. It has the general form

OUTPUT = (lun,filename, key,recordlength)

where lun, filename, key and recordlength are the same as
they are described in the INPUT directive (section 11.2.2).

Example: Describe a sort output file on a line printer logical
unit 5, which has a 60-word (120-character) record.

OUTPUT=(5,,,60)

11.2.4 WORK1,WORK2,WORK3 Directives

These directives describe the intermediate work files for
the sort. They have the general form

1
WORK{Z} = (lun,filename, key)
3

where lun, filename, and key are the same as described for
the INPUT directive (section 11.2.2).

The work files must be RMD files. Each file must have
sufficient space to contain the intermediate work records
equal to the number of records in the input file for the sort.

Example: Describe intermediate sort files named W1, W2,
and W3 on RMD logical unit 25. These files do not have
protection keys.

WORK1=(25,W1) ,WORK2=(25,W2) ,WORK3=(25,W3)

11.2.5 SORTKEY Directive

This directive describes one to six control fields to be used
1o sequence the records of the sort input file. It has the
general form

SORTKEY=(sc(1),ec(1),order(1),...,sc(6),ec(6),order(6))
where each

sc(n) is a one- to four-digit decimal number
specifying the starting character (or
byte) position of the control field as it
exists in the input record, or, if there
positions are modified by an INEXIT
routine, as they exist in the modified
input record.

ec(n) is a one- to four-digit decimal number
specifying the ending character (or byte)
position of the control field. It must be
greater than or equal to the preceding
starting character position

order(n) is a single character A or D for
ascending or descending sequence,
respectively, for sorting the control fietd

At least one control field specification must be given. Each
control field specification must have all three parameters
specified.

Control fields may overlap.

Character positions are numbered starting with one.

The significance of a control field depends on its placement
in the SORTKEY directive. The first control field defined is
the most important (or major) control field. The next is the
secondary (used in cases of matches in the first) control
field. Similarly, until the last specification given is the least
important.

Collating sequence: An algebraic collating sequence is used
to sort the data. Each word (in numeric data) or each byte
(in character data) is interpreted as an octal number
having an algebraic sign. Thus, ASCII characters have the
collating sequence from 0240 (low) to 0337 (high). If
characters are other than ASCII, the sign bit (bit 7) of each
8-bit character must be the same for all the characters.

Word-boundary data are treated as sighed octal numbers
and have the coilating sequence from 0100000 (low) to
077777 (high). Thus, FORTRAN variables of integer, real,
complex or logical types may be sorted with SORT control
fields. FORTRAN double-precision numbers cannot be
sorted because the sign of the number is not in the first
word.

Example: Describe two control fields, one is bytes 27 and
28 in ascending order, and the other is byte 1 through 4 to
be sorted in descending order.

SORTKEY=(27,28,A,1,4,D)

11.2.6 INEXIT Directive

This optional directive specifies whether a user-written
input-exit routine is to be called at the time the input file is

being read by the sort part of VSORT. The general form of
the directive is

INEXIT = YES
NO

The equal sign may be followed by a string of up to four
alphabetic characters. Unless YES is specified, the default
is NO (a user routine is not called). YES or NO must be
followed by at least one blank.

11.2.7 OUTEXIT Directive

This optional directive specifies whether a user-written
output exit routine is to be called at the time the final file
output file is being created by the merge phase of VSORT.
It has the general form

YES
OUTEXIT =
{NO

The meaning of YES and NO is the same as described for
the INEXIT directive (section 11.2.6).

11.2.8 ENDSORT Directive

This directive signals the end of the sort directives. The
word ENDSORT must be followed by at least one blank as
the last directive on the last control record for VSORT.

varian data machines

VSORT (SORT/MERGE)

11.3 USER EXITS
User exits provide for the insertion, deletion, or modifica-
tion of input and output records by user-written routines.
Exits are requested by the VSORT directives, INEXIT =
YES and/or OUTEXIT = YES. The exit routines written by
the user are added to VSORT at load-module generation
time.
The input exit routine, if provided, is called for each input
record before it enters the sort. Possible uses of the input
exit are

¢ Add input records

« Delete input records

« Create part or all of the input file

« Change input records, such as control fields

The input record length may be changed to the output
record length specified on the OUTPUT directive.

The output exit routine, if provided, is called for each
output record before it is written on the output file.

Possible uses for the output exit are

« Add output records, effectively merging one or more
files with the sorted file

« Delete sorted output records, such as duplicates

« Change the sorted output records
If output records are added or changed, it's the user’s
responsibility to ensure that the control fields of the output
records remain in sequence.

11.3.1 Calling Sequence

VSORT uses the following calling sequence for user exits:

Word 1 JMPM XITn
Word 2 input buffer address
Word 3 output buffer address
Word 4 flag
where
n is 1 for input exit and 2 for output exit
input is the address of input record passed to

buffer the user routine (INEXIT) or the address

address to which the user must move a record if
it is to be inserted before the output
record (or EOF) passed to the user
routine (OUTEXIT)

varian data machines

VSORT (SORT/MERGE)

output buffer is the address of the output record

address passed to the user routine (OUTEXIT)
or the address to which the user must
move a record if it is to be inserted
before the input record (or EOF) passed
to the user routine (INEXIT)

flag is set by VSORT as 0 for an EOF en-
countered, 1 for INEXIT, or 2 for QUT-
EXIT; otherwise it is set by the user rou-
tine as follows

Bit 0 = 1 accept input record (INEXIT
or insert record in input buffer
before output record (OUT-
EXIT)

= 0 is ignore the record in the
input buffer

Bit 1 = 1 accept the output record
(OUTEXIT) or insert record in
the output buffer before the
input record (INEXIT)

= 0 ignore the record in output
buffer

After EOF notification has been given to the user input
(output) exit routine, the user routine may continue topass
records to VSORT in the buffer, but the contents of the
buffer are ignored.

11.3.2 Implementation

The exit routines written by the user must have the
following external names

XIT1 User input exit entry point
XIT2 User output exit entry point
To build a load module using user exits, place the user exit

modules in front of the VSORT object module and proceed
to generate a single load module.

11.4 VSORT MESSAGES

In addition to listing the VSORT directives, VSORT outputs
the following totals:

a. End of sort phase totals

SORT PHASE COMPLETE,TOTAL MERGE
RECORDS=XXXXX

INPUT XXXXX ACCEPTED=XXXXX
INSERTED=XXXXX DELETED=XXXXX

b. End of merge phase totals

SORT COMPLETE,OUTPUT RECORDS
COUNT=XXXXX

MERGE=XXXXX ACCEPTED=XXXXX
INSERTED=XXXXX DELETED=XXXXX

varian data machines

SECTION 12
DATAPLOT |l

DATAPLOT Il is a collection of FORTRAN callable sub-

routines that- provide the user with interface to the Varian
STATOS 31 and STATOS 33 electrostatic printer/plotters.

Using DATAPLOT I, the programmer can specify the
desired graphic output at the functional level. For example,
DATAPLOT |l enables the STATOS printer/plotter to

+ Draw a vector between two given points
* Produce a scaled set of axes for a given magnitude

* Produce a plot from a set of input data, using specified
plot point markers

12.1 SYSTEM FLOW OUTLINE

DATAPLOT 1l consists of FORTRAN and DAS MR subrou-
tines which permit STATOS 31 or STATOS 33 printer/
plotters to draw lines, numbers, letters, symbols, and chart
axes. Provision is also made for plotting lines from existing
X-Y arrays and/or data from an external data base.

Figure 12-1 shows the relationship between the user and
the DATAPLOT Il Graphics System.

12.2 HARDWARE REQUIREMENTS

DATAPLOT subroutines can be linked to either foreground
or background tasks under VORTEX (see VORTEX instal-
lation manual for memory requitements). DATAPLOT can
be used with the following considerations:

a. The STATOS equipment that is supported under

VORTEX is

Unit Model Width
STATOS 31 70-6602 14-7/8 inches
STATOS 31 70-6608 11 inches
STATOS 33 70-6611/21 8-1/2 inches
STATOS 33 70-6613/23 11 inches
STATOS 33 70-6615/25 14-7/8 inches
STATOS 33 70-6617/27 22 inches

b. The STATOS unit must be operated under BIC control
with PIM assigned interrupts. In addition, the STATOS
31 printer/plotters must be supported by the Single-
line Input Buffer Option (Model 31-151).

c. DATAPLOT Il does not support any of the Hardware
Character Generator options, the Simultaneous Print/
Plot options, or the High Speed option.

12.3 GENERAL DESCRIPTION

12.3.1 DATAPLOT Il Organization

DATAPLOT Il is organized into the following five logical
operations:

+ Defining the Plot File and Initialization
« Building the Plot File

e Sorting the Plot File

* STATOS Paper Control

» Outputting the Plot File in STATOS Raster Format

These are shown schematically in figure 12-2.

Defining the Plot File: Subroutine DPINIT defines which
VORTEX logical unit will contain the Plot File, the logical
size of the plot file records, and the block size of the output
device for the plot data. If DPINIT is not called, the plot file
will default to System Scratch (SS) with 120-word records,
and plot data wiil be output in blocks of 88 words for the
14-7/8 inch STATOS. Subroutine DPINIT must be called
when Dataplot is operating in a foreground mode to
prevent a possible conflict with background programs
which may use System Scratch.

Building the Plot File: If the plot file is to be built through
calls to Dataplot subroutines ORIG, CHAR, PLOT, VECT,
NUMBER, SCALE, AXIS, DATA, SYMBOL, APPEND, and
LINE, the plot file must be assigned to an RMD device or
the sort subroutine will not work.

STATOS Paper Control: Subroutine CUT, ENDCUT, and
TOPFRM are auxiliary paper control subroutines. These
subroutines issue FUNC commands to the output driver
and will be processed as applicable to the driver.

12-1

—-—@ varian data machines

DATAPLOT |i

' I
' l
| |
SYSTEM St | »| JOB CONTROL DATAPLOT 11 |
DIRECTIVES ! PROCESSOR LIBRARY
| |
| OM |
| y I
USER PI | BO/BI |
FORTRAN jJ_V FORTRAN ___:l\v LOAD ﬁ GRAPHICS
PROGRAM | COMPILER MODULE | OUTPUT
| !
S N o
DATA FLOW)
COMPILATION CONTROL FLOW ——p»

LISTINGS

VTI-3090

Figure 12-1. DATAPLOT Il Graphics System Data Flow

PLOT FILE
IDENTIFICATION DATA FLOW 1}

AND
CONTROL FLOW ———p

INITIALIZATION
BUILDING
THE
PLOT FILE

SORTING
THE Q:

— PLOT FILE
PLOT FILE
FORTRAN
PROGRAM
OUTPUTTING ¥
THE (=
PLOT FILE >
STATOS
PRINTER
STATOS PLOTTER
PAPER »
CONTROL

VTI1-3089
Figure 12-2. DATAPLOT Il Organization

12-2

Outputting the Plot File: Subroutine DPPLOT outputs
STATOS raster format data. DPPLOT is called by subroutine
PLOT when the plot is terminated.

12.3.2 System Considerations

DATAPLOT Il is supplied as three groups of object module
routines. The first group is the basic Dataplot Object
Module (BDPOM). It contains the subroutines for initializ-
ing the plot file, drawing lines, sorting and outputting the
plot file, and paper control. The second group is the

- VORTEX (pen-plotter compatible) Dataplot Object Module
(VDPOM). It contains higher level routines for building the
plot file. The third group is the MOS (compatible) Dataplot
Object Module (MPBOM). It contains calls which are
compatible to the MOS Dataplot Il.

DATAPLOT Il is put onto the object module library as a
combination of either the BDPOM and VDPOM, or the
BDPOM and MDPOM, depending on which set of higher
level subroutines the user wishes to call. The VDPOM
routines offer axes, character and number strings at any
angle, while the MDPOM offers only two angles (O degrees
and 90 degrees). The MDPOM subroutines are provided for
users who have already written MOS programs calling
DATAPLOT II.

The MDPOM routines may be placed on an alternate object
module library and the VDPOM routines may be placed
on the standard OM library. Programs using the MDPOM
routines may search the alternate library before the stan-
dard OM library, but this also prevents a load-and-go opera-
tion.

When converting programs written for MOS DATAPLOT I,
a call to PLOTS must be substituted for the calls to OPEN,
HOPEN, and DOPEN. The call CALL PLOT (0.0,0.0,999)
must be substituted for calls to CLOSE, HCLOSE, and
DCLOSE. There is a shift in the logical plot origin if the
pseudo-pen encounters a plot boundary in VORTEX
DATAPLOT Il (incl MDPOM). There is no such shift in the
MOS DATAPLOT |l routines.

DATAPLOT |l subroutines are listed below:
Dataplot Il initialization

DPINIT BDPOM
PLOTS BDPOM

Building the Plot File

PLOT BDPOM
VECT BDPOM

varian data machines @——

DATAPLOT It

ORIG BDPOM
FACTOR BDPOM
WHERE BDPOM
MLTPLE BDPOM
APPEND BDPOM
NUMBER MDPOM
NUMBER VDPOM
SCALE MDPOM
SCALE VDPOM
AXIS MDPOM
AXIS VDPOM
DATA MDPOM
LINE VDPOM
SYMBOL MDPOM
SYMBOL VDPOM
CHAR MDPOM

Sort and Output

DPSORT BDPOM
DPPLOT BDPOM

Paper Control

TOPFRM BDPOM
cut BDPOM
ENDCUT BDPOM

12.3.3 VORTEX Considerations

Plot File Assignment: The user must supply a secondary
storage file sufficiently large enough to hold the plot file
when the plot file is unsorted or generated by calls to
DATAPLOT Il subroutines ORIG, VECT, CHAR, NUMBER,
SCALE, DATA, AXIS, LINE, PLOT, SYMBOL, or APPEND.
Four 16-bit words are used for each vector or character to
be plotted, and four 16-bit words are used for the end-of-
plot indicator. An error (DP00) will be reported if the plot
file is overflowed.

The user may supply a sorted plot file in vector-end-point
format. Sorted data may be plotted directly from the plot
file by assigning the plot file to the logical unit containing
the data during the call to DPINIT.

User-Supplied Central Memory Buffers: DATAPLOT Il may
use up to three types of buffers which the user must supply
by a FORTRAN DIMENSION statement. The buffer types
are:
+ DATAPLOT Il Working Buffer -- defined in call to PLOTS
« Append FILE 1/0 Buffer -- defined in call to APPEND

- Data Array Buffer(s) -- used by DATA and SCALE
subroutines

12-3

— varian data machines

DATAPLOT I

DATAPLOT Il Working Buffer: The DATAPLOT |l Working
Buffer is used in building, sorting, and outputting the piot
file.

The algorithm for determining the size of the DATAPLOT Il
working buffer is:

22+PFIO + RO + 6(VEC,,,)

where
PFIO is the size of the plot file |70 buffer
RO is the size of the raster (STATOS) output
buffer
VEC,..,) is the maximum number of vectors or

characters on any one STATOS scan line

The plot file 1/0 buffer size is a multiple of the physical
record length of the plot file, and is specified in the call to
DPINIT.

The raster output buffer size is determined by the width of
the STATOS printer/plotter for which the plot is intended,
as shown in the following table, and is specified in the call
to DPINIT.

STATOS No. Raster

Model Width Stylii/Line Buffer Size

70-6608 11 inches 1056 66

70-6602 14-7/8 inches 1408 88

70-6611 and 8-1/2 inches 800 50
70-6621

70-6613 and ‘11 inches 1056 66
70-6623

70-6615 and 14-7/8 inches 1408 88
70-6625

70-6617 and 22 inches 2048 132
70-6629

The buffer is also used to hold vectors and characters at
the time they are being converted to STATOS raster format.
A six-word entry will be placed in this buffer when the
vector or character is first to appear on a STATOS scan
line. The entry remains until the vector or character
reaches its last STATOS scan line.

An error (DPO1) will be reported if the concurrent vector
buffer is overflowed.

Example: DATAPLOT Il is going to plot from a plot file
whose record length is 120, to a STATOS printer/plotter
whose width is 14-7/8 inches. The maximum number of
vectors or characters expected on any one raster line is
160. The length of the working buffer should be:

22+120+88+780 = 1010

12-4

* Minimum and Maximum Plot Values: The minimum x value
is -30.00 inches. The maxirmum x value is +297.00 inches.
The maximum y value is determined by the width of the
STATOS for which the plot is intended. These values are
shown in figure 12-3.

i 327.00"

i

V V
WIDTH OF
STATOS
A
BO— X
| €.50"
A
Vo V
} 30.00" : 297.00" -

A = Physical origin (0.0,0.0)
B = Starting logical origin (0.0,0.0) or (0.0,0.5) physical.

VTII-3088

Figure 12-3. Minimum and Maximum Plot Values

The logical origin may be moved by calling subroutine
PLOT or ORIG. Subroutine PLOT will move the logical origin
referenced to the last logical origin. Subroutine ORIG will
move the logical origin referenced to the physical origin.

If the plot boundaries are encountered while building the
plot file, the logical origin will be effectively shifted in a

manner similar to a pen plotter. An error (DP04) will be
reported.

12.4 DATAPLOT Il SUBROUTINES
The general form of the DATAPLOT Il subroutine call is:

[statement number] CALL S (p(1),p(2),...p(n))

where:
[statement is the optional statement number.
number]
S is the name of the subroutine.
p(1),...p(n) are the parameters, if any.

12.4.1 DPINIT (System File Initialization)

This function enables the user to specify certain initial
conditions relating to the plot file and plot file I/0 buffer.
In the absence of this function, the default parameter
values shown in the parameter description will exist.

The function has the general form
CALL DPINIT (lun,key,name,ipltbf,outsiz)*

*BDPOM
where
Default

lun is the number or variable of the plot 8

file logical unit (Integer).
key is the protection key, if any. None
name RMD: is the six-character name of the SS

plot file. It may be given as an array (background

name or a Hollerith constant
non-RMD: Not used.

scratch file)

ipitbf s the length of the plot file 1/0 buffer. 120
(Integer)

outsiz is the block size of the output plot data 88
as given in section 12.3.3 (Integer).

Error Conditions: None

Example: Select logical unit 25, file name PLTFIL, protec-
tion key Z, length 120 as the plot file. The output is to go to
a STATOS, width 14-7/8 inches.

CALL DPINIT (25,2HbZ,6HPLTFIL,120,88)

12.4.2 PLOTS (Work Buffer Initialization)

The PLOTS function is used to initialize the DATAPLOT i
work buffer. It must be called prior to any calls to the PLOT
subroutine and prior to calls to higher level plot
subroutines.

The function has the general form

CALL PLOTS (ibuf,nloc,lun)*

*“BDPOM

varian data machines @

DATAPLOT 1

where

ibuf is the name of the user-supplied storage
area to be used as a work buffer by
DATAPLOT II. This array should be
dimensioned by the wuser in his
FORTRAN program.

nloc is the number which identifies the size
of the work buffer (ibuf). It will normally
be the same number used in the
DIMENSION statement. The size is
determined by the algorithm supplied in
section 12.3.3 (Integer).

lun is the logical unit number of the output
device (Integer).

Error Conditions:

Condition: Work buffer size is too small
Action: Incomplete Plot

Message: DPO1

Conditions: PLOTS not called

Action: Abort Plot

Message: DP05

Example:

DIMENSION IBUF (1500)
CALL PLOTS (IBUF,1500,5)

The above defines logical unit number 5 as the output
device for the data in STATOS raster format. Buffer IBUF,
of length 1500 words, will be used as a central memory
work area by DATAPLOT II.

12.4.3 PLOT (Generate Plot)

The PLOT function is basic to the generation of graphic
output. It may be used to draw lines between points, define
new plot origins, sort plot data, cause the transfer of plot
information to the output device and terminate plot
generation.

The function has the general form

CALL PLOT (x,y,+idraw)*
*“BDPOM

12-5

— varian data machines

DATAPLOT Il
where
X,y are the x and y coordinates, in inches
from the currently defined origin {(Real).
+ draw is an integer which determines whether

or not a line is drawn from the ““current’’
X,y, coordinates to the coordinates
defined in the call. It may also be
used to define a new plot origin or to
terminate the plot generation process
and cause transfer of plot information
to the output device.

If IDRAW = 2, a line is drawn from
the current x,y coordinates to the
coordinates defined in the call. The
new coordinates then become the
current x,y coordinates.

If IDRAW = 3, the coordinates in the call
become the current x,y coordinates, but
no line is drawn.

If IDRAW = -2 or -3, a new origin is
defined at the call coordinates and the
operation is completed as if IDRAW were
positive. Thecurrent x and y coordinates
are set to zero with respect to the new
origin. If no call has been made to
MLTPLE, or if the last call to MLTPLE
was made with IND = 0, the current plot
will be terminated and subsequent

plotting will be defined with reference
to a new origin on the paper. if the last
call to MLTPLE was made with IND =1,
a redefinition of the origin will occur
and subsequent plot definitions will be
treated as belonging to the current plot.

If IDRAW = 999, the plot generation
process will be terminated and all
accumulated plot information will be
transferred to the output device.
Further calls to PLOT are not processed.

Error Conditions:

The normal pen plotter routines do not keep track of the
actual location of the pen, but instead always assume that
the pen can be moved from the current location to the new
location and that enough commands are output to
accomplish this. If a mechanical stop is encountered during
plotting, the motion in that direction is simply inhibited by
the plotter. Because the mechanical stops are not precise,
errors will be produced if a mechanical stop is encountered
during plotting. However, this is sometimes done before
initiating a plot in order to position the pen in a known
location before beginning the actual plot.

DATAPLOT |l routines have software stops contained

internally and attempt to produce the same effect as a
mechanical stop. If a plot boundary is encountered, an

12-6

error (DP04) will be reported, the line will extend toward
the boundary and follow the boundary to the final position,
and the origin will be effectively shifted in a manner similar
to the pen plotter. ’

Examples:

CALL PLOT (1.0,2.0,3)
CALL PLOT (2.0,2.0,2)

The above calls will draw a line between (1,2) and (2,2).
CALL MLTPLE (1)
CALL PLOT (1.0,2.0,3)
CALL PLOT (2.0,3.0,-2)
CALL PLOT (1.0,1.0,2)
The above calls will draw a line in absolute coordinates

from (1,2) to (3,4) and redefine the plot origin (0,0) to (2,3)
in absolute coordinates.

12.4.4 SCALE (Generates Scale Factor)

This subroutine scales data by computing a scale factor
and a displacement factor.

The subroutine has the general form

CALL SCALE (arr,npts,pgsz, +int)*

or
CALL SCALE (arr,pgsz,nptsint)**
* MDPOM
** VDPOM
where
arr is the name of the (real) array to be
scaled.
npts is the number of points to be scaled in
the array. Normally, all points are scaled
(Integer).
pgsz is the size of the page (linear interval in

inches) within which the data must fall.
It must be greater than 1.0 inch (Real).

tint is the interval at which the array is to be
sampled.

If INT is positive, the selected displacement
approximates a minimum, and the scale factor is
positive.

If INT is negative, the selected displacement
approximates a maximum, and the scaling factor is
negative (VORTEX call only).

The array must be dimensioned at least two elements
larger than the actual number of data values it contains.
The calculated displacement will be stored in
ARR(NPTS + 1), and the calculated scale factor will be
stored in ARR(NPTS + 2).

The subroutine scales data within the following constraints:
a. Thescale factorsis 1., 2., 4., 5., or 8. times 10E(n).

b. The displacement is an integral multiple of the scale
factor.

c. The displacement is .LE. the minimum value in the
array.

d. Thedisplacement + thescalefactor(units/inch) « axis
length is .GE. the minimum value in the array.

Examples are shown in the sample programs (section 12.6).
Error Conditions: None
Examples:

1. Given an array of 24 data values to be plotted over a
5-inch axis, assume the minimum value in the array is
1.00 and the maximum is 42.00. The statement CALL
SCALE (ARR,5.0,24,+ 1) would give the following
results:

Units/inch = (42.00-1.00)/5.0 = 8.2
SF (scale factor) = 10.0
VLO (first value plotted) = 0.0

VLO value is stored in ARR(25)
SF value is stored in ARR(26)

Using these values, AXIS would draw the following axis line:

——— (Range of Data) ——m8 —

| | | I !]
0.00 10.00 20.00 30.00 40.00 50.00

2. Assume that the array of Example 1 is to be plotted on a
4-inch axis, from maximum to minimum. CALL SCALE
(ARR,4.0,24,-1) would give these results:

SF = (1.00-42.00)/4.0 = -10.25, which is
adjusted to -20.

Minimum multiple = 0.00; VLO = Minimum
+ (AXLEN * SF) = 80.00

In this case the following axis would be drawn:
—(Range of Data) =———

[I T I 1
80.00 60.00 40.00 20.00 0.00

varian data machines @

DATAPLOT I}

3. Assume 100 points are to be plotted on a 4-inch axis
from maximum (+22) to minimum (-9), using every
other data value in the array. The DIMENSION
statement should specify ARR(204), and the calling
sequence is CALL SCALE (ARR, 4.0,100,-2).

Initial SF = (-9 -22)/4 = -7.75, adjusted to -8.

Initial VLO = +16.00; last value on axis = -16.00.

The axis range is inadequate for the data range, so SF
is revised to the next higher interval.

Revised SF = -10., stored in ARR(203).

Revised VLO = 30.00, stored in ARR(201).

The resulting axis would appear as follows:

—— (Range of Data) ———————

[| I [l
30.00 20.00 10.00 00.00 -10.00

12.4.5 AXIS (Generate Segmental Axis)

Subroutine AXIS produces entries into the plot file for an
axis with tic markers every inch, an axis label and number
labels for each tic mark, using the results of the SCALE
subroutine if desired.

The subroutine is of the general form
CALL AXIS (x,y,axlh,idir,bcd,~-nch,vlo,sf)*
or
CALL AXIS (x,y,bed, =nchar,axlh,angle,vlo,sf)**

MDPOM

** BDPOM

where

X,y is the starting point on the page of the
axis to be drawn (Real).

axlh is the length of the axis in inches. The
value given will be truncated to the next
smallest integer value (Real).

idir is the axis direction. Zero for x direction.
Non-zero for y direction (Integer).

bed is the first word address of a character
string to be plotted as a label for the axis.
If there is no label, use a dummy space.

12-7

— varian data machines

DATAPLOT I

+nchar NCHAR is the number of letters con-
tained in the character string to be plot-
ted as a title (Integer).

If NCHAR<O0: the title, tic marks
and interval labels
will be plotted on the
clockwise side of the
axis.

If NCHAR=0: the title, tic marks
and interval labels
will be plotted on the
counter-clockwise
side of the axis.

“+nch NCH is the number of letters contained
in the character string to be plotted as
a title (Integer).

If NCH=>0, the title, tic marks, and inter-
val labels will be plotted on the clock-
wise side of the axis.

If NCH=0, the title, tic marks, and inter-
val labels will be plotted on the
counter-clockwise side of the axis.

vio is the number to be plotted at the start-
ing point of the axis (Real).

sf is the scale factor (units/inch) to be
used in labelling the 1-inch intervals. By
making SF = ARR(NPTS +2) (see
SCALE routine), the axis and data will
have the same scale factor (Real).

angle is the angle at which the axis is to make
with the x axis.

The interval labels will be scaled by powers of 10 if they are
too large or too small to fit into two decimal place accuracy.
Thus, assuming a scale factor of 1000./inch, 12000. would
be printed 12.00 on the interval tic mark, but a note would
be added to the axis label: *x10%."

The SCALE routine should be used prior to using AXIS if SF
= ARR(NPTS +2).

Error Conditions: None
Example:

CALL AXIS (0.0,0.0,5.0,0,4HAXIS,
4,5.0,100.0)*

CALL AXIS (0.0,0.0,4HAXIS,-4,5.0
0.0,5.0,100.0) %%

’

* MDPOM

** VDPOM

12-8

The resulting axis would appear as follows:

Xy - angle, idir
//

l ~

\r \/ axlh -

)

[[[| |
00.50 10.50 20.50 30.50 40.50 50.50
| S—

vfo
AXIS * 10'
J
st
ibcd,nchar

12.4.6 SYMBOL (Generate Symbols)

This function generates plot file entries defining printable
characters. Each entry contains an x and a y coordinate, a
code which specifies that the entry is for a character, a
code identifying the character and codes for size and
orientation. The characters are software generated dot
matrix characters in two sizes (5 x 7 and 10 x 14) and four
orientations.

The function is of the general form

CALL CHAR (x,y,ibcd,isoar,+nchar,ispac)*

or
CALL SYMBOL (x,y,height,ibcd,angle, nchar)=*

* MDPOM

% VDPOM
where

X,y are the x and y coordinates (in inches) of
the first letter to be plotted. x will be the
minimum x value of the character and y
will be the minimum y value of the
character (Real).

ibcd is the address of the first word contain-
ing the ASCII character string to be
plotted. It can be given as an array name
or a Hollerith constant.
isaor is the size and orientation:
0 = small, +90 degrees
rotation from x direction.

1 = small, O degrees rotation
from x direction.

]
I

large, +90 degrees
rotation from x direction.

3 = large, O degrees rotation
from x direction.

height selects the character height. If height<
0.10, the characters will be 0.07
inches high. If height > 0.10,
characters will be 0.14 inches high
(Real).

varian data machines

angle

ispac

nchar

is the angle, in degrees from the x-axis,

at which the character string is to be
plotted. Tre individual characters will be
plotted at 0, 90, 180, or 270 degrees
depending on the value of “angle”
(Real).

is the spacing constant in styli or scans
from the starting coordinate of the pre-
vious character. A negative number
causes default standard spacing (In-
teger).

is the total number of characters to be
plotted in the string (Integer).

if NCHAR = 0, one character will be
plotted from the low order byte of the
word containing the string. (VORTEX
call only)

If NCHAR = -1, one symbol will be
plotted. The symbol must be identified
by setting IBCD to an integer (0 through
5). (VORTEX call only)

If NCHAR = -2 or less, one symbol will
be plotted along with a vector from the
previous current location to the symbol
starting location. (VORTEX call only)

IBCD (when NCHAR 0) Symbol

Character Orientation and Coordinates:

Angle -44
(in to
degrees) 45

Isaor 1,3
VORTEX B
MOS B

The dot references the starting coordinate of the character.

Error Conditions:

1 O

2 O

3 @)

4 []

5 o
46 136 226
to to to
135 225 315

o

None

DATAPLOT 1l

Example:

3 DIMENSION LABEL (3)
DATA LABEL/2HST, 2HAT, 2HOS/
17 CALL CHAR (5.0,5.0,6HSTATOS,2,6,-1)
20 CALL CHAR (5.0,5.0,LABEL,2,6,-1)

Statement 17 will place six entries for large letters, 90
rotation from the x axis, standard spacing, into the plot file.
Statement 20 will do likewise. The characters “STATOS"”
will be printed starting at 5.0,5.0 from the last origin.

25 CALL SYMBOL (2.0,2.0,0.14,6HSTATOS,45.0,6)

Statement 25 will place six entries for large letters into the
plot file. “STATOS” will be printed as follows:

)
y o

T

mlll
—
>

2.0

—— 71
]
2.0 X

12.4.7 NUMBER (Generate Number)

This function converts single precision real numbers to
character codes and places corresponding entries into the
plot file.

This function has the general form

CALL NUMBER (x,y.fpn,isaor,--ndec)*

or
CALL NUMBER (x,y,height,fpn,angle,--ndec)**

* MDPOM

** VDPOM

where

X,y are coordinates (in inches) of the first
number in the string (Real).

fpn is the real number to be plotted. If nega-
tive, will be prefixed with a minus sign.
Leading zeros will be suppressed, ex-
cept the zero to the left of the decimal
point. The real number is rounded by
adding five to the digit to the right of
the last digit to be plotted, then truncat-
ing the result (Real).

isaor is size and orientation:

0 = small, + 90 degrees rotation from
x direction (Default).

12-9

— varian data machines

DATAPLOT I

1 = small, O degrees rotation from x
direction.

2 = large, +90 degrees rotation from
x direction.

3 = large, O degrees rotation from y
direction.

height selects the character height. If height
= >0.10, the characters will be 0.07
inches high. If height = 0.10, char-
acters will be 0.14 inches high (Real).

angle is the angle, in degrees from the x axis,
at which the character string is to be
plotted. The individual characters will
be plotted at 9, 90, 180, or 270 degrees
depending on the value of ‘‘angle”
(Real).

ndec If this parameter is larger than zero, it
defines the number of digits to be plot-
ted to the right of the decimal point.

If NDEC = 0, the integer part will be
plotted followed by a decimal point only.

If NDEC = -1, only the integer part will
be plotted.

IfNDEC islessthan -1, (NDEC) -1 digits
are truncated from the integer part (In-
teger).

The following table iliustrates the use of the NDEC parame-
ter.

Suppose FPN = 123.4567; how the number actually will
appear is a function of the parameter NDEC.

NDEC Number Plotted Comments

4 123.4567

3 123.457 Note rounding action
2 123.46

1 123.5

0 123.
-1 123

-2 12 Note truncation action
-3 1

-4 Nothing is plotted
Error Conditions: None

Example:

CALL NUMBER (1.0,2.0,12.3,3,1)*
CALL NUMBER (1.0,2.0,0.14,12.3,
0.0, 1) **
The above will produce the number 12.3 at location x =
1.0,y = 2.0 in 10 x 14 character matrix, zero degrees from
the x axis.

MDPOM ** VDPOM

12-10

12.4.8 LINE (Generate Graph Line)

Subroutines DATA and LINE produce a data line with one
call. Prior to the call, the data must be placed in two arrays
which have been dimensioned to provide two extra
locations in each array. These must be placed at the end of
the arrays and contain the displacement and scale factors
in that order. The two arrays must be of equal size, one
containing x values and the other y values.

The subroutine is of the general form

CALL DATA (xarr,yarr,npts,inc,t Ity,ieq)*

or
CALL LINE (xarr,yarr,npts,inc,t Ity,ieq)**
MDPOM
** VDPOM
where
xarr is the name of the array from which x
values are to be extracted.
yarr is the name of the array from which the
y values are to be extracted.
npts is the number of data points to be plot-
ted from each array to the end of the
array (Integer).
inc is the increment at which the arrays are
to be sampled. INC = 1 means every
X,y pair is plotted. INC = 2 means every
other pair, etc. (Integer).
+lty indicates the type of line desired (In-

teger).

LTY<0: A symbol will be plotted at each selected point

but no lines will connect the symbols.

LTY=0: A line will be drawn connecting each selected

point. No symbols will be drawn.

LTY>0: A symbol will be plotted at each selected point

and a line will connect all symbols.

feq is the positive integer designating sym-
bol to be produced (1,2,3,4, or 5).

If LTY = 0, IEQ has no meaning.

Plot values will be generated by the following algorithm:

Plot Value = array value—displacement

scale factor

Error Conditions:

Condition: The scale factor in the data
array = 0.0
Action: Incomplete plot
Message: ARITH OVFL
Examples:
DIMENSION XAR (6), YAR (6)
DATA XAR/1.0,2.0,3.0,4.0,1.0,1.0/
DATA YAR/1.0,1.0,1.0,1.0,1.0,1.0/
CALL DATA (XAR,YAR,4,1,LTY,1)
or
CALL LINE (XAR,YAR,4,1,LTY,1)
The above will produce the following plots:
LTY> 0 [N i, O
Y] 4,1)
LTY = 0
1,1) (4,1)
LTY< 0 D D D D
an @1

12.4.9 MLTPLE (Multiple Plot)

The sign of the PLOT parameter IDRAW is used to indicate
whether a new logical origin is to be defined. The MLTPLE
call allows the user to change the origin without terminat-
ing his current plot definition. If no call has been made to
MLTPLE, the PLOT origin change is treated as the
completion of the current plot and the start of the new piot.

The subroutine is of the general form

CALL MLTPLE (ind)*

*BDPOM

where

ind +1 = on future calls to PLOT, a redef-
inition of the logical origin will not be
treated as the end of the plot, and mul-
tiple logical plots will be treated as be-
longing to the same real plot.

0 = on future calls to PLOT, a redefini-
tion of the logical origin will also be
treated as the end of the plot.

-1 = Same as +1 except that the
accumulated information from past
PLOT calls defines a complete plot and
it should be output. Note that the state-
ment CALL MLTPLE (-1) is exactly
equivalent to:

varian data machines @——

DATAPLOT Il

CALL WHERE (x,y,fact)
CALL MLTPLE (0)

CALL PLOT (0.0,0.0,-3)
CALL MLTPLE (+1)

CALL PLOT (x,y,+3)

Error Conditions: None
Examples:
CALL PLOT (1.0,2.0,3)
CALL PLOT (2.0,2.0,-2)
CALL PLOT (3.0,3.0,3)
CALL PLOT (4.0,4.0,2)
CALL PLOT (0.0,0.0,999)

The above sequence will output two physical plots of one
line each.

CALL MLTPLE (1)

CALL PLOT (1.0,2.0,3)
CALL PLOT (2.0,,2.0,-2)
CALL PLOT (3.0,3.0,3)
CALL PLOT (4.0,4.0,2)
CALL PLOT (0.0,0.0,999)

The above sequence will output one physical plot with two
lines on the plot.

12.4.10 FACTOR (Alter Plot Size)

This function is used to alter the overall size of the plot by
changing the ratio of the desired plot size to the normal
size.

The function is of the general form

CALL FACTOR (fact)*

*BDPOM
where
fact is the ratio of the desired plot size to
normal plot size. If FACTOR is not called,
fact = 1.0 (Real).
Error Conditions: None

Example: Make plot one-half normal size.

CALL FACTOR (0.5)

12.4.11 WHERE (Locate Coordinates)

This function returns information to the user. The three
variables designated in the calling sequence are set to the
current x and y coordinates and the current plot sizing
factor.

12-11

varian data machines

DATAPLOT I

The function is of the general form

CALL WHERE (rx,ry,rfact)*

“BDPOM
where
rx is the variable which will be set to the
current x coordinate.
ry is the variable which will be set to the
current y coordinate.
rfact is the variable which will be set to the
current plot sizing factor.
Error Conditions: None
Example:

CALL MLTPLE (1)

CALL FACTOR (2.5)
CALL PLOT (1.0,2.0,3)
CALL WHERE (XA,YA,F)
CALL PLOT (3.0,1.0,-2)
CALL WHERE (XB,YB,F)

The above sequence will set the variables as follows:

XA = 1.0
YA = 2.0
F = 2.5
XB = 0.0
YB = 0.0 new origin defined

12.4.12 APPEND (Append File)

Previously generated files in vector-end-point format may
be added to the plot file and merged during the sort. A call
to APPEND must be made after the call to PLOTS. If the
file to be appended is not on an RMD device, it must be
previously positioned.

The function is of the general form

CALL APPEND (lun,key,name,abuff,iabuff)*
*BDPOM

where

lun is the variable or number of the logical
unit containing the file to be appended
(integer).

key is the protection key, if any.

name is the six-character name of the file to
be appended. It may be given as an
array name or a Hollerith constant.

abuff the name of the APPEND file input

buffer.

12-12

iabuff is the length of abuff (Integer).

Error Conditions:

Condition: Wrong protection key
Action Append call is ignored
Message: 1004, xxxXXX

Condition: File name not found
Action: Append call is ignored
Message: 1010,xxXXXX

xxxxxx is the task name.
Examples:

117 CALL APPEND (18,0,0,BUFF, 1024)

136 CALL APPEND (132,2HbP, 6HMAPDD,
ABUFF,960)

Statement 117 will cause the file on logical unit 18 to be
appended to the plot file. BUFF will be used as the input
buffer. Statement 136 will cause the file named MAP on
logical unit 132, with protection code P, to be appended to
the plot file. ABUFF will be used as the input buffer. Data
will be input in blocks of 960 words (8 sectors).

12.4.13 TOPFRM (Top-of-Form)

TOPFRM subroutine will advance the paper to the next
TOP-OF-FORM mark or eleven inches, whichever occurs
first (FUNC code = 0). A Top-of-Form command will be
output to the output driver at the time the subroutine is
called.

The subroutine is of the general form

CALL TOPFRM*

*BDPOM

Error Conditions: None
Example:

CALL TOPFRM (Outputs FUNC (0)
to the plot output device)

12.4.14 CUT (Cut Paper)

The CUT subroutine issues a cut command (FUNC code =
20) to the output driver when the subroutine is called.

The subroutine is of the general form
CALL. CUT*

*“BDPOM

Error Conditions:

Condition: Paper cutter option not connected.
Action: Command ignored
Message: none

Example:
CALL CUT

A cut command (FUNC (20)) is sent to the plot output
device.

12.4.15 ENDCUT (Eject and Cut Paper)

The ENDCUT subroutine issues a FUNC code equal to 21
(cut command) to the output device and moves the paper
approximately 34 inches.

The subroutine is of the general form

CALL ENCUT*
*BDPOM

Error Conditions:

Condition: Output device not STATOS.
Action: Command ignored
Message: None

Example:

CALL ENDCUT

The above issues a cut and move paper command to the
plot output device.

12.4.16 DPSORT (Sort Plot File)

This function sorts an RMD plot file. No sort is attempted if
the plot file is not assigned to an RMD.

DPSORT is also called by subprogram DPPLOT when
IDRAW = 999, or when IDRAW 1, or when MLTPLE is
set 0.

The function is of the general form

CALL DPSORT*
*BDPOM

Parameter Description: None

Error Conditions:

Condition: Data Plot working buffer too small.
Action: Abort program
Message: DPO1
Condition: Plot file not assigned to RMD.
Action: Abort program
Message: DPO7

Example:

CALL DPSORT

DATAPLOT I

12.4.17 DPPLOT (Output File)

DPPLOT subroutine converts the plot file to STATOS raster
format and outputs the raster data to the output device
specified in the call to PLOTS. DPPLOT is called by

subroutine PLOT when IDRAW = 999 or when IDRAW <0,
and MLTPLE = 0 or when MLTPLE is set<0, to output
the plot data.

This subroutine is of the general form

CALL DPPLOT*
*BDPOM
Parameter Description: None

Error Conditions:

Condition: Working buffer overflow
Action: Incomplete plot
Message: DPO1
Condition: Attempted to plot from unsorted File.
Action: Abort plot
Message: DP02
Condition: End-of-plot indicator not detected.
Action: Abort plot
Message: DP03
Condition: Min/Max x/y values exceeded.
Action: Line will follow plot boundary,
plot origin will be shifted.
Message: DPO4
Condition: PLOTS not called.
Action: Abort plot
Message: DPO0O5
Example:

DIMENSION IBUF (1200)

CALL PLOTS (IBUF,1200,5)

CALL DPINIT (107, 2HbF,6HPLTFIL,
120,88)

CALL DPSORT or CALL PLOT

CALL DPPLOT (0.0,0.0,999)

The above program will output raster plot data to logical
unit 5, block size 88, from an unsorted plot file residing on
logical unit 107, protection code of F, name PLTFIL, block
size of 120.

If the plot file is sorted, the call to DPSORT may be
eliminated.

If the plot file is on system scratch (SS) and the STATOS is
14-7/8 inches wide, the call to DPINIT may be eliminated.

12-13

varian data machines —

varian data machines

DATAPLOT 1i

12.4.18 DPCLOS (Close Plot File)

DPCLOS subroutine closes and updates the plot file and
writes an end-of-file if the plot file is on magnetic tape. The
first three words of DPFCB (data plot file control block) are
set to zero, and the plot file cannot be referenced until a
call is made to DPINIT to restore DPFCB.

The subroutine is of the general form

CALL DPCLOS*
“BDPOM

Parameter Description: None
Error Conditions:

If the plot file is assigned to a device other than an RMD or
magnetic tape, the close request will be ignored.

Example:
170 CALL DPCLOS

Statement 170 closes the plot file.

12.4.19 ORIG -- Offsetting the Origin
Entry Point

This function offsets the origin entry point of the plot.
The origin of the plot is the lower left hand corner of the

plot area, with the +y axis towards the right and the +x
axis pointing into the plotter.

PAPER MOVEMENT

VIII-3087

Figure 12-4. +x Axis and +y Axis Relative to
Paper Direction

12-14

The absolute y displacement may not go negative. If it is
desired to offset the origin in order to allow (relative)
negative numbers, or to allow large positive values to be
plotted without wasting paper, it is possible to offset both x
and y coordinates of the (relative) origin by the following
call of the general form:

CALL ORIG (x,y)*

*BDPOM
where
X is the distance (in inches) along the x
axis which the new (relative) origin will
be offset (Real).
y is the distance (in inches) along the y

axis which the new (relative) origin will
be offset (Real).

The coordinates used in locating plot elements are always
relative to the origin location.

Error Conditions: None
Example:
170 CALL ORIG (7.1,3.1)

Statement 170 offsets the origin 7.0 inches in the x
direction and 3.1 inches in the y direction from the physical
origin (0.0,0.0).

12.4.20 VECT -- Vector Entry Point

This subroutine generates plot file entries defining straight
lines between two points. Four parameters define the
points in the following order:

x1, y1, x2, y2. The parameters are single precision, real
numbers representing inches from the origin. Provision is
made for retaining the “current” (or last defined) point.
When x1 = 999.0, a file entry is produced to generate
a line between the “current” point and the point defined
by x2 and y2.

The subroutine is of the general form

CALL VECT (x1,y1,x2,y2)*

“BDPOM

where

x1 is the starting x coordinate of line.
y1 is the starting y coordinate of line.
x2 is the ending x coordinate of line.
y2 is the ending y coordinate of line.

Error Conditions: The normal plotter routines do not keep
track of the actual location of the pen, but instead always
assume that the pen can be moved from the current location
to the new location and that enough commands are output
to accomplish this. If a mechanical stop is encountered
during plotting, the motion in that direction is simply inhib-
ited by the plotter. Because the mechanical stops are not
precise, errors will be produced if a mechanical stop is
encountered during plotting. However, this is sometimes
done before initiating a plot to position the pen in a known
location before beginning the actual plot.

DATAPLOT Il routines have software stops contained inter-
nally in order to produce the same effect. If a plot boundary
is encountered, an error (DP04) will be reported, the line
will extend toward the boundary and follow the boundary
to the final position, and the origin will be effectively shifted
in a manner similar to the pen plotter.

Example: 5 CALL VECT (3.2,1.0,4.0,1.0)

Statement 5 will place an entry in the plot file for the vector
x = 32to40andy = 1.0.

12.4.21 Special SYMBOL Subroutine
Subroutine SYMBOL produces special symbols on the plot.
The subroutine is of the general form

CALL SYMBOL (x,y,ieq)*

* MDPOM
where
X,y are the x and y coordinates of the center
of the symbol (Real).
ieq is the positive integer designating the
symbol to be produced.
IEQ SYMBOL
1 |
2 %
3 @)
4]
5 o
Error Conditions: None
Example:

CALL SYMBOL (1.0,2.0,4)

The above will place a filled in square (m) at location x =
1.0,y = 2.0.

varian data machines @]—-—7

DATAPLOT I

12.5 PLOT FILE DATA FORMAT

12.5.1 Vectors

X values represent distances from the beginning of the plot
in the opposite direction of paper movement. A unit of x
corresponds to one step of paper movement in the
machine.

Y values represent stylus numbers.

16 bits

X1

Y1

X2

Y2

Figure 12-5. Vector-Data Format
where

X2<X1<32,700

Y1 and Y2 number of STATOS stylii

12.5.2 Characters

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Xc Word 0

Ye Word 1

077774 Word 2

Unused I10| 9 IB I ASCII CODE Word 3

Figure 12-6. Character Data Format

Word 3, Bit 9 0 for small character (5x7)

1 for large character (10x14)

I

Word 3, Bit 8 and 10 determine the character orientation.
The x and y coordinates refer to the lower left-hand corner
of the character.

B oo

Bit 8 1 0 1 0
Bit 10 0 0 1 1

Figure 12-7. Character Orientation Data Format

12-15

-—@ varian data machines

DATAPLOT |

12.5.3 End-of-Plot Indicator

The end of the plot indicator is shown in figure 12-8.

151413121110 9 8 7 6 5 4 3 2 1 0
077777

077777

077777

077777

Figure 12-8. End-of-Plot Indicator

12.6 EXAMPLE OF APPLICATION OF DATAPLOT |l

12.6.1 Program to Generate Sine Wave

SAMPLE PLOT (BDPOM/VDPOM CALLS)

ann

DIMENSION XAR (34),YAR(34),
IBUFF(1000)
XAR (33) = 0.0
XAR (34) = 1.0
YAR (33) = -100.0
YAR (34) = 100.0
CALL PLOTS (IBUFF,1000,5)
CALL MLTPLE (1)
CALL PLOT (1.0,1.0,-3)
XVA = 0.0
DO 200 I = 1,32
XVA = XVA + 0.25
XAR (I) = Xva
200 YAR (I) =100.0 + 200.0* SIN(XVA)

PLOT AXES, DATA

ann

CALL AXIS (0.0,0.0,6HY-AXIS,
6,4.0,90.0,YAR(33),YAR(54)

CALL AXIS (0.0,0.0,6HX~AXIS,
-6,8.0,0.0,XAR(33),XAR(34)
CALL LINE (XAR,YAR,32,1,-1,1)
CALL PLOT (0.0,0.0,999)
CALL EXIT
END

(END-OF-FILE)

12-16

C
C SAMPLE PLOT (BDPOM/MDPOM CALLS)
C
DIMENSION XAR (34), YAR (34),
IBUFF (1000)
XAR (33) = 0.0
XAR (34) = 1.0
YAR (33) = -100.0
YAR (34) = 100.0
CALL PLOTS (IBUFF, 1000, 5)
CALL ORIG (1.0, 1.0)
XVA = 0.0
DO 200 I = 1, 32
XVA = XVA + 0.25
XAR (I) = XVA
200 YAR (I) = 100.0 + 200.0 * SIN (XVA)
c
C PLOT AXES, DATA
C
CALL AXIS (0.0, 0.0, 4.0, 1,
6HY-AXIS, -6, YAR (33),
YAR (34))
CALL AXIS (0.0, 0.0, 8.0, O,
6HX-AXIS, 6, XAR (33),
XAR (34))
CALL DATA (XAR, YAR, 32, 1, -1, 1)
CALL PLOT (0.0, 0.0, 999)
CALL EXIT
END
@= Dn.;.n pBoo
g .

Y-AXIS =10°
0.00 1.00
L
=1
a

1.00
o

VTI1-3095
Figure 12-9. Sine Wave Plot Generated by DATAPLOT II

12.6.2 Program to Generate
Communication Network

SAMPLE COMMUNICATIONS NETWORK

aan

DIMENSION IBUFF (1000),

XAR(12) ,YAR(12)

CALL PLOTS (IBUFF,1000,5)
c BUILD END-POINTS

DO 10 I = 1,12

X = 6.283 * FLOAT (I)/12.0

YAR(I) = 5.0 * SIN (X)+7.0

10 XAR(I) = 5.0 * COS(X)+7.0

varian data machines

C DRAW THE LINES
DO 30 I1 = 1,11
K=1I14+1
DO 30 I2 = K, 12

30 CALL VECT (XAR(I1),YAR (I1),
XAR(I12),YAR(I2))
CALL PLOT (0.0,0.0,-3)
CALL EXIT
END
(END-OF-FILE)

VTII-3094

Figure 12-10. Communication Network Plot
Generated by DATAPLOT 1l

12.7 OPERATING PROCEDURES AND
ERROR MESSAGES

12.7.1 VORTEX Operating Procedures

Use of the DATAPLOT 1l plot generation routines requires
the preparation of FORTRAN programs which make
appropriate calls to the FORTRAN and VDM 70/620
assembly language programs.

The user may execute in a compile-and-go mode by ending
his program with a call to PLOT (x,y,999) or PLOT (x,y,-i}
and the plot output device assigned to the STATOS printer/
plotter (Ref. paras 12.4.2).

DATAPLOT I

12.7.2 Unsorted Plot Files

Unsorted plot files may be output by VORTEX DATAPLOT II
by transferring the plot file to an RMD (if not already
there) by IOUTIL or the APPEND subroutine, and calling
the following subroutines:

DIMENSION
CALL DPINIT () if necessary
CALL PLOTS ()

CALL DPSORT
CALL DPPLOT
CALL EXIT
END

12.7.3 Presorted Plot Files

Files which have been presorted may be in physical records
whose length is any multiple of four 16-bit words. There is
no restriction on the number of records which may be
processed, other than the physical capacity of the periph-
eral device. The file must have been sorted on the
numerical value of the X1's, in descending order. Each X1
must be greater than or equal to its associated X2. An end-
of-plot indicator (four words containing 077777) must
appear at the end of the significant data in the last record.

Presorted plot files may be output by VORTEX DATAPLOT
Il by assigning the plot file to the physical unit containing
the plot file (DPINIT) and calling the following routines:

DIMENSION

CALL DPINIT () if necessary
CALL PLOTS ()

CALL DPPLOT

CALL EXIT

END

12.7.4 VORTEX Special Procedures

The VORTEX DATAPLOT Il package may be executed in
one, two, or three sections. No special modifications are
necessary to build, sort, and output the plot file in one
module.

Sorting and outputting the plot file may be separated from
building the plot file by supplying dummy sorting and
outputting routines. For example, this method may be used
if it is desired to build the plot file in the background and
output the plot file from the foreground. Subroutine PLOTS
must be included in each section or an error (DP05) will be
output.

12-17

varian data machines

DATAPLOT I

Example:

/FORT,B,L,M

Cc

12-18

BUILD THE PLOT FILE
DIMENSION IBUFF (130)

CALL DPINIT (25,2H6K,6HFILEDD,
120,88)

CALL PLOTS (IBUFF,124,27)

CALL AXIS (1.0,1.0,4HAXIS,4,5.0,
0.0,0.0,1.0)

CALL PLOT (0.0,0.0,999)
CALL EXIT
END

DUMMY SUBROUTINES
SUBROUTINE DPSORT
RETURN

END

SUBROUTINE DPPLOT
RETURN

END

/FORT,B,L,M

C SORT AND OUTFPUT THE PLOT FILE
DIMENSION IBUFF (1000))
CALL DPINIT (25,2HbK, 6HFILEDbD,
120,88)
CALL PLOTS (IBUFF,1000,27)
CALL DPSORT
CALL DPPLOT
CALL EXIT
END

The above programs referenced the plot file named FILE on
logical unit number 25, protection code K.

The IBUFF in the first program only needs to be the plot
file record size (120) plus 22. The size of IBUFF in the
second program may be increased to provide faster sorting
when large plot files are generated.

varian data machines —_

SECTION 13
SUPPORT LIBRARY

The VORTEX system has a comprehensive subroutine FORTRAN |V: General form:

library directly available to the user. The library contains

mathematical subroutines to support the execution of a statement number CALL S(p(1),p(2),....p(n))
program, plus many commonly used utility subroutines. To

use the library, merely code the proper call in the program, Generated code:

or, for the standard FORTRAN IV functions, implicitly

reference the subroutine (e.g.,, A = SQRT(B) generates a JMPM S
CALL SQRT(B)). All calls generate a reference to the DATA q(1)
required routine, and the load-module generator brings the DATA q(2)
subroutine into memory and links it to the calling program. .

The performance of several routines in the support library .

is improved through the use of the V70 series Floating
Point Firmware on V70 series systems having Writable
Control Store (WCS). The necessary firmware and library
routines which call the firmware are added to the Object
Module Library (OM) by executing the supplemental WCS
job stream supplied with the System Generation Library.

DATA q(n)

Where q(i) = p(i) if p(i) is a single variable or array name.
Otherwise, q(i) = address containing p(1).

13.1 CALLING SEQUENCE 13.2 NUMBER TYPES AND FORMATS

The subroutines in the support library are called through
DAS MR or FORTRAN IV. Integers use one 16-bit word. A negative number is in two's
DAS MR: General form: complement form. An integer in the range - 32,767 to
+ 32,767 can be stored as an integer.
label CALL S,p(1),p(2),...p(n)

Expansion: Real numbers use two consecutive 16-bit words. For a
positive real number, the exponent (in excess 0200 form) is
label JMPM S in bits 14 to 7 of the first word. The mantissa is in bits 6 to
DATA p(1) 0 of the first word and bits 14 to O of the second word. The
DATA p(2) sign bit of the second word is zero. The negative of this
. number is created by one's complementing the first word.
. Any real number in the range 105" can be stored as a
. single-precision floating-point number having a precision of
DATA pin) more than six decimal digits.

Single-Precision Floating-Point Numbers

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
n) s —--——-- Exponent~-----——- ----High Mantissa----
n+1) 0 ——————mm— Low Mantissa---—=--—----————-——

Double-precision floating-point numbers use four consecu-
tive 16-bit words. The exponent (in excess 0200 form) is in
bits 7 to 0 of the first word. The mantissa of a positive
number is in the second, third, and fourth words. Bit 15 of
the second, third and fourth words and bits 15 to 8 of the
first word are zero. The negative of this number is created
by one’s complementing the second word. Any real number
in the range 105 can be stored as a double-precision
floating-point number having a precision of more than 13
decimal digits.

Double-Precision Floating-Point Numbers

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
n) 0 ¢ 0 0 0 0 0 0 -———————- Exponent--------
n+1) 8 ———mmmmm—— e — e High Mantissa----——----—-——————-
n+2) 0 —-———m—m—— - Mid Mantissa---—-—-—————-———---
n+3) 0 —---mm—m————————— Low Mantissa-------—------—-—-—-

13-1

——@ varian data machines

SUPPORT LIBRARY

13.3 SUBROUTINE DESCRIPTIONS

The following definitions and notation apply to the
subroutine descriptions given in this section:

Notation Meaning
AB Hardware A and B registers
AC Four-word software accumulator for double-

precision numbers

ACCZ Four-word accumulator for complex numbers
(the real part is in AB and the imaginary
part is in a temporary cell in subroutine V$8G)

r A real number

S A six-character ASCIl string
X Hardware X register

z A complex number

Exponentiation

An additional name in parentheses indicates a replace-
ment by standard firmware. For example, $SE(FSE)
indicates the firmware routine FSE replaces $SE on 70
series systems using standard firmware. Section 20.2
describes standard firmware.

The external references in table 11.-2 refer to items in
tables 11-1 and 11-2. A subroutine with more than one
name is indicated by multiple calls under Calling Sequence.

Table 13-1. DAS Coded Subroutines

d A double-precision number
f Two-word, fixed-point number
i An integer
Name Function
$HE Given: A contains il,

in A compute i1*%i2.

$PE Given: AB contains r,
in AB, compute r##i.

$QE Given: AB contains rl,
in AB, compute rl1*%r2.

ALOG In AB, compute inr. If r =0,
output message FUNC ARG and
exit with A=B=0 and
overflow =1.

EXP In AB, compute e**r. If there
is underflow, AB=0. If
overflow, AB =maximum real
number and the message FUNC
ARG is output. In both
cases, overflow = 1.

ATAN In AB, compute arctan r

SINCOS In AB, compute cos r with
COS, or sin r with SIN

SQRT In AB, compute square root of r

FMULDIV Given: AB contains rl, in AB,
compute r1*r2 with $QM, or
rl/r2 with $QN. If there is
underflow, AB=0. If
overflow, AB =maximum value
and the message ARITH OVFL is
output. In both cases,
overflow = 1.

13-2

Calling Sequence External References

CALL $HE,i2 $SE(FSE), $HM
CALL $PE,i $SE(FSE), $QM, $ON
CALL $QE.r2 ALOG, $QM, EXP, $SE(FSE)
CALL ALOG,r $EE, $QK(FAD), $QM, XDMU,
XDAD, $NML, XDDI,
XDSU, $SE(FSE), $PC, $QL(FSB),
$QN
CALL EXP,r XDMU, $QK(FAD), $NML, $EE,
$QM, $QN, $SE(FSE)
CALL ATAN,r $QM, $QL(FSB), $QN, $QK(FAD)
$SE(FSE)
CALL COS,r $QK, $QL(FSB), $QM, $QN,
CALL SIN,r $SE(FSE)
CALL SQRT,r XDDI, $FSM, $SE(FSE)
CALL $QM,r2 XDMU, $FMS, XDDI,
CALL $QN,r2 $SE(FSE), $EE, $NML

Name

FADDSUB

SEPMANTI

FNORMAL
XDDIV
XDMULT
XDADD
XDsuB
XDCOMP

$FLOAT

$IFIX

IABS
ABS

ISIGN

SIGN

$HN

$HM

DSINCOS

DATAN

Table 13-1. DAS

Function

Given: AB contains rl, in AB,
compute rl +r2 with $QK, or

rl —r2 with $QL. If there

is underflow, AB=0. If

overflow, AB =maximum value
and the message ARITH OVFL is
output. In both cases,

overflow =1.

Separate mantissa and
characteristic of r into AB
and X, respectively

In AB, normalize r

In AB, compute f1/f2

In AB, compute f1%f2

In AB, compute f1 +f2

In AB, compute fl —f2

In AB, compute negative of f
In AB, convert the i in A

to floating-point and, for
$QS, store result in r

In A, convert the r in AB

to i and, for $HS, store
result in i

In A, compute absolute i

In AB, compute absolute r

Set the sign of il, in A,
equal to that of i2

Set the sign of rl, in AB,
equal to that of r2

Given: A holds i1,
in A, compute i1/i2

Given: A holds i1, in A
compute i1¥i2

In AC, compute sin d or cos d

In AC, compute arctan d

Coded Subroutines (continued)
Calling Sequence

CALL $QK,r2
CALL $QL.r2

CALL $FMS
CALL $FSM
CALL $NML
CALL XDDI,f2
CALL XDMU, 2
CALL XDAD.f2
CALL XDSU,f2
CALL XDCO
CALL $PC

CALL $QSr

CALL $iC

CALL $HS,i
CALL I1ABS,i
CALL ABSr

CALL 1SIGN,i2

CALL SIGN,r2

CALL $HN,i2

CALL $HM,i2

CALL $DSId
CALL $DSIN,d
CALL $DCO,d
CALL $DCOS.d

CALL $DAN
CALL DATAN,d

varian data machines @——

SUPPORT LIBRARY

External References

$SE(FSE), $FSM, $NML, $EE

None

XDCO
XDSU, XDCO
XDAD, XDCO
None
None
None

$SE(FSE)

$SE(FSE), $EE

$SE(FSE)
$SE(FSE)

$SE(FSE)

$SE(FSE)

$SE(FSE), $EE

$SE(FSE), $EE

$STO,$DNO, $ZC, $ZK, $ZL,
$SE(FSE), $ZM, $ZN, AC
$DLO

$DLO, $STO, $DAD,
$DSU, IF, $SE(FSE),
AC, $DMP, $DDI,
POLY

13-3

SUPPORT LIBRARY

Name

DEXP

DLOG

POLY

CHEB

DSQRT

$DFR

IDINT

DMULT

DDIVIDE

DADDSUB

DNORMAL

DLOADAC

DSTOREAC

RLOADAC

SINGLE
DOUBLE

DBLECOMP

$3S

13-4

_@ varian data machines

Table 13-1. DAS Coded Subroutines (continued)

Function

In AC, compute exponential d

In AC, compute In d

In AC, compute double-precision
polynomial with t terms,
coefficient list starting at
address ¢, and argument at
address y

In AC, compute shifted
Chebyshev polynomial series
with t+1 terms and coefficient
list starting at address c

In AC, compute square root
of d

In AC, compute fractional
part of d

In AC, compute integral
part of d

In AC, compute d1%d2

In AC, compute d1/d2

In AC, compute dl +d2 with
$DAD, or d1 - d2 with
$DSU

In AC, normalize d

Load AC with d

Store AC in d

Load A with double-precision
mantissa sign word from AC

In AB, convert the d in AC to r
In AC, convert the r in AB to d

In AC, compute negative of the
d in AC

Store AB in memory address m

Calling Sequence

CALL $DEX
CALL DEXPd

CALL DLOG,d
CALL $DLN

CALL POLY,t.cy

CALL CHEB,t,c

CALL $DSQ,d
CALL DSQR,d

CALL $DFR.d

CALL $DIT,d
CALL IDINT.d

CALL $DMP,d2
CALL $ZM,d2

CALL $DDI,d2
CALL $ZN,d2

CALL $DAD,d2
CAL $DSU,d2
CALL $ZK,d2
CALL $ZL.d2
CALL $DNO

CALL $DLO,d
CALL $ZF d

CALL $STOd
CALL $ZS.d

CALL $ZI

CALL $RC
CALL $YC

CALL $zC

CALL $3S,m

External References

$DLO, $STO,
$SE(FSE), AC, $DNO, $EE,
$ZC, $ZK, $ZL, $ZM, $ZN

$DLO, $STO, $DNO, $EE
$SE(FSE), $ZK, $ZL, $ZM, $ZN

$DLO, $DAD, $DMP

$DLO, $STO, $DAD,
$DSU, $DMP

$DLO, $STO, $DNO,
$DAD, $DMP, $DDI,
$SE(FSE), AC

$DLO, $DNO, $DSU,
$DIT, AC, $SE(FSE)

$DNO, $SE(FSE)
$DLO, $STO, $DNO,
$DAD, AC, $SE(FSE)

$DLO, $STO, $DNO,
$DSU, AC, $SE(FSE)

$STO, $DLO, $DNO,
AC, $SE(FSE), $EE

$SE(FSE)

AC, $SE(FSE)

AC, $SE(FSE)

AC

AC
AC

AC

$SE(FSE)

varian data machines @]—

SUPPORT LIBRARY

Table 13-1. DAS Coded Subroutines (continued)
Name Function Calling Sequence External References

AZ2MT Translate in memory a character CALL A2MT,n,s,e None
string of length n starting
at s and ending at e from
eight-bit ASCII to six-bit
magnetic tape BCD code

S is the start of the ASCH block
and e is the start of the BCD block.

MT2A Translate in memory a character CALL MT2A,n,s,e None
string of length n starting at
s and ending at e from six-bit
magnetic tape BCD code to
eight-bit ASCII

s is the start of the BCD block
and e is the start of the ASCII block.

EXIT Formats and executes an RTE CALL EXIT V$EXEC
EXIT macro '
SUSPND Formats and executes an RTE CALL SUSPND(i) VSEXEC

SUSPND macro with parameter i.

RESUME Formats and executes an RTE CALL RESUMEC(s) V$EXEC, $RTENM
RESUME macro to resume task s.

ABORT Formats and executes an RTE CALL ABORT(s) V$EXEC, $RTENM
ABORT macro to abort task s.

ALOC Formats and executes an RTE CALL ALOC(s) VSEXEC
ALOC macro to call reentrant
subroutine s.

PMSK Formats and executes an RTE CALL PMSK(il, V$EXEC
PMSK macro to operate on PIM i2,i3)
il with line mask i2 and
enable/disable flag i3.

DELAY Formats and executes an RTE CALL DELAY(il, V$EXEC
DELAY macro with the 5- i2,i3)
millisecond count in il, the
minute count in i2, and delay
mode in i3.

TIME Formats and executes an RTE CALL TIME(i1,i2) V$EXEC
TIME macro with the minute
count in il and delay mode

in i2.
OVLAY Formats and executes an RTE CALL OVLAY(il, V$EXEC, $SRTENM
OVLAY macro with il = 0 to i2,s)

execute, i2 = 0 to load, and
s is the overlay name.

SCHED Formats and executes an RTE CALL SCHED(i1, i2, VS$EXEC, $RTENM
SCHED macro with il = priority, i3,51,52)
i2 = wait flag, i3 =
logical-unit number, sl = key
and s2 = task name.

135

—@] varian data machines

SUPPORT LIBRARY

$RTENM

$EE

$SE

Name

$9E

CCOS

CSIN

CLOG

CEXP

CSQRT

CABS

CONJG
$AK

$AL

$AM

$AN
$AC

CMPLX

$8K

$8L

$8M

13-6

Table 13-1. DAS Coded Subroutines (continued)

Moves the six-character name
from X to B

Qutputs error messages on
the SO device.

Fetches n parameters from a
subroutine call

Table 13-2. FORTRAN

Function

Compute ACCZ**i

In ACCZ, compute cos z

In ACCZ, compute sin z

In ACCZ, compute In z

In ACCZ, compute exponential z

In ACCZ, compute square root of z

In AB, compute absolute z

In ACCZ, compute conjugate of z
Add r to real part of ACCZ

Subtract r from the real
part of ACCZ

Multiply ACCZ by r
Divide ACCZ by r

Convert AC to z and store in ACCZ
Load ACCZ with a value having

a real part rl and an imaginary
part r2

Add z to ACCZ

Subtract z from ACCZ

Multiply ACCZ by z

CALL $RTENM

CALL $EE

CALL $SE, n
BSS n

IV Coded Subroutines

Calling Sequence

CALL $9E(i)

CALL CCOS(z)

CALL CSIN(z)

CALL CLOG(z)

CALL CEXP(2)

CALL CSQRT(2)

CALL CABS(z)

CALL CONJG(z)
CALL $AK(r)

CALL $AL(N)

CALL $AM(r)

CALL $AN(r)
CALL $AC

CALL CMPLX(r1,r2)

CALL $8K(2)
CALL $8L(2)

CALL $8M(2)

None

V$I0C, V$I0ST,
V$EXEC

None

External References

$SE(FSE), IABS, $8F,
$3M, $8N, $8S

$SE(FSE), CSIN, $8F,
$8K, $8S

$SE(FSE), EXP, $QN,
SIN, $QK(FAD), $QM,
COS, $QL(FSB), $8F
$SE(FSE), ALOG, $QM,
$QK(FAD), $QN, ATAN2,
$8F

$SE(FSE), EXP, COS,
$OM, SIN, $8F

$SE(FSE), SQRT, CABS
$QK, $ON, $8F

$SE(FSE), SQRT, $QM,
$QK(FAD)

$SE(FSE), $8F
$SE(FSE), $8S, $QK(FAD), $8F

$SE(FSE), $8S, $QL(FSB), $8F

$SE(FSE), $8S, $QM, $8F

$SE(FSE), $8S, $QM, $8F
$3S, CMPLX

$SE(FSE), $8F

$SE(FSE), $8S, $QK(FAD), $8F
$SE(FSE), $8S, $QL(FSB), $8F

$SE(FSE), $8S, $QM,
$QL(FSB), $QK(FAD), $8F

Name

$8N

$z2D

AIMAG

$0C

REAL
$8F
$8S

$XE

$YE

$ZE

DATAN2

DLOG10

DMOD

DINT

DABS

DMAX1

DMIN1

DSIGN

$YK

$YL

$YM

varian data machines @——

SUPPORT LIBRARY

Table 13-2. FORTRAN IV Coded Subroutines (continued)

Function

Divide ACCZ by z

Compute negative of z

Load AB with the imaginary
part of z

Load AB with the real part of
ACCZ

Load AB with the real part of z
Load ACCZ with z
Store ACCZ in z

Compute d**i where d is in AC

Compute d**r where d is in AC

Compute d1**d2 where dl is in AC

In AC, compute arctan (d1/d2)

In AC, compute log d

In AC, compute d1 modulo d2

In AC, compute integer
portion of d

In AC, compute absolute d

In AC, select the maximum value

in the set dl, d2,....dn

In AC, select the minimum value
in the set dl, d2,....dn

Set the sign of dl equal to
that of d2

Add r to AC

Subtract r from AC

Multiply AC by r

Calling Sequence

CALL $8N(z)

CALL $zD

CALL AIMAG(z)

CALL $0OC

CALL REAL(z)
CALL $8F(2)
CALL $8S(z)

CALL $XE(i)

CALL $YE(r)

CALL $ZE(d2)

CALL DATAN2(d1,d2)

CALL DLOG10(d)

CALL DMOD(d1,d2)

CALL DINT(d)

CALL DABS(d)

CALL DMAX1(d1,d2
...,dn,0)

CALL DMIN1(d1,d2
...,dn,0)

CALL DSIGN(d1,d2)

CALL $YK(r)

CALL $YL(r)

CALL $YM(r)

External References

$SE(FSE), $8S, $QM,
$QK(FAD), $QN, $QL(FSB), $8F

$8S, $8F

$SE(FSE)

$8S

$SE(FSE)
$SE(FSE)
$SE(FSE), $3S

$SE(FSE), $ZF, MOD, $ZM,
$HN, $ZN, $ZS

$SE(FSE), $ZS, DBLE,
$ZE, $ZF

$SE(FSE), $ZS, DEXP,
DLOG, $ZM

$SE(FSE), $ZF, $ZS,
$Z1, $ER, $ZN,

$ZL, $ZK, DATAN
$SE(FSE), DLOG, $ZM
$SE(FSE), DINT, $ZF,
$ZN, $Z8S, $ZM,

$ZL, $ZC

$SE(FSE), $ZF, $JC, $XC

$SE(FSE), $ZF, $Z1, $2C

$SE(FSE), $ZF, $ZS,
I$FA, $ZL, $ZI

$SE(FSE), $ZF, $ZS,
ISFA, $ZL, $2

$SE(FSE), $ZF, $ZI, $ZN

$SE(FSE), $ZS, DBLE, $ZK

$SE(FSE), $ZS, DBLE,
$ZL, $zZC

$SE(FSE), $ZS, DBLE, $ZM

13-7

SUPPORT LIBRARY

Name

$YN

DBLE

$XC

TANH

ATANZ2

ALOG10

AMOD

AINT

AMAX1

AMIN1

AMAXO

AMINO

DIM

FLOAT
SNGL

MAXO

MINO

MAX1

MIN1

MOD

13-8

—@ varian data machines

Table 13-2. FORTRAN 1V Coded Subroutines (continued)

Function

Divide AC by r

In AC, convert r to d

In AC, convert i to d where
iisin A

In AB, compute tanh r

In AB, compute arctan (r1/r2)

In AB, compute log r

In AB, compute rl modulo r2

In AB, truncate r

In AB, select the maximum value
in the set rl,r2,....,rn

In AB, select the minimum value
in the set rl, r2,...,rn

In AB, select the maximum value
in the set il,i2,...,in and

convert to r

In AB, select the minimum value

in the set il,i2,...,in and
convert to r

In AB, compute the positive
difference between rl and r2

In AB, convert i to r

In AB, convert d to r

n A, select the maximum value
in the set il,i2,...,in

n A, select the minimum value
n the set il,i2,...,in

In A, select the maximum value
n the set r1,r2,...,rn and
convert to i

In A, select the minimum value
in the set rl,r2,...,rn and
convert to i

In A, compute il modulo i2

Calling Sequence

CALL $YN(r)

CALL DBLE(r)

CALL $XC
CALL TANH(r)
CALL ATAN2(r1,r2)

CALL ALOG10(r)

CALL AMOD(r1,r2)

CALL AINT(r)

CALL AMAXI1(r1,r2)
...,rn,0)

CALL AMINI1(r1,r2)
...,rn,0)

CALL AMAXO(i1,i2,
..,in,0)

CALL AMINO(i1,i2,
..,in,0)

CALL DIM(rl,r2)

CALL FLOAT(i)
CALL SNGL(d)

CALL MAXO(il,i2,
..,in,0)

CALL MINO(il,i2,
...,,in,0)

CALL MAXI(rl,r2,
...,rn,0)

CALL MINI(r1,r2,
...,rn,0)

CALL MOD(i1,i2)

External References

$SE(FSE), $ZS, DBLE,
$ZF, $ZN

$SE(FSE), $YC

$PC, $YC

$SE(FSE), $QK(FAD), EXP,
$QL(FSB), $QON

$SE(FSE), $ER, ATAN,
$QK(FAD), $QL(FSB), $QN

$SE(FSE), ALOG, $QM

$SE(FSE), AINT, $ON,
$QOM, $QL(FSB)

SE(FSE), $IC, $PC

SE(FSE), I$FA, $QL(FSB)
SE(FSE), I$FA, $QL(FSB)

SE(FSE), I$FA, FLOAT

SE(FSE), I$FA, FLOAT

$SE(FSE), $QL(FSB)

$SE(FSE), $PC
$SE(FSE), $ZF, $RC

SE(FSE), I1$FA
$SE(FSE), I$FA

$SE(FSE), ISFA, $QL(FSB), IFIX
$SE(FSE), I1$FA, $QL(FSB), IFIX

$SE(FSE), $HN, $HM

Name

INT

IDIM

IFIX

$JC

Table 13-2. FORTRAN IV Coded Subroutines (continued)

Function

In A, truncate r and convert
toi

In A, compute the positive
difference between il and i2

In A, convert r to i

In AC, convert d to i and store
result in A

Calling Sequence

CALL INT(r)

CALL IDIM(il,i2)

CALL IFIX(r)

CALL $JC

varian data machines @—

SUPPORT LIBRARY

External References
$SE(FSE), $I1C

$SE(FSE)

$SE(FSE), $IC

$RC, $IC

139

——@ varian data machines

varian data machines

SECTION 14
REAL-TIME PROGRAMMING

VORTEX real-time applications allow the user to interface
directly with special devices, develop software that is
interrupt-driven, and utilize reentrant subroutines. Four
areas are covered in this section:

. Interrupts
. Task-scheduling
. Coding reentrant subroutines

. Coding 1/0 drivers

14.1 INTERRUPTS

14.1.1 External Interrupts

Priority interrupt module (PIM) hardware: A PIM com-
prises a group of eight interrupt lines and an eight-bit
register. The register holds a mask where each set bit
disarms a line. VORTEX allows up to eight PIMs for a
maximum of 64 lines. The system of PIMs and lines is
called the external interrupt system.

The processing of external interrupts is controlled by the
programmed status of the line. The lines are continuously
hardware-scanned, regardless of the status.

If more than one interrupt is detected on a single scan, the
highest-priority line is acknowledged, and, if the PIM is
enabled and the line armed, the interrupt is taken. If no
conflict occurs, the lines are acknowledged on a first-in/
first-out basis. If a signal is received on a disabled PIM, it
is stored by the PIM, and causes an interrupt when the
PIM is enabled.

Disabling the external interrupt system prevents any
interrupt from entering the computer. Enabling the entire
system allows acknowledgement of all interrupts. Enable/
disable selection on a PIM basis allows for more selected
control of the system. Individual line selection prevents
receiving a second interrupt while a line is still processing
the first.

Program-clearing of PIM registers causes the PIM to ignore
interrupts received on lines that are busy processing an
interrupt or held off because of priority.

All PIMs and interrupt lines to be used in VORTEX are
specified at system-generation time and their status
specified when VORTEX is loaded and initialized. VORTEX
does not disable any line unless so directed by RTE service
request PMSK (section 2.1.6).

When a PIM interrupt signal is acknowledged and the
interrupt taken, the computer executes the instruction in a
selected memory location. Under VORTEX, PIM addresses

are from 0100 to 0277. Linkage to VORTEX interrupt-
processing routines is accomplished by a jump-and-mark
instruction in the interrupt location. Unspecified lines are
preset in VORTEX with no-operation instructions that
ignore unspecified or spurious interrupts.

Since VORTEX always includes memory protection, certain
instruction sequences cannot be interrupted and acknowl-
edgement is delayed until they are complete. These include
the instruction following an external control, halt, execu-
tion, or any instruction manually executed in step mode.

VORTEX interrupt line handlers: At system-generation
time, a user specifies all interrupt-driver tasks. These
include those that allow VORTEX to service the interrupt, as
well as those that are directly connected and service the
interrupt themselves. Then, VORTEX constructs a line-
handler for each interrupt in the system (figure 14.1).

Directly connected routines preempt VORTEX and are thus
used only when response time demands it. The rules for the
use of directly connected routines are:

a. All volatile registers used by the routine are restored
before returning to the interrupted task.

b. Interrupts remain disabled during processing.
c. 10C and RTE calls are not allowed.
d. Execution timeis minimal.

e. PIM interrupts are enabled before returning to the
interrupted task through word 0O of the line handler. The
real time clock (RT clock) is enabled only if the task is
not the VORTEX RT clock processor (location 0300,
V$CTL, contains 037 if the VORTEX RT clock proces-
sor is interrupted).

Common interrupt handler: The common interrupt han-
dler is the interface between PIM interrupts (via the line
handlers) and system or user interrupt-processing tasks.
Upon entry, the contents of the volatile registers are saved
and the interrupt event word is inclusively ORed into the
event word of the specified TIDB. A check then determines
whether to return to the interrupted tasks or to enter the
interrupt-processing task, depending upon priority. All
interrupts are enabled upon leaving the common interrupt
handler.

Interrupt-processing tasks: A task is activated by an
interrupt when: (1) task’'s TIDB interrupt-expected status
bit is set, (2) the interrupt event word contains a nonzero,
and (3) the task is suspended.

The interrupt-processing task can be memory-resident or
RMD-resident. In either case, the processing task clears the

14-1

— varian data machines

REAL-TIME PROGRAMMING

event word and the interrupt-expected status bit to lock
out further interrupts until processing is complete. The event
word distinguishes different interrupt lines that could acti-
vate the same task.

An interrupt-processing task can exit with one of the c.
following options:

a. Issue a suspend RTE (type 1 or 2) service call that

b. Issue a delay RTE (type 2 or 3) service call that
suspends the task and sets the interrupt-expected and
time-delay active status bits. The task is reactivated b.
when time-delay expires or upon receipt of external
interrupt or a simulated interrupt caused by 10C or
170 completions (type 3 only).

Upon entry, the event word non-zero indicates
interrupt activation by external or simulated interrupt
(1). Since 10C set the TIDB event word to a 1, the

event word in line handlers for external interrupts ¢
should be set to something other than 1 if a type 3
delay is to be used. The word also clears the time-
delay status bit upon reactivation. d

It should also be noted that for supspend (type 2) and
delay (type 3) service calls, bit 6 of TBPL word of
task's TIDB is set to cause 10C to set TBEVNT word to

14-2

Dedicated Interrupt Addresses Line Handlers TIDBs
— 0 Thread Word
0 Return Address ORed .
Address 1 Jump-and-Mark Instruction -3 Event Word
2 to Common lInterrupt Handler |—- .
0100 Jump-and-Mark Instruc- 3 Event Word Interrupt Stack:
1 tion to Line Handler 1 4 TIDB Location H A, B, X, OF, P,
0102 Jump-and-Mark Instruc- and Stack Pointer
3 tion to Line Handler 2 |—>0 Return Address .
. 1 Jump-and-Mark Instruction
(or, if directly con- 2 to Common Interrupt Handler ~0 Thread Word
nected interrupt) 3 Event Word :|:|0Red .
. 4 TIDB Location -3 Event Word
0276 Jump-and-Mark Instruc- .
7 tion to Line Handler 64 0 Return_Address Interrupt Stack:
1 Disable Clock Instruction A, B, X, OF, P,
2 Jump-and-Mark Instruction and Stack Pointer
3 to User Code -
4 Event word
User Code for
Directly
Connected
Interrupt Task

Figure 14-1. Interrupt Line Handlers

1 on 170 completion events. This bit is reset whenever
a suspend or delay service. call of a type other than
the ones mentioned above.

If RMD-resident, set the interrupt-expected status bit
and call EXIT to release space. (TIDB must be
resident.)

suspends the task and sets the interrupt-expected Timing Considerations: The time necessary to process an
status bit. Upon receiving the external interrupt or interrupt through the common interrupt handler depends
simulated interrupt (TBEVNT word in TIDB is set to on when the interrupt occurred:

1) caused by I0C or 1/0 completion events (type 2

only), the task continues execution following the a. If a task is interrupted and the interrupt-processing
request. task has a lower priority, the interrupt is posted, and

VORTEX returns control to the interrupted task in
approximately 56 cycles.

If a task is interrupted and the interrupt-processing
task has a higher priority, the interrupt is posted, and
VORTEX transfers control to the dispatcher (section
14.2.3) to start the higher-priority interrupt-process-
ing task (if all its conditions are met). The posting
time is 66 cycles, approximately.

If an interrupt occurs during a dispatcher scan, the
posting time is about 32 cycles. VORTEX returns to the
dispatcher to restart the scan.

If the real-time clock processor interrupts the interrupt
handler, the common interrupt handler posts the
interrupt and returns to the clock processor in
approximately 40 cycles.

varian data machines

14.1.2 Internal Interrupts

VORTEX recognizes and services internal interrupts related
to various hardware components. The processing routines
are all directly connected and are the highest-priority tasks
in the system.

Memory protection interrupt: When the background area
is active, it is run as an unprotected area of memory with
the rest of the system protected. In such a situation,
memory protection interrupts are generated when the
background task attempts to execute a " privileged"
instruction such as external control or halt, or attempts to
jump into, write into, or perform 1/0 on protected memory.
The memory protection routine processes all protection
violation interrupts and is the highest-priority interrupt in
the system.

Power failure/restart interrupt: An interrupt occurs when
the system detects a power failure. The VORTEX power
failure processor saves the contents of volatile registers and
the status of the overflow indicator, sets a power failure
flag, and halts with the | register set to 077.

Following the power-up sequence, the PF/R hardware
generates an interrupt. Upon entry to the VORTEX power-
up procesor, the power-failure flag is checked. A power-
down sequence must have occurred or else a fatal error
condition is assumed to have occurred and VORTEX halts
with the | register set to 077.

If a power-down sequence had occurred, the power-failure
flag is cleared, the PIM mask registers are set, the real-
time clock’s variable interrupt interval is set, the saved
volatile registers are restored, map registers are reloaded,
the clock and PIMs are enabled (if enabled upon inter-
rupt), and control is returned to the location before the
interrupt. Any input or output data transfers in operation
at the time of the power failure result in the loss of data.

For peripheral devices such as magnetic tapes and RMDs,
the 1/0 operation is automatically retried.

For other peripheral devices, such as the card reader,
paper-tape system, card punch and lineprinter, a retry is
not attempted.

The error message posted depends upon the error detected
by the respective 1/0 driver, such as abnormal BIC stop,
parity error, interrupt time-out, etc. Data losses on the

REAL-TIME PROGRAMMING

RMD due to power failure could cause VORTEX to
malfunction, but other devices which are not system-
resident are recoverable.

The power failure-restart routines operate at the second-
highest priority level in the system, which has memory
protection at the highest priority level.

The power-up routine reloads the volatile memory map
registers by scanning the TIDB thread and outputting the
map image for each task which has an assigned, non-
checkpointed map. Each task's map key number is
contained in TBKEY and the map image adddress con-
tained in TBMING.

The power-up routine also automatically reloads the
writable control store for systems with WCS. Sections
20.1.3 and 20.1.4 describe the manner in which the
microutility task saves the WCS image in the OM library file
named WCSIMG and how the WCS reload task, WCSRLD,
utilizes the file to restore the WCS content. The power-up
routine checks location 017 to determine if WCS has been
loaded. A zero value indicates no WCS. A non-zero value is
assumed to be the WCSRLD TIDB address. The FL library
logical unit number and protect key are stored in TBRSTS
and the WCSRLD TIDB (resident TIDB, non-resident task)
is set active.)

Real-time clock interrupt: The real-time clock interrupt
provides the basis for timekeeping in VORTEX. It can be set
to a minimum resolution of 5 milliseconds. However, one
greater than 5 milliseconds (i.e., 10-20 milliseconds)
reduces overhead when the system does not have high-
resolution timekeeping requirements. Upon receipt of an
interrupt, the time-of-day is updated and the TIDBs are
scanned for any time-driven task requiring activation. PIMs
are disabled for approximately 18 cycles during real-time
clock interrupt-processing. The clock routine is the third-
highest priority interrupt in VORTEX.

14.1.3 Interrupt-Processing Task Installation

To install an interrupt-processing task that is not directly
connected, at system-generation time provide line handlers
and resident TIDBs by using a PIM directive (section
15.5.11) with r(n) and s(n) both zero and a TDF directive
(section 15.6.2) using the same task name in both
directives. Additional dummy TiDBs can be added during
system generation. (Once a TIDB is in the system, OPCOM
directive ;ATTACH can be used to connect different
interrupt-processing tasks to an interrupt line.)

14-3

varian data machines

REAL-TIME PROGRAMMING

Then, code the interrupt-processing task and add the task
via system generation to the VORTEX nucleus as a resident
task.

Then, use the ;ATTACH directive to link the resident task to
the interrupt line.

14.2 SCHEDULING

14.2.1 System Flow

VORTEX is designed around the TIDB (table 14-1). This
block contains all of the information about a task during
its execution. The setting and clearing of status bits in the
TIDB causes a task to flow through the system. Two
register stacks are saved within the TIDB: a reentrant
(suspend register) stack, and an interrupt stack.

The dispatcher (section 14.3) is the prime mover of tasks
through the system. When any function has reached a
termination point or has to wait for an |/0 operation, the
task gives control to the dispatcher, which then finds
another task to execute. A task maintains control until it
gives control to the dispatcher, or to the interrupt task if
the interrupt-processing task has a higher priority. The
contents of the interrupted task's volatile registers are
saved in its TIDB interrupt stack and control goes to the
dispatcher, which searches for the highest-priority active
task for execution.

Each TIDB is placed in sequence by priority level and
threaded. Two stacks are maintained in the system: a
busy stack and an unused stack. When a task is scheduled
for execution, a TIDB is allocated from the unused stack
and threaded onto the busy stack according to priority
level.

The status word of each TIDB, starting with the highest-
priority task, is scanned. Depending upon the setting of
status bits, the task is activated, passed over, or made to
activate a related system task.

Two resident system tasks are activated by the dispatcher
to process functions relating to the execution of a
task: (1) search, allocate, and load (SAL), and (2)
common system errors (ERROR). SAL searches, allocates,
loads, and exits a scheduled task. ERROR posts common
system error messages. These two tasks are not reentered
once they start execution, so the dispatcher holds tasks
requiring. identical functions until they are completed.
Then, the highest-priority waiting task is given control of
the required function.

14-4

In VORTEX, SAL allocates memory in 512-word blocks
starting with location 512 for background, or the first 512-
word block below the resident task directory for foreground
tasks. A foreground task is allocated into the first such
available area. If space is not available and the background
is in operation, the background task is checkpointed on the
RMD checkpoint file and its space allocated to foreground.
Upon release of this space by the foreground tasks, the
background is read in from the RMD and reactivated.

If space is required to load a program and the background
has already been checkpointed, the task waits for a
currently running task to exit and release memory.

The background memory allocation depends on the size of
the background task being loaded. Only the amount
needed is so allocated automatically, although the JCP
/MEM directive can allocate extra memory for a back-
ground task. Figure 14-2 is a VORTEX memory map, figure
14-3 shows the priority structure, table 14-1 is a description
of a TIDB, and table 14-2 is a detailed description of lower
memory.

14.2.2 Priorities

Thirty-two priority levels (O through 31) are provided in the
VORTEX system. Levels 2 to 31 are reserved for protected
foreground usuage. Level 26 is reserved for SAL2. Level 25
is reserved for the two VORTEX system tasks, SAL and
ERROR. Levels 24 and 23 are reserved for |/0O drivers. All
other foreground levels are available to the user. More than
one task per level can be scheduled.

Levels 1 and O are reserved for tasks running in the
background allocatable memory and residing in the
background library. Level 1 is reserved for VORTEX system
protected tasks, e.g., the job-control processor, the load-
module generator, the FORTRAN compiler, the DAS MR
assembler, etc. These tasks run with memory protection
disabled and can be checkpointed when their space is
needed by a foreground task. Level O tasks cannot modify
or destroy the system (figure 14-3).

Only one background task can be active and in memory at
any given time. If other background tasks have been
scheduled, the active background task must execute an
EXIT service request before the scheduled task(s) can be
loaded and executed. If a background task calls EXIT and
no tasks are scheduled for the background area, and the
requesting task is not the job-control processor, the JCP is
scheduled. Otherwise, there is a normal exit.

Address
0

512

Allocatable
Memory
Pool

M-7K™

M=

Highest
Memory
Address

varian data machines

REAL-TIME PROGRAMMING

Interrupt Location and System Pointers
Background Literal Pool

Protected
memory

Nonresident Background Tasks

Nonresident Foreground Tasks

Unprotected
memory is
allocated
starting at 512

Protected
memory is
allocated
starting from
high memory

- -

Resident Foreground User Tasks
and Subroutines

« System Common

+ Reentrant Stack

+ System and Unused TIDBs

« Line Handlers

« Common Interrupt Handler

+ Dispatcher

+ Executive Call Handler

+ Real-Time Clock

+ Memory Protection Processing
+ Power Failure/Restart

+ Real-Time Executive Services
- 10C

* Drivers

+ System Tasks (SAL and ERROR)

L Protected
memory

If a configuration increases memory, the allocatable
memory pool would increase and resident routines would
reside in a higher position in memory.

* 7K is enough room for the minimum VORTEX nucleus
components, plus four empty TIDB'’s and three |/ O drivers.
Users with more 1/0 devices or a greater number of TIDB's
will need more than 7K.

Figure 14-2. VORTEX Memory Map

14-5

]

REAL-TIME PROGRAMMING

Foreground
Priority
Levels

Background
Priority
Levels

14-6

varian data machines

Priority
Level
31
2;5 System Task SAL2
25 | VORTEX System Tasks SAL and ERROR
24 | Driver Tasks (Low-Speed Devices)
23 | Driver Tasks (High-Speed Devices)
22
11
10 | Operator Communication Task
9
2
1 | VORTEX System Protected Tasks
0 [User Unprotected Tasks

Figure 14-3. VORTEX Priority Structure

Symbol

TBTRD
TBST
TBPL
TBEVNT
TBRSA
TBRSB
TBRSX
TBRSP
TBRSTS
TBENTY
TBTMS
TBTMIN
TBISA
TBISB
TBISX
TBISP
TBISRS

TBIO

TBKN1
TBKN2
TBKN3
TBTLC
TBCPTH
TBATSK

TBRSE

TBSIZ

Word

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Task Thread

Task Status

Task Status Priority Level

Interrupt Event

A Register (Reentrant and Suspension Stack)

B Register (Reentrant and Suspension Stack)

X Register (Reentrant and Suspension Stack)

OF P Register (Reentrant and Suspension Stack)

Temporary Storage (Reentrant and Suspension Stack)

Task Entry Address

Time Counter - Clock Resolution Increments

Time Counter - Minute Increments

A Register (Interrupt Stack)

B Register (Interrupt Stack)

X Register (Interrupt Stack)

OF P Register (Interrupt Stack)

Reentrant Stack Address (Interrupt Stack)

varian data machines @]—-—

REAL-TIME PROGRAMMING

No. of 170 No. of 170
Requests Threaded Requests Active
Task Name
Task Name
Task Name

First Address in Allocatable Memory

Background Task Queue

Address of Scheduling TIDB

Task Error Code

Task Size Unused

Figure 14-4. TIDB Description

varian data machines

REAL-TIME PROGRAMMING

Table 14-1. TIDB Description

KEY:
Symbol Word Bits Set = Description

TBTRD 0 15-0 Task thread Points to next TIDB in
chain. Two queues are
maintained in the system:
active and inactive. V$TB
points to the highest-
priority active task.
V$UTB points to next
available inactive TIDB
space. Last TIDB on
queue has zero in
TBTRD.

TBST 1 15-0 Task status See table 15-5.
TBPL 2 15 Task opened Bit set when SAL has

opened task but not
loaded it (memory not

available).
14 Unused
13 Load overlay RTE overlay request
made by task with
overlay name in user
request.
12 Background Foreground task wait-
checkpoint ing for background 1/0
1/0 wait to complete so it can
be checkpointed to make
allocatable memory
available.
11 Allocation Overrides bits 9 and 12
override flag of TBPL and bit 5 of
TBST. When FNIS routine
of SAL releases memory
and/or a TIDB, sets bit
11 for tasks having bits
9 and 12 of TBPL and bit
5 of TBST set. SAL then
tries to allocate memory,
or scheduler, a TIDB
10 Background Background task being
being check- written on checkpoint
pointed file.
9 TIDB not Schedule request made
available but no TIDBs available
for allocation.
8 Unused
7 Unused

14-8

Symbol

TBPL
(continued)

TBEVNT

TBRSA

TBRSB

TBRSX

TBRSP

TBRSTS

TBENTY

TBTMS

Word

3

10

varian data machines

REAL-TIME PROGRAMMING

Table 14-1. TIDB Description (continued)

Bits

5-0

15-0

15-0

15-0

15-0

15

14-0

15-0

15-0

15-0

Set =

Unused

Task priority
level

Interrupt
event

A register
(reentrant
and suspen-
sion stack)

B register
(reentrant
and suspen-
sion stack)

X register
(reentrant
and suspen-
sion stack)

OF (overflow)
register (re-
entrant and
suspension
stack)

P register
(reentrant
and suspen-
sion stack)

Temporary
storage
(reentrant
and suspen-
sion stack)

Task entry

Time counter
(clock reso-
lution incre-
ments)

Description

Specifies priority level
(0-31) of task to be exe-
cuted.

Matches bits in interrupt-
handler calling sequence
(interrupt-handler event
inclusively ORed) into

TIDB word 3 when processed
by line handler; if a bit

sets while status bits 3

and 14 are set, dispatcher
activates task. Clears

event word before exiting.

I0C and RTE calls store
volatile register contents
in this stack (words 4-8).

Absolute address of first
executable data of a task.

Words 10 and 11 indicate
time left before execution.
(Clock routine increments
both words when bit 6 or
7 is set in status 1.)

14-9

varian data machines

REAL-TIME PROGRAMMING

Table 14-1. TIDB Description (continued)

Symbol Word Bits Set = Description

TBTMIN 11 15-0 Time counter
(minute in-
crements)

TBISA 12 15-0 A register Words 12-16 store volatile
(interrupt register contents during
stack) interrupt by higher-priority

task. (Upon reactivation,
words 12-16, volatile reg-
ister contents, and reen-
trant stack pointer are re-
stored and execution is

continued.)

TBISB 13 15-0 B register

(interrupt

stack)
TBISX 14 15-0 X register

(interrupt

stack)
TBISP 15 15 OF (overflow)

register (inter-

rupt stack)

14-0 P register
(interrupt
stack)

TBISRS 16 15.0 Reentrant
stack pointer
(interrupt
stack)
TBIO 17 15-10 Biock allo- Number of 512-word block
cation size for execution of task.
95 Number of Incremented by I0C when
170 requests 170 request is received,
threaded and decremented upon com-
pletion. (A task cannot
exit or abort until counter
is zero.)

4-0 Number of Incremented by I0OC when
active 1/0 it sets an 170 driver ac-
requests tive, and decremented upon

completion.
TBKN1 18 15-0 Task name First two characters of
six-character task name.
TBKN2 19 15-0 Task name Second two characters of

six-character task name.

14-10

Symbol

TBKN3

TBTLC

TBCPTH

TBATSK

TBRSE

Address
00-01
02-016
017

020,021

022,023

024,025

026,027

030,031

032,033

Word

20

21

22

23

24

varian data machines

REAL-TIME PROGRAMMING

Table 14-1. TIDB Description (continued)

Bits

15-0

15-0

15-0

15-0

15-0

Set =

Task name

First address
in allocatable
memory

Background
task queue

Address of
scheduling
task's TIDB

Task error

Description

Final two characters of
six-character task name.

Points to first address
allocated for use by task.

Any background task wait-
ing to be loaded in back-
ground allocatable memory
is queued through this
word. (A running back-
ground task can schedule
other background tasks,
but cannot load them
until space is available.)

Stores this address, and
upon EXIT or ABORT (if
bit 1 of TBST set) reac-
tivates scheduling.

Upon error, system rou-
tines store error codes
here and set error status
bit (4 of TBST). ERROR
routine decodes and prints
message.

Table 14-2. Map of Lowest Memory Sector

Symbolic Name

Description

CPU interrupt code (preset to NOP)

Unassigned:

available to the user

TIDB address for WCS reload task

Memory protection
(jump-and-mark to

Memory protection
(jump-and-mark to

Memory protection
(jump-and-mark to

Memory protection
(jump-and-mark to

Memory protection

interrupt: halt
V$MPER)

interrupt: 1/0

V$MPER)
interrupt: write
V$MPER)
interrupt: jump
V$MPJP)
interrupt: over-

flow (jump-and-mark to VEMPER)

Memory protection

interrupt: 170

overflow (jump-and-mark to V$MPER)

14-11

]

———@ varian data machines

REAL-TIME PROGRAMMING

Table 14-2. Map of Lowest Memory Sector (continued)

Address Symbolic Name Description

034,035 Memory protection interrupt: write
overflow (jump-and-mark to VEMPER)

036,037 Memory protection interrupt: jump
overflow (jump-and-mark to VSMPER)

040,041 Power-down interrupt (jump-and-mark
to V$PFDN)

042,043 . Power-up interrupt (jump-and-mark
to V$PFUP)

044,045 Variable-interval interrupt address
(jump-and-mark to V$CLOK)

046 V$CRDM Keypunch (0 = 026, 1 = 029):
Bit 0 SGEN nominal keypunch
Bit 9 Current keypunch speci-

fied by JCP /KPMODE
directive (/JOE, /FINI,
or /ENDJOB resets cur-
rent value to nominal

value)
047 V$JCTM JCP temporary storage
050-053 V$INAM Eight-character job name
054 VSLCNT Line count (set by a JCP /FORM

directive): used by DAS MR assem-
bler and FORTRAN compiler to deter-
mine the number of lines printed
before a top of form is issued.

055 V$JCFG JCP flags:

Bits 15-10 Number of extra mem-
ory blocks to be
allocated with back-
ground task (cleared
after loading)

Bits 9-5 Unused.

Bit 4 Dump flag if load and go

‘Bit 3 Dump flag (if set,
the background dumps
after a normal EXIT
or abortion)

Bits 2-0 Load-and-go flags

056-067 V$BIC1 BIC in sequence (maximurn 8)
070-073 V$DATE Eight-character date set up by

OPCOM directive ;DATE,mm/dd/yy

074 V$PLCT Permanent line count set up at
system-generation time

075 V$BGLB Protection code and logical unit
number of the BL unit

14-12

Address
076-077

0100-0117

0120-0137

0140-0157

0160-0177

0200-0217

0220-0237

0240-0257

0260-0277

0300

0301

0302

0303

0304

0305

0306

0307

0310

0311

varian data machines

REAL-TIME PROGRAMMING

Table 14-2. Map of Lowest Memory Sector (continued)

Symbolic Name

V$CTL

V$CPL

V$CRS

V$TB

V$UTB

V$PTVB

V$FLRS

V$LRSK

V$CKPT

V$OPCL

Description

FPP (Floating-Point Processor) interrupt

(jump and mark to VS$FPP)

PIM O jump-and-mark to individual
line handlers

PIM 1* jump-and-mark to individual
line handlers

PIM 2% jump-and-mark to individual
line handlers

PIM 3* jump-and-mark to individual
line handlers

PIM 4* jump-and-mark to individual
line handlers

PIM 5% jump-and-mark to individual
line handlers

PIM 6* jump-and-mark to individual
line handlers

PIM 7% jump-and-mark to individual
line handlers

Address of currently executing task
TIDB (0177777 = dispatcher, 037
real-time clock routine)

Priority level of currently executing
task

Address of current reentrant stack
(zero if the currently executing
task is not executing a reentrant
subroutine)

Address of highest-priority TIDB
in the active stack

Address of unused TIDB stack (zero
if no TIDB are available to be
allocated)

Address of next entry in reentrant
stack

Address of first location of re-
entrant stack

Address of last location of re-
entrant stack + 1

Checkpoint flag (set if background
checkpointed)

Address of TIDB for OPCOM task

* If PIM is not present, the space is available to the user.

14-13

varian data machines

REAL-TIME PROGRAMMING

14-14

Address

0312

0313

0314

0315

0316

0317

0320

0321

0322

0323

0324

0325

0326

0327

0330-0333

0334-0337

0340

0341

0342

0343

Symbolic Name

V$LSAL

V$LER

V$TJCP

V$BTB

V$LUP

VSLLUP

V$imM

V$MPM

V$CAM

V$CRDR

V$TBGT

V$TMS

Table 14-2. Map of Lowest Memory Sector (continued)

Description

Address of TIDB for systern SAL task

Address of TIDB for system ERROR
task

Address of TIDB for JCP task

Address of current active back-
ground task TIDB (zero if no back-
ground task active)

Address of first unprotected word
(memory address 01000)

Address of last unprotected word
(depends upon size of background
executing task)

Interrupt mask for PIM 0 (0 = enable,

1 = disable)

Interrupt mask for PIM 1
Interrupt mask for PIM 2
Interrupt mask for PIM 3
Interrupt mask for PIM 4
Interrupt mask for PIM 5
Interrupt mask for PIM 6
Interrupt mask for PIM 7

Memory protection mask (4 words),
0 = unprotected, 1 = protected
(words initially set to 0177777)
Core allocation mask (4 words),

0 = 512-word block available for
allocation, 1 = 512-word block in
use and not available for alloca-
tion (SGEN generates initial mask)
Reserved for future VORTEX use

Address of resident directory

Top of thread of background tasks
waiting for allocation

Time-of-day in 5-millisecond incre-
ments (fractions of a minute stored
in this word; upon reaching 1-minute
V$TMN increments, VETMS resets)

Address

0344

0345

0346

0347

0350

0351

0352

0353

0354

0355

0356

0357

0360

0361

0362

0363-0372

0373-0374

0375

0376

0377

0400

Symbolic Name

V$TMN

VSLUNT
V$OPCF

V$FGLB

V$FREE

V$CTMS

V$SCV

V$CKB

V$CRM

V$DSTB

VSLIT

V$CTAD

V$SCTL
VENCTR

V$PIMN

V$SLFG
V$ERFG
V$JOP

VELUTL

varian data machines @—

REAL-TIME PROGRAMMING

Table 14-2. Map of Lowest Memory Sector (continued)

Description

Time-of-day in minutes (full minutes
up to 24 hours stored in this word;
upon reaching 24 hours (24 x 60
minutes), VETMN resets)

Address of logical-unit name table

OPCOM lockout flag

Protection code and logical-unit
number of the FL unit

Reserved for future VORTEX use
Clock resolution in 5-millisecond
increments (user-specified milli-
second interrupt rate/5) speci-
fied at system-generation time
Selected clock count (1 to 4095)

([user-specified millisecond
interrupt rate] x [1000/V$CKB])

Basic clock interrupt rate in milli-
seconds

Clock resolution increments for frac-
tions of a minute in 5-millisecond
increments

Address of DST block

Last address in background literal
pool

Reserved for future VORTEX use

Base address for controller address
table

Current controller in scan
Number of controllers

External device address table for
PIMs

Reserved for future VORTEX use
System SAL task busy flag (1 = busy)
Error task busy flag (1 = busy)

JCP operating flag (1 = busy)
Starting address of logical-unit

table for JCP/OPCOM-assignable
logical units

14-15

varian data machines

REAL-TIME PROGRAMMING

14-16

Address

0401

0402

0403

0404-0407

0410

0411

0412

0413

0414

0415

0416

0417

0420

0421

0422

0423

0424

0425

0426

0427

Symbolic Name

V$LUT2

VSLUT3

V$IMIN

V$I0A

V$CKIT

V$JCB

V$0CB

V$BVN

V$BFC

V$TFC

V$PST
ZERO
BSO
BS1
BS2
BS3
BS4
BS5

BS6

Table 14-2. Map of Lowest Memory Sector (continued)

Description
Starting address of logical-unit
table for unreassignable logical
units
Starting address of logical-unit
table for OPCOM-assignable logical
units
Clock constant set up by SGEN where
V$IMIN = 32767 — (60000/(5*V$CTMS))
+ 1
Reserved for future VORTEX use
170 algorithm
Clock interrupted PIM before it
could be locked out (common inter-

rupt handler and clock-processor
flag)

Address of 41-word JCP buffer (all
system background programs and JCP
input directives into this system
buffer)

Address of 41-word OPCOM buffer
(OPCOM reads operator key-in re-
quests into this buffer; if JCP

is not active and a slash record

is read, OPCOM moves the directive
to V$JCB before scheduling JCP)
Bottom of VORTEX nucleus

Top of foreground area, bottom
of foreground blank common

Top of foreground blank common,
top of VORTEX nucleus core

Maximum RMD partitions in system
Zero word

Bit mask contents 0000001

Bit mask contents 0000002

Bit mask contents 0000004

Bit mask contents 0000010

Bit mask contents 0000020

Bit mask contents 0000040

Bit mask contents 0000100

Table 14-2. Map of Lowest Memory Sector (continued)

varian data machines @——

REAL-TIME PROGRAMMING

Address Symbolic Name Description

0430 BS7 | Bit mask contents 0000200
0431 BS8 Bit mask contents 0000400
0432 BS9 Bit mask contents 0001000
0433 BS10 Bit mask contents 0002000
0434 BS11 Bit mask contents 0004000
0435 BS12 Bit mask contents 0010000
0436 BS13 Bit mask contents 0020000
0437 BS14 Bit mask contents 0040000
0440 BS15 Bit mask contents 0100000
0441 BRO Bit mask contents 0177776
0442 BR1 Bit mask contents 0177775
0443 BR2 Bit mask contents 0177773
0444 BR3 Bit mask contents 0177767
0445 BR4 Bit mask contents 0177757
0446 BR5 Bit mask contents 0177737
0447 BR6 Bit mask contents 0177677
0450 BR7 Bit mask contents 0177577
0451 BR8 Bit mask contents 0177377
0452 BR9 Bit mask contents 0176777
0453 BR10 Bit mask contents 0175777
0454 BR11 Bit mask contents 0173777
0455 BR12 Bit mask contents 0167777
0456 BR13 Bit mask contents 0157777
0457 BR14 Bit mask contents 0137777
0460 BR15 Bit mask contents 0077777
0461 NEG Bit mask contents 0177777
0462 LHW Left-half word mask (0177400)
0463 RHW Right-half word mask (0000377)
0464 THREE Data word (000003)

14-17

varian data machines

REAL-TIME PROGRAMMING

Address

0465

0466

0467

0470

0471

0472

0473

0474

0475

0476

0477

0500-0777

14-18

Symbolic Name

FIVE

SIX

SEVEN

NINE

TEN

BM17

BM37

BM77

BM177

BM777

BM1777

Table 14-2. Map of Lowest Memory Sector (continued)

Description
Data word (000005)
Data word (000006)
Data word (000007)
Data word (000011)
Data word (000012)
Bit mask word (000017)
Bit mask word (000037)
Bit mask word (000077)
Bit mask word (000177)
Bit mask word (000777)
Bit mask word (001777)

Background literals and pointers

14.2.3 Timing Considerations (Approximate)

Real-time clock interrupt processor: At each incrementa-
tion of the real-time clock, there is a TIDB service scan
requiring

x + 8y + 7z cycles
where

X is 48 when the scan interrupts the
dispatcher, or 63 when it interrupts a
task and must establish a reentrant
stack and store the contents of the
volatile registers

y is the number of TIDBs searched

z is the number of tasks having time- or
schedule-delay status bits set

The clock interrupt is disabled during the execution of the
clock processor, and PIM interrupts are disabled for 26
cycles following the initial entry of the clock processor.

Dispatcher interrupt processor: The time required to
begin execution of a task through the dispatcher is a
function of the number of TIDBs searched before execu-
tion. The time required to begin execution of the nth task is

t + l4u + 17v + 12w + 18x +25y + z cycles

where
t is 9 or 11, depending on the entry to the
dispatcher
u is the number of tasks with task-

suspended bits (TBST bit 14) set

v is the number of tasks with events
expected but event word reset

w is the number of tasks with error bits
(TBST bit 4) set but error task busy

X is the number of tasks with either task-
aborted (TBST bit 13) or task-exited
(TBST bit 12) set but 170 not completed

y is the number of tasks active but not
loaded
z is one of the following values:

48 to activate the ERROR task

56 to activate the SAL task on aborting
or exiting

56 to activate a loaded task that is not
suspended, or to activate the SAL task to
load the requested task

61 to activate an interrupted, suspended
task

65 to activate a task when the event
word is set and the interrupt suspended

varian data machines %

REAL-TIME PROGRAMMING

Example of dispatcher interrupt timing: Calculate the time
needed to begin execution of a task under the following
conditions:

a. ten tasks have task-suspended bits set

b. two tasks have event-expected bits set
but event words reset

c. two tasks have error bits set but error
task busy

d. one task has exited (TBST bit 12) but
its 1/O is not complete

e. no tasks are aborted with incomplete 1/0
f. four tasks are active but not loaded

g. the task to be started was interrupted
and suspended

Also, assume the entry to the dispatcher sets the value t to 9.

These conditions set the following parameters of the timing
formula:

u=10 x=1
v=2 y=4
w=2 z =61

Substitution of these in the formula gives the following:
9+ 14(10) + 17(2) + 12(2) + 18(1) + 25(4) + 61=
9+ 140 + 34 + 24 + 18 + 100 +61=

386 cycles

Search, allocate, and load: Foreground task load processing
requires

550k + x +y + ny + my + 270kz + wk

where

k is the cycle time

X is the time required for an RMD OPEN
request

Yy is the time required to read one RMD
record (pseudo TIDB)

ny is the time required to read the task into
memory (n is a variable task size)

my is the time required to read allocation
data (m is the variable number of relo-
cation records)

z is the number of 16-bit relocation words

wk is the memory allocation time (in the

best case, the value of w is 35 times the
numbers of blocks to be allocated + 142)

14-19

— varian data machines

REAL-TIME PROGRAMMING

Foreground task load processing

Example: Calculate the time required to load a foreground
task from disc which has an average read time of 80
millisecond per record. Assume the cycle time is 330
nanoseconds. The average time needed for an RMD OPEN
will be one access if the number of files in the partition is
19 or fewer and assuming that only one access is needed
an estimate of the time would be 80. For this example, the
task is 1200 words in 10 records and its number of
relocation words is 480 or 4 records. In the best case of two
blocks, w would be calculated as 212.

550 x 330 (x 10 °) + 80 + 800 + 320 +
270 - 330 - 400 x 10 + 212 x 330 x 10°° or 1280 milliseconds

Background task load processing requires
575k + x +y + ny +wk
where
k, x, y, and ny are defined above
wk is the background memory allocation (the
best case, the value of wis 20 times the num~
ber of blocks to be allocated + 240)

Resident task load processing requires

(61 + 16x) k
where
is the cycle time
X is the number of entries searched in the

resident directory before the required
task name is found.

14.3 REENTRANT SUBROUTINES

The user can write a reentrant subroutine and add it to the
VORTEX nucleus. RTE service requests ALOC and DEALOC
interface between a task and a reentrant subroutine.

A task calls a reentrant subroutine via an ALOC request
that allocates a variable-length push-down reentrant stack
with the external name V$CRS. The reentrant subroutine
address is specified in the ALOC calling sequence. The first
word of the reentrant subroutine contains the number of
words to be allocated.

A reentrant stack generated by the ALOC request has the
format:

Word
1)
V$CRS—— 0O A Register
1 B Register \ Fixed
Size
2 X Register
3 OF P Register
4 Pointer to Previous Reentrant Stack
4
5 Available for Reentrant Subroutines
> Variable
. . Size
n
o

14-20

When writing a reentrant subroutine, ensure that the entry
location contains the number (=5) of words to be
allocated, execution starts at the address (entry address -+
1), and that V$CRS contains the reentrant-stack address.
No 10C or RTE calls except DEALOC can be made while in a
reentrant subroutine. The subroutine makes a DEALOC
service request to return control to the calling task.
DEALOC releases the reentrant stack, restores the A, B,
and OF register contents, and returns control to the
address following the ALOC request. No temporary storage
is available for the reentrant subroutine except that
allocated in the reentrant stack.

Parameters or pointers can be passed to the reentrant
subroutine in the A and/or B registers, as well as in-line
after the ALOC macro.

Two tasks make ALOC calls to RSUB. RSUB reserves six
words of allocatable memory with the sixth word as
temporary storage. The A register (reentrant stack) returns
a value to the calling task. If task A is on priority level 5
and task B is on level 6, RSUB running on level 5 is
interrupted and the level 6 task B executed. This, in turn,
makes an ALOC request and executes RSUB. RSUB then
executes to completion before RSUB on level 5 can be
completed.

Example:
Task A

ALOC RSUB

JAZ -———-

END

Task B

ALOC RSUB

JAZ ———-

END

Reentrant Subroutine
NAME RSUB
V$CRS EQU 0302
RSUB DATA 6 Allocate six-word

LDX V$CRS stack (one temporary
location)

STA 6,1 Save A in temporary
storage

LDA 6,1 Get temporary storage
value

STA 0,1 Modify return in A
register

DEALOC Return to location
following ALOC call

END

varian data machines

14.4 CODING AN 1/0 DRIVER

The |OC (section 3) activates 1/0 drivers. When a user task
makes an 1/0 request, it executes a JSR V$IOC,X
instruction with V$I0C containing the 10C entry address.
|0C then makes validity checks on the parameters
specified in the request block (RQBLK) that immediately
follows the JSR instruction. 10C queues RQBLK to the 1/0
driver controller table (CTBL), and activates the corre-
sponding controller-table TIDB. The TIDB contains the
entry address for the 170 driver. To determine the proper
CTBL and corresponding TIDB, I0C obtains the logical-unit
number from RQBLK. By referring to the logical-unit table
(LUT), 10C then finds the device assigned to that logical
unit. Each device has a device specification table (DST)
associated with it, and each DST has a corresponding
controller table.

14.4.1 1/0 Tables

Not all the data discussed in this section are required for
coding every special-purpose driver, but it is presented to
provide maximum flexibility in defining driver interfaces.

When an /0 driver is entered, it has the data, system
pointers, and table address necessary for the 1/0 driver
processing. At system-generation time, additional working
storage space can be assigned to the /O driver as an
extension of the controller table. The data available are:

a. V$CTL (lower-memory system symbol defining the
current TIDB) = address of TIDB associated with the
170 driver controller table.

b. TBRSTS (word 8 of controller TIDB) = address of
controller table CTBL.

¢. Within CTBL, the following:
(1) CTIDB (word 0) = controller TIDB address
(V$CTL)
(2) CTDST (word 3) = address of DST
(3) CTRQBK (word 4) = address of RQBLK to be
processed
(4) CTDVAT (word 6) = controller device address
(5) CTSTAT (word 8) = temporary storage available
for driver
(6) CTBICB (word 9) = address containing assigned
BIC address (e.g., 020,022)
(7) CTFCB (word 10) = FCB or DCB address for 1/0
request specified in CTRQBK (word 4)
(8) CTWDS (word 11) = contains, upon exit, number
of words transferred
(9) CTSTSZ (word 13) = number of words per RMD
sector
(10) CTTKSZ (word 14) = number of sectors per RMD
track
(11) CTPSTO (word 15) = base address of the RMD for
unit 0 on this controller
(12) CTPST1, CTPST2, and CTPST3 (words 16, 17, and
18) = PST addresses for units 1,2, and 3

d. Device specification table (DST):
(1) DSUNTN (bits 13 and 14 of word 2) = number (0-
3) of this device on its controller
(2) DSPSTI (bits 6-10 of word 2) = RMD partition
number (1-20) used to access the PST

REAL-TIME PROGRAMMING

e. Request block (RQBLK): Contains user task 1/0
request information. The address of RQBLK is
contained in CTRQBK (word 4 of the controller table).
Word 1 of RQBLK contains the operation code in bits
8-11 and the mode specification in bits 12-14. Word 0
bits 5-14 contain the status.

f. File control block (FCB): The FCB is used for RMD
devices. CTFCB contains the address of FCB.
(1) FCRECL (word 0) = record length
(2) FCBUFF (word 1) = user buffer
(3) FCACM (word 2) = bits 8-15, access method, and
bits 0-7, protection code
(4) FCCADR (word 3) = current record number
(relative within file)
(5) FCCEOF (word 4) = current EOF record number
(relative within partition)
(6) FCIFE (word 5) = beginning-of-file record
number (relative within partition)
(7) . FCEFE (word 6) = end-of-file record number
(relative within partition)
(8) FCNAMI1, FCNAM2, and FCNAMS3 (words 7, 8,
and 9) = file names in ASCII

g. Data control block (DCB): The DCB is used for non-
RMD devices. CTFCB contains the address of DCB.

(1) DCRECL (word 0) = record length
(2) DCBUFF (word 1) = user buffer
(3) DCCNT (word 2) = function count

14.4.2 1/0 Driver System Functions

Each 1/0 driver under |10C performs certain system pre-
and post-processing functions.

Pre-interrupt processing: [f the 1/0 driver uses a BIC, the
driver calls V$BIC with the X and A registers set to the
initial and final buffer addresses respectively to build and
execute the initial BIC transfer instruction. If the BIC is
shared, the interrupt line handler is modified to the proper
interrupt event word setting (TBEVNT) and TIDB address.
V$BIC performs this modification if the word immediately
following the call (JSR V$BIC,B) is nonzero, since this is
assumed to be the interrupt event word setting. if it is zero,
no line handler modification is performed. The /0 driver
clears the interrupt event word (TBEVNT) in the controller
TIDB immediately preceding a DELAY (type 2) call. To wait
for an interrupt, the 1/0 driver executes a DELAY (type 2)
call with a time-out. The return to the driver, either from a
time-out or interrupt is to the address immediately
following the call. The contents of the X register is not
restored following a DELAY call but the A and B registers
are. Executing a TXA immediately preceding and a TAX
following the DELAY call X restores the value in the X
register.

Interrupt processing: The driver clears the time-delay flag
(TBST bit 6) set by the DELAY call, and checks TBEVNT to
determine if an interrupt occurred (TBEVNT = 0 indicates
a time-out). Following the interrupt processing, the driver
clears TBEVNT and calls DELAY (type 2) for the next
instruction.

14-21

|

— varian data machines

REAL-TIME PROGRAMMING

Post-interrupt processing (no errors): Upon the comple-
tion of interrupt processing, the driver sets the status bits
(5-14) of RSTPE (word 0) in RQBLK, and enters the number
of words transferred in CTWDS. The driver then relin-
quishes control and exits to 10C by executing JMP V$FNR.

Post-interrupt processing (errors): If an error is encoun-
tered during interrupt processing, the driver sets the status
bits (5-14) of RSTPR, according to the type of error. The
driver then sets the A register to zero if the unit is not
ready, negative if there is a parameter error, or positive if
there is a hardware error. Finally, the driver exits to the I0C
error routine by executing JMP V$ERR.

14.4.3 Adding an 1/0 Driver to the System File

System-generation directives: The following directives
are required for linkages to the controller table, controller
TIDB, 1/0 driver entry location, DST, PST, and the PIM line
handler (section 15):

Directive Description

EQP DSTs are generated by SGEN, one for each unit
specified by the EQP directive. All DSTs gen-
erated for a controller point indirectly to
the controller table specified by EQP. The
pointer is to the entry name in the controller
table assembly.

PIM A PIM directive is required for each PIM line
where an interrupt is expected. The PIM direc-
tive causes the system initializer to enable
the mask for that line (except for the TTY or
CRT output line, in which case it is initially
disabled). If the driver processes both input
and output interrupts, it may be advantageous
for processing to set the interrupt event word
for the input line to one value (e.g., 01) and
the interrupt event word for the output line
to another value (e.g., 02). The PIM
directive also specifies if a directly
connected interrupt handler is to be used
(see section 14.4.5).

ASN This directive assigns logical units to phys-
ical units. If a new device is being added
and it is necessary to assign that device to
a logical unit when the system is initialized,
an ASN is input. Otherwise, the JCP or OPCOM
ASSIGN directive can be used. The logical-unit
table is established by these directives.

PRT This directive for RMDs specifies the size and
the mnemonic name of each partition. A PST
and DST are created for each partition.

TDF This VORTEX nucleus-generation control record
directive defines and builds the controller
TIDB. [t specifies the name of the driver,
status word (TBST) setting, and priority level.

varian data machines

Adding controller tables: A controller table is assembled
as a separate entity and added to the system-generation
library (SGL) for loading at system-generation time. The
controller table name is CT followed by the three- or four-
character ASCIl name of the controller, e.g., CTTYOA,
CTMTOA, and CTDOB.

The controller table comprises parameters that are
constant for a controller, and parameters that are variables
for SGEN and can change with system configuration.

Constants are assembled as DATA statements. DATA
statements can be added to the controller table to provide
additional working space for an 1/0 driver.

The following standard items are required by |OC:

Word ltem Description

0 CTIDB = Name of the related controller TIDB (TB
followed by the same three or four-character name used
in the controller table e.g.,. TBDOB (or CTDOB). An
EXT statement must specify the TIDB name as an
external name.

EXT TBDOB
DATA TBDOB

1 CTADNC = Endoftable + 1
DATA CTEND
where CTEND is the end of the controller table + 1.

2 CTOPM = The operation code mask specifying the type
of 1/0 operation the driver is capable of processing 1 =
driver is capable of processing.

Bit Operation

Read

Write

Write EOF
Rewind

Skip record
Function

Open

Close

16 Reserved for future use

PN WN —=O

Example: DATA 037
For all operations excluding Function,
Open, and Close.

3 CTDST = Set by |OC to DST address
Example: DATA 0

4 CTRQBK = Set by I0C to 1/0 request block being
processed.
Example: DATA 0

5 CTRTRY = Errorretry count. # T followed by the name
of the controlier.

Example: DATA #TTYOA

REAL-TIME PROGRAMMING

Word Item Description

6 CTDVAD = Controller device address. # A foliowed by
the name of the controller
Example: DATA #ATYOA

7 CTIOA = |/0 algorithm. The ratio of device transfer
rate to DMA transfer rate + 10 percent. Zero for all
non-BIC devices.

Example: when a disc transfer rate is

100K words per second and DMA rate is
300K words per second, the ratio is about
.33. Set CTIOA to: DATA 030000

If ratio is .25 or 25 percent set

CTIOA (DATA 020000); 50 percent

set CTIOA (DATA 040000), etc.

To make CTIOA a SGEN selectable parameter
(refer to section 15.5.2, EQP directive)
assemble as an external e.g., EXT # D followed
by the name of the controller:

EXT # DCIOA
DATA # DCIOA

8 CTSTAT = DATA

for process 170

0, for driver use.

9 CTBICB = Address of BIC flag table. !B followed by the
name of the name of the controller,
Example: DATA 1BDOB
When the driver is entered the item
contains the BIC device address, 020,

022, 024, etc.
10 CTFCB = Set by I0C to the DCB or FCB address. Set to
DATA 0

11 CTWDS = DATA 0. Driver use for number of

words transferred.

12 CTFRCT = 1/0 algorithm frequency count. The
number of retires to be attempted by 10C before
suspending all subsequent |/0 operations until the
request in CTRQBK (word 4) is activated. DATA 0
for non-BIC devices.

13 CTSTSZ = RMD only. Number of words in an RMD
sector.
Example: DATA 120

14 CTTKSZ = RMD only. Number of sections in an RMD
track
Example: DATA 48

15 CTPSTO = RMD only. Base address of the PST for
RMD unit 0 connect to this controller. ! P followed by
the four character device name. DATA PD0OOB

16 CTPST1 = RMD only. Base address of the PST for
RMD unit 1.
Example: DATA PDO1B

17 CTPST2 = RMD only. Base address of PST for RMD

unit 2.
Example: DATA ' PDO2B
18 CTPST3 = RMD only. Base address of PST for RMD
unit 3.
Example: DATA 'PD0O3B

14.23

]

varian data machines

REAL-TIME PROGRAMMING

14.4.4 Enabling and Disabling PIM
Interrupts

EXC 0444 disables all PIM interrupts. EXC 0244 enables all
PIM interrupts that are not masked. There is a PIM
directive for each PIM line at system-generation time. The
system initializer enables PIM lines. The mask is enabled
unless the 1/0 driver specifically disables it. If a PIM
directive is omitted, the linkage between the trap and the
interrupt line handier cannot be established. If a PIM line

Interrupt
Trap
Location

v!

mask is enabled or disabled by a driver, the system mask
is updated to reflect the current status. The system mask
configuration is given at low memory address V$IM (0320
for PIM1, 0321 for PIM2, etc.).

EXC 0747 disables the real-time clock interrupt and EXC
0147 enables it.

Figure 14-5 shows the standard VORTEX driver interface.

Interrupt Line Common
Handler (Using — Interrupt
Common Handler) Handler
I
Task TIDB F=A
|
v2 .
:3
1/0 Driver .
|
[}
| S
Controller - Controller
Table L Address
(for Drivers) |« 4 Table
Device J 4
D 4
Specification 4
Tables 4
(for Drivers) 4

KEY:

1. The trap address corresponding to the PIM number (from PIM directive) points
to the SGEN-generated line handler. The line handler points to the TIDB
(named in PIM directive), using the matching TIDB name (on TDF control

record).

2. The TIDB name (on TDF control record) points to the task, using the entry name

in the assembly of the task.

3. For OPCOM device drivers only. The task TIDB points to the device controller
table name (on TDF control record), using the entry name in the controller table

assembly.

4. The DSTs are generated by SGEN, one for each unit specified on the EQP
directive. All DSTs generated for a controller point indirectly to the controller
table (named in EQP directive), using the entry in the controller table assembly.

Figure 14-5. Driver Interface

14-24

14.4.5 Directly Connected Interrupt
Handler

The use of a directly connected interrupt handler (see

section 14.4.1) in lieu of the VORTEX common interrupt

handler is specified in the PIM directive during system
generation. The directly connected interrupt handler is
entered with a jump-and-mark instruction (see figure 14.1).
The first word in the interrupt handler must be a mark
location. When entered, both the real-time (RT) clock and
PIMs are disabled. Before exiting, the interrupt handler
must enable the PIMs (EXC 0244). The RT clock must also
be enabled (EXC 0147) in all cases except when the RT
clock processor has been interrupted. Location 0300,
V$CTL, will contain 037 if the RT clock processor had been
interrupted. The directly connected interrupt handler must
provide a check for interruption out of the RT clock
processor and enable or disable the RT clock accordingly.
The interrupted task’s return address is found in word 0 of
the line handler. The address of word O is obtained by
subtracting four from the contents of the directly con-
nected interrupt handler mark location.

varian data machines

REAL-TIME PROGRAMMING

subtracting four from the contents of the directly con-
nected interrupt handler mark location.

14.4.6 VORTEX use of BICs

VORTEX supports a maximum of ten BICs. The practical
system limit may be considerably less than ten depending
on the availability of device addresses, the type and
number of peripherals, and other configuration considera-
tions. The BIC-transfer-complete interrupts must be as-
signed by ascending BIC numbers (020, 022,
024, 026, 070, 072, etc) starting with the first PIM
and the first interrupt line; i.e., PIM O, line 0 assigned to BIC
020; PIM 0, line 1 assigned to BIC 022, etc. The first BIC
must have a device address of 020; the second, 022; the
third, 024; the fourth, 026; the fifth, 070; the sixth, 072;
etc.

170 drivers utilizing BICs must call a common BIC routine
V$BIC as described in section 14.4.2.

14-25

varian data machines @—

SECTION 15
SYSTEM GENERATION

The VORTEX system-generation component (SGEN) tailors * Building the VORTEX nucleus (section 15.6)

the VORTEX operating system to specific user require-

ments. SGL is a collection of program on magnetic tape, » Building the library and the resident-task configurator
punched cards, or disc pack. It includes all programs (section 15.7)

(except the key-in-loader, section 15.3) for generating an
operating VORTEX system on an RMD. 1/0 interrogation specifies the peripherals to:
Figure 15-1 is a block diagram of the data flow through

a. Input VORTEX system routines (LIB unit)
SGEN.

b. Input user routines (ALT unit)
15.1 ORGANIZATION
c. Input SGEN directives (DIR unit)
SGEN is a four-phase component comprising:
d. Output the VORTEX system generation (SYS unit)
* I/0interrogation (section 15.4)
e. List special information and input user messages (LIS

» SGEN directive processing (section 15.5) unit)
DIR INPUT UNIT LIB INPUT UNIT ALT INPUT UNIT
System Generation Library User Routines
SGEN DIRECTIVES
(Object modules and con- (Object modules and
trol records) control records)

:\> SGEN ROUTINES C:

VORTEX
NUCLEUS

FOREGROUND BACKGROUND USER

LIBRARY LIBRARY LIBRARIES
(And system

initializer)

SYS OUTPUT UNITS

Figure 15-1. SGEN Data Flow

15-1

varian data machines

SYSTEM GENERATION

1/0 interrogation also specifies that the Teletype on
hardware address 01 is the OC unit. After these peripherals
are assigned, appropriate drivers and 1/0 controls are
loaded into memory.

Note: SGEN does not build an object-module library. To
construct the VORTEX object-module library (OM) or any
user object-module library, use the file-maintenance
component (FMAIN, section 9).

SGEN directive processing specifies the architecture of the
VORTEX system based on user-supplied information that is
compiled and stored for later use in building the system.
SGEN directives permit the design of systems covering the
entire range of VORTEX applications.

Building the VORTEX nucleus consists of gathering object
modules and control records from the system-generation
library (SGL, section 15.2) and from user input, and
constructing the VORTEX nucleus from these data. SGL
items are input through the LIB input unit, and user items
through the ALT unit according to rules set up by the SGEN
directives.

Building the library and the resident-task configurator
consists of generating load modules from the object
modules and control records input from the SGL and user
data. These load modules are then cataloged and entered
into the foreground, background, and user libraries. During
library building, load modules can be added, deleted, or
replaced as required to tailor the library to any of a wide
variety of formats. After the libraries are completed,
designated load modules are copied into the VORTEX
nucleus to become resident tasks. The resident-task
configuration of SGEN can also be generated without
regeneration of the VORTEX nucleus or libraries (section
15.7).

SGEN directive format requires that, unless otherwise
indicated (e.g., section 15.5), the directives begin in
column 1 and comprise sequences of character strings
having no embedded blanks. The character strings are
separated by commas (,) or by equal signs (=). The
directives are free-form and blanks are permitted between
individual character strings, i.e., before and after commas
(or equal signs). Although not required, a period (.) is a line
terminator. Comments can be inserted after the period. For
greater clarity in the descriptions of the directives, optional
periods, optional blank separators between character
strings, and the optional replacement of commas by equal
signs are omitted.

Numerical data can be octal or decimal. Each octal number
has a leading zero.

Error messages applicable to SGEN are given in Appendix
A.15.

15-2

SGEN errors are divided into five categories according to
type. The category of each error, as well as the specific

error, is given by the error code. Recovery is automatic
where manual intervention is not required. When manual

intervention is necessary, the OC device expects a response
after the error message is posted. The response can be
either a corrected input statement (where the statement in
error was an ASCII record) or the letter " C" . In the latter
case, the corrected input is expected on the input device
where the error occurred, immediately after the " C" is
input. If the input media is magnetic tape or disc pack,
positioning to reread an input statement is also automatic.

15.2 SYSTEM-GENERATION LIBRARY

The System-generation library (SGL) is a collection of
system programs (in object-module form) and control
records (in alphanumeric form) from which a VORTEX
system is constructed.

In the case of punched cards or of magnetic tape, the SGL
occupies contiguous records, beginning with the first record
of the medium.

In the case of disc pack, the SGL occupies contiguous
records beginning with the second track. Track O contains
the partition-specification table (PST, section 3.2) that
specifies one partition extending from the second track
(track 1) to the end of device.

The SGL and the VORTEX system cannot be on the same
disc pack during system generation.

The SGL is divided into five functional parts, each
separated by CTL control records (figure 15-2).

Part 1 of the SGL comprises a VORTEX bootstrap loader
and an /0 interrogation routine. It also comprises the
SGEN relocatable loader, the basic 1/0 control routine, and
library of peripheral drivers for the use of SGEN. Part 1
consists entirely of object modules. It is loaded with device-
sensitive key-in loader (section 15.3) that also serves the
bootstrap loader as a read-next-record routine. The
bootstrap-loader/interrogator is a core-image sequence of
records generated by a VORTEX service routine. Because it
calls the key-in loader to read records, the bootstrap-
loader/interrogator is itself device-insensitive.

Control record CTL,PART0O001 terminates part 1 of the
SGL.

Part 2 of the SGL contains the directive processor. After
being itself input, the directive processor obtains all input
from the DIR and OC input devices. The system generation
directives are to be placed between the directive processor
and the CTL,PART0002 control record if the CIB and DIR
input units are the same.

Control record CTL,PARTO002 terminates part 2 of the
SGL.

Bootstrap Loader and
1/0 Interrogation

PART 1 Relocatable Loader and
170 Control Routine

[SGEN Driver Library .
* | CTL,PARTO0001

Directive Processor
* | CTL,PART0002
(VORTEX Nucleus Processor

PART 2 {

* | SLM,INIT
System Initializer
PART 3 * | END
* | SLM,VORTEX
- VORTEX Nucleus -
- Library 1
K * | END

%

E

CTL,PART0003

Library Processor

PART 4 System Library E
- Routines E

* 1 CTL,PART0004

Resident-Task Configurator
* 1 CTL,ENDOFSGL

PART 5 {

NOTE:

* = Alphanumeric control record

Figure 15-2. System-Generation Library

Part 3 of the SGL comprises all system routines and
control records required to build the VORTEX nucleus
(figure 15-3):

* VORTEX nucleus processor -- the SGEN-processing
portion

* SLM control record -- indicates the beginning of the
system initializer portion

» System-initializer routines -- object modules to be
converted into the system initializer

* END control record -- indicates the end of the system-
initializer portion

* SLM control record -- indicates the beginning of the
VORTEX nucleus portion

SYSTEM GENERATION

* VORTEX nucleus routines -- control records and object
modules to be converted into the VORTEX nucleus

* END control record -- indicates the end of the VORTEX
nucleus portion

SLM,INIT

System Initializer

Low Memory Package
END
SLM,VORTEX

All TDF Control Records

Global FCBs
V$OPBF and V$JPBF Buffers
RTE Functions

RTE Services

RTE System Tasks

10C Program

1/0 Controller Tables

170 Drivers

END

NOTE:

* = Alphanumeric control record

Figure 15-3. VORTEX Nucleus

Control record CTL,PARTO003 terminates part 3 of the
SGL.

Part 4 of the SGL comprises all system routines and
control records required to build load-module libraries
(figure 15-4) on the RMD. The library processor converts
these inputs into load modules, catalogs them, and enters
them into the foreground, background, and user libraries.
The library processor is followed by groups of control
records and object modules, with each group forming a
load-module package (LMP).

Control record CTL,PARTO004 terminates part 4 of the
SGL.

Part 5 of the SGL contains the resident-task configurator
portion of SGEN. The configurator copies specified load
modules from the foreground library into the VORTEX
nucleus, i.e., makes them resident tasks.

Control record CTL,ENDOFSGL terminates the SGL.

15-3

varian data machines —

varian data machines

SYSTEM GENERATION

REQUIRED
(FOREGROUND)
SYSTEM
TASKS

REQUIRED
(BACKGROUND)
SYSTEM
TASKS

15-4

SLM,FGTSK1

TID,V$OPCM,2,8,106

V$OPCM Program

ESB

END

SLM,FGTSK2

TID,JCDUMP,2,0,106

JCDUMP Program

ESB

END

SLM,FGTSK3

TID,RAZI,2,0,106

RAZI Program

ESB

END

SLM,BGTSK1

TID,JCP,1,0,105

Job-Control Processor

ESB

END

SLM,BGTSK2

TID,LMGEN,1,0,105

Load-Module Generator

ESB

END

SLM,BGTSK3

TID,FMAIN,1,0,105

File Maintenance

ESB

END

SLM,BGTSK4

TID,SMAIN,1,0,105

System Maintenance

ESB

END

Figure 15-4. Load-Module Library

NOTE:

SLM,BGTSK5

TID,FORT,1,0,105

FORTRAN Compiler

ESB

END

SLM,BGTSK6

TID,CONC, 1,0,105

Concordance Program

ESB

END

SLM,BGTSK?7

TID,IOUTIL,1,0,105

170 Utility Program

ESB

END

SLM,BGTSK8

TID,SEDIT,1,0,105

Source Editor

ESB

END

SLM,BGTSK9

TID,DASMR,1,0,105

DAS MR Assembler

ESB

END

* = Alphanumeric control record

15.3 KEY-IN LOADER

SGEN is initiated on a new or initialized system by
inputting the key-in loader through the CPU. The key-in
loader loads the VORTEX bootstrap loader (part 1 of the
SGL). Key-in loaders are available for loading from
magnetic tape, punched cards, or disc pack. The required
key-in loader is input to memory through the CPU console
and then executed to load the VORTEX bootstrap loader.

Automatic bootstrap loader (ABL): In systems equipped
with an ABL, load the key-in loader from the input medium
into memory starting with address 000000. To execute the
key-in loader, clear the A, B, X, |, and P registers; then
press RESET, set STEP/RUN to RUN, and press START.

Manual loading through the CPU front panel: The key-in
loader can be entered manually as follows using the
appropriate loader given in table 15-1.

a. Press REPEAT.

b. Enter a STA instruction (054000) in the | register.
c. Clear the Pregister.

d. Enter a key-in loader instruction in the A register.
e. Press STEP.

f. Clear the A register.

g. Repeat steps (d), (e), and (f) for each key-in loader
instruction.

To execute the key-in loader, clear the A, B, X, |, and P

registers; then press RESET, set STEP/RUN to RUN, and
press START.

Table 15-1. SGEN Key-In Loaders

Address Magnetic Tape Card Reader RMD

000000 010030 010054 010064
000001 001010 001010 140066
000002 001106 001106 001010
000003 040030 040054 001106
000004 001000 001000 001000
000005 000012 000012 000012
000006 000000 000000 000000
000007 006010 006010 006010
000010 000300 000300 000300
000011 050027 050053 050065
000012 1041zz 1002zz 1004zz
000013 1000zz 002000 1002zz
000014 001000 000046 010063
000015 000021 10252z 110072
000016 10252z 002000 1031zz
000017 057027 000046 10luzz
000020 040027 10262z 000023

(continued)

SYSTEM GENERATION

Table 15-1. SGEN Key-In Loaders continued

Address Magnetic Tape Card Reader RMD
000021 1011zz 004044 001000
000022 000016 004444 000017
000023 1012zz 057053 10252z
000024 100006 005001 150071
000025 001000 040053 001016
000026 000021 004450 000012
000027 000500 002000 1000yy
000030 177742 000046 1003zz
000031 10262z 010064
000032 004044 110072
000033 004450 1031zz
000034 002000 010065
000035 000046 1031xx
000036 1022zz 120070
000037 057053 005012
000040 040053 1031lyy
000041 067053 1000xx
000042 040053 1000zz
000043 001000 1014zz
000044 000013 000043
000045 1011zz 10252z
000046 000000 150071
000047 10162z 001016
000050 100006 000012
000051 001000 060065
000052 000045 040064
000053 000500 010064
000054 177742 140067
000055 001016
000056 100006
000057 050064
000060 040063
000061 001000
000062 100006
000063 000001
000064 000001
000065 000500
000065 000037
000067 000060
000070 000074
000071 007760
000072 0v0000
where

xx = even BIC address

yy = odd BIC address

zz = device address

u = RMD unit number in Sense Instruction

u = 0 for unit 0
u = 1 for unit 1
v = RMD unit number in unit Select Instruction

v = 0 for unit O
v = 4 for unit 1

155

varian data machines —

varian data machines

SYSTEM GENERATION

15.4 SGEN 1/0 INTERROGATION

Upon successful loading of the bootstrap loader and 1/0
interrogation, the OC unit outputs the message

IO INTERROGATION

after which the SGEN peripherals are specified by inputting
on the OC unit the five 170 directives:

*DIR Specify SGEN directive input unit

*LIB Specify SGL input unit

*ALT Specify SGL modification input unit

*SYS Specify VORTEX system generation output unit

*LIS Specify user communication and list output
unit

These directives can be input in any order. SGEN will
continue to request 1/0 device assignments until valid ones
have been made for all five functions.

SGEN drivers are loaded from the SGEN driver library
according to the specifications of the SGEN 1/0 directives.
Errors or problems with reading the drivers will cause the
applicable error messages (Appendix A.15) to be output.

The general form of a SGEN 1/0 directive is

function = driver,device, bic

where
function is one of the directive names given
above
driver is one of the driver names given below

device is the hardware device address

bic is the BIC address
Name* Type of Device Model Numbers
MTcuA Magnetic-tape unit 70-7100
LPcuA Line Printer 70-6701
LPcuD All Statos 70-6602
models*** 70-6603
CRcuA Card reader 70-6200
CPcuA Card punch 70-6320
PTcuA Paper-tape 70-6320
read/punch
TYcuA Teletype or CRT 70-6100,
70-6104
DcuAl Rotating memory 70-7702
DcuA2 Rotating memory 70-7703
DcuA5 Rotating memory 620-49
DcuB Rotating memory 70-7600,
70-7610
DcuC Rotating memory** 70-7500
DcuD Rotating memory** 70-7510

* where ¢ stands for the controller number (0, 1, 2, or 3),
and u for the unit number (0, 1, 2, or).

** this disc must be formatted first (see section 18.4).
*#% Statos 33 is not supported during system generation.

15-6

15.4.1 DIR (Directive-Input Unit) Directive

This directive specifies the unit from which all SGEN
directives (section 15.5) will be input (DIR unit). The
directive has the general form

DIR = driver device,bic

where .
driver is one of the driver names MTcum,
TYcum, PTcum, or CRcum (m is a model
code, as given in 15.4)
device is the hardware device address
bic is the BIC address (used only, and then

optionaily, for magnetic-tape units)

Example: Specify Teletype unit 0 having model code A
and hardware device address 01 as the DIR unit.

DIR=TYOOA, 01

15.4.2 LIB (Library-Input Unit) Directive

This directive specifies the unit from which the SGL will be
input (LIB unit). The directive has the general form

LIB = driver,device,bic

where
driver is one of the driver names MTcum,
CRcum, or Dcum
device is the hardware device address
bic is the BIC address (used only, and then

optionally, for magnetic-tape units)

Example: Specify magnetic-tape unit 0 having model code
A and hardware device address 010 (no BIC) as the LIB
unit.

LIB=MTO0OA,010

15.4.3 ALT (Library-Modification Input Unit)
Directive

This directive specifies the unit from which object modules

that modify the SGL will be input (ALT unit). The directive

has the general form

ALT =driver,device,bic

where
driver is one of the driver names MTcum,
PTcum or CRcum
device is the hardware device address
bic is the BIC address (used only, and then

optionally, for magnetic-tape units)

Example: Specify card reader unit 0 having model code A
and hardware device address 030 as the ALT unit.

ALT=CROOA,030

15.4.4 SYS (System-Generation Output Unit)

Directive
This directive specifies the RMD(s) onto which the VORTEX
system will be generated, with the VORTEX nucleus on the
first such device specified. Up to 16 RMDs can be specified.
The directive has the general form
SYS =driverl,devicel,bicl;driver2,device2,
bic2;...;drivern,devicen,bicn
where
driver is an RMD driver name such as Dcum,
where ¢ = controller, u = unit, and m
= model code

device is the hardware device address of the
corresponding driver

bic is the mandatory address of the
applicable BIC or BTC

All RMDs specified in the EQP directives (15.5.2) must be
specified in the SYS directive. Subsequent SYS directives
will overlay the previous directives. if all RMDs cannot be
specified in a single line, then the directive must be
terminated with a colon. This will cause the next input line
to be treated as a continuation of the previous SYS
directive. The additional input lines begin with the driver
parameter. The directive “SYS=""must not be used on
additional SYS directive input lines.

Examples: Specify RMD 0 having model code B, hardware
device address 016, and BIC address 020 as the SYS unit.

SYsS=D00B, 016,020

Specify two SYS units: RMD O with model code A2,
hardware device address 014, and BIC address 020; and
RMD 0 with model code B, hardware device address 015,
and BIC address 022.

A system with 620-35 disc requires a special formatting
program, described in section 18.4. This program formats
disc packs and performs bad-track analysis.

SYS=D00A2,014,020;D10B,016,022

A system with 620-35 disc requires a special formatting
program, described in section 16.4. This program formats
disc packs and performs bad-track analysis.

15.4.5 LIS Directive

This’ LIS (User-Communication and List Output Unit)
directive specifies the unit that will be used for user
communication and list output (LIS unit). The directive has
the general form

LIS = driver,device

varian data machines @

SYSTEM GENERATION

where
driver is one of the driver names TYcum or
LPcum
device is the hardware device address

The following information appears on the LIS unit:

a. Error messages
b. Load map of each load module
c. Directives input through the DIR unit (section 15.4.1)

d. Partition table for each system RMD

To suppress listing during system generation set “map”
to zero in EDR directive.

Example: Specify line printer 0 having model code A and
hardware device address 035 as the LIS unit.

LIS=LP0OA,035

15.5 SGEN DIRECTIVE PROCESSING

Upon successful loading of the SGEN directive processor,
the OC and LIS (section 15.4.2) units output the message
INPUT DIRECTIVES

to indicate that SGEN is ready to accept SGEN directives
from the DIR unit (section 15.4.1).

The SGEN directives described in this section can be input
in any order, except for the EDR directive (section 13.5.14),
which is input last to terminate SGEN directive input.

In cases of conflicting data, SGEN treats the last informa-
tion input as the correct data.

Errors cause the output of the applicable error messages
(Appendix A.15).

The general form of an SGEN directive is

aaa,p(1)xp(2)x...xp(n)

where

aaa is a three-character SGEN directive
name

each p(n) is a parameter as indicated in the
specifications for the individual directives

each x is a punctuation mark as indicated in
the specifications for the individual di-
rectives

In contrast to most VORTEX system directives, the
punctuation in SGEN directives is exactly as defined in the
specifications for the individual directives, although blanks
are allowed between parameters, i.e., before or after
punctuation marks. SGEN directives begin in column 1 and
can contain up to 80 characters.

SGEN directives are listed on the OC and LIS units.

— varian data machines

SYSTEM GENERATION

15.5.1 MRY (Memory) Directive

This directive specifies the memory-related parameters of
SGEN. It has the general form

MRY,memory,common

where
memory is the extent of the memory area
available to VORTEX (minimum 12K =
027777)
common is the extent (O or positive value) of the

foreground blank-common area

Examples: Specify a 16K memory for VORTEX with a
foreground blank-common area from 037600 to 037777.

MRY,037777,0200

Specify an 18,000-word memory for VORTEX with no
foreground blank-common area.

MRY, 18000, 0

15.5.2 EQP (Equipment) Directive

This directive defines the peripheral architecture of the
system. It has the general form

EOP,name,address,number bic retry,alg, mul

where

name is the mnemonic for a peripheral
controller

address is the controller device address (01
through 077 inclusive)

number is the number (1 through 4, inclusive) of
peripheral units attached to the
controller

bic is the BIC or BTC address (0 if no BIC
applies)

retry is the number (0 to 99, inclusive) of
retries to be attempted by the |/0 driver
when an error is encountered

alg is the 170 algorithm value (0< alg <

1) as a decimal fraction (see section
14.4.3, word 7 for the calculation of
this value). NOTE: this is an optional
parameter and is not needed unless a
change is desired in the algorithm value.
If this parameter is to be used on non-
process /0 controller tables, the subject
controller table must contain CTIOA as
an entry name

mul is the multiplexor address (this
parameter applies only to process |1/0

drivers)

Acceptable mnemonics for name are:

. MTnm Magnetic-tape unit

. LPnm Line printer

. CRnm Card reader

. PTnm Paper-tape reader/punch
. TYnm Teletype

. CTnm CRT device

. CPnm Card Punch

. Dnm RMD

. Cl Process input

. CO Process output

. WCS Writable control store

where n is the controller number (0, 1, 2, or 3), and m is
the model code (table 15-2).

Controller tables are arranged according to the priority
levels of their task-identification blocks (TIDBs). On any
given level, the tables are arranged in the input sequence
of the corresponding EQP directives. Device-specification
table (DST) entries are unsorted.

The following order is suggested for peripheral controllers:
a. RMDs
b. Operator-communication (OC) device (section 17)
c. Magnetic-tape units

d. Otherunits

Table 15-2. Model Codes for VORTEX Peripherals

Code Model Number Description

TYnA 70-6104 ASR Teletype Model 33
(620-08) ASR Teletype Model 35

CTnA E2250 CRT keyboard/display

CRnA 70-6200 Card reader: 300 or 600 cards/minute
(620-22,
620-25) (continued)

15-8

varian data machines @—

SYSTEM GENERATION

Table 15-2. Model Codes for VORTEX Peripherals (continued)

Code Model Number Description

CPnA 70-6201 Card punch: 35 cards/minute
(620-27)

MTnA 70-7100 Magnetic-tape: 9-track, 800 bpi, 25 ips
(620-30)
(620-31A) Magnetic-tape: 7-track, 200-556 bpi
(620-31B) Magnetic-tape: 7-track, 200-800 bpi
(620-31C) Magnetic-tape: 7-track, 556-800 bpi
70-7102 Magnetic tape: 9-track, 800 bpi, 37 ips
(620-32)
70-7103 Slave unit with 620-32
(620-32A)

MXnA 70-520X (520X) Data communications multiplexor
70-521X

DnA 620-47,-48,-49 Rotating memory
70-770X Rotating memory
(620-43C,-43D)

DnB 70-7600 Rotating memory
(620-36)
70-7610 Rotating memory
(620-37)

DnC 70-7500 Rotating memory
(620-35)

DnD 70-7510 Rotating memory
(620-34)

PTnA 70-6320 Paper-tape reader/punch
(620-55A)

LPnA 70-6701 Line Printer
(620-77)

LPnE 70-6603 Statos-31,-41 Printer/plotter
(620-76)

LPnG 70-6603 Statos-31/42 Printer/plotter
(42,51,71)

LPnH 70-7702 Statos-31 (-41,-51,-52)

LPnJ 70-660 Statos-33

CIinA See sec. 19 Process 1/0

COnA See sec. 19

Note: Other peripheral devices can be added to the
system by creating an EQP directive with a unique phsyical-
unit name for the device. A controller table with the same
name is then added to the VORTEX nucleus by an ADD
directive (section 15.5.5).

159

-—@ varian data machines

SYSTEM GENERATION

Example: Define a system containing one model B RMD,
one model A magnetic-tape unit, one model A card reader,
one model A line printer, and one model A Teletype.

EQP,DOB, 016,020, 3
EQP,MTOA,010,1,022,5
EQP,CROA,030,1,024,0
EQP,LPOA,035,1,024,0
EQP,TYO0A,01,1,0,0
EQP,PTOA,037,1,0,0
EQP,CPOA,031,1,022,0

The paper width of each Statos on the system must be
defined through use of the SGEN DEF directive (see section
15.5.14). This directive has the form

DEF,V$SWnm,c

where
n is the controller number (0, 1 or 2)
m is the Statos model code (D,E,G,H, or J)
c is the width code, defined as
0 = 8-1/2-inch
1 = 1l-inch
2 = 14-7/8-inch
3 = 22-inch

Example: Specify a SGEN directive for model G Statos on
controller 1 with 14-7/8-inch width paper

DEF,V$SW1G, 2

15.5.3 PRT (Partition) Directive

This directive specifies the size of each partition on each
RMD. It has the general form

PRT,Dcup(1),s(1),k(1);Dcup(2),5(2),k(2);...;
Dcup(n),s(n),k(n)

where

Dcup(n) is the name of the RMD partition with ¢
being the number (O, 1, 2, or 3) of the

controller, u the unit number (0, 1, 2, or.

3), and p the partition letter (A through
T, inclusive)

s(n) is the number (octal or decimal) of
tracks in the partition. The maximum
partition size on any RMD is 32,768
sectors

k(n) is the protection code (single
alphanumeric character including $) for
the partition, or * if the partition is
unprotected

15-10

At least seven partitions are required for the system
rotating memory. PRT directives are required for every
partition on every RMD in the system. While the partition
specifications can appear in any order, the set of partitions
specified for each RMD must comprise a contiguous group,
e.g., the sequence DOOA, DOOC, DOOD, DOOB is valid, but
the sequence DOOA, DOOC, DOOD, DOOE constitutes an
error.

NOTE: If the LIB unit is an RMD, the PRT directives for
that RMD are ignored and the existing PST for the RMD is
used. However, even though the PRT directives are ignored
the RMD unit should have at least one PRT directive. RAZI
may be used to partition the RMD unit after system
generation. If the RMD SGL is to be saved, it must be
replaced with a scratch pack prior to executing RAZ! for
that unit.

Logical units 101 through 106 inclusive have preassigned
protection codes. Do not attempt to change these codes.

Preassigned Protection Codes
Unit Number 101 102 103 104 105 106
Code S B C D E F

Total number of tracks of all partitions and the capacity of
VORTEX nucleus must not exceed rotating-memory track
capacity. The nucleus size is equal to the memory size
divided by the product of the number of sectors per track
and 120.

Example: Specify the following partitions on two RMDs.

RMD No. Partition Tracks Protection Code

0 A 2 C
0 B 20 F
0 C 25 E
0 D 40 D
0 E 8 S
0 F 18 B
0 G 18 None
0 H 66 None
1 A 40 None
1 B 60 R
1 C 50 None
1 D 53 X

PRT,DO0OA,2,C;D00B,20,F
PRT,D00C,25,E;D00D,40,D;D00OE, 8,S
PRT,DOOF, 18B;D00G, 18, *;D00H, 66, *
PRT,D01D,53,X;D01C,50, *
PRT,DO1A,40,%*;D018,60,R

15.5.4 ASN (Assign) Directive

This directive assigns logical units to physical devices. It
has the general form

ASN,lun(1) =dev(1),lun(2) = dev(2),...,lun(n) = dev(n)

varian data machines

where each

lun(n) is a logical unit number (1 through 100
or 107 through 255, inclusive) that can
be followed optionally by a two-character
logical unit namee.g., 107:Y7

dev(n) is a four-character physical-device
name, e.g., TY00, DOOG

If a new assignment specifies the same logical unit as a
previous assignment, the old one is replaced and is no
longer valid. All logical units for which physical device
assignments are not explicitly made are considered dummy
units, except preassigned.

SYSTEM GENERATION

Restrictions: Any attempt to change one of the preset
logical unit name:number or name:number:partition rela-
tionships given in table 15-3 will cause an error to be
flagged. Table 15-4 indicates the permissible physical unit
assignments for the first 12 logical units (with PO
automatically set equal to SS).

Example: Specify physical device assignments for logical
units 1-12, inclusive, 107 and 108, and 180 and 181, where
the last two units have, in addition to their numbers, two-
character names.

ASN, 1=TY00,2=CR0O0, 3=TY01, 4=CROO
ASN, 5=LP00, 6=MT00, 7=D0O0I,8=D00G
ASN, 9=D00H, 10=D00G, 11=TY00, 12=LP00
ASN,107=LP00, 108=CROO

ASN, 180:56=MT00, 181:58=MT01

Table 15-3. Preset Logical-Unit Assignments

Preset logical-unit name/number relationships:

oc =1 Lo =
St =2 Bl =
SO = 3 BO =
Pl = 4 sS =

Preset logical-unit/RMD-partition relationships:

Logical-Unit Logical-Unit Partition

Name Number Name
CL 103 DOOA
FL 106 DOOB
BL 105 DooC
oM 104 DOOD
CuU 101 DOOE
SW 102 DOOF

Optional logical-unit/RMD-partition relationships

GO 9 DOOG
SS 8 DOOH
PO 10 DOOH
Bl 6 DOOI
BO 7 DOOt

1. CU file must be as large as background task's largest
part in central memory at one time (24K assumed
above).

2. SW file must be as large as the largest single task
including overlays (24K assumed above).

3. GO file must be somewhat larger than the largest task
run in load-and-go mode. If system is foreground only or

GO =9
PO = 10
DI = 11
DO = 12
Minimum
Protection VORTEX Sector
Key Allocation
C 025
F 0106
E 01135
D 0417
S 0310 (See note 1)
B 0310 (See note 2)
none 0310 (See note 3)
none varies
none 0515 (See note 4)
none varies
none varies

all tasks will be entered in libraries before execution,
this partition may be eliminated.

4. PO file must be large enough for source images of the
largest task to be assembled or compiled. Source
images are stored 3 card images per sector (1000
cards assumed above). If this function is assigned to
magnetic tape, this partition may be eliminated.

15-11

— varian data machines

SYSTEM GENERATION

Teletype
Logical Units or CRT
1 (0C) X
2 (s X
3 (S0) X
a4 (P X
5 (LO) X
6 (B
7 (BO)
8 (SS)
9 (GO)
10 (PO)
11 (D) X
12 (DO) X

15.5.5 ADD (SGL Addition) Directive
This directive specifies the SGL control records and object
modules after which new control records and/or object

modules are to be added during nucleus generation. It has
the general form

ADD,p(1),p(2),....p(n)

where each p(n) is the name of a control record or an
object module after which new items are to be added.

When the name of a specified item is read from the SGL,
the program is processed and the message

ADD AFTER p(n)
READY

appears on the OC unit. User response on the OC unit is
either

ALT

if an item is to be added from the SGEN ALT input unit
(section 15.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads a load module from the ALT

15-12

Table 15-4. Permissible Logical-Unit Assignments

Permissible Physical Units

RMD or
MT

Other Other
Line Output Input
Printer (CP,PT) (PT,CR)
X
X
X X
X
X
X

unit and adds it to the SGL, then prints on the OC unit the
message

READY

to which the user again responds with either ALT or LIB on
the OC unit.

Example: Specify that items are to be added during
nucleus generation after control records or object modules
named PROG1, PROG2, and PROG3.

ADD,PROG1,PROG2,PROG3

15.5.6 REP (SGL Replacement) Directive

This directive specifies the SGL control records and object
modules to be replaced with new control records and/or
object modules during nucleus generation. It has the
general form

REP,p(1),p(2),....p(n)

where each p(n) is the name of a control record or an
object module to be replaced.

When the name of the specified item is read from the SGL,
the program is skipped and the message

REPLACE p(n)
READY

appears on the OC unit. User response on the OC unit is
either

ALT

if an item is to be replaced by one on the SGEN ALT input
unit (section 15.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads a load module from the ALT
unit and replaces p(n) with it in the SGL, then prints on the
OC unit the message

READY

to which the user again responds with either ALT or LIB on
the OC unit.

Example: Specify that control records or object modules
named PROGA and PROGB are to be replaced during
nucleus generation.

REP, PROGA, PROGB

15.5.7 DEL (SGL Deletion) Directive

This directive specifies the SGL control records and object
modules that are to be deleted during nucleus generation. |t
has the general form

DEL,p(1),p(2),....p(n)

where each p(n) is the name of a control record or an
object module to be deleted.

When the name of a specified item is read from the SGL,
the item is skipped and processing continues with the
following control record or object module.

Example: Delete, during nucleus generation, all control
records and object modules named PROG1 and PROG2.

DEL, PROG1,PROG2

15.5.8 LAD (Library Addition) Directive

This directive specifies the SGL load-module package after
which new load-module packages are to be added during
library generation. It has the general form

LAD,p(1).p(2),....p(n)

where each p(n) is the name of a load-module package
from an SLM control directive after which new items are to
be added.

varian data machines

SYSTEM GENERATION

When the name of a specified load-module package is read
from the SGL, the program is processed and the message

ADD AFTER p(n)
READY

appears on the OC unit. User response on the OC unit is
either

ALT

if a load-module package is to be added from the SGEN
ALT input unit (section 15.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads a module from the ALT unit
and adds it to the library, then prints on the OC unit the
message

READY

to which the user again responds with either ALT or LIB on
the OC unit.

Example: Specify that items are to be added, during
library generation, after load-module packages named
PROG1, PROG2, and PROG3.

LAD,PROG1,PROG2,PROG3

15.5.9 LRE (Library Replacement) Directive

This directive specifies the SGL load-module package to be
replaced with new load-module package during library
generation. It has the general form

LRE,p(1),p(2),....p(n)

where each p(n) is the name of a load-module package
from an SLM control directive to be replaced.

When the name of the specified load-module package is
read from the SGL, the program is skipped and the
message

REPLACE p(n)
READY

appears on the OC unit. User response on the OC unit is
either

ALT

if module is to be replaced by one on the SGEN ALT input
unit (section 15.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads a module from the ALT unit

15-13

varian data machines

SYSTEM GENERATION

and replaces p(n) with it in the SGL, then prints on the OC
unit the message

READY

to which the user again responds with either ALT or LIB on
the OC unit.

Example: Specify that load-module packages named
PROGA or PROGB are to be replaced during library
generation.

LRE, PROGA, PROGB

15.5.10 LDE (Library Deletion) Directive

This directive specifies the SGL load-module packages that
are to be deleted during library generation. It has the
general form

LDE,p(1).p(2),....p(n)

where each p(n) is the name of a load-module package
from an SLM control directive to be deleted.

When the name of a specified load-module package is read
from the SGL, the load-module package is skipped and
processing continues with the following load module.

Example: Delete, during library generation, all load-
module packages named PROG1 and PROG2.

LDE, PROG1, PROG2

15.5.11 PIM (Priority Interrupt) Directive

This directive defines the interrupt-system architecture by
specifying the number of priority interrupt modules (PIMs)
in the system, the interrupt levels to be enabled at system-
initialization time, and the interrupts to be manipulated by
user-coded interrupt handlers. The PIM directive has the
general form

PIM,p(1),q(1),r(1),5(1),p(2),q(2).1(2),
5(2);...;p(n).q(n),r(n),s(n)

where each

p(n) is an interrupt line number comprising
two octal digits with the first being the
PIM number and the second the line
number within the PIM. The two digits
must be preceded by a zero, eg.,
002,011

q(n) is the name (1 to 6 characters) of the
task handling the interrupt. The name
format is TBxxxx, where xxxx is the
hardware code name.

15-14

r(n) is the content of the interrupt event word
in octal notation (see appendix F for
nonzero values for standard hardware)

s(n) is O for an interrupt using the common
interrupt-handler or 1 for a directly
connected interrupt

If an interrupt line is to use the common interrupt handier,
a TIDB is generated for the related interrupt-processing
routine, which can be in the VORTEX nucleus or in the
foreground library.

If an interrupt line is to have a direct connection, the
interrupt-processing routine must be added to the VORTEX

nucleus. Failure to do so results in an error message.

Example: Specify two interrupt lines, one handled by the
common interrupt handler, the other directly connected.

PIM,002,TBMTOA,00001,0;003,TBLPOB,01,1
Note: The only interrupt used by the magnetic-tape 170

driver is the motion complete.

15.5.12 CLK (Clock) Directive

This directive specifies the values of all parameters related
to the operation of the real-time clock. It has the general
form

CLK,clock,counter,interrupt

where
clock is the number of microseconds in the
basic clock interval
counter is the number of microseconds in the

free-running counter increment period

interrupt is the number of milliseconds in the user
interrupt interval

The value of interrupt, when not a multiple of 5 miilisec-
onds, is increased to the next multiple of 5 milliseconds;
e.g., if interrupt is 151, the interrupt interval is 155
milliseconds.

Example: Specify a basic clock interval of 100 microsec-
onds, a free-running counter rate of 100 microseconds, and
a user interrupt interval of 20 milliseconds.

CLK, 100, 100,20

15.5.13 TSK (Foreground Task) Directive

This directive specifies the tasks in the foreground library
that are to be made resident tasks. It has the general form

TSK,task(1),task(2),...,task(n)

where each task(n) is the name of an RMD foreground-
library task that is to be made a resident task.

If this directive is input as part of a full system generation,
the names are those of tasks that will be built on the
foreground library during the library-building phase (sec-
tion 15.7).

Resident TIDBs are not created for the tasks defined on
the TSK directives to be resident tasks. A TIDB is created
each time a resident task is specified on a SCHED call. A
resident TIDB is created at system generation for each task
specified on a TDF directive (paragraph 15.6.2).

Example: Specify that foreground-library tasks RTA, RTB,
and RTC be made resident tasks.

TSK,RTA,RTB,RTC

15.5.14 DEF (Define External) Directive

This directive enters a name with a corresponding absolute
value into the SGEN loader tables and the CL library. It has
the general form

DEF,name(1),value(1);name(2),value(2);...;name(n)
value(n)

Modules processed by either SGEN or LMGEN can refer-
ence any names defined by the DEF directive

Example: Use the DEF directive for the VTAM LCB address
in CTMXO0A. The entry in CTMXOA for the LCB address
might be

EXT V$LCWO
DATA VSLCWO

Then, the following DEF directive would define the LCB to
be at location 075000

DEF,V$LCW0,075000

15.5.15 EDR (End Redefinition)
Directive

This directive, which must be the last SGEN directive,
specifies all special system-parameters, or terminates
SGEN directive input. If only a redefinition of resident tasks
is required, the EDR directive is of the form

EDR,R

varian data machines @——

SYSTEM GENERATION

but if a full SGEN is necessary, the EDR directive has the
general form

EDR,S, tidb,stack,part,list,kpun,map,analysis
where

tidb is the number (01 through 0777,
inclusive) of 25-word empty TIDBS
allocated

stack is the size (0 through 037777, inclusive)
of the storage and reentry stack
allocation, which is equal to the number
of words per reentrant subroutine
multiplied by the number of levels
calling the subroutine

part is the maximum number (1 through 20,
inclusive) of partitions on an RMD in the
system

list is the number of lines per page for the
list output, with typical values of 44 for
the line printer and 61 for the Teletype

kpun is 26 for 026 keypunch Hollerith code, or
29 for 029 code

map is L if map information is to be listed, or
Oifitis to be suppressed

analysis is 0 or blank if a complete bad track
analysis is desired on all RMD's, or 1 if
the bad track tables from the last SGEN
are to be reused. If this parameter is
omitted, a full analysis is performed. A
value of 1 may be entered only when an
analysis has been made on a previous
SGEN effort

Bad-track or RMD partitioning analysis is performed
following input of the EDR directive. When that process is
complete, the VORTEX nucleus or resident-task processor is
loaded into main memory.

Examples: Specify redefinition of resident tasks only.
EDR,R

Specify full system generation with no empty TIDBs, no
stack area, a maximum of five partitions per RMD, 44 lines
per page on the list output, 026 keypunch mode, and a list
map, and no bad track analysis is wanted.

EDR,S,0,0,5,44,26,L

Specify full system generation with 100 empty TIDBs, 0500
addresses in the stack area, a maximum of 20 partitions
per RMD, 30 lines per page on the list output, 029
keypunch mode, and suppression of the list map. Assume
bad track tables from the last SGEN are still good, and
reuse them.

EDR,S,100,0500,20,30,29,0,1

15-15

varian data machines

SYSTEM GENERATION

15.5.16 Required Directives

VORTEX system including writable control store (WCS)
must include an EQP,WCS...directive.

Systems without a WCS must delete certain WCS support
software modules. In particular, the following directives
should be included to delete the MIUTIL and WCSRLD
tasks:

LDE, FMIUTI
LDE, FWCSRL

In addition, the following directives may optionally be used
to delete the remaining microprogramming support mod-
ules. These modules may be used on systems without WCS,
but their deletion will make extra space available in the
background library. The following directives delete the
microprogram assembler and the simulator:

LDE, BMIDAS
LDE, BMICSI

Systems including VTAM require a DEF directive to define
the LcB address. The format is:
DEF, V$LcWn, aaaaaa where n is the DCM number
and aaaaaa is the LcB address for the DCM

Systems including a statos printer/plotter require a DEF
directive to define the bed width. The format is:
DEF, V$SWcm, a
where ¢ = controller number
m = model code
a = 0 for 8% inches
1 for 11 inches
2 for 14% inches
3 for 22 inches

15.6 BUILDING THE VORTEX NUCLEUS

If a full system generation has been requested by the S
form of an EDR directive (section 15.5.15), the nucleus
processor is loaded upon completion of directive process-
ing. Once loaded, the nucleus processor reads the SGL
routines and builds the VORTEX nucleus as specified by
the routines and the SGEN control records.

There are three SGEN control records used in building the
nucleus:

. SLM Start load module
. TDF Build task-identification block
. END End of nucleus library

Normally these control records are used only to replace
existing SGL control records.

VORTEX nucleus processing consists of the automatic
reading of control records and object modules from the
SGL, and, according to the specifications made by SGEN
directives, either ignoring the item or incorporating it into
the VORTEX nucleus. The only manual operations are the
addition and replacement of object modules during system
generation. In these cases, follow the procedures given in
section 15.5.5 and 15.5.6, respectively.

15-16

15.6.1 SLM (Start Load Module)
Directive

This directive specifies the beginning of a load module. Its
presence indicates the beginning of the system initializer or
VORTEX nucleus. The directive has the general form

SLM,name

where name is the name of the load module that follows the
directive.

Example: Indicate the beginning of the VORTEX nucleus.

SLM, VORTEX

15.6.2 TDF (Build Task-ldentification Block)
Directive

This directive specifies all parameters necessary to build a
task-identification block in the VORTEX nucleus. It has the
general form

TDF,name,exec,ctrl,stat,levl

where

name is the name (1 to 6 alphanumeric
characters) given to the TIDB for linking
purposes

exec is the name (1 to 6 alphanumeric
characters) associated with the
execution address of the task

ctrl is the name (1 to 6 alphanumeric
characters) of the controller table
required for Teletype and CRT
processing tasks, or is O for any other
task

stat is the 16-bit TIDB status word where the
settings of the individual bits have the
significance shown in table 15-5

levi is the priority level of the related tasks

Example: Define a foreground resident task PROG1 on
priority level 10.

TDF, TIDPR1,PROG1,0,07401,10

The TDF directive causes a resident TIDB to be created for
the specified task. The task itself may or may not be a
resident task, as defined by the status word (stat). See
section 15.5.13 for generation of resident tasks without
resident TIDB.

varian data machines

15.6.3 END Directive

This directive indicates the end of the system initializer or
the VORTEX nucleus. It has the form

END
Example: Indicate the end of the system initializer.

END

15.6.4 Memory Parity Considerations

Memory parity is not a supported feature under VORTEX.
For those systems which require the use of memory parity,
the user may write his own memory-parity service routine
(see section 14) and add it to the system. The following are
considerations when using memory parity:

* The memory parity interrupt trap must be an even
modulo-8 address, e.g., 010, 0100, 0110, 0200, etc. The
exact address depends upon the number of PIMs in
the system. For example, a system with 3 PIMs can
use any of the following addresses: 0160, 0170, 0200,
0230, 0240, 0250, 0260, 0270, or 010. If 4 PIMs are
in the system, then any of the above addresses except
for 0160 and 0170 may be used. In the case where all
8 PIMs are used, the only available address will be
010.

* Fortrap addresses between 0100 and 0277, the SGEN
PIM directive, specifying the direct connect option,
may be used to link up the trap address with the user’s
memory-parity routine. If a trap address of 010 is used,
the PIM directive cannot be used. In this case, the
easiest means of linking the trap address and the
service routine would be to modify the ‘“low-core”
module (VELMEMBLK) to specify an EXT to the user’'s
interrupt service routine.

No enable/disable memory parity instructions are
required and hence no changes are required for the
system initializer.

15.7 BUILDING THE LIBRARY
CONFIGURATOR

If a full system generation has been requested by the S
form of an EDR directive (section 15.5.15), the library
generator is loaded upon completion of nucleus processing.
If only reconfiguration of resident tasks has been requested
(R form of the EDR directive), the library generator is
loaded immediately after directive processing.

A load module is a logically complete task or operation that
can be executed by the VORTEX system in foreground or
background. It resides in the foreground or background
library, or in the user library. Load modules are constructed
from sets of binary object modules interspersed with

SYSTEM GENERATION

alphanumeric control records. The control records indicate
the beginning and end of data for incorporation into each
load module, and specify certain parameters to the load
module. The group of object modules and control records
used to construct a load module is called a load-module
package (LMP). Figure.15-5 shows an LMP for a load
module without overlays, and figure 15-6 shows an LMP for
a load module with overlays. Each LMP runs from a SLM
control record to an END control record, and includes all
modules and records between the SLM and END.

* | SLM,namel
TID,name2,. . .

[Object Modules Comprising
r the Root Segement

ESB
END
NOTE:
* = Alphanumeric control record

Figure 15.5. Load Module Package for Module Without
Overlays

There are five SGEN control records used in building the
library:

. SLM Start load module

. TID Task-identification block specification
. OVL Overlay

. ESB End of segment

. END

Library processing consists of the automatic reading of
control records and object modules from the SGL, and
construction of the library from these inputs. The only
manual operations are the addition and replacement of
load modules. In these cases, follow the procedures given in
sections 15.5.5 and 15.5.6, respectively.

Resident-task configuration takes place upon completion of
library processing. All tasks specified by TSK directives
(section 15.5.13) are copied from the foreground library
into the VORTEX nucleus, thus becoming resident tasks. To
change the resident-task configuration of a previously
generated system, input the TSK directives followed by the
R form of the EDR directive (section 15.5.15), thus
bypassing nucleus and library processing and allowing the
resident-task configurator to alter the existing system.
Note: If a specified program is not found in the
foreground library, configuration continues, but an appro-
priate message is output.

15-17

varian data machines

SYSTEM GENERATION

15-18

Bit When Set Indicates

15 Interrupt suspended

14 Task suspended

13 Task aborted

12 Task exited

11 TIDB resident

10 Task resident

9 Foreground task

8 Protected task

Task scheduled by
time increment

6 Time delay active
5 Task checkpointed
4 Error in task

Task interrupt expected
Overlay task
1 Task-schedule this task

0 Task searched, allo-
cated and loaded

Table 15-5. TIDB Status-Word Bits

Explanation

The task is suspended during the

processing of a higher-priority
task. The contents of volatile
registers are stored in TIDB

words 12-16 (interrupt slack).

The task is suspended because

of 1/0 or because it is wait-
ing to be activated by an inter-
rupt, time delay, or another

task. The task is activated

whenever this bit is zero, or
if TIDB word 3 has an inter-
rupt pending and the task ex-

pects the interrupt.

The task is not activatec. All

stacked 1/0 is aborted, but
currently active 1/0 is com-

pleted.

The task is not activated. All

stacked and currently active

170 is completed.
The TIDB (drivers, task-

interrupt processors, resident
tasks, and time-scheduled tasks)
is resident and not released
when the task is aborted or

exited.

exited.

The task is resident and not
released when aborted or

The task is in protected fore-

ground. A background task is
protected only if bit 8 is set.

The task is protected.

The task becomes nonsuspended
when a specified time interval

is reached. Prerequisite: Resi-
dent TIDB (bit 11).

The clock decrements the time
counter that, upon reaching zero,
clears bit 14.

The background task is check-
pointed and suspended. 1/0 is
not activated.

The task contains an error that
will cause an error message to
be output.

A task interrupt is expected.
The task contains overlays.

The scheduling task is suspended
until the scheduled task exits
or aborts.

The task is loaded in memory and
is ready for execution.

varian data machines

15.7.1 SLM (Start LMP) Directive

This directive indicates the start of an LMP. It has the
general form

SLM,name

where name is the name of the LMP that begins with this
directive.

Example: Indicate the start of the LMP named ABC.

SLM, ABC

15.7.2 TID (TIDB Specification)
Directive

This directive contains the parameters necessary for the
generation of the task-identification block required for each
generated load module. The TID directive has the general
form

TID,name,mode,ovly,lun

where

name is the name (one to six alphanumeric
characters) of the task
mode is 1 if the task is a background task, or 2

ifitis a foreground task

ovly is the number of overlay segments, or 0
if the task has no overlay segments,
(note that the value 1 is invalid)

lun is the number of the logical unit onto
which the task is to be cataloged

Once a TID directive is input and processed, object
modules are input, processed, and output to the specified
logical unit until the ESB directive (section 15.7.4) is found.

Examples: Specify a TIDB for a task PROG1 without
overlays for cataloging on the BL unit (105).

TID,PROG1,1,0,105

Specify a TIDB for the task PROG2 with four overlay
segments for cataloging on an FL unit (106).

TID,PROG2,1,4,106

SYSTEM GENERATION

SLM,namel

TiD,name2,. . .

[Object Modules Comprising
| the Root Segment |

ESB

OVL,name3,. . .

| Object Modules Comprising
the First Overlay Segment

ESB

OVL,name4,. . .

| Object Modules Comprising
the Second Overlay Segment

| Object Modules Comprising |

the nth Overlay Segment
ESB

END

NOTE:

* = Alphanumeric control record

Figure 15-6. Load Module Package for Module With
Overlays

15.7.3 OVL (Overlay) Directive

This directive indicates the beginning of an overlay
segment. The OVL directive has the general form

OVL,segname

where segname is the name (one to six alphanumeric
characters) of the overlay segment.

Example: indicate the beginning of the overlay segment
SINE.

OVL, SINE

15-19

— varian data machines

SYSTEM GENERATION

15.7.4 ESB (End Segment) Directive

This directive indicates the end of a segment, i.e., that all
object modules have been loaded and processed. The
directive has the form

ESB

The ESB directive causes the searching of the CL library,
which was generated during nucleus processing, to satisfy
undefined externals.

The ESB directive concludes both root segments (follow-
ing TID, section 15.7.2) and overlay segments (following
OVL, section 15.7.3) of a load module.

Example: Indicate the end of a segment.

ESB

15.7.5 END (End Library) Directive

This directive indicates the end of load-module generation.
It has the form

END

Example: Specify the end of load-module generation.

END

15.8 SYSTEM INITIALIZATION AND
OUTPUT LISTINGS

Upon completion of load-module processing, SGEN outputs
on the OC and LIS units the message

VORTEX SYSTEM READY

The system initializer and VORTEX nucleus are then loaded
into memory, the initializer is executed to initialize the
system, and the nucleus is executed to begin system
operation. At this time, the OM library should be loaded
and built on the RMD using FMAIN.

15-20

The OM library is provided as job streams as the second
through thirty-fifth files on the SGL. An EOF separates the
SGL from the OM job stream. A system generation leaves
the SGL positioned just prior to this EOF. For card and
magnetic tape SGLs this EOF must be skipped over before
executing the OM job strearn. For disc SGLs the OM library
object modules are on the second partition of the disc pack
(DcuB). Refer to the VORTEX/VORTEX Il Installation Man-
ual for details.

If the supplemental Writable Control Store (WCS) material
is to be added to the Object Module Library, its job stream
should be executed at this time. The library routines which
use WCS replace their non-WCS equivalents.

The VORTEX system is now operating with the peripherals
in the status specified by TID control records.

If the EDR directive specified a listing, linking information
is listed on the LIS unit during nucleus processing and
library generation. Regardless of the EDR directive, RMD
and resident-task information is listed during nucleus
processing or resident-task configuration, respectively.
Figures 15-7 through 15-10 show the listing formats of load
maps for the VORTEX nucleus, the library processor, the
RMD partitions, and the resident tasks.

CORE RESIDENT LIBRARY

NAME LOCATION
AAA 017285
BBB 000100
222 025863

NONSCHEDULED TASKS

NAME LOCATION
ABC 022620
DEF 014640
XYz 011400

Figure 15-7. VORTEX Nucleus Load Map

varian data machines @—-

SYSTEM GENERATION

LOAD MODULE: ABC CORE RESIDENT TASKS

CATALOGED ON: DOOH

NAME LOCATIONS
PROG 1 014630
NAME LOCATION PROG2 014630
PROG3 NOT FOUND
MOP A 032556 PROGU 014500
QRS R 000200
. . . Figure 15-10. Resident-Task Load Map
TUV A 032501
LOAD MODULE: CDE

15.9 SYSTEM GENERATION EXAMPLES
CATALOGED ON: D10A

EXAMPLE 1
NAME LOCATION
Problem: Generate a VORTEX system using the following
hardware:
GHI R 000010
JKL R 000012 a. Computer with 16K main memory
. . . b. A model 70-7610 disc unit with device address 016
MNO R 000077 c. Teletype keyboard/printer

d. Cardreader
Figure 15-8. Library Processor Load Map e. Two buffer interlace controllers (BICs) with device
addresses 020 and 022

f. One priority interrupt module (PIM) with device
RMD PARTITIONING address 040

and having the characteristics listed below:

NAME FIRST LAST BAD a. Foreground common size = 0200
TRACK TRACK TRACKS
b. Storage/reentry stack area size = 0200
DOOA 0007 0008 0000
DOOB 0009 0028 0000 c. Number of empty TIDBs = 20
DOOC 0029 0053 0000 . .
DOOD 0054 0093 0000 d. Number of disc partitions = 9
DOOE 0094 0101 0000 Il ei . .
DOOF 0102 0119 0000 e. A eight interrupt lines connected through a common
D0OG 0120 0137 0000 interrupt handler
DOOH 0138 0203 0000 .
f. One user-coded program added to the resident module
DO1A 0001 0039 0000 (PROGI)
DO1B 0040 0099 0000 . .
Do1ic 0100 0149 0000 g. JCPreplaced with a new version
DO1D 0150 0203 0000
h. One user-coded load module added to the background
library (after LMGEN) (PROG2)
Figure 15-9. RMD Partition Listing i. The system file listed after system generation

15-21

15-22

_@ varian data machines

SYSTEM GENERATION

Procedure:
Step

1

User Action

Load and execute the card
reader loader (table 15-1)

On the OC unit, input

DIR = TY00A,01

LIB = CROOA,030
ALT = CROOA,030
LIS = TYOOA,01

SYS = D00B,016,020

On the Teletype (DIR unit),
type

CLK,100,100,20
MRY,037777,0200
EQP,DOB,016,1,020,10
EQP,TYOA,01,1,0,0
EQP,CROA,030,1,0,0
PRT,DOOA,2,C;D00B,20,F
PRT,D00C,25,E;D00D,40,D
PRT,DOOE,8,S;DOOF,18,B
PRT,DO0G, 18, *;DO0H, 52, *
PRT,D0OI,14,*

ASN,1=TY00,2 = TY00,3 = TY00
ASN,4 = CR00,5 = TY0O, = CROO
ASN,7 = D00I,8.= DOOH,9 = DOOG
ASN,10 =DOOH,11 = TY00,12 = TY00

ASN,180 = DOOH,181 = DOOI

PIM,03,TBD0B,01,0;02, TBCROA,01,0
PIM,03,TBD0B,01,0;04, TBTY0A,01,0

PIM,05, TBTYOA,02,0
TSK,PROG1
LRE,BGTSK1
LAD,BGTSK2
EDR,$,20,0200,9,44,26,L.

Load revised version of
BGTSK1 load module in the
card reader, and on DIR

type:
ALT

Load the remainder of the
load module library in the
card reader, and on DIR type

LiB

Load the PROG1 load module
in the card reader, and on
DIR type

ALT

SGEN Response

Loads the 170 interrogation
routine punched cards from
the card reader, and cutputs
on the OC unit

170 INTERROGATION

Loads the SGEN drivers and
directive processor, and
outputs

INPUT DIRECTIVES

Processes the directives,
partitions the disc, loads
the nucleus processor and
builds the nucleus, loads
the library processor and
builds the library until

load module JCP is encoun-
tered, and outputs

REPLACE JCP
READY

Reads and processes the
new load module, and
outputs:

READY

Processes the load mod-
ule library until the
completion of LMGEN,
and outputs

ADD AFTER BGTSK2
READY

Reads and processes PROGI,
and outputs

READY

Procedure: (continued)

Step User Action

7 Load the PROG2 load module
in the card reader, and on
DIR type
ALT

8 Load the remainder of the

load module library in the
card reader, and on DIR type

LiB

9 None

EXAMPLE 2

varian data machines [@——

SYSTEM GENERATION

SGEN Response

Reads and processes PROG2,
and outputs

READY

Processes the remainder of
the load module library,
copies PROG1 from the FL
unit to the VORTEX nucleus,
lists the resident task in-
formation, and outputs on
OC and LIS

VORTEX SYSTEM READY

Loads and initializes the
VORTEX nucleus

Problem: Replace the current resident tasks in the
foreground library with the tasks listed below in an

operational VORTEX system.

PROG1
ABC
TEST
EFG
Procedure:
Step User Action
1 Load and execute the magnetic
tape loader (table 15-1)
2 On the OC unit, input
DIR = TYOO0A,01
LIB =MTOO0A,010
ALT = MTO01A,010
LIS =LPO0A,035
SYS = DO0A2,014,020
3 On the Teletype (DIR unit),
type
TSK,PROG1,ABC
TSK,TEST,EFG
EDR,R
4 None

SGEN Response

Loads the 1/0 interrogation
routine from magnetic tape
and outputs from the OC unit

10 INTERROGATION

Loads the SGEN drivers and
directive processor, and
outputs

INPUT DIRECTIVES

Processes the directives,
loads the resident-task
processor, enters the
PROG1, ABC, TEST, and
EFG load modules from FL,
lists resident information,
and outputs on OC and LIS

VORTEX SYSTEM READY

Loads and initializes
the VORTEX nucleus

15-23

_@ varian data machines

SECTION 16
SYSTEM MAINTENANCE

The VORTEX system-maintenance component (SMAIN) is a
background task that maintains the system-generation
library (SGL). The SGL (figure 14-1) comprises all object
modules and their related control records required to
generate a generalized VORTEX operating system.

16.1 ORGANIZATION

SMAIN is scheduled for execution by inputting the job-
control-processor (JCP) directive /SMAIN (section 4.2.21).

SYSTEM INPUT
(s1
LOGICAL UNIT

SMAIN DIREC-

TIVE INPUT

varian data machines @—»

Once SMAIN is so scheduled, loaded, and executed, SMAIN
directives can be input from the Sl logical unit to maintain
the SGL. No processing of the SGL takes place before all
SMAIN directives are input and processed. Then user-
specified object modules and/or control records are added,
deleted, or replaced to generate a new SGL.

SMAIN has a symbol-table area for 200 symbols at five
words per symbol. To increase this, input a /MEM directive
(section 4.2.5), where each 512-word block will increase the
capacity of the table by 100 symbols.

SYSTEM QUTPUT
(5O)
LOGICAL UNIT

ERROR MESSAGES
AND RECOVERY

LOGICAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE IN

OLD SYSTEM
GENERATION
LIBRARY (SGL)

LOGICAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE ALT

NEW OBJECT
MQODULES AND
CONTROL

RECORDS

SMAIN

LOGICAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE QUT

NEW SYSTEM
GENERATION
LIBRARY (SGL)

SGL AND SMAIN
DIRECTIVE
LISTINGS

LIST OUTPUT

(LO)

LOGICAL UNIT

VII1-1364

Figure 16-1. SMAIN Block Diagram

16-1

varian data machines

SYSTEM MAINTENANCE

INPUTS to the SMAIN comprise:

a. System-maintenance directives (section 16.2) input
through the Si logical unit.

b. The old SGL input through the logical unit specified by
the IN directive (section 16.2.1).

c. New or replacement object modules and/or control
records input through the logical unit specified by the
ALT directive (section 16.2.3).

d. Error-recovery inputs entered via the SO logical unit.

System-maintenance directives specify both the changes to
be made in the SGL, and the logical units to be used in
making these changes. The directives are input through the
Sl logical unit and listed, when specified, on the LO logical
unit. If the Sl logical unit is a Teletype or a CRT device, the
message SM** is output to indicate that the SI unit is
waiting for SMAIN input.

The old SGL contains three types of record: 1) control
records and comments (ASCII), 2) the system-generation
relocatable loader (the only SGL absolute core-image
record), and 3) relocatable object modules such as are
output by the DAS MR assembler and the FORTRAN
compiler.

New or replacement object modules and/or control records
have the same specifications as their equivalents in the old
SGL.

Error-recovery inputs are entered by the operator on the
SO logical unit to recover from errors in SMAIN operations.
Error messages applicable to this component are given
Appendix A.16. Recovery from the type of error represented
by invalid directives or parameters is by either of the
following:

a. Input the character C on the SO unit, thus directing
SMAIN to go to the Sl unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next SMAIN directive is then input
from the S| unit.

Recovery from errors encountered while processing object
modules and/or control records is by either of the
following:

a. Input the character R on the SO unit, thus directing a
rereading and reprocessing of the last record.

b. Input the character P on the SO unit, thus directing a
rereading and reprocessing from the beginning of the
current object module or control record.

In the last two cases, repositioning is automatic if the error

involves a magnetic-tape unit or an RMD. Otherwise, such
repositioning is manual.

162

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort the SMAIN task and schedule
the JCP for execution.

OUTPUTS from the SMAIN comprise:
a. The new SGL
b. Error messages
c. Thelisting of the old SGL, if requested

d. Directive images

The new SGL contains object modules and control records.
It is similar in structure to the old SGL.

Error messages applicable to SMAIN are output on the SO
and on LO logical units. The individual messages, errors,
and possible recovery actions are given in Appendix A.16.

The listing of the old SGL is output, if requested, on the LO
unit. The output consists of a list of all control records and
the contents of all object modules. At the top of each page,
the standard VORTEX heading is output.

The image of an object module is represented by the
identification name of the module, the date the module
was generated, the size (in words) of the module (O for a
FORTRAN object module), and the external names refer-
enced by the module, in the following format:

id-name date size entry-names external-names
Directive images are posted onto the LO unit, thus

providing a hardcopy of the SMAIN directives for perma-
nent reference.

16.1.1 Control Records

In SMAIN there are two types of control record:
a. SGL delimiters
b. Object-module delimiters
SGL delimiters divide the SGL into five parts. Each part is

separated from the following part by a control record of the
form

CTL,PART000N

where n is the number of the following part, and the SGL
itself is terminated by a control record of the form

CTL, ENDOFSGL

Within SMAIN directives, these control records are refer-
enced in the following format

PARTO0OOn
ENDOFSGL

Object-module delimiters precede and/or follow each group
of object modules within the SGL. Each delimiter is of one
of the forms

SLM,name
TID,name
OVL,name
TDF ,name
ESB
END

The control records containing a hame can be referenced
by use of the name alone in SMAIN directives. These
control records and their uses are described in the section
on the system-generator component (section 13).

A set of object modules preceded by an SLM control record
and followed by an END control record is known as a load-
module package (LMP). To add, delete, or replace an entire
LMP, merely reference the name associated with the SLM
control record. Thus, if the directive specifies deletion and
includes the name associated with the SLM record, the
entire LMP is deleted. Additions and replacements operate
analogously.

16.1.2 Object Modules
Relocatable object-module outputs from the DAS MR

assembler and the FORTRAN compiler are described in
appendix G.

16.1.3 System-Generation Library

The SGL is a collection of system programs in binary-object
form, and of control records in alphanumeric form, from
which a VORTEX system is generated. The structure of the
SGL is described in section 15.

16.2 SYSTEM-MAINTENANCE DIRECTIVES

This section describes the SMAIN directives:

. IN Specify input logical unit
. ouT Specify output logical unit
. ALT Specify input logical
unit for new SGL items
. ADD Add items to the SGL
. REP Replace SGL items
. DEL Delete items from the SGL
. LIST List the old SGL
. END End input of SMAIN directives

varian data machines

SYSTEM MAINTENANCE

SMAIN directives begin in column 1 and comprise
sequences of character strings having no embedded
blanks. The character strings are separated by commas (,)
or by equal signs (=). The directives are free-form and
blanks are permitted between the individual character
strings of the directive, i.e., before or after commas (or
equal signs). Although not required, a period (.) is a line
terminator. Comments can be inserted after the period.

The general form of an SMAIN directive is
name,p(1),p(2),....p(n)
where
name is one of the directive names given
above (any other character string
produces an error)
is a parameter defined below under

the descriptions of the individual
directives

each p(n)

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted.

Error messages applicable to SMAIN directives are given in
Appendix A.16.
16.2.1 IN (Input Logical Unit) Directive

This directive specifies the logical unit from which the old
SGL is to be input. It has the general form

IN,lun, key, filename

where
lun is the name or number of the logical unit
to be used for the input of the old SGL
key is the protection code, if any, required to
address lun
filename is the name of the input file when lun is

an RMD partition

There is no default value for lun. If it is not specified, any
attempt at SGL processing will cause an error message
output.

Once specified, the value of lun remains constant until

changed by a subsequent IN directive. Each change of lun
requires a new IN directive.

16-3

]

—

varian data machines

SYSTEM MAINTENANCE

If lun specifies an RMD partition, the RMD is rewound to
the first sector following the partition specification table
(PST, section 3.2) before any processing takes place. The
PST comprises one entry defining the entire RMD.

Examples: The old SGL resides on logical unit 4, the Pl
unit. Specify this unit to be the SGL input unit.

IN, 4
The old SGL resides on logical unit 107, which requires the
protection code G. Specify this unit to be the SGL input

unit.

IN,107,G

16.2.2 OUT (Output Logical Unit) Directive

This directive specifies the logical unit on which the new
SGL is to be output. It has the general form

OUT,lun, key, filename

where
lun is the name or number of the logical unit
to be used for the output of the new SGL
key is the protection code, if any, required to
address lun
filename is the name of the output file when lun is

an RMD partition

The default value of lun is zero. When lun is zero by
specification or by default, there is no output logical unit.

Once specified, the value of lun remains constant until
changed by a subsequent OUT directive. Each change of
lun requires a new OUT directive.

If lun specifies an RMD partition, the RMD is rewound to
the first sector following the PST before any processing

takes place. The PST comprises one entry defining the
entire RMD.

Examples: Specify the PO logical unit, unit 10, to be the
output unit for the new SGL.

ouT, 10

Specify that there is to be no output logical unit.

ouT, o0

16-4

16.2.3 ALT (Alternate Logical Unit)

Directive
This directive specifies the logical unit from which new
object module(s) and/or control record(s) are to be input to
the new SGL. It has the general form

ALT,lun, key, filename

where
lun is the name or number of the logical unit
to be used for the input of new items to
the SGL
key is the protection code, if any, required to
address lun
filename is the name of the input file when lun is

an RMD partition

There is no default value for lun. If it is not specified, any
attempt to input new object modules or control records to
the SGL will cause an error message output.

Once specified, the value of lun remains constant until
changed by a subsequent ALT directive. Each change of lun
requires a new ALT directive.

Examples: Specify that new object modules and control
records are to be input to the SGL from the Bl logical unit
only.

ALT, 6

Make the same specification where Bl is an RMD partition
without a protection code. Use file FILEX.

ALT,BI, ,FILEX

16.2.4 ADD Directive

This directive permits the addition of object modules and/
or control records during the generation of a new SGL, the
additions being made immediately after each of the items
specified by the parameters of the ADD directive. The
directive has the general form

ADD,p(1),p(2),...p(n)

where each p(n) is the name of an object module or control
record after which additions are to be made.

varian data machines

SMAIN copies object modules and control records from the
old SGL into the new SGL up to and including an item
specified by one of the parameters, p(n), of the ADD
directive. After this item is copied, the message

ADD AFTER p(n)

SM**

is output to indicate that SMAIN is waiting for a control
character (Y or N) to be input on the SO logical unit.

If the control character input is Y, SMAIN adds the next
object module or control record contained on the logical
unit specified by the ALT directive (section 16.2.3), then
repeats "SM**" the message requesting another controi
character. This continues until the control character input
is N.

If the control character input is N, SMAIN assumes the
additions at this point are complete. It continues copying
from the old SGL and outputs the message

END REPLACEMENTS

The entire process is repeated when the next item specified
by one of the parameters, p(n), of the ADD directive is
found. The items in the directive need not be in the same
order as they appear on the old SGL.

Example: During generation of a new SGL, add object
module(s) and/or control record(s) after the old SGL
control record PARTO001 and after the old SGL object
module LMP, the added items to be input from the logical
unit specified by the ALT directive. Input

ADD, PARTO000 1, LMP
then, when the message

ADD AFTER PARTO0001

SM**

appears, input the control character Y. SMAIN then inputs
the next item on the logical unit specified by the ALT
directive, and again outputs the message

SM**

and awaits another control character. If more is to be
added here, input Y. If no more additions are required at
this point, input N. After receiving the N, SMAIN outputs
the message .

END REPLACEMENTS

and continues to read the old SGL and copy it into the new
SGL up to and including the object module LMP. SMAIN
then outputs the message

ADD AFTER LMP
SM**

at which time the process is repeated.

SYSTEM MAINTENANCE

Note that PART0001 does not have to precede LMP in the
old SGL. If the positions of the items are reversed relative
to their order in the directive, the order of messages will be
reversed. In any case, the items on the logical unit
specified by ALT must be in the order in which they are to
be added to the SGL.

16.2.5 REP (Replace) Directive

This directive permits the replacement of object modules
and/or control records during generation of a new SGL.
The directive has the general form

REP,p(1),p(2).....p(n)

where each p(n) is the name of an object module or control
record that is to be replaced.

SMAIN copies object modules and control records from the
old SGL into the new SGL until it encounters one specified
by one of the parameters, p(n), of the REP directive. SMAIN
then reads the item to be replaced, but does not copy it
into the new SGL. After this is completed, the message

REPLACE p(n)

SM**

is output to indicate that SMAIN is waiting for a control
character (Y or N) to be input on the SO logical unit. These
control characters operate just as in the ADD directive
(section 14.2.4), allowing the addition (in this case,
replacement, since the parameter item was not copied into
the new SGL) of new items to the SGL. The items in the
directive need not be in the same order as they appear in
the old SGL.

Example: During generation of a new SGL, replace the old
SGL object module I0CTL with object modules and/or
control records from the logical unit specified by an ALT
directive (section 14.2.3). Input

REP,IOCTL

SM**

then, when the message

REP IOCTL

appears, continue as for an ADD directive (section 14.2.4).

16.2.6 DEL (Delete) Directive
This directive permits the deletion of object modules and/

or control records during generation of a new SGL. The
directive has the general form

DEL,p(1),p(2),....p(n)

where each p(n) is the name of an object module or control
record that is to be deleted.

16-5

_@] varian data machines

SYSTEM MAINTENANCE

SMAIN copies object modules and control records from the
old SGL into the new SGL until it encounters one specified
by one of the parameters, p(n), of the DEL directive. SMAIN
then reads the item to be deleted, but does not copy it into
thé new SGL. The items in the DEL directive need not be in
the same order as they appear on the old SGL.

If a listing of the old SGL is specified either by a LIST
directive (section 16.2.7) or by the L parameter of an END
directive (16.2.8), the deleted items are preceded on the
listing by asterisks (¥).

Example:
following old SGL items:

During generation of a new SGL, delete the
object module 10ST and control

16.2.7 LIST Directive

This directive lists, on the L.O logical unit, the old SGL as
found on the logical unit specified by the SMAIN directive
IN (section 16.2.1). The LIST directive has the form

LIST
Example: List the old SGL.

LIST

Figure 16-2 shows the format of output from this directive.

record LMGENCTL.

DEL, IOST, LMGENCTL

16-6

PAGE 1 11713772
IN, M1
. QUT.PU
i LISY
BOUTLAOR
» 1D NAME DATE S1ZE
i VESGEMLD 10702722 1591
ID NAmE NATE SIZE
- VEDOOAL 02/24/72 36
LD NAME DATE SIZE
VE000AR 02/s24/72 36
1D MAME DATE SIZE
VSD0OUAS 02/24/72 36
""" 10 NAME DATE SIZE
YsDioAy Q2724772 36
IN NAME DATF S1Z2€
V$D104a2 02/24/72 36
10 NAME DaTe SIZE
VED10AS N2/24/72 36
) 1D NA“E DATE S17E
VHD2061 N2/24772 A1)
Figure 16-2.

VORTEX SMAIN

FENTRY NAMES EXTERNAL NAMES

SGLNR TPROG SGIBUF
BSTACK SPUN
$PUB SLUN
Lus

ENTRY MAMES EXTERNAL NAMES

DOOAY DRWEQF DRSTAT
DRSKRD DRSFIL
ORRITE DRREWO
DRREAD

FNTRY NAMES EXTERNAL NAMES

DOOA2 DRWEQF DRSTAT
DRBKRD DRSFIL
ODRRITE DRREWD
DRREAD

ENTRY NAMES EXTERNAL NAMES

DOOAY ORWEQOF ORSTATY
DRSKRD DRSFIL
DRRITE DRREWD
DRREAD

FNYRY NAMES EXTERNAL NAMES

D10AYL NDRWEOF DRSTAT
DRSKRD DRSFIL
ORRITE DRREWD
DRREAD

ENTRY NAMES EXTERNAL NAMES

N10A2 DRWEQF DRSTAT
ORSKRND DRSFIL
DRRITE DRREWD
DRREAD

FNTRY NAMES FEXTERNAL NAMES

D10AS DRWEQF DRSTAT
DRSKRD DRSFIL
DRRITE DRREWD
DRREAD

FNTRY NAMES EXTERNAL NAMES

n2ost DRWEOF DRSTAT

SMAIN LIST Directive Listing

16.2.8 END Directive

This directive indicates that all ADD (section 16.2.4), REP
(section 16.2.5), and DEL (section 16.2.6) directives have
been input. END initiates the SGL maintenance process.
The directive has the general form

END,L

where L, if present, specifies that the old SGL is to be
listed.

Examples: After all ADD, REP, and DEL directives have
been input, initiate SGL maintenance processing.

END

Initiate the SGL maintenance processing as above, but list
the old SGL.

END, L

16.3 SYSTEM-MAINTENANCE OPERATION

The normal SMAIN operation consists of copying an
existing SGL from the logical unit specified by the IN
directive (section 16.2.1) to the logical unit specified by the
OUT directive (section 16.2.2), making the modifications
specified by the ADD (section 16.2.4), REP (section 16.2.5),
and DEL (section 16.2.6) directives, and thus creating a
new SGL.

Input of the END directive (section 16.2.8) initiates the
copying process. All ADD, REP, and DEL directives, if any,
must precede the END directive.

Modifications to the SGL are made through the logical unit
specified by the ALT directive (section 16.2.3). Such
modifications are in the form of additions and/or replace-
ments of object modules and/or control records. (These
items can also be deleted, but this process does not, of
course, require input on the ALT unit.)

When an object module is input, SMAIN verifies that there
is no error with respect to check-sum, record size, loader
codes, sequence humbers, or structure.

varian data machines [@—

SYSTEM MAINTENANCE

16.4 PROGRAMMING EXAMPLES

Example 1: Schedule SMAIN, copy the old SGL from
logical unit 4 onto logical unit 9 without listing the old SGL,
and return to the JCP.

/ SMAIN
IN, 4
ouT, 9
END
/ENDJOB

Example 2: Schedule SMAIN; copy the old SGL from
logical unit 4 onto logical unit 9, listing the old SGL and
deleting object modules A, B, C, D, and E; and return to
the JCP.

/SMAIN

IN, U4

ouT, 9
DEL,A
DEL,B,C,D,E
END, L
/ENDJOB

Example 3: Schedule SMAIN, list the contents the old SGL
on logical unit 4, and return to the JCP.

/SMAIN
IN, 4
LIST
/ENDJOB

Example 4: Schedule SMAIN; copy the old SGL from
logical unit 4 onto logical unit 9 without listing the old SGL;
add object modules or control records from logical unit 6
after control record PARTO002 and after object module A;
replace load module LMGEN and control record JCPDEF;
delete object modules B, C, D, and E; and return to the
JCP.

/SMAIN

IN, 4

OuT, 9

ALT, 6
ADD,PART0002,A
REP, LMGEN
DEL,B,C,D,E
REP, JCPDEF

END

/ENDJOB

16-7

-—-@ varian data machines

varian data machines

SECTION 17
OPERATOR COMMUNICATION

The operator communicates with the VORTEX system
through the operator communication component by means
of operator key-in requests input through the operator
communication (OC) logical unit.

17.1 DEFINITIONS

An operator key-in request is a string of up to 80
characters beginning with a semicolon. The request is
initiated by the operator and is input through the OC unit.
An operator key-in request is independent of 1/0 requests
via the |0C (section 3) and, hence, is known as an
unsolicited request.

The operator communication (OC) logical unit is the logical
unit through which the operator inputs key-in requests.
There is only one OC unit in the VORTEX system. Initially,
the OC unit is the first Teletype, but this assignment can
be changed by use of the ;ASSIGN key-in request (section
17.2.9).

17.2 OPERATOR KEY-IN REQUESTS

This section describes the operator key-in requests:

. ;SCHED Schedule foreground task

. ;TSCHED Time-schedule foreground task
. JATTACH Attach foreground task to PIM line
. 'RESUME Resume task

. ;TIME Enter or display time-of-day

. ;DATE Enter date

. ;ABORT Abort task

. ;TSTAT Test task status

. ;ASSIGN Assign logical unit(s)

. ;DEVDN Device down

. ;DEVUP Device up

. ;/IOLIST List logical-unit assignments

Operator key-in requests comprise sequences of character
strings having no embedded blanks. The character strings
are separated by commas (,) or by equal signs (=).
However, the key-in requests are free-form and blanks are
permitted between the individual character strings of the
key-in request, i.e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator.
Comments can be inserted after the period. A carriage
return is required to terminate any key-in request, however,
regardless of whether it contains a period.

The general form of an operator key-in request is

srequest,p(1),p(2),,...,p(n)cr

where

request is one of the key-in requests listed above
in capital letters

each p(n) is a parameter defined under the
descriptions of the individual key-in
requests below

cr is the carriage return, which terminates
all operator key-in requests

Each operator key-in request begins with a semicolon (;)
and ends with a carriage return. Parameters are separated
by commas. A backarrow (~) deletes the preceding
character. A backslash (\) deletes the entire present key-in
request.

Table 17-1 shows the system names of physical |/0 devices
as used in operator key-in requests.

For greater clarity, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted from the descriptions of
the key-in requests.

Error messages applicable to operator key-in requests are
given in Appendix A.17.

Table 17-1. Physical 1/0 Devices

System Name Physical Device

DUM Dummy

CPcu Card punch

CRcu Card reader

CTcu Cathode ray tube (CRT) device

Dcup Rotating-memory device (RMD)
(disc/drum)

LPcu Line printer or Statos-31

MTcu Magnetic tape unit

PTcu High-speed paper tape reader/

TYcu Teletype printer/keyboard

Clma, COma Process 1/0

171

@ varian data machines

OPERATOR COMMUNICATION

NOTES

¢ = Controller number. For each type of device,
controllers are numbered from 0 as required.

u = Unit number. For each controller, units are
numbered from 0 as required (within the
capacity of the controller).

cu can be omitted to specify unit O controller 0,
e.g., CROO or CR.

p = Partition letter. RMD partitions are lettered
from A to T as required to refer to a partition on
the specified device, e.g., DOOA.

17.2.1 ;SCHED (Schedule Foreground Task)
Key-In Request

This key-in request immediately schedules the specified
foreground-library task for execution at the designated

priority level. It has the general form

;SCHED, task,level,lun,key

where

task is the name of the foreground task to be
scheduled

level is the priority level (from 2 to 3) of the
scheduled task

lun is the number or name of the
foreground-library rotating-memory
logical unit where the scheduled task
resides (0O for scheduling a resident
foreground task)

key is the protection code, if any, required to

address lun

A dump of the contents of a library can be obtained by use
of the VORTEX file-maintenance component (section 9).

Operator key-in examples: Schedule on priority level 3
the foreground task DOTASK residing on the FL logical
unit. Use F as the protection key.

; SCHED, DOTASK, 3,FL,F
Schedule on priority level 9 the resident foreground task

COPYIO.
; SCHED,COPYIO,9,0,0

17-2

17.2.2 ;TSCHED (Time-Schedule Foreground
Task) Key-In Request

This key-in request schedules the specified foreground-
library task for execution at the designated time-of-day and
priority level. It has the general form

;TSCHED,task,level,lun,key, time

where

task is the name of the foreground task to be
scheduled

level is the priority level (from 2 to 31) of the
scheduled) task

lun is the number or name of the
foreground-library rotating-memory
logical unit where the scheduled task
resides (0 for scheduling a resident
foreground task)

key is the protection code, if any, required to
address lun

time is the scheduled time in hours (from 00
to 23) and minutes (from 00 to 59), e.g.,
1945 for 7:45 p.m.
Operator key-in examples. Schedule for execution at
11:30 p.m. on priority level 3 the foreground task DOTASK
residing on the US logical unit. Use T as the protection key.
; TSCHED, DOTASK,3,US,T, 2330

Schedule for execution at 8:30 a.m. on priority level 9 the
resident foreground task TESTIO.

; TSCHED, TESTI10,9,0,0,0830

17.2.3 ;ATTACH Key-In Request

This key-in request attaches the specified foreground task
to the designated PIM (priority interrupt module) line. It
has the general form

;ATTACH, task, line iew,enable

where
task is the name of the foreground task to be
attached to the PIM line
line is the two-digit number of the PIM line to

which the task is to be attached, with the

tens digit specifying the PIM number (1-
8) and the units digit the line number (0-
7)on that PIM

iew is the value (from 01 to 0177777) of the
interrupt event word (section 17) and
identifies the bit(s) to be set in the task
TIDB when an interrupt occurs on fine

is E (default value) to enable the line, or
D todisable it

enable

The task can be resident or nonresident. However, its TIDB
must have been defined at system-generation time.
ATTACH provides a flexible way of altering interrupt
assighments without having to regenerate the system.

Operator key-in example: Connect task INTRPT to PIM 1,
line 3. Use 020 as the interrupt event word value (i.e., set
bit 4 of the interrupt event word in TIDB if INTRPT is
scheduled due to an interrupt on PIM 1, line 3).

;ATTACH, INTRPT, 13,020

A PIM directive with the PIM line to be attached must have
been specified during system generation to set up the link
to the interrupt line handler region.

17.2.4 ;RESUME Key-In Request

This key-in request reactivates the specified task for
execution at its specified priority level. It has the general
form

;RESUME, task
where task is the name of the task to be resumed
Resume the task DOTASK.

Operator key-in example:

i RESUME , DOTASK

17.2.5 ;TIME Key-In Request

This key-in request enters the specified time, if any, as
system time-of-day. If no time is specified in the key-in
request, ;TIME displays the current time-of-day. The key-in
request has the general form

;TIME, time

where time is the time-of-day in hours (from 00 to 23) and
minutes (from 00 to 59), e.g., 1945 for 7:45 p.m.

varian data machines

OPERATOR COMMUNICATION

The time-of-day output for a ;TIME request without time is
of the form

T hhmm HRS
where hhmm is the time of day in hours and minutes.

Operator key-in example:
3:00 p.m.

Set the system time-of-day to

; TIME, 1500

17.2.6 ;DATE Key-In Request

This key-in request enters the specified date as the system
date. It has the general form

;DATE,mm/dd/yy

where
mm is the month (00 to 12)
dd is the day (00 to 31)
yy is the year (00 to 99)

Note that since the entire date is considered one
parameter, there are no commas other than the one
immediately following DATE. The components of the date
are, however, separated by slashes as shown.

Operator key-in example: Set the system date to 25

December 1971.

;DATE, 12/25/71

17.2.7 ;ABORT Key-In Request

This key-in request aborts the specified task. It has the
general form

;ABORT, task
where task is the name of the task to be aborted

Operator key-in example: Abort the task DOTASK.

;ABORT, DOTASK

17.2.8 ;TSTAT (Task Status) Key-In Request

This key-in request outputs the status of the specified task,
if any. If no task is specified, ;TSTAT outputs the status of
all tasks queued on the active task identification block

17-3

S —

@ varian data machines

OPERATOR COMMUNICATION

(TIDB) stack. This request is not applicable to tasks having
no established TIDB. The request has the general form

;TSTAT, task

where task is the name of the task whose status is to be
output.

The status-output for a ;TSTAT key-in request is of the form

task Plevel Sstatus TMmin TSmilli

where

task is the name of the task whose status is
being output

level is the priority level (from 2 to 31) of the
task

status is the status of the task as found in

words 1 and 2 of the TIDB (table 17-2)

min is the value of the counter in TIDB word
11

milli is the value of the counter in TIDB word
10

The values of min and milli are printed only if bit 0 and/or
7 of TIDB word 1 (table 17-2) is set.

Table 17-2. Task Status (TIDB Words 1 and 2)

TIDB

Word Bit Meaning of Set Bit

1 15 Suspend interrupt

1 14 Suspend task

1 13 Abort task

1 12 Exit from task

1 11 TIDB resident

1 10 Resident task

1 9 Foreground task

1 8 Protected task

1 7 Task scheduled by time-delay

1 6 Time-delay active

1 5 Task waiting to be loaded

1 4 Task error

1 3 Task interrupt expected

1 2 Overlay task

1 1 Scheduled task upon
termination of active
task

1 0 Task search-allocated-loaded

2 15 Task opened

2 14 Task loaded in background
(checkpoint) area

2 13 Load overlay

2 12-0 Unused

17-4

Operator key-in examples: Request the output of the
status of the task BIGJOB.

; TSTAT,BIGJOB

The output will be

BIGJOB P02 S000100, 000000 TMO77777 TS077430

if the status of BIGJOB is such that it is on priority level 2,
contains a status of 0100 in TIDB words 1 and 2, with time
counters (TIDB words 10 and 11) of 077777 and 077430,
respectively. The latter two octal complement counters

show zero minutes and 0340 5-millisecond increments.

Request the output of the status of all foreground tasks
inputs.

; TSTAT

and receive as a typical response

VZDB P24 s047401, 000000 TMO77311 TS071000
V$TYA P23 sO047411, 000000 TMO77005 TS071011
V$TYA P23 sS047411, 000000 TMO077200 TS076000
VZLPA P22 s047401, 000000 TMO77002 TS022000
VZCRA P22 S047401, 000000 TMO77000 TS070221
VZMTA P22 s047401, 000000 TMO77200 TS071000
VZMTA P22 s047401, 000000 TMO77200 TS071000
V$OPCM P10 sS005405, 020000 TM077020 TS077033
JCP P01 sou4400, 000000 TMO77000 TS070005

17.2.9 ;ASSIGN Key-In Request

This key-in request equates and assigns particular logical
units to specific 1/0 devices. It has the general form

tASSIGN,I(1) = r(1),12) = r(2),...,I(n) = r(n)

where
each I(n) is a logical-unit number (e.g., 12) or
name (e.g., Sl)
each r(n) is a logical-unit number or name, or a

physical-device system name (e.g., TYOO
or TY, table 15-1)

The logical unit to the left of the equal sign in each pair is
assigned to the unit/device to the right.

An inoperable device, i.e., one declared down by ;DEVDN
(section 17.2.10), cannot be assigned. A logical unit
designated as unassignable (unit numbers 101 through
179) cannot be reassigned.

Operator key-in examples: Assign the card reader CR0OO
as the Sl logical unit and the Teletype TYO1 as the OC unit.

;ASSIGN,SI=CR00,0C=TYO01
Assign a dummy device as the Pl unit.

;ASSIGN,PI=DUM

17.2.10 ;DEVDN (Device Down) Key-In
Request

This key-in request declares the specified physical device
inoperable for system use. It is not applicable to the OC
unit or to devices containing system libraries. The request
has the general form

;DEVDN,device

where device is the system name of the physical device in
four ASCII characters, e.g., LPOO (or LP), TYOL, (table 15-1)

Operator key-in example; Declare TYOl inoperable for
system use.

; DEVDN, TYO 1

17.2.11 ;DEVUP (Device Up) Key-in
Request

This key-in request declares the specified physical device
operational for system use. It has the general form

;DEVUP device

where device is the system name of the physical device in
four ASCII characters, e.g., LPOO (or LP), TYO1 (table 15-1)

Operator key-in example: Declare TY02 operational for
system use.

;DEVUP,TYO02

17.2.12 ;IOLIST (List 1/0 Key-In
Request

This key-in request outputs a listing of the specified logical-
unit assignments, if any. If no logical unit is specified,
;IOLIST outputs all logical-unit assignments. The key-in
request has the general form
JOLIST,lun(1),lun(2),...,lun(n)

where each lun(n) is the name or number of a logical unit,
e.g., SI,5.

Where the ;IOLIST key-in request specifies a logical-unit
name, the output is of the form

name (number) = device D

where
name is the name of the logical unit, e.g., LO
number is the number of that logical unit, e.g.,
005

OPERATOR COMMUNICATION

device is the name of the physical device
assigned, e.g., LPOO

D if present, indicates that the physical
device has been declared down and is
thus inoperable

If the key-in request specifies the number rather than the
name of the logical unit, the output will repeat the number
in both the name and number fields.

In a listing of all assignments, the output uses a name and
number where applicable, and the repeated number where
no name is assigned to the logical unit. Logical units
without names assigned at system-generation time are not
listed and must be individually specified by number.

Operator key-in examples: Request the output of the
logical-unit assignments for the Bl and BO units. Input

; IOLIST,BI,BO
and receive as a typical response

BI (006) = CROO
BO (007) = CP0OO D

Request the output of the logical-unit assignment for logical
unit 180. Input

; IOLIST, 180

and receive as a typical response
180 (180) = D11H
Request the output of all logical-unit assignments. Input
; IOLIST
and receive as a typical response

oc (001) = TYOO

SI (002) = TYOO
SO (003) = TYOO
PI (004) = CROO D
LO (005) = LPOO
BI (006) = CROO0 D
BO (007) = PTOO
ss (008) = DOOH
PO (009) = DOOH
CUu (100) = DOOE
GO (101) = DOOG
SW (102) = DOOF
CL (103) = D0OOA
OM (104) = DOOD
BL (105) = DOOC
FL (106) = DOOB

17-5

varian data machines —

_@ varian data machines

SECTION 18
OPERATION OF THE VORTEX SYSTEM

This section explains the operation of devices in the
VORTEX system, the loading of the system bootstrap and
procedures for changing and initializing the disc pack
during VORTEX operation.

18.1 DEVICE INITIALIZATION
18.1.1 Card Reader (Model 70-6200)
a. Turnon the card reader.
b. Place the input deck in the card hopper.
c. Press READY/ALERT.
18.1.2 Card Punch (Model 70-6201)
a. Turnon the card punch.
b. Place blank cards in the card hopper.

c. If the visual punch station is empty, insert a card into it
as follows:

(1) Placeacard in the auxiliary feed slot.

(2) Clear all registers.

(3) Set theinstruction register (1) to 0100131.

(4) SetREPEAT.

(5) Press STEP. The card should move from the
auxiliary feed siot to the visual punch station.

(6) Reset REPEAT.

18.1.3 Line Printer (Model 70-6701)

a. Turnon theline printer.
b. Wait for the READY light to come on.
c. Setthe ON LINE/OFF LINE switch to ON LINE.

d. For manual paper ejection set to OFF LINE, then press
the TOP OF FORM switch.

18.1.4 Statos-31 (Model 70-66XX)
a. Turnon plotter/printer
b. Set the ON LINE/OFF LINE switch to ON LINE
c. Selectroll or z-fold paper switch for paper type used

d. For manual form feed, press FORM FEED

varian data machines @——

18.1.5 33/35 ASR Teletype
(Models 70-6200r and -6201)

a. Turnon the Teletype.

b. Set the Teletype in off-line mode and simultaneously
press the CONTROL and D, then the CONTROL and T,
finally the CONTROL and Q keys.

c. Set the Teletype on-line.

18.1.6 High-Speed Paper-TApe Reader
(Model 70-6320)

a. Turn on the paper-tape reader.

b. Position the input paper tape in the reader with blank
leader at the reading station and close the reading

gate.

c. Set the LOAD/RUN switch to RUN.

18.1.7 Magnetic-Tape Unit
(Models 70-7100,-7102, and 620-31

a. Turn on the magnetic-tape unit.
b. Mount the input magnetic tape.
c. Position the magnetic tape to the loading point.

d. Press ON LINE.

18.1.8 Magnetic-Drum and Fixed-Head

Disc Units
(Models 620-47 through 620-49,
70-7702 and 70-7703
a. Turnon the drum unit.

b. Wait for the drum unit to reach operating speed.

18.1.9 Moving-Head Disc Units
(Models 70-7600 and 70-7610

a. Place the START/STOP switch in the STOP position.

b. Press POWER ON button and wait for the SAFE light to
come on.

¢. Mount the disc pack.
d. Place the START/STOP switch in the START position.

e. Wait for the disc unit to reach operating speed (READY
indicator lights).

18-1

——@ varian data machines

OPERATION OF THE VORTEX SYSTEM

f. Turn off WRITE PROTECT. Table 18-1. Key-In Loader Programs (continued)
18.1.10 Moving-Head Disc Units Address Drum Disc Disc Disc
(Model 70-7500) -48,49 70-7510 70-7500 70-7600 ¢
-7610
a. Mount the disc pack 001157 005041 1000xx 1014zz
001160 1031zz 005041 001157
b. Press POWER-ON button and wait for unit to reach 001161 1004zz 006150 10252z
operating speed and for the heads to emerge 001162 10142z 000007 151167
001163 001166 10312z 001016
c. Presson-line button. 001164 001000 10042z 001130
001165 001162 1014zz 001000
001166 102522 001171 000600
001167 001016 001000 007760
18.1.11 Moving-Head Disc Units 001170 000120 001165
(Model 70-7510) 001171 005145 102515
001172 006140 001016
a. Mount the disc pack(s). 001173 000012 001130
001174 001002 005144
b. Turn power on and wait for the unit(s) to reach 001175 000600 001040
operating speed (unit-ready light comes on). 001176 001000 000600
001177 001146 001000
001200 000000 101146

18.2 SYSTEM BOOTSTRAP LOADER

where xx = even BIC address, yy = odd BIC address, and
zz = device address.
System key-in loaders initiate loading of the VORTEX

system from a drum or disc memory. The key-in loader loads
the system initializer from the RMD to main memory 18.2.1 Automatic Bootstrap Loader
(locations 000000 to 001127). The system initializer then
loads and initializes the system. Table 18-1 contains the

A Where the automatic bootstrap loader option is available,
key-in loader programs.

the appropriate key-in loader is loaded from the required
medium (high-speed paper-tape or Teletype reader) into

Table 18-1. Key-In Loader Programs locations starting with 001130.
Address Drum Disc Disc Disc o .
.48 49 70-7510 70-7500 70-7600 or 1O initiate the loader: (1) clear the A, B, X, |, and P
! 7610 registers; (2) with the computer in STEP, press the RESET
- switch on the front panel; (3) place the STEP/RUN switch
001130 1000yy 005302 005302 1004zz in the RUN position; and (4) press and release the LOAD
001131 006020 006030 006030 1040zz switch.
001132 000002 000005 177773 10022z
001133 005001 005001 005001 005001
001134 1031xx 1000zz 1000zz 10312z 18.2.2 Control Panel Loading
001135 006120 1031zz 1031zz 1010zz
001136 001127 1005zz 10052z 001141 The appropriate key-in loader is entered through the
001137 1031yy 1010zz 1010zz 001000 computer control panel as follows:
001140 1000xx 001143 001143 001135
001141 1000zz 001000 001000 1025zz a. Press REPEAT.
001142 1032zz 001137 001137 151167
001143 1010xx 10252z 10252z 001016 b. Load an STA instruction (054000) into the | register.
001144 000600 001016 001016 001130
001145 001000 001200 001130 1000yy c. Load 001130 into the P register.
001146 001143 005123 005122 10032z
001147 006120 005021 005102 d. Load a key-in loader instruction into the A register.
001150 000167 006120 1032zz
001151 004460 000167 1031xx e. Liftthe STEP/RUN switch to STEP.
001152 1000zz 004460 006010
001153 1000yy 1000zz 001130 f. Clear the A register.
001154 1031xx 1000yy 1031yy
001155 1032yy 1031xx 1000xx 8- Repeat steps (d), (e), and (f) for each bootstrap
001156 1000xx 1032yy 1000zz instruction.

18-2

-1

To initiate the bootstrap, clear the A, B, X, and | registers,
and load 001130 into the P register. Then, press RESET,
place the STEP/RUN switch in the RUN position, and press
START.

NOTE: To facilitate reloading, the key-in loader may be

dumped out on paper tape and then loaded by the binary
loader (BLD Ii).

18.3 DISC PACK HANDLING

VORTEX provides for dynamic mounting of disc packs
during program execution by means of a system utility
program called rotating memory analysis and initialization
(RAZI). RAZ! handles:

a. A disc pack not previously used with VORTEX that is
replacing a disc pack presently in the system.

b. Adisc pack previously formatted under VORTEX that is
replacing a disc pack presently in the system.

The normal RAZI operating procedure is:

a. The task requiring the disc pack change issues an
operator message directing him to switch packs.

b. The task suspends itself.
c. The operator makes the necessary pack changes.
d. The operator schedules and executes RAZI.

e. Upon completion of RAZI, the operator resumes the

suspended task. The task can now perform 1/0 on the

new pack.

RAZI is a foreground program residing in the foreground
library (FL). It is scheduled by a request of the form:

;SCHED,RAZI,p,FL,F

where p is the priority level.
If the SI logical unit is a Teletype or a CRT device, the
message RZ** is output to indicate that the Sl unit is
waiting for RAZI input.
Each directive is completely processed before the next is
entered. All directives are output on the SO device. In
addition, partitioning information is listed on the LO device
when integration of the requested disc pack is complete.
OUTPUTS from the RAZI comprise:

a. Error messages

b. The listing of the RAZI directives on the SO unit

c. Partition description listing

OPERATION OF THE VORTEX SYSTEM

Error messages applicable to RAZI are output on the SO
and LO logical units. The individual messages and errors
are given in Appendix A.18.

The partition description listing is output on the LO device
upon completing the integration of a new disc pack into the
VORTEX system. After the VORTEX standard heading,
there are three blank lines followed by the RAZI heading:

PARTITION FIRST LAST BAD

NAME TRACK TRACK TRACKS

followed by one more blank line. Then the information
concerning each partition of the device is output, one
partition per line, as shown in the following example.

PARTITION FIRST LAST BAD
NAME TRACK TRACK TRACKS
D10A 0002 0019 0000
D10B 0020 0052 0001
D10C 0053 0082 0000
D10D 0083 0118 0000
D10E 0119 0126 0000
D10F 0127 0141 0000
D10G 0142 0156 0000
D10H 0157 0206 0002
D10I 0207 0242 0000
D10J 0243 0251 0000
D10K 0252 0256 0000

The RAZI directives are:

. PRT Partition
. FRM Format rotating memory
. INL Initialize

EXIT Exit

RAZI directives begin in column 1 and comprise sequences
of character strings having no embedded blanks. The
character strings are separated by commas (,) or equal
signs (=). The directives are free-form, and blanks are
permitted between the individual character strings of the
directive, i.e., before or after commas (or equal signs).

The general format of a RAZI directive is
name,p(1),p(2),...p(n)
where
name is one of the directive names given above
each p(n) is a parameter required by the directive

and defined below under descriptions of
the individual directives

18-3

varian data machines —

— varian data machines

OPERATION OF THE VORTEX SYSTEM

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
opfional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted.

Note: The disc pack containing the VORTEX nucleus
cannot be replaced.
18.3.1 PRT (Partition) Directive

This directive specifies the size and protection code for
each RMD partition. It has the general form

PRT,p(1),5(1),k(1),p(2),5(2),k(2),....p(n),5(n),k(n)

where

each p(n) is the RMD partition letter (A through T,
inclusive)

s(n) is the number (octal or decimal) of
tracks in the partition. This value must
be greater than zero.

k(n) is the protection code, if any, required to
address p, or * if the partition is
unprotected

While the parition specifications can appear in any order,
the set of partitions specified for each RMD must comprise
a contiguous group, e.g., the sequence A, C, D, B, but the
sequence A, C, D, E constitutes an error.

Consecutive PRT directives redefine partitions, if p(n) has
been specified, or adds partitions if p(n) is new partition
letter.

Example: Define three partitions on an RMD. The first
occupies ten tracks and uses protection code Q, the second
two tracks and code S, and the third 48 tracks without
protection.

PRT,A,10,Q,B,2,5,C,060,*

18.3.2 FRM (Format Rotating Memory)
Directive

This directive causes RAZl to run a bad-track analysis on

the specified RMD and build a new PST for it or accepts a

previously constructed bad-track-table from the RMD and
builds a new PST for it. The directive has the general form

FRM,lu,size,flag

where

lu is the logical-unit name or number to
which the subject RMD is assigned

18-4

size is the number (octal or decimal) of
tracks on the RMD
flag is 1 to perform a complete bad-track

analysis, or 0 to accept a bad-track-table
from the RMD.

Caution: When performing a bad-track analysis or accept-
ing a bad-track table from an RMD the bad-track table is
positioned adjacent to the resident foreground task area.
Unless there already exists an active bad-track table for the
prior RMD, the bad-track table for the new RMD will be
overlayed, if the resident foreground area is increased by
means of a partial SYSGEN. Thus if a partial SYSGEN is
performed which increases the resident foreground size,
another RAZI must be performed.

Examples: Clear the RMD assigned to PO, having 203
tracks, and build a PST for it according to previously
defined partition information.

FRM,P0O,203,0

Run a complete bad-track analysis on the RMD assigned to
25, having 128 tracks, and build a PST for it according to
previously defined partition information.

FRM, 25,128, 1

620-35 and 620-34 discs in a system require the formatting
program (describe in section 18.4) to format disc and
analyze bad tracks.

18.3.3 INL (Initialize) Directive

This directive causes RAZI to incorporate a PST and a bad-
track table from the named RMD into the VORTEX nucleus.
It has the general form

INL, lu,size

where lu and size have the same definition as in the FRM
directive (section 18.3.2).

Example: Read the PST and bad-track table from the unit
assigned to BO, having 128 tracks, and incorporate them
into the VORTEX nucleus.

INL,BO, 128

18.3.4 EXIT Directive

This directive terminates RAZI. It has the general form
EXIT

Example: Terminate RAZI.

EXIT

18.4 70-7500 (620-35) DISC PACK
FORMATTING PROGRAM

Each 70-7500 (620-35) disc pack requries formatting before
any input or output operation can be performed on it.
Before VORTEX can be prepared on a 70-7500 disc pack or
any 70-7500 discs can be used under VORTEX, disc packs
must be formatted. The formatting program forms 120-
word sectors, which are grouped 24 per track. The program
also examines the disc pack for bad tracks.

The formatting program operates in a stand-alone mode. It
may be loaded and executed with either AID Il or BLD.
Execution begins at location 01354. Upon execution the
formatting program requests some parameters to be input
from the keyboard. The following requests are made. An
inappropriate response causes the request to be repeated.

Request

INPUT BTC NUMBER

Type a value and a carriage return. The
acceptable values are octal 020, 022, 024, 026
and 070

INPUT DEVICE ADDRESS

Type a value in the range from octal 014
through 017 followed by a carriage return

INPUT VARIABLE SECTOR GAP

Type a value and a carriage return. Acceptable
values are 1, 2, 3, 4, 6, 8, 12, or their equivalent
octal representations. This value determines the
physical location on the disc pack of sequentially
addressable sectors. As such sequential trans-
fers may be accomplished without waiting for a
full revolution of the disc unit. Recommended
setting is 3. Another setting may be more
effective depending upon various application
parameters such as number of tasks, frequency
of disc transfers, and types of disc transfers.

INPUT UNIT NUMBER

Type unit number followed by a carriage return.
Acceptable values are 0 through 3. Up to four
units can be connected to a single controller.

In addition the formatting program performs bad-track
analysis and creates and maintains a bad-track table,
which is entered on each disc pack at the completion of its
formatting. The bad-track table is located on sectors O
through 2 of the first track. The table is 254 words long,
starting at word 64 of sector 0. The first 64 words of sector
O reserve the necessary space for the PST. The remaining
unused words of sector 2 are filled with zeroes. Each disc
170 error will generate a ten-event retry sequence, which
upon failure will set the bad-track flag within the track
header. The program also sets the correpsonding bit in the
bad-track table. No alternate tracks are assigned.

varian data machines @—-——

OPERATION OF THE VORTEX SYSTEM

If the first track is determined to be bad, the bad-track
table may not be placed there. The program prints the
error message,

FIRST TRACK BAD

and aborts formatting the current disc pack. The program
returns to the keyboard interrogation routine. After the
bad-track table has been written on the disc pack, the
formatting program resumes the keyboard interrogation to
obtain parameters for formatting the next disc. In this way,
more than one disc pack can be formatted in the same
session. The formatting program may be terminated at this
point when no disc packs (except those with bad first
tracks) remain unformatted. If an unsafe condition
(SELECT LOCK light on) occurs, reload and execute the
program. Formatting disc packs is not necessary before
every VORTEX system generation. Head crashes generally
indicate formatting should be done again.

18.5 70-7510 (620-34) DISC PACK
FORMATTING PROGRAM

Each 620-34 disc pack requires formatting before any input
or output operation can be performed on it. Before VORTEX
can be prepared on a 620-34 disc pack or these disc can be
used under VORTEX, disc packs must be formatted. The
formatting program forms 120-word sectors, which are
grouped 24 per track. The program also examines the disc
pack for bad tracks.

The formatting program operates without an operating
system. It may be loaded and executed either with AID !l or
BLD II. Its execution begins at location 01354. Upon
execution the formatting program requests some parame-
ters to be input from the keyboard. An inappropriate
response causes the request to be repeated. The following
requests are made.

INPUT BTC NUMBER

Type a value and a carriage return. The
acceptable values are octal 020, 022, 024, 026
and 070.

INPUT DEVICE ADDRESS

Type a value in the range from octal 014
through 017 followed by a carriage return.

INPUT VARIABLE SECTOR GAP

Type a value and a carriage return. Acceptable
values are 1, 2, 3, 4, 6, 8, 12, or their equivalent
octal representations. This value determines the
physical location on the disc pack of sequentially
addressable sectors. As such sequential trans-
fers may be accomplished without waiting for a

185

- varian data machines

OPERATION OF THE VORTEX SYSTEM

full revolution of the disc unit. Recommended
setting is 3. Another setting may be more
effective depending upon various application
parameters such as number of tasks, frequency
of disc transfers, and types of disc transfers.

INPUT UNIT NUMBER

Type unit number followed by a carriage return.
Acceptable values are 0 through 3. Up to four
units can be connected to a single controller.

In addition the formatting program performs bad-track
analysis and creates and maintains a bad-track table,
which is entered on each disc pack at the completion of its
formatting. The bad-track table is located on sectors 0
through 4 of the first track. The table is 508 words long,
starting at word 64 of sector 0. The first 64 words of sector
0 reserve the necessary space for the PST. The remaining
unused words of sector 4 are filled with zeros. Each disc
1/0 error will generate a ten-event retry sequence, which
upon failure will set the bad-track flag within the track
header. The program also sets the corresponding bit in the
bad-track table. No alternate tracks are assigned.

If the first track is determined to be bad, the bad-track

table may not be placed there. The program prints the
error message:

FIRST TRACK BAD
and aborts formatting the current disc pack. The program
returns to the keyboard interrogation routine. After the

bad-track table has been written on the disc pack, the
formatting program resumes the keyboard interrogation to

18-6

obtain parameters for formatting the next disc. In this way,
more than one disc pack can be formatted in the same
session. The formatting program may be terminated at this
point when no disc packs (except those with bad first
tracks) remain unformatted. If an unsafe condition
(SELECT LOCK light on) occurs, reload and execute the
program. Formatting disc packs is not necessary before
every VORTEX system generation. Head crashes generally
indicate formatting should be done again.

18.6 WRITABLE CONTROL STORE (WCS)

The writable control store must be loaded with the
appropriate firmware. The WCS is loaded by the V73 WCS
Microprogram Utility (MIUTIL). MIUTIL is a foreground
program scheduled by a request:

;SCHED,MIUTIL,p,FL,F

where p is the priority level. Use of the MIUTIL program is
described in detail in the Microprogramming Guide.

If the optional V70 series Floating Point Firmware is to be
used, it must be loaded into page 1 of WCS. The WCS
microprogram is catalogued into the OM library under the
name WCSFP, and must be transferred to the Bl device for
loading by MIUTIL. The WCS should be initialized through
the use of MIUTIL prior to loading the floating-point
microprograms.

Section 20 gives additional information about writable
control store.

SECTION 19
PROCESS INPUT/OUTPUT

19.1 INTRODUCTION

VORTEX supports a number of VDM devices which are used
in industrial applications for a wide range of monitor and
control purposes. These devices are called 'Process Input/
Output’ devices and are listed below:

VDM Model Description

70-8310 and -8311
(620-830A/B)

Digital Output Module
User’s Guide (98 A 9968 100)

70-8410 and -8411
(620-831A/B)

70-800x and 70-801x
(620-850/851)

Digital Input Module
User’s Guide (98 A 9968 110)

Analog-to-Digital
User's Guide (98 A 9968 060)

70-8020 and -8021 Converter/Muitiplexor

(620-860/860/A User’s Guide (98 A 9968 070)
70-8022 and -8023
(620-861/861A)
70-821x,8220,8221 Digital-to-Analog Module
(620-870/1/2/ User’'s Guide (98 A 9968 050)
3/4/5,
620-870A/B,
620-871A/B,
620/872A/B)
70-811x,812x Low Level Multiplexor
(620-855xx) User's Guide (98 A 9968 130)

VORTEX configurations which include Process Input/
Output devices differ from others in that each is, to some
degree, 'tailor-made’, even though they are composed of
the standard products listed above. This requires the
VORTEX user to operate with VORTEX |/0 features at a
more fundamental level than with most other devices. For
this reason, the operation of Process Input/Output devices
under VORTEX will be presented in considerable detail in
the following sections.

The VORTEX Support Library includes a number of
subroutines (section 19.4) with FORTRAN calling se-
quences defined by the Instrument Society of America
(ISA), which are useful for input, output, and manipulation
of process data.

varian data machines

19.2 PROCESS OUTPUT

19.2.1 Hardware

VORTEX supports combinations of the 70-8310 (620-830A)
Digital Output Module and the 70-8311 (620-830B) Digital
Output Expansion Module. VORTEX also supports combina-
tions of the following DAC (Digital-to-Analog Converter)
modules and expansion modules: (620-870,-870A,-870B,-
871,-871A, -871B,-872,-872A,-872B,-873,-874,-875).

Eight device addresses (050-057) are available for these
modules. Each address can hold up to four modules, each
module containing two digital output registers or DAC'’s for
a maximum of 64 registers of DACs.

For VORTEX operation, a device is defined as the collection
of modules at a single device address, and the word
'device’ will have this meaning for the remainder of this
section. The word 'channel’ will be used to mean either a
digital output register or a DAC.

Software capabilities for referencing channels directly by
number are provided. For this purpose, channels are
assigned an (octal) number mn, where:

m = (device ad_dress—OSO)
n = hardware channel number (0-7) within device.

thus, for example, the channel seiected by the command

EXC2 0352

would be called channel number 023.

Process output is totally under control of software (
BICs, interrupts, or SENs are used). Therefore, no ready,
complete, or error information is provided by the hardware.

19.2.2 SGEN Operations

The following SGEN operations must be performed to
include Process Output capabilities in a VORTEX system:

a. Add EQP directives to SGEN directive input file.

b. Add ASN directives to SGEN directive input file.

19-1

varian data machines

VORTEX PROCESS INPUT/OUTPUT

Note: the SGL contains four input controller tables, four
output controller tables, input and output drivers, and TDF
records.

In the examples in the following discussions, the symbols
'm’ and 'n’ refer to register number mn.

The EQP Directive

Each device must have an EQP directive in the SGEN
directive file, with the following format:

EQP,COmA,050+m, 1,0,0

For example, the device at address 053 will require the
directive:

EQP, CO3A, 053, 1,0,0,alg,mul

The ASN Directive

Each device must be assigned to a logical unit number by
any ASN directive of the following format:

ASN, 1lun =COm0

For example, assigning the device at address 053 to logical
unit 24 will require the directive:

ASN, 24=C030

19.2.3 Output Calls

Output to a Process Output device is by use of the 10C
'WRITE’ macro. FORTRAN source programs can request
output by calling one of the ISA process control subroutines
described in section 19.4, which will construct and execute
such a macro.

The macro call has the format (see section 3.4.4):
WRITE pcb,lun,wait,mode
where:

pcb = Name of Process Control Block (PCB)
lun = Logical Unit Number

wait = Wait Flag

mode = Data Mode (ignored)

Data is always output directly, without modification, so the
Data Mode is effectively System Binary.

19-2

PCB format is:

Output Word Count C Word 0
Output Buffer Address Word 1
Address of Channel Number List Word 2
Status Word Address (O if none) Word 3
Mask Word Address (O if none) Word 4
Pulse Width Word Address (0 if none) Word 5

The Channel Number List is a sequential list of channel
numbers m(i)n(i) (i = 1,C), where M(i) = m(1) for all i,
and the device address to which the logical unit number is
assigned is 050 + m(i). Thus, a single WRITE call can only
reference those channels assigned to a single device
address.

The Status Word is a word in the calling program in which
status of the |IOC call is maintained. This is required by the
ISA subroutines of section 19.4.

The Mask Word is used by the ISA 'Latching’ subroutines
DOL and DOLW. 1-bits in this word flag bits that are to be
updated. The device controller table will contain the
previous setting of all bits in the output word and the
output buffer will contain the new settings.

An error 1003 is reported if the Channel Number List
contains a channel mn where m is not in range 0-7, or if m
does not correspond to the device address defined by the
ASN directive at SGEN time.

The Pulse Width Word is used by the ISA 'Momentary’
subroutines DOM and DOMW. It gives the time in VORTEX
basic cycles (5-millisecond) that output points are to
remain set.

Example 1:

A DASMR source program is to output the first 3 words
from buffer OBUF to channels 023, 027, and 021 in a
group of Digital Output Modules which are assigned to
logical unit number 24.

Note that channels 023, 027, and 021 are all assigned to
the module at device address 052 by the channel
numbering convention.

WRITE PCB1,24,0,0

PCB1 DATA 3
DATA OBUF
DATA PTLIST
DATA 0,0,0

PTLIST DATA 023,027,021

Example 2:

A FORTRAN program is to output the first 3 words of OBUF
to analog channels 49, 50, and 53, which are assigned to
logical unit 17. The octal equivalents of these channel
numbers are 061, 062, and 065, so the device address of
the output module is 056 (46 in decimal digits).

INTEGER STAT, PTLIST, OBUF

DIMENSION OBUF (3), PTLIST (3)

DATA PTLIST/49, 50, 53/

CALL V$OPIO (46, 17, 0, STAT)

CALL AO (3, PTLIST, OBUF, STAT)

19.3 PROCESS INPUT

19.3.1 Hardware

VORTEX supports combinations of the 70-8410 (620-831A)
Digital Input Module and the 70-8411 (620-831B) Digital
Input Expansion Module. VORTEX also supports combina-
tions of the 70-8010 (620-850) and the 70-8011 (620-851)
Analog Input System, the 70-8020 (620-860) and 70-8022
(620-861) High-Level Multiplexor Modules and the 70-8021
(620-860A) and the 70-8023 (620-861A) High-Level Multi-
plexor Expansion Modules, and the 70-811x (620-855x)
Low-Level Analog Input System and the 70-812x Low-Level
Multiplexor Expansion Modules. These provide from 1 to
2,048 digital or analog input channels.

Eight device addresses (060 to 067) are available for these
modules. Each address can handle, through multiplexing,
up to 256 digital channels. To each of these device
addresses will correspond a multiplexor attached to a
different device address in the range (040-077). All Process
Input requires a Buffer Interlace Controller (BIC).

varian data machines [@-——

VORTEX PROCESS INPUT/QUTPUT

Software capabilities are provided for referencing channels
directly by number. Each channel is assigned an (octal)
number mn by the following rules:

m = (device address - 060)
n = channel number (0-0400) within device. n is a
3-digit octal number
Thus, for example, channel number 01003 would be
selected by outputting a 3 as the select code to the

multiplexor which is connected to the Analog-to-Digital
convert whose address is 061.

A BIC will be used for all input and all input will end with a
BIC complete interrupt. The BIC will operate with the
programmable timer.

19.3.2 SGEN Operations

The following SGEN operations must be performed to
include Process Input capabilities in a VORTEX system:

a. Add EQP directives to SGEN directive input file.
b. Add ASN directive to SGEN directive input file.

c. Add PIM directive to SGEN directive input file.

In the example in the following discussions, the symbols
'm’ and 'n’ refer to register number mn.

The EQP Directive

Each device must have an EQP directive in the SGEN
directive file, with the following format:

EQP,CImA,060+m,1,b,0,i0ca,ma
[b = BIC device address]

[ica = I/0 algorithm as decimal
fraction, see section 14.4.3]
[ma = multiplexor address]

For example, the device at address 063 using the BIC at

address 020 with 1/0 algorithm value of .5 and multiplexor

address 072 will require the directive:
EQP,CI3A,063,1,020,0,.5,072

The ASN Directive

Each device must be assigned to a logical unit number by
an ASN directive of the following format:

ASN, lun=CImO0

19-3

— varian data machines

VORTEX PROCESS INPUT/OUTPUT

For example, assigning the device at address 063 to logical
unit number 21 will require the directive:

ASN,21=CI30

The PIM Directive

Linkage must be established between the BIC and its
Priority Interrupt Module (PIM) by a PIM directive of the
format:

PIM,pl,TBCIMA,1, 0

where: p = PIM number (single octal digit)
| = line number (single octal digit)

170 Algorithm

The 170 algorithm value must be set for the highest
transfer rate (smallest PCB Timer Count) that will be used
in the system.

1.10 x (BIC RATE*/DEVICE RATE)

Rates are in microseconds.

* BIC rate represents the maximum trap-in, trap-out timing
sequence on the E-bus.

19.3.3 Input Calls

Input to a Process Input device is by use of the I0C 'READ’
macro. FORTRAN source programs can request input by
calling one of the ISA process control subroutines de-
scribed in section 19.4, which will construct and execute
such a macro.

The macro call has the format (see section 3.5.3)

READ pcb,lun,wait,mode

where:

pcb = Name of Process Control Block (PCB)
lun = Logical Unit Number

wait = Wait Flag

mode = Data Mode (ignored)

194

Data is always input directly, without modification, so the
Data Mode is effectively System Binary.

PCB format is:

input Word Count C Word 0

Input Buffer Address Word 1
Address of Channel Number Word 2
Status Word Address (O if none) Word 3
Op Code Word 4

Timer Count Word 5

The Status Word is a word in the calling program in which
status of the 10C call is maintained. This required by the
ISA subroutines of section 19.4.

The Op Code (OP) is defined thus:

OP = 0O

Sequential Mode. Let mOOn be the channel number
specified by word 2. Data is repeatedly input from channels
mO001-mO0n, till the input word count C (Word 0) is
satisfied.

OP = 1:

Random Mode. Channel mn is repeatedly input the number
of times specified in word 0.

The Timer Count (Word 5) is the desired time, in
microseconds, between inputs. This value is output to the
programmable timer, which will control the BIC input rate.

An error (1003) is reported if m is not in range 0-7, if n (or
C, if in sequential mode) is not in range 0-255, or if m does
not correspond to the device address defined by the ASN
directive at SGEN time.

Example 1:

A DAS MR program is to sample an input channel 100
times at a rate of 1 input/50 microsecond . The channel is
number 5 on device address 062, which is assigned to
logical unit number 22, and the data is to be input into
buffer IBUF. Do not return till |/0 complete.

READ PCB1, 22, 0, 0
PCB1 DATA 100

DATA IBUF

DATA CHNO

DATA 0

DATA 1

DATA 50
CHNO DATA 02005

Example 2:

A FORTRAN program is to input sequentially from channels
04001, 04002, and 04003, which are assigned to logical
unit number 35, storing the input values into IBUF. Do not
return till 1/0 complete. Set the input rate to 1 word/20
microsecond. The device address to which the input module
is assigned is seen to be 064 (52 in decimal digits, and the
decimal equivalent of 04000 is 2048).

INTEGER STAT, PTLIST
DIMENSION IBUF(3)
DATA PTLIST/2051/

.

.

CALL V$OPIO (52, 35, 20, STAT)

CALL AISQW(3, PTLIST, IBUF, STAT)

.

19.3.4 Low-Level Multiplexor Gain Control

Control of the low-level multiplexor amplifier.gains is ac-
complished through the use of the I0C FUNC macro. FOR-
TRAN source programs can set amplifier gains by calling
one of the subroutines described in 19.4.1, which will con-
struct and execute such a macro.

VORTEX PROCESS INPUT/OUTPUT

The macro call has the general form (see section 3.5.8).

FUNC dcb,lun,wait
where:
dcb the address of the data control block.
lun the number of the logical unit (ADCM)

being manipulated.

wait unused.

The DCB macro has the general form

DCB rl,buff,fun

where:

rl is the number of channels for which the
gain will be set.

buff address of the channel table.
fun is the function code.
0 = Set gains on sequential channels to a

fixed value, delay 5 milliseconds.
1 = Set gains on random channels through
a table, delay 5 milliseconds.
2 = Set gains on sequential channels to a
fixed value, immediate return.
Set gains on random channels through
a table, immediate return.

w
]

The format of the channel table when fun = 0 is:

STARTING CHANNEL ADDRESS Word 0

GAIN OF CHANNELS Word 1

The format of the channel tables when fun = 1 is:

Word
0 = ADDRESS OF CHANNEL a
1 = GAIN CODE FOR CHANNEL a
2 = ADDRESS OF CHANNEL b
3 = GAIN CODE FOR CHANNEL b
4 = ADDRESS OF CHANNEL c

etc.

19-5

varian data machines —

varian data machines

VORTEX PROCESS INPUT/OUTPUT

The gain is internally referenced by the following table
Gain parameter Actual MUX Gain

NOOAWN—=O
e
N
o]

Therefore the gain parameter must be in the range of 0
through 7.

An error (I003) is. reported if the gain is not in the
proper range.

Example: In a DAS MR program, set the gain to 256 (gain
code 5) on 27 contiguous channel (starting from 04001),
which are assigned to logical unit 36.

Delay 5 milliseconds after the gains have been set to give
the amplifier time to settle.

FUNC LDCB, 36,0

LLDCB DCB 27 ,TABLE, 0

TABLE DATA 04001,5

Example 2: A DAS MR program is to set the gain of 3
random channels which are assigned to logical unit 37.
Return after the gains have been set. The gain of channel
04001 will be set to 64 (gain code 3), the gain of channel
04031 will be set to 512, and the gain of 04007 to 8.

FUNC LLDCB, 37,0
LLDCE DCB

3,TABLE, 3

TABLE DATA 04001,3,04031,6,04007,0

19-6

19.4 ISA FORTRAN PROCESS CONTROL
SUBROUTINES

The Instrument Society of America (ISA) has defined as
standards a number of FORTRAN subprogram calls useful
in process input/output applications. VORTEX includes the
following subroutines of this group:

Input/Output Calls

AISQ(W): Analog Input Sequential
AIRD(W): Analog Input Random
AOW): Analog Output

DiI(W): Digital Input

DOM(W): Digital Output-Momentary
DOL(W): Digital Output-Latching

The (W) option with each of these subroutine names selects
a 'wait’ mode, that is, it specifies that return is not be
made from the subroutine until the /0 is finished, either
normally or erroneously.

Bit String Manipulation

I0R: Inclusive OR (logical add)
IAND: AND (logical multiply)

NOT: NOT (logical invert)

IEOR: Exclusive OR (logical subtract)
ISHFT: Logical Shift

VORTEX also provides two FORTRAN subprogram calls to

set the amplifier gains on the Low-Level Multiplexors. The
gain control calls are not ISA standard calls.

Low Level Gain Calls

SGNF(D): Set gain on
sequential channels
SGNT(D): Set gains through

a table

The (D) option of each of these routines cause a 5
millisecond delay after the last gain control has been
issued, to give the amplifiers time to settle.

19.4.1 Input/Output Calls

The parameter 'stat’ appears in all the following 1/0 calls.
Its contents give the status of the call, as follows:

stat = 170 correctly completed
1/0 in execution
Invalid channel number
BIC timeout error
Invalid ‘parameter value

A g

VORTEX provides a FORTRAN call which establishes
execution-time association between channel numbers and
logical unit numbers, and sets the timer for data input
rate. The format is:

CALL V$0OPIO (da, lun, time, stat)

where:
da = device address
lun = logical unit number
time = time, in microseconds, between input.

This is loaded into device programmable

timer, which controls BIC rate. It is
ignored on output. Parameters may be

redefined by successive calls to V$OPIO.

Read Analog Input Sequential

CALL AISQ (count, ptlist, ibuf, stat)
or

CALL AISQW (count, ptlist, ibuf, stat)
This call reads count analog inputs into buffer ibuf, starting
with channel 0X001, where ptlist contains O0XYYY, and
reading channels sequentially.

Read Analog Input Random

CALL AIRD (count, ptlist, ibux, stat)
or

CALL AIRDW {(count, ptlist, ibuf, stat)

This call reads count analog inputs into buffer ibuf,
inputting from the list of random points ptlist.

Perform Analog Output

CALL AO (count, ptlist, obuf, stat)
or
CALL AOW (count, ptlist, obuf, stat)

This call outputs count analog values from buffer obuf,
outputting to the list of random points ptlist.

Read Digital Input

CALL DI (count, ptlist, ibuf, stat)
or

CALL DIW (count, ptlist, ibuf, stat)

This call reads count words of digital input into buffer ibuf,
inputting from the list of random digital channels ptlist.

varian data machines @———

PROCESS INPUT/OUTPUT

Perform Digital Output - Momentary

CALL DOM (count, ptlist, obuf,
time, stat)

or

CALL DOMW (count, ptlist, obuf,
time, stat)

This call outputs count words of digital output from buffer
obuf, outputting from the list of random digital channels
ptlist. If time = 0 this completes the operation. Otherwise,
after 5*time in milliseconds a word of zeros will be output
to every channel in ptlist, thus resetting all channels.
Perform Digital Output - Latching

CALL DOL (count, ptlist, obuf,

mask, stat)

or

CALL DOLW (count, ptlist, obuf,
mask, stat)

This call outputs count words of digital output from buffer
obuf, outputting from the list of random digital channels
ptlist. The device driver program will save the previous word
output to each channel, and change only those bits
specified by 1-bits in mask, which is an integer array
parallel to obuf and ptlist.

Perform Gain Selection or Sequential Channels

CALL SGNF (chntbl,nochnl)
or

CALL SGNFD (chntbl,nochnl)

This call selects the gain on nochnl sequential low level
input channels. Chntbl is the name of a two word control
table. The first word contains the address of the first low
level channel. The second word contains the gain parame-
ter (0-7).

Perform Gain Selection on Channels through a Table

CALL SGNT (chntbl,nochnl)
or

CALL SGNTD (chntbl,nochnl)

19-7

— varian data machines

PROCESS INPUT/OUTPUT

This call selects gains on nochnl low level channels. Chutbl
is the name of a table which contains a pair of words for
control for each low level channel. The first word of each
pair contains the address of the low level channel. The
second word of each pair contains the gain parameter (0-
7).

19.4.2 Bit String Operations

All these subprograms are defined as Integer Function
Subprograms. In the following descriptions, m and n are
integer mode expressions.

IOR(m, n) = m.OR.n
IAND(m, n) = m.AND.n
NOT(m) = NOT.m
IEOR(m, n) = n.XOR.n

AND (logical product)
NOT (logical invert)
Exclusive OR (logical

difference)
{ISHFT(m,n) = 0 If the absolute value of
mz= 16
m*2%*n Otherwise

19-8

Inclusive OR (logical sum)

19.5 ERRORS
Process Output

1003 INVALID CHANNEL NUMBER

Process Input

I003 INVALID CHANNEL NUMBER
102X BIC TIMEOUT ERROR

19.6 EXTENSIONS

Other process control devices besides those in the table of
section 19.1 may be brought into the VORTEX system at
some future time. The procedure for entering a new process
control device is as given for the currently supported
devices: one codes a driver program and controller tables
and enters them into the VORTEX Nucleus at SGEN time,
remembering to increment the one-character suffix on all
names (all names herein end in 'A’; the next type of DAC,
say, would be tagged with 'B’). The controller table can be
extended by as many words as desired, to store flags and
fixed device parameters. For variable parameters, say a
gain parameter on an analog input device, the PCB table
can be extended to hold the new parameter. In the
FORTRAN 1/0 calls, the array PTLIST can be made
2-dimensional if gain or other parameter information is to
be transferred with each point or channel number.

varian data machines

SECTION 20

WRITABLE CONTROL STORE AND
FLOATING-POINT PROCESSOR

The Writable Control Store (WCS) option extends the
Varian 70 series’ processor's read-only control store to
permit the addition of new instructions, development of
microdiagnostics and optimal tailoring of the computer
system to its application. Unlike the read-only control store,
which contains the Varian 70 series standard instruction
set and cannot be altered, the WCS can be loaded from
main memory under control of certain 1/0 instructions. The
capabilities of WCS give the user more complete access to
the resources of the Varian 70 series computer system.

20.1 MICROPROGRAMMING SOFTWARE
Supporting software for the WCS includes the following:
Microprogram assembler MIDAS
Microprogram simulator MICSIM microprogram
Microprogram utility loader and diagnostic MIUTIL
WCS reioad task

All software for microprogram development operates under
VORTEX. The capabilities and use of WCS and its
supporting software are described in the Varian Micropro-
gramming Guide.

20.1.1 Microprogram Assembler

The MIDAS program allows the user to prepare micropro-
grams for Varian 70 series WCS. Through the use of
operation mnemonics, symbolic addressing, address-field
calculations, macro definitions, error detection and auto-
matic program documentation, MIDAS makes writing
microprograms easier.

Under VORTEX, MIDAS is scheduled from the background
library at level O by

/LOAD, MIDAS

20.1.2 Microprogram Simulator

The Varian microprogram simulator (MICSIM) helps the
programmer to verify and optimize microprograms MICSIM
runs the output from MIDAS within the system's main
memory. At selected times, conditions and the contents of
data locations can be examined and changed. MICSIM is
schedufed from the background library at level O by

/LOAD,MICSIM

20.1.3 Microprogram Utility

Loading the control store with the assembled and tested
microcode is performed by microprogram utility, MIUTIL.

In addition, on-line debugging directives are available
through the utility on a special configuration. The MIUTIL
program operates as a foreground program at priority level
set by the user. The program is scheduled by operator
input over the OC device for example

; SCHED,MIUTIL,3,FL,F

The microprogram utility is also responsible for maintain-
ing an up-to-date image of the contents of the WCS on an
RMD file, named WCSIMG on the OM library, see section
15.8. This image is then used by the WCS reload task,
WCSRLD, to restore the WCS following a power failure/
restart and VORTEX reload. The RMD file image is updated
each time the R directive is used to exit from the utility.

If the update is completed successfully, the message:

WCS SAVED

is output on the OC and LO devices before the utility exits.
If the RMD file for saving the WCS is not present on the
OM library the OM library, the system outputs

IO10,MIUTIL

FILE WCSIMG NOT FOUND
WCS SAVE ABORTED

170 errors which may occur during the save operation
result in outputting messages

IOxx,MIUTIL
WCS SAVE ABORTED

If the restoration of WCS is completed successfully, the
message WCS RELOADED will be output to the OC and LO
devices before the reload task exits

To exit from the microprogram utility without the updating
the RMD file, the operator may issue the directive.

i ABORT ,MIUTIL

20-1

varian data machines

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20.1.4 WCS Reload Task, WCSRLD

This task, WCSRLD, reinitializes the WCS to the contents
specified by the RMD file image of WCS, WCSIMG on the
OM library. It is automatically scheduled on power failure/
restart or upon the reloading of the VORTEX system. In this
way, WCS contents are preserved through any periods
without power.

Though usually scheduled automatically by the system, the
reload task may also be scheduled manually by the
operator. For example, the following directive schedules the
reload task at priority level 15:

;i SCHED,WCSRLD, 15,FL,F

20.2 STANDARD FIRMWARE

Standard firmware is available on the 70 series computers
to provide faster and more compact code. The executable
code which uses the firmware, or microprograms, is
automatically generated by the VORTEX FORTRAN [V
compiler when the option F is specified (in the JCP
directive /FORT, see section 4.2.15). The firmware also
extends the capabilities of the user's assembly language
programs and the support library (see section 13).

Standard firmware includes routines which are loaded into
the system’s WCS for the following categories of operations:

« Arithmetic for two-word integers
= Arithmetic for real (floating-point) numbers

+ Transfer of two-word values, such as a memory to
memory move

+ FORTRAN oriented routines
¢ Byte manipulation
« Stack manipulation

Executing a branch-to-control-store (BCS) instruction
causes a transfer of control from the system’s read-only
memory to the WCS at the address specified in the BCS
instruction. The MIUTIL program (see section 20.1.3) loads
the standard firmware as well as any extensions to the
instruction set the user may write. To execute the two-word
integer and real arithmetic, the user’'s program uses the
CALL statement, in the format used for other support
library functions described in section 13. To execute other
firmware, the program must use a BCS instruction with the
appropriate entry address and calling sequence for passing
parameters.

A FORTRAN IV program specifies the option F on its
request for compilation, and then BCS instructions are
generated. The FORTRAN 1V programs use this firmware
without any changes to the FORTRAN |V statements.

20-2

20.2.1 Fixed-Point Arithmetic
Firmware

Two-word integers use the following arithmetic firmware:

Mnemonic Function BCS Call
XAD Fixed-point add 0105334
XSB Fixed-point subtract 0105374
XMU Fixed-point multiply 0105274
XDV Fixed-point divide 0105234

These operations are performed on the hardware A and B
registers. AB, using the integer specified by the second
word of the respective BCS call. If overflow occurs, AB is set
to the maximum integer with the proper sign and the
overflow flag (OVFL) is set.

20.2.2 Floating-Point Arithmetic
Firmware
The addition, subtraction, multiplication, and division of

single-precision real, or floating-point, numbers can be
performed with the following firmware.

Mnemonic Function BSC Call
FAD Floating-point add 0105134
FSB Floating-poing subtract 0105174
FMU Floating-point multiply 0105074
FDV Floating-point divide 0105034

A floating-point arithmetic operation is performed on AB
using the floating-point number specified by the second
word of the BCS call. If underflow occurs, AB is set to zero.
If overflow occurs, AB is set to the maximum floating-point
number with a proper sign.

20.2.3 Data Transfer Firmware

The data transfer firmware routines load AB from memory,
store AB in memory, and move the contents of two
contiguous memory locations to another place in memory.

Mnemonic Function BCS Call

FLLD Load AB with two words 0105032
from memory

FST Store AB into memory 0105033

FMV Memory-to-memory move 0105037

of two words

20.2.4 FORTRAN-Oriented Firmware

These microprograms are oriented toward FORTRAN |V
operations. However, they have a similar utility to assem-
bly-language programs.

varian data machines @——

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Mnemonic Use BCS Call

FSE Pass parameters between 0105036
subroutines

FDO Terminate DO loop 0105035

FDO1 Terminate DO loop 0105027

(1 increment)

For FSE, the calling routine would use the following
sequence:

CALL SUB

DATA P1 Address of first
. data to be moved
DATA Pn Address of last

data to be moved

In the subroutine being called the following sequence is
necessary to receive the data or data address:

SUB BSS 1
DATA 0105036 BCS transfer for FSE
DATA n Number of parameters
BSS m Number of parameters

The second instruction, FDO to control a DO loop, uses the
following calling sequence:

DATA 0105035 BCS transfer to FDO

DATA P1 Address of DO
increment

DATA P2 Address of DO loop
counter

DATA P3 Address of DO loop
limit

DATA P4 Address for jump if

the counter is not
greater than the
limit
The third instruction, FDO1 to control a DO loop with
increment of 1 uses the following calling sequence.

DATA 0105027 BCS transfer to FDO1

DATA P1 Address of DO loop
counter

DATA P2 Address of DO loop
limit

DATA P3 Address for jump

if the counter is
not greater than the
limit

The DO loop is incremented and tested against the DO loop
limit. If the loop counter is less than the limit, execution
continues at the address specified by the BCS call word 5.
If the value of the loop counter is equal to or greater than
the value represented by the limit, execution continues at
the instruction following this calling sequence.

20.2.5 Byte Manipulation Firmware

The byte instructions use a byte pointer address where bits
15-1 specify the word number and bit 0 is O for the left byte
and 1 for the right byte. The byte-oriented instructions
implemented in firmware are:

Mnemonic Function BCS Call
CBS Compare byte strings 0105030
MBS Move byte string 0105070

In the first microprogram sequence, the CBS instruction
requires that the second word contain the address to which
control is returned if the strings are not equal. The B
register contains the byte starting address of the first
string, the X register is the byte starting address of the
second string, and the A register specifies the number of
bytes to be compared.

The second byte-oriented microprogram sequence, the MBS
instruction, moves the number of bytes specified in the A
register from the location specified by the B register to the
location specified by the X register.

Both share a common BCS entry point, and this may be
extended for six more instructions.

20.2.6 Stack Firmware

A stack is kept in memory for use for return addresses,
temporary storage or arithmetic operations. The base and
limit of the stack (see figure 20-1) are defined by the user.
The stack control block is indicated by a pointer in the
second word of the calling sequence. Figure 20-2 is the
format of the stack control block.

0
LIMIT
STACK GROWS
TOWARD LOW
ADDRESS
STACK 4
BASE
e Emmm—
INITIAL
POINTER
32K

Figure 20-1. Base and Limit of Stack

20-3

F"‘@ varian data machines

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

WORD Divide: divides the top stack word into the following two
words. The top-of-stack pointer (PTR) is incremented and
0 CURRENT STACK POINTER the single-precision quotient with the sign of the dividend is
. stored in the new top-of-stack location. The remainder is

1 LIMIT OF STACK stored in the next stack location (see figure 20.4).

2 BASE OF STACK If the divided is greater than the divisor, the quotient is

unpredictable, and control is returned with the overflow

ADDRESS OF INSTRUCTION inicator set (OF). If the top-of-stack pointer (PTR) ever
3 WHICH CAUSED OVERFLOW exceeds the boundaries of the stack, a JMPM is made to
OR UNDERFLOW the fourth word in the stack control block.

ERROR ROUTINE FOR
4 OVERFLOW OR

UNDERFLOW
0 0
Figure 20-2. Stack Control Block

The following BCS instructions correspond with each of the
stack operations:
Operation BCS Operation BCS
Add 0105031 Push 0105231 PR <.y igh)
Subtract 0105071 Pop 0105331 PTR—=~] s X
Multiply 0105131 Push double 0105271 $ v o x -y (low)
Divide 0105171 Pop double 0105371
Eight stack instructions transfer to the same initial entry
point in the WCS, where the decoder determines the
specific instruction to be executed.

32K 32K

On all stack operations, if the top-of-stack pointer (PTR)
ever exceeds the boundaries of the stack (as the user
defined them in the stack control block), no further
processing takes place and a JMPM is made to the fourth
word in the stack control block.

Figure 20-3. Stack Multiply

BEFORE AFTER
Single-Precision Integer Stack Arithmetic 0 0

Add: adds the top two words of the stack, increments the
pointer and replaces the new topmost word. If the result
exceeds the maximum positive number (077777), the
overflow indicator (OF) and the sign in bit 15 are set to
one. For example, adding 000002 to 077777 sets OF to one
and the result to 100001.

PTR PTR
s X e X

Subtract: subtracts the next stack word from the top of
stack word (by adding the top word to the two’s comple- y (low) q
ment of the next stack word), increments the top-of-stack v (high) .
pointer, and stores the remainder in the new top-of-stack
word. If the result exceeds the maximum negative number,
it sets the overflow indicator and resets the sign.

Multiply: multiplies the two words at the top of the stack
and replaced them by their 32-bit product (see figure 20-3).
The most signficant part of the product is placed in the top
word, and the least significant portion will be placed in the
next word. The sign bit of the top word gives the sign of the
product, and the sign of the next word is set to zero. The
overflow indicator (OF) is not set. Figure 20-4. Stack Divide

32K 32K
+y/ + x =+ quotient q with remainder r

20-4

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Stack operators: these operators also require a stack
control block as in figure 20-2. ’

Push (SPUSH): the A register (RO) is placed on the stack at
the location addressed by the decremented top-of-stack
pointer (see figure 20-5.)

BEFORE AFTER
SPUSH SPUSH
0 0
PT—R> A-REGISTER
PTR
——{
32K 32K

PTR

Figure 20-5. Stack Push

Pop (SPOP): the A-register (RO) from the top stack word
and increments the stack pointer (see figure 20-6).

BEFORE SPOP AFTER SPOP

INTO
A REG-
ISTER

PTR

Figure 20-6. Stack Pop

Push Double (PUSHD): decrements the stack pointer and
stores the B register (R1), and then decrements the pointer
and stores the A register (RO) (see figure 20-7).

BEFORE AFTER
SPUSHD SPUSHD
0 0
EL A-REGISTER
B-REGISTER
PTR
———1
32K 32K

Figure 20-7. Stack Double Push

Pop Double (POPD): loads the A register (RO) with the word
addressed by the top-of-stack pointer and then increments
the top-of-stack pointer; loads the B register (R1) with the
word addressed by the new value of the top-of-stack
register and then increments the top-of-stack pointer again
(see figure 20-8).

BEFORE POPD AFTER POPD
0
PR N . INTO A
REGISTER
\2 Y —_—
PRT
D —— —i—
INTOB
REGISTER

Figure 20-8. Stack Double Pop

20-5

varian data machines —

varian data machines

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20.2.7 Firmware Macros

The mnemonics given are not supported by the DAS MR
assembler. The assembly-language programmer must
supply his own macros in order to use any of these
mnemonics. The following are examples and possible use of
the required macros.

Macro

Fixed point add:

XAD MAC
DATA 0105334,P(1)
EMAC

Fixed point subtract:

XSB MAC
DATA 0105374,(P1)
EMAC

Fixed point multiply:

XMU MAC
DATA 0105274,pP(1)
EMAC

Fixed point divide:

XDV MAC
DATA 0105234,P(1)
EMAC

Floating point add:

FAD MAC
DATA 0105134,P(1)
EMAC

Floating point subtract:

FSB MAC
DATA 0105174,P(1)
EMAC

Floating point multiply:

FMU MAC
DATA 0105074,P(1)
EMAC

Floating point divide:

FDV MAC
DATA 0105034,P(1)
EMAC

Load AB:

FLD MAC
DATA 0105032,P(1)
EMAC

20-6

XAD

XSB

XMU

XDV

FAD

FSB

FMU

FDV

FLD

Use

address

address

address

address

address

address

address

address

address

Store AB:

FST MAC
DATA
EMAC

Memory to memory:

FMV MAC
DATA
EMAC

Pass parameters:

FSE MAC
DATA
BSS
EMAC

DO loop:

FDO MAC
DATA

EMAC

varian data machines @—

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

0105033,pP(1)

0105037,p(1)

0105036,P(1)
P(1)

0105035,p(1) ,P(2),
P(3),pP(4)

DO loop (one increment):

FDO1 MAC

DATA
EMAC

Compare string:

CBS MAC
DATA
EMAC

Move string:

MBS MAC
DATA
EMAC

Stack add:

SADD MAC
DATA
EMAC

Stack subtract:

SSUB MAC
DATA
EMAC

0105027,pP(1),P(2),P(3),

0105030,P(1)

0105070

0105031,P(1)

0105071,pP(1)

FST

FMV

FSE

FDO

FDO1

CBS

MBS

SADD

SSUB

address

address,address

#iparams

inc addr, count addr,
lim addr, loop addr

count addr,
loop addr

lim addr,

non compare addr

stack addr

stack addr

20-7

varian data machines

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20-8

Stack multiply:

SMUL MAC
DATA
EMAC
Stack divide:
SDIV MAC
DATA
EMAC
Stack push:
SPUSH MAC
DATA
EMAC
Stack pop:
SPOP MAC
DATA
EMAC

Stack push double:

SPUSHD MAC
DATA
EMAC

Stack pop double:

SPUPD MAC
DATA

EMAC

0105131,P(1)

0105171,P(1)

0105231,P(1)

0105331,P(1)

0105271,pP(1)

0105371,P(1)

SMUL

SDI1IV

SPUSH

SpPOP

SPUSHD

SPOPD

The Floating Point Processor has the following OP codes.

Mnemonic

FLD
FLDD
FAD
FADD
FSB
FSBD
FMU
FMUD
FDV
FDVD
FLT
FIX
FST
FSTD

Opcode

0105420
0105522
0105410
0105503
0105450
0105543
0105416
0105506
0105401
0105535
0105425
0105621
0105600
0105710

Operation

Floating
Floating
Floating
Floating
Floating
Floating
Floating
Floating
Floating
Floating

load single
load double
add single

add double
subtract single
subtract double
multiply single
multiply double
divide single
divide double

Fix to float

Float to
Floating
Floating

fix
store single
store double

Load or Float interrupts are locked out until a store or fix.

EX34, -- as time out.

An interrupt after a store may change floating-point
registers. User should restore their contents.

stack

stack

stack

stack

stack

stack

addr

addr

addr

addr

addr

addr

Mnemonics for floating-point operations are not supported
by DAS MR. The following are possible macros which must
be included by the user to define the mnemonics:

Macro

FLD MAC
DATA
EMAC

FLDD MAC
DATA
EMAC

FAD MAC
DATA
EMAC

FADD MAC
DATA
EMAC

FSB MAC
DATA
EMAC

FSBD MAC
DATA
EMAC

FMU MAC
DATA
EMAC

FMUD MAC
DATA
EMAC

FDV MAC
DATA
EMAC

FDVD MAC
DATA
EMAC

FLT MAC
DATA
EMAC

FIX MAC
DATA
EMAC

FST MAC
DATA
EMAC

FSTD MAC
DATA
EMAC

varian data machines

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

0105420,P(1)

0105522,P(1)

0o105410,P(1)

0105503,P(1)

0105450,P(1)

0105543,P(1)

0105416,P(1)

0105506,P (1)

0105401,P(1)

0105535,P(1)

0105425,P(1)

0105621,P(1)

0105600,P(1)

0105710,P(1)

Use

FLD

FLDD

FAD

FADD

FSB

FSBD

FMU

FMUD

FDV

FDVD

FLT

FIX

FST

FSTD

address

address

address

address

address

address

address

address

address

address

address

address

address

address

20-9

——-@ varian data machines

varian data machines

APPENDIX A
ERROR MESSAGES

This appendix comprises a directory of VORTEX operating
system error messages, arranged by VORTEX component.
For easy reference, the number of the subsection contain-
ing the error messages for a component ends with a
number corresponding to that of the section that covers the
component itself, e.g., the file-maintenance error messages
are listed in subsection A.9 because the file-maintenance
component itself is discussed in section 9.

A.1 ERROR MESSAGE INDEX
Except for the language processors (section 5), VORTEX

error messages each begin with two letters that indicate
the corresponding component:

Messages

beginning Are from Listed in
with: component: subsections:
CM Concordance program A.5

DG Debugging program A7

DP Dataplot 1 A.12

A.2 REAL-TIME EXECUTIVE

EX Real-time executive A2
FM File maintenance A9
10 170 control A3

V] 170 utility A.10
JC Job-control processor A4
LG Load-module generator A6
MS Microprogram simulator A18.1
MU Microprogram utility A.18.2
NC VTAM Network control A.20
oC Operator communication A.17
RP RPG 1V Compiler A3
RT RPG IV Runtime/Loader A.5.3
SE Source editor A8
SG System generator A.15
SM System maintenance A.16
ST VSORT A1l
DAS MR assembler A5

Section A.21 gives explanations of error codes listed under
“Possible User Action” in the last column of the following
sections.

Message

EXO1,xxxxxx

EX02,xxxxxx

EXO03,xxxxxx

EXO04,xxxxxx

EXO05,xxxxxx

EX06,xxxxxx

EXO7,xxxxxX

Condition

Invalid RTE service
request by task xxxxxx

Scheduled task xxxxxx
name not in specified
load-module library

Task xxxxxx made
RESUME request but re-
quested task not found

Task xxxxxx made ABORT
request but requested
task not found

Background task xxxxxx
larger than allocatable

Not enough allocatable
space available for
ALOC request

OVLAY requests a seg-
ment not in library

Possible

User
Action Action
Abort task D01,D02,P01
XXXXXX
Abort task D01,D03
XXXXXX
Continue DO01,D03
scheduling
task
Task xxxxxx DO01,D03
continues
Task XxXXxxx M01,M02,M03
not loaded MO04,P02
Abort task M01,M02,M03
XXXXXX Mo04
Abort task D01,D03
XXXXXX

A-1

varian data machines

ERROR MESSAGES

A-2

EX10,xxxxxx

EX11,xxxxxx,n

EX12,xxxxxx

EX15,xxxxxx

EX16,xxXXXX

EX17,xxxxxX

EX32,xxxXXX

EX33,xxx*xx

EX34,xxxxxx

Scheduled request has
a library task priority
conflict (task priority
0 from foreground
library, task priority
2 from background
library). Scheduled
request specifies a
foreground task to be
executed at priority
Oorl

Memory protection vio-
lation at address n

1/0 link error (fore-
ground task making
request, or incorrect
logical unit number)

Foreground common
specified by back-
ground task

PASS macro specified
zero or negative word
count

RMD 1/0 error detected
when SAL attempted to
load scheduled task,
xxxxxx. Also pseudo
TIDB data assumed bad,
execution address less
than 01000

Attempted to schedule
a task from a non-RMD
unit

Floating-point proc-
essor fault, FPP,
error

Floating-point proc-
essor timeout

Note: xxxxxx is the name of a task.

Schedule
request ig-
nored,
scheduling
task continues

Abort task
XXXXXX

Abort task
XXXXXX

Abort task
XXXXXX

Abort task
XXXXXX

Abort task
XXXXXX

Directive
ignored

Program con-
tinues at the
address follow-
ing the FPP
store instruc-
tion

Program continues

at interrupted
instruction

D04,D02,P01

P03

PO1

PO1

PO1

MO06,P01

DO02,PO1

None

None

varian data machines

ERROR MESSAGES

A.3 1/0 CONTROL

Possible
User
Message Condition Action Action
1000, xxxxXX Unit not ready, or Repeats mess- HO1,HO3
unit file protected age until con-
dition is cor-
rected
1001, xxxXXX Device declared down Repeats mess- H04,D19
age until con-
dition is cor-
rected
1002, xxxx XX Invalid LUN specified Abort task D02,P0O1
or request
1003, xxxxxx FDB/DCB parameter error Abort task PoO4
or request
1004, xxxxXX Invalid protection code Abort task DO01,D02,P01
or request
1005, xxxxxX Protected partition Abort task PO1
specified by unpro- or request
tected task
1006, xxxxxX 170 request error, Abort task HO5
e.g., 1/0-complete or request
bit not set, prior
request may be queued
1007, xxxxxx Attempt to read from a Abort task D02,P01
write-only device, or or request
vice versa
1010, xxxxXX File name specified in Abort task D01,D03,P01,
OPEN or CLOSE not found or request D29
1011, xxxxxX Invalid file extent, Abort task P04,P0O1
record number, address or request
or skip parameter
1012, xxxxXX RMD OPEN/CLOSE error, Abort task HO05,D03
or bad directory thread or request
1013, xxxxXX Level O program read a Task xxxxxx None
JCP (/) directive is aborted,
directive
passed to JCP
buffer
1014, xxxxxX Interrupt timed out or Abort task HO05,D05
no cylinder-search- or request

complete interrupt

A-3

varian data machines

ERROR MESSAGES

A-4

1015, xxxxxx

1016, xxxxXX

1017, xxxxxx

1020, xxxxXX

1021, xxxxxX

1022, xxxxxX

1023, xxxXXX

1024, xxxxxX

1025, xxxxxx

1026, xxxxXxX

1027, xxxxxX

1030, xxxxxX

1031, xxxxxX

1032, xxxxxX

1033, xxxxxX

1034, xxxxxX

1035, xxxxxx

Disc cylinder-search
or malfunction error

Disc read/write timing
error

Disc end-of-track error

BIC1: abnormal stop,
not ready, or time out
error

BIC2: abnormal stop,
not ready, or time out
error

BIC3: abnormal stop,
not ready, or time out
error

BIC4: abnormal stop,
not ready, or time out
error

BIC5: abnormal stop,
not ready, or time out
error

BIC6: abnormal stop,
not ready, or time out
error

BIC7: abnormal stop,
not ready, or time out
error

BIC8: abnormal stop,
not ready, or time out

error

Parity error

Reader or tape error

Odd-length record error

Invalid terminal
identifier or logical
line number

Line or terminal not
opened

Line or terminal down

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Request
ignored
Request

ignored

Request
ignored

HO5

HO5

HO5

D05,H05

D05,H05

D05,H05

D05,H05

DO05,H05

DO05,H05

D05,H05

DO05,H05

H05,D02

HO05,P19

H05,P12

D27

D28

D28

varian data machines @—

ERROR MESSAGES

1036, xxxxxx Line or terminal already Request D28
open ignored
1037, xxxxXX Request still pending Request None
. ignored
1040, xxxxxx Action on terminal not Request D28
opened ignored
1042 xxxxxX Invalid physical line Request D27
address ignored
1043, xxxxxX Invalid TCM type Request D27
ignored
1044, xxxxxx No temporary storage Request None
available ignored
1045, xxxxxx RMD error. Format, Abort task HO05,D13
end-of-file or head or request

selection error

1047, xxxxXX User write specified Record is P04
word count >73 truncated
105, XxXXXXX RMD read error on stream The data is HO6
X, specified last digit used
of error number
1060, xxxXXX RMD file full The program D08
waits until
space is avail-
able on the
file. The

message is re-
peated every
200 times the
condition
occurs

1061, xxxxXX User parameter error Request is PO1
in request ignored

1062, xxxxxX RMD write error The bad sec- HO6
tor is
skipped. This
is likely to
cause an |05x
error later,
but no data
will be lost

1063, xxxxxX Buffer unavailable Spooler waits None
for spooler until buffer
is available

Note: xxxxxx is the name of a task or device.

A-5

— varian data machines

ERROR MESSAGES

A.4 JOB-CONTROL PROCESSOR

Possible
User
Message Condition Action Action
Jcol Invalid JCP directive : lgnore D01,D02
directive
JCOo2 Invalid or missing lgnore DO01,D02
parameter in a JCP directive
directive; or illegal
separator or terminator
Jco3 Specified physical lgnore DO07,H06
device cannot perform directive
the functions of the
assigned logical unit
JCo4 Invalid protection Ignore DO01,D02
code or file name in directive
a JCP directive
JCO5,nn End of tape before the SFILE, SREC ‘PO7
number of files spec- terminates
ified by an /SFILE upon error
directive has been condition
skipped; or end of
tape, beginning of tape,
or file mark before the
number of records spec-
fied by an /SREC di-
rective has been skipped
where nn is the num-
ber of files (or
records) remaining
to be skipped
JCo6 An irrecoverable /0 Job flushed P07,M01,P06
error while compiling to next /JOB
or assembling; or an directive
error during a load/go
operation; or insuf-
ficent symbol table
memory (insufficient
/MEM directive), or
an EOF was encountered
before an END statement
Jcoz Invalid or illegal ignore D01,D02,H06
logical/physical-unit directive
referenced in JCP
directive

A.5 LANGUAGE PROCESSORS

A.5.1 DAS MR Assembler

During assembly, the source statements are checked for
syntax errors and usage. In addition, errors can occur

A-6

where the program cannot determine the correct meaning
of the source statement.

When an error is detected, the assembler outputs an error
code following the source statement containing the error,
on the LO unit, and continues to the next statement.

The assembler error messages are:

Message Condition

“IL First nonblank character of the source statement
invalid (statement is not processed)

*OP Instruction field undefined (two no-operation (NOP)
instructions are generated in the object module)

*SY Expression contains undefined symbol

*EX Expression contains two consecutive arithmetic op-
erators

*AD Address expression error

*FA Floating-point number format error

*DC An 8 or 9 in an octal constant

*DD Invalid redefinition of a symbol or the location
counter

*VF Instruction contains variable subfields either

missing or inconsistent with the instruction type

*MA Inconsistent use of indexing and indirect addressing
*NS Nested DUP statements

*NR Symbol table full

*TF Tag error (undefined or illegal index register

specifications)

*SZ Expression value too large for the size of the
subfield, or a DUP statement specifying more than
three symbolic source statements to be assembled

*UD Undefined digit in an arithmetic expression

*SE The symbol in the label field has, during pass 2,
a value different than that in pass 1

*E Syntax error (source statement incorrectly formed)

*R Relocation error (relocatable item encountered

where an absolute item was expected)
*MQ Missing right quotation mark in character string

* = Invalid use of literal

varian data machines

ERROR MESSAGES

A-7

varian data machines

ERROR MESSAGES

A.5.2 FORTRAN IV Compiler and Runtime
Compiler

During compilation, source statements are checked for
such items as validity, syntax, and usage. When an error is
detected, it is posted on the LO usually beneath the source
statement. The errors marked T terminate binary output.

All error messages are of the form

ERR xx c(1)-c(16)
where xx is a number form 0 to 18 (notification error), or T
followed by a number from 0 to 9 (terminating error); and

c(1)-c(16) is the last character string (up to 16) encoun-
tered in the statement being processed. The right-most

character indicates the point of error and the @ indicates

the end of the statement. The possible error messages are:

Notification

Error Definition

0 Illegal character input

1 Construction error

2 Usage error

3 Mode error

4 lllegal DO termination

5 Improper statement number

6 Common base lowered

7 Illegal equivalence group

8 Reference to nonexecutable
statement

9 No path to this statement

10 Multiply defined statement
number

11 Invalid format construction

12 Spelling error

13 Format statement with no
statement number

14 Function not used as variable

15 Truncated value

16 Statement out of order

17 More than 29 named common
regions

18 Noncommon data

Terminating

Error Definition

T0 170 error

T1 Construction error

T2 Usage error

T3 Data pool overflow

T4 lllegal statement

T5 Improper use

T6 Improper statement number

T7 Mode error

T8 Constant too large

T9 Improper DO nesting

Note: due to optimization, the error message may appear
on the next labeled statement and not on the actual
statement error.

A-8 .

RUNTIME

When an error is detected during runtime execution of a
program, a message is posted on the LO device of the form:

taskname message
Fatal errors cause the job to be aborted; execution

continues for non-fatal errors. The messages and their
definitions are:

Message Cause

ARITH OVFL Arithmetic overflow

GO TO RANGE Computed GO TO out of
range*

FUNC ARG Invalid function argument
(e.g., square root of
negative number)

FORMAT Error in FORMAT statement*

MODE Mode error (e.g., outputting
real array with | format)*

DATA Invalid input data (e.g.,
inputting a real number
from external medium with
I format)*

170 170 error (e.g., parity,
EOF)*

* indicates fatal error; all others non-fatal

A.5.3 RPG IV Compiler and Runtime
Compiler

During compilation, source statements are checked for
such items as validity, syntax and usage. When an error is
detected an arrow is printed pointing to the discrepancy in
the source statement and an error message is output on
the LO device. Detailed descriptions can be found in the
RPG 1V User's Manual (98 A 9947 03X). The possible error
messages are:

Messages
Indicator Name
Invalid Relational
Label Size
Literal Syntax

If an 1/0 error occurs during compilation one of the
following messages is posted on Logical Unit 15 and
compilation is terminated:

Message Condition

RPO1,nnn 170 error

RPO2,nnn End of file error

RPO3,nnn End of device error

RPO4 End card error (End
card encountered before
procedure card)

RPO5 Available memory

exceeded

where nnn is the logical unit number on which the error
occurred.

RPG Runtime/loader during the loading or executing of an
RPG IV object program in the background any of the
following conditions will cause an error. The message is
posted on Logical Unit 15 and the task aborted:

Message Condition
RTO1,nnn 170 error
RTO2,nnn End of file error
RTO3,nnn End of device error
RTO4 Program too big
RTO5 Invalid object record
RTO6 Checksum error
RTO7 Sequence error
RTO8 Program not executable
RTO9 Work list overflow

RT10,xxxxxXx

Invalid call to sub-
routine or missing sub-
routine where xxxxxx

is the subroutine name

Action

Compilation
terminated

Compilation
terminated

Compilation
terminated

Compilation

terminated

Compilation
terminated

Action

Task aborted
Task aborted
Task aborted
Task aborted
Task aborted
Task aborted
Task aborted
Task aborted

Task aborted

Task aborted

varian data machines

ERROR MESSAGES

Possible
User
Action

HO6

P07

P07

P07

MO01,M03,M04

Possible
User
Action
HO6

P07

P07

P07

P08

P08

P08

P08

M01,M02,M03
Mo4

P08

A-9

varian data machines

ERROR MESSAGES

A-10

Concordance Program:

Message

CNo1

Condition

Symbol table full

A.6 LOAD-MODULE GENERATOR

Message

LGO1

LGO2

L.GO3

LGO4

LGO5

LGO6

LGO7

LGOS

LGO9

LG10

LG11

LG13

Condition

Invalid LMGEN directive

Invalid or missing para-

meter in an LGMEN direc-

tive

Check-sum error in
object module

READ error in object
module

WRITE error in load
loading

Cataloging error, name
already in library,
library full

Loader code error in
object module

Sequence error in object
module

Structure error in ob-
ject module

Literal pool overflow
or use of literal by
foreground program

Invalid redefinition of
common-block size during
load-module generation

Load-module size exceeds
available memory

LMGEN internal tables
exceed available memory

Action

Partial con-
cordance out-
put, then next
segment is
processed

Action

lgnore
directive

lgnore

directive

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Possible
User
Action

MoO1

Possible
User
Action
D01,D02

DO01,D02

P08,002

P08,H06

P08,H06

DO03,H06

P08

P08

P08

PO8,P09

P08

P02

MO1

LG14

LG15

LG16

LG17

Number of overlay seg-
ments input not equal
to that specified in
TIDB

Undefined externals

No program execution
address

Attempt to load pro-
tected task on back-
ground library or
unprotected task on
foreground library

A.7 DEBUGGING PROGRAM

Message

DGO1

DGO2

A.8 SOURCE EDITOR

Message

SEO1

SE02

SEO03

SEO04

Condition

Invalid DEBUG direc-
tive

Invalid or undefined

parameter in DEBUG
directive

Condition

Invalid SEDIT direc-
tive

Invalid or missing para-

meter in SEDIT directive

Error reported by 10C
call

Invalid end of file

varian data machines @]——

ERROR MESSAGES

Abort loading DO01,D02

Loading P10
continues

Loading con- P17
tinues. Ad-

dress defaults

to the first

location of

the program

Abort loading D01,D02
Possible
User
Action Action
lgnore DO01,D02
directive
Ignore D01,D02
directive
Possible
User
Action Action
Directive D01,D02
ignored
Directive D01,D02
ignored
Edit HO6
terminated
Edit P07
terminated

_@ varian data machines

ERROR MESSAGES

A.9 FILE MAINTEANCE

Possible
User
Message Condition Action Action
FMO1 Invalid FMAIN direc- lgnore D01,D02
tive directive
FMO02 Name already in direc- Module not D03,D01,D02,
tory added D07
FMO3 Name not in directory Module not D03,D01,D02
deleted
FMO04 Insufficient space for Module not D07,D08,D09
entry added
FMO5 170 error FMAIN process HO6
terminated
FMO06 Directory structure FMAIN process HO06
error, including terminated
writing over the direc-
tory by direct ad-
dressing of an RMD
partition
FMO7 Check-sum error in FMAIN process P08
object module terminated
FMO08 No entry name in ob- FMAIN process P08
ject module terminated
FMO09 Record-size error in FMAIN process P12
object module terminated
FM10 Loader code error in FMAIN process P08
object module terminated
FM11 Sequence error in ob- FMAIN process P08
ject module terminated
FM12 Non-binary record in FMAIN process P12
object module terminated
FM13 Number of input logical FMAIN process DO01,D02
unit not specified by terminated
INPUT
FM14 Insufficient space in FMAIN process MO1

memory

terminated

* Messages FMO7 through FM14 apply only to the
processing of object modules. The occurrence of any of
these errors requires that the processing of the object
module be restarted after the error condition is removed.

A.10 1/0 UTILITY

Message

1uo1

1U02

1Uo3

1U04

1UO5,nnnn

Condition

Invalid IOUTIL directive

Invalid or missing para-
meter in IOUTIL direc-
tive

PFILE directive not used
to open an RMD file

1/0 error

End of file or end of
tape before the speci-
fied number or records
skipped, or end of
tape before specified
number of files
skipped. When nn =
the number of records
remaining when the
end-of-file or end-
of-device occurred.
Note: nn is modulo
100.

A.11 SORT ERROR MESSAGES

Message

STO1,xXXXXXXX

$T02

STO3

STO4

STO5, xxxxXX

Condition

Invalid or missing
parameter or control
word for the SORT
control word XXxXxxxx

Record lengths for
INPUT and OUTPUT
unequal and no user
exit specified.

Store control field
ending character po-
sition is less than

start character position,
or character position

is past end of sort
record

Insufficient memory
available for work
space.

OPEN error on file
XXXXXX

Action

Directive
ignored

Directive
ignored
Directive

ignored

IOUTIL process
terminated

SFILE, SREC
terminates
upon error
condition

Action

Abort job

Abort job

Abort job

Abort job

Abort job

Possible
User
Action

DO01,D02

D01,D02

D02

HO6

P07

DO1

DO1

DO1

MO1

DO01,H06

varian data machines @-——

ERROR MESSAGES

—-@ varian data machines

ERROR MESSAGES

STO6,xxxXXX 1/0 error on file Abort job HO06
XXXXXX
STO7,xxXXXXX Attempt to write past Abort job D32

end-of-file xxxxxx.
(Work file or output
file too small.)

A.12 DATAPLOT

Possible
User
Message Condition Action Action
DPQO,xxxxXxx Plot file overflow Incomplete D30
plot
DPO1,xxxxxx Buffer overflow Incomplete MO05
plot
DP02,xxxxxx Attempted to plot from Abort plot P20
unsorted plot file
DPO3,xxxxxx End-of-file detected Incomplete P07
before end-of-plot plot
indicator
DPO4,xxxxxx Minimum/maximum x or Line will P21
y value exceeded follow plot
boundary,
origin will
be shifted
DPO5, xxxxxXx PLOTS not called Abort plot P22
DPO6,xxxxxXx Data Plot 1/0 error Abort task H06,H05
XXXXXX
DPO7,xxxxxx Attempted to sort from Abort task D31

a non-RMD media

where xxxxxx is the task name.

A.13 SUPPORT LIBRARY

There are no error messages unique to this section of the
manual.

A.14 REAL-TIME PROGRAMMING

There are no error messages unique to this section of the
manual.

A-14

A.15 SYSTEM GENERATION

RECORD-INPUT ERRORS:

before processing.

Message

SGOO0

SGO1

SG02

SGO3

SG0O4

SGO5

SGO6

SGO7

SGO8

SG09

OUTPUT ERRORS: Errors in the attempt to perform 1/0

on an RMD or listing unit.

Message

SG10

Errors in input record found

Condition

Read error (1/0)

Syntax error in
SGEN directive

Invalid or missing
parameter in SGEN
directive

Syntax error in control
record

Invalid or missing
parameter in control
record

Binary-object check-
sum error

Binary-object sequence
error

Binary-object record
code error

Unexpected end of file,
end of device, or
beginning of device

Improper ordering of

load-module-package
control records

Condition

RMD 1/0 error in
directive processor

Action

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Action

Waits for
indicated
corrective
action

varian data machines

ERROR MESSAGES

Possible
User
Action

P19,D11

D01,D11

D01,D11

D11

DO01,D11

P08,D11

P08,D11

P08,D11

P07,D11

D11

Possible
User
Action

D12

varian data machines

ERROR MESSAGES

A-16

SG11

$G12

SG13

SG14

SG15

SYSTEM-GENERATOR PROCESSING ERRORS:
venting the correct functioning of the system generator.

Message

S$G20

$G21

$G22

$G23

$G24

$G25

RMD 170 error in
nucleus processor

RMD 1/0 error during
library generation

RMD /0 error during
resident-task generation

First track on RMD bad
(unable to write PST/
bad-track table)

Write error on listing
device

Condition

Requested SGEN driver
not available

Loading error in direc-
tive processor

Loading error in
nucleus processor

Loading error in
library processor/
resident-task
configurator

Stacks exceed avail-
able memory

Incomplete system
definition (missing
directives)

Errors pre-

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Action

System halts

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

D12

D12

D12

D24

None

Possible
User
Action

M05,D22,D18,
D15

D12

D12

D12

MO03,D12

D01,D12

SG26

$G27

SG28,xx

MEMORY ERRORS:

Message

SG30

$G31

$G32

SG33

RMD error (too many
sectors allocated, or
nonsequential par-
tition assignments)

Error while loading
SGEN loader, I/0
control, or drivers.
Driver not found in
SGL

Error while loading

SGEN component

xx = 05 - checksum
06 - sequence

07 - record
21 - other in
SGEN1
22 - other in
SGEN2
23 - other in
SGEN3
24 - other in
SGEN4

Errors of compatibility between allo-
cated memory and a portion of the VORTEX system.

Condition

Size of nucleus larger
than that of defined
foreground area

Load-module literal
pool overflow

Size of load module
larger than defined
memory area

Invalid definition of
common during load-
module generation

Waits for
indicated
corrective
action

System halts

Waits for
indicated
corrective
action

Action

Waits for
indicated
corrective
action

Current load
module
processing
terminated,
system con-
tinues

Current load
module
processing
terminated,
system con-
tinues

Current load
module
processing
terminated,
system con-
tinues

varian data machines @"—1

ERROR MESSAGES

DO01,D25,D12

D15

P08,D12

Possible
User
Action

MO03,D12

P09,D17

MO03,P02,D17

M03,D17

varian data machines

ERROR MESSAGES

SG34

SYSTEM LOADING AND LINKING ERRORS:
prevent normal loading or linking of system components.

Message

SG40

S$G41

SG42

$G43

SG44

SG45

$G46

A-18

Number of overlays in-

put not the same as
specified by OVL
control record

Condition

Loader code error in
library processor

Loaded program contains

no entry name

Unsatisfied external in
library processor

No execution address
found in root segment
or overlay

Loader code error in
nucleus processor

Unsatisfied external in
nucleus processor

System peripheral
assigned to more than
one logical-unit class

Errors that

Current load
module
processing
terminated,
system con-
tinues

Action

Current load
module
processing
terminated,
system con-
tinues

Current load
module
processing
terminated,
system con-
tinues

Current load

module
processing
terminated,
system con-
tinues

Processing
continues.
Address
defaults to
the first
location of
the program

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

DO01,D17

Possible
User
Action

P08,D17

P08,D17

P10,D17

P11

P08,D12,

P10,D12

D12

A.16 SYSTEM MAINTENANCE

Message

SMo1

SM02

SMo03

SM04

SMO05

SMO06

SMo7

SM08

SMO09

SM10

SM11

Condition

Invalid SMAIN direc-
tive

Record not recognized

Check-sum error in
object module

Incorrect size of
object-module record
(correct: 120 words
for RMD input, other-
wise 60 words)

Loader code error in
object module

Sequence error in
object module

Object module contains
non-object-module text
record

Error or end of device
received after reading
operation

Error or end of device
received after writing
operation

Stack area full

Invalid control record

Action

Ignore
directive

lgnore
directive

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

varian data machines

ERROR MESSAGES

Possible
User
Action

D01,D02

P19,D10

P08,D10

P12,D10

P08,D10

P08,D10

P12,D10

P07,010

P07,D10

MoO1

P19,D10

— varian data machines

ERROR MESSAGES

A.17 OPERATOR COMMUNICATION

Possible -
User
Message Condition Action Action
0co1 Request type error lgnore D01,D02
directive
0Co02 Parameter limits Ignore DO01,D02
exceeded directive
0Co03 Missing parameter Ignore D01,D02
directive
0co4 Unknown or undefined lgnore D01,D02
parameter directive
0CO05 Attempt to schedule Ignore D01,D02
or time schedule directive
OPCOM task
0C06 Attempt to declare OC Ignore DO01,D02
device or system directive
resident unit down
0oco7 Task specified in TSTAT Ignore D01,D02
key-in has no es- directive
tablished TIDB, task
currently not active
0C10 Attempt to assign unit Ignore D19,H04
declared down or assign directive
an unassignable logical
unit/device
0C11 Attempt to allocate Ignore Mo2
TIDB unsuccessful for directive
TSCHED request
A.18 RMD ANALYSIS AND INITIALIZATION
Possible
User
Message Condition Action Action
RZ01 Invalid RAZI direc- lgnore DO01,D11
tive or illegal sepa- directive
rator or terminator
RZ02 Invalid parameter in lgnore DO01,D11
a RAZI directive directive
RZ03 Insufficient or con- Ignore DO01,D11
flicting directive directive
information
RZ04 New PST incompatible Ignore D20,D21,D22,
with the system directive D11

A-20

RZ05

RZ06

RZ07

RZ08

RZ09

RZ10

RZ11

RZ12

RZ13

A.18.1 Microprogram

Message

MS01

MSo02

MS03

MS04

Named device cannot be
replaced (system RMD or

device busy)

Irrecoverable /0 error
on designated RMD

First track of disc

pack bad (pack unusable)

Directive .incompatible
with specified RMD

Irrecoverable 1/0 error

on system RMD (VORTEX

nucleus)

1/0 error on LO device

1/0 error on S| device

No memory available to
allocate for new bad- -
track table

Total number of tracks
specified in PRT direc-
tive exceeds size of
the device or is in-

compatible with the FRM

directive

Simulator

Condition

Input could not be
interpreted as a
valid command

A non-hex character
was encountered when
hex expected

Insufficient common
area to contain spec-
ified number of pages

The selected page
number was not valid

Ignore
directive

Ignore
directive

Ignore
directive

Ignore
directive

lgnore
directive

lgnore
directive

lgnore
directive

RAZ| aborted

Ignore
directive

Action

Directive
ignored;
input
recovery™

Directive
ignored;
input
recovery*

Request for
highest page
repeated

Directive
ignored;
input
recovery™

D01,D11

HO06,D11

D24

D25,D23

H06,D11

D11,H06

D11,H06

M02

D25,D11

Possible
User
Action

DO1,D02

DO01,D02

MO01,D26

D26

varian data machines

ERROR MESSAGES

A-21

ERROR MESSAGES

MS05

MS06

MS07

MS08

MS09

MS10

MS11

MS12

MS13

MS14

device.

Message

Muo1

MUO02

MuUo03

A-22

—@ varian data machines

An attempt was made
to jump to an unavail-
able WCS page
A BCS instruction was
encountered when WCS
page 1 is unavailable

Read error on BI
device

EOF encountered before
load complete

EOD/BEOD encountered
before load complete
Sequence error on Bl
Invalid loader code
Checksum error

Undefined macro opcode

Attempted to write to
memory outside defined
main memory

* Input recovery message or corrected directive from SO

A.18.2 Microprogram Utility

Condition

Input could not be
interpreted as a valid
command

A non-hex character
was encountered when
hex expected

EOF detected on SI

Simulation
halted

Simulation
halted

Loading
aborted

Loading
aborted

Loading
aborted

Loading
aborted

Loading
aborted

Loading
aborted

Simulation
continues

Simulation
continues

Action

Directive
ignored;
input
recovery*

Directive
ignored;
input
recovery*

Microprogram
utility
aborted

P13

D26,P13

HO6

P0o7

P08

P08

P08

P08

P15

P16

Possible
User
Action

D01,D02

DO01,D02

P07

varian data machines @—-

ERROR MESSAGES

MU04 The selected page Directive D01,D02
number was not valid ignored;
input
. recovery*
MUO05 Unable to access WCS: Directive HO5
WCS is busy ignored
MUO06 Unable to access WCS: Directive HO5
BIC load in progress ignored
MuUo7 Read error on BID Loading HO6
device aborted
MU08 EOF encountered before Loading P07
load complete aborted
MUo09 EOD/BOD encountered Loading P08
before load complete aborted
MU10 Sequence error on Bl Loading P08
aborted
MU11 Invalid loader code Loading P08
aborted
MU12 Checksum error Loading P08
aborted

* Input recovery message or corrected directive from SO
device.

A.19 PROCESS INPUT/OUTPUT

There are no error messages unique to this section of the
manual.
A.20 VTAM NETWORK CONTROL MODULE

The VTAM network control module (NCM) generates the
following error messages:

Possible
User
Message Condition Action Action
NCO1 Syntax error Ignore D01,D02
directive
NCO02 Undefined line Ignore D27,D02
directive
NCO03 Undefined TUID Ignore D27,D002
directive

A-23

varian data machines

ERROR MESSAGES

NCO04 1/0 error on file
VT$DFL

NCO5 1/0 error on file
VT$DFT

NCO06 Undefined CCM number

A.21 ERROR CODES

A.21.1 Errors Related to Directives

DO1

D02

D03

D04

D05

D06

DO7

D08

D09

D10

D11

D12

D14

D15

D16

D17

A-24

Check spelling, delimiters, and parameters.

Enter corrected request from OC or SO.

Check specified library for module name (FMAIN list).
Correct task priority.

Check PIM directives used at system generation.
Use a global logical unit in directive.

Use an alternate library or unit.

Increase library size with RAZI or during SGEN.
Delete unused modules from library.

Reposition record if PT or CR (for MT or RMD posi-
tioning is automatic and enter on SO:

R@ to reread the record or
P@ to reread the program or
/SMAIN@ to restart SMAIN

Correct input record by entering it on SO or indicate
that it is positioned. for rereading by entering C on
SO.

Restart component by entering C on SO. (Reposi-
tioning is automatic for MT and RMD, for cards reload
the entire deck and SYSGEN will find component.)

Restart SGEN from beginning.

Check spelling, delimiters, etc. of 10 INTER-
OGATION.

Correct appropriate SGEN directives as indicated.
Correct indicated module for next SGEN or add

corrected module with LMGEN after SGEN com-
pletes.

where @ is a
carriage return

D18

D19

D20

D21

D22

D23

D24

D25

D26

D27

D28

D29

D30

D31

D32

Ignore H06,D02
directive
Ignore HO06,D02
directive
Ignore D27,D02
directive

Check that all RMDs are included in the SYS directive
that are indicated by the EQUIP directives.

Use OPCOM IOLIST for unit to check unit status (up
or down) and unit’'s logical group.

Check PRT directive

Check if maximum number of partitions specified in
EDR directive has been exceeded.

Check for conflicts in controller/unit relations.

Check logical unit in directive, must be assigned to
first partition of the subject RMD unit.

The specified RMD pack cannot contain a bad track
table due to the first track being bad, use another
pack.

Check FRM directive and total number of tracks
specified in PRT directive. The following table gives
the track capacity for the standard RMDs:

70-75XX 4060 tracks
70-76XX 203 tracks
70-7701 128 tracks
70-7702 256 tracks
70-7703 512 tracks

Check response to the highest page number re-
quested.

Check NDM definition or use LIST directive of NCM.
Use NCM module to check line/terminatl status.

Check that all subject logical units assigned to RMD
have been positioned with a PFILE.

Use a larger file for the plot file.
Check for proper logical unit (i.e., IOLIST).

Increase work file xxxxxx size.

A.21.2 Errors Related to Programs

PO1

Correct request in requesting task and re-execute.

varian data machines

P02

PO3

P04

P05

P06

P07

P08

P09

P10

P11

P12

P13

P14

P15

P16

P17

P18

Recode task using overlays

Check for privileged or illegal instruction at specified
location. Check listings or check memory by re-
questing a dump.

Check FCB or DCB entries.
Check for proper read mode, packed or unpacked

Check for needed global files such as PO, SS, GO,
SW.

Note: the diagnostic gives the task name and not
necessarily the missing file name.

Check source for an erroneous EOF, END directive,
etc.

Check module for the indicated error;

sequence number--word 1, bit 0-7
Note: binary records can be listed using the DUMP
directive of IOUTIL.

Check $LIT and $IAP values from the load module
map.

Examine map for missing externals and make neces-
sary program changes.

Check for an execution label on the END statement
of the source. Note: this is a normal diagnostic for
FORTRAN overlays.

Check for a non-binary record or a short or long
record in the module. The record length can be found
in word 5 of the request block upon completion of
170.

Check code and continue after making corrections
as indicated.

Check requested page number.

Check opcode for valid instruction.

Check memory address, store request is ignored.
Check for specified instruction or operation at loca-
tion indicated in error message. Note: the address
indicated refers to the instruction causing the error

and not the violated address.

Check the page status: read/write, read only, fetch
operand only, or unassigned.

P19

P20

P21

P22

ERROR MESSAGES

Check for illegal data under current mode, i.e., binary
in ASCII record, non-binary in binary record.

Sort the plot file
This may be an intentional message. Plot continues.

Call PLOTS

A.21.3 Errors Related to Memory Size

MO1

Mo2

M03

MO04

MO5

If background, adjust MEM directive as needed.

Wait for foreground tasks to release memory or TIDB
space.

If MEM request OK or cannot be increased then cut
back on foreground common, empty TIDBs, retry
stack size, peripheral drivers, etc. by re-SGEN.

If sharing blank common and VTAM LCB area, check
that a program has not used part of the LCB area.

Increase buffer area with BSS or dimension com-
mands.

A.21.4 Errors Related to Hardware

HO1

HO02

HO3

HO4

HO5

HO06

Make indicated unit ready.

Clear the protection of the wnit. (Disc write protection
or write ring in MT)

ABORT task, reassign Sl if necessary, and then
declare device down through OPCOM, do not forget
to declare it back up again.

ABORT task and assign alternate device or declare
device back up.

Check hardware for indicate probiem.

Check the OC device for an 10 error message, i.e.,
10xx.

A-25

—-@ varian data machines

varian data machines

APPENDIX B
170 DEVICE RELATIONSHIPS

Allowable Functions by 1/0 Device Type

Function RMD Mt PT CR cp LP TY or CRT

Read binary record X X X X X x4 x4
Read alphanumeric record X! X X X X X X
Read BCD record X' X x? x? x? x* x*
Read unformatted record X! X! X X X X8 x4
Write binary record . X X X X X x5 x4
Write alphanumeric X! X X X3 X6 X
record

Write BCD record X! X x2 X7 x4
Write unformatted record X! X! X x4
Write end of file X X X X8
Rewind unit X X x3 X5
Skip one record forward X X X X6
Skip one record backward X X X
Perform function zero X X

Perform function one X X

Perform function two X X

Open a file with rewind X

option

Open a file with leave
option

Close a file with leave
option

Close a file with update
option NOTES

printer, or causes carriage return and feeds

(1) All modes are read/written in binary three lines on Teletype or CRT.

mode. . . (6) Advances paper one line.
(2) BCD mode is handled like unformatted (7) Advances paper two lines.
mode. (8) Rings bell on Teletype or beeps on CRT.

(3) Punch 256 frames of leader on paper tape

(9) 620-77 line printer -- All modes are treated
or eject one blank card on card punch.

as alphanumeric.

(4) All modes are written in alphanumeric (10) 620-76 printer/plotter -- Unformatted rec-
mode. ords are transmitted without interpretation as
(5) Advances paper to top of form on line plot data.

B-1

F__@ varian data machines

1/0 DEVICE RELATIONSHIPS

Code Description
000 Unit not ready
001 Device down

002 lllegal LUN speci-
fied

003 FCB/DCB parameter
error

004 Level O program
references a pro-
tected partition

005 Level O program
references pro-
tected memory

006 1/0 request error

007 Read request to
write-only device,
or vise versa

010 File name not found

011 File extent error

012 RMD directory error

013 Level O program
read a JCP (/)
directive on SI

014 Interrupt time out

015 RMD cylinder-search
or malfunction error

016 RMD read/write
timing error

017 RMD address error

02n BICn error

030 Parity error

031 Reading error by
card reader or

paper tape device

032 Odd-length record
error

x
1

O
I

B-2

RMD MT

X X

0 0

0o 0o

0]]

] o

0o 0

0] 0]

X

X

X

0 0

X

X

X

X X

X X
X

Error reported by 1/0 drivers.

170 Errors by 1/0 Device Type

Error reported by 1/0 control processor.

PT

X

0

cp

170 Device
CR
X X
(o} (o}
o} 0
(0] (0}
0 0}
o} (0]
(0] 0
0] 0
[0}
X X
X

LP

TY or CRT

APPENDIX C
DATA FORMATS

This appendix explains the formats and symbols used by
VORTEX for storing information on paper tape, cards, and

maghetic tape.

C.1 PAPER TAPE

Information stored on paper tape is binary, alphanumeric,
or unformatted. It is separated into records (blocks of
words) by three blank frames. The last frame of each
record contains an end-of-record mark (1-3-4-8 punch).

C.1.1 Binary Mode

Binary information is stored with three frames per
computer word (figure C-1). Note that channels 6 and 7 are

always punched.

CHANNEL:

8
7

5

TIMING
3
2
1

XXX« XQO % *0
XXX o« XX % X
XXX « XX * *X
XXX « X0 * x20
e X X % % X
¢« X X % * X
XXX o« XO * x0
KX X ¢« XX * X
e X X *+ % X

X X X
X X X
X X X

WORD

VTIL-1374

1— L-woRrp 2

* = HOLE
B = BLANK
X = DATA BIT
EOR= END - OF - RECORD
Q= BLANK

Figure C-1. Paper Tape Binary Record Format

WORD N

varian data machines [@—

C.1.2 Alphanumeric Mode

Alphanumeric information is stored with one frame per
character (figure C-2). Standard ASCII-8 punch levels are
used.

C.1.3 Unformatted Mode

The tape is handled as for alphanumeric mode, but without
validity-checking.

C.1.4 Special Characters

An end of file is represented by the ASCII-8 BELL character
(1-2-3-8 punch).

s X x 20
XXX + XX * *X
* oW *

L=~ Rveivollo-ilvc]

s W™D ™

s WO W W w
XXX »XQO *» =0

XXX XX % *X
¢« XX x %X
XX * » X

X X X
(v
@ w

™ w w
@ @

xX X X

XX X

*
>
w

l
l
(
l
I

L

L-worp 1
EOR RECORD

C-1

_[@ varian data machines

DATA FORMATS

When paper tape is punched on a Teletype, the ASCII-8
ERROR character flags erroneous frames punched by the
Teletype when it is turned on or off. This notifies the
Teletype and paper-tape reader drivers to ignore the next
frame.

When alphanumeric input tapes are punched off-line on a
Teletype, there is no means of spacing the three blank
frames after every record. The following procedure gives a
tape that can be read by the paper-tape reader driver:

a. Punch the alphanumeric statement.

b. Punch an end of record (RETURN on the Teletype
keyboard).

c. Punch three or more frames containing any of the
following characters:

Press CONTROL and: ASCII-8 Equivalent

@ DCO
LINE FEED LINE FEED
WRU WRU

EOT EOT

RU RU

vT VTAB
TAB HTAB
HERE IS (33 ASR only) NULL

B = BLANK
X = DATA BIT

VTII-1375

C-2

NOTE

Any of these characters can also be used for leader
and trailer.

d. Punchthe nextalphanumeric statement. Return to step
b.

C.2 Cards
Information stored on cards is binary, alphaumeric, or

unformatted. Each card holds one record of information.
Hence, there is no end-of-record character for cards.

C.2.1 Binary Mode
Binary information is stored with sixty 16-bit words per

card. The information is serial with bit 15 of the first word
in row 12 of column 1, bit 14 in row 11, etc. (figure C-3).

C.2.2 Alphanumberic Mode

Alphanumeric information is stored one character per card
column (figure C-4) using the standard punch patterns.

EOR = END-OF-RECORD

CHANNEL:
8 X X X X X *BBB XX
7 X X X X X BBBB XX
6 X X X X X BBBB XX
5 X X X X XBBBB XX
4 X X X X X« BBB XX
TIMING - PR . . » . « s . . . -
3 X X X X X *BBB XX
2 X X X X X BBBB XX
1 * kK * « * BB B * =
Mt N N e
L AsCIl CHARACTERS — L L- ASCII CHARACTERS OR
EOR RECORD BINARY WORD
‘—— ALPHANUMERIC RECORD mammert GAP

* = HOLE FOR ASCII CHARACTER OR DATA BIT FOR
BINARY INFORMATION

Figure C-2. Paper Tape Alphanumeric Record Format

varian data machines

DATA FORMATS

Kk [* ke * pepx

ko ko e o o el ek 3

gopjojooco0000000000009

S IO]iz)13 14 1515 17 18 17102 222324 2525 27 48

IR R ERERRR R R R R

ER=)
=

~
— o
=
=

2212122121222222222222222

o — o o

33 33313 313133 3313333333333353333
444141414 4141414 4414444 4444444444444

5 5/5055 5]5{5[5 5[515 6 5555555555555 {
61616 66/6{6 6/6/6]6 6{6 6 6 6 6 6656666666
nnpwpplr It 11111111171111117
81816 8(88[s 8|8[8|8 6{8888888888888888

91919 9191919 9{919[99]199999999592999999
2|3 afsfefr ofsfoft iz w6 ez w2
GLOBE| ND. 1 STANDARD + -4 5081

woRrD: 1P| 3 5| 6 78[9
VTII-1376

Figure C-3. Card Binary Record Format

fRdaappig
000009000cFoBoBoAoEoBoHoHoo0Bo0000

0
B 910311713 195 16 17 18 19 20 21 22 23 24 25 26 27 28 2930 31 37 33 34 3536 37 38 39 40 41 42 4344 4546 47 484950 51 52 53 54 55 55 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 12 73 74 15 16 17 78 19 80
1

AR R R R R R RN R ARl AR RN RN R R R R R R RN AR R R RRRRR R RRRARR

0
4
1

00000
14567
B1111
222208222222222222222228222222222222222228222222222222222822222222222222222222222
333333033333335333333333633333333333333333§3333333333333338333333333333383838383
44444044044044484044444040F04044444444444040B44444444440404404444444444444444444
5555555555B55555555555555555B555555555555555550555555555555555055555555555555555
666666666666B66666666666666666H66666666666666666B6666666666666660666666666666666
[RRRR R RN YRR RN RN RN RN FORERRRRRRRERREREE SERRRRRRRRERRRRI FRRRRERRRERAER
8888088886866 0886Ha8888888888880086H088080888888888888Hs888s8888880086oMacolMalolslls

999999999999H99999999999999999H999999999999999H9999999g39
2526 27 2629 30 3112 5234 35 36 27 383 444546 47 4849

8 39 40 4142 43 44 45 47, 47 4849 50 51 52 55 54 55 56 57 58 59 60 6162 63 64 €5 56 17 §5 €3 76 /1 2273 34 15 76 77 18 13 80

VTII-0957

Figure C-4. Card Alphanumeric Record Format (IBM 026)

C-3

varian data machines

DATA FORMATS

C.2.3 Unformatted Mode

The data are handled, one column per computer word, '

right-justified, and without validity-checking.

C.2.4 Special Character

An end of file is represented on cards by a 2-7-8-9 punch in
column 1 of an otherwise blank card.

C.3 MAGNETIC TAPE

Information stored on seven-track magnetic tape is either
binary or BCD. On nine-track tape, information is always
binary.

C.3.1 Seven-Track

For system-binary, ASCII, and unformatted modes, the first
frame is read into bits 15-12 of the word, the second frame
into bits 11-6, and the third into bits 5-0. For BCD mode,
the first frame is read into bits 11-6 and the second into
bits 5-0.

C.3.2 Nine-Track

In all modes, the first frame is read into bits 15-8 of the
word, and the second frame into bits 7-0.

c4

C.4 STATOS PRINTER/PLOTTER

Information may be output to the Statos printer/
plotter in alphanumeric and unformatted modes.

C.4.1 Alphanumeric Node

Information output in alphanumeric mode is assumed to be
ASCII characters packed two to a word. Each character is
converted to a dot matrix and the print line is transmitted
to the device. Characters may be printed in two sizes. The
normal print size consists of a 7 by 11 dot matrix and
allows 140 characters per line. The large size print consists
of a 14 by 22 dot matrix and allows 70 characters per line.
Excess characters will be truncated.

C.4.2 Unformatted Mode

Information output in unformatted mode is assumed to be
plot data. The information is truncated after 88 words and
transmitted to the device without conversion. Each 1 bit
transmitted will cause a dot to be printed on the output
line. The most significant bit of the first word is transmit-
ted to represent the left-hand dot position on the line.

APPENDIX D
STANDARD CHARACTER CODES

IBM 026 Punch
Symbol ASCII

! 336
276
272
247
275
337
271
270
267
266
265
264
263
262
261

lank) 240
246
274
333
251
256
277
311
310
307
306
305
304
303
302
301
253
245
273
335
252
244
241
322
321
320
317
316
315
314
313
312
255
243
334
242
250

’V'—’/\Pawmw#moﬁ\lmwt"

©® ow— FP>PODO0UMTOI—

~“N Syl e XFZ2Z0T0D

Hollerith

7-8
6-8
5-8
4-8
3-8
2-8

= MNWHOOITO 40O

(blank)
12-7-8
12-6-8
12-5-8
12-4-8
12-3-8
12-2.8
12-9
12-8
12-7
12-6
12-5
12-4
12-3
12-2
12-1
12
11-7-8
11-6-8
11-5-8
11-4-8
11-3-8
11-2-8
119
11-8
11-7
116
115
114
11-3
11-2
11-1
11
0-7-8
0-6-8
0-5-8
0-4-8

IBM 029 Punch

ASCII

242
275
247
300
243
272
271
270
267
266
265
264
263
262
261
240
336
253
250
274
256
333
311
310
307
306
305
304
303
302
301
246
334
273
251
252
244
241
322
321
320
317
316
315
314
313
312
255
277
276
337
245

varian data machines @——

Symbol

#@ T

lank)

l’\+-‘6:n—al\)w-l>0'bm\joogp-

l «XrFrZ2Z0T00T & +~" “2>DO0OMMNOIT— "

+V

D-1

——-@ varian data machines

STANDARD CHARACTER CODES

IBM 026 Punch IBM 029 Punch
Symbol ASCII Hollerith ASCII Symbol
, 254 0-3-8 254 s
@ 300 0-2-8 335]
Z 332 0-9 332 zZ
Y 331 0-8 331 Y
X 330 0-7 330 X
w 327 0-6 327 W
\'% 326 0-5 326 \"
] 325 0-4 325 U
T 324 0-3 324 T
S 323 0-2 323)
/ 257 0-1 257 /
0 260 0 260 0

D-2

varian data machines [@——

APPENDIX E
ASCIl CHARACTER CODES
Character Internal ASCl Character Internal ASCII

0 260 R 322
1 261 S 323
2 262 T 324
3 263 U 325
4 264 Vv 326
5 265 W 327
6 266 X 330
7 267 Y 331
8 270 Z 332
9 271 (blank) 240
A 301 241
B 302 " 242
(o} 303 # 243
D 304 $ 244
E 305 245
F 306 & 246
G 307 ! 247
H 310 (250
| 311) 251
J 312 * 252
K 313 + 253
L 314 s 254
M 315 - 255
N 316 . 256
o} 317 / 257
P 320 : 272
Q 321 H 273
< 274 FORM 214
= 275 RETURN 215
> 276 SO 216

277 St 217
@ 300 DCO 220
333 X-ON 221

334 TAPE AUX
335 ON 222
1 336 X-OFF 223
- 337 TAPE OFF
RUBOUT 377 AUX 224
NUL 200 ERROR 225
SOM 201 SYNC 226
EOA 202 - LEM 227
EOM 203 SO 230
EOT 204 S1 231
WRU 205 S2 232
RU 206 S3 233
BEL 207 S4 234
FE 210 S5 235
H TAB 211 S6 236
LINE FEED 212 S7 237
V TAB 213

E-1

—@ varian data machines

APPENDIX F

VORTEX HARDWARE CONFIGURATIONS

Device

73-3300
Memory
Protection

Power
Failure/
Restart

Real-Time
Clock

Priority
Interrupt
Module
(PIM)

Special
PIM
Instruction

Buffer

Interlace
Controller

(BIC) or

Block Transfer
Controller (BTC)

Device
Address Interrupt
045 MP halt error
MP 1/0 error
MP write error
MP jump error
MP overflow
error
MP 1/0 and
overflow error
MP write and
overflow error
MP jump and
overflow error

Power failure
Power restart

047 RTC variable
interval
RTC overflow

040-043

044

020-026
070-073

BIC complete

Interrupt
Address

020
022
024
026
030
032
034
036
040
042
044

046

0100-0277

n/a

0100-0277

BIC
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a

n/a

n/a

n/a

n/a

Comments

Wired as system
priority 1

Wired as system
priority 2

Wired as system
priority 4

Base timer inter-
val rate is 100
microseconds;
free-running clock
rate is 100 micro-
seconds

Wired as system
priority 5; assign-
ments should be
from fastest to
slowest

Addresses 064-
067 available for
special use

PIMs modified to
enable/disable
with EXC 044

All wired as sys-
tem priority 3

Addresses 070-
073 available
for BIC5 and
BIC6 others
created for spe-
cial use

varian data machines @—

F1

——@ varian data machines

VORTEX HARDWARE CONFIGURATIONS

Device
Disc 70-7702
Memory 70-7703
Disc 70-7600
Memory 70-7610
70-7500
70-7510
Magnetic 70-7100
Tape
Card 70-6200
Reader
Printer/ 70-6602
Plotter
Line Printer
Card 70-6201
Punch

F-2

620-47
-48,-49
Drum -43C,
D Disc
Memory

620-37,
-36 Disc
Memory

620-35
Disc
Memory

620-34
Disc
Memory

620-30
-31A,
-31B, or
-31C, -32
Magnetic
Tape Unit

620-25
Card
Reader

620-75
Statos
Printer/
plotter

70-7702
70-660x
Statos
Printer/
Plotter

620-77
Line
Printer

620-27
Card
Punch

Device
Address

014

016-017

015

015-017

030

035-036

035-036

035-036

031

Interrupt

BIC complete

BIC complete
Cylinder-

search com-

plete

BIC complete
Cylinder-

search com-

plete

BIC complete
Cylinder-

search com-

plete

Tape motion
complete

BIC complete

BIC complete
PC not busy

BIC complete
PC not busy
Statos not
busy

BIC complete

BIiC complete

Interrupt
Address

0100-0277

0100-0277
0100-0277

0100-0277
0100-0277

0100-0277
0100-0277

0100-0277
0100-0277

0100-0277

0100-0277

0100-1077
0100-0277
0100-0277

0100-0277

0100-0277

BIC

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Comments

RMD assigned to
Highest system
BIC (no other
devices can be
so assigned)

RMD assigned to
highest system
BIC (no other
devices can be
so assigned)

RMD assigned to
highest system
BTC (no other
devices can be
so assigned)

RMD assigned to
highest system
BTC (no other
devices can be
so assigned)

Interrupt event
words should be
01 for BIC, 02
for Statos, and
04 for PC

varian data machines @——

VORTEX HARDWARE CONFIGURATIONS

Device Interrupt
Device Address Interrupt Address BIC Comments
Paper- 70-6320 620-55, 037,034 Character 0100-0277 No
tape -55A ready
System Paper
Tape
System
Teletype 70-6100 620-6, 001-007 Read buffer 0100-0277 No Event 1 = READ
70-6104 -7, -8 ready Event 2 = WRITE
Teletype Write buffer 0100-0277
ready
70-6400 (E-2250) Read buffer 0100-0277 No Compatible with
CRT with ready Teletype (Event 1 =
E-2184 Write buffer 0100-0277 READ, Event 2 =
Controller ready WRITE)
Front 00-01 No Wired as system
Panel priority 6; not
used by VORTEX
NOTES
(1) The priority look-ahead option is required if (2) PIM assignments are arranged from the
there are more than eight priority devices in the fastest devices to the slowest.
system.

F3

——@ varian data machines

APPENDIX G
OBJECT MODULE FORMAT

Object modules generated by the VORTEX language
processors result from assembly or compilation. The
modules are input by the load-module generator and are
bound together into a load module.

varian data machines [@—-—

entries consist of a control word and a data word; three-
word entries consist of a control word and two data words;
and four-word entries consist of a control word, two name
words, and a data word. Data words can contain instruc-

tions, constants, chain addresses, entry addresses, and

The first record of the module contains the size of the address offset values.

program, an eight-character identification, and an eight-
character date. Entry name addresses, if any, appear as
the first data field items of the object module.

Table G-1. Record Control Word Format
G.1 RECORD STRUCTURE

Bit Binary Value Meaning

Object-module records have a fixed length of sixty 16-bit
words. Word 1 is the record control word. Word 2 contains 15 0 Verify check-sum
the exclusive-OR check-sum of word 1 and words 3 to 60. 1 Suppress check-sum
Words 3 to 11 can contain a program identification block 13-14 11 Binary record
(optional). Words 12 to 60 (or 3 to 60 if there is no program 00-10 Nonbinary record
identification block) contain data fields. 12 0 First record of module

) 1 Not the first record
Table G-1 illustrates record control word formats. 11 0 Last record of module

1 Not the last record

G.2 PROGRAM IDENTIFICATION BLOCK 0 ;
The program identification (ID) block appears in words 3 to 8 0 Not a relocatable module (absolute)
11 of the starting record of each module. Word 3 contains 1 Relocatable module
the program size, words 4 to 7 contain an ASCI eight- 0-7 Sequence number (modulo 256)

character program identification, from the TITLE state-
ment, and words 8 to 11 contain an ASCII eight-character
date.

G.3 DATA FIELD FORMATS G.4 LOADER CODES

Data fields contain one-, two-, three-, or four-word entries.
One-word entries consist of a control word; two-word

Loader codes, which have the following format, are among
the data in an object module.

15 1 13 12 11 10 9 876 54 3 210
" code subcode Pointer Name
Code Values Meaning
00 Refer to subcode for specific action.
01 Undefined.
02 Add the value of the selected pointer to the

data word before loading.

03 Add the value of the selected pointer to the
first data word (literal value) and enter the
sum in the direct literal pool if bit 11 of
the second data word is zero. Otherwise,
enter it in the indirect literal pool. Add
the address of the literal to the second data
word before loading.

_@ varian data machines

OBJECT MODULE FORMAT

Code Values Meaning

04 Load the data word(s) absolute. Bits 12 through
0 indicate the number of words minus one (n-1) to
load.

05-07 Undefined.

Subcode Values Meaning

00 Ignore this entry (one word only).

01 Set the loading address counter to the sum of the

specified pointer plus the data word.

02 Chain the current loading address counter value
to the chain whose last address is given by the
sum of the selected pointer plus the data word.
Stop chaining when an absolute zero address is
encountered.

03 Complete the postprogram references by adding to
each address the sum of the selected pointer plus
the data word.

04-06 Undefined.

07 Set the program execution address to the sum of the
values of the selected pointer plus the data word.

010 Define the entry name with entry location as equal
to the value of the selected pointer plus the data
word.

011 Define a region for the pointer whose size is given

in the data word. If the entry name is not blank,
define the entry point as the base of the region.

012 Enter a load request for the external name. The
chain address is given by the sum of the selected
pointer plus the data word.

013 Enter the loading address of the external name in
the indirect literal pool. Add the address of the
literal plus the value of the selected pointer to
the data word (command) before loading.

014-017 Undefined.

Pointer Values Meaning

00 Program region.

01 Postprogram region.

02 Blank common region.

03-036 Labelled COMMON regions.

037 Absolute (no relocation).
Name Format
Names are one to six (six-bit) characters, starting in bit 3 name word. Only the right 16 bits of the two name words
of the control word and ending with bit O of the second are used.

G.2

varian data machines @—

OBJECT MODULE FORMAT

G.5 EXAMPLE

The following is a sample background program with the
description of the object module format after the assembly
and the core image after loading.

G.5.1 Source Module

NAME SUBR
EXT BBEN
SUBR ENTR
LDA* SUBR
CALL BBEN
STA TIME
JAN DONG
LDA =2
CALL BBEN
DONG INR SUBR
JMP * SUBR
TIME BSS 1
END

G.5.2 Object Module

060400 Record control word (first and last record, verify check-sum
sequence number 0)

157631 Check-sum word.

(Begin program ID block)

000016 Program size (exclusive of FORTRAN COMMON, literals, and in-
direct address pointers).

142730 Identification in ASCII (assume this program was labeled

140715 EXAMPLE).

150314

142640

131263 Date of creation in ASCIl (assume assembled 03-10-69)

126661

130255

133271

(End program ID block)

010000 Define entry name SUBR at relative 0 (code 0, subcode 010,
000647 pointer 0, name SUBR, and data word 0).

054262

000000

100000 Enter absolute data word O in memory at relative 0.
000000

060000 Enter literal (indirectly addressed relative 0) in indirect
100000 pointer pool, add address of pointer to load 017000 and en-
017000 ter memory at relative 1.

100000 Enter absolute data word 02000 in memory at relative 2.
002000

G.3

OBJECT MODULE FORMAT

100000
000000

100000
054010

100000
001004

040000
000012

060760
000002
010000

100000
002000

040000
000003

060000
000000
047000

100000
001000

040000
100000

001000

012003
000212
024556

G.4

varian data machines

Enter absolute data word 000000 in memory at relative 3.
Enter absolute data word 054010 in memory at relative 4.
Enter absolute data word 01004 in memory at relative 5.
Enter relative data word 012 in memory at relative 6.

Enter literal (absolute 2) into literal pool, add address of
literal to load command 010000, and enter in memory at relative
7.

Enter absolute data word 02000 in memory at relative 010.
Enter relative data word 03 in memory at relative O11.

Enter literal (relative 0) into indirect pointer pool, add
address of literal to increment command 047000, and enter in
memory at relative 012.

Enter absolute data word 01000 in memory at relative 013.
Enter relative data word 0100000 in memory at relative 014.

Set loading location for next command, if any, to relative
0l6.

Enter load request for external name BBEN and chain entry ad-

dress to relative O11.
000011

(The remaining words of this record contain zero).

varian data machines @——

OBJECT MODULE FORMAT

G.5.3 Core Image

Assume the program originates at 01000, the literal pool
limits are 0500-0777, and BBEN is loaded at 01016.

0500 100500 DATA 0500
0501 000500 DATA 0500
0777 000002 DATA 2
01000 000000 ENTR 0
01001 017500 LDAx* 0500
01002 002000 JMPM

01003 001016 01016
01004 054010 STA 01015
01005 001004 JAN

01006 001012 01012
01007 010777 LDA 0777
01010 002000 JMPM

01011 001016 01016
01012 047501 INR* 0501
01013 001000 JMP

01014 101000 * 0500
01015 BSS 1
01016 BSS 1

The following six-bit codes are used by the load-module
generator in building load modules. The codes define
names created by NAME, TITLE, and EXT directives.

Character Octal Character Octal Character Octal
@ 40 \ 66 + 13
A 41 W 67 , 14
B 42 X 70 - 15
C 43 Y 71 . 16
D 44 z 72 / 17
E 45 [73 0 20
F 46 \ 74 1 21
G 47] 75 2 22
H 50 t 76 3 23
| 51 - 77 4 24
J 52 (blank) 00 5 25
K 53 01 6 26
L 54 " 02 7 27
M 55 # 03 8 30
N 56 $ 04 9 31
(e} 57 05 : 32
P 60 & 06 ; 33
Q 61 ' 07 < 34
R 62 (10 = 35
S 63) 11 > 36
T 64 * 12 37
U 65

G5

———-@ varian data machines

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	B-1
	B-2
	C-1
	C-2
	C-3
	C-4
	D-1
	D-2
	E-1
	E-2
	F-1
	F-2
	F-3
	F-4
	G-1
	G-2
	G-3
	G-4
	G-5
	G-6

