
INTERACTTM Graphics Language Manual

Version 4.0

L...---____ lJmo

INTERACTTM Graphics Language Manual

Version 4.0

Vermont M icrosystems, Inc.
OneMainStreet, POB236
Winooski, Vermont 05404

INTERACT is a trademark of VMI.
MULTIBUS is a trademark of Intel Corporation.

October 1984
VM 2001 001-07

While. to the best of our knowledge. this manual contains accurate Information and graphics. it is subject to change
without notice. VMI cannot be held responsible for any errors. omissions. or misinformation that may appear in this
manual. Changes made to the information contained in this document will be incorporated in new editions of this
publication.

CCopyright. Vermont Microsystems, Inc. 1984. All rights reserved. No part of this document may be reprinted.
reproduced. or used in any form or by any electronic. mechanical. or other means now known or hereafter invented.
including photocopying. recording. or using any information storage anll retrieval system. without permission in
writing from VMI.

Section

1
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
3
3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.5
3.6
3.7
3.8
4
4.1
4.2

Table of Contents

Description

Introduction
Graphics Environment

Coordinate Space
Image Memory
Display Screen
Clipping
Current Point
Current Value
Coordinate Registers
Value Registers
Color Look-up Tables
Monochrome Look-up Tables
Power-up Screen
Video Generation
Elements of State

General Description
Drawing Primitives

Moves
Points
Vectors
Linear Forms
Non-Linear Forms
Flood
Text

Macro Commands
Button Commands
Display Control Commands

Bit-Plane Control and Masks
Primitive Fills and Drawing Patterns
Clipping
Highlighting

Register Operations
Readback Commands
Image Transmission
Run-Length Encoding

Graphics Commands
Syntax
Descriptions

iii

1-1
2-1
2-1
2-1
2-3
2-3
2-3
2-3
2-3
2-4
2-5
2-5
2-6
2-6
2-7
3-1
3-1
3-1
3-1
3-1
3-2
3-2
3-4
3-4
3-7
3-8
3-8
3-8
3-8
3-9
3-10
3-10
3-10
3-11
3-11
4-1
4-1
4-1

Table of Contents (Cont.}

Section Description

5
5.1
5 .. 2
5.2.1
5.2.2
5.2.2.1
5.2.2.2
5.2.2.3
5.2.3
5.2.3.1
5.2.3.2
5.2.3.3
5.2.3.4
5.2.3.5
5.2.3.6
5.2.3.7
5.2.3.8
5.2.3.9
5.2.4
5.2.4.1
5.2.4.2
5.2.4.3
5.2.4.4
5.2.4.5
5.2.4.6
5.2.5
5.2.5.1
5.2.5.2
5.3
5.3.1
5.3.1.1
5.3.1.2
5.3.1.3
5.3.1.4
5.3.1.5
5.3.1.6
5.3.1.7
5.3.1.8
5.3.1.9
5.3.1.10
5.3.1.11
5.3.1.12
5.3.1.13
5.3.1.14
5.3.2
5.3.3

System Interfacing
Programmed I/O Interface
DMA Interface

Address Space
Dedicated Communication Area

Protocol for Writing to DMA DCA
DMA Block Pointer
DMA Control Byte

DMA Commands
Rea.d Init
Write Init
Read Halt
Write Halt
Read Continue
Write Continue
Programmed I/O Read
Programmed I/O Write
Interrupt Acknowledge

DMA Block Header
Block Command Byte
Status Byte
Data Area Pointer
Data Length
Current Count
Chain Pointer

DMA Examples
Single Wtite Block
Cyclic Write Blocks

INTERACT Interpreter
Modes of Operation

SOURCE Mode
OBJECT Mode
DECIMAL Mode
HEX Mode
ECHO Mode
QUIET Mode
WORDS SIGNED Mode
WORDS POSITIVE Mode
BYTES POSITIVE Mode
BYTES SIGNED Mode
LEAD ZEROS FOR HEX Mode
NO LEAD ZEROS FOR HEX Mode
NOT H SUPPRESS Mode
H SUPPRESS Mode

Editing
Interrupt

iv

5-1
5-1
5-4
5-4
5-5
5-5
5-5
5-5
5-7
5-7
5-7
5-7
5-8
5-8
5-8
5-8
5-8
5-8
5-9
5-9
5-9
5-9
5-11
5-11
5-11
5-11
5-11
5-12
5-15
5-15
5-15
5-17
5-17
5-18
5-18
5-18
5-18
5-18
5-19
5-19
5-19
5-19
5-19
5-19
5-20
5-20

/'--- ,

Section

5.4
5.4.1
5.4.2
5.4.3
5.4.4

Appendices

A
B
Cl
C2
D
E

Figure

2.1
2.2
3.1
3.2
4.1
5.1
5.2
5.3
5.4
5.5
5.6

Table of Contents (Cont.)

Description

AM94/l530 Dual Channel SBX Module
Cable Connection to the RS-232C SBX Module
Digitizing Tablet
Printer
·Light Pen

Related Documents
Cold Start Default Values
Command Summary by Opcode
Command Summary by Mnemonic
Look-up Table Default Values
Elements of INTERACT State

Tables and Illustrations

Description

Coordinate Environment
Video Generation
A.RC Def ini tion Example
TEXT2 Definition Example
Command Format
VM-8850A Programmed I/O Interface
VM-885x Dedicated Communication Area
DMA Block Header
DMA Write state Diagram
DMA Read State Diagram
SBX Header Configuration

v

5-20
5-20
5-23

.5-23
5-23

A-I
B-1

Cl-l
C2-1
D-l
E-l

~

2-2
2-8
3-3
3-6
4-3
5-3
5-6
5-10
5-13
5-14
5-22

\
'<"

1
Introduction

This manual introduces the reader to INTERACT, explains the main
architectural features of the language, and serves as a
programming reference. Section 2 describes the environment
provided to execute INTERACT commands. Section 3 introduces the
function and use of the various INTERACT graphics primitives.
Section 4 supplies individual INTERACT command descriptions and
syntax rules. Section 5 describes the operation of each of the
possible system interfaces to INTERACT.

This manual encompasses all versions of INTERACT. Footnotes and
text notations indicate which sections or commands apply to which
version of INTERACT.

1-1

c'

2
Graphics Environment

2.1 - Coordinate Space

A two-dimensional cartesian system serves as the coordinate space
for INTERACT commands. Each coordinate contains an x-component
and a y-component. The x-component indicates displacement along
an axis parallel to the bottom of the display screen; the y­
component corresponds to displacement along an axis parallel to
the left edge of the screen. Positive values for x and y indicate
right-hand and upward displacement respectively. Both x- and y­
components appear within INTERACT as two's complement l6-bit
integers. Therefore, both x- and y-displacement values range from
-32,768 to +32,767. We refer to this x,y system as the
"virtual" coordinate space since it is entirely addressable but
not entirely physically implemented in memory. Refer to Figure
2.1 for more detail while reading the next several sections.

2.2 - Image Memory

The image memory, composed of actual pixel buffers, physically
implements a selected subset of the virtual coordinate space.
Only graphics command output which falls within the image
memory has potential to display to the screen. To position image
memory in virtual coordinate space, place the desired center
coordinate into the coordinate origin register (CREG 3).
Thus, if the coordinate 0,0 appears in CREG 3, the image
memory centers horizontally and vertically about the coor­
dinate 0,0. The actual extent of the image memory depends on the
amount of pixel RAM available in the graphics processor. If dual
image memories become available, they QQ~b center about the
coordinate origin (CREG 3).

For other hardware installations, reconfigure INTERACT using
appropriate commands immediately following cold starts. Refer to
Section 4.2 for additional details.

2-1

Graphics Environment

y

Display Screen Placement
When CREG 4=1344~1264 1536

1024

Image Memory Placement
WhenCREG 3=1536,1536

~:--------~r-------+-~~~~~~~~--------------~()
1024 1536

Display Screen Placement
When CREG 4 = 0,0
(Display size = 640x480)

Image ~1emory Pl acement·
When CREG 3 = 0i0
(Image size = 1024xl024)

Figure 2.1 : Coordinate Environment

Graphics Environment

2.3 - Display Screen

The display screen presents image data scanned from the image
memory. The display screen information can corne from any of the
image memories, if available, and, with the screen Orl.g~n
register (CREG 4), can "pan" relative to the selected
image memory. The screen origin register specifies the x,y
coordinate of the pixel to appear at the center of the
display screen. Therefore, if the content of CREG 4 differs from
that of CREG 3, the display screen will offset vertically and/or
horizontally.

2.4 - Clipping

INTERACT graphic output falling outside the image memory
is clipped; only graphic output which falls within the current
clipping window writes to the image memory. In INTERACT Version
2.0, the boundary of image memory forms the clipping window.
Version 3.0 allows the user to define several clipping windows
and window formats and to move between windows during a session.
Refer to Section 3.4.3 for further explanation.

2.5 - Current Point

Most INTERACT commands use the "current point" to implement
their respective functions. The current point register, CREG 0,
denotes the starting, or center, point for the generation of a
primitive. Coordinate registers 5 and 6 each store the
coordinates of one crosshair. Placing the contents of CREG 0
into either register displays that crosshair on the screen at the
current point. The current point may lie anywhere in virtual
image space.

2.6 - Current Value

All draws to image memory access the current color stored in
value register VREGO. Use the VALUE command to change the
current drawing color.

2.7 - Coordinate Registers

The coordinate registers (CREGs 0 to 63) provide temporary
holding areas for coordinate values. The INTERACT software
defines specific functions for 13 of the CREGS, reserves 7 for
future definition, and leaves 44 available to the user for
applications programming. The CLOAD command stores coordinate
values within a specified CREG. Use the READCR command to
determine the contents of a CREG. Move the contents of CREGs

2-3

Graphics Environment

f rom one CREG to another wi th the CMOVE command. The CADD and
.the CSUB commands perform addition and subtraction operations
respectively on the contents of named registers. Appendix B
lists the default values for the CREGs. Those CREGs
specifically defined by INTERACT follow:

~

o

1
2
3

4

5
6
7

8

9,10

11,12

13-19
20-63

Current Point

Reserved
Locator position
Coordinate Origin

Screen Origin

Crosshair 0
Crosshair 1
Text endpoint

Locatq:r Adjustment

Clipping boundary

Device boundary

ReserY:.ed
Unasstgned

2.8 - Value Registers

Pescription

Starting, or center, point for
graphic~ primitives

Coordinate of the locator device
Coordinate of the center of
image memory in virtual space
Coordinate of the pixel at the
center of the display screen
Coordinate of crosshair 0
Coordinate of crosshair 1
End of string cooidinates for
TEXTI and TEXTO (0,1)
Coordinate calibration factor
for locator. hardware
Current clipping window
coordinates
Coordinates of the rectangle used
by the printer driver and the
digitizing tablet

The value registers (VREGs 0 to 15) serve as temporary holding
areas for pixel values. The INTERACT software assigns specific
functions to 7 VREGS and leaves 9 for use in applications
programming. The command VLOAD stores pixel values into VREGs,
while READVR queries the contents of a VREG. Move the contents
of VREGs to other VREGs with the VMOVE command. The VADD and
VSUB commands allow addi tion and subtraction operations
respectively using the contents of the registers. Appendix B
lists the default values for the VREGS. The VREGS specifically
defined by INTERACT follow:

2-4

/
(

~

Y.IOOi

o

1
2
3
4
5

6

7-15

Graphics Environment

Current Value

Crosshair 0 Color
Crosshair 1 Color
Area Fill Mask
LUT Mask
Text background

color
Bit Plane Mask

Unassigned

Description

Pixel value used by all graphics
primitives
Pixel value for crosshair 0
Pixel value for crosshair 1
Pixel mask for random area fills
Value mask for color lookup
Background color for text

Color mask used by all graphics
primitives Contents are logic­
ally ANOld with current value be­
fore drawing

2.9 - Color Look-up Tables

The color look-up tables (LUTs) hold the color values available
for drawing. A red, green, and blue intensity level combine to
display a single color. LUT commands alter the contents of
the tables. Use these commands to change hues or intensities
assigned to any index. . Reprogramming the LUTs can also change
existing colors on the screen. The default LUTs for a color
system follow an HLS color model. For a list of these values,
refer to Appendix D.

2.10 - Monochrome Look-up Tables

INTERACT defaults to a one-to-one correlation for 8-bit
monochrome LUTs where the index value equals the entry value,
that is index 7 contains the value 7, etc. A 4-bit system still
uses eight bits of output. In this case the 16 entries for
monochrome LUTs use evenly spaced values:

Entry Value

o OOH
1 IlH
2 22H

F OFFH

To redefine LUT values in a monochrome system, user the LUTG
command.

2-5

Graphics Environment

2.11 - Power-up Screen

After a power-on reset or a DSPSIZ command, INTERACT draws its
power-up screen. This screen allows the user to visually check
for proper color channel connections and monitor adjustments.
The three color system shows blocks of the three colors
unsaturated as well as white, blac~, and gray. The monochrome
system displays the gradations of black to white of the gray
scale.

2.12 - Video Generation

The following section describes the video generation process,
controlled by the video scanner of the graphics board. This
description presents the capabilities of INTERACT. Refer to
Figure 2.2 for further illustration. For the following
discussion, refer to the table of variables listed below:

bit planes (bp)
'«simul taneous colors (sc)

Board Product

VM-8850A
4

16

VM-8851
8

256

~its/color in each LUT (be) 4 4
color palette (ep) 4096 4096

The video generation process begins when the video scanner reads
a new pixel value from image memory. The pixel value consists of
bp bi ts, each read f rom one of the bp bi t-pl anes in the image
memory. Next, the pixel value serves as a simultaneous index
into the three look-up tables (LUTs). The pixel . value
selects one of 2bp entries in each of those three tables,
resulting in an ability to display se simUltaneous colors. The
output values from each of the three LUTs r~present the red,
green, and blue intensities required to compose the target dot.
Since the tables consist of bc bits for each of the three
colors, the sc simultaneous colors are selected from a color
palette of 2bc+bc+be or cp values. The bc bit digital color
values from the look-up tables are converted to analog
intensities in high-speed D/A converters before passing to the
video monitor. Refer to the appendices for the default values of
the LUTs. The look-up table programming synchronizes to VSYNC
so that the palette selections may change "on the fly".
During a series of INTERACT commands sent to the graphics board
to change the LUT entries, the first command delays execution
until the advent of vertical blanking.

2-6

(/

(-

(:

Graphics Environment

The surface functions manipulated by LUTMSK and SURFAC work by
reprograming the hardware LUTs. Neither scheme affects the
values which are written to display RAM, but both affect the
colors which are displayed on the screen. This is accomplished
by al ter ing the val ues in the hardware LUTs in a fashion which is
transparent to the user.

LUTMSK works by disabling particular bit planes specified in its
mask parameter. To disable a bit plane, set the corresponding
bit in mask to O. For example, a mask of 00001011 would cause the
value 00001110 to be displayed as the color represented by value
00001010. Masking is handled before any specified surface
pr ior i ty scheme.

SURFAC allows for the definition of a surface priority scheme in
which certain bit planes are assigned priority over other bit
planes. Bit planes are assigned priority in the order in which
they appear in the surface parameters of SURFAC. If a pixel's
value has any bits set in a priority surface, then all of the
bits in the non-priority surface are considered to be zero. For
example, the following sets up two surfaces:

SURFAC 2 OFH OFOH

With this scheme, a pixel of value 42H (OlOOOOIOB) would be
displayed as a pixel of value 02H, since the presence of a set
bit in the lower nibble (higher priority) of the pixel value
overlays any value in the higher nibble (lower priority). The
display may be considered as two separate surfaces in which any
color (except value 0) in the higher priority surface "overlays"
any color in the lower priority surface.

2.13 - Elements of State

While the result of each· INTERACT command depends on the values
of its associated parameters, the graphic output may also depend
on the current values of the elements of state (see Appendix E).
The elements of state which influence each command are detailed
in the "Affected by" section of each command description. The
elements of state which are influenced by each command are
detailed in the "Affects" section of each command description.

2-7

4 bit pl anes
of 256K pixels

Graphics Environment

4 bit planes
of 256K pixels

-Buffer Selector

Figure 2.2 Video Generation

Digital to analog
color converters

R,G,B look-up tables,
4 bits in, 4 bits out
for each color

;'­

i
"-<._.

(-

3
General Description

3.1 - Drawing Primitives

Drawing primitives create basic geometric shapes in image memory.
Certain display control commands affect draws to the screen or
image memory. Refer to Section 3.4 for more information about
those commands.

3.1. 1 - Moves

Move commands update the current point location stored in
coordinate register CREG O. Change the current point by
specifying absolute coordinates (MOVABS) or relative displacement
(MOVREL), or by indirectly using absolute coordinates stored in
registers (MOVI).

3.1.2 - Points

(" The POINT command, the simplest· INTERACT graphics primitive,
places a single pixel of given value anywhere in the image
memory. POINT will place a pixel of the value contained in VREGO
(current color) into image memory at the absolute coordinate
contained in CREG 0 (current point.)

3.1.3 - Vectors

Use the vector commands to draw lines. The draw absolute
(DRWABS) command will draw a vector in the current value (VREG 0)
from the current point (CREG 0) to the x,y point specified by the
command parameters. An "absolute" vector defines the endpoints as
x,y coordinates. In the draw indirect (DRWI) command, also an
absolute vector operation, the parameter specifies a CREG
containing the endpoint coordinate x,y. The draw relative
(DRWREL, DRW2R, and DRW3R) commands, however, draw a vector
which begins at the current point but ends at a particular
dx,dy offset from the current point. All vector commands
update the current point to the last pixel drawn. This update
method f aci 1 ita tes the drawing of conca tena ted vecto r s.
INTERACT clips a vector as though the line continues off the
screen toward the specified endpoint. The DRWABS, DRWI,
DRWREL, DRW2R, and DRW3R commands draw line patterns determined
by the VECPAT command.

3-1

General Description

3.1.4 - Linear Forms

The rectangle commands draw right-angled, four-sided figures into
image memory. The rectangle relative (RECREL) command draws a

- - rectangle where the coordinate contained in CREG 0 define·s one
corner coordinate. The parameters dx and dy indicate the
relative displacement of the corner diagonally opposite from the
current point. The rectangle (RECTAN) command draws a rectangle
with one corner located at the current point and the diagonally
opposite corner identified by the absolute x,y parameters. The
rectangle indirect (RECTI) command also draws an "absolute"
rectangle where a specified CREG contains the opposite corner
coordinate.

The polygon commands draw a multisided polygon def·ined by its
vertices. A single command can produce any specified number of
polygons, each defined by a respective vertex list. The absolute
command (POLYGN) interprets its parameter,s in absolute
coordinates. INTERACT connects each vertex to the following
coordinate with a vector drawn in the current color. The final
named coordinate connects to the initial coordinate, completing
the polygon. The polygon relative command (POLYRL) also connects
the vertices in the order specified. Each vertex, however, lies
at a particulaF dx, dy distance displaced from the current point
(CREG 0). Both polygons will draw "degenerate" shapes, that is,
one where one: side crosses another side of the same polygon
creating multi~le enclosed spaces.

3.1.5 - Non-Linear Forms

The CIRCLE command draws a circle defined by a center point and a
radius. The center of the circle will lie at the current point.
The command defines the radius of the .circle in vir-tual
dimensions. The circle indirect (eIRCI) and circle x,y
(CIRCXY) commands draw a circle defined by the current point as
its center and a specified coor.dinate to lie on its
circumference. The CIRCXY command names the circumferential
point in its parameters; the CIRCI command obtains that point
from an identified coordinate register. '

The ARC command draws arcs. The center of curvature for the arc
lies at the current pOint. The parameters provide the value for
the radius of curvature, as well as the starting and ending
angles for the arc. These angles reference the current point,
drawing counter-clockwise (positive values) from an imaginary
line which extends horizontally to the right of the current
point. INTERACT interprets the angular specifications as integer
degrees employing modulo-360. Refer to Figure 3.1 for an example
of an ARC command specif ication.

3-2

/-

(.... General Description

+y

Drawn arc

VEnding angle

\
\

+X

Starting angle

Figure 3.1 ARC Definition Example

General Description

3.1.6 - Flood

The FLOOD command sets all pixels in the current update buffer
to the current pixel value. The update parameter of the most
recently executed BUFFER command specifies the current update
buffer.

3.1.7 - Text

Draw text with the TEXTO, TEXTI and TEXT2 commands. These
commands draw horizontal text only. The TEXTO command uses two
expandable fixed fonts, each containing a full ASCII character
set featuring true descenders and smooth, expanded
characters. The TEXTC command controls the size of the font used
by the TEXTO command. Size 0 refers to 5x7 characters
contained within 6x9 cells. Size 1 corresponds to a 7x9 foht
in an 8x12 cell size. Size 2 doubles the size 0 characters.
For sizes 3 through 255, use the following algorithm to
determine the size, in pixels, of each character:

«n-l)x7) x «n-l)x9)
«n-l)x8) x ({n-l)x12)

[character size]
[cell size]

'where n = size

For example, Size 4 uses 2lx27 characters in a 24 x 36 pixel
cell. The TEXTI command also uses a fixed font containing the
full ASCII character set with 5x7format in 8x8 cells.

The TEXT2 command draws in a variable-cell font defined using
the TEXTDN command. The TEXTDN command allows the
definition of any character format in variable cells of any
size. Only the amount of system RAM allocated to text font
storage by a CONFIG command limits the space available for a
TEXTDN command. Thus, the TEXT2 font may define and combine
characters as small as lxl pixels, or as large as 5l2x5l2
pixels and more. The variable-cell capability of TEXT2 can
simUlate proportional-spacing techniques, or can implement
c~mplex fonts such as Chinese characters. The TEXT2 font
may also store "building block" graphic images, e.g. an OR­
gate for CAD applications. Up to 255 separate characters may be
defined with TEXTDN and drawn with TEXT2. In source mode, these
characters may be described as "char" or by their equivalent
ASCII value in decimal or hexidecimal format. Thus, in source
mode (see INTERACT Interpreter) the following are identical
commands:

TEXT2 nAn
TEXT2 65
TEXT2 04lH

3-4

(

(

General Description

The TEXT2 font defines a character as an array of pixels. The
bytes in the fntlst parameter of the TEXTDN command define the
pixel array starting at the lower left corner of the cell and
working to the right and upward. One byte represents each 8 bits,
or fraction of 8 bits, required to define one horizontal line of
the cell. Additional bytes define each successive line of the
cell. Thus, a cell which is 14 x-direction by 20 y-direction
pixels in size will require 2 bytes of definition for each
horizontal line, and 40 bytes of total definition in the TEXTDN
command. The definition stores internally in a compressed format.
Use the following equation to determine the number of bytes of
memory, (M), needed for a given character:

M = INT «x*y)/8) + 6

where INT represents the integer function. Figure 3.2
illustrates the definition process through an example.

Text characters for all fonts display into the image memory using
the current point as the coordinate of the lower left corner of
the character cell. The current point (CREGO) does not change.
CREG 7 holds the coordinates for the text endpoint, that is, the
coordinates of the lower right-hand corner of the last cell
written plus one pixel in the positive x-direction. Place the
contents of CREG 7 into CREG 0 to continue a text string. TEXTI
wraps around with a downward shift of one cell upon
exceeding the right edge of image memory. Due to ambiguities in
character size, TEXTO and TEXT2 truncate excessive
character string lengths at the image memory boundary.

3-5

Non-activated
pixel

Activated
pixel

5th byte

General Description

+Y

Character cell 14x by 14y

Bits in the last byte per row,
extending beyond the cell
boundary, should be specified
as D's

6th byte

4th byte
2nd byte

3rd byte------~ ________ ~~~~~~~~~~

1 st byte of
fntl st

2 bytes required to
define each row in
this case

/6 r ,~~ 66 4~bYtes)
TEXTDN Character Cell Cell 1st byte of 6th byte of
opcode defined width height fntlst fntlst

Figure 3.2 : TEXT2Definit.ion Example

-'''---

«

{

General Description

3.2 - Macro Commands

Macros involve a series of INTERACT commands executed by a single
command. INTERACT provides up to 256 simultaneously
defined macros. The MACDEF and MACEND commands mark the
beginning and end of a macro definition respectively. The
MACRUN command executes the specified macro, while MACREP
repeats the execution invoked with MACRUN of a particular macroa
designated number of times. Macros may be nested up to 16
levels. Allow two levels for macros invoked with MACREP, or
BUTTON or BUTCON.

The macro capability is used to define a list of commands for
later execution. The VM88xx allows the definition of 256 MACROs
with a nesting depth of 15. There are five macro commands
available:

MACDEF macnum
MACEND
MACRUN macnum
MACREP macnum, count
MACERA macnum

The MACDEF command defines a macro, where macnum is between 0 and
255. The commands following the MACDEF command and ending with
the MACEND command define a macro. The commands can consist of
any combination of valid INTERACT commands (commands and
parameters), with the exception of the commands WARM, COLD, and
CONFIG. Only the available memory space limits the length of the
MACDEF command string (refer to the CONFIG command).

The user can redefine any previously defined macro by defining
another MACDEF command with the macro number of the macro which
is to be redefined. The MACERA command erases the definition of
a specified macro thereby freeing space in the macro buffer.

The MACEND command ends the macro definition at the current
nesting level. If no macro definition is in progress, no action
occurs.

The MACRUN command executes a previously defined macro. The
MACREP command runs a previously defined macro a number of times
(as defined by count). If count = 0, then the macro repeats
indefinitely.

3-7

General Description

3.3 - Button Commands

The BUTTON and BUTTBL commands allow the user to access macros
through a reconfigurable table. When INTERACT is initialized,
each button number (0 - 31) is associated with its respective
macro; this association can be changed with the BUTTBL command.
The button number specified in the BUTTON command indexes the
button table, invoking the macro associated with that button.
Thus, the BUTTON and BUTTBL commands provide dynamic access to a
set of on-board macros. .

The BUTREC and BUTCON commands allow the user to conditionally
invoke the BUTTON command. BUTREC associates a rec.tangular area
of virtual memory with a particular button. BUTCON, the
conditional button command, has as its parameter a coordinate
register. If the value of the specified coordinate register
falls within a rectangle specified by the BUTREC command, a
BUTTON command is invoked.

Button commands may also be accessed through other devices. The
optionallight pen invokes BUTTON 0 when pressed to the screen.
The optional digital tablet can run up to 16 different buttons
from a hand held cursor.

3.4 - DisIjiay Control Commands
';:!~:

Display c~ntrol commands affect the way subsequent commands draw
to the screen. They can also alter an existing display.

3.4.1 - Bit-Plane Control and Masks

The number of bits used to define the colors of a graphics system
also specifies the number of bit planes. with masks and look-up
table (LUT) commands, these planes can create non-destructive
backgrounds and- dynamic foregrounds. The contents of the bit
plane mask, VREG 6, are logically ANDld with current value before
drawing to image memory. The LUT mask (LUTMSK) acts on the LUT
index. Thus several indices can use the same bit designation,
but the mask can produce different colors. The masks can create
background or foreground color without changing the LUTs.

The bfank (BLANK) command blanks the displayed image without
affecting image memory. Commands sent to the board during a
blank command will appear as part of the restored image when the
blank flag is turned off.

3.4.2 - Primitive Fills and Drawing Patterns

The primitive fill (PRMFIL) command instructs all
subsequent drawing primitives which produce an enclosed space to

3-8

\,,_.

c_

General Description

fill that area with the current color.
draw commands draw only an outline.

Otherwise, primitive

The area fill commands, AREAl and AREA2, fill the interiors of
"closed" graphic outlines with pixels of the current value. Both
types of area fill require the use of a "seed point" coordinate,
provided in CREG O. Use any point in the interior of the target
area as a seed point. The AREAl command finds the boundary
color by moving horizontally to the left until encountering a
pixel value different from the starting value. AREAl will fill
the inside of the outline by tracing along the entire boundary,
drawing to the right from each boundary point while inside the
figure. The AREA2 command functions similarly to AREAl except
that the named VREG holds the value of the boundary color. From
the seed point, AREA2 moves to the left until finding a pixel
of this value. The command identifies this pixel as part of
the boundary. This command then fills within the boundary as
in an AREA 1 command. Both types of fill employ the fill
mask (VREG 3) in their respective boundary comparisons. The fill
mask ANDs with both the seed point value and the current pixel
value before any boundary comparison occurs. Therefore, the
fill mask can disable comparison on certain bit plane
positions.

The vector pattern (VECPAT) command specifies the pattern of the
line drawn in graphics primitives. All lines use a single pixel
width but may specify any dash or dot combination. VECPAT masks
the draw made to the screen, repeating the pattern every 16
pixels. The 16-bit number, providing one bit for each pixel,
sets an on/off pattern for the drawn vector. A one in the
pattern draws a pixel in the current color, while a zero does not
affect the screen. The first pixel (FIRSTP) command sets a flag
to draw or not draw the first pixel in a vector.

The area pattern (AREAPT) command specifies the pattern of an
area filled by a graphics primitive. All filled areas use the
specified area pattern, which is composed of 16 words of
parameters, defining a square area 16 pixels long and 16 pixels
high. Each of the 256 pixels in this area corresponds to a bit
in the 16 word pattern. A "1" in the pattern allows the
corresponding pixel to be drawn in a filled primitive, while a
"0" masks out the corresponding pixel in the area being filled.

3.4.3 - Clipping

INTERACT clips any pixels drawn outside of image memory. The
clipping window definition (CLIPDF) command defines a clipping
boundary. The clipping (CLIP) command enables that boundary.
The clipping window only affects subsequent commands. Existing
displays remain unaffected by an enabled window.

3-9

General Description

3.4.4 - Highlighting

The blink commands control highlighting of image portions. These
commands enable blinking by alternating the LUT values for a
particular pixel value between two specified values. As many as
256 independent types of blinking fields may occur in the image
by using all the pixel values. All types of blinking fields
must blink at the same rate, but may alternate between any two
of the possible display colors available in the palette.

The BLINKE command enables blinking of a particular pixel
value, in one, two, or all three of the LUTs, between two
specified entries. The BLINKR command sets the blink rate in
vertical retrace interval units. The BLINKC command clears
all previous blinking set-ups and returns all fields to
entry 1 of the BLINKE command. The BLINKb command disables the
bl inking of only a specif ied pixe 1 value.

3.5 - RegistercOperations
l:,.

INTERACT provi4es two types of storage registers: va.lue registers
(VREGs) and coordinate registers (CREGs). Refer to Sections 2.7
and 2.8 for more information on reserved registers and their
designations .;;(£oth types of registers allow similar operations.

Use the register load (VLOAD and CLOAD) to load color values and
coordinates into a specified register. Copy the contents of one
register to another using the move (CMOVE and VMOVE) commands.
Other operations include adding (VADD and CADD) and subtracting
(VSUB and CSUB) register contents.

3.6 - Readback Commands

Readback commands provide information stored in various registers
to the user. Read the contents of coordi.nate and color value
registers using read (READCR and READVR) commands. Read t.he
value at the current point using the read pixel (READP) command.
The RDPIXR command reads the value of the current point and
places that value in VREG 0 as the current color.

3-10

(

Graphics Commands

BUTTBL

BUTTBL index,macnum Load button table.

Assign a macro macnum to button number index in the button
table~ The value index varies from 0 to 31. The value macnum
varies between 0 and 255.

Example . .
MACDEF 51
VALUE 0
FLOOD

VALUE 1
CIRCLE 25
MACEND
BUTTBL 8
BUTTON 8

51

;Begin macro definition
;Set current pixel value to 0
;Flood current update buffer with
;current pixel value
;Set current pixel value to 1
;Draw a circle of radius 25
;End macro definition
iAssign macro 51 to button location 8

. Object Code Format :

[AAH] [index] [macnum] (3 bytes)

Affected by NONE

Affects Button Table

Command available Version 2. 2.0

4-22

BUTREC butnum,xl,yl,
x2,y2

Graphics Commands

Assign a rectangular area to a
button number

BUTREC

Assign a rectangular area to button butnum.The rectangular area
is defined as having a lower left corner of (xl,yl) and an upper
right corner of (x2,y2). If the two corners are equivalent l the
rectangle is reduced to a point. If x2 is less than xl ory2 is
less than yl, then no area is assigned to button butnum. This
prevents button number butnum from being invoked by a BUTCON.The
same area may be assigned to more than one button.· This command
is used with the BUTCON command to conditionally execute buttons.

Example:

MAeDEF 2
VALUE 0
FLOOD

VALUE 1
CIRCLE 100
MACEND
BUTTBL 3 2
BUTREC 3 0 a 100 100

CLOAD 20 50 50
CLOAD 21 -10 -20
BUTCON 20
BUTCON 21

Object Code Format:

;Begin definition of macro 2
;Set current pixel value toO
;Flood current update buffer with
;current pixel value
;Set current pixel value to 1
;Draw circle of radius 100
;End definition of macro 2
;Run macro 2 if button 3 requested
;Associate rectangle (O,O),
; (100,100) with button 3 ~
;Load CREG 20 with (50,50)
;Load -CREG 21 with (-10,-20)
;Draw circle of radius 100
iDoes not execute macro 2

[B9H] [butnum] [highxl] [lowxl] [highyl] [lowyl] [highx2] [10wx2]
[highy2] [lowy2] (10 bytes)

Affected by

Affects

NONE

Conditional Button Execution Table

Command available Version L 4.0

4-21

(
Graphics Commands

BUTCON

BUTCON creg Run a conditional button.

Run each button whose defined rectangular area· (see BUTREC)
contains the coordinates stored in coordinate register creg.

Example:

MACDEF 2
VALUE a
FLOOD

VALUE 1
CIRCLE 100
MAC END
BUTTBL 3 2
BUTREC 3 0 0 100 100

CLOAD 20 50 50
CLOAD 21 -10 -20
BUTCON 20
BUTCON 21

Object· Code Format:

[BAH] [creg] (2 bytes)

;Begin definition of macro 2
;Set current pixel value to 0
;Flood current update buffer with
;current pixel value
;Set current pixel value to 1
;Draw circle of radius 100
;End definition of macro 2
;Run macro 2 if button 3 requested
;Associate rectangle (0,0),
;(100,100) with button 3
;Load CREG 20 with (50,50)
iLoad CREG 21 with (-10,-20)
:Draw circle of radius 100
;Does not execute macro 2

Affected by Conditional Button Execution Table
Button Table

Affects Button FIFO Event Queue

Command available Version L 4.0

4-20

Graphics Commands

BUFFER

BUFFER update,display Select buffer usage.

Display image buffer display to.the screen. Subsequent graphics
commands operate on the update buffer. This command synchronizes
with vertical retrace. The number of buffers allowed depends on
the image size and amount of available memory. (Refer to the
hardware manual.)

Enabled crosshairs appear in the display buffer.

Example :

BUFFER 0 1
BUFFER 0 0

Object Code Format :

;Update buffer 0, and display buffer 1
;Update and display buffer 0

[EOH] [update] [display] (3 bytes)
"Z- tti

Affected by: NONE

Affects : Updated Buffer
Display Buffer

Command available Version 2. 1.0

4-19

''-'--'

(

Graphics Commands

BLKMOV

BLKMOV xl,yl,x2,y2 Move block to current point.

Move the rectangular block with one corner at xl,yl and the
opposite corner at x2,y2, to the current point. The pixel
xl,yl is placed at the current point.

Example :

MOVABS 0 20
PRMFIL 1
VALUE 1

0'1 t"'.r$" 0, ~i~~,~,;r

f " < " {r !

CIRCLE 50 01;;,,'';;> L:
MOVABS 55 75 O/,C}() ,17,(;10, 'IB
BLKMOV 0 20 50 70

"00 C 1J t:J

··I'f)1. U~7

Object Code Format :

iMove current point to 0,20
iSet primitive fill flag
;Set current pixel value to I
;Draw circle centered at 0,20
iMove current point to 55 75
iMove defined block such that data at
ipoint 0,20 appears at point 55,75.
iThe orientation of pixels within the
;block will not change.

[E5H] [highxl] [low~l] [highylJ [lowyl] [highx2] [lowx2] [highy2] [lowy2]
(9 bytes)

Affected by: Current Point
Coordinate Origin
Clipping Boundary
Pixel Function
Bit Plane Mask
Update Buffer

Affects NONE

Command available Version L 3.0

..•. ,------

4-18

Graphics Commands

BLINKR frames

BLINKR

Set blink rate to frames vertical synch
intervals.

Set the rate at which LUT entries will alternate after enabling a
blink command. The command defines this rate as the number of
vertical sync intervals between swapping. The value of frames
ranges from 0 to 255.

Example :

BLINKR 60

Object Code Format :

[22H] {frames] (2 bytes)

Affected by: NONE

Affects Blink Rate

iSet blink rate to 1 swap per second
;for a60 Hz configuration

Command available Version ~ 1.0

4-17

(-

BLINKE

BLINKE lut,index
entryl,entry2

Graphics Commands

Enable blink of specified lut,index.

Enable blinking of a specified LUT location. The value lut
specifies the RGB enable mask. Index specifies the value code to
be blinked for all requested LUTs. The value index ranges from
o to (2(pixel depth)-l). Setting the least significant bit of
lut (bit 0) enables the blue LUT value for that index, setting
bit 1 of lut enables the green LUT value, while setting bit 2 of
lut enables the red LUT value. More than one bit in the RGB
enable mask may be set in a single BLINKE command. For example,
settinglut=7 enables all look-up table values for the specified
lute Entryl and entry2 will alternate at a rate set by the
BLINKR command. The values entryl and entry2 range from 0 to
2(bits/color in each LUT). (See Section 2.12.) Thiscommand
synchronizes to vertical retrace.

Example

VALUE 3
FLOOD

BLINKE 4 3 7 15

Object Code Format :

;Set current pixel value to 3
;F16od current update buffer with
;current pixel value
;Enable blink of pixel value 3 in the
ired LUT only. Pixels of this value
;alternate between red content of 7 and
;15

[20H] [lut] [index] [entryl] [entry2] (5 bytes)

Affected by: NONE

Affects : Blink Status
Blink Tables

Command available Version L 1.0

4-16

Graphics Commands

BLINKD

BLINKD lut,iildex Disable blink ·of specified lut,index.

Disable blinking of a specified LUT location. The value
lut specifies the RGB enable mask. Index specifies the value
code to be disabled for all requested LUTs~ The value index
ranges from 0 to (2(pixel depth)-l). Setting the least signif­
icant bit of lut (bit 0) disables the blue LUT value for that
index, setting bit 1 of lut disables the green LUT value, while
setting bit 2 of lut disables the red LUT value. More than one
bit in the RGB enable mask may be set in a single BLINKD command.
For example, settinglut=7 disables all look-up table values
for the specified lute Ata blink disable command, the dis­
abled entries in the LUTs revert to the original values they
contained before· receiving the most recent BLINKE command.

Example :

VALUE 5
PRMFIL 1
CIRCLE 30
BLINKE 7 5 7 15

BLINKD 7 5

;Set current pixel value to 5
;Enable filled figures
;Draw filled circle of radius 30
;Enable blink of color 5 from dark
;gray to white
;Disable blinking of color 5,
;returning to cyan

Object Code Format :

[2IH] [lut] [index] (3 bytes)

Affected by

Affects

NONE

Blink Status
Lookup Tables

Command available Version L 1.0

4 ... 15

c

(
Graphics Commands

BLINKC

BLINKC Clear blink table.

Disable blinking of all LUT locations. All blinking LUT entries
reset to entryl of their blink values. This command
synchronizes to vertical retrace.

Example :

VALUE 5
PRMFIL 1
CIRCLE 30
BLINKE 7 5 7 15

BLINKC

Object Code Format

[23H] (1 byte)

;Set current pixel value to 5
;Enable filled figures
;Draw filled circle of radius 30
,Enable blink of color 5 from dark
;gray to white
;Clear blink table, returning color 5
;to dark gray

Affected by: Blink status

Affects : Lookup Tables
Blink State

Command available Version L 1.0

4-14

BLANK flag

Graphics Commands

Blank the screen when flag=l; if
flag=O, unblank the screen.

BLANK

Set the blank flag to the value flag. If flag=l, the command
blanks the screen, no longer displaying image data. If flag=O,
the screen displays image data.

Example :

VALUE 1
CIRCLE 50
BLANK 1
CIRCLE 100
BLANK 0

Object Code Format :

[3lH] [flag] (2 bytes)

Affected by. NONE

Affects : Blank Flag

;Set current pixel value to 1
;Draw circle of radius 50
;Blank screen
;Draw circle of radius 100
;Unblank screen

Command available Version 2 1.0

4-13

(

Graphics Commands

For more information on these drivers, refer to Section 5, System
Interfacing. User-written drivers require a separate opcode.

Example :

ASSIGN 1 2
ASSIGN 5 OFH

Object Code Format

[B8] [chan] [dev] (3 bytes)

Affected by: NONE

Affects NONE

;Load the interpreter onto channel 1
;Load the light pen onto channel 5

Command available Version 2. 4.0

4-12

Graphics Commands

ASSIGN

ASSIGN chan,dev Assign a device to a channel.

Load the device driver dev onto the channel chan. Values for
both chan and dev correspond to a specific channel or device.
Use any of the following as valid channels:

Value Channel

o MULTIBUS
1 first iSBX port
2 second iSBX port
5 input only port (light pen, touch screen)

Use any of the following as valid devices:

Value

o
~-~l

2
3
5

15

Deyice

dummy (no action)
binary (INTERACT object code)
interpreter (INTERACT memnonics)
printer
bitpad
light pen (channel 5 only)

4-11

c'

Affected by

Affects

Graphics Commands

Current Point
Coordinate Origin
Clipping Boundary
A.rea Fill Mask
Current Color
Bit Plane Mask
Update Buffer
Area Pattern

NONE

Command available Version L 1.0

4-10

AREA2 vreg

Graphics Commands

AREA2

Area fill. Boundary pixel value given
in vreg.

Set all pixels within a closed region to the current value
(VREG 0). A boundary consists of any pixel whose value matches
the value of VREG vreg. The val ue in VREG vreg must differ
from the current color. The current pOint must lie within the
target area. This area extends from the current point outward
to an encountered boundary. The boundary color must differ from
the current value. INTERACT Version 2.0 limits area fills to
continuous regions. The region may not contain any 'pixels whose
value also matches the value in VREG vreg, i.e. the command
requires a single, contiguous boundary. This restriction does
not hold true for Version 3.0. The boundary pixel values and
the value specified by value register vreg are ANDed with the
fill mask (VREG 3) and the bit plane mask (VREG 6) before the
comparison is made. The AREA2 command differs from AREAl in that/"
ARE1\.2 seeks a boundary of a specific pixel value placed in vreg
before execution of the area fill.

Example :

VALUE 15
MOVABS 0 0
CIRCLE 20
VALUE 14
CIRCLE 25
VLOAD9 14
FILMSK 15
VALUE 2
AREA2 9

Object Code Format :

[14H] [vreg] (2 bytes)

iSet current pixel value to 15
iMove current point to 0,0
iDraw circle of radius 20
;Set current pixel value to 14
;Draw circle of radius 25
;Load VREG 9 with value 14
;Set all mask bits to 1
;Fill color
;Begin area fill. Boundary pixel value
;is found in VREG 9. (Inner circle is
;over-written because it is not drawn
;in boundary pixel value.)

4-9

Affected by

Affects

Graphics Commands

Current Point
Coordinate Origin
Clipping Boundary
Bit Plane Mask
Current Color
Area Fill Mask
Area Pattern
Update Buffer

NONE

Command available Version L 1.0

4-8

AREAl

Graphics Commands

AREAl

Area fill. Any pixel different from
sta~t and cur~ent value defines a
boundary.

Setall pixels within a closed region to the current value (VREG
0). A boundary consists of any pixel whose value differs from
the value of the current point and the value of the current
color. The current point must lie within the target area. This
area extends from the current point to an encountered
boundary. INTERACT Version 2.0 area fills work only for
continuous regions. The region may not contain any "holes,"
i.e. the command requires a single, contiguous boundary (e.g.,
AREAl will not fill the area between concentric circles). This
limitation does not apply to Version 3.0. The boundary colors
must differ from the current value. The boundary pixel values
and the original pixel value are ANDed with the fill mask
(VREG 3) and the bit plane mask (VREG 6) before the comparison
is made.

Example :

VALUE 5
MOVABS 16 16
CIRCLE 30
VALUE 6
FILMSK 15
AREAl

Object Code Format

[13 H] (1 b yt e)

iSet current pixel value to 5
iMove current point to 16,16
;Draw circle of radius 30
jSet current pixel value to 6
iSet all mask bits to 1
;Fill previous circle with value 6

(

(

Graphics Commands
"'.'

AREAPT

AREAPT pattern Define are~ pattern mask.

The 16 pattern mask words define a l6x16 pixel array to be
repeated hor izontally and vertically,when drawing fill ed figures.
The least significant bit of the first word appears in the lower
left-hand corner when displayed. Setting all bits in the mask
(sending 16 words of 65535) will cause areas to be filled in
solid, and is the default at power up or following a COLD.

Example

VALUE 1 f(i: f'
ARE APT 65535,65535,0,0

65535,65535,0,0
65535,65535,0,0
65535,65535,0,0

PRMFIL I
CIRCLE 50

Object Code Format :

;Set current pixel value to 1
;Define area pattern as 2 pixel wide
;horizontaI stripes

;Engage primitive fill flag
;Draw filled circle with a striped
;pattern

[2D] [highpO] [lowpO] ••• [highplS] [lowplS] (33 bytes)

Affected by: NONE

Affects : Area Pattern

Command available Version 2. 4.0

,'j ,

.f

4-6

Graphics Commands

ARC

ARC rad,al,a2 Draw arc of radius rad, starting angle
aI, and ending angle a2.

Draw a circular arc with its center at the current point (CREG 0)
and with a radius of rad. The parameters al and a2 specify the
starting angle and ending angle respectively. These parameters
define the angle in integer degrees measured counter-clockwise.
An angle of 0 specifies horizontal to the right from the current
point. The arc draws counter-clockwise from the start angle
tot h e end an g Ie. The val u e sal a nd a 2 ran g e fro m - 3 2 , 768 to
+32,767. The parameter rad may not exceed 8191 pixels.

Example :

VAL 1
MOVABS 0 0
ARC ~~ 4~ l~?

11 {() 1./) l1S "l

ARC 100 -30 60

II
\,Ii'& r:p b'V
~~ \)0 ')L--

iSet current color to 1
;Move current point to location 0,0
iDraw circular arc of radius 75,
istarting at 45 degrees and ending at
;135 degrees
iDraw circular arc of radius 100,
istarting at -30 degrees and ending at
i60 degrees

Object Code Format

[lIB] [highrad] [lowrad] [highal] [lowal] [higha2] [lowa2] (7 bytes)

Affected by: Current Point
Coordinate Origin
Clipping Boundary
Pixel Function
Current Color
Bit Plane Mask
Update Buffer
vector Pattern

Affects NONE

Command available Version L 1.0

4-5

rt·,\

~"-.)

(

Affected by:

Affects:

Graphics Commands

Area Pattern
Bit Plane Mask
Current Color
Current Point
Coordinate Origin
Clipping Boundary
First Pixel Flag
Pixel Function
Update Buffer
vector Pattern .

None

\
\

\
\
\ -------------------------------

I Affected by Elements of state I

\ ---------------------------
I Affects Elements of state I

Command available Version 2 2.0

Note: In the Example section, all commands are issued immediately
after power-on reset.

Figure 4.1 - Command Format (Cont.)

Graphics Commands

CIRCI creg

\
\
\
\

\
\--------
IParameter(s) I

\-----­
ICommand/

CIRCI

________ ~I
ICommand mnemonic I

Draw circle given a point on
circumference.

\
\
\
\~--------------------~----IConcise command description/

Draw a circle (filled for PRMFIL enabled) with the center located
at the current point such that the circumference contains the
point specified in CREG crego

\~--------------------~--------------/Detailed command description and usel

Example :

MOVABS a 0
CLOAD 37 25 60
CIRC! 37

\'--­
ICommands/

Object Code Format

[lOH] [creg] (2 bytes)

iCurrent point becomes 0,0
iLoad CREG 37 with 25,60
;Draw circle of radius 65

\ ----------------------------IComments describing commands I

\ \'-----------------
\
\

IObject code size requirements I

\~-----------------IObject code syntax I

Figure 4.1 - Command Format

(

(

c

Graphics Commands

Refer to Figure 4.1 for the command format.

Use this section as a programmer's reference guide. A summary of
the INTERACT commands appears in Appendix C.

4-2

\

4
Graphics Commands

4.1 - Syntax

The hosting hardware processes INTERACT graphics commands in one
of two formats: "source" format, using an on board interpreter,
or ",object" format for high~speed machine-to-machine
communication. The following paragraph describes the syntax
rules for each format.

Invoke the INTERACT "object" format for inter-processor
communication of commands. All VMI card~level graphics
processors use it as standard command format. The command
descriptions in Section 4.2 provide the syntax of the "object"
format for each command. The "object" format consists of a stream
of 8-bit bytes written to the graphics processor by the system
cpu. The processor supplies all bytes in binary format. The first
byte sent for any command corresponds to the opcode for that
command. Based on the specific command, a variable number of
parameter bytes follows the opcode. Send the opcode for the next
command immediately following the last parameter byte of a given
command. The board will accept commands whenever the Programmed
I/O status byte indicates XMIT ready. If a transmission error
causes the INTERACT input processor to get "out of sync," a reset
command to the Programmed I/O port reinitializes communications.
Section 5.1 pxovides details ort this procedure and all other
aspects of the Programmed I/O.

4.2 - Descriptions

This section presents descriptive information on the commands for
all versions of INTERACT. Each command starts on a new page.
The information provided for each command includes the following:

• Command Mnemonic
• Source Format Syntax
• One-line Description
• Descriptive Paragraph
• Examples of Usage
• Object Format Syntax
• Object Format Byte Length
• Affected by Elements of State
• Affects Elements of State
• Version Reference

4-1

f

General Description

3.7 - Image Transmission

The PIXELS command defines an image pixel-by-pixel. The
parameters specify the number of pixel rows and columns to be
defined. Supply the pixel values starting at the lower left
cornerofthe array and working to the right and upward. Ina
similar way, use the READP command to read an image portion in
a pixel-by-pixel fashion. The PIXELS and READP commands
facilitate the storage and retrieval of entire graphic images~

3.8 - Run-Length Encoding

Run-length encoding compresses image data by giving a repeat
factor where data of the same value occurs in consecutive
horizontal locations. This value repetition very commonly takes·
place in graphing applications. For more complex patterns, the
scheme used by INTERACT avoids inefficiency by providing a code
to turn off the run-length encoding. Permitting the user to
specify how many bits from each pixel to transmit achieves
further compression. This process proves useful when employing
fewer than eight bit-planes. Another application involves using
some planes to hold over I ay information, and transmitting only
the background. Note that the background planes occur as the
less significant bits. On the other hand, to allocate extra
bits, set the depth parameter to a value larger than the number
of physical bit planes used (up to 32). The upper bits get
filled with zeros. A repeat count of zero is neccessary and
sufficient to end the command.

The PIXDMP command produces data in the form of a PIXLOD command.
That is, FIH (the PIXLOD op code) appears as the first byte
in the data stream followed by depth, dx, and dy as specified
in the PIXDMP command. The remainder of the data occurs asrun­
length encoded pixel data in a bit stream form. While succes­
sive bytes appear logically adjacent to each other, their
boundaries may not correspond to any logical boundary in the
data. The bit stream consists of multiple blocks where each
block begins with an a-bit count. If count equals zero, no
more data will follow, Le., a zero count signifies the last
block. For count positive, the following depth bits define a
pixel value which occurs count times in the source image. For
count negative, the following (depth * significant bits)
specify count pixels. Within each byte, the most significant
bit (MSB) occurs first. Blocks of this form cover the
specified image window beginning from the lower left-hand
corner of the rectangle space and moving left to right and bottom
to top. The remaining lower bi ts in the last block get set to
zero, and a a-length block follows as the last block.

3-11

(

BUTTON index

Graphics Commands

Execute macro defined for cursor
button.

BUTTON

Execute the macro assigned to button number index.
index varies from 0 to 31.

The value

Example :

MACDEF 17
VALUE 2
FLOOD

VALUE 3
CIRCLE 25
MACEND
BUTTBL 5 17
BUTTON 5

Object Code Format:

[ABH] [index] (2 bytes)

iBegin macro definition
iSet current pixel value to 2
iFlood current update buffer with
icurrent pixel value
iSet current pixel value to 3
iDraw a circle of radius 25
;End macro definition
iAssign macro 17 to button location 5
;Simulate pressing button 5 on cursor

Affected by Button Table

Affects : Button FIFO Event Queue

Command available Version L 2.0

4-23

CADD

CADD csum,creg

Graphics Commands

Add ,the contents of one CREG to
another.

Add the x- and y-coordinates in the CREG specified by ~reg to the
x- and y-coordinates in CREG csum, leaving the result in CREG
csum.

Example :

CLOAD 22 50 25
CLOAD 24 15 30
CADD 22 24

:Object Code Format :

;Load CREG 22 with 50,25
;Load CREG 24 with 15,30
;Adds x-,y-values of CREGs 22 and 24
iPlaces result (65,55) in CREG 22

, [A2H] [csum] [creg] (3 bytes)

Affected by: NONE

Affects CREG csum

Command available Version L 2.0

4-24

Graphics Commands

CIRC!

CIRC! creg Dr a w c i r c 1 e 9 i v e n a po in ton
circumference.

Draw a circle in the current color with the center located at
the current point such that the circumference includes the
point specified in CREG crego The radius may not exceed 8191
pixels.

Example

MOVABS 0 0
VALUE 1
CLOAD 37 25 60
CIRC! 37

;Current point becomes 0,0
;Set current pixel value to 1
iLoad CREG 37 with 25,60
iDraw circle containing point 25,60
ion its circumference

Object Code Format :

[lOH] [creg] (2 bytes)

Affected by

Affects

Current Point
Coordinate Origin
Clipping Boundary
Pixel Function
Primitive Fill Flag
Current Value
Bit Plane Mask
Area Pattern
Update Buffer
Vector Pattern

NONE

Command available Version L 2.0

4-25

Graphics Commands

CIRCLE

CI;RCLE rad Draw a circle of radius rad.

Draw 'a circle of radius rad in the current color. The center of·
the circle lies at the current point (CREG 0). The radius rad
can range from -8191 to +8191. A circle ~f radius zero sets
the current point to the current pixel value.

Example :

MOVABS 100 150
VALUE 1
CIRCLE 30

MOVREL 10 0
CIRCLE 20

CIRCLE 10

;Move current point to 100,150
;Set current pixel value to 1
;Draw circle of radius 30 centered at
ilOO,150 .
iMove current point by 10,0 to 110,150
jDraw circle of radius 20 c·entered at
;110,150
;Draw circle of radius 10 centered at
,110,150

Object Code Format

[OEH] [highrad] [lowrad] (3 bytes)

Affected by: Current Point
Coordinate Origin
Clipping Boundary
Pixel Function
Primitive Fill Flag
Current Value
Bit Plane Mask
Area Pattern
Update Buffer
Vector Pattern

Affects NONE

Command available Version 2. 1.0

4-26

r o
,

~'ilLj

~ ..

CIRCXY x,y

Graphics Commands

Draw a circle given a point on the
circumference.

CIRCXY

Draw a circle in the current color with the center located
at the current point such that the circumference includes the
point (x,y). The radius may not exceed 8191 pixels.

Example :

MOVABS 20 32
VALUE 1
CIRCXY 40 80

iMove current point to 20,32
iSet current pixel value to 1
iDraw a circle with the center at 20,32
;and point 40,80 on its circumference

Object Code Format :

[OFH] [highx] [lowx] [highy] [lowy] (5 bytes)

Affected by : Current Point
Coordinate Origin
Clipping Boundary
Pixel Function
Primitive Fill Flag
Current Value

Affects

Bit Plane Mask
Area Pattern
Update Buffer
Vector Pattern

NONE

Command available Version L 2.0

4-27

Graphics Commands

CLIP

CLIP num Select current Clipping window.

Enable the current clipping window to the clipping window
format num. The value num may range from 0 to 4. Set the
clipping window format with the CLIPDF command. If num=O the
current clipping window is set to the power-on reset default
clipping window format. The x,y coordinates specified by the
format num are loaded into coordinate registers CREG9 and
CREGlO.

Example

CLIPDF 1 -10 -10 30 20
. CLIP 1

MOVABS ... 8 0
VALUE 2
TEXTI "Write in

window only"
CLIP 0

Object Code Format :

[EAR] [num] (2 bytes)

;Define clipping window
;Invoke clipping window 1
;Move current point to -8,0
;Set current pixel value to 2
iWrite in window

iInvoke default window

Affected by: Clip Window Definitions

Affects: Clipping Boundary

Command available Version 2 3.0

4-28

(' -\
\",=?,'

«

c

Graphics Commands

CLIPDF

CLIPDF num,xl,yl,x2,y2 Define clipping window.

Set the clipping window- format num to the rectangular region
defined by the corners xl,yl and x2,y2. Four clipping window
formats can be defined; num ranges from 1 to 4. The coord­
inates of the clipping windows are specified in virtual
coordinates. The coordinate values range from -32,768 to
+32,767. Coordinate registers CREG 9 and CREG 10 are loaded
with the coordinates xl,yl and x2,y2 respectively.

Example :

CLIPDF 1 -10 -10 30 20
CLIP 1
MOVABS -8 0
VALUE 2
TEXTI "Write in

window only"
CLIP 0

Object Code Format :

;Define clipping window
;Invoke clipping window 1
;Move current point to -8,0
;Set current pixel value to 2
;Write in window

;Invoke-default window

[EBH] [num] [highxl] [lowxl] [highyl] [lowyl] [highx2] [lowx2]
[highy2] [lowy2] (10 bytes)

Affected by: NONE

Affects Clip Window Definitions

Command available Version L 3.0

4-29

Graphics Commands

CLOAD

CLOAD creg,x,y Load coordinate register creg with x,y.

Load the coordinate register creg with the value x,y. The value
creg ranges from 0 to 63. The range of x and y extends from
-32,768 to +32,767.

Example

A'O CLOAD 17 100 150
CLOAD 17 50 -50

Object Code Format :
1&0

;Load CREG 17 with 100,150
;Load CRBG 17 with 50,-50

[AOH] [cregJ [highx] [lowx] [highy] [lowy] (6 bytes)

~ffected by: NONE

Affects Coordinate Register creg

Command available Version~ 1.0

4-30

(

(

Graphics Commands

CMOVE

CMOVE edst,esre Move contents of esre into edst.

Load the coordinate register edst with the data contained in the
coordinate register esre. The values edst and csrc range from 0
to 63.

Example

CLOAD 25 100 150
CLOAD 26 20 -50
CMOVE 26 25

Object Code :

iLoad CREG 25 with 100,150
iLoad CREG 26 with 20,-50
iMove contents of CREG 25 into CREG 26

[AIH] [cdst] [csre] (3 bytes)

Affected by: NONE

Affects Coordinate Register edst

Command available Version L 1.0

(\
4-31

Graphics Commands

COLD

COLD Perform cold start.

Reset INTERACT. COLD erases all pending commands.

Example

COLD

Object Code :

[FDH] (1 byte)

Affected by: None

;Execute a cold start

Affects All Elements of Board State

Command available Version 2 1.0

4-32

o

CONFIG fifo,macbuf,
txtfnt

Graphics Commands

Configure processor local memory.

CONFIG

Configure local RAM space. Reserve fifo bytes for the internal
FIFO, macbuf bytes for the macro definition area, and txtfnt
bytes for the TEXT2 font area. Specify the number of bytes to be
configured. If the CONFIG command exceeds available local RAM,
the various lengths will remain at their previous values.
Reconfiguring local RAM erases all pending INTERACT command bytes
(not neccessarily whole commands), all macro definitions, and
all text definitions. Increasing the size of the internal FIFO
allows the graphics processor to buffer more INTERACT commands.

Example :

CONFIG 2048 4096 1024

Object Code Format :

:Configure RAM for 2K bytes of FIFO,
:4K of macro space, and IK of space
;for the TEXT2 font definition

[24H] [highfifo] [lowfifo] [highmacbuf] [lowmacbuf1
[hightxtfnt] [lowtxtfnt] (7 bytes)

Affected by : NONE

Affects RAM Configuration

Command available Version L 1.0

4-33

CSUB

CSUB cdif,creg

Graphics Commands

Subtract the contents of one CREG from
another.

Subtract the x- and y-coordinates in the CREG specified by ereg
from the x- and y-coordinates in CREG cdif, leaving the result in
CREG cdif.

Example :

CLOAD 22 50 25
CLOAD 24 15 30
CSUB 22 24

Object Code Format:

;Load CREG 22 with 50,25
;Load CREG 24 with 15,30
;Subtract x- and y-values of CREG 24
;from x-,y-values in CREG 22. Place
;result, (35,-5), in CREG 22.

[A3H] {cdif] [creg] (3 bytes)

Affected by: NONE

Affects Coordinate Register edif

Command available Version 2. 2.0

4-34

(

Graphics Commands

DRWABS

DRWABS x,y Draw a vector to the point x,y.

Draw a vector from the current point (CREG 0) to the point x,y.
The command updates the current point to the value x,y. For the
FIRSTP flag set, the beginning point of the vector will not store
to image memory. The values x and y range from -32,768 to
+32,767. The command draws in the current pixel value (VREG 0).

Example

VALUE 1 ;Set current pixel value to 1
MOVABS 50 50 ;Move current point to 50,50
DRWABS 60 50 ;Draw line to 60,50 (horizontal line 11

;pixels long)
MOVABS 60 60 ;Move current point to 60,60
DRWABS 60 70 ;Draw line to 60,70 (vertical line 11

;pixels long)
DRWABS 70 70 ;Draw diagonal line to 70,70, connected

;to previous line at
DRWABS 80 100 ;Draw line to 80,100

Object Code Format

[81H] [highx] [lowx] [highy] [lowy] (5 bytes)

Affected by: Bit Plane Mask
Clipping Boundary
Coordinate Origin
Current Point
Current Value
First Pixel Flag
Pixel Function
Update Buffer
Vector Pattern

Affects Current Point

Command available Version L 1.0

4-35

point 60,60

DRWI

DRWI creg

Graphics Commands

Draw a vector to the location specified
in crego

Draw a vector from the current point (CREG 0) to the point stored
in coordinate register crego The current point (CREG 0) updates
to the new point. The value of creg ranges from 0 to 63.

Example :

VALU:E 2 ;Set current pixel value to 2
CLOAD 4n -120 10
MOVABS -100 -50
DRWI 40

;Load CREG 40 with coordinates -120,10
;Move current point to -100,-50
;Draw vector from -100,-50 to location
;given in CREG 40

MOVABS -30 -60
CLOAD. 33 100 150

;Move current point to -30,-60
;Load CREG 33. with 100,150

>DRWI 33 ;Draw vector from -30,-60 to 100,150

Object Code Format :

[aSH] [creg] (2 bytes)

Affected by

Affects

Bit Plane Mask
Clipping Boundary
Coordinate Origin
Current Point
Current Value
First Pixel Flag
Pixel Function
"Update Buffer
Vector Pattern

Current Point

Command available Version L 1.0

4-36

(

(

Graphics Commands

DRWREL

DRWREL dx,dy Draw a vector relative by dx,dy.

Draw a vector beginning at the current point (CREG 0) and ending
at a point displaced relative to the current point dx pixels in
the x-direction and dy pixels in the y-direction. The values dx
and dy range from -32,768 to +32,767. The current point updates
to the sum of the x-component of the previous current point plus
dx and the sum of the y-component of the previous current point
plus dye Setting the value dx,dy equal to 0,0 writes only the
current point.

Example

VALUE 1
MOVABS 50 30
DRWREL 10 20
DRWREL 10 0
DRWREL 0 -10

Object Code Format

;Set current pixel value to 1
;Move current point to 50,30
;Draw line from 50,30 to 60,50
;Draw line from 60,50 to 70,50
;Draw line from 70,50 to 70,40

[82H] [highdx] [lowdx] [highdy] [lowdy] (5 bytes)

Affected by: Bit Plane Mask
Clipping Boundary
Coordinate Origin
Current Point
Current Value
First Pixel Flag
Pixel Function
Update Buffer
Vector Pattern

Affects : Current Point

Command available Version 2. 1.0

4-37

Graphics Commands

DRW2R

DRW2R dxdy Draw short vector relative.

Draw a vector from the current point to a point offset in the x
direction by d~ and in the y direction by dy. The most
significant nibble of dxdy specifies dx; the least significant
four bits specify dy. The current point updates to the endpoint
of the drawn vector. DRW2R requires only two bytes, but the
command restricts the range of dx and dy from -8 to +7.

Example

VALUE 3
MOVABS -25-25
IJRW2R 5 5

9bjectCode Format :

184H] [dxdy] (2 bytes)

;Set current pixel value to 3
;Move current point to -25,-25
;Draw relative to -20,-20

Affected by: Bit Plane Mask
Clipping Bo~ndary
Coordinate Origin
Current Point
Current Value
First Pixel Flag
Pixel Function
Vector Pattern

Affects : Current Point

Command available Version L 2.0

4-38

(

Graphics Commands

DRW3R

DRW3R dx,dy Draw short vector relative.

Draw a vector from the current point to a point offset in the x
direction by dx and in the y direction by dye The current point
then updates to the endpoint of the drawn vector. DRW3R requires
only three bytes,· but the command restricts the range of dx and
dy from -128 to +127.

Example :

VALUE 3
MOVABS -25 -25
DRW3R 50 50

Object Code Format :

[83H] [dx] [dy] (3 bytes)

;Set current pixel value to 3
;Move current point to -25,-25
;Draw the relative distance to
;point 25,25

Affected by: Bit Plane Mask
Clipping Boundary
Coordinate Origin
Current Point
Current Value
First Pixel Flag
Pixel Function
Vector Pattern

Affects Current Point

Command available Version 2 2.0

4-39

Graphics Commands

DSPSIZ

DSPSIZ x,y,freq,screen Select screen display format.

Change the screen display to-the format specified. Refer to the
Graphics Processor Manual for val id parameter val ues for
individual boards. If screen = 0 no screen will be drawn. If'<\
screen = 1, the power-on-reset screen wi 11 be drawn.

Example :

DSPSIZ 512 512 60 1 ;Select a 512 x 512 display screen
;at 60Hz and draw the power-an-reset
;test screen

Object Code Format :
"'~ o'Z DO 02.. 0" Coo I

[44H] [highx] {lowx] [highy] [lowy] [freq] [screen] (7 bytes)

?JE
'Affected by: NONE

Affects Display Size

Command available Version L 3.0

4-40

(

Graphics Commands

FILMSK

FILMSK mask Set fill mask for area fills.

Set the fill mask (VREG 3) to mask. During fill commands, the
bitwise mask "ANDs" with pixel values before boundary
comparisons. The value mask ranges from 0 to (2(pixel depth)-l).

Example :

FILMSK 7

Object Code Format :

[9FH] [mask] (2 bytes)

Affected by NONE

i8et fill mask to value 7. Boundary
;comparisons will thus be made only on
;bits 0 to 2 of each pixel value.

Affects Area Fill Mask

Command available Version L 1.0

4-41

FIRSTP

FIRSTP flag

Graphics Commands

First pixel on vectors is inhibited
when flag=l.

Inhibit writing the first pixel of vectors if £lag=l. The
inhibited mode of operation eliminates writing shared
endpoints of concatenated lines twice into image memory.

Example

VALUE 2
POINT

VALUE 1
FIRSTP 1
DRWABS 10 20

Object Code Format :

[2FH] [flag] (2 bytes)

Affected by: NONE

;Set current pixel value t02
;Set current point to
;current pixel value
;Set current pixel value to 1
;Disable writing first pixel on vectors
;Draw vector from current point to
;point lO~20. The pixel at the current
;point will not be included in the draw.

Affects First Pixel Flag

Command available Version 2. 1.0

4-42

(

(

Graphics Commands

FLOOD

FLOOD Flood current update buffer with current
pixel value.

Change all pixels in the current update buffer to the current
pixel value (VREG 0).

Example

VALUE 8
FLOOD

VALUE 3
FLOOD

VALUE 7
FLOOD

Object Code Format

[07H] (1 byte)

iChange current pixel value to 8
;Flood the current update buffer to
;value 8
;Change current pixel value 3
;Flood the current update buffer to
ivalue 3
;Change current pixel value to 7
iFlood the current update buffer to
ivalue 7

Affected by: Bit Plane Mask
Current Value
Update Buffer

Affects NONE

Command available Version L 1.0

4-43

Graphics Commands

IMGSIZ

IMGSIZ x,y,depth Configure imag~ memory.

Configure image memory ·into One of various image sizes. The
number of buffers possible for a given image size will depend on
available memory. Refer to Appendix D in the appropriate
Graphics Processor Manual for valid parameter values.

Example :

rMGSIZ 512 512 4

Object Code Format

;Set the image to 512x512 resoluti6n
;with four bits per pixel

[45H] [highx] [lowx] [highy] [lowy] [depth] (6 bytes)

Affected by: NONE

Affects

Command available Version L 3.0

4-44

(

(

c:)

Graphics Commands

LUTB

LUTB index,entry Make entry in blue look-up table.

Change an entry in the blue look-'up table (LUT). At the offset
index in the blue LUT, load the blue LUT with entry. The value
index ranges from 0 to (2(pixel depth)-l). Beginning with the
next vertical retrace, the color value index will be displayed
using the new entry as the blue intensity. For the range of the
value index refer to Appendix D in the Graphics Processor Manual.

Example

VALUE 8
FLOOD

LUTB 8 7

LUTB 8 15

VALUE 0
FLOOD

LUTB 0 14

'Object Code Format:

;Set current pixel value to 8
;Flood the current update buffer to
;current pixel value
;Change entry in blue LUT location
;8 to 7 (half intensity)
;Change entry in blue LUT location
;8 to 15 (full intensity)
;Change current pixel value to 0
;Flood the current update buffer to
icurrent pixel value
iChange entry in blue LUT location
;0 to 14

[lAH] [index] [entry] (3 bytes)

Affected by: Blink Status

Affects : Lookup Tables

Command available Version L 1.0

4-45

Graphics Command,s

LUTG

LUTG index,entry Make entry in green look-up table.

Change an entty in the gteen look-up table (LUT). At the offset
index in the gteep LUT, load the 9teen LUTwith entry. The
value index ranges ftom 0 to (2(pixel depth)-l). Beginning with
the next vertical rettace, the co lot val ue index wi 11 be dis­
played using the new entry as the gteen intensity. Fot the tange
of the value index refet to Appendix D in the Graphics Ptocessot
Manual. Use this command to influence monochtome LUT values.

Example

VALUE 8
FLOOD

LUTG 8 0

LUTG 8 15

VALUE 0
FLOOD

LUTG 0 14

Object Code Format :

;Set current pixel value to 8
;Flood the cur tent update buffer to
;current pixel value
;Change entry in green LUT location
;8 to 0 (zero intensity)
;Change entry in green LUT location
;8 to 15 (full intensity)
;Change current pixel value to 0
;Flood the current update buffer to
;current pixel value '
;Change entry in green LUT location
; 0 to 14 .

[19H] [index] [entry] (3 bytes)

Affected by: Blink Status

Affects Lookup Tables

Command available Version 2.1.0

4-46

Graphics Commands

LUTMSK

LUTMSK mask Mask the LUT values.

Mask the values sent to the look-up tables. A· zero bit-value
disables that bit within the pixel to zero. A one-value in the
mask leaves the color bit unchanged. For example, if a pixel has
the value of 0111 binary and the mask was 1011 then the pixel
appears as a 0011 binary on the screen.

Example

LUTMSK 7 ;Set the LUT mask to 0111 binary

Object Code Format :

[F7H] [mask] (2 bytes)

Affected by NONE

Affects Lut Mask

Command available Version L 4.0

4-47

Graphics Commands

LUTR

LUTR index,entry Make entry in red look-up table.

Change an entry in the red look-up table (LUT). At the offset
index in the red LUT, load the red LUT with entry. The value
index ranges from 0 to (2(pixel depth)-l). Beginning with the
next vertical retrace, the color value index will be displayed
using the new entry as the red intensity. For the range of the
value index refer to Appendix D in the Graphics Processor Manual.

Example . .

VALUE 8
FLOOD

, LUTR 8 0

LUTR 8 15

VALUE 0
FLOOD

LUTR 0 14

Object Code Format :

rSet curLent pixel value to 8
;Flood the current update buffer to
;current pixel value
;Change entry in red LUT location
;8 to 0 (Black)
;Change entry in red LUT location
;8 to 15 (full intensity)
iChange current pixel value to 0
;Flood the current update buffer to
;current pixel value
;Change entry in red LUT location 0
ito 14

[18H] [index] [entry] (3 bytes)

Affected by: Blink Status

Affects Lookup Tables

Command available Version 2. 1.0

4-48

(

(-

Graphics Commands

LUTRST

LUTRST Reset LUT values.

Reset the LUTs to the defaul t val ues. Refer to Appendix D for a
list of these values. Turns off blinking.

Example

LUTS 2 555
LUTRST

Object Code Format

[F6H] (lbyte)

Affected by: NONE

;Set color 2 to gray
;Reset the default LUT values (sets
;color 2 to red)

Affects : Blink status
Blink Tables
Lookup Tables

Command available Version 2. 4.0

4-49

LUT8

LUT8 index,rentry,
gentry,bentry

Graphics Commands

Make entry in all three LUTS.

Changetheentries in the red, green and blue look-up tables
(LUTs). At the offset index in each LUT, load the red LUT
with rentry,. the green LUT with gentry, and the blue LUT with
bentry. Thevalue index ranges from 0 to (2(pixel depth)-l).
Beginning with the next vertical retrace, the color value index
will be displayed as a combination of the intensities
rentry, gentry, andbentry.For the range of the value index
refer to Appendix D in the Graphics Processor Manual.

Example

.. VALUE 8
"'FLOOD

\ LUT8 8 6 8 4

Object Code Format :

;Change current pixel value to 8
;Flood the current update buffer to the
;current pixel value
;Change location 8 in red LUT to 6
iingreen LUT to 8, and blue LUT to 4

[ICH] [index] [rentry] [gentry] [bentry] (5 bytes)

Affected by: Blink status

Affects Lookup Table

Command available Version L 1.0

4-50

c

(
Graphics Commands

MACDEF

MACDEF macnum Define a macro.

Define INTERACT macto macnum, where the value macnum varies
between a and 255. The string following the MACDEF command and
ending with the MACEND command specifies a macro. The string can
consist of ·any combination of valid INTERACT command strings
(commands and parameters), excluding the commands WARM, COLD,
and CONFIG. Only the available memory space limits the length
of the MACDEF command string. (Refer to the CONFIG
command.) Macro definitions may nest up to 16 levels deep.
Definition of a previously defined macro will result in automatic
erasure of the original definition.

Example

MACDEF 23
MOVABS 0 a
VALUE 4
CIRCLE 25
MOVABS -25 -25
VALUE 2
RECREL 50 50
MACEND
MACRUN 23

Object Code Format :

[8BH] [macnum] (2 bytes)

;Begin macro definition
;Move current point to 0,0
;Set current pixel value to 4
;Draw a circle of radius 25
;Displace current point to -25,-25
;Set current pixel value to 2
;Draw a square around the circle
;End macro definition
;Run this macro

Affected by RAM Configuration

Affects Macro Definition Table

Command available Version L 1.0

4-51

Graphics Commands

MAC END

MAC END End of macro definition.

End a macro .definition. If no MACDEF command has preceded a
MAC END command, no action will occur. A MACEND command must
occur for each MACDEF command.

Example :

MACDEF 23
MOVABS 0 0
VALUE 1
CIRCLE 25

MACDEF 16
VALUE 5

,FLOOD

·MACEND

MOVABS -25 -25
'RECREL 50 50
MACEND

MACRUN 16
MACRUN 23
MACRUN 16

Object Code Format

[OCH] (1 byte)

Affected by: NONE

Affects NONE

;Begin macro definition
;Move current point to 0,0
;Set current pixel value to 1
;Draw circle of radius 25

;Define macro 16
;Set current pixel value to 5
;F1ood the current update buffer to
;current value
;Enddefinition of macro 16

;Continue with MACDEF 23
;Disp1ace current point to perimeter
;Draw a square around the circle
;End definition of macro 23

;Run maCro 16
;Run macro 23
;Run macro 16

Command available Version L 1.0

4-52

i-",
I,.)

(

Graphics Commands

MACERA

MACERA macnum Erase macro.

Erase the definition of macro macnum. The space in the macro
buffer used by macro macnum becomes available for another
macro definition.

Example :

MACDEF 18
MOVABS 0 0
VALUE 0
FLOOD

VALUE 1
CIRCLE 25
MOVABS -25 -25
RECREL 50 50
MACEND
MACRUN 18
MACERA 18
MACRUN 18

Object Code Format :

[8CH] [macnum] (2 bytes)

Affected by: NONE

Affects NONE

iBegin macro definition
;Move current point to 0,0
;Set current pixel value to 0
iFlood current update buffer with
icurrent pixel value
iSet current pixel value to 1
;Draw a circle of radius 25
;Displace current point to -25,-25
;Draw a square around the circle
iEnd macro definition
iRun this macro
iErase this macro

Command available Version L 2.0

4-53

Graphics Commands

MACREP

MACREP macnum,count Repeat macro.

Execute the previously defined macro macnum count times. If
count=O, repeat indefinitely. This command may appear within a
macro definition.

Example:

MACDEF 17
MOVREL 1 1

VALUE 4
GIRCLE 25
MACEND
~ACREP 17 500

Object Code Format;

;Begin macro definition
;Move current point one pixel
;diagonally
;Set current pixel value to 4
;Draw a circle of radius 25
;End macro definition
;Repeat macro. number 17 500 times

(BBH] [macnum] [highcount] [lowcount] (4 bytes)

Affected by: NONE

Affects : NONE

Command available Version 2. 2.0

4-54

Graphics Commands

MACRUN

MACRUN macnum Execute macro.

Execute the previously defined macro macnum.

Example

MACDEF 18
MOVABS 0 0
VALUE 1
CIRCLE 25
MOVABS -25 -25
VALUE 4
RECREL 50 50
MACEND
MACRUN 18

Object Code Format :

[OBH] [macnum] (2 bytes)

Affected by: NONE

Affects NONE

;Begin macro definition
;Move current point to 0,0
;Set current pixel value to 1
;Draw a circle of radius 25
;Displace current point to perimeter
;Set current pixel value to 4
;Draw a square around the circle
;End macro definition
;Run this macro

Command available Version 2 1.0

4-55

Graphics Commands

MOVABS

MOVABS x,y Move absolute -to'the point x,y.

Move from the current point (CREG 0) to the point x,y. The values
x and y range from -32,768 to +32,767.

Example :

MOVABS 50 70
VALUE 1
DRWABS 100 -10
CIRCLE 15

VALUE 2
MOVABS 0 0
CIRCLE 20

;Move current point to 50~70
;Set current pixel value to 1
;Draw line from 50,70 to 100,-10
;Draw a circle of radius 15
;centered at 100,-10
;Set current pixel value to 2
;Move current pOint to 0,0
;Draw a circle of radius 20
jcentered at 0,0

Object Code format :

[OlH] [highx] [lowx] [highy] [lovy] (5 bytes)

Affected by NONE

Affects Current Point

Command available Version 2. 1. 0

4-56

/'\

(

(-

Graphics Commands

MOVI

MOVI creg Move to the point specified in creg.

Move from the current point (CREG 0) to the point stored in
coordinate register creg. The value creg ranges from 0 to 63.
This command effectively performs the command "CMOVE 0 cregO
which transfers a given coordinate register into CREG O.

Example :

CLOAD 15 100 150
VALUE 5
MOVI 15
DRWABS 140 100
MOVI 2
CIRCLE 25

Object Code Format :

[05H] [creg] (2 bytes)

;Load 100,150 into CREG 15
;Set current pixel value to 5
;Move to location given in CREG 15
;Draw line from 100,150 to 140,100
;Move to the location given in CREG 2
iDraw circle of radius 25 at current
ipoint

Affected by Coordinate Register creg

Affects Current Point

Command available Version 2 1.0

4-57

Graphics Commands

MOVREL

MOVREL dx,dy Move relative by dx,dy.

Move from the' current point (CREG 0) to a point displaced in the
x-direction by dx and in the y-direction by dye The values of dx
and dy range from -32,768 to +32,767. The new current point
updates to .the sum of the x-component of the previous current
point plus dx and the sum of the y-component of the previous
current point plus dye

Example

MOVABS 100 :-130
MOVREL 50 100
VALUE 3
CIRCLE 30

MOVREL 20 20
ClRCLE 10

MOVREL -20 -20
CIRCLE 25

;Move current point to 100,-130
;Move current point by 50,100 to 150,-30
;Set current pixel value to 3
;Draw circle of radius 30 centered
;at· current point
;Move current point by 20,20 to 170,-10
;Draw circle of radius 10 centered
;at current point
;Move current point by -20,-20 to 150,-30
;Draw circle of radius 25 centered
;at current point

Object Code Format :

[02H] [highdx] [lowdx] [highdy] [lowdy] (5 bytes)

Affected by Current Point

Affects: Current Point

Command available Version 2. 1.0

4-58

(
Graphics Commands

MOV2R

MOV2R dxdy Move short relative.

Move from the current point to a point offset in the x direction
by dx and in the y direction by dye MOV2R requires three fewer
bytes than MOVREL, but the command restr icts the range of dx and
dy from -8 to +7. The most significant nibble of dxdy
specifies dx and the least significant four bits specify dYe

Example :

MOVABS 0 0
MOV2R 5 5

Object Code Format :

iMove current point to 0,0
iMove relative to 5,5

C- [04H] [dxdy] (2 bytes)

Affected by Current Point

Affects Current Point

Command available Version L 2.0

4-59

Graphics Commands

MOV3R

MOV3R dx,dy Move short relative.

Move from the current point to a point offset in the x direction
by dx and in the y direction bydy. MOV3R requires only three
bytes than MOVREL, but the command restr ictsthe range of dx and
dy from -128 to +127.

Example :

MOVABS 0 0
MOV3R 50 60

;Move current point to O,fr
;Move relative to 50,60

Object Code Format :

{OJB] [dx] Idyl (3 bytes)

Affected by Current Point

Affects : CUrrent Point

Command available Version 2. 2.0

4-60

(

(

Graphics Commands

PIXDMP

PIXDMP depth,dx,dy Output pixels of defined window.

The current point defines the lower left corner of a rectangle
with dimensions dx, dye Beginning with this corner and
proceeding left to right and bottom to top, each pixel in the
current update buffer gets read, compressed by run-length
encoding, ~nd transmitted to the host. The output appears as a
bit stream where each depth bits represents a new pixel. Run­
length data, however, always consists of full, eight-bit lengths.
(See Section 3.7 for the run-length encoding description.)

Example :

MOVABS -40 60
PIXDMP 4 120 80

Object Code Format :

;Move to lower left corner of rectangle
;Read four least significant bits of
;each pixel in a 120 x 80 pixel
; rectangle

[FOH] [depth] [highdx] [lowdx] [highdy] [lowdy] (6 bytes)

Affected by: Current Point
Coordinate Origin
Clipping Boundary
Update Buffer
Bit Plane Mask

Affects NONE

Command available Version L 2.0

4-61

PIXELS

PIXELS x,y,color, •••

Graphics Commands

Load a rectangular array of pixels in
image memory.

Load a rectangular array of pixels with the values in the string
color, •••• The current point specifies the lower left corner of
the array •. The x and y values define the width and height
dimensions of the array. The pixel array is written left to
right, bottom to top.

Example :

PIXELS 12 7 10

Object Code Format :

;Load a pixel array, consisting of the
;current point and the point above it,
;to value 7 at the current point, and
;value 10 on the other

[28H] (highx] (lowx] (highy] [lowy] [color] ••• (S+x*y bytes)

Affected by: Current Point
Coordinate Origin
Clipping Boundary
Pixel Function
Bit Plane Mask

Affects NONE

Command available Version L 1.0

4-62

Graphics Commands

PIXFUN

PIXFUN mode Set pixel processor mode.

Set the mode of operation executed by the pixel processor. All
operations performed by the pixel processor affect image memory.
The mode parameter specifies the operation performed by the pixel
processor.. The values for mode are 0, I, and 2.
INTERACT defines the mode values as follows:

Function

INSERT
COMPLEMENT
XOR

Example

VLOAD 6 15
VALUE 5
PRMFIL 1
CIRCLE 30
VALUE 7
PIXFUN 2
CIRCLE 30
PIXFUN 1
CIRCLE 30

Object Code Format :

[3BH] [mode] (2 bytes)

Affected by NONE

o
1
2

Operation

Insert new data directly (Default)
Complement image data
XOR new data to image data

;Load VREG 6 with color value 15
;Set current pixel value to 5
;Enable filled figures
;Draw a cyan circle with radius 30
;Set current pixel value to 7
;XOR new dat to image data
;Draw a red circle with radius 30
;Complement image data
;Draw a magenta circle with radius 30

Affects Pixel Function

Command available Version 2 2.0

4-63

PIXLOD

PIXLOD depth,dx,dy,
bitstream

Graphics Commands

Load a stream of pixels .into the
specified window.

The current point defines the lower left corner of a rectangle
with dimensions dx, dye The bitstream defines a group of depth­
deep pixels which produce the rectangle starting at the lower
left corner "and proceeding left to right and bottom to top. (See
Section 3.7 for the run lertgth encoding description.)

Example

MOVABS20 80

PIXLOD 8 10 10 20 2 20
1 20 2 20 1 20 2 0

Object Code Format :

;Define lower left corner of
; rectangle

iDraw red and white horizontal
;stripes

[FIR] [depth] [highdx] [lowdx] [highdy] {lowdy] [bitstream]
(6 bytes + length of bitstream)

Affected by ~ Current point
Coordinate Origin
Clip Window
Update Buffer
Pixel Function

Affects NONE

Command available Version L 2.0

4-64

(

POINT

Graphics Commands

Set current point to current pixel
value.

POINT

Set the pixels located at the current point (CREG O) to the
current pixel value (VREG O). The current point and the
current pixel value remain unchanged.

Example :

Object Code Format

[aSH] (1 byte)

:Set current pixel value to a
:Move current point to location 100,100
:Set pixel at location 100,100 to a
:Move current point by 1,0 to 101,100
;Set pixel at location 101,100 to a
:Set current pixel value to 2
iMove current pOint by 1,1 to 102,101
iSet pixel at 102,101 to 2

Affected by: Current Point
Coordinate Origin
Clipping Boundary
Pixel Function
Current Value
Bit Plane Mask

Affects NONE

Command available Version ~ 1.0

4-65

Graphics Commands

POLYGN

POLYGN npoly,nvertl,
xl,yl,x2,y2,

Draw polygons in current color
with specified vertices.

x3,y3, ••• ,xnvert,ynvert

Draw a polygon with verticies at the absolute coordinates xl,
yl, ••• ,xnvert,ynvert. Each x- and y-value may range from
32,768 to ~32,767. The value nvert specifies the number of
vertices for each polygon. The list progresses in a "connect­
the-dots" fashion, with the last point connected back to the
first. The valuenpoly, which may vary between 0 and 255,
determines the number of multiple polygons the command will
draw. For unfilled polygons, nvert ranges from 0 to 32768, but
for filled polygons, the maximum value of nvert depends on the
amount of free memory available on the VM-885x (see CONFIG). For
multiple filled polygons, the areas to be filled are determined
by an algorithm which scans the figure from left to right at each
horizontal line. If the leftmost edge is designated as edge
number 1, the filling algorithm fills the area between each odd
left edge and even right edge, but leaves unfilled the area ~
between each even left edge and odd right edge.

Example

VALUE 1
PRMFIL 1
POLYGN 1 3 0 0 40 0

20 20
PRMFIL 0
POLYGN 2 4 -100 -100

100 -100 100 100
-100 100
4 -50 -50 50 -50
50 50 -50 50

iSet current pixel value to 1 (white)
;Enable filled figures
iDraw filled triangle

iDraw outlines of two squares

4-66

(

«

Graphics Commands

Object Code Format :

[l2H] [npoly] {[highnvertl] [lownvertl]
([highxl] [lowxl] [highyl] [lowyl] •••)

[highnvert2] [lownvert2]
([highx2] [lowx2] [highy2] [lowy2] •••)}

(2 bytes + (2*npoly + 4 (nvertl + nvert2 + ••• » bytes)

Affected by: Current Point
Coordinate Origin
Clipping Boundary
Pixel Function
Vector Pattern
Current Value

Affects

Bit Plane Mask
RAM Configuration
Update Buffer
Primitive Fill Flag

NONE

Command available Version L 2.0

4-67

Graphics Commands

POLYRL

POLYRL npoly,nvertl, Draw relative polygon in current color.
dxl,dyl, •••

Draw a polygon with verticies xl, yl, ••• ,xnvert,ynvert relative
to the current point. Each x- and y-value may range from
-32,768 to +32,767. The value nvert specifies the number
of vertices for each polygon. The list progresses in a
"connect-the';"dots" fashion, with the last point connected back
to the first. The value npoly, which may vary between 0 and
255, determines the number of mul tiple polygons the command will
draw. For unfilled polygons, nvert ranges from 0 to 32768, but
for filled polygons, the maximum value ofnvert depends on the
amount of free memory available on the VM885x (see CONFIG). For
multiple filled polygons, the areas to be filled are determined
by an algorithmwhich scans the figure from left to right at each
horizontal line. If the leftmost edge designated as edge number
1, the filling algorithm fills the area between each odd left
edge and even right edge, but leaves unfilled the area between
each even left edge and odd right edge.

Example :

MOVABS 0 0
VALUE 2
POLYRL 1 .. ~t 25 0

25 25 0 25

Object Code Format

;Move the current point to 0,0
iSet current pixel value to 2 (red)
;Draw a triangle

[E6H] [npOly] {[highnvertl] [lownvertl]
([highxl] [lowxl] [highyl] [16wyl] •••)

[highnvert2] [10wnvert2]
([highx2] [10wx2] [highy2] [10wy2] •••)}

(2 bytes + (2*npoly + 4(nvertl + nvert2 + ••• » bytes)

4-68

(

Affected by

Affects

Graphics Commands

Current Point
Coordinate Origin
Clipping Boundary
Pixel Function
vector Pattern
Current Value
Bit Plane Mask
RAM Configuration
Update Buffer
Primitive Fill Flag

NONE

Command available Version L 4.0

4-69 J

Graphics Commands

PRMFIL

PR.MFIL flag Set primitive fill flag.

Ifflag=O, subsequent polygon, rectangle, and c(rcle commands
draw vectors describing an outline. If flag = 1 or 2,
subsequent commands describe filled figures. If flag=2, filled
polygons will be drawn using a "quick" algorithm, but degenerate
polygons will not draw properly.

Example :

VALUE 2
PRMFIL I
POLYGN I 3 0 0 40 0

20 20

VALUE 3
:P~MFIL 0
k10LYGN 1 3 0 0 40 0

20 20

Object Code Format ;
3(

[IFH1 [flag1 (2 bytes)

Affected by NONE

;Set current pixel value to 2 (red)
;Set primitive fill flag
;Draw red, filled triangle

;Set current pixel value to 3 (green)
;Clear fill flag
;Green outline around the same
;polygon

Affects Primitive Fill Flag

Command available Version L 2.0

4-70

(

RDPIXR vreg

Graphics Commands

RDPIXR

Place the pixel value found in image
memory at the current point in vreg.

Read the pixel value from image memory at the current point (CREG
0) and place the value into VREG vreg.

Example

VALUE 8
POINT
RDPIXR 13

READVR 13

·Object Code

[AFH] [vreg]

Affected by

Affects

iChange current pixel value to 8
iSet current point to current value
iRead current point and place value in
iVREG 13
iRead VREG 13

Format . .
(2 bytes)

Current Point
Coordinate Origin
Update Buffer

NONE

Command available Version L 1.0

4-71

Graphics Commands

READBU

READBU flag ,cflag . Read button number.

Read values from the button FIFO event queue. Eight events
compose the queue, each event consisting of a button number, the
crosshair coordinate (CREG 5), and the input device .cootdinate
(CREG 2). These coordinates are recorded as the button
command starts to execute. Reading back an event will erase
the event from the queue. Ifflag=O, the oldest event (least
recent) gets read. If there are no events in the queue, a butnum
ofOFFH is returned. Setting flag=l clears the queue and sends
the values for the next bu~ton after execution of the next
button command. Setting cflag=O sends the coordinate of the
crosshair (CREG 5), while cflag=l sends the coordinate of
the locator device, (CREG 2).

Example :

... READBU 0 1

Object Code Format :

;Read back from the next event (least
;recent) in the event queue the button
;number and the coordinates saved for
;CREG 2

[9AH] [flag] [cflagl (3 bytes)

Response :

[butnum] [highx] [lowx] [highy] [lowyl (5 bytes)

Affected by: Button FIFO Event Queue

Affects Button FIFO Event Queue

Command available Version L 2.0

4-72

(

Graphics Commands

READCR

READCR creg Read the coordinate register crego

Send the contents of coordinate register creg to the port
available for readback by the host. The value of creg ranges
from 0 to 63.

Example :

CLOAD 15 120 340
READCR 15

Object Code Format :

[98H] [creg] (2 bytes)

Response :

iLoad CREG 15 with 120 340
iRead CREG 15

[highx] [lowx] [highy] [lowy] (4 bytes)

Affected by NONE

Affects NONE

Command available Version L 1.0

4-73

Graphics Commands

READP

READP Read pixel value.

Read back the value of the pixel at the current point.

Example :

MOVABS 10 50
VALUE 9
POINT
READP

Object Code Format

[95H](1 byte)

.. Response

"[value] (1 byte)

JMove current point to 10,50
;Set current value to 9
;Set pixel at 10,50 to value 9
;Read the value of the pixel at 10,50

Affected by: Current Point
Coordinate Origin
Update Buffer

Affects NONE

Command available Version L 1.0

4-74

Graphics Commands

READVR

READVR vreg Read the value register vreg.

Read back the contents of value register vreg specified. The
value of vreg ranges from 0 to 15.

Example :

VLOAD 15 7
READVR 15

Object Code Format :

[99H] [vreg] (2 bytes)

f Response:

[value] (1 byte)

Affected by: NONE

Affects NONE

;Load VREG 15 with 7
;Read VREG 15

Command available Version 2 1.0

4-75

Graphics Commands

RECREL

RECREL dx,dy Draw rectangle relative.

Draw a rectangle in image memory with one corner at the current
point (CREG 0) a tid a diagonally opposite corner displaced
relative to the current point by dx in the x-direction and by dy
in the y-direction. The rectangle draws in the current color
(VREG 0). The valuesdx and dy range from -32,768 to 32,767. The
current point remains fixed.

Example :

MOVABS 100 150
VALUE 6
RECREL 10 10

VALUE 7
RECREL -20 -30

;Move current point to 100,150
;Set current pixel value to 6
;Draw rectangle with diagonally
;opposite corner displaced by 10,10
;to 110,160
;Set current pixel value to 7
;Draw rectangle with diagonally
;opposite corner displaced by ~20,-30
;to 80,120

Object Code Format :

i89H] [highdx] [lowdx] [highdy] [lowdy] (5 bytes)

Affected by: Current P.oint
Coordinate Origin
Clipping Boundary
First Pixel Flag
Pixel Function
Primitive Fill Flag
Vector Pattern
Current Value
Bit Plane Mask
Area Pattern
Update Buffer

Affects NONE

Command available Version L 1.0

4-76

If-'
'L;

(

Graphics Commands

RECTAN

RECTAN x,y Draw rectangle. Point x,y specifies
diagonal corner.

Draw a rectangle with one corner located at the current point
(CREG 0) and the diagonally opposite corner located at the
point x,y. The values x and y range from -32,768 to +32,767.

Example :

VALUE 6
MOVABS 30 50
RECTAN 70 100

VALUE 7
MOVABS -20 -10
RECTAN -25 15

;Set current pixel value to 6
;Move current point to 3n,50
;Draw rectangle whose corners are
;located at 30,50 30,100 70,100 70,50
;Set current pixel value to 7
iMove current point to -20,-10
;Draw rectangle

Object Code Format

[8EH] [highx] [lowx] [highy] [lowy] (5 bytes)
(t.{ 2..-

Affected by: Current Point
Coordinate Origin
Clipping Boundary
First Pixel Flag
Pixel Function
Primitive Fill Flag
Vector Pattern
Current Value
Bit Plane Mask
Area Pattern
Update Buffer

Affects NONE

Command available Version 2 1.0

4-77

RECTI

RECTI creg

Graphics Commands

Draw rectangle. Location in creg is
diagonal corner.

Draw a rectangle with one corner located at the current point
(CREG 0) and the diagonally opposite corner located at the pOint
stored in coordinate register creg. The value creg ranges from
o to 63. Version 2.0 nclipsn any portion of the rectangle which
falls outside of the display boundary.

Example :

VALUE 12
alMOVABS -20 -100
A~ CLOAD 17 50 70
~rRECTI 17

VALUE 13
'CLOAD 18 40 60

RECTI 18

;set current pixel value to 12
;Move current point to -20,-100
;Load 50,70 into CREG 17
;Draw rectangle whose corners are 50,70
;50,-lDO -20,-100 -20,70
:Set current pixel value to 13
;Load 40,60 into CREG 18
;Draw rectangle whose corners are 40,60
;40,-100 -20,-100 -20,60

Object Code Format :

[8FH] [creg] (2 bytes)

Affected by

Affects :

Current Point
Coordinate Origin
Clipping Boundary
First pixel Flag
Pixel Function
Primitive Fill Flag
Vector Pattern
Current Value
Bit Plane Mask
Area Pattern
Update Buffer

NONE

Command available Version ~ 1.0

4-78

(

Graphics Commands

SURFAC

SURFAC connt,pI,p2, ... Establish surface priorities.

For a discussion of surface priorities, see Section 2.12. See
the appropriate Graphics Processor Manual for acceptable
parameters.

Example

SURFAC 2 OFOH OFH
VALUE OCOH

TEXTI "TEST"
VLOAD 6 OFH
VALUE 3

PRMFIL 1
CIRCLE 100
SURFAC 2 OFH OFOH

Object Code Format

;Example is specific to 8 bit plane
;graphics processor
;Set surface priority to front half
iValue OCOH draws only into
iupper bit planes
;Draw and display text
iMask upper bit planes
iValue 3 draws only into
;lower bit planes
iEnable filled figures
iDraw circle
;Text disappears; color of circle
;has priority over color of text

[F5] [count] [pI] [p2] •.• [pnJ ((2 + n) bytes)

Affected by: NONE

Affects Surface Priorities

Command available Version L 4.0
\ .. \

'; , ,

~¥:
C:

4-79

Graphics Commands

TEXTB

TEXTB flag Set flag to select background attribute

Th~ TEXTB command selects the background attribute of text
drawn with the TEXTI and TEXTO commands. If flag::: 1, the back­
ground of each text cell is filled with the color value specified
in VREG5 before the text character is drawn. If flag = 0 , no
background color is drawn.

Example :

VALUE.l
1'1') TEXTO "This

MOVABS 0 20
TEXTB 1
VLOAD 5,3
TEXTO "Test

\ ,\ "I

is a test"

background"

'Object Code Format :

[94H] [flag) (2 bytes)
\,\'1>

Affected by NONE

;Set current pixel value to 1 o~~,
:Draw text with no background fi7/l", f:,~ {, ("
;Move the current point to 0,20 ~f",o,,,<::.',,,,,·
; Select a background. to be drawn 11~;, / .I"2~
;Select value 3 as background color n~t1
;Drawtext with background 1<11 (bf .; . , ,;

Affects Text Background Flag

Command available Version L 4.0

4-80

(

('

Graphics Commands

TEXTC

TEXTC size, angle Set size and angle for TEXTO command.

The TEXTC command should occur before a TEXTO command to specify
the size of character desired. The size parameter may vary from
o to 255 with zero corresponding to a 5 x 7 pixel character font.
The angle .parameter may vary from -32,768 to +32,767. It
specifies the rotation angle in degrees for TEXTO. INTERACT
V4.0 does not support rotation.

Example :

VALUE 11
TEXTC 2 0

~r~EXTO "This is a test"
MOVABS -220 -150
VALUE 10
TEXTC 20 0
TEXTO "BIG!"

Object Code Format

iSet current pixel value to 11
iSet size to 2 (10 x l4)
iDraw large text
iMove the current point to -220,-150
iSet current pixel value to 10
iSet size to 20 (133 x 171)
iDraw enormous text

[92H) [size] [highangle] [lowangle] (4 bytes)
It{

Affected by: NONE

Affects : Text Size

Command available Version ~ 2.0

4-81

Graphics Commands

TEXTDN

'l'EXTDN char,x,y,fntlst Define fonts for TEXT2.

Define the eharacter image for the character char in font 2.
The parameters x and y define the width and height of the
character cell respectively. The bytes in the fntlst define
the pixel infor~ation need&d to construct the character. The
value char ranges from 0 to 255~ The values x and y range from
o to 32,767. Reter to Section 3 of this manual for further
detail on the format of fntlst. If a character definition
exceeds available RAM, the definition will be ignored.

Example

TEXTDN 655 5 32 32 248 32 32

VALUE 7
TEXT2 .IfA"

Object Code Format :

;Define· the character IfAIf in
;font2 to be a small cross
;Set current pixel value to 7
;Draw a small cross

[26H] [char] [highx] [lowx] [highy] [lowy] [fntlst] •••
(6+y*INT«x+7)/8) bytes)

Affected by: RAM Configuration

Affects NONE

Command available Version L 1.0

4-82

(

Graphics Commands

TEXTO

TEXTO string Draw string in current size characters.

This command draws the given character string at the current
location and in the current color and size. The TEXTC command
sets the size. The value string specifies the text. The
first byte qf string contains the number of characters in the
string (strlen) followed by strlen bytes containing the ASCII
characters to be drawn.

The command produces larger characters by expanding the
basic font definitions and then algorithmically smoothing the
edges to avoid "blocky" looking characters. The current
location defines the lower left corner of the first
character cell. Each subsequent character appears to the right
on a horizontal line. (INTERACT does not support the angle
parameter of TEXTC.) The first byte of string gives the length
of the text string in bytes and may range from 0 to 255.

Example

VALUE 1
(J ,~, .

;Set current pixel value to 1
TEXTC 2 0 ! ;, ;Set size to 2 (10 x 14)
'l'EXTO "This is a test" iDraw large text I ,~ ';

! '

MOVABS -250 -100 ;Move current point to -250,-100 u "
VALUE 2 ~: (~ :" ~: ;Set the current pixel value to 2
TEXTC 20 0 f ~;. \~.; .. ' :0 ;Set size to 20 (133 x 171)
TEXTO "BIG!" .- /.,j

" / f ;Draw enormous text

Object Code Format

[93H] [strlen] [charI] [cbar2] •.. «2+strlen) bytes}

4-83

Affected by

Affects :

Graphics Commands

Current Point
Coordinate Origin
Clipping Boundary
Pixel Function
Text Background Color
Text Background Flag
Text Size
Current Value
Bit Plane Mask
Update Buffer

Text Endpoint

Command available Version 2:. 2.0

4-84

Graphics Commands

TEXTI

TEXTI string Draw text string with font 1.

Draw horizontal text into image memory using font 1. Text drawn
with font 1 appears as 5x7 dot matrix characters in 8x8 cells.
The value string specifies the text. The first byte of
string contains the number of characters in the string (strIen)
followed by strIen bytes containing the ASCII characters to be
drawn. The current point (CREG 0) specifies the lower left
corner of the first character cell and remains unchanged.
Subsequent characters are placed horizontally to the right at
8 pixel increments. Strings which cross the right clipping
boundary will wrap around and continue at the left margin with a
downward shift of one cell. CREG7 updates to the new end point
of the text, ie., the lower left hand corner of the next cell
space.

i(Example

VALUE 1
TEXTI "12345"
MOVABS 0 20
'l'EXTl "wxyz II
MOVABS 20 0

iSet current pixel value to 1
iDraw text string 12345
;Move current point to 0,20
iDraw text string wxyz

TEXTI 04lH 042H 043H
iMove current point to 20,0
iDraw text string "ABC"

Object Code Format :

[90H] [strlen] [cbarI] [cbar2] •.• [cbarn] «2+strlen) bytes)
(L{ 1

Affected by: Current Point
Coordinate Origin
Clipping Boundary
Pixel Function
Current Value

Affects

Text Background Color
Text Background Flag
Bit Plane Mask
Update Buffer

Text Endpoint

Command available Version L 1.0

4-85

GraphicsCornmands

TEXT2

TEXT2 string Draw text string with font 2.

Draw var iable-cell text into image memory using 'font 2. The
TEXTDN command defines the text drawn with font 2. The value
string specifies the text. The first byte of string contains the
number of characters in the string (strlen) followed by strIen
bytes containing the ASCII characters to be drawn. The current
point (CREG 0) specifies the lower left corner of the first
character cell and remains·· unchanged. Subsequent characters
appear horizontally adjacent to the right. Strings exceeding the
image width are clipped. CREG7 updates to the new end point of
the text, i.e., the lower left hand corner of the next cell
space.

Example

TEXTDN 65 5 5 32 32 248 32 32

.VALUE 7
TEXT2 "A It

Object Code Format :

;Define the character "A" in
;font2 to be a small cross
;Set current pixel value to 7
;Draw a small cross

[918] [strIen] [charI] [char2] ••• [charn] «2+strlen) bytes)
." 'It \ "7

Affected by: Current Point
Coordinate Origin
Clipping Boundary
Pixel Function
Current Value
Bit Plane Mask
Update Buffer

Affects Text Endpoint

Command available Version L 1.0

4-86

VADD vsum,vreg

Graphics Commands

Add the contents of one VREG to
another.

VADD

Add the value in the VREG specified by vreg to the value in VREG
vsum, leaving the result in VREG vsum.

Example :

VLOAD 14 5
VLOAD 15 3
VADD 15 14

Object Code Format :

;Load VREG 14 with 5
;Load VREG 15 with 3
;Add values of VREGs 14 and 15;
;place result (8) in VREG 15

([A6H] [vsum] [vreg] (3 bytes)

Affected by: NONE

Affects Value Register vreg

Command available Version 2 2.0

(

4-87

Graphics Commands

VALUE

VALUE color Set the current pixel value to color.

Change the current pixel value (VREGO) to the value color. The
value color is a byte. All graphics primitives which write into
image memory use VREG 0, the current pixel value.

Example :

VALUE 8
MOVl\BS .,..10 25
DRWABS 50;30

VALUE 10
MOVABS 50 100
CIRCLE 50'\

Object Code Format

[06H] [color] (2 bytes)

Affected by: NONE

;Set current pixel value to 8
;Move current point to -10,25
;Draw line from current point to 50,-30
;in current pixel value
;Set current pixel value to 10
;Move current point to 50,100
;Draw circle of radius 50 at current
;point

Affects Current Color

Command available Version L 1.0

4-88

'"',
)

(

(

Graphics Commands

VECPAT

VECPAT mask Set vector pattern mask.

Set the 16 bit vector pattern to the value given. The bits of the
pattern are drawn for bits set to "1" while bits set to "0" do
not appear. The value for mask ranges between 0 to 65,535.

Example:

VALUE 1
VECPAT OFOFOH

CIRCLE 100
DRWABS 250,0

Object Code Format:

;Set current pixel value to 1
iSet vector pattern to four pixels
ion, four pixels off, four pixels
ion, four pixels off
iDraw a circle with radius 100
iDraw a patterned horizontal line of
;length 250 pixels

[2EHJ [highmask] [lowmask] (3 bytes)

Affected by NONE

Affects Vector Pattern

Command available Version 2 2.0

4-89

Graphics Commands

VLOAD

VLOAO vreg,color Load value register vreg with color.

Load the value register vreg with the pixel value color. The
parameter vreg ranges from 0 to 15.

Example :

VLOAD 13 8
CIRCLE 20

Object Code Format

iLoad VREG 13 with pixel value 8
iDraw a circle in value 8

[A4H] [vreg] [co19r} (3 bytes)

Affected by: NONE

Affects ~alue Register vreg

Command available Version 2 1.0

4-90

(

(

Graphics Commands

VMOVE

VMOVE vdst,vsrc Move contents of vsrc into vdst.

Load the value register ·vdst with the pixel value stored in the
value register vsrc. The parameters vdst and vsrc range from 0 to
15.

Example

VLOAD 10 8
VMOVE 11 10

Object Code Format :

[ASH] [vdst] [vsrc] (3

Affected by : Value

Affects VREG

;Load VREG 10 with 8
iMove contents of VREG 10 into VREG 11

bytes)

Register vreg

vdst

Command available Version L 1.0

4-91

VSUB

VSUB vdif, vreg

Graphics Commands

Subtract the contents of one VREG from
another.

subtract the value in the VREG specified by vreg from the value
in VREG vdif, leaving the result in VREG vdif.

Example

VLOAO 15 5
VLOAD 14 3
VSUB 15 14

Object Code Format

jLoad VREG 15 .with 5
jLoad VREG 14 with 3
;Subtract value of VREG 14
;from value in VREG 15. Place
;result in VREG 15.

[A7H] {vdifj [vreg] (3 bytes)

Affected by: value Register vdif
Value Register vreg

Affects Value Register vdlf

Command available Version 2. 2.0

4-92

(

Graphics Commands

WAIT

WAIT frames Wait specified time before continuing.

Wait for frames frame times (each frame time equals one vertical
sync period) before continuing command execution. Use this
command to choreograph graphic displays and to synchronize
updates with vertical blanking. The value frames ranges from 0
to 65,535.

Example :

WAIT 600

Object Code Format :

;Pause for 10 seconds before
;continuing command execution

[3DH] [highframes] [lowframes] (3 bytes)

Affected by: NONE

Affects NONE

Command available Version ~ 1.0

4-93

Graphics Commands

WARM

WARM Warm start the graphics ~rocessor.

Terminate execution of the current command. Reset the serial
input and output buffer pointers on the current channel and jump
to the INTERACT command processor, to await further input. This
command is .useful·only when invoked by an asynchronous warm
start. (See Sections 5.1 and 5.3.)

Example

WARM ;Reset INTERACT communication link

.,

Object Code Format
t,'!:y

[FEB] (l~yte)

Affected by: NONE

Affects NONE

Command available Version 2. 1.0

ff-~\

!'0

Graphics Commands

WINDOW

WINDOW xl,yl,x2,y2 Set current clipping window.

Set the current clipping window to the rectangle specified by
xl,yl,x2,y2. One corner of the window is specified by xl,yl,
the other corner by x2,y2. The coordinate register CREG 9 is
loaded with. the xl,yl coordinates, coordinate register CREG 10
is loaded with the x2,y2 coordinates. All graphics prim­
itives are clipped to the current window. The x,y-values
range from -32,768 to +32,767. Those limits also serve as the
default values for xl,yl and x2,y2 respectively.

Example:

WINDOW 0 0 50 50
VALUE 1
CIRCLE 50

Object Code Format:

;Define window
;Set current pixel value to 1
;Draw a circle of radius 50

[3AB] [highxl] [lowxl] [highyl] [lowyl] [highx2] [lowx2J [highy2] [lowy2]
(9 bytes)

Affected by NONE

Affects Clipping Boundary

Command available Version 2. 3.0

4-95

Graphics Commands

XHAIR

XHAIR num,flag Enable or disable crosshair num.

For flag=l, enable crosshairnumbernum. If flag=O, disable
crosshair number num. The value num equals 0 or 1. The crosshair
positions for crosshairs 0 and 1 originate from CREG 5 and 6
respectively. The center of each crosshair remains unfilled to
allow the user to locate individual pixels.·

Example
!

VLOAD I I
XHAIR 0 1
CLOAD 5 100 100

.v:,

;Load XHAIR color
;Enable crosshair 1
;Move XHAIR

Object Code Format

[9C~] [num] [fla~J (3 bytes)

Crosshair draw
affected by : }toordinate or~g~n

Crosshair 0 Location
Corsshair I Location
Crosshair 0 Color
Crosshair I Color
Display Buffer
Xhair Enable Flags

Affects Xhair Enable Flags

Command available Version L 1.0

4-96

(

Graphics Commands

ZOOM

ZOOM fact,bdst,bsre Buffer to buffer ZOOM copy.

Copy source buffer to destination buffer with magnification fact.
The buffer selected by bsre becomes the source image. The buffer
bdst rece i ves the adj usted image. The val ue fact can equal 1,
2, 4, or 8. The values bsrc and bdst can be any valid buffer
numbers (bsre is not equal to bdst).

Example :

-{(IMGSIZ 512 512 8
G<)~ DSPSIZ 512 512 60 1

ZOOM 4 1 0

BUFFER 1 1

Object Code Format :

iSet image size
iDraw power-up screen into buffer 0
;Change scale on buffer 0, and place
iscaled image in buffer 1
;Update into buffer 1, and display
;zoomed image

[34H] [fact] [bdst] [bsrc] (4 bytes)
('"'1-

Affected by: Current Point
Coordinate Origin

Affects NONE

Command available Version L 1.0

4-97

.. .J I

5
System Interfacing

The interface to INTERACT depends on the graphics hardware
environment in which the software executes. Available
interfaces incl ude Programmed I/O, DMA, and RS-2 3 2C. The
following sections describe the software protocols used to drive
these interfaces·.

5.1 - Progra~med I/O Interface

Summary: Write data to the board for status bit 0 or bit 2
set; read data from the board for status bit 1 set.

The Programmed I/O Interface allows the host processor to view
the graphics board as a standard hardware USART. The graphics
processor uses two contiguous bytes of MULTIBUS I/O or memory
space for this interface (see Figure 5.1). Refer to the
configuration information supplied with each board to obtain
the preset base address of this 2 byte communications area.
The board uses the base address as the destination for data
writes from the host CPU, and the source for data reads from
the graphics processor. The base address location + 1 serves
as the destination for communications channel commands from
the"host CPU, and the source for status information from the
graphics processor.

After the INTERACT power up screen is drawn the VM885x is ready
to execute INTERACT commands. Poll the status byte to check
programmed I/O status. For bit 0 or 2 of the status byte set
to 1, one byte of an INTERACT command may be written to the
data port (offset 0). For some jumper configurations (see
Graphics Processor Manual) more than one byte may be written when
transmit ready status is detected. The command port will accept
commands (see below) even if bits 0 and 2 of status read zero.
For bit 1 of the status byte set to 1, read one byte of an
INTERACT reply, in object form, from the data port (offset 0) of
the board.

When the host CPU expects a response to its previous INTERACT
command, it should poll the status register until bit 1 of the
status byte reads 1. When the host detects the data ready
condition, it should read one byte from the data register.
The host should continue the poll and read loop until the
required number of bytes have been collected.

5-1

System Interfacing

The Plio communications interrupt (see Graphics Processor Manual
for this jumper selectable option) can become active if either a
transmit or receive ready condition exists. This interrupt
parallels the status bits described above for transmit ready and
receive ready. The activity of this interrupt can be co.ntrolled
by writing a mask to the PliO command byte. Setting bit 0 to 1
in the command byte enables the transmi t interrupt, whi I e
clearing bit 0 to 0 masks (disables) the transmit interrupt.
SimilarlYr setting or clearing bit 2 controls the receive ready
interrupt. With both bit 0 and bit 2 of the control byte cleared
to 0 no MULTIBUS interrupt is generated regardless of jumper
position. ;f interrupt is unmasked for both conditions, the
status byte may be read upon interrupt to determine its cause.
For some jumper configurations (see Graphics Processor Manual)
more than one byte may be written when the transmit ready inter­
rupt is activated. Communications throughput may be increased if
the host processor can send a block of data to the graphics
processor for each MULTIBUS inter rupt •.

During normal operation of the PliO interface, no bytes need be
written to th* command register (offset 1). However, for
disrupted commu:nications or after an incorrect command, a WARM
start (see WARM' INTERACT command) may be executed by writing 040H
to the USART erlfulator's command register, even in the absence of
an XMIT ready\·status.During the handling of this WARM start
interrupt, bots:h receive ready and transmit ready status are
cleared. On ehe VM-885x, the interruption of the command
stream with a;: WARM start may cause unpredictable resul ts,
depending on the exact state of processing at the instant of the
interrupt, however communication will be reestablished. The WARM
start interrupt should not be used during power on reset.

5-2

(

Read

1--------------1
1 status 1
1------.:..------ 1
1 data 1
1--------------1

status

System Interfacing

MULTI BUS
I/O Space

Base address +1

Base address
of communication

area

Write

1----------------1
1 control I
I---------------~I
1 data 1
1----------------1

Control

7 IllDIOIOIOIAIBIAI 0 7 IxlClxlxlxlRlxlTI 0

Data

7 I Ibli!nlalrlyl 1 0

A = Ready for data byte
B = Data byte ready
D = DMA busy

** all bits active high

Figure 5.1 Programmed I/O Registers

Data

7 I Iblilnlalrlyl 1 0

C = Reset communications
X = Don't care
R = Receive interrupt

enable
T = Transmit interrupt

enable

System Interfacing

5.2 - DMA Interface

The DMA interface allows the VM-885x to fetch INTERACT commands
and to output data directly to and from host memory. INTERACT
reserves a communication area located at the memory-mapped base
address (supplied by the uaer). This area contains the DMA
Control Byte and DMA Block Pointer used in initiating and
controlling DMA trans~ers. Refer to Figure '5.2 for the
specification of these bytes.

Host memory contains INTERACT oommands and input areas arranged'
in designated DMA blocks. Each DMA block contains a header
listing a status byte, various data bytes, and pointers which
direct processing. Refer to Figure 5.3 for specifications on
these bytes~ The Chain Pointer allows the usex to link these
blocks together. All write blocks, Le.,those containing
INTERACT commands, are arranged in the write chain, while all
input buffers are arranged in the read chain. The commands sent
to the DMA Control Byte in the communications area control the
processing of these chains. The DMA address bytes, allocated as
the DMA Block Pointer in the dedicated communications area,
specifies the location of the lead block of a chain sent to the
VM-885x. Since the read and write chains function separately,
the VM-8851can allow both DMA writes and Programmed rio reads or
DMA reads and Programmed I/Owri tes. The VM-8850A; hO\'lever, docs
not allow this option since theDMA and Programmed I/O interfaces
require different daughter boards.

5.2.1 - Address Space

Both the VM-8850A and the VM-8851 can generate only 24 bits of
address. Thus the DMA'block headers and data area must exist in
the first 16 Mb of host address space. Additionally, bits 18
through 2 3 on the V M - 88 5 0 A are hardware con fig u r a b 1 e , not
software selectable. This restriction limits all DMA headers and
data to the single 256 Kb space determined by the hardware
configuration. Also note that only 3 bytes (24 bits) are
allocated in the dedicated communications area to point to the
first block in a chain. (Refer to the DMA Block Pointer in
Figure 5.2.)

5-4

(

System Interfacing

5.2.2 - Dedicated Communication Area (DCA)

The user provides a memory mapped address for Programmed I/O and
DMA interfaces. That base address plus the next consecutive
seven bytes compose the dedicated communication area. Refer to
Figure 5.2 for an illustration of these bytes. For a description
of the first two bytes, refer to the Programmed I/O section of
this manual, Section 5.1. This area also contains a DMA Block
Pointer and a DMA Control Byte, each described in the following
subsections.

5.2.2.1 - Protocol for Writing to DMA DCA

Bytes 4 - 7 of the DCA compose the DMA po rtion of the dedicated
communications area. Before writing a sequence of DMA address
and control bytes to the DCA, read the status byte (offset 1) to
determine the state of the DMA BUSY bit (see Section 5.1). The
DMA BUSY bit will be set after bytes are written to the DMA
portion of the DCA, and will be cleared after the DMA control
byte is processed. The protocol for writing the the four DMA
locations is as follows:

1) Wait for DMA BUSY to go low.
2) Write DMA Block Pointer bytes in order, if needed.
3) Write DMA Control Byte. DMA BUSY will be cleared after

the DMA command has been processed and the VM-885x is
ready for another DMA command.

5.2.2.2 - DMA Block Pointer

The DMA Block Pointer references the DNA block header of the
initial DMA block. (Refer to Figure 5.3 for the organization of
the DMA block header.) Bytes located at base address + 4, 5 and
6 must be written sequentially for the pointer to access the
proper location.

5.2.2.3 - DMA Control Byte

The DMA Control Byte receives instructions from the host to
control DMA operations. Each instruction is identified as a
specific binary value. The user writes the value of the
requested operation to this byte for execution during the DMA
procedure. For a list and description of the available commands,
refer to Section 5.2.3, DNA Commands.

5-5

System Interfacing

-----~----------------------
7 DMA Control Byte
-------~----------~---------

6 I
I­

S I
1-

4 I

DMA Block Pointer

I MSB
-I

1
,...1

1 LSB

3 Reserved 1
-~---~~---------------------

2 Reserved 1

1 Command Status 1

Base Address + 0 Programmed I/O Data I

Figure 5.2 VM-885x Dedicated Communication Area

5-6

f

(

System Interfacing

5.2.3 - DMA Commands

The following DMA commands are executed by writing the values
shown to the DMA control byte. (Refer to Figure 5.2.)

Command Value

Read Init 00
Write Init 01
Read Halt 02
Write Halt 03
Read Continue 04
Write Continue 05
Read PI/O 06
Write PI/O 07
Interrupt Acknowledge 08

Writing data to the DMA control byte causes an internal interrupt
on the VM-885x. Thus, this byte is processed as soon as
possible.

5.2.3.1 - Read Init

This command initializes the first block in the read chain. The
address of this first block equals the last address written to
the DMA Block Pointer. If nothing has been written to this area,
a default address of 0 is used. The initialized block is marked
as active. If the ENABLE BLOCK bit is set, then the current
Count is set equal to Data Length, and processing begins. This
command is only valid if the VM-885x is in Programmed I/O mode or
if the read chain has been halted (either by a DMA command or by
a Halt Request). If the state changes fro~ Programmed I/O to
DMA, then the current INTERACT command is completed before the
initiation of a DMA read.

5.2.3.2 - Write Init

Perform the function of INIT (as above) for the write chain. If
the write data contains ~ INTERACT read command, then the read
chain should be initialized before the write chain. The DMA
write command waits until the completion of the current INTERACT
command.

5.2.3.3 - Read Halt

(Mark the currently active DMA block in the read chain as
inactive. This change stops all processing of this DMA block by
the VM-885x until a Read Continue command resets the HALT bit in
the status bytes.

5-7

System Interfacing

5.2.3.4 - Write Halt

Mark the currently active block inactive and halted. This com­
mand halts all processing of the DMA write. block until a Write
Continue, write Init, or Write Programmed I/O command is issued.

Note that this command is issued asynchronously with processing
of INTERACT commands. Thus, the command being fetched from the
currently active block may not be complete. If a Write Initor
write Programmed I/O is then issued, the INTERACT command stream
Will be misinterpreted. ~his problem can be avoided by issuing a
Warm start command following the Halt.

5.2.3.5 - Read Continue

Continue processing of the currently active block. If the
currently active block is marked as COMPLETE and contains no
CHAIN REQUEST, then the block is re-initialized. If the block is
complete and does contain a chain request, then the Chain Pointer
is followe.d to the next block. If the acti ve block is not hal ted
then no action takes place.

5.2.3.6 - Write Continue

~AS above for currently active write block.

5.2.3.7 - Programmed I/O Read

The Read Programmed I/O command returns read operatioris to
Programmed I/O mode. Execution of this command is delayed until
the currently executed INTERACT command is finished. This
command is only valid when the currently active read block is in
a HALT state.

5.2.3.8 - Programmed I/O Write

The Write Programmed I/O returns write operations to Programmed
I/O mode.

5.2.3.9 - Interrupt Acknowledge

When intarrupted, the user may issue an interrupt acknowledge
camand to reset the interrupt sent by VM-885x.

5-8

,/(~"

\~.j}

f

System Interfacing

5.2.4 - DMA Block Header

The DMA block header is the building block of the DMA interface.
This section describes each part of the header and its function.
Refer to Figure 5.3 while reading the following information.

5.2.4.1 - Block Command Byte

The Block Command byte directs processing both before processing
of the data area begins and after the data area is exhausted. If
the CHAIN REQUEST bit is set, then processing continues. The
Chain Pointer points to the next block, which then becomes
active. If the INTERRUPT REQUEST bit is set, the VM-885x
generates an interrupt when the block data area is exhausted.
Finally the HALT REQUEST bit forces the HALT bit to be set in the
Status byte. A chain request is not honored until this HALT bit
has been cleared by a continue command.

The BLOCK ENABLE bit ensures that processing of a block does not
commence until the user has indicated a ready state. This bit is
checked on initialization of a block, accomplished using anInit
command or through a chaining operation. While this bit equals
zero, no processing of the block occurs. Processing beins when
the bit equals one. Since the VM-885x polls the ENABLE BLOCK
bit, a block in an active but disabled state implies numerous
MUL'I'IBUS accesses by the VM-885x. For an example on the use of
this bit, refer to Section 5.2.5.

5.2.4.2 - Status Byte

The Status byte indicates the current'status of its respective
DMA Block. The ACTIVE bit, if set, indicates that the block is
currently active and is being accessed by the VM-885x. The HALT
bit indicates that either the processing of this block has been
halted by a DMA Halt command (Section 5.2.3) or this block has
completed processing and no completion request bits were set.
The CHAINED bit indicates that the block has completed processing
and has honored a chain request. The COMPLETE bit indicates that
processing of the block has been completed. Note that the host
system should treat the status byte as read only.

5.2.4.3 - Data Area Pointer

The Data Area Pointer is a 32-bit pointer to the data area
associated with the block. If the block is in the write chain,
this data contains INTERACT commands. If the block is in the
read chain, then this data area will be written to by the VM-885x
in response to "read" INTERACT commands.

5-9

13

12

11

10

9

8

7

6

5

4

3

2

1

Byte 0

System Interfacing

1 I
1- -I
I Chain 1
1- -I
I Pointer 1
1- -I
1 1
---------------~-
1 Current 1
1- -I
I Count 1
-------~---------
I Data Length 1
1- -I
1 1

1 1
\-

Dat.'a
-I

1 Area 1
1- H'::'~ -I
I Po"f'nter !
1- -I
1 I
-------~---------

Status

Command

MSB

LSB

MSB

tSB

MSB

LSB

MSB
----~--~---~----------- ACTIVE

LSB

1
1
!
1
1

---) 1

---) 1

1
1
1
1
1

------_ -

HALTED

CHAINED

CHAIN REQ
INTERRUPT REQ
HALT REQ

----:..---------'---------·ENABLE BLOCK

Figure 5.3 DMA Block Header

5-10

r"
",-,/

System Interfacing

5.2.4.4 - Data Length

Data Length is a 16-byte area which indicates the number of bytes
in the data area. Data Length may not exceed 65280.

5.2.4.5 - Current Count

Current Count is a 16-bit area used by the VM-885x to monitor
progress of the processing of the block. The VM-885x initializes
this area with Data Length when processing of a given block
starts, then decrements to O. The host should treat the Current
Count as read only.

5.2.4.6 - Chain Pointer

The Chain Pointer is a 32-bit address pointing to the next DMA
block header in the chain.

5.2.5 - DMA Examples

Refer to the DMA State Diagrams, Figures 5.4 and 5.5, for further
illustration of these examples.

5.2.5.1 - Single Write Block

The following is a simple example of the DMA interface.

1) All INTERACT commands to be executed are assembled
sequentially into some known data area and the length
computed.

2) Create a DMA block header and place the address of the
data area previously established in the Data Area
Pointer location.

3) Initialize the Data Length location with the length of
the data area.

4) In this example no chaining or interrupt is needed.
Clear the completion request byte to O. This request
means that when processing is finished, the block will
be marked as complete and the process halted.

5) Clear Status byte.

6) Write the address of the block header to the DMA Block
Pointer.

5-11

system Interfacing

7) Write a write init to the DMA Control Byte.

8) wait for the block to be completed by polling the
completion bit. Note that the block can be re­
executed by issuing a Write Continue command.

5.2.5~2 - Cyclic Write Blocks

In this example, three blocks link together in astatic cycle as
shown:

---->1 A / ----
I ----- 1
I v

I C I <---------1 ~ I

In this situation, the host could update one block while the VM-
885x accesses another block. To achieve this state, the user
.ust complete certain steps~ First, the host must create and
Jnitialize the block headers and link them together, chaining A
Eo B, B to C, and C to A: as shown above. 11~11 blocks should be
labeled as not enabled; i.e. the ENABLE BLOCK bit should equal
zero for each block. For this example, let block header C HALT
~nd generate an interrupt upon completion. Processing begins
when the host updates the data area associated with block A.
When the update operation is complete, the host will update the
data length field in header A and mark that block as enabled.

The host initiates DMA by writing the address of block header A
to the DMA Block Pointer in the Dedicated Communication Area.
The host must also s.end a Write Init command to the DMA Command.
Byte in the same area. The host can riow begin updating block B
data area. On completion of·this operation, the host marks block
B as enabled, updates the Data Length field and proceeds t6 block
C.

After completing the data update and enabling Block C, the host
may resume other processing. When the VM-885x finishes
processing Block C, an inter.rupt will be issued and the write
chain process will be halted. The host, after acknowledging the
interrupt with an Acknowledge command, can then disable all three
blocks. When block A is updated, a Write Continue command will·
resume write chain processing, and the cycle repeats.

5-12

0"1
t:

OM
I:)

lIS
4-1
~
(I)
.j..I
t:
H

e
(I)
.j..I
en
>.
CIl

Writ. Halt
Write PIO
Write Com-lnua
Write Acknowledge

\trite
rnlt

,- W~~~~I~~J

~________ Wr I t!...flQ_

INTERRCT
COInI'lllmd

cOlnpl

~ · A [--L--~-J --.~-INITIALIZE OMA
Block POinter.. Write Inlt clear ~tctus.
oat. 24 bits

----.---

INITIALIZE BLOCK
clear status

r-------------------~ .. ~I ~tctu~ ~Qt to ACTIVE
Write rro
Write Inlt

~-

block enabled

INITIALIZE COUNT
Count sat to Data Langth

RUtfHNG BLOCK
get data from MULTraUS

ond deere"mnt Count

Count = 13

BLOCK DONE
5et MULTIBUS Interrupt

If INTERRUPT REQUEST set
set COMPLETE

HALT RECUEST = e
end CHAIN
REQUEST • 1

]--

~

O~JN

Write Continue
and CHAIN

.et CtiW£O
c) ear RCT IVE

cheln ualng Block
Pointer

clear
~ HALTED

l REQUEST c 1 ... --

Wrlta Continua
cl ecr HIlLTED

'WrIte Halt

HALT REOUEST =
or CHArN
REQUEST .. ~

HALT

.. t HALTED

ASYNCHRONOUS HALT --J
~ set HALTED

T Wrl te Cont I nue end L..-__________________________ CHAIN REQUEST = e

'

e
lIS
\.;

'!trlta Inlt 0"1
Wrl.te PIO lIS

OM
CI
(I)

.j..I
10
.j..I
CJ)

(I)
.j..I
0.-1
\.;

~

~ :s
CI ..
~

LO

Q)
\.;

::s
0"1

0.-1
r.z..

,,-, .

0"1
s::
.~

o
I\'S

""' ~ Q)
.j..I
s::
H

IS
Q)

.j..I
til
>t
til

~

L-.--

Reed Halt
Reed PIO
Reed ContInue
Read Acknowledg.

(~'" , J

Y t PROGRAMMED Reed pro end ~ r Interact eDMond cDllp)eted

Read
Inlt

I RERD. OMA
PENDING

INTERACT
CD IIVft and
completed

INITIALIZE OMA r Rood Intt ond
810ck Pol nter Interact cOhl.,llt1d
Qats 24 bIts completed

INITIALIZE BLOCK
cleor status

lOtatulO lOot to ACTIVE

block enabled

INITIALIZE COUNT
Count set to Oota LenQ1h

Rood ContlnuG

clQor lOte1us

Read PIa
R."d Inl+

RUNNING BLOCK
put data on HULTfBUS
end dacreftRnt Count

C) eet"" HRL TED ASYNCHRONCiiStiAL,-=:l

Count 0

BlOCK DONE
lOot HUL T rBUS I n'tarrupt

If INTERRUPT REQUEST set
r-~----ll ut COMPLETE

HALT REQUEST =.0
end CHRIN
REQUEST • 1

Read He 1 t set HAL TED ~

Cl-f:lIN
s.-t '""5iRJN£D

C leer ACT rVE
cnaln usIng Block

PoInter

clear
HRLTEO

HALT RECUEST =
or CHRIN
REQUEST .. 0

Re:d C~~;'~lnue " HALT

~-;;QUEST = I . _t "'. L TED

==r! "----;-Cont I nue and Reo RE UEST = a '.... CHAIN ...

f--t-

("
\ \

"'--. I

Roed [nIt

Read PIO

IS
I\'S
~

0'1
I\'S
.~

o
Q)

.j..I
I\'S
.j..I
til

ro
I\'S
Q)
0:;

~
::E: o

Lt'l

Lt'l

Q)
~

=' 0"1
.~

~

(

System Interfacing

5.3 - INTERACT Interpreter

The ASSIGN command can invoke the interpreter using the following
format:

ASSIGN chan 2

Invoking the interpreter will result in the response:

I>

Certain Interpreter commands allow the user to define how the
Interpreter should accept INTERACT commands. All interpreter
commands start with "tn. Following is a list of some of the
valid interpreter commands:

Command ~ Command ~

%SRC (Source) %OBJ (Object)
%DEC (Decimal) %HEX (Hex)
%ECHO (Echo) %QUIET (Quiet)
%WSIGN (Words signed) %WPOS (Words positive)
%BPOS (Bytes positive) %BSIGN (Bytes signed)
%LZHEX {Lead zeros for %NZHEX (No lead zeros for

hex) hex)
%NRSUP (NOT H suppress) %RSUP (H suppress)

The above table lists the commands in a one-to-one
correspondence. The interpreter defaults to all the commands in
the left-hand column. The right-hand column lists the optional
modes for each command on the left. For example, the interpreter
can operate in either source mode or object mode.

The term "command line" will refer to a user-supplied string of
ASCII characters followed by a carriage return. A command line
cannot exceed 255 characters and the resulting object code stream
cannot exceed 255 bytes for anyone command.

The interpreter will accept only spaces, commas or angle brackets
as delimiters between parameters.

The interpreter ignores commands in lines after a delimiter
followed by a semicolon (i).

5.3.1 - Modes of Operation

(- 5.3.1.1 - SOURCE Mode

The interpreter defaults to SOURCE mode. To specify SOURCE mode,
use the %SRC interpreter command. If the interpreter is in

5-15

System Interfacing

SOURCE mode and prompts are not being suppressed (refer to
Section 5.3.1.6, QUIET mode), then the user will receive either
an "I)" or an "M)" as a prompt. The prompt signifies the
interpreter as ready tQ accept INTERACT mnemonics as commands.
For example, to load CREG 20 with the values 2695, 35, the user
would enter:

CLOAD 20 2695 35

In SOURCE mode, the interpreter will try to match the mnemonic
entered by the user to a mnemonic listed in the table of valid
commands. If the user were to type CLOA 20 1023 35, the
interpreter would search its table for mnemonics beginning with
"CLOA". If CLOAD is the only command which begins "CLOA", then
the interpreter will assume CLOA to mean CLOAD. If the
interpreter finds more than one mnemonic in its table that
matches the mnemonic typed in, it will return an error message to
the user. For example, "MOV" is not a valid mnemonic because
both MOVABS and MOVREL begin with "MOV".

In SOURCE mode, the interpreter determines the number of
'parameters needed for any given command. The command line is
scanned for the number of parameters designated in the command
~pecification. For any parameters missing on the.line~ the
interpreter will supply additionally needed zeroes. Each command
~r serie8 of com~ands and associated parameters must be
completely contained within a single command line. A car'riage
'return terminates each command. The interpreter takes no action
on a command until a carriage return has been typed.

The "I)" prompt indicates the interpreter is ready to process
another command. During a macro definition, the prompt changes
to "M)". The ~M)" prompt indents from th~ left margin on the
screen and continues until execution ofa MACEND command.

If a readback command is executed in SOURCE mode,then both word
and byte readback parameters are converted to an 8-character
ASCII stream. An example of a terminal display after a readback
command follows: .

I>VLOAD 10,15
I>CLOAD 20,2695,35
I>READCR 20

2695 1743
I>READVR 10

15
I)

5-16

/o··~' • I

(

(

System Interfacing

5.3.1.2 - OBJECT Mode

Entering the %OBJ Interpreter command puts the interpreter into
OBJECT mode. In this mode, if prompts are not suppressed (refer
to Section 5.3.1.6, QUIET mode), then the user will receive a
"'>" as a prompt. In OBJECT mode, the interpreter accepts only
numeric parameters (i.e., no mnemonics) and each parameter is
interpreted as a byte. The requirement that all numbers begin
with a digit is relaxed in object mode, where all input is
assumed to be numbers. This aspect implies that word parameters
must be entered as two byte parameters. Thus, the CLOAD example
above could .be entered in OBJECT mode as (with Hex mode on):

AD, 14, A, 87, 0, 23

Note that the high bytes of words are entered first.

In this mode, the interpreter does not check opcodes for validity
or calculate the parameter string length required for each
command. Each command and associated parameters may extend over
more than a single command line. Thus a command longer that 255
bytes which could not be entered in source mode may be spread
over multiple command lines in object mode. The restriction on
command line size, however, still holds true. Also, the
interpreter executes none of the commands on a command line until
detecting a carriage return.

If a readback command is executed in OBJECT mode, then the
interpreter treats readback parameters as byte parameters, i.e.,
word parameters will be read back as two bytes. An example of a
terminal display after a readback command follows:

I>VLO 8 3
I>CLO 20 15 5
I>%OBJ
#>98B 20'1'

#>99B 8

#>%SRC
I>

o 15

3

5.3.1.3 - DECIMAL Mode

° 5

The Interpreter defaults to DECIMAL mode. The user can select
DECIMAL mode by using the %DEC interpreter command. In DECIMAL
mode, the Interpreter assumes all numbers to be decimal numbers
(base 10) unless they are followed by a trailing "B". Numbers
may also be followed by a trailing "T" to specify decimal.

5-17

System Interfacing

When doing readbacks in DECIMAL mode, leading zeros are blank
filled with the exception of the rightmost digit.

5.3.1.4 - HEX Mode

To change to HEXADECIMAL mode, use the %HEX Interpreter command.
In HEXADECIMAL mode, the Interpreter assumes all numbers to be
hexadecimal (base sixteenJnumbers unless they are followed by a
t r ail in g n T n (for bas e te n) • A t r ail in g " 8" s p e c if i e s
hexadecimal.

When doing ieadbacks in HEX mode, the Interpreter assumes all
parameters are unsigned.

5.3.1.5 - ECHO Mode

The Interpreter defaults to ECHO mode. The user can invoke ECHO
mode by using the %ECHO interpreter command. In ECHO mode, the
interpreter echoes all commands back to the channel where it
~~ceived them and inCludes the appropriate prompts~
; ~ '.

Readback data in ECHO mode has a carriage return and a line feed
~efore for the parameter data.

5.3.1.6 - QUIET Mode

The user can invoke the QUIET mode by Using tbe %QUIET
Interpreter command. In QUIET mode, the Interpreter-does not
echo entered commands. All prompts, including line feeds and
carriage returns, are suppressed.

Error messages are returned for Interpreter errors. Readbacks
are also returned.

5.3.1.7 - WORDS SIGNED Mode

The Interpreter defaults to WORDS SIGNED mode. Invoke WORDS
SIGNED mode by using the %WSIGN Interpreter command. In WORDS
SIGNED mode, all word parameters read back will be interpreted as
signed integers.

5.3.1.8 - WORDS POSITIVE Mode

Change to WORDS POSITIVE mode by using the %WPOS interpreter
command. If the Interpreter is in WORDS POSITIVE mode, the
interpreter assumes all word parameters read back to be unsigned
(positive) integers.

5-18

(

(

System Interfacing

5.3.1.9 - BYTES POSITIVE Mode

The interpreter defaul ts to BYTES POSITIVE mode. Invoke BYTES
POSITIVE mode by using the %BPOS Interpreter command. In BYTES
POSITIVE mode, all byte parameters read back will be interpreted
as unsigned (positive) integers.

5.3.1.10 - BYTES SIGNED Mode

The user can attain BYTES SIGNED mode by using the %BSIGN
interpreter command. In BYTES SIGNED mode, all byte parameters
read back will be interpreted as signed integers.

5.3.1.11 - LEAD ZEROS FOR HEX Mode

The Interpreter defaults to LEAD ZEROS FOR HEX Mode. Invoke LEAD
ZEROS FOR HEX Mode by using the %LZHEX Interpreter command. This
mode allows the interpreter to distinguish mnemonics from
parameters. It requires that hex numbers always start with a
digit from a to 9. The hex number FFH would thus be entered as
nFFH. Hex readbacks in LEAD ZEROS FOR HEX mode will always hav~
a 1 ead ing ze roo

5.3.1.12 - NO LEAD ZEROS FOR HEX Mode

Change to NO LEAD ZEROS FOR HEX Mode by using the %NZHEX
Interpreter command. This mode relaxes the restriction that hex
numbers must start with a digit from 0 to 9. Operating in this
mode can result in mnemonics being interpreted as parameters.
For example, if the interpreter were in SOURCE Mode, HEX Mode,
and NO LEAD ZEROS FOR HEX Mode and the user typed in "MOVABS CADD
5 ", the use r rna y wan t t hat torn e ann M 0 VA B S 0 a CAD D 5 0" but it
would be interpreted as "MOVABS OCADDH 0".

5.3.1.13 - NOT H SUPPRESS Mode

The Interpreter defaults to NOT H SUPPRESS mode. Invoke NOT H
SUPPRESS Mode by using the %NRSUP Interpreter command. In NOT H
SUPPRESS r-~ode, all readbacks done in HEX Mode will have a
trailing H.

5.3.1.14 - H SUPPRESS Mode

Change to H SUPPRESS Mode by using the %HSUP Interpreter command.
In H SUPPRESS Mode, al i readback done in HEX Mode will not have a
trailing H.

5-19

System Interfacing

5.3.2 - Editing

The interpreter accepts INTERACT. commands in either tipper or
lower case letters.

The <DEL) key (7FH) deletes the character preceding th~ cursor
and moves the cursor back one position.

The backspace key '(08H) will move the cursor back one position
but will not delete any characters.

A <CTRL) X d~letes the entire line.

5.3.3 - Interrupt

A <CTRL> R sends a wa~m s~art to the graphics processor~

~ 5.4 - AM94/1530 Dual Channel SBX Module

The optional dual .channel SBX module offers two additional chan­
,nels for the VM885x graphics processor. These logical channels,
designated channe~ I and channel 2, support the same software
functions as the standard MULTIBUS interface, channel O. The
channels function independently, although high level drivers,

. such as the INT.ERACT Interpreter, may not be loaded on more than
one channel simultaneously. The channel are scanned sequen­
tially, with one complete INTERACT command executed on the cu.r­
rent channel (if available) before the next channel is scanned.
Since MACRUN and MACDEF are each INTERACT commands, a complete
macro must be executed ordefined6n the current channel before
the next channel is scanned. The input/output handlers of each
channel operate independently of the curreI1tly scan.ned channel,
so that communications is not functionally affec.ted by graphics
tasks.

5.4.1 - Cable Connection to the RS-232C SBX Module

The AM94/l530 SBX module offers two (male) 26 pin edge connectors
labeled P2 and P3, which respe6£ively co~r~spon~ ~o INTERACT
channel s 1 and 2. (Refer to the ASSIGN command in the INTERAC'l'
software manual.) The MULTIBUSTM interface corresponds to
INTERACT channel O.

5-20

System Interfacing

The SBX Module is a Data Set device which will interface to a
standard Data Terminal device according to the following
specifications:

Baud Rate
Word Length
parity
Stop Bits
Protocol

9600 Baud
8 bits
none
2
Xon/Xoff or DTR/DSR

The protocol listed above depends on the driver assigned using
the ASSIGN command. If the d river uses the ASCI I communica tion
format, the default protocol is Xon/Xoff; for binary
communication format the default protocol is Data Terminal
Ready/Data Set Ready (DTR/DCD). Refer to the Graphics Processor
manual for specification of the particular driver.

For ASCII communications, only three lines are required over an
RS-232C cable: TxD, RxD, and signal ground. For binary communi­
cation formats, two additional lines are needed: DATA SET READY
(DSR) and DATA TERMINAL READY (DTR/DCD). If DTR is not supplied
by the device, the SBX can be used for ASCII communications only
by conn~cting DTR to DSR on the header of the SBX module. CLEAR
TO SEND {CTS) and REQUEST TO SEND (RTS) should be connected on
the header if CTS is not supplied by the data terminal device.
The SBX will always assert CTS and will ignore RTS. To connect a
Data Terminal device, these seven lines may be brought straight
through on the SEX header. To connect a Data Set device, each
element in the pairs of signals must be crossed; TxD/RxD,
DTR/DSR, and CTS/RTS. (Refer to Figure 5.6.) The VM-885x is
factory configured for a seven line RS-232C cable to connect to
data terminal devices.

By default, the INTERACT interpreter is ASSIGNed to channell and
the transparent mode (Interact binary) is ASSIGNed to channel 0
at power-on, reset, and COLD starts.

5-21

I~I.L ~i "1
1:.. e-k t«,.I" t-L

PIN 1 2m
2 19
3 18
4 17
5 16
6 15
7 ,...-'f---'-------+- 14
8 13
9 12

1B Ij

DATA TERMINAL HODE

CT~RTs~ LOOP-BACK

pm 1 .~

2 19
3 18
4 17
5 16
6 15

~ .=1:=:::::====---=::::::::=::1= ! ~
9 12

10 11

DATA SET MODE

Figure 5.6 : SBX Header Configuration

(

System Interfacing

5.4.2 - Digitizing Tablet

A digitizing tablet can be assigned to a channel with the ASSIGN
command. An example would be:

ASSIGN 2 5

The above example assigns the digitizing tablet to channel 2.
The contents of CREG 11 and CREG 12, at the time of the ASSIGN
command, define the rectangle covered by the digitizing tablet.
Load CREG 11 with the coordinates of the lower left-hand corner
of the defined area and CREG 12 with the coordinates of the upper
right-hand corner of the coordinate space. The coordinate space
actually covered by the digitizing tablet may be slightly larger
than the coordinate space requested. The magnitude of this
discrepancy will depend on the digitizing tablet used and the
values chosen for CREG 11 and CREG 12.

5.4.3 - Printer

A printer can be assigned to a channel with the ASSIGN command.
An example would be:

ASSIGN 2 3

The above example assigns the printer to channel 2. The contents
of CREG 11 and CREG 12, at the time of the ASSIGN command, define
rectangle to be printed. Load CREG 11 with the coordinates of
the lower left-hand corner of the designated area and CREG 12
with the coordinates of the upper right-hand corner of the rect­
angle to be printed.

5.4.4 - Light Pen

The optional light pen can be enabled by:

ASSIGN 5 15

Once enabled, placing the light pen on the display sceen causes
the virtual coordinate under the pen to be placed in CREG 2. If
the light pen button is pressed (this may be the tip of the pen),
the I N 'I' EkAC '1' command

BUTCON 2

is run, which allows macros to be accessed by the light pen.

5-23

c-

Document Number

VM 2001 1101-02

VM 1013 0001-01

VM 1018 0001'-00

Appendix A
Related Documents

Description

TM
INTERACT Language Reference Card

VM-8850A Graphics Processor Manual

VM-8851 Graphics Processor Manual

A-I

Appendix B
Cold start Default Values

A COLD start INTERACT command, a power-on, or a reset initializes
INTERACT software. During initialization, the board issues the
following INTERACT commands:

CONFIG

VLOAD
VLOAD
VLOAD
VLOAD

CLOAD

LUTRST

ASSIGN
ASSIGN
ASSIGN

BUFFER
FIRSTP
BLINKR
BLANK
PIXFUN
PRMFIL
SURFAC
BUTTBL

WINDOW

CLIPDF

BUTREC

DSPSIZ
IMGSIZ
TEXTB
TEXTC
XHAIR
XHAIR
VECPAT
AREAPT
VREG 14 f' VREG 15

0,128,256

n,O
6,255
3,255
4,255

n,O,a

0,1
1,2
2,0

0,0
o
30
o
o
o
o
n,n

; where n ranges from 0 through 15

; where n ranges from a through 63

i Reset all LUT entries

; ASSIGN commands are set to
defaults for any board with
an RS-232C SBX connector

i where n ranges from a to 31

-32768,-32768,32767,32767

n,-32768,-32768,32767,32767
; where n ranges from 1 to 4

n,32767,32767,-32768,-32768
; where n ranges from 0 to 31

(consult hardware manual)
(consult hardware manual)
o
0,0
0,0
1,0
FFFF
FFFF,FFFF, •••• ,FFFF
i
j

; i = 2 for 8850A, i ~ 3 for 8851
i j = 3 for INTERACT Version 4.0

B-1

(

-
(

(

Appendix Cl
Command Summary by Opcode

The following listing provides a summary of the INTERACT commands
in ascending order of opcode. For each command, the hex opcode,
mnemonic, and parameters are given.

Opcode Mnemonic Parameters

00 NULL
01 MOVABS x,y
02 MOVREL dx,dy
03 MOV3R dx,dy
04 MOV2R dxdy
05 MOVI creg
06 VALUE color
01 FLOOD
OB MAC RUN macnum
OC l'lACEND
OE CIRCLE rad
OF CIRCXY x,y
10 CIReI creg
11 ARC rad,al,a2
12 POLYGN npoly,nvertl, xl tyl, •••
13 AREAl
14 AREA2 vreg
18 LUTR index,entry
19 LUTG index,entry
lA LUTB index,entry
lC LUT8 index,rentry,gentry,bentry
IF PRMFIL flag
20 BLINKE lut,index,entryl,entry2
21 BLINKD lut,index
22 BLINKR frames
23 BLINKC
24 CONFIG fifo,macbuf,txtfnt
26 TEXTDN char,x,y,fntlst
28 PIXELS x,y,color, .••
2D ARE APT pattern
2E VECPAT mask
2F FIRSTP flag
31 BLANK flag
34 ZOOM fact,bdst,bsrc
3A WINDOW xl,yl,x2,y2
3B PIXFUN mode
3D WAIT frames
44 DSPSIZ x,y,freq,screen
45 IMGSIZ x,y,depth
81 DRWABS x,y

Cl-l

Appendix Cl

rf"" , .)
~

Opcode MnemQnic P·arameters

82 DRWREL dx,dy
83 DRW3R dx,dy
84 DRW2R dxdy
85 DRWI creg
88 POINT
89 RECREL dx,dy
8B MACDEF rnacnum
8C MACERA rnaCnum
8E RECTAN x,y
8F RECTI creg
90 TEXTI string
91 TEXT2 string
92 TEXTC size,angle
93 TEXTO string
94 TEXTB flag
95 .READP
98 READCR creg
99 READVR vreg
9A READBU flag,cflag
9C XHAIR nurn,flag
9F FILMSK mask
AO CLOAD creg,x,y
Al CMOVE cdst,csrc
A2 CADD ,.,.rat'l""" ,.-"--"'t...>"""IL,,,,,,,LCY
A3 CSUB cdif,creg
A4 VLOAD vreg,color
AS VMOVE vdst.,vsrc
A6 VADD vsum,vreg
A7 VSUB vdif, vreg
AA BUTTBL index,rnacnum
AB BUTTON index
AF RDPIXR vreg
B8 ASSIGN chan,dev
B9 BUTREC butnum,xl,yl,x2,y2
BA BUTCON creg
BB MAC REP macnum,count
EO BUFFER update,display
E5 BLKMOV xl,yl,x2,y2
E6 POLYRL npoly,nvertl,dxl,dyl, ..•
EA CLIP nurn
EB CLIPDF num,xl,yl,x2,y2
FO PIXDMP depth,dx,dy
Fl PIXLOD depth,dx,dy,bitstrearn
F5 SURFAC count,pl,p2, •••
F6 LUTRST
F7 LUTMSK mask
FD COLD 5"". FE WARM \.Li ?'

Cl-2

(

Appendix C2
Command Summary by Mnemonic

The following listing provides a summary of INTERACT commands in
alphabetical order of the mnemonic.

Opcode Command Parameters

11 ARC rad,al,a2
2D AREAPT pattern
13 AREAl
14 AREA2 vreg
B8 ASSIGN chan,dev
31 BLANK flag
23 BLINKC
21 BLINKD lut,index
20 BLINKE lut,index,entryl,entry2
22 BLINKR frames
E5 BLKMOV xl,yl,x2,y2
EO BUFFER update,display

f
BA BUTCON creg
B9 BUTREC butnum,x1,yl,x2,y2
AA BUTTBL index,macnum
AB BUTTON index
A2 CADD csum,creg
10 CIRCI creg
OE CIRCLE rad
OF CIRCXY x,y
EA CLIP num
EB CLIPDF num,xl,yl,x2,y2
AO CLOAD creg,x,y
Al CMOVE cdst,csrc
FD COLD
24 CONFIG fifo,macbuf,txtfnt
A3 CSUB cdif,creg
81 DRWABS x,y
85 DRWI creg
82 DRWREL dx,dy
84 DRW2R dxdy
83 DRW3R dx,dy
44 DSPSIZ x,y,freq,screen
9F FILMSK mask
2F FIRSTP flag
07 FLOOD
45 IMGSIZ x,y,depth
lA LUTB index,entry

(-" 19 LUTG index,entry
F7 LUTMSK mask
18 LUTR index,entry
F6 LUTRST

C2-1

Appendix C2
".-'" (0

Opcode Command Parameters

lC LUT8 index,rentry,gentry,bentry
8B MACDEF macnum
OC MAC END
8C MACERA macnum
BB MACREP macnum, count
OB MACRON macnum
01 MOVABS x,y
05 MOVI creg
02 MOVREL dx,dy
04 MOy2R dxdy
03 MOV3R dx,dy
00 NULL
FO PIXDMP depth,dx,dy
28 PIXELS x,y,color, •••
3B PIXFUN mode
FI PIXLOD depth1 dx,dy,bitstream
88 POINT
12 POLYGN npoly,nvert,xl,yl, •••
E6 POLYRL npoly~nvertl,dxl,dyl, •••
IF PRMFIL flag
AF RDPIXR vreg
9A READBU fIag,cfIag
98 READCR crea . oJ

95 READP
99 READVR vreg

'~ 89 RECREL dx,dy
8E RECTAN x,y
8F RECTI creg
F5 SURFAC count,pl,p2, •••
94 TEXTB flag
92 TEXTC size,angle
26 TEXTDN char,x,y,fntlst
93 TEXTO string
90 TEXTl string
91 TEXT2 string
A6 VADD vsum,vreg
06 VALUE color
2E VECPAT mask
A4 VLOAD vreg,color
AS VMOVE vdst,vsrc
A7 VSUB vdif,vreg
3D WAIT frames
FE WARM
3A WINDOW xl,yl,x2,y2
9C XHAIR num,flag
34 ZOOM fact,bdst,bsrc

C

C2-2

f
Appendix D

Look-up Table Default Values

INDf;X YALUf; COLOR
RGB

0 () OOOOH BLACK
1 OFFFH WHITE
2 OFOOH RED
3 OOFOH GREEN
4 OOOFH BLUE
5 OOFFH CYAN
6 > OFOFH MAGENTA
7 OFFOH YELLOW
8 f OF80H RED-YELLOW -
9 08FOH YELLOW-GREEN
10 OOF8H GREEN-CYAN
11 0080H CYAN-BLUE
12 080FH BLUE-MAGENTA
13 OF08H MAGENTA-RED
14 0555H DARK GRAY
15 (OAAAH LIGHT GRAY

f

(.

D-l

Appendix D
(-",

'<...y

IN126X YALU6 IND6X YALU6 INDEX VALU6
RGB RGB RGB

16 OFFSB 61 OF48B 106 0359B
17 OAF6B 62 OF56H 107 0449B
18 06F8B 63 OF65H 108 0647B
19 03FAB 64 OFB3B 109 0946B
20 04BBB 65 OAFOH 110 OB45H
21 069BB 66 07F3H 111 OF45H
22 OA7BB 67 05F3B 112 . OA90B
23 OF50B 68 03F5H 113 07A2B
24 08D6B 69 03B6B 114 05B2B
25 05D7B 70 03A6H 115 0402B
26 03D8B 71 0379B 116 0303B
27 038DB 72 036AB 117 03B3B
28 036FH 73 035BH 118 03A4B
29 065FB 74 034DB 119 0395B
30 OA3FH 75 033FH 120 0375H
31 003FH 76 OS3FH 121 0366H
32 OBF3H 77 0720B 122 0357H
33 09F4H 78 OAOBB 123 0457H
34 06F5H 79 ODOAB 124 0656H
35 03F6H 80 ODA2H 125 0755H
36 03B8H 81 09D2H 126 0955H
37 039AH 82 0703H 1-27 OB54H ,...

037Sf! 83 04D4H 128 0980H ':>0

39 0460B 84 0305H 129 0682H
40 0550H 85 03A5H 130 0593H
41 0830H 86 0396H 131 0493H
42 OB3BB 87 0377H 132 0394H
43 OD59H 88 0369H 133 0285H
44 OB68H 89 035AB 134 0265H
45 OB76H 90 034BH 135 0356H
46 0085H 91 053BH 136 0356H
47 0094H 92 073AH 137 0238H
48 OFD3H 93 OA38B 138 0339H
49 OBF3H 94 OD37H 139 0537H
50 08F3H 95 OB46H 140 0636H
51 06F4H 96 OBAOH 141 0736H
52 03D6H 97 07B2H 142 OA35H

.53 03B7H 98 0602H 143 0035H
54 0399B 99 0503H 144 0762H
55 037AH 100 03D4H 145 0682H
56 0350H 101 03B48 146 0573H
57 0540H 102 03ASH 147 0383H
58 073DH 103 0386B 148 0274B
59 OB3AB 104 0367B 149 0365B
60 OF39B 105 0367B 150 0255B

"'--.."
~j

Appendix D

t
INDEX VALUE INDEX VALUE INDEX VALUE
----- ----- ----- ----- ----- -----

RGB RGB RGB

151 0355H 196 0344H 241 0330H
152 0346H 197 0335H 242 0330H
153 0436H 198 0435H 243 0232H
154 0437H 199 0525H 244 0233H
155 0536H 200 0624H 245 0033H
156 0636H 201 0823H 246 0223H
157 0735H 202 OB03H 247 0303H
158 0935H 203 OD03H 248 0303H
159 OB34°H 204 OF02H 249 0303H
160 0662H 205 OF33H 250 0303H
161 OS62H 206 OB30H 251 0403H
162 OS80H 207 OA40H 252 OS02H
163 0382H 208 0630H 253 0630H
164 0382H 209 0550H 254 0430H
165 0373H 210 0362H 255 0330H
166 0363H 211 0253H
167 0264H 212 0253H
168 0354H 213 0244H
169 0355H 214 0335H

"; 170 0245H 215 0325H
I~i 171 0236H 216 0405H

172 0237H 217 0604H
173 0308H 218 0803H
174 0506H 219 OA03H
175 060SH 220 OB03H
176 OA50H 221 OA22H
177 0950H 222 0832H
178 0752H 223 0830H
179 0553H 224 0530H
180 0454H 225 0350H
181 0445H 226 0250H
182 0435H 227 0242H
183 0535H 228 0233H
184 0635H 229 0234H
185 0734H 230 0235H
186 OA24H 231 0205H
187 OB04H 232 0304H
188 OF03H 233 0303H
189 OF33H 234 0503H
190 OD32H 235 0503H
191 OB42H 236 0503H
192 0840H 237 0622H
193 0650H 238 0630H
194 0453H 239 0330H

(195 0453H 240 0430H

D-3

/f.'

\4..._/

AREA FILL MASK

AREA PATTERN

BIT PLANE MASK

BLANK FLAG

BLINK RATE

BLINK STATUS

BLINK TABLES

BUTTON FIFO
EVENT QUEUE

BUTTON TABLE

Appendix E
Elements of INTERACT State

- VREG 3 - Pix elm ask for ran d 0 mar e a
fills.

Pattern used to implement texturing of
filled figures. Set with AREAPT.

-VREG6- Color mask used by all graphics
primitives.

Screen is blank when enabled. Set with
BLANK.

Rate at which blinking occurs. Set with
BLINKR.

Three bits for each (red, green, and
blue) LUT entries. Set with BLINKE.

Two tables which provide color
information for blinking LUTs. Loaded
with BLINKE.

Eight event FIFO, where each event
consists of an executed button number,
CREG2, and CREG5 at the time of button
execution.

Table which associates button numbers
with macro numbers. Set with BUTTBL.

CLIPPING BOUNDARY -CREG9,CREGlO- Current clipping window
virtual coordinates.

CLIP WINDOW DEFINITIONS Four definitions, each consisting of a
pairof coordinates, which define a
rectangular clipping window. Set by
CLIPDF.

CONDITIONAL BUTTON
EXECUTION TABLE

One entry for each of the 32 buttons.
Each entry is a pair of virtual coordi­
nates defining a rectangular area that
will cause that button to be executed if
the CREG coordinates given in a BUTCON
is contained within that rectangular
area. Set by BUTREC.

E-l

COORDINATE ORIGIN

CROSSHAIR 0 COLOR

CROSSHAIR 0 LOCATION

CROSSHAIR 1 COLOR

CROSSHAIR 1 LOCATION

CURRENT COLOR

CURRENT POINT

DEVICE BOUNDARY

;DISP!.AY BUFFER

,DISPLAY SIZE

FIRST PIXEL FLAG

IMAGE SIZE

LOCATOR ADJUSTMENT

LOCATOR POSITION

LOOKUP TABLES

LUT MASK

Appendix E

-CREG3~ Coordinate of the center
image memory in virtual space.

-VREGl- Pixel value for crosshair O.

of

-CREG5- virtual coordinate of crosshair.
O.

-VREG2~ pixel value for crosshair 1.

-CREG6- Virtual coordinate of crosshair
1.

-VREGO- Pixel value used by all graphics
primitives.

-CREGO- Starting, or center,
graphics primitives.

-CREGll,CREG12- Coordinates
tangle used by the printer
the digitizer driver.

pOint for

of the rec­
driver and

Buffer to be displayed on the
screen. Set by BUFFER.

Format of display; for example¥ 640 x
480 pixels. Set by DSPSIZ.

Flag to inhibit drawing of first pixel
of vectors. Set by FIRSTP.

Organization of physical memory. Given
in x, y, and depth dimensions. Set by
IMGSIZ. Image size determines the
number of buffers available.

-CREG8- Coordinate calibration factor
for screen dependent locator hardware.

-CREG2- Virtual coordinate returned by
locator device

Color
value
color
LUTR,

'" lookup tables used to convert
codes into actual R, G, and B

intensities for display. Set with
LUTG, LUTB, and LUTS.

-VREG4- Mask applied to pixel values
before indexing into LUTs.

E-2

(f \

\-L/

(

MACRO DEFINITION TABLE

PIXEL FUNCTION

PRIMITIVE FILL FLAG

RAM CONFIGURATION

SCREEN ORIGIN

SURFACE PRIORITIES

TEXT BACKGROUND COLOR

TEXT BACKGROUND FLAG

'I'EXT ENDPOINT

TEXT FONT DEFINITION
TABLE

TEXT SIZE

UPDATE BUFFER

VECTOR PATTERN

XHAIR ENABLE FLAGS

Appendix E

Table which contains INTERACT macros,
which are defined with MACDEF and erased
with MACERA.

Drawing mode. Insert, complement, or
XOR functions currently allowed.

When set, closed primitives are drawn
filled. When cleared, primitives draw
in outline. Set with PRMFIL.

Allocation of scratch pad RAM among
FIFOs, TEXT font definition table and
macro definition table. Set with CONFIG
following power up or COLD.

-CREG4- Virtual coordinate of the pixel
at the center of the display screen.

Priorities given to certain bit planes
to provide the appearence of one surface
covering another. Set by SURFAC.

-VREG5- Color for background of text.

When set, causes text command to draw
background underneath text.

-CREG7- End of string virtual
coordinates for TEXT PRIMITIVES.

Table which contains text fonts used by
TEXT2. These fonts are specified using
TEXTDN.

Size of characters drawn with TEXTO.
Set by TEXTC.

Buffer affected by draw commands.
by BUFFER.

Set

Pattern used to implement dotted or
dashed outline figures. Set by VECPAT.

Flags set to enable display of the two
possible crosshairs. Set by XHAIR.

E-3

INTERACT Graphics Language Manual
Version 4.0

VM 2001001-07

READER'S COMMENTS

NOTE: The Technical Publications Department attempts to provide documents that meet the needs
of all VMI product users.

Please restrict your comments to the contents of this document. VMI will use comments submitted
on this form at the company's discretion.

1. Did you find this manual understandable, usable, and well-organized? Please make suggestions
for improvement.

2. Did you find errors in this manual? If so, specify the error and the page number.

3. Please indicate the type of reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Hardware engineer
o Other (please specify) ____________________ _

NAME ___________________________________ __ DATE _______ __
TITLE ___ ___

C; COMPANY NAME/DEPARTMENT -------'------------.......---------
ADDRESS __________________________ __

CITY ____________ STATE _____ ZIP CODE

WE'D LIKE YOUR COMMENTS •••

Your comments on the back of this form will be used to help us produce better manuals. All comments
and suggestions become the property of Vermont Microsystems, Inc.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 656 WINOOSKI, VT

POSTAGE WILL BE PAID BY ADDRESSEE

Vermont Microsystems, Inc.
Attn: Technical Publications Dept.
11 Tigan Street
Winooski, Vermont 05404

IIIIII NO POSTAGE

NECESSARY

IF MAILED

IN U.S.A.

o

o

o

c;·

.. w;

11 Tigan Street
Box 236
Winooski. VT 05404
Tel. (802) 655-3800

o

