
.' . .

" ,:
\ .

. 't '

Ci'/fil 2
L)fil A))i5fil5lLi=l

U'SERS MANUAL

. !

ZSM ASSEMBLER FOR CP 1M

Version 2.5

USER'S MANUAL

Revision A

February 19, 19813

Copyright 198B Vector Graphic Inc •

..

* } CP/M is a registerd trademark of Digital Research.

I
•

Copyright 198" by Vector Graphic Inc.
AII·rights reserved •

. Disclaimer
Vector Graphic makes no representations or warranties with respect to the
contents of this manLial itself, whether or not the product it describes is
covered by" a 'warranty or r.epair . agreement. Further, Vector Graphic reserves
the right to revise this publ:i:cation and to make changes from time to time in
the content hereof with6ut 'obligation of Vector Graphic to notify any person of
such revision or changes, 'except ~en an· agreement to the contrary exists.

Revisions
The date and reVISIon of each page herein appears at the bottom of each page.
The revision letter such .as A or B changes if the MANUAL has been improved but
the PRODUCT itself has not been significantly IOOdified. The date and revision
on the Title Page corresponds to that of the page IOOSt recently revised. When
the product itself is modified significantly, the product will get a new
revision number, as shown on the manual's title page, and the manual will
revert to revision A, as if it were treating a brand new product. EACH MANUAL
SHOOLD ONLY BE USED WITH THE PRODUCT IDENTIFIED ON THE TITLE PAGE.

. , ".' ' .

..", .
-' ~'.

"I"" '"
~, ';; ~

ZSM Assembler User's Manual

Audience

Scope

Organization

-, ',::;~ ,I • t

" :.1! : ~_

Rev. 2.~ 2/19/89

This manual is intended for ASSEMBLY
I..AN:;UAGE programmers. It assLUneS a
moderate technical knowledge of small
computers, and familiarity with the
basic operation of the Vector Graphic
system, the CP/M operating system, and
the Z-80 instruction set.

, '. .'

.This:manu~l will describe the operation
of the ZSM ASsembler for CP/M, including
all pseudo operations and syntax.

,.

It ass~es"the user. knows how to program
in' assembly lqnguage using the 8080 superset
form '0£.-2-80 mnemonics •. Vector Graphic can
si.1pplya desctiptio.n of . th.ese mnerronics
in relation·tothe Zilog/Mostek mnemonics •

.,.' "

ZSM Assembler User's Manual

TABLE OF CONTENTS

Section

Table of Contents

I. Perspective

1.1
1.2

Introduction ••• 1-1
Differences between version 2.2 and version 2.5 •••••••••••••• 1-2

II. Using ZSM for CP/M

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Calling ZSM from CCP ••• 2-1
Language elements •• 2-2
Constants .•••.••••....•.•.••••.......•...•................... 2-3
Operators •• 2-4
Registers •• 2-5
Pseooo-ops ••....•••••.•..•...•.•.•.........•••..••••.......•• 2-6
Assembly errors .. 2-11

ASS

1,5 T'Y/ I '/

Rev. 2.5-A 2/19/89

ZSM Assembler User's Manual

I PERSPECI'IVE

1.1 Introduction

ZSM for CP/M is a program which converts Z-8~ assembly language text (source
code) into a sequence of machine language instructions (object code). The
latter can then be loaded into the corrputer's mexoory and executed.

ZSM is a "disk to disk" assembler, meaing that it takes a named source file
from a disk and puts the resultant object file back onto the disk. If
requested it can print or display on the console an "assembly listing" showing
both source and object code, or it can put the assembly listing on disk for
printing at a later time.

For users familiar with the MOOS version of ZSM, the CP/M version is similar
in most respects. The main difference is that you call it using a syntax
nearly the same as the cP/M 1.4 assembler, ASM.

Like the MOOS ZSM, the CP/M version uses the 8~8~ superset style of
mnemonics, as a convenience to programmers who began by learning 8~8~ code.
Also, programs written for the 8~8~ can be assembled using ZSM. Unlike the
MOOS ZSM, the CP/M ZSM does not have either the END or TAB pseudo operations,
and it has several new pseudo operations, such as TITLE, RADIX, and MARGIN.

If you are not familiar with the 8089 superset style of mnem::mics, Vector
Graphic can supply a booklet which compares it instruction-by-instruction with
the Zilog/Mostek mnemonics. It is important to grasp how indexing is handled.
Under Zilog rrnemonics, an operand might appear as (IX+d) where d is the offset
and IX is the index register. Under ZS/Iot, it would be d (X) • Thus instead of

LD H, (IX+12)

the following notation is used:

MOV H,12(X)

The same is true of IY, only it would appear as (Y) instead of (X). In
addition, an offset of zero may be omitted entirely. That is, (IX+0) need not
be written as 0(X), it can simply be (X).

After ZSM has assembled a source file, it puts the object file onto the
desired disk, giving it the file type .HEX. If you are familiar with CP/M, you
know that you first have to change the type of this file to .aJ.1 if you want to
be able to call it up as if it were a CCP canmand, just by typing its name. To
do this, you type LOAD XXXXX.HEX (return) after the CO? prompt A>, where XXXXX
is the name of the file. You can then type XXXXX (return) to execute the
program.

Rev. 2.S-A 2/10/80 1-1

Z8M Assembler Userls Manual

1.2 Differences between Version 2.2 and 2.5

This section is included for users already familiar with Z8M for CP/M.

ZS'tt 2.5 clears up the problans in version 2.2. Problems corrected are as
follows:

Print-file output

1. Pass 1 errors now print only once, not twice.
2. Tab characters in the source file are converted to spaces properly.
3. Errors that occur on a line that is also on the border of a page are now

handled correctly.
4. Pass 1 errors are now at the beginning of the print file.
5. The output format of pass 1 errors is now neatly aligned.

Error handling

1. Some errors previously reported in pass 1 are now reported in pass 2.
2. There is improved detection of type nM R errors on lines that require a

label but have none.
3. Type ~n errors are now detected for 16 bit values. Previously, only 8 bit

values were checked for overflow. This rrodification affects nrwn, "DOn,
and "OS" pseudo-ops.

4. No error now occurs when there is not a space or tab between an operand and
a following comment. That is, "; n is now a valid end-of-operand
character.

5. Type ~n errors no longer destroy the value of the last preceeding entry in
the Symbol Table.

6. Overlapping hex code, due to more than one OR:; statement, is now detected
for up to l~ ORGls. More ORGls are unaffected, but also uncheCked. A
message is produced if rrore than l~ OR:; I s occurred, but it is not counted
as an error. The message serves only to remind the user that the
possibility of overlapping code exists.

7. Errors concerning the MOV and MY! opcodes (i.e. MaV M,2 (X) or MaV M,M) are
now detected and reported.

The following features are new:

1. The LINK pseudo-op now allows nesting up to seven levels instead of only
one.

2. Pass numbers are now reported on the screen to mark the assemblerls
progress.

3. Durng LINKing, the name of the file currently bein:JLINKed is reported, in
order to mark proress through the first pass.

4. The total number of errors are now counted (in decimal) and displayed at
the end of the assembly.

5. There is a new pseudo-op: ~IN. It provides a left-hand margin on PRN
files. It is documented in the body of the manual.

1-2 Rev. 2.5-A 2/1~/8~

ZSM Assembler User's Manual

II USING ZSM FOR CP 1M

2.1 Calling ZSM from CCP (theCPIM executive)

Make sure you have a CP/M 2 System Diskette in drive A, from which you have
done a wann or cold boot. Make sure your source file is on a diskette in one
of the drives. You invoke ZSM by typing, after the CCP prompt A>, one of the
following two fonns:

ZSM <filename> (return)
OR

ZSM <filename>.<3 parameters> (return)

In both case~, <filename> represents the ~ame of an assembly language source
file of the fonn <filename>.ASM. In other words, to assemble USERCUST.ASM,
simply reference the filename USERCUST. ZSM assumes you mean IJSERCUST.ASM.

In the first case, the assembler lookS for the source file on the drive
currently "logged in" under CP/M· (usually drive A) and puts the object file
back onto the same drive. It also puts the assembler listing file onto that
drive, rather than printing it or displaying it on the console.

Whenever ZSM puts an object file onto a disk, the object file is always of
the form <filename>.HEX. The filename is th.e same name used when calling ZSM.
Whenever ZSM puts an assembler listing file onto disk, this file is always of
the form <filename>.PRN, again where the filename is the same name used when
calling ZSM. For example, if you ass~mbler USERCUST.ASM, by typing ZSM
USERCUST (return), the result will be two new files on the same diskette:
USERCUST .HEX and USERCUST.PRN. If· errors occur during assembly, they will be
listed in the PRN file as 'Well as at the console.

The second command form is used tp specify the origin of the source file,
the destination of the hex file, and the destination of the print file, if any
of. these are different than the currently logged in drive. Each of the 3
parameters is a single letter, which have the, following meaning:

The first - designates the disk drive which contains the source file.
Use A, B, C, or D.

The second· - designates ,the drive which will receive the the hex file.
Use A, B, C, 0, 6r Z •

. Z skips generation of the hex file altogether.

The third .~,'. ~es,ignate5 the drive Whi~ will receive the print file.
Use A, B, C, 0, X, Y or Z. '
X prints the ~isting immediately, rather than putting it

on a disk •
. y places the li~ting ontbe console, rather than a disk.
Z skips generation of the print file.

Rev. 2.5-A 2/10/80 2-1

ZSM Assembler User's Manual

Thus, the command ZSM USERCUST.ABC (return) indicates that the source file
USERCUST.ASM is to be taken from disk A, that USERCUST.HEX is to be put on
drive B, and that USERCUST.PRN is to be put on drive C.

The command ZSM USERCUST.ABX (return) is the same except that it prints the
listing immediately rather than putting USERCUST.PRN on the diSk.

The command ZSM USERCUST.B2Y (return) takes USERaJST.ASM from drive B, does
not generate a hex file at all, and displays the assembly listing on the
console. This kind of command might be used for a quick assembly to check for
program syntax errors.

The command ZSM USERCUST.AAA (return) is exactly the same as typing ZSM
USERCUST (return).

2.2 Language elements

The source file has a general format as follows:

LABEL: OPeODE OPERANDS i corrment

Note that line numbers are not required.

Each element, except for the comment, must be separated from the preceding
one by at least one space character or a tab character. Tab characters cause
the elements to print on columns \vhich are even multiples of 8 from the left
edge.

The LABEL is optional. If present, it will be entered into the symbol
table. Whether or not it is present, its position must be followed by a space
or colon. That is,

LABEL OPe or LABEL: OPe or OPe

are valid, while OPe

is not, because it is not preceded a space. Labels may include any of the
following characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abc d e f g h i j kIm n 0 p q r stu v w x y z
0l23456789@. [] {}\I"_A

To avoid ambiguity, however, the first character may not be • or 0-9. In
addition, a label may be of arr:t length up to 47 characters. All characters are
significant. In normal use, though, up to 12 characters should suffice; and
over 14 characters will look a 11 ttle strange on the listing •.

The OPCODE rust either be a Z-80 opcode or a pseudo-op. Both are explained
later.

2-2 Rev. 2.5-A 2/10/80

ZSM Assembler User's Manual

The OPERANDS vary. There can be any number of them, depending on whether
they are operands for an opcode or a pseudo-op. There are also instances where
there are no operands, and therefore this field can, in some cases, be omitted.
If more operands are supplied that are needed, the extras are ignored.

The COMMENT field is totally ignored by the assembler, except for printing
it on the listing. Comments are used only for documentation or clarity, and
can be omitted altogether. If present, comments should be preceeded by a
semicolon (i). The semicolon will cause a TAB to the third TAB setting,
whereas its absence will result in the comment appearing immediately to the
right of the operand field.

There is one exception to the above format, and that is the case of an
all-comment line. If the first character of the line (after the line number
and space) is either an asterisk (*) or semicolon, the entire line will be
treated as a comment.

2.3 Constants

ZSM provides for constants of two varieties, numeric and ASCII.

ASCII constants are indicated by enclosing the appropriate character in
single quotes (1). Any ASCII character can appear between the quotes, except
for (1) control characters, having an ASCII code of under 20 hexi (2) the
single quote character, ASCII code 27 hex; and (3) the DEL character, 7F hex.

Numeric constants may be in any of four bases - 2, 8, 10, and 16. A
specific base is indicated as follows:

litH indicates hexadecimal (base 16) - for example lC7H
iiiQ indicates octal (base 8) - for example 62Q
###B indicates binary (base 2) - for example 101018
ii#D or just i## indicates decimal (base 10) -.for example 193D or 193

Regardless of base, all numeric constants must begin with a digit, 0-9.
(This is to prevent ambiguity with labels.) Thus A07 hex would have to be

. wr itt-en, as 0A07H.

There is one special numeric constant, denoted by the symbol $. This
constant is always equal to the address of the current line; that is, the
memory location that the current line will be written into when it is loaded.
Note that this reflects the address of the beginning of the current line, not
the next line (as in some assemblers). As an example, consider that

XXX:',., JUMP $

would cause an infinite loop, since it would jump to itself~

Rev. 2.5-A 2/10/80 2-3

ZSM Assembler User's Manual

2.4 Operators

ZSM recognizes 10 operators. They are as follows:

+

*
/
%
&

i
>
<

addition
subtraction, or negative (as in -1)
multiplication
division
modulo (remainder of division)
logical AND
logical OR
logical EXCLUSIVE-oR
rotate right (110101B>3 yields 1011108)
rotate left (1110110B<1 yields 1101101B)

All arithmetic operators treat their operands as unsigned 16-bit quantities,
and answers are truncated to 16 bits. All logical operators perform their
function on a bit-by-bit basis, and they also treat their operands as 16-bit
values.

Operators combine with constants to foon expressions. In an expression, all
operators are evaluated in a strict left-to-right order, with no precedence of
operators.

Thus consider the following situation:

TEST has been assigned the value 1000H.
IOC has been ass igned the value 6.

The expression encountered is TEST*6+IOC!7<S.

The procedure would be TEST*6 (6000H) +INC (6006H) !7 (6007H) <S (0760H). Thus
the reSUlting value is 760H.

2-4 Rev. 2.5-A 2/10/S0

ZSM Assembler User's Manual

'2.5 Registers

The Z-80 has a number of registers, all of which have a specific symbolic
reference. ZSM supports these references, as follows.

register designation

register B - B
register C - C
register D - D
register E - E
register H - H
register L - L
accumulator - A
memory - M
A & flags - PSW
Stack Ptr - SP
Index reg X - IX
Index reg Y - IY

Also may be called BC for register-pair instructions

Also may be called DE for register-pair instructions

Also may be called HL for register-pair instructions

Although not supported by ZSM, also called (HL)
Program Status w:>rd, may also be called AF

Also may be called X for brevity
Also may be called Y for brevity

Of course, the Z-80 also has registers A', Bf, C', D', E', H', L', pI, PC,
I, and R, but these are never explicitly referred to in an instruction, so no
special designation is needed.

Rev. 2.5-A 2/10/80 2-5

2.6 Pseudo-ops

ZSM supports a large number of pseudo-ops. They will be explained now.

ORG Set origin

The ORG pseudo-op specifies where the object code is to be put. Assembled code
and data is assembled starting at the address specified as the operand to the
ORG psuedo-op, and proceeds upward, until the end of the program or another
ORG. A program can contain as many ORGs as desired. Since ORG is handled in
pass 1, any symbol appearing in the operand !'lUst already be defined.

LINK Link to a file

The LINK pseudo-op allows separate program files on the disk to be 'linked \
together' and assanbled as one file. The LINK operand is a source file name, t
enclosed in single quotes.

Linking to a file is like a subroutine; that is, when the linked-to file is
eXhausted, assembly of the original program will continue from where it was
left off at. For example,

XXX:
XXX:
XXX:

LXI
LINK
MO'V

H,4000H
'TEST'
A,M

will cause the entirety of the file TEST to be assembled between the LXI and
the MOV •. One note, though: files that are linked to must not contain an END
pseudo-op. Up to seven levels of LINK files may be nested.

EQU Equate

The EQU pseudo-op simply equates the label associated with it to the v~lue of
the operands.

TEN: EQU 10
TWENTY: EQU 2*10

The above code would cause the label TEN to have the value 10, and TWENTY to
have the value 20.

2-6 Rev. 2.5-A 2/l~/89

ZSM Assembler User's Manual

REO Request value

The REQ pseudo-op is similar to the EQU pseudo-op, only instead of an explicit
value being specified, the system console is prompted for the value. The
proopt is specified as the operand. For example,

TEST: REO 'Input:'

Would cause the IlEssage

Input:

to be displayed on the console during pass 1 of the assembly. The operator must
then type the value to be associated with the label. For example, if the
operator had typed '56B' in response to the prompt, then TEST would have a
value of 56 hex.

PRT Print

The PRT pseudo-op allows information to be displayed on the console during pass
2. If operands are present, they are displayed, otherwise, just a carriage
return/line feed is printed. For example,

TEST: EQU
PRT

would cause

70008
'This is a test ',TEST

This is a test 7000

to be printed on the console during pass 2.

NLIST No list

The NLIST pseudo-op will cause code following it not to be listed. Note that
this overrides any options which may have been specified in the command stringi
If the E option was used, nothing will be listed (errors or not) after a
NLIST.

LIST List

The LIST pseudo-op cancels the effect of the NLIST pseudo-op. If there has been
no NLIST, then this has no effect.

FORM. Form feed

The FORM pseudo-op produces a formfeed in the listing when encountered.

Rev. 2.5-A 2/10/89 2-7

IFF If false - conditional assembly

The block of code following the IFF pseudo-op will be assembled only if the
operand evaluates to 0.

IFT If true - conditional assembly

The block of code following the IFT psetXio-op will be assembled only if the
operand evaluates to anything other than 0.

ENDIF End of IF block

The ENDIF pseudo-op is used to mark the end of an IFT or IFF block.

DB Define byte

The DB pseudo-op assigns its operands to successive memory locations. Either
numeric or ASCII operands may be present, but either one must evaluate to only
8 bits. This means that only one ASCII character may be included per operand.
For example,

LOCATE:: DB 1,20H,llB, 'D' ,TEST,14

would put each operand into a successive memory location.

'z' is a special case of the DB pseudo-op, and it is equivalent to DB 0. For
example,

XXX:
XXX:

Z
DB0

are equivalent.

r::w Def ine wo rd

and

The OW pseudo-op is basically similar to DB, only it defines two bytes at a
time, rather than 1. Also, the two bytes are in Intel standard low/high
format.

DO Define data

The DO pseudo-op is exactly like OW, only the two bytes are put in high/low
format.

2-8 Rev. 2.5-A 2/10/80

ZSM Assembler User's Manual

lJl' Define text

The OT pseudo-op allows ASCI I text to be put into memory. The desired text
must be enclosed by single quotes. For example,

TEST: OT' ABCDEF '

would produce the following object code: 41 42 43 44 45 46 (hex).

DTB Define text tenninated high

The OTH pseudo-op is like OT, only the last character is ORed with 80H before
it is written out. In the above example, the last byte would be C6 hex.

OTZ Define text tenninated wi th zero

The OTZ pseudo-op is like OT also, only it causes a byte of 00 to be appended
to the text string. Thus the example would be 41 42 43 44 45 46 00.

OS Define storage

The OS pseudo-op causes the assembler to skip over the number of bytes
specified by the operand. Since the object file is scatter loaded, the area
skipped over will remain undisturbed.

FILL Fill storage

The FILL pseudo-op is similar to OS, only it fills the area with a constant,
rather that skipping over it. The constant to fill with is specified with the
second operand. For example,

XXX: FILL 5,3

would produce the output

03 03 03 03 03.

Rev. 2.S-A 2/10/80 2-9

TITLE Prints a title at the top of every page in the assembly listing

Type TITLE <title>, with no quotation marks around <title>. For example,

TITLE 'This is a program

will cause "This is a program" to print at the top of every page in the
assembly listing.

RADIX 'This sets the number system base ("radix")

This pseudo op sets the radix for all numbers used in the source program which
do not have a specific number base designation such as H or D attached. It can
appear anywhere in the text, and will apply to all numbers in the text because
it is read by the assembler in the first pass. Only use it once within the
text. If you do not use the RADIX pseudo op, ZSM defaults to a radix of 10.
For example, to specify that all numbers without another number base
designation are hexadecimal, set the radix to 16. To use binary, set the radix
to 2.

'The format is RADIX n, where n is the desired radix.

MARGIN 'This creates a left-hand margin in printed output (PRN files).

The MARGIN pseudo-op requires a parameter in absolute or symbolic fom that
evaluates to a value from 0 to 131. 'This number designates the column where
printing should start.

2-10 Rev. 2.S-A 2/10/89

'-.7 Assembly errors

There are ten assembly errors. Note that an error doesn't necessarily cause
the program to assemble wrong, particularly if the error is a syntax error in
something like a TAB statement. Nevertheless, all errors should be avoided.

The errors are as follows.

A Argument error - This is caused by an invalid character in an operand
field, or an ASCII constant which is out of range.

D Duplicate label error - This indicates that a symbolic name was used more
than once as a label. The first value will be used.

J Jump error - This indicates a relative jump (JR, JRZ, JRNZ, JRC, JRNC,
DJNZ) to a label which is out of range. The relative jump should be replaced
with an absolute one. There is one small ambiguity wi th this error: If you
have a relative jump to a non-existant label, you will get a J error instead of
a U error. Although perhaps the U would be more appropriate, the way the
errors are handled gives J priority.

L Label error
characters.

This is caused by a label which contains invalid

M Missing label error - This indicates that an EQU or REQ pseudo-op was
encountered, but there was no label on the line. Obviously, a label is
necessary for either of these.

o Opcode error - This is caused by an illegal or missing op:ode. Actually,
misspelling is the most caruoon cause of this error, or starting the opcode in
the first column instead of the second.

R Register error - This indicates that an illegal value was found where a
register was expected.

S Syntax error - This is caused by missing operands or improper use of
operators.

U Undefined symbol error - This indicates that a symbol was used, but that
the symbol has not been defined.

V Value error - This indicates ~~at the value computed is out of range for
~~e operation being used, specifically a two-byte instruction, or a DB.

Rev. 2.5-A 2/1~/8~ 2-11

