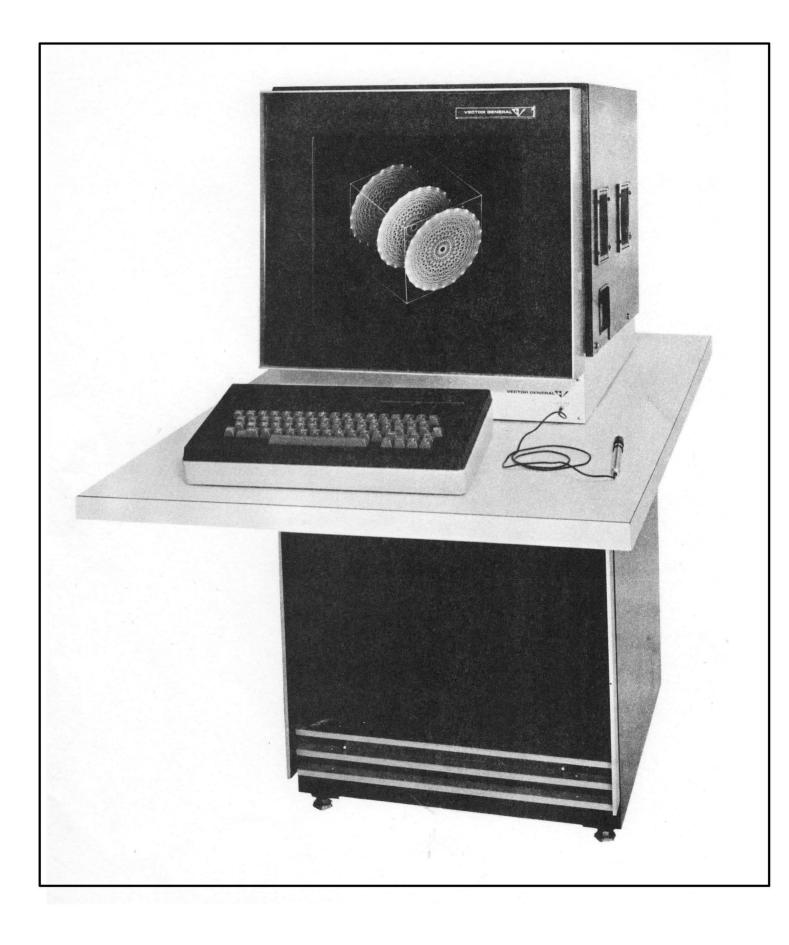
GRAPHICS DISPLAY SYSTEM REFERENCE MANUAL


GRAPHICS DISPLAY SYSTEM REFERENCE MANUAL

January 1972

VECTOR GENERAL, INC. 8399 Topanga Canyon Blvd. Canoga Park, Calif. 91304

© 1970, Vector General, Inc.

The material in this manual is for information purposes only and is subject to change without notice.

CONTENTS	
----------	--

Page

I	GENERAL INFORMATION	1-1
1.1	Introduction	1-1
1.2	System Description	1-1
1.3	Standard Features	1-1
1.4	Optional Features	1-1
1.5	System Specifications	1-4
1.6	Display Principles	1-4
1.7	Visible Space	1-9
1.8	Picture Space	1-9
1.9	Image Space	1-14
1.10	Absolute Vectors	1-14
1.11	Relative Vectors	1-16
1.12	Incremental Vectors	1-16
1.13	Autoincrementing	1-16
1.14	Three-Dimensional Display	1-16
1.15	Character Generati	1-20
1.16	Character Formatic	1-20
1.17	Control Characters	1-22
1.18	Intensity Levels	1-23
1.19	Image Transformation	1-23
1.20	Scaling .	1-23
1.21	Rotation	1-25
1.22	Translation	1-25
1.23	Picture Transformation	1-25
1.24	Picture Scaling	1-25
1.25	Intensity Modulation	1-28
п	SYSTEM ORGANIZATION	
2.1	Introduction	2-1
2.2	Functional Description	2-1
2.3	Vector Coordinates	2-1
2.4	Coordinate Scale Option	2-1
2.5	Rotation Option	2-3
2.6	Displacement Vector Option	2-4
2.7	Picture Control Option	$\bar{2}-\bar{6}$
2.8	Vector Generator	2-9
2.9	Character Generator	2-12
2.10	Circular Arc Generator	2-12
2.11	Cathode Ray Tube	2-15
2.12	Optional Control Devices	2-15
2.13	Alphanumeric Keyboard	2-16
2.14	Lighted Function Switches with Manual terrupt.	2-19
2.15	Joystick	2-19
2.16	Light Pen	2-21
2.17	Data Tablet	2-21
2.18	Control Dials	2-23
2.19	Programmed Input/Output Channel	2-23
2.20	Interrupt Channel	2-23

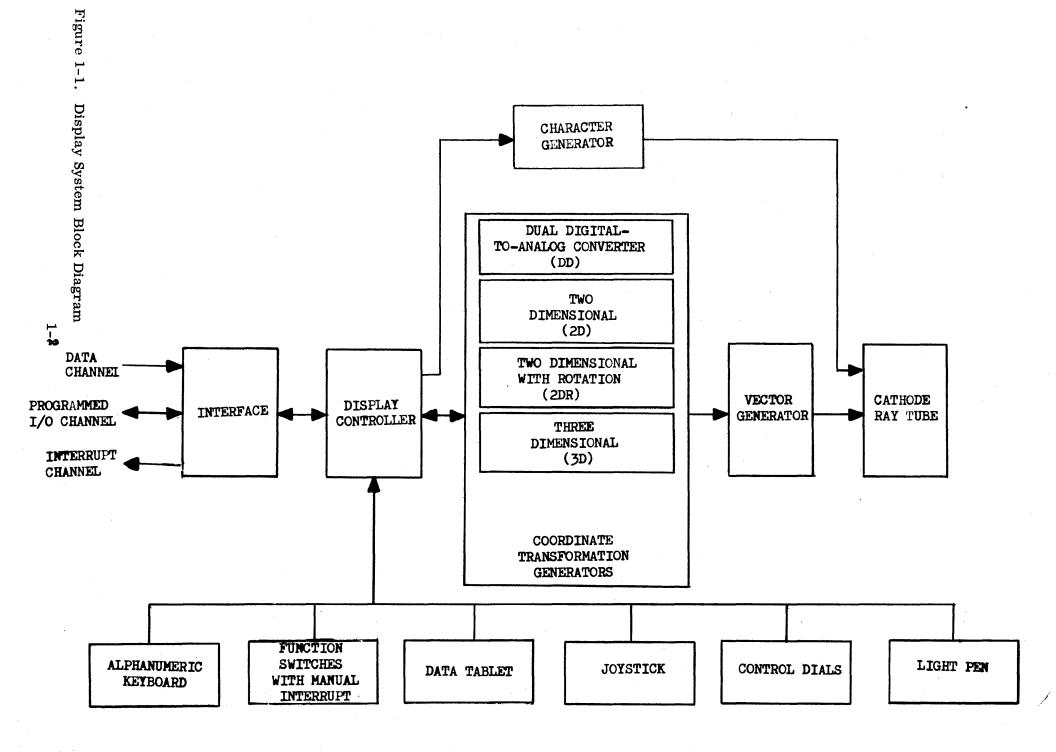
	CONTENTS (Cont'd.)	Page
III	DISPLAY SYSTEM PROGRAMMING	3-1
3.1	Introduction	3-1
3.2	Programmatic Interface	3-1
3.3	Display System Registers	3-2
3.4	Destination Registers	3-2
3.5	Source Registers	3-4
3.6	Programmed I/O	3-4
3.7	Programmed Output	3-5
3.8	Programmed Input	3-6
3.9	Precision of ADC Values	3-7
3.10	Priority Interrupts	3-7
3.11	Mode Control Register (MCR)	3-7
3.12	Interrupt Requests	3-8
3.13	Display P-Bit Interrupt (Subroutine/Jump Facility) •••	3-9
3.14	Display Controller Status	3-11
3.15	Display Instructions	3-12
3.16	Data Lists •••••••••••••••••••••••••••••••••••	3-13
3.17	Word Formats	3-14
3.18	Control Display Instructions	3-14
3.19	No Operation ••••••••••••••••••••••••••••••••••••	3-14
3.20	Halt	3-15
3.21	Register Change Display Instructions	3-15
3.22	Load Registers	3-16
3.23	OR to Registers	3-17
3.24	AND to Registers	3-18
3.25	ADD to Registers	3-18
3.26	Display Write Instructions	3-19
3.27	Vector Relative	3-20
3.28	Vector Relative Auto-X ·····	3-22
3.29	Vector Relative Auto-Y ••••••••••••••••••••••••••••••••••••	3-23
3.30	Vector Relative Auto-Z ·····	3-23
3.31	Vector Absolute ••••••••••••••••••••••••••••••••••••	3-24
3.32	Vector Absolute Auto-X	3-26
3.33	Vector Absolute Auto-Y	3-27
3.34	Vector Absolute Auto-Z ·····	3-28
3.35	Incremental Vectors, 2D	3-28
3.36	Incremental Vectors, 2D Auto-X	3-30
3.37	Incremental Vectors, 2D Auto-Y	3-31
3.38	Incremental Vectors, Three Dimensional	3-32
3.39	Character Generation	3-33

ii

SECTION I

GENERAL INFORMATION

1.1 INTRODUCTION


The Vector General Graphics Display System is an interactive graphics cathode ray tube (CRT) display that may be connected to any computer system with standard input/output capability. The display interacts with an on-line user by displaying pictorial information on the surface of the cathode-ray tube and by accepting inputs from external control devices. The inputs are requested and processed by computer programs that alter and maintain the output picture being presented to the user. This manual contains information needed by the programmer to write programs that use the capabilities of the display to the best advantage. The topics included are a system description, an explanation of display principles, a discussion of the functional organization of the system, a description of optional control devices, a description of display interrupt operation, a description of display instructions with directions for their use, and a sample program.

1.2 SYSTEM DESCRIPTION

The display system contains the necessary features for interactive displays plus several optional features. The standard features are an interface unit, a display controller (DC), a dual digital-to-analog converter (DD), a vector generator (VG), and a cathode-ray tube (DM). The optional features are a character generator (CG) and three coordinate transformation generators: two-dimensional (2D), two-dimensional with rotation (2DR), and three – dimensional (3D). Any one of the six interactive control devices may be connected to the system: an alphanumeric keyboard (KB), 16 (or 32 optional) lighted function switches with manual interrupt (FS), a data tablet (DT), a joystick (JS), control dials (CD), and a light pen (LP). A simplified block diagram of the system is shown in Figure 1-1.

1.3 STANDARD FEATURES

The computer communicates with the display controller by way of the interface over the channels described on Page 1-3.

,

÷.

- Data Channel Direct memory access channel used to output the picture being presented on the CRT screen
- ^o Programmed Input/Output Channel Used to start the controller, acknowledge interrupts, and provide access to the display controller and device registers
- Interrupt Channel Used by display and device response interrupt to activate computer programs

The display controller processes all display functions, running asynchronously with the computer central processor. The controller also receives inputs from the external control devices.

The dual digital-to-analog converter (DD) is the standard version of the coordinate transformation generators. It converts the digital values from the display controller into analog signals for use in the vector generator.

The vector generator accepts input from the coordinate transformation generators and uses it to present solid, dashed, or dotted lines between two positions on the display screen or to place a point at any given position.

The cathode-ray tube generates an electron beam that shows as a spot of light on the face of the tube. An electromagnetic deflection system causes the spot to move in any direction on the tube face in response to signals from the vector generator. An input from the vector generator causes the brightness of the spot to vary and turns the spot off completely when desired.

1.4 OPTIONAL FEATURES

The character generator processes a data stream of ASCII* characters and generates the characters as text for the display. Any one of four sizes may be selected by the program.

Three optional coordinate transformation generators are available.

^{*} American National Standard Code for Information Interchange.

- ^o Two-dimensional for Scale and Translation (2D) Scales and translates two-dimensional constructs and displays them. Scaling changes the size of image portions, and translation moves an image portion along one or both of its axes.
- Two-dimensional for Scale, Translation, and Single-axis rotation
 (2DR) Scales and translates two-dimensional constructs and displays
 them with rotation in a single plane.
- ^o Three-dimensional (3D) Generates three-dimensional constructs and displays them with scaling, translation, and rotation about any axis.
 The external control devices provide the display controller with inputs that can be used by the computer programs.

1.5 SYSTEM SPECIFICATIONS

Table 1-1 lists the general specifications for the display system.

1.6 DISPLAY PRINCIPLES

A cathode-ray tube display is a visible pattern on the face of a cathode-ray tube formed by a fluorescent spot moving on a screen inside the tube. To present a clear image, the pattern traced on the tube is repeated about 30 to 60 times a second. Any such repetition is called a "frame" and the frequency at which it is generated is called the "frame rate".

The Vector General display uses the random scan method of controlling the movement of the spot. Random scan control involves steering the spot in a straight line between two points on the display screen. A series of these straight lines constitutes an image portion. All these directed lines are defined between the previous position of the spot on the screen (the starting point) and the position currently specified by the program (the end point).

Feature	Characteristic	Specification
Interface and Controller	High-Speed I/O Channel	
Controller	Access	Direct memory from CPU
	Word	16 bit
· · ·	Arithmetic	Parallel two's complement
	Addressable registers	43 destination; 66 source
	Vector formatting	Absolute, relative, short
		incremental, long incre-
		mental, autoincrement
	Register operations	Load, add, AND, OR
	Controls	Frame clock, vector gene-
		rator, coordinate trans-
		formation generator,
		character generator,
		interactive devices
	Channels	1 per controller
	Programmed I/O Channel	
	Operations	Register read
		Interrupt handling
		Interactive device input
	Channels	1 per controller

Table 1-1. Display System Specifications

Feature	Characteristic	Specification
Interface and	Interrupt	
Controller	Multiplexing	Priority interrupts multi-
(Cont.)		plexed in controller
	Levels	1 CPU level per controller
Coordinate	Dual Digital-to-Analog	
Transformation Generators	Converter (DD) Speed	1 µs per coordinate pair
Generators	Two Dimensional (2D) Speed	1 μs per coordinate pair
		5 μ s coefficient settling
	Two Dimensional with	
· · · ·	Rotation (2DR) Speed	2.5 µs per coordinate pair
		5 μ s coefficient settling
	Three Dimensional (3D)	e
	Speed	2.5 µs per coordinate triple
		5 μ s coefficient settling
CRT - Vector	Tube shape	21 or 17 inches rectangular
Generator [†]	Display area	21-inch tube: 13 inches hig
		14 inches wide
		17-inch tube: 10 inches hig
		11 inches wide
	Deflection type	Dual electromagnetic
	Spot size	0.020 inch
	Phosphor protection	Hardware
	Brightness	50 foot-Lamberts ^{††}

Table 1-1. Display System Specifications (Cont.)

These specifications apply to a 10-inch x 10-inch and 8-inch x 8-inch precision area within the display area on the screen for the 21-inch and 17-inch CRT, respectively.

††Based on a 50-kHz signal applied to produce a 10-inch x 10-inch flat face raster with P40 phosphor.

Feature	Characteristic	Specification
CRT - Vector Generator	Contra s t Intensity levels	4:1 32
(Cont.)	Intensity modulation	Optional on 3D models
	Dynamic range	30 inches x 30 inches on 21-inch CRT
		24-1/4 inches x 24-1/4 inches on 17-inch CRT
	Addressable locations	4096 x 4096
	Positioning accuracy	2%
	Spot jitter	0.05% peak to peak
	Drawing speed *	
	21" high speed tube:	For "move":
	Vectors longer than 0.625 inch	$[(L - 0.25) (0.7) + 3] \mu s$ For "draw": $[(L - 0.25) (1.5) + 3] \mu s$ where L = longest component in inches
	Vectors shorter than 0.625 inch	3µs
	21" medium speed tube:	For "move":
	Vectors longer than 0.625 inch	$[(L - 0.25) (1.2) + 5] \mu s$ For "draw": $[(L - 0.25) (2.5) + 5] \mu s$ where L = longest component
	Vectors shorter than 0.625 inch	in inches 5 μs
	17" medium speed tube:	For "move":
	Vectors longer than 0.5 inch	$[(L25)(1.2) + 5] \mu s$ For ''draw'': $[(L25)(2.5) + 5] \mu s$ where L = longest component in inches
	Vectors shorter than 0.5 inch	5µs
	End matching	0.020 inch
	End closure	0.020 inch

*Refer to Coordinate Transform Generator Specifications for array settling times.

Table 1-1. Display System Specifications (Cont.)		
Feature	Characteristic	Specification
CRT - Vector	Scissoring	Hardware
Generator (cont.)	Modes	Dot, dash, point, solid
Control Devices	Alphanumeric Keyboard	70 keys including cursor function
	Function Switches	16 momentary (32 optional) 1 interrupt
	Data Tablet	
	Size	10 inches x 10 inches
	Resolution	0.1%
	Control Dials	
	Number	10
	Туре	Single turn
	Function	Programmatic
	Light Pen	
	Туре	Solid state
	Response time	3μs (1μs optional)
Character	Туре	Draw
Generator	Character set	96 extended ASCII
		96 specials
		32 optional specials
	Aspect ratio	3:2
	Writing time	10µs, average
	Cursor	Hardware
Circular Arc Generator	Sizes Size of radius (inches)	4 Drawing time (μs) for arc- length (degrees)
		45 90 180 360
	04	4 4 5 7
	.48 .8 - 1.6	4 5 7 11
	1.6 - 3.2	5 7 11 19 7 11 19 35
	3.2 - 6.4	11 19 35 67
l	6.4 - 12.8	19 35 67 131

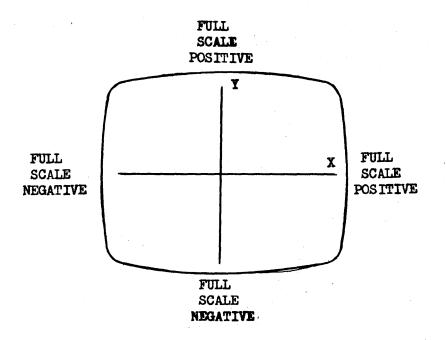
1.7 VISIBLE SPACE

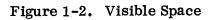
That rectangular portion of the CRT which can be viewed by a user will be called the "Visible Space". The "Visible Space" is limited by an opaque mask with a rectangular cutout. See Figure 1-2.

The picture being generated is adjusted in size (scaled) to present the desired output by means of two controls:

- a. The program controlled "Picture Scale" (PS) register in the transformation hardware (not available on standard DD system).
- b. The manually adjustable "gain-controls" on the CRT deflection hardware.

The picture can be generated on a 'Picture Space'' coordinate system and scaled for viewing through the 'Visible Space''.


The maximum size "Picture Space" is larger than the "Visible Space". This permits limited "zooming" but primarily allows fully visible objects to be rotated and positioned to the extreme limits of the "Visible Space" and yet draw any remaining visible portions without distortion.


For the 21" CRT with the gain knobs at standard midrange calibrated settings, the maximum "Picture Space" (over which the vector generator accurately reproduces images) is a 30" x 30" plane of which the "Visible Space" (CRT screen visible throughmask) is a 13" by 14" rectangle in the center. (See Figures 1-3 and 1-4.)

1.8 PICTURE SPACE

The hardware transformation options permit the coordinates defining an image portion to be transformed prior to use for display generation. The transformed coordinates used for display will describe a rotated and translated instance of the image portion.

For the input coordinates (X, Y, Z) the output transformed X and Y are used to generate the image portions' horizontal and vertical "Picture Space" position respectively. Thus, the "Picture Space" is the X-Y projection of the transformed image definition space (or (X, Y, Z) "Image Space").

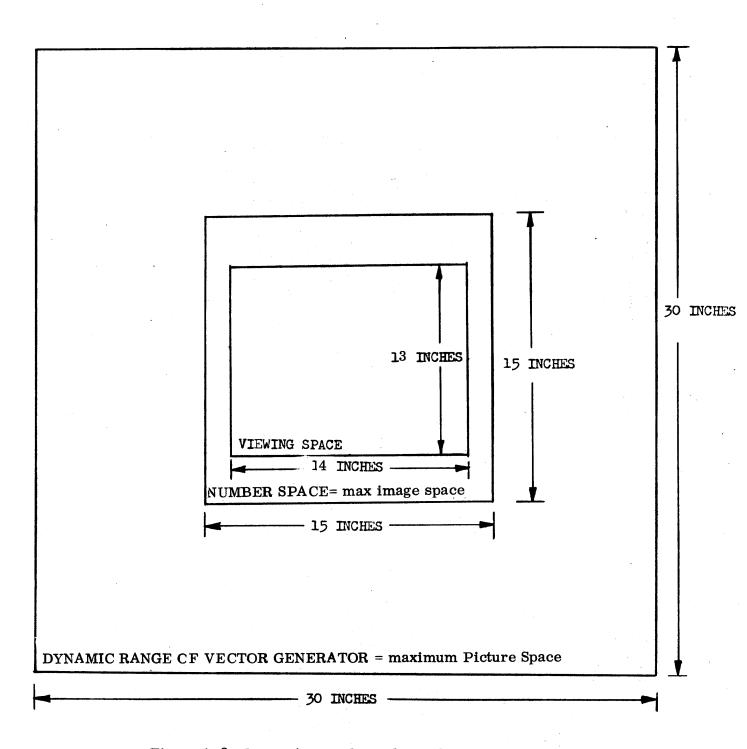


Figure 1-3. Image Areas, 21-Inch Display

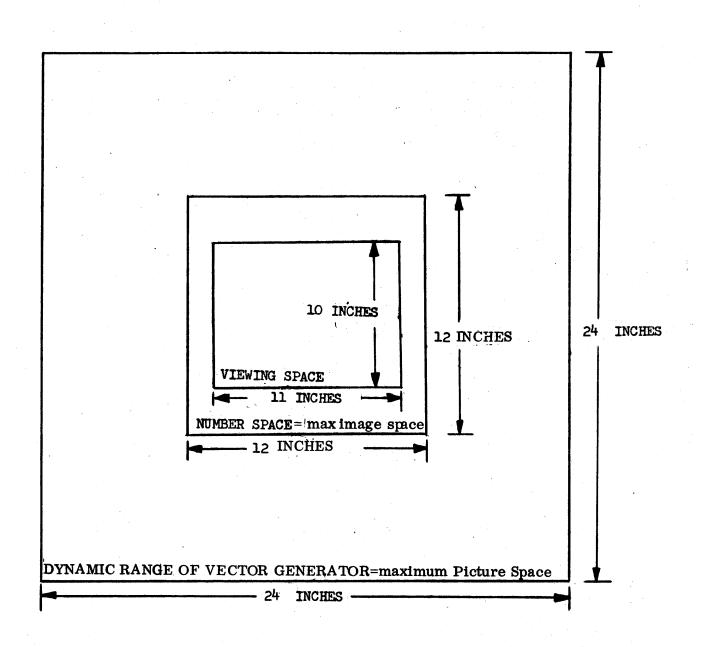


Figure 1-4. Image Areas, 17-Inch Display

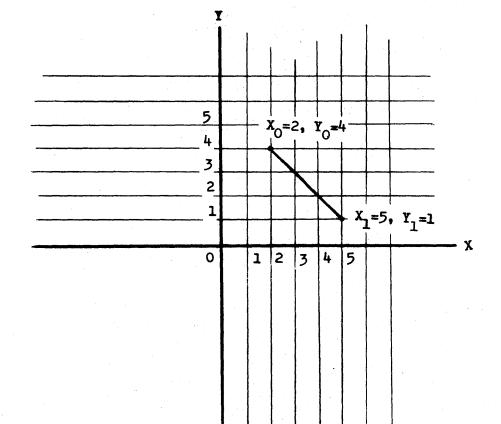
If no transformation is performed, or for zero rotations, zero displacements, and full scale size transformation, an image coordinate (X, Y, Z) will correspond directly to the "Picture Space" (X, Y), with positive X being horizontal towards the right of a viewer and positive Y being vertical. For the 21" CRT with the gain knobs at the calibrated settings, and the Picture Scale register (PS) set to maximum, a plus full scale X image coordinate value transforms into an X Picture Space coordinate value which corresponds to a horizontal displacement 7.5" to the right of center or 1/2" to the right of the Vi sible Space. Similarly, for no transformation and maximum Picture Scale (PS), a full scale Y image coordinate value corresponds to a Picture Space position 7.5" up from the center.

To view a centered two-dimensional object defined over the entire X-Y coordinate range (such as a page of text), the Picture Scale register can be loaded with .92 or the gain knobs turned down (as required on a DD system). To view an entire centered rotated two-dimensional object, an additional factor of $1/\sqrt{2}$ picture scale is needed (not required on DD system since it does not implement rotation). To view an entire centered three-dimensional object which is defined over the entire (X, Y, Z) Image Space, an $1/\sqrt{3}$ factor is needed to view the maximum length of the projected diagonals of the Image Space.

Due to the larger range of the Picture Space over the Visible Space, each of these views may be positioned out of the viewing area in any direction without distorting any remaining visible portions. This capability is termed the "Hardware Scissoring Facility".

1.9 <u>IMAGE SPACE</u>

Prior to transformation and projection onto the Picture Space for viewing through the Visible Space, an object is defined in a coordinate system which we will refer to as the Image Space. All separately transformed objects of a displayed picture are defined in their respective untransformed image spaces.


To exploit maximum use of transformation ranges and coordinate resolution, all objects should be defined as large as possible in their defining Image **Space**. Objects are defined primarily in terms of generated visual elements: Vectors and Characters.

In cases where efficient interactive modification, dynamic model presentation, or motion is desired, an object definition may contain as elements "subimage calls" to generate transformed instances of other objects. In these cases, a composite Transformation of the existing transform with that of the called instance must be loaded into the hardware prior to processing elements of the called object definition for display generation. This permits nesting of transformable object definitions which can be directly processed for display.

In addition to the programmable linear vectors, the display system produces sets of ASCII characters generated independently of the computer program by a character generator.

1.10 ABSOLUTE VECTORS

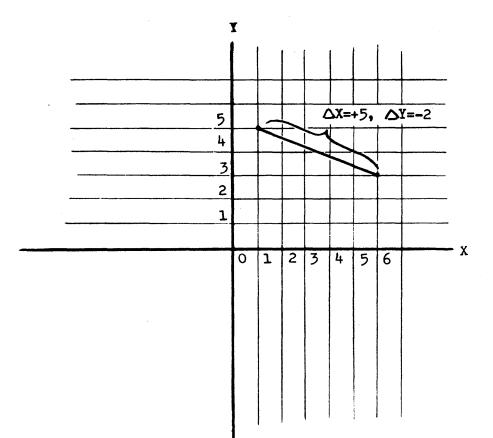
The coordinates of absolute vectors are specified with respect to the zero position in the center of the Image Space (or screen for no transformations). Each new input data value is located directly on the Image Space grid as shown for a two-dimensional vector in Figure 1.5.

Figure 1-5. Absolute Vector

1.11 RELATIVE VECTORS

The end-point coordinates of a relative vector are located with respect to the starting point coordinates. In other words, relative vector data is specified in the form of increments that are added to or subtracted from the previous coordinate values as shown in Figure 1-6. An entire image construction can be positioned by drawing an initial absolute vector and defining the rest of the image with relative vectors without computing new end-point coordinates. This is an effective means of (unscaled and unrotated) subimage calling when no transformation hardware is available.

1.12 INCREMENTAL VECTORS


Incremental vectors are used when data storage is limited. Data increments can be shorter than relative vector increments, with a resultant reduction in the amount of data needed. Incremental vector display, therefore, requires less data storage and improves performance by increasing the rate of output and presentation. For coarse resolution, increments are added to the high-order end of the previous coordinate values; for fine resolution the increments are added to the low-order end.

1.13 AUTOINCREMENTING

The autoincrementing feature is used to step one coordinate at regular intervals while the other coordinate is open to program change, as shown in Figure 1-7. This feature, used for graphs and similar presentations, decreases memory requirements by 1/2.

1.14 THREE-DIMENSIONAL DISPLAY

Three-dimensional presentation involves the addition of a third, or Z, axis that is perpendicular to the face of the screen and intersects the X and Y Picture Space axes at the zero point as shown in Figure 1.8. The Z axis represents depth into and out of the display screen. Option: The illusion of depth may be achieved by varying the light intensity of the fluorescent spot in proportion to the value of the Z coordinate. The intensity increases exponentially with the value from minus full-scale to one-half full-scale intensity, with maximum intensity at the face of the screen. For Z values much less than zero or greater than one-half

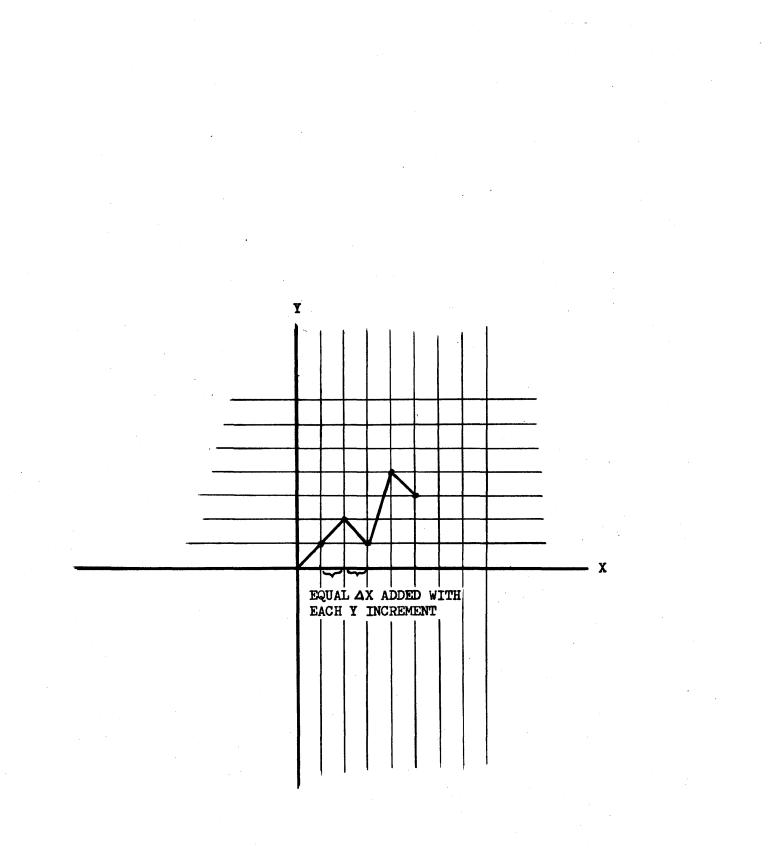
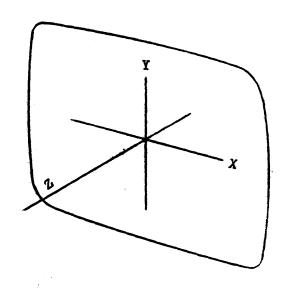
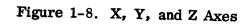
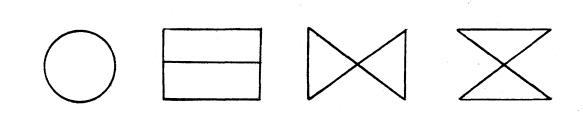




Figure 1-7. Auto-incrementing

full scale, the intensity is zero; that is, the spot is turned off or blanked.


1.15 CHARACTER GENERATION

The character generator accepts coded inputs from the display controller and produces text strings composed of ASCII characters and special characters. Characters are drawn on the screen as a series of short vectors and curves. Unlike the vector generator, however, the character draws are generated automatically by the character generator each time a character code is received.

The program can select one of four character sizes and one of 16 intensity levels. A character scaling option is available for **c**ontinuous character sizes. This option allows Picture Scale and Coordinate Scale to scale the image and characters proportionately. The program also can specify whether the text lines are to be displayed horizontally on the screen or are to be positioned as if on a page that has been rotated 90° counterclockwise. One of the characters is a cursor, which differs from other displayed characters in that the character following the cursor is drawn in the same place, without a column feed. This feature permits the cursor to be moved over the screen as desired with manual inputs. A hardware feature causes the cursor to blink twice per second.

1.16 CHARACTER FORMATION

The character generator uses the function method of drawing characters, rather than the raster or scanning method sometimes used in display systems. The functional approach involves steering the fluorescent spot through a sequence of strokes to create character shapes. The characters are composed from a set of basic image elements, or draw figures, as shown in Figure 1-9. Any ASCII character can be produced in three draws or fewer, a draw being defined as all or a subset of one of the four shapes illustrated. The spot is blanked while moving through

Figure 1-9. Draw Figure Definition

undisplayed sections of a character draw or from one character to another.

1.17 CONTROL CHARACTERS

Twelve codes in the character set are used for control purposes only and do not cause a display on the screen. The control characters and their functions are as follows:

- Null Displays a blank in the corresponding character position.
 The spot is not stepped to the next character position
- ^o Delete Same as Null
- ^o Backspace Causes the spot to revert to the previous character position
- ^o Line Feed Causes the spot to move down to the corresponding character position in the line below
- Form Feed Causes the spot to move to the position of the first character on the page; that is, Line 1, Column 1
- Carriage Return Causes the spot to move to Column Position 1
 on the line below
- ^o DC1 Causes the spot to move up to the corresponding character position in the line above. Equivalent to backline operation
- DC2 Decreases the current character size by 1. This permits sub- and superscript sizes to be embedded in the text.
- ^o DC3 Increases the current character size by 1.
- DC4 Terminates the data associated with a character generation display instruction.
- Horizontal Tab Resets the current column position to "horizontal center" and increases the current line position by one line.
- ^o Vertical Tab Instates current character positioning to "horizontal center" of Line 1.

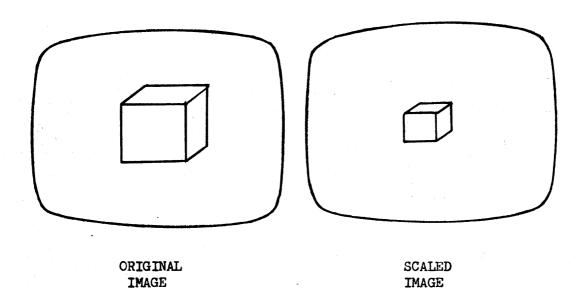
The first character in a string always starts at the location defined by the current X and Y coordinates.

1.18 INTENSITY LEVELS

For two-dimensional display, 32 constant intensity levels can be selected by the program. These intensities can be applied to vectors and characters.

The spot can be blanked as desired under program control during vector display.

Automatic blanking is an effect in the following operations:


- Presenting dashed or dotted lines between two positions on the display screen - The spot is alternately blanked and unblanked at appropriate intervals while a vector is drawn. The start and end of a vector are always unblanked.
- Placing a point at any given position. The spot is blanked while moving from one location on the screen to another and briefly unblanked at the end of the vector to form a point.

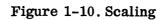

1.19 IMAGE TRANSFORMATION

Image transformation is an optional hardware feature that involves scaling, rotation, and position change (translation). The DD system has no transformation. The 2D system implements scaling and translation only. The 2DR system implements scaling and translation with rotation around the Z axis. The 3D system contains all the image transformation features, including rotation around any axis.

1.20 SCALING

The scaling operation consists of changing the size of an image portion by multiplying each end-point coordinate by the desired scale factor before processing. The scale factor is specified by the program, and the current scale factor is maintained in a hardware register to be multiplied by the X, Y, and Z coordinate values. An example of scaling is shown in Figure 1-10.

1-24

1.21 ROTATION

An image portion can be rotated around any of its axes by using the optional hardware rotation matrix. The desired rotation is specified by loading direction cosines, or the sums of triple products of trigonometric functions in the more elaborate cases, into the rotation matrix, which has registers for each coordinate axis. The rotated image instance is automatically defined by a linear transformation of the coordinates of the unrotated master, using the direction cosines or the triple products which represent the angles between the coordinate axes of the two images. The 2D system rotation matrix contains only the registers necessary to rotate the X and Y coordinates around the Z axis. An example of rotation is shown in Figure 1-11.

1.22 TRANSLATION

An arbitrary image may be positioned anywhere in 3-dimensional space by adding a value to each of the scaled and rotated coordinate values every time an end point is specified. The value added must be constant for each coordinate to maintain the original image configuration. An example of translation is shown in Figure 1-12.

1.23 PICTURE TRANSFORMATION

When a 3-dimensional image made up of characters and vectors has been transformed to obtain the desired scale, rotation, and translation, a 2-dimensional view can be extracted and presented as a picture on the display screen. The two operations involved in this final presentation are picture scaling, to change the size of the transformed image, and intensity modulation (optional) to give a 3-dimensional depth cueing effect.

1.24 PICTURE SCALING

A hardware register is provided to hold a value that scales all the final transformed X and Y coordim te values. This scaling is used primarily to reduce full-scale, rotated, 3-dimensional images so that they fit into the display screen while permitting untransformed images, such as text pages and graphs, to fill the same display area.

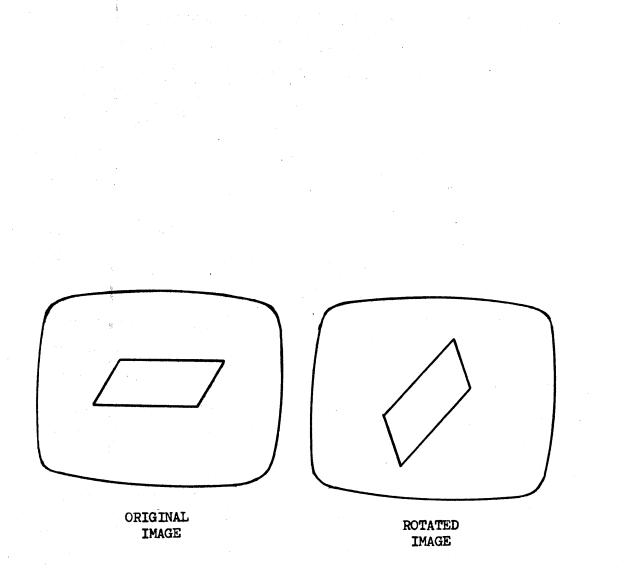


Figure 1-11. Rotation

ORIGINAL TRANSLATED

IMAGE

FRANSLATE IMAGE

Figure 1-12. Translation

1.25 INTENSITY MODULATION

Intensity modulation is the name given to the depth cueing transformation used in all 3D systems, that shades the intensity of the displayed picture to give a 3-dimensional effect. The value of the transformed Z coordinate is used to represent depth into and out of the display screen, and therefore, controls spot intensity.

The picture transformation hardware includes the facility to blank any part of the picture that falls out of the screen towards the viewer. The cutoff plane can be moved toward or away from the viewer by the program so that sectional views may be obtained. This feature is an advantage when it is desirable to remove parts of cluttered images for clearer visibility. Since there is also a cutoff at the rear of the image, this transformation can be used to hide certain lines at the back of a 3-dimensional construct to achieve desired effects.

SECTION II

SYSTEM ORGANIZATION

2.1 INTRODUCTION

This section contains a functional description of the system components, including the hardware registers. The optional control devices that may be used with the system are also described.

2.2 FUNCTIONAL DESCRIPTION

A functional block diagram of the CRT Display System showing the basic operational elements and data flow through these elements is shown in Figure 2-1. The basic elements can be grouped into the following functional sections: vector coordinate registers; coordinate scaling and displacement option; rotation option; picture control option; character generator; vector generator; cathode ray tube; and input/output facility. The optional control devices are not shown in the block diagram but also are basic to the system if included.

2.3 VECTOR COORDINATES

The display system maintains the coordinates of the current position of the fluorescent spot in the 12-bit X- and Y-registers, with the inclusion of a 12-bit Z-register for the 3D option. These registers hold the X, Y, and Z coordinates respectively. The values in these registers are updated as new coordinate values are received on the data channel.

When relative vectors are specified, a coordinate increment is received on the data channel and added to the current coordinate value. The sum is then loaded into the proper register. If incremental vectors are specified, the increment is added to either the high-order or low-order end of the current coordinate value, depending on the scale specified by the program.

2.4 COORDINATE SCALE OPTION

To change the overall size of the image without changing its shape, a

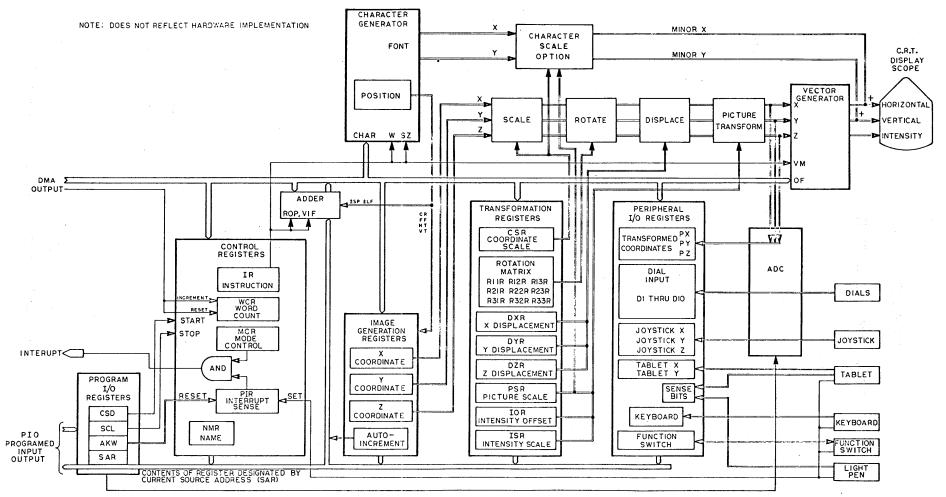


FIGURE DISPLAY FUNCTIONAL BLOCK DIAGRAM

Figure 2-1

scale factor is loaded by the program into a 12-bit coordinate scale register. This number is multiplied by the current coordinate values from the X, Y, and Z coordinate registers. Characters also are scaled in proportion to the rest of the image with the character scale option.

2.5 <u>ROTATION OPTION</u>

To rotate the image around any of the three axes, trigonometric values are loaded into rotation matrix registers R11R through R33R. Registers R13R, R31R, R32R, R23R, and R33R are used only for 3D rotation. If the three scaled input coordinates are defined as X_0 , Y_0 , and Z_0 and the three computed outputs are X_1 , Y_1 , and Z_1 , the following computation is performed:

 $X_{1} = R11R \cdot X_{0} + R12R \cdot Y_{0} + R13R \cdot Z_{0}$ $Y_{1} = R21R \cdot X_{0} + R22R \cdot Y_{0} + R23R \cdot Z_{0}$ $Z_{1} = R31R \cdot X_{0} + R32R \cdot Y_{0} + R33R \cdot Z_{0}$

The coefficients of an object after rotation may be continuously computed from the coordinates of the unrotated master by loading coefficients defining the desired rotation into registers R11R through R33R. Figure 2-2 illustrates the effect on a point of two-dimensional rotation about the Z axis by the angle θ . The coordinates of the rotated point in terms of its original unrotated coordinates are as follows:

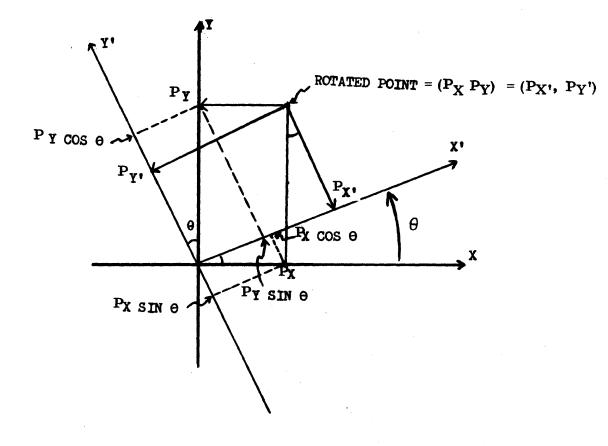
 $X' = X \cos \theta + Y \sin \theta$ $Y' = X(-\sin \theta) + Y \cos \theta$ Z' = Z

The values of R11 through R33 that would perform the illustrated rotation are

as follows:

$$R_{11} = R_{22} = \cos \theta$$

$$R_{12} = \sin \theta$$


$$R_{21} = -\sin \theta$$

$$R_{33} = 1$$

$$R_{13} = R_{23} = R_{31} = R_{32} = 0$$

2.6 DISPLACEMENT VECTOR OPTION

The displacement vector option performs the translation function in the image transformation feature by moving the image intact along any of the three axes. The X-displacement, Y-displacement, and Z-displacement registers are used to implement this feature. A displacement constant loaded by the program into any one of these registers is added to the associated rotated coordinate values being maintained by the rotation, scale, and coordinate registers. The result is a displacement of the entire image along any axis whose displacement register is

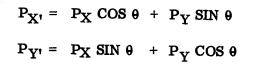


Figure 2-2. Two-Dimensional Rotation

loaded. An example of the displacement operation in an X, Y plane is shown in Figure 2-3. The X displacement register contains a 2 and the Y displacement register contains a 3. The value 2 is added to each X coordinate and the value 3 is added to each Y coordinate as follows:

register contains a 3. The value 2 is added to each X coordinate and the value 3 is added to each Y coordinate as follows:

Original Position	New Position
$X_0 = 2$	$X_0 = 2 + 2 = 4$
Y ₀ = 2	$Y_0 = 2 + 3 = 5$
$\mathbf{X} = 3$	X = 3 + 2 = 5
$X_1 = 3$	$X_1 = 3 + 2 = 5$
$Y_1 = 1$	$Y_1 = 1 + 3 = 4$
$x_2 = 5$	$X_2 = 5 + 2 = 7$
Y ₂ = 2	$Y_2 = 2 + 3 = 5$
$X_3 = 6$	$X_3 = 6 + 2 = 8$
$Y_3 = 1$	$Y_3 = 1 + 3 = 4$

2.7 PICTURE CONTROL OPTION

The picture control option is used for picture transformation after the transformation of individual images on the screen has been completed. The registers used for this feature are the 12-bit intensity offset register, the 12-bit intensity scale register, and the 12-bit picture scale register. The value in the picture scale register is multiplied by each of the transformed

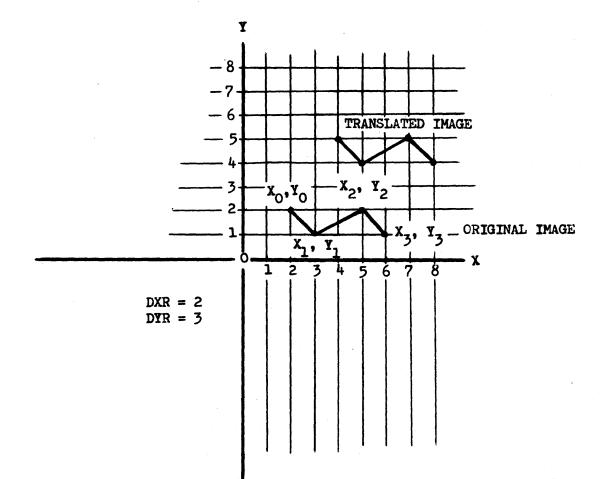


Figure 2-3. Two-Dimensional Translation

X, Y, and Z coordinates to establish the final picture size. This scaling applies also to characters in the picture, with the char-scale option.

In a two-dimensional system, the 12-bit intensity offset register (IOR) is loaded by the program to specify 1 of 32 intensity levels. <u>Only the high-order five bits</u> of the register are used for this purpose. The intensity levels apply to characters as well as to two-dimensional vectors. <u>Full scale</u> in the intensity offset register designates maximum intensity, and the intensity decreases exponentially as the value decreases to minus full scale.

In a three-dimensional system with the Intensity Modulation option the intensity scale register is used in conjunction with the intensity offset register to provide depth cueing, or shading of the intensity of the picture according to the value of the Z coordinate. The intensity of the spot at any instant is represented by the following equation:

if IS sign = 0: $I = I_{max} \cdot e^{k (Z' - 1)}$

else if
$$IS_{sign} = 1$$
:
 $I = I_{max} \cdot e^{k \cdot Z'}$ when $Z' \leq 0$
 $= 0$ when $Z' > 0$
where:
 $Z' = IS * Z_{mag} \cdot T_{rotated} + IO$

This equation provides for exponential shading of the intensity along the length of vectors drawn between coordinates of different intensity values. A "screen-cutoff" can be imposed at Z' = 0 by setting the sign bit of ISR, then if Z is greater than

$$\frac{1-2 * \text{IOR}}{2 * \text{ISR}_{\text{mag}}}$$
, the intensity is 0 and the spot is blanked

The intensity cutoff plane is established by the value in the intensity offset register. Within the depth range of an image, the intensity is blanked between the viewer and the screen. The intensity is at its maximum at the face of the screen and decreases exponentially with decreasing values of Z toward the back of the image. Figure 2-4 shows a simplified cross section of a CRT with a three-dimensional image in two different **positions** with respect to the intensity cutoff plane. As the value in the intensity offset register is changed, the image moves forward or backward through the intensity range, to vary the section that is intensified and the part that is blanked out.

The intensity range, or apparent depth of the image, is determined by the value in the intensity scale register. If the value is 1, the maximum intensity range is achieved. If the value is 0, the intensity is constant and the image has no depth-cueing. Figure 2-5 shows how a variation in intensity scale changes the depth of the image.

2.8 VECTOR GENERATOR

The vector generator accepts as inputs the transformed coordinate values and the display controller instruction. Two outputs from the vector generator move the flouresent spot in a horizontal and vertical direction on the screen. A third output varies the intensity of the display. Programmed vector mode information is stored in the vector generator and used to provide blank and unblank inputs to the CRT to

2-9

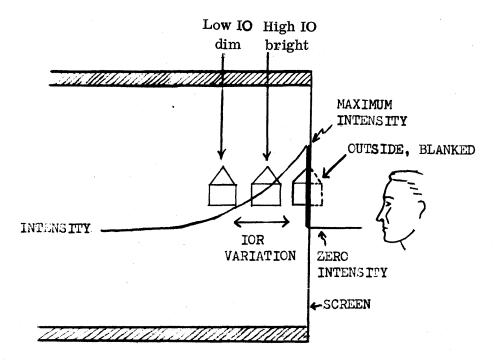
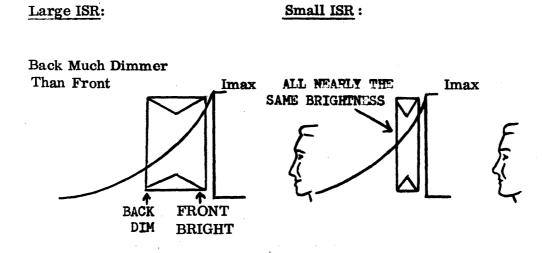



Figure 2-4. Effect of Intensity Offset Variation

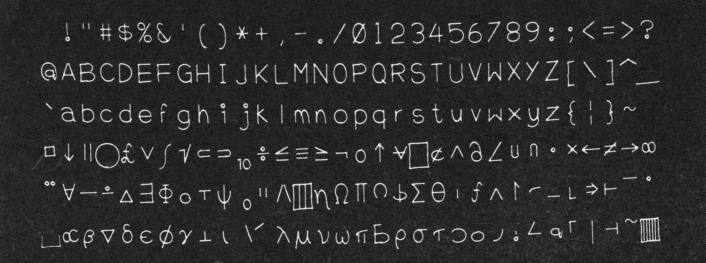
Figure 2-5. Effect of Intensity Scale Variation

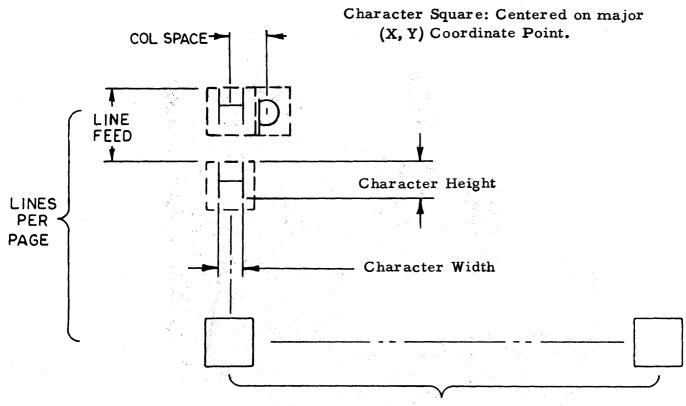
specify lines, dashes, dots, or points. Vector operation information, also stored in the vector generator, determines whether the spot on the CRT will draw a vector, move from one location to another without drawing a vector, or remain stationary while new current coordinates are being received from the computer.

2.9 CHARACTER GENERATOR

The character generator interprets character codes received from the display controller and provides small X- and Y-axis deflection inputs to the cathode ray tube.

Inputs to the character generator are in the form of a stream of ASCII codes and information specifying size and the character fonts.


Character positioning signals from the character generator are sent to the adder for combination with the current X and Y coordinates to locate the starting point for each new character. Size information is decoded to control the minor deflection signals in four different ways to produce the four character sizes. Two-dimensional scaling inputs from the coordinate scale option and from the picture scale control option are used in the character generator so that character strings may be scaled and translated with their associated picture structures; that is, images and their labels may be transformed as a single construct.


The dimensions for character generator outputs in Number Space units are given in Figure 2-6.

The following picture shows the standard character set font. The codes for each character can be found in Appendix A.

2.10 CIRCULAR ARC GENERATOR

The arc generator accepts as inputs the transformed coordinate values and the display controller instruction. Two outputs from the arc generator move the fluorescent spot in a horizontal and vertical direction on the screen. A third output varies the intensification of the display.

COLUMNS PER LINE

Char.Size	(In Decim	nal)	Col. Space	Linefeed	Character	Char.
Code	Cols /Line	Lines/Page	Size	Size	Height	Width
S 0	120	60	42	104	42	26-2/3
S1	80	40	62	144	62	41 - 1/3
S2	60	30	104	210	104	55-1/3
S3	32	16	200	400	200	125-1/3
			e ser tra e par	· · · ·		
Char.Size		A. A			ан Алан Д	
Code	Cha	racter Square	e (Octal)			
S 0	55	5-1/3 X 55-1	/3			
S1	102	2-2/3 X 102-2	2/3			
S2	132	2-2/3 X 132-2	2/3			

Figure 2-6 2-14

252-2/3 X 252-2/3

S3

The generated arcs are coded anywhere within any of the following types of vector lists:

Vector Relative Vector Relative Auto-X Vector Relative Auto-Y Vector Relative Auto-Z Vector Absolute Vector Absolute Auto-X Vector Absolute Auto-Y Vector Absolute Auto-Y

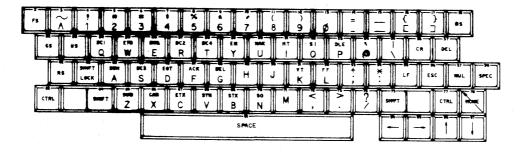
Thus, arcs can have line texture (solid, dotted, or dashed) and can be mixed with vectors.

The arc generator draws arcs from the initial beam position to the given end-point (omitted for 360° circle) about the following center-point.

The center and endpoints of the arcs are properly transformed in both two and three space, but the arcs are drawn in a plane parallel to the screen (as are characters).

Thus, all arcs are properly transformed by DD, 2D, and 2DR systems, and only rotatable about Z in 3D systems.

2.11 CATHODE RAY TUBE


The three inputs to the CRT are horizontal and vertical deflection, to control the movement of the fluorescent spot, and intensity, to control the brightness. The intensity input is received as two signals. One is an intensity level signal, and the other is an on/off blanking signal. The major deflection signals are received from the vector generator, and minor deflection inputs from the character generator are superimposed.

2.12 OPTIONAL CONTROL DEVICES

The functions of the interactive control devices that may be used with the CRT display are described below.

2.13 ALPHANUMERIC KEYBOARD

The alphanumeric keyboard is used as en entry device for manual input to the display system. Pressing a key on the keyboard enters an eight-bit character code into the keyboard register in the display controller and sets bit 12 of the priority interrupt request register (MEK) to indicate a keyboard interrupt condition. The character entered in the keyboard register does not directly affect the display on the screen. The program can read the keyboard register contents and use the information in its operation. One function of the program may be to place the character into a display list being presented on the screen. Holding any key down will maintain the correct code in the keyboard register and, after an initial delay, will repetitively raise the MEK (keyboard interrupt request) to repeat any character. Appendix A lists the codes generated by the keyboard for shifted and unshifted key combinations. The following diagram gives the keyboard layout:

2-17

2.14 LIGHTED FUNCTION SWITCHES WITH MANUAL INTERRUPT

This device contains 16 or 32 function switches plus a manual interrupt switch. The function switch register in the display controller has one bit corresponding to each function switch; that is, bit 0 for function switch 1, bit 1 for function switch 2, and so on through bit 15 for function switch 16. While any function switch is depressed, the corresponding bit in the function switch register is set. The computer can then read the contents of the register and use them.

The manual interrupt switch can be used to cause an interrupt. This feature allows the operator to intercept the program at any desired point. When the manual interrupt switch is pressed, bit 13 of the priority interrupt request register (MES) is set to indicate a manual interrupt condition.

The first 8 bits of the first two output-register addresses control the 16 function switch lights. Sending ones will light the corresponding light, and zeroes turn them off. Note: as with all display registers, ANDing and ORing operations permit independent manipulation of fields.

2.15 JOYSTICK

The joystick is a mechanical device used to enter coordinate values in the 12-bit joystick X, Y, and Z input registers. A forward or backward motion of the joystick increases or reduces the value for the joystick Y-input register. A motion from side to side changes the joystick X-input value. The joystick Z-input value are decreased or increased when the joystick is twisted in a clockwise or counterclockwise direction. All three motions have a spring return to an adjustable null center position. These input registers may be read by the computer, and, if desired, the joystick values may be added into the X, Y, and Z displacement registers to move the display accordingly. Note input values range at least over $\pm 1/2$ F.S.

2.16 LIGHT PEN

The light pen is used to point at an element of a display or to create information by "drawing" on the display. The light pen, a wand containing a photocell, is held over the face of the CRT by the viewer. When the light pen is held over a line or point on the display, bit 10 of the priority interrupt request register (MEP) is set to indicate a light pen interrupt condition. If the light pen switch is activated, bit 15 of the PIR register is set. The light pen may be used to identify an existing element of a display or to introduce new information into the system. In the latter case, a small light pattern (tracking cross) is generated on the screen by the program and acquired by the light pen. The position of the pen in the pattern can be continuously computed from the pen's response to the pattern, and the coordinates can be maintained by the computer program.

It should be noted that when reading the display list word count register to identify the word that caused a pen halt, that the count can be further resolved to the halfword field during packed-data and character modes via the Pen-byte-resolution (PB) field of the mode register. A hardware delay feature that inhibits proceeding to a new instruction until the light pen has had a chance to respond to the last draw is included in the display controller and can be useful for precision pen position in data list identification.

2.17 DATA TABLET

The data tablet is a graphic input device with an X-Y coordinate grid which may be used corresponding to the grid on the CRT screen. Information is entered through the data tablet with a stylus. The tablet senses the location of the stylus on the grid and loads the X and Y coordinates of the stylus location into the tablet X and tablet Y registers whenever a PIO operation is performed. When the stylus is pressed down on the tablet, a switch is activated that sets bit 15 (ST) of the tablet X register.

2.18 CONTROL DIALS

Ten optional control dials may be used to send digital numerical information to the computer for any purpose specified by the program. Each dial is associated with a 12-bit dial input register in the display controller. As the dial is turned, the corresponding register will read back a succession of numbers. These numbers can be read by the computer at any time.

2.19 PROGRAMMED INPUT/OUTPUT CHANNEL

The display is stopped or started and interrupts may be acknowledged by the computer over the programmed input/output channel. This channel also is used to read the contents of the display registers. A source address is sent to the controller to specify which register is to be read first. If further reading is programmed, the contents of other registers are read in numerical order by adding one to the source address each time a register is read.

2.20 INTERRUPT CHANNEL

A bit in the priority interrupt register is set when an interrupt condition is detected. If the corresponding enable bit is set in the mode control register, an interrupt is sent to the computer.

SECTION III

DISPLAY SYSTEM PROGRAMMING

3.1 INTRODUCTION

This section contains a discussion of the priority interrupt system as well as a functional description of each display instruction with its applicable data lists. The display system registers available to the programmer are described, and descriptions of the various word formats used in programming the Display System are given. Operation of the display system consists of processing data words in accordance with their associated instructions. Instructions that draw lines or text strings process data words giving the end point coordinates of the lines or character codes of the text. Register destination instructions are followed by data words containing the information to be acted upon and written into the addressed register.

3.2 PROGRAMMATIC INTERFACE

The interface between the display system and the computer consists of:

- a. A single programmed I/O channel
- b. A single priority interrupt level
- c. A single direct memory access channel

The display presented to the viewer is sent by means of a direct memory access (DMA) block transfer data channel. A computer program must service the DMA to output the lists of display instructions.

Programmatic I/O operations are used by computer programs to control the display system, read its status, and communicate with any peripheral I/O devices. The interrupt is used to support the peripheral I/O devices and to execute programs required by the display lists being output. The use of the interrupt system is further elaborated in Paragraph 3.9.

3.3 DISPLAY SYSTEM REGISTERS

The display system contains registers directly addressable by the program. Registers with DAR addresses (Figure 3-1) may be changed by display instructions and are therefore referred to as destination registers. All registers with SAR addresses (Figure 3-1) may be input by a program with a programmed I/O read operation and are therefore referred to as source registers. The address of a register to be changed by a display instruction is held in a nonaccessible destination address register (DAR), and the address of the next register to be read via programmed input is held in the source address register (SAR).

3.4 DESTINATION REGISTERS

Registers with listed DAR addresses are directly addressable as destination registers, and their contents can be changed by register setting display instructions. Figure 3-1 illustrates the registers and gives the register names and their mnemonics.

Register 6 is the instruction register (IR) which holds the current display instruction of the list being processed from DMA output. Register 7 is the word count register (WCR) and is reset to zero each time the data channel is restarted. As each display list word is transmitted for display processing, the word count is increased by one count.

			REGISTER BIT POSITIONS
D 2 D 3 D D R D D R D X	Function Switch #1 FS Lamp #1 Keyboard #1 FS Lamp #1 Tablet X #1 Tablet X #1 Tablet Y #1 Name & Interrupt Request Mode Control Display Instruction Word Count X Coordinate Z Coordinate Z Coordinate Z Coordinate Z Coordinate Z Coordinate Stack Pointer Stack Pointer* Temp. General Picture Scale Name Coordinate Scale X Displacement Z Displacement Rotation Matrix	DAR FS1 LT1H 0 KB1 LT1L 1 T1X T1Y NMR, PIR 4 MCR 5 IR 6 WCR 7 XR 8 YR 9 ZR 10 AIR 11 IOR 12 ISR 13 MAR 11 IOR 12 ISR 13 MAR 14 SPR 15 TGR 16 PSR 17 NMR 18 CSR 19 DXR 20 DYR 21 DXR 20 DYR 22 R11R 23 R12Z 24 R13R 25	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SAR S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 0 L0 L1 L2 L3 L4 L5 L6 L7 1 1 12 S13 S14 S15 0 L0 L1 L1 L2 L3 L4 L5 L6 L7 1
, te	Window Mode Control Window Boundry X High X Low Y High Y Low Z High Z Low	R21R 26 R22R 27 R23R 28 R31R 29 R32R 30 R33R 31 WMCR 32 XHR 33 HLR 34 YHR 35 YLR 36 ZHR 37 ZLR 38 39 40 41 41	+ 26 + 27 + 28 + 29 + 30 + 30 + 31 MBI MBO MEI MEO MBI MEO MWH MWP PWI PWC PXH * 33 + 34 + 36 + 36 + 36 + 38 - 38 - 39 - 40
	Multi-Device Interrupt Multi-Device Mode Cont. Function Switch #2	42 43 44 50 DPIR 46 DMCR 47 48 49 50 51 FS2	42 43 44 91P2 91P3 91P4 91K3 91K4 91S3 91S4 91S5 91S4 91S5 91S4 91S5 91S4 91S1
	F S Lamp #2 Keyboard #2 F S Lamp #2 Function Switch #3 F S Lamp #3 Keyboard #3 F S Lamp #3	LT2H 52 KB2 LT2L 53 FS3 LT3H 56 KB3 LT3L 57	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Function Switch #4 F S Lamp #4 Keyboard #4 F S Lamp #4	F54 LT4H 60 KB4 LT4L 61	Los Los <thlos< th=""> <thlos< th=""> <thlos< th=""></thlos<></thlos<></thlos<>
	Transformed X Transformed Y Transformed Z Joystick X Joystick Y Joystick Z Dials	PX PY PZ JX JZ D1 D2 D3 D4 D4 D5 D6 D6 D7 D9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Intersection Coord, X Y Z	D10 CX CY CZ	- - 10 + - 79 + - 80 + - 82 + - 83 - - 83 84 - 85

Destination Address for Register Change Instruction Source Address for Programmed Inputs Dual DAC System 2 Dimensional System 2 Dimensional with Rotation Display System 3 Dimensional System =

ł

= =

74

=

DAR SAR DD 2D 2DR 3D =

* Subroutine/Stack Option (See Appendix D.)

Figure 3-1

3.5 SOURCE REGISTERS

All SAR registers may be read by means of a programmed input read operation. The register to be read must first be selected by setting its address in the source address register (SAR) through a programmed output write. After the designated register is read, the SAR is stepped by one, allowing successive registers to be read in sequence by successive programmed read operations. Registers which correspond to analog values (i.e., SAR = 64 - 82) will initiate an analog-to-digital conversion operation to obtain the input value. The conversion is automatically initiated whenever SAR addresses a new analog input value.

Figure 3-1 gives the source and destination addresses for all display system registers and gives the register names and their mnemonics.

3.6 PROGRAMMED I/O

There are two programmed I/O operations: Programmed input read and programmed output write.

Programmed input is used by any computer program to read display state or status, transform or coordinate values, peripheral inputs, etc. The format of the word input matches that of the display register being read. For example, if the SAR specifies source register 4 (PIR), then bits 8 through 13 of the word read via programmed input constitute the interrupt request bits and are set by the individual device requesting an interrupt. Bit positions 0 through 7 of the input word can be used as a name field to identify interrupt requirements as on different pen-sensitive image constructs.

0	0 1 2 3 4 5					6	7	8	9	10	11	13	3 14 15				
	Name										rruj est	pt Bi	ts.				

PIO Sample Input of PIR

Bit positions 0 through 5 of the word written via programmed output are interrupt acknowledge bits. These are used to reset the applicable interrupt request bit in the interrupt condition sense register (PIR) after the requested interrupt has been processed. Bit positions 6 and 7 control the starting and stopping of the display. Bit positions 9 through 15 of the output word indicate which source register is to be read next on the programmed input. The word format for programmed output words is shown in the following diagram.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ac	Interrupt Acknowledge					Cn	trl				,	SAR		- t	

Programmed Output Write Format

3.7 PROGRAMMED OUTPUT

The programmed output write word is sent on the programmed I/O channel to the interrupt acknowledge and source address register. Bits 0 through 5, the interrupt acknowledge field, reset interrupt request bits in the priority interrupt request register (PIR). Bit 7 of the acknowledge field is used to clear and restart the display system processing of an instruction/data stream. Bit 6 is used to stop and clear the display system. The programmed write output word can perform the following three functions:

- o Acknowledge and release any enabled active requested interrupts which are pending, and restart the display if it was waiting
- o Clear current display activities and start or stop display processing
- o Designate the initial display register for subsequent programmed read operations

The programmed output write word is shown in the following diagram.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Р 0	P 1	P 2	P 3	Р 4	P 5	P 6	P 7	2				SÆ	AR		

- P0 Acknowledge Display Interrupt (AKD)
- P1 Acknowledge Frame Clock Interrupt (AKC)
- P2 Acknowledge Light Pen Interrupt (AKP) (and continue if waiting)
- P3 Acknowledge Data Tablet Interrupt (AKT)
- P4 Acknowledge Keyboard Interrupt (AKK)
- P5 Acknowledge Function Switch Interrupt (AKS)
- P6 Stop and Clear Display Controller (SCL)
- P7 Reset and Start Display (CSD)
- SAR Source Address Register (to be read) (P9 through P15)

3.8 PROGRAMMED INPUT

The word input by the programmed I/O channel contains the current contents of the display system register addressed by the source address register (SAR). The source address register is loaded by a programmed output operation, and after each programmed read the source address register is advanced by one count to indicate the next register to be read. Thus, any set of registers may be read consecutively after a programmed output specifying the address of the first.

The source address registers and their contents are illustrated in Figure 3-1.

3.9 PRECISION OF ADC VALUES

The conversion of an input analog value is triggered by SAR addressing the values register (whether SAR was set directly via PIO output or stepped after a previous read). The conversion generates the sign after 3μ s; the remaining bits of the value are generated at one per 1.1μ s.

Thus, if programmed PIO input-store-step and test loop takes $16\mu s$, the full 12-bit precision values will be obtained without the need for any delays. In the case of many devices (dials, joystick), the original data is of much lower precision so that higher-speed input loops also need not wait.

3.10 PRIORITY INTERRUPTS

The priority interrupts in the display system are controlled by the contents of the display system's mode control register (MCR, Register 5) and the priority interrupt request register (PIR, Register 4).

Interrupt conditions set selected bits in the PIR register. These bits can be sensed by a programmed input read of PIR.

Interrupt enabling is performed by the MCR. If an interrupt condition occurs and its corresponding enabling bit in MCR is set, an interrupt request is sent to the computer.

3.11 MODE CONTROL REGISTER (MCR)

Interrupts are enabled by including in the display list a display instruction to set the mode control bits to 1 for each interrupt to be enabled. The following diagram illustrates the mode control register and its bit configuration:

												12 13		
M	M	M	M	M	M	M	M	M	M	M	M	PB	M	M
E	E	E	E	E	E	D	P.	S	S	S	S	PB	D	D
u	C	r	1	K	3	Ð	n	1	2	2	1.		1.	

- MED Enable display interrupt on P-bit halt
- MEC Enable frame clock interrupt
- MEP Enable light pen hit detect interrupt
- MET Enable data tablet interrupt

MEK Enable keyboard character-ready interrupt

MES Enable sense switch interrupt

MDB Enable display blink

MPH Enable light pen halt

MS1 Display 1 scope select

MS2 Display 2 scope select

MS3 Display 3 scope select

MS4 Display 4 scope select

- PB Pen Hit Byte ($\emptyset \ \emptyset$ = word, 1 1 = right byte, 1 \emptyset = left byte)
- MDR Run mode (input only)

MDW Wait mode (input only)

A particular interrupt activity can be disabled by sending a display list with a register change instruction to set the applicable mode control interrupt-enabling bit to zero.

3.12 INTERRUPT REQUESTS

The device desiring an interrupt causes its interrupt bit in the PIR register to be set to 1. The following diagram illustrates the configuration of the PIR register and its interrupt/sense bit configuration.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NMR	D	Ċ	P	1 T	K	S	P I W	Ρ	
NR/D	P	P	P	P	P	P	P	S	

Name field NMR Display P-bit interrupt request PID PIC Frame clock interrupt request PIP Light pen interrupt request PIT Data tablet interrupt request PIK Keyboard character ready interrupt request PIS Manual interrupt switch interrupt request PIW Any window interrupt request SP Light Pen 1 switch sense

If an interrupt request bit is set and its corresponding enabling bit in the MCR register is a 1, an interrupt request is generated and transmitted to the computer on the priority interrupt line. The computer program may then read the contents of the PIR register to determine the device requesting the interrupt. After the interrupt request is serviced, the program writes a word on the programmed I/O line to acknowledge the interrupt (Paragraph 3.7). The interrupt acknowledge bit resets the interrupt request bit in the PIR register.

3.13 DISPLAY P-BIT INTERRUPT (SUBROUTINE, JUMP FACILITY)

Display-interrupt generation is controlled by the P-bit (bit position 0) of all DMA display instructions. If the P-bit is a 1 in the NOOP or Halt instruction and the display interrupt has been enabled (MED in register 5 is set), display process-ing is halted and an interrupt request is generated.

On all other instructions, if the P-bit is a 1 and the display interrupt has been enabled, an interrupt request is generated when the terminate bit or terminate character is decoded in the last word of its data list.

If the P-bit is a zero, display processing continues with the next word following the terminate used as the next instruction.

The P-bit interrupt can be used to call a program which outputs data stored in noncontiguous areas of computer memory, thereby allowing for such operations as subimaging. For example, if a portion of a display, such as a circle, is required numerous times during the construction of the display, the coordinate data for generation of the circle can be stored in a contiguous area of memory disjoint from the main display list. Each time the circle is required during the display construction, the instruction for the desired circle display can be coded as a NOOP with the circle-list address and the P-bit. When processed, it will generate an interrupt request. The interrupt request can then be used to execute a driver program which will output the addressed circle display list prior to continuing with the main display list. The P and terminate bits in the circle sublist can then be used to cause a return to the main display list.

The P and terminate bits can also be used to call up routines to compose transforms for nested sublists with transformations, cause execution of programs to effect constraints, slave the display to a user program, or slave the display to on-line interactive device inputs. Use of the P and terminate bits is dependent on the desires of the user. If the user has the Subroutine/Stack option (see Appendix B), the above facility can be performed totally by hardware.

3-10

3.14 DISPLAY CONTROLLER STATUS

The last two bits of the MCR, bits MDR and MDW, indicate the current state of the display system.

By use of the programmed I/O, a programmed output write can acknowledge and reset PIR conditions and stop or start the display system. If bit 7 is a 1, the reset and start display operation is performed placing the display system in the run state:

MDR = 1

MDW = 0

While in the run state, the display system accepts words from the data channel and processes them for display. Instructions with associated data cause the successive words to be processed under the control of the instruction until a data word coded with a terminate condition is processed.

If a Halt instruction or an instruction with the P-bit set to 1 is processed, the display system halts or waits after the instruction and all its data have been processed.

The display system is then placed in the stop state:

MDR = 0MDW = 0

No further information is accepted from the data channel.

The display system can also be set to pause upon detection of a light pen hit on any of a selected set of display elements by setting the pen-halt enable bit (MPH). The display system is then in a wait state:

MDR = 1

MDW = 1

During the processing of a light pen interrupt with pen-halt on, the display does not request or process any further instruction or data words from the data channel. Once the light pen hit has been processed, acknowledging and resetting the light pen interrupt request causes the display system to leave the wait state, and resume operation in the run state.

If the pen-halt is not on, a light pen interrupt will not cause the display system to leave run state. While the pen-interrupt program is being executed, the display will continue its processing beyond the display instruction at which the hit was detected.

If the pen interrupt (MEP) is not enabled (set = 1), no interrupt will occur. As with any interrupt condition, the corresponding PIR bit will be set and can be used by an executing background program as a sense bit.

3.15 DISPLAY INSTRUCTIONS

Instructions used in the display system fall into three main types: output instructions, used to generate image vectors or characters on the display; control instructions; and register change instructions, used to alter the contents of display system registers.

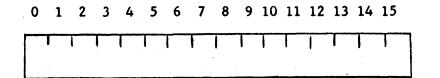
3-12

The following paragraphs contain functional descriptions of the various displaylist instruction configurations processed by the display system as received over the DMA. Each instruction discussion includes a format diagram, a listing of both the octal and hexadecimal codes for the instruction variations, a definition of the applicable code, and a description of the purpose of the instruction.

The octal code given assumes the instruction to be an 18-bit instruction with the first two bits 0's. The hexadecimal code is given in single quotation marks and preceded by the letter X. For example, the hexadecimal notation for the decimal number 21 is written as X'15'.

The codes for fields are combined with the given instruction codes or data fields by a logical OR operation to obtain the value corresponding to any selection of mnemonics.

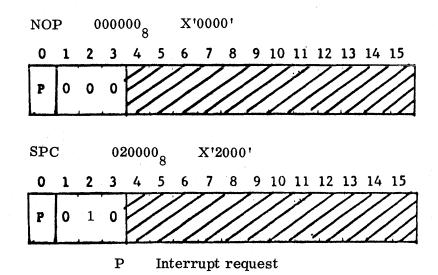
3.16 DATA LISTS


Operation of the display system consists of processing data words in accordance with their associated instructions. Instructions that draw lines or text strings process data words giving the end point coordinates of the lines or character codes of the text. Register destination instructions are followed by data words containing the information to be acted upon and written into the addressed register.

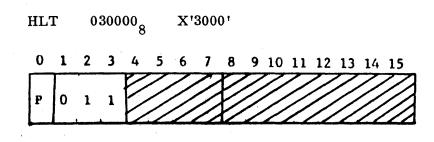
Data words are transmitted in a string or block following the applicable instruction. The last data word in the string must contain a coded terminate bit, field, or character to indicate that it is the last data word for that instruction.

3-13

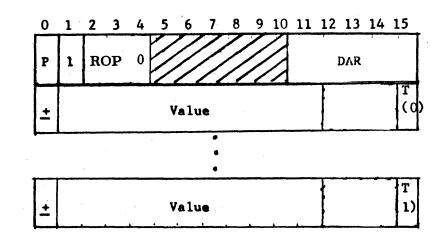
3.17 WORD FORMATS


The display system uses as its basic informational element a 16-bit word with the bit positions numbered 0 through 15 as shown in the following diagram.

Bit position 0 represents the most significant portion of the word, and bit position 15 represents the least significant portion. This basic informational scheme is reflected in the operational registers and the internal elements of the display system.


3.18 CONTROL DISPLAY INSTRUCTIONS

3.19 NO OPERATION


The NOP or Special display instruction may be used to hold data or addresses. These can be used to label image portions or pass arguments to subimages or interrupt-called subprograms. The P-bit permits extending the available display instructions or calling for the execution of arbitrary computer subroutines; the remaining bits (and/or following words) may give name, address, or arguments.

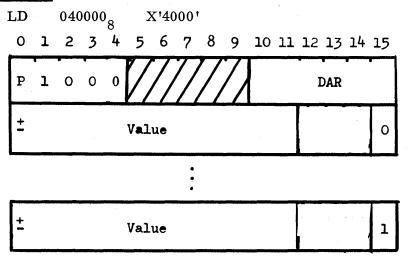
3.20 HALT

The Halt instruction causes the display system to cease all operations. No further instructions or data words are accepted. The display system state is set to not-run, not-wait (MDR = 0, MDW = 0).

3.21 REGISTER CHANGE DISPLAY INSTRUCTIONS

P Interrupt request

ROP Register operation

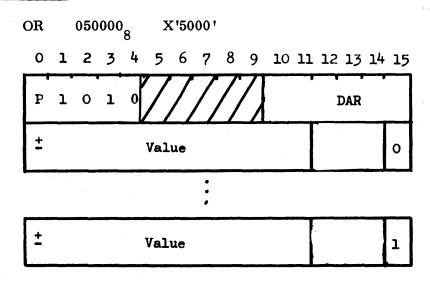

- DAR Initial register address
- T Terminate data-list bit

The register-change instructions are used to alter the contents of any of the display system registers. The instruction designates whether new data is to be loaded into the register or an ADD, AND, or OR operation is to be performed between succeeding data and successive registers. The address contained in the DAR portion of the instruction specifies the first register in a sequence of registers to be affected by the data stream.

The register change data list words contain the new information to be placed into the destination register indicated by the destination address register (DAR). This information may be used to replace the data in the addressed register, added to the existing contents of the register, or logically OR'ed or AND'ed with the contents of the register. The word format for a register change data list is as shown.

When a register setting display instruction is processed, sequential addressing of the destination address register occurs until a terminate bit is decoded in the last of its data words. When the terminate bit is decoded the display beam position will be updated (blanked) to reflect the current values in the affected DARs.

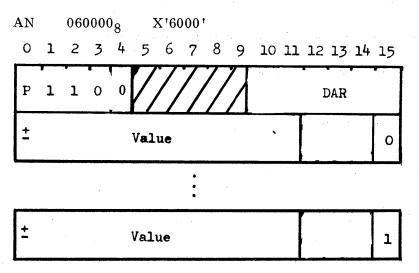
3.22 LOAD REGISTERS


3 - 16

The Load Registers display instruction extracts the value field from its successive data words and loads them into succeeding display system registers, starting with the one designated by the DAR field.

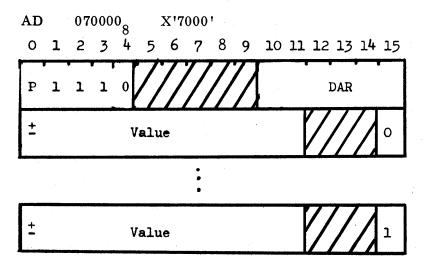
Initial destination register address DAR:

PIR			ISR	15_{8}	X'D'	R12R	³⁰ 8	X'18'
PIR & NMR	⁰⁴ 8	X'4'	PSR	21 ₈	X'11'	R13R	³¹ 8	X'19'
MCR	05 ₈	X'5'	NMR	22 ₈	X'12'	R21 R	³² 8	X'1A'
XR	¹⁰ 8	X'8'	CSR	23 ₈	X'13'	R22 R	338	X'1B'
YR	11 ₈	X'9'	DXR	²⁴ 8	X'14'	R23R	³⁴ 8	X'1C'
ZR	12 ₈	X'A'	DYR	25 ₈	X'15'	R31R	³⁵ 8	X'1D'
AIR	13 ₈	X'B'	DZR	26 ₈	X'16'	R32R	36 ₈	X'1E'
IOR	14 ₈	X'C'	R11R	278	X'17'	R33R	378	X'1F'


3.23 OR TO REGISTERS

The OR to Registers display instruction extracts the value field from its successive data words and OR's them to succeeding display system registers, starting with the one designated by the DAR field.

The DAR assignments are given in Paragraph 3.22.

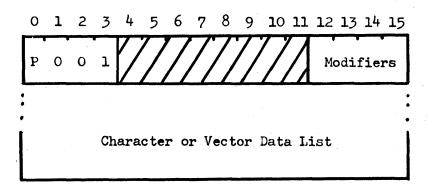

3.24 AND TO REGISTERS

The AND to Registers display instruction extracts the value field from its successive data words and AND's them to succeeding display system registers, starting with the one designated by the DAR field.

The DAR assignments are given in Paragraph 3.22.

3.25 ADD TO REGISTERS

The Add to Registers display instruction extracts the value field from its


successive data words and adds them to the high order 12-bits(0-11) of

succeeding display system registers, starting with the one designated by the DAR field.

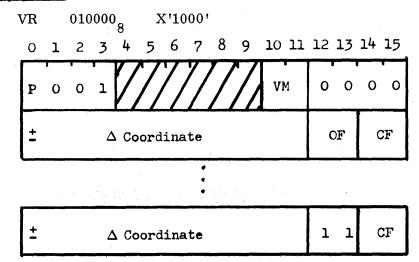
The DAR assignments are given in Paragraph 3.22.

3.26 DISPLAY WRITE INSTRUCTIONS

These display instructions and their following data are output as lists over the DMA channel to generate visual display elements. The basic word format is as shown in the following diagram:

P Interrupt request

The image generation instructions are used to present display elements consisting of solid lines, dashed lines, or dotted lines between two positions on the display screen, points, and characters.


The modifier bits (12 through 15) of the image generation instruction specify if the data words that follow it are to be used for characters, absolute or relative vectors, X, Y, or Z autoincrementing, or 2D or 3D incremental vectors. The instruction also indicates the type of display (normal, dashed, dot, or point) and the incremental resolution or character scaling to be used.

The character generation instruction indicates the size of the characters to be displayed and whether they are to be displayed horizontally or vertically.

The following descriptions are given for no transformations imposed on the generated image prior to display. The user must load any transformation hard-ware with parameters to effect the desired transformation prior to processing any display generating instructions whose output is to be affected.

3 - 19

3.27 VECTOR RELATIVE

The display instruction for relative vectors generates a vector display whose coordinates are relative to the initial contents of the coordinate registers (XR, YR, ZR).

VM Vector mode

Line	blank	0	0
Dashed line	DSH	0000208	X'0010'
Dotted line	DOT	000040 ₈	X'0020'
End-point	PNT	0000608	X'0030'

The type of display generated by the moving beam is specified by the vector mode (VM) field.

OF Operation field

Load register	L	0	0
Load, then draw vector	D	000004 ₈	X'0004'
Load, then move beam (no draw!)	Μ	0000108	X'0008'
Load, draw, terminate	DT	000014	X'000C'

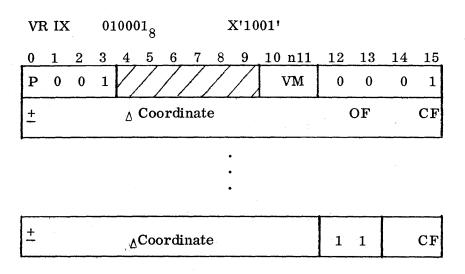
The operation field (OF) of each data word specifies if the beam is to be moved to a new position held in the coordinate registers; also, when moving the beam, it specifies if a vector (type VM) is to be drawn. The OF field also specifies the end of the data list.

CF Coordinate field

Autoincrement register (AIR)	AI	000000 ₈	X'0000'	
X-coordinate register (XR)	Х	0000018	X'0001'	
Y-coordinate register (YR)	Y	0000028	X' 0 002'	24
Z-coordinate register (ZR)	\mathbf{Z}	0000038	X'0003'	

Each data word has a signed 12-bit coordinate increment to be added to a coordinate register or to the autoincrement register (AIR). The coordinate field (CF) of each data word specifies which register is to be updated by the coordinate increment.

When the circular arc generator is included, the following OF-CF combinations will set an arc endpoint from the new position as held in the coordinate registers and prepare to process the next "draw" coordinates as a centerpoint for drawing of a circle or arc in a plane parallel to the surface of the CRT screen.

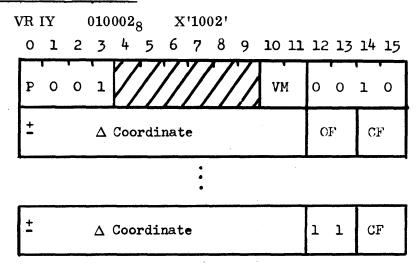

Load clockwise arc endpoint	CW	000004 ₈	X'0004'
Load counterclockwise arc endpoint	CCW	000010 ₈	X'0008'

The next draw operation will update the coordinate registers as specified above and transfer the new coordinate values as the position of the arc center.

If CW or CCW is given after a M or D, the start and endpoint will be the same and a 360° circle will be generated.

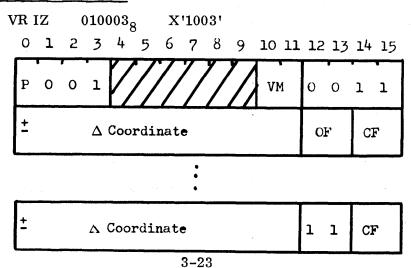
If the radius to start and endpoint are not given as equal, that of the start point is used.

3.28 VECTOR RELATIVE AUTO-X

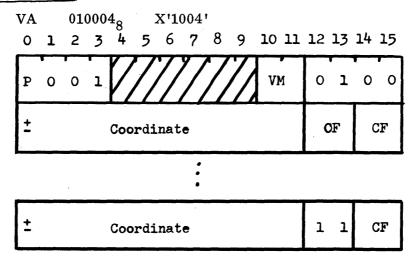


The display instruction for Vector Relative Auto-X processes its data as relative vectors. Each \triangle coordinate value is added to the register designated by CF; then the vector generator performs any function specified by VM and OF. But, after each draw or move operation (OF = D, M), the X-coordinate register (XR) is incremented by the value in the autoincrement register (AIR). The type of vectors generated is specified by VM as described in Paragraph 3.27.

Control of beam motion and blanking or list termination is specified by OF as described in Paragraph 3.27.


Specification of the register to be incremented by the Δ -coordinate value is given by CF as described in Paragraph 3.27.

3.29 VECTOR RELATIVE AUTO-Y


The display instruction for Vector Relative Auto-Y processes its data list as relative vectors. Each Δ coordinate value is added to the register designated by CF; then, the vector generator performs any function specified by VM and OF. But, after each draw or move operation (OF = D, M), the Y-coordinate register (YR) is stepped by the increment in the autoincrement register (AIR). The VM, OF, and CF fields are as described in Paragraph 3.27.

3.30 VECTOR RELATIVE AUTO-Z

The display instruction for Vector Relative Auto-Z processes its data list as relative vectors. Each Δ coordinate value is added to the register designated by CF; then, the vector generator performs any function specified by VM and OF. But, after each draw or move operation (OF = D, M), the Z-coordinate register (ZR) is stepped by the increment in the autoincrement register (AIR). The VM, OF, and CF fields are as described in Paragraph 3.27.

3.31 VECTOR ABSOLUTE

The Vector Absolute display instruction loads the coordinate value from each of its data words directly into the register specified by CF, replacing the previous contents. The beam position is moved if called for by OF and a vector of type VM is drawn if required by CF. The VM, OF and CF fields for absolute vectors are described as follows:

VM Vector mode

Line	blank	0	0
Dashed line	DSH	0000208	X'0010'
Dotted line	DOT	000040 ₈	X'0020'
End-point	PNT	000060 ₈	X'0030'

The type of display generated by the moving beam is specified by the vector mode (VM) field.

OF Operation field

Load register	\mathbf{L}	0	0
Load, then draw vector	D	0000048	X'0004'
Load, then move beam (no draw!)	М	0000108	X'0008'
Load, draw, terminate	DT	0000148	X'000C'

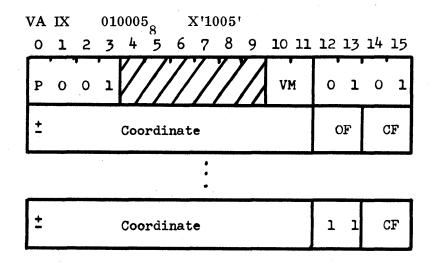
The operation field (OF) of each data word specifies if the beam is to be moved to a new position held in the coordinate registers; also, when moving the beam, it specifies if a vector (type VM) is to be drawn. The OF field also specifies the end of the data list.

CF Coordinate field

Autoincrement register (AIR)	AI	000000	X'0000'
X-coordinate register (XR)	Х	0000018	X'0001'
Y-coordinate register (YR)	Y	000002	X'0002'
Z-coordinate register (ZR)	\mathbf{Z}	000003 ₈	X'0003'

Each data word has a signed 12-bit coordinate value to be loaded into a coordinate register or to the autoincrement register (AIR). The coordinate field (CF) of each data word specifies which register is to be changed to the coordinate value.

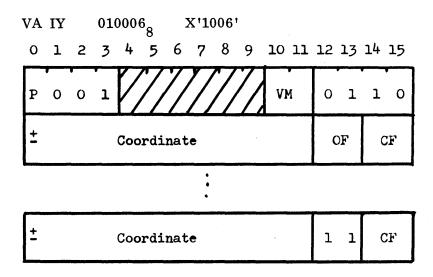
When the circular Arc Generator is included, the following OF-CF combinations will set an arc endpoint from the new position as held in the coordinate registers and prepare to process the next "Draw" coordinates as a centerpoint for drawing of a circle or arc in a plane parallel to the surface of the CRT screen.


Load clockwise arc endpoint	CW	000004 ₈	X'0004'
Load counterclockwise arc endpoint	CCW	0000108	X'0008'

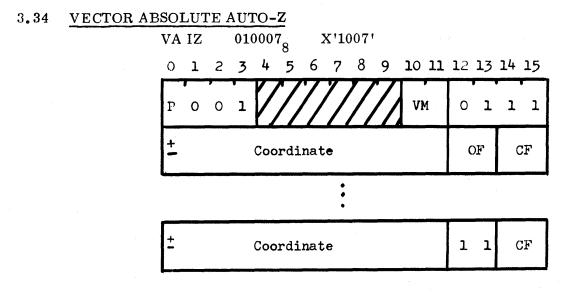
The next draw operation will update the coordinate registers as specified above and transfer the new coordinate values as the position of the arc center.

If CW or CCW is given after a M or D, the start and end point will be the same and a 360[°] circle will be generated.

If the radius to start and end point are not given as equal, that of the start point is used.

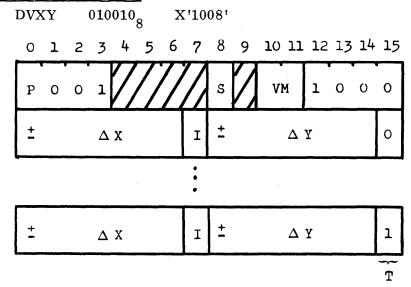

3.32 VECTOR ABSOLUTE AUTO-X

The display instruction for Vector Absolute Auto-X processes its data list as absolute vectors: Each coordinate value is loaded into the register designated by CF; then, the vector generator performs any move or VM-type draw operation if called for by OF. But, after each move or draw operation, (OF = D, M), the X-coordinate register (XR) is stepped by adding the value from the autoincrement register (AIR).


The VM, OF, and CF fields are used as described in Paragraph 3.31.

3.33 VECTOR ABSOLUTE AUTO-Y

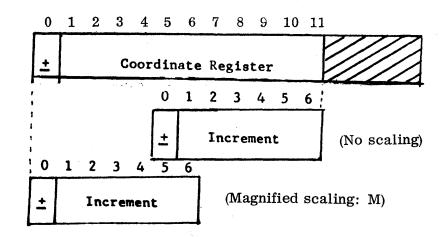
The display instruction for Vector Absolute Auto-Y processes its data list as absolute vectors: Each coordinate value is loaded into the register designated by CF; then, the vector generator performs any move or VM-type draw operation if called for by OF. But, after each move or draw operation, (OF = D, M), the Y-coordinate register (YR) is stepped by adding the value from the autoincrement register (AIR).


The VM, OF, and CF fields are used as described in Paragraph 3.31.

The display instruction for Vector Absolute Auto-Z processes its data list as absolute vectors: Each coordinate value is loaded into the register designated by CF; then, the vector generator performs any move or VM-type draw operation if called for by OF. But, after each move or draw operation, (OF = D, M), the Z-coordinate register (ZR) is stepped by adding the value from the autoincrement register (AIR).

The VM, OF, and CF fields are used as described in Paragraph 3.31.

3.35 INCREMENTAL VECTORS, 2D



The 2D Incremental Vector display instructions generate an XY vector display whose coordinates are relative to the initial contents of the coordinate registers. Also, the maximum possible data rate has been doubled and the storage requirements halved (over those of relative vectors). This is done by reducing the Δ coordinate data field width by 7/12 and packing two values per data word. This performance increase can be exploited where the lower resolution data is adequate and the processing of packed values is not detrimental. The applicability of incremental vectors is enhanced by the scale field (S) which permits the data values to be applied as increments over a coarse or fine grid.

S Increment scale

No magnification:	add Δ to 7 low-order bits	blank	0000008	X'0000'
Magnified: add Δ	to 7 high-order bits	Μ	0002008	X'0080'

By specifying magnification, the coordinate increments are added to the highorder bits of the register being updated; otherwise the increment is sign-extended and added to the low-order bits:

3 - 29

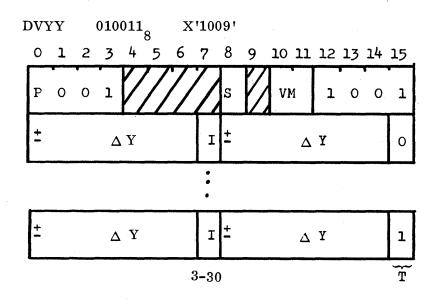
VM Vector mode

Line	blank	0	0
Dashed line	DSH	000020 ₈	X'0010'
Dotted line	DOT	000040 ₈	X'0020'
End-point	PNT	0000608	X'0030'

The type of display generated by the moving beam is specified by the vector mode (VM) field.

I Intensify field

Move beam with no intensification	Μ	0000008	X'0000'
Move beam and draw VM-type vector	D	0004008	X'0100'


The I-field of the incremental vector data word controls beam blanking for processing of the entire data word.

T Terminate field

Continue data list	blank	0000008	X'0000'
Last word of data	Т	0000018	X'0001'

The last bit of an incremental vector data-list word is used to flag the end of the data list.

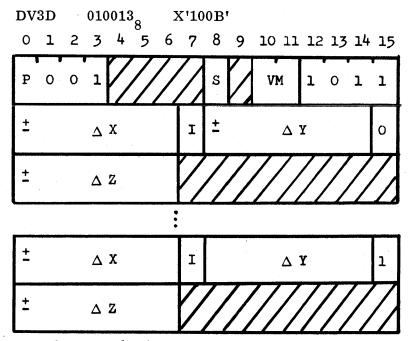
3.36 INCREMENTAL VECTORS, 2D AUTO-X

The 2D Auto-X display instruction generates a two-dimensional, relative, vector display from packed data increments; but the data words supply only Y-coordinate increments. The corresponding X-increments are taken as the constant held in the autoincrement register (AIR). This further doubles the possible vector rate and halves the core requirements for displays such as graphs, where one coordinate is stepped by a constant.

Each data word supplies two Y-increments and, therefore, is used to generate two vectors.

The S, VM, I, and T fields are coded and used as described in Paragraph 3.35, but the I-field applies to both vectors generated from its data word, and both vectors are generated from the final data word (T = 1).

0100128 DVXX X'100A' 6 7 8 10 11 12 13 14 15 9 0 2 3 5 1 VM 0 1 1 0 Ρ 0 S <u>+</u> <u>+</u> I ΔΧ 0 ΔΧ <u>+</u> <u>+</u> 1 ΔХ I ΔΧ Т

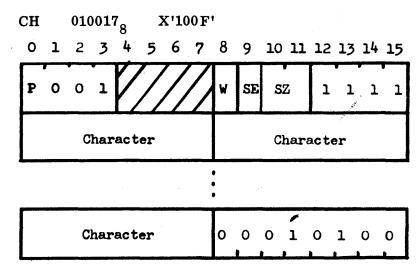

3.37 INCREMENTAL VECTORS, 2D AUTO-Y

The 2D Auto-Y display instruction generates a two-dimensional, relative, vector display from packed data increments; but the data words supply only X-coordinate increments. The corresponding Y-increments are taken as the constant held in the autoincrement register (AIR). This further doubles the possible vector rate and halves the core requirements for displays such as graphs, where one coordinate is stepped by a constant.

Each data word supplies two X-increments and, therefore, is used to generate two vectors.

The S, VM, I, and T fields are coded and used as described in Paragraph 3.35, but the I-field applies to both vectors generated from its data word, and both vectors are generated from the final data word (T = 1).

3.38 INCREMENTAL VECTORS, THREE DIMENSIONAL



The 3D Incremental Vector display instructions generate an XYZ vector display whose coordinates are relative to the initial contents of the coordinate registers. Also, the maximum possible data rate has been increased and the storage requirements reduced (over those of relative vectors). This is done by shortening the Δ coordinate data field width by 7/12 and packing up to two values per data word. This performance increase can be exploited where the lower resolution data is adequate and the processing of packed values is not detrimental. The applicability of incremental vectors is enhanced by the scale field (S) which permits the data values to be applied as increments over a coarse or fine grid.

One vector is generated for every two data words processed.

The S, VM, I, and T fields are coded and used as described in Paragraph 3.35.

3.39 CHARACTER GENERATION

The Character Generation display instruction processes its data as a string of extended ASCII character codes packed two per word.

Each successive character displays a symbol or performs a control function until a terminate character ASCII code DC4) is processed signaling the end of the instruction's data list.

The symbols available include all of the 94 ASCII graphics, plus a standard set of 96 additional symbols (programming, math, Greek, etc.), and an optional set of 32 user-specified special symbols.

3-33

The standard symbols and their codes are given in appendix A.

W Character write-direction

Write characters horizontally	blank	0000008	X'0000'
Write characters vertically	v	000200 ₈	X'0080'

The direction field (W), when set, causes the characters to be displayed as if on a page which has been rotated 90° counterclockwise.

SE, SZ Character size control

Stight.

Use previous character size	blank	0000008	X'0000'
Set size to 120 columns x 60 lines	S 0	0001008	X'0040'
Set size to 80 columns x 40 lines	S1	0001208	X'0050'
Set size to 60 columns x 30 lines	S 2	0001408	X'0060'
Set size to 32 columns x 16 lines	S 3	000160 ₈	X'0070'

The size field (SZ) is used to specify one of the four available string-controlled character sizes. The size-enable bit (SE) causes the contents of the SZ field to be instated as the new character size for subsequent character generation.

Control Characters

Function	Character	Codes	
No display is generated and the beam is not stepped to the next character	DELETE	X'7F'	$\begin{array}{c} 077400 \\ 000177 \\ 8 \end{array} \begin{array}{c} 1h \\ rh \end{array}$
position	NULL	X'00'	000000 ₈ lh 000000 ₈ rh
Causes positioning to revert to the previous character position	BACKSPACE	X'08'	004000 ₈ lh 000010 ₈ rh

ļ,

Control Characters (Cont.)

Function	Character	Codes	
Causes the current line position to be increased by one line	LINE FEED	X'0A'	005000 ₈ lh 000012 ₈ rh
Instates current character positioning at the first character of line 1, column 1	FORM FEED	X'0C'	006000 ₈ lh 000014 ₈ rh
Resets current column position to position 1, the left margin, and increases the current line position by one line	CARRIAGE RETURN (New line)	X'0D'	006400 ₈ lh 000015 ₈ rh
Reduces the current line position by one line	DC1	X'11'	010400_8 lh 000021_8 rh
Decreases the current character size by one size. Permits sub- and super- script sizes to be embedded in text	DC2	X'12'	011000 ₈ lh 000022 ₈ rh
Increases the current character size by one size	DC3	X'13'	$\begin{array}{c} 011400_{8} & \mathrm{lh} \\ 000023_{8} & \mathrm{rh} \end{array}$
Terminates the data associated with a character generation instruction. If the instruction had P-bit set, display halts if P-bit was not set, display continues and takes next word as a new instruction	5;	X'14'	012000 ₈ lh 000024 ₈ rh
Resets the current column position to "horizontal center" and increases the current line position by one line	HORIZONTAL TAB (New line displaced)	X'09'	004400 lh 000011 rh
Instates current character positioning to "horizontal center" of line one	VERTICAL TAB (Form feed displaced)	X'0B'	005400 rh 000013 rh

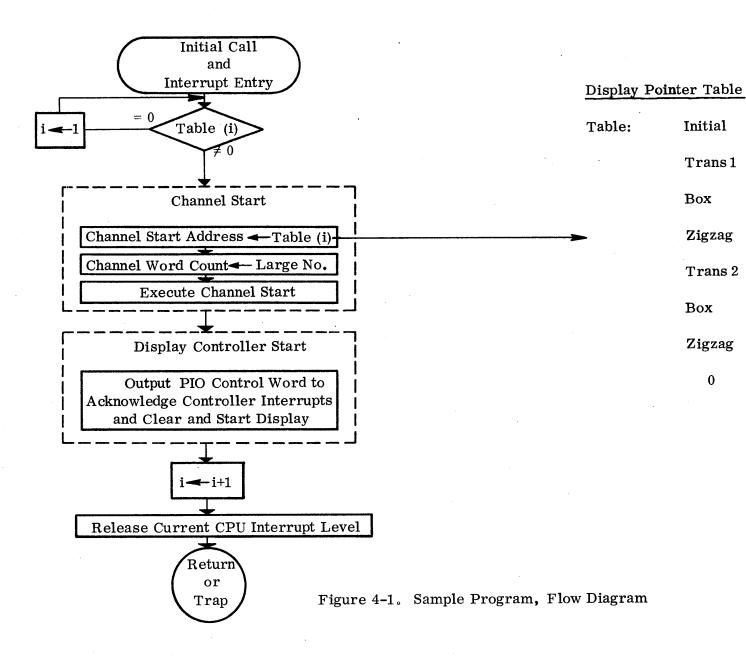
SECTION IV

PROGRAM EXAMPLE

4.1 INTRODUCTION

This section contains a sample program for generating a simple display. Only a flow chart of computer instructions for the driver is given in the sample program since the actual instructions are dependent upon the individual computer. The sample program contains the display instructions and associated data words required to construct the display. The driver sends the display instructions and associated data words through the data channel in the form of block transfers.

4.2 SAMPLE PROGRAM


Figure 4-1 is a flow diagram for the sample program driver code. This program constructs a large box and a small box each containing zigzag lines and the word BOX as illustrated in Figure 4-3.

The program can be called up by a display interrupt request. The memory address associated with that interrupt request contains a branch instruction to the driver program illustrated in Figure 4-1. As indicated in Figure 4-1, the display pointer table points to one of eight display lists. On the first pass, I = 1, the pointer table points through TABLE (1) to the location for list INITIAL. After the channel has been started by the computer, a PIO control word is sent to the display system to start the display. The contents of the first list are

4-1

then sent to the display system. A one is added to the index of the pointer table and the process is repeated when the next display interrupt occurs.

The contents of lists at TABLE (1) through TABLE (4) are used to generate the large box, the zigzag, and the word BOX; lists at TABLE (5) through TABLE (7) are used to generate the small box, zigzag, and the word BOX. The contents of the tables used to generate the display are listed in Figure 4-2.

4-3

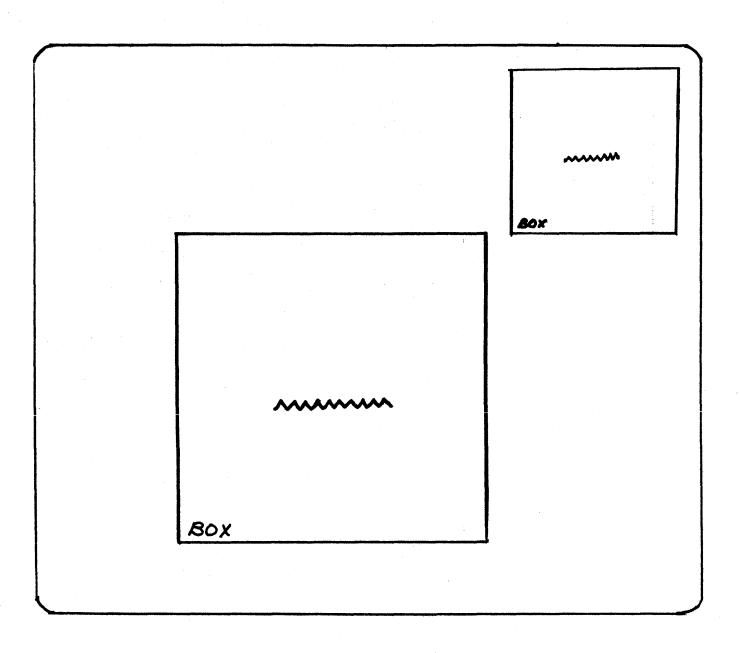
4005	040005	INITIAL	LD, MCR	LOAD MODE CONTROL	
8081	100201		MS1, MED, T	ENABLE DISPLAY INTERRUPT	
400C	040014		LD, IOR	LOAD INTENSITY	
7FF1	077761		2047, т	FULL SCALE BRIGHT	
C011	140021		* LD, PSR	LOAD PICTURE SCALE	
3FF1	037761		1023, T	HALF SCALE	
C013	140023	TRANS1	*LD, CSR	LOAD BEGINNING WITH SCALE	
3FF0	037760		1023	CSR: HALF SCALE	
E000	160000		-511	DXR: -1/4 OFFSET LEFT	
E001	160001		-511 , T	DYR: -1/4 OFFSET DOWN	
1004	010004	BOX	VA	VECTOR ABSOLUTE INSTRUCTION	
8001	100001		-2048, L, X	LOAD X COORDINATE	
800A	100012		-2048, L, Y	LOAD Y COORDINATE AND MOVE	
7FF5	077765	с.	2047, D, X	LOAD X COORDINATE AND DRAW	
7 FF6	077766		2047, D, Y	LOAD Y COORDINATE AND DRAW	
8005	100005		-2048, D, X	LOAD X COORDINATE AND DRAW	
800E	100016		-2048, DT, Y	LOAD Y COORDINATE, DRAW AND	
				TERMINATE	
906F	110 157		* CH, S2	CHARACTER GENERATION INSTRUCTION	
1120	010440		'DC1 SP '	A SCII BYTES, NECATIVE LINE FEED	
				AND SPACE	
426F	041157		"BO"	ASCII BYTES, B AND O	
7814	074024		''X'' 'DC4'	ASCII BYTES, X AND TERMINATE	

NOTE: CODES ARE PRESENTED IN BOTH HEXADECIMAL AND OCTAL. FIRST

CODE IS IN HEXADECIMAL NOTATION; SECOND CODE IS IN OCTAL

NOTATION

*Interrupt (Display)


Figure 4-2. Sample Program Display Lists

4-4

4008	040010 ZIGZAG	LD, XR	LOAD STARTING WITH X-COORD
C000	140000	-2048	LOAD X COORDINATE WITH HALF FS
0001	000001	0, T	LOAD Y COORDINATE WITH ZERO
400B	040013	LD, AIR	LOAD INCREMENT REGISTER
07 f 1	003761	255, T	WITH 255
9009	110011	* DVYY	2D VECTOR INCREMENTAL,
			X AUTOINCREMENT
7E7E	077176	+255, M, +255	MOVE Y
7F82	077602	+255, D, -255	INCREMENT X, DRAW Y
7F82	077602	+255, D, -255	INCREMENT X, DRAW Y
7F82	077602	+255, D, -255	INCREMENT X, DRAW Y
7 F 82	077602	+255, D, -255	INCREMENT X, DRAW Y
7F82	077602	+255, D, -255	INCREMENT X, DRAW Y
7F82	077602	+255, D, -255	INCREMENT X, DRAW Y
7 F 83	077603	+255, D, -255, T	INCREMENT X, DRAW Y AND TERMINATE
C013	140023 TRANS2	* LD, CSR	LOAD BEGINNING WITH COORD SCALE
1FF0	017400	1008	LOAD CSR
3FF0	037760	1023	LOAD DXR
3F F 1	037761	1023, T	LOAD DYR

NOTE: CODES ARE PRESENTED IN BOTH HEXADECIMAL AND OCTAL. FIRST CODE IS IN HEXADECIMAL NOTATION; SECOND CODE IS IN OCTAL NOTATION

Figure 4-2. Sample Program Display Lists (Cont.)

Figure 4-3. Sample Program, Typical Display

A.1 CHARACTER CODES

Table A-1 lists the ASCII* codes used by the display system for the various general and special characters. The codes are given in both octal and hexadecimal notation. The octal codes are given as though there were 18 bits in the data word instead of 16 bits. Since two characters can be given in each data word, the octal codes are given for the right half-word and the left halfword. The left half-word code is given as though there were no character in the right half-word. To obtain the complete code for the two characters in a word, the user must add the two codes together. For example, if the character C is to be in the left half-word and the character A is to be in the right half-word, the code would be:

С	041400	43
<u>A</u>	101	41
CA	041501 ₈	X'4341'

*American National Standard Code for Information Exchange.

A-1

TABLE	A-1.	ASCII	CHARA	CTER	CODES

	~ · -		a 1 a	Alpha.	Uov	Octol		Chan Con	Alpha. Num.
llex	Octal		Char. Gen.		Hex	Octal	Diaht	Char.Gen.	
	Left	Right	Sym.	Keyb.		Left	Right	Sym.	Keyb. Kevs
0.0	0.01000		Da	Keys	4-	040400	1.01		
08	004000	010	BS	BS	41	040400	101	A	A shft
09	004400	011	HT	I ctrl	42	04100	102	B	B shft
0A	005000	012	LF	LF	43	041400	103	C	C shft
0B	005400	013	\mathbf{VT}	K ctrl	44	042000	104	D	D shft
0 C	006000	014	FF	L ctrl	45	042400	105	\mathbf{E}	E shft
0D	006400	015	NL	CR	46	043000	106	\mathbf{F}	F shft
11	010400	021	DC1	Q ctrl	47	043400	107	G	G shft
12	011000	022	DC2(-SZ)	R ctrl	48	044000	110	H	H shft
13	011400	023	DC3(+SZ)	S ctrl	49	044400	111	Ι	I shft
14	012000	024	DC4(term)	T ctrl	4A	045000	112	\mathbf{J}	J shft
20	020000	040	Space	Sp bar	4B	045400	113	K	K shft
21	020400	041	1	1 shft	4C	046000	114	\mathbf{L}	L shft
22	021000	042	11	2 shft	4D	046400	115	\mathbf{M}	M shft
23	021400	043	#	3 shft	4E	047000	116	N	N shft
24	022000	044	\$	4 shft	4F	047400	117	0	O sh ft
25	022400	045	%	5 shft	50	050000	120	Р	P shft
26	023000	046	&	6 shft	51	050400	121	[°] Q	Q shft
27	023400	047	T	7 shft	52	051000	122	R	R shft
28	024000	050	(8 shft	53	051400	123	S	S shft
29	024400	051)	9 shft	54	052000	124	Т	T shft
2A	025000	052	*	: shft	55	052400	125	U	U shft
$2\mathrm{B}$	025400	053	+	; shft	56	053000	126	V	V shft
2C	026000	054	,	,	57	053400	127	W	W shft
2D	026400	055	-		58	054000	130	X	X shft
2E	027000	056		•	59	054400	131	Y	Y shft
2F	027400	057	1	1	5A	055000	132	Z	Z shft
30	030000	060	ø	ø	5B	055400	133	[ſ
31	030400	061	1	1	5C	056000	134	Ň	``
32	031000	062	2	2	5D	056400	135)	ì
33	031400	063	3	3	5E	057000	136	~	~
34	032000	064	4	4			100	(superscript)	
35	032400	065	5	5	5F	057400	137	(subscript)	
36	033000	066	6	6				(Support po)	
37	033400	067	0 .7	7	60	060000	140		@ shft
38	034000	070	8	8	61	060400	141	а	А
39	034400	071	9	9	62	061000	142	b	В
35 3A	035000	072	•	•	63	061400	143	с	С
3B	035400	072	•	•	64	062000	144	d	D
эв 3С	035400	073	, 	, chft	65	062400	145	е	E
			<	, shft	66	063000	146	f	\mathbf{F}
3D	036400	075	=	- shft	67	063400	147	g	G
3E	037000	076	>	• shft	68	064000	150	h	H
3 F	037400	077	?	/ shft	69	064400	151	i	I
40	040000	100	@	@		001100	101	T	1

	TA		SCII CHARAC	TER CO	DES (Cont	.)	Char.	Almho
		Char.	Alpha.		Octol			Alpha. Num.
	Octal	Gen.	Num.		Octal	Diaht	Gen.	Keyb.
Hex	Left	Right Sym.	Keyb.	Hex	Left	Right	Sym.	Keyb. Keys
			Keys					
6A	065000	152 j	J	AC	126000	254	< 11 2	, spec
6B	065400	153 k	K	AD	126400	255	1	- spec
6C	066000	154 l	\mathbf{L}	AE	127000	256	2	• spec
6D	066400	155 m	Μ	AF	127400	257	-	/ spec
6E	067000	156 n	N	B0	130000	260	0	0 spec
$6\mathbf{F}$	067400	157 o	0	B1	130400	261	†	1 spec
70	070000	160 p	Р	B2	131000	262	*	$2 \mathrm{spec}$
71	070400	161 q	Q	B3	131400	263		$3 \mathrm{spec}$
72	071000	162 r	R	B4	132000	264	¢	4 spec
73	071400	163 s	S	B5	132400	265	A	$5 \operatorname{spec}$
74	072000	164 t	Т				(centered)	
75	072400	165 u	U	B6	133000	266	9	6 spec
76	073000	166 v	V	B7	133400	267	L	7 spec
77	073400	167 w	W	B 8	134000	270	U	8 spec
78	074000	170 x	X	B9	134400	271	N	9 spec
79	074400	171 y	Y	BA	135000	272	۲	: spec
7A	075000	172 z	Z				(center dot)	
7B	075400	173 {	[shft	BB	135400	273	X	; spec
7C	076000	174	`∖ shft	BC	136000	274	←	, shft spec
7D	076400	175] shft	BD	136400	275	≠	- shft spec
7E	077000	176 ~	^shft	BE	137000	276	\rightarrow	• shft spec
7F	077400	177 del	DEL	BF	137400	277	00	/ shft spec
80 -9 0F	100000-	200- *	**	C0	14000	300	**	@ spec
	117400	237					(superscript)	-
A0	120000	240 🗆	space spec	C1	140400	301	Ň, Ă	A shft spec
A1	120400	241	1 shft spec	C2	141000	302		B shft spec
A2	121000	242	2 shft spec	C3	141400	303	<u> </u>	C shft spec
A3	121400	243 0	3 shft spec	C4	142000	304	Δ	D shft spec
A4	122000	244 &	4 shft spec	C5	142400	305	Ē	E shft spec
A5	122400	245 V	5 shft spec	C6	143000	306	$\overline{\Phi}$	F shft spec
		(cntrd.)	-	C7	143400	307	•	G shft spec
A6	123000	246 (6 shft spec		1 10 100	201	(superscript)	
A7	123400	$\frac{1}{247}$ $$	7 shft spec	C8	144000	310	T	H shft spec
A8	124000	250 -	8 shft spec	C9	144400	311	Ý	I shft spec
A9	124000	251 ⊃	9 shft spec	CA	145000	312	P 0	J shft spec
AA	125000	252 10***	· -	CB	145400	313	11	K shft spec
AB	125000 125400	253 +	•	CC	146000	314	\wedge	L shft spec
AD	140400	400 T	9 f		140000	014		T pure photo

ASCIL CHARACTER CODES (Cont.) -

* optional special characters

^{**} ctrl and spec and [A - Z] or

^{[@[\] ^}_] ***subscript

TABLE A-1. ASCII CHARACTER CODES (Cont.)

			TABI	LE A-1. ASCII Alpha.	CHARA	ACTER C	ODES	(Cont.)	Alpha.
Hex	Octal		Char.	Num.	Uov	Octal		Char.	Num.
пех	Left	Right	Gen.	Keyb.	Hex	Left	Right	Gen.	Keyb.
	Lett	right		-		Lett	Might	Sym.	Keys.
GD	1 4 6 4 0 0	015	Sym.	Keys	F6	173000	366	0 0	V spec
CD	146400	315	Ш	M shft spec	1		367		
CE	147000	316	η	N shft spec	F7	173400			W spec
CF	147400	317	Ω	O shft spec	F8	174000	370	5	X spec
D0	150000	320	Π	P shft spec	F9	174400	371	2	Y spec
D1	150400	321	0	Q shft spec	FA	175000	372	41	Z spec
D2	151000	322	4	R shft spec	FB	175400	373	1	[spec shft
D3	151400	323	Σ	S shft spec	FC	176000	374	ا ابہ	spec shft
D4	152000	324	÷Ð	T shft spec	FD	176400	375	∼ _∗] spec shft
D5	152400	325	1	U shft spec	FE	177000	376		\wedge spec shf
D6	153000	326	f	V shft spec	FF	177400	377		DEL spec
D7	153400	327	A ·	W shft spec					
D8	154000	330	1	X shft spec		•			
D9	154400	331	r	Y shft spec					
DA	155000	332	· - ·	Z shft spec					
DB	155400	333	L	[spec					
DC	156000	334	⇒ .	spec					
DD	156400	335	F] spec					
DE	157000	336	- *	\wedge spec			•		
DF	157400	337	·• *	spec					
E0	160000	340	• ••••	@ shft spec	· ·				
			(blinking)						
E1	160400	341	оС О	A spec					
E2	161000	342	β	B spec					
E3	161400	343	∇	C spec					· ·
E4	162000	344	8	D spec					
E5	162400	345	E	E spec					
E6	163000	346	ø	F spec					
E7	163400	347	8	G spec					
E8	164000	350	ц.	H spec					
E9	164400	351	L	I spec					
EA	165000	352	> ,	J spec					•
EB	165400	353	ጥ	K spec					
EC	166000	354	λ	L spec					
ED	166400	355	μ	M spec					
EE	167000	356	V	N spec					
EF	167400	357	ω	O spec					
F0	170000	360	Π	P spec					
F1	170400	361	Б	Q spec					
F2	171000	362	የ	R spec					
F3	171400	363	σ-	S spec					,
F4	172000	364	Т	T spec					
F5	172400	365	כ	V spec					

*(superscript)

ł

.

APPENDIX B

DISPLAY SUBROUTINE/STACK OPTION

The facilities described in this section are available as an optional extension to the display-computer interface in certain cases. These normally comprise those systems in which the display is not interfaced through a standard DMA data channel-in which case, the interface must implement the core-access and data channel functions.

The provision for the following extensions is made possible by the accessability of the Memory-address register used for core data-word transfers.

The following facilities can all be implemented in the display driver programs and encoded in the display lists using P-bit interrupt calls as described in the Display System Reference Manual.

The advantage of hardware implementation is improved display speed, reduced processor execution time requirements and reduced core storage requirements for driver coding.

DISPLAY REGISTERS

This option provides the following three additional 15-bit registers:

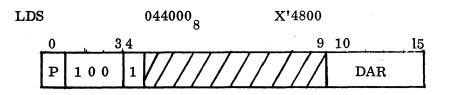
					U , 11	14 1	4,10	
		SAR	, DA	R		L		7
MAR	Memory Address:	16 ₈	^Е 16	¹⁴ 10	Displacement	Page	T	
SPR	Stack Pointer:	178	F 16	¹⁵ 10	Displacement	Page	Т	
TGR	Temp General:	20 ₈	10 16	$16 \\ 10$		۶		
			•			;	5	7
						12		

1/ 10

The MAR holds the core address normally used when words are sent from memory to the display. Address registers are extended to 15 bits to permit addressing of 32K words. The low order 12 bits (displacement) are in the value field to permit address arithmetic within 4K pages.

The MAR normally holds the address of the next display-list word to be processed. After use, it is incremented.

The SPR holds the core address used whenever words are sent from Display Registers back to memory. It can also be used to fetch words back to display system registers.


After use, the SPR is decremented on store operations. Prior to use on fetch operations, the SPR is incremented.

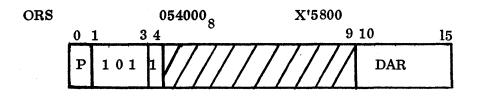
The TGR is a general purpose 15-bit register useful for temporary storage of the stack-pointer when SPR is being used as a write address.

As with all other registers, the MAR and SPR can be input via PIO, and loaded, OR-ed And-ed, or Add-ed to via Display list Register-Operations (cannot add to bits 12, 13, 14, and 15).

DISPLAY INSTRUCTIONS

Load from Stack

The load from Stack display instruction extracts the value field from a list of words in core and loads them into succeeding display system registers, starting with the one designated by the DAR field (DAR assignments are given in Section 3.21)

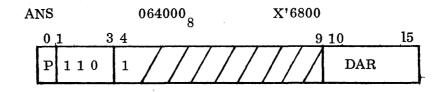

The list of values is stored in successively preceeding (lower address) cells of memory.

The first value (highest address) is in the cell initially addressed by the contents of SPR (bits 0 to 14).

The list is terminated by a word with bit 15 set to one (terminate).

After each word is transferred, its address held in SPR, is decremented.

Or from Stack

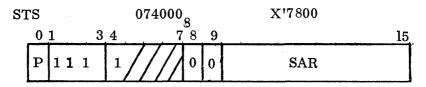

The Or from Stack display instruction extracts the value field from a list of words in core and OR's them into succeeding display system registers, starting with the one designated by the DAR field.

The first fetched word of the list, stored at the highest core location of the list, is at the address held in SPR.

The list extends through preceeding (lower) addresses to one containing a terminate bit (15) set to one.

The SPR is decremented after each word is fetched.

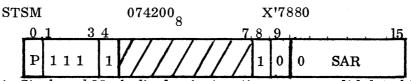
And from Stack


The And from Stack display instruction extracts the value field from a list of words in core and AND's them into succeeding display system registers, starting with the one designated by the DAR field.

The first fetched word of the list, stored at the highest core location of the list is at the address held in SPR.

The list extends through preceeding (lower) addresses to one containing a terminate bit (15) set to one.

The SPR is decremented after each word is fetched.


Store in Stack

The Store in Stack display instruction causes valid data bits in the display system register designated by instruction field SAR to be stored into the memory word addressed by the contents of SPR after incrementing it by one. Note: SAR must be less than 64_{10} and

If SAR = l_{10} , (MAR), the MAR contents are incremented by 2 prior to storing

Store in Stack and Mark

The Store in Stack and Mark display instruction causes valid data bits in display register at SAR to be stored into memory with bit 15 set = 1 terminate.

Store in Stack and Mark - Continued

The SPR is incremented and the result used as the core address into which the value is stored.

Notes: SAR must be less than 64_{10} and If SAR = 14_{10} , the MAR is incremented by two prior to storing.

EXAMPLES

The following series of display-code segments illustrate how the optional display-instructions may be used to code some desirable display functions.

Branch in list

JUMP (LOC) LD MAR Loc T

This sequence may be used to link disjointed display-list segments for processing as if they were one continuous display definition.

Subroutine list-jump

CALL (LIST)	STSM	MAR
	$\mathbf{L}\mathbf{D}$	MAR
	LIST	T

This sequence permits a single picture-defining display list to be processed many times as a sub-item used in defining a composite display.

This sequence also permits composite display-lists (containing sub-list call's) to be called as sub-lists of another display-list. Thus user defined displays may be used as basic elements in defining further displays.

Subroutine Exit

RETURN LDS MAR

This display instruction can be used to terminate a sub-list definition and return to the calling list to resume its display generation, (if it was called as by the previous "CALL" sequence).

Stuff Data

PUSH (Reg, n) = STSM REG STS REG + 1 \vdots STS REG + n

This sequence may be used for nested saving and restoring of register data.

This need arises in making display-lists transparent to the effect of sub-list calls (i.e. alteration of coordinate registers, pen enable/detect, transformation state, etc)

Another use is for bracketing the effect of transformations over selected sequences of display-list items, and/or the nesting of such transformation effects.

Restore Data

POP = LDS REG + n

This display instruction will restore the registers saved by the prece**e**ding (matching) PUSH operation.

Save Data

INPUT (REG, n, TABLE) =	STSM	TREG
	STSM	\mathbf{SPR}
	LDS	TREG
	$\mathbf{L}\mathbf{D}$	\mathbf{SPR}
	TABLE	Т
	STSM	REG
	STS	REG + 1
	:	
	STS	REG + n
	STSM	TREG
	LDS	\mathbf{SPR}
	LDS	TREG

This sequence may be used to read a set of successive display registers into core without using programmed PIO, interrupt processing, or any display driver coding execution.

In the example as given, the input buffer TABLE has an extra word used in restoring the stack-pointer, SPR, and the temporary register, TREG, must be any display register with sufficient low-order bits to hold the memory addresses used.

APPENDIX C

SUMMARY \mathbf{OF}

DISPLAY CONTROLLER INSTRUCTION AND DATA FORMATS

	- 777				NOOP			
	P01			/////	HALT			
	P 1 RO	P 0		DAR T *	REGIST	rer (CHANGE	
	P 0 0 CHAF		SZ 1 HARACI	111 FER *	CHARA	CTE	RS	
	$ \begin{array}{c c} P & 0 & 0 \\ \pm & \Delta \end{array} $	COORDINATE	VM 0 C	0 AIF F CF *	VECTO	RRE	ELATIVE	
	$ \begin{array}{c c} P & 0 & 0 & 1 \\ \pm & & 0 \end{array} $	COORDINATE		1 AIF F CF *	VECTO	R AE	SOLUTE	
	P 0 0 1 ± ΔX	VALUE I ±	VM 1 ∆Y VAI	0 0 0 LUE T *	2D VEC	CTOR	S INCREME	NTAL
	$\begin{array}{c c} P & 0 & 0 \\ \hline \pm & \Delta Y \end{array}$	VALUE I ±	$\frac{VM}{\Delta} Y VA$	0 0 1 LUE T *	2D VEC	CTOR	s auto x	
	$ \begin{array}{c c} P & 0 & 0 \\ \pm & \bigtriangleup X \end{array} $	VALUE I ±	$\begin{array}{c c} VM & 1 \\ \hline \Delta X & VA \end{array}$	0 1 0 LUE T *	2D VEC	TOR	S AUTO Y	
		VALUE I ±	$\begin{array}{c c} VM & 1 \\ \hline & Y & VA \\ \hline \end{array}$	$\left. \begin{array}{c} 0 & 1 & 1 \\ 1 & 1 \\ \hline 1 & $	3D VEC *	TOR	S	
		CAT UNTIL TER	MINATE	CODED				
	I	W T		S				
0	MOVE	HORIZ CON		ORDER \triangle				
1	DRAW	VERT TER	M HI	ORDER Δ				
	VM	AIF	ROP	OF		\mathbf{CF}	SIZE	
00	1	NO AUTO IN CR		LOAD (NO	,		120COL x60	
01	1	STEP XR	OR	LOAD & D		XR	80 COL x40	
10	1	STEP YR	AND	LOAD & M		YR		
11	POINTS	STEP ZR	ADD	LOAD & DI		\mathbf{ZR}	32 COLx 16	LINES
				& TERMIN	NATE			

P = **STOP AND INTERRUPT ON TERMINATE**

SZ = CHARACTER SIZE

E = ENABLE SIZE

- DAR = CONTROLLER INITIAL DESTINATION ADDRESS REGISTER
- OFCF = 0100: LOAD CLOCKWISE ARC ENDPOINT

1000: LOAD COUNTERCLOCKWISE ARC ENDPOINT (FOLLOWING DRAW SETS CENTER)

APPENDIX D

Table D-1 and D-2 list the operation codes and variable field codes of the display system instructions and data with the applicable page numbers where the items are discussed.

Table D-1 lists the display instructions, the mnemonics, variable fields, and the field formats of their data words. The instruction codes are given in both octal and hexadecimal notation. The variable fields for both the instructions and the data words are given in Table D-2.

The correct code for the instruction desired can be determined by using the code given for the instruction and adding the code listed for the variable field to be used. For example, if a Vector Relative instruction is to be used with the variable field VM in the dash mode, the hexadecimal code for the Vector Relative instruction, X'1000', is obtained fromTable D-1; the hexadecimal code for the variable field VM in the DOT mode, X'0020', is obtained fromTable D-2. The resulting code would then be:

X'1000' X'0020' X'1020'

D-1

	Display		Mnemonic-		
Pages	Instruction		Fields/Data	Coo	les
3-14	No Operation		p NOP/-	000000	X'0000'
3-20	Vector Relativ	e	$p VR vm/+ \Delta of cf$	010000	X'1000'
3-21	11	Auto-X	p VR IX $vm/+ \triangle$ of cf	010001	X'1001'
3-22	**	Auto-Y	p VR IY vm/+ ∆of cf	010002	X'1002'
3-22	11	Auto-Z	$p VR IZ vm/+ \Delta of cf$	010003	X'1003'
3-23	Vector Absolut	.e	p VA vm/+ Value of cf	010004	X'1004
3-24	* *	Auto-X	p VA IX vm/+ Value of cf	010005	X'1005'
3-25	**	Auto-Y	p VA IY vm/ $+$ Value of cf	010006	X'1006'
3-26	**	Auto-Z	p VA IZ $vm/+$ Value of cf	010007	X'1007'
3-26	Incremental 2I)	p DVXY s vm/∆x i ∧y t	010010	X'1008'
3-28	11	Auto-X	p DVYY s vm/∆y i _∆ y t	010011	X'1009'
3-29	11	Auto-Y	p DVXX s vm/ Δx i Δx t	010012	X'100A'
3-30	Incremental 3I)	p DV3D s vm/ Δx i Δy t/ Δz	010013	X'100B'
3-31	Character		p CH w sz/ch ch	010017	X'100F'
3-14	Special No Ope	ration	p SPC/-	020000	X'2000'
3-15	Halt		p HLT/-	030000	X'3000'
3-16	Load Registers	5	p LD dar/Value t	040000	X'4000'
3-17	OR to Registers		p OR dar/Value t	050000	X'5000'
3-18	AND to Registers		p AN dar/Value t	060000	X'6000'
3-18	ADD to Registe	ers	p AD dar/Value t	070000	X'7000'

Table D-1. Operation Codes

INSTRUCTION	FIELDS		
Field Name	Value		
(Mnemonic)	(Mnemonic)	Cod	es
Interrupt Request (1)			
Continue		000000	X'0000'
Halt and Interrupt	*	100000	X'8000'
Vector Mode (vm)			
Lines		000000	X'0000'
Dashes	DSH	000020	X'0010'
Dots	DOT	000040	X'0020'
Point	PNT	000060	X'0030'
Increment Scale(s)			
No Magnification		000000	X'0000'
Magnify	M	000200	X'0080'
Character Write Direct. ((w)		
Horizontal		000000	X'0000'
Vertical	V	000200	X'0080'
Character Size Control (S	SZ) (SE = 1)		
Use Previous		000000	X'0000'
120 x 60	S 0	000100	X'0040'
80 x 40	S 1	000120	X'0050'
60 x 30	$\mathbf{S2}$	000140	X'0060'
32 x 16	S3	000160	X'0070'
Destination Address Regi	ster (dar)		
Function lights (hi)	\mathbf{LTH}	000000	X'0000'
Function lights (lo)	\mathbf{LTL}	000001	X'0001'
Interrupt Request & Nar	ne PIR	000004	X'0004
Mode Control	MCR	000005	X'0005'
X Coordinate	XR	000010	X'0008'
Y Coordinate	YR	000011	X'0009'
Z Coordinate	\mathbf{ZR}	000012	X'000A'
Auto-Increment	AIR	000013	X'000B'
Dimming	IOR	000014	X'000C'
Depth Cueing	ISR	000015	X'000D'
Fetch Addr	MAR	000016	X'000E'
Stack Ptr	\mathbf{SPR}	000017	X'000F'
Temp	TGR	000020	X'0010'
Picture Scale	\mathbf{PSR}	000021	X'0011'
Name	NMR	000022	X'0012'
Coordinate Scale	CSR	000023	X'0013'
X Displacement			X'0014'
Y Displacement	DYR	000025	X'0015'
Z Displacement	DZR	000026	X'0016'
Rotation Matrix	R11R	000027	X'0017'
Rotation Matrix	R12R	000030	X'0018'
Rotation Matrix	R13R	000031	X'0019'
			X'001A'
			X'001B'
Rotation Matrix	R23R	000034	X'001D'
	TATION OF A	~~~~ 	43 0010
	R31R	000035	X1001D1
Rotation Matrix Rotation Matrix	R31R R32R	000035 000036	X'001D' X'001E'
-	Field Name (Mnemonic) Interrupt Request (1) Continue Halt and Interrupt Vector Mode (vm) Lines Dashes Dots Point Increment Scale(s) No Magnification Magnify Character Write Direct. (Horizontal Vertical Character Size Control (s Use Previous 120 x 60 80 x 40 60 x 30 32 x 16 Destination Address Regi Function lights (hi) Function lights (lo) Interrupt Request & Nan Mode Control X Coordinate Y Coordinate Y Coordinate Y Coordinate Auto-Increment Dimming Depth Cueing Fetch Addr Stack Ptr Temp Picture Scale Name Coordinate Scale X Displacement Z Displacement Rotation Matrix Rotation Matrix Rotation Matrix Rotation Matrix Rotation Matrix	(Mnemonic)(Mnemonic)Interrupt Request (1)ContinueHalt and Interrupt*Vector Mode (vm)LinesDashesDSHDotsDOTPointPNTIncrement Scale(s)No MagnificationMagnifyMCharacter Write Direct. (w)HorizontalVerticalVCharacter Size Control (sz) (SE = 1)Use Previous120 x 60S080 x 40S160 x 30S232 x 16S3Destination Address Register (dar)Function lights (hi)LTHFunction lights (lo)LTLInterrupt Request & Name PIRMode ControlMCRX CoordinateXRY CoordinateXRY CoordinateZRAuto-IncrementAIRDimmingIORDepth CueingISRFetch AddrMARStack PtrSPRTempTGRPicture ScaleCSRX DisplacementDXRY DisplacementDXRY DisplacementDZRRotation MatrixR12RRotation MatrixR12RRotation MatrixR22R	Field NameValue $(Mnemonic)$ $(Mnemonic)$ CodInterrupt Request (1)Continue000000Continue0000001Halt and Interrupt*100000Vector Mode (vm)ItinesLines000000DashesDSH00020DotsDOT000040PointPNT000060Increment Scale(s)No MagnificationNo Magnification000000MagnifyM000200Character Write Direct. (w)HorizontalHorizontal000000VerticalV000200Character Size Control (sz) (SE = 1)Use PreviousUse Previous000000 30×40 S1000120 60×30 S2000140 32×16 S3000160Destination Address Register (dar)Function lights (hi)LTLFunction lights (lo)LTL000001Interrupt Request & Name PIR000004Mode ControlMCR000015X CoordinateXR000011Z CoordinateZR000012Auto-IncrementAIR000013DimmingIOR00014Depth CueingISR000017TempTGR000020Picture ScalePSR000021NameNMR00022Coordinate ScaleCSR000023X DisplacementDXR00022

Table D-2. Variable Field Codes

	Field Name	Value		· · · · · · · · · · · · · · · · · · ·
Pages	(Mnemonic)	(Mnemonic)	Code	es
3-20 thru 3-26	Operation Field (of)			
	Load	\mathbf{L}	000000	x'0000'
	Draw	D	000004	X'0004'
	Move	\mathbf{M}	000010	X'0008'
	Draw and Terminate	DT	000014	X'000C'
3-20 thru 3-26	Coordinate Field (cf)			
	AIR	AI	000000	x'0000'
	XR	x	000001	X'0001'
	YR	Y	000002	X'0002'
	ZR	\mathbf{Z}	000003	X'0003'
	Combined (of cf)			
	Clockwise arc	CW	000004	X'0004'
	Counterclockwise arc	CCW	000010	X'0008'
3-26 thru 3-31	Intensity Field (i)			
	Move	Μ	000000	X'0000'
	Draw	D	000400	X'0100'
3-15	Terminate Field (t)			
3-28 thru 3-30	Continue		000000	X'0000'
	Last word of data	Т	000001	X'0001'
	Mode Control Bits			
	Enable P-Bit Halt	MED	1000000	X'8000'
	Enable Frame Clock	MEC	040000	X'4000'
	Interrupt			
	Enable Pen Hit	MEP	020000	X'2000'
	Detect Interrupt			
	Enable Tablet	MET	010000	X'1000'
	Interrupt			
	Enable Keyboard	MEK	004000	X'0800'
	Interrupt			
3-7, 3-8	Enable Sense Switch	MES	002000	X'0400'
	Interrupt			
	Enable Display Blink	MDB	001000	X'0200'
	Enable Light Pen Halt	MPH	000400	X'0100'
	Select Scope 1	MS1	000200	X'0080'
	Select Scope 2	MS2	000100	X'0040'
	Select Scope 3	MS3	000040	X'0020'
	Select Scope 4	MS4	000020	X'0010'

DATA FIELDS

Table D-2. Variable Field Codes