
MS-PASCAL
VOLUME II

COPYRIGHT
(c) 1983 by VICTOR. (R)
(c) 1979 by Microsoft Corporation.

Published by arrangement with Microsoft Corporation,
whose software has been customized for use on
various desktop microcomputers produced by VICTOR.
Portions of the text hereof have been modified
accordingly.

All rights reserved. This publication contains
proprietary information which is protected by
copyright. No part of this publication may be
reproduced, transcribed, stored in a retrieval
system, translated into any language or computer
language, or transmitted in any form whatsoever
without the prior written consent of the publisher.
For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARK
VICTOR is a registered trademark of Victor
Technologies, Inc.
MS-DOS is a registered trademark of Microsoft
Corporation.
CP/M-86 is a registered trademark of Digital
Research, Inc.

2

NOTICE

VICTOR makes no representations or warranties of any
kind whatsoever with respect to the contents hereof
and specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. VICTOR shall not be liable for errors
contained herein or for incidental or consequential
damages in connection with the furnishing,
performance, or use of this publication or its
contents.

VICTOR reserves the right to revise this publication
from time to time and to make changes in the content
hereof without obligation to notify any person of
such revision or changes.

First VICTOR printing April, 1983.

ISBN: 0-88182-027-X Printed in U.S.A.

3

MS-PASCAL VOLUME I

User’s Guide

Introduction 7
1. Getting Started 1-1
2. A Sample Session 2-1
3. More About Compiling 3-1
4. More About Linking 4-1
5. Using a Batch Command File 5-1
6. Compiling and Linking Large

Programs 6-1
7. Using Assembly Language

Routines 7-1
8. Advanced Topics 8-1
Appendix A Version Specifics A-l
Appendix B MS-LINK Error Messages .. B-l

Reference Manual

Introduction 1
1. Language Overview 1-1
2. Notation 2-1
3. Identifiers 3-1
4. Introduction to Data Types....... 4-1
5. Simple Types 5-1
6. Arrays, Records, and Sets........ 6-1
7. Files 7-1
8. Reference and Other Types 8-1
9. Constants 9-1
10. Variables and Values 10-1

MS-PASCAL VOLUME II

Reference Manual (Continued)

11. Expressions 11-1
12.Statements 12-1
13.Introduction to Procedures and

Functions 13-1

5

14. Available Procedures and
Functions14-1

15. File-Oriented Procedures and
Functions15-1

16. Compilable Parts of a Program ...16-1
17. MS-Pascal Metacommands 17-1
Appendix A. MS-Pascal Syntax

Diagrams A-l
Appendix B. MS-Pascal Features and

the ISO Standard . B-l
Appendix C. MS-Pascal and Other

Pascals C—1
Appendix D. ASCII Character Codes .. D-l
Appendix E. Summary of MS-Pascal

Reserved Words E-l

Appendix F. Summary of Available
Procedures & Functions . F-l

Appendix G. Summary of MS-Pascal
Metacommands G-l

Appendix H. Messages H-l

6

MS-PASCAL REFERENCE MANUAL CONTENTS CONT

11. Expressions...............................11-1

11.1 Simple Type Expressions...............11-3
11.2 Boolean Expressions 11-8
11.3 Set Expressions.........................11-10
11.4 Function Designators.................... 11-12
11.5 Evaluating Expressions................. 11-15
11.6 Other Features of Expressions.......... 11-16

11.6.1 The EVAL Procedure............. 11-16
11.6.2 The RESULT Function 11-17
11.6.3 The RETYPE Function 11-17

12. Statements............................... 12-1

12.1 The Syntax of Pascal Statements 12-1
12.1.1 Labels 12-1
12.1.2 Separating Statements 12-2
12.1.3 The Reserved Words BEGIN

and END...................... 12-3
12.2 Simple Statements.................... 12-4

12.2.1 Assignment Statements 12-4
12.2.2 Procedure Statements 12-7
12.2.3 The GOTO Statement.............12-8
12.2.4 The BREAK, CYCLE, and

RETURN Statements 12-2
12.3 Structured Statements 12-12

12.3.1 Compound Statements 12-12
12.3.2 Conditional Statements 12-13

12.3.2.1 The IF Statement 12-14
12.3.2.2 The CASE Statement . . . 12-15

12.3.3 Repetition Statements 12-16
12.3.3.1 The WHILE Statement . . . 12-17
12.3.3.2 The REPEAT Statement . . 12-17
12.3.3.3 The FOR Statement 12-18
12.3.3.4 The BREAK and CYCLE

Statements............ 12-21

7

12.3.4 The WITH Statement.............. 12-22
12.3.5 Sequential Control 12-23

13. Introduction to Procedures and
Functions........................... 13-1

13.1 Procedures..............................13-2
13.2 Functions..............................13-3
13.3 Attributes and Directives 13-6

13.3.1 The FORWARD Directive 13-9
13.3.2 The EXTERN Directive 13-10
13.3.3 The PUBLIC Attribute 13-11
13.3.4 The ORIGIN Attribute 13-12
13.3.5 The FORTRAN Attribute 13-13
13.3.6 The INTERRUPT Attribute......... 13-14
13.3.7 The PURE Attribute............. 13-16

13.4 Procedure and Function Parameters . . . 13-18

13.4.1 Value Parameters 13-18
13.4.2 Reference Parameters 13-20

13.4.2.1 Super Array Parameters. . 13-22
13.4.2.2 Constant and Segment

Parameters................ 13-22
13.4.3 Procedural and Functional

Parameters.................... 13-24

14. Available Procedures and Functions . . . 14-1

14.1 Categories of Available Procedures
and Functions................ 14-3

14.1.1 File System Procedures
and Functions................ 14-3

14.1.2 Dynamic Allocation Procedures . 14-4
14.1.3 Data Conversion Procedures

and Functions................ 14-4
14.1.4 Arithmetic Functions 14-5
14.1.5 Extend Level Intrinsics 14-7

8

14.1.6 System Level Intrinsics. 14-7
14.1.7 String Intrinsics 14-8
14.1.8 Library Procedures

and Functions...............14-8
14.2 Directory of Available Functions

and Procedures...................... 14-10

15. File-Oriented Procedures
and Functions....................... 15-1

15.1 File System Primitive Procedures
and Functions....................... 15-1

15.1.1 GET and PUT................... 15-3
15.1.2 RESET and REWRITE 15-4
15.1.3 EOF and EOLN................... 15-6
15.1.4 PAGE........................... 15-7
15.1.5 Lazy Evaluation................. 15-8
15.1.6 Concurrent I/O 15-10

15.2 Textfile Input and Output.............. 15-12
15.2.1 READ and READLN.................. 15-15
15.2.2 READ Formats.................... 15-18
15.2.3 WRITE and WRITELN.............. 15-21
15.2.4 WRITE Formats.................... 15-23

15.3 Extend Level I/O........................ 15-28
15.3.1 Extend Level Procedures 15-28
15.3.2 Temporary Files.................. 15-33

16. Compilable Parts of a Program......... 16.1

16.1 Programs................................16-3
16.2 Modules................................16-7
16.3 Units................... 16-9

16.3.1 The Interface Division 16-16
16.3.2 The Implementation Division 16-18

9

17. MS-Pascal Metacommands................ 17-1

17.1 Language Level Setting and
Optimization......................... 17-3

17.2 Debugging and Error Handling. 17-5
17.3 Source File Control.................... 17-12
17.4 Listing File Control.................... 17-16
17.5 Listing File Format.................... 17-20
17.6 Command Line Switches.................. 17-24

Appendix A MS-Pascal Syntax Diagrams A-l

Appendix B MS-Pascal Features
and the ISO Standard.............B-l

B.l MS-Pascal and the ISO Standard. . . B-l
B. 2 Summary of MS-Pascal Features ... B-5

Appendix C MS-Pascal and Other Pascals . . . C-l
C. l Implementations of Pascal.......... C-l
C.2 MS-Pascal and UCSD Pascal.......... C-4

Appendix D ASCII Character Codes D-l

Appendix E Summary of MS-Pascal
Reserved Words................ E-l

Appendix F Summary of Available Procedures
and Functions................. F-l

Appendix G Summary of MS-Pascal
Metacommands G-l

Appendix H Messages...................... H-l

H.l Compiler Front End Errors........ H-2
H.2 Compiler Back End Errors.......... H-39
H.3 Compiler Internal Errors.......... H-40
H.4 Runtime File System Errors........ H-40

10

H.4.1 Operating System Run-time
Errors.................... H-42

H.4.2 MS-Pascal File System
Error Codes............ h-44

H.5 Other Runtime Errors......... H-45
H.5.1 Memory Errors............... H-46
H.5.2 Ordinal Arithmetic Errors. . H-48
H.5.3 Type Real Arithmetic

Errors.................... H-49
H.5.4 Structured Type Errors . . . H-52
H.5.5 Integer4 Errors..............H-53
H.5.6 Other Erors..................H-53

11

11. EXPRESSIONS

Expressions are constructions that evaluate to
values. Table 11-1 illustrates a variety of
expressions that, if A = 1 and B = 2, evaluate to
the value shown.

Table 11-1: Expressions

EXPRESSION VALUE

2 2

A 1

A + 2 — 3

(A + 2) 3

(A + 2) * (B - 3) -3

The operands in an expression may be a value or any
other expression. When any operator is applied to
an expression, that expression is called an operand.
With parentheses for grouping and operators that use
other expressions, you can construct expressions as
long and explicated as desired.

The available operators are shown, in the order in
which they are executed, in Table 11-2.

Table 11-2: Operators

TYPE OPERATORS

Unary NOT [ADR ADS]

Multiplying * / DIV MOD AND (ISR SHL SHR)

11-1

PR’LIMINARY DRAFT

Adding + - OR (MR)

Relational =<><=>=<> IN

Operators shown in parentheses are available only at
the extend level of MS-Pascal, those in brackets
only at the system level.

An operator at a higher level is applied before one
at a lower level. For instance, the following
expression evaluates to 7 and not to 9:

1 + 2*3

Use parentheses to change operator precedence. The
following expression evaluates to 9 rather than 7:

(1 + 2) * 3

If the $SIMPLE switch is on, sequences of operators
of the same precedence are executed from left to
right. If the switch is off, the compiler may
rearrange expressions and evaluate common
subexpressions only once, in order to generate
optimized code. The semantics of the precedence
relationships are retained, but normal associative
and distributive laws are used. For example, X * 3 +
12 is an optimization of 3 * (6 + (X - 2)).

Optimizations may occasionally give you unexpected
overflow errors. For example,

(I - 100) + (J - 100)

is optimized into the following:

(I + J) - 200

An overflow error may result, although the original

11-2

PRFLIM1NARY DRAFT

expression did not yield an error (e.g., if I and J
were each 16400).

An expression in your source file may or may not
actually be evaluated when the program runs. For
example, the expression F(X + Y)*0 is always zero,
so the subexpression (X + Y) and the function call
need not be executed. Normally, expressions are
evaluated, except as noted in the discussion in the
following pages.

A Pascal expression is either a value or the result
of applying an operator to one or two values.
Although a value can be of almost any type, most MS-
Pascal operators only apply to the following types:

INTEGER INTEGER4 REAL
WORD BOOLEAN SET

The relational operators listed in Table 11-2 also
apply for the CHAR, enumerated, string, and
reference types. For all operators (except the set
operator IN), operands must have compatible types.

11.1 SIMPLE TYPE EXPRESSIONS

As a rule, the operands and the value resulting from
an operation are all the same type. Occasionally,
however, the type of an operand is changed to the
type required by an operator.

This conversion occurs on two levels: one for
constant operands only, and one for all operands.
INTEGER to WORD conversion occurs for constant
operands only; conversion from INTEGER to REAL and
from INTEGER or WORD to INTEGER4 occurs for all
operands.

If necessary in constant expressions, INTEGER values
change to WORD type. Be careful when mixing INTEGER
and WORD constants in expressions. For example, if

11-3

PFf LIMIN^RY DR'FT

CBASE is the constant 16#C000 and DELTA is the
constant -1, the following expression gives a WORD
overflow:

WRD (CBASE) + DELTA

The overflow occurs because DELTA is converted to
the WORD value 16#FFFF, and 16#C000 plus 16#FFFF is
greater than MAXWORD. However, the following would
work:

WRD (ORD (CBASE) + DELTA)

This expression gives the INTEGER value -16385,
which changes to WORD 16#BFFF. If conversion is
needed by an operator or for an assignment, the
compiler makes the following conversions:

o Fran INTEGER to REAL or INTEGER4

o From WORD to INTEGER4

The following rules determine the type of the result
of an expression involving these simple types:

1. + - *

These operators operate on INTEGERS, REALS,
WORDS, and INTEGER4S, as shown in the following
examples:

+123
A + 123
-23.4
A - 8
A * B * 3

Mixtures of REALS with INTEGERS and of
INTEGER4s with INTEGERS or WORDS are permitted.
Mere both operands are of the same type, the
result type is the type of the operands. If
either operand is REAL, the result type is

11-4

REAL; otherwise, if either operand is
INTEGER4, the result type is INTEGER4.

Unary plus (+) and minus (-) are supported,
along with the binary forms. Unary minus on a
WORD type is 21s complement (NOT is 11s
complement); since there are no negative WORD
values, this always generates a warning.

Because unary minus has the same precedence
level as the adding operators:

(X * -1) is illegal.

(-256 AND X) is interpreted as -(256 AND X).

2. /

This is a "true" division operator. The result
is always REAL. Operands may be INTEGER or
REAL (not WORD or INTEGER4).

Examples of division:

34 / 26.4 = 1.28787...
18/6 = 3.00000...

3. DIV MOD

These are the operators for integer divide
quotient and remainder, respectively. The left
operand (dividend) is divided by the right
operand (divisor).

Examples of integer division:

123 MOD 5 = 3
-123 MOD 5 = -3 {Sign of result is

{sign of dividend.}
123 MW -5 = 3
1.3 MOD 5 {Illegal with REAL operands.}
123 DIV 5 = 24

11-5

PRELIMINARY DRAFT

1.3 DIV 5 {Illegal with REAL operands.}

Both operands must be the same type: INTEGER,
WORD, or INTEGER4 (not REAL). The sign of the
remainder (MOD) is always the sign of the
dividend.

MS-Pascal differs from the current draft ISO
standard with respect to the semantics for DIV
and MOD with negative operands, but the
resulting code is more efficient. Programs
intended to be portable should not use DIV and
MOD unless both operands are positive.

4. AND OR XOR NOT

These extend level operators are bitwise
logical functions. Operands must be INTEGER or
WORD or INTEGER4 (never a mixture), and cannot
be REAL. The result has the type of the
operands.

NOT is a bitwise I's complement operation on
the single operand. If an INTEGER variable V
has the value MAXINT, NOT V gives the illegal
INTEGER value -32768. This generates an error
if the initialization switch is on and the
value is used later in a program.

Given the following initial INTEGER values,

X = 2f1111000011110000
Y = 2f1111111100000000

AND, OR, XOR, and NOT perform the following
functions:

X AND Y 1111000011110000
1111111100000000

1111000000000000

11-6

PR-LI MINARY DR' FT

X OR Y 1111000011110000
1111111100000000

1111111111110000

X XOR Y 1111000011110000
1111111100000000

0000111111110000

NOT X 1111000011110000

0000111100001111

5. SHL SHR ISR

These extend level operators provide bitwise
shifting functions.

SHL and SHR are logical shifts left and right.
ISR is an integer (signed) arithmetic shift
right: the sign bit is always propagated, even
on a WORD type operand. Since the compiler
cannot generate a simple right shift for
INTEGER division (-1 DIV 2 would be incorrect)
and division is a very time-consuming
operation, SHR or ISR can be used instead of
DIV where appropriate.

Operands must be both INTEGER, both WORD, or
both INTEGER4; they cannot be REAL. The
result has the same type as the operands.

The left operand is shifted, and the right
operand is the shift count in bits. A shift
count less than 0 or greater than 32 produces
undefined results and generates an error
message if the range checking switch is on.

11-7

Shifts never cause overflow errors; shifted
bits are simply lost.

Given that X - 2*1111111100000000, the shifting
functions perform the following operations:

X 1111111100000000

X Ml. 1 1111111000000000

X SHR 1 0111111110000000

X ISR 1 1111111110000000 {sign extension}

11.2 BOOLEAN EXPRESSIONS

The Boolean operators at the standard level of MS-
Pascal are:

NOT AND OR
-- < >
<> <= >=

XOR is available at the extend and systems levels.

You may also use P <> Q as an exclusive OR function.
Since FALSE < TRUE, P <= Q denotes the Boolean
operation "P implies Q." Furthermore, the Boolean
operators AND and OR are not the same as the WORD
and INTEGER operators of the same name that are
bitwise logical functions. The Boolean AND and OR
operators may or may not evaluate their operations.
The following example illustrates the danger of
assuming that they don't:

WHILE (I <= MAX) AND (V [I] <> T) DO I := I + 1;

If array V has an upper bound MAX, then the
evaluation of V [I] for I > MAX is a run-time error.
This evaluation may or may not take place.
Sometimes both operands are evaluated during

11-8

PRELIMINARY DRAFT

optimization, and sometimes the evaluation of one
causes the evaluation of the other to be skipped.
In the latter case, either operand may be evaluated
first.

Instead of the preceding example, use the following
construction:

WHILE I <--- MAX DO
IF V [I] <> T 'THEN I := I + 1 ELSE BREAK;

See Section 12.3.5 for information on using AND THEN
and OR ELSE to handle situations, such as in the
previous example, where tests are examined
sequentially.

The relational operators produce a Boolean result.
The types of the operands of a relational operator
(except for IN) must be compatible. If they are not
compatible, one must be REAL and the other
compatible with INTEGER.

Reference types can be compared only with -- and <>.
To compare an address type with one of the other
relational operators, you must use address field
notation, as shown:

IF (A.R < B.R) THEN <statement>;

Except for the string types STRING and LSTRING, you
cannot compare files, arrays, and records as wholes.
Two STRING types must have the same upper bound to
be compared; two LSTRINGs may have different upper
bounds.

In LSTRING comparison, characters past the current
length are ignored. If the current length of one
LSTRING is less than the length of the other and if
all characters up to the length of the shorter are
equal, the compiler assumes the shorter one is "less
than" the longer one. However, two LSTRINGs are not
considered equal unless all current characters are

11-9

PRELIMINARY DRAFT

equal and their current lengths are equal.

The six relational operators (<>, <=, >=, <, and
>) have their normal meaning when applied to
numeric, enumerated, CHAR, or string operands.
Section 11.3 discusses the meaning of these
relational operators (along with the relational
operator IN) when applied to sets. Since the
relational operators in Boolean expressions have a
lower precedence than AND and OR, the following is
incorrect:

IF I < 10 AND J = K THEN

Instead, you must write:

IF (I < 10) AND (J = K) THEN

Also, you cannot use the numeric types where a
Boolean operand is called for. (Some other
languages permit this.) For an integer I, the clause
IF I THEN is illegal; you must use the following
instead:

IF I <> 0 THEN

Note, however, that MS-Pascal does allow the
following:

$IF I $THEN

11.3 SET EXPRESSIONS

Table 11-3 shows the MS-Pascal operators that apply
differently to sets than for other types of
expressions.

11-10

PRELIMINARY DRAFT

Table 11-3: Set Operators

OPERATOR MEANING IN SET OPERATIONS_______

+ Set union

*
Set difference
Set intersection

<>
<= and >=
< and >
IN

Test set equality
Test set inequality
Test subset and superset
Test proper subset and superset
Test set membership

Any operand whose type is SET OF S, where S is a
subrange of T, is treated as if it were SET OF T.
(T is restricted to the range from 0 to 255 or the
equivalent ORD values.) Either both operands must be
PACKED or neither must be PACKED, unless one operand
is a constant or constructed set.

With the IN operator, the left operand (an ordinal)
must be compatible with the base type of the right
operand (a set). The expression X IN B is TRUE if X
is a member of the set B, and FALSE otherwise. X
can legally be outside the range of the base type of
B. For example, X IN B is always false if the
following statements are true:

X = 1
B = SET OF 2..9

(1 is compatible, but not assignment compatible,
with 2..9).

Angle brackets are set operators only at the extend
level of MS-Pascal, since the ISO standard does not
support them for sets. They test that a set is a
proper subset or superset of another set. Proper
subsetting does not permit a set as a subset if the
two sets are equal.

PRELIMINARY DRAFT

Expressions involving sets can use the "set
constructor," which gives the elements in a set
enclosed in square brackets. Each element can be an
expression whose type is in the base type of the set
or the lower and upper bounds of a range of elements
in the base type. Elements cannot be sets
themselves.

Examples of sets involving set constructors:

SET_COLOR := [RED, BLUE..PURPLE] - [YELLOW]

SEr_NUMBER :=
[12, J+K, TRUNC (EXP (X))..TRUNC (EXP (X+l))]

Set constructor syntax is similar to CASE constant
syntax. If X > Y then [X..Y] denotes the empty set.
Empty brackets [] also denote the empty set and are
compatible with all sets. Also, if all elements are
constant, a set constructor is the same as a set
constant.

Like other structured constants, the type identifier
for a constant set can be included in a set
constant, as in COLORSET [RED..BLUE]. This does not
mean that a set constructor with variable elements
can be given a type in an expression; NUMBERSET
[I..J] is illegal if I or J is a variable.

A set constructor such as [I, J,..K] or an untyped
set such as [1, 5..7], is compatible with either a
PACKED or an unpacked set. A typed set constant,
such as DIGITS [1, 5..7], is compatible only with
sets that are PACKED or unpacked, respectively, in
the same way as the explicit type of the constant.

11.4 FUNCTION DESIGNATORS

A function designator specifies the activation of a
function. It consists of the function identifier,
followed by a (possibly empty) list of "actual

11-12
PRELIMINARY DRAFT

parameters" in parentheses:

{Declaration of the function ADD.}
FUNCTION ADD (A, B: INTEGER); INTEGER;

{Use of the function AH) in an expression.}
X ADD (7, X * 4) + 123;
{ADD is function designator.}

These actual parameters substitute, position for
position, for their corresponding "formal
parameters," defined in the function declaration.

Parameters can be variables, expressions,
procedures, or functions. If the parameter list is
empty, the parentheses must be omitted. (See
Section 13.4 for more information on parameters.)

The order of evaluation and binding of the actual
parameters varies, depending on the optimizations
used. If the $SIMPLE metacommand is on, the order
is left to right.

In most computer languages, functions have two
different uses:

1. In the mathematical sense, they take one or
more values from a domain to produce a
resulting value in a range. In this case, if
the function never does anything else (such as
assign to a global variable or do
input/output) , it is called a "pure" function.

2. The second type of function may have side
effects, such as changing a static variable or
a file. Functions of this second kind are said
to be "impure."

At the standard level, a function can return either
a simple type or a pointer. At the extend level, a
function can return any assignable type (any type

11-13

PRELIMINARY DRAFT

except a file or super array).

At the standard level, a pointer returned by a
function can be compared, assigned, or passed only
as a value parameter. At the extend level, however,
the usual selection syntax for reference types,
arrays, and records is allowed, following the
function designator. See Section 10.4 for
information.

Examples of function designators:

SIN (X+Y)

NEXTCHAR

NEXTREC (17) ~
{Here the function return type}
{is a pointer, and the returned}
{pointer value is dereferenced.}

NAD.NAME [1]
{Here the function has no parameters.}
{The return type is a record, one}
{field of which is an array.}
{The identifier for that field is}
{NAME. The example above selects}
{the first array component of the}
{returned record.}

It is more efficient to return a component of a
structure than to return a structure and then use
only one component of it. The compiler treats a
function that returns a structure like a procedure,
with an extra VAR parameter representing the result
of the function. The function's caller allocates an
unseen variable (on the stack) to receive the return
value, but this "variable" is only allocated during
execution of the statement that contains the
function invocation.

11-14

P'~LIMINARY DRAFT

11.5 EVALUATING EXPRESSIONS

Any expression can be passed as a CONST or CONSTS
parameter or have its "address" found. The
expression is calculated and stored in a temporary
variable on the stack, and the address of this
temporary variable can be used as a reference
parameter or in some other address context.

To avoid ambiguities, enclose such an expression
with operators or function calls in parentheses.
For example, to invoke a procedure FOO (CONST X, Y:
INTEGER), you must use FOO (I, (J+14)) instead of
FOO (I, J+14).

This implies a subtle distinction in the case of
functions. For example:

FUNCTION SUM (CONST A, B: INTEGER): INTEGER;
BEGIN
SUM := A;
IF B <> 0 THEN
SUM := SUM (SUM, (SUM (B, 0) - 1)) + 1;

END;

In this example, SUM is called recursively
subtracting one from B until B is zero.

The use of a function identifier in a WITH statement
follows a similar rule. For example, given a
parameterless function, COMPLEX, which returns a
record, "WITH COMPLEX" means "WITH the current value
of the function." This can occur only inside the
COMPLEX function itself. However, "WITH (COMPLEX)"
causes the function to be called and the result
assigned to a temporary local variable.

Another way to describe this is to distinguish
between "address" and "value" phrases. The left­
hand side of an assignment, a reference parameter,
the ADR and ADS operators, and the WITH statement
all need an address. The right-hand side of an

11-15

PK7UMINARY DRAFT

assignment and a value parameter all need a value.

If an address is needed but only a value is
available, such as a constant or an expression in
parentheses, the value must be put into memory so it
has an address. For constants, the value goes in
static memory; for expressions, the value goes in
stack (local) memory. A function identifier refers
to the current value of the function as an address,
but causes the function to be called as a value.

Finally, in the scope of a function, the intrinsic
procedure RESULT permits a reference to the current
value of a function instead of invoking it
recursively. For a function F, ADR F and ADR RESULT
(F) are the same: the address of the current value
of F. RESULT forces use of the current value in the
same way that putting the function in parentheses,
as in (F(X)), forces evaluation of the function.

11.6 OTHER FEATURES OF EXPRESSIONS

EVAL and RESULT are two procedures available at the
extend level for use with expressions. EVAL obtains
the effect of a procedure from a function; RESULT
yields the current value of a function within a
function or within a nested procedure or function.

At the system level, the function RETYPE allows you
to change the type of a value.

11.6.1 THE EVAL PROCEDURE

EVAL evaluates its parameters without actually
calling anything. Generally, you use EVAL to obtain
the effect of a procedure from a function. In such
cases, the values returned by functions are of no
interest, so EVAL is useful only for functions with
side effects. For example, a function that advances
to the next item and also returns the item might be

11-16

PRELIMINARY DRAFT

called in EVAL just to advance to the next item,
since there is no need to obtain a function return
value.

Examples of the EVAL procedure:

EVAL (NEXTLABEL (TRUE))
EVAL (SIDEFUNC (X, Y) , INDEX (4), MINT)

11.6.2 THE RESULT FUNCTION

Within the scope of a function, the intrinsic
procedure RESULT permits a reference to the current
value of a function instead of invoking it
recursively. For a function F, this means ADR F and
ADR RESULT (F) are the same; that is, the address of
the current value of F. RESULT forces use of the
current value in the same way that putting the
function in parentheses as in (F (X)) forces
evaluation of the function.

Examples of the RESULT function:

FUNCTION FACTORIAL (I: INTEGER): INTEGER;
BEGIN

FACTORIAL 1; WHILE I > 1 DO
BEGIN

FACTORIAL := I * RESULT (FACTORIAL);
I := I - 1;

END;
END;

FUNCTION ABSVAL (I: INTEGER): INTEGER;
BEGIN
ABSVAL I;
IF I < 0 THEN ABSVAL := -RESULT (ABSVAL) ;

END;

11.6.3 THE RETYPE FUNCTION

11—17
PRr L/MINARY DRAFT

Occasionally, you need to change the type of a
value. You can do this with the RETYPE function,
available at the system level of MS-Pascal. If the
new type is a structure, RETYPE can be followed by
the usual selection syntax. Use RETYPE with
caution: it works on the memory byte level and
ignores whether the low order byte of a two-byte
number comes first or second in memory.

Examples of the RETYPE function:

RETYPE (COLOR, 3) {inverse of ORD}
RETYPE (STRING2, I*J+K) [2] {effect may vary}

11-18

PRELIMINARY DRAFT

12. STATEMENTS

The body of a program, procedure, or function
contains statements. Statements denote actions that
the program can execute. This chapter first
discusses the syntax of statements and then
separates and describes two categories of
statements: simple statements and structured
statements. A simple statement has no parts that
are themselves other statements; a structured
statement consists of two or more other statements.
Table 12-1 lists the statements in each category in
MS-Pascal.

Table 12—1. MS-Pascal Statements

SIMPLE

Assignment (:-)
Procedure
GOTO
BREAK
CYCLE
RETURN
Empty

STRUCTURED

Compound
IF/THEN/ELSE
CASE
FOR
WHILE
REPEAT
WITH

12.1 THE SYNTAX OF PASCAL STATEMENTS

Pascal statements are separated by a semicolon and
enclosed by reserved words such as BEGIN and END. A
statement begins, optionally, with a label. Each of
these three elements of statement syntax are
discussed in the following sections.

12.1.1 LABELS

Any statement referred to by a GOTO statement must
have a label. A label at the standard level is one
or more digits; leading zeros are ignored. Constant

12-1

PRELIMINARY DR-?FI

identifiers, expressions, and nondecimal notation
cannot serve as labels. All labels must be declared
in a LABEL section. At the extend level, a label
can also be an identifier.

Example using labels and GOTO statements:

PROGRAM LOCK’S(INPUT,OUTPUT);
LABEL 1, HAWAII, MAINLAND;
BEGIN
MAINLAND: GOTO 1;
HAWAII: WRITELN ('Here I am in Hawaii');
1: GOTO HAWAII

END.

A loop label is any label immediately preceding a
looping statement: WHILE, REPEAT, or FOR. At the
extend level, a BREAK or CYCLE statement can also
refer to a loop label.

Both a CASE constant list and a GOTO label may
precede a statement, in which case the CASE
constants come first and then the GOTO label. In
the following example, 321 is a CASE value, and 123
is label:

321: 123: IF LOCK* THEN GOTO 123

12.1.2 SEPARATING STATEMENTS

Semicolons separate statements. Semicolons do not
terminate statements. However, since Pascal permits
the empty statement, using the semicolon as if it
were a statement terminator is rarely disastrous.

Example showing semicolon to separate statements:

BEGIN
10: WRITELN;
A := 2 + 3;
GOTO 10

12-2

PRELIMINARY 33LAFT

END

A common error is to terminate the THEN clause in an
IF/THEN/ELSE statement with a semicolon. Thus, the
following generates a warning message:

IF A = 2 THEN WRITELN;
ELSE A = 3

Another common error is to put a semicolon after the
DO in a WHILE or FOR statement:

FOR I := 1 TO 10 DO;
BEGIN

A[I] := I;
B[I] := 10 - I;

END;

This example, as written, "executes" an empty
statement ten times, then executes the array
assignments once. Since there are occasional
legitimate uses for repeating an empty statement, no
warning is given when this occurs.

The semicolon also follows the reserved word END at
the close of a block of program statements.

12.1.3 THE RESERVED WORDS BEGIN AND END

Whenever you want a program to execute a group of
statements, instead of a single simple statement,
you may enclose the block with the reserved words
BEGIN and END.

For example, the following group of statements
between BEGIN and END are executed if the condition
in the IF statement is TRUE:

IF (MAX > 10) THEN
BEGIN
MAX = 10;

12-3

rLIMINGY DRAFT

MIN = 0;
WRITELN (MAX,MIN)

END;
WRITELN ('done')

At the extend level, you may substitute a pair of
square brackets for the pair of keywords BEGIN and
END.

12.2 SIMPLE STATEMENTS

A simple statement is one in which no part
constitutes another statement. Simple statements in
standard Pascal are:

1. The assignment statement

2. The procedure statement

3. The GOTO statement

4. The empty statement

The empty statement contains no symbols and denotes
no action. It is included in the definition of the
language primarily to permit you to use a semicolon
(;) after the last in a group of statements enclosed
between BEGIN and END.

The extend level in MS-Pascal adds three simple
statements: BREAK, CYCLE, and RETURN.

12.2.1 ASSIGNMENT STATEMENTS

The assignment statement replaces the current value
of a variable with a new value, which you specify as
an expression. Assignment is denoted by adjacent
colon and equal sign characters (:=).

Examples of assignment statements:

12-4
P"*LIMINARY DRAFT

A := B

A[I] := 12 * 4 + (B * C)

X : = Y
{Illegal. Colon (:) and equal}
{sign (=) must be adjacent.}

A + 2 := B
{Illegal. A + 2 is not a variable.}

A := ADD (1,1)

The value of the expression must be assignment
compatible with the type of the variable. Selection
of the variable may involve indexing an array or
dereferencing a pointer or address. If it does, the
compiler may, depending on the optimizations
performed, mix these actions with the evaluation of
the expression. If the $SIMPLE metacommand is on,
the expression is evaluated first.

An assignment to a nonlocal variable (including a
function return) puts an equal sign (-) or percent
sign (%) in the G column of the listing file. (See
Section 17.5 for more information about these and
other symbols used in the listing.)

Within the block of a function, an assignment to the
identifier of the function sets the value returned
by the function. The assignment to a function
identifier can occur either within the actual body
of the function or in the body of a procedure or
function nested within it.

If the range checking switch is on, an assignment to
a set, subrange, or LSTRING variable may imply a
run-time call to the error checking code.

According to the MS-Pascal optimizer, each section
of code without a label or other point that could

12-5

PRELIMINARY DRAFT

receive control is eligible for rearrangement and
common subexpression elimination. Naturally, the
order of execution is retained when necessary.

Given these statements,

X := A + C + B;
Y := A + B;
Z := A

the compiler might generate code to perform the
following operations:

1. Get the value of A and save it.

2. Add the value of B and save the result.

3. Add the value"of C and assign to X.

4. Assign the saved A + B value to Y.

5. Assign the saved A value to Z.

This optimization occurs only if assignment to X and
Y and getting the value of A, B, or C are all
independent. If C is a function without the PURE
attribute and A is a global variable, evaluating C
might change A. Then since the order of evaluation
within an expression in this case is not fixed, the
value of A in the first assignment could be the old
value or the new one.

However, since the order of evaluation among
statements is fixed, the value of A in the second
and third assignments is the new value.

The following actions may limit the ability of the
optimizer to find common subexpressions:

1. Assignment to a nonlocal variable

2. Assignment to a reference parameter

12-6

P.?t LI MINARY DRAFT

3. Assignment to the referent of a pointer

4. Assignment to the referent of an address
variable

5. Calling a procedure

6. Calling a function without the PURE attribute

The optimizer does allow for "aliases," that is, a
single variable with two identifiers, perhaps one as
a global variable and one as a reference parameter.

12.2.2 PROCEDURE STATEMENTS

A procedure statement executes the procedure denoted
by the procedure identifier.

For example, assume you have defined the procedure
DO-IT:

DO IT

DO_IT is now a statement that can be executed simply
by invoking its name:

If you declare the procedure with a formal parameter
list, the procedure statement must include the
actual parameters.

MS-Pascal includes a large number of predeclared
procedures. See Chapter 14 for complete
information. One of the predeclared procedures is
ASSIGN. You need not declare it in order to use it.

PROCEDURE DO_IT;
BEGIN
WRITELN('Did it')

END;

12-7

PRELIMINARY DRAFT

ASSIGN (INFILE, 'MYFILE*)

Note that the ASSIGN procedure contains a parameter
list. These parameters are the actual parameters
that are bound to the formal parameters in the
procedure declaration. For a discussion of formal
and reference parameters, see Section 13.4.

12.2.3 THE GOTO STATEMENT

A GOTO statement indicates that further processing
continues at another part of the program text,
namely at the place of the label. You must declare
a LABEL in a LABEL declaration section, before using
it in a GOTO statement.

Two restrictions apply to the use of GOTO
statements:

1. A GOTO must not jump to a more deeply nested
statement, that is, into an IF, CASE, WHILE,
REPEAT, FOR, or WITH statement. GOTOs are
permitted from one branch of an IF or CASE
statement to another.

2. A GOTO from one procedure or function to a
label in the main program or in a higher level
procedure or function is permitted. A GOTO may
jump out of one of these statements, so long as
the statement is directly within the body of
the procedure or function. However, such a
jump generates extra code both at the location
of the GOTO and at the location of the label.
The GOTO and label must be in the same
compiland, since labels, unlike variables,
cannot be given the PUBLIC attribute.

Examples of GOTO statements, both legal and illegal:

PROGRAM LABEL EXAMPLESr
LABEL 1, 2, 3, 4;

12-8

p r LI MIN ARY DRAFT

PROCEDURE ONE;
LABEL 11, 12, 13;

PROCEDURE IN_ONE;
LABEL 21;
{Outer level GOTOs cannot jump in to 21.}

BEGIN
IF TUESDAY THEN GOTO 1
ELSE GOTO 11;
{1 and 11 are both legal outer level labels.}
21: WRITE ('IN ONE')

END;

BEGIN {Procedure one}
IF RAINING THEN GOTO 1 ELSE GOTO 11;
{That was legal.}
11: GOTO 21;
{Illegal. Cannot jump into inner level}
{procedures.}

END;

PROCEDURE TWO;
BEGIN
GOTO 11
{Illegal. Cannot jump into different procedure}
{at same level}

END;

BEGIN {Main level}
IF SEATTLE
THEN
BEGIN BEGIN
GOTO 2;
{OK to go to 2 at program level.}

4: WRITE ('here');
END END

ELSE GOTO 4;
{OK to jump into THEN clause.}
2: GOTO 3;

12-9

.■’LUMINARY draft

{Illegal. Cannot jump into REPEAT statement.}
REPEAT

WHILE MS_BYRON DO
3: GOTO 2
{OK to jump out of loops.}

UNTIL DATE;
Is GOTO 11;
{Illegal. Cannot jump into procedure from program.}

END.

If the $GOTO metacommand is on, every GOTO statement
is flagged with a warning that reminds you that
"GOTOs are considered harmful." This may be useful
either in an educational environment or for finding
all GOTOs in a program in order to locate a bug.
The J (jumps) column of the listing file contains
the following:

1. A plus (+) or an asterisk (*) flags a GOTO to a
label later in the listing.

2. A minus sign (-) or an asterisk (*) marks a
GOTO to a label already encountered in the
listing.

See Section 17.5 for details about the listing file.

12.2.4 THE BREAK, CYCLE, AND RETURN STATEMENTS

At the extend level, BREAK, CYCLE, and RETURN
statements are allowed in addition to the simple
statements already described. These statements
perform the following functions:

1. BREAK exits the currently executing loop.

2. CYCLE exits the current iteration of a loop and
starts the next iteration.

3. RETURN exits the current procedure, function,

12-10

PRELIMINARY DRAFT

program, or implementation.

All three statements are functionally equivalent to
a GOTO statement.

1. A BREAK statement is a GOTO to the first
statement after a repetitive statement.

2. A CYCLE statement is a GOTO to an implied empty
statement after the body of a repetitive
statement. This jump starts the next iteration
of a loop. In either a WHILE or REPEAT
statement, CYCLE performs the Boolean test in
the WHILE or UNTIL clause before executing the
statement again; in a FOR statement, CYCLE goes
to the next value of the control variable.

3. A RETURN statement is a GOTO to an implied
empty statement after the last statement in the
current procedure or function or the body of a
program or implementation.

The J (jump) column in the listing file contains a
plus (+) or an asterisk (*) for a BREAK statement, a
minus (-) or asterisk (*) for a CYCLE statement, and
an asterisk (*) for a RETURN statement. (See
Section 17.5 for information about the listing
file.)

BREAK and CYCLE have two forms, one with a loop
label and one without. If you give a loop label,
the label identifies the loop to exit or restart.
If you don't give a label, the innermost loop is
assumed, as shown in the following example:

OUTER: FOR I := 1 TO N1 DO
INNER: FOR J := 1 TO N2 DO

IF A [I, J] -- TARGET THEN BREAK OUTER;

12-11

PRELIMINARY DRAFT

12.3 STRUCTURED STATEMENTS

Structured statements are themselves composed of
other statements. There are four kinds of
structured statements:

1. Compound statements

2. Conditional statements

3. Repetitive statements

4. WITH statement

The control level is shown in the the C (control)
column of the listing file. The value in the C
column is incremented each time control passes to a
nested statement; conversely, this value is
decremented each time control passes back to the
nesting statement. You can use the C column to
search for a missing or extra END in a program.

12.3.1 COMPOUND STATEMENTS

The compound statement is a sequence of simple
statements, enclosed by the reserved words BEGIN and
END. The components of a compound statement execute
in the same sequence as they appear in the source
file.

Examples of compound statements:

BEGIN
TEMP := A [I];
A[I] := A [J];
A [J] TEMP
[Semicolon not needed here.}

END

BEGIN
OPEN_DOOR;

12-12

PRELIMINARY DRAFT

LET_EM_IN;
CLOSE JDOOR;
{Semicolon signifies empty statement.}

END

All MS-Pascal conditional and repetitive control
structures (except REPEAT) operate on a single
statement, not on multiple statements with ending
delimiters. In this context, BEGIN and END serve as
punctuation, like semicolon, colon, or parentheses.
If you prefer, you can substitute a pair of square
brackets for the BEGIN and END pair of reserved
words. Note that a right bracket (]) matches only a
left bracket ([) (not a BEGIN, CASE, or RECORD). In
other words, right bracket is not a synonym for END.

Brackets cannot be used as synonyms for BEGIN and
END to enclose the body of a program,
implementation, procedure, or function; only BEGIN
and END can be used for this purpose.

Examples of brackets replacing BEGIN and END:

IF FLAG THEN [X := 1; Y := -1]
ELSE [X := -1; Y := 0] ;

WHILE P.N <> NIL DO
[Q := P; P := P.N; DISPOSE (Q)];

FUNCTION R2 (R: REAL): REAL;
[R2 := R * 2]
{Illegal.}

12.3.2 CONDITIONAL STATEMENTS

A conditional statement selects for execution only
one of its component statements. The conditional
statements are the IF and CASE statements. Use the
IF statement for one or two conditions, the CASE
statement for multiple conditions.

12-13

PRELIMINARY DRAFT

12.3.2.1 The IF Statement

The IF statement allows for conditional execution of
a statement. If the Boolean expression following IF
is true, the statement following THEN is executed.
If the Boolean expression following IF is false, the
statement following ELSE, if present, is executed.

Examples of IF statements:

IF I > 0 THEN I := I - 1
{No semicolon here.}
ELSE I := I + 1

IF (I <-- TOP) AND (ARRI [I] <> TARGET) THEN
I := I + 1

IF I <= TOP THEN
IF ARRI [I] <> TARGET THEN

I := I + 1

IF I = 1 THEN
IF J = 1 THEN

WRITELN('I equals J’)
ELSE

WRITELN('DONE only if I = 1 and J <> 1')
{This ELSE is paired with the most deeply}
{nested IF. Thus, the second WRITELN is}
{executed only if I = 1 and JO 1.}

IF I = 1 THEN BEGIN
IF J = 1 THEN WRITELNC'I equals J')
END

ELSE
WRITELN(1DONE only if I <> 1')

{Now the ELSE is paired with the first IF,}
{since the second IF statement is}
{bracketed by the BEGIN/END pair. Thus,}
{the second WRITELN is executed if I <> 1.}

12-14

PRELIMINARY DRAFT

A semicolon preceding an ELSE is always incorrect.
The compiler skips it during compilation and issues
a warning message.

The Boolean expression following an IF may include
the sequential control operators described in
Section 12.3.5.

12.3.2.2 The CASE Statement

The CASE statement consists of an expression (called
the CASE index) and a list of statements. Each
statement is preceded by a constant list, called a
CASE constant list. The one statement executed is
the one whose CASE constant list contains the
current value of the CASE index. The CASE index and
all constants must be of compatible, ordinal types.

Examples of CASE statements:

CASE OPERATOR OF
PLUS: X := X + Y;
MINUS: X := X — Y;
TIMES: X := X * Y

END
{OPERATOR is the CASE index. PLUS, MINUS, and}
{TIMES are CASE constants. In this instance,}
{they are all of the values assumable by the}
{enumerated variable, OPERATOR.}

CASE NEXTCH OF
'A' ..'Z', ' ' : IDENTIFIER;
■+', **', '/' : OPERATOR;
{Commas separate CASE constants}
{and ranges of CASE constants.}
OTHERWISE
WRITE (’Unknown Character')
{I.e., if any other character}

END

pselimiWy draft

The CASE constant syntax is the same as for RECORD
variant declarations. In standard Pascal, a CASE
constant is one or more constants separated by
commas. At the extend level, you can substitute a
range of constants, such as ’A'..’Z', for a
constant. No constant value can apply to more than
one statement. The extend level also allows the
CASE statement to end with an OTHERWISE clause. The
OTHERWISE clause contains additional statements to
be executed in the event the CASE index value is not
in the given set of CASE constant values. One of
the following two things happens if the CASE index
value is not in the set and no OTHERWISE clause is
present:

1. If the range checking switch is on, a run-time
error is generated.

2. If the range checking switch is off, the result
is undefined (and may be catastrophic) .

In MS-Pascal, control does not automatically pass to
the next executable statement as in UCSD Pascal and
some other languages. If you want this effect,
include an empty OTHERWISE clause.

A semicolon may appear after the final statement in
the list, but is not required. The compiler skips
over a colon after an OTHERWISE and issues a
warning.

Depending on optimization, the code generated by the
compiler for a CASE statement may be either a "jump
table" or series of comparisons (or both). If it is
a jump table, a jump to an arbitrary location in
memory can occur if the control variable is out of
range and the range checking switch is off.

12.3.3 REPETITION STATEMENTS

Repetition statements specify repeated execution of

12-16

preliminary draft

a statement. In standard Pascal, these include the
WHILE, REPEAT, and FOR statements.

At the extend level in MS-Pascal, there are two
additional statements, BREAK and CYCLE, for leaving
or restarting the statements being repeated. These
statements are functionally equivalent to a GOTO but
are easier to use.

12.3.3.1 The WHILE Statement

The WHILE statement repeats a statement zero or more
times, until a Boolean expression becomes false.

Examples of WHILE statements:

WHILE P <> NIL DO P := NEXT (P)

WHILE NOT MICKEY DO
BEGIN

NEXTMOUSE;
MICE := MICE + 1

END

The Boolean expression in a WHILE statement can
include the sequential control operators described
in Section 12.3.5. Use WHILE if it is possible that
no iterations of the loop may be necessary; use
REPEAT where you expect that at least one iteration
of the loop is required.

12.3.3.2 The REPEAT Statement

The REPEAT statement repeats a sequence of
statements one or more times, until a Boolean
expression becomes true.

Examples of REPEAT statements:

REPEAT

12-17

P.TLIMINARY DRAFT

READ (LINEBUFF) ;
COUNT COUNT + 1

UNTIL EOF;

REPEAT GAME UNTIL TIRED;

The Boolean expression in a REPEAT statement may
include the sequential control operators described
in Section 12.3.5. Use the REPEAT statement to
execute statements (not just a single statement) one
or more times until a condition becomes true. This
differs from the WHILE statement in which a single
statement may not be executed at all.

12.3.3.3 The FOR Statement

The FOR statement tells the compiler to execute a
statement repeatedly while a progression of values
is assigned to a variable, called the control
variable of the FOR statement. The values assigned
start with a value called the initial value and end
with one called the final value.

The FOR statement has two forms, one where the
control variable increases in value and one where
the control variable decreases in value:

FOR I := 1 TO 10 DO
{I is the control variable.}
SUM := SUM + VICTORVECTOR [I]

FOR CH := 'Z' DOWNTO 'A' DO
{CH is the control variable.}
WRITE (QI)

You may also use a FOR statement to step through the
values of a set, as shown:

FC® TINT :=
LOWER (SHADES) TO UPPER (SHADES) DO

IF TINT IN SHADES

12-18

PRELIMINARY DRAFT

THEN PAINT AREA (TINT);

The ISO standard gives explicit rules regarding the
control variable in FOR statements:

1. The control variable must be of an ordinal
type.

2. It must also be an entire variable, not a
component of a structure.

3. It must be local to the immediately enclosing
program, procedure, or function and cannot be a
reference parameter of the procedure or
function.

However, at the extend level of MS-Pascal, the
control variable may also be any STATIC
variable, such as a variable declared at the
program level, unless the variable has a
segmented ORIGIN attribute. Using a program
level variable is an ISO error not caught.

4. No assignments to the control variable are
allowed in the repeated statement. This error
is caught by making the control variable
READONLY within the FOR statement; it is not
caught when a procedure or function invoked by
the repeated statement alters the control
variable. The control variable cannot be
passed as a VAR (or VARS) parameter to a
procedure or function.

5. The initial and final values of the control
variable must be compatible with the type of
the control variable. If the statement is
executed, both the initial and final values
must also be assignment compatible with the
control variable. The initial value is always
evaluated first, and then the final value.
Both are evaluated only once before the
statement executes.

12-19

preliminary draft

The statement following the DO is not executed at
all if:

1. The intitial value is greater than the final
value in the TO case.

2. The initial value is less than the final value
in the DOWNTO case.

The sequence of values given the control variable
starts with the initial value. This sequence is
defined with the SUCC function for the TO case or
the PRED function for the DOWNTO case until the last
execution of the statement, when the control
variable has its final value. The value of the
control variable, after a FOR statement terminates
naturally (whether or not the body executes), is
undefined. It may vary due to optimization and, if
$INITCK is on, can be set to an uninitialized value.
However, the value of the control variable after
leaving a FOR statement with GOTO or BREAK is
defined as the value it had at the time of exit.

In standard Pascal, the body of a FOR statement may
or may not be executed, so a test is necessary to
see whether the body should be executed at all.
However, if the control variable is of type WORD (or
a subrange) and its initial value is a constant
zero, the body must be executed no matter what the
final value. In this case, no extra test need be
executed and no code is generated to perform such a
test.

Also, a control variable with the STATIC attribute
may be more efficient then one that is not.

At the extend level in MS~Pascal, you can use
temporary control variables:

FOR VAR <control-variable>

12-20

PRELIMINARY DRAFT

The prefix VAR causes the control variable to be
declared local to the FOR statement (i.e., at a
lower scope) and need not be declared in a VAR
section. Such a control variable is not available
outside the FOR statement, and any other variable
with the same identifier is not available within in
the FOR statement itself. Other synonymous
variables are, however, available to procedures or
functions called within the FOR statement.

Examples of temporary control variables:

FOR VAR I := 1 TO 100 DO
SUM := SUM + VICTOR [I]

FOR VAR COUNTDOWN := 10 DOWNTO LIFTjOFF DO
MONITOR ROCKET

12.3.3.4 The BREAK And CYCLE Statements

In theory, a program using the MS-Pascal extend
level BREAK and CYCLE statements does not need to
use any GOTO statements.

Both the BREAK and CYCLE statements have two forms,
one with a loop label and one without. A loop label
is a normal GOTO label prefixed to a FOR, WHILE, or
REPEAT statement. Since at the extend level, you
can use identifier labels, a suggested practice is
to use integers for labels referenced by GOTOs and
identifiers for loop labels.

Examples of CYCLE and BREAK statements:

LABEL SEARCH, CLIMB;

SEARCH: WHILE I <= ITOP DO
IF PILE [I] = TARGET THEN BREAK SEARCH
ELSE I := I + 1;

12-21

PRELIMINARY DRAFT

FOR I := 1 TO N DO
IF NEXT [I] = NIL THEN BREAK;

CLIMB: WHILE NOT ITEM" .LEAF DO
BEGIN

IF ITEM".LEFT <> NIL
THEN [ITEM := ITEM".LEFT; CYCLE CLIMB];

IF ITEM" .RIGHT <> NIL
THEN [ITEM := ITEM".RIGHT; CYCLE CLIMB];

WRITEIN ('Very strange node');
BREAK CLIMB

END;

12.3.4 THE WITH STATEMENT

The WITH statement opens the scope of a statement to
include the fields of one or more records, so you
can refer to the fields directly. For example, the
following statements are equivalent:

WITH PERSON DO WRITE (NAME, ADDRESS, PHONE)
WRITE (PERSON .NAME, PERSON .ADDRESS, PERSON. PHONE)

The record given may be a variable, constant
identifier, structured constant, or function
identifier; it may not be a component of a PACKED
structure. If you use a function identifier, it
refers to the function's local result variable. If
the record given in a WITH statement is a file
buffer variable, the compiler issues a warning,
since changing the position in the WITH statement
may cause an error.

The record given can also be any expression in
parentheses, in which case the expression is
evaluated and the result assigned to a temporary
(hidden) variable. If you want to evaluate a
function designator, you must enclose it in
parentheses.

12-22

PRELIMINARY draft

You can give a list of records after the WITH,
separated by commas. Each record listed must be of
a different type from all the others, since the
field identifiers refer only to the last instance of
the record with the type. These statements are
equivalent:

WITH PMODE, QMODE DO statement
WITH PMODE DO WITH QMODE DO statement

Any record variable of a WITH statement that is a
component of another variable is selected before the
statement is executed. Active WITH variables should
not be passed as VAR or VARS parameters, nor can
their pointers be passed to the DISPOSE procedure.
However, these errors are not caught by the
compiler. Assignments to any of the record variables
in the WITH list or components of these variables
are allowed, as long as the WITH record is a
variable.

In MS-Pascal, every WITH statement allocates an
address variable that holds the address of the
record. If the record variable is on the heap, the
pointer to it should not be DISPOSEd within the WITH
statement. If the record variable is a file buffer,
no I/O should be done to the file within the WITH
statement. Avoid assignments to the WITH record
itself in programs intended to be portable.

12.3.5 SEQUENTIAL CONTROL

To increase execution speed or guarantee correct
evaluation, it is often useful in IF, WHILE, and
REPEAT statements to treat the Boolean expression as
a series of tests. If one test fails, the remaining
tests are not executed. Two extend level operators
in MS-Pascal provide for such tests:

12-23

preliminary draft

1. AND THEN

X AND THEN Y is false if X is false; Y is
evaluated only if X is true.

2. OR ELSE

3. X OR ELSE Y is true if X is true; Y is
evaluated only if X is false.

If you use several sequential control operators, the
compiler evaluates them strictly from left to right.

You can include these operators only in the Boolean
expression of an IF, WHILE, or UNTIL clause; they
cannot be used in other Boolean expressions.
Furthermore, they may not occur in parentheses and
are evaluated after all other operators.

Examples of sequential control operators:

IF SYM <> NIL AND THEN SYM~ .VAL < 0 THEN
NEXT_SYMBOL

WHILE I <= MAX AND THEN VECT [I] <> KEY DO
I := I + 1;

REPEAT GEN (VAL)
UNTIL VAL = 0 OR ELSE (QU DIV VAL) = 0;

WHILE POOR AND THEN GETTING_POORER
OR ELSE BROKE AND THEN BANKRUPT DO

GET_RICH

12-24

PRELIMINARY DRAFT

13. IN1TOD0CTI0N TO PROCEDURES AND FUNCTIONS

Procedures and functions act as subprograms that
execute under the supervision of a main program.
Unlike programs, however, procedures and functions
can be nested within each other and can even call
themselves. Furthermore, they have sophisticated
parameter passing capabilities that programs lack.

Procedures are invoked as program statements;
functions can be invoked in program statements
wherever a value is called for.

The general format for procedures and functions is
similar to the format for programs. The three-part
structure includes a heading, declarations, and a
body.

Example of a procedure declaration:

{Heading}
PROCEDURE MODEL (I: INTEGER; R: REAL);

{Beginning of declaration section}
LABEL 123;
CONST ATOP = 199;
TYPE INDEX = 0. .ATOP;
VAR ARAY: ARRAY [INDEX] OF REAL; J: INDEX;

{Function declaration}
FUNCTION FONE (RX: REAL) - REAL;
BEGIN

FONE := RX * I
END;

{Procedure declaration}
PROCEDURE FOOT (RY: REAL);
BEGIN

WRITE ('Output is ", RY)
END;

13-1
preliminary draft

{Body of procedure MODEL}
BEGIN
FOR J := 0 TO ATOP DO

IF GLOBALVAR THEN
{Activation of procedure FOOT with}
{value returned by function FONE.}

FOOT (FONE (R + ARAY [J]))
ELSE GOTO 123;

123: WRETEtN ("Done’);
END;

The declarations and body together are called the
block.

The declaration of a procedure or function
associates an identifier with a portion of a
program. Later, you can activate that portion of
the program with the appropriate procedure statement
or function designator.

13.1 PROCEDURES

The preceding example illustrates the general format
of a procedure declaration. The heading is followed
by:

1. Declarations for labels, constants, types,
variables, and values

2. Local procedures and functions

3. The body, which is enclosed by the reserved
words BEGIN and END

When the body of a procedure finishes execution,
control returns to the program element that called
it.

At the standard level, the order of declarations
must be:

13-2
PRELIMINARY DRAFT

1. LABEL

2. CONST

3. TYPE

4. VAR

5. Procedures and functions

At the extend level, you can have any number of
LABEL, CONST, TYPE, VAR, and VALUE, sections, as well
as procedure and function declarations, in any
order. Although data declarations (CONST, TYPE,
VAR, VALUE) can be intermixed with procedure and
function declarations, it is usually clearer to give
all data declarations first.

However, putting variable declarations after
procedure and function declarations guarantees that
these variables will not be used by any of the
procedures or functions.

In general, the initial values of variables are not
defined. The VALUE section, which should follow the
VAR section, is an MS-Pascal extension that lets you
explicitly initialize program, module,
implementation, STATIC, and PUBLIC variables. If
the initialization switch ($INITCK) is on, all
INTEGER, INTEGER subrange, REAL, and pointer
variables are set to an uninitialized value. File
variables are always initialized, regardless of the
setting of the initialization switch.

13.2 EWCTIONS

Functions are the same as procedures, except that
they are invoked in an expression instead of a
statement and they return a value.Function
declarations define the parts of a program that
compute a value. Functions are activated when a

13-3

PRELIMINARY DRAFT

function designator, which is part of an expression,
is evaluated.

A function declaration has the same format as a
procedure declaration, except that the heading also
gives the type of value returned by the function.

Example of a function heading:

EWCTIOST MAXIMIJM (I, J: INTEGER): INTEGER;

Within the block of a function, either in the body
itself or in a procedure or function nested within
the block, at least one assignment to the function
identifier must be executed to set the return value.
The compiler doesn't check for this assignment at
run-time, unless the initialization switch is on and
the returned type is INTEGER, REAL, or a pointer,
however, if there is no assignment at all to the
function identifier, the compiler issues an error
message.

At the standard level, functions can return any
simple type (ordinal, REAL, or INTEGER4) or a
pointer. At the extend level, functions can return
any simple, structured, or reference type. However,
they cannot return any type that cannot be assigned
(i.e., a super array type or a structure containing
a file, although a super array derived type is
permitted).

A function identifier in an expression invokes the
function recursively, rather than giving the current
value of the function.To obtain the current value,
use the function RESULT, which takes the function
identifier as a parameter and is available at the
extend level.

The following is an example of RESULT function used
to obtain the current value of a function within an
expression:

13-4

PR? LIMINARY DRAFT

FUNCTION FACT (F: REAL): REAL,-
BEGIN
FACT := 1;
WHILE F > 1 DO

BEGIN
FACT := RESULT (FACT) * F; F ----- F-l

MD
END

Using the RESULT function is more efficient than
using a separate local variable for the value of the
function and then assigning this local variable to
the function identifier before returning. If the
function has a structured value, the usual component
selection syntax can follow the RESULT function.

A function identifier on the left side of an
assignment refers to the function's local variable,
which contains its current value, instead of
invoking the function recursively. Other places
where using the function identifier refers to this
local variable are these:

1. A reference parameter

2. The record of a WITH statesmen4"

3. The operand of an ADR or ADS operator

All of these uses involve getting the address (not
the value) of a variable.

Instead of using the function's local variable, you
may want to invoke the function and use the return
value. As mentioned in Section 10.1 getting the
address of an expression involves evaluating the
expression, putting the resulting value into a
temporary (hidden) variable, and using the address
of this variable.

To do this for a function, you must force evaluation
by putting the function designator in parentheses,

13-5

preliminary dr;-”7

as shown:

TYPE IREC = RECORD I: INTEGER END;
FUNCTION SUM (A, B: INTEGER) - IREC;
{Return sim of A and B.}
BEGIN

IF TUESDAY THEN
BEGIN {On Tuesdays, we recurse!}

IF B = 0 THEN BEGIN SUM := A; RETURN END;
WITH (SUM (A,B-1)) {Call SUM recursively.}
DO SUM.I := I + 1 {I is result of call.}

END
ELSE {Use function's}
WITH SUM {local variable.}
DO I := A + B; {l is local variable.}

END

13.3 ATTRIBUTES AND DIRECTIVES

An attribute gives additional information about a
procedure or function. Attributes are available at
the extend level of MS-Pascal. They are placed
after the heading, enclosed in brackets and
separated by coirmas. Available attributes include
ORIGIN, PUBLIC, FORTRAN, PURE, and INTERRUPT.

A directive gives information about a procedure or
function, but it also indicates that only the
heading of the procedure or function occurs, by
replacing the block (declarations and body) normally
included after the heading. Directives are
available in standard Pascal. EXTERN and TORWARD
are the only directives available. EXTERN can be
used only with procedures or functions directly
nested in a program, module, implementation, or
interface. This restriction prevents access to
nonlocal stack variables.

Table 13-1 displays the attributes and directives
that apply to procedures and functions. Sections
13.3.1 through 13.3.7 describe these attributes in

13-6

PRrl_IMINARY DRAFT

detail•

Table 13-1. Attributes and Directives
for Procedures and Functions

NAME PURPOSE

FORWARD A directive. Lets you call a
procedure or function before you give
its block in the source file.

EXTERN A directive. Indicates that a
procedure or function resides in
another loaded module.

PUBLIC An attribute. Indicates that a
procedure or function can be accessed
by other loaded modules.

ORIGIN An attribute. Tells the compiler
where the code for an EXTERN
procedure or function resides.

FORTRAN An attribute. Specifies a calling
sequence for compatibility with
MS- FORTRAN.

INTERRUPT An attribute. Gives a procedure a
special calling sequence that saves
program status on the stack.

PURE An attribute. Signifies that the
function does not modify any global
variables.

The following rules apply when you coinbine
attributes in the declaration of procedures and
functions:

1. Any function can be given the PURE attribute.

13-7

PRELIMINARY DRAFT

2. Procedures and functions with attributes must
be nested directly within a program, module, or
unit. The only exception to this rule is the
PURE attribute.

3. A given procedure or function can have only one
calling sequence attribute (either FORTRAN or
INTERRUPT, but not both) .

4. PUBLIC and EXTERN are mutually exclusive, as
are PUBLIC and ORIGIN.

The EXTERN or FORWARD directive is given
automatically to all constituents of the interface
of a unit; in the implementation, PUBLIC is given
automatically to all constituents that are not
EXTERN.

Since you declare the constituents of a unit only in
the interface (not in the implementation), the
interface is vhere you give the attributes. You can
give the EXTERN directive in an implementation by
declaring all EXTERN procedures and functions first;
you cannot use ORIGIN in either the interface or
implementation of a unit.

In a module, you can give a group of attributes in
the heading to apply to all directly nested
procedures and functions. The only exception to
this rule is the ORIGIN attribute, which can apply
only to a single procedure or function.

If the PUBLIC attribute is one of a group of
attributes in the heading of a module, an EXTERN
attribute given to a procedure or function within
the module explicitly overrides the global PUBLIC
attribute. If the module heading has no attribute
clause, the PUBLIC attribute is assumed for all
directly nested procedures and functions.

The PUBLIC attribute allows a procedure or function

13-8

PPrUM|f\jwY DRAFT

to be called by other loaded code, and cannot be
used with the EXTERN directive. The EXTERN
directive permits a call to seme other loaded code,
using either the ORIGIN address or the linker.
PUBLIC, EXTERN, and ORIGIN provide a low level way
to link MS-Pascal routines with other routines in
MS-Pascal or other languages.

A procedure or function declaration with the EXTERN
or FORWARD directive consists only of the heading,
without an enclosed block. EXTERN routines have an
implied block outside the program. FORWARD routines
are fully declared (have a block) later in the same
ccmpiland. Both directives are available at the
standard level of MS-Pascal. The keyword EXTERNAL
is a synonym for EXTERN.

The PURE attribute applies only to functions, not to
procedures. Conversely, INTERRUPT applies only to
procedures, not to functions. PURE is the only
attribute that can be used in nested functions.

13.3.1 THE FORWARD DIRECTIVE

A FORWARD declaration allows you to call a procedure
or function before you fully declare it in the
source text. This permits indirect recursion, where
A calls B, and B calls A. You make a FORWARD
declaration by specifying a procedure or function
heading, followed by the directive FORWARD. Later,
you actually declare the procedure or function,
without repeating the formal parameter list or any
attributes or the return type a function.

Example of a FORWARD declaration:

{Declaration of AIPHA, with parameter}
{list and attributes}
FACTION ALPHA (Q, R: REAL): REAL [PUBLIC];

FORWARD;

13-9

r*—ijmim'vpY DRAFT

(Actual declaration of ALPHA,}
{without parameter list}
FUNCTICN ALPHA;
BEGIN
ALPHA := (Q + R) ;
IF R < 0.0 THEN BETA (3.14,ALPHA) ;

M);

{Call for ALPHA}
URE BETA (VAR S, T: REAL) ;

BEGIN
T := ALPHA (S, 3.14)

END;

13.3.2 THE EXTERN DIRECTIVE

The EXTERN directive identifies a procedure or
function that resides in another loaded module. You
give only the heading of the procedure or function,
followed by the word EXTERN. The actual
implementation of the procedure or function is
presumed to exist in some other module.

EXTERN is an attribute when used with a variable,
but a directive when used with a procedure or
function. As with variables, the keyword EXTERNAL
is a synonym for EXTERN.

The EXTERN directive for a particular procedure or
function within a module overrides the PUBLIC
attribute given for the entire module. The EXTERN
directive is also permitted in an implementation of
a unit for a constituent procedure or function. All
such external constituents must be declared at the
beginning of the implementation, before all other
procedures and functions.

Any procedure or function with the EXTERN directive
must be directly nested within a program. You can
also link MS-Pascal routines by linking separately
compiled units (see Chapter 16).

13-10
?utIJMINARY DRAFT

Examples of procedure and function headings declared
with the EXTERN directive:

FMCTI(M POWER (X, Y: REAL): REAL; EXTERN;
PROCEDURE ACCESS (KEY: KTYP) [ORIGIN SYSFH-4];

EXTERN;

In these examples, the function POWER is declared
EXTERN, as is the procedure ACCESS. Both are
implemented in external compilands. ACCESS also has
the ORIGIN attribute, which is discussed, in Section
13.3.4.

You cannot declare a procedure or function EXTERN if
you have previously declared it FORWARD.

13.3.3 THE PUBLIC ATTRIBUTE

The PUBLIC attribute indicates a procedure or
function that you can access from other loaded
modules. In general, you access PUBLIC procedures
and functions from other loaded modules by declaring
them EXTERN in the modules that call them. Thus,
you declare a procedure PUBLIC and define it in one
module, and use it in another simply by declaring it
EXTERN in the other nodule.

As with variables, the identifier of the procedure
or function is passed to the linker, where it may be
truncated if the linker requires it. See Appendix A
in your MS- Pascal User's Guide for specific
information on limitations that your version of the
compiler and linker may set on identifiers. PUBLIC
and ORIGIN are mutually exclusive; PUBLIC routines
need a following block, and ORIGIN routines must be
EXTERN.

Any procedure or function with the PUBLIC attribute
must be directly nested within a program or
implementation. A higher level way to link MS-
Pascal routines is by linking separately compiled

13-11
PRELIMINARY DRAFT

units. (see Chapter 16 for details).

Examples of procedures and functions declared PUBLIC:

EUNCTICN POWER (X, Y: REAL): REAL [PUBLIC] ;
{The function POWER is available to other)
{modules because it has been declared PUBLIC.}
BEGIN

END;

PE □RE ACCESS (KEY: KTYP) [ORIGIN SYSB+4,
PUBLIC] ;

BEGIN

END;
{illegal since ORIGIN must also be EXTERN.)

13.3.4 THE ORIGIN ATTRIBUTE

The ORIGIN attribute must be used with the EXTERN
directive; ORIGIN tells the compiler where the
procedure or function can be found directly, so the
linker does not require a corresponding PUBLIC
identifier.

Examples of procedures and functions given the
ORIGIN attribute:

PROCEDURE OPSYS [ORIGIN 8, FORTRAN]; EXTERN;

EUNCTION A TO D (C: SUM): SINT [ORIGIN #100];
EXTERN;

In the first example, the procedure OPSYS begins at
the absolute decimal address 8, has the FORTRAN
calling sequence (described in Section 13.3.5), and
is declared. EXTERN. In the second example, the

13-12

Ml NARY DRAFT

function A__TO_D takes a SINT value as a parameter
(SINT is the predeclared integer subrange from -127
to +127). The function is located at the
hexadecimal address 100.

As with ORIGIN variables, the compiler uses the
address to find the code and gives no directives to
the linker. This permits, for example, calling
routines at fixed addresses in 104. In simple
cases, it can substitute for a linking loader.

Remember that ORIGIN always implies EXTERN. Thus,
procedures or functions that have previously been
declared FORWARD cannot be declared with the ORIGIN
attribute. Also, you cannot give ORIGIN as an
attribute after the module heading. Currently, you
cannot use the ORIGIN attribute with a constituent
of a unit, either in an interface or in an
implemen ta t ion.

As with variables, the origin can be a segmented
address. On segmented machines, a nonsegmented
procedural origin assumes the current code segment
with the offset given with the attribute; this form
has no obvious uses.

13.3.5 THE FORTRAN ATTRIBUTE

The FORTRAN attribute applies both to procedures and
functions (but not to variables). Instead of the
usual Pascal calling sequence, it specifies a
calling sequence that is compatible with the MS-
FORTRAN compiler on your machine.

This attribute lets you call an MS-Pascal procedure
or function from MS-FORTRAN programs and,
conversely, external FORTRAN subroutines or MS-
FORTRAN functions from an MS-Pascal program.

Example of a procedure with the FORTRAN attribute:

13-13

r"“!,!MIN/'RY DRAFT

PROCEDURE DELTA (I, J: INTEGER) [FORTRAN];
FORWARD;

Any procedure or function with the FORTRAN attribute
must be nested directly within a program or
implementation.

In a 16-bit environment,. MS-Pascal uses the same
calling sequence as the compilers for MS-(@)
FORTRAN/ MS-(@) BASIC, and MS-(@) COBOL. Thus, there
is no need to give the FORTRAN attribute; if you do,
it is ignored by the MS-Pascal . See Appendix A.
in your MS- Pascal User1 s Guide for details on the
MS-Pascal calling sequence.

13.3.6 ME INTERRUPT ATTRIBUTE

The INTERRUPT attribute applies only to procedures,
not to functions or variables. It gives a procedure
a special calling sequence that saves program status
on the stack, which in turn allows a hardware
interrupt to be processed, status restored, and
control returned to the program, all without
affecting the current state of the program.

Example of a procedure with the INTERRUPT attribute:

PROCEDURE INCHAR [INTERRUPT];

Because procedures with the INTERRUPT attribute are
intended to be invoked by hardware interrupts, you
cannot invoke them with a procedure statement. An
INTERRUPT procedure can be invoked only when the
interrupt associated with it occurs. Furthermore,
INTERRUPT procedures take no parameters.

Declaring a procedure with the INTERRUPT attribute
ensures that the procedure conforms to the
constraints of an interrupt handler in which:

1. A special calling sequence saves all status on

13-14

PRELIMINARY HR*FT

the stack.

2. The status saved includes machine registers and
flags, plus any special global compiler data
such as the frame pointer.

3. The saved status is restored upon exit from the
procedure.

All INTERRUPT procedures must be nested directly
within a ccmpiland.

Interrupts are not automatically vectored to
INTERRUPT procedures; further, insofar as possible
on the target machine, interrupts are neither
enabled or disabled by an INTERRUPT procedure.
Interrupt vectoring and enabling are too machine­
dependent to be included in a machine-independent
language like MS-Pascal.

However, MS-Pascal does provide the VECTIN library
procedure, which takes an interrupt level and an
interrupt procedure as parameters and sets the
interrupt vector in a machine-dependent way.
Similarly, the library procedures ENAB IN and DISBIN,
respectively, enable and disable interrupts in a
machine-dependent way. See Chapter 14 for more
information on these routines. See also Appendix A,
in theMS- Pascal User' s Guide for information about
the implementation of these routines under your
operating system.

An INTERRUPT procedure should usually return
normally, in order to continue processing in the
interrupted routine. This means the following:

1. You should not execute a GOTO that leaves an
INTERRUPT procedure.

2. All debug checking should be turned off
($DEBUG-, $ENTRY-, and ^RUNTIME-) .

13-15
PRELIMINARY DRAFT

3. Stack overflow cannot be checked even if
$STACKCK is on.

The use of INTERRUPT procedures introduces re­
entranc^ into MS-Pascal code: generated code is re­
entrant, as is the run-time system (except for the
heap unit and, in most operating systems, portions
of the file unit).

Some critical sections in the run-time system are
protected by semaphores that generate a run-time
error if such a critical section is locked. For
example, if the heap allocator is executing when an
interrupt occurs and the INTERRUPT procedure tries
to allocate a block from the heap, the structure of
the heap could become invalid. This condition
causes a run-time error.

However, in most cases, the file system is not
protected by a semaphore. Therefore, it is safest
to avoid performing any I/O within the INTERRUPT
procedure. Alternatively, you can avoid most
problems with I/O in an INTERRUPT procedure by not
opening or closing any files (not declaring any
local file variables or creating files on the heap)
and by not performing input or output with any file
that might be performing I/O when the interrupt
occurs.

13.3.7 THE PURE ATTRIBUTE

The PURE attribute applies only to functions, not to
procedures or variables. PURE indicates to the
compiler's optimizer that the function does not
modify any global variables either directly or by
calling some other procedure or function.

Example of a PURE declaration:

FUNCTION AVERAGE (CONST TABLE: RVECTOR) : REAL
[PURE];

13-16
PPUJMIN*RY DRAFT

For further illustration, examine these statements:

A --- VEC [I * 10 + 7];
B := FOO;
C ----- VEC [I * 10 + 9]

If the function FOO is given the PURE attribute, the
optimizer generates code to ccmpute 1*10 only once.
However, FOO, if it is not declared PURE, may modify
I so that 1*10 must be recomputed after the call to
FOO.

Functions are not considered PURE unless given the
attribute explicitly. The compiler checks to see
that a PURE function does not do any of the
following:

o Assign to a nonlocal variable

o Have any VAR. or VARS parameters (CONST and
CONST parameters are permitted)

o Call any functions that are not PURE

o Modify global variables

Although the following additional restrictions are
not checked, a PURE function should also not:

o Use the value of a global variable.

o Modify the referents of references passed by
value (e.g., pointer or address type
referents).

o Do input or output.

Since the result of a PURE function with the same
parameters must always be the same, the entire
function call may be optimized away. For example,
if in the following statements DS IN is PURE, the

13-17

PR'LIMINSRY DRAFT

compiler only calls ESIN once:

HX := A * ESIN (P[I, J] * 2);
HY := B * ESIN (P[l, J] * 2) ;

13.4 PF □RE AND FUNCTION PARAMETERS

Procedures and functions may take three different
types of parameters:

1. Value parameters

2. Reference parameters

3. Procedural and functional parameters

Each of these is discussed separately, in the order
listed, in the following paragraphs.

The discussion mentions both formal and actual
parameters. A formal parameter is the parameter
given when the procedure or function is declared,
with an identifier in the heading. When the
function or procedure is called, an actual parameter
substitutes for the formal parameter given earlier;
here the parameter takes the form of a variable or
value or expression.

MS-Pascal has the following parameter features at
the extend level:

1. A super array type can be passed as a reference
parameter.

2. A reference parameter can be declared READONLY.

3. Explicit segmented reference parameters can be
declared.

13.4.1 VALUE PARAMETERS

13-18

P"LIMIW'RY DR’.FT

When a value parameter is passed, the actual
parameter is an expression. That expression is
evaluated in the scope of the calling procedure or
function and assigned to the formal parameter. The
formal parameter is a variable local to the
procedure or function called. Thus, formal value
parameters are always local to a procedure or
function.

Example of value parameters:

{Function declaration }
FMLTIM AID (A, B, C : REAL) - REAL;

{A, B, and C are formal parameters }

X — ADD (Y, ADD (1.111, 2-222, 3.333),
(Z * 4))

In this particular function invocation, Y, ADD(...),
and (Z * 4) are the expressions that make up the
actual parameters. In this example, these
expressions must all evaluate to the type REAL.
(The example also recursively calls the function
ADD.)

The actual parameter expression must be assignment
compatible with the type of the formal parameter.

Passing structured types by value is permitted;
however, it is inefficient, since the entire
structure must be copied. A value parameter of a
SET, LSTRING, or subrange type may also require a
run-time error check if the range checking switch is
on. In addition, SET and LSTRING value parameters
may require extra generated code for size
adjustment.

A file variable or super array variable cannot be
passed as a value parameter, since it cannot be
assigned. However, a variable with a type derived
from a super array or file buffer variable can be

13-19

°a*LIminify draft

passed. Passing a file buffer variable as a value
parameter implies normal evaluation of the buffer
variable.

13.4.2 REFERENCE PARAMETERS

When a reference parameter is passed at the standard
level of MS-Pascal, the keyword VAR precedes the
formal parameter. Furthermore, the actual parameter
must be a variable, not an expression. The formal
parameter denotes this actual variable during the
execution of the procedure. Any operation on the
formal parameter is performed immediately on the
actual parameter, by passing the machine address of
the actual variable to the procedure. For target
processors with segmentation support, this address
is an offset into the default data segment.

Example of variable parameters:

PE □RE CHANGE VARS (VAR A, B, C : INTEGER);
{A, B, and C are formal reference parameters.}
{They denote variables, not values.}

CHANGE VARS (X, Y, Z);

In this example, X, Y, and Z must be variables, not
expressions. Also, the variables X, Y, and Z are
altered whenever the formal parameters A, B, and C
are altered in the declared procedure. This differs
from the handling of value parameters, which can
affect only the copies of values of variables. If
the selection of the variable involves indexing an
array or dereferencing a pointer or address, these
actions are executed before the procedure itself.
The type of the actual parameter must be identical
to the type of the formal parameter.

Passing a nonlocal variable as a VAR parameter puts
a slash (/) or percent sign (%) in the G (global)

13-20
FJ Ml NARY iWTj

column of the listing file (see Section 17.5, for
information about significance of these characters
in the G column of the listing).

Neither of the following may be passed as VAR
parameters:

1. A. component of a PACKED structure (except CHAR
of a STRING or LSTRING)

2. Any variable with a READONLY or PORT attribute
(includes CONST and CONSTS parameters and the
FOR control variable)

Passing a file buffer variable by reference
generates a warning message, because it bypasses the
normal file system call generated by the use of any
buffer variable. These calls are not generated when
a file variable is passed by reference.

On a segmented machine, a VAR parameter passes an
address that is really an offset into a default data
segment. In some cases, access to objects residing
in other segments is required. To pass these
objects by reference, you must tell the compiler to
use a segmented, address containing both segment
register and offset values. The extend level
includes the parameter prefix VARS instead of VAR:

PROCEDURE CONCATS (VARS T, S- STRING);

You may only use VARS as a data parameter in
procedures and functions, not in the declaration
section of programs, procedures, and functions.
VARS and CONSTS parameters are provided chiefly to
maintain compatibility with machines that have two
different size address spaces. These parameters are
not necessary for a machine with a single size
address space. On such machines, the reserved words
VARS and CONSTS are equivalent to VAR and CONST.

13-21
r~7'J Ml NARY draft

13.4.2.1 Super Array Parameters

Super array parameters may appear as formal
reference parameters. This allows a procedure or
function to operate on an array with a particular
super array type (also a component type and index
type), but without any fixed upper bounds. The
formal parameter is a reference parameter of the
super array type itself.

The actual parameter type must be a type derived
from the super array type or the super array type
itself (i.e., another reference parameter or
dereferenced pointer). Except for comparing
LSTRINGs, super array type parameters cannot be
assigned or compared as a whole.

The actual upper and lower bounds of the array are
available with the UPPER and LOWER functions; this
permits routines that can operate on arrays of any
size. An LSTRING actual parameter can be passed to
a reference parameter of the super array type
STRING. Therefore, the super array parameter STRING
can be used for procedures and functions that
operate on strings of both STRING and LSTRING types.

Example of super array parameters:

TYPE REALS = ARRAY [0..*] OF REAL;

PROCEDURE SIMRS (VAR X- REALS; CONST X: REALS);
BEGIN

END;
For more information, see Sections 6.2, 6.2.1, and
6.2.2.

13.4.2.2 Constant And Segment Parameters

13-22

PSFLIMl NARY

At the extend level, a formal parameter preceded by
the reserved wrd CONST implies that the actual
parameter is a READONLY reference parameter. This
is especially useful for parameters of structured
types, vhich may be constants, since it eliminates
the need for a time-consuming value parameter copy.
The actual parameter can be a variable, function
result, or constant value.

No assignments can be made to the CONST parameter or
any of its components. CONST super array types are
permitted. A CONST parameter in one procedure
cannot be passed as a VAR parameter to another
procedure. However, it is permissible to pass a VAR
parameter in one procedure as a CONST parameter in
another.

Example of a CONST parameter:

PROCEDURE ERROR (CONST ERRMSG: STRING) ;

On a segmented machine, a CONST parameter passes an.
address that is really an offset into a default data
segment. In some cases, access to objects residing
in other segments is required. To pass these
objects by reference, you must tell the compiler to
use a segmented address that contains both segment
register and offset values. The extend level
includes the parameter prefix CONSTS, instead of
CONST. Use of CONSTS parameters parallels use of
VARS for formal reference parameters.

Example of a CONSTS parameter:

PROCEDURE CAT (VARS T: STRING; CONSTS S:
STRING);

A CONSTS parameter can be used as a data parameter
only in procedures and functions, not in the
declaration section of programs, procedures, and
functions.You can also pass the value of an
expression as a CONST or CONSTS parameter. The

13-23

expression is evaluated and assigned to a temporary
(hidden) variable in the frame of the calling
procedure or function. You should enclose such an
expression in parentheses to force its evaluation.

A function identifier can be passed by reference as
a VAR, VARS, CONST, or CONSTS parameter. The
function's local variable is passed, so the call
must occur in the function' s body or in a procedure
or function declared with the function.

3Saj£

The value returned by a function designator can also
be passed, like any expression, as a CONST or CONSTS
parameter. Like any expression passed by reference,
the function designator should be enclosed in
parentheses, as shown:

FUNCTION ANSWER: INTEGER;
BEGIN

ANSWER 42;
WRITE^_A1O/ER (ANSWER);
{Pass reference to local variable.}

END;

PROCEDURE WRITE_ANSWER (CONSTS A: INTEGER)
BEGIN

WRITEEN ("ME ANSWER IS , 1 A)
END;

PROCEDURE HITCH_HIKE;
BEGIN

WRITE^ANSWER ((ANSWER))
{Call ANSWER, assign to tenporary variable,}
{pass reference to temporary variable.}

END;

13.4.3 PROCEDURAL AND FUNCTIONAL PARAMETERS

Procedural parameters can be used in the following
circumstances:

13-24

PRELIMINARY DRAFT

1. In numerical analysis

2. In calling some library routines

3. In special applications

In numerical analysis, you might pass a function to
a procedure or function that finds an integral
between limits, a maximum or minimum value, and so
on. Seme interesting algorithms in areas such as
parsing and artificial intelligence also use
procedural parameters.

When a procedural or functional parameter is passed,
the actual identifier is that for a procedure or
function. The formal parameter is a procedure or
function heading, including any attributes, preceded
by the reserved word PROCEDURE or FUNCTION.

For example, examine these declarations:

TYPE DOC® = (FRONT, BARN, CELL, DOGJHOUSE) ;
SPEED = (FACT, SLO, NORMAL);
DIRECTION = (OPEN, SHOT);

PROCEDURE OPmjXX®_WIEE
(VAR A : DOOR,- B - SPEED; C : DIRECTION) ;

PROCEDURE SLAM DOOR
(VAR DR : DOOR; SP - SPEED; DIR -
DIRECTION) ;

PROCEDURE LEAVE_AJAR
(VAR DD - DOOR; SS - SPEED; DO : DIRECTION) ;

All of the procedures in the example have parameter
lists of equal length and the types of the
parameters are not only compatible, but also
identical. The formal parameters need not be
identically named.

13-25
PRELIMINARY DRAFT

A procedural or functional parameter can accept one
of these procedures if the procedure or function is
set up correctly, as shown:

RMCTICN DOORSTMUS (PROCEDURE MOVE_DOOR
(VAR X: DOOR; Y: SPEED; Z: DIRECTION) ;
VAR XX: DOOR; YY: SPEED; ZZ: DIRECTION):
INTEGER;
{"PROCEDURE MOVEDOOR" is the formal
procedural}
{parameter; next two lines are other formal}
{parameters.}

BEGIN {door status}
DOOR STATUS := 0;
M0VE_D00R(XX, YY, ZZ);
{One of the three procedures declared}
{previously is executed here.}

IF XX = BARN AND ZZ = SHUT
THEN DOM STATUS := 1;

IF XX = CELL AND ZZ = OPFN
THEN DOOR STATUS := 2

IF XX = DOG HOUSE AND ZZ = SHOT
THEN DOOR SMTUS := 3

END;

Use of the procedural parameter MOVEDOOR might occur
in program statements as follows:

IF D00B SM?US
(SIJ^ DOOR, CELL, EAST, SHUT) = 0

THEN
SOCIETY := SAFE;

IF DCX® STATUS
(OPEN DOOR WIEE, BARN, SLOW, OPEN) ---- 0

THEN
COWSJARE_OOT ----- TRUE;

IF DOC® STATUS

13-26

PRELIMINARY DRAFT

(LEAVE_AJAR, DOGHOUSE, SL£W, OPEN) = 0
THEN

:= TRUE;

In each case above, the actual procedure list is
compatible with the formal list, both in number and
in type of parameters. If the parameter passed were
a functional parameter, then the function return
value would also have to be of an identical type.

In addition, the set of attributes for both the
formal and actual procedural type must be the same,
except that the PUBLIC and ORIGIN attributes and
EXTERN directive are ignored.

A PUBLIC or EXTERN procedure, or any local procedure
at any nesting level, can be passed to the same type
of formal parameter. However, the PURE attribute
and any calling sequence attributes must match.
Also, in systems with segmented code addresses, a
procedure or function passed as a parameter to an
EXTERN procedure or function must itself be PUBLIC
or EXTERN.

In MS-Pascal, you cannot pass predeclared procedures
and functions compiled as inline code; you can pass
them only in called subroutines. Also, the READ,
WRITE, ENCODE, and DECODE families are translated
into other calls by the compiler, based on the
argument types, and so cannot be passed.
Corresponding routines in the file unit or
encode/decode unit, however, can be passed. Eor
example, a READ of an INTEGER becomes a call to
RTIFQQ, and this procedure can be passed as a
parameter.

The following intrinsic procedures and functions
cannot be passed as procedure or function
parameters:

1. At the standard level of MS-Pascal:

13-27

Pfttt-f Mt NARY DRAFT

ABS E0IN PACK SQR
ARCTAN EXP PAGE SQRT
CHR LN PRED SUCC
COS NEW READ UNPACK
DISPOSE ODD READLN WRITE
WE ORD SIN WRITELN

2. At the extend and system levels of MS-Pascal:

BYLONG FL0AT4 READEN SIZEOF
BYWORD HIBYTE READSET TRUNC
DECODE HIWORD RESULT TRUNC4
ENCODE LOBYTE RETYPE UPPER
EVAL LOWER ROUND WRD
FLOAT LCWORD R0UND4

When a procedure or function passed as a parameter
is finally activated, any nonlocal variables
accessed are those in effect at the time the
procedure or function is passed as a parameter,
rather than those in effect when it is activated.
Internally, both the address of the routine and the
address of the upper frame (in the stack) are
passed.

Example of formal procedure use:

PROCEDURE ALPHA;
VAR I: INTEGER;

PROCEDURE EELTA;
BEGIN
WRITELN('Delta done')

END;

PROCEDURE BETA (PROCEDURE XTR);
VAR GLOB: INTEGER;
PROCEDURE GAPMA;
BEGIN GLOB := GUV + 1 END;

BEGIN {Start BETA}
GLOB := 0;

PRELIMINARY DRAM

IF I = 0
THEN BEGIN

I := 1; XPR; BETA (GATWQ
END

ELSE BEGIN
GLOB := GLOB + 1; XPR
END

END;

BEGIN {Start ALPHA}
I := 0;
BETA (DELTA)

END;

The following list describes what happens in this
example:

1. ALPHA is called.

2. BETA is called, passing the procedure DELTA.

3. This latter call creates an instance of GLOB on
the stack (call it GL0B1).

4. BETA first clears GL0B1 by setting it to zero.
Then, since I is 0, the THEN clause is
executed, which sets I to one and executes XPR,
which is bound to DELTA.

5. Therefore, 'Delta done' is written to OUTPUT.

6. Now BETA is called recursively. BETA is passed
GAMMA, and, at this time, the access path to
any nonlocal variables used by GAMMA (i. e.,
GL0B1) is passed as well.

7. The second call to BETA creates another
instance of GLOB (GL0B2). When GLOB2 is
cleared this time, I is 1, so GL0B2 is
incremented..

8. Then XPR is called, which is bound to GAMMA, so

13-29

P?~L! MINARY DRp"

GAMMA is executed and increments the instance
of GLOB active when GAMMA was passed to BETA,
GL0B1.

9. GAMMA returns, the second BETA call returns,
the first BETA call returns, and finally, ALPHA
returns.

PRELIMINARY DR8 •

14. AVAILABLE PROCEDURES AND FUNCTIONS

All versions of Pascal predeclare a large number of
common procedures and functions. You do not have to
declare these procedures and functions in a program.
Since they are defined in a scope "outside" the
program, you may redefine these identifier^.

To promote portability, MS-Pascal makes some of the
predeclared procedures and functions available only
at the extend or at the system level. MS-Pascal
also includes some useful library procedures and
functions that you must declare EXTERN in order to
use.

MS-Pascal implements three kinds of procedures and
functions:

1. Some are predeclared, and the compiler
translates them into other calls or special
generated code (these you cannot pass as
parameters).

2. Some are predeclared but you call them normally
(except for a name change).

3. Some are not predeclared but available as part
of the MS-Pascal run-time library (these you
must declare explicitly).

However, it is more useful when discussing these
procedures and functions to categorize them by what
they do rather than how they are implemented. Table
14-1 shows this categorization.

14-1

HR Vi

Table 14.1. Categories of Available Procedures and
Functions

CATAGORY PURPOSE

File system Operate on files of different modes
and structures.

Dynamic
allocation

Dynamically allocate and deallocate
data structures on the heap at run­
time.

Data
conversion

Convert data from one type to
conversion another.

Arithmetic Perform common transcendental and
other mineric functions.

Extend level
intrinsics

Provide additional procedures and
functions at the extend level of MS-
Pascal.

System level
intrinsics

Provide additional procedures and
functions at the systsn level of MS-
Pascal.

String
intrinsics

Operate on STRING and LSTRING type
data.

Library Available in the MS-Pascal run-time
library. They are not predeclared;
you must declare then with the EXTERN
directive.

14-2

PRELIMINARY DRAFT

14.1 CATEGORIES OF AVAILABLE PROCEDURES AND
FUNCTIONS

This section describes each of the categories listed
in Table 14-1 and lists the procedures and functions
included in each category. See Section 14.2 for an
alphabetical directory of all of the available
procedures and functions.

14.1.1 FILE SYSTEM PROCEDURES AND FUNCTIONS

The MS-Pascal file system supports a variety of
procedures and functions that operate on files of
different modes and structures. These procedures
and functions fall into three categories, as shown
in Table 14-2.

Table 14.2. File System Procedures and Functions

CATEGORY______ PROCEDURES FUNCTIONS

Primitive GET EOF
PAGE EOLN
PUT
RESET
REWRITE

Textfile I/O READ
READLN
WRITE
WRITELN

Extend Level I/O ASSIGN
CLOSE
DISCARD
READSET
READFN
SEEK

14-3

PRELIMINARY 3RAFT

For details on each of these procedures and
functions, see Chapter 15.

14.1.2 DYNAMIC ALLOCATION PROCEDURES
Two procedures, NEW and DISPOSE, allow dynamic
allocation and deallocation of data structures at
run-time. NEW allocates a variable in the heap, and
DISPOSE releases it.

14.1.3 DATA CONVERSION PROCEDURES AND FUNCTIONS

Use the following procedures and functions to
convert data from one type to another:

CHR PACK TRUNC
FLOAT PRED TRUNC4
FLOAT4 ROUND UNPACK
ODD ROUND4 WRD
ORD SUCC

Four of these convert any ordinal type'to a
particular ordinal type:

CHR (ordinal) to CHAR
ODD (ordinal) to BOOLEAN
ORD (ordinal) to INTEGER
WRD (ordinal) to WORD

PRED and SUCC also operate on ordinal types.

Six of the conversion procedures and functions
convert between INTEGER or INTEGER4 and REAL:

FLOAT converts INTEGER to REAL
FLOAT4 converts INTEGER4 to REAL
ROUND converts REAL to INTEGER
ROUND4 converts REAL to INTEGER4
TRUNC converts REAL to INTEGER
TRUNC4 converts REAL to INTEGER4

14-4

PRrLlMIN^RY DKAr i

PACK and UNPACK transfer components between packed
and unpacked arrays.

14.1.4 ARITHMETIC FUNCTIONS

All arithmetic functions take a CONSTS parameter of
type REAL4 or REAL8, or a type compatible with
INTEGER (labeled "numeric" in the directory). ASS
and SQR also take WORD and INTEGER4 values.

All functions on REAL data types check for an
invalid (uninitialized) value. They also check for
particular error conditions and generate a run-time
error message if an error condition is found.

If the math checking switch is on, errors in the use
of the functions ABS and SQR on INTEGER, WORD, and
INTEGER4 data generate a run-time error message. If
the switch is off, the result of an error is
undefined.

Table 14-3 lists the arithmetic function available,
along with the routines called depending on whether
single or double precision is required.

Table 14-3: Predeclared Arithmetic Functions

NAME OPERATION REAL4 REALS

ABS Absolute value (inline) (iniine)
ARCTAN Arctangent ATSRQQ ATDRQQ
COS Cosine CNSRQQ CNDRQQ
EXP Exponential EXSRQQ EXDRQQ
LN Natural log LNSRQQ LNDRQQ
SIN Sine SNSRQQ SNDRQQ
SQR Square (inline) (inline)
SQRT Square root SRSRQQ SRDRQQ

14-5

PRELIMINARY EH" FT

The MS-FORTRAN run-time library provides several
additional REAL4 and REAL8 functions, as shown in
Table 14.4. If you use then, you must declare then
with the EXTERN directive.

Table 14-4: REAL Functions from the MS-FORTRAN Run­
time Library

OPERATION________ REAL4 REAL8

Arccosine ACSRQQ ACDRQQ
Integral trunc AISRQQ AIDRQQ
Integral round ANSRQQ ANDRW
Arcsine ASSRQQ ASDRQQ
Arctangent A/B A2SRQQ A2DRQQ
Hyperbolic cosine CHSRQQ CHDRQQ
Decimal log LDSRQQ LDDRQQ
Modulo MDSRQQ MDDRQQ
Minimum MNSRQQ MNDRQQ
Maximm MXSRQQ MXDRQQ
Power (REAL8**INTG4) PIDRQQ
Power (REAL4**INTG4) PISRQQ
Power (REAL ** REAL) PRSRQQ PRDRQQ
Hyperbolic sine SHSRQQ SHDRQQ
Hyperbolic tangent THSRQQ THDRQQ
Tangent TNSRQQ TNDRQQ

Some cannon mathematical functions are not standard
in Pascal, but are relatively simple to accomplish
with program statements or to define as functions in
a program. Some typical definitions follow:

SIGN (X) is ORD (X > 0) - ORD (X < 0)
POWER (X, Y) is EXP (Y * LN (X))

You can also write your own functions in MS-Pascal
to do the same thing. Defining functions like these
is a good opportunity to use the PURE attribute (to
obtain more efficient code). For example:

FUNCTION POWER (A, B: REAL): REAL [PURE];

14-6

PRELIMINARY DRAFT

BEGIN
IF A <= 0 THEN
ABORT (’Nonplus real to power',
POWER := EXP (B * LN (A));

END;

24, 0);

14.1.5 EXTEND LEVEL INTRINSICS

At the extend level of MS-Paseal, the following
intrinsic procedures and functions are available:

ABORT EVAL LOWORD
BYLONG HIBYTE RESULT
BYWORD HIWORD SIZEOF
DECODE LOBYTE UPPER
ENCODE LOWER

Several of these are used to compose and decompose
one-byte, two-byte, and four-byte items: HIBYTE,
LOBYTE, BYWORD, HIWORD, LOWORD, and BYLONG.

ENCODE and DECODE convert between internal and
string forms of variables. ABORT invokes a run-time
error.

The others, EVAL, LOWER, UPPER, RESULT, and SIZEOF,
are used in special situations (described for each
function in Section 14.2.

14.1.6 SYSTEM LEVEL INTRINSICS

Several additional intrinsic procedures and
functions are available at the system level:

FILLC
FILLSC
HOVEL
MOVER

MOVESL
MOVESR
RETYPE

14-7

PRELIMINARY DRAFT

The MOVE and FILL procedures perform low-level
operations on byte strings. RETYPE changes the type
of an expression arbitrarily.

14.1.7 STRING INTRINSICS

The string intrinsics feature provides a set of
procedures and functions, some of which operate on
STRINGS and LSTRINGs, and some on LSTRINGs only:

NAME PARAMETER

Table 14-5: String Procedures and Functions

CONCAT
DELETE
INSERT
COPYLST

STRING
STRING
STRING
STRING

COPYSTR STRING or LSTRING
POSITN STRING or LSTRING
SCANEQ STRING or LSTRING
SCANNE STRING or LSTRING

14.1.8 LIBRARY PROCEDURES AND FUNCTIONS

The following routines are not predeclared, but are
available to you in the MS-Pascal run-time library.
You must declare them, with the EXTERN directive,
before using than in a program.

Initialization and Termination Routines

BEGOQQ and ENDOQQ are called during initialization
and termination, respectively. You might use than
to invoke a debugger or to write customized
messages, such as the time of execution, to the
terminal screen. BEGXQQ can be called to restart a
program and ENDXQQ to terminate it.

14-8

PRELIMINARY PR-"ft

Heap Management Routines

Heap management routines complement the standard NEW
and DISPOSE procedures and include:

ALLHQQ FREECT MARKAS MH4AVL RELEAS

Interrupt Routines

These routines handle interrupt processing, although
the actual effect varies with the target machine:

ENABIN DISABIN VECTIN

Terminal I/O Routines

The following routines support direct input to and
output from your terminal:

GTYUQQ PTYUQQ PLYUQQ

Semaphore Routines

The two procedures, LOCKED and UNLOCK, provide a
binary semaphore capability. You can use them to
ensure exclusive access of a resource in a
concurrent system.

No-Overflow Arithmetic Functions

These functions implement 16-bit and 32-bit modulo
arithmetic. Overflow or carry is returned, instead
of invoking a run-time error.

LADDOK LMULOK SADDOK SMULOK UADDOK UMULOK

14-9

PRELIMINARY nn-.rj

Clock Soutines

These provide operating system clock information:

TIME DATE TICS

14.2 DIRECTORY OF FUNCTIONS AND PROCEDURES

This section contains a lists all available
procedures and functions, both those that are
predeclared and those library routines that may be
used if declared EXTERN. Each entry includes the
heading, the category to which the operation
belongs, and a description of what the procedure or
function does. Notes and examples are included as
appropriate. The headings given are the same for
both REAL4 or REAL8, unless specifically stated
otherwise.

PROCEDURE ABORT (CONST STRING, WORD, WORD);

An extend level intrinsic procedure. Halts program
execution in the same way as an internal run-time
error. The STRING (or LSTRING) is an error message.
The string parameter is a CONST, not a CONSTS
parameter. The first WORD is an error code (see
Appendix H for error code allocations); the second
WORD can be anything. The second WORD is sometimes
used to return a file error status code from the
operating system.

The parameters, as well as any information about the
machine state (program counter, frame pointer, stack
pointer) and the source position of the ABORT call
(if the $LINE and/or SENTRY debugging switches are
on), are given to you in a termination message or
are available to the debugging package.

If the SRUNTIME switch is on, then error messages
report the location of the procedure or function

14-10

that has called the routine in which ABORT was
called. If $RUNTIME is on, $LINE and SENTRY should
be off, and routines in a source file should call
only other SRUNTIME routines.

FUNCTION ABS (X: NUMERIC): NUMERIC;

An arithmetic function. Returns the absolute value
of X. Both X and the return value are of the same
nuneric type: REAL4, REAL8, INTEGER, WORD, or
INTEGER4. Since WORD values are unsigned, ABS (X)
always returns X if X is of type WORD.

FUNCTION ACSRQQ (CONSTS A: REAM): REAM;
FUNCTION ACDRQQ (CONSTS A: REALS): REALS;

Arithmetic functions. Return the arccosine of A.
Both A and the return value are of type REAM or
REALS, as shown. These functions are from the MS-
FORTRAN run-time library and must be declared EXTERN
before use.

FUNCTION AISRQQ (CONSTS A: REAM): REAM;
FUNCTION AIDRQQ (CONSTS A: REALS): REALS;

Arithmetic functions. Return the integral part of
A, truncated toward zero. Both A and the return
value are of type REAM or REALS, as shown. These
functions are from the MS-FORTRAN run-time library
and must be declared EXTERN before use.

FUNCTION ALLHQQ (SIZE: WMV): WORD;
A library routine (heap management function).
Returns zero if the heap is full, 1 if the heap
structure is in error, or MAXWORD if the allocator
has been interrupted. Otherwise, it returns the
pointer value for an allocated variable with the
size requested.

14-11

PRELIMINARY DR.’77

Generally, you use ALLHQQ with the RETYPE function.
For example:

P_VAR RETYPE (P TYPE, ALLHQQ (28));
{RETYPE converts the value returned by}
{ALLHQQ (28) to the type p TYPE.}
{This value is assigned to P_VAR.}

IF WRD (P VAR) < 2 THEN GO_ABORT;
{PVAR is then checked for a heap}
{full or heap structure error.}

FUNCTION ANSRQQ (CONSTS A: REAL4): REAL4;
FMCTIM ANDRQQ (CONSTS A: REAL8): REALS;

Arithmetic functions. Like AISRQQ and AIDRQQ,
return the truncated integral part of A, but round
away from zero. Both A and the return value are of
type REAL4 or REALS, as shown. These functions are
from the MS-FORTRAN run-time library and must be
declared EXTERN before use.

FUNCTION ARCTAN (X: REAL): REAL;

An arithmetic function. Returns the arctangent of X
in radians. Both X and the return value are of type
REAL. To force a particular precision, declare
ATSRQQ (CONSTS REAL4) and/or ATDRQQ (CONSTS REALS)
and use than instead.

FUNCTION ASSRQQ (CONSTS A: REAL4): REAM;
FUNCTION ASDRQQ (CONSTS A: REALS): REALS;

Arithmetic functions. Return the arcsine of A.
Both A and the return value are of type REAL4 or
REALS, as shown. These functions are from the MS-
FORTRAN run-time library and must be declared EXTERN
before use.

PRELIMINARY SRAFT

PROCEDURE ASSIGN (VAR F; CONSTS N: STRING);

A file system procedure (extend level I/O). Assigns
an operating system filename in a STRING (or
LSTRING) to a file F.

See Section 15.3.1 for a description of ASS IM.

FUNCTION A2SRQQ (A, B: REAL4): REAL4;
FUNCTION ASDRQQ (A, B: REAL8): REAL8;

Arithmetic functions. Return the arctangent of
(A/B). Both A and B, as well as the return value,
are of type REAL4 or REAL8, as shown. These
functions are from the MS-FORTRAN run-time library
and must be declared EXTERN before use.

PROCEDURE BEGOQQ;

A library routine (initialization). BEGOQQ is
called during initialization, and the default
version does nothing. However, you may write your
own version of BEGOQQ, if you want, to invoke a
debugger or to write customized messages, such as
the time of execution, to to a terminal screen.

See also PROCEDURE ENDOQQ.

PROCEDURE BEGXQQ;

A library routine (initialization). After your
program is linked and loaded, BEGXQQ is the defined
entry point for the load module.

As the overall initialization routine, BEGXQQ
performs the following actions:

14-13

PRELIMINARY DRAFT

1. Resets the stack and the heap.

2. Initializes the file system.

3. Calls BEGOQQ.

4. Calls the program body.

BEGXQQ can be useful for restarting after a
catastrophic error in a ROM-based system. However,
invoking this procedure to restart a program does
not close any files that may have previously been
opened. Similarly, it does not re-initialize
variables originally set in a VALUE section or with
the initialization switch on.

FUNCTION BYLONG (INTEGER-WORD, INTEGER-WORD):
INTEGER4;

An extend level intrinsic function. Converts WORDS
or INTEGERS (or the LOWORDs of INTEGER4s) to an
INTEGER4 value. BYLONG concatenates its operands:

BYDONG (A, B) -- ORD (DOWORD (A)) * 65535 +
WRD (HIWORD (B))

If the first value is of type WORD, its most
significant bit becomes the sign of the result.

FUNCTION BYWORD (ONE-BYTE, ONE-BYTE): WORD;

An extend level intrinsic function. Converts bytes
(or the DOBYTEs of INTEGERS or WORDS) to a WORD
value. Takes two parameters of any ordinal type.
BYWORD returns a WORD with the first byte in the
most significant part and the second byte in the
least significant part:

BYWORD (A, B) = LOBYTE(A) * 256 + LOBYTE(B)
If the first value is of type WORD, its most
significant bit becomes the sign of the result.

14-14

PRELIMINARY DRAFT

FUNCTION CHR (X: ORDINAL): CHAR;

A data conversion function. Converts any ordinal
type to CHAR. The ASCII code for the result is ORD
(X). This is an extension to the ISO standard,
which requires X to be of type INTEGER. An error
occurs if ORD (X) > 255 or ORD (X) < 0. However, the
error is caught only if the range checking switch is
on.

FUNCTION CHSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION CHDRQQ (CONSTS A: REALS): REALS;

Arithmetic functions. Return the hyperbolic cosine
of A. Both A and the return value are of type REAL4
or REALS, as shown. These functions are from the
MS-FORTRAN run-time library and must be declared
EXTERN before use.

PROCEDURE CLOSE (VAR F);

A file system procedure (extend level I/O). Performs
an operating system close on a file, ensuring that
the file access is terminated correctly.

See Section 15.3.1 for a description of CLOSE.

PROCEDURE CONCAT (VARS D: LSTRING; CONSTS S:
STRING);

A string intrinsic procedure. Concatenates S to the
end of D. The length of D increases by the length
of S. An error occurs if D is too small, i.e., if
UPPER (D) < D.LEN + UPPER (S).

14-15

PRELIMINARY DR5 FT

PROCEDURE COPTLST (CONSTS S: STRING; VARS D:
LSTRING);

A string intrinsic procedure. Copies S to LSTRING
D. The length of D is set to UPPER (S). An error
occurs if the length of S is greater than the
maximum length of D, i.e., if UPPER (S) > UPPER (D).

PROCEDURE COPYSTR (CONSTS S: STRING; VARS D:
STRING);

A string intrinsic procedure. Copies S to STRING D.
The remainder of D is set to blanks if UPPER (S) <
UPPER (D). An error occurs if the length of S is
greater than the maximum length of D, i.e», if UPPER
(S) > UPPER (D).

FUNCTION COS (X: NUMERIC): REAL;

An arithmetic function. Returns the cosine of X in
radians. Both X and the return value are of type
REAL. To force a particular precision, declare
CNSRQQ (CONSTSS REAL4) and/or CNDRQQ (CONSTS REAL8)
and use them instead.

PROCEDURE DATE (VAR S: STRING);

A clock procedure. If available, this procedure
assigns the current date to its STRING (or LSTRING)
variable. If an LSTRING is passed as the parameter,
you must set the length you want before calling the
procedure. The format depends on the target
operating system.

14-16

PaTLIMINaRY draft

FUNCTION DECODE (CONST LSTR: LSTRING, X:M:N):
BOOLEAN;

An extend level intrinsic function. Converts the
character string in the LSTRING to its internal
representation and assigns this to X. If the
character string is not a valid external ASCII
representation of a value whose type is assignment
compatible with X, DECODE returns FALSE and the
value of X is undefined.

DECODE works exactly the same as the READ procedure,
including the use of M and N parameters (see Section
15.2.2 for a discussion of these parameters). When
X is a subrange, DECODE returns FALSE if the value
is out of range regardless of the setting of the
range checking switch. Leading and trailing spaces
and tabs in the LSTRING are ignored. Al 1 other
characters in the LSTRING must be part of the
representation.

X must be one of the types INTEGER, WORD,
enumerated, one of their subranges, BOOLEAN, REAL4,
REAL8, INTEGER4, or a pointer (address types need
the .R or .S suffix).

In a segmented memory environment, the LSTR
parameter must reside in the default data segment.

See also FUNCTION ENCODE.

PROCEDURE DELETE (VARS D: LSTRING; I, N: INTEGER);

A string intrinsic procedure. Deletes N characters
from D, starting with D [I], An error occurs if an
attempt is made to delete more characters starting
at I than it is possible to delete, i.e., if D.LEN <
(I + N - 1).

14-17

zJ.IMINARY DRAFT

PROCEDURE DISBIN;

A library routine (interrupt). Along with ENABIN
and VECTIN, DISBIN handles interrupt processing.
DISBIN disables interrupts; ENABIN enables
interrupts; VECTIN sets an interrupt vector. The
effect of these procedures varies with the target
machine. See Appendix A in the MS-
Pascal User's Guide for information about your
implementation.

PROCEDURE DISCARD (VAR F) ;

A file system procedure (extend level I/O). Closes
and deletes an open file.

See Section 15.3.1 for a decription of DISCARD.

PROCEDURE DISPOSE (VARS P: POINTER);

A dynamic allocation procedure (short form).
Releases the memory used for the variable pointed to
by P. P must be a valid pointer; it may not be
NIL, uninitialized, or pointing at a heap item that
already has been DISPOSEd. These are checked if the
NIL check switch is on.

P should not be a reference parameter or a WITH
statement record pointer, but these errors are not
caught. A DISPOSE of a WITH statement record can be
done at the end of the WITH statement without
problem.

If the variable is a super array type or a record
with variants, you can safely use the short form of
DISPOSE to release the variable, regardless of
whether it was allocated with the long or short form
of NEW. Using the short form of DISPOSE on a heap
variable allocated with the long form of NEW is an
ISO-defined error not caught in MS-Pascal.

14-18

PRELIMINARY DRAFT

PROCEDURE DISPOSE
(VARS P: POINTER; Tl, T2 TN: TAGS);

A dynamic allocation procedure (long form). The
long form of DISPOSE works the same as the short
form. However, the long form checks the size of the
variable against the size implied by the tag field
or array upper bound values Tl, T2, ...Tn. These
tag values should be the same as defined in the
corresponding NEW procedure.

See also the SIZEOF function, which uses the same
array upper bounds or tag value parameters to return
the number of bytes in a variable.

PROCEDURE ENABIN;

A library routine (interrupt handling). Along with
DISBIN and VECTIN, ENABIN handles interrupt
processing. ENABIN enables interrupts; DISBIN
disables interrupts; VECTIN sets an interrupt
vector. The effect of these procedures may vary
with the target machine. See Appendix A in the MS-
Pascal User's Guide for information about
your implementation.

FUNCTION ENCODE (VAR LSTR: LSTRING, X:M:N): BOOLEAN;

An extend level intrinsic function. Converts the
expression X to its external ASCII representation
and puts this character string into LSTR. Returns
TRUE, unless the LSTRING is too small to hold the
string generated. In this case, ENCODE returns
FALSE and the value of the LSTR is undefined.
ENCODE works exactly the same as the WRITE
procedure, including the use of M and N parameters
(see Section 15.2.4 for a discussion of these
parameters).

14-19

PRELIMINARY DRAFT

X must be one of the types INTEGER, WORD,
enumerated, one of their subranges, BOOLEAN, REAL4,
REAL8, INTEGER4, or a pointer (address types need
the .R or .3 suffix).

In a segmented memory environment, the LSTR
parameter must reside in the default data segment.

See also FUNCTION DECODE.

PROCEDURE ENDOQQ;

A library procedure (termination). ENDOQQ is called
during termination, and the default version does
nothing. However, you can write your own version of
ENDOQQ, if you want, to invoke a debugger or to
write customized messages, such as the time of
execution, to a terminal screen.

Since ENDOQQ is called after errors are processed, if ENDOQQ
itself invokes an error, the result is an infinite termination
loop.

See also PROCEDURE BEGOQQ.

PROCEDURE ENDXQQ;

The termination procedure. ENDXQQ is the overall
termination routine and performs the following
actions:

1. Calls ENDOQQ.

2. Terminates the file system (closing any open
files).

3. Returns to the target operating system (or
whatever called BEGXQQ).

14-20

U'Ml NARY DRAFT

ENDXQQ can be useful for ending program execution
from inside a procedure or function, without calling
ABORT. ENDXQQ corresponds to the HALT procedure in
other Pascals.

FUNCTION EOF: BOOLEAN;
FUNCTION EOF (VAR F): BOOLEAN;

A file system function. Indicates whether the
current position of the file is at the end of the
file F for SEQUENTIAL and TERMINAL file modes. EOF
with no parameters is the sane as EOF (INPUT).

See Section 15.1.3 for a more complete description
of EOF.

FUNCTION EOLN: BOOLEAN;
FUNCTION EOLN (VAR F) : BOOLEAN;

A file system function. Indicates whether the
current position of the file is at the end of a line
in the textfile F. EOIN with no parameters is the
same as EOLN (INPUT).

See Section 15.1.3 for a description of EOLN.

PROCEDURE EVAL (EXPRESSION, EXPRESSION, ...);

An extend level intrinsic procedure. Evaluates
expression parameters only, but accepts any number
of parameters of any type. EVAL is used to evaluate
an expression as a statement; it is commonly used
to evaluate a function for its side effects only,
without using the function return value.

14-21

LI Ml NARY DRAFT

FUNCTION EXP (X: NUMERIC): REAL;

An arithmetic function. Returns the exponential
value of X (i.e., e to the X). Both X and the return
value are of type REAL. To force a particular
precision, declare EXSRQQ (CONSTS REAL4) and/or
EXDRQQ (CONSTS REALS) and use them instead.

PROCEDURE FILDC (D: ADRMEM; N: WORD; C: CHAR);

A system level intrinsic procedure. Fills D with N
copies of the CHAR C. No bounds checking is done.

See also PROCEDURE FILLSC for segmented address
types. The MOVE and FILL procedures take value
parameters of type ADRMEM and ADSMEM, but since all
ADR (or ADS) types are compatible, the AM (or ADS)
of any variable or constant can be used as the
actual parameter. These are dangerous but sometimes
useful procedures.

PROCEDURE FILLSC (D: ADSMEM; N: WORD; C: CHAR);

A system level intrinsic procedure. Fills D with N
copies of the CHAR C. No bounds checking is done.

See also PROCEDURE FILLC for relative address types.
The MOVE and FILL procedures take value parameters
of type ADRMEM and ADSMEM, but since all ADR (or
ADS) types are compatible, the ADR (or ADS) of any
variable or constant can be used as the actual
parameter. These are dangerous but sometimes useful
procedures.

FUNCTION FLOAT (X: INTEGER): REAL;

A data conversion function. Converts an INTEGER
value to a REAL value. You normally don't need this
function, since INTEGER-to-REAL is usually done

14-22

PRELIMINARY DRAFT

automatically. However, because FLOAT is needed by
the run-time package, it is included at the standard
level.

RUCTION FLOAT4 (X: INTBGER4): REAL;

A data conversion function. Converts an INTEGER4
value to a REAL value. This type conversion is also
done automatically; however, it is possible to lose
precision. (Losing precision is not an error.)

FUNCTION FREBCT (SIZE: WORD): WORD;

A 1ibrary function. Returns an estimate of the
number of times NEW could be called to allocate heap
variables with length SIZE bytes. FREECT takes into
account DISPOSE and adjacent free blocks and is
generally used with the SIZEQF function. However,
it does not assume any stack space will be needed.
Since stack space generally will be needed, the
value returned should be reduced accordingly.

Example:

IF FREECT (SIZEOF (REC, TRUE, 5)) > 2
THEN DO SOMETHING

PROCEDURE GET (VAR F);

A file system procedure. GET either reads the
currently pointed-to component of F to the buffer
variable F* and advances the file pointer, or sets
the buffer variable status to empty.

See Section 15.1.1 for a description of GET.

14-23

PP^LfMINA9Y DRAFT

FUNCTION GTTOQQ (LEN: WORD; DOC: AD6MEM): WORD;
A library function (terminal I/O). Reads a maximum
of LEN characters fran the terminal keyboard and
stores than in memory beginning at the address DOC.
The return value is the number of characters
actually read. GTTOQQ always reads the entire line
you enter. Any characters typed beyond the end of
the buffer length are lost.

Example:

LSTR.LEN GTTOQQ (UPPER (LSTR) , ADS LSTR(l)) ;

Together with PTYUQQ and PLYUQQ, GTTOQQ is useful
for doing terminal I/O in a low-overhead
environment. These functions are part of a
collection of routines called Unit U, which
implements the MS-Paseal file system. (See Section
8.2 in your MS-Pascal User's Guide for further
information on Unit U.)

FUNCTION HIBYTE (INTEGER-WORD): BYTE;

An extend level intrinsics function. Returns the
most significant byte of an INTEGER or WORD.
Depending on the target processor, the most
significant byte may be the first or the second
addressed byte of the word.

See also FUNCTION LOBYTE.

FUNCTION HIWORD (INTEGER4): WORD;

An extend level intrinsics function. Returns the
high-order word of the four bytes of the INTEGER4.
The sign bit of the INTEGER4 becomes the most
significant bit of the WORD.

See also FUNCTION DOWORD.

14-24

PRELIMINARY DRAFT

PROCEDURE INSERT
(CONSTS S:STRING; VARS DlLSTRING; I:INTEGER)

A string intrinsic procedure. Inserts S starting
just before D [I], An error occurs if D is too
small, i.e., if:

UPPER (D) < UPPER (S) + D.LEN + 1

or if:

D.LEN < I

FUNCTION LADDOK
(A, B: INTEGER4; VAR C: INTEGER4): BOOLEAN;

A library routine (no-overflow arithmetic). Sets C
equal to A plus B. One of two functions that do 32-
bit signed arithmetic without causing a run-time
error, even if the arithmetic debugging switch is
on. Both LADDOK and LMULOK return TRUE if there is
no overflow, and FALSE if there is. These routines
are useful for extended-precision arithmetic, or
modulo 2^32 arithmetic, or arithmetic based on user
input data.

FUNCTION LDSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION LDDRQQ (CONSTS A: REALS): REALS;

Arithmetic functions. Return the logarithm, base
10, of A. Both A and the return value are of type
REAL4 or REALS, as shown. These functions are from
the MS-FORTRAN run-time library and must be declared
EXTERN before use.

14-25

preliminary draft

FUNCTION LMULOK
(A, B: INTEGER4; VAR C: INTEGER4): BOOLEAN;

A library routine (no-overflow arithmetic). Sets C
equal to A times B. One of two functions that do
32-bit signed arithmetic without causing a run-time
error overflow. Normal arithmetic may cause a run­
time error even if the arithmetic debugging switch
is off. Both LMULOK and LADDOK return TRUE if there
is no overflow, and FALSE if there is. These
routines are useful for extended-precision
arithmetic, or modulo 2*32 arithmetic, or arithmetic
based on user input data.

FUNCTION LN (X: REAL): REAL;

An arithmetic function. Returns the logarithm, base
e, of X. Both X and the return value are of type
REAL. To force a particular precision, declare
LNSRQQ (CONSTS REAL4) and/or LNDRQQ (CONSTS REALS)
and use them instead. An error occurs if X is less
than or equal to zero.

FUNCTION DOBYTE (IWTEGER-WORD): BYTE;

An extend level intrinsic function. Returns the
least significant byte of an INTEGER or WORD.
Depending on the target processor, the least
significant byte may be the first or the second
addressed byte of the word.

See also FUNCTION HIBYTE.

FUNCTION LOCKED (VARS SEMAPHORE: WORD): BOOLEAN;

A library function (semaphore). If the semaphore is
available, LOCKED returns the value TRUE and sets
the semaphore unavailable. Otherwise, if it is

DRAFT

already locked, LOCKED returns FALSE. UNLOCK sets
tie semaphore available. As a binary semaphore,
there are only two states.

See also PROCEDURE UNLOCK.

FUNCTION LOWER (EXPRESSION): VALUE;

An extend level intrinsic function. LOWER takes a
single parameter of one of the following types:
array, set, enumerated, or subrange. The value
returned by LOWER is one of the following:

1. The lower bound of an array

2. The first allowable element of a set

3. The first value of an enumerated type

4. The lower bound of a subrange

LOWER uses the type, not the value, of the
expression. The value returned by LOWER is always a
constant.

See also FUNCTION UPPER.

FUNCTION DOWORD (INTEGER4): WORD;

An extend level intrinsic function. Returns the low-
order WORD of the four bytes of the INTEGER4.

See also FUNCTION HIWORD.

PROCEDURE MARRAS (VAR HEAPMARK: INTEGER4);

A library procedure (heap management). Parallels
the MARK procedure in other Pascals. MARKAS marks
the upper and lower limits of the heap. The DISPOSE

14-27

PRELIMINARY DRAFT

procedure is generally more powerful, but MARKAS may
be useful for converting from other Pascal dialects.

In other Pascals, the parameter is of a pointer
type. However, MS-Pascal needs two words to save
the heap limits, since in seme implementations the
heap grows toward both higher and lower addresses.
The HEAPMARK variable should not be used as a normal
INTEGER4 number; it should only be set by MARKAS
and passed to RELEAS.

To use MARKAS and RELEAS, pass an INTEGER4 variable,
say M, as a VAR parameter to MARKAS. MARKAS places
the bounds of the heap in M. To release heap space,
simply invoke the procedure with RELEAS (M).

MARKAS and RELEAS work as intended only if you never
call DISPOSE.

FUNCTION MDSRQQ (CONSTS A, B: REAL4): REAL4;
FUNCTION MDDRQQ (CONSTS A, B: REALS): REAL8;

Arithmetic functions. A modulo B, defined as:

MDSRQQ (A, B) = A - AISRQQ (A/B) * B
MDDRQQ (A, B) -- A - AIDRQQ (A/B) * B

Both A and B are of type REAL4 or REAL8, as shown.
These functions are from the MS-FORTRAN run-time
library and must be declared EXTERN before use.

FUNCTION MEMAVL: WORD;

A library function (heap management). Returns the
number of bytes available between the stack and the
heap. MEMAVL acts like the MEMAVAIL function in
UCSD Pascal. If you have previously used DISPOSE,
MEMAVL may return a value less than the actual
nunber of bytes available.

14-28

IMINaRY DRAFT

FUNCTION MNSRQQ (CONSTS A, B: REAL4): REAL4;
FUNCTION MNDRQQ (CONSTS A, B: REALS): REALS;

Arithmetic functions. Return the value of A or B,
whichever is smaller. Both A and B are of type
REAL4 or REALS, as shown. These functions are from
the MS-FORTRAN run-time library and must be declared
EXTERN before use.

See also FUNCTION MXSRQQ and FUNCTION MXDRQQ.

PROCEDURE NOVEL (S, D: ADRMEM; N: NAD);

A system level intrinsic procedure. Moves N
characters (bytes) starting at S* to D~, beginning
with the lowest addressed byte of each array.
Regardless of the value of the range and index
checking switches, there is no bounds checking.

Example:

NOVEL (ADR 'New String Value', ADR V, 16)

See also PROCEDURE MOVESL for segmented address
types. Use NOVEL and MOVESL to shift bytes left or
when the address ranges do not overlap.

The MOVE and FILL procedures take value parameters
of type ADRMEM and ADSMEM, but since all ADR (or
ADS) types are compatible, the ADR (or ADS) of any
variable or constant can be used as the actual
parameter. These are dangerous but sometimes useful
procedures.

PROCEDURE MOVER (S, D: ADRMEM; N: WORD);
A system level intrinsic procedure. Like NOVEL, but
starts at the highest addressed byte of each array.
Use MOVER and MOVESR to shift bytes right. As with
MOVEL, there is no bounds checking.

14-29

IMINARY DR»FT

Example:

MOVER (ADR V[0], AM V[4], 12)

See also PROCEDURE MOVESR for segmented address
types.

The MOVEs and FILLS take value parameters of type
ADRMEM and ADSMEM, but since all ADR (or ADS) types
are compatible, the ADR (or ADS) of any variable or
constant can be used as the actual parameter. These
are dangerous but sometimes useful procedures.

PROCEDURE MOVESL (S, D: ADSMEM; N: WORD);

A system level intrinsic procedure. Moves N
characters (bytes) starting at S* to D*, beginning
with the lowest addressed byte of each array.
Regardless of the value of the range and index
checking switches, there is no bounds checking.

Example:

MOVESL (ADS 'New String Value*, ADS V, 16)

See also PROCEDURE MOVEL for relative address types.
Use MOVEL and MOVESL to shift bytes left or when the
address ranges do not overlap.

The MOVE and FILL procedures take value parameters
of type ADRMEM and ADSMEM, but since all ADR (or
ADS) types are compatible, the ADR (or ADS) of any
variable or constant can be used as the actual
parameter. These are dangerous but sometimes useful
procedures.

14-30

DRAFT

PROCEDURE MOVESR (8, D: AD6MEM; N: WORD);

A system level intrinsic procedure. Like MOVESL,
but starts at the highest addressed byte of each
array. Use MOVER and MOVESR to shift bytes right.
As with MOVESL, there is no bounds checking.

Example:

MOVER (Al® V[0], AMI V[4], 12)

See also PROCEDURE MOVER for relative address types.

The MOVE and FILL procedures take value parameters
of type ADRMEM and ADSMEM, but since all ADR (or
ADS) types are compatible, the ADR (or ADS) of any
variable or constant can be used as the actual
parameter. These are dangerous but sometimes useful
procedures.

FUNCTION MXSRQQ (CONSTS A, B: REAL4): REAL4;
FUTCTION MXDRQQ (CONSTS A, B: REALS): REALS;

Arithmetic functions. Return the value of A or B,
whichever is larger. Both A and B are of type REAL4
or REAL8, as shown. These functions are from the MS-
FORTRAN run-time library and must be declared EXTERN
before use.

See also FUNCTION MNSRQQ and MNDRQQ.

PROCEDURE NEW (VARS P: POINTER);

A library procedure (heap management, short form).
Allocates a new variable V on the heap and at the
same time assigns a pointer to V to the pointer
variable P (a VARS parameter). The type of V is
determined by the pointer declaration of P. If V is
a super array type, use the long form of the
procedure instead. If V is a record type with
variants, the variants giving the largest possible

14-31

LUMINARY DRAFT

size are assumed, permitting any variant to be
assigned to P*.

PROCEDURE NEW (VARS P: POINTER; Tl, T2, ... TN:
TAGS);

A library procedure (heap management, long form).
Allocates a variable with the variant specified by
the tag field values Tl through Tn. The tag field
values are listed in the order in which they are
declared. Any trailing tag fields can be omitted.

If all tag field values are constant, MS-Pascal
allocates only the amount of space required on the
heap, rounded up to a word boundary. The value of
any omitted tag fields is assumed to be such that
the maximum possible size is allocated.

If some tag fields are not constant values, the
compiler uses one of two strategies:

1. It assumes that the first nonconstant tag field
and all following tags have unknown values, and
allocates the maximum size necessary.

2. It generates a special run-time call to a
function that calculates the record size from
the variable tag values available. This
depends on the implenentation. A similar
procedure applies to DISPOSE and SIZEOF.

You should set all tag fields to their proper values
after the call to NEW and never change them. The
compiler does not do any of the following:

o Assign tag valves

o Check that they are initialized correctly

o Check that their value is not changed during
execution

14-32

P~-rLIMINARY DR*FT

According to the ISO standard, a variable created
with the long form of NEW cannot be:

o Used as an expression operand

o Passed as a parameter

o Assigned a value

MS-Pascal does not catch these errors. Fields
within the record can be used normally.

Assigning a larger record to a smaller one allocated
with the long form of NEW wipes out part of the
heap. This condition is difficult to detect at
compile-time. Therefore, in MS-Pascal, any assignment
to a record in the heap that has variants uses the
actual length of the record in the heap, rather than
the maximum length.

However, an assignment to a field in an invalid
variant may destroy part of another heap variable or
the heap structure itself. This error is not
caught, unless all tag values are explicit, the tag
values are correct, and the tag checking switch is
on.

The extend level allows pointers to super arrays.
The long form of NEW is used as described above,
except that array upper bound values are given
instead of tag values. All upper bounds must be
given. Bounds can be constants or expressions; in
any case, only the size required is allocated.

The entire array referenced by such a pointer cannot
be assigned or compared, except that LSTRINGs can
always be compared. The entire array can be passed
as a reference parameter if the formal parameter is
of the same super array type. Components of the
array can be used normally.

14-33

FUNCTION ODD (X: ORDINAL): INTEGER;

A data conversion function. Tests the ordinal value
X to see whether it is odd. ODD is TRUE only if ORD
(X) is odd; otherwise it is FALSE.

FUNCTION ORD (X: VALUE): INTEGER;

A data conversion function. Converts to INTEGER any
value of of one of the types shown in Table 14-6,
according to the rules given.

Table 14-6: Conversion to INTEGER

TYPE OF X _________ RETURN VALUE_______

INTEGER X

WORD <= MAXIOT X

WORD > MAXINT X - 2 * (MAXINT + 1) (i.e., same
16 bits as at start!)

CHAR ASCII code for X

Enumerated Position of X in the type
definition, starting with 0

INTEGER4 Lower 16 bits (i.e., same s
ORD (LOWORD (INTEGER4))

Pointer Integer value of pointer

14-34

F'CLIMINARY DRAFT

PROCEDURE PACK
(CONSTS A: UNPACK-ARRAY; I: INDEX; VARS

Z: PACKED-ARRAY);

A data conversion procedure. Moves elements of an
unpacked array to a packed array. If A is an ARRAY
[M..N] OF T and Z is a PACKED ARRAY [U..V] OF T,
then PACK (A, I, Z) is the same as:

FOR J := U TO V DO Z [J] A [J - U + I]

In both PACK an3 UNPACK, the parameter I is the
initial index within A. The bounds of the arrays
and the value of I must be reasonable; i.e.r the
number of components in the unpacked array A from I
to M must be at least as great as the number of
components in the packed array Z. The range
checking switch controls checking of the bounds.

PROCEDURE PAGE;
PROCEDURE PAGE (VAR F);

A file system procedure. Causes skipping to the top
of a new page when the textfile F is printed. PAGE
with no parameter is the same as PAGE (INPUT).

See Section 15.1.4 for a description of PAGE.

FUNCTION PISRQQ (CONSTS A: REAL4; CONSTS
B: INTEGER4): REAL4;

FUNCTION PIDRQQ (CONSTS A: REAL8; CONSTS
B: INTEGER4): REALS;

Arithmetic functions. The return value is A**B (A
to the INTEGER power of B). A is of type REAL4 or
REAL8, as shown. B is always of type INTEGER4.
These functions are from the MS-FORTRAN run-time
library and must be declared EXTERN before use.

14-35

Pr\~LIMIN*RY DRAFT

PROCEDURE PLTOQQ;

A library routine (terminal I/O). Writes an end-of-
line character to the terminal screen.

Together with GETYQQ and PTYUQQ, PLYUQQ is useful
for doing terminal I/O in a low-overhead
environment. These functions are part of a
collection of routines called Unit U, which
implements the MS-Pascal file system. (See Section
8.2 in your MS-Pascal User's Guide for further
information on Unit U.) '

FUNCTION P06ITN
(CONSTS PAT: STRING; CONSTS

S: STRING; I: INTEGER): INTEGER;

A string intrinsic function. Returns the integer
position of the pattern PAT in S, starting the
search at S [I]. If PAT is not found or if I >
upper (S), the return value is 0. If PAT is the
null string, the return value is 1. There are no
error conditions.

FUNCTION PRED (X: ORDINAL): ORDINAL;

A data conversion function. Determines the ordinal
"predecessor" to X. The ORD of tie result returned
is equal to ORD (X) - 1. An error occurs if the
predecessor is out of range or overflow occurs.
These errors are caught if appropriate debug
switches are on.

14-36

P3-LIMINARY DRAFT

FUNCTION PRSRQQ (A, B: REAL4): REAL4;
FUNCTION PRDRQQ (A, B: REALS): REALS;

Arithmetic functions. The return value is A**B (A
to the REAL power of B). Both A and B are of type
REAL4 or REAL8, as shown. An error occurs if A < 0
(even if B happens to have an integer value). These
functions are from the MS-FORTRAN run-time 1ibrary
and must be declared EXTERN before use.

PROCEDURE PTYUQQ (LEM: WORD; DOC: ADtSMEM);

A library routine (terminal I/O). Writes LEN
characters, beginning at LOC in memory, to the
terminal screen.

Example:

PTYUQQ (8, ADS 'PROMPT: ');

Together with GETYQQ and PLYUQQ, PTYUQQ is useful
for doing terminal I/O in a low-overhead
environment. These functions are part of a
collection of routines called Unit U, which
implements the MS-Paseal file system. (See Section
8.2 in your MS-Pascal User's Guide for further
information on Unit U.)

PROCEDURE PUT (VAR F);

A file system procedure. Writes the value of the
file buffer variable F* to the currently pointed-to
component of F and advances the file pointer.

See Section 15.1.1 for a description of PUT.

14-37

ppr I BINARY DRAr’r

PROCEDURE READ (F)

A file system procedure. READ reads data from
files. Both READ and READLN are defined in terms of
the more primitive operation, GET.

See Section 15.2 for a description of READ.

PROCEDURE READFN (VAR F; Pl, P2, ... PN);

A file system procedure (extend level I/O). READFN
is the same as READ (not READLN) with two
exceptions:

1. File parameter F should be present (INPUT is
assumed but a warning is given).

2. If a parameter P is of type FILE, a sequence of
characters forming a valid filename is read
from F and assigned to P in the same manner as
ASSIGN.

Parameters of other types are read in the same way
as the READ procedure.

See Section 15.3.1 for a description of READFN.

PROCEDURE READLN (F)

A textfile I/O procedure. At the primitive GET
level, without parameters, READIN (F) is equivalent
to the following:

BEGIN
WHILE NOT EOLN (F) DO GET (F);
GET (F)

END

The procedure READLN is very much like READ, except
that it reads up to and including the end of line.

14-38
PRELIMINARY DRPFV

See Section 15.2 for a description of READ.

PROCEDURE READSET
(VAR F; VAR L: LSTRING; CONST S: SETOECHAR);

A file system procedure (extend level I/O). READSET
reads characters and puts than into L, as long as
the characters are in the set S and there is roan in
L.

See Section 15.3.1 for a description of READSET.

PROCEDURE RELEAS (VAR HEAMARK: INTEGER4);

A library routine (heap management). Parallels the
RELEASE procedure in other Pascals. RELEAS disposes
of heap space past the area set with a previous
MARKAS call. The DISPOSE procedure in MS-Paseal is
generally more powerful, but RELEAS may be useful
for converting from other Pascal dialects.

In other Pascals, the parameter is of a pointer
type. However, MS-Paseal needs two words to save
the heap limits, since in sane implementations the
heap grows toward both higher and lower addresses.
The HEAPMARK variable should not be used as a normal
INTEGER4 number; it should only be set by MARKAS
and passed to RELEAS.

To use MARKAS and RELEAS, pass an INTEGER4 variable,
say M, as a VAR parameter to MARKAS. MARKAS places
the bounds of the heap in M. To RELEAS heap space,
simply invoke the procedure with RELEAS (M).

MARKAS and RELEAS work as intended only if DISPOSE
is never called.

14-39
PR-LIMINARY DR/'FT

PROCEDURE RESET (VAR F);

A file system procedure. Resets the current file
position to its beginning and does a GET (F).

See Section 15.1.2 for a description of RESET.

FUNCTION RESULT (FUNCTION-IDENTIFIER): VALUE;

An extend level intrinsic function. Used to access
the current valve of a function; can be used only
within the body of the function itself or in a
procedure or function nested within it.

FUNCTION RETYPE (TYPE-IDENT, EXPRESSION): TYPE-
IDENT;

A system level intrinsic function. Provides a
generic type escape, returns the value of the given
expression as if it had the type named by the type
identifier. The types implied by the type­
identifier and the expression should usually have
the same length, but this is not required. RETYPE
for a structure can be followed by component
selectors (array index, fields, reference, etc).
RETYPE is a "dangerous" type escape and may not work
as intended.

Example:

TYPE COLOR -- (RED, BLUE, GREEN);
S2 -- STRING (2);

VAR C :#CHAR;
I, J :f INTEGER;
R :#REAL4;
TINT: (COLOR;

R RETYPE (REAL4, 'abed');
{Here, a 4-byte string literal is}

14-40

PRELIMINARY DR’FT

{converted into a real number.}
{Note that REAL4 numbers also}
{require 4 bytes.}

TINT RETYPE (COLOR, 2)
{Here, 2 is converted into a color,}
{which in this case is GREEN.}
{This is a relatively "safe" use}
{of the RETYPE function.}

C RETYPE (82, I) [J]
{Hare, I is retyped into a two}
{character string. Then J selects}
{a single character of the string}
{vhich is assigned to C.}

There are two other ways to change type in MS-
Pascal:

1. First, you can declare a record with one
variant of each type needed, assign an
expression to one variant, and then get the
value back from another variant. (This is an
error not caught at the standard level. Note
that the relative mapping of variables is
subject to change between different versions of
the compiler.)

2. Second, you can declare an address variable of
the type wanted and assign to it the address of
any other variable (using ADR).

Each of these methods has its own subtle differences
and quirks and should be avoided whenever possible.

PROCEDURE RMRITE (F) ;

A file system procedure. Resets the current file
position to its beginning.

See Section 15.1.2 for a description of REWRITE.

14-41

GRAFT

FUNCTION ROUND (X: REAL): INTEGER;

An arithmetic function. Rounds X away from zero. X
is of type REAL4 or REAL8; the return value is of
type INTEGER. The effect of ROUND on a number with
a fractional part of 0.5 varies with the
implementation.

Examples:

ROUND (1.6) is 2
ROUND (-1.6) is -2

An error occurs if ABS (X + 0.5) >= MAXINT,

FUNCTION ROUND4 (X: REAL): INTEGER4;

An arithmetic function. Rounds real X away from
zero. X is of type REAL4 or REAL8; the return value
is of type INTEGER4. The effect of ROUND4 on a
number with a fractional part of 0.5 varies with the
impl emm ta ti on.

Examples:

ROUND4 (1.6) is 2

R0UND4 (-1.6) is -2

An error occurs if ABS (X + 0.5) >=MAXINT4.

FUNCTION SADDOK
(A, B: INTEGER; VAR C: INTEGER): BOOLEAN;

A library routine (no-overflow arithmetic). Sets C
equal to A plus B. One of two functions that do 16-
bit signed arithmetic without causing a run-time
error on overflow. Normal arithmetic may cause a

14-42

PRELIMINARY CRAFT

run-time error even if the arithmetic debugging
switch is off. Both SADDOK and SMULOK return TRUE
if there is no overflow, and FALSE if there is.
These routines can be useful for extended-precision
arithmetic, or modulo 2*16 arithmetic, or
arithmetic based on user input data.

FUNCTION SCANEQ
(LEN: INTEGER; PAT: CHAR; CONSTS S: STRING;

I: INTEGER):INTEGER;

A string intrinsic function. Scans, starting at S
(I], and returns the number of characters skipped.
SCANEQ stops scanning when a character equal to
pattern PAT is found or LEN characters have been
skipped. If LEN < 0, SCANEQ scans backwards and
returns a negative number. SCANEQ returns the LEN
parameter if it finds no characters equal to pattern
PAT found or if I > UPPER (S). There are no error
conditions.

FUNCTION SCANNE
(LEN: INTEGER; PAT: CHAR; CONSTS S: STRING;

I: INTEGER):INTEGER;

A string intrinsic function. Like SCANEQ, but stops
scanning when a character not equal to pattern PAT
is found.

Scans, starting at S [I], and returns the number of
characters skipped. SCANEQ stops scanning when a
character not equal to pattern PAT is found or LEN
characters have been skipped. If LEN < 0, SCANEQ
scans backwards and returns a negative number.
SCANEQ returns LEN parameter if it finds all
characters equal to pattern PAT found or if I >
UPPER (S). There are no error conditions.

14-43

p-ilMINARY DR’"

PROCEDURE SEEK (VAR F; N: INTEGER4)

A file systan procedure (extend level I/O). In
contrast to normal sequential files, DIRECT files
are random access structures. SEEK is used to
randomly access components of such files.

See Section 15.3 for details.

FUNCTION SHSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION SHDRQQ (CONSTS A: REALS): REALS;

Arithmetic functions. Return the hyperbolic sine of
A. A is of type REAL4 or REAL8, as shown. These
functions are from the MS-FORTRAN run-time library
and must be declared EXTERN before use.

FUNCTION SIN (X: NUMERIC): REAL;

An arithmetic function. Returns the sine of X in
radians. Both X and the return value are of type
REAL. To force a particular precision, declare
SNSRQQ (CONSTS REAL4) and/or SNDRQQ (CONSTS REALS)
and use them instead.

FUNCTION SIZEOF (VARIABLE): WORD;
FUNCTION SIZEOF (VARIABLE, TAG1, TAG2, ...TAGN): WORD

An extend level intrinsic function. Returns the size
of a variable in bytes. Tag values or array upper
bounds are set as in the NEW and DISPOSE functions.
If the variable is a record with variants, and the
first form is used, the maximum size possible is
returned. If the variable is a super array, the
second form, which gives upper bounds, must be used.

14-44

A RY 0/

FUNCTION SMUDOK
(A, B: INTEGER; VAR C: INTEGER): BOOLEAN;

A library routine (no-overflow arithmetic function).
Sets C equal to A times B. frie of two functions
that do 16-bit signed arithmetic without causing a
run-time error on overflow. Normal arithmetic may
cause a run-time error, even if the arithmetic
debugging switch is off. Each routine returns TRUE
if there is no overflow, and FALSE if there is.
These routines can be useful for extended-precision
arithmetic, or modulo 2*16 arithmetic, or arithmetic
based on user input data.

FUNCTION SQR (X: NUMERIC): NUMERIC;

An arithmetic function,
where X is of type REAL,

FUNCTION SQRT (X): REAL

Returns the square of X,
INTEGER, WORD, or INTEGER4.

An arithmetic function. Returns the square root of
X, where X is of type REAL. To force a particular
precision, declare SRSRQQ (CONSTS REAL4) and/or
SRDRQQ (CONSTS REALS) and use them instead. An
error occurs if X is less than 0.

FUNCTION SUCC (X: ORDINAL): ORDINAL;

A data conversion function. Determines the ordinal
"successor" to X. The ORD of the returned result is
equal to ORD (X) + 1. An error occurs if the
successor is out of range or overflow occurs. These
errors are caught if appropriate debug switches are
on.

14-45

PPF LIpy

FUNCTION THSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION THDRQQ (CONSTS A: REALS): REALS;

Arithmetic functions. Return the hyperbolic tangent
of A, Both A and the return value are of type REAL4
or REALS, as shown. These functions are from the
MS-FORTRAN run-time library and must be declared
EXTERN before use.

FUNCTION TICS: WORD;

A library routine (clock function). If available,
TICS returns the value of an operating system timing
location. The result is in a time interval, such as
hundredths of a second, depending on the target
operating system.

PROCEDURE TIME (VAR S: STRING);

A library routine (clock function). If available,
this procedure assigns the current time to its
STRING (or LSTRING) variable. If the parameter is
an LSTRING, you must set the length before you call
the TIME procedure. The format depends on the
target operating system.

See also PROCEDURE DATE.

FUNCTION TNSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION TNDRQQ (CONSTS A: REALS): REAL8;

Arithmetic functions. Return the tangent of A.
Both A and the return valve are of type REAL4 or
REALS, as shown. These functions are from the MS-
FORTRAN run-time library and must be declared EXTERN
before use.

14-46

P°r’LlMloy DRAFT

FUNCTION TRUNC (X: REAL): INTEGER;
An arithmetic function. Truncates X toward zero. X
is of type REAL4 or REAL8, and the return value is
of type INTEGER.

Examples:

TRUNC (1.6) is 1
TRUNC (-1.6) is -1
An error occurs if ABS (X - 1.0) >= MAXINT.

FUNCTION TMNC4 (X: REAL): INTEGER4;
An arithmetic function. Truncates real X towards
zero. X is of type REAL4 or REAL8, and the return
value is of type INTEGER4.

Examples:

TRUNC4 (1.6) is 1
TRUNC4 (-1.6) is -1
An error occurs if ABS (X - 1.0) >=MAXINT4.

FUNCTION UADDOK (A, B: WC3RD; VAR C: NOW) : BOOLEAN;

A library routine (no-overflow arithmetic function).
Sets C equal to A plus B. Che of two functions that
do 16-bit unsigned arithmetic without causing a run­
time error on overflow. Normal arithmetic may cause
a run-time error even if the arithmetic debugging
switch is off. The following is the binary carry
resulting from this addition of A and B:

WRD (NOT UADDOK (A, B, C)))

Both UADDOK and UMULOK return TRUE if there is no
overflow and FALSE if there is. These routines are

It- -47
p^LIMINARY DRAFT

useful for extended-precision arithmetic, or modulo
2*16 arithmetic, or arithmetic based on user input
data.

FUNCTION UMULOK (A, B: WORD; VAR C: WORD): BOOLEAN;

A library routine (no-overflow arithmetic function).
Sets C equal to A times B. One of two functions
that do 16-bit unsigned arithmetic without causing a
run-time error on overflow. Normal arithmetic may
cause a run-time error even if the arithmetic
debugging switch is off. Each routine returns TRUE
if there is no overflow and FALSE if there is.
These routines are useful for extended-precision
arithmetic, or modulo 2*16 arithmetic, or arithmetic
based on user input data.

PROCEDURE UNLOCK (VARS SEMAPHORE: WORD);

A library routine (semaphore procedure). UNILOCK sets
the semaphore available. As a binary semaphore,
there are only two states. UNLOCK can be called any
number of times and can be used to initialize the
semaphore.

See also FUNCTION LOCKED.

PROCEDURE UNPACK
(CONSTS Z: PACKED-ARRAY; VARS A: UNPACK-ARRAY;

I: INDEX);
A data conversion procedure. Moves elements from
packed array to an unpacked array. If A is an ARRAY
[M..N] OF T, and Z is a PACKED ARRAY [U..V] OF T
then the above call is the same as:

FOR J := U TO V DO A [J - U + I] z [J]

In both PACK and UNPACK, the parameter I is the

14-48

PRELIMINARY DRAFT

initial index within A. The bounds of the arrays
and the value of I must be reasonable; i.e., the
number of components in the unpacked array A from I
to M must be at least as great as the number of
components in the packed array Z. The range
checking switch controls checking of the bounds.

See also PROCEDURE PACK.

FUNCTION UPPER (EXPRESSION): VALUE;

An extend level intrinsic function. UPPER, like
LOWER, takes a single parameter of one of the
following types: array, set, enumerated, or
subrange. The value returned by UPPER is one of the
following:

1. The upper bound of an array

2. The last allowable element of a set

3. The last value of an enumerated type

4. The upper bound of a subrange

The value returned by UPPER is always a constant,
unless the expression is of a super array type. In
this case, the actual upper bound of the super array
type is returned. Note that the type and not the
value of the expression is used for UPPER.

See also PROCEDURE LOWER.

PROCEDURE VECTIN (V: WORD; PROCEDURE I [INTERRUPT]);

A library routine (interrupt handling procedure).
One of three procedures for processing interrupts.
VECTIN sets an interrupt vector, so that interrupts
of type V are connected to procedure I. (ENABIN
enables interrupts and DISB IN disables interrupts.)

14-49

' ’? m a © y ©p" ft

The effect of these procedures and the meaning of V
varies with the target machine. See Appendix A,
in the MS-Pascal User's Guide for information regarding your
impl ementation. ~

FUNCTION WRD (X: VALUE): WORD;

A data conversion procedure. Converts to WORD any
of the types shown in Table 14-7, according to the
rules given.

Table 14-7: Conversion to WORD

TYPE OF X RETURN VALUE

WORD X

INTEGER >= 0 X

INTEGER < 0 X + MAXWORD + 1 (i.e., same 16
bits as at start!)

CHAR ASCII code for X

Enumerated Position of X in the type
definition, starting with 0

INTEGER4 Lower 16 bits (i.e., same as
LOWORD (INTEGER4)

Pointer Word value of pointer

14-50

PROCEDURE WRITE (F)
PROCEDURE WRITELN (F)

File system level intrinsic procedures. WRITES data
to files. WRITE ard WRITELN are defined in terms of
the more primitive operation PUT. WRITELN is the
same as WRITE, except it also writes an end-of-
line.

See Section 15.2.3 for descriptions of these
procedures.

14-51

preliminary draft

15. FILE-ORIENTED PROCEDURES AND FUNCTIONS

This chapter discusses all of the file I/O
procedures and functions, as well as lazy evaluation
and concurrent I/O, two special MS-Pascal features
that facilitate your use of files.

The MS-Pascal file system supports a variety of
procedures and functions that operate on files of
different modes and structures. These procedures
and functions can be categorized as shown in Table
15-1.

Table 15-1: File System Procedures and Functions

CATEGORY PROCEDURES FUNCTIONS

Primitive GET EOF
PAGE
POT
RESET
REWRITE

EOLN

Textfile I/O READ
READLN
WRITE
WRITELN

Extend ASSIGN
Level I/O CLOSE

DISCARD
READSET
READEN
SEEK

15-1

PRELIMINARY DRAFT

15.1 FILE SYSTEM PRIMITIVE PROCEDURES AND FUNCTIONS

This section describes the seven primitive file
system procedures and functions, which perform file
I/O at the most basic level. Later descriptions of
READ and WRITE procedures are defined in terms of
the primitives GET and PUT. Two related topics are
also discussed in this section: lazy evaluation and
concurrent I/O.

In all descriptions below, F is a file parameter
(files are always reference parameters), and F* is
the buffer variable.

In a segmented environment, all file variables
operated on by these procedures must reside in the
default data segment. This restriction increases
the efficiency of file system calls.

GET and POT: The primitive procedures GET and PUT
read to and write from the buffer variable, F_\ A
GET assigns the next component of a file to the
buffer variable. PUT performs the inverse operation
and writes the value of the buffer variable to the
next component of the file F.

RESET and REWRITE: The procedures RESET and REWRITE
set and REWRITE the current position of a file to
its beginning. RESET prepares for later GET and
READ procedures. REWRITE prepares for later PUT and
WRITE procedures.

EOF and ELON: The functions EOF and EOLN are used
and EOLN to check for the end-of-file and end-of-
line conditions. They EOLN return a BOOLEAN result.
In general, these values indicate when to stop
reading a line or a file.

PAGE: The procedure PAGE helps in formatting
textfiles. It is not a necessary procedure in the
same sense as GET and PUT.

15-2

PPn.lMWRY DRAFT

15.1.1 GET AND PUT

The primitive procedures GET and PUT are used to
read to and write from the buffer variable, FA. GET
assigns the next component of a file to the buffer
variable. PUT performs the inverse operation and
writes the value of the buffer variable to the next
component of the file F.

PROCEDURE GET (VAR F);

A primitive file system intrinsic procedure. If
there is a next component in the file F, then:

1. The current file position is advanced to the
next component.

2. The value of this component is assigned to the
buffer variable FA.

3. EOF (F) becomes FALSE.

Advancing and assigning may be deferred internally,
depending on the mode of the file.

If no next component exists, then EOF (F) becomes
TRUE and the value of FA becomes undefined. EOF (F)
must be FALSE before GET (F), since reading past the
end of file produces a run-time error. However, if F
has mode DIRECT, EOF (F) can be TRUE or FALSE, since
DIRECT mode permits repeated GET operations at the
end of the file. If FA is a record with variants,
the compiler reads the variant with the maximan
size.

15-3

DRAFT

PROCEDURE PUT (VAR F) ;

A primitive file system intrinsic procedure. Writes
the value of the file buffer variable F* at the
current file position and then advances the position
to the next component.

1. For SEQUENTIAL and TERMINAL mode files, PUT is
permitted if the previous operation on F was a
REWRITE, PUT, or other write procedure, and if
it was not a RESET, GET, or other read
procedure.

2. For DIRECT mode files, PUT may occur
immediately after a RESET or GET.

Exceptions to these rules cause errors to be
generated. The value of F~ always becomes undefined
after a PUT.

In MS-Pascal, the value of F* after a PUT (F) may
vary, depending on the target operating system and
type of file. EOF (F) must be TRUE before PUT (F),
unless F is a DIRECT mode file. EOF (F) is always
TRUE after PUT (F). If F* is a record with
variants, the variant with the maximum size is
written.

15.1.2 RESET AM REWRITE

The procedures RESET and REWRITE set the current
position of a file to its beginning. RESET prepares
for later GET and READ operations. REWRITE prepares
for later PUT and WRITE operations.

PROCEDURE RESET (VAR F);

A primitive file system intrinsic procedure. Resets
the current file position to its beginning and does
a GET (F). If the file is not empty, the first
component of F is assigned to the buffer variable

15-4

PRELIMINARY DR-'ft

F*, and EOF (F) becomes false. If the file is
empty, the value of F" is undefined, and EOF (F)
becomes true. RESET initializes a file F prior to
its being read. For DIRECT files, writing can be
done after RESET as well.

In MS-Pascal, a RESET closes the file and then opens
it in a way that depends on the operating system.
An error occurs if the filename has not been set (as
a program parameter or with ASSIGN or READFN) or if
the file cannot be found by the operating system.
If an error occurs during RESET, the file is closed,
even if the file was opened correctly and the error
came with the initial GET.

RESET (INPUT) is done automatically when a program
is initialized, but is also allowed explicitly.
RESET on a file with mode DIRECT allows either
reading or writing, but the file is not created
automatically. Also, the initial GET reads record
number one on a DIRECT mode file.

Note that an explicit GET (F) immediately following
a RESET (F) assigns the second component of the file
to the buffer variable. However, a READ (F, X)
fol lowing a RESET (F) sets X to the first component
of F, since READ (F, X) is "X F“; GET (F)".

PROCEDURE REWRITE (VAR F);

A primitive file system intrinsic procedure.
Positions the current file to its beginning. The
value of F* is undefined and EOF (F) becomes TRUE.
This is needed to initialize a file F before writing
(for DIRECT files, reading can be done after REWRITE
too).

In MS-Pascal, a REWRITE closes the file and then
opens it in a way that is dependent on the operating
system. If the file does not exist in the operating
system, it is created. If it does exist, its old

15-5

PRELIMINARY DRAFT

value is lost (unless it has mode DIRECT). The
filename must have been set, (as a program parameter
or with ASSIGN or READFN). If an error occurs
during REWRITE, the file is closed. If possible, an
existing file with the same name is not affected
when a REWRITE error occurs, but with some target
operating systems the existing file may be deleted.
REWRITE (OUTPUT) is done automatically when a
program is initialized, but can also be done
explicitly if desired. REWRITE on a DIRECT mode
file allows both reading and writing. REWRITE does
not do an initial PUT the way RESET does an initial
GET.

15.1.3 EOF AND EOLN

The functions EOF and EOLN check for end-of-file and
end-of-line conditions, respectively. They return a
BOOLEAN result. In general, these values indicate
when to stop reading a line or a file.

FUNCTION EOF: BOOLEAN;
FUNCTION EOF (VAR F) : BOOLEAN;

A primitive file system intrinsic function.
Indicates whether the buffer variable F~ is
positioned at the end of the file F for SEQUENTIAL
and TERMINAL file modes. Therefore, if EOF (F) is
TRUE, either the file is being written or the last
GET has reached the end of the file.

With the DIRECT file mode, if EOF (F) is TRUE,
either the last operation was a write (the file may
or may not be positioned at the end in this case) or
the last GET reached the end of the file.

EOF without a parameter is equivalent to EOF
(INPUT). EOF (INPUT) is generally never TRUE,
except in some operating systems Mere a particular
terminal character generates an end-of-file status,

15-6

PRELIMINARY DRAFT

or if INPUT is reassigned to another file. Calling
the EOF (F) function accesses the buffer variable
F*.

FUNCTION EOLN: BOOLEAN;
FUNCTION EOLN (VAR F) : BOOLEAN;

A primitive file system intrinsic function.
Indicates whether the current position of the file
is at the end of a line in the textfile F after a
GET (F). The file must have ASCII structure.

According to the ISO standard, calling EOLN (F) vAien
EOF (F) is TRUE is an error. In MS-Pascal, this
error is caught in most cases. The file F must be a
file of type TEXT.

If EOLN (F) is TRUE, the value of F" is a space, but
the file is positioned at a line marker. EOLN
without a parameter is equivalent to EOLN (INPUT).
Calling the EOLN (F) function accesses the buffer
variable F".

15.1.4 PAGE

The procedure PAGE helps in formatting textfiles.
It is not a "necessary" procedure in the same sense
as GET and PUT.

PROCEDURE PAGE;
PROCEDURE PAGE (VAR F);

A primitive file system intrinsic procedure. Causes
skipping to the top of a new page when the textfile
F is printed. Since PAGE writes to the file, the
initial conditions described for PUT must be TRUE.
The file must have ASCII structure. PAGE without a
parameter is equivalent to PAGE (OUTPUT).

15-7

pp" LI Ml NA RY DRAFT

If F is not positioned at the start of a line, PAGE
(F) first writes a line marker to F. If F has mode
SEQUENTIAL or DIRECT, then PAGE (F) writes a
formfeed, CHR (12). If F has mode TERMINAL, the
effect is defined by the target operating system
interface, which usually also writes a form feed.

15.1.5 LAZY EVALUATION

Lazy evaluation is designed to solve a recurring
problem in Pascal, specifically/ how to READ from a
terminal in a natural way.

The underlying problem is that the ISO standard
defines the procedure RESET with an initial GET.
Although acceptable in Pascal's original batch
processing, sequential file environment, this kind
of read-ahead doesn't work for interactive I/O.

Lazy evaluation in MS-Pascal provides for deferring
actual physical input (textfiles only) when a buffer
variable is evaluated.

For example, if a normal file is RESET and then
READ, the RESET procedure calls the GET procedure,
which sets the buffer variable to the first
component of the file. However, if the file is a
terminal, this first component does not yet exist.

Therefore, you must first type a character at the
keyboard to accommodate the GET procedure. Only
then are you prompted for any input. Lazy evaluation
eliminates this problem for textfiles by giving the
file's buffer variable a special status value that
is either "full" or "empty."

The normal condition after a GET (F) is empty. The
status is full after a buffer variable has been
assigned to or assigned from. Full implies that the
buffer variable value is equal to the currently
pointed to component. Empty implies just the
opposite, that the buffer variable value does not

15-8

°”LIMINARY DRAFT

equal the value of the currently pointed to
component and input to the buffer variable has been
deferred. Table 15-2 summarizes these rules.

Note that RESET (F) first sets the status full and
then calls GET, which sets the status to empty
without any physical input.

15-9

"MBINARY

Example of lazy evaluation with automatic REWRITE
call:

{INPOT is automatically a textfile.}
{RESET (INPUT); done automatically.}
WRITE (OUTPUT, "Enter number: ");
READLN (INPOT, FOO);

The automatic initial call to the RESET procedure
calls a GET procedure, which changes the buffer
variable status from full to empty. The first
physical action to the screen is the prompt output
from the WRITE. READLN does a series of the
following operations:

temp INPUT*;
GET (INPUT)

Physical input occurs when each INPUT* is -fetched
and the GET procedure sets the status back to empty.

READLN ends with the sequence:

WHILE NOT EOLN DO GET (INPOT);
GET (INPUT)

This operation skips trailing characters and the
line marker. The EOLN function invokes the physical
input. Entering the carriage return sets the EOLN
status. Both the GET procedure in the WHILE loop and
the trailing GET set the status back to enpty. The
last physical input in the sequence above is reading
the carriage return.

15.1.6 CONCURRENT I/O

On operating systems that support it, concurrent I/O
permits a GET or PUT procedure to initiate the I/O
and immediately return to the calling program. It
is used only for BINARY structure files.

15-10

LUMINARY DR'3FT

The program can do computation while the buffer
variable is being filled or emptied. The buffer
variable has another special status value that can
be "ready" or "busy." If the status is busy when the
buffer variable needs to be accessed, the program
must wait until the status becomes ready.

For example, the following program fragment reads
the file IN_FILE, does some computation with the
current value, and then writes it to the file
OUT_FILE:

WHILE NOT EOF (IN FILE) DO

{Check for end of input and}
{wait until IN FILE" ready.}

BEGIN
READ (IN FILE, BUFF);
{IN-FILE’r is ready, so assign it to BUFF;}
{start reading next component.}

OPERATE (BUFF);
{Go process value during READ and WRITE.}

WRITE (OUT—FILE, BUFF);
{Wait until OUT—FILE" is ready,}
{then assign BUFF and start writing.}

EkD

The preceding example uses READ and WRITE
procedures. Note that the following two lines are
equivalent:

READ (IN-FILE, BUFF)
BUFF := IN—FILE"; GET (IN FILL)

These two are also identical:

WRITE (OUT—FILE, BUFF)
OUT_FILE" := BUFF; PUT (OUTFILE)

15-11

11 Ml NARY DRAFT

Concurrent I/O applies to the procedures GET and
PUT, as Ell as to the procedures READ and WRITE.
In practice, it is unusual for the MS-Pascal run-time
system to handle concurrency. See Appendix A in the
MS-Pascal User's Guide for information regarding your
implementation.

When accessing the buffer variable, either for lazy
evaluation or concurrency, MS-Pascal generates an
I/O system call. However, if the buffer variable is
an actual reference parameter, the procedure or
function using that parameter can do I/O to the same
file, and these special calls cannot be executed.

Passing any buffer variable as a reference parameter
is an error in MS-Pascal, although only a warning is
given. Calling GET or PUT has an undefined effect
on a file buffer variable accessed indirectly
through a reference parameter. Assigning the
address of a buffer variable to an address type
variable is equally dangerous, since this bypasses
the lazy evaluation and concurrency mechanisms.

15.2 TEXTFILE INPUT AND OUTPUT

Human-readable input and output in standard Pascal
are done with textfiles. Textfiles are files of
type TEXT and always have ASCII structure.
Normally, the standard textfiles INPUT and OUTPUT
are given as program parameters in the PROGRAM
head ing:

PROGRAM IN-AND-OUT (INPUT,OUTPUT) ;

Other textfiles usually represent sane input or
output device such as a terminal, a card reader, a
line printer, or an operating system disk file. The
extend level permits using additional files not
given as program parameters.

15-12

preliminary draft

In order to facilitate the handling of textfiles,
the four standard procedures READ, READLN, WRITE,
and WRITELN are provided in addition to the
procedures GET
and PUT.

READ and READLN: The procedures READ and READLN
read data from textfiles. READ and READLN are
defined in terms of the more primitive operation,
GET. The procedure READLN is very much like READ,
except that it reads up to and including the end of
line.

WRITE and WRITELN:The procedures WRITE and WRITELN
write data to textfiles. WRITE and WRITELN are
defined in terms of the more primitive operation,
PUT. The procedure WRITELN writes a line marker to
the end of a line. In all other respects, WRITELN
is analogous to WRITE.

These procedures are more flexible in the syntax for
their parameter lists, allowing, among other things,
for a variable number of parameters. Moreover, the
parameters need not be of type CHAR, but can also be
of certain other types, in vhich case the data
transfer is accompanied by an implicit data
conversion operation. In some cases, parameters can
include additional formatting values that affect the
data conversions used.

If the first variable is a file variable, then it is
the file to be read or written. Otherwise, the
standard files INPUT and OUTPUT are automatically
assumed as default values in the cases of reading
and writing, respectively.

These two files have TERMINAL mode and ASCII
structure and are predeclared as:

VAR INPUT, OUTPUT: TEXT;

In MS-Pascal, the files INPUT and OUTPUT are treated

15-13

' IMUMARY DRAFT

like other textfiles. They can be used with ASSIGN,
CLOSE, RESET, REWRITE, and the other procedures and
functions. However, even if present as program
parameters, they are not initialized with a
filename. Instead, they are assigned to the user’s
terminal. RESET of INPUT and REWRITE of OUTPUT are
done automatically, whether or not they are present
as program parameters.

Textfiles represent a special case among file types
insofar as they are structured into lines by "line
markers". If, upon reading a textfile F, the file
position is advanced to a line marker (i.e., past
the last character of a line), then the value of the
buffer variable F* becomes a blank, and the standard
function EOLN (F) yields the value true.

Advancing the file position once more causes one of
three things to happen:

1. If the end of the file is reached, then EOF (F)
becomes TRUE.

2. If the next line is empty, a blank is assigned
to F" and EOLN (F) remains TRUE.

3. Otherwise, the first character of the next line
is assigned to F* and EOLN (F) is set to FALSE.

Since line markers are not elements of type CHAR in
standard Pascal, they can, in theory, be generated
only by the procedure WRITELN. However, in MS-
Pascal, an actual character may be used for the line
marker, and it can therefore be possible to write
one, but not to read one.

When a textfile being written is closed, a final
line marker is automatically appended to the last
line of any non-empty file in which the last
character is not already a line marker.

15-14

■' WINERY DRAFT

When a textfile being read reaches the end of a non­
empty file, a line marker for the last line is
returned even if one was not present in the file.
Therefore, lines in a textfile always end with a
line marker.

Any list of data written by a WRITELN is usually
readable with the same list in a READLN (unless an
LSTRING occurs that is not on the end of the list.)

Interactive prompt and response is very easy in MS-
Pascal. To have input on the same line as the
response, use WRITE for the prompt. READLN must
always be used for the response. For example:

WRITE (’Ehter command: ’);
READLN (response);

If no file is given, most of the textfile procedures
and functions assume either the INPUT file or the
OUTPUT file. For example, if I is of type INTEGER,
then READ (I) is the same as READ (INPUT, I).

15.2.1 READ AND READLN

PROCEDURE READ
PROCEDURE READLN

File system intrinsic procedures for textfile I/O.
READ and READLN read data from text files. Both are
defined in terms of the more primitive operation,
GET. That is, if P is of type CHAR, then READ (F,
P) is equivalent to:

BEGIN
P := F*;
{Assign buffer variable F* to P.}
GET (F)
{Assign next component of file to F*.J

END

15-15

PRELIMINARY ^'"7

READ can take more than a single parameter, as
in READ (F, Pl, P2, ... Pn). This is
equivalent to the following:

BEGIN
READ (F, Pl);
READ (F, P2) ;

READ (F, Pn)
END

The procedure READLN is very much like READ, except
that it reads up to and including the end-of-line.
At the primitive GET level, without parameters,
READLN is equivalent to the following:

BEGIN
WHILE NOT EOLN (F) DO GET (F);
GET (F)

MD

A READLN with parameters, as in READLN (F, Pl, P2,

BEGIN
READ (F, Pl, P2, Pn);
READLN (F)

END

READLN is often used to skip to the beginning of the
next line. It can be used only with textfiles
(ASCII mode).

If no other file is specified, both READ and READLN
read from the standard INPUT file. Therefore, the
name INPUT need not be designated explicitly. For
example, these two READ statements perform identical
actions:

READ (Pl, P2, P3)
{Reads INPUT by default}
READ (INPUT, Pl, P2, P3)

15-16

LUMINARY DR"FT

At the standard level, parameters Pl, P2, and P3
above must be of one of the following types:

CHAR
INTEGER
REAL

The extend level also allows READ variables of the
following types:

WORD
an enumerated type
BOOLEAN
INTEGER4
a pointer type
STRING
LSTRING

When the compiler reads a variable of a subrange
type, the value read must be in range. Otherwise,
an error occurs, regardless of the setting of the
range checking switch.

The procedure READ can also read from a file that is
not a textfile (e.g., has BINARY mode). The form:

READ (F, Pl, P2, Pn)

can be used on a BINARY file. However, this READ
will not work as expected after a SEEK on a DIRECT
mode file. For BINARY files, READ (F, X) is
equivalent to:

BEGIN
X := F*;
GET (F)
END

15-17
“’J Ml NARY DRAFT

15.2.2 READ FORMATS

The READ process for formatted types (everything
except CHAR, STRING, arri LSTRING) first reads
characters into an internal ESTRING and then decodes
the string to get the value.

Three important points apply to formatted reads.

1. First, leading spaces, tabs, formfeeds, and
line markers are skipped. For example, when
doing READLN (I, J, K) where I, J, and K are
integers, the numbers can all be on the same
1 ine or spread over several 1 ines.

2. Second, characters are read as long as they are
in the set of characters valid for the type
wanted. For example, "-1-2-3" is read as the
string of characters for a single INTEGER, but
gives an error when the string is decoded. This
means that items should be separated by spaces,
tabs, line markers, or characters not permitted
in the format.

3. Third, M and N values in READ are ignored,
except as noted for an N value with enumerated
types. M and N parameters are not accepted in
BINARY reads.

Most of the formatting rules below apply to the
function DECODE, as well.

1. INTEGER and WORD types

If P is of type INTEGER, WORD, or a subrange
thereof, then READ (F, P) implies reading a
sequence of characters from F which forms a
number according to the normal Pascal syntax,
and then assigning the number to P. Nondecimal
notation (16#C007, 8#74, 10#19, 2#101, #Face)
is accepted for both INTEGER and WORD, with a

15-18

DRAFT

radix of 2 through 36. If P is of an INTEGER
type, a leading plus (+) or minus (-) sign is
accepted. If P is of a WORD type, then numbers
up to MAXWORD are accepted (32768..65535).

2. REAL and INTEGER4 types

If P is of type REAL, or at the extend level
type INTEGER4, READ (F, P) implies reading a
sequence of characters from F that form a
number of the appropriate type and assigning
the number to P. Nondecimal notation is not
accepted for REAL numbers, but is accepted for
INTEGER4s. When reading a REAL value, a number
with a leading or trailing decimal point is
accepted, even though this form gives a warning
if used as a constant in a program.

3. Enumerated and Boolean types

At the extend level, if P is an enumerated type
or BOOLEAN, a number is read as a WORD subrange
and a value assigned to P such that the number
is the CRD of the enumerated type's value. In
addition, if P is type BOOLEAN, reading one of
the character sequences 'TRUE' or 'FALSE'
causes true and false, respectively, to be
assigned to P. The number read must be in the
range of the ORD values of the variable.

Also at the extend level, if the parameter P is
an enumerated type and includes the :N notation
as in READ (P::N), characters are read from the
file F that form a valid identifier or number.
If the characters form a number, it is assumed
to be the ORD value (above), and if the
characters form an identifier that is one of
the enumerated type's constant identifiers, its
value is assigned to P. In addition, if the
variable is BOOLEAN, reading one of the digits
1 or 0 causes either true or false to be
assigned to the BOOLEAN variable. 'TRUE' and

15-19

PRELIMINARY DRAFT

’FALSE' are also accepted as the BOOLEAN
constant identifiers.

The actual value of N is ignored: using the N
notation directs the compiler to save the
enumerated type's constant identifiers and make
them available to the applicable READ routine.
Omitting the N notation saves memory that would
be used for the identifiers.

4. Reference types

At the extend level, if P is a pointer type, a
number is read as a WORD and assigned to P, in
an implementation defined way such that writing
a pointer and later reading it yields the same
pointer value. The address types should be
read as WORDS using .R or .S notation.

5. String types

At the extend level, if P is a STRING (n), then
the next "n" characters are read sequentially
into P. Preceding line spaces, tabs, or form
feeds are not skipped. If the line marker is
encountered before n characters have been read,
the retraining characters in P are set to
blanks, and the file position remains at the
line marker.

If the STRING is filled with n characters
before the line marker is encountered, the file
position remains at the next character. In a
few implementations there may be a limit of 255
characters on the length of a STRING read. P
can be the super array type STRING (e.g., a
reference parameter or pointer referent
variable).

At the extend level, if P is an LSTRING (n),
then the next n characters are read
sequentially into P, and the length of the

15-20

PRELIMINARY DR’>FT

LSTRING is set to n. Preceding line markers,
spaces, tabs, or formfeeds are not skipped. If
the line marker is encountered before n
characters are read, the length of the LSTRING
is set to the number of characters read and the
file position remains at the line marker.

If the LSTRING is filled with n characters
before the line marker is encountered, the file
position remains at the next character. P can
be the super array type LSTRING (e.g., a
reference parameter or pointer referent
variable). READ (LSTRING) is handy when
reading entire lines from a textfile,
especially when the length of the line is
needed. For example, the easiest way to copy a
textfile is by using READLN and WRITELN with an
LSTRING variable.

Currently, READ and READLN do not use M field
width parameters: you cannot read the line
'123456' as two INTEGER numbers with READ (1:3,
>7:3). However, you can read two LSTRING (3)
items and then decode them to achieve the same
effect.

15.2.3 WRITE AND WRITEIN

PROCEDURE WRITE
PROCEDURE WRITELN

File system intrinsic procedures (textfile I/O).
Write data to textfiles. WRITE and WRITELN are
defined in terms of the more primitive operation,
PUT. That is, if P is an expression of type CHAR
and F is a file of type TEXT, then WRITE (F, P) is
equivalent to:

BEGIN
F* :- P;

15-21

P"57" LI Ml NARY DRAFT

{Assign P to buffer variable F“}
POT (F)
{Assign F* to next component of file}

END

WRITE can take more than one parameter, as in WRITE
(F, Pl, P2,..., Pn). This is equivalent to the
following:

BEGIN
WRITE (F, Pl);
WRITE (F, P2);

WRITE (F, Pn)
END

The procedure WRITELN writes a line marker to the
end of a line. In all other respects, WRITELN is
analogous to WRITE. Thus, WRITELN (F, Pl, P2,

BEGIN
WRITE (Pl, P2, ..., Pn);
WRITELN (F)

END

If either WRITE or WRITELN has no file parameter,
the default file parameter is OUTPUT. Therefore,
the first statement in each of the following pairs
is equivalent to the second:

WRITE (Pl, P2, ... Pn)
WRITE (OUTPUT, Pl, P2, ..., Pn)

WRITELN (Pl, P2, ..., Pn)
WRITELN (OUTPUT, Pl, P2, ..., Pn)

At the standard level, parameters in a WRITE can be
expressions of any of the following types:

15-22

UMINARY D-nFT

CHAR
INTEGER
REAL
BOOLEAN
STRING

At the extend level, expressions can also be of the
following types:

WORD
INTEGER4
LSTRING
an enumerated type
a pointer type

Parameters can take optional M and N values (see
Section 15.2.4 for information about M and N
parameters) .

The procedure WRITE can also write to a BINARY file
(i.e., not a textfile). For DIRECT files after a
SEEK operation, hove ver, the complementary READ form
does not work as you might expect.

For BINARY files, WRITE (F, X) is equivalent to:

BEGIN
F :- X;
POT (F)

END

The form WRITE (F, Pl, P2, ..., Pn) is also
acceptable. Normally, BINARY writes do not accept M
and N values.

15.2.4 WRITE FORMATS

In textfiles, data parameters to WRITE and WRITELN
can take one of the following forms:

15-23

? i WINERY

P P:M P:M:N P: :N

The M and N values can be considered value
parameters of type INTEGER and are used for
formatting in various ways. Ihe extend level
permits M and N values for both READS and WRITES,
and permits giving N without M, as in:

P::N

Using them in a nonstandard ray is an error not
caught at the standard level. In some cases only M
or N, or neither, is actually used; unused M and N
values are ignored.

Omitting M or N is the same as using the value
MAXINT. For example, WRITE (12:MAXIOT) uses the
default M value (8 in this case). Currently, M and
N values are not accepted for BINARY files. In
WRITE, the M value is the field width used as the
number of characters to write. In ISO-Paseal, M
must be greater than zero, and if the expression
being written requires less than M characters, then
it is padded on the left with spaces.

At the extend level, M can also be negative or zero.
If it is negative, the absolute value of M is used,
but padding of spaces occurs on the right instead of
the left. If it is zero, no characters are written.
These are ISO standard errors not caught in MS-
Pascal. If the representation of the expression
cannot fit in ABS (M) character positions, then
extra positions are used as needed for numeric
types, or the value is truncated on the right for
string types. If M is omitted or equal to MAXINT, a
default value is used.

The N value signifies:

1. The number of decimal places if P is of type
REAL.

15-24

—• IMINARY CRAFT

2. The output radix if P is of type INTEGER, WORD,
INTEGER4, or pointer.

3. The numeric or identifier value if P is of an
enumerated type.

Most of the following formatting rules apply to the
function ENCODE as well.

1. INTEGER and WORD types

If P is of type INTEGER, WORD, or a subrange
thereof, then the decimal representation of P
is written on the file. If P is a negative
INTEGER, a leading minus sign is always
written. WORD values are never negative. For
INTEGER and WORD values, the default M value is
8.

If ABS (M) is smaller than the representation
of the number, additional character positions
are used as needed. N is used to write in a
hexadecimal, decimal, octal, binary, or other a
base numbering using N equal to a number from 2
to 36; this is an extension to the ISO
standard. If N is not 10 (or omitted or
MAXINT), then padding on the left is with zeros
and not spaces. Omitting N or setting N to
MAXINT or 10 implies a decimal radix.

WORD decimal numbers from 32768 to 65535 are
written normally and not in their negative
integer equivalents. All values written should
be separated by spaces or some other character
not valid in numbers, so that values are read
as separate numbers.

2. REAL and INTEGER4 types

If P is of type REAL, a decimal representation
of the number P, rounded to the specified

15-25

PRELIMINARY DRAFT

number of decimal places, is written on the
file. If the N is missing or equal to MAXINT,
a floating-point representation of P is written
to the file, consisting of a coefficient and a
scale factor. If N is included, a rounded
fixed point representation of P is written to
the file, with N digits after the decimal
point. If N is zero, P is written as a rounded
integer, with a decimal point. The default
value of M for REAL values is 14.

The following examples illustrate WRITE
operations on REAL values:

This statement: Produces this output:

WRITE (123.456)
WRITE (123.456:20)
WRITE (123.456::3)
WRITE (123.456:2:3)
WRITE (123.456:—2®:3)

’ 1.2345600E+02"
' 1.2345600000000E+02'
' 123.456'
' 123.456'
"123.456

At the extend level, if P is of type INTEGER4,
the decimal representation of P is written on
the file. The N value is used to set the
radix, as in type INTEGER. The default M value
is 14.

3. Eh oner ated and Boolean types

At the extend level, if P is an enumerated type
and N is omitted or equal to MAXINT then MO
(P) is written on the file, as if it were a
WORD. If N is given with the value 1, the
enumerated type's constant identifier for the
value of P is written on the file, as if it
were a STRING. Note that using this N notation
causes memory to be allocated for the
enumerated type's constant identifiers.

At the standard level, if P is of type BOOLEAN,
then one of the strings 'TRUE' or 'FALSE' is

15-26

PRELIMINARY DRAFT

5.

written to the file as a STRING. The ORD value
is never written for BOOLEAN types as it is for
enumerated types, although you can use
WRITE (ORD (P)) instead.

Reference types

At the extend level, if P is a pointer type,
then P is written as a WORD. This is done in
an implementation defined way such that writing
a pointer and later reading it produces the
same pointer value. The address types should
be written as WORD values using .R or .S
notation.

String types

If P is of type STRING (n), then the value of P
is written on the file. The default value of M
is the length of the STRING,"n". If ABS (M) is
less than the length of the string, then only
the first ABS (M) characters are written. If M
is zero, nothing is writtai. The right portion
of the STRING is always truncated, even if M is
negative. In a few implementations, there may
be a limit of 255 characters on the length of a
STRING write.

At the extend level, if P is of type LSTRING
(n), then the value of P is written on the
file. The default value of M is the current
length of the string, P.LEN. If ABS (M) is
less than the current length, then only the
first ABS (M) characters are written. If M is
zero, then nothing is written. The right
portion of the LSTRING is always truncated,
even if M is negative. If ABS (M) is greater
than the current length, spaces fill the
remaining positions, not characters past the
length in the LSTRING. Note that a string of M
blanks can be written with NULL:M.

15-27

* ”1! MINARY DRAFT

15.3 EXTEND LEVEL I/O

At the extend level, MS-Pascal has these additional
I/O features:

1. You can access three FCB fields: F.MODE,
F.TRAP, and F.ERRS.

2. A nanber of additional procedures are
predeclared.

3. Temporary files are available.

Section 7.6 discusses FCB fields in the context of
files. The additional procedures and temporary
files are described in the following sections.

15.3.1 EXTEND LEVEL PROCEDURES

PROCEDURE ASSIGN (VAR F; CONSTS N: STRING) ;

A file system procedure (extend level I/O). Assigns
an operating system filename in a STRING (or
LSTRING) to a file F. The filename format depends
on the target operating system. As a rule, ASS IM
truncates any trailing blanks. ASSIGN overrides any
filename set previously. A filename must be set
before the first RESET or REWRITE on a file. ASSIGN
on an open file (after RESET or REWRITE but before
CLOSE) produces an error. ASSIGN to INPUT or OUTPUT
is allowed, but since these two files are opened
automatically, they must be closed before being
assigned to.

PROCEDURE CLOSE (VAR F);

A file system procedure (extend level I/O). Performs
an operating system close on a file, ensuring that

15-28

p--L!MIN»RY CRAFT

the file access is terminated correctly. This is
especially important for file variables allocated on
the stack or the heap. Since these files must be
closed before a RETURN or DISPOSE loses the file
control block, they are closed automatically when a
RETURN or DISPOSE releases stack or heap file
variables.

File variables with the STATIC attribute in
procedures and functions are also closed
automatically when the procedure or function
returns. Files allocated statically at the program,
module, or implementation level are automatically
closed when the entire program terminates.

If necessary, when a CDOSE is executed, a file being
written to has its operating system buffers flushed.
However, the MS-Pascal buffer variable is not PUT.
If a file of type TEXT is being written and the last
nonempty line does not end with a line marker, one
is added to the end of the last line. If the file
has the mode SEQUENTIAL and is being written, an
end-of-file is written.

Note that some run-time errors may remove control
from the MS-Pascal run-time system. In these cases,
files being written may not be closed, and the
information in them may be lost. A CLOSE on a file
that is already closed or never opened (no RESET or
REWRITE) is permitted. CLOSE is not ignored if
error trapping is on and there was a previous error.
CLOSE turns off error trapping for the file, and
clears the error status if no errors were found.

PROCEDURE DISCARD (VAR F);

A file system procedure (extend level I/O). Closes
and deletes an open file. DISCARD is much like
CLOSE except that the file is deleted.

15-29

preliminary vr-T

PROCEDURE READFN (VAR F: Pl, P2, ... PN);

A file system procedure (extend level I/O). READFN
is the same as READ (not READUfl) with two
exceptions:

1. File parameter F should be present (INPUT is
assumed, but a warning is given if F is
omitted) .

2. If a parameter P is of type FILE, a sequence of
characters forming a valid filename is read
from F and assigned to P in the same manner as
ASSIGN.

Parameters of other types are read in the same way
as the READ procedure.

Note that READFN is like READ, not like READLN, and
does not read the trailing line marker. If the
first parameter in a READFN call is a file of any
type, it is assumed to be the textfile fran which
characters are read. It is not assumed that the
file’s name should be read using INPUT as the
default source.

READFN is used internally to read a program's
parameters. It is useful when reading a filename
and assigning the filename to same file in one
operation.

PROCEDURE READSET
(VAR F; VAR L: LSTRING, CONST S: SETOFCHAR);

A file system procedure (extend level I/O). READSET
reads characters and puts them into L, as long as
the characters are in the set S and there is room in
L. If no file parameter is given, INPUT is assumed,
as in READ and WRITE. Leading spaces, tabs, form
feeds, and line markers are always skipped.

PRELIMINARY

Reading ceases at the first line marker, which is
never in the type CHAR. READSET, along with ENCODE,
is used by the run-time system to do the formatted
READ procedures, as well as to read filenames with
READEN. It is handy when reading and parsing input
lines for simple ccmmand scanners.

In a segmented memory environment, the L and S
parameters must reside in the default data segment.

PROCEDURE SEEK (VAR F; N: INTEGER4);

A file system procedure (extend level I/O). In
contrast to normal sequential files, DIRECT files
are randan access structures. SEEK is used to
randomly access components of such files. To use a
DIRECT file, the MODE field must be set to DIRECT
before the file is opened with RESET or REWRITE; the
file, F, must be a DIRECT mode file.

If the file is actually read or written
sequentially, the usual READ and WRITE procedures
can be used.

SEEK modifies a field in file F so that the next GET
or PUT applies to record number N. The record number
parameter N can be of type INTEGER or WORD, as well
as of type INTEGER4. For textfiles (ASCII
structure), records are lines; for other files
(BINARY structure), records are components. Record
numbers start at one (not zero). If F is an ASCII
file, SEEK sets the lazy evaluation status "empty."
If F is a BINARY file, SEEK waits for I/O to finish
and sets the concurrent I/O status "ready".

SEEK is best illustrated by sane examples. Assume
for instance, that a BINARY structured, DIRECT mode
file contains the following CHAR contents:

15-31

P.-7LIMINARY C9/5T

Figure 15-1:

-I------ F-------1--------F-------F------F-------- F------- F------- F
I'A'I'B'I'C'I'D'I'E'I'F'I'G'I I
+----- F-------F-------F-------1-------4--------F------- F------- F

N=12345678

An implicit SEEK 1 is done after a REWRITE or a
RESET. Thus, with DIRECT mode files, the following
sequences of commands might be given:

RESET (F);
{Initial SEEK 1, followed by GET;}
{{IT now holds 'A'.}
SEEK (F, 5);
{File position set to 5; F* still holds ’A'.}
C := F~
{C is now equal to 'A'; C does not equal *E*.}

Note that the fifth component is not assigned to C,
as you might expect. IP obtain this value, the
following sequences of commands should be executed:

RESET (F);
{Initial SEEK 1, followed by GET;}
{F" now holds ’A’.}
SEEK (F, 5);
{File positioned at 5.}
GET (F);
{File buffer variable is loaded with ’E'.}
C F~
{C gets value *E’.}

Always fol Iowa SEEK (F, N) with a GET to assure
that the nth component is contained in the buffer
variable.

GET and PUT operate normally on DIRECT mode files
with either ASCII or BINARY structured files.
However, READ and WRITE work only with ASCII files,

15-32

^'I.IMINARY DRAFT

i.e., textfiles. READ, in particular, does not work
with DIRECT mode BINARY files, because it assigns
the buffer variable’s value before it performs a
GET. Care should always be taken when mixing normal
sequential operations with DIRECT mode SEEK
operations.

15.3.2 TEMPORARY FILES

Sometimes a program needs a "scratch" file for
temporary, intermediate data. If this is the case,
you can create a temporary file that is independent
of the operating system. To do so, without having
to give the file a name in a specific format, ASSIGN
a zero character as the name of the file. For
example:

ASSIGN (Fr CHR (0))

The file system creates a unique name for the file
when it sees that the zero character has been
assigned as a name.

In environments vhere several running jobs are
sharing a file directory, the job number is usually
part of the name. Temporary files are deleted vdren
they are closed, either explicitly or when the file
gets deallocated. RESET and REWRITE do not delete
the file.

15-33

PRELIMINARY DRAFT

16. COMPILABLE PARTS OF A PROGRAM

MS-Pascal Compiler can compile three kinds of source
files: programs, modules, and implementations of
units. Modules and implementations of units can be
compiled separately and later be linked to a program
without recompilation. At the standard level, you
can compile only entire programs; modules and units
are MS-Pascal features available at the extend
level.

Example of a compilable program:

PROGRAM MAIN (INPUT, OUTPUT) ;
BEGIN
WRITELN('Main Program*)
END. {Main}

Example of a compilable module:

MODULE MODJDEMO;
(No parameter list in heading}
PROCEDURE MOD__PROC;
BEGIN
WRITELN

('Output from MOD_PROC declared in
MODJDEMO.')

END;
END. {Mod Demo}

Example of a compilable unit:

INTERFACE;
UNIT UNITJDEMO (UNIT PROC) ;
{UNIT PROC is the only exported identifier}
PROCEDURE UNIT PROC;

END;
IMPLEMENTATION OF UNITJDEMO;
PROCEDURE UNIT PROC;
BEGIN

16-1

'->n.|MINARY DRAFT

WRITELN
('Output from UNIT_PROC declared in
UNIT DEMO.')

END;
END. {Unit_Demo}

If you compile MODULE MQDJDEMO and UNIT UNIT_DEMO
separately, you can later incorporate them into the
main program as shown below:

(INTERFACE required at the start of any}
{source that implements or uses a unit.}

INTERFACE;
UNIT UNIT-DEMO (UNIT-PROC);
PROCEDURE UNIT PROC;'

END;
PROGRAM MAIN (INPUT, OUTPUT);
{USES clause below needed to connect}
{implementation and program.}
USES UNIT DEMO;

{EXTERN declaration needed to connect}
{module's procedure.}
PROCEDURE MOD-PROC; EXTERN;
BEGIN
WRITELN('Output from Main Program.');
MOD-PROC;
UNIT—PROC;

END. {End of main program.}

When the program MAIN is compiled, the output
consists of the following pieces:

1. Output from Main Program

2. Output from MOD_PROC declared in MOD_DEMO

3. Output from UNIT—PROC declared in UNIT DEMO
The rules governing the construction and use of
programs, modules, and units are discussed in
Sections 16.1, 16.2, and 16.3.

16-2

PRELircrr*"'Y pyft

16.1 PROGRAMS

Except for its heading and the addition of a period
at the end, a Pascal program has the same format as
a procedure declaration. The statements between the
keywords BEGIN and MO are called the body of the
program.

Example of a program:

{Program beading}
PROGRAM ALPHA (INPUT, OUTPUT, A PILE, PARAMETER);

{Declaration section}
VAR A PILE: TEXT; PARAMETER: STRING (10);

{Program body}
BEGIN

REWRITE (A PILE);
WRITELN (A PILE, PARAMETER);

END.
{Ends with period (.)}

The word "ALPHA" following the reserved word
"PROGRAM" is the program identifier. The program
identifier becomes the identifier for a
parameter less PUBLIC procedure, at a scope above all
other identifiers in the program. This procedure
also has the PUBLIC identifier ENTGQQ, which is
called during initialization to start program
execution.

You could call the program body as a PUBLIC
procedure from another program, or from a module or
unit, using the program identifier or ENTGQQ as the
procedure name (but doing so is not recommended).
This means that you can redeclare the program
identifier within a program, and the usual scoping
rules apply. The program identifier is at the same
level as the predeclared identifiers, so giving a
program an identifier like INTEGER or READ generates

16-3

PRELIMINARY DRAFT

an error message.

The program parameters denote variables that are set
from outside the program. The program communicates
with its environment through these variables. At
the standard level, all variables of any FILE type
should be present as program parameters, since there
is no other way to give an operating system filename
to the file. However, at the extend level, you can
use the ASSIGN and READFN procedures to assign
filenames, so file variables need not appear as
program parameters.

Program parameters differ entirely from procedure
parameters; they are not passed as parameters to
the procedure that is the body of the program. All
program parameters must be declared in the variable
declaration part of the block constituting the
program. If there are no program parameters and the
files INPUT and OUTPUT are not referenced, use the
following form instead:

PROGRAM <identifier^

The two standard files INPUT and OUTPUT receive
special treatment as program parameters. Their
values are not set like other program parameters and
should not be declared, since they are already
predeclared. Each should be present as a program
parameter if used either explicitly or implicitly in
the program:

WRITE (OUTPUT, 'Prompt: '); {Explicit use}
READEN (INPUT, P);

WRITE (’Prompt: ') {Implicit use}
READEN (P);

The compiler gives a warning if you use INPUT and
OUTPUT in the program but omit than as program
parameters. Their only effect as program parameters
is to suppress this warning.

16-4

PRELIMINARY CP.AFT

You can redefine the identifiers INPUT and OUTPUT.
However, all textfile input and output procedures
and functions (READ, EOLN, etc.) still use the
original definition. RESET (INPUT) and REWRITE
(OUTPUT) are generated automatically, whether or not
they are present as program parameters; you can
also generate them explicitly.

Program initialization gives a value to every
program parameter variable, except INPUT and OUTPUT.
Each parameter must be either of a simple type or of
a STRING, LS TRING, or FILE type (i.e., any type
accepted by the READFN procedure). Program
parameters must be entire variables: no component
selection is permitted.

Internally, each program parameter uses the file
INPUT and generates READFN calls. Before each
parameter is read, a special call is made to the
internal routine PPMFQQ. PPMFQQ gets characters
returned from an operating system interface routine
called PPMUQQ, which gets then fran the command
line. PPMFQQ then puts those characters effectively
at the start of the file INPUT. The identifier of
the parameter is passed to both routines (PPMFQQ and
PPMUQQ). Some operating systems then use the
identifier as a prompt.

Hie use of program parameters in MS-Pascal can be
illustrated by showing how to change a program into
a procedure. Suppose you have a program like the
following:

PROGRAM ALPHA (INPUT, OUTPUT, Pl, P2, ..., Pn);
<declarations>
{Including those for Pl, P2, ..., Pn}
BEGIN

<body>
END.

PROGRAM ALMA could then become the following procedure:

16-5

P'WMINIRY

PROCEDURE ENTGQQ [PUBLIC];

<declarations>
{Including those for Pl, P2, ..., Pn}
BEGIN

PPMFQQ (’Pl'); READFN (INPUT, Pl);
PPMFQQ ('P2'); READFN (INPUT, P2);

PPMFQQ ('Pn'); READFN (INPUT, Pn);
PPMFQQ ;
{Called after all parameters are read}
<program statements-

END;

The action of the interface routine PPMFQQ depends
on the target operating system. See your MS-Pascal
User's Guide for more information on PPMFQQ and
ENTGQQ.

Some operating systems have elaborate mechanisms to
handle this kind of parameter, using menus and
default values. If yours falls into this category,
the same mechanism generally applies to MS-Pascal
program parameters.

Other less sophisticated operating systems pass to a
program the remainder of the cocnmard line that
invoked it; in this case, parameter values are read
from the command line.

If the operating system does not provide a program
parameter mechanism, or if an error occurs while
using such a mechanism, or if it does not supply
enough parameter values, then the PPMFQQ routine
reverts to handling parameter values itself. It
prompts you for every parameter with the parameter's
identifier and reads the value you give it for the
parameter. See Appendix A in your MS-Pascal User's
Guide for details on how your implorientation
initializes program paraneters.

16-6

PDF LI Ml NAR Y DR 'FT

16.2 MODULES

Modules provide a simple, straightforward method for
combining several compilable segments into one
program. Units, described in Section 16.3, provide a
more powerful and structured method for achieving
the same end.

Basically, a module is a program without a body.
The identifier in the module heading has the same
scope as a program identifier. The heading can also
include attributes that apply to all procedures and
functions in the module. There are no module
parameters; nor is there a module body. A module
ends with the reserved word END and a period.

Example of a module:

MODULE BETA [PUBLIC]; {Optional attributes}

BEGIN WRITELN ('Gamma') END;

FUNCTION DELTA: WORD;
BEGIN DELTA 123 END;

END. {No body before END}

After the module identifier, you can give one or
more attributes (in brackets) to apply to all of the
procedures and functions nested directly in the
module. Depending on which, if any, attributes you
specify, the following assumptions or restrictions
apply:

1. If there is no attribute list at all, the
PUBLIC attribute is assumed. However, if a
list is present but empty, PUBLIC is not
assumed.

16-7

PRELIMINARY DR ’FT

2. The EXTERN directive used with a particular
procedure or function overrides the PUBLIC
attribute given (or assumed) for the entire
module.

3. EXTERN and ORIGIN cannot be given as attributes
for an entire module, although you can specify
them for individual procedures and functions.

4. If PURE or INTERRUPT are used, the module must
contain only functions for PURE and procedures
for INTERRUPT.

5. PUBLIC is the default attribute for all
procedures and functions. However, in some
cases, a PUBLIC procedure call has more
overhead than a purely local one. In other
cases, the identifier of a local procedure may
conflict with a global identifier passed to the
linker. To avoid these problems, use PUBLIC
with selected individual procedures and
functions and empty brackets for the entire
module (e.g., MODULE BETA [];).

Although a. module contains no body, only
declarations, you can use it as a parameter less
procedure; that is, you may declare the module
identifier as a procedure and call it from other
programs, modules, or units. This module procedure
(unlike a similar procedure for programs or units)
is never called automatically, since there is no way
for the compiler to know whether a module has been
loaded and thus whether to generate a call to it.

However, in some cases, the compiler generates
module initialization code that should be executed
by calling the module as an EXTERN procedure. If
such code is necessary, the compiler gives the
warning:

Initialize Module

16-8
PRELIMINARY DRAFT

If you see this message, declare the module as a
parameterless EXTERN procedure and call the
procedure once before anything in the module is
accessed. (You need to do this if module declares
any FILE variables.)

Given a module M that declares its own file
variables, a program that uses M should look like
this:

PROGRAM P (INPUT, OUTPUT)

PROCEDURE M; EXTERN;
BEGIN

M; {Runtime call initializes
• {file variables.}

END.

If the module USES any interfaces that require
initialization, the compiler generates a warning
that you should declare the module EXTERN and call
it as described in the previous paragraph. If
module M does not contain any of its own file
variables or use any initialized units, there is no
need to invoke M as a procedure in the body of the
program or to declare it as an EXTERN procedure.

Variables within modules are not automatically given
any attributes. Except for the initialization of
FILE variables mentioned above, variables within
modules are the same as program variables.

16.3 UNITS

MS-Pascal units provide a structured way to access
separately compiled modules. A unit has two parts:

1. An interface

16-9

*71.1 MINARY DRAFT

2 An implementation

The interface appears at the front of an
implorientation of a unit and at the front of any
program, module, interface, or implementation that
uses a unit.

A unit contains constants, types, super types,
variables, procedures, and functions, all of which
are declared in the interface of the unit. Any
program, module, or implementation or another
interface may use an interface. An implementation
contains the bodies of the procedures and functions
in a unit, as well as optional initialization for
the unit. The general scheme is shown in Figure
16-1.

Figure 16-1: An MS-Paseal Unit

INTERFACE; UNIT X;
Cidenti fier-declarations>
END;
----------------+----4-- +

<heading>
USES X;
<declarations>
<optional-body>
END.
'———•—————<—+

IMPLEMENTATION OF X:
<identifier-

implsnentations>
<optional-body>
END.

+---------------------- +

When you are using units, their interfaces go before
everything else in a source file, either in an
IMPLEMENTATION or in the program, module, or other
unit that uses it. In the above diagram, the
INTERFACE is shared; the same INTERFACE exists in
both the IMPLEMENTATION source file and in the other
source file. Conversely, any other program, module,
or unit could USE UNIT X; similarly, there could be

16-10

U Ml NARY

another IMPLEMENTATION OF X, in assembly language,
for example.

By separating the interface from the implementation,
you can write and compile a program before or while
writing the implementation. Or, you may load a
program with one of several implementations (for
example, one in MS-Pascal or one in assembly
language). A large MS-Pascal program is often
better organized as a main program and a number of
units (parts of the MS-Pascal run-time system are
organized in this way). However, only a program,
module, interface, or implementation can USE a unit,
not an individual procedure or function.

A program, module, implementation, or interface that
uses an interface must start with the source file
for that interface. Generally, the interface source
file is a separate file, and an SlNCLUDE metacommand
at the start of the source file brings in the
interface source itself at compile time. Because
there is then only one master copy of the interface,
this procedure is easier and more reliable than
physically inserting the interface everywhere it is
used (and running the risk of ending up with several
different versions).

In some applications, you may want several versions
of the same interface. For example, there is a
separate version of the MS-Pascal file control block
interface for every target file system; the
$INCLUDEd file is copied from the desired interface
version before the program using it is compiled.
Naturally, every version must declare the common
identifiers; each might also have seme constant
values for use in $IF metacommands for the version­
specific portions of the interface.

Suppose the INTERFACE for UNIT X in Figure 16.1 is
contained in the file X.INT. If that is so, the
compiland using the unit and the IMPLEMENTATION of
the unit need only to SINOLUDE the interface file at

16-11

PRELIMINARY DRAFT

the start of the source file, as shown in Figure
16-2.

Figure 16-2: Unit with File X.INT
+--- +

| {$INCLUDE:'X.INT'} |
+------------------- +—+--------------------- +
< compi 1 and-head ing >
USES X;
<declarations>
<optional-body>
END.

+-------------------- +

IMPLEMENTATION OF X;
<identifier-

impl ementations>
<optional-body>
END.
+--------------------- +

An MS-Pascal source file of any kind contains zero
or more unit interfaces, separated by semicolons and
followed by a program, a module, or an
implementation, followed by a period. Each of these
entities is called a "division." See Sections 16.3.1
and 16.3.2 for details about divisions.

A unit consists of the unit identifier, followed by
a list of identifiers in parentheses. These
identifiers are called the constituents of the unit
and are the ones provided by a unit or required by a
program, module, or other unit. The unit is
preceded with the keyword UNIT for a provided unit
or USES for a required one.

All unit identifiers in a source file must be
unique. The identifiers in parentheses, however, can
differ in the providing and requiring divisions.
Correspondence between identifiers provided and
required is by position in the list (similar to
formal and actual parameters in procedures).

The identifier list in a USES clause is optional; if
not given, the identifiers in the MIT list are used
by default. Giving different identifiers in a USES

16-12

clause allows you to change the identifiers in case
several different interfaces have identifier
conflicts. Multiple USES clauses can be combined;
thus, the following statements are equivalent:

USES A; USES B; USES C;
OSES A, B, C;

Note also that a unit can introduce optional
initialization code. Such code is implied by the
words BEGIN and END at the end of an interface and
is provided in an optional body in an
IMPLEMENTATION.

The following example shows a unit that introduces
initialization code.

The program file, PLOTBOX:

{SINCLUDE: 'GRAPHI'}
PROGRAM PLOTBOX (INPUT, OUTPUT);

OSES GRAPHICS (MOVE, PLOT);
{MOVE and PLOT are USEd identifiers.}
BEGIN
MOVE (0, 0);
PLOT (10, 0); PLOT (10, 10);
PLOT (0, 10); PLOT (0, 0);

END.

16-13

~“’J MINARY DR'FT

The interface file, GRAPHI:

INTERFACE;
UNIT GRAPHICS (BJUMP, WJUMP);
{Exported identifiers are BJUMP and WJUMP.}
{In the above EBOGRAM, MOVE and PLOT}
{are aliases for these identifiers.}
PROCEDURE BJUMP (X, Y: INTEGER);

PROCEDURE WJUMP (X, Y: INTEGER);
{Procedure headings only above.}

BEGIN
{BEGIN implies initialization code.}
END;

The implementation file:

{SINCLUDE:'GRAPHI'}
{$INCLUDE:’BASEPL'}
{The following implementation OSES
{the UNIT BASEPL. Thus, the interface}
{is included above and the unit}
{used below.}
IMPLEMENTATION OF GRAPHICS;
{Implementation is invisible to user.}
USES BASEPLOT;
{Procedures BJUMP and WJUMP are}
{implemented below.}
{Note that only the identifiers}
{are given in the heading.}
{The parameter lists are given}
{in the interface.}

PROCEDURE BJUMP;
BEGIN DRAWLINE (BLACK, X, Y) END;

PROCEDURE WJUMP;
BEGIN DRAWLINE (WHITE, X, Y) END;

BEGIN
{Begin initialization.}
DRAWLINE (BLACK, 0, 0)

END.

16-14

PRELIMINARY DRAFT

The interface file, BASEPL:

INTERFACE;
UNIT BASEPLOT (BLACK, WHITE, DRAWLINE);
{Other identifiers besides procedure}
{identifiers can be exported.}
{Note that BLACK and WHITE are}
{exported constant identifiers.}

TYPE RAINBOW - (BLACK, WHITE, RED, BLUE, GREEN);
PROCEDURE DRAWLINE (C: RAINBOW; H, V: INTEGER);

{No BEGIN; therefore, not an initialized unit.}
END;

A USES clause can occur only directly after a
program, module, interface, or implementation
heading. When the compiler encounters a USES
clause, it enters each constituent identifier (fran
the MIT clause or USES clause itself) in the symbol
table. Identifiers associated with variables,
procedures, and functions are associated with the
corresponding identifiers in the interface. These
become external references for the 1 inker.

If the sample program above is compiled, every
reference to the procedure PLOT generates an
external reference to WJUMP. However, references to
DRAWLINE use the same identifier for the external
reference.

Constants and types (including any super array
types) in the interface are simply entered in the
program’s symbol table (along with the new
identifier, if any). Thus, a type in an interface is
identical to the corresponding type in the USES
clause.

Record field identifiers are the same in the
program, interface, and implementation. Enumerated
type constant identifiers must be given explicitly,
if needed; they are not automatically implied by the
enumerated type identifier. Labels cannot be
provided by an interface, since the target label of

16-15

p?'"LIMINARY DRAFT

a GOTO must occur in the same division as the GOTO,

16.3.1 THE INTERFACE DIVISION

The structure of an interface is as follows:

1. An interface section starts with the reserved
word INTERFACE, an optional version number in
parentheses, and a semicolon.

2. Next comes the keyword UNIT, the unit
identifier, the parenthesized list of exported
(constituent) identifiers, and another
semicolon.

3. Any other units required by this interface come
next, in USES clauses.

4. The last section is the actual declarations for
all identifiers given in the interface list,
using the usual CONST, TYPE, and VAR sections
and procedure and function headings, in any
order. No LABEL or VALUE sections are
permitted.

5. The interface ends with BEGIN END if it has
initialization, or just with END if it has no
initialization.

Except for ORIGIN, which cannot currently be used in
interfaces, most available attributes can be given
to variables, procedures, and functions. Because
the PUBLIC or EXTERN attribute or EXTERN directive
is given automatically, you must not specify
attributes that may conflict (e.g., PUBLIC and
EXTERN).

Usually the only identifiers you declare are the
constituents, but other identifiers are permitted.

16-16
"’“ELIMINARY DRAM

If the interface needs a call to initialize the
unit, the keyword BEGIN generates the call. The
interface ends with the reserved word END and a
semicolon.

Example of an interface division:

INTERFACE (3) ;
UNIT KEYFILE (FINDKEY, INSKEY, DELKEY, KEYREC);

USES KEYPRIM (KFCB, KEYREC);

PROCEDURE FINDKEY (CONST NAME: LSTRING;
VAR KEY: KEYREC;
VAR REC: LSTRING);

PROCEDURE INSKEY (CONST REC: LSTRING;
VAR KEY: KEYREC);

PROCEDURE DELKEY (CONST KEY: KEYREC);
PROCEDURE NEWKEY (CONST KEY: KEYREC) ;

BEGIN
{Signifies initialized unit.}
END;

In this example, KEYREC is part of the unit KEYPRIM,
but is exported as part of the unit KEYFILE. KFCB
is also part of the KEYPRIM unit, but is not
exported by the KEYFILE unit. NEWKEY is defined in
the interface, but not exported by the KEYFILE unit.
This is permitted, but pointless since NEWKEY is
unknown even in the implementation of the unit.

Memory available at compile-time limits the number
of identifiers the compiler can process. This limit
can be a problem if you have many interfaces,
especially interfaces that use other interfaces.
The symptom is the following error message:

Compiler Out Of Memory

The message occurs before the final USES clause in
the program, module, or implementation you are
compiling. The cure is to reduce the number of

16-17

PnELIMINARY draft

identifiers in interfaces USEd by other interfaces.
For example, make a single interface that contains
only types (and type-related constants) shared by
your other interfaces, and only USE this interface
in the others.

If you include any file variables in the interface,
the unit must be initialized. When you declare a
file in an interface, the compiler does not give the
usual warning:

Initialize Variable

If your interface contains files, be sure to end it
with BEGIN END so that it will be initialized.

16.3.2 THE IMPLEMENTATION DIVISION

You can compile an implementation of a unit
separately from other programs, modules, or units,
but you must compile it along with its interface.
The structure of an implementation is as follows:

1. An implementation of an interface starts with
the reserved words IMPLEMENTATION OF, followed
by the unit identifier and a semicolon.

2. Next comes a USES clause for units it needs
only for its own use.

3. Then comes the usual LABEL, CONSTANT, TYPE,
VAR, and VALUE sections and all procedures and
functions mentioned as constituents (which must
be in the outer block) or used internally, in
any order.

VALUE and LABEL sections can appear in the
implementation, but not in the interface.

16-18 , . T
--LIMINARY draft

Example of an implementation:

IMPLEMENTATION OF KEYFILE;
USES KEYPRIM (KEYBLOCK, KEYREC);

VAR KEYTEMP: KEYREC;

PROCEDURE FINDKEY;
BEGIN

{Code for FINDKEY}

END;

PROCEDURE INKEY;

BEGIN

{Code for INKEY}

END;

PROCEDURE DELKEY;
BEGIN

{Code for MIKEY}

END;

BEGIN

{Any initialization code goes here.}

END.

Constants, variables, and types declared in the
interface are not redeclared in the implementation.
However, you can declare other "private" ones.
Procedures and functions that are constituents of
the unit do not include their parameter list (it is
implied by the interface) or any attributes. (The

16-19

PRELIMINARY DRAFT

PUBLIC attribute is implied, unless the EXTERN
directive is given explicitly.)

All procedures and functions in the INTERFACE must
be defined in the IMPLEMENTATION. However, they can
be given the EXTERN directive so that several
IMPLEMENTATIONS (or an IMPLEMENTATION and assembly
code) can implement a single INTERFACE. All
procedures and functions with the EXTERN directive
must appear first; the compiler checks for this and
issues an error message if the EXTERN directive is
missing or misplaced.

You can implement a unit in assembly language, in
which case all variables, procedures, and functions
should generate public definitions for the loader.
You can also implement units in other programming
languages, such as MS-FORTRAN, or in a mixture of
languages. If the interface is not implemented in
MS-Pascal, it must give the proper calling sequence
attribute (and of course you must be familiar with
calling sequences and internal representation of
parameters).

Several MS-Pascal run-time units are implemented
partially in MS-Pascal and partially in assembly
language. As mentioned, any IMPLEMENTATION section
that does not implement all interface procedures and
functions must declare those not implemented with
the EXTERN directive at the start of the
implementation.

An implementation, like a program, may have a body.
The body is executed when the program that uses the
unit is invoked, so any initialization needed by the
unit can be done. This includes internal
initialization, such as file variable
initialization, as well as user initialization code.
If the source file contains several units, each
implementation body is called in the order its USES
clauses is found in the source file. However,
initialization code for a unit is executed only

16-20

PRELIMINARY DR”7

once, no matter how many clauses refer to it

The body, as in a program, is a list of statements
enclosed with the reserved words BEGIN and END. At
initialization time, the version number of the
interface with which the implementation was compiled
is compared against the version number of the
interface with which the program was compiled.
These must be the same. This checking prevents you
from trying to run a program with obsolete
implementations. If no version number is given,
zero is assumed.

The keyword BEGIN before the final END indicates a
unit with initialization. If the word BEGIN is
omitted, the implementation must not have a body and
no initialization takes place. Uninitialized units
lack the following:

o User initialization code

o A guarantee of only one initialization

o A version number check

The format for an initialized implementation of a
unit is similar to a program:

IMPLEMENTATION OF <unit-identifier>
<declarations>
BEGIN

<body> {Initialization code}
END.

The format for an uninitialized implementation of a
unit is similar to a module:

IMPLEMENTATION OF <unit-identifier>
-(declarations-
{No initialization code}
END.

16-21

PRELIMINARY DRAFT

If the implementation for an uninitialized unit
declares any files or USES any interfaces that
require initialization, the compiler warns you to
initialize the implementation. Initialization is
done automatically if you add the keyword BEGIN to
both the interface and the implementation. As with
a module, you can declare an uninitialized unit to
be a procedure with the EXTERN attribute and then
initialize it by calling it from the program.

16-22

LUMINARY

17. MS-PASCAL METACOMMANDS

Metacommands make up the compiler control language.
Metacommands are compiler directives that allow you
to control such things as:

o MS-Pascal language level

o Debugging and error handling

o Optimization level

o Use of the source file during compilation

o Listing file format

You can specify one or more metacommands at the
start of a comment; separate multiple metacommands
with either spaces or commas. Spaces, tabs, and
line markers between the elements of a metacommand
are ignored. Thus, these are equivalent:

{$PAGE:12}
1SPACE : 12}

To disable metacommands within comments, place any
character that is not a tab or space in front of the
first dollar sign, as shown:

{x$PAGE:12}
You can change compiler directives during the course
of a program. For example, most of a program might
use SLIST-, with a few sections using $LIST+ as
needed. Some metacommands, such as $LINESIZE,
normally apply to an entire compilation.

If you are writing MS-Pascal programs for use with
other compilers, remember that metacommands are
always nonstandard and rarely transportable.

17-1

PRELIMINARY DRAFT

Metacommands invoke or set the value of a
metavariable. Metavariables are classified as
typeless, integer, on/off switch, or string.

1. Typeless metavariables are invoked when used,
as in $EXTEND.

2. Integer metavariables can be set to a numeric
value, as in $PAGE:101.

3. On/off switches can be set to a numeric value
so that a value greater than zero turns the
switch on and a value equal or less than zero
turns it off, as in $MATHCK:1.

4. String metavariables can be set to a character
string value, such as with $TITLE:'COM
PROGRAM'.

Table 17-1 illustrates the notational conventions
observed in the metacommand descriptions that
follow.

Table 17-1: Metacommand Notation

NOTATION _____________ MEANING_________________

Metacommand is typeless.

+ or - Metacommand is an on/off switch. +
sets value to 1 (on). - sets value
to 0 (off). Default is indicated by
+ or - in heading.

:<n> Metacommand is an integer.

:<'text'> Metacommand is a string.

17-2

PSELiMiNARY DRAFT

String values in the metalanguage can be either a
literal string or string constant identifier.
Constant expressions are not allowed for either
numbers or strings, although you can achieve the
same effect by declaring a constant identifier equal
to the expression and using the identifier in the
metacommand.

In metacommands only, Boolean and enumerated
constants are changed to their ORD values. Thus, a
Boolean false value becomes 0 and true becomes 1.

A complete alphabetical listing of MS-Pascal
metacommands is given in Appendix G.

17.1 LANGUAGE LEVEL SETTING AND OPTIMIZATION

The metacommands shown in Table 17-2 let you control
the level (standard, extend, or system) at which the
compiler processes your program and the degree to
which optimization is used. Some of these
metacommands may not be implemented in your version
of the compiler. See Appendix A in your MS-Pascal
User’s Guide for details.

-fable 17-2: Language and Optimization Level

NAME ___________ DESCRIPTION_______________

$EXTEND Adds extend level features.

$INTEGER:<n> Sets the length of the INTEGER type.

$REAL:<n> Sets the length of the REAL type.

$ROM Gives a warning on static
initialization.

$SIMPLE Disables global optimizations.

17-3

preliminary draft

$SIZE Minimizes size of code generated.

$SPEED Minimizes execution time of code.

$STANDARD Enables standard level only.

$SYSTEM Adds extend and system level
features.

The compiler issues a warning message if it
encounters a feature whose level is not enabled.
The default setting is $EXTEND, which permits
structured extensions that are relatively safe and
portable. The default also requires you to
explicitly request $SYSTEM extensions, which are by
their nature low level, machine dependent, and
relatively unstructured.

$INTEGER and $REAL set the length (precision) of the
standard INTEGER and REAL data types. $INTEGER can
be set only to 2 (the default) for 16-bit integers.
However, you can set $REAL to either 4 or 8 (the
default), to make type REAL identical to REAL4 or
REAL8, respectively.

The effect of the $SIZE and $SPEED metacommands
varies with the version of the optimizer in your
implementation of the compiler. The default is
$SIZE. If you select $SIMPLE, no optimization of any
kind is done. $SIZE, S3PEED, and $SIMPLE are all
mutually exclusive. If $ROM is set, the compiler
gives a warning that static data will not be
initialized in either of the following situations:

1. At a VALUE section

2. Every place where static data initialization
occurs due to $INITCK (described in Section
17.2)

17-4

17.2 DEBUGGING AND ERROR HANDLING
The metacommands shown in Table 17-3 are for
debugging and error handling. They also generate
code to check for run-time errors. Each of these
metacommands is discussed in more detail on the
following pages. Most of the metacommands in this
group may also be given as command line switches to
the compiler. See Section 17.7 for details.

Table 17-3: Debugging and Error Handling
METACOMMAND _____________DESCRIPTION_________

$BRAVE+ Sends error messages and vrarnings to
the terminal screen.

$DEBUG- Turns on or off all the debug
checking (CK in metacommands below).

$ENTRY- Generates procedure entry/exit calls
for debugger.

$ERRORS:<n> Sets number of errors allowed per
page (default is 25).

$GOTO- Flags GOTO statements as "considered
harmful."

$INDEXCK+ Checks for array index values in
range, including super array indices.

$INITCK- Checks for use of uninitialized
values.

$LINE- Generates line number calls for the
debugger.

$MATHCK+ Checks for mathematical errors such
as overflow and division by zero.

17-5

preliminary draft

$NILCK+ Checks for bad pointer values.

$RANGECK+ Checks for subrange validity.

$RUNTIME- Determines context of run-time errors

$STACKCK+ Checks for stack overflow at
procedure or function entry.

$TAGCK- Checks tag fields in variant records.

SWARN+ Gives warning messages in listing
file.

If any check is on when the compiler processes a
statement, tests relevant to the statement are done.
A run-time error invokes a call to the run-time
support routine, EMSEQQ (synonymous with ABORT).
When EMSEQQ is called, the compiler passes the
following information to it:

1. An error message

2. A standard error code

3. An optional error status value, such as an
operating system return code.

EMSEQQ also has available:

1. The program counter at the location of the
error

2. The stack pointer at the location of the error

3. The frame pointer at the location of the error

4. The current line number (if $LINE is on)

5. The current procedure or function name and the
source filename in which the procedure or

17-6

PREU MCNARY craft

function was compiled (if SENTRY is on)

$BRAVE+

Sends error messages and warnings to your screen (in
addition to writing them to the listing file). If
the number of errors and warnings is more than fits
on the screen, the earlier ones scroll off and you
have to check the listing file to see them all.

SDEBUG-

Turns on or off all of the debug switches (those
that end with "CK"). You may find it useful to use
SDEBUG- at the beginning of a program to turn all
checking off and then selectively turn on only the
debug switches you want. You can also use this
metacommand to turn all debugging on at the start
and then selectively turn off those you don't need
as the program progresses. By default, some error
checks are on and seme off.

$EUTRY-

Generates procedure and function entry and exit
calls. This lets a debugger or error handler
determine the procedure or function in which an
error has occurred. Since this switch generates a
substantial amount of extra code for each procedure
and function, you should use it only when debugging.
Note that $LINE+ requires SENTRY+; thus, $LINE+
turns on SENTRY, and SENTRY- turns off SEINE.

$ERRORS:<n>

Sets an upper limit for the number of errors allowed
per page. Compilation aborts if that number is
exceeded. The default is 25 errors and/or warnings

17-7

PRELIMINARY -raft

per page

$GOTO-
Flags GOTO statements with a warning that they are
"considered harmful." This warning may be useful in
either of the following circumstances:

1. To encourage structured programming in an
educational environment.

2. To flag all GOTO statements during the process
of debugging.

$INDEKK+
Checks that array index values, including super
array indices, are in range. Since array indexing
occurs so often, bounds checking is enabled
separately from other subrange checking.

$INITCK-
Checks for the occurrence of uninitialized values,
such as the following:

o Uninitialized INTEGERS and 2-byte INTEGER
subranges with the hexadecimal value 16#8000

o Uninitialized 1-byte INTEGER subranges with the
hexadecimal value 16480

o Uninitialized pointers with the value 1 (if
$NILCK is also on)

o Uninitialized REALs with a special value

The SINITCK metacommand generates code to perform
the following actions:

17-8

PRELIMINARY DRAFT

1. Set such values uninitialized when they are
allocated

2. Set the value of INTEGER range FOR-loop control
variables uninitialized when the loop
terminates normally

3. Set the value of a function that returns one of
these types uninitialized when the function is
entered

$INITCK never generates any initialization or
checking for WORD or address types. Statically
allocated variables are loaded with their initial
values. Also, $INITCK does not check values in an
array or record when the array or record itself is
used.

Variables allocated on the stack or in the heap are
assigned initial values with generated code.
$INITCK does not initialize any of the following
classes of variables:

1. Variables mentioned in a VALUE section

2. Variant fields in a record

3. Components of a super array allocated with the
NEW procedure

SLINE-
Generates a call to a debugger or error handler for
each source line of executable code. This allows
the debugger to determine the number of the line in
which an error has occurred. Because this meta­
command generates a substantial amount of extra code
for each line in a program, you should turn it on
only when debugging. Note that $LINE+ requires
$ENTRY+, so $LINE+ turns on SENTRY, and SENTRY-

17-9

PRE Li iVHNAKY 3 RAFI

turns off $LINE

$MATHCK+

Checks for mathematical errors, including INTEGER
and WORD overflow and division by zero. &1ATHCK
does not check for an INTEGER result of exactly
-MAXINT-1 (i.e., #8000); $INITCK does catch this
value if it is assigned and later used.

Turning $MATHCK off does not always disable overflow
checking. There are, however, library routines that
provide addition and multiplication functions that
permit overflow (LADDOK, LMULOK, SADDOK, SMULOK,
UADDOK, and UMULOK). See Section 14.2 for
descriptions of these functions.

SNIICK+
Checks for the following conditions:

o Dereferenced pointers whose values are NIL

o Uninitialized pointers if $INITCK is also on

o Pointers that are out of range

o Pointers that point to a free block in the heap

$NILCK occurs whenever a pointer is dereferenced or
passed to the DISPOSE procedure. $NILCK does not
check operations on address types.

$RANGECK+
Checks subrange validity in the following
circumstances:

17-10

PRLLIMIN.'aRY

o Assignment to subrange variables

o CASE statements without an OTHERWISE clause

o Actual parameters for the CHR, SUCC, and PRED
functions

o Indices in PACK and UNPACK procedures

o Set and LSTRING assignments and value
parameters

o Super array upper bounds passed to the NEW
procedure

$RDNTIME-

If the $RUNTIME switch is on when a procedure or
function is compiled, the "location of an error" is
the place where the procedure or function was called
rather than the location in the procedure or
function itself. This information is normally sent
to your terminal, but you can link in a custom
version of EMSEQQ, the error message routine, to do
something different (such as invoke the run-time
debugger or reset a controller). For more
information on error handling, see Chapter 8 in your
MS-Pascal User's Guide.

SSTOCKCK+

Checks for stack overflow when entering a procedure
or function and when pushing parameters larger than
four bytes on the stack. In some implementations,
stack overflow is always checked. In some
implementations, stack overflow is never checked in
procedures with the INTERRUPT attribute.

17-11
PRELIMINARY ~R*Fi

STAGCK-
Checks tag values when accessing a variant field.
Only those tag fields with identifiers (whose value
is actually stored in the record) are checked.

$WARN+
Sends warning messages to the listing file (this is
the default). If this switch is turned off, fatal
errors only are printed in the source listing.

17..3 SOURCE FILE CONTROL
A small group of metacommands provide seme measure
of control over the use of the source file during
compilation. These commands are listed in Table 17-4
and described in more detail after the table.

Table 17-4: Source File Control

NAME DESCRIPTION

$IF <constant>
$THEN <textl>
HELSE <text2>

$END

Allows conditional compilation of
<textl> source if <constant- is
greater than zero.

SINCLUDE:
<’filename'>

Switches compilation from current
source file to source file named.

HINCONST:<text> Allows interactive setting of
constant values at compile time.

SMESSAGE:
<'text’>

Allows the display of a message on
the terminal screen to indicate
which version of a program is
compiling.

. t
17-12

$POP Restores saved value of all
metacommands.

$PUSH Saves current value of all
metacommands.

Because the compiler keeps one look-ahead symbol, it
actually processes metacommands that follow a symbol
before it processes the symbol itself. This
characteristic of the compiler can be a factor in
cases such as the following:

CONST Q = 1;
{$IF Q $THEN}
{Q is undefined in the $IF.}

CONST Q ■ 1; DOMff - 9;
{$IF Q $THEN}
{Now Q is defined.}
X :s
{SNIDCK+}
{NILCK applies to P* here.}

x P“;;;
{NIDCK doesn't apply to P.}
{$NIDCK—}

$IF <constant> $THEN <text> SEND

Allows for conditional compilation of a source text.
If the value of the constant is greater than zero,
then source text following the $IF is processed;
otherwise it is not. An $IF $THEN $ELSE construc­
tion is also available, as in the following example:

{$IF MSDOS $THEN}
SECTOR - S12;
{$ELSE}
SECTOR - S128;
{SEND}

17-13

PRELIMINARY cRaFT

To simulate an $IFNOT construction, use the
following form of the metacommand:

$IF <constant> $ELSE <text> SEND
The constant may be a literal number or constant
identifier. The text between $THEN, $ELSE, and $END
is arbitrary; it can include line breaks, comments,
other metacommands (including nested $IFs), and so
on. Any metacommands within skipped text are
ignored, except, of course, corresponding $ELSE or
$END metacommands.

Examples using the metaconditional:

{$IF FPCHIP $THEN}
CODEGEN (FADDCALL,T1,LEFTP)

{$END}
{§IF COMPSYS $ELSE}

IF USERSYS THEN DOITTOIT
{$END}

Allows the compiler to switch processing from the
current source to the file named. When the end of
the file that was included is reached, the compiler
switches back to the original source and continues
compilation. Resumption of compilation in the
original source file begins with the line of source
text that follows the line in vAiich the $ INCLUDE
occurred. Therefore, the §INCLUDE metacommand
should always be last on a line.

$INOONST
Allows you to enter the values of the constants
(such as those used in $IFs) at compile-time, rather
than editing the source. This is useful when you

17-14
PRELIMINARY CRAr I

use metaconditionals to compile a version of a
source for a particular environment, customer,
target processor, and so on. Compilation can be
either interactive or batch oriented. For example,
the metacommand $INCONST:YEAR produces the following
prompt for the constant YEAR:

Inconst: YEAR =
You need only give a response like:

Inconst: YEAR -- 1983

The response is presumed to be of type WORD. The
effect is to declare a constant identifier named
YEAR with the value 1983. This interactive setting
of the constant YEAR is equivalent to the constant
declaration:

CONST YEAR --- 1983;

You can also respond with a quoted string literal to
create a constant of type STRING (n). For example,
the source file metacommand $INCONST:HEADER prompts
for a header. By enclosing a literal string
constant in quotes, you declare a string constant:

Inconst: HEADER = 'Processor Version 2.75'

^MESSAGE
Allows you to send messages to your screen during
compilation. This is particularly useful if you use
metaconditionals extensively, for example, and need
to know which version of a program is being
compiled.

Example of the $MESSAGE metacommand:

{SMESSAGE:'Message on screen!'}

17-15
PRELIMINARY DRAFF

$PUSH and $POP
Allow you to create a meta-environment you can store
with $PUSH and invoke with $POP. $PUSH and $POP are
useful in files for saving and restoring the
metacommands in the main source file.

17.4 LISTING FILE CONTROL

The metacommands listed in Table 17-5 and described
in this section allow you to format the listing file
as you wish.

Table 17-5: Listing File Control Metacommands

METACOMMAW _________ DESCRIPTION____________

$LINESIZE:<n> Sets width of listing. Default
is 79 or 131, depending on
implementation.

$LIST+ Turns on or off source listing.
Errors are always listed.

SOCODE+ Turns on disassembled object
code listing.

$PAGE+ Skips to next page. Line number
is not reset.

$PAGE:<n> Sets page number for next page
(does not skip to next page).

$PAGEIF:<n> Skips to next page if less than
n lines left on current page.

$PAGESIZE:<n> Sets length of listing in lines.
Default is 55.

17-16

Min. ti.Y i

$SKIP:<n> Skips n lines or to end of page

$SUBTITLE:<'text' > Sets page subtitle.

SSYMTAB+ Sends symbol table to listing
file.

$TITLE:<’text'> Sets page title.

SLINESIZE:<n>
Sets the maximum length of lines in the listing
file. This value normally defaults to either 131 or
79, depending on the implementation. See Appendix
A in your MS-Pascal User's Guide for the default on
your system.

SLIST+
Turns on the source listing. Except for HEIST-,
metacommands themselves appear in the listing. The
format of the listing file is described in Section
17.5.

$OCODE+

Turns on the symbolic listing of the generated code
to the object listing file. Although the format
varies with the target code generator, it generally
looks like an assembly listing, with code addresses
and operation mnemonics. In many cases, the
identifiers for procedure, function, and static
variables are truncated in the object listing file.

$PAGE+

Forces a new page in the source listing. The page

17-17

preliminary draft

number of the listing file is autanatically
incremented.

$PAGE:<n>
Sets the page number of the next page of the source
listing. $PAGE:<n> does not force a new page in the
listing file.

$PAGEIF:<n>
Conditionally performs $PAGE+, if the current line
number of the source file plus n is less than or
equal to the current page size.

$E*AGESIZE: <n>
Sets the maximum size of a page in the source
listing. The default is 55 lines per page.

$SKIP:<n>

Skips n lines or to the end of the page in the
source listing.

$SUBTITLE:<'subtitle'>

Sets the name of a subtitle that appears beneath the
title at the top of each page of the source listing.

$SYMTAB+

If on at the end of a procedure, function, or
compiland, sends information about its variables to
the listing file (for example, see lines 14 and 17
in the sample listing file in Section 17.5). The

17-18

PRELIMINARY CRAFT

left columns contain the following:

1. The offset to the variable from the frame
pointer (for variables in procedures and
functions)

2. The offset to the variable in the fixed memory
area (for main program and STATIC variables)

3. The length of the variable

A leading plus or minus sign indicates a frame
offset. Note that this offset is to the lowest
address used by the variable.

The first line of the $SYMTAB listing contains the
offset to the return address, from the top of the
frame (zero for the main program) , and the length of
the frame, from the framepointer to the end
including front end temporary variables. Code
generator temporary variables are not included.

For functions, the second line contains the offset,
length, and type of the value returned by the
functions. The remaining lines list the variables,
including their type and attribute keywords, as
shown in Table 17-6.

Table 17-6: Symbol Table Notation

KEYWORD MEANING____________

Public Has the PUBLIC attribute
Extern Has the EXTERN attribute
Origin Has the ORIGIN attribute
Static Has the STATIC attribute
Const Has the READONLY attribute
Value Occurs in a VALUE section
ValueP Is a value parameter
VarP Is a VAR or CONST parameter
VarsP Is a VARS or CONSTS parameter
ProcP Is a procedural parameter

17-19

PRELIMINARY CRAFT

Segmen Uses segmented addressing
Regist Parameter passed in register

$TITLE:<*title’>

Sets the name of a title that appears at the top of
each page of the source listing.

17.5 LISTING FILE FORMAT

The following discussion of listing file format is
keyed to this sample listing:

p

User Title
User Subtitle

PAGE 1
12/11/82
10:49:17

2

JG IC Line# Source Line MS-Pascal Version 3.0 10/82
00 1 PROGRAM foo; {$symtab+}
10 2

2
VAR i: integer; k: ARRAY [-9-.0] OF integer,
-- Warning 156 , Assumed ;"

20 3 FUNCTION bar (VAR j: integer): integer;
20 4 VAR k: ARRAY [0..9] OF integer;
20 5 BEGIN

+ 21 6
6

GOTO 1; {jjjmp forward}
----------------- "Warning 281 Label Assumed Declared

- 21 7
8

i : -- bar (j); (assign to global}
1: {label}

/ 21 9 j : -- bar (i); {global to VAR parm}
- 21 10 GOTO 1; {jump backward}
* 21 11 RETURN; GOTO 1; {other jumps}

% 21 12 i bar (i); {other global reference}
21 13 j : -- bar (j) ; {no global references}
10 14

14
END;

-------"306 Function Assignment Not Found

Symtab 14 Offset Length Variable - BAR
2 24 Return offset, Frame length
2 2 (function re turn):Integer

+ 4 2 J : Integer Var
22 20 K :Ar ray

10 15 BEGIN
11 16 i bar (i);
00 17 END.

Symtab 17 Offset Length Variable
0 24 Return offset, Frame length
221 :Integer
4 * 20 K .-Array

Errors Warns, In Pass One

17-20

preliminary eraft

Every page has a heading that includes such
information as your title and subtitle, set with the
metacommands $TITLE and $SUBTITLE, respectively. If
these metacommands appear on the first source line,
they take effect on the first page. The page number
appears at the right side of the first line of the
heading. In some versions, the date and time appear
at the right side of the second and third line,
respectively. You can set the page number with
$PAGE:<n> or start a new page with $PAGE+. The
fourth line of the listing contains the column
labels. The contents of the first three columns are
as follows:

1. The JG column

The JG column contains flag characters
generated for your information. Jump flags,
which appear under the J, may contain one of
the following characters:

+ forward jump (BREAK or GOTO a label not
yet encountered)

backward jump (CYCLE or GOTO a label
already encountered)

* other jumps (RETURN or a mixture of jumps)

Codes for global variables (not local to the
current procedure or function) appear in the
column under G:

assignment to a nonlocal variable

passing a nonlocal variable as a reference
parameter

% a combination of the two

17-21

PRELIMINARY craft

2. The IC column

The IC column contains information about the
current nesting levels. The digit under the I
refers to the identifier (scope) level, which
changes with procedure and function
declarations, as well as with record
declarations and WITH statements. The digit in
the C column refers to the control statement
level; this number changes with BEGIN and END
pairs, as well as with CASE and END and REPEAT
and UNTIL pairs. The number in this column is
useful for finding missing END keywords.

If a line is not actively used by the compiler,
all these columns are blank. Thus you can
locate a portion of the source accidentally
commented out or skipped due to an $IF and SEND
pair.

3. The Line column

The Line column shows the line number of the
line in the source file. An SlNCLUDEd file
gets its own sequence of line numbers. If
SLINE is on, this line number and the source
file name identify run-time errors.

Two kinds of compiler messages appear in the
listing: errors and warnings. A compilation with
any errors cannot generate code. A compilation with
only warnings can generate code, but the result may
not execute correctly. Warnings start with the word
"Warning" and a number (see, for example, line 2 in
the sample listing). Errors start with an error
number (see line 14 in the sample listing). See
Appendix H for a complete listing of all warning and
error messages.

You can suppress warning messages with the
metacommand $WARN-, but this is not generally
recommended. The metacommand SBRAVE+ sends error

17-22

PRELIMINARY CRAFT

and warning messages to your terminal (as well as to
the listing file). However, if there are more
messages than fit on the screen, the first ones
scroll off.

The location of the error is indicated in the
listing file with an up arrow (“). The message
itself may appear to the left or right of the arrow
and is preceded with a dashed line.

Sometimes, the compiler does not detect an error
until after the listing of the following line. In
this case, the error message line number is not in
sequence. Tabs are allowed in the source and are
passed on to the listing unchanged. If the tab
spacing is every eight columns, the error pointer
(*) is generally correct. However, an error pointer
near the end of a line may be displaced if the
following line has tabs.

If the compiler encounters an error it cannot
recover from, it gives the message "Compiler Cannot
Continue!". This message appears if any of the
following occurs:

1. The keyword PROGRAM (or IMPLEMENTATION,
INTERFACE, or MODULE) is not found, or the
program, module, or unit identifier is missing.

2. The compiler encounters an unexpected end-of-
file.

3. The compiler finds too many errors; the maximan
number of errors per page is set with the
$ERRORS metacommand (the default is 25).

4. The identifier scope becomes too deeply nested.
(See Appendix A in your MS-Pascal User's Guide
for the nesting level limit for your
implementation.)

17-23
PRELIMINARY CRAFT

When the compiler is unable to continue, for
whatever reason, it simply writes the rest of the
program to the listing file with very little error
checking.

17.6 COHAND LINE SWITCHES

Many of the debugging and error handling
metacommands described in Section 17.1 can also be
given as switches at canpile-time. You can give the
switches either on the compiler command line or in
response to prompts anywhere that spaces can go.
Table 17-7 lists the metacommands available as
compiler switches. See your MS-Pascal User's Guide
for more information on using switches.

17-24

PRELIMINARY DRAFT

Table 17-7: Command Line Switches
SWITCH METACOMMAND _________DESCRIPTION_________

/A $INDEXCK Checks for array index values
in range (including super
array indices).

/D $DEBUG Turns on all other switches,
including $ENTRY and $LINE.

/E $ENTR Generates procedure entry and
exit calls for the debugger.

/L $LINE Generates line number calls
for error checking.

/I $INITCK Checks for use of
uninitialized values.

/M $MATHCK Checks for mathematical
errors, such as overflow and
division by zero.

/N SNILCK Checks for invalid pointer
values, including NIL.

/Q SDEBUG Turns off all other switches,
including $ENTRY and $LINE.

/R $RANGECK Checks for subrange validity,
including assignments.

/s $STACKCK Checks for stack overflow at
procedure or function entry.

/T $TAGCK Checks tagfields in variant
records.

17-25
PRELIMINARY DRAFT

You can use the /Q switch, in combination with the
others, to tailor your compilation to your needs.
First, turn off all of the other switches and then
selectively turn on only the ones you want or need.

17-26

PRELIMINARY CRAFT

APPENDIX A
PASCAL SYNTAX DIAGRAMS

The diagrams on the following pages show the
fundamental syntax of the MS-Pascal language. They are
arranged in the order that you would be likely to use
the elements while writing a program. The meaning of
the differently shaped outlines is as follows;

1. Ovals

Indicate reserved words or symbols of the
MS-Pascal language. These must be typed as
shown.

2. Boxes

Indicate higher-level constructions that
usually have syntax diagrams of their own.

3. Circles

Indicate punctuation that is required and must
be typed as shown.

4. Arrows

Help to show the path through the diagram,
including any possible looping (i.e.r
repetition of syntax elements).

A-l

Source File

A-2

Identifier

Number

Label

Uselist

A-3

Declarations

A-4

Heading

Attributes

A-5

Type

A-6

Fields

Body

A-7

Statement

A-8

Controlled Statement

A-9

Boolean Expression

—expression

K__

--------- --—►

(^AN D —»^TH EN) fop)—^ELSE)

Expression

L__i) (^ (^ (^ (°) (^) (™)

Simple ^nn
Term

—y—a factor —v--- s
LJ</) (dtv) (i^p) (isr) (sjl) (s^r) fwo)

A-10

Factor

A-11

Real Number

Variable

A-12

Constant

A-13

APPENDIX B: MS-PASCAL FEATURES AND THE ISO STANDARD

At this writing, the ISO Pascal standard, Level 0
and Level 1, is still in draft status. MS-Pascal
generally conforms to this current draft standard,
but does not yet implement the proposed conformant
array mechanism. This controversial method of
passing arrays of different bounds as one parameter
type has not been tested, and the details change
from draft to draft. The conformant array scheme is
not part of the ANSI/IEEE standard nor the ISO Level
0 standard.

The super array type in MS-Pascal provides
conformant array parameters, as well as dynamic
length arrays allocated on the heap. Programs
correctly written to the ISO standard (Level 0) or
to the ANSI/IEEE standard should run correctly,
without changes, under MS-Pascal. However, since MS-
Pascal features introduce new reserved words and
other elements, this goal cannot be fully realized.

B.l MS-PASCAL AND THE ISO STANDARD

The ISO standard defines a large number of error
conditions, but allows a particular implementation
to handle an error by documenting that the fact that
the error is not caught. These "errors not caught,"
and other differences between MS-Pascal and the ISO
standard, are described below. An MS-Pascal program
that conforms or tests conformance to the ISO
standard must have both the metacommands ZSTANDARD
and $DEBUG on.

MS-Pascal allows the following minor extensions to
the current ISO/ANSI/IEEE standard:

o A question mark (?) as a substitute for the up
arrow (*)

B-l
P’r’LIMIN''RY CRAFT

o The underscore (_) in identifiers

Due to the way the compiler binds identifiers, the
new reserved words added at the extend and system
levels cannot be used as identifiers at the standard
level. A new directive, EXTERN, and new predeclared
functions are standard in MS-Pascal.

The current differences between MS-Pascal at the
standard level and the current ISO/ANSI/IEEE
standard are summarized in the following pages.

1. The ISO standard requires a separator between
numbers and identifiers or keywords.

MS-Pascal in some cases doesn't require a
separator between a number and an identifier or
keyword, e.g., "100mod" is accepted as "100
mod" without error.

2. The ISO standard does not allow passing a
component of a PACKED structure as a reference
parameter.

MS-Pascal specifically permits passing a CHAR
element of a PACKED ARRAY [l..n] OF CHAR as a
reference parameter. Passing a tag field as a
reference is an error not caught. Passing
other packed components gives the usual error.

3. The ISO standard does not include the textfile
line-marker character in the set of CHAR
values.

MS-Pascal permits all 256 8-bit values as CHAR
values; with some operating systems, a
particular CHAR value (e.g., carriage return)
is also the line marker character.

8-2

PRELIMINARY DRAFT

4. The ISO standard requires a variant to be given
for all possible tag values.

MS-Pascal permits a variant record declaration
in which not all tag values are given.

5. The ISO standard requires that an identifier
have only one meaning in any scope.

In MS-Pascal, using an identifier and then
redeclaring it in the same scope is an error
not caught. For example, the following has two
meanings for Y in the same scope:

CONST X=Y; VAR Y: CHAR;

MS-Pascal generally uses the latest definition
for an identifier. There is one ambiguous
case: If you declare type FOO in one scope and
in an inner scope TYPE P = FOO; F00 - type;
then FOO has two meanings and intent is
ambiguous. In this case, the compiler uses the
later definition of FOO and issues a warning.

6. The ISO standard requires field width "M" to be
greater than zero in WRITE and WRITELN
procedures.

MS-Pascal treats M < 0 as if M = ABS(M), but
field expansion takes place from the right
rather than the left. M can also be zero, to
WRITE nothing, textfile READ (LN) and WRITE (LN)
parameters can take both M and N parameters
(ignored if not needed). The form "V::N" is
allowed. When writing an INTEGER, the N
parameter sets the output radix; when reading
or writing an enumerated type, the N parameter
sets the ordinal number or constant identifier
option.

B-3

Pr”'LIMIN«PY DR'FT

7. The ISO standard does not allow a variable
created with the long form of NEW to be
assigned, used in an expression, or passed as a
parameter. However, this is difficult to check
for at compile-time and expensive to check at
run-time.

MS-Pascal allows assignments to these variables
using the actual length of the target variable.
The ISO standard error is not caught.

8. The ISO standard does not allow the short form
of DISPOSE to be used on a structure allocated
with the long form of NEW. Only permits a
variable allocated with the long form of NEW to
be released with the long form of DISPOSE, and
all tag fields should never change between the
calls.

MS-Pascal allows the short form of DISPOSE to
be used on a structure allocated with the long
form of NEW, and does not check for changes in
tag values.

9. The ISO standard declares that when a "change
of variant" occurs (such as when a new tag
value is assigned, all the variant fields
become undefined.

MS-Pascal does not set the fields uninitialized
when a new tag is assigned and so does not
catch use of a variant field with an undefined
value.

10. The ISO standard does not allow a variable with
an active reference (i.e., the records of an
executing WITH statement or an actual reference
parameter) to be disposed (if a heap variable)
or changed by a GET or PUT (if a file buffer
variable) .

MS-Pascal does not catch these as errors.

8-4

PRELIMINARY CRAFT

11. The ISO standard currently defines I MOD J as
an error if J < 0 and the result of MOD is
positive, even if I is negative.

MS-Pascal does not currently use the new draft
standard semantics for the MOD operator.
Programs intended to be portable should not use
MOD unless both operands are positive.

12. The ISO standard at Level 1 defines conformant
array.

MS-Pascal does not implement the conformant
array concept in Level 1 of the ISO standard.
Super arrays provide much the same
functionality in a more flexible way.

13. The ISO standard requires the control variable
of a FOR loop to be local to the immediate
block. Any assignment to this control variable
is an error.

MS-Pascal allows nonlocal variable to be used
if it is STATIC, so either a local variable or
one at the PROGRAM level can be a FOR statement
control variable. Also, does not detect an
assignment to the control variable as an error
if assignment occurs in a procedure or function
called within the FOR statement.

14. The ISO standard requires the CHR argument to be INTEGER.

MS-Pascal allows CHR taking any ordinal type.

B.2 SUMMARY OF MS-PASCAL FEATURES

This outline summarizes MS-Pascal extensions to the
ISO standard. Unless otherwise noted, all are at
the extend level.

B-5
LUMINARY DRAFT

1. Syntactic and Pragmatic Features

The metalanguage (standard level)

Extra listing (standard level)

$BRAVE $INTEGER $PAGEIF $SKIP
$DEBUG $LINE $PAGESIZE $SPEED
$ENTRY $LINESIZE $POP $STACKCK
$ERRORS $LIST $PUSH $STANDARD
$EXTEND $MATHCK $RANGECK $SUBTITLE
$GOTO $MESSAGE $REAL $SYMTAB
$INCLUDE $NILCK $ROM $SYSTEM
$INCONST $OCODE $RUNTIME $TAGCK
$INDEXCK $OPTBUG $SIMPLE $TITLE
$INTICK $PAGE $SIZE $WARN
$IF $THEN $ELSE ZEND

Flags for jumps, globals, identifier
level, control level, header, trailer

Textual error and warning messages

Syntactic additions

! as comment to end of line

Square brackets equivalent to BEGIN/END

Nondecimal number notation

Numeric constants with _# or nn__# (where
nn - 2..36)

DECODE/READ takes notation

ENCODE/WRITE with N of 2, 8, 10, 16

Extended CASE range

For CASE statements and record variants

B-6

PL1 MIN'RY DRAFT

OTHERWISE for all other values

A..B for range of values

2. Data types and modes

WORD type, WRD function, MAXWORD constant

REAL4 and REAL8 types

INTEGER4 type, MAXINT4 const;

FL0AT4, R0UND4, and TRUNC4 functions

Address types (system level)

ADR and ADS types and operators

VARS and OOMSTS parameters

SUPER array types

Conformant parameters

Dynamic length heap variables

Multidimensional super arrays

STRING and LSTRING super types

LSTRING type, NULL constant, .LEN field

Explicit byte offsets in records (system level)

CONST and CONSTS reference parameters for
constants and expressions

Structured (array, record, and set) constants
Extended functions returning any assignable
type

B-7

PRELIMINARY DRAFT

Variable selection on values returned from
functions

Attributes

EXTERN PORT
EXTERNAL PUBLIC
FORTRAN PURE
INTERRUPT READONLY
ORIGIN STATIC

3. Operators and intrinsics

Extend level operators:

Shift operators: SHL SHR ISR

Bitwise logical: AND OR NOT XOR

Set operators: < >

Constant expressions:

String constant concatenation with *
operator

Numeric, ordinal, Boolean expressions in
type clauses

Other constant functions:

CHR LOWORD WRD <=
DIV MOD * <>
HIBYTE ORD + —
HIWORD RETYPE — >
LOBYTE SIZEOF < >=
LOWER UPPER

B—8

Additional intrinsic functions at extend level:

ABORT EVAL LOWORD
BYLONG HIBYTE RESULT
BYWORD HIWORD SIZEOF
DECODE LOBYTE UPPER
ENCODE LOWER

Additional intrinsic functions at system level:

FI LLC
FILLSC
MOVEL
MOVER

MOVESL
MOVESR
RETYPE

Intrinsic functions that operate on strings:

For STRING or LSTRING:

COPYSTR POSITN SCANEQ SCANNE

For LSTRING only:

CONCAT INSERT DELETE COPYLST

MS-FORTRAN REAL library functions (standard
level)

MS-Pascal library functions (standard level):

ALLHQQ ENDOQQ LADDOK PLYUQQ TICS
BEGOQQ ENDXQQ LMULOK PTYUQQ TIME
BEGXQQ ENABIN LOCKED RELEAS UADDOK
DATE FREECT MARKAS SADDOK UMULOK
DISBIN GTYUQQ MEMAVL SMULOK UNLOCK

VECTIN

4. Control flow and structure features

Control flow statements: BREAK, CYCLE, and
RETURN

B-9

preliminary NR'E

Sequential control operators: AND THEN and OR
ELSE in IF, WHILE, REPEAT

Extended FOR loop: FOR VAR variable

VALUE section to initialize static variables

Mixed order LABEL, CONST, TYPE, VAR, VALUE
sections

Compilable MODULES, with global attributes

UNIT INTERFACE and IMPLEMENTATION:

Interface version numbers, version
checking

Optional rename of constituents

Guaranteed unique unit initialization

Optional unit initialization

5. Extend level input/output and files

Textfile line length declaration, TEXT (nnn)

READ enumerated, Boolean, pointer, STRING,
LSTRING

WRITE enumerated, pointer, LSTRING

Negative M value to justify left instead of
right

Temporary files

DIRECT mode files, SEEK procedure

ASSIGN, CLOSE, DISCARD, READSET, READFN
procedures

B-10

PRELIMINARY fPAFT

FILEMODES type and constants, F.MODE access

Error trapping, F.TRAP and F.ERRS access

Enumerated I/O using identifier as string

6. System level I/O

Full FCBFQQ type equivalent to FILE types

B—11

o^LIMINARY DR* FT

APPENDIX C: MS-PASCAL AND OTHER PASCALS

At the standard level, MS-Pascal conforms to the
current ISO draft standard. In theory, therefore,
programs written in accordance with the ISO standard
are portable and can be compiled with any MS-Pascal
compiler with no problem. In practice, however, the
majority of Pascal programs are written with at
least some nonstandard features. In these cases, it
is necessary to alter the Pascal source file to
conform to the conventions used in MS-Pascal.

C.l IMPLEMENTATIONS OP PASCAL
The areas in which different implementations of the
Pascal language differ from one another fall into
one of the following categories:

1. Interactive I/O

MS-Pascal implements lazy evaluation to handle
interactive I/O in a natural way. Other
Pascals may implement this feature in different
ways. For example, some systems require an
initial READLN.

2. String handling

MS-Pascal supports the super array type LSTRING
to handle variable length strings efficiently.
The ISO standard provides the PACK and UNPACK
procedures for dealing with strings; other
Pascals often have some improvement on the
string handling facilities described in the
standard.

C-l

PP’TIMIN VRY ~T

3. Compiler controls

Compiler controls implemented either as command
line switches or as commands within source
comments vary from Pascal to Pascal. To ensure
portability, eliminate all embedded controls
from comments.

4. Maximum set size

The maximum set size varies from Pascal to
Pascal. Some Pascals limit set size to 16 or
64 elements. In MS-Pascal, sets may contain up
to 256 elements. This allows support of the
SET OF CHAR.

5. Type compatibility

The rules for type compatibility vary in their
strictness. In some Pascals, structurally
equivalent types with different names are
compatible; in others (and in the ISO
Standard), they are not.

6. Out of block OOTOs

Some Pascals do not permit the out of block
GOTOs that are permitted in MS-Pascal.

7. Heap management

Rather than use the procedures NEW and DISPOSE
for managing dynamic allocation of memory, some
Pascals use the MARK and RELEASE procedures.
MS-Pascal supports both methods. (MARKAS and
RELEAS are the MS-Pascal names for MARK and
RELEASE.)

8. OTHERWISE in CASE statements and variant records

If OTHERWISE is omitted in a CASE statement,
control does not automatically pass to the next

C-2

PRELIMINARY EE -

executable statement as in some other extended
Pascals. Also, some other Pascals use the word
ELSE or OTHERS instead of OTHERWISE.

9. Assigning filenames

The ASSIGN procedure in MS-PASCAL sets an
operating system filename for a file. Some
other Pascals use a second parameter to RESET
and REWRITE for the filename.

10. Separate compilation

Most Pascals exclude the EXTERN (or EXTERNAL)
directive for procedures and functions. Many
support the idea of a MODULE and/or an
INTERFACE and IMPLEMENTATION, although the
syntax may differ. Some do not support PUBLIC
and EXTERN variables, but may use a FORTRAN
COMMON approach. In the latter case, for
portability, you should give all global
variables in one MS-Pascal VAR section, using
[PUBLIC] in the PROGRAM and [EXTERN] in the
MODULE, and $INCLUDE the same variable
declarations in each.

11. Program parameters

Some Pascals ignore program parameters. In
some Pascals, all files must be program
parameters.

12. Procedural parameters

Several Pascals do not permit passing
procedures and functions as parameters. Many
do not permit passing any predeclared
preocedures or functions.

C-3

PRELIMINARY C

C.2 MS-PASCAL AND UCSD PASCAL
Because UCSD Pascal is one of the more prevalent
pascals for microcomputers, conversion of source
files from UCSD to MS-Pascal, and vice versa, is
likely to be a common occurrence. This section
discusses the differences and similarities between
the two Pascals.

MS-Pascal has incorporated many of the UCSD
extensions in one form or another. Table C-l
compares UCSD extensions with similar extensions
available in MS-Pascal.

Table C-l: MS-Pascal and UCSD Pascal

UCSD EXTENSION MS-PASCAL EQUIVALENT

ATAN 1 ARCTAN
BLOCKREAD I GETUQQ
BLOCKWRITE I PUTUQQ
CLOSE I CLOSE
CLOSE (F, LOCK) I CLOSE (F)
CLOSE (F, PURGE) I DISCARD (F)
CONCAT I CONCAT
COPY I COPYLST or MOVEL
DELETE 1 DELETE
EXIT I RETURN or GOTO
FILLCHAR | FILLC and FILLSC
HALT I ENDXQQ
INSERT I INSERT
IORESULT, $1 I ERRS and TRAP fields
LENGTH I .LEN or STR [0]
LOG I LNDRQQ
MARK I MARKAS
MEMAVAIL I MEMAVL
MOVELEFT I MOVEL and MOVESL
MOVERIGHT I MOVER and MOVESR
POS 1 POSIM
RELEASE 1 RELEAS
SCAN I SCANEQ and SCANNE

C-4

PRELIMINARY DR'FT

SEEK
SIZEOF
STR '
STRING [n]
UNIT
Untyped Files

I SEEK
I SIZEOF
I ENCODE
I LSTRING (n)
I UNIT
I FCBFQQ type

The following notes describe comparative points of
interest.

1. Hie UCSD STRING [n] type is logically similar
to the MS-Pascal LSTRING (n) type. Both
contain the length of a variable length string
in element zero of an ARRAY of CHAR.

2. UCSD Pascal allocates pointer variables on the
heap with MARK and RELEASE. Other Pascals
normally use NEW and DISPOSE. MS-Pascal
permits both methods of dynamic memory
allocation.

3. MS-Pascal units are like UCSD Pascal units,
with the following exceptions. In MS-Pascal,
an INTERFACE must appear first in any compiland
using it. Since UCSD Pascal has its own
special file system, the name of the unit can
be used to find the interface filename in a
standard way.

MS-Pascal requires a list of all identifiers
exported from the unit in the UNIT clause
itself and makes it optional in a USES clause.
Different identifiers may be given in a USES
clause to avoid identifier conflicts.

Finally, MS-Pascal provides for unit
initialization code and interface version
control. Neither of these are available in
UCSD Pascal.

4. CONCAT is a function in UCSD Pascal; in MS-

C-5

LUMINARY CRAFT

Pascal, it is a procedure

5. In UCSD Pascal, when a CASE statement whose
control value does not select a statement is
executed, the statement following the CASE
statement is executed. In MS-Pascal, you must
include an empty OTHERWISE clause to obtain
this effect.

6. UCSD Pascal permits the use of the EOF (F) and
EOLN (F) functions on a closed file; in MS-
Pascal, this is an error.

7. UCSD Pascal permits canparison of records and
arrays with the equal sign (=) and the not-
equal sign (<>). In MS-Pascal, you must RETYPE
the records and arrays to the same length
STRING type, and then compare them as strings.

C-6
p'-UMINARY DRAFT

APPENDIX Dr ASCII CHARACTER CODES
Dec Hex CHR Dec Hex CHR

000 00H NUL 031 1FH US
001 01H SOH 032 20 H SPACE
002 02H STX 033 21H r
003 03H ETX 034 22H II
004 04H EOT 035 23H #
005 05H ENQ 036 24H $
006 06H ACK 037 25H %
007 07H BEL 038 26H &
008 08H BS 039 27H 1

009 09H HT 040 28 H (
010 0AH LF 041 29H)
011 0BH VT 042 2AH *

012 0CH FF 043 2BH +
013 0DH CR 044 2CH
014 0EH SO 045 2DH —
015 0FH SI 046 2 EH •
016 10H DLE 047 2FH /
017 11H DC1 048 30H 0
018 12H DC2 049 31H 1
019 13H DC3 050 32H 2
020 14H DC4 051 33H 3
021 15H NAK 052 34H 4
022 16H SYN 053 35H 5
023 17H ETB 054 36H 6
024 18H CAN 055 37H 7
025 19H EM 056 38H 8
026 1AH SUB 057 39H 9
027 1BH ESCAPE 058 3AH •
028 1CH FS 059 3BH f

029 1DH GS 060 3CH <
030 1EH RS 061 3DH

D~1

p-’-LIMINARY CR'-FT

Dec Hex CHR Dec Hex CHR

062 3 EH > 095 5FH
063 3FH ? 096 60H T*

064 40H Z 097 61H a
065 41H A 098 62H b
066 42H B 099 63H c
067 43H C 100 64H d
068 44H D 101 65H e

069 45H E 102 66H f
070 46H F 103 67H g
071 47H G 104 68H h
072 48H H 105 69H i
073 49H I 106 6AH j
074 4 AH J 107 6BH k

075 4BH K 108 6CH 1
076 4CH L 109 6DH m
077 4DH M 110 6EH n
078 4 EH N 111 6FH o

079 4FH 0 112 70H P
080 50H P 113 71H q

081 51H Q 114 72H r
082 52H R 115 73H s

083 53H S 116 74H t

084 54H T 117 75H u

085 55H U 118 76H V

086 56H V 119 77H w
087 57H w 120 78H X

088 58 H X 121 79H y
089 59H Y 122 7AH z

090 5AH Z 123 7BH {
091 5BH [124 7CH 1
092 5CH \ 125 7DH }
093 5DH T 126 7EH
094 5EH 127 7FH DEL

Dec=Decimal, Hex=Hexadecimal (H), CHR=Character
LF=Line Feed, FF=Formfeed, CR=Carriage Return,
DEL=Rubout

D-2

rr.ri.1 Ml NARY DRAFT

APPENDIX E: SUMMARY OF MS-PASCAL RESERVED WORDS

Reserved words at the standard level

AND DOWNTO IF OR THEN
ARRAY ELSE IN PACKED TO
BEGIN END LABEL PROCEDURE TYPE
CASE FILE MOD PROGRAM UNTIL
CONST FOR NIL RECORD VAR
DIV FUNCTION NOT REPEAT WHILE
DO GOTO OF SET WITH

reserved words at the extend level:Additional

BREAK INTERFACE RETURN USES
CONSTS ISR SHL VALUE
CYCLE MODULE SHR VARS
IMPLEMENTATION OTHERWISE UNIT XOR

Additional reserved words at the system level:

ADR ADS

Names of attributes:

ORIGIN
PORT
PUBLIC

EXTERN
EXTERNAL
FORTRAN
INTERRUPT

PURE
READONLY
STATIC

Names of directives:

EXTERN EXTERNAL FORWARD

E-l

P.TLIMINARY Ca'FT

Logically, directives are reserved words. Since
additional directives are allowed in ISO Pascal, all
are included at the standard level. Note that
EXTERN is both a directive and an attribute;
EXTERNAL is a synonym for EXTERN in both cases.
This provides compatibility with a number of other
Pascals.

E-2

PR^LI WINERY

APPENDIX F: SUMMARY OF AVAILABLE PROCEDURES
AND FUNCTIONS

Table F-l provides a summary listing of all
available functions and procedures, along with the
name of the group in which they are presented in
Section 14.1, "Categories of Available Procedures
and Functions.

Table F-l: Available Procedures and Functions
NAME DESCRIPTION CATEGORY

ABORT Terminate program Extend level
ABS Absolute value function Arithmetic
ACDRQQ REALS arc cosine function Arithmetic
ACSRQQ REAL4 arc cosine function Arithmetic
AIDRQQ REALS truncate function Arithmetic
AISRQQ REAL4 truncate function Arithmetic
ALLHQQ Allocate heap item Library
ANDRQQ REALS round toward zero Arithmetic
ANSRQQ REAL4 round toward zero Arithmetic
ARCTAN Arc tangent function Arithmetic
ASDRQQ REALS arc sine function Arithmetic
ASSRQQ REAL4 arc sine function Arithmetic
ASSIGN Assign filename File system
A2DRQQ REALS arc tangent function Arithmetic
A2SRQQ REAL4 arc tangent function Arithmetic
BEGOQQ Initialize user Library
BEGXQQ Overall initialization Library
BYLONG WORD or INTEGER to INTEGER4 Extend level
BYWORD Put bytes in word Extend level
CHDRQQ REALS hyperbolic cosine Arithmetic
CHR Get ASCII char of value Data

conversion
CHSRQQ REAL4 hyperbolic cosine Arithmetic
CLOSE Close file File system
CONCAT Concatenate LSTRING String
COPYLST Copy to LSTRING String
COPYSTR Copy to STRING String
COS Cosine function Arithmetic
DATE Date function Library

DRAFT
F-l

preliminary

DECODE Decode LSTRING to variable Extend level
DELETE Remove portion of LSTRING String
DISBIN Disable interrupts Library
DISCARD Close and delete file File system
DISPOSE Dispose of heap item Dynamic

alloc
ENABIN Enable interrupts Library
ENCODE Encode expression to LSTRING Extend

level
ENDOW User termination Library
ENDXQQ Program termination Library
EOF Boolean end-of-file File system
EOLN Boolean end-of-line File system
EVAL Evaluate functions Extend

level
EXP Exponential function Arithmetic
FI LLC Fill area with C, relative System

level
FILLSC Fill area with C, segmented System

level
FLOAT Convert INTEGER to REAL Data

conversion
FLOAT4 Convert INTEGER4 to REAL Data

conversion
FREECT Give count of free blocks Library
GET Get next file component File system
GTYUQQ Direct terminal input Library
HIBYTE Get high BYTE Extend level
HIWORD Get high WORD Extend level
INSERT Insert string String
LADDOK 32-bit signed addition check Library
LDDRQQ REALS log base ten function Arithmetic

LDSRQQ REAL4 log base ten function Arithmetic
LMULOK 32-bit signed multiply check Arithmetic
LN Natural log function Arithmetic
LOBYTE Get low BYTE Extend level
LOCKED Resource locked status Library
LOWER Get lower bound Extend level
LOWORD Get low WORD Extend level
MARKAS Mark heap bounds Library
MEMAVL Available memory Library
MNDRQQ REAL8 minimum function Arithmetic

F-2

PRELIMINARY DRAFT

MNSRQQ REAL4 minimum function Arithmetic
MOVEL Move bytes left, relative System level
MOVER Move bytes right, relative System level
MOVESL Move bytes left, segmented System level
MOVESR Move bytes right, segmented System level
MXDRQQ REALS maximum function Arithmetic
MXSRQQ REAL4 maximum function Arithmetic
NEW Allocate new heap item Dynamic alloc
ODD Boolean odd function Data

conversion
ORD Get ordinal value Data

conversion
PACK Pack CHAR array Data

conversion
PAGE Write new page File System
PIDRQQ REALS to INTEGER power Arithmetic
PISRQQ REAL4 to INTEGER power Arithmetic
PLYUQQ Direct terminal end line Library
POSITN Find position of substring String
PRED Predecessor function Data

conversion
PRDRQQ REALS to REALS power Arithmetic
PRSRQQ REAL4 to REAL4 power Arithmetic
PTYUQQ Direct terminal output Library
PUT Put value to file File system
READ Read file File system
READFN Read filename File system
READLN Read file to end of line File system
READSET Read set File system
RELEAS Release heap space Library
RETYPE Force expression to type System level
RESET Ready file for read File system
RESULT Return result of function Extend level
REWRITE Ready file for write File system
ROUND Round REAL Data

conversion
ROUND4 Round INTEGER4 Data

conversion
SADDOK 16-bit signed addition check Library
SCANEJ Scan until char found String
SCANNE Scan until char not found String
SEEK Position at direct file

F-3

P^UMINWY DRAFT

record File system
SHDRQQ REAL8 hyperbolic sine Arithmetic
SHSRQQ REAL4 hyperbolic sine Arithmetic
SIN Sine function Arithmetic
SIZEOF Get size of structure Extend level
SMULOK 16-bit signed multiply check Library
SQR Square function Arithmetic
SQRT Square root function Arithmetic
SUCC Successor function Data

conversion
THDRQQ REALS hyperbolic tangent Arithmetic
THSRQQ REAL4 hyperbolic tangent Arithmetic
TICS Time in arbitrary units Library
TIME Time of day function Library

TNDRQQ REALS tangent function Arithmetic
TNSRQQ REAL4 tangent function Arithmetic
TRUNC Truncate REAL Data

conversion
TRUNC4 Truncate INTEGER4 Data

conversion
UADDOK Unsigned addition check Library
UMULOK Unsigned multiply check Library
UNLOCK Unlock resource Library
UNPACK Unpack STRING to array Data

conversion
UPPER Get upper bound Extend level
VECTIN Set interrupt vector Library
WRD Convert to WORD value Data

conversion
WRITE Write file File system
WRITELN Write line to file File system

F-4

PRELIMINARY DRAFT

APPENDIX G: SUMMARY OF MICROSOFT
PASCAL METACOMMANDS

Table G~1 provides a single alphabetical list of all
of the metacommands diescribed in Chapter 17.
Defaults, if any, are shown following metacommand in
column one.

Table G*l: MS-Pascal Metacommands
METACOMMAND ACTION

$BRAVE+ Sends messages to the terminal
screen.

$DEBUG- Turns on or off all error
checking (CK).

$ENTRY- Generates procedure entry and
exit calls for debugger.

$ERRORS:25 Sets number of errors allowed
per page.

$EXTEND Adds extend level features.

$GOTO- Flags GOTOs as "considered
harmful."

$IF <constant>
$THEN <textl>
$ELSE <text2>
$END

Allows conditional compilation
<textl> source if <constant) is
greater than zero.

$INCLUDE:'<file>' Switches compilation to file
named.

$INCONST Allows interactive setting of
constant values at compiletime.

G-l

PRELIMINARY DRAFT

$INDEXCK+ Checks for array index values in
range.

$INITCK— Checks for use of uninitialized
values.

$INTEGER Sets the length of the INTEGER
type.

$LINE- Generates line number calls for
debugger.

$LINESIZE:79 Sets width of source listing.

$LIST+ Turns on or off source listing.

$MATHCK+ Checks for mathematical errors.

$MESSAGE Displays a message on terminal
screen.

$NILCK+ Checks for bad pointer values.

$OCODE+ Turns on or off object code
listing.

$PAGE+ Skips to next page.

$PAGE:n Sets page number for next page.

$PAGEIF:n Skips to next page if less than
n lines left.

$PAGESIZE:55 Sets page length of source
listing.

$POP Restores saved value of all
metacommands.

$PUSH Saves current value of all
metacommands.

G-2

a . \.. iJMINARY DRAFT

$RANGECK+ Checks for subrange validity.

$REAL Sets the length of the REAL
type.

$ROM Warns on static initialization.

$RUNTIME- Determines context of runtime
errors.

$SIMPLE Disables global optimizations.

$SIZE Minimizes size of code
generated.

$SKIP:n Skips n lines or to end of page.

$SPEED Minimizes execution time of
code.

$STACKCK+ Checks for stack overflow at
entry.

$STANDARD Enables standard level only.

$SUBTITLE:1<subt>' Sets page subtitle.

$SYMTAB+ Sends symbol table to source
listing.

$SYSTEM Adds extend and system level
features.

$TAGCK- Checks tag fields in variant
records.

$TITLE:1<title>' Gives page title for source
listing.

$WARN+ Gives warning messages in source
listing.

APPENDIX H: MESSAGES
This appendix lists all of the error numbers and
messages you are likely to encounter while using the
MS-Pascal compiler and run-time system. These error
conditions fall into several categories:

1. Compile-time warnings

2. Compile-time errors caught

3. Compiler internal errors

4. Errors (both compiletime and run-time) defined
by the ISO standard not caught in MS-Pascal

5. Run-time file system errors

6. Run-time non-file system errors caught only if
the appropriate switch is on

7. Run-time non-file system errors always caught

Linker errors are specific to the linker for the
operating system with which you are working and are
therefore included in your MS-Pascal Compiler User's
Guide.

Error conditions:

o May go undetected.

o May be detected by the compiler.

o May be detected by the run-time system.

An error is "caught" if the compiler or run-time
system detects the error and gives you a message. A
"warning" is an error that is caught by the compiler
but fixed so that the compiled source might run
correctly.

H—1

DRAFT

Substitution mistakes (e.g., using a colon (:)
instead of and equal sign (=)) and seme other
syntax errors (e.g., using a semicolon (;) before an
ELSE) are common errors that generate only a warning
message and are fixed by the compiler. You should,
however, go back into the source file and make
corrections, or you will keep getting the same
warning message every time you compile.

Compiletime errors include all all of the conditions
described in this manual as "invalid", "illegal",
"not permitted", and so on. The ISO standard
defines a number of error conditions that are
described as "errors not caught" in MS-Pascal.
Generally, these are infrequent or very hard to
detect conditions, not caught as errors in MS-
Pascal, but which might be in another
implementation.

H.l COMPILER ETON END ERRORS
Front end error and warning messages consist of a
number and a message. Most messages appear with a
row of dashes and an arrow that points to the
location of the error; three (#128, #129, and #130)
appear only after the body of the routine in which
they occur. Hie word "Warning" identifies warnings
as such; all other messages report errors in the
program.

The front end recovers from most errors; that is,
it corrects the condition and continues the
compilation. There are, however, a few front-end
errors ("panic" errors) from which the compiler
cannot recover. In these cases, you see the
message:

Compiler Cannot Continue!
The compiler then does little else except list the
rest of the program.

H-2

PRELIMINARY DRAFT

These errors occur under the following
circumstances:

1. There are more errors than the number n set by
the $ERRORS metacommand.

2. An end of file occurs when not expected.

3. Identifier scopes are nested too deeply.

4. The compiler cannot find the keyword PROGRAM,
MODULE, or IMPLEMENTATION.

5. The compiler cannot find the PROGRAM, MODULE,
or IMPLEMENTATION identifier.

6. A file system error occurs. The message
includes the filename and one of the following
phrases:

HARD DATA E.g., check sun error.
DISK FULL Disk is full.
FILE ACCESS E.g., file not found.
FILE SYSTEM Other or internal error.

The front end may also get one of two compiler run­
time errors:

Error: Compiler Out Of Memory

This usually occurs when too many identifiers have
been declared. See Chapter 6 in your MS-Pascal
Compiler User's Guide for suggestions on how to
handle this situation.

Error: Compiler Internal Error

No matter what source program is compiled, this
message should not appear. If it does, please
report the condition to Microsoft Corporation.

H-3

PRELIMINARY DRAFT

If the word "Warning" appears before a message, the
intermediate code files produced by the front end is
correct. The condition that produced it is not
severe, but is considered unsafe. Messages that
indicate true errors halt any writing to
intermediate files, which are discarded when the
front end is finished.

The error message "Compiler" signifies the failure
of an internal consistency check. No matter what
source program is compiled, this message should not
appear. If it does, please report the condition to
your dealer.

The following list of compiler front end errors
includes the error number and message, with a brief
explanation of the condition that generates the
message.

101 Invalid Line Number

There are two many lines in the source file
(limit is 32767).

102 Line Too Long Truncated

There are too many characters in the line
(current limit is 142 characters).

103 Identifier Too Long Truncated

An identifier is longer than the maximum for
your operating system and has been truncated.
See your MS~Pascal User's Guide for the
current maximum.

104 Number Too Long Truncated

A numeric constant is too long and has been
truncated. Numeric constants are limited to
the same maximum length as identifiers.

H—4

PRELIMINARY PP'~

105 End Of String Not Found

The line ended before the closing quotation
mark was found.

106 Assumed String

The compiler encountered double quotation marks
(") or back-quotes (') and assumed that they
enclose a string. Use single quotation marks
instead.

107 Unexpected End Of File

While scanning, the compiler found an
unexpected end-of-file in a number,
metacommand, or other illegal location.

108 Meta Command Expected Command Ignored

The compiler found a dollar sign ($) at the
start of a comment, but not a metacommand
identifier.

109 Unknown Meta Command Ignored

The compiler found a metacommand identifier
that it didn't recognize or that is invalid in
this version of MS-*Pascal.

110 Constant Identifier unknown Or Invalid Assumed
Zero

The constant identifier following a metacommand
is unknown (as in $DEB(JG: A) or not a constant
of the right type. The compiler has replaced
the unknown or incorrect value with zero.

112 Invalid Numeric Constant Assumed Zero
The constant following a metacommand was a
numeric constant (e.g., $DEBUG: 123456) that
has the wrong format or is out of range. The
compiler has replaced the incorrect value with
zero.

113 Invalid Meta Value Assumed Zero
The value following a metacommand is neither a
constant nor an identifier. The compiler has
replaced the incorrect value with zero.

114 Invalid Meta Command
The compiler expected but did not find one of
the following after a metacommand: +, or
The metacommand has been ignored by the
compiler.

115 Wrong Type Value For Meta Command Skipped
The value following the metacommand was an
integer, but should have been a string (or vice
versa). The metacommand has been ignored by
the compiler.

116 Meta Value Out Of Range Skipped
The integer value given for the $LINESIZE
metacommand was below 16 or above 160. Or, n
is not either 4 or 8 for $REAL:n or 2 for
$INTEGER. In any of these cases, the compiler
ignores the metacommand.

117 File Identifier Too Long skipped
The string value given for the filename in a
8INCLOVE metacommand was too long. The
metacommand has been ignored. The maximum is
96 characters.

H-6

preliminary draft

118 Too Many File Levels

There are too many nested levels of files
brought in by the $INCLUDE metacommand. The
$INCLUDE metacommand is ignored.

119 invalid Initialize Meta

A $POP metacommand has no corresponding $PUSH
metacommand.

120 CONST Identifier Expected

The compiler didn't find an identifier
following an $INCONST metacommand. The
$INCONST metacommand is ignored.

121 Invalid INPUT Number Assumed Zero

The user input invoked by § INCONST was invalid
in some way and is assumed to be zero.

122 Invalid Meta Command Skipped

The compiler found an $IF metacommand but no
subsequent $THEN or 5ELSE. The $IF command has
been ignored.

123 Unexpected Meta Command Skipped

The compiler found a $THEN metacommand
unrelated to any $IF metacommand. The $THEN
command is ignored.

124 Unexpected Meta Command

The compiler found a metacommand not enclosed
in comment delimiters, but processed it anyway.

H-7 r
PRELIMINARY DR Ar I

126 Invalid Real Constant

The compiler found a type REAL constant with a
leading or a trailing decimal point. But the
constant's value is accepted anyway.

127 Invalid Character Skipped

The compiler found a character in the source
file that is not acceptable in program text.

128 Forward Proc Missing: <procedure>

The compiler found a procedure or function
declared FORWARD but couldn't find the
procedure or function itself. This message
appears in the symbol table area of the listing
file.

129 Label Not Encountered: <label>

The compiler couldn't find any use of a label
you declared in a LABEL section. This message
occurs in the symbol table area of the listing
file.

130 Program Parameter Bad: <parameter>

The compiler encountered this program
parameter, which was never declared or has an
unacceptable type. This message occurs in the
symbol table area of the listing file.

133 Type Size Overflow

The data type declared implies a structure
bigger than the maximum of 65534 bytes.

134 Constant Memory Overflow

Constant memory allocation has exceed the
maximum of 65534 bytes.

H-8
PRELIMINARY DRAFT

135 Static Memory Overflow

Static memory allocation has exceed the maximum
of 65534 bytes.

136 Stack Memory Overflow

Stack frame memory allocation has exceeded the
maximum of 65534 bytes.

137 Integer Constant Overflow

The value of a type INTEGER, signed constant
expression is out of range.

138 Word Constant Overflow

The value of a type WORD or other unsigned
constant expression is out of range.

139 Value Not In Range For Record

In a structured constant, long form of the NEW,
DISPOSE, or SIZEOF procedure, or other
application, the record tag value is not in the
range of the variant.

140 Too Many Compiler Labels

The compiler needs internal labels, and the
program is too big. You must break your
program into smaller pieces.

141 Compiler

142 Too Many Identifier Levels

The identifier scope level exceeds 15. This is
a panic error!

143 Compiler

H-9
PRELIMINARY DRAFT

144 Compiler
This error may occur if the PASKEY file format
is incorrect.

145 Identifier Already Declared
The compiler found an identifier declared more
than once in a given scope level.

146 Unexpected End Of File
While parsing, the compiler found an end-of-
file where it should be in a statement,
declaration, etc.

X147 : Assumed -
The compiler found a colon where there should
have been an equals sign and preceded as if the
correct symbol were present.

148 - Assumed :
The compiler found an equals sign where it
expected a colon and proceeded as if the
correct symbol were present.

149 Assumed -
The compiler found colon followed by an equals
sign where it expected an equals sign only and
proceeded as if the correct symbol were
present.

150 - Assumed :=
The compiler found an equals sign where it
expected a colon following by an equals sign
and proceeded as if the correct symbol were
present.

H-10

PRELIMINARY DRAFT

151 [Assumed (
The compiler found a left bracket where it
expected a left parenthesis and proceeded as if
the correct symbol were present.

152 (Assumed [
The compiler found a left parenthesis where it
expected a left bracket and proceeded as if the
correct symbol were present.

153) Assumed]
The compiler found a right parenthesis where it
expected a right bracket and proceeded as if
the correct symbol were present.

154] Assumed)
The compiler found a right bracket where it
expected a right parenthesis and proceeded as
if the correct symbol were present.

155 ; Assumed ,
The compiler found a sen i co Ion where it
expected a comma and proceeded as if the
correct symbol were present.

156 , Assumed ;
The compiler found a comma where it expected a
semicolon and proceeded as if the correct
symbol were present.

162 Insert Symbol
The compiler didn't find a symbol it expected,
but proceeded as if it were present. This
message should not occur; it is a minor
compiler error.

H-ll

PRELIMINARY DRAFT

163 Insert ,

The compiler didn't find a comma where it
expected one, but proceeded as if it were
present.

164 Insert ;

The compiler didn't find a semicolon where it
expected one, but proceeded as if it were
present.

165 Insert =

The compiler didn't find an equals sign where
it expected one, but proceeded as if it were
present.

166 Insert

The compiler didn't find a colon followed by an
equals sign where it expected one, but
proceeded as if it were present.

167 insert OF

The compiler didn't find an OF where it
expected one, but proceeded as if it were
present.

168 Insert]

The compiler didn't find a right bracket where
it expected one, but proceeded as if it were
present.

169 Insert)

The compiler didn't find a right parenthesis
where it expected one, but proceeded as if it
were present.

H-12

preliminary draft

170 Insert [

The compiler didn't find a left bracket where
it expected one, but proceeded as if it were
present.

171 insert (

The compiler didn't find a left parenthesis
where it expected one, but proceeded as if it
were present.

172 Insert DO

The compiler didn't find a DO where it expected
one, but proceeded as if it were present.

173 Insert :

The compiler didn't find a colon where it
expected one, but proceeded as if it were
present.

174 Insert .

The compiler didn't find a period where it
expected one, but proceeded as if it were
present.

175 Insert ..

The compiler didn't find a double period where
it expected one, but proceeded as if it were
present.

176 Insert END

The compiler didn't find an END where it
expected one, but proceeded as if it were
present.

H-13

™r!MINARY DRAFT

177 Insert TO

The compiler didn't find a TO where it expected
one, but proceeded as if it were present.

178 Insert THEN

The compiler didn’t find a THEN where it
expected one, but proceeded as if it were
present.

179 Insert *

The compiler didn't find an asterisk where it
expected one, but proceeded as if it were
present.

185 Invalid Symbol Begin Skip

186 End Skip

The compiler found a symbol it expected, but
only after some other invalid symbols. The
invalid symbols were skipped, beginning at the
point where message #185 appears and ending
where message #186 appears.

187 End Skip

This message marks the end of skipped source
text for any message, except #185, that ended
with the phrase "Begin Skip."

188 Section Or Expression Too Long

The compiler has reached its limit. Try
rearranging the program or breaking up an
expression with assignments to intermediate
values.

H-14

~UMIN*PY DRAFT

189 Invalid Set Operator Or Function

Your source file includes an incorrect use of a
set operator or function (for example, MOD
operator or ODD function with sets).

190 Invalid Real Operator Or Function

Your source file includes an incorrect use of
an operator or function on a REAL value (for
example, MOD operator or ODD function with
reals) .

191 Invalid Value Type For Operator Or Function

For example, MOD operator or ODD function with
enumerated type.

195 Compiler

196 Zero Size Value

Your source file includes the empty record
"RECORD END" as if it had a size.

197 Compiler

198 Constant Expression Value Out Of Range

The value of a constant expression is out of
range in an array index, subrange assignment,
or other subrange.

199 Integer Type Not Compatible With Word Type

An expression tries to mix INTERGER and WORD
type values. This common error indicates
confusing signed and unsigned arithmetic;
either change the positive signed value to
unsigned with WRD () or change the unsigned
value (< MAXINT) to signed with ORD ().

H-15

preliminary draft

201 Types Not Assignment Compatible
You have attempted to use incompatible types in
an assignment statement or value parameter.
See Chapter * in the manual for type
compatibility rules.

202 Types Not Compatible In Expression
You have attempted to mix incompatible types in
an expression. See Chapter * in this manual
for type compatibility rules.

203 Not Array Begin Skip
A variable followed by a left bracket (or
parenthesis) is not array. The compiler has
skipped from here to where message 187 appears.

204 Invalid Ordinal Expression Assumed Integer Zero
The expression has the wrong type or a type
that is not ordinal. The compiler assumes the
value of the expression to be zero.

205 Invalid Use Of PACKED Components
A component of a PACKED structure has no
address (it may not be on a byte boundary) and
cannot be passed by reference.

206 Not Record Field Ignored
A variable followed by a period is not a
record, address, or file, and has been ignored
by the compiler.

207 Invalid Field
A valid field name does not follow a record
variable and a period, and has been ignored by
the compiler.

H-16
pPr1JM|lMApy oraft

208 File Dereference Considered Harmful

When the compiler calculates the address of a
file buffer variable, it cannot do the special
actions normally done with buffer variables
(i.e., lazy evaluation, for textfiles, or
concurrency, for binary files). Since the
buffer variable at this address may not be
valid, such a practice is considered harmful.

209 Cannot Dereference Value

The variable followed by an arrow is not a
pointer, address, or file; therefore the
compiler cannot dereference the value pointed
to.

210 Invalid Segment Address

A variable resides at segmented address, but a
default segment address is needed. You may
need to make a local copy of the variable.

211 Ordinal Expression Invalid Or Not Constant

The compiler found an invalid or non-constant
expression where it expected a constant ordinal
expression.

214 Out Of Range For Set 255 Assumed

The compiler found an element of a set constant
whose ordinal value exceeded 255 and assumed a
value of 255.

215 Type Too Long Or Contains File Begin Skip

The compiler found a structured constant that
exceed 255 bytes or either is or contains a
FILE or LSTRING type.

H-17

PPrLIMIM^PY DRAFT

216 Extra Array Components Ignored

The compiler found an array constant that had
too many components for the array type. The
excess components were ignored.

217 Extra Record Components Ignored

The compiler found a record constant that had
too many components for the record type. The
excess components were ignored.

218 Constant Value Expected Zero Assuned

The compiler found a non-constant value in a
structured constant and assumed its value was
zero.

220 Compiler

221 Components Expected For Type

The compiler found too few components for the
type of a structured constant.

222 Overflow 255 Components In String Constant

The compiler found a string constant that
exceeded 255 bytes.

223 Use NULL

Use the predeclared constant NULL instead of
two quotation marks.

224 Cannot Assign With Supertype Lstring

A super array LSTRING cannot be the source or
the target of an assignment.

H-18

225 String Expression Not Constant

String concatenation with the asterisk applies
only to constants.

226 String Expected Character 255 Assumed

The compiler found a string constant with no
characters, perhaps the result of using NULL,
and assumed the value CM(255).

227 Invalid Address Of Function

An assignment or other address reference to the
function value is not within the scope of the
function. Or, RESULT is used outside the scope
of the function.

228 Cannot Assign To Variable

Assignment to READONLY, CONST, or FOR control
variable is not permitted.

230 Unknown Identifier Assumed Integer Begin Skip

The compiler found an unknown identifier, for
which it requires an address, and has skipped
to a comma, semicolon, or right parenthesis.

231 VAR Parameter Or WITH Record Assumed Integer
Begin Skip

The compiler found an invalid symbol where it
requires an address, and has skipped to a
comma, semicolon, or right parenthesis.

232 Cannot Assign To Type

The target of an assignment is a file or cannot
be assigned for some other reason.

H-19

PRELIMINARY DRAFT

233 Invalid Procedure Or Function Parameter Begin
Skip

The compiler found an incorrect use of an
intrinsic procedure or function. The error
could be one of the following:

1. The first parameter of NEW or DISPOSE is
not a pointer variable.

2. The record tag value of a NEW, DISPOSE, or
SIZEOF procedure couldn't be found.

3. The super array in a NEW, DISPOSE, or
SIZEOF procedure had too many bounds.

4. The super array in a NEW, DISPOSE, or
SIZEOF procedure had too few bounds.

5. The super array for a NEW or SIZEOF
procedure has been given no bounds.

6. You attempted to use the ORD or WRD
function on a value not of an ordinal
type.

7. You attempted to use the LOWER or UPPER
functions on an invalid value or type.

8. PACK or UNPACK on super array or file, or
an array that is or is not packed as
expected.

9. The first parameter for a RETYPE is not a
type identifier.

10. Hie parameter for a RESULT function is not
a function identifier.

11. You attempted to use an intrinsic
procedure or function not available in
this version of MS-Pascal.

H-20

P^UMINARY DRAF1

12. The ORD or WRD of an INTEGER4 value is out
of range.

234 Type Invalid Assumed Integer

The parameter given to READ, WRITE, ENCODE, or
DECODE is not of type INTEGER, WORD, INTEGER4,
REAL, BOOLEAN, enumerated, a pointer; or, the
parameter given for a READ or WRITE is not of
type CHAR, STRING, LSTRING; or, the parameter
for a READEN is not of one of these types or
type FILE. The compiler has assumed it to be
of type INTEGER. This error also occurs if a
program parameter does not have a readable
type, in which case the error occurs at the
keyword BEGIN for the main program.

235 Assumed File INPUT

Because the first parameter for a READEN is not
a file, INPUT is assumed.

236 Invalid Segment For file

File parameters must always reside in the
default segment.

237 Assumed INPUT

INPUT was not given as a program parameter and
has been assumed.

238 Assumed OUTPUT

OUTPUT was not given as a program parameter and
has been assumed.

H-21

PRELIMINARY DRAFT

239 Not Lstring Or Invalid Segment

The target of a READSET, ENCODE, or DECODE must
be an LSTRING in the default segment. One or
both of these conditions is missing.

242 File Parameter Expected Begin Skip

The READSET procedure expects, but cannot find,
a textfile parameter. The compiler has ignored
the procedure and resumed where message 187
appears.

243 Character Set Expected

The READSET procedure expects, but cannot find,
a SET OF CHAR parameter.

244 Unexpected Parameter Begin Skip

The compiler found more than one parameter
given for an EOF, EOLN, or PAGE, and has
ignored the extra.

245 Not Text File

You attempted to use an EOLN, PAGE, READLN, or
WRITELN on some file other than a textfile.

248 Size Not Identical

The RETYPE function may not work as intended,
since the parameters given are of unequal
length.

249 Procedural Type Parameter List Not Compatible

The parameter lists for formal and actual
procedural parameters are not compatible. That
is, the number of parameters, the function
result type, a parameter type, or attributes
are different.

H-22

PRELIMINARY DRAFT

250 Cannot Use Procedure With Attribute

You attempted to call a procedure with the attribute
INTERRUPT, directly or indirectly. INTERRUPT does not
allow this.

251 Unexpected Parameter Begin Skip

The compiler found a left parenthesis,
indicating a procedure or function, but no
parameters and has skipped to where message 187
appears.

252 Cannot Use Procedure Or Function As Parameter

You attempted to pass this intrinsic procedure
or function as a parameter, which is not
permitted.

253 Parameter Not Procedure Or Function Begin Skip

The compiler expected, but cannot find, a
procedural parameter here, and has skipped to
where message 187 appears.

254 Supertype Array Parameter Not Compatible

The actual parameter given is not of the same
type or is not derived from the same super type
as the formal parameter.

255 Compiler

256 VAR Or CONST Parameter Types Not Identical

The actual and formal reference parameter types
are not identical, as they must be.

H-23

PRrLI MINARY DRAFT

257 Parameter List Size Wrong Begin Skip

The compiler found too many or too few
parameters in a list. If too many, the excess
have been skipped.

258 Invalid Procedural Parameter To EXTERN

A procedure or function that is neither PUBLIC
nor EXTERN is being passed as a parameter to a
procedure or function declared EXTERN. (The
compiler invokes the actual procedure or
function with intrasegment calls, and so cannot
pass them to an external code segment.)

259 Invalid Set Constant For Type

The set is not constant, base types are not
identical, or the constant is too big.

260 Unknown Identifier In Expression Assumed Zero

The identifier in an expression is undefined or
possibly misspelled.

261 Identifier Wrong In Expression Assumed Zero

Hie identifier in an expression is incorrect
(e.g., file type id) and has been assumed to be
zero.

262 Assumed Parameter Index Or Field Begin Skip

After error 260 or 261, anything in parentheses
or square brackets, or a dot followed by an
identifier, is skipped.

265 Invalid Numeric Constant Assumed Zero

There is a decode error in an assumed INTEGER
or INTEGER4 literal constant; the number is
too big, has invalid characters, etc. The
incorrect constant has been assumed to be zero.

H-24

PRELIMINARY DRAFT

267 Invalid Real Numeric Constant

There is a decode error in an assumed type REAL
literal constant; the number is too big, has
invalid characters, etc.

268 Cannot Begin Expression Skipped

A symbol that cannot start an expression has
been deleted.

269 Cannot Begin Expression Assumed Zero

A symbol that cannot start an expression has
been prefixed with a zero.

270 Constant Overflow

The divisor in a DIV or MOD function is the
constant zero (INTEGER or WORD), which is not
permitted.

272 Word Constant Overflow

A WORD constant minus a WORD constant has given
a negative result.

275 Invalid Range

The lower bound of a subrange is greater than
the upper bound (e.g. 2..1).

276 CASE Constant Expected

The compiler expects, but cannot find, a
constant value for a CASE statement or record
variant.

H-25

PRFLIMINARY DRAFT

277 Value Already In Use

In a CASE statement or record variant, the
value has already been assigned (as in CASE
1..3: XXX; 2: YYY; END).

279 Label expected

The compiler expects, but cannot find, a label.

280 Invalid Integer Label

A label uses nondecimal notation (e.g. 8077),
which is not allowed.

281 Label Assumed Declared

The compiler found a label that did not appear
in the LABEL section.

283 Expression Not Boolean Type

The expression following an IF, WHILE, or UNTIL
statement must be BOOLEAN.

284 Skip To End Of Statement

The compiler found, and has skipped, an
unexpected ELSE or UNTIL clause.

285 Compiler

286 ; Ignored

The compiler found, and has ignored, a
semicolon before an ELSE statement. (The
semicolon is not required in this case.)

288 : Skipped

The compiler found, and has ignored, a colon
after an OThERWISE statement. (The colon is
not required in this case.)

H-26

P^|J DR* FT

289 Variable Expected For FOR Statement Begin Skip

The compiler expects, but cannot find, a
variable identifier after a FOR statement and
has skipped to where message 187 appears.

291 FOR Variable Not Ordinal Or Static Or Declared
In Procedure

The compiler has found an incorrect control
variable in a FOR statement. Specifically, the
control variable is, but should not be, one of
the following:

1. Type REAL, INTEGER4, or another non­
ordinal type

2. The component of an array, record, or file
type

3. The referent of a pointer type or address
type

4. In the stack or heap, unless locally
declared

5. Nonlocally declared, unless in static
memory

6. A reference parameter (VAR or VARS
parameter)

7. A variable with a segmented ORIGIN
attribute

292 Skip To

The compiler expects, but cannot find, an
assignment in a FOR statement, and has skipped
to the next :=.

H-27

’WPPY draft

293 GOTO Invalid

The GOTO or label here involves an invalid GOTO
statement.

294 GOTO Considered Harmful

As directed, if the $GOTO metacommand is on,
the compiler has found a GOTO statement.

296 Label Not Loop Label

The label after a BREAK or CYCLE statement is
not a loop label (i.e., does not label a FOR,
WHILE, or REPEAT statement).

297 Not In Loop

The compiler has found a BREAK or CYCLE
statement outside a FOR, WHILE, or REPEAT
statement.

298 Record Expected Begin Skip

The compiler expects, but cannot find, a record
variable in a WITH statement and has skipped to
where message 187 appears.

300 Label Already In Use Previous Use Ignored

The compiler found a label that has already
appeared in front of a statement and has
ignored the previous use.

301 Invalid Use Of Procedure Or Function Parameter

The compiler has found a procedure parameter
used as a function or a function parameter used
as a procedure.

H-28

PRELIMINARY DRAFT

303 Unknown Identifier Skip Statement

The compiler has found an undefined (or
possibly misspelled) identifier at the
beginning of a statement and has ignored the
entire statement.

304 Invalid Identifier Skip Statement

The compiler has found an incorrect identifier
at the beginning of a statement (e.g., file
type id) and has ignored the entire statement.

305 Statement Not Expected

The compiler has found a MODULE or
uninitialized IMPLEMENTATION with a body
enclosed with the reserved words BEGIN and END.

306 Function Assignment Not Found

The compiler expects, but cannot find, an
assignment of the value of a function somewhere
in its body.

307 Unexpected END Skipped

The compiler found, and ignored, an END without
a matching BEGIN, CASE, or RECORD.

308 Compiler

309 Attribute Invalid

The compiler found an attribute valid only for
procedures and functions given to a variable,
an attribute valid only for a variable given to
a procedure or function, or an invalid mix of
attributes (e.g., PUBLIC and EXTERN).

H-29

PRELIMINARY DRAFT

310 Attribute Expected

The compiler expects, but cannot find, a valid
attribute, following the left bracket.

311 Skip To Identifier

The compiler skipped an invalid (i.e.,
unexpected) symbol to get to the identifier
that follows.

312 Identifier Expected

Itie compiler found something not an identifier
where it expected a list of identifiers.

314 Identifier Expected Skip To ;

The compiler expects, but cannot find, the
declaration of a new identifier and has skipped
to the next semicolon.

315 Type Unknown Or Invalid Assumed Integer Begin
Skip

'Me return type for a parameter or function is
incorrect; that is, it is not an identifier or
is undeclared, or the value parameter or
function return is a file or super array. The
compiler has assumed the type is INTEGER and
skipped to where message 187 appears.

316 Identifier Expected

The compiler expects, but cannot find, an
identifier after the word PROCEDURE or FUNCTION
in parameter list.

318 Compiler

319 Compiler

H-30

PRrLIMINAPY DRAFT

320 Previous Forward Skip Parameter List

Vis compiler found a definition of a FORWARD
(or INTERFACE) procedure or function that
unnecessarily repeats the parameter list and
function return type.

321 Not EXTERN

The compiler found a procedure or function with
the ORIGIN attribute but lacking the EXTERN
attribute as well.

322 Invalid Attribute With Function Or Parameter

The compiler found an incorrectly-used
INTERRUPT procedure, that is, one that has
parameters or is a function.

323 Invalid Attribute In Procedure Or Function

The compiler has found a nested procedure or
function that has attributes or is declared
EXTERN. Neither of these conditions is
permitted.

324 Compiler

325 Already Forward

You attempted to use FORWARD twice for the same
procedure or function.

326 Identifier Expected For Procedure Or Function

The compiler expects, but cannot find, an
identifier following the keywords PROCEDURE or
FUNCTION.

327 Invalid Symbol Skipped

The compiler found, and ignored, a FORWARD or
EXTERN directive in an interface.

H-31

PFrLIMIN^RY DRAFT

328 EXTERN Invalid With Attribute

The compiler found an EXTERN procedure also
declared PUBLIC. This is not permitted.

329 Ordinal Type Identifier Expected Integer Assumed
Begin Skip

The compiler expects, but cannot find, an
ordinal type identifier for a record tag type.
It has skipped what is given in the source file
and assumed type INTEGER.

330 Contains File Cannot Initialize

You have used a file in a record variant.
This is allowed, but considered unsafe, and is
not initialized automatically with the usual
NEWFQQ call.

331 Type Identifier Expected Assumed Character

The compiler expects, but cannot find, an
ordinal type identifier. It assumes that what
it does find is of type CHAR.

333 Not Supertype Assumed String

The compiler has found what looks like a super
array type designator. However, the type
identifier is not for a super array type, so
the compiler assumes it to be of the super
array type STRING.

334 Type Expected Integer Assumed

The compiler expects, but cannot find, a type
clause or type identifier and has assumed the
expected type to be type INTEGER.

H-32

RE'C ’ ? NAR

335 Out Of Range 255 For Lstring

The compiler has found an LSTRING designator
whose upper bound exceeds 255.

336 Cannot Use Supertype Use Designator

A super array type can only be used as a
reference parameter or a pointer referent.
Other variables cannot be given a super array
type. Use a super array designator.

337 Supertype Designator Not Found

The compiler expects, but cannot find, a super
array designator that gives the upper bounds of
the super array.

338 Contains File Cannot Initialize

The compiler has found a super array of a file
type. Mile allowed, this is considered unsafe

and is not initialized automatically with the usual
NEWFQQ call.

339 Supertype Not Array Skip TO; Assumed integer

The compiler expects, but cannot find, the
keyword ARRAY following SUPER in a type clause.
It has assumed that the type is INTEGER and
skipped to the next semicolon.

340 Invalid Set Range Integer Zero TO 255 Assumed

The compiler has found an invalid range for the
base type of a set and assumed it to be of type
INTEGER with a range from zero to 255.

341 File Contains File

The compiler has found, but does not permit, a
file type that contains a file type, either
directly or indirectly.

H-33

PRrLIMlN*PY DRAFT

342 PACKED Identifier Invalid Ignored

The compiler expects, but cannot find, one of
words ARRAY, RECORD, SET, or FILE following the
reserved word PACKED. Any type identifier
following PACKED is not permitted.

343 Unexpected PACKED

The compiler found the keyword PACKED applied
to one of the non-structured types.

345 Skip To ;

The compiler expects, but cannot find, a
semicolon at the end of a declaration (which is
not at the end of the line). It has assumed
the next semicolon is the end of the
declaration.

346 Insert ;

The compiler expects, but cannot find, a
semicolon at end of the declaration (which
coincides with the end of a line). It has
inserted a semicolon where it expected to find
one.

347 Cannot Use Value Section With ROM Memory

If the $ROM metacommand is on, you may not also
have a VALUE section.

348 UNIT Procedure Or Function Invalid EXTERN

A required EXTERN declaration occurs later than
it should in an IMPLEMENTATION. (Any interface
procedures and functions not implemented must
be declared EXTERN at the beginning.)

H-34

PRELIMINARY R Ar f

350 Not Array Begin Skip

The variable followed by a left bracket, in a
VALUE section, is not an array.

351 Not Record Begin Skip

The variable followed by a period, in VALUE
section, is not a record type.

352 Invalid Field

Within a VALUE section, the identifier assumed
to be a field is not in the record.

353 Constant Value Expected

Within a VALUE section, a variable has been
initialized to something other than a constant.

354 Not Assignment Operator Skip To ;

Within a VALUE section, the assignment operator
is missing.

355 Cannot Initialize Identifier Skip To ;

Within a VALUE section, there is a symbol that
is not a variable declared at this level in
fixed (STATIC) memory. Or, it has an illegal
ORIGIN or EXTERN attribute.

356 Cannot Use Value Section

A VALUE section has been incorrectly included
in the INTERFACE, rather than in the
IMPLEMENTATION.

357 Unknown Forward Pointer Type Assumed Integer

The identifier for the referent of a reference
type declared earlier in this TYPE (or VAR)
section was never declared itself.

H-35

draft

358 Pointer Type Assumed Forward

The TYPE section includes a pointer or address
type for which the referent type was already
declared in an enclosing scope. Since the
identifier for the referent type was declared
again later in the same TYPE section, the
compiler used the second definition. In the
following example the forward type, REAL, is
used:

PROGRAM OUTSIDE;
TYPE A --- WORD;
PROCEDURE B;
TYPE C-- ~A;
A -- REAL;

359 Cannot Use Label Section

The compiler found a LABEL section incorrectly
included in an INTERFACE, rather than in an
IMPLEMENTATION.

360 Forward Pointer To Supertype

The referent of a reference type declared in
this TYPE section is a super array type. The
declaration the super array type doesn't occur
until after the reference.

361 Constant Expression Expected Zero Assumed

An expression in a CONST section is not
constant.

362 Attribute Invalid

A VAR section mixes incorrectly the PUBLIC or
ORIGIN attribute with EXTERN. Or, ORIGIN
appears in attribute brackets after the keyword
VAR.

H-36

PRELIMINARY DRAFT

364 Contains File Initialize Module

The compiler found an unitialized file variable
in a module. You must call the module as a
parameterless procedure to initialize the
files.

365 Origin Variable Contains File Cannot Initialize

The compiler found an unitialized file
variables with the ORIGIN attribute. Since
ORIGIN variables are never initialized, you
must initialize this file yourself.

366 UNIT Identifier Expected Skip To ;

The compiler expects, but cannot find, an
identifier after the keyword USES.

367 Initialize Module To Initialize UNIT

You must call the module as a procedure in
order to initialize it (a USES clause triggers
a unit initialization call).

368 Identifier List Too Long Extra Assumed Integer

In a USES clause with a list of identifiers,
the compiler found more identifiers in the list
than are constituents of the interface. The
extra ones are assumed to be type identifiers
identical to INTEGER.

369 End Of UNIT Identifier List Ignored

In a USES clause with a list of identifiers,
the compiler found fewer identifiers in the
list than are constituents of the interface.
The remaining interface constituents are not
provided as part of the USES clause.

H-37

371 UNIT Identifier Expected

An identifier is missing after the phrase
"INTERFACE; UNIT".

372 Compiler

Compiler expects, but cannot find, the keyword
UNIT in an INTERFACE.

373 Identifier In UNIT List Not Declared

One of the identifiers in the interface UNIT
list was not declared in the body of the
interface.

374 Program Identifier Expected

An identifier is missing after the keyword
PROGRAM or MODULE. This is a panic error!

375 UNIT Identifier Expected

The unit identifier is missing after the phrase
"IMPLEMENTATION OF*. This is a panic error!

376 Program Not Found

The compiler expects, but cannot find, one of
the reserved words PROGRAM, MODULE, or
IMPLEMENTATION OF. This is a panic error!
(This error can occur if the source file is not
a Pascal compiland.)

377 File End Expected Skip To End

The compiler found addition source text after
what appeared to be the end and ignored
everything after what it thought was the end.

H-38

MHJM1NARV DRAFT

378 Program Not Found
The compiler expects, but cannot find, the main
body of a compiland or the final END.

H.2 COMPILER BACK END ERRORS

The main source of back end errors is user error
from either the optimizer or the code generator.
There are, in fact, very few of these errors. All
are concerned with limitations that cannot be
detected by the front end.

Back end errors cause an immediate abort, while an
error number and approximate listing line number
appear on your screen.

The back end errors are listed below:

1 Attempt to divide by zero.

For example, A DIV 0.

2 Overflow during integer constant folding.

For example, MAXINT + A + MAXINT.

3 Expression too complex/Too many internal labels.

Try breaking up expression with intermediate
value assigns.

4 Too many procedures and/or functions [Pcode
only].

Try breaking up compiland into modules or
units.

5 Range error (number too large to fit into
target).

PRELIMINARY DRAFT

H.3 COMPILER INTERNAL ERRORS

All errors labeled "Compiler" in Section H.1 are
compiler internal errors that should never occur.
In the event that one does occur, report it to
your dealer immediately.

The back end of the compiler also makes a large
number of internal consistency checks. These checks
should always be correct and never give an internal
error.

When they do occur, back end internal error messages
have the following format:

*** Internal Error Nbttl

NNN is the internal error number, which ranges from
1 to 999. There is little you can do when an
internal error occurs, except report it and perhaps
modify your program near the line where the error
occurred.

H.4 RUN-FILE SYSTEM ERRORS

File system error codes range from 1000 to 1999.
Error codes go into the ERRC field of the file
control block. Codes from 1000 to 1099 designate
errors (from Unit U) that are specific to your
operating system. Those from 1100 to 1199 identify
Pascal file system errors (from unit F).

File system errors all have the format:

<error type> error in file <filename>

H-40

PRELIMINARY DRAFT

followed by the error code, and in some versions an
error status, which is an operating system error
return word. The <error type> field is based on the
ERRS field of the file control block, as follows:

1 Hard Data

Hard data error (parity, CRC, checksum,etc.)

2 Device Name

Invalid unit/device/vo 1 ume name format or
number.

3 Operation

Invalid operation: GET if EOF, RESET a
printer, etc.

4 File System

File system internal error, ERRS > 15, etc.

5 Device Offline

Unit/device/volume no longer available.

6 Dost File

File itself no longer available.

7 File Name

Invalid syntax, name too long, no temp names,
etc.

8 Device Full

Disk full, directory full, all channels
allocated.

H-41

PRELIMINARY DRAFT

9 Unknown Device

Unit/device/volume not found

IS File Not Found

File itself not found.

11 protected File

Duplicate filename; write-protected

12 File In Use

File in use, concurrency lock, already open.

13 File Not Qpen

File closed, I/O to unopen FOB.

14 Data Format

Data format error, decode error, range error.

15 Line Too Long

Buffer overflow, line too long.

H.4.1 OPERATING SYSTEM RUN-TIME ERRORS

The following error messages are specific to
particular operating systems.

1000 Write error when writing end of file
1001 Unknown device name

CP/M-80 and CP/M-86 only. Occurs when no
filename has ever been assigned in a RESET or
REWRITE.

H-42

preliminary

1002 Filename extension with more than 3 characters

1003 Error during creation of new file

(disk or directory full)

1004 Error during open of existing file (file not
found)

1005 Filename with more than 8 or zero characters

1006 Device cannot do input or output

(CP/M-80 and CP/M-86 only)

1007 Total filename length over 21 character

1008 Write error when advancing to next record

1009 File too big (over 65535 logical sectors)

1010 Write error when seeking to direct record

1011 Attempt to open a random file to a non-disk
device

1012 Forward space or back space on a non-disk
device

(FORTRAN error only)

1013 Disk or directory full error during forward
space or back space

(FORTRAN error only)

IRNFCJL Can't justify line on output page H-35; on
input line 15676 of page 1 of file "DSKxMCPJJNCf

H-43

^~UM!NAPY DRAFT

H.4.2 MS-PASCAL FILE SYSTEM ERROR CODES (1100-1199)

1100 ASSIGN or READFN of filename to open file

This error is only caught for textfiles.

1101 Reference to buffer variable of closed textfile

1102 Textfile READ or WRITE call to closed file

1103 READ when EOF is true (SEQUENTIAL mode)

1104 READ to REWRITE file, or WRITE to RESET file
(SEQUENTIAL mode)

1105 EOF call to closed file

1106 GET call to closed file

1107 GET call when EOF is true (SEQUENTIAL mode)

1108 GET call to REWRITE file (SEQUENTIAL mode)

1109 PUT call to closed file

1110 PUT call to RESET file (SEQUENTIAL mode)

1111 Line too long in DIRECT textfile

1112 Decode error in textfile READ BOOLEAN

1113 Value out of range in textfile READ CHAR

1114 Decode error in textfile READ INTEGER

1115 Decode error in textfile READ SINT (integer
subrange)

1116 Decode error in textfile READ REAL

1117 LSTRING target not big enough in READSET

H-44

PRELIMINARY DRAFT

1118 Decode error in textfile READ WORD

1119 Decode error in textfile READ BYTE (word
subrange)

1120 SEEK call to closed file

1121 SEEK call to file not in DIRECT mode

1122 Encode error (field width > 255) in textfile
WRITE BOOLEAN

1123 Encode error (field width > 255) in textfile
WRITE INTEGER

1124 Encode error (field width > 255) in textfile
WRITE REAL

1125 Encode error (field width > 255) in textfile
WRITE WORD

1126 Decode error (field width > 255)in textfile
READ INTEGER4

1127 Encode error (field width > 255)in textfile
WRITE INTEGER4

H.5 OTHER RUN-TIME ERRORS (2000-2999)

Non-file system error codes range from 2000 to 2999.
In some cases, metacommands control whether or not
the compiler checks for the error. In other cases,
the compiler always checks. The list below
indicates which, if any, metacommand controls the
error checking.

H-45

WINERY

H.5.1 MEMORY ERRORS (2000-2049)

4RNFILC Illegal command: ".Errors>memory"

on output page H-37; on input line 15747 of
page 1 of file "DSK:MCP.RNO"

Since the stack and the heap grow toward each other,
all memory errors are related; for example, a stack
overflow can cause a "Heap Is Invalid" error if
$STACKCK is off and the stack overflows.

2000 Stack Overflow

The stack (frame) ran out of memory while
calling a procedure or function. This
condition is checked if the $STACKCK
metacommand is on, and may be checked in some
other cases.

2001 No Room In Heap

The heap ran out room for a new variable during
the NEW (GETHQQ) procedure. This error is
always caught.

2002 Heap Is Invalid

During the NEW (GETHQQ) procedure, the
allocation algorithm discovered the heap
structure is wrong. This error is always
caught.

2003 Heap Allocator Interrupted

An interrupt procedure interrupted NEW (GETHQQ)
and did a NEW call itself. The heap allocator
modifies the heap, so it is a critical section.
This error is not caught in all versions.

H-46

ppnj py

2004 Allocation internal Error

There was an unexpected error return when
GETHQQ was requesting additional heap space
from the operating system. Please report
occurrences of this error to Microsoft
Corporation.

2031 NIL Pointer Reference

DISPOSE or $NILCK+ found a pointer with a NIL
(i.e., 0) value.

2032 Uninitialized Pointer

DISPOSE or $NILCK+ found an uninitialized
(value 1) pointer. This only occurs if the
metacommand $INITCK is on.

2033 Invalid Pointer Range

DISPOSE or $NILCK+ found a pointer that does
not point into the heap or is otherwise
invalid. (It may have pointed to a DISPOSEd
block that was removed from the heap and given
back to the system.)

2034 Pointer To Disposed Var

DISPOSE or $NILCK+ found a pointer to a heap
block that has been DISPOSEd. Calling DISPOSE
twice for the same variable is invalid.

2035 Long DISPOSE Sizes Unequal

In a long form of DISPOSE, the actual length of
the variable did not equal the length based on
the tag values given.

H-47

PRELIMINARY Dr??

H.5.2 ORDINAL ARITHMETIC ERRORS (2050-2099)

2050 No CASE Value Matches Selector

In a CASE statement without an OTHERWISE
clause, none of the branch statements had a
CASE constant value equal to the selector
expression value. This error is only checked
if the $RANGECK metacommand is on.

2051 Unsigned Divide By Zero

A WORD value was divided by zero. This error
is checked only if the $MATHCK metacommand is
on.

2052 Signed Divide By Zero

An INTEGER value was divided by zero. This
error is checked only if the $MATHCK
metacommand is on.

2053 Unsigned Math Overflow

A WORD result is outside the range zero to
MAXWORD. This error is checked only if the
$MATHCK metacommand is on.

2054 Signed Math Overflow

An INTEGER result is outside the range from -
MAXINT to +MAXINT. This error is checked only
if the $MATHCK metacommand is on.

2055 Unsigned Value Out of Range

The source value for assignment or value
parameter is out of range for the target value.
The target may be a subrange of WORD (including
BYTE), or CHAR, or an enumerated type. This
error can also occur in SUCC and PRED functions
and when the length of an LSTRING is assigned.

H-48

PRrLIMIN^PY DRAFT

All of these conditions are checked if the
$RANGECK metacommand is on.

The error also occurs when an array index is
out of bounds and the array has an unsigned
index type. This condition is checked when the
$INDEXCK metacommand is on.

2056 Signed Value Out Of Range

This error is similar to #2055, but applies to
the INTEGER type and its subranges.

2057 Uninitialized 16 Bit Integer Used

Either an INTEGER or 16-bit INTEGER subrange
variable is used without being assigned first,
or such a variable has the invalid value of -
32768. This condition is checked if the
$INITCK metacommand is on.

2058 Uninitialized 8 Bit Integer Used

Either a SINT or 8-bit INTEGER subrange
variable is used without being assigned first,
or such a variable has the invalid value of -
128. This condition is checked if the $INITCK
metacommand is on.

2084 Integer Zero TV Negative Power

There was an attempt to raise zero to a
negative power (FORTRAN error only).

8.5.3 TYPE REAL ARITHMETIC ERRORS (2100-2149)

2100 REAL Divide By Zero

A REAL value is divided by zero. This error is
always caught.

8-49
PRFLIMINARV CP. .rT

2101 REAL Math Overflow

A REAL value is too large for representation.
This error is always caught.

2102 SIN or COS Arganent Range

The parameter for a SIN or COS function is too
large to yield a meaningful result. This error
is only caught in 8080 systems.

2103 EXP Argument Range

The parameter for an EXP function is too large
to yield a result that fits in representation.
This error is only caught in 8080 systems.

2104 SQRT of Negative Argument

The parameter for a square root function is
less than zero. This error is always caught.

2105 LN of Non-Positive Argument

The parameter of a natural log function is less
than or equal to zero. This error is always
caught.

2106 TRUNC/ROUND Argument Range

The REAL parameter of a TRUNC, TRUNC4, ROUND,
or R0UND4 function is outside the range of
INTEGERS. This error is always caught.

2131 Tangent Argument Too Small

The parameter for a TANRQQ function is so small
that the result is invalid. This error is
always caught.

H-50

PRELIMINARY

2132 Arcsin or Arccos of REAL > 1.0

The parameter of an ASNRQQ or ACSRQQ function
is greater than one. This error is always
caught.

2133 Negative Real To Real Power

The first argument of an PRDRQQ or PRSRQQ
function is less than zero. This error is
always caught.

2134 Real Zero To Negative Power

There was an attempt to raise zero to a
negative power in one of the functions PISRQQ,
PIDRQQ, PRDRQQ, or PRSRQQ.

2135 REAL Math Underflow

The significance of a REAL expression has been
reduced to zero.

2136 REAL Infinity (Unitialized Or Previous Error)

The REAL value called "infinity" was
encountered. This may occur if the $INITCK
metacommand is on and an unitialized REAL value
is used, or if a previous error set a variable
to indefinite as part of its masked error
response.

2137 Missing Arithmetic Processor

You linked your program with the run-time
library intended for use with the 8087 numeric
coprocessor, but there is no coprocessor on
your system. Relink your program with the run­
time library that emulates floating point
arithmetic.

H-51

PRELIMINARY DR" FT

2138 REAL IEEE Denormal Detected

A very snail real number was generated and may
no longer be valid due to loss of significance.

2139 REAL Precision Loss

An arithmetic operation on the 8087 numeric
coprocessor has generated a loss of numeric
precision in the result of an operation.

2140 REAL Arithmetic Processor Instruction Illegal
Or Not Emulated

An attempt was made to execute an illegal
arithmetic coprocessor instruction, or the
floating point emulator cannot emulate a legal
coprocessor instruction.

H.5.4 STRUCTURED TYPE ERRORS (2150-2199)

2150 String Too Long in COPYSTR

The source string for a COPYSTR intrinsic
function is too large for the target string.
This error is always caught.

2151 Lstring Too Long in Intrinsic Procedure

The target LSTRING is too small in an INSERT,
DELETE, CONCAT, or COPYLST intrinsic procedure.
This error is always caught.

2180 Set Element Greater Than 255

The value in a constructed set exceeds the
maximum of 255. This error is always caught.

H-52

IMIN^RY

2181 Set Element Out Of Range

The value in a set assignment or set value
parameter is too large for the target set.
This error is caught only if the $RANGECK
metacommand is on.

H.5.5 INTEGER4 ERRORS (2200-2249)

2200 Long Integer Divide By Zero

An INTEGER4 value is divided by zero. This
error is always caught.

2201 Long Integer Math Overflow

n INTEGER4 value is too large for
representation. This error is always caught.

2234 Long Integer Zero To Negative Power

There was an attempt to raise zero to a
negative power (FORTRAN error only).

H.5.6 OTHER ERRORS (2400-2999)

2400 Illegal Pcode

This is an internal error, which may occur in
P-code systems only.

2450 Unit Version Number Mismatch

During unit initialization, the user (one with
the USES clause) and implementation of an
interface were discovered to have been compiled
with unequal interface version numbers. This
error is always caught.

H-53

PRELIMINARY PMFT

