
Programmer Reference

Mini-Computer Operations

2722 Michelson Drive
P.O. Box C-19504
Irvine, California 92713

98A 9952 224

1

I
•

I
l
' I

' '

I

I

•

-

•

VTAM

PROGRAMMER REFERENCE MANUAL
98A 9952 224

FEBRUARY 1978

The statements in this publication are not intended to create any warranty, express or implied.
Equipment spec ifications and performance characterist ics stated herein may be changed at any time
without notice. Address comments regarding this document to Sperry Univac, Mini-Computer
Operations, Pub lications Department, 2722 Michelson Drive. P.O. Box C-19504, Irv ine, California,
92713.

© 1978 SPERRY RAND CORPORATION

Sperry Univac is a d ivis ion of Sperry Rand Corporation Printed in U.S.A .

•

•

---- --

-·-

••

-

Page
Number

all

var i ou ~

Issue
Dote

2/77

2/78

Change Procedure:

CHANGE RECORD

Change Description

Minor revis ions have been incorporated
throughout this manual.

Minor r ev i sions incorporate d throughout
the manual , and references to Varian
de l eted .

When changes occur to this manual, updated pages a re issued to replace the obsolete
pages. On each updated page, a vertical line is drown in the margin to flog each
change and a letter is added to the page number. When the manual is revised and
completely reprinted, the vertical line and page-number letter ore removed.

96A0730-000A

Ill

------------------------------------ ----------- ------ --~· - -------------- ·-----· ----

LIST OF EFFECTIVE PAGES

Page Number Change • Effect Page Number Change • Effect 1n 1n

all completely revised

96A0731-000A

IV

·-·

-

·-

TABLE OF CONTENTS

SECTION 1
INTRODUCTION

1.1 INTRODUCTION , 1-1
1.2 SYSTEM FLOW AND ORGANIZATION 1·1

1.3 HARDWARE SUPPORTED AND REQUIRED 1·3

1.4 GUIDE TO THIS MANUAL.. 1·3

1.5 BIBLIOGRAPHY 1-4

SECTION 2
DEFINING A COMMUNICATIONS NETWORK

2.1 INTRODUCTION 2-1

2.1.1 Input to the NOM 2·1

2 .1.2 General Format 2·1

2.2 NETWORK DEFI NITION LANGUAGE

STATEMENTS 2- 1
2.2 .. 1 LINE Statement 2-1

2.2.2 TERMINAL Statement .. , 2·4

2.2 .3 END Statement 2·5

2.3 OPERATING INSTRUCTIONS 2·6

2.4 ERROR INDICATIONS AND WARNINGS 2·6

2.5 NOM OUTPUT 2·6

SECTION 3
USING VTAM MACROS

3.1 INTRODU·CTION 3·1

3.2 GENERAL FORM 3·1

3.3 ERROR INDICATIONS ON VTAM MACROS 3·2

SECTION 4
OPENING AND CLOSING TERMINALS AND LINES

4 .1 INTRODUCTION 4·1

4.2 OPEN MACRO AND JCP DIRECTIVE 4-1

4.2. 1 Forms of OPEN Macro 4·1

4.2.2 Error Indications on OPEN 4·2

4.3 CLOSE MACRO AND JCP DIRECTIVE 4·3

4.3.1 General Format 4-3

4.3.2 Error Indications 4·3

v

. -· -- ---- - -------·-----·--·---·····------ - - ··-·---- - -~ ... - ··- ···--· ·-~· - -----·---·--~·- ---- ..

CONTENTS

SECTION 5
PROGRAMMING AT TCM LEVEL

5.1 MACRO DEFINITION 5·1

5.2.1 READ Macro 5·1

5.2.2 WRITE Macro 5·2

5.2.3 STAT Macro 5-3

5.2.4 FUNC Macro 5-4

5.2.5 WEOF Macro 5·6

5.3 TTY TCM WITH DIAL·UP LI NES 5·6

5.4 FORTRAN LEVEL PROGRAMM ING 5·6

SECTION 6
PROGRAMMING AT THE CCM LEVEL

6.1 INTRODUCTION 6-1

6.2 CCM 1/ 0 CONTROL MACROS AND

FUNCTIONS ·· ·· ······ ······ ·········- ············· ··· ··· ·· ·· ··· ···· ········· ··· ·· ···· ··· ···· ········· ··· ··· ················· 6 -1
6.2.1 LCB Macro : .. 6-1

6.2.2 OPEN Macro 6-3

6.2.3 CLOSE Macro 6-3

6.2.4 READ Macro 6·3

6.2.5 WRITE Macro 6-3

6.2.6 FUNC Macro 6-4-

6.2.7 STAT Macro ~ 6-7

SECTION 7
BUFFER CHAINING

7.1 INTRODUCTION 7-1

7 .1 .1 Queuing Procedure 7-1

7.1.2 PUTQ 7-1

7.1.3 GETQ l-1

7.2 CHAIN HEADER 7-2

7.3 INTERFACE BLOCK HEADER 7·2

7.4 SET Ar,D RESET FUNCTIONS 7-4

7.5 PROCEDURE FOR CODING A BU FFER CHAIN 7·5

SECTION 8
BINARY SYNCHRONOUS COMMUNICATION

8. 1 INTRODUCTION 8·1

8.2 DATA LINK 8-1

8.2.1 Point ·To·Point Data Link 8·1

•
VI

·- -- -·----

..

SECTION 8
BINARY SYNCHRONOUS COMMUNICATION (contmued)

8.2.2 Multipoint Data Link 8·1

8.3 TRANSMISSION CODES 8·1

8.4 OPERATION OF THE DATA LINK 8 ·2 .
8.4.1 Polling and Selection 8 ·2

8.4.2 Message Blocks 8-3

8 .4.3 Error Checktng 8 -3

8 .4.4 EOT / NAK Pad Format Check 8-4

8 .4.5 Data Link Control 8-4

8.5 M ESSAGE FORMATS 8-6

8 .5. 1 ln itiallzatton Procedure 8-6

8.5.2 Message Transfer Procedure 8 -8

8.5.3 Terminat ton Procedure 8 -8

8 .5 .4 Transparent Mode ~···· ·· · · · · 8 -8

8.5.5 Timeouts ~········ · · · ··· · ·· ········ · · · ·· · ················· · ···--~ · ············· ··-· · - ··············· ·- · · · · 8 -9

8.5.6 Pad Characters 8-10

8.6 TRANSMISSION SEQUENCE AND RECOVERY PROCEDURES 8·10

SECTION 9
MANAGING BUFFERS

9.1 INTRODUCTION 9~ 1

9.2 MEMORY ALLOCATION ROUTINES

AND TH EI R FUNCTIONS 9-1

9.2. 1 VT$8MT _ ~ ····· · ··· ···· ········ · ·· · · ···· · ··· ~· · ········· · · · ·· ·· ··· ··· -· ··· · ·· ... ···· ···· ·· ···· ··· ··· ····· 9 -1

9 .2.2 VT$GTM ~ 9 -2

9.2 .3 VT$PTM , 9·2

SECTION 10
CODING A TERMINAL CONTROLLER MODULE (TCM)

FOR VTAM

10.1 INTRODUCTION ! 0 I

10.2 TABLES USED BY TCM l O 1

10.3 TCM FUNCTIONS 10 2

10.4 TCM COMPONENTS 10 3

10.5 MODIFYING THE NETWORK DEFINITION

MODU LE 10-5

10.6 PROCEDURE TO CODE A TCM FOR VTAM 10 6

..
VI I

CONTENTS

·- ·- - ----·-- ---- ---'---- ----··-------·--.... ·- --------... - -~-- ·-·· ·----···------ _____ ..__ .. ___ -· --·· ____ ,.. ___ -· -....... --·-·-- ._ .. __ - ··--·

CONTENTS

SECTION 11
CONTROLLING A NETWORK

11.1 INTRODUCTION 11 ·1

11 .2 DIRECTIVES ll -1

11.2. 1 General Format of NCM Direct ives 11 · 1

11 .2.2 UP Directive ll · l

11.2.3 DOWN Directive 11 · 1

11.2.4 REDIRECT Directive 11 ·2

11.2.5 RESTORE Directive 11 ·2

11.2.6 LIST Directive 11·3

SECTION 12
PROGRAMMING AN APPLICATION

SECTION 13
CONFIGURING A VTAM SYSTEM

13. 1 INTRODUCTION 13·1

13.2 MODIFYING VTAM CCM TABLES AN D ADDING

CONTROLLER TABLES.... 13·1

13.2. 1 CCM Tables 13-1

13.2.2 Controller Table 13·2

13.3 ADDING TDF RECORDS FOR VTAM CCM's 13·2

13.4 ADDING TDF RECORDS FOR TCM (TTY) 13·2

13.5 RESERVING MEMORY 13·2

13.6 DEFINING PERIPHERAL ARCHITECTURE 13·3

13.7 DEFIN ING INTERRUPT STRUCTURE 13-3

13.8 ASSIGN LOGICAL UNITS TO

PHYSICAL DEVICES 13·4

13.9 LOADING ANCI LLARY VTAM MODULES 13·4

13.10 VTAM MEMORY REQUIREMENTS' 13·4

APPENDIX A
TELETYPE AND CRT CHARACTER CODES

APPENDIX B
EBCDIC AND ASCII CHARACTER ASSIGNMENTS

INDEX

. . .
VIII

•

LIST OF ILLUSTRATIONS

Figure 1-1. Structure of VTAM 1·2

Ftgure 1-2. Data Flow from ApplicatiOn to Termtnal 1-3

Figure 1-3. Input and Output to Network Oeftnttion Module ... 1·3

Ftgure 7 -1. Contents of CHR and IBHs after PUTQ.......................... 7 3

Figure 7-2. Contents of CHR and IBHs Dunng READ 7-4

Figure 7-3. Contents of CHR and IBHs Before and After GETQ 7 4

Figure 7-4. Relat tOnshtp of CHR and IBHs , ... 7-5

Figure 8· L Regular Message Format.. 8·3

Figure 8-2. Error Checktng Capabiltttes 8-4

Ftgure 8·3. Use of WACK. RVI. and TTD 8· 7

Ftgure 8-4. Transparent Data Block 8·9

Ftgure 10-1. VTAM TCM and TTY TCM Modules 10·4

Figure 12-1 Flowchart of VTAM AppltcattOn 12 1

LIST OF TABLES

Table 2-1. LSD Field Oescnption and Range 2 -7

Table 2·2. TIB Field Descnption and Range 2·8

Table 2·3. TCD Field Oescnptton and Range 2·8

Table 3-1. Deta tl Status 3·2

Table 8·1. Control Characters 8·4

Table 8-2. Transmtsston and Recovery Procedures 8 -11

Table 13-1. Direct Connect Interrupts 13 3

.
IX

CONTENTS

--------------------- ----- --- ---- _______ , _________________________ _
---~---

•

• 0

--

SECTION 1

INTRODUCTION

The Vortex Telecommunications Access Method (VTAM)
provides teleprocessing controls for communications
control lers. modems. terminals. communications net­
works and network-operator interfacing. VT AM is an
in tegra l part o f the VORTEX operating system. It extends
the capabilities of the real-t ime multi-tasking operating
system into the grow ing area of telecommunications.

Through the combination of VTAM and VORTEX access to
remote devices is as simple as that for on-site computer
peripherals. VT AM gives the user the same format for
requests for telecommunications as is available for
printers and magnetic-tape units.

At the same time, the user is assured of an open-ended
system design that can accomodate hts future require­
ments. VTAM is modular in its structure and so provides a
software founda t ion on which to build systems tailored to
their applications.

In summary VTAM provides

• a standard subsystem under VORTEX without
affecting the utility of VORTEX in other applications

•

•

•

phased implementation to allow changes for new
equipment and expansion

modularity in structure to satisfy diverse requirements

interfaces for applications to be removed from handling
line and termtnal characteristiCS

• a simplified method of configuring ltnes and terminal s
through the Network Definition Language

• VTAM tasks a user can call to allocate memory
dynamica lly

• an optional , automatic buffer chaming on input

• on -line query and control of commun1ca t ion system
status

1.2 SYSTEM FLOW AND ORGANIZATION

The three modules wh ich are the basic building blocks of a
VTAM System are the communications controller, terminal
control . and network control modules. The most basic
VTAM component, the Communications Controller Module
(CCM), drives a multiplexor or controller hardware. The
Terminal Control Module (TCM) provides an optional level
of control for terminals and lines. TCM's handle such items

as terminal errors aild line adaptor control. The Network
Control Module (NCM) furnishes an interface with the
network for the computer operator.

Figure 1· 1 is an overview of the flow in a VTAM system.

The f low of data to an applicat ion program under VTAM
and VORTEX is first under control of a CCM . The incoming
data from the line is in iti ally handled by the LAD and the
multiplexor and packed into a buffer. If the READ request
is d irected to the terminal. a TCM then converts . formats
and segments the data. If required for the terminal type.
the TCM could provide terminal control procedures. The
user can bypass th is level and provide h is own termina l­
oriented procedures in the appl ication and pass his input
and output request d irectly to the CCM (see figure 1-2) .

Features of VTAM Modules

TCM stands for Terminal Control Module

• Interfaces with application through standard request

• Establishes terminal disciplines and line protocol

• Converts codes and formats data for terminals

• Compresses and decompresses data

• Performs modem control functions

• Operates independent of type of controller

CCM stands for Communications Controller Module

• Provides a common interface for all TCM's

• Performs mechanics of data input and transm ission

• Handles all controllers of one type

• Operates transparently with respect to terminal type

NCM stands for Network Control Module

• Provides dynamic network control

• Allows alternate line or terminal selection

• Provides inquiry about sta tus of lines and terminals

• Allows setting lines and terminals UP or DOWN

1 1

- ··--··-- --- - ---------------------- - ·· . -------- - -·· ·------- - · ·---- ·---- - ---·-

INTRODUCTION

APPLICATION
1

APPLICAT ION
2

•••

STANDARD VORTEX IOC MACROS

TCM
1

- - -

TCM
2

- --
-

•••
-- --- - -

STANDARD VORTEX IOC MACROS

APPLICATION
Nth

-

TCM
Mth

--- --

N = THE NUMBER
OF USER TASKS

FILES FROM
NETWORK
DEFINIT ION
MODULE

M = THE NUMBER I
OF TYPES OF
TERMINALS

OPEN
MACRO

I

•
- -----::-~ "-..._ LI NE AND TER-

- ::::-_ ' MINAL REQUEST

CCM

TABLES

NCM

I
I

:
NETWORK CON ­
TROL MODULE

I
I
I

CCM
1

CCM
2

t-----+-- --~~­
Kth

COMMUNICA ­
~ TIONS CON -.,....... ...

• • • •••

VT/1-1915

1-2

•••

Figure 1-1. Stru.cture of VTAM

..- TROLLER TABLES

K == THE NUMBER OF TYPES
OF CONTROLLERS

•

INTRODUCTION

USER TCM DATA • - --- - -- --APPLICATION DATA REMOTE
CONVERSION CONTRO~

OUTPUT DATA TERMINAL
AND TERMINAL CCM

BUFFER • DATA
CONTROL • NETWORK

YTJJ-1911 Figure 1-2. Data Flow From Applicat ion To Terminal

Another VT AM module aids the user in conf1guring a
network. Because a communicat ions system changes
relatively frequently, the method of configuring a VTAM
system is less involved than a complete VORTEX system
generation VORTEX SGEN configures the controlle rs as
they are more static than lines and terminals . The VT AM
Network Definition Module (NOM) configures the actual
terminals , their lines and TCM's. The user determines his
line and terminal network and expresses it in the Network
Definition Language (NDL) . The VT AM NOM interprets
the NDL statements and builds the appropriate tables to be
used by o ther VTAM modules (see figure 1-3)

1.3 HARDWARE SUPPORTED AND REQUIRED

The modular organ izat1on of VTAM allows its use with a
wide variety of configurations depending upon the level at
which the user interfaces with the system.

Minimum Configurat ion

With only the min1mum configuration the user must
interface with a communications controller module. The
following hardware IS required.

/

a. Minimum VORTEX Configuration

b. 52xx Data Communications Multiplexor (OCM) w ith
the proper line adapters or Binary Synchronous Com­
munications facil ities.

NDL
DE SCRIPTION ..
OF N ETWO RK

NDM

c. Terminal units which may be supported by the above
communications controllers

Expanded Configuration

In addition there may be additional multiplexors to which
more terminals are attached where appropriate. Teletype
and equivalent terminals compatible with Teletypes can be
added.

1.4 GUIDE TO THIS MANUAL

This manual explains the VTAM system for a programmer
who understands VORTEX, general communication
concepts and the computer on wh ich he intends to
implement data communications.

The remainder of this sect ion provides a bibliography of
related Varian documents.

The remaining sections correspond to components of the
VTAM system.

Section 2 describes the Network Definition Language
(N DL) and the functions of the module wh ich processes
NDL. The next section, 3 , provides general information
about the macros which the user calls to invoke l/ 0
services of the VTAM modules. Sections 4 and 5 discuss
particular macros. Understanding sections 3, 4 and 5
perm1t an application to communicate with a remote device
with limited control and flexibility.

I 1

• TE RMINAL
IN FORMAT ION

\

I I

NETWORK .. LINE TABLES
DEFI N ITI ON
MODULE \ \

.. SOURCE
LISTING

.....
VT/1-1914

Figure 1-3. Input and Output To Network Definition Module

1-3

-·--------------------------------~- ----·--- _ _ .. _ ·------·-...... , F- -00-'·----·--- ·-. o.o- -·-- ····-- -··-

INTRODUCTION

Section 6 "Programming at the CCM Level " provides an
interface which is more directly involved with the communi·
cations lines.

Section 7 "Buffer Chaining" describes the method of
automatic buffer cha ining on input.

Section 8 "Binary Synchronous Communication" provides
information to operate in BSC mode. BSC expands the
capabilities of VTAM through its ability to accommodate a
variety of transmission codes.

Section 9 ' 'Managing Buffers" describes some macros
useful for minimizing the central memory and application
uses.

Section 10 "Writing a TCM" provides information which
allows adding TCMs for additional types of remote devices.

Section 11 "Controlling a Network" describes the operator
interface with a data communication netwol'k.

Section 12 is a sample applicat ion which illustrates many
aspects of the preceding information.

Section 13 describes some additional considerations for a
VORTEX system generation on a VTAM system (this
information supplements the VORTEX Reference Man­
ual) .

Syntax Conventions Used in this Manual

In the directive formats given in this manual:

• Boldface type indicates an obligatory parameter.

1·4

- ---- -- - - - - - - --- ·· - -- - - - ~

• Italic type indicates an optional parameter.

• Upper case type indicates that the parameter is to be
entered exactly as written.

• Lower case type indicates a variable and shows where
the user is to enter a legal value for the variable.

A number with a leading zero is octal, one without a
leading zero is decimal, and a number in binary is
specifically indicated as such.

1.5 BIBliOGRAPHY

The following Sperry Univac manuals are pertinent to the
use of VTAM {the x at the end of each document number is
the revision number and can be any digit 0 through 9):

Title

VORTEX I Reference Manual
VORTEX II Reference Manual
Data Communications Multiplexor
Manual

Document Number

98 A 9952 lOx
98 A 9952 24x

98 A 9902 25x

Add itional technical informat ion is contained in the
Software Performance Specifications 89A0240 (Overview
and External) and 89A0263 (Internal).

·- .
\

~

\

SECTION 2

DEFINING A COMMUNICATIONS NETWORK

2.1 INTRODUCTION

The VTAM user describes his terminal and line configura­
tion in the SPERRY UNIVAC Network Defin ition Language
called NDL. The features of the terminals and lines in NDL
are processed by the Network Definition Module (NOM),
which then creates a table of characteristics during input/
output request processing (see figure 1-3). This table of
characteristics is stored by the processing module on a
rotating-memory device (RMO) for expansion and use by
other components of the VTAM software in an active
network.

The network defin ition language has three types of
statements. These are descriptive rather than procedural. A
LINE statement describes the attributes of a communica­
t ions line. A TERMINAL statement gives the important
physical attr ibutes of a remote terminal on a line, and the
line to which it is connected. A communications network is
defined by these statements for all its terminals and lines
followed by an END statement.

Each line is identified by a logical line number and each
terminal by a four-character terminal unit identifier. A
terminal can only be associated with one logical line
number.

2.1.1 Input to the NOM

NDL statements can be input on standard 80·column cards
or any other equivalent source input. Only the f irst 72
characters are processed; 73 through 80 are available for
identification and sequencing. Within the first 72 char­
acters the NDL statements are free form, allowing the user
to structure his description in columns and with spacing as
he finds convenient and meaningful.

2.1.2 General Format

The form of an NDL statement is

k eyword

where

keyword

id : attrib{ 1) - cond(1) ,attrib (2) =cond(2) , ... ,

attrib (n) =cond(n).

is th e word which iden t ifies t he statement type
such as LINE , TERMINAL or END.

id

ea,ch attrib

each cond

is either a logical line number
or term inal unit identifier
required in line or terminal
statements respectively.

is associated with the par·
ticular statement

is associated with the par·
ticular attribute

Each descriptive statement must be terminated with a
period. Its omission will cause an error indication.

Attributes are optional. For all attributes not specified by
the user, NDM assigns default characteristics which are
listed in the following sections on particular statements.

2.2 NETWORK DEFINITION LANGUAGE
SUBROUTINES and STATEMENTS

The Network Definition Language (NDL) is a FORTRAN
mainline program that is activated by the JCP LOAD
directive. NDL loads and passes contro l to the following
NDL major subrout ines:

Subroutine Description

CLEAR

PARSE

REPORT

CLEAR is called by the NDL mainline routine
as an overlay to initial ize the two VTAM disc
files VT$DFL and VT$DFT, and COMMON
storage.

PARSE is called by the NDL mainl ine routine
to parse the user's card input The result of
this parse is the complete VTAM files
VT$DFL and VT$0FT.

REPORT is called by the NDL mainline rou­
tine to produce an audit listing of the VTAM
files VT$DFL and VT$DFT.

2.2.1 LINE Statement

The LINE statement describes a logical line and its
attributes. Upon detecting the initial word LINE, the
processor builds a prototype or partial Line Service
Descriptor (LSD) for the line and stores it in an RMD file.

The general form of the LINE statement is:

LINE llid: attrib(1) - cond(T),attrib(2)=cond(2), ... ,

attrib (n) =cond(n).

2·1

·--·- - - - - - - ------ ----- ·--- - - - - ·- ~-·------------------------- , ____ _

DEFINING A COMMUNICATIONS NETWORK

Attributes and their corresponding values are as follows:

2·2

Attribute

ADDRESS

CONNECT

EOM·STOP"'

ERROR-STOP

PARITY

STATUS

SPEED

LINE-TYPE

MODE

Allowed Values and Meanings

nnn

DIRECT 0
MODEM
DIAL-MODEM

FALSE,_

nnn

(nnn,nnn) P

TRUE

FALSE D

NONE 0
ODD
EVEN

0 UP
DOWN

nnn

HALF-DUPLEX
SIMPLEX-RECEIVE
SIMPLEX-TRANSMIT
FULL-DUPLEX

ASYNCHRONOUS

SYNCHRONOUS

BSC

Physical line number 0 through 255

no modem
non-dial modem
dial modem on phone line

message is terminated only when
buffer is full or on possible line
error

specifies the numeric value of the
character to terminate input message

specifies (as above) two characters
either of which will terminate a
input message.

terminates input on a line error
detected (break, parity or overflow)

terminates normally on EOM-STOP
character, or if EOM-STOP is specified
as FALSE, when character count is
zero.

no parity check is to be made
odd par ity is checked
even parity is checked

the initial state of the line is up
the initial state of the line is down

incoming data rate in characters per
second; zero indicates that the data
rate is greater than 2000 or less than
4 characters per second.

one direction at a time
one direction all the time only input
one direction all the time only output
two way simultaneously

An asynchronous line, which is
described further by attributes
following.

synchronous line which is described
by additional synchronous attributes.

Binary Synchronous Communication
line discipline and BSC line adapter
use only

"'The EOM-STOP attribute is not used for control character
detect ion when in sse mode.

.
•

DEFINING A COMMUNICATIONS NETWORK

Attributes only applicable to asynchronous lines. Use of
these parameters with synchronous mode is detected and a
warning message issued, but the specified action is taken,

Attribute Allowed Values and Meanings

ECHO

TRANSMIT-SPEED

TRUE

FALSE

HIGH = 1
LOW = 0

The following six attributes are only applicable to a
synchronous line. If the mode is specified as asynchronous
the use of these attr ibutes will be flagged and a warn ing
message issued but the specified action will be taken.

data communications multiplexor
operates in ECHO mode for input
messages.

no transmission back to terminal
of characters received in any input
messages

speed of line adapter is set high
speed of line adapter is set low

•

Attribute Al•owed Values and Meanings

CRC-STOP

STORE-SYNC

SYNCHRONIZE

SYNC-TRANSMIT

SYNC-RECEIVE

TRANSPARENT

nnn

TRUE

FALSE

TRUE

FALSE

nnn

nnn

TRUE
FALSE

the number of characters to be read
and stored in the buffer after an
EOM character. These characters are
not placed in the buffer if i t is full.
CRC-STOP = 0 d isables this fun ct ion .

store any SYNC characters received
in buffer

discard any SYNC characters received

synchronize the line before each receive

do not synchronize line before each receive

the numeric value of character sent
to the terminal for SYNC

the numeric value of the character
received from the terminal for SYNC.

8-bits without parity
7-bits with pari ty (eight is par ity bit)

2-3

- ···-
•

DEFINING A COMMUNICATIONS NETWORK

where llid is the logical line identifier which is a number in
either octal (with the in itial digit a zero) or decimal
notation (0 to 254; 255 flags the line as unopened). The
attribute list is optiona lly formed from the line attributes
which each have a limited number of conditions to which
they can be set. The colon after the logical line identifier
and the period at the end of last condition are required.

Only one assignment to a particular attribute may be
made. A duplicate will cause processing to cont inue with
the second value replacing the first. Uppercase words
indicate those letters are the actual values allowed. Lower
case are generic terms.

In general the assignment of an attribute in a line
statement may be repeated and causes the last occurrence
to override prior settings. For example, if ADDRESS = 012
is specified after ADDRESS = 024 the line address will be
assigned to address 012.

The following default settings are provided by the networ k
defin it ion module when the attribute is not specified by the
user:

Line Attribute Defaults

ADDRESS = 0,
CONNECT = DIRECT,

* EOM-STOP = (0212, 02 15),
ERROR-STOP = FALSE,
PARITY = NONE,
STATUS = UP,
SPEED = 0,
LINE-TYPE = HALF-DUPLEX,
MODE = ASYNCHRONOUS,

* = 0212 and 0215 represent the octal values for
I i ne feed and carriage return, respectively.

Asynchronous Line Defaults

ECHO = FALSE,
TRANSMIT-SPEED = LOW,

Synchronous Line Defaults

CRC-STOP = 0,
STORE-SYNC = TRUE,
SYNCHRONIZE = FALSE,
SYNC·TRANSMIT = 0226,
SYNC-RECEIVE = 0226,
TRANSPARENT = FALSE,

Examples of LINE Statement

Example 1:

Define a direct-connect line at physical address 012 as
logical line number 1 with even parity, incoming data rate
of 10 characters per second and messages terminated only
when the buffer is full.

2-4

-- ----- •

LINE 1: ADDRESS = 0 12, PARITY = EVEN,
SPEED = 10, EOM-STOP = FALSE.

By default the line is direct-connect.

Example 2:

Define a direct-connect line with physical line address 024,
as logical line number 2 .

The line has even parity, a data rate of 10 characters per
second. Incoming messages are terminated with either a
line feed (0212) or carriage return (02 15), which are the
default EOM characters.

LINE 2: ADDRESS = 024, PARITY - EVEN,
SPEED = 10.

2.2.2 TERMINAL Statement

The TERMINAL stat ement describes a remote device and
declares a set of attributes for it. For each TERM INAL
statement the NOM builds a prototype Termina l Control
Descript ion (TCD) for the terminal and stores it in an RMD
f i I e.

The general form of the TERMINAL statement is

TERMINAL tuid : attrib(l) = cond(l).
attrib(2) = cond(2), ... ,attrib(n) = cond(n) .

where tuid is the unique terminal unit identifier formed
from one to four alphanumeric characters. The f irst
characters must be alphabetic A·Z. A duplicate terminal
identif ier will be flagged and the attributes associated with
it will replace those from the prior occurrence.

The terminal attributes that are set in th is statement are
listed below. Items in upper-case letters are entered as the
actual values; lower-case letters represent a position where
one type of entry is allowed. For example nnn represents a
position for a numeric value either in octal or decimal
notation.

I

)

Attribute and condition pairs are separated by commas (or

equal signs). The list must be terminated with a period.

DEFINING A COMMUNICATIONS NETWORK

Attribute Allowed Values and Meanings

DEVICES

CODE

ECHO

LINE

PROMPT

TYPE

UNIT

STATUS

nnn f.) -:.. \

ASCII \)
BAUDOT

TRUE 0

FALSE

nnn

nnn

TTYl

TCMn

nnn

' \ I
I

UP

\)/"'0

•\)'/

\)

DOWN

•"\ 01
O~'

The following are the default conditions. provided by the
NOM when not specified by the user:

CODE = ASCII
DEVICES = 1
ECHO = TRUE
LINE = 0
PROMPT = 0207
TYPE = TTYl
UNIT = 0
STATUS = UP

•

The following table shows the net effect of the possible
combinations of the ECHO attribute in line and terminal
directives:

Attribute

Line ECHO
Terminal ECHO
Result:

Value

TRUE
TRUE*
TRUE

TRUE
FALSE
TRUE

FALSE
TRUE ~

FALSE

FALSE
FALSE
FALSE

*When ECHO is set TRUE concurrent READ and WRITE
on a full -duplex line are inhibited.

- ----- -------- ·· - -·--·------ - -- · · ~

specifies the number of devices attached
to the terminal

specifies the code type for the terminal

characters inputted are to be transmitted
back to the terminal by the TCM {only
applicable to a full -duplex line)

no echoing by CCM

logical line number to wh ich the
terminal is attached

numeric value of the character to be
sen t to terminal when input data is
requested

specifies TCM as type 0

(TTY) or n where n is between
1 and 9

logical unit number of the communications
controller module

initial terminal status is up (available to
be opened)

initial terminal status is down, not
available until operator action

Examples of TERMINAL Statement

Example 1:

Define a Teletype terminal that is identified as RMOl on
logical line number 5. Input characters are not to be
echoed back to the terminal.

TERMINAL RMOl : ECHO = FALSE, LINE - 5.

Example 2:

Define a Teletype-compatible terminal that is ident i fied as
RM02 on logical line number 6. A carr iage return is to be
ou tput to the terminal as a prompt character.

TERMINAL RM02: LINE = 6, PROMPT = 0215.

2.2.3 END Statement

The END statement indicates the final entry in the NOM
input. It is required and its omission may result in incorrect
processing of the description. The only form of this
statement is the word EN 0 followed by a period.

'

2·5

·-------- -----·----- ~ - -------~-~ ~~ -- ··· - --

DEFINING A COMMUNICATIONS NETWORK

2.3 OPERATING INSTRUCTIONS

The Network Definition Module of the VTAM system
resides in the VORTEX background library. NOM is
executed as a background program at priority level 0.

NOM files

Input records to NOM (the NDL statements) are read from
the PI logical unit; listings are output to the LO logical unit .
The listing includes source language statements, error
messages if any occurred, and a summary of characteris·
tics of the network.

The files which contain the tables constructed by NOM are
named VT$DFL (for lines) and VT$DFT (for terminals).
These files must reside in the FL (foreground library) logical
unit.

Example:

Create the required VTAM file and execute NOM.

/JOB
/FMAIN
CREATE,FL,F, VT$DFL,l20, 11
CREATE, FL, F, VT$DFT,120,3
/ LOAD,NDM
LINE 1: ADDRESS= 012.PARITY =EVEN, SPEED= 10.
LINE 2: ADDRESS= 024,PARITY =EVEN.
TERMINAL RMOl : LINE = 1.
TERMINAL RM02: LINE = 2.
END.
/ ENDJOB

The line fi le VT$DFL is always 11 sectors. The size of the
terminal file depends upon the number of terminals. The
minimum number of sectors in the file are calculated by
integer d ivision as follows:

ntuid - 1 ntuid - 1
Sectors + +2

29 24

where:

ntuid - number of terminal unit identifiers
to be created for the network.

2.4 ERROR INDICATIONS AND WARNINGS

The diagnostic facilities of the NOM produce messages
which are warnings and do not terminate processing.

Messages

*'' ILLEGAL ATTRIBUTE TYPE SPECIFIED

This message indicates a inappropriate value assignments
to an attribute. For instance. specification of an asynchro·
nous parameter on a synchronous line.

2·6

.. -----

'-"~ SYNTAX ERROR

A syntax error such as a misspelling or an omitted special
character (period or colon) followed by the character string
where the error is detected.

If the initial word in a statement is not recognized a syntax
error message is given and the entire statement to the next
period is ignored and processing continues from there.

**DUP TUID NAME

This message indica tes more than one terminal statement
used the same identifier. The attributes occurring with the
latest statement will be assigned.

* ~, FILE VT$DFL TOO SMALL
•:• •:• FILE VT$DFT TOO SMALL

This message indicates that the named file was not large
enough. VT$DFL must be at least eleven sectors. The size
of VT$DFT only causes an error message if it is less than
two sectors.

1/ 0 Errors

Fatal errors occur as stops with a number indicating which
device had an error, EOF or EOD.

Message

NOM STOP 100
NOM STOP 200
NOM STOP 300
NOM STOP 400

Device

PI
LO
VT$DFL
VT$DFT

STOP 100 also occurs on a missing END statement.

The STOP is given immediately after the 1/ 0 operation
causing the fault. Thus the last line listed is the card
previous to the card causing the fault.

•
2.5 NOM OUTPUT

As the NDL processor inputs each 80·character record it
outputs the record (exactly as input) to the LO unit.

After the END statement is processed the NOM produces a
report of the contents of the VTAM files VT$DFL and
VT$DFT. The first part of this report lists all defined
prototype LSD's in the file VT$DFL. These are listed in
order of their logical line numbers. For each defined
prototype LSD the logica l line number is listed in decimal
followed by the five-word descriptor listed in b inary (table
2·1 lists descriptions of the prototype LSD fields).

I

..

Prototype LSD Outpu t Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PS PS PS PS
A PSLSP

MOD PAR \ XMM

0

1 PSCCl PSCC2

PS PS PS PS
T E D D

E p ::: t,: * ~:: t.: ~ * ~1 * t;. PSPLA w E

2

R F N F

PS PS PS
D y A PS PSYNT s N 8

.,. .,.
CRC

3

F c N

PS

8
0 ::: ~:: o:: :.:: ;;: t,1 ~r .¢ :) ~: ::: :;:: :.:: ;:: :;:: PSYNR s

4

c

9 reserved for future use

Following the prototype LSD list ing the Tl B and prototype
TCD are listed for each defined terminal. The first line
conta ins the TUID followed by the th1rd word of the TIB in

binary.

TIS Output Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Tl

2 D TISEC TIDSP
w
N

This word indicates the status of the terminal and the RMD
loca t ion of the prototype LSD. Table 2-2 lists the value and
attribute for each f ield. Next the f1ve words of the prototype
TCD are listed in binary. Table 2·3 lists the value and
attribute for each field .

DEFINING A COMMUNICATIONS NETWORK

Prototype TCD Output Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PCLLN PCCLN

PC PC PC PC
1 E X B s PCPCH .:t ~: •'· ,, ~ c M s w

H M L L

2 PCCTP PCTYP * (: :) ~' :;: PCN TD

3 • • • • • • • ·• • • • • .. • • • • • • • •

4 • • • • • • • • ... * • • • • • • • • • • •

* reserved for future use
·=· •:• not applicable to prototype TCD output

Table 2-1 . Prototype LSD Field Description and Range

Field Attribute

PSMOD Connect ion

PSPAR Parity

PSASY Mode

PSXMM Line· type

PSLSP Speed

PSCCI Control

PSCC2 Control

PSTER EOM·stop

n C""'r- nF r;:, c. r r .. l...
C.I..II U

(Asynchronous)

Transparent
(Synchronous)

PSDWN Status

Range

0 - Direct
1 - Non -d ia l modem
2 - Dial modem

0 - No parity
1 - Odd par ity
2 - Even parity

0 - Asynchronous
1 - Synchronous

0 - Half duplex
1 - Simplex receive
2 - Simplex transmit
3 - Full duplex

Lme speed

Control character 1

Con trot character 2

0 = False
1 - True

1\
v False
1 - True

0 - 7 bits plus parity
1 - 8 bits (no parity)

0 - Up -
1 - Down

(continued)

2·7

·---- ·--- -·- -------------·- - -- .. -.. __ .. , __ ,,_ ___ ._____________ --- - ---·- ... _ ..,_ _... __ , ___ ... ------ - - - - ·-

DEFINING A COMMUNICATIONS NETWORK

Table 2-1. Prototype LSD Field Description
and Range (continued)

Field Attribute

PSDEP' Line Status

PSPLA Address

PSDSF Transmit-speed

PSYNC Store-sync

PSABN Error-stop

PSCRC CRC-stop

PSYNT Sync-transmit

PSBSC BSC mode

PSYNR Sync-receive

Range

0 = Line is not defined
1 Line is defined

0-255

0 = Low speed
1 High speed

0 Stored
1 = Not stored

0 False
1 - True

0-7

0-255

0
1

0-255

Not BSC mode
BSC mode

•:• This bit is not set by an attribute; i t is set when a line has
been defined.

Table 2-2. TIS Field Description and Range

Field

TIDWN

TISEC

TIDSP

Attribute

Terminal
status flag

VT$DFT fi le
sector

VT$DFT file
displacement

Range

0
1

Up
Down

Table 2-3. TCD Field Description and Range

Field Attribute

PCLLN Line

PCCLN Unit

PCXMM Line-type

2·8

Range

0-255

0-255

0 = Half duplex
1 Simplex receive
2 - Simplex t ransmit
3 = Full duplex

Field Attribute Range

PCBSL BSC mode 0 = Asynchronous mode
1 - Synchronous or BSC

mode

PCSWL Switched
line flag

0 Up
1 - Down

PCPCH Prompt 0-255

PCCTP Code 0 = ASCII

PCTYP Type 0

1-9

10·15

Teletype

TCM type
Unassigned

PCNTD

PCECH

Devices

Echo

1·15

1 False

0 - True

The following is an example of the NOM printed output.

PAGE 03/l9/74 Nl) ~ VO~TFX VT A ~ NDL

LSD o

L!O

P~GE

n n n n n n n n n n n ~ n r 11 n
1 ~ n n t n t n 1 n n ,, 1 t n 1
t nn nnno lllnn nnnn(1
r'lonnono n tont " t tn
nnnononntnntnttn

1
o n ll n n n n n n n n n n n n ,,
1 n n o 1 n t n t n n n 1 1 n 1
1 o n o n n o 1 n n n n n n n n
OOOOOOOI'l tn n t O I t n
OCIOOI'\('001 nn ~ ni t 0

03/ 19174 NOM VORTE~ YTAM ~OL

TIS f"T Y I
n n n n n •1 o l n o n n n n n n

PC O TTY I
n n n n n ,, n n n n n n n n " ,,
n 11 n n n n n ,, 1 n n n r1 1 1 1
n n n n n n o tl n () n n n n n 1

n n n n n n n n n n n n n n n ,,
n n n n n n n n n n n ~ n n n ~

TIB CRT!
n n n n n n n 1 n n n n n 1 n 1

PCO CRT1
(1 n n n n n o o n n n n n n n o
o n o on nnn t rn n rttl
n n o n o n o n n n n n n n n t
n n n n n o n n n n n n n n n n
n n n o n o n n n n o n n n n n

1ENDJ08
IFINI

•

. . .

SECTION 3

USING VTAM MACROS

3.1 INTRODUCTION

VTAM requests are wr i tten in assembly language as macro
calls. The DAS MR assembler provides the following macros
for data communications l / 0 :

OPEN
CLOSE
READ
WRITE
WEOF
FUNC
STAT
LCB
DCB

open a line or terminal
close line or terminal
input from terminal
output to terminal
wr ite end-of·file designator
function request

status request
generate a l ine control block
generate a data control block

The VORTEX and VT AM systems perform a validity check
on all 1/ 0 requests. VTA M then queues each valid request
to the terminal control module or communications
controller module assigned to the specified logical unit. If
the appropriate T CM or CCM is not sched uled , the VTAM
system schedules it to service the queued requests .

The assembler expands the macros to several words of
executable code and data . Cer ta in VTAM operations
requ ire parameters in addition to those in the macro call.

These parameters are in a table called the lme control
block (LCB). In general, embedded opt ional parameters
can be omitted by indicating the normal number of

commas.

Error messages appl icable to these macros are given in

section 3.3.

3.2 GENERAL FORM

The general form for da ta communications l / 0 macros is:

label name cb,lun,wait,mode

where

cb
.

the address of a control block IS

lun
.

the logical unit name or number IS

wait IS the wait/immedia te return flag

mode is the mode of read / write request

The expansion of the macro is generally as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 JSR.X

1 V$10C Ent ry Address

2 c Status E• cc• PRIORITY

3 w Mode Op-code Log1cal Unit No.

4 LCBt DCB Address

5 Actual Number of words or bytes transferred •

6 Detail Status*

':'only valid when C

buffer chain mode.
1, (request complete) and not tn

Explanation of Macro fields

c

Status

E

cc

pr ior ity

w

Mode·

Set indicates request complete

Status of l / 0 request

Set if an irrecoverable error occurred

Complet ion code

Initially zero, set to requesting task's
prior ity by V$10C

Set for immediate return , reset for
suspension of ca lling task until
completion of l / 0

Depends upon the part icular macro

Op-code specifies the operations to be performed as

follows:

0 READ
1 WRITE
2·4 Undefined (return request complete

status, if executed)

5 FU NC

6 OPEN

7 CLOSE

3·1

----. __..._..,,,_ --- --- ---------·-- ·------------- ··------·------ - --- - ----------

USING VTAM MACROS

LCB/ DCB
Address

Address of line control block
or data control block

Detail
Status

Bit Set

the format of the detail status
word is shown in table 3·1.

Table 3-1. Detail Status

Reset

0 Clear to send ON Clear to send 0 F
1 Data set ready ON Data set ready OFF:

--=-2--R~ing circuit ON Ring circuit OFF
3 :rni~.Qll,r------n ·r ...;...~--J--

4 Reverse channel ON Reverse channel OFF
5 Pa~itv error* * No parity error

,.. 6 Control char~a""ct eGr ___ .. No control character
detected (Read buffer detected
terminated, request
complete)

7 l/0 clear occurred No 1/0 clear

3.3 ERROR INDICATIONS ON VTAM MACROS

The following 1/ 0 errors are given by VTAM in addition to
those described in the VORTEX/VORTEX II Reference
Manual.

1033 invalid terminal identifier or logical
line number

1034 terminal or line not opened

1035 terminal or line down

1036 terminal or line already open

1037 requests still pending

1040 110 action attempted on terminal not opened

1041 break detected

- __ s:::__.:B::..r:ea::k:/_:f:ormat error @ No break or format

~~~--------~e~rr~o~r--~------------------~42 
Overflow"" * * No overflow 

invalid physical line address 

9 

* hardware unable to service line before data lost 

'' '~ In BSC operations, if bit 5 and bit 9 are on, it is an 
indication of a three second receive t imeout (chapter 8). 

@ Format error in BSC mode 

3·2 

1043 invalid TCM type 

1044 no temporary storage available 

from VTAM memory allocation table 

1000 110 clear occurred 

1071 overflow detected 

• 

• • 



. .. . ' 

, . 

SECTION 4 
OPENING AND CLOSING TERMINALS AND LINES 

4.1 INTRODUCTION 

When an application program requires the services of 
VTAM to communicate with a remote device both the line 
and terminal must be opened before any l / 0 action. A 
READ or WRITE on an unopened line or terminal will result 
in an error message. An OPEN request for a termina l will 
also open the line on which that terminal IS attached. Lines 
can be opened but must be followed by a terminal OPEN 
request in order to establish communication with the 
terminal. 

Line Open and Close Actions 

On a line open request the prototype Lme Service 
Descriptor (LSD) is read from the RMD file VT$DFL. A 
block of temporary storage is obtamed from a memory 
pool, and a central memory resident LSD is built. The LSD 
is linked through the physical line table to the logical line 
table and also to the LSD queue. This procedure makes the 
line available to the user to make 1/ 0 requests . 

On a line close, the LSD is removed from the physical line 
table and also from the LSD queue. The temporary storage 
b lock is returned to the memory pool and IS available to 
another user. 

Terminal Open and Close Actions 

When an application requests an open or close on a 
terminal , V$10C passes the request to the appropriate 
TCM, which functions as a pseudo driver under VORTEX. 

The terminal open request causes the prototype terminal 
controller descriptor (PCD) to be read from the f ile 
VT$DFT. If the line for th is terminal is not already open, an 
open request is made for the line. Upon return a block of 
temporary storage is obtained from a memory pool and a 
TCD resident in main memory is built. The TCD is linked to 
the logical terminal table and also to the TCD queue. After 
successfully completing this procedure the terminal is 
available for the user to make READ, WRITE. CLOSE etc. 
requests . 

The terminal close request removes the TCD from the 
logical terminal table and from the TCD queue. The 
temporary storage block is returned to the memory pool , 
thus making the area available to another user. If there are 
no more terminals open on the line, a close request is 
made to close the line. 

Open and close requests are coded in the applications 
software as macro calls in OAS MR, as subroutine calls in 
FORTRAN and also as JCP direct ives. 

JCP Open and Close Actions 

To provide the ability to perform line and terminal opening 
and closing external to an application program, JCP allows 
these actions through the OPEN and CLOSE directives. In 
effect lines and terminals may be opened and closed either 
through macros with in a program or through the JCP 
directives / OPEN and / CLOSE before or after program 
execution. These directives also allow system l / 0 units like 
LO to be opened and assigned to a line or terminal by the 
second format of OPEN (see section 4.2.1). In this manner 
a user or the system operator has the option of opening 
and closing lines or terminals outside· of a program by 
entering these JCP directives through the Sl device. 

4.2 OPEN MACRO AND JCP DIRECTIVE 

The OPEN macro is applicable to either a line or terminal. 

4.2.1 Forms of OPEN Macro 

DAS MR: 

label 

where 

cb 

lun 

wait 

FORTRAN : 

label 

where 

name 

lun 

stat 

OPEN cb,lun, wai t 

is the address of the line control 
block (LCB) or the data control block 
(DCB) containing the four·character 
terminal unit identif ier tn the 
f irst two words. 

is the logical unit number for the 
CCM opening a line or the TCM 
opening a terminal 

is 1 for an immediate return or 0 
(default) for suspension of the 
caller unti l the open is complete 

CAll VT$0PN (name,lun,stat) 

is a three-word array con taining 
the LCB or DCB 

is the logical unit number for the 
CCM opening a line or TCM opening 
a terminal 

is an integer variable where the 
status will be returned 

4· 1 

--------------------------------------------------------------------------------------------------------------------------------



- - . 

OPENING AND CLOSING TERMINALS AND LINES 

All FORTRAN open requests cause suspension of the calling 
program until the open is complete. 

JCP: 

where 

/ OPEN, lun,. id 

/ OPEN, lun,. , id, lun 1 

lun 1 is the logical unit name or number 
for the CCM opening a line or TCM 
opening a terminal 

id 

tun , . 

is the logical line number for 
open ing a line or terminal unit 
identifier for openmg a terminal 

IS the logical un1t name or number 
which will be assigned to the CCM or 
TCM designated by the other tun 
after the terminal has been opened 

Example : 

IOPEN ,18 4,TTY1 

IOPEN ,LO, TTY2, 184 

Note: A JCP /OPEN directive performs two functions: a 
VTAM open and a VORTEX IOC assignment. Therefore, a 
VORTEX job stack containing a /OPEN directive should 
also contain a /CLOSE directive before any JCP reassign­
ment directives (such as / FINI or /JOB) are input. If, for 
example. a / OPEN is followed by a / FIN I, the VORTEX IOC 
linkage to VTAM is broken, but the VTAM linkage remains 
intact. To recover from this, use a JCP or OPCOM ASSIGN 
directive. 

Example: 

Suppose a TCM has device name TCOO and logical unit 
number 184. An NDL d irect ive defines a terminal name 
TR15. A VORTEX job wants to direct LO output to this 
terminal , thus: 

/OPEN,LO,TR15,184 
/FIN I 

The / FIN I is in error, for it will reassing LO back from term­
inal TR15 to its default value, but VT AM tables and linkage 
are left in an incorrect state. To recover, enter: 

/ ASSIGN,LO,TCOO 

and all linkage is reestablished. 

4.2.2 Error Indications on OPEN 
DAS MR: 

The open/ close module generates the following status in 
word two of the request, bits 14-5 for DAS MR OPEN calls: 

Bit 

14·9 

4·2 

Value 

00 

Meaning (Standard VORTEX 
error message codes) 

normal completion 

02 invalid lun for CCM or TCM 
033 invalid logical line number or 

tuid 
035 line or terminal down 
036 line or terminal already open 
042 invalid physical line address 
043 invalid TCM type 
044 no temporary storage available 

for LSD or TCD 

8 1 irrecoverable I 10 error 
7-5 0 normal return 

5 1/0 error 

FORTRAN: 

The open/ close module returns the following status as a 
result of a FORTRAN OPEN call: 

Contents 
of STATUS 

0 
1 
2 
3 
4 
5 
6 
7 
8 

JCP: 

Meaning 

normal completion 
invalid lun for CCM or TCM 
invalid logical line number or tuid 
line or terminal down 
line or terminal already open 
invalid physical line address 
invalid TCM type 
no temporary storage available 
110 errors 

Any errors as a result of an / OPEN directive to the JCP will 
result in the error message " JC06" being output to the SO 
and LO logical un its. 

Examples of OPEN 

Example 1: 

Open line 16 on logical unit 72. Select the wa it option. The 
LCB address is TIYLCB. 

OPEN TTYLCB, 72 

The default value for wait is used. The line number is in the 
LCB. 

The same request in FORTRAN would be: 

I NTEGER TTYLCB, STATUS 
DI MEN SI ON TTYLCB( 3 ) 
TTYLCB (3) • 16 
CALL VT$0PN ( TTYLCB,72,STATUS) 

Example 2: 

Open a terminal whose tuid is XY03 on logical unit 122. 
Select immediate return . 

- - - ----- - - - . - - ---------- -- -- .. ·------- - --
' 



• • 

TUIDCB DCB 'XY' '03' 
OPEN TUIDCB,122,1 

The same request in FORTRAN (except for the wait for 
complet ion instead of immediate return) would be: 

INTEGER TUIDCB , STATUS 
DIMENSION TUIDCB (3) 
DATA TUIDCB (1), TUIDCB (2) / 2HXY,2 H03/ 
CALL VT$0 PN (TUIDCB, 122,STATUS) 

4.3 CLOSE MACRO AND JCP DIRECTIVE 

The CLOSE macro is applicable to both lines and termtnals. 

4.3.1 General Format 

DAS MR: for 

label CLOSE cb,lun, wait 

The parameters are identical to those described for OPEN. 
This is the standard VORTEX CLOSE macro. 

FORTRAN : 

label CALL VT$CLS{name,lun, st at) 

where name is the three-word array contatntng the LCB or 
DCB, and stat is an integer variable where the status w1ll 
be returned. All FORTRAN CLOSE requests cause suspen· 
s1on of the calltng task unt il the 110 is complete. 

JCP: 

/ CLOSE,Iun,id 

where id is either the logical line number or the four· 
character terminal unit iden t ifier, used to open the line. 

All JCP CLOSE directives cause suspens1on of the JCP unit 
until the CLOSE is complete. 

Example: 

/ CLOSE,LO,TTY2 

4.3.2 Error Indications 

DAS MR: 

The open / close module generates the following status 
1nd1cat ion in the second word of the request , bits 14·5 for 
DAS MR CLOSE ca lls: 

OPENING AND ClOSING TERMINALS AND LINES 

Bit No. 

14·9 

Value 
(Octal) 

00 
02 
33 

Meaning 

Standard VORTEX error 
message code 

normal completion 
invalid LUN for CCM 
invalid logical line number 

or tu id 
34 
37 

line or terminal not open 
requests still pending on line 

7-5 

FORTRAN : 

43 
0 
5 

or terminal 
mvaltd TCM type 
normal return 
110 error 

The Open/ Close module retu rns the following status as the 
resul t of a FORTRAN CLOSE call : 

Contents of 
St atus Word Meaning 

norma l completion 
invalid LUN for CCM 

0 
1 
2 
3 
4 

invalid logica l ltne number or tu id 
line or terminal not open 

JCP: 

5 
6 

requests still pending on line 
or term inal 

invalid TCM type 
110 error 

Any error conditions as the result of a / CLOSE directtve to 
the JCP will result in the error message " JC06" being 
outpu t to the SO and LO logical units. 

Examples of CLOSE 

Example 1: 

Close previously opened line 16 on logical unit 72. Select 
the wait option. The LCB address is TTYLCB. 

CLOSE TTYLCB,72 

The default values for wa it is used. The line number is in 
the LCB. 

The same request in FORTRAN would be: 

I NTEGER TTYLC B, STATUS 
DIMENSI ON TTYLCB (3) 

• 
• 
• 

TTYLCB (3) • 16 

4-3 

-- .. --· -----· -·---··------ - ----- - ~- -·---------- -------- - - ----- - ---- - - • 



OPENING AND CLOSING TERMINALS AND LINES 

CALL VT$CLS (TTYLCB, 72, STATUS) 
• 
• 
• 

Example 2: 

Close a previously OPENed terminal with tuid of ZZ15 on 
logical unit 201. Select immediate return. 

TUIDCB DCB 'ZZ','15' 
• 
• 
• 

CLOSE TUIDCB,201, 1 

4 ·4 

The same request in FORTRAN (except for an automatic 
wait instead of immediate return) would be: 

INTEGER TUIDCB, STATUS 
DIMENSION TUIDCB (3) 
DATA TUIDCB (1), TUIDCB (2)/2HZZ, 2H15/ 

• 
• 
• 

CALL VT$CLS (TUIDCB, 201, STATUS) 

·-.. ·--·· ·~ - - - ·-:--- ---:---



-. 

SECTION 5 

PROGRAMMING AT TCM LEVEL 

A data communicat1ons application program can converse 
with a remote device through the TCM for that type of 
terminal. This section describes the use of a standard TCM 
called TTY for Teletype and similar compa tible terminals. 

The TTY TCM processes READ . WRITE. FUNC, STAT, and 
WEOF requests from application programs written in DAS 
MR and FORTRAN running under VORTEX . These 
function s can be performed only after the terminal is 
opened (open actions are described in section 4 ). 

Use of paper tape with VTAM must be consistent with the 
terminal being used. For instance, a strictly binary data 
stream transmitted to a Teletype Model 35 ASR could 
contain the ASCII bit patterns to start and stop the paper· 
tape punch and reader thus causing loss of in formation on 
the resulting paper tape. Similarly, use of the paper-tape 
reader must be carefully considered because of the 
absence of control in data being read. Depending upon the 
processing load on the CPU, one or more data bytes might 
be lost between logical reads. 

5.1 MACRO DEFINITION 

All calls to the TTY TCM are processed through the normal 
IOC component (described in VORTEX Reference 
Manual) . The TCM processes Teletype keyboard input 
and printer output requests as well as Teletype paper-tape 
reader and punch operations. The TTY TCM performs 
READ, WRITE, FUNC. STAT, and WEOF functions but all 
other IOC macro functions are ignored by the TCM, and 
are unconditionally returned as 1/ 0 complete. 

5.2.1 READ Macro 

The READ macro operates in two modes, either in standard 
ASCII or in a transparent mode which does not recognize 
and react to edit ing characters and does not perform user 

prompttng or carnage control. 

ASCII READ 

An ASCII READ request inputs through the TCM from the 
device one record of up to 80 ASCII characters, or 40 

words. 

A record is terminated by either a carriage return character 
or input of the 80th ASCII character. In the latter case a 
carriage return and line feed are output to the TTY. If a 
carriage return character terminated the READ, the 
remaining unused portion of the input buffer is cleared to 
ASCII blank characters and a line feed is output. 

Any input request causes the prompt character such as the 
BELL character to be output to ind1cate that the keyboard 
is ready for input. All valid ASCII characters are stored two 
characters per word left justified in the user buffer 
spectfied in the DCB. All characters are echoed If the 
termtnal is on a full -duplex line and ECHO is set; on a half· 

duplex line, characters are not echoed but printed locally 
by keyboard action. 

The backslash character (shift and L Simultaneously) is a 
control character to delete the current record. A carriage 
return and line feed are output to inform the user that a 
new record can be input. 

The backarrow character (shift and the letter 0 simulta­
neously) on input deletes the preceding character input. 
Characters cannot be deleted beyond the current line. 

The carriage return character causes the current record to 
be terminated and the system responds with a line feed. 
The carriage return is not stored in the user 's buffer. 

When the ASCII mode is used, the READ request has a 
timeout feature wh ich is described with the FUNC macro 
(see section 5.2.4). 

The BELL character also has a spectal function when it is 
the first character input in response to a READ in the 
standard ASCII mode. It causes the READ to be terminated 
and returns end-of-file (EOF) status with the completed 
READ request. To dtstinguish this condit ion from data-set· 
ready OFF condition (completton code = 6). the irrecover­
able error flag is set for the data-set-ready OFF case. 

Transparent Mode 

This mode is identical to the ASCII mode described above 
except in the cases listed below. 

a. The buffer length specified in the DCB ts not limited to 

40 words. If the length is greater than 80 characters, 
the TCM wtll continue mput until a carnage return is 
received or the buffer is full. 

b . A line feed is not output, when the READ IS terminated. 

c. The unused portion of the buffer is not set to blanks. 

d. No prompting character is output. 

e. No input edit ing is performed. 

READ Macro 

/abe/ 

where 

deb 

tun 

wait 

READ dcb,lun,wai t,mode 

address of the DCB 

logical unit number of the terminal 

set for immediate return , otherwise 
program is suspended unt1l l ! O 
complete (0 is the default ) 

5·1 

•·- ·- ------- -·--------------••womo-··------- - -•!.o--·o __ .. __ __ ... , -.. ·--------oo-·••- >o•o .._,. __ ·------ ··------~·~·". 



PROGRAMMING AT TCM LEVEL 

mode mode of read 
1 = ASCII (default) 
4 - transparent 
all other modes reserved for 
future use and are defaulted to 1 

Example of a READ Macro 

DAS MR: 

Read a record on logical unit 64. Select immediate return 
option and mode 1. 

TYUN 

IM 
STMD 
RECL 

TYRO 

TUID 
TTY 

BUFF 

FORTRAN: 

EQU 
• 

EQU 
EQU 
EQU 
• 

OPEN 
• 

READ 
• 
• 

DCB 
DCB 
• 
• 
• 
• 

• 

• 

BSS 

6 4 (LUN assigned to 
terminal via OPEN) 

1 (Immediate return ) 
1 (Standard , ASCII mode) 
4 0 (Record length 40 

words) 
TUID,TYUN 

TTY, TYUN, IM, STMD 

' TY ' , ' C 1 ' 
RECL , BUFF (Data control 

block: user data 

40 

area spec ifying record 
length in words. To 
specify byte count. 
use indirect address 

constant: (BUFF)':') 
(user data area) 

Read a 20 character record on logical unit 64 into a buffer . 
packing two characters per word. 

DIMENSION IBUFF{lO) 
• 
• 
• 
READ(64,100) ! BUFF 

100 FORMAT ( 10A2) 

Return conditions for READ 

The TTY TCM generates the following status in the request. 
word 2 of bits 14-5: 

Bit 
Number 

14·9 

5·2 

Value 

00 
01 
02 

Meaning 

Two octal digits error message 
code (see VORTEX Reference 
Manual) 

Normal completion or l / 0 clear 

Device declared down 
Illegal opcode or unassigned 
logica l unit number 

Bit 
Number 

8 

7·5 

Value 

30 

40 

41 

71 

1 

0 
5 
6 

7 

5.2.2 WRITE Macro 

Meaning 

Par ity error occurred 
da ta transmission 
Terminal not open 

Break detected 

Overflow detected 

Irrecoverable error 

Completion code 
Normal return 
Error 

during 

End-of-file (Bit 8 = 0) 
Data-set -ready off (Bit 8 
Read time-out 

1) 

The WRITE macro like the READ macro operates in two 
modes, either in standard ASCII or in a transparent mode 
wh ich does not recognize and react to editing characters 
nor perform user prompting or carriage control. 

ASCII mode (1): 

The write request causes the TTY TCM to output one record 
of ASCII character data of up to 36 words (72 ASCII 
characters) in length. The record size (in words or bytes) is 
specified by the user in the DCB. All trail ing characters in 
the specif ied buffer must be ASCII blan k characters. The 
TCM determines the actua l number of characters to output 
by starting at the end of the buffer and count ing the 
number of trailing ASCII blank characters, then subtract· 
ing this count from the maximum number of characters 
possible in the buffer. 

When a record is output to the Teletype printer , the first 
character of the record is reserved for a vertical spacing 
character and is not printed. The TCM will replace the f irst 
character with a blank character. The vertical spacing 
control characters have the following meaning: 

ASCII Character 

Blank 
0 
1 

Vertical Spacing 

One line (single space) 
Two lines (double space) 
ASCII form character is output 

When the last character of the buffer has been pr inted, the 
TCM outputs the carriage return , null, and line feed 
characters. The normal completion status is stored in the 
request block and control is returned to the user if the 
WAIT option was used. 

Transparent Mode (4): 

This mode is identical to mode = 1 except as follows : 

a. First character in user buffer is not used for forms 
control. 

·- - - -~------- . ... - - ---- ----- ·-- -· ·- -
• 



·-

b. Each character in the buffer is output with no special 
check ing. If more than 72 characters are outpu t on one 
line, no action is taken by the TCM. 

c. All forms control is handled by characters in the user's 
buffer. Upon completion of printing the user's buffer , 
no carriage return. null, and line feed characters are 

output. 

The format of the WRITE macro is : 

label WRITE dcb,lun, wait, mode 

Where the parameters are the same as defined for the 
READ macro. 

The TTY TCM generates the following status in the request, 
word 2 of bits 14-5: 

STATUS 

E 

cc 

Bit 
Number 

14·9 

8 

7·5 

Value 

00 

01 
02 

40 
41 

1 

0 
5 
6 

Meaning 

Two octa l d igits for 
error message code 

Normal completion or 
I 10 clear 

Device declared down 
Illegal opcode or 
unassigned logical 
unit number 

Terminal not open 
Break detected 

Irrecoverable error 

Complet1on code 

Normal return 
Error 

Data -set-ready OFF 

Example of a WRITE Macro 

DAS MR: 

Wr ite a record on logical termina l 64. Select the wa it option 
and mode 4. 

TYUN 

WAIT 
WRMD 
RECL 

TYWR 

EQU 
• 

EQU 
EQU 
EQU 
• 

• 
• 

WRITE 
• 

6 4 (LUN assigned to 

terminal via OPEN) 

0 (Wait option) 
4 (Transparent mode) 
12 0 (Record length 120 

bytes) 

TTY,TYUN, WAIT, WRMD 

• 

• 

TTY DCB 
• 
• 

• 

• • 
• 

BUFF ass 

FORTRAN: 

PROGRAMMING AT TCM LEVEL 

RECL ,(BUFF) • (User 
data area specifying 
record length in bytes. To 
specify word count, use 
direct address constant : 
BUFF) 
6 0 (user data area) 

Write a 20 character record on logical unit 64 from a buHer, 
packing two characters per word. 

100 

DIMENS I ON IBUFF(lO) 
• 
• 
• 
WRITE(64,100) !BUFF 
FORMAT ( 10A2) 

5.2.3 STAT Macro 

The status request macro STAT causes the status to be 
examined and con trol transferred to a user -defined routine 
for the processing of errors. 

The format of the STAT macro is: 

label STAT req,err,aaa,bbb, busy 

where req is the address of the I / 0 macro. err is the . 
address of the I 10 error routine., aaa is the address of the 
data-set-ready OFF routine, bbb is the address of the READ 

request time-out routine, busy is the address of incomplete· 
I / 0 routine. 

Except label all parameters are mandatory. 

The contents of the overflow indicator and the A and 8 
registers are saved. 

Return Conditions 

Upon normal completion, control is transferred to the task 
after the end of this macro expansion. 

If an I / 0 error occurred, control is transferred to the 
address specified as err. If the data·set-ready signal is off, 
control is transferred to the address aaa. If the length of 
time for a terminal respon se exceeds the time-out speci f ied 
in a FUNC macro, control passes to the address bbb. An 
incomplete l / 0 causes transfer to the address specified as 
busy . 

5·3 

. ·- ~-- ···- .. . . - ...... ,-~ ... -· .. -·----·- --- - -·----________ ..... __ ,. -·- - --·-..... - · ...... ·-----·- ··--··- ... ···- ...... . ...... - ... __ ----·--·-·· ... 



PROGRAMMING AT TCM LEVEL 

Example of a STAT Macro 

Read a record on unit 64 and check for Data-Set-Ready 
OFF and time-out. Use immediate return option, mode 1. 

TYUN 
IM 
RDMD 
RECL 

TYRO 

B 

DSRO 

5·4 

EQU 6 4 (logical terminal unit) 

EQU 1 (Immediate return) 
EQU 1 (Standard mode) 
EQU 8 0 (record length) 
• 

• 
• 
READ TTY, TYUN I I M I RDMD 
• 

• 
• 

STAT TYRD, ERR,DSR0 1 RT0 1 B 
• 

• 
(DATA SET OFF ROUTINE) 

• 

Function 

Output carriage 
return and 3 line 
feed charact ers. 

Set NO ECHO flag 
for READ requests 
on full duplex lines. 
This f lag is . 
ini tially reset 
when terminal 1s 
opened. 

Reset NO ECHO f lag 
for READ requests 
on full duplex 
lines. 

Set a timeout value 
for READ requests 
which use the WAIT 
option. (Only for the 
ASCI I READ mode.) 

Function Code 

0 

1 

2 

3 

• 

RTO ( TERMINAL TIME-OUT 
• ROUTIN E) 
• 
• 

ERR (ERROR ROUTINE) 
• 
• 

TTY DCB RECL , BUFF (Data 
• Control Block) 

BUFF BSS 80 

5.2.4 FUNC Macro 

The FUNC request causes the TTY TCM to perform specific 
functions that cannot be performed by other macros. The 

value of the low-order bits of the function code word of the 
DCB defines the operation to be performed . 

Comments 

Outputs the sequence of characters, sets 
normal completion status in the request 
block and control returns to user. 

Causes input characters for subsequent 
READ requests not to be echoed if term­
inal is on full duplex line. 

Causes input characters for subsequent 
READ requests to be echoed if terminal 
is on full duplex line. 

Sets a timeout value for all subsequent 
READ requests on the terminal. The 
default timeout value is zero and this 
prevents the TCM from performing t imeouts 
for READ requests on the terminal. When 
this function request is used, the high· 
order byte of the function code word of 
the DCB will be used for a timeout value 
(1 ·511 sees.) for all subsequent READ 
requests until it is reset to another 
value. When a non-zero t imeout va lue has 
been specified, the TCM will check for 
a READ timed-out condition while waiting 
for input. If t imeout occurs, t imeout 
status is returned to the user and the 
number of words/ bytes input set to zero 
in the request block. The TCM also outputs 
the carriage return (CR) and line feed 
(LF) characters if mode of request is 1. (continued) 

' 



.. 

\ 

Function 

Set a terminal 
DOWN and clear 
all active and 
pending TCM l/0 
requests on a 
terminal 

Clear READ request. 

Clear WRITE request. 

function Code 

4 

5 

6 

All other function codes are reserved for future use. 

label FUNC deb, lun, wait 

Parameters are the same as described for READ request, 
except the last word of the DCB, function code word , is 

used by FUNC requests: funct ion code (bits 7 ·0), and READ 
timeout value (bits 15·8) when funct ion code is equal to 3. 

Return Conditions: 

Return condit ions are the same as described for WRITE 
requests. 

Example of a FUNC Macro 

Set t ime-out value of 511 seconds for READ requests on 
logical terminal unit 64. 

TYUN EQU 
• 
• 

• 

FUNC 
• 
• 

• 

TODCB DCB 

64 (logical terminal 
unit 64) 

TODCB, TYUN (Set read 
timeout value) 

RECL,BUFF,0177403 
(Timeout value = 511 
seconds, function code = 3) 

PROGRAMMING AT TCM LEVEL 

Comments 

This function is used to set an opened 
terminal DOWN and to clear all active and 
pending TCM I / 0 requests on the terminal. 
The device-declared-down error status is 
returned for all TCM requests and any 
CCM 1/ 0 requests are cleared. Memory 
used for CCM request blocks are released . 
Th is function is an immediate function. 
Therefore, it is not queued. Normal 
completion status is then returned to the 
user for the function request after the 
I 10 clear has been performed. 

Causes artificial termination of the current 

active read request (which terminates with 
CC = lOl, E=l , and STATUS=OO). The request 

• 
is marked complete as soon as the TCM services 
the request. 

Causes artifical termination of the current 
act ive wri te request. Completion status and 
tim ing information is the same as for function 
code 5 . 

5.2.5 WEOF Macro 

The WEOF request causes the TTY TCM to output the 
terminal prompting character. It indicates to the user that 
the end-of-file has been reached . The normal completion 
status is returned in word 2 of the request and control is 
returned to the user if the WAIT option was used. 

General form : 

label WEOF dcb,lun, wait 

The parameters are the same as described for the READ 
request, though the DCB address is not used by the WEOF 
request. 

Return conditions are the same as for WRITE request 

(section 5.2.2). 

Example of a WEOF Macro 

Output user prompt ing character on logical terminal unit 
64. Use immediate return option. 

TYUN EQU 

• 

IM EQU 
• 

64 

1 

(Logical terminal 

unit 64) 

( Immediate return) 

5·5 

_,._ ----------·-- -------------------------------------------------------------·----------- ---------------------------------



PROGRAMMING AT TCM LEVEL 

• 
• 

PROMPT WEOF WDCB,TYUN,IM 
• 
• 

• 

WDCB DCB RECL,BUFF 

5.3 TTY TCM WITH DIAL-UP LINES 

Before any 110 operations can be performed on a terminal, 
it must have been opened with an OPEN request (section 
3.2). If a terminal is defined as on a dial-up line, the action 
of opening a terminal causes Data-Terminal-Ready to be 
turned on, to enable answering the ring on the line. When 
any TCM l / 0 request is made on a terminal, a check is 
made for data-set-ready on. If data-set -ready is on, a 
physical connection flag is set in the Terminal Controller 

5-6 

Descriptor (TCD) for the terminal and the request is 
in itiated. If it is OFF, the request is not initiated and 
remains queued unt il Data-Set-Ready is ON. 

If the physical connection flag has been set and the Data· 
Set-Ready is off , the TCM considers it a line disconnect and 
returns Data-Set-Ready OFF as a status to any active or 
pending TCM requests. In this situation the terminal 
should be closed and reopened to permit the user to dial 
up again and get physica l connection to the terminal. 

5.4 FORTRAN LEVEL PROGRAMMING 

Programming at the FORTRAN level follows the normal 
rules for using FORTRAN READ and WRITE statements. 
The only additional requirement is that the line be opened 
and closed using the OPEN and CLOSE macros (see section 
4 ). 

- - - - - - -- - - -- - --· ---- -- - - -

I 



.. 

• 

SECTION 6 

PROGRAMMING AT THE CCM LEVEL 

6.1 INTRODUCTION 

The CCM functions as a dr iver for data communications 
equipment at the communications multiplexor and line 
level. It processes requests made by terminal control 
modules or application programs wh ich requ1re a more 
direct interface with the communication lines than that 
provided through the TCM. 

Line disciplines and modem characteri stics are defined in 
the line·oriented tables of line service descriptors, thus. the 
user of a CCM need not define these items himself in an 
application program. Some portions of these tables can be 
modified dynamically by user programs. 

Binary Synchronous Communications (BSC). both half· and 
full ·duplex lines, as well as input in the buffer chaining 
mode are accommodated by the CCM. 

The CCM provides orderly line turnaround in half-duplex 
operation and permits concurrent READs and WRITEs on 
full·duplex lines. 

6.2 CCM 1/ 0 CONTROL MACROS AND 

FUNCTIONS 

The CCM l/0 requests are written 
with the following I / 0 macros. 

in assembly language 

Name 

LCB 
OPEN 
CLOSE 
READ 
WRITE 
FUNC 
STAT 

Funct ion 

Generate a Line Control Block 
Open a line 
Close a line 
Read a record 
Write a record 
Function request 
Status request 

The general form of data communications 1/ 0 
(section 3. 2) is also applicable to CCM macros. 

macros 

6.2.1 LCB Macro 

This macro generates a line control block which is required 
by all data communications 1/ 0 requests. The form of the 
Line Control Block macro is: 

label 

where 

r l 

LCB rl,buf , line,func. c, e 

is the length in words or bytes of the 
record to be transmitted or received, 

the maximum record length is 4096 bytes 
or 2048 words. 

but is the address of the f irst word of the 
buffer. 

l ine is the logical line number. 

tunc function code only applicable to FUNC 
request 

c 

e 

1, if length is expressed in bytes .. 
0, i f length is expressed in words 
(default value) 

extension , meaning depends upon the 
funct ion being performed 

LCB Macro Expansion is described below. 

15 14 13 12 11 10 9 e.i 7 6 5 4 3 2 1 0 

0 

1 F 

2 

3 I 

L 

' 
RECORD LENGTH lN WORDS OR BYTES 

RECORD FIRST WORD ADDRESS 

FUNCTION CODE LOGICAL LINE NO. 

EXTENSION WORD 1 
--- - - - - - ,_J 

F - 1, record length expressed in bytes. F = 0, 
record length expressed in words. 

Note: If in buffer chaining mode. F must - L 

FUNCTION CODE = 0-255 
LOGICAL LINE NUMBER = 0·255 
Optional EXTENSION WORD 1 is used for FUNC requests 
and for the chain header address in buffer chaining. 

Function code 3, sense event . 

LCB MACRO + 3 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Bit L--1 ____ 
0 
__ ----1..,_1 _ __JI 

0 · wait for Clear to Send ON/OFF o o.1-

1 · wait for Data Set Ready ON / OFF 0 DJ. 

2 · wa it for Ring Circuit ON / OFF bo1 

o t O 
3 · wait for Carrier ON/OFF 

4 · wait for Reverse Channel ON / OFF o'J. D 

When the specified event occurs (status changes), FUNC is 
flagged complete. 

6 ·1 

.. . .. . _ .... ............ _ ·"·"-·- - ·· ... -· ·- ···-------- ---- - - ------- -----------··-- ·---- -- - .. - - -·- - · ------------ --- -



PROGRAMMING AT THE CCM lEVEl 

Function code 7. toad control characters. 

LCB MACRO + 3 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Control Character 1 Control Character 2 

Function code 10, load sync characters. 

LCB MACRO + 3 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Transmit Sync Character Receive Sync Character 

Function code 25 or any buffer chain mode read . 

LCB MACRO + 3 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I Chain Header Address 1 

Funct ion code 6, transmit break. 

LCB MACRO + 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I o I rl I 
rt is the number of character t imes that the break 
condition will be maintained on the line, depending on F 
(LCB word 1). 

Examples of an lCB Macro 

Define an LCB for a data buffer COMBUF which is 375 
bytes in length. l / 0 operation will be performed on line 37. 

LCB1 LCB 375,COMBU F,37, 1 

Define an LCB for a data buffer of 20 bytes long, starting 
at BUFl , to be used for READ in buffer chain mode, in 
logical line 0. and buffer chain header (CHR) is at INCHR. 

LCB 20,BU Fl ,O,O, l ,INCHR 

Define an LCB for use with a FUNC request. The function 
code is 3 (sense event) wh ich requires an optional 
extension word for the event flags. The function will be 
performed on line 3 . 

· LCBC LCB 0,0 ,3 ,3 ,.014 

The event word is an octal value of 014 which selects 
notification when carrier·on or carrier·off and ring·on or 
ring·off occurs. 

6·2 

----- -· 

Status 

Status information is returned to the requesting program 
in three different f ields within the request. 

a. e field (word 2, b it position 8) is set when an 
irrecoverable error has occurred. 

b. cc field (word 2, b it position 5·7) is set for use by the 
STAT request. Interpretation of the values is as 
follows: 

cc bits Meaning 

7 6 5 

0 0 0 normal return 

1 0 1 error 

. 
1 1 0 reverse channel 

detected 
on, nng 

1 1 1 asynchronous line break 
detected 

c. Detail status (word 6, bit posit ion 0·15). See Data 
Communications l /0 Macros section 3, table 3·1. 

Normal Termination Status 

e = 0 
cc = 0, 6, or 7 
Detail status bit 7, control character 
detected may be set for a READ request. 

Abnormal Termination Status 

e = 1 
cc = 5 
Detail status bits set as follows (see 
table 3·1): 

Bit Number Value Meaning 

1 0 

3 0 

5,8 ,9 1 

7 1 

Error condition if occurred 
during READ or WRITE. 

Error condition if occurred 
during READ or WRITE. 

Error condition during 
READ only. 

Error is a result of a user 
generated I / 0 clear by means 
of FUNC request. 

d. IOC status field in word 2, bits 9·14 of the request. 
This field is used by IOC and VTAM to notify the 
requesting program of error conditions relating to the 
validity of the request (see VORTEX Reference 
Manual). 

• 



6.2.2 OPEN Macro 

The OPEN macro is executed to place a line in the active 
state and then permit l / 0 requests. l / 0 requests issued 
before the line is OPENed w ill result in an error status 
return. The CCM OPEN processor establishes the term inal 
table environment and performs the necessary line 
ini t ial ization. A second OPEN macro returns error status 
036 with E = 1 (irrecoverable). 

Open Line Macro : 

/abe/ OPEN lcb,lun,wait.mode 

where 

lcb 

lun 

wait 

mode 

is the address of the line control 

block 

is the number of the logical unit 
used to reference the CCM. 

is 1 for immediate return or 0 
(default value) for suspension 

of the caller until the l / 0 is 
complete 

0 = default value (reserved for 
future use) 

Example of an OPEN Macro 

Open line 16 on logical unit 72. Select the wait option and 
mode 0. The LCB address is TTYLCB. 

CCMLUN EQU 72 
TTYLJN EQU 1 6 

• 
• 

• 

TYOPEN OPEN TTYLCB, CCMLUN 
• 

• 
• 

TTYLCB LCB O,O , TTYLJN 

Wait and mode take default values. 

6.2.3 CLOSE Macro 

The CLOSE macro is executed to release a line from active 
use. The CCM CLOSE processor releases table space for the 
description of the line environment and terminates the 
hardware and/or software scanning of the line. The form of 
the CLOSE macro is: 

label CLOSE lcb,lun, wait, mode 

PROGRAMMING AT THE CCM LEVEL 

where the parameters are the same as defined for the 
OPEN macro. 

Example of a CLOSE M acro 

Close previously opened line 0 on logical unit 107. Select no 
wa it and mode zero. The LCB address is LCB 107. 

LU N EQU 
LJNENO EQU 
WAIT EQU 

• 

• 

• 

CLMAC CLOSE 
• 
• 

LC B107 LCB 

6.2.4 READ Macro 

107 
0 
1 

LCB107, LUN ,WAIT 

O,O ,LJNENO 

The read macro causes the CCM to input a data block of a 
specified length and format. 

/abe/ READ lcb,lun, wait. mode 

where the parameters are the same as defined for the 
OPEN macro. 

Example of CCM READ 

Read a block of data 45 words long from line 13 of logica l 

uni t 215. Set wait and mode to 0. The actual data block is 
defined by an LCB at address LCBCRT . 

DCMLUN EQU 215 
CRTLINE EQU 1 3 
RDCRT READ LCBCRT,DCML UN 

• 
• 

LCBCRT LCB 45,BUFADR,CRTLINE 

6.2.5 WRITE Macro 

The WRITE macro causes the CCM to output a block of 

data of a specif ied length. 

.r label WRITE lcb,lun, wait, mode 

where the parameters are the same as defined for~ 
OPEN macro, except that mode = 1 when wri t ing an ITB in 
bisyr: mode (refer to section 8.4.5 .5 for more information 
on ITS) . 

·. 

6·3 

--------------·-------------------------------------------------·----- ----·-·------ ------------ -- -·--



PROGRAMMING AT THE CCM LEVEL 

Example o f CCM WRITE 

Write a block of data 45 words long on line 15 of logical 
unit 27 from BUF 2. Select immediate return . 

SLCLUN EQU 27 
NOWAIT EQU 1 
SL LINE EQU 1 5 

• 

• 

WRITE3 WR I TE SLCLCB,SLCLUN,NOWAIT 
• 
• 

• 
SLCLC B LCB 

6-4 

- ----

45, BUF2,SLLI NE 

Function 

Get latest status 

Clear read request 

Clear write 
request 

Sense event 

Reverse channel 
transmit ON 

Reverse channel 
transmit OFF 

Transmit break 

Load con trot 
characters 

Answer line 

Hang up line 

Load sync 
characters 

Set E!P f lag in 
line service 
descr iptor table 
( LSD) 

Funct ion Code 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

6.2.6 FUNC Macro 

The FUNC macro performs functions specific to the driver 
and hardware that cannot be handled with other macros. 

label FUNC lcb,lun, wait 

where 

lcb is the address of the line con trol 
block 

tun is the number of the logical unit 
used to reference the CCM 

wait 1 for immediate return or a zero 
(default) for suspension of the 
caller until request function is 
complete 

Comments 

Immediate return (see note 1). 

Dequeues and sets error status on active 
request for the line (see note 1). 

See note 1. 

See LCB description for specific events. 

Transmits break characters. 

Loads (extension word) into LSD. 

Turn Data·Terminai-Ready ON. 

Turn Data-Terminal -Ready OFF. 

Loads (extension word) in to transmit 
(byte 0) and receive (byte 1) sync bytes 
in LSD and loads the registers in the 
synchronous line adapter. 

Asynchronous line adapter (LAD), enable 
hardware echo on receive. Synchronous 
LAD. select 8·bit (no parity) data byte 

\ format. Bisynchronous mode, accept 
• 
. ITB as regular c haracters. and input 
• 

1 
to memory. 

' 

\ 
• , . 

-~ 

(continued) 

I 



. -
' 

Function 

Reset E/ P f lag 
LSD 

Set DSI S flag 
in LSD 

Reset DS/ S flag 
in LSD 

Select control 
character 
recogn it ion 

Ignore control 
character 
recognition 

Resync for each 
READ (full-duplex, 
synchronous LAD) 

Do not resync for 
each READ (full­
duplex, synchronous 
LAD) 

Terminate l / 0 re­
quest (receive) if 
line error detected 

Terminate l/ 0 
request (receive) 
only if byte count 
= 0 or control 

characters are 
received. 

Kill l / 0 

Set ASCII 
mode 

Clear ASCII 
mode 

Function Code 

12 

13 

14 

16 

17 

18 

19 

20 

21 

22 

23 

PROGRAMMING AT THE CCM LEVEL 

Comments 

Asynchronous LAD, d isable hardware echo 
on receive. Synchronous LAD, select 7-bit 
(with parity) data byte format. 

Bisynchronous mode, ITB is not inp~) 
to memory. 

Asynchronous LAD (with modems that support 
dual speed feature), select higher speed 
operation. Synchronous LAD, do not store 
received sync bytes in memory( Bisynchronous 
mode, enables the sync-line feature on some 
Bell modems. It also causes a one millisecond 
pulse to be output to the modem. 

Asynchronous LAD (see above), select lower 
speed operation. Synchronous LAD, store 
received sync bytes in memory Bisynchronous 
mode, disables function code 13. 

Terminate READ operation if either of the 
two control characters are recognized in 
data stream or if byte count = 0. 

Terminate READ operation if byte count 
= 0 only. 

Synchronous LAD only. Causes resync to 
occur for each READ (bit in LSD). 

Negates effect of function code 17. 

Causes termination of READ request 
immediately when line errors (break, 
parity error or data overflow) are 
detected. 

Error status is reported only after 
request complet ion . Negates FUNC 19. 

All READ. WRITE, and FUNC requests 
queued against the line are terminated 
with 1/ 0 error code 1 (device down) 
extended status word bit 7 set (1/ 0 
clear occurred) and the physica l line 
is marked down (see note 1 ). 

Forces bit 7 = 1 of each byte input 
for compat ibility with software. 

Bit 7 takes on value determined by 
line adapter. (continued) 

6-5 

- - ------.---.. ---- -------- - ---------------------.. - - ----- - --- -- -- ---- - ---·· ------



PROGRAMMING AT THE CCM LEVEL 

6 ·6 

Function 

Initialize line 

Set in buffer 
chain mode 

Reset buffer 
chain mode 

Set "no block check" 

Reset "Block check" 

Set ASCII / not 

Set ASCI I with 
transparent 

Set in EBCDIC 

BSC receive 
poll mode 

Reset BSC 
receive poll 
mode 

NOTE: 

Function Code 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

Comments 

Performs all initialization required by 
hardware and software. 

Enable the system to receive input in the 
buffer chain mode (see note 2). 

Resets a system from buf fer chain mode 
back to "normal" mode . 

• 
Do not check the BCC after receivir.g an ITB control 
character. On output, ITB is a regular character. (No 
BCC; see Note 3) . 

Check BCC after receiving an ITB. (See Note 3.) 

(Set in ASCII / not transparent mode (see note 3 . 

Set in ASCII / with transparent capabil ity 
mode (see note 3). 

Set EBCDIC mode, both for regular and 
transparent capability (default mode (see 
note 3). 

Sets system 1n BSC receive poll mode (see 
note 4). 

Resets system from BSC receive poll mode 
(see note 4). 

1. Immediate functions, all others queued. 

2. If not executed from a foreground task, results in an error. 

3 . Only used with a BSC line adapter. An indication is given when these J . 
functions are used on any adapter other than BSC. On output, the 1"-­
WRITE macro rnust u~ mode-1 (see section 8.4.5.5) . 

4. Funct ion code 32 can be used only when V$POLL is 1 (see section 
13.2.2). If V$POLL is not 1, a completion error is given and the 
function is not performed. The system remains in the normal mode. 

Example 

Turn on reverse channel on line 14 of logical unit 45. 

FUNLUN EQU 45 
• 

• 
• 

REVFUN FUNC RCLCB,FUNLUN 
• 

• 
• 

RCLCB LCB 0,0, 4, 14 

Note: Refer to the LCB example (defining an LCB for use 
with a FUNC request) in section 6.2.1. 

• 



--

6.2.7 STAT Macro 

The macro causes the status of an I t O request to be 
examined and control to be transferred to a user defined 
routine for the processing of errors. 

Status Macro : 

Where: 

label 

req 

err 

aaa 

STAT req,err, aaa,bbb,busy 

is the address of the I t O macro. 

is the address of the I 10 error 
routine. 

is the address of the routine to 
process ring detected, or reverse 
channel ON conditions. 

bbb is the address of the routine to 
process break conditions. 

busy is the address of the I t O-not· 
complete routine. 

Example of a STAT Macro 

Check STATUS on the request macro READTY. If the 
request is busy, jump to the routine DELAY. If an error has 

occurred, jump to the rout ine ERR. If ring detected, or 
reverse channel on, jump to RING. If break, jump to 
BREAK. 

STATL1 STAT READTY,ERR,RING,BREAK,DELAY 

PROGRAMMING AT THE CCM LEVEL 

6·7 





• 

SECTION 7 

BUFFER CHAINING 

7.1 INTRODUCTION 

Buffer chaining is a method of dynamically assigning buffer 
areas for incoming data. It eliminates the need for 
allocating large buffer areas. When incoming data fills one 
buffer the input is switched to the next buffer in the chain . 
This allows the application program to begin processing the 
data in the first buffer while the next buffer in the chain is 
receiving data. When the data in the first buffer has been 
processed the buffer can be reassigned to the chain . 

With buffer chain ing only one READ command is required 
for each segment of input data without using a large 
portion of memory. 

The in terface between the application program and the 
CCM is accomplished mainly through the following: 

a. Chain Header (CHR) 

b. Interface Block Header (IBH) 

7 .1.1 Queuing Procedure 

Buffer chaining employs a double pointer queue header. 
The two pointers are the front pointer (F) and the rear 
pointer (R). 

The initial contents of a double pointer queue header is: 

F 0 

R Address of F 

Two routines are used to add and remove the addresses 
from the double pointer queue. The routines are called 
PUTQ and GETQ. The routines can be coded as macros or 
subroutines. 

7.1.2 PUTQ 

The PUTQ macro adds (or queues) a buffer whose address 
is in the X register to a queue whose header address is in 
the 8 register. 

The front and rear pointers are updated accordingly. 

Calling sequence (as a macro): 

LOX I 
LOBI 
PUTQ 

(buffer address) 
(queue header address) 

Exit conditions: 

A register - zero 
X register = no change 
B register - no change 

Macro Code: 

PUTQ MAC 
STXE* 
STX 
TZA 
STA 

EMAC 

Subrout ine Code: 

PUTQ ENTR 
STXE·~ 

STX 
TZA 
STA 
JMP* 

7.1.3 GETQ 

1,8 
1,8 

O,X 

1,8 
l ,B 

O,X · 
PUTQ 

The GETQ macro removes (dequeues) the f irst item from a 
double header queue whose address is in the 8 register. 

Calling sequence (as a macro): 

LOBI 
GETQ 

Exit conditions: 

A register - zero 
8 register - no change 

(queue header address) 

X register - zero if queue was empty; or 
address of item dequeued 

Macro code: 

GETQ MAC 
LOX O,B 
JXZ *+7 
LOA O,X 
STA O,B 
JANZ ,, + 3 
STB 1,8 
EMAC 

7-1 

- - -- - -·--- .. ·----~ ..... - ----------·· ... -----·---- --· .. ---·--·- . -·-------.. , .. _ ... ·-~- - ·- ·- - - -----·---..:.-



BUFFER CHAINING 

Subroutine Code: 

GETQ ENTR 
LOX 0,8 
JXZ * +7 
LOA O,X 
STA 0,8 
JANZ * +3 
STB 1 ,B 
JMP* GETQ 

7.2 CHAIN HEADER 

The cha in header (CHR) contains the pointers of the act ive 
and complete cha ins. Each set of pointers is made up of 
two addresses, the front pointer and the rear pointer. 

The active chain conta ins the pointers to the interface 
buffer headers (section 7.3) that conta in the addresses of 
the chained buffers that are empty or in the process of 
being filled with input data. The complete cha in conta ins 
the pointers to the interface buffer headers that conta in 
the addresses of the chained buffers that are full and 
waiting to be processed by the applicat ion program. 

The active chain front pointer contains the beginning 
address of the first interface buffer header in the act ive 
cha in . The active cha in 's rear pointer contains the 
beginning address of the last interface buffer header in the 
active cha in. The complete chain contains the pointers to 
the first and last interface buffer headers in the complete 
cha in. 

Note: Because both VTAM and the application program 
utilize the chain header, interrupts must be d isabled before 
any buffers are added or removed from the chain header. 
The interrupts should be enabled immediately after the 
buffers have been added or removed. 

The format of the chain header is described below: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 Active chain front pointer 

1 Active chain rear pointer 

2 Complete chain front pointer 

3 Complete chain rear pointer 

4 Address of request block 

7·2 

The chain header words should be in itially set to the 
following values: 

Word 0 = Zero 

Word 1 - Word 0 address 

Word 2 Zero 

Word 3 Word 2 address 

Word 4 Zero 

The initial values may be placed in the chain header by a 
user macro or by a direct data statement. 

Examples: 

a. 

b. 

user macro 

CHR MAC 
DATA 
EMAC 

0 ·~ · 1 0 •:•.} 0 
I I r t 

d irect data statment 

CHR DATA 0 >), 1 0 '=' .1 0 , ' ' ' 

7.3 INTERFACE BLOCK HEADER 

Each buffer presented to the CCM by the applica t ion 
program must be proceded by an interface block header 
(IBH). 

The IBH is f ive words or more in length and defines the 
buffer area. It also contains a pointer to the next buffer in 
the chain. 

The format of the IBH is described below: 

15 14 13 12 11 10 9 8 7 6 54 3 2 1 0 

0 Forward Pointer 
. 

1 Buffer Length 

2 Buffer Starting Address 

3 R/ J Last Address 
I 

Flag 

' 
4 Status IBH 

/ 

Variable User 
Area (optional ) 

Data Block 
Area 

• 



• 

-

Explanation of IBH f ields: 

Forward Pointer · Contains the address of the next I BH in 
the chain. When it is the last IBH in the chain , word zero 
con tains all zeros. 

Buffer length · Contains the defined length ( in bytes) of 
the data block attached to this IBH. (Buffers may vary in 
length, and may be tailored separately for each use.) 

Buffer Starting Address · Contains starting address of the 
data area associated with this IBH. 

R/ l Flag · Signifies if the next free byte in the buffer is in 
the left or r ight half of the word . 

0 - Right side (bits 0·7) 
1 - Left side (bits 8 -15) 

last Address · Contains the address of the next available 
word in the buffer. It is used with the R / L flag to determine 
where the next byte goes. 

Status · Contains the status word of the IBH (used only by 
CCM). 

Data Block Area · This is the buffer area that the data is 
read into. It may or may not immediately follow the IBH, 
but, if the buffer area immediately follows the ISH, it is 
easier to find any programming errors. The data areas 
(buffers) associated with different IBHs do not have to be 
the same size. 

The IBH words should be in itially set to the following 
values: 

Word 0 - Any va lue (see note) 

Word 1 - Length, in bytes, of the data area 

Word 2 Data area starting address 

Word 3 - Zero 

Word 4 - Zero 

Word 5 = Zero 

Note: Word 0 is f illed by the PUTQ routine. Words 3, 4, and 
5 are filled by the CCM. 

A minimum of two interface block headers must be queued 
to the active chain of the chain header, at all t imes, to 
prevent the loss of incoming data. 

BUFFER CHAINING 

Example of PUTQ Routine 

Chain two previously defined IBHs (IBHl and IBH2) for 
BUFl and BUF2 to the active chain header at CHRO. 

LDXI 
LOBI 
PUTQ 
LDXI 
PUTQ 

IBHl 
CHRO 

IBH2 

After execution, the chain header forward pointer contains 
IBHl and the rear pointer contains IBH2. Word 0 of the 
IBHl con ta ins IBH2 and word 0 of IBH2 contains 0. Figure 
7-1 shows the con tent of the active chain header and IBHs 
after the PUTQ routine is executed. 

Active Chain Header IBHl 

F IBHl IBH2 

SUFI 
R IBH2 

IBH2 

0 

BUF2 

Figure 7-1. Contents of CHR and IBHs after PUTQ 

Figure 7-2 shows the contents of CHR and ISH's before and 
after the f irst data block has been filled with a buffer chain 
mode READ. 

7-3 

--------------- - -·--- ------ - ·· .. --..... ~ .. -···-·- - ·-· .. --- .. .. ···- ···--·-.. - - - - ---·- ,. _ ______ , .. ___ - - _._ .. ____ .. __ _ 



BUFFER CHAINING 

a. Before READ is executed.· 

Active 

Chain 

Complete 

Chain 

Chain Header 
(CHR) 

IBHl 

IBH2 

0 

F 

b. After f irst data area is f illed. 

Active F 

Chain 

Complete 

Chain 

Chain Header 
(CHR) 

IBH2 

IBH2 

lBHl 

ISH I 

IBHl 

IBH2 

BUFl 

IBH2 

0 

BUF2 

IBH2 

0 

BUF2. 

ISH 1 

0 

BUFl 

Figure 7-2. Contents of CHR and IBHs During READ 

Example of GETQ Routine 

Remove the full buffer (BUFl) from the complete cha1n 
header CHRO. 

LOBI CHR0+2 
GETQ 

The data in the buffer area is now ready to be processed by 
the appllcat1on program. The X reg1ster contams the 
address of the IBH for BUFl . Figure 7-3 shows the contents 
of the complete chain header and IBH before and after the 
GETQ routine is executed. F1gure 7·4 shows the relat1onsh1p 
of the various fields m the CHR and IBHs. 

7.4 SET AND RESET FUNCTIONS 

Funct1on 25 IS used to set the system m buffer chamtng 
mode. Funct1on 26 15 used to reset the system from buffer 
chaintng mode to normal mode. 

When a FUNC 25 is 1ssued. the set rou tme f1rst validates 
that the calling appl1ca t1on IS a foreground task. If th·e 

7-4 

a. Before GETQ rout ine is executed. 

Active 

Chain 

Complete 

Chain 

Chain Header 
(CHR) 

F IBH2 

R IBH2 

F IBHl 

R IBHl 

b. After GETQ routine is executed. 

Active 

Chain 

Complete 

Chain 

Chain Header 
(CHR) 

F IBH2 

R IBH2 

F 0 

R F 

18H2 

0 

8UF2 

ISH I 

0 

BUFl 

IBHl 

0 

BUF2 

Figure 7 -3 . Contents of CHR and IBHs Before and 

After GETQ 

calling application is a background task an error indicat1on 
is generated and the request is terminated. 

The error indication is set in word 2 , bits 5-14 of the macro 

as foilows: 

CC = 5 (bits 5·7) 
e = 1 (bit 8) 
Status = 4 (b1ts 9 -14) 

(See section 3 for macro expans1on descnpt1on.) 

If the callmg appl1cat1on is a foreground task. the cham 
mode flag m the LSD IS set to 1. 

Note: Any READ request that IS 1ssued pnor to a FUNC 25 
bemg executed. IS assumed to be m the normal mode. 

When a FUNC 26 rs executed. the system is restored to the 
normal mode and the cham mode flag in the LSD IS set to 
zero. 

Note: A FU NC 26 w1ll not create an error if 1ssued rn the 
normal mode. 

. . 



.. 

Act ive Chain 

Header 

IBHl IBH2 

IBH2 0 

Data Area Data Area 
Length Length 

DAl DA2 

_k, End ~ End 
R Data R Data 

Status Status 

DAl DA2 

Data Data 
Area Area 

I' 

F 

< 
R 

.... 

[ 

Chain 
Header 
(CHR) 

IBH3 

IBH5 

IBHl 

IBH2 

Address of 
Request Block 

Request Block I 

BUFFER CHAINING 

... 
F Complete 

> Chain 
R Header 

"' 

IBH3 18H4 IBH5 

IBH4 IBH5 0 

Data Area Data Area Data Area 
Length Length Length 

DA3 DA4 DA5 

} End ,?- End _k, End 
Data Data R R Data 

Status Status Status 

DA3 DA4 DA5 

Data Data Data 
Area Area Area 

Figure 7-4. Relationship of CHR and IBH s 

7.5 PROCEDURE FOR CODING A BUFFER 
CHAIN 

In summary, the following steps should be taken in coding 
a buffer cha ining routine: 

a. Set the system in buffer chain mode (FUNC 25). 

b. Chain some IBHs (minimum of two) to the act ive chain 
headers (PUTQ). 

c. Issue a READ command w ith an immediate return 
fo llowed by a DELAY with a type parameter of two. 
The LCB for this READ command must contain the 
address of the f irst IBH on the active cha in as the 
buffer address. The record length f ield must conta in 
the buffer byte count (with the byte count f ield set for 
the size of the first buffer) . T he LCB extens ion word 
must contain the address of the CHR. 

Note: The delay is to notify the application program when 
the first buffer is full (if desired). This will allow the program 
to process the first part of a message wi thout waiting for 
the EOT. 

d. Clear the event word and bit 6 in the status word of the 
TIDB. 

e. Remove all filled buffers from the complete chain to be 
processed by the appl ication program (GETQ). 

f. Supply enough buffers to the act ive chain whenever 
possible. 
Note: The input operat ion is considered complete in 
one of two cases: 
1. Control character is detected. 
2. Active cha in is empty . 

g. Test for input complete by examin ing the status word in 
the READ macro. (Use STAT macro.) 

- - --------- -·--··--·------ - - -----·-- - - _______ ... -··-·---.....- ·-----..---·-....-- - - - -----~·---··---- --· 



BUFFER CHAINING 

h. Remove the last block of data from the complete chain 
(GETQ). 

Note: If the CRC-STOP attribute was defined (other than 
zero) in the line statement (section 2), the data and the 
EOM character will be in the data area. The addit ional 
characters of the CRC will be in the next higher referenced 
data area. 

Example: 

The EOM character was a CR and 1 addit ional character 
was specified to be read. The result is as follows: 

IBHx IBHx + 1 

IBHx + 1 0 

Buffer Length Buffer Length 

Starting Address Starting Address 

1 Last Address 0 Last Address 

Status Status 

Data CRC 
Area 

CR 

7-6 

• 

• • 

• 



... 

-

SECTION 8 

BINARY SYNCHRONOUS COMMUNICATION 

8.1 INTRODUCTION 

The Binary Synchronous Communications (BSC) procedure 
provides a set of rules for synchronous transmission of 
binary coded data. BSC expands the transmission capabili ­
ties of VTAM through its abil ity to accomodate a variety of 
transmission codes. sse also has a transparent mode that 
allows transmission of control characters and various forms 
of raw data within the normal message format without any 
associated control or graphic sign if icance. BSC is capable 
of accommodating a broad range of medium- and high· 
speed equipment. 

All data in BSC is transmitted as a serial stream of binary 
digits . Synchronous communications means that the 
receiving station on a communications channel operates in 
step with the transmitting station through the recognition 
of a specif ic bit pattern (sync pattern) at the beginning of 
each transmission. 

8.2 DATA LINK 

A data link consists of the communications lines, modems. 
and other communications equipment arranged for data. 
used in the transmission of information between two or 
more stations. 

All transmissions are sent over the line as a sequence of 
binary·coded signals. Control of the data link IS accom· 
plished by the transmission and recognition of special line· 
control characters. 

The data link can be designed to operate either point ·to· 
point (two stat ions) or multipoint (two or more stations). 

8.2.1 Point-To-Point Data Link 

A point-to-point data link consists of a communications 
facility between only two stations. All transmissions over 
the data link must be between the two stations operating 
on the data link. The point·to-point link can be established 
over leased (nonswitched) commun ications lines or a 
switched network. On a leased line (permanent -type 
connection), the transmissions are always between the 
same two stations. On a switched network. the data link is 
disconnected after the two statior.~s complete their trans­
missions. A new data link is created for each subsequent 
transmission by standard dialing procedures (manual or 
automatic). The new data link may be established with any 
other station in the network. 

8.2.2 Multipoint Data Link 

For multipoint operation, one station in the network is 
always designated as the control station. The remaining 
stations are designated as tributary stations. The control 
station manages all transmissions with in the multipoint 
data link. which is normally established over leased 
(nonswitched) lines. This is called a centralized multipoint 
operation. The control station initiates all transmissions by 
selecting or poll ing a tributary station. Any transmission 
over the data link is between the designated cont rol stat1on 
and one of the tributary stations. The other stat ions in the 
network are in a passive monitoring mode. 

8.3 TRANSMISSION CODES 

The major function of BSC is to effect the orderly transfer 
of data from one location to another using communications 
facilities. This data is transferred as binary-coded charac· 
ters comprising text information (message body) and 
optional heading information (message identification and 
destination). In addition , data·link con trol characters are 
required with each message to del1mit various portions of 
the message and control its transmission. 

BSC can accommodate two different code sets (EBCDIC 
and ASCII). Both code sets may also be used in the 
transparent mode. 

When either of these code sets is used with transparent 
mode. the flexibility of the telecommunicat ions system is 
further increased since all possible bit configurations are 
treated as "data only" within transparent text. For this 
mode of operat ion, all assignment restrictions are removed 
from the code set being used. Thus the parity bit is also 
avai lable as a data bit when transmitting ASCII -coded data 
in transparent mode. This additional BSC capability means 
that within the standard message format, any type of 
coded information can be handled using transparent 
mode. 

Three functions are available to condition the system to 
one of the following modes: 

FUNC 29 

Condit ions the system to ope.rate in the " ASCII I not 
transparent" (ANT) mode. In this mode the ASCII charac· 
ter set is used. The switching to transparent mode is not 
possible. 

8 -1 

--- .... ---.- ·--·-- -- ---------------------------------------------·-----------------------



• 

BINARY SYNCHRONOUS COMMUNICATION 

(\_ 
UNC 30 

Conditions the system to operate in the " ASCII / with 
transparent capab ility" (AWT) mode. In this mode the 
ASCI I character set for both message and control is used. 
When in AWT mode. the sequence OLE STX when detected 
will switch the system in to the transparent mode, while 
either OLE ETX or OLE ETB when detected. will switch the 
system back to normal mode. 

/ 

FUNC 31 

~tf'71'ls the system to operate in the EBCDIC mode. This 
mode is similar to the AWT mode in wh1ch switching back 
and forth from normal to transparent is possible. The 
character set used is EBCDIC. The EBCDIC mode IS the 
default one; i.e., when only this mode is being used, no 
FU NC is needed. 

8.4 OPERATION OF THE DATA LINK 

In point-to-po int operation a contention situation exists, 
whereby both stations can attempt to use the communica· 
tions line simultaneously. To minimize this possibility, a 
stat ion bids for the line using the ENQ (enquiry) control 
charac ter . The SYN SYN ENQ sequence (SYN SYN 
represents the synchronous idle characters) provides a 
concise signa l for requesting control of the line, and thus 
leaves a maximum amount of time for line monitoring. If 
simultaneous bidding occurs. one station must persist in 
its bidding attempt to break the contention condition. 
Once a station gains con trol of the line, message transmis· 
sion can start. 

8.4.1 Polling and Selection 

In a multipoint environment, the control station either polls 
or selects the tributary stations. Poll ing is an " invitation to 
send" transmitted from the control station to a speci fic 
tributary station. Select ion is a " request to recei ve" 
not ificat ion from the control stat ion to one of the tributary 
stations instruct ing it to receive the following messag·e(s). 
These capabilities permit the control station to specify the 
transmitting station and to control the direction of 
transmission. Each station in the data link is assigned a 

unique stat ion address. wh ich is used to acqu ire the 
sta t ion 's attention during either polling or selection. Each 
station address can consist of from one to seven charac­
ters, depending on the specif ic station requirements. The 
f irst character addresses the station itself, wh ile additional 
characters indicate the desired component of the sta t ion. 
Depending on the particular · station, the station address 
may consist of the f irst two characters. where the first 
character is repeated for increased reliability. Once the 
station 's attention is acquired and it responds affirmatively 
message transmission can start. 

8·2 

- ~ - - . --- ·- • 

Two FUNC macros are ailable for use with the BSC 
receive poll mode. Th AM system enters and exits the 
poll mode with UNC and UNC • respectively. While 
in the poll mode, only one RE command is required to 
receive a poll message. 

The general format for the BSC receive poll message is: 

SYN SYN EOT PAD SYN Poll 
message 

ENQ PAD 

EOT and ENQ are both either in ASCII or EBCDIC. The PAD 
and all SYN f ields are dropped and the remain ing fields are 
stored in the input buffer. The format of the input buffer is: 

EOT 
Poll 
message ENQ 

Any BSC control character may be used instead of EOT as 
long as the first control character (EOT in the above 
example) is not the same as the last one (ENQ). 

FUNC 7 loads the control character configuration in~o the 
DCM. The FUNC 7 word form at consists of control 
characters in the left byte and zeros in the right byte. 

After successfully receiving the poll message, the poll mode 
is turned off using FUNC 33. 

Examples: 

Using EBCDIC, the EOT character set is 0 011 011 1. If LUO 
is the logical unit for the DCM and LLO is the BSC line 
number. the following statement defines the control 
character as EOT: 

FUNC LCB7,LUO 

LCB7 LCB O,O,LL0,7,0,033400 

The following statement switches the VTAM system to the 
BSC receive poll mode: 

FUNC LCB 32, LUO 

LCB32 LCB O,O,LL0,32 

The following statement switches the VTAM system back 
from the BSC receive poll mode: 

FUNC LCB33,LUO 

LCB33 LCB O,O,LL0,33 

-----



. . 

• 

The following sequence of events occurs during the BSC 
receive poll mode: 

a. Load EOT,O: 

FUNC LCB7,LUO (FUNC 7) 

b. Switch VTAM system to the poll mode: 

FUNC LCB32,LUOO (FUNC 32) 

c. Determine if FUNC 32 is executed : 

READ poll message: 
READ LCBRD,LU0,1 (read) 

d. Switch VTAM system back from the poll mode: 

FUNC LCB33,LUO (FUNC 33) 

e. Resume normal operation 

The VTAM system is interrupted by the DCM for every 
known control character (such as EOT,O). Thus when speed 
is essential, FUNC 7 can be used again (in step e above) 
instead of EOT,O to load another byte configurat ion . 

8.4.2 Message Blocks 

The message consists of one or more blocks of text data. 
The text is transmitted in blocks to provide more accurate 
and efficient error control. The text data is the body of the 
message and is identified by a start-of-text (STX) character 
immediately preceding each block of text. In addition, each 
b lock of text except the last is immediately followed by an 
end-of-transmission-block (ETB) character or an intermedi· 
ate b lock (ITB) character. The last block of text in a 
message is immediately followed by an end-of-text (ETX) 
character. Figure 8-1 shows an example of a regular 
message format. 

The text of the message can be preceded by a heading that 
contains auxiliary information (e.g., station control, prior· 
ity, etc.) pertaining to the following text data. The heading 
is identified by a start-of-heading (SOH) character immedi· 
ately preceding it. 

For greater reliability, a unique character should always 
follow SOH to identify the heading funct ion. The reason tor 
th is is to preclude the possib ility of heading data being 
interpreted as text data, or vice versa, due to transmission 
errors. This unique character should not be used following 
STX. The percent (%) character should not be used for this 
purpose, as SOH is present ly used to identify request-for· 
test or station-dependent control messages. 

BINARY SYNCHRONOUS COMMUNICATION 

·-
s s s s E 8 
y y 0 

... 
Heading T Text T c ... 

N N H X X c 

1-1-- f illed by applice~tion program ---••-11 
Figure 8-1. Regular Message Format 

As each message block is completed, it is checked for 
transmission accuracy at the receiver before the transm is· 
sion continues. 

8.4.3 Error Checking 

Each block of data transmitted is error-checked at the 
receiving station in one of two ways, depending on the code 
set being used (figure 8·2). These checking methods are 
longitudinal-redundancy checking (LRC) or cyclic-redun· 
dancy checking (CRC). 

LRC is a longitudinal- redundancy check on the total data 
bits by message block. It is a basic form of CRC. An LRC 
character is accumulated at both t he sending and receiving 
terminals during the transmission of a block. This 
accumulation is called the block -check character (BCC), 
and it is transmitted immediately following an ETB, ETX, or 
ITB character. The transmitted BCC is compared with the 
accumulated BCC character at the receiving station for an 
equal condition. An equal comparison indicates a good 
transmission of the previous b lock. 

The LRC accumulation is reset by the f1rst STX or SOH 

character received after a line turnaround. All characters 
received thereafter, including control characters. unt il the 
next line turnaround, are included in the accumulation. 
Only SYN characters are not accumulated. Following an 
ITB BCC, the accumulation resets and starts again with the 
next received STX or SOH character. 

A cyclic-redundancy check is a division performed by both 
the transmitting and receiving stations us1ng the numeric 
binary value of the message as a div1dend, whtch 1s d ivided 
by a constant. The quotient is discarded. and the 
remainder serves as the check character, which IS then 
transmitted as the block check character (BCC) immedi· 
ately following a checkpoint character (ITB, ETB, or ETX). 
rhe receiving station compares the transm1tted remainder 
to its own computed remainder, and finds no error if they 
are equal. 

BCC is accumulated. sent, and checked on the receiving 
end by the BSC hardware. BCC errors are indicated by 
VTAM/CCM to the application program as parity errors. 

8·3 

----· - ___ ..._ _____ ..... .... .. __ ........ ..-.. ........ -.... ··-··· - ·- -- -------- ------.. ··---·-·-·· ·~-..., .. ___ ·-------.... _ ....... ... ,._ ..... ______ ______ ,_,_ ....... -... -"' •.. --- -- - ·-·--·--·------ ... __ ........... ,._ .... -



8.4.4 EOT /NAK Pad Format Check 

All BSC stations use the EOT / NAK pad format check to 
reduce the probability of a transmission line error converting 
an affirmative response (OLE sequence) into an EOT or 
NAK character. EOT and NAK must be followed by a trailing 
pad character of all "1" bits. Although all eight bits of the 
trailing pad character may be sent. the receiver should 
check only the first four bit positions. A station receiving 
an EOT or NAK within the text or heading of a transmission 
block (following STX or SOH) will treat the character as 
data and continue to receive or monitor the transmission 
(timeout. recognition of a turn-around character. etc.) . The 
pad character is inserted by the BSC hardware. 

Similar pad format check ing on OLE sequences and ENQ 
may be done on an optional basis. 

8.4.5 Data link Control 

Control of the data link is maintained through the use of 
control characters. ·Several variations in the designations 
and compositions of the data-l ink control characters and 
sequences exist between the two code sets. There varia · 
taons are shown in table 8 ·1. 

Control 
Character 

SYN 
STX 
OLE 
ETX 
ETB 
SOH 
ENQ 
NAK 
ITS 
EOT 

' 
ACK 0 
ACK 1 
WACK 
RVI 
TTD 

Table 8-1. Control Characters 

ASCII 

"} (,.;U.)~ I 0 
0001 9110 
0000 C¥HO 
0001 00 
0000 
0001 
0000 01 
0000 0 01 
0001 0 01 
0001 1 11 
0000 00 
OLE 0 
OLE 1 
OLE ; 
OLE< 
STX ENQ 

Transmission 
Code 

EBCDIC 

ASCII 

EBCDIC 

0011 0010 
0000 0010 
0001 0000 
0000 0011 
0010 0110 
0000 0001 
0010 Il01 
0011 1101 
0001 1111 
0011 0111 

OLE '70 
OLE/ 
OLE. 
OLE@ 
STX ENQ 

NO 
Transparency 

CRC-16 

LRC 
0 

BINARY SYNCHRONOUS COMMUNICATION 

8.4.5.1 SYN · Synchronous Idle 

This character is used to establ ish and maintain synchroni­
zation and as a time fill in the .absence of any data or other 
control characters. Two contiguous SYNs at the start of 
each transmission (SYN SYN) are referred to as the 
character-phase sync pattern. 

8.4.5.2 SOH · Start of Heading 

This character precedes a block of heading characters. A 
heading consists of auxiliary information (such as routing 
and priority) necessary for the system to process the text 
portion of the message. 

8.4.5.3 STX · Start of Text 

This character precedes a block of text characters. Text is 
that portion of a message treated as an entity to be 
transmitted through to the ultimate destination without 
change. STX also terminates a heading. 

8.4.5.4 ETB · End of Transmission 
Block 

The ETB character indicates the end of a block-of· 
' 

characters started with SOH or STX. The block ing structure 
is not necessarily related to the processing format. The 
block-check character is sent immediately following ETB. 
ETB requires a reply indicating the receiving stat ion's 
status (ACK 0, ACK 1, NAK, or, optionally, WACK or RVI). 

8.4.5.5 ITB · End of Intermediate 
Transmission Block 

The ITS character is used to divide a message (heading or 
text) for error checking purposes without causing a reversal 
of transmission direction . The · block -check character 
immediately follows ITS and resets the block-check count. 
After the first intermediate block successive intermediate 

Type of Checking 

Transparency Transparency 
Installed and Installed But 
Operating Not Operating 

CRC·16 CRC-16 

CRC·l6 CRC-16 

Figure 8-2. Error Checking Capabilities 

8·4 



.. , 

BINARY SYNCHRONOUS COMMUNICATION 

blocks need not be preceded by STX or SOH. ( For· 
transparent data, each successive intermediate block must 
begin with DLE STX and ITB must be the last character in 
the intermediate block.) If one intermedia te block is a 
heading and the next intermediate block is text . STX must 
begin the text block. 

Normal line turnaround occurs after the last intermediate 
block , which is terminated by ETB or ETX (DLE ETS or DLE 
ETX for transparency). When one of these ending charac· 
ters is received, the receiving station responds to the entire 
transmission. If a block-check error is detected for any of 
the intermedia te blocks. a negative reply is sen t. wh ich 
requires retransmission of all in termed iate blocks. 

I -..,\ 
j All BSC stations must have the ab ility to receive ITB and its . 

I
I attendant sec. The ability to transmit the ITS character is 

a station option. The ITS when sent , must be the last 
1 physical byte of the data block and the WRITE macro must 

be m mode 1. \ \ ._ -

• • 

8.4.5.6 ETX · End of Text 

The ETX character terminates a block of characters started 
with STX or SOH and transmitted as an entity. The block· 
check character is sent immediately following ETX. ETX 
requ ires a reoly indicat ing the receiving station 's status, 

8.4.5.7 EOT - End of Transr:nission 

This character indicates the end of a message transmis­
sion. wh1ch may contain one or more blocks, including text 
and associa ted headings. It causes a reset of all stations on 
the line. EOT is also used as: 

_.. ---· ·--------·· ----- -
a. A response to a poll when the polled station has nothing 

to transmit. 

b. An abort signal to indicate a system malfunction or 
operational situation that precludes continuation of the 
message transmission. 

8.4.5.8 ENQ - Enquiry 

The ENQ character is used to .9btajo a repeat transmission 
0 the response to a message block if the original respon~ 
'!!as garbled or was not received when expected. ENQ is 
a lso used to bid for the line when using a point -to-point line 
connec t ion. It also indica tes the end of a poll or select ion 
sequence. 

8.4.5.9 ACK 0 / ACK 1 - Affirmative 
Acknowledgment 

These replies , in proper seq uence. indica te tha t the 
previous block was accepted without error and the receiver 
is ready to accept the next block of the transmission. ACK 
0 is the positive response to selection (multipoint) or line 
bid (point-to-point). 

8.4.5.10 WACK - Wait-Before-Transmit 
Positive Acknowledgment 

WACK allows a receiving station to indicate a " temporarily 
not ready to receive" cond ition to the transmitt ing stat ion. 
It can be sent as a response to a text or heading block. 
select ion sequence (multipoint), line bid (pomt -to-point 
with contention) or an ID (iden t if ication ) line bid sequence 
(switched network). WACK is a positive acknowledgment to 
the received data block or to selection. 

The normal transmitting sta t ion repsonse to WACK is ENQ, 
but EOT and DLE EOT are also valid responses . When ENQ 
is received, the receiving station will con t inue to respond 
with WACK until it is ready to continue. See the Continue 
Timeout discussion under Timeouts. An example of how 
WACK is used is shown in figure 8-3. The ability to receive 
WACK is mandatory for all BSC stat ions. bu t the capability 
to send WACK is optional. 

8.4.5.11 NAK - Negative 
Acknowledgment 

NAK indicates that the previous block was received in error 
and the receiver is ready to accept a retransmission of the 
erroneous block. It is also the " not ready" reply to station 
selection or line bid. 

8.4.5.12 OLE - Data Link Escape 

DLE is a control character used exclus1vely to provide 
supplementary line con trol characters. such as WACK. ACK 
0, ACK 1, RVI , and transparent mode con trol characters. 
The sequences DLE STX, DLE ETX, DLE ITS, and DLE ETS 
ini t iate and terminate transparent text. In addi ti on, other 
DLE control sequences (DLE ENQ, DLE DLE. DLE EOT) are 
used to provide active control characters with in transpar· 
ent text as required. 

8-5 

--- - ... ----- ... . -·---·~---- .. ---·---- ---------- ----- ----- ---· .. ----· .. -._._.._ - ----·-·- -·--... - .... -. -··---------- -· --- ·--



8.4.5.13 RVI - Reverse Interrupt 

The RVI control sequence is a positive response used in 
place of the ACK 0 or ACK 1 positive acknowledgment. RVI 
is t ransmitted by a receiving station to request termination 
of the current transmission because of a high priority 
message which it must transmit to the sending station. or 
in case of a multipoint environment. the control station. 
acting as a receiver, now wishes to communicate with 
another station on the line. Successive RVIs cannot be 
transmitted, except in response to ENQ. 

The sending station treats the RVI as a positive acknowl ­
edgment, and responds by transmitting all data that 
prevents it from becoming a receiving station . More than 
one block transmission may be required to empty the 
sending stations's buffers. 

The character structure of the RVI control sequence is as 
follows : 

EBCDIC 
ASCII 

OLE@ 
OLE< 

The ability to receive RVI is mandatory for all B~C stations, 
but the ability to transmit RVI is optional. Figur.e 8-3 
illustra tes the use of RVI. 

8.4.5.14 TTD - Temporary Text Delay 

The TTO control sequence is sent by a sending station in 
message transfer state when it wishes to retain the line but 
is not ready to transmit. The TTD control sequence (STX 
ENQ) is normally sent after approximately two seconds if 
the sending station is not capable of transmitting the next 
text block or initial text block within that time. This two· 
second t imeout avoids the nominal three-second 
timeout at the receiving station (f igure 8-3). 

0 

rece1ve 

The receiving stat ion responds NAK to the TTO sequence, 
and waits for transmission to begin. If the sending station 
is still not ready to transmit, the TTD sequence can be 
repeated one or more times. 

This delay in transmission can occur when the sending 
station's input device has not completely filled the buffer 
due to inherent machine timings. TTD is also transmitted 
by a sending station in message transfer mode to indicate 
to the receiver that it is aborting the current transmission 
(figure 8·3). After receiving NAK to this TTD sequence, the 
sending station sends EOT, resetting the stations to control 
mode (forward abort). 

8-6 

- - ---

BINARY SYNCHRONOUS COMMUNICATION 

8.4.5.15 OLE EOT - Disconnect Sequence 
for a Switched Line 

Transmission of OLE EOT on a switched line indicates to 
the receiver that the transmitter is going "on-hook." Either 
the calling or the called station may transmit this 
disconnect sequence. OLE EOT is normally transmitted 
when all message exchanges are complete, and may 
optionally be transmitted at any time instead of EOT to 
cause a disconnect. 

Alt ernating Affirmative Acknowledgments 

The BSC procedures specify the alternate use of ACK 0 and 
ACK 1 as affirmative replies. The use of ACK 0 and ACK 1 
provides a sequential checking control for a series of 
replies. Thus it is possible to maintain a running check to 

ensure that each reply corresponds to the immediately 
preceding message block. ACK 0 is always used as the 
affirmative reply to selection or line bid. 

MESSAGE FORMATS 

There are three procedures involved in a basic message 
format , they are as follows: 

a. Initialization procedure 

b. Message transfer procedure 

c. Termination procedure 

The binary synchronous communications discipline is 
based on a transmit-response philosophy of operation. That 
is, from the time that an initialization procedure com· 
mences on the communication line through to the 
termtnation procedure, there is a response to each 
turnaround character. 

8.5.1 Initialization Procedure 

The initialization procedure will consist of identificat ion on 
a switched network. and of bidding on a point-to-point 
networ k. 

8.5.1.1 Point-to-Point Operation 
(With Contention) 

When transm ission is started, an initialization sequence 
(ENQ character) is sent by the station attempting to 
acquire the line. The station receiving this character, and 
ready for input, replies with ACK 0. If the station is not 
ready for input it replies with NAK (Negative Acknowledg­
ment). Simultaneous transmission problem is avoided by 
each station being assigned a priority. The high priority 



.. -

BINARY SYNCHRONOUS COMMUNICATION 

WACK (POINT-TO-POINT) 

TRANSMITTING 
STAT! ON: 

RECEIVING 
STATION: 

TRANSMITTING 
STATION: 

RECEIVING 
STATION: 

E 
·N 

Q 

E 
~ N 

Q 

RVI (POINT-TO-POINT) 

TRANSMITTING 
STATION: 

RECEIVING 
STATION: 

TTD 

TRANSMITTING 

E 
* N 

Q 

STATION: E 

RECEIVING 
STATION: 

• N 
Q 

A 
. c 

K 
0 

A 
• c 

K 
0 

A 
• c 

K 
0 

A 

• c 
K 
0 

s 
• T TEXT 

X 

s 
• T TEXT 

X 

s 
• T TEXT 

X 

I 
I LESS THAN 

1 OR EQUALS 
I 2 SECONDS 

FORWARD ABORT SEQUENCE 

TRANSMITTING 
STATION: 

RECEIVING 
STATION : 

E 
* N 

Q 

A 

• c 
K 
0 

* 

NOTE: * = SYNC CHARACTERS 

VTI2-4 16 

s 
T TEXT 
X 

E 
T 
B 

E 
T 
B 

E 
T 
B 

• 

E 
T 
B 

B 
c 
c 

B 
c 
c 

E 
N 
Q 

W A 
• A • C 

C K 
K 1 

s 
• T 

X 

E E 

TEXT 

• N • 0 OR 

• 

w 
A 

c 
K 

Q T 

• 

w 
A 

c 
K 

E B 
T c 
X c 

0 E 
• L 0 

E T 

EMPTY I/0 
ETX - IF LAST BLOCK 

OF MESSAGE 

B 
c 
c 

R 
* v 

TTD 
~ 

s E 
T N 
X Q 

B 
c 
c 

• 

A 
c 
K 
1 

•• 

* 

BUFFER 

s 
T 
X 

s 
T 
X 

TEXT 

N 

* A 
K 

E 
N 
Q 

~ 

E B 
T c 
B c 

A 

• c 
K 
0 

I LESS THAN 
I OR EQUALS 
1 2 SECONDS 
I 

I 

N 

E 
'0 

T 

• A 
K 

E 
' 0 

T 

E 
• N 

* 

TTD 
~ 

s E 
T N 
X Q 

Q 

·• 

Figure 8-3 . Use of WACK, RVI , and TTD 

A 
c 
K 
0 

' 

N 
• A 

K 

s 
T TEXT 
X 

s E 
* T TEXT T 

X X 

) 

I 

' 

B 
c 
c 

A 

* c 
K 
1 

8-7 

-- ~···-------.-- - ·~·---·------ ... ···~-- .. ·--___ ,_ -·------ - -........... ~. ·->-... ·-·----·O- .)oo0-"0000 ___ _.......___. ........... _ _ 0_ 0_4I,-.oo .. .-.- ... O O- - -··--- -·-- ...--· 0 ---- -MMoM-0-



station sends an ENQ to acquire the line and will continue 
to do so until an affirmative reply is received or until the 
retry limit is exhausted. The low priority station can only 
acquire the line if the high priority station has nothing to 
send. 

8.5.1.2 Point-to-Point Operation 
(Without Contention) 

In th is mode of operation one station always starts the 
transmission whether it wants to output or request input. 
The master station sends the init ialization sequence (ENQ). 
The slave station repl ies with the affirmative acknowledg· 
ment (ACK 0) if it is ready, or a negative acknowledgment 
(NAK) if it is not. 

8.5.1.3 Dial Up Operation 

Both stations start in circuit assurance mode. As soon as 
the dialed station goes " Off Hook" the dialing station 
sends one of the following messages: 

-WRU - Who Are You 

The sequence is ENQ. 

·lAM - WRU · 

The sequence is I 0 . . . I 0 . . . ENQ 

The called station will reply with either: 

-10 ACK · If ready 

The sequence is ID .... ID .. .. ACKO 

-NAK · If not ready 

The sequence is IO .... ID .... NAK 

The 10 sequence is optional and consists of 1 to 7 
characters of station identification. If the identification is 
incorrect either station can send a disconnect sequence. 

8.5.2 Message Transfer Procedure 

The message transfer procedure will begin with the f irst 
SOH or STX Character and ends with an EOT. 

8.5.2.1 Transmitting Station 

A message consists of one or more blocks of informat ion. 
The start of text character (STX) precedes each block and 
the end of block character (ETB) followed immediately by 
the sumcheck character terminate that block. 

The star t of heading (SOH) followed by heading characters 
may precede the block of information. The End of text 
character (ETX) replaces the ETB for the last block of a 
message. 

8·8 

• 

BINARY SYNCHRONOUS COMMUNICATION 

If transparent data is transmitted one OLE character 
d irectly precedes the STX characters (ETB or ETX must be 
the last character in the buffer). The transmitting station 
checks the response after each transmission block; further 
transmission sequence depends on the response from the 
receiving station : 

a. A positive response (ACK 0/ ACK 1) will result in 
sending of the next block of data. 

b. A negative response (NAK) wi ll result in the 
retransmission of the block. 

c. No response ( t imeout) or a garbled response will result 
in a request for retransmission of the reply by sending 
an enquiry (ENQ). 

8.5.2.2 Receiving Station 
. 

The receiving station replies to a transmission block with : 

a. ACK 0 and ACK 1 · Alternately to indicate that the 
transmission was successful. and that it is ready for the 
next block. 

b. NAK- To indicate that the transmission was erroneous 
and that it is ready for retransmission. 

c. WACK · To indicate that the transmission was 
successfu l but that it is temporarily not ready to 

. 
recetve. 

8.5.3 Termination Procedure 

Message transmission is ended by the transmission of the 
end·of-transmission character (EOT). The station receiving 
the EOT can now bid for the line and become the 
transmitting station. 

On a switched network, after completion of all message 
exchange, the mandatory disconnect (OLE EOT) can be 
sent by either station before disconnecting the line. 

8.5.4 Transparent Mode 

The system recognizes the sequence OLE STX as a request 
to switch to the transparent mode. The sequence ETX or 
ETB, as the last character in the buffer, swi tches the 
system back into a normal (ASCII or EBCDIC - as may be 
the case) mode. All data link control characters can be 
transmitted as transparent data without taking on control 
mean mg. 

Any data- link control characters transmitted during trans­
parent mode must be preceded by a OLE to be recognized 
as a control function . Thus the following sequences are 
effective during transparent -mode operation: 



... . . 

BINARY SYNCHRONOUS COMMUNICATION 

Sequence 

DLE STX 

OLE ~' ETS 

OLE SYN 

OLE ENQ 

OLE OLE 

OLE* ITS 

Use 

Ini tiates the transparent mode 
for the fol lowing text. 

Terminates a block of transparent 
text , returns the data link to 
normal mode. and calls for a 
reply. 

Terminates the transparent text , 
returns the data link to normal 
mode, and calls for a reply. 

Used to maintain sync or as time­
fill sequence for transparent mode. 

Indicates ' 'disregard this block 
of transparent data" and returns 
link to normal mode. 

Used to permit transmission of 
OLE as data when a bit pattern 

equivalent to OLE appears within 
the transparent data. One OLE 
is disregarded; the other is 
treated as data. 

Terminates an intermediate block 
of transparent data, returns the 

data link to norma l mode. and does 
not call for a reply. The block 

check character follows OLE ITB. 
Transparent intermediate blocks 
may have a particular fixed length 

for a given system. If the next 
intermediate b lock is transparent, 
it must start with OLE STX. 

'~ The OLE part of the sequence is not placed in the buffer 
by the application program. When in transparent mode, 

ETX, ETB, or ITB are recognized by VTAM / CCM and sent 
as OLE ETX, OLE ETS, or OLE ITS only if they are the last 
character in the buffer. 

Control OLE: 
This sets apart 

the following 

data OLE. ~ 
Data 
OLE 

Sync idle for 
fill or timing 

f 
s s D s D D D s Trans Trans Trans 
y y L T L L L \( 

Text Text • Text 
N N E X E E E N 

Blk l 

':'Inserted by SSC LAD 

The OLE STX following an intermediate transparent block 
may be preceded by SYN SYN, to permit any station out of 
sync to cor rectly synchronize with the transmission . 

All replies, enquiries , and headers are transmitted in 
normal mode. Transparent data is received on a character­
by·character basis: thus character phase is maintained in 
the usual manner. 

An example of a block of transparent data 1s shown 1n 
figure 8-4 . 

The boundaries of transparent data are determined by the 
OLE STX and the ITS, ETS, or ETX sequences, wh ich 
initiate and terminate the transparent mode. Thus, the 
length of a transparent message can vary with each 
transmission. 

For checking the transmitted transparent data, CRC-16 is 
available. Refer to Error Checking for t~e available options. 
If the system has VRC in normal mode, this is suppressed 
within transparent-text blocks. This permits using the 
par ity bit as an additional data-bit posit ion for each 

character transmitted as transparent data. 

Note: In transparent mode, the end control character 
(ETX, ETS or ITS) must be the last physical byte in the 
block of data. (The OLE and SCC w ill be inserted by the 
sse hardware.) 

8.5.5 Timeouts 

Timeouts are used to prevent indefinite data-link tie-ups, 
due to false sequences or missed turnaround signals, by 
providing a fixed time within which any particular operation 

must occur. Due to the different requirments for the 
various operations, four specific timeout funct ions are 
provided: transm it, receive, dis€OtJI It , and continue. 

Cllio)J/N<J-

8.5.5. } Transmit Timeout 

This is a nominal one-second timeout that establishes the 
rate at wh ich sync idles are automatically inserted into 

Text end and 
return to 
norma l mode. 

r 

... o··· I ... s ... s s D s Trans 
. .. D .. E ... s--· 

L T c y y L T L T c Text 
E s c N N E X E X c 

Slk 2 I 

.. End of physical block .. 
Figure 8-4. Transparent Data Block 

8-9 

--·-·-· ·----.. --- -··· ... --........ -----------------·--------- --·- ---- - ------·-·-... ----------- -----



' . 
I 
' I 

- - . 

transmitted heading and text data. In normal data, two 
consecutive sync-idle characters (SYN SYN) are inserted 
by the sse hardware every second, whi le for transparent 
data, one transparent sync-idle sequence (OLE SYN) is 
inserted every second. 

8.5.5.2 Receive Timeout 

This is a nominal three-second t imeout, and is used as 
follows : 

a. Limits the waiting t ime tolerated for a transmitting 
stat ion to receive a reply. 

b. Perm its any receiving or monitoring station to check 
the line for sync-idle signals. These sync id les indicate 
that the transmission is continuing; thus this timeout 
is reset and re.started each time a sync idle is 
detected. 

/ 
,/ 

I I c. Limits the time any tributary stat ion in a multipoint 
network will remain in control mode wh ile monitoring 
the line for its address code. This timeout runs 
whenever the station is in control mode. It is reset 
and restarted each time an end signal (EOT, ENQ, 
NAK, WACK, ACK) is recogn ized, as long as the 
sta tion rema ins in control mode. 
Th is timeout is done by hardware, and is monitored by 
VTAM / CCM. In case a three-second timeout occurrs, an 
error indication is returned via the request block. 
Both the parity error (bit 5) and overflow (bit 9) will 
be set in the Detailed Status. 

8.5.5.3 Disconnect Timeout 

This timeout is used opt ionally on switched network data 
links. It is a nominal 20-second timeout used to prevent a 
station hold ing a connection for prolonged periods of 
inact ivity. After 20 seconds of inactivity, the station will 
disconnect from the switched network. 

Note: The disconnect t imeout function i@erformed by 
VTAM/ CCM, but may be implemented oy the application 
program. 

8-10 

BINARY SYNCHRONOUS COMMUNICATION 

8 .5.5.4 Continue Timeout 

This is a nominal two-second t imeout associated with the 
transmission of TTD and WACK. The con tinue t imeout is 
used by stations where the speed of input devices (for 
transmitting stat ions) or output devices (for receiving 
sta t ions) effect buffer availability and may cause transmis· 
sion delays. 

TTD is sent by the transmitt ing station up to two seconds 
after receiving acknowledgment of the previous block if the 
transmitting station is not capable of sending the next 
transmission block before that t ime. 

Note: The continue timeout function is not performed by 
VT AM / CCM but may be implemented by the application 

A receiving sta tion must transmit WACK to indicate a 
" temporar ily not ready to receive" condit ion if it is not able 
to receive with in the two-second timeout. The purpose of 
t he t imeout interval is to permit the receiving station to 
send an appropriate affirmative reply immediately if it 
becomes appropriate within the interval. 

8.5.6 Pad Characters 

To ensure that the first and last characters of a transmission 
are properly transmitted by the data set, all sse stations 
add a pad character before and after each transmission. 
The one-character pad (leading pad) preceding each initial 
synchronizing pattern ensures that the station w ill not start 
sending its synchronizing pattern before the other station 
is prepared to receive. J he le in ad character is the 
sync character sent by the SChar ware.-· 

...._._ . - -·--- -------.....;:;;.._ ____ _ 
A pad character ( tra iling pad) is also added following each 
transmission (e.g. , NAK, EOT, ENQ). Since ETS or ETX 
causes line turnaround, the pad character follows the sec. 
The trailing pad character ensures that the last significant 
character (e.g. , ETB BCC, ETX SCC, or NAK) is sent before 
the data set transm itter turns off. The trailing pad 
character consisting of all ones (hex 'FF' ) is sent by the 
sse LAD. 

.. - .,~----

8.6 TRANSMISSION SEQUENCE AND 

RECOVERY PROCEDURES 

Table 8-2 shows examples of some of the transmission and 
recovery procedures. 



BINARY SYNCHRONOUS COMMUNICATION 
• • 

' 

T able 8-2. Transmission and Recovery Procedures 

TRANSMISSION WITH CONTENTION NEGATIVE RESPONSE 

Terminal A Terminal B Tr ansmit Receive 

(Priorit y 1) (Priorit y 2) 
ENQ 

ENQ • ENQ • ACKO 

ENQ STX, MSGl. ETB .. 
ACKO • NAK 

STX, MSGl , ETX • STX, MSGl, ETB ... 
• ACKl • ACKl 

EOT 
STX, MSG2, ETX • 

• ENQ • ACKO 

ACKO EOT 

• STX, MSGA, ETX 

ACK l 

• EOT 

TRANSMISSION WITHOUT CONTENTION 
LI NE FAILURE DURING RESPONSE 

Terminal ready to receive 
T ransmit Receive 

Calling CPU Called Terminal 
ENQ 

ENQ .. • ACKO 

• · ACKO STX. MSGl , ETB • 

STX. MSGl , ETB • • ACKO* 

• ACKl ENQ 

STX, MSG2. ETX • • ACKl 

• ACKO STX, MSG2. ETX .. 
EOT • ACKO 

EOT 

Term inal Ready to Transm it • 

* ACK 1 Character changed to ACKO due to line failu re. 

Calling CPU Called Ter minal 

ENQ 

• ACKO 

EOT 

• ENQ 

ACKO .. 
• STX, M SGA, ETB 

INVALID RESPONSE 

ACKl 

• STX, MSGB, ETB 
Transmit Receive 

ACKO 
ENQ • EOT .. ACKO 

POSITIVE RESPONSE 
STX. MSGl , ETB ., 

XXX 

ENQ 
Transmit Receive 

XXX 

EN Q 
ENQ 

• ACKO 
XXX 

STX, MSGl , ETB .. ENQ 

-- • ACKl XXX 
\ 

I STX. MSG2, ETX .. EOT 
• ACKO ( Disconnect) 

EOT XXX = Invalid Response 

8· 11 

------------ - ------ -----·------ - -------------- - ---- ·----- -____ . .. __ 



• 

BINARY SYNCHRONOUS COMMUNICATION 

Table 8 -2. Transmission and Recovery Procedures (continued) 

NO RESPONSE 

Transmit Receive 

ENQ 
• ACKO 

STX, MSGl , ETB .. 
TIME-OUT 

ENQ 
TIME-OUT 

ENQ 
TI ME-OUT 

ENQ 
TIME-OUT 

EOT 

FORMAT ERROR CONDITION 

Transmit Receive 

ENQ 
,. ACKO 

STX, MSGl , ETB • 
• ACKl 

STX, M SG2, ETB .. 
• ACK l 

ENQ 
• ACKl 

ENQ .. ACKl 

ENQ .. ACKI 
EOT 

OUT-OF-STEP CONDITION 

Transmit Receive 

ENQ---t~-

• ACKO 

STX, MSG 1, ETB • 
TIM E-OUT 

ENQ---t-
• ACKO 

STX, MSGl , ETB ., 
• ACKl 

STX, M SG2, ETX • 
• ACKO 

Eor ---~-

8-12 

TEMPORARY TEXT DELAY (TTD) 

Transmit Receive 

ENQ 
• ACKO 

STX. M SGI. ETB • 
• ACKl 

TTO 
• NAK 

TTO .. NAK 
STX, MSG2, ETX • .. ACKO 
EOT 

REVERSE INTERRUPT (RVI ) 

Station A Station B 

ENQ 
• ACKO 

STX. MSGl , ETB .. 
• RVI 

* STX. MSG2, ETB .. 
• ACKO 

EOT .. ENQ 
ACKO 

• STX, MSGA, ETB 
ACKl 

• STX, MSGB, ETX 
ACKO 

~ I / 0 buffer is emptied before sending EOT. 

WAIT BEFORE TRANSMIT POSITIVE 
RESPONSE (WACK) 

Transmit Receive 

ENQ-----t-

• ACKO 
STX, M SGl , ETB • 

-...wACK * 
EN Q ----1-

,. ACKl 
STX M SG2, ETX ., 

• ACKO 
EOT- .., 

1) Message received correctly but no buffer available for 
second message. 

- -------- - -- -------------- - -----­• --------- ---------- -

, 

t 



··- '\ 
' 

BINARY SYNCHRONOUS COMMUNICATION 

Table 8-2. Transmission and Recover y Procedures (continued ) 

CIRCUIT ASSURANCE-GOOD-IDENTIFICATION 

Stat ion A St ation B 

ID, ENQ 

• ID, ACKO 
STX, MSGl , ETB .. 

• ACKl 
STX, MSG2, ETX-~ 

• ACKO 
EOT 

CIRCUIT ASSURANCE-STATION B IS NOT 
READ Y TO COMMUNICATE WITH STATION A 

Station A Station B 

I D, ENQ 
I D, NAK 

I D. ENQ .. ID, NAK 
I D, ENQ '-' .. OLE EOT 

Disconnect 

':' Number of retries is determ ined by the user. 

8 13 

--- . ·- - - -----~----·<• ... -~------··-~-, ,, ....., .... , _#0._. _____ ,. , _M_0_~---------------0o-o -•·•·-·- "'• • •·---------·-··-~-·-·-·-- ...,..,.__ -- ------~-" --··-··--·-



• 
• 



-·· 

SECTION 9 

MANAGING BUFFERS 

9.1 INTRODUCTION 

VTAM provides three service routines to access temporary 
storage in centra l memory. The service routines are 
reentrant subrou tines wh ich are resident in central 
memory and have entry points in the VORTEX CL library. 

The subroutines are VT$GTM, to acquire a block of 
temporary storage from a predefined memory pool, 
VT$PTM to return a block of temporary storage to a 
memory pool and VT$BMT to build a memory allocation 
table for a user. 

9.2 MEMORY ALLOCATION ROUTINES 
AND THEIR FUNCTIONS 

9.2.1 VT$BMT 

A memory alloca t ion table must be built for a memory pool 
to be accessed with VT$GTM and VT$PTM to allocate and 
deallocate its temporary storage blocks. VT$BMT crea tes 
the memory allocation table. VT$8MT is called by use of 
the VORTEX ALOC macro. 

label AlOC VT$BMT 

Before calling this subroutine. the user must load the A 
register with the size of the memory pool and the 8 reg1ster 
w1th the address of the memory pool. In addition the first 
locations of the memory pool must be set as follows: 

Entry parameters 

Memory 
Pool Contents 

+0 Smallest block size 
+ 1 Number of blocks 
+2 Next smallest block 

. 
SIZe 

+3 Number of blocks 
• 

• 

• 

2n-2 Largest block size (n) 
2n·1 Number of b locks 
+2n 0 zero 

Remainder of Memory pool 

Exit Parameters 

On return from the call, the memory pool will now have the 
memory allocation table in the f irst locations. The memory 
allocation table will have the fol lowing format: 

Memory 
Pool 

location 

0 
1 
2 
3 
• 

• 

• 

2n-2 
2n-l 
2n 

Contents 

First block size 
Head of queue 
Second b lock size 
Head of its queue 

Nth block 
Head of its queue 
0 

Error Indications on VT$BMT 

On return , the status will be set in the A register. Zero 
indicates an error. The memory pool was not large enough 
to build the desired memory allocation table, or the block 
sizes were not in ascending order. When an error occurrs, 
the first word of the memory pool is set to zero. 

Example: 

Build a memory allocation table for a pool beginning at 
loca t ion BLKADR and extending 560 words. Specify 10 
blocks of 20 words, 10 of 15 words and 20 of 10 words. 

Prior to the VT$BMT call the fi rst seven locations of the 
memory pool must contain the following : 

l ocation Value 

+0 10 
+ 1 20 
+2 15 
+3 10 
+4 20 
+5 10 
+6 0 

EXT VT$ BMT 
• 

• 

• 

LDBI BLKADR 
LDAI 560 
ALOC VT$BMT 

9-1 

·-----~-----------------------·---·--- ---·~---·· .. -- ... ··------------ ·--- --



MANAGING BUFFERS 

Upon return. the memory allocation table would appear as 
follows: 

BlKADR 

+0 10 
+1 BLKADR +550 
+2 15 
+3 BLKADR +345 
+4 20 
+5 BLKADR + 210 
+6 0 

In this example three memory locations ( + 7, 8, and 9) 
would be unused. 

9.2.2 VT$GTM 

The VT$GTM routine allows a user to acqu1re a block of 
temporary storage from a previously defined memory pool. 
If the memory allocation table for the pool does not have 
blocks of the specified size, the request is completed and 
an error is indicated by setting the A register to zero. 

The VT$GTM routine is called by use of the VORTEX ALOC 
macro. 

label AlOC VT$GTM 

Before making the above call, the user must load the A 
register with the number of words in the block desired, and 
the 8 register with the address of the memory allocation 
table. The A register contains the address of the block 
upon return. The VT$GTM routine must not be called by a 
FORTRAN program since the contents of the register will 
not contain the desired parameters. 

Error Indications 

The status after a request to allocate memory is returned in 
the A register as follows: 

A 0 

A i' 0 

No blocks of the desired size are 
available 

Address of the block (normal return) 

The caller should be cautious in the use of this subroutine 
because invalid parameters could damage either the 
memory allocation table or other programs in the system. 

9·2 

EXAMPLE 

Request a block of memory of 20 words from a pool 
maintained by memory allocation table MAT5. 

EXT VT$GTM 
• 

• 

• 

LDAI 20 
LDBI MATS 

ALOC VT$GTM 

9.2.3 VT$PTM 

The VT$PTM subroutine returns a specified-size block of 
temporary storage to a memory pool. If the memory 
allocation table for the pool does not contain blocks of the 
specified size, the next larger size in the memory allocation 
table will be used. This subroutine is called by use of the 
VORTEX ALOC macro: 

label AlOC VT$PTM 

Before making a VT$PTM call, the user must load the A 
register with the address of the memory allocation table for 
the pool, the 8 register with the address of the block being 
returned, and the first location of the block must contain 
the size of the block. Normal return is indicated by the A 
register equal to zero. 

Error Indication 

If the A register is not zero, then no block of the specified 
size was found to be deallocated. 

Example: 

Return a block of memory whose address is in location 
BLKADR which is 15 words long. to the pool maintained by 
a memory allocation table MA T5. 

EXT VT$PTM 
• 

• 
• 

LDB BLKADR 
LDAI 1 5 
STA O,B 
LDAI MATS 
ALOC VT$PTM 



SECTION 10 

CODING A TERMINAL CONTROLLER MODULE (TCM) FOR VTAM 

10.1 INTRODUCTION 

For each additional type of line service rule extending the 
VTAM system beyond the TTY TCM capabilities (described 
in section 5) a TCM must be written. For example a system 
which has Teletypes, synchronous CRT devices and a 
communications link to a large-scale processor involves 
three types of line d isciplines, and so uses three TCM 's. 

In applications where littl e or no line discipline is required 
a user will not need to write a TCM because he may call the 
CCM directly. A TCM is useful where it can simplify a 
relatively complex line disc ipline. 

A TCM is respon sible for terminal unit control, error 
checking. code conversion and all other functions not 
handled by the CCM rela t ing to control of the line and 
terminal equipment on the line. The main function of the 
TCM is to translate and break down the requests received 
from the application into a ser ies of CCM requests which 
perform the particular line discipline. In effect a TCM 
handles the setting up of the CCM requests to perform a 
part icular 1/ 0 operat ion whereas the CCM handles the 
actual I 10 transfer. 

In order to understand the function a Termrnal Controller 
Module (TCM) performs in VTAM, one must trace the steps 
involved in building a VTAM system . The five main 
components of VTAM are: Network Definition Module. 
Network Control Modu le, Termina l and Line OPEN / CLOSE 
Processors, the Communication Controller Module (CCM), 
and the TCM . VTAM is designed to work with terminal · 
orrented tables called Terminal Cont roller Descrrptors 
(TCD) and line-oriented tables called Line Service Descript · 
ors (LSD). Since a TCM only works with terminal -orrented 
tables. only the TCD and its structu re need to be descr ibed 
for cod ing a TCM. 

10.2 TABLES USED BY TCM 

Durrng network definition, prototypes of TCO's are built by 
the NDL processor in a file ca lled VT$DFT in the 

Field Label Word 

TCTCD 0 
TCRQH 1 
TCCTA 2 

TCCLN 3 
TCLLN 3 
TCPCH 4 
TCSWL 4 

TCBSL 4 

TCXMM 4 

TCECH 4 

Bits 

0 ·15 
0-15 
0·15 

0-7 
8-15 
0-7 
8 -8 
9 -9 

10-11 
12 -12 

foreground library from terminal direct1ves rnput to the 
N DL processor. These prototype TCD's are used by the 
Terminal Unit OPEN / CLOSE processor to build TCD's in 
cen tral memory when a termin al is opened. 

The Network Control Module. (NCM) through which a user 
can interrogate the status of the data communication 
network or alter rt, IS int rmately related to the structure of 
the TCD. and as such. any changes to the TCD's structure 
should be kept to adding entries to it and keeping the 
current structure intact. As long as this restrrct1on IS 

followed. modifications to NCM may not be necessary. 

The two major components that need to be considered 
when coding a TCM are the Terminal Unit OPEN / CLOSE 
Processor and the TCM Execu t ive . (TCMEXEC). The 
funct ion of the Terminal OPEN t CLOSE Processor is to build 
the TCD's and thread them to the proper VTAM tables. The 
TTY TCM is composed of a root segment, VT$0CT, and an 
over lay segment. TTYTCM. which is designed to build 
TCD 's for the TTY TCM. To modify or extend the structure 
of the TCD. a new overlay segmen t must be written. The 
root segment, VT$0CT, keys on the TCM type PCTYP, from 
the prototype TCD in the VT$DFT file. All that is necessary 
to incorporate a new overlay segment is to write the overlay 
segment. 

Ten TCM types are supported : one for the TIY TCM and 
n1ne for user-defined TCMs. The overlay names for the 
user-defined TCMs are TERM 1M through TERM9M for TCM 
types 1 through 9 . respect ively. 

In addition. return to the root segment should be made at 
VT$0CY or VT$0CZ depending on whether in terrupts 
should be disabled or not. For example if interrupts are 
currently disabled in the overl ay segment and interrupts 

' are to be enabled . return should be made at VT$0CZ. 
otherwise return should be made at VT$0CY. 

The following is a description of the current structure of the 
Termrnal Controller Descri ptor (TCD): 

Description 

Address of Nex t TCD 
. 

Queue 1n 
Head of Request Queue 
Address Controller Table for TCM 

LU N for the CCM 
Logica l Line Number 
Prompt Character for Terminal 

Switch / Non-Switched Flag 
Sync/ Asynchronous Flag 

Transmission Mode 
Echo/ No-Echo Flag 

1 0-1 

--- -------- - --·-- ·--- - - - - - --.. .. ------- ·------- -- -- ··- - ------- -----



CODING A TERMINAl CONTROllER MODULE (TCM) FOR VTAM 

Field Label 

TCCON 
TCWBC 
TCRBC 
TCNTD 
TCNOD 
TCTYP 
TCCTP 
TCRMD 
TCWMD 
TCRRS 
TCWRS 
TCLDF 
TCIBC 
TCRCA 
TCSTO 
TCWCA 
TCDCC 
TCRBF 
TCDTO 
TCID1 
TCID2 

Word 

4 

4 
4 
5 
5 
5 
5 
6 
6 

6 
6 
6 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Bits 

13-13 
14-14 
15-15 
0-3 
4-7 
8·11 
12-15 
0-2 
3-5 
6-8 
9-11 
12-12 
15-15 
0-15 

0-15 
0-15 

0·1 5 
0-15 
0-15 
0-15 

0·15 

When TCIBC is set (input buffer chaining mode), the 
following should be added to the TCD structure: 

Field Label Word Bits 

TCACF 15 0-15 
TCACR 16 0-15 
TCCCF 17 0·15 
TCCCR 18 0-15 
Reserved 19 0-15 

After extensions to the structure of the TCD have been 
defined and the Terminal Unit OPEN/CLOSE Processor 
overlay segment designed to handle the changes to the 
TCD structure, the user must consider how to interface a 
new TCM with the VTAM system. 

10.3 TCM FUNCTIONS 

A TCM, in genera l, consists of two functiona l groups of 
programs - the VTAM TCM Executive (TCMEXEC) and a 
set of TCM request processmg programs. The TCM 

Executive itself consists of an enqueuing module, VT$TCQ, 
and the TCM request initiation and completion module, 
TC$CEX, which is the main executive routine. l/0 requests 
to a TCM are processed by IOC like l /0 requests to 
standard VORTEX 1/0 drivers. When IOC processes an 110 
request for a TCM, the request is queued against the TCM's 
controller table and the pseudo driver, VT$TCQ, IS 

activated to queue the request to the proper TCD. 

Figure 10-1 depicts the relationsh ip of VTAM and TTY TCM 
modules. 

When coding a TCM, one must consider how a TCM 
controller table (CTBL) should be structured. A TCM 
control ler table is composed of two par ts, the standard 
VORTEX controller table and the TCM Processor Table 

10·2 

·- -- - -

Description 

Physical Connection Flag 
0 = Word Count, 1 - Byte Count for Write 
0 = Word Count, 1 = Byte Count for Read 
Number of Devices 
Number of Devices Open 
TCM Type (0 = TTY TCM) 
Transmission Code Type (0 - ASCII) 
Mode of Read Operation 
Mode of Write Operation 
Read Request Status 
Write Request Status 

Line Disconnect Flag 
Input Buffer Chaining Mode 

CCM Request Address for Read 
Read Timeout Value 
CCM Request Address for Write 
Dynamic Character Count for Read 

Dynamic Read Buffer Address 
Dynamic Read Timeout Value 
First 2 Characters of TU I D 
Second 2 Characters of TU I D 

Description 

Active Chain Front CHR word 1 
Active Chain Rear CHR word 2 
Complete Chain Front CHR word 3 
Complete Chain Rear CHR word 4 
Reserved CHR word 5 

(TPT). The following is a description of the standard 
controller table part: 

Entry 

CTIDB 

CTADNC 

CTOPM 

CTDST 

CTRQBK 

CTRTRY 

CTDVAD 

CTIOA 

CTSTAT 

CTBICB 

CTFCB 

Word Description 

0 Controller Active Flag!TI DB 
Address 

1 Controller Table End Plus One 

2 Op code Mask, which is set to 
the sum of equate values for 
valid op codes for the TCM. 

3 Address of DST ( = 0, set by IOC) 

4 Address of Request Block to be 
Processed. ( = 0, set by 
IOC) 

5 Not used, set to 0. 

6 Controller Device Address 

7 I 10 Algorithm 

8 = 0, for TCM use 

9 Not used, set to 0. 

10 = 0, (set by IOC) 



• 

Entry Word Description 

CTWDS 11 = 0. for TCM use. 

CTFRCT 12 l / 0 Algorithm Frequency Count 

The second part of the TCM CTBL is the TCM processor 
table, which should be changed according to the needs of 
the TCM. An example of a TCM processor table, for the TTY 
TCM , is the following : 

Entry 

TPRPA 

TPWPA 

TPFPA 

Word Description 

13 Primary entry po in t to TTY TCM 
Read request processor program. 

' 

14 Primary entry point to TTY TCM 
Write request processor program. 

15 Primary en try point to TTY TCM 
Function / WEOF processor program. 

A possible extension to the TCM controller table would be 
to keep the standard part constant and to add additional 
en tries to the TCM processor table for new TCM request 
processmg programs. 

10.4 TCM COMPONENTS 

With an understanding of how the TCM controller table 
should be structured, the user can now constder how the 
different components of a TCM work together. 

VT$TCQ. the enqueuing module, is responsible for queuing 
a TCM request on the proper TCD request queue from the 
TCM controller table. A TCM is referenced by a logical unit 
number that has been assigned to the TCM. A TCM ts 
considered to be a driver task, VT$TCQ, with a controller 
table and a TIDB. All requests are queued to the TCD 
request queue, except OPEN/ CLOSE requests. wh1ch are 
queued on the terminal OPEN / CLOSE request queue 
(TC$0CM ) for processing by VT$0CT, the Terminal Unit 
OPEN / CLOSE module. Because the function of VT$TCQ is 
limited to queuing requests. this component may not have 
to be modified. It should be noted that VT$TCQ also 
currently performs an immediate type function requ est for 
clea r ing l/0 on a terminal and setting it down. If this has 
to be changed, VT$TCQ will have to be modified, otherwise, 
coding a TCM should not involve changes in VT$TCQ. 

The main TCM executive routine in TCMEXEC is TC$CEX. 
which is responsible for initiating and complet ing TCM 
requests. TCMEXEC operates as an independent. multi· 
programmed task and is activiated by VT$TCQ when 
requests are queued on a TCD, or as consequence of an 
expired type 3 delay, or a completion of a CCM I 10 request. 
( NOTE: The CCM generates a pseudo interrupt by setting 
the event word (TBEVNT) of TCMEXEC's TIDB non-zero, 
when it is t ime-delay active. 

TC$CEX is composed o f three main loops. The first one 
checks all TCD's for any completion of active CCM re­
quests or timeout conditions on READ request wh ich are 
timeout active. The second loop checks all TCD's fo r 
requests that may be initiated and it there is one. TC$CEX 

CODING A TERMIN AL CONTROLLER MODULE (TCM) FOR VTAM 

does a Jump-and-Mark into the primary entry point of the 
appropriate TCM request processor. and this address is 
kept in the TCM processor table in CTBL. The third loop 
checks for the shortest timeout value specified for READ 
req uests and this value is used for a type 3 delay request 
which suspends TCMEXEC unti l a CCM request 
completes or the time delay expires. At this point, the user 
must consider how TCM requests are initiated and 
completed by TCMEXEC and how TCM request process­
ing programs work, because the bulk o f coding a TCM lies 
in coding the appropriate request processors. 

In general , a TCM request processing program first checks 
if a request can be initiated from in formation kept in the 
TCD. If it cannot be initiated because of the current status 
of the line or term inal , then the program should JUSt ex1t 
and return to TC$CEX. If a TCM request can be initiated, 
then the program should mitiate a senes of one or more 
CCM requests to perform the required steps called tor by 
the part icular TCM request for completion. In order to 
initiate a CCM request. the user must first allocate memory 
for the CCM request block from the memory al location pool. 
This is accomplished v1a calls on VT$GTM , the memory 
allocator program. through V$EX EC. When memory has 
been allocated, the program can build the CCM request 
block by calling TC$BRQ. wh1ch builds the skeleton request 
block, including instructions for dotng a Jump-and-Set 
register into IOC, from information in the TCD. Other 
information from the TCM request can be en tered into the 
CCM request block and the CCM request can be queued 
through IOC by doing an indirect jump to a locat1on wh ich 
contains the address of the CCM request block. The 
following is a description of how CCM request blocks are 
constructed. 

15 14 12 8 I 4 

0 JSR.X 

1 V$1 0C Entry Address 

2 c STATUS e" cc PRIORI TY 

3 w MODE OPCODE LOG. UNI T OF CCM 

4 LCB ADDRESS 

5 NO. OF WORDS, BYTES TRANSFERRED·· 

6 DETAIL STAT US · 

7 JM P 

8 RETURN ADDRESS, COMPLETION ADDRESS 

9 BUFFER LE NGTH 

10 F BUFFER ADDRESS 

11 FUNC CODE LOG LINE NO 

0 

f-

14 
L 

~ c a 
I 
I 
I 

121 (BUFFER OR EXTE NSION WORD) i+l L _ __________ ._J 

* These values are valid only when C = 1 (Request 
Complete). 

~, * Optional , since input/outpu t may be performed directly 
into user's buffer or extension word Is not needed. 

l 0 3 

-------------------·------·------------------------------------------------------------------------------------------------------



COOING A TERMINAL CONTROLLER MODULE (TCM) FOR VTAM 

VTSTCQ 

TCM 
REQUEST 
QUEUEING 
PROGRAM 

I 
+ 

TCD 

TERMINAL 
CONTROLLER 
DESCRIPTOR 

I 

+ 
TC$CEX 

TCM 
EX ECUTIVE 
(TCMEXEC) 
PROGRAM 

TC$CRQ 

TCM 
REQUEST 
COMPLETION 
PROGRAM 

VT/1-1917 A 

10·4 

TC~OCT 

TASK TO 

SCHEDULE I 
VTSOCT 

TCM MODULES NORMAL LY REPLACED OR MODIFIED 

TTY TCM 

FOR 
VTSTCQ I 

.__________. 

TC$FRR/ TC SFWR 

NEXT 
READ/WRITE 
REQUEST ON 
TCD REQU EST 
QUEUE FINDER 
PROGRAM 

TERMINAL 
PROCES -

I
SOR 
TABLE 

I 
I 

CONTROLLER 
TABLE (CTTCOA) 

VTSOCT 

TERMINAL 
OPEN/ CLOSE 
REQUEST 
PROCESSOR 
PROGRAM 

TTYTCM 

TU OPEN/ 
CLOSE 
OVERLAY 
SEGMENT 
FOR 
TTY TCM 

TCSBRQ 

SKELET ON 
CCM 
REQUEST 
BLOCK 
BUILDER 
PROGRAM 

Figure 10-1. VTAM TCM and TTY TCM Modules 

TYREAD 

TTY TCM 
READ REQUEST 
PROCESSOR 
CODE 

TYWRITE 

TTY TCM 
WRITE REQUE ST 
PROCESSOR 
CODE 

TYFUNC 

TTY TCM 
FUNC/ WEOF 
PROCES SOR 
CODE 

- - - --- ----- - - - - - - ------ --------

--, 
I 
I 
I 
I 
I 
I 

I 

I 

I 

• 



"'\ . 

CODING A TERMINAL CONTROLLER MODULE (TCM) FOR VTAM 

The TCM request processing program would normally set 
up the following items after the skeleton CCM request block 
has been built : 

a. W · Wait or Immediate Return option. 

b. MODE · Mode of request. 

c. OP CODE · Type of request (READ. WRITE, FUNC. etc.). 

d . RETURN / COMPLETION ADDRESS · Return address 
after IOC ca ll. Th is would normally be a return address 
in the TCM processor program after a request IS 

queued /completed. When the immediate return op· 
tion is used, this location is also used to store a 
request complet ion address. After the program exits 
to TCM EXEC, control can be returned an entry point 
within the program from TCMEXEC (after the CCM 
request or a buffer. if in the buffer chain mode. has 
completed). Th is permits the completed request to be 
processed and further servicing or completion of the 
TCM request can proceed. 

e. BUFFER LENGTH · Length of mputloutput buffer. 

f. F . Word / Byte Count Flag (must be byte coun t i f in the 
bu ffer chain mode). 

g. BU FFER ADDRESS · Address of input/output buffer 
(address buffer in the data chain when in the buffer 
chain mode). 

h. FUNC CODE- Funct ion code of FUNC request. 

The address of currently active CCM request blocks are 
stored mto the following entries in the TCD: 

TCRCA · Read Completion Address (Also used for FUNC). 

TCWCA . Wr ite Completion Address 

When these en tr ies are non-zero, TCMEXEC assumes that 
the term inal is active with CCM requests wa1ting to be 
completed. Thus. TCMEXEC can check for request comple· 
l ion by test ing the completion bit in the CCM request block 
and 1f completed, TCMEXEC will perform a Jump-and-Mark 
to the completion address that was stored in word 8 of the 
CCM request block by the particular TCM request process­
ing program servicing the request. When the TCM proces· 
sor is reentered it would normally check for line errors by 
checking the detail status word returned by the CCM or the 
error f lag (e) and completion code (cc) f ields. If errors 
occurred then the TCM request should be completed and 
an appropria te error status returned. Otherwise. the TCM 
processor should continue request servicing or complete the 

c 
8 1 

I 'STATUS" =' 

CONTINUE 
IF (ITEST.EQ. l ) GO TO 83 
CALL COMPAR (34) 
IF ( ITEST.EQ.O) GO TO 83 
CALL COMPAR (4) 
IF (TEST.EQ.O) CALL DIAG 

TCM request by calling TC$CRQ (TCM Complete request 
program) and return normal completion status. It should 
be noted that TC$CRQ also dellnks the reques t from the 
TCD request queue when 1t completes the request and 
handles error cond itions like Data-Set -Ready OFF. Par ity 
error, etc. by return ing the proper error status. Lastly. 
memory used for CCM request blocks should be deallocated 
and returned to the memory pool by calling VT$PTM 
through V$EXEC. Then before returnmg to TCMEXEC. the 
TCM processor should clear TCRCA or TCWCA. or whatever 
entry IS used to keep track of act1ve CCM requests to 
ensure that TCMEXEC will no longer consider the TCM 
active with a READ, WRITE. FUNC. etc. request. 

If the buffer cha in ing mode is specified, the complet ion 
address is called each time a buffer or a request is 
completed. 

10.5 MODIFYING THE NETWORK DEFINITION 
MODULE 

Modifying the NDL Processor 

Add itions may be made to the NDL processor by the user. 
In order to ma ke these alterat1ons. one must understand 
the conventions and mechanisms NOM uses to accomplish 
its work. 

All syntact ic analysis is done in PARSE. a FORTRAN 
subroutine. A major portion of this code was produced from 
a BNF notat1on. The onginal BNF syntax appears in the 
comment lines. 

PARSE looks for par t1cula r phrases in the mput stream. 
Each phrase is stored as a character string via DATA 
statements in subroutme COMPAR. PARSE requests a 
check for a phrase by calling COM PAR and passing the 
phrase number. COMPAR reflects the result of the 
compar ison via the COMMON variable !TEST. If the phrase 
occurs, ITEST is set to one and the phrase is deleted from 
the input buffer. If the comparison fads, !TEST is set to 
zero. 

When a phrase is foun d. an act ion is taken . Most of these 
acti ons are calls to BITSET to set fi elds within the con trol 
blocks. If the expected phrase does not occur and an 
alternative ex1s ts. the alt ernat1ve is t r1 ed. If no alternat ives 
exist, subrout ine DIAG is called to produce a syntax error 
message, and a suitable default action IS taken. 

For instance below is the code within PARSE to process the 

STATUS clause of the TERMINAL direct1ve. On the right are 
descr iptive comments. 

BNF statement of alterna t ive 
Start of altern at ive 
If previous alternative true, sk1p th is one 
Compare tor 'STATUS' 
If failed . try next alterna tive 
Compare for · = · 

If failed . issue message 
1contmued) 

10 5 

----- -·~-- --------·- - ----·- --·- -------- ----- - --- - - -.. - - - - -- - - - - ·-·------ - ------



CODING A TERMINAL CONTROLLER MODULE (TCM) FOR VT AM 

c 

c 
84 

86 
85 

('UP' [BITSET(TCDI(3),15,15,0)]. 
CALL COMPAR (35) 
IF (ITEST.EQ.O) GO TO 84 
CALL BITSET (TCDI(3),15,15,0 

/'DOW~' :[BITSET (TCDI(3),15,15,1)] 
CONTINUE 
IF (ITEST.EQ. 1) GO TO 85 
CALL COMPAR (36) 
IF (ITEST.EQ.O) GO TO 86 
CALL BITSET (TCDI(3).15,15,1) 
CONTINUE 
CONTIN UE 
IF (ITEST.EQ.O) CACL DIAG 

83 CONTINUE 

Now suppose a user wanted to alter NDL to recognize a 
third alternative to STATUS, for instance STATUS = 
MAYBE. When this is detected, PSD word 4, bit 15 is to be 

' turned on. 

First. 'MAYBE' is a new phrase and must be added to 
subroutine COM PAR 's list of phrases. Assume that 'MAYBE' 
becomes string 53. The following changes would be made 
to COMPAR: 

• replace the DIMENSION statement for STRING and 
POOL: 

DIMENSION STRING (54), POOL (293) 

• insert the following DATA cards to describe the phrase 
(lower case b indicates a blank with in a Hollerith 
constant). 

C STRING 53 5HMAYBE 
DATA STRING (54) /288/, POOL (288) /5/ 
DATA POOL {289) /2HbM/ , POOL {290) /2HbA/ 
DATA POOL (29 1) /2HbY / , POOL (292) /2HbB / 
DATA POOL {2 9 3) /2HbE / 

Then the following statements would be inserted in 
subrout ine PARSE, fol lowing statement number 86: 

IF (ITEST.EQ. l ) GO TO 986 

CALL COMPAR (53) 
IF (ITEST.EQ.O) GO TO 986 

CALL BITSET (LSD(5),15,15,1) 

986 CONTINUE 

10-6 

If 'DOWN' worked, 
skip 'MAYBE' 

Compare for 'MAYBE' 
If failed, try next 

alternat ive 
Do action for 'MAYBE' 

• 

Compare for ·up· 
If fa iled, try 'DOWN ' 
Do act ion for ·UP' 

Start of 'DOWN' clause 
If ·up· worked, skip 'DOWN ' 
Compare for 'DOWN' 
If failed, try next alternative 
Do act ion for 'DOWN' 

~ 

If both 'UP' and 'DOWN' failed , issue 
message beginn ing of next alternative 

10.6 PROCEDURE TO CODE A TCM 

FOR VTAM 

In summary, the following steps should be taken in cod ing 
a TCM for VTAM: 

a. Perform an analysis of terminal requ irements and line 
discipline for the proposed data communicat ions 
network. 

b. Define the structure of the terminal-or iented tables 
(TCD) to be used by the TCM. 

c. If there exist terminal or line attributes not described 
by NDL, then the NDL processor may have to be 
modified to include these attributes. 

d. Design a terminal unit OPEN/ CLOSE processor overlay 
segment that can be ca lled by the root segment, 
VT$0CT, by keying on the TCM type field of the 
prototype TCD. This overlay segment should build the 
TCD in main memory from the prototype TCD and 
other information bu ilt by the NDL processor during 
network definition. 

e. Analyze the modifications to VTAM in relation to its 
impact on NCM, the network control module. Changes 
which require mod ifications to NCM shou ld be 
avoided. 

f. Design the TCM around the existing TCM Execut ive, 
TCMEXEC, components: VT$TCQ, TC$CEX, TC$CRQ. If 
addit ional services are required from TCMEXEC which 
are not curren t ly provided, then the particular 
TCMEXEC component may have to be modified . After 
coding the TCM request processor programs, the TCM 
controller table with its TCM processor table should 
be built. When all these VTAM components are 
assembled, then a system generation to build the 
VTAM system should be performed and an N DL run 
made to define the communications network. 

' 



-

-

SECTION 11 

CONTROLLING A NETWORK 

11.1 INTRODUCTION 

The Network Control Module (NCM) functions as an 
interface between the VTAM system and the VORTEX 
operator. The operator uses NCM for removing and adding 
lines and terminals to and from an on -line active data­
communications network, for redirecting 110 from one 
terminal to another, and for listing the status of lines and 
terminals. 

NCM operates as a foreground VORTEX task and is 
invoked by the operator with an OPCOM schedule request. 
VT AM does not need to be running to star t NCM. 

Direct ives to NCM are entered on the current OC device, 
and the results are reported on the OC unit. In addition to 
the directives provided by NCM, more extensive changes to 
the VTAM network are possible through the network 
definition language (described in section 2). 

The directives in NCM are as follows: 

UP set a line/ terminal on-line 

DOWN set a line/ terminal off-line 

REDIRECT redirect one terminal's 110 to another 

RESTORE restore l/0 to original terminal 

LIST list current status of a line/ terminal 

END terminate NCM task 

Many of these functions alter fundamental VTAM tables. so 
care should be taken in the use of NCM. For instance, if an 
operating VTAM terminal is DOWNed, NCM purges current 
110 requests, marks the terminal down, and resets the 
VTAM files. This obviously could cause data for that 
terminal to be lost. 

11.2 DIRECTIVES 

11.2.1 General Format of NCM Directives 

All NCM directives have the following general format: 

dir , p( 1 ),p(2), ... ,p(n) . comment 

where d ir is the directive name and p(1 ),p{2) ... .(n) is the 
parameter list in which individual parameters are separat­
ed with commas. The actual parameters are defined by 
the directive. All blanks are ignored. Equal signs are treat­
ed as commas. The period-comment field is optional. 

The maximum length of a directive is 72 characters. 

11.2.2 UP Directive 

The UP directive causes the current status of either a 
logical line or terminal to be marked as on -line and 
available for 110. 

If a line is specified, NCM marks the prototype LSD on 
VTAM file VT$DFL and Physical Line Table (Pl T) as UP. 

If a terminal is specified, the corresponding TUID index in 
file VT$DFT and the Logical Terminal Table (L TT) are 

marked as UP. 

The format is: 

UP, u(l) , u(2) , ... ,u(n). 

where each u(i) is either a terminal identifier or a logical 
line specifier as defined in the network definition lan­
guage. A logical line specifier is a pair < c, I > , where 
c = CCM VORTEX logical unit number, and I ~ VTAM 
logical line number. 

Any number of units (up to a total directive length of 72 
characters) may be specified and will be processed in 
order. An error message is given, if the unit specified was 
not def ined in NDL or is already UP. 

Examples of UP Direc tive 

Example 1: 

Suppose the VORTEX CCM logical unit number is 182. 

Change the status of logical line 012 to on-line. 

UP. 182.012 

Example 2: 

Vary the status of logical line 012 and terminal RMOl on -
1 in e. 

UP, 182,012, RM01 

11.2.3 DOWN Directive 

The DOWN directive causes the current status of a 
termina l or logical l ine to be marked as off-line and not 
operat ional. 

I f a terminal is specified , the corresponding terminal 
identifier in file VT$DFT and the logical terminal table 
(L TT) is marked DOWN . I f the speci fied terminal is OPEN , 
a FUNC (code 4) is issued to clear all 1/ 0. 

A logical line specified as a parameter to the DOWN direc­
tive causes the corresponding prototype LSD in file 

11 ·1 

··--- ----------- -- ·~ ... -·------ --- ~--·-- --·....-.-·-- . ·---··---.__,.. . ..,,,..,_ __ ..... -----·- -·-·-·- ----- --... - ,_.,._ ...., ____ _ .. , ... ____ ·- ·-- ---- __ .. ___ .,.__ ·- ·~-

___ .., ____ ..... _ 



CONTROLLING A NETWORK 

VT$DFL and the Physical Line Table (PL T) to be marked 
DOWN. If the line is OPEN at the time, a FUNC (code 21) is 
issued to clear all CCM 1/ 0 requests. Then for all termi­
nals currently OPEN on the line, a FUNC (code 4) is is­
sued to clear all TCM 1/0 requests. 

The DOWN directive does not close all lines and terminals 
associated with the downed un it. Instead, it marks the 
downed units RMD (prototype down), clears any current 
requests against the downed unit, and causes future 
requests to be rejected. Further, if a line is downed, all 
current requests for all terminals on that line are cleared. 
Also all future requests for these terminals on the downed 
line are rejected. In this manner, DOWN is the functional 
inverse of UP. 

The form of the DOWN directive is: 

DOWN, u(1 ),u(2), ... , u(n). 

where each u(i) is either a terminal identifier or a logical 
line specif ier (see section 11.2.2) . Any number of units (up 
to a total d irective length of 72 characters) may be speci­
fied in this directive and they are processed in order. If the 
unit specified was not defined by NOM. an error message 
is given. If the unit is currently DOWN, error is indicated. 

Loss of data may occur, if the unit specified is OPEN. 

Examples of a DOWN Directive 

Example 1: 

Suppose the VORTEX CCM logical unit number is 182. 
Set logical line 012 down. 

DOWN, 182,012 

Example 2: 

Set logical line 012 and terminal RM02 down. 

DOWN, 182,012,RM02 

11.2.4 REDIRECT Directive 

The REDIRECT directive allows the operator to substitute 
another terminal to receive and transmit messages. This 
would be useful for terminal and/or line failures. 

The network control module alters the TUID index entry to 
point to a different prototype TCD. This changes not only 
the logical line for the TUID but also may change the 
physical hardware characteristics for the TU I D. 

The general form of this directive is: 

REDIRECT, 1(1) = r(l ), 1(2) = r(2), .. . ,/(n) = r(n). 

11 ·2 

• 

Each l(i) and r(i) are defined TUID's, for which r(i) replaces 
the l(i). 

If any of the terminals specified by l(i) or r(i) were not 
defined by the NDL processor. an error is given in the 
following format: 

NCnn 

Any number of TUID pairs may be specified in the directive 
up to a total length of 72 characters. A comma may be 
substituted for an equal sign. 

If the terminal being reassigned is OPEN at the t ime. it 
may be necessary to DOWN the terminal. Since only RMD 
files are altered by this direct ive, the reassignment takes 
effect when the terminal is OPENed. 

Examples of REDIRECT Directives 

Example 1: 

Reassign l/0 from terminal RM01 to terminal RM02. 

REDIRECT, RM01 • RM02. 

Example 2: 

Terminal XRAY has failed, so shift its I 10 requests to 
BETA. 

REDIRECT,XRAY,BETA. 

11.2.5 RESTORE Directive 

The RESTORE directive restores terminal 110 requests to 
the original terminal. The TU I D may have been altered by 
the REDIRECT directive. The format of this direct ive is as 
follows: 

RESTORE, t{1), t(2), .. . , t(n). 

Each t(i) is a TUID of a terminal to be restored. 

Any number of TUID's may be specified (not exceeding the 
total directive length of 72 characters). Each is restored in 
turn left to right. 

Error message NC03 UNDEFINED TUID appears if any of 
the parameters of RESTORE had not been defined before 
this in NDL. 

Since only RMD tables are changed by the directive, it may 
be necessary to DOWN the terminal. The change takes 
effect only when the terminal is being OPENed. 

Examples of RESTORE Directives 

Example 1: 

Terminal DOG has been REDIRECTED. Restore its original 
status. 

' 



-·· 

......... 

RESTORE,DOG. 

Example 2: 

Restore terminals REDIRECTED in sect1on 11 .2.4. example 
2. 

RESTORE,BETA,XRAY. 

11.2.6 LIST Directive 

The LIST directive lists the current status of VTAM logical 
lines and terminals. NCM searches the VTAM files and 
resident tables for in format ion , such as UP/ DOWN. 
OPENED/ CLOSED and current assignments. A message is 
formatted and wr itten to the OC device. 

If no parameters are given on the directive. NCM lists the 
status of all defined VTAM lines and term1nals. No f iles or 
tables are altered by LIST. 

The format of the LIST directive is: 

LIST, u(l), u(2), ... . u(n). 

each u(i ) is either a TUID or a logical line specifier (see 
section 11.2.2) for w hich the status is to be li sted. 

In the output format of the LIST directive. the P field 
contains the physical line num ber and the T field contains 
the logical unit number assigned by the JCP directive. 

CONTROLLING A NETWORK 

Examples of LIST Directive 

Example 1: 

List the current status of terminals TTYl and TTY2. 

LIST,TTY1,TTY2 

Example 2: 

List the current status of terminals LA and NY and logical 
lines 01 and 02 both on the CCM assigned to VORTEX log­
ical unit number 17. 

LIST,LA,NY ,17,01,17,02 

Example 3 : 

List the current status of al l VTAM terminals and lines. 

LIST 

NCM Error Codes 

NCO! Syntax error 

NC02 Undefined Line 

NC03 Undefined TUID 

NC04 l / 0 Error on file VT$DFL 

NC05 l/0 Error on file VT$DFT 

NC06 Undefined CCM Number 

11 · 3 

... _.. -.....--·------------------------------·---------·~ ........ .. -- -----·-·-· .. ----- -------- ·-"''·---... ----·---- -.-.. .. ._ _____ ... 



/ 

' 



• • 

SECTION 12 

PROGRAMMING AN APPLICATION 

This section presents a simple data communication 
example, an assembly-language program to handle inquir· 
ies from a terminal about a data base stored on a rotating· 
memory file. The inquiries are f ixed-format messages of 
four-characters. The terminal handled by this program is a 
Teletype-compatible CRT device. 

The program converts the messages to a key into the data 
base, reads the specified record and outputs it to the 
terminal. An inquiry session is terminated by the user 
entering " OF" . Editing, deleting characters and starting 
over , is provided through the TCM. Error notification is 
provided by the program. 

Before runn ing this program the network needs to be 
configured with NDL statements as follows: 

L1 N E 2: 

ADDRESS = 040, 
CONNECT = DIRECT, 
EOM-STOP = 0215, 
ERROR-STOP = TRUE, 
PARITY = EVEN, 
SPEED = 10, 
LI NE-TYPE = HALF-DUPLEX, 

MODE = ASYNCHRONOUS, 
STATUS = UP. 

TERMI NAL CRTl : 

END. 

LINE = 2 , 
CODE = ASCII , 
DEVICES = 1, 
ECHO = TRUE, 
PROMPT = 0207, 
TYPE = TTYl , 
UNIT = 17, 
STATUS = UP. 

VT/1-1928 

LOG 'RETRY' 
MESSAGE AT 

TERMINAL 

Gl 

LOG 
MESSAGE 

SUSPEND 
TASK 

YES 

YES 

START 

OPEN 
PMD 
FILE 

OPEN CRT 
TEII•.\!NAL 

Ar'JO OUT PUT 
I NSTRUCTIOt~~ 

SET 
10 SECOND 
TIMEOUT 

READ 
CRT 

TER!<'INAL 

TIMED 
OUT 

READ 
LRROR 

DATA 
SET O FF 

NO 

'OF' 
ENTERED 

YES 

ClOSE 
R/-.-10 
Fl L E 

figure 12 -1. Flowchart of VT AM Application 

5H~D 

' PROMPT TC 
1 fR,·,;tt.JAL 

CLOSE 
CPT 

HfiMIN AL 

Y(S 

A\CESS 

HAD 
P.t .. \0 

ii!COPD 

L '.I!) 

f.'! t -D 
tr:-;1 ( ... h 

. ,...., . .. 

: •. AJ1 PUT 
"fC C. !· i"' 
TC' Ch.T 

TE"I,',ff J,\[. 

D'IT 
r c· . '='RHx 

12 1 

---- ------ ------------- ---------- - ---- -------------·-·--- ---------



PROGRAMMING AN APPLICATION 

12·2 

************************************************************************ 
* • 

* • 
* 
* 
* 
* 
* 
* 
* 

VTAM SAMPLE PROGRAM 

THIS PROGRAM READS A FIXED FORMAT, 4 CHARACTER MESSAGE 
FROM AN ASYNCHRONOUS TTY COMPATIBLE TERMINAL. IT THEN 
CONVERTS THE MESSAGE TO A BINARY NUMBER AND USES IT AS 
THE LOGICAL RECORD NUMBER TO RANDOMLY READ FROM A FILE. 
ONCE READ, THE RECORD IS OUTPUT TO THE TERMINAL. ERROR 
NOTIFICATION AND PROGRAM TERMINATION IS ALSO PROVIDED. 

• 
* • 
• 
• 
* 
* 
* 
* •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

* * EQUATES FOR LOGICAL UNITS 

* 
LU1 
LU2 
LU3 

* 

EQU 
EQU 
EQU 

180 
186 
1 

* BEGIN PROGRAM 
* 
PO 

P1 

• 
* 
* 
* 
* 
* 
P2 

P3 

* 

NAME 
OPEN 
OPEN 
WRITE 
FUNC 
READ 

STAT 
LDA 
SRE 
JMP 
CLOSE 
CLOSE 
EXIT 
LDB 
CALL 
JAN 
WRITE 
JMP 

PO 
DATAB,LU1 
TUID,LU2 
INSTR,LU2 
CRT1, LU2 
CRT 1 , LU2, , 1 

OPEN RMD FILE CONTAINING DATA BASE 
OPEN TERMINAL 
WRITE INSTRUCTIONS TO TERMINAL 
SET TCM TO PROMPT AFTER 10 SECOND TIMEOUT 
READ TERMINAL (ASCII MODE ) 
STATUS READ AFTER COMPLETION 

ER1•I/O ERROR ROUTINE 
ER2•DATA SET OFF ROUTINE 
P1•READ TIMEOUT ROUTINE 
P2•LOOP ON STAT,SHOULD NEVER HAPPEN 

P 1 ,ER1 ,ER2,P1 ,P2 
BUF GOOD READ,GET FIRST 2 CHARACTERS OF MESSAGE 
OF,7,010 OF ENTERED? 
P3 NO,THEN PROCESS MESSAGE 
DATAB,LU1 YES,CLOSE RMD FILE 
TUID,LU2 CLOSE TERMINAL 

RETURN TO VORTEX 
BUF+1 
ACCESS 
ER1 
DATAB,LU2 
P1 

GET SECOND 2 CHARACTERS OF MESSAGE 
ACCESS DATA BASE 
ERROR? 
NO,OUTPUT RECORD TO TERMINAL 
LOOP TO READ NEXT REQUEST 

* TERMINAL OR RMD PARITY ERROR 

• 
ER1 

* 

WRITE 
JMP 

ERMSG 1, LU2 
P1 

LOG ERROR MESSAGE AT TERMINAL 
TRY READ AGAIN 

* DATA SET OFF ERROR 

* 
ER2 

* 
* 
* 
* 
* 
* • 

WRITE ERMSG2,LU3 
SUSPND 

LOG ERROR TO OPERATOR 
WAIT UNTIL RE- SCHEDULED OR ABORTED 

ACCESS 
ENTER : 
EXIT: 

DATA BASE SUBROUTINE 
A,B•RECORD NUMBER AS 4 CHARACTER ASCII NUMBER 
DATAB•RECORD 
A•+ (NO ERROR) 
A•- (ERROR) 

ACCESS DATA 0 
CALL ASBI CONVERT INPUT TO BINARY 



.. 
' 
' 

PROGRAMMING AN APPLICATION 

AC1 
STB 
READ 
LDAE 
LRLA 
JMP* 

RECNO 
DATAB,LU1 
AC1+2 

USE AS RANDOM ACCESS RECORD NUMBER IN FCB 
READ RANDOM RECORD 
GET I/O STATUS WORD 

7 POSITION ERROR BIT TO SIGN 
ACCESS EXIT 

* 
* CONVERT ASCII TO BINARY SUBROUTINE 

* 
* 
* ASBI 

ENTER: 
EXIT: 

DATA 
STA 
TBA 
ANA 
TAX 

A,B=4 CHARACTER ASCII NUMBER 
B=BINARY EQUIVALENT 

0 

A1 

BM 17 

SAVE HIGH-ORDER 2 DIGITS (0 1- 2) 

ISOLATE D4 
SAVE 

LLRL 8 

A1 

* 

ANA 
TAB 
TXA 
MUL 
TBX 
LDA 
ANA 
TAB 
TXA 
MULI 
TBX 
LDA 
LRLA 
ANA 
TAB 
TXA 
MULI 
JMP* 
DATA 

BM 17 

TEN 

A1 
BM 17 

0144 

A1 
8 
BM17 

01750 
ASBI 
0 

ISOLATE D3 

D3* 10+D4*1 
SAVE 

ISOLATE D2 

D2*100+D3*10+D4*1 
SAVE 

ISOLATE D1 

D1*1000+D2*100+D3*10+D4*1 
EXIT 

* EQUATES FOR VORTEX LOWER MEMORY CONSTANTS 

* 
TEN 
BM17 

* 

EQU 
EQU 

047 1 
0472 

* DATA CONTROL BLOCKS AND BUFFERS 

* 
DATAB 
DATABF 
RECNO 

* 
INSTR 
MSGO 

* 
TUID 
CRT1 
BUF 
* 

FCB 
ass 
EQU 

DCB 
DATA 
DATA 

DCB 
DCB 
ass 

ERMSG1 DCB 
MSG 1 DATA 

* 
ERMSG2 DCB 
MSG2 DATA 
OF DATA 

' / ' / ' / 36,DATABF,, I FI I LE I 01 
36 
DATAB+3 

33,MSGO 
'nATA BASE INQUIRY. TYPE 4 DIGIT KEY TO ACCESS, 
\ TO 'l"ERMINATE. I 

\ I \ I 
CR I T1 

2,BUF,05003 
2 

9,MSG1 
'I/O ERROR, 

7,MSG2 

I 
RETRY. 

'DATA SET OFF. 1 

'oF' 
END PO 

I 

"OF" 

12 3 

·--·- , .... ------·---.. ·· .... .. ·---·-________________ ,, ____ .. _,,_ ----.. - .---.: .._..__ .. _·-· ----··- - ·-------..... _.. . ., ...... ----···~·--.. ·-· ~--------·--·---··-·--·-----~ ........ 



- -



' 

SECTION 13 

CONFIGURING A VTAM SYSTEM 

13.1 INTRODUCTION 

The procedure for system generat ion of a system with 
VTAM is the same as that for VORTEX with the additional 
steps described in th is section. Steps a, b, and c are 
required only if more than four DCM's are used or if 
modificat ions are needed to the standard VTAM system. 
Refer to the following sections for details. These additional 
procedures for VT AM are: 

a. Mod ifying VTAM CCM tables and adding controller 
tables with installat ion dependent parameters. 

b . Adding TDF cards and binary decks for VTAM CCM. 

c. Adding TDF cards and binary decks for TTY TCM. 

d. Reserving memory for DCM's control words (with MRY 
d irective and DEF directives). 

e. Def ining data communications multiplexors tn 
peripheral architecture (wi th EQP directive). 

f. Defining interrupt structure required by DCM (with 
PIM directive). 

g. Associating logical unit numbers and names wit h 
physical devices (with ASN direct ive). 

h. Loading anc illary VTAM system modules (OPEN, 
CLOSE, NOM, and NCM) subsequent to VORTEX 
system generation. 

13.2 MODIFYING VTAM CCM TABLES AND 
ADDING CONTROLLER TABLES 

13.2.1 CCM Tables 

If the SYSGEN EQP directives specify a TC or MX device, 
SYSGEN will bu ild the VTAM data module CC$TLB. This 
module contains a number of variable parameters, each of 
which has a default value, but wh ich can be redefined by 
the SYSGEN DEF directive. The names and default values 
of these parameters are: 

The names and default values of these parameters are: 

Name 
CBSIZE 
NUMLL 
NUMENx 
BCTNTx 
NULE L 
NU TEL 

Default Value 

15 
20 
64 
64 
32 
10 

where x refers to the DCM number 

Funct ions of these parameters are described below. 

CBSIZE is the number of 2-word entries requ ired for the 
circular interrupt buffer, wh ich must be large enough to 
support the maximum number of DCM interrupts that can 
occur simultaneously. The number of entries needed 
depends upon the maximum number of active lines at any 
time. 

A va lue of half of the number of active lines may be 
adequate in most cases. A more exact determination 
requires an analys is of the speci f ic communica tions system 
being generated along with the application of queuing 
theory. 

NUMLL is the number of logical lines. The default value is 
20. 

NUMENx specifies the number of physical lines for the 
DCM MXxA. One physica l line table is constructed tor each 
DCM supported by VTAM, as defined by the SYSGEN 
directive: 

EQP, MXxA, .. . 

where x is the DCM number 
The format of the corresponding physical line table is as 
follows : 

C52LPx 

EXT 
NAME 
DATA 
DUP 
DATA 

NUMENx 
C52PLx 
NUMENX 
NUMENx 
0 

The multiplexor equ ipment table provides the means to 
obta in the controller table address for an interrupting 
DCM . The structure of the multiplexor equ ipment table is: 

CC.SMET DATA 
DATA 
DATA 
• 

• 

• 

DATA 

NOMUXS 
CTMX OA 
CTMX 1A 

CTMXnA 

NOMUXS, is the number of entries in the table. NOMUXS 
equals n + 1 where n is the largest DCM number if the 
SYSGEN EQP direct ives (EQP. MXnA, ... ). 

13·1 

--.... -............... _, ___ ·-----·~---------·---,--·--· .. ·- --- ·------- --·-"- ··---·- ------ ----- --~ ....... · ~ ·-- ~ - -----··--·--..-------·4· --------·· 



CONFIGURING A VTAM SYSTEM 

BCTNTx is the number of lines using buffer chaining for 
DCM MXxA. One buffer chain table (BCT) is constructed for 
each DCM supported by VTAM, when buffer chaining mode 
of input is used, as defined by the SYSGEN directive: 

EQP,MXxA, ... 

Each entry corresponds to one physical line number wh ich, 
when in use, contains a chain header address to that line. 
The format for a buffer chain table is as follows: 

EXT BCTNTx 
NAME BCTXxA 

BCTXxA DATA BCTNTx 
DUP BCTNTX 
DATA 0 

NUTEL is the number of opened terminals. The size of the 
VTAM dynamic memory pool is determined by the number 
of lines and termina ls to be open with current l / 0 requests. 
Two pool elements are assigned for each terminal with 
active I 10 requests at one time, and one pool element is 
assigned for each line opened at any one time. NULEL is 
the number of opened lines. 

13.2.2 Controller Table 

A CCM controller table must be provided for each DCM in 
the system. The VORTEX SGL contains controller tables for 
four DCM's. If more controller tables are required than are 
furnished with the SGL, their source modules can be 
created by using the controller table CTMXOA as a model. 

Names of DCM controller tables must be in the form 
CTMXnA, where n is the controller number. CTMXOA is the 
name of the controller table for the first DCM, CTMXlA is 
the name of the controller table for the second DCM, and 
so forth. 

Before assembly, the following changes (see the assembly 
list ing for CTMXOA) must be made to the controller table 
CTMXOA: 

a. Replace the controller ta lbe name in the NAME 
directive and the following EQU with the name of the 
controller table being assembled. For DCM 4 (the 5th 
DCM) th is would be: 

CTMX4A 
NAME 
EQU 

CTMX4A 

* 

b. Change the TIDB address, TBMXnA (word 00 CTIDB), 
to reflect the proper controller number. The changes for 
DCM 4 would be as follows: 

EXT 
DATA 

TBMX4A 
TBMX4A 

c. Change the DEVICE ADDRESS, (word 06 CTDVA). to 
reflect the proper controller number in the same 
manner as b above. 

13 2 

d. Change the BIC FLAG TABLE ADDRESS, IBMXnA (word 
01 1 CTBIC), to reflect the proper controller number in 
the same manner as b above. 

e. If the controller table is not for DCM 0 insert after the 
comment: 

f. 

* START OF DEVICE MANAGEMENT TABLE 
an EQU which equates the symbol CTMXOA to the name 
of the controller table as follows: 

• CTMXOA EQU CTMXnA 

Change the LCW BASE ADDRESS, V$LCWn (word 021), 
to reflect the proper controller number in the same 
manner as b above. 

g. Every VTAM system should make use of a CL flag 
named V$POLL. If a modified b inary synchronous 
communications line adapter is used, the SYSGEN 
directive DEF,V$POLL,1 must be included. In all ot her 
cases, the SYSGEN directive DEF,V$POLL,O must be 
used. 

After assembly of these additional controller tables the 
object programs are added to the system by SMAIN or 
SYSGEN. Note that in VORTEX II, they must be added 
before the SGL control record CTL,21. 

13.3 ADDING TDF RECORDS 
FOR VTAM CCM's 

A TDF record must be provided for each DCM in the 
system. The standard SGL supports four TCM's. If more 
TCM 's are used the user must provide the additional TDF 
records. In VORTEX II, all TDF records must be added 
before the SGL control record CTL,21. 

13.4 ADDING TDF RECORDS FOR TCM (TTY) 

A TDF records must be provided for each TCM in the 
system. The standard SGL supports four TCM's. If more 
TCM's are used the user must provide the additional TDF 
records. In VORTEX II, all TDF records must be added 
before the SGL control record CTL,21. 

13.5 RESERVING MEMORY 

The memory parameter on the MRY directive must be set 
to reflect the DCM's usage a 512-word memory page for 
hardware control words. This page of memory must start at 
a multiple of 512 words, i.e. 074000, 075000 etc. 

Example (VORTEX): 

MRY, 074777,0200 

' 



-· 

Example (VORTEX I 1): 

MRY, 074777,0200,64 

Reserve the highest page ava ilable to VORTEX (075000 to 
075777) when AID II and BLD are m emory resident (AID II 
starts at 076000 in a 32K word memory configurat ion). 

The LCW address for each DCM is defined using the 
SYSGEN directive DEF. The format for this direct ive as 
follows: 

DEF,V$LCWn ,xxxxxx 

where n is the DCM number and xxxxxx is the LCW address 
in octal 

For example: In a 32K system DCM 0 is wired for an LCW 
address of 075000. The DEF d irective would be: 

DEF,V$LCW0,075000 

13.6 DEFINING PERIPHERAL ARCHITECTURE 

An EQP directive must be made for each DCM and each 
TCM. 

An EQP card must be present for each DCM in the system. 
The format for the equipment name f ield is : 

MXnA 

where n is a single numer ic character. 

Example: 

EQP,MXOA,074,1,0,0 

MXOA is the mnemonic for the f irst DCM 1n the system. 
074 is i ts device address. 1 is the number of peripheral 
units (always set to 1). The last two parameters must be 
se t to zero. 

For a TCM the format of the name for the terminal con trol 
module is TCnA. 

Where n is a single numeric character 

Example 

EQP,TCOA , 00,1,0,0 

13.7 DEFINING INTERRUPT STRUCTURE 

For each EQP card defin ing a DCM six PIM di rectives are 
needed to define the six DCM interrupts. 

The PI M directives for a DCM define directly connected 
interrupts. The names of the programs servicing the 
directly connected interrupts are in tab le 13·1. For 

CONFIGURING A VTAM SYSTEM 

VORTEX I . specify d irect option 1. For VORTEX II, specify 

di rect connect option 2. 

Table 13-1. Direct Connect Interrupts 

Event 
Word 
Value 

oxo 
OXl 
OX2 
OX4 
OX3 

OX5 

Int errupt Description 

input byte count = 0 
outpu t byte count = 0 
line error 
cont rol character detected 
status change 
controi 

Directly Connected 
Int errupt Servic ing 
Routine Name 

C52LIP 
C52LIP 
C52LIP 
C52LI P 
C52LIP 
C52CI H 

The event word entry in the PIM d1rect ive 1s taken from 
table 13-1, where X is the number of the DCM being 
described in the PIM directive. For example in a system 
using only one DCM . X = 0 in all SIX PIM cards. In a 
system using two DCM's the first DCM would be described 
by six PIM d irectives with X = 0. and the second by six 
PIM directives with X = 1. 

There is a one· to·one relat1 onship between the con troller 
table name generated by the EQP directive, the relative 
pos ition of that control ler table's name in the table 
CC$MET and the value X as shown in the following 
example: 

EQP,MXOA, 074 , 1,0,0 

PIM, 030, C52LIP , Q, 1 
• 
• 

l_ 
• 

EQP, MX1 A , 075,1 , 0,0 

PI M, 050, C52LIP,O!O, 1 
J 

CC $MET 

• number of DCM 
• CTMXOA 
• CTMX1A 

EQP , MX2A , 076,1,0,0 CTMX2A 
>-

PIM, 070, C52LIP,0~0 , 1 
• 

• 

• 

The controller table name generated by the EQP d irective 
must be used when assembl ing the controller table and will 
be used in the construct ion of CC$M ET. The value X will be 
the ord inal of the con troller tables address in CC$MET. 

13·3 

---- --



CONFIGURING A VTAM SYSTEM 

13.8 ASSIGN LOGICAL UNITS TO 
PHYSICAL DEVICES 

The ASN directive associates a logical unit number ( 1 
through 100 or 107 through 255) which can be followed by 
an optional two-character logical unit name (e.g. , 107:Y7) 
with a four-character physical-device name such as TCnn or 
MXnn, where n is a single numeric character. Note that a 
different TCM logical unit number is required for every 
terminal that is open at the same time. 

EXAMPLE: 

ASN, 26 • MXOO 
ASN , 184 • TCOO 

13.9 LOADING ANCILLARY VTAM MODULES 

Jobs for loading OPEN, CLOSE, NDM, NCM and the 
FORTRAN run-time modules to support terminal open and 
close are provided with the VTAM release material. These 
jobs are run from the Sl logical unit and provide the 
operator with any instructions necessary for their 
execut ion. 

The job loading ancillary VTAM modules is organized into 
two parts , separated by an end-of-file record. The first part 
must be run for all types of VTAM system configurations, 
with or without TCMs. The second part, which loads the 
terminal open/close task , should only be run when a TCM 
is included in the VTAM configuration. The second part is 
also terminated by an end-of-file record . 

13-4 

NOTE: Prior to the loading of NCM in the first 
part of loading ancillary modules, there is a job 
to enter the external names: VT$L TT and 
TC$TCD into the OM library. These external 
names are needed for the load module genera­
t ion of NCM. If the VTAM system was generated 
with a TCM, these names would be in the CL 
library. For systems with CCMs only, these 
names must be entered into OM as dummy 
entry points. I f these names are already in CL, 
the entries in OM may be deleted. 

13.10 VTAM MEMORY REQUIREMENTS 

VTAM requires the following amounts of memory: 

CCM: 

Components 
Line Tables 

...3200-- words 
17 words (18 words/line if buffer 
chaining is used) 

DCM Multiplexor 512 words/mu ltiplexor 

TCM: 

Components 
Terminal Tables 

2600 words 
17 words/ terminal 

- ------·· - ·- - - -·-



--

APPENDIX A 
TELETYPE AND CRT CHARACTER CODES 

Char ac ter 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
c 
0 
E 
F 
G 
H 
I 

J 
K 
L 
M 
N 
0 
p 

Q 
< 
-

> 
? 

@ 

I 

-
RUBOUT 
NUL 
SOM 
EOA 
EOM 
EOT 
WRU 
RU 
BEL 
FE 
H TAB 
LINE FEED 
V TAB 

Internal ASCII 

(Oct al) 

260 
261 
262 
263 
264 
265 
266 
267 
270 
271 
301 
302 
303 
304 
305 
306 
307 
310 
311 
312 
313 
314 
315 
316 
317 
320 
321 
274 
275 
276 
277 
300 
333 
334 
335 
336 
337 
377 
200 
201 
202 
203 
204 
205 
206 
207 
210 
211 
212 
213 

Char acter 

R 
s 
T 
u 
v 
w 
X 
y 

z 
(blank) 
I 

" 

= 
$ 
% 
& 

( 
) 
t,: 

+ 

• 

I 

--

FORM 
RETURN 
so 
Sl 
DCO 
X-ON 
TAPE AUX 
ON 
X-OFF 
TAPE OFF 
AUX 
ERROR 
SYNC 
LE M 
so 
S1 
S2 
S3 
S4 
S5 
S6 
S7 

Internal ASCII 

(Oc tal) 

322 
323 
324 
325 
326 
327 
330 
331 
332 
240 
241 
242 
243 
244 
245 
246 
247 
250 
251 
252 
253 
254 
255 
256 
257 
272 
273 
214 
215 
216 
217 
220 
221 

222 
223 

224 
225 
226 
227 
230 
231 
232 
233 
234 
235 
236 
237 

A-1 

-- ---------------- - ----------- - --- -- - -- - - - - -··- - - -- -----·- --- ----



• • 



--

APPENDIX B 
EBCDIC AND ASCII CHARACTER ASSIGNMENTS 

Character 

A 
8 
c 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
p 

Q 
R 
s 
T 
u 
v 
w 
X 
y 

z 
a 
b 
c 
d 
e 
f 
g 
h 

. 
J 

k 

m 
n 
0 

p 
q 
r 
s 
t 
u 
v 
w 
X 

y 
z 
0 
1 

EBCDIC 
(Hex) 

Cl 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
Dl 
02 
03 
04 
05 
06 
07 
08 
09 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 
81 
82 
83 
84 
85 
86 
87 
88 
89 
91 
92 
93 
94 
95 
96 
97 
98 
99 
A2 
A3 
A4 
A5 
A6 
A7 
A8 
A9 
FO 
Fl 

ASCII 
( Hex) 

41 
42 
43 
44 
45 
46 
47 
48 
49 
4A 
48 
4C 
40 
4E 
4F 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
5A 
61 
62 
63 
64 
65 
66 
67 
68 
69 
6A 
68 
6C 
60 
6E 
6F 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
7A 
30 
31 

Character 

@ 
( 

) 

-
+ 

> 
-

.., 
? . .. 
• • 
' ' 
\ 

f'.J 

\ 
. . 
( 
] 
BEL 
8S 
BYP 
CAN 
cc 
CR 
DCl 
DC2 
DC3 
DC4 
DEL 
OLE 
C'S 
EM 
ENQ 
E08 
EOT 
ESC 
ETB 
ETX 
FF 
FS 
GS 
HT 
IFS 
IGS 
ILS 
IRS 
IUS 
LC 
LF 
NAK 
NC 

EBCDIC 
(Hex) 

7C 
40 
50 
60 
70 
4E 
5E 
6E 
7E 
4F 
SF 
6F 
7F 
co 
DO 
EO 
Al 
79 
6A 

2F 
16 
24 
18 
1A 
00 
11 
12 
13 
3C 
07 
10 
20 
19 
20 
26 
37 
27 
26 
03 
oc 
22 

05 
lC 
10 
17 
lE 
1F 
06 
25 
3D 
15 

ASCII 

(Hex) 

40 
28 
29 
5F 
27 
28 
38 
3E 
30 

SE 
3F 
22 
7B 
7D 
5C 
7E 
60 
7C 
58 
50 
07 
08 

18 

00 
1 1 
12 
13 
14 
7F 
10 

19 
05 

04 
18 
17 
03 
oc 
lC 
10 
09 

OA 
15 

8 ·1 

------ ·---- - - - - - - ·-- ---- - -----·---



EBCDIC AND ASCII CHARACTER ASSIGNMENTS 

Character 

2 
3 
4 
5 
6 
7 
8 
9 
& 

I 
$ 
¢ 
I • 

# 

< 
* 
% 

B·2 

EBCDIC 
(Hex). 

F2 
F3 
F4 
FS 
F6 
F7 
F8 
F9 
50 
60 
61 
58 
4A 
5A 
7A 
78 
68 
48 
4C 
sc 
6C 

ASCII 
(Hex) 

32 
33 
34 
35 
36 
37 
38 
39 
50 
20 
2F 
24 

21 
3A 
23 
2C 
2E 
3C 
2A 
25 

- -

Character 

NUL 
PF 
PN 
PRE 
RES 
RLF 
RS 
Sl 
SM 
SMM 
so 
SOH 
sos 
Space 
STX 
SUB 
SYN 
uc 
us 
VT 

EBCDIC 
(Hex) 

00 
04 
34 
27 
14 
09 
35 
OF 
2A 
OA 
OE 
01 
21 
40 
02 
3F 
32 
36 

08 

ASCII 
(Hex) 

00 

lE 
OF 

OE 
01 

20 
02 
lA 
16 

1F 
08 

' 



.. 

.. 

INDEX 

Active chain, 7-2 
Affinnative acknowledgment (ACKO/ ACKl), 8-5 

Bibliography. 1-4 
Binary synchronous communication (BSC), 8-1 
Block-check character (BCC), 8-3 
Buffer chaining, 7-1 

CCM level, programming at the, 6-1 
CCM tables, 13- 1 
Chain, active, 7-2 
Chain header (CHR), 7-2 
Chaining, buffer, 7 -I 
Character, block-check (BCC), 8-3 
Character codes 

ASCII, B-1 
CRT, A-1 
EBCDIC, B-1 
Teletype, A-1 

CHR and IBH, relationship of, 7-5 
CLOSE macro, 4-2, 6-3 

error indications, 4- 3 
example, 4-3, 6-3 

Communication, binary synchronous (BSC), 8- 1 
Communications controller module (CCM) 1-1 
Configuration, expanded, 1-3 
Configuring a VT AM system, 13-1 
Continue timeout, 8-9 
Control 

ACKO/ ACK I, 8-5 
characters, 8-4 
OLE, 8- 5 
ENQ, 8-5 
EOT, 8-5 
ETB, 8-4 
ETX, 8-5 
ITB, 8-4 
NAK, 8-5 
RVI, 8-6 
SOH, 8-4 
station, 8- 2 
STX, 8-4 
SYN, 8-4 
TID, 8-6 
WACK, 8-5 

Controller table, CCM, 13-2 
Controller table (CTBL ), TCM, 10-2 
Cyclic-redundancy check (CRC), 8- 3 

Data link, 8- J 
control, 8-4 
escape (OLE), 8- 5 
multipoint, 8-1 
operation. 8- 2 

Dial up operation, 8- 8 
Directives, 11- 1 
Disconnect timeout, 8-10 
OLE, control, 8-5 
Double pointer queue, 7- 1 
DOWN directive, 11-1 

End-of-text (ETX). 8- 5 
End-of-transmission block (ETB), 8-4 
End-of-transmission (EOT), 8- 5 
END statement, NDL, 2-5 
ENQ, control, 8- 5 
Enquiry (ENQ), 8- 5 
EOT, control, 8- 5 
Error checking, 8- 3 
Error indications 

CLOSE macro, 4- 3 

OPEN macro, 4-2 
VT AM macros, 3-2 

ETB. control, 8-4 
ETX, control, 8- 5 
Expanded configuration, 1- 3 

Format, chain header, 7-2 
Format. IBH, 7-2 
Front pointer, 7-1 
FUNC macro, 5-4, 6-4 
Function codes, 6- 4 

GETQ, 7- 1 
example, 7-4 

Header, chain (CHR), 7-2 

Initialization procedure, 8- 6 
Interface block header (IBH), 7-2 
Intermediate block (ITB), 8-4 
Introduction, 1- l 

LCB macro, 6-1 
LCB status, 3-2 
Leased line, 8-1 

INDEX ·1 

---------------------~---~~ .. ......_ .... ..,-- ·- ··- ___ _ __ ,.. .. __ ___ ,... ... ..-_ ___ ·- - -·-----... - ----· •· -··--- ..,--v-- •• 



• 

INDEX 

Line control block (LCB), 3- I 
Line service descriptor, prototype, 2-6 
LINE statement, 2-l 

attributes, 2-2 
attribute defaults, 2- 4 
examples, 2-4 

List directive, I I - 3 
Longitudinal-redundancy check (LRC), 8-3 

Macro, 
CLOSE, 4-2, 6- 3 
FUNC, 5-4, 6-4 
LCB, 6-1 
OPEN, 4- I, 6-3 
READ, 5- I, 6-3 
STAT, 5-3, 6-7 
WEOF, 5-6 
WRITE, 5-2, 6-3 

Managing buffers, 9- 1 
Memory allocation routines, 9- I 
Message 

blocks, 8- 3 
format, 8-2, 8-6 
transfer procedure, 8-8 

Minimum configuration, I -3 
Modifying the NDL processor, 10-S 
Modifying the NOM, 10- 5 

NDL processor, modifying the, 10-5 
NOM, modifying the, 10-5 
Negative acknowledgment (NAK), 8- S 
Network definition language (NDL) statement, 2-1 
Network control module (NCM), I - I 
Network definition module files, 2-6 
Network definition module (NOM), 2- I 
Network definition module output, 2-6 

OPEN macro, 4-1 , 6-3 
error indications, 4- 2 
examples, 4-2, 6-3 

Opening and closing terminals and lines, 4-1 

Pad characters, 8-9 
Pad format check, 8-4 
Point-to-point operation, 8-6 
Polling, 8-2 
Processor table, TCM, 10- 3 
Programming an application, 12- 1 
Programming at the CCM level, 6- 1 

CLOSE macro, 6-3 
FUNC macro, 6-4 
LCB macro, 6-1 

INDEX -2 

OPEN macro, 6-3 
READ macro, 6-3 
STAT macro, 6-7 
WRITE macro, 6-3 

Programming at the TCM level, S-1 
FUNC macro, 5-4 
READ macro, S-1 
STAT macro, 5- 3 
WEOF macro, S- 6 
WRITE macro, 5-2 

Prototype line service descriptor, 2-7 
Prototype terminal control descriptor, 2-7 
PUTQ, 7-l 

example, 7-3 

Queuing procedure, 7-1 

READ macro, 5-1, 6-3 
Rear pointer, 7-1 
Receive timeout, 8-10 
Redirect directive, 11-2 
Reverse interrupt (RVI), 8-6 
Reserving memory, 13-2 
Reset function, 7-4 
Restore directive, 11-2 

Selection, 8-2 
Set function, 7-4 
Start-of-heading (SOH), 8-4 
Start-of-text (STX), 8-4 
STAT macro, S-3, 6-7 
Structure of VTAM, l - 2 

Switched network, 8- 1 
Synchronous idle (SYN), 8-4 
System flow, 1-1 

Tables 
CCM controller, 13-1 
TCM controller, I 0-2 
used by TCM, 10-1 

TCM components, 10-3 
TCM functions, 10- 2 
Temporary text delay (TTD), 8-S 
Terminal control descriptor, prototype, 2-7 
Terminal control module (TCM), 1- 1 
Terminal identifier block (TIB ), 2-7 
TERMINAL statement, 2-4 

attribute, 2-S 
Termination procedure, 8-8 
Timeouts, 8-9 
Transmission codes, 8- 1 
Transmission and recovery procedures, 8-10 

• 

( 



......... 

-·. 

Transmit timeout, 8-9 
Transparent mode, 8-8 

UP directive. Il - l 
Using VTAM macros, 3-1 

VT$8MT, 9-1 

INDEX 

VTSGTM, 9-2 
VTSPTM, 9-2 

Wait-before-acknowledgment (WACK) 8-5 
WEOF macro, 5-6· 
WRITE macro, 5-2, 6-3 

INDEX ·3 

--------------------- ------- ---- --------- - ----- --------- ---- -



• 

• 

- ---- ·· 


	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0001
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0002
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0003
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0004
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0005
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0006
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0007
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0008
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0009
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0010
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0011
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0012
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0013
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0014
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0015
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0016
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0017
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0018
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0019
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0020
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0021
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0022
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0023
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0024
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0025
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0026
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0027
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0028
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0029
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0030
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0031
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0032
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0033
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0034
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0035
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0036
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0037
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0038
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0039
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0040
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0041
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0042
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0043
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0044
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0045
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0046
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0047
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0048
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0049
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0050
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0051
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0052
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0053
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0054
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0055
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0056
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0057
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0058
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0059
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0060
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0061
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0062
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0063
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0064
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0065
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0066
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0067
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0068
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0069
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0070
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0071
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0072
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0073
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0074
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0075
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0076
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0077
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0078
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0079
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0080
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0081
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0082
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0083
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0084
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0085
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0086
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0087
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0088
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0089
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0090
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0091
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0092

