VORTEX 1l

REFERENCE MANUAL

The statements in this publication are not intended to create any warranty, express or im-
plied. Equipment specifications and performance characteristics stated herein may be
changed at any time without notice. Address comments regarding this document to Varian
Data Machines, Publications Department, 2722 Michelson Drive, P.O. Box C-19504, Irvine,
California, 92713.

varian data machines / o varian subsidiary
2722 michelson drive / p.o. box ¢ 19504 / irvine / ulifornmis / 92713

+ 1978 printed in USA

98 A 9952 243

JUNE 1976

This manual explains the Varian Omnitask Real-Time
Executive (YORTEX) and its use, but it is not intended for
a beginning audience. Prerequisite to an understanding of
this manual is a knowledge of general programming
concepts, and preferably some Varian Data Machines 620
series or V70 series computer system is desirable.

NOTATION IN THIS MANUAL

tn the directive formats given in this manual.
- Boldface type indicates an obligatory parameter

« [ltalic type indicates an optional parameter.

+ Upper case type indicates that the parameter is to be
- entered exactly as written.

- Lower case type indicates a variable and shows where
the user is to enter a fegal value for that variable.

a(1),a(2),...,a(n).

Indicates a series of elements separated by commas
repeated and terminated with a period.

if at least one element is required the first element i1s given
in bold. The parentheses are only part of the format
description.
For example

a(,a(2), ..a(n).

where

each a(1) 1s a singfe alphabetic character

allows
ABCFGH
or
.Y X
or
V.
or
blank

as vahd in this position.

A number with a leading zero is octal, one without 2
leading zero is decimal, and a number in binary is
specifically indicated as such.

FOREWORD

CONTENTS

TABLE OF CONTENTS

SECTION 1
INTRODUCTION
1.1 SYSTEM REQUIREMENTS.... ..., O USSR UUUT 1-1
1.2 SYSTEM FLOW AND ORGANIZATIONoooiiiiiosiiii e 1-2
1.2.1 Computer MemOry..........cooo i e 1-2
1.2.2 Rotating Memory Device...............c......ocoiiiiiieiie e 1-4
1.2.3 Secondary STOTage................c.ooiiieiiiiiiiiiieiiie et 1-4
1.3 MEMORY MAP CONCEPT ... e, 1-4
1.4 BIBLIOGRAPHY ...t ettt e . 1-6
SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.1 REAL-TIME EXECUTIVE MACROSoco oo e e 2-1
2.1.1 SCHED (Schedule) Macro............c....oooooeiiiiiiiiieeeee o, 2-2
2.1.2 SUSPND (Suspend) Macro..............c.cooooiviiiiii e 2-3
2.1.3 RESUME MaCrooooooiiiiiiiiii e e e 2-3
2.1.4 DELAY MaCro......ccociiriiiiit i EUTUR 2-3
2.1.5 LDELAY MACIO. ..o e U 2-4
2.1.6 PMSK (PIM Mask) Macro . ..o 2-5
2,17 TIME MACTO ..ottt e e e e e 2-5
2.1.8 OVLAY (Overlay) Macroo 2-5
2.1.9 ALOC (Allocate) Macro..............o e 2-6
2.1.10 DEALOC (Deailocate) Macro................... ..o 2-7
2.1.11 EXIT Macro........................ O OO U PRSPV e 2-7
2.1.12 ABORT MacCro.oocoiiiiiii o e 2-8
2.1.13 IOLINK (170 Linkage) MacCrO..........c..ocvoie oo e e 2-8
2.1.18 PASS MAaCro. ..ot e U 2-9
2.1.15 TBEVNT (Set or Fetch TBEVNT) Macro.......ccccoooviiiiiiooioee 2-9
2.1.16 ALOCPG (Allocate Memory Pages) Macro....c...ccocoereeoeiis e oo 2-9
2.1.17 DEALPG (Deallocate Memory

Pages) Macro...........occoiii i e e 2-10
2.1.18 MAPIN (Map-In Specified Physical

Pages of Memory) Macro e 2-10

2.1.19 PAGNUM (ldentify Physical Page

Number) Macro
2.2 RTE SYSTEM FLOW
2.3 TASK LIMITATIONS AND DIFFERENCES
2.4 ABORT PROCEDURE........... oo
2.5 CHECKPOINTING OF TASKS ... e e
2.6 PAGE ALLOCATION SCHEME

SECTION 3
INPUT/OUTPUT CONTROL

3.1 LOGICAL UNITS ittt 31
3.2 RMD FILE STRUCTURE et 3-4
3.3 170 INTERRUPT S o it ettt b et ettt st ae s 3-5
3.4 SIMULTANEOUS PERIPHERAL OQUTPUT

OVERLAP (SPOOL) ... ittt s
3.4.1 SPOOL Operation.....
382 SPOOL FHES ...ttt sn e s b b s e
3.5 1/0-CONTROL MACROS .
351 OPEN Macro.............cccoceereeiins et ettt et ettt
352 CLOSE MACIO ..o ittt en s v sae s
3.5.3 READ Macro
3548 WRITE MABCIO... oo e e et erate e et et et e s nesesba e eeba e enes
3.5.5 REW (Rewind) Macro. ..ot i et
356 WEOF (Write End of File) Macro............ccocoviiviiinniiininn e 3-12
3.5.7 SREC (Skip ReCord) MABCIOccoooiiiiiiiiiiicetenree et e s e, 3-12
3.5.8 FUNC (Function) Macro.. l
3.5.9 STAT (Status) MACrO ..ot i sa s e s e s et ere e
3.5.10 DCB (Data Control Block) Macro..................... ettt e eaaa et e enans 3-14
3.5.11 FCB (File Control Biock) Macro............ccccooviiiieeiioaeeieeeee et eieeneens 3-14

SECTION 4
JOB-CONTROL PROCESSOR

4.1 ORGANIZATION Lo i et es st s iae s s e e s 4-1
42 JOB-CONTROL PROCESSOR DIRECTIVES .. .ot 4-1
421 /JOB Directive....ooeen IR TR PSP RPR P PRPPIROPRPON
4272 JENDIOB Directive s
423 /FINE (Finish) Directive.. e
424 /C (Comment) Directive
425 /MEM (Memory) DirectiVe...
4.2.6 /ASSIGN Directive.................
4.2.7 /SFILE (Skip Fiie) Directive
428 /SREC (Skip Record) Directive U TP RO TP POUOP PP PRPTURION 4-3
429 /WEOF (Write End of Fue) :

DHreCtIVE . e e 4-4
4.2.10 /REW (Rewind) DIreCHIVE ..ottt ee e e s e 4-4
4.2.11 /PFILE (Position File) Directive.....................ccoooveiiiiieesre et 4-4
4.2.12 /FORM DirOCHIVE. ..ot ettt e 4-4
4213 /KPMODE (Keypunch mode)

DIF@CHIVE ..o e e 4-5
4.2.14 /DASMR (DAS MR Assembler)

DIreCtive ...t e 4-5
4.2.15 /FORT (FORTRAN Compiler)

DIFBCYIVE ... e e 4-5
42.16 /CONC (System Concordance)

Directive 4-6

CONTENTS

CONTENTS

SECTION 4
JOB-CONTROL PROCESSOR (continueo)

4.2.17 /SEDIT (Source Editor) hd

Directive ... e 4-6
4.2.18 /FMAIN (File Maintenance) ..ot e,

Directive e e 4-6
4.219 /LMGEN (Load-Module Generatar).ccocociiimiiiiiinn,

Directivecooccoiii . 4-8
4.2.20 /IOUTIL (1/0 Utility) Directive 4-7
4221 /SMAIN (System Maintenance)

Directive e 4-7
4.2.22 /EXEC (Execute) DireClive e, 4-7
4.2.23 /LOAD Directive 4-8
4.2.24 /ALTLIB (Alternate

Library) Directive.................. 4-8
4.2.25 /DUMP Directive 4-8
4.2.26 /CFILE Directive] L 4-8
4.2.27 /DBGEN (Data Base Generator) Directive......... .. 4-8
4228 /PLOAD Directive 4-9
4229 /FMUTIL Directive. 4-9
4.2.30 /RPG (RPG Il Compiler) Directive } ... 4-9
4.2.31 /P (Pause) Directive.. 4-9
4.3 SAMPLE DECK SETUPS U 4-10

SECTION 5
LANGUAGE PROCESSORS

51 DAS MR Assembler
5.1.1 TITLE Directive..
5.1.2 VORTEX Macros

5.1.3 Assembly Listing Format . .
5.2 CONCORDANCE PROGRAM
5.2.1 INPUL . e et e

522 0ulput ... e

5.3 FORTRAN IV COMPILER. e e,

5.3.1 FORTRAN IV Enhancements 5-13
53.2 Execution-Time 170 Units.
53.3 Runtime 1/O EXCOPUONS 5-22
5.3.4 Reentrant Runtime i/0
5.4 RPG IV COMPILER
5.4.1 Introduction

55 RPG It COMPILER.
551 Introduction

5.5.3 Compiler and Runtime Execution..... 5723

- SECTION 6
LOAD-MODULE GENERATOR (continueq)
6-1
6-3
6-3
6-3
6.2.1 TIDB (Task-ldentification Block)
Directive ..ol . 6-4
6.2.2 1D (Load) Directive 6-4
6.2.3 OV (Overlay) DIir@Ctive ..ot 6-4
6.2.4 LIB (Library) Directive 6-5
6.25 END DIFeCtiVe... ... e 6-5
626 CLD Directive.. 6-5
6.2.7 MEM (Memory) Directive.... 6-6
6.3 SAMPLE DECKS FOR LMGEN
OPERATIONS ... e et 6-6
SECTION 7
DEBUGGING AIDS
7.1 DEBUGGING PROGRAM ..o 7-1
7.2 SNAPSHOT DUMP PROGRAM ... 7-3
SECTION 8
SOURCE EDITOR -
8.1 ORGANIZATION L. e e 8-1
8.2 SOURCE-EDITOR DIRECTIVES. e, 8-2
8.2.1 AS (Assign togical Units) Directive.......... ... RSP SRRRT 8-2
82.2 AD (Add Records) Directive [SR UTRURUORNU RO e 8-3
8.23 SA (Add String) Directive............ e, 823
8.24 REPL (Replace Records) Directive 8-4
825 SR (Replace String) Directive. 8-4
826 DE (Delete Records) Directive 8-4
8.2.7 SD (Delete String) Directive 8-5
828 MO (Move Records) Directive o i . 845
8.2.9 FC (Copy Fite) Directive....... 8-5
8.2.10 SE (Sequence Records) Directive. B
8.2.11 LI (List Records) Directive............... .. . 8-6
8.2.12 GA (Gang-Load All Records) Directive....................ccoo o 8-6
8.2.13 WE (Write End of File)
Directive ... FE TSNP UUPPPUPRPRRN 8-7
8.2.14 REWI! (Rewind) Directive 8-7
8.2.15 CO (Compare Inputs) Directive...... 8-7
83 EXAMPLE OF EDITING A FILE 8-7

CONTENTS

CONTENTS

SECTION 9
FILE MAINTENANCE (continived)
9.1 ORGANIZATION ..o oo e e 9-1
9.1.1 Partition Specification Table R SO RO OO PUPROO 9-1
9.1.2 File-Name Directory.................oooi i e 9-1
9.1.3 Relocatable Object Modulesccoiiiiiiiii oo 9-2
9.1.4 Output Listings.................c..oo O PO PO TSP ST U TR 9-2
9.2 FILE-MAINTENANCE DIRECTIVES .. e, 9-2
9.2.1 CREATE Dir€CtiVeocooooiioe i e 9-3
9.2.2 DELETE Directive....................... e 9-3
9.2.3 RENAME Directive.... . 9-4
9.2.4 ENTER DIreCtive........coovoiiio e e 9-4
9.2.5 LIST Dir€Ctivec..ooviviiiis oot 9-4
9.2.6 INIT (Initialize) Directive... ..., 9-4
9.2.7 INPUT DIr@CtIVE. ..o o o oo 9-5
9.2.8 ADD Directive 9-5

9.3 VORTEX FOREGROUND FILE MAINTENANCE (V$FGFM) 9-5

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM
PO T ORGANIZATION Lo e e e 10-1
102 170 UTILTY DIRECTIVES ... e e, 10-1
10.2.1 COPYF (Copy File) Directiveo 10-1
102.2 COPYR (Copy Record) Directiveccocvoveiioiiie e e 10-2

10.2.3 SFILE (Skip File) Directive...........
10.2.4 SREC (Skip Record) Directive
10.2.5 DUMP (Format and Dump)

Directive ... U 10-3
10.2.6 PRNTF (Print File) Directive.....................oooooiii 10-4
10.2.7 WEOF (Write End of File)

Directive e 10-4
10.2.8 REW (Rewind) Diwrective.... 10-4
10.2.9 PFILE (Position File)

Directive ... e 10-4
10.2.10 CFILE (Close File) Directive e .. 10-5
10.2.11 PACKB (Pack Binary) Directive e —— e 10-5°
10.3 MULTI VOLUME TAPE HANDLING (VSRSW). L ... 10-5

SECTION 11
VSORT (SORT/MERGE)

11.2.1
11.2.2
11.2.3
11.2.4 WORK] WORKZ2,WORK3, Dir€CtiVES.............ocoovoovvieoeoeeeeeeo et eveeeeneeeaeens 11-2
1126 SORTKEY DiIrective.........ccocoooiii it 11-2
11.2.6 INEXIT Directive

Vil

SECTION 11
VSORT (SORT/MERGE) (continusq)

11.2.7 OUTEXIT Directive..........oooiiiiiiiiiiiiii it e 11-3
11.2.8 ENDSORT Dir@CliVettt ee s seen et e ae s 11-3
11,3 USER EXIT S i i veeb e e sttt et enenee 11-3
11.3.1 Calling SEQUEMCE ...ttt nn s s 11-3
11.3.2 Implementation..............ocooii i 11-4
114 VSORT MESSAGES ..o ettt et 11-4

SECTION 12

DATAPLOT 1l
121 SYSTEM FLOW OUTLINE .. . e e 12-1
12.2 HARDWARE REQUIREMENTS ... 12-1
12.3 GENERAL DESCRIPTION. ..ottt e 12-1
12.3.1 DATAPLOT |l Organization ... e 12-1
12.32 Systern Considerationscc.oiiiiiiiieiiuieiireee e e e e 12-3
12.3.3 VORTEX Considerationsc.ccoociiiiiniiiiiiiii e 12-3
12.4 DATAPLOT il SUBROUTINES 12-4
124.1 DPINIT (System File Initiahization)cccoooiooirere e 12-5
12.4.2 PLOTS (Work Butffer Initialization).. 12-5
12.4.3 PLOT (Generate Plot)...........cocooiiiiiii i et ae e e 12-5
12.4.4 SCALE (Generates Scale FActor)ccc.coomiimiiiinic i 12-6
12.4.5 AXIS (Generate Segmental AXiS).............cccccooiriieiriimniiiin e 12-7

12.46 SYMBOL (Generate Symbols)
12.47 NUMBER (Generate Number)
12.4.8 LINE (Generate Graph Line)
12.49 MLTPLE (Muitipte Plot)........................... SRRSO UUUPPUURTSSURTRROY:. e
12.4.10 FACTOR (Alter Plot Size)
12.411 WHERE (Locate Coordinates)
12.4.12 APPEND (Append Fil@)............cooo oot
12.4.13 TOPFRM (Top-of-FOrm)......o et e
12.4.18 CUT (Cut PBPEI) oot e eee e een b e ce e ereeenan e naa e
12.4.15 ENDCUT (Eject and Cut Paper)....
124,16 DPSORT (Sort Plot Fil@).................ccoiivi i
12.4.17 DPPLOT (Output FI@)............oooiiii e
12.4.18 DPCLOS (Close Plot File)
12.4.19 ORIG -- Offsetting the Origin

Entry Point. oo e
12.420 VECT .- Vector Entry Point
12.421 Special SYMBOL Subroutine.................ccooooviii oo s 12-15
125 PLOT FILE DATA FORMAT ... e
125 1 VeCHOIS. oo e s
1252 Characlers.l
1253 End-of Plot INdicator ... e
126 EXAMPLE OF APPLICATION OF DATAPLOT ..o . 12-16
12.6.1 Program to Generate Sine Wave.....................ociiiiiiiiiiiiiiiins 12-16
126.2 Program to Generate Communication Networkccocccoeiiiiee 12-16

CONTENTS

CONTENTS

SECTION 12
DATAPLOT 1l (continued)
12.7 QPERATING PROCEDURES AND ERROR MESSAGES... 1217
12.7.1 VORTEX Operating Procedures 12-17
12.7.2 Unsorted Plot Files. e e e s e 12-17
12.7.3 Presorted Plot FileS.o e e

12.7.4 VORTEX Special Procedures

SECTION 13
SUPPORT LIBRARY
13.1 CALLING SEQUENCE.........ocoocooii e SO 13-1
13.2 NUMBER TYPES AND FORMATS 13-1
13.3 SUBROUTINE DESCRIPTIONS. ..o TR 13-2
13.4 DECIMAL SUBROUTINE...........oiii i e 13-11
SECTION 14
REAL-TIME PROGRAMMING

14.1 INTERRUPTS L s 14-1
14.1.1 External INterrupts ... e 14-1
14.1.2 Internal INterrupts............ooiiiiiii e 14-3
14.1.3 interrupt-Processing Task

INSEAllation ... e 14-4
14.1.4 Interrupt State............o i e 14-4
142 SCHEDULING ...ttt e 14-4
14.2.1 System FlOW.....ooo e e 14-4
14.2.2 PrIOFIHI@S ..o e e 14-5
14.2.3 Timing Considerations (Approximate)...........c.coovriiiiioiiiiii 14-22
14.3 REENTRANT SUBROUTINES ..ot 14-23
14.4 CODING AN /0 DRIVER ... e, . 14-24
14,41 170 TabIeS. ..o
14.4.2 1/0 Driver System Functionsccoooeveeeiiiiiei e .

1443 Adding an 170 Driver to the System File
14.44 Enabling and Disabling PIM

INTeITUPES ...
1445 Directly Connected interrupt Handler
1446 VORTEX Use of BICs and BTCs...........ccoocoere v
1447 VORTEX Il and VORTEX Compatibility
14.4.8 Resident Tasks

SECTION 15
SYSTEM GENERATION

15.1 ORGANIZATION . . et e e 15-1
15.2 SYSTEM-GENERATION LIBRARY ISP UURTURUUTPRN 15-2
15.3 KEY-IN LOADER . e 15-5
154 SGEN 170 INTERROGATION..............oces e 15-6
15.4.1 DIR (Directive-Input Unit)

DG IV oo o e e e 15-7
15.4.2 LIB (Library-Input Unit) Directives 158-7
15.4.3 ALT (Library-Modification

Input Unit) Directive ... s 15-7
15.4.4 SYS (System-Generation

Output Unit) Directive ... 15-7
1545 LIS Directive ... e 15-8
155 SGEN Directive Processing............. RV P UV TUPUOUTORIUUUPRPRURUON 15-8
1551 MRY (Memory) Directive...............ooiiiiin i 15-8
1552 EQP (Equipment) Directive........ 15-9
15.5.3 PRT (Partition) DIFECHVE ...cooooviv oo oooecs oo oereveeeeeveesee e eeeseeess oo . 16-12
15.5.4 ASN (Assign) Directive ...
15.5.5 ADD (SGL Addition) Directive....
1556 REP (5GL Repiacement) Directive ... e
15.5.7 DEL (SGL Deletion) Dir@Ctive ...t
1558 LAD (Library Addition) Directive............cco i
155.9 LRE (Library Replacement) Directive .
15.5.10 LDE (Library Deletion) Directive.................c.ccooiiiiiiiniiiiiie
15.5.11 PIM (Priority Interrupt) Directive....
155.12 CLK (Clock) Directive e
15.5.13 TSK (Foreground Task) Directive. 15-17
15.5.14 DEF (Define External) Directive...... s 18217
15.5.15 EDR (End Redefinition)

Diwrective ... e e e e 15217
15.5.16 Required Directives 15-18
15.6 BUILDING THE VORTEX NUCLEUS. e 15-18
15.6.1 SLM (Start Load Module)

DIFECHIVE .. e 15-19
156.2 TODF (Build Task Identification Block)

Directive . [U UP S PO P PP UP PO 15-19
1563 END Directive.. SO TRV PP USROS 15-20
1564 MEM Directive I . o . .. 1520
15.6.5 Memory Parity Considerations . T L 15-21
15.7 BUILDING THE SYSTEM LIBRARIES AND RESIDENT

TASK CONFIGURATION . 15-21

15.7.1 SLM (Start LMP) DIrective ... 15-22
157.2 TID (TIDB Specification).

Directive ... 15-22
15.7.3 OVL (Overlay) Directive e 15-22
15.7.4 ESB (End Segment) Directive ... TR U UUORPP 15- 23
15.7.5 END (End Library) Directive 156-23

158 SYSTEM INITIALIZATION AND

OUTPUT LISTINGS O OO PO 15-23

159 SYSTEM GENERATION EXAMPLES e e 15-24

Xt

CONTENTS

CONTENTS

SECTION 18 .
OPERATION OF THE VORTEX SYSTEM (continued)

18.1.3 Line Printer ... e 18-1
18.1.4 Statos-31 (Model 70-6602 and -6603)..................... 18-1
18.1.5 33/35 ASR Teletype ..o 18-1
18.1.6 High-Speed Paper-TApe Reader 184
181.7 Magnetic-Tape Unit.... e 1841
18.1.8 Magnetic:-Drum and Fixed-Head

Disc Units....... .. FE TSROSO PSP UP PP PSRRI 18-1
18.1.9 Moving-Head Disc Units... 18-1
18.1.10 Moving-Head Disc Units ... 18-2
18.1.11 Moving-Head Disc Units. 18-2

18.1.12 Moving-Head Disc Units .
18.2 SYSTEM BOOTSTRAP LOADER

18.2.1 Automatic Bootstrap Loader...... ...
18.2.2 Control Panel lLoading
18.3 DISC PACK HANDLINGo
18.3.1 PRT (Partition) Directive
18.3.2 FRM (Format Rotating Memory)
Directive e e ... 1B-4
18.3.3 INL (Initiahize) Directive 1B-4
18.34 EXIT Directive..........c. v TR e 185
184 70-7500 (620-35) DISC PACK
FORMATTING PROGRAM RTUPR T ... 18-5
18.5 70-7510 (620-34) DISC PACK
FORMATTING PROGRAM. i i 18-5
18.6 70.7603/7613 DISC PACK FORMATTING PROGRAM 186
18.7 WRITABLE CONTROL STORE (WCS) ..o 187
SECTION 19
PROCESS INPUT/OUTPUT
19.1 INTRODUCTION....... OO PO PR e 199
19.2 PROCESS OUTPUT.... BRSOV VPP OT R 1941
19.2.1 HAFAWArE. ... oo s e 19-1

19.2.2 SGEN Operations.............. ... o c 190
19.2.3 Output Calls.................. o192

19.3 PROCESS INPUT TR ... 183
19.3.1 Hardware. s e ... 19.3
19.3.2 SGEN Operations................. ... e 1943
19.33 Input Calls.. ... [EE TR e ... 19-4
19.3.4 Low-Level Multiplexor Gain Control...................... .. e 1955
19.4 ISA FORTRAN PROCESS CONTROL

SUBROUTINES. e i 1996
19.4.1 input/Output Calls 198

19.4.2 Bit String Operations
19.5 ERRORS. ... e
19.6 EXTENSIONS

SECTION 16
SYSTEM MAINTENANCE

161 ORGANIZATION L. e 16-1
16.1 1 Control Records TSR [REPTRRO T e e 1822
16.1.2 Object Modules....................... I U PP PO POU ORI PRUON 16-3
16.1.3 System-Generation Library.............. .. 16-3
16.2 SYSTEM-MAINTENANCE DIRECTIVES ..o 16-3
16.2.1 IN (Input Logical Unit) Directive...............ccooiiiiiiii 16-3
16.2.2 OUT (Output Logical Unit) Directiveccooiiiiiii 16-4
16.2.3 ALT (Alternate Logical Unit)

DUFECHIVE ..o e e e e e
16.2.4 ADD DIrective ...t e e
16.2.5 REP (Replace) Directive.......... ...
16.2.6 DEL (Delete) Directive
16.2.7 LIST Directive e .
1628 END DIrective...... oo oo o e
16.3 SYSTEM-MAINTENANCE OPERATION ..ot 16-7
16.4 PROGRAMMING EXAMPLES. ... T OO OO PO PO PO R PP PUUPUPTUP e 16-7

SECTION 17
OPERATOR COMMUNICATION

171 DEFINITIONS ... e 171
17.2 OPERATOR KEY-IN REQUESTS e 171
17.2.1 ;SCHED (Schedule Foreground Task)

Key-1n ReQUEST............oiii i 17-2
17 2.2 ;TSCHED (Time-Schedule Foreground

Task) Key-In Request.. IR RO U ORISR 17-2
17.2.3 ATTACH Key-In ReQUESE e 17-3
17.2.4 ;RESUME Key-in Request i 17-3
17.2.5 TIME Key-In Request.... . . RO e e 17-3
1726 DATE Key-In Request 173
17.2.7 ABORT Key-In Request i 17-4
17.2.8 ;TSTAT (Task Status) Key-In Request ... 17-4

17.2.9 ;ASSIGN Key-in Request
17.2.10 ,DEVDN (Device Down) Key-in

ROQUEST ... e 17-5
17.2.11 DEVUP (Device Up) Key in
REQUEST o e 17-5
17.212 1OLIST (List /0 Key-In
ROQUEBST ... e 17-5
SECTION 18

OPERATION OF THE VORTEX SYSTEM

18.1 DEVICE INITIALIZATION
18.1.1 Card Reader
18.1.2 Card Punch

Xt

CONTENTS

CONTENTS

SECTION 20
WRITABLE CONTROL STORE AND FLOATING-POINT
PROCESSOR

20.1 MICROPROGRAMMING SOFTWARE e 20-1
20.1.1 Microprogram Assembler ... R 20-1
20.1.2 Microprogram Simulator ...t e 20-1
20.1.3 Microprogram ULty ..o 20-1
20.1.4 WCS Reload Task, WCSRLD... . 20-2
20.2 STANDARD FIRMWARE ... e .. 20-2
20.2.1 Fixed-Point Arithmetic

FIrmware ... e . 2052
20.2.2 Floating-Point Arithmetic

FIFMWAIE .o e e e

20.2.3 Data Transfer Firmware..
20.2.4 FORTRAN-Oriented Firmware
20.2.5 Byte Manipulation Firmware ..
20.2.6 Stack Firmware... ...
20.2.7 Firmware Macros ...

20.2.8 Commercial Firmware . .

SECTION 21 FILE MAINTENANCE UTILITY

211 ORGANIZATION . . o2k
21.2 PARTITION SPECIFICATION TABLE ... BT 211
213 OUTPUT LISTINGS... . RSP T 21
214 FILE MAINTENANCE UTILITY DIRECTIVES .o . . 21
215 D DIRECTIVE 212
2151 Dump File 212

215 Dump Partition . .. o IO213
2153 Dump Fde-Name Directory

216 L DIRECTIVE . . L B U 216
2161 Lload File . O . . 216
Z1.6.2 Load Partition . . ST RSP . 216
2163 Load Directory TR . . 217
21.7 R DIRECTIVE PSR UP PSR . L 217
21.8 & DIRECTIVE. B TR UU RO - L2 7
21.9 S DIRECTIVF .. . R URUPRER . 217
2110 P DIRECTIVE . e U . ..218
2111 U DIRECTIVE.. USRI, . 218
2112 EXIT DIRECTIVE 218

SECTION 22 COMPRESSION/EDIT SYSTEM (COMSY)

22.1 ORGANIZATION Lo 221
22.1.1 COMSY Compression................... 2240
22.1.2 Sequential Files SRR UO OO . .. 222
22.1.3 Random Files.. U UNURROTU RSN U L2202
22.1.4 Common Files ... O 222
22.1.5 Sequence and Edition Numbers T 2272

222 INPUT OUTPUT i o e 22-2

22.3 COMSY DIRECTIVES 222
22.3 1 ASSIGN Directive 22-3
22.32 UNIT Directive. ..., 224
22.3.3 SET Directive 224
22 3.4 GANG Directive.. . 22-5
22.3.5 DECK Directive . . 22-6
22.3.6 COMDECK Directive o . . 22-6
22.37 COPY Directive e R 22-7
22.3.8 RANDOM Directive . . . 22-7
22.3.9 APPEND Directive . - y . o 22-7
22310 EDIT Directive . 22-8
22311 LIST Directive S . 22-8
22.3.12 CHECK Directive 22-8
22 313 INSERT (ADD) Directive . 22-8
22 314 REPLACE (DELETE) Directive o . 22-9
22 315 COMMQON Directive 22-9
22316 COMSY Directive . . 22-10
22 317 FIiLE Directive 22-10
22 318 END Directive 22-10
204 COMSY LOAD MODULE GENERATION. o22:1
225 COMSY EXECUTION.. .. U YRR 221
226 ERROR PROCESSING ... L2
APPENDIX A
ERROR MESSAGES

Al A-1
A2 A-1
A3 A-4
A4 . A-7
A5 LANGUAGE PROCESSORS ... e A-8
A5 1 DAS MR Assembler ... A-8
A.5.2 FORTRAN IV Compiler and Runtime

Compiler................... ... IR T PO PNt A-9
A5.3 RPG iV Compiler and Runtime

COMPIIBY . e

A6 LOAD-MODULE GENERATOR
A.7 DEBUGGING PROGRAM
AB SOURCE EDITOR.. ... it sisre s s
A9 FILE MAINTEANCE
A.l0
All
A12
A.13
Al4

CONTENTS

CONTENTS

APPENDIX A
ERROR MESSAGES (continued)

A15 SYSTEM GENERATION ..o e e .

A16 SYSTEM MAINTENANCE ... i e
A.17 OPERATOR COMMUNICATION
A.18 RMD ANALYSIS AND INITIALIZATION .
A.19 PROCESS INPUT/OUTPUT ...t e U

A.20 WRITABLE CONTROL STORE ..ot e
A.20.1 Microprogram Assembler ...
A.20.2 Microprogram Simulator............ .

A 20.3 Microprogram UMY ... i

A21 VTAM NETWORK CONTROL MODULE..............o

A.22 FILE MAINTENANCE UTILITY (FMUTIL) ERRORS e AT
A23 COMSY ERROR MESSAGES................ooiii, . A-2B
A24 ERROR CODES.............oecoooo. e e o A28
A24.1 Errors Related to Directives A29
A.24 7 Errors Related to Programs e . A-29
A.24 3 Errors Related to Memory Size o . A-30

A.244 GErrors Related to Hardware A-30

APPENDIX B
I/0 DEVICE RELATIONSHIPS

APPENDIX C
DATA FORMATS
C.1 PAPER TAPE RPN o C1
C.1.1 Binary Mode.............................. [T IO PUE PP ... C4
C.1.2 Alphanumeric Mode... C-1
C.1.3 Unformatted Mode...................... e C-1
C.1.4 Special Characters CA
C2 CARDS ... B U UPUU SRR RPN Cc-2
C21 Binary Mode e G2
C.2.2 Alphanumeric Mode C-2
C.23 Unformatted Mode....... C-4
C.2.4 Special Character................ C-4
C.3 MAGNETIC TAPE................ e e e e e C-4

C.3.1 Seven-Track

C.41 AlphanumericMode............................... ... [RTERTRTTR C-4
C.4.2 Unformatted Mode...................... ... R PR UUUPPURRTPUPRPN e C-4

APPENDIX D
STANDARD CHARACTER CODES

APPENDIX E
ASCil CHARACTER CODES

APPENDIX F
- VORTEX HARDWARE CONFIGURATIONS

APPENDIX G
OBJECT MODULE FORMAT
61 RECORD STRUCTURE . ..ot oo s e G-1
G2 PROGRAM IDENTIFICATION BLOCK ...oooooccosooecoes e G-1
G.3 DATA FIELD FORMATS ..\ o oooooeoooieoesoeseoeiene oo G-1
G4 LOADER CODES... et e . G-t
G5 EXAMPLE .. oo oo e . G3
G.5.1 Source Module.. . .. e e e e e e s ~: G-3
G.5.2 Object Module......................... e e PESUTRUOTRPOUPO. 7 G-3
G.5.3 Core Image......... U e b b e e s G-5
G6 END LOAD RECORD P S P - G-6
INDEX

Xvit

CONTENTS

CONTENTS

LIST OF ILLUSTRATIONS

Figure 1-1. VORTEX System Flow 1.2
Figure 1-2. VORTEX Nucleus. Map 0 1-3
Figure 1-3. VORTEX RMD Storage Map 1-4
Figure 2-1. Matrix of Nucleus Module Access Mode 2-13
Figure 2-2. VSPAGE, Page Allocation Table....... 2-14
Figure 3-1. Spooling Subsystem FIOW ... 3-6
Figure 5-1. VORTEX Macro Definitions for DAS MR 5-2
Figure 5-2. Sample Assembly Listing . 5-10
Figure 5-3. Sample Concordance Listing 5-13
Figure 5-4. FORTRAN 1/0 Execution Sequences 5-14
Figure 6-1. Load-Module Overiay Structure (virtual memory).. 6-2
Figure 12-1. DATAPLOT i Graphics System Data Flow................ ... L1241
Figure 12-2. DATAPLOT 1l Organizationcccoornininiiiioiinnee e i 12-2
Figure 12-3. Minimum and Maximum Plot Values 12-4
Figure 12-4. +x Axis and +y Axis Relative to Paper Direction ... e e 12414
Figure 12.5. Vector-Data Format........... ... PR o 12458

Figure 12-6. Character Data Format.................. e . 12415
Figure 12-7. Character Orientation Data Format e 12215
Figure 12-8. End-of-Plot Indicator....................coooiiiiiiiii 12-16
Figure 129. Sine Wave Plot Generated by DATAPLOT 12-16

Figure 12-10. Communication Network Piot Generated by DATAPLOT H ... 12-17
Figure 14-1. Interrupt Line Handlers

Figure 14.2. VORTEX Memory Map................

Figure 14-3. VORTEX Priority Structure

Figure 14-4 TIDB Description ...

Figure 14-5. Driver interface....... e

Figure 15-1. SGEN Data Flow................. ... TR 15-1
Figure 15-2. System-Generation Library ..., 15-3
Figure 15-3. VORTEX NUCIGUS................ oo e 15-3
Figure 15-4. Load-Module Library ... 15-4
Figure 15-5. Load Module Package for Module Without Overlays.... 15-17
Figure 15-6. Load Module Package for Module With Overlays............. . 15419
Figure 15-7. VORTEX Nucleus Load Map. e C e 15-21
Figure 15-8. Library Processor Load Map... e 0 1521
Figure 15-9. RMD Partition Listing TR 15-21
Figure 15-10. Resident-Task Load Map...............cccccooieiei U e 1521
Figure 15-11. Physical Memory AlOCation ... e 15-21
Figure 16-1. SMAIN Block Diagram ... 16-1
Figure 16-2. SMAIN LIST Directive Listing....................... . [P 16-6
Figure 20-1. Base and Limit of Stack 20-3
Figure 20-2. Stack Control Block........... ... e . 204
Figure 20-3. Stack Multiply 20-4
Figure 20-4. Stack Divide ... e 20-4
Figure 20-5. Stack Push.. e . 20-5
Figure 20-6. Stack POP 20-5
Figure 20-7. Stack Double Push 20-5
Figure 20-8. Stack Double POp.......................... e T 20-5
Figure 22-1. COMSY Data Flow 211
Figure C-1. Paper Tape Binary Record Format............. USRI e C-1
Figure C-2. Paper Tape Alphanumeric Record Format. C-2
Figure C-3. Card Binary Record Format e . -3

Figure C-4. Card Alphanumeric Records Format (IBM 026)..... C-3

X VI

LIST OF TABLES

Table 1-1. Executive Mode States 1-6
Tabie 2-1. RTE Service Request Macros ... 2-1
Table 3-1. VORTEX Logical-Unit Assignments ..., 3-1
Table 3-2. Valid Logical-Unit Assignments..................c 3-3
Table 3-3. FCB Words Under 1/0 Macro Control ... 3-15
Table 5-1. Directives Recognized by the DAS MR Assembler 5-1
Table 5-2. RTE Macros Available Through FORTRAN IV 513
Table 7-1. DEBUG Directives 7-1
Table 13-1. DAS Coded Subroutines 13-2
Table 13-2. OM Library Subroutines 13-6
Table 13-3. FORTRAN Coded Subro 13-8
Table 14-1. Memory Protection Interrupt Address 14-3
Table 14-2. TIDB Description

Table 14-3. Map of Lowest Memory Sector

Table 15-1. SGEN KeyIn Loaders

Table 15-2. Model Codes for VORTEX Peripherals .

Table 15-3. Preset Logical-Unit Assignments................

Table 15-4. Permissible Logical-Unit Assignments

Table 15-5. TiDB Status-Word Bits....... PP UE S RPN PO

Tabie 17-1. Physical 1/0 DeviCes...............oiiiiiiiii e

Table 17-2. Task Status (TIDB Words 1 and 2) ... 17-4
Table 18-1. Key-in Loader Programs.......... ... e 18-2
Table 20-1. Firmware Availability 202
Table 22-1. Default VORTEX e 22-2
Table G-1. Record Control Word Format G-1

CONTENTS

SECTION 1
INTRODUCTION

The Varian Omnitask Real Time EXecutive (VORTEX M) is
a modular software operating system for controlling,
scheduling, and monitoring tasks in real time muitipro-
gramming environment. VORTEX |l supports memory map
operation to a maximum of 256K of central memory.
VORTEX Il also provides for background operations such as
compilation, assembly, debugging, or execution of tasks not
associated with the real-time functions of the system. In
addition, VORTEX 1} supports user tasks using the V75
extended instruction set. Thus, the basic features of
VORTEX Il comprise’’

. Memory map management

. Real-time 1/0 processing

. Provision for directly connected interrupts

. Interrupt processing

. Multiprogramming of real-time and background
i tasks .

. Overlapping output to peripherals with spooh;f;g

. Priority task scheduling (clock tume or

interrupt)
. Load and go (automatic)
. (;entralized and device-independen l/;O:,sEtem

using logical un:t and file namigs #

. Operator communications

. Batch-processing job-control language

. Program overlays

. Background programming aids. FORTRAN and

RPG IV compilers, DAS MR assembler, load-module

generator, library updating, debugging. and
source editor.

. Use of background area when required by
foreground tasks

. Disc/drum directories and references
. System generator
. Individual task protection
NOTE: Throughout this manual, all references to

VORTEX imply VORTEX II.

1.1 SYSTEM REQUIREMENTS

VORTEX requires the following minimum hardware
configuration:

a. Varian V70 series computers with 32K memory

b. 33/35 ASR Teletype or compatible CRT on a priority
interrupt module

c. Priority Interrupt Module (PIM)

d. Rotating memory device (RMD) on a PIM with either a
buffer interlace controller (BIC) or block transfer
controller (BTC)

e. One of the foliowing on a PiM:
(1) Cardreader withaBIC
(2) Paper-tape system or a paper-tape reader
(3) Magnetic-tape umit with a BIC

f. Memory map hardware

“
The system supports and is enhanced by the following
optional hardware items:

a. Additional main mefnory (uptoa totallit. 256K) L
b. Additional rotating memory de"\":ﬁces

c. Automatic bootstrap loader with VORTEX | (device
dependent) system boot

d. Card reader, if one is not included in the minimum
system witg Bl(i{—and PIM

e. Card punc"ﬁ with BIC and PIM *
f. Line printer with BIC and PIM

g. Paper-tape punch. if one s not included In the
minimum system

h. Process inputafd output

1 Data communications multipiexor

. Electrostatic printer/plotter

k. Writable control store . .
. Floating-point processor

m. V75 extended instruction set.

Aill BICs, BTCs, and DCMs must have meémory mapping
capability.

The rotating-memory device (RMD) serves as storage for
the VORTEX operating system components, enabling real-
time operations and a multiprogramming environment for
solving real-time and nonreal-time problems. Real-time
processing is implemented by hardware interrupt controls
and software task scheduling. Tasks are scheduled for

INTRODUCTION

execution by operator requests, other tasks, device inter-
rupts, or the completion of time intervals.

Background processing (nonreal-time) operations, such as
FORTRAN compilations or DAS MR assemblies, are under
control of the job-control processor (section 4) itself a
VORTEX background task. These background processing
operations are performed simultaneously with the real-time
foreground tasks until execution of the former is sus
pended. either by an interrupt or a scheduled task.

1.2 SYSTEM FLOW AND ORGANIZATION

VORTEX executes foreground and background tasks
scheduled by operator requests, interrupts, or other tasks.
All tasks are scheduled, activated, and executed by the
real-time executive component on a priority basis. Thus, in
the VORTEX operating system, each task has a level of
priority that determines what will be executed first when
two or more tasks come up for execution simultaneously.

The job-control processor component of the VORTEX
system manages requests for the scheduling of background
tasks.

Upon completion of a task, control returns to the real-time
executive. In the case of a background task, the real-time
executive schedules the job-control processor to determine
if there are any further background tasks for execution.

During execution, any foreground task can use any real
time executive service (section 2.1).

Figure 1-1 is an overview of the flow in the VORTEX
operating system. Section numbers refer to further discus-
sion of this manual.

1.2.1 Computer Memory

VORTEX requires a minimum of 32K words of main
memory and supports up to a maximum of 256K words

The system generation (SGEN, section 15) programs
execute in a non-memory map environment and conse
quently utilize only the first physical 32K words of main

[VORTEX OPERATING SYSTEM
! -
FOREGROUND , BACKGROUND
t
i H
USER REAL-TIME f LOAD- FORTRAN
NOM- ggiaLciflCAﬂON EXECUTIVE X MODULE - W
RESIDENT INTERRUPT SERVICES : GENERATOR [* COMPILER
TASKS (SICTION 2) i SECTION 6) (SECTION 5.3)
t
T 1
i i
L | ' |
i H i
L____’ . 4,) ! I
USER T ‘ Jos- x
- REAL-TIME | CONTROL USER'S !
?;SSIESENY o EXECUTIVE [¢ T T RO CESSOR % TASKS !
T - - : (SECTION 4) '
4 ! I
I
1
!
!
SYSTEM OPERATOR | DAS MR
NON- /o COMMUNI- i e} ASSEMBLER
RESIDENT CONTROL CATION , UTILITY (SECTION 5. 1)
TASKS (SECTION 3) PACKAGE X (SECTION 10}
(SECTION 17) i
1
' RPG IV
' *| COMPFILER
! (SECTION 5.4)
i
t
USER) VDM \ DE-
SUPPLIED Vo » suppLiED | BUGGING o] LIBRARY
DEVICES DRIVERS DEVICES i (SECTION 7) UP-DATING
X (SECTIONS
‘ 7,8, &9
i
1 j
VTIL-1314

Figure 1-1. VORTEX System Flow

PhbK

V§THC
32K
(a)

v$BtC

(b)

v$GFCB

v$B8TBM

()

VEBVN

V$CROR

(e)

02000

0i000

enti NI e NI N

W

Mapped 1in with all
foreground tasks
referencing blank
Common

toreground Blank Common
(Full Access)

Mapped in with all
background tasks
referencing global
FCBs

Possible unassigned space 1o keep
globat FCBs on the same page {80
words maximum}

Global FCBs

JCP/OPCOM Bufters
DST/LUN/PST COTAD
Controller Tables

TiDBs

User Data (except reentrant
subroutines called with ALQOC)

Mapped in with programs
reterencing ClL labels

Bottom of table region
V$EXEC Real- Time b xecutive
V$i0C Input/Output Countrot
Drivers

Reentrant Subroutines
Reentrant Subroutine Stack

Accessibie only 1o Map O

Bottom of tixed nucleus

Resident Task Directory

Unallocated Memory
Dynamically allocated for
TIDB, 170 requests. map
images. etc

Bottom of nucleus (may
be redefined by EDRR
SGEN directive, which
does not change V$BVN)

Page 1 reserved for OPCOM

Page (0 System Constants

Mapped into all tasks

NOTE- TSK detined resident tasks are loaded upward from
physical address 02000 in the first physical 32K of memory
by SGEN. However, the resident tasks are not mapped in
Map O but in a user map (1:15) as the resident tasks are
scheduled. The physical page numbers defining the
resident tasks are contained in the resident directory
(V$CRDR).

NOTE: VTFC, VBFC, etc. are system pointers in page O
described in section 14, table 14-1.

NOTE: V$TFC, top of nucleus, is specified on SGEN MRY
directive (described in section 15.5.1).

Figure 1-2. VORTEX Nucleus, Map 0

INTRODUCTION

INTRODUCTION

memory. All resident tasks and data reside in the first 32K
of memory. Except for those resident tasks defined by the
SGEN TSK directive, all other resident tasks and data are
considered as part of the VORTEX nucleus. The nucleus 1s
assigned to be in the executive mode, map 0, virtual
memory (see section 1.3).

Figure 12 iliystrates the map O nucleus memory layout.
The 32K words memory space is grouped into severat
modules

a Foreground Blank Common Module: This module 15
mapped with all foreground tasks referencing blank
common.

b Globe! FCB Module This module is mapped with all
background tasks reterencing the global FCBs. it is
read only access mode for priority O tasks and read/
~rite for priority 1 tasks. This module is of approxi
mately 9 words

¢ Nucleus Table Module: This module is mapped with ail
tasks with an external name defined in the CL library.
Read only access mode for priority 0 tasks and read/
write access for all other tasks. The bottom of this
module is defined in V$BTBM and is determined by
SGEN during the nucleus module building. Control
recard CTL.21 specifies the end of the nucleus table
modute. All user data and programs which are to be
included in this module must precede the CTL,21
control record. The approximate size of this module is
1600 words (RMD. line printer, card reader, Teletype.
CRTY

d Nucleus Programs Module: This module consists of
VSEXEC, V$IOC. 1/C drivers, reentrant subroutines,
stacks, and any user programs inserted between the
CTL.21 ard CTL,PARTOD03 SGEN tasks. The bottom
of this mndule is defined by VSCRDR. The approxi
mate size of this module is 6800 words (RMD, line
printer, card reader, Teletype, CRT drivers).

e. Map 0 Allocable Memory Space The virtual memory
space between page two and V$CRDR is available for
dynamic allocation. 170 request block, TIDB block.
and map image memory space are allocated in this
region. Page one Is reserved for the OPCOM task. The
actual physical memory assigned to the virtual
memory space is memory management performed by
the RTE component

f Page O: Always reserved for system constants, interrupt
traps, and background literal pool (a description is
found in section 14, table 14.3).

The unused physical memory in the firs. 32K and !
physical memory above 32K are designated as allocable
memory. This i1s the physical memory which 1s dynamically
allocated for map 0 memory space as described in e, and
which is allocated to a user mode task's logical memory.

1.2.2 Rotating Memory Device

At least one RMD (disc or drum) is required for storage of
VORTEX operating systerm components. The RMD 1s divided
into a fixed number of vanable-length areas called
partitions. These are defined at system-generation time
(section 15).

The tollowing reside on the RMD (figure 1 3)

4. System nutializer, loader and VORTEX nucleus n
absolute format

b. Checkpoint tile

C. Gd file

ad User hibrary

e. Transient files

f. Relocatable object-maodule library

g. Relocatable load-module hibrary

1.2.3 Secondary Storage

The VORTEX operating system supports ary secondary
storage devices that have been specified at system
generation time

System Initializer and
Loader

VORTEX Nucleus in

Absoiute Format

- —
.

CL Directory

Relocatable Object-Module
Library

Relocatable Load Module
Libraries

Checkpoint File

e —-

GO Fite

User Library

Transient Files

Figure 1-3. VORTEX RMD Storage Map
1.3 MEMORY MAP CONCEPT

VORTEX logical (virtuall memory 1s detined to be 32K
words. This is the maximum memory space that any single
task can address, even though the physical memory space
may be as great as 256K words. Where in actual or physical

memory that task resides is transparent to the task and s
a memory management function performed by the RTE
component of VORTEX.

Each logical memory space (32K) is organized into fixed-
size blocks of 512 words (01000 in octal), called logical
(virtual) pages. Hence, there are 64 logical pages within a
32K logical memory space. The size of the logical memory
available to a task is reduced by:

a. Page 0: The first page of 512 words is reserved for
system constants, interrupt trap locations, background
literal pool and communication link for IOC and
VS$EXEC calls. This page is mapped in all logical
memories.

b. Nucleus Modules: A task referencing an external name
which is defined in the CL library will have the
corresponding VORTEX nucleus module mapped in
logical memory for a task. (Section 1.2.1 describes in
greater detail the nucleus modules.) These are:

(1) Foreground blank common module -
{2y Giobal FCB module. and/or
(3) Nucleus table modute

¢c. Any FORTRAN program performing input/output
operation will have the nucleus table module mapped
into its virtual memory. FORTRAN runtime package
requires access to the device specification table
(DST), logical unit tables (LUT), and controllers tables
for linking information. The maximum available
logical memory space available 1s Y$BTBM (bottom of
nucleus table module, location 0331) minus 01000
(program start logical address). V$BTBM is defined
on the SGEN iisting.

d. For background priornity 1 tasks, page O is set to read/
write access mode to permit tasks, e.g., JCP, to modity
low memory pointers V$JCFG, VSCRDM, etc. Hence,
the method of transferring control from user mode to
executive mode for 1/0 and RTE cails is to map in the
pages containing the entry to V$I10C (1/0 calls).
VS$EXEC (RTE calls), and V$IOST (STAT calls).
Theretore a priority 1 task making an 1/0 call (or RTE
call. or STAT call), executes a JSR,X to location 0404,
Because page 0 15 set to read/write access mode, the
instruction at 0404 (JMP V$10C) is executed. The first
instruction in V$|0C (likewise, VSEXEC and V$IOST)
Is a disable PiM (EXC 0444) instruction. Execution of
an 1/0 type instruction in the user map generates a
memory-protection interrupt, which forces the system
to the executive mode and hence the means of
transterring controi to the map 0 tasks. Therefore, the
available memory space for a background task is
from location 01000 to the page where V$10C (which
is lower in memory than V$EXEC) resides. V$iOC
address is defined on the SGEN output listing.

Al user mode tasks are loaded from logical address 01000.
A task not referencing external names defined in the CL
library has all of the logical memory available to it except
page O.

Physical memory is also organized into fixed-size blocks of
512 words, referred to as physical pages. A system with

INTRODUCTION

physical memory size of 256K words contains 512 physicat
pages (64 physical pages for each 32K words of memory).

Aliocation of logical memory to physical memory is
accomplished by pages. A task of 010000 (4096 in decimal)
words will reside in eight physical pages of physical
memory. These physical pages need not be contiguous.
However, that fact is transparent to the task. During
execution, the task assumes that its eight pages are
contiguous. The linking of physical pages is performed by
the memory map hardware. All user program object
modules are assembled relative to location 0. Load modules
are generated by SGEN and LMGEN to be relative to logical
address 01000.

A map defines the 64 logical pages within a logical memory.
Each logical page can be set to one of four possible access
modes:

Unassigned The logicai addresses within that
virtual page are unassigned.
Read/Write All accesses including write operation

permitted to/from the logical page.

Read Operand Only operand fetches permitted from
Only the logical page.

Read Only Only instruction or operand fetches
permitted within the logical page.

Each logical page, except for the pages with unassigned
status, must be assigned to a physical page. The RTE task
sets the status for each page, allocates a physical page to
each logical page, and loads the corresponding mapping
registers.

The memory map hardware provides a 4-bit map register
for the 16 possible maps. This 4-bit map register is set by
the RTE component to select the proper map (0-15). Map 0
is defined as the executive mode. All other map selections
(1-15) are designated as being in the user mode. However,
when the system is forced to the executive mode. state 0,
by an 1/0, real-time, or memory map interrupt, the map
register will continue to contain the currently executing
user map selection number.

Executive Mode

All instructions except HALT are permitted in this mode.
Any interrupt will force the hardware to enter this mode in
executive mode state 0. The interrupt will not disabie the
map. VORTEX Real-Time Executive (RTE), Input/Qutput
Control (10C), 1/0 drivers, and other resident tasks and
constants are mapped into the executive mode. The
instructions and data which comprise the VORTEX nucleus
are mapped in the executive mode. Any task executing |/0
instructions (EXC, OAR, SEN, etc.) must execute in map 0

A HALT instruction executed in the executive mode with the
map enabled wili generate an interrupt. The HALT s
permitted only in the disabled map state.

INTRODUCTION

There are four executive modes states as shown in table

1-1. A map O task will normally execute in state 0. In state
0, alt instruction fetches and operand fetches and stores
are performed in map O logical memory. If a map 0 task
must fetch and store data to or from a user map (1-15), the
map O task must switch to the proper executive mode state
(1, 2 or 3), then upon completion of the fetch or store,
restore the executive mode to state 0. A convenient way of
switching executive or mode states is to output one of the
control words established by the RTE component in the
page 0 system data region, locations 0334-0337: V$STO,
V$ST1, V$ST2, and V$ST3 for executive mode states O
through 3 respectively. An example of switching to
executive mode 3 is OME 046, V$ST3, where 046 is the
memory-map device address

User Mode

All operands and instructions are mapped in accordance
with the map register contents. Error conditions will cause
interrupts, which force the system to the executive mode.
User mode is entered from the executive mode under
control of RTE.

Priviteged instructions (e.g., EXC, HALT) are not permitted
in this mode. An interrupt is generated if a task attempts
to execute a privileged instruction. Foreground tasks may
execute disable and/or enable PIMS and RT clock
instructions (EXC 0444, EXC 0244, EXC 0147, EXC 0747).
Section 14.4.4 describes this subject further.

Section 2.2, RTE System Flow, describes the user mode and
executive mode tasks.

Table 1-1. Executive Mode States

Instruction Operand
State Fetch Fetch Store
0 MAP 0 MAP 0 MAP 0
1 MAP O MAP 0 *MAP N
2 MAP 0 MAP N MAP 0
3 MAP 0 MAP N MAP N

+MAP O refers to the executive task map.
*MAP N refers to the task map specified by
the map register. (n = 1.15)

1.4 BIBLIOGRAPHY

The following gives the stock numbers of Varian manuals
pertinent to the use of VORTEX and the V70/620
computers:

Document
Title Number
V72 Handbook 98 A 9906 20x
V73 Handbook 98 A 9906 01x
V70 Series Memory Map Manual 98 A 9906 10x
620-100 Computer Handbook 98 A 9905 00x

FORTRAN |V Reference Manual
RPG IV User's Manual

VTAM Reference Manual
HASP/RJE Operator's Manual
Microprogramming Guide
VORTEX Installation Manual

98 A 9902 03x
98 A 9947 03x
98 A 9952 22x
98 A 9952 21x
98 A 9952 21x
98 A 9906 07x

Where x is a revision level number subject to change.

Maintenance information is in the following VORTEX and
VORTEX I Software Performance Specifications:

Document
Title Number
VORTEX 1l System Overview 89A0259
VORTEX 1l External 89A0273
Specification
VORTEX 11 Internal 89A0289
Specification
VORTEX External 89A0203
VORTEX Internal Volume 1 89A0231
VORTEX Internal Volume 2 89A0232
VORTEX internal Volume 3 89A0233
VORTEX Internal Volume 4 89A0304
DAS MR Assembler Internal 89A0225
FORTRAN IV Compiler Internai 89A0214
FORTRAN 1V Library Internal 89A0211
RPG IV Runtime/lLoader 89A0234
Internal
RPG IV Compiler Internal 89A0184
FORTRAN Accelerator and 89A0285
VORTEX Spooler Overview/
External

SECTION 2
REAL-TIME EXECUTIVE SERVICES

The VORTEX real-time executive (RTE) component
processes, upon request by a task, operations that the task
itself cannot perform, including those involving linkages
with other tasks. RTE service requests are made by macro
calls to V$EXEC, followed by a parameter list that contains
the information required to process the request.

The contents of the volatile A and B registers and the
setting of the overflow indicator are saved during execution
of any RTE macro. After completion of the macro, these
values are returned. The contents of the X register are lost.
If the task uses the V75 registers 3 through 7, the contents
of R3 through R7 are also saved.

There are 32 priority levels in the VORTEX system,
numbered O through 31. Levels 0 and 1 are for background
tasks and fevels 2 through 31 are for foreground tasks. If a
background task is assigned a foreground priority level, or
vice versa, the task automatically receives the lowest valid
priority level for the correct environment. Lower numbers
assign lower priority. If more than one task has the same
priority level, they are selected for execution on a first-in,
first-out basis. Background and foreground RTE service
requests are similar.

Table 2-1. RTE Service Request Macros

Mnemonic Description Level 0 FORTRAN
SCHED Schedule a task Yes Yes
SUSPND Suspend a task Yes Yes
RESUME Resume a task No Yes
DELAY Delay a task No Yes
LDELAY Delay and reload from No Yes
specified logical unit
PMSK Store PIM mask register No Yes
TIME Obtain time of day Yes Yes
OVLAY Load and/or execute an Yes Yes

overlay segment

ALOC Allocate a reentrant No Yes
stack
DEALOC Deallocate the current No No

reentrant stack

EXIT Exit from a task (upon Yes Yes
completion)
ABORT Abort a task No Yes

IOLINK Link background 1/0 Yes No
PASS Pass map O data Yes Yes
TBEVNT Set/fetch task’'s TBEVNT Yes No

ALOCPG Allocate memory page(s) Yes No
(Priority 0 in map 0)

DEALPG Deallocate memory Yes No
page(s) (Priority O in
map 0)

MAPIN Map in specified memory No No
page(s)

PAGNUM Identify physical page Yes No
number

Whenever a task is aborted, all currently active 1/0
requests are completed. Pending 1/O requests are de-
queued. Only then is the aborted task released.

There are 18 RTE service request macros. Certain of them
are iliegal in unprotected background (level 0) tasks. Table
2-1 lists the RTE macros, indicates whether they are legal
in level O tasks, and indicates whether there is a FORTRAN
library subroutine (section 13) provided.

Note: A task name comprises one to six alphanumeric

characters (including $), left-justified and filled out with
bianks. Embedded blanks are not permitted.

2.1 REAL-TIME EXECUTIVE MACROS
This section describes the RTE macros given in tabie 2-1.
The general form of an RTE macro is
label mnemonic,p(1),p(2),....p(n)
where

label permits access to the macro from
eisewhere in the program

mnemenic is one of those given in table 2-1

each p(n) is a parameter defined under the
descriptions of the individual macros

The omission of an optional parameter is indicated by
retention of the normal number of commas unless the
omission occurs at the end of the parameter string Thus,
in the macro (section 2.1.1)

21

REAL-TIME EXECUTIVE SERVICES

SCHED 8,,106,, ' TA', 'SK','A’

the first double comma indicates a default value for the
wait option and the second double comma indicates
omission of a protection code.

Error messages applicable to RTE macros are given in
Appendix A.2.

2.1.1 SCHED (Schedule) Macro

This macra schedules the specified task to execute on its
designated priority level. The scheduling task can pass two
values in the A and B registers to the scheduted task (a
task using the V75 registers 3 through 7 can also pass
parameters in R3 through R7). A TIDB is created for each
scheduled task, (see section 14 for a description of TiDB).
The macro has the general form.

label SCHED level wait lun key,'xx’'yy’ ‘2z’
where

level is the value from 0 (lowest) to 31
(highest) of the priority level of the
scheduted task

wait is O (default value) if the scheduling and
scheduled task obtain CPU time based
on priority levels and 1/0 activity, or 1 if
the scheduling task is suspended untit
completion of the scheduled task

lun is the name or number of the logical unit
whose library contains the scheduled
task, zero to schedule a resident
foreground task, or 106 to schedule a
nonresident task from the foreground
library. If a zero is specified and the task
is not found in the resident directory, the
RTE component (SAL) will automatically
search for the task on the foreground
library (FL)

key 15 the protection code, if any, required to
address lun (0306 or 'F' to schedule a
nonresident task from the foreground
library). The foreground library logical
unit and its protection key are specified
by the user at systemn-generation time

xxyyzz is the name of the scheduled task in six
ASCIl characters, coded in pairs
between single quotation marks and
separated by commas; e.g.. the task
named BIGJOB is coded 'BI','GJ','OB’
and the task named ZAP is coded
AP

The FORTRAN calling sequence for this macro 1s
CALL SCHED(level,wait lib key,name)

where lib is the number of the library logical unit
containing the task, and name is the three-word Hollerith

2.2

array containing the name of the scheduled task. The other
parameters have the definitions given above.

Al tasks are activated at their entry-point !ocations, with
the A and B registers (and the V75 registers if available)
containing the value to be passed. The scheduled task
executes when it becomes the active task with the highest
priority.

The specified logical unit (which can be a background
hbrary, a foreground library, or any user-defined library on
an RMD) must be defined in the schedule-calting sequence.

Expansion: The task name is ioaded two characters per
word. The wait option flag is bit 12 of word 2 (w).

8it 15 14 13 312 11 10 9 8 7 6 5 4 3 2 10
Word 0 JSRX
Word 1 C406
T T
Word 2) wlo o o000y tevel
Az._(hl,_,l_ i
Word 3 oy l lun
Word & Task name
o s e s —
Word 5 lask name
Word 6 Task name i

Examples: Schedule the foreground library task named
TSKONE on priority level 5. Use the no-wait option so that
scheduled and scheduling tasks obtain Central-Processor-
Unit (CPU) time based or priority levels and 1/0 activity.

FL BQU 106 (LUN assigned to
foreground library FL)
KEY EQU 0306 (Protection code

for FL)

SCHED S,O,FL,KBY,'TS','KO','NE'
. (Contro! return to
. highest priority)

Note: the KEY line can be coded with the equivalent ASCH
character enclosed in single quotation marks.

KEY EQU "F'
The same request in FORTRAN s

DIMENSION N1,N2(3)

DATA N1/2H F/

DATA N2(1),N2(2),N2(3)/2HTS, 2HKO, 2HNE/
CALL SCHEDI(5,0,106,N1,N2)

or

CALL SCHED(5,0,106,2H F,6HTSKONE)

2.1.2 SUSPND (Suspend) Macro

This macro suspends the execution of the task initiating
the macro. The task can be resumed only by an external
interrupt, a simulated interrupt caused by 10C or /0
completion events for the task, or a RESUME (section
2.1.3) macro. The macro has the general form

iable SUSPND susp

where susp is O if the task is to be resumed by RESUME or
1 if the task is to be resumed by external interrupt, or 2 1f
the task is to be resumed by external interrupt or by 10C or
170 complétion events via a simulated interrupt (i.e.,
TBEVNT word in task's TIDB is set to 1).

The FORTRAN calling sequence for this macro is

CALL SUSPND(susp)
Expansion: The susp flag is bit O of word 2 (s).

B 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10
Word O iSRX
Word 1

0406
Word 2 ~$—‘2;\7f0 000 1J>§1
Example: Suspend a task from execution. Provide for

resumption of the task by interrupt, which reactivates the
task at the location following SUSPND

SUSPND 1
The same request in FORTRAN is

CALL SUSPND (1)

2.1.3 RESUME Macro

This macrc resumes a task suspended by the SUSPND
macro. The RESUME macro has the general form

iabel RESUME ‘xx','yy’ 'z’
where xxyyzz is the name of the task being resumed,
coded as in the SCHED macro (section 2.1.1).

The RTE searches for the named task and activates it when
found. The task will execute when it becomes the task with
the highest active priority. If the priority of the specified
task is higher than that of the task making the request, the
specified task executes before the requesting task and
immediately if it has the highest priority.

The FORTRAN calling sequence for this macro is
CALL RESUME(name)

where name is the three-word Hollerith array containing the
name of the specified task

REAL-TIME EXECUTIVE SERVICES

Expansion: The task name is loaded two characters per
word.

it 15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 O
Word 0 JSRX
Word 1 2406
;;Z,

Word 2 \< o 6 01 00 el
o | =
Word 3 Task name

B
Word 4 Task name
Word 5 Task name

Example: Resume (reactivate) the task TSKTWQ, which
will execute when it becomes the task with the highest
active priority.

RESUME 'TS','KT', 'WO'
(Control return)

Control returns to the requesting task when it becomes the
task with the highest active priority. Control returns to the
location following RESUME.
The same request in FORTRAN is
DIMENSION N1(3)
DATA N1{(1),N1(2),N1(3)/2HTS, 2HKT, 2HWO/
CALL RESUME(N1)

or

CALL RESUME(6HTSKTWO)

2.1.4 DELAY Macro

This macro suspends the requesting task for the specified
time, which is given in two increments. The first increment
is the number of 5-millisecond periods, and the second, the
number of minutes. The macro has the genera! form

label DELAY milli,min, type
where
milli is the number of 5-millisecond
increments delay
min is the number of minutes delay
type is 0 (default value when the task is to be

suspended for the specified delay,
remain in memory, and automaticaily
resume following the DELAY macro

1 when the task is to exit from tne
system, relinquishing memory, and

2-3

REAL-TIME EXECUTIVE SERVICES

after the specified delay, be auto
matically rescheduled and reloaded
in a elapsed time mode, or

2 when the task 1s to resume auto
matically after the specitied delay
or upon receipt of an external
interrupt whichever comes first,
and automatically resume following
the DELAY macro; or

3 when the task is to resume auto-
matically after the specified delay,

or upon receipt of an external inter-
rupt, or completion of an 1/0 request
initiated previously, whichever comes

first, and automatically resume following

the DELAY macro.

I0C resumes execution of the task by
setting the TBEVNT word in the task’s
TIDB to 1.

The FORTRAN calling sequence for this macro is
CALL DELAY(mili,min, type)

where the integer-mode parameters have the definitions
given above.

The maximum value for either milli or min is 32767. Any
such combination given the correct sum is a valid delay
definition; e.g., for a 90-second delay, the values could be
6000 and 1, respectively, or 18000 and 0. After the
specified delay, the task becomes active. When it becomes
the highest-priority active task, it executes.

Note that the resolution of the clock is a user-specified
variable having increments of 5 miliseconds. The time
interval given in a DELAY macro must be equal to or
greater than the resolution of the clock. The delay interval
is stored in minute increments and real-time clock
resolution increments.

Expansion: The type flag is bits 0 and 1 of word 2.

! Bit 15 14 313 12 11 10 9 8 7 & 5 4 3 2 1 0
T T e T
Word | o 0406
Word 2 — 5 o 00 xl><’ type
Word 3 it T
Word & min

Examples: Assuming a 5-millisecond clock increment, delay
the execution of a task for 90 seconds. At the end of this
time, the task becomes active. When it becomes the
highest-priority task, it executes.

DELAY 6000,1

Deiay the execution of a task for 90 seconds or untit receipt
of an external interrupt, whichever comes first, at which

2-4

time the task becomes active. Such a technique can test
devices that expect interrupts within the delay period.

DELAY 18000,0,2
Delay the execution of a task for 90 seconds, or until
receipt of an external interrupt, or the completion of a
previously initiated /0 request, whichever comes first.

DELAY 18000,0,3

2.1.5 LDELAY Macro

This macro is a type 1 DELAY macro with additional
parameters to specify the logical unit from which the task is
to be reloaded after the delay. The macro has the general
form:

label LDELAY milli,min,un key
where

milli is the number of 5 millisecond
increments delay

min is the number of minutes delay

fun 1s the number of the logical unit from
which the task is to be loaded after the
delay (DELAY tape 1 reloads from FL
library)

key _Is the protection code for the logical unit

The FORTRAN calling sequence for this macro is
CALL LDELAY (milli, min, lun key)

where the integer mode paraméters have the definitions
given above.

Time is the same as specified for DELAY.

Expansion:

rnn 15 14 i3 12 13 10 9 8 7 6 5 4 3 2 1 0
b e e+ e e e e e e e

Word 0 J S RX

Word 1 0406

Word 2

Word 3

Word 4 min

T
Word 5 hey | lun
L

Example: Assuming a 5-millisecond clock increment, delay
the execution of a task for 30 seconds. At the end of this
time, the task becomes active. When it becomes the
highest priority task, it 1s loaded from logical unit 128
which has protection key A, and executed.

LDELAY 6000,1,128,030"

2.1.6 PMSK (PIM Mask) Macro

Thus macro redefines the PIM (priority interrupt module)
interrupt structure, ie, enables and/or disables PIM
interrupts. The macro has the general form

iabel PMSK pim,mask, opt

where

pim is the number (1 through 8) of the PIM
being modified

mask indicates the changes to the mask, with
the bits indicating the interrupt lines
that are either to be enabled or disabled,
depending on the value of opt, and with
the other ines unchanged

opt is O (default value) if the set bits \n mask
indicate newly enabled interrupt lines,
or 1 if the set bits in mask indicate newly

disabled interrupt lines

The FORTRAN calling sequence for this macro 1s
CALL PMSK(pim,mask,opt)

where the integer-mode parameters have the definitions
given above.

The eight bits of the mask correspond to the eight priority
interrupt lines, with bit O corresponding to the highest-
priority line.

Varsd

VORTEX operates with alf PIM lines epabiad ypless altered
by a PMSK macro. Normal interrupt-processing allows all

interrupts and does one of the following: a) posts (in the
TIDB) the interrupt occurrence for later action if it is
associated with a lower-priority task, or b) immediately
suspends the interrupted task and schedules a new task if
the interrupt is associated with a higher-priority task.
PMSK provides control over this procedure.

Note: VORTEX (through system generation) initializes all
undefined PIM locations to nuliify spurious interrupts that
may have been inadvertently enabled through the PMSK
macro.

Expansion: The opt flag is bit O of word 2 (o).

Bit 15 14 13 12 11 10 9 8 7 6 3 4 3 2 1 0
Word 0 JSRX
Word 1 0406

[.. e 4
Word 2 JO [V ﬂ] Iu
Word 3 pm J mask

Examples: Enable interrupt lines 3, 4, and 5 on PIM 2.
Leave all other interrupt lines in the present states.

PMSK 2,070

REAL-TIME EXECUTIVE SERVICES

The same request in FORTRAN is
CALL PMsk(2,56,0)
Disabie the same lines.

PMSK 2,070,1

2.1.7 TIME Macro

This macro loads the current time of day in the A and B
registers with the B register containing the minute, and the
A register the 5-millisecond, increments. The macro has the
form

label - TIME
The FORTRAN calling sequence for this macro is

CALL TIME(min,milli)

where min is the integer minutes to the 24 hour total. and
milli is the seconds in 5-millisecond integer increments.

Expansion:

}‘&(15 14 3 12 11 10 9 87 6 5 4 3 2 1 !’)1
N —
Word 0 _T ;s RX :

! booe— - -

| wore 1 | 406 i

| -

1 |

+
=
|
i
|

Example: Load the current time of day in the A (b
millisecond increments) and B (1-minute increments)
registers.

TIME
(Return with time in A
and B registers)

2.1.8 OVLAY (Overlay) Macro

This macro loads and/or executes overlays within an
overlay-structured task. it has the general form

label OVLAY type,'xx''yy’, ‘2z’

where

1s O (default value) for load and
execute, or 1 for load and return
following the request. If only

load is specified, the load address
is returned in the X register.

type

is the name of the overlay segment.
coded as in the SCHED macro (section
2.1.D

XXyyzz

2-5

REAL-TIME EXECUTIVE SERVICES

The FORTRAN calling sequence for this macro is
CALL OVLAY(type reload,name)

where type is a constant or name whose value has the
definition given above, reload is a constant or name with
the value zero to load or non-zero to load only if not
currently loaded, and name is a three-word Hollerith array
containing the overlay segment name.

FORTRAN overlays must be subroutines it called by a
FORTRAN call.

Expansion: The overlay segment name is ioaded two
characters per word. The type flag is bit O of word 2 (t).

rﬂll

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
i Word 0 IS RX
| P e S
| Word | 1406
| Wore 2 [T R ST /—< '
. JESOS Y O ot W
Weed 3 Overlay segment name
!
! Wword 4 {veriay segment namne
E S - e
| Word 5 Overlay segment narme
L —— JE U — |

When the load and execute mode is selected in the OVLAY
macro RTE executes an equivalent of a root segment JSR
instruction to enter the overlay segment. Therefore, the
return address of the root segment is available to the
overlay segment in the X register.

Example: Find, load, and execute overiay segment
OVSGO1 without return.

OVLAY 0,'ov,'sGg','01’
{No return)

The same request in FORTRAN is

DIMENSION N1(3)
DATA N1{1) ,N1(2),N1(3)/2HOV, 2HSG, 2H01/
CALL OVLAY(0,0,N1)

or
CALL OVLAY(0,0,6HOVSGO1)

External subprograms may be referenced by overlays. If a
subprogram S is called in several overlays, and S is not in
the main segment, each overlay will be built with a
separate copy of S.

When using FORTRAN overilays containing 1/0 statements
for RMD files defined by CALL V$OPEN or CALL V$OPNB
statements (described in section 5.3.2), the main segment
must contain an /0 statement so that the runtime |1/0
program (VSFORTIO) will be loaded with the main segment.
FCB arrays must be in the main segment or in common, so
they are linked in memory and cannot be in any overlay.

2.1.9 ALOC (Aliocate) Macro

This macro allocates space in a push-down (LIFO) stack of
variable length for reentrant subroutines. The macro has
the general form

label ALOC address

where address is the address of the reentrant subroutine to
be executed.

The FORTRAN calling sequence for this macro is
EXTERNAL subr

CALL ALOC(subr)

where subr is the name of the DAS MR assembly language
subroutine.

The tirst location ot the LIFO stack 1s V$FLRS, and that of
the current position in the stack is VSCRS. The first word of
the reentrant subroutine, whose address 1s specified in the
general form of ALOC, contains the number of words to be
allocated. if fewer than five words are specified. five words
are allocated

Control returns to the location following ALOC when a
DEALOC macro (section 2.1.10) is executed in the called
subroutine. Between ALOC and DEALOC, (1) subroutine
cannot be suspended, (2) no I0C calls (section 3) can be
made, and (3) no RTE service cails can be made.

Reentrant subroutines are normally included in the
resident library at system.generation time so they can be
concurrently accessed by more than one task. The
maximum size of the push-down stack is aiso defined at
system-generation time

Expansion:
LD 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 S RX
b s [
Word 1 LR)
Word 2 e g © S)
| T
Word 3 Reertrant subroutine address

Reentrant subroutine: The reentrant subroutine called by
ALOC contains, in entry location x, the number of words to
be allocated. Execution begins at x + 1. The reentrant
subroutine returns control to the calling task by use of a
DEALOC macro.

The reentrant stack is used to store register contents and
allocate temporary storage needed by the subroutine being
called. The location V$CRS contains a pointer to word O of
the current allocation in the stack. By loading the vaiue of
the pointer into the X (or B) register, temporary storage
cells can be referenced by an assembly language M feld of
5,1 for the first cell; 6,1 for the second: etc.

A stack allocation generated by the ALOC macro has the
format:

8it 15 14 13 312 11 10 9 8 7 6 5 4 3 2 1 0
Word © Coritents of the A register
Word 1 Contents of the B register
Word 2 Conzents of the X register
Word 3 ovil J Contents of the P register
Word 4 Stack-control pointer (for RTE use only)
Word 5 For reenirant subroutine use (temporary slorage)
Word n
- -

Words n+ 1

to V75 registers 37

n+5

where ovil is the overfliow indicator bit.

The current contents of the A and B registers are stored in
words 0 and 1 of the stack and are restored upon execution
of the DEALOC macro. The same procedure is used with the
setting of the overfiow indicator bit in word 3 of the stack.
The contents of word 2 (X register) point to the location of
the reentrant subroutine to be executed following the
setting up of the stack. The contents of word 3 (bits 14-0)
point to the return location following ALOC.

Example: Allocate a stack of six words. Provide for
deallocation and returning of control to the location
following ALOC.

EXT SUB1
ALOC SUB1
(Return Control)

NAME SUB1
SUB1 DATA 6

DEALOC

END

Each time SUBI is calied, six words are reserved in the
reentrant stack. Each time the reentrant subroutine makes
a DEALOC request {section 2.1.10), six words are deallo-
cated from the reentrant stack. If the calling task uses the
V75 registers, 11 words are allocated/deallocated.

2.1.10 DEALOC (Deallocate) Macro

This macre deallocates the current reentrant stack,
restores the contents of the A and B (and V75) registers
and the setting of the overflow indicator to the requesting

REAL-TIME EXECUTIVE SERVICES

task, and returns controt to the location specified in word 3
(P register value) of the reentrant stack (section 2.1.9). The
macro has the form

Iabel DEALOC
Expansion:
o 15 14 12 12 11 10 9 8 7 6 5 4 3 210
Word 0 1S RX
Word 1 0406
Word 2 ><Io o 01 1 1

Example: Release the current reentrant stack, restore the
contents of the volatile registers and the setting of the
overflow indicator and return control to the location
specified in word 3 of the stack.

. (Reentrant subroutine)
DEALOC
END

2.1.11 EXIT Macro

This macro is used by a task to signal completion of that
task. The requesting task is terminated upon completion of
its 170. The macro has the form

label EXIT

The FORTRAN calling sequence (no parameters specified)
is

CALL EXIT
If the task making the EXIT is in unprotected background

memory, the macro schedules the job-control processor
(JCP) task (section 4).

Expansion:
Bt 15 14 13 312 11 10 9 8 7 & 5 4 3 2 1 0
Werd O +SRX
Werd | 0406
Werd 2 e 0 ¢ 0 ! O

Example: Exit from a task. The task making the EXIT call
is terminated upon completion of its /0 requests.

.
-

.

EXIT (M return)

2-7

REAL-TIME EXECUTIVE SERVICES

2.1.12 ABORT Macro

This macro aborts a task. Active 1/0 requests are
completed, but pending 1/0 requests are dequeued. The
macro has the general form

iabel ABORT xx','yy',';’

where xxyyzz is the name of the task being aborted, coded
as in the SCHED macro (section 2.1.1).

The FORTRAN calling sequence for this macro is

CALL ABORT(name)

where name is the three-word Hollerith array containing the
name of the task being aborted.

Expansion: The task name is loaded two characters per
word.

L 15 14 13 12 1 10 9 8 7 6 4% 4 3 2 1 0O

Word 0 J S RX

Word 1 0406

T"‘ T - . E— - T

Word 2 o 0 01 01

Word 3 Task name

Word 4 Task name

_. - PR S A

i Word 5 Task name
i

Example: Abort the task TSK and return control to the
location following ABORT.

ABORT ‘rs','K',"’ '
. (Controt return)

The same request in FORTRAN is

DIMENSION N1(3)
DATA N1{(1),N1(2),N1(3)/2HTS,2HK ,2H /
CALL ABORT(N1):

or

CALL ABORT{6HTSK)

2.1.13 IOLINK (1/0 Linkage) Macro

This macro enables background tasks to pass buffer
address and buffer size parameters to the system back
ground giobal FCBs. It has the general form

labei {OLINK ungsd, butioc, bufsiz

where

lungsd is the logical unit number of the global
system device

bufloc is the address of the input/cutput buffer

bufsiz is the size of the buffer (maximum and
default value: 120

ABORT ‘rs'," ', !

Global file control blocks: There are eight global FCBS
(section 3.5.11) in the VORTEX system reserved for
background use. System background and user programs
can reference these global FCBs. JCP directive /PFILE
(section 4.2.11) stores the protection code and file name in
the corresponding FCB before opening/rewinding the
logical unit. The [OLINK service request passes the buffer
address and the size of the record to the corresponding
logical-unit FCB. The names of the giobal FCBs are SIFCB,
PIFCB, POFCB, SSFCB. BIFCB, BOFCB, GOfFCB, and
LOFCB, where the first two letters of the name indicate the
logical unit.

Bit 15 14 13 12 11 10 9 8 7 6 35 4 3 2 1 0O
,,,,,,, T e e e+ e e e e e

Word 0 1S RX

Word 1 0406

= I

Word 2 o —— "i 4 1 0 01! ungsd

Word 3 bufioc

Word 4 butsiz

Example: Pass the address and size specifications of a
40-word bufter at address BUF to the Pi global FCB.

PI BQU 4
EXT PIFCB
. (P! logical-unit number 4)

IOLINK PI,BUP,&0

READ PIFCB,P1,0,1
. (Read 40 ASC!l words
from Pl)
BUF BSS 40
END

If the Pi file is on an RMD, reassign the Pi to the proper
RMD partition, and then position the P! file using JCP
directive /PFILE.

2.1.14 PASS Macro

This macro fetches map O data into the user map. It has
the general form

label PASS count,from,to
where
count is the number of words to be passed
from is the map O fetch address
to is the user map store address

The FORTRAN calling sequence for this macro is:
CALL PASS(count, from,to)

Expansion:

Bit 15 14 13 12 11 0 9 8 7 &6 5 4 3 210

Word 0 1S RX

Word 1 06406

R T
->< 0 01 1 10

count

Word 2

Word 3

Word 4 from

b e

Word 5 10
i
b

SNV

if a negative or zero word count is specified, an EX16 error
message is posted and the task aborted. Any memory
protection violation will result in an EX20-EX25 error
message.

Example: Pass the TIDB information into PBUF

0300

V$CTL EQU
LDA VS$CTL (Get TIDB address)
ETA P1+8

p1 PASS 29,%,PBUF

PBUF BSS 29
END

2.1.15 TBEVNT (Set or Fetch TBEVNT) Macro

This macro tetches or sets the requesting task's eveni
TBEVNT, as well as alters other TIDB entries. It
should be noted here that most changes to TIDB entries

REAL-TIME EXECUTIVE SERVICES

could cause irrecoverabie errors, so TBEVNT shouid be
used with caution.

The macro has the general form:

label TBEVNT value, disp, ¢c/s
where:
value is 0-0177777 (mask)
disp is the TIDB word ordinal number
(displacement) to be altered
c/s is the clear/set indication
Explanation:

i disp = 0, the following is done according to the value
parameter. If value is 0-0177776 it is set into the
requesting task's TIDB event word, TBEVNT. If the value is
0-017777, the request wilt fetch TBEVNT from the request-
er's TIDB and return with the A register set to the TBEVNT
content. (See section 14 for information on use of the event
word.)

If disp % O, the action depends on the c¢/s indication.

When c¢/s = 1 (i.e., set), the corresponding TIDB (word U4

number displacement) bits are set according to the ones in
the mask value.

When c/s < 0 (i.e., reset), the corresponding TIDB (word tips

number dispiacement) are reset according to the zero bits
in the mask value.

Bt 15 14 u_l;ﬁn 109075541210j
R |

Word 0 J S RX

word 1 0406

Word 2 - o 01 1 11

Werd 3 Vatue

Word 4 disp

Word 5 o ars

Default values: disp = 0 ¢c/s = 0

Example: Reset TBPL (word 2 of TIDB) bit 8 and then

set it again.

TBEVNT 0177377, 2, 0 AMD (reset)
TBEVNT 0400, 2,1 ‘of (set)

2.1.16 ALOCPG (Allocate Memory
Pages) Macro

This macro allocates in physical pages from the pool of
availabie pages to logical pages starting at the specified
logical address, modulo 01000. The logical pages to be
mapped must not have been previously assigned. The
logical pages are assigned as read/write access mode. if an

2-9

REAL-TIME EXECUTIVE SERVICES

error condition occurs, an £X27 error message is output
and the task resumes operation at the specified reject
address. The general form is

label ALOCPG n jogical addr,reject addr
where
n is the number of pages to be allocated

logical addr is the logical address, modulo 01000,
where the n pages are allocated. If the
logical address is negative (1's comple-
ment) the address is assumed to be in
map 0. If the logical address is positive,
the address is assumed to be the
requestor's map (priority tasks cannot
allocate memory in map 0)

reject addr is the error return address when a task
exits or is aborted all ALOEPG pages are
automatically dealiocated.

Expansion:
[15 14 13 12 11 10 9 8 7 65 4 3 21 0
Word 0 J 5 RX
Word 1 0406
Word 2 - i 1 9 0 0 0
e IETEX:
j Word 3 "
! Word 4 logical addr
Wors S reject addr

Example: Allocate 4 pages of memory to the requesting
task’s virtual memory starting at logical address 06000. Hf
error, go to ERRO1.

ALOCPG 4,06000,ERR01

ERRO 1 STA (Error routine)

2.1.17 DEALPG (Dealiocate Memory
Pages) Macro

This macro deallocates n pages of memory starting at the
specified logical address, modulo 01000. The deallocated
logical pages are set to unassigned access mode. Deallo-
cated physical pages, which were not assigned by MAPIN
requests, are returned to the pool of available pages
Specifying logical page 0 or non-read/write page results in

2-10

CALL ﬂ‘ﬁu’j

EX30 error message to be posted and the task’s operation
resumed at the reject address. The general form is

label DEALPG nlogical addr reject addr

where
n is the number of pages to be deallocated

logical addr is the logical address, modulo 01000,
where the n pages are deaflocated if
negative, 1's complement of map 0
logical address (illega! for prionity 0
tasks)

reject addr s the error return address

Expansion:

Bit IS 14 13 12 11 W0 987 6 S 43 210
Word 0 JSRX

b e e e e e]
Word 1 0406

> o =

Word 2 \’I o 1 60 o 1J><;_\
Woed 3 n
Word 4 fogical addr
Word S reject addr

Example: Deallocate 4 pages of memory in the requesting
task’s virtual memory starting at logical address 06000. if
error, go to ERRO2. i

DEALPG 4,06000,ERRO2

ERRO2 LDA (Error routine)

2.1.18 MAPIN (Map-in Specified Physical
Pages of Memory) Macro

This macro allows the requestor to specify physicail pages of
memory to be assigned to the requestor's logical memory
starting at the specified logical address, modulo 01000.
Priority O tasks are not permitted to execute the MAPIN
request. The specified logical pages to be mapped must not
have been previously assigned except by a previous MAPIN
request. All logical pages are set to the read/write access
mode. Fires mapped in by this request do not effect the
pool of . . ."able pages. The requested physical pages
cannot inciuc . age 0 nor any of the pages assigned 1o the
nuci=zus progras module. Any error condition causes EX31

to be output and the task resumed at the reject address.
The general form is

label MAPIN n,logical addr,
buffer or page,
reject adde
where
n is the number of pages of memory to be
allocated

togical addr is the requestor's logical address,
modulo 01000, where the specified
physical pages are to be mapped

buffer address is the actual physical page number to

or physical be mapped or the address of the buffer

page number containing the physical page numbers.
If the value is positive and less than 512,
it is assumed to be a physical page
number. If n is greater than 1, ali physi-
cal pages assigned will be consecutive.
If the value is positive and greater than
511, it is assumed to be a map 0 buffer
address, e.g., TIDB map image address
If the value is negative, it is assumed
to be the one’s complement of the buffer
address within the requestor's logical
space, which contains the physical page
numbers

reject addr is the error return address
Expansion:
Bit 15 14 13 12 11 10 9 ? 6§ % 43 210
Word 0 J S RX
Word | 0406
Word 2 0] 001 0
Word 3 n
Word 4 logical addr
Word 5 butter addr of physcal page
Wo" [3 reject addr

Example: Copy the same 2 physical pages as used by task
A, logical address ABUF, into task B's logical memory at
logical address BBUF. Task A scheduled task B, passing
task A's TIDB address to task B.

REAL-TIME EXECUTIVE SERVICES

TASK A
NAME TASKA
TITLE TASKA
FL QU 106
KEY B2QU 0306
VSCTL BQU 0306
LDBI ABUF {B = Buffer Address)
LDA vsCcTL (A = Task Aa's TIDB)
SCHED 2,0,FPL, KEY, TASK' B’
. (Schedule task B, pass
parameters in A B)
ABUPF BSS 02000
END
TASK B
NANME TASKB
TITLE TASKS
TBMING ‘BQU 27
TASKB ETA Pt+a {Set task As TiDB addr)
|) PASS 29, ,PBUF (Pass task A's TiDB
into -PBUF)
. .
TBA (B = ABUF addr)
TZB
LLSR 9 (A = Page number 8 =
offset «n page)
ADDE TBMING+PBUF
STA M1+5 (Add task A's map image
addr
M MAPIN 2, BBUF , » (MAPIN same 2 phys«cal
pages at BBUF shared by
TBA task A at ABUF)
LSRA 7 (B = Oftset into page)
ADDI BBUP (Add BBUF addr)
TAB (B = Start ot ABUF)
PBUF BSS 29 (TIOB buffer)
BSS TASKB-#+512 (Set to page boundary}
aRUP BQU . (Assume task B < 512
words)
END

2.1.19 PAGNUM (lidentify Physical Page
Number) Macro

This macro allows the requestor to identify the physical
page number assigned to a specitied logical address. |f an
uwhassigned logical address is specified, return is to the
requestor with the A register = 0. Otherwise, return is
made with the A register set to the physical page number
and the B register set to the task's map image address for
the specified logical address. The general form is

* label - PAGNUM logical addr

where logical addr is the address where the identity of the
assigned physical page is requested.

REAL-TIME EXECUTIVE SERVICES

Expansion:
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSRX
Word 1 0406
Word 2 0o t+ 0 0 1 1
Word 3 logical addr

Example: identify the physical page assigned to PBUF.

LDAI PBUF (Get RBUF addr)

8TA P1+3
P1 PAGNUM = (Identify physical page)
PBUP BSS 100

2.2 RTE SYSTEM FLOW

The RTE component loads and executes a task depending
on the category of that task:

Executive Mode Tasks

These are the VORTEX systemn and user tasks designated
during system generation (SGEN) to be resident (excludes
tasks specified on SGEN TSK directives). The RTE, 10C, 1/0
drivers, and common interrupt processors are examples of
system executive mode tasks (map 0). OPCOM is loaded
into and executed from page 1 of map 0. All other non-
resident tasks are defined to be user mode tasks.

User Mode Tasks

a. Background tasks with a priority of zero: Tasks that are
executed via a DASMR or FORTRAN load-and-go
operation and those that are loaded and executed
from the BL library with a JCP/LOAD directive are in
this group.

These tasks are loaded with the first page of physical
memory (0-0777) designated as read operand only. The
literal and indirect pointer poo! is loaded in the first
page at locations 0500-0777. The remainder of the
background task is loaded in whatever physical pages
are available at the time the task is loaded. These
pages are designated as read/write access. f a
nucleus module is referenced, that module is mapped
as read operand only. All other pages in the logical
memory are designated as unassigned. The RTE

component designates an available map key (1-15) to
the background task and sets the appropriate
mapping registers to reflect the task's logical memory.

b. Background priority 1 tasks: System tasks such as the
Job-Control Processor (JCP), Input/Output Utiity
(IOUTIL), System Maintenance (SMAIN), Source
Editor (SEDIT), DAS MR, FORTRAN, RPG iV, MIDAS,
MICSIM, and File Maintenance (FMAIN) require full
access to the nucleus (to modify tables or utilize the
giobal FCBs). These tasks are ioaded with the
required nucleus modules designated as read/write
access mode permitting fetches and stores into these
areas. The literal and indirect pointer pool is loaded
in the first page at locations 0500-0777. The task is
ioaded starting at logical address 01000.

c. Foreground tasks: Page O is mapped read operand only
for a foreground task. Nucleus modules (including
blank common) referenced by foreground tasks, are
mapped in the read/write access mode (see figure
2-1). The maximum logical memory space available to
a foreground task is thus dependent on the number
and type of nucleus module referenced by the task.
The pages within the logical memory not utilized are
mapped as unassigned. All foreground tasks are
loaded at logical memory address 01000.

d. Read-only pages: During the creation of a load module
by LMGEN, the user has the capability to specify pages
within the load module as read-only pages. The
designated read-only pages are indicated in the
pseudo TIDB block. When the task is loaded, the RTE
component will designate those pages in the task’s
logical memory as read-only pages.

2.3 TASK LIMITATIONS AND DIFFERENCES

In VORTEX the following differences and features are
apparent between a background task and a foreground
task:

a. A background task has a priority level of 0 or 1. A
foreground task can have a priority of 2 through 31.

b. Only one background task can be executed at a time.
Excluding the RTE, |OC, and [/0 driver tasks, a
maximum of 15 (user mode of 1 through 15) user
foreground tasks can be in operation concurrently,
provided physical memory size is adequate. See
section 2.5 for a description of checkpointing of tasks.

c. A background task can be checkpointed and its
operation pre-empted by a foreground task. A
foreground program memory space i3 no! check-
pointed (see section 2.5).

d. A background task can have literals and indirect

pointers, a foreground task cannot

. All tasks whether background or foreground have
individual task protection.

If allocable memory is not available to load a
background task, the RTE component will output an
error message (EX05) and abort the operation. If a
foreground task is to be loaded and allocatable
memory is not available, the RTE component will
reattempt the load when memory becomes available.

Background
Priority
Nucleus Modules 0
Foreground
Blank COMMON UN
Nucleus Module
Global FCT ROP
Nucleus Module
System Table ROP
Nucteus Module
System Resident
Tasks Nucleus UN
Module
Page O ROP

System Constants

REAL-TIME EXECUTIVE SERVICES

Background level 0 or 1 task can schedule a task from
the background library only. Foreground tasks cannot
schedule a task from the background library.

Foreground tasks can utilize foreground blank
common. Background tasks cannot.

Background level 0 tasks have restricted RTE requests
(see table 2-1). Foreground tasks have no restriction on
RTE service requests.

Priority of Task

Background Foreground
Priority Priorities

1 2:31

UN RW

RW UN

RW RW

UN UN

RW ROP

Key: RW Read-Write Access Mode
ROP Read Operand Only Access Mode
RO Read-Only Access Mode
UN Unassigned Access Mode

Note: Since the upper three modules are defined contigu-
ously, without regard to page boundaries, and since maps
are fuli pages, a map for any of these modules may include
a partial page of an adjoining module, with the same

access mode.

Figure 2-1. Matrix of Nucleus Module Access Mode

REAL-TIME EXECUTIVE SERVICES

2.4 ABORT PROCEDURE

Whenever a task is aborted, all currently active 170
operations are allowed to complete. All 1/0 requests that
are threadad (queued, or waiting to be activated) are not
activated. Upon completion of all active |/0 operations and
after all pending requests are dethreaded, the aborted task
is released.

2.5 CHECKPOINTING OF TASKS

A background task’s memory space and/or assigned map
may be checkpointed for use by a foreground task. The
background task is restarted when memory space and/or a
map key becomes available.

A foreground task may be checkpointed by a higher priority
foreground task. {t may aiso be checkpointed by a lower
priority task depending on the value of TBST bit 8. The
default value of this bit is on (=1) ie, "may be
checkpointed by a lower priority task'". in order to turn this
bit off, a usage of TBEVNT (2.1.15) is recommended. The
foreground task's memory space is never checkpointed.
More than one foreground task's map may be
checkpointed.

2.6 PAGE ALLOCATION SCHEME

The page allocation routine scans the page bit mask table,
V$PAGE (figure 2-2) to determine the allocable physical
pages. To expedite the process, the allocation routine first
checks the page 0 system word VENPAG to find the total
number of allocable pages in VSPAGE. it the required
number of pages exceeds V$NPAG, scanning of VSPAGE is
not attempted. The allocation routine scans V$PAGE
starting with the word number specified in VSLPP (page O
system pointer). The system generation program initially
sets VSLPP to 0. The allocation routine updates VSLPP
during the scanning while the page deallocation routine
sets VSLPP to the dealiocated pages.

Bit Position
15 14 210
Word
0 Size of VSPAGE
1 jO 1 increasing Page 15
Numbers
First
2 (16 » 31 { Physical
3 {32 - 47 | 32K Words
3 |48 - 63
5 |64 - 79
29 |448 463 | Llast
Physical
35 464 479 | 32K Words
(Maximum
31 480 - 455 256K)
32 1496 - 511
Corresponding Page Bit Positions:
1 = Page is allocatable
0 = Page is unallocatable
VS$PGT Address of VEPAGE
vsLPP 0, Pointer to last word tested

VSNPAG Number of available pages

Figure 2-2. VSPAGE, Page AMNocstion Table

The size of V$PAGE is determined by SGEN based on the
physical memory size specified on the MRY directive.

SECTION 3
INPUT/OUTPUT CONTROL

The VORTEX input/output-control component (10C)
processes all requests for 1/0 to be performed on
peripheral devices. The IOC comprises an i/0-request
processor, a find-next-request processor, an 1/0-error
processor, and |/Q drivers. The |0C thus provides a
common /0 system for the overall VORTEX operating
system and eliminates the programmer's need to under-
stand the computer hardware.

At 1/0 with remote devices connegted through the Data
Communications Multiplexor (DCM) uses the VORTEX
Telecommunications Access Method (VTAM). VTAM inter-
faces with (OC. Use of VTAM is described in the VTAM
Reference Manual.

The contents of the volatile A and B registers and the
setting of the overflow indicator are saved during execution
of any tOC macro. After completion of the macro, these
data are returned. The contents of the X register are lost.

If a physical-device failure occurs, the 1/0 drivers perform
error recovery as applicable. Where automatic error
recovery is possible, the recovery operation is attempted
repeatedly until the permissible number of recovery tries
has been reached, at which time the [/0 driver stores the
error status in the user 1/0-request block, and the I/0-error
processor posts the error on the OC logical unit. The user
can then try an_.her physical device or abort the task.

3.1 LOGICAL UNITS

A logical unit is an 1/0 device or a partition of a rotating-
memory device (RMD). It is referenced by an assigned
number or name. The logical unit permits performance of
1/0 operations that are independent of the physical-device
configurations by making possible references to the logical-

unit number. The standard interfaces between the program
and the I0C, and between the iOC and the (/0 driver,
permit substitution of peripheral devices in |/0 operations
without reassembling the program.

VORTEX permits up to 256 logical units. The numbers
assigned to the units are determined by their
reassignability:

a. Logical-unit numbers 1-100 are used for units that can
be reassigned through the operator communications
component (OPCOM, section 17) or the job-control
processor {JCP, section 4).

b. Logical-unit numbers 101-179 are used for units that
are not reassignable.

¢. Logical-unit numbers 180-255 are used for units that
can be reassigned through OPCOM only.

d. Logical-unit number O indicates a dummy device. The
I0C immediately returns control from a dummy device
to the user as if a real |/0 operation had been
completed.

VORTEX logical-unit assignments for all systems are
specified in table 3-1. All logical-unit numbers that are not
listed are available to the reassignability scheme above.

Table 17-1 shows the scheme of system names for physical
devices. Table 3-2 shows the possible logical-unit
assignments.

Table 3-1. VORTEX Logical-Unit Assignments

Number Name Description
0 DUM Dummy
1 oC Operator

communication

2 S| System input
3) System output
4] Processor input

Function
For 1/0 simulation

For system operator
communication with immediate
return to user control;
Teletype or CRT only

For inputs of all JCP control
directives to any device

For dispiay of all input
control directives and output
system messages; Teletype or
CRT only

For input of source statements

from all operating system
language processors (continued)

31

INPUT/OUTPUT EONTROL

H

Number

11

101

102

1 03‘

Table 3-1. VORTEX Logical-Unit Assignments

Nhme

Lo

BI

BO

SS

GO

PO

Dl

DO

cu

SW

CL

(continued)

Description

List output

Binary input

Binary output

System scratch

Go unit

Processor output

Debugging input

Debugging output

Checkpoint unit

System work

"Core” -resident
library

Function

For output of operating system
input control directives,
system operations messages,
and operating system language
processors’ output ligtings

>

For input of object-module
records from operating system
processors

For output of object-module
records from operating system
language processors

For system scratch use; all
operating system language
processors that use an inter-
mediate scratch unit input
from this unit

For output of the same infor
mation as the BO umit by the
system assembier and compiler;
RMD partition or MT.

'For processor output; alt

operating system language
processors that use an inter.
mediate scratch unit output to
this unit; PO and SS are
assigned to the same device
at system-generation time

For all debugging inputs
For afl debugging outputs

For use by VORTEX to
checkpoint a background task;
partition protection key S;
RMD partition only

For generation of a load module
by the system load module
generator component. or for
cataloging. loading. or

execution by other system
cof‘ﬁponen\s: partition protec-
tion key B; RMD partition only

For all "core’ -resident system
entry points; partition protec-
tion key C: RMD partition only
(12 names per 2 sectors)

INPUT/OUTPUT CONTROL

Table 3-1. VORTEX Logicai-Unit Assignments

(continued
Description

Object-module

Number Name
104 oM
105 BL
106 FL

library

Background library*

Foreground library*

)

Function

For the VORTEX system object-
module tibrary; partition
protection key D; RMD partition
only

For the VORTEX system background
library; partition protection
key E; RMD partition only

For the VORTEX system fore-
ground library; partition
protection key F; RMD
partition only

» Other units can be assigned as user foreground libraries
provided they are specified at system-generation time.
However, there is only one background library in any case.

Logical Unit
Unit No.

Device

Dummy

Card punch

Card reader

CRT device

RMD (disc/drum)
partition

Line printer

Magnetic-tape unit

Paper-tape reader/
punch

Teletype

Remote Teletype

Logical Unit
Unit No.

Device

Dummy

Card punch

Card reader

CRT device

RMD (disc/drum)
partition

Line printer

Magnetic-tape unit

Paper-tape reader/
punch

Teletype

Remote Teletype

Table 3-2. Valid Logical-Unit Assignments

CT

TY

PO
10

DUM
cpP

LP
MT
PT

TY

CR
CT

mMT
PT

TY
TC
Dl
11

CR
cT

TY
TC

$O
3

CcT

TY
TC

12

DUM

CcT

LP

TY
TC

Pi
a

DUM

CR
cT

MT
PT

TY
TC
cu
101

Lo Bl BO SS GO
5 6 7 8 9
DUM DUM DUM DUM
cp cp

CR
cT
D D D D D
LP
MT MT MT MT MT
PT PT PT
184
TC
SW CL OM BL FL 17 -
102 103 104 105 106
D D DO D D

33

INPUT/OUTPUT CONTROL

3.2 RMD FILE STRUCTURE

Each RMD (rotating-memory device) is divided into up to
-20 memory areas called partitions. Each partition is
referenced by a specific logical-unit number. The bounda
ries of each partition are recorded in the coreresident
partition specification table (PST). The first word of the
PST contains the number of VORTEX physical records per
track. The second word of the PST contains the address of
the bad-track table, if any, or zero. Subsequent words in
the PST comprise the partition entries. Each PST entry is in
the format:

Bit 151413 1211109876543210

Word 0| Beginning partition address (track number)

Word 1 |ppb Protection key

Word 2 Number of bad tracks in the
partition

Word 3 Ending partition address + |

Section 9.1 describes the full PST format.

The partition protection bit, designated ppb In the above
PST entry map, when set, requires the correct protection
key to read/write from this partition.

Note that PST entries overlap. Thus, word 3 of each PST
entry 1s also word O of the following entry. The length of the
PST 1s 3n + 2, where n is the number of partitions in the
system. The relative position of each PST entry is recorded
in the device specification table (DST) for that partition.

The bad-track table, whose address is in the second word
of the PST, is a bit string constructed at system-generation
time and thereafter constant. The bits are read from right
to left withuin each word, and forward through contiguous
words, with set bits flagging bad tracks on the RMD.

tach RMD partition can contain a file-name directory of
the files contained in that partition. The beginning of the
directory is in the first sector of that partition. The
directory for each partition has a variable number of
entries arranged in n sectors, 19 entries per sector. Sectors
containing directory information are chained by pointers in
the last word of each sector. Thus, directory sectors need
not be contiguous. (Note: Directories are not automati-
cally created when the partitions are defined at system.
generation time. It is possible to use a partition with no

34

directory, e g., by a foreground program that is collecting
data in real time.) Each directory entry is in the format.

Bit 1514131211 109876543210
Word 0 File name
Word 1 Fite name
L.
Word 2 Fiie name
Word 3 Current position of fiie
Word 4 Beginning file address
Word 5 Ending file address

The file name comprises six ASCH characters packed two
characters per word. Word 3 contains the current address
at which the file is positioned, is initially set to the ending
file address, and 1s manipulated by the OPEN and CLOSE
macros (sections 3.5.1 and 3.5.2). The extent of the file is
defined by the addresses set in words 4 and 5 when the file
1s created, and which remain constant.

At system-generation time, the first sector of each partition
ts assigned to the filename directory and a zero written
into the first word. Once entries are made in the file-name
directory. the first word of each sector contains a count of
the entries in that sector.

The last entry in each sector 1s a one-word entry containing

next sector of the file-name directory.

The file-name directories are created and maintained by
the VORTEX file-maintenance component (section 9) for
10C use. User access to the directories is via the [OC, which
references the directories in response to the {/O macros
OPEN and CLOSE. The file-maintenance component sets
words 0, 1, 2, 4, and 5 of each directory entry, which then
remain constant and unaffected by 10C operations. The
10C can modify only the current position-of-file parameter.

In the case of a file containing a directory. an OPEN is
required before the file is accessible. The macro searches
the file directory for the entry corresponding to the name in
the file-control block (FCB) in use. When the entry is found,

the file boundary addresses and the current position-of-file
value from the directory entry are stored in the FCB. If the
OPEN macro

a. Specities the option to rewind, the FCB current position
is set equal to the address of the beginning of file.

b.. Specifies the option not to rewind, the FCB current
position is set equal to the address of the position of file.

Once a file is thus opened, READ and WRITE operations
are enabled. The 10C references the file by the file
boundary values set by the OPEN, rather than by the file
name. READ and WRITE operations are under control of
the FCB current position value, the extent of the file, and
the current record number.

A CLOSE macro disables the I0C and user access to the file
by zeroing the four file-position parameters in the FCB. If
the CLOSE macro

a. Specifies the option 1o update, the current position-of-
file value in the directory entry is set to the value of the
FCB current position, aliowing reference by a later
OPEN.

1, Specifies the option not to update, the file-directory
entry remains unmodified.

Special directory entries: A blank entry is created when a
file name is deleted, in which case the file name is #***%*
and words 3 through 5 give the extent of the blank file. A
zero entry is created when one name of a multiname file is
deleted, in which case the deleted name is converted to a
blank entry and ali other names of the multiname file are
set to zero.

3.3 170 INTERRUPTS

VORTEX uses a complete, interrupt-driven 170 system, thus
optimizing the allocation of CPU cycles in the multipro-
gramming environment.

INPUT/OUTPUT CONTROL

3.4 SIMULTANEOQUS PERIPHERAL OUTPUT
OVERLAP (SPOOL)

The VORTEX spooler is a generalized set of routines which
permit queuing of a task's output to intermediate RMD
files. This avoids the user task waiting for the device
transfer completion. Total system throughput wili be
increased because waiting for transfers to be compieted,
both in the use of {/0 calls with suspended returns and
that of tasks which are terminating, will be minimized.

Also, non-resident tasks may transfer to a spooled device
and immediately exit, instead of remaining resident until
completion of the transfer.

At system generation, the user may have the output of
some logical units, such as LO, automatically spooled.
During operation, the operator may assign device outputs
to the spooler through JCP or OPCOM assign directives.

Components

The SPOOL subsystem consists of two components: (1) an
10C driver to which data output may be assigned and which
transfers output for its associated iogical unit to a circular
RMD file or directly to the output listing task, and (2) and
output listing task which accepts messages from this
circular RMD file or directly from the IOC driver and
transfers them to the appropriate output device.

Communication between these two tasks is accomplished
through parameters within the listing rask which are
established by the 10C driver. When these and other
system parameters indicate that the listing task has caught
up with the spoolout task, output messages wiil be
transferred directly to the listing task, instead of going
through the RMD SPOOL file. (This avoids the overhead of
two RMD transfers).

All data records transterred to the circular RMD file will
contain record length and a key signifying whether the
transfer is to be write or a function as well as other
synchronization data. Data will be transferred to RMD in
an unpacked mode (one record per sector) in order to avoid
delays caused by unwritten still-to-be packed records.
SPOOL. file overfiow messages will be output when appropri-
ate after allowing the RMD circular file certain amounts of
time to remove its oldest entry.

Figure 3-1 shows a simplified flow of output data through
the SPOOL subsystem.

35

INPUT/OUTPUT CONTROL

USER
TRANSFER TO
LOGICAL UNIT
1
SPOOLER 10C CONTROLLER
DRIVER TABLE CTSPnA
VZSPOA)
DATA DIRECTLY TRANSFER IF
TO SPOOLOUT SPOOL STREAM
BUFFER n* 1S BUSY
A
RESIDENT RMD FiLt
LISTER TASK SPOOL n*
A

TRANSFER TO
LOGICAL UNIT |q—
180 + n*

* WHERE n IS AN INTEGER FROM ZERO TO SEVEN

VI8

Figure 3-1. Spooling Subsystem Flow

3.4.1 SPOOL Operation

During the system generation. up to eight spool pseudo
devices may be defined. These pseudo-devices, SPOA
through SP7A are dummies which can be assigned to any
logical unit used only for output. Such assignments can be
made permanently at SGEN time, or dynamically through
JCP or OPCOM.

Each pseudo-device, SPIA, has a corresponding RMD file
name, SPOOLi. These files must be defined on an RMD
partition which is permanently assigned to logical unit 107
(named SX). Each spool pseudo-device and file is then
associated with a logical unit (180-187) to which the
LISTER writes unit record output. For example, a user
issuing a WRITE request to an LUN assigned to device
SPiA, will have data transferred to file SPOOLi on RMD.

The data will be read from the RMD and written to LUN
180 + i, whose name is Si, as time and the device allow

3-6

It the oulput device is not busy when a user request is
made, and if the RMD stream_is inactive, the user data 1s
. _moved directly to the output device via a SPOOL bu buffer In

this case, the user request is sef complete as soon as the
buffer is queued for the device.

It a user’'s 1/0 requests are made and a spool pseudo-
device number for the appropriate SPOOLI file could not be
found, of if the RMD is inoperative for any reason, the RMD
is bypassed. That is, each user request causes a SPOOL
buffer containing the user's data to be queued directly to
the output device, up to a maximum of two buffers per
stream. If the user should issue a request that would
require a third buffer for that_ streamanen _the SPOOL

driver enters a delay loop until the two buffer limit can be
salisfied. During this wait tume ‘the t user's |/0 is active.

If the output device to which a user is spooling output
shouid go down or become not ready, data continues to be
accepted and spooled to RMD, but not more than two
SPOOL buffers will be tied up waiting for the device to
become usable. If an RMD is down when this case occurs,
user's requests will be delayed after twoc buffers are
allocated to the stream.

Should the user fill the RMD file for a stream with data
before the device can catch up, the next user request
remains active until space is available in the RMD.

3.4.2 SPOOL Files

Certain RMD files are required for maximum spooler
operation. Without these, the SPOOL subsystem will
function at a reduced rate. Files SPOOLO through SPOOL7,
where the last digit is the SPOOL stream number, are used
as circular files and may be established at varying lengths
to improve system performance. SPOOL operation will be
slower if RMD files are totally filled with data to be output.

Files must be created after SGEN but before the first user
of the SPOOL program. To establish files in a manner
consistent with SPOOL, an exact procedure must be
followed. If LO is assigned to SPOOL, it must be reassigned
temporarily to a non-spooled device through OPCOM using
a command such as:

;ASSIGN,LO=LP

where LP is not a spooled device. After this step, the actual
file or files must be created using FMAIN in the following
manner:

/FMAIN

INIT, 107,S

CREATE, 107,S,SPOOLO, 120,n
CREATE, 107,S,SPOOL1, 120,n

CREATE, 107,S,SPOOL7,120,n
/FINI

s,

The last parameter n of the CREATE directives is the
number of records. A CREATE directive is required for each
data stream. As many CREATE directives as data stréams
are required.

The number of 120-word records to be established within
the file ts given as the last parameter of the CREATE
directive. SPOOL files are circular files; entries are being
placed on one end while being removed from the other end.
When the SPOOL subsystem determines that the file is full,
i.e,, that another entry cannot be placed on the file without
destroying one which has not been removed, transfers to
the spooler driver will not be completed until a new file
entry becomes available (the oldest entry has been
removed from the file). As file size is increased, the
likelihood of a full file is decreased. File size should be a
tunction of expected stream utilization and device output
speed, which determines how quickly entries are moved
from circular spooler files. The 1060 error message
indicates that a file is full. if this message is received
frequently the number of records in that file should be
increased for maximum spooling efficiency.

This procedure tor creation of SPOOL files needs to be
done only once. It 1s performed immediatqly after comple-
tion of SGEN when the “VORTEX SYSTEM READY' mes-
sage is output. If these file sizes are found to be unsatisfac-
tory, the system may be rebooted and file sizes moditied
by executing the procedure again.

As part of the SGEN for systems using the SPOOL program,

- controller table O (stream 0) must be included since the

inifialization routine is included in its buffers. Additional
controller tables may be included as desired. However,
storage requirements may be varied by using different
controller tables: all even addresses contain four 74-watd
butfers, and odd streams contain only two /4 word buffers.
For systems with a large amount of SPOOL throughput, it is
recommended that four buffers be specified for controlier
tables, otheérwise two-buffer tables should be sufficient.

3.5 170-CONTROL MACROS

1/0 requests are written in assembly language programs as
t/0 macro calls. The DAS MR assembler provides the
following 1/0 macros to perform (/0 operations, thus
simplifying coding:

INPUT/OUTPUT CONTROL

. OPEN Open file

. CLOStE Close tile

. READ Read one record

. WRITE Write one record

. REW Rewind

. WEOF Write end of file

. SREC Skip one record

. FUNC Function

. STAT Status

- . DbCB Generate data control block
. FCB Generate file controf biock

The 10C performs a validity check on all {/0 requests. It
then queues (according to the priority of the requesting
task) each valid request to the controlier assigned to the
specified logical unit. Finally, the |OC schedules the
appropriate 1/0 driver to service the queued request.

The assembler processes the {/0 macro to yield a macro
expansion comprising data and executable instructions in
the form of assembler language statements.

Certain 1/0 operations require parameters in addition to
those in the 1/0 macro. These parameters are conlained in
a table, which, according to the operation requested, is
called either a file control block (FCB, section 3.5.11) or a
data control block (DCB, section 3.5.10). Embedded but
omitted parameters (e.g., default vaiues) must be indicated
by the normal number of commas.

Error messages applicable to these macros are given In
Appendix A.3.

1/0 Macros: The general form of 110 macros is:

{abel name ¢b,lun,wait, mode

where the symbols have the definitions given in section
35.1.

if the cb is for an FCB, 1t 1s mandatory. If it is for a DCB, it
is optional.

37

INPUT/OUTPUT CONTROL

The expansion of an 1/0 macro is: e. Bits 4 through 0 indicate the priority level of the task
making the request.

-—lldl“— 15 14 13 12 ll—‘l_o “'9‘"."—7'_;"‘5'“ 7 J“ 2 I Q “
- 1 Word 3 contains the following information:
Word O J S RX
Word 1 0404 Bits 0-7 Logical Unit (LUN)
Word 2 € Status e < I Prionity*
e ——] When an |/0 request is made to V$10C, V$IOC uses the
Word 3 i s] O code R e] LUN as an index into the logical unit table (LUT). V$IOC
Word 4 FCB or DCB address then uses the current assignment pointer of that entry in
e the LUT to determine the address of the DST on which the
Wore 3 User task denttca e ek e] 1/0 is to be performed. To determine the DST address, the
Word 6 10C thread address® current assignment value less one is multiplied by the
: tength of a DST (3 words) and added to the base address
of the DST block. V$I0C verifies the validity of the specified
where LUN.
¢ set indicates completion of 1/0 tasks If the LUN is invalid, a parameter error has occurred (refer
to sections 3.1 and 3.3).
Status is the status of the 1/0 request
e set indicates an irrecoverable 1/0 Bits 8-11 Op-Code
error
) Op-codes can range in value from 0 to 15; however, not ail
cc s the completion code op-codes are applicable for every device. V$10C, using the
o i o . _op-code as an index gets an entry from a bit table. This
Priority is the priority level of the task) gfword contains a 1 in the bit position associated with the op-
making the request icode and is compared with the controller table item
) o]) . §CTOPM. if the corresponding bit in CTOPM is set to 1, it
w is the wait/immediate-return option 'means that the device connected to the controller can
.) éperform the requested operation. If the corresponding bit
Mode is the mode of operation in CTOPM is zero, the 1/0 request is not performed, and

the 170 complete indicator (bit 15) set.
Op-code specifies the 1/0 operation to be

performed Bit 8-11 Meaning
d indicates an item whose initial 0000 Read
value is zero 0001 Write
0010 Write EOF
0011 Rewind
The wait option causes the task to be suspended untit its 0100 Skip record
170 is complete. The immediate option causes control to be 0101 Function
returned immediately to the task after the 1/0 request is 0l10 Open
queued. Therefore, to multiprogram effectively within 0111 Close
VORTEX, the wait option is preferred. 10001111 Not used
Word 2 contains the following information: Bits 12-14 Mode .

a. Bit 15indicates whether the |/0 st lete. ’
o er thel/Lrequest is complete The mode bits are not used by V$1OC nor VSFNR. The 1/G .

driver use this information whenever applicable to the op-

b. Bits 14 through 9 contain one of the error-message de
coqde. —_

status codes described in Appendix B.2.

c. Bit 8 indicates an irrecoverable I/0 error. .
Bit 15 Wait Option

d. Bits 7 through 5 contain a completion code: 000

indicages a normal return; 101, an error; 110, an end of V$I0C uses this bit to determine whether the requesting
file, beginning of device, or beginning of tape: and task is to be suspended until 170 is completed or whether
111, end of device, or end of tape. an immediate return is required.

3-8

Bit 15 = 0 Suspend until 1/0 completed. V$10C
sets bit 14 in TBST in the requesting
task's TIDB.

Bit 15 = 1 Immediate return required (via V$DISP).

V$I0C clears bit 14 in TBST in the
requesting task's TIDB.

Word 5 initially points to the user's task identification
block. Upon completion of a READ or WRITE macro
(sections 3.5.3 and 3.5.4), the 10C sets word 5 to the actual
number of words transmitted.

Status macro: The general form of the status (STAT)
macro is:
label STAY req,err,aaa bbb busy

where the symbois have the definitions given in section
359

The normal return s to the first word following the macro
expansion.

The expansion of the STAT macro is:

=t 15 14 13 12 11 10 9 8 7 6 3 4 3 2 10
Word 0 JSRX

Word 1 0373

Word 2 Address of the I/0 macro

Word 3 Address of the 170 error routine

Word 4 aaa

Word S bbb

Word 6 Address of the busy or i/0-not-compiete routing

where aaa is the address of the end of file, beginning of
device or beginning of the tape routine and bbb is the
address of the end of the tape or end of the device routine.

Control biock macro: The general form of the DCB macro
[N

label DCB rl,butf,fun

where the symbols have the definitions given in section
3.5.10.

The expansion of the DCB macro is:

B 15 14 13 312 11 10 9 8 7 6 5 4 3 2 10
Word 0 Record length

Word | Direct Address of user data area

Word 2 Function code

INPUT/OUTPUT CONTROL

The function code applies only to 1/0 drivers that aliow:

a. The line printer to slew to top of form or to space
through the channel selection for paper-tape form
control.

b. The papar-tape punch to punch teader.

c. Thecard punch to eject a blank card as a separator.

The general form of the FCB macro is:
label FCB

rl,buff,acc key,'xx",'yy’,' 2z’

where the symbols have the definitions given in section
3.5.11

The expanSion of the FCB macro is:

.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Word 0 Record length
Word 1 Address of user data area
- i - -
Word 2 Access method Protection key
Word 3 Current record number
Word 4 Current end-of-file address
Word 5 Beginning file address
Word 6 Encing tie address
Word 7 File name
Word 8 File name
Word 9 file name

The access method (word 2, bits 15 through 8) specifies
one of the four methods of reading or writing a file:

a. Direct access by logical record: The 1/0 driver uses

the contents of FCB word 3 as the number of the logical
record within a file to be processed, but does not alter
word 3 after reading or writing. Word 3 is set by the
user to the desired record number prior to each read/
write.
Specifying FCB word three to zero will cause access to
the partition directory. Care should be taken when
supplying this value so that directories are not
accidentally destroyed.

b. Sequential access by logical record: The 1/0 driver
uses the contents of word 3 as the number of the logical
record within 3 file to be processed, then increments
the contents of word 3 by one. Word 3 is set initially
to zero when the FCB macro expands. Successive
reading and writing thus accesses records
sequentially.

39

INPUT/OUTPUT CONTROL

c. Direct access by physical record: The 1/0 driver uses

the contents of FCB word 3 as the number of the
VORTEX physical record to be processed within a file
(120-word length), but does not alter word 3 after a
read or write. Word 3 is set by the user to the desired
record number prior to each read/write.
Specitying FCB word three to zero will cause access to
the partition directory. Care should be taken when
supplying this value so that directories are not
accidentally destroyed.

d. Sequential access by physical record: The I/0 driver
uses the contents of FCB word 3 as the number of the
VORTEX physical record to be processed within a file
(120-word length), then increments the contents of
word 3 by one. Word 3 is set initially to zero when the
FCB macro expands. Successive reading and writing
thus accesses records sequentially.

3.5.1 OPEN Macro

Thus macro, which applies only to RMDs or magnetic-tape
units, enables 1/0 operations on the devices by initializing
the file information in the specified FCB. The macro has
the general form

label OPEN fcb,lun.wait mode
where

teb 1s the address of the file controt block

un 1s the number of the logical unit being
opened

wait is 1 for an immediate return, or 0O
(default value) for a return suspended
until the {70 is complete

mode is O (default value) for rewinding or 1 for

not rewinding. In the former case, word
3 (current record number) of the FCB is
set to 1, word 4 (current position-of-file
address) is set to the current position-of-
file address given by the RMD file
directory, and rewinds the magnetic-
tape unit. In the latter case, the current
position-of file address given by the
RMD file directory is copied into word 4,
converted to a record number and
stored in word 3 of the FCB, thus
initializating the user FCB, enabling
reading or writing from a previously
specified tocation, and the magnetic-
tape position is left unchanged (not
rewound).

OPEN must precede any other 1/0 request (except REW)
because the FCB file information must be complete before
any file oriented 170 is possible. If a file has already been
opened, an OPEN will be accepted.

310

The OPEN macro is file-oriented, while the REW macro is
oriented to the logical unit. An REW destroys information
completed by a previous OPEN on the same logical unit.

The OPEN macro changes words 3, 4, 5, and 6 of the FCB
(section 3.5.11).

if an attempt is made to apply the OPEN macro to any
device other than an RMD or a magnetic-tape unit, the I/0
request is processed internally by the 10C but not by an
170 driver. The 10C indicates the status as |70 complete.

Example: Read a 120-word record from the FI10 on logical
unit 18, an RMD partition with sequential, record-oriented
access. BUFF is the address of the user’s buffer area. Use
the wait and rewind options, and set the logical-unit
protection key to 1.

X1 EQU 18 (LUN assigned to unit X1)
RL EQU 120 (Record length 120)

WAIT EQU 0 (Wait option)

REW BQU 0 (Rewind option)

KEY EQU 1 (Logical-unit protection key)
SEQR EQU 1 (Sequential, record-oriented

access)
OPEN OPEN FCB,X1,WAIT,REW
READ READ PCB,X1,WAIT

FCB FCB RL,BUFF, SEQR,KEY,
"FI1',"10", "

3.5.2 CLOSE Macro

This macro, which applies only to RMDs or magnetic-tape
units, updates information in the specified FCB file. This
records and retains the current position within the file. The
mode option ignores the updating, thus retaining the
breviously defined position in the file. The macro has the
general form

label CLOSE fcb,lun,wait, mode
where
fcb is the address of the FCB
un is the number of the logical unit being
closed
wait is 1 for an immediate return, or O

(default value) for a return suspended
until the 170 is complete

mode 15 O (default value) for not updating, or 1
for updating In the former case, there s
no change to the current position-of-file
address in the RMD file directory, words
3,4, 5, and 6 of the FCB are set to zero,
and the magnetic-tape position is left
unchanged (not rewound). In the latter
case, the contents of FCB word 3
(current record number) are converted
to an address and stored in the current
position-of-file address in the RMD file
directory, words 3, 4, 5, and 6 of the FCB
are set to zero, and an end-of-file mark
written on the magnetic tape.

The CLOSE macro cannot be used if there is no such file
defined in the FCB (section 3.5.11).

It an attempt is made to apply the CLOSE macro to any
device other than an RMD or magnetic-tape unit, the 1/0
request is processed internally by the {OC, but not by an
170 driver. The 10C indicates the status as !/0 complete.

Example: Close the file MATRIX on logical unit 180, an
RMD partition with sequential, record-oriented access. Use
the wait and update options.

SEQR EQU 1 (Sequential, record-
oriented access)
(Update option)

(Wait option)

UPDATE EQU
WAIT EQU 0

-

.
.

CLOSE

CLOSE FCB, 180 ,WAIT,UPDATE

.

FCB FCB ,+SEQR,, 'MA','TR', "IX'

3.5.3 READ Macro

This macro retrieves a record of specified length from the
specified logical unit, and places it in the specified area of
main memory. The macro has the general form

fabef READ cb,lun,wait, mode

where

cb is the address of the data control block,
or of the file control biock

lun is the number of the logical unit from
which the record is read

wait is 1 for an immediate return, or O
(default value) far.a_return_suspended

until !hg 1/Q is complete

mode specifies the /0 mode: 0 (default vaiue)
for system binary, 1 for ASCI, 2 for BCD,
or 3 for unformatted |/0 (see appendix
C for format)

INPUT/OUTPUT CONTROL

The number_of words read 1s stored n word 5 of the 1:0
macro.
nacrag;

Example: Read a record trom logical unit 4, a magnetic
tape unit. Use system binary mode and the immediate
return option. The record length is 60 words, and the
address of the user's data area is BUFF.

IM EQU 1 (Immediate return)

BIN EQU 0 (System binary mode)

MT EQU 4 (LUN assigned to
magnetic-tape unit)

RECL EQU 60 (Record length 60 words)

MTRD READ TAPE,MT,IM,BIN

TAPE DCB RECL, BUFF (Data control block)
BUFF BSS 60 (User data area)

Note that the READ macro had a mode value of zero. Since
this is the default value, the macro could have been coded:

MTRD READ TAPE , MT, IM

3.5.4 WRITE Macro

This macro takes a record of specified length from the
specified area of main memory, and transmits it to the
specified logical unit. The macro has the general form

label WRITE cb,lun,wait. mode

where the parameters have the same definitions and take
the same values as in the READ macro (section 3 5.3).

The number of wo the 110

macrg, The first byte of each print line is treated as a print
control character and not echoed when outputting to a
listing device.

Example: Obtain a system binary record 60 words In
length from the user's data area BUFF, and transmut it to
logical unit 16, a magnetic-tape unit. Use the immediate
return option.

IM EQU 1 (Immediate return)

BIN EQU 0 (System binary mode)

MT EQU 16 (LUN assigned to magnetic
tape unit)

RECL EQU 60 (Record fength 60 words)

MTWT WRITE TAPE ,MT, IM,BIN

TAPE DCB RECL,BUFF (Data control bilock)
BUFF BSS 60 (User data area)

311

INPUT/OUTPUT CONTROL

3.5.5 REW (Rewind) Macro

This macro, which applies only to magnetic-tape or
rotating-memory devices, repositions the specified logical
umt to the beginning-of-unit position. It has the general
torm

tabel REW cb lun,wait
where
cb 1s the address of the FCB or DCB, which
1S oplronal
lun 1s the number of the logical unit being
rewound
wait is 1 for an immediate return, or O

(default vaiue) for a return suspended
until the /015 complete

Note that the DCB address i1s an optional parameter, but
that the FCB address is mandatory.

To reposition a named file on an RMD, use the OPEN
macro (section 3.5.1).

Magnetic-tape devices: REW rewinds the specified unit
and. upon successful compietion of the task, returns a
beginning-of-device (BOD) status.

Rotating-memory devices REW places the start.-RMD
partition and end-RMD-partition addresses in words 5 and
6, respectively, of the FCB (section 3.5.11)

Examples: Rewind logical unit 23, a magnetic-tape unit.
Use the wait option, here specified by default

MT EQU 23
tape unit)

REWT REW , MT

Rewind logical unit 10, an RMD partition. Use the wait
option, here specified by default. Note that the REW for an
RMD must have an associated FCB (section 3.5.11).

DISC EQU 10 (LUN assigned to RMD
partition)

RECL EQU 120

REWD REW FCB,DISC

FCB FCB RECL,BUFF,,,'SY','ST‘,‘EM'

(section 3.5.11)
BUFF BSS 120

312

(LUN assigned to magnetic

3.5.6 WEOF (Write End of File) Macro

This macro writes an end of file on the specified logical
unit. It has the general form

label WEOF cb,lun,wait
where
cb 1s the address of the control block
lun 1s the number of the affected logical unit
wait 15 1 for an immediate return, or Q

(default value) for a return suspended
until the 170 is complete

Example: Wnite an end of file on logical untt 10. Use the
wait option, here specified by defauit.

TAPE EQU 10

EQF WEOF CB, TAPE

3.5.7 SREC (Skip Record) Macro

This macro, which applies only to magnetic-tape, card
reader, or rotating-memory devices, skips one record in
either direction or the specified logical unit. it has the
general form

Iabel SREC cb,lun.wa:l,rﬁode
where

cbh 1s the address of the control block

lun 1s the number of the logical unit being
manipulated

wait 1is 1 for an immediate return, or 0
(default value) for a return suspended
until the 1/0 s complete

mode specifies the direction of the skip: 0

(default vatue) for a forward skip, or | for
a reverse skip. Reverse skip does not
apply to the card reader.

It applied to an RMD, SREC adds or subtracts from the
value of word 3 of the FCB (section 3.5.11).

If an attempt 1s made to apply this macro 10 a device other

mmagnetic-tape or rotating-memory unit, the /0
request is processed internally by the I0C but not by an
170 driver. The 10C indicates the status as 1/0 complete

Example: Skip back one record on logical unit 57, a
magnetic-tape unit. Use the immediate-return option.

MT EQU 57 (LUN assigned to magnetic-
tape unit)

REV EQU 1 (Reverse)

IM EQU 1 (lmmediate return)

SKIP SREC

CB,NMT, IM,REV

.

3.5.8 FUNC (Function) Macro

This macro performs a miscellaneous function on a
specified logical unit. The function (when.present) cannot
be defined by any of the preceding /0 control functions.
The macro has the general form

label FUNC deb,lun,wait
where
dcb is the address of the data control block
un is the number of the logical unit being
manipulated
wait is 1 for an immediate return, or O

(default value) for a return suspended
until the /0 is complete

FUNC causes certain 1/0 drivers to perform special
functions specified by the function code fun in a DCB
macro (section 3.5.10):

Function
1/0 Driver Code Function
Card punch 0 Eject blank card
Paper-tape punch 0 Punch 256 blank frames
for leader
Line printer and 0 Advance paper to top of
Teletype printer next form, or on Tele-
type 3 lines x
1 Advance paper one line
Advance paper two lines
Statos 31 7 Advance paper to bottom
of form
8 Normal print size*
9 Large print size*

*Only for software character generator.

INPUT/QUTPUT CONTROL

Function
1/0 Driver - Code Function
Statos 31/42 00 Advance paper to top

of form

01 Advance paper one line

02 Advance paper two lines

07 Advance paper to bottom
ot form

08 Step plotter one raster
line

10 Select small/upright

11 Small/ +90 degrees

12 Small/ 180 degrees

13 Small/ -90 degrees

i4 Large/upright

15 Large/ + 90 degrees

16 Large/ 180 degrees

17 Large/~90 degrees

20 Cut paper

21 End cut

Plot data may be transmitted to the Statos 31 by specifying
unformatted mode, 3, in the WRITE macro. Each 1 bit will
cause a dot to be printed in its corresponding position in
the output line. The most significant bit in the first word
output represents the left-most dot position.

Statos 31/42 The WRITE macro enables the transfer
of one data buffer to the printer/
plotter and allows for five different
modes of operation:

Mode 1 -~ Compatible line printer
(70-6701) mode

Mode 3 - Plot (raster) mode (binary
raster data transfer)

Mode 4 -~ Print mode selectabie size
and orientation

Mode 5 - Simultaneous print/plot
mode (ASCIi data transfer)

Mode 6 - Simultaneous print/plot
mode (binary raster data)

ANl other modes default to mode 1.

It an attempt is made to apply the FUNC macro to any
other device, the 170 request is processed internally by the
{OC but not by an (/0 driver. The 10C indicates the status
as |/0 complete.

313

INPUT/OUTPUT CONTROL

Example: Skip two lines on the printer, which 1s logical
unit 5. Use the wait option, here specified by default.

LP EQU ’ 5 (LUN assigned to line

CNT EQU 2 printer) (Paper-tape
channel 2)

UpPSP FUNC DCB,LP

DCB DCB + 1 CNT

3.5.9 STAT (Status) Macro

This macro examines the status word in an 1/0 macro to
determine the result ot an 1/0 function request. The STAT
macro has the general form

label STAT req,err,aaa bbb, busy
where

req is the agdress of the 10 macro (e.g.,
READ)

err is the address of the 1/0-error routine

aaa is the address of the end of file,
beginning of device. or beginning of
tape routine

bbb is the address of the end of device or
end of tape routine

busy is the address of the 1/0-not-compiete

routine

All parameters (except the label) are mandatory. The
contents of the overflow indicator and the A and B registers
are saved. Upon normal completion, control returns to the
user at the first word after the end of the macro expansion.

CAUTION

Foreground tasks should not loop to check for
completion of 1/0 tasks because this inhibits ali
lower-level tasks.

Example: Rewind logical unit 12, a magnetic-tape unit,
and check for beginning of device (load point). Use the
immediate-return option.

MT EQU 12 (LUN assigned to magnetic-
tape unit)

IM EQU 1 (Immediate return)

REW REW ,MT,IM (DCB can be omitted

for REW)

BUSY STAT REW, ERR, BOT, EQT, BUSY

BOT

ERR

3.5.10 DCB (Data Control Block) Macro

This macro generates a DCB as required by I/0 macro
requests to devices other than RMDs. Note that not all
such requests (e.g., rewinding a magnetic-tape unit)
require a DCB. The macro has the general form

label DcB rl,buff,fun

where

rl is the length, in words, of the record to
be transmitted

butt is the address of the user's data area

fun is the function code for a FUNC request
and is unused for other requests (section
3.58)

Example: Read a record from logical unit 4, a magnetic-
tape unit. Use system binary mode and the immediate-
return option. The record length is 60 words, and the
address of the user’s data area is BUFF.

M EQU 1 (Immediate return)

BIN BQU 0 (System binary mode)

MT BQU 4 (LUN assigned to magnetic-
tape unit)

RECL EQU 60 (Record length 60 words)

MTRD READ TAPE ,MT,IM,BIN

TAPE DCB
3.5.11 FCB (File Control Block) Macro

This macro generates an FCB required by any /0 macro
request to an RMD. The macro has the generai form

RECL, BUFF (Data contro! block)

where

rl

buff

acc

key

xxyyzz

Word

FC8 rl,butf,acc key, 'xx'.'yy', ‘2z’

is the length, in words, of the record to
be transmitted

is the address of the user’s data block

specifies the access method and is 0
(defauit value) for the direct access by
fogical record, 1 for sequential access
by logical record, 2 for direct access
using the relative sector number
(beginning with 1) within the file, or 3 for
sequential access using the relative
sector number within the file

is the protection code, if any, required to
address that logical unit. This is a single
alphanumeric ASCHl character coded
between single quotation marks (e.g.,
the protection code H would be coded
'H') or as the eight-bit octal equivalent,
in which case no quotation marks are
used (e.g., 0310 for the protection code
H). The default vailue is binary zero (not
the character 0).

is the name of the file being referenced.

INPUT/OUTPUT CONTROL

by commas, e.g., the file named ARRIBA
is coded ' AR' ,'RI' | ' BA' . Embedded
blanks are itiegal.

Table 3-3 shows the use of FCB words 3, 4, 5, and 6 for the
170 macros.

Example: Create an FCB for the file FILEXX. Use the
logical-record-oriented, sequential-access method with a
record length of 120 words. The user's data area is BUFF
and the protection code is Z.

SEQR EQU 1 (Sequential, record-
oriented access)
RECL EQU 120 (Record iength 120
. words)
DISC FCB RECL,BUFF,SEQR, '%',
. 'FI','L!','XX'
BUFP BSsS 120

Note that the protection code character Z is coded between
single quotation marks, i.e., 'Z', but it can also be coded as
the octal vaiue of the ASCIl character, in which case no
quotation marks are used, i.e., 0332. Thus, the statement
given in the example above is equivalent to

The file name is one to six ASCit DISC FCB RECL, BUFF, SEQR,
characters, coded in pairs between 0322,'FPI','LB', "XX'
single quotation marks and separated
Table 3-3. FCB Words Under {/0 Macro Control
OPEN READ WRITE CLOSE REW
Sequential-Access Method
Set to Incre- incre- Adds or Put into Current
position ments ments subtracts position record set
of cur- record record of file (directory
rent rec- number number on direc- partition)
ord by by one by one tory by to one or
mode mode beginning
chosen chosen address of
logical
unit (non-
directory
partition)
Set to Checks No Checks Cleared Set to
current end of action end of ending
position file file address
of file of logi-
as noted cal unit
on direc-
tory

315

INPUT/OUTPUT CONTROL

Tabie 3-3. FCB Words Under 1/0 Macro Control (continued)

Word OPEN

5 Set to
beginning
of file
address
put in
this word

6 Set to
end of
file ad-
dress

3 Set to
position
of cur-
rent rec-
ord by
mode
chosen

4 Set to
current
position
of file
as noted
on direc-
tory

5 Set to
beginning
of file
address

6 Set to
end of
file ad-
dress

3-16

READ

No
action

No
action

No
action

No
action

No
action

No
action

WRITE

No
action

No
action

SREC CLOSE
No Cleared
action

No Cleared
action

Direct-Access Method

No
action

No
action

No
action

No
action

No Put into

action position
of file
on direc-
tory by
mode
chosen

No Cleared

action

No Cleared

action

No Cleared

action

Set to
beginning
address
of logi-
cal unit
(non-
directory
partition)

Set to

ending
address
of logi-
cal unit

Current
record set
(directory
partition)
to one or
beginning
address of
logical
unit (non-
directory
partition)

Set to

ending
address
of logi-
cal unit

Set to
beginning
address
of logi-
cat unit
(non-
directory
partition)

Set to

ending
address
of logi-
cal unit

REW

Skip first
directory
sector
(directory
partition)

Skip first
directory
sector
(directory
partition)

SECTION 4
JOB-CONTROL PROCESSOR

The job-control processor (JCP) is a background task that
permits the scheduling of VORTEX system or user tasks for
background execution. The JCP also positions devices to
required files, and makes logical-unit and 1/0-device
assignments.

4.1 ORGANIZATION

The JCP is scheduled for execution whenever an unsolicited
operator key-in request to the OC logical unit has a slash
(/) as the first character.

Once inttiated, the JCP processes all further JCP directives
from the S! logical unit.

If the St logical unit is a Teletype or a CRT device, the
message JC** is output to indicate the S| unit is waiting
tor JCP input. The operator is prompted every 15 seconds
(by a bell for the Teletype or tone for the CRT) until an
input 1s keyed in.

it the Si logical unit is a rotating-memory-device (RMD)
partition, the job stream is assumed to comprise unblocked
data. In this case, processing the job stream requires an
/ASSIGN directive (section 4.2.6).

A JCP directive has a maximum of 80 characters,
beginning with a slash. Directives input on the Teletype are
terminated by the carriage return.

Alt JCP directives are echoed to the SO logical unit if S| »
SO. All directives, except /C and /P have the time of day
append onto the front of the directive when echoed to SO.
The format is

HH:MM:SS /JCP directive

4.2 JOB-CONTROL PROCESSOR DIRECTIVES
This section describes the JCP directives:

a. Job-initiation/termination directives:

/JOB Start new job

/ENDJOB Terminate job in progress
/FINI Terminate JCP operation
/C Comment

/P Pause

/MEM Allocate extra memory for

background task

b. 1/0-device assignment and control directives:

/ASSIGN Make logical-unit assignment(s)
/SFILE Skip file(s) on magnetic-tape unit

/SREC Skip record(s) on magnetic-tape unit
or RMD partition

/WEOF Write end-of-file mark

/REW Rewind magnetic-tape unit or RMD
partition

/PFILE Position rotating memory-unit file

/FORM Set line count cn LO logical unit

/KPMODE Set keypunch mode

/OPEN Open VTAM line or terminal

/CLOSE Close VTAM line or terminal

/CFILE Close file on global logical unit

c. Language-Processor directives:

/DASMR Schedule DAS MR assembler
/FORT Schedule FORTRAN compiler

d. Utility directives:

/CONC Schedule system-concordance program
/SEDIT Schedule symbolic source-editor task
/FMAIN Schedule file-maintenance task
/LMGEN - Schedule load-module generator
/IOUTIL Schedule 170-utility processor

/SMAIN Schedule system-maintenance task

e. Programioading directives:

/EXEC Schedule loading and execution of a
load-modute from the SW unit file
/LOAD Schedule loading and execution of a

user background task

/ALTLIB Schedule the next background task
from the specified logical unit
rather than from the background
library

/DUMP Dump background at compietion ot
task execution

JCP directives begin in column 1 and comprise sequences
of character strings having no embedded blanks. The
character strings are separated by commas (,) or by equal
signs (=). The directives are free-form and blanks are
permitted between the individual character strings of the
directive, i.e., before or after commas (or equal signs).
Aithough not required. a period (.) is a line terminator.
Comments can be inserted after a period.

Each JCP directive begins with a slash (/).

The general form of a job-controi statement is

/name,p(l1),p(2). .p(m

4.1

JOB-CONTROL PROCESSOR

where
name is one of the directive names given (any
other character string produces an
error)
each p(n) is a parameter required by the JCP or by

the scheduled task and defined below
under the descriptions of the individual
directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of some directives,
optional periods, optional blank separators between

character strings, and the optional replacement of commas
by equal signs are omitted from descriptions.

Error messages applicable to JCP directives are given
Appendix A.4.

4.2.1 /JOB Directive*
This directive initializes all background system pointers

and flags, and stores the job name if one is specified. It
has the general form

/JOB,.name
where name is the name of the job and comprises up to
eight ASCI characters (additional characters are permitied
but ignored by the JCP).

The job name, if any, is then printed at the top of each
page for all VORTEX background programs

The occurrence of the /JOB directive causes the scheduling
of the background task V$ACT1. VSACT! s a dummy task
on BL which only performs an EXIT. However, VSACT1 may

be replaced by a user task to perform any desired
accounting function.

Example: Initialize the job TASKONE.

/30B, TASKONE

4.2.2 /ENDJOB Directive®

This directive initializes all background system pointers
and flags, and clears the job name. it has the form

/ENDJOB

42

The occurrence of the /ENDJOB directive causes the
scheduling of the background task VSACT2. VSACT? is a
dummy task on BL which only performs an EXIT. However,
V$ACT2 may be replaced by a user task to perform any
desired accounting function.

Example: Terminate the job in process.

/ENDJOB

4.2.3 /FINI (Finish) Directive*

This directive terminates all JCP background operations
and makes an EXIT request to the real-time executive RTE
component (section 2.1.11). i1t has the form

/FINI

To rescheduie JCP after a FINI, input any JCP directive
from the OC unit

The occurrence of the /FINI directive causes the scheduling
of the background task VSACT3. V$ACT3 is a dummy task
on BL which only performs an EXIT. However, VSACT3 may
be replaced by a user task to perform any desired
accounting function.

Exampie: Terminate JCP operations.

/FINI

* The JCP directives JOB, ENDJOB, and FINI reset ali
logical units and tabie 1 units to their default (system)
values. JOB and ENDJOB do not set the S logical unit.

4.2.4 /C (Comment) Directive

This directive outputs the specified comment to the SO and

LO logical units, thus permitting annotation of the listing. It

is not otherwise processed. It has the general form
/C,comment

where comment is any desired free-form comment.

Example: Annotate a listing with the comment Rewind all
mag tapes.

/C,REWIND ALL MAG TAPES

4.2.5 /MEM (Memory) Directive

This directive assigns additional 512-word blocks of mamn
memory to the next scheduled background task. It has the
general form

/MEM,n

where n is the number of 512-word blocks of main memory
to be assigned.

/MEM permits larger symbol tables for FORTRAN compila-
tions and DAS MR assemblies.

The total area of the 512-word blocks of memory plus the
background program itself cannot be greater than the total
area availabie for background and nonresident foreground
tasks. An attempt to exceed this timit causes the scheduled
task to be aborted.

Example: Allocate an add:tiona! 1024 words of main
memory to the next scheduied task.

/MEM, 2

4.2.6 /ASSIGN Directive

This directive equates and assigns particular logical units
to specific 1/0 devices. It has the general form

/ASSIGN, K1) =r(1).1(2) =1(2), . W(n)=r(n)

where

each Kn) is a logical-unit number (e.g., 102)
or name (e.g., SI)

each r(n) 1s a logical-unit number or name, or

a physical-device system name (e.g.,
TYQO, table 17-1)

The logical unit to the left of the equal sign in each pair is
assigned to the unit/device to the right.

If the controlier and unit numbers are omitted from the
name of a physical device, controller 0 and unit O are
assumed.

An inoperable device, i.e., one declared down by the
;DEVDN operator key-in request (section 17.2.10), cannot
be assigned. A logical unit designated as unassignable
cannot be reassigned.

Example: Assign the Pl logical unit to card reader CROO
and the LO logical unit to Teletype TY0O

/ASSIGN,PI=CR,LO=TY

JOB-CONTROL PROCESSOR

4.2.7 /SFILE (Skip File) Directive

This directive, which applies only to magnetic-tape units
and card readers, causes the specified logical unit to move
the tape forward the designated number of end-of-file
marks. It has the general form

/SFILE lun,neot

where

lun 15 the number or name of the
affected logical unit

neof is the number of end-of-file

marks to be skipped

It the end-of-tape mark 1s encountered betore the required
number of files has been skipped. the JCP outputs to the
SO and LO logical units the error message JCO5,nn. where
nn is the number of files remaining to be skipped.

Example: Skip three tiles on the Bl logical unit.

/SFILE,BI1,3

4.2.8 /SREC (Skip Record) Directive

This directive, which apphes only to magnetic-tape units,
card readers, and RMDs, causes the specified iogical unit
to move the tape the designated number of records in the
required direction. In the case of RMDs, word 4 of the FCB
is adjusted the appropriate number of records. It has the
general form

/SREC lun,nrec direc

where

lun ts the number or name of the
affected logical unit

nrec is the number of records to be
skipped

direc indicates the direction to be

skipped; F (default value) for
forward, or R for reverse.
Reverse skip does not apply to
the card reader.

it a file mark. end of tape, or beginning of tape s
encountered before the required number of records has
been skipped, the JCP outputs to the SO and LO logical
units the error message JCOS5,nn, where nn is the number
of records remaining to be skipped.

o
W

JOB-CONTROL PROCESSOR

Example: Skip nine records forward on the BO logical
urnt.

/SREC,BO, 9

4.2.9 /WEOF (Write End of File)
Directive

This directive writes an end-of-file mark on the specitied
logical unit. it has the generai form

/WEOF lun

where lun is the number or name of the affected logical
unit. (Not accepted for RMD.)

Example: Write an end-of-tile mark on the BO logical unit.

/WEOF , BO

4.2.10 /REW (Rewind) Directive
This directive, which applies only to magnetic-tape units

and RMDs, causes the specified logical unit(s) to rewind to
the beginning of tape. it has the general form

/REW un,lun, . fun
where lun is the number or name of a logical unit to be
rewound.
Example: Rewind the BO and PI logical units.

/REW, BO,PI

4.2.11 /PFILE (Position File) Directive

This directive, which applies only to RMDs and MT
assigned to global logical units causes the specified logical
unit to move to the beginning of the designated file. It has
the general form

/PFILE, lun,key,name
where
fun is the number or name of the
aftected logical unit. The
logical unit must be one of

the system defined logical
units which has a global FCB

44

key is the protection code required
to address lun

name is the name of the file to which
the logical unit is to be
positioned

Global file control blocks: There are eight giobal file
control blocks (FCB, section 3.5.11) in the VORTEX system
that are reserved for background use. System background
and user programs can reference these global FCBs. The
/PFILE directive stores key and name in the corresponding
FCB before opening/rewinding the logical unit. To pass the
buffer address and size of the record to the corresponding
logical-unit FCB, make an RTE IOLINK service request
(section 2.1.13). The names of the global FCBs are SIFCB,
PIFCB, POFCB, SSFCB, BIFCB, BOFCB, GOFCB, and
LOFCB, where the first two letters of the name indicate the
logical unit.

/PFILE lun key, name

where

lun is the number or name of the atfected
logical unit. The logical unit must be one
of the system defined logical units which
has a global FCB

key is the protection code required to
address lun

name 1s the name of the file to which the

logical umit is to be positioned

Global file control blocks: There are eight global file
control blocks (FCB, section 3.5.11) in the VORTEX system
that are reserved for background use. System background
and user programs can reference these global FCBs. The
/PFILE directive stores key and name in the corresponding
FCB before opening/rewinding the logical unit. To pass the
buffer address and size of the record to the corresponding
logical-unit FCB, make an RTE IOLINK service request
(section 2.1.13). The names of the global FCBs are S/IFCB.
PIFCB, POF(LB. SSFCB. BIFCB, BOFCB. GOFCB, and
LOFCB, where the first two letters of the name indicate the
logical unit.

Example: Position the P! logical unit to beginning of file
FILEXY, whose protection key is $

/PFILE,PI,$, FILEXY

4.2.12 /FORM Directive

This directive sets the specified hine count on the LO logical
unit. This is the number of lines printed by DAS MR

assembler or FORTRAN compiter before a top of form is
issued. The directive has the general form

/FORM lines

where tines is the number (from 5 to 9999, inclusive) of
iines to be printed before a top of form is 1ssued.

The default value of lines is defined at system-generation
time. If the directive contains a value outside the legal
range, the default value is used.

Example: Set a line-count value of 100.

/FORM, 100

4.2.13 /KPMODE (Keypunch mode)
Directive

This directive specifies the mode, 026 or 029, (BCD or

EBCDIC respectively) in which VORTEX is to read and
punch cards. It has the general form

KPMODE,m

where m s O for 026 mode, or 1 for 029 mode

Example: Specify that cards be read and punched in 029
keypunch mode.

/KPMODE, 1

4.2.14 /DASMR (DAS MR Assembler)
Directive

This directive schedules the DAS MR assembler (section
5.1) with the specified options for background operation on
priority level 1. It has the general form

/DASMR,p(1).p(2). ..p(n)

where each p(nj}, 1f any, 15 a single character specitying one
of the foillowing options:

Parameter Presence Absence

B Suppresses binary Output binary object
object

L Cutputs binary Suppresses output of
object on GO file binary object on GO

file

M Suppresses symbol- Output symbol-tabie
table histing listing

N Suppresses source Outputs source

hsting listing

JOB-CONTROL PROCESSOR

Parameter Presence Absence
\ E Assembles V75 Flags V75 extended
] extended instru instructions with
ctions. "*OP error’.
| Flags implicit Assembles implicit

indirect instru- indirect instructions
uctions with

“*il error’

The /DASMR directive can contain up to four such
parameters in any order.

The DAS MR assembler reads source records from the Pl
logical unit on the first pass. The PiI unit must have been
set to the beginning of device before the /DASMR directive
This can be done with an /ASSIGN (section 4.2.6), /SFILE
(section 4.2 7), /REW (section 4.2.10), or /PFILE (section
4.2.11) directive.

A load and-go operation requires, in addition, an EXEC
directive (section 4.2.22)

Example: Schedule the DAS MR assembler with no source
listing, but with binary-object output on the GO file.

/JOB,EXAMPLE
/PFILE,BO, ,BO
/DASMR,N,L

JOB initializes the GO file to start of file. If BO is assigned
to a rotating memory partition, a /PFILE.BO,,BO must pre-
cede the /DASMR directive to initialize the file (uniess the
assembly 1s partof a stacked job - see section 4 3 for sample
deck setup).

4.2.15 /FORT (FORTRAN Compiler)
Directive

This directive schedules the FORTRAN compiler (section
5.3) with the specified options for background operation on
priority level 1. It has the general form

/FORT p(1).p(2). .p(n)

where each p(n). if any, 1s a single character specifying one
of the following options:

Parameter Presence Absence
B Suppresses binary Output binary object
object
D Assigns two words Assigns one word to

to integer array
items and to inte
ger and logical
variables (ANSI
standard)

integer array items
and to integer and
logical variables

JOB-CONTROL PROCESSOR

Parameter

H

Presence

Generate code

using Floating

Point Processor
(FPP)

Outputs binary
object on GO file

Absence

Generate no FPP
instructions

Suppresses output of
binary object on GO
file

M Suppresses symbol Outputs symbol-table
table listing histing

N Suppresses source Outputs source
listing histing

o} Outputs object Suppresses object-
module listing module listing

X Compiles condi Compiles normally
tionally

F Generates code Generates subroutine

with calls to
faster firmware
routines (see
section 202)

calls

The /FORT directive can contain any or all such parame-
ters in any order.

Sampile deck formats are itlustrated in section 4.3.

The FORTRAN compiler reads source records from the Pl
logical unit. The Pt unit must have been set to the
beginning of device before the /FORT directive. This can be
done with an /ASSIGN (section 4.2.6), /SFILE (section
42.7). /REW (section 4.2.10), or /PFILE (section 4.2.11)
directive.

A load-and-go operation requires, in addition, an /EXEC
directive (section 4.2.22)

Example: Schedule the FORTRAN compiler with binary
object, source, symboltable, and object-module
istings, normal compilation; and no binary-object output
un the GO file.

/FORT, O

4.2.16 /CONC (System Concordance)
Directive

This directive schedules the system concordance program
(section 5.2) for background operation. it has the form

/CONC,L

46

where L is an optional parameter to request that all
symbols in a source program be listed. Normally, CONC
only lists those symbols which were referenced.

The concordance program inputs from the SS logical unit
and uses the same source statements that are input to the
DAS MR assembiler. it outputs to the LO logical unit a
hsting of all symbols and their referenced locations in the
same mput program

The SS unit is set to the beginning of device before the
/CONC directive.

Example: Schedule the system concordance program.

/ASSIGN,PI=MT00
/REW,PI

/DASMR
/PFILE,SS,,SS
/CONC, L

4.2.17 /SEDIT (Source Editor)
Directive

This directive schedules the symbolic source editor (section

8) for background operation on priority level 1. It has the
form

/SEDIT
Schedule the symbolic source editor

Example:

/SEDIT

4.2.18 /FMAIN (File Maintenance)
Directive

This directive schedules the file maintenance task (section
9) for background operation on priority levet 1 It has the
form

/FMAIN
Schedule the file maintenance task

Example:

/FMAIN

4.2.19 /LMGEN (Load-Module Generator)
Directive

This directive schedules the load-module generator (section
6) for background operation on priority level 1 A memory
map 1s output unless suppressed The directive has the
general form

/LMGENM

where M, if present, suppresses the output of a memory
map

Example: Schedule the load module generator lask with
out a memory map.

/LMGEN , M

4.2.20 /IOUTIL (1/0 Utility) Directive

This directive schedules the 170 utility processor (section
10) for background operation on priority level O. The
directive has the form

/10UTIL
Example: Schedule the 1/0 utility processor.

/I0UTIL

4,2.21 /SMAIN (System Maintenance)
Directive

This directive schedules the system maintenance task
(section 16) for background operation on priority level 1.
The directive has the form

/SMAIN
Example: Schedule the system maintenance task

/SMAIN

4.2.22 /EXEC (Execute) Directive

This directive schedules the load-module loader to load and
execute a load module from the SW logical unit file. Add
LMGEN and GO usage since this is not a VORTEX system
task, execution is on priority level 0. The directive has the
general form

/EXEC,D

Where D, if present, dumps all of the background upon
completion ot execution. The dump format consists of eight
memory locations per line. Both octal and ASCII represen-
tation appear in the dump. During ASCIl dump non-ASCIi
characters appear as blanks. ASCHl dump is suppressed if
dump i1s to a TY or CT device.

The dump format consists of eight memory locations per
line as follows

JOB-CONTROL PROCESSOR

XXXXXX AAAAAA BBBBBB . HHHHHH

where XXXXXX is the starting memory address location of
the eight following data words and AAAAAA through
HHHHHH are the octal values of those locations. The
occurrence of an asterisk between two lines indicates that
all dump lines between those lines have the same value as
the previous line.

/EXEC can be used to create a load module (named SW)
on the SW logical unit and then schedule i1, or to execute
an existing load module on the SW logical unit. The action
taken depends on the setting of bit 2 of the low core flag
V$JCPF. if the bit is set. LMGEN is scheduled to read
binary from the GO logical unit and catalog the task on SW
f the bit is not set, the current load module on SW s
executed. This bit is set by perforrming a “'load and go”
assembly or compulation using the 'L option flag. This bit
is cleared by the loading of any background program.
(Note: JCP directives which do not load tasks, for
example, /ASSIGN, /PFILE, do not clear this bit.). The load
module on SW may be executed at anytime until SW s
modified (i.e., another load and-go, LMGEN, COMSY. or any
other task that writes to SW).

Example: Schedule the loading of a user icad module
from the SW unit file without a background dump

/EXEC

Schedule a FORTRAN load and go operation

/FORT, L
/EXEC

When a dump has been specified the dump wili be output
to the tist Output unit after the task exits or i1s aborted
Once the dump has started, it may be terminated by use of
the Operator Communication ;ABORT. When the dump is
aborted in this manner, it is required that the executing
task be aborted by a previous action

Example:

/EXEC,D Executes a load module
from SW unit tile re
questing background
dump on exit

3} ABORT, SW Causes the task to abort
and dump the background

; ABORT, JPDUMP Causes the background
dump to be aborted

; ABORT, SW Causes the task to be

released and JCP to be
reloaded

JOB-CONTROL PROCESSOR

4.2.23 /LOAD Directive

This directive schedules a user task, which must be present
in the background fibrary or alternate library, for back
ground execution on priority level 0. The directive has the
general form

/LOAD,name,p(1).p(2). .p(3)

where
name is the name of the user task being
scheduied
each p(n) is a parameter required by the user
(it any) task

tach parameter specified, if any, will be in the job-controt
buffer when the user task is scheduled. The parameter
string, which can extend to the end of the 80-character
buffer, will appear in the buffer exactly as it does in the
input directive. The address of the first word of the
parameter string is in location V$JCB.

Example: Schedule the user task TSKONE with parame-
ters ALPHAL and ALPHA?2

/LOAD, TSKONE , ALPHA 1, ALPHA2

4.2.24 /ALTLIB (Alternate
Library) Directive

This directive replaces the background hbrary with the
specified alternate library unit as the unit from which a
background task is to be loaded The directive has the
general torm:

/ALTLIB lun key

where

un 1s the number or name of the
alternate library logical unit

key s the protection code required

to address tun

This directive affects the ioading of the next task which
would normally be loaded from the background ibrary. It
affects the loading of VORTEX language processors and
utility tasks in addition to user tasks loaded with the . LOAD
directive.

"t has no effect on a /EXEC directive. After execution of the
background task, the background library is restored as the
logical unit from which background tasks are to be loaded.

4-8

Example: Schedule the user task TSKONE from logical unit
25, protection key N

/ALTLIB, 25,N
/LOAD, TSKONE

4.2.25 /DUMP Directive

This directive causes all of background to be dumped upon
completion of execution of a task executed from the
background tibrary or an alternate library. The dump
format is the same as the format for /EXEC.D (see section
4.2.22).

Example: Scheduie the execution of user task TSKONE with
a dump at completion of execution

/DUMP
/LOAD, TSKONE

4.2.26 /CFILE Directive

This directive, which applies only to RMDs and MTs
assigned to global logical units, causes the designated file
on the logical unit to be ciosed with update. It has the
general form

/CFILE lun key,name

where
lun 1s the name or number of the a*fected
logical unit. The logical unit must be
one of the global fogical units
key 1s the protection code required to
address lun
name is the name of the file on lun to

be closed with update.

Exampie: Close the file FILEA on logical unit PO with no
protection code.

/CFILE PO, FILEA

4.2.27 /DBGEN (Data Base Generator) Directive

This directive schedules the Data Set Generator Program

(see TOTAL Manual for more detailed information) for

background operation on priority level 1. {t has the form
/DBGEN

Example: Schedule the Data Base Generator for TOTAL

/DBGEN

4.2.28 /PLOAD Directive

This directive schedules a user task, which must be present
in the background library or alternate library, for back
ground execution on priority ievel 1. The directive has the
general form

/PLOAD xxxxxx,p(1),p(2). .p(n)
where

AXXXXX is the name of the user task being
scheduled. The name must not con-
tain numeric characters.

p(n) is a parameter required by the user
task.

tach parameter specified, if any, will be in the job-control
hutter when the user task is scheduled. The parameter
string, which can be extended to the end of the 80
character buffer, will appear in the butfer exactly as it does
in the input directive. The address of the first word of the
parameter string is in location V$JCB.

4.2.29 /FMUTIL Directive

This directive causes files, directories, and/or partitions to
be dumped or loaded from RMD's or magnetic tapes, and
schedules the file maintenance utility (section 21) for
background operation on priority level 1. The directive has
the form

/FMUTIL
Examples: Schedule File Maintenance Utility.

/PMUTIL

4.2.30 /RPG (RPG Il Compiler) Directive

This directive schedules the RPG ! compiler (section 55)
with the specified options for background operations on
priority level 1. It has the general form

/RPG,p(1),p(2).. .p(n)
where

p(n) is a single character specifying one
of the following options:

JOB-CONTROL PROCESSOR

Parameter Presence Absence
B Suppresses binary Output binary object.
object.
[0} Include RPG debug Suppress debug features.
features in object
module.
t Outputs binary Suppresses output of

object on GO file.

M Suppresses symbol Outputs symbol table
tabie listing. listing.

N Suppresses source Outputs source listing.
listing.

The /RPG directive can contain up to five such parameters
in any order.

Sample deck formats are illustrated in section 4 3
The RPG Il compiler reads source records from the Pl
logical unit. The P!{ unit must have been set to the
beginning of device before the /RPG directive. This can be
done with an /ASSIGN (section 4.2.6), /SFILE (section
4.2.7), /REW (section 4.2.10), or /PFILE (section 4.2.11)
directive.
Example: Schedule the RPG tI compiler with binary object.
source, and symbol-table listings; normal compilation; and
no binary object output on the GO file.

/RPG

Example: Schedule RPG 1! for normal compilation but with
binary object output on the GO file instead of the BO file.

/RPG,L,B

4.2.31 /P (Pause) Directive

This directive outputs the specified comment to the SO and

LO logical units and then causes JCP to be suspended. in

addition to the specified comment. instructions are output

to SO on how to resume JCP. It has the general form
/P,comment

where

comment is any desired free-form
comment

Example: Request that the current job requires MT = 800
on MTO0O0 before 1t continues.

/P, Mount MT #800 on MTO0O0

binary object on GO file.

JOB CONTROL PROCESSOR

in addition, JCP will output:

Pause~--WHEN READY, TYPE --;RESUME, JCP

4.3 SAMPLE DECK SETUPS

The batch-processing facilities of VORTEX are invoked by
JCP control directives in combination with programs and
data. These elements form the input job stream to
VORTEX. The input job stream can come from various
peripherals and be carried on various media. These
examples illustrate common job streams and deck prepara
tron techniques.

Example 1 - Card Input: Compile a FORTRAN [V main
program (with source listing and octal object listing), and
assemble a DAS MR subprogram. Then load and execute
the linked program

/JOB,EXAMPLE 1
/FORT,L,0

{Source Deck)

/DASMR, L

(Source Deck)

/EXEC
/ENDJOB

Exampie 2 - Card Input: Assemble a DAS MR program
(with source listing and load-and-execute) and generate a
concordance listing. The DAS MR program is cataloged on
RMD partition DOOK under file name USER1 with protec-
tion key U. Assign the P! logical unit to RMD partition
DOOK, open file name USER1 for the assembler, assemble
the program, and execute the program with a dump.

/JOB, EXAMPLE2
/ASSIGN,PI=DOOK
/PFILE,PI,U,USER
/DASMR, L
/PPILE,SS,,SS
/CONC

/EXEC,D

/ENDJOB

Example 3 - Card input: Assemble a DAS MR program
(with source listing and object-module output on the BO
logical unit). Assign the Pl logical unit to magnetic tape
unit MT00, the PO fogical unit to dummy device, the SS
logical unit to the PI logical unit, the BO logical unit to
RMD partition DO0J, and output the object module to file
name USER2 with no protection key. Before assembly,

posttion the Pl logical unit to the third file. Allocate four
additional 512 word blocks for the DAS MR symbol-table
area.

/JOB,EXAMPLE3
/ASSIGN,PI=MT00,PO=DUM,SS=PI,BO=D00J
/REW,PI

/SFILE,PI,2

/PFILE,BO, ,USER2

/MEM, 4

/DASMR

/ENDJOB

Example 4 - Card Input: After generation of a VORTEX
system, use FMAIN to initialize and add object modules to
the object-module library (OM) with protection key D.
Assign the Bi logica! unit to CROO.

/JOB, EXAMPLEY
/ASSIGN,BI=CRO0
/FMAIN
INIT,OM,D
INPUT,BI
ADD,OM,D

(Object Modules)

(2789 EOF Card)

/ENDJOB

Example 5 - Card Input: Load and go operation. Compile a
FORTRAN IV main program, a subprogram and assemble a
DASMR subprogram. Save output on BO. Execute the
linked programs

/JOB,EXAMPLES
/PFILE,BO, ,BO
/FORT,L

.
»
.

{Source deck FORTRAN main program)

{Source deck FORTRAN subprogram)

/DASMR, L
(Source deck DASMR subprogram)

/EXEC
/FINI

SECTION 5
LANGUAGE PROCESSORS

The VORTEX operating system supports three language
processors: the DAS MR assembler (section 5.1), the
FORTRAN IV compiler (section 5.3), and the RPG IV
compiler (section 5.4), plus the ancillary concordance
program (section 5.2.).

5.1 DAS MR Assembler

DAS MR is a two-pass assembler scheduled by job-controt
directive /DASMR (section 4.2.14). DAS MR uses the
secondary storage device urut for pass 1 output. It reads a
source module from the Pl logical unit and outputs it on
the PO umit. The source input for pass 2 i1s entered from
the SS fogical unit.

When an END statement is encountered. the SS unit 1s
repositioned and reread. During pass 2, the output can be
directed to the BO and/or GO units tor the object module
and the LO unit for the assembly listing. The SS or PO file,
which contains a copy of the source module, can be used as
input 10 a subsequent assembly.

A DAS MR symbol consists of one to six characters, the
first of which must be alphabetic, with the rest alphabetic
or numeric. Additional aiphanumeric characters can be
appended to the first six characters of the symbol to form
an extended symbol up to the limit imposed by a single line
of code. However, only the first six characters are
recognized by the assembler.

DAS MR symbols may also be formed from the pound sign,
exciamation mark or dollar sign, in tial and other
positions

Since the DAS MR assembler is used within the VORTEX
system under VORTEX /0 control, the VORTEX user can
specify the desired 1/0 devices. However, the PO and SS
logical units must be the same magnetic-tape unit or RMD
partition. Except when Pi is equal to SS as shown in section
4.3 (example 3).

DAS MR has a symbol-table area for 175 symbols at five
words per symbol. To increase this area, input before the
/DASMR directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
100 symbols

A VORTEX physical record on an RMD is 120 words. Source
records are blocked three 40-word records per VORTEX
physical record, and object modules are blocked two 60
word modules per record. However, in the case where S| =
Pl = RMD, records are not blocked but assumed to be one
per VORTEX physical record. When an input file contains
more than one source module each new source module
must start at a physical record boundary. Unused portions
of the last physical record of the previous source modules
should be padded with blank records. Proper blocking may

be ensured by following the END statement of the previous
source module with two blank records.

Detailed references to the DAS MR assembly language are
given in the appropriate Varian reference manuals (see
section 1.3). These references include descriptions of the
directives recognized by the assembler (table 5-1), except
for the title directive which is discussed below. DAS MR will
assemble the entire V75 extended instruction set if the E
parameter is specified in the /DASMR directive.

Table 5-1. Directives Recognized by the DAS MR

Assembler
BES IFF
BSS IFT
CALL LIST
COMN LOC
CONT MAC
DATA MZ2E
DETL NAME
DUP NLIS
EJEC NULL
END OPSY
EMAC ORG
ENTR PZE
EQU RETU
EXT SET
FORM SPAC
GOTO SMRY

TITLE

Error messages applicable to the DAS MR assembler are
given in Appendix A.5.1

5.1.1 TITLE Directive

This directive changes the htle of the assembly hsting and
the identification of the ohject program It has the general
form

TITLE symbol

where symbol is the new title of the assembly hsting: the
label field being ignored by the assembler. There are a
maximum of eight characters in symbol.

At the beginning of assembler pass 1. the title of the
assembly listing and the identification of the object
program are initialized as blanks. When a TITLE directive
i1s encountered, title and 1dentification assume the symbol
given in the directive.

Examples: Entitle the assembly fisting and object pro
gram NEWTITLE.

TITLE NEWTITLE

Reinitialize the title and 1dentitication, obliterating the ol¢
title.

TITLE

LANGUAGE PROCESSORS

5.1.2 VORTEX Macros

The DAS MR assembler contains macro definitions for the
real-time executive (RTE, section 2.1) and i/0 control (IQC,
section 3.5) macros. Figure 5-1 iliustrates these definitions.

5-2

L IR IR B R 2N 4

READ

L B R K R - B 2

WRITE

S PR

L - 2R B 2R 3R

REW

* B % B % % %

MAC

EXT vV$1I0C

JSR 0404,1

DATA 0100000

FORM 1,3,4,8

P P(1),P(2),P(3),P(4)
DATA P(5),0,0

EMAC

VORTEX READ MACRO DEFINITION
READ DCB,LUN,W M
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.

W = WAIT OPTION

M = I/0 MODE
MAC
M1 P(3),p(u4),0,P(2),P(1)
EMAC

VORTEX WRITE MACRO DEFINITION
WRITE DCB,LUN ,W ,M
WHERE DCB = FPCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.

W = WAIT OPTION

M = I/0 MODE
MAC
M1 P(3),p(4),4,p(2),P(1)
EMAC

VORTEX WRITE END OF FILE MACRO DEFINITION
WEOF DCB,LUN,W

WHERE DCB = PCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.,
, W = WAIT OPTION
MAC ! 3 . '
M1 P(3),0,2,P(2),P(1)
EMAC

VORTEX REWIND MACRO DEFINITION
REW DCB,LUN,W
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.
W = WAIT OPTION
MAC
M1 P(3),0,3,P(2),2(1)
EMAC

VORTEX SKIP RECORD MACRO DEFINITION

SREC DCB,LUN,W, M
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.
W = WAIT OPTION
M = I/0 MODE

Figure 5-1. VORTEX Macro Definitions for DAS MR

SREC

#* % B % BB RESEE R

STAT

* % B ¥ @

DCB

LANGUAGE PROCESSORS

MAC
M1 P(3),P(4),4,p(2),P(1)
EMAC

VORTEX FUNCTION MACRO DEFINITION
FUNC DCB,LUN,W
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.
W = WAIT OPTION
MAC
M1 P(3),0,5,P(2),p(1)
EMAC

VORTEX OPEN MACRO DEFINITION
OPEN FCB,LUN,W M
WHERE FCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.

W = WAIT OPTION

M = 1/0 MODE
MAC
M1 P(3),P(4),6,P(2),P(1)
EMAC

VORTEX CLOSE MACRO DEFINITION

CLOSE FCB,LUN,W,M
WHERE FCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.

W = WAIT OPTION

M = I/0 MODE
MAC
M1 P(3),P(4),7,p(2),p(1)
EMAC

VORTEX STATUS MACRO DEFINITION
STAT FCB,ERR,EOF ,EOD, BUSY
WHERE FCB = FCB OR DCB ADDRESS
ERR = ERROR RETURN ADDRESS
EOF = END OF FILE, BEGINNING
OF DEVICE, OR BEGINNING OF
TAPE RETURN ADDRESS
EOD = END OF DEVICE OR END OF TAPE
RETURN ADDRESS
BUSY = BUSY RETURN ADDRESS

MAC .
EXT V$10ST P
JSR 0373,1 S

DATA P(1),P(2),P(3),P(4),P(5)

EMAC

VORTEX DEVICE CONTROL BLOCK MACRO DEFINITION
DCB RL, BUF,CNT
WHERE RL = RECORD LENGTH

BUF = DATA ADDRESS

CNT = COUNT
MAC
DATA P(1),P(2),P(3)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-3

LANGUAGE PROCESSORS

5-4

*® % % R B 8 % F 8

FCB

M2

LK R BE BN AR 2R 2R 2R B)

SCHED

* % & *»

EXIT

* % %

SUSPND

LR SR R R 3N)

VORTEX
FCB

DATA
FORM

DATA
EMAC

MAC
EXT
JSR
EMAC

VORTEX
SCHED

MAC
M2
FORM
F
FORM
F
DATA
EMAC

VORTEX
EXIT

MAC
M2
DATA
EMAC

VORTEX
SUSPND

MAC
M2
FORM
F
EMAC

VORTEX
RESUME

FILE CONTROL BLOCK MACRO DEFINITION
RL,BUF,AC,KEY, 'N1’','N2', 'N3"'
WHERE RL = RECORD LENGTH

BUF = DATA ADDRESS
AC = ACCESS MEBTHOD
KEY = PROTECTION KEY
Nt = FIRST 2 ASCII FILE NAME
N2 = SECOND 2 ASCII FILE NAME
N3 = THIRD 2 ASCII FILE NAME

P(1),pP(2)

6,2,8

0,P(3),P(4)
0,0,0,0,P(5),P(6),P(7)

VSEXEC
0406, 1

SCHEDULE MACRO DEFINITION
PL,W,LUN,KEY, 'N1', 'N2' K 'N3’

WHERE PL = PRIORITY LEVEL
W = WAIT OPTION
LUN = LOGICAL UNIT NO.
KEY = PROTECTION KEY
N1 = FIRST 2 ASCII TASK NAME
N2 = SECOND 2 ASCII TASK NAME
N3 = THIRD 2 ASCII TASK NAME

3,1,6,1,5
o,p(2),1,0,P(1)
8,8

P(4),pP(3)

P(5),P(6),P(7)

EXIT MACRO DEFINITION

0200

SUSPEND MACRO DEFINITION
T
WHERE T = TYPE OF SUSPENSION

RESUME MACRO DEFINITION
"N1','N2','N3"’
WHERE N1 = FIRST 2 ASCII TASK NAME
N2 = SECOND 2 ASCII TASK NAME
N3 = THIRD 2 ASCII TASK NAME

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

RESUME

L B B BN R B

ABORT

* # # ® »

ALOC

* & %

DEALOC

L 2R JEE IR JNE I)

PMSK

F1

LI B IR R JEE Y 3

DELAY

LANGUAGE PROCESSORS

MAC

M2

DATA o400,P(1),P(2),P(3)
EMAC

VORTEX ABORT MACRO DEFINITION
ABORT 'N1','N2", 'N3’
WHERE N1 = FIRST 2 ASCII TASK NAME

N2 = SECOND 2 ASCII TASK NAME
N3 = THIRD 2 ASCII TASK NAME

MAC

M2

DATA 0500,P(1),P(2),P(3)

EMAC

VORTEX ALLOCATE MACRO DEFINITION

ALOC ADDR
WHERE ADDR = ADDRESS OF REENTRANT
SUBROUTINE
MAC
M2
DATA 0600,P(1)
EMAC

VORTEX DEALLOCATE MACRO DEFINITION
DEALOC

MAC

M2

DATA 0700
EMAC

VORTEX PRIORITY INTERRUPT MASK MACRO DEFINITION
PMSK NUM, MSK, TYP
WHERE NUM = PIM NUMBER

MSK = PIM LINE MASK

TYP = ENABLE OR DISABLE TYPE
MAC
M2
FORM 4
F1 0
FORM 8

P

EMAC

VORTEX DELAY MACRO DEFINITION
DELAY T5,TM,DT
WHERE T5 = DELAY TIME IN 5 MILLI-
SECOND INCREMENTS
TM = DELAY TIME IN 1 MINUTE
INCREMENTS

DT = DELAY TYPE
MAC

M2

FORM 4
F 0
DATA | 4
EMAC

Figure 5-1. VORTEX Macro Detinitions for DAS MR (¢ ntinued)

(¥
o

LANGUAGE PROCESSORS

5-6

L
- VORTEX LDELAY MACRO DEFINITION
- LDELAY T5, TM, LUN,KEY
* WHERE TS5 = DELAY TIME IN 5-MILLISECOND
. INCREMENTS
- TM = DELAY TIME IN 1-MINUTE
. INCREMENTS
* LUN = LOGICAL UNIT NUMBER FOR TASX LOAD
- KEY = PROTECTION KEY
LDELAY MAC
M2
DATA 01107,P(1),P(2)
FORM 8,8
| 4 P(4),p(3)
EMAC
-
. VORTEX TIME REQUEST MACRO DEFINITION
* TIME
L
TIME MAC
M2
DATA 01200
EMAC
»
* VORTEX OVERLAY MACRO DEFINITION
» OVLAY TF, 'N1','N2’, 'N3’
* WHERE TF = TYPE PFLAG
* . N1 = PIRST 2 ASCII TASK NAME
* N2 = SECOND 2 ASCII TASK NAME
* N3 = THIRD 2 ASCII TASK NAME
*
OVLAY MAC
M2
F FORM 4,6,5,1
F 0,013,0,P(1)
DATA P(2),P(3),P(4)
EMAC
*
* VORTEX IOLINK MACRO DEFINITION
* IOLINK LUN, BUF, NUM
* WHERE LUN = LOGICAL UNIT NO.
* BUF = USER'S BUFFER LOCATION
* NUM = BUFFER SIZE
IOLINK MAC
M2
F FORM 4,6,6
F 0,014,p(1)
DATA P(2),P(3)
EMAC
L
-
» VORTEX PASS MACRO DEFINITION
. PASS COUNT, FROM, TO
* WHERE COUNT = WORD COUNT
* PROM = PROM ADDRESS
* TO = TO ADDRESS
»

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

PASS

* % % % @

TBEVNT

MAC
M2
FROM
3
DATA
EMAC

4,6,6
0,016
plt),

LANGUAGE PROCESSORS

. 0
p(2),p(3)

VORTEX TBEVNT MACRO DEFINITION
(TBEVNT) VALUE, x DISP, ,C/S

WHERE

VALUE = IS A BIT MASK

DISP =

c/s

OPTIONS:

IMPLEMENTATION:

MAC
M2
DATA
DATA
EMAC

01700
P(1),

1S THE TIDB WORD TO BE ALTERED.
IT IS EXPRESSED BY WAY OF A NUMBER,
THE DISPLACEMENT (OR POSITION) OF THIS
WORD IN THE TIDB.

IS THE CLEAR/SET INDICATION (0 = CLEAR,
1 = SET)

BOTH DISP AND C/S ARE OPTIONAL AND
THE DEFAULT FOR BOTH IS 0.

WHEN DISP = 0 THE ACTION DEPENDS ON
THE VALUE OF VALUE:

VALUE, IF 0-177776, IS SET INTO
THE REQUESTING TASK'S TIDB TBEVNT
WORD. IF VALUE IS 0177777, RETURN
IS WITH THE REQUESTOR'S TBEVNT IN
THE A REGISTER

WHEN DISP = 0, DISP WILL BE ALTERED
ACCORDING TO VALUE AND C/S.

C/s = 0, ALL THE BITS IN DISP CORRESPONDING

TO THE Z2ERO (0) BITS IN VALUE
WILL BE RESET TO 0.

C/S = 1, ALL THE BITS IN DISP CORRESPONDING

TO THE ONE (1) BITS IN VALUE
WILL BE SET TO 1.

P(2),P(3)

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-7

LANGUAGE PROCESSORS

. VORTEX ALLOCATE PAGE MACRO DEFINITION
» ALOCPG N,LOGICA ADDR,REJECT ADDR
* WHERE N = NUMBER OF PAGES TO ALLOCATE
* LOGICAL ADDR = LOGICAL ADDRESS
. MODULO 01000, WHERE
. PAGES ARE ALLOCATED
. REJECT ADDR = ERROR RETURN ADDRESS
»
ALOCPG MAC
M2
DATA 02000
DATA P(1)
DATA p(2)
DATA P(3)
EMAC
.
. VORTEX DEALLOCATE PAGE MACRO DEFINITION
. DEALPG N,LOGICAL ADDR,REJECT ADDR
. WHERE N = NUMBER OF PAGES TO DEALLOCATE
. LOGICAL ADDR = LOGICAL ADDRESS,
. MODULO 01000, WHERE
* PAGES ARE TO BE
* DEALLOCATED
. REJECT ADDR = ERROR RETURN ADDRESS
»
|
DRALPG MAC
M2
DATA 02100
DATA P(1)
DATA P(2)
DATA P(3)
EMAC
*
* VORTEX MAPIN MACRO DEFINITION
* MAPIN N,LOBICAL ADDR,BUFFER ADDR,REJECT ADDR
* WHERE N = NUMBER OF PAGES TO BE MAPPD
. LOGICAL ADDR = LOGICAL ADDRESS, MODULO
* 01000, WHERE PAGES ARE TO
. BE ALLOCATED
. BUFFER ADDR = PHYSICAL PAGE NUMBER
* OR BUFFER ADDRESS CON-
. TAINING PHYSICAL PAGES
hd TO BE MAPPED
* REJECT ADDR = ERROR RETURN ADDRESS
»
*
MAPIN MAC
M2
DATA 02200
DATA P(1)
DATA P(2)
DATA P(3)
DATA Pla)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-8

LANGUAGE PROCESSORS

* VORTEX PAGE NUMBER MACRO DEFINITION
» PAGNUM LOGICAL ADDR
* WHERE LOGICAL ADDR = ADDRESS WITHIN THE
. REQUESTING TASK'S VIRTUAL
. MEMORY WHERE IDENTIFICATION
. OF THE ASSIGNED PHYSICAL
. ' PAGE IS REQUIRED
] j
Y /’\"/ I
PAGNUM MAC Y
M2
DATA 02300
DATA P(1)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-9

LANGUAGE PROCESSORS

5.1.3 Assembly Listing Format constant V$PLCT, with each line containing no more than
120 characters. Each page has a page number and title
Figure 5-2 is a sample listing following the format described line followed by one blank line, and then the program
in this section. listing containing two lines less than the number specified
by VSPLCT. (This specification can be changed through the
Page format: The assembly listing is limited to the job-control processor (JCP).)

number of lines per page specified by the VORTEX resident

PAGE 23 01/22/72 PROG1 VORTEX DASMR vV$JCP
588 BJEC
589 »
590 = SUBROUTINE PRINTS JCP DIRECTIVE ON SO AND LO DEVICE
591 =)
000660 074056 A 592 JCPRT STX JSPRX
000661 064056 A 593 STB JCPRB
000662 010412 A 594 LDA V$JCB GET BUFFER ADDRESS
000663 005311 A 595 DAR
000664 054003 A 596 STA 4l SETUP LOFCB
597 IOLINK LO,*, 41
000665 006505 A
000666 000604 E
000667 001405 A
000670 000665 R
000671 000051 A
000672 030400 A 598 LDX VSLUT1 ADRS OF LOG UNIT TBL
000673 015003 A 599 LDA SO, X
0006784 150463 A 600 ANA BM377 SO CUR ASSIGNMT
000675 058274 A 601 STA JCTA
000676 015002 A 602 LDA SI,X
000677 150463 A 603 ANA BM377 SO CUR ASSIGNMT
000700 144271 A 604 sSuUB JCTA SO, SI SAME LUN
000701 001010 A 605 JAZ JCPR1
000702 000714 R
000703 017000 I 606 LDA JCFBCS+3 STORE 'LOFCB' ADRS IN CALL
000704 054004 A 607 STA *45
608 WRITE LOFCB,S$0,0,1 NG - WRITE TO SO
000705 006505 A
000706 000630 E
000707 100000 A
000710 010403 A
000711 000633 E
000712 000000 A
000713 000000 A
000714 030400 A 609 JCPR1 LDX VSLUT1
000715 015005 A 610 LDA LO,X
000716 1508463 A 611 ANA BM377 LO CUR ASSIGNMT
000717 1844252 A 612 SUB JCTA LO, SO SAME LUN
000720 001010 A 613 JAL JCPRE YES
000721 000733 R
000722 017000 A 614 LDA JCFCBS+3 STORE 'LOFCB’ ADRS IN CALL
000723 054004 A 615 STA 5
616 WRITE LOFCB,L0,0, 1 NO - WRITE TO LO

Figure 5-2. Sample Assembly Listing

At the end of the assembly, the following information is
printed after the END statement:

a. Aline containing the subheading ENTRY NAMES

b. All entry names (in tour columns), each preceded by its
value and a flag to denote whether the symbol is
absolute (A), relocatable (R), or common (C).

¢. Alinecontaining the subheading EXTERNAL NAMES

d. All external names (in four columns), each preceded by
its value and a fiag to denote that the symbol is external
()

e Aline containing the subheading SYMBOL TABLE

t. The symbol table (in four columns), each symbol
preceded by its value and a flag to denote whether the
symbol is absolute (A), relocatable (R), common (C),
or external (E) -

g A line containing the subheading mmmm ERRORS
ASSEMBLY COMPLETE, where mmmm is the
accumulated error count expressed as a decimal
integer, right-justified and left-blank-filled

Line format: Beginning with the first character position,
the format for a title line is:

a. Oneblank

b. The word PAGE

¢. Oneblank

d. Four character positions that contain the decimal page
number

e. Twoblanks

t. Eight character positions that contain the current date
obtained from the VORTEX resident constant VSDATE

g. Twoblanks

h. Eight character positions that contain the program
identification obtained from the VORTEX resident
constant VSJNAM

i. Twoblanks

)} Theword VORTEX

k. Two blanks

I. Theword DASMR

m. Two blanks

n. Eight character positions that contain the program titie
from the TITLE directive

0. Blanks through the 120th character position

LANGUAGE PROCESSORS

Beginning with the first character position, the format for
an assembly line is:

a. Oneblank

b. Six character positions to display the location counter
(octal) of the generated data word

¢. Oneblank

d. Six character positions to display the generated data
word (octat)

e. Oneblank

f. One character position to denote the type of generated
dataword: absolute (A), relocatable (R), common (C),
external (E), literal (L), or indirect-address pointer
generated by the assembier ()

g. Oneblank

h. Four character positions containing the decimal
symbolic source statement line number, right-justified
and left-blank-filled

i. Oneblank

j. Eighty character positions that contain the image of the
symbolic source statement. (If the symbolic source
statement is not a comment statement, the label,
operation, and variable fields are reformatted into
symblolic source statement character positions 1, 8,
and 16, respectively. If commas separate the label,
operation, and variable fields, they are repiaced by
blank characters.)

k. Blanks, if necessary, through the 120th character
position

Error Chaining: !f syntax errors occur during an assembly
error, chaining is provided to assist in finding the errors. If
errors occur, the error message at the end of the assembly
contains a decimal value within parentheses corresponding
to the source line number at which the last error occurred.
The line number referenced in turn references the next line
number containing an error. The last line number
containing an error does not have a chaining reference. If
no errors occurred, the error message does not contain a
chaining reference.

5.2 CONCORDANCE PROGRAM

The background concordance program (CONC) provides an
indexed listing of all source statement symbols, giving the
number of the statement associated with each symbol and
the numbers of all statements containing a reference to the
symbol. CONC is scheduled by job-controf directive /CONC
(section 4.2.16). Upon completion of the concordance
listing, control returns to the JCP via EXIT.

input to CONC is through the SS logical unit. The
concordance is output on the LO unit. CONC uses system

5-11

LANGUAGE PROCESSORS

global file control block SSFCB. If the SS logical unit is an
RMD, a /REW or /PFILE directive (section 10) establishes
the FCB before the /CONC directive is input to the JCP.

CONC has a symbol-table area to process 400 no-reference
symbols at five words per symbol, plus 400 referenced
symbols (averaging five references per symbol) at ten
words per symbol. To increase this area, input before the
/CONC directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
approximately 75 symbols.

CONC processes both packed records (three source
statements per 120-word VORTEX physical record) and
unpacked records (one source statement per record).

5.2.1 fnput

CONC receives source-statment input from the SS logical
unit. There is, however, no positioning of the SS unit prior
to reading the first record. The source statements are
identical with those input to the VORTEX assembler and
thus conform to the assembler syntax ruies.

As the inputs are read, each source statement is assigned
a line number, 1, 2, etc., which is identical with that
printed on the assembly listing. When a symbol appears in
the label field of a symbolic source statement, the line
number of that source statement is assigned to the symbol.
When the symbol appears in the variable field of a source
statement, the line number of that statement is used as a
reference for the symbol.

5.2.2 Output
CONC outputs the concordance listing on the LO logical
unit. Output begins when one of the foliowing events
OCCurs.

a. CONC processes the source statement END

b. Another job-control directive is input

c. An SSend of file or end of device is found

d. Areading error is found

e The symbol-table area is filled
It the output occurred because the symboi-table area of
memory was full, CONC clears the concordance tables,
outputs error message CNO1, and continues until one of
the other terminating conditions is encountered. In all

other cases, CONC terminates by calling EXIT.

The concordance listing is made in the order of the ASCII
values of the characters comprising the symbols.

Beginning with the first character position, the format for a
title line is:

a. Oneblank
b. The word PAGE
¢. Oneblank

d. Four character positions that contain the decimal page
number

e. Twoblanks

f. LEight character positions that contain the date
obtained from the VORTEX resident constant VSDATE

g Twoblanks

h. Eight character positions that contain the program
identification obtained from the VORTEX resident
constant V§JNAM

i. Two blanks

j. Theword VORTEX

k. Two blanks

1. Theword CONC

m. Blanks through the 72nd character position

Beginning with the first character position, the format for a
concordance cross-reference listing is:

a. Twoblanks

b. Four character positions that contain the decimal line
number of the source statement assigned to the symbol
in item (e) below

c. Onebilank

d. One character position containing an asterisk (*) if
there are no references to that symbo! (otherwise
blank)

e. Six character positions containing the symbol being
listed

f. Two blanks

g Four character positions that contain the decimal line
number of a source statement referencing the symbol
in item (e) above

h. ltems (f) and (g) are repeated as necessary for each
source statement referencing the symbol in item (e)
above, where up to nine references are placed on the
first line, and subsequent references on the next
line(s). Continuation lines that may be required for
ten or more references to the same symboi do not
repeat items (a) through (e)

i. Bianks through the 72nd character position of the last
line of the entry

Figure 5-3 illustrates the concordance listing.

PAGR 1 09/22/71

509 B 841 859 879
1074 1112 1230

261 B10O *

262 B .

263 B12 b

1206 ODATE 1180 1182 1190

1937 ONUM 895 928 936
1406 1418

LANGUAGE PROCESSORS

V$OPCM VORTEX CONC

990 1001 1Q02 1012 1068 1072

1017 1182 1190 1196 1254 1284

Figure 5-3. Sample Concordance Listing

5.3 FORTRAN |V COMPILER

The FORTRAN IV compiler is a one-pass compiler sched-
uled by job-control directive /FORT (section 4.2.15). The
compiler inputs a source module from the Pl logical unit
and produces an object module on the BO and/or GO units
and a source listing on the LO unit. No secondary storage
is required for a compilation.

It a fatal error is detected, the compiler automatically
terminates output to the BO and GO units. LO unit output
continues. The compiler reads from the Pi unit until an
END statement is encountered or a control directive is
read. Compilation aiso terminates on detection of an /0
error or an end-of-device, beginning-of-device, or end-of-file
indication from 1/0 control.

The output comprises relocatable object modules under all
circumstances: main programs and subroutines, func-
tion, and block-data subprograms.

Error messages applicable to the FORTRAN IV compiler are
given in Appendix A.5.2.

FORTRAN 1V has conditional compilation facilities imple-
mented by an X in column 1 of a source statement. When
the X appears ia the /FORT directive, all source statements
with an X in column 1 are compiled (the X appears on the
LO listing as a biank). When the X is not present, all
conditional statements are ignored by the compiler. X lines
are assigned listing numbers in either case, but the source
statement is printed only when the X is present.

FORTRAN 1V has a symbol-table area for approximately 70
symbols (i.e.,, names), if none of the logical units used is
assigned to an RMD device. Each RMD assignment
requires buffer space of 120 words (except when BO = GO
= RMD, in which case BO and GO use the same buffer)
and the symbol capacity is reduced by 24 symbols per
butfer. To increase the symboi-table area, input before the
/FORT directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
100 symbols. !t a larger symbol-table is used, greater
subexpression optimization is possible.

A VORTEX physical record on an RMD is 120 words. Source
records are blocked three 40-word records per VORTEX
physical record, object modules are blocked two 60-word
modules per record, and list modules are output one record
per physical record. However, in the case where S| = P} =

RMD, records are not blocked but assumed to be one per
VORTEX physical record. When the file contains more than
one source module, each new source module must start at
a physical record boundary. The unused portion of the last
physical record of the previous module should be padded
with blanks.

Table 5-2 lists the VORTEX realtime executive (RTE)

service request macros available through FORTRAN V.
These macros are detailed in section 2.1.

Table 5-2. RTE Macros Available Through FORTRAN 1V

ABORT EXIT SCHED
ALOC OVLAY SUSPND
DELAY PMSK TIME
LDELAY RESUME PASS

5.3.1 FORTRAN |V Enhancements

The VORTEX FORTRAN IV language additions and en-
hancements make the VORTEX FORTRAN compiler more
consistent with IBM FORTRAN (level G). Except for these
additions and enhancements, FORTRAN compilation and
execution with the VORTEX operating system is the same
as with the Master Operating System (MOS) described in
the FORTRAN |V Reference Manual (98 A 9902 03x).

FORTRAN-.complied programs can execute in either fore-
ground or background.

Detailed information on the VORTEX FORTRAN [V lan.
guage additions and enhancements are given in the
VORTEX FORTRAN |V Reference Manual (98 A 9902 04x)

5.3.1.1 Variables

VORTEX FORTRAN |V variables are identifiers which
consist of a string of one to six alphanumeric characters
and correspond to the type of data the variable represents
Variables are classified into the following five fundamental
types: INTEGER. REAL. DOUBLE PRECISION, COMPLEX.
and LOGICAL

The following list shows each variable type with its
associated standard and optiona! length (in bytes):

LANGUAGE PROCESSORS

Variable Type Standard Optional
INTEGER 2 4
REAL 4 8
COMPLEX 8

LOGICAL 2

DOUBLE PRECISION 8

5.3.1.2 Constants

There are four categories of VORTEX FORTRAN IV con-
stants: NUMERICAL, LOGICAL LITERAL, and HEXADECI
MAL. These four constant data constructions are discussed
below.

NUMERICAL constants are integer, real, or complex
numbers. Integer constants may be positive, zero, or
negative. If the constant has so sign, it is interpreted as
representing a positive value. |f a zero is specified, with or
without a preceding sign, the sign will have no effect on the
value zero. The constant has the general form

sn
where
s is the optional signed character
(+ or).
n is a decimal character string

(maximum magnitude 1s 1073741823).

LOGICAL constants allow for the use of logical operations
through the medium of the logical expression. Thus, two
logical constants are provided to represent the "'true’ and
“talse’ logical values. The constant has the general form

.TRUE. or .FALSE.

LITERAL constants are a string of alphanumeric and/or
special characters. .If apsostrophes delimit the literal, a
single apostrophe within the literal is represented by two
apostrophes. The number of characters in a string,
including blanks, may not be less than 1 or greater than
255. Blanks within the character string will be considered
part of the string. The constant has the general form

wHs or 's’
where

w is a positive non-zero constant denoting
the width of the character string.

s denotes the character string.
HEXADECIMAL constant consists of the letter Z followed by
1 to 16 hexadecimal digits. The constant has the general

form

In

where
n is a 1 to 16 hexadecimal digit string.

The maximum number of digits allowed in a hexadecimal
constant depends on the length specification of the
variable being initialized. If the number of digits is greater
than the maximum, the ieft-most digits are truncated. If
the number is less than the maximum, the left-most
positions are filled with zeros.

5.3.1.3 IMPLICIT Statement

The IMPLICIT statement must be the first statement in a
main program or the second statement in a subprogram.
The statement enables the user to specify the type,
including length of ali variables, arrays, and function
names. The statement has the general form

IMPLICIT type *s(al,...)

where

type is a type name.

*s is optional; and, represents one of the
permissible length specifications (see
variable).

a is an initial character string

(A, B,...2,$,)) in that order.

5.3.1.4 Explicit Type Statements

The Explicit Type Specification statement declares the type
of variable, function name, statement function name, or
array by its name rather than by its initial character.
Optionally, it may also initialize the variable. The statement
overrides the IMPLIC!IT statement, which in turn overrides
the predefined convention. The statement has the general
form

type*s al*sl(kl)/xl/,...
where
type is a type name.

*s is optional; and, represents one of
the permissible length specifications.

a is a variable,.array, or function
name.
(k) 1s optional;, and, gives dimension

information for arrays. When the
TYPE statement in which it appears
is in a subprogram, k may contain

integer variables of length 2
(section 5.3.1.1), provided that
the array is a dummy argument.

is optional;, and, represents
initial data values (see DATA
statement).

2 7

5.3.1.5 DOUBLE PRECISION Statement

The DOUBLE PRECISION statement overrides any specifi
cation of a variable made by either the predefined
convention or the IMPLICIT statement. The statement has
the general form

DOUBLE PRECISION a(k)....,

where
a represents a variable, array, or
function name.
(k) 1s optional; and, 15 composed of

one to seven unsigned integer con
stants that represent the maximum
value of each subscript in the
array. k may contain integer
variables of length 2, provided

that the array is a dummy argument.

5.3.1.6 PAUSE Statement

The execution of the PAUSE statement causes the uncondi-
tional suspension (SUSPND) of the object program being
executed pending operator action. To resume the sus-
pended task, input the operator-communication key-in
request RESUME. The statement has the general form

PAUSE
or
PAUSE n or PAUSE m

where
n is a string of one to five
decimal digits.
m is a literal constant enclosed

in apostrophes.

5.3.1.7 STOP Statement

The execution of the STOP statement causes the uncondi
tional termination of the execution of the object program
beging executed. The statement has the general form

STOP
or
STOP n or STOP m

LANGUAGE PROCESSORS

&
where
n 1s a string of one to five decimal
digits.
m is a literal constant enclosed in

apostrophes.

5.3.1.8 CALL Statement

The execution of the CALL statement causes the specified
subroutine to be executed. The CALL statement arguments
must agree in number and order of appearance with the
dummy arguments in the SUBROUTINE statement. The
statement has the general form

CALL name (al,a2),..,

where
name is the name of a SUBROUTINE
subprogram.
a is an actual argument that is

being supplied to the SUBROUTINE
subprogram. The argument may be
a variable array element, array
name, literal, or arithmetic or
logical expression. Each a may

also be of the form n, where n
is a statement number.

5.3.1.9 RETURN Statement

The RETURN statement provides the method by which the
callirig"program 1s reentered following the execution of a
subprogram. The normal sequence of execution following
the RETURN statement of a SUBROUTINE subprogram is
to.the next statement following the CALL statement in the
cafling program. The statement has the general form

RETUIN or RETURN |
where®:.

i is an integer constant or variable
whose value, for exampie n, denotes
the n-th asterisk in the argument
list of a SUBROUTINE statement.
RETURN i may be specified only in

; a§UBROUTINE subprogram.

#,

e

-

5.3.1.10 READ/WRITE Statements

VORTEX FORTRAN IV allows two optional parameters to
the READ/WRITE statements. These optional parameters
allow for conditional exits on an end-of-data or transnws-
sion error.

o
w

LANGUAGE PROCESSORS

Example: READ(4,10,ERR = 105,END = 200)A.B

In the above example, control will be transferred to
statement 105 if an 170 error occurs, or to statement 200 if
an end-of-data occurs on unit 4.

5.3.1.11 ENCODE/DECODE Statement

ENCODE/DECODE statements perform data conversion
according to a FORMAT statement without performing
external 170 operations. ENCODE statement takes an 1/0
list, converts each element and places it in a specified
buffer. DECODE statement words from the buffer into the
170 list. For example:

DIMENSION 1(40)
READ(CDR, 10)1
10 FORMAT(U40A2)
DECODE(10,20,1)K,L
20 FORMAT(2I5)

These statements read an ASCil card image into array |.
The first two fields of five ASCIl characters are then
decoded into their integer equivalent and placed into the
variables K and L.

5.3.1.12 Direct-Access INPUT/OUTPUT
Statements

The direct-access INPUT/OUTPUT statements allows a
programmer to go directly to any point in a file which
restdes on an RMD, and process a record without having to
process all the records within the file. To use direct-access
INPUT/OUTPUT statements (READ, WRITE, and FIND),
the file(s) to be operated on must be described with a
DEFINE FILE statement. The statement has the general
form

DEFINE FILE al(ml,r1 fl,vl),...
where
F] specifies the unit number.

m represents the relative position
of a record within the file.

r specifies the maximum size of
each record in the file.

f specifies whether the file is
to be read or written with or
without format control.

v specifies an integer variable

(not an array element) called
an associated variable, which

516

points to the record immediately
following the last record
transmitted.

5.3.1.13 Direct-Access READ Statement

The READ statement causes data to be transferred from a
direct-access device into internal storage. The statement
has the general form

READ(a'r,b,ERR = ec)list
where

a specifies the unit number
and must be foliowed by an
apostrophe.

r represents the relative
position of a record within
the file.

b is optional; and, if given,
is either the statement
number of the FORMAT state-
ment, or the name of an array
that contains an object-time
format.

ERR= €c is optional; and, specifies
the number of a statement to
which control is given when
an error condition is
ericountered

list is optional; and, 1s an 170
list. The 1/0 list must not
contain the associated
variable.

5.3.1.14 Direct-Access WRITE Statement

The WRITE statement causes data to be transferred from
internal storage to a direct-access device. The statement
has the general form

WRITE (a'r b)list

where
a specifies the unit number and
must be followed by an apostrophe
r represents the relative position

of a record within the file.

b is optional; and. if given. is
either the statement number of
the FORMAT statement, or the

name of an array that contains
an object-time format.

list is optional; and, is an |/0
list. The list must not
contain the associated vari-
able.

5.3.1.15 FIND Statement

The FIND statement causes the next input record to be
found while the present record is being processed. The
statement has the general form

FIND (a'r)
where

a specifies the unit number and must
be followed by an apostrophe.

r represents the relative position of
a record within the file.

At the conclustion of a FIND operation, the associated
variable points to the record found.

5.3.1.16 DATA Statement

The DATA statement is used to define initial values of
variables, array elements, and arrays. This statement
cannot precede any specification statement that refers to
the same variables, array elements, or arrays. The DATA
statement may not precede an IMPLICIT statement. It has
the general form

DATA ksd/....
where
k 1s a list containing variables,
array elements. or array names.
d is a list of constants (integer,

real, complex, hexadecimal, logical,
or literal), any of which may be
preceded by i*, where i*

indicates that the constant is to
be specified i times.

5.3.1.17 TITLE Statement

The TITLE statement declares a module name which is
output to the top of each page of the source listing and to
the object module. It has the general form

TITLE name

LANGUAGE PROCESSORS

where
name is the title to be output.
The title_ contains up to
eight_characters, and is .
_output in_the object text *

as the .name _hy which the
_program is to_be_referenced
by SMAIN..)

Hf a TITLE statement is used, it must be the first source
statement. A TITLE statement forces a page eject on the LO
listing.

5.3.1.18 Subprogram Multipie Entry

VORTEX FORTRAN IV facilitiates multipie entry into
SUBROUTINE and FUNCTION subprograms by specitying a
CALL statement or a FUNCTION reference that refers to an
ENTRY statement in the subprogram. Entry is made at the
tirst executable statement following the ENTRY statement.
The statement has the general form

ENTRY name(al, a2 a3),...
where
name is the name of an entry point
a is a dummy argument corresponding

to an actual argument in a CALL
statement or FUNCTION reference

5.3.1.19 SUBROUTINE Subprogram

The SUBROUTINE subprogram may contain any FORTRAN
iV statement except a FUNCTION statement, another
SUBROUTINE statement, or an BLOCK DATA statement. |f
an IMPLICIT statement is specified, it must immediately
foliow the SUBROUTINE statement. SUBROUTINE has the
general form

SUBROUTINE name(al,a2,a3)....
where
name is the SUBROUTINE name.
a is a distinct dummy argument.

Each argument used must be a
variable or array name, the dummy

name of another SUBROUTINE, FUNCTION

subprogram, or an asterisk "*"
which denotes a return point specified
by a statement number in the calling

program.

The actual arguments can be:

517

LANGUAGE PROCESSORS

A literal, arithmetic, or logical constant
* Any type of variable or array element
+ Anytype of array name
+ Any type of arithmetic or logical expression

The name of a FUNCTION or SUBROUTINE
subprogram

+ Astatement number

5.3.1.20 FUNCTION Subprogram

The FUNCTION subprogram is an independent subprogram
consisting of a FUNCTION statement and at least one
RETURN statement. It has the general form

type FUNCTION name*s(al,a2,a3),...,
where

type is INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, or
LOGICAL. its inclusion
is optional.

name is the name of the
FUNCTION.

*s represents one of the
permissible length
specifications.

a is a dummy argument or
dummay SUBROUTINE name or
other FUNCTION subprogram.

5.3.1.21 Subscripts

A subscript is a set of integer subscript quantities that are
associated with an array name to identify a particular
element of the array. A maximum of seven subscript
quantities, separated by commas, can appear in a
subscript. The following rules apply to the construction of
subscript quantities:

+ Subscript quantities may contain arithmetic
expressions that use any of the arithmetic operators:

+, -, .' /. (2]

+ Subscript quantities may contain FUNCTION
references

*+ Subscript quantities may contain array elements

+ Integer and real mixed-mode expressions within
subscript quantities are evaluated according to normal

518

FORTRAN rules. If the evaluated expression 1s real, it
is converted to integer

» The evaluated result of a subscript quantity should
always be greater than zero

5.3.1.22 Z Format Code

The hexadecimal Z format code causes a string of
hexadecimal digits to be interpreted as a hexadecimal
value and to be associated with the corresponding 1/0 list
element for purposes of data transmitting. It has the
general form

Iw .
where

w denotes a string of hexadecimal
digits. The maximum value that
can be read is FFFFFFFFFFFFFFFF

On input, if an input field contains an odd number of
digits, the number will be padded on the left with a
hexadecimal zero when it is stored.

On output, if the number of characters in the storage
location is less than w, the left-most print positions are
filled with blanks. if the number of characters in the
storage location is greater than w, the left-most digits are
truncated and the rest of the number is printed.

5.3.2 Execution-Time 1/0 Units

All FORTRAN 1/0 statements (FORTRAN |V manual)
include 2 FORTRAN unit number (FUN) or name, which
may or may not be identical with the logicai unit containing
the required file(s). Four different cases of FORTRAN units
must be distinguished as indicated in figure 5-4.

Case 1, non-RMD unit: The logical-unit number is
assigned to the device by SGEN (section 15) or by the JCP
/ASSIGN directive (section 4.2.6), where the FORTRAN unit
number is identical with that of the file unit. Thus, to
rewind the PO logical unit (unit 10, magnetic-tape unit 0),
the job stack can be:

/ASSIGN,PO=MT00
/FORT

REWIND 10

Case 2, RMD file executing in background only: The JCP
/PFILE directive (section 4.2.11) positions the P! unit to a
background reassignable logical unit, and loads a global
FCB. As in case 1, the FORTRAN unit number is identical
with that of the file unit. Thus, to read the file FILE1 on
logical unit 50 (protection code X) where Pl is logical unit 4,
the job stack can be:

‘ START ,

CHECK ACTIVE FCB
CHAIN FOR ONE
ASSOCIATED WITH
FUN

ASSOCIATED NO

FCB F(y

YES

LANGUAGE PROCESSORS

/FORT,L,B
READ (4,...
END

FUN
1S AN RMD
PARTITION

NO

BACKGROUND
PROGRAM

ACTIVE
GLOBAL FC8 FOR
FUN

CONSTRUCT AND
EXECUTE 10C CALL LOG 1O erkOR

CONSTRUCT AND CONSTRUCT DC8 AND
EXECUTE tOC CALL EXECUTE 1OC CALL
(FUN = LUN) (FUN = LUN}

FINISH

NOTE: THE FORTRAN LOGICAL UNIT FUN 1S NOT NECESSARILY IDENTICAL WITH
THE FILE LOGICAL UNIT (LUN) UNLESS SO INDICATED.
VSOPEN OVERRIDES A /PFILE ASSIGNMENT,

VTil-1445

Figure 5-4. FORTRAN 1/0 Execution Sequences

FINISH ‘ FINISH)

519

LANGUAGE PROCESSORS

/ASSIGN,PIm=50
/PFILE,4,X, FILE1
/EXECC

Case 3, normal RMD file executing in foreground or
background: the CALL VSOPEN statement associates any
specified RMD file with the FORTRAN unit number. The
CALL VSOPEN statement cverrides any /PFILE assignment
(case 2). The format of the statement is:

CALL VSOPEN(fun,lun,name,mode)

where

fun is the name or number of the
FORTRAN unit which may be num-
eric value, defined by a DATA
statement, or an assignment
statement

fun is the name or number of the
logical unit which may be
numeric vaiue, defined by a
DATA statement, or an assignment
statement

name is the name of the 13-word array
centaining the file name and the
protection code

mode is the mode of the 1/0-control
open macro (section 3.5.1)

VSOPEN constructs an FCB in the first ten words of the
specified 13-word array, performs an (OC OPEN on this
FCB, and links it with the active FCB chain. The remaining
three words of the array contain an FCB-chain link, the
FORTRAN unit number, and the file logical unit number.
Thus, to reference file FIL on logical unit 20 (protection
code Q) by the number 2, rewinding upon opening, the job
stack can be:

/FORT

DIMENSION IPCB(13)
DATA IFCB(3)/2H @/
DATA IFCB(8),IFCB(9) IPCB(10)/2HPI,2HL ,2H /

CALL VSOPEN(2,20,IFCB,0)

Fite FiL can now be referenced by FORTRAN statements by
using 2 as the designation of the FORTRAN logical unit. For
instance,

520

READ (2,...

executes an 10C READ call, reading from FIL using IFCB as
the FCB.

Note: VSOPEN sets the record length to 120 words and
the access method to 3, sequential access using relative
VORTEX physical record number within the file. The user
should not change the record length or access method
parameters in the FCB because the FORTRAN Run-Time
170 package has reserved only a 120 word buffer.

Any record in a file opened by VSOPEN can be directly
accessed by operating on the FCB array. Thus, using the
job stack in the previous example, record 61 in file FIL is
read by inputting :

IFCB(4)=61
READ(2, ...

To dissolve an existing association between an RMD file
and a FORTRAN logical unit, use the CALL V$CLOS
statement of the format.

CALL V$CLOS(fun,mode)

where
fun 15 the name or number of the FORTRAN
logical unit
mode is the mode of the i/0-control CLOSE

macro (section 3.5.2)

Thus, when the processing of file FIL in the previous
example is complete, to close/update FIL and take IFCB off
the active FCB chain so that FORTRAN statements with fun
= 2 no longer reference FIL, the job stack can be:

CALL V8CLOS(2,1)

Note: the auxiliary FORTRAN 1/0 statements REWIND, |
TBACKSPACE, Jand ENDFILEkannot be used with RMD files.
Use instead (where IFCB is the ECB array):

IFCB(4) = 1 For rewind
IFCB(4) = IPCB(4) -1 For backspace
CALL V$CcLOS(fun, 1) For endfile

Case 4, blocked RMD file executing in foreground or
background: the CALL VSOPNB statement associates any
specified RMD file with a FORTRAN unit number. This
statement overrides any /PFILE statement. The format is:

CALL VSOPNB (fun, lun, name, mode, recsz, buff, rbwft)

where

fun is the name or number of the
FORTRAN unit which may be
numeric value, defined in a
DATA statement, or an assign-
ment statement

un is the name or number of the
file logical unit which may be
numeric value, defined in a DATA
statement, or an assignment

statement

name is the name of a 14-word FCB
array

mode is the mode of the |/0 control
OPEN macro

recse is the logical record size in
words

buff is the address of a blocking

buffer array

rbwi! is the read-before-write flag

The first parameters are identical in function to those of
the CALL VSOPEN statement. The other three specify
biocking information.

An RMD file opened by a CALL V$OPNB statement is
processed as though it were a consecutive series of logical
records, each one recsz words in length. These logical
records continue across physical record boundaries with no
space wasted (except possibly at the end of file). Input and
output is buftered through the user-supplied buffer array
buft as specified above.

Since actual physical i/0 is performed on buff, the file must
be large enough to do 1/0 on the end of the last logical
record. It is sufficient to allocate RMD space for one more
logical record than will ever be used.

It 1s the user's responsibility to declare the size of the
buffer array buff sufficiently large, remembering that it is a
function of the logical record size recsz, that it must be a
multiple of the basic record size of 120, and that it must be
large enough to include enough basic 120-word physical
records to cover a logical record, even though the physical
record may overlap the physical record boundaries. The
foliowing tables specify all conditions, where:

LANGUAGE PROCESSORS

Q(x/y) means the quotient of x/y
R(x/y) means the remainder of x/y

recsz < 120
R(120/recsz) Size of Array Buff
= 0 120 words
0 240 words
recsz = 120
R(recsz/120) Size of Array Buff
= 0 recsz
=1 120 * (1 + Q(recsz/120))
> 1 120 * (2 + Q(recsz/120)

if recsz is-not a multiple or factor of 120 words, the
blocking buffer buff must aliow room for an extra 120-word
physical record at the start or end of a logical record.

On a WRITE operation where recsz is not a multiple of 120
words, data on the RMD can be overwritten unless a read-
before-write is performed. In some situations, such as
initial file creation in a strictly sequential fashion, this is
unnecessary and slow.

The parameter rbwfl ailows the user to select this feature.
If rbwfi is zero, read-before-write is disabled. Any non-zero
value enables read-before-write.

Example: An RMD file opened by CALL V$OPNB can be
accessed randomly, as with CALL VSOPEN, by a replace-
ment statement using the logical record number.

/FORT

DIMENSION IPCB(14),IBUFF(120)

DATA IPCB(3),IPCB(8),IFCB(9),IFCB(10)
/0,2HBL, 2HFI, 2HLE/

CALL VS$OPNB(2, 10, IFCB, 0, 10, IBUFF, 1)

IFCB(4) = 5

READ (2) I

READ (2) J

This sequence causes the unkeyed file name BLFILE on
fogical unit 10 to be opened and assigned FORTRAN unit
number 2. The first READ statement causes the entire first
120-word physical record (first 12 logical records) to be
input into blocking buffer IBUFF, and the first word of the
fifth logical record to be transferred to ! . The second READ
would not require another physical input for record 6 in
IBUFF. This READ statement would simply transfer the first
word of logical record 6 to J.

To flush the blocking buffer, close the file and disassociate
the FORTRAN and logical unit numbers the CALL V$CLSB
statement is provided. Its format is:

CALL VSCLSB (fun,mode)

0
r
—

LANGUAGE PROCESSORS

where
fun is the FORTRAN unit number

mode is the mode of the /0 control CLOSE
macro

The end-of-file information in a FILE NAME DIRECTORY
refers to a physical 120-word record number. Therefore, if
logical record size is not a multiple of 120 words, the user
may need to define his own end-of-file mark. Close and
Update, Open and Leave, and 10CHK (section 5.3.4) EOF
features all operate on this File Name Directory parameter
referring strictly to 120-word physical record numbers.

5.3.3 Runtime 1/0 Exceptions

The FORTRAN runtime 170 program allows a program to
detect 1/0 errors and end-of-file or end-of-device condi-
tions. Status of a READ or WRITE operation is available
immediately after the operation is complete and before
another 1/0 operation is executed. This status can be
checked by executing a subroutine or function call in the
form,

CALL IOCHK(status)

where status is the name of an integer variable which is to
receive the result of the status check.

If the iast 1/0 operation had been completed normally, the
value of zero will be returned. If an error had occurred, the
value minus one is returned. It either an end-of-file or an
end-of-device had occurred, the value positive one will be
returned.

The status may be checked and the result tested in a single
statement by use of the form:

iF (IOCHK(status)) labek 1), labek(2), labek3)

where

status 1s the name of an integer
variable which receives the
result of the status check.
A value of zero indicates
normal compietion. A neg-
ative non-zero value indi-
cates an error. A positive
non-zero value indicates
EOF or EOD.

label(1) 1S a statement label
to which control is
transferred, if an 1/0
error occurred

522

label(2) is a statement label to
which control is to be
transferred if the op-
eration was completed
normally.

labei(3) is a statement label to
which control is trans-
ferred, if an end-of-file
or end-of-device was en-
countered.

it the program does not check the status of a READ or
WRITE operation in which an error occurs, FORTRAN will
abort execution of the task upon the next eniry ‘o the
runtime 170 routine. At that time the diagnostic message
will be output ta the System Output device. Any data which
is input to a read in which an error occurred will be invalid.
After a call to IOCHK is executed, any error status is reset
and the program may proceed with additional input and/or
output.

5.3.4 Reentrant Runtime 1/0

The VORTEX runtime |/0 program processes all FORTRAN
READ, WRITE, auxiliary 1/0, and open and close state-
ments at execution time. it is composed of two modules,
VS$FORTIO and the reentrant task V$RERR. Both are in the
OM library. VSRERR is also in the nucleus portion of the
SGL. SGEN then automatically loads V$SRERR in the
VORTEX nucleus, and all FORTRAN programs autcmati-
cally link to it. If VERERR is not desired in the VORTEX
nucieus, the SGEN directive DEL, VSRERR must be entered
during system generation. Each FORTRAN program. will
then get its own copy of VERERR from the OM tibrary.
VSRERR is approximately 3K words long.

5.4 RPG IV COMPILER

5.4.1 Introduction

The VORTEX RPG IV System is a software package for
general data processing applications. |t combines verstile
file and record defining capabilities with powerful process-
ing statements to solve a wide range of applications. It is
particularly effective in processing data for reports. The
VORTEX RPG IV system consists of the RPG IV compiter
and RPG IV runtime/loader program.

The VORTEX RPG IV compiler and the runtime/loader
execute as level zero background programs in unprotected
memory. Both the compiler and the runtime/loader will
operate in 6K of memory with limited work stack space.
The stack space may be expanded and consequently larger
RPG programs compiled and executed by use of the /MEM
directive.

The RPG language, and its compilation and execution
under VORTEX is described in the Varian 620 RPG IV
User's Manual (98 A 9947 03x).

Error messages applicable to the RPG IV compiler are given
in Appendix A.

5.4.2 RPG 1V i/0 Units

The RPG IV compiler reads source records from the
Prccaessor input (P1) file, write object records on the Binary
Output (BQ) file, and lists the source program on the List
Output (LO) fite.

The RPG IV runtime/ioader will normally load the RPG
obiect program from the Binary input (Bl) file. When the
program executes, the READ CARD, PUNCH and PRINT
statements are performed on logical units 13, 14, and 15
respectively, statements for performing input and output to
logical units 16 through 22.

5.4..3 Compiler and Runtime Execution

The RPG compiler and the runtime package should be
cataloged into the background library (BL) using LMGEN.

The compiler and runtime package should be defined as
background unprotected tasks with the names PRGC and
RPGRT, respectively.

The compiter is scheduled from the background library by
the directive

/LOAD, RPGC

The compiler termin ates when the required END statement
in the RPG program is encountered. The compiler exits to
the executive. There is no provision for stacking muitiple
compilations or for operating in compile-and-go mode.

The compiler rewinds the P!, BO, and LO files at the
beginning of the compilation.

The runtime/loader is scheduled from the background
library by the directive

/LOAD,RPGRT

The ioader expects the RPG object program is on the Binary
input (Bl), and loads and executes it. It the load directive
contains the name of an RPG program to be loaded in the
form,

/LOAD, RPGRT, name

the runtime/loader will assume the program mentioned is
in the background library and will load it from there. An
RPG object program may be ’'cataloged’ into the back-
ground library by creating a directory entry and allocating
file space with FMAIN and copying the RPG object program
into the file with IQUTIL.

LANGUAGE PROCESSORS

5.5 RPG || COMPILER

5.5.1 |niroduction

The VORTEX RPG il System is an industry compatibie
software package for general data processing applications.
it combines versatile file and record defining capabilities
with powerful processing statements to soive a wide range
of applications. It is particulary effective in processing data
for reports. The VORTEX RPG Ii system consists of the RPG
Il compiler and RPG i runtime interpreter.

The VORTEX RPG Il compiler executes as a level one
background program in unprotected memory. The compiler
will operate in 4K of memory with limited work space. The
work space may be expanded and consequently larger RPG
programs may be compiled by use of the /MEM directive.

The RPG)} language, and its compilation and execution
under VORTEX is described in the RPG H User's Manual.

5.5.2 RPG Il 1/0 Units

The RPG |1 compiler reads source records from the
Processor (nput (Pi) file, writes object records on the
Binary Output (BO) file, and lists the source program on
the List Output (LO) file. Optionally, object records may be
written on the GO file.

5.5.3 Compiler and Runtime Execution

The RPG || compiier and the runtime package should be
cataloged into the background iibrary (BL) using LMGEN.

The compiler and runtime package should be defined as a
background unprotected task, with the name RPG.

The compiler is scheduled from the background library by
the directive:

/RPG

The compiler terminates when the required . * statement in
the RPG program is encountered. The compiler exits to the
executive. There is no provision for stacking muitiple
compilations or for operating in compile-and-go mode.

The compiler rewinds Pt, BO, and LO files at the beginning
of the compilation.

An RPG object program may be ‘cataloged’ into the
background library by creating a directory entry and
allocating file space with FMAIN and copying the RPG
object program into the file with IOUTIL

SECTION 6
LOAD-MODULE GENERATOR

The load-module generator (LMGEN) is a background task
that generates background and foreground tasks trom
relocatable object modules. The tasks can be generated
with or without overlays, and are Sin a form called load
modules.

To be scheduled for execution within the VORTEX operating
system, all tasks must be generated as load modules.

6.1 ORGANIZATION

LMGEN is scheduled for execution by inputting the job-
control processor (JCP) directive /LMGEN (section 4.2.19).

LMGEN has a symbol-table area for 200 symbois at five
words per symbol. To increase this area, input a /MEM
directive (section 4.2.5), where each 512-word block will
enlarge the capacity of the table by 100 symbols.

INPUTS to the LMGEN comprise:

+ Load-module generator directives (section 6.2) input
through the Sl logical unit.

«+ Relocatable object modules from which the load module
1s generated.

« Error-recovery inputs entered via the SO logical unit.

Load-module generator directives define the load module
to be generated. They specify the task types (unprotected
background or protected foreground) and the locations of
the object modules to be used for generation of the load
modules. The directives supply information for the catalog-
ing of files, i.e., for storage of the files and the generation
of file-directory entries for them. LMGEN directives also
provide overlay and loading information. The directives are
input through the Si logical unit and listed on the LO
iogical unit. If the Si logical unit is a Teletype or a CRT
device, the message LM** is output on it to indicate that
the Si unit is waiting for LMGEN input.

Relocatable object modules are used by LMGEN to
generate the load modules. The outputs from both the DAS
MR assembler and the FORTRAN compiler are in the form
of relocatable object modules. Relocatable object modules
can reside on any VORTEX system logical unit and are
loaded until an end-of-file mark is found. The last execution
address encountered while generating a segment (root or
overlay, section 6.1.1) becomes the execution address for
that segment. (Note: if the load module being generated is

a foreground task, no object module loaded can contain
instructions that use addressing modes utilizing the first
2K of memory, other than the base page (page 0) No
assembler generated indirects or literals are allowed

A VORTEX physical record on an RMD is 120 words. Object-
module records are blocked two 60-word records per
VORTEX physical record. However, in the case of an RMD
assigned as the Si logicai unit, object modules are not
blocked but assumed to be one object module record per
physical record.

Error-recovery inputs are entered by the operator on the
SO logical unit to recover from errors in load-module
generation. Error messages applicable to this component
are given in Appendix A.6.

Recovery from the type of error represented by invahd
directives or parameters is by either of the following:

a. Input the character C on the SO unit, thus directing
LMGEN to go to the S unit for the next directive.

b. input the corrected directive on the SG umit for
processing. The next LMGEN directive is then input
from the Si unit.

If recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort the LMGEN task and schedule
the JCP for execution. (Note: An irrecoverable error, e.g..
170 device failure, causes LMGEN to abort. Examine the
170 error messages and directive inputs to determine the
source of such an error.)

OUTPUTS from the LMGEN comprise:
+ Load modules generated by the LMGEN
« Error messages

+ Load-module maps output upon completion of a load:
module generation

Load modules are LMGEN-generated absolute or relocat
able tasks with or without overiays. They contain all
information required for execution under the VORTEX
operating system. During their generation, LMGEN uses the
SW logical unit as a work unit. Upon completion of the
load-module generation, the module is thus resident on the
SW unit. LMGEN can then specify that the module be
cataloged on another unit, if required, and output the load
module to that unit. Figure 6-1 shows the structure of a
load module.

61

LOAD-MODULE GENERATOR

Note: LMGEN iocks out the‘partition while it is modifying
the directory.

Error messages applicable to the load-module generator
are output on the SO and LO logical units. The individual
messages, errors, and possible recovery actions are given in
appendix A.6.

01000

Foreground Global
Blank Common FCBs
Nucleus Table Nucieus Table

Module Module
Unused Unused
Programs Programs
Named Named
Common Common
Overlay Overlay
Information Information
01000
Page 0 Page O
Data Data
0
Foreground Background

All foreground tasks share the foreground biank common
area but may have their own named common area.

Figure 6-1. Load-Module Overlay Structure (virtual memory)

Print position

item

b
X

{ocation

Load-module maps are cutput on the LO logical unit upon
completion of the load-module generation, unless sup-
pressed. The maps show all entry and external names and
labeled data blocks. They aiso describe the items given as
defined or undefined, and as absolute or relocatable, and
indicate the relative location of the items. The load-module
map lists the items in the format, four entries per line:

2345678 9 10 11 1213 14 15 16

item b x b location

is a lett-justified entry or external name or
labeled data biock

is a blank
is A for an absolute or R for & relocatable item

is the lett-justified relative location of the item

The following appear at the end of the LMGEN map.

[$1AP] Top of indirect address pool, which
begins at 0500

($LIT) Bottom of literal pool, which begins at
0777

[$PED] Last loaded location. Foreground, word

size of load module. Background, last
iocation loaded (loading begins at
01000).

LMGEN performs special handling for an external ot the
form 'VSPED’. LMGEN satisfies this external with the last
loaded location plus one of the load modules for both
overlayed and non-overlayed tasks. This external can be
used for specifying table areas behind tasks that link with
external routines.

6.1.1 Overlays

Load modules can be generated with or without overlays.
Load modules with overlays are generated when task
requirements exceed core allocation. In this case, the task
is divided into overlay segments that can be called as
required. Load modules with overlays are generated by use
of the OV directive (section 6.2.3) and comprise a root
segment anc two or more overlay segments (figure 6-1),
but only the root segment and one overiay segment can be
in memory at any given time. Overlays can contain
executable codes, data, or both.

When a load module with overlays is loaded, control
transfers to the root segment, which is in main memory.
The root segment can then call overlay segments as
required.

Called overlay segments may or may not be executed.
depending on the nature of the segment. it can be an
executabie routine, or it can be a table called for searching
or manipulation, for example. Whether or not the segment
consists of executable data, it must have an entry point.

The generation of the load module begins with the root
segment, but overlay segments can be generated in any
order.

The root segment can reference only addresses contained
within itself. An overlay segment can reference addresses
contained within itself or within the root segment. Thus, all
entry points referenced within the root segment or an
overlay segment are defined for that segment and
segments subordinate to it, if any.

For an explanation of DAS MR and FORTRAN calls to
overlays see section 2.1.8.

LOAD-MODULE GENERATOR

6.1.2 Common

Common is the area of memory used by linked programs
for data storage, i.e., an area common to more than one
program. There are two types of common: named common
and blank common. (Refer to the FORTRAN IV Reference

Manual, document number 98 A 9902 03x, or the DAS MR
COMN directive description in the computer handbook, for
the system being used.

Named common is contained within a task and s used for
communication among the subprograms within that task.

Blank common can be used like named common or for
communication among foreground tasks.

The extent of blank common for foreground tasks is
determined at system generation time. The size of the
foreground blank common can vary within each task
without disturbing the positional relationship of entries but
cannot exceed the limits set at system generation time.

The extent of blank common for background tasks is
allocated within the load module. The size of the back:
ground blank common can vary within each task, but the
combined area of the load module and common cannot
exceed available memory.

Each blank common is accessible only by the correspond-
ing tasks, i.e., foreground tasks use only foreground blank
common, and background tasks use only background
blank common.

All definitions of named and blank common areas for a
given load module must be in the first object module
loaded to generate that ioad module.

6.2 LOAD-MODULE GENERATOR DIRECTIVES

. TIDB Create task-identification block

. LD Load relocatable object modules

. OV Overlay

. LIB Library search

. CLD Load relocatable object modules
without re-opening or repositioning

. MEM Default extra memory pages

. END

Load-module generator directives begin in column 1 and
comprise sequences of character strings having no embed-
ded blanks. The character strings are separated by
commas (,) or by equal signs (=). The directives are free
form and blanks are permitted between the individual
character strings of the directives. i.e, before or after
commas (or equal signs). Although not required, a period
(.) is a line terminator. Comments can be inserted after the
period.

63

LOAD-MODULE GENERATOR

The general form of a load-module generator directive is

name.p(l).p(2),. ..p(n)

where
name is one of the directive names given above
each p(n) is a parameter required by the
(if any) directive and defined below

under the descriptions of the
individual directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
() by equal signs (=) are omitted.

Error messages applicable to ioad-module generator direc
tives are given in Appendix A.6.

6.2.1 TIDB (Task-ldentification Block)
Directive

This directive must be input before any other LMGEN

directives can be accepted. it permits task scheduling and

execution, and specifies the overlay and debugging charac-
teristics of the task. The directive has the general form

TIDB.name, type, segments, DEBUG, ropages

where

name is the name (1 to 6 ASCIi characters) of
the task

type 1s 1 for an unprotected background task
on BL, or 2 for a protected foreground
task or 3 for a background task on an
aiternate library

segments is the number (2 to 9999) of overlay
segments in a task with overlays, or 0 for
a task without overlays (note that the
number 1 is invalid)

DEBUG is present when debugging is desired

ropages is an optional ready-only page specifier

(1.77). it can be a single number or a
range of consecutive numbers (e.g., 3,5).

The DEBUG parameter includes the DEBUG object module
as part of the task. if the task is a load module without
overlays, DEBUG is the last object module loaded. if the
task is a load mocule with overlays, DEBUG is the last
object module loaded in the root segment (section 6.1.1).

The ropage parameter allows specification of a range of
virtual pages as read-only.

6-4

Examples: Specify an unprotected background tas
named DUMP as having no overlays but with cebugging
capability.

TIDB,DUNMP, 1, 0,DEBUG

Specify a protected foreground task named PROC a:
having a root segment and four overiay segments.

TIDB,PROC, 2,4

6.2.2 LD (Load) Directive
This directive specifies the logical unit from which refocat-

able object modules are to be loaded. It has the geners
form .

LD, lun key. file
for loading from RMD logical units, and
LD, lun

for loading from any other logical unit, where

fun is the name or number of the logical w4

where the object module resides

key is the protection code required to
address un
file is the name of the RMD file

From the object modules, LMGEN generates load modules
(with or without overlays) on the SW logical unit. Loading ot
object modules from the specified logical unit continues
until an end-of-file mark or an end-of-lcad module record
(appendix G.6) is encountered.

Successive LD directives permit the loading of object
modules that reside on different logical units. The execi-
tion address for the load module is the last encounter
execution address.

Examples: Load the relocatable object modules from
logical unit 6 (B1) until an end-of-file mark is encoun‘ered.

LD,6

Open a file named DUMP on logical unit @ (GO) with no
protection code. (LMGEN loads the relocatable object
moduies and closes the file.)

LD, 9, ,DUNP

6.2.3 OV (Overlay) Directive

This directive specifies that the named segmen! is an
overiay segment. It has the general form

OV, segname

where segname is the name (1 to 6 ASCIl characters) of
the overlay segment.

Example: Specify SINE as an overlay segment.

OvV,8INE

€.2.4 LiB (Library) Directive

This directive indicates that all load (LD, section 6.2.2)
directives have been input, i.e., all object modules have
been loaded except those required to satisfy undefined
externals. LIB also specifies the libraries to be searched
(and the order in which the search is made) to satisfy all
undefined externals. The directive has the general form

LiB,lun(1),key(1),lun(2),key(2),....lun(n),key(n)
where

each iun(n) is the name or number of a resident-
library RMD logical unit to be searched

each key(n) is the protection code required to
address the preceding logical unit

The search is conducted in the order in which the logical
units are given in the LIB directive. When not specitied by
LIB, the core-resident (CL) and object-moduie (OM)
libranes are searched after all specified libraries have been
searched. However, if LIB specifies the CL and/or OM
libraries, they are searched in the order given in LIB.

if the generation of the load module invoives overlays, a LIB
directive follows each overlay generation.

Examples: Specify to the LMGEN a sequence of libraries
to be searched to satisfy undefined externais. Use logical
unit 115, a user library, having protection code M; followed
by logical unit 103, the CL library, having protection code
C. and the OM library, having protection code D. (Because
the last two libraries are searched in any case, note that
the two inputs following are equivalent.) input
LIB,115,M,103,C,104,D

or, more briefly,

LIB, 115 ,M

To change the order of search to logical units 104, 115, and
103, input

LIB,104,D,115,4,103,C
or, more briefly,

LIB,104,D,115,N

LOAD-MODULE GENERATOR

To search only the CL and OM libraries to satisfy undefined
externals, input

LIB

6.2.5 END Directive

This directive terminates the generation of the load module
and, if specified, causes the creation of a file and a
directory entry (section 9) for the load-module contents on
the indicated logical unit. The indicated logical unit, if any,
is an RMD, and thus may require a protection code. The
directive has the general form

END, jun, key

where

lun is the name or number of the logical unit
on which the file containing the load
moduie will reside

key is the protection code, if any, required to
address lun

If TIDB (section 6.2.1) specified an unprotected back-
ground task (TIDB directive type = 1), the logical unit, if
any, specified by the END directive must be that of the BL
unit, i.e., unit 105. If TIDB specified a protected foreground
task (TIDB directive type = 2), the logical unit, if any,
specified by the END directive must be that of the FL unit,
i.e., unit 106, or that of any available assigned RMD
partition. if TIDB specified an alternate library background
task (TIDB directive type = 3), the logical unit, if any,
specified by the END directive, may be that of any available
assigned RMD partition.

If the END directive does not specify a logical unit, the load
module resides on the SW logical unit only.

If there are still undefined externals, the load module is not
cataloged even if END specifies a legal logical unit. In this
case, the load module resides on the SW unit only.

Examples: Specify that the ioad module is complete (no
more inputs to be made), create a file and a directory entry
on the BL logical unit (105), and catalog the module. The
protection code is E. (Note: The load module will also
reside on the SW unit.)

END, 105 ,E

Specify that the load module is complete (no more inputs to
be made) and is to reside on the SW unit only.

END

6.2.6 CLD Directive

This directive specifies the logical unit from which relocat-
able object modules are to be loaded. It has the general
forms

6-5

LOAD-MODULE GENERATOR

CLD,lun, key, file
or
CLD,lun

Where use of the two forms and the meaning of lun, key,
and file is as for the LD directive (section 6.2.2). This
directive specifies the same action as for the LD directive
except that successive CLD directives do not cause re-
opening or repositioning of the specified logical unit.

6.2.7 MEM (Memory) Directive

This optional directive is used to specify the default
number of extra memory blocks to be attached to a
background task in a similar manner to the /MEM
directive of JCP. This value is in addition to a /MEM
request and is stored in word 12 of the task's pseudo TIDB.
The directive has the general form

MEM,n
where

n is the number of 512 word blocks
(pages)

This directive, if used, must appear after the last LIB
directive and before the END directive.

6.3 SAMPLE DECKS FOR LMGEN
OPERATIONS

Exampie 1: Card and Teletype Input

Generate a background task without overlays using LMGEN
with control records input from the Teletype and object
module(s) on cards. Assign the Bl logical unit to card
reader unit CROO. Assign the task name EXC4 and catalog
to the BL logical unit, and load DEBUG as part of the task
from the OM library.

/JOB, EXAMPLEY
/ASSIGN,BI=CR00O

/ LMGEN
TIDB,EXC4,1,0,DEBUG
LD,B1

LIB

END,BL,E

/ENDJOB

(Teletype input)

Note: The object module deck must be foliowed by an
end of file (2-7-8-9 in card column 1).

5-6

Example 2: Card Input

Generate a foreground task with overlays using LMGEN
with control records and object modules input from the
card reader. Assign the Bl and S| logical units to card
reader unit CR0O. Assign the task name EXCS, overlay
names SGM!, SGM2, and SGM3. and catalog to the FL
logical unit.

/JOB, EXAMPLES
/ASSIGN,BI=CRO0O,SI=CROO
(Deck)

/LMGEN

TIDB,EXCS,2,3

LD,BI

{Object Module(s) -- root segment)
(End of File)

LIB

oV, SGM1

LD,BI

(Object Module(s))
(End of File)

LIB

OV, SGM2

LD,BI

(Object Module(s))
(End of File)

LIB

oV, 8GM3

LD, BI

(Object Module(s))
(End of File)

LIB

END,FL,F

/ENDJOB

Exampie 3: Teletype and RMD Input

Generate a foreground task without overiays using LMGEN
with control records input from the Teletype and object
maodule(s) from an RMD. The object module resides on
RMD 107 under the name PGEX. Assign the task name
EXC6, search the OM library first to satisfy any undefined
externals, and cataiog on RMD 120.

/JOB, EXAMPLE®
/ LMGEN
TIDB,EXC6,2,0
LD,107,2,PGEX
LIB,OM,D

END, 120,X
/ENDJOB

SECTION 7
DEBUGGING AIDS

The VORTEX I system contains two debugging aids: the
debugging program (DEBUG) and the snapshot dump
program (SNAP).

7.1 DEBUGGING PROGRAM

The 816-word VORTEX debugging program (DEBUG) is
added to a task load module whenever the DEBUG option
1s specified by a load-module generator TIDB directive
(section 6.2.1). The DEBUG object module is the last object
module ioaded of the root segment if the task is an overlay
load module. The load-module generator sets the load-
module execution address equal to that of DEBUG.

it the load module has been cataioged, DEBUG executes
when the module is scheduled. Otherwise, JCP directive
/EXEC (section 4.2.22) is used to schedule the module and
DEBUG (level zero only).

During the execution of DEBUG, the A, B, and X
pseudoregisters save the contents of the real A, B, and X
registers, and restore the contents of these registers before
terminating DEBUG. if the task uses V75 registers, the
contents of R3 through R7 are also saved and restored.

When debugging is complete, the input of any job-control
directive (section 4.2) returns control to the VORTEX
system.

INPUTS to DEBUG comprise the directives summarized in
table 7-1 input through the D! logicai unit. When DEBUG is
first entered, it outputs on the Teietype or CRT device the
message DG** followed by the TiDB task name and the,
address of the first allocatable memory cell. This message
indicates that the system is ready to accept DEBUG
directives on the D! unit.

Table 7-1. DEBUG Directives

Directive Description
A Display and change the contents of the A pseudoregister
Ax Change, but do not display, the contents of the A pseudoregister
B Display and change the contents of the B pseudoregister
Bx Change, but do not display, the contents of the B pseudoregister
" *Rn Display and change the contents of the V75 register
nin = 07).
“Rnx Change, but do not display, the contents of the V75
register n.
Cx Display and change the contents of memory address x
Gx Load the contents of the pseudoregisters into the
respective A, B, and X registers, and transfer to
memory address x
In,y,z Initialize memory addresses x through y with the value of z
(o] Display and change the overflow indicator
P Read DEBUG directives from Bl unit until EOF
$x,y,z,m Search memory addresses x through y for the z value,
using mask m
Ty, x Place a trap at memory address y, starting execution:

at address x

~J
—

DEBUGGING AIDS

Table 7-1. DEBUG Directives (continued)

Directive Description

Ty Place a trap at memory address y, starting execution ’
at the last trap location

X Display and change the contents of the X pseudoregister

Xy Change, but do not display, the contents of the X
pseudoregister

XXXXXX Display the contents of memory address xxxxxx

XXXXXX,YYYYYY Display the contents of memory addresses xooxx through

yyyyyy

* = V75 systems only

Each DEBUG directive has from 0 to 72 characters and is
terminated by a carriage return. Directive parameters are
separated by commas, but DEBUG treats cornmas, periods,
and equal signs as delimiters.

Numerical data are always interpreted as octat by DEBUG.
Negative numbers are accepted, but they are converted to
their two's complements by DEBUG.

An error message, EX20-EX25, is output and the task is
aborted, if a memory-map protection violation occurs.

OUTPUTS from DEBUG consist of corrections to registers
and memory, displays, listings on the DO logical unit, and
error messages. Numerical data are always to be inter-
preted as octal.

Error messages applicable to the debugging program are
given in Appendix A.7.

Exampies of DEBUG directive usage: Note that, in the
following examples, operator inputs are in boM type.
Entries in italics, are program responses to the directives.
Display the contents of a pseudoregister A:

A
(001200)

Display and change the contents of a pseudoregister B:

8
(001200) 010406

Change, but do not display, the contents of a pseudoregis-
ter X:

X02050

72

Display, but do not change, the status of the overflow
indicator:

0
(000001)

Display and change the status of the overflow indicator:

)
(000000) 000001

Display, but do not change, the contents of memory
address 002050:

€002050
(102401)

Display and change the contents of memory address
002050:

€002050
(102401)
001234

Display and change the contents of memory address
002050, then display the contents of the next sequential
location:

C002050
- (102401)

001234,

(000067)

Display, but do not change, the contents of memory
address 002050, then display the contents of the next
location:

©002030
(102401),
(000067)

Load the contents of the pseudoregisters into the respective
A, B, and X registers, and start execution at memory
address 001001:

Q001001

Initialize memory addresses 000200 through 000210 to the
vaiue 077777:

1000200,000210,077777

Search memory addresses 000200 through 000240 for the
value 000110 using the mask 000770, and display
addresses that compare:

$000200,000240,000110,000770
000220 (017110)
000234 (000110)
000237 (001110)

Load the contents of the pseudoregisters and the overflow
indicator status into the respective registers, and start
execution at memory address 001234, specifying a trap
address of 001236. Display the contents of the A, B, and X
registers and the setting of the overflow indicator when the
trap address is encountered:

T001236,001234
001236 (142340) 002000 010405 012345 000001

Execute the same trap it the task uses V75 instructions
(assuming Rn = n).

T001236,001234
001236 (142340) 002000 010405 012345 000001
000003 000004 000005 000006 000007

Display the contents of memory address 001234:

001234
(001200)

Display the contents of memory addresses 001234 through
001237:

001234,001237
001230 005000 - - - - - - 005000

Total of 8 values

7.2 SNAPSHOT DUMP PROGRAM

The 294.word snapshot dump program (SNAP) provides on
the DO logical unit both register displays and the contents
of specified areas of memory. It is added to a task load

DEBUGGING AIDS

module if the task contains a SNAP request and calls the
SNAP external rputine. SNAP is entered directly upon
execution of the SNAP display request CALL SNAP. The
SNAP display request is an integral part of the task and is
assembled with the task directives. Thus, no external
intervention is required to output a SNAP display.

SNAP outputs the message SN** followed by the task TIDB
name before listing the requested items. The calling
sequence for a SNAP display is '

EXT SNAP
CALL SNAP
DATA start
DATA end
DATA tidb
where
start is the first address whose contents are

to be displayed

end is the last address whose contents are to
be displayed

tidd is less than zero if dump of task TIDB is
desired, ts positive if TIDB dump s to be
suppressed :

If start is a negative number, there is no memory dump. |t
more than one location is specified to be displayed, the
output dump will be in complete lines of eight addresses,
e.g., it start is 01231 and end is 01236, the dump will
display the contents of addresses 01230 through 01237,
inclusive. SNAP displays octal data.

If there is an error in the SNAP display request, only the
contents of the A, B, and X (and V75 if present) registers
and the setting of the overflow indicator are displayed.

Output examples: with the snap request at 01234. dispiay
the contents of the A (017770), B (001244), and X
(037576) registers, and the overflow indicator (on).

SN** TASKO1
001234 017770 001244 037576 000001
*000003 000004 000005 000006 000007

Using the same data, display, in addition, the contents of
memory addresses 001002 through 001025, inciusive and
request a dump of the active TIDB.

7-3

DEBUGGING AIDS

SNs* 8SW 000500

001023 000000
*000003 000004

TIDB LOC 055013 =CONTENTS=

055010 000000
055020 001527
055030 000001
055040 000500
*055050 000006

SNAP DUNMP
001000 006505

001010 010002,

001020 001101

000000
000005

000000
067001
001541
000000
000007

070275
075334
001101

001023
000006

000000
001326
000002
074627
000000

001402
000000
001014

* These lines appear only if the task uses V75 register

74

000000
000007

000000
141146
000000
064608
000000

001031
000000
002000

000001
001000
002000
055075
000000

000050
006505
001107

000000
065604
151727
000003
000000

006505
070137
001000

000000
000007
120240
000004
000000

066270
001005
001027

001527
001302
120240
000005
000000

100000
001101
001000

SECTION 8
SOURCE EDITOR

The VORTEX operating system source editor (SEDIT) is a
background task that constructs sequenced or listed output
files by selectively copying sequences of records from one or
more input files. SEDIT operates on the principle of
forward-merging of subfiles and has file-positioning capa-
bility. The output file can be sequenced and/or listed.

8.1 ORGANIZATION

SEDIT is scheduled by the job-control processor (JCP,
section 4.2.17) upon input of the JCP directive /SEDIT.
Once activated, SEDIT inputs and executes directives from
the Si logical unit until another JCP directive (first
character = /) is input, at which time SEDIT terminates
and the JCP is again scheduled.

SEDIT has a buffer area for 100 source records in MOVE
operations (section 8.2.8). To increase this, input a /MEM
directive (section 4.2.5), immediately preceding the /SEDIT
directive, where each S12-word block will increase the
capacity of the buffer area by 12 source records.

INPUTS to SEDIT comprise:

a. Source-editor directives (section 8.2) input through the
St fogical unit.

b. Old source records input through the IN logical unit.

c. New or replacement source records input through the
ALT logical unit.

d. Error-recovery inputs entered via the SO logical unit.

Source-editor directives specify both the changes to be
made in the source records, and the logical units to be
used in making these changes. The directives are input
through the SI logical unit and listed as read on the LO
jogical unit, with the VORTEX standard heading at the top
of each page. If the Sl logical unit is a Teletype or a CRT
device, the message SE** is output to it before directive
input to indicate that the St unit is waiting for SEDIT input.

There are two groups of source-editor directives: the
copying group and the auxiliary group. The copying group
directives copy or delete source records input on the IN
logical unit, merge them with new or replacement source
records input on the ALT unit, and output the results on
the OUT unit. Copying-group directives must appear in
sequence according to their positioning-record number
since there is no reverse positioning. If the remainder of
the source records on the IN unit are to be copied after all
editing is compieted, this must be explicitly stated by an FC
directive, (section 8.2.9). Ends of file are output only when
specified by FC or WE directives (sections 829 and
8.2.13). The processing of string-editing directives is

different from that of record-editing directives. A string-
editing directive affects a specified record, where source
records on the IN unit are copied onto the OUT unit until
the specitied record is found and read into memory from
the IN unit. After editing, this record remains in memory
and is not yet copied onto the OUT unit. This makes
possible multiple field-editing operations on a single source
record. The suxillary group directives are those used for
special 170 or control functions.

Al source records, whether old, new, or replacement
records, are arranged in blocks of three 40-word records
per VORTEX RMD physical record. Any unused portion of
the last physical record of an RMD file on the IN unit
should be padded with blanks. When necessary, SEDIT wili
pad the last RMD record on the QUT unit. When the OUT
file will contain more than one source module for input to a
language processor, the user should insert two blank
records after each END statement to insure that each
source module starts on a physical record boundary.
Record numbers start with 1 and have a maximum of 9999.
Sequence numbers start at any value less than the
maximum 9999, and can be increased by any integral
increment. These specifications for sequence numbers are
given by the SE directive (section 8.2.10).

Error-recovery inputs are entered by the operator on the
SO logical unit to recover from errors in SEDIT operations.
Error messages applicable to this component are given in
Appendix A.8. Recovery is by either of the following:

a. Input the character C on the SO unit, thus directing
SEDIT to go to the Sl unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next SEDIT directive is then input from
the S| unit.

It recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort the SEDIT task and schedule

the JCP for execution. (Note: |f there is an 1/0 control
error on the SO unit, SEDIT is terminated automatically.)

OUTPUTS from the SEDIT comprise:

a. Edited source-record sequences output on the OUT
logical unit.
b. Error messages.

c. The listing of the SEDIT directives on the LO logical unit

d. Comparison outputs (compare-inputs directive. section
8.2.19).

e. Listing of source records on the LO logical unit when
specified by the LI directive (section 8.2.1 1).

81

SOURCE EDITOR

Error messages applicable to SEDIT are output on the SO
and LO logical units. The individual messages and errors
are given in Appendix A.8.

The fisting of the SEDIT directives is made as the
directives are read. Source records, when listed, are listed
as they are input or outpu‘. The VORTEX standard heading
appears at the top of each page of the listing.

LOGICAL UNITS referenced by SEDIT are either fixed or
reassignable units. The three fixed logical units are:

a. The $i logical unit, which is the normal input unit for
SEDIT directives.

b. The SOiogical unit, which is used for error-processing.

c. The LO logical unit, which is the output unit for SEDIT
listings.

The three reassignable logical units are:

3. The SEDIT input (IN) logical unit, which is the normal
input unit for source records. This is assigned to the Pi
logical unit when SEDIT is loaded, but the assignment
can be changed by an AS directive with an IN
parameter (section 8.2.1).

b The SEDIT output (OUT) logical unit, which is the
normal output unit for source records. This is assigned
to the PO logical unit when SEDIT is loaded, but the
assignment can be changed by an AS directive with
an OU parameter.

c. The SEDIT alternate input (ALT) logical unit, which 1s
the alternate input unit used for new or replacement
source records. This is assigned to the B! logical unit
when SEDIT is loaded, but the assignment can be
changed by an AS directive with an AL parameter.

8.2 SOURCE-EDITOR DIRECTIVES

This section describes the SEDIT directives:

a. Copying group:
. AS Assign logical units

. AD Add record(s)

. SA Add string

. REPL Repiace record(s)

. SR Replace string

. DE Delete record(s)

. SD Delete string

. MO Move record(s)

b. Auxiliary group:
. FC Copy file
. SE Sequence records
. Li List records
. GA Geng-load all records
. WE Write end-of-file
. REW! Rewind
. CO0 Compare records

82

SEDIT directives begin in column] and comprise se
quences of character strings having no embedded blanks.
The character sirings are separated by commas (.) or by
equal signs (=). The directives are free-form and bianks
are permitted between individual character strings of the
directive, i.e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator.
Comments can be inserted after the period.

The generat form of an SEDIT directive is
ﬂMVp(l)vp(z)vvp(n)

where

name is one of the directive names given above
or a longer string beginning with one of
the directives names (eg., AS or
ASSIGN)

eachp(n) s a parameter defined below under the
descriptions of the individuat directives

Where applicable in the following descriptions, a field
specification of the format (tirst,last) or (n1,n2,n3) is still
separated from other parameters by parentheses even
though it is enclosed in commas. Note also that the
character string string is coded within single quotation
marks, which are, of course, neither a part of the string
itself nor of the character count for the string.

8.2.1 AS (Assign Logical Units) Directive

This directive specifies a unit assignment for an SEDIT
reassignable logical unit (section 8.1). 1t has the general
form

AS,nn = lun, key,file

where
nn is IN if the directive is making an
assignment of the IN logical unit, OU
the OUT logical unit. or AL if the ALT

logical unit

fun is the name or number of the logical unit
being assigned as the IN, OUT, or ALT
unit

key is the protection code, if any, required to
address un

file is the name of an RMD fije, if required

If the SEDIT reassignable units are to retain the assign-
ments made when SEDIT was loaded (defauit
assignments: IN=Pl, OUT = PO, ALT = 81), no AS direc-

tive is required. Each AS directive can make only one
reassignment (e.g., if both IN and OUT are to be
reassigned, two AS directives are required).

Any RMD affected by an AS directive is automatically
repositioned to beginning of device.

The AS directive merely fixes parameters in /0 control
calls within SEDIT. It does not alter I/0 control assign:
ments in the logicai-unit table (tabie 3-1).

te: AS resets the corresponding record counter. how-
ever, no physical rewinding of devices occurs.

Examples: Assign the P! logical unit as the SEDIT
reassignabie IN unit.

AS, IN=pPI

or, the unabbreviated form

ASSIGN, INPUT=PI

Assign logical unit 8 as the SEDIT reassignable OUT unit.
AS,0OU=38

Assign as the SEDIT reassignable IN unit the file FILEX on
logical unit 111, an RMD partition without a protection key.

As,IN=111, ,FILEX

8.2.2 AD (Add Records) Directive

This directive adds source records. It has the general form

AD,recno

where recno is the number of the record last copied from
the IN logical unit before switching to the ALT unit for
further copying.

The AD directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to and including
the record specified by recno. Then, source records are
copied from ALT onto OUT from the current position of the
unit up to but not including the next end-of-file mark.

Example: Copy records from (N onto OUT from the
current position of IN up to and including IN record 7.
Then, switch to ALT and copy records from the current
position of that unit up to but not including the next end-
of-file mark.

AD,7

SOURCE EDITOR

8.2.3 SA (Add String) Directive

This directive inserts a character string into a source-record
field. It has the general form

SA recno,(tirst last) string’

where

recno is the number of the source record in
which the character string is to be
inserted

first is the number of the first character
position to be affected

last is the number of the last character
position to be atfected

string is the string of characters to be inserted

in the field delimited by character
positions first and last in record number
recno

The SA directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but not
including the record specified by recno. The record recno is
read into the memory buffer. The character string string
shifts into the left end of the specified field first last, with
characters shifted out of the right end of the tield being
lost. There is no check on the length of string and shitting
continues until it is left-justified in the field with excess
characters, if any, being truncated on the right.

The record remains in the memory buffer, thus permitting
multiple string operations on the same record. (if IN is
already positioned at recno because of a previous string
operation, there is, of course, no change in position.)

The record recno is read out of the memory bufter and onto
the OUT unit when an SEDIT directive affecting another
racord is input.

The field specification first last is fost after one manipula-
tion. Subsequent string operations must specify the
character positions based on the new configuration. For
example, for the character string ACDEGDD in positions |
through 7, addition of the character B in position 2 requires
the field specification (2,7). Then, to add the character F
between £ and G, one must specify the field (6,7) rather
than (5.7) because of the shift previously caused by
insertion of the character B.

Example: Change the erroneous DAS MR source-state
ment operand in character positions 1621 of the 32nd
record trom LOCXbb to LOC,Xb.

SA,32,(19,20), ',

83

SOURCE EDITOR

8.2.4 REPL (Replace Records) Directive

This directive replaces one sequence of source records with
another sequence of records. It has the generai form

.

REPL,recnol,recno2

where
recnol is the number of the first record to be
replaced
recno2 is the number of the last record to be
replaced

If recno2 is omitted, it is assumed equal to recnol, i.e., one
record will be replaced.

The REPL directive copies source records from the IN
logical unit onto the QUT logical unit beginning with the
current position of the IN unit and continuing up to but not
including the record specified by recnol. Then, records are
read from IN, but not copied onto OUT, up to and including
the record specified by recno2. Thus, the records recnol
through recno2, inclusive, are deleted. Then, source records
are copied from the ALT logical unit from the current
position of the unit up to but not including the next end-of.
file mark.

Example: Copy records from IN onto OUT from the
current position of IN up to and including record 9. Replace
IN records 10 through 20, inclusive, with records on ALT,
copying those between the current position of ALT and the
next end-of-file mark onto OUT. Do not copy the end-of-file
mark.

REPL, 10,20

8.2.5 SR (Replace String) Directive
This directive replaces one character string within a source
record with another character string. it has the general
form
SR,recno,(n1,n2,n3), string’
where
recno is the number of the source record in

which the character string is to be
replaced

nl is the number of the first character
position of the string to be replaced

n2 is the number of the last character
position of the string to be replaced

84

n3 is the number of the last character
position of the field in which the string to
be replaced occurs

string is the string of characters to be inserted

in the field delimited by character
positions n1 and n3 in record number
recno after shifting out the characters in
positions nl through n2, inclusive

The SR directive copies source records from the IN logical
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but not
including the record specified by recno. The record recno is
read into the memory buffer. Field n1,n3 is then shifted to
the left and filled with blanks until the field n1,n2 is shifted
out. Then, the character string string shifts into the left
end of the field n1,n3. There is no check on the length of
string and shifting continues untif it is left-justified in the
field n1,n3 with excess characters, if any, being truncated
on the right.

The record remains in the memory buffer, thus permitting
multiple string operations on the same record. (If IN is
already positioned at recno because of a previous string
operation, there is, of course, no change in position.)

The record recno is read out of the memory butfer and onto
the OUT unit when a SEDIT directive affecting another
record is input.

The field specification n1,n2,n3 is lost after one manipula-

tion. Subsequent string operations must specify the
character positions based on the new configuration.

Example: Copy records from IN onto OUT up to and
including record 49, and replace the present contents of
character positions 10 through 12, inclusive, in IN unit
source record 50 with the character string XYb.

SR,50,(10,12,12), 'XY '

8.2.6 DE (Delete Records) Directive

This directive deletes a sequence of source records. it has
the general form

DE,recnol,recno2

where
recnol is the number of the first recorc to be
deleted
recno2 is the number of the last record to be
deleted

If recno2 is omitted, it is assumed equal to recnol, i.e.. one
record will be deleted.

The DE directive processing is exactly like that of the REPL
directive (section 8.2.4) except that there is no copying
from the ALT unit after the deletion of the records recnol
through recno2, inclusive.

Exampies: Copy records from IN onto the OUT logical unit
up to and including record 49, but delete records 50
through 54, inclusive.

DE,50, 54

Position IN at record 2, deleting record 1.

DE, 1

8.2.7 SD (Delete String) Directive

This directive deletes a character string from a source
record. It has the generai form

$0,recno,(n1,n2,n3)

where

recno is the number of the source record from
which the character string is to be
deleted

nl is the number of the first character
position of the string to be deleted

n2 is the number of the last character
position of the string to be deleted

n3 is the number of the last ¢haracter
position of the field in which the string to
be deleted occurs

The SD directive processing is exactly like that of the SR
directive (section 8.2.5) except that no new character string
is shifted into field n2,n3 after the field nl,n2 is shifted out.

Example: Copy records from IN onto OUT up to and
including record 99, and delete characters 2 through 4,
inclusive, from record 100, shifting characters 5 through
10, inclusive, three places to the left, with biank fiti on the
right.

S$D,100,(2,4,10)

SOURCE EDITOR

8.2.8 MO (Move Records) Directive

This directive moves a block of records forward on a unit. It
has the general form

MO,recnol, recno2 recno3

where
recnol is the number of the first record to be
moved
recno2 is the number of the last record to be
moved
recno3 15 the number of the record after which

the block of records delimited by recnol
and recno?2 is to be inserted

If recno2 is omitted, it is assumed equail to recnol, ie., one
record will be moved.

The MO directive copies source records from the IN logicai
unit onto the OUT logical unit beginning with the current
position of the IN unit and continuing up to but rot
including the record specified by recmol. The records
recnol through recno2 are then read into a special MOVE
area in memory. The position of IN is now recno2 +1.
When OUT reaches (by some succeeding directive)
recno3 + 1, the contents of the MOVE area are copied onto
QUT. Multipie MO operations are legal.

Example: Copy records from IN onto OUT up to and
including record 4, save records 5 through 10, inclusive, in
the MOVE area of memory, copy records 11 through 99,
inclusive, from IN onto OUT, and then copy records 5
through 10 from the MOVE area to OUT. This gives a record
sequence on QUT of 1-4, 11-99, 5-10 (FC directive, section
8.2.9.).

MO,5,10,99
FC

8.2.9 FC (Copy File) Directive

This directive copies blocks of files, including end-of-file
marks. It has the general form

FC.nfiles

where nfiles (default value = 1) is the number of files to be
copied.

If the IN logical unit and/or the OUT logical unit is an RMD
partition, nfiles must be 1 or absent. If OUT is a named file

on an RMD, there will be an automatic close/update
Whenever an end-of-file mark is encountered, all record
counters are reset to zero.

85

SOURCE EDITOR

Examples: Copy files from IN onto OUT up to and
including the next end-of-file mark on the IN unit.

FC
Copy the next six IN files (including end-of-file marks) onto
OUT. This includes the sixth end-of-file mark. (Note: If IN

and/or OUT is an RMD partition, there will be an error.)

FC,6

8.2.10 SE (Sequence Records) Directive

This directive assigns a decimal sequence number to each
source record output to the OUT logical unit. It has the
general form

SE, (first last),initial,increment

where
first is the first character position of the
sequence name field
last is the last character position of the
sequence number fieid, where the de-
fault value of first,last is 76,80
initial is the initial number to be used as a

sequence number (default value = 10)
increment is the increment to be used between

successive sequence numbers (defauit
value = 10)

There 15 aiso a special form of the SE directive to stop
sequencing:

SE,N
where there are no parameters other than the letter N.
Examples: In the next record output to OUT, place 00010
in character positions 76 through 80, and increment the
field by 10 in each succeeding record.
SE
In the next record output to QUT, place 030 in character
positions 15 through 17, and increment the field by 7 on
each succeeding record.
se,{(15,17),30,7
Stop sequencing.

SE,N

8-6

8.2.11 L! (List Records) Directive

This directive ists, on the LO logical unit, the records
copied onto the OUT unit. The LI directive has the general
form

LI list
where list is A (default value) if ail OUT records are to be
listed, C if only changed records are to be listed, or N if
listing is to be suppressed. Source records output to the

OUT file are listed with their OUT record number at the left
of the print list.

Exampiles: List all records output to OUT.
LI
Suppress all listing except that of SEDIT directives.

LI,N

8.2.12 GA (Gang-Load All Records) Directive
This directive loads the same character string into the
specified field of every record copied onto the OUT logical
unit. It has the general form

GA. (tirst last), string'

where
first is the first character position of the field
to be gang-loaded
last is the last character position of the field
to be gang-loaded, where the default value
of first last is 73,75
string is the string of characters o be gang:

loaded into character positions first
through last, inclusive in all records
copied onto out

There is also a special form of the GA directive to stop
gang loading:

GA
where there are no parameters in the directive.

In every OUT record, GA clears the specified tield, and
loads the string into it. There is no check on the length of
string and shifting continues until it 1s ieft-justified in the
specified field with excess characters, it any, being
truncated on the right.

Examples: Load character string VDMbb in character
positions 11 through 15, inclusive, of every record copied
onto OUT.

GA,(11,15), 'VDM '

Stop gang-loading.

GA

8.2.13 WE (Write End of File)
Directive

This directive writes an end-of-file mark on the QUT logical
unit. it has the form

WE
without parameters. If OUT is a named file on an RMD,

there will be an automatic close/update.

Example: Write an end-of-file mark on OUT, a magnetic-
tape unit.

WE

8.2.14 REWI (Rewind) Directive

This directive rewinds the specified SEDIT logical unit(s). It
has the general form

REWI,p(1),p(2),p(3)
where each p(n) is a name of one of the SEDIT logical
units: IN, OUT, or ALT. These can be coded in any order.
Example: Rewind all SEDIT logical units.

REWI, IN,ALT,OUT

8.2.15 CO (Compare Inputs) Directive

This directive compares the specified field in the inputs
from the IN logical unit with those from the ALT logica! unit
and lists discrepancies on the LO logical unit. The directive
has the general form .

CO, (first, last), limit

where
first is the first character position of the field
to be compared
last is the last character position of the field

to be compared, where the default value
of first,last is 1,80.

SOURCE EDITOR

limit is the maximum number of
discrepancies to be listed betore
aborting the comparison and passing to
the next directive.

Any discrepancy between the IN and ALT inputs is listed in
the format

I recordnumber or EOF inrecord
A recordnumber or EOF altrecord

it the comparison terminates by reaching the limit number
of discrepancies, SEDIT outputs on the LO the message

SEDIT COMPARE ABORTED

to prevent long listings of errors, for example, where a card
is misplaced or missing on one input. A normal termination
of a comparison (at the next end-of-iile mark) concludes
with the message

SEDIT COMPARE FINISHED

Example: Compare character positions 1 through 80,
inclusive, from the IN and ALT units until either an end of
file 1s found or there have been 5 discrepancies listed on
the LO.

co,.5

8.3 EXAMPLE OF EDITING A FILE

Following is a sample job stream for editing an existing file
on a magnetic tape onto a new file on magnetic tape. The
input file consists of 80-character records followed by an
end-of-file mark. The job stream and the edit cards are
read through the system input device.

/JOB,EDIT
/ASSIGN,PI=MT00,PO=MT10
/RBW, PI,PO
/SEDIT
AS,IN=PI
AS,OUT=PO
AS ,ALT=S1
DE,S
REPL, 8,10
LDA TEMP
(EOF card, 2-7-8-9 punch)
ADD, 17
TBL BSS 5
(BOF card, 2-7-8-9 punch)
FC .
REWI, IN,OUT
/ENDJOB

SOURCE EDITOR

The result of running the preceding source editor example

woulid be the following:

88

Input File

CATALOG

EQU
EQU

DATA
LDA
LDB
JBIM
ADD
ANAI
STA
LRLA
STA
TLB
JMP*

ROUTINE
6
9

0

TMX
THY
ODER
PARM6
0770
TBL+2
6
TBL+U

CATLOG

Output File

1 *

2 CATALOG
3

4 AS$3 EQU
5

6 CATLOG DATA
7 LDA
8 ADD
9 ANAl
10 STA
" LRLA
12 STA
13 TLB
14 JMPpPe
15 TBL BSS

ROUTINE

3

0
TEMP
PARMG&
0770
TBL+2
6
TBL+#

CATLOG
5

SECTION9
FILE MAINTENANCE

The VORTEX file-maintenance component (FMAIN) is a
background task that manages file-name directories and
the space allocations of the files. it is scheduled by the job-
control processor (JCP) upon input of the JCP directive
/FMAIN (section 4.2.18).

Only files assigned to rotating-memory devices (disc or
drumj can be referenced by rname.

File space is allocated within a partition forward in
contiguous sectors of the same cylinder, skipping bad
tracks. The only exception to this continuity is the file-name
directory itself, which is a sequence of linked sectors that
may or may not be contiguous.

9.1 ORGANIZATION

FMAIN inputs file-maintenance directives (section 9.2)
received on the Si logical unit and outputs them on the LO
logical unit and on the SO logical unit if it is a different
physical device from the LO unit. Each directive is
completely processed before the next is input to the JCP
buffer.

If the Si iogical unit is a Teletype or a CRT device, the
message FM®* is output on it before input to indicate that
the Sl unit is waiting for FMAIN input.

It there is an error, one of the error messages given in
Appendix A.9 is output on the SO logical unit, and a record
is input from the SO unit to the JCP buffer. if the first
character of this record is /, FMAIN exits via the EXIT
macro. if the first character is C, FMAIN continues. If the
first character is neither / nor C, the record is processed as
a normal FMAIN directive. FMAIN continues to input and
process records until one whose first character is / is
detected, when FMAIN exits via exit. (An entry beginning
with a carriage return is an exception to this, being
processed as an FMAIN directive).

FMAIN has a symbol-table area for 200 symbols at five
words per symbol. To increase this area, input a /MEM
directive (section 4.2.5), where each 512-word block will
enlarge the capacity of the table by 100 symbols.

9.1.1 Partition Specification Table

Each rotating-memory device (RMD) is divided into up to
20 memory areas called partitions. Each partition is

referenced by a specitfic logical-unit number. The bounda-
ries of each partition are recorded in the core-resident
partition specification table (PST). The first word of the
PST contains the number of VORTEX physical records per
track. The second word of the PST contains the address of
the bad-track table, if any. Subsequent words in the PST
comprise the four-word partition entries. Each PST is in the
format:

Bit 15141312 11109876543210
Word 0| = Size of bad track table (120-words)
Word 1 Address of bad track table (0 if none)

relative to word 0O

Word 0 Beginning partition track address

Word 1 | PPB |Not used Protection code

Word 2 Number of bad tracks in partition

Word 3 Ending partition address + 1

n__.\/_\”_‘\‘\;‘”‘/.\/—ﬁ\/\/\q__

The partition protection bit, designated ppb in the above
PST entry map, is unused in file maintenance procedures.

Note that PST entries overlap. Thus, word 3 of each PST
entry is also word O of the following entry. The relative
position of each PST entry is recorded in the device
specification table (DST) for that partition.

The bad-track table, whose address is in the second word
of the PST, is a bit string read from left to right within each
word, and forward through contiguous words, with set bits
flagging bad tracks on the RMD. (If there is no bad-track
table, the second word of the PST contains zero.)

9.1.2 File-Name Directory

Each RMD partition contains a filke-name directory of the
files contained in that partition. The beginning of the
directory is in the first sector of the partition. The directory
for each partition has a variable number of entries
arranged in n sectors, 19 entries per sector. Sectors
containing directory information are chained by pointers in

FILE MAINTENANCE

the iast word of each sector Thus, directory sectors need
not be contiguous. Each directory entry is in the format:

Bit 1514131211 109876543210
Word 0 File name

Word 1 File name

Word 2 Fie name

Word 3 Current position of file

Word 4 Beginning file address

Word 5 Ending tile address

The file name comprises six ASCIl characters packed two
characters per word, left justified, with blank fill. Word 3,
which contains the current address at which the file 1s
positioned, is initially set to the ending file address, and is
manipulated by (/0 control macros (section 3). The extent
of the file is defined by the addresses set in words 4 and S
when the file is created, and remains constant.

The first sector of each partition is assigned to the file-
name directory. FMAIN allocates RMD space forward in
contiguous sectors, skipping bad tracks. Following the last
entry in each directory sector is a one-word tag containing
either the value 01 (end of directory), or the address of the
next sector of the file-name directory.

The file name directories are created and maintained by
the file maintenance component for the use of the 1/0
contro! component (section 3). User access to the directo-
ries 1s via the 1/0 control component.

Special entries: A blank entry is created when a file name is
deleted, in which case the file name is ****** and words 3
through 5 give the extent of the blank file. A zero entry is
created when one name of a multiname file is deleted, in
which case the deleted name is converted to a blank entry
and all other names of the multiname file are set to zero.

WARNING

To prevent possible loss of data from the file-
name directory during file-maintenance opera-
tions, FMAIN sets the lock bit (bit 12 of word 2
of the DST) before any directory operation, thus
inhibiting all foreground requests for 1/0 with
the partition being modified. Upon completion
of the directory operation, FMAIN clears the lock
bit. Except for the use of protection codes, this
is the only protection for the file-name divec-
tory. Manipulation of foreground files with
FMAIN is at the user's risk. For example,
VORTEX does not prevent deletion of a file
name from a file-name directory that has been
opened and is being written into by a fore-
ground program. Therefore, foreground files
should be reassigned prior to manipulation by
FMAIN.

9.2

9.1.3 Relocatable Object Modules

Outputs from both the DAS MR assembler and the
FORTRAN compiler are in the form of relocatable object
modules. Relocatable object modules can reside on any
VORTEX-system logical unit. Before object modules can be
read from a unit by the FMAIN INPUT and ADD directives
(sections 9.2.7 and 9.2.8), an 1/0 OPEN with rewinding
(section 3.5.1) is performed on the logical unit, i.e., the unit
(except paper-tape or card readers) is first positioned to the
beginning of device or load point for that unit. Object
modules can then be loaded until an end-of-file mark is
found.

The system generator (section 15) does not build any
object-module library. FMAIN is the only VORTEX compo-
nent used for constructing user object-module libraries.

A VORTEX physical record on an RMD is 120 words. Object-
module records are blocked two 60-word records per
VORTEX physical record. However, in the case of an RMD
assigned as the Si logical umit, object modules are not
blocked but assumed to be one object-module record per
physical record.

9.1.4 OQutput Listings
FMAIN outputs four types of listing to the LO togical unit:

+ Directive listing lists, without modification, all FMAIN
directives entered from the S logical unit.

« Directory listing lists file names from a logical unit file:
name directory in response to the FMAIN directive LIST
(section 9.2.5).

« Deletion listing lists file names deleted from a logical
unit file.name directory in response to the FMAIN
directive DELETE (section 9.2.2).

+ Object-module listing lists the object-module input in
response to the FMAIN directive ADD (section 9.2.8).

All FMAIN listings begin with the standard VORTEX
heading.

The directory listing is further described under the
discussion of FMAIN directive LIST (section 9.2.5), the
deletion listing under DELETE (section 9.2.2), and the
object-module listing under ADD (section 9.2.8).

9.2 FILE-MAINTENANCE DIRECTIVES

This section describes the file-maintenance directives:

- CREATE file < DELETE file
« RENAME file = ENTER new file name
« LIST file names « INIT (initiatize) directory

+ INPUT logical unit for obiect module
« ADD object module

File-maintenance directives comprise sequences of charac-
ter strings having no embedded blanks. The character
strings are separated by commas (,) or by squal signs (=).
The directives are free-form and blanks are permitted
between the individual character strings of the directive,
i.e., before or after commas (or equal signs). Aithough not
required, a period (.) is a line terminator. Comments can
be insert{ed after the period.

The general form of a file-maintenance directive is

directive,lun,p(1),p(2),....p(n)

where
directive 1s one of the directives listed above in
capital letters
un is the number or name of the affected
logical unit
each p(n) is a parameter defined under the

descriptions of the individual directives
below

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted.

Error messages applicable to file-maintenance directives
are given in Appendix A.9.

9.2.1 CREATE Directive

This directive creates a new file on the specified logical
unit, allocates RMD space to the file, adds a corresponding
entry to the file-name directory, and sets the current end-
of-file value to one greater than the address of the last
sector assigned to the new file.

The directive has the general form

CREATE lun, key,name,words, records

where

un is the number or name of the logical
unit where the new file is to be
created

key is the protection code, if any, required
to address un

name is the name of the file being created

words is the number of words in each record
of the file

records is the number of records in the file

FILE MAINTENANCE

Size parameters merely allocate space for the file and do
not iimit file use to the specified record size. To each record
in the created file, FMAIN assigns n records of 120 words
each where n is the smallest integer such that words/120
is less than or equal to n. The file size is n times records
words. This value is converted to a sector count to make
assignments. Neither the file size value nor the sector
count value is saved.

Example: Create the file XFILE with ten records of 120
words each on logical unit 112, whose protection code is K.

CREATE, 112 ,K,XFILE, 120,10

9.2.2 DELETE Directive

This directive deletes the designated file and all fiie-name
directory references to it from the specified logical unit. It
converts the specified file-name directory entry to a blank
entry (name field = ****** section 9.1.2) and all other
directory references to this file to zero entries (all fields =
zero, section 9.1.2), and outputs a listing of deleted file-
names on the LO logical unit. The directive has the general
form

DELETE lun, key,name

where
lun is the number or name of the logical
unit from which the file is being deleted
key is the protection code, if any, required
to address lun
name is the name of the file being deieted (in

the case of a multiname file, any one of
the names can be used, all names are
deleted)

The output format has, following the FMAIN heading, a
two-line heading

DELETE LISTING FOR lun

FILE NAME START END CURRENT

where lun is the number of the logical unit from which the
file is being deleted. This heading is followed by a blank
line and a listing of all file-names being deleted, one per
line. Words 0-2 of the file-name directory entry (section
9.1.2) are placed in the FILE NAME column; word 3, (in
octal) in the CURRENT column; word 4, (in octal) in the
START column; and word 5, (in octal) in the END column.
After the last file name, there is an entry describing the
blank file created by the deletion, where the FILE NAME
column contains ****** the START column contains the
next available address (word 2 of the PST entry), and both
the CURRENT and END columns contain the last address
+ 1 (word 3 of the PST entry).

93

FILE MAINTENANCE

Example: Delete the file ZFILE (and ail file-name directory
entries referencing it) from logical unit 112, whose
protection code is P).

DELETE, 112,P,2FILE

The name ZFILE is replaced in the filename directory by
vesses and the space allocation for this blank entry
extended in both directions to include adjacent blank
entries, if any. Any blank entries thus absorbed are
converted to zero entries, as are all other entries that
reference the file ZFILE. All affected file-name directory
entries are listed on the LO logical unit.

9.2.3- RENAME Directive

This directive changes the name of a file, but does not
otherwise modify the file-name directory. The directive has
the general form

RENAME lun key,oid,new

where

fun 1s the number or name of the logical unit
where the file to be renamed is located

key 1s the protection code, if any, required to
address lun

old 1s the old name of the file being renamed

new 15 the new name of the file being
renamed

Following RENAME, old can no longer be used to reference
the file.

Example: On logical unit 112, whose protection code s P,
change the name of the file XFILE to YFILE.

RENAME, 112 ,P ,XFILE, YFILE

9.2.4 ENTER Directive

This directive adds a new file name to be used in
referencing an existing file, but does not otherwise modify
the file-name directory. ENTER thus permits multiname
access to a file. The directive has the general form

ENTER,un, key,old, new

where
lun 1s the number or name of the logical unit
where the affected file is located
key 1s the protection code, if any, required to
address lun
old 1s an old name of the attected file
new 1s the new name by which the file can

also be referenced

9.4

Example: On logical unit 113, whose protection code 1s K,
make the file X1 accessible by using either the name X1 or
the name Y1.

ENTER, 113 K, X1,Y1

9.2.5 LIST Directive

This directive outputs on the LO logical unit the file-name
directory of the specifiad logical unit. The output comprises
the file names, file extents, current end-of-file positions,
logical-unit name or number, and the extent of unassigned
space in the partition. All numbers are in octal. The
directive has the general form

LIST lun key

where
lun is the number or name of the logical unit
' whose contents are fo be listed

key 1s the protection code, 1f any, required to
address un

The output format has a two-line heading

FILE DIRECTORY FOR LUN lun

PILE NAME START END CURRENT

where lun is the number or name of the logical unit whose
contents are being listed. This heading is followed by a
blank line and a listing of all file names from the directory,
one name per line. Words 0-2 of the file-name directory
entry (section 9.1.2) are placed in the FILE NAME column,
word 4, (in octal) in the START column; word 3, {in octal)
in the CURRENT column; and word 5, (in octal) in the END
column. After the last file name, if there is any unassigned
space in the partition, there is an entry describing the
unassigned space in the partition, where the FILE NAME
column contains *UNAS?, the START column contains the
next available addiess, and both the CURRENT and END
columns contains the last address + 1. All numerical
values are octal sectors.

Example: List the file-name directory of logical unit 114,
which has no protection code.

LIST, 118

9.2.6 INIT (Initialize) Directive

This directive clears the entire file-name directory of the
specified logical unit, deletes all file names in it, and
releases all currently atlocated file space in the partition by
reducing the file-name directory to a single end-oi-directory
entry. The directive has the general form

INIT lun. key
where
un is the number or name of the logical unit
being initialized
key is the protection code, if any, required to

address lun

Example: Initialize the file-name directory on logical uni
115, which has protection code X.

INIT, 115,X

9.2.7 INPUT Directive

This directive specifies the logical unit from which object
modules are to be input. Onice specified, the input logical-
unit number is constant until changed by a subsequent
INPUT directive. The directive has the general form

INPUT lun, key. file
where

un is the number or name of the logical unit
from which object modules are to be
input

key is the protection code, if any, required to
address lun

file is the name of the RMD file containing

the required object module(s)

Neither key nor file are required unless un is a RMD
partition.

NOTE

There is no default value. Thus, if an attempt is
made to input an object module (ADD directive,
section 9.2.8) without defining the input logical
unit by an INPUT directive, an error message
will be output.

Examples: Specify logical unit 6 as the device from which
object modules are to be input.

INPUT, 6

Open and rewind the file ARCTAN on logical unit 104,
which has protection code D.

INPUT, 104,D,ARCTAN

9.2.8 ADD Directive

This directive reads object modules from the INPUT unit
(section 9.2.7) and writes them onto the SW logical unit,
checking for entry names and validating check-sums,
record sizes, loader codes, sequence numbers, and record
structures. Reading continues until an end of file is
encountered. Entry names are then added to the file-name
directory of the specified logical unit and the object

FILE MAINTENANCE

modules are copied from the SW logical unit onto the
specified logical unit. The directive has the general form

ADD,un, key
where
un is the number or name of the logical unit
onto which object modules are to be
written
key is the protection code, if any, required to
address un

The specified logical unit lun references a system or user
object-module library.

The names of the object modules and their date of
generation, size in words (zero for FORTRAN modules),
entry names, and referenced external names are listed on
the LO logical unit.

To recover from errors in object-module-processing, reposi-
tion the logical unit to the beginning of the module.

Example: Add object modules to logical unit 104, which
has protection code D.

ADD, 104,D

9.3 VORTEX FOREGROUND FILE
MAINTENANCE (VSFGFM)

The VORTEX Foreground File Maintenance program pro-
vides a subset of the VORTEX FMAIN services. V$FGFM
executes as an independent task from the VORTEX
foreground library at the same priority as the calling task.
The interface to VSFGFM is the subroutines, VS$FILE, which
must be in the Object Module Library and V$FMCB which
must be resident in the nucleus table area (this occurs
automatically during system generation unless modules are
specifically deleted).

The calling sequence to request a file service is as follows:

EXT VS$FILE
LDAI code
LDBI fmeb
JSR VSFILE, X
where
code is the operation code for the requested
service
0 = create
1 = delete

2 = rename

95

FILE MAINTENANCE

3 = enter
4 = unused (7] e

fmcb is the address of the file maintenance
control block (see table)

The create, delste, rename and enter requests perform the
same operations as in the VORTEX FMAIN program. The
unused requaest releases the unused portion of the named
file which is that area of the file beyond the current end-of-
file.

Upon exit from a file request the A register contains the
completion status code. The interface program allows only
one file request to be processed at a time. if upon entry a

previous request is being processed (V$FMCB is busy),
VSFILE executes a 500 millisecond DELAY and tries again.
If ater 15 seconds (30 retries) VSFMCB is still busy V$FILE
will proceed to schedule V$FGFM and process the new
request. The completion status codes are as foliows:

—

busy

request compieted without error
invalid request code

name aiready in directory
name not found

@suﬂiclont space

input/output error occurred
directory structure error

DO EWN =0 -

The file maintenance control blocks for the requests must

be arranged as foliows:

Word Create

0 logical unit

1 key

2

3

4 file name

5 number of sectors
6

7

9-6

Delete Unused Rename Enter
logical unit logical unit

key key

file name current file name

new file name

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM

The 170 utility program (IOUTIL) is a background task for
copying records and files from one device onto another,
changing the size and mode of records, manipulating files
and records, and formatting the records for printing or
display.

10.1 ORGANIZATION

IOUTIL is scheduled for execution by inputting JCP
directive /IOUTIL (section 4.2.20) on the Si logical unit. |
the Sl logical unit is a Teletype or a CRT device, the
message 1U*® is output to indicate that the S| unit is
waiting for IOUTIL input. Once activated, I0UTIL inputs
and executes directives from the Sl unit until another JCP
directive (first character is a slash) is input, at which time
IOUTIL terminates and the JCP is again scheduled.

"The IOUTIL buffer is usually 1024 words long. The /MEM
directive can be used to increase this size by increments of
512 words.”

IOUTIL has the option of calling VSRSW (multi-volume reel-
switch routine), when using a copy file, copy record, skip
tile, skip record, format and dump, position file, and pack
binary.

Error Messages applicable to IOUTIL are given in Appendix
A.10. Recovery from an error is by either of the following:

a. input the character C on the SO unit, thus directing
IOUTIL to go to the Si unit for the next directive.

b. Input the corrected directive on the SO unit for
processing. The next IQUTIL directive is then input
from the Sl unit.

if recovery is not desired, input a JCP directive (section
4.2) on the SO unit to abort JOUTIL and schedule the JCP
for execution. .

10.2 170 UTILITY DIRECTIVES

This section describes the IQUTIL directives:

. COPYF Copy file

. COPYR Copy record

. SFILE Skip file

. SREC Skip record

. DUMP Format and dump
. PRNTF Print file

. WEOF Write end of file
. REW Rewind

. PFILE Position file

. CFILE Close file

. PACKB Pack binary

IOUTIL directives begin in column 1 and comprise
sequences of character strings having no embedded

blanks. The character strings are separated by commas (,)
or by equal signs (=). The directives are free-form and
blanks are permitted between individual character strings
of the directive, i.e., before or after commas (or equal
signs). Although not required, a period () 15 a line
terminator. Comments can be inserted after the period

The general form of an IOUTIL directive is

name,p(1).p(2).....p(n)

where

name is one of the directive names given
above

each p(n) is a parameter defined below under the
descriptions of the individual directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optional replacement cf commas
(,) by equal signs (=) are omitted.

The IOUTIL buffer is usually 1024 words long. The /MEM

directive can be used to increase this size by increments of
512 words.

10.2.1 COPYF (Copy File) Directive

This directive copies the specified number of files from the

indicated input logical unit to the given output logicai

unit(s). The directive has the general form
COPYF.1,iu,im,irl,ou(1),om,orl,0u(2),0u(3),. ,ou(n)

where

f is the number of input files to be copied
(must be 1 tor RMD;)

iu is the name or number of the input
logical unit
im 1s O for binary, 1 tor ASCII, 2 for BCD. or

3 for unformatted input files

irl is the number of words in each record ot
the input files. if a value of zeroc s
specified then the record length 1s set to
the maximum buffer size. Foliowing the

10-1

INPUT/QUTPUT UTILITY PROGRAM

read the actual physical record length
(word 5 of the RQBLK) is used as the
input record length.

ow(n) is the name or number of an output
logical unit
om is C for binary, 1 for ASCI, 2 for BCD, or

3 for unformatted output files

ori is the number of words in each record of
the output files. f a value of zero is
specified then the output record length
is equal to the input record length.
Any RMD involved with copying files, whether as input or
output medium, must have been previously positioned with
a PFILE directive (section 10.2.9).

It a difference in record lengths irl and orl causes a partial
record to remain when an end of file is encountered, the
part-record is filled with blanks and thus transmitted to the
output unit(s).

The following relation holds for input/output record
lengths:

tnput Qutput

RCL RCL Output Format

fixed fixed As detined (biocked or
unblocked)

random (0) fixed As defined (blocked or
unblocked)

fixed random (0) Unbiocked only

random (0) random (0) Unbiocked only

Record fengths of zero are useful in copying mixed ASCII
and binary data from cards to another media or vise versa.
ASCH read must be specified for this operation.

Example: Copy three files containing 120-word records
from the P! logical unit onto logical units LO, 50, and 51 in
40-word records.

CopYF,3,PI,1,120,L0,1,80,50,51

10.2.2 COPYR (Copy Record) Directive

This directive copies the specified number of records from
the indicated input logical unit to the given output logical
unit(s). The directive has the general form

COPYR,¢,lu,im,iri,ou(1),0m,ori,0u(2),0u(3),.. ., ou(n)

where
r is the number of input records to be
copied, or O if copying is to continue to
the end of file

102

u ts the name or number of the input
logical unit
im is 0 for binary, 1 for ASCHI, 2 for BCD, or

3 for unformatted input records

il is the number of words in each record of
the input files. !¢ a value of zero is
specified then the record length is set to
the maximum buffer size. Following the
read the actual physical record iength
(word 5 of the RQBLK) is used 2s the
input record length.

each ow(n) is the name or number of an output
logicat unit

om is O for binary, 1 for ASCli, 2 for BCD. or
3 for unformatted output records

orl is the number of words in each record of
the output files. If a value of zero is
specified then the output record langth
is equal to the input record length.

Any RMD involved with copying records, whether as input
or output medium, must have been previously positioned
with a PFILE directive (section 10.2.9).

If a difference in record lengths irl and or! causes a part-
record to remain when an end-of-file mark is encountered,
the part-record is filled with blanks and thus transmitted to
the output unit(s). .

Example: Copy 25 unformatted records of 200 words each
from the SS logical unit to the BO and PO units in binary
format with 40 words per record.

COPYR, 25,85,3,200,B0,0,40,P0

It may be necessary to copy from one file on an RMD
partition to another file on the same partition. This can be
accomplished by assigning two different logical units {o this
RMD partition, and then issuing two PFiLE directives
(section 10.2.9), positioning one logical unit to the
beginning of one file and the second logical unit to the
beginning of the other file. Additional positioning within
the files can be specified by SREC directives (section
10.2.4).

The following refation hoids for input/output record
lengths:

input Output Output Format

RCL RCL

fixed fixed As defined (blocked or
unblocked)

random (0) fixed As defined (blocked or
unblocked)

Input Output

RCL RCL Output Format

fixed random (0) Unblocked only
random (0) random (0) Unblocked only

Record iengths of zero are useful in copying mixed ASCli
and binary data from cards to another media or vise versa.
ASCH read must be specified for this operation.

Example: Copy the first ten records from file EDIT1 to
record 11 through 20 of file EDIT2. Both files are on RMD
partition DOOK, have record lengths of 120 words, are in
mode 1, and have no protection key (defauit vaiue = 0).
Assign the Bl and BO logical units to the disc.

/ASSIGN,BI=DOOK
/ASSIGN,BO=D0OOK

/I0UTIL
PFILE,BI,,120,EDIT)
PFILE,BO,,120,EDIT2
SREC,BO, 10

COPYR, 10,BX,1,120,B0,1,120

10.2.3 SFILE (Skip File) Directive

This directive, which applies only to magnetic-tape units,
and card readers, causes the specified logical unit to move
the tape forward the designated number of end-of-file
marks. The directive has the general form

SFILE lun,neof
where
fun is the name or number of the affected
logical unit
neof is the number of end-of tile marks to
be skipped

If the end-of tape mark is encountered before the required
number of files has been skipped, IQUTIL outputs to the
SO and LO logical units the error message 1UOS5,nn, where
nn is the number of files remaining to be skipped.

Example: Move tape on unit Pl past three end-of-file marks.

SFILE,PIX,3

10.2.4 SREC (Skip Record) Directive

This directive, which applies only to magnetic-tape units,
card readers and RMDs, causes the specified logical unit
to skip forward the designated number of records. The
directive has the general form

SREC lun,nrec

INPUT/OUTPUT UTILITY PROGRAM

where
lun is the name or number of the affected
logical unit
nrec 18 the number of records to be skipped

Note that, unlike JCP directive /SREC (section 4.2.8), the
IQUTIL directive SREC cannot skip records in reverse.

If tun designates an RMD partition, the device must have
been previously positioned with a PFILE directive (section
10.2.9).

If a file mark, an end-of-tape mark, or an end of-device
mark is encountered before the required number of records
has been skipped, lOUTIL outputs to the SO and LO jogical
units the error message 1U05,nn, where nn 1s the number of
records remaining to be skipped.

Example: Skip 40 records on the Bl logical unit.

SREC,BI, 40

10.2.5 DUMP (Format and Dump)
Directive

This directive copies the specified number of records froni
the indicated input logical unit, formats them for listing,
and dumps the data onto the output unit in octal format,
ten words per line, with one blank between words. The
directive has the genera! form

DUMP riu,im,irl,ou

where

r is the number of input records to be
dumped or is zero if dumping is to
continue to an end-of-file

iu is the name or number of the input
logical unit

im is 0 for binary. 1 for ASCli. 2 for BCD. or
3 for unformatted input records

irl 15 the number of words in each recorsd of
the input

ou s the name or number of the outout

unit. which cannot be an RMD partitior

The tirst hine of the dump contains the record number
before word 1, but subsequent lines do not have the record
number.

if ASCH mode is specified by im then an ASCH scan and
dump will be made in addition to the octal dump. Printable

103

INPUT/OUTPUT UTILITY PROGRAM

character bytes will appear to the right of each line of the
octal dump. Non-printable characters will appear as ASClH
blanks. ASCii scan and dump is suppressed if dump is to a
TY or CT device regardless of the mode.

Example: Dump 40 binary, 50-word records from the SW
logical unit onto the LO unit.

DUMP, 40,8w,0,50,LC

10.2.6 PRNTF (Print File) Directive

This directive prints the specified number of files from the
indicated input logical unit to the list output logical unit(s)
specified. The directive has the genera! form

PRNTF f,lu,0u0(1).0u(2),. ou(n)
where

f is the number of files to be printed
iu is the name or number of the input
logical unit

each ow(n) is the name or number of a list output
logical unit

It an RMD is specified as the input logical unit, it must
have been previously positioned with a PFILE directive
(section 10.2.9) and only one file may be printed at a time
(1.e., if it is greater than 1, it is defaulited to 1), because the
end-of-file terminates printing.

This directive is designed to print list output files directed
to devices other than a line printer (i.e., magnetic tape or
disc). Therefore, the input file is read in ASCIl mode (1),
132 characters, and the list output records are written also
in ASClI mode.

Example: Print two (2) ‘iles on magnetic tape unit 18 on
LO.

/10UTIL

REW, 18
PRNTF,2,18,L0
/ENDJOB

Example: Print an RMD file called SYSOUT in logical unit
25 to LO.

/IOUTIL
PFILE,L25,,120,SYSOUT
PRNTP, 1,PI,LO
/ENDJOB

104

10.2.7 WEOF (Write End of File)
Directive

This directive writes an end-of-file mark on each logica! unit
specified. The directive has the general form

WEOF lun,lun, .. lun
where each lun is the name or number of a logical umit
upon which an end-of-file mark is to be written
Example: Write an end-of-file mark on the BO logica! unit

and on the PO logical unit.

WEOPF,BO, PO

10.2.8 REW (Rewind) Directive

This directive, which applies only to magnetic-tape units,
causes the specified logical unit(s) to rewind to the
beginning of tape. The directive has the general form

REW, lun,lun, .. lun

where sach lun is the name or number of a logical unit to
be rewound.

Example: Rewind the Bi and PO logical units.

REW,BI, PO

10.2.9 PFILE (Position File)
Directive

This directive, which applies only to rotating-memory
devices, causes the specified logical unit to move to the
beginning of the designated file, and opens the file. The
directive has the general form

PFILE un,key.reci,name
where

lun is the name or number of the affectec
logical unit

key is the protection code required to
address lun

reci is the number of words in each record of
the file

name is the name of the file to which the

logical unit is to be positioned

Since {QUTIL has only six FCBs, there can be a maximum
of six fites open at any given time.

Example: Position the Pi logical unit, using protection
code Z, to the beginning of the file FILEXY, which contains
60-word records.

PFILE,PI,Z,60,FILEXY

10.2.10 CFILE (Close File) Directive

This directive, which applies only to RMD partitions, closes
the specified file. The directive has the general form

CFILE, lun, key,name,add

where
lun is the name or number of the logical unit
containing the file to be closed
key is the protection code required to

address lun
name is the name of the file to be closed

add is O (default value) if the current end-of-
file address on the RMOD file-directory is to
remain unchanged, or 1 if it is to be
replaced by the current record (i.e., actual)
address

A PFILE directive (section 10.2.9) must have been used to
position lun before the CFILE directive is issued. Closing a
file frees the associated FCB for use with another file. Since
JOUTIL has only six FCBs, there can be a maximum of six
files open at any given time.

Example: Close the tile WORK on the SW logical unit
{protection code B) and update the tile directory.

CFILE,SW,B,WORK, 1

10.2.11 PACKB (Pack Binary) Directive

This directive copies the specified number of files from the

indicated input logical unit to the given output logical

unit(s). It causes each new system binary program to start

on a record boundary. The directive has the general form
PACKB,1,lu,im,irl,ouw(1),0m, orl,ou(2),...ou(n)

where

t is the number of input files to be copied

[5 the name or number of the input
logical unit.

INPUT/OUTPUT UTILITY PROGRAM

im 1$ O for binary, 1 for ASCIl, 2 for BCD. or
3 for unformatted input files.

irl is the number of words in each record of
the input files. if a value of zero is
specified then the record length is set to
the maximum bufter size. Following the
read the actual physical record length
(word 5 of the RQBLK) is used as the
input record iength.

ou(n) is the name or number of an output
logical unit.
om . 1s O for binary, 1 for ASCIl, 22 for BCD, or

3 for unformatted output fiies

orl 1s the number of words in each record ot
the output files. If a value of zero is
specitied then the output record length
is equal to the input record length

The following reiation holds for input/output record
lengths:

Input Output Output

RCL RCL Format

fixed fixed As defined (blocked
or unblocked)

random (0) fixed As defined (blocked
or unblocked)

fixed random (0) Unblocked only

random (0) random (0) Unblocked only

Any RMD used in this directive must have been previously
positioned with a PFILE directive (section 10.2.9).

This directive can be used for any output media and any
record length. It is primarily intended to be used for RMD
output of 120 words. Use with non-RMD output may not
produce the intended effect.

Example: Pack one binary file from the card reader onto a
RMD file on logical unit 25 in 120 word blocks:

PACKB, 1,CR,0,60,25,0,120

10.3 MULTI.VOLUME TAPE HANDLING (VSRSW)

IOUTIL provides the operator with interfaces necessary for
handling multi volume (i.e.. multi-reel), magnetic tape files
The routine directs the operator to unioad the current
magnetic tape volume and mount a new one whenever end-
of-tape is encountered

INPUT/OUTPUT UTILITY PROGRAM

The magnetic tape unit to be unloaded 15 given a rewind
directive and the foliowing message s output to the
operator:

IOUTIL: UNLOAD LUN nn
IOUTIL: MOUNT NEXT VOLUME

where

nn is the logical unit number of the
magnetic tape to unload

10-6

After the message for mounting a new magnetic tape has
been outpul to the operator, the subroutine issues a
suspend request. When the new volume has been success
fully mounted, the operator can continue execution by
keying in the following:

iRESUME, IOUTIL '

It the mounting of a new magnetic tape volume is not
needed, the operator will key in the message ; ABORT,
IOUTIL on the OC device, which will return control to
JCP.

SECTION 11
VSORT (SORT/MERGE)

The VORTEX Sort/Merge (VSORT) task constructs a sorted
file in the order determined by fields selected by the user.

11.1 ORGANIZATION

VSORT is scheduled as a background task by the Job-
Control Processor (JCP, section 4.2.19) upon input of the
JCP directive

/LOAD, VSORT

Once activated, VSORT inputs the sort parameters from the
SI logical unit. The maximum number of VSORT directives
is five records. The directive ENDSORT terminates the
input of VSORT directives within five records. Upon
completion of the sort/merge, YVSORT exits to JCP.

vSORT has a buffer area large enough for most sort/merge
operations. To increase the size of the buffer, input a
/MEM directive (see section 4.2.3) immediately preceding
the /LOAD,VSORT directive.

inputs to VSORT comprise

a VSORT directives (section 11.2) input through the Si
logical unit

b. File to be sorted, input through the INPUT logical unit

Outputs from VSORT comprise
a. Sorted file on the OUTPUT logical unit
b. listing of VSORT directives on the LO logical unit

c. Listing of VSORT totals for the sort/merge on the LO
logical unit

d. Error messagss, if any, on the LO logical unit

Error messages applicable to VSORT are given in Appendix
All

VSORT performs either a full-record sort or a tag sort. In a
tull-record sort the entire records are moved in central
memory in order to accomplish the sort. in a tag sort, only
the concatenated sorting control fieids and the record
numbers are manipulated in central memory. VSORT will
perform the more efficient tag sort unless one of the
following conditions occurs:

a. INPUT file is not an RMD

b. The file used for INPUT is also used for another file in
the sort, either as a WORK or QUTPUT file

c. A user input exit routine is specified (by the INEXIT
directive)

Workspace Requirements: Each work file must be large
enough to contain a number of work records equal to.the
number of input records. For tag sorts, the length of the
work records is equal to the sum of the length of the control
fields plus one word. On full-record sorts, the sum of the
control fields plus one input record length is needed.

Work records are blocked with a blocksize equal to a fourth
or third of the central memory workspace for the merge
phase.

Work space for the sort phase in central memory s
allocated dynamically to overiay the initialization routine
(about 2K), which occupies the highest memory locations of
VSORT. Work space for the merge phase occupies an
additional 1K in central memory. Additional work space
may be allocated for a background sort by using the /MEM
directive (JCP, 4.2.3).

11.2 VSORT DIRECTIVES
This section describes the VSORT directives.

a. Required Group

. SORT Sort directives follow

. INPUT Define logical unit for input
QUTPUT Define logical unit for output
WORK Define work file(s)

SORTKEY Define sorting field(s)
ENDSORT Begin sorting

b. Optional Group

INEXIT Use input preprocessor
QUTEXIT Use output preprocessor

The general form of a VSORT directive 1s

name = p(1),p(2),....p(n) terminator

where
name 1s one of the VSORT directives
p(n) 1s a parameter required by VSORT and

defined below under the descriptions of
the individual directives

terminator s a blank or right parenthesis

VSORT (SORT/MERGE)

11.2.1 SORT Directive

This directive starts the series of directives. The general
form is

SORT
The word SORT must be foliowed by at least one blank.

The SORT directive must be the first directive on the first
control record.

11.2.2 INPUT Directive

This directive describes the sort input file which contains
the records to be sorted. it has the general form

INPUT = (lun,filename, key,recordiength)

where
un is a 1- to 3-character decimal number
specifying the logical unit of the file
filename is a 1- to 6-character name of the file as
it exists on the RMD file directory
(required for all RMD files)
key is the single character file protection

key, as contained in the file directory for

tha file (required only if the filename is

present and the RMD is protected
recordlength is a 1- to 4-digit decimal number

specifying the length in words of the
records in the fite. '

Example: Describe a sort input file on magnetic tape on
logical unit 18, which has 200-word records.

INPUT=(18,,,200)

11.2.3 OUTPUT Directive

This directive describes the output file which will uitimately
contain the sorted records. It has the general form

OUTPUT = (lun,tilename, key,recordiength)

where kun, filename, key and recordlength are the same as
they are described in the INPUT directive (section 11.2.2).

Example: Describe a sort output file on a line printer logical
unit 5, which has a 60-word (120-character) record.

OuUTPUT=(S,,,60)

11.2.4 WORK1 WORK2 WORK3, Directives

These directives describe the intermediate work files for
the sort. They have the general form

1
WORK 2) =(lun,filename, key)
3

where lun, fllsname, and key are the same as described for
the INPUT directive (section 11.2.2).

The work files must be RMD files. Each file must have
sufficient space to contain the intermediate work records
equal to the number of records in the input file for the sort.

Example: Describe intermediate sort files named W1, W2,
and W3 on RMD logical unit 25. These files do not have
protaction keys.

WORK1=(25,W1) ,WORK2=(25,W2) ,WORK3=(25,W3)

11.2.5 SORTKEY Directive

This directive describes one to six control fields to be used
to sequence the records of the sort input file. It has the
general form)

SORTKEY = (sc(1),0c(1),0rder(1),...,5¢(6),0c(6),0rder(6))

where each

sc(n) is a one- to four-digit decimal number
spacifying the starting character (or
byte) position of the coentrol field as it
exists in the input record, or, if there
positions are modified by an INEXIT
routine, as they exist in the modified
input record.

ec(n) is a one- to four-digit decimal number
specifying the ending character (or byte)
position of the control field. It must be
greater than or equal to the preceding
starting character position

order(n) is a singie character A or D for
ascending or descending sequence,
respectively, for sorting the control field

At least one control field specification must be given. Each
control field specification must have all three paramaters
specified.

Control fislds may overiap.

Character positions are numbered starting with one

The significance of a control field depends on its placement
in the SORTKEY directive. The first control field defined is
the most important (or major) control tisid. The next is the
secondary (used in cases of matches in the first) controi
field. Similarly, until the last specification given is the jeast
important.

Collating sequence: An algebraic collating sequence is used
to sort the data. Each word (in numeric data) or each byte
(in character data) is interpreted as an octal number
having an algebraic sign. Thus, ASC!i characters have the
coliating sequence from 0240 (low) to 0337 (high). If
characters are other than ASCII, the sign bit (bit 7) of each
8-bit character must be the same for all the characters.

Word-boundary data are treated as signed octal numbers
and have the collating sequence from 0100000 (low) to

077777 (high). Thus, FORTRAN variables of integer, real, .

complex or logical types may be sorted with SORT control
fields. FORTRAN double-precision numbers cannot be
sorted because the sign of the number is not in the first
word.

Example: Describe two control fields, one is bytes 27 and
28 in ascending order, and the other is byte 1 through 4 to
be sorted in descending order.

SORTKEY=(27,28,A,1,4,D)

11.2.6 INEXIT Directive

This optional directive specifies whether a user-written
input-exit routine is to be cailed at the time the input file is

being read by the sort part of VSORT. The general form of
the directive is

INEXIT = YES

NO
The equal sign may be followed by a string of up to four
alphabetic characters. Unless YES is specified, the default

is NO (a user routine is not called). YES or NO must be
followed by at least one blank.

11.2.7 OUTEXIT Directive

This optional directive specifies whether a user-written
output exit routine is to be calied at the time the final file
output file is being created by the merge phase of VSORT.
It has the general form

{ ves
OUTEXIT =

The meaning of YES and NO is the same as described for
the INEXIT directive (section 11.2.6).

11.2.8 ENDSORT Directive

This directive signals the end of the sort directives. The
word ENDSORT must be followed by at ieast one blank as
the last directive on the last control record for VSORT.

VSORT (SORT/MERGE)

11.3 USER EXITS
User exits provide for the insertion, deletion, or modifica-
tion of input and output records by user-written routines.
Exits are requested by the VSORT directives, INEXIT =
YES and/or OUTEXIT = YES. The exit routines written by
the user are added to VSORT at load-module generation
time.
The input exit routine, if provided, is called for each input
record before it enters the sort. Possibie uses of the input
exit are

» Add input records

+ Delete input records

« Create partor ali of the input file

. Change input records, such as control fields

The input record length may be changed to the output
record length specified on the QUTPUT directive.

The output exit routine, if provided, is called for each
output record before it is written on the output file.
Possible uses for the output exit are

+ Add output records, effectively merging one or more
files with the sorted file

+ Delete sorted output records, such as duplicates
+ Change the sorted output records
If output records are added or changed, it's the user’s

responsibility to ensure that the controi fields of the output
records remain in sequence.

11.3.1 Calling Sequence

VSORT uses the following calling sequence for user exits:

Word 1 JMPM XITn
Word 2 input buffer address
Word 3 oufput butfer address
Word 4 flag
where
n is 1 for input exit and 2 for output exit
input is the address of input record passed to

buffer the user routine (INEXIT) or the address

address to which the user must move a record if
it is to be inserted before the output
record (or EOF) passed to the user
routine (OUTEXIT)

VSORT (SORT/MERGE)

output buffer is the address of the output record

address passed to the user routine (QUTEXIT)
or the address to which the user must
move a record if it is to be inserted
before the input record (or EOF) passed
o the user routine (INEXIT)

flag is set by VSORT as 0 tor an EOF en-
countered, 1 for INEXIT, or 2 for QUT-
EXIT; otherwise it is set by the user rou-
tine as follows

Bit 0 = 1 accept input record (INEXIT)
or insert record in input buffer
before output record (OUT-
EXIT)

= 0 is ignore the record in the
input buffer

Bit 1 = 1 accept the output record
(QUTEXIT) or insert record in
the output buffer before the
input record (INEXIT)

= 0 ignore the record in output
buffer

After EQF notification has been given to the user input
loutput) exit routine, the user routine may continue to pass
records to VSORT in the buffer, but the contents of the
buffer are ignored.

11.3.2 Implementation

The exit routines written by the user must have the
following external names

XiT1 User input exit entry point

XiT2 User output exit entry point

To build a load module using user exits, place the user exit
modules in front of the VSORT object module and proceed
to generate a single load module.

11.4 VSORT MESSAGES

In addition to listing the VSORT directives, VSORT outputs
the following totals:

a. End of sort phase totals

SORT PHASE COMPLETE, TOTAL MERGE
RECORDS=XXXXX

INPUT XXXXX ACCEPTED=XXXXX
INSERTED®=XXXXX DELETED=XXXXX

b. End of merge phase totals

SORT COMPLETE,OUTPUT RECORDS
COUNT=XXXXX

MERGE=XXXXX ACCEPTED=XXXXX
INSERTED=XXXXX DELETED=XXXXX

'

SECTION 13
SUPPORT LIBRARY

The VORTEX system has a comprehensive subroutine
hbrary directly available to the user The hibrary contams
mathematical subroutines to support the execution of a
program, plus many commonly used utihty subroutines. Jo
use the library, merely code the proper call in the program,
or. for the standard FORTRAN 1V functions, imphoitly
reference the subroutine (e.g.. A SQRT(B) generates a
CALL SQRT(B)). All calls generate a reference to the
raquired routine, and the load-module generator brings the
subroutine into memory and hnks it to the calling program

The pertormance of several routines in the support library
is improved through the use of the V70 series Floating
Point Firmware on V70 series systems having Writable
Control Store (WCS). The necessary firmware and library
routines which call the firmware are added to the Object
Module Library (OM) by executing the supplemental WCS

" job stream supplied with the System Generation Library.

13.1 CALLING SEQUENCE

The subroutines in the support hibrary are called through
DAS MR or FORTRAN IV

FORTRAN {V: General form

statement number CALL Sip(lip(2). .ptn))

Generated code:
JMPM s
DATA ql(1)}
DATA qt2)
DATA qin}

Where q(i) = p(i) if p(i) is a single variable or array name
Otherwise, q(i) = address containing p(1).

13.2 NUMBER TYPES AND FORMATS

Integers use one 16-bit word. A negative number 1s in two's
complement form. An integer in the range - 32767 to

DAS MR: General form
+ 32,767 can be stored as an integer
jabel CALL Sp(1).pi2). .pin:
£ xpansion Real numbers use two consecutive 16-bit words For a
positive real number, the exponent (in excess 0200 form) s
label JMPM S in bits 14 to 7 of the first word. The mantissa 1s in bits 6 to
DATA pt 1} 0 of the first word and bits 14 to O of the second word. The
DATA p(2) sign bit of the second word is zero. The negative of this
. number is created by one’s complementing the first word
. Any real number :n the range 10° “can be stored as a
single-precision floating-point number having a precision of
DATA pin) more than six decimal digits
Single-Precision Floating-Point Numbers
Bit 15 14 13 12 11 10 9 8 7 6) 4 3 2 1 0
n) s - ----= Exponent-----~~--- ~--~-High Mantissa----
n+1) 0 —----mmmmmee—eo -Low Mantissa----------=-~-==--
Double-precision floating-point numbers use four consecu
tive 16-bit words. The exponent (in excess 0200 form) is in
bits 7 to 0 of the first word. The mantissa of a positive
number 15 in the second. third, and fourth words. Bit 15 of
the second, third and fourth words and bits 15 to 8 of the
first word are zero. The negative of this number is created
by one's complementing the second word. Any real number
in the range 10% " can be stored as a double precision
floating-point number having a precision of more than 13
decimal digits.
Double-Precision Floating-Point Numbers
Bit 15 t4 13 12 11 10 9 8 7 6 5 4 3 2 1 0
n) 0 0 0 O 0 0 0 0 -------- Exponent-~------
n+t) 8 —----mmm—m——e—e— High Mantissa------------==---
n+2) 0 se-mmsososomsoeee Mid Mantissa------~---"-----< --
n+3) 6 ----------------- Low Mantissa---~--------------

SUPPORT LIBRARY

13.3 SUBROUTINE DESCRIPTIONS

The following definitions and notation apply to the
subroutine descriptions given in this section

Notation Meaning
&% Hardware A andd B oregisters
AL Four-word software accumuiator for double

precision numbers

ACCZ Four-word accumulator for complex numbers
(the real part s 1 AB and the imaginary
partisn a temporary cell in subyroutine V$8G)

[Address of a double-precision number

Address of a two-word, fixed-point number

Address of an integer

' Address of a real number
S A six character ASCII string
X Hardware X register
Address of a compiex number

Exponentiation

An additional name n parentheses indicates a replace
ment by standard firmware For example, $SE(FSE}
indicates the firmware routine FSE replaces $SE on 7C
series systems using standard firmware Section 202

describes standard firmware

The external references in table 13-3 refer to items n
tables 13-1 and 13-2. A subroutine with more than one
name is indicated by muitipie calls under Calling Sequence

Table 13-1. DAS Coded Subroutines

Name Function

$HE Gevers A confains
e A compute 1 02

PP Giver AB contamne r
in A compute 1

$QE Given. AB contains r}
i AB. compute rl 12

ALOG in AB, compute Inr Ifr -0,
output message FUNC ARG and
exit with A=B= 0 and
overflow = |

boxe n AB compute e 1 {f there
s underflow, AB =0 |f
overtiow, AB = maximum real
number and the message FUNC
ARG s output In both
cases overflow —

ATAN in AB. compute arctan r

SINCOS in AR, compute cos r with
COS. or sin v with SIN

SQKT In AB. compute square root of r

FMULDEY Givers AB contains 11, n AB.
compute rl r2 with $QM, or
rl/r2 with $QN it there 1s
underflow. AB =0 if
overflow. AB = maximum value
and the message ARITH OVFL s
output In both cases,
overflow = |

Calling Sequence External References

CALL $HE 1 $SE(FSE), $HM

CALL $PF $SE(FSE) $OM. $ON

CALL $QF 1. ALOG $OM, EXP $SE(FSE)

CALL ALOG $EE. SQK(FADI $QM. XDMU
XDAD. $NML. XDD!,
XDSU, $SE(FSE). $PC $QUL(FSBY.
$ON

CALL EXH XDMU . SOK(FAD). SNML. $EF
$OM. $ON. $SE(FSEY

CALL ATAN r $OM $OQUL(FSB) $ON SQK(FAD)
$SE(FSE)

CALL COS» $QK(FAD), SQL(FSB). $QM. 30N,

CALL SINr $SE(FSE)

CALL SQRT XDDI, $FSM. $SE(FSE)

CALL $QM 1. XDMU, $FMS, XDDi

CALL $QN 7 $SE(FSE). SFE. SNML

Name

FADDSUB

SEPMANTI

FNORMAL

XDDIV

XDMULT

XDADD

XxbsuB

XDCOMP

$FLOAT

$IFIX

1ABS

ABS

ISIGN

SIGN

$HN

$HM

DSINCOS

DATAN

Table 13-1. DAS Coded Subroutines (continued)

Function

Given: AB contains rl, in AB,
compute rl +r2 with $QK, or
rl -r2 with $QL. If there

is underfiow, AB =0 1f
overflow, AB = maximum value

and the message ARITH OVFL is

output. In both cases,
overflow = 1.

Separate mantissa and
characteristic of r into AB
and X, respectively

In AB, normalize r

In AB, compute t1/12

In AB. compute 112

In AB, compute fi + {2

in AB, compute fl -1{2

in AB. compute negative of f
in AB, convert the i in A
to floating-point and. for
$QS. store result in r

in A, convert the r i1 AB
to 1+ and. for $HS, store
result tn i

In A compute absolute

In AB. compute absolute r

Set the sign of i1, in A
equal to that of 12

Set the sign ot rl, in AB
equal to that of r2

Given A hoids 11,
n A compute 11/12

Given A hoids 11, in A
compute i1%12

{n AC. compute sin d or cos d

In AC, compute arctan d

Calling

CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL

CALL
CALL
CALL
CALL

CAlL

CAll

CALL

CALL

CALL
CALL
CALL
CALL

CALL
CALL

Sequence

$QK.r2
$0QL,r2

$FMS
$FSM
SNML
xDOot.12
XDMU..f2
XDAD.2
XDSuU 12
XDCO
$PC

$QS.r

$1C

$HS
1ABS |
ABSr

1ISIGN 12
SIGN r2
$HN 12

$HM. 2

$0Si.d
$DSIN.d
$DCO.d
$DCOS d

$DAN
DATAN.d

SUPPORT LIBRARY

External References

$SE(FSE), $FSM, SNML, $EE

None

XDCQ
X0OSU, XBCO
XDAD, XDCO
None
None
None

$SE(FSE)

$SE(FSE), $EE

$SE(FSE)
$SE(FSE)

$SE(FSE)

$SE(FSE)

$SE(FSE). $EE

$SE(FSE), $EE

$STO.$DNO, $2C, $ZK, $2L.
$SE(FSE), $ZM, $ZN. AC
$DLO

$DLO. $STO. $DAD,
$DSU, IF, $SE(FSE).
AC. $OMP, $DDI.
POLY

133

SUPPORT LIBRARY

13-4

Name

DEXP

DLOG

POLY

CHEB

DSQRT

$DFR

IDINT

OMULT

DDIVIDE

DADDSUB

DONORMAL

DLOADAC

DSTOREAC

RLOADAC

SINGLE
DOUBLE

DBLECOMP

$3S

Table 13-1. DAS Coded Subroutines (continued)

Function

In AC, compute exponential d

In AC, compute in d

in AC, compute double-precision
polynomial with t terms,
coetficient list starting at
address ¢, and argument at
address y

in AC, compute shifted
Chebyshev polynomial series
with t +1 terms and coefficient
list starting at address ¢

in AC. compute square root
of d

In AC, compute fractional
part of d

In AC, compute integral
part of d

In AC, compute d1°d2

In AC. compute d1/d2

in AC, compute dl +d2 with
$DAD or dl - d2 with
$DSu

In AC. normahize d

Load AC with d

Store AC in d

Load A with double-precision
mantissa sign word from AC

In AB. convert the d n AC to r
In AC, convert the r in AB to d

In AC, compute negative of the
d in AC

Store AB in memory address m

Calling Sequence

CALL $DEX
CALL DEXP.d

CALL DLOG.d
CALL $DLN

CALL POLY tcy

CALL CHEB.t¢c

CALL $DSQ.d
CALL DSQR.d

CALL $DFR.d

CALL $DIT d
CALL IDINT d

CALL $DMP.d2
CALL $ZM.d2

CALL $DDi.a2
CALL $ZN.d2

CALL $DAD,d2
CAL $D0SU.d2
CALL $ZK.d2
CALL $2L.d2
CALL $DNO

CALL $DLO.d
CALL $ZF d

CALL $570.d
CALL $2Sd

CALL $21

CALL $RC
CALL $YC

CALL $2C

CALL $3S.m

External References

$DLO, $STO,
$SE(FSE), AC, $DNO, SEE,
$2C, $ZK, $ZL, $ZM, $ZIN

$DLO, $STO, $DNO, SEE
$SE(FSE), $ZK, $ZL, $ZM, $IN

$DLO, $DAD, $DMP

$DLO, $STO, $DAD,
$DSU, SDMP

$DLO, $5TO, $DNO,
$DAD, $DMP, $DDI,
$SE(FSE), AC

$DLO, $DNO, $DSU,
$DIT, AC, $SE(FSE)

$DNO, $SE(FSE)
$DLO, $STO, $DNO,
$DAD, AC, $SE(FSE)

$DLO, $STO. SDNO.
$DSU, AC. $SE(FSE)

$STO, $DLO, $DNO,
AC, $SE(FSE), 3EE

$SE(FSE)

AC, $SE(FSE)

AC., $SE(FSE)

AC

AC
AC

AC

$SE(FSE)

SUPPORT LIBRARY

Table 13-1. DAS Coded Subroutines (continued)

Name Function Calling Sequence External References

AZ2MT Translate in memory a character CALL A2MT ns.e None
string of length n starting
at s and ending at e from
eight-bit ASClI to six-bit
magnetic tape BCD code

S is the start of the ASCH block
and e is the start of the BCD block.

MT2A Translate in memory a character CALL MT2An;s.e None
string of length n starting at
s and ending at e from six-bit
magnetic tape BCD code to
eight-bit ASCIi

s is the start of the BCD block
and e is the start of the ASCII block.

EXIT Formats and executes an RTE CALL EXIT VSEXEC
EXIT macro
SUSPND Formats and executes an RTE CALL SUSPND(1) VS$EXEC

SUSPND macro with parameter |

RESUME Formats and executes an RTE CALL RESUME(s) VSEXEC, $SRTENM
RESUME macro to resume task s

ABORT formats and executes an RTE CALL ABORT(s) VSEXEC, $SRTENM
ABORT macro to abort task s.

ALOC Formats and execufes an RTE CALL ALOC(s) VSEXEC
ALOC macro to call reentrant
subroutine s

PMSK Formats and executes an RTE CALL PMSK(L, VSEXEC
PMSK macro to operate on PIM 12.13)
11 with ine mask 12 and
enable/disable flag 13

DELAY Formats and executes an RTE CALL DELAY(il, VSEXEC
DELAY macro with the 5 12,i3)
mulhisecond count In 11, the
minute count in 2, and delay

mode n 13
LDELAY Formats and executes an RTE DELAY CALL LDELAY (il,i2,i3, VSEXEC
type 1 with additional parameters to i4, i5)

specify the LUN from which the task
(lun in i4 key in i5) is to be reloaded.

TIME Formats and executes an RTE CALL TIME(Gi1,i2) VS$EXEC
TIME macro with the minute
count in il, and 5-millisecond
count in i2.

135

SUPPORT LIBRARY

136

OVLAY

SCHED

$SRTENM

$EE

$SE

VSRSW

VSHDR

Table 13-1. DAS Coded Subroutines (continued)

Function

Formats and executes an RTE
OVLAY macro with 11 = 0 to
execute, i2 = 0 to load, and
s is the overlay name

Formats and executes an RTE

SCHED macro with il = priority,

i2 = wait flag, 13 =
logical-unit number, s1 = key
and s2 = task name.

Moves the six-character name
from X to B

Qutputs error messages on
the SO device.

Fetches n parameters from a
subroutine call

Handles multi-reel volume
files and information

To format a standard
VYORTEX header.

Calling Sequence

CALL OVLAY(1l,
12.8)

CALL SCHED(:1, 12,

i3,51,52)

CALL $SRTENM

CALL SEE

CALL $SE, n
BSS n

LDA = LUN to
unload.

LOX<O for
no mount.

LDX =0 for
mount next
volume.

LDX> 0 addr.
of filename
for mount.

B = next
volume num-
ber if X>0

CALL VSRSW

CALL VS$HDR
DATA page
number ad-
dress

DATA program
name address
DATA program
title address
(= 0 it not
used)

External References

VSEXEC, SRTENM

VSEXEC, SRTENM

None

V$I0C, V$I0ST,
VSEXEC

None

Restored

>
[

B = Restored

X = Restored

A,B.X restored
Header in 38
word external
buffer V$HBUF

Name

CB2A

CA28B

MOVE

CTIME

Table 13-2. OM Library Subroutines
Function Calling Sequence

LDA = 0O for octal

Covert a 16-bit binary value
(positive or negative) to an

conversion

ASCIl character string (octa > 4 (= 0 for deci-
or decimal) with leading zeros mal conver-
suppressed and right justi- sion
fied minus sign on negative JSR CB2A,X
decimal vaiues. DATA Address of
binary value
Convert a decimal or octal JSR CA28,X
ASCIt number (positive DATA ASCH
or negative decimal) to string ad-’
a 16-bit binary value. dress
, / (compl =
! S ..,'i oA 6 left byte,
[A e pos = right -
W""‘J = kit DATA %t:) f
: g ress o
I"’l°"‘l’) 1“’" obedmaA. Yermination
character
block

The termination block
format is

DATA

‘DATA

Legal termination
character (right
justified)

Legal termination
character (right
justified)

PATA O (end of block)
Move a block of n words JSR MOVE X
from address f to address DATA n (word
t. If an overlap move, count)
then, move 1n reverse. DATA t (from ad-
dress)
DATA t (to address)
Convert the time of day JSR CTIME X
to an ASC! string of the
form:
HH:MM:SS

SUPPORT LIBRARY

External References

(A) = Address of ASCII

string
(B) = Restored
(A) = Binary value
(B) = Next byte address

OVFL = Set if an illegal
character encountered

P

i

(A) Restored
(B) = Restored

(A) = Address of ASCH
string
Restored

(B)

137

SUPPORT LIBRARY

Name

$9E

CCos

CSIN

CLOG

CEXP

CSQRT

CABS

CONJG
$AK

$AL

$AM

$AN

$AC

CMPLX

$8K

$8L

$8M

138

Table 13-3. FORTRAN IV Coded Subroutines

Function

Compute ACCZ" ™

In ACCZ, compute cos 2

In ACCZ. compute sin z

In ACCZ, compute In 2

In ACCZ, compute exponential z
tn ACCZ. compute square root of 2
in AB compute absotute z

In ACCZ, compute conjugate of z
Add r to real part of ACCZ

Subtract r from the real
part of ACCZ

Muitiply ACCZ by r

Divide ACCZ by r

Convert AC to z and store in ACCZ
Load ACCZ with a value having

a real part r1 and an imaginary
part 2

Add z to ACCZ

Subtract z from ACCZ

Multiply ACCZ by z

Calling Sequence

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

$9E(1)
CCOS(z2)

CSIN(2)
CLOG(2)

CEXP(z)
CSQRT(2)
CABS(z)

CONJG(2)
$AK(r)

$AL(r)

$AM(r)
$AN(r)
$AC

CMPLX(r1,r2)

$8K(z)
$8L(2)

$8M(2)

External References

$SE(FSE), |ABS, $8F,
$8M. $8N, $8S

$SE(FSE), CSIN, $8F,
$8K, $8S

$SE(FSE), EXP, $OQN.
SIN, $SQK(FAD), $QM,
COS, $QL(FSB), $8F

$SE(FSE), ALOG, $QM,
$QK(FAD), $OQN, ATANZ,
$8F

$SE(FSE), EXP, COS,
$QM. SIN, $8F

$SE(FSE), SQRT. CABS
$QK. SQN. $8F

$SE(FSE). SQRT. $QM,
$QK(FAD)

$SE(FSE), $8F

$SE(FSE), $8S. $QK(FAD), $8F

$SE(FSE), $8S, $QL(FSB), $8F

$SE(FSE), $8S, $QM. $8F

$SE(FSE), $8S, SQM. $8F
$3S, CMPLX

$SE(FSE), $8F

$SE(FSE). $8S, $SQK(FAD), $8F

$SE(FSE). $8S, $QL(FSB), $8F

$SE(FSE), $8S, $QM,
$QL(FSB), $QK(FAD). $8F

Name

$8N

$20

AIMAG

$0C

REAL
$8F
$8S

$XE

$YE

$Zt

DATANZ

DLOGI0

DMOD

DINT

DABS

DMAX]

DMIN1

DSIGN

$YK

$YL

$YM

SUPPORT LIBRARY

Table 13-3. FORTRAN IV Coded Subroutines (continued)

Function

Divide ACCZ by 2

Compute negative of 2

Load AB with the imagnary
part of 2

Load AB with the real part of
ACCZ

Load AB with the real part of 2z
Load ACCZ with 2
Store ACCZ in z

Compute d**1 where d 15 1n AC

Compute d-“r where d 15 1n AC

Compute d1““d2 where dl 15 in AC

in AC, compute arctan (d1/d2)

In AC, compute log d

In AC. compute d1 modulo d2

In AC, compute integer
portion of d

In AC, compute absolute d

In AC, select the maximum value
n the set dl. d2. dn

In AC, select the minimum value
in the set dl, d2,..dn

Set the sign of dl equal to
that of d2

Add r to AC

Subtract r from AC

Multiply AC by r

Calling Sequence

CALL $8N(2)

CALL 820

CALL AIMAG(z)

CALL $0C

CALL REAL(Z)
CALL $8F(2)
CALL $85(2)

CALL $XE()

CALt $YE(r)

CALI $ZE(d?)

CALL DATAN2(d1.d2)
CALL DLOG10O(d)
CALL DMOD(d1.d2)
CALL DINT(d)

CALL DABS(d)

CALL DMAXI1{dl.d?
dn.0)

CALL DMINI(d1.d2
..,dn,0)

CALL DSIGN(d1.d2)

CALL $YK(n)

CALL $YL(r)

CALL $YM(r)

External References

$SE(FSE), $8S, $QOM,
$QK(FAD), $QN, $QL(FSB). $8F

$8S. $8F

$SE(FSE)

$8S

$SE(FSE)
$SE(FSE)
$SE(FSE). $3S

$SE(FSE). $ZF, MOD. $ZM
$HN, $ZN, $ZS

$SE(FSE). $ZS. DBLE.
$2¢8. 3¢

$SE(FSE). $ZS. DEXP,
DLOG. $ZM

$SE(FSE). $ZF. $ZS.
$21. $ER, $ZN,

$21. $ZK. DATAN
$SE(FSE), DLOG. $ZM
$SE(FSE), DINT, $2F
$ZN, $ZS. $ZM.

$ZL. $2C

$SE(FSE). $ZF. $JC. $XC

$SE(FSE), $ZF. $21. $ZC

$SE(FSE). $ZF, $ZS.
ISFA, $ZL. $Z1

$SE(FSE), $2F, $ZS,
ISFA, $ZL. $2!

$SE(FSE). $ZF, $Z1. $ZN

$SE(FSE). $ZS, DBLE, $ZK

$SE(FSE), $ZS, DBLE.
$ZL. $2C

$SE(FSE). $ZS. DBLE, $ZM

139

SUPPORT LIBRARY

Name

$YN

DBLE

$XC

TANH

ATAN2

ALOG10

AMOD

AINT

AMAX1

AMINI

AMAXO

AMINO

DM

FLOAT
SNGL

MAX0

MINO

MAY.1

MIN1

MOD

13-10

Divide AC by r

Table 13-3. FORTRAN 1V Coded Subroutines (continued)

Function

in AC, convert r to d

In AC, convert i to d where

iis in A

In AB, compute tanh r

tn AB, compute arctan (rl/r2)

In AB, compute log r

in AB, compute rl modulo r2

In AB, truncate r

In AB, select the maximum value
in the set rl.r2,. .rn

in AB, bselect the minimum value
in the set rl, r2,. .rn

In AB, select the maximum value

in the set 11.12.

convert to r

n and

In AB, select the minimum value
in the set 11,2.....in and

convert to r

in AB, compute the positive
difference between r1 and r2

in AB, convert | o r

in AB, convert d tor

In A, select the maximum value

convert to 1

n the set 11,12.....un

n A, select the minimum value
n the set il,i2

,,,,, in

n A, select the maximum value
n the set r1,r2,...rn and

In A, select the minimum value
in the set r1,r2,...rn and

convert to i

in A, compute il modulo |2

Calling Sequence

CALL $YN(r)

CALL DBLE(r)

CALL $XC

CALL TANM(r)

CALL ATAN2(r1,r2)

CALL ALOG1O(r)

CALL AMOD(r1.r2)

CALL AINT(r)

CALL AMAX1(rl,r2)
..n0)

CALL AMINI(rl.r2)
rn.0)

CALL AMAXO(11 12,
n,0)

CALL AMINO(11.12,
n.0)

CALL DIM(ri r2)

CALL FLOAT(1)
CALL SNGL(d)

CALL MAXO(il 12,
.n,0)

CALL MINO(1,:2,
.,in,0)

CALL MAXI(r] r2,
.. 1n0)

CALL MINL(r1 r2,
...,rn,0)

CALL MOD(11,2)

External References

$SE(FSE), $2S, DBLE,

$2F, $2N

$SE(FSE), $YC

$PC, $YC

$SE(FSE), $QK(FAD), EXP,

$QL(FSB),

$ON

$SE(FSE), $ER. ATAN,
$QK(FAD), $QL(FSB), $QN

$SE(FSE), ALOG. $QM

$SE(FSE), AINT, $ON.
$QM, $QL(FSB)

$SE(FSE), $IC, $PC

$SE(FSE),

$SE(FSE),

$SE(FSE),

$SE(FSE).

$SE(FSE),

$SE(FSE),
$SE(FSE),

$SE(FSE),

$SE(FSE),

$SE(FSE),

$SE(FSE),

$SE(FSE),

I$FA. $QL(FSB)

I$FA. $QL(FSB)

ISFA, FLOAT

I$SFA, FLOAT

$QL(FSB)

$PC
$ZF. $RC

IS$FA

ISFA

I$FA, $QL(FSB), IFIX

1$FA. $SQL(FSB). FIX

$HN. $HM

SUPPORT LIBRARY

Table 13-3. FORTRAN IV Coded Subroutines (continued)

Name Function

INT In A, truncate r and convert
to i

IDIM In A, compute the positive
ditference between il and i2

IFiX in A, convert r to

$JC In AC, convert d to i and store

result in A

13.4 DECIMAL SUBROUTINE

The decimal subroutine performs requested decimal
operations (add, subtract, multiply, divide, move, or
compare). Besides operand addresses and sizes, the user
may specify pre-shifting of operands and post-shifting and
rounding of result. Note that pre-shifting is decimal
alignment and does not imply physical shifting. Operands
may be signed or unsigned.

Decimal compare sets the user result condition word as
follows:

=0 it operand A< operand B
=] it operand A = operand B
-2 if operand A > operand B

Parameter Block

Calling Sequence

External Reterences

CALL INT(r) $SE(FSE), $IC

CALL IDIM(11.i2) $SE(FSE)

CALL IFIX(r) $SE(FSE), $IC

CALL $JC $RC, $IC

Decimal compare arithmetically compares two deci'nal
operands.

On entry register RO(A) contains the address of an 85 word
temporary storage block available to firmware, R1(B)
contains the address of the user result condition word, and
R2(X) contains the address of the users descriptive
parameter block, Decimal math may be accessed either via
JMPM VSDECM
or
JMP C$DECM
if C$DECM is used, return will be made to user supplied
location VCSRTN. If VSDECM is used, the user must still
define VCSRTN.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
Word 0 CODE P LA jUB LA LB
1 BN, displacement ,
2 BNg displacementy
3 Q|DA|DB SA sB
4 R juciDC LC sC
4 BN displacement

13-11

SUPPORT LIBRARY

Parameter Description:

CODE represents operation to be performed:
0 = opA + opB
1 = opA - opB
2 = compare opA: opB
3 = move opA to opB
4 = opA * opB
5 = opA/opB
P = 1 for presence of word 3.
=0 for absence of word 3.
UA =] if operand A is unsigned.
= 0 if operand A is signed.
UB = 1 it operand B is unsigned.
= 0 if operand B is signed.
LA = jength of A in digits (1 to 31).
LB = length of B in digits (1 to 31).
BN, = main storage base register number
of operand A.
BNg = main storage register number of
operand B.
Q = 1 if returned in third operand
(words 4 and 5 present).
= 0 if third operand not present
(words 4 and 5 absent).
DA -1 pre shift operand A left
= 0 pre shift operand A right
DB -1 pre shift operand B left
= 0 pre shift operand B right
SA = Operand A shift amount
SB = Operand B shift amount
R =] if rounding to be applied to
result (only if result returned
in third operand)
=0 if rounding not applied to
result
uc = 2 if result unsigned
=0 if result signed
DC = 1 to shift result left
= 0 to shift result right
LC - length of result field
SC - result shift amount
BN = main storage base register

number of result
Displacement
A B orC - Byte count used to calculate

byte address of decimal operands.

Error Conditions:

(Note that on an error, register R2 will be incremented past
the parameter block, and results will be unreliable.)

a. Result operand overflow - if the result operand has an
inadequate number of digits to contain the result, the
condition result word (CONDIT) will be set to the
value 3.

13-12

b. Invalid digit - if the number portion of a digit (bits 2° -
2") contains a value other than 0 - 9,, or the zone
portion (bits 2’ - 2%) contains a value other than 11y,
the conditions result word will be set to the value 4.
This is also true of values specified as signed having
signs other than blank (octal 240), minus (octal 255),
or plus (octal 253).

c. It the base word related to respective BN field is zero
then the condition result word CONDIT wilt be set to 5.

d. Attempted division by zero resuits in CONDIT being set
to 3.

Notes

it operand C is not specified, the resuit will be returned in
operand A, except for move. Decimal move moves operand
A to operand B. Note that for a decimal move, the
parameter block may be a maximum of 4 words. in this
case, the Q bit is used to specify rounding, rather than a
third operand.

Parameter byte addresses are caiculated as follows: (R1 +
1 + BN) *2 + displacement = byte address of least
significant byte of decimal operand.

This represented pictorially as follows:

R1 »{ Condition Word

Base register 0
address

Base register 1
address

Base register 15
address

Optional

Word Address Byte Address Sign

l byte decimal '
displacement operand

When pre-shifting is specified, this does not imply physical
shifting of operands. Only the operand designated for
result is modified by a decimal operation.

When the operation is complete, only the integrity of
register R2 and R1 are maintained. R2 will be incremented
to the address of the next word following the parameter
block.

This is meant to imply all other V75 registers are volatile.
The user must save and restore any registers R3 through
R7 he requires to be maintained when executing the
decimal operation.

Examples:

SUPPORT LIBRARY

Note: The foillowing may be used to create decimal
parameter blocks:

DWORDO
DWORD 1
DWORD2
DWORD3
DWORDY
DWORDS

DECOP

DECWD 1

DECWD2

DECWD3

FOLLOWING ARE FORMS OF DECIMAL

INSTRUCTION
FORM 3,1,11,5,5
FORM 4,12
FORM 4,12
FORM 3,1,1,1,5,5
FORM 3,1,1,1,5,5
FORM 4,12
DECIMAL OPERATION MACRO (DECIMAL
PARAMETER BLOCK)
MAC
IFT P(12)-P(13)-P(5)-P(6)+P(14) Select appropriate Word 0)
GOTO DECWD 1 (Note no thwd, fourth,
DWORDO P(7),0,P(1),P(3),P(8),P(11) or fifth word)
GOTO DECWD2
COUNT
DWORDO p(7),1,P(1),P(8),P(4), P(11) (Parameter bilock includes
CONT at ieast word 3)
DWORD 1 P(2),P(3)
DWORD2 P(9),P(10)
IFF P(12)+P(13)+P(5)+P(6)+P(14)
GOTO DECWD3 (Terminate 1f no word 3)
DWORD3 0,P(14)P(5),P(12),P(6),P(13)
IFF Pl14)
GOTO DECWD3 (Terminate f no third
DWORDY o,P(15),pP(16),P(20),P(19),P(21) operand words 4 and 95)
DWORDS P(17),P(18)
CONT
EMAC

INTERPRETIVE PARAMETER BLOCK DEFINED AS FOILLOWS

P(01)
p(02)
P(03)
P(04)
P(05)
P(06)
P(07)

P(08)
p(09)
P(10)
P(11)
P(12)
P(13)
P(14)
P(15)
P(16)
P(17)
p(18)
P(19)
pl(20)
P(21)

oP1 SIGNED (S) OR UNSIGNED (U)
oP1 REG
OoP1 DISPLACEMENT
OoP1 LENGTH
oP1 SHIFT LEFT (L) OR RIGHT (R)
oP1 SHIFT AMOUNT
OPERATION (DADD, DSUB, SMULL. DDIV.
DMOV, DCMP)
orP2 SIGNED (S) OR UNSIGNED (U)
oP2 REG
op2 DISPLACEMENT
orP2 LENGTH
op2 SHIFT LEFT (L) OR RIGHT (R)
oP2 SHIFT AMOUNT
=EQ IF RESULT IN THIRD OPERAND
F FOR ROUNDING
oP3 SIGNED (S) OR UNSIGNED ()
OP3 REG
OP3 DISPLACEMENT
oP3 LENGTH
OP3 SHIFT LEFT (1) OR RIGHT (R)
oP3 SHIFT AMOUNT

13-13

SUPPORT LIBRARY

following are equates to be used with the above macro

BNO EQU 0 BASE NUMBER 0
BN1 EQU BASE NUMBLR |
BN2 BEQU 2 BASE NUMBER 2
BN3 EQU 3 BASE NUMBER 3
BNY EQU 4 BASE NUMBER 4
BNS EQU 5 BASE NUMBER 5
BN6 EQU 5 BASE NUMBER 6
BN7 EQU 7 BASE NUMBER 7
BNSB EQU 8 BASE NUMBER 8
BN9 EQU 9 BASE NUMBER 9
BNA EQU 10 BASE NUMBER 10
BNB EQU 11 BASE NUMBER 11
BNC EQU 12 BASE NUMBER 12
BND EQU 13 BASE NUMBER 13
BNE EQU 14 BASE NUMBER 14
BNF EQU 15 BASE NUMBER 15
DADD EQU 0 DECIMAL ADD
DsuUB EQU 1 DECIMAL SUBTRACT
DCMP EQU 2 DECIMAL COMPARE
DMOV EQU 3 DECIMAL MOVE
DMUL EQU 4 DECIMAL MULTIPLY
DDIV EQU 5 DECIMAL DIVIDE
EQ EQU 1 RESULT RETURNED IN C
F EQU 1 ROUND (ADIUST)
R EQU O SHIFT RIGHT

L EQU 1 SHIFT LEFT

S EQU ¢ SIGNED

u EQU 1 UNSIGNED

The above macro may be used as follows:
1.DECOP U, BN1,2,4,R,1,DAD,U,BN2,0,4,L1
generates four word parameter block

16204
10002
20000
02041

Fxplanation: Operand A 1s an unsigned decirnal string
residing in memory accumulator 1. It begins (most
significant digit) two bytes into accumulator | with a length
of tour bytes. Operand A will be logically reshitted right one
digit. Operand B is an unsigned decimal string beginning
N memory accumulator 2 with a length of four bytes.
Operand B will be logicaliy pre-shifted left one digit. The
result of addition will be returned in operand A. If operand
A = 4310 and operand B = 0129, result of the above
operation would be 1721.

Note following register settings.

13-14

Betfore Operation After Operation

RO(A) 1016 1016
R1(B) 3100 3100
R2(X) 4102 4106

2. DECOP U,BN5,0,4,,,DMUL,S,BNE,0,3,,,
EQ,F,U,BN1,0,7,R, !

generates six word parameter block

114203
050000
160000
010000
014341
010000

Explanation: An unsigned 4 digit decimal string in memory
accumulator 5 15 multiplied by a signed 3 digit decimal
string in memory accumulator 14, The result will be right
shifted one digit position, rounded, and stored in memory
accumutator 1 (note maximum resulting digit string length
is 7). 1 operand A = 0321 and operand B = 987 + result
of above operation would be 0003168.

Note following register settings:

Before Operation After Operation

RO(A) 1200 1200
R1(B) 1105 1105
R2(X) 3506 3514
3. DECOP §,BNC,0,3,,,DCMP,S,BNY, 0,4

generales three word parameter block

040144
150000
010000

Example 3 compares decimal digit string in memory
accumulator D with decimal digit string in memory
accumulator 1. If operand A = 123 + and operand B =
9871, condition word pointed to by R1(B) would be set to
20

Note following register settings

Before Operation After Operation

RO(A) 13012 13012
R1(B) 6512 6512
R2(X) 1234 1237

SECTION 14
REAL-TIME PROGRAMMING

VORTEX real-time applications allow the user to interface
directly with speciasi devices, develop software that is
interrupt-driven, and utilize reentrant subroutines. Four
areas are covered in this section:

. interrupts

. Task-scheduling

. Coding reentrant subroutines

. Coding 1/0 drivers

14.1 INTERRUPTS
14.1.1 External interrupts

Priority interrupt module (PIM) hardware: A PIM com-

prises a group of eight interrupt lines and an eight-bit
registor. The register holds a mask where each set bit
disarms a line, VORTEX allows up to eight PiMs for a
maximum of 64 lines. The system of PIMs and lines is
called the external interrupt system.

The processing of external interrupts is controlled by the
programmed status of the line. The lines are continuously
hardware-scanned, regardless of the status.

If more than one interrupt is detected on a single scan, the
highest-priority line is acknowledged, and, if the PIM is
enabled and the tine armed, the interrupt is taken. If no
conflict occurs, the lines are acknowledged on a first-in/
first-out basis. If a signal is received on a disabled PIM, it
is stored by the PIM, and causes an interrupt when the
PiM is enabled.

Disabling the external interrupt system prevents any
interrupt from entering the computer. Enabling the entire
system aliows acknowledgement of all interrupts. Enable/
dissbie seiection on a PIM basis allows for more selected
control of the system. Individual line selection prevents
receiving a second interrupt while a line is still processing
the first.

Pn.ram setting of PIM registers causes the PIM to ignore
) inurmph received on lines that are busy processing an
intorrupt or held off because of priority.

Al PiMs and interrupt lines to be used in VORTEX are
specifiedt . at system-generation time and. thelc. status
wmmvmxuwmwu-ﬂg.mmx
does not cisable any line unless so directed by RTE service
regquest PMSK (section 2.1.6).

m.mwwuacummm:m
interrupt taken, th.mpuhr executes the instruction in a

selected memory location. Under VORTEX, PIM addresses
are from 0100 to 0277. Linkage to VORTEX interrupt-
processing routines is accomplished by a jump-and-mark
instruction in the interrupt location. Unspecified lines are
preset in VORTEX with no-operation instructions that
ignore unspecified or spurious interrupts.

Since VORTEX always includes memory protection, certain
instruction sequences cannot be interrupted and acknowi-
edgement is delayed until they are complete. These include
the instruction following an external control, halt, execu-
tion, or any instruction manually executed in step mode.

VORTEX interrupt line handlers: At system-generation
time sor ifi interrupt-driver tasks. These
include those that allow VORTEX to service the interrupt, as
well as those that are directly connected and service the
interrupt themselves. Then, VORTEX constructs a line-
handier for each interrupt in the system (figure 14.1).

Directly connected routines preempt YORTEX and are thus
used only when response time demands it. Section 14.4.5
describes directly connected interrupt handiers in detail.

Common interrupt handler: The common interrupt han-
dier is the interface between PIM interrupts (via the line
handiers) and system or user interrupt-processing tasks.
Upon entry, the contents of the volatile registers are saved
and the interrupt event word is inciusively ORed into the
event word of the specified TIDB. A check : mines
whether to return fo the int ed task or to enter the
wmkaaﬂ. depending upon_priority. All
interrupts are en upon leaving the common interrupt

handier.

interrupt-processing tasks: A tagk is activated by an
interrupt when: <1)M.E.J2§.L"3Mm1ﬂa_‘£§

bit ia.set, (2) the interrupt svent word containg a_nonzero,
and (3) the task is suspended.

The interrupt-processing task can be memory-resident or
RMD-resident, In either case, the processing task clears the
event word. The event word distinguishes different inter-
rupt linves that couid activate the same task. The dispatcher
clears the interrupt expected bit and time delay active for
ail tasks except TTY and CRT drivers.

An interrupt-processing task can exit woth one of the
following options:

a. issue a suspend RTE (type ! .or 2) service call that
suspends the task md sots -the intervupt-expected
status bit. Upon re - the externs! in

VJML&&_M(TBEVNT word in TIDB is set to
1) caused by or 1/0 compietion everits (type 2

only), the task continues execution following the
request.

14-1

REAL-TIME 8200 AHING

Dedicaton ssrrit Adérosses

Line Handiers

TiD8s

= Thread We-d
Relwrn Address EORw .
Address Jurp-anc-Mark Instruction Event Wor:
‘o _Common (nterrupi HKandler i
0i00 _Svent Word Interrupt Teack: |
i i] TIOF Location A B X O ¢
0102 { Saead nd-Mack instruc- and Suack Powter
3 ‘tion v Line Mondler 2 e Rotyes Address L.
“ Jurmg-and-Mark instruction
e, o Liveetly con- 2 te Common Interrunt Handier '51—-"’0 Thread Word
B S IMGPTUR]) e & Zvont Word ORed .
- ______ﬁ‘*ﬁ?;i g TIDB Location J a3 Event Word
$104 s g rnd-Mark instruce i .
0105 i v Line Hosgior 3 Loy Redurn Addross | Interrupt Siack:
b Digadle Ciock Imstruction A B X Cf P,
7 HBeclly con Z Jumg-and-Blark Instruction and Stack Pointer
. nterraps) & e Ueer Code .
& fvent word
. Option 2 ‘ , k! User Code %or i
6L niowigears instruc- & Zeturn Addrass ! { Directly
0107 o oine Handier 3 Jisable Ciock Instruction i Connected i
sump-and-Terk instruction | Interrupt Task |
4 ‘e VEOHD)
4 User Code Entry Addrass e | VSDHD, svitem ?
o Zvent Word routine to save z._‘

14-2

volatile re;-stes g
.'
}

L-.‘EUW code q

Koke: Ses sectisn 1645 on directiyconnected interrupt

handor.

Figwe 141, intervupt Line Handiors

ond sels the fniew;am
seatus bits. The iagk 8«

uistad interrupt caussd g, % o

170 compiatin: ¢ e 3 oniy).
Upon eniry event word

infterTupt actawika by extanal or simulsted mtorrust
(13 Sines M0 the TIDB event word to = 1, B
ovent woed B Uas handlers for adternal interupis
shouid be oet M&ﬁgm:ﬁmlﬁﬁwa
delay is to te g, The word sive cleers s dimo

deiay stat:c ;s reectivation.
it should sles 1w nsted thet for supaend (ype 2) snd

vice colis, bit € of TBPL word of
+3 0 cause :OC 10 aat TBEVNT werd 1o

dday(tyw(

i RMD-res e, «2t the intormupt-cxpaciad s2atus b

and cafl LniY
resident.)

iv releass space. (TIDB muc: b=

Theing Gonsidorations:

The time necessary i process an

intorrunt through the common interrupt henvisr depends
on when e interrupt occurred:

it & task is interrupted and the interrupi-processing
task has a lower priority, the interrupt is sosted, and
VORTEX returns control to the interrupted task in
approcimately 55 cycles.

. if a task is interrupted and the interruzi-processing

tssk has a higher pricrity, the interrupt is posted, and
VORTEX transfers control to the dispatcher (section
14.2.3) to start the higher-priority interrupt-process:
ing task (if all its conditions are met). The posting
time is 66 cycles, approximately.

it an interrupt occurs during a dispatcher scan, the
posling time is about 32 cycles. VORTEX raturns to the
dispaicher to restart the scan.

. if the reai-time clock interrupts the interrust handier,

the RTC interrupt handier posts the interrupt and the
comimen interrupt handler returns to the clock
processor in spproximately 40 cycles.

14.1.2 internal Interrupts

VORTEX recognizes and services internal interrupts related
to various hardware components. The processing routines
are ail directly connected and are the highest-priority tasks
in the system.

Memory protection interrupt: Memory protection interrupts
are generated wheh a task attempts to execute a privileged
instruction such as external control or halt, or attempts to
violate the access mode. The memory protection routines
process ail protection violation interrupts which are the
highest priority interrupts in the system. When the
interrupt cccurs, the system is foroad fo the executive
mode, state O (see table 1-1). Section 1.3 dascribes the
memory map conctpt and the access modes which éan be
assigned to each virtusl page.

VORTEX uses the memory protection interrupt for switch-
ing from the user mode 1o the executive mode when an 1/0
(section 3) or RTE (section 2) request is made.

The memory protection interrupt addresses for the various
violations are shown in table 14-1.

Table 14-1. Memory Protection interrupt Addresses
interrupt Map Active

Error Address Access Control Status

HALT 020 Attempt was made to execute
HALT instruction.

170 022 A map number other than O
attempted to execute an 1/0
instruction.

WRITE 024 Attempt was made to write
into read-only or execute-
only location.

JUMP a26 Attempt was made to jump

into read operand only
focation.
UNASSIGNED 030 Attempt was made to read
or write into unassigned
location.

INSTRUCTION 032 Attempt was made to fetch
FETCH instruction from reed
operand only location.

Power fallire/redliart interrupt: An interrupt occurs when
the system detects a power failure. The YORTEX power
Wm“hmtmudmﬂhmw
the status of the owerflow indicator, sets a power failure
fiag, and halts with the | register set to 077,

Following the power-up saquence, the PF/R hardware
generates an interrupt. Upon entry to the VORTEX power-
up procesor, the power-failure flag is checked. A power-

REAL-TIME PROGRAMMING

down sequence must have occurrsd or eiss a fatal error
condition is assumed to have occurred and VORTEX haits
with the | register set to 077.

If a power-down sequence had occurred, the power-failure
flag Is cleared, the PIM mask registers are set, the real.
time clock's variable interrupt interval is set, the saved
volatile registers are restored, the clock and PIMs are
enabled (if enabled upon interrupt), and control is
returned to the location before the interrupt. Any input or
output data transters in operation 2t the time of the power
failure result in the loss of data.

For peripheral devices such as magnetic tapes and RMDs,
the 170 operation is automatically retried.

For other peripheral devices, such as the card reader,
paper-tape system, card punch and lineprinter, a retry is
not attempted.

The error message posted depends upon the error detected
by the respective I/0 driver, such as abnormal BIC stop,
parity error, interrupt time-out, etc. Data losses on the
RMD due to power failure could cause VORTEX to
malfunction, but other devices which are not system.
resident are recoverable.

The power failure-restart routines operate at the second-
highest priority level in the system, which has memory
protection at the highest priority levet.

The power-up routine reloads the volatile memory map
registers by scanning the TIDB threed and outputting the
map image for each task which has an assigned, non-
checkpointed map. Each task's map key number is
contained in TBKEY and the map image adddress con-
tained in TBMING.

The power-up routine also automatically reloads the
writable control store for systems with WCS. Sections
20.1.3 and 20.1.4 describe the manner in which the
microutility task saves the WCS image in the OM library file
named WCSIMG and how the WCS refoad task, WCSRLD,
utilizes the file to restore the WCS content. The power-up
routine checks location 017 to determine if WCS has been
loaded. A zero value indicates no WCS. A non-zero value is
assumed to be the WCSRLD TIDB address. The FL library
logical unit number and protect key are stored in TBRSTS
and the WCSRLD TIDB (resident TIDB, non-resident task)
is set active.

Real-time clock interrupt: The real-time clock interrupt
provides the basis for timekeeping in YORTEX. It can be set
to a minimum resolution of 5 milliseconds. However, a
value greater than 5 milliseconds (i.e., 10-20 milliseconds)
reducss overhead when the system does not have high-
resolution timekeeping requirements. Upon receipt of an
interrupt, the time-of-day is updated and the TIDBs are
scanned for any time-driven task requiring activation. PIMs
are disabled for approximately 18 cycles during real-time
clock interrupt-processing. The clock routine is the third-
highest priority interrupt in VORTEX.

14-3

REAL-TIMEG PROGIIS#S NG

14.1.3 interrupt-¥ruoessing Vask
instailation

To install an inter=unt-orecessing task that is not direstly
connected, at-systan.giizeation time provics line handiors
and_resident TiDu: - uging a PIM dirsctive (seciion
1 15.5.11) with s(n} xézc ..t 3 IDE directive {ssction 15.6.2)
?using the same txlt o in both directives. Additicnal
;dummy T!DBs can “ed during system generstion.
i (Oncs & TlDB is i U tori, OPCOM dicestive ;ATTACH
i di%orent intorrupt-processing iosks

aocessing task arsd add the “ask
v VORTEX nucieus as a residont

Then, use the ;ATV 4C sirustive to link the resident tasi to
the interrupt line (i 184 Jirective nct used).

14.1.4 Interrupé Siuce

When a memory-profectics, real-time (RT) clock or B
interrupt occurs, W sysiam s forcad to the executive

mode, state 0. Tha interrunts are enabled or disabisc as
follows:

a. Memory-Prote;tion interrupt

1. RTclock is unafiected and remaing in the snaticd
state.

2. Memory protecticn is disabled and is enabled prior
to exiting the memory- protection processing rouline
(EXC 0546).

3. PlIMs are disstisd when the JMPR instruction is
executed anc Pikiz i enabled prior to exiting (EXC
0244).

b. PIM interrupt
L. RTclock iz unisifected and remainz in the enatiad
state. The comwmua: interrupt line handier reutine
disables and enain the RT clock. Tha clock io st
enables if the &iid interrupted out ©f the RT cock
procesgor (see séciics: 14.4.5 Jor dircotly connecisd
interrupt hanciere,
2. Memory rotection is unaflected and remeins in
the enabled 3 PR EN
3. PIMs are disstlac when the JMPN instruction is
executed, The comewn interrupt line handler routine
enables the Piiis w:uzn exiting.

¢. RTCiock interrupt
1. The RT cinck urocessor diszbles and resnables (e
RT ciock.
2. Memory pectection is unaffected and remains in
the snabled stute.
3. The PiMs sre disabied when the JMPM instruction
is executed. Tha 17T sikck processor enat:izs the Pikis.

14-4

14.2 SCHEDULING

14.2.1 System Flow

VORTEX is designed around the TIDB (table 14-: i). This
biock contains all of the information about a task during
its execution. The setting and clearing of status bits in the
TIDB causes a task to flow through the systera. Two
regigter stacks are saved within the TIDB: a resntrant
(suspend register) stack, and an interrupt stack.

The dispatcher (section 14.3) is the prime mover ¢f tasks
{through the system. When anv function has resched a
} termination point or has fc wait for an |/Q operation, the

| task gives control to the dispatcher, which then finds

‘another task to execule. _task maintains contro! untjl it

gives control to the duspatcher or to the mterrugt task if

the int . The
contents of the interrupted task's volatile rogistm are
isaved in its TIDB interrupt stack and control goes to the

[dlspat:.htr which searches for the highest-priority active
task jor axecution.

Each TiDB is placed in sequance by priority ievai ang
thresded. Two stacks are maintained in the sysizm: a
busy stack and an unused stack. When a task is scheduied
for execution, a TIDB is allocated from the unuse:s stack
and threaded onto the busy stack according to priority
level.

The status word of each TIDB, starting with the nighest.
priority task, is scanned. Depending upon the seiting of
status bits, the task is activated, passed over, or made to
activate a related system task.

Two resident system tasks are activated by the disatcher
to process functions relating to the execution of a
task: (1) search, aliocate, and load (SAL), znd (2)
common system ervors (ERROR). SAL searches, aiocates,
loads, and exits a scheduled task. ERROR posts common
system error messages. These two tasks are not resntered
once they start axecution, so the dispatcher hoics tasks
requiring identical functions until they sre completed.
Then, the higiest-priority waiting task is given control of
the required function.

in VORTEX, SAL assigns a map (1-15) to each non-r=sident
task scheduled to be executed. If a map is not available,
SAL: (1) checkpoints any executing backgreund task's map
(memory is checkpointed as required only); (2) checkpoints
a jower priority foreground task’s map; or (3) checkpoints a
higher priority foreground task’s map (if TBST bit & is set);
or (4) exits and does not execute the task until a map
becomes avalisble.

Each map defines a logical memory space of 32K words
which is segmented into 512-word pages (see secticn 1.3).
SAL sets each logical page to one of four access modes:
unassigned, read only, read operand only, or reac-write.
Each iogical page which is assignad an access mods other
than unassigned is finked to a physical page of merory. If

the access mode is violated by the executing task, a
memory protect interrupt occurs. The memory protection
interrupt processing is described in section 14.1.2. Page 0
(logical addresses 0-0777) is always assigned to physical
page O, which is the system data region as defined in table
14.1.

Each task, foreground or background, executes within its
own logical memory space. The amount of logical memory
space availsble to a task is reduced by: (1) page O for
system cats; and (2) the YORTEX nucleus module accessed
by the task and mapped into its logical memory (see
section 2.2). If none of the VORTEX nucleus module is
accessed, the task has available all but one page (page 0)
of the 32K logical memory space. Each task is loaded and
executed from logical address 01000. Section 1.3 describes
in greater detail available logical memory space.

SAL aliocates physical memory by pages. SAL maintains a
table designating the slocstability of each physical page
within the system as defined during system generation.

It space is not available and the background is in
operation, the background task is checkpointed on the
RMD checkpoint file and its space allocated to foreground.
Upon relesse of this spece by the foreground tasks, the
background is read in from the RMD and reactivated.

If space is required to load a program and the background
has already besn checkpointed, the task waits for a
currently running task to exit and relesase memory.

A task may dynamically request more memory space via
the ALOCPG and MAPIN RTE requests. Sections 2.1.15 and
2.1.17 further describe these RTE requests.

The background memory allocation depends on the size of
the background task being loaded. Only the amount

REAL-TIME PROGRAMMING

needed is so allocated automatically, although the JCP/
MEN directive can allocate extra memory for a background
task. Figure 14-2 is a VORTEX memory map of map O,
figure 14-3 shows the priority structure, table 142 is a
description of a TIDB, and table 14.3 is a detailed
description of lower memory.

14.2.2 Priorities

Thirty-two priority levels (O through 31) are provided in the
VORTEX system. Levels 2 to 31 are reserved for protected

foreground usuage. Lg_%m__& Level 25
is_reserved for the two EX system tasks, SAL and
ERROR. Lgvels 24 and 23 are reserved for 1/0 drivers. Al
other foreground ieveis are availabie to the user. More than

one task per level can be scheduled.

Levels 1 and O are reserved for tasks running in the
background aliocatsble memory and residing in the

background library. Level 1 is reserved for VORTEX system

and cah be checkpointad when their space _is
needed by a foraground task. Level O tasks cannot modify
or destroy the system (figure 14-3).

Oniy one background task can be active and in memory at
any given time. If other background tasks have been
scheduled, the active background task must execute an
EXIT service request before the scheduled task(s) can be
loaded and executed. If a background task calls EXIT and
no tasks are scheduled for the background area, and the
requesting task is not the job-control processor, the JCP is
scheduled. Otherwise, there is a normal exit.

14-5

RRAAM,

AarY-ZV R
tmraninit] |

REAL-TIME PROGRAMMING

fddress
0 : 5 arid System Pointers X
i Literal Pool J
512 (|
; Nonresident Background Tasks
{
Alioc stadle
Memeory <!
Pogi i
H
L Nonresident Fereground Tasks }

Resident Foreground User Tasks
and Subroutines
M-7K" kN
> System Common
+ Reentrant Stack
« 3ystem and Unused TIDBs
+ Line Handlers
+ Tommon interrupt Handler &
« Dispatcher
+ Exzecutive Cali Handler
+ Real-Time Ciock
- Hemory Proiection Processing
« Power Failurc/Restart

+ Feal-Time Executive Services
N= . 100
Highest « Drivers
flemory | . System Tasks (SAL and ERROR)
Address J

if a configuration increases memory, the ailocatable
memory pcoi would incraase and resident routines would
reside in a higher position in memory.

* 7K is encugh room %3¢ the minimum VORTEX nucleus
componants, plus four ampty TIDB’s and three (/0 drivers.
Users with more 1/0 devices or a greater number of TIDB's
will need more than EK.

Figure 14-2. VORTEX Memory Map

14-6

Protected
memory

Unprotected
memory is
allocated
starting at 512

Protected

memory is
ailocated
starting from
high memory

Protected
memory

Foreground
Priority
Levels

Background
Priority
Levels

Priority
Level

REAL-TIME PROGRAMMING

26 | System Task SAL2

25 | VORTEX System Tasks SAL and ERROR

24 | Driver Tasks ‘(fow Speed .Devices)

23 | Driver Taiks@i_gp‘-Speed Devices)

22

11

10 | Operator Communication Task

N e o

1 | VORTEX System Protected Tasks

0 | User Unprotected Tasks

Figure 14-3. VORTEX Priority Structure

14-7

REAL-TIME PROGGRAMMING

14-8

Symbol

78TRD

TesT

TBEYNT
TBRSA
YBRSS
YTBRSX
BRSSP
TBRSTS
TBENTY
‘BTMS
TETMIN
TBISA
tBISB
TBISX
T3IsP
TBISRS

iBio

TBKN1
TBRN2
TOKN3
TBTLC
THCPTH
TEATSK
TORSE
78812
TENUCL

TIMING

TRIST
*TERSR3-TARIR7
* TRISRS. THISR?

Worc

10

1

12

13

14

15

17

18

19

21

22

i

Bits

15 34 i3 12 11 10 9 8 7 6 5 4 3 2 1

0

Task Thread

Tasik Status

Task Status Priority Level

Interrupt Event

A Register (Reentrant and Suspension Stack)

8 Register (Reentrant and Suspension Stack)

X Rogister (Reentrant and Suspension Stack)

CF %}:? Rogister (Reentran: and Suspension Stack)

Témury Storage (Reantrant and Suspension Stack)

Task Entry Address

Time Counter - Clock Resolution increments

Time Counter - Minute Increments

A Register (Interrupt Stack)

B Register (Interrupt Stack)

X Register (Interrupt Stack)

CF . P Register (Interrupt Stack)

Resntrant Stack Address (imterrupt Stack)

No. of 170 No. of 1/0
Requests Threaded Requests Active
Task Name
Task Name
Task Name

First Address in Allocatsble Memory

Background Task Queue

Address of Scheduing TIDB

Task Error Code
Task Size Unused
Nucicus Module Unused Map
Indicators Key

Map- Image Address

Interrupt Status

Y75 Registers (reentrant and suspension stack)

Y73 Registers (interrupt stack)

*Words 29 through 38 are present only if the V75 fisg was
set at SYSGEN and the task had a long TIDB created.

Figure 14-4. TIDB Description

Key:
Symbol
TBTRD

150

15.0

15

14

13

12

11

10

REAL-TIME PROGRAMMING

Table 14-2. TIDB Description

Set =

Task thread

Task status

Task opened

Long TIiDB

Load overlay

Background
checkpoint
170 wait

Allocation
override flag

Background
being check-
pointed

TIDB not
available

Description

Points to next TIDB in

chain. V$TB points to the
highest-priority active task.

Last TIDB on queue has zerc in
TBTRD. .

See table 15-5.

Bit set when SAL has
opened task but not
oaded it (memory not
available).

Bit set if V75 SYSGEN and task had
a long TIDB created. Ten words are
allocated at the end of TIDB *c save
extra registers.

RTE overisy request

made by task with
overiay name in user
request. 1 = overlay load.

Foreground task wait-
ing for background 1/0
{0 complete so it can

be checkpointed to make
allocatable memory
available. 1 = yes.

Overrides bits 9 and 12
of TBPL and bit 5 of
TBST. When FNIS routine
of SAL rejeases memory
and/or a TIDB, sets bit
11 for tasks having bits
9 and 12 of TBPL and bit
5 of TBST set. SAL then
tries to allocate memory,
nor scheduler, a TIDB.

1 = override.

Background task being
written on checkpoint
file. 1 = yes,

Schedule request made

but no TIDBs available

for allocation. The task

is suspended until one becomes
available. 1 = TIDB

not available.

Task waiting for available

map. 1 = map has been
sssigned to task.

14-9

REAL-TISE PROGRASNING

Table 14-2Z. TID3 Description (continued)

Byrabol Word Bits Sat = Description
7 Task map checkpoint. 1 =
task’s map has been checkpointed.
6 Delay type Set by RTE when a delay, type 3
3 request request is made. Cieared by 10C
upon completion of 1/0 request.
5-0 Task priority Specifies priority level
level (0-31) of task to be exe-
cuted.
THEVNT 3 18-0 interrupt Matches bits in interrupt-
event handler calling sequence.

Intarrupt-handler event
inclusively ORed into TiDB8
word 3 when processed by line
handier. If a bit sets

while status bits 3 and 14

are set, dispatcher

activates task. Clear

event word before exiting.

THREA 4 15.0 A register 10C and RTE calls store
(reentrant volatile register contents
and suspen- in this stack (words 4-8).
sicn stack)

TBRES 5 15-0 B register
(reentrant
and suspen-
sion stack)

TBRSX 6 15-0 X register
(reentrant
and suspen-
sion stack)

TBRER 7 15 OF (overfiow)
register (re-
entrant and
suspension
stack)

14-0 P register
(reentrant
and suspen-
sion stack)

TERSTS 8 150 Temporary
storage
(resntrant
. and suspen-
sion stack)

TRENTY ® 15-0 Tagk entry Absolute address of first
executable data of a task.

14-10

Symbol

TBTMS

TBTMIN

TBISRS

T8I0

TBKN1

Word

10

1

12

13

14

15

16

17

18

REAL-TINE PROGRAMMING

Table 14-2. TIDB Description (continued)

150

150

15-0

15-0

15-0

15

140

15-0

158

7-0

15-0

Set =

Time counter
(clock reso-
lution incre-
ments)

Time counter
(minute in-
crements)

A register
(interrupt.
stack)

B register
(interrupt
stack)

X register
(interrupt
stack)

OF (overfiow)

register (inter-

rupt stack)

P register
(interrupt
stack)

Reentrant
stack pointer
(interrupt
stack)

Number of

170 requests
threaded

Number of
active 170
requests

Task name

Description

Words 10 and 11 indicate
time left before execution.
(Clock routine increments
both words when bit 6 or
7 is set in status 1.)

Words 12-16 store volatile
register contents during
interrupt by higher-priority
task. (Upon reactivation,
words 12-16, volatile reg-
ister contents, and reen-
trant stack pointer are re-
stored and execution is
continued.)

incremented by IOC when
170 request is received,

and decremented upon com-
pletion. (A task cannot

exit or abort until counter
is zero.)

Incremented by 10C when
it sets an 1/0 driver ac-
tive, and decremented upon
completion.

First two characters of
six-character task name.

14-11

REAL-TIGE PROGRANMING

Table 14-2. TIDB Description (continued)

Symbol Word Bits Set = Description
TKN2 19 15-0 Task name Second two characters of
six-character task name.
TEKNS 20 15-C Task name Final two characters of
six-character task name.
TEYS 21 15-0 First address Points to first address
in aliocatable allocated for use by task.
memory After a task has been loaded,

SAL save the read-only page
number and number of pages
in TBTLC as described for

TBNUCL, bit 12.
THCPTH 22 15-0 Background Any background task wait-
task queue ing to be loaded in back-

ground allocatable memory
is queued through this
word. (A running back-
ground task can schedule
other background tasks,

- . but cannot load them
until space is available.)

TRATSK 23 15.0 Address of Stores this address, and
scheduling upon EXIT or ABORT (if
task's TiDB bit 1 of TBST set) reac-

tivates scheduling.

TERSE 24 15-C Task error Upon error, system rou-
tines store error codes
here and set error status
bit (4 of TBST). ERROR
routine decodes and prints

message.
TE3IZ 25 15-10 Task size Number of pages of memory
to be allocated to task.
9-0 Reserved for
future use
THNUCL 26 158 Nucleus Bit 8 reserved for future
indicator VORTEX use.

Bit 9 wheh set indicates
map foreground biank
common in task; read-
write access mode.

Bit 10 when set indicates
map nucleus table module
in task; priority O tasks
are mapped with module
set to read operand only.
All other priority tasks
sre mapped with the module
set to read-write access
mode.

14-12

Symbol

TBKEY

TBMIMG

TBIST

TBRSR3

TBRSR4

TBRSRS

TBRSR7

Word

26

27

28

31

REAL-TIME PROGRAMMING

Table 14-2. TIDB Description (continued)

7-4

3-0

15-0

15-0

15-0

15.0

15-0

15-0

15-0

Set =

Reserved for
future VORTEX
use

Key

Map image

Interrupt
status

V75 register

3 (reentrant
and suspension
stack)

V75 register 4
V75 register 5
V75 register 6

V75 register 7

Description

Bit 11 when set indicates
map global FCB in task;
this module is mapped read-
write access mode.

Bit 12 when set indicates
map pages read-only
specified by LMGEN. Read
only pages have been
designated during load
module generation. The
logical page number and
the number of pages are
set in the load module
pseudo TIDB and temporarily
stored in TBTMIN bits 15-8
and bits 7-0 respectively.
After the task is loaded in
memory, the page numbers
are stored in TBTLC, SAL
sets the specified pages

to read-only access mode.

Task map key. This is the
map number (0-15) assigned
to the task by SAL or SGEN.

Address of task map image.
This is the map O logical
address of the task’s map
image. Normally it would
be immediately following
the task's TiDB.

Bit 15 is O if VSKEY to be
set to zero and is 1 if
VSKEY to be set to TBIST
(bits 3-0).

Bits 14-0 are the map status
as input from hardware.

1OC and RTE call store
volatile register contents
in this stack (words 29-34).

14-13

REAL-TIME PROGRAKMING

14-14

TBISR3

Gzs,027

C3¢,03t

C34,037

045,043

Word

35

37

Symbolic Nams

Tabis 14-2. TIDB Description (continued)

Bis

15.0

156

15-C

15-C

15-¢

Set = Description

V75 register 3 Words 31-35 store volatile
register contents during
interrupt by higher
priority task (see descrip-
tion of TBISA).

V75 register 4

V75 register 5

V75 register 6

V75 register 7

Table 14-3. Map of Lowest Memory Sector

Description
CPU interrupt code (preset to NOP)

Unassigned: available to the user
Unassigned. Reserved for future YORTEX Il use

TIDB address for WCS reload task

Memory protection interrupt: halt
(jump-and-mark to VSMPER)

Memory protection interrupt: 170
(jump-and-mark to V$MP3)

Memory protection interrupt: write
(jump-and-mark to V§MP2)

Memory protection interrupt: jump
(jump-and-mark to VSMAP2)

Memory protaction interrupt: unassigned
(jump-and-mark to VSMAP1)

Memory protection interrupt: instruction
fetch (jump-and-mark to VSMAPE)

Reserved for future VORTEX Il use.
Jump-and-Mark to VSMPIO to ignore
spurious interrupts

Power-down interrupt (jump-and-mark
to V§PFDN)

Addvess

042,043

044,045

047

056-067

070-073
074
075

076-077

REAL-TIME PROGRAMMING

Table 14-3. Map of Lowest Memory Sector (continued)

Symbolic Mame

VSCRDM

V$JCTM

VSLCONT

V$JCFG

V$BIC]

VSDATE

VSPLCT

Description

Power-up interrupt (jump-and-mark
to VSPFUP)

Variable-interval interrupt address
(jump-and-mark to V$CLOK)

Keypunch (0 = 026, 1 = 029):

Bit 0 SGEN nominal keypunch
Bit 1 Set to 1 (if V75 system)
Bit 8 Current keypunch specified by JCP

/KPMODE directive (/JOB, /FINI, or
/ENDJOB resets the current value to
nominal value)

JCP Temporary Storage
Eight-character job name

Line count (set by a JCP /FORM
directive): used by DAS MR assem-
bler and FORTRAN compiler to deter-
mine the number of lines printed
before a top of form is issued.

JCP flags:

Bits 15-10 Number of extra mem-
ory blocks to be
allocated with back-
ground task (cieared
after loading)

Bits 9-5 Unused.

Bit 4 Dump flag if load and go

Bit 3 Dump flag (if set,
the background dumps
after a normal EXIT
or abortion)

Bits 2-0 Load-and-go flags -

BIC in sequence (maximum 8). See section
14.4.6 for a description of VORTEX !I use
of BiCs and BTCs

Eight-character date set up by
OPCOM directive ;DATE.mm/dd/yy

Permanent line count set up at
system-generation time

Protection code and logical unit
number of the BL unit

FPP (Floating-Point Processor)
interrupt (jump and mark to V$FPP)

14-15

REAL-TIME PEOGRAMMING

Tabis 14-3. Map of Lowest Memory Sector (continued)
Rddroes Symbolic Nasre Description
0100-0117 PIM 0 jump-and-mark to individual

line handlers. Unassigned lines are set
to JMPM VSMPIO to ignore spurious interrupts

G120-0137 PiM 1* jump-and-mark to individual
line handiers

0140-G187 PIM 2* jump-and-mark to individual

, line handiers '

01650177 PiM 3* jump-and-mark to individual
line handlers

02050217 PIM 4* jump-and-mark to individual
line handlers

0220-0237 PIM 5* jump-and-mark to individual
line handlers

02400257 PIM 6* jump-and-mark to individual
line handlers

0260-0277 PIM 7* jump-and-mark to individual
line handlers

4300 VeCTL Address of currently executing task

TIDB (0177777 = dispatcher, 037, =
real-time clock routine)

G361 VSCPL Priority level .of currently executing
task
Q302 VSCRS Address of current reentrant stack

(zero if the currently executing
task is not executing a reentrant
subroutine)

e VSTB Address of highest-priority TIDB
in the active stack

v§uTB Address of dynamically allocated page.
if zero, no page yet allocated. This
is the top of the thread for pages allocated
for dynamic memory allocation as required
for TIDB space, I/0 request, etc.

35305 v$PTVB Address of next entry in reentrant
stack

G306 V$FLRS Address of first focation of re-
entrant stack

0307 VSLRSK Address of last location of re-
entrant stack + 1

0310 VSCKPT Checkpoint flag (set if background
checkpointed)

14-16

Address

0311

0312

0313

0314

0315

0316

0317

0320

0321

0322

0323

0324

0325

0326

0327

0330

0331

0332

0333

Symbolic Name

V$OPCL
VSLSAL

VSLER

V$TICP

v$BTB

VSNPAG

VSLLUP

V§$IM

VSMAP

V$B8TBM

VS$GFCB

VSMIMG

REAL-TIME PROGRAMMING

Table 14-3. Map of Lowest Memory Sector (continued)

Description
Address of TIDB for OPCOM task
Address of TIDB for system SAL task

Address of TIDB for system ERROR
task

Address of TIDB for JCP task
Address of current active back-
ground task TIDB (zero if no back-

ground task active)

Number of available physical pages
remaining in VSPAGE for allocation

Logical address specitying the end
of the execution background tasks
allocated memory space

Interrupt mask for PIM 0 (0 = enable,
1 = disable) (bit 0 = line 0)

Iinterrupt mask for PIM 1
interrupt mask for PIM 2
Interrupt mask for PIM 3
Interrupt mask for PIM 4
Interrupt mask for PIM 5

Interrupt mask for PIM 6

Interrupt mask for PIM 7 J

Map key availability flag word. Bit

0 = map 0, bit 1 = map 1, etc.
A zero indicates that the map is un-
available for assignment, a 1 =
map is available for assignment

Base address of nucleus table module.
Top of nucleus table module defined
by V$GFCB

Base address of global FCBs

Map O image address

[.y

14-17

REAL-TIME PRCGRAMMING

Table 14-3. Map of Lowest Memory Sector (continued)

Addrezs Symbolic Name Description
0334-9337 VSTO, VSTI, FUNCI word for executive mode states
V§ST2, V8ST3 0, 1, 2, 3. Used by map O tasks to

switch executive mode states. See
section 1.3 for description on the

use of VESTO-V$ST3. These words are
set up by the dispatcher. Bits 0-3 are
set to the map number in TBKEY. If
the task has been interrupted, the
map number in bits 0-3 of TBIST is

used
0340 VSKEY VORTEX currently executing map key
G341 V$CRDR Address of resident directory. See

section 14.4.8

G342 V$TBGT Top of thread of background tasks
waiting for allocation

0343 V§TMS Time-of-day in 5-millisecond incre-
ments (fractions of a minute stored
in this word; upon reaching 1-minute
V$TMN increments, VSTMS resets). The
range is 0 to 12000.

0333 V$TMN Time-of-day in minutes (fuli minutes
: up to 24 hours stored in this word;
upon reaching 24 hours (24 x 60
minutes). VETMN resets). The range is

0 to 1440.
0345 VSLUNT Address of logical-unit name table
0348 V$OPCF OPCOM lockout Hag (busy)
0347 V$FGLB Protection code and logical-unit
number of the FL unit
0350 VS$FREE Reserved for future VORTEX use
35 V$CTMS Clock resolution in 5-millisecond

increments (user-specified milli-
second interrupt rate/5) speci-
fied at system-generation time

0332 V$SCV Selected clock count (1 to 4095)
([user-specified millisecond
interrupt rate] x [1000/V$CKB])

0352 V$LPP Pointer to last tested word in V$PAGE

0354 V$CRM Clock resolution increments for frac-
tions of a minute in 5-millisecond
increments

355 v$DSTB Address of DST block

14-18

REAL-TIME PROGRAMMING

Table 14-3. Map of Lowest Memory Sector (continued)

Address Symbolic Name Description

0356 vsLIT Last address in background Iiteral
pool

0357 V$PGT Address of VSPAGE, physical page
availability mask.

0360 V$CTAD Base address for controller address
table

0361 V$SCTL Current controller in scan

0362 VSNCTR Number of controllers

0363-0372 VS$PIMN External device address table for
PiMs '

0373-0374 JUMP V$IOST VORTEX Il link for 1OC STAT CALL

0375 V$SLFG System SAL task busy flag (I = busy)

0376 . VSERFG Error task busy flag (1 = busy)

0377 v$JOP JCP operating flag (1 = busy)

0400 V$LUT] Starting address of logical-unit

table for JCP/OPCOM-assignable
logical units (1 - 100)

0401 V$LUT2 Starting address of logical-unit
table for unreassignable logical
units (101-179)

0402 VSLUT3 Starting address of logical-unit
table for OPCOM:-assignable logical
units (180-255)

0403 VSIMIN Clock constant set up by SGEN where
VSIMIN =~ 32767 - (60000/(5*V$CTMS))
+ 1

0404-0405 JUMP V$i0C VORTEX (i link to 10C

0406,0407 JUMP VSEXEC VORTEX Il link to RTE

0410 V$IOA 1/0 algorithm

0411 VS$CKIT Clock interrupted PIM before it

could be locked out (common inter-
rupt handier and clock-processor
flag)

0412 v$JCB Address of 41-word JCP buffer (ail

system background programs and JCP
input directives into this sytem buffer)

14-19

REAL-TIME FRUGBAMMING

Tabie 14-3. Map of Lowest Memory Sector (continued)
Address Symbolic Name Description

0413 v$0CB Address of 41-word OPCOM buffer
(OPCOM reads operator key-in re-
quests into this buffer; if JCP
is not active and a slash record
is read, OPCOM moves the directive
to V$JCB before scheduling JCP)

3534 V$BVN Bottom of VORTEX nucleus. SGEN sets
to virtual address. Initializer sets to
page number

8418 V$BFC Bottom of foreground blank common

Cii6 VETFC Top of foreground blank common,
top of VORTEX nucleus core

o457 V$PST Maximum RMD partitions per unit in system

0420 ZERO Zero word

G4l BSO Bit mask contents 0000001

0422 BE1 Bit mask contents 0000002

0423 882 Bit mask contents 0000004

0424 BS3 Bit mask contents 0000010

0428 BS4 Bit mask contents 0000020

G426 BS5 Bit mask contents 0000040

0427 BS6 Bit mask contents 0000100

BS7 Bit mask contents 0000200

0431 BS8 Bit mask contents 0000400

a2 BS9 Bit mask contents 0001000

3433 BS10 Bit mask contents 0002000

0634 BS11 Bit mask contents 0004000

0435 8812 Bit mask contents 0010000

D436 8s13 Bit mask contents 0020000

827 BSi4 Bit mask contents 0040000

0440 BSi5 Bit mask contents 0100000

H BRO Bit mask contents 0177776
044z BRI Bi

t mask contents 0177775

C44£3 BR2 Bit mask contents 0177773

14-20

REAL-TIME PROGRAMMING

Table 14-3. Map of Lowest Memory Sector (continued)

Address Symbolic Name Description

0444 BR3 Bit mask contents 0177767
0445 BR4 Bit mask contents 0177757
0446 BRS Bit mask contents 0177737
0447 " BR6 Bit mask contents 0177677
0450 BR?7 Bit mask contents 0177577
0451 BR8 Bit mask contents 0177377
0452 BR9 Bit mask contents 0176777
0453 BR10 Bit mask contents 0175777
0454 BR11 Bit mask contents 0173777
0455 BR12 Bit mask contents 0167777
0456 BR13 Bit mask contents 0157777
0457 BR14 Bit mask contents 0137777
0460 BR15 Bit mask contents 0077777
0461 NEG Bit mask contents 0177777
0462 LHW Left-half word mask (0177400)
0463 RHW Right-half word mask (0000377)
0464 THREE Data word (000003)

0465 FIVE Data word (000005)

0466 SIX Data word (000006)

0467 SEVEN Data word (000007)

0470 NINE Data word (000011)

0471 TEN Data word (000012)

0472 BM17 Bit mask word (000017)
0473 BM37 Bit mask word (000037)
0474 B8M77 Bit mask word (000077)

0475 BM177 Bit mask word (000177)

0476 B8M777 Bit mask word (000777)

0477 8M1777 Bit mask word (001777)
0500-0777 Background literals and pointers

1421

REAL-TIME FROGRAMMING

14.2.3 Timing Considerations /Approximate)

Real-time ciock interrupt processor: At each incrementa-
tion of the reai-time clock, there is a TIDB service scan
requiring

x + By + 7z cycles
where

x i 48 when the scan interrupis the
cispatcher, or 63 when it interTupts a
task and must establish 2 rsentrant
¢iack and store the contents of the
volatile registers

y is the number of TIDBs searched
z is the number of tasks having time- or
schedule-delay status bits set

The clock intsrrup: is disabled during the execution of the
clock processor, and PIM interrupts are disabled for 26
cycles followiig the initial entrv of the clock processor.

Dispatcher interrup: processor: The time required to
begin execution of z task through the dispatcher is a
function of the number of TIDBs searched before execu-
tion. The time required to begin execution of the ath task is

t + 1au & 17v + 12w + 18x +25y + 2
where

t i3 17 or 25, depending on the entry to
the dispatcher
u i> the number of tasks with task-

suspended bits (TBST bit 14) set

v is the number of tasks with events
expected but event word reset
w is the number of tasks with error bits

(7BST bit 4) set but error task busy

x is the number of tasks with either task.
aborted (7BST bit 13) or task-exited
{¥BST bit 12)'set but 1/0 not completed

y it the number of tasks active but not
icaded
z is one of the following values:

107 to activate the ERROR task

11010 activate the SAL task on aborting
ov axiting

1:4 to activate a loaded task that is not
suspended, or to activate the SAL task to
load the requested task

i04 to activate an interrupted,
suspended {ask

82 to activate a task when the event
word is set and the interrupt suspended

14-22

Search, allocate, and load:
Load processiné requires, for a foreground task
852(k) + Wk) + w(k) + x + y + ny
where
k is the cycle time

v is the nucleus module required by the
taskandis28 + A + B + Ccycles

where

A is 28 + 8 times the size
of common, in pages
B is 81 cycles as an average
for the nucleus table module
Cis 11 + 11 times the number
of specified read-only pages

X is the time to process an OPEN request

y is the time to read an RMD record
(pseudo TIDB)

ny is the time to read a task frcm RMD into
memory (variable depending on RMD
device and task size)

w is the page allocation 45 + 35 times the
task size, in pages
For a background task, load processing requires
945(k) + (k) + Wwk) + x 4+ y + ny
where
k is the cycle time

w is the page allocation and is 45 + 35
times the task size, in pages

v nucleus module required by task and is
28+A+B+C

where

A is 53 cycles (global FCB
module)

B is 81 cycles (average,
nucleus table moduie)

Cis 11 + 11 times the number
of specified read-only pages

X, y and ny are as defined for foreground task.
Resident task load processing requires
(533 + 9(x) + y)k
where
k is the cycle time

x is the task size, in pages

y is the nucleus module required by task
48 +A+B+C+D

where

A is 28 + 8 times the size
of common, in pages

B is 53 cycles for globsl FCB

C is 81 cycles for nucleus
table module

D is 11 + 11 times the number
of read-only pages

14.3 REENTRANT SUBROUTINES

The user can write a resntrant subroutine and add it to the
VORTEX nucieus. RTE service requests ALOC and DEALOC
interface between a task and a resntrant subroutine.

A task calls a resntrant subroutine via an ALOC request
that allocates a variable-length push-down reentrant stack
with the external name VSCRS. The reentrant subroutine
address is specified in the ALOC calling sequence. The first
word of the resntrant subroutine contains the number of
words to be aliocated.

A reentrant stack generated by the ALOC request has the
format:

Word
VICRS —— ¢ A Register W
1 B Ragister
2 X Register) Fixed
3] ofF] P Register
4 Pointer to Previous Reentrant Stack
- |
5 Avsilable for Reentrant Subroutines
Fixed
t Size
n
n+1
to V75 Registers 3-7
n+S J

When writing a resntrant subroutine, ensure that the entry
location contains the number (25) of words to be
affocated; exaculich starts at the address (entry address +
8 aM mmw the resntrant-stack address.

Dmmmmmnmmm mthok.a
and OF register ‘conterts; and returns control to the
mmmuocvmmw
{s_available fer_the reentrant subroutine except that

t stack.

Parameters or pointers can be passed to the reentrant
subroutine in the A and/or B (and V75 if present) registers,
as well as in-line after the ALOC macro.

REAL-TIME PROGRAMMING

Two tasks make ALOC cafis to RSUB. RSUB reserves six
words of aliocatable memory with the sixth word as
temporary storage. The A register (reentrant stack) returns
a vahue to the calling task. If task A is on priority level 5
and task B is on level 6, RSUB running on level 5 is
interrupted and the level 6 task B executed. This, in turn,
makes an ALOC request and sxecutes RSUB. RSUB then
executes to completion before RSUB on level 5 can be

comnpleted.
Example: F &/WJ\ QJH’L'
aLo<h ™ T
ask A
RSUB
JAZ -——
END
Task
ALOC RSUB
JAZ ~~———
AX e o0
‘/1/“4{', - Ay

Reentrant Subroutine

NAME RSUB
@SCR3 EQU 0302

RSUB DATA & Allocate six-word
LDX VSCRS Stack (gne temporary
T ication)
STA 5, 1 Save A in temporary
storage

fa LDA 5, 1 Get temporary storage
Ap value
< '71-,(
el ((y__' « g .
@’gac' . .
STA 0,1 Modify return in A

register

DERALOC Return to location
% following ALOC call
R0

14-23

REAL-TIME PROGAAMMING

14.4 CODING 4™ /0 DRIVER

The 10C (sectior: 3) activates 1/0 drivers. ‘Nhen a user task
makes an 170 raguest, it executes a JSR 0404,X instruc-
ticn. 10C then inakaes validity checks on the parameters
specifisd in the recuest block (RQBLK) that immediately
follows the JSR iastruction. 10C queues RQBLK to the 1/0
driver controller talic (CTBL), and activates the corre-
sponding controiler-iable TIDB. The TIDB contains the
entry address jcv the {70 driver. To determine the proper
CTBL and corresporiding TiDB, IGC obtains the logicai-unit
number from RGBLI. By referring to the logical-unit table
(LUT), 10C then fincs the device assigned to that logical
unit. Each devica has a device specification table {DST)
associated with it, and each DST has a corresponding
controlier table.

Ir. VORTEX all RQBLKe are moved to map 0 dynamically
allocable space, Upon completion of the i/0 reques:, 10C
moves the RQBLX fo the requesting task's logical memory.

14.4.1 170 Tabiles

Not ali the data discussed in this section are required for
coding every special-purpose driver, but it is presented to
provide maximur: flexibility in defining driver interfaces.

When an 1/0 driver is entered, it has the data, system
pointers, and table zddress necessary for the 1/0 griver
processing. At system-generation time, additional working
storage space csn be assigned to the /0 driver as an
extension of the controlier table. The data available are:

a. VSCTL (lower-memory system symbol defining the
current TID3) = zddress of TIDB associated with the
170 driver controiler table.

b. TBRSTS (waord 8 of controlier TIDB) = address of
controller taile CTBL.

. Within CT8L, the ioliowing: :
(1) CTIDE (word 0) = controller TIDB address
(V$CTL)
(2) CTDST (word 3) = address of DST
(3) CTRQEK {word 4) = address of RQBLK %0 be
processed >
(4) CTDVAT{worc 6) = controlier device address
{5) CTSTAT (wurd 8) =~ temporary storage available
for driver
(6) CTBICS (word 9) = address containing assigned
BiIC address ‘e.g., 020,022)
(7) CTFCE (word 10) = FCB or DCB address for {/0
request specified in CTRQBK (word 4)
(8) CTWDS (woed 11) = contains, upon exit, number
of words transfervet:
(9) CTSTSZ (word 13) = number of words per RMD
sactor
(10) CTTKSZ (word :4) = number of sectors per RMD
track
(11) CTPSTO (word i5) = base address of the RMD for
unit O on this controliar.
(12) CTPST1, CTPST2, and CTPST3 (words 16, 17, and
18) = PST addresses for units 1, 2, and 3

14-24

d. Device specification table (DST):
(1) DSUNTN (bits 13 and 14 of word 2) = number (13
3) of this device on its controller
(2) DSPSTI (bits 6-10 of word 2) = RMD partition
number (1-20) used to access the PST

e. Request block (RQBLK): Contains user task 1/0
request information. The address of SQBLK is
contained in CTRQBK (word 4 of the controiier table).
Word 1 of RQBLK contains the operation code in bits
8-11 and the mode specification in bits 12-14. Word 0
bits 5-14 contain the status.

f. File control block (FCB): The FCB is used for RMD
devices. CTFCB contains the address of FCB.
(1) FCRECTL (word 0) = record length
(2) FCBUFF (word 1) = user buffer
(3). FCACM (word 2) = bits 815, access method, and
bits 0-7, protection code
(4) FCCADR (word 3) = current recor¢ number
(relative within file)
(5) FCCEOF (word 4) = current EOF record number
(relative within partition)

(6) FCIFE (word 5) = beginning-of-fii= record
number (relative within partition)

(7) FCEFE (word 6) = end-of-file record number
(relative within partition)

(8) FCNAM1, FCNAMZ2, and FCNAM3 (words 7, 8,
and 9) = file names in ASCIi

g Data control block (DCB): The DCB is use for non-
RMD devices. CTFCB contains the address of DCB.
(1) DCRECL (word 0) = record length
(2) DCBUFF (word 1) = user buffer
(3) DCCNT (word 2) = function count

h. VSCTL, TIDB, CTBL, DST, and the RQBLK resice in map
0. The FCB and DCB reside in the user's logical memory
and to access the data, the 1/0,drivers must switch to
the proper executive mode state (see section 1.3).

14.4.2 1/0 Driver System Functions

Each 1/0 driver under 10C performs certain system pre-
and post- processing functions.

Pre-interrupt processing: The 1/0 driver must switch
executive mode states to fetch or store data from user
mode (see section 1.3). Iif the 1/0 driver uses a BIC, the
driver calls V$BIC with the X and A registers sat to the
initial and final buffer addresses respectiwly 1o bulld and
execute :the initial BIC transfer instruction. if ths BIC is
shared, the interrupt line handler .is modified to the proper
interrupt event word setting (TBEVNT) and TIDE address.
VSBIC performs this modification if the word immadiately

no e

foliowing the cail (JSR V$BIC,B) is nonzerp, sincs this.
assumed to be the in event T 18 2000,
handier ia perfermed. The 1/0 driver
cloars the interrupt event word (TBEVNT)«in the controlier
TIDB immediately preceding a DELAY (type 2) call. To wait

for an interrupt, the 1/0 driver executes a DELAY (type 2)
call with a time-out. The return to the driver, either from a
time-out or interrupt is to the address immediately
following the call. The contents of the X register is not
restored following 8 DELAY cell but the A and B registers
are. Executing a TXA immediately preceding and a TAX
following the DELAY call X restores the value in the X
register.

Interrupt processing: The driver clears the time-delay flag
(TBST bit 6) set by the DELAY call, and checks TBEVNT to
determine if an interrupt occurred (TBEVNT = 0 indicates
3 time-out). Following the interrupt processing, the driver
clears TBEVNT and calls DELAY (type 2) for the next
instruction.

Post-interrupt processing (no errors): Upon the completion
of interrupt processing, the driver sets the status bits (5-
14) of RSTPR (word 0) in RQBLK, and enters the number of
words transferred in CTWDS. The driver then relinquishes
control and exits to IOC by executing JMP V$FNR.

Post-interrupt processing (errors): It an error is encoun-
tered during interrupt processing, the driver sets the status
bits (5-14) of RSTPR, according to the type of error. The
iver then . R : ——
' r itive if
there is a hardware error. Finally, the driver exits to the 10C
error routine by executing JMP VSERR.

14.4.3 Adding an 1/0 Driver to the System File

System-generation directives: The following directi
J1D8, 1/0 driver entry location, DST, PST, and the PIM line
handler (section 15): T e

Directive Description

EQP DSTs are generated by SGEN, one for
each unit specified by the EQP directive.
All DSTs generated for a controlier point
indirectly to the controller table
specified by EQP. The pointer is to the
enfry name in the controlier table
assembly.

PiM A PiM directive is required for each PIM
line where an interrupt is expected. The
PiM directive causes the system
initializer to enable the mask for that
lho(o:c.ptfortthTYorCRToutput
lime, in which case it is initially disablad).
it the driver processes both input and
output interrupts, it may be
adventageous for processing 10 set the
interrupt event word for the input line to
one value (e.g., 01) and the interrupt
event word for the output line to another
value (e.g., 02). "
mﬁuﬁad&m&ymwt

is to be used (see section

14.4.5).

REAL-THE PROGRAMMING

ASN This directive assigns logical units to
" physical units. If a new device is being
added and it is nacessary to assign that
device to a logical unit when the system
is initislized, an ASN is input. Otherwise,
the JCP or OPCOM ASSIGN directive can
be used. The logical-unit table is
established by these directives.

PRT This directive for RMDs specifies the

' size and the mnemonic name of each
partition. A PST and DST are created for
each partition.

TDF This VORTEX nucleus-generation
control record dcirective defines and
buikis the controlier TIDB. It specifies .
the name of the driver, status word
(TBSY) setting, and priority level.
Adding controlier tabies: A _controlier table is_assembied >
as a separate entity and added to the sys: tion (
ibrary a o tion time. The
o S e T o e lme e o nalon e, T

character ASCIl name of the controfler, a.g., CTTYOA,
CTMTO0A, »

VORTEX input/Output Controi (10C) assumes the first 13
words of all non-RMD controller tabies to be identical, i.e.,
word O = CTIDB; word 1 = CTADNC, etc. For RMDs the
tirst 18 words are assumed to be identical. Additional
words may be added to the controlier table By use by the
individual 1/0 driver. fr

The controlier table comprises parameters that are
constant for a controlier, and parameters that are variables
for SGEN and can change with system configuration.

Constants are assembled as DATA statements. DATA
statements can be added to the controlier table to_provide
additional working space for an 170 driver.

The following standard items are required by 10C:

Word item Description

0 CTIDB = Name of the related controller TIDB (TB
foliowed by the same three or four-character name used
in the controlier table e.g.,. TBDOB (for CTDOB). An
EXT statement must specify the TID8 name as an
external name.

EXT TBDOB
DATA TBDOB

1 CTADNC = This word is used by I0C as temporary
storage.

2 CTOPM = The operation code mask specifying the type

of 1/0 operation the driver is capabie of processing 1 =
driver is capabie of processing.

14-25

REAL-TIME PROGRAKIMING

Bit Operat’ion
Read
Write
Write EOF
Rewind
Skip record
Function
Open
Close
-i% Reserved for future use

Example: DATA 037
For aii operations excluding Function,
Open, and Ciose.

3 CTDST = Set hy IGL to DST adcress
Examole: DATA 0

L2 B0 S R RV (e R v]

4 CTRQBK = Set by 'OC to 1/0 request biock being
processed.
Exampie: DATA 0

5 CTRTRY = Error retrycount. # T followad by the name
of the controlier.
Example: DATA #TTYOA
EXT #TTY0A

6 CTDVAD = Cuntrolier device address. # A followed by
the name of the conirotler
Example: DATA #ATYOA
EXT #ATYOA

7 CTIOA = i/C algorithm. The ratio of device transier
rate to DMA transfer rate + 10 perce_qt of the resuit
times 32767. Zerc for ail non-BIC devices.

Example: when a disc transfer rate is

100K words per second and DMA rate is
300K words per second, the ratio is about
.33. Set CTIOA to: DATA 030000

It ratio is .25 ov 25 percent set

CTIOA (DATA 020000); 50 percent

set CTIO& (DATA 040000), etc.

To make CTICA a SGEN selectabie parameter
(refer to section 15.5.2, EQP directive)
assemble as #n axternal a.g., EXT #D foliowsd
by the name of the controller:

EXT # DCIOA for process i/0
DATA # DCIOA

8 CTSTAT = DATA 0, for driver use.

9 CTBICB = Address of BIC fiag table. B followed by the
name of the name of centrolier,
Example: DATA |8D08
EXT i BDOB
When the driver is entered the item
points to a call containing the BIC
device address, 020, 022, 024, etc.

10 CTFCB = Set Ly OC to the DCB or FCB address. Set to
DATA o

14-26

11 CTWDS = DATA 0. Driver use for number of
words transferred. '

12 CTFRCT = 1/0 algorithm frequency couni. The
number of retires to be attempted by I0C before
suspending all subsequent /0 operations uniil the
request in CTROBK (word 4) is activated. DATA 0
for non-BIC devices.

13 CTSTSZ = RMD only. Number of words in an RMD
sector.
Example: DATA 120

14 CTTKSZ = RMD only. Number of sectors in an RMD
track
Example: DATA 48

15 CTPSTO. = RMD only. Base address of the PST for
RMD unit 0 connect to this controller. P followed by the

four character device name.
Example: DATA 1 PDOOB
EXT tPDOOB

16 CYPST1 = RMD only. Base address of the PST for
RMD unit 1.
Example: DATA 'PDO1B
EXT - 1PDO1B

17 CTPST2 = RMD only. Base address of PST for RMD
unit2.
Example: DATA 'PDO2B
EXT {PDO2B

18 CTPST3 = RMD only. Base address of PST for RMD
unit3.
Example: DATA 1PD0O3B
EXT 1PDO3B

14.4.4 Enabling and Disabling PIM
interrupts

The disable and enable PIMs and RT clock instructions
(EXC 0147, EXC 0747, EXC 0244, EXC 0444) are priv-
iledged instructions and cannot be executed in a user map
(non-map 0) without creating a memory protect interrupt.
The memory protect processor recognizes the iriterrupts
caused by the disable/enable instructions and returns to
the foreground task in the proper disabled or enabled
state. The following restrictions apply:

a. Only foreground tasks are permitted to execute the
disable/enable PIMs and RT clock instructions. EX21
error message is output of a background task
attempts to execute those instructions.

b. The return to the foreground task is at location n + 2.
In other words, both the disable PIMs and clock
instructions (EXC 0747, EXC 0444 or vice versa) or
enable PiMs and clock instructions (EXC 0147, EXC
0244 or vice versa) must be together. The seccnd EXC
instruction is not executed.

Example:

Location

n+l

n+2

Instruction

EXC 0444

EXC 0747

Disable RT clock
instruction creates
interrupt.

This instruction is
not executed.

Return location from

the memory protect
processor with PiMs

and RT clock disabled.

Interrupt

Trap

Location

'

Interrupt Line
Handler (Using
Common Handler)

I

Task TIDB

T

{70 Driver

Controller
Table
(for Drivers)

F-N

Device
Specification
Tables
(tor Drivers)

‘,-‘{‘ Table _**

REAL-TIME PROGRAMMING

EXC 0444 disables all PIM interrupts. EXC 0244 enables all
PIM interrupts - that are not masked. There is a PIM
directive for each PiM line at system-generation time. The
system initializer enables PIM lines. The mask is enabled
uniess the 1/0 driver specifically disables it. If a PIM
directive is omitted, the linkage betwasn the trap and the
interrupt line handier cannot be.established. If a PIM line
mask is enabled or disabled by a driver, the system mask
is updated to refiect the current status. The system mask
configuration is given at low memory address V$IM (0320
for PiM1, 0321 for PIM2, etc.).

EXC 0747 disables the real-time clock interrupt and EXC
0147 enables it.

Figure 14-5 shows the standard VORTEX driver interface.

Common
interrupt
Handler -

Controiler
Address 1

o Lo po o [

[ERUP——

KEY:

1. The trap address corresponding to the PIM number
(from PtM directive) points to the SGEN-generated line
handier. The line handler points to the TIDB (named
in PIM directive), using the matching TIDB name (on
TOF controf record).

2. The TIDB name (on TDF control record) points to the
task, using the entry name in the assembly of the task.

3. For OPCOM device drivers only. The task TIDB points to
the device controller table name (on TDF control
record), using the entry name in the controller table

assembly.

4. The DSTs are generated by SGEN, one for each unit
specified on the EQP directive. All DSTs generated for a
controller point indirectly to the controller table
(named in EQP directive), using the entry in the

controller table assembly.

Figure 14-5. Driver interface

14.27

REAL-TIME PRGGW&IM

14.4.5 Directly Connected interrupt Handier

VORTEX provides a usér two options of specifying directly
connected interrupt handlers. The use of a directly
connected interrupt handler, in lisu of the VORTEX
common interrugct handter, is specified on the PIM divective
during system generation (section 15.5.11). The interrupt
handiers must be residsnt in executive mode, map 0.

Option 1 (specifsing i as the s(n) parameter on the PIM
directive) requires the user to:

a. Save and restore the overflow indicator and ail wilatile
registers used by the directly connected interrupt
routine before raturning to the interrupted task.

b. Not allow ICC and RTE calis.
¢. Minimize exacution time.

d. Continue tc lockaut interrupts during processing, then
enable the PlMs upon exiting. The RT clock is
anabled in all cases except when the real time clock
processor has Desn interrupted. Location 5300,
VSCTL, wilt contsir. 037 if the RT clock processcr had
been interrupted. The interrupt handler must provide
a check for interruption out of the RT clock processor

and enable or disable the RT clock aocordin@.

6. Restore the VORTEX system to the proper pre-
interrupted staie, executive or user mode. Any
interrupt forces thc system to executive mode, state 0
(see table i-1). The interrupt handier must return to
the proper state. VSKEY, location 0340, contains the
map key number of the interrupted task. {f the
interrupt task ic the user mode (1< V$KBY < 55) ,
the switch from: “oxecutive to user mode enabie”
instruction {EXCZ (246) must be executed. The "‘ciear
executive mode state mask” instruction (EXC2 0546)
must also be exscuted.

Example:

LDB Ds5000

LDA 0300 Check location 0300
SUB ce72 System constant = 037
JAS DIH10 Zaro = interrupt out of
LDBI C1048546 RT clock
LDAI 0103147 Otherwise enable clock
JNP DIH10+1

DIH10 LDA D5000 = 5000
S8TA DIH3O0 Enable clock instruction
STB DIH30+1 Enable mask instruction

ROPF

LDA ROV Restore overflow

JANE 43

SOF

LDB . D5000 NOP instruction

LDA 0340 VSKEY check interrupts

14-28

ANA 0472 Task map key

JAZ DIH20 0 = map 0

LDB 0104246 Switch to user map
DIH20 STB DIH30+2

LDB RB Now restore A, B, X

LDX RX

LDA RA

BXC 0248 Enable PIM

DIH30 BXC 0147 Modified to enzble clock

or NOP

BXC2 0546 Modified to clear mask

BXC2 0286 Modified to switch to
user map

BXC2 0646 Enabled memory protect

JNP . Modified to return

address
D5000 DATA 05000

f. Obtain the interrupted task return address. The
directly connected interrupt line handler is entered via
a JMPM instruction from the line handier (see figure
14-1) and as such the first word in the interrupt
handler must be a mark location. The return address
of the interrupted task is found in word O of the line
handler, which is obtained by subtracting four from
the contents of the interrupt handier’s mark location.

Option 2 (specifying 2 as the s(n) parameter on the PIM
directive) permits the user to use system routines to save
(VSDHD) the voiatile registers and overflow indicator and
restore (VSDRTN) the volatile registers, overflow indicator,
and reset the system to the proper pre-interrupted state as
described above. Option 2 relieves the directly connected
interrupt handier of the housekeeping chores. The A, B, X
registers, overflow indicator are saved, PIM and clock
interrupts are disabled prior to entering the user code (via
JMPM), (see figure 14-1). The user code is entered with the
A register set to the TBEVNT value and the X register set to
the user code entry address.

Upon completion of processing, the directly connected
interrupt handler exits to system routine, V$DRTN.

Example:
TASK ENTR
8TA EVNT Save TBEVNT word
. Do processing
BXT V$DRTN
JMP VS$DRTN Exit to common

processor

where task must be specified on SGEN PIM directive, e.g.,
PIM,010,TASK,01,2,

14.4.6 VORTEX Use of BICs and BTCs
VORTEX supports a maximum of 15 BICs or BTCs. The

practical system limit may be considerably less than ten
depending on the availability of device addresses, the type

and number of peripherais, and other configuration
considerations. The BIC or BTC transfer complete inter-
rupts must be assigned by ascending BIC or BTC numbers
(020, 022, 024, 026, 070, 072, etc.) starting with the first
PIM and the first interrupt i.e., PIM 0, line 0 assigned to
BIC 020; PiM O, fine 1 assigned to BIC 022, etc. The first
BIC must have a device address of 020; the second, 022;
the third, 024; the fourth, 026; the fifth, 070; the sixth, 072;
etc. Unless the special DEF control directive is used.

170 drivers utiizing BICs or BTC must call the common BIC
routine V$BIC. The X register is set to the initial buffer
address and the A register set to the final buffer address.
The call to V$BIC is:

JSR V$BIC,B

DATA interrupt event word or O if no
line handler modification to be
performed.

DATA Map number

14.4.7 VORT[{ Il and VORTEX Compatibility

User programs written to operate under VORTEX will be
operable under VORTEX H under the following conditions:

a. Programs which contain any RTE service requests or
input/Output Control requests must be assembied by
the VORTEX |l version of DAS MR. Any program
which builds these requests without the DAS MR
macros must be modified so that the requests
conform to the VORTEX I calling sequence.

b. Any foreground task which executes hardware |/0
instructions except disabling and/or enabling PiMs
and RT clock, see section 14.4.4, must be included as
part of the resident nucieus when the system is
generated. Foreground library tasks which are made
resident during system generation by use of the TSK
directive are not considered nucleus tasks and
therefore must not contain any hardware 1/0 instruc-
tions (see section 14.4.8 for discussion on resident
tasis).

c. Intertask communications can be accomplished:
through the use of foreground blank common; by
establishing named tables and buffers in the nucleus
table module and referencing the named block by an
external statement; by use of the RTE PASS request
between a3 user map and map O; by switching
executive mode states (see section 1.3); by sharing
the same physical pages utilizing the MAPIN and/or
PAGNUM RTE requests.

d. User tasks (except priority 1 system tasks) may not
write into or execute instruction from the first physical
page. This page is the VORTEX |l low memory area. it
is mapped as read-operand only into all user tasks
(see figure 2-2), except priority 1 tasks where page O
is mapped as read-write access mode.

Yy

REAL-TIME PROGRAMMING

User tasks (non-nucleus) must not communicate with
the nucleus except through the use of standard
executive service and 1/0 requests or by referencing
entry points which are contained in the core-resident
library.

A user task can request a transter of a block of data
from map O to the user may by executing a RTE PASS
request.

Direct connect interrupt handiers must restore the
system to the pre-interrupted map state after servicing
the interrupt. An alternative is to utilize the SGEN
PIM directive, option 2, as described in section
1445,

170 drivers written for VORTEX operation must
be modified for VORTEX I|i as foliows:

1. The map number must be passed when call-
ing V$BIC, common BIC/BTC routine (see section
14.4.6).

2." The 170 drivers must switch executive mode
states (see section 1.3) to fetch/store data from
a user map (DCB, FCB, buffer). RQBLK data are
stored in map 0 by dynamic memory allocation.
3. Rotating memory device (RMD) drivers must
determine if a data transfer (read, write) |/0 re-
quest is by SAL (search-allocated-load task). If
it is a SAL request, the map number i¢ obtained
from TBEVNT of the TIDB for SAL. Otherwise,
the requestor's map number is obtained from
TBKEY. SAL is the RTE component which loads
non- resident tasks into memory. The check may
be accomplished as follows:

LDA RTIDS,B RTID8 = word 4 of

BUB VSLSAL VSLSAL « kcation 0312 = SAL TIDB
JANE XXX Jump i not SAL

LD VSLSAL Yes SAL Get map key

LDA TBEVNT, B From TBEVNY

Inp Yy Now common processing

LDB RTIDD.B 170 requast not by SAL

LDA TBKRY.B Got map key from TBKEY

ANA BN17 Mask bits 4-0

4. Following a BiC transfer compiete interrupt the 1/0
driver sense for a map memory protection 1/0 data
transfer ervor:

SEN 0101+da,er

where da is the BIC device address (which is found in
word 011 of the controlier table), and er is the
address of the error processing routine which must
set up an 1046 error code prior to cailing VSERR.

If a user wants to fetch/store from the nucieus tables,
the user must ensure that the nucleus table module is
mapped into the user’s logical memory. He does this
through an external reference to a symbol, TIDB,
controlier table, etc., within the nucleus module.
Example -- have an "EXT TBTYOA.”

14-29

REAL-TINE PROGRAMIKING

j-

TiDBs for noni-resident tasks -- except JCP and OPCOM

- are dynarmicaily allocated in map 0. Heme a
foreground user task cannot load a register (B,X)
from location 0300 (VSCTL or an address from zny
other low-Core location) and directly fetch the TIDB
data. in VORTEX, i is possible; in VORTEX H, such an
attempt wouid result in a memory protect interrupt.
The foreground ussr can fetch the TIDB data by use
of the PASS macro. Except for clearing the TBEVNT
word, via the RTE TBEVNT request, a foreground user
task cannot modity ihe TIDB.

14.4.8 Resident Tasks

The VORTEX I} user may specify two types of resident tasks
during system genieration; user mode resident tasks; and
executive mode map C resident tasks.

a. User mode rzsidant tasks. These tasks are foreground

library tasks that are made resident via the SGEN
TSK directive. Theso tasks axecute as user mode
tasks and cannot execute any 1/0 type instructions
except enable/disabla PiMs snd RT clock. They reside
in memory and may e scheduled via OPCOM or RTE
SCHED requissts specifying LUN = 0. As these tasks
do not reside in mep O virtual memory, the dynami-
cally allocated space (see figure 1.2) is not reduced as
it would be ior the executive mode map O resident
tasks. These rosident tasks are defined in- the
resident directory specified by VSCRDR (0341). Each
entry in the cirectory is as follows:

14-30

Werd/B0t 18 14 13 12 11 10 9 8 7 ¢ 3 4 3 2 1 0
[: Task Name, first two characters
1 Task Name, second two characters
2 Task Name, third two charatters
3 Entry Point
4 Starting physical pags number
] Number of pages
6 Nucleus module Ressresd for
Indicater future e
b. Executive mode, map O resident tasks. These tasks

{.9.9!5‘

reside in the nucleus program module in map 0. No
special SGEN directive is required to include these
tasks -as part of the nucleus. The VORTEX I user
specifies the generation of these resident tasks by
adding the program object meodules on the SGL

| records
(see figure 15-2). The program name should not start
with the characters "VZ--" as these are reserved for
170 drivers. SGEN processes /O drivers selectively
and ignores all /0 driver object modules uniess a
SGEN EQP directive specified the corresponding
peripheral. These sxecutive mode resident tasks: (1)
are permitted to execute 1/0 type instructions; (2)

Howcver cautmmmtbomm as the
RESUME request activates the highest priority task
with a matching name.

¢

!
4

SECTION 15
SYSTEM GENERATION

The VORTEX system-generation component (SGEN) * Building the VORTEX nucleus (section 15.6)
tailors the VORTEX operating system to specific user s .

requirements. SGEN is a collection of program on Building the library (section 15.7)
magnetic tape, punched cards, or disc pack. It includes » Resident-task configuration

all programs (except the key-in loader, section 15. 3)

for generating an operating VORTEX system on an 170 interrogation specifies the peripherals to:
RMD.

Figure 15.1 is a block diagram of the data flow through 3. Input VORTEX system routines (LIB unit)

SGEN. b. Inputuser routines (ALT unit)
15.1 ORGANIZATION ' c. input SGEN directives (DIR unit)
SGEN is a five-phase component comprising: d. Output the VORTEX system generation {SYS unit)

+ /Ointerrogation (section 15.4
! 8 (0) e. List special information and input user messages (LIS

* SGEN directive processing (section 15.5) unit)
[DIR INPUT UNIT l “ LIB INPUT UNIT ALT INPUT UNIT
|| System Generation Library User Routines
| SGEN DIRECTIVES :
(Object modules and con- (Object modules and
[trol records) control records)
,Tn_w__ e W - -
| L |
I
oo M !
i
L -~
R SGEN ROUTINES N
e AN N

R SR ¢ S 3

VORTEX

F U USER
NUCLEUS OREGROUND BACKGROUND

LIBRARY LIBRARY LIBRARIES

(And system
initializer)

SYS OUTPUT UNITS :
L IS |

Y32

Figure 15-1. SGEN Data Fiow

15-1

SYSTEM GENERATION

170 interrogation also specifies that the Teietype on
hardware addrass 01 is the OC unit. After these peripherals
are assignec, appropriate drivers and 1/0 controls are
loaded into memecry.

Note: SGEN does not build an object-module library. To
construct the VORTEX object-module library (OM) or any
user object-module library, use the file-maintenance
component (FMA!N, section 9).

SGEN directive processing specifies the architecture of the
VORTEX systam biased on user-supplied information that is
compiled and stored for later use in building the system.
SGEN directives permit the design of systems covering the
entire range of VORTEX applications.

Buliding the VORTEX nucleus consists of gathering object
modules anc control records from the system-generation
library (SGL, ssction 15.2) and from user input, and
constructing the VORTEX nucleus from these data. SGL
items are input through the LIB input unit, and user items
through the ALT unit according to rules set up by the SGEN
directives.

Building the library and the resident-task configurator
consists of generating load modules from the object
modules and contrel records input from the SGL and user
data. These ioad modules are then cataloged and entered
into the foreground, background, and user libraries. During
library building, load modules can be added, deleted, or
replaced as required to tailor the library to any of a wide
variety of formats. After the libraries are completed,
designated ioad modules are copied into the VORTEX
nucleus to become resident tasks. The resident-task
configuration of SGEN can also be generated without
regeneration of the VORTEX nucleus or libraries (section
15.7).

SGEN direct:ve format requires that, unless otherwise
indicated (e.g., section 15.5), the directives begin in
column 1 and comprise sequences of character strings
having no embedded blanks. The character strings are
separated by commas () or by equal signs (=). The
directives arz free-form and blanks are permitted between
individual character strings, i.e., before and after commas
(or equal signs). Although not required, a period (.) is a line
terminator. Comments can be inserted after the period. For
greater clarity in ‘the descriptions of the directives, optional
periods, optionai biank separators between character
strings, and the optional replacement of commas by equal
signs are omitted. Section 14.4.8 describes resident tasks
in greater detail.

Numerical data can be octal or decimal. Each octal number
has a leading zero.

Error messages applicable to SGEN are given in Appendix
A.15.

15-2

SGEN errors are divided into five categories according to
type. The category of each error, as well as the specific
error, is given by the error code. Recovery is automatic
where manual intervention is not required. When manual
intervention is necessary, the OC device expects a response
after the error message is posted. The response can be
either a corrected input statement (where the statement in
error was an ASCI| record) or the ietter " C" . in the latter
case, the corrected input is expected on the input device
where the error occurred, immediately after the "C" is
input. If the input media is magnetic tape or disc pack,
positioning to reread an input statement is also automatic.

15.2 SYSTEM-GENERATION LIBRARY

The System-generation Hbrary (SGL) is a collection of
system programs (in object-module form) and control
records (in alphanumeric form) from which a VORTEX
system is constructed.

In the case of punched cards or of magnetic tape, the SGL
occupies contiguous records, beginning with the first record
of the medium.

Inthe case of disc pack the SGL occupies contiguous
records inning with the second track. Track O contains
@ﬁn__jm section 3.2) that
it ling |

gmi.tin_m second_track
rack 1) to the end of device,

The SGL and the VORTEX system cannot be on the same
disc pack during system generatlon.

The SGL is divided into five functionai parts, each
separated by CTL control records (figure 15-2).

Part 1 of the SGL comprises a VORTEX bootstrap loader
and an /0 interrogation routine. It aiso comprises the
SGEN relocatable loader, the basic 1/0 control routine, and
library of peripheral drivers for the use of SGEN. Part 1
consists entirely of object modules. it is loaded with device-
sensitive key-in loader (section 15.3) that also serves the
bootstrap loader as a read-next-record routine. The
bootstrap-loader/interrogator is a core-image sequence of
records generated by a VORTEX service routine. Because it
calls the key-in loader to read records, the bootstrap-
loader/interrogator is itseif device-insensitive.

Control record CTL,PARTO001 tarminates part 1 of the
SGL.

Part 2 of the SGL contains the directive processor. After
being itself input, the directive processor obtains all input
from the DIR and OC input devices. The system generation
directives are to be placed between the directive processor
and the CTL,PART0002 control record if the CIB and DIR
input units are the same.

Control record CTL PART0002 terminates part 2 of the
SGL.

Bootstrap Loader and
1/0 Interrogation

PART 1 Relocatable Loader and
170 Control Routine
[SGEN Driver Library 3
* | CTLPART0001
PART 2 { | Oiective Processor

* | CTL,PART0002
(VORTEX Nucleus Processor
¢] SLM,INIT

System Ini‘ializer
PART 3 * | END
* | SLMVORTEX

l- VORTEX Nucleus B
~ Library B

¢ | END
* | CTL,PART0003

‘ Library Processor

PART 4 F System Library
l I Routines

® | CTLPARTO0004

PART 5 ; Resident-Task Configurator

CTL ENDOFSGL

3

NOTE:

* = Alphanumeric control record

Figure 15-2. System-Generation Library

Part 3 of the SGL comprises all system routines and
contro! records required to build the VORTEX nucleus
(figure 15-3):

« VORTEX nucleus processor -- the SGEN-processing
portion

* SLM control record - indicates the beginning of the
system initializer portion

+ System-initializer routines - object modules to be
converted into the system initializer

« END control record - indicates the end of the system-
initializer portion

* SLM control record -- indicates the beginning of the
VYORTEX nucleus portion

« VORTEX nucleus routines -- control records and object
modules to be converted into the VORTEX nucleus

* END control record - indicates the end of the VORTEX
nucleus portion

SYSTEM GENERATION

* Control Record CTL,21 - specifies the end of the
nucleus table module. All user data and programs to be
included in this module must precede the CTL.21
control record.

* Al programs contained on the SGL between the CTL,21
and CTL,PART0003 control records are included in the
nucleus program module

e | SIMINIT
System initializer

Low Memory Package

« | END

* | SLM,VORTEX I

* | All TDF Control Records
Global FCBs

VSOPBF and V$JPBF Buffers
170 Controlier Table

CTL.21

10C Program

RTE Services

RTE System Tasks

RTE Functions

[1/0 Drivers]

* | END

,l%

CTL PART0003

NOTE:
* = Alphanumeric control record

Figure 15-3. VORTEX Nucleus

Control record CTL,PART0003 terminates part 3 of the
SGL.

Part 4 of the SGL comprises all system routines and
control records required to build load-module libraries on
the RMD. The library processor converts these inputs into
load modules, catalogs them, and enters them into the
foreground, background, and user libraries. The library
processor is followed by groups of control records and
object modules, with each group forming a load-module
package (LMP).

Control record CTL,PART0004 terminates part 4 of the
SGL.

Part 5 of the SGL contains the resident-task configurator
portion of SGEN. The configurator copies specified load
modules from the foreground library into the VORTEX
nucleus, i.e., makes them resident tasks.

Control record CTL ENDOFSGL terminates the SGL.

15-3

SYSTEM GENERATICN

REQUIRLD
(FOREGROUND)
SYSTEM
TASKS

REQUIRED
(BACKGROURND)
SYSTEM
TASKS

15-4

<@

SLM,FVSOPC

TID,VSOPCM,2.8,106

SLM,BFORT

VSOPCM Program

TID,FORT,1,0,105

FORTRAN Compiler

ESB

ESB

END

SLM,FJCDUM

END

TiD,JCDUMP,2,0,106

SLM,BCONC

JCDUMP Program

TID,CONC,1,0,105

EsB

Concordance Program

ESB

END

END

SLM,FRAZI

SLM,BIOUTI

TID,RAZ!1,2,0,106

TID,IOUTIL,1,0,105

RAZl Program

/0 Utility Program

ESB

ESB

END

END

SLM,B)CP

TiD,JCP,1,0,105

SLM,BSEDIT

Job-Control Processor

TID,SEDIT,1,0,105

ESB

Source Editor

END

£S8

SLM,ELMGEN

END

TiD LMGEN,1,0,105

SLM,BDASMR

Load-Module Generator

TID.DASMR,1,0,105

ESB

DAS MR Assembler

END

ESB

SLM,BFMAIN

END

TID,FMAIN,1,0,105

File Maintenance

ESB

END

SLM,BSMAIN

TID,SMAIN,1,0,105

System Maintenance

ESB

ENOD

Figure 15-4. Load-Module Library

= Alphanumeric control record

15.3 KEY-IN LOADER

SGEN s initiated on a new or initiahized system by
inputting the key-in loader through the CPU. The key-in
loader loads the VORTEX bootstrap loader (part 1 of the
SGL). Key-in loaders are available for loading from
magnetic tape, punched cards, or disc pack. The required
key-in loader is input to memory through the CPU console
and then executed to joad the YORTEX bootstrap loader.

SYSTEM GENERATION

Automatic bootstrap loader (ABL): In systems equipped
with an ABL, load the key-in loader from the input medium
into memory starting with address 000000 To execute the
key-in loader, clear the A, B, X, |, and P registers; then
press RESET, set STEP/RUN to RUN, and press START.

See hardware handbook for details on manual ioading.

Table 15-1. SGEN Key-In Loaders

RMD RMD

Address Magnetic Tape Card Reader 70-76x0 70-76x3
000000 010030 010054 010064 010064
000001 001010 no1oto 140066 140066
000002 001106 001106 001010 0010190
000003 040030 040054 001106 001106
000004 001000 001000 001000 001000
000005 000012 000012 000012 000012
000006 000000 000000 000000 000000
000007 006010 006010 006010 006010
000010 000300 000300 000300 000300
000011 050027 050053 050065 050065
000012 104122 10022z 10042, 1004zz
000013 100022 002000 100227 010063
000014 001000 000046 010063 110072
000015 000021 102522 110072 1031zz
000016 102522 0020060 103127 10022z
000017 057027 000046 101uzz 101dzz
000020 040027 1026722 000023 000023
BISSISVR 101122 004044 001000 001000
[S18191072%4 000016 004444 000017 000017
0300023 101222 057053 102522 10252z
000024 100006 005001 150071 150071
000025 601000 040053 001016 001016
000026 000021 004450 000012 000012
600027 000500 002000 1000yy 1000yy
0nnn3o 177742 000046 1003zz 5000
00031 102627 010064 010064
000032 004044 110072 110072
H00033 (004450 103122 10312z
000034 002000 010065 010065
nen03s 000046 1031xx 1031xx
000036 102222 120070 120079
OO0037 057053 005012 005012
aneoa0 040053 1031yy 1031yy
0oon4a1 067953 1000xx 1000xx
00poa2 (40053 100022 1000z:z
001043 001000 1014z 1014zz
000044 000013 000043 000043
000045 101122 102522 10252z
0UN046 000U00 150071 150071
o047 101622 001016 001016
000050 100006 000012 000012
000051 001000 060065 060065
0OO0K2 000045 040064 040064
HONNSR 00C500 010064 010064

155

SYSTEM GENERATION

Table 15-1. SGEN Key-In Loaders (continued)

Address Magnetic Tape Card Reader

000054
000055
000056
000057
000060
00006
000062
000063
000064
000065
000065
000067
00007C
000071
000072

where

xx = even B8IC address

yy = odd BIC address

2z = device address

u = RMD unit number in Sense instruction
u = 0 for umt 0
u = 1 for unit 1|

15.4 SGEN i/C INTERROGATION

Upon successful icading of the bootstrap loader and 1/0
interrogation, the OC unit outputs the message

10 INTERROGATION

after which the SGEN peripherals are specified by inputting
on the OC unit the five i/0 directives:

CiR Specify SGEN directive input unit

LiB Spacify SGL input unit

ALT Spacify SGL modification inpui unit

SYS Specify VORTEX systern generation
output unit

LiS Specify user communication and
iist output unit

These directives can be input in any order. SGEN will
continue to request i/0 device assignments until valid ones
have been made for all five functions.

SGEN drivers are icaded from the SGEN driver library
according to the spacifications of the SGEN 1/0 directives.
Errors or problems with reading the drivers will cause the
applicable error messages (Appendix A.15) to be output.

The generai form of a SGEN 1/0 directive is

function = driver,device, bic

15-6

177742

RMD RMD
70-76x0 70-76x3
140067 140067
001016 001016
100006 100006
050064 050064
040063 040063
001000 001000
100006 100006
000001 000001
000001 000001
000500 000500
000037 000037
000060 000069
000074 000074
007760 007760
0Ov0000 ww0000
v = RMD unit number in unit Select Instruction
v = 0 for unit 0
v = 4 for unit 1
d = RMD drive number (0-3)
ww = drive (bits 15-14) /platter (bit 13)
(i.e., platter 1 drive 0 - 02)
where
function is one of the directive names given
above
driver is one of the driver names given bealow
device is the hardware device address
bic is the BIC address
Name* Type of Device Model Numbers
MTcuA Magnetic-tape unit 70-7100
LPcuA Line Printer 70-6701
LPcuD All Statos 70-6602
models*** 70-6603
CRcuA Card reader 70-6200
PTcuA Paper-tape 70-6320
read/punch
TYcuA Teletype or CRT 70-6100,
70-6104
DcuAl Rotating memory 70-7702
DcuA2 Rotating memory 70-7703
DcuA5 Rotating memory 620-49
DcuB Rotating memory 70-7600,
70-7610

Name®* Type of Device Mode! Numbers
DcuC Rotating memory** 70-7500
DcuD Rotating memory** 70-7510
DcuF**** Rotating memory** 70-7603

* where c stands for the controller number (0, 1, 2, or 3),
and u for the unit number (0, 1, 2, or 3).

**Always specify the first master unit of a particular device
as being on controller 0, the second master unit on
controller 1, efc. Regardless of the controller specifications
in the EQP directives, different controller numbers must be
used for each RMD type. (i.e, if using MT 1 on DA 12,
specify MTOOA). If the system has a 7600 and 7500 RMD,
then specify DO0OB and D10C.

*** Statos 33 is not supported during system generation.

=25 Unit number = (s through 7.

15.4.1 DIR (Directive-Input Unit)

Directive
This directive specities the unit from which ail SGEN
directives (section 15.5) will be input (DIR unit). The
directive has the general form

DIR = driver device, bic

where

driver 1s one of the driver names MTcum,
TYcum, PTcum, or CRcum (m is a model
code, as given in 15 4)

davice 1s the hardware device address

bic. is the BIC address (used only, and then
optionally, for magnetic-tape units)

Example: Specify Teletype unit O having model code A
and hardware device address 01 as the DIR unit.

NTR=TYGOA, 01

15.4.2 LIB (Library-Input Unit) Directives

This directive specifies the unit from which the SGL will be
input (LIB unit). The directive has the generat form

LIB = driver device bir

where
driver 1s one of the driver names MTcum,
CRunmy, or Doum
device s the hardware device address

- SYSTEM GENERATION

bic is the BIC address (used only, and then
optionally, for magnetic-tape units)
mandatory for RMDs

Example: Specify magnetic-tape unit 0 having model code
A and hardware device address 010 (no BIC) as the LiB
unit.

LIB=MTOOA,010

15.4.3 ALT (Library-Modification
Input Unit) Directive

This directive specifies the unit from which object modules
that modify the SGL will be input (ALT unit). The directive
has the genera! form

ALT = driver device, bic

where
driver is one of the driver names MTcum,
PTcum or CRcum
device is the hardware device address
b is the BIC address (used only, and then

optionally, for magnetic-tape units)

Example: Specify card reader unit 0 having model cade A
and hardware device address 030 as the ALT unit.

ALT=CCROOA, 030

15.4.4 SYS (System-Generation
Output Unit) Directive

This directive specifies the RMD(s) onto which the VORTEX
system will be generated, with the VORTEX nucleus on the
first such device specified. Up to 16 RMDs can be specified.
The directive has the general form

SYS = driverl,devicel bicl;driver2 device?,
bic2; ...drivern,devicen,bicn

where
driver i1s an RMD driver name such as Dcum,
where ¢ = controller, u = unit, and m
= model code
device is the hardware device address of the
corresponding driver
LTS 1s the mandatory address of the

applicable BIC or BTC

All RMDs specified in the EQP directives (15.5.2) must be
specified in the SYS directive. Subsequent SYS directives
will overlay the previous directives. 1 ail RMDs cannot be
specified in a single line, then the directive must be

16-7

' SYSTEM GENERATION

terminated with: a2 cclon. This wili cause the next input line
to be treated as a continuation of the previous SYS
directive. The additionai input lines begin with the driver
parameter. The directive "SYS="" must not be used on
additional SYS diractive input lines.

Examples: Specify RMD 0 having model code B, hardware
device address C15, and BIC address 020 as the SYS unit.

SYS=D00B,Ci6,020

Specify two SYS units: RMD O with model code A2,
hardware device address 014, and BIC address 020; and
RMD 0 with model code B, hardware device address 018,
and BIC address 022.

A system with 70-7500 (620-34)or 70-7510 (620-35) disc
requires a special formatting program, described in section
18.4. This program formats disc packs and performs bad-
track analysis.

SYS=DOOA2,014,020;D108,015,022

15.4.5 LIS Direciive

This LIS (User-Communication and List Output Unit)
directive specifias the unit that will be used for user
communication znd {ist output (LIS unit). The directive has
the general form

LIS = driver,dovice
where
driver is one of the driver names TYcum or
tPcum
device is the hardware device address

The following information appears on the LIS unit:

a. Error messages
b. Load map of each ioad module
c. Directives input through the DIR unit (section 154.1)

d. Partition table for each system RMD

To suppress listing during system generation set 'map’’ to

zero in EDR directive

Example: Speciiy line printer 0 having model code A and
hardware device address 035 as the LIS unit.

LIS=LPOOA, G35

15.5 SGEN Directive Processing

Upon successtui ioading of the SGEN directive processor,
the OC and LIS (section 15.4.5) units output the message

15-8

INPUT DIREBCTIVES

to indicate that SGEN is ready to accept SGEN directives
from the DIR unit (section 15.4.1).

The SGEN directives described in this section can be i
in any order, except for the EDR directive (section 15.5,14),
which is input last to terminate SGEN directive input.

In cases of conflicting data, SGEN treats the last informa-
tion input as the correct data.

Errors cause the output of the applicable error messages
(Appendix A.15).

The general form of an SGEN directive is
222,p(1)xp(2)x...xp(n)
where

FYYY is a threecharacter SGEN directive
name

each p(n) is a parameter as indicated in the

specifications for ~the individual

directives

each x is a punctuation mark as indicated in
the specifications for the individual
directives

In contrast to most VORTEX system directives, the
punctuation in SGEN directives is exactly as defined in the
specifications for the individual directives, although blanks
are allowed between parameters, i.e., before or after
punctuation marks. SGEN directives begin in column 1 and
can contain up to 80 characters.

SGEN directives are listed on the OC and LIS units.

15.5.1 MRY (Memory) Directive

This directive specifies the memory-related parameters of
SGEN. It has the general form

MRY, memory,common, size [m]
where

memory is the extent of the memory area
available to YORTEX (minimum 12K =
027777)

common is the extent (0 or positive vaiue) of the
foreground blank-common area

size is the total physical memory available to

V75 specifies V75 system

Examples: Specify a 48K memory for VORTEX with a
foreground blank common area of 0200 words. Save
locations 075777 to 077777 of the first 32K memory for
AID L.

MRY,075777,0200,48

Specify an 18,00D-word memory for a VORTEX V75 system
with no foreground blank-common area.

MRY, 18000,0,V75

15.5.2 EQP (Equipment) Directive

This directive defines the peripheral architecture of the
systern It has the general form

EOP name,address, number bic, retry, alg, mul
where

name is the rmnemonic for a peripheral
controller

address is the controller device address (01
through 077 inclusive)

number is the number (1 through 4, inclusive) of
peripheral units attached to the
controller

bic¢ is the BIC or BTC address (0 if no BIC
applies)

retry is the number (0 to 99, inclusive) of
retries to be attempted by the 170 driver
when an error is encountered

alg 1S the 170 algorithm value (0< alg <
1) as a decimal fraction (see section
14.43. word 7 for the calculation of
this value). NOTE: this is an optional
parameter and 1s not needed unless a
change is desired in the algorithm value.
if this parameter is to be used on non.
process I/0 controiler tables, the subject
controller table must contain CTIOA as
an entry name

o 1s the multiplexor address (thss
parameter applies only to process /0
driversy

Facaptable innemonics for name are

. MTnm Magnetic-tape 1t
LPnm Line printer
CRnm Card reader
Pinm Paper tape reader/punch

SYSTEM GENERATION

. TYnm Teletype
. CTnm CRT device
. CPnm Card Punch
» Dnm RMD
. Cl Process input
. Cco Process output
WCS Writable control store
. SPnm Spool Unit
. MXnm Communication Multiplexor
- TCnm Psuedo TCM

Where n is the controller number (C. 1, 2, or 3), and m s
the model code (table 15.2).

Controlier tables are arranged .according to_the priorily
levels of their task-identification blocks (TiDBs). On any
given level, the tables are arranged in the :nput sequence
of the corresponding EQP directives Device-specification
table (DST) entries are unsorted.

The following order is suggested for peripheral controllers

a. RMDs

b Operator communication (OC)devece(sec{[on 17)
c. Magnetic-tape units

d. Other units

For the 70-7603/7013 disc, a special DEF directive must be
inciuded for each EQP directive used for this model disc

DEF VSDSKx,y
where
X is the controller number (0-3)
y is a bit pattern in bits 0-7. Bit(n)
corresponds to platter(n). The bit s
set if the corresponding platter is

part of a dual platter driver.

Exampile: A system contains two 70-76x3 controllers with
the following drives attached:

Controller 0 has 1 dual unit and 3 single units
Contraller 1 has 2 dual units. and 1 single
unit, and 1 dual unit

the corresponding directives would be:
EQP,DOF,016,5,020,5
DEF,V$DSKO0,3 Lol

EQP,D1F,017,7,022,5 -
DEF,V$DSK1,0157 o

SRFHI] I

15-9

SYSTEM GENERATION

Code

TYnA

CTnA

CRnA

CPnA

MTnA

MXnA

DnA

DnB

DnC

DnD

DnF

PTnA

LPnA

15-10

Table 15-2. Model Codes for VORTEX Peripherals

Model Number

70-6104
(620-08)

70-6401

70-6200
(620-22,
620-25)

70-6201
{620-27)

70-7100
(620-30)
(620-31A)
(620-318)
(620-31C)
70-7102
(620-32)
70-7103
(620-32A)

70-520X (520X)
70-521X

620-47,-48,-49
70-770X
(620-43C,-43D)

70-7600
(620-36)
70-7610
(620-37)

70-7500
(620 35)

70-7510
(620-34)

70-7603
70-7613

706320
(620-55A)
(620-51A)

70-6701
(620-77)

70-6602

Description

ASR Teletype Model 33
ASR Teletype Model 35

CRT keyboard/display

Card reader:

300 or 600 cards/minute

Card punch: 35 cards/minute

Magnetic-tape:

Magnetic-tape:
Magnetic-tape:
Magnetic-tape:

Magnetic tape:

9-track, 80O bpi, 25 ips

7-track, 200-556 bpi
7-track, 200-800 bpi
7-track, 556-800 bpi
9-track, 800 bpi, 37 ips

Slave unit with 620-32

Data communications multipiexor

Rotating memory
Rotating memory

Rotating memory

Rotating memory

Rotitng memory

Rotating memory

Rotating Memory

Paper-tape reader/punch

Line Printer

Statos-31 Printer/piotter

SYSTEM GENERATION

Table 15-2. Model Codes for VORTEX Peripherals

Code
LPnE

LPnG

LPnH
LPnJ

CinA

COnA

WCS

Note:

(continued)
Mode! Number Description
70-6603 Statos-31,-41 Printer/plotter
(620-76)
70-6603 Statos-31/42 Printer/plotter
(42,51,71)
70-7702 Statos-31 (-41,-51,-52)
70-66xx Statos-33
See sec. 19 Process 1/0
See sec. 19 Process I/O:
70-4002 Writable control store

Other peripheral devices can be added to the

system by creating an EQP directive with a unique phsyical-
unit name for the device. A controlier table with the same
name is then added to the VORTEX nucieus by an ADD
directive (section 15.5.5).

- 4511

SYSTEM GENERATION

Example: Define & system containing one model B8 RMD,
one model A magnetic-tape unit, one mode A card reader,
one model A line printer, one model A Teletype, one model
A high-speed paper-tape reader/punch, one model A card
punch, and a writable controi store.

EQP,DO0B,016,1,020,3
EQP,MTOA,0%0, ,022,5
EQP,CROA,030,1,024,0
BQP,LPOA,035,1,024,0
BQP,TYOA,04,1,0,0
EQP,PTOA, 0‘*7 1,¢,0
EQP,CPOA,021,1,0622,0

EQP,WCS,074,1,9,0

The paper width of cach Statos on the system must be
defined through use of the SGEN DEF directive (see section
15.5.14). This directive has the form

DEF V$SWnm ¢
where

n is the controlier number (0,10r2)

m 15 the Statos model code (D,E,G,H, or J)

c is the width code, defined as
0 = 8.1/2-inch 4 = with SLIB
i = llinch 5 = with SLIB
2 = 14.7/8inch 6 = with SLIB
3 = 22-inch 7 = with SLIB

Example: Specify a SGEN directive for model G Statos on
controller 1 with i4-7/8-inch width paper

DEBF ,VS5WiG,2

15.5.3 PRT (Partition) Directive

This directive specifies the size of each partition on each
RMD. it has the general form

PRT,Deup(1),8(1),k(1);Dcup(2),5(2).k(2);...
Deup(n).s(n).k(n)

where

Dcup(n) is the name of the RMD partition with ¢
baing the number (0, 1, 2, or 3) of the
controller, u the unit number (0, 1, 2, or
3), and p the partition letter (A through
T, inciusive)

s(n) is the number (octal or decimal) of
tracks in the partition. The maximum
partition size on any RMD is 32,768
sectors

k(n) is the protection code (single
alphanumeric character including $) for
the partition, or * if the partition is
unprotected

15-12

At least six paritions are required for the system rotating
memory. PRT directives are required for every partition on
every RMD in the system. While the partition specifications
can appear in any order, the set of partitions specified for
each RMD must comprise a contiguous group, e.g., the
sequence DOOA, DOOC, DOOD, DOOB is valid, but the
sequence DOOA, DOOC, DOOD, DOOE constitutes an error.

NOTE: If the LIB unit is an RMD, the PRT directives for 5 for
that RMD are ignored and the existing PST for the RMD is

used. However, even though the PRT directives are ignored

“the RMD unit should have at least one PRT direciive. RAZI

may be used to partition the RMD unit after system
generation. |f the RMD SGL is to be saved, it must he

Lﬁﬂmmm;.ﬁssmmh.m_gk prior to executing RAZI for

Logical units 101 through 106 inclusive have preassigned
protection codes. Do not attempt to change these codes.

Preassigned Protection Codes
Unit Number 101 102 103 104 105 106
Code S B c D E F

Total number of tracks of all partitions and the capacity of
VORTEX nucleus must not exceed rotating-memiory track
capacity. The nucleus size is equal to the memory size
divided by the product of the number of sectors per track
and 120. Tracks not included by a PRT directive are not
accessable to the system.

Example: Specify the following partitions on two RMDs.

RMD No. Partition Tracks Protection Code
0 A 2 C
4] B 20 F
0 Cc 25 E
0 D 40 D
0 E 8 S
0 F 18 B
o] G 18 None
0 H 66 None
1 A 40 None
1 B 60 R
1 C 50 None
1 D 52 X

PRT,DOOA,2,C;D00B,20,F
PRT,D00C,25,BE;D00D,40,D;DOOK,8,S
PRT,DOOF, 18B;D00G, 18,*;D00OH,66,*
PRT,D01D,52,X;:D01C,50,*
PRT,DOtA,%0,*;D01B,60,R

15.5.4 ASN (Assign) Directive

This directive assigns logical units to physical devices. it
has the general form

ASN,lun(1) = dov(1),lun(2) = dev(2),...lun(n} = dev(n)

where each

lun(n) is a logical unit number (1 through 100
or 107 through 255, inciusive) that can
be followed optionally by a two-character
logical unit name e.g., 107:Y7

dev(n) is a four-character physical-device

name, e.g., TY00,DOOG (table 17-1)

If a2 new assignment specifies the same logical unit as a
previous assignment, the old one is replaced and is no
longer valid. All logical units for which physical device
assignments are not explicitly made are considered dummy
units, except preassigned.

SYSTEM GENERATION

Restrictions: Any attempt to change one of the preset
logical unit name:number or name:number:partition rela-
tionships given in table 153 will cause an error to be
flagged. Table 15-4 indicates the permissible physical unit
assignments for the first 12 logical units (with PO
automatically set equal to SS for normal assembler
operation).

Example: Specify physical device assignments for logical
units 1-12, inclusive, 107 and 108, and 180 and 181, where
the last two units have, in addition to their numbers, two.
character names.

ASN, 1=eTY00, 2=CROO, 3=TY01,4=CROO
ASN, 5=LP00,6=MT00, 7=000I, 8=D00G
ASN, 9=DOOH, 10=D00G, 1 1=TY0C, 12=LP00
ASN, 107=LP00, 108=CR0OO

ASN, 180:S6=MT00, 181:$8=MTO 1

Table 15-3. Preset Logical-Unit Assignments

Preset logical-unit name/number relationships:

OoC = 1 LO = 5
St = 2 Bl =6
SO = 3 BO = 7
Pl = 4 S§ = 8

Preset logical-unit/RMD-partition relationships:

Logical-Unit Logical-Unit Partition

Name Number Name
CL 103 DOOoA
FL 106 DooB
BL 105 DooC
oM 104 DOOD
Cu 101 DOOE
Sw 102 DOOF

Optional logical-unit/RMD-partition relationships

GO 9 DO0G
ss 8 DOOH
PO 10 DOOH
BI 6 DooI
BO 7 DOoOI

1. CU fite must be as large as background task's largest
part in central memory at one time (24K assumed
above).

2. SW file must be as large as the largest single task
including overlays (24K assumed above).

3. GO file must be somewhat larger than the largest task
run in load-and-go mode (24K assumed). If system is

77z
GO = 9 13 = RPG IV READ Y
- ~
“
PO = 10 14 = RPG IV PUNCH V’%
ﬂ"o‘ & o’
DI = 11 15 = RPG IV PRINT »;)‘ "?7’{
DO = 12
Protection VORTEX Sector\
Key \%pfbn ‘ Ji
c 025 (see note 5) 9%
F 0106 72
E 01135 165
D 0417 <
S 0310 (See note 1) 23¢)
B 0310 (See note 2)(. e
Qa,“‘
W,
< %’&
none 0310 (See note 3) 528
none varies
none 0515 (See note 4)
none varies
none varies

foreground only or all tasks wifl be entered in libraries
before execution, this partition may be eliminated.

4. PO file must be large enough for source images of the
largest task to be assembled or compiled. Source
images are stored 3 card images per sector (1000
cards assumed above). If this function is assigned to
magnetic tape, this partition may be aliminated.

5. There are 12 entries per 2 sectors. Number of sectors
aquals numbers of entry 4 6.

15-13

SYSTEM GENERATION

Table 15-4. Permissible Logical-Unit Assignments

Teletype
Logical Units or CRT
1 {0C) ‘ X
2 {sh X
3 (S0) X
4 {Ph) X
5 (LO) X
6 (Bl) X
7 (BO) X
8 {8S)
9 (GO)
10 (PO)
11 (Dh X
i2 {DO) X

15.5.5 ADD (SGL Addition) Directive
This directive specities the SGL control records and cbject
modules after wrich new control records and/or object

modules are to be added during nucieus generation. It has
the general torm

ADD.p(1).p(2).. ..p(n)

where each p(n) is the name of a control record or an
object module afte: which new items are to be added.

When the name of a specified item is read from the SGL,
the program is processed and the message

ADD AFTER p(n}
READY

appears on the OC unit. User response on the OC unit 1s
either

ALT®*

if an item is to be added from the SGEN ALT input unit
(section 15.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads an object module from the

15-14

RMD or

Permissible Physical Units

Other Other
Line Output input
Printer (CP,PT) (PT.CR)
X
X
X X
X
X
X

ALT unit and adds it to the SGL, then prints on thé OC unit
the message

READY

to which the user again responds with either ALY or LIB on
the OC unit.

Example: Specify that items are to be added during

nuclteus generation after control records or object modules
named PROGI, PROG2, and PROG3.

ADD,PROG1,PROG2,PROG3

15.5.6 REP (SGL Replacement) Directive

This directive specifies the SGL control records and object
modules to be replaced with new control records and/or
object modules during nucleus generation. It has the
general form

REP,p(1),p(2),....p(n)

where each p(n) ‘is the name of a control record or an
object module to be replaced.

When the name of the specified item is read from the SGL,
the item is skipped and the message

REPLACE pi(n)
READY

appears on the OC unit. User response on the OC unit is
either

ALT*

if an item is to be replaced by one on the SGEN ALT input
unit (section 15.4.3), or

LIB

it processing from the SGL is to continue. If the former
response is used, SGEN reads an object module from the
ALT unit and replaces p(n) with it in the SGL, then prints
on the OC unit the message

READY

to which the user again responds with either ALT or LIB on
the OC unit.

Example: Specify that control records or object modules
named PROGA and PROGB are to be replaced during
nucleus generation.

REP, PROGA , PROGB

*ALT has a special form which allows searching the ALT
device for a specified program. The form is

ALT,name
where

name 1S one to six alphanumeric characters
representing the TITLE name of the
model to be added

name can either specify an object module name or a TOF
record name. When specified, ALT will search the alternate
unit from its current position for the specified module. If an
EOF is encountered prior to finding the module an SG08
diagnostic occurs. To cause the alternate unit to rewind
prior to each search, set Sense Switch 1 prior to entering
the ALT directive. If no module name is specified, ALT will
load from its current position.

For example, to search for and load an object module
named PGRM1, specify

ALT, PGRMI1

To search for and load a TDF directive for TBLPOF, specify
ALT, TBLPOF

SYSTEM GENERATION

15.5.7 DEL (SGL Deletion) Directive

This directive Specifies the SGL contro! records and object
modules that are to be deleted during nucleus generation. it
has the general form

DEL,p(1).p(2),. .p(n)

where each p(n) is the name of a control record or an
object module to be deleted.

When the name of a specified item is read from the SGL,
the item is skipped and processing continues with the
following control record or object module.

Example: Delete, during nucleus generation, all control
records and object modules named PROG1 and PROG2.

DEL, PROG1, PROG2

15.5.8 LAD (Library Addition) Directive

This directive specifies the SGL load-module package after
which new load-module packages are to be added during
library generation. It has the general form

LAD,p(1),p(2).....p(n)

where each p(n) is the name of a load-module package
from an SLM control directive after which new items are to
be added.

When the name of a specified load-module package is read
from the SGL, the program is processed and the message

ADD AFTER p(n)
READY

appears on the OC unit. User response on the OC unit 1s
either

ALT

if a load-module package is to be added from the SGEN
ALT input unit (section 15.4.3), or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads 2 module from the ALT unit
and adds it to the library, then prints on the OC unit the
message

READY

to which the user again responds with either ALT or LIB on
the OC unit.

Example: Specify that items are to be added, during
library generation, after load-module packages named
PROG1, PROG2, and PROG3.

LAD,PROG1,PROG2, PROG2

15-18

SYSTEM GERERATION

15.5.9 LRE (Library Repiacement) Directive
This directive specifies the SGL load-module package to be

replaced with new load-module packages during library
generation. it nas the general form

LRE.p(2).5(2)....p(n)

where each p(n) is the name of a load-module package
from an SLM controi direciive to be replaced.

When the name cf the specified load-module package is
read from the SGL, the program is skipped and the
message)

REPLACE pin)
READY

appears on the OC unit. User response on the OC unit is
either

ALT

it module is tc be repiaced by one on the SGEN ALT input
unit (section 15.4.3}, or

LIB

if processing from the SGL is to continue. If the former
response is used, SGEN reads a module from the ALT unit
and replaces p(n) with it in the SGL, then prints on the OC
unit the message

READY

to which the user again responds with either ALT or LIB on
the OC unit.

Example: Specify that load-module packages riamed
PROGA or PROGE are to be replaced during library
generation.

LRE, PROGA, PROGB

15.5.10 LDE (Library Deletion) Directive
This directive spacifies the SGL load-module packages that

are to be deleted during library generation. it has the
general form

LDE.p(1),22),...,p(n)

where each p(n) is the name of a load-module package
from an SLM control directive to be deleted.

When the name of a specified load-module package is read

from the SGL, the icad-modute package is skipped and
processing continues with the following load moduie

15-16

Example: Delete, during library generation, all load-
module packages named PROGI and PROG2.

LDR,PROG1, PROG2

15.5.11 PIM (Priority Interrupt) Directive

This directive defines the interrupt-system architecture by
specifying the number of priority interrupt modules (PiMs)
in the system, the interrupt levels to be enabled at system-
initialization time, and the interrupts to be manipulated by
user-coded interrupt handiers. The PIM directive has the
general form

PIM,p(1),a(1),7(1),8(1);p(2).9(2),r(2),
$(2);...;p(n).q(n),r(n).s(n)

where each

p(n) is an interrupt line number comprising
two octal digits with the first being the
PiM number and the second the line
number within the PIM. The two digits
must be preceded by a zero, eg.,
002,011

an) is the name (1 to 6 charactars) of the
task handling the interrupt The name
format is TBxxxx, where xox is the
hardware code name. For s(n) = 2, an)
is the interrupt processor entry name.

r(n) is the content of the interrupt event
word in octal notation (see appendix F
for nonzero values for standard
hardware)

s(n) is O for an interrupt using the common
interrupt-handler or 1 for a directly
connected interrupt option 1, or 2 for
directly connected interrupt option 2.
(Described in section 14.4.5)

If an interrupt line is to use the common interrupt handlér, ‘
a TIDB is generated for the related interrupt-processing
routine, which can be in the VORTEX nucleus or in the:

foreground Hibrary. -

If an interrupt line is to have a direct connection, the

interrupt-processing routine . the VORTEX

nucieys. Fallure to do so results in an error message.

Example: Specify two interrupt lines, one handied by the
common interrupt handler, the other directly connected,
option 1.

PIM,002, TBMTOA,00001,0;003, TBLPOB,01, 1

Note: The only interrupt used by the magnetic-tape 170
driver is the motion complete.

Note: The interrupt event word, r(n) for a Teletype or CRT
(Teletype compatible) must be set to 01 for input interrupt
on 02 for output interrupt.

15.5.12 CLK (Clock) Directive

This directive specifies the values of all parameters related
to the operation of the real-time clock. It has the general
form

CLK clock, counter interrupt

where
clock is the number of microseconds in the
basic clock interval
counter is the number of microseconds in the

free-running counter increment period.
Stored in V$FREE but not used in
VORTEX 11. its nominal value is 100.

interrupt is the number of milliseconds in the user
interrupt interval: This vaiue must be
between 5 and 50.

The value of interrupt, when not a multiple of 5 millisec-
onds, is increased to the next muitiple of 5 milliseconds;
e.g., if interrupt is 31, the interrupt interval is 35
milliseconds.

Exampie: Specify a basic clock interval of 100 microsec-
onds, a free-running counter rate of 100 microseconds, and
a user interrupt interval of 20 milliseconds.

CLK, 100,100, 20

15.5.13 TSK (Foreground Task) Directive

This directive specifies the tasks in the foreground library
that are to be made resident tasks. It has the general form

TSX task(1),task(2),....task(n)

where each task(n) is the name of an RMD foreground-
library task that is to be made a resident task.

If this directive is input as part of a full system generation,
the names are those of tasks that will be built on the
foreground library during the library-building phase (sec-
tion 15.7).

SYSTEM GENERATION

Resident TIDBs are not created for the tasks defined on
the TSK directives to be resident tasks. A TIDB is created
each time a resident task is specified_on a SCHED call. A
resident TIDB is created at system generation for each task
specified on a TDF directive (paragraph 15.6.2).

These tasks are treated as user mode tasks and are not
executed in map 0. Hence, /0 instructions cannot be
executed by these tasks. Resident map 0 tasks are added
to the nucleus by adding the programs on the SGL between

he CTL,21 and CTLPARTOO3 conirol records. Section

14.4.8 describes resident tasks.

Example: Specify that foreground-library tasks RTA, RTB,
and RTC be made resident tasks.

TSK,RTA,RTB ,RTC

15.5.14 DEF (Define Externa!) Directive

This directive enters a name with a corresponding absolute
vaiue into the SGEN loader tabies and the CL library. It has
the general form

DEF,name(1),value(1),name(2),vaiue(2); ...name(n)
value(n)

Modules processed by either SGEN or LMGEN can refer-
ence any names defined by the DEF directive

Example: Use the DEF directive for the VTAM LCB address
in CTMXOA. The entry in CTMXOA for the LCB address
might be

EXT VSLCWO
DATA VSLCWO

Then, the following DEF directive wouid define the LCB to
be at location 075000

DEF,VS$LCW0,075000

15.5.15 EDR (End Redefinition)
Directive

This directive, which must be the last SGEN directive,
specifies all special system-parameters, or terminates
SGEN directive input. fonly a rm of resident tasks
is required, the EDR directive is of the form

EDR.R

but if a full SGEN is necessary, the EDR directive has the
general form

EDR.S, tidb, stack part list kpun,map, analysis

where

tidb is the number (C1 through 0777,
inclusive) of Z5-word empty TIDBS
allocated

15.17

SYSTEM GENERATION

stack i$ the size (O through 037777, inclusive)
of the storage and reentry stack
allocation, which is equal to the number
of words per reentrant subroutine
multiplied by the number of levels
cafling the subroutine summed overall

subroutines
part | is the maximum number (6 through 20,
//// inciusive) of partitions on an RMD in the
systern
st % i3 the number of lines per page for the

list output, with typical values of 44 for
the line printer and 61 for the Teletype

kpun is 26 for 026 keypunch Hollerith code, or
29 for 029 code

map is L if map information is to be listed, or
0 if it is to be suppressed
analysis is O or blank if a complete bad track
2nalysis is desired on all RMD's, or 1 if
the bad track tables from the last SGEN
are to be reused. If this parameter is
omitted, a full analysis is performed. A
value of 1 may be entered only when an
anaiysis has been made on a previous
SGEN effort. If SGL is on slave disc,
bypass (SET 1) the bad track analysis.

Bad-track or RMD partitioning analysis is performed
following input cf the EDR directive. When that process is
complete, the VORTEX rucleus or resident-task processor is
loaded into main memory.

Examples: Specify redefinition of resident tasks only.
EDR,R

Specify full system generation with no stack area, a
maximum of five partitions per RMD, 44 lines per page on
the list output, 026 keypunch mode, and a list map, and a
new bad track analysis is wanted.

EDR,S,0,0,5,4%4,26,L

Specity full system generation with 0500 addresses in the
stack area. a maximum of 20 partitions per RMD, 30 lines
per page on the list output, 029 keypunch mode, and sup-
pression of the iist map. Assume bad track tables from
the tast SGEN are still good. and reuse them.

EDR,S,0,0500,20,30,29,0,1

15.5.16 Required Directives

VORTEX system including writable control store (WCS)
must include an EQP,WCS.. directive.

15-18

Systems without a WCS must delete certain WCS support
software modules. In particular, the following directives
should be included to delete the MIUTIL and WCSRLD
tasks:

LDE,FMIUTI
LDE, FWHCSRL

In addition, the following directives may optionally be used
to delete the remaining microprogramming support mod-
ules. These modules may be used on systems without WCS,
but their deletion will make extra space available in the
background library. The following directives delete the
microprogram assembiler and the simulator:

LDE, BMIDAS
LDE, BMICSI

Systems including VTAM require a DEF directive to define
the LcB address. The format is:
DEF, V$LcWn, aaaaaa where n is the DCM number
and aaaaaa is the LcB address for the DCM

Systems inctuding a statos printer/plotter require a DEF
directive to define the bed width. The format is:

DEF, V§SWcm,a
where ¢ = controller number
m = model code

a = 0 for 81/2 inches 4 = with SLIB
"1 for 11 inches 5 = with SLIB

2 for 14-5/8 inches 6 = with SLIB

- 3 for 22 inches 7 = with SLIB

15.6 BUILDING THE VORTEX NUCLEUS

if a full system generation has been requested by the S
form of an EDR directive (section 15.5.15), the nucleus
processor is loaded upon completion of directive process-
ing. Once loaded, the nucleus processor reads the SGL
routines and builds the VORTEX nucleus as specified by
the routines and the SGEN control records.

There are three SGEN control records used in building the
nucleus:

. SLM Start load module

. TDF Build task-identification block
. MEM Default extra memory pages
. END End of nucleus library

Normally these control records are used only to replace
existing SGL control records.

VORTEX nucleus processing consists of the automatic
reading of control records and object modules from the
SGL, and, according to the specifications made by SGEN
directives, either ignoring the item or incorporating it into
the VORTEX nucleus. The only manual operations are the
addition and replacement of object modules during system
generation. In these cases, follow the procedures given in
section 15.5.5 and 15.5.6, respectively.

15.6.1 SLM (Start Load Module)
Directive

Thus directive specifies the beginning of a load module. its
presence indicates the beginning of the system initializer or
VORTEX nucleus. The directive has the general form

SLM,name

where name 1s the name of the load module that follows the
directive

Example: Indicate the beginning of the VORTEX nucleus.

SLM, VORTEX

15.6.2 TDF (Build Task-ldentification Block)
Directive :

This directive specifies all parameters necessary to build a
task identification block in the VORTEX nucleus. It has the
general form

TOF name,exec ctrl stat leveli ,V75
k—— 3 o

SYSTEM GENERATION

where

name is the name (1 to 6 aiphanumeric
characters) given to the TIDB for linking
purposes

exec is the name (1 to 6 alphanumeric
characters) associated with the
execution address of the task

ctrl is the name (1 to 6 alphanumeric
characters) of the controlier table
required for Teletype and CRT
processing tasks, or is O for any other
task

stat is the 16-bit TIDB status word where the
settings of the individual bits have the
significance shown in table 15.5

levl is the priority level of the related tasks

V75 specifies long TIDB for V75 system

Example: Define a foreground resident task PROG1
on priority level 10 to execute on boot. N

The TDF directive causes a resident T{DB to be created for
the specified task. The task itself may or may not be a
resident task, as defined by the status word (stat). See
section 15513 for generation of resident tasks without
resident TIDB.

Table 15-5. TIDB Status-Word Bits

Explanation

The task is suspended during the
processing of a higher-priority
task. The contents of volatile
registers are stored in TIDB
words 12-16 (interrupt stack).

Bit When Set indicates
15 Interrupt suspended
14 Task suspended
13 Task aborted

The task is suspended because
of 1/0 or because it is wait-
ing to be activated by an inter-
rupt, time delay, or another
task. The task is activated
whenever this bit_is_zero, or

if TIDB word 3 has an inter
rupt pending and the task ex-
pects the interrupt

The task is not activated. All
stacked 1/0 is aborted, but
currently active 1/0 is com-
pleted.

15-19

SYSTEM GENEHATION

Table 15-5. TIOE Status-Word Bits (continued)

Bit

12

11

10

3

e G am am ov Ee Am e %e we A A e e

2
1

15.6.3 END Directive

When Set indicates

Task exited

TIDB resident

Task resident

Foreground task

Check-point flag

Task scheduled by
time increment

Time delay active

Task checkpointed

Error in task

Task interrupt expected

Overlay task

Task-schedule this task

Task searched, allo-

cated and loaded

This directive indicates the end of the system initializer or

the VORTEX nucleus. !t has the form

END

Example: indicate the end of the system initializer.

15-20

Explanation

The task is not activated. All
stacked and currently active

170 is completed.

The TIDB (drivers, task-
interrupt processors, resident
tasks, and time-scheduled tasks)
is resident and not released
when the task is aborted or
exited.

The task is resident and not
released when aborted or
exited.

The task is in protected fore-
ground.

Set: may be check-pointed by a lower
priority task.

Reset: may not be check-pointed by a
lower priority task.

The task becomes nonsuspended
when a specified time interval
is reached.

The clock decrements the time
counter that, upon reaching zero,
clears bit 14.

The background task is check-
pointed and suspended. 1/0 is
not activated.

The task contains an error that
will cause an error message to
be output.

A task interrupt i1s expected.

The task contains overlays.

The scheduling task is suspended
until the scheduled task exits
or aborts..

The task is loaded in memory and
1s ready for execution.

END

15.6.4 MEM Directive

This optional directive performs the same function as the
same directive in LMGEN (see section 6.2.7). The directive
has the generai form

MEM n

where
n 1s the number of extra pages desired.

This directive, if used, must appear after the last ESB
directive and before the END directive.

15.6.5 Memory Parity Considerations

Memory parity is not a supported feature under VORTEX.
For those systems which require the use of memory parity,
the user may write his own memory-parity service routine
(see section 14) and add it to the system. The following are
considerations when using memory parity:

+ The memory parity interrupt trap must be an even
modulo-8 address, e.g., 010, 0100, 0110, 0200, etc. The
exact address depends upon the number of PIMs in
the system. For example, a system with 3 PIMs can
use any of the following addresses: 0160, 0170, 0200,
0230, 0240, 0250, 0260, 0270, or 010. If 4 PIMs are
in the system, then any of the above addresses except
for 0160 and 0170 may be used. In the case where all
8 PIMs are used, the only available address will be
010.

For trap addresses between 0100 and 0277, the SGEN
PIM directive, specifying the direct connect option,
may be used to link up the trap address with the user’s
memory-parity routine. If a trap address of 010 is used,
the PIM directive cannot be used. In this case, the
easiest means of linking the trap address and the
service routine would be to modify the low-core”
module (VSLMEMBK) to specify an EXT to the user's
interrupt service routine.

No enable/disable memory parity instructions are
required and hence no changes are required for the
systemn initializer.

15.7 BUILDING THE SYSTEM LIBRARIES AND
RESIDENT TASK CONFIGURATION

If a full system generation has been requested by the S
torm of an EDR directive (section 15.5.15), the library
generator is loaded upon completion of nucleus processing.
if only reconfiguration of resident tasks has been requested
(R form of the EDR directive), the resident task configura-
tor is loaded immediately after directive processing.

A load module is 3 logically complete task or operation that
can be executed by the VORTEX system in foreground or
background. It resides in the foreground or background
library, or in the user library. Load modules are constructed
from sets of binary object modules interspersed with
alphanumeric contro! records. The control records indicate
the beginning and end of data for incorporation into each

SYSTEM GENERATION

load module, and specify certain parameters to the ioad
module. The group of object modules and control records
used to construct a load module is calied a load-module
package (LMP). Figure 155 shows an LMP for a load
module without overlays, and figure 15-6 shows an LMP for
a load module with overlays. Each LMP runs from a SLM
control record to an END control record, and includes all
modules and records between the SLM and END.

StM namel

TID,name2,. . .

| Object Modules Comprising
the Root Segement

ESB
END

NOTE:

* = Alphanumeric control record

Figure 15-5. Load Module Package for Module Without
Overlays :

There are tive SGEN control records used in building the
library:

. SLM Start toad module

. TID Task-identification block specitication
- OovL Overlay

. ESB End of segment

- END

Library processing consists of the automatic reading ot
control records and object moduies from the SGL, and
construction of the library from these inputs. The only
manual operations are the addition and replacement of
load modules. In these cases, follow the procedures given in
sections 15.5.8 and 15.5.9, respectively.

Resident-task configuration takes place upon completion of
library processing. All tasks specified by TSK directives
(section 15.5.13) are copied from the foreground library
into the VORTEX nucleus, thus becoming resident tasks. To
change the resident-task configuration of a previously
generated system, input the TSK directives followed by the
R form of the EDR directive (section 15.5.15), thus
bypassing nucleus and library processing and allowing the
resideni-task configurator to alter the existing system.
Note: If a specified program is not found in the
foreground library, configuration continues, but an appro-
priate message is output.

15-21

SYSTEM GENERATION

15.7.1 SLM (Start LMP) Directive

This directive indicates the start of an LMP. it has the
general form

SLM,name
where name is the name of the LMP that begins with this
directive.
Example: Indicate the start of the LMP named ABC.

SLM,ABC

15.7.2 TID (TiDB Specification)
Directive

This directive contains the parameters necessary for the
generation of the task-identification block required for each
generated load mocule. The TID directive has the general
form '

TiD,name, mode,ovly, lun

where

name is the name (one to six alphanumeric
characters) of the task
mode is 1 if the task is a background task, or 2

ifitis a foreground task

ovly is the number of overlay segments, or 0
it the task has no overiay segments,
(note that the value 1 is invalid)

un 1s the number of the logical unit onto
which the task is to be cataloged

Once a TID directive is input and processed, object
modules are input, processed, and output to the specified
logical unit until the ESB directive (section 15.7.4) is found.

Examples: Specity a TIDB for a task PROGI without
overlays for cataloging on the BL unit (105).

TID,PROG1,1,0, 105

Specify a TIDB for the task PROG2 with four overlay
segments for cataloging on an FL unit (106).

TID,PROG2,2,4, 106

1522

Note:_ If a specified program is not found in the foreground
library, configuration continues, but an appropriate mes-
sage is output.

* | SLM namel

® | TiD,name2,. . .

[Object Modules Comprising

| the Root Segment i
¢ | ESB
¢ 1 OVL name3,. . .

[Object Modules Comprising 1
 the First Overlay Segment |

* | ESB

* 1 OVL,named,. . .

Object Modules Comprising |
the Second Overlay Segment

| Object Modules Comprising

the nth Overlay Segment
* | ESB

* | END

NOTE:

* = Alphanumeric control record

Figure 15-6. Load Module Package for Module With
Overlays

15.7.3 OVL (Overlay) Directive

This directive indicates the beginning of an overlay
segment. The OVL directive has the general form

OVL segname

where segname is the name (one to six alphanumeric
characters) of the overlay segment.

Example: Indicate the beginning of the overlay segment
SINE.

OVL, SINE

15.7.4 ESB (End Segment) Directive

This directive indicates the end of a segment, i.e,, that all
object modules have been loaded and processed. The
directive has the form

ESB
The ESB directive causes the searching of the CL library,
which was generated during nucleus processing, to satisfy
undefined externals.
The ESB directive concludes both root segments (following
TID, section 15.7.2) and overlay segments (following OVL,
section 15.7.3) of a load module.
Example: indicate the end of a segment.

ESB

15.7.5 END (End Library) Directive

This directive indicates the end of load-module generation.
It has the form

END
Example: Specify the end of load-module generation.

END

15.8 SYSTEM INITIALIZATION AND
OUTPUT LISTINGS

Upon completion of load-module processing, SGEN outputs
on the OC and LIS units the message

VORTEX SYSTEM READY

The system initializer and VORTEX nucleus are then loaded
into memory, the initializer is executed to initialize the
system, and the nucleus is executed to begin system
operation. If writable control store is present in the system,
the following messages will appear on the OC device at this
time:

I010,WCSRLD
FILE WCSING NOT POUND
WCS RELOAD ABORTED

These messages are output by the WCS reload task. in
WCS systems, this task is automatically scheduled upon
loading the system in order to restore WCS contents. To do

SYSTEM GENERATION

this, it uses the contents for WCS which were saved on a
disc file the last time WCS was loaded. At this point,
however, WCS has not yet been loaded. Thus, the reload
task cannot restore WCS and exits after outputting the
above messages. At this time, the OM iibrary should be
loaded and build on the RMD using FMAIN.

The OM library is provided as job streams as the second
through thirty-fifth files on the SGL An EQF separates the
SGL from the OM stream. A system generation leaves
magnetic tape and card SGLs prior to this EOF, thus it
must be skipped over before executing the OM job stream.
For disc SGLs the OM library object modules are on the
second partition of the disc pack (DcuB). Refer to the
VORTEX/VORTEX 1 Installation Manual for details.

The VORTEX system is now operating with the peripherais
in the status specified by TID control records.

If the EDR directive specified a listing, linking information
is listed on the LIS unit during nucleus processing and
library generation. Regardless of the EDR directive, RMD
and resident-task information is listed during nucleus
processing or resident-task configuration, respectively.
Figures 15-7 through 15-10 show the listing formats of load
maps for the VORTEX nucleus, the library processor, the
RMD partitions, and the resident tasks.

CORE RESIDENT LIBRARY

NAME LOCATION
AAA 017285
BBB 021255
ZZZ 075777

NONSCHEDULED TASKS

NAME LOCATION
TBABC 072620
TBDEF 074840
TBXYZ 076400

Figure 15-7. VORTEX Nucleus Load Map

15-23

SYSTEM GENERATION

SLM,BGTSKI

TIiD,JCP,1,0,105

ESB

MOP
QRS

.

TUV
SLM,PGTSKI

A
R

A

032556
000200

032501

TID,V30PCM,2,8,106

ESB
GHI
JKL

MNO

Figure 15-3. Library Processor Load Map

RMD PARTITIONING

NAME

DOOA
DooB
DoocC
DooD
DOOR
poor
DOOG
DOOH

DO 1A
DO1B
DO 1C
DO1D

FIRST
TRACK

0007
0009
0022
0054
0094
0102
0126
013g

0001
004G
0100
0150

R
R

R

000010
000012

000077

LAST
TRACK

0008
0028
0053
0093
0101
0119
0137
0203

0039
0099
0189
02013

Figure 15-9. RMD Partition Listing

MEMORY RESIDENT TASKS

NAME

PROG ¢
PROG2
PROG3
PROG Y4

LOCATIONS

014630
014630
NOT POUND
014500

Figure 15-10. Resident-Task Load Map

1524

BAD
TRACKS

0000
0000
0000
0000
0000
00GoO
0000
0000

0000
00G0O
0000
0000

PAGES (OCTAL)

ALLOCATED TO
0 PAGE 0 SYSTEM DATA

1 - 50 UNALLOCATED
51 - 72 NUCLEUS PROGRAM MODULE
72 - 75 NUCLEUS TABLE MODULE

75 GLOBAL FCB PAGE
75 FOREGROUND BLANK COMMON
100 - 177 UNALLOCATED

VORTEX SYSTEM READY

Figure 15-11. Physical Memory Allocation

15.9 SYSTEM GENERATION EXAMPLES

EXAMPLE 1

Problem: Generate a VORTEX system using the following
hardware:

a.

b.

Computer with 32K main memory

A model 70-7610 (620-37) disc unit with device address
0160onBIC20

Teletype keyboard/printer

. Card reader

Two buffer interlace controllers (BICs) with device
addresses 020 and 022

One priority interrupt module (PIM) with device
address 040

8. No writable control store

and having the characteristics listed below:

a.

b.

f.

Foreground common size = 0200
Storage/reentry stack area size = 0200

Number of disc partitions = 9

All eight interrupt lines connected through a common
interrupt handler 0 = BIC1, 1 = BIC2,2 = CR, 3 =
Disc seek, 4 = TY read, 5 = TY write, 6.7
unassigned

One user-coded task added to the resident module
(PROGI)

JCP replaced with a new version

8 One usercoded load module added to the background

h.

library (after LMGEN) (PROG2)

The systern file listed after system generation

Procedure:
Step

User Action

Load and execute the card
reader loader (table 15.-1)

On the OC unit, input

DIR = TYO0A,01

LiB = CROOA,030
ALT = CROOA,030
LIS = TY00A,01

SYS = D00B,016,020

On the Teletype (DIR unit),
type

CLK,100,100,20
MRY,757777,0200,32
EQP,D08,016,1,020,3
EQP,TY0A,01,1,0,0
EQP,CROA,030,1,022,0
PRT,DO0A,2,C;D00B,20 F
PRT,D00C,25,E;DO0D,40,D
PRT,DOOE,8,S;D00F, 18,8
PRT,D00G,18,*;D00H,52, *
PRT,D00I,14,*

SYSTEM GENERATION

SGEN Response

Loads the /0 interrogation
routine punched cards from
the card reader, and outputs
on the OC unit

1/0 INTERROGATION

Loads the SGEN drivers and
directive processor, and
outputs

INPUT DIRECTIVES

Processes the directives,
partitions the cisc, loads
the nucleus processor and
builds the nucleus, loads
the library processor and
builds the library until

load module JCP is encoun-
tered, and outputs

REPLACE BJCP
READY

ASN,1 = TY00,2 = TY00,3 = TYQO
ASN4 = CR00,5 = TY00,6 = CROO
ASN,7 = D0OI,8 = DOOH,9 = DOOG
ASN,10 = DOOH,11 = TYQ0,12 = TYOO
ASN,180 = DOOH,181 = DOO}

Pii4,03,TBD0B,01,0;02, TECROA,01,0
PIM,03,T8D0B,01,0;04, TBTYOA 01,0

PIM,05, TBYYO0A 02,0
TSK,PROG1

LRE,BJCP
LAD,BLMGEN

LDE, FMIUTI

LDE, FRRICSI
LDE,FMIDAS
LDE,FNCSRL
EDR,S,20,0200,9,61,26,L
Load revised version of

BJCP load module in the
card reader, and on DIR

type:

ALT

Load the remainder of the
load moduie library in the
card reader, and on DIR type

L8

Load the PROG1 load module
in the card reader, and on
DIR type

Reads and processes the
new load module, and
outputs:

READY

Processes the load mod-
ule library until the
completion of LMGEN,
and outputs

ADD AFTER BLIGEN
READY

Reads and processes PRCG:,.
and outputs

15-28%

SYSTEM GENZRATION

1526

Frocedure: (continued)

Step

User Action

ALT

Load the PROGZ2 load module
in the card reacder, and on
DIR type

ALT

Load the remainder of the
load module library in the
card reader, and on DIR type

LIB

None

EXAMPLE 2

SGEN Response
READY

Reads and processes PROG2,
and outputs

READY

Processes the remainder of
the load module library,
copies PROG! from the FL
unit to the VORTEX nucleus,
lists the resident task in-
formation, and outputs on
OC and LIS

VORTEX SYSTEM READY

Loads and initializes the
VORTEX nucleus

Problem: Replace the current resident tasks in the
toreground library with the tasks listed below in an
operational VORTEX system. Assume the SGL is on
miagnetic tape unit 0. The system has a line printer and a

620-48 RMD on DAO14. ALT is on the slave MT.

Procedure:
Step
1

"PROG1
ABC
TEST
EFG

User Acticn

Load and execute the magnetic

tape loader (tabie 15-1)

On the OC unit, input

DIR = TY00A,01

LIB = MT00A,010

ALT = MTO1A,010

LIS = LPOOA,035

SYS = DOO0A2,014,020

On the Teletype (DiR unit),
type

TSK,PROG1,ABC
TSK,TEST.EFG
EDR,R

None

SGEN Response

Loads the 1/0 interrogation
routine from magnetic tape
and outputs from the OC unit

10 INTERROGATION

Loads the SGEN drivers and
directive processor, and
outputs

INPUT DIRECTIVES

Processes the directives,
loads the resident-task
processor, enters the
PROGI, ABC, TEST, and
EFG load modules from FL,
lists resident information,
and outputs on OC and LIS

VORTEX SYSTEM READY

Loads and initializes
the VORTEX nucleus

SECTION 16
SYSTEM MAINTENANCE

The VORTEX system-maintenance component (SMAIN) is a
background task that maintains the system-generation
library (SGL). The SGL (figure 15-2) comprises all object
modules and their related control records required to
generate a generalized VORTEX operating system.

16.1 ORGANIZATION

SMAIN is scheduled for execution by inputting the job-

control-processor (JCP) directive /SMAIN (section 4.2.21).

SYSTEM INPUT
(sn
LOGICAL UNIT

SMAIN DIREC-
TIVE INPUT

Once SMAIN is so scheduled, loaded, and executed, SMAIN
directives can be input from the Si logical unit to maintain
the SGL. No processing of the SGL takes place before all
SMAIN directives are input and processed. Then user-
specified object modules and/or controt records are added,
deleted, or replaced to generate a new SGL.

SMAIN has a symbol-table area for 200 symbols at five
words per symbol. To increase this, input a /MEM directive
(section 4.2.5), where each 512-word block will increase the
capacity of the table by 100 symbots.

SYSTEM OUTPUT
(SO)
LOGICAL UNIT

ERROR MESSAGES

AND RECOVERY

LOGICAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE IN

OLD SYSTEM
GENERATION
LIBRARY (SGL)

LOGICAL uniIT
SPECIFIED BY
SAAIN DIKECTIVE ALt

tNEw OB IECT
MQODULES Atsl:
CONTROL

RECORDS

LOGICAL uNIT
SPECIFIED BY
SMAIN DIRECTIVE OUT

NEW SYSTEM
GENERATION
LIBRARY (SGL)

SGL AND SMAIN
DIRECTIVE
LISTHIGS

L1sT OuTPUT

LOGICAL UNIT

VrH-28

Figure 16-1. SMAIN Block Diagram

16 1

SYSTEM MAINTENANCE

INPUTS to the SMAIN comprise:

a. System-maintensnce directives (section 16.2) input
through the S! logical unit.

b. The old SGL input through the logical unit specified by
the IN directive (section 16.2.1).

c. New or replscement object modules and/or control
records input through the logical unit specified by the
ALT directive (section 16.2.3).

d Error-recovery inputs entered via the SO logical unit.

System-maintenance diractives specify both the changes to
be made in the SGL, and the logical units to be used in
making these changes. The directives are input through the
St logical unit ard listed, when specified, on the LO logica!
unit. if the Sl logica! unit is a Teletype or a CRT device, the
message SM** s output to indicate that the Sl unit is
waiting for SMAIN input.

The old SGL contains three types of records: 1) control
records and cornments (ASCH), 2) the system-generation
relocatable lcader and S00TLODR (the only SGL absolute
core-image records), and 3) relocatable object modules
such as are ouiput by the DAS MR _assembler and the

FORTRAN compiler.

New or replacement cbiect modules and/or control records
have the same specifications as their equivalents in the old
SGL.

Error-recovery inputs are entered by the operator on the
SO logical unit tc recover from errors in SMAIN operations.
Error messages applicable to this component are given
Appendix A.16. Recovery from the type of error represented
by invalid directives or parameters is by either of the
following:

a. Input the character C on the SO unit, thus directing
SMAIN to go to the Si unit for the next directive.

b Input the corrected directive on the SO unit for
processing. The next SMAIN directive is then input
from the Si unit.

Recovery from errors encountered while processing object
modules and/or control records is by either of the
following:

a. Input the character R on the SO unit, thus directing a
rereading and reprocessing of the last record.

b. Input the character P on the SO unit, thus directing a
rereading and reprocessing from the beginning of the
current object module or control record.

In the last two cases, repositioning is automatic if the error
involves a magnetic-tape unit or an RMD. Otherwise, such
repositioning is manual.

16-2

If recovery is not desired, input a JCP directive (section
4.2) on the 30 unit to abort the SMAIN task and schedule
the JCP for execution.

OUTPUTS from the SMAIN comprise:
a. The new SGL
b. Error messages
c. Thelisting of the old SGL, if requested

d. Directive images

The new SGL contains object modules and contro! records.
It is similar in structure to the old SGL.

Error messages applicable to SMAIN are output on the SO
and on LO logical units. The individual messages, errors,
and possible recovery actions are given in Appendix A.16.

The listing of the old SGL is output, if requested, on the LO
unit. The output consists of a list of all control records and
the contents of all object modules. At the top of each page,
the standard VORTEX heading is output.

The image of an object module is represented by the
identification name of the module, the date the module
was generated, the size (in words) of the module (0 for a
FORTRAN object module), and the external names refer-
enced by the module, in the following format:

jd-name date size entry-names external-names
Directive images are posted onto the LO unit, thus

providing a hardcopy of the SMAIN directives for perma-
nent reference.

16.1.1 Control Records

In SMAIN there are two types of control record:
a. SGL delimiters
b. Object-module delimiters
SGL delimiters divide the SGL into five parts. Each part is

separated from the following part by a control record of the
form

CTL, PARTO0ON

where n i1s the number of the following part, and the SGL
itselt is terminated by a control record of the form

CTL, ENDOFSGL *

Within SMAIN directives, these control records are refer-
enced in the following format

PARTOOOR
ENDOFSGL

Object-module delimiters precede and/or follow each group
of object modules within the SGL. Each delimiter is of one
of the forms

SLM,name
TID,name
OVL,name
TDF,name
ESB
END

The control records containing a name can be referenced
by use of the name alone in SMAIN directives. These
control records and their uses are described in the section
on the system-generator component (section 15).

A set of object modules preceded by an SLM control record
and followed by an END control record is known as a load-
module package (LMP). To add, delete, or replace an entire
LMP, merely reference the name associated with the SLM
control record. Thus, if the directive specifies deletion and
includes the name associated with the SLM record, the
entire LMP is deleted. Additions and replacements operate
analogously.

16.1.2 Object Modules

Relocatable object-module outputs from the DAS MR
assembler and the FORTRAN compiler are described in
appendix G.

16.1.3 System-Generation Library

The SGL is a collection of system programs in binary-object
form, and of control records in alphanumeric form, from

which a VORTEX system is generated. The structure of the
SGL is described in section 15.

16.2 SYSTEM-MAINTENANCE DIRECTIVES

This section describes the SMAIN directives:

. IN Specify input logical unit
. ouT Specify output logical unit
. ALT Specify input logical
, unit for new SGL items
. ADD Add items to the SGL
. REP Repiace SGL items
. DEL Delete itemns from the SGL
. LIST List the old SGL
. END End input of SMAIN directives

SYSTEM MAINTENANCE

SMAIN directives begin in column 1 and comprise
sequences of character strings having no embed:ied
bianks. The character strings are separated by commas (,)
or by equal signs (=). The directives are free-form and
blanks are permitted between the individual character
strings of the directive, i.e., before or after commas (or
equal signs). Although not required, a period (.) is a line
terminator. Comments can be inserted after the period.

The general form of an SMAIN directive is
name,p(1).p(2),...p(n)
where
name is one of the directive names given
above (any other character string
produces an error)
each p(n) is a parameter defined below under

the descriptions of the individual
directives

Numerical data can be octal or decimal. £ach octal number
has a leading zero. :

For greater clarity in the descriptions of the directives,
optional periods, optional blank separators between
character strings, and the optionat replacement of commas
(,) by equal signs (=) are omitted.

Error messages applicable to SMAIN directives are given in
Appendix A.16.

16.2.1 IN (Input Logical Unit) Directive

This directive specifies the logical unit from which the old
SGL is to be input. It has the genera! form

IN,lun, key, filename

where

hun is the name or number of the logical unit
to be used for the input of the old SGL

key is the protection code, if any, required to
address un
filename is the name of the input file only when

un is an RMD partition with a directory

There is no default value for lun. If it is not specified, any
attempt at SGL processing will cause an error message
output.

Once specified, the value of lun remains constant until

changed by a subsequent IN diractive. Each change of fun
requires a new IN directive.

163

SYSTEM MAINTENANCE

It lun specifies an MO partition, the RMD is rewound to

the first sector MIowing the ;‘art of tB‘ gniggn before
——— e ST,
.any processing {akes piace.

Examples: The old SGL resides on logical unit 4, the Pl
unit. Specify this unit to be the SGL input unit.

IN, 4

The old SGL resides on iogical unit 107, which requires the
protection code C. Specify this unit to be the SGL input
unit. (This is a non-directoried partition.)

IN,107,G

16.2.2 OUT (Outpe:t Logical Unit) Directive

This directive specifies the logical unit on which the new
SGL is to be output. it has the general form

OUT lun, key, filerame

where

lun 1s the name or number of the logicai unit
i to be used for the output of the new SGL

key is the protection code, if any, required to
address lun

tlename is the name of the output file when lun is
an RMD partition

The default vaiue of tun is zero. When lun is zero by
specification or by default, there is no output logical unit.

Once specified, the value of lun remains constant until
changed by a subsequent OUT directive. Each change of
lun requires a new OUT directive.

It lun specifies an RMD partition, the RMD is rewound to
the first sector foliowing the PST before any processing

takes place. The PST‘_';omprises one entry defining the
entire RMD.

Examples: Specify the PO logical unit, unit 10, to be the
output unit for the new 3GL.

ourt, 10

Specify that thers is to be no output logical unit.

our, 0

164

16.2.3 ALT (Aiternate Logical Unit)

Directive
This directive specifies the logical unit from which new
object module(s) and/or control record(s) are to be input to
the new SGL. It has the general form

ALT lun, key, filename

where

lun Is the name or number of the iogical unit
to be used for the input of new items to
the SGL

key ' is the protection code, if any, required to
address lun

filename is the name of the input file when lun is
an RMD partition

There is no default value for lun. If it is not specified, any
attempt to input new object modules or control records to
the SGL will cause an error message output.

Once specified, the value of lun remains constant until
changed by a subsequent ALT directive. AE?EE_C.“@“SS,Q”‘![
requires a new ALT directive. ”

Examples: Specify that new object modules and control
records are to be input to the SGL from the Bl logical unit
only.

ALT, 6

Make the same specification where Bi is an RMD partition
without a protection code. Use file FILEX.

ALT I, , PFILER

Note: SMAIN does not accept packed bianlL

" to unpack binary if necessary.

16.2.4 ADD Directive

This directive permits the addition of object modules and/
or control records during the generation of a new SGL, the
additions being made immediately after each of the items
specified by the parameters of the ADD directive. The
directive has the general form

ADD.p(1),p(2),....p(n)

\
where each p(n) is the name of an object module or control
record after which additions are to be made.

SMAIN copies object modules and control records from the
old SGL into the new SGL up to and an

specified of the parameters, no'!thoADD
e M i e pararies, B, of the ADK

ADD AFTER p(n)
SNes

is output to indicate that SMAIN is waiting for a control
character (Y or N) to be input on the SO logical unit.

If the control character input is Y, SMAIN adds the next
ghiect module or_control_racord .contained on the logical
unit specified by the ALT directive (section 16.2.3), then
repeats the message requesting another control character.
This continues until the control character input is N.

it the control character input is N, SMAIN assumes the
additions at this point are complete. It continues eopyin(

from the old SGL and outputs the message

END REPLACEBMENTS

/_’_\
The entire process is repeated when the next item speci
by one of the parameters, p(n), of the ADD directive is

found. The items in the directive nesd not be in the same / ©

as they appesr on the oid SGL.

Exampla: During generation of a new SGL, add object
module(s) and/or control record(s) after the old SGL
control record PART0001 and after the old SGL object
module LMP, the added items to be input from the logical
unit specified by the ALT directive. Input

ADD, PART0001, LMP

then, when the message

ADD APTER PART0001
SM*»

appears, input the control character Y. SMAIN then inputs
the next item on the logical unit specified by the ALT
directive, and again outputs the message

SM*»

and awaits another control character. If more is to be
added here, input Y. If no more additions are required at
this point, input N. After receiving the N, SMAIN outputs
the message

END REPLACEMENTS

and continues to read the old SGL and copy it into the new
SGL up to and including the object module LMP. SMAIN
then outputs the message

ADD APTER LNP
SMs»

at which time the process is repeated.

|

SYBTEM MAINTENANCE

NotoMPARTMOldoanolhantopmdoLMPhthc
oid SGL. If the positions of the items are reversed relative
to their order in the directive, the erder of messages will be
reversed. In any case, the items on the logical wmit
W»Mfmummmmmmoymto
be added 15 TG SGL

16.2.5 REP (Replace) Directive
This directive permits the replacement of object modules
and/or control records during generation of a new SGL.
The directive has the general form

REP.p(1).p(2),....0(n)

where each p(n) is the name of an object module or control
record that is to be replaced.

SMAlNoopmob)octmodulsandcontroarocordsfromthe
old SGL niers one specified
by one of the parameters, p(n), of the REP directive. SMAIN
then reads the item to be replaced, but does not copy it

into the new SGL. After this is comipleted, Thie message

REPLACE p(n)
SMee

is output to indicate that SMAIN is waiting for a control
character (Y or N) to be input on the SO iogical unit. These
control characters operate just as in the ADD directive
(section 16.2.4), allowing the addition (in this case,
replacement, since the parameter item was not copied into
the new SGL) of new items to the SGL. The items in the
directive need not be in the same order as they appear in
the old SGL.

Example: During generation of a new SGL, replace the oid
SGL object module IOCTL with object modules and/or
control records from the logical unit specified by an ALT
directive (section 16.2.3). Input

REPLACE, IOCTL
then, when the message

REP IOCTL
Siee

appears, continue as for an ADD directive (section 16.2.4).

16.2.6 DEL (Delete) Directive
This directive permits the deletion of object modules and/

or control records during generation of a new SGL The
directive has the general form

DEL,p(1),p(2),...p(N)

where each p(n) is the name of an cbject module or control
record that is to be deleted.

16-5

SYSTEM MAINTENANCE

SMAIN copies cbiect modules and control records from the
old SGL into the new SGL until it encounters one specified
by one of the prraraaters, p(w), f the DEL directive. SMAIN
then reads the item to be deleted, but does not copy it into
the new SGL. The items in the DEL directive need not be in
the same order as they appear on the old SGL.

It a listing of the cld SGL is specified either by .z LIST
directive (secticn 1€.2.7) or by the L parameter of an END
directive (16.2.8), the deleted items are preceded on the
listing by asterisks (*).

Example: During generation of a new SGL, delete the
following old SGL items: object moduie IOST and control
record LMGENCTL.

DEL, IOST, LMGENCTL

PAGE 11713772
= .
BT
S But,.PL
D L1
__B0QTLODR
. 1D NAME DATE SI2E
T Y$SGENLD 10/02/72 1581
R
1D _NAME DATE SIZE
- -YEDOOAL 02/24/72 36
2 ID NAME DATE L34 {3
..¥800042 02/24/72 36
T DATE 8IZ2E
4 VSDGUAS 02/24/72 36
T _ 10 KAME OATE SIZE
N YSD10A1 02/24/72 36
i ID NAME DATE S12¢€
Y2010A2 02/24/772 36
L 1D NaME DATE S12€
e V8D10AS 02724772 36
T 1D NaME DATE S1ZE
V802041 02/24/72 36

16.2.7 LIST Directive

This dwective lists, on the LD legeal uhit, We oid 88\ as
found on the logical unit specified by the SMAIN directive
IN (section 16.2.1). The LIST directive has the form

LIST

Example: List the old SGL.

LIST

Figure 16-2 shows the format of output from this directive.

SMAIN

VORTEX
ENTRY NAMES EXTERNAL NANES
SGLOR TPRDG ASIBUP
BATACK APUN
SPUl SLUN :
Lus ——
ENTRY NAMES EXTERNAL NANES
D00Ag ORWEQF DRSYAY _
DRSKAD DRAPILL.
DRRITE DRREND
ORREAD = ___
FNTRY NAMES EXTERNAL NAMRS
DOOA2 DRWEOF _DRATAY
ORSKRD DRAFIL
DRRITE DRREMD _
QRAREAD =~
ENTRY NAMES EXTERNAL NAMES
NO0AS ORNEDF DROTAT
ORSKRO.__DRAPIL
ORRITE DRAEND
ORREAD =
ENTRY NAMES EXTERNAL NAMER
D104t ORWEQF DRSTAT _
ORSKRD DRAFIL
ORRITE . DRREWD
DRREAD L
ENTRY NAMES EXTERNAL NANES
D10A2 DRWEQF _DRETAY
ORSKRO ORSPIL
DRRITE DRREWD
DRREAD .
ENTRY NAMES EXTERNAL NAMES
D10AS DRWEQF DRPTAT.
DRSKRD _DRSFIL
ORRITE ORREND
DRREAD o
ENTRY NAMES EXTERNAL NAMES
D20AY

Figure 16-2. SMAIN LIST Directive Listing

16-6

ORWEQOF ORJTAY

16.2.8 END Directive

This directive indicates that all ADD (section 16.2.4), REP
(section 16.2.5), and DEL (section 16.2.6) directives have
been input. END initiates the SGL maintenance process.
The directive has the general form

END,L

where L, if present, specifies that the old SGL is to be
listed.

Examples: After all ADD, REP, and DEL directives have
been input, initiate SGL maintenance processing.

END

Initiate the SGL maintenance processing as above, but list
the old SGL.

END, L

16.3 SYSTEM-MAINTENANCE OPERATION

The normal SMAIN operation consists of copying an
existing SGL from the logical unit specified by the IN
directive (section 16.2.1) to the logical unit specified by the
OUT directive (section 16.2.2), making the modifications
specified by the ADD (section 16.2. 4), REP (section 16.2.5),
and DEL (section 16.2.6) directives, and thus creating a
new SGL.

Input of the END directive (section 16.2.8) initiates the

QOpYINE process All ADD, REP, avnd DEL darectlves. if any,
must precede the END directive.

Modifications to the SGL are made through the logical unit
specified by the ALT directive (section 16.2.3). Such
modifications are in the form of additions and/or replace
ments of object modules and/or control records. (These
items can also be deleted, but this process does not, of
course, require input on the ALT unit.)

When an object module is input, SMAIN verifies that there
is no error with respect to check-sum, record size, loader
codes, sequence numbers, or structure.

/

v

SYSTEM MAINTENANCE

16.4 PROGRAMMING EXAMPLES

Example 1: Schedule SMAIN, copy the old SGL from
logical unit 4 onto logical unit 9 withou? listing the old SGL,
and return to the JCP.

/SMAIN
IN, 4
ouT, 9
END
/ENDJOB

Example 2: Schedule SMAIN; copy the old SGL from
logical unit 4 onto logical unit 9, hstmg the old SGL and
deleting object modules A, B, C, D, and E: and return to
the JCP.

/SMAIN

IN, 4

ouT, 9
DEL,A
DEL,B,C,D,E
END,L
/ENDJOB

Example 3: Schedule SMAIN, list the contents the old SGL
on logical unit 4, and return to the JCP.

/SMAIN
IN, 4
LIST
/ENDJOB

Example 4: Schedule SMAIN; copy the old SGL from
logical unit 4 onto logical unit 9 without listing the old SGL;
add object moduies or control records from logical unit 6
after control record PARTO002 and after object module A;
replace ioad module LMGEN and control record JCPDEF;
delete object modules B, C, D, and E: and return to the
JCP.

/SMAIN

IN, 4

our, 9

ALT, 8

ADD, PART0002,A
REP, LMGEN
DEL,B,C,D,E
REP, JCPDEF

END

/ENDJOB

16.7

SECTION 17
OPERATOR COMMUNICATION

The operator communicates with the VORTEX system
through the operator communication component by means
of operator key-in requests input through the operator
communication (OC) logical unit.

17.1 DEFINITIONS

An operator key-in request is a string of up to 80
characters beginning with a semicolon. The request is
initiated by the operator and is input through the OC unit.
An operator key-in request is independent of 1/0 requests
via the IOC (section 3) and, hence, is known as an
unsolicited request.

The operator communication (OC) logical unit is the logical
unit through which the operator inputs key-in requests.
There is only one OC unit in the VORTEX system. Initially,
the OC unit is the first Teletype, but this assignment can
be changed by use of the ;ASSIGN key-in request (section
17.2.9).

17.2 OPERATOR KEY-IN REQUESTS

This section describes the operator key-in requests:

. ;SCHED Schedule foreground task

. ;TSCHED Time-schedule foreground task
. /ATTACHR Attach foreground task to PIM line
. ;RESUME Resume task

. ;TIME Enter or display time-of-day

. ;DATE Enter date

. ;ABORT Abort task

. ;TSTAT Test task status

L ;ASSIGN Assign logical unit(s)

. ;DEVDN Device down

. ;DEVUP Device up

. IOLIST List logical-unit assignments

Operator key-in requests comprise sequences of character
strings having no embedded blanks. The character strings
are separated by commas (,) or by equal signs (=).
However, the key-in requests are free-form and blanks are
permitted between the individual character strings of the
key-in request, i.e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator.
Comments can be inserted after the period. A carriage
return is required to terminate any key-in request, however,
regardless of whether it contains a period.

The general form of an operator key-in request is

srequest,p(1),p(2),.....p(n)cr

where

request is one of the key-in requests listed above
in capital letters

each p(n) is a parameter defined under the
descriptions of the individual key-in
requests below

cr is the carriage return, which terminates
all operator key-in requests

Each operator key-in request begins with a semicolon ()
and ends with a carriage return. Parameters are separated
by commas. A backarrow (-) deletes the preceding
character. A backslash (\) deletes the entire present key-in
reguest.

Table 17-1 shows the system names of physical 1/0 devices
as used in operator key-in requests.

Peripherals for data communication are not used in
OPCOM request, but are controlled with the Network
Control Module (NCM) described in the VTAM Reference
Manual.

For greater clarity, optional blank separators between
character strings, and the optional replacement of commas
(,) by equal signs (=) are omitted from the descriptions of
the key-in requests.

Error messages applicable to operator key-in requests are
given in Appendix A.17.

Table 17-1. Physical 1/0 Devices

System Name Physical Device

DUM Dummy

CPcu Card punch

CRcu Card reader

CTcu Cathode ray tube (CRT) device

Dcup Rotating-memory device (RMD)
(disc/drum)

LPcu Line printer or Statos-31/33

MTcu Magnetic tape unit

PTcu High-speed paper tape reader/punch

TYcu Teletype printer/keyboard

CLmA, COmA Process 1/0

OPERATOR COMMUNICATION

Table 17-1. Physical i/0 Devices (continued)

System Name Physical Device

MXcu Communication Multiplexor
TCco Psuedo TCM
SPco Spool Unit

NOTES

¢ = Controller number. For each type of device,
controllers are numbered from O as required.

u = Unit number. For each controfler, units are
numbered from O as required (within the
capacity of the controller).

cu can be omitted to specify unit O controller 0,
e.g., CROO or CR.

p = Partition letter. RMD partitions are iettered
from A to T as required to refer to a partition on

the specified device, e.g., DOOA.

m = Multiplexor number

17.2.1 ;SCHED (Schedule Foreground Task)
Key-In Request

This key-in request immediately schedules the specified

foreground-library task for execution at the designated

priority level. It has the general form

;SCHED task, level,iun, key

where

task 1s the name of the foreground task to be
scheduled

level is the priority level (from 2 to 31) of
the scheduled task

lun is the number or name of the
toreground-library rotating-memory
logical unit where the scheduled task
resides (O for scheduling a resident
foreground task)

key is the protection code, if any, required to

address lun

A dump of the contents of a library can be obtained by use
of the VORTEX file-maintenance component (section 9).

17-2

Operator key-in examples: Schedule on priority level 3
the foreground task DOTASK residing on the FL logical
unit. Use F as the protection key.

; SCHED, DOTASK, 3 ,FL,F

Schedule on priority level 9 the resident foreground task
COPYIO.
; SCHED,COPYI0,9,0

17.2.2 ;TSCHED (Time-Schedule Foreground
Task) Key-In Request

This key-in request schedules the specified foreground-
library task for execution at the designated time-of-day and
priority level. It has the general form

;TSCHED, task level, lun key, time

where

task 1s the name of the foreground task to be
scheduled

leve! is the priority level (from 2 to 31) of the
scheduled) task

lun 1S the number or name of the
foreground-library rotating-memory
logical unit where the scheduled task
resides (O for scheduling a resident
foreground task)

key is the protection code, if any, required to
address lun

time 1 the scheduled time in hours (from 00
to 23) and minutes (from 00 to 59), e.g.,
1945 tor 7:.45p.m.

Operator key-in examples. Schedule for execution at
11:30 p.m. on priority level 3 the foreground task DOTASK
residing on the US logical unit. Use T as the protection key.
; TSCHED,DOTASK,3,US,T, 2330

Schedule for execution at 8:30 a.m. on priority level 9 the
resident foreground task TESTIO.

1 TSCHED, TESTIO,9.,0,0830

17.2.3 ;ATTACH Key-In Request

This key-in request attaches the specified foreground task
to the designated PIM (priority interrupt module) line. It
has the general form

;ATTACH, task line iew enable

where
task is the name of the foreground task to be
attached to the PIM line
line is the two-digit number of the PIM line to

which the task is to be attached, with the

tens digit specifying the PIM number (O-

7) and the units digit the line number (0-
7)on that PIM

iew is the valtue (from 01 to 0177777) of the
interrupt event word (section 14 or
appendix F) and identities the bit(s)
to be set in the task TIDB when an
interrupt occurs on line

enable is E (defauit value) to enable the line, or
D to disable it

The task can be resident or nonresident. However, its TIDB
must have been defined at system-generation time
ATTACH provides a flexible way of altering interrupt
assignments without having to regenerate the system.

Operator key-in example: Connect task INTRPT
to PIM 0, line 3. Use 020 as the interrupt event
word value (i.e., set bit 4 of the interrupt event
word in TIDB if INTRPT is scheduled due to an
interrupt on PIM 0, line 3).

;s ATTACH, INTRPT, 03,020

A PIM directive with the PIM line to be attached must have
been specified during system generation to set up the link
to the interrupt line handler region.

Note: This directive detaches the PIM from a previous task.

17.2.4 ;RESUME Key-In Request

This key-in request reactivates the specified task for
execution at its specified priority level. It has the general

form
JRESUME task

where task 1s the name of the task to be resumed

OPERATOR COMMUNICATION

Operator key-in exampie: Resume the task DOTASK.

; RESUME , DOTASK

17.2.5 ;TIME Key-In Request

This key-in request enters the specified time, if any, as
system time-of-day. If no time is specified in the key-in
request, ;TIME displays the current time-of-day. The key-in
request has the general form

;TIME time

where time is the time-of-day in hours (from 00 to 23) and
minutes (from 00 to 59), e.g., 1945 for 7:45 p.m

The time-of-day output for a ;TIME request without time 1s
of the form

T hhmm HRS
where hhmm is the time of day in hours and minutes.

Operator key-in example: Set the system time-of-day to
3:00 p.m.

;i TIME, 1500

17.2.6 ;DATE Key-in Request

This key-in request enters the specitied date as the system
date. It has the general form

;DATE,mm/dd/yy

where
mm is the month (01 to 12)
dd is the day (01 to 31)
yy 15 the year (00 to 99)

Note that since the entire date is considered one
parameter, there are no commas other than the one
immediately following DATE. The components of the date
are, however, separated by slashes as shown. VORTEX does
not support date roll-over.

Operator key-in example: Set the system date to 25
December 1971

; DATE, 12/25/71

OPERATOR COMMUNICATION

17.2.7 ;ABORT Key-in Request

This key-in request aborts the specified task. It has the
general form

;ABORT task
where task is the name of the task to be aborted

Operator key-in example: Abort the task DOTASK.

; ABORT, DOTASK

17.2.8 ;TSTAT (Task Status) Key-In Request
This key-in request outputs the status of the specified task,
if any. If no task is specified, ;TSTAT outputs the status of
all tasks gueued on the zctive task identification block
(TIDB) stack. This request is not applicable to tasks having
no established TiDB. The request has the general form

;TSTAT task

where task is the name ot the task whose status is to be
output.

The status-output for a . TSTAT key in request 1s of the form

task Plevel Sstatus TMmin TSmilli

where

task is the name of the task whose status is
being output

level is the priority level (from O to 31) of the
task

status is the status of the task as found in

words 1 and 2 of the TIDB (table 17 2)

min is the value of the counter in TIDB word
it

milh is the value of the counter in TIDB word

10

The values of min and milli are printed only if bit 6 and/or
7 of TIDB word 1 (table 17-2) is set.

Table 17-2. Task Status (TIDB Words 1 and 2)

TiDB

Word Bit Meaning of Set Bit
1 15 Suspend interrupt

1 14 Suspend task

1 13 Abort task

17-4

1 12 ~Exit from task

1 11 TIOB resident

1 10 Resident task

1 9 Foreground task

1 8 Protected task

1 7 Task scheduled by time-delay

1 6 Time-delay active

1 5 Task waiting to be loaded

(check pointed)

1 4 Task error

1 3 Task interrupt expected

1 2 Overlay task

1 1 Scheduled task upon
termination of active

. task

1 0 Task search-aliocated-loaded

2 15 Task opened, but not loaded

2 14 Task loaded in background
(checkpoint) area

2 13 Load overlay

2 12 Background checkpoint /0 wait

2 11 Allocation override flag

2 10 Background being checkpointed

2 9 TIDB not available

2 8 Unused

2 7 Unused

2 6 Delay type 3 request

2 5-0 Task priority level

Operator key-in examples: Request the output of the
status of the task BIGJOB

i TSTAT,BIGJOB
The output wil be

BIGJOB POZ S0O00100, 000000 TMO77777 TS077430

if the status BIGJOB is such that it is on priority level 2,
contains a status of 0100 in TIDB words 1 and 2, with time
counters (TIDB words 1 and 10) of 077777 and 077430,
respectively. The latter two octal complement counters
show zero minutes and 0347 5-millisecond increments.

Request the output of the status of all active tasks.

;i TSTAT

and receive as a typical response

ViDB P24 sou7401, 000000
VSTYA P23 so47411, 000000
VSTYA P23 so47411, 000000
VZLPA P22 so47401, 0000CO
VZCRA P22 sou47401, 000000

VZMTA P22 sS047401, 000000
VZIMTA P22 S047401, 000000
V$OPCM P10 S005405, 020000
PROG1 POS S041501, 000000
Jcp PO S044400, 000000

17.2.9 ;ASSIGN Key-In Request

This key-in request equates and assigns particular logicai
units to specific 1/0 devices. It has the general form

JASSIGNKT) = r(1),1(2) = r(2). . I(n)=r(n)

where
each Kn) is a logical-unit number (e.g., 12) or
name (e.g., Sl)
each r(n) is 3 logical-unit number or name, or a

physical-device system name (e.g., TY0O
or TY, table 17-1)

The logical unit to the left of the equal sign 'n each pair is
assigned to the unit/device to the night

An inoperabie device, i.e., one declared down by ;DEVDN

(section 17.2.10), cannot be assigned. A logical unit
designated as unassignable (unit numbers 101 through
179) cannot be reassigned.

Operator key-in examples: Assign the card reader CROO
as the Si logicai unit and the Teletype TYO1 as the OC unit.

iASSIGN,SI=CR0O0,0C=TYO1
Assign a dummy device as the Pl urit

;ASSIGN, PI=DUM

17.2.10 ;DEVDN (Device Down) Key-In
Request
This key-in request declares the specified physical device
inoperable for system use. It is not applicabie to the OC
unit or to devices containing system libraries. The request
has the general form
;DEVDN,device

where device is the system name of the physical device in
tour ASCII characters, e.g., LPOO (or 1.P), TYO1, (table 17-1)

Operator key-in example, Declare TYOl inoperable for
system use.

; DEVDN, TYO 1

OPERATOR COMMUNICATION

17.2.11 ;DEVUP (Device Up) Key-in
Request

This keyin request declares the specified physical device
operational for system use. It has the general form

:DEVUP device

where device is the system name of the physical device in
four ASCII characters, e.g., LPOO (or LP), TYO1 (tabte 17.1)

Operator key-in example: Declare TY02 operational for
system use.

; DEVUP,TY02

17.2.12 ;IOLIST (List 1/0) Key-In
Request

This key-in request outputs a listing of the specified iogical-
unit assignments, if any. If no logical unit is specified,
JIOLIST outputs all logical-unit assignments with names.
The key-in request has the general form

AOUIST lun(l),lun(2), .. lun(n)

where each lun(n) is the name or number of a logical unit,
eg., SLS.

Where the ;IOLIST key-in request specifies a logical-unit
name, the output is of the form

name (number) = device D

where
name is the name of the logical unit, e g.. LO
number is the number of that logical unit. e g..
005
device 1s the name of the physicai device
assigned, e.g., LPOO
D it present, indicates that the physical

device has been declared down and is
thus inoperable

I1f the key in request specifies the number rather than the
name of the logical unit, the output will repeat the number
in both the name and number fields

In a listing ot all assignments, the output uses a name and
number where applicable. Logical units without names
assigned at system-generation time are not listed and must
be individually specified by number.

OPERATOR COMMUNICATION

Operator key-in examples: Request the output of the ; IOLIST
logical-unut assignments for the B! and BO units Input
and receive as a typical response
; IOLIST,BI,BO
oC (001) = TYOO

and receive as a typical response ST (002) = TYO0O
' SO (003) = TYOO

BI (006) = CROO PI (004) = CROO D
BO (007) = CcpP0OO D LO (005) = LPOO

BI (006) = CROO D
Request the output of the logical-unit assignment for logical BO (007) = pPTOO
unit 180. Input ss (008) = DOOH
PO (009) = DOOH
; IOLIST, 180 Cu (100) = DOOR
GO (101) = DOOG
and receive as a typical response SW (102) = DOOF
CL (103) = DOOA
180 (180) = D11H OM (104) = DOOD
. BL (105) = pooC
Request the output of all Jogical-unit assignments. Input FL (106) = DOOB

SECTION 18
OPERATION OF THE VORTEX SYSTEM

This section explains the operation of devices in the
VORTEX system, the loading of the system bootstrap
loading and initializing of writable control store and
procedures for changing and initializing the disc pack
during VORTEX operation.

18.1 DEVICE INITIALIZATION

18.1.1 Card Reader
(Model 70-6200)

a. Turnon the card reader.
b. Piace the input deck in the card hopper.
c. Press READY/ALERT.

18.1.2 Card Punch
(Model 70-6200)

a. Turnon the card punch.
b. Place blank cards in the card hopper.

c. 1f the visual punch station is empty, insert a card into it
as follows:
(1) Placeacard in the auxiliary feed slot.
(2) Clear all registers.
(3) Set the instruction register | to 0100131,
(4) SetREPEAT.

(5) Press STEP. The card should move from the
auxiliary feed slot to the visual punch station.

(6) Reset REPEAT.

18.1.3 Line Printer
(Model 70-6701)

a. Turnon theline printer.
b. Wait for the READY light to come on.
c. Setthe ON LINE/OFF LINE switch to ON LINE.

d. For manual paper ejection set to OFF LINE, then press
the TOP OF FORM switch.

18.1.4 Statos-31 (Model 70-6602 and -6603)

a. Turn on plotter/printer
b. Setthe ON LINE/OFF LINE switch to ON LINE
¢. Select rolt or z-fold paper switch for paper type used

d. For manual form feed press FORM FEED

18.1.5 33/35 ASR Teletype
(Models 70-6200 and 6201

a. Turnon the Teletype.

b. Set the Teletype in off-line mode and simultaneously
press the CONTROL and D, then the CONTROL and T,
finally the CONTROL and Q keys.

c. Set the Teletype on-line.

18.1.6 High-Speed Paper-Tape Reader
(Model 70-6320)

a. Turn on the paper-tape reader.

b. Position the input paper tape in the reader with blank
leader at the reading station and close the reading
gate.

c. Set the LOAD/RUN switch to RUN.

18.1.7 Magnetic-Tape Unit
(Models 70-7100,-7102, and 620-31

a. Turn on the magnetic-tape unit.

b. Mount the input magnetic tape.

c. Position the magnetic tape to the loading point.

d. Press ON LINE.

18.1.8 Magnetic-Drum and Fixed-Head
Disc Units
(Models 620-47 through 620-49,
70-7702 and 70-7703

a. Turnon the drum unit.

b. Wait for the drum unit to reach operating speed.

18.1.9 Moving-Head Disc Units
(Models 70-7600 and 70-7610

a. Place the START/STOP switch in the STOP position.

b. Press POWER ON button and wait for the SAFE light to
come on.

c. Mount the disc pack.
d. Place the START/STOP switch in the START position.
e. Wait for the disc unit to reach operating speed (READY

indicator lights).

18-1

OPERATION GF YHE VORTEX SYSTEM

f. Turn off WRITE PROTECT.

18.1.10 Moving-Head Disc Units
(Model 70-7500)

a. Mount the disc pack

b. Press PCWER-ON button and wait for unit to reach
operating speed 2nd for the heads to emerge

c. Presson-iine bution.

18.1.11 Moving-Head Disc Units
(Mode! 70.7510)

a. Mount the disc pack(s).

b. Turn power cn and wait for the unit(s) to reach
operating speed (unit-ready light comes on),

18.1.12 Moving-Head Disc Units
(Models 70-7603, 70-7613)

a. Mount disc pacx.

b. Press START button and wait for Ready light.

18.2 SYSTEM ECOTSTRAP LOADER

System key-in loaders initiate loading of the VORTEX
system from a drum or disc memory. The key-in loader loads
the system initializer from the RMD to main memory
(locations 000GO0 to 001127). The system initializer then
loads and initializes the system. Table 18-1 contains the
key-in loader programs.

Table 18-1. Key-In Loader Programs

Address Drum Disc Disc Disc
48 49 70-7510 70-7500 70-7600,
-7610,
-7603 or
7613
001130 1000yy 005302 005302

Table 18-1. Key-in Loader Programs (continued)

Address Drum Disc Disc Disc
-48,49 707510 707500 70-7600,
-7610,
-7603 or
7613
001142 10322z 001137 001137 151167
001143 1010xx . 1025zz 10252z 001016
001144 000600 001016 001016 001130
001145 001000 001200 001130 1000yy
001146 001143 005123 005122 10032z
001147 006120 005021 005102
001150 000167 006120 10322z
001151 004460 000167 1031xx
001152 10002z 004460 006010
001153 1000yy 10002z 001130
001154 1031xx 1000yy 1031yy ¢
001155 1032yy 1031xx 1000xx G
001156 1000xx 1032yy 100022 §
001157 005041 1000xx 10142z $
001160 10312z 005041 1-001157
001161 1004zz 006150 10252z ¢
001162 10142z 000007 151167
001163 001166 10312z 001016
001164 001000 10042z 001130
001165 001162 10142z 001000
001166 102522 001171 000600 <~
001167 001016 001000 007760
001170 000120 001165
001171 005145 102527
001172 006140 001016
001173 000012 001130
001174 001002 005144
001175 000600 001040
001176 001000 000600
001177 001146 001000
001200 000000 001146

where xx = even BIC address, yy = odd BIC address, and
2z = device address.

18.2.1 Automatic Bootstrap Loader

Where the automatic bootstrap loader option is available,
the appropriate key-in loader is loaded from the required

10042z |N1T €. medium (high-speed paper-tape or Teletype reader) into

001131 006020 006030 006030 10402z -/ y/ulocations starting with 001130. If the system contains a
001132 000002 000005 177773 1002zz &« ? V70 RMD ABL the boot program is automatically loaded
001133 005001 005001 005001 005001 "2 and uted.
001134 1031xx 10002z 1000zz 10312z 997 ":L?," WGJ“.)
001135 006120 10312z 103122 10102z © /desTo initiate the loader: (1) clear the A, B, X, |. and P
001136 001127 10052z 100522 001141 registers; (2) with the computer in STEP, press the RESET
001137 1031yy 10102z 10102z 001000 switch on the front panel; (3) place the STEP/RUN switch
001140 lOQOxx 001143 001143 001135 in the RUN position; and (4) press and release the LOAD
001141 10002z 001000 001000 10252z * » switch.

' “,

18-2

18.2.2 Control Panel Loading

The appropriate key-in loader is entered through the
computer control panel. Refer to the hardware handbook
for details.

To initiate the bootstrap, clear the A, B, X, and | registers,
and load 001130 into the P register. Then, press RESET,
place the STEP/RUN switch in the RUN position, and press
START. See section 15.8 and 20.1.4 for details as system
initialization messages.

NOTE: To facilitate reloading, the key-in loader may be

dumped out on paper tape and then loaded by the binary
loader (BLD I1).

18.3 DISC PACK HANDLING

VORTEX provides for dynamic mounting of disc packs
during program execution by means of a system utility
program called rotating memory analysis and initialization
(RAZ1). RAZI handles:

a. A disc pack not previously used with VORTEX that is
replacing a disc pack presently in the system.

b. A disc pack previously formatted under VORTEX that is
replacing a disc pack presently in the system.

The normal RAZI operating procedure is:

a. The task requiring the disc pack change issues an
operator message directing Him to switch packs.

b. The task suspends itself.

¢. The operator makes the necessary pack changes.

d. The operator schedules and executes RAZ).

e. Upon completion of RAZI, the operator resumes the
suspended task. The task can now perform 1/0 on the

new pack.

RAZ| is a foreground program residing in the foreground
library (FL). It is scheduled by a request of the form:

;SCHED,RAZip FLF

where p is the priority level.

If the S! logical unit is a Teletype or a CRT device, the
message RZ** is output to indicate that the SI unit is
waiting for RAZI input.

Each directive is completely processed before the next is
entered. All directives are output on the SO device. In
addition, partitioning information is listed on the LO device
when integration of the requested disc pack is complete.

OPERATION OF THE VORTEX SYSTEM

OUTPUTS from the RAZI comprise:
a. Error messages
b. The listing of the RAZI directives on the SO unit

C. Peartition description listing

Error messages applicable to RAZ! are output on the SO
and LO jogical units. The individual messages and errors
are given in Appendix A.18.

The partition description listing is output on the LO device
upon completing the integration of a new disc pack into the
VORTEX system. After the VORTEX standard heading,
there are three blank lines followed by the RAZI heading:

PARTITION FPIRST LAST BAD
NAME TRACK TRACK TRACKS

followed by one more blank line. Then the information
concerning each partition of the device is output, one
partition per line, as shown in the following example.

PARTITION FIRST LAST BAD
NAME TRACK TRACK TRACKS
D1CA 0002 09019 0000
D10OB 0020 0052 0001
DicC 0053 0082 0000
D10D o083 0118 0000
D10E 0119 0126 0000
D1OF 0127 0141 0000
D10G 0142 0156 0000
D10H 0157 0206 0002
D101 0207 0242 0000
D10J 0243 0251 0000
Di10K 0252 0256 0000

The RAZI directives are:

. PRT Partition

. FRM Format rotating memory
. INL Initialize

. EXIT Exit

RAZ| directives begin in column 1 and comprise sequences
of character strings having nc embedded blanks. The
character strings are separated by commas (,) or equal
signs (=). The directives are free-form, and blanks are
permitted between the individuai character strings of the
directive, i.e., before or after commas (or equal Signs).

The general format of a RAZ! directive ig

name.p(1).p(2),....p(n)

18-3

OPERATION F THE VORTEX SYSTEM

where

name is one of the directive names given
above

each p(n) is a parameter required by the directive
and defined below under descriptions of
the individual directives

Numerical dzfa can ta octal or decimal. Each octal number
has a leading zero.

For greater ciarity in the descriptions of the directives,
optional periads, optional blank separators between
character strings, and the optional replacement of commas
(.) by equal signs { =) are omitted.

Note: The disc pack containing the VORTEX nucleus
cannot be replaced.

18.3.1 PRT (Partition) Directive

This directive specifies the size and protection code for
each RMD partition. it has the general form

PRT,p(2),8(1),k({1).p(2).5(2),k(2).....p(n),s(n),k(n)

where

each p(r:) is the RMD partition letter (A through T,
inclusive)

s(n) is the number (octal or decimal) of
tracks in the partition. This value must
be greater than zero.

k(n) is the protection code, if any, required to
address p, or * if the partition is
unprotected

While the partition specifications can appear in any order,
the set of partitions specified for each RMD must comprise
a contiguous group, e.g., the sequence A, C, D, B is valid
but, the sequerce A, C, D, E constitutes an error.

Consecutive PRT directives redefine partitions, if p{n) has
been specified, or adds partitions if p(n) is new partition
letter.

Example: Defina three partitions on an RMD. The first
occupies ten tracks and uses protection code Q, the second
two tracks and code S, and the third 48 tracks without
protection.

PRT,A,10,0,B,2,5,C, 060,

18.3.2 FRM (Format Rotating Memory)
Directive

This directive causes RAZ! to run a bad-track analysis on
the specified RMD and build a new PST for it or accepts a

18-4

previously constructed bad-track-table from the RMD and
builds a new PST for it.* The directive has the general form

FRM, lu, size Hag

where

u is the logical-unit name or number to
which the subject RMD is assigned. This
must be the assigned to the first
partition.

size is the number (octal or decimal) of
tracks on the RMD

flag is 1 to perform a complete bad-track
analysis, or O to accept a bad-track-table
from the RMD

*FRM clears all PSTs and directories. It should not be used
when a unit contains a good BIT and files as these wiil be
destroyed.

Caution: When performing a bad-track analysis or accept-
ing a bad-track table from an RMD the bad-track table is
positioned adjacent to the resident foreground task area.
Uniess there already exists an active bad-track table for the
prior RMD, the bad-track table for the new RMD will be
overlayed, if the resident foreground area is increased by
means of a partial SYSGEN. Thus if a partial SYSGEN is
performed which increases the resident foreground size,
another RAZI must be performed.

Examples: Clear the RMD assigned to PO, having 203
tracks, and build a PST for it according to previously
defined partition information.

FRM,P0,203,0

Run a complete bad-track analysis on the RMD assigned to
25, having 128 tracks, and build a PST for it according to
previously defined partition information.

FRM, 25,128, 1

620-35 and 620-34 discs in a system require the formatting

program (describe in section 18.4) to format disc and
analyze bad tracks. i

18.3.3 INL (Initialize) Directive

This directive causes RAZ) to incorporate a PST and a bad-
track table from the named RMD into the VORTEX nucleus.
It has the general form

INL u, size

where W and size have the same definition as in the FRM
directive (section 18.3.2).

Example: Read the PST and bad-track tabie from the unit
assigned to BO, having 128 tracks, and incorporate them
into the VORTEX nucleus.

INL,BO, 128

18.3.4 EXIT Directive

This directive terminates RAZI. It has the general form
EXIT

Example: Terminate RAZI.

EXIT

18.4 70-7500 (620-35) DISC PACK
FORMATTING PROGRAM

Each 70-7500 (620-35) disc pack requiries formatting
before any input or output operation can be performed on
1t. Before VORTEX can be prepared on a 70-7500 disc pack
or any 70-7500 discs can be used under VORTEX, disc
packs must be formatted. The formatting program forms
120-word sectors, which are grouped 24 per track. The
program also examines the disc pack for bad tracks.

The formatting program operates in a stand-alone mode. It
may be loaded and executed with either AID or BLD.
Execution begins at location 01354. Upon execution the
formatting program requests some parameters to be input
from the keyboard. The foliowing requests are made. An
inappropriate response causes the request to be repeated.

Request

INPUT BTC NUMBER

Type a value and a carriage return. The
acceptable values are octal 020, 022, 024, 026
and 070

INPUT DEVICE ADDRESS

Type a value in the range from octal 014
through 017 followed by a carriage return

INPUT VARIABLE SECTOR GAP

Type a value and carriage return. Acceptable
values are 1, 2, 3, 4, 6, 8, 12, or their equivalent
aoctal representations. This value determines the
physical location on the disc pack of sequentially
addressable sectors, as such sequential trans.
fers may be accomplished without waiting for a
full revolution of the disc unit. Recommended
setting is 3. Another setting may be more
effective depending upon verious application
parameters such as number of tasks, frequency
of disc transfers, and types of disc transfers.

OPERATION OF THE VORTEX SYSTEM

INPUT UNIT NUMBER

Type unit number followed by a carriage return.
Acceptable values are O through 3. Up to four
units can be connected to a single controiler.

In addition the formatting program performs bad-track
analysis and creates and maintains a bad-track table,
which is entered on each disc pack at the completion of its
formatting. The bad-track table is located on sectors 0
through 2 of the first track. The table is 254 words long,
starting at word 64 of sector 0. The first 64 words of sector
0 reserve the necessary space for the PST. The remaining
unused words of sector 2 are filled with zeroes. Each disc
170 error will generate a ten-event reiry sequence, which
upon failure will set the bad-track flag within the track
header. The program also sets the corresponding bit in the
bad-track table. No alternate tracks are assigned.

It the first track is determined to be bad, the bad-track
table may not be placed there. The program prints the
error message,

FIRST TRACK BAD

and aborts formatting the current disc pack. The program
returns to the keyboard interrogation routine. A‘ter the
bad-track table has been written on the disc pack, the
formatting program resumes the keyboard interrogation to
obtain parameters for formatting the next disc. In this way,
more than one disc pack can be formatted in the same
session. The formatting program may be terminated at this
point when no disc packs (except those with bad first
tracks) remain unformatted. If an unsafe condition
(SELECT LOCK light on) occurs, reload and execute the
program. Formatting disc packs is not necessary before
every VORTEX system generation. Head crashes generally
indicate formatting should be done again.

18.5 70-7510 (620-34) DISC PACK
FORMATTING PROGRAM

Each 620-34 disc pack requires formatting before any input
or output operation can be performed on it. Betore VORTEX
can be prepared on a 620-34 disc pack or these disc can be
used under VORTEX, the packs must be formatted. The
formatting program forms 120-word sectors, which are
grouped 24 per track. The program also examines the disc
pack for bad tracks.

The formatting program operates without an operating
system. It may be loaded and executed either with AID Il or
BLD Il Its execution begins at location 01354. Upon
execution the formatting program requests some parame-
ters to be input from the keyboard. An inappropriate
response causes the request to be repeated. The following
requests are made.

INPUT BTC NUMBER

18-5

OPERATION GF THE VORTEX SYSTEM

Type a value and a carriage return. The
acceptable values are octal 020, 022. 024, 026
and 070.

INPUT DEVICE ADDRESS

Type a value in the range from octal 014
through C17 foliowed by a carriage return.

INPUT VARIABLE SECTOR GAP

Type a vaiue and a carriage return. Acceptable
values are 1, 2, 3, 4, 6, 8, 12, or their equivalent
octal representations. This value determines the
physical iocation on the disc pack of sequentially
addressable sectors. as such sequential trans-
fers may be accomplished without waiting for a
full revolution of the disc unit. Recommended
setting is 3. Another setting may be more
effective depending upon various application
parameters such as number of tasks, frequency
of disc transfers, and types of disc transfers.

INPUT UNIT NUMBER

Type unit number followed by a carriage return.
Acceptable vaiues are O through 3. Up to four
units can be connected to a single controlier.

In addition the formatting program performs bad-track
analysis and creates and maintains a bad-track table,
which is entered on each aisc pack at the completion of its
formatting. The bad-track tabie is located on sectors 0
through 4 of the first track. The table is 508 words long,
starting at worc 64 of sector 0. The first 64 words of sector
0 reserve the nacessary space for the PST. The remaining
unused words of sector 4 are filled with zeros. Each disc
170 error will generate a ten-event retry sequence, which
upon failure will set the bad-track flag within the track
header. The program also sets the corresponding bit in the
bad-track table. No alternate tracks are assigned.

If the first track is determined to be bad, the bad-track

table may not be piaced there. The program prints the
error message:

FIRST TRACK BAD

and aborts formatting the current disc pack. The program
returns to the keyboard interrogation routine. After the
bad-track tabie has been written on the disc pack, the
formatting progrem resumes the keyboard interrogation to
obtain parameters for formatting the next disc. In this way,
more than one disc pack can be formatted in the same
session. The formatting program may be terminated at this
point when no disc packs (except those with bad first
tracks) remain unformatted. If an unsafe condition
(SELECT LOCK light on) occurs, reload and execute the

186

program. Formatting disc packs is not necessary before
every VORTEX system generation. Head crashes generally
indicate formatting should be done again.

18.6 70-7603/7613 DISC PACK
FORMATTING PROGRAM

Each 70-7613/7613 disc pack requires formatting before
any input or output operation can be performed on it. The
formatter forms 120 word sectors which are grouped 48 per
track. The program aiso performs a bad-track analysis.

The tormatter (format F p/n 92A0205-030) operates under
the MAINTAIN Il executive. For instructions on foading
from magneti. tape, cards or paper tape, see the MAIN-
TAIN |il" Manual (98A9952-070). Execution begins at
location 500. Some parameters are requested from the
keyboard. Inappropriate responses cause the request to be
repeated. All inputs are terminated by periods.

INPUT BIC NUMBER

Enter an even value in the range octal 020 through 076.
INPUT DEVICE ADDRESS

Enter a value in the range octal 014 through 017.
INPUT UNIT

Enter a value in the range 0 through 7. This must be the
physical unit number calculated as follows:

UUP,,,
where

UU is unit number 03

P is platter O fixed
platter 1 removable
(Note: System RMD is always
000 regardiess of which
platter.

INPUT KNOWN BAD TRACKS

Enter octal track numbers in the range O through 0625
separated by commas and terminated by a period. If there
are no known bad tracks, input only a period.

In addition, the formatting program performs bad-track
analysis and creates and maintains a bad-track table,
which is entered on each disc pack at the completion of its
formatting. The bad-track table is located on sector O of
the first track. The table is 26 words long, starting at word
64 of sector 0. The first 64 words of sector 0 reserve the
necessary space for the PST. The remaining unused words
of sector O are filled with zeros. Each disc 1/QC error wili

generate a five event retry sequence which, upon failure,
will set the corresponding bit in the bad-track table. No
alternate tracks are assigned.

If the first track is determined to be bad, the bad-track
table may not be placed there. The program prints the
error message,

FIRST TRACK BAD

and aborts formatting the current disc pack. The program
returns to the keyboard interrogation routine. After the
bad-track table has been written on the disc pack, the
formatting program resumes the keyboard interrogation to
obtain parameters for formatting the next disc. In this way,
more than one disc pack can be formatted in the same
session. The for- matting program may be terminated at
this point when no disc packs (except those with bad first
tracks) remain unformatted. Formatting disc packs is not
necessary before every VORTEX system generation. Head
crashes generally indicate formatting should be done
again

OPERATION OF THE VORTEX SYSTEM

18.7 WRITABLE CONTROL STORE (WCS)

The writable control store must be icaded with the
appropriate firmware. The WCS is loaded by the V73 WCS
Microprogram Utility (MIUTIL). MIUTIL i1s a foreground
program scheduled by a request:

iSCHED,MIUTIL p,FL F

where p is the priority level. Use of the MIUTIL program is
described in detail in the Microprogramming Guide.

If the optional V70 series Floating Point Firmware is to be
used, it must be loaded into page 1 of WCS. The WCS
microprogram is catalogued into the OM library under the
name WCSFP, and must be transferred to the Bl device for
loading by MIUTIL. The WCS should be initialized through
the use of MIUTIL prior to loading the fioating-point
microprograms.

Section 20 gives additional information about writable
control store.

187

SECTION 20

WRITABLE CONTROL STORE AND
FLOATING-POINT PROCESSOR

The Writable Control Store (WCS) option extends the
Varian 70 series processor's read-only control store to
permit the addition of new instructions, development of
microdiagnostics, and optimal tailoring of the computer
system to its application. Urlike the read-oniy control store,
which contains the Varian 70 series standard instruction
set and cannot be altered, the WCS can be ioaded from
main memory under control of certain 1/0 instructions. The
capabilities of WCS give the user more complete access to
the resources of the Varian 70 series computer system.

20.1 MICROPROGRAMMING SOFTWARE
Supporting software for the WCS includes the following:
Microprogram assembler MIDAS
Microprogram simulator MICSIM microprogram
Microprogram utility loader and diagnostic MIUTIL
WCS refoad task

All software for microprogram development operates under
VORTEX. The capabilities and use of WCS and its
supporting software are described in the Varian Micropro-
gramming Guide.

20.1.1 Microprogram Assembler

The Varian microprogram simulator (MICSIM) helps the
programmer to verify and optimize microprograms. MICSIM
runs the output from MIDAS within the system's main
memory. At selected times, conditions and the contents of
data locations can be examined and changed. MICSIM is
scheduled from the background library at level O by

Under VORTEX, MIDAS s scheduled from the background
hbrary at level O by

/LOAD, MIDAS

20.1.2 Microprogram Simulator

The Vanian microprogram simulator (MICSIM) helps the
programmer to verify and optimize microprograms MICSIM
runs the output from MIDAS within the system's main
memory. At selected times, conditions and the contents of
data locations can be examined and changed. MICSIM s
scheduled from the background library at level 0 by

/LOAD,MICSIM

20.1.3 Microprogram Utility

Loading the control store with the assembled and tested
microcode is performed by microprogram utility, MIUTIL

In addition, on-line debugging directives are available
through the utility on a special configuration. The MIUTIL
program operates as a foreground program at priority level
set by the user. The program is scheduled by operator
input over the OC device For example,

; SCHED, MIUTIL, 3,FL,F

The microprogram utility is also responsible for maintain
ing an up-to-date image of the contents of the WCS on an
RMD file, named WCSIMG on the OM library, see section
15.8. This image is then used by the WCS reioad task,
WCSRLD, to restore the WCS following a power failure/
restart and VORTEX reload. The RMD file image is updated
each time the R directive is used to exit from the utility.

If the update is completed successfully, the message

WCS SAVED

15 output on the OC and LO devices betore the utility exits.
If the RMD fite for saving the WCS is not present on the
OM library the OM library, the system outputs

I010,MIUTIL

FILE WCSIMG NOT FOUND
WCS SAVE ABORTED

1/0 errors which may occur during the save operation
result in outputting messages

IOxx ,MIUTIL
WCS SAVE ABORTED

if the restoration of WCS is completed successfully, the
message WCS RELOADED will be output to the OC and LO
devices before the reload task exits.

To exit from the microprogram utility without updating the
RMD file, the operator may issue the directive.

;ABORT, MIUTIL

201

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20.1.4 WCS Reload Task, WCSRLD

This task, WCSRLD, remnitiatizes the WCS to the contents
specihied by the RMD file image of WCS, WCSIMG on the
OM hbrary. It is automatically scheduled on power failure/
restart or upon the reloading of the VORTEX system. In this
way. WCS contents are preserved through any periods
without power.

Though usually scheduled automatically by the system, the
reload task may also be scheduled manually by the
operator. For example, the following directive schedules the
reload task at priority level 15:

; SCHED,WCSRLD, 15 ,FL,F

20.2 STANDARD FIRMWARE

Standard firmware is available on the 70 series computers
to provide faster and more compact code. The executable
code which uses the firmware, or microprograms, is
automatically generated by the VORTEX FORTRAN IV
compiler when the option F is specified (in the JCP
directive /FORT, see section 4.2.15). The firmware also
extends the capabilities of the user's assembly language
programs and the support library (see section 13).

Standard firmware includes routines which are loaded into
the system’s WCS for the following categories of operations:

Arithmetic for two-word fixed-point and integer
numbers

+ Arithmetic for real (floating-point) numbers

Transfer of two word values, such as a memory to
memory move

FORTRAN oriented routines
+ Byte manipulation

+ Stack manipulation

Fxecuting a branch-to-control-store (BCS) instruction
causes a transfer of control from the system's read-only
memory to the WCS at the address specified in the BCS
instruction. The MIUTIL program (see section 20.1.3) loads
the standard firmware as well as any extensions to the
instruction set the user may write. To execute firmware, the
program must use a BCS instruction with the appropriate
entry address and calling sequence for passing parameters.

A FORTRAN IV program specifies the option F on its
request for compilation, and then BCS instructions are
generated. The FORTRAN |V programs use this firmware
without any changes to the FORTRAN |V statements.

20-2

Due to size constraints, some firmware is unavailable
under certain hardware configurations. Table 20-1 shows
these restrictions.

Table 20-1. Firmware Availability
' Hardware Configurations

Firmware Routine without FPP with FPP
XAD XSB YES YES
XMU XDV YES NO
IMU,IDV NO YES
FAD,FSB,FMU FDV YES NO
FSQ NO YES
FLD,FST,FMV YES YES
FSE,FDO,FDOL1 YES YES
FTNE,FTEQ,...FTGT NO YES
FINE,FJEQ,... . FJGT NO YES
FAIF FIOP NO YES
FRSC,FRSR,FJAG NO YES
Byte Firmware YES YES
Stack Firmware YES YES

20.2.1 Fixed-Point Arithmetic
Firmware

Two-word fixed-point and integer numbers use the following
arithmetic firmware:

Mnemonic Function BCS Call
XAD Fixed-point and integer add 0105334
XSB Fixed-point and integer sub- 0105374
tract
XMU Fixed-point multiply 0105274
XDV Fixed-point divide 0105234
iMU Integer multiply 0105027
DV integer divide 0105067

These operations are performed on the hardware A and B
registers (AB), using the number specified by the second
word of the respective BCS call. If overflow occurs, AB is set
to the maximum number with the proper sign and the
overflow flag (OVFL) is set.

For two-word fixed-point numbers, the decimal point is
assumed to be to the left of bit 15 of the most significant
word. For two-word integer numbers, the decimal point is
assumed to be to the right of bit 0 of the least significant
word. As a result, rounding and overflow conditions are
different for multiply and divide. For example, multiplying
two double-word numbers produces a logical four-word
result. The fixed-point function returns the high order two-
words and drops the lower two. The integer multiply returns
the lower two-words of the logical result and sets overflow if
either of the two higher words are non-zero.

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20.2.2 Floating-Point Arithmetic
Firmware
The addition, subtraction. multiplication, and division of

single-precision real, or floating-point, numbers can be
performed with the following firmware.

Mnemonic Function 8CS Call
FAD Floating-point add 0105134
FSB Fioating-point subtract 0105174
FMU Floating-point multiply 0105074
FDV Floating-point divide 0105034
FSQ Floating-point square root 0105127

A floating-point arithmetic operation is performed on AB
using the floating-point number specified by the second
word of the BCS call. If underflow occurs, AB is set to zero.
If overflow occurs, AB is set to the maximum floating-point
number with a proper sign. Taking square root of a
negative number results in the overflow being set and AB
set to zero.

20.2.3 Data Transfer Firmware

The data transfer firmware routines load AB from memory,
store AB in memory, and move the contents of two
contiguous memory locations to another place in memory.

Mnemonic Function BCS Calt

HD Load AB with two words 0105032
from memory

FQT Store AB into memory 0105033

My Memory-to-memory move 0105037

of two words

20.2.4 FORTRAN-Oriented Firmware

These microprograms are oriented toward FORTRAN iv
operations. However, they have a similar utility to assem-
bly-language programs.

Mnemonic Use BCS Call

FINE Test for not equal 0105024

FTEQ Test for equal 0105064

FTLTY Test for less than 0105124

FTGE Test for greater than 0105164
or equal

FTLE Test for less than or 0105324
equal

FTGT Test for greater than 0105364

FINE Jump if not equal ' 0105026

FIEQ Jump if equal 0105066

Mnemonic Use BCS Call

FILT Jump if less than 0105126

FJGE Jump if greater than 0105166
or equal

FILE Jump it less than or 0105326
equal

FIGT Jump it greater than 0105366

FAIF Arithmetic IF processor 0105226

FIOP Indexed operand proces- 0105167
sor

FRSC Reentrant subroutine 0105025
call

FRSR Reentrant subroutine 0105065
return

FJAG Jump if A register 0105125
_ greater

FSE Pass parameters between 0105C36
subroutines

FDO Terminate DO loop 0105035

FDO1 Terminate DO loop 0105027

(1 increment)

For FSE, the calling routine would use the following
sequence:

CALL SUB

DATA P1 Address of first
. data to be moved
DATA Pn Address of last

data to be moved

In the subroutine being calied, the following sequence is
necessary to receive the data or data address:

SUB BSS 1
DATA 0105036 BCS transfer for FSE
DATA n Number of parameters
BSS m Number of parameters

The second instruction, FDO to control a DO loop, uses the
foliowing calling sequence:

DATA 0105035 BCS transfer to FDO

DATA P Address of DO
increment

DATA P2 Address of DO loop
counter

DATA P3 Address of DO loop
limit

DATA P4 Address for jump if

the counter is not
greater than the
limit

20-3

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

The third instruction, FDO1 to control a DO loop with
mnerement of 1 uses the following calling sequence.

DATA 0105027 BCS transfer to FDO1

DATA P1 Address of DO loop
counter

DATA P2 Address of DO loop
limit

DATA F3 Address for jump

if the counter is
not greater than the
lirnit

The DO loop 1s incremented and tested against the DO loop
hmit. 1t the loop counter is less than the limit, execution
continues at the address specified by the BCS call word 5.
If the value of the loop counter is equal to or greater than
the value represented by the limit, execution continues at
the instruction following this calling sequence.

The calling sequence for ail the relational test (FT--) and
tump (FJ--) instructions are as foillows:

BCS

DATA Address of first number
DATA Address of second number
DATA Jump address

These routines compare the two single precision floating-
point numbers pointed to be the words following the BCS.
The A register is set to minus one or zero, depending on
the specified relation being met or not met, respectively.
For the jJump instructions, FJ--, the branch addtess is taken
only when the condition is met, (i.e., when the A register
equals minus one). Note that the specified relation is that
of the first number to the second. For example, FTGT tests
far the first number greater than the second.

The calling sequence for the arithmetic IF processor (FAIF),
15 as follows:

BCS

DATA Address of first number

DATA Address of second number
DATA Branch address if less than
DATA Branch address if equal

DATA Branch address if greater than

This BCS also compares two single precision floating-point
numbers. It determines it the first number is less than,
equal to, or greater than the second number, and then
takes the appropriate branch address.

The indexed operand processor is used to compute the
effective address of an element in a FORTRAN real array. It
has the following call sequence:

BCS
DATA Address of index value
DATA Base address

20-4

The effective address 1s computed by subtracting one from
the index value. mulliplying the result by two, and then
adding in the base address. This allows for an array with
two-word entries and induces from one to 'n’. The effective
address is stored in the second word of the following
instruction.

The reentrant subroutine call, FRSC, has the following call
sequence:

BCS
DATA Subroutine address

The B register points to a memory location which is used as
a stack pointer. This memory location is decremented and
the resulting value used as the address where the return
address is stored.

Control is then transferred to the subroutine. Note that the
subroutine address should be that of the first nstruction of
the subroutine.

The reentrant subroutine return, FRSR, has a calling
sequence consisting of just the BCS without parameters.
The return address is popped off the stack using the B
register and the memory stack pointer as in the subroutine
call. Note that no limit checks are made on the stack by
either the call or the return. Also, the stack pointer format
is not consistent with that of the general stack firmware.

The BCS calling sequence for FJAG (jump if A register
greater than zero) is as follows:

BCS
DATA Jump address

The jump address is taken only if the A register s strictly
greater than (and not equal to) zero.

20.2.5 Byte Manipulation Firmware

The byte instructions use a byte pointer address where bits
15-1 specify the word number and bit 0 is O for the left byte
and 1 for the right byte. The byte-oriented instructions
implemented in firmware are:

Mnemonic Function BCS Call
CBS Compare byte strings 0105030
MBS Move byte string 0105070

In the first microprogram sequence, the CBS instruction
requires that the second word contain the address to which
control is returned if the strings are not equal. The B
register contains the byte starting address of the first
string, the X register is the byte starting address of the
second string, and the A register specifies the number of
bytes to be compared.

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

The second byte-oriented microprogram sequence, the M8S
instruction, moves the number of bytes specified in the A
register from the location specified by the B register to the
focation specified by the X register.

Both share a common BCS entry point, and this may be
extended for six more instructions.

20.2.6 Stack Firmware

A stack 1s kept in memory for use for return addresses,
temporary storage or arithmetic operations. The base and
limit of the stack (see figure 20-1) are defined by the user.
The stack controi block is indicated by a pointer in the
second word of the calling sequence. Figure 20-2 is the
tormat of the stack control block.

The foltowing BCS instructions correspond with each of the
stack operations:

Operation BCS Operation BCS
Add 0105031 Push 0105231
Subtract 0105071 Pop 0105331

Push double 0105271
Pop double 0105371

Muitiply 0105131
Divide 0105171

Eight stack instructions transfer to the same initial entry
point in the WCS, where the decoder determines the
specific instruction to be executed.

0
LiMIT
STACK GROWS
TOWARD LOW
ADDRESS
STACK ¢
BASE
e
INITIAL
POINTER

32K

Figure 20-1. Base and Limit of Stack

On all stack operations, if the top-of-stack pointer (PTR)
ever exceeds the boundaries of the stack (as the user
defined them in the stack control block), no further
processing takes place and a JMPM is made to the fourth
word in the stack control block.

Single-Precision Integer Stack Arithmetic

Add: adds the top two words of the stack, increments the
pointer and replaces the new topmost word. If the resuit
exceeds the maximum positive number (077777), the
overfiow indicator (OF) and the sign in bit 15 are set to
one. For example, adding 000002 to 077777 sets OF to one
and the result to 100001.

Subtract: subtracts the next stack word from the top of
stack word (by adding the top word to the two's comple-
ment of the next stack word), increments the top-of-stack
pointer, and stores the remainder in the new top-of-stack
word. If the result exceeds the maximum negative number,
it sets the overflow indicator and resets the sign.

Multiply: multiplies the two words at the top of the stack
and replaces them by their 32-bit product (see figure 20-3).
The most significant part of the product is placed in the top
word, and the least signiticant portion will be placed in the
next word. The sign bit of the top word gives the sign of the
product, and the sign of the next word is set to zero. The
overflow indicator (OF) is not set.

Word

0 CURRENT STACK POINTER

1 LIMIT OF STACK

2 BASE OF STACK

3 ADDRESS OF INSTRUCTION
WHICH CAUSED STACK
OVERFLOW OR UNDERFLOW

4 ERROR ROUTINE FOR OVERFLOW
OR UNDERFLOW

Figure 20-2. Stack Control Block

205

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Divide: divides the top stack word into the following two
words. The top-of-stack pointer (PTR) is incremented and
the single-precision quotient with the sign of the dividend is
stored in the new top-of-stack location. The remainder is
stored in the next stack location (see figure 20.4).

BEFORE AFTER
0 0
PTR PTR
R o K X —_—| 5 X -y (MS)
s y pl x—y (LS
32K 32K

Figure 20-3. Stack Muitiply

If the quotient overflows, the contents are unpredictable,
and control 1s returned with the overflow indicator set (OF).

BEFORE AFTER
0 0
PIR
e el X X
PTR

y (MS) —_— q
y (MS) r

32K 32K

+y/tx = %t quotient g with remainder r

Figure 20-4. Stack Divide

20-6

Stack operators: these operators also require a stack
control block as-in figure 20.2.

Push (SPUSH): the A register (R0) is placed on the stack at
the location addressed by the decremented top-of-stack
pointer (see figure 20-5.)

BEFORE AFTER
SPUSH SPUSH
0 0
PIR
e A-REGISTER
PTR
-——»
32K 32K

Figure 20-5. Stack Push

Pop (SPOP): the A-register (RO) is loaded from the top
stack word and the stack pointer is incremented (see figure
20-6).

BEFORE SPOP ALTER SPOP

INTO
A REG-

— ISTER
PTR x —~— x

PTR

Figure 20-6. Stack Pop

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Push Double (PUSHD): decrements the stack pointer and
stores the B register (R1), and then decrements the pointer
and stores the A register (RO) (see figure 20.7).

BEFORE AFTER
SPUSHED SPUSHD
0 0
PTR
——=]1 A REGISTER
B-REGISTER
PIR
R
32K 32K

Figure 20.7. Stack Double Push

Pop Double (POPD): loads the A register (RO) with the word
addressed by the top-of-stack pointer and then increments
the top-of-stack pointer; loads the B register (R1) with the
word addressed by the new value of the top-of-stack
register and then increments the top-of-stack pointer again

(see figure 20-8).
BEFORE POPD AFTER POPD
0
PTR X X
—r—
.y y
R
PTR

INTO A
REGISTER

———

——

INTO B
REGISTER

Figure 20-8. Stack Double Pop

207

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

208

20.2.7 Firmware Macros

The mnemonics given are not supported by the DAS MR
assembler. The assembly-language programmer must
supply his own macros in order to use any of these
mnemonics. The following are examples and possible use of
the required macros.

Macro
Fixed point add:
XAD MAC

DATA
EMAC

Fixed point subtract:

XSB MAC
DATA
EMAC

Fixed point multiply.

XMU MAC
DATA
EMAC

Fixed point divide:
Xbv MAC

DATA
EMAC

integer multiply:

IMU MAC
DATA
EMAC

integer divide:
IDV MAC

DATA
EMAC

0105334,P(1)

0105374,P(1)

0105274,pP(1)

0105234,p(1)

0105027,pP(1)

0105067 ,p(1)

and, immediately foliowing the macros
for tloating point divide, add:

Floating square root:

FSQ MAC
DATA
EMAC

Floating point add:

FAD MAC
DATA
EMAC

0105127,p(1)

0105134,pP(1)

XAD

XSB

XMU

XDV

IMU

IDv

FSQ

FAD

Use

address

address

address

address

address

address

address

address

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Floating point subtract:

FSB MAC FSB address
DATA 0105174, ,pP(1)
EMAC

Floating point muitiply:

FMU MAC FMU address
DATA 0105074,P(1)
EMAC

Floating point divide:

FDV MAC FDV address
DATA 0105034,P(1)
EMAC

Load AB:

FLD MAC FLD address
DATA 0105032,pP(1)
EMAC

Store AB.

FST MAC FST address
DATA 0105033,P(1)}
EMAC

Memory to memory:

FMV MAC FMV address,address
DATA 0105037,pP(1),P(1)
EMAC

Pass parameters:

FSE MAC FSE #params
DATA 0105036,P(1)
BSS P(1)
EMAC
DO loop:
FDO MAC FDO inc addr, count addr,

lim addr, loop addr
DATA 0105035,P(1),pP(2),
P(3),P{4)
EMAC

DO loop (one increment):
FDO1 MAC FDO1 count addr, 1lim addr,
loop addr

DATA 0105027,P(1),P{(2),pP(3)
EMAC

20-9

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20-10

Test for not equal:

FTNE MAC
DATA
EMAC

0105024,P(1),P(2)

(Typicai relational test form).

Jump if not equal:

FINE DATA

0105026,P(1),P(2),P(3)

(Typical relational Jump form).

Arithmetic IF processor:

FAIF MAC
DATA
EMAC

FTNE

FJINE

FAIF

OP address, OP address

OP address, OP address

jump address

OP address, OP address,

0105226 ,P(1),P(2),pP(3),P(4),P(5)LT address, EQ address,

Index operand processor:

FIOP MAC
DATA
EMAC

0105167,P(1),P(2)

Reentrant subroutine call:

FRSC MAC
DATA
EMAC

0105025,pP(1)

Reentrant subroutine return:

FRSR MAC
DATA
EMAC

0105065

Jump if A register greater:

FJAG MAC
DATA
EMAC

Compare string:

CBsS MAC
DATA
EMAC

Move string:

MBS MAC
DATA
EMAC

0105125,p(1)

0105030,pP(1)

0105070

FIOP

FRSC

FRSR

FJAG

CBS

MBS

GT address

index address, base
address

sub address

jump address

non compare addr

Stack add

SADD MAC
DATA
EMAC

Stack subtract:

sSsSuB MAC
DATA
EMAC
Stack multiply:
SMUL MAC
DATA
EMAC
Stack divide:
SDIvV MAC
DATA
EMAC
Stack push:
SPUSH MAC
DATA
EMAC
Stack pop:
SPOP MAC
DATA
EMAC

Stack push double:

SPUSHD MAC
DATA
EMAC

Stack pop double
SPOPD MAC

DATA
EMAC

0105031,P(1)

0105071,pP(1)

0105131,p(1)

0105171,p(1)

0105231,p(1)

0105331,P(1)

0105271,pP(1)

0105371,P(1)

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

SADD

SSUB

SMUL

SDIV

SPUSH

SPOP

SPUSHD

SPOPD

stack

stack

stack

stack

stack

stack

stack

stack

addr

addr

addr

addr

addr

addar

adar

addr

2011

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

20-12

The Floating Point Processor has the following OP codes.

Mnemonic

FLD
FLDD
FAD
FADD
FSa
FSBD
FMU
FMUD
FOV
FDVD
FLT
FiX
FST
FSTD

Opcode

0105420
0105522
0105410
0105503
0105450
0105543
0105416
0105506
0105401
0105535
0105425
0105621
0105600
0105710

Operation

Floating load single
Floating load double
Floating add single
Floating add double
Floating subtract single
Floating subtract double
Floating multiply single
Floating multiply double
Floating divide single
Floating divide double
Fix to float

Float to fix

Floating store single
Floating store double

Load or Float interrupts are locked out untii a store or fix.

EX34, -- as time out.

An interrupt after a store may change floating-point
registers. User should restore their contents.

Mnemonics for floating-point operations are not supported
by DAS MR. The following are possible macros which must
be included by the user to define the mnemonics:

Macro

FLD

FLDD

FAD

FADD

FSB

FSBD

FMU

MAC
DATA
EMAC

MAC
DATA
EMAC

MAC
DATA
EMAC

MAC
DATA
EMAC

DATA
EMAC

DATA
EMAC

MAC
DATA
EMAC

Use

FLD

0105420,pP(1)

FLDD

0105522,P(1)

FAD

0105410,pP(1)

FADD

0105503,p(1)

FSB

0105450,P(1)

FSBD

0105543,pP(1)

FMU

0105416 ,P(1)

address

address

address

address

address

address

address

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

FMUD MAC

DATA 0105506,P(1)

EMAC

FDV MAC

DATA 0105401,P(1)

EMAC

FDVD MAC

DATA 0105535,P(1)

EMAC

FLT MAC

DATA 0105425,p(1)

EMAC

FIX MAC

DATA 0105621,pP(1)

EMAC

FST MAC

DATA 0105600,P(1)

EMAC

FSTD MAC

DATA 0105710,P(1)

EMAC

20.2.8 Commercial Firmware

Commercial firmware is available on the 70 series comput-
ers for supporting VORTEX, COBOL, and TOTAL. The
firmware and assembly language routine V$DECM (see
section 13), also extends the capabilities of the user's
assembly language programs.

Commercial firmware includes the following operations:

+ COBOL decode

+ Load/Store multiple registers

* Main storage move or compare
32 bit unsigned math

Additionally, an assembly language routine V$DECM is
provided in the support library for interface to the firmware
decimal math routines.

FMUD address
FDV address
FDVD address
FLT address
. FPIX address
PST address
FSTD address

The Commercial Firmware package is optionally available
with the FORTRAN accelerator package requiring 1024
words of WCS on a V70 series computer.

COBOL Decode

COBOL decode uses the most significant 5 bits of the
specified word of main storage to perform a 32 way branch
Register R2(X) points to the main storage word to be
decoded. The BCS is followed by the 32 vector addresses.
When the BCS is complete, RO(A) contains 0 and R1(B)
contains the least significant eleven bits (left justified). R2
is not incremented. The calling routine uses the following
sequence:

DATA 0105021 BCS value
DATA vector address zero

DATA vector address one

DATA vector address thirty-one

20-13

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

Load/Store Registers

Mutltiple register loading or storing is performed by the
following BCS instructions:

Registers loaded/stored

DATA 0105020 load RO
0105060 RO, R1
0105120 RO, ...,R2
0105160 RO,...,R3
0105220 RO, ... ,RU
0105260 RO,...,RS
0105320 RO,...,R6
0105360 load RO,...,R7

DATA 0105017 store RO
0105057 RO,R1
0105117 RO,...,R2
0105157 RO,...,R3
0105217 RO,...,R4
0105257 RO, ...,R5
0105317 RO,...,R6
0105357 store RO, ... ,R7

R7 contains the main storage address for loading or storing
registers. Register contents are stored in main storage as
follows:

addr
R7 betore storage —m-| Rn x
Rn-1 x-1
RO xn
R7 after storage —— = x-n-1

R7 is decremented to the location following the contents of
RO. For load registers, R7 initialiy points to the word
following RO. After loading is complete, R7 will point to the
last register loaded.

Main Storage Move or Compare

The Move routine moves a byte block of main storage from
one ‘area to another (overlap is allowed). The compare
routine compares two byte blocks of main storage. The
compare is logical and sets a user supplied condition word
as follows:

0 = first block less than second block

1 = first block equal to second block
2 = first block greater than second block

20-14

At the end of each byte move or compare, byte pointers are
incremented. Optionally, the user may specify non-incre-
menting of the first block byte pointer. This will result in
storing a single byte value throughout a block of main
storage or comparing a single byte value to a block of main
storage.

inttially RO(A) points to the user's descriptive parameter
block and RI(B) contains the address of the user's
condition word. The parameter block appears as follows:

word O byte addr of first main storage block
1 byte addr of second main storage block
2 number of bytes for move or compare

The calling routine will issue one of the following BCS
values:

0105223 Move without increment
0105263 Compare with increment
0105323 Compare without increment
0105363 Compare with increment

When execution is complete, parameter block contents are
as follows:

Move without increment

word 0 = single byte address
word 1 = last byte stored address +1
word 2 = O

Move with increment

word 0 = last byte fetched address
word 1 = last byte stored address +1
word 2 = Q

Compare without increment

word O = single byte address

word 1 = last byte compared address +1
if equal

= |ast byte compared address

if unequal

word 2 = 0 if equal. Otherwise
decremented once for each
equal byte.

Compare with increment

word 0 = last byte compared address

word 1 = last byte compared address
+1 if equal.

= last byte compared address if

unequal.

word 2 = O if equal. Otherwise
decremented once for each
equal byte.

WRITABLE CONTROL STORE AND FLOATING-POINT PROCESSOR

32 Bit Integer Math

These routines perform the operations add, subtract,
multiply, and divide on 32 bit unsigned integer operands.
Register RO(A) contains the four word parameter block
address. The four word parameter block contains the two
operands and received the results as follows:

add Operand two is replaced by the sum of the
two operands.

subtract Operand two is replaced by operand one
minus operand two.

multiply Both operands are replaced by the 4 word
product of the two operands.

divide Operand one receives the quotient of
operand one divided by operand two;
operand two is replaced by the remainder.

The hardware overfiow flag is set when any of the following
occur:

« carry out of the most significant bit during an add.

= subtracting a larger number from a smaller one.
« dividing by zero.

20-15

SECTION 21
FILE MAINTENANCE UTILITY

The File Maintenance Utility program (FMUTIL) is a_

background task for copying and/or loading _files, _file

directories and/or partitions from one device onto another,

for manipulating files and records, for formatting files and

records which are to_be cisplayed or printed. and _for

W&tories and space allocations of the
fies, byt gt

Only files assigned to rotating memory devices (disc or
drum) can be referenced by name.

fie space is aflocated contiguously within a partition,
skipping bad tracks.

21.1 ORGANIZATION

FMUTIL is scheduled for execution by inputting the JCP
directive 7FMUTIL. if the SI logical unit is a teletype or a
CRT device, the message FU** is ouiput to indicate that
the Sl umit is waiting for FMUTIL input. Once activated,
FMUTIL accepts directives from the St unit until:

a. Another JCP directive (first character is a slash) s
tnput, or

b. The exit directive, E, is input.
In etther case, FMUTIL terminates and JCP s scheduled.

It there 1s an error, one of the error messages given in
appendix A 1s output on the SO logical unit, and a record is
input from the SO unit to the JCP buffer. If the first
character of this record is /, FMUTIL exits via the EXIT
request. if the first character is C, FMUTIL continues. if the
first character is neither / or C, the record is processed as
a normal FMUTIL directive.

21.2 PARTITION SPECIFICATION TABLE

For a description of the Partition Specification Table (PST)
and File Name Directory, refer to section 9.1.

21.3 OUTPUT LISTINGS

FMUTIL outputs the following two types of listings to the LO
logical unit:

a. Directive Listing lists, without moditication, all FMUTIL
directives entered from S| logical unit.

b. Directory Listing, lists file names from a logical unit
filename directory in response to the FMUTIL,P,D, and
L directives.

All FMUTIL listings begin with the standard VORTEX
headings.

21.4 FILE MAINTENANCE UTILITY DIRECTIVES

The following file maintenance utility functions are sup-
ported by FMUTIL:

D Dumps RMD files, partitions, and file name directories
to magnetic tape.

L Loads RMD files, partitions, and file name directories
from magnetic tape.

R Rewinds magnetic tape

m

Writes end-of-file on magnetic tape.

‘é Searches for RMD files, partitions, and file name

L directories on magnetic tape.

P Prints a listing of file names contained on each
directory.

[

Releases all unused space in each file.

E Exits from FMUTIL.
File maintenance utility directives comprise sequences of
character strings having no embedded blanks. The charac-
ters strings are separated by commas (,) or key equa! signs
(=). Although not required. a period () is a line
terminator. Comments can be inserted after the period.
The general form of a file maintenance utility directive s
directive, p(1),1(2),....p(n)

where

directive is one of the directive
names given above.

p(l) s a parameter

Numerical data can be octal or decimal. Each octai number
has a leading zero.

For greater clarity in the descriptions of the directives,
optional blank separators between character strings, and
the optional replacement of commas (,) by equal signs (=)
are omitted.

FILE MAINTENANCE UTILITY

Error messages applicable to file maintenance utility
directives are given in appendix A.

21.5 D DIRECTIVE

This directive dumps information contained in files,
partitions, and/or directories onto magnetic tape where
this information can be later re-loaded onto the RMD, or
stored for later use. There are three types of D directives;
one for file, one for partitions, and one for directories.

21.5.1 Dump File

The directive for dumping a file has the following general
form

D,lun, key file, tapelun

where
lun is the number of name of the input
logical unit.
key is the partition protection code.
file is the name of the file being dumped.
tapeiun is the number or name of the output

logical unit. (magnetic tape only)

When a file is dumped to magnetic tape, it is organized
with a header record, end-of-file, n file records, and
terminates with a double end-of-file. The file, after the
dump with the header record, is formatted as follows:

Each n file record has 5,760 words, except for the last
which has the remaining number of words in the file. In
other words, the last record may have less than 5,760
words.

On a dump file directive a listing is output. The listing
output format is as follows:

PAGE XXXX XX/XX/XX XX:XX:XX YORTEX ¥MTLCK PNUTIL

D,22,X,COBINT, 18
COBINT 141

0 141
The top heading line consists of:
a. Oneblank

b. The word PAGE

c. Four character positions that contain the decimal page
number

d. Two blanks

e. Eight character positions that contain the current data
obtained from the VORTEX resident constant V$DATE.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 'F*

W

Word 1 kN

'Ev

Word 2
Word 3
Word 4
Word 5

Word 7
Word 8
Word 9
Word 10
Word 11

Word 6 FCB

end-of-file

21-2

5760 word data record

5760 word data record

< 5760 word last data record

end-of-file

end-of-file

f. T'wo blanks

g Eight character positions that contain the current time
HR: MN: SC.

h. Two blanks

i. Name of run-time operating system.

i. Twoblanks

k. The /JOB name of which the system is executing
. Twoblanks

m. Eight character positions that contain the job processor
name, FMUTIL

n. Blanks through the 120th character position.

Beginning with the first character position, the next line
(after 2 blank lines) contains the list of the input directives.

Beginning with the first character position the next line
contains: the name of the file, number of sectors used,
number of sectors unused, and the number of total sectors
allocated to the file.

Example: Dump the file COBINT contained on logical unit
22, whose protection code is X, onto magnetic tape unit 18.

D,22,X,COBINT, 18

FILE MAINTENANCE UTILITY

21.5.2 Dump Partition

The directive for dumping a partition has the foilowing
general form

D tun, key ALL tapelun
where

un is the number or name of the input
logical unit.

key is the protection code required to
address lun.

!npoiun is the output logical unit (magnetic
tape only).

ALL keyword specifying partition dump.

All partitions dumped onto magnetic tape are organized
with a header record, n files record, and terminated by an
end-of-file.

The header record is formatted as follows:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Word 0 P A
Word 1 R T
Word 2 number of file entries
Word 3 logical unit number
Word 4
Word 5 all zeros
Word 6
Word 7
end-of file

FILE MAINTENANCE UTILITY

An alternate name record has the format shown below:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 B N
Word 1 T ‘R
Word 2
Word 3 Entry Name
Word 4
Word 5
Word 6 Original Name
Word 7
Word 8 file size
end-of-file

A partition dump directive produces a listing. This listing
output format has the following FMUTIL heading, a one line
heading as shown below:

PILENAME USED UNUSED TOTAL LOGICAL UNIT-XXXX
The heading line consists of:

a. Oneblank

b. The word FILENAME that shows an alphabetical list of
all the file located on a particular partition.

c. Four blanks

d The word USED shows many sectors, of each fite,
contain information.

e. Four blanks

f. The word UNUSED shows how many sectors contain
blanks.

g. Fiveblanks

h. The word TOTAL shows the total number of sectors
allocated to each file.

. Forty spaces

j- The words LOGICAL UNIT shows what logical unit the
files are located on

k Four character positions that contain the logical unit
number.

Example: Dump the partition contained on logical unit
OM, protection code D, onto magnetic tape unit 18.

D,OM,D,AL, 18

21.5.3 Dump File-Name Directory

The directive for dumping a directory has the following
general form

D lun.key.DIR tapelun

where

un is the number or name of the input
logical unit.

key is the protection code required to
address lun.

tapeiun is the number or name of the
output logical unit. (magnetic tape
only.)

DIR keyword specifying directory dump.

A filename directory dumped to magnetic tape 1s organized
into a header record, directory record, and double end-of
file. The header record is formatted as follows:

FILE MAINTENANCE UTILITY

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
Word 0 ' D v
Word 1 R blank
Word 2 all zeros
Word 3 logical unit number
Word 4
Word 5 all zeros
Word 6
Word 7
end-of-file
The directory record has the following format:
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 Directory Sector Addr
1-120 120 word directory block
121 Directory Sector Addr
122-241 120 word directory block
5639 Directory Sector Addr
5640 5759 120 word directory block

end-of-file

end-of-file

FILE MAINTENANCE UTILITY

Example: Dump directories for partition contained on
logical unit OM, protection code D, onto magnetic tape unit
18.

D,OM,D,DIR, 18

21.6 L DIRECTIVE

This directive loads information into RMD files, partitions,
and/or directives from magnetic tape.

There are three types of L directives, one for files, one for
partitions, and one for directories.

21.6.1 Load File

The directive for loading a file has the following general
form
L,lun, key file, tapelun

where
lun is the number or name of the output
logical unit.
key is the partition protection code.
file is the name of the file being loaded.
tapeiun is the number or name of the input

magnetic tape ynit.

When a file is being loaded from magnetic tape, a search is
made for that file. After the search, the tape is positioned
in front of the file within the correct partition dump. The
search stops if a double end-of-file is encountered and an
error message is output. After the file is located, an
attempt is made to create the file space. If the file already
exists the existing file is used. | the existing file is too
small, an error message is output.

When creating a file for loading, the file size of the created
file will include all of the original extent of the file,
including the unused portion.

When a file already exits, the only check made is to see if
there is enough space for the used portion of the file as on
the tape, and the original extent of the file is ignored.

On a load file directive a listing is output. The listing output
format is the same as the D directive when files are cailed.
The only change would be the directive shown on the
listing.

Example: Load the file COBINT contained on magnetic
tape unit 18 onto RMD logical unit 22, protection code is X.

L,22,X,COBINT, 18

216

21.6.2 Load Partition

The directive 1or ioading a partition has the following
general form

L,lun,key ALL, tapeilun

where
lun is the number or name of the
output logical unit.
key is the partition protection code.
tapelun is the number or name of the input
magnetic tape unit.
ALL keyword specifying partition load.

When a partition is loaded, from magnetic tape, a search is
made for it as specified by the logical unit number
parameter. After the search tape is positioned in front of
the required partition dump, the search stops if a triple
end-of-file is encountered and an error message is output.

i e

When the partition is found, the files are loaded as
indicated key file loading in the order in which they appear
on the tape. if any non-previous record names are
encountered, an entry is made in the directory for them.

During the loading of a partition, space for the directory is
allocated at the beginning of the partition. After loading.
however, there is no embedded unused space in the
partition. All unused space is at the end of the partition.

On a partition load directive, a listing is output. The listing

output has the following FMUTIL heading, a one-line
heading as shown below:

PILEMANE USED UNUSED TOTAL START END LOGICAL UNIT-XXXX
The heading line consists of:
a. Oneblank

b. The word FILENAME that gives a list of all filenames
now contained in the partition.

¢. Fourblanks

d. The word USED shows how many sectors per filename
contain valid information.

e. Four blanks

f. The word UNUSED shows how many sectors per
filename contain blanks.

g. Fiveblanks

h. The word TOTAL shows how many sectors have been
allocated to each file.

i. Ten blanks

. The word START shows the beginning sector number
k. Seven bianks

I, The word END shows the ending sector numbers.

m. Fifteen bianks

n. The word LOGICAL UNIT shows on which logical unit
(partition) these files are contained.

o. Four character positions that contain the logical unit

number.

Example: Load the partition contained on magnetic tape,
which is on logical unit 18, onto RMD logical unit name
OM, protection code.

L,OM,D,ALL, 18

21.6.3 Load Directory

The directive for loading filename directories has the
foilowing general form

L lun key,DIR, tapelun

where

lun is the number or name of the
output logical unit.

key is the protection code required
to address lun.

tapelun is the number or name of the
input magnetic tape unit.

DIR keyword specifying directory load.

When a directory is being loaded, a search is made for it on
the input magnetic tape, after the search tape is positioned
in front of the required partition directory.

If the directory is found its sectors are loaded onto their
former recorded sectors. No reorganization takes place.

If the directory is not found or if a triple end-offile is
encountered, an error message is output, and the ssarch
stops.

FILE MAINTENANCE UTILITY

Example: Load directory for partition contained on
magnetic tape, on magnetic tape unit 18, onto RMD logical
unit OM, protection code is D.

L,OM,D,DIR, 18

21.7 R DIRECTIVE

This directive rewinds a magnetic tape to the beginning of
tape. The directive has the general form

R,lun
where
un is the number or name of the
input or output magnetic tape
unit.

Example: Rewind magnetic tape located on logical unit
18.

R, 18

21.8 E. DIRECTIVE

This directive writes an end-of-file on a magnetic tape. The
directive has the general form

E,lun
where

lun is the number or name of the
output magnetic tape unit.

This directive should be used after writing a series of files
onto magnetic tape instance:

|Header Record , EOF , Series of Partiton Files | EOF | EOF , EOF *;
t + + \ 1 + 1

*The E directive is used to write the third end-of-file.

E,18

21.9 S DIRECTIVE
This directive searches for files, partitions, and directories
located on magnetic tapes. The directive has the general

form

S lun, key, tapelun

217

FILE MAINTENANCE UTILITY

where

un is the number or name of the
RMO's logical unit.

key is the protection code required
for addressing lun.

tapelun is the number or name of the
input magnetic tape unit.

After the search, the tape will be positioned after the
partition or file identification record, and is now ready for
the loading of individual files.

Example: Search for the partition, file or directory named
OM, protection code D, located on logical unit 18.

5S,0M,D, 18

21.10 P DIRECTIVE

This directive prints out a listing of the file directory on the
LO for each partition specified. The directive has the
general form

P.lun key
where
lun is the number or name of the
input logical unit.
key is the protection code required

for addressing lun.

Files are listed in alphabetical order. The output listing has,
following the FMUTIL heading, a one-line heading as shown
below:

PILENAME USED UNUSED TOTAL START END LOGICAL UNIT-XXXX
The heading line consists of:

a. Oneblank

b. The word FILENAME that gives a list of alt filenames
- contained in a partition.

¢. Four blanks

d. The word USED shows how many sectors per filename
contain information.

e. Four blanks

f. The word UNUSED shows how many sectors per
filename contain blanks

g. Fiveblanks

h. The wora 1OTAL shows how many sectors have been
altocated for each file.

i. Tenblanks

j. Theword START shows the beginning sector number.

k. Seven bianks

I. Theword END shows the ending sector number.

m. Fifteen blanks

n. The words LOGICAL UNIT, one character, a dash (-),
shows upon which logical unit (partition) these files are

contained.

o. Four character positions that contain the logical unit
number.

Example: Print a listing of OM, protection code D.

P,OM,D

21.11 U DIRECTIVE

This directive releases unused space from files, after they

have been written on the RMD. The directive "has the

general form s
U,lun key file

where

“Jun is the number or name of the
logical unit where space to be
released is located in the
protection code

key is the protection code required
for addressing lun.

file is the name of the file where
the unused space is located.

Example: Release unused space located in file COBINT,
on partition 22, protection code X.

U,22,X,COBINT

21.12 EXIT DIRECTIVE

This directive exits from FMUTIL. The directive has the
general form

E

FILE MAINTENANCE UTILITY

where
E keyword specifying EXIT from
FMUTIL
Example: Exit from FMUTIL

APPENDIX A
ERROR MESSAGES

This appendix comprises a directory of VORTEX operating
system error messages, arranged by VORTEX component.
For easy reference, the number of the subsection contain-
ing the error messages for a component ends with a
number corresponding to that of the section that covers the
component itseif, e.g., the file-maintenance error messages
are listed in subsection A.9 because the file-maintenance
component itseif is discussed in section 9.

" A.1 ERROR MESSAGE INDEX

Except for the language processors (section 5), VORTEX
error messages each begin with two letters that indicate
the corresponding component:

Messages

beginning Are from Listed in
with: . component: subsections:
c™M Concordance program A53

DG Debugging program A7

bpP Dataplot it Al2

A.2 REAL-TIME EXECUTIVE

Message Condition

EX Real time executive AP
M tile mamntenance A9

10 170 control A3

18} 170 uhhity A 10O
JC Job-control processor A4

LG Load-module generator A6
MS Microprogram simulator A20.2
MU Microprogram utility A.20.3
NC VTAM Network control A21
oC Operator communication Al7
RP RPG 1V Compiler A3
RT RPG iV Runtime/Loader AS3
SE Source editor A8
SG System generator A 15
SM System maintenance A l6
ST ' VSORT Al

® DAS MR assembler A5.1

Section A.24 gives explanations of error codes listed under
"Possible User Action’ in the last column of the following
sections.

EXOI, xxxxxx

EX02, xxxxxx

EXO3, xxxxxx

EX04, xxxxxx

EXO05,xxxxxx

EXO06,xxxxxX

EXO7 xxxxxx

Invahd RTE service
request by task xxxxxx

Scheduted task xxxxxx
name not in specified
load-moduie library

Task xxxxxx made
RESUME request but re
quested task not found

Task xxxxxx made ABORT
request but requested
task not found

Background task xxxxxx
larger than allocatable

Not enough allocatable
space available for
AL OC request

OVLAY requests o seg
ment not 0 hbrary

Possible
User
Action Action
Abort task D01.D0Z2 PO
XXXXXX
Abort task 01,003
XXXXXX
Continue D01.D03
scheduling
task
Task xxxxxx DO01,003

continues

Task xxxxxx
not loaded
Abort task

XXX XXUX

Abort task
XIOAXRX

MO1,M02,MO03
M04,P02

MO6

DO1,DOo3

ERROR MESSAGES

EX10, xxxxxx

EX11 xxxxxx,n

EX12,xxxxxx

EX13,xxxxxx

EX14, xxxxxx

EX15,xxxxxX

EX16 xxxxxx

EX17, xxxxxX

IEXZO,xxnxx,h

Scheduled request has
a library task priority
conflict (task priority
0 from foreground
library, task priority
2 from background
library). Scheduled
request specifies a
foreground task to be
executed at priority
Oorl

Memory protection vio-
lation at address n

1/0 link error (fore-
ground task making
request, or incorrect
logical unit number)

Attempted to load map
registers and a sense-
DMA-error stop condition
occurred

Lack allocable TIDB
memory space for task
xxxxxx attempted to
be scheduled

Foreground common
specified by back
ground task

PASS macro specified
zero or negative word
count

RMD /0 error detected
when SAL attempted to
load scheduled task,
xxxxxx. Also pseudo
TIDB data assumed bad,
execution address less
than 01000

Map memory-protection
HALT violation at
virtual address n in
task xxxxxx

Note: xxxxxx is the name of a task

Schedule
request 1g
nored,
scheduling
task continues

Abort task
XXX

Abort task

XXXXXX

Abort task
XXXXXX

If an OPCOM
request, OP-
COM is
aborted. If
the schedule
1$ not an
OPCOM,

the request is
reattempted

Abort task

XXXXXX

Abort task
XXRXXX

Abort task
XXXXXX

Abort task
XXXXXX

D04, D02,Pot

P03

POl

HO5

M02

POl

PO1

HO6,PO1L

P17

lEXZl,uxxxx.n

lEX22,xnxn.n

lEX23,mumm,n,m

lEX24‘xxxxxx,n,m

IEX25,1nurx1n(,n

IEX26,1nuuxu(,m

EX27, xxxxxx

Map memory-protection
170 violation at

virtual address n in
task xxxxxx. User
attempted to execute
1/0 command in a map
other than map O

Map memory-protection
WRITE violation at
virtual address n in
task xooxx. User
attempted to write/
store into read-only

or read-operand-only
location

Map memory-protection
JUMP violation at
virtual address n in
task xxxxxx. User
attempted to jump into
read-operand-only
location m + 2

Map memory-protection
UNASSIGNED violation
at virtual address n

in task xxxxxx. User
attempted to read or
write into unassigned
location m

Map memory-protection
instruction-fetch
violation at wirtual
address n in task
xxxxxx. User attempted
to fetch an instruction
from read-operand-only
location

Firmware floating
point or stack over-
flow or underflow
occurred at logical
address or in task
XXXXXX.

ALOCPG request error.
Parameter error or
pages not available
for allocation.

Abort task
XKXXXX

Abort task
XXXXXX

Abort task
XXXXXX

Abort task
XXXXXX

Abort task
XXXXXX

Task is
continued at
location n+2

Program con
tinues execu-
tion at speci
fied reject
address

ERROR MESSAGES

P17

P17

P17

P17

None

P01

A-3

ERROR MESSAGES

EX30,xxxxxX DEALPG request error.
Parameter error. Pro-
gram continues execution
at specified reject
address

EX31, xxxxxx MAPIN request error.
Request executed by
priority O task

EX32, xxxxxx Attempted to schedule
a task from a non-RMD
unit

EX33, xxxxxx Floating-point proc-

essor, FPP, error

EX34, xxxxxx Floating-point proc-
essor, FPP, timeout

' The instruction which generated the memory-protec-
tion violation and the contents of the A, B, and X (and
V75) registers are also posted.

Note: xxxxxx is the name of a task

A.3 1/0 CONTROL

Message Condition

1000, xxxxxx Unit not ready, or
unit file protected

1001, xxxxXX Device declared down

1002, xxxxxx Invalid LUN specified

A-4

Program con-

. tinues execu

tion at speci
fied reject
address

Program con
tinues execu
at specified
reject address

Directive
ignored

Program con-
tinues at the
address follow-
ing the FPP
store instruc:
tion

Program con-
tinues at
interrupted
instruction

Action

Repeats mess
age until con
dition is cor-
rected

Repeats mess-
age until con-
dition s cor-
rected

Abort task
or request

POl

POl

D02,PO1

None

None

Possible
User
Actiqn

HO1,H03

HO04,D19

DO02,PO1

1003, xxxxxx

1004 xxxxxx

1005, xxxxxX

1006, xx XXX X

1007, xxxxxX

1010, xxxxxx

1011 xxxxxx

1012, xxxxxx

1013, xxxxxx

1014 xxxxxx

1015, xxxxxx

1016, xxxxxX

1017, xxxxxx

1020, xxxx

1030, xxxxxx

FCB/DCB parameter error

Invalid protection code

Protected partition
specified by unpro-
tected task

170 request error,
e.g.. |/0-complete
bit not set, prior
request may be queued

Attempt to read from a
write-only device, or
vice versa

File name specified in
OPEN or CLOSE not found

invalid file extent,
record number, address
or skip parameter, file
already closed

RMD OPEN/CLOSE error,

or bad directory thread,
seek or read error on OPEN
request.

Level O program read a
JCP (/) directive

interrupt timed out or
no cylinder-search-
complete interrupt

Dtsc cylinder-search
or malfunction error

Disc read/write timing
error

Disc end-of-track error

BIC: abnormal stop,
not ready, or time out
error on device xxxx

Panity error

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Task xxxxxx
15 aborted,

directive
passed to JCP
butfer

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

Abort task
or request

ERROR MESSAGES

P04

D01,D02,PO1

P01

P01

D02,PO1

D01,D03,P01,
D29

P04,PO1

HO05,003

None

HO05,005

HOS

HO5

HO5

D05 HOS

H05,002

A-5

ERROR MESSAGES

1031, xxxxxx Reader or tape error Abort task H05,P19
or request
1032, xxxxxx Odd-length record error Abort task HO5,P12
or request
1033, xxxxxx Invalid terminal Request D27
identifier or logical ignored
line number
1034 xxxxxx Line or terminal not Request D28
opened ignored
1035, xxxxxx Line or terminal down Request D28
ignored
1036, xxxxxx Line or terminal aiready - Request D28
open ignored
1037 xxxxxx Request still pending Request None
ignored
1040, xxxxxx Action on terminal not Request D28
opened ignored
1042, xxxxxX invalid physical line Request D27
address ignored
1043, xxxxxx Invalid TCM type Request D27
ignored
1044, xxxxxx No temporary storage Request None
available ignored
1045 xxxxxx RMD error. Format, Abort task H05,D13
end-of-file or head or request

selection error

1046, xxxxx X Map memory protection Abort task HO05
1/0 data transfer error or request

1047 xxxxxx User write specified Record is PO4
word count > 73 truncated

105x, xxxxXX RMD read error on spool The data 1s HO6
stream X. Specified used

stream is last digit
of error number

1060, xxxxxx RMD file tult The program D08
waits until
space s avail-
able on the
file. The
message is re-
peated every
200 times the
condition
occurs

1061, xxxxxx

1062, x xxxxx

1063, xxxxxX

Note:

User parameter error
in request

RMD write error

Buffer unavailable
for spooler

xxxxxx is the name of a task or device.

A.4 JOB-CONTROL PROCESSOR

Message

Jjcol

JC02

Jco3

JCO5,nn

Condition

Invalid JCP directive

Invalid or missing
parameter in a JCP
directive; or illegal
separator or terminator

Specified physical
device cannot perform
the functions of the
assigned logical unit

Invalid protection
code or file name in
a JCP directive

End of tape before the
number of files spec-
ified by an /SFILE
directive has been
skipped; or end of

tape, beginning of tape,
or file mark before the
number of records spec-
fied by an /SREC di-

rective has been skipped

where nn is the num-
ber of files (or
records) remaining
to be skipped

ERROR MESSAGES

Request is P01
ignored

The bad sec HO6
tor is

skipped. This

is likely to

cause an 105x

error later,

but no data

will be tost

Spooler waits None
until buffer
is available

Possible
User
Action Action

lgnore Do1,b0o2
directive

Ignore DO1.D02
directive

Ignore D07.HO6
directive

ignore D01,D02
directive

SFILE, SREC P07
terminates

upon error

condition

ERROR MESSAGES

JCO6

Jcoz

An irrecoverable /0 Job flushed PO7.M01,P06
error while compiling to next /JOB
or assembling; or an directive

error during a load/go
operation; or insuf-

ficent symbol table
memory (insufficient
/MEM directive), or

an EOF was encountered
before an END statement

Invalid or illegat Ignore
logical/physical-unit directive
referenced in JCP

directive

A.5 LANGUAGE PROCESSORS

A.5.1 DAS MR Assembler

During assembly, the source statements are checked for
syntax errors and usage. In addition, errors can occur
where the program cannot determine the correct meaning

of the source statement.

When an error is detected, the assembier outputs an error
code following the source statement containing the error,
on the LO unit, and continues to the next statement.

The assembler error messages are:

Message

18

*oP

*SY

*EX

*AD

*FA

*DC

*DD

*VF

*MA

Condition

First nonbiank character of the source statement
invalid (statement is not processed)

Instruction field undefined (two no-operation (NOP)
instructions are generated in the object module)

Expression contains undefined symbol

Expression contains two consecutive arithmetic op:
erators

Address expression error
Floating-point number format error
An 8 or 9 in an octai constant

Invalid redefinition of a symbol or the location
counter

Instruction contains variable subfields either
missing or inconsistent with the instruction type

Inconsistent use of indexing and indirect addressing
three symbolic source statements to be assembled

DO1,D02,H06

ERROR MESSAGES

*NS Nested DUP statements
*NR Symbol table full
*TF Tag error (undefined or ilegal index register

specifications)

*s2 Expression value too large for the size of the
subfield, or a DUP statement specifying more than

*uD Undefined digit in an arithmetic expression

*SE The symbol in the label field has, during pass 2,
a value different than that in pass 1

*E Syntax error (source statement incorrectly formed)

*R Relocation error (relocatable item encountered

where an absolute item was expected)

*MQ Missing right quotation mark in character string
¢a Invalid use of literal
i Implicit indirect reference when | parameter s

present on the /DASMR directive

A.5.2 FORTRAN |V Compiler and Runtime
Compiler

During compilation, source statements are checked for
such items as validity, syntax, and usage. When an error is
detected, it is posted on the LO usuaily beneath the source
statement. The errors marked T terminate binary output.

All error messages are of the form

ERR xx c¢(1)-¢(16)

where xx 1s a number form 0 to 18 (notification error), or T
foliowed by a number from O to 9 (terminating error); and
c(1)¢(16) is the last character string (up to 16) encoun-
tered in the statement being processed. The right-most
character indicates the point of error and the @ indicates
the end of the statement. The possible error messages are:

Notification
Error Definition
0 ltlegal character input
1 Construction error
2 Usage error
3 Mode error

Notification
Error

XN DbL

o

11
12
13

14
15
16
17

18
19
20

22
23
24

Definition

lllegal DO termination
improper statement number
Common base iowered

lllegal equivalence group
Reference to nonexecutable
statement

No path to this statement
Muitiply defined statement
number

invalid format construction
Spelling error

Format statement with no
statement number

Function not used as variable
Truncated value

Statement out of order

More than 29 named common
regions

Noncommon data

Illegal name

DO index not referenced
Name is dummy

Array name previously declared
Exponent underflow or overfiow
Undefined statement number

ERROR MESSAGES

Terminating

Error Definition
T0 170 error
T Construction error
T2 Usage error
T3 Data pool overfiow
T4 lllegal statement
5 Improper use
Te Improper statement number
17 Mode error
T8 Constant too large
T9 Improper DO nesting
T10 DO not parenthesized
Ti1 Item not operand
T12 Item not function
T13 Invalid unary +,
Ti4 Invalid hierarchy
T1S Invalid =
T16 Itlegal operator
T17 Function statement without parameters
T18 Logica!l !f follows logical If
T19 Invalid dimensions
T20 Operand is not a name
T21 Too many numeric characters
T22 Non-numeric exponent
T23 Terminator not
T24 lilegal terminator
725 Not statement end
126 Invalid common type
127 Target statement precedes DO
728 Subscript variable not dummy
T29 Not first statement

(Title statement)

T30 First two characters not DO
T31 Not in subprogram

- 132 Subscript not integer constant

Note: due to optimization, the error message may appear
on the next labeled statement and not on the actual
statement error.

RUNTIME

When an error is detected during runtime execution of a
program, a message is posted on the LO device of the form:

taskname message

Fatal errors cause the job to be aborted; execution
continues for non-fatal errors. The messages and their
definitions are:

Message Cause

ARITH OVFL Anthmetic overflow

GO TO RANGE Computed GO TO out of
range*

FUNC ARG Invahid function argument
(e.g.. square root ot
negative number)

FORMAT Error in FORMAT statement*

MODE Mode error (e.g.. outputting
real array with | format)*

DATA invalid input data (e.g.,

' inputting a real number
from external medium with
I format)*

1’0 1/0 error (e.g.. parity,

EOF)*

* indicates fatal error; all others non-fatal

A.5.3 RPG IV Compiler and Runtime
Compiler

During compilation, source statements are checked for
such items as validity, syntax and usage. When an error is
detected an arrow is printed pointing to the discrepancy in
the source statement and an error message is output on
the LO device. Detailed descriptions can be found in the
RPG IV User's Manua! (98 A 9947 03X). The possible error
messages are:

Messages
Indicator Name
Invalid Relational
Label Size
Literal Syntax

tf an 1/0 error occurs during compilation one of the
foilowing messages is posted on Logicai Unit 15 and
compilation is terminated:

Message

RPO1,nnn

RPO2,nn

RPO3,nnn

RPO4

RPOS

Condition

170 error

End of file error

End of device error

End card error (End
card encountered before
procedure card)

Available memory
exceeded

where nnn is the logical unit number on which the error

occurred.

RPG Runtime/loader during the loading or executing of an
RPG IV object program in the background any of the
following conditions will cause an error. The message is
posted on Logical Unit 15 and the task aborted:

Message
RTO1,nnn
RT02,nnn
RT03,nnn
RTO4
RTOS
RT06
RTO?7
RTO8

RT09

RT10, xxxxxx

Condition
170 error
End of file error
End of device error
Program too big
Invalid object record
Checksum error
Sequence error
Program not executable
Work list overflow
Invahid cali to sub
routine or missing sub-

routine where xxxxxx
= subroutine name

Action

Compilation
terminated

Compilation
terminated

Compilation
terminated

Compilation

terminated

Compilation
terminated

Action

Task aborted
Task aborted
Task aborted
Task aborted
Task aborted
Task aborted
Task aborted
Task aborted

Task aborted

Task aborted

ERROR MESSAGES

Possible
User
Action

HO6

PO7

P07

P07

M01,M03,M04

Possibie
User
Action
HO6
Po7

PO7

PO7

PO8

P08

P08

P08

MO01,M02 M03
MO04

PO8

ERROR MESSAGES

Concordance Program:

Message

CNO1

Condition

Symbol table full

A.6 LOAD-MODULE GENERATOR

Message

LGO1

LG02

LGO3

LGO4

LGOS

LGO6

LGO7

LGO8

LGO9

LG10

LG11

LG12

Condition

Invalid LMGEN directive

Invalid or missing para-
meter in an LGMEN direc-
tive

Check-sum error in
object module

READ error in object
module

WRITE error in load
module loading

Cataloging error, name
already in library,
library full

Loader code error in
object module

Sequence error in object
module

Structure error in ob
ject module (i.e., non-
binary record)

Literal pool overflow
or use of literal or
indirect by foreground
program

Invalid redefinition of
common-block size during
load-module generation

Load-module size exceeds
available memory or SW
file size

Action

Partial con-

cordance out-
put, then next

segment is
processed

Action

ignore
directive

Ignore
directive
Abort loading
Abort loading

Abort loading

Abort loading

Abort loading
Abort loading

Abort loading

Abort loading

Abort loading

Abort loading

Possible
User
Action

Mol

Possible
User
Action
D01,D02

DO01,D02

P08,002

P08,H06

P08,HO6

DO03,H06

P08

P08

PO8

P0O8,P09

PO8

P02.D34

LG13

LG14

LG15

LG16

LG17

LG18

LMGE internal tables

exceed available memory

Number of overlay seg-
ments input not equal
to that specified in
TIOB

Undefined externals

No program execution
address

Attempt to load pro-
tected task on back:
ground hbrary or
unprotected task on
foreground library

No load module
to catalog

A.7 DEBUGGING PROGRAM

DGO1

DGO2

A.8 SOURCE EDITOR

Message

SEO1

SEO02

SEO3

SEO4

Condition

Invalid DEBUG direc-
tive

Invalid or undefined

parameter in DEBUG
directive

Condition

invalid SEDIT direc-
tive

invalid or missing para-
maeter in SEDIT directive

Error reported by 10C
call

Invalid end of file

Abort loading

Abort loading

Loading
continues

Loading con-
tinues. Ad-
dress defaults
to the first
focation of
the program

‘Abort loading

Abort
cataloging

Action

Ignore
directive

ignore
directive

Action

Directive
ignored

Directive
ignored

Edit
terminated

Edit
terminated

ERROR MESSAGES

MO1

DO1,D02

P10

P17

D01,D02,033

P08

Possible
User
Action
001,002

DO1,D02

Possible
User
Action
D01,002
DO01,002

HO6

PO7

A-13

ERROR MESSAGES

A.9 FILE MAINTENANCE

Message

FMO1

FM02

FMO3

FMO4

FMO5

FMO6

FMO7

FMO8

FM09

FM10

FM11

FM12

FM13

FM14

* Messages FMO7 through FM14 apply only to the
processing of object modules. The occurrence of any of
these errors requires that the processing of the object
module be restarted after the error condition is removed.

Condition

invalid FMAIN direc
tive

Name already in direc-
tory

Name not in directory

Insufficient space for
entry

170 error

Directory structure
error, including
writing over the direc-
tory by direct ad-
dressing of an RMD
partition

Check-sum error in
object module

No entry name in ob-
ject module

Record-size error in
object module

Loader code error in
object module

Sequence error in ob-
ject module

Non-binary record in
object module

Number of input logical
unit not specified by
INPUT

insufficient space in
memory

Action

Ignore
directive

Moduie not
added

Module not
deleted

Module not
added

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

FMAIN process
terminated

Possible

User

Action
D01,002
003,001,002,
D07
003,001,002
D07,008,009

HO6

Po8

P12

PO8

Po8

P12

001,002

MO1

A.10 /0 UTILITY

1UO5,nn

Condition

Invalid IOUTIL directive

Invalid or missing para-
meter in IOUTIL direc-
tive

PFILE directive not used
to open an RMD file

170 error

END-OF-FILE before the
specified number or rec
ords skipped. When

nn = the n' .wber ¢’
records remaining when
the END-OF-FILE or
END-OF DEVICE (on RMD
only) occurred. END-
OF-TAPE outputs MSG
where operator has op-
tion to ;RESUME or
ABORT. Note: nn is
module 0 to 100.

A.11 SORT ERROR MESSAGES

Message

STOl, xxxxxxxX

$T02

ST03

STO4

Condition

invalid or missing
parameter or control
word for the SORT
control word xxxxxxxx

Record lengths for
INPUT and OUTPUT
unequal and no user
exit specified.

SORT control field
ending character po-
sition is less than

start character position,
or character position

is past end of sort
record

Insufficient memory
available for work
space.

Action

Directive
ignored

Directive
ignored
Directive

ignored

IOUTIL process
terminated

SFILE, SREC
terminates
upon error
condition

Action

Abort job

Abort job

Abort job

Abort job

ERROR MESSAGES

Possibie
User
Action

D01,D02

DO1,D02

D02

HO6

P07

DO1

Dol

DO1

MO1

A-15

ERROR MESSAGES

STOS, xxxxxx

STO6, xxxxxx

STO7, xxxxxx

A.12 DATAPLOT

Message

DPOO, xxxxxx

DPO1 xxxxxx

DPO2 xxxxxx

DPO3,xxxxxx

DPO4 xxxxxx

DPOS5, xxxxxx

DPO6, xxxxxx

DPO7 xxxxxx

OPEN error on file
XXXXXX

170 error on file
XXXXXX

Attempt to write past

end-of-file xxxxxx
(Work file or output

file too smali)

Condition
Plot file overflow
Buffer overflow
Attempted to plot from
unsorted plot file
End-of-file detected

before end-of-plot
indicator

Minimum/maximum x or

y value exceeded

PLOTS not called

Data Plot 1/0 error

Attempted to sort trom
a non-RMD media

where xxxxxx is the task name.

A.13 SUPPORT LIBRARY

There are no error messages unique to this section of the

manual.

Abort job

Abort job

Abort job

Action

Incomplete
plot

Incomplete
plot

Abort plot

incomplete
plot

Line will

follow plot
boundary,
origin will
be shifted

Abort plot

Abort task
XXXXXX

Abort task

DO1,H06

HO6

D32

Possible
User
Action
D30
MO5

P20

PO7

P22

HO06,H05

D31

A.14 REAL-TIME PROGRAMMING

There are no error messages unique to this section of the

manual.

A.15 SYSTEM GENERATION

RECORD-INPUT ERRORS:
before processing.

Message

$Goo

$GO1

$G02

SGO3

SGo4

SGOS

$GO6

SGO7

$GO8

Errors in input record found

Condition

Read error (1/0)

Syntax error in
SGEN directive

Invalid or missing
parameter in SGEN
directive

Syntax error in control
record

Invalid or missing
parameter in control
record

Binary-object check
sum error

Binary-object sequence
error

Binary-object record
code error

Unexpected end of file,
end of device, or
beginning of device

Action

" Waits for

corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

Waits for
corrected
input

ERROR MESSAGES

Possible
User
Action

P19,D011

D01,D11

D01,D11

D11

DO1,D11

P08,D11

P08,D11

P08.D11

P07.D11

ERROR MESSAGES

A-18

SGO9 Improper ordering of
load-moduie-package
control records

OUTPUT ERRORS: Errors in the attempt to perform 1/0
on an RMD or listing unit.

Message Condition

SG10 RMD 170 error in
directive processor

S$G11 RMD /0 error in
nucleus processor

SG12 RMD /0 error during
library generation

$G13 RMD 1/0 error during
resident-task generation

SG14 First track on RMD bad
(unable to write PST/
bad-track table)

SG15 Write error on listing

device

SYSTEM-GENERATOR PROCESSING ERRORS: Errors pre-
venting the correct functioning of the system generator.

Message Condition
$G20 Requested SGEN driver
not available
$G21 Loading error in direc-

tive processor

Waits for
corrected
input

Action

Waits for
indicated
corrective
action

Waits for

" indicated

corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Action

System haits

Waits for
indicated
corrective
action

D11

Possible
User
Action

D12

D12

D12

D12

D12

None

Possible
User
Action

MO05,022,D18.
D15

D12

$G22

$G23

SG24

$G25

$G26

$G27

SG28, xx

MEMORY ERRORS:

Loading error in
nucleus processor

Loading error in
library processor/
resident-task
configurator

Stacks exceed avail-
able memory

Incomplete system
definition (missing
directives)

RMD error (too many
sectors allocated, or
nonsequential par-
tition assignments)

Error while loading
SGEN loader, {/0
control, or drivers.
Driver not found in
SGL

Error while loading
SGEN component
xx = 05 - checksum

06 - sequence
07 - record
21 - other in
SGEN1
22 - other in
SGEN2
23 - other in
SGEN3
24 - other in
SGEN4

Errors of compatibility between atlo-

cated memory and a portion of the VORTEX system.

Message
$G30

SG31

Condition

Size of nucieus larger
than that of defined
foreground area

Load-module iiteral
pool overfiow

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

System halts

Waits for
indicated
corrective
action

Action

Waits for
indicated
corrective
action

Current load
module
processing
terminated,
system con-
tinues

ERROR MESSAGES

D12

D12

M03.D12

D01,D12

D01,025.D12

D15

P08,D12

Possible
User
Action

M03.D12

P09,017

A-19

-ERROR MESSAGES

A-20

$G32

$G33

SG34

SYSTEM LOADING AND LINKING ERRORS:
prevent normal loading or linking of system components.

Message

SG40

SG41

$G42

SG43

SG44

Size of load module
larger than defined
memory area

Invalid definition of
common during load-
module generation

Number of overlays in-
put not the same as
specified by TID
control record

Condition

Loader code error in
library processor

Loaded program contains
no entry name

Unsatisfied external in
library processor

No execution address
found in root segment
or overlay

Loader code error in
nucleus processor (i.e.,
indirect or literal

in foreground task)

Errors that

Current load
module
processing
terminated,
system con-
tinues

Current load
module
processing
terminated,
system con-
tinues

Current load
module
processing
terminated,
system con-
tinues

Action

Current load
module
processing
terminated,
system con-
tinues

Current load
module
processing
terminated,
system con-
tinues

Current load
module
processing
terminated,
system con-
tinues

Processing
continues.
Address
defaults to
the first
location of
the program

Waits for
indicated
corrective
action

M03,P02,D17

MO03,017

D01,D17

Possible
User
Action

P08,D17

P08,D17

P10,017

P11

Po8,D12,

$G45

Unsatisfied external in
nucieus processor

System peripheral
assigned to more than
one logical-unit class

A.16 SYSTEM MAINTENANCE

Message

SMO1

SM02

SMO3

SMO04

SMO5

SM06

SMO7

SMO08

SMO09

Condition

Invalid SMAIN direc-
tive

Record not recognized

Check-sum error in
object module

Incorrect size of
object-module record
(correct: 120 words
for RMD input, other-
wise 60 words)

Loader code error in
object module

Sequence error in

object module

Object module contains
non-object-module text
record

Error or end of device
received after reading
operation

Error or end of device
received after writing
operation

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Action

Ignore
directive

|gnore
directive

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for

indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

Waits for
indicated
corrective
action

ERROR MESSAGES

P10,D12

D12

Possible
User
Action

DO1,D02

P19,D10

P08,D10

P12,D10

P08.D10

P08,D10

P12,D10

P07.010

P07.D10

A-21

ERROR MESSAGES

A-22

SM10

SM11

Stack area full

Invalid control record

A.17 OPERATOR COMMUNICATION

Message

0Co1

0Co2

0co3

0Co4

0Co5

0C06

0co7

0oC10

oc11

A.18 RMD ANALYSIS AND INITIALIZATION

RZ01

Condition

Request type error

Parameter limits
exceeded

Missing parameter

Unknown or undefined
parameter

Attempt to schedule
or time schedule
OPCOM task

Attempt to declare OC
device or system
resident unit down

Task specified in TSTAT
key-in has no es-
tablished TIDB, task
currently not active

Attemnpt to assign unit

declared down or assign
an unassignable logical

unit/device

Attempt to allocate
TIDB unsuccessful for
TSCHED request

Condition

Invalid RAZ| direc-
tive or illegal sepa-
rator or terminator

Waits for
indicated
corrective
action

Waits for
indicated

corrective
action

Action

Ignore
directive

lgnore
directive

lgnore
directive

Ignore
directive

Ignore

directive

ignore
directive

Ignore
directive

tgnore
directive

ignore
directive

Action

lgnore
directive

Mo1

P19,D10

Possible
User
Action
DO1,D02
DO1,D02
DO01,D02

D01,002

D01,D02

D01,D02

D01,002

D19,HO4

Mo2

Possible
User
Action

D01,D11

ERROR MESSAGES

RZ02 Invalid parameter in ignore D01,D11
a RAZI| directive directive

RZ03 Insufficient or con- Ignore DO01,D11
flicting directive directive
information

RZ04 New PST incompatible \gnore D20,D21,D22,
with the system directive D11

RZ05 Named device cannot be lgnore D01,D11
replaced (system RMD or directive
device busy)

RZ06 Irrecoverabie 1/0 error ignore HO06,D11
on designated RMD directive

R207 First track of disc Ignore D2a
pack bad (pack unusabie) directive

RZ08 Directive incompatible ignore D25,D23
with specified RMD directive

RZ09 Irrecoverable 1/0 error Ignore HO06,D11
on system RMD (VORTEX directive
nucleus)

RZ10 /0 error on LO device Ignore D11,H06

directive
RZ11 i/0 error on Sl device Ignore D11,HO6
directive

RZ12 No memory available to RAZt aborted MO02
allocate for new bad-
track table

RZ13 Total number of tracks ignore D25,011
specified in PRT direc- directive

tive exceeds size of

the device or is in-
compatible with the FRM
directive

A.19 PROCESS INPUT/OUTPUT

There are no error messages unique to this section of the
manual.

A.20 WRITABLE CONTROL STORE

A.20.1 Microprogram Assembler

Either case is indicated as an error and up to eight error
codes will be output beneath the source statement
incorrectly constructed.

During assembly the symbolic statements are checked for
syntactic errors. In addition, a condition may occur where
the assembler is unable to determine the correct meaning

of the symbolic source statements. NR, LC and 10 errors terminate the assembly.

A-23

ERROR MESSAGES

Each error code with the exception of 10 is followed by a 10
space and two decimal digits indicating the character

position the assembler was scanning when the error was Lc
detected.

The error codes and their meanings are listed below:

Error
Code

AD

cC

CE

DD

ER

EX

FN

A-24

Meaning

MF

NR

Address expression or associated

fields in error

NS

Continuation not expected

Numeric conversion error

orP

SE

Illegal redefinition of a symbol

Syntax error

Sy

An expression contained an

illegal construction

Sz

Field number inconsistent with

format

Message

MSo1

MS02

MSo03

MS04

MS05

mMSso7

MSo8

t/O error

Program location counter setting
exceeds the maximum WCS page size
(512 words)

Duplicate field reference

No memory available for addition of
an entry to assembler's tables

No symbol in the label field where
required

Operation field undefined

Symbol in label field has a value
during pass 2 that is different from
the value determined in pass 1

Undefined symbol. A value of zero
is assumed

A value too large for the size of a
field, or the fields defined in a
format statement do not equal 64 bits

A.20.2 Microprogram Simulator

Condition

Input could not be interpreted
as a valid command

A non-hex character was
encountered when hex expected

Insufficient common
area to contain spec-
ified number of pages

The selected page
number was not valid

An attempt was made
to jump to an unavail-
able WCS page

A BCS instruction was
encountered when WCS
page 1 is unavailable

Read error on BI
device

EOF encountered before
load complete

Possible
User
Action Action
Directive ignored; D01,D02
input recovery®
Directive ignored; D02,D02
input. recovery*
Request for MO01,D26
highest page
repeated
Directive D26
ignored;
input
recovery®*
Simulation P13
halted
Simulation D26,P13
halted
Loading HO6
aborted
Loading P07
aborted

ERROR MESSAGES

MS09 £0D/BEOD encountered Loading PO8
before load complete aborted
MS10 Sequence error on Bl Loading P08
aborted
MS11 Invalid loader code Loading PO8
aborted
MS12 Checksum error Loading P0O8
aborted
MS13 Undefined macro opcode Simulation P15
continues
MS14 Attempted to write to Simulation P16
memory outside defined continues

main memory

Ms15 Attempted to load out- Loading P23
side main memory aborted

MS16 Invalid field name Remainder of DOl
directive
ignored

MS17 Invalid field value Remainder of DO1
directive
ignored

* |nput recovery message or corrected directive from SO
device.

A.20.3 Microprogram Utility

Possible
User
Message Condition Action Action
MUO1 input could not be Directive D01,D02
interpreted as a valid ignored;
command input
recovery*
MUO02 A non-hex character Directive D01,002
was encountered when ignored;
hex expected input
recovery”®
Muo3 EOF detected on SI Microprogram PO7
utility
aborted

A-25

ERROR MESSAGES

A-26

MUo4

MU05

MU06

MUo7

MUo8

MUO09

MU0

MU11

MU12

* Input recovery message or corrected directive from SO

device.

A.21 VTAM NETWORK CONTROL MODULE

The VTAM network control module (NCM) generates the

foilowing error messages:

NCO1

NCO02

NCO5

The selected page
number was not valid

Unable to access WCS:
WCS is busy

Unable to access WCS:
BIC load in progress

Read error on BID
device

EOF encountered before
load complete

EOD/BOD encountered
before load complete

Sequence error on Bl

invalid loader code

Checksum error

Condition

Syntax error

Undefined line

Undefined TUID

1/0 error on file
VT$DFL

170 error on file
VT$OFT

Undefined CCM number

Directive
ignored,;
input
recovery*

Directive
ignored

Directive
ignored

Loading
aborted

Loading
aborted

Loading
aborted

Loading
aborted

Loading
aborted

Loading
aborted

Action

ignore
directive

ignore
directive

ignore
directive

Ignore
directive

Ignore
directive

Ignore
directive

D01,D02

HO5

HO05

HO6

Po7

P08

Possible

User

Action -

D01,002

027,002

D27,002

H06,D02

H06,002

027,002

A.22 FILE MAINTENANCE UTILITY (FMUTIL) ERRORS

Message

END-OF-FILE

A DIRECTORY
STRUCTURE
ERROR-LUN lun
SECTOR:-sector
num

fILENAME ERROR

DIRECTORY
ERROR
ERROR - -
Beg. - - end

eof - -
current -
end - eof

TAPE INPUT
ERROR

PARTITION
OVERFLOW

INSUFFICIENT
SPACE IN
PARTITION

Condition

This 1s an ERROR MSG
meaning an END-OF-FILE
was encountered before
the specified request
could be completed.

A = blanks

lun = 4 digits giving
logical unit number
sector num = 7 digis
giving the sector number
in error. This 1S an

ERROR MSG. Meaning there

15 a structure error In
the object module.

INVALID filename or
fitename not found

Directory error shows
writing over the direc
tory by direct address:
ing of an RMD partition.
= blanks
Beg = 2 digits showing
beginning sector addr
end = 2 digits showing
the ending sector addr
eof = 2 digits showing
end-of-file addr.
current = 7 digits
showiing current beg
addr.
end = 7 digits showing
ending addr. of current
sector.
eof = 7 digits showing
current eot.

READ ERROR (file Header
not found)

Insufficient space for
entry into partition

Insutficient space for
entry

Action

FMUTIL
Process
Terminated

FMUTIL
Process
Terminated

No action
taken error
output and
ignored goes
to next entry

FMUTIL
Process
Terminated

Qutputs error
tries again

Module not
added, outputs
last directory
sector

file not addea.
FMUTIL process
ferminated

Possible User
Action

DO1.PO7

HO6

DO1.O0Y.
DO3

P17

D01.007.
D1l

D07.D09S.
D01.DO3

H06.MO1

ERROR MESSAGES

A-27

ERROR MESSAGES

Message Condition Action Possible User
Action
FMAIN ERROR- 4 blanks and 1 digit QOutputs msg. HO6
reference to FMAIN FMUTIL process
ERROR indicated re- terminated,
quired {/0 error. depending upon

error mentioned.

CAPACITY Insufficient space for Sorts entries Mo1
EXCEEDED entry to Directory. in alphabetical
order, and out-
puts listing.
PARTITION Partition size and Returns to try P17,H06
SIZE sze sectors as stated in again.
SECTORS error message have not
- num been assigned.

ARE UNASSIGNED - = blanks
size = 7 digits showing
size of partition.
num = 5 digits show-
ing number of sectors

unassigned.
A.23 COMSY ERROR MESSAGES 8 Updates were not terminated by a .COMSY
directive
The following are the COMSY error numbers and assoc!-
ated types of errors detected:
9 Sequence number greater than 99995 on
Error Definition an update directive.
! Directive not understood. 10 Update sequence numbers not ascending.
? Missing drective. 1t .COMSY deck specified, not on COMSY
3 Input was not .COMSY or .FILE when file on Pl
searching for a named COMSY deck on PI
12 Incorrect unit.
4 Record sequence error on binary COMSY
= Y 14 Common decks limited to 19.
input.
Common deck not found.
5 Record checksum error on binary COMSY 15 0
input 16 Update directive not understood.
6 Parameter list in error. 17 170 error.
7 Missing .COMSY directive on PI. 18 Erroneous end-of-file condition.
19 Directory error on a random file.

A-28

A.24 ERROR CODES

A.24.1 Errors Related to Directives

Dol

DO2

D03

D04

D05

D06

D07

Do8

D09

Dio

D11

D12

D13

D14

D15

D16

D17

D18

D19

D20

Check spelling, delimiters, and parameters.

Enter corrected request from OC or SO.

Check specified library for module name (FMAIN list).
Correct task priority.

Check PIM directives used at system generation.

Use a global logical unit in directive.

Use an alternate library or unit.

Increase library size with RAZ! or during SGEN.
Delete unused modules from library.

Reposition record if PT or CR (for MT or RMD
positioning is automatic and enter on SO:

where @ is a
carriage return

R@ to reread the record or
P@ to reread the program or
/SMAIN@ to restart SMAIN

Correct input record by entering it on SO or
indicate that it is positioned for rereading
by entering C on SO.

Restart component by entering C on SO.
(Repositioning is automatic for MT and RMD,
for cards reload the entire deck and SGEN
will find component.)

SGEN requesting bad track analysis for unformatted
RMDs or reformat formatted RMDs.

Restart SGEN from beginning.

Check spelling, delimiters, etc. of 10
INTEROGATION.

Correct appropriate SGEN directives as indicated.

Correct indicated module for next SGEN or add
corrected module with LMGEN after SGEN completes.

Check that all RMDs are included in the SYS
directive that are indicated by the EQUIP
directives.

Use OPCOM IOLIST for unit to check unit status
(up or down) and unit's logical group.

Check PRT directive.

D21

D22

D23

D24

D25

D26

D27

D28

D29

D30

D31

D32
D33

ERROR MESSAGES

Check if maximum number of partitions specified
in EDR directive has been exceeded.

Check for confiicts in controlier/unit relations.

Check logical unit in directive, must be assigned
to first partition of the subject RMD unit.

The specified RMD pack cannot contain a bad track
table due to the first track being bad, use another
pack.

Check FRM directive and total number of tracks
specified in PRT directive. The following

table gives the track capacity for the standard
RMDs:

70-75XX 4060 tracks
70-76X0 203 tracks
70-76X3 406 tracks
70-7701 128 tracks
70-7702 256 tracks
70-7703 512 tracks

Check response to the highest page number
requested.

Check NDM definition or use LIST directive
of NCM.

Use NCM module to check line/terminal status.

Check that all subject logical units assigned
to RMD have been positioned with a PFILE.

Use a larger file for the plot file.
Check for proper logical unit (i.e., IOLIST).

Increase work file xxxxxx size.

Check type parameter on TiDB directive

A.24.2 Errors Related to Programs

P01

P02

P03

PO4

P05

P06

Correct request in requesting task and re-execute.
Recode task using overlays.

Check for privileged or illegal instruction
at specified location. Check listings or check
memory by requesting a dump.

Check FCB or DCB entries.

Check for proper read mode, packed or
unpacked.

Check for needed global files such as PO,

SS, GO, SW. Note: the diagnostic gives

the task name and not necessarily the missing
file name.

ERROR MESSAGES

PO7

P08

POS

P10

P11

P12

P13

P14
P15
P16

P17

P18

P19

Check source for an erraneous EOF, END directive,
efc.

Check module for the indicated error;

sequence number word 1, bits 07

checksum value word 2
Note: binary records can be hsted using the DUMP
directive of IQUTIL.

Check $LIT and $1AP values from the load module
map

Examine map for missing externals and make
necessary program changes.

Check for an execution label on the END statement
of the source. Note this is a normal diagnostic
for FORTRAN overlays

Check for a non-binary record or a short or long
record in the module. The record length can be
found in word 5 of the request block upon completion
of 170.

Check code and continue after making corrections
as indicated.

Check requested page number

Check opcode for vahd instruction.

Check memory address, store request is ignored.
Check for specified instruction or operation at
location indicated in error message. Note: the address
indicated refers to the instruction causing the

error and not the violated address.

Check the page status: read/write, read only,
tetch operand only, or unassigned.

Check for iilegal data under current mode, i.e., binary

in ASCll record, non-binary in binary record.

A-30

Sort the plot file

This may be an intentional message Plot continues.

Calt PLOTS.

P2a

Check memory address, check ORG vaiue and foad
range

Recode into multi tasks or use fewer overlays

A.24.3 Errors Related to Memory Size

MO1

Mo2

MO3

MO4

MO5

M06

If background, adjust MEM directive as needed.

Wait for foreground tasks to release
memory or TIDB space.

if MEM request OK or cannot be increased then cut
back on foreground common, empty TiDBs, reentry
stack size, peripheral drivers, etc. by re-SGEN.

If sharing blank common and VTAM LCB area,

check that a program has not used part of the
LCB area.

Increase buffer area with BSS or dimension commands.

Increase reentry stack size in SGEN EDR directive.

A.24.4 Errors Related to Hardware

HO1

HO2

HO3

HO4

HO5

HO6

.

Make indicated unit ready.

Clear the protection of the unit. (Disc
write protection or write ring in MT).

ABORT task, reassign Sl if necessary, and then
declare device down through OPCOM, do not
forget to declare it back up again.

'ABORT task and assign alternate device or

declare device back up.
Check hardware for indicated problem.

Check the OC device for an 10 error message,
ie., 1Oxx.

APPENDIX B
170 DEVICE RELATIONSHIPS

ANowable Functions by 1/0 Device Type

Function RMD MT
Read binary record X X
Read alphanumeric record x! X
Read BCD record x!' X
Read unformatted record x! x!
Write binary record X X
Write alphanumeric x' X
record
Write BCD record x' X
Write unformatted record x! x!
Write end of file X
Rewind unit X X
Skip one record forward X X
Skip one record backward X X

Perform function zero

Perform function one

Perform function two

Open a file with rewind X X
option
Open a file with leave X X
option
Close a file with leave X X
option
Close a file with update X X
option

(1) AH modes are read/written in binary
mode.

(2) BCD mode is handled like unformatted
mode.

(3) Punch 256 frames of leader on paper tape
or eject one blank card on card punch.

(4) All modes are written in alphanumeric
mode.

(5) Advances paper to top of form on line

PT
X

X

x2

NOTES

CR cP LP TY or CRT
X x4
X X
x? x4
X x4
X x’ x4
X X X
x? x°? x*
X x\).l() XA
X x*
X
x3 xt X
x° x8
x’ x’

printer, or causes carriage return and feeds
three lines on Teletype or CRT.

(6) Advances paper one line.

(7) Advances paper two lines.

(8) Rings beil on Teletype or beeps on CRT.

(9) 620-77 line printer -- All modes are treated
as alphanumeric.

(10) 620-76 printer/plotter -- Unformatted rec-
ords are transmitted without interpretation as
plot data.

B-1

1/0 DEVICE RELATIONSHIPS

8.2

Code

000

001

002

003

004

005

006

007

oto

011

012

013

014

015

016

017

o/n

030

031

032

i/0 Errors by 1/0 Device Type

Description
Unit not ready
Device down

Hlegal LUN speci-
fied

FCB/DCB parameter
error

Level O program
references a pro-
tected partition
Level O program
references pro-
tected memory

170 request error
Read request to
write only device,

or vise versa

File name not found
File extent error
RMD directory error
Level O program
read a JCP (/)
directive on Si

Interrupt time out

RMD cylinder-search
or malfunction error

RMD read/write
timing error

RMD address error
BICn error
Parity error

Reading error by
card reader or
paper tape device

Odd-length record
error

Error reported by 1/0 drivers.

Error reported by 1/0 control processor

RMD MT

X X

0 0

o) 0

0 0]
(o)

0] 0

0] o]

X

X

X

0 0

X X

X

X

X

X X

X X
X

PT

X

170 Device
CR cp
X X
[0} 0
(o} e}
(o} (¢}
o] (o}
(o} o}
o} (e}
0 0
(6}

X X
X

Lp

TY or CRT

X

X

APPENDIX C
DATA FORMATS

This appendix explains the formats and symbols used by C.1.2 Alphanumeric Mode

VORTEX for storing information on paper tape, cards, and

magnetic tape. Alphanumeric information is stored with one frame per
character (figure C-2). Standard ASCH-8 punch levels are
used.

C.1 PAPER TAPE

Information stored on paper tape is binary, alphanumeric,
or unformatted. It is separated into records (blocks of
words) by three blank frames. The last frame of each
record contains an end-of-record mark (1-3-4-8 punch).

C.1.3 Unformatted Mode

The tape is handled as for alphanumeric mode, but without
validity-checking.

C.1.1 Binary Mode C.1.4 Special Characters
Binary information is stored with three frames per
computer word (figure C-1). Note that channels 6 and 7 are An end of file is represented by the ASCI{-B BELL character
always punched. (1-2-3-8 punch).
CHANNEL
 § QWX XQAXXQXX QXX*B8BBQXX
7 - P S T " S * Wk B B B B - LI
‘ I T T A N T TS .;aBBBB.-'
S QXXAQAX XQX X QX XBBBBQXX
4 X XXX XXX XX XX X*B8B XXX
TIM]NG . - . 3 . 3 . - . . - - .
3 XX XX XXX XX XXX*BBBX XX
2 AX XX XXX X X XXXB8BBBXXX
i XX XX XXXXX XXX*BBBXXX
WORD 11 L-worD 2 WORD N - ‘J L L woro 1
EOR —RECORD
N BINARY RECORD e’ GAP
* - HOLE
B BLANK
X = DATA BIT
tOR= END - OF - RECORD
Q- BLANK

VIi-1374

Figure C-1. Paper Tape Binary Record Format

C1

DATA FORMATS

When paper tape is punched on a lTeletype, the ASCH 8
ERROR character Hags etroneocus frames punched by the
Teletype when 1t 1s turned on or off. This notifies the
Teletype and paper tape reader drivers to ignore the next
frame.

When alphanumeric input tapes are punched off-line on a
Teletype, there is no means of spacing the three blank
trames after every record. The foliowing procedure gives a
tape that can be read by the paper-tape reader driver:

a. Punch the alphanumeric staternent.

b. Punch an end of record (RETURN on the Teletype
keyboard).

¢. Punch three or more frames containing any of the
following characters

Press CONTROL and: ASCiIl-8 Equivalent

NOTE

Any of these characters can also be used for leader
and trailer.

d Punch the next alphanumeric statement. Return to step
b

C.2 CARDS

Information stored on cards in binary, alphanumeric, or

unformatted. Each card holds one record of information.
Hence, there is no end-of-record character for cards.

C.2.1 Binary Mode

Binary information is stored with sixty 16-bit words per
card. The information is serial with bit 15 of the first word
in row 12 of column 1, bit 14 in row 11, etc. (figure C-3).

@ DCO " ' c
LINE FEED LINE FEED Any 11-0 punch in column 1 is treated as binary.
WRU WRU
EQT EOT
RU RU C.2.2 Alphanumeric Mode
vT VTAB
Alphanumeric information 1s stored one character per card
TAB HTAB column (figure C 4) using the standard punch patterns
HERE S (33 ASR only) NULL
CHANNEL:

2 /XXX X X XX »BBB XX)

; /R XA X X XX BBBB X x

¢ ,/ XXX X X X XBBBB X »

N / AX X X X X XBBBB XX

4 XX X X X X X »BBB XX

TIMING e e .. e e .

3 XX X X X X X +BBB XX

? \ XX X X X XX BBBB X

i ol +++BBB - - /

Breraizs

c2

et Mgt et
L- AsCll CHARACT(RS — ‘J

EOR
‘e ALPHANUMERIC RECORD et

emp—
Lo ASCiI CHARACTERS OF
RECORD BINARY WQORD

G AP

* - HOLE FOR ASCII CHARACTER QR DATA BIT FOR
BINARY INFORMATION

B - BLANK
X DATA BIT
tOK END-OF-RECORD

Figure C-2. Paper Tape Alphanumeric Record Format

VTi-1376

VTii-0957

DATA FORMATS

saobdne e Sz 6y

nruubouunouonooounououo
]
R IR R R EERRERER!

kb oalelz 2fele22222222222222
iz alabsls shialashlzzzazasaaassasas
ale elalaj afelsfaalafe sraadaaqaatanaay

515 55585 515]5c S5 95555555855 555 ¢

l—SJSkGSSGtSSBSGﬁSSGCG56665566
R R U R IR R R R R R R R R RN RN
8[ols ajsjeie aiafels g|a s 80888888 8888C0

91919 9[9[9f9 9]9i8}9 9}99999999522999999
s eishe]y efsbol: n wnwnwi s oy
C ORI ND) STANDARD ¢+ A 5031

WORD: 1P 3#%

Figure C-3. Card Binary Record Format

NN NE
B00CO0DJ000000000000006000000000000000000080000000006000000FcHoBoNoBoNoBoRoooBooooo
127743600910 . ML I P IS MM B V) M T W A0 A 4 4E A 0S8 42 40ABA0 L SIS D ARSI N IR AN
(R ERARRR R R AR RN RRRR AR RN R R R Rl ER AR R R R R RN R R R R R R AR R R R RN R R AR AR
222202222222222222222202222222222222222282222222222222220222222222222222222222122
33333203333333.5323233338333333333333333330833333333233333303393333333330330s
Ceaaataasaaiitasarssanaaetsanesantadaasasfaastaaasataaasaledantataidadiagend
555555555505555555955555535550555555¢5555555555H555955595595555W5555559555555855585§
666666656666M6666666666666666uoM66666666666666666M666666666666666W666666666666666
R R R RN R R Rl FR R R RN NN NN R RREE FRRRE R RR RN RERRRRRRRRRRS]
assansasessasasolasesaaunsesasoosoMennescnsnonnsaseslMansesonncsoncesBosaBelalslds
99599999999°95999930999999399
i ieiaan b

1 DRI RUREE N RTRCS, N BRI B A
LLOBE NO 1 STARDAKD FURM LU81

999999990999999959959399990179999999999933309998999¢3
= R R

R 000 ©CA3a1 D AT L e R0y RIS e T TS T T IS 06 T T 0

Figure C-4. Card Alphanumeric Record Format (IBM 026)

C-3

DATA FORMATS

C.2.3 Unformatted Mode

The data are handled, one column per computer word,
right-justified, and without validity-checking.

C.2.4 Special Character

An end of file is represented on cards by a 2-7-8-9 punch in
column 1 of an otherwise blank card.

C.3 MAGNETIC TAPE

information stored on seven-track magnetic tape is either

binary or BCD. On nine-track tape, information is always
binary. T

PRSSSEIES <4

C.3.1 Seven-Track

For system-binary, ASCl, and unformatted modes, the first
frame is read into bits 15-12 of the word, the second frame
into bits 11-6, and the third into bits 5-0. For BCD mode,
the first frame is read into bits 11-6 and the second into
bits 5-0.

C.3.2 Nine-Track

In all modes, the first frame is read into bits 15-8 of the
word, and the second frame into bits 7-0.

C-4

C.4 STATOS PRINTER/PLOTTER

Information may be output to the Statos printer/plotter in
alphanumeric and unformatted modes.

C.4.1 Alphanumeric Mode

Information output in alphanumeric mode is assumed to be
ASCIl characters packed two to a word. Each character is
converted to a dot matrix and the print line is transmitted
to the device. Characters may be printed in two sizes. The
normal print size consists of a 7 by 11 dot matrix and
allows 140 characters per line. The large size print consists
of a 14 by 22 dot matrix and allows 70 characters per line.
Excess characters will be truncated.

C.4.2 Unformatted Mode

Information output in unformatted mode is assumed to be
plot data. The information is truncated after n words and
transmitted to the device without conversion. Each 1 bit
transmitted will cause a dot to be printed on the output
line. The most significant bit of the first word is transmit-
ted to represent the left-hand dot position on the line.

"n' depends on the bed width of the plotter. See section
20.3.3 for specific value.

APPENDIX D
STANDARD CHARACTER CODES

1BM 026 Punch
Symbol ASClH

) 375
i 276
: 272
247

= 275

- 337
9 271
8 270
7 267
6 266
5 265
4 264
3 263
2 262
1 261
(biank) 240
& 246
< 274
| 333
) 251
256
277
311
310
307
306
305
304
303
302
301
253
245
V 273
335
252
244
241
322
321
320
317
316
315
314
313
312
- 255
#® 243

\ 334
° 242
(250

L PTOTTMTOT -

-

~“X~"Z2Z20TOD

Hollerith

110
68
58
4-8
38
28
9
8
7
6

NoWw s

(blank)
11-0
1268
1258
1248
1238
1228
129
128
127
126
i25
124
123
122
121
12
1178
1168
1158
1148
i1.38
1128
119
118
117
116
115
114
113
112
11
11
078
068
0-58
048

I1BM 029 Punch
ASCH

242
275
247
300
243
272
271

27¢
267
266

265
264

263
262

261

240
375
253
250
274
256
333
311

310
307
306
305
304
303
302
301

246
334
273
251

252
244
241

322
321
320
317
316
315
314
313
312
255
277
276
337
245

Symbot

>~

SV SRR

1
(blank)
'

N

-

R TR - TP - T -

-T2 ZOTVCT

~

STANDARD CHARACTER CODES

IBM 026 Punch . IBM 029 Punch
Symbol ASCH Hollerith ASCH Symbol
. 254 038 254 ,
@ 300 028 334]
Z 332 0-9 332 /
Y 331 08 331 Y
X 330 07 330 X
w 327 0-6 327 w
v 326 05 326 v
u 325 04 325 U
T 324 0-3 324 T
S 323 02 323 S
/ 257 01 257 /
0 260 0 260 0

D-2

APPENDIX E
ASCH CHARACTER CODES

Character Internal ASCH Character Internal ASCH
0 260 R 322
1 261 S 323
2 262 T 324
3 263 V] 325
4 264 v 326
5 265 w 327
6 266 X 330
7 267 Y 331
8 270 2 332
9 271 (blank) 240
A 301 . 241
B 302 " 242
C 303 ® 243
D 304 $ 244
£ 305 245
F 306 & 246
G 307 ' 247
H 310 (250
| 311) 251
J 312 ® 252
K 313 + 253
L 314 , 254
M 315 - 255
N 316 . 256
o} 317 / 257
P 320 : 272
Q 321 o 273
< 274 FORM 214

= 275 RETURN 215
> 276 SO 216
277 Sl 217
@ 300 DCO 220
333 "X-ON 271
334 TAPE AUX
33% ON 222
' 375 X-OFF 223
- 337 TAPE Ofi
RUBOUT 377 AUX 224
NUL 200 ERROR 225
SOM 201 SYNC 226
EOA 202 LEM 227
£OM 203 SO 230
EOT 204 S1 231
WRU 205 S2 232
RU 206 S3 233
BEL 207 S4 234
FE 210 S5 235
H TAB 211 S6 .36
LINE FEED 212 S7 237

vV TAB 213

APPENDIX F

VORTEX HARDWARE CONFIGURATIONS

Device

73-3300
Memory
Map

Power
Failure/
Restart

Real-Time
Clock

Priority
interrupt
Module
(PIM)

Special
PIM
Instruction

Buftfer
Interlace
Controller
(BIC) or

Device
Address

047

040-043

020-026
070-073

Block Transfer
Controllier (BTC)

Interrupt

MP halt error
MP 1/0 error
MP write error
MP jump error
MP unassigned
error
MP instruction
fetch error
MP write and
overflow error
MP jump and
overflow error

Power failure

Power restart

RTC variable
interval
RTC overflow

BIC complete

Interrupt
Address

020
022
024
026
030
032
034

036

0100-0277

n/a

0100-0277

BIC

n/a
n/a
n/a
n/a
n/a

- n/a

n/a

n/a
n/a

n/a

n’a

n/a

n/a

Comments

Wired as system
priority 1

Wired as system
priority 2

Wired as system
prionty 4

Base timer inter-
val rate is 100
microseconds,
free-running clock
rate is 100 micro-
seconds

Wired as system
priority 5; assign-
ments should be
from fastest to
slowest

Addresses 064-
067 available for
special use

PiMs modified to
enable/disabie
with EXC 044

All wired as sys-
tem priority 3

Addresses 070-
073 available
for BIC5 and
BIC6 others
created for spe-
cial use

VORTEX HARDWARE CONFIGURATIONS

F-2

Device
Disc 707702
Memory 70.7703
Disc 70-7600
Memory 70-7610
70-7603
707613
70-7500
70-7510
Magnetic 70-7100
Tape
Card 70-6200
Reader
Printer/ 70 6602
Plotter
Line Printer
Ve

Device
Address

2047 0l4a
48, 49
Drum 43C,
D Disc
Memory
620-37, 016 017
-36 Disc
Memory

Model f
Disc
Memary

015-017

620-35 015
Disc
Memory

62034
Disc
Memory

015017

62030
31A,
-31B, or
31C, 32
Magnetic
Tape Unit

62025 030
Card
Reader

620-75
Statos
Printer/
plotter

035-036

70-7702
70-660x
Statos
Printer/
Plotter

62077
Line
Printer

035-036

035-036

Interrupt

BIC complete

BIC complete

Cylinder-
search com
plete

BIC complete
Cylinder
search com-
plete

BIC complete
Cylinder-

search com-

plete

BIC compiete
Cyhnder-

search com

plete

Tape motion
complete

BIC complete

BIC complete
PC not busy

BIC compiete
PC not busy
Statos not
busy

BIC complete

interrupt
Address

G100 0277

0100-0277
01000277

01000277
0100-0277

01000277
0100 027

01000277
01000277

0100 0277
0100 0277

01000277

0100 0277

0100 1077
0100 0277
0100 0277

01000277

BIC

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Comments

RMD assigned to
Highest system
BIC (no other
devices can be
so assigned)

RMD assigned to
highest system
BiC (no other
devices can be
so assigned)

RMD assigned to
highest system BIC
(no other devices
can be so assigned)

RMD assigned to
highest system
BTC (no other
devices can be
so assigned)

RMD assigned to
highest system
BTC (no other
devices can be
so assigned)

Interrupt evEt

words should be
01 for BIC, 02

for Statos, and

Oi for PC

Device

Card
Punch

Paper-
tape
System

Teletype

(1) The priority look-ahead option is required if
there are more than eight priority devices in the

70 6201

70-6320

70-6100
70-6104

70-6400

73-4000,
-4001,
-4002

WCS512
Words

system.

620-27
Card
Punch

620-55,
-55A
Paper
Tape
System

620-6,
-7, -8
Teletype

CRT with

E-2184
Controller

Front
Panel

070-074

Device
Address Interrupt
031 BIC complete

037,034 Character
ready

001-007 Read buffer
ready
Write buffer
ready
Read buffer
ready
Write buffer
ready

NOTES

VORTEX HARDWARE CONFIGURATIONS

Interrupt
Address

0100 0277

0100.0277

0100-0277
0100-0277
0100-0277

0100-0277

00-01

BIC

Yo

NO

No

No

Comments

Event 1 = READ
Event 2 = WRITE

Compatible with

Teletype (Eyeat 1 -
READ, Event 2 =
WRITE) —

Wired as system
priority 6; not
used by VORTEX

Only one device address is

used in a given system.

Multiple WCS pages use
the same device address

(2) PIM assignments are arranged from the
tastest devices to the siowest.

APPENDIX G
OBJECT MODULE FORMAT

Object modules generated by the VORTEX tanguage entries consist of a control word and a data word, three
processors result from assembly or compilation. The word entries consist of a control word and two data words,
modules are input by the load-module generator and are and four-word entries consist of a control word, two name
bound together into a load module. words, and a data word. Data words can contain instruc

tions, constants, chain addresses, entry addresses, and
The first record of the module contains the size of the address offset values.

program, an eight-character identification, and an eight-
character date. Entry name addresses, if any, appear as
the first data field items of the object module. "

Table G-1. Record Control Word Format

Gl RECORD STRUCTURE Bit Binary Value Meamng
Object-module records have a fixed tength of sixty 16-bit '
words. Word 1s the record control word Word 2 contains 15 0 Verify check-sum
the exclusive-OR check-sum of word 1 and words 3 to 60. 1 Suppress check-sum
Words 3 to 11 can contain a program identification biock 1314 11 Binary record
(optional) Words 12 to 60 (or 3 to 60 if there is no program 0010 Nonbinary record
identification block) contain data fields 12 0 First record of module
. 1 Not the first record
Table G 1 illustrates record control word formats. 11 o Last record of module
i Not the last record
G.2 PROGRAM IDENTIFICATION BLOCK " 0
The program identification (1D) block appears in words 3 to 8 0 Not a relocatable module {absoluter
11 of the starting record of each module. Word 3 contains i Relocatable module -
the program size, words 4 to 7 contain an ASCIl eight- 07 Sequence number (modulo 256
character program identification, from the TITLE state-
ment, and words 8 to 11 contain an ASCH eight-character
date.
. ES
G.3 DATA FIELD FORMATS G.4 LOADER COD
Data fields contain one-, two-, three-, or four-word entries. Loader codes. which have the fotlowing format, are smeng
One word entries consist of a control word, two-word the data in an object module.
15 14 13 12 11 10 9 8 7 6 5 4 3 210
Code Subcoda Pointer Name
Code Values Meaning
00 Reter to subcode for specific action.
01 Undefined.
02 Add the value of the selected pointer to the
data word before ioading.
03 Add the value of the selected pointer tc the !

first data word (literal value) and enter the ;
sum in the direct literal pool if bit 11 of
the second data word is zero. Otherwise,
enter it in the indirect literal pool. Add
the address of the literal to the second data .
word before loading.

OBJECT MODULE FORMAT

Code Values Meaning

04 Load the data word(s) absolute. Bits 12 through
0 indicate the number of words minus one (n-1) to
load.

05-07 Undefined.

Subcode Values Meaning

00 ignore this entry (one word only).

01 Set the loading address counter to the sum of the

specified pointer plus the data word.

02 Chain the current loading address counter value
to the chain whose last address is given by the
sum of the selected pointer plus the data word.
Stop chaining when an absolute zero address is
encountered. .

03 Complete the postprogram references by adding to
each address the sum of the selected pointer plus
the data word.

04.06 Undefined.

a7 Set the program execution address to the sum of the
values of the selected pointer plus ihe data word

010 Define the entry name with entry location as equal
to the value of the selected pointer plus the data
word.

011 Define a region for the pointer whose size is given.

in the data word. If the entry name 1s not biank,
define the entry point as the base of the region.

012 Enter a load request for the external name. The
chain address is given by the sum of the selected
pointer plus the data word

013 Enter the loading address of the external name n
the indirect literal pool. Add the address of the
literal plus the value of the selected pointer to
the data word (command) before loading

014.017 Undefined

Pointer Values Meaning

00 Program region.

01 Postprogram region.

02 Blank common region.

03-036 Labelled COMMON regions.

037 Absolute (no relocation).
Name Format
Names are one to six (six-bit) characters, starting in bit 3 name word. Only the right 16 bits of .the two name words
of the control word and ending with bit O of the second are used.

D
N

OBJECT MODULE FORMAT

G.5 EXAMPLE

The following is a sample background program with the
description of the object module format after the assembly
and the core image after loading.

G.5.1 Source Module

NAME SUBR
EXT BBEN
SUBR ENTR
LDA®* SUBR
CALL BBEN
STA TIME
JAN DONG
LDA -2
CALL BBEN
DONG INR SUBR
JMP* SUBR
TIME BSS 1
END

G.5.2 Object Module

60400 Record control word (first and last record, verity check sum
sequence number 0)

157631 Check-sum word.
(Hegin program 1D block)

00016 Program size (exciusive ¢f FORTRAN COMMON, literals and
direct address pointers)

142730 Identification in ASCH (assume this program was 'aheled
14215 t XAMPLE)

150314

142640

131263 Date of creation i ASCH tassume assembled 03 10 b9
126661
130255
3071

(End program 10 block)

610000 Define entry name SUBK at relative O (code ' subcate Gl
0O064 7 pointer 0. name SUBR, and data word)
(154267

D000

{ 000 Euoter absclute data word O in memay at relative -

000000

060000 Enter hteral (indirectly addressed relative 0) i indirect
100000 ponter pool. add address of pointer to load 017000 and en
017000 ter memory at relative 1

1OVO00 tnter absolute data word 02000 in memory at relative 2

00,2000

OBJECT MODULE FORMAT

G4

100000
000000

100000
054010

100000
001004

040000
000012

060760
000002
010000

100000
002000

040000
000003

060000
000000
047000

100000
001000

040000
100000

001000

012003
000212
024556
000011

Enter absolute data word 000000 in memory at relative 3.

Enter absolute data word 054010 in men.ory a! relative 4

Enter absolute data word 01004 in memory at relative 5

Enter relative data word 012 in memory at relative 6

Enter literal (absolute 2) into literal pool, add address of
literal to load command 010000, and enter in memory at relative
7.

Enter absolute data word 02000 in memory at relative 010.

Enter relative data word 03 in memory at relative 011

Enter literal (relative 0) into indirect pointer poot, add
address of literal to increment command 047000, and enter in
memory at relative 012,

Enter absolute data word 01000 in memory at relative 013
Enter relative data word 0100000 in memory at relative 014
Set loading location for next command, if any, to relative

016.

Enter load request for external name BBEN and chain entry
address to relative 011.

(The remaining words of this record contain zero).

OBJECT MODULE FORMAT

G.5.3 Core Image

Assume the program originates at 01000, the literal_pool
limits are 0500-0777, and BBEN is loaded at 01016.
PR e PR S e M e o m—

0500 101000 DATA *01000
0501 001000 DATA 1000
0777 000002 DATA 2
01000 000000 ENTR 0 / /o ‘/
01001 017500 LDA®* 0500 7 R
01002 002000 JMPM
01003 001016 01016
01004 054010 STA 01015
01005 001004 JAN
01006 001012 01012 L
01007 010777 LDA 0177 =% il Sd
01010 002000 JMPM
01011 001016 01016 / A .
01012 047501 INR® 0501~ o Tl
01013 001000 JIMP
01014 101000 * 01000
01015 BSS 1
01016 BSS 1

The following six-bit codes are used by the load module

generator in bulding load modules. The codes define

names created by NAME, TITLE, and EXT directives.

Character Octal Character Octal Character Octal

(G} 40 \Y 66 + 13

A 41 w 67 , 14

B 42 X 70 - 15

C 43 Y 71 . 16

D 44 Z 72 / 17

t 45 { 73 0 20

3 46 \ 74 1 21

G 47] 75 2 22

H 50 t 76 3 23

| 51 - 77 a4 24

J 52 (blank) 00 5 25

K 53 ! 01 6 26

{ 54 " 02 7 27

M 55 -3 03 8 30

N 56 $ 04 9 31

(0] 57 % 05 : 32

P 60 [06 ; 33

Q 61 ’ 07 < 34

R 62 (10 = 35

S 63) 11 > 36

T 64 . 12 ? 37

u 65

G5

OBJECT MOODULE FORMAT

G.6 END LOAD RECORD

An end-load-module record is used to terminate one or
more object modules which comprise a root or sequent of a
load module. This record is processed to an end.
of-file indication by LMGEN, however, more than“one end-
load-module record may be present on an RMD file. \
N}
Wy /

3

G-6

The form of an end-load-module record is a binary record
in which the first word has the value 077000 and all other
words are zero.

