P e i ¥ sl aak

Ef : ¥ Cammmsar I
e i s e i =
N, | DT =
P B _ 3 e T
e e 3 %

VTAM

Programmer Reference

Mini-Computer Operations

2722 Michelson Drive
P.0O. Box C-19504

Irvine, California 92713
98A 9952 224

VTAM
PROGRAMMER REFERENCE MANUAL

98A 9952 224
FEBRUARY 1978

The statements in this publication are not intended to create any warranty, express or implied.
Equipment specifications and performance characteristics stated herein may be changed atany time
without notice. Address comments regarding this document to Sperry Univac, Mini-Computer
Operations, Publications Department, 2722 Michelson Drive, P.O. Box C-19504, Irvine, California,
92713.

© 1978 SPERRY RAND CORPORATION

Sperry Univac is a division of Sperry Rand Corporation Printed in U.S.A.

— i — e ——

CHANGE RECORD

Page Issue o)
Nun?ber Dote Change Description
all 2/77 Minor revisions have been incorporated
throughout this manual,
variouy 2/78 Minor revisions incorporated throughout
the manual, and references to Varian
deleted.

Change Procedure:

When changes occur to this manual, updated pages are issued to replace the obsolete
pages. On each updated page, a vertical line is drawn in the margin to flag each

change and a letter is added to the page number. When the manual is revised and

completely reprinted, the vertical line and page-number letter are removed.

96A07 30-000A
M

e e — —— i —— - - -—

Page

LIST OF EFFECTIVE PAGES

Number Change in Effect

Page Number

ﬁ_ﬁl—_

Change in Effect

all

completely revised

_-__—J—__-

96A0731-000A

IV

TABLE OF CONTENTS

SECTION 1
INTRODUCTION

L DRI CTHON. .voosncssismmsissoboncssimenisssmsmnssssaiess s st oo ISR a6 58 11
1.2 SYBTEM. FLOW AND: OB GANIBETIIRE c.cciispoimcvussommamimmisssmimamisssoiss s sompnesas s pssinss 11
1.3 HARDWARE SUPPORTED AND REQUIREDciceiusismussisssssinssivssisiosmssinssssiossissssisisonss 1-3
$. 4 GUIBE: TO THIS IIRNEIAL oascissrmasamsmmsmes s s i S st s 1-3
T B LSNP cossiciimsiisomes s i s S S ey ¥ s Tl sl 1.4

SECTION 2

DEFINING A COMMUNICATIONS NETWORK

2L EDETRREIE I TN, oot st R s B A R S R P A S S 2-1
SUILY IRIDHIT RO I DIV v ciinsiicomswionmanamasmns s yices a5 o S e R i W i 2-1
210 CARNVERRY TOPIITEY i imicisnscoimnmmarnss o i s s s G A i S8 S T e e e T L 2-1
2.2 NETWORK DEFINITION LANGUAGE
o R I I O oo s S S B R R S e L e S W A SRR s 2-1
oy R) L o N T 2-1
2:2:2 TERMINAL SHBIMERT cor0nsinsinissmismmrsinss st ot st trinstas i A enelarisas 2-4
L2 3 BNL) OTBOIMIBNL.. .. oo s ssmmmssrisnmseessraimsmmmmmisns Soissssm s e o b SR e e FEaN e 2-5
2.3 OPERATING INSTRU CTIONS oottt eeee e e e et e e s e s e e e s s e e e s e e esnes 2-6
2.4 ERROR INDICATIONS AND WARNINGS ..ciivmninaniminms e mis 2-6
o T L B o T — 2-6
SECTION 3
USING VTAM MACROS
T3 NTROBUETION i i e s s s s s ong sasmsetiaSOs 31
CLAMEi T) DT 2] L S S S AT S 3-1
3.3 ERROR INDICATIONS ON VTAM MACROS.ttt e s 3.2
SECTION 4

OPENING AND CLOSING TERMINALS AND LINES

4.1 INTREDUCTION. ..o T R RSB e AN SR S AR R GaRER . 4-1
42 OPEN MACRO AND JCP DIRECTIVE................. R T A T 4-]
A [T Ll T R = S 4-]
d:2:2 Erear INOICations o DIPEN ...t i s ssssa s i s s St it 4.2
4.3 CLOSE MACRO AND. JEP DIRECTINE. . oo cosmismimansrmssesiisss s spaasssnatises 4-3
AAE GRS POTINEL. e i st s v s SA i e S S G s i 4.3
A.3Z2 BHOF IERRONE oo e s S e S A R S I T 4-3
Vv

T — and e . T —— . - " P T L T - i -

CONTENTS

SECTION 5
PROGRAMMING AT TCM LEVEL

5:3 MNACRO DERINFTRON ..o i o s v e v s ds s o i s i 5-1
Be:d READ MEBID i aicimm insims i i s it e 1 e e s e R S S S TR T TR 5-1
S WL E N O i s T R T s A R T A e B LS SR 5-2
S IR NERERE e o e i B b s B T e s e B T b U L P B s e e O S 5-3
o S o U 1 (O 1, - Tl o OO 5-4
5.2.5 WEOF Macro.........ccceonn.. OO TRRTS 5-6
B3 LTY TGM: WITH DAL L INE S s iaimesieisns o mbaainssomssmi e ise s ban 1 .96
54 TFORTRAN LEMEL PROGRAMMINME. . v anmmmmuansmanmms s s ismisi o -6

SECTION 6

PROGRAMMING AT THE CCM LEVEL

6.1 INTRODUGCTIONceceieeit e e ettt e e e e et a it e e et s s e s sraaesaeaennsaeees 6-1
6.2 CCM 1/0 CONTROL MACROS AND

BLUINCTIONS oo o s o s im0 o0 S0 ey S A0 N SA AN 6-1
621 ELB MAGHY . st S e S R TR e e e ... B6-1
G222 OPEN MG o i v s S e T e A A G A s 6-3
G623 CTLEOSE Matth: onmai sttt s v Rt s s sl s s 6-3
6.2.4 READ Macro............. L SV NSy G ST [V NSRS S S Ly~ U S— 6-3
6.2.5 WRITE MaCTO....ccoiiiiiiiiiiiiiiiei ettt e et eaneense e sat e e erseenasaneanneenneanns 6-3
6.2.6 FUNC MACTOooooveieieeeoiseoeseeeeesee sttt es s ees s e s e ees v erees s 6-4
BI2.7 VAT NBBOIR unvscovasvamumsniasmiiames gvees om0 b M N S PR AN AR N VS EARSRHS 6-7

SECTION 7
BUFFER CHAINING
7.1 INTRODUCTION . ..ottt erres s estaesaarsa s s eensenssssssnse s e e san s s sessenssosseesssesesaresressnns 7-1
7.1.1 Queuing Procedure.............coooemivieeooiiinerneeeennnenn, RS Y TS S SV A SRS 7-1
- U ¢ N |
g Y o o e A A A R PP R AR A AR R RS R RS 7-1
7.2 CHAIN HEADER. ..ottt et e e e e e et e e e s e e e e s e st e e e e e e mnae s s s eeetnnneees /-2
Tl INCERFREE BRI, BRI RR s nssis s m s A s e R A S SR I S A S 7-2
7% SET AND RESET PUNRCTIONS o e s s s e s v sesias 7-4
7:5 'PROCEDLURE FOR CODING K BUFFER CHAIN i vmmamms s iayie /-5
SECTION 8
BINARY SYNCHRONOUS COMMUNICATION

B.1 INTRHOBUIG T VO N G emssmims e i e i e s s s s s s a s Ao v s S S B e 8-1
B2 DARTA LINK o s i s e m o i s i e e s T R e S Sy 8-1

R2.1 Point-ToPoint Data LiDK.cccomrmmsisonsbermesmn kanehirnbissemmabontrstnsans anesiomenmessennsiosmansy O

Vi

SECTION 8
BINARY SYNCHRONOUS COMMUNICATION (continued)

822 MUuhpont Datad LK . omnsmmsmnsms S s s s e 81
5.3 TRANSMISSION CODBES: .o auemss i, s i i i s i o e 8-1
B4 OPERATION QF THE DATA EINK..auusmmanmnniion... B P A 8.2
Bl POHINE B8 SBIEIION 15000 1ol i iariies i mer st seassoais S e s st s s RO et B2
842 Message BIockso.coovieiiiiiiiiiii RIS S B e R S A G 8-3
84.3 Error Checking, R B S RN A S s TV e s 8-3
8.4.4 EOT/NAK Pad FOrmat CheCkK. ... 8-4
8:4:8 Data Link GO0l oo s s s i S e S s i i 8-4
B0 MES S A GE FORM AT S e et e 8-6
B:31 INHAIZANON PEODRETE .o connminsors s s ams os Ses sSea ss S DA e eE Gt 8-6
8.5.2 Message Transfer ProCedure ..., — 8.8
B.5.3 Termination ProCeaUIe.o et 8.8
8.54 Transparent Mode.o e BB
B0 TAFTVBORERS ccumivsisemmomnn s ans i soms oo e o vl s o S P e S R R S S T R 8-9
B8.56 Pad Characters.. ... oo e e e 810
86 TRANSMISSION SEQUENCE AND RECOVERY PROCEDURES.............ooooiiiiiiiinnn, 8-10
SECTION 9

MANAGING BUFFERS

O] TN T RO DU T I ON oo e e e e e e e e e e e et 9.1
92 MEMORY ALLOCATION ROUTINES
NS M Pl S i i s s B S e A T S A s SR e S R e e b 9.1
921 VIESBMT............_. s P A e s e S R o e s S A A S A R SRR Y 9.1
e I T v 1 T A - T 9.2
= i R T i S T 9.2
SECTION 10
CODING A TERMINAL CONTROLLER MODULE (TCM)
FOR VTAM
FOTE WEERRBUGETION i nsnsanaism i s s N S R s R T RS S 101
112 ERBLES LISEL) BY FOM - i oo om0 5y o e s I s s e s s i e 101
XS TEM FUNETIONS o i i s ma r s sy s e s e R A S e 102
1A TCM CONMPONEN TS . i iirsiinn sasamsrsiselbian i aarms g I p— 10 3
105 MODIFYING THE NETWORK DEFINITION
M ODULE .o e e i s e et e e e e N 10:5
10.6 PROCEDURE TO CODE A TCM FOR VT AM oo 106
Vil

e b= -y L e mlip C e S penr e S B Fe e —duwET o e rro omomm rm cEran m R S s e e — e] B

CONTENTS

CONTENTS

SECTION 11
CONTROLLING A NETWORK

1. IR THON . . oot s i e rins s et S S S b ok s S E b s S S S R 11-1
132 IREETINES . oottt s s s i T S i s T A S B A 11-1
P1.25) Genaral Formatl of INGMY DUCBEEINES . .o s soy s s s oo s e esysises 11-1
11.2.2 UP Directive.......... N e o b b O 11-1
11.2.3 DOWN DIireCtiVe ...ouanunmamiaamaa e i A A R NS SRR S GRS 1101
11.24 REDIRECT Directiveivivnnnaanas e e e N 11-2
11.225 RESTORE. DHEBCHIVE............oooconmmermeboionsssnsineistinitnsnnidip b e SRR oo s 112
11.2.6 LIST Directive................... At aten ek e St e a s e P 11-3
SECTION 12
PROGRAMMING AN APPLICATION
SECTION 13
CONFIGURING A VTAM SYSTEM
I BN ORI IO - o e s e e e S A e e e S e e Aol 13-1
13.2 MODIFYING VTAM CCM TABLES AND ADDING
CONTROLLER TABLES ...t ettt e e e e e s e eres 13-1
RELE OGN TN . cisinmosionsomseion oo e st B SR A A A 0 R R S S R S R 13-1
1322 COOUOHE TEBME o annnim s et R A S e S T A PR T 13-2
13:3 APDDING TDF RECORDS FOR VTAM CEM'S w.cocinsicrmnminissimsasimiesis 13-2
134 ARDING TDF RECORDS $OR TOM LV T) ciiaristi it s thnonitadeoms b litaddlin s 13-2
135 RESERVING MEMOBYooommmormessnssmoosissssnsnss snbss st ssss oo siamssomest e . 132
13.6 DEFINING PERIPHERAL ARCHITECTUREoviieeviermammsssrosesssssnsenrsesnnvassasssarsssssssssons . 13-3
13.7 DEFINING INTERRUPT STRUCTUREottt .. 13-3
13.8 ASSIGN LOGICAL UNITS TO
FRYSICAL DEVICES.......ooovnnammisimmmassasiNsisai i SN . 13-4
13.9 LOADING ANCILLARY VTAM MODULES . iiiiiiiiiicisiriammsssssississnsssnsnnnsmnnsissnmnsssesssnss 13-4
1310 'VTAR -MEMORBRY BEQUIREMENTES .uwminmvmmisnas o i seiymivaliss s . 13-4
APPENDIX A

TELETYPE AND CRT CHARACTER CODES

APPENDIX B
EBCDIC AND ASCII CHARACTER ASSIGNMENTS

INDEX

VI

LIST OF ILLUSTRATIONS

Figure 31, Blructure uf WEBI e bionsasims o s s S e i ar e o el o aeesies 1.2
Figure 1.2. Data Flow from Application to Terminal...........ccooooeiiiiiiiiininnn. R 1-3
Figure 1-3. Input and Output to Network Definition Module........... 1-3
Figore /-1 ‘Gontents of CHR: ang I1BRs after PUNT0 L nusasasaansimmmmnansiitaaa 53
Figure 7-2. Contents of CHR and IBHs During READ ..., 74
Figure 7-3. Contents of CHR and IBHs Before and After GETQ............ccocoiiiiviiceicniininnn, 74
Figtire 724, Reiationshin OF CHBL B08 1BHS. oo romsssymsmmas o s s s s e 75
Figune B-1. Regular Message POt ... caummmmininsissmsssmms wmm s ssiiaisssmssaszamsnie i 09
Eigure G-2. ‘Error ThetRmE Canabibies oo s masing e asiiaine i it aa i 8-4
Figure 8-3. Use of WACK, RVI, and TTD............................ - 8.7
Figure 8:4. Transparent Data BloCK.......occ oo ieninrenes e enineeen: 809
Figure 10-1. VTAM TCM and TTY TCM Modules ...cicuiiimuieimimimiomiiiisiniissiiisia s 104
Figure 12-1 Flowchart of VTAM Applicationo 12-1
LIST OF TABLES
Table 2-1. LSO Figld Description arid MaNBecuucimemsmsmmamssseismemmmmsmmssss s 2-7
Table 2.2. TIB Field Description and Rangec........ N ——— 28
Table 2:3. TCD Field Description and Range 2-8
Tablé 3-1. Detail SEalus .cvnumumararimrsnsommemm 3.2
Table B-1. COntrol CharacleiB ... i nznicms: toas o saim s i se s s g s ety s aakawss 84
Table 8-:2. Transmission and Recovery Procedures..........cccooiieeiiveiiimminis sisiosmmisesrisss, .« Sl
Table 13-1. Direct Connect Interrupts 133

I X

CONTENTS

SECTION 1
INTRODUCTION

The Vortex Telecommunications Access Method (VTAM)
provides teleprocessing controls for communications
controllers, modems, terminals, communications net-
works and network-operator interfacing. VTAM is an
integral part of the VORTEX operating system. It extends
the capabilities of the real-time multi-tasking operating
system into the growing area of telecommunications.

Through the combination of VTAM and VORTEX access to
remote devices is as simple as that for on-site computer
peripherals. VTAM gives the user the same format for
requests for telecommunications as is available for
printers and magnetic-tape units.

At the same time, the user i1s assured of an open-ended
system design that can accomodate his future require-
ments. VTAM i1s modular in its structure and so provides a
software foundation on which to build systems tailored to
their applications.

In summary VTAM provides

« a standard subsystem under VORTEX without
affecting the utility of VORTEX in other applications

« phased implementation to allow changes for new
equipment and expansion

« modularity in structure to satisfy diverse requirements

+ interfaces for applications to be removed from handling
line and terminal characteristics

+ a simplified method of configuring lines and terminals
through the Network Definition Language

« VTAM tasks a user can call to allocate memory
dynamically

+ anoptional, automatic buffer chaining on input

- on-line query and control of communication system
status

1.2 SYSTEM FLOW AND ORGANIZATION

The three modules which are the basic building blocks of a
VTAM System are the communications controller, terminal
control, and network control modules. The most basic
VTAM component, the Communications Controller Module
(CCM), drives a multiplexor or controller hardware. The
Terminal Control Module (TCM) provides an optional level
of control for terminals and lines. TCM's handle such items

as terminal errors and line adaptor control. The Network
Control Module (NCM) furnishes an interface with the
netweork for the computer operator.

Figure 1-1 is an overview of the flow in a VTAM system.

The flow of data to an application program under VTAM
and VORTEX isfirstunder controlofa CCM. The incoming
data from the line is initially handled by the LAD and the
multiplexor and packed into a buffer. If the READ request
s directed to the terminal, a TCM then converts, formats
and segments the data. If required for the terminal type,
the TCM could provide terminal control procedures. The
user can bypass this level and provide his own terminal-
oriented procedures in the application and pass his input
and output request directly to the CCM (see figure 1-2).

Features of VTAM Modules
TCM stands for Terminal Control Module

+ Interfaces with application through standard request

« Establishes terminal disciplines and line protocol

« Converts codes and formats data for terminals

Compresses and decompresses data

Performs modem control functions

+ Operates independent of type of controller

CCM stands for Communications Controller Module
* Provides a common interface for all TCM's
+ Performs mechanics of data input and transmission
« Handles all controllers of one type

« Operates transparently with respect to terminal type

NCM stands for Network Control Module

Provides dynamic network control

Allows alternate line or terminal selection

Provides inquiry about status of lines and terminals

-

Allows setting lines and terminals UP or DOWN

1.1

R e S S [= iR — = — =

INTRODUCTION

APPLICATION APPLICATION
I 2
oo e

STANDARD VORTEX IOC MACROS

N =THE NUMBER
OF USER TASKS

APPLICATION
Nth

FILES FROM
NETWORK
DEFINITION

MODULE

v
M = THE NUMBER I
OF TYPES OF
TCM TCM TCM TERMINALS
] 2 Mth OPEN
MACRO
|
\ 4

STANDARD VORTEX [OC MACROS

CCM

/ II'V

VTII-1925
Figure 1-1. Structure of VTAM

1-2

LINE AND TER=
MINAL REQUEST

TABLES

NETWORK CON-
TROL MODULE

COMMUNICA -
TIONS CON-

TROLLER TABLES

K= THE NUMBER OF TYPES
OF CONTROLLERS

USER TCM DATA

INTRODUCTION

APPLICATION DATA CONVERSION

REMOTE

QUTPUT DATA

RUFFER AND TERMINAL

CONTROL

VIiI-1923

Another VTAM maodule aids the user in configuring a
network. Because a communications system changes
relatively frequently, the method of configuring a VTAM
system is less involved than a complete VORTEX system
generation VORTEX SGEN configures the controllers as
they are more static than lines and terminails. The VTAM
Network Definition Module (NDM) configures the actual
terminals, their lines and TCM's. The user determines his
line and terminal network and expresses it in the Network
Definition Language (NDL). The VTAM NDM interprets
the NDL statements and builds the appropriate tables to be
used by other VTAM modules (see figure 1-3)

1.3 HARDWARE SUPPORTED AND REQUIRED

The modular organization of VTAM allows its use with a
wide variety of configurations depending upon the level at
which the user interfaces with the system.

Minimum Configuration

With only the minimum configuration the user must
interface with a communications controller module. The
following hardware 1s required.

a. Minimum VORTEX Configuration

b. 52xx Data Communications Multiplexor (DCM) with
the proper line adapters or Binary Synchronous Com-
munications facilities.

NDL
DESCRIPTION
OF NETWORK

Vrii-1924

TERMINAL
NETWORK

NDM
NETWORK »| LINE TABLES

Figure 1-2. Data Flow From Application To Terminal

c. Terminal units which may be supported by the above
communications controllers

Expanded Configuration

In addition there may be additional multiplexors to which
more terminals are attached where appropriate. Teletype

and equivalent terminals compatible with Teletypes can be
added.

1.4 GUIDE TO THIS MANUAL

This manual explains the VTAM system for a programmer
who understands VORTEX, general communication
concepts and the computer on which he intends to
implement data communications.

The remainder of this section provides a bibliography of
related Varian documents.

The remaining sections correspond to components of the
VTAM system.

Section 2 describes the Network Definition Language
(NDL) and the functions of the module which processes
NDL. The next section, 3, provides general information
about the macros which the user calls to invoke 1/0
services of the VTAM modules. Sections 4 and 5 discuss
particular macros. Understanding sections 3, 4 and 5
permit an application to communicate with a remote device
with limited control and flexibility.

TERMINAL

INFORMATION

DEFINITION
MODULE

Figure 1-3. Input and Output To Network Definition Module

- il Wl el ol S L R s T o o r o A L PR) - —— B R i L e e

1-3

INTRODUCTION

Section 6 "Programming at the CCM Level" provides an
interface which is more directly involved with the communi-
cations lines.

Section 7 "Buffer Chaining” describes the method of
automatic buffer chaining on input.

Section 8 "Binary Synchronous Communication" provides
information to operate in BSC mode. BSC expands the

capabilities of VTAM through its ability to accommodate a
variety of transmission codes.

Section 9 ""Managing Buffers” describes some macros
useful for minimizing the central memory and application
uses.

Section 10 "Writing a TCM" provides information which
allows adding TCMs for additional types of remote devices.

Section 11 "Controlling a Network'' describes the operator
interface with a data communication network.

Section 12 is a sample application which illustrates many
aspects of the preceding information.

Section 13 describes some additional considerations for a
VORTEX system generation on a VTAM system (this

information supplements the VORTEX Reference Man-
ual).

Syntax Conventions Used in this Manual
In the directive formats given in this manual:

« Boldface type indicates an obligatory parameter.

1-4

« [talic type indicates an optional parameter.

« Upper case type indicates that the parameter is to be
entered exactly as written.

« Lower case type indicates a variable and shows where
the user is to enter a legal value for the variable.

A number with a leading zero is octal, one without a
leading zero is decimal, and a number in binary is
specifically indicated as such.

1.5 BIBLIOGRAPHY

The following Sperry Univac manuals are pertinent to the
use of VTAM (the x at the end of each document number is
the revision number and can be any digit 0 through 9):

Title Document Number

98 A 9952 10x
98 A 9952 24«

VORTEX | Reference Manual
VORTEX |l Reference Manual
Data Communications Multiplexor

Manual 98 A 9902 25x

Additional technical information is contained in the
Software Performance Specifications 89A0240 (Overview
and External) and 89A0263 (Internal).

SECTION 2
DEFINING A COMMUNICATIONS NETWORK

2.1 INTRODUCTION

The VTAM user describes his terminal and line configura-
tion in the SPERRY UNIVAC Network Definition Language
called NDL. The features of the terminals and lines in NDL
are processed by the Network Definition Module (NDM),
which then creates a table of characteristics during input/
output request processing (see figure 1-3). This table of
characteristics is stored by the processing module on a
rotating-memory device (RMD) for expansion and use by
other components of the VTAM software in an active
network.

The network definition language has three types of
statements. These are descriptive rather than procedural. A
LINE statement describes the attributes of a communica-
tions line. A TERMINAL statement gives the important
physical attributes of a remote terminal on a line, and the
line to which it is connected. A communications network is
defined by these statements for all its terminals and lines
followed by an END statement.

Each line is identified by a logical line number and each
terminal by a four-character terminal unit identifier. A
terminal can only be associated with one logical line
number.

2.1.1 Input to the NDM

NDL statements can be input on standard 80-column cards
or any other equivalent source input. Only the first 72

characters are processed; /3 through 80 are available for
identification and sequencing. Within the first 72 char-
acters the NDL statements are free form, allowing the user
to structure his description in columns and with spacing as
he finds convenient and meaningful.

2.1.2 General Format

The form of an NDL statement is

keyword id : attrib{1)=cond(1),attrib(2})=cond(2)....,
attrib(n)=cond(n).

where

keyword Is the word which identifies the statement type

such as LINE, TERMINAL or END.

id Is either a logical line number
or terminal unit identifier
required in line or terminal
statements respectively.

each attrib Is associated with the par-
ticular statement

each cond IS associated with the par-

ticular attribute

Each descriptive statement must be terminated with a
period. Its omission will cause an error indication.

Attributes are optional. For all attributes not specified by
the user, NDM assigns default characteristics which are
listed in the following sections on particular statements.

2.2 NETWORK DEFINITION LANGUAGE
SUBROUTINES and STATEMENTS

The Network Definition Language (NDL) is a FORTRAN
mainline program that is activated by the JCP LOAD
directive. NDL loads and passes control to the following
NDL major subroutines:

Subroutine Description

CLEAR CLEAR is called by the NDL mainline routine

as an overlay to initialize the two VTAM disc

files VT$DFL and VT$DFT, and COMMON
storage.

PARSE PARSE is called by the NDL mainline routine

to parse the user's card input. The result of
this parse is the complete VTAM files

VT$DFL and VTSDFT.

REPORT REPORT is called by the NDL mainline rou-

tine to produce an audit listing of the VTAM
files VT$DFL and VT$DFT.

2.2.1 LINE Statement

The LINE statement describes a logical line and its

attributes. Upon detecting the initial word LINE, the
processor builds a prototype or partial Line Service
Descriptor (LSD) for the line and stores it in an RMD file.

The general form of the LINE statement is:

artrib(1)=cond(1)}, attrib(2)=cond(2)....,
attrib(n)=cond(n).

LINE Ilid:

2-1

i e e

DEFINING A COMMUNICATIONS NETWORK

Attributes and their corresponding values are as follows:

2-2

Attribute

ADDRESS

CONNECT

EOM-STOP*

ERROR-STOP

PARITY

STATUS

SPEED

LINE-TYPE

MODE

Allowed Values and Meanings

nnn

pRecT ¥
MODEM
DIAL-MODEM

NONE D
ODD
EVEN
DOWN

nnn

HALF-DUPLEX
SIMPLEX-RECEIVE
SIMPLEX-TRANSMIT
FULL-DUPLEX

ASYNCHRONOUS

SYNCHRONOUS

BSC

Physical line number O through 255

no modem
non-dial modem
dial modem on phone line

message is terminated only when
buffer is full or on possible line
error

specifies the numeric value of the
character to terminate input message

specifies (as above) two characters
either of which will terminate a
input message.

terminates input on a line error
detected (break, parity or overflow)

terminates normally on EOM-STOP
character, or if EOM-STOP is specified
as FALSE, when character count is
zero.

no parity check is to be made
odd parity is checked
even parity is checked

the initial state of the line is up
the initial state of the line is down

incoming data rate in characters per
second; zero indicates that the data
rate is greater than 2000 or less than
4 characters per second.

one direction at a time

one direction all the time only input
one direction all the time only output
two way simultaneously

An asynchronous line, which is
described further by attributes
following.

synchronous line which is described
by additional synchronous attributes.

Binary Synchronous Communication
line discipline and BSC line adapter
use only

*The EOM-STOP attribute is not used for control character
detection when in BSC mode.

Attributes only applicable to asynchronous lines, Use of
these parameters with synchronous mode is detected and a
warning message issued, but the specified action is taken,

Attribute
ECHO

TRANSMIT-SPEED

DEFINING A COMMUNICATIONS NETWORK

Allowed Values and Meanings

TRUE
FALSE
HIGH = 1
LOW = 0

The following six attributes are only applicable to a
synchronous line. If the mode is specified as asynchronous
the use of these attributes will be flagged and a warning
message Issued but the specified action will be taken.

Attribute

CRC-STOP

STORE-SYNC

SYNCHRONIZE

SYNC-TRANSMIT

SYNC-RECEIVE

TRANSPARENT

data communications multiplexor
operates in ECHO mode for input
messages.

no transmission back to terminal
of characters received in any input
messages

speed of line adapter is set high
speed of line adapter is set low

Allowed Values and Meanings

nnn

TRUE

FALSE

TRUE

FALSE

nnn

nnn

TRUE
FALSE

the number of characters to be read
and stored in the buffer after an
EOM character. These characters are
not placed in the buffer if it i1s full.
CRC-STOP = 0 disables this function.

store any SYNC characters received
in buffer

discard any SYNC characters received

synchronize the line before each receive

do not synchronize line before each receive

the numeric value of character sent
to the terminal for SYNC

the numeric value of the character
received from the terminal for SYNC.

8-bits without parity
7-bits with parity (eight is parity bit)

2-3

DEFINING A COMMUNICATIONS NETWORK

where llid is the logical line identifier which is a number in
either octal (with the initial digit a zero) or decimal
notation (0 to 254; 255 flags the line as unopened). The
attribute list is optionally formed from the line attributes
which each have a limited number of conditions to which
they can be set. The colon after the logical line identifier
and the period at the end of last condition are required.

Only one assignment to a particular attribute may be
made. A duplicate will cause processing to continue with
the second value replacing the first. Uppercase words
indicate those letters are the actual values allowed. Lower
case are generic terms.

In general the assignment of an attribute in a line
statement may be repeated and causes the last occurrence
to override prior settings. For example, if ADDRESS = 012
is specified after ADDRESS = 024 the line address will be
assigned to address 012.

The following default settings are provided by the network
definition module when the attribute is not specified by the
user:

Line Attribute Defaults

ADDRESS = 0,

CONNECT = DIRECT,

* EOM-STOP = (0212, 0215),
ERROR-STOP = FALSE,
PARITY = NONE,

STATUS = UP,

SPEED = 0,

LINE-TYPE = HALF-DUPLEX,
MODE = ASYNCHRONOUS,

" = 0212 and 0215 represent the octal values for
line feed and carriage return, respectively.

Asynchronous Line Defaults

ECHO = FALSE,
TRANSMIT-SPEED = LOW,

Synchronous Line Defaults

CRC-STOP = 0,
STORE-SYNC = TRUE,
SYNCHRONIZE = FALSE,
SYNC-TRANSMIT = 0226,
SYNC-RECEIVE = 0226,
TRANSPARENT = FALSE,

Examples of LINE Statement

Example 1:

Define a direct-connect line at physical address 012 as
logical line number 1 with even parity, incoming data rate
of 10 characters per second and messages terminated only
when the buffer is full.

2.4

——— — — i — — —

LINE 1: ADDRESS = 012, PARITY = EVEN,
SPEED = 10, EOM-STOP = FALSE.

By default the line is direct-connect.

Example 2:

Define a direct-connect line with physical line address 024,
as logical line number 2 .

The line has even parity, a data rate of 10 characters per
second. Incoming messages are terminated with either a
line feed (0212) or carriage return (0215), which are the
default EOM characters.

LINE 2: ADDRESS = 024, PARITY = EVEN,
SPEED = 10.

2.2.2 TERMINAL Statement

The TERMINAL statement describes a remote device and
declares a set of attributes for it. For each TERMINAL
statement the NDM builds a prototype Terminal Control
Description (TCD) for the terminal and stores it in an RMD
file.

The general form of the TERMINAL statement is

TERMINAL tuid : attrib(1) = cond(1),

attrib(2) = cond(2),...,attrib(n) = cond(n).

where tuid is the unique terminal unit identifier formed
from one to four alphanumeric characters. The first
characters must be alphabetic A-Z. A duplicate terminal
identifier will be flagged and the attributes associated with
it will replace those from the prior occurrence.

The terminal attributes that are set in this statement are
listed below. Items in upper-case letters are entered as the
actual values; lower-case letters represent a position where
one type of entry is allowed. For example nnn represents a
position for a numeric value either in octal or decimal
notation.

Attribute and condition pairs are separated by commas (or
equal signs). The list must be terminated with a period.

DEFINING A COMMUNICATIONS NETWORK

Attribute Allowed Values and Meanings

DEVICES nnn D=\ specifies the number of devices attached
to the terminal

CODE ASCII 0 specifies the code type for the terminal

BAUDOT

ECHO TRUE 9, characters inputted are to be transmitted
back to the terminal by the TCM (only
applicable to a full-duplex line)

FALSE no echoing by CCM
U

LINE nnn 7 logical line number to which the

~ terminal 1s attached
AW
0!’

PROMPT nnn {_‘.’:" numeric value of the character to be
sent to terminal when input data i1s
requested

TYPE TTY]l W specifies TCM as type 0

TCMn (TTY) or n where n iIs between
1 and 9
Y
UNIT nnn V logical unit number of the communications
. controller module
\

STATUS UP v initial terminal status is up (available to
be opened)

DOWN initial terminal status i1s down, not

The following are the default conditions, provided by the
NDM when not specified by the user:

CODE = ASCII
DEVICES = 1

ECHO = TRUE
LINE = O
PROMPT = 0207
TYPE = TTY1
UNIT = 0 e
STATUS = UP

The following table shows the net effect of the possible
combinations of the ECHO attribute in line and terminal
directives:

Attribute Value

Line ECHO TRUE TRUE FALSE FALSE
Terminal ECHO TRUE* FALSE TRUE®* FALSE
Result: TRUE TRUE FALSE FALSE

*When ECHO is set TRUE concurrent READ and WRITE
on a full-duplex line are inhibited.

available until operator action

Examples of TERMINAL Statement

Example 1:

Define a Teletype terminal that i1s i1dentified as RMO1 on
logical line number 5. Input characters are not to be
echoed back to the terminal.

TERMINAL RMO1 : ECHO = FALSE, LINE = 5,
Example 2:

Define a Teletype-compatible terminal that is identified as
RMO02 on logical line number 6. A carriage return i1s to be

output to the terminal as a prompt character.

TERMINAL RMO02: LINE = 6, PROMPT = 0215.

2.2.3 END Statement

The END statement indicates the final entry in the NDM
input. It is required and its omission may result in incorrect
processing of the description. The only form of this
statement is the word END followed by a period.

2-5

e el o e E—

DEFINING A COMMUNICATIONS NETWORK

2.3 OPERATING INSTRUCTIONS

The Network Definition Module of the VTAM system
resides in the VORTEX background library. NDM s
executed as a background program at priority level 0.

NDM files

Input records to NDM (the NDL statements) are read from
the Pl logical unit; listings are output to the LO logical unit.
The listing includes source language statements, error
messages if any occurred, and a summary of characteris-
tics of the network.

The files which contain the tables constructed by NDM are
named VT$DFL (for lines) and VT$DFT (for terminals).
These files must reside in the FL (foreground library) logical
unit.

Example:
Create the required VTAM file and execute NDM.

/JOB

/FMAIN

CREATE,FL,F.VT$DFL, 120,11
CREATE,FL,F,VT$DFT,120,3

/LOAD,NDM

LINE 1: ADDRESS =012,PARITY = EVEN,SPEED = 10.
LINE 2: ADDRESS =024, PARITY = EVEN.
TERMINAL RMO1: LINE = 1.

TERMINAL RMO2: LINE =2,

END.

/ENDJOB

The line file VT$DFL is always 11 sectors. The size of the
terminal file depends upon the number of terminals. The
minimum number of sectors in the file are calculated by
integer division as follows:

ntuid - 1 ntuid - 1
Sectors = 4 + 2
29 24
where:
ntuid = number of terminal unit identifiers

to be created for the network.

2.4 ERROR INDICATIONS AND WARNINGS

The diagnostic facilities of the NDM produce messages
which are warnings and do not terminate processing.

Messages

“*|LLEGAL ATTRIBUTE TYPE SPECIFIED

This message indicates a inappropriate value assignments
to an attribute. For instance, specification of an asynchro-
nous parameter on a synchronous line.

2-6

**SYNTAX ERROR

A syntax error such as a misspelling or an omitted special
character (period or colon) followed by the character string
where the error is detected.

If the initial word in a statement is not recognized a syntax
error message is given and the entire statement to the next
period i1s ignored and processing continues from there.

“*DUP TUID NAME

This message indicates more than one terminal statement
used the same identifier. The attributes occurring with the
latest statement will be assigned.

** FILE VT$DFL TOO SMALL
“* FILE VT$DFT TOO SMALL

This message indicates that the named file was not large
enough. VT$DFL must be at least eleven sectors. The size
of VT$DFT only causes an error message if it is less than
two sectors.

|70 Errors

Fatal errors occur as stops with a number indicating which
device had an error, EOF or EQOD.

Message Device
NDM STOP 100 Pl
NDM STOP 200 LO
NDM STOP 300 VT$DFL
NDM STOP 400 VT$DFT

STOP 100 also occurs on a missing END statement.

The STOP is given immediately after the 1/0 operation
causing the fault. Thus the last line listed is the card
previous to the card causing the fault.

2.5 NDM OUTPUT

As the NDL processor inputs each 80-character record it
outputs the record (exactly as input) to the LO unit.

After the END statement is processed the NDM produces a
report of the contents of the VTAM files VI$DFL and
VTS$DFT. The first part of this report lists all defined
prototype LSD's in the file VI$DFL. These are listed in
order of their logical line numbers. For each defined
prototype LSD the logical line number is listed in decimal
followed by the five-word descriptor listed in binary (table
2-1 lists descriptions of the prototype LSD fields).

Prototype LSD Output Format

1514131211109 8 7 6 5 4 3 2 1 0O
T
,|Ps | Ps [Ps|ps
A PSLSP
MOD | PAR | 3| xmm
1 PSCCI PSCC2
' —
,|Ps{Ps Ps{Ps
T 1 D (D
R E KRG R PSPLA
e |p wlE L
R [F N[F
|- o - " 'l
L |Ps|Psies
D[y [a| Ps
s N |B| cre R
F IC IN
—-I-L—q——l— = ————
4 :S
. PSYNR
C

* reserved for future use

Following the prototype LSD listing the TIB and prototype
TCD are listed for each defined terminal. The first line
contains the TUID followed by the third word of the TIB in

binary.

TIB Output Format

15 14 13 12 11 109 8 6 5 4 3 2 1 ©
T
2 |D TISEC TIDSP
W
N

I——.—————-——_

This word indicates the status of the terminal and the RMD
location of the prototype LSD. Table 2-2 lists the value and
attribute for each field. Next the five words of the prototype
TCD are listed in binary. Table 2-3 lists the value and
attribute for each field.

Prototype TCD Output Format

15> 14 13 12 11

DEFINING A COMMUNICATIONS NETWORK

109 8

I & B 4 8§ 2 1 ¥

PCLLN

PCCLN

Table 2-1.

Field

PSMOD

PSPAR

PSASY

PSXMM

PSLSP

PSCCI

PSCC2

PSTER

1
7,
m
1)
i

PSDWN

Prototype LSD Field Description and Range

Attribute

Connection

Parity

Maode

Line-type

Speed

Control

Control
EOM-stop

cCno
(Asynchronous)

Transparent
(Synchronous)

Status

Range

0 = Direct

1 = Non-dial modem
2 = Dial modem

0 = No parity

1 = 0Odd parity

2 = Even parity

0 = Asynchronous

1 = Synchronous

0 = Half duplex

1 = Simplex receive
2 = Simplex transmit
3 = Full duplex
Line speed

Control character 1

Control character 2

False
= [rue

]

c2

False

True

[—
I

(]
I

= 7/ bits plus parity
= 8 bits (no parity)

o
|

_Up

= Down
(continued)

2-7

DEFINING A COMMUNICATIONS NETWORK

Table 2-1. Prototype LSD Field Description
and Range (continued)

Field
PSDEF*

PSPLA

PSDSF

PSYNC

PSABN

PSCRC

PSYNT

PSBSC

PSYNR

Attribute

Line Status

Address

Transmit-speed

Store-sync

Error-stop

CRC-stop
Sync-transmit

BSC mode

Sync-receive

Range

0 = Line is not defined
1 = Line is defined
0-255

0 = Low speed

1 = High speed

0 = Stored

1 = Not stored

0 = False

1 = True

0-7

0-255

0 = Not BSC mode
1 = BSC mode
0-255

“This bit is not set by an attribute; it is set when a line has
been defined.

Table 2-2. TiB Field Description and Range

Field

TIDWN

TISEC

TIDSP

Attribute

Terminal
status flag

VTE$DFT file
sector

VT$DFT file
displacement

Range
0 = Up
1 = Down

Table 2-3. TCD Field Description and Range

Field

PCLLN

PCCLN

PCXMM

2-8

Attribute
Line
Unit

Line-type

Range
0-255
0-255

= Halt duplex

= Simplex receive
Simplex transmit
Full duplex

0
1
2
3

Field

PCBSL

PCSWL

PCPCH

PCCTP

PCTYP

PCNTD
PCECH

Attribute

BSC mode

Switched
line flag

Prompt

Code

Type

Devices

Echo

Range

Asynchronous mode
1 = Synchronous or BSC

mode
0 = Up
1 = Down
0-255
0 = ASCIli
0 = Teletype
19 = TCM type
10-15 = Unassigned
1-15
1 = False
0 = True

The following is an example of the NDM printed output.

PAGE 2

LSD

2 D = =a 0
=2 232D
O ad P D

- =D

LSD

=D e e D
2 D20 D T e
o 39 DD

PAGE 3

TIB TTv!
nnnN

PFLOD TTY1

0

0

2>
2
22D

TIB

PCO

N
0 0
fn 6 0
O 0
n

2
2

JENDJOB
/FINI

02222 9

e Bl i = e e

2

= 2 22D

03/19/7 4

20 D= D
o G e
595 5 =3
2 O = 3 3
—— 3 = D

2 Do
2 DD D
=2 DO -
= 3 == 73 7
o) e D)

03719774

2
-
2
—
e |

(o O S O T |
o I o N & R T |
A MO DN
0O OO A
A 0B O 6

-
2
2
-
=

2 2 3 DD
e e Qe Rl M
229 2D
2 DD
FD De-m D
22 2729

NIYH

293 223 2

2 223

NDM

=2 DD DD

P

222

29 23223

2 I D

2

22 32D

b |

22 2322

VORTFY VTAM NDL

2 2> 2 == 3
i e |
il - S R
DDA =D

2 D=
s T - |
el = s S Tl |
= DD - D

VORTEX VTAM NDL

2 D e TR
2 DD)
-

2
il
=
[

2 a3 DD
PR Y-
& D D=)
o D= =-— T

. A o R & s =

SECTION 3
USING VTAM MACROS

3.1 INTRODUCTION

VTAM requests are written in assembly language as macro
calls. The DAS MR assembler provides the following macros
for data communications 1/0:

OPEN open a line or terminal
CLOSE close line or terminal

READ input from terminal

WRITE output to terminal

WEOQOF write end-of-file designator
FUNC function request

STAT status request

LCB generate a line control block
DCB generate a data control block

The VORTEX and VTAM systems perform a validity check
on all I/0 requests. VTAM then queues each valid request
to the terminal control module or communications
controller module assigned to the specified logical unit. If
the appropriate TCM or CCM is not scheduled, the VTAM
system schedules it to service the queued requests.

The assembler expands the macros to several words of
executable code and data. Certain VTAM operations
require parameters in addition to those in the macro call.
These parameters are in a table called the line control
block (LCB). In general, embedded optional parameters
can be omitted by indicating the normal number of
commas.

Error messages applicable to these macros are given in
section 3.3.

3.2 GENERAL FORM

The general form for data communications 1/0 macros is:

label name cb,lun,wait, mode
where

cb is the address of a control block

lun is the logical unit name or number

wait is the wait/immediate return flag

mode is the mode of read/write request

e R i —— © e @i e

The expansion of the macro is generally as follows:

15 14 1312 11 109 8 7 &€ § 4 3 2 1 0O

JSR X

V$I0C Entry Address

CcC* PRIORITY

Status

Logical Unit No.

Mode l Op-code

LCB/DCB Address

S S e = —

Actual Number of words or bytes transferred®

—— — =—

Detail Status*®

-

“only valid when C = 1, (request complete) and not in
buffer chain mode.

Explanation of Macro fields

L Set indicates request complete
Status Status of 1/0 request

E Set if an irrecoverable error occurred
CC Completion code

priority Initially zero, set to requesting task's

priority by V$IOC

W Set for immediate return, reset for
suspension of calling task until
completion of 1/0

Mode Depends upon the particular macro

Op-code specifies the operations to be performed as
follows:

0 READ

1 WRITE

2-4 Undefined (return request complete
status, if executed)

o) FUNC
6 OPEN
7 CLOSE

3-1

R R — - — PRR——

PP R SR

USING VTAM MACROS

LCB/DCB Address of line control block 3.3 ERROR INDICATIONS ON VTAM MACROS
Address or data control block
Detail the format of the detail status The following 1/0 errors are given by VTAM in addition to
Status word is shown in table 3-1. those described in the VORTEX/VORTEX Il Reference
Manual.
Table 3-1. Detail Status
1033 invalid terminal identifier or logical
Bit Set Reset line number
0 Clear to send ON Clear to send OFF 1034 terminal or line not opened
1 Data set ready ON Data set ready OFF,
2 Ring circuit ON Ring circuit OFF 1035 terminal or line down
3 i ~—————Carrtér OFF
4 Reverse channel ON Reverse channel OFF 1036 terminal or line already open
5 Parity error** No parity error |
6 cg#mam "~No control character 1037 requests still pending
detected (Read buffer detected | _
terminated, request 1040 170 action attempted on terminal not opened
complete)
7 |/0O clear occurred No 1/0 clear 1041 break detected
8 Break/format error @ No break or format
B R error 1042 invalid physical line address
- I
9 Overflow No overflow 643 nvalid TCM type
* hardware unable to service line before data lost 1044 no temporary storage available

. from VTAM memory allocation table
** |n BSC operations, if bit 5 and bit 9 are on, it 1S an

indication of a three second receive timeout (chapter 8). 1000 170 clear occurred

@ Format error in BSC mode 1071 overflow detected

32

SECTION 4

OPENING AND CLOSING TERMINALS AND LINES

4.1 INTRODUCTION

When an application program requires the services of
VTAM to communicate with a remote device both the line
and terminal must be opened before any |/O action. A
READ or WRITE on an unopened line or terminal will result
in an error message. An OPEN request for a terminal will
also open the line on which that terminal is attached. Lines
can be opened but must be followed by a terminal OPEN
request in order to establish communication with the
terminal.

Line Open and Close Actions

On a line open request the prototype Line Service
Descriptor (LSD) is read from the RMD file VI$DFL. A
block of temporary storage i1s obtained from a memory
pool, and a central memory resident LSD is built, The LSD
s linked through the physical line table to the logical line
table and also to the LSD queue. This procedure makes the
line available to the user to make |/0 requests.

On a line close, the LSD is removed from the physical line
table and also from the LSD queue. The temporary storage
block is returned to the memory pool and 1s available to
another user.

Terminal Open and Close Actions

When an application requests an open or close on a
terminal, V$I0OC passes the request to the appropriate
TCM, which functions as a pseudo driver under VORTEX.

The terminal open request causes the prototype terminal
controller descriptor (PCD) to be read from the file
VT$DFT. If the line for this terminal is not already open, an
open request is made for the line. Upon return a block of
temporary storage is obtained from a memory pool and a
TCD resident in main memory is built. The TCD is linked to
the logical terminal table and also to the TCD queue. After
successfully completing this procedure the terminal is
available for the user to make READ, WRITE, CLOSE etc.
requests.

The terminal close request removes the TCD from the
logical terminal table and from the TCD queue. The
temporary storage block is returned to the memory pool,
thus making the area available to another user. If there are
no more terminals open on the line, a close request is
made to close the line.

Open and close requests are coded in the applications
software as macro calls in DAS MR, as subroutine calls In
FORTRAN and also as JCP directives.

JCP Open and Close Actions

To provide the ability to perform line and terminal opening
and closing external to an application program, JCP allows
these actions through the OPEN and CLOSE directives. In
effect lines and terminals may be opened and closed either
through macros within a program or through the JCP
directives /OPEN and /CLOSE before or after program
execution. These directives also allow system 1/0 units like
LO to be opened and assigned to a line or terminal by the
second format of OPEN (see section 4.2.1). In this manner
a user or the system operator has the option of opening
and closing lines or terminals outside of a program by
entering these JCP directives through the S| device.

4.2 OPEN MACRO AND JCP DIRECTIVE

The OPEN macro i1s applicable to either a line or terminal.

4.2.1 Forms of OPEN Macro

DAS MR:
label OPEN cb,lun, wait
where
cb s the address of the line control
block (LCB) or the data control block
(DCB) containing the four-character
terminal unit identifier in the
first two words.
lun s the logical unit number for the
CCM opening a line or the TCM
opening a terminal
warit iIs 1 for an immediate return or O
(default) for suspension of the
caller until the open I1s complete
FORTRAN:
label CALL VT$OPN (name,lun,stat)
where
name IS a three-word array containing
the LCB or DCB
lun is the logical unit number for the
CCM opening a line or TCM opening
a terminal
stat IS an integer variable where the

status will be returned

4.1

OPENING AND CLOSING TERMINALS AND LINES

All FORTRAN open requests cause suspension of the calling
program until the open is complete.

JCP:
/OPEN, lun , id
/OPEN, lun ., id, lun
where
lun, Is the logical unit name or number
for the CCM opening a line or TCM
opening a terminal
id Is the logical line number for
opening a line or terminal unit
identifier for opening a terminal
lun . IS the logical unit name or number
which will be assigned to the CCM or
TCM designated by the other lun
after the terminal has been opened
Example :

/OPEN, 184, TTY 1
/OPEN,LO,TTY2, 184

Note: A JCP /OPEN directive performs two functions: a
VTAM open and a VORTEX |0C assignment. Therefore, a
VORTEX job stack containing a /OPEN directive should
also contain a /CLOSE directive before any JCP reassign-
ment directives (such as /FINI or /JOB) are input. If, for
example, a /OPEN is followed by a /FINI, the VORTEX IOC
linkage to VTAM is broken, but the VTAM linkage remains
intact. To recover from this, useaJCP or OPCOM ASSIGN
directive.

Example:

Suppose a TCM has device name TCO00 and logical unit
number 184, An NDL directive defines a terminal name
TR15. A VORTEX job wants to direct LO output to this
terminal, thus:

/OPEN,LO,TR15,184
/FINI

The /FINlisinerror, forit will reassing LO back from term-
inal TR15 toits default value, but VTAM tables and linkage
are left in an incorrect state. To recover, enter:

/ASSIGN,LO, TC00

and all linkage is reestablished.

4.2.2 Error Indications on OPEN
DAS MR:

The open/close module generates the following status in
word two of the request, bits 14-5 for DAS MR OPEN calls:

Meaning (Standard VORTEX

Bit Value error message codes)

14.9 00 normal completion

4.2

02 invalid lun for CCM or TCM

033 invalid logical line number or
tuid

035 line or terminal down

036 line or terminal already open

042 invalid physical line address

043 invalid TCM type

044 no temporary storage available

for LSD or TCD

8 1 irrecoverable |/0O error
7-5 0 normal return

5 I/O error
FORTRAN:

The open/close module returns the following status as a
result of a FORTRAN OPEN call:

Contents
of STATUS Meaning

normal completion
invalid lun for CCM or TCM
invalid logical line number or tuid

line or terminal down

line or terminal already open
invalid physical line address
invalid TCM type

no temporary storage available
/O errors

N b WN-=O

JCP:
Any errors as a result of an /OPEN directive to the JCP will

result in the error message " JC06" being output to the SO
and LO logical units.

Examples of OPEN

Example 1:

Open line 16 on logical unit 72. Select the wait option. The
LCB address is TTYLCB.

OPEN TTYLCB, 72

The default value for wait is used. The line number is in the
LCB.

The same request in FORTRAN would be:

INTEGER TTYLCB, STATUS
DIMENSION TTYLCB(3)
TTYLCB(3) = 16

CALL VTS$OPN (TTYLCB,72,STATUS)

Example 2:

Open a terminal whose tuid is XY03 on logical unit 122.
Select immediate return.

TUIDCB DCB "XY' 93"
OPEN TUIDCB, 122,1

The same request in FORTRAN (except for the wait for
completion instead of immediate return) would be:

INTEGER TUIDCB, STATUS

DIMENSION TUIDCB (3)

DATA TUIDCB (1),TUIDCB(2) /2HXY,2HO03/
CALL VT$OPN (TUIDCB, 122, STATUS)

4.3 CLOSE MACRO AND JCP DIRECTIVE

The CLOSE macro is applicable to both lines and terminals.

4.3.1 General Format

DAS MR: for

label CLOSE cb,lun,wart

The parameters are identical to those described for OPEN.
This is the standard VORTEX CLOSE macro.

FORTRAN:
label CALL VT$CLS(name, lun,stat)

where name is the three-word array containing the LCB or
DCB, and stat is an integer variable where the status will
be returned. All FORTRAN CLOSE requests cause suspen-
sion of the calling task until the 1/0 is complete.

JCP:
/CLOSE, lun,id

where id is either the logical line number or the four-
character terminal unit identifier, used to open the line.

All JCP CLOSE directives cause suspension of the JCP unit
until the CLOSE is complete.

Example:

/CLOSE,LO,TTY2

4.3.2 Error Indications
DAS MR:

The open/close module generates the following status
indication in the second word of the request, bits 14.5 for
DAS MR CLOSE calis:

OPENING AND CLOSING TERMINALS AND LINES

Value
Bit No. (Octal) Meaning
14.9 Standard VORTEX error
message code
00 normal completion
02 invalid LUN for CCM
33 invalid logical line number
or tuid
34 line or terminal not open
37 requests still pending on line
or terminal
43 invalid TCM type
/-5 0 normal return
5 |/Q error
FORTRAN:

The Open/Close module returns the following status as the
result of a FORTRAN CLOSE call:

Contents of

Status Word Meaning
0 normal completion
1 invalid LUN for CCM
2 invalid logical line number or tuid
3 line or terminal not open
4 requests still pending on line
or terminal
5 invalid TCM type
6 [/Q error

JCP:
Any error conditions as the result of a /CLOSE directive to

the JCP will result in the error message " JCO6" being
output to the SO and LO logical units.

Examples of CLOSE

Example 1:
Close previously opened line 16 on logical unit 72, Select
the wait option. The LCB address is TTYLCB.

CLOSE TTYLCB, 72
The default values for wait 1s used. The line number is in
the LCB.
The same request in FORTRAN would be:

INTEGER TTYLCB, STATUS
DIMENSION TTYLCB (3)

TTYLCB (3) = 16

4.3

— . — —— il -

R e —— i

e —— . —

OPENING AND CLOSING TERMINALS AND LINES

CALL VTS$CLS (TTYLCB, 72, STATUS) The same request in FORTRAN (except for an automatic
wait instead of immediate return) would be:

INTEGER TUIDCB, STATUS
DIMENSION TUIDCB (3)

Example 2: DATA TUIDCB (1), TUIDCB (2)/2HZZ, 2H15/
Close a previously OPENed terminal with tuid of ZZ15 on ;
logical unit 201. Select immediate return. :

o CALL VT$CLS (TUIDCB, 201, STATUS)
TUIDCB DCB Vg 18

.

CLOSE TUIDCB, 201,1

4-4

SECTION 5
PROGRAMMING AT TCM LEVEL

A data communications application program can converse
with a remote device through the TCM for that type of
terminal. This section describes the use of a standard TCM
called TTY for Teletype and similar compatible terminals.

The TTY TCM processes READ WRITE, FUNC,STAT.and
WEOF requests from application programs written in DAS
MR and FORTRAN running under VORTEX. These
functions can be performed only after the terminal is
opened (open actions are described in section 4).

Use of paper tape with VTAM must be consistent with the
terminal being used. For instance, a strictly binary data

stream transmitted to a Teletype Model 35 ASR could
contain the ASCI| bit patterns to start and stop the paper:

tape punch and reader thus causing loss of information on
the resulting paper tape. Similarly, use of the paper-tape
reader must be carefully considered because of the
absence of control in data being read. Depending upon the
processing load on the CPU, one or more data bytes mignt
be lost between logical reads.

5.1 MACRO DEFINITION

All callstothe TTY TCM are processed through the normal
IOC component (described in VORTEX Reference
Manual). The TCM processes Teletype keyboard input

and printer output requests as well as Teletype paper-tape
reader and punch operations. The TTY TCM performs
READ, WRITE, FUNC, STAT, and WEOF functions but all
other IOC macro functions are ignored by the TCM, and
are unconditionally returned as |I/O complete.

5.2.1 READ Macro

The READ macro operates in two modes, either in standard
ASCI| or in a transparent mode which does not recognize
and react to editing characters and does not perform user
prompting or carriage control.

ASCIHI READ

An ASCIl READ request inputs through the TCM from the
device one record of up to 80 ASCIlI characters, or 40
words.

A record 1s terminated by either a carriage return character
or input of the 80th ASCII character. In the latter case a
carriage return and line feed are output to the TTY. If a
carriage return character terminated the READ, the
remaining unused portion of the input buffer is cleared to
ASCI| blank characters and a line feed 1s output.

Any input request causes the prompt character such as the
BELL character to be output to indicate that the keyboard
is ready for input. All valid ASCI| characters are stored two
characters per word left justified in the user buffer
specified in the DCB. All characters are echoed if the
terminal is on a full-duplex line and ECHO s set; on a half:

duplex line, characters are not echoed but printed locally
by keyboard action.

The backslash character (shift and L simultaneously) is a
control character to delete the current record. A carriage

return and line feed are output to inform the user that a
new record can be input.

The backarrow character (shift and the letter O simulta-
neously) on input deletes the preceding character input.
Characters cannot be deleted beyond the current line.

The carriage return character causes the current record to
be terminated and the system responds with a line feed.
The carriage return is not stored in the user's buffer.

When the ASCII mode is used, the READ request has a
timeout feature which is described with the FUNC macro
(see section 5.2.4).

The BELL character also has a special function when it 1s
the first character input in response to a READ in the
standard ASCI|I mode. It causes the READ to be terminated
and returns end-of-file (EOF) status with the completed
READ request. To distinguish this condition from data-set:
ready OFF condition (completion code = 6), the irrecover-
able error flag is set for the data-set-ready OFF case.

Transparent Mode

This mode is identical to the ASCIl mode described above
except in the cases listed below.

a. The buffer length specified in the DCB 1s not limited to

40 words. If the length is greater than 80 characters,
the TCM will continue input until a carriage return is
received or the buffer is full.

b. Aline feed is not output, when the READ is terminated.
c. Theunused portion of the buffer is not set to blanks.
d. Noprompting character is output.
e. Noinput editing is performed.
READ Macro

label READ

dcb,lun,wait, mode
where

dcb address of the DCB

lun logical unit number of the terminal
set for immediate return, otherwise

program is suspended until 1/0
complete (0 is the default)

wait

5-1

PROGRAMMING AT TCM LEVEL

mode mode of read
1 = ASCIl (default)
4 = transparent
all other modes reserved for
future use and are defaulted to 1

Example of a READ Macro
DAS MR:

Read a record on logical unit 64. Select immediate return
option and mode 1.

TYUN EQU 64 (LUN assigned to
h terminal via OPEN)

IM EQU 1 (Immediate return)
STMD EQU 1 (Standard, ASCIl mode)
RECL EQU 40 (Record length 40

’ words)

OPEN TUID,TYUN
TYRD READ TTY, TYUN,IM,6STMD

TUID DCB B ST o4 B
TTY DCB RECL ,BUFF (Data control
¢ block: user data
. area specifying record
. length in words. To
. specify byte count,
. use Indirect address
y constant: (BUFF)*)
BUFF BSS 40 (user data area)
FORTRAN:

Read a 20 character record on logical unit 64 into a buffer,
packing two characters per word.

DIMENSION IBUFF (10)

READ (64,100) IBUFF
100 FORMAT (10A2)

Return conditions for READ

The TTY TCM generates the following status in the request,
word 2 of bits 14-5:

Bit
Number Value Meaning
14.9 Two octal digits error message
code (see VORTEX Reference
Manual)
00 Normal completion or 1/0 clear
01 Device declared down
02 lllegal opcode or unassigned

logical unit number

5-2

Bit
Number Value Meaning
30 Parity error occurred during
data transmission
40 Terminal not open
41 Break detected
/1 Overflow detected
8 1 Irrecoverable error
7-5 Completion code
0 Normal return
5 Error
6 End-of-file (Bit 8 = 0)
Data-set-ready off (Bit 8 = 1)
7 Read time-out

5.2.2 WRITE Macro

The WRITE macro like the READ macro operates in two
modes, either in standard ASCII or in a transparent mode
which does not recognize and react to editing characters
nor perform user prompting or carriage control.

ASCIl mode (1):

The write request causes the TTY TCM to output one record
of ASCIlI character data of up to 36 words (72 ASCII
characters) in length. The record size (in words or bytes) is
specified by the user in the DCB. All trailing characters in
the specified buffer must be ASCIlI blank characters. The
TCM determines the actual number of characters to output
by starting at the end of the buffer and counting the
number of trailing ASCIl blank characters, then subtract-
ing this count from the maximum number of characters
possible in the buffer.

When a record is output to the Teletype printer, the first
character of the record is reserved for a vertical spacing
character and is not printed. The TCM will replace the first
character with a blank character. The vertical spacing
control characters have the following meaning:

ASCIlI Character Vertical Spacing

Blank One line (single space)
0 Two lines (double space)
1 ASCI| form character is output

When the last character of the buffer has been printed, the
TCM outputs the carriage return, null, and line feed

characters. The normal completion status is stored in the
request block and control is returned to the user if the
WAIT option was used.

Transparent Mode (4):

This mode is identical to mode = 1 except as follows:

a. First character in user buffer is not used for forms
control.

b. Each character in the buffer is output with no special
checking. If more than /2 characters are output on one
line, no action is taken by the TCM.

c. All forms control is handled by characters in the user’s
buffer. Upon completion of printing the user's buffer,
no carriage return, null, and line feed characters are
output.

The format of the WRITE macro is:

label WRITE dcb,lun,wait, mode

Where the parameters are the same as defined for the
READ macro.

The TTY TCM generates the following status in the request,
word 2 of bits 14-5:

Bit
Number Value Meaning

STATUS 14-9 Two octal digits for

error message code

00 Normal completion or
/0 clear

0l Device declared down

02 lllegal opcode or

unassigned logical
unit number

40 Terminal not open
41 Break detected

E 8 1 Irrecoverable error
CC 7-5 Completion code
0 Normal return
5 Error

6 Data-set-ready OFF

Example of a WRITE Macro

DAS MR:

Write a record on logical terminal 64. Select the wait option
and mode 4.

TYUN EQU 64 (LUN assigned to
' terminal via OPEN)

WAIT EQU 0 (Wait option)
WRMD EQU 4 (Transparent mode)
RECL EQU 120 (Record length 120

bytes)

TYWR WRITE TTY, TYUN, WAIT, WRMD

PROGRAMMING AT TCM LEVEL

TTY DCB RECL ,(BUFF)* (User
. data area specitying
. record length in bytes. To
. specify word count, use
. direct address constant:
- BUFF)
BUFF BSS 60 (user data area)
FORTRAN.:

Write a 20 character record on logical unit 64 from a buffer,
packing two characters per word.

DIMENSION IBUFF (10)

L]

WRITE(64,100) IBUFF
100 FORMAT (10A2)

5.2.3 STAT Macro

The status request macro STAT causes the status to be
examined and control transferred to a user-defined routine

for the processing of errors.

The format of the STAT macro is:

label STAT req,err,aaa,bbb, busy

where req is the address of the |/0 macro, err is the,
address of the |/0 error routine,aaa is the address of the
data-set-ready OFF routine, bbb is the address of the READ
request time-out routine, busy is the address of incomplete-
|/0 routine.

Except label all parameters are mandatory.

The contents of the overflow indicator and the A and B
registers are saved.

Return Conditions

Upon normal completion, control is transferred to the task
after the end of this macro expansion.

If an /0 error occurred, control is transferred to the
address specified as err. If the data-set-ready signal is off,
control 1s transferred to the address aaa. If the length of
time for a terminal response exceeds the time-out specified
in a FUNC macro, control passes to the address bbb. An
incomplete |/0 causes transfer to the address specified as
busy.

5-3

— = B R B R e LTI o TR T B EdE e —

PROGRAMMING AT TCM LEVEL

Example of a STAT Macro

Read a record on unit 64 and check for Data-Set-Ready
OFF and time-out. Use immediate return option, mode 1.

TYUN EQU 64 (Logical terminal unit)
IM EQU 1 (Immediate return)
RDMD EQU 1 (Standard mode)
RECL EQU 80 (record length)
TYRD READ TTY, TYUN, IM, RDMD
B STAT TYRD, ERR,DSRO, RTO,B
DSRO (DATA SET OFF ROUTINE)
Function Function Code
Output carriage 0

return and 3 line
feed characters.

Set NO ECHO flag 1
for READ requests

on full duplex lines.

This flag is .

initially reset

when terminal i1s

opened.

Reset NO ECHO flag 2
for READ requests

on full duplex

lines.

Set a timeout value 3
for READ requests

which use the WAIT

option. (Only for the

ASCIlI READ mode.)

54

RTO (TERMINAL TIME-QUT
. ROUTINE)

ERR (ERROR ROUTINE)

TTY DCB RECL, BUFF (Data
« Control Block)

BUFF BSS 80

5.2.4 FUNC Macro

The FUNC request causes the TTY TCM to perform specific
functions that cannot be performed by other macros. The

value of the low-order bits of the function code word of the
DCB defines the operation to be performed.

Comments

Outputs the sequence of characters, sets
normal completion status in the request
block and control returns to user.

Causes input characters for subsequent
READ requests not to be echoed if term-

inal is on full duplex line.

Causes input characters for subsequent
READ requests to be echoed if terminal
iIs on full duplex line.

Sets a timeout value for all subsequent
READ requests on the terminal. The
default timeout value is zero and this
prevents the TCM from performing timeouts
for READ requests on the terminal. When
this function request is used, the high-
order byte of the function code word of

the DCB will be used for a timeout value
(1-511 secs.) for all subsequent READ
requests until it is reset to another

value. When a non-zero timeout value has
been specified, the TCM will check for

a READ timed-out condition while waiting
for input. If timeout occurs, timeout

status is returned to the user and the
number of words/bytes input set to zero

in the request block. The TCM also outputs
the carriage return (CR) and line feed

(LF) characters if mode of request is 1. (continued)

Function Function Code

Set a terminal 4
DOWN and clear

all active and

pending TCM 1/0

requests on a

terminal
Clear READ request. 5
Clear WRITE request. 6

All other function codes are reserved for future use.

label FUNC dcb, lun, wait

Parameters are the same as described for READ request,
except the last word of the DCB, function code word, is

used by FUNC requests: function code (bits 7-0), and READ
timeout value (bits 15-8) when function code is equal to 3.
Return Conditions:

Return conditions are the same as described for WRITE
requests.

Example of a FUNC Macro

Set time-out value of 511 seconds for READ requests on
logical terminal unit 64.

TYUN EQU 64 (Logical terminal
’ unit 64)
FUNC TODCB, TYUN (Set read

timeout value)

TODCB DCB RECL ,BUFF,0177403
(Timeout value = 511

seconds, function code

3)

PROGRAMMING AT TCM LEVEL

Comments

This function is used to set an opened
terminal DOWN and to clear all active and
pending TCM 170 requests on the terminal.
The device-declared-down error status is
returned for all TCM requests and any
CCM 1/0 requests are cleared. Memory
used for CCM request blocks are released.
This function is an immediate function.
Therefore, it is not queued. Normal
completion status i1s then returned to the
user for the function request after the

I/Q clear has been performed.

Causes artificial termination of the current
active read request (which terminates with
CC=101, E=1, and STATUS =00). The request

IS marked complete as soon as the TCM services

the request.

Causes artifical termination of the current
active write request. Completion status and

timing information is the same as for function
code 5.

5.2.5 WEOF Macro

The WEOF request causes the TTY TCM to output the

terminal prompting character. |t indicates to the user that
the end-of-file has been reached. The normal completion
status 1s returned in word 2 of the request and control is
returned to the user If the WAIT option was used.

General form:

label WEOF dcb,lun wait

The parameters are the same as described for the READ
request, though the DCB address is not used by the WEOF
request.

Return conditions are the same as for WRITE request
(section 5.2.2).

Example of a WEOF Macro

Output user prompting character on logical terminal unit
64. Use immediate return option.

TYUN EQU 64 (Logical terminal
. unit 64)
IM EQU 1 (Immediate return)

3-5

PROGRAMMING AT TCM LEVEL

PROMPT WEOF

WDCB, TYUN, IM

WDCB DCB RECL ,BUFF

5.3 TTY TCM WITH DIAL-UP LINES

Before any 1/0 operations can be performed on a terminal,
it must have been opened with an OPEN request (section
3.2). If a terminal is defined as on a dial-up line, the action
of opening a terminal causes Data-Terminal-Ready to be
turned on, to enable answering the ring on the line. When
any TCM 1/0 request is made on a terminal, a check is
made for data-set-ready on. If data-set-ready is on, a
physical connection flag is set in the Terminal Controller

9-6

Descriptor (TCD) for the terminal and the request is
initiated. If it is OFF, the request is not initiated and
remains queued until Data-Set-Ready is ON.

If the physical connection flag has been set and the Data-
Set-Ready is off, the TCM considers it a line disconnect and
returns Data-Set-Ready OFF as a status to any active or
pending TCM requests. In this situation the terminal
should be closed and reopened to permit the user to dial
up again and get physical connection to the terminal.

5.4 FORTRAN LEVEL PROGRAMMING

Programming at the FORTRAN level follows the normal
rules for using FORTRAN READ and WRITE statements.
The only additional requirement is that the line be opened
and closed using the OPEN and CLOSE macros (see section
4).

SECTION 6
PROGRAMMING AT THE CCM LEVEL

6.1 INTRODUCTION the maximum record length is 4096 bytes
or 2048 words.

The CCM functions as a driver for data communications

equipment at the communications multiplexor and line But I8 this addiess 6F Wis Sy word of W

level. It processes requests made by terminal control buliar

modules or application programs which require a more

direct interface with the communication lines than that

provided through the TCM. line is the logical line number.

Line disciplines and modem characteristics are defined in func function code only applicable to FUNC
the line-oriented tables of line service descriptors, thus, the request

user of a CCM need not define these items himself in an

application program. Some portions of these tables can be C 1, if length 1s expressed in bytes *
modified dynamically by user programs. 0, if length is expressed in words

(default value)
Binary Synchronous Communications (BSC), both half- and

full-duplex lines, as well as input in the buffer chaining e extension, meaning depends upon the
mode are accommodated by the CCM. function being performed
The CCM provides orderly line turnaround in half-duplex LCB Macro Expansion is described below.

operation and permits concurrent READs and WRITEs on

fu".dup[ex lines. i5 14 312 11 18 9 Er. f & 5 4 3 2 1 0O

0 RECORD LENGTH IN WORDS OR BYTES

6.2 CCM 1/0 CONTROL MACROS AND =
1 |F RECORD FIRST WORD ADDRESS
FUNCTIONS |
2 FUNCTION CODE LOGICAL LINE NO.
The CCM /0 requests are written in assembly language
with the following |/0 macros. 3 'L EXTENSION WORD 1 l
____________ - e
Functio
e W F = 1, record length expressed in bytes. F = 0,
LCB Generate a Line Control Block record length expressed in words.
OPEN Open a line Note: If in buffer chaining mode, F must = 1.
CLOSE Close a line
READ Read a record FUNCTION CODE = 0-255
FUNC Function request Optiﬂnal EXTENSION WORD 1 IS used for FUNC FEE]UEStS
STAT Status request and for the chain header address in buffer chaining.
Function code 3, sense event.
The general form of data communications |/O macros LCB MACRO + 3
(section 3.2) is also applicable to CCM macros. 15 14 13 12 11 109876543210
- : | |
Bit
6.2.1 LCB Macro 0 - wait for Clear to Send ON/OFF op2d
This macro generates a line control block which is required 1 - wait for Data Set Ready ON/OFF 000
by all data communications 1/0 requests. The form of the D":]
Line Control Block macro is: 2 - wait for Ring Circuit ON/OFF o
010
label LCB rl,buf line, func,c,e 3 - wait for Carrier ON/OFF
where 4 - wait for Reverse Channel ON/OFF 03D
rl is the length in words or bytes of the When the specified event occurs (status changes), FUNC is
record to be transmitted or received, flagged complete.

6-1

PROGRAMMING AT THE CCM LEVEL

Function code 7, load control characters.

LCB MACRO + 3

1514 131211 10 9 8 72 6 5 4 3 2 1 0O

| Control Character 1 Control Character 2

Function code 10, load sync characters.

LCB MACRO + 3

151413121110 98 727 6 5 4 3 21 0

|iran5mit Sync Character | Receive Sync Characterl

Function code 25 or any buffer chain mode read.

LCB MACRO + 3

1514131211 109876543210

‘ Chain Header Address l

Function code 6, transmit break.

LCB MACRO + 0

151413121110 9 8 7 6 5 4 3 2 1 O

0 rl

rl 1s the number of character times that the break
condition will be maintained on the line, depending on F
(LCB word 1).

Examples of an LCB Macro

Define an LCB for a data buffer COMBUF which is 375
bytes in length. 1/0 operation will be performed on line 37.

LCB1 LCB 375,COMBUF,37,1
Define an LCB for a data buffer of 20 bytes long, starting
at BUF1, to be used for READ in buffer chain mode, in
logical line O, and buffer chain header (CHR) is at INCHR.

LCB 20,BUF1,0,0,1,INCHR

Define an LCB for use with a FUNC request. The function
code is 3 (sense event) which requires an optional
extension word for the event flags. The function will be
performed on line 3.

- LCBC LCB 0,033,014

The event word is an octal value of 014 which selects
notification when carrier-on or carrier-off and ring-on or
ring-off occurs.

6-2

Status

Status information is returned to the requesting program
in three different fields within the request.

a. e field (word 2, bit position 8) is set when an
irrecoverable error has occurred.

b. cc field (word 2, bit position 5-7) is set for use by the
STAT request. Interpretation of the values is as

follows:
cc bits Meaning
765
000 normal return
101 error
110 reverse channel on, ring
detected

@ asynchronous line break
detected

c. Detail status (word 6, bit position 0-15). See Data
Communications | /0 Macros section 3, table 3-1.

Normal Termination Status
e =0
cc = 0, 6, or /
Detail status bit 7, control character

detected may be set for a READ request.

Abnormal Termination Status

e = |
¢cc = 5
Detail status bits set as follows (see
table 3-1):
Bit Number Value Meaning
1 0 Error condition if occurred
during READ or WRITE.
3 0 Error condition if occurred
during READ or WRITE.
58,9 1 Error condition during
READ only.
7 1 Error is a result of a user

generated 1/0 clear by means

of FUNC request.

d. |0C status field in word 2, bits 9-14 of the request.
This field is used by I0C and VTAM to notify the
requesting program of error conditions relating to the
validity of the request (see VORTEX Reference
Manual).

PROGRAMMING AT THE CCM LEVEL

6.2.2 OPEN Macro where the parameters are the same as defined for the
OPEN macro.

The OPEN macro is executed to place a line in the active
state and then permit |/0 requests. |/0 requests issued
before the line i1s OPENed will result in an error status Elamplﬁ of a CLOSE Macro
return. The CCM OPEN processor establishes the terminal
table environment and performs the necessary line

initialization. A second OPEN macro returns error status Close previously opened line O on logical unit 107. Select no
036 with E =1 (irrecoverable). wait and mode zero. The LCB address is LCB 107.
Open Line Macro: LUN EQU 107
LIJNENO EQU 0
label OPEN Icb,lun,wait, mode WAIT EQU 1
where :
Icb is the address of the line control CLMAC CLOSE LCB107,LUN,WAIT
block 2
lun is the number of the logical unit LCB107 LCB 0,0,LJNENO
used to reference the CCM.
wait is 1 for immediate return or O
(default value) for suspension
of the caller until the 1/0 is 6.2.4 READ Macro
complete

The read macro causes the CCM to input a data block of a
mode 0 = default value (reserved for specified length and format.

future use)

label READ icb,lun,wait, node
Example of an OPEN Macro where the parameters are the same as defined for the
OPEN macro.

Open line 16 on logical unit 72. Select the wait option and

mode 0. The LCB address is TTYLCB. Example of CCM READ

CCMLUN EQU 12

TTYLJN EQU 16 Read a block of data 45 words long from line 13 of logical
’ unit 215. Set wait and mode to 0. The actual data block is
. defined by an LCB at address LCBCRT.

TYOPEN OPEN TTYLCB,CCMLUN DCMLUN EQU 215
: CRTLINE EQU 13
j RDCRT READ LCBCRT, DCMLUN

TTYLCB LCB 0,0, TTYLJN .

LCBCRT LCB 45, BUFADR,CRTLINE
Wait and mode take default values.

6.2.5 WRITE Macro

6.2.3 CLOSE Macro The WRITE macro causes the CCM to output a block of
data of a specified length.
The CLOSE macro is executed to release a line from active

use. The CCM CLOSE processor releases table space for the ” label WRITE Icb,lun,wait, mode

description of the line environment and terminates the —_\
hardware and/or software scanning of the line. The form of where the parameters are the same as defined for the |
the CLOSE macro is: OPEN macro, except that mode =1 when writingan ITBin
bisyn mode (refer to section 8.4.5.5 for more information
label CLOSE lcb, lun,wait, mode \ onITB).
Vg,

6-3

PROGRAMMING AT THE CCM LEVEL

Example of CCM WRITE

Write a block of data 45 words long on line 15 of logical

unit 27 from BUF 2. Select immediate return.

SLCLUN
NOWAIT
SLLINE

WRITE3

SLCLCB

6-4

EQU 27
EQU 1
EQU 15
WRITE

SLCLCB, SLCLUN,NOWAIT

LCB 45,BUF2, SLLINE

Function

Get latest status
Clear read request
Clear write
request

Sense event

Reverse channel
transmit ON

Reverse channel
transmit OFF

Transmit break

Load control
characters

Answer line
Hang up line

Load sync
characters

Set E/P flag in
line service

descriptor table
(LSD)

Function Code

10

11

\ oy

6.2.6 FUNC Macro

The FUNC macro performs functions specific to the driver
and hardware that cannot be handled with other macros.

label FUNC Icb,lun,wait
where
icb is the address of the line control
block
lun IS the number of the logical unit

used to reference the CCM

wait 1 for immediate return or a zero
(default) for suspension of the
caller until request function is

complete

Comments

Immediate return (see note 1).

Dequeues and sets error status on active
request for the line (see note 1).

See note 1.

See LCB description for specific events.

Transmits break characters.

Loads (extension word) into LSD.

Turn Data-Terminal-Ready ON.
Turn Data-Terminal-Ready OFF.

Loads (extension word) into transmit
(byte 0) and receive (byte 1) sync bytes
in LSD and loads the registers in the
synchronous line adapter.

Asynchronous line adapter (LAD), enable \

_;/ (continued)

hardware echo on receive. Synchronous
LAD, select 8-bit (no parity) data byte
format. Bisynchronous mode, accept
ITB as regular characters, and input

to memory.

Function

Reset E/P flag
LSD

Set DS/S flag
in LSD

Reset DS/S flag
in LSD

Select control
character
recognition

lgnore control
character
recognition

Resync for each
READ (full-duplex,
synchronous LAD)

Do not resync for
each READ (full-
duplex, synchronous
LAD)

Terminate 1/0 re-
quest (receive) If
line error detected

Terminate 1/0
request (receive)
only if byte count
= 0 or control
characters are
received.

Kill 170

Set ASCII
mode

Clear ASCII
mode

Function Code

12

13

14

15

16

17

18

19

20

21

22

23

PROGRAMMING AT THE CCM LEVEL

Comments

Asynchronous LAD, disable hardware echo
on receive. Synchronous LAD, select 7-bit
(with parity) data byte format.

(Bisynchrnnuus mode, ITB is not inpa\._

to memory.

Asynchronous LAD (with modems that support
dual speed feature), select higher speed
operation. Synchronous LAD, do not store
received sync bytes in memnry(Bisynchrnnnus

mode, enables the sync-line feature on some
Bell modems. It also causes a one millisecond

pulse to be output to the modem.

Asynchronous LAD (see above), select lower
speed operation. Synchronous LAD, store
received sync bytes in memory{Bisynchronous
mode, disables function code 13.

Terminate READ operation if either of the
two control characters are recognized In
data stream or if byte count = 0.

Terminate READ operation if byte count
= 0 only.

Synchronous LAD only. Causes resync to
occur for each READ (bit in LSD).

Negates effect of function code 17.

Causes termination of READ request
immediately when line errors (break,

parity error or data overflow) are
detected.

Error status is reported only after
request completion. Negates FUNC 19.

All READ, WRITE, and FUNC requests
queued against the line are terminated
with 1/0 error code 1 (device down)
extended status word bit 7 set (1/0
clear occurred) and the physical line

Is marked down (see note 1).

Forces bit 7 = 1 of each byte input
for compatibility with software.

Bit 7 takes on value determined by
line adapter.

(continued)

65

PROGRAMMING AT THE CCM LEVEL

6-6

Function Function Code Comments
Initialize line 24 Performs all initialization required by

hardware and software.
Set in buffer 25 Enable the system to receive input in the
chain mode buffer chain mode (see note 2).
Reset buffer 26 Resets a system from buffer chain mode
chain mode back to “normal” mode.
Set “no block check” 27 Do not check the BCC after receiving an ITB control

character. On output, ITB is a regular character. (No

BCC; see Note 3).
Reset “Block check” 28 Check BCC after receiving an ITB. (See Note 3.) l
Set ASCII/not 29 (Set in ASCll/not transparent mode (see note 3)

/
Set ASCIll with 30 Set in ASCIl/with transparent capability)
transparent mode (see note 3).
Set in EBCDIC 31 Set EBCDIC mode, both for regular and

transparent capability (default mode (see

note 3).
BSC receive 32 Sets system in BSC receive poll mode (see
poll mode note 4).
Reset BSC 33 Resets system from BSC receive poll mode
receive poll (see note 4).
mode
NOTE:
1. Immediate functions, all others queued.
2. If not executed from a foreground task, results in an error.

3. Only used with a BSC line adapter. An indication is given when these *L
functions are used on any adapter other than BSC. On output, the

H

WRITE macro must use mode-1 (see section 8.4.5.5). X
Function code 32 can be used only when V$POLL is 1 (see section #(\Qx

13.2.2). If V$POLL is not 1, a completion error is given and the
function is not performed. The system remains in the normal mode.

Example

Turn on reverse channel on line 14 of logical unit 45.

FUNLUN EQU

REVFUN FUNC

RCLCB LCB

4s

RCLCB, FUNLUN

0,0,4,14

Note: Refer to the LCB example (defining an LCB for use
with a FUNC request) in section 6.2.1.

6.2.7 STAT Macro

The macro causes the status of an 1/0 request to be
examined and control to be transferred to a user defined
routine for the processing of errors.

Status Macro:

label STAT req,err,aaa bbb busy
Where:

req IS the address of the |/0 macro.

err IS the address of the |/0 error
routine.

aaa is the address of the routine to
process ring detected, or reverse
channel ON conditions.

bbb IS the address of the routine to
process break conditions.

busy Is the address of the 1/0-not-

complete routine,

Example of a STAT Macro

Check STATUS on the request macro READTY. If the
request is busy, jump to the routine DELAY. If an error has

occurred, jump to the routine ERR. If ring detected, or
reverse channel on, jump to RING. |f break, jump to

BREAK.

STATL1 STAT READTY,ERR,RING,BREAK,DELAY

PROGRAMMING AT THE CCM LEVEL

-7

SECTION 7
BUFFER CHAINING

7.1 INTRODUCTION

Exit conditions:

Buffer chaining is a method of dynamically assigning buffer A register = zero
areas for incoming data. It eliminates the need for X register = no change
allocating large buffer areas. When incoming data fills one B register = no change
buffer the input 1s switched to the next buffer in the chain.
This allows the application program to begin processing the Macro Code:
data in the first buffer while the next buffer in the chain is
receiving data. When the data in the first buffer has been PUTQ MAC
processed the buffer can be reassigned to the chain. STXE*® 1B
STX 1,B
With buffer chaining only one READ command is required TZA
for each segment of input data without using a large STA 0,X
portion of memory. EMAC
The interface between the application program and the
CCM is accomplished mainly through the following:
Subroutine Code:
a. Chain Header (CHR)
PUTQ ENTR
b. Interface Block Header (IBH) STXE * 1B
STX 1,B
TZA
7.1.1 Queuing Procedure STA 0X -
JMP* PUTQ
Buffer chaining employs a double pointer queue header.
The two pointers are the front pointer (F) and the rear
pointer (R). 7.1.3 GETQ

The initial contents of a double pointer queue header is:

F 0

R Address of F

Two routines are used to add and remove the addresses
from the double pointer queue. The routines are called

The GETQ macro removes (dequeues) the first item from
double header queue whose address is in the B register.

Calling sequence (as a macro):

LDBI
GETQ

(queue header address)

PUTQ and GETQ. The routines can be coded as macros or
subroutines.

Exit conditions:

A register = zero
B register = no change
7.1.2 PUTQ X register = zero if queue was empty; or

address of item dequeued
The PUTQ macro adds (or queues) a buffer whose address

is in the X register to a queue whose header address IS In Macro code:
the B register.
GETQ MAC
The front and rear pointers are updated accordingly. LDX 0,B
JXZ * 47
Calling sequence (as a macro): LDA 0,X
STA 0,B
LDXI (buffer address) JANZ *+3
LDBI (queue header address) STB 1B
PUTQ EMAC

/-1

BUFFER CHAINING

Subroutine Code:

GETQ ENTR
LDX 0,B
IXZ « 47
LDA 0,X
STA 0,8
JANZ ¥ 43
STB 1,B
JMP* GETQ

7.2 CHAIN HEADER

The chain header (CHR) contains the pointers of the active
and complete chains. Each set of pointers is made up of
two addresses, the front pointer and the rear pointer.

The active chain contains the pointers to the interface
buffer headers (section 7.3) that contain the addresses of
the chained buffers that are empty or in the process of
being filled with input data. The complete chain contains
the pointers to the interface buffer headers that contain
the addresses of the chained buffers that are full and
waiting to be processed by the application program.

The active chain front pointer contains the beginning
address of the first interface buffer header in the active
chain. The active chain’'s rear pointer contains the
beginning address of the last interface buffer header in the
active chain. The complete chain contains the pointers to
the first and last interface buffer headers in the complete
chain.

Note: Because both VTAM and the application program
utilize the chain header, interrupts must be disabled before
any buffers are added or removed from the chain header.

The interrupts should be enabled immediately after the
buffers have been added or removed.

The format of the chain header is described below:

15141312 11 1098 876043210

0 ' Active chain front pointer

1 | Active chain rear pointer

2 Complete chain front pointer |
3 Complete chain rear pointer

4 | Address of request block

/-2

The chain header words should be initially set to the
following values:

Word 0O

Zero

Word 1 = Word Q0 address

Word 2 = Zero
Word 3 = Word 2 address
Word 4 = Zero

The initial values may be placed in the chain header by a
user macro or by a direct data statement.

Examples:
a. user macro
CHR MAC
DATA 0,%-1,0,%1,0
EMAC
D. direct data statment
CHR DATA 0,%.1,0,%1,0

7.3 INTERFACE BLOCK HEADER

Each buffer presented to the CCM by the application

program must be proceded by an interface block header
(I1BH).

The IBH is five words or more in length and defines the
buffer area. It also contains a pointer to the next buffer in
the chain.

The format of the IBH is described below:

15 14:233 1211 109876543210

"ﬁ
0 Forward Pointer
1 Buffer Length
2 Buffer Starting Address
3 RfL! Last Address
Flag
i |
4 Status > IBH
Variable User
Area (optional))
Data Block
Area

ol =

Explanation of IBH fields:

Forward Pointer - Contains the address of the next IBH in
the chain, When it is the last IBH in the chain, word zero
contains all zeros.

Buffer Length - Contains the defined length (in bytes) of
the data block attached to this IBH. (Buffers may vary in
length, and may be tailored separately for each use.)

Buffer Starting Address - Contains starting address of the
data area associated with this IBH.

R/L Flag - Signifies if the next free byte in the buffer is in
the left or right half of the word.

0
]

Right side (bits 0-7)
Left side (bits 8-15)

Last Address - Contains the address of the next available
word in the buffer. It is used with the R/L flag to determine
where the next byte goes.

Status - Contains the status word of the |IBH (used only by
CCM).

Data Block Area - This is the buffer area that the data i1s

read into. It may or may not immediately follow the IBH,
but, iIf the buffer area immediately follows the IBH, it is

easier to find any programming errors. The data areas
(buffers) associated with different IBHs do not have to be
the same size.

The IBH words should be initially set to the following
values:

Word 0 = Any value (see note)

Word 1 = Length, in bytes, of the data area
Word 2 = Data area starting address

Word 3 = Zero

Word 4 = Zero

Word 5 = Zero

Note: Word 0 is filled by the PUTQ routine. Words 3, 4, and
5 are filled by the CCM.

A minimum of two interface block headers must be queued

to the active chain of the chain header, at all times, to

prevent the loss of incoming data.

BUFFER CHAINING

Example of PUTQ Routine

Chain two previously defined IBHs (IBH1 and IBH2) for
BUF1 and BUF2 to the active chain header at CHRO.

LDXI IBH1

LDBI CHRO
PUTQ

LDXI IBHZ2

PUTQ

After execution, the chain header forword pointer contains
IBH1 and the rear pointer contains IBH2. Word 0 of the
IBHI contains IBH2 and word 0 of IBH2 contains 0. Figure
7-1 shows the content of the active chain header and IBHs
after the PUTQ routine is executed.

Active Chain Header IBH1
F IBH1 |- | |IBH2
— BUF1

R IBH2 |}—————
IBH2
BUF2

Figure 7-1. Contents of CHR and IBHs after PUTQ

Figure 7-2 shows the contents of CHR and IBH's before and
after the first data block has been filled with a buffer chain
mode READ.

/-3

= el i e v e R e —— .

BUFFER CHAINING

a. Before READ is executed.

Chain Header

(CHR) IBH1
Active F IBH1 } | |BH2
Chain R IBH2 } BUF]
Complete F 0 IBH2
Chain R | F . 0
] - J
BUF2
L—_

b. After first data area is filled.

Chain Header

(CHR) IBH2
Active I’-F I-EHZ' _: 0
Chain iﬁ BUF2,
Complete F IBHI1 | IBH 1
f o ————
Chain R IBH1 L: 0
BUFI

Figure 7-2. Contents of CHR and IBHs During READ

Example of GETQ Routine

Remove the full buffer (BUF1) from the complete chain
header CHRO.

LDBI CHRO + 2
GETQ

The data in the buffer area i1s now ready to be processed by
the application program. The X register contains the
address of the IBH for BUF1. Figure 7-3 shows the contents
of the complete chain header and IBH before and after the
GETQ routine 1s executed. Figure 7-4 shows the relationship
of the various fields in the CHR and IBHs.

7.4 SET AND RESET FUNCTIONS

Function 25 1s used to set the system in buffer chaining
mode. Function 26 1s used to reset the system from buffer
chaining mode to normal mode.

When a FUNC 25 s i1ssued, the set routine first validates
that the calling application 1s a foreground task. If the

/-4

a. Before GETQ routine is executed.

Chain Header

(CHR) IBH2
o —
Active F IBH2 | 0 .{
Chain R IBHZ2 BUFZ
[1 “
Complete F IBH1 ~——-—[_.' IBH1
—_——— 1
Chain R IBH1 I - 0
B
BUF1

b. After GETQ routine is executed.

Chain Header

(CHR) IBH1
Active F | 1BH? -1
_—
Chain R IBH2 BUF2
| J
Complete F 0
Chain R F

Figure 7-3. Contents of CHR and IBHs Before and
After GETQ

calling application i1s a background task an error indication
Is generated and the request 1s terminated.

The error indication is set in word 2, bits 5-14 of the macro
as follows:

CC = 5 (bits 5.7)
e = 1 (bit 8)
Status = 4 (bits 9-14)

(See section 3 for macro expansion description.)

If the calling application 1s a foreground task, the chain
mode flag in the LSD 1s set to 1.

Note: Any READ request that is issued prior to a FUNC 25
being executed, 1s assumed to be in the normal mode.

When a FUNC 26 1s executed, the system is restored to the
normal mode and the chain mode flag in the LSD s set to
zero.

Note: A FUNC 26 will not create an error if i1ssued in the
normal mode.

BUFFER CHAINING

F | Complete
Chain
R | Header

Chain
Header
(CHR)
Active Chain F [IBH3
Header R IBH5
IBH1
— IBHZ2
|
Address of
Request Block
[Request BlnckJ
IBH1 iIBH2
—— IBH2 - 0 g
Data Area Data Area
Length Length
DAl e DAZ e
J
L.| End L.| End
p——
R | Data 'ﬁ’ Data
- ! - il
Status Status
DAl DAZ2
Lt Data | g Data
Area Area

IBH3 IBH4 IBHS
»- |BH4 L—- IBH5 _:l 0 J
Data Area | Data Area Data Area
Length Length Length
:
o DA3 — DA4] — DA5 I
& | oata || [%] oots | | |7] oot
| L l 4
Status Status Status |
DABJ__ DA4 - DAS
Data_l =] Data _‘_I Data
i Area | Area | | Area |

Figure 7-4. Relationship of CHR and IBHs

7.5 PROCEDURE FOR CODING A BUFFER
CHAIN

In summary, the following steps should be taken in coding
a buffer chaining routine:

a.

b.

Set the system in buffer chain mode (FUNC 25).

Chain some |BHs (minimum of two) to the active chain
headers (PUTQ).

Issue a READ command with an immediate return
followed by a DELAY with a type parameter of two.
The LCB for this READ command must contain the
address of the first IBH on the active chain as the
buffer address. The record length field must contain
the buffer byte count (with the byte count field set for

the size of the first buffer). The LCB extension word
must contain the address of the CHR.

Note: The delay is to notify the application program when
the first buffer is full (if desired). This will allow the program
to process the first part of a message without waiting for
the EOT.

d. Clear the event word and bit 6 in the status word of the
TIDB.

e. Remove all filled buffers from the complete chain to be
processed by the application program (GETQ).

f. Supply enough buffers to the active chain whenever
possible.

Note: The input operation is considered complete in
one of two cases:

1. Controlcharacter is detected.

2. Active chain is empty.

g. Test for input complete by examining the status word in
the READ macro. (Use STAT macro.)

/-5

Er N] Ee 5

i, g dREE L s o i @ T g re——— E e N W e

BUFFER CHAINING

h. Remove the last block of data from the complete chain
(GETQ).

Note: If the CRC-STOP attribute was defined (other than
zero) in the line statement (section 2), the data and the
EOM character will be in the data area. The additional
characters of the CRC will be in the next higher referenced
data area.

Example:

The EOM character was a CR and 1 additional character
was specified to be read. The result is as follows:

|BHx IBHx + 1

IBHx + 1 " 0

Buffer Length Buffer Length

Starting Address

Starting Address

1 | Last Address

0 [Last Address

Status

Status

Data
Area

C

L

7-6

o ————e e —

SECTION 8

BINARY SYNCHRONOUS COMMUNICATION

8.1 INTRODUCTION

The Binary Synchronous Communications (BSC) procedure
provides a set of rules for synchronous transmission of
binary coded data. BSC expands the transmission capabili-
ties of VTAM through its ability to accomodate a variety of
transmission codes. BSC also has a transparent mode that
allows transmission of control characters and various forms
of raw data within the normal message format without any
associated control or graphic significance. BSC is capable
of accommodating a broad range of medium- and high-
speed equipment.

All data in BSC is transmitted as a serial stream of binary
digits. Synchronous communications means that the
receiving station on a communications channel operates in
step with the transmitting station through the recognition
of a specific bit pattern (sync pattern) at the beginning of
each transmission.

8.2 DATA LINK

A data link consists of the communications lines, modems,
and other communications equipment arranged for data,
used in the transmission of information between two or
more stations.

All transmissions are sent over the line as a sequence of
binary-coded signals. Control of the data link 1s accom:
plished by the transmission and recognition of special line-
control characters.

The data link can be designed to operate either point-to-
point (two stations) or multipoint (two or more stations).

8.2.1 Point-To-Point Data Link

A point-to-point data link consists of a communications
facility between only two stations. All transmissions over
the data link must be between the two stations operating
on the data link. The point-to-point link can be established
over leased (nonswitched) communications lines or a
switched network. On a leased line (permanent-type
connection), the transmissions are always between the
same two stations. On a switched network, the data link is
disconnected after the two stations complete their trans-
missions. A new data link is created for each subsequent
transmission by standard dialing procedures (manual or
automatic). The new data link may be established with any
other station in the network.

8.2.2 Multipoint Data Link

For multipoint operation, one station in the network is
always designated as the control station. The remaining
stations are designated as tributary stations. The control
station manages all transmissions within the multipoint
data link, which is normally established over leased
(nonswitched) lines. This i1s called a centralized multipoint
operation. The control station initiates all transmissions by
selecting or polling a tributary station. Any transmission
over the data link 1s between the designated control station
and one of the tributary stations. The other stations in the
network are in a passive monttoring mode.

8.3 TRANSMISSION CODES

The major function of BSC is to effect the orderly transfer
of data from one location to another using communications
facilities. This data is transferred as binary-coded charac-
ters comprising text information (message body) and
optional heading information (message identification and
destination). In addition, data-link control characters are
required with each message to delimit various portions of
the message and control its transmission.

BSC can accommodate two different code sets (EBCDIC

and ASCIll). Both code sets may also be used in the
transparent mode.

When either of these code sets is used with transparent
mode, the flexibility of the telecommunications system is
further increased since all possible bit configurations are
treated as ''data only" within transparent text. For this
mode of operation, all assignment restrictions are removed
from the code set being used. Thus the parity bit is also
available as a data bit when transmitting ASCll-coded data
in transparent mode. This additional BSC capability means
that within the standard message format, any type of
coded information can be handled using transparent
mode.

Three functions are available to condition the system to
one of the following modes:

Conditions the system to operate in the "ASCII/not
transparent” (ANT) mode. In this mode the ASCIl charac-
ter set is used. The switching to transparent mode is not
possible.

81

BINARY SYNCHRONOUS COMMUNICATION

P

Conditions the system to operate in the "ASCIlI/with
transparent capability’ (AWT) mode. In this mode the
ASCII| character set for both message and control is used.
When in AWT mode, the sequence DLE STX when detected
will switch the system into the transparent mode, while
either DLE ETX or DLE ETB when detected, will switch the
system back to normal mode.

FUNC 31

Conthefis the system to operate in the EBCDIC mode. This
mode 1s similar to the AWT mode in which switching back
and forth from normal to transparent is possible. The
character set used 1s EBCDIC. The EBCDIC mode is the
default one; i.e., when only this mode is being used, no
FUNC is needed.

8.4 OPERATION OF THE DATA LINK

in point-to-point operation a contention situation exists,
whereby both stations can attempt to use the communica-:
tions line simultaneously. To minimize this possibility, a
station bids for the line using the ENQ (enquiry) control
character. The SYN SYN ENQ sequence (SYN SYN
represents the synchronous idle characters) provides a
concise signal for requesting control of the line, and thus
leaves a maximum amount of time for line monitoring. If
simultaneous bidding occurs, one station must persist in
its bidding attempt to break the contention condition.
Once a station gains control of the line, message transmis-
sion can start.

8.4.1 Polling and Selection

In a multipoint environment, the control station either polls
or selects the tributary stations. Polling is an "invitation to
send’ transmitted from the control station to a specific
tributary station. Selection is a ''request to receive"
notification from the control station to one of the tributary
stations instructing it to receive the following message(s).
These capabilities permit the control station to specify the
transmitting station and to control the direction of
transmission. Each station in the data link i1s assigned a

unique station address, which is used to acquire the
station’s attention during either polling or selection. Each
station address can consist of from one to seven charac-
ters, depending on the specific station requirements. The
first character addresses the station itself, while additional
characters indicate the desired component of the station.
Depending on the particular station, the station address
may consist of the first two characters, where the first
character i1s repeated for increased reliability. Once the
station's attention is acquired and it responds affirmatively
message transmission can start.

8-2

Two FUNC macros are ailable for use with the BSC
receive poll mode. T

AM system enters and exits the
poll mode with

and @9 respectively. While
in the poll mode, only one RE command is required to

receive a poll message.

The general format for the BSC receive poll message Is:

SYN EOT PAD SYN Poll
message

SYN ENQ

EOT and ENQ are both either in ASCII or EBCDIC. The PAD
and all SYN fields are dropped and the remaining fields are
stored in the input buffer. The format of the input buffer is:

Poll

EOT message

ENQ

Any BSC control character may be used instead of EOT as
long as the first control character (EOT in the above
example) is not the same as the last one (ENQ).

FUNC 7 loads the control character configuration into the
DCM. The FUNC 7 word format consists of control
characters in the left byte and zeros in the right byte.

After successfully receiving the poll message, the poll mode
is turned off using FUNC 33.

Examples:

Using EBCDIC, the EOT character set is 0 011 011 1. If LUO
Is the logical unit for the DCM and LLO is the BSC line
number, the following statement defines the control
character as EOT:

FUNC LCB7,LUD

LCB7 LCB 0,0,LL0,7,0,033400

The following statement switches the VTAM system to the
BSC receive poll mode:
LUO

FUNC LCB 32,

LCB

LCB32 0,0,LLO,32

The following statement switches the VIAM system back
from the BSC receive poll mode:

FUNC LCB33,LUO

LCB33 LCB 0,0,LLO,33

\
kb]

PAD

i s e L gt .]

The following sequence of events occurs during the BSC
receive poll mode:

a. Load EOT,0:

FUNC LCB7,LUO (FUNC 7)

b. Switch VTAM system to the poll mode:

FUNC LCB32,LUQO (FUNC 32)

¢c. Determine if FUNC 32 is executed:

READ poll message:
READ LCBRD,LUO, 1 (read)

d. Switch VTAM system back from the poll mode:

FUNC LCB33,LUO (FUNC 33)

e. Resume normal operation

The VTAM system is interrupted by the DCM for every
known control character (such as EOT,0). Thus when speed
is essential, FUNC 7 can be used again (in step e above)
instead of EOT,0 to load another byte configuration.

8.4.2 Message Blocks

The message consists of one or more blocks of text data.
The text is transmitted in blocks to provide more accurate
and efficient error control. The text data is the body of the
message and is identified by a start-of-text (STX) character
immediately preceding each block of text. In addition, each
block of text except the last is immediately followed by an
end-of-transmission-block (ETB) character or an intermedi-
ate block (ITB) character. The last block of text in a
message 1S immediately followed by an end-of-text (ETX)
character. Figure 8-1 shows an example of a regular
message format.

The text of the message can be preceded by a heading that
contains auxihiary information (e.g., station control, prior-
ity, etc.) pertaining to the following text data. The heading
is identified by a start-of-heading (SOH) character immedi-
ately preceding it.

For greater reliability, a unique character should always
follow SOH to identify the heading function. The reason for
this i1s to preclude the possibility of heading data being
Interpreted as text data, or vice versa, due to transmission
errors. This unique character should not be used following
STX. The percent (%) character should not be used for this
purpose, as SOH is presently used to identify request-for-
test or station-dependent control messages.

BINARY SYNCHRONOUS COMMUNICATION

-—— BCC Accumulation ——=

SIS |S S E|B

s, O W G 5 Heading T [Text | T]C

N N|H X X|C
-=——— filled by application program —

Figure 8-1. Regular Message Format

As each message block is completed, it is checked for
transmission accuracy at the receiver before the transmis-
sion continues.

8.4.3 Error Checking

Each block of data transmitted is error-checked at the
receiving station in one of two ways, depending on the code
set being used (figure 8-2). These checking methods are
longitudinal-redundancy checking (LRC) or cyclic-redun-
dancy checking (CRC).

LRC is a longitudinal-redundancy check on the total data
bits by message block. It is a basic form of CRC. An LRC
character is accumulated at both the sending and receiving
terminals during the transmission of a block. This
accumulation is called the block-check character (BCC),
and it 1s transmitted immediately following an ETB, ETX, or
ITB character. The transmitted BCC is compared with the
accumulated BCC character at the receiving station for an
equal condition. An equal comparison indicates a good
transmission of the previous block.

The LRC accumulation is reset by the first STX or SOH
character received after a line turnaround. All characters
received thereafter, including control characters, until the
next line turnaround, are included in the accumulation.
Only SYN characters are not accumulated. Following an

ITB BCC, the accumulation resets and starts again with the
next received STX or SOH character.

A cyclic-redundancy check is a division performed by both
the transmitting and receiving stations using the numeric
binary value of the message as a dividend, which 1s divided
by a constant. The quotient is discarded, and the
remainder serves as the check character, which i1s then
transmitted as the block check character (BCC) immedi-
ately following a checkpoint character (ITB, ETB, or ETX).
The receiving station compares the transmitted remainder
to its own computed remainder, and finds no error if they
are equal.

BCC is accumulated, sent, and checked on the receiving
end by the BSC hardware. BCC errors are indicated by
VTAM/CCM to the application program as parity errors.

8-3

e —— - —

8.4.4 EOT/NAK Pad Format Check

All BSC stations use the EOT/NAK pad format check to
reduce the probability of atransmission line error converting
an affirmative response (DLE sequence) into an EOT or
NAK character. EOT and NAK must be followed by a trailing
pad character of all "'1'" bits. Although all eight bits of the
trailing pad character may be sent, the receiver should

~check only the first four bit positions. A station receiving

an EOT or NAK within the text or heading of a transmission
biock (following STX or SOH) will treat the character as
data and continue to receive or monitor the transmission
(timeout, recognition of a turn-around character, etc.). The
pad character is inserted by the BSC hardware.

Similar pad format checking on DLE sequences and ENQ
may be done on an optional basis.

8.4.5 Data Link Control

Control of the data link is maintained through the use of
control characters. Several variations in the designations
and compositions of the data-link control characters and
sequences exist between the two code sets. There varia-
tions are shown in table 8-1.

Table 8-1. Control Characters

BINARY SYNCHRONOUS COMMUNICATION

8.4.5.1 SYN - Synchronous ldle

This character is used to establish and maintain synchroni-
zation and as a time fill in the absence of any data or other
control characters. Two contiguous SYNs at the start of
each transmission (SYN SYN) are referred to as the
character-phase sync pattern.

8.4.5.2 SOH - Start of Heading

This character precedes a block of heading characters. A
heading consists of auxiliary information (such as routing
and priority) necessary for the system to process the text
portion of the message.

8.4.5.3 STX - Start of Text

This character precedes a block of text characters. Text is
that portion of a message treated as an entity to be
transmitted through to the ultimate destination without
change. STX also terminates a heading.

8.4.5.4 ETB - End of Transmission

Block

Control
Character ASCII EBCDIC The ETB character _inclicates the end of a block-of-

1,5U2210 characters started with SOH or STX. The blocking structure
SYN 0001 Q110 0011 0010 is not necessarily related to the processing format. The
STX 0000 0010 0000 0010 block-check character is sent immediately following ETB.
DLE 0001 GOOO 0001 0000 ETB requires a reply indicating the receiving station's
EIX 00000011 QOB0 0011 status (ACK 0, ACK 1, NAK, or, optionally, WACK or RVI).
ETB 0001 Ol11l 0010 0110
SOH 0000 01 0000 0001
ENQ 0000 0Of01 0010 1101
l’“_‘r";“ 0001 Ofol 0011 1101 8.4.5.5 ITB - End of Intermediate

0001 1111 0001 1111 o
£OT A e Soti BEiE Transmission Block
ig: 0 DLE O DLE "70 The ITB character is used to divide a message (heading or
WACH% ELE 1 DLE/ text) for error checking purposes without causing a reversal
RV DtE;-: gtg of transmission direction. The block-check character
110 STY EN STX E’% immediately follows ITB and resets the block-check count.

Q Q After the first intermediate block successive intermediate
Type of Checking
T
Transmission NO Transparency Transparency
Code Transparency Installed and Installed But
Operating Not Operating
SO | =
EBCDIC CRC-16 CRC-16 CRC-16
ASCI| J LRC CRC-16 CRC-16

8.4

Figure 8-2. Error Checking Capabilities

BINARY SYNCHRONOUS COMMUNICATION

blocks need not be preceded by STX or SOH. (For 8459 ACK O0/ACK 1 - Affirmative

transparent data, each successive intermediate block must Acknowledgment

begin with DLE STX and ITB must be the last character in

the intermediate block.) If one intermediate block i1s a

heading and the next intermediate block is text, STX must These replies, In proper sequence, indicate that the
begin the text block. previous block was accepted without error and the receiver

Is ready to accept the next block of the transmission. ACK

0 is the positive response to selection (multipoint) or line
Normal line turnaround occurs after the last intermediate bid (point-to-point).

block, which is terminated by ETB or ETX (DLE ETB or DLE
ETX for transparency). When one of these ending charac-
ters i1s received, the receiving station responds to the entire
transmission. |f a block-check error i1s detected for any of
the intermediate blocks, a negative reply i1s sent, which
requires retransmission of all intermediate blocks. 8.4.5.10 WACK - Wait-Before-Transmit

- -, Positive Acknowledgment
) N
/Al BSC stations must have the ability to receive ITB and its
attendant BCC. The ability to transmit the |TB character is

[a station option. The ITB when sent, must be the last ' WACK allows a receiving station to indicate a ""temporarily
! physical byte of the data block and the WRITE macro must/ not ready to receive’ condition to the transmitting station.
be in mode 1. \ \ oo~ A SR It can be sent as a response to a text or heading block,
S selection sequence (multipoint), line bid (point-to-point

: with contention) or an |D (identification) line bid sequence

(switched network). WACK s a positive acknowledgment to
the received data block or to selection.

8.4.5.6 ETX - End of Text

The ETX character terminates a block of characters started The normal transmitting station repsonse to WACK is ENQ,
with STX or SOH and transmitted as an entity. The block- but EOT and DLE EOT are also valid responses. When ENQ
check character is sent immediately following ETX. ETX Is received, the receiving station will continue to respond

requires a replyandicating the recejving station's status, with WACK until it is ready to continue. See the Continue

Timeout discussion under Timeouts. An example of how
WACK is used is shown in figure 8-3. The ability to receive
WACK is mandatory for all BSC stations, but the capability

8.4.5.7 EOT - End of Transmission to send WACK is optional.

This character indicates the end of a message transmis-
sion, which may contain one or more blocks, including text :
and associated headings. It causes a reset of all stations on 8.4.5.11 NAK - Negative

e ——————

the line. EOT is also used as: Acknowledgment

JR— e e e ——— S

a. Aresponse to a poll when the polled station has nothing

_ NAK indicates that the previous block was received in error
to transmit.

and the receiver is ready to accept a retransmission of the
erroneous block. It is also the ""not ready’ reply to station

o . selection or line bid.
b. An abort signal to indicate a system malfunction or

operational situation that precludes continuation of the
message transmission.

8.4.5.12 DLE - Data Link Escape
8.4.5.8 ENQ - Enquiry

DLE i1s a control character used exclusively to provide
supplementary line control characters, such as WACK, ACK

The ENQ character is used to obtain a repeat transmission 0, ACK 1, RVI, and transparent mode control characters.
of the response to a message block if the original resgmﬁ?& The sequences DLE STX, DLE ETX, DLE ITB, and DLE ETB
was garbled or was not received when expected. ENQ is inittiate and terminate transparent text. In addition, other
also used to bid for the line when using a point-to-point line DLE control sequences (DLE ENQ, DLE DLE, DLE EOT) are
connection. It also indicates the end of a poll or selection used to provide active control characters within transpar-
sequence. ent text as required.

8-5

- e , = PR — = St N S P S P —— P — i . r— e ks T TR T e a1 D e R e

8.4.5.13 RVI - Reverse Interrupt

The RVI control sequence 1s a positive response used In
place of the ACK 0 or ACK 1 positive acknowledgment. RVI
is transmitted by a receiving station to request termination
of the current transmission because of a high priority
message which it must transmit to the sending station, or
in case of a multipoint environment, the control station,
acting as a receiver, now wishes to communicate with
another station on the line. Successive RVIs cannot be
transmitted, except in response to ENQ.

The sending station treats the RVI as a positive acknowl-
edgment, and responds by transmitting all data that
prevents it from becoming a receiving station. More than
one block transmission may be required to empty the
sending stations's buffers.

The character structure of the RVI control sequence 1s as
follows:

EBCDIC DLE@
ASCII DLE<

The ability to receive RVI is mandatory for all BSC stations,
but the ability to transmit RVI is optional. Figure 8-3
illustrates the use of RVI.

8.4.5.14 TTD - Temporary Text Delay

The TTD control sequence is sent by a sending station In
message transfer state when it wishes to retain the line but
IS not ready to transmit, The TTD control sequence (STX
ENQ) 1s normally sent after approximately two seconds if
the sending station 1s not capable of transmitting the next
text block or initial text block within that time. This two-
second timeout avoids the nominal three-second receive
timeout at the receiving station (figure 8-3).

The receiving station responds NAK to the TTD sequence,
and waits for transmission to begin. If the sending station
is still not ready to transmit, the TTD sequence can be
repeated one or more times.

This delay in transmission can occur when the sending
station's input device has not completely filled the buffer
due to inherent machine timings. TTD is also transmitted
by a sending station in message transfer mode to indicate
to the receiver that it is aborting the current transmission
(figure 8-3). After receiving NAK to this TTD sequence, the
sending station sends EOT, resetting the stations to control
mode (forward abort).

8-6

BINARY SYNCHRONOUS COMMUNICATION

8.4.5.15 DLE EOT - Disconnect Sequence
for a Switched Line

Transmission of DLE EOT on a switched line indicates to
the receiver that the transmitter is going ""on-hook." Either
the calling or the called station may transmit this
disconnect sequence. DLE EOT is normally transmitted
when all message exchanges are complete, and may
optionally be transmitted at any time instead of EOT to
cause a disconnect.

Aiternating Affirmative Acknowledgments

The BSC procedures specify the alternate use of ACK 0 and
ACK 1 as affirmative replies. The use of ACK 0 and ACK 1
provides a sequential checking control for a series of
replies. Thus it is possible to maintain a running check to

ensure that each reply corresponds to the immediately
preceding message block. ACK 0 is always used as the
affirmative reply to selection or line bid.

MESSAGE FORMATS y\

There are three procedures involved in a basic message
format, they are as follows:

a. Initialization procedure
D. Message transfer procedure
c. Termination procedure

The binary synchronous communications discipline is
based on a transmit-response philosophy of operation. That
Is, from the time that an initialization procedure com-
mences on the communication line through to the
termination procedure, there i1s a response to each
turnaround character.

8.5.1 Initialization Procedure

The initialization procedure will consist of identification on
a switched network, and of bidding on a point-to-point
network.

8.5.1.1 Point-to-Point Operation
(With Contention)

When transmission is started, an initialization sequence
(ENQ character) is sent by the station attempting to
acquire the line. The station receiving this character, and
ready for input, reples with ACK 0. If the station is not
ready for input it replies with NAK (Negative Acknowledg-
ment). Simultaneous transmission problem is avoided by
each station being assigned a priority. The high priority

BINARY SYNCHRONOUS COMMUNICATION

WACK (POINT-TO-POINT)

TRANSMITTING
STATION:

RECEIVING
STATION:

TRANSMITTING
STATION:

RECEIVING
STATION:

RVI (POINT -TO-POINT)

TRANSMITTING
STATION:

RECEIVING
STATION:

11D

TRANSMITTING
STATIOMN:

RECEIVING
STATION:

E
N
Q

(£ Z m

E
N
Q

pPpZm

FORWARD ABORT SEQUENCE

TRANSMITTING
STATION:

RECEIVING
STATION:

E
N
Q

S ElB £ S = g
« 1 TITEXTIT | C -1 N TITEXT|IT | C
X B|C Q W X|C
A WA/ A
C - ¢ e
S E|B E E DI|E
T[TEXT|T|C N o]l orR|+|L|O
X B|C Q T E|T
A W W
k. 1A A
K C C
0 K K
, ETX - IF LAST BLOCK
EMPTY 17O OF MESSAGE
BUFFER
- —
S £ B S ElB E E
* LT ITEXTIT G TITEXT|T | C 10 :
X B|C X B|C T g
{
A ; A : :
: ¥ d’: " [N | T(TEXT
5 | K i .
0 0 :
TTD TTD
—— N
| |
| LESS THAN 5 |E | LESS THAN s | . .
| OREQUALS | * | T |N | OR EQUALS | + | T | N A1 lrelt
| 2 SECONDS | | »|q |2 secONDS | | ylq ! ¢
: | ’ I.
I I
o : ™ | N
CK: | * | A : A
| kK
5 E|B S|E -
AT TEXT|T | C TN “lo
A B|C X Q T
A A
N
& g oA
K K .
0 1

NOTE: * = SYNC CHARACTERS

VTIZ2-416

e i e S A

Figure 8-3. Use of WACK, RVI, and TTD

R s el el i e ey i e sl P =T

— A0 >

8-7

station sends an ENQ to acquire the line and will continue
to do so until an affirmative reply is received or until the
retry limit is exhausted. The low priority station can only
acquire the line if the high priority station has nothing to
send.

8.5.1.2 Point-to-Point Operation
(Without Contention)

In this mode of operation one station always starts the
transmission whether it wants to output or request input.
The master station sends the initialization sequence (ENQ).
The slave station replies with the affirmative acknowledg-

ment (ACK 0) if it 1s ready, or a negative acknowledgment
(NAK) if it is not.

8.5.1.3 Dial Up Operation

Both stations start in circuit assurance mode. As soon as
the dialed station goes "Off Hook' the dialing station
sends one of the following messages:

-WRU - Who Are You
The sequence is ENQ.
1AM - WRU -
The sequence is ID . . . ID . . . ENQ

The called station will reply with either:

1D ACK - If ready
The sequence is |D....ID....ACKO
-NAK - If not ready

The sequence is [D....ID....NAK

The ID sequence is optional and consists of 1 to 7

characters of station identification. If the identification is
incorrect either station can send a disconnect sequence.

8.5.2 Message Transfer Procedure

The message transfer procedure will begin with the first
SOH or STX Character and ends with an EOT.

8.5.2.1 Transmitting Station

A message consists of one or more blocks of information.
The start of text character (STX) precedes each block and
the end of block character (ETB) followed immediately by
the sumcheck character terminate that block.

The start of heading (SOH) followed by heading characters
may precede the block of information. The End of text
character (ETX) replaces the ETB for the last block of a
message.

8-8

BINARY SYNCHRONOUS COMMUNICATION

If transparent data is transmitted one DLE character
directly precedes the STX characters (ETB or ETX must be
the last character in the buffer). The transmitting station
checks the response after each transmission block; further
transmission sequence depends on the response from the
receiving station:

a. A positive response (ACK 0/ACK 1) will result in
sending of the next block of data.

b. A negative response (NAK) will result in the
retransmission of the block.

c. No response (timeout) or a garbled response will result
in a request for retransmission of the reply by sending
an enquiry (ENQ).

8.5.2.2 Receiving Station

The receiving station replies to a transmission block with:

a. ACK 0 and ACK 1 - Alternately to indicate that the
transmission was successful, and that it is ready for the
next block.

b. NAK - To indicate that the transmission was erroneous
and that it is ready for retransmission.

c. WACK - To indicate that the transmission was
successful but that it is temporarily not ready to
receive.

8.5.3 Termination Procedure

Message transmission is ended by the transmission of the
end-of-transmission character (EOT). The station receiving
the EOT can now bid for the line and become the
transmitting station.

On a switched network, after completion of all message
exchange, the mandatory disconnect (DLE EOT) can be
sent by either station before disconnecting the line.

8.5.4 Transparent Mode

The system recognizes the sequence DLE STX as a request
to switch to the transparent mode. The sequence ETX or
ETB, as the last character in the buffer, switches the
system back into a normal (ASCI| or EBCDIC - as may be
the case) mode. All data link control characters can be

transmitted as transparent data without taking on control
meaning.

Any data-link control characters transmitted during trans-
parent mode must be preceded by a DLE to be recognized
as a control function. Thus the following sequences are
effective during transparent-mode operation:

BINARY SYNCHRONOUS COMMUNICATION

Sequence Use

DLE STX Initiates the transparent mode
for the following text.

DLE# ETB Terminates a block of transparent
text, returns the data link to
normal mode, and calls for a

reply.
DLE® ETX Terminates the transparent text,
returns the data link to normal
mode, and calls for a reply.
DLE SYN Used to maintain sync or as time-
fill sequence for transparent mode.
DLE ENQ Indicates '‘disregard this block
of transparent data'" and returns
link to normal mode.
DLE DLE Used to permit transmission of
DLE as data when a bit pattern
equivalent to DLE appears within
the transparent data. One DLE
Is disregarded; the other is
treated as data.
DLE* ITB Terminates an intermediate block
of transparent data, returns the
data link to normal mode, and does
not call for a reply. The block
check character follows DLE ITB.
Transparent intermediate blocks
may have a particular fixed length
for a given system. If the next
intermediate block is transparent,
It must start with DLE STX.

“ The DLE part of the sequence is not placed in the buffer
by the application program. When in transparent mode,
ETX, ETB, or ITB are recognized by VTAM/CCM and sent
as DLE ETX, DLE ETB, or DLE ITB only if they are the last
character in the buffer.

Control DLE:
This sets apart
the following Data

data DLE. \ D/LE

Sync idle

for

fill or timing

The DLE STX following an intermediate transparent block
may be preceded by SYN SYN, to permit any station out of
sync to correctly synchronize with the transmission.

All replies, enquiries, and headers are transmitted in
normal mode. Transparent data is received on a character-

by-character basis; thus character phase is maintained in
the usual manner.

An example of a block of transparent data is shown in
figure 8-4.

The boundaries of transparent data are determined by the
DLE STX and the ITB, ETB, or ETX sequences, which
initiate and terminate the transparent mode. Thus, the

length of a transparent message can vary with each
transmission.

For checking the transmitted transparent data, CRC-16 is
available. Refer to Error Checking for the available options.
If the system has VRC in normal m:}dé, this is suppressed
within transparent-text blocks. This permits using the
parity bit as an additional data-bit position for each
character transmitted as transparent data.

Note: In transparent mode, the end control character
(ETX, ETB or ITB) must be the last physical byte in the
block of data. (The DLE and BCC will be inserted by the
BSC hardware.)

8.5.5 Timeouts

Timeouts are used to prevent indefinite data-link tie-ups,
due to false sequences or missed turnaround signals, by
providing a fixed time within which any particular operation
must occur. Due to the different requirments for the
various operations, four specific timeout functions are
provided: transmit, receive, diseeurtt, and continue.

B A ‘ﬁ;u'-’la'ﬂn:cj’

8.5.5.1 Transmit Timeout

This is a nominal one-second timeout that establishes the
rate at which sync idles are automatically inserted into

Text end and
return to
normal mode.

: ; ~ -~ =
I T T | T |
S ey _? Trans |2 [P | Trans | D E Trans | D7 [[B*|S|{S|D|S|1ans [D7|E| B
AR L Text |51 L] Text | L[Y| Text LICay 1% LIT | ek 1k
N{N|E|X E]E E(N B{C | NINJE|X E X | 2
st Blk 1 o | Blk 2 -

“Inserted by BSC LAD

-=— End of physical block —m=

Figure 8-4. Transparent Data Block

3-9

)L

;’

transmitted heading and text data. In normal data, two
consecutive sync-idle characters (SYN SYN) are inserted
by the BSC hardware every second, while for transparent
data, one transparent sync-idle sequence (DLE SYN) is
inserted every second.

8.5.5.2 Receive Timeout

This is a nominal three-second timeout, and I1s used as
follows:

a. Limits the waiting time tolerated for a transmitting
station to receive a reply.

b. Permits any receiving or monitoring station to check
the line for sync-idle signals. These sync idles indicate
that the transmission is continuing; thus this timeout
IS reset and restarted each time a sync idle is
detected.

v

.

c. Limits the time any tributary station in a multipoint
network will remain in control mode while monitoring
the line for its address code. This timeout runs
whenever the station is in control mode. It is reset
and restarted each time an end signal (EOT, ENQ,
NAK, WACK, ACK) is recognized, as long as the
station remains in control mode.

This timeout 1s done by hardware, and is monitored by
VTAM/CCM. In case a three-second timeout occurrs, an
error indication is returned via the request block.
Both the parity error (bit 5) and overflow (bit 9) will
be set in the Detailed Status.

8.5.5.3 Disconnect Timeout

This timeout is used optionally on switched network data
links. It is a nominal 20-second timeout used to prevent a
station holding a connection for prolonged periods of
inactivity. After 20 seconds of inactivity, the station will
disconnect from the switched network.

Note: The disconnect timeout function ig not gerformed by

VTAM/CCM, but may be implemented by the application
program.

810

—

BINARY SYNCHRONOUS COMMUNICATION

8.5.5.4 Continue Timeout

This is a nominal two-second timeout associated with the
transmission of TTD and WACK. The continue timeout is
used by stations where the speed of input devices (for
transmitting stations) or output devices (for receiving
stations) effect buffer availability and may cause transmis-
sion delays.

TTD is sent by the transmitting station up to two seconds
after receiving acknowledgment of the previous block if the
transmitting station is not capable of sending the next
transmission block before that time.

Note: The continue timeout function i1s not performed by
VTIAM/CCM but may be implemented by the application
program.

A receiving station must transmit WACK to indicate a
"temporarily not ready to receive’ condition (f it is not able
to receive within the two-second timeout. The purpose of
the timeout interval is to permit the receiving station to
send an appropriate affirmative reply immediately if it
becomes appropriate within the interval.

8.5.6 Pad Characters

To ensure that the first and last characters of a transmission
are properly transmitted by the data set, all BSC stations
add a pad character before and after each transmission,
The one-character pad (leading pad) preceding each initial
synchronizing pattern ensures that the station will not start
sending its synchronizing pattern before the other station
iIs prepared to receive. The leading pad character is the
sync character sent by the SC harawares~

R s T o

A pad character (trailing pad) is also added following each
transmission (e.g., NAK, EOT, ENQ). Since ETB or ETX
causes line turnaround, the pad character follows the BCC.
The trailing pad character ensures that the last significant
character (e.g., ETB BCC, ETX BCC, or NAK) is sent before
the data set transmitter turns off. The trailing pad

T

BSC LAD.

8.6 TRANSMISSION SEQUENCE AND
RECOVERY PROCEDURES

Table 8-2 shows examples of some of the transmission and
recovery procedures.

BINARY SYNCHRONOUS COMMUNICATION

Table 8-2. Transmission and Recovery Procedures

TRANSMISSION WITH CONTENTION

Terminal A Terminal B
(Priority 1) (Priority 2)
ENQ —— -=—ENQ
ENQG =t

~-s— ACKO
STX, MSG1, ETX—==

-=— ACKI
EOT———0

-=— ENQ
ACKQ ——»

-=— STX, MSGA, ETX
ACK] =

-=— EOT

TRANSMISSION WITHOUT CONTENTION

Terminal ready to receive

Calling CPU Called Terminal

ENQ——>

—m— ACKO
STX, MSGI1, ETB =

-=—ACK]1
STX, MSG2, ETX -+

-=— ACKO

EOT —————iin-

Terminal Ready to Transmit

Calling CPU Called Terminal

—-=— ACKO
—-=— ENQ
-=—STX, MSGA, ETB

- STX, MSGB, ETB
ACKQ ——a

-=—EOT
POSITIVE RESPONSE

Transmit Receive

ENQ,

-=—ACKO
STX, MSGI1, ETB —=

—-— ACK]1
STX, MSG2, ETX—»

-=—ACKO

L] =i

NEGATIVE RESPONSE

Transmit Receive

ENQ —

——ACKO
STX, MSG1, ETB—»

- N AK
STX, MSG1, ETB—

——ACK]
STX, MSG2, ETX —»

-=— ACKO

EQT —

LINE FAILURE DURING RESPONSE

Transmit Receive

ENQ -

- ACKO
STX, MSG1, ETB—»

-~ ACKO*
A e

-— ACK]
STX, MSG2, ETX—=

-— ACKO

EQT — =

“ ACK1 Character changed to ACKO due to line failure.

INVALID RESPONSE

Transmit Receive

-=—ACKO

STX, MSG1, ETB-—»

XXX
ENQ ——=

XXX
ENQ ——=

XXX
ENQ—

XXX

EQT ===

(Disconnect)

XXX = Invalid Response

i e e =

811

P — e — E

BINARY SYNCHRONOUS COMMUNICATION

Table 8-2. Transmission and Recovery Procedures (continued)

NO RESPONSE
Transmit Receive

ENQ —=

-=— ACKO

STX, MSG1, ETB—=

TIME-OUT
ENQ ——

TIME-QUT
ENQ ——

TIME-QUT
ENQ — =

TIME-QUT

FORMAT ERROR CONDITION

Transmit Receive

ENQ ——=

-=— ACKO
STX, MSGI1, ETB—s=

-=— ACK1
STX, MSG2, ETB —=

—a— ACK1
ENQ ——

-=— ACK1
ENQ ——»=

-=— ACK]1
ENQ ——a=

-=— ACKI1

OUT-OF-STEP CONDITION

Transmit Receive

ENQ —

- ACKO

STX, MSG1, ETB -
TIME-OUT
ENQ ——==
—=— ACKO

STX, MSG1, ETB—»
-=— ACK1

STX, MSG2, ETX—
—=— ACKO

Q) =

8-12

TEMPORARY TEXT DELAY (TTD)

Transmit Receive
ENQ—

—a— ACKO
STX, MSG1, ETB—==

—=—ACK1
70—

—=— NAK
TTD ——

-=— NAK
STX, MSG2, ETX —=

-=— ACKO

EQT =t

REVERSE INTERRUPT (RVI)

Station A Station B

ENQ —=

- ACKO
STX, MSGI1, ETB —»

-=— RVI|
*STX, MSG2, ETB—»

-— ACKO
EQT ——

- ENQ
ACKQ ——a=

- STX, MSGA, ETB
ACK]l——»

-=—STX, MSGB, ETX
ACKQ ——»

® 170 buffer is emptied before sending EOT.

WAIT BEFORE TRANSMIT POSITIVE
RESPONSE (WACK)

Transmit Receive

ENG r——

- ACKO
STX, MSG1, ETB—

- WACK*
ENQ ——=

- ACK1
STX MSG2, ETX —

- ACKO
EQT ——

* Message received correctly but no buffer available for

second message.

BINARY SYNCHRONOUS COMMUNICATION

Table 8-2. Transmission and Recovery Procedures (continued)

CIRCUIT ASSURANCE-GOOD-IDENTIFICATION CIRCUIT ASSURANCE-STATION B IS NOT
READY TO COMMUNICATE WITH STATION A
Station A Station B
Station A Station B
1D, ENQ ~——
-=— |0 ACKO 1D, ENQ ——=
STX, MSG1, ETB —= -=—— |D, NAK
- ACK1 1D, ENQ ——=
STX, MSG2, ETX ~== - |0, NAK
- ACKO ID, ENQ¥* ——=
EOT B— -—=DLE EOT
Disconnect

ata

* Number of retries is determined by the user.

B e T e T T R S P & S L Lon LI e o i il Lo LR SR R ST SR R =1 . — = ol -,

813

—————

SECTION 9
MANAGING BUFFERS

9.1 INTRODUCTION

VTAM provides three service routines to access temporary
storage in central memory. The service routines are
reentrant subroutines which are resident in central
memory and have entry points in the VORTEX CL library.

The subroutines are VT$GTM, to acquire a block of
temporary storage from a predefined memory pool,
VI$PTM to return a block of temporary storage to a

memory pool and VI$BMT to build a memory allocation
table for a user.

9.2 MEMORY ALLOCATION ROUTINES
AND THEIR FUNCTIONS

9.2.1 VT$BMT

A memory allocation table must be built for a memory pool

to be accessed with VI$GTM and VT$PTM to allocate and
deallocate its temporary storage blocks. VI$BMT creates

the memory allocation table. VT$BMT is called by use of
the VORTEX ALOC macro.

label ALOC VT$BMT

Betore calling this subroutine, the user must load the A
register with the size of the memory pool and the B register

with the address of the memory pool. In addition the first
locations of the memory pool must be set as follows:

Entry parameters

Memory

Pool Contents
+0 Smallest block size

+1 Number of blocks

+ 2 Next smallest block size
+ 3 Number of blocks
2n-2 Largest block size (n)
2n-1 Number of blocks

+2n 0 zero

Remainder of Memory pool

Exit Parameters

On return from the call, the memory pool will now have the
memory allocation table in the first locations. The memory
allocation table will have the following format:

Memory

Pool

Location Contents
0 First block size

1 Head of queue
2 Second block size
3 Head of its queue
2n-2 Nth block
2n-1 Head of its queue
2n 0

Error Indications on VT$BMT

On return, the status will be set in the A register. Zero
indicates an error. The memory pool was not large enough
to build the desired memory allocation table, or the block
sizes were not in ascending order. When an error occurrs,
the first word of the memory pool is set to zero.

Example:

Build a memory allocation table for a pool beginning at
location BLKADR and extending 560 words. Specify 10
blocks of 20 words, 10 of 15 words and 20 of 10 words.

Prior to the VT$BMT call the first seven locations of the
memory pool must contain the following:

Location Value
+ 0 10
+ 1 20
+ 2 15
+ 3 10
+4 20
+5 10
+6 0

EXT VTS$BMT

LDBI BLKADR
LDAI 560
ALOC VTS$BMT

9-1

MANAGING BUFFERS

Upon return, the memory allocation table would appear as
follows:

BLKADR
+ 0 10
+ 1 BLKADR + 550
+ 2 15
+ 3 BLKADR + 345
+ 4 20
+5 BLKADR + 210
+ 6 0

In this example three memory locations (+ 7, 8, and 9)
would be unused.

9.2.2 VT$GTM

The VT$GTM routine allows a user to acquire a block of
temporary storage from a previously defined memory pool.
If the memory allocation table for the pool does not have
blocks of the specified size, the request is completed and
an error is indicated by setting the A register to zero.

The VT$GTM routine is called by use of the VORTEX ALOC
macro.

label ALOC VT$GTM

Before making the above call, the user must load the A
register with the number of words in the block desired, and
the B register with the address of the memory allocation
table. The A register contains the address of the block
upon return. The VI$GTM routine must not be called by a
FORTRAN program since the contents of the register will
not contain the desired parameters.

Error Indications

The status after a request to allocate memory is returned in
the A register as follows:

A =20 No blocks of the desired size are
available
A # 0 Address of the block {(normal return)

The caller should be cautious in the use of this subroutine
because invalid parameters could damage either the
memory allocation table or other programs in the system.

9.2

EXAMPLE

Request a block of memory of 20 words from a pool
maintained by memory allocation table MATS.

EXT VT$GTM

-

LDAI 20
LDBI MATS

ALOC VT$GTM

9.2.3 VI$PTM

The VT$PTM subroutine returns a specified-size block of
temporary storage to a memory pool. If the memory
allocation table for the pool does not contain blocks of the
specified size, the next larger size in the memory allocation
table will be used. This subroutine is called by use of the
VORTEX ALOC macro:

label ALOC VT$PTM

Before making a VT$PTM call, the user must load the A
register with the address of the memory allocation table for
the pool, the B register with the address of the block being
returned, and the first location of the block must contain
the size of the block. Normal return is indicated by the A
register equal to zero.

Error Indication

If the A register is not zero, then no block of the specified
size was found to be deallocated.

Example:

Return a block of memory whose address is in location
BLKADR which is 15 words long, to the pool maintained by
a memory allocation table MATS.

EXT VTS$PTM

LDB BLKADR
LDAI 15

STA O0,B
LDAI MATS
ALOC VTS$PTM

SECTION 10

CODING A TERMINAL CONTROLLER MODULE (TCM) FOR VTAM

10.1 INTRODUCTION

For each additional type of line service rule extending the
VTAM system beyond the TTY TCM capabilities (described
in section 5) a TCM must be written. For example a system
which has Teletypes, synchronous CRT devices and a
communications link to a large-scale processor involves
three types of line disciplines, and so uses three TCM's.

In applications where little or no line discipline is required
a user will not need to write a TCM because he may call the
CCM directly. A TCM is useful where 1t can simphty a
relatively complex line discipline.

A TCM is responsible for terminal unit control, error
checking, code conversion and all other functions not
handled by the CCM relating to control of the line and
terminal equipment on the line. The main function of the
TCM is to translate and break down the requests received
from the application into a series of CCM requests which
perform the particular line discipline. In effect a TCM
handles the setting up of the CCM requests to perform a

particular 1/0O operation whereas the CCM handles the
actual 170 transfer.

In order to understand the function a Terminal Controiler
Module (TCM) performs in VTAM, one must trace the steps
involved in building a VTAM system. The five main
components of VTAM are: Network Definition Module.
Network Control Module, Terminal and Line OPEN/CLOSE
Processors, the Communication Controller Module (CCM).
and the TCM. VTAM s designed to work with terminal
oriented tables called Terminal Controller Descriptors
(TCD) and line-oriented tables called Line Service Descript:
ors (LSD). Since a TCM only works with terminal-oriented
tables, only the TCD and its structure need to be described
for coding a TCM.

10.2 TABLES USED BY TCM

During network definition, prototypes of TCD's are built by
the NDL processor in a file called VT$DFT in the

Field Label Word

TCTCD
TCRQH
TCCTA
TCCLN
TCLLN
TCPCH
TCSWL
TCBSL

TCXMM
TCECH

AP bADSBRWWRN-DO

Bits

0-15
0-15
015
0-7
8-15
0.7
8.8
9.9
10-11
1212

foreground library from terminal directives input to the
NDL processor. These prototype TCD's are used by the
Terminal Unit OPEN/CLOSE processor to build TCD's in
central memory when a terminal is opened.

The Network Control Module, (NCM) through which a user
can interrogate the status of the data communication
network or alter it, is intimately related to the structure of
the TCD, and as such, any changes to the TCD's structure
should be kept to adding entries to it and keeping the
current structure intact. As long as this restriction IS
followed, modifications to NCM may not be necessary.

The two major components that need to be considered
when coding a TCM are the Terminal Unit OPEN/CLOSE
Processor and the TCM Executive, (TCMEXEC). The
function of the Terminal OPEN/CLOSE Processor is to build
the TCD's and thread them to the proper VTAM tables. The
TTY TCM is composed of a root segment, VI$OCT, and an
overlay segment. TTYTCM, which 1s designed to build
TCD's for the TTY TCM. To modify or extend the structure
of the TCD, a new overlay segment must be written. The
root segment, VT$OCT, keys on the TCM type PCTYP, from
the prototype TCD in the VT$DFT file. All that is necessary

to incorporate a new overlay segment is to write the overlay
segment.

Ten TCM types are supported: one for the TTY TCM and
nine for user-defined TCMs. The overlay names for the
user-defined TCMs are TERM1M through TERMSM for TCM
types 1 through 9, respectively.

In addition, return to the root segment should be made at
VT$OCY or VT$OCZ depending on whether interrupts
should be disabled or not. For example if interrupts are
currently disabled in the overlay segment and interrupts
'are to be enabled, return should be made at VT$0CZ,
otherwise return should be made at VT$0CY.

The following is a description of the current structure of the
Terminal Controller Descriptor (TCD):

Description

Address of Next TCD in Queue
Head of Request Queue
Address Controller Table for TCM

LUN for the CCM
Logical Line Number
Prompt Character for Terminal

Switch/Non-Switched Flag
Sync/Asynchronous Flag

Transmission Mode
Echo/No-Echo Flag

10-1

et
s o e B e R e s e - - = -8 -

R e L e

CODING A TERMINAL CONTROLLER MODULE (TCM) FOR VTAM

Field Label Word Bits
TCCON 4 13-13
TCWBC 4 14-14
TCRBC 4 15-15
TCNTD 5 0-3
TCNOD 5 4-7
TCTYP 5 8-11
TCCTP 5 12-15
TCRMD 6 0-2
TCWMD 6 3-5
TCRRS 6 6-8
TCWRS 6 231
TCLDF 6 12-12
TCIBC 6 15-15
TCRCA 7 0-15
TCSTO 8 0-15
TCWCA 9 0-15
TCDCC 10 0-15
TCRBF 11 0-15
TCDTO 12 0-15
TCID1 13 0-15
TCID2 14 0-15

When TCIBC is set (input buffer chaining mode), the
following should be added to the TCD structure:

Field Label Word Bits
TCACF 15 0-15
TCACR 16 0-15
TOCCCF 17 0-15
TCCCR 18 0-15
Reserved 19 0-15

After extensions to the structure of the TCD have been
defined and the Terminal Unit OPEN/CLOSE Processor
overlay segment designed to handle the changes to the
TCD structure, the user must consider how to interface a
new TCM with the VTAM system.

10.3 TCM FUNCTIONS

A TCM, in general, consists of two functional groups of
programs — the VTAM TCM Executive (TCMEXEC) and a
set of TCM request processing programs. The TCM
Executive itself consists of an enqueuing module, VT$TCQ,
and the TCM request initiation and completion module,
TC$CEX, which is the main executive routine. 1/0 requests
to a TCM are processed by |OC like 1/0 requests to
standard VORTEX 1/0 drivers. When |0C processes an 1/0
request for a TCM, the request is queued against the TCM’'s
controller table and the pseudo driver, VI$TCQ, is
activated to queue the request to the proper TCD.

Figure 10-1 depicts the relationship of VTAM and TTY TCM
modules.

When coding a TCM, one must consider how a TCM
controller table (CTBL) should be structured. A TCM
controller table is composed of two parts, the standard
VORTEX controller table and the TCM Processor Table

10-2

Description

Physical Connection Flag

0
0

= Word Count, 1 = Byte Count for Write
= Word Count, 1 = Byte Count for Read

Number of Devices

Number of Devices Open

TCM Type (0 = TTY TCM)
Transmission Code Type (0 = ASCII)
Mode of Read Operation

Mode of Write Operation

Read Request Status

Write Request Status

Line Disconnect Flag

Input Buffer Chaining Mode

CCM Request Address for Read
Read Timeout Value

CCM Request Address for Write
Dynamic Character Count for Read
Dynamic Read Buffer Address
Dynamic Read Timeout Value

First 2 Characters of TUID

Second 2 Characters of TUID

Description

Active Chain Front CHR word 1

Active Chain Rear CHR word 2
Complete Chain Front CHR word 3
Complete Chain Rear CHR word 4

Reserved CHR word 5

(TPT). The following is a description of the standard
controller table part:

Entry Word Description

CTiDB 0 Controller Active Flag/TIDB
Address

CTADNC 1 Controller Table End Plus One

CTOPM 2 Op code Mask, which is set to
the sum of equate values for
valid op codes for the TCM.

CTDST 3 Address of DST (= 0, set by I10C)

CTRQBK 4 Address of Request Block to be
Processed. (= O, set by
10C)

CTRTRY 5 Not used, set to O.

CTDVAD 6 Controller Device Address

CTIOA /7 1/0 Algorithm

CTSTAT 8 = 0, for TCM use

CTBICB 9 Not used, set to 0.

CTFCB 10 = 0, (set by 10C)

Entry Word Description
CTWDS 11 = 0, for TCM use.
CTFRCT 12 1/0 Algorithm Frequency Count

The second part of the TCM CTBL is the TCM processor
table, which should be changed according to the needs of
the TCM. An example of a TCM processor table, for the TTY
TCM, 1s the following:

Entry Word Description

TPRPA 13 Primary entry point to TTY TCM
Read request processor program.

TPWPA 14 Primary entry point to TTY TCM
Write request processor program.

TPFPA 15 Primary entry point to TTY TCM
Function/WEOF processor program.

A possible extension to the TCM controller table would be
to keep the standard part constant and to add additional
entries to the TCM processor table for new TCM request
processing programs.

10.4 TCM COMPONENTS

With an understanding of how the TCM controller table
should be structured, the user can now consider how the
different components of a TCM work together.

VT$TCQ, the enqueuing module, is responsible for queuing
a TCM request on the proper TCD request queue from the
TCM controller table. A TCM 1s referenced by a logical unit
number that has been assigned to the TCM. A TCM s
considered to be a driver task, VI$TCQ, with a controller
table and a TIDB. All requests are queued to the TCD
request queue, except OPEN/CLOSE requests, which are
queued on the terminal OPEN/CLOSE request queue
(TC$OCM) for processing by VT$OCT, the Terminal Unit
OPEN/CLOSE module. Because the function of VT$TCQ is
hmited to queuing requests, this component may not have
to be modified. It should be noted that VT$TCQ also
currently performs an immediate type function request for
clearing 1/0 on a terminal and setting it down. If this has
to be changed, VI$TCQ will have to be modified, otherwise,
coding a TCM should not involve changes in VT$TCQ.

The main TCM executive routine in TCMEXEC 1s TC$CEX,
which s responsible for initiating and completing TCM
requests. TCMEXEC operates as an independent, multi-
programmed task and is activiated by VT$TCQ when
requests are queued on a TCD, or as consequence of an
expired type 3 delay, or a completion of a CCM |/0 request.
(NOTE: The CCM generates a pseudo interrupt by setting
the event word (TBEVNT) of TCMEXEC's TIDB non-zero,
when i1t is time-delay active.

TCSCEX is composed of three main loops. The first one
checks all TCD’s for any completion of active CCM re-
quests or timeout conditions on READ request which are
timeout active. The second loop checks all TCD's for
requests that may be initiated and if there is one, TC$CEX

CODING A TERMINAL CONTROLLER MODULE (TCM) FOR VTAM

does a Jump-and-Mark into the primary entry point of the
appropriate TCM request processor, and this address is
kept in the TCM processor table in CTBL. The third loop
checks for the shortest timeout value specified for READ
requests and this value 1s used for a type 3 delay request
which suspends TCMEXEC until a CCM request
completes or the time delay expires. At this point, the user
must consider how TCM requests are initiated and
completed by TCMEXEC and how TCM request process-
ing programs work, because the bulk of coding a TCM lies
in coding the appropriate request processors.

In general, a TCM request processing program first checks
If a request can be initiated from information kept in the
TCD. If it cannot be initiated because of the current status
of the line or terminal, then the program should just exit
and return to TC3$CEX. If a TCM request can be initiated.
then the program should inithiate a series of one or more
CCM requests to perform the required steps called for by
the particular TCM request for completion. In order to
initiate a CCM request, the user must first allocate memory
for the CCM request block from the memory allocation pool.
This is accomplished via calls on VT$GTM. the memory
allocator program, through V$EXEC. When memory has
been allocated, the program can build the CCM request
block by calling TC$BRQ, which builds the skeleton request
block, including instructions for doing a Jump-and-Set
register into 10C, from information in the TCD. Other
information from the TCM request can be entered into the
CCM request block and the CCM request can be queued
through 10C by doing an indirect jump to a location which
contains the address of the CCM request block. The
following 1s a description of how CCM request blocks are
constructed.

15 14 12 8 / a 0

0 JSR.X

1 V$IOC Entry Address

2 1€ STATUS e CC PRIORITY

3 |W|MODE| OPCODE ' LOG. UNIT OF CCM

4 LCH ADDRESS T""

5 NO, OF WORDS: BYTES TRANSFERRED-

6 DETAIL STATUS

7 IMP

8| RETURN ADDRESS/ COMPLETION ADDRESS

g BUFFER LENGTH 4 |

10| F BUFFER ADDRESS B f;

11 FUNC CODE LOG LINE NO : |

IEL (BUFFER OR EXTENSION WORD) :4;
“ These values are valid only when C = 1 (Request
Complete).

“* Optional, since input/output may be performed directly
into user's buffer or extension word 1s not needed.

O3

e e o e . e =

CODING A TERMINAL CONTROLLER MODULE (TCM) FOR VTAM

TCSOCT

TASK TO

SCHEDULE TTY TCM
CONTROLLER

VTSTCQ

VTSOCT |

FOR

TABLE (CTTCOA)

VTSTCQ ‘

TCM
REQUEST __|

QUEUEING TERMINAL

PROGRAM PROCES -
SOR
ITABLE

TERMINAL
CONTROLLER
DESCRIPTOR

TCM
EXECUTIVE
(TCMEXEC)
PROGRAM

v

TCSCRQ TCSFRR/TCSFWR

NEXT
READ/WRITE
REQUEST ON

TCM
REQUEST

TCD REQUEST
QUEUE FINDER
PROGRAM

COMPLETION
PROGRAM

VTil-1927 A

VTSOCT

TERMINAL
OPEN/CLOSE
REQUEST

PROCESSOR
PROGRAM

TTYTCM

TU OPEN/
CLOSE
OVERLAY
SEGMENT
FOR

TTY TCM

TCSBRQ

SKELETON
CCM
REQUEST

BLOCK
BUILDER
PROGRAM

Figure 10-1. VTAM TCM and TTY TCM Modules

10-4

‘ TCM MODULES NORMALLY REPLACED OR MODIFIED

TYREAD

Y TCM

READ REQUEST

PROCESSOR
CODE

TYWRITE

TTY TCM
WRITE REQUEST

PROCESSOR
CODE

TYFUNC

TTY TCM
FUNC/WEOF
PROCESSOR
CODE

The TCM request processing program would normally set
up the following items after the skeleton CCM request block
has been built:

a. W-Waitor Immediate Return option.
b. MODE - Mode of request.
c. OPCODE - Type of request (READ. WRITE, FUNC, etc.).

d. RETURN/COMPLETION ADDRESS - Return address
after 10OC call. This would normally be a return address
in the TCM processor program after a request Is
queued/completed. When the immediate return op:
tion is used, this location i1s also used to store a
request completion address. After the program exits
to TCMEXEC, control can be returned an entry point
within the program from TCMEXEC (after the CCM
request or a buffer, if in the buffer chain mode, has
completed). This permits the completed request to be
processed and further servicing or completion of the
TCM request can proceed.

e. BUFFER LENGTH - Length of input/output buffer.

f. F - Word/Byte Count Flag (must be byte count if in the
buffer chain mode).

g. BUFFER ADDRESS - Address of input/output buffer
(address buffer in the data chain when in the buffer
chain mode).

h. FUNC CODE - Function code of FUNC request.

The address of currently active CCM request blocks are
stored into the following entries in the TCD:

TCRCA - Read Completion Address (Also used for FUNC).
TCWCA - Write Completion Address

When these entries are non-zero, TCMEXEC assumes that
the terminal i1s active with CCM requests waiting to be
completed. Thus, TCMEXEC can check for request comple-
tion by testing the completion bit in the CCM request block
and if completed, TCMEXEC will perform a Jump-and-Mark
to the completion address that was stored in word 8 of the
CCM request block by the particular TCM request process-
ing program servicing the request. When the TCM proces-
sor Is reentered it would normally check for line errors by
checking the detail status word returned by the CCM or the
error flag (e) and completion code (cc) fields, If errors
occurred then the TCM request should be completed and
an appropriate error status returned. Otherwise. the TCM
processor should continue request servicing or complete the

L { "STATUS" =

81 CONTINUE
IF (ITEST.EQ.1) GO TO 83
CALL COMPAR (34)
IF (ITEST.EQ.0) GO TO 83
CALL COMPAR (4)
IF (TEST.EQ.0) CALL DIAG

—
e M—

CODING A TERMINAL CONTROLLER MODULE (TCM) FOR VTAM

TCM request by calling TCECRQ (TCM Complete request
program) and return normal completion status. It should
be noted that TC$CRQ also delinks the request from the
TCD request queue when it completes the request and
handles error conditions like Data-Set-Ready OFF, Parity
error, etc. by returning the proper error status. Lastly,
memory used for CCM request blocks should be deallocated
and returned to the memory pool by calling VT$PTM
through VSEXEC. Then before returning to TCMEXEC, the
TCM processor should clear TCRCA or TCWCA. or whatever
entry 1s used to keep track of active CCM requests to
ensure that TCMEXEC will no lenger consider the TCM
active with a READ, WRITE, FUNC, etc. request.

If the buffer chaining mode s specified, the completion
address is called each time a buffer or a request is
completed.

10.5 MODIFYING THE NETWORK DEFINITION
MODULE

Modifying the NDL Processor

Additions may be made to the NDL processor by the user.
In order to make these alterations, one must understand
the conventions and mechanisms NDM uses to accomplish
its work.

All syntactic analysis is done in PARSE. a FORTRAN
subroutine. A major portion of this code was produced from
a BNF notation. The original BNF syntax appears in the
comment lines.

PARSE looks for particular phrases in the input stream.
Each phrase is stored as a character string via DATA
statements in subroutine COMPAR. PARSE requests a
check for a phrase by calling COMPAR and passing the
phrase number. COMPAR reflects the result of the
comparison via the COMMON variable ITEST. If the phrase
occurs, ITEST is set to one and the phrase is deleted from
the input buffer. If the comparison fails, ITEST 1s set to
zero,

When a phrase i1s found, an action 1s taken. Most of these
actions are calls to BITSET to set fields within the control

blocks. If the expected phrase does not occur and an
alternative exists, the alternative is tried. If no alternatives

exist, subroutine DIAG 1s called to produce a syntax error
message, and a suitable default action 1s taken.

For instance below is the code within PARSE to process the

STATUS clause of the TERMINAL directive. On the right are
descriptive comments.

BNF statement of alternative

Start of alternative

If previous alternative true, skip this one
Compare for 'STATUS’

If failed, try next alternative

Compare for '="

If failed, 1ssue message

rcontinued)

105

¥

CODING A TERMINAL CONTROLLER MODULE (TCM) FOR VTAM

C ("UP" [BITSET(TCDI(3),15,15,0)]

CALL COMPAR (35)
IF (ITEST.EQ.0) GO TO 84
CALL BITSET (TCDI(3),15,15,0

g /'DOWN’ :[BITSET (TCDI(3),15,15,1)]

84 CONTINUE
IF (ITEST.EQ. 1) GO TO 85
CALL COMPAR (36)
IF ITEST.EQ.0) GO TO 86
CALL BITSET (TCDI(3),15,15,1)
86 CONTINUE
85 CONTINUE
IF (ITEST.EQ.0) CALL DIAG

83 CONTINUE

Now suppose a user wanted to alter NDL to recognize a
third alternative to STATUS, for instance STATUS =
MAYBE. When this is detected, PSD word 4, bit 15 is to be
turned on.

First, '"MAYBE' is a new phrase and must be added to
subroutine COMPAR's list of phrases. Assume that ' MAYBE'
becomes string 53. The following changes would be made
to COMPAR:

« replace the DIMENSION statement for STRING and
POOL.:

DIMENSION STRING (54), pPoOoL (293)

- insert the following DATA cards to describe the phrase
(lower case b indicates a blank within a Hollerith
constant).

C STRING 53 S5HMAYBE
DATA STRING (54) /288/, POOL (288) /5/
DATA POOL (289) /2HbM/, POOL (290)/2HbA/
DATA POOL (2921) /2HbY/, POOL (292) /2HbB/
DATA POOL (293) /2HbE/

Then the following statements would be inserted In
subroutine PARSE, following statement number 86:

IF (ITEST.EQ.1) GO TO 986 If 'DOWN" worked,

skip 'MAYBLE’
CALL COMPAR (53)
IF (ITEST.EQ.0) GO TO 986 If failed, try next

alternative

CALL BITSET (LSD(5),15,15,1) Do action for MAYBE'

986 CONTINUE

10-6

Compare for 'MAYBE’

Compare for "UP’
If failed, try 'DOWN’
Do action for 'UP’

Start of 'DOWN' clause

If 'UP" worked, skip 'DOWN'
Compare for 'DOWN-’

If failed, try next alternative
Do action for 'DOWN"’

¥

If both 'UP' and 'DOWN' failed, issue

message beginning of next alternative

10.6 PROCEDURE TO CODE A TCM
FOR VTAM

In summary, the following steps should be taken in coding
a TCM for VTAM:

a. Perform an analysis of terminal requirements and line
discipline for the proposed data communications
network.

b. Define the structure of the terminal-oriented tables
(TCD) to be used by the TCM.

c. |f there exist terminal or line attributes not described
by NDL, then the NDL processor may have to be
modified to include these attributes.

d. Design a terminal unit OPEN/CLOSE processor overlay
segment that can be called by the root segment,
VT$OCT, by keying on the TCM type field ot the
prototype TCD. This overlay segment should build the
TCD in main memory from the prototype TCD and
other information built by the NDL processor during
network definition.

e. Analyze the modifications to VTAM in relation to its

impact on NCM, the network control module. Changes
which require modifications to NCM should be
avoided.

f. Design the TCM around the existing TCM Executive,
TCMEXEC, components: VTTCQ, TCCEX, TC$CRQ. If
additional services are required from TCMEXEC which
are not currently provided, then the particular
TCMEXEC component may have to be modified. After
coding the TCM request processor programs, the TCM
controller table with its TCM processor table should
be built. When all these VTAM components are
assembled, then a system generation tc build the
VTAM system should be performed and an NDL run
made to define the communications network.

R

SECTION 11
CONTROLLING A NETWORK

11.1 INTRODUCTION

The Network Control Module (NCM) functions as an
interface between the VTAM system and the VORTEX
operator. The operator uses NCM for removing and adding
lines and terminals to and from an on-line active data-
communications network, for redirecting 1/0 from one
terminal to another, and for listing the status of lines and
terminals.

NCM operates as a foreground VORTEX task and is
invoked by the operator with an OPCOM schedule request.
VTAM does not need to be running to start NCM.

Directives to NCM are entered on the current OC device,

and the results are reported on the OC unit. In addition to
the directives provided by NCM, more extensive changes to

the VTAM network are possible through the network
definition language (described in section 2).

The directives in NCM are as follows:
P set aline/terminal on-line
DOWN set aline/terminal off-line
REDIRECT redirect one terminal's 1/0 to another
RESTORE restore |/0 to original terminal
LIST list current status of aline/terminal

END terminate NCM task

Many of these functions alter fundamental VTAM tables, so
care should be taken in the use of NCM. For instance, if an
operating VTAM terminal is DOWNed, NCM purges current
/0 requests, marks the terminal down, and resets the

VTAM files. This obviously could cause data for that
terminal to be lost.

11.2 DIRECTIVES

11.2.1 General Format of NCM Directives

All NCM directives have the following general format:

dir, p(l1),p(2),....p(n) .comment

where dir is the directive name and p(1),p(2)....{n) is the
parameter list in which individual parameters are separat-
ed with commas. The actual parameters are defined by
the directive. All blanks areignored. Equal signs are treat-
ed as commas. The period-comment field is optional.

The maximum length of a directive is 72 characters.

11.2.2 UP Directive

The UP directive causes the current status of either a
logical line or terminal to be marked as on-line and
available for | /0.

If a line is specified, NCM marks the prototype LSD on
VTAM file VT$DFL and Physical Line Table (PLT) as UP.

If a terminal is specified, the corresponding TUID index in
file VI$DFT and the Logical Terminal Table (LTT) are

marked as UP.

The format is:
UP, u(l) , u(2),...,.uln).

where each u(i} is either a terminal identifier or a logical
line specifier as defined in the network definition lan-
guage. A logical line specifier is a pair < ¢, | > , where
c = CCM VORTEX logical unit number, and!l= VTAM
logical line number.

Any number of units (up to a total directive length of 72
characters) may be specified and will be processed in
order. An error message is given, if the unit specified was
not defined in NDL or is already UP.

Examples of UP Directive

Example 1:

Suppose the VORTEX CCM logical unit number is 182.
Change the status of logical line 012 to on-line.

UP, 182,012

Example 2:

Vary the status of logical line 012 and terminal RMO1 on-
line.

UP, 182,012, RMO1

11.2.3 DOWN Directive

The DOWN directive causes the current status of a
terminal or logical line to be marked as off-line and not
operational.

If a terminal is specified, the corresponding terminal
identifier in file VT$DFT and the logical terminal table
(LTT) is marked DOWN. If the specified terminal is OPEN,
a FUNC (code 4) is issued to clear all 1/0.

A logical line specified as a parameter to the DOWN direc-
tive causes the corresponding prototype LSD in file

11-1

B e T T T S T 1+ e

CONTROLLING A NETWORK

VT$DFL and the Physical Line Table (PLT) to be marked
DOWN. Iftheline is OPEN atthetime,a FUNC (code 21) is
iIssued to clear all CCM /0 requests. Then for all termi-

nals currently OPEN on the line, a FUNC (code 4) is is-
sued to clear all TCM I/0O requests.

The DOWN directive does not close all lines and terminals
associated with the downed unit. Instead, it marks the
downed units RMD (prototype down), clears any current
requests against the downed unit, and causes future
requests to be rejected. Further, if a line is downed, all
current requests for all terminals on that line are cleared.
Also all future requests for these terminals on the downed
line are rejected. In this manner, DOWN is the functional
inverse of UP.

The form of the DOWN directive is:

DOWN, u(1),u(2),..., u(n).
where each u(i) is either a terminal identifier or a logical
line specifier (seesection 11.2.2). Any number of units (up
to a total directive length of 72 characters) may be speci-
fied in this directive and they are processed in order. if the

unit specified was not defined by NDM, an error message
Is given. If the unit is currently DOWN, error is indicated.

Loss of data may occur, if the unit specified is OPEN.

Examples of a DOWN Directive

Example 1:

Suppose the VORTEX CCM logical unit number is 182.
Set logical line 012 down.

DOWN, 782,012

Example 2:
Set logical line 012 and terminal RM02 down.

DOWN, 182,012, RM0O2

11.2.4 REDIRECT Directive

The REDIRECT directive allows the operator to substitute
another terminal to receive and transmit messages. This
would be useful for terminal and/or line failures.

The network control module alters the TUID index entry to
point to a different prototype TCD. This changes not only

the logical line for the TUID but also may change the
physical hardware characteristics for the TUID.

The general form of this directive Is:

REDIRECT, I(1) = r(1), I(2) = r(2),...1(n) =r(n).

11-2

Each I(1) and r(i) are defined TUID's, for which r(i) replaces
the I(1).

If any of the terminals specified by (1) or r(i) were not
defined by the NDL processor, an error is given In the
following format:

NCnn

Any number of TUID pairs may be specified in the directive
up to a total length of 72 characters. A comma may be
substituted for an equal sign.

If the terminal being reassigned is OPEN at the time, it
may be necessary to DOWN the terminal. Since only RMD
files are altered by this directive, the reassignment takes
effect when the terminal is OPENed.

Examples of REDIRECT Directives

Example 1:
Reassign [/0O from terminal RMO1 to terminal RMO2.

REDIRECT, RMO1 = RMO2.

Example 2:

Terminal XRAY has failed, so shift its 1/0 requests to
BETA.

REDIRECT, XRAY, BETA.

11.2.5 RESTORE Directive

The RESTORE directive restores terminal 1/0 requests to
the original terminal. The TUID may have been altered by

the REDIRECT directive. The format of this directive is as
follows:

RESTORE, t{1), t(2),..., t(n).
Each t(i) is a TUID of a terminal to be restored.

Any number of TUID's may be specified (not exceeding the
total directive length of 72 characters). Each is restored in
turn letft to right.

Error message NCO3 UNDEFINED TUID appears if any of

the parameters of RESTORE had not been defined before
this in NDL.

Since only RMD tables are changed by the directive, it may
be necessary to DOWN the terminal. The change takes

effect only when the terminal 1s being OPENed.

Examples of RESTORE Directives

Example 1:

Terminal DOG has been REDIRECTED. Restore its original
status.

RESTORE , DOG.

Example 2:

Restore terminals REDIRECTED in section 11.2.4. example
2

RESTORE ,BETA , XRAY.

11.2.6 LIST Directive

The LIST directive lists the current status of VIAM logical
lines and terminals. NCM searches the VTAM files and
resident tables for information, such as UP/DOWN,
OPENED/CLOSED and current assignments. A message 1S
formatted and written to the OC device.

If no parameters are given on the directive, NCM lists the
status of all defined VTAM lines and terminals. No files or
tables are altered by LIST.

The format of the LIST directive is:

LIST, u(l), u(2),..., u(n).

each ufi) is either a TUID or a logical line specifier (see
section 11.2.2) for which the status is to be listed.

In the output format of the LIST directive, the P field
contains the physical line number and the T field contains

the logical unit number assigned by the JCP directive.

CONTROLLING A NETWORK

Examples of LIST Directive

Example 1:
List the current status of terminals TTY1 and TTYZ.
LIST,; TTY] T1Y4

Example 2:

List the current status of terminals LA and NY and logical
lines 01 and 02 both onthe CCM assigned to VORTEX |0g-
ical unit number 17,

LIST,LA,NY 17,01,17,02

Example 3:

List the current status of all VTAM terminals and lines.

LIST

NCM Error Codes

NCO1 Syntax error

NCO2 Undefined Line

NCO3 Undefined TUID

NCO04 /O Error on file VT$DFL
NCO5 |/O Error on file VT$DFT
NCO6 Undefined CCM Number

113

SECTION 12
PROGRAMMING AN APPLICATION

This section presents a simple data communication
example, an assembly-language program to handle inquir-
ies from a terminal about a data base stored on a rotating-
memory file. The inquiries are fixed-format messages of
four-characters. The terminal handled by this program is a
Teletype-compatible CRT device.

The program converts the messages to a key into the data
base, reads the specified record and outputs it to the
terminal. An inquiry session is terminated by the user
entering " OF" . Editing, deleting characters and starting
over, is provided through the TCM. Error notification is
provided by the program.

ArD CUTPUT

Before running this program the network needs to be INSTRUCTIOMNS

configured with NDL statements as follows: i

SEY
10 SECOND
ADDRESS = 040, T1MAECUT
CONNECT = DIRECT,

EOM-STOP = 0215,

LINE 2:

ERROR-STOP = TRUE, T 7y
PARITY = EVEN,

SPEED = 10, o

LINE-TYPE = HALF-DUPLEX, CRY

MODE = ASYNCHRONOUS, TERMINAL

STATUS = UP.

TERMINAL CRTI:

LINE = 2, vES
CODE = ASCII,
DEVICES = 1],

ECHO = TRUE,
PROMPT = 0207,

-

TYPE = TT"I"I, LOG 'RETRY! YES
NIT = 17 MESSAGE AT
UNI . TERMINAL
STATUS = UP.
END. MO
LOG Y
MESSAGE
SUSPEND NO o
TASK
YES
CLOSE CLOSE -
o4
RAAD C o NN
FILE TERMINAL % A
VTIl-1928

Figure 12.1. Flowchart of VTAM Application

121

PROGRAMMING AN APPLICATION

12.2

s 3k ok ok ok 3k o ok 3k ok ok ok ok ok ok ok ok ok ok ok 3k 3k ok 3k 3k ok 2k 3k ok 3k 3k ok 3k ok sk e ok ok e ko ok ak ok ok ok sk 3k ok ok ok ok ok o ok ok ok o ok ok o ok ok ke ok ok ok 3k K

* % X H ¥ ¥ K O W #*

VTAM SAMPLE PROGRAM

THIS PROGRAM READS A FIXED FORMAT, 4 CHARACTER MESSAGE

FROM AN ASYNCHRONOUS TTY COMPATIBLE TERMINAL.

THE LOGICAL

IT THEN

RECORD NUMBER TO RANDOMLY READ FROM A FILE.
ONCE READ, THE RECORD IS OUTPUT TO THE TERMINAL.

ERROR

NOTIFICATION AND PROGRAM TERMINATION IS ALSO PROVIDED.

*x
L
¥
%
*x
CONVERTS THE MESSAGE TO A BINARY NUMBER AND USES IT AS *
%k
: 4
*
x
*

e 3 e v ofe ok e e e ok 3k o o ok ok 3 ok ok ok ki ok ok ok o ke ok ok o K ok ke ok ke ok ok ok ok ok ke ok sk ok ol ok ok ok ok o e s ol ok ok ok ok ok ok ok ok ol ok ok o ol ke ok ok ke

Y
*
e

LU1
LU2
LU3

*

PO

* % ¥ ¥ * # U

P3

*

ER1

* * #*

ER2

#* % ¥ * * % *

ACCESS

EQUATES FOR LOGICAL UNITS

EQU
EQU
EQU

BEGIN

NAME
OPEN
OPEN
WRITE
FUNC
READ

STAT
LDA
SRE
JMP
CLOSE
CLOSE
EXIT
LDB
CALL
JAN
WRITE
JMP

PROGRAM

180

186

’

PO
DATAB,LU1
TUID,LU2
INSTR,LU2
CRT1,LU2

CRT1,LU2, , 1

OPEN RMD FILE CONTAINING DATA BASE

OPEN TERMINAL

WRITE INSTRUCTIONS TO TERMINAL

SET TCM TO PROMPT AFTER 10 SECOND TIMEOUT
READ TERMINAL (ASCII MODE)

STATUS READ AFTER COMPLETION

ER1=1/0 ERROR ROUTINE

ER2=DATA SET OFF ROUTINE

P1=READ TIMEOUT ROUTINE

P2=LOOP ON STAT, SHOULD NEVER HAPPEN

P1,ER1,ER2,P1,P2

BUF

OF, 7,010

P3

DATAB,LU1
TUID,LUZ

BUF+1

ACCESS

ER1

DATAB,LU2

P1

GOOD READ,GET FIRST 2 CHARACTERS OF MESSAGE
OF ENTERED?

NO,THEN PROCESS MESSAGE

YES ,CLOSE RMD FILE

CLOSE TERMINAL

RETURN TO VORTEX

GET SECOND 2 CHARACTERS OF MESSAGE

ACCESS DATA BASE

ERROR?

NO,OUTPUT RECORD TO TERMINAL

LOOP TO READ NEXT REQUEST

TERMINAL OR RMD PARITY ERROR

WRITE
JMP

DATA SET OFF ERROR

WRITE

SUSPND

ERMSG1,LUZ2

P1

ERMSG2,LU3

LOG ERROR MESSAGE AT TERMINAL
TRY READ AGAIN

LOG ERROR TO OPERATOR
WAIT UNTIL RE-SCHEDULED OR ABORTED

ACCESS DATA BASE SUBROUTINE
A,B=RECORD NUMBER AS 4 CHARACTER ASCII NUMBER

ENTER:

EXIT:

DATA
CALL

DATAB=RECORD
A=+ (NO ERROR)
A=- (ERROR)

0
ASBI

CONVERT INPUT TO BINARY

AC1

DATAB
DATABF

RECNO

*

INSTR

MSGO

e

TUID
CRT1
BUF
*

ERMSG1

MSG1
s

ERMSG2

MSG2
OF

STB
READ

LDAE
LRLA
JMP *

CONVERT
ENTER:
EXIT:

DATA

STA
TBA
ANA
TAX
LLRL
ANA
TAB
TXA
MUL
TBX
LDA
ANA
TAB
TXA
MULI
TBX
LDA
LRLA
ANA
TAB
TXA
MULI
JMP *
DATA

EQUATES

EQU
EQU

DATA CONTROL BLOCKS AND BUFFERS

FCB
BSS

EQU

DCB
DATA
DATA

DCB
DCB

BSS

DCB
DATA

DCB
DATA
DATA
END

RECNO
DATAB, LU
AC1+2

7

ACCESS

ASCII TO BINARY SUBROUTINE
A,B=4 CHARACTER ASCII NUMBER
B=BINARY EQUIVALENT

0
A1

BM17

BM17

TEN

BM17

0144

Al

BM17

01750

ASBI

FOR

0471
0472

36, DATABF, , ,

36

DATAB+3

33,M5G0
" DATA BASE INQUIRY. TYPE 4 DIGIT KEY TO ACCESS, "OF"

VORTEX LOWER

“, ”
FI°,

READ

POSITION

EXIT

SAVE HIGH-ORDER 2 DIGITS (D1-2)

ISOLATE D4

SAVE

ISOLATE D3

D3*70+D4*1

SAVE

ISOLATE D2

D2*100+D3*10+D4*1

SAVE

ISOLATE D1

PROGRAMMING AN APPLICATION

USE AS RANDOM ACCESS RECORD NUMBER IN FCB
RANDOM RECORD
GET I/0 STATUS WORD

ERROR BIT TO SIGN

D1*1000+D2*100+D3*10+D4=*1

EXIT

)

‘' T0 TERMINATE. '

A /
CR ,
2,BUF, 05003

2

9, MSG1
‘I1/0 ERROR, RETRY.'

! ,M5G2

‘DATA SET OFF.’

‘oF’
PO

i i el iyt e R e R e

- i — i s =

MEMORY CONSTANTS

12:3

e —————

SECTION 13
CONFIGURING A VTAM SYSTEM

13.1 INTRODUCTION

The procedure for system generation of a system with
VTAM is the same as that for VORTEX with the additional
steps described in this section. Steps a, b, and c are
required only iIf more than four DCM's are used or if
modifications are needed to the standard VTAM system.
Refer to the following sections for details. These additional
procedures for VTAM are:

a. Modifying VTAM CCM tables and adding controller
tables with installation dependent parameters.

b. Adding TDF cards and binary decks for VTAM CCM.
c. Adding TDF cards and binary decks for TTY TCM.

d. Reserving memory for DCM's control words (with MRY
directive and DEF directives).

e. Defining data communications multiplexors in
peripheral architecture (with EQP directive).

f. Defining interrupt structure required by DCM (with
PIM directive).

g. Associating logical unit numbers and names with
physical devices (with ASN directive).

h. Loading ancillary VTAM system modules (OPEN,
CLOSE, NDM, and NCM) subsequent to VORTEX
system generation.

13.2 MODIFYING VTAM CCM TABLES AND
ADDING CONTROLLER TABLES

13.2.1 CCM Tables

It the SYSGEN EQP directives specify a TC or MX device,
SYSGEN will build the VTAM data module CC$TLB. This
module contains a number of variable parameters, each of
which has a default value, but which can be redefined by
the SYSGEN DEF directive. The names and default values
of these parameters are:

The names and default values of these parameters are:

Name Default Value
CBSIZE 15
NUMLL 20
NUMENx 64
BCTNTx 64
NULEL 32
NUTEL 10

where x refers to the DCM number
Functions of these parameters are described below.

CBSIZE 1s the number of 2-word entries required for the
circular interrupt buffer, which must be large enough to
support the maximum number of DCM interrupts that can
occur simultaneously. The number of entries needed
depends upon the maximum number of active lines at any
time.

A value of half of the number of active lines may be
adequate in most cases. A more exact determination
requires an analysis of the specific communications system
being generated along with the application of queuing
theory.

NUMLL is the number of logical lines. The default value is
20.

NUMENx specifies the number of physical lines for the
DCM MXxA. One physical line table is constructed for each
DCM supported by VIAM, as defined by the SYSGEN
directive:

EQP,MXXA, ..

where x is the DCM number
The format of the corresponding physical line table is as
follows:

EXT NUMENX
NAME C52PLx

C52LPx DATA NUMENX
DUP NUMENXx
DATA 0

The multiplexor equipment table provides the means to
obtain the controller table address for an interrupting
DCM. The structure of the multiplexor equipment table is:

CCSMET DATA NOMUXS
DATA CTMXOA
DATA CTMX1A
DATA CTMXnA

NOMUXS, is the number of entries in the table. NOMUXS
equais n + 1 where n i1s the largest DCM number if the

SYSGEN EQP directives (EQP, MXnA,...).

13-1

e - < =

CONFIGURING A VTAM SYSTEM

BCTNTx is the number of lines using buffer chaining for
DCM MXxA. One buffer chain table (BCT) is constructed for
each DCM supported by VTAM, when buffer chaining mode
of input 1s used, as defined by the SYSGEN directive:

EQP MXXA,...
Each entry corresponds to one physical line number which,

when in use, contains a chain header address to that line.
The format for a buffer chain table is as follows:

EXT BCTNTx
NAME BCTXxA

BCTXxA DATA BCTNTx
DUP BCTNTx
DATA 0

NUTEL is the number of opened terminals. The size of the
VTAM dynamic memory pool is determined by the number
of lines and terminals to be open with current 1/0 requests.
Two pool elements are assigned for each terminal with
active 1/0 requests at one time, and one pool element is
assigned for each line opened at any one time. NULEL is
the number of opened lines.

13.2.2 Controller Table

A CCM controller table must be provided for each DCM in
the system. The VORTEX SGL contains controller tables for
four DCM's. If more controller tables are required than are
furnished with the SGL, their source modules can be
created by using the controller table CTMX0A as a model.

Names of DCM controller tables must be in the form
CTMXnA, where n is the controller number. CTMXO0A is the
name of the controller table for the first DCM, CTMXI1A is
the name of the controller table for the second DCM, and
so forth.

Before assembly, the following changes (see the assembly
hsting for CTMX0A) must be made to the controller table
CTMXO0A:

a. Replace the controller talbe name in the NAME

directive and the following EQU with the name of the
controller table being assembled. For DCM 4 (the 5th
DCM) this would be:

NAME CTMXUA
CTMXU4A EQU *

b. Change the TIDB address, TBMXnA (word 00 CTIDB),
to reflect the proper controller number. The changes for
DCM 4 would be as follows:

EXT TBMX4A
DATA TBMX4A

c. Change the DEVICE ADDRESS, (word 06 CTDVA), to

reflect the proper controller number in the same
manner as b above.

132

d. Change the BIC FLAG TABLE ADDRESS, IBMXnA (word
011 CTBIC), to reflect the proper controller number in

the same manner as b above.

e. |f the controller table is not for DCM 0 insert after the
comment:

* START OF DEVICE MANAGEMENT TABLE
an EQU which equates the symbol CTMXOA to the name
of the controller table as follows:

* CTMX0A EQU CTMXnA

f. Change the LCW BASE ADDRESS, V$LCWn (word 021),
to reflect the proper controller number in the same

manner as b above.

g. Every VTAM system should make use of a CL flag
named V$POLL. If a modified binary synchronous
communications line adapter is used, the SYSGEN
directive DEF,V$POLL,1 must be included. In all other
cases, the SYSGEN directive DEF,V$POLL,O must be

used.

After assembly of these additional controller tables the
object programs are added to the system by SMAIN or
SYSGEN. Note that in VORTEX I|I, they must be added
before the SGL control record CTL,21.

13.3 ADDING TDF RECORDS
FOR VTAM CCM'’s

A TDF record must be provided for each DCM in the
system. The standard SGL supports four TCM's. If more
TCM's are used the user must provide the additional TDF
records. In VORTEX |l, all TDF records must be added
before the SGL control record CTL,21.

13.4 ADDING TDF RECORDS FOR TCM (TTY)

A TDF records must be provided for each TCM in the
system. The standard SGL supports four TCM's. If more
TCM's are used the user must provide the additional TDF
records. In VORTEX [I, all TDF records must be added
before the SGL control record CTL,21.

13.5 RESERVING MEMORY

The memory parameter on the MRY directive must be set
to reflect the DCM's usage a 512-word memory page for
hardware control words. This page of memory must start at
a multiple of 512 words, i.e. 074000, 075000 etc.

Example (VORTEX):

MRY, 074777,0200

Example (VORTEX II):
MRY, 074777,0200,64
Reserve the highest page available to VORTEX (075000 to

075777) when AID Il and BLD are memory resident (AID I
starts at 076000 in a 32K word memory configuration).

The LCW address for each DCM is defined using the

SYSGEN directive DEF. The format for this directive as
follows:

DEF,VELCWn, xxxxxx

where n i1s the DCM number and xxxxxx i1s the LCW address
in octal

For example: In a 32K system DCM 0 is wired for an LCW
address of 075000. The DEF directive would be:

DEF,V$LCWO0,075000

13.6 DEFINING PERIPHERAL ARCHITECTURE

An EQP directive must be made for each DCM and each
TCM.

An EQP card must be present for each DCM in the system.
The format for the equipment name field is:

MXnA

where n is a single numeric character.
Example:
EQP MX0A,074,1,0,0
MXOA is the mnemonic for the first DCM in the system.
074 s its device address, 1 is the number of peripheral

units (always set to 1). The last two parameters must be
set to zero.

For a TCM the format of the name for the terminal control
module is TCnA.

Where n is a single numeric character
Example

EQP,TCOA,00,1,0,0

13.7 DEFINING INTERRUPT STRUCTURE

For each EQP card defining 2 DCM six PIM directives are
needed to define the six DCM interrupts.

The PIM directives for a DCM define directly connected
interrupts. The names of the programs servicing the
directly connected interrupts are in table 13-1. For

CONFIGURING A VTAM SYSTEM

VORTEX |.specify direct option 1. For VORTEX |l, specify
direct connect option 2.

Table 13-1. Direct Connect Interrupts

Event Directly Connected
Word Interrupt Servicing
Value Interrupt Description Routine Name
0X0 input byte count = 0 C52LIP
OX1 output byte count = O C52LIP
0X2 line error C52LIP
0Xx4 control character detected C52LIP
0X3 status change C52LIP
0X5 controi C52CIH

The event word entry in the PIM directive i1s taken from
table 13-1, where X is the number of the DCM being
described in the PIM directive. For example in a system
using only one DCM, X = 0 in all six PIM cards. In a
system using two DCM's the first DCM would be described
by six PIM directives with X = 0, and the second by six
PIM directives with X = 1.

There is a one-to-one relationship between the controller
table name generated by the EQP directive, the relative
position of that controller table’'s name in the table
CCEMET and the value X as shown in the following
example:

EQP,MX0A, 074,1,0,0

*ﬁ

PIM, 030, C52LIP, 0,1

EQP,MX1A, 075,1,0,0

PIM, 050, C52LIP,010,1 CC$MET
. number ﬂT‘. DCM|
. H CTMXOA
. —{ CTMX1A
EQP,MX2A, 076,1,0,0 l CTMX2A

PIM, 070, c52LIP,ugo,1l

The controller table name generated by the EQP directive
must be used when assembling the controller table and will
be used in the construction of CC$MET. The value X will be
the ordinal of the controller tables address in CC$MET.

13-3

CONFIGURING A VTAM SYSTEM

13.8 ASSIGN LOGICAL UNITS TO
PHYSICAL DEVICES

The ASN directive associates a logical unit number (1
through 100 or 107 through 255) which can be followed by
an optional two-character logical unit name (e.g., 107:Y7)
with a four-character physical-device name such as TCnn or
MXnn, where n is a single numeric character. Note that a
different TCM logical unit number is required for every
terminal that is open at the same time.

EXAMPLE:

ASN, 26 = MX00
ASN, 184 = TCOO

13.9 LOADING ANCILLARY VTAM MODULES

Jobs for loading OPEN, CLOSE, NDM, NCM and the
FORTRAN run-time modules to support terminal open and
close are provided with the VTAM release material. These
jobs are run from the Sl logical unit and provide the
operator with any instructions necessary for their
execution.

The job loading ancillary VTAM modules is organized into
two parts, separated by an end-of-file record. The first part
must be run for all types of VTAM system configurations,
with or without TCMs. The second part, which loads the
terminal open/close task, should only be run when a TCM
is included in the VTAM configuration. The second part is
also terminated by an end-of-file record.

13-4

NOTE: Prior to the loading of NCM in the first
part of loading ancillary modules, there is a job
to enter the external names: VI$LTT and
TC$TCD into the OM library. These external
names are needed for the load module genera-
tion of NCM. If the VTAM system was generated
with a TCM, these names would be in the CL
library. For systems with CCMs only, these
names must be entered into OM as dummy
entry points. If these names are already in CL,
the entries in OM may be deleted.

13.10 VTAM MEMORY REQUIREMENTS

VTAM requires the following amounts of memory:

CCM:
Components 3200-words
Line Tables 17 words (18 words/line if buffer

chaining is used)

DCM Multiplexor 512 words/multiplexor

TCM:

2600 words
17 words/terminal

Components
Terminal Tables

— - == = .y =] e

APPENDIX A
TELETYPE AND CRT CHARACTER CODES

Internal ASCII Internal ASCII
Character (Octal) Character (Octal)
0 260 R 322
1 261 S 323
2 262 T 324
3 263 U 325
4 264 V 326
5 265 W 327
6 266 X 330
F 4 26/ Y 331
8 270 z 332
E 271 (blank) 240
A 301 ! 241
B 302 " 242
C 303 = 243
D 304 $ 244
E 305 % 245
F 306 & 246
G 307 : 247
H 310 (250
| 311) 251
J 312 " 252
K 313 + 253
L 314 . 254
M 315 - 255
N 316 . 256
0 317 / 257
P 320 : 272
Q 321 ; 273
< 274 FORM 214
= 275 RETURN 215
> 276 SO 216
? 277 SI 217
@ 300 DCO 220
333 X-ON 221
334 TAPE AUX

335 ON 222
| 336 X-OFF 223
i 337 TAPE OFF e
RUBOUT 377 AUX 224
NUL 200 ERROR 225
SOM 201 SYNC 226
EOA 202 LEM 227
EOM 203 SO 230
EOT 204 S1 231
WRU 205 S2 232
RU 206 S3 233
BEL 207 S4 234
FE 210 S5 235
H TAB 211 S6 236
LINE FEED 212 S7 237

V TAB 213

APPENDIX B

EBCDIC AND ASCII CHARACTER ASSIGNMENTS

Character

= ONYS X 3 € C ¥ 7TO0DVDOIZI T XTTITATO0QAOUTIVNLIXE<CTINVIOVOZ2EZIrX-—"ITOTMQOOD>P

EBCDIC
(Hex)

Cl
C2
C3
Ca
C5
C6
C7
C8
C9
Dl
D2
D3
D4
D5
D6
D7
D8
D9
E2
E3
E4
ES
E6
E/
E8
E9
81
82
83
84
85
86
87
88
89
91
92
93
94
95
96
97
98
99
A2
A3
A4
A5
A6
A7
A8
A9
FO
F1

B S

ASCII

(Hex) Character
41 @
42 (
43)
44 -
45

46 +
47 :
48 >
49 =
4A

4B -
4aC ?
4D "
4k

4F ;
50 \
51 ~
57 \
53 %
54 (
55]
56 BEL
57 BS
58 BYP
59 CAN
5A CC
61 CR
62 DC1
63 DC2
64 DC3
65 DC4
66 DEL
67 DLE
68 DS
69 EM
6A ENQ
6B EOB
6C EOT
6D ESC
6k ETB
6F ETX
70 FF
/1 FS
72 GS
73 HT
74 IFS
75 1GS
76 ILS
77 IRS
78 IUsS
79 LC
/A LF
30 NAK
31 NC

EBCDIC

(Hex)

7C
4D
50
6D
/D
4E
5E
6E
7E
4F
SF
6F
/F
Co
DO
EO
Al
79
B6A

2F
16
24
18
1A
0D

12
13
3C
07
10
20
19
2D
26
37
27
26
03
0C
22

05
1C
1D
17
1E
1F
06
25
3D
15

ASCII
(Hex)

40
28
29
5F
27
2B
3B
3E
3D

5E
3r
22
7B
7D
5C
7E
60
/C
5B
5D
07
08

18

0D
11
12
13
14
/F
10

19
05

04
1B
17
03
0C
1C
10
09

0A
15

B I

EBCDIC AND ASCII CHARACTER ASSIGNMENTS

B.2

Character

RO O0ONOUbAWRN

= A~

*

EBCDIC

(Hex)

F2
F3
F4
F5
F6
F7
F8
F9
50
60
6l
58
4A
5A
7A
7B
6B
4B
4c
5C
6C

ASCII
(Hex)

32
33
34
35
36
37
38
39
50
2D
2F
24

21
3A
23
2C
2E
3C
2A
25

Character

NUL
PF
PN
PRE
RES
RLF
RS
S|
SM
SMM
SO
SOH
SOS
Space
STX
SUB
SYN
UuC
Us
V1

EBCDIC

(Hex)

00
04
34
27
14
09
35
OF
2A
0A
OE
01
21
40
02
3F
32
36

0B

ASCII
(Hex)

00

1§
OF

OE
01

20
02

1A
16

1F
0B

INDEX

Active chain, 7-2
Affirmative acknowledgment (ACK0/ACK1), 8-5

Bibliography, 1-4
Binary synchronous communication (BSC), 8-1
Block-check character (BCC), 8-3

Buffer chaining, 7-1

CCM level, programming at the, 6-1
CCM tables, 13-1
Chain, active, 7-2
Chain header (CHR), 7-2
Chaining, buffer, 7-1
Character, block-check (BCC), 8-3
Character codes

ASCII, B-1

CRT, A-1

EBCDIC, B-1

Teletype, A-1
CHR and IBH, relationship of, 7-5
CLOSE macro, 4-2, 6-3

error indications, 4-3

example, 4-3, 6-3
Communication, binary synchronous (BSC), 8-1
Communications controller module (CCM) 1-1
Configuration, expanded, 1-3
Configuring a VTAM system, 13-1
Continue timeout, 8-9
Control

ACKO0/ACK]1, 8-5

characters, 8-4

DLE, 8-5

ENQ, 8-5

EOT, 8-5

ETB, 8-4

ETX, 8-5

ITB, 8-4

NAK, 8-5

RVI, 8-6

SOH, 8-4

station, 8- 2

STX, 8-4

SYN, 8-4

TTD, 8-6

WACK, 8-5
Controller table, CCM, 13-2
Controller table (CTBL), TCM, 10-2
Cyclic-redundancy check (CRC), 8-3

Data link, 8-1
control, 8-4
escape (DLE), 8-5
multipoint, 8-1
operation, 8-2
Dial up operation, 8- 8
Directives, 11-1
Disconnect timeout, 8-10
DLE., control, 8-5
Double pointer queue, 7-1

DOWN directive, 11-1

End-of-text (ETX), 8-5
End-of-transmission block (ETB), 8-4
End-of-transmission (EOT), 8-5
END statement, NDL, 2-5
ENQ, control, 8-5
Enquiry (ENQ), 8-5
EOT, control, 8-5
Error checking, 8-3
Error indications
CLOSE macro, 4-3

OPEN macro, 4-2
VTAM macros, 3-2

ETB. control, 8-4

ETX, control, 8-5

Expanded configuration, 1-3

Format, chain header, 7-2
Format, IBH, 7-2

Front pointer, 7-1

FUNC macro, 5-4, 6-4
Function codes, 6-4

GETQ, 7-1
example, 7-4

Header, chain (CHR), 7-2

Initialization procedure, 8-6
Interface block header (IBH), 7-2

Intermediate block (ITB), 8-4
Introduction, 1-1

LCB macro, 6-1
LCB status, 3-2
Leased line, 8-1

INDEX -]

INDEX

Line control block (LCB), 3-1
Line service descriptor, prototype, 2-6
LINE statement, 2-1

attributes, 2-2

attribute defaults, 2-4

examples, 2-4
List directive, 11-3
Longitudinal-redundancy check (LRC), 8-3

Macro,

CLOSE, 4-2, 6-3

FUNC, 5-4, 6-4

LCB, 6-1

OPEN, 4-1, 6-3

READ, 5-1, 6-3

STAT, 5-3, 6-7

WEOF, 5-6

WRITE, 5-2, 6-3
Managing buffers, 9-1
Memory allocation routines, 9-1
Message

blocks, 8-3

format, 8-2, 8-6

transfer procedure, 8-8
Minimum configuration, 1-3
Modifying the NDL processor, 10-5
Modifying the NDM, 10-5

NDL processor, modifying the, 10-5

NDM, modifying the, 10-5

Negative acknowledgment (NAK), 8-5

Network definition language (NDL) statement, 2-1
Network control module (NCM), 1-1

Network definition module files, 2-6

Network definition module (NDM), 2-1

Network definition module output, 2-6

OPEN macro, 4-1, 6-3
error indications, 4-2
examples, 4-2, 6-3
Opening and closing terminals and lines, 4-1

Pad characters, 8-9
Pad format check, 8-4
Point-to-point operation, 8-6
Polling, 8-2
Processor table, TCM, 10-3
Programming an application, 12-1
Programming at the CCM level, 6-1
CLOSE macro, 6-3
FUNC macro, 6-4
LCB macro, 6-1

INDEX -2

OPEN macro, 6-3

READ macro, 6-3

STAT macro, 6-7

WRITE macro, 6-3
Programming at the TCM level, 5-1

FUNC macro, 5-4

READ macro, 5-1

STAT macro, 5-3

WEOF macro, 5-6

WRITE macro, 5-2
Prototype line service descriptor, 2-7
Prototype terminal control descriptor, 2-7
PUTQ, 7-1

example, 7-3

Queuing procedure, 7-1

READ macro, 5-1, 6-3
Rear pointer, 7-1

Receive timeout, 8-10
Redirect directive, 11-2
Reverse interrupt (RVI), 8-6
Reserving memory, 13-2
Reset function, 7-4

Restore directive, 11-2

Selection, 8-2

Set function, 7-4
Start-of-heading (SOH), 8-4
Start-of-text (STX), 8-4
STAT macro, 5-3, 6-7
Structure of VTAM, 1-2

Switched network, 8-1

Synchronous idle (SYN), 8-4
System flow, 1-1

Tables

CCM controller, 13-1

TCM controller, 10-2

used by TCM, 10-1
TCM components, 10-3
TCM functions, 10-2
Temporary text delay (TTD), 8-5
Terminal control descriptor, prototype, 2-7
Terminal control module (TCM), 1-1
Terminal identifier block (TIB), 2-7
TERMINAL statement, 2-4

attribute, 2-5
Termination procedure, 8-8
Timeouts, 8-9
Transmission codes, 8-1
Transmission and recovery procedures, 8-10

Transmit timeout, 8-9
Transparent mode, 8-8

UP directive, 11-1
Using VTAM macros, 3-1

VT$BMT, 9-1

VISGTM, 9-2
VTS$PTM, 9-2

INDEX

Wait-before-acknowledgment (WACK) 8-5

WEOF macro, 5-6
WRITE macro, 5-2, 6-3

INDEX -3

	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0001
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0002
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0003
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0004
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0005
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0006
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0007
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0008
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0009
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0010
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0011
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0012
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0013
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0014
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0015
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0016
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0017
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0018
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0019
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0020
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0021
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0022
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0023
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0024
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0025
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0026
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0027
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0028
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0029
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0030
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0031
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0032
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0033
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0034
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0035
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0036
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0037
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0038
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0039
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0040
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0041
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0042
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0043
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0044
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0045
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0046
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0047
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0048
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0049
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0050
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0051
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0052
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0053
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0054
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0055
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0056
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0057
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0058
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0059
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0060
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0061
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0062
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0063
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0064
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0065
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0066
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0067
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0068
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0069
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0070
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0071
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0072
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0073
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0074
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0075
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0076
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0077
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0078
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0079
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0080
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0081
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0082
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0083
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0084
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0085
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0086
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0087
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0088
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0089
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0090
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0091
	98A9952224-x-Sperry_UNIVAC-VTAM-Programmer_Reference-February_1978-page0092

