VECTOR GEN ERALW

Graphics Display System

Model 3404

System Reference Manual

Interactive Graphics Products

Graphics Display System
Model 3404

System Reference Manual

OCTOBER, 1977

VECTOR GENERAL INC., 21300 Oxnard Street, Woodland Hills, California 91364

PUBLICATIONS NO. M110700REF

M110700REF

Copyright @ 1976 by Vector General, Incorporated

NOTICE

The information presented in this document is intended for the evaluation
and support of the Vector General Graphics Display Systems. Reproduc-
tion of this material without the prior approval of Vector General, or its
use for purposes other than intended, is strictly prohibited.

Section

I

M110700REF
SYSTEM REFERENCE MANUAL

GRAPHICS DISPLAY SYSTEM, MODEL 3404

CONTENTS

Title

GENERAL DESCRIPTION

i-1 Introduction.
1-2 Scope ¢ . v . h s e e e e e e e
1-3 References
1-4 Physical Description, . .

1-5 Vector Drawing Rates o« e o .+ s s

FUNCTIONAL DESCRIPTION

2-1 Introduction.
2-2 Display System Organization
2-3 Graphic Processor Unit
2-4 Display Controller
2-5 Refresh Buffer Unit
2-6 Display Control Unit
2-7 Vector Generator Unit
2-8 Font Generator Unit
2-9 Monitor Control Unit
2-10 Display Monitors.
2-11 Display Devices

GRAPHIC PROCESSOR PROGRAMMING

3-1 Introduction.
3-2 GPUObjects « + « . . .
3-3 GPUControl v v v v v v o &
3-4 Effect of User Instruections on GPU Functions
3-5 Element Generation.
3-6 User Instructions.
3=7 NOOP Instruction
3-8 RETURN Instructions
3-9 GHALT Instruction
3-10 BREAK-LIST Instructions
3-11 LOAD Instructions
3-12 NEST Instructions

Page

!
[

.« . « o o N
DDNDNNNNNDDNDINDDNDN
|

| |
B s s e W W WD N

.

wwwwwwcr:wwooww

L I
U | 1
W W W U v WN =

|
jury
[l

|
-t
=

I
=
Do

.

|
=
w

Section

IIT

CONTENTS (Continued)

Title

GRAPHIC PROCESSOR PROGRAMMING (Continued)

3-13 CALL Instructions . . . + « « + .+ .
3-14 STACK Instructiens. . . .« « +« + «
3-15 ARITHMETIC Instructions
3-16 ARB Instructions. + + . . .
3-17 LINES Instruction
3-18 LF Field
3-19 DF Field
3-20 BM Field e h e e e e e
3-21 CLXField« . . .
3-22 CLY Field
3-23 CLZField . . . « ¢« « « « « . .
3-24 TEXT Instruction
3-25 LF Field

3-26 DF Field « . . .
3-27 PGField

-28 ROTField
FNTField
SZ Field. . . .

SINGLE ELEMENT Instructlons .
Circle. « « ¢« « ..

-33 ATCo v v v v v e e e e e e e

-34 Counterclockwise Arc¢

-35 Clockwise Ar¢ « « .« .

-36 Rectangle

-37 Cubic . . .« « v + ¢« v v o « « .

3

8 CIDIT Anr nt Addwrncoina

'
W W w N
[V S e i o)

Gi'u AT 6"““\’““ AUULTODLIE .

40 GPURegisters . .« + « « « o « « &

41 COMMAND Register « . . .
42 CONTROL Register
43 STATUS Register + « « . .

-44 Address-Related Registers
45 General Purpose Registers, .
46 Picture-Related Registers
47 Object-Related Registers
48 Data Table Registers e e e v e e
4

3
3
3
3
3
3
3
3
3
3
3-39 GPU Reference Addressing Formats e e
3
3
3
3
3
3
3
3
3
3-49 Element-Related Registers

i

Page

1 1 1 i
Oy 01 O n
O W =3 U1

1
(2]
no

[
[exIer
LS

1
o O
[=2]

W Wwwwwwwwww
1
2]
[« (Vo)

1
fe2]
~3

Section

1T

v

CONTENTS (Continued)

Title

GRAPHIC PROCESSOR PROGRAMMING (Continued)

3-50 Select Feature Registers.
3-51 Pick Option Registers
3-52 Hit Feature Registers e e e e s e .
3-53 Edit Feature Registers

3-54 Rotational Resolution e e e e e e

SYSTEM PROGRAMMING

4-1 Introduction.
4-2 Enable and Halt Usage
4-3 Use of Display Object
4-4 Use of Sub-Objects
4-5 Use of Nesting to Apply Transformations. .
4-6 Use of DataScale,
4-7 Use of Viewing Parameters
4-8 Windowing
4-9 Zooming 4 4 4 4 4 e . .
4-10 Panning
4-11 Picture Transformations.
4-12 Summary of Viewing Transformations . .
4-13 Three-Dimensional Viewing Parameters . .
4-14 Argument Addressing Example.
4-15 Object JOBS . . « v v v v o « . .
4-16 Object NET « v « + . .
4-17 Object PIC C e e e e e e e e e
4-18 Interaction-Aid Features
4-19 Select Feature.
4-20 Application of Select Feature
4-21 Implementation of Select Feature . .
4-22 Hit Feature and Pen or Pick Option. . .
4-23 Application of Hit Feature with Pick
and Data Tablet
4-24 Implementation of Hit Feature . . .
4-25 Suggested Uses for Select and Hit . . .

4-26 Edit-Interaction-Aid

ifi

B
U

1 1
WO -3 U1 B DN

tEELE LY
RS S Gy S Y
NR=R oo

{
= B

T]
N =
©

W R =

o2}

-3

1
DN N DNDNDDNDDNDDN
(=

w

»h»hn-hnkrhulbohobrhvhrhrb

[04]

Section

Iv

CONTENTS (Continued)

Title

SYSTEM PROGRAMMING (Continued)

4-27 Display Word Substitution
4-28 Deletion , . .
4-29 Insertion o e e .
4-30 Addressing e . .« .
4-31 Display Picture Descmptlon e e e
4-32 Initial Addressing of Picture Base Object
4-33 Object List Contents
4-34 Stack Operations . . . se e e
4-36 CALL Instruction Example
4-37 Summary of Stack Instructions o s e
4-38 Object-Level Transformations. . .

DISPLAY CONTROLLER HARDWARE DESCRIPTION

Nianlax

Control Registers ., ., . .
DCU Control Register . .
VGU Control Register . . .
MCU Control Register ., .

U:mclnmm
SNV \ R Y

-5 e .
5-6 FGU Control Register . . s
5-7 Display Controller Status Reg1ster .
5-8 Display Controller Instruction Register
5-9 CONTROL Instruction , ., . .
5-10 LOAD Instruction . . .
5-11 VECTOR Instruction , . . e e
5-12 Vector Absolute
5-13 Vector Relative, .
5-14 Vector Incremental, . ., . ., ,
5-15 CHARACTER Instruction.
5-16 Display Controller Data Registers . .
5-17 Character Spacing
5-18 Vector Endpoint Coordinates . .
5-19 Display Intensity
5-20 Character Register. . .,
5-21 Character Scale Register s e s
5-22 NAME Register

iv

Page

1 1 1 1
W w W w w
B s Wwow W

[0 2]

ol s o W
o N

H

%)
] 1

7
W= U R NN

(B2))
1

T rTYYYYY
Pd ped e
[T (T)

PRTTYYY
el ol o
0w woe

CIJ'I
-t
©

5-20
5-20
5-20

Section

\4

VI

Appendix

Al
A2
A3
A4

A5

g g

D1
El

CONTENTS (Continued)

Title

DISPLAY CONTROLLER HARDWARE DESCRIPTION (Continued)

5-23 Font Generator Unit Characteristics

5-24 Character Draws . . o « + « + « o « o o o o
5-25 Line Segment Slopes . . . o =« ¢ o s ¢ o o o & -
5-26 Character Scaling . . . o + + ¢« ¢ ¢ 4« o o o o &
5-27 Continuous Character Rotation

GLOSSARY OF TERMS

6-1 Introduction ¢ ¢« ¢ ¢ e e o o . .

APPENDICES
Title

User Instruction Set « + v +« « ¢ v« o o .
User Instruction Word Fields « « + . .
Register Set Codes for Nesting Values « . .« « .
Reference Addressing . . . ¢« ¢ ¢ v ¢ ¢« o ¢ 4 e e
Stack Contents After NEST . + + ¢« v ¢ « ¢« o s o o o o
Standard ASCII Character Set . . + « + ¢« « ¢ ¢« o « « o &
User Control Codes . .« v ¢ v v v ¢« o ¢« o o o o o o
GPU Registers . . + « v + ¢ + o o o o o o o « o o
GPU Register Fields & ¢« ¢ v o ¢« ¢ ¢ « o o o &
Display System Address Organization.
Hardware and Device Registers ¢« « « « & o &« & .
Standard ASCII Character Set . . . + « + +« « ¢« « « o &
Hardware Decoding of Control Codes « . . .
Alphanumeric Keyboard Coding . . « « « « + + « « &« « &
Typical Computer Interface + . « + ¢ « o« .

Page

5-20
5-21
5-22
5-24
5-25

6-1

O 1 O Ut U R W I(;‘Q?
[0}

DO pt e
S wWwo o W

CONTENTS (Continued)

ILLUSTRATIONS

Figure Title

Frontispiece
2-1 Display System Basic Block Diagram
3-1 Object List Structure
3-2 Disjoint Line Strings . . . « « « « « « + . . .
3-3 Joined Line String e e e e e e e e e e e e .
3-4 Horizontal/Vertical Run &+ + + 4 o« « .
3-5 Points Plotted Using BMPT Mode . . . + o . . .
3-6 Current Page+ & ¢« v v 4 v o s o o
3-7 Text Block .« . . & v v 4« v ¢ v v v v e w w0
3-8 Absolute Page . + v ¢« v ¢ ¢ e 4 4 4 e 4 e e
3-9 Positioned Page
3-10 Typical Formats for Positioned Page
3-11 Rotation Field: Packed Refr-ed Word. . e e e e
3-12 Rotation Field: Right-Justified Refr-ed Word . . .
3-13 Font Field: DPacked Refr-ed Word . . e e e .
3-14 Font Field: Right-Justified Refr-ed Word s v e e s
3-15 SZ Field: Packed Refr-ed Word
3-16 SZ Field: Right-Justified Refr-ed Word
3-17 Coordinates for Circle Draw
3-18 Rectangle. e e e e s e e e e
3-19 Cubic Instruction Format v e e e e e
3-20 Typical Cubic
3-21 Rotational Resolution
4-1 Example of One Displayed Object,
4-2 Sample Directory, Stack Space, and TRI Object . . .
4-3 Example of Sub-Objects,
4-4 Example of Sub-Object CALLS
4-5 Example of Scaling and Displacement Through Nesting
4-6 PIC OBJ Example of Nesting and Transformation . .
4-7 Example of a Construct Exceeding Dynamic Range . .
4-8 PBO For Example in Paragraph4-6
4-9 Deleted e s e e e s e
4-10 Example of Zooming and Chpplng e s e e e e e
4-11 Example of "Panning"
4-12 Example of Picture Transformation of Widnowed View
4-13 Summary of Viewing Transformations.

vi

LW WwWwwWwwwwiwwin

G W W W

L W w

o

B s WWw W W W
[N T R T Y R Y |

W WO 10O U W=

ju—y
(=]

ot
=

no

r%r?-n&rho#n&rho&rhﬂk
et
)

L |

w0

U U
©

U‘lcl}'lCJ'lCﬂCﬂO‘Ith»&»#
W W =3O U b W MHDNDDNDIND

W

%]

5}

CONTENTS (Continued)

ILLUSTRATIONS. (Continued)

Title

Initialized View v+ 4 4 . .
Perspective Cue ¢« ¢ o v v 4 o 4 . .
Example of Zooming

Example of Panning « « 4 + . . .
Example of "Front Cut"
Example of Both Front and Rear Cuts
Display Example Demonstrating the Use of Addressing
ItemSelection. ¢ . o . . .
Implementation of Select Feature
Item Picking « &« v ¢« ¢« v v v« o . .
Implementation of Hit Feature.
Use of Edit-Interaction Aid Option
Display Consisting of Three Object Levels
Initial Addressing of Base Object For GPU Processing
Referenced Variable Values of Indirect Addressing. .
Call Object Instruction Example
Display Refresh Instructions and Data Format . . .
Vector Absolute Instruction and Data Format . . .

Vector Relative Instruction and Data Format
Vector Incremental Instruction and Data Format. .

Character Instruction and Text Control
Character Space and Character Position.
Permissible Line Slopes

Effects of Character Scaling
2-D Page Space and Character Rotation

CONTENTS (Continued)

TABLES
Table Title
1-1 Reference Manuals « . « . . .
1-2 Physical Characteristiecs.
1-3 Power Requirements ¢« +« o« « &+ .+ .
1-4 Environmental Requirements
1-5 Performance Characteristiecs
1-6 Vector Drawing Rates «
3-1 User InstructionSet « .« « .
3-2 Register Set Codes For Nesting Values
3-3 Arithmetic Operations. +
3-4 Single Element Operations
3-5 "Refr'' Addressing Formats
3-6 Coding For Refr Addressing
3-7 GPU Registers ¢« ¢ « o« o s « &
3-8 Command Register Bit Assignments
3-9 Control Register Bit Assignments
3-10 Status Register Bit Assignments e e e e
4-1 Routine for ZoomingIn
4-2 User Data Tables For Display Example .,
4-3 Display Example Source Code
4-4 Object Code of Addressing Example
4-5 MACROS Used in Addressing Example
4-6 Sequence for Sample DELETE Program
4-7 Sequence for Sample INSERT Program
5-1 Display Controller Registers (Standard), Station #1
5-2 Display Controller Character Control Codes . .
5-3 FGUROM Word IFormat . . . + . « « + o
5-4 Parameters Used For Drawing "A". .,
6-1 Special Terms and Descriptions

viii

g
i
[¢]

=

fuy

el
w

= -1 =GO W

(=2 3; |

I
[0 o]
(=]

|
[%2]
[}

(%)
[=2]

|
[%1]
-3

%]
©

[==]

(o232}
[

i
et
[y

w

> DO

Lo o

11
g

= DO D) i et GO 0O DO DI DO DO
S w

o

S U1 U1 O O W W W b s B s W W W W W W W W WW

1

Frontispiece

M110700REF
SYSTEM REFERENCE MANUAL
GRAPHICS DISPLAY SYSTEM, MODEL 3404
SECTION I

GENERAL DESCRIPTION

1-1. INTRODUCTION

This manual describes the Model 3404 Graphics Display System* (see Frontispiece),
manufactured by Vector General, Incorporated, 21300 Oxnard Street, Woodland
Hills, California. Material contained in this reference manual is organized as
follows:

Section I General Description: scope, references, physical and
' performance characteristics, and vector drawing rates.

Section II Functional Description: discussion of block diagram for
the Model 3404 Graphics Display System.

Section IIT Graphic Processor Programming: GPU objects, control,
argument addressing, registers, element generation and
USER INSTRUCTIONS,

Section IV Graphic System Programming: enable and halt usage,
display object, sub-objects, nesting for transformations,
data scale, viewing parameters, windowing, picture
transformations, three-dimensional viewing parameters,
interaction-aid features (SELECT, HIT and EDIT), ad-
dressing, object list contents, stack operations, and object
level transformations.

Section V Display Controller Hardware Description: display registers,
control registers, data registers and character draws.

Section VI Glossary of Terms.
Appendices Reference Material

Index

*U.S. PATENT No. 3772563; other PATENTS PENDING

1-1

The Model 3404 is a fourth-generation, high-speed graphics system which retains
the outstanding features of the Series 3 Graphics Systems and augments them with
the following attractive improvements:

Incorporation of a digital microprocessor, providing the facility for off-line
computations to generate high-speed transformations, windowing, dynamic
zooming and clipping, perspective, small element discard, circle/are, cubic
curve synthesis, and 3-dimensional depth cueing.

Programming tasks have been significantly reduced through use of a powerful
set of 46 user instructions. The microprocessor firmware permits a remark-
able reduction in software coding requirements compared with systems of
previous generations.

User Interaction Aids have been supplemented with Select, Hit/Pick, and Edit
features. In addition, a Writable Control Store feature permits the user to
modify, extend, or replace entirely the microprocessor firmware.

1-2. SCOPE

Information contained in this manuai is iniended for software personnel who must
generate user programs for graphic displays in the Model 3404. In addition, mater-
ial presented here can be extremely useful for engineers and supervisory personnel
who desire an overview of the Model 3404.

1-3. REFERENCES

Several reference manuals are available that complement material contained in

this publication. Table 1-1 lists the most important references associated with the
Model 3404 Graphics Display System. Volume I provides hardware data concerning
the Refresh Buffer Unit, Display Control Unit, Vector Generator Unit, Font Gener-
ator Unit and Monitor Control Unit. Volume II describes hardware features of the
Graphic Processor Unit. Volume III discusses firmware features of the Graphic
Processor Unit for programmers. Volume IV, Writable Control Store, and Volume
V, Maintenance Panel, are two hardware manuals concerned with the Model 3405
configuration. - Finally, the Model 3404 Programming Concepts Manual provides
information relating to user programs.

1-2

Table 1-1. Reference Manuals

Document

Number Title
M110700 Volume I. Series 3400 Graphics Display System
M110380 Volume II. Graphic Processor Unit Hardware
M110721-XXX Volume ITI. Graphic Processor Unit Firmware

(February 1978)

(April 1978) Volume IV, Writable Control Store
(May 1978) Volume V. Maintenance Panel
M113489 Model 3404 Programming Concepts Manual

1-4. PHYSICAL DESCRIPTION

The Model 3404 is available in either self-contained console-type work stations or

in standard rack-mountable configurations. The standard 3404 work station consists
of an attractive table which provides ample space to accommodate a table-top display
monitor and all interactive devices associated with the station. The display gener-
ator cabinet which houses the system electronics may either be positioned under the
table or may be rolled out to provide additional working space if desired. Tables 1-2
through 1-5 list the installation requirements and performance characteristics.

NOTE: The values specified in Tables 1-2 and 1-3 will vary with the system con-
figuration selected by the customer. Please contact your local Vector
General representative for deviations from these values.

1-3

Table 1-2, Physical Characteristics

Ttem

Value

Display Monitor
Height
Width
Depth
Weight

Display Generator Cabinet

57.15 cm (22,5 inches)
68,58 cm (27 inches)
93,98 cm (37 inches)
58.97 kg (130 pounds)

Height 72.39 cm (28.5 inches)
Width 48,26 cm (19 inches)
Depth 78.74 em (31 inches)
Weight 136. 08 kg (300 pounds)
Table
Height 73.66 cm (29 inches)
Width 152,40 cm (60 inches)
Depth 106.68 cm (42 inches)
Weight 68.2 kg (150 pounds)
Table 1- 3. Power Requirements
Item Value

Primary power (all models)
AC connector: NEMA type 5-20P

Consumption*
Models 3402, 3403, 3404
Model 3405

MTT awed MATDT amnman
WLTU AL AJIVLL L 11U
itor are included. Compute power

consumption separately for op-
tional configuration and devices

105-125 vac, 47-440 Hz, single phase
or 210-250 Vac, 50 Hz, single phase

1350 VA*
1580 VA*

* Tmaliidae DM91 aancumntinn of
LLLIVUALURUNSLDY A AYh A NI LAWD !’VLVAA A

550 VA average.

Table 1-4, Environmental Requirements

Item

Value

Temperature range

Relative Humidity

0 to 50° (32° to 1220F), operating
-40°C to 710C (-40°F to 160°F), non-operating

up to 95% at 400C (1049), non-condensating

Altitude up to 3038 meters (10,000 feet) at 25° operating
temperature
up to 7620 meters (25,000 feet), non-operating
Table 1-5. Performance Characteristics
Item Value

GRAPHIC PROCESSOR

User instruction
set

Processing time*

RAM stack size

Windowing

A high-speed graphic processor (GPU) and an associ-
ated refresh buffer (RBU) which converts raw data re-
ceived in the display list from the host computer into
a usable display refresh list for CRT refresh.

46 instructions, refer to Appendix Al.

26.13us average to process 2-D line element (3404)
29.88us average to process 3-D line element (3404)
54.75us average to process clipped 2-Dline element. (3404)
57.86us average to process clipped 3-Dline element. (3404}

72 by 16, standard. Provides several levels of sub-
object nesting in the graphics RAM stack. When the
graphics stack is full, any amount of CPU memory may
be used as a stack extension.

A firmware feature in which a portion of display data
within a designated volume may be extracted and pre-
sented for viewing.

*These values were obtained using a. DEC PDP11 Interface to a PDP11/05 with
no peripheral contentions In addition, the following conditions were valid:
(a) GPU cycle time = 250us ;
(b) Lines instruction was used with these attributes:
(1) Lines list: Immediate with terminate
(2) Data format: Full word
(3) Coordinates: Absolute

1-5

Table 1-5.

Performance Characteristics (Continued)

Item

Value

GRAPHIC PROCESSOR

(Continued)

Clipping

Small element
discard

Viewporting

3-D Depth Cueing

Edit aid

Direct Addressing

Reference Addressing

Circle, Circular Arc,
3-D Cubics,
Rectangle Generation

The process by which data extracted for viewing in the
window volume are limited to extraction boundaries
specified by windowing parameters, viewporting bound-
aries, and display screen boundaries., This is accom-
plished by clipping and discarding unseen elements and
recomputing endpoints of partially visible elements.

A feature in which the output of successive display
elements is suppressed. This occurs when beam move-
ment between these elements is virtually non-existent.

A firmware feature in which a portion of display screen
is designated for presentation of display data within a
specified window under chosen viewing parameters.

t observed when window-exiracted dispiay data are
magmfled or reduced by changing relative size of window
with respect to viewport.

Feature attained through use of intensity modulation or
perspective for enhancement of depth visualization

A hardware/firmware feature to provide tentative means
of interactive deletion, insertion, or adjustment of dis-
played elements.

Hardware feature that provides means of accessing data

(i.e., coordinate endpoints, rotation angles, etc.)from
addressed locations.

Hardware feature giving means for direct and indirect
addressing of stack, register, devices or other locations
(local, external and externally indexed CPU memory).

Firmware feature that generates instructions and data in
refresh list to describe circle, arc, cubic curve, rectan-
gle or square by interpreting parametric instructions
provided in user-written display list.

1-6

Table 1- 5. Performance Characteristics (Continued)

Ttem

Value

GPU Characteristics

Arithmetic

Data addresses

Add time (GPU)
Multiply time (GPU)
Divide time (GPU)

Microinstruction
ROM

GPU internal
interrupts

Writable Control
Store (WCS)

RBU Characteristics

RBU size

RBU cycle time

Parallel 2's complement fractional

512 addressable GPU locations as follows:

247 RAM main R/W storage for user-addressable
registers, option variables, and hardware stack.
features.

9 special addresses, addressed in RAM space

248 ROM addresses for constants and immediate
values ("'constants’™ ROM),

8 special registers, addressed in ROM space

250 nanoseconds (1 microcycle)
500 nanoseconds (2 microcycles)
1000 nanoseconds (4 microcycles)

24 bits per word, 4096 words maximum,

11 interrupts

A hardware option which permits the user to modify,
extend, or replace entirely, both the firmware im-
plementing the user instruction set and the constants

and immediate values normally stored in the "constants"
ROM. This feature also provides the facility for the
host computer to read the firmware code and constant
values,

8K 16-bit words standard; optionaliy expandabie in
increments of 8K words to a maximum of 32K words,

Sustained data transfers from RBU to DCU at a word
rate of 900 nanoseconds.

1-7

Table 1- 5c

Performance Characteristics (Continued)

Ttem

Value

RBU Characteristics
(Continued)

RBU configurations

DISPLAY CONTROLLER

Display interrupts

Refresh instruction
set

Addressable
registers

Frame rate

Frame modes

VECTORS

Addressable beam
positions

Drawing speed
Linear draws
Moves

One RBU configuration accommodates all GPU op-
tional features; the only RBU optional configuration
is memory size, which may be used as single buffer,
double buffer, or with the Edit '"bubble, "

The display control and display generation units con-
sist of the Display Control Unit (DCU), the Vector
Generator Unit (VGU), the Font Generator Unit (FGU),
and the Monitor Control Unit (MCU),

The DCU handles 4 device interrupts, a clock inter-
rupt, a halt interrupt, and an end-of-list interrupt.

6 basic refresh instructions (transparent to the user):
CONTROL, LOAD, VECTOR ABS, VECTOR REL,
VECTOR INCR, and CHARACTER.

16 standard registers,

Programmable - 8 to 120 frames/second (synchro-
nized with 60Hz input power),

Programmable - 7 frame modes as follows: CUTOFF,
ALL CONTINUOUS, CLK (120 Hz if 60-Hz input power),

SINGLE FRAME, OFF, and EXTERNAL SINGLE
FRAME.,

Absolute, relative, incremental, and incremental
smoothed,

4096X by 4096Y by 40967,
20us full scale (14" nominal).

0.75"/us nominal + 1,33us (reference Table 1-6),
1,33"/us nominal + 1,33us,

1-8

Table 1-5,

Performance Characteristics (Continued)

Ttem

Value

VECTORS
(Continued)

Line texture

Smoothing

Intensity

Blinking

Variable speed

Highlighting

CHARACTERS
Aspect ratio
Drawing technique

Character draw
time

Character size*

Programmable - 6 types as follows: Solid Lines,
Long dashes, Short Dashes, Long/Short Dashes,
Long /Short /Short Dashes, and Point Mode.

Programmable - generates curves through use of
short 2D or 3D incremental vectors,

256 programmable intensity levels in addition to
Z range.

Hardware blinking - displayed elements @ 2 Hz,
cursor @ 4Hz,

A hardware feature which provides five programmable
drawing rates varying from 1'"/1, 33us maximum to
1"/500us minimum.

A hardware feature which provides highlighting
(brighten or blink and brighten) of selected or "Hit"
elements,

Height to width = 3:2.
Analog - stroke method,

5. 5us average per character including move to next
character position,

4 standard character sizes as follows:

Size #1; 120 columns by 60 lines
Size #2; 80 columns by 40 lines (default size)
Size #3; 60 columns by 30 lines
Size #4; 30 columns by 15 lines

* Character size is a function of ROM constants and
alternate sizing is available on request; e.g,, 132
characters per line, 144 characters per line, etc.

1-9

Table 1- 5. Performance Characteristics (Continued)
Item Value
CHARACTERS
(Continued)
Font 2 types - normal and italics,

Subscript and
superscript

Programmable
character set

90° rotation

3D character
rotation

DISPLAY MONITOR

CRT size

Viewing area

Deflection
Focus

Brightness

Contrast ratio
Implosion protection

Spot size

Characters may be shifted up or down 1/4th line with
an accompanying 1/3rd size reduction.

Hardware option permits coding of up to 96 special
characters.

Clockwise or counterclockwise rotation in 900
increments,

Hardware option which provides continuous rotation
about all three axes, Resolution = 1, 50/bit,

Rectangular CRT, 21" (53.34cm) standard.

16" wide by 14' high {40, 64cm by 35, 56cm), High

accuracy area = 16" by 10" (25, 4cm by 25.4cm).
Electromagnetic
Electrostatic

Greater than 6 foot-Lamberts measured on an isolated
line at 1.33us/inch, 40Hz,

4:1 or greater.
Bonded implosion shield.

20 mil standard, 10 mil optional.

1-10

Table 1-5. Performance Characteristics (Continued)

Item Value
DISPLAY MONITOR
(Continued)

Deflection 4096 bits/14 inches = 293 points/inch, Display

resolution resolution = 50 lines per inch using shrinking raster
method (100 lines per inch using 10 mil spot size
option), ‘

Repeatability Less than 0. 01 inch error for readdressing a point
from any direction on the screen,

Linearity error 1% of full scale display along major axis.,

Geometric Less than 2% error band for 10-inch horizontal or

distortion vertical vector.

Offscreen recovery Less than 0, 01 inch error will occur when beam is

time returned to visible area at 1.33 us/inch rate.

Jitter 0.005'" maximum

Drift 0.05'" in 8 hours after 30 minute warmup,

Operator controls Front panel intensity and Focus controls are provided
as operator controls, Servicing controls for X-Y
centering and gain are accessible by removing the
monitor cover,

1-11

1-5. VECTOR DRAWING RATES

Table 1-6 llustrates drawing times for various line lengths and the maximum
number of lines which can be drawn at frame rates (FR) of 30 and 40Hz, Note that
the maximum number of lines/frame is limited by both the RBU/DCU overhead per
word(s) and the type of vector mode used (1, 2, or 3 words per vector draw), The
following equations may be used to compute the drawing time and moving time for
any length vector and the maximum number of lines per frame.

Draw time = Line Iength X 1, 33us + 1, 33us
Move time = Length X 0.75 X 106 + 1, 33us
Lines/Frame = 1/(Frame Rate)(Draw time)

1-12

Table 1-6. Vector Drawing Rates
. Maximum No. Lines/Frame
Vector |Draw Time .
Move T
Length | Per Line* ove Time Vector Type 30Hz Refresh 40Hz Refresh
2D1 (1 word) 20,833 (1) 15,625 (1)
0.1" 1.47ps 1.41ps 2D, 3D1 (2 words) 18,519 (2) 13,889 (2).
3D (3 words) 12,346 (3) 9,259 (3)
2D| 20,833 (1) 15,625 (1)
0.2" 1.6ps 1.48ps 2D, 3Dl 18,519 (2) 13,889 (2)
3D 12,346 (3) 9,259 (3)
2D| 16,667 12,500
0.5" 2us 1.71ps 2D, 3Dl 16,667 12,500
3D 12,346 (3) 9,259 (3)
2DI 14, 286 10,714
0.75" | 2.33ps 1.90ps 2D, 3Dl 14,286 10,714
3D 12,346 (3) 9,259 (3)
2D1 12,500 9,375
1.00" ! 2.67ps 2.08ps 2D, 3Dl 12,500 9,375
3D 12,346 (3) 9,259 (3)
1.5" | 3.33ps | 2.46ps ALL 10,000 7,500
2,0" 4.00ps 2.83ps ALL 8,333 6,250
4.0" | 6.67us | 4.33pus ALL 5,000 3,750
6.0" | 9.33us | 5.83ps ALL 3,571 2,679
8.0" | 12.00ps 7.33us ALL 2,778 2,083
10.0" | 14.47ps | 8.83ps ALL 2,273 1,705
12.0"} 17.33ps | 10.33ps ALL 1,923 1,442
14,0" | 20,00ps | 11.83ps ALL 1,667 1,250

1)
(2)
3)

Includes time for DAC loading,

Limited in 2-DI mode by 6. 1us RBU/DCU/VGU overhead.

Limited in 2-D and 3-DI modes by 1.8us RBU/DCU/VGU overhead.

Limited in 3-D mode by 2.7us RBU/DCU/VGU overhead.

1-13

gain switching, deceleration at end of draw, etc.

SECTION II

FUNCTIONAL DESCRIPTION

2-1. INTRODUCTION

This section provides functional descriptions of the display system organization and
each of the major functional units (refer to Figure 2-1). Definitions of special
terms are contained in the glossary in Section VI.

GP BUS ANALOG
DCU BUS BUS
DISPLAY VECTOR
HOST MD BUS CONTROL o GEN
COMPUTER UNIT UNIT
REFRESH {DCU) VG U)
I BUFFER ‘ l
UNIT
(RBU)
MONITOR
INTERFACE CONTROL
UNIT
MCU)
- REFRESH
BUFFER MONTITOR(S)
EXPANSION FONT
GEN
PERTPHERAL UNIT
DEVICES* (FGU) a
GRAPHIC
! S PROCESSOR :
R UNIT(S) LII,(;I;T PICK
GPU) INTF (@) WINDOW
REMOTE OPTION OPTION
DEVICE
CONC f
(REMOTE) REMOTE
DEVICE *Options for Peripheral Devices:
CONC : 1] Alphanumeric Keyboard
(LOCAL) [2] Function Switch Box
[S] Data Tablet
o [4] Contrel Dials
f {5] Joystick

Figure 2-1. Display System Basic Block Diagram

2-1

2-2, DISPLAY SYSTEM ORGANIZATION

The block diagram illustrated in Figure 2-1 may be divided into four basic subsystems
as follows:

GRAPHIC PROCESSOR UNIT (GPU)

DISPLAY CONTROLLER (RBU, DCU, VGU, FGU and MCU)
DISPLAY MONITOR

DISPLAY OPTIONAL DEVICES

In addition, Vector General offers a variety of interface assemblies to permit op-
eration with virtually any host computer utilizing standard I/0 techniques,

2-3. GRAPHIC PROCESSOR UNIT (GPU)

The GPU operates from a user instruction set comprised of 46 basic instructions

3 3 3 3 +la As 1 14+
{refer to Appendix Al and Section III). In essence, it receives the display list con-

sisting of instructions and associated data from the CPU, performs transformations
and processing as required, and generates a display refresh list which is stored in
the RBU. It is basically a high-speed special-purpose microprocessor designed to
handle the most complex algorithms with ease, All transformations and image man-
ipulations are performed digitally through use of a set of powerful microinstructions,
In addition, interaction between the GPU and RBU provides the facility to permit
element selection and picking and, through use of interactive devices, to tentatively
alter the display list for purposes of CPU display list editing,

2-4, DISPLAY CONTROLLER
Generation and control of the displayed picture is performed by the RBU, DCU, VGU,

FGU, and MCU (refer to Figure 2-1), which operate on the refresh list of instruc-
tions and data received from the GPU,

2-2

2-5. Refresh Buffer Unit (RBU)

The display refresh list stored in the RBU RAM may be continuously updated by the
GPU, The list is accessed by the DCU in DMA fashion during each frame refresh
cycle to update the displayed picture on the CRT screen, This may ocecur simul-
taneously with the generation of the following refresh list without display image in-
terference., The RBU also contains control logic to move data from one part of
memory to another when reorganizing the display refresh list for purposes of editing,

2-6, Display Control Unit (DCU)

The DCU uses the MD bus to access the refresh list from the RBU, It then proces-
ses the refresh instructions, routes the refresh data via the DCU bus to the VGU,
FGU, and MCU, and generates the control signals required to display these data,

It also contains logic to accommodate the Hit/Select option,

2-7. Vector Generator Unit (VGU)

The VGU, a high-speed vector generator which provides the deflection signals re-
quired to draw a line from one point to another on the face of the CRT, is located on
one printed circuit board. The unit utilizes a closed-loop drawing system in which
the time constant of the analog integrators is continuously changed in an infinite
resolution arrangement to provide straight-line, high-accuracy vectors, Beam in-
tensity is automatically adjusted as vector velocity changes during vector draws re-
sulting in constant brightness on the CRT and thereby eliminating the need of any
velocity programming requirement. The unit consists of D-to-A converters, gain
control and switching circuits, multipliers, integrators, and the necessary control
logic. The integrators retain the X-Y deflection voltages of the current beam posi-
tion and generate a straight line draw (or move) between that point and the new end-
point specified by the following X-Y coordinates which are received from the DCU
and applied to the D-to-A's. Data inputs from the DCU are applied to 2-level reg-
isters in the VGU thereby permitting simultaneous loading of new vector data while
the VGU is operating on the previous data input. In addition to the deflection velocity
signals required by the monitor during vector draws, the VGU also generates the
unblanking and intensity level signals, The X-Y deflection voltages are passed di-
rectly to the monitor major deflection channels for X-Y deflection while the intensity
and unblanking signals are passed, along with a deflection velocity signal, to the MCU
where they are further processed for the monitor video channel. The VGU also util-
izes a smoothing technique which, if specified by program during incremental vector
modes, may be used to generate curved lines on the display. When the FGU is being
used to display text, the VGU performs the spacing between character positions.

2-3

2-8. Font Generator Unit (FGU)

The FGU contains all the circuitry required to generate the standard ASCII 96 char-
acter set for the display. It utilizes a programmed ROM in conjunction with ''stroke"
character draws to provide crisp, high-speed characters regardless of the character
size selected by the program. The character codes, along with scaling, font, and
rotation parameters are received from the DCU via the DCU bus, In addition to the
standard 94 printable characters, a delete character and a blinking cursor may also
be drawn, Section V provides descriptions of the character instruction, character
word format, the control characters, and the usage of character scaling and rotation.
The FGU generates the unblanking signal and the deflection voltages for the monitor
minor deflection channels for all character draws; however, the VGU performs the
vector moves between the character positions.

2-9. Monitor Control Unit (MCU)

The MCU is used to select the desired monitor for display and provides the unblank-
ing and intensity signals for the selected monitor video channel, Optional logic for
the Variable Speed Control and Color Monitor options is also installed on this circuit
board.

2-10. DISPLAY MONITORS

The Model 3404 supports up to 4 CRT monitors (optionally up to 8). The standard
monitor is a high-speed refresh calligraphic CRT. An optional beam velocity con-
trol permits the selection of any of the following monitors: (a) low or high-speed
refresh CRTs, (b) storage tubes, and (c) scan converters. Various screen sizes
and phosphors are also available.

2-11. DISPLAY DEVICES (OPTIONAL)

Numerous optional display devices are available for the Model 3404. These include
the alphanumeric keyboard, function switch box, light pen, data tablet, control dials,
and joystick. In addition, two features give added capability to the system. A pick
window circuit, normally working in conjunction with an optional device, provides

a movable window for generating interrupts. A remote device concentrator can be
employed when remote and local stations are physically situated between 25 feet and
600 feet apart. Its function is to concentrate data for serial transfer between local
and remote units.

2-4

Transfers of data to and from devices are normally performed under program con-
trol, either by the user program in the computer or by the firmware in the GPU.
Most devices act solely as data sources. However, indicators associated with the
function switch box can receive information that results in lamp illumination. Four
devices generate actual computer interrupts that can be monitored by the program:
keyboard, function switch box, light pen and data tablet.

2-5

SECTION IIT

GRAPHIC PROCESSOR PROGRAMMING

3-1. INTRODUCTION

The Graphic Processor (GPU) is a microprocessor which, through use of a powerful
set of microinstructions, transforms instructions and data from the GPU display
list into a display refresh list comprising 2-D picture descriptions suitable for the
Display Monitor refresh. The display refresh listis first stored by the GPU in the
RBU and then accessed by the DCU during a display refresh cycle.

Operation of the RBU is asynchronous. This means that the GPU can generate a new
refresh list for the next refresh cycle and store it in another area of the RBU while
the DCU is refreshing the original RBU area. The DCU then accesses the new area
during the following refresh. The GPU and RBU also provide aids for interaction
and on-line display modification (see Section IV).

This section presents a delineation of display descriptions, user instruction formats,
addressing techniques, and GPU register organization. Refer to Section VI for des-

criptions of terms as they apply to the Model 3404 Graphics Display System.

Subjects described in this section are as follows:

Page Subject

3-2 GPU Objects

3-3 GPU Control

3-4 User Instruction Effects on GPU Functions
3-5 Element Generation

3-6 User Instructions

3-55 GPU Argument Addressing

3-57 GPU Registers

3-1

3-2. GPU OBJECTS

All display descriptions received by the GPU from CPU memory for processing are
composed of Objects. Each object list is located through a Directory entry in com-
puter memory and may occupy a logically contiguous area of memory (as opposed

to physically adjacent memory locations). The GPU may process any number of these
objects to generate the display refresh list to be used by the DCU for the final dis-
played picture. The first word of each object list contains a count of the number of
words from the start of the object list to the first instruction to be processed (ref-
erence Figure 3-1).

Count of the number of words to the first instruction

LINKS

LOCAL OWN

INSTRUCTIONS

Return

Figure 3-1, OBJECT List Structure

Each object list may contain the following three classes of information:

LINKS - The first part (second word and following) of each object
‘ may contain indices to Directory Entries for each indepen-
dent object, or data areas referenced externally,

e LOCAL OWN - The second part (after any LINKS) of each object may contain

constants or own-variables [whose identity is the same for
any (possibly recursive) invocation].

INSTRUCTIONS - The third part of each object is the GPU instructions
which describe the display to be generated by the object.

The last word of each object is a RETU instruction which either signais the end of
output for the update pass or causes a return to a higher level calling object (refer-
ence RETURN instruction, paragraph 3-8).

3-3, GPU CONTROL

The GPU operation consists of "update' processing of display descriptions and op-
tional Edit sequences. Aside from the instructions in the display list descriptions -
being processed, the GPU operation is governed by the following Parameter Registers
and Commands: :

GPU CONTROL PARAMETERS

e Directory Address -Location of the table in the host CPU used to locate all
referenced objects and external variables,

e Stack Boundaries ~The location and limit of the CPU memory available for
nesting Object Calls, Environments (scale, rotation, ete.),
Arguments, Temporary Variables, etc. This area in the
host CPU is used only when the graphics RAM stack is
filled.

e Picture Base Object -The directory index of the main object which directly de-
Number fines or indirectly references all current desired views
and their contents for display generation,

e Edit Sequence -The location and extent of words to insert, or to replace,
a specific object portion for generation of an altered dis-
play output.

GPU COMMANDS

e New Picture -Initializes specified Picture, Object, Transform, Data
Table, Element Generation, or Edit Functions.

e Go -Specifies execution or suspension of GPU processing.

e Picture Halt Enable -Halts GPU processing at the conclusion of the specified
picture.,
NOTE: An interrupt to the CPU will also be generated if
the Halt Interrupt Enable bit in the CONTROL (CTL) regis-
ter is on, When zero, the GPU continuously updates from
the user's display descriptions,

e Same Frame -Allows one output frame to be built from independent input
pictures under the current buffering or editing modes.

e Devices Stationtf ~-This field is added to the high-order two bits of all addres-
ses of user input devices (e.g., Data Tablet, Function
Switches, Keyboard, Dials, Joystick) to select one group
out of a maximum of four groups of devices,

e DCU/RBU Station# -When multiple DCU/RBU pairs are used, this field speci-
fies which pair is to receive the GPU output, It also desig-
nates that pair for processing its associated interaction-
aid devices.

e Buffer Mode -Specifies the RBU buffering mode (Single, Double or
Editing modes).

e (lip Text -Enables or disables clipping when processing character
(TEXT instruction).

e (Clip Vector ~-Enables or disables clipping when processing Vectors
(LINES instruction).

e [Initialize DCU -Causes the DCU to be initialized to the default conditions
listed in Table 6-1.

3-4, EFFECT OF USER INSTRUCTIONS ON GPU FUNCTIONS

All functions implemented by the GPU are effected by the following six classes of
operation and their argument parameters (reference Appendix Al for table of user
instructions): ‘

¢ ELEMENT GENERATION -These instructions are used to generate sets of lines,
characters, or curves under current nested trans-
formations. This class of instruction is described
further in paragraph 3-5.

3-4

e TLOAD VALUES -These instructions can move values between local,
external, stack, or register areas, They can be
used to load environmental changes (color, intensity,
option control, ete.) and perform nonstandard or ex-
tended operations (i.e., compute list jumps or geo-
metric constraints).

e CALL OBJECTS -These instructions perform 'subroutine-like' invo-
cations to other objects to generate an instance of the
display defined by that object under current trans-
formation and argument values,

e MAKE ARGS OR TEMPS -These instructions push "calling parameter" type
arguments into the stack for use by invoked sub-
objects, or store/reserve temporary variable stor-
age in the stack for use by the current object.

e NEST ENVIRONMENT -These instructions are used to save current, and
compose new, environmental parameters to affect
the following element generation operations. These
parameters are such values as scale, displacement,
rotation, window arguments, ete,

e RETURN -These instructions "un-nest' the last saved environ-
ment and exit from a sub-object to return to the cal-
ling object, or to end the picture description if the
instruction appears in the main object.

3-5, ELEMENT GENERATION

Instructions which specify visible display items may be classed into those using their
arguments to generate lines, characters, or curves. The following list outlines some
facilities implemented under each class:

LINES

e Vectors -Ordinary blanked or unblanked lines whose endpoints
are specified by the instruction arguments.

3-5

LINES

(Continued)

Packed Tables

Graphs /Plots

TEXT

Strings

Bloeks

Pages

-Vector sequences, and their control information,
can be packed into byte or word machine boundaries.
Also, data only (with no packed control) can be pro-
cessed as arguments, This is the form in which all
data are available via standard software, machine
instructions, and I/0 devices.

-Display instructions with one or two coordinates held
fixed, or regularly incremented, can be packed as
the only arbitrarily varying data. This improves
memory utilization, definition processing, display
filing, storing, and retrieving,

-Sequences of one or more alphanumeric characters

or symbols at specified positions,

-A set of strings with a common left margin at a
specified position,

-Blocks of text positioned to fill the current trans-
formed X/Y space in the Z = 0 plane,

CURVES OR LINE SEQUENCES

Rectangles

Circles
Arcs

Cubic

-Arguments to this instruction specify the endpoints
of a diagonal,

-Arguments to this instruction specify a complete
circle,

-Arguments to this instruction specify any portion of
a circular arc,

-Arguments to this instruction specify endpoint and
endpoint slopes of a third-order arc,

3-6

Table 3-1. User Instruction Set

Operation CCJ::‘T Dzid":‘ g:: * Mnemonic " .
01| 02| 03| 04|05/ 06|07 0809|1011 |12]13]14]15
00000 | 0000 | 0000 NOOP olofofo
10000 | 4096 | 1000 RETU ololo|1]o]o
14000 | 6144 | 1800 RETZ ojlojo|1]1]o
CONTROL OPS
16000 | 7168 | 1C00 RETNZ olo o111
20000 | 8192 2000 GHALT o010
30000 | 12288 | 3000 BRKL ojlof1]1 NUMBER OF WORDS
— 40000 | 14384 | 4000 LOAD ol1]ojojo NUMSER OF VALUES
- ngvAE 44000 | 18432 4800 LOADI o|l1flo]o}n NUMBER OF VALUES
OPS 50000 | 20480 | 5000 NEST ol1]o]1]o0 REGISTER SET CODE
| 54000 | 22528 | 5800 NESTI AERERERE REGISTER SET CODE
T 1 o000 | 24576 | 6000 CALLY ol1lo0lo0]o OBJECT LINK INDEX
STACK OPS 64000 | 26624 | 6800 CALLC BENEREIE OBJECT LINK INDEX
70000 | 28672 | 7000 POP ol1l1l1]o oJo[o]o|o|o[o\o|o|o[o
70000 | 28672 | 7000 PUSH ol1]1]1]o0 NUMBER OF VALUES
74000 | 30720 | 7800 | GMARK N ERERERE o]o]o]o[o[o]o]o[o[o[o
74000 | 30720 | 7800 MPUSH o1 1] 1| NUMBER OF VALUES
tooooo | 32768 | so0 GapD |1 [ojofo]o olololo
\oo0m | 32769 | 8001 GSUB ololo]t
100002 | 32770 | 8002 GMPY T olo|1]o0
100003 | 32771 | 8003 . GDIV | 01011
| 100004 | 32772 | 8004 GAND ’ ol1]|ofo
* 1000051 32773 | 8ws | GOR NERERE
100006 | 32774 | 8006 | GXOR | ' / o 11,0
ARITHMETIC OPS 100007 | 32775 | 8007 GSHFT | o] I BERERE
104000 34816 8800 GADD! 1 0 o010
\o4001 | 34817 | 8801 GsuBl 1 o|olo|
104002 | 34818 | 8802 GMPYI olol1]o
lod003 | 34819 | 8803 | GDIVI . olo|1]
104004 | 34820 | 8804 ‘ GAND! : ol1lo]o
104005 | 34821 | 8805 | GORI 1 NERERE
104006 | 34822 8806 GXORI b 0 1 1 0
104007 | 34823 | 8807 GSHETI 1]olofolh1 BERERE
130000 | 45056 | BOOO ARBI 1o 1[1]o NUMBER OF WORDS
134000 | 47104 | B80O ARB NN ERERE NUMBER OF WORDS
ELEMENT LIST OPS 140000 | 49152 | €000 LINES 11]ofo] 1F OF BM cx cLy az
L | re0000{ 57344 | E000 TEXT 11|10 LF DF PG ROT FNT sz
170000 | 61440 | FO0O CIRCLE HEEENERE ololo]|o
170001 | 61441 | FOOL COWARC 1 oloo]1
170002 | 61442 | FOOZ CWARC olof1]o
170003 | 61443 | FOO3 RECT BEIERE
SINGLE ELEMENT OPS 170004 | 61444 | FOO4 CuBIC 19 ojt1rjo00
174000 | 63488 | F800 CIRCLA 1 ololo]o
174000 | 63489 | F8O1 CCARCA 00101
174002 | 634%0 | F802 CWARCA olol1]o
174003 | 63491 | F803 RECT4 NEYERE
174004 | 63492 | Fo04 cusic4 V[o|1{0]0

NOOP

3-6, USER INSTRUCTIONS

Table 3-1 provides a list of the GPU user instructions, The following paragraphs
provide descriptions of the instruction fields, instruction usage, and the Refr ad-
dressing associated with each instruction (when applicable).

3-7. NOOP INSTRUCTION (NOOP = 0000)

NOOP (0000)
00 01 02 03|04 05 06 07 08 09 10 11 12 13 14 15
0 0 0O

——
The NOOP instruction causes no GPU operation and the GPU advances to the next
instruction, NOOP does not affect the display list but it is counted as an element
and as a picture word, The twelve LSBs may contain arbitrary data.

3-8

RETURN

3-8, RETURN INSTRUCTION (RETU=1000, RETZ=1800, RETNZ=1C00

The RETURN instructions terminate processing of the current object. If this is the
main object of the picture-update processing, RETURN signals the end of output for
this update pass. If the object was called by a higher level object, RETURN first
clears the graphic stack of any temporary data (which may have been stored by a
PUSH, GMARK or MPUSH instruction issued in the called object), then restores the
calling object’'s environment to the GPU transformation, count and address registers,
Processing then resumes in the higher level object after any saved transforms or
temporary data (not protected by a GMARK) are restored or cleared from the calling
object's stack. (Also reference NEST and STACK instructions.)

RETU (1000)
00 01 02 03 04 05|06 07 08 09 10 11 12 13 14 15
0O 0 01 0 O

The RETU instruction executes an unconditional return,

RETZ (1800)

00 01 02 03 04 05|06 07 08 09 10 11 12 13 14 15
O 001 1 O
———N

The RETZ instruction executes a return if the contents of register GP1 are zero;
otherwise a NOOP is performed.

RETNZ (1C00)

00 01 02 03 04 05|06 07 08 09 10 11 12 13 14 15
0O 00 1T 1 1

—

The RETNZ instruction executes a return if the contents of register GP1 are non-
zero; otherwise a NOOP is performed,

3-9

GHALT

3-9, GHALT INSTRUCTION (2000)

00 01 02 03

04 05 06 07 08 09 10 11 12 13 14 15
0 01 0

T

This instruction halts GPU processing and places the GPU in the ""Halt-Instruction"
state. If the GPU halt-interrupt enable bit is set (CTL[15]), the GPU generates an
interrupt to the CPU. GPU processing will resume at the next instruction when a

GO command (CMD[01]) without NPIC (CMD[00]) is issued. If, instead, a GO command

and NPIC are both issued, processing will begin at the first instruction of the Picture
Base Object.

BREAK-LIST

3-10. BRKL INSTRUCTIONS (BRKLS = 3000, BRKLX = 3FFF)

The break-list instruction allows a set of discontiguous buffer areas to be linked to-
gether by specifying either of the two forms of the BRKL instruction (BRKLS or
BRKLX) as shown in the following diagrams,

BRKLS (3000)

00 01 02 03|04 05 06 07 08 09 10 11 12 13 14 T5
0 0 1 1 RELATIVE # OF WORDS

The contents of bits 04 through 15, if not all ones, specify a 12-bit 2's complement
"word displacement' (bit 04 is taken as the sign bit) to be added to the word address
of the word following the BRKLS instruction in order to locate the next GPU instruc-
tion to be executed, This short form of the instruction limits at a range of -2048 to
+2047 from the address of the next word.

BRKLX (3FFF)
00 01 02 03|04 05 06 07 08 09 10 11 12 13 14 15

oo 1 1}/1T 111 1 1 111111
RELATIVE # OF WORDS

If bits 04 through 15 are all ones, the contents of the word following the BRKLX in-
struction specify a 16-bit 2's complement "word displacement'’ to be added to the
word address of the word following the BRKLX instruction in order to locate the next

GPU instruction to be executed.

NOTE: BRKL is not counted as a word in PWC nor as an element in ELN, Asa
result, object processing is transparent to the existence of any number of

such breaks.

3-11

LOAD

3-11, LOAD INSTRUCTIONS (LOAD = 4000, LOADI = 4800)

These instructions, depending on the state of bit 04, may have one of two formats
LOAD or LOADI) as shown in the following diagrams.

LOAD (4000)
00 01 02 0304105 06 07 08 09 10 11 12 13 14 15
0O 1 0 O0}oO n

Destination Refr

List of n Source Refrs

The LOAD instruction transfers ''n'" referenced values to sequential locations, be-
ginning with the specified destination (base address). Note that the list of "'n'" Source
Refrs contains the address of each operand, not the operand itself.

LOADI (4800)

00 01 02 03}04105 06 07 08 092 10 11 12 13 14 15
0 1 0 0]1 n

. Destination Refr

List of "n" values

'

The LOAD IMMEDIATE instruction (LOADI) similarly transfers "n" values from the
data list to sequential locations starting at the Destination Refr. Note that the list

shown above contains the actual operands.

3-12

NEST

3-12, NEST INSTRUCTIONS (NEST = 5000, NESTI = 5800)

The nest instructions, depending on the state of bit 04, may have one of two formats
(NEST or NESTI) as shown in the following diagrams, Note that in both cases the
actual registers affected (and their number) are specified by the Register Set Code
(reference Table 3-2).

NEST (5000)

00 01 02 03|04|05 06 07 08 09 10 11 12 13 14 15
01 0 1]60 Register Set Code

Refrs

One method for efficiently altering environmental parameters of objects is through
the use of the NEST instructions. The required ""Refr'" values following the NEST
instruction word (see #ARGS in Table 3-2) are used to change a corresponding number
of environmental registers. However, prior to such action, the current contents of
these designated registers are stored in a stack to enable restoration of the current
environment after a subsequent CALL when either a RETURN or POP instruction is
executed. In summary, a NEST instruction results in these events:

a) storage of current contents of transformation registers defined by Register
Set Code into stack. A control word is also saved in the stack for control of

later retrieval.

b) composition of new values for transformation registers by applying arguments
specified by Refrs to current transform values.

c) Loading of new values into registers specified by Register Set Code.

3-13

NEST

NESTI (5300)

00 01 02 03|04{05 06 07 08 09 10 11 12 13 14 15
O 1 0 1|1 Register Set Code

Immediate Values

The NEST IMMEDIATE instruction (NESTI) functions in a similar manner as the
NEST instruction. However, immediate values in the NESTI instructions are actual
operands, while the Refr values in NEST instructions represent addresses of oper-
ands.

NOTE: Nested function NORXYZ (code 04) is interpreted as follows. The rotation
matrix applied by an RXYZ nest operation is equivalent to an X rotation matrix ap-
plied to a Y rotation matrix and further applied to a Z rotation matrix.

The effect of applying this resultant matrix to a vector is equivalent to ro-
tating the veclor about its Z-axis by a Z-rotation angle. Then, the result is rotated
about its new Y-axis by a y-rotation angle. Finally, this result is rotated about its
X axis by the x-rotation angle.

NEST

Table 3-2. Register Set Codes For Nesting Values

SEC CI_:;: 5T Mnemonic FARGY N/M Description
00 | 00 | 00 | NOSXY 3 N | 2D object scale, X, Y displacements (OS,ODX,ODY)
01 | 01 | 01 | NOSXYZ 4 N | 3D object scale, X, Y, Z displacements (OS, ODX,0ODY,ODZ)
02 | 02 | 02 | NODXY 2 N | 2D object X, Y displacements (ODX, ODY)
03 | 03 | 03 | NODXYZ . 3 N | 3D object X, Y, Z displacements (ODX, ODY, ODZ)
04 | 04 | 04 | NORXYZ 3 N | 3D rotation, Z then Y then X (RZ,RY,RX)
05| 05 05 | NORZYZ 3 N | 3D rotation, Z then Y then Z (Euler angles) (RZ,RY,RZ)
06 | 06 | 06 | NOS 1 N | Object scale (OS)
07 | 07 | 07 | NODX 1 N | Object X displacement (ODX)
08 | 08 | 10 | NODY 1 | N | Object Y displacement (ODY)
09| 09! 11 INODZ 1 N | Object Z displacement (ODZ)
101 OA} 12 ¥ NRX 1 N | X rotation value (RX)
11 1 0B ¢ 13 | NRY H "N | Y rotation value (RY)
12| 0C | 14 | NRZ 1 N | Z rotation value (RZ)
131 oo 15| MPsixy 4 M :;;:’t:glf;g;,, PiBtYe)nsify scale, X, Y displacements
14 | 0E | 16 | MWCXYS 5 | M V(\\/Ivlchv\v/vccez;r/&;n:vs;eu\;vszv)s'ze X, size ¥
15 | OF | 17 | MPDXY 2 M | Picture X, Y displacements (PDX, PDY)
16 | 10 | 20 | MWCXY 2 M | Window center point (WCX,WCY)
17 | 11§ 21 | MPS 1 M | Picture scale (PS)
18 1 12 | 22 | MPDX 1 M | Picture X displacement (PDX)
19 1 13 | 23 | MPDY 1 M | Picture Y displacement (PDY)
20 | 14| 24 | MWCX 1 M | Window X center point (WCX)
21 | 15| 25 | MWCY 1 M | Window Y center point (WCY)
22 1 16 | 26 | MWS 2 M | Window size (WSX, WSY)
NOTES: The dbove codes are used for NEST and NESTI instructions only.
#ARGS = The number of arguments used in the modifications.
M = The current values of the specified registers are first stacked and are then
replaced with new argument values.
N = The current values of the specified registers are first stacked ofter which

new values are composed (by applying the arguments to the current values)
and loaded into the specified registers.

3-15

CALL

3-13. CALL INSTRUCTIONS (CALLU = 6000, CALLC = 6800)

CALLU (6000)
00 01 02 03|04|05 06 07 08 09 10 11 12 13 14 15
01 1 0]0 Object Link Index

CALLC (6800)
00 01 02 03|04]05 06 07 08 09 10 11 12 13 14 15
01 1 0}1 Object Link Index

The CALL instruction, depending on the state of bit 04, may have one of two formats,
an unconditional call (CALLU) or a conditional call (CALLC). If bit 04 is a zero, an
unconditional jump is made to the called object. If bit 04 is a one and the contents of
GPU general purpose register GP1 = 0, a NOOP occurs (after discarding or restoring

any stack contents as a RETU would have done).

The CALL instruction establishes the object number contained in the LINK area of
the current object, indexed by the Object Link Index, as the next lower level object
to be processed after saving the current environment. This accomplishes a sub-
picture call to output, as a single element of the current object, all of the picture
described by the object being called and any sub-objects it calls. Saving of the en-
vironment necessary to return and process the remainder of the current object is
accomplished by stacking the current SA, ELN, OBA, OBN and IA register values.
The stack base SA is then set to the final stack top ST, thus establishing a fresh
empty stack area for the called object.

STACK:
POP
PUSH

3-14, STACK INSTRUCTIONS (POP, PUSH=7000, GMARK, MPUSH=7800)
Four "Stack" instructions (POP, PUSH, GMARK, and MPUSH) are provided to:

a) Move argument or initial temporary values to the stack for program availability
and to remove and discard these same values when the current object is exited.

b} Protect local stacks across CALIs.
¢) Clear the local stack,
d) Restore nested environment.

The instruction formats and descriptions of their usage are shown in the following
drawings,

PGP (7000)

foo o1 02 03l04f05 06 07 08 09 10 11 12 13 14 15
o1 1 1lolo o 0o o o0 o0 o0o0O0O0O

The stack instruction (POP) removes all temporaries (stored by PUSH or MPUSH) and
nested values (stored by NEST) upto and including the first MARK (or MPUSH) encoun-
tered in the graphic stack.

PUSH (7000)
00 01 02 03]|04]05 06 07 08 092 10 11 12 13 14 15
0O 1 1 140 Number of values

Refrs

The MOVE ARGUMENTS OR TEMPORARIES instruction (PUSH), followed by reference
addresses, moves temporary values or argument values to be passed by the current
object to the stack for later program availability. The values are obtained from the
addresses of the list of Refrs following the instruction. The stored list of values is
followed by a stack control word which allows the list of stacked temporaries to be
discarded when the current object is exited by a RETURN instruction issued in this
object or in the object that it calls, or by a POP instruction issued in this object,

3-17

STACK:
GMARK
MPUSH

GMARK (7800)

00 01 02 03{04|05 06 07 08 09 10 11 12 13 14 15
O 1 1 11110 0 0 00O O O O O O O

The GMARK instruction puts a one-word stack marker in the stack to protect "pushed"
or "nested" items across subsequent calls. The stack marker and any previously
"pushed" or nested" items remain in the stack until removed by a POP or RETURN
instruction issued in the current object.

MPUSH (7800)

00 01 02 03]|04|05 06 07 08 09 10 11 12 13 14 15
O 1 1 111 Number of values

Refrs

The "mark and push" instruction (MPUSH) is identical with the PUSH instruction pre-
viously described with the exception that a stack marker is first put in stack before
the user-specified temporaries and the stack control word, This permits previously
stacked items to remain in the stack even if the current object issues a call to another
object, which may then perform a return (see GMARK instruction).

3-18

ARITHMETIC

3-15., ARITHMETIC INSTRUCTIONS (ARITH = 8000, ARITHI = 8800)

Eight arithmetic operations, performed either on two referenced values or on one
referenced and one immediate value, may be specified by the following arithmetic
instruction,

00 01 02 03[04[05 06 07 08 09 10 11|12 13 14 15
1 0 00} op

The OP field (bits 12 through 15) specifies the type of operation which is to be per-
formed on the first two words following the instruction, the result of which is stored
at the reference address specified by the third word, The I field (immediate field

bit 04) when = 0 specifies that the second word following the instruction is a referenced
value, and when = 1 specifies the same word as an immediate value, The two forms
of the instruction are shown in the following diagram.

ARITH (8000)

00 01 02 03]04|05 06 07 08 09 10 11412 13 14 15
1 0 0 0O oP
Refr A
Refr B
Refr C

The ARITH instruction specifies that the operation (OP, reference Table 3-3) is to be
performed on the two values at reference addresses A and B and that the result is to
be placed in reference address C.

ARITHI (8800)

00 01 02 03|04|05 06 07 08 09 10 11|12 13 14 15
1 0 0 Of1 opP
Refr A
Value B
Refr C

The ARITHI instruction specifies that the operation (OP) is to be performed on the
value at reference address A and the immediate value B with the result placed at
reference address C.

3-19

ARITHMETIC

The OP field is decoded to provide arithmetic operations as illustrated in Table 3-3
(mnemonics and descriptions for both '"reference' and "immediate' are provided).

Table 3-3, Arithmetic Operations

OP Field Mnemonic Referenced OP Mnemonic Immediate OP
0 GADD C— A+B GADDI C — A+ Value B
1 GSUB C—A-B GSUBI C — A-Value B
2 GMPY C~ AxB GMPY]| C <~ A xValue B
3 GDIV C— A+B GDIVI C — A+Value B
4 GAND C — AAB GANDI C — A AValue B
5 GOR C— AvB GORI C ~— AV Value B
6 GXOR C — AxB GXORI C ~ A~ Value B
7 GSHFT C — Ax2® GSHFTI C — Ax2'alveB

NOTES: 1, Values are taken as 2's complemented, 16-bit fractions (binary point
is at the right of the leading sign bit), Examples are shown below.

C000 - One-half full-scale negative
8000 - Full-scale negative

7FFF - Full-scale positive

4000 - 1/2 Full-scale positive

2. Overflow conditions are ignored.

3-20

ARBITRARY

3-16. ARB INSTRUCTIONS (ARBI = B000, ARB = B300)

ARBITRARY instructions (ARB and ARBI) function to insert arbitrary sequences of
unmodified words into the RBU via the GPU. These unmodified words can consist

of several instructions and their associated data or might possibly consist of a single
instruction without any accompanying data. Examples of instructions that can be
transferred to the RBU are shown in Figure 5-1. The CONTROL instruction consists
of a single word, while all LOAD, VECTOR and CHARACTER instructions require
both an instruction word plus data.

Bit 04 of the ARBITRARY instruction determines whether the instruction is an ARBI-
TRARY or ARBITRARY IMMEDIATE, The ARB instruction contains a single word "Refr"
which represents the address of the first word to be transferred to the RBU (first

word of a table). The total number of words to be transferred is contained in the
least-significant portion of the ARBITRARY instruction (bits 08 through 15, inclusive).
The format for an ARB instruction is shown below,

ARB (BS00)

00 01 02 03l04|05 06 07{08 09 10 11 12 13 14 15
1T 0 1 1}1 NUMBER OF WORDS
Refr

3-21

.

ARBITRARY

The ARBITRARY IMMEDIATE instruction (ARBI) contains all instructions and assoc-
iated data in the words immediately following the ARBI command. As described above,
"n'" can be 1 (as in the case of a single CONTROL instruction) or can be another posi-
tive integer. Forexample, a CHARACTER instruction plus 1-word data (2 words) and LOAD
instruction plus 6-word data (7 words total) would occupy a space of 9 words in the
ARBI instruction. Thus, NUMBER OF WORDS field (bits 8-15) equals a +9. Refer

to Paragraphs 5-9 through 5-17 for information concerning these RBU instructions.

The format for an ARBI instruction is shown below.

ARBI (B000)

00 01 02 03|04]05 06 07408 09 10 11 12 13 14 15

10 1 1 O'\NUMBEROFWORDS

n words

3-22

LINES:
LF Field

3-117. LINES INSTRUCTION (C000)

00 01 02 03}04 05|06 07]08 02|10 11|12 13|14 15
1 1 0 0O} LF DF BM | CLX | CLY | CLZ

Values or References

The LINES instruction is used to generate a list of line elements. Descriptions of the
fields and their effects on the words following the instruction are provided below.

3-18. LF Field (Bits 4 and 5)

The List Format field (LF) has four possible values:

00 LFIT Immediate list of values with terminate in last value of last element.
01 LFRT Reference to list of values with terminate in last value of last element.
10 LFIC Reference to element count, immediate list of values.

11 LFRC Reference to element count , reference to list of values.

LFIT (Immediate With Terminate) All element generation parameters are in

a data list following the instruction as shown below. The list termination
is encoded within the data fields (possibly packed).

LFIT Immediate With Terminate (0000)

00 01 02 03|04 05|06 07 08 02 10 11 12 13 14 15
1 1.0 0J0 O

List of values with LSB=0

Last value of last element with LSB = 1

3-23

LINES:
LF Field

LFRT

LFIC

(Referenced With Terminate) This instruction is followed by a reference
which gives the location of the instruction's data list. The list contains
data values (possibly packed) with "list termination" encoded with the
values.

LFRT Referenced With Terminate (0400)

00 01 02 03|04 05|06 07 08 09 10 11 12 13 14 15
1 1.0 0JO0 1

Refr to list of values with terminate

- ~

(Count, Immediate List) This instruction is followed by the count (or refer
to it) which is immediately followed by the list itself. The list of values_
(possibly packed) does not require that any control information be kept with
these values.

>

LFIC Count, Immediate List (08

<

o
~7

00 01 02 03|04 05|06 07 08 09 10 11 12 13 14 15
T 1.0 0Ojt1 O

Refr to length "n"

List of "n" values

(Count, Referenced List) This instruction is followed by two references
which give the length of the list and its location. The list contains data
only (possibly packed).

LFRC Count, Referenced List (0C00)

00 01 02 03|04 05|06 07 08 09 10 11 12 13 14 15

T 1.0 0O}j1 1

Refr to length "n"

Refr to list of "n" values’

3-24

LINES:
DF Field

3-19. DF Field (Bits 6 and 7)

The Data Format field (DF), comprised of bits 6 and 7 of the LINES instruction, has
four possible states:

00 DFWD Full word
01 DFBY Byte

10 DFB4 Byte/4

11 DFRF Reference

The DF fieldis utilized to specify the format of coordinate values. These values will
follow the instruction word or be contained in an addressed Table (see LF field

on pages 3-23 and 3-24 for possibilities). In the case of the DFWD, DFBY and DFB4
states, the associated values are given in left-justified 2's complement fractional
notation. If the Reference With Terminate feature is utilized (see LFRT on page 3-24),
bit 15 (LSB) of any 16-bit word in the list of values indicates a list terminate condition
when it equals a 1.

In the case of the DFRF option for the DF field, the list contains reference addresses
or reference data in the format shown in Table 3-5. If immediate positive or immedi-
ate negative values are used, the words represent data with 13-bits of magnitude (the
three most significant bits must be either all zeros or all ones). If any of the other
nine combinations of Table 3-5 are used, the words represent addresses to reference

the data.

DFWD (Full Word) Each successive value is taken from a full 16-bit word in the
list, Since two's complement fractional notation is used, typical values
are as follows:

C000 One-half full-scale negative
8000 - Full-scale negative

TFFF - Full-scale positive
4000 - 1/2 Full-scale positive
DFWD Full Word (0000)
00 01 02 03|04 05{06 07|08 09 10 11 12 13 14 15
1 1 00 0o o] '
Value
Value
IL-’ ; P
4 i Vel
]
Value "n"

3-25

LINES:
DF Field

DFBY

(Byte) Each value is taken from successive bytes in the list, packed as two
bytes per word. The coordinate information is taken by left-justifying each
data byte so that its leading bit is in the sign position. If termination is
encoded in the list, the lowest bit of each byte is used to signal list termi-
nate when = 1,

The order of bytes in a word corresponds to the assembler convention of
the host computer, defined by the GPU BYTE 12 condition (BYTESWAP
signal on GP Bus).

DFBY Byte - (0100)
00 01 02 03|04 05]06 07|08 09 10 11 12 13 14 15
1 1 0O 0 1)
Value Value
Value Value
A »
L o4 ~
Value Value

This format is convenient for packing constrained or natural data when it
only has 8 or less significant bits of resolution. This reduces the amount
of data processed or stored by the user and improves the display processor
speed. When the 1/256th of full scale maximum resolution proves too
coarse for the desired display, the following DFBA format permits resolu-

tion down to 1/1026th of full scale. This is gained at the expense of the
maximum attainable range per value (1/4th of full scale).

3-26

LINES:
DF Field

(Byte/4) Each value, shown in Byte form, is divided by 4 (2 right shifts

DFBEd
with sign extension) prior to usage as coordinates of LINES instruction.
If Reference With Terminate is used (see LFRT on page 3-24), the setting
of the lowest bit of anv byte will terminate the list.
DFB4 Byte/4 (0200)
00 01 02 03{04 05(06 0708 09 10 11 12 13 14 15
1 1. 00 1 0
4 x Value 4 x Value
4 x Value 4 x Value
T : ?, =~
4 x Value 4 x Value
DFRF (Reference) Each word on the list is used as a "Refr'" to specify either an

immediate value or the reference address of a value (see Table 3-5 for
format of Refr).

DFRF Reference (0300)

00 01 02 03j04 05|06 07|08 09 10 11 12 13 14 15
1 1.0 0 1T 1

Refr

Refr Value
o~ T IReferences

Refr
0 0 0O 0 0O0OO OO 0 0 0 O0O0ODUO0OTPDO

NOTE: Due to look-ahead buffering of data in the DFRF (DF=11)
format, the list must be followed by a NOOP instruction

(word of zeros).

3-27

LINES:
BM Field

3-20. BM Field (Bits 8 and 9)

The Beam Sequence field (BM), comprised of bits 8 and 9 of the LINES instruction,
specifies the sequence of controls for the processing of Line Type lists as follows:

00 BMDJ Disjoint line string

01 BMJL Joined line string

10 BMHV Horizontal /vertical run
11 BMPT Points

ENDPOINT 1 ENDPOINT 3
- s
o7 P
e
/(/(\oq P
/\/,_66 //
A s
o P
PREVIOUS ENDPOINT 2 ENDPOINT 4
BEAM
POSITION
Figure 3-2. Disjoint Line Strings
BMDJ (Disjoint Line Strings) The beam alternates between ""move' and

"draw' to successive coordinate set endpoints beginning with a ""move"
to the first endpoint (see Figure 3-2).

BMDJ (0000)
00 01 02 03|04 05 06 07|08 0910 11 12 13 14 15
11 0 0 0 0

3-28

LINES:

BM Field
ENDPOINT 1 ENDPOINT 3
P
7
7 /0
N|
//66‘0
@
S A8
\o ’ N
. J
PREVIOUS ENDPOINT 2 ENDPOINT 4
BEAM
POSITION
Figure 3-3. Joined Line String
BMJL (Joined Line String) The beam does an initial "move' to the first

coordinate set followed by '"draws" to remaining sets in the list
(see Figure 3-3).

BMJL (0040)
00 01 02 03|04 05 06 07]08 09|10 11 12 13 14 15
1 1. 0 O 0 1

3-29

LINES:
BM Field

BMHV

Data List

6 T °°°° .
valve | ____) I
2 -5 I
valve | "o\,&gfe :
P

value

o = -
- -

0,0
1 3 7

Figure 3-4, Horizontal/Vertical Run

(Horizontal/Vertical Runs) The beam control is the same as above
except that CLX and CLY field effects are alternated after each "draw"
(see Figure 3-4,)

BMHV Horizontal/Vertical Run (0080)

00 01 02 03|04 05 06 07}08 09|10 11 12 13 14 15

i 1 0 0 1 0

Value 1

Volue 2

Volue 3

Volue 4

Volue 5

Value 6

Volue 7

Valuve 2

3-30

LINES:
BM Field

ENDP.OINT 2 ENDF‘.OINT 4

ENDPOINT 1 ENDPOINT 3
) o

Figure 3-5. Points Plotted Using BMPT Mode

BMPT (Points) Each coordinate set (including the first set) defines the location
of a point to be plotted. This specification overrides the "Line Type"

field of the LNCT register but does not change LNCT (see Figure 3-5).

BMPT ‘Points (00C0)
00 01 02 03|04 05 06 07|08 0910 11 12 13 14 15
1 1 0 0 1 1

3-31

LINES:
CLX Field

3-21. CLX Field (Bits 10-11)

The X-Coordinate Loading field (CLX), comprised of bits 10 and 11 of the LINES
instruction, specifies how successive coordinate values from the list are to be used
to affect coordinate register X. A description of the format is shown below.

CLX Field
00 CCX
01 CIX
10 CAX
11 CRX
X=X
X<—X + DLTX

X<— Value

X<e—X + Value

(Constant) This specifies that the coordinate is constant,
and the updating of this coordinate is to be skipped (the list
supplies no data for it). At most, only two fields can be
Zero.

(Stepped) This specifies that the coordinate field is to be
incremented by increment register DL TX after each beam
operation. The list supplies no data for the coordinate.

(Absolute) This causes the next list value to replace the
contents of the X coordinate register.

(Relative) This causes the next list value to be added to the
current contents of the X coordinate register. Any overflow
condition created by the addition is ignored. (The value will
"wrap around" the edge of the local object number space.)

CcCX Constant X Coordinate (0000}
00 01 02 03|04 05 06 07 08 09410 11412 13 14 15
1 1 0 O 0 O

CIX Stepped X Coordinate (0010)
00 01 02 03104 05 06 07 08 09110 11112 13 14 15
1T 1. 0 O 0 1

CAX Absolute X Coordinate (0020)
00 01 02 03 |04 05 06 07 08 092 1O 11 {12 13 14 15
1 1 0 O 1 O 1
CRX Relative X Coordinate (0030)

loo 01 02 0304 05 06 07 08 09 10 11 [i2 13 14 15
1-1 0 0 1 1

3-32

3-22. CLY Field (Bits 12-13)

LINES:
CLY Field

The Y-Coordinate Loading field (CLY), comprised of bits 12 and 13 of the LINES
instruction, specifies how successive coordinate values from the list are to be used

to affect coordinate register Y. Formats are shown below.

CLY Field

00 CCY (Constant) This specifies that the coordinate is constant,

- and the updating of this coordinate is to be skipped (the list
supplies no data for it. At most, only two fields can be zero.

01 CIY (Stepped) This specifies that the coordinate field is to be
incremented by increment register DLTY after each beam
operation. The list supplies no data for the coordinate,

10 CAY (Absolute) This causes the next list value to replace the
contents of the Y coordinate register.

11 CRY (Relative) This causes the next list value to be added to the
current contents of the Y coordinate register. Any overflow
condition created by the addition is ignored. (The value will
"wrap around' the edge of the local object number space).

CCY Constant Y Coordinate (0000)
00 01 02 03|04 05 06 07 08 09 10 11|12 13|14 15 Y<«-Y
1 1 0 0 0 0
CIY » Stepped Y Coordinate (0004)
00 01 02 03|04 05 06 07 08 09 10 11|12 13|14 15 Y<«—Y +DLTY
1 1 0 0 0 1]
CAY Absolute Y Coordinate (0008)
00 01 02 03|04 05 06 07 08 09 10 11|12 13|14 15 Y <«—Value
1 1 00 1 0
CRY Relative Y Coordinate (000C)
00 O1 02 03|04 05 06 07 08 09 10 11|12 13|14 15 Y<«—Y + Value
1 1 0 0 1 1

3-33

LINES:
CLZ Field

3-23. CLZ Field (Bits 10-11)

The Z-Coordinate Loading field (CLZ), comprised of bits 14 and 15 of the LINES
instruction, specifies how successive coordinate values from the list are to be used
to affect coordinate register Z. A description of the format is shown below.

CLZ Field
00 CCZ
01 CIz
10 CA7Z
11 CRZ
Z<—7

Z<«—7 + DLTZ

7 «— Value

Z <7 + Value

(Constant) This specifies that the coordinate is constant,
and the updating of this coordinate is to be skipped (the list
supplies no data for it. At most, only two fields can be zero.

(Stepped) This specifies that the coordinate field is to be
incremented by increment register DL TZ after each beam
operation. The list supplies no data for the coordinate.

(Absolute) This causes the next list value to replace the
contents of the Z coordinate register.

(Relative) This causes the next list value to be added to the
current contents of the Z coordinate register. Any overflow
condition created by the addition is ignored. (The value will
"wrap around'’ the edge of the local object number space.)

CcCcz Constant Z Coordinate (0000)
00 O1 02 03{04 05 06 07 08 09 10 11 12 131{i4 i5
11 0 0 0 0
CIZ Stepped Z Coordinate (0001)
00 01 02 03|04 05 06 07 08 09 10 11 12 13114 15
1 1 0 O 0 1
CAZ Absolute Z Coordinate (0002)
00 01 02 03|04 05 06 07 08 09 10 11 12 13|14 15
1 1 0 0O 1 0
CRZ Relative Z Coordinate (0003)
00 01 02 03|04 05 06 07 08 09 10 11 12 13|14 15
1 1. 0 O 1 1

3-34

TEXT:
LF Field

3-24. TEXT INSTRUCTIONS (E000)

00 01 02 03}04 05]06 07|08 09]10 11|12 13|14 15
1 1 1 0| LF DF | PG | ROT | FNT| sZ

Values or References

This instruction is used to generate lists of text elements. Descriptions of the fields
and their effects on the words following the instructions are provided below (refer also
to Appendix A5 for the standard character set and user control codes).

3-25. LF Field (Bits 4 and 5)

The List Format field (LF) comprised of bits 4 and 5 of the TEXT instruction is
identical to that described in the LINES instruction. The LF field has four possible
modes:

00 LFIT Immediate lis_t of values with terminate in last value
of last element.

01 LFRT Reference to list of values with terminate in last
value of last element.

10 LFIC Reference to element count, immediate list of values.
11 LFRC Reference to element count, reference to list of values.
LFIT (Immediate With Terminate) All element generation parameters are in

a data list following the instruction. The list termination is encoded
within the data fields (possible packed).

LFIT Immediate With Terminate (0000)
00 01 02 03|04 05|06 07 08 09 10 11 12 13 14 15
1 1 1 0J0 O

List of Chorocter Doto,
Terminoted by TRM Chorocter (=9C)

3-35

TEXT:
LF Field

(Referenced With Terminate) This instruction is followed by a reference
which gives the location of the instruction's list. The list contains data
values (possibly packed) with ""list termination' enclosed with the values.

LFRT

LFRT Referenced With Terminate {0400)
00 01 02 03|04 05|06 07 08 09 10 11 12 13 14 15

1 1 1 0]O0 1
Reference to "A"

Location "A"

List of Choracter Doto,
Terminoted by TRM Chorocter (=9C)

(Count, Immediate List) This instruction is followed by the count (or
reference to it) which is immediately followed by the list itself. The

list of values (possibly packed) does not require that any control in

formation be kept with these values.

LFIC

LFIC Count, Immediate List (0800)

04 05106 07 08 02 10 11 12 13 14 15

1 0

00 01 02 O

W

T 1 1

| o

3

List of "n" chorocters

3-36

LFRC

TEXT:
LT Field

(Count, Referenced List) This instruction is followed by two references
which give the length of the list and its location. The list contains data
only (possibly packed).

LFRC Count, Referenced List (0C00)

00 01 02 03|04 05|06 067 08 09 10 11 12 13 14 15

T 11 01 1

n

~ Reference to "A"

Location ""A"

List of n characters

3-37

TEXT:
DF Field

3-26.

DF Field (Bits 6 and 7)

The Data Format field (DF), contained in bits 6 and 7 of the TEXT instruction, has
the following values:

00 DFWD
01 DFBY
10 DF7B
11 DFRF
DFWD
e
Data
Format

Full word
Byte

7-bit format
Refr

(Full word) Character information is taken from the first byte of each
list word. The code "9C'" will cause the data generation for this list to
cease if LF Field uses terminate mode. (Note: A 9C should not be used
under count control.) The order of bytes in a word corresponds to the
assembler convention of the computer, defined by the BYTE 12 condition
(BYTESWAP signal of GP Bus).

DFWD Full Word (0000)

00 01 02 03|04 05|06 0708 09 10 11 12 13 14 15

1 1 1 0 0 O

ChOI’ #] \

Cher #2

I\ Chgr #'I
LN Chor #2

3-38

TEXT:
DF Field

(Byte) Character information is taken from successive bytes in the list,
packed as two $-bit bytes per word. This is the normal packing for text
characters. The code '"9C" will cause the data generation for this list to
to cease if LF Field uses terminate mode. (Note: A 9C should not be used
under count control.) The order of bytes in a word corresponds to the
assembler convention of the computer, defined by the BYTE 12 condition

(BYTESWARP signal of GP Bus).

DFBY

DFBY Byte (0100)
00 01 02 03|04 05{06 07|08 09 10 11 12 13 14 15
1 1. 1 0 0 1
Data Format
Chor Chor
Chor Chor

3-39

TEXT:
DF Field

DF7B

(7 bit) Each character value generated by the '"Byte'" processing above
has its leftmost (8th) bit replaced by zero; thus passing only the 7-bit
ASCII code after stripping any parity. The code "9C" will cause the data
generation for this list to cease if LF Field uses terminate mode. (Note:
A 9C should not be used under count control.). The leftmost bit (8th) of
all CNTRL codes (except codes 80 through 0D) is set to ""1". The order
of bytes in a word corresponds to the assembler convention of the compu-
ter, defined by the BYTE 12 condition (BY TESWAP signal of GP Bus).

DF7B 7-Bit (0200)

00 01 02 03|04 05]06 07{08 09 10 11 12 13 14 15

1 1 1 0 1 0

Data Format

Chor Char
Chor ; Chor

3-40

TEXT:
DF Field

DFRF (Refr) Each list word is used as a "Refr" to locate a value. Each value
is considered a full word and character processing and termination is
the same as under ""Full Word" above.

DFRF Reference (0300)
00 01 02 0304 05|06 07]08 09 10 11 12 13 14 15

1T 1. 1 0 1 1

Data Format Refr to Chor 71
Refr to Chor #2

.

0 000 O0OO0OOOOOOOOTU OTO0OTO

NOTE: Due to look-ahead buffering of data in the DFRF (DF=11)
format, the list must be followed by a NOOP instruction

(word of zeros).

3-41

TEXT:
PG Field

3-27. PG Field (Bits 8 and 9)

The Page Control field (PG), comprised of bits 8 and 9 of the TEXT instruction,
controls the location and margins for text data list processing. Format is shown
below.

PG Field
00 PGNC Current page
01 PGBM Text block
10 PG00 Absolute page
11 PGXY Positioned page
s T 4 N
e RREEELED RREERREEEER
I .
I 1
CURRENT Y : + ; is is line one of text.
POSITION] Carrioge retumn places line two here.
1 ISubsequent carrioge retums will have o
similar
: :effecf upon the current poge, odvoncing
| o the
] mext line, positioning the first character at
' khe left margin as shown.
i]
1 J — J
f f
CURRENT PAGE CURRENT X
LEFT MARGIN POSITION
Figure 3-6. Current Page
PGNC (Current Page) The text data is generated starting at the current co-
ordinate position within the existing page margin registers (see Figure
3-6.
PGNC Current Page (0000)
00 01 02 03|04 05 06 07)08 09]10 11 12 13 14 15
1 1 1 0 0 0 '

3-42

TEXT:

PG Field
N 4
CURRENT PAGE__‘_’ ________________
TOP MARGIN r
CURRENT Y __ . + et e oy - A
N) Liné one begins here.
POSITION) iCurrent X and Y

positions define new
margins. First
“character is within
‘margins, down one-half
line feed.

.]

\. ; J G t
g 4
. i
CURRENT PAGE CURRENT X
LEFT MARGIN POSITION
Figure 3-7. Text Block
PGBM (Text Block) The text data is generated starting at the current coordi-

nate position; but first the X and Y register contents are copied in the
page-left and page-top margin registers. This causes text lines to be
written on a page whose upper left corner is positioned at the current
coordinate location (see Figure 3-T).

PGBM o Text Block (0040)
00 01 02 03]04 05 06 07{08 09 10 11 12 13 14 15
1 1 10 0 1

3-43

TEXT:
PG Field

CURRENT PAGE
TOP MARGIN

CURRENT Y
POSITION

g

G

MAXIMUM +Y
DEFLECTION
4 I e e e m 2)
Line one of the text begins here. The first
: character is outomatically placed in the
' position shown, very close o the maximum +Y
' and maximum -X location.
i
Fom e e — - :
! :
! i
1 .
1 + :
1 .
! i
| i
l t
! .
\ 1 / K J/
T t MAXIMUM -X
CURRENT PAGE CURRENT X DEFLECTION

LEFT MARGIN POSITION

Figure 3-8, Absolute Page

so2
te Page) Minimum ar nd maximum values are firgt loaded inio the

{Absolut Min and maximum valueg are firg

X and Y coordinate registers and into the page-left and page-top margin
registers respectively. The text data is then processed to generate
lines over a page positioned to fill the current X-Y plane at Z = 0 (see
Figure 3-8.

PG00 Absolute Page {0080)
00 01 02 03104 05 06 07(08 09110 11 12 13 14 15
1 11 0 1 0

3-44

TEXT:

PG Field
" N\) 4 N
NEW Y
PAGE
POSITION
This islineong of t&xtT — =~ ~ 7
INew X and Y values specify new
ipage position. First character is
?gikﬁ\m;gﬁfE — r———-=—===-=-=====9° positioned.within margins, down
\ one-half line feed.
i t
]]
i |
i |
: |
CURRENT Y ! !
POSITION t + :
!
i i
1 1
- I J . 1
CURRENT PAGE CURRENT X NEW X PAGE
LEFT MARGIN POSITION POSITION
Figure 3-9. Positioned Page
PGXY (Positioned Page) The first two items following the TEXT instruction

word are taken as Refrs to X and Y page positioning values to be ac-
cessed and loaded into the X-Y coordinate registers and page-left/top
margin registers prior to processing the text data list as per the LF
and DF fields. If the X-Y Refrs are immediate, their values are mul-
tiplied by four (see Figure 3-9).

PGXY Positioned Page (00C0)

00 01 02 03|04 05 06 0708 09110 11 12 13 14 15

1 1.1 0 11
New X Page Position

New Y Page Position

Three typical examples of the Positioned Page format are illustrated in Figure 3-10.
Values for X and Y immediately follow the instruction word. Then, depending upon
the condition of the LF field, information following the y value can be one of three
possible combinations as shown.

3-45

TEXT:
PG Field

TEXT LFIT PGXY

00 01 02 03 {04 05|06 07{08 09}10 11 12 13 14 15

i 1 1 0jJ0 O \ | .
X
Y

Text Data

TEXT LFIC PGXY

00 01 02 03 |04 05|06 0708 09}10 11 12 13 14 15

1T 1.1 01 O 1T 1

X

Y

Count

Text Data

TEXT LFRC PGXY

00 01 02 03 |04 0506 07]08 09]10 11 12 13 14 15

1 1 1 01 1 T 1

X

Y

Count

Refr to Text Datao

Figure 3-10. Typical Formats for Positioned Page

3-46

TEXT:
ROT Field

3-28, ROT Field (Bits 10 and 11)

The Rotation field (ROT), comprised of bits 10 and 11 of the TEXT instruction has
the following values:

ROT Field
00 RONC (No change) Specifies no change in symbol orientation.
01 ROO00 (Reset) Reset to zero-degree rotation.
10 ROPK (Packed Refr-ed Word) Load rotation field into TXCT

from the corresponding positions in the packed-type Refr-ed
word as shown in Figure 3-11.

11 RORF (Right-justified Refr-ed Word) Load rotation field into
TXCT with bits positioned and extracted from the right-
justified value in the corresponding Refr-ed word as shown

in Figure 3-12.

09 10 11|12 13|14 15 where: 09 10 11 Refr-ed Word Rotation Field
ROT FNT SZ Refr-ed Word No change
No change
No change
No change

Zero-degree rotation
90-degree CCW rotation
180-degree rotation
270-degree CCW rotation

09 10 11|12 13|14 15
ROT FNT SZ | TXCT

—_—— - OO O O
—O— 0O — 0O — O

0
0
1
1
0
0
1
1

Figure 3-11. Rotation Field: Packed Refr-ed Word, ROPK

13 14 15
ROT Refr-ed Word

NOTE: Refr-ed Word ROT Field de-

l' scription same as above

09 10 11|12 13{14 15
ROT FNT | SZ | TXCT

Figure 3-12. Rotation Field: Right-Justified Refr-ed Word, RORF

3-47

TEXT:
FNT Field

3-29. FNT Field (Bits 12 and 13)

The Font field (FNT), comprised of bits 12 and 13 of the TEXT instruction, has the
following values:

FNT Field
00 FNNC (No change) Specifies no change in font.
01 FNOO (Reset) Reset font to normal (non-slanted symbols).
10 FNPK (Packed Refr-ed Word) Load font field in TXCT from the

corresponding positions in the packed-type Refr-ed word
as shown in Figure 3-13,

11 FNRF (Right-justified Refr-ed Word) Load font field into TXCT
with bits positioned and extracted from the right-justified
value in the corresponding Refr-ed word as shown in

Figure 3-14,
09 10 11112 13|14 15 where: 12 13 Refr-ed Word FNT Field
ROT FNT SZ | Refr-ed Word 0 0 No change
¢ 0 1 No change
1 0 Non-slanted symbols
09 10 11412 13|14 15 1 1 Slonted symbols
ROT FNT SZ TXCT

Figure 3-13. Font Field: Packed Refr-ed Word, FNPK

11 12 13|14 15

~~—_| FNT | Refr-ed Word

¢ NOTE: Refr-ed Word FNT Field de-

scription is same as the above.

09 10 11112 13|14 15
ROT FNT SZ TXCT

Figure 3-14. Font Field: Right-Justified Refr-ed Word, FNRF

3-48

TEXT:
SZ Field

3-30. SZ Field (Bits 14 and 15)

The Size field (SZ), comprised of bits 14 and 15 of the TEXT instruction, has the
following values:

SZ Field

00 SZNC (No Change) Specifies no change in character size.

01 SZ80 (Default Size) Reset to standard 80 characters/line (Size #2)

10 SZPK (Packed Refr-ed Word) Load size field into TXCT from the
corresponding positions in the packed-type Refr-ed word as
shown in Figure 3-15.

11 SZRF (Right-justified Refr-ed Word) Load size field into TXCT
with bits positioned and extracted from the right-justified
value in the corresponding Refr-ed word as shown in Figure
3-16.

09 10 11[12 13]14 15 where: 14 15 Refr-ed Word Size Field
ROT FNT | SZ |Refr-ed Word 0 0 Size #1; 120 columns by 60 lines
¢ 0 1 Size #2; 80 columns by 40 lines
1 0 Size #3; 60 columns by 30 lines
09 10 11]12 13|14 15 1 1 Size #4; 30 columns by 15 lines
ROT FNT SZ TXCT
Figure 3-15. SZ Field: Packed Refr-ed Word, SZPK
09 10 11 12 13|14 15
SZ | Refr-ed Word
]’ NOTE: Refr-ed Word Size Field de-
scription is same as dbove.
09 10 11]12 13|14 15
ROT FNT SZ TXCT

Figure 3-16. SZ Field: Right-Justified Refr-ed Word, SZRF

3-49

3-31 SINGLE ELEMENT INSTRUCTIONS (F000, F300)

The single element instructions create the graphic data to draw circles, arcs, rec-
tangles, or cubic curve elements. Depending on the state of bit 04, the instruction
may have one of two forms (see also Table 3-1):

a) If bit 04 (M) is a one, arguments consisting of immediate values are left-
shifted two bits (magnified 4 times). Referenced values are left unaltered.

b) If bit 04 is a zero, no magnification is applied and the arguments are used,
unalterd in magnitude, to create the graphic data.

Single Element Instructions (F000, F800)

00 01 02 03]04|05 06 07 08 09 10 11112 13 14 15
1 1 1 1{mjo o 0 0 0 0 O op

Refrs

The OP field, bits 12 through 15, are decoded to provide the operations illustrated in
Table 3-4. Descriptions of the corresponding operations are provided in the following
paragraphs.

Table 3-4. Single Element Operations

OP CODE (bit 04 = 0) Operation OP Code (bit 04 = 1) Operation
F000 CIRCLE F800 CIRCL4
FOO1 CCWARC F801 CCARC4
F002 CWARC F802 CWARC4
FoO3 RECT F803 RECT4
F004 CusIC F804 CUBIC4

CIRCLE

3-32. Circle

Two of the single element operations described in Table 3-4 involve complete circles.
The first Refrs following the instruction define the centerpoint X and Y coordinates of
the circle. The third Refr defines the radius of the circle (from centerpoint in a +X
direction) and is used to establish the start and endpoint of a circle drawn counter-
clockwise in the current Z plane as shown in Figure 3-17,

(. radius
| f

(Xe,Yc)

Xc+r, Yo)
(Start and End Point)

Figure 3-17. Coordinates For Circle Draw

CIRCLE Single Element Circle (F000)
00 O1 02 030405 06 07 08 09 10 11{12 13 14 15
T 1.1 110 0 0 0 O

Ref Xc

Ref Yc

Ref Radius

3-51

CCW ARC

3-33. Arc

Four single element instructions generate arcs, two in a clockwise direction, two in
a counter-clockwise direction. These instructions are briefly described below.

3-34. Counter-Clockwise Arc (CCWARC)

The next four Refrs define the X and Y coordinates of the centerpoint and endpoint of
an arc drawn counterclockwise from the current XYZ coordinates in the current 7
plane as follows:

Refr #1 = X1 = arc centerpoint X coordinate
Refr #2 = Y1 = arc centerpoint Y coordinate
Refr #3 = X2 = arc endpoint X coordinate
Refr #4 = Y2 = arc endpoint Y coordinate

NOTE: The distance between the arc center and endpoint coordinates must equal
the distance between the initial X/Y coordinate point and the arc centerpoint.

CCWARC Single Element CCW Arc {F001)
00 071 02 03 |04]05 06 07 08 09 10 1112 13 14 15
T 1T 1 110 0 0 0 1

Ref X Centerpoint

Ref Y Centerpoint
Ref X Endpoint
Ref Y Endpoint

Current point ~} Center point

e

Endpoint -

3-52

CW ARC
RECTANGLE

3-35. Clockwise Arc (CWARC)

The next four Refrs define the X and Y coordinates of the centerpoint and endpoint of
an arc drawn clockwise from the current XYZ coordinates in the current Z plane.
The four Refrs hold the same coordinates as shown above for a CCW arc.

CWARC Single Element CWARC (F002)
00 01 02 03|04|05 06 07 08 09 10 11}12 13 14 15
1 1 1 1|0 0 01 0

Ref X Centerpoint

Ref Y Centerpoint
Ref X Endpoint
Ref Y Endpoint

3-36, Rectang_lé

Two single element operations involve rectangles. The two Refrs following the in-
struction word (first X, then Y) define the coordinate position diagonally opposite
the current XY coordinates. Figure 3-18 illustrates this scheme.

P Refr XY
Current XY —»
Figure 3-18. ‘ectangle

RECT Single Element Rectangle (F003)
00 01 02 03|04|05 06 07 08 09 10 11|12 13 14 15
1T 11 110 0o 0 1 1

Ref X

Ref Y

3-53

3-37. Cubic

The cubie curve segment can be drawn by executing a CUBIC instruction (see Figure
3-19). This curve starts at the current position with a specified slope, quantity of
segments, and endpoint. The seven Refrs following the instruction word are defined
‘below. Figure 3-20 shows a typical curve.

00 01 02 03|04 05 06 07 08 09 10 11|12 13 14 15
1T 1.1 110 0 0 0O OO O OJO 1 0 O
DELTA -

¥ X
¥ Y
* Y4
|+ DLTX
* DLTY
: DLTZ
Figure 3-19. Cubic Instruction Format
DELTA = 1/N

N = Number of points from T to Tq

X = X coordinate endpoint

Y =Y coordinate endpoint

Z = Z coordinate endpoint
DLTX = X slope at endpoint (left in DLTX register)
DLTY =Y slope at endpoint (left in DLTY register)
DLTZ = Z slope at endpoint (left in DLTZ register)

' "N" Points

T

1

Current XYZ —» “— XYZ Endpoint

Figure 3-20. Typical Cubic
NOTE: Also, DLT X, DLT Y, and DLT Z registers must hold current (startpoint)

slope values _ 3X(t)
Qt t =0, etc.

3-54

3-38. GPU ARGUMENT ADDRESSING

Most instructions require one or more values to specify their operation (i.e., coordi-
nates for a line generation or angle for a rotation operator). These values may be
provided in either of two ways:

a) As immediate constants stored with each instruction, or
b) As addressed references to variable values.
The above two operations are available to instructions which process a list or table

of (possibly packed) values. The table may follow the instruction or, instead, an
addressed reference which locates the table may be given.

3-39, GPU REFERENCE ADDRESSING FORMATS

In all instruction descriptions, wherever a parameter may be specified by a general
address reference ("Refr'), any of the addressing options illustrated in Table 3-5 may
be coded.

Table 3-5, "Refr" Addressing Formats

00| 01]02}03]o4]05]06}07]08 0910 11 12 13 14 15 DESCRIPTION
ofofo : + DIRECT VALUE IMMEDIATE POSITIVE
olofl1]o]o}oO DEVICE DEVICE
olof1]ol1|IND |O STACK INDEX STACK - TEMPORARIES
oj{of1[0]1] IND |1 STACK 'NDEX STACK - ARGUMENTS
olof[1]1}0]| IND |O REGISTER REGISTER
olo|l1f{1]o] IND |1 REGISTER REGISTER INCREMENTED
olof1]1|1]IND |1 REGISTER REGISTER DECREMENTED
o1 IND OBJECT LOCAL STORAGE INDEX LOCAL

110/ IND OBJECT LINK STORAGE INDEX EXT. INDEXED VALUE
111]0]R OBJECT LINK STORAGE INDEX EXTERNAL VALUE
110 - DIRECT VALUE IMMEDIATE NEGATIVE

3-55

Descriptions of the "Refr'' addressing formats in Table 3-5 follows:

IMMEDIATE POSITIVE:
DEVICE:

Value is a positive 13-bit value.
Value is an I/O register address (see Appendix D).

STACK-TEMPORARIES: Value is in the current level's (SA based) stack at
location SA+ index. "
Value is in the caller's stack at location (prev SA)
+ index

Register contents.

Register contents after incrementing by one word-
address count.

Register contents after decrementing by one word-
address count.

Value in object's local/own storage.

Next word Refrs index to external value.
Directory (+link) holds address.

Value is a negative 13-bit value.

STACK-ARGUMENTS:

REGISTER:
REGISTER INCREMENTED:

REGISTER DECREMENTED:

LOCAL:

EXTERNAL INDEXED VALUE:
EXTERNAL VALUE:
IMMEDIATE NEGATIVE:

Table 3-6 illustrates how the GPU handles the various Refr formats above and iden-
tifies the contents of addressed locations specified by (IND). Reference Figure 4-22,

Table 3-6. Coding For Refr Addressing
Qetal Decimal, Hex T pyemonic 1001 01102 03]04]05]06]07)08]09|10}11]12|13]14]15 Description
— | 00000 | 0000 | 000G | 1MD+ ololo ~DIRECT VALUE IMMEDIATE POSITIVE
20000 | 8192 | 2000 { DEV ojof1JoJo]o] /0 DEVICE ADDRESS | DEVICE
24000 | 10240 | 2800 { TMP 0 0 11011 IND !0 STACK INDEX TEMPS IN LOCAL STACK
24400 | 10496 | 2900 | ARG 010 101 IND |1 STACK INDEX ARGS IN-CALLER'S STACK
30000 | 12288 | 3000 | RreG ololt]{1To[mp [o REGISTER REGISTER
REF | 30400 | 12544 | 3100| RGH 0lo{t]tio] IND |1 REGISTER REGISTER INCREMENTED
34400 | 14592 | 3900 | RGD oot [t ND |1 REGISTER REGISTER DECREMENTED
40000 | 16384 | 4000 | LOC o|1[ND OBJECT LOCAL STORAGE INDEX LOCAL
100000 | 32768 | 8000 | ExI 1{o] IND OBJECT LINK STORAGE INDEX EXTERNAL INDEXED VALUE
140000 49152 | coon | exv 111lale OBJECT LINK STORAGE INDEX EXTERNAL VALUE
—— 160000 | 57344 | EO0O IMD- 1111 -DIRECT VALUE IMMEDIATE NEGATIVE
00000 | 0000 | 0000 0] 0 REGISTER DIRECT VALUE
o | 1000 | 512 | o200 e K REGISTER NEW REFR (CANNOT BE TO EXI)
(STK/REGN 2000 | 1024 | 0400 | 1w 1o REGISTER WORD ADDR OF VALUE
L} 5000 | 153 | 0s00 s N E REGISTER BYTE ADDR OF VALUE
00000 | 0000 | 0000 0] 0] OBJECT LOCAL/OWN STORAGE INDEX | DIRECT VALUE
,,LD_ 10000 | 4095 | 1000| REF 0] 1] OBJECT LOCAL/OWN STORAGE INDEX | NEW REFR (CANNOT BE TO EXI)
(MEM) | 20000 | 8192 | 2000 | INW 10| OBJECT LOCAL/OWN STORAGE INDEX | WORD ADDR OF VALUE
30000 | 12288 | 3000 | INB 1{ 1| OBJECT LOCAL/OWN STORAGE INDEX | BYTE ADDR OF VALUE
00000 | 0000 | 0000 0 OBJECT LINK STORAGE INDEX DIRECT VALUE
R Field 10000 | 4096 | 1000 | INW 1 OBJECT LINK STORAGE INDEX WORD ADDR

3-56

3-40. GPU REGISTERS

Table 3-7 provides a list of GPU registers (in most cases microprocessor memory
locations) which are accessible to the program. All registers, with exception of
the STAT register, are addressable using programmed I/O (the STAT register can
be read only). Paragraphs 3-41 through 3-53 provide descriptions of the contents
and usage of each register.

Table 3-7. GPU Registers

_HEQDL;):gSZCT REGISTER | 00| o1 | o2 |03 (04| 05] 06 |07 |08 | o9 10] 11 |12)13] 14|15 | SACE
| | o |ovb. nd oo ARG ToETICE ORI DCT s KIS Teommno
09| 09| 1 |star. O STATE CODE STATUS
00 | 00 | 00 | DIR. DIRECTORY ADDRESS —

01 01|01 |STB. CPU STACK EXTENSION (LOW ADDRESS)

02 | 02 | 02 | SLM. CPU STACK EXTENSION (HI ADDRESS +1)

03| 03| 03 | OBA. CURRENT OBJECT ADDRESS

04 | 04 | 04 | IA. CURRENT INSTRUCTION ADDRESS . QED&RIFES;
oA | 10 | 12 | pBO. OBJf (DIR INDEX) OF BASE PICTURE REGISTERS
08 [11]13[IR, CURRENT INSTRUCTION IMAGE

0C| 12 | 14 | OBN. CURRENT OBJECT NUMBER

oD | 13 | 15 | STK. CURRENT STACK TOP INDEX

OE| 14 | 16 | SA. CURRENT STACK LEVEL INDEX S

OF | 15 | 17 | GP1. GENERAL PURPOSE REGISTER #1 _‘]
10|16 | 20 | Gp2. GENERAL PURPOSE REGISTER #2 “GP

1] 1721 |Ges, GENERAL PURPOSE REGISTER #3 REGISTERS
12118 | 22 | oPa. GENERAL PURPOSE REGISTER #4 __|

13} 19 |23 | PWC. PICTURE WORD COUNT —

14| 20| 24 | s, 0 PICTURE SCALE

15| 21 | 25 | PSI. 0 PICTURE INTENSITY DEPTH CUEING .

16| 22 | 26 | PDX. + PICTURE X DISPLACEMENT

17| 23 | 27 | PDY, PICTURE Y DISPLACEMENT

18| 24 | 30 | PDZ. WINDOW PERSPECTIVE DEPTH CUEING (Z VIEWPOINT) ™' PICTURE
191 25 | 31 | PDI. MAXIMUM PICTURE INTENSITY REEGLQ;S:S

1A} 26 | 32 | wex,
18| 27 |33 wey.
1C| 28 | 34 | WNZ.
1D| 29 | 35 | wsx.
1E | 30 | 36+ wsY.
1F] 31| 37 | wsz.
20132 40 | DS.

WINDOW X CENTER POINT
WINDOW Y CENTER POINT
3D WINDOW Z NEAR CUTOFF PLANE
WINDOW HORIZONTAL SIZE
WINDOW VERTICAL SIZE
3D WINDOW Z DEPTH
INPUT DATA SCALE S

Qlo|o|o]kiH |k |O|O|H

3-57

Table 3-7. GPU Registers (Continued)

ADDRESS

HEx|DEC[ocT] REC'STER | 00 | o1 | 02 | 03 | o4 [05|06 o7 0809 | ol 1y |12]13] 14] 15 | SAE
21 | 33| 41] o0s. 0 OBJECT SCALE -
22 | 34 | 42 | ODX. + OBJECT X DISPLACEMENT
23 | 35 | 43 | ODY. + OBJECT Y DISPLACEMENT éﬂig
24 | 36 | 44 | ODZ, * OBJECT Z DISPLACEMENT REGISTERS
25 | 37 | 45 | RX, x OBJECT X ROTATION
2 | 38 | 46 | RY. x OBJECT Y ROTATION
27 | 39 | 47 | RZ. + OBJECT Z ROTATION —
05| 05 | 05 | DA, CURRENT DATA ADDRESS —
28 | 40 | 50 | ELN. ELEMENT NUMBER
20| 41 | 51 |NeT. 3D1 | BLINK COLOR LINE TYPE | VECTOR
: MODE _DATA
2A | 42 | 52 | TXcT. BLINK COLOR |ORIENTATION| FONT | SIZE TABLE
28 | 43 | 53 | COLR. COLOR REGISTERS
2C | 44 | 54 | PGT. + PAGE TOP Y COORDINATE
20| 45 | 55 | PGL, + PAGE LEFT X COORDINATE 1
2€ | 46 | 56 | X, & CURRENT X COORDINATE B—
F | 47157 |v. % CURRENT Y COORDINATE
30 |48] 60 | 2. % CURRENT Z COORDINATE .
31 | 49 | 61 | INTN. * CURRENT INTENSITY LEVEL ELEMENT
. _RELATED
32 62 | DLTX. + X INCREMENT REGISTERS
33 | 51 | 63 | DLTY. " Y INCREMENT
34| 521 64 | DLTZ. + Z INCREMENT |
{35 | 53 | 65 | DLTI. + INTENSITY, INCREMENT |
36 | 54 | 66 | SELWC. SELECT PICTURE WORD COUNT —/
37 | 55| 67 | SELCT. MODE]&?ﬁ_ RES(.E,lI.SI(‘:ETRS
38 | 56 | 70 | HITDEV, SEL/HIT DEVICE 1
39 | 57 | 71 | PIKX. + PICK WINDOW X CENTER]
3A | 58 | 72 | PIKY. * PICK WINDOW Y CENTER PICK
3B |59 | 73 | PIKS. 0 PICK WINDOW SIZE (OPTIONALLY X ONLY) R?ég%'gs
3C | 60 | 74 | PIKSY, 0 FICK WINDOW Y SIZE (OPTIONAL) 1
30| &1 | 75 | HN. HIT COUNT —‘
3 | 62 | 76 | HiTCT. HTMODE | PET. [T~ | wrur : HIT
3F | 63 | 77 | HITWC. HIT WORD COUNT REGISTERS
40 | 64 | 100 | HITEC. HIT ELEMENT COUNT |
06 | 06 | 06 | EA. “EDIT ADDRESS ——I
41 | 65 | 101 | EPWC, EDIT PICTURE WORD COUNT EDIT
421 66 | 102] ESC. EDIT SKIP COUNT REGISTERS
431 67 1103 EIC. EDIT INSERT COUNT]
78 {123 | 173| LOUT. » Cfzu{zHfve [yW x| xm
FF {255 | 377 | RWC. RBU STORE INDEX

*CLIPPER VIOLATION FLAGS

3-58

3-41, COMMAND REGISTER (CMD), Hex Address 007

The Command Register (CMD), a user addressable register contained in address 007
of the RAM in the GPU, functions to store data from the host computer. This infor-
mation is subsequently utilized by the GPU microprogram to control specified opera-

tions. Bit assignments for the Command Register are listed in Table 3-8,

Table 3-8. Command Register Bit Assignments

Bits

Mnemonic

Description

5,6

7,8

NPIC

GO

PICHE

SAMFRM

CPU STK

DEVSTA

RBU/DCU
STA

DCUIN

New picture bit. Functions to initialize the specified
picture, object, transform, data table, element gen-
eration, edit, select, and hit operations.

Specifies execution or suspension of GPU processing.

Picture halt enable.

0 = continuous update processing.

1 = halts GPU processing at conclusion of specified
picture to provide single-update pass.

NOTE: Interrupt to CPU is generated if HINTE =1

(in CTL Register) and PICHE = 1.

Same frame. Permits output frame to be built from
independent input pictures under current buffering or
edit modes.

Force stack into CPU. Inhibits allocation of stack
space to hardware RAM. This permits program
access to the entire stack space.

Device station number field. These bits are added
to most significant two bits of input device addresses
to allow same list to be assigned to any of four de-
vice groups.

RBU/DCU station number field.
00 = select RBU/DCU pair #1
01 = select RBU/DCU pair #2
10 = select RBU/DCU pair #3
11 = select RBU/DCU pair #4

Initialize DCU, Starts DCU, sets Frame Rate to
40 Hz, Frame Mode to ALL, and selects Monitor #1
at highest vector-draw rate.

3-59

Table 3-8. Command Register Bit Assignments (Continued)

Biis Mnemonic Description

10,11 BUFMOD Buffer mode field.

00 = single buffer mode.

01 = double buffer mode.

10 = edit insert only-buffer mode.
11 = edit insert to end of frame.

12 CLPTXT Enables clipping when character text mode is chosen.

13 CLPVEC Enables clipping when vector mode is chosen.

3-42. CONTROL REGISTER (CTL), Hex Address 008

The Control Register (CTL), a user addressable register contained in address 008

of the RAM in the GPU, functions to store data from the host computer. This infor-
mation is used to perform the following: (a) determine whether the GPU will halt
under certain known conditions, (b) control the Select, Hit, and Edit features, and

(c) determine whether the host computer should be interrupted when a halt occurs.
Hit assignments for the Control Register are listed in Table 3-9. Bits 0 through 9,
inclusive, along with bit 2 of the Command Register (CMD), constitute the conditional
halt control bits. Bits 12 through 13 inclusive, comprise the feature controls; bit

15 is an interrupt control.

Table 3-9. Control Register Bit Assignments

Bits Mnemonic ‘ Description

0 ARBHE ARB instruction halt-enable bit. When set, GPU
halts whenever ARB or ARBI instruction is received.

, BRKHE BRKL instruction halt-enable bit. When set, GPU
halts whenever BRKL instruction is received,

bt
]
]
4
{
(
1

3 SPICHE Sub-picture halt-enable bit, When set, GPU halts
when a CALLU or CALLC instruction is received.

4 ELMHE Element halt-enable bit. When set, GPU halts for
each element processed; (e.g., each vector, each
character, or a LOAD, NEST instruction).

3-60

Table 3-9. Control Register Bit Assignments (Continued)

Bits Mnemonic Description

5 WRDHE Input word halt-enable bit. When set, GPU halts after
each input word is read.

6 EDTHE Edit address halt-enable bit. When set, GPU halts
when input fetch address matches address specified
by the EA Register.

7 ERRHE Error halt-enable bit. When set, GPU halts upon
detection of any of the following: addressing error,
invalid instruction, invalid argument, illegal re-
gister, graphic stack overflow, RBU full, transform
out of range, or invalid directory.

] HITHE HIT halt-enable bit. When set, GPU halts when
HITE bit (bit 13) is set and the refresh word count
(RWC) matches the hit word count (HWC).

9 SELHE SELECT halt-enable bit. When set, GPU halts when
picture word count (PWC) matches the select word
count (SELWC).

11 REGE Permits read access to all GPU registers.

12 SELE Select feature enable bit.

13 HITE Hit feature enable bit.

15 " HINTE Interrupt-on-halt enable bit. When set, the GPU

generates an interrupt to the host computer when-
ever the Halt State is entered. At the time of such

a GPU halt, the STATUS Register is loaded with data
relating to the cause of the Halt State.

3-61

3-43. STATUS REGISTER (STAT), Hex Address 009

The Status Register (STAT), a user addressable register contained in address 009
of the RAM in the GPU, stores status information which is accessible to the host
computer. Bit assignments of the Status Register are listed in Table 3-10.

The conditions which set state codes 1 and 3 through 14 will also generate an inter-
rupt to the CPU if the HINTE-bit in the CTL Register is set.

Table 3-10. Status Register Bit Assignments

Bits Mnemonic Name Description
0 EDTNSRT | Edit Insert Indicates that an edit-mode update is in
progress.
11-15 | STACD State Code Provides status.

00 =host CPU bus reset
01 = ready (GO-bit in CMD Register is 0)
02 = running
03 CPU memory addressing error
04 = invalid graphic instruction
invalid argument
illegal register number or register
or register set code (i.e,, NEST,
NEST1)
07 = graphic stack overflow
-08 = RBU overflow
09 = transform out of range
0A = invalid PBO or Directory structure

i

oD
Sy o
non

0B = edit address halt (edit address
matches IA or DA)
0C = hit halt
' 0D = select halt (SELWC matches PWC)

OE =halt instruction

OF = frame halt

10 = sub-picture halt

11 = BRKL instruction halt
12 = element halt

13 = word halt

14 = ARB instruction halt

3-62

3-44c

DIR

STB

SLM

OBA

IA

PBO

IR

OBN

ADDRESS-RELATED REGISTERS (refer to Table 3-7)

A 16-bit register, maintained by the host computer, which contains the ab-
solute address of the directory table in the host computer. NOTE: This
register must be initialized by a programmed output prior to an NPIC com-
mand.

A 16-bit register which contains the address of the stack base as defined by
the host computer (lowest address of stack area). NOTE: This register
must be initialized by a programmed output prior to an NPIC command.

A 16-bit register which contains the address of the stack limit as defined

by the host computer [highest address (+1 word) of stack area]. NOTE: This
register must be initialized by a programmed output prior to an NPIC
command,

A 16-bit address register, maintained by the GPU, which contains the ab-
solute address of the object currently being processed. The contents of

this addressed loaction is the count of the number of words from the start

of the object to the first instruction to be processed. It is also the Base for
indexed access to links and locals located in the current object list. Derived
from the contents of DIR and OBN as follows:

OBA = (DIR plus OBN)

A 16-bit address register, maintained by the GPU, which contains the ab-
solute address of the instruction word in the object currently being used.
The initial value of IA is the object address plus the contents of the word
at the object address as follows:

IA initial = OBA plus (OBA)

A 16-bit register, maintained by the host computer, which holds the count
of the number of words from the start of the directory to the entry contain-
ing the main picture base object address. NOTE: This register must be
initialized by a programmed output prior to an NPIC command.

A 16-bit register, maintained by the GPU, which contains a copy of the
current GPU instruction.

A 16-bit register, maintained by the GPU, which contains the count of the
number of words from the start of the directory to the object currently being
processed, The OBN initial value is set by the GPU to the PBO number.
Subsequent loading is from a CALL instruction to the next lower level and
the RETURN instruction from the subroutine stack to the next higher level.

3-63

STK

SA

3-45,

A 16-bit register, maintained by the GPU, which contains the index of the
current level top-of-stack.

A 16-bit register, maintained by the GPU, which contains the index of the

stack base for the current level. The first word of the current object's
local stack is addressed by SA + 1,

GENERAL PURPOSE REGISTERS (refer to Table 3-7)

Four 16-bit general purpose registers (GP1, GP2, GP3, and GP4) are available to
the user for use in referencing addressing (direct, indirect, indexing, ete,) and
temporary argument storage. The value held in GP1 controls the operation of the
conditional CALL and RETURN instructions.

3-46.

PWC

PS

PSI

PDX

PDY

PICTURE RELATED REGISTERS (refer to Table 3-7)

A 16-bit register, maintained by the GPU, which contains the count of the
word from the host computer data base which will be processed next by
the GPU.

A 16-bit register, updated by the display list or by a programmed output
from the host computer, which contains the scale value used to scale all
transformed objects and elements to establish final picture size.

A 16-bit intensity scale register, updated by the display list or by a pro-
grammed output from the host computer, which specifies the amount of
intensity depth cueing to be evident in the display. It controls intensity
modulation to vary from uniform intensity at PSI = 0 to a maximum inten-
sity variation from bright front to dim rear when PSI = full scale.

A 16-bit register, updated by the display list or by a programmed output
from the host computer, which contains the picture X displacement value
used to position the final 2-D projected view on the display screen.

A 16-bit register, updated by the display list or by a programmed output

from the host computer, which contains the picture Y displacement value
used to position the final 2-D projected view on the display screen.

3-64

PDI

WCX

wWCY

WNZ

WSX

wSY

WSZ

DS

A 16-bit register, updated by the display list or by a programmed output
from the host computer, which establishes the picture perspective Z view-
point. The window X and Y extraction boundaries, and also the displayed
data, will vary from parallel to 90° divergent as PDZ is varied from zero
to maximum.

A 16-bit displacement register, updated by the display list or by a programmed
output from the host computer, which establishes the maximum intensity of the
brightest element in the display. All other elements are then displayed with
proportional intensities.

A 16-bit window register, updated by the display list or by a programmed out-
put from the host computer, which contains the X coordinate value of the
center point of a portion of the data space which is to be extracted and pre-
sented for viewing in a window area specified by PDX, PDY and PS.

A 16-bit window register, updated by the display list or by a programmed
output from the host computer, which contains the Y coordinate value of the
centerpoint of a portion of the data space which is to be extracted and pre-
sented for viewing in window area specified by PDX, PDY and PS.

A 16-bit window register, updated by the display list or by a programmed
output from the host computer, which controls the value of the front (near)
7. cutoff plane when 3-D clipping is used in the window feature.

A 16-bit window register, updated by the display list or by a programmed
output from the host computer, which establishes the size, from the center
point out to ¥ WSX horizontally, of a data portion to be extracted for viewing
when using the window feature.

A 16-bit window register, updated by the display list or by a programmed
output from the host computer, which establishes the size, from the center-
point out to = WSY vertically, of a data portion to be extracted for viewing
when using the window feature.

A 16-bit window register, updated by the display list or by a programmed
output from the host computer, which establishes the depth, behind the near
cutoff plane WNZ, of a data portion to be extracted for viewing when using
the 3-D window option. This establishes the inner Z boundary at which the
extracted data will be clipped.

A 16-bit register, updated by the display list or by a programmed output from
the host computer, which is used to scale all incoming, untransformed, coordi-
nate data.

3-65

3_470

oS

ODX

OoDY

ODZ

RX

RY

3-48.

DA

ELN

OBJECT RELATED REGISTERS (refer to Table 3-7)

A 16-bit register, updated by the display list or by a programmed output
from the host computer, which contains the scale factor used for the object
currently being processed.

A 16-bit register, updated by the display list or ba a programmed output from
the host computer, which contains the X displacement value of the object cur-
rently being processed.

A 16-bit register, updated by the display list or by a programmed output
from the host computer, which contains the Y displacement value of the ob-
ject currently being processed.

A 16-bit register, updated by the display list or by a programmed output
from the host computer, which contains the Z displacement value of the
object currently being processed.

A 16-bit register, updated by the display list or by a programmed output
from the host computer, which contains the current angle of X rotation of
the object currently being processed (or the initial Z rotation in a NEST ZYZ
operationj),

A 16-bit register, updated by the display list or by a programmed output
from the host computer, which contains the current angle of Y rotation
(performed after RX) of the object currently being processed.

A 16-bit register, updated by the display list or by a programmed output

from the host computer, which contains the current angle of Z rotation (per-
formed after RX and RY) of the object currently being processed.

DATA TABLE REGISTERS (refer to Table 3-7)

A 16-bit address register, maintained by the GPU, which contains the address
of the data word currently being processed by the GPU.

A 16-bit number register, maintained by the GPU, which contains the element
number (in current object) of the word currently being processed by the GPU.

3-66

LNCT A 16-bit control register, updated by the display list or by a programmed
output from the host computer, which specifies the type of line the VGU is
directed to draw. It contains the following fields: 3-DI, Blink, Color, Line
Type, Incremental and Smoothed-Incremental Modes. See page 5-4 for
descriptions of the Line Type fields. See page 5-11 for description of the
Vector Mode field, and page 5-12 for description of the Blink field.

TXCT A 16-bit control register, updated by the display list or by a programmed
output from the host computer, which specifies the Text Size, Orientation,
Blink, and Font Type for character draws.

COLR A register, updated by the display list or by a programmed output from the
host computer, which holds the color code for the MCU. This value is the
initial or default color code when not overridden by LNCT or TXCT values.

PGT A 16-bit register, updated by the display list or by a programmed output
from the host computer, which contains the Y coordinate value to establish
the top of a page of text on the display.

PGL A 16-bit register, updated by the display list or by a programmed output
from the host computer, which contains the X coordinate value to establish
the left edge of a page of text on the display.

3-49, ELEMENT RELATED REGISTERS (refer to Table 3-7)

X A 16-bit register, updated by the display list or by a programmed output
from the host computer, which contains the untransformed X coordinate
value for element generation.

Y A 16-bit register, updated by the display list or by a programmed output
from the host computer, which contains the untransformed Y coordinate
value for element generation.

Z A 16-bit register, updated by the display list or by a programmed output
from the host computer, which contains the untransformed Z coordinate
value for element generation.

INTN A 16-bit intensity register, updated by the display list or by a programmed
output from the host computer, which specifies intensity levels for displayed
elements. When depth cueing is used, this value is combined with the Z axis
value and PSI to provide intensity modulation.

3-67

DLTX

DLTY

DLTZ

DLTI

3-500

SELWC

SELCT

A 16-Dbit register, updated by the display list or by a programmed output
from the host computer, which contains the untransformed X incremental
data value to be added to any graph being generated or initial X slope for
CUBIC operation. - . "

A 16-bit register, updated by the display list or by a programmed output
from the host computer, which contains the untransformed Y incremental
data value to be added to any graph being generated or initial Y slope for
CUBIC operation.,

A 16-bit coordinate register, updated by the display list or by a programmed
output from the host computer, which contains the untransformed Z incremen-
tal data value to be added to any graph being generated or initial Z slope for
CUBIC operafion.

A 16-bit coordinate register, updated by the display list or by a programmed
output from the host computer, which contains the incremental intensity value
to be added to the current element being generated.

SELECT FEATURE REGISTERS (refer to Table 3-7)
A 16-bit control register, updated by the display list or by the host computer
with the picture word count of any item selected by program for highlighting,

or to be correlated to an Address, Object#, Element#, etc., by Select Halt.

A control register, updated by the display list or by the host computer, which
contains the select code for the type of item-highlighting to be used.

HITDEV A device select register, loaded by the host computer, which contains the

3-51.

PIKX

PIKY

code for device selection. It permits use of a device-generated "Hit" (Pen
or Pick) in place of an SELWC word count match for item highlighting.
PICK OPTION REGISTERS (refer to Table 3-7)

A 16-bit coordinate register, updated by the display list or by the host com-
puter, which contains the X coordinate centerpoint of the Pick Device Window.

A 16-bit coordinate register, updated by the display list or by the host com-
puter, which contains the Y coordinate centerpoint of the Pick Device Window.

3-68

PIKS

PIKSY

3-52.

HN

HITCT

HITWC

HITEC

3-53.

EA

EPWC

A 16-bit Pick Device window size register, updated by the display list or by
the host computer, whose contents specify the X and Y size of a Pick Device
square window. Optionally, a Y size register may be added (PIKSY), in
which case this register specifies only the X coordinate of window size.

A 16-bit optional Pick Device window register, updated by the display list
or by the host computer, which specifies the Y size of the device window
(see PIKS above).

HIT FEATURE REGISTERS (refer to Table 3-7)

A 4-bit number register, updated by the display list or by the host computer,
which contains a count of the number of Pick Device window boundary cros-
sings, or Light Pen detects, to accept before generating a "Hit." (Example:
if HN = 0010, generate "Hit" on 2nd detect.)

A control register, updated by the display list or by the host computer, which
enables and specifies the Hit Mode and the Detect Mode (enables or disables
counting of window boundary crossings or pen detects under switch control).
The Unit field is set by the GPU during "Hit Halt" to identify which HIT DEV-
ICE generated the ""Hit" (Devices 1, 2, 3, and 4 set bits 8, 9, 10 and 11, res-
pectively.

A 16-bit picture word count register, maintained by the GPU, which holds
the comput data base word count (PWC) of the chosen word which was "hit"
by a device.

A 16-bit element count register, maintained by the GPU, which contains the
element count (in object) of the desired element which was "hit" by a device.

EDIT FEATURE REGISTERS (refer to Table 3-7)

A 16-bit edit address register, loaded by the host computer, which contains
the address of a buffer in the host CPU containing an edit-insert sequence; or
address to be correlated to a PWC by the Edit Address Halt. NOTE: When
used to edit, this register must be initialized by programmed output prior to
NPIC command.

A 16-bit edit picture word count register, loaded by the host computer, which
contains the picture word count (PWC) at which an edit sequence (insertion or
deletion) is to be started. NOTE: This register must be initialized by pro-
grammed output prior to NPIC command.

3-69

ESC A 16-bit edit word skip count register, loaded by the host computer, which
contains the count of the number of words in the computer data base to be
skipped. NOTE: This register must be initialized by programmed output
prior to NPIC command.

EIC A 16-bit edit insert count register, loaded by the host computer, which con-
tains the count of the number of words in an edit sequence to be added to the
displayed image (the length of the data list pointed at by EA). NOTE: This
register must be initialized by programmed output prior to NPIC command.

3-54. ROTATIONAL RESOLUTION

The user is not burdened with generating and specigying trigonometric functions for
rotational values; he need only specify the desired rotation angle in semi-circles
using up to 15 bits plus sign which provides a resolution of . 0055° or 19.78 seconds
of arc as shown in Figure 3-21.

+.5
+19.78" = 000001
4 8
180° = 100000, —= ~— 0% =000000
% ~19.78* = 177777,
-05

Figure 3-21. Rotational Resolution

3-70

SECTION IV

SYSTEM PROGRAMMING

4-1, INTRODUCTION

This section provides examples of how theuser's graphic data may be used to generate
display objects. In addition, enable and halt usage, the use of sub-object calls, trans-
forms, windowing, addressing, stack and viewing parameters are also described.

4-2. ENABLE AND HALT USAGE

Usually, the unique specification of all displayed items is done using the item's
Picture Word Count (PWC). The PWC is used to communicate the unique identity of
displayed data items between a program and a user/operator when using interaction-
aid options.

If a program requires the PWC for a displayed item and already knows the memory
location of the item, the program may acquire the PWC as follows: (a) the address
of the item is loaded into the Edit Address (EA) register, (b) the GPU is run with

the Edit Halt Enable bit ON (CTL [106]), and (c) the Edit Enable bit is OFF (CTL [14]).
When the GPU halts with the Edit address Halt state code in the Status register, the
GPU PWC register will hold the PWC of the addressed item.

The PWC of an item may be used to obtain any other information on its display usage.
By loading the item's PWC into SELWC and running the GPU with Select Halt Enable
bit ON (CTL [09]), when the GPU pauses, the item's picture, .object, data and ele-
ment processing information may be read from the GPU registers. The picture
processing information would consist of the main object number, directory address,
picture element count, word count, stack pointers, picture transform and clipping
registers. The object information includes current object number, instruction word
address, object base address, and all transformation registers (scale, displacement,
rotation). The data list information includes the instruction and data-list addresses,
element and word counts, line type, text type, text size, intensity, color, and page
margin registers. The element information includes the instruction, character,
coordinate, and increment registers whose parameters are used to generate visual
elements. Other information is also available such as the current RBU address.
When the GPU has halted, operation may be resumed by setting the GO bit (CMD [01]).

A momentary pause of the GPU operation may be monitored under program control
by sensing the State Code field in the STATUS register or by an interrupt. If the
"Interrupt-on-halt enable" bit (CTL [15]) is set, any enabled halt condition will not
only suspend GPU update processing but will also generate a GPU interrupt request.

Information relevent to other elements may be examined by stepping up or down
from an element's PWC, using the resultant count to load SELWC, and then running
with Select-halt-enable ON (CTL[09]) and Select Enable OFF (CTL[121]).

The above uses of the ""interaction-aid" options allow correlating a user's logical
data structure (object number, element count) with the physical description (memory
address), with the display file instances (picture element count, picture word count),
and with target data (at refresh buffer locations given by RBU counts).

4-3. USE OF A DISPLAY OBJECT

Figure 4-1 illustrates a display of one object, a triangle drawn in the center of the
display screen. The following paragraph describes a sample Object List, a sample
directory, and a sample Stack Space which could be used to generate the refresh list
to display the object.

i"—‘_—_w-—___—l

l I

|«— DISPLAY BOUNDARY ‘]

Lol e

Figure 4-1. Example of One displayed Object

4-2

Figure 4-2 illustrates the sample Object List (TRI OBJ), sample Directory starting
at location 0064 and a sample Stack area of 200 words which may be used to display
the triangle. The stack area is not used in this example. The contents (0001) of
Directory address 0064 specify that the Directory contains only one object.

SAMPLE DIRECTORY TRl OBJ
DIR 0064 0001 One object 0078: 0001 No locals or links (next word is 1st instruction)
TRI ADDR: 0078 Triangle address ~—1F C068 LINES? LFIT! DFWD! BMJL! CAX! CAY! CCZ
Co00 ~HALF X start point
C000 -HALF Y start point
4000 +HALF X end point ,
C000 _HALF Y end point, (drawn)
OVERFLOW STACK SPACE 5000) X end point
STACK 00C8: 1 {stack base) 4000 +HALF Y end point, (drawn)
| C000 ~HALF X end point
F 200 % C001 -HALF! TERMN Terminal Y endpoint {drawn)
. RETU)
STKMAX owo:L_L (stack limit) 100 .

Figure 4-2. Sample Directory, Stack Space, and TRI Object

The computer code used to display the triangle is as follows:

Programmed Outputs: Value Sent to GPU:
GPU [STB.] = #STACK 00C8
GPU [SLM.] ~ #STKMAX 0190
GPU [DIR.] = #DRCTRY 0064
GPU [PBO.] = #1 0001

Start Display: GPU [CMD.] = NPIC! GO! DCUIN! STAl! DBM C050

The Display will now access TRI OBJ, process the LINES instruction, and terminate
the update pass when the unconditional return RETU is encountered at the end of the

object list. The command codes specify: New Picture, Start Processing, Initialize

Display Control Unit, Generate Refresh List at Station (RBU/DCU) #1, and Process

Output in the Double Buffered Mode.

4-3

4-4. USE OF SUB-OBJECTS

The triangle and box drawn in Figure 4-3 illustrate an example of two sub-object
calls from a "main picture" object. Figure 4-4 illustrates the Directory, PIC OBJ
and the BOX Sub-object display lists. The TRI OBJ list remains unchanged; however,
it also is called as a sub-object by PIC OBJ,

+Y

<— DISPLAY BOUNDARY AND BOX

-Y
Figure 4-3. Example of Sub-Objects
The code used to display the two sample objects in Figure 4-3 is identical with that

illustrated on page 4-3 with one exception: the picture base object register (PBO) is

loaded with 0002 (Index of PIC in DIR). PIC is then accessed first, and calls are
made from it to both BOX and TRI.

4-4

SAMPLE DIRECTORY TRI OBJ
DIR 0064: 0003 Three Objects 0078: 0001
TRI ADDR: 0078 Object TRI
PIC ADDR: | 008C__ | Object PIC SEE
BOX ADDR: [00B0__| Object BOX FIGLRE 4-1
PIC OBJ BOX OBJ
, 008C: 0003 SKIP OVER 2 LINKS 00B0: 0001 {NO LOCALS OR LINKS)
0001 ;INDEX OF RIINDR COAB LINES? LFIT! DFWD! BMHV! CAX!CAY!CCZ
0003 ;INDEX OF BOX IN DR 8000 -FULL X start point
8002 | CALL 2 ;CALL BOX (2ND LINK) 8000 -FULL Y stort point
5001 CALL 1 ;CALL TR] (IST LINK) 7FFE +FULL X endpoint {drawn)
7000 RETU . 7EFE | +FULL Y endpoint {drawn)
8000 -FULL X endpoint {drawn)
8001 -FULL TERMN. Terminal Y endpoint {drawn)
1000 RETU

Figure 4-4. Example of Sub~Object CALLS

4-5. USE OF NESTING TO APPLY TRANSFORMATIONS

Figure 4-5 illustrates a display of the TRI and BOX objects described above in which
scaling and displacement transforms are applied to the objects by use of the Nest
-Immediate instruction (NESTI). In this example, no changes are required for either
the Directory or the object lists for TRI and BOX, The only object list which requires
changes is PIC OBJ (refer to Figure 4-6). The BOX is first scaled, displaced in a
southwest direction, and drawn. The BOX is again scaled, displaced in the southeast
direction, and redrawn. Finally, TRI is displaced in a +Y direction and drawn.

NOTE ON PROGRAMMING PRACTICE

Nesting of sub-objects is a tool for preserving the structure of data. Modules may
be altered (i.e., scaled) or replaced without explicitly operating on affected element
parameters (i.e., line endpoint coordinates), Dynamic or data-dependent use of
nesting parameters permits representation of parametric displays. The sub-objects
could be moving vehicles across a terrain, cams and links in machinery, or selected
figures being interactively adjusted and placed in a drawing with an on-line drawing
package.

The use of nested transforms to compose elementary static figures in these examples

is for illustrative purposes only and is not recommended as effective programming
practice for definition of unstructured elements.

4-5

r— """\ " T — 7 7
| |
I !
I I
| l
i i
=X +X
I l
I l
l l
| |
| «— DISPLAY BOUNDARY |
VA

Figure 4-5. Example of Scaling and Displacement Through Nesting

PIC OBJ
008C: 0003 ;SKIP OVER 2 LINKS
0001 ;INDEX OF TRi IN DR
0003 ;INDEX OF BOX INDIR’
5800 NESTI NOSXY ~ OBJECT SCALE, X AND Y DISPLACEMENTS
2000 FOURTH; SCALE
E000 -FOURTH; DX 1ST TRANSFORMATION FOR BOX
[-FOURTH; DY]
6002 ;CALL BOX (2ND 1INK)
5800 NESTI NOSXY OBJECT SCALE, X AND Y DISPLACEMENTS
2000 FOURTH ;SCALE ~— |
2000 +FOURTH ;DX 2ND TRANSFORMATION FOR BOX:
E000 ~FOURTH ;DY] ‘
6002 ;CALL BOX (2ND LINK)
5802 NESTI NODXY ___ OBJECT X AND Y DISPLACEMENTS
0000 #;0x TRANSFORMATION FOR TRI
4000 +HALF ;DY]
6001 ;CALL TRI (15T LINK)
1000 RETU ‘
Figure 4-6. PIC OBJ Example of Nesting and Transformation

4-6

4-6. USE OF DATA SCALE

Assume that it is desired to rotate the triangle displayed in Figure 4-5 and to place
the inverted image below the entire assemblage, thereby generating a display as
shown in Figure 4-7. Note that the assemblage of transformed objects would extend
out of the '"page' in which the construct has been defined. This "page size" is called
the "dynamic range" of the construct. To define constructs adequately with rotated
and/or displaced sub-objects, the dynamic range must be sufficient to encompass all
elements at their largest coordinate values. To accomplish this, all elements of a
construct may be scaled down by a Data Scale value in the GPU [DS].

NOTE: System resolution of 16 bits (14 bits if clippedjapplies to the dynamic
range used by any construct. Thus, setting Data Scale too small will
waste resolution by needlessly reducing the accuracy available for
element definition.

Figure 4-7. kxample of a Construct Exceeding Dynamic Range

4-7

To adjust the dynamic range for the objects displayed in Figure 4-7, Data Scale could
be applied to the entire display output by setting it once (via a Programmed Output to
GPU [DS] during start-up). However, since Data Scale is set only for PIC OBJ (2/3
DS to correct this example), it would be more appropriate to include (and limit) its
setting within PIC as shown in PIC1 (refer to Figure 4-8). The GPU will automati-
cally compensate the viewing scale, and the display will remain as illustrated in
Figure 4-7. -
As in the previous example, no alteration is required to either the Directory or to
object lists of TRI and BOX. Only the Picture Base Object is changed for applying
Data Scale, Rotation and Displacement to TRI.

4-17, USE OF VIEWING PARAMETERS

The displayed view of a construct may be manipulated without altering its definition
by use of the following two facilities:

a) The Windowing parameters may be used to extract a rectangular portion of
the construct as the portion for display processing, and

b) The Picture parameters may be used to place and limit the display on the
screen.

4-8

PICt OBJ

008C: 0003 | ;SKIP OVER 2 LINKS
0001 | ;INDEX OF TRI IN DIR
0003 ;INDEX OF BOX IN DIR
. 4801 ;LOAD IMMEDIATE 1 VALUE
. 0020 | ;GPU [DS] DESTINATION ADDRESS
ee | 5555 | ;2/3 DATA SCALE :
5800 | NESTI NOSXY OBJECT SCALE, X AND Y DISPLACEMENTS
2000 FOURTH ;SCALE
E000 | -FOURTH ;DX 15T TRANSFORMATION FOR BOX .
E000 | -FOURTH ;DY __|
" 4002__| ;CALL BOX (2ND L'NK)
5800 NESTI NOSXY OBJECT SCALE, X AND Y DISPLACEMENTS
2000 | FOWRTH ;SCALE | :
2000 | +FOURTH ;DX 2ND TRANSFORMATION FOR BOX
E000__ | -FOWRTH ;DY |
[6002 ;CALL BOX (2ND LINK)
5802 ;ESTI NODXY ___ OBJECT X AND Y DISPLACEMENTS
0000 iDX
2000 +HALF ;DY T TRANSFORMATION FOR TRi
6001 | ;CALL TRI (IST LINK)
e 5808 NESTI NODY OBJECT Y DISPLACEMENT
. 8000 -FULL ;DY
" 580C__| NESTI NRZ Z ROTATION VALUEj ::?N":g':s&?“m'
ae 8000 180° Z ROTATION
*e 6001 ;CALL TRI (1ST LINK)
. 4801 ;LOAD IMMEDIATE 1 VALUE
o 0020 ;GPU [DS] DESTINATION ADDRESS
v TFFF FULL ;DATA SCALE RESTORE DATA SCALE
1000 RETU

**CHANGES TO PIC OBJ FOR 2/3 DATA SCALE AND Z ROTATION

Figure 4-8. PBO For Example in Paragraph 4-6.

Figure 4-9. (Deleted)

4-9

4-8. WINDOWING

As an example of the use of windowing, refer to the ""over-range'' construction in
Figure 4-7. In reducing Data Scale to 2/3 to permit the construct to fit the dynamic
range, the viewing scale was adjusted to retain the same display scale. The entire

construct can be displayed (as shown in Figure 4-10) by enabling the clipping feature
and by setting the Window Scale to full-scale.

\V4

Figure 4-10. Example of "Zooming Qut'" and Clipping

4-9, Zooming

or reduction can be presented by "'zooming

At AF nna ot at aean e i F2 +2 in)

The visual effect of construct MagniiicCalion
in" or '"zooming out,'" respectively. This is accomplished by reducing the Window
Scales (WSX, WSY Registers) for '"zooming in" or by increasing the Window Scales
to "zoom out." Table4-1 lists a routine that '"'zooms in" on the construct to produce
the example shown in Figure 4-10.

Table 4-1. Routine for Zooming In
Machine Code
~ Description Register Value (Hex);
Establish Stock GPU [STB.] #STACK 00C8
GPU [SLM.] | #STKMAX 0190
Estoblish Disploy: GPU [DIR.] #DIR 0064
GPU [PBO.] #2 0002
Estoblish View GPU [WSX.] | #2/3 5555
GPU [wsY.] | #2/3 5555
Start Disploy: GPU [CMD.] | #NEW PIC. C054
GO! STAl!
GPU DBUF!CLPVEC

4-10. Panning

The extracted portion of a construct may be selected from anywhere in the construct's
dynamic range by moving the Window Center Point (WCX, WCY). This has a viewing
effect of moving the display in a direction on the display screen opposite to the actual

movement of the Window Center Point. The following Programmed Outputs will dis-

play the view shown in Figure 4-11.

GPU
GPU

[WCX.] 50003 5/8 FULL SCALE
[WCY.] F000; -1/8 FULL SCALE

\

WINDOW AND DISPLAY BOUNDARY —»

Figure 4-11.

4-11

Example of ""Panning"

4-11. PICTURE TRANSFORMATIONS

At times it may be desired to use the display screen for more than one single display.
When areas of the screen are to be allocated to different presentations, the ""Picture
Transformation" parameters are used to scale and place windowed views on the screen.
The different displays may be different views of the same object, menus, messages,
etc. To allocate the display in Figure 4-11 to a "'viewport located at the upper right
corner of the screen, the following picture parameter values would be loaded to dis-
play the screen as shown in Figure 4-12,

GPU [PS.] 4000; 1/2 FULL SCALE
GPU [PDX.] 4000; X CENTER + 1/2
GPU [PDY.] 4000; Y CENTER + 1/2

/

Figure 4-12. Example of Picture Transformation of Windowed View

4-12

4-12. SUMMARY OF VIEWING TRANSFORMATIONS

The diagrams in Figure 4-13 illustrate a summary of viewing transformations.

-~
rd
7
7
rd

o v e - = - -

Dynamic Range Windowed Data Display éam
where: Window Center WC = (WCX,WCY) <— 4000,2000 ;+HALF X,+FOURTH Y
Window Scale W3 = (WSX,WSY) <— 2000,4000 ;FOURTH X,HALF ¥
{20) Picture Displacement FD = (PDX,PDY) <«— EQ00,2000 ;~FOURTH X,+FOURTH Y
Picture Scale PS = PS < 3000 ;3/8 FULL SCALE

Figure 4-13. Summary of Viewing Transformations

4-13

4-13, THREE-DIMENSIONAL VIEWING PARAMETERS

The following sequence of illustrations presents the effect of viewing parameter
alterations upon the display of 3- dimensional data.

The data define a full size cube containing three objects: a shallow box towards the
front left, a pyramid in the center, and a prism in the right rear of the cube.

When update processing is started by sending the GO and NEW PICTURE bits to the
CMD register, all transformations are reset and viewing is initialized as follows:

Data window at maximum (no zoom magnification)y WSX - WSY = Full Scale.
All data are included in window (no front/rear cuts): WNX = WSZ = Full Scale.
Window centered in data volume (no panning): WCX = WCY = Zero.

Viewport centered on screen: PDX = PDY = Zero.

Viewpoint at Z = infinity (no perspective depth cue): PDZ = Zero.

Z viewpoint = [WNZ + max (WSX, WSY)]/PDZ.

With these values the data will be displayed in an unrotated orthogonal view as illus-
trated in Figure 4-14.

LA

Figure 4-14, Initialized View

PD: 0 0 0
WC: 0 0

W—I\I-Z FS
WS: FS FS FS

4-14

The first change imposed is to increase PDZ to Full Scale, bringing the viewpoint in
from Z= o to Z= twice Full Scale (to Full Scale away from the front of the data).
This causes data points behind the front plane (at WNZ = +Full Scale) to be fore-
shortened in Z and Y by their Z depth, creating the perspective projection shown in
Figure 4-15.

Figure 4-15. Perspective Cue

PD: 0 0 FS
ﬁﬂf: 0 O

WNZ: FS
WS: FS FS FS

In the following view the presented data is magnified by shrinking the window volume
to half its previous X-Y extent. This zooms in on the center portion of the displayed
data as shown in Figure 4-16. Note that part of the data did not fit and was clipped.

In Figure 4-17 the position of the window is moved left bringing all of the data back

into view and down to better resolve the top of the box. This is done with the window
center registers as shown in Figure 4-17.

4-15

Figure 4-16., Example of Zooming

PD: 0 06 FS
WC: 0 0
WNZ: FS

~ WS: FS/2 FS/2FS

Figure 4-17. Example of Panning

PD: 0 0 FS
WC: -FS/2 -FS/3
WNZ: FS

WS: FS/2 FS/2 FS

4-16

The following pair of changes move the front and rear of the window volume and
illustrate the "decluttering' of a display. First, the front-cut plane is moved to a
position between the box and pyramid, thereby eliminating the bos. This is done by
reducing WNZ to 1/3 Full Scale (see Figure 4-18).

Figure 4-18. Example of "Front Cut"

PD: 0 0 FS
WC: -FS/2 -FS/2

WNZ: FS/3
WS: FS/2 FS/2 FS

In the last example, the rear cutoff plane is brought forward by reducing the window
depth to half of that possible with the current WNZ setting. The window will no
longer include the prism (nor the rear of the full-scale cube), resulting in a display
as illustrated in Figure 4-19.

4-17

Figure 4-19. Example of Both Front and Rear Cuts

PD: 0 0 FS
WC: -Fs/2 -FS/3
WNZ: FS/3

WS: FS/2 TFS/2 FS/2

4-14. ARGUMENT ADDRESSING EXAMPLE

A display of a typical PERT chart (see Figure 4-20), and an example of the coding
which may be used to generate the display refresh list, is used here to determine
some of the advantages and flexibility of the addressing techniques used in the 3400
system. The chart could be used to delineate a given sequence of tasks, and the
time frame allotted to each, for scheduling the desigh, manufacture, and test of a
typical new product. It then becomes a network in which each node represents the
completion of a previously scheduled task and the start of the task identified by that
node.

Figure 4-20. Display Example Demonstrating the Use of Addressing

In this example, three user data tables (refer to Table 4-1a, 4-1b and 4-1c) and two
sub-objects (refer to Table 4-3) are used to define the display as follows:

4-19

Table 4-2., User Data Tables For Display Example

NODES: 100:

-
S
—

(o)) {c)
F 448 NAMES: 200: [+ PRODIAPRV 1 BRNCHS: 400:
N ENAR < | PROD | SPEC 2
2ppp]2 | MECH I DESG 3
BEEP| 3 + | LOGICIDESG | 4
2ppp1 4 +] FIRMWIDESG | 5
DBEEPR|S | UTIL{ DEVL 3
sggple * | PART| PURCH 7
EFPP| 7 + | FIRMW ICODE | 8
3pgpggl s * | FIRMW [EMUL | 9
DFBE| 9 * [PROTOIMFG | A
EgP A *| PROTO|TEST | B
cgggls
cgppgic Notation: | w Carriage Retum
ggeg| D ou Node Cheracter
ig E
F o F
E g
L]

Eg
2 p
29
49
28

s s e wlw e s
o Sl e s W e wms
o

-
o

" |- N[TN @M OO O hw W0 WiN WL Ww —{T

-

-t —
W

—
-

-
(L)

Table NODES

Table NAMES

Table BRNCHS

The first entry in this table is the number of nodes in the netword
(in this case 11). This entry is followed by 11 coordinate-pairs
(X and Y) which specify the current location of each node in the
display. These locations serve two purposes:

a) They are used to locate the position of the node and associated
text on the display, and

by They are used as vector start and endpoints for the intercon-
necting lines.

This user table contains a list of the text labels which are to be
drawn at each node.

The first entry in this table is the number of inter-node connecting
lines to be displayed (in this case 14). This entry is then followed
by 14 "number-pairs” which identify each pair of nodes to connect.

4-20

Object JOBS This sub-object is used to display the 11 nodes and labels.

Object NET. This sub-object is used to display the 14 inter-node connecting
lines.

4-15. OBJECT JOBS

The purpose of this object is to display each of the labeled nodes at its current
position. Each node and label is displayed as a text string. The test strings are
taken from the external table NAMES. The length of the text string is taken as a
local variable NAML, to be set as an argument by the caller of JOBS, The position
from the text strings is taken from the external table NODES.

The object can thus be written (refer to Table 4-3) as one display generating instruc-
tion: A TEXT instruction with its list of text data referenced externally, terminated
by a count referenced as a local, and its page positioned by externally referenced
coordinates. The data referenced externally is taken from tables indexed by GPU
general purpose registers GP2 and GP3. The number of nodes displayed is counted
down in GP1 and tested before each TEXT instruction to exit when no more remain.

One arithmetic instruction (GADD) is used to step the NAMES index GP2 by the name-
length NAME, and one (GSUB) is used to count down the number of nodes (GP1) after
each is processed. The coordinate index GPu is stepped after each use in the '"regis-
ter decrement' mode thus sequencing through the NODES table,

The exhausted (or initially empty) NODES table (index. GP1) is tested at the beginning
of the loop by the RETZ instruction which will exit when GP1 = 0.

Prior to entering the loop the two indices and the loop-counter are initialized by three
LOAD instructions.

4-16, OBJECT NET

The purpose of object NET is to display a line between each pair of nodes listed in
table BRNCHS. This object also contains only one display-generating instruction;

a LINES instruction whose coordinate list is referenced as a temporary storage in
the local stack. The list length is referenced as an immediate count = 4 words.

4-21

Table 4-3. Display Example Source Code

DIRECTCRY (JOBS, NODES, NAMES, NET, BRNCHS, PIC)

JOBS: OBJECT EXTERNAL{NODES, NAMES), LOCAL{NAML)
LOAD 1,(REG GP2.),{IMD §) ; index to NODES table
LOAD 1,(REG GP3.),(IMD 2) ; index to NAMES toble
LOAD 1,(REG GP1.,), (EXV $NODES) ; count of remaining nodes
JOBI: RETZ ; quit if no more
TEXT LFRC, DFBY,PGXY ; display~positioned NODE-NAME
EXI $NODES, (RG1 GP2.) ; X-position (use & step index)
EXI $NODES, (RG1 GP2.) ; Y-position (use & step index)
LOC $NAML 1 chors per name
EXI $NAMES, (REG GP3.) ; text of name
GADD (REG GP3.),(REG GP3.),(LOC $NAML) 3 step NAME index
GSuB (REG GP1.),(REG GP1.),(IMD 1) ; count down
BRKL JOBI - JOB2 ; loop back
JOB2: .
NET: OBJECT EXTERNAL(BRNCHS, NODES)
LOAD 1,(REG GP1), (EXV $BRNCHS) ; load count of ¥ of branches
GADD (REG GP1),(REG GP1),{REG GP1) ; double to index node-pairs per branch
NET1: REIZ 7 quit if no more
LOAD 2,(REG GP2.) : load reg 2 and 3 with
EXI $BRNCHS, (RGD GP1.) ; source node ¥ and
EXI $BRNCHS, (RGD GP1.) ; destination node ¥ (stepping index o next branch)
PUSH 4 ; fetch endpoint coordinates to stack
EX] $NODES, (REG GP2.) ; source node X
EXI $NODES, (RGI GP2.) ; step ond get source node Y
EXI $NODES, (REG GP3.) ; destinafion node X
EXI $NODES, (RGI GP3,) ; step and get destination node Y
LINES LFRC,BMDJ, CAX,CAY ; draw arc: disjoint line abs X & Y, refr'd list w/count
MDD 2 ; count: two points
ARG 1 ; list refr: first temp cell in stack
POP ; discard stack
BRKL NET1 - NET2 ; loop back-
NET2:
PiIC: OBJECT EXTERNAL(JOBS, NET)
LOAD 1, ; set chars—per-name arg for JOBS
EXI ° $JOBS,{IMD $NAML) :{NAML local to JOBS set to
iIMD B ; eleven (hex B)
CALL $JOBS ; display positioned & named nodes
CALL $NET ; display all interconnecting branches

RETU

1 end of display

e

o

The endpoint coordinates for the line are moved into the stack by the PUSH instruc-
tion. The values are referenced in external table NODES as indexed by GP2 for the
line startpoint and GP3 for the line endpoint. After using each index to obtain an

X coordinate, it is incremented by RGI mode prior to use in fetching the following
Y coordinate,

The indices for the start and endpoint nodes are put into GP2 and GP3 by a LOAD
instruction. It obtains them from table BRNCHS an indexed by GP1. After each node-
index of a pair is fetched, GP1 is decremented to reference the next (in decreasing
sequence) by ''register decremented'" mode.

The exhausted (or initially empty) BRNCHS table (index GP1) is tested at the beginning
of the loop by the RETZ instruction.

Prior to entering the loop the BRNCHS table index is initialized to index the end of
the table.

After each line is processed the local stack (created by the PUSH 4 instruction) is
discarded by the POP instruction.
4-17. OBJECT PIC

The two subpictures are called by object PIC which first sets up the name-length
argument for sub-object JOBS,

‘This example illustrates use of some of the addressing modes to permit the following:
a) Any node can be moved bv just changing its coordinates in the NODES table.
The node dot, its text label, and all attached branches will change appropria-
tely.
b) Nodes can be added and removed by adding or deleting the location from
NODES and label from NAMES and adjusting the node count (first entry in
NODES).

c) Connecting links can be changed, added, or removed by just changing BRNCHS
table and adjusting its count (first entry).

4-23

NOTE: These changes may be desired if the presentation is to be made available at
an interactive terminal and none of them require any change of the coded
display description. Thus addressing flexibility can be used to code more
effective interactive display applications.

Table 4-4 (object Code of Addressing Example) and Table 4-5 (Macros Used in Ad-
dressing example) are included here to provide the reader with further information
for reference.

Table 4-4. Object Code of Addressing Example

JOBS: 600:

DIR: 500: [4 NET: 7806: 3
69 % |1 JOBS 2 |1 NODES 5 |1 BRNCHS
189 {2 NODES 3 |2 NAMES 2 |2 NODES
2 # B |3 NAMES 3 NAML 4881 LOAD 1
78 8|4 NET 48 F 1| LOAD 1 Ig9F GP1 «— (BRNCHS)
4 8 B |5 BRNCHS 3gr @ GP2¢§ cpp
8 g g6 PIC pppp 88 FF| GADD
4gF 1| Loap ¥ 3FPF GP1 «—~GPl + GPI
Ig GPIe—g 3I8PF
Lf 5 5 4 LOAD } :: % ﬁ RET
1 AD . z
IPPF GP1«— (SNODES) 435 2] LoaD 2
cpp Igr § .)
[T8 g4 revz sgp GP2 «— BRNCH[GPI-}
PIC: 800: 3 EDCF | TEXT 396F
T 11 Joss 49483 SNAML s g8 GP3J e~ BRNCH[GP}-]
4 2 NET 8B g2 SNAMESIGPI] I9PF
4221 10aD 1 _ 3 7B P 4| PUBH 4
8 g g EXI $JOBS{NAML] & C spg $NODES[GP2+] s pp2 NODESIGP2]
ggpa 3 g IpL P
gp8C 8 g g $NODESIGP2] §P P21 NOOESI+GP2]
6 B g 11 CALLU $JO8S 3y g 311 g
6 4 g 2 CALLU $NET [N] GADD egp2 _NODES(GP3]
18991 RETU App3 GP3 «— GP3 + NAML 31
13811 sgpg2 NODES[+GP3] -
3 g1 AR .
[N-N.A GSUB CC 28| LINES,LFRC,CAX,CAY
IPPF GP1¢— GPi-1 4
FEP 2891
IpPE 788]| POP
SFECE BRRL 3 FE B BRKL

Table 4-5,

MACROS Used in Addressing Example

Source line: DIR: DIRECTORY (a,b,c,d)

Defines: location

Source line: OBJ: OBJECT EXTERNAL (a,b,c), LOCAL (d,e)

contents

DIR: 4

o-

symbols defined

@a=*-DIR
@ =* - DIR
@c=*-DR
@ =*-DIR

symbols defined

$a=* - OBJ
$b = * - OBJ
$c=*- OBJ
$d =* - OBJ
$e = * - OBJ

Defines: location contents
OBJ: 5
@a
@b
@c
'
4
NOTE: * ="current location value"

@a and $a are symbol names generated from an argument "a

4-25

4-18, INTERACTION-AID FEATURES

Interaction-aids described here include the SELECT-INTERACTION-AID (SELECT),
the HIT-INTERACTION-AID (HIT), and the EDIT-INTERACTION-AID (EDIT-AID).
The SELECT and HIT aids are used for displayed item selection and picking, while
the EDIT-AID is used for tentatively viewing the effect of element deletions, inser-
tions, and adjustments when considering an update of the display data base. In the
SELECT aid, the GPU receives a selected word count (SELWC) from the program
which may be used to highlight a selected item, while with the HIT aid a picked word
count (HITWC) is derived interactively by the viewer/operator using optional PICK
or PEN devices. Either of the two word counts may be used as the edit word count
(EDWC) in the EDIT-AID feature to identify the start point of a deletion of a display
list word sequence or the insertion of a trial word sequence.

4-19, SELECT FEATURE

With this feature, the program selects items on the display that are to be identified.
Program selection of an item may be controlled by either the word count (which may
be incremented or decremented by stepping through each successive word (PWC) in

the display list) or by other inputs or computations specifying an item as illustrated
in Figure 4-21.

PROGRAM s DISPLAY USER

Figure 4-21. Item Selection

GPU hardware registers required to support the SELECT feature are as follows:

SELCT -a select register, under control of the host computer, used to specify
the mode of item highlighting (brighten, blink and brighten, etc.).

SELWC -a 16-bit register, loaded by the host computer, which contains the
word count of a currently selected item to be highlighted. If set to
zero, the device (light pen or pick window) whose address is contained
in HITDEV will automatically highlight a single display element (as
specified by SELCT) when a hit is detected.

4-26

HITDEV -a device select register, loaded by the host computer, which specifies
the interactive device to be used for device auto-select.

4-20. Application of the Select Feature

An example of choosing a displayed item using the keyboard and the SELECT option
follows. Two program examples (STARTUP and KEY) are first described and then
followed by a description of their use.

a) STARTUP:

b) KEY:

c) Usage

NOTE:

1. Set GPU SELWC to +1 (first word in the display list), SELCT
to "'blink bright," and HITDEV to 0.

2. Set up keyboard interrupt to call the "KEY" routine described
in (b).

3. Reset software "done flag' in core (to be set later by KEY
routine),

4. Start GPU processing with SELECT ENABLE bit ON [CTL (12)].

5. Wait for ""done flag;'" then disable keyboard and take SELWC
as the operator specified picture word count of item chosen.

1. Read the typed character and test for the following three
cases:

if «— is typed, decrement SELWC (to a minimum of +1).
if —> is typed, increment SELWC +1,
if "HOM" is typed, set '"done flag."

To perform the selection run program "STARTUP." Press

the " " key on the keyboard; SELWC will be stepped to corres-
pond with successive words in the display description being pre-
sented. As SELWC moves through words of visible items, the
displayed image of such items will be highlighted by flashing
brighter at a noticeable blink rate. If the desired item is passed,
the " —> " key will decrement SELWC to return to the previous
item. When the desired item is blinking, press the "HOM" key

to designate choice of item.

Depending on the construction of the display list, pressing the ' — !
key will either move the highlighting to the right (as intestlists) or
make random selection anywhere on the screen. Refer to para-
graph 4-25 for suggested uses.

4-27

4-21, Implementation of the Select Feature

Figure 4-22 illustrates the display system information flow which is used to select

a desired display item to be highlighted. Correlation between the selected item to

be highlighted and the DCU highlighting of that selected item is accomplished by using
word comparisons, ’

While the GPU is organizing the display list data from the host computer into the
display refresh list to be stored in the RBU, it maintains a picture word count (PWC)
as each data word is received from the CPU and an RBU word count (RBUWC) as each
restructured word is entered into the RBU. The DCU also uses a word counter (WC1)
which is incremented as it receives each data word from the RBU and, as a result,
for any specific RBU word, the RBUWC and WC1 counts will be the same.

When the program specifies an item to be selected, its word count is placed into the
GPU SELWC. When the PWC compares with the specified SELWC, the RBUWC from
the GPU is loaded into a select register (SELR) in the DCU. The DCU then makes
comparisons between SELR and each WC1 count as words are received from the RBU
and, when a comparison occurs, it highlights the selected item.

RBUWC IF PWC = SELWC . FUNCTION
cPU GPU —RBU__ —RCU GENERATOR
DISPLAY SSEIR)
DATA LIST PWC LIST -
we ¥
‘ WCi | |HIGHLIGHTED
DATA DATA

Figure 4-22, Implementation of the Select Feature

4-22, HIT FEATURE AND PEN OR PICK OPTION
With this feature, the user picks an item on the display screen and the hardware

provides the program its picked word count (HITWC). Figure 4-23 illustrates the
"picking'" function. With the PICK option, a 2-D device "window' is generated and

4-28

and used to detect, and highlight if specified, elements that fall within the window
boundaries. The window position, derived from interactive device X-Y positioning
coordinates are specified by computer program. A combination of GPU/DCU opera-
tions is then used to notify the CPU of the pictire word count (HITWC) of an item
which is ""picked.'" Refer to Paragraph 3-51for descriptions of the GPU hardware
registers required to support this option.

DATA USER

PROGR

PWC

HITWC

Figure 4-23. item Picking

4-23, Application of HIT Feature With PICK Option and Data Tablet

An example of choosing a displayed item using the Data Tablet and the PICK option is
presented below. The sample TABPIC program is first described and then followed
by a description of its use.

a) TABPIC: 1. Set PICK window size (GPU register PIKS) to 1/50th screen
size, HN to 1, SELCT to C000 and HITDEV to 0138.
2. Set HIT enable (CTL [13]) and start GPU processing.

3. Repeat this step until Tablet Stylus is pressed:
Read HITWC and send to SELWC,
Read Tablet X and send to GPU PIKX,
Read Tablet Y and send to GPU PIKY.

4, When Tablet Stylus is pressed, reset HIT enable and take
HITWC and the PWC of the chosen item.

4-29

b) Usage To perform the selection, run program "TABPIC." As the tablet
stylus is moved across the tablet surface, PIKX and PIKY are up-
dated to move the window correspondingly. When the displayed items
are within 1/4th inch of the stylus X-Y coordinates they will be high-
lighted by the SELECT facility. When the desired item is flashing,
press the stylus to activate the pen pressure switch and designate the
desired selection.

4-24, Implementation of the HIT Feature

Figure 4-24 illustrates the implementation required to notify the program of the PWC
of an item "picked" by an interactive device. Similar to the SELECT option described
previously, the identity of the item is established through use of word count compari-
sons. Figure 4-24 illustrates the use of the light pen as the interactive device used
to signal a "hit." During the refresh cycle when the 'hit" is detected, the RBU word
count (WC1) is placed by the DCU into the specified hit register (HIT) and also into a
specified select register (SEL)., During a GPU update pass when a comparison be-
tween HIT and RBUWC occurs, the PWC is placed into the pick word count register
(HITWC) for transfer to the program where it is used to establish the PWC of the
"picked" item. Also, if specified by program, the SEL contents are used to highlight
the "picked" item.

IF HITDEV ¢ o0

@u GPU ReY bcu FoU
DISPLA REFRESH
AT PHE K (s
AT S DISHAY

T
PWC RBUWC

LIGHT PEN

DATA

HITWC l

PROGRAM l
HITWC

Figure 4-24. Implementation of Hit Feature

4-25. SUGGESTED USES FOR SELECT AND HIT

Efficiency in the manner in which items on the display may be chosen depends, to
some extent, on the relationship between the order of data in the display list and the
sequence in which they are presented on the display screen. For example, if the
data order is displayed contiguously on the screen (such as text strings, data-plots,

4-30

etc.) the SELECT example in Paragraph 4-20 using the keyboard —> and <«— keys
provides an efficient method of stepping quickly to the desired item. However, if
the displayed data is random with respect to the display list, the HIT mode example
in Paragraph 4-23 provides a means of choosing the desired item more rapidly.

Another possibility of rapid item-picking would be the use of the keyboard and the
HIT feature where the keys —», f . * , <— , provide A X and AY values to update
the GPU PIKX and PIKY registers and thus provide a corresponding direction of
window movement toward the desired item.

4-26. EDIT-INTERACTION-AID

This feature provides hardware for interactive (tentative) deletion, insertion, and
adjustment of displayed elements while utilizing display visual feedback to observe
their effects. This permits altering the display be substitution of arbitrary word
sequences in the display list with trial word sequences which may be adjusted until
visual satisfaction is achieved. The operator may then incorporate all changes into
the display data base when an up-date is desired by calling his Data Base Update Ap-
plication Program. Figure 4-25 illustrates the effects of substitution and updating
the data base.

Figure 4-25A shows a display list data transfer to the GPU with no EDIT-AID used.

Figure 4-25B shows an example of a display word sequence being deleted and a trial
word sequence from BUF sent to the GPU and the insertion of the new item. The data
base words (alpha, beta, and gamma) are still sent to the GPU, however, the GPU
skips the beta word and substitutes beta prime when received. During this time, the
contents of BUF may be interactively adjusted until viewing satisfaction is received.

Figure 4-25C shows the data base update by permanently replacing the selected word
sequence with the trial sequence from BUF. The update is accomplished by calling

a user's Data Base Update Application Program when editing is done.

Paragraph 3-53 provides descriptions of the GPU registers required to support the
EDIT-AID option.

4-31

B a 3
Y ——» GPU |——»
i
DATA BAS DISPLAY
A. NO EDIT-INTERACTION-AID
l l
7/
g a ,
B a &
e ——o GPU [——»
”
BUF DATA BASE DISPLAY
B. EFFECT OF EDIT-INTERACTION-AID
i | N}
'4
B + ‘ a
, . 7
COMPUTER -
DATA UPDATE - Y
PROGRAMS
BUF - DATA BASE

(@]

. DATA BASE UPDAT

E

Figure 4-25. Use of Edit-Interaction-Aid

4-32

4-27. DISPLAY WORD SUBSTITUTION

Deletion and insertion of items on the display through use of this option are described
in the following paragraphs.

4-28, Deletion
An example of a program for deletion of items ("DELETE'"), permitting observation

of viewing effects, is listed in Table 4-6.

Table 4-6., Sequence for Sample DELETE Program

Step Instruction

1 Load the GPU EIC with zero (number of words to be inserted)
and ESC with the count of the number of words to delete from
the display list.

2 Load the GPU EPWC with the word count of the first item at
which the effect of deletion is to be viewed. The previous ex-
amples (SELECT and HIT modes) both will provide a PWC
which may be used as the word count at which the deletion is

started.
3 Run the GPU with Edit-Enable bit ON [CTL (14)].
4 If desired, ESC may be adjusted under operator control from

any input device such as control dials, etc.

4-29 Insertion

An example of a program ("INSERT") which could be used to view the effect of a
possible insertion in an existing display is presented in Table 4-7. The program, in
this case, will display to a viewer the apparent results of inserting seven words at
PWC 134 of the picture being displayed. The words to be inserted are stored at CPU
location BUF.

4-33

Table 4-7. Sequence for Sample INSERT Program

Step Instruction
1 Load address of insert sequence BUF into GPU EA register.
2 Load length of insertion, 7, into GPU edit insert word

count register EIC.

3 Load GPU edit skip word count register ESC with zero
(no deletion).

4 Load GPU edit start picture word count register EPWC
with 134, the word count of the designated item at which
insertion is to be tried.

5 Run GPU with Edit-enable bit ON [CTL (14].

Substitution of arbitrary word sequences may be tried and viewed with the two EDIT-
AIDS described thus far. Adjustments to existing elements being displayed during
insertion may be made tentatively for viewing satisfaction. This simplifies "trial
changes' by not having to locate the original elements and not having to expand or
contract their memory requrements when trial changes vary the desired element
length., The words in BUF (the trial word sequence) may be added to, deleted, or
have their values altered to the desires of the monitoring operator through use of
input devices. In this manner, the operator may continuously view his adjustment
of any parameter being adjusted, i.e., line length, line slope, circle radius, end-
point position, sub-object selection, sub-object scale, rotation, etc.

4-30. ADDRESSING

This section describes the GPU addressing functions used to locate Objects and to
obtain any of their parameters through reference (Refr) addressing.

4-31 DISPLAY PICTURE DESCRIPTION

All display descriptions processed by the Display Processor consist of Objects which
are located through the host computer Directory table. Each object may contain calls
to lower level sub-objects which, in turn, may themselves consist of lower level sub-

objects, etc. Figure 4-26 illustrates an example of three levels of objects which may
be processed for display refresh in the following sequence:

4-34

a)

b)

c)

d)

e)

DISPLAY

(k¥

3rd LEVEL OBJECT

2nd LEVEL OBJECT

PICTURE BASE OBJECT

Figure 4-26. Display Consisting of Three Object Levels

The picture base object number (PBO), and the absolute address of the Direc-
tory in which it is located, are specified by the program as the data base
start point. The GPU uses PBO as the initial current object number (OBN)

to access the associated object list and process it to start generation of the
refresh list which it outputs to the RBU.

The second-level object is then called, processed, and added to the refresh
list.

The third-level object is then called, processed, and added to the refresh
list. .

A return is made from the third-level object, through the second-level object
to the calling picture base object.

A return at the end of the picture base object list then terminates the update
pass.

The updated refresh list is now in the RBU and available to the DCU to update the
CRT display.

4-35

4-32. INTTTAL ADDRESSING OF PICTURE BASE OBJECT

The following examples of addressing contain descriptions relative to GPU hardware
functions which are included here to supplement the addressing information. Figure
4-27 illustrates the addressing of the picture base object and the generation of the
GPU fetch address which is used to access the first instruction to process. In this
example, it is assumed that a Directory address of 1000 and a PBO number of 100
are specified by the program as the data base start point. A brief description of
the operation follows:

a) The directory address and the picture base object number are loaded via
programmed outputs into the DIR and PBO registers respectively. (The
stack base address and the stack limit must also be loaded via programmed
outputs into the STB and SLM registers).

b) A programmed output is issued to the GPU command register to initialize
processing of the picture base object.

c¢) The PBO number (the count of the number of words from the start of the
directory to the picture base object address) is loaded into the GPU OBN
register. The OBN (in this case 100, refer to Figure 4-27) is then used to

index into the directory to access OBA (at location 1100 in this case).

d) The absolute address of the object list, OBA, is read from the directory and
loaded into the GPU OBA register.

e) The first word of each object contains the count of the number of words from
the start of the object to the first instruction in the list (in this case 10). This
count is added ot OBA and placed in the GPU instruction address register IA.

f) The IA contents are then used as the fetch address to access the first instruc-
tion in the base object list (note that the base object's LINKS and LOCAL-OWN

values are skipped at this time).

Processing of the picture base object is now started.

4-36

CPU «——F—» GPU

PROGRAM
'ogo]m DIIR&FG
DIR ADDR PBO REG
.g. 100
"PBO NUMBER 2.9 = 100 i

INITIAL ONLY —>'

OBN ADDR = DIR + OBN = 1100

CALL OBJ —== OR

IS REACHED IN BASE OBJ,

DIRECTORY i Y
¥ OF OBJECTS | DIR ADDR = 1000 [100
OBN REG ¥
100 +
|
OBA REG
— OBA ADDR » OBAADDR |—
OBA
OBA BASE OBJECT ' IA REG
—— (OBA)=10 |— + —»| OBA + (OBA) |—
AN
LINKS
10
LOCAL-OWN
N =
Y TN FETCH ADDRESS = OBA + 10
INSTRUCTIONS _
& PARAMETERS < BRANCH TO SUB-OBJECTS, Refrs, OR —
RET _# END OF PICTURE WHEN RET

Figure 4-27. Initial Addressing of Base Object for GPU Processing

4-37

4-53. OBJECT LIST CONTENTS

Figure 4-27 also illustrates that the object list consists of links, local-own values,
instructions with associated parameters and is terminated with a RETURN instruction.
A brief description of the object list's contents and usage follows:

Object Base Address - The contents of this location, the first word in the object list,
contains a count of the number of words to the first instruction in the list. This value
is added to the object base address to access the first instruction in the object to
start processing.

Links - The values in these locations are the indices to the directory entries (for
calling objects as described in paragraph 3-13 or indices to data areas referenced
externally. These locations are addressed by external or external-indexed Refrs in
instruction word lists.

Local-Own - These locations contain local constants or own-variables and are ad-
dressed by local indexed Refrs in the instruction word lists.

Instructions and Parameters - This area contains instructions for GPU processing
which may be followed either by immediate data values or by addressed references

for locating variable values.

RET Instruction - All object lists are terminated with a RET instruction to either
return to a higher-level ""calling' object or to terminate the current process-update
pass. If the RET is in the highest-level object (PBO), the current process-update
is terminated; if not, a return is made from this object list to the '"calling' higher-
level object by returning to the instruction (+1) at which a call was made from that
object., This is accomplished as follows:

a) The current "called'" object's local stack is first cleared of all temporaries
and MARKS (stacked by PUSH, MPUSH, and GMARK) and nested values
(stacked by NEST and NESTI). The temporaries are discarded while the
nested values are restored to their originating registers.

b) The addressing environment of the '"calling' object is then restored by un-
stacking that object's local stack base address (SA), the element number (ELN),
the object address (OBA), the object number (OBN), and the Resume Address
(TA + 1). Unstacking of all temporaries and nested values in this local stack
area continues up to, but not including, the first mark encountered. The
nested values are again restored to their originating registers.

c) The instruction following the original CALL in the "calling'" object list is then
fetched to continue processing that object’'s list.

4-38

6E-¥

*§3-F 9an31d

PPV 10011pUJ I0 SON[EA 9IqBLIBA PaouslIojey

Surssoaa

DIRECTORY
VALUE OR
INDIRECT ADDR
VARIABLES IN VALUE OR
OTHER OBJECTS > INDIRECT ADDR
OR PROGRAM
R R

DATA TABLES
IN OTHER
QOBJECTS OR
PROGRAM
|

I FIELD
0!

pARS

0 B

—

Pl

0] DIRECT VALUE
WORD ADDRESS

CURRENT OBJECT LIST

OBA

I

LOCAL-OWN

1ST INST

POSSIBLE REFERENCES

Refr = LOCAL

Refr = EXTERNAL

Refr = EXTERNAL INDEXED

VALUE OR

INDIRECT ADDR

0§ DIRECT: DIRECT VALUE IS VALUE
INDR REF:
1{0! INDR WD ADDR: DIRECT VALUE IS A WORD ADDRESS
iNDR BYTE ADDR: DIRECT VALUE IS A BYTE ADDRESS

DIRECT VALUE IS A NEW Refr

STACK
ST
' VALUE OR
INDIRECT ADDR
VARIABLES
SA.
VALUE OR
| INDIRECT ADDR
REGISTERS
VALUE OR
i INDIRECT ADOR
REGISTER [
INC T

DEC

| _Refr = NEXT WORD INDEXED __ |
Refr = LOCAL STACK INDEXED

Refr = REGISTER

[Refr = REGISTER + 1

Refr = REGISTER (THEN DECR)

Refr = + DIRECT VALUE
Refr = - DIRECT VALUE

POSSIBLE REFERENCES

RET

REFER TO APPENDIX A4 FOR Refr FORMATS

4-34.

REFERENCE ADDRESSING

Most instructions require one or more values to specify their operations (i.e., co-
ordinates for line generation, angle for a rotation operator, etc.). These values may
be either provided with each instruction as immediate values, or be located through
use of addressed references. TFigure 4-28 illustrates the reference addressing tech-
nique. GPU instructions which may be followed by Refrs are as follows:

a)

b)

c)

d)

)

g)

4-35.

LOAD Instructions - The Refrs are used to specify the destination addresses
into which values are loaded and also each source address from which data
is to be obtained.

NEST Instructions - The Refrs are used to address arguments required to
generate transforms which are to be stored in the registers specified by the
Register Set Code.

STACK Instructions - The Refrs are used to specify source addresses from
which values are to be moved into the stack.

LINES Instructions - The Refrs, determined by the LF field, are used to
specify either or both the length or address of the list for the list of values

of element generating parameters. They may also be used to locate individual
coordinate values if specified by the DF field.

TEXT Instructions - The Refrs are used to locate page-position parameters
(if specified by '"page control" field PG), to extract fields to establish ROT,
FNT and SZ, and to locate individual characters is specified by the DF field.

ARITH Instructions - The Refrs are used to locate the parameters on which

the operations are to be performed and to specify the destination addresses to
which the results are moved.

Single Element Instructions - The Refrs specify the locations of the parameters

needed to generate circles, arcs, rectangles, and cubic curve segments.

STACK OPERATIONS

Stack operations are performed when any of the following seven instructions are
fetched; CALL, RET, NEST, POP, PUSH, GMARK, and MPUSH, Brief descriptions
of each of the operations are provided in the following paragraphs.

4-40

4-36. CALL INSTRUCTION EXAMPLE

The CALL instructions (refer to paragraph 3-13) effect a "call'" to a lower-level sub-
object by stacking a return instruction sequence in the "calling'' object's local stack
and then establishing a new stack area to be used by the '"called" sub-object. Figure
4-27 illustrates an example of initial addressing of the first object in a picture des-
cription for GPU processing. The example in Figure 4-29 illustrates the method by
which a CALL from a current object list (in this case ABC, object number 3) stores
that object's addressing environment in the stack (Resume Address, OBN, OBA, ELN
and SA which will be needed for an eventual return to ABC) and then sets up addressing
to access the "called" sub-object list (DEF, object number 5). After stacking the re-
store sequence, the local stack base register SA is set to object ABC's local stack top,
thus establishing a fresh, empty, stack area for the called object named "DEF,"

Each stack location is reserved or released under control of STK which operates as
follows:

Increment then store for a "write & reserve' (PUSH) operation.
Read then decrement for a '"'read &release' (POP) operation.

The example in Figure 4-29 illustrates the address and stack configuration at the time
the CALL DEF instruction is received (Figure 4-29A) and the result of the CALL op-
eration (Figure 4-29B), The top section of the example shows that the current object
(ABC) has been addressed by OBA, the instruction register IA is at address (b), the
current element count in the object list is 12, and that ABC data (temporaries and/or
nested values) have been stacked in ABC's local stack. When the CALL DEF instruc-
tion is encountered, three basic operations are performed:

a) Object ABC's addressing environment (Reseme Address, OBN, OBA, ELN
and SA) are stacked for access at a later time to return to ABC (STK incre-

ments before each store).

b) The local stack base address SA is set to STK to provide fresh stack space
for lower-level object DEF.

c) Object DEF's addressing environment is then set up to start processing DEF.
The environment for DEF is set up as follows:
a) IA at address (b) picks up OBJN (identified at LINK number 2).

b) The contents of LINK 2 (a count of directory address +5 in this case) are
loaded in OBN to access DEF address, new OBA, from the directory.

4-41

re— CALL DEF

- DIRECTORY - OBJECT ABC
|
i
OBN =3 : 3 Tet LINK
— > ABCADDR | -ABCADDR | | 3
DEF ADDR
LOCAL-OWN
WST
, ST
IA=b —> CALL (OBIJN=2)
OBN =3 INST
BN = 12

" STACK -ST
HIGHER-LEVEL SA
OBJECT DATA

ABC LOCAL STACK] | oo
(TEMPS AND
NESTED VALUES) | v
- SLM

A. ADDRESS CONFIGURATION AND STACK CONTENTS AT TIME OF CALL QBJ,

NEW |A = DEF ADDR + 10 —>

OBN = 5§
RAN=0

8. ADDRESS CONFIGURATION AND STACK CONTENTS AFTER ABC ENVIRONMENT SAVED, -

LINK TO DEF
(SET OBN TO 3) STACK
l OBJECT ABC T
2, Tat LINK | HIGHER-LEVEL
E—— 3 — OBJECT DATA
OBN =3 ' ABC TEMPS AND
ELN =12 T NESTED VALUES
INST <A
OLD IA —>| CALL {OBJN =9 | RES ADDR b + 1
b+1 T
+ INS AC O8N
LOCAL STACK %u
.] - I NNR—
ECT DEF
DEF ADDR ,—2>5c L_| sAADOR()) |
OEF LOCAL STACK
10
i
ot INST
“— OTHER POSSIBLE SUB-OBJECT CALLS
RET ——> RESTORE ABC ENVIRONMENT

-—ST8

«— ARG, 1
«— ARG, 2

«—5A = STK|
- TMP, 1
-— TMP, 2

-SM

Figure 4-29. Call Object Instruction Example

4-42

c) The OBA count of 10 is added to the OBA address and loaded into IA to access
the first instruction in DEF. The element count register ELN is also set to
zero to prepare counting the elements in object DEF.

During the processing of DEF, a CALL to a lower-level object may be encountered,

in which case the DEF addressing environment would be stacked in the DEF local

stack and then the lower-level object would be accessed. However, in this example,

it is assumed that no CALL instruction is encountered, and it is desired to return to
object ABC. When processing of DEF is completed and the RET instruction is reached,
the ABC environment is restored as follows:

a) The DEF local stack area is cleared by reading each location and decrementing
STK after each read.

b) When STK finally reaches the top-of-stack for ABC (determined by STK equal-
ing SA) the next five words (ABC environment) are restored. The base address
of ABC's local stack is restored to SA and the four following words are re-
stored to their appropriate registers. However, the RET instruction is not
terminated at this time; temporaries and nested values in ABC's local stack
continue to be cleared by reading and decrementing STK until a GMARK is
encountered or until ABC's local stack becomes empty. At this time, pro-
cessing of object ABC resumes.

4-317. SUMMARY OF STACK INSTRUCTICNS

Although there are only four stack-type instructions, the CALL, RET, and NEST
instructions also perform stack operations as previously described. The following
descriptions provide a summary of the operations performed by each instruction:

GMARK - This stack instruction places a one-word stack marker in stack. The mark
is used to protect pushed and nested items across following calls and remains in ef-
fect until a POP instruction is encountered or the object which issued the GMARK
issues a RET.

PUSH - This stack instruction (refer to paragraph 3-14) puts user-specified tempor-
aries and arguments, followed by a control word, in the stack where they are then
available for reference addressing. Stack area requirements are therefore n words +1.
The temporaries remain in the stack until they are discarded upon a return to this
local stack level (unless protected by a GMARK).

4-43

MPUSH - This stack instruction is identical with the PUSH instruction except that a
stack marker is put in stack before the temporaries and control word. This requires
a stack area of n words +2. The stack marker protects previously stackeditems
when a RET affecting this stack area is encountered, however, the items pushed by
MPUSH are discarded by RET.

POP - This stack instruction is used to remove all temporaries (PUSH or MPUSH)
and nested values (NEST) up to and including the first GMARK (or the GMARK pro-
duced by MPUSH) encountered in local stack.

4-38. OBJECT LEVEL TRANSFORMATIONS

ELEMENT PROCESSING

1 0 0 OD[X]T [RIXXIR[XYIR[XZ] 07 [0S 0 0 O |' X
0 1 0 OD[Y] RIYX] RIYY] R[YZ] O 0 OS5 0 O Y -
Lg g é OD][Z] R[gX] R%Y] R{gZ] ? g 8005 ? L;é Window Transformation
' Viewing Trensformation
Displacement Rotation Scaling Element Object Generation
INITIALIZATION
Ob'!ect Window View
NPIC — GPU[CMD.] : [1 - DS [17 1 — PpS
0 1| - WS 0
0 - OD - [0] —- PD
0 g -~ W 0
100 C T
01 0| — [R] 1 - WNZ
001
1 —- OS5

4-44

EFFECT OF NEST INSTRUCTIONS ON OBJECT TRANSFORM PARAMETERS

NOS(S): Stack OS; Sx0S — 05
. - [DX -
NODX(DX): Stack OD; OD+ {OSx[Rlx| 0 |}— OD
. 0
— — 5 i O] -
NODY(DY): Stack OD; OD + {0S x [Rl x| DY |[— OD
[o
NODZ(DZ): Stack OD; OD+ 1OSx[RIx| 0 |}— OD
. DZ
B 1 0 ‘ 0 7)
NRX(RX): Stack [R]; [R] x 0 cos RX =-sin RX [— [R]
] sin RX cos RX _
" cos RY 0 sin RY 7
NRY(RY): Stack [R]; [R] x 0 1 0 — [R]
| =sin RY 0 cos RY
[cosRZ -sin RZ 0 7
NRZ(RZ): Stack [R]; [R] x sin RZ cos RZ 0 — [R]
- 0 0 1
NOSXY(S, DX, DY): Stack OS,0D; OD- OSx[RIx OXDYO)' 0D, $xOS -» 0OS
NOSXYZ(S,DX,DY,DZ): Stack OS,0D; OD - OS$x[Rlx (DX DY DZ)' . OD; SxO5 . » OS
NODXY(DX,DY): Stack OD; OD- OSx[Rlx (OXDYO)' . od
NODXYZ(DX, DY, D2): Stack OD; OD - OSx [Rl1x X DY D7) > 0Ob
1 0 0 cos RY 0 sin RY cos RZ -sin RZ 0
NORXYZ(RX,RY,R2Z): Stack [R]; R] x ,: o] cos RX =sin RX } l: 0 1 0] [sin RZ cos RZ 0:’ - — [R]
0 sin RX cos RX -sin RY 0 cos RY 0 0 1
cos Rl -sin R1 0 cos RY [o} sin RY cos R3 -sin R3 0
NORZYZ(R1,RY,R3): Stack [Rl; IR x [s;ngm co(s)m ? j' [-sinoRY (]) cosORY] [5in0R3 cosORs (1)] — MW

4-45

STACK CONTENTS AFTER NEST (Local Stack initially has "L'" entries)

Refr ARG Index{ Stack OS Stack ‘-(-)T)- Stack [R] | Stack OS, OD
L+ 1 oS oD[z] | R[zZZ] oS
L+2 - 2101 OD[Y] | R[zY] oD[z]
L+3 OoD[X] | R[zX] | ODIY].
L+4 2203 R[YZ] ODI[X]
L+5 RIYY] 2104
L+6 RIYX]

L+7 ' RIXZ] |
L+8 R[XY]
L+9 RIXX]
L+A 4409

SECTION V

DISPLAY CONTROLLER HARDWARE DESCRIPTION

5-1. DISPLAY REGISTERS

The standard display controller system (excluding the Display Processor) contains
16 addressable registers that can be subdivided into four categories as shown in
Table 5-1. Additional registers can be provided as options. Appendix D1 lists all
registers (both standard and optional), register formats, and the method of acces-
sing these registers. The following descriptions of register formats and functions
are limited to the 16 standard registers.

Table 5-1. Display Controller Registers (Standard), Station #1
(Addresses are provided in hexadecimal)

Control Status Instruction Data
DCU. (100) | DCUST. (102) DCUI. (105) SPX. (10C)
vGu. (120) spy. (10D)
Mcu. (128) SPZ. (10E)
FGU. (130) NAME. (10F)

XREG. (124)
YREG. (125)
ZREG. (126)

REG. (127)
CHAR. (131
CHSC. (137)

5-1

DCU

5-2. CONTROL REGISTERS

Prior to drawing a display on the CRT screen, the DCU, VGU, MCU and FGU control
registers must contain the desired display parameters (i.e., frame rate, frame
mode, line type, character font and orientation, monitor selection, etc.). A descrip-
tion of each of the four control registers follows.

5-3. DCU CONTROL REGISTER (DCU.)

This 16-bit register (refer to Appendix D1) may be loaded by a LOAD instruction in
the refresh list or by a programmed output from the GPU. The register contents
are used to start and stop display refresh, enable display interrupts, acknowledge
display interrupts, and to establish the frame rate and the frame mode. Operation
of the register fields are described below.

START/STOP Field ~Controls CRT refresh as follows:

00 01 02 -Start/Step field bits

0 0 O -NOOP

0 0 1 -NOOP

0 1 o0 -STOP; resets START and RUN flip-flops to inhibit
refresh list data transfer from RBU to DCU.

¢ 1 1 -START; sets START and RUN {o permit memory data
requests by the DCU.

1 ¢ 0 -Resume; causes the DCU to restart data transfer from

the RBU as specified by the frame mode (or to
continue refresh at point it was interrupted).

1 0 1

1011 -Not permitted.
ENSET,CLK,DEV,EOL,HLT -The clock, device, end-of-list, and interrupt-

on-HALT enable bits are controlled as follows:

03 04 05 06 07 -Interrupt enable bits,

1 1 1 1 1 -Set interrupt enable bits.

0O 0 0 0 O -No change.

0 1 1 1 1 -Reset interrupt enable bits,

ACK -Bit 08 -Acknowledges display system interrupts.

* Pick window or light pen only.

5-2

FRAME MODE Field

09 10 11
0 0 O
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

FRAME RATE Field

12 13 14 15
0 0 0 O
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 O
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 O
1 0 0 1
1 0 1 O
1 0 1 1
i1 0 0
11 0 1
11 1 0
11 1 1

NOTE:

—-Frame Mode field bits
-NOOP

-CUTOFF

-ALL

-CONTINUOUS

-CLK 120Hz

-FRM

-OFF

-EXT

DCU

—Controls CRT refresh as follows:

-No change.

-Frame clock cuts off picture and restarts
refresh.

-No cutoff, restart refresh at first frame
clock following end of picture.

-No cutoff, restart refresh immediately
after picture end.

-No cutoff, restart refresh at next 120-Hz
clock. *

-No cutoff, restart refresh and display
single frame.

-No auto refresh, finish picture if refresh-
ing and don't restart.

~-External clock cuts off picture and restarts
refresh.

*100 Hz if 50HZ input power

—-Controls CRT refresh as follows:

-Frame Rate field bits

- -No change.

-120
-120/2
-120/3
-120/4
-120/5
-120/6
-120/7
-120/8
-120/9
-120/10
-120/11
-120/12
-120/13
-120/14
-120/15

120 frames/second
60 " "
40 v 1"
30 " 1"
24 " 7"
20 " "
17 1" 1"
15 " 1"
13 " "
19 " 1"
11 "
10 1" 1"

g n "
8.5 " "
8 1" "

The frame rates listed above are based on the use of 60-Hz input power.
When 50-Hz power is used, the highest frame rate is 100 frames/second,
and all other rates are divided down proportionally.

5-3

VGU
MCU

5-4, VGU CONTROL REGISTER (VGU.)

The VGU Control Register (see hex address 120 in Appendix D1), containing only
3 bits of data, may be loaded by a LOAD or VECTOR instruction in the refresh list
or by the host computer during a programmed output. Register contents are used to
specify the type of line to be drawn on the CRT screen as follows:

LINE TYPE Field -Controls type of line to be drawn as follows:

09 10 11 -Line Type field bhits
0 0 -No change.
-Draw solid lines.
-Draw long dashes.
-Draw short dashes.
-Draw long/short dashes.
-Draw long/short/short dashes.
- Point mode, unblank at end of vector move.
-Not used.

o = O OO
O O O
O H O MO ~ O

5-5. MCU CONTROL REGISTER (MCU.)

The MCU Control Register (see hex address 128 in Appendix D1), con?;aining 9 bits
of data, can be loaded by a LOAD instruction in the refresh list. Contents of this
register are used to select one of four display monitors (up to 8 optional).

MS ENABLE Field MONITOR SELECT Field -Selects monitors to be unblanked
00 08 09 10 11 12 13 14 15

0 - - - - - - - - -Nochange to blanking scheme

1 1 0 0 0 0 0 0 0 -Enable unblank of Monitor 1,
blank of Monitors 2 through 8

1 0 1 0 0 0 0 0 O -Enable unblank of Monitor 2,

i blank of Monitors 1,3 through

8.

1 0 6 0 0 0 0 0 1 -Enable unblank of Monitor 8
blank of Monitors 1 through 7

1 1 1 1 1 0 0 0 0 -Enable unblank of Monitors 1
through 4, blank of Monitors
5 through 8

5-4

5-6. FGU

FGU

CONTROL REGISTER (FGU.)

The FGU Control Register (see hex address 130 of Appendix D1), containing 5 bits
of data may be loaded by either a LOAD or CHARACTER instruction in the display
list. The register contents are used to control the 90 degree character rotation
feature and type of font as follows:

ROTATION Field

09 10 11

i e B el [T e R e B e
H = O O L o i)
O O O = O

SLANT Field

12 13
0 0
0 1
1 1

—-Controls 90° rotation of characters as follows:

-Rotation field bits
-No change.
-No change.
-No change.
-No change.

-Normal (no rotation).
-90° CCW rotation.
-180° rotation.

-270° CCW rotation.

—Controls character font as follows:

-Slant field bits

-No change.

-Select normal font.

-Select slanted font (right-slanted 26 degrees).

5-5

DCUST

5-7. DISPLAY CONTROLLER STATUS REGISTER (DCUST,)

The Display Controller Status Register (see hex code 102 of Appendix D1), con-
taining 14 bits of data, stores the status of the DCU and can be read only. A descrip-
tion of the status bits follows.

Bit Function
2 RUN -The DCU is in the RUN mode,
3 2nd BYTE -Indicates the second byte of a 16-bit word.
Example: Y data in an incremental vector word or the
second character in a character word.
4 CLK -Clock interrupt bit (120Hz)
5 DEV -Device interrupt bit (Light Pen or Pick Window)
6 EOL -End-of-list interrupt bit,
7 HLT -Interrupt bit for Instruction Control Halt and Interrupt.
8-11 HIT1-4 -Hit/Select option bits.
12-15 PEN SW - Pen Switch option bits,

5-6

DCUI

5-8. DISPLAY CONTROLLER INSTRUCTION REGISTER (DCUI)

The Display Controller Instruction Register (see hex address 105 in Appendix D1)
contains the instruction word of the current display refresh list. This specifies the
operation to be performed by the system. The DCUI Register can be loaded only by
an instruction word in the refresh list, However, its contents may be read by the
host computer during a programmed input.

Four types of instructions can be specified by the DCUI Register: (a) CONTROL,
(b) LOAD, (c) VECTOR, and (d) CHARACTER. Additional information concerning
these four types of instructions can be found in the following paragraphs. The OP
CODE Field (bits 00 and 01) is shown below. Other fields are illustrated in Figure
5-1. Bit 14 is always a 1; bit 15 is always a 0.

OP CODE Field -Specifies one of four types of instruction words in current dis-
play refresh list.

00 01 -Op Code field bits

0 0 -Control Instruction

0 1 -Load Instruction

1 0 -Vector Instruction

1 1 -Character Instruction
Other Fields -see Figure 5-1

5-7

DCUI

|\

00/ 01]02/03|04]05/06]07]08|09[10]11]12]13]|14]15
nir

0| o] ot 1| 0| CONTROL INST

0|1 COUNT DESTINATION 10| LOADINST
DATA

2 DATA =| LOAD DATA LIST
DATA

110NN\ I3l BNk | coLor %LNE olo!l1]o!] VECTOR ABS INST

+ COORDINATE REG | OF | ABS DATA

1] 0[N\ |3D|BLNK | COLOR LINE To[1{1]|0]| VECTORREL INST

] A COORDINATE | REG | OF | RELDATA

110 3DI| BLNK | COLOR %{,"l‘,g 11S|1/0]| VECTOR INC INST

+ A X COORDINATE | = A'Y COORDINATE -I -I 2D INC DATA

* A Z COORDINATE J-— 3D INC DATA

[3D | BLNK COLOR ROTATE |SLANT| 1 | 0 | CHARACTER INST

CHARACTER #1 CHARACTER #2 TEXT/CONTROL

Figure 5-1. Display Refresh Instructions and Data Format

5-8

DCUI: CONTROL

5-9, CONTROL INSTRUCTION

The CONTROL instruction (see example in Figure 5-1) functions to halt the display
controller with or without an interrupt. The CONTROL TYPE Field is shown below.
In the case where both bit 2 and bit 3 of the CONTROL TYPE Field are set, three
events occur in sequence: (a) the display controller halts, (b) an interrupt is gener-
ated if bit 7 of the DCU CONTROL REGISTER (hex 100 in Appendix D1) is set, and
(c) bit 7 of the DCUST DISPLAY CONTROLLER STATUS REGISTER (hex 102 in
Appendix D1) is set to signify that the interrupt has been generated.

CONTROL TYPE Field -Specifies the type of control instruction.
02 03 -Control Type field bits

0 0 -NOOP

0 1 -Not used.

1 0 -HALT

1 1 -HALT and Interrupt.

5-9

DCUT: LOAD

5-10. LOAD INSTRUCTION

The LOAD instruction (see second example in Figure 5-1) works in conjunction with
a list of data words to load the display registers specified by the DESTINATION and
COUNT fields. As illustrated in the second example of Figure 5-1, the data words

must immediately follow the LOAD instruction, and the number of data words must

agree with the COUNT field. Notice that a COUNT field of 0000 signifies one regis-
ter to be loaded, 0001 signifies two registers, etc.

DESTINATION Field -Contains the address of the first destination register (the
first register to be loaded).

COUNT Field -Contains the count of the number of registers to be loaded
successively.
03 04 05 06 ~-Count field bits
0 0 0 O -Load one register (specified by the DESTINATION address).
0 0 0 1 -Load two registers in succession (starting at DESTINA TION
address).
0 0 1 0 -Load three registers in succession.
11 1 1 -Load 16 registers in succession.

5-10

DCUI: VECTOR

5-11. VECTOR INSTRUCTION

The VECTOR instruction permits vectors to be drawn. As shown in Figure 5-1, the
type of vector draw depends upon the VECTOR MODE Field (bits 12 and 13 of the
VECTOR instruction. The four possible vector modes are as follows: (a) Vector
Absolute, (b) Vector Relative, (c) Vector Incremental and (d) Vector Incremental
with Smoothing. An absolute vector is drawn by using coordinates that are refer-
enced to a fixed origin, the center of the monitor (0,0). A relative vector is drawn
with coordinates that are referenced to the end of the previous vector, using a full
12 bits for any single coordinate. A vector incremental is simply a shortened ver-
sion of a relative vector, using 8 bits to describe any coordinate, and thereby per-
mitting both X and Y coordinates to be specified in a single instruction (also Z coor-
dinate in 3-DI). Finally, an incremental vector with smoothing resembles the normal
incremental vector draw except that an added analog look-ahead feature provides
rounded transitions rather than sharp ones. These VECTOR instructions are briefly
described in subsequent paragraphs.

VECTOR MODE Field -Controls mode of vector draw or move.

12 13 -Vector Mode field bits
0 o0 -Vector absolute
0 1 -Vector relative
1 0 -Vector incremental
1 1 -Vector incremental with smoothing

5-11

DCUI: VECTOR ABSOLUTE

5-12. Vector Absolute

The VECTOR ABSOLUTE instruction causes the data word following the 16-bit in-
struction word to be loaded into the register specified by the REG field, with an
operation performed by the VGU in accordance with the OF field. The vector is
formed by an absolute coordinate, referenced to the center of the monitor. Figure
5-2 illustrates the VECTOR ABSOLUTE refresh instruction and the associated
VECTOR ABSOLUTE data.

000102 |03 |04 05|06 07 08|09 10 11}12]13 14|15

VECTOR ABS 110 3pl BLNK| cOLOR LINE olol1i1lo
INSTRUCTION TYPE

ABS DATA | + COORDINATE REG | OF

Figure 5-2. Vector Absolute Instruction and Data Format

3-D Field* -Specifies either 2-D or 3-D vector
03 -3-D field bit
0 -2-D vector
1 -3-D vector
BLNK Field - Controls blinking of displayed element(s) for all vector instructions
as follows:
04 05 -Blink field bits
0o 0 -No change,
0 1 -No change.
i 0 -Disable blink mode.
1 1 -Enable blink mode (2 Hz rate).

*The 3-D Field is incorporated for use with the VECTOR INCREMENTAL and
CHARACTER instructions. This field has no function in either VECTOR ABSOLUTE
or VECTOR RELATIVE instructions.

5-12

DCUL: VECTOR ABSOLUTE

COLOR Field* -Selects color of display and velocity of beam

06 07 08 -Color field bits
0 o0 -Black and White - Velocity 0 (fastest)
-Yellow - Velocity 2
-Orange - Velocity 3
-Red - Velocity 4 (slowest)
-Green - Velocity 1
-Amber - Velocity 3
-reserved
-reserved

O O O O
—H O OHOKO

0
0
0
1
1
1
1
*E

ffective April, 1978

LINE TYPE Field -Controls type of line to be drawn.

09 10 11 -Line Type field bits
0 0 O -No change.
0 0 1 -Draw solid lines.
0o 1 o0 -Draw long dashes.
0 1 1 -Draw short dashes.
1 0 0 -Draw long/short dashes.
1 0 1 -Draw long/short/short dashes.
1 1 0 - Point mode, unblank at end of vector move,
1 1 1 -Not used.
REG Field -Specifies the register (in both the DCU and VGU) to be