
r-------
1

varian data machines ~

VTAM REFERENCE

MANUAL

Specifications are subject to change without notice.
Address comments regarding this manual to Varian Data
Machines, Publications Department, 2722 Michelson Drive,

varian data machines/a varian subsidiary

rr 1974 printed in USA

98 A 9952 221

MARCH 1974

r--

TABLE OF CONTENTS

SECTION 1
INTRODUCTION

varian data machines ~~

1.1 INTRODUCTION .. 1·1

1.2 SYSTEM FLOW AND ORGANIZATION .. 1·1

1.3 HARDWARE SUPPORTED AND REQUIRED ... 1-3

1.4 GUIDE TO THIS MANUAL ... 1·3

1.5 BIBLIOGRAPHY ... 1-4

SECTION 2
DEFINING A COMMUNICATIONS NETWORK

2.1 INTRODUCTION ... 2·1

2.1.1 Input to the NOM .. 2·1

2.1.2 General Format ... 2·1

2.2 NETWORK DEFINITION LANGUAGE

STATEMENTS ... 2·1

2.2.1 LINE Statement .. 2·1

2.2.2 TERMINAL Statement .. 2·4

2.2.3 END Statement. .. 2·5

2.3 OPERATING INSTRUCTIONS .. 2·6

2.4 ERROR INDICATIONS AND WARNINGS ... 2·6

2.5 NOM OUTPUT ... 2·6

SECTION 3
USING VTAM MACROS

3.1 INTRODUCTION ... 3·1

3.2 GENERAL FORM .. 3·1

3.3 ERROR INDICATIONS ON VTAM MACROS ... 3·2

SECTION 4
OPENING AND CLOSING TERMINALS AND LINES

4.1 INTRODUCTION .. 4-1

4.2 OPEN MACRO AND JCP DIRECTIVE ... 4·1

4.2.1 Forms of OPEN Macro 4-1

4.2.2 Error Indications on OPEN .. 4·2

4.3 CLOSE MACRO AND JCP DIRECTIVE .. 4·2

4.3.1 General Format .. 4·2

4.3.2 Error Indications ... 4-3

iii

CONTENTS

SECTION 5
PROGRAMMING AT TCM LEVEL

5.1 MACRO DEFINITION .. 5·1

5.2.1 READ Macro .. 5·1

5.2.2 WRITE Macro ... 5·2

5.2.3 STAT Macro ... 5·3

5.2.4 FUNC Macro .. 5·4

5.2.5 WEOF Macro .. 5·5

5.3 TTY TCM WITH DIAL-UP LINES ... 5·5

5.4 FORTRAN LEVEL PROGRAMMING ... 5-6

SECTION 6
PROGRAMMING AT THE CCM LEVEL

6.1 INTRODUCTION .. 6·1

6.2 CCM l/0 CONTROL MACROS AND

FUNCTIONS ... 6·1

6.2.1 LCB Macro ... 6·1

6.2.2 OPEN Macro .. 6·3

6.2.3 CLOSE Macro ... 6·3

6.2.4 READ Macro-.. 6·3

6.2.5 WRITE Macro ... 6·3

6.2.6 FUNC Macro .. 6·4

6.2.7 STAT Macro ... 6·7

SECTION 7
BUFFER CHAINING

7.1 INTRODUCTION .. 7·1

7 .1.1 Queuing Procedure .. 7 ·1

7.1.2 PUTQ .. 7·1

7.1.3 GETQ .. 7·1

7.2 CHAIN HEADER .. 7-2

7.3 INTERFACE BLOCK HEADER .. 7·2

7.4 SET AND RESET FUNCTIONS ... 7-4

7.5 PROCEDURE FOR CODING A BUFFER CHAIN ... 7·5

SECTION 8
BINARY SYNCHRONOUS COMMUNICATION

8.1 INTRODUCTION .. 8·1

8.2 DATA LINK ... 8·1

8.2.1 Point-To-Point Data Link .. 8·1

iv

varian data machines ~

SECTION 8
BINARY SYNCHRONOUS COMMUNICATION ccontmued)

8.2.2 Multipoint Data Link ··············· ······························· 8·1
8.3 TRANSMISSION CODES ··················· ······························· 8·1
8.4 OPERATION OF THE DATA LINK ··································· 8·2

8.4.1 Polling and Selection................................. 8·2

8.4.2

8.4.3

8.4.4

8.4.5

Message Blocks

Error Checking

EOT /NAK Pad Format Check

Data Link Control

8.5 MESSAGE FORMATS

8.5.1 Initialization Procedure

8.5.2

8.5.3

8.5.4

8.5.5

8.5.6

Message Transfer Procedure

Termination Procedure

Transparent Mode

T1meouts

Pad Characters.

.. 8·2

..................................... 8·2

.. ... 8-3

...... 8·3

....... 8·5

.. 8·5

...... 8 7

. .. 8 7

.. ... 8 7

.. 88

........................ 8 9

8.6 TRANSMISSION SEQUENCE AND RECOVERY PROCEDURES. ... 8 9

9.1 INTRODUCTION ..

SECTION 9
MANAGING BUFFERS

9.2 MEMORY ALLOCAriON ROUTINES

AND THEIR FUNCTIONS ...

9.2.1 VT$BMT.. ..

9.2 2 VT$GTM ..

9.2.3 VT$PTM

SECTION 10

9 J

9 1

9 1

92

9·2

CODING A TERMINAL CONTROLLER MODULE (TCM)
FOR VTAM

10.1 INTRODUCTION 10 1

10.2 TABLES USED BY TCM 10 1

10.3 TCM FUNCTIONS 10 2

10 .. 4 TCM COMPONENTS 10 3

10.5 MODIFYING THE NETWORK DEFINITION

MODULE...................... 10-5

10.6 PROCEDURE TO CODE A TCM FOR VTAM ... 10-6

v

CONTENTS

CONTENTS

SECTION 11
CONTROLLING A NETWORK

11.1 INTRODUCTION .. l1-1

11.2 DIRECTIVES .. 11-1

11.2.1 General Format of NCM Directives ... 11-1

11.2.2 UP Directive ... 11-1

11.2.3 DOWN Directive .. 11-1

11.2.4 REDIRECT Directive .. 11-2

11.2.5 RESTORE Directive .. 11-2
11.2.6 LIST Directive ... 11-2

SECTION 12
PROGRAMMING AN APPLICATION

SECTION 13
CONFIGURING A VTAM SYSTEM

13.1 INTRODUCTION .. 13·1

13.2 ASSEMBLING VTAM CCM TABLES AND

CONTROLLER TABLES .. 13·1

13.2.1 CCM Tables ... 13·1

13.2.2 Controller Table ... 13·2

13.3 ADDING TDF RECORDS FOR VTAM CCM's .. 13·2

13.4 ADDING TDF RECORDS FOR TCM (TTY) .. 13·3

13.5 RESERVING MEMORY .. 13·3

13.6 DEFINING PERIPHERAL ARCHITECTURE .. 13-3

13.7 DEFINING INTERRUPT STRUCTURE.. .. 13-3

13.8 ASSIGN LOGICAL UNITS TO

PHYSICAL DEVICES ... 13-4

13.9 LOADING ANCILLARY VTAM MODULES .. 13·4

13.10 VTAM MEMORY REQUIREMENTS .. 13·4

APPENDIX A
TELETYPE AND CRT CHARACTER CODES

APPENDIX B
EBCDIC AND ASCII CHARACTER ASSIGNMENTS

INDEX

vi

varian data machines ~

LIST OF ILLUSTRATIONS

Figure 1-1. Structure of VTAM 1-2

Figure 1-2. Data Flow from Application to Terminal... 1-3

Figure 1-3. Input and Output to Network Definition Module ... 1-3

Figure 7-1. Contents of CHR and IBHs after PUTQ.. 7-3

Figure 7-2. Contents of CHR and IBHs During READ ... 7-4

Figure 7-3. Contents of CHR and IBHs Before and After GETQ 7-4

Figure 7-4. Relationship of CHR and IBHs.. ... 7-5

Figure 8-1. Regular Message Format............... 8·2

Figure 8-2. Error Checking Capabilities

Figure 8-3. Use of WACK, RVI, and TTD
8·3

8-6
Figure 8-4. Transparent Data Block............ . .. 8-8

Figure 10-1. VTAM TCM and TTY TCM Modules ... 10·4

Figure 12-1 Flowchart of VTAM Application .. 12-1

LIST OF TABLES

Table 2-1. LSD Field Description and Range ... 2-7

Table 2-2. TIB Field Description and Range ... 2-8

Table 2·3. TCD Field Description and Range .. 2·8

Table 3-1. Detail Status ... 3-2

Table 8-1. Control Characters.............................. . 8-3

Table 8-2. Transmission and Recovery Procedures .. 8·10

Table 13-1. Direct Connect Interrupts .. 13 3

vii

CONTENTS

I
!

SECTION 1

INTRODUCTION

1.1 INTRODUCTION

The VORTEX Telecommunications Access Method (VTAM)
provides teleprocessing controls for communications con­
trollers, modems, terminals, communications networks and
network-operator interfacing. VTAM is an integral part of
the VORTEX/VORTEX II operating system. It extends the
capabilities of the real-time multi-tasking operating system
into the growing area of telecommunications.

Through the combination of VTAM and VORTEX/VORTEX II
access to remote devices is as simple as that for on-site
computer peripherals. VT AM gives the user the same
format for requests for telecommunications as is available
for printers and magnetic-tape units.

At the same time, the user is assured of an open-ended
system design that can accomodate his future require­
ments. VTAM is modular in its structure and so provides a
software foundation on which to build systems tailored to
their applications.

In summary VTAM provides

a standard subsystem under VORTEX/VORTEX II
without affecting the utility of VORTEX/VORTEX II in
other applications

phased implementation to allow changes for new
equipment and expansion

modularity in structure to satisfy diverse requirements

interfaces for applications to be removed from handling
line and terminal characteristics

a simplified method of configuring lines and terminals
through the Network Definition Language

VTAM tasks a user can call to allocate memory
dynamically

an optional, automatic buffer chaining on input

1.2 SYSTEM FLOW AND ORGANIZATION

The three modules which are the basic building blocks of a
VTAM System are the communications controller, terminal
control, and network control modules. The most basic
VTAM component, the Communications Controller Module
(CCM), drives a multiplexor or controller hardware. The
Terminal Control Module (TCM) provides an optional level
of control for terminals and lines. TCM's handle such items

varian data machines ~

as terminal errors and line adaptor control. The Network
Control Module (NCM) furnishes an interface with the
network for the computer operator.

Figure 1-1 is an overview of the flow in a VTAM system.

The flow of data to an application program under VTAM
and VORTEX/VORTEX II is first under control of a CCM.
The incoming data from the line is initially handled by the
LAD and the multiplexor a(ld packed into a buffer. If the
READ request is directed to the terminal, a TCM then
converts, formats and segments the data. If required for
the terminal type, the TCM could provide terminal control
procedures. The user can bypass this level and provide his
own terminal-oriented procedures in the application and
pass his input and output request directly to the CCM (see
figure 1-2).

Features of VTAM Modules

TCM stands for Terminal Control Module

Interfaces with application through standard request

Establishes terminal disciplines and line protocol

Converts codes and formats data for terminals

Compresses and decompresses data

Performs modem control functions

Operates independent of type of controller

CCM stands for Communications Controller Module

Provides a common interface for all TCM's

Performs mechanics of data input and transmission

Handles all controllers of one type

Operates transparently with respect to terminal type

NCM stands for Network Control Module

Provides dynamic network control

Allows alternate line or terminal selection

Provides inquiry about status of lines and terminals

Allows setting lines and terminals UP or DOWN

1-1

j

INTRODUCTION

APPLICATION
1

APPLICATION
2

•••

STANDARD VORTEX IOC MACROS

TCM
1

CCM
1

•••

VT/1-1915

TCM
2

••• ---- ------- ------
STANDARD VORTEX IOC MACROS

CCM
2

•••

•••

.-------.., N =THE NUMBER
OF USER TASKS

APPLICATION
Nth

TCM
Mth

"

FILES FROM
NETWORK
DEFINITION

M = THE NUMBER
OF TYPES OF
TERMINALS

..........

OPEN
MACRO

---- " ------

ccM­
Kth--

-----
~

LINE AND TER­
MINAL REQUEST
TABLES

I
I

COMMUNICA----- /-:;:j TIONS CON-
_, TROLLER TABLES

K = THE NUMBER OF TYPES
OF CONTROLLERS

Figure 1-1. Structure of VTAM

1·2

,~ varian data machines •

I

INTRODUCTION

USER .. TCM DATA - ... ----- -.- ---- ...
APPLICATION DATA ...

CONVERSION CONTROL ... REMOTE
OUTPUT DATA TERMINAL

AND TERMINAL
.. CCM

BUFFER DATA NETWORK
CONTROL

VTII-1913 Figure 1-2. Data Flow From Application To Terminal

Another VTAM module aids the user in configuring a
network. Because a communications system changes
relatively frequently, the method of configuring a VTAM
system is less involved than a complete VORTEX/VORTEX
II system generation. VORTEX/VORTEX II SGEN configures
the controllers as they are more static than lines and
terminals. The VTAM Network Definition Module (NOM)
configures the actual terminals, their lines and TCM's. The
user determines his line and terminal network and
expresses it in the Network Definition Language (NDL). The
VTAM NOM interprets the NDL statements and builds the
appropriate tables to be used by other VTAM modules (see
figure 1-3).

1.3 HARDWARE SUPPORTED AND REQUIRED

The modular organization of VTAM allows its use with a
wide variety of configurations depending upon the level at
which the user interfaces with the system.

Minimum Configuration

With only the minimum configuration the user must
interface with a communications controller module. The
following hardware is required.

,

a. Minimum VORTEX/VORTEX II Configuration (Bulletin
6.0.21 Software configurator)

b. 52xx Data Communications Multiplexor (DCM) with
the proper line adapters or Binary Synchronous Com­
munications facilities.

NDL
DESCRIPTION
OF NETWORK

NDM

c. Terminal units which may be supported by the above
communications controllers

Expanded Configuration

In addition there may be additional multiplexors to which
more terminals are attached where appropriate. Teletype
and equivalent terminals compatible with Teletypes can be
added.

1.4 GUIDE TO THIS MANUAL

This manual explains the VTAM system for a programmer
who understands VORTEX/VORTEX II, general data com­
munication concepts and the computer on which he
intends to implement data communications.

The remainder of this section provides a bibliography of
related Varian documents.

The remaining sections correspond to components of the
VTAM system.

Section 2 describes the Network Definition Language
(NDL) and the functions of the module which processes
NDL. The next section, 3, provides general information
about the macros which the user calls to invoke l/0
services of the VTAM modules. Sections 4 and 5 discusses
particular macros. Understanding sections 3, 4 and 5
permit an application to communicate with a remote device
with limited control and flexibility.

I I
... TERMINAL ... INFORMATION

\ \

I 7
NETWORK ... LINE TABLES I
DEFINITION

..
MODULE \ \

.. SOURCE ... LISTING

'-VT/1-1914 -
Figure 1-3. Input and Output To Network Definition Module

1-3

~ varian data machines

INTRODUCTION

Section 6 "Programming at the CCM Level" provides an
interface which is more directly involved with the communi­
cations lines.

Section 7 "Buffer Chaining" describes the method of
automatic buffer chaining on input.

Section 8 "Binary Synchronous Communication" provides
information to operate in BSC mode. BSC expands the
capabilities of VTAM through its ability to accommodate a
variety of transmission codes.

Section 9 "Managing Buffers" describes some macros
useful for minimizing the central memory and application
uses.

Section 10 "Writing a TCM" provides information which
allows adding TCMs for additional types of remote devices.

Section 11 "Controlling a Network" describes the operator
interface with a data communication network. Section 12 is
a sample application which illustrates many aspects of the
preceding information. Section 13 describes some addi­
tional considerations for a VORTEX/VORTEX II system
generation on a VTAM system (this information supple­
ments the VORTEX/VORTEX II Reference Manual).

Syntax Conventions Used in this Manual

In the directive formats given in this manual:

Boldface type indicates an obligatory parameter.

1-4

Italic type indicates an optional parameter.

Upper case type indicates that the parameter is to be
entered exactly as written.

Lower case type indicates a variable and shows where
the user is to enter a legal value for the variable.

A number with a leading zero is octal, one without a
leading zero is decimal, and a number in binary is
specifically indicated as such.

1.5 BIBLIOGRAPHY

The following Varian manuals are pertinent to the use of
VTAM:

Title

73 Systems Handbook
620-100 Computer Handbook
VORTEX Reference Manual
VORTEX II Reference Manual
DCM Reference Manual

Document Number

98 A 9906 Olx
98 A 9905 OOx
98 A 9952 lOx
98 A 9952 24x
98 A 9902 25x

Additional technical information is contained in the
Software Performance Specifications 89A0240 (Overview
and External) and 89A0263 (Internal).

,--·-----

1

I

------------ varian data machines ~

SECTION 2

DEFINING A COMMUNICATIONS NETWORK

2.1 INTRODUCTION

The VTAM user describes his terminal and line configura­
tion in the Varian Network Definition Language called NDL.
The features of the terminals and lines in NDL are
processed by the Network Definition Module (NOM), which
then creates a table of characteristics during input/output
request processing (see figure 1-3). This table of charac­
teristics is stored by the processing module on a rotating­
memory device (RMD) for expansion and use by other
components of the VTAM software in an active network.

The network definition language has three types of
statements. These are descriptive rather than procedural. A
LINE statement describes the attributes of a communica­
tions line. A TERMINAL statement gives the important
physical attributes of a remote terminal on a line, and the
line to which it is connected. A communications network is
defined by these statements for all its terminals and lines
followed by an END statement.

Each line is identified by a logical line number and each
terminal by a four-character terminal unit identifier. A
terminal can only be associated with one logical line
number.

2.1.1 Input to the NOM

N DL statements can be input on standard 80-column cards
or any ott}_er equivalent source input. Only the first 72
characters are processed; 73 through 80 are available for
identification and sequencing. Within the first 72 char·
acters the NDL statements are free form, allowing the user
to structure his description in columns and with spacing as
he finds convenient and meaningful.

2.1.2 General Format

The form of an N DL statement is

keyword

where

keyword

id: attrib(1)=cond(1),attrib(2)=cond(2), ... ,

attrib(n)=cond(n).

is the word which identifies the statement type
such as LINE, TERMINAL or END.

id is either a logical line number
or terminal unit identifier
required in line or terminal
statements respectively.

each attrib

each cond

is associated with the par­
ticular statement

is associated with the par·
ticular attribute

Each descriptive statement must be terminated with a
period. Its omission will cause an error indication.

Attributes are optional. For all attributes not specified by
the user, NOM assigns default characteristics which are
listed in the following sections on particular statements.

2.2 NETWORK DEFINITION LANGUAGE
STATEMENTS

2.2.1 LINE Statement

The LINE statement describes a logical line and its
attributes. Upon detecting the initial word LINE, the
processor builds a prototype or partial Line Service
Descriptor (LSD) for the line and stores it in an RMD file.

The general form of the LINE statement is:

LINE llid: attrib(1)=cond(1),attrib(2)=cond(2),. .. ,

attrib (n)=cond(n).

where llid is the logical line identifier which is a number in
either octal (with the initial digit a zero) or decimal
notation (0 to 255). The attribute list is optionally formed
from the line attributes which each have a limited number
of conditions to which they can be set. The colon after the
logical line identifier and the period at the end of last
condition are required.

Only one assignment to a particular attribute may be
made. A duplicate will cause processing to continue with
the second value replacing the first. Uppercase words
indicate those letters are the actual values allowed. Lower
case are generic terms.

2-1

DEFINING A COMMUNICATIONS NETWORK

Attributes and their corresponding values are as follows:

2·2

Attribute

ADDRESS

CONNECT

EOM-STOP•

ERROR-STOP

PARITY

STATUS

SPEED

LINE-TYPE

MODE

Allowed Values and Meanings

nnn

DIRECT
MODEM
DIAL-MODEM

FALSE

nnn

(nnn,nnn)

TRUE

FALSE

NONE
ODD
EVEN

UP
DOWN

nnn

HALF-DUPLEX
SIMPLEX-RECEIVE
SIMPLEX-TRANSMIT
FULL-DUPLEX

ASYNCHRONOUS

SYNCHRONOUS

BSC

Physical line number 0 through 255

no modem
non-dial modem
dial modem on phone line

message is terminated only when
buffer is full or on possible line
error

specifies the numeric value of the
character to terminate input message

specifies (as above) two characters
either of which will terminate a
input message.

terminates input on a line error
detected (break, parity or overflow)

terminates normally on EOM-STOP
character, or if EOM-STOP is· specified
as FALSE, when character count is
zero.

no parity check is to be made
odd parity is checked
even parity is checked

the initial state of the line is up
the initial state of the line is down

incoming data rate in characters per
second; zero indicates that the data
rate is greater than 2000 or less than
4 characters per second.

one direction at a time
one direction all the time only input
one direction all the time only output
two way simultaneously

An asynchronous line, which is
described further by attributes
following.

synchronous line which is described
by additional synchronous attributes.

Binary Synchronous Communication
line discipline and BSC line adapter
use only

*The EOM-STOP attribute is not used for control character
detection when in BSC mode.

;-----------------·-·--~-----

Attributes only applicable to asynchronous lines. Use of
these parameters with synchronous mode is detected and a
warning message issued, but the specified action is taken,

varian data machines ~-

DEFINING A COMMUNICATIONS NETWORK

Attribute Allowed Values and Meanings

ECHO

TRANSMIT-SPEED

TRUE

FALSE

HIGH
LOW

The following six attributes are only applicable to a
synchronous line. If the mode is specified as asynchronous
the use of these attributes will be flagged and a warning
message issued but the specified action will be taken.

Attribute Allowed

CRC-STOP nnn

STORE-SYNC TRUE

FALSE

SYNCHRONIZE TRUE

FALSE

SYNC-TRANSMIT nnn

SYNC-RECEIVE nnn

TRANSPARENT TRUE
FALSE

data communications multiplexor
operates in ECHO mode for input
messages.

no transmission back to terminal
of characters received in any input
messages

speed of line adapter is set high
speed of line adapter is set low

Values and Meanings

the number of characters to be read
and stored in the buffer after an
EOM character. These characters are
not placed in the buffer if it is full.
CRC·STOP = 0 disables this function.

store any SYNC characters received
in buffer

discard any SYNC characters received

synchronize the line before each receive

do not synchronize line before each receive

the numeric value of character sent
to the terminal for SYNC

the numeric value of the character
received from the terminal for SYNC.

8-bits without parity
7-bits with parity (eight is parity bit)

2·3

~ varian data machines

DEFINING A COMMUNICATIONS NETWORK

In general the assignment of an attribute in a line
statement may be repeated and causes the last occurrence
to override prior settings. For example, if ADDRESS = 012
is specified after ADDRESS = 024 the line address will be
assigned to address 012.

The following default settings are provided by the network
definition module when the attribute is not specified by the
user:

Line Attribute Defaults

ADDRESS = 0,
CONNECT = DIRECT,
EOM·STOP = (0212, 0215), (e.g. CR and LF)
ERROR-STOP = FALSE,
PARITY = NONE,
STATUS = UP,
SPEED = 0,
LINE-TYPE = HALF-DUPLEX,
MODE = ASYNCHRONOU~

Asynchronous Line Defaults

ECHO = FALSE,
TRANSMIT-SPEED = LOW,

Synchronous Line Defaults

CRC-STOP = 0,
STORE-SYNC = FALSE,
SYNCHRONIZE = FALSE,
SYNC-TRANSMIT = 0226,
SYNC-RECEIVE = 0226,
TRANSPARENT = FALSE,

Examples of LINE Statement

Example 1:

Define a direct-connect line at physical address 012 as
logical line number 1 with even parity, incoming data rate
of 10 characters per second and messages terminated only
when the buffer is full.

LINE 1: ADDRESS = 012, PARITY = EVEN,
SPEED = 10, EOM-STOP = FALSE.

By default the line is direct-connect.

2-4

Example 2:

Define a direct-connect line with physical line address 024,
as logical line number 2.

The line has even parity, a data rate of 10 characters per
second. Incoming messages are terminated with either a
line feed (0212) or carriage return (0215), which are the
default EOM characters.

LINE 2: ADDRESS = 024, PARITY
SPEED = 10.

EVEN,

2.2.2 TERMINAL Statement

The TERMINAL statement describes a remote device and
declares a set of attributes for it. For each TERMINAL
statement the NOM builds a prototype Terminal Control
Description (TCD) for the terminal and stores it in an RMD
file.

The general form of the TERMINAL statement is

TERMINAL tuid : attrib(l) = cond(l),
attrib(2) = cond(2), ... ,attrib(n) = cond(n).

where tuid is the unique terminal unit identifier formed
from one to four alphanumeric characters. The first
characters must be alphabetic A-Z. A duplicate terminal
identifier will be flagged and the attributes associated with
it will replace those from the prior occurrence.

The terminal attributes that are set in this statement are
listed below. Items in upper-case letters are entered as the
actual values; lower-case letters represent a position where
one type of entry is allowed. For example nnn represents a
position for a numeric value either in octal or decimal
notation.

-------------~-----··--·---------------·----- varian data machines ~

Attribute and condition pairs are separated by commas (or
equal signs). The list must be terminated with a period.

DEFINING A COMMUNICATIONS NETWORK

Attribute Allowed Values and Meanings

DEVICES nnn

CODE ASCII

ECHO TRUE

FALSE

LINE nnn

PROMPT nnn

TYPE TTYl

UNIT nnn

STATUS UP

DOWN

The following are the default conditions, provided by the
N DM when not specified by the user:

CdDE = ASCII
DEVICES = 1
ECHO = TRUE
LINE = 0
PROMPT = 0207
TYPE = TTY1
UNIT = 0
STATUS = UP

The following table shows the net effect of the possible
combinations of the ECHO attribute in line and terminal
directives:

Attribute Value

Line ECHO
Terminal ECHO
Result:

TRUE
TRUE*
TRUE

TRUE FALSE
FALSE TRUE'~

TRUE FALSE

FALSE
FALSE
FALSE

*When ECHO is set TRUE concurrent READ and WRITE
on a full-duplex line are inhibited.

specifies the number of devices attached
to the terminal

specifies the code type for the terminal

characters inputted are to be transmitted
back to the terminal by the TCM (only
applicable to a full-duplex line)

no echoing by CCM

logical line number to which the
terminal is attached

numeric value of the character to be
sent to terminal when input data is
requested

specifies type of TCM

logical unit number of the communications
controller module

initial terminal status is up (available to
be opened)

initial terminal status is down, not
available until operator action

Examples of TERMINAL Statement

Example 1:

Define a Teletype terminal that is identified as RM01 on
logical line number 5. Input characters are not to be
echoed back to the terminal.

TERMINAL RMOl : ECHO = FALSE, LINE 5.

Example 2:

Define a Teletype-compatible terminal that is identified as
RM02 on logical line number 6. A carriage return is to be
output to the terminal as a prompt character.

TERMINAL RM02: LINE = 6, PROMPT = 0215.

2.2.3 END Statement

The END statement indicates the final entry in the NDM
input. It is required and its omission may result in incorrect
processing of the description. The only form of this
statement is the word END followed by a period.

2-5

~ varian data machines

DEFINING A COMMUNICATIONS NETWORK

2.3 OPERATING INSTRUCTIONS

The Network Definition Module of the VTAM system resides
in the VORTEX/VORTEX II background library. NOM is
executed as a background program at priority level 0.

NOM files

Input records to NOM (the NDL statements) are read from
the PI logical unit; listings are output to the LO logical unit.
The listing includes source language statements, error
messages if any occurred, and a summary of characteris·
tics of the network.

The files which contain the tables constructed by NOM are
named VT$DFL (for lines) and VT$DFT (for terminals).
These files must reside in the FL (foreground library) logical
unit.

Example:

Create the required VTAM file and execute NOM.

/JOB
/FMAIN
CREATE,FL,F,VT$DFL,120,11
CREATE,FL,F,VT$DFT,l20,3
/LOAD, NOM
LINE 1: ADDRESS= 012,PARITY·= EVEN,SPEED = 10.
LINE 2: ADDRESS= 024,PARITY =EVEN.
TERMINAL RM01: LINE= 1.
TERMINAL RM02: LINE= 2.
END.
!ENDJOB

The line file VT$DFL is always 11 sectors. T~e size of the
terminal file depends upon the number of terminals. The
number of sectors is calculated by integer division as
follows:

Sectors

where:

ntuid- 1 ntuid- 1
+ +2

29 24

ntuid number of terminal unit identifiers
to be created for the network.

2.4 ERROR INDICATIONS AND WARNINGS

The diagnostic facilities of the NOM produce messages
which are warnings and do not terminate processing.

Messages

**ILLEGAL ATTRIBUTE TYPE SPECIFIED

This message indicates a inappropriate value assignments
to an attribute. For instance, specification of an asynchro­
nous parameter on a synchronous line.

2·6

**SYNTAX ERROR

A syntax error such as a misspelling or an omitted special
character (period or colon) followed by the character string
where the error is detected.

If the initial word in a statement is not recognized a syntax
error message is given and the entire statement to the next
period is ignored and processing continues from there.

**DUP TUID NAME

This message indicates more than one terminal statement
used the same identifier. The attributes occurring with the
latest statement will be assigned.

** FILE VT$DFL TOO SMALL
** FILE VT$DFT TOO SMALL

This message indicates that the named file was not large
enough. VT$DFL must be at least eleven sectors. The sizer
of VT$DFT only causes an error message if it is less than
two sectors.

l/0 Errors

Fatal errors occur as stops with a number indicating which
device had an error, EOF or EOD.

Message

NOM STOP 100
NOM STOP 200
NOM STOP 300
NOM STOP 400

Device

PI
LO
VT$DFL
VT$DFT

STOP 100 also occurs on a 'missing END statement.

The STOP is given immediately after the l/0 operation
causing the fault. Thus the last line listed is the card
previous to the card causing the fault.

2.5 NOM OUTPUT

As the NDL processor inputs each SO-character record it
outputs the record (exactly as input) to the LO unit.

After the END statement is processed the NOM produces a
report of the contents of the VTAM files VT$DFL and
VT$DFT. The first part of this report lists all defined
prototype LSD's in the file VT$DFL. These are listed in
order of their logical line numbers. For each defined
prototype LSD the logical line number is listed in decimal
followed by the five-word descriptor listed in binary (table
2-1 lists descriptions of the prototype LSD fields).

Prototype LSD Output Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0
PS PS PS PS

\ PSLSP
MOD PAR XMM

PSCC1 PSCC2

PS PS PS PS
T E D D
E p ********** PSPLA w E

2

R F N F

3 PS PS PS
D y A PS
s N 8 CRC * * PSYNT

F c N

PS
8

* **:;:*:;::;::**=:::;: **=!:*:!= PSYNR s
4

c

* reserved for future use

Following the prototype LSD listing the Tl8 and prototype
TCD are listed for each defined terminal. The first line
contains the TUID followed by the third word of the Tl8 in
binary.

Tl 8 Output Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

21~ TISEC TIDSP

This word indicates the status of the terminal and the RMD
location of the prototype LSD. Table 2-2 lists the value and
attribute for each field. Next the five words of the prototype
TCD are listed in binary. Table 2-3 lists the value and
attribute for each field.

varian data machines ~-l
i

DEFINING A COMMUNICATIONS NETWORK

Prototype TCD Output Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 PCLLN PCCLN

PC PC PC PC
E X 8 s

** ** ** c PCPCH
M s w

H M L L

2 PCCTP PCTYP ***** I PCNTD

3 * * * .. * * * * . * * * * * . .. *

4 * * * * * * * * * * * .. + * * *

* reserved for future use
**not applicable to prototype TCD output

Table 2-1. Prototype LSD Field Description and Range

Field

PSMOD

PSPAR

PSASY

PSXMM

PSLSP

PSCC1

PSCC2

PSTER

PSEPF

PSDWN

Attribute

Connection

Parity

Mode

Line-type

Speed

Control

Control

EOM-stop

Echo
(Asynchronous)

Transparent
(Synchronous)

Status

Range

0 Direct
1 Non-dial modem
2 Dial modem

0 No parity
1 Odd parity
2 Even parity

0 Asynchronous
1 Synchronous

0 Half duplex
1 Simplex receive
2 Simplex transmit
3 Full duplex

Line speed

Control character

Control character 2

0 False
1 True

0 False
True

0 7 bits plus parity
1 8 bits (no parity)

0 Up
1 Down

(continued)

2-7

I

I
f

j

_j

~ varian data machines

DEFINING A COMMUNICATIONS NETWORK

Table 2-1. Prototype LSD Field Description
and Range (continued)

Field Attribute Range

PSDEF* Line Status 0 Line is not defined
1 = Line is defined

PSPLA Address 0-255

PSDSF Transmit -speed 0 Low speed
1 High speed

PSYNC Store-sync 0 Stored
1 Not stored

PSABN Error-stop 0 False
True

PSCRC CRC-stop 0-7

PSYNT Sync-transmit 0-255

PSBSC BSC mode 0 Not BSC mode
BSC mode

PSYNR Sync-receive 0-255

*This bit is not set by an attribute; it is set when a line has
been defined.

Table 2·2. TIB Field Description and Range

Field Attribute Range

TIDWN Terminal 0 Up
status flag 1 Down

TISEC VT$DFT file
sector

TIDSP VT$DFT file
displacement

Table 2·3. TCD Field Description and Range

Field Attribute Range

PCLLN Line 0-255

PCCLN Unit 0-255

PCXMM Line-type 0 Half duplex
1 Simplex receive
2 Simplex transmit
3 Full duplex

2·8

Field Attribute Range

PCBSL BSC mode 0 Not BSC mode
BSC mode

PCSWL Switched 0
line flag 1

PCPCH 0-255

PCCTP Code 0 ASCII

PCTYP Type 0 Teletype
1-15 = Unassigned

PCNTD Devices 1-15

The following is an example of the NOM printed output.

PAGE ' 03119174 NO !'I VOIUF)I VTAM NOL

LSD 0
n n o n n 0 0 0 0 n 0 .. , 1'1 (\ 0 0
t n 0 0 1 0 t I) t 0 ,, n t 1 n t
t 0 0 0 n 0 I) t n n n n , (' n 0
I') 0 t) 0 0 n 0 0 1 0 0 1 n ' 1 0
n o 0 0 n n 0 0 t n n 1 n 1 1 0

LID
0 0 , 0 o n 0 n 0 0 () 0 0 n n ''
l n () 0 t 0 1 n 1 0 n 0 1 t I') 1
1 0 0 0 , t) 0 , n o 0 0 0 0 0 t')

o n 0 0 0 n 0 () 1 n I) t 0 ' 1 ()

n o o 0 0 0 n 0 1 n n t n 1 I ()

PAGE 3 03/19174 NDM VORTU YTAM NDL

Tl8 T"TV1
o n n n n •1 0 t n o ,., n ,. n n n

PCO TTYt
o n n 0 n n o n n n o n n n n I)

0 0 0 n n n o '' 1 n 0 n n 1 ' 1
0 n I') 0 () n n " o n n n n n n ,
0 () () 0 0 n n n n (\ n () n n n n
n 0 () 0 I') 0 n o (I 0 o n 0 n 0 I')

Til CRT!
n n o n o n o t n n 0 (\ n , 0 t

PCD C:RTt
0 n o o o 0 0 0 n n o o n n n 0
(') n n 0 n () n n t (\ n n n , t t
n n o o 0 () 0 f) , 0 n n n n f) 1
(') () {I 0 I') 0 n n n I) 0 n n n n n
n n o o n 0 n n 0 (\ 0 n n n o n

1ENDJD8
IFJNI

------------------------------------ varian data machines ~-

SECTION 3

USING VTAM MACROS

3.1 INTRODUCTION

VTAM requests are written in assembly language as macro
calls. The DAS MR assembler provides the following macros
for data communications I /0:

OPEN
CLOSE
READ
WRITE
WEOF
FUNC
STAT
LCB
DCB

open a line or terminal
close line or terminal
input from terminal
output to terminal
write end-of-file designator
function request
status request
generate a line control block
generate a data control block

The VORTEX/VORTEX II and VTAM systems perform a
validity check on all l/0 requests. VTAM then queues each
valid request to the terminal control module or communica­
tions controller module assigned to the specified logical
unit. If the appropriate TCM or CCM is not scheduled, the
VTAM system schedules it to service the queued requests.

The assembler expands the macros to several words of
executable code and data. Certain VTAM operations
require parameters in addition to those in the macro call.
These parameters are in a table called the line control
block (LCB). In general, embedded optional parameters
can be omitted by indicating the normal number of
commas.

Error messages applicable to these macros are given in
section 3.3.

3.2 GENiiRAL FORM

The general form for data communications l/0 macros is:

label name cb, lun, wait, mode

where

cb is the address of a control block

lun is the logical unit name or number

wait is the wait/immediate return flag

mode is the mode of read/write request

The expansion of the macro is generally as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 JSR,X

V$10C Entry Address

2 c E* CC* 1 PRIORITY

3 w Mode Logical Unit No.

4 LCB/D CB Address

5 Actual Number of words or bytes transferred*

6 Detail Status*

'~only valid when C
buffer chain mode.

1, (request complete) and not in

Explanation of Macro fields

c

Status

E

cc

priority

w

Set indicates request complete

Status of I /0 request

Set if an irrecoverable error occurred

Completion code

Initially zero, set to requesting task's
priority by V$10C

Set for immediate return, reset for
suspension of calling task until
completion of l/0

Mode Depends upon the particular macro

Op-code specifies the operations to be performed as
follows:

0 READ
1 WRITE
2·4 Undefined (return request complete

status, if executed)
5 FUNC
6 OPEN
7 CLOSE

------------- -------------------------'

3-1

USING VTAM MACROS

LCBIDCB
Address

Address of line control block
or data control block

Detail
Status

Bit

0
1
2
3
4
5
6

7
8
9

the format of the detail status
word is shown in table 3-1.

Table 3-1. Detail Status

Set

Clear to send ON
Data set ready ON
Ring circuit ON
Carrier ON
Reverse channel ON
Parity error'~'>~<

Control character
detected (Read buffer
terminated, request
complete)
110 clear occurred
Break
Overflow* * *

Reset

Clear to send OFF
Data set ready OFF
Ring circuit OFF
Carrier OFF
Reverse channel OFF
No parity error
No control character
detected

No l/0 clear
No break
No overflow

* hardware unable to service line before data lost

** In BSC operations, if bit 5 and bit 9 are on, it is an
indication of a three second receive timeout (chapter 8).

3-2

3.3 ERROR INDICATIONS ON VTAM MACROS

The following l/0 errors are given by VTAM in addition to
those described in the VORTEX/VORTEX II Reference
Manual.

1033

1034

1035

1036

1037

1040

1041

invalid terminal identifier or logical
line number

terminal or line not opened

terminal or line down

terminal or line already open

requests still pending

action on terminal not opened

break detected

1042 invalid physical line address

1043 invalid TCM type

1044 no temporary storage available

varian data machines ~

SECTION 4

OPENING AND CLOSING TERMINALS AND LINES

4.1 INTRODUCTION

When an application program requires the services of
VTAM to communicate with a remote device both the line
and terminal must be opened before any 1/0 action. A
READ or WRITE on an unopened line or terminal will result
in an error message. An OPEN request for a terminal will
also open the line on which that terminal is attached. Lines
can be opened but must be followed by a terminal OPEN
request in order to establish communication with the
terminal.

Line Open and Close Actions

On a line open request the prototype Line Service
Descriptor (LSD) is read from the RMD file VT$DFL. A
block of temporary storage is obtained from a memory
pool, and a central memory resident LSD is built. The LSD
is linked through the physical line table to the logical line
table and also to the LSD queue. This procedure makes the
line available to the user to make l/0 requests.

On a line close, the LSD is removed from the physical line
table and also from the LSD queue. The temporary storage
block is returned to the memory pool and is available to
another user.

Terminal Open and Close Actions

When an application requests an open or close on a
terminal, V$10C passes the request to the appropriate
TCM, which functions as a pseudo driver under VORTEX.

The terminal open request causes the prototype terminal
controller descriptor (PCD) to be read from the file
VT$DFT. If the line for this terminal is not already open, an
open request is made for the line. Upon return a block of
temporary storage is obtained from a memory pool and a
TCD resident in main memory is built. The TCD is linked to
the logical terminal table and also to the TCD queue. After
successfully completing this procedure the terminal is
available for the user to make READ, WRITE, CLOSE etc.
requests.

The terminal close request removes the TCD from the
logical terminal table and from the TCD queue. The
temporary storage block is returned to the memory pool,
thus making the area available to another user. If there are
no more terminals open on the line, a close request is
made to close the line.

Open and close requests are coded in the applications
software as macro calls in DAS MR, as subroutine calls in
FORTRAN and also as JCP directives.

JCP Open and Close Actions

To provide the ability to perform line and terminal opening
and closing external to an application program, JCP allows
these actions through the OPEN and CLOSE directives. In
effect lines and terminals may be opened and closed either
through macros within a program or through the JCP
directives /OPEN and /CLOSE before or after program
execution. These directives also allow system 1/0 units like
LO to be opened and assigned to a line or terminal by the
second format of OPEN (see section 4.2.1). In this manner
a user or the system operator has the option of opening
and closing lines or terminals outside of a program by
entering these JCP directives through the Sl device.

4.2 OPEN MACRO AND JCP DIRECTIVE

The OPEN macro is applicable to either a line or terminal.

4.2.1 Forms of OPEN Macro

DAS MR:

label

where

cb

lun

wait

FORTRAN:

label

where

name

lun

stat

OPEN cb,lun, wait

is the address of the line control
block (LCB) or the data control block
(DCB) containing the four-character
terminal unit identifier in the
first two words.

is the logical unit number for the
CCM opening a line or the TCM
opening a terminal

is 1 for an immediate return or 0
(default) for suspension of the
caller until the open is complete

CALL VT$0PN (name,lun,stat)

is a three-word array containing
the LCB or DCB

is the logical unit number for the
CCM opening a line or TCM opening
a terminal

is an integer variable where the
status will be returned

4-1

~ varian data machines

OPENING AND CLOSING TERMINALS AND LINES

All FORTRAN open requests cause suspension of the calling
program until the open is complete.

JCP:

/OPEN, lun
1
, id

/OPEN, lun2, id, lun 1

where

id

Example:

is the logical unit name or number
for the CCM opening a line or TCM
opening a terminal

is the logical line number for
opening a line or terminal unit
identifier for opening a terminal

is the logical unit name or number
which will be assigned to the CCM or
TCM designated by the other lun
after the terminal has been opened

/OPEN,184,TTY1

/OPEN,LO,TTY2,184

4.2.2 Error Indications on OPEN
DAS MR:

The open/close module generates the following status in
word two of the request, bits 14·5 for DAS MR OPEN calls:

Bit

14·9

8
7-5

FORTRAN:

Value

00
02
033

035
036
042
043
044

1
0
5

Meaning (Standard VORTEX
error message codes)

normal completion
invalid lun for CCM
invalid logical line number or
tuid
line or terminal down
line or terminal already open
invalid physical line address
invalid TCM type
no temporary storage available
for LSD or TCD

irrecoverable l/0 error
normal return
l/0 error

The open/close module returns the following status as a
result of a FORTRAN OPEN call:

Contents
of STATUS

4·2

0
1
2
3
4
5
6
7
8

Meaning

normal completion
invalid lun for CCM
invalid logical line number or tuid
line or terminal down
line or terminal already open
invalid physical line address
invalid TCM type
no temporary storage available
l/0 errors

JCP:

Any errors as a result of an /OPEN directive to the JCP will
result in the error message " JC06" being output to the SO
and LO logical units.

Examples of OPEN

Example 1:

Open line 16 on logical unit 72. Select the wait option. The
LCB address is TTYLCB.

OPEN TTYLCB,72

The default value for wait is used. The line number is in the
LCB.

The same request in FORTRAN would be:

INTEGER TTYLCB, STATUS
DIMENSION TTYLCB(3)
TTYLCB(3) • 16
CALL VT$0PN (TTYLCB,72,STATUS)

Example 2:

Open a terminal whose tuid is XY03 on logical unit 122.
Select immediate return.

TUIDCB DCB 'XY' '03'
OPEN TUIDCB,122,1

The same request in FORTRAN (except for the wait for
completion instead of immediate return) would be:

INTEGER TUIDCB, STATUS
DIMENSION TUIDCB (3)
DATA TUIDCB (1),TUIDCB(2) /2HXY,2H03/
CALL VT$0PN (TUIDCB,122,STATUS)

4.3 CLOSE MACRO AND JCP DIRECTIVE

The CLOSE macro is applicable to both lines and terminals.

4.3.1 General Format

DAS MR: for

label CLOSE cb,lun,wait

The parameters are identical to those described for OPEN.
This is the standard VORTEX CLOSE macro.

r-----------------------------

1

FORTRAN:

label CALL CT$CLS(name,lun,stat)

where name is the three-word array containing the LCB or
DCB, and stat is an integer variable where the status will
be returned. All FORTRAN CLOSE requests cause suspen­
sion of the calling task until the l/0 is complete.

JCP:

/CLOSE,Iun,id

where id is either the logical line number or the four­
character terminal unit identifier, used to open the line.

All JCP CLOSE directives cause suspension of the JCP unit
until the CLOSE is complete.

4.3.2 Error Indications

DAS MR:

The open/close module generates the following status
indication in the second word of the request, bits 14-5 for
DAS MR CLOSE calls:

Value
Bit No. (Octal) Meaning

14-9 Standard VORTEX error
message code

00 normal completion
02 invalid LUN for CCM
33 invalid logical line number

or tuid
34 line or terminal not open
37 requests still pending on line

or terminal
43 invalid TCM type

7-5 0 normal return
5 1/0 error

FORTRAN:

The Open/Close module returns the following status as the
result of a FORTRAN CLOSE call:

Contents of
Status Word

0
1
2
3
4

5
6

Meaning

normal completion
invalid LUN for CCM
invalid logical line numQer or tuid
line or terminal not open
requests still pending on line

or terminal
invalid TCM type
1.10 error

varian data machines ~

OPENING AND CLOSING TERMINALS AND LINES

JCP:

Any error conditions as the result of a /CLOSE directive to
the JCP will result in the error message " JC06" being
output to the SO and LO logical units.

Examples of CLOSE

Example 1:

Close previously opened line 16 on logical unit 72. Select
the wait option. The LCB address is TTYLCB.

CLOSE TTYLCB,72

The default values for wait is used. The line number is in
the LCB.

The same request in FORTRAN would be:

INTEGER TTYLCB, STATUS
DIMENSION TTYLCB (3)

TTYLCB (3) • 16
CALL VT$CLS (TTYLCB, 72, STATUS)

Example 2:

Close a previously OPENed terminal with tuid of ZZ15 on
logical unit 201. Select immediate return.

TUIDCB DCB 'zz' , '15'

CLOSE TUIDCB,201,1

The same request in FORTRAN (except for an automatic
wait instead of immediate return) would be:

INTEGER TUIDCB, STATUS
DIMENSION TUIDCB (3)
DATA TUIDCB (1), TUIDCB (2)/2HZZ, 2H15/

CALL VT$CLS (TUIDCB, 201, STATUS)

4·3

SECTION 5
PROGRAMMING AT TCM LEVEL

A data communications application program can converse
with a remote device through the TCM for that type of
terminal. This section describes the use of a standard TCM
called TTY for Teletype and similar compatible terminals.

The TTY TCM processes READ, WRITE, FUNC, STAT, and
WEOF requests from application programs written in DAS
MR and FORTRAN running under VORTEX/VORTEX II.
These functions can be performed only after the terminal is
opened (open actions are described in section 4).

Use of paper tape with VTAM must be consistent with the
terminal being used. For instance, a strictly binary data
stream transmitted to a Teletype Model 35 ASR could
contain the ASCII bit patterns to start and stop the paper­
tape punch and reader thus causing loss of information on
the resulting paper tape. Similarly, use of the paper-tape
reader must be carefully considered because of the
absence of control in data being read. Depending upon the
processing load on the CPU, one or more data bytes might
be lost between logical reads.

5.1 MACRO DEFINITION

All calls to the TTY TCM are processed through the normal
IOC component (described in VORTEX/VORTEX II Refer­
ence Manual). The TCM processes Teletype keyboard input
and printer output requests as well as Teletype paper-tape
reader and punch operations. The · TTY TCM performs
READ, WRITE, FUNC, STAT, and WEOF functions but all
other IOC macro functions are ignored by the TCM, and are
unconditionally returned as l/0 complete.

5.2.1 READ Macro

The READ macro operates in two modes, either in standard
ASCII or in a transparent mode which does not recognize
and react to editing characters and does not perform user
prompting or carriage control.

An ASCII READ request inputs through the TCM from the
device one record of up to 80 ASCII characters, or 40
words.

A record is terminated by either a carriage return character
or input of the 80th ASCII character. In the latter case a
carriage return and line feed are output to the TTY. If a
carriage return character terminated the READ, the
remaining unused portion of the input buffer is cleared to
ASCII blank characters and a line feed is output.

Any input request causes the prompt character such as the
BELL character to be output to indicate that the keyboard
is ready for input. All valid ASCII characters are stored two
characters per word left justified in the user buffer
specified in the DCB. All characters are echoed if the
terminal is on a full-duplex line and ECHO is set; on a half­
duplex line, characters are not echoed but printed locally
by keyboard action.

varian data machines ~

The backslash character (shift and L simultaneously) is a
control character to delete the current record. A carriage
return and line feed are output to inform the user that a
new record can be input.

The backarrow character (shift and the letter 0 simulta­
neously) on input deletes the preceding character input.
Characters cannot be deleted beyond the current line.

The carriage return character causes the current record to
be terminated and the system responds with a line feed.
The carriage return is n0t stored in the user's buffer.

The READ request has a timeout feature which is described
with the FUNC macro (see section 5.2.4).

The BELL character also has a special function when it is
the first character input in response to a READ in the
standard ASCII mode. It causes the READ to be terminated
and returns end-of-file (EOF) status with the completed
READ request. To distinguish this condition from data-set­
ready OFF condition (completion code = 6), the irrecover­
able error flag is set for the data-set-ready OFF case.

Transparent Mode

This mode is identical to the ASCII mode described above
except in the cases listed below.

a. The buffer length specified in the DCB is not limited to

40 words. If the length is greater than 80 characters,
the TCM will continue input until a carriage return is
received or the buffer is full.

b. A line feed is not output, when the READ is terminated.

c. The unused portion of the buffer is not set to blanks.

d. No prompting character is output.

e. No input editing is performed.

READ Macro

label

where

deb

lun

wait

READ dcb,lun, wait, mode

address of the DCB

logical unit number of the terminal

set for immediate return, otherwise
program is suspended until l/0
complete (0 is the default)

5·1

~ varian data machines

PROGRAMMING AT TCM LEVEL

mode mode of read
1 = ASCII (default)
4 = transparent
all other modes reserved for
future use and are defaulted to

Example of a READ Macro

DAS MR:

Read a record on logical unit 64. Select immediate return
option and mode 1.

TYUN EQU

IM EQU
STMD EQU
RECL EQU

OPEN

TYRO READ

TUID DCB
TTY DCB

BUFF BSS

FORTRAN:

6 4 (LUN assigned to
terminal via OPEN)

(Immediate return)
(Standard, ASCII mode)

4 0 (Record length 40
words)

TUID 1 TYUN

TTY 1 TYUN 1 IM 1 STMD

I TY I I IC1 I

RECL 1 BUFF (Data control
block: user data
area specifying record
length in words. To
specify byte count,
use indirect address

constant: (BUFF)*)
4 0 (user data area)

Read a 20 character record on logical unit 64 into a buffer,
packing two characters per word.

100

DIMENSION IRUFF(lO)

.
READ(64,100) IBUFF
FORMAT (10A2)

Return conditions for READ

The TTY TCM generates the following status in the request,
word 2 of bits 14-5:

Bit
Number

14-9

5-2

Value

00
01
02

Meaning

Two octal digits error message
code (see VORTEX Reference
Manual)

Normal completion
Device declared down
Illegal opcode or unassigned
logical unit number

Bit
Number Value Meaning

30 Parity error occurred during
data transmission

40 Terminal not open
41 Break detected

8 Irrecoverable error

7-5 Completion code
0 Normal return
5 Error
6 End-of-file (Bit 8 = 0)

Data-set-ready off (Bit 8 1)
7 Read time-out

5.2.2 WRITE Macro

The WRITE macro like the READ macro operates in two
modes, either in standard ASCII or in a transparent mode
which does not recognize and react to editing characters
nor perform user prompting or carriage control.

ASCII mode (1):

The write request causes the TTY TCM to output one record
of ASCII character data of up to 36 words (72 ASCII
characters) in length. The record size (in words or bytes) is
specified by the user in the DCB. All trailing characters in
the specified buffer must be ASCII blank characters. The
TCM determines the actual number of characters to output
by starting at the end of the buffer and counting the
number of trailing ASCII blank characters, then subtract­
ing this count from the maximum number of characters
possible in the buffer.

When a record is output to the Teletype printer, the first
character of the record is reserved for a vertical spacing
character and is not printed. The TCM will replace the first
character with a blank character. The vertical spacing
control characters have the following meaning:

ASCII Character

Blank
0
1

Vertical Spacing

One line (single space)
Two lines (double space)
ASCII form character is output

When the last character of the buffer has been printed, the
TCM outputs the carriage return, null, and line feed
characters. The normal completion status is stored in the
request block and control is returned to the user if the
WAIT option was used.

Transparent Mode (4):

This mode is identical to mode = 1 except as follows:

a. First character in user buffer is not used for forms
control.

r--------------·-··-------

1

b. Each character in the buffer is output with no special
checking. If more than 72 characters are output on one
line, no action is taken by the TCM.

c. All forms control is handled by characters in the user's
buffer. Upon completion of printing the user's buffer,
no carriage return, null, and line feed characters are
output.

The format of the WRITE macro is:

label WRITE dcb,lun,wait.mode

Where the parameters are the same as defined for the
READ macro.

The TTY TCM generates the following status in the request.
word 2 of bits 14-5:

Bit
Number Value Meaning

STATUS 14-9

E 8

cc 7-5

00
01
02

40
41

0
5
6

Example of a WRITE Macro

DAS MR:

Two octal digits for
error message code

Normal completion
Device declared down
Illegal opcode or
unassigned logical
unit number

Terminal not open
Break detected

Irrecoverable error

Completion code

Normal return
Error
Data-set-ready OFF

Write a record on logical terminal 64. Select the wait option
and mode 4.

TYUN

WAIT
WRMD
RECL

TYWR

EQU

EQU
EQU
EQU

WRITE

6 4 (LUN assigned to
terminal via OPEN)

0 (Wait option)
4 (Transparent mode)
12 0 (Record length 120

bytes)

TTY,TYUN, WAIT,WRMD

TTY

BUFF

FORTRAN:

·arian data machines ~

DCB

BSS

PROGRAMMING AT TCM LEVEL

RECL ,(BUFF)* (User
data area specifying
record length in bytes. To
specify word count, use
direct address constant:
BUFF)
6 0 (user data area)

Write a 20 character record on logical unit 64 from a buffer,
packing two characters per word.

100

DIMENSION IBUFF(lO)

WRITE(64,100) !BUFF
FORMAT (10A2)

5.2.3 STAT Macro

The status request macro STAT causes the status to be
examined and control transferred to a user-defined routine
for the processing of errors.

The format of the STAT macro is:

label STAT req,err,aaa,bbb, busy

where req is the address of the I /0 macro, err is the
address of the I /0 error routine, aaa is the address of the
data-set-ready OFF routine, bbb is the address of the READ
request time-out routine, busy is the address of incomplete­
I/O routine.

Except label all parameters are mandatory.

The contents of the overflow indicator and the A and B
registers are saved.

Return Conditions

Upon normal completion, control is transferred to the task
after the end of this macro expansion.

If an I /0 error occurred, control is transferred to the
address specified as err. If the data-set-ready signal is off,
control is transferred to the address aaa. If the length of
time for a terminal response exceeds the time-out specified
in a FUNC macro, control passes to the address bbb. An
incomplete I /0 causes transfer to the address specified as
busy.

5-3

~ varian data machines

PROGRAMMING AT TCM LEVEL

Example of a STAT Macro

Read a record on unit 64 and check for Data-Set-Ready
OFF and time-out. Use immediate return option, mode 1.

TYUN
IM
RDMD
RECL

TYRO

B

EQU
EQU
EQU
EQU

READ

STAT

6 4 (logical terminal unit)
1 (Immediate return)
1 (Standard mode)
8 0 (record length)

TTY, TYUN, IM, RDMD

TYRD,ERR,DSRO,RTO,B

DSRO (DATA SET OFF ROUTINE)

5·4

Function Function Code

Output carriage
return and 3 line
feed characters.

Set NO ECHO flag
for READ requests
on full duplex lines.
This flag is
initially reset
when terminal is
opened.

Reset NO ECHO flag
for READ requests
on full duplex
lines.

Set a timeout value
for READ requests
which use the WAIT
option.

0

2

3

RTO !TERMINAL TIME-OUT
ROUTINE)

ERR (ERROR ROUTINE)

TTY DCB RECL, BUFF (Data
Control Block)

BUFF BSS 80

5.2.4 FUNC MACRO

The FUNC request causes the TTY TCM to perform specific
functions that cannot be performed by other macros. The

value of the low-order bits of the function code word of the
DCB defines the operation to be performed.

Comments

Outputs the sequence of characters, sets
normal completion status in the request
block and control returns to user.

Causes input characters for subsequent
READ requests not to be echoed if term­
inal is on full duplex line.

Causes input characters for subsequent
READ requests to be echoed if terminal
is on full duplex line.

Sets a timeout value for all subsequent
READ requests on the terminal. The
default timeout value is zero and this
prevents the TCM from performing timeouts
for READ requests on the terminal. When
this function request is used, the high·
order byte of the function code word of
the DCB will be used for a timeout value
(1·511 sees.) for all subsequent READ
requests until it is reset to another
value. When a non-zero timeout value has
been specified, the TCM will check for
a READ timed-out condition while waiting
for input. If timeout occurs, timeout
status is returned to the user and the
number of words/bytes input set to zero
in the request block. The TCM also outputs
the carriage return (CR) and line feed
(LF) characters if mode of request is 1. (continued)

Function

Set a terminal
DOWN and clear
a II active and
pending TCM l/0
requests on a
terminal

Function Code

4

All other function codes are reserved for future use.

label FUNC deb, lun, wait

Parameters are the same as described for READ request,
except the last word of the DCB, function code word, is
used by FUNC requests: function code (bits 7-0), and READ
timeout value (bits 15-8) when function code is equal to 3.

Return Conditions:

Return conditions are the same as described for WRITE
requests.

Example of a FUNC Macro

Set time-out value of 511 seconds for READ requests on
logical terminal unit 64.

TYUN EQU

FUNC

TODCB DCB

5.2.5 WEOF Macro

64 (Logical terminal
unit 64)

TODCB, TYUN (Set read
timeout value)

RECL,BUFF,0177403
(Timeout value = 511
seconds, function code = 3)

The WEOF request causes the TTY TCM to output the
terminal prompting character. It indicates to the user that
the end-of-file has been reached. The normal completion
status is returned in word 2 of the request and control is
returned to the user if the WAIT option was used.

varian data machines ~

PROGRAMMING AT TCM LEVEL

Comments

This function is used to set an opened
terminal DOWN and to clear all active and
pending TCM l/0 requests on the terminal.
The device-declared-down error status is
returned for all TCM requests and any
CCM l/0 requests are cleared. Memory
used for CCM request blocks are released.
This function is an immediate function.
Therefore, it is not queued. Normal
completion status is then returned to the
user for the function request after the
l/0 clear has been performed.

General form:

label WEOF dcb,lun,wait

The parameters are the same as described for the READ
request, though the DCB address is not used by the WEOF
request.

Return conditions are the same as for WRITE request
(section 5.2.2).

Example of a WEOF Macro

Output user prompting character on logical terminal unit
64. Use immediate return option.

TYUN EQU

IM EQU

PROMPT WEOF

WDCB DCB

64 (Logical terminal

unit 64)
(Immediate return)

WDCB, TYUN, IM

RECL,BUFF

5.3 TTY TCM WITH DIAL-UP LINES

Before any l/0 operations can be performed on a terminal,
it must have been opened with an OPEN request (section
3.2). If a terminal is defined as on a dial-up line, the action
of opening a terminal causes Data-Terminal-Ready to be
turned on, to enable answering the ring on the line. When
any TCM l/0 request is made on a terminal, a check is
made for data-set-ready on. If data-set-ready is on, a
physical connection flag is set in the Terminal Controller
Descriptor (TCD) for the terminal and the request is
initiated. If it is OFF, the request is not initiated and
remains queued until Data-Set-Ready is ON.

5-5

~ varian data machine~

PROGRAMMING AT TCM LEVEL

If the physical connection flag has been set and the Data­
Set-Ready is off, the TCM considers it a line disconnect and
returns Data-Set-Ready OFF as a status to any active or
pending TCM requests. In this situation the terminal
should be closed and reopened to permit the user to dial
up again and get physical connection to the terminal.

5-6

5.4 FORTRAN LEVEL PROGRAMMING

Programming at the FORTRAN level follows the normal
rules for using FORTRAN READ and WRITE statements.
The only additional requirement is that the line be opened
and closed using the OPEN and CLOSE macros (see section
4).

SECTION 6

PROGRAMMING AT THE CCM LEVEL

6.1 INTRODUCTION

The CCM functions as a driver for data communications
equipment at the communications multiplexor and line
level. It processes requests made by terminal control
modules or application programs which require a more
direct interface with the communication lines than that
provided through the TCM.

Line disciplines and modem characteristics are defined in
the line-oriented tables of line service descriptors, thus, the
user of a CCM need not define these items himself in an
application program. Some portions of these tables can be
modified dynamically by user programs.

Binary Synchronous Communications (BSC), both half· and
full-duplex lines, as well as input in the buffer chaining
mode are accommodated by the CCM.

The CCM provides orderly line turnaround in half-duplex
operation and permits concurrent READs and WRITEs on
full-duplex lines.

6.2 CCM 1/0 CONTROL MACROS AND

FUNCTIONS

The CCM l/0 requests are written in assembly language
with the following l/0 macros.

Name

LCB
OPEN
CLOSE
READ
WRITE
FUNC
STAT

Function

Generate a Line Control Block
Open a line
Close a line
Read a record
Write a record
Function request
Status request

The general form of data communications 1/0 macros
(section 3.2) is also applicable to CCM macros.

6.2.1 LCB Macro

This macro generates a line control block which is required
by all data communications l/0 requests. The form of the
Line Control Block macro is:

label

where

rl

L_ ___ _

LCB rl,buf,line,func,c,e

is the length in words or bytes of the
record to be transmitted or received,

varian data machines ~~

the maximum record length is 4096 bytes
or 2048 words.

buf is the address of the first word of the
buffer.

line is the logical line number.

func function code only applicable to FUNC
request

c 1, if length is expressed in bytes
0, if length is expressed in words
(default value)

e extension, meaning depends upon the
function being performed

LCB Macro Expansion is described below.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RECORD LENGTH IN WORDS OR BYTES

F I RECORD FIRST WORD ADDRESS

2 FUNCTION CODE I LOGICAL LINE NO.

3 I EXTENSION WORD 1 L __ _

F = 1, record length expressed in bytes. F = 0,
record length expressed in words.

Note: If in buffer chaining mode, F must = 1.

FUNCTION CODE = 0-255
LOGICAL LINE NUMBER = 0-255

..J

Optional EXTENSION WORD 1 is used for FUNC requests
and for the chain header address in buffer chaining.

Function code 3, sense event.

LCB MACRO + 3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit I
0

1- I

0 - wait for Clear to Send ON/OFF

- wait for Data Set Ready ON/OFF

2 - wait for Ring Circuit ON/OFF

3 - wait for Carrier ON/OFF

4 - wait for Reverse Channel ON/OFF

When the specified event occurs (status changes), FUNC is
flagged complete.

------·- _______________ j

6-1

~ varian data machines

PROGRAMMING AT THE CCM LEVEL

Function code 7, load control characters.

LCB MACRO + 3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Control Character 1 Control Character 2

Function code 10, load sync characters.

LCB MACRO + 3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Transmit Sync Character Receive Sync Character

Function code 25, buffer chain mode read.

LCB MACRO + 3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Chain Header Address

Function code 6, transmit break.

LCB MACRO + 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 rl

rl is the number of character times that the break
condition will be maintained on the line, depending on F
(LCB word 1).

Examples of an LCB Macro

Define an LCB for a data buffer COMBUF which is 375
bytes in length. l/0 operation will be performed on line 37.

LCB1 LCB 375,COMBUF,37,1

Define an LCB for a data buffer of 20 bytes long, starting
at BUFl, to be used for READ in buffer chain mode, in
logical line 0, and buffer chain header (CHR) is at INCHR.

LCB 20,BUF1,0,0,1,1NCHR

Define an LCB for use with a FUNC request. The function
code is 3 (sense event) which requires an optional
extension word for the event flags. The function will be
performed on line 3.

LCB2 LCB ,3,3,014

The event word is an octal value of 014 which selects
notification when c-arrier-on or carrier-off and ring-on or
ring-off occurs.

6-2

Status

Status information is returned to the requesting program
in three different fields within the request.

a. e field (word 2, bit position 8) is set when an
irrecoverable error has occurred.

b. cc field (word 2, bit position 5-7) is set for use by the
STAT request. Interpretation of the values is as
follows:

cc bits Meaning

7 6 5

0 0 0 normal return

1 0 1 error

1 1 0

1 1 1

reverse channel on, ring
detected

asynchronous line break
detected

c. Detail status (word 6, bit position 0-15). See Data
Communications 1/0 Macros section 3, table 3-1.

Normal Termination Status

e = 0
cc = 0, 6, or 7
Detail status bit 7, control character
detected may be set for a READ request.

Abnormal Termination Status

e = 1
cc = 5
Detail status bits set as follows (see
table 3-1):

Bit Number Value Meaning

0

3 0

5,8,9

7

Error condition if occurred
during READ or WRITE.

Error condition if occurred
during READ or WRITE.

Error condition during
READ only.

Error is a result of a user
generated I /0 clear by mea s
of FUNC request.

d. IOC status field in word 2, bits 9-14 of the request.
This field is used by IOC and VTAM to notify the
requesting program of error conditions relating to the
validity of the request (see VORTEX Reference
Manual).

,-----------·

6.2.2 OPEN Macro

The OPEN macro is executed to place a line in the act1ve
state and then permit I /0 requests. I 10 requests issued
before the line is OPENed will result in an error status
return. The CCM OPEN processor establishes the terminal
table environment and performs the necessary line
m1t1al1zat1on.

Open Lme Macro:

label

where

lcb

lun

OPEN lcb,lun, wa1t. mode

IS the address of the line control
block

is the number of the logical unit
used to reference the CCM.

wait is 1 for immediate return or 0
(default value) for suspension
of the caller until the l/0 IS

complete

mode 0 = default value (reserved for
future use)

Example of an OPEN Macro

Open line 16 on logical unit 72. Select the wait opt1on and
mode 0. The LCB address is TTYLCB.

CCMLUM EQU
TTYLJN EQU

TYOPEN OPEN

TTYLCB LCB

72
1 6

TTYLCB,CCMLUN

O,O,TTYLJN

Wait and mode take default values.

6.2.3 CLOSE Macro

The CLOSE macro is executed to release a line from active
use. The CCM CLOSE processor releases table space for the
descnpt1on of the line environment and terminates the
hardware and/or software scanning of the line. The form of
the CLOSE macro is:

label CLOSE lcb,lun, wait, mode

varian data machines ~

PROGRAMMING AT THE CCM LEVEL

where the parameters are the same as defined for the
OPEN macro.

Example of a CLOSE Macro

Close previously opened line 0 on logical unit 107. Select no
wait and mode zero. The LCB address is LCB 107.

LUN EQU
LJNENO EQU
WAIT EQU

CLMAC CLOSE

LCB107 LCB

6.2.4 READ Macro

107
0

LCB107,LUN,WAIT

O,O,LJNENO

The read macro causes the CCM to input a data block of a
specified length and format.

/abe/ READ lcb,lun, wait, mode

where the parameters are the same as defined for the
OPEN macro.

Example of CCM READ

Read a block of data 45 words long from line 13 of logical
unit 215. Set wait and mode to 0. The actual data block is
defined by an LCB at address LCBCRT.

DCMLUN EQU
RTLINE EQU
RDCRT READ

LCBCRT LCB

215
1 3
LCBCRT,DCMLUN

45,BUFADR,CRTLINE

6.2.5 WRITE Macro

The WRITE macro causes the CCM to output a block of
data of a specified length.

label WRITE lcb,lun, wait, mode

where the parameters are the same as defined for the
OPEN macro.

6-3

PROGRAMMING AT THE CCM LEVEL

Example of CCM WRITE

Write a block of data 45 words long on line 15 of logical
unit 27 from BUF 2. Select immediate return.

SLCLUN EQU
NOWAIT EQU
SLLINE EQU

27

1 5

WRITE3 WRITE SLCLCB,SLCLUN,NOWAIT

SLCLCB LCB

6-4

45,BUF2,SLLINE

Function

Get latest status

Clear read request

Clear write
request

Sense event

Reverse channel
transmit ON

Reverse channel
transmit OFF

Transmit break

Load control
characters

Answer line

Hang up line

Load sync
characters

Set E/P flag in
line service
descriptor table
(LSD)

Function Code

0*

1*

2*

3

4

5

6

7

8

9

10

11

6.2.6 FUNC Macro

The FUNC macro performs functions specific to the driver
and hardware that cannot be handled with other macros.

label FUNC lcb,lun,wait

where

lcb is the address of the line control
block

lun is the number of the logical unit
used to reference the CCM

wait 1 for immediate return or a zero
(default) for suspension of the
caller until request function is
complete

Comments

Immediate return.

Dequeues and sets error status on active
request for the line.

See LCB description for specific events.

Transmits break characters.

Loads (extension word) into LSD.

Turn Data-Terminal-Ready ON.

Turn Data-Terminal-Ready OFF.

Loads (extension word) into transmit
(byte 0) and receive (byte 1) sync bytes
in LSD and loads the registers in the
synchronous line adapter.

Asynchronous line adapter (LAD), enable
hardware echo on receive. Synchronous
LAD. select 8-bit (no parity) data byte

format. Bisynchronous mode, accept
ITB as regular characters, and input
to memory. (continued)

I

----------·-------------------- varian data machines ~

Function

Reset E/P flag
LSD

Set DS/S flag
in LSD

Reset DS/S flag
in LSD

Select control
character
recognition

Ignore control
character
recognition

Resync for each
READ (full-duplex,
synchronous LAD)

Do not resync for
each READ (full­
duplex, synchronous
LAD)

Terminate l/0 re­
quest (receive) if
line error detected

Terminate l/0
request (receive)
only if byte count
= 0 or control

characters are
received.

Kill l/0

Set Varian ASCII
mode

Clear Varian
ASCII mode

Function Code

12

13

14

15

16

17

18

19

20

21*

22

23

PROGRAMMING AT THE CCM LEVEL

Comments

Asynchronous LAD, disable hardware echo
on receive. Synchronous LAD, select 7-bit
(with parity) data byte format.

Bisynchronous mode, ITB is not input
to memory.

Asynchronous LAD (with modems that support
dual speed feature), select higher speed
operation. Synchronous LAD, do not store
received sync bytes in memory. Bisynchronous
mode, enables the sync-line feature on some
Bell modems. It also causes a one millisecond
pulse to be output to the modem.

Asynchronous LAD (see above), select lower
speed operation. Synchronous LAD, store
received sync bytes in memory. Bisynchronous
mode, disables function code 13.

Terminate READ operation if either of the
two control characters are recognized in
data stream or if byte count = 0.

Terminate READ operation if byte count
= 0 only.

Synchronous LAD only. Causes resync to
occur for each READ (bit in LSD).

Negates effect of function code 17.

Causes termination of READ request
immediately when line errors (break,
parity error or data overflow) are
detected.

Error status is reported only after
request completion. Negates FUNC 19.

All READ, WRITE, and FUNC requests
queued against the line are terminated
with l/0 error code 1 (device down)
extended status word bit 7 set (1/0
clear occurred) and the physical line
is marked down.

Forces bit 7 = 1 of each byte input
for compatibility with software.

Bit 7 takes on value determined by
line adapter. (continued)

6·5

~ varian data machines

PROGRAMMING AT THE CCM LEVEL

6·6.

Function

Initialize line

Set in buffer
chain mode

Reset buffer chain
mode

Set "no block
check"

Reset "block
check"

Set ASCII /not
transparent

Set ASCII with
transparent

Set in EBCDIC

Function Code

24

25**

26

27***

28***

29***

30***

31***

* Immediate functions, all others queued.

Comments

Performs all initialization required by
hardware and software.

Enable the system to receive input in the
buffer chain mode.

Resets a system from buffer chain mode back
to "normal" mode.

Do not check the BCC after receiving an ITB
control character. On output, ITB is a
regular character (no BCC).

Check BCC after receiving an ITB. ITBs are
recognized and treated as intermediate
control characters. On output, generate and
send a BCC after the ITB control character
is sent (default mode).

Set in ASCII/not transparent mode.

Set in ASCII/with transparent capability
mode.

Set in EBCDIC mode, both for regular and
transparent capability (default mode).

* * If not executed from a foreground task, results in an
error.

***Only used with BSC facilities. An error indication is given
when these functions are used on other than BSC.

Example

Turn on reverse channel on line 14 of logical unit 45.

FUNLUN EQU 45

REVFUN FUNC RCLCB,FUNLUN

6.2.7 STAT Macro

The macro causes the status of an I /0 request to be
exammed and control to be transferred to a user defined
routme for the processmg of errors.

Status Macro:

Where:

label

req

err

STAT req,err,aaa,bbb,busy

is the address of the I /0 macro.

is the address of the I /0 error
routine.

aaa is the address of the routine to
process ring detected, or reverse
channel ON conditions.

bbb is the address of the routine to
process reverse channel OFF and
break conditions.

busy is the address of the I /0-not­
complete routine.

Example of a STAT Macro

Check STATUS on the request macro READTY. If the
request is busy, jump to the routine DELAY. If an error has
occurred, jump to the routine ERR. If ring detected, or
reverse channel on, jump to RING. If break, jump to
BREAK.

STATL1 STAT READTY,ERR,RING,BREAK,DELAY

varian data machines ~

PROGRAMMING AT THE CCM LEVEL

6·7

------~--

SECTION 7
BUFFER CHAINING

7.1 INTRODUCTION

Buffer chaining is a method of dynamically assigning buffer
areas for incoming data. It eliminates the need for
allocating large buffer areas. When incoming data fills one
buffer the input is switched to the next buffer in the chain.
This allows the application program to begin processing the
data in the first buffer while the next buffer in the chain is
receiving data. When the data in the first buffer has been
processed the buffer can be reassigned to the chain.

With buffer chaining only one READ command is required
for each segment of input data without using a large
portion of memory.

The interface between the application program and the
CCM is accomplished mainly through the following:

a. Chain Header (CHR)

b. Interface Block Header (ISH)

7.1.1 Queuing Procedure

Buffer chaining employs a double pointer queue header.
The two pointers are the front pointer (F) and the rear
pointer (R).

The initial contents of a double pointer queue header is:

F 0

R Address of F

Two routines are used to add and remove the addresses
from the double pointer queue. The routines are called
PUTQ and GETQ. The routines can be coded as macros or
subroutines.

7.1.2 PUTQ

The PUTQ macro adds (or queues) a buffer whose address
is in the X register to a queue whose header address is in
the 8 register.

The front and rear pointers are updated accordingly.

Calling sequence (as a macro):

LOX I
LOBI
PUTQ

(buffer address)
(queue header address)

varian data machines ~

Exit conditions:

A register zero
X register no change
8 register no change

Macro Code:

PUTQ MAC
STXE*
STX
TZA
STA

EMAC

Subroutine Code:

PUTQ ENTR
STXE*
STX
TZA
STA
JMP*

7.1.3 GETQ

1,8
1,8

O,X

1,8
1,8

O,X
PUTQ

The GETQ macro removes (dequeues) the first item from a
double header queue whose address is in the B register.

Calling sequence (as a macro):

LOBI
GETQ

(queue header address)

Exit conditions:

A register
8 register
X register

Macro code:

GETQ

zero
no change
zero if queue was empty; or

address of item dequeued

MAC
LOX 0,8
JXZ *+7
LOA O,X
STA 0,8
JANZ *+3
STB 1,8
EMAC

7·1

BUFFER CHAINING

Subroutine Code:

GETQ ENTR
LOX
JXZ
LOA
STA
JANZ
STB
JMP*

O,B
*+7
O,X
O,B
*+3
1,B
GETQ

7.2 CHAIN HEADER

The chain header (CHR) contains the pointers of the active
and complete chains. Each set of pointers is made up of
two addresses, the front pointer and the rear pointer.

The active chain contains the pointers to the interface
buffer headers (section 7.3) that contain the addresses of
the chained buffers that are empty or in the process of
being filled with input data. The complete chain contains
the pointers to the interface buffer headers that contain
the addresses of the chained buffers that are full and
waiting to be processed by the application program.

The active chain front pointer contains the beginning
address of the first interface buffer header in the active
chain. The active chain's rear pointer contains the
beginning address of the last interface buffer header in the
active chain. The complete chain contains the pointers to
the first and last interface buffer headers in the complete
chain.

Note: Because both VTAM and the application program
utilize the chain header, interrupts must be disabled before
any buffers are added or removed from the chain header.
The interrupts should be enabled immediately after the
buffers have been added or removed.

The format of the chain header is described below:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Active chain front pointer

Active chain rear pointer

2 Complete chain front pointer

3 Complete chain rear pointer

4 Address of request block

7-2

The chain header words should be initially set to the
following values:

Word 0 Zero

Word 1 Word 0 address

Word 2 Zero

Word 3 Word 2 address

Word 4 Zero

The initial values may be placed in the chain header by a
user macro or by a direct data statement.

Examples:

a.

b.

user macro

CHR MAC
DATA
EMAC

0, *·1,0, *-1,0

direct data statment

CHR DATA 0, *-1,0, *-1,0

7.3 INTERFACE BLOCK HEADER

Each buffer presented to the CCM by the application
program must be proceded by an interface block header
(IBH).

The IBH is five words or more in length and defines the
buffer area. It also contains a pointer to the next buffer in
the chain.

The format of the IBH is described below:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Forward Pointer

Buffer Length

2 Buffer Starting Address

3 R/J Last Address
Flag

4 Status IBH

Variable User
Area (optional)

Data Block
Area

~--

Explanation of IBH fields:

Forward Pointer - Contains the address of the next I BH in
the chain. When it is the last IBH in the chain, word zero

contains all zeros.

Buffer Length - Contains the defined length (in bytes) of
the data block attached to this IBH. (Buffers may vary in
length, and may be tailored separately for each use.)

Buffer Starting Address - Contains starting address of the
data area associated with this IBH.

R/L Flag - Signifies if the next free byte in the buffer is in
the left or right half of the word.

0 Right side (bits 0-7)
1 Left side (bits 8-15)

Last Address - Contains the address of the next available
word in the buffer. It is used with the R/L flag to determine
where the next byte goes.

Status - Contains the status word of the IBH (used only by
CCM).

Data Block Area - This is the buffer area that the data is
read into. It may or may not immediately follow the IBH,
but, if the buffer area immediately follows the IBH, it is
easier to find any programming errors. The data areas
(buffers) associated with different IBHs do not have to be
the same size.

The IBH words should be initially set to the following
values:

Word 0 Any value (see note)

Word 1 Length, in bytes, of the data area

Word 2 Data area starting address

..
Word 3 Zero

Word 4 Zero

Word 5 Zero

Note: Word 0 is filled by the PUTQ routine. Words 3, 4, and
5 are filled by the CCM.

A minimum of two interface block headers must be queued
to the active chain of the chain header, at all times, to
prevent the loss of incoming data.

varian data machines ~

BUFFER CHAINING

Example of PUTQ Routine

Chain two previously defined IBHs (IBH1 and IBH2) for
BUFl and BUF2 to the active chain header at CHRO.

LDXI
LOBI
PUTQ
LDXI
PUTQ

IBH1
CHRO

IBH2

After execution, the chain header forword pointer contains
IBH1 and the rear pointer contains IBH2. Word 0 of the
IBH1 contains IBH2 and word 0 of IBH2 contains 0. Figure
7-1 shows the content of the active chain header and IBHs
after the PUTQ routine is executed.

Active Chain Header IBH1

F IBH1 -- IBH2 f.--

BUFl
R IBH2

IBH2

-- 0 ~

BUF2

Figure 7-1. Contents of CHR and IBHs after PUTQ

Figure 7-2 shows the contents of CHR and ISH's before and
after the first data block has been filled with a buffer chain
mode READ.

7-3

~~ varian data machines

BUFFER CHAINING

a. Before READ is executed.

Chain Header
(CHR) IBH1

Active

{:
IBH1

~ Chain IBH2

Complete

{:
0 I!3H2

Chain F ---... 0

BUF2

b. After first data area is filled.

Chain Header
(CHR) IBH2

Active {: IBH2

~ Chain IBH2

Complete {: IBH1 IBH1

L
Chain IBHl 0

BUF1

Figure 7-2. Contents of CHR and IBHs During READ

Example of GETQ Routine

Remove the full buffer (BUF1) from the complete chain
header CHRO.

LOBI CHRO
GETQ

The data in the buffer area is now ready to be processed by
the application program. The X register contains the
address of the IBH for BUFl. Figure 7-3 shows the contents
of the complete chain header and IBH before and after the
GETQ routine is executed. Figure 7-4 shows the relationship
of the various fields in the CHR and IBHs.

7.4 SET AND RESET FUNCTIONS

Function 25 is used to set the system in buffer chaining
mode. Function 26 is used to reset the system from buffer
chaining mode to normal mode.

When a FUNC 25 is issued, the set routine first validates
that the calling application is a foreground task. If the

7·4

a. Before GETQ routine is executed.

Chain Header
(CHR) IBH2

Active

{:
IBH2 0 r Chain IBH2 BUF2

Complete

{:
IBH1 IBH1

L
Chain IBH1 0

BUFl

b. After GETQ routine is executed.

Chain Header
(CHR) IBH1

Active

{:
IBH2 0

Chain IBH2 I BUF2'

Complete

{:
0

:J Chain F

Figure 7-3. Contents of CHR and IBHs Before and

After GETQ

calling application is a background task an error indication
is generated and the request is terminated.

The error indication is set in word 2, bits 7-14 of the macro
as follows:

CC = 5 (bits 5-7)
e = 1 (bit 8)
Status = 4 (bits 9-14)

(See section 3 for macro expansion description.)

If the calling application is a foreground task, the chain
mode flag in the LSD is set to 1.

Note: Any READ request that is issued prior to a FUNC 25
being executed, is assumed to be in the normal mode.

When a FUNC 26 is executed, the system is restored to the
normal mode and the chain mode flag in the LSD is set to
zero.

Note: A FUNC 26 will not create an error if issued in the
normal mode.

Active Chain

Header

IBHl IBH2

~ IBH2 ~ 0

Data Area Data Area
Length Length

DAl f.- DA2

>-- End >- End
~

R Data R Data

Status Status

DAl DA2

Data r Data
Area Area

{:
...-

I
:---

-

1--~

c_

Chain
Header
(CHR)

IBH3

IBH5

IBHl

IBH2

Address of
Request Block

1
Request Block

varian data machines ~

BUFFER CHAINING

F} Complete
Chain

R Header

I
IBH3 IBH4 IBH5

~ • IBH4 ~ IBH5
~

0

Data Area Data Area Data Area
Length Length Length

- DA3 ~ DA4 - DA5

} End _k, End >-- End
Data R Data R Data

Status Status Status

DA3 DA4 DA5

Data Data Data
Area Area Area

Figure 7-4. Relationship of CHR and IBHs

7.5 PROCEDURE FOR CODING A BUFFER
CHAIN

In summary, the following steps should be taken in coding
a buffer chaining routine:

a. Set the system in buffer chain mode (FUNC 25).

b. Chain some IBHs (minimum of two) to the active chain
headers (PUTQ).

c. Issue a READ command with an immediate return
followed by a DELAY with a type parameter of two.

Note: The delay is to notify the application program when
the first buffer is full (if desired). This will allow the program
to process the first part of a message without waiting for
the EOT.

d. Clear the event word and bit 6 in the status word of the
TIDB.

e. Remove all filled buffers from the complete chain to be
processed by the application program (GETQ).

f. Supply enough buffers to the active chain whenever
possible.
Note: The input operation is considered complete in
one of two cases:
1. Control character is detected.
2. Active chain is empty.

g. Test for input complete by examining the status word in
the READ macro. (Use STAT macro.)

h. Remove the last block of data from the complete chain
(GETQ).

Note: If the CRC·STOP attribute was defined (other than
zero) in the line statement (section 2), the data and the

7-5

~ varian data machines

BUFFER CHAINING

EOM character will be in the data area. The additional
characters of the CRC will be in the next higher referenced
data area.

Example:

The EOM character was a CR and 1 additional character
was specified to be read. The result is as follows:

IBHx IBHx+ 1

IBHx+ 1 0

Buffer Length Buffer Length

Starting Address f-.- Starting Address f-.-

...-- 1 } Last Address ...- 0 I Last Address

Status Status

Data L..., CRC I ~
Area ~

~ I CR

7·6

SECTION 8

BINARY SYNCHRONOUS COMMUNICATION

8.1 INTRODUCTION

The Binary Synchronous Communications (BSC) procedure
provides a set of rules for synchronous transmission of
binary coded data. BSC expands the transmission capabili­
ties of VTAM through its ability to accomodate a variety of
transmission codes. BSC also has a transparent mode that
allows transmission of control characters and various forms
of raw data within the normal message format without any
associated control or graphic significance. BSC is capable
of accommodating a broad range of medium- and high­
speed equipment.

All data in BSC is transmitted as a serial stream of binary
digits. Synchronous communications means that the
receiving station on a communications channel operates in
step with the transmitting station through the recognition
of a specific bit pattern (sync pattern) at the beginning of
each transmission.

8.2 DATA LINK

A data link consists of the communications lines, modems,
and other communications equipment arranged for data,
used in the transmission of information between two or
more stations.

All transmissions are sent over the line as a sequence of
binary-coded signals. Control of the data link is accom­
plished by tile transmission and recognition of special line­
control characters.

The data link can be designed to operate either point-to­
point (two stations) or multipoint (two or more stations).

8.2.1 Point-To-Point Data Link

A point-to-point data link consists of a communications
facility between only two stations. All transmissions over
the data link must be between the two stations operating
on the data link. The point-to-point link can be established
over leased (nonswitched) communications lines or a
switched network. On a leased line (permanent-type
connection), the transmissions are always between the
same two stations. On a switched network, the data link is
disconnected after the two stations complete their trans­
missions. A new dMa link is created for each subsequent
transmission by standard dialing procedures (manual or
automatic). The new data link may be established with any
other station in the network.

varian data machines ~

8.2.2 Multipoint Data link

For multipoint operation, one station in the network is
always designated as the control station. The remaining
stations are designated as tributary stations. The control
station manages all transmissions within the multipoint
data link, which is normally established over leased
(nonswitched) lines. This is called a centralized multipoint
operation. The control station initiates all transmissions by
selecting or polling a tributary station. Any transmission
over the data link is between the designated control station
and one of the tributary stations. The other stations in the
network are in a passive monitoring mode.

8.3 TRANSMISSION CODES

The major function of BSC is to effect the orderly transfer
of data from one location to another using communications
facilities. This data is transferred as binary-coded charac­
ters comprising text information (message body) and
optional heading information (message identification and
destination). In addition, data-link control characters are
required with each message to delimit various portions of
the message and control its transmission.

BSC can accommodate two different code sets (EBCDIC
and ASCII). Both code sets may also be used in the
transparent mode.

When either of these code sets is used with transparent
mode, the flexibility of the telecommunications system is
further increased since all possible bit configurations are
treated as "data only" within transparent text. For this
mode of operation, all assignment restrictions are removed
from the code set being used. Thus the parity bit is also
available as a data bit when transmitting ASCII-coded data
in transparent mode. This additional BSC capability means
that within the standard message format, any type of
coded information can be handled using transparent
mode.

Three functions are available to condition the system to
one of the following modes:

FUNC 29

Conditions the system to operate in the "ASCII/not
transparent" (ANT) mode. In this mode the ASCII charac­
ter set is used. The switching to transparent mode is not
possible.

8-1

BINARY SYNCHRONOUS COMMUNICATION

FUNC 30

Conditions the system to operate in the "ASCII/with
transparent capability" (AWT) mode. In this mode the
ASCII character set for both message and control is used.
When in AWT mode, the sequence OLE STX when detected
will switch the system into the transparent mode, while
either OLE ETX or OLE ETB when detected, will switch the
system back to normal mode.

FUNC 31

Conditions the system to operate in the EBCDIC mode. This
mode is similar to the AWT mode in which switching back
and forth from normal to transparent is possible. The
character set used is EBCDIC. The EBCDIC mode is the
default one; i.e., when only this mode is being used, no
FUNC is needed.

8.4 OPERATION OF THE DATA LINK

In point-to-point operation a contention situation exists,
whereby both stations can attempt to use the communica­
tions line simultaneously. To minimize this possibility, a
station bids for the line using the ENQ (enquiry) control
character. The SYN SYN ENQ sequence (SYN SYN
represents the synchronous idle characters) provides a
concise signal for requesting control of the line, and thus
leaves a maximum amount of time for line monitoring. If
simultaneous bidding occurs, one station must persist in
its bidding attempt to break the contention condition.
Once a station gains control of the line, message transmis·
sion can start.

8.4.1 Polling and Selection

In a multipoint environment, the control station either polls
or selects the tributary stations. Polling is an "invitation to
send" transmitted from the control station to a specific
tributary station. Selection is a "request to receive"
notification from the control station to one of the tributary
stations instructing it to receive the following message(s).
These capabilities permit the control station to specify the
transmitting station and to control the direction of
transmission. Each station in the data link is assigned a

unique station address, which is used to acquire the
station's attention during either polling or selection. Each
station address can consist of from one to seven charac­
ters, depending on the specific station requirements. The
first character addresses the station itself, while additional
characters indicate the desired component of the station.
Depending on the particular station, the station address
may consist of the first two characters, where the first
character is repeated for increased reliability. Once the
station's attention is acquired and it responds affirmatively
message transmission can start.

8-2

8.4.2 Message Blocks

The message consists of one or more blocks of text data.
The text is transmitted in blocks to provide more accurate
and efficient error control. The text data is the body of the
message and is identified by a start-of-text (STX) character
immediately preceding each block of text. In addition, each
block of text except the last is immediately foll<?wed by an
end-of-transmission-block (ETB) character or an intermedi·
ate block (ITB) character. The last block of text in a
message is immediately followed by an end-of-text (ETX)
character. Figure 8-1 shows an example of a regular
message format.

The text of the message can be preceded by a heading that
contains auxiliary information (e.g., station control, prior­
ity, etc.) pertaining to the following text data. The heading
is identified by a start-of-heading (SOH) character immedi­
ately preceding it.

For greater reliability, a unique character should always
follow SOH to identify the heading function. The reason for
this is to preclude the possibility of heading data being
interpreted as text data, or vice versa, due to transmission
errors. This unique character should not be used following
STX. The percent (%) character should not be used for this
purpose, as SOH is presently used to identify request-for­
test or station-dependent control messages.

As each message block is completed, it is checked for
transmission accuracy at the receiver before the transmis­
sion continues.

I~ BCC Accumulation ~I
s s s s E B
y y 0 * Heading T Text T c
N N H X X c

~filled by application program ----t•..-tl
Figure 8-1. Regular Message Format

8.4.3 Error Checking

Each block of data transmitted is error-checked at the
receiving station in one of two ways, depending on the code
set being used (figure 8-2). These checking methods are
longitudinal-redundancy checking (LRC) or cyclic-redun­
dancy checking (CRC).

LRC is a longitudinal-redundancy check on the total data
bits by message block. It is a basic form of CRC. An LRC
character is accumulated at both the sending and receiving
terminals during the transmission of a block. This
accumulation is called the block-check character (BCC),
and it is transmitted immediately following an ETB, ETX, or
ITB character. The transmitted BCC is compared with the
accumulated BCC character at the receiving station for an
equal condition. An equal comparison indicates a good
transmission of the previous block.

The LRC accumulation is reset by the first STX or SOH
character received after a line turnaround. All characters
received thereafter, including control characters, until the
next line turnaround, are included in the accumulation.
Only SYN characters are not accumulated. Following an
ITB BCC, the accumulation resets and starts again with the
next received STX or SOH character.

A cyclic-redundancy check is a division performed by both
the transmitting and receiving stations using the numeric
binary value of the message as a dividend, which is divided
by a constant. The quotient is discarded, and the
remainder serves as the check character, which is then
transmitted as the block check character (BCC) immedi­
ately following a checkpoint character (ITB, ETB, or ETX).
The receiving station compares the transmitted remainder
to its own computed remainder, and finds no error if they
are equal.

BCC is accumulated, sent, and checked on the receiving
end by the BSC hardware. BCC errors are indicated by
VTAM/CCM to the application program as parity errors.

8.4.4 EOT /NAK Pad Format Check

All BSC stations use the EOT I NAK pad format check to
reduce the probability of a transmission line error converting
an affirmative response (OLE sequence) into an EOT or
NAK character. EOT and NAK must be followed by a trailing
pad character of all "1" bits. Although all eight bits of the
trailing pad character may be sent, the receiver should
check only the first four bit positions. A station receiving
an EOT or NAK within the text or heading of a transmission
block (following STX or SOH) will treat the character as
data and continue to receive or monitor the transmission
(timeout, recognition of a turn-around character, etc.). The
pad character is inserted by the BSC hardware.

Similar pad format checking on OLE sequences and ENQ
may be done on an optional basis.

8.4.5 Data Link Control

Control of the data link is maintained through the use of
control characters. Several variations in the designations
and compositions of the data-link control characters and
sequences exist between the two code sets. There varia­
tions are shown in table 8-1.

Transmission NO
Code Transparency

EBCDIC CRC-16

ASCII LRC

varian data machines ~~

BINARY SYNCHRONOUS COMMUNICATION

Table 8-1. Control Characters

Control
Character ASCII EBCDIC

SYN 0001 0110 0011 0010
STX 0000 0010 0000 0010
OLE 0001 0000 0001 0000
ETX 0000 0011 0000 0011
ETB 0001 0111 0010 0110
SOH 0000 0001 0000 0001
ENQ 0000 0101 0010 1101
NAK 0001 0101 0011 1101
ITS 0001 1111 0001 1111
EOT 0000 0100 0011 0111
ACK 0 OLE 0 OLE'20'
ACK 1 OLE 1 OLE/
WACK OLE; OLE.
RVI OLE<: OLE@
no STX ENQ STX ENQ

8.4.5.1 SYN - Synchronous Idle

This character is used to establish and maintain synchroni­
zation and as a time fill in the absence of any data or other
control characters. Two contiguous SYNs at the start of
each transmission (SYN SYN) are referred to as the
character-phase sync pattern.

8.4.5.2 SOH - Start of Heading

This character precedes a block of heading characters. A
heading consists of auxiliary information (such as routing
and priority) necessary for the system to process the text
portion of the message.

8.4.5.3 STX - Start of Text

This character precedes a block of text characters. Text is
that portion of a message treated as an entity to be
transmitted through to the ultimate destination without
change. STX also terminates a heading.

Type of Checking

Transparency Transparency
Installed and Installed But
Operating Not Operating

CRC-16 CRC-16

CRC-16 CRC-16

L Figure 8-2. Error Checking Capabilities

-·-------
8-3

BINARY SYNCHRONOUS COMMUNICATION

8.4.5.4 ETB · End of Transmission
Block

The ETB character indicates the end of a block-of·
characters started with SOH or STX. The blocking structure
is not necessarily related to the processing format. The
block-check character is sent immediately following ETB.
ETB requires a reply indicating the receiving station's
status (ACK 0, ACK 1, NAK, or, optionally, WACK or RVI).

8.4.5.5 ITB · End of Intermediate
Transmission Block

The ITB character is used to divide a message (heading or
text) for error checking purposes without causing a reversal
of transmission direction. The block-check character
immediately follows ITB and resets the block-check count.
After the first intermediate block successive intermediate
blocks need not be preceded by STX or SOH. (For
transparent data, each successive intermediate block must
begin with OLE STX and ITB must be the last character in
the intermediate block.) If one intermediate block is a
heading and the next intermediate block is text, STX must
begin the text block.

Normal line turnaround occurs after the last intermediate
block, which is terminated by ETB or ETX (OLE ETB or OLE
ETX for transparency). When one of these ending charac·
ters is received, the receiving station responds to the entire
transmission. If a block-check error is detected for any of
the intermediate blocks, a negative reply is sent, which
requires retransmission of all intermediate blocks.

All BSC stations must have the ability to receive ITB and its
attendant BCC. The ability to transmit the ITB character is
a station option. The ITB when sent, must be the last
physical byte of the data block and the WRITE macro must
be in mode 1.

8.4.5.6 ETX · End of Text

The ETX character terminates a block of characters started
with STX or SOH and transmitted as an entity. The block·
check character is sent immediately following ETX. ETX
requires a reply indicating the receiving station's status.

8.4.5.7 EOT · End of Transmission

This character indicates the end of a message transmis­
sion, which may contain one or more blocks, including text
and associated headings. It causes a reset of all stations on
the line. EOT is also used as:

a. A response to a poll when the polled station has nothing
to transmit.

8-4

b. An abort signal to indicate a system malfunction or
operational situation that precludes continuation of the
message transmission.

8.4.5.8 ENQ · Enquiry

The ENQ character is used to obtain a repeat transmission
of the response to a message block if the original response
was garbled or was not received when expected. ENQ is
also used to bid for the line when using a point-to-point line
connection. It also indicates the end of a poll or selection
sequence.

8.4.5.9 ACK 0/ ACK 1 · Affirmative
Acknowledgment

These replies, in proper sequence, indicate that the
previous block was accepted without error and the receiver
is ready to accept the next block of the transmission. ACK
0 is the positive response to selection (multipoint) or line
bid (point-to-point).

8.4.5.10 WACK · Wait-Before-Transmit
Positive Acknowledgment

WACK allows a receiving station to indicate a "temporarily
not ready to receive" condition to the transmitting station.
It can be sent as a response to a text or heading block,
selection sequence (multipoint), line bid (point-to-point
with contention) or an 10 (identification) line bid sequence
(switched network). WACK is a positive acknowledgment to
the received data block or to selection.

The normal transmitting station repsonse to WACK is ENQ,
but EOT and OLE EOT are also valid responses. When ENQ
is received, the receiving station will continue to respond
with WACK until it is ready to continue. See the Continue
Timeout discussion under Timeouts. An example of how
WACK is used is shown in figure 8-3. The ability to receive
WACK is mandatory for all BSC stations, but the capability
to send WACK is optional.

8.4.5.11 NAK · Negative
Acknowledgment

NAK indicates that the previous block was received in error
and the receiver is ready to accept a retransmission of the
erroneous block. It is also the "not ready" reply to station
selection or line bid.

8.4.5.12 OLE · Data Link Escape

OLE is a control character used exclusively to provide
supplementary line control characters, such as WACK, ACK
0, ACK 1, RVI, and transparent mode control characters.
The sequences OLE STX, OLE ETX, OLE ITB, and OLE ETB

initiate and terminate transparent text. In addition, other
OLE control sequences (OLE ENQ, OLE OLE, OLE EOT) are
used to provide active control characters within transpar­
ent text as required.

8.4.5.13 RVI · Reverse Interrupt

The RVI control sequence is a positive response used in
place of the ACK 0 or ACK 1 positive acknowledgment. RVI
is transmitted by a receiving station to request termination
of the current transmission because of a high priority
message which it must transmit to the sending station, or
in case of a multipoint environment, the control station,
acting as a receiver, now wishes to communicate with
another station on the line. Successive RVIs cannot be
transmitted, except in response to ENQ.

The sending station treats the RVI as a positive acknowl­
edgment, and responds by transmitting all data that
prevents it from becoming a receiving station. More than
one block transmission may be required to empty the
sending stations's buffers.

The character structure of the RVI control sequence is as
follows:

EBCDIC
ASCII

OLE@
OLE<

The ability to receive RVI is mandatory for all BSC stations,
but the ability to transmit RVI is optional. Figure 8-3
illustrates the use of RVI.

8.4.5.14 TTD - Temporary Text Delay

The TTD control sequence is sent by a sending station in
message transfer state when it wishes to retain the line but
is not ready to transmit. The TTD control sequence (STX
ENQ) is normally sent after approximately two seconds if
the sending station is not capable of transmitting the next
text block or initial text block within that time. This two­
second timeout avoids the nominal three-second receive
timeout at the receiving station (figure 8-3).

The receiving station responds NAK to the TTD sequence,
and waits for transmission to begin. If the sending station
is still not ready to transmit, the TTD sequence can be
repeated one or more times.

This delay in transmission can occur when the sending
station's input device has not completely filled the buffer
due to inherent machine timings. TTD is also transmitted
by a sending station in message transfer mode to indicate
to the receiver that it is aborting the current transmission
(figure 8-3). After receiving NAK to this TTD sequence, the
sending station send!i. EOT, resetting the stations to control
mode (forward abort).

varian data machines ~

BINARY SYNCHRONOUS COMMUNICATION

8.4.5.15 OLE EOT · Disconnect Sequence
for a Switched Line

Transmission of OLE EOT on a switched line indicates to
the receiver that the transmitter is going "on-hook." Either
the calling or the called station may transmit this
disconnect sequence. OLE EOT is normally transmitted
when all message exchanges are complete, and may
optionally be transmitted at any time instead of EOT to
cause a disconnect.

Alternating Affirmative Acknowledgments

The BSC procedures specify the alternate use of ACK 0 and
ACK 1 as affirmative replies. The use of ACK 0 and ACK 1
provides a sequential checking control for a series of
replies. Thus it is possible to maintain a running check to

ensure that each reply corresponds to the immediately
preceding message block. ACK 0 is always used as the
affirmative reply to selection or line bid.

8.5 MESSAGE FORMATS

There are three procedures involved in a basic message
format, they are as follows:

a. Initialization procedure

b. Message transfer procedure

c. Termination procedure

The binary synchronous communications discipline is
based on a transmit-response philosophy of operation. That
is, from the time that an initialization procedure com­
mences on the communication line through to the
termination procedure, there is a response to each
turnaround character.

8.5.1 Initialization Procedure

The initialization procedure will consist of identification on
a switched network, and of bidding on a point-to-point
network.

8.5.1.1 Point-to-Point Operation
(With Contention)

When transmission is started, an initialization sequence
(ENQ character) is sent by the station attempting to
acquire the line. The station receiving this character, and
ready for input, replies with ACK 0. If the station is not
ready for input it replies with NAK (Negative Acknowledg­
ment). Simultaneous transmission problem is avoided by
each station being assigned a priority. The high priority

8-5

~ varian data machines

BINARY SYNCHRONOUS COMMUNICATION

WACK (POINT-TO-POINT)

TRANSMITTING
STATION:

RECEIVING
STATION:

TRANSMITTING
STATION:

RECEIVING
STATION:

RVI (POINT -TO-POINT)

STATION: E
TRANSMITTING rn

* ~

RECEIVING
STATION:

TTD

TRANSMITTING
STATION:

s E B
* T TEXT T c

X B c

s E B
* T TEXT T c

X B c

s E B
* T TEXT T c

X B c

TTD ,..--..

:LESS THAN [IE
1 OR EQUALS * T N
I 2 SECONDS X Q

RECEIVING
STATION:

I I

[]

I :

c
K
0

FORWARD ABORT SEQUENCE

TRANSMITTING
STATION:

RECEIVING
STATION:

s
* T

X

NOTE: * = SYNC CHARACTERS

VT12-416

E B
TEXT T c

B c

s E B
* T TEXT T c

X X c

[] [IE
OR * L 0

E T

EMPTY 1/0
ETX - IF LAST BLOCK

OF MESSAGE
BUFFER

s
* T TEXT

X

""""
E B
T c
B c

TTD

I [I,.-_. I LESS THAN S E
I OR EQUALS * T N
:2 SECONDS X Q

I I

[ill

Figure 8-3. Use of WACK, RVI, and TTD

8-6

c s E B
* T TEXT T C

X XC

station sends an ENQ to acquire the line and will continue
to do so until an affirmative reply is received or until the
retry limit is exhausted. The low priority station can only
acquire the line if the high priority station has nothing to
send.

8.5.1.2 Point-to-Point Operation
(Without Contention)

In this mode of operation one station always starts the
transmission whether it wants to output or request input.
The master station sends the initialization sequence (ENQ).
The slave station replies with the affirmative acknowledg­
ment (ACK 0) if it is ready, or a negative acknowledgment
(NAK) if it is not.

8.5.1.3 Dial Up Operation

Both stations start in circuit assurance mode. As soon as
the dialed station goes "Off Hook" the dialing station
sends one of the following messages:

-WRU - Who Are You

The sequence is ENQ.

-lAM- WRU-

The sequence is ID ... ID ... ENQ

The called station will reply with either:

-10 ACK - If ready

The sequence is I D I D ACKO

-NAK - If not ready

The sequence is ID IO NAK

The ID sequence is optional and consists of 1 to 7
characters of station identification. If the identification is
incorrect either station can send a disconnect sequence.

8.5.2 Message Transfer Procedure

The message transfer procedure will begin with the first
SOH or STX Character and ends v. .th an EOT.

8.5.2.1 Transmitting Station

A message consists of one or more blocks of information.
The start of text character (STX) precedes each block and
the end of block character (ETB) followed immediately by
the sumcheck character terminate that block.

The start of heading (SOH) followed by heading characters
may precede the block of information. The End of text
character (ETX) replaces the ETB for the last block of a
message.

varian data machines ~-~

BINARY SYNCHRONOUS COMMUNICATION

If transparent data is transmitted one OLE character
directly precedes the STX characters (ETB or ETX must be
the last character in the buffer). The transmitting station
checks the response after each transmission block; further
transmission sequence depends on the response from the
receiving station:

a. A positive response (ACK 0/ACK 1) will result in
sending of the next block of data.

b. A negative response (NAK) will result in the
retransmission of the block.

c. No response (timeout) or a garbled response will result
in a request for retransmission of the reply by sending
an enquiry (ENQ).

8.5.2.2 Receiving Station

The receiving station replies to a transmission block with:

a. ACK 0 and ACK 1 - Alternately to indicate that the
transmission was successful, and that it is ready for the
next block.

b. NAK- To indicate that the transmission was erroneous
and that it is ready for retransmission.

c. WACK - To indicate that the transmission was
successful but that it is temporarily not ready to
receive.

8.5.3 Termination Procedure

Message transmission is ended by the transmission of the
end-of-transmission character (EOT). The station receiving
the EOT can now bid for the line and become the
transmitting station.

On a switched network, after completion of all message
exchange, the mandatory disconnect (OLE EOT) can be
sent by either station before disconnecting the line.

8.5.4 Transparent Mode

The system recognizes the sequence OLE STX as a request
to switch to the transparent mode. The sequence ETX or
ETB, as the last character in the buffer, switches the
system back into a normal (ASCII or EBCDIC - as may be
the case) mode. All data link control characters can be
transmitted as transparent data without taking on control
meaning.

Any data-link control characters transmitted during trans­
parent mode must be preceded by a OLE to be recognized
as a control function. Thus the following sequences are
effective during transparent-mode operation:

8-7

BINARY SYNCHRONOUS COMMUNICATION

Sequence

OLE STX

OLE* ETB

OLE* ETX

OLE SYN

OLE ENQ

OLE OLE

OLE ITB

Use

Initiates the transparent mode
for the following text.

Terminates a block of tranparent
text, returns the data link to
normal mode, and calls for a
reply.

Terminates the transparent text,
returns the data link to normal
mode, and calls for a reply.

Used to maintain sync or as time­
fill sequence for transparent mode.

Indicates "disregard this block
of transparent data" and returns
link to normal mode.

Used to permit transmission of
OLE as data when a bit pattern
equivalent to OLE appears within
the transparent data. One OLE
is disregarded; the other is
treated as data.

Terminates an intermediate block
of transparent data, returns the
data link to normal mode, and does
not call for a reply. The block
check character follows DLE ITB.
Transparent intermediate blocks
may have a particular fixed length
for a given system. If the next
intermediate block is transparent,
it must start with OLE STX.

* The OLE part of the sequence is not placed in the buffer
by the application program. When in transparent mode,
ETX, ETB, or ITB are recognized by VTAM/CCM and sent
as OLE ETX, OLE ETB, or OLE ITB only if they are the last
character in the buffer.

Control OLE:
This sets apart
the following

data OLE. ""

Data
OLE

Sync idle for
fill or timing

I
s s D s Trans D D Trans D s Trans y y L T Text L L Text L y

Text
N N E X E E E N

The OLE STX following an intermediate transparent block
may be preceded by SYN SYN, to permit any station out of
sync to correctly synchronize with the transmission.

All replies, enquiries, and headers are transmitted in
normal mode. Transparent data is received on a character·
by-character basis; thus character phase is maintained in
the usual manner.

An example of a block of transparent data is shown in
figure 8-4.

The boundaries of transparent data are determined by the
OLE STX and the ITB, ETB, or ETX sequences, which
initiate and terminate the transparent mode. Thus, the
length of a transparent message can vary with each
transmission.

For checking the transmitted transparent data, CRC-16 is
available. Refer to Error Checking for the available options.
If the system has VRC in normal mode, this is suppressed
within transparent-text blocks. This permits using the
parity bit as an additional data-bit position for each
character transmitted as transparent data.

Note: In transparent mode, the end control character
(ETX, ETB or ITB) must be the last physical byte in the
block of data. (The OLE and BCC will be inserted by the
BSC hardware.)

8.5.5 Timeouts

Timeouts are used to prevent indefinite data-link tie-ups,
due to false sequences or missed turnaround signals, by
~Ag a fixed time within which any particular operation

must occur. Due to the different requirments for the
various operations, four specific timeout functions are
provided: transmit, receive, discount, and continue.

8.5.5.1 Transmit Timeout

This is a nominal one-second timeout that establishes the
rate at which sync idles are automatically inserted into

Text end and
return to
normal mode.

D* I 8* s s D s Trans D* E 8*
L T c y y L T Text L T c
E B. c N N E X E X c

*Inserted by BSC LAD

Blk 1--------------1~
1---- End

Blk2~
of physical block ~~ .

Figure 8-4. Transparent Data Block

8-8

transmitted heading and text data. In normal data, two
consecutive sync-idle characters (SYN SYN) are inserted

by the BSC hardware every second. while for transparent
data, one transparent sync-idle sequence (OLE SYN) is
inserted every second.

8.5.5.2 Receive Timeout

This is a nominal three-second timeout, and is used as
follows:

a. Limits the waiting time tolerated for a transmitting
station to receive a reply.

b. Permits any receiving or monitoring station to check
the line for sync-idle signals. These sync idles indicate
that the transmission is continuing; thus this timeout
is reset and restarted each time a sync idle is
detected.

c. Limits the time any tributary station in a multipoint
network will remain in control mode while monitoring
the line for its address code. This timeout runs
whenever the station is in control mode. It is reset
and restarted each time an end signal (EOT, ENQ,
NAK, WACK, ACK) is recognized, as long as the
station remains in control mode.
This timeout is done by hardware, and is monitored by
VTAM/CCM. In case a three-second timeout occurrs, an
error indication is returned via the request block.
Both the parity error (bit 5) and overflow (bit 9) will
be set in the Detailed Status.

8.5.5.3 Disconnect Timeout

This timeout is used optionally on switched network data
links. It is a nominal 20-second timeout used to prevent a
station holding a connection for prolonged periods of
inactivity. After 20 seconds of inactivity, the station will
disconnect from the switched network.

Note: The disconnect timeout function is not performed by
VTAM/CCM, but may be implemented by the application
program.

varian data machines ~

BINARY SYNCHRONOUS COMMUNICATION

8.5.5.4 Continue Timeout

This is a nominal two-second timeout associated with the
transmission of TTD and WACK. The continue timeout is
used by stations where the speed of input devices (for
transmitting stations) or output devices (for receiving
stations) effect buffer availability and may cause transmis­
sion delays.

TTD is sent by the transmitting station up to two seconds
after receiving acknowledgment of the previous block if the
transmitting station is not capable of sending the next
transmission block before that time.

Note: The continue timeout function is not performed by
VTAM/CCM but may be implemented by the application
program.

A receiving station must transmit WACK to indicate a
"temporarily not ready to receive" condition if it is not able
to receive within the two-second timeout. The purpose of
the timeout interval is to permit the receiving station to
send an appropriate affirmative reply immediately if it
becomes appropriate within the interval.

8.5.6 Pad Characters

To ensure that the first and last characters of a transmission
are properly transmitted by the data set, all BSC stations
add a pad character before and after each transmission.
The one-character pad (leading pad) preceding each initial
synchronizing pattern ensures that the station will not start
sending its synchronizing pattern before the other station
is prepared to receive. The leading pad character is the
sync character sent by the BSC hardware.

A pad character (trailing pad) is also added following each
transmission (e.g., NAK, EOT, ENQ). Since ETB or ETX
causes line turnaround, the pad character follows the BCC.
The trailing pad character ensures that the last significant
character (e.g., ETB BCC, ETX BCC, or NAK) is sent before
the data set transmitter turns off. The trailing pad character
consisting of all 'I' bits (hex 'FF') is sent by the BSC hard­
ware.

8.6 TRANSMISSION SEQUENCE AND

RECOVERY PROCEDURES

Table 8-2 shows examples of some of the transmission and
recovery procedures.

8-9

BINARY SYNCHRONOUS COMMUNICATION

Table 8-2. Transmission and Recovery Procedures

TRANSMISSION WITH CONTENTION

Terminal A
(Priority 1)

ENQ~

ENQ~

Terminal B
(Priority 2)

~ENQ

~ACKO

STX, MSGl, ETX~
~ACKl

EOT~

~ENQ

ACKO~

~ STX, MSGA, ETX
ACKl~

~EOT

TRANSMISSION WITHOUT CONTENTION

Terminal ready to receive

Calling CPU Called Terminal

ENQ~---•-

~ACKO

STX, MSGl, ETB ~
~ACKl

STX, MSG2, ETX ~
~ACKO

EOT--~

Terminal Ready to Transmit

Calling CPU Called Terminal

ENQ~

~ACKO

EOT ____...
~ENQ

ACKO~

~sTX, MSGA, ETB
ACKl~

~ STX, MSGB, ETB
ACKO~

~EOT

POSITIVE RESPONSE

Transmit Receive

ENQ~

~ACKO

STX, MSGl, ETB~
~ACKl

STX, MSG2, ETX~
~ACKO

EOT--~

NEGA Tl VE RESPONSE

Transmit Receive

ENQ____..
~ACKO

STX, MSGl, ETB~
~NAK

STX, MSGl I ETB ~
~ACKl

STX, MSG2, ETX ~
~ACKO

EOT~

LINE FAILURE DURING RESPONSE

Transmit Receive

ENQ~

~ACKO

STX, MSGl, ETB ~
~ACKO*

ENQ~

~ACKl

STX, MSG2, ETX ~
~ACKO

EOT~

• ACKl Character changed to ACKO due to line failure.

INVALID RESPONSE

Transmit Receive

ENQ
~ACKO

STX, MSGl, ETB~
XXX

ENQ
XXX

ENQ
XXX

ENQ

XXX
EOT
(Disconnect)

XXX = Invalid Response

..__~a=-.:-:Io~------------------------------------·--J

varian data machines ~

BINARY SYNCHRONOUS COMMUNICATION

Table 8-2. Transmission and Recovery Procedures (contmued)

NO RESPONSE

Transmit Receive

ENQ~
~ACKO

STX, MSGl, ETB--..
TIME-OUT

ENQ~
TIME-OUT

ENQ~
TIME-OUT

ENQ~
TIME-OUT

EOT~

FORMAT ERROR CONDITION

Transmit Receive

ENQ~
~ACKO

STX, MSGl, ETB~
~ACKl

STX, MSG2, ETB--..
~ACKl

ENQ------
~ACKl

ENQ___..
~ACKl

ENQ~
~ACKl

EOT___..

OUT-OF-STEP CONDITION

Transmit Receive

ENQ------
~ACKO

STX, MSGl, ETB~
TIME-OUT

ENQ~
~ACKO

STX, MSGl, ETB~
~ACKl

STX, MSG2, ETX__..
~ACKO

EOT~

TEMPORARY TEXT DELAY (TTD)

Transmit Receive

ENQ~

~ACKO

STX, MSGl, ETB--
~ACKl

TTD~

~NAK

TTD~

..._NAK
STX, MSG2, ETX-

..._ACKO
EOT~

REVERSE INTERRUPT (RVI)

Station A Station B

ENQ~

~ACKO

STX, MSGl, ETB ____...

~RVI

*STX, MSG2, ETB~
~ACKO

EOT~

~ENQ
ACKO~

~srx, MSGA, ETB
ACKl~

~srx. MSGB, ETX
ACKO~

* l/0 buffer is emptied before sending EOT.

WAIT BEFORE TRANSMIT POSITIVE
RESPONSE (WACK)

Transmit Receive

ENQ---t-
~ACKO

STX, MSGl, ETB~
~WACK*

ENQ----1-
~ACKl

STX MSG2, ETX ~
~ACKO

EOT--~

* Message received correctly but no buffer available for
second message.

8-11

BINARY SYNCHRONOUS COMMUNICATION

Table 8-2. Transmission and Recovery Procedures (continued)

CIRCUIT ASSURANCE-GOOD-IDENTIFICATION

Station A Station B

ID, ENQ~
~ID, ACKO

STX, MSGl, ETB~
_....ACKl

STX, MSG2, ETX ~
~ACKO

EOT--~

8-12

CIRCUIT ASSURANCE-STATION B IS NOT
READY TO COMMUNICATE WITH STATION A

Station A

ID, ENQ~

ID, ENQ~

ID, ENQ*~

Station B

~ID, NAK

~ID, NAK

~OLE EOT
Disconnect

0 Number of retries is determined by the user.

SECTION 9

MANAGING BUFFERS

9.1 INTRODUCTION

VTAM provides three service routines to access temporary
storage in central memory. The service routines are
reentrant subroutines which are resident in central
memory and have entry points in the VORTEX CL library.

The subroutines are VT$GTM, to acquire a block of
temporary storage from a predefined memory pool,
VT$PTM to return a block of temporary storage to a
memory pool and VT$BMT to build a memory allocation
table for a user.

9.2 MEMORY ALLOCATION ROUTINES
AND THEIR FUNCTIONS

9.2.1 VT$BMT

A memory allocation table must be built for a memory pool
to be accessed with VT$GTM and VT$PTM to allocate and
deallocate its temporary storage blocks. VT$BMT creates
the memory allocation table. VT$BMT is called by use of
the VORTEX ALOC macro.

label ALOC VT$BMT

Before calling this subroutine, the user must load the A
register with the size of the memory pool and the B register
with th~ address of the memory pool. In addition the first
locations of the memory pool must be set as follows:

Entry parameters

Memory
Pool

+0
+1
+2
+3

2n-2
2n-1
+2n

Contents

Smallest block size
Number of blocks
Next smallest block size
Number of blocks

Largest block size (n)
Number of blocks
O~ero

Remainder of Memory pool

varian data machines ~

Exit Parameters

On return from the call, the memory pool will now have the
memory allocation table in the first locations. The memory
allocation table will have the following format:

Memory
Pool

Location

0
1
2
3

Contents

First block size
Head of queue
Second block size
Head of its queue

2n-2 Nth block
2n-1
2n

Head of its queue
0

Error Indications on VT$BMT

On return, the status will be set in the A register. Zero
indicates an error. The memory pool was not large enough
to build the desired memory allocation table, or the block
sizes were not in ascending order. When an error occurrs,
the first word of the memory pool is set to zero.

Example:

Build a memory allocation table for a pool beginning at
location BLKADR and extending 560 words. Specify 10
blocks of 20 words, 10 of 15 words and 20 of 10 words.

Prior to the VT$BMT call the first seven locations of the
memory pool must contain the following:

Location

+0
+1
+2
+3
+4
+5
+6

EXT VT$BMT

LDBI BLKADR
LDAI 560
ALOC VT$BMT

Value

10
20
15
10
20
10

0

9-1

MANAGING BUFFERS

Upon return, the memory allocation table would appear as
follows:

BLKADR

+0 10
+1 BLKADR +SSO
+2 1S
+3 BLKADR +34S
+4 20
+S BLKADR+210
+6 0

In this example three memory locations (+ 7, 8, and 9)
would be unused.

9.2.2 VT$GTM

The VT$GTM routine allows a user to acquire a block of
temporary storage from a previously defined memory pool.
If the memory allocation table for the pool does not have
blocks of the specified size, the request is completed and
an error is indicated by setting the A register to zero.

The VT$GTM routine is called by use of the VORTEX ALOC
macro.

label ALOC VT$GTM

Before making the above call, the user must load the A
register with the number of words in the block desired, and
the B register with the address of the memory allocation
table. The A register contains the address of the block
upon return. The VT$GTM routine must not be called by a
FORTRAN program since the contents of the register will
not contain the desired parameters.

Error Indications

The status after a request to allocate memory is returned in
the A register as follows:

A = 0

A #= 0

No blocks of the desired size are
available

Address of the block (normal return)

The caller should be cautious in the use of this subroutine
because invalid parameters could damage either the
memory allocation table or other programs in the system.

9·2

EXAMPLE

Request a block of memory of 20 words from a pool
maintained by memory allocation table MATS.

EXT VT$GTM

LDAI 20
LDBI MATS
ALCO VT$GTM

9.2.3 VT$PTM

The VT$PTM subroutine returns a specified-size block of
temporary storage to a memory pool. If the memory
allocation table for the pool does not contain blocks of the
specified size, the next larger size in the memory allocation
table will be used. This subroutine is called by use of the
VORTEX ALOC macro:

label ALOC VT$PTM

Before making a VT$PTM call, the user must load the A
register with the address of the memory allocation table for
the pool, the B register with the address of the block being
returned, and the first location of the block must contain
the size of the block. Normal return is indicated by the A
register equal to zero.

Error Indication

If the A register is not zero, then no block of the specified
size was found to be deallocated.

Example:

Return ,a block of memory whose address is in location
BLKADR which is 1S words long, to the pool maintained by
a memory allocation table MATS.

EXT VT$PTM

LDB BLKADR
LDAI 15
STA 0,8
LDAI MATS
ALOC VT$PTM

varian data machines ~

SECTION 10

CODING A TERMINAL CONTROLLER MODULE (TCM) FOR VTAM

10.1 INTRODUCTION

For each additional type of line service rule extending the
VTAM system beyond the TTY TCM capabilities (described
in section 5) a TCM must be written. For example a system
which has Teletypes, synchronous CRT devices and a
communications link to a large-scale processor involves
three types of line disciplines, and so uses three TCM's.

In applications where little or no line discipline is required
a user will not need to write a TCM because he may call the
CCM directly. A TCM is useful where it can simplify a
relatively complex line discipline.

A TCM is responsible for terminal unit control, error
checking, code conversion and all other functions not
handled by the CCM relating to control of the line and
terminal equipment on the line. The main fur,ction of the
TCM is to translate and break down the requests received
from the application into a series of CCM requests which
perform the particular line discipline. In effect a TCM
handles the setting up of the CCM requests to perform a
particular 1/0 operation whereas the CCM handles the
actual I /0 transfer.

In order to understand the function a Terminal Controller
Module (TCM) performs in VTAM, one must trace the steps
involved in building a VTAM system. The five main
components of VTAM are: Network Definition Module,
Network Control Module, Terminal and Line OPEN/CLOSE
Processors, the Communication Controller Module (CCM),
and the TCM. VTAM is designed to work with terminal­
oriented tables called Terminal Controller Descriptors
(TCD) and line-oriented tables called Line Service Descript­
ors (LSD). Since a TCM only works with terminal-oriented
tables, only the TCD and its structure need to be described
for coding a TCM.

10.2 TABLES USED BY TCM

During network definition, prototypes of TCD's are built by
the NDL processor in a file called VT$DFT in the
foreground library from terminal directives input to the
NDL processor. These prototype TCD's are used by the
Terminal Unit OPEN/CLOSE processor to build TCD's in
central memory when a terminal is opened.

The Network Control Module, (NCM) through which a user
can interrogate the status of the data communication

Field Label

TCTCD
TCRQH
TCCTA

Word

0
1
2

Bits

0-15
0-15
0-15

network or alter it, is intimately related to the structure of
the TCD, and as such, any changes to the TCD's structure
should be kept to adding entries to it and keeping the
current structure intact. As long as this restriction is
followed, modifications to NCM may not be necessary.

The two major components that need to be considered
when coding a TCM are the Terminal Unit OPEN/CLOSE
Processor and the TCM Executive, (TCMEXEC). The
function of the Terminal OPEN/CLOSE Processor is to build
the TCD's and thread them to the proper VTAM tables. The
TTY TCM is composed of a root segment, VT$0CT, and an
overlay segment, TIYTCM, which is designed to build
TCD's for the TTY TCM. To modify or extend the structure
of the TCD, a new overlay segment must be written. The
root segment, VT$0CT, keys on the TCM type, PCTYP, from
the prototype TCD in the VT$DFT file. All that is necessary
to incorporate a new overlay segment is to write the overlay
segment and add an entry to the jump vector table for TCM
overlays at OCT2F3 in VT$0CT and a corresponding call on
the overlay segment.

For example:

OCT2F3 JMP OVLAY1
overlay for TTY TCM

JMP OVLAY2
overlay for XYZ TCM

*END OF TABLE

OVLAY1 OVLAY 0, 'TT', 'YT' ,'CM'
call in TTY TCM

OVLAY2 OVLAY O,'XY' ,'ZT' ,'CM'
call in XYZ TCM

In addition, return to the root segment should be made at
VT$0CY or VT$0CZ depending on whether interrupts
should be disabled or not. For example if interrupts are
currently disabled in the overlay segment and interrupts
are•to be enabled, return should be made at VT$0CZ,
otherwise return should be made at VT$0CY.

The following is a description of the current structure of the
Terminal Controller Descriptor (TCD):

Description

Address of Next TCD in Queue
Head of Request Queue
Address Controller Table for TCM

10-1

CODING A TERMINAL CONTROLLER MODULE (TCM) FOR VTAM

Field Label Word Bits

TCCLN 3 0-7
TCLLN 3 8-15
TCPCH 4 0-7
TCSWL 4 8-8
TCBSL 4 9-9
TCXMN 4 10-11
TCECH 4 12-12
TCCON 4 13-13
TCWBC 4 14-14
TCRBC 4 15-15
TCNTD 5 0-3
TCNOD 5 4-7
TCTYP 5 8-11
TCCTP 5 12-15
TCRMD 6 0-2
TCWMD 6 3-5
TCRRS 6 6-8
TCWRS 6 9-11
TCLDF 6 12-12
TCRCA 7 0-15
TCSTO 8 0-15
TCWCA 9 0-15
TCDCC 10 0-15
TCRBF 11 0-15
TCDTO 12 0-15
TCID1 13 0-15
TCID2 14 0-15

After extensions to the structure of the TCD have been
defined and the Terminal Unit OPEN/CLOSE Processor
overlay segment designed to handle the changes to the
TCD structure, the user must consider how to interface a
new TCM with the VTAM system.

10.3 TCM FUNCTIONS

A TCM, in general, consists of two functional groups of
programs - the VTAM TCM Executive (TCMEXEC) and a
set of TCM request processing programs. The TCM
Executive itself consists of an enqueuing module, VT$TCQ,
and the TCM request initiation and completion module,
TC$CEX, which is the main executive routine. I /0 requests
to a TCM are processed by IOC like l/0 requests to
standard VORTEX l/0 drivers. When IOC processes an l/0
request for a TCM, the request is queued against the TCM's
controller table and the pseudo driver, VT$TCQ, is
activated to queue the request to the proper TCD.

Figure 10-1 depicts the relationship of VTAM and TIY TCM
modules.

When coding a TCM, one must consider how a TCM
controller table (CTBL) should be structured. A TCM
controller table is composed of two parts, the standard
VORTEX controller table and the TCM Processor Table

10-2

Description

LUN for the CCM
Logical Line Number
Prompt Character for Terminal
Switch/Non-Switched Flag
Sync/ Asynchronous Flag
Transmission Mode
Echo/No-Echo Flag
Physical Connection Flag
0 = Word Count, 1 Byte Count for Write
0 = Word Count, 1 = Byte Count for Read
Number of Devices
Number of Devices Open
TCM Type (0 = TTY TCM)
Transmission Code Type (0 ASCII)
Mode of Read Operation
Mode of Write Operation
Read Request Status
Write Request Status
Line Disconnect Flag
CCM Request Address for Read
Read Timeout Value
CCM Request Address for Write
Dynamic Character Count for Read
Dynamic Read Buffer Address
Dynamic Read Timeout Value
First 2 Characters of TU I D
Second 2 Characters of TU I D

(TPT). The following is a description of the standard
controller table part:

Entry Word Description

CTIDB 0 Controller Active Flag/TI DB
Address

CTADNC Controller Table End Plus One

CTOPM 2 Op code Mask, which is set to
the sum of equate value~ for
valid op codes for the TCM.

CTDST 3 Address of DST (= 0, set by IOC)

CTRQBK 4 Address of Request Block to be
Processed. (= 0, set by
IOC)

CTRTRY 5 Not used, set to 0.

CTDVAD 6 Controller Device Address

CTIOA 7 l/0 Algorithm

CTSTAT 8 = 0, for TCM use

CTBICB 9 Not used, set to 0.

CTFCB 10 = 0, (set by IOC)

varian data machines ~

CODING A TERMINAL CONTROLLER MODULE (TCM) FOR VT AM

Entry Word Description

CTWDS 11 = 0, for TCM use.

CTFRCT 12 l/0 Algorithm Frequency Count

The second part of the TCM CTBL is the TCM processor
table, which should be changed according to the needs of
the TCM. An example of a TCM processor table, for the TTY
TCM, is the following:

Entry Word Description

TPRPA 13 Primary entry point to TTY TCM
Read request processor program.

TPWPA 14 Primary entry point to TTY TCM
Write request processor program.

TPFPA 15 Primary entry point to TTY TCM
Function/WEOF processor program.

A possible extension to the TCM controller table would be
to keep the standard part constant and to add additional
entries to the TCM processor table for new TCM request
processing programs.

10.4 TCM COMPONENTS

With an understanding of how the TCM controller table
should be structured, the user can now consider how the
different components of a TCM work together.

VT$TCQ, the enqueuing module, is responsible for queuing
a TCM request on the proper TCD request queue from the
TCM controller table. A TCM is referenced by a logical unit
number that has been assigned to the TCM. A TCM is
considered to be a driver task, VT$TCQ, with a controller
table and a TIDB. All requests are queued to the TCD
request queue, except OPEN /CLOSE requests, which are
queued on the terminal OPEN/CLOSE request queue
(TC$0CM) for processing by VT$0CT, the Terminal Unit
OPEN/CLOSE module. Because the function of VT$TCQ is
limited to q~euing requests, this component may not have
to be modified. It should be noted that VT$TCQ also
currently performs an immediate type function request for
clearing l/0 on a terminal and setting it down. If this has
to be changed, VT$TCQ will have to be modified, otherwise,
coding a TCM should not involve changes in VT$TCQ.

The main TCM executive routine in TCMEXEC is TC$CEX,
which is responsible for initiating and completing TCM
requests. TCMEXEC operates as an independent, multi­
programmed task and is activiated by VT$TCQ when
requests are queued on a TCD, or as consequence of an
expired type 2 delay, or a completion of a CCM I /0 request.
(NOTE: The CCM generates a pseudo interrupt by setting
the event word (TBEVNT) of TCMEXEC's TIDB non-zero,
when it is time-delay active.)

TC$CEX is composed of three main loops. The first one
checks all TCD's for any completion on active CCM requests
or timeout conditions on READ request which are timeout
active. The second~loop checks all TCD's for requests that
may be initiated and if there is one, TC$CEX does a Jump-

and-Mark into the primary entry point of the appropriate
TCM request processor, and this address is kept in the
TCM processor table in CTBL. The third loop checks for the
shortest timeout value specified for READ requests and this
value is used for a type 2 delay request which suspends
TCMEXEC until a CCM request completes or the time delay
expires. At this point, the user must consider how TCM
requests are initiated and completed by TCMEXEC and how
TCM request processing programs work, because the bulk
of coding a TCM lies in coding the appropriate request
processors.

In general, a TCM request processing program first checks
if a request can be initiated from information kept in the
TCD. If it cannot be initiated because of the current status
of the line or terminal, then the program should just exit
and return to TC$CEX. If a TCM request can be initiated,
then the program should initiate a series of one or more
CCM requests to perform the required steps called for by
the particular TCM request for completion. In order to
initiate a CCM request, the user must first allocate memory
for the CCM request block from the memory allocation pool.
This is accomplished via calls on VT$GTM, the memory
allocator program, through V$EXEC. When memory has
been allocated, the program can build the CCM request
block by calling TC$BRQ, which builds the skeleton request
block, including instructions for doing a Jump-and-Set
register into IOC, from information in the TCD. Other
information from the TCM request can be entered into the
CCM request block and the CCM request can be queued
through IOC by doing an indirect jump to a location which
contains the address of the CCM request block. The
following is a description of how CCM request blocks are
constructed.

15 14 12 8 7 4 0

0 JSR,X

V$10C Entry Address

2 c STATUS le* CC'' l PRIORITY

3 W MODEl OPCODE LOG. UNIT OF CCM

4 LCB ADDRESS

5 NO. OF WORDS/BYTES TRANSFERRED''

6 DETAIL STATUS'''

JMP

8 RETURN ADDRESS/COMPLETION ADDRESS

9 BUFFER LENGTH loll

10 F BUFFER ADDRESS

I
1 FUNC CODE LOG. LINE NO I

I

121 (BUFFER OR EXTENSION WORD)'"' ~ L ___________ ___J

These values are valid only when C = 1 (Request
Complete).

·~ * Optional, since input/output may be performed directly
into user's buffer or extension word is not needed.

10 3

CODING A TERMINAL CONTROLLER MODULE (TCM) FOR VTAM

VT$TCQ

TCM
REQUEST
QUEUEING
PROGRAM

TCD

TERMINAL
CONTROLLER
DESCRIPTOR

t
I

+
TC$CEX

TCM
EXECUTIVE
(TCMEXEC)
PROGRAM

TC$CRQ

TCM
REQUEST
COMPLETION
PROGRAM

VTII-1927 A

10-4

TC$0CT

I TCM'MoDULES 'NORMALLY WeED oR MODIFiED I
TASK TO I TTY TCM
SCHEDULE I CONTROLLER
VT$OCT TABLE (CTTCOA)
FOR
VT$TCQ I

......________,

VT$0CT

TERMINAL
OPEN/CLOSE
REQUEST
PROCESSOR
PROGRAM

TTYTCM

I TU OPEN/
CLOSE
OVERLAY

I SEGMENT
FOR

L_ TTY TCM

TCFRR/TCFWR TCSBRQ

NEXT SKELETON
READ/WRITE CCM
REQUEST ON REQUEST
TCD REQUEST BLOCK
QUEUE FINDER BUILDER
PROGRAM PROGRAM

Figure 10-1. VTAM TCM and TTY TCM Modules

TYREAD

TTY TCM
READ REQUEST
PROCESSOR
CODE

TYWRITE

TTY TCM
WRITE REQUEST
PROCESSOR
CODE

TYFUNC

TTY TCM
FUNC/WEOF
PROCESSOR
CODE

varian data machines ~-

CODING A TERMINAL CONTROLLER MODULE (TCM) FOR VT AM

The TCM request processing program would normally set
up the following items after the skeleton CCM request block
has been built:

a. W- Wait or Immediate Return option.

b. MODE - Mode of request.

c. OP CODE- Type of request (READ, WRITE, FUNC, etc.).

d. RETURN/COMPLETION ADDRESS - Return address
after IOC call. This would normally be a return address
in the TCM processor program after a request is
queued/completed. This location is also used to store
a request completion address (when immediate
return option is used) so that after the program exits
to TCMEXEC, control may be returned to an entry
point within the program from TCMEXEC after the
CCM request has completed, so that the completed
request can be processed, and further servicing or
completion of the TCM request may proceed.

e. BUFFER LENGTH- Length of input/output buffer.

f. F ·Word/Byte Count Flag.

g. BUFFER ADDRESS- Address of input/output buffer.

h. FUNC CODE- Function code of FUNC request.

The address of currently active CCM request blocks are
stored into the following entries in the TCD:

TCRCA - Read Completion Address (Also used for FUNC).

TCWCA - Write Completion Address

When these entries are non-zero, TCMEXEC assumes that
the terminal is active with CCM requests waiting to be
completed. Thus, TCMEXEC can check for request comple­
tion by testing the completion bit in the CCM request block
and if completed, TCMEXEC will perform a Jump-and-Mark
to the completion address that was stored in word 8 of the
CCM request block by the particular TCM request process­
ing program servicing the request. When the TCM proces­
sor is reentered it would normally check for line errors by
checking the detail status word returned by the CCM or the
error flag (e) and completion code (cc) fields. If errors
occurred then the TCM request should be completed and
an appropriate error status returned. Otherwise. the TCM
processor should continue request servicing or complete the

c
81

I 'STATUS"
CONTINUE
IF (ITEST.EQ.l) GO TO 83
CALL COMPAR (34)
IF (ITEST.EQ.O) GO TO 83
CALL COMPAR (4)
IF (TEST.EQ.O) CALL DIAG

TCM request by calling TC$CRQ (TCM Complete request
program) and return normal completion status. It should
be noted that TC$CRQ also delinks the request from the
TCD request queue when it completes the request and
handles error conditions like Data-Set-Ready OFF, Parity
error, etc. by returning the proper error status. Lastly,
memory used for CCM request blocks should be deallocated
and returned to the memory pool by calling VT$PTM
through V$EXEC. Then before returning to TCMEXEC, the
TCM processor should clear TCRCA or TCWCA, or whatever
entry is used to keep track of active CCM requests to
ensure that TCMEXEC will no longer consider the TCM
active with a READ, WRITE, FUNC, etc. request.

10.5 MODIFYING THE NETWORK DEFINITION
MODULE

Modifying the NDL Processor

Additions may be made to the NDL processor by the user.
In order to make these alterations, one must understand
the conventions and mechanisms NOM uses to accomplish
its work.

All syntactic analysis is done in PARSE, a FORTRAN
subroutine. A major portion of this code was produced from
a BNF notation. The original BNF syntax appears in the
comment lines.

PARSE looks for particular phrases in the input stream.
Each phrase is stored as a character string via DATA
statements in subroutine COMPAR. PARSE requests a
check for a phrase by calling COMPAR and passing the
phrase number. COMPAR reflects the result of the
comparison via the COMMON variable ITEST. If the phrase
occurs, ITEST is set to one and the phrase is deleted from
the input buffer. If the comparison fails, ITEST is set to
zero.

When a phrase is found, an action is taken. Most of these
actions are calls to BITSET to set fields within the control
blocks. If the expected phrase does not occur and an
alternative exists, the alternative is tried. If no alternatives
exist, subroutine DIAG is called to produce a syntax error
message, and a suitable default action is taken.

For instance below is the code within PARSE to process the
STATUS clause of the TERMINAL directive. On the right are
descriptive comments.

BN F statement of alternative
Start of alternative
If previous alternative true, skip this one
Compare for 'STATUS'
If failed, try next alternative
Compare for · = •

If failed, issue message

(contmued)

10 5

CODING A TERMI,NAL CONTROLLER MODULE (TCM) FOR VTAM

c

c
84

86
85

('UP' [BITSET(TCDI(3),15,15,0)]
CALL COMPAR (35)
IF (ITEST.EQ.O) GO TO 84
CALL BITSET (TCDI(3),15,15,0

/'DOWN' :[BITSET (TCDI(3),15,15,1)]
CONTINUE
IF (ITEST.EQ. 1) GO TO 85
CALL COMPAR (36)
IF (ITEST.EQ.O) GO TO 86
CALL BITSET (TCDI(3),15,15,1)
CONTINUE
CONTINUE
IF (ITEST.EQ.O) CALL DIAG

83 CONTINUE

Now suppose a user wanted to alter NDL to recognize a
third alternative to STATUS, for instance STATUS =

MAYBE. When this is detected, PSD word 4, bit 15 is to be
turned on.

First, 'MAYBE' is a new phrase and must be added to
subroutine COMPAR's list of phrases. Assume that 'MAYBE'
becomes string 53. The following changes would be made
to COMPAR:

• replace the DIMENSION statement for STRING and
POOL:

DIMENSION STRING (54), POOL (293)

• insert the following DATA cards to describe the phrase
(lower case b indicates a blank withtn a Hollerith
constant).

C STRING 53 5HMAYBE
DATA STRING {54) /288/, POOL {288) /5/
DATA POOL (289) /2HbM/, POOL (290) /2HbA/
DATA POOL (291) /2HbY/, POOL (292) /2HbB/
DATA POOL (293) /2HbE/

Then the following statements would be inserted in
subroutine PARSE, following statement number 86:

IF (ITEST.EQ.l) GO TO 986

CALL COMPAR (53)
IF (ITEST.EQ.O) GO TO 986

CALL BITSET (LSD(5),15,15,1)

986 CONTINUE

10·6

If 'DOWN' worked,
skip 'MAYBE'

Compare for 'MAYBE'
If failed, try next

alternative
Do action for'MAYBE'

Compare for 'UP'
If failed, try 'DOWN'
Do action for 'UP'

Start of 'DOWN' clause
If 'UP' worked, skip 'DOWN'
Compare for 'DOWN'
If failed, try next alternative
Do action for 'DOWN'

If both 'UP' and 'DOWN' failed, issue
message beginning of next alternative

10.6 PROCEDURE TO CODE A TCM

FOR VTAM

In summary, the following steps should be taken in coding
a TCM for VTAM:

a. Perform an analysis of terminal requirements and line
discipline for the proposed data communications
network.

b. Define the structure of the terminal-oriented tables
(TCD) to be used by the TCM.

c. If there exist terminal or line attributes not described
by NDL, then the NDL processor may have to be
modified to include these attributes.

d. Design a terminarunit OPEN/CLOSE processor overlay
segment that can be called by the root segment,
VT$0CT, by keying on the TCM type field of the
prototype TCD. This overlay segment should build the
TCD in main memory from the prototype TCD and
other information built by the NDL processor during
network definition.

e. Analyze the modifications to VTAM in relation to its
impact on NCM, the network control module. Changes
which require modifications to NCM should be
avoided.

f. Design the TCM around the existing TCM Executive,
TCMEXEC, components: VTTCQ, TCCEX, TC$CRQ. If
additional services are required from TCMEXEC which
are not currently provided, then the particular
TCMEXEC component may have to be modified. After
coding the TCM request processor programs, the TCM
controller table with its TCM processor table should
be built. When all these VTAM components are
assembled, then a system generation to build the
VTAM system should be performed and an NDL run
made to define the communications network.

SECTION 11

CONTROLLING A NETWORK

11.1 INTRODUCTION

The Network Control Module (NCM) functions as an
interface between the VTAM system and the VORTEX
operator. The operator uses NCM for removing and adding
lines and terminals to and from an on-line active data­
communications network, for redirecting l/0 from one
terminal to another, and for listing the status of lines and
terminals.

NCM operates as a foreground VORTEX task and is
invoked by the operator with an OPCOM schedule request.
VTAM does not need to be running to start NCM.

Directives to NCM are entered on the current OC device,
and the results are reported on the OC unit. In addition to
the directives provided by NCM, more extensive changes to
the VTAM network are possible through the network
definition language (described in section 2).

The directives in NCM are as follows:

UP vary a line/terminal on-line

DOWN vary a line/terminal off-line

REDIRECT redirect one terminal's l/0 to another

RESTORE restore l/0 to original terminal

LIST list current status

END terminate NCM task

Many of these functions alter fundamental VTAM tables, so
care should be exercised in the use of NCM. For instance, if
an operating VTAM terminal is DOWNed, NCM purges
current l/0 requests. CLOSES the terminal and resets
VTAM files. This obviously could cause data for that
terminal to be lost.

11.2 DIRECTIVES

11.2.1 General Format of NCM Directives

All NCM directives have the following general format:

dir, p(l),p(2), ... ,p(n).

where dir is the directive name and p(l),p((2), ... p(n) is the
parameter list in which individual parameters are sepa­
rated with commas and the list is terminated with a period.
The actual parameters are defined by the directive. All
blanks are ignored. Equal signs are treated as commas.

The maximum length of a directive is 72 characters.

varian data machines ~

11.2.2 UP Directive

The UP directive causes the current status of either a
logical line or termina~ to be marked as on-line and
available for l/0.

If a line is specified, NCM marks the prototype LSD on
VTAM file VT$DFL and Physical Line Table (PLT) as UP.

If a terminal is specified, the corresponding TUID index in
file VT$DFT and the Logical Terminal Table (L TT) are
marked as UP.

The format is:

UP, u(l) , u(2), ... ,u(n)

where each u(i) is either a terminal identifier or a logical
line number as defined in the network definition language.
Any number of units (up to a total directive length of 72
characters) may be specified and will be processed in
order. An error message is given, if the unit specified was
not defined in NDL or is already UP.

Examples of UP Directive

Example 1:

Change the status of logical line 012 to on-line.

UP,012

Example 2:

Vary the status of logical line 012 and terminal RM01 on­
line.

UP,012,RM01

11.2.3 DOWN Directive

The DOWN directive causes the current status of a
terminal or logical line to be marked as off-line and not
operational.

If a terminal is specified, the corresponding terminal
identifier in file VT$DFT and the logical terminal table
(L TI) is marked DOWN. If the specified terminal is OPEN,
all l/0 requests are purged and a CLOSE is issued for the
terminal.

A logical line specified as a parameter to DOWN directive
causes the corresponding prototype LSD· in file VT$DFL and
the Physical Line Table (PLT) to be marked DOWN. If the
line is OPEN at the time, all its l/0 requests are purged
and a CLOSE is issued for the line. Then for all terminals
currently OPEN on the line. All l/0 requests are purged
and a CLOSE is issued.

11-1

CONTROLLING A NETWORK

The form of the DOWN directive is:

DOWN, u(l),u(2), ... , u(n).

where each u(i) is either a terminal identifier or a logical
line number defined in the NDL. Any number of units (up
to a total directive length of 72 characters) may be
specified in this directive and they are processed in order.
If the unit specified was not defined by NOM, an error
message is given. If the unit is currently DOWN, error is
indicated.

Loss of data may occur, if the unit specified is OPEN.

Examples of a DOWN Directive

Example 1:

Vary the status of logical line 012 off-line.

DOWN,012.

Example 2:

Change the status of logical line 012 and terminal RM02 to
off-line.

DOWN,012,RM02.

11.2.4 REDIRECT Directive

The REDIRECT directive allows the operator to substitute
another terminal to receive and transmit messages. This
would be useful for terminal and/or line failures.

The network control module alters the TUID index entry to
point to a different prototype TCD. This changes not only
the logical line for the TUID but also may change the
physical hardware characteristics for the TUID.

The general form of this directive is:

REDIRECT, 1(1) • r(l), 1(2) = r(2), ... ,1(n) = r(n).

Each l(i) and r(i) are defined TUIO's, for which r(i) replaces
the l(i).

If any of the terminals specified by l(i) or r(i) were not
defined by the NDL processor, an error is given in the
following format:

NCnn

Any number of TUID pairs may be specified in the directive
up to a total length of 72 characters. A comma may be
substituted for an equal sign.

If the terminal being reassigned is OPEN at the time, it
may be necessary to DOWN the terminal. Since only RMD
files are altered by this directive, the reassignment takes
effect when the terminal is OPENed.

11·2

Examples of REDIRECT Directives

Example 1:

Reassign l/0 from terminal RMOl to terminal RM02.

REDIRECT, RM01 • RM02.

Example 2:

Terminal XRAY has failed, so shift its l/0 requests to
BETA.

REDIRECT,XRAY,BETA.

11.2.5 RESTORE Directive

The RESTORE directive restores terminal l/0 requests to
the original terminal. The TUID may have been altered by
the REDIRECT directive. The format of this directive is as
follows:

RESTORE, t(1), t(2), ... , t(n).

Each t(i) is a TUID of a terminal to be restored.

Any number of TUID's may be specified (not exceeding the
total directive length of 72 characters). Each is restored in
turn left to right.

Error message NC03 UNDEFINED TUID appears if any of
the parameters of RESTORE had not been defined before
this in NDL.

Since only RMD tables are changed by the directive, it may
be necessary to DOWN the terminal. The change takes
effect only when the terminal is being OPENed.

Examples of RESTORE Directives

Example 1:

Terminal DOG has been REDIRECTED. Restore its original
status.

RESTORE,DOG.

Example2:

Restore terminals REDIRECTED in section 11.2.4, example
2.

RESTORE,BETA,XRAY.

11.2.6 LIST Directive

The LIST directive lists the current status of VTAM logical
lines and terminals. NCM searches the VTAM files and
resident tables for information, such as UP/DOWN,
OPENED/CLOSED and current assignments. A message is
formatted and written to the OC device.

If no parameters are given on the directive, NCM lists the
status of all defined VTAM lines and terminals. No files or
tables are altered by LIST.

~~---·-

1

The format of the LIST directive is:

LIST, u(l), u(2), ... , u(n).

each u(i) is either a TUID or a unique logical line identified
by a CCM number followed by a comma and a logical line
number for which the status is to be listed.

If any of the units specified was not defined in NDL an
error message

NC02 UNDEFINED LINE

or
NC03 UNDEFINED TUID

is output.

Examples of LIST Directive

Example 1:

List the current status of terminals TTY1 and TIY2.

LIST, TTY1,TTY2.

varian data machines ~

CONTROLLING A NETWORK

Example 2:

List the current status of terminals LA and NY and logical
lines 01 and 02 both on CCM 17.

LIST,LA,NY,17,01,17,02.

Example 3:

List the current status of all VTAM terminals and lines.

LIST.

NCM Error Codes

NC01 Syntax error

NC02 Undefined Line

NC03 Undefined TU I D

NC04 l/0 Error on file VT$DFL

NC05 l/0 Error on file VT$DFT

NC06 Undefined CCM Number

11·3

~~ varian data machines ..

I

I

I
I
I

I
_j

-····------------ ___ ... _________________________ ___ . varian data machines ~--1

i

I
i
I
I
I

SECTION 12

PROGRAMMING AN APPLICATION

This section presents a simple data communication
example, an assembly-language program to handle inquir­
ies from a terminal about a data base stored on a rotating­
memory file. The inquiries are fixed-format messages of
four-characters. The terminal handled by this program is a
Teletype-compatible CRT device.

The program converts the messages to a key into the data
base, reads the specified record and outputs it to the
terminal. An inquiry session is terminated by the user
entering " OF" . Editing, deleting characters and starting
over, is provided through the TCM. Error notification is
provided by the program.

Before running this program the network needs to be
configured with NDL statements as follows:

LINE 2:

ADDRESS = 040,
CONNECT = DIRECT,
EOM-STOP = 0215,
ERROR-STOP = TRUE,
PARITY = EVEN,
SPEED = 10,
LINE-TYPE = HALF-DUPLEX,

MODE = ASYNCHRONOUS,
STATUS = UP.

TERMINAL CRTl:

END.

LINE = 2,
CODE = ASCII,
DEVICES = 1,
ECHO = TRUE,
PROMPT = 0207,
TYPE = TTYl,
UNIT = 17,
STATUS = UP.

I VT/l-1928

SET
10 SECOND
TIMEOUT

I

L ____________ _ Figure 12-1. Flowchart of VTAM Application

EXIT
TO VORTEX

I

_____ _j
12-1

PROGRAMMING AN APPLICATION

12·2

**
* *
*
* •
*
*
* •
*
*

VTAM SAMPLE PROGRAM

THIS PROGRAM READS A FIXED FORMAT, 4 CHARACTER MESSAGE
FROM AN ASYNCHRONOUS TTY COMPATIBLE TERMINAL. IT THEN
CONVERTS THE MESSAGE TO A BINARY NUMBER AND USES IT AS
THE LOGICAL RECORD NUMBER TO RANDOMLY READ FROM A FILE.
ONCE READ, THE RECORD IS OUTPUT TO THE TERMINAL. ERROR
NOTIFICATION AND PROGRAM TERMINATION IS ALSO PROVIDED.

*
*
*
*
*
*
*
*
* **********************************•·····································

*
•
* LU1
LU2
LU3

*

EQUATES FOR LOGICAL UNITS

EQU 180
EQU 186
EQU 1

* BEGIN PROGRAM
*
PO

P1
•
•
•
*
*
*
P2

P3

*
•
*
ER1

•
*
*
ER2

•
•
*
*
*
•
•
ACCESS

NAME PO
OPEN
OPEN
WRITE
FUNC
READ

STAT
LOA
SRE
JMP
CLOSE
CLOSE
EXIT
LOB
CALL
JAN
WRITE
JMP

DATAB,LU1
TUID,LU2
INSTR,LU2
CRT1 I LU2
CRT 1 I LU2 I I 1

OPEN RMD FILE CONTAINING DATA BASE
OPEN TERMINAL
WRITE INSTRUCTIONS TO TERMINAL
SET TCM TO PROMPT AFTER 10 SECOND TIMEOUT
READ TERMINAL {ASCII MODE)
STATUS READ AFTER COMPLETION

ER1•I/O ERROR ROUTINE
ER2•DATA SET OFF ROUTINE
P1•READ TIMEOUT ROUTINE
P2•LOOP ON STAT,SHOULD NEVER HAPPEN

P1,ER1,ER2,P1,P2
BUF GOOD READ,GET FIRST 2 CHARACTERS OF MESSAGE
OF,7,010 OF ENTERED?
P3 NO,THEN PROCESS MESSAGE
DATAB,LU1 YES,CLOSE RMD FILE
TUID,LU2 CLOSE TERMINAL

BUF+1
ACCESS
ER1
DATAB,LU2
P1

RETURN TO VORTEX
GET SECOND 2 CHARACTERS OF MESSAGE
ACCESS DATA BASE
ERROR?
NO,OUTPUT RECORD TO TERMINAL
LOOP TO READ NEXT REQUEST

TERMINAL OR RMD PARITY ERROR

WRITE
JMP

ERMSG1 ,LU2
P1

DATA SET OFF ERROR

WRITE
SUSPND

ERMSG2,, LU3

LOG ERROR MESSAGE AT TERMINAL
TRY READ AGAIN

LOG ERROR TO OPERATOR
WAIT UNTIL RE-SCHEDULED OR ABORTED

ACCESS DATA BASE SUBROUTINE
ENTER: A,B•RECORD NUMBER AS 4 CHARACTER ASCII NUMBER
EXIT: DATAB•RECORD

DATA
CALL

A•+ (NO ERROR)
A•- (ERROR)

0
ASBI CONVERT INPUT TO BINARY

~---·----------- varian data machines ~

PROGRAMMING AN APPLICATION

ACi

•

STB
READ
LDAE
LRLA
JMP*

RECNO
DATAB,LU1
AC1+2
7
ACCESS

USE AS RANDOM ACCESS RECORD NUMBER IN FCB
READ RANDOM RECORD
GET I/O STATUS WORD
POSITION ERROR BIT TO SIGN
EXIT

* CONVERT ASCII TO BINARY SUBROUTINE
* ENTER: A,B=4 CHARACTER ASCII NUMBER
* EXIT: B=BINARY EQUIVALENT

* ASBI DATA
STA
TBA
ANA
TAX
LLRL
ANA
TAB
TXA
MUL
TBX
LDA
ANA
TAB
TXA
MULl
TBX

0

A1

BM17

8
BM17

TEN

A1
BM17

0144

SAVE HIGH-ORDER 2 DIGITS (D1-2)

ISOLATE D4
SAVE

ISOLATE D3

D3*10+D4*1
SAVE

ISOLATE D2

D2*100+D3*10+D4*1
SAVE

LDA A1
LRLA 8

A1

*

ANA
TAB
TXA
MULl
JMP*
DATA

BM17

01750
ASBI
0

ISOLATE D1

D1*1000+D2*100+D3*10+D4*1
EXIT

* EQUATES FOR VORTEX LOWER MEMORY CONSTANTS

*
TEN
BM17

*

EQU
EQU

0471
0472

* DATA CONTROL BLOCKS AND BUFFERS

*
DATAB FCB
DATABF BSS
RECNO EQU

*
INSTR DCB
MSGO DATA

•
TUID
CRT1
BUF

*

DATA

DCB
DCB
BSS

ERMSG1 DCB
MSG1 DATA
*
ERMSG2 DCB
MSG2 DATA
OF DATA

END

3 6 , DAT AB F , , , 'F I , , ' L E " , ' 0 1 "
36
DATAB+3

33,MSGO
'DATA BASE INQUIRY. TYPE 4 DIGIT KEY TO ACCESS, "OF"
' TO TERMINATE. 1

\ I \ I
CR , T1

2,BUF,05003
2

9,MSG1
'IIO ERROR, RETRY.'

7,MSG2
'DATA SET OFF. 1

'oF'
PO

12 3

SECTION 13

CONFIGURING A VTAM SYSTEM

13.1 INTRODUCTION

The procedure for system generation on a system with
VTAM is the same as that for VORTEX with the additional
steps described in this section. The additional procedures
for VTAM are:

a. Assembling VTAM CCM tables and controller tables
with installation-dependent parameters

b. Adding TDF cards and binary decks for VTAM CCM

c. Adding TDF cards and binary decks for TTY TC M

d. Reserving memory for DCM's control words (with MRY
directive)

e. Defining data communications multiplexors in
peripheral architecture (with EQP directive)

f. Defining interrupt structure required by DCM

g. Associating logical unit numbers and names with
physical devices.

h. Loading ancillary VTAM system modules (OPEN,
CLOSE, NDM and NCM) subsequent to VORTEX system
generation.

13.2 ASSEMBLING VTAM CCM TABLES AND
CONTROLLER TABLES

13.2.1 CCM Tables

The program data module, CC$TLB, contains pointers and
storage reservations for CCM operation. Several parameters
within the program should be modified to reflect the
requirements of the specific system being generated and
the program should be assembled prior to system genera­
tion. Refer to the program assembly listing for clarification
of the following parameter modifications:

a. For CBSIZE the user supplies the number of two-word
entries required for the circular interrupt buffer, which
must be large enough to support the maximum
number of DCM interrupts that can occur simulta­
neously. The number of entries needed depends upon
the maximum number of active lines at any time.
A value of half of the number of active lines may be
adequate in most cases. A more exact determination
requires an analysis of the specific communications
system being generated along with the application of
queuing theory. The number of logical lines must be
furnished for the variable NUMLL. The numbering
starts with zero, so 16 lines will use a value of 15 for
NUMLL.

varian data machines ·-

b. The name of the logical line table must be defined as an
entry point with a NAME directive in the CC$TLB
program. The first word of the table must be equated
with an EQU directive to table name.

c. One physical line table is needed for each DCM
supported by VTAM. Each physical line table is
referenced by an entry in the respective DCM
controller table. The format of the physical line table
is as follows:

Card Fields
Number Label Operation Operand

1 NOLINE EQU n
2 NAME PLTNAM
3 PLTNAM DATA NOLINE
4 DUP NOLINE
5 DATA 0

These five cards must be repeated for each physical line
table. The operand field in the first card, n, is the number
of lines and sets the length of the table. The multiplexor
equipment table provides the means to obtain the
controller table address for an interrupting DCM. The
structure of the multiplexor equipment table is:

Word

0
1.

2

8

Label

CC$MET

Operation

DATA
DATA
DATA

DATA

Operand

NOMUXS
CTMXOA
CTMXIA

CTMX7A

The operand NOMUXS must be set to the number of
DCMs in the system.

d. One buffer chain table (BCT) is needed for each DCM
supported by VTAM when buffer chaining mode of
input is used.

Card

Each entry corresponds to one physical line number
which, when in use, contains a chain header address
for that line. The format for the buffer chain table is
as follows:

Number Label Operation Operand Comments

2

3

4
5

NOLINE EQU

NAME

BCTNAME DATA

DUP
DATA

N

BCTNAME

Number of

lines

NOLINE Length of

BCT
NOLINE
0

13-1

CONFIGURING A VTAM SYSTEM

Cards 1 through 5 are repeated for ach DCM.

e. To set up the VTAM dynamic memory pool the user
must determine the number of lines and terminals to
be open concurrently with active l/0 requests. The
size of the pool is set from the number of elements,
two for each terminal with active l/0 requests at one
time and one for each line opened at any one time.
Two equates must be set in the CC$TLB program for the
number of opened lines (NULEL) and the number of
opened terminals (NUTEL).

CC$TLB may be retained if its parameters, as released, are
equal to or exceed the requirements of the system being
generated. The program as released is set up as follows:

a. One DCM in the system

b. The physical line table provides for 64 entries

c. The logical line table provides for 21 entries

d. CBSIZE is set to 15

e. The dynamic memory pool contains 52 elements

f. Buffer chain mode for one DCM

13.2.2 Controller Table

A CCM controller table must be provided for each DCM in
the system. The released controller table, CTMXOA, is the
controller table for the first DCM in the system (DCM 0). It
may be used without reassembly if the base address of the
memory page dedicated to the DCM hardware is 075000
(see section 13.5) and the name of the physical line table
for DCM 0 is C52PLT.

Names of DCM controller tables must be in the form
CTMXnA, where n is the controller number. CTMXOA is the
name of the controller table for the first DCM, CTMX1A is
the name of the controller table for the second DCM, etc.

Before assembly the following changes (see the assembly
listing for CTMXOA) must be made to the released
controller table:

a. Replace the controller table name in the NAME
directive and the following EQU with the name of the
controller table being assembled. For DCM 1 this would be:

NAME
CTMX1A EQU

CTMX1A

*
b. Change the TIDB ADDRESS, TBMXnA (WORD 00

CTI DB), to reflect the proper controller number. The
changes for DCM 1 would be as follows:

EXT TBMX1A
DATA TBMX1A

13·2

c. Change the DEVICE ADDRESS, # AMXnA (WORD 06
CTDVA), to reflect the proper controller number in the
same manner as b above.

d. Change the BIC FLAG TABLE ADDRESS, BMXnA
(WORD 09 CTBIC), to reflect the proper controller
number in the same manner as b above.

e. If the controller table is not for DCM 0 insert after the
comment:

* START OF DEVICE MANAGEMENT TABLE

an EQU which equates the symbol CTMXOA to the name
of the controller table as follows:

CTMXOA EQU CTMXnA

f. Change the PHYSICAL LINE TABLE ADDRESS to the
address of the physical line table assigned to the
controller (see discussion of physical line table above)

g. Change the LCW BASE ADDRESS to the base address
of the memory page dedicated to the DCM usage (see
section 13.5)

13.3 ADDING TDF RECORDS FOR

VTAM CCM's

CCM

Add TDF records for:

CC$CEX
C521WP
VT$10C
CC$0CL

In VORTEX II, all TDF records must be added preceding the
SGL control record 'CTL,21'. In VORTEX II, the following
object modules must also be added preceding the SGL
control record 'CTL,21 '. In VORTEX, they are added after
V$10C.

CC$CBS
CC$TLB

Replace old object modules
with new ojbect modules when
new assembly is required.

CTMXOA

Add any additional
controller tables for
additional DCM's.
hardware configuration

Add following oject modules after V$10C on SGL:

CC$CEX
CC$ACE
CC$FRR
VT$10C
C52RCV
CC$0CL
CC$FCW
CC$CRQ
C52XMT
CC$SCW
C52RCW
C52RCR
C52CIH
VTPOP
VTPUSH
C52LIP
C521WP
C52SST
C52FUN
VT$PTM
VT$GTM
VT$BMT

13.4 ADDING TDF RECORDS FOR TCM (TTY)

TCM (TTY)

Add TDF records for:
TC$CEX
VT$TCQ
TC$0CT

In VORTEX II, all TDF records must be added preceding the
SGL control record 'CTL,21'. In VORTEX II, the following
object modules must also be added preceding the SGL
control record 'CTL,21 '. In VORTEX, they are added after
V$10C.

CTTCOA

Add following object modules after CCM oject modules:

VT$TCQ
TV READ
TC$CEX

13.5 RESERVING MEMORY

The memory parameter on the MRY directive must be set
to reflect the DCM's usage a 512-word memory page for
hardware control words. This page of memory must start at
a multiple of 512 words, i.e. 074000, 075000 etc.

Example (VORTEX):

MRY, 074777,0200

varian data machines ~

CONFIGURING A VTAM SYSTEM

Example (VORTEX II):

MRY, 074777,0200,64

Reserve the highest page available to VORTEX (075000 to
075777) when AID II and BLD are memory resident (AID II
starts at 076000 in a 32K word memory configuration).

13.6 DEFINING PERIPHERAL ARCHITECTURE

An EQP directive must be made for each DCM and each
TCM.

An EQP card must be present for each DCM in the system.
The format for the equipment name field is:

MXnA

where n is a single numeric character.

Example:

EQP,MXOA,074,1,0,0

MXOA is the mnemonic for the first DCM in the system,
074 is its device address, 1 is the number of peripheral
units (always set to 1). The last two parameters must be
set to zero.

For a TCM the format of the name for the terminal control
module is TCnA.

Where n is a single numeric character

Example

EQP,TCOA,00,1,0,0

13.7 DEFINING INTERRUPT STRUCTURE

For each DCM six PIM directive cards are required. For
each EQP card defining a DCM six PIM directives are
needed to define the six DCM interrupts.

The PIM directives for a DCM define directly connected
interrupts. The names of the programs servicing the
directly connected interrupts are in table 13·1.

Event
Word
Value

oxo
OXl
OX2
OX3
OX4
OX5

Table 13-1. Direct Connect Interrupts

Interrupt Description

input byte count = 0
output byte count = 0
line error
status change
control character detected
control

Directly Connected
Interrupt Servicing
Routine Name

C52LIP
C52LIP
C52LIP
C52LIP
C52LIP
C52CIH

13·3

CONFIGURING A VTAM SYSTEM

The event word entry in the PIM directive is taken from
table 13-1, where X is the number of the DCM being
described in the PIM directive. For example in a system
using only one DCM, X = 0 in all six PIM cards. In a
system using two DCM's the first DCM would be describ~d
by six PIM directives with X = 0, and the second by six
PIM directives with X = 1.

There is a one-to-one relationship between the controller
table name generated by the EQP directive, the relative
position of that controller table's name in the table
CC$MET and the value X as shown in the following
example:

EQP,MXOA, 074,1,0,0 l
PIM, ~30, C52LIP, Q, 1 J

EQP, MX 1 A, 0 7 5, 1 , 0, 0 }

PIM, 050, C52LIP,Ol0,1

r-

.,

C52MET

number of DCM

EQP,MX2A, 076,1,0,0 }

PIM, 070, C52LIP,OI0,1

- CTMXOA
CTMX1A
CTMX2A

The controller table name generated by the EQP card must
be used when assembling the controller table and must be
used in the assembly of C52MET. The value X must be the
ordinal of the controller tables address in C52MET.

13.8 ASSIGN LOGICAL UNITS TO
PHYSICAL DEVICES

The ASN directive associates a logical unit number (1
through 100 or 107 through 255) which can be followed by
an optional two-character logical unit name (e.g.; 107:Y7)
with a four-character physical-device name such as TCnn or
MXnn, where n is a single numeric character.

13-4

EXAMPLE:

ASN, 26 • MXOO
ASN, 184 • TCOO

13.9 LOADING ANCILLARY VTAM MODULES

Jobs for loading OPEN, CLOSE, NDM, NCM and the
FORTRAN run-time modules to support terminal open and
close are provided with the VTAM release material. These
jobs are run from the Sl logical unit and provide the
operator with any instructions necessary for their
execution.

The job loading ancillary VTAM modules is organized into
two parts, separated by an end-of-file record. The first part
must be run for all types of VTAM system configurations,
with or without TCMs. The second part, which loads the
terminal open/close task, should only be run when a TCM
is included in the VTAM configuration. The second part is
also terminated by an end-of-file record.

NOTE: Prior to the loading of NCM in the first
part of loading ancillary modules, there is a job
to enter the external names: VT$L TT and
TC$TCD into the OM library. These external
names are needed for the load module genera­
tion of NCM. If the VTAM system was generated
with a TCM, these names would be in the CL
library. For systems with CCMs only, these
names must be entered into OM as dummy
entry points. If these names are already in CL,
the entries in OM may be deleted.

13.10 VTAM MEMORY REQUIREMENTS

VT AM requires the following amounts of memory:

CCM:
Components 3200 words

Line Tables 17 words (18 words/ line if buffer
chaining is used)

DCM Multiplexor 512 words/multiplexor

TCM:
Components 2600 words
Terminal Tables 17 words/terminal

varian data machines •

APPENDIX A
TELETYPE AND CRT CHARACTER CODES

Character VDM Internal ASCII Character VDM Internal ASCII

0 260 R 322
1 261 s 323
2 262 T 324
3 263 u 325
4 264 v 326
5 265 w 327
6 266 X 330
7 267 y 331
8 270 z 332
9 271 (blank) 240
A 301 I 241
B 302 242
c 303 # 243
D 304 $ 244
E 305 % 245
F 306 & 246
G 307 247
H 310 250
I 311 251
J 312 * 252
K 313 + 253
L 314 254
M 315 255
N 316 256
0 317 257
p 320 272
Q 321 273
< 274 FORM 214

275 RETURN 215
> 276 so 216
? 277 Sl 217
@ 300 DCO 220

333 X-ON 221
334 TAPE AUX
335 ON 222
336 X-OFF 223
337 TAPE OFF

RUBOUT 377 AUX 224
NUL 200 ERROR 225
SOM 201 SYNC 226
EOA 202 LEM 227
EOM 203 so 230
EOT 204 S1 231
WRU 205 S2 232
RU 206 S3 233
BEL 207 S4 234
FE 210 S5 235
H TAB 211 S6 236
LINE FEED 212 S7 237
V TAB 213

A-1

r-------"-------------------------
1

varian data machines ~

APPENDIXB
EBCDIC AND ASCII CHARACTER ASSIGNMENTS

EBCDIC ASCII EBCDIC ASCII
Character (Hex) (Hex) Character (Hex) (Hex)

A Cl 41 @ 7C 40
B C2 42 (40 28
c C3 43) 50 29
D C4 44 60 5F
E C5 45 70 27
F C6 46 + 4E 28
G C7 47 5E 38
H C8 48 > 6E 3E
I C9 49 7E 3D
J Dl 4A 4F
K 02 48 -, SF SE
L 03 4C ? 6F 3F
M 04 40 7F 22
N 05 4E co 7B
0 06 4F DO 7D
p 07 50 \ EO 5C
Q 08 51 t"J Al 7E
R 09 52 \ 79 60
s E2 53 6A 7C
T E3 54 [58
u E4 55] 50
v E5 56 BEL 2F 07
w E6 57 BS 16 08
X E7 58 BYP 24
y E8 59 CAN 18 18
z E9 5A cc lA
a 81 61 CR OD OD
b 82 62 DC1 11 11
c 83 63 DC2 12 12
d 84 64 DC3 13 13
e 85 65 DC4 3C 14
f 86 66 DEL 07 7F
g 87 67 DLE 10 10
h 88 68 DS 20

89 69 EM 19 19
j 91 6A ENQ 20 05
k 92 68 EOB 26

93 6C EOT 37 04
m 94 60 ESC 27 18
n 95 6E ETB 26 17
0 96 6F ETX 03 03
p 97 70 FF oc oc
q 98 71 FS 22 1C

99 72 GS 10
s A2 73 HT 05 09
t A3 74 IFS lC
u A4 75 IGS 10
v A5 76 ILS 17
w A6 77 IRS lE
X A7 78 IUS lF
y A8 79 LC 06
z A9 7A LF 25 OA
0 FO 30 NAK 3D 15
1 F1 31 NC 15

B-1

EBCDIC AND ASCII CHARACTER ASSIGNMENTS

EBCDIC ASCII EBCDIC ASCII
Character (Hex) (Hex) Character (Hex) (Hex)

2 F2 32 NUL 00 00
3 F3 33 PF 04
4 F4 34 PN 34
5 F5 35 PRE 27
6 F6 36 RES 14
7 F7 37 RLF 09
8 F8 38 RS 35 1E
9 F9 39 Sl OF OF
& 50 50 SM 2A

60 20 SMM OA
I 61 2F so OE OE
$ 58 24 SOH 01 01
¢ 4A sos 21
I 5A 21 Space 40 20

7A 3A STX 02 02
78 23 SUB 3F 1A

68 2C SYN 32 16
48 2E uc 36

< 4C 3C us 1F
"' 5C 2A VT 08 08
% 6C 25

B-2

INDEX

Active chain, 7-2
Affirmative acknowledgment (ACKO/ ACK1), 8-4

Bibliography, 1-4
Binary synchronous communication (BSC), 8-1
Block-check character (BCC), 8-2
Buffer chaining, 7-1

CCM level, programming at the, 6-1
CCM tables, 13-1
Chain, active, 7-2
Chain header (CHR), 7-2
Chaining, buffer, 7-1
Character, block-check (BCC), 8-2
Character codes

ASCll, B-1
CRT, A-1
EBCDIC, B-1
Teletype, A-1

CHR and ffiH, relationship of, 7-5
CLOSE macro, 4-2, 6-3

error indications, 4-3
example, 4-2, 6-3

Communication, binary synchronous (BSC), 8-1
Communications controller module (CCM) 1-1
Configuration, expanded, 1-3
Configuring a VT AM system, 13-1
Continue timeout, 8-9
Control

ACKO/ ACK1, 8-4
characters, 8-3

' DLE, 8-4
ENQ, 8-4
EOT, 8-4
ETB, 8-4
ETX, 8-4
ITB, 8-4
NAK, 8-4
RVI, 8-5
SOH, 8-3
station, 8-1
STX, 8-3
SYN, 8-3
TTD, 8-5
WACK, 8-4

Controller table, CCM, 13-2
Controller table (CTBC), TCM, 10-2
Cyclic-redundancy check (CRC), 8-2

varian data machines •

Data link, 8-1
control, 8-3
escape (DLE), 8-4
multipoint, 8-1
operation, 8-2

Dial up operation, 8- 7
Directives, 11-1
Disconnect timeout, 8-9
DLE, control, 8-4
Double pointer queue, 7-1
DOWN directive, 11-1

End-of-text (ETX), 8-4
End-of-transmission block (ETB), 8-4
End-of-transmission (EOT), 8-4
END statement, NDL, 2-5
ENQ, control, 8-3
Enquiry (ENQ), 8-4
EOT, control, 8-3
Error checking, 8-2
Error indications

CLOSE macro, 4-2
NDL, 2-6
OPEN macro, 4- 1
VT AM macros, 3-2

ETB, control, 8-3
ETX, control, 8-3
Expanded configuration, 1-3

Format, chain header, 7-2
Format, IBH, 7-2
Front pointer, 7-1
FUNC macro, 5-3, 6-4
Function codes, 6-4

GETQ, 7-1
example, 7-4

Header, chain (CHR), 7-2

Initialization procedure, 8-5
Interface block header (IBH), 7-2
Intermediate block (ITB), 8-4
Introduction, 1-1

LCB macro, 6-1
LCB status, 3-2
Lea~ line, 8-1

INDEX ·1

INDEX

Line control block (LCB), 3-1
Line service descriptor, prototype, 2-7
LINE statement, 2-1

attributes, 2-2
attribute defaults, 2-4
examples, 2-4

List directive, 11-2
Longitudinal-redundancy check (LRC), 8-2

Macro,
CLOSE, 4-2, 6-3
FUNC, 5-3, 6-4
LCB, 6-1
OPEN, 4-1, 6-3
READ, 5-1, 6-3
STAT, 5-3, 6-7
WEOF, 5-5
WRITE, 5-2, 6-3

Managing buffers, 9-1
Memory allocation routines, 9-1
Message

blocks, 8-2
format, 8-2, 8-5
transfer procedure, 8-7

Minimum configuration, 1-3
Modifying the NDL processor, 10-5
Modifying the NDM, 10-5

NDL processor, modifying the, 10-5
NDM, modifying the, 10-5
Negative acknowledgment (NAK), 8-4
Network definition language (NDL) statement, 2-1
Network control module (NCM), 1-1
Network definition module files, 2-6
Network definition module (NDM), 2-1
Network definition module output, 2-6

OPEN macro, 4-1, 6-3
error indications, 4-2
examples, 4-2, 6-3

Opening and closing terminals and lines, 4-1

Pad characters, 8-9
Pad format check, 8-3
Point-to-point operation, 8-5
Polling, 8-2
Processor table, TCM, 10-3
Programming an application, 12-1
Programming at the CCM level, 6-1

CLOSE macro, 6-3
FUNC macro, 6-4
LCB macro, 6-1

INDEX-2

OPEN macro, 6-3
READ macro, 6-3
STAT macro, 6-7
WRITE macro, 6-3

Programming at the TCM level, 5-1
FUNC macro, 5-3
READ macro, 5-1
STAT macro, 5-3
WEOF macro, 5-5
WRITE macro, 5-2

Prototype line service descriptor, 2-7
Prototype terminal control descriptor, 2-7
PUTQ, 7-1

example, 7-3

Queuing procedure, 7-1

READ macro, 5-1, 6-3
Rear pointer, 7-1
Receive timeout, 8-9
Redirect directive, 11-2
Reverse interrupt (RVI), 8-5
Reserving memory, 13-3
Reset function, 7-4
Restore directive, 11-2

Selection, 8-2
Set function, 7-4
Start-of-heading (SOH), 8-3
Start-of-text (STX), 8-3
STAT macro, 5-3, 6-7
Structure of VT AM, 1-2

Switched network, 8-1
Synchronous idle (SYN), 8-3
System flow, 1-1

Tables
CCM controller, 13-1
TCM controller, 10-2
used by TCM, 10-1

TCM components, 10-3
TCM functions, 10-2
Temporary text delay (TTD), 8-5
Terminal control descriptor, prototype, 2-7
Terminal control module (TCM), 1-1
Terminal identifier block (TIB), 2-7
TERMINAL statement, 2-4

attribute, 2-5
Termination procedure, 8-7
Timeouts, 8-8
Transmission codes, 8-1
Transmission and recovery procedures, 8-9

Transmit timeout, 8-8
Transparent mode, 8-7

UP directive, 11-1
Using VTAM macros, 3-1

VT$BMT, 9-1

varian data machines ~

INDEX

VT$GTM, 9-2
VT$PTM, 9-2

WACK, control, 8-3
Wait-before-acknowledgment (WACK) 8-4
WEOF macro, 5-5
WRITE macro, 5~2, 6-3

INDEX ·3

NOTES

