
M Z 0 S

MZ Operating System

by Vector Graphic Inc.

$

(C) 1978 Vector Graphic Inc.

Introduction 1

File Structure 2

Memory Layout 4

Console Corrmands 5

Usage Notes 8

Errors and Mistrakes 9

Famous Last Words 11

Appendix A: Entry Points 12

Appendix B: Console I/O 14

Appendix C: Listing Format 18

NOTE: yodification on Micropolis Interface Board

for running MZOS

Jumpers in address area should be changed from F4 to D8. (Remove jumper on N3,

add jumpers to W1 and W4). The attached diagram shows where jumpers should be

added.

Address Jumpers

MZOS User's Manual Page 1

INTRODUCTION

The Vector MZ operating system, MZOS, was designed specifically for the MZ
system. It is a file-oriented disk operating system, allowing you to maintain
and use files on the disk. Also provided are subroutines which may be used by
the assembly language programmer to interface other software to the disk system,
or for programs like BASIC to load and save files on the disk.

MZOS is a copyrighted software product of Vector Graphic Inc. and is meant only
for use on an MZ or similar system from Vector Graphic. We assume no
responsibility for unauthorized use.

This manual reflects version 1.4 of MZOS.

MZOS User's Manual Page 2

FILE STRUCTURE

First, it is necessary to understand the layout of the disk and the files on it.
Thorough understanding of this section will greatly enhance ease of operation of
this system.

The disk contains 77 concentric tracks, similar to the grooves in a record.
Each track is divided into 16 sectors, and each sector contains one page (256
bytes) of data. Thus the capacity of the entire disk is around 315K bytes. The
tracks are numbered 0-76, and the sectors 0-15. For our purposes, however, the
disk should be thought of as 1232 sectors, numbered 0-1231, forgetting about
tracks altogether.

The first four sectors en the disk are reserved for the directory. The purpose
of the directory is to keep track of the files on the disk. There are 64
entries allowed, therefore you may have as many as 64 files on the disk. Each
entry in the directory uses 16 bytes. The format of each entry is as follows:

FILENAME ADDRESS I£NGTH TYPE START SPECIAL

1 0 - 7 1 8 - 9 I 10-11 I 12 I 13-14 I 15 I

The meanings of each field are as follows:

FILENAME
An eight-byte field, this contains the name of the file. It may contain any
printing ascii character, exfiept spaces, commas, or lower-case letters.

ADDRESS
This two-byte field contains the address on the disk where the file begins.
This address is actually just the sector number of that particular sector.
Sector 278 would have a disk address, then, of 278.

LENGTH
The length of the file is the number of sectors it occupies.

TYPE
The type of a file is a special reference to what the file might be used for. A
file may be of type 0 through 99. Certain file types have already been defined.
They are:

0 Default type unless changed.
1 Executable machine language program.
2 BASIC program.
3 BASIC data file.
4 Ascii text file.
5-7 Reserved.
8 DEX Assembler source file
9 Reserved.

File types 10-99 are not currently used or reserved, so they can be used for
special purposes.

MZOS User's Manual Page 3

START
The start bytes are used to define the loading/starting address for type 1
(machine language) files. In the case of BASIC files, they're used to define
the amount of valid data within the file.

SPECIAL
This byte is not used, but is reserved for any special need we might dream up at
some future time.

The remaining 1228 sectors on the disk are available for files. There is a
restriction that a file may only be 256 sectors long. This is not unreasonable,
since it would be rather difficult to load a file longer that 64K into memory
anyway. Actually, you may have a file longer then 256 sectors, but you will not
be able to load, save, or verify it with MZOS.

A fact to remember is that MZOS does not necessarily access a file when it
accesses the directory. Create, delete, and similar operations only modify the
directory, not the actual file. Thus if you accidentally delete a file, you can
recover it just by creating it with the same addresses as it had before. If you
need to create a bigger file, you can just delete the old one and then recreate
it with a greater length and the same starting address.

Another thing to remember is that MZOS maintains no copies of the directory in
memory, so you may exchange disks at will. (This is as opposed to, say, CPM.)

MZOS User's Manual Page 4

MZOS MEMORY LAYOUT

It is important to know the places in memory used by MZOS. There are actually
three separate areas to know about. The first, symbolically called MZOS, is the
actual operating system and buffer areas. This resides in RAM from 2000-29FF.
The top of this area is used for system i/o and is explained later. The second
area is called MZIO and is a IK prom at address C400-C7FF. This is the second
2708 on the prom/ram board. It contains all of the disk i/o routines. The
third area, MZTMP, is an approximately 32-byte block starting at DF40, in the
ram area of the prom/ram board. This is used for the track table and similar
important information.

In addition to the regular area, a 2K area immediately following MZOS (actually
2A00-31FF) is used for some mass transfer commands to achieve a higher speed.
Execution of the IN, DT, CF, CD, or CO commands will utilize this area, thus
overwriting whatever is there.

Last but not least, there are several entry points to the system which you
should know about. These, as well as the disk subroutines, are covered in
appendix A.

MZOS User's Manual Page 5

MZOS CONSOLE COMMANDS

Following is an explanation of MZOS commands and their usage. The following
conventions are used in this explanation: When something is enclosed in
parentheses, e.g. (address), that argument is optional. Something in
angle-brackets, e.g. <address>, means that you should substitute a valid
argument; in this example, you should type an address. Also, all arguments are
in decimal, with the exception of memory addresses, which are in hex.

LI (<unit>)

This will list the directory on the specified unit, with the current disk as the
default. Each file will be listed, followed by the address, length, protect
status, type, and start address if the file is type 1. A sample listing is
shown in appendix C.

FL (<unit>)

This is similar to the LI command, only the directory is listed in a 'fast'
format. Only the file is listed, six-wide across the page. This is useful for
seeing just if you have a particular file.

CR <file> <length> (<address>)

The create command allows you to create a file entry in the directory. The file
will be created with the specified length. If an address is specified, it will
be used, otherwise the first free disk address will be defaulted to.

DE <file>

This will delete a file entry. Remember, the file itself will not be harmed,
just the entry in the directory. A protected file cannot be deleted.

EN <old-file> <new-file>

This allows you to change the name of (rename) a file. All the other
information (type etc.) will remain the same. Do not rename a file to a name
that already exists!

TY <file> <type> (<start addr>)

This sets the type of a file. If type 1 is specified, the start address MUST be
specified. No accessing of the file is actually done, just the directory
entry.

PR <file>

This protects the file specified. When a file is protected, it cannot be
deleted. The file may still be written into, however I This is not a perfect
protection, but it does keep you from deleting an important file in a moment of
frustration. IMPORTANT NOTE! Assembler source (type 8) and BASIC (types 2 and
3) files MAY NOT be protected. If you do, any attempt by DEX or BASIC to look
than up will fail.

MZOS User's Manual Page 6

UP <file>

This will just unprotect a file. No error is caused by unprotecting a file that
wasn't protected anyway.

LF <file> <mem addr>
SF <file> <mem addr>
VF <file> <mem addr>

These commands load, save, or verify a file. The load and save commands do so
with respect to the memory address specified. Thus 'SF TEST 3000' would save
memory into a file called TEST, starting at memory address 3000. Data will be
written into the file sequentially until it is full. The LF command works in a
similar manner, only data is read from the disk into memory. Hie VF command
does no ram access; it verifies the file by doing an internal check on it. The
memory address is necessary, though, so just use 0 as a dumny address,

CF <old-file> <new-file>

This will copy the data from one file to another. In addition, the type and
protect information will be copied too. Make sure that the destination file is
at least as large as the source file, or you will receive an error.

GO <file>

This will load a type 1 file into memory at its start address and jump to it.
Note that this is equivalent to using the LF command followed by a JP command to
the start address of the file. Obviously, this only is for type 1 files.

RD <addr> <mem addr> <sectors>
WR <addr> <mem addr> <sectors>
VR <addr> <mem addr> <sectors>

These commands will read, write, or verify data directly on the disk, with no
regard for files. These commands are used infrequently, as normally all work is
done with files. Using the RD conmand as an example, take the command RD 4 3000
10. This will read 10 sectors, starting with address 4, and load them into
memory beginning at address 3000 (hex). The WR and VR commands work similarly.
The VR command, like the VF conmand, does internal checking oily. You may use 0
as a dummy ram address for this conmand.

IN (<unit>)

This will initialize a fresh diskette. It completely fills the diskette with
spaces (ascii 20 hex). This MUST be done to ALL diskettes before use, as they
contain garbage before initialization. This conmand also writes the sector id's
on each of the sectors (These id's are used for error checking) . You shouldn't
initialize a diskette that contains valid data, of course.

DT «unit>)

This will test a diskette by writing and thai verifying a constantly changing
pattern over the entirety of the diskette. This destroys any data that was on
the diskette, so use with caution, and NEVER on a diskette after it has valid
data written on it.

MZOS User's Manual Page 7

CD <source> <dest>

This will copy the entirety of the source diskette onto the destination
diskette. No file-oriented access is used, just direct read and write. Hie
resulting diskette is an exact duplicate of the source diskette.

CO (<unit>)

This compacts the data on the disk by moving all files toward the beginning of
the disk. This can become necessary when you have several files, and you delete
one or more out of the middle. See also a note in the usage section of this
manual referring to this command.

JP <mem adr>

This just transfers control to the specified address in memory. It is used, for
example, to start a program that is already in memory.

DD (<unit>)

This sets the default unit to the one specified. If no unit is specified, then
unit 1 is used. All disk accesses, when no unit is specified, use the default
unit.

; <text>

Typing a semicolon (;) as the first character of a line will cause the line to
be ignored. Only thirty characters may be typed, though, or you will receive an
error.

<file>

Typing a file name alone is exactly like typing GO followed by the file name.
Thus BASIC and GO BASIC are identical commands.

MZOS User's Manual Page 8

USAGE NOTES ON MZOS

The following is a collection of things to know while using MZOS.

When typing a command, it may be aborted at any time by typing control-C. To
erase the last character typed, hit Backspace (if this doesn't suit you, see
appendix A).

•

During execution of a command like DT or IN, you may abort execution by typing
control-C.

Typing control-X at ANY time input is expected (as a command, during a DT or IN,
etc.) will return you to the prom monitor.

The DT command will run until it finds an error or you stop it.

The IN command takes around a minute and a half.

NEVER NEVER NEVER NEVER interrupt the execution of the CO command, unless you
don't mind your diskette being totally destroyed. Compaction normally takes
well under five minutes, but depending on the degree of disaster your diskette
is in, it could take ten or twenty minutes to compact it. DON'T PANIC! A
relatively messy disk could require over a million read/writes, and interrupting
it in midstream is guaranteed to leave the disk in a totally unknown state. So
unless the disk starts smoking or making really terrible sounds, just leave it
alone.

In a multiple-unit system, the particular drive which you wish to reference is
indicated by adding a ,1 ,2 ,3 or ,4 to either a filename or disk address. Thus
referencing the file TEST on unit 2 would look like TEST,2; a reference to
sector 24 on unit 3 would be 24,3. This is true of ANY file reference, in any
command; or of the disk address in the RD, WR and VR commands.

MZOS will digest lower case letters as well as upper case, since it just
translates everything to upper case anyway.

To repeat something said elsewhere, all disk accesses, where an explicit unit
isn't specified, reference the disk specified in the last DD command. If no
such command has been issued, then unit 1 is used.

If you have a printer interfaced with your system, you should know that error
messages will oily print en the console, not the printer, even if the printer is
enabled. This prevents getting error messages in the middle of a good
pr intout.

Needless to say, this operating system is completely compatable with the North
Star DOS. It is specifically designed so that any software that runs on the
North Star system will run on MZOS.

MZOS User's Manual Page 9

ERRORS AND MISTRAKES

A reasonably comprehensive set of error messages are provided with MZOS.
Following is a list of these errors and why you might get them.

Huh?

This means that you typed something that MZOS can't possibly understand.
Usually this is from misspelling a command.

% Syntax error

This indicates that you typed a valid conmand, but invalid arguments. Examples:
TY FILE 1 without a start address, or LF FILE QWERT where QWERT is obviously not
a hex address.

% File error

This is caused by an invalid file reference. It can be caused by creating a
file that already exists, referencing one that doesn't, trying to GO a
non-type-1 file, and so forth.

% Disk overflow

You tried to create a file that would extend beyond the boundries of the disk
(that is, past sector 1231).

% Write protected

You either tried to write on a protected disk, or tried to delete a file that is
protected.

t

% Disk offline

This can be caused by trying to access the disk when either there is no diskette
in the drive, the drive is not up to speed, or the controller just isn't
installed in the computer.

% Illegal argument

An attempt was made to read, write, or verify beyond the boundries of the disk.
This is similar to the overflow error, only this refers to access attempts,
rather that file creation.

MZOS User's Manual Page 10

% CRC error at sector xxxx,n

Bad data was encountered on the disk in unit n, at sector xxxx. This is usually
caused by a faulty diskette, or access to an uninitialized diskette.

% Sector id error at sector xxxx,n

This means that the sector read was not the one wanted. The most common cause
of this is a glitch in the stepper motor, or possibly a bad diskette.

Some software that does disk access may want to have control returned to it
after an error occurs. Such software should put the address they want control
sent to (on an error) into memory at address DF5C. That address is the last two
bytes of a jump instruction, which is used after any error. When it is
finished, though, it should replace 2028 in that location.

MZOS User's Manual Page 11

FAMOUS LAST WORDS

MZOS has been thoroughly tested, and should hopefully serve you well on your
system. In the event you have any trouble, though, or need help in figuring out
how it works, feel free to contact us for assistance. We would also appreciate
any comments, suggestions, or improvements to this manual, or additions to or
ideas for MZOS, that you might think up.

MZOS User's Manual Page 12

APPENDIX A: MZOS ENTRY POINTS

Assuming you have sane familiarity with assembly language, this should help you
understand interfacing to MZOS. Although MZOS is actually a Z-80 program, these
explanations will use 8080 code whenever possible as it seems to be more
popular.

MZOS 2028

The MZOS entry point is where you jump to start MZOS. The monitor 'J' command
will jump here very nicely. At the end of some other program, putting a JMP
2028H will return control to MZOS.

MBOOT C400

This is where to jump to in order to boot up MZOS. The monitor 'E' command can
be used to initially do so.

DOOM C402 or 2022

This is the nitty-gritty disk i/o routine. All disk access can be done here.
Basically, vdiat you do is set up the registers for what you want to do, then
call here (either address will do, since 2022 is just a JMP 0C402H). The
registers should be set up as follows:

A number of sectors to access
B command - see below
C unit - 1, 2, 3, or 4
DE ram address to read into or write from
HL disk address (sector) to begin access at

Commands are: 0 write from manory to disk
1 read fran disk to memory
2 verify CRC internally en disk
3 seek (go to) sector specified only
4 recalibrate drive (go to sector 0)

The last two, seek and recalibrate, are mainly for test purposes. The
recalibrate is used to insure proper positioning of the head, in case (for
example) the track table is accidentally destroyed, or the stepper motor
doesn't.

DLOOK 201C

Hiis is used to lookup a file in the directory. Looking up a blank entry will
locate a free space, for creating a new file. When this is called, A should
contain the unit number, and HL should point to (contain the address of) a
string of characters representing the file name, followed by either a return (0D
hex) or a blank (20 hex).

MZOS User's Manual Page 13

When this routine returns, if the CY flag is set, then the file you looked up
does not exist. In this case, HL contains the first free address on the disk.
If CY isn't set, then the file was successfully found. In this case, HL points
to the eighth byte of a copy of the entry. This copy is actually within the
directory buffer of MZOS. See the file structure section of this manual for the
structure of the entry.

DWRIT 201F

This will write a directory entry back to the disk. It is important that NO
DISK ACCESS OCCUR between DLOOK and DWRIT. Now, the procedure for reading a file
would be to use DLOOK to lookup the file; assuming it is really there,
incrementing HL will make it point to the starting disk address of the file;
then use DCOM to actually read the file. To write a new file to disk, you would
first lookup the file, to make sure that it doesn't already exist. This will
fail, assailing the name isn't there yet. Next, lookup a blank name. In the
event this fails (it shouldn't), the disk you're using doesn't have a directory
on it, or is full. Anyway, now HL points to the eighth byte of a blank entry.
Now you should copy in the file name, disk address (from your first lookup),
length, type, and start address (if needed). This done, call DWRIT to update
the directory.

DLIST 2025

This will print the directory of the unit specified in A. The list is exactly
the same as the LI command.

RWCHK 20 2B

This is not an entry point, but rather a flag. If this byte is 1, then a verify
will be done after a write. This will slow down write operations considerably,
but may be desired if you don't trust your diskette.

BSCHR 25F4

This location contains the character that will be used for a backspace.
Normally, this is an 08 (ascii backspace), but you may wish to change it. The
most common other characters used are underline (5F) or DEL (7F).

PRMPT 2071

This location contains the character used as a prompt. Currently it is set to a
number sign (#, 23 hex), but you may change it if you like.

MZOS User's Manual Page 14

APPENDIX B: CONSOLE I/O

Here we will discuss the console i/o provided with your system, and how you may
change it if necessary.

«

First, there are four entry points in MZOS which reference console i/o. They
are as follows.

INCH 2010

This will input a single character from the console.

OUTCH 200D

This will output a single character.

OUTPR 200A

This will output a character to the printer.

CHKCH 2016

Ihis does two things. First, it checks whether a character has been typed. If
not, it returns immediately with the Z flag cleared. If a character has been
typed, it sees if it was a control-C. If this is the case, then it returns,
with Z set. Finally, if a character was typed, and it was a space, then another
character is waited for. This allows you to momentarily suspend output by
hitting the space bar. After another character is typed, this routine returns,
with the Z flag set if that character was a control-C.

TINIT 2013

This is used to initialize the i/o system, if needed. It is currently set up to
initialize the Bitstreamer board, but may be able to be replaced with RET
instruction.

So. Those are the entry points. The actual routines, though, are located in a
64-byte block from 2900-29FF. A listing is provided of the routines as
provided, in case your system is different.

Checking with the listing, notice that there are addresses assigned to each
routine. They are spaced far enough apart that you should be able to fit in any
of your own routines without moving any other routine. This means that you
shouldn't have to patch the jump table (entry points) at all.

2900 0001 * MZOS STANDARD I/O SYSTEM
2900 0002 * NEALE BRASSELL [28-JUN-78]
2900 0003 *

2900 0004 IOLOC EQU 2900H
2900 0005 MZOS EQU 2028H
2900 0006 *

2900 0007 *

2900 0008 * THIS IS JUST A JUMP TO MZOS, AS A REENTRY POINT
2900 0009 *

2900 0010 ORG IOLOC
2900 0011 *

2900 C3 28 20 0012 REENT JMP MZOS
2903 0013 *

2903 0014 *

2903 0015 * THIS IS THE TINIT (TERMINAL INITIALIZATION) ROUTINE
2903 0016 *

2903 0017 ORG IOLOC+16
2910 0018 *

2910 AF 0019 INI8 XRA A
2911 D3 03 0020 OUT 3
2913 D3 03 0021 OUT 3
2915 D3 03 0022 OUT 3
2917 3E 40 0023 MVI A,40H
2919 D3 03 0024 OUT 3
291B 3E CE 0025 MVI A,0CEH
29 ID D3 03 0026 OUT 3
291F 3E 27 0027 MVI A, 27H
2921 D3 03 0028 OUT 3
2923 C9 0029 RET
2924 0030 *

2924 0031 *

2924 0032 * THIS CHECKS FOR <~C>, AND SUSPENDS OUTPUT ON <SPACE>
2924 0033 *

2924 0034 ORG IOLOC+64
2940 0035 *

2940 CD DC CO 0036 CHK8 CALL OCODCH
>

2943 FE 03 0037 CP I 3
2945 C8 0038 RZ s

2946 FE 20 0039 CP I 32
2948 CO 0040 RNZ
2949 CD 60 29 0041 CALL IN8
294C FE 03 0042 CP I 3
294E C9 0043 RET
294F 0044 *

294F 0045 *

294F 0046 * THIS IS THE CONSOLE INPUT ROUTINE
294F 0047 *

294F 0048 ORG IOLOC+96
2960 0049 *

2960 CD DC CO 0050 IN8 CALL OCODCH
2963 CA 60 29 0051 JZ IN8
2966 E6 7F 0052 AN I 127
2968 C9 0053 RET
2969 0054 *

2969 0055 *
2969 0056 * CONSOLE OUTPUT - IF A-l THEN THE PRINTER IS USED
2969 0057 *
2969 0058 ORG IOLOC+128
2980 0059 *
2980 FE 01 0060 OUT8 CPI 1
2982 CA CO 29 0061 JZ OUTPR
2985 78 0062 MOV A,B
2986 C3 98 CO 0063 JMP 0C098H
2989 0064 *
2989 0065 *
2989 0066 * PRINTER OUTPUT - JUST USES CONSOLE
2989 0067 *
2989 0068 ORG IOLOC+192
29C0 0069 *
29C0 78 0070 OUTPR MOV A,B
29C1 C3 98 CO 0071 JMP 0C098H
29C4 0072 *

SYMBOL TABLE

CHK8
0UT8

2940
2980

IN8 2960 INI8 2910 IOLOC 2900 MZOS 2028
OUTPR 29C0 REENT 2900

MZOS User's Manual Page 18

APPENDIX C: SAMPLE DIRECTORY LISTING

Here is a sample listing, as produced by the LI command.

MZOS 4 10 P 00 BASIC 14 45 01 2A00
DEX 59 23 P 01 2A00 TESTFL 82 4 02
IOSYS 86 90 08 DATAFILE 176 250 03
INXFILE 426 50 03

Here is an analysis of the above listing.

MZOS is a file, starting at address (sector) 4 and taking 10 sectors. It is
protected, so it cannot be deleted.

BASIC is a 45-sector machine code file, starting at address 14. It's ram
starting address is 2A00. It could be executed by typing 'GO BASIC1, or just
'BASIC'.

DEX is a machine code file, similar to BASIC. It is protected, though. Its
starting ram address is also 2A00.

TESTFL is a BASIC program (type 2), which can be loaded and executed with
BASIC.

IOSYS is a DEX source file (type 08).

DATAFILE is a rather large BASIC data file (type 3). It is accessed with READ
and WRITE statements in BASIC.

INXFILE is a BASIC data file, like DATAFILE.

MZOS Utilities

by Vector Graphic Inc.

There are three utility programs provided on your system disk as received from
Vector Graphic. They are DIAB, CENT, and NS2MZ. Here we will provide you with
source listings and instructions for their use.

The first, DIAB, is a driver routine for a Diablo printer. It assumes that you
are using ports 2 and 3 for the printer, and that the printer is the version
that runs at 1200 baud, with handshaking logic.

The second, CENT, is for a Centronics printer, such as 781, 702, etc. with
parallel handshaking logic. Port 1 is used for this printer.

For both routines, they may be invoked by simply typing the name of the one you
want, either DIAB or CENT. If you want to save MZOS with one of these routines
incorporated into it, you would just type SF MZOS 2000 after loading the driver.
Example:

#DIAB
#SF MZOS 2000

The system on the diskette now has the driver incorporated in it.

Notice (in the source listings) that the various routines are spaced over the
entire 2900-29FF block allocated to them. This is so that you can change the
drivers without changing the jump table in MZOS. The current assignments are as
follows:

The reentry spot is so that this can be executed as a program, allowing you to
type 'DIAB' instead of 'LF DIAB 2900'.

There are a couple of features included in the input and output routines to
complement the printer. First, when you type a control-P, the input routines
toggles the printer flag, then discards the character. This way, even if your
program doesn't allow control characters, typing control-P will still work.
What toggling the printer flag actually does is to allow output to go to both
the console and the printer. Typing control-P a second time will turn the
printer off, etc. Second, typing control-L will send a formfeed to the printer,
and discard the character. This should be done before you print something the
first time, as it also sets the line counter. The output is paged; every 56
lines, it skips to the top of the next page. Checking the listings provided
should help you understand how the system works.

REENTRY 2900
TINIT 2910
OCCHK 2940
INCH 2960
OUTCH 2980
OUTPR 29C0

jump back to MZOS
initialize
control-C check
input character
output character
output character to printer

The last utility provided is the NS2MZ program, which, as its name implies,
transfers files from North Star disk to MZOS. It is a simple program, as you
can see from the listing. To use it, first initialize a disk with MZOS. Hien
load the NS2MZ program into memory, anywhere EXCEPT from 2000 to 3400. The
program is relocatable, so it doesn't matter; we recommend that you load it at
4000. Next, boot your North Star DOS. Insert the disk you want to copy into
drive 1 (North Star), and the disk you just initialized into drive 1
(Micropolis). Now JP to whatever address you loaded the program at. It will
copy the entire disk, exactly as it is, onto the Micropolis disk. Now insert a
system disk into the Miropolis drive and boot MZOS. Type LF MZOS 3000 (load
MZOS into memory), then insert the new diskette; type SF DOS 3000 (which saves
it onto the disk) followed by EN DOS MZOS (which renames the DOS to MZOS) . You
now have your North Star diskette on Micropolis disk. This procedure may be
repeated for each disk you wish to copy. Note, though, that the disk is copied
onto another disk exactly, so you may only copy disks one-to-one. Since the
Micropolis disks hold more, you may want to merge several disks together
manually after you've copied than.

2900 0001 * MZOS DIABLO I/O SYSTEM
2900 0002 * NEALE BRASSELL [28-JUN-78]
2900 0003 *
2900 0004 IOLOC EQU 2900H
2900 0005 MZOS EQU 2028H
2900 0006 *
2900 0007 *
2900 0008 * THIS IS JUST A JUMP TO MZOS, AS A REENTRY POINT
2900 0009 *
2900 0010 ORG IOLOC
2900 0011 *
2900 C3 28 20 0012 REENT JMP MZOS
2903 0013 *
2903 0014 *
2903 0015 * THIS IS THE TINIT (TERMINAL INITIALIZATION) ROUTINE
2903 0016 *
2903 0017 ORG IOLOC+16
2910 0018 *
2910 AF 0019 INI8 XRA A
2911 D3 03 0020 OUT 3
2913 D3 03 0021 OUT 3
2915 D3 03 0022 OUT 3
2917 3E 40 0023 MVI A.40H
2919 D3 03 0024 • OUT 3
291B 3E CE 0025 MVI A.OCEH
29 ID D3 03 0026 OUT 3
291F 3E 27 0027 MVI A,27H
2921 D3 03 0028 OUT 3
2923 C9 0029 RET
2924 0030 *

2924 0031 *

2924 0032 * THIS CHECKS FOR <~C>, AND SUSPENDS OUTPUT ON <SPACE>
2924 0033 *

2924 0034 ORG IOLOC+64
2940 0035 *

2940 CD DC CO 0036 CHK8 CALL OCODCH
2943 FE 03 0037 CP I 3
2945 C8 0038 RZ
2946 FE 20 0039 CP I 32
2948 CO 0040 RNZ
2949 CD 60 29 0041 • CALL IN8
294C FE 03 0042 CP I 3
294E C9 0043 RET
294F 0044 *

294F 0045 *

294F 0046 * CONSOLE INPUT - <*NP> & <~L> ARE HANDLED SPECIALLY
294F 0047 *

294F 0048 ORG IOLOC+96
2960 0049 *

2960 CD DC CO 0050 IN8 CALL OCODCH ;GET CHARACTER
2963 CA 60 29 0051 JZ IN8
2966 FE 10 0052 CP I 16 ;SEE IF ~P
2968 CA 75 29 0053 JZ CTLP
296B FE OC 0054 CP I 12 :SEE IF ~L

4

CO 29
60 29
FB 29

FB 29
60 29

01
CO 29

98 CO
FB 29

CO 29

03
01
CO 29

02
OA
D9 29
OC

38
FC 29

03
CO 29
03
02
DF 29
02

FC 29

FC 29

0055 RNZ
0056 MOV B,A
0057 CALL OUTPR
0058 JMP IN8
0059 CTLP LDA OUTFL
0060 CMA
0061 STA OUTFL
0062 JMP IN8
0063 *
0064 *
0065 * OUTPUT CHARACTER - IF
0066 *
0067 ORG IOLOC+128
0068 *
0069 0UT8 CP I 1
0070 JZ OUTPR
0071 MOV A,B
0072 CALL 0C098H
0073 LDA OUTFL
0074 ORA A
0075 MOV A,B
0076 RZ
0077 JMP OUTPR
0078 *

0079 *
0080 * DIABLO PRINTER OUTPUT
0081 *

0082 ORG IOLOC+l92
0083 *

0084 OUTPR IN 3
0085 AN I 1
0086 JZ OUTPR
0087 MOV A,B
0088 OUT 2
0089 CP I 10
0090 JZ ITALF
0091 CP I 12
0092 RNZ
0093 MVI A,56
0094 STA LNCNT
0095 MOV A,B
0096 RET
0097 ITALF PUSH B
0098 MVI B,3
0099 CALL OUTPR
0100 WTACK IN 3
0101 AN I 2
0102 JZ WTACK
0103 IN 2
0104 POP B
0105 LDA LNCNT
0106 DCR A
0107 STA LNCNT
0108 MOV A,B
0109 RNZ
0110 PUSH B

;RETURN IF NOT

;SEND FORMFEED
;DISCARD CHARACTER

;~P COMPLIMENTS PRINTER FLAG
;AND DISCARD CHARACTER

A-l, THEN USE DIABLO

;IF A-l THEN USE PRINTER

;SEND CHARACTER TO CONSOLE

;CHECK PRINTER FLAG

;RETURN IF NOT SET
;SEND TO PRINTER IF SET

ROUTINE

;WAIT FOR READY FROM USART

;SEND CHARACTER
;SEE IF LINEFEED

;SEE IF FORMFEED
;RETURN IF NOT

;RESET PAGE COUNTER ON FORMFEED

;SEND ETX CHARACTER AFTER LINEFEED

;WAIT FOR ACKNOWLEDGE
;GOBBLE CHARACTER

{ADJUST LINE COUNTER

;RETURN IF NOT FULL PAGE

29F3 06 OC 0111 MVI B,12 ;WHEN FULL PAGE,
29F5 CD CO 29 0112 CALL OUTPR
29F8 CI 0113 POP B
29F9 78 0114 MOV A,B
29FA C9 0115 RET ;AND RETURN
29FB 0116 *
29FB 00 0117 OUTFL DB 0 ;PRINTER FLAG
29FC 38 0118 LNCNT DB 56 ;LINE COUNTER
29FD 0119 *

SEND FORMFEED

SYMBOL TABLE

CHK8 2940
ITALF 29D9
OUTPR 29C0

CTLP 2975
LNCNT 29FC
REENT 2900

IN8 2960
MZOS 2028
WTACK 29DF

INI8 2910
OUT8 2980

IOLOC 2900
OUTFL 29FB

\

2900 0001 * MZOS CENTRONICS I/O
2900 0002 * NEALE BRASSELL [28—J
2900 0003 *
2900 0004 IOLOC EQU 2900H
2900 0005 MZOS EQU 2028H
2900 0006 *
2900 0007 *
2900 0008 * THIS IS JUST A JUMP
2900 0009 *
2900 0010 ORG IOLOC
2900 0011 *
2900 C3 28 20 0012 REENT JMP MZOS
2903 0013 *
2903 0014 *
2903 0015 * THIS IS THE TINIT (1
2903 0016 *
2903 0017 ORG IOLOC+16
2910 0018 *
2910 AF 0019 INI8 XRA A
2911 D3 03 0020 OUT 3
2913 D3 03 0021 OUT 3
2915 D3 03 0022 OUT 3
2917 3E 40 0023 MVI A,40H
2919 D3 03 0024 OUT 3
291B 3E CE 0025 . MVI A,0CEH
2 9 ID D3 03 0026 OUT 3
291F 3E 27 0027 MVI A.27H
2921 D3 03 0028 OUT

1

3
2923 C9 0029 RET
2924 0030 *
2924 0031 *
2924 0032 * THIS CHECKS FOR <~C>
2924 0033 *

{

2924 0034 ORG IOLOC+64
2940 0035 *
2940 CD DC CO 0036 CHK8 CALL OCODCH
2943 FE 03 0037 CP I 3
2945 C8 0038 RZ
2946 FE 20 0039 CP I 32
2948 CO 0040 RNZ
2949 CD 60 29 0041 CALL IN8
294C FE 03 0042 CP I 3
294E C9 0043 RET
294F 0044 *
294F 0045 *
294F • 0046 * CONSOLE INPUT - <"P>
294F 0047 *

294F 0048 ORG IOLOC+96
2960 0049 *
2960 CD DC CO 0050 INS CALL OCODCH
2963 CA 60 29 0051 JZ IN8
2966 FE 10 0052 CP I 16
2968 CA 75 29 0053 . JZ CTLP
296B FE OC 0054 • CP I 12

SYSTEM

- <P> & <L> ARE HANDLED SPECIALLY

;GET CHARACTER

;SEE IF ~P

;SEE IF ~L

29F3 CI 0111 POP B
29F4 78 0112 MOV A,B
29F5 C9 0113 RET
29F6 0114 *
29F6 00 0115 OUTFL DB 0
29F7 38 0116 LNCNT DB 56
29F8 0117 *

;AND RETURN

;PRINTER FLAG
;LINE COUNTER

SYMBOL TABLE

CHK8 2940
ITALF 29E4
OUTPR 29CO

CTLP 2975
LNCNT 29F7
REENT 2900

IN8 2960
MZOS 2028

IN18 2910
0UT8 2980

IOLOC 2900
OUTFL 29F6

4

$

oooo
0000
0000
0000
0000
0000
0000
0000
oooo
0000
oooo
OOOO 3E OA
0002 06 23
0004 OE 01
0006 11 00 2A
0009 21 00 00
OOOC C5
OOOD 06 01
OOOF F5
0010 D5
0011 E5
0012 CD 22 20
0015 El
0016 D1
0017 F1
0018 06 00
001A CD 02 C4
00ID D5
001E 11 OA 00
0021 19
0022 D1
0023 CI
0024 10
0025 E6
0026 C9
0027

SYMBOL TABLE

DJNZ 0010 MZ

0001 *
0002 * NORTH STAR TO MZOS DISK COPY PROGRAM
0003 * NEALE BRASSELL [26-JUN-78]
0004 *
0005 * THIS PROGRAM IS 100% RELOCATABLE.
0006 *

0007 MZ EQU 0C402H ;MZOS DCOM ROUTINE
0008 NS EQU 02022H ;NORTH STAR DCOM ROUTINE
0009 *

0010 DJNZ EQU 10H
0011 *

0012 NS2MZ MVI A,10 ;10 SECTORS AT A TIME
0013 MVI B,35 ;35 SUCH TRANSFERS
0014 MVI c , i ;WE'LL USE DISK 1
0015 • LXI D.2A00H ;TYPICAL BUFFER SPOT
0016 LXI H,0 ;START FROM THE BEGINNING
0017 N2M PUSH B ;SAVE COUNTER
0018 MVI B»1 ;READ FROM NS
0019 PUSH PSW
0020 PUSH D
0021 • PUSH H
0022 CALL NS ; « DO IT »
0023 POP H
0024 POP D
0025 POP PSW
0026 MVI B,0 ;WRITE TO MZ
0027 CALL MZ ; « DO IT >>
0028 PUSH D ;SAVE DE
0029 LXI D, 10 ;TEN SECTORS DONE
0030 DAD D ;REFLECT THIS
0031 POP D ;RESTORE DE
0032 POP B ;GET COUNTER
0033 DB DJNZ ;USE NEAT Z-80 CODE
0034 DB N2M-$-l ;TO EFFECT A LOOP
0035 RET ;HOPEFULLY RETURN TO WHOEVER
0036 *

C402 N2M OOOC NS 2022 NS2MZ OOOO

/

2A00
2AU0
2A00
2AU0 AF
2AU1 06 3E
2A03 CD 0D 20
2A06 3E 01
2A08 01 01 01
2A0B 11 00 2B
2A0E 21 04 00
2A11 CD 22 20
2A14 AF
2A15 06 3A
2A17 CD OD 20
2A1A 21 00 2B
2A1D 06 09
2A1F CD 10 20
2A22 FE OD
2A24 2d
2A25 09
2A26 47
2A27 AF
2A23 CD
2A2B 7u
2A2C 23
2A2D 10
2A2E FO
2A2F 2B
2A30 3E oO
2A32 B6
2A33 77
2A34 06 3C
2A36 AF
2A37 CD OD 20
2A3A 3E 01
2A3C 01 01 00
2A3F 11 00 2B
2A42 21 04 00
2A45 CD 22 20
2A4b C3 2b 20

OD 20

0001
0002
0003 *
0004 TITLE
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017 LOOP
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028 CR
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040

* LITTLE PROGRAM TO TITLE A DISK
* NEALE BRASSELL [12-JUL-78]

XRA A
MVI B,'>'
CALL 020ODH
MVI A,1
LXI B,101H
LXI D,2B00H
LXI H,4
CALL 02022H
XRA A
MVI B,1:1

CALL 0200DH
LXI H,2B0 OH
MVI B,9
CALL 2010H
CPI 13
DB 28H
DB CR-$-l
MOV B,A
XRA A
CALL 200DH
MOV M,B
I NX H
DB 16
DB LOOP-$-l
DCX H
MVI A,128
ORA M
MOV M,A
MVI B, '<1

XRA A
CALL 020ODH
MVI A/1
LXI B,1
LXI D,2BG0H
LXI H,4
CALL 2022H
JMP 2028H

? OUTPUT NOTE

;READ IN MZOS

;PROMPT

;GET CHARACTER

;IF <CR>, END

;CONTINUE

; WRITE MZOS BACK

SYMBOL TABLE

CR 2A2F LOOP 2A1F TITLE 2A00

This is a program which will title a disk for you. The title will be printed whenever you
boot the disk. To run, put a system disk into drive 1, copy this program onto it, then
type TITLE. The program will print >, indicating that it is reading in MZOS. It will then
print : and wait for you to type the title. Maximum is 9 characters, and terminate with
CR. Make no errors - no provision is made for backspacing. After CR or nine characters,
it will print <, then write MZOS back onto disk. Reboot and observe the result. This
program is set up to run at 2A00, and use a buffer from 2B00-2C00. The program itself is
relocatable, so you can put it elsewhere by changing the starting address (for example,
TY TITLE 1 0 to run at 0000). You can change the program (lines 9 and 15) to use a different
buffer area, also. Note that in order to title a disk, it MUST have MZOS as the first file.

