
..
~

S\JPPLEMENTARY TECHNICAL REFERENCE MANUAL

Version 1.1

for the

SIRIUS 1 Microcomputer

Originally produced by

Barson Computers P/L.,
335 Johnston St~~et,
ABBOTSFORO VIC 3067
AUSTRALIA
(03) 41!!} 3033

This copy was'
printed and supplied by

The VICTORIAN CONNEC'I'ION Bulletin Board

P.O. Box 6761

Silver Spring, MD 20906

The VICTORIAN CONNECTION Bulletin Board

(301) 460-7159

1200 baud

Capital Area Victor Users' Group,

CAVUG

P.O. Box 6255
Washington, DC 20015-0255

NOTICE:

The Capital Area Users' Group (CAVUG) and the VICTORIAN
CONNECTION Bulletin Board (VCBB) assume no liability related to
the use of this document or any of the information contained
therein. The CAVUG and the VCBB do not make any representations
or recommendations with respect to the contents of this document.

This document was printed on a Hewlett-Packard LaserJet printer
using the HP 922860, Prestige Elite font cartridge, and was
driven by a Victor 9000 microcomputer running MicroPro
Wordstar 3.3.

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

'• ,.1
i~ ·.:·::j·1v~-

.· .. :.

SUPPLEMENTARY TECHNICAL REFERENCE MANUAL

Version Ll

for the

SIRIUS 1 Microcomputer

Originally produced by

Barson Computers P/L.,
335 Johnston Street,
ABBOTSFORD VIC 3067
AUSTRALIA
(03) 4~9 3_Q33

This copy was
printed and supplied by

The VICTORIAN CONNECTION Bulletin Board

P.O. Box 6761

Silver Spring, MD 20906

~ ·.,) ·.

The VICTORIAN CONNECTION Bulletin Board

(301) 460-7159

1200 baud

C~pitai Area Victor Users' Group,

CAVUG

P.O. Box 6255
Washington, DC 20015-0255

NOTICE:

The-·:' Capital Area Users' Group (CAVUG) and the VICTORIAN
CONNECTION Bulletin Board (VCBB) assume no liability related to

- the use . of this document or any of the information contained
therein. The CAVUG and the VCBB do not make any representations
or recommendations with respect to the contents of this document.

This document was printed on a Hewlett-Packard LaserJet printer
using the HP 922860, Prestige Elite font cartridge, and was
driven by a Victor 9000 microcomputer running MicroPro
W'ordstar 3.3.

,
I

1
1
1
1
1
1
l

1
l
1
1
1

I

1 ,
i

1
l
1
1

r

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Supplementary Technical Reference Manual

Version 1.1

12-1-84

The following manual contains much g~ne.ral te~~nical information
on the Sirius 1 microcomputer. It is intended to be used as both
a sales and support aid. It should be read in conjunction with
the Hardware Reference Manual and the Operators Manual.

If you have any suggestions as to how this document could be
improved, please fill in and return the Reader Conunent Form you
will find at the rear of the manual.

There are several sample software programs contained within this
manual, most have been carefully tested; one program, the
Transmit Page program written in MS-BASIC, is correct, but a bug
in the latest release of MS-BASIC from Microsoft prevents it from
working; the program will work once the bug has been fixed. The
Pascal and Macro-86 examples of this program do work prop_e:r-ly .,·:Yi

_ .. -~ ... ~ :~-- ~~- ·~:: > J: -j~
If you find any bugs in any other software program, or have any
other problems or questions, please use the Reader Comment Form.:

The following
contributed to
them for their
Incorporated,
Rea.

Greg Johnstone

people and organisations are known to have
the production of this manual and I wish to thank
efforts: ACT (Sirius) P/L, Victor Technologies

Anne O'Hara, Stephen Page, Keith Pickup and Keith

Barson .Computers P /L. ,
335 Johnston Street,
ABBOTSFORD VIC 3067
AUSTRALIA
(03)419 3033

1 '
'

,
; :1~

1
1
1 '

1 !

I
'

1 '

1 '

1 '

1 '

1 '

1 '

1 ' ,
'1fil

1 ' '

1 '

~
' ',~

1 '

r
r
r
r
r
r
r.
r
r
r
r
r
r
r.
r.
r. .

r.
r.
r_

1.

2.

3.

TABLE OF CONTENTS

Sirius 1 System Overview
1. 1 Computer
1.2 Memory
1. 3 Disk System
1. 4 Display System
1. 5 Keyboard
1. 6 Memory Map

1. 6 . 1 MS -DOS
1.6.2 CP/M-86

1.7 Memory Expansion & Requirements
1.7.1 Memory Organisation
1.7.2 Installation
1.7.3 Address Selection
1.7.4 Testing
1.7.5 Memory Requirements

Display Driver Specifications
2. 1 Overview
2.2 Screen Control Sequences
2.3 Multi-Character Escape Sequences

2.3.1 Cursor Functions
2.3.2 Editing Functions
2.3.3 Configuration Functions
2.3.4 Operation Mode Functions
2.3.5 Special Functions
2. 3. 6 VT52, Zl9 commands

2.4 Direct Cursor Addressing - Examples
2.4.1 Microsoft MS-BASIC
2.4.2 Microsoft MACR0-86
2.4.3 Microsoft MS-Pascal

2.5 Transmit Page - Examples
2.5.1 Microsoft MS-BASIC
2.5.2 Microsoft MACR0-86
2.5.3 Microsoft MS-Pascal

2.6 25th Line Display Examples of use
2.6.1 Microsoft MACR0-86 Assembler
2.6.2 Microsoft MS-BASIC

2. 7 132-column Display

Input/Output Port Specifications
3 .1 Device Connection
3.2 Parallel Port Signals
3.3 Parallel Printer Connection

3.3.1 Parallel Cable Requirements

I

Page
1-1
1-1
1-1
1-2
1-2
1-3
1-4
1-5
1-6
1-6
1-6
1-7
1-8
1-9

2-1
2-1
2-2
2-2
2-4
2-6
2-7
2-7
2-10
2-10
2-10
2-11
2-12
2-12
2-13
2-13
2-14
2-15
2-15
2-17
2-18

3-1
3-2
3-2
3-3

3.4 Serial Port Signals
3.5 Serial Printer Connection

3.5.l Serial Cable Requirements
3.6 Operating System Port Utilities

3.6.1 SETIO - List Device Selection .. .
3.6.2 STAT - List Device Selection
3.6.3 PORTSET - Baud Rate Selection .. .
3.6.4 PORTCONF - Baud Rate Selection ..

3.7 Serial Input/Output Port Addresses
3.8 Baud Rate/ Transmission - Examples .. .

3.8.1 Microsoft MS-BASIC
3.8.2 Microsoft MACR0-86

3.9 Transferring Files to & from Computers.
3.10 IEEE-488 Port
3.11 Control Port (internal port)
3.12 MS-DOS Logical devices
3.13 Sample program for Initialising printers

4. MS-DOS Notes
4.1 MS-DOS Program Load

4.1.1 MS-DOS Base Page Structure
4.2 The Command Processor

4.2.1 Introduction
4.2.2 Replacing the Command Processor ..
4.2.3 Available MS-DOS functions
4.2.4 Diskette/File Management Notes .. .
4.2.5 The Disc Transfer Area
4.2.6 Error Trapping
4.2.7 General Guidelines
4.2.8 Examples of using MS-DOS Functions
4.2.9 To Create File FILEl

4.3 MS-DOS Diskette Directory
4.4 MS-DOS Program Segment

5. Miscellaneous Programming Notes
5.1 Rounding Numbers in Basic-86
5.2 Undocumented Commands of the Interpreter

5. 2. 1 Date$
5 . 2 . 2 Time$
5.2.3 Date
5.2.4 Time
5.2.5 Bload
5 . 2 . 6 Bsave
5. 2. 7 Open

II

CONTENTS
continued

3-4
3-7
3-7
3-9
3-9
3-12
3-14
3-14
3-14
3-15
3-15
3-17
3-19
3-21
3-22
3-23
3-25

4-1
4-1
4-5
4-5
4-6
4-6
4-7
4-7
4-8
4-8
4-9
4-10
4-12
4-13

5-1
5-1
5-1
5-2
5-2
5-3
5-3
5-4
5-5

1

1
1
1
1

J

1
1
1

I

1

1

1 ,
I

1

-
-

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

6.

7.

8.

5.3 Calling Assembler from Basic Compiler ..
5.4 Program Size Limitations

5.4.1 Memory Usage in Pascal
5.4.2 Memory Usage in Fortran
5.4.3 Memory Usage Outside the default

64k Segment in MS-FORTRAN
5.5 Fix for ASYNC to load default ASYN.IEM.
5.6 Creating ASCII Text Files
5.7 Codec Progranuning

5. 7 .1 Volume
5. 7. 2 Codec Clock
5.7.3 Codec Mode Control
5.7.4 SDA Initialisation
5.7.5 SDA Data Transfer

5. 8 Data Security
5.9 MS-PASCAL Date & Time (input/output) .. .
5.10 Accessing System Time in dBASE II
5.11 Progranuning the 8253 Timer
5.12 Manipulating a Batch File
5.13 CALC (or UDCCALC) - Calculator Function
5.14 Directory Entries
5.15 MS-DOS File Sizes and Disc Structure .. .

Wordprocessing Notes
6.1 Install for WordStar
6.2 Summary of WordStar Patch Locations
6.3 Summary of Keyboard Table AUSWP4.KB
6.4 Convert CP/M WordStar to MS-DOS
6.5 Using C.Itoh FlO Printer with WordStar.
6 . 6 Benchmark
6.7 XON/XOFF Printer Driver for Wordstar .. .

CP/M-80 System - Z-80 Card
7 .1 Z-80 CPU Card

Hard Disc
8.1 Hard Disc Introduction
8.2 Disc Drive Functional Characters

8.2.1 Disc Rotation
8.2.2 Head Positioning
8. 2. 3 Start/Stop
8.2.4 Air Filtration
8. 2. 5 Media
8.2.6 Storage Capacity

8.3 Winchester Drive Handling Precautions ..

III

CONTENTS
continued

5-6
5-9
5-10
5-10

5-12
5-12
5-13
5-14
5-14
5-15
5-16
5-16
5-17
5-18
5-21
5-22
5-26
5-26
5-28
5-29
5-30

6-1
6-2
6-5
6-8
6-8
6-9
6-9

7-1

8-1
8-1
8-1
8-1
8-2
8-2
8-2
8-2
8-3

9.

10.

ll.

8 . 3 . 1 Do ' s and Don' ts
8.4 Hard Disc System Diagnostics
8. 5 Hard Disc Problems

Local Area Network
9 .1 Introduction

9.2
9.3

High
10.l
10.2
10.3
10.4
10.5

10.6
10.7
10.8
10.9

9.1.1 Introduction to l.AN•......
9.1.2 ISO Seven Layer Network Model .. .
Local Area Network Overview
Network Software Overview

Resolution Graphics
Introduction
Clearing a Hi-Res area
Setting Screen Buffer Pointers
Reprogramming the CRT Controller
Examples
10.5.1 Microsoft MACR0-86 Assembler
10.5.2 Microsoft MS-BASIC Interpreter ..
Printer Configuration in Grafix Kernel.
Patching Grafix Kernel for MT-180
Character Printing
Patching CHRPRINT for the MT-180

Assembly to High Level Interface
11.1 Interfacing Basic with Assembler

11.1.1 Calling Assembler Subroutines .. .
11.1.2 Basic Data Types
11.1.3 Passing Parameters
11.1.4 Example

11.2 Interfacing Compiled Basic with Assembler
11.2.1 Calling Assembler Subroutines .. .
11.2.2 Compiled Basic Data Types
11.2.3 Passing parameters
11.2.4 Example

11.3 Interfacing GWBasic with Assembler
11.3.1 GWBasic Data Types
11.3.2 Passing Parameters
11. 3. 3 Example

11.4 Interfacing MS-COBOL with Assembler
11.4.l Calling assembler Subroutines .. .
11.4.2 Cobol Dtata Types
11.4.3 Passing Parameters
11.4.4 Example

IV

8-3
8-3
8-4

9-1
9-1
9-1
9-3
9-5

CONTENTS
continued

10-1
10-1
10-2
10-2
10-3
10-3
10-9
10-10
10-14
10-15
10-16

11-1
11-1
11-2
11-3
11-4
11-6
11-7
11-7
11-8
11-9
11-11
11-12
11-13
11-13
11-16
11-16
11-17
11-19
11-19

l
1

1
1

l
1

1 ,,
I

_,
I

1

,
.1

l,
~

I
\ ,
I

1
I

r

r

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

11.5 Interfacing MS-Pascal with Assembler .. .
11.5.l Calling external Subroutines
11.5.2 Passing Parameters
11.5.3 Pascal Data Types
11.5.4 Returned Values
11.5.5 Example 1 - Sum Function
11.5.6 Example 2 - String Concatenation
11 . 5 . 7 Linking

Appendices

Appendix A: ASCII Codes
A.l ASCII Codes used in the Sirius 1
A.2 ASCII/Hex/Decimal Chart

Appendix B: Keyboard
B.l Sirius 1 Keyboard Layout

Appendix
C.l
C.2
C.3

C: Input/Output Ports
Parallel & Serial Cable Requirement
Parallel Printer Cables
Serial Printer Cables

Appendix D: Assembler Examples
D.l MACR0-86 Assembler Shell
D.2 ASM-86 Assembler Shell

Appendix E: MS-DOS EXE File Header Structure

Appendix F: Sirius 1 Specifications
F.l Technical Specifications
F.2 Physical Specifications

Appendix G: Glossary

Appendix H: Dealers Demonstration Package
H.l Disc 1 Latest Graphics Demo
H.2 Disc 2 Sliding Picture Show
H.3 Disc 3 1550 (C.Itoh) Graphics
H.4 Disc 4 Arabic Demonstration

v

CONTENTS
continued

11-21
11-21
11-22
11-23
11-25
11-26
11-28
11-30

A-1
A-2

B-1

C-1
C-2
C-6

D-1
D-2

E-1

F-1
F-2

G-1

H-1
H-5
H-6
H-6

Appendix
I. l
I.2

I.3

I.4

I.5

I.6

CONTENTS
continued

I: Interrupt Driven Serial Input/Output
Introduction....................... I-1
Interrupt Vectors.................. I-1
I.2.1 Vectors Available on Sirius.. I-1
I.2.2 Location of Vectors.......... I-2
I.2.3 Set Vector - Assembler....... I-2
Enabling Internal & External clocks I-3
I.3.1 Providing Clocks............. I-3
Initialising the SIO............... I-4
I.4.1 Baud Rate for SIO............ I-5
I.4.2 Set PIC to enable SIO Interr. I-5
Interrupt Service Routine - ISR.... I-6
I. 5 .1 Sample ISR................... I-6
Setting Direction Bits............. I-7

Appendix J: File Header Information
J.l Character Set Header

J.1.1 Sample Character Set Table
File Header

J.2 Prop. Character Set Trailer Info .. .
J.3 Keyboard Table Header
J.4 Banner Skeleton Files
J.5 Banner Customisation
J.6 Logo Creation
J.7 Normal File Control Block
J.8 Extended File Control Block

J-1

J-3
J-3
J-4
J-5
J-5
J-6
J-6
J-8

Appendix K: Comparisons Between MS-DOS & CPJM-86
. K-1

Appendix L: Features included in MS-DOS Version 2
. L-1

Appendix M: SIRIUS I Dealer Spare Parts Kit
M-1

Appendix N: Double Sided Diskettes
N.l Double sided diskettes............. N-1
N.2 Boot Disc Label format............. N-3

Appendix
0.1
0.2
0.3

O: Functional Specifications of Boot
Diagnostic ROM Board Support
ICONS for boot ROM version Pl
Exception Displays

VI

ROM
0-1
0-2
0-3

1

1
1
1

1

1

1
1

1
..,

\

1

-
-

r
r
r
r
r
r
r
l

r
r
r
r
r
r
r
r
r
r
r
r

CONTENTS
continued

0.4 Universal Boot EPROMS. 0-3

Appendix P: Transferring files from Commodore to Sirius
. P-1

Appendix Q: Unprotecting Discs

Appendix R: ASYNC Protocol
R.l Data Block
R. 2 File name Blocks

Appendix
S.l
S.2
S.3
S.4

S: Communications
IBM Remote Batch Emulation
IBM 3270 Emulation Package
Asynchronous Communications Package
ASYNC Package - Remote Terminal

VII

Q-1

R-1
R-2

S-1
S-2
S-4
S-6

VIII

n
]

1
]

1
]

J
J
1 ,
1 ,
n
1
1 ,
1
~

1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

SIRIUS SYSTEM OVERVIEW 1-1

SIRIUS 1 SYSTEM OVERVIEW

1.1 Computer

The Sirius 1 computer is based upon the Intel 8088 16-bit
microprocessor. This processor chip is directly related to the
Intel 8086 16-bit microprocessor, but with two subtle
differences:

8088
8-bit data bus

8086
16-bit data bus

4 instruction look-ahead 6 instruction look-ahead

The major difference, the 8-bit data bus, has some effect on
the relative abilities of the two chips; the main difference is
that while the 8086 can load an entire 16-bit word of data
directly, the 8088 has to load two 8-bit bytes to achieve the
same result - the outcome of which being that the 8088 processor
is a little slower than the 8086. The loss of speed, however, is
balanced by the fact that the cost of the main circuit board and
add-on boards are lower than for the wider 8086 requirement. This
means that the end-user will have the best cost/performance ratio
for a 16-bit computer.

1.2 Memory

The Sirius 1 has a maximum memory capacity of 896 kilobytes
of Random Access Memory or "RAM" (a measure of a computer's
internal storage capacity; a "kilobyte" is 1,024 bytes). A byte
is able to store one character of data - thus the Sirius 1, with
full 896K memory capacity is able to hold, internally, nearly 1
million characters - compare this figure with the older Z80 or
6502 computers that have a maximum memory capacity of less than
70,000 characters or 64k bytes of RAM.

1.3 Disk System

The Sirius 1 has several integral disc configurations
available; these are:

o Twin single-sided 600k bytes per
minifloppies, giving a total capacity
(~,200Kbytes) available on-line.

o Twin double-sided l.2M bytes per
minifloppies, giving a total capacity
(2,400Kbytes) available on-line.

SIRIUS SYSTEM OVERVIEW

drive 130mm
of l.2Mbytes

drive 130mm
of 2.4Mbytes

1-1

SIRIUS SYSTEM OVERVIEW 1-2

0 Single lOM byte hard disc (Winchester) plus
double-sided l.2M byte 130mrn floppy, g1v1ng
capacity of ll.2Mbytes (ll,200Kbytes) available

a single
a total

on-line.

Future disc systems will include an external lOMbyte hard
disc (Winchester) that will allow expansion of any of the above
systems by a further 10,000K bytes.

Although the Sirius 1 uses 130mm minifloppies of a similar
type to those used in other computers, the floppy discs
themselves are not readable on other machines, nor can the Sirius
1 read a disc from another manufacturers machine. The Sirius 1
uses a unique recording method to allow the data to be packed as
densely as 600Kbytes on a single-sided single-density minifloppy;
this recording method involves the regulation of the speed at
which the floppy rotates, explaining the fact that the noise from
the drive sometimes changes frequency.

1.4 Display System

The display unit swivels and tilts to permit optimum
adjustment of the viewing angle, and the unit incorporates a
300mm antiglare screen to prevent eye strain. The display, in
normal mode, is 25 lines, each line having 80 columns. Characters
are formed, in normal mode, in a 10-x-16 font cell, providing a
highly-readable display. The screen may be used in high­
resolution mode, providing a bit-mapped screen with 800-x-400 dot
matrix resolution. The high-resolution mode is available only
under software control, there is no means of simply "switching"
in to high-resolution. Victor Technologies has provided software
to allow full use of the screen in high-resolution mode in the
Graphics Tool Kit.

Character sets are "soft" - that is they may be substituted
for alternative character sets of the users choice, or creation.
Only one 256-character character set may be displayed on the
screen at one time - multiple character sets cannot, currently,
be displayed simultaneously - but this feature may well become
available in the future. Character set manipulation software is
available in both the Graphics and Programmers Tool Kits.

1.5 Keyboard

Every key is programmable, permitting the offering of a
National keyboard in each country in which it is marketed. As a
result, the keyboard can be customised to satisfy the
requirements of foreign languages and so that striking a key
enters a character or predetermined set of commands.

SIRIUS SYSTEM OVERVIEW 1-2

1
1

1
""'I

I

1
~
i

1
I ,
!

~
I

1 ,
i

1

1
1 ,

.1

l

1
.,

I

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

SIRIUS SYSTEM OVERVIEW 1-3

Keyboards are as soft as the character sets - this allows a
keyboard to be generated to match a newly created or special
character set. Each key on the keyboard has three potential
states; the unshifted, shifted and alternate. The unshifted mode
is accessed when the desired key is depressed; the shifted mode
is accessed when the shift key is depressed along with the
desired key; and the alternate mode is accessed when the ALT key
is depressed along with the desired key. Keyboard manipulation
software is available in both the Graphics and Programmers Tool
Kits.

1.6 Memory Map

The Sirius 1 is currently supplied with two major disc
operating systems; CP/M-86 from Digital Research, and MS-DOS from
Microsoft. Athough these two operating systems appear
superficially similar, they are quite different in their
operation, program interfacing techniques, and their memory
structure. The following diagrams are the memory maps for CP/M-86
and MS-DOS; you will notice that some aspects of the machine
never change, such as the screen RAM and interrupt vector
locations, these areas are hardware defined, and as such never
alter. The memory maps for MS-DOS and CP/M-86 are not fixed in
the Sirius 1, thus some of the elements of the map will not be
specific; this is not to be deliberately vague, but improvements
to the performance aspects of the software do take place forcing
the diagrams to be unspecific to some degree.

Note that in CP/M-86 user programs load in
Program Area (TPA) from the top down, whereas in
load from the bottom up.

SIRIUS SYSTEM OVERVIEW

the Transient
MS-DOS, they

1-3

SIRIUS SYSTEM OVERVIEW 1-4

1.6.1 Memory Map -- MS-DOS Operating System

FFFFF

FCOOO

F4000

FOOOO

EOOOO

etc.
256k=3FFFO
128k=lFFFO

02COO

OlCOO

oocoo

00480

00400

00000

I I
I Boot Proms I
1-----------------------------------1
I Reserved for Future Expansion I
!-----------------------------------!
I Screen High-Speed Static RAM I
1-----------------------------------1
I Memory-Mapped I/O Space I
I I
1-----------------------------------1
I I

BIOS
Operating System ----------­

MS-DOS

Command - Resident Portion

Command - Transient Portion

Transient Program Area (TPA)

Alternate Character Set 4k bytes

128 Character Set 4k bytes

Logo 2k bytes
-----------------------------------!

"Stub" - Jump Vectors 1128 bytes
-----------------------------------!

Interrupt Vector Table Ilk bytes
~~~~~~~~~~~~~~~~! 

Programs load from the bottom of TPA 

SIRIUS SYSTEM OVERVIEW 1-4 

1 
1 

, 
I 

1 
1 , 

\ 

1 
""'! 

I 

1-i 
I 

1 
1 
1 

I 

l 

1 
1 
1 



r 
r 
r 
r 
r 
r 
r 
r 
r 
r 
r 
r 
r 
r 
r 
r 
r 
r 
r 

SIRIUS SYSTEM OVERVIEW 1-5 

1. 6. 2 Memory Map -- CP/M-86 Operating System 

FFFFF 

FCOOO 

F4000 

FOOOO 

EOOOO 

1FFFF(l28K) 
3FFFF(256K) 

02COO 

OlCOO 

oocoo 

00480 

00400 

00000 

I 
I Boot Proms I 
1-----------------------------------1 
I Reserved for Future Expansion I 
1-----------------------------------1 
I Screen High-Speed Static RAM I 
!-----------------------------------! 
I Memory-Mapped I/O Space I 
I I 
1-----------------------------------1 
I I 

I 
1-----------------------------------
1 

I BIOS 
I Operating System ----------- 30k bytes 
I BDOS 
I 
!-----------------------------------

Transient Program Area (TPA) 

Alternate Character Set 4k bytes 

128 Character Set 4k bytes 
-----------------------------------! 

Logo 12k bytes 
-----------------------------------! 

"Stub" - Jump Vectors 1128 bytes 
-----------------------------------! 

Interrupt Vector Table Ilk bytes 
~~~~~~~~~~~~~~~~! 

Programs load from the top of TPA

SIRIUS SYSTEM OVERVIEW 1-5

SIRIUS SYSTEM OVERVIEW 1-6

1.7 Memory Expansion and Memory Requirements

1.7.1 Memory Organisation

The total address space of the Sirius 1 is lMbyte (or 64K
paragraphs; a paragraph being 16 bytes). For convenience this
can be considered as 8 blocks of 128K, as follows:

Address
(paragraphs)

FFFF 1----------
I 7

EOOO 1----------
6

cooo ----------
5

AOOO ----------
4

8000 ----------
3

6000 ----------
2

4000 ----------
1

2000 ----------
0

0000 ----------

\
I
I
I
I
>
I
I
I
I
I

I
}

Memory mapped I/O,
screen RAM, ROM, etc.

Expansion

RAM supplied with standard
128K machine

RAM expansion boards are 128K, 256K and 384K (3 x 128K)
capacity. The 128K and 256K boards can be addressed at any 128K
boundary in the area of memory reserved for expansion (ie.
addresses starting at blocks 1 to 6 in the diagram). The 384K
boards can (currently) only be addressed at blocks 1 or 4. Later
versions will allow the 384K board to be addressed similarly to
the other two boards.

RAM must be contiguous, thus if two 128K RAM cards are used
in a standard 128K machine, for example, they must be addressed
at blocks 1 and 2. If a 384K RAM card and a 128K RAM card are
used, the 384K RAM card must be addressed at blocks 1-3 and the
128K RAM card must be addressed at block 4.

1. 7. 2 Installation

A RAM card may occupy any of the four expansion slots on the
motherboard. A plastic retainer is supplied to hold the top of
the board in place. When installed, the component side of the

SIRIUS SYSTEM OVERVIEW 1-6

1
I

1
1 ,

I

1
1
1 ,

I
I

l
l

1
1
1

1
~
I

l
l
1
1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
(

r
r
r
r
r

SIRIUS SYSTEM OVERVIEW 1-7

board should face away from the disc drives.

1.7.3 Address Selection

128K and 256K RAM card:

The group of DIP switches on the card is used to select
which blocks the RAM should address. Switches 1 to 6 select
blocks 1 to 6 respectively. If a 256K board is to address blocks
3 and 4 then switches 3 and 4 should be on. If a 128K board is
to address block 1, switch 1 should be on.

Switches 7 and 8 are used to select refresh rates.
should be left as set.

These

384K RAM card:

Older versions of this board are addressed by two jumpers.
They are supplied with jumpers E2-E3 and E4-E6 soldered in. This
configuration addresses blocks 1 to 3. The jumpers should be
changed to El-E2 and ES-E6 to address blocks 4 to 6. Later
versions have a single jumper which can be used to select 'upper'
or 'lower' banks of 384K. Yet-to-be-released versions of the
384K RAM card will use similar addressing methods to the 128K and
256K RAM cards.

NOTE: A possible problem exists when using current or older
builds of the 384K RAM card with a 256K CPU board. It is
necessary to modify the RAM card so that the first 128K bank of
RAM is relocated to reside in the range 40000-SFFFFh. This is
done by modifying the address decoding on the 384K RAM card.
There are at present two 384K RAM cards supported. They have the
part numbers "101070-01 C 10663" and "101070-01 B D 10870". The
modifications for the two boards are shown below:-

For board number 101070-01 B D 10870

1.

2.

3.

4.

Locate device lD (74LS11) on the 384K PCB.

Cut the track going to pin 1 of this device on the bottom of
the board (corning from pin 14 of device lB (74LS138)).

Link pins 1 and 3 of device lD (best done on the bottom of
the board with a small piece of wire wrap wire).

Inspect the modification, checking to make sure that the
track is cut and that there are no solder shorts.

SIRIUS SYSTEM OVERVIEW 1-7

SIRIUS SYSTEM OVERVIEW 1-8

5. Ensure that Jl (next to device lF) is linked to the 'LOWER'
position.

6. Proceed to "testing" section.

For board number 101070-01 C 10663

1. Carry out the modification as per 1 to 5 above.

2. Locate the jumper configuration El,E2 and E3 (to the left of
device 2B, next to Rl and ClO). Remove the wire link
connecting either E2 to El or E2 to E3 and discard.

3. Link device 2B (74LS86) pin 4 to device lB (74LS138) pin 3.

4. Inspect the modification, checking to make sure that the
link is open and that there are no solder shorts.

5. Proceed to "testing" section.

Testing:

Install the RAM card in the machine and turn on.
well, the machine will display "A000" paragraphs of
booting from a drive instead of the normal "4000"
message. The machine now has 640K of RAM from OOOOOh

If all is
memory when
paragraphs

to 9FFFFh.

NOTE: 1 paragraph=l6 bytes and Sirius displays the number of
paragraphs in hexadecimal.

1. 7. 4 Testing

When installed, the board should be tested by booting the
system. During boot, RAM is tested and the amount of RAM (in
paragraphs) is displayed at the bottom of the screen. For
example, the standard 128K machine displays M 2000, a 256K
machine displays M 4000. If an error is found in RAM, Sirius
will not boot. Machines with extra RAM take longer to boot.
(See also, Appendix 0).

The latest 'Universal' boot ROMs (see Appendix 0) display
memory in kilobytes rather than paragraphs. Thus the display on a
256K machine will be M 256K.

SIRIUS SYSTEM OVERVIEW 1-8

l

1

1

1

1
1 ,

I

I
I

1

1
1 ,

i

1
~

I

l
,.,

I

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

SIRIUS SYSTEM OVERVIEW 1-9

1.7.5 Memory Requirements

The operating system always relocates itself to take account
of all available memory.

At this moment,
compilers require 256K
may run in 128K. The
will use up to 512K.

Microsoft Fortran, Pascal and Cobol
to compile, although the compiled programs
graphics package requires 256K minimum and

Microsoft Basic interpreter will not allow the user more
than about 62K of free space.

Supercalc, Autocad and Scientex use all available memory.

SIRIUS SYSTEM OVERVIEW 1-9

SIRIUS SYSTEM OVERVIEW 1-10

SIRIUS SYSTEM OVERVIEW 1-10

1
1
1
1
l
1
1
l
l
1
1
1
l
1
l
1
l ,
,

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
l

r
r

DISPLAY DRIVER SPECIFICATIONS 2-1

DISPLAY DRIVER SPECIFICATIONS

2.1 Overview

The display system in the Sirius 1 is, like so much of the
machine, soft. The operating system BIOS contains the Zenith H-19
video terminal emulator, which is an enhanced control set of the
DEC VT52 crt. The BIOS takes all ASCII characters received and
either displays them or uses their control characteristics. The
control characters OOhex (OOdecimal) through lFhex (3ldecimal)
and 7Fhex (127decimal) are not displayed under normal
circumstances. The non-display characters previously discussed,
plus those characters having the high-bit set, being 80hex
(128decimal) through FFhex (255decimal), may be displayed on the
screen under program control, but extensive use of these
characters is easier with the character graphics utilities.

Most of the control characters act by themselves; for
example, the TAB key (Control I, 09hex, 09decimal) will cause the
cursor to move to the right to the next tab position. For more
complex cursor/screen control the multiple character escape
sequences should be used. The control characters, and the escape
sequences are fully described below.

2.2 Screen Control Sequences

Single Control Characters

Bell (Control G, 07hex, 07decimal - ASCII BEL)
This ASCII character is not truly a displaying
character, but causes the loudspeaker to make a beep.

Backspace (Control H, 08hex, 08decimal - ASCII BS)
Causes the cursor to be positioned one column to the
left of its current position. If at column l, it causes
the cursor to be placed at column 80 of the previous
line; if the cursor is at column l, line 1, then the
cursor moves to column 80 of line 1.

Horizontal Tab (Control I, 09hex, 09decimal - ASCII HT)
Positions the cursor at the next tab stop to the right.
Tab stops are fixed, and are at columns 9, 17, 25, 33,
41, 49, 57, 65, and 72 through 80. If the cursor is at
column 80, it remains there.

Line Feed (Control J, OAhex, lOdecimal - ASCII LF)
Positions the cursor down one line. If at line 24, then

DISPLAY DRIVER SPECIFICATIONS 2-1

DISPLAY DRIVER SPECIFICATIONS 2-2

the display scrolls up one line. This key may be
treated as a carriage return -- see ESC x9.

Carriage Return (Control M, ODhex, 13decimal - ASCII CR)
Positions the cursor at column 1 of the current line.
This key may be treated as a line feed -- see ESC x8.

Shift Out (Control N, OEhex, 14decimal - ASCII SO)
Shift out of the standard system character set, and
shift into the alternative system character set
(Character set 1, Gl). This gives the ability to access
and display those characters having the high-bit set
being those characters from 80hex (128decimal) through
FFhex (255decimal).

Shift In (Control 0, OFhex, lSdecimal - ASCII SI)
Shift into the standard system character set (Character
set 0, GO). This gives the ability to access and
display the standard ASCII character set - being those
characters from OOhex (OOdecimal) through 7Fhex
(127decimal).

Escape (Control [, lBhex, 27decimal - ASCII ESC)
Tells the video driver that a command of one or more
characters follows. See section 2.3.

2.3 Multi-Character Escape Sequences

2.3.l Cursor Functions

As well as the above control characters, the video driver
has a large vocabulary of commands which are several characters
long. The first character of these commands is the control
character called Escape (ESC), which has the value 27 in the
ASCII character set. When the video driver is sent an ESC
character it performs whatever function is specified by the
following characters. This kind of command is called an "escape
sequence".

To make it easier for programs written on other computers to
be run on the Sirius, the set of escape sequences is designed to
be very similar to a DEC VT52 terminal. In addition, some of the
more fancy features are borrowed from a Heath Zl9 terminal.

DISPLAY DRIVER SPECIFICATIONS 2-2

1
,,

I
I

1 ,
1

1

,
I ,
I

1
1 ,

\ ,
I

1 ,

-

r
r
r
r
r
r
r
r
L

r
r
r
r

DISPLAY DRIVER SPECIFICATIONS 2-3

To send an escape sequence from a Basic program,
following statement sequence (the example shows how to
ESC-A and ESC-1):

use the
send an

10 E$... CHR$(27)
20 PRINT E$;"A";
30 PRINT E$· 11 l 11

•
I '

'put the ESC character in E$
'ESC-A moves up a line
'ESC-1 clears the line

Escape
Sequence/Function ASCII Code Performed Function

ESC A

ESC B

ESC C

ESC D

ESC H

ESC I

ESC Y 1 c

ESC j

lB,
27,

lB,
27,

lB,
27,

lB,
27,

lB,
27,

lB,
27,

lB,
27,

4lhex
65dec

42hex
66dec

43hex
67dec

44hex
68dec

48hex
72dec

49hex
73dec

59hex
89dec

Move cursor up one line
without changing column.

Move cursor down one line
without changing column.

Move cursor forward one
character position.

Move cursor backward one
character position.

Move cursor to the home
position. Cursor moves to line
l, column 1.

Reverse index. Move cursor up
to previous line at current
column position.

Moves the cursor via direct
(absolute) addressing to the
line and column location
described by 'l' and 'c'. The
line ('l') and column ('c')
coordinates are binary values
offset from 20hex (32decimal).
Thus, to move to the end of
the top line, we use (in
Basic):

PRINT CHR$(27);"Y";CHR$(32+0);CHR$(32+79)
(For further information on
the use of direct addressing
see section 2.4).

lB, 6Ahex
27, 106dec

Store the
position.

current cursor
The cursor location

DISPLAY DRIVER SPECIFICATIONS 2-3

DISPLAY DRIVER SPECIFICATIO~S

ESC k

ESC n

lB, 6Bhex
27, 107dec

lB, 6Ehex
27, llOdec

2.3.2 Editing Functions

Escape
Sequence/Function

ESC @

ESC E

ESC J

ESC K

ESC L

ESC M

ASCII Code

lB, 40hex
27, 64dec

lB, 4Shex
27, 69dec

lB, 4Ahex
27, 74dec

lB, 4Bhex
27, 75dec

lB, 4Chex
27, 76dec

lB, 4Dhex
27, 77dec

DISPLAY DRIVER SPECIFICATIONS

2-4

is saved for later restoration
(see ESC k).

Returns cursor to the
previously saved location (see
ESC j).

Return the current cursor
position. The current cursor
location is returned as line
and column, offset from 20hex
(32decimal), in the next
character input request.

Performed Function

Enter the character insert
mode. Characters may be added
at the current cursor
position, as each
character is added,
character at the end of
line is lost.

Erase the entire screen.

new
the
the

Erase from the current cursor
position to the end of the
screen.

Erase the screen from the
current cursor position to the
end of the line.

Insert a blank line on the
current cursor line. The
current line, and all
following lines are moved down
one, and the cursor is placed
at the beginning of the blank
line.

Delete the line containing the
cursor, place the cursor at

2-4

i
i

Poij
I

,.,
! ,
I ,
I ,
!

~
I

i
I

.....,

I ,
I

,
I ,

r
r
r
r
r
r
r
r
L

r
r
r
r
r
r
r
r
r
r
r

DISPLAY DRIVER SPECIFICATIONS

ESC N

ESC 0

ESC X

ESC b

ESC 1

ESC o

lB, 4Ehex
27, 78dec

lB, 4Fhex
27, 79dec

lB, 58hex
27, 88dec

lB, 62hex
27, 98dec

lB, 6Chex
27, 108dec
lB, 6Fhex
27, llldec

DISPLAY DRIVER SPECIFICATIONS

2-5

the start of the line, and
move all following lines up
one - a blank line is inserted
at line 24.

Delete the character at the
cursor position, and move all
other characters on the line
after the cursor to the left
one character position.

Exit from the character insert
mode (see ESC @).

Exchanges the current line for
the contents of an internal
buffer. To swap two lines, do
the following:

move cursor to first line
ESC X (puts line into
internal buffer)

move cursor to other line
ESC X (swaps first line
for this)

move cursor to first line
ESC X (puts second line
where first was)

Erase the screen from the
start of the screen up to, and
including, the current cursor
position.

Erase entire current cursor
line.
Erase the beginning of the
line up to, and including, the
current cursor position.

2-5

DISPIAY DRIVER SPECIFICATIONS

2.3.3 Configuration Functions

Escape
Sequence/Function ASCII Code

ESC x Ps lB, 78hex
27, 120dec

ESC y Ps

ESC [

ESC \

ESC A

3lhex, 49dec

33hex, 5ldec
34hex, 52dec
35hex, 53dec
38hex, 56dec

39hex, 57dec

4lhex, 65dec
42hex, 66dec
43hex, 67dec

lB, 79hex
27, 120dec

3lhex, 49dec
33hex, 5ldec
34hex, 52dec
35hex, 53dec
38hex, 56dec

39hex, 57dec

4lhex, 65dec
42hex, 66dec
43hex, 67dec

lB, 5Bhex
27, 9ldec

lB, 5Chex
27, 92dec

lB, 5Ehex
27, 94dec

DISPIAY DRIVER SPECIFICATIONS

2-6

Performed Function

Sets mode(s) as follows:

Ps Mode
1 Enable 25th line

(see section 5.5)
3 Hold screen mode on
4 Block cursor
5 Cursor off
8 Auto line feed on receipt

of a carriage return.
9 Auto carriage return on

receipt of line feed
A Increase audio volume
B Increase CRT brightness
C Increase CRT contrast

For example, to disable the
cursor, use (in Basic):
PRINT CHR$(27);"x5"

Resets mode{s) as follows:

Ps Mode
1 Disable 25th line
3 Hold screen mode off
4 Underscore cursor
5 Cursor on
8 No auto line feed on rec­

eipt of a carriage return.
9 No auto carriage return on

receipt of line feed
A Decrease audio volume
B Decrease CRT brightness
C Decrease CRT contrast

Set hold mode

Clear hold mode

Toggle hold mode on/off.

2-6

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

DISPLAY DRIVER SPECIFICATIONS

2.3.4 Operation Mode Functions

Escape
Sequence/Function ASCII Code

ESC (lB, 28hex
27, 40dec

ESC)

ESC 0

ESC 1

ESC p

ESC q

lB, 29hex
lB, 4ldec

lB, 30hex
27, 48dec

lB, 3lhex
27, 49dec

lB, 70hex
27, 112dec

lB, 7lhex
27, 113dec

2.3.5 Special Functions

Escape
Sequence/Function ASCII Code

ESC # lB, 23hex
27, 35dec

ESC $ lB, 24hex
27, 36dec

DISPLAY DRIVER SPECIFICATIONS

2-7

Performed Function

Enter high intensity mode. All
characters displayed after
this point will be displayed
in high-intensity.

Exit high intensity mode.

Enter underline mode. All
characters displayed after
this point will be underlined.

Exit underline mode.

Enter reverse video mode. All
characters displayed after
this point will be displayed
in reverse video.

Exit reverse video mode.

Performed Function

Return the current contents of
the page. The entire contents
of the screen are made
available at the next
character input request(s).
(For further information on
the use of this function, see
section 2.5).

Return the value of the
character at the current
cursor position. The character
is returned in the next
character input request.

2-7

DISPLAY DRIVER SPECIFICATIONS

ESC +

ESC 2

ESC 3

ESC 4

ESC 8

ESC F

lB, 2Bhex
27, 43dec

lB, 32hex
27, SOdec

lB, 33hex
27, Sldec

lB, 34hex
27, 52dec

lB, 38hex
27, 56dec

lB 40hex
27 70dec

DISPLAY DRIVER SPECIFICATIONS

2-8

Clear the foreground. Clear
all high-intensity displayed
characters.

Make cursor blink.

Stop cursor blink.

Temporarily generate different
characters on the keyboard.
Though the escape sequence is
listed under 132C, it can be
used under MBASIC on MS-DOS.
Eg. change function key no. 1
to backslash, escape sequence
- Esc 4 m lk kv. Where
m=character l, 2 or 3, 1
unshift, 2 shift, 3
alternate. lk - logical key
number (00 -7Fhex), kv
hexadecimal ASCII keycode of
the new key value.

Set the text (literally) mode
for the next single character.
This allows the display of
characters from Olhex (Oldec)
through lFhex (3ldec) on the
screen. Thus the BELL
character (07hex, 07dec) will
not cause the bleep, but a
character will appear on the
screen. For example,

PRINT CHR$(27);"8";CHR$(12);
will print whatever graphic
character occupies position 12
in the current set.

The other method of accessing
the graphics characters stored
in positions 0-31 of the
current set. This escape code
maps the graphics characters
into codes 94-127, i.e. it
replaces the lower case letter

2-8

1
1 ,

I

1
J

1 ,
i ,
I

~
I

,

,
I
1,

-

r
r
r
r
r
r
r
r
r
r
r
r
r
r

r
r
r
r

DISPLAY DRIVER SPECIFICATIONS

ESC G

ESC Z

ESC]

ESC v

ESC w

ESC z

ESC (

ESC }

ESC I

ESC i Ps

lB 4lhex
27 7lhex

lB, 5Ahex
27, 90dec

lB, 5Dhex
27, 93dec

lB, 76hex
27, 118dec

lB, 77hex
27, 119dec

lB, 7Ahex
27, 122dec

lB, 7Bhex
27, 123dec

lB, 7Dhex
27, 125dec

lB 7Chex
27 124dec

lB, 69hex
27, 105dec

DISPLAY DRIVER SPECIFICATIONS

2-9

by graphics characters.

Clear graphics mode.

Identify terminal type. The
VT52 emulator will return
ESC\Z in the next character
input request.

Return the value of the 25th
line. The next series of
character input requests will
receive the current contents
of the 25th line.

Enable wrap-around at the end
of each screen line. A
character placed after column
80 of a line will be placed on
the next line at column 1.

Disable wrap-around at the end
of each line.

Reset terminal emulator to the
power-on state. This clears
all user selected modes,
clears the screen, and homes
the cursor.

Enable keyboard input. (see
ESC }).

Disable keyboard input. This
locks the keyboard. Any
character(s) typed are ignored
until an ESC (is issued.

Activate user-defined console.
When the 132 column utility is
in memory, this escape
sequence transfers control to
132C.

Displays banner as follows:

Ps Mode

2-9

DISPLAY DRIVER SPECIFICATIO~S

2.3.6
nothing

ESC x2
ESC y2

ESC x6
ESC y6
ESC t
ESC u

ESC x7
ESC y7
ESC
ESC >

The
at

30hex, 48dec 0 Display
3lhex, 49dec 1 Display
32hex, SOdec 2 Display
33hex, Sldec 3 Display

following VT52/Zl9 commands are
present:

Disable key click.
Enable key click.

Enable keypad shift.
Disable keypad shift.
Enable keypad shift.
Disable keypad shift.

Enter alternate keypad mode.
Exit alternate keypad mode.
Enter alternate keypad mode.
Exit alternate keypad mode.

2-10

entire banner
company logo
operating system
configuration

accepted but do

2.4 Direct Cursor Addressing -- Examples of Use

The direct cursor addressing function is accessed by sending
the ESC Y 1 c sequence to the screen (see section 2.3.1). "l" is
the line number required, whose valid coordinates are between 1
and 24. An offset of lFhex (3ldecimal) must be added to the
location required in order to correctly locate the cursor. "c" is
the column number required, whose valid coordinates are between 1
and 80. An offset of lFhex (3ldecimal) must be added to the
location required in order to correctly locate the cursor.

Note that the true offset requirement of 20hex (32decimal)
for line and column may only be used accurately when the line
number is viewed 0 to 23, and the column number 0 to 79.

The line/column number requested must be handled as a binary
digit, examples of this follow:

2.4.1 Microsoft MS-BASIC -- Direct Cursor Positioning

The following method uses offsets from line 1, column 1:

10 PRINT CHR$(27)+"E" :REM CLEAR THE SCREEN
20 DEF FNM$(LIN,COL)==CHR$(27)+"Y"+CHR$(3l+LIN)+CHR$(3l+COL)
30 PRINT "Enter line (1-24) and column (1-80), as LINE,COL ";
40 INPUT LIN, COL
50 PRINT FNM$(LIN,COL);

DISPLAY DRIVER SPECIFICATIONS 2-10

l
1

i ,
I

1 ,
I

1
I

1
1

1
I

1 ,
!

~
I

.,
'
I

-

-
....

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

DISPLAY DRIVER SPECIFICATIONS 2-11

60 FOR I = 1 TO 1000
70 NEXT I

:REM PAUSE BEFORE OK MESSAGE DISPLAYED

The alternative method, using offsets from zero is shown below:

10 PRINT CHR$(27)+"E" :REM CLEAR THE SCREEN
20 DEF FNM$(LIN,COL)=CHR$(27)+"Y"+CHR$(32+LIN)+CHR$(32+COL)
30 PRINT "Enter line (0-23) and column (0-79), as LINE,COL ";
40 INPUT LIN, COL
50 PRINT FNM$(LIN,COL);
60 FOR I - 1 TO 1000 :REM PAUSE BEFORE OK MESSAGE DISPLAYED
70 NEXT I

2.4.2 Microsoft MACR0-86 Assembler -- Direct Cursor Positioning

line off
col off
esc
ms dos

equ 20h
equ 20h
equ lbh
equ 2lh

clear screen
dir_cur_pos_lead

db
db

esc, 'E$'
esc, 'Y$'

;line position offset from 0
;column position offset from 0
;escape character
;interrupt to MS-DOS

;clear screen request
;cursor positioning lead-in

the cursor position required is handed down in BX
where BH =line (0-23 binary), BL= column (0-79 binary)

clear_and_locate:
mov ah,9h
mov dx,offset clear screen
int msdos

;string output up to $
;get the clear screen string
;and output it up to the $

the cursor pcsition required is in BX
add bh,line_off ;normalise line for output
add bl,col_off ;normalise column for output

send the direct cursor positioning lead-in

mov ah,9h ;select screen output up to $
mov dx,offset dir_cur_pos_lead ;select the lead in ESC Y
int ms dos ; and output it up to $

now the contents of BX must be sent to the terminal emulator

mov dl,bh
mov ah,6h
int msdos

mov dl,bl

DISPLAY DRIVER SPECIFICATIONS

;ready the line number
;direct console output of DL
;output the line coordinate

;ready the column number

2-11

DISPLAY DRIVER SPECIFICATION5 2-12

mov ah,6h ;direct console output of DL
int msdos ;send the column coordinate

the cursor is now at the location selected in BX

2.4.3 Microsoft Pascal Compiler -- Direct Cursor Positioning

program position (input,output);
{This method uses offsets from line 0, column 0.}

const
clear screen - chr(27) * chr(69);

var
result array[l .. 4] of char;
i, line, column : integer
row, col : char;

begin
(RESULT = ESC}
{RESULT= "Y"}

result[l] :- chr(27);
result[2] :- chr(89);
write (clear_screen);
write (' Enter line (0-23)
readln (line, column);
writeln (clear_screen);
row := chr(32 +line);

and column (0-79), as LINE COLUMN: ');

col := chr(32 +column);
result[3] := row;
result[4] :- col;
for i := 1 to 4 do

write (result[i]);
for i := 1 to 32000 do

end.

{RESULT ROW}
{RESULT COL}

{PRINT CURSOR TO SCREEN}
{PAUSE}

2.5 Transmit Page -- Examples of Use

The transmit page function is accessed by sending the ESC #

sequence to the screen (see section 2.3.5). The result of this
sequence is that all characters on the screen, as well as the
cursor positioning sequences required to re-create the screen,
are sent to the keyboard buffer. Reading the keyboard via a
normal keyboard input request will return the entire screen of
data to the program. The screen buffer within the program should
be at least 1920 bytes (80x24) long to accommodate the entire
screen - the program will need to perform 1920 single character
inputs to empty the keyboard buffer. Note that the character
input requests must be done rapidly to prevent the keyboard
buffer overflowing and causing loss of data - note, too, that on
a keyboard buffer overflow, the bell sounds.

DISPLAY DRIVER SPECIFICATIONS 2-12

l
1
1

1
l

1

1
1

,
'

,
'i

i

1
'

1
,

r
r
r
r
r
r
r
r
r
r
r
r
r
r
l

r
r
r
r
r

DISPLAY DRIVER SPECIFICATIONS 2-13

The following sample programs demonstrate the use for
function request:

this

2.5.1 Microsoft MS-BASIC -- Transmit Page

10 DIM A$(1920)
20 PRINT CHR$(27)+ 11 # 11

;

30 FOR I ... 1 TO 1920
40 A$(I) ... INKEY$
50 NEXT I
60 PRINT CHR$(27)+"E";
70 FOR I = 1 TO 1920
80 PRINT A$(I);
90 NEXT I

2.5.2 Microsoft MACR0-86 Assembler -- Transmit Page

coniof equ
conin equ
printf equ
ms dos equ
buffer_length

6h
Of fh
9h
2lh

equ 1920

;direct console i/o function
;console input request
;screen o/p up to $
;interrupt operating system
;entire screen count

read screen db
clear screen db
buff er db

lbh,'#$' ;read entire screen

mov
mov
mov
mov
mov
mov
int

lbh,'E$' ;clear screen/home cursor
buffer_length dup (?) ;main buffer region

ax,DS
ES,ax
di,offset buffer
si,di
dx,offset read screen
ah,printf
ms dos

;get buffer data segment
;ready for store
;get storage buffer
;init for later use
;read entire screen string
;o/p it up to $
;call the OS

now read entire screen in to BUFFER

mov
mov
mov

in_loop:
int
stosb
loop

mov
mov

ah,coniof
dl,conin
cx,buffer_length

ms dos

in_loop

;read from keyboard buffer
;ready to read
;count of chars to read

;get a char in AL
;save the char in BUFFER
; and loop till buffer full

ah,printf ;ready to clear the screen
dx,offset clear screen ;get the string

DISPLAY DRIVER SPECIFICATIONS 2-13

DISPLAY DRIVER SPECIFICATIONS 2-14

int ms dos and o/p it up to $

now replace the screen data

;get the count mov
mov

cx,buffer_length
ah,coniof ;get the o/p char function

dl,al
;get a char

ready to go
;o/p it

out_loop:
lodsb
mov
int
loop
ret

ms dos
out_loop ;loop till buffer empty

2.5.3 Microsoft Pascal Compiler -- Transmit Page

PROGRAM Scrnbuf;

CONST
clear screen
transmit_page
err_msg
direct conio
con in
print_string

VAR
screen_dump :
ch : CHAR;
i : INTEGER;
param : WORD;
status : BYTE;

= CHR(27)*CHR(69)*CHR(36);
= CHR(27)*CHR(35)*CHR(36);
=- 'ERROR$';
= #6;
""#OFF;
= #9;

ARRAY (1 .. 1920] OF CHAR;

FUNCTION DOSXQQ(command, parameter WORD) BYTE; EXTERNAL;

BEGIN
EVAL(DOSXQQ(print_string,WRD(ADR(transmit_page))));
param:= BYWORD(0, conin);
status:= DOSXQQ(direct_conio, param);
IF status <> 0 THEN

BEGIN
i:= l;
WHILE status <> 0 DO

BEGIN
ch:=- CHR(status);
screen_dump[i]:= ch;
i:= i + 1;
status:= DOSXQQ(direct_conio, param);

DISPLAY DRIVER SPECIFICATIONS 2-14

1

l
1

I

1
1
1

l ,
l
,

i

1

,
1

I

-

-

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

DISPLAY DRIVER SPECIFICATIONS 2-15

END;
i:= i - l;
EVAL(DOSXQQ(print_string,'WRD(ADR(clear_screen))));
FOR VAR J:= 1 TO i DO

EVAL(DOSXQQ(direct_conio, 'WRD(screen_dump[J])));
END

ELSE
EVAL(DOSXQQ(print_string,'WRD(ADR(err_msg))));

END.

2.6 25th Line Display - Examples of Use

2.6.l Microsoft MACR0-86 Assembler

program name SETKEY

written by Greg Johnstone
Barson Computers
335 Johnston St
Abbotsford, 3067

This program displays function key tokens in the 25th line of
the display on the SIRIUS. The program does NOT affect the
codes attached to these keys (you must use KEYGEN in the Grafix
or Programmers Toolkits to do this); NOR does it read the
keyboard table to find out what the current code is. All this
program does, is to display the data contained in BUFFER
(below) on the screen. Ten characters are allowed for each key
label. You will need the programmers toolkit to proceed. Use
MACR086 to assemble this program then use LINK to link it, as
follows:

LINK will
ignore it.
run. What
follows:

MACR086 SETKEY;
LINK SETKEY;

produce the message "warning: no stack segment",
LINK produces a file ; SETKEY.EXE which will not

you must do is produce a .COM file using DEBUG, as

DEBUG SETKEY.EXE
N SETKEY.COM
w
Q

The resulting program SETKEY.COM will run.

page

DISPLAY DRIVER SPECIFICATIONS 2-15

SETKEY.COM
SETKEY.COM

DISPLAY DRIVER SPECIFICATIO~S 2-16

code segment
assume cs:code, ds:code

boot equ
listout equ
conout equ

er
lf
esc

start:

again:

equ
equ
equ

org

mov

mov
mov
cmp
jz
push
int
pop
inc

0
5
2

Odh
Oah
lbh

lOOh

bx,offset buffer

ah,conout
dl, [bx]
dl,O
cont
bx
2lh
bx
bx

;system reboot function
;list output function
;console output function

;carriage return
;line feed
;escape

;point to output string

;set parameters for list output
;get next charact~r
;test for end

;print it

;next
jmp again

cont:

buffer:

mov
int

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db

ah, boot
21h

;reboot

esc,'j' ;save cursor
esc,'xl' ;enable 25th line
esc,'Y' ,25+lfh,20h ;put cursor in 25th line

',esc,'p' ;turn on reverse mode
'DIRECTORY ' ;label for key 1
esc, 'q ' , esc, 'p'
'DISC COPY ' ;key 2
esc, 'q ' , esc, 'p'
' FORMAT ' ;key 3
esc, 'q ' , esc, 'p'
' CHKDSK ' ;key 4
esc, 'q ',esc, 'p'
' EDIT ' ;key 5
esc, 'q ',esc, 'p'

REPEAT ; key 6
esc, 'q ' , esc, 'p'

ABORT ;key 7
esc,'q',' ;end 25th line
esc,'k' ;put cursor back to saved position

DISPLAY DRIVER SPECIFICATIONS 2-16

1
1
1

I

1 ,
1
1

1
i

I
I

1
"""I

I

1
i

!

i

1

1
1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

DISPLAY DRIVER SPECIFICATIONS 2-17

code

db 0

ends
end start

2.6.2 Microsoft MS-BASIC

10
15
20
25
30
35
40
45
so
60
65

* * * SET UP FOR 25TH LINE *
* *

WIDTH 255:PRINT CHR$(27);"E";TAB(28)"TEST
PRINT:PRINT:PRINT:INPUT "What is the Base
IF BASE<l OR BASE>3 THEN RUN
GOSUB lOO:GOSUB 200:GOTO 20

FUNCTION KEY DISPLAY";
Flag ";BASE

70 'variables
75

base
fkct
fk$

flags which display to print
number of keys to be set
array to hold key name
function key wording size

80
85 fksz
90
100 '*** subroutine to read key names as per base flag ***
110 E$=CHR$(27)
120 IF BASE = 1
130 IF BASE = 2
140 IF BASE = 3
150 READ FKCT

THEN RESTORE 1010
THEN RESTORE 1020
THEN RESTORE 1030

160 FOR I=l TO FKCT
170 READ FK$(I)
180 NEXT

rem restore data as per flag

rem read number of keys to set
rem loop to read key names
rem set fk$(i) to name

190 RETURN rem exit this subroutine
200 '*** subroutine to display key names on 25th line ***
210 FKSZ = INT((80-(FKCT-l))/FKCT)
220 X$="":C$=E$+"q"+" "+e$+"p" rem c$-= space in normal video
230 FOR I-1 TO FKCT rem loop to set display string
240 B$=LEFT$(FK$(I),FKSZ):J=INT((FKSZ-LEN(B$)+1)/2)
250 X$=X$+C$+LEFT$(SPACE$(J)+B$+SPACE$(FKSZ),FKSZ)
260 NEXT I
270 X$=E$+"p"+X$+E$+"q" rem include on/off video
280 PRINT E$"xl"; E$"j"; e$"Y8 "; E$"1" ;X$; E$"Y "; E$"k";: 'print it
290 RETURN
1000 '*** data for key names ***
1010 DATA 7,"BASEl KEYl","BASEl KEY2","BASE1 KEY2","BASE1 KEY3","BASE1
KEY4","BASE1 KEYS","BASEl KEY6","BASE1 KEY7"
1020 DATA 7,"BASE2 KEY1","BASE2 KEY2","BASE2 KEY3","BASE2 KEY4",
"BASE2 KEYS".BASE2 KEY6","BASE2 KEY7"

DISPLAY DRIVER SPECIFICATIONS 2-17

DISPLAY DRIVER SPECIFICATIONS 2-18

1030 DATA 7, "EVEN", "NAMES", "THAT", "VARY", "IN", "LENGTH"," "

2.7 132-Column Display

under the 132
the 'Install'

the screen

Both WordStar and SuperCalc may be 'run'
Column display mode. You must, however, use
programs of WordStar and SuperCalc to modify
dimensions for use in the 132 x SO mode.

WordStar: To modify WordStar, simply type 'Install' and
the prompts for customer terminal installation.
you get to the menu, follow the prompts to
screen dimensions. You must change the screen
lines and 132 columns (or less, if you desire).

follow
When

modify
to SO

SuperCalc: To modify SuperCalc, type 'Install' and select
modify screen dimensions. You must change the lines to
38 and the column to 132 (or less, if you desire). A
copy of SuperCalc 'Install' may be obtained from Barson
Computers.

You may wish to copy or rename the modified program files
(ie. WS132.CMD, SC132.CMD) so that you need not reconfigure the
program each time you wish to change from 132 column to 80 column
operation.

DISPLAY DRIVER SPECIFICATIONS 2-18

1

,
i

1

1

1
1

l
'i

I

r

1

..,,
i
I

1
i

..,,
i

-i
!

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

I/O PORT SPECIFICATIONS 3-1

SIRIUS 1 INPUT/OUTPUT PORT SPECIFICATION

3.1 Device Connection

Because of the 'soft' nature of the Sirius (that is, the
configuration of the I/O ports is loaded from disc at boot time)
you must always check that the operating system loaded is
appropriate for the printer connected. If this is not the case
then you may have to reconfigure the operating system permanently
(using the System Configuration package) or temporarily using
PORTSET and/or SETIO with MS-DOS or PORTCONF and/or STAT with
CP/M-86. (see Section 3.6 for more details).

There are 5 ports (3 external, 2 internal) available on the
Sirius 1 - they are as follows:

2 x Serial (RS232C) - Ports A and B
1 x Parallel (Centronics)
2 x Parallel (control - located on CPU board)

The ports are located on the rear of the Sirius 1 as shown
in the following diagram:

I \
I \

I \
I on/off switch I I \

I l~I \
I \
I Keyboard I
I socket LPT TTY ULl I
I I
ll_I l_I l_I I
I Reset Video I
\ button I
'~~~~~~~~~~~~~~~~~~~~~~~~~·/

Figure 1
Sirius 1 Parallel and Serial Ports
(as viewed from the rear of the CPU)

I/O PORT SPECIFICATIONS 3-1

I/O PORT SPECIFICATIONS 3-2

3.2 Parallel Port Signals

Parallel printer interfacing is done on the parallel port:
Parallel port interfacing is accessed through the 36 pin
centronics compatible parallel port. Most parallel printer cable
interfaces are simply 36-way flat ribbon cables with 36 pin male
ribbon connectors at each end. The signals are directly routed
from the Sirius 1 to the printer.

In parallel data transmission all data bits are transmitted
asynchronously in an 8 bit parallel form. In parallel there is
no parity checking or baud speeds.

Pin Number Signal

1 --------------------------- Data Strobe
2 --------------------------- Data 1
3 --------------------------- Data 2
4 --------------------------- Data 3
5 --------------------------- Data 4
6 --------------------------- Data 5
7 --------------------------- Data 6
8 --------------------------- Data 7
9 --------------------------- Data 8
10 -------------------------- ACK/
11 -------------------------- Busy
17 -------------------------- Pshield
12,18,30,31 ----------------- Not connected
Remaining ------------------- GND

NOTE: For Epson printers pin 14 must not be connected (to
eliminate double linefeeds.)

3.3 Parallel Printer Connection

To connect a parallel printer to the Sirius l,
cable is required - if the printer is supplied
Computers, then it will be a matter of plugging the
both machines; cables should be attached as follows:

a suitable
by Barson

cable into

1)
2)
3)
4)
5)
6)

Disconnect power from both the computer and printer.
Disconnect the Sirius video connector (see 3.1)
Attach interface cable to Sirius and printer
Re-attach the video connector
Set the printer dip-switches as required
Make sure the operating system is configured for
printing to the Centronics port by using SETIO (MS-DOS)
or STAT (CP/M-86) as described in Section 3.6.

I/O PORT SPECIFICATIONS 3-2

l
1
1

1

1
i
! ,
i ,

i
!

i
i ,
i

1
i

!

1
I ,
I

1
1

lllll
i

r
r

r
r
l

r
r
r

r
r
r
r
l.

r
r
r
r

I/O PORT SPECIFICATIONS 3-3

3.3.1 Parallel Cable Requirements

If a suitable parallel cable is not available, you will need
to make one - use the guidelines that follow to create your own
cable:

You will need a male centronics-compatible Amphenol 57-30360
type connector for the Sirius 1 end of the cable; use the
type of connector suggested by the printer manufacturer for
the printer end, in general, another male centronics­
compatible Amphenol 57-30360 type connector will be
required. You will also require a length of 12-core cable
(3m maximum length).

Ref er to the port layout in your printer handbook - compare
this with the Sirius 1 parallel port layout (see Section 3.2). If
the pin numbers and signal requirements are the same, then
construct the cable as follows:

1 ------------------- 1
2 ------------------- 2
3 ------------------- 3
4 ------------------- 4
5
6
7
8
9

10
11
16

------------------- 5
6
7
8
9
10
11
16

It does not matter which end of the cable is connected to
the printer or the computer.

If your printer has the same signals as the Sirius 1, but on
differing pins, then use the following guidelines:

1)
2)

3)

4)

5)

Label one connector "Computer" and the other "Printer".
Connect pin 1 at the computer connector to the Data
strobe pin at the printer connector.
Connect pins 2 through 9 at the computer connector to
the Datal (may be labelled DataO) through Data8 (may be
labelled Data7) at the printer connector.
Connect pin 10 at the computer connector to the ACK pin
at the printer connector.
Connect pin 11 at the computer connector to the BUSY
pin at the printer connector.

I/O PORT SPECIFICATIONS 3-3

I/O PORT SPECIFICATIONS 3-4

6) Connect pin 16 at the computer connector to the GROUND
(may be labelled GND) pin at the printer connector.

The printer cable is now complete - it must always be
attached to the devices as marked on the connectors - if it is
not, then the printer will not work.

3.4 Serial Port Signals

The two serial ports may be used to connect serial printers
to the Sirius 1. In serial transmission data bits are
transmitted over a data line one bit at a time. The industry
standard for serial peripheral communication is the RS-232C
serial binary data interchange.

The RS-232C standard is usable for data interchange rates up
to 20,000 bits per second.

Line Driver Output Voltages

State Approx. Voltage

OFF -12 voe

GND +/- o voe

ON + 12 voe

The RS-232C maximum recommended cable length is
approximately lSmetres. On the Sirius 1, serial printers may be
hooked up to the following serial port pins.

SIRIUS SERIAL (RS232) PORT

PIN NAME FUNCTION DIRECTION

1 FG Frame Ground

2 TD Transmitted Data From SIRIUS

3 RD Received Data To SIRIUS

4 RTS Request to Send From SIRIUS

5 CTS Clear to Send To SIRIUS

6 DSR Data Set Ready To SIRIUS

I/O PORT SPECIFICATIONS 3-4

1

1 ,
I
!

l"'j
\

..,
I

,
!

i

i

..,
I

1
i

,
,

l!llil

l

r
r
r
r
r
r
r
r
r
r
r
r
r

I/O PORT SPECIFICATIONS 3-5

7 SG Signal Ground

8 DCD Data Carrier Detect To SIRIUS

15 TC Transmitter Clock To SIRIUS

17 RC Receiver Clock To SIRIUS

20 DTR Data Terminal Ready From SIRIUS

22 RI Ring Indicator To SIRIUS

24 TTC Transmitter Clock From SIRIUS

There are basically two classifications of data transceiving
equipment, 1. Data Terminal Equipment (DTE) and 2. Data
Communications Equipment (DCE). Most printers are set up as
DTE's. The interface requirements for the two classifications
are very different, so the classification of printer and computer
must be determined before a cable interface can be designed. The
Sirius 1 is configured as a (DTE).

(DCE) --------------------------------- (DTE)
(DTE) --------------------------------- (DTE) *

* Note: Typical Sirius 1 computer to printer interface.

PIN 1

PIN 2

PIN 3

PIN 4

Signal Descriptions

CHASSIS GROUND
This signal is electrically connected to the
machine frame.

TRANSMIT DATA
Data is transferred across this line. This line
will be held in a marking (OFF) state during
intervals between characters or words and when no
data is being transmitted.

RECEIVE DATA
The printer receives data on this line. This line
is held in a marking (OFF) state whenever data
carrier detect (DCD PIN 8) is in the (OFF) state.

REQUEST TO SEND
This signal is used to prepare the printer to
receive data. The (ON) state indicates to the
printer that the DTE has data to be transmitted.

I/O PORT SPECIFICATIONS 3-5

I/O PORT SPECIFICATIONS 3-6

PIN 5

PIN 6

PIN 7

PIN 8

PIN 20

The (OFF) condition indicates the computer is in a
non-transmit mode.
When the (RTS) line is transitioned from OFF to ON
the printer knows to prepare to receive data. The
printer responds to the RTS transition by
transitioning the clear to send (CTS) line from
off to on.

CLEAR TO SEND
Signals on this circuit indicate whether or not
the data set is ready to transmit data. The ON
condition is a response to the occurrence of a
simultaneous ON condition on data set ready (DSR)
and request to send (RTS).
In DTE's where RTS is not implemented RTS shall be
assumed to be ON at all times, and CTS will
respond accordingly.

DATA SET READY
This circuit is used to indicate the status of the
local data set.

SIGNAL GROUND

DATA CARRIER DETECT
This signal issued by the DTE tells whether the
data being received is of suitable quality. The
(ON) state indicates suitable data is being
received. The (OFF) state indicates that no data
is being received or that the data being received
is unsuitable.

DATA TERMINAL READY
This signal is used to switch the DTE to the
communications channel. The ON condition prepares
the DTE to be connected to the channel and
maintains the connection established.

In serial printers the data is transmitted as single bits.
The number of bits per second (for this application) is the baud
rate. The computer and printer baud rates MUST match in order to
maintain proper operation.

NOTE: Mismatched baud rates- between printer and computer will
cause the printer to print improper characters (garbage).

I/O PORT SPECIFICATIONS 3-6

,
1

1 ,
I
I

l ,
!

~
I

~
I
I

~
I
I ,

1

~
I
I

,
!

~
I
I

l1"l!l

r
r
r
l

r
r
r
r
r
r
r
r
l

r
r
r
r
r
r
r
r

I/O PORT SPECIFICATIONS 3-7

The data bit stream can be checked for accuracy by the use
of parity bits. The parity bit is added to the transmitted data
frame and decoded when received. The computer and printer baud
rate must be equal for correct system operation.

The printer serial port may not conform to RS-232C pin
configurations, thus the pinouts for the PRINTER serial port must
be obtained before a serial interface can be developed.

3.5 Serial Printer Connection

To connect a serial printer to the Sirius 1,
cable is required - if the printer is supplied
Computers, then it will be a matter of plugging the
both machines; cables should be attached as follows:

a suitable
by Barson

cable into

1) Attach the cable between the Sirius 1 serial port B
(see 3.1) and the printer connector.

2) Set the printer switches for 8-data bits, 1
4800 baud and no parity. Set DTR protocol
printer manual).

stop bit,
(refer to

You may set the baud rate at a rate different from that
mentioned in (2) - but you will then be required to set the baud
rate using the baud rate selection utility, PORTSET or PORTCONF
(see 3.6), or alternatively you will need to build a new
operating system. (see Programmer's Toolkit).

Make certain that the operating system is configured
printing to the serial port by using SETIO (MS-DOS) or
(CP/M-86) as described in Section 3.6.

3.5.1 Serial Cable Requirements

for
STAT

If a suitable serial cable is not available, you will need
to make one - use the guidelines that follow to create your own
cable:

You will require 1 x D25 male, 1 x D25 female connectors,
and a length of 6-12 core cable, with a maximum length of about
lSm. Refer to the port layout in your printer manual, if pin 3 is
received data (labelled RXD or RD), and pin 20 is data terminal
ready (labelled DTR), then construct your cable as follows:

I/O PORT SPECIFICATIONS 3-7

I/O PORT SPECIFICATIONS

Computer Printer

1 ---------------------- 1
2 ---------------------- 3
3 ---------------------- 2
7 ---------------------- 7
5 ---------------------- 20

3-8

This cable, often called a Modem Eliminator Cable, must be
attached as shown - mark the Computer/Printer connectors as a
reference.

With some printers you can add an extra connection:

20 ---------------------- 5

which allows the cable to be used with either end connected to
the computer.

If pin 3 is receive data (RXD or RD) and pin 20 is not data
terminal ready (DTR) then construct your cable as follows:

Computer Printer

1 ---------------------- 1
3 ---------------------- 2
2 ---------------------- 3
7 ---------------------- 7
5 ---------------------- x

where x is the pin number of the BUSY signal (possibly pin 11 or
19). If this method is used, make sure that the polarity of the
BUSY signal is correct; this is usually switch selectable (it
should be LOW when printer is BUSY).

This cable must be attached as shown
Computer/Printer connectors as a reference.

- mark the

If the printer requires pins 6 and 8 to be held high then
add the following connection:

20 ----------------------- 6
1----- 8

See Section 3.4 for details of Sirius serial port pinouts
and Appendix C for further sample cables.

I/O PORT SPECIFICATIONS 3-8

1 ,
1 ,
1

1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

I/O PORT SPECIFICATIONS 3-9

3.6 Operating System Port Utilities

Victor Technologies supplies a selection of programs under
both CP/M-86 and MS-DOS to allow the temporary selection of both
baud rate and list device port. If you attach a printer to your
system you may be required to perform some of the following steps
in order to use the printer. Before you use any of the utilities
discussed you need to be aware of the port the printer is
attached to; Port A, B or Parallel. You will also need to know,
except in the case of a parallel printer, what baud rate, stop­
bits and parity your printer is set up at. Note that many
printers will start to lose data at baud rates above 4800, you
must, therefore, select a baud rate that your printer can handle.

Ideally your operating system should be configured
permanently using the system generation packages. You must tell
the operating system which port you intend using and what baud
rate the printer requires (if using a serial port).

The CP/M-86 System Configuration package is available
separately and the MS-DOS System Generation package is found in
the Programmer's Toolkit.

If you wish to temporarily change printer port you can use
STAT (CP/M-86) or SETIO (MS-DOS) and the baud rate can be changed
using PORTSET, PORTCONF or simple Basic programs.

3.6.l SETIO - MS-DOS List Device Selection Utility

SETIO is a utility program to display or change
byte. The I/O byte associates a logical device with a
device.

the I/O
physical

SETIO has three modes. If invoked without parameters, the
assignment table is displayed. If invoked with an invalid device
assignment, the command format is displayed with the assignment
table. If invoked with a valid device assignment, an updated
table is displayed with the new assignment.

To select the correct port for the list device you have
attached, the SETIO program has been provided. This program is
used as follows:

SETIO LST
SETIO LST
SETIO LST

TTY
ULl
LPT

I/O PORT SPECIFICATIONS

- printer is attached to port A
- printer is attached to port B
- printer is attached to parallel port

3-9

I/O PORT SPECIFICATIONS 3-10

It is recommended that your printer be attached to either
port B or the parallel port.

Once SETIO has executed, it displays a map of the ports,
with the ones you selected highlighted on the screen - if this is
not correct, repeat the process.

Examples:(highlighted fields are enclosed in brackets []).

A>setio <er> (without parameters)

Logical Device
CON
AUXIN
AUX OUT
LST

Physical Devices
TTY(CRT]BAT ULl

[TTY]PTR URl UR2
[TTY]PTP UPl UP2
TTY CRT LPT[ULl]

A>setio ?<er> (note: ? is an invalid parameter)

SET I/O VERSION n.n
usage: SETIO[<logical device> - <physical device>]

CON
AUXIN
AUX OUT
LST

TTY[CRT]BAT ULl
[TTY]PTR URl UR2
[TTY]PTP UPl UP2
TTY CRT LPT[ULl]

A>setio 1st = tty<cr> (valid parameters)

SET I/O VERSION n.n

CON
AUXIN
AUX OUT
LST

TTY(CRT]BAT ULl
[TTY]PTR URl UR2
[TTY]PTP UPl UP2
[TTY]CRT LPT ULl

In this last example, we have set the printer port to port A
(which usually comes set at 1200 baud).

Logical and Physical Devices

Device
Type/Name

Logical Devices
CON

I/O PORT SPECIFICATIONS

Description

Console device - the
interactive console which

principal
communicates

3-10

1
1
1
1
..,

I
i

1
I ,
I ,
i

1

,
I ,
,
1

1

""!!
I

r
r
r
r
r
r
r
r
r
r
r
r
r
l

r
r
r
r
r
r

I/O PORT SPECIFICATIONS

LST

AUXIN

AUXOUT

Physical Devices
TTY

CRT

LPT

ULl

BAT

UCl

PTR

URl

UR2

PTP

UPl

UP2

Examples:

SETIO LST=LPT

SETIO LST-CON

SETIO CON=TTY

I/O PORT SPECIFICATIONS

3-11

with the operator. Typically, CON: is a
device such as a CRT or teletype.

List device - the principal listing
device; usually a hard-copy device, such
as a printer or teletype.

Auxiliary input device.

Auxiliary output device.

Serial output-port A (teletype-style
printer - RS232C)

Keyboard and cathode ray tube display.

Parallel port printer (Centronics).

Serial printer - port B (RS232C).

Batch mode-reader as input; (AUXIN) a
printer (LST) as output.

External console (to be developed).

High speed read (to be developed).

(to be developed).

(to be developed).

High speed punch (to be developed).

(to be developed).

(to be developed).

Direct printer output to the centronics
port.

direct printer output to the
(good for debugging software
wasting paper).

redirect console I/O to port A.

3-11

console
without

(this

I/O PORT SPECIFICATIONS 3-12

enables an external terminal to be
connected to the Sirius, but note that
the Sirius' own screen and keyboard will
be inoperable).

3.6.2 STAT - CP/M-86 List Device Selection Utility

To select the correct port for the list
attached, the STAT program has been provided.
used as follows:

device you have
This program is

STAT LST:=-TTY:
STAT LST:=-ULl:

- printer is attached to port A
printer is attached to port B

STAT LST:=LPT: - printer is attached to parallel port

It is recommended that your printer be attached to either
port B or the parallel port.

SIRIUS 1 Device Name Assignment for CP/M-86

CP/M Physical Device Name

TTY:
CRT:
UCl:
PTR:
URl:
UR2:
PTP:
UPl:
UP2:
LPT:
ULl:

Serial Output Port A
Keyboard and Display CRT
External Console (reserved)
High Speed Read (reserved)
(Reserved)
(Reserved)
High Speed Punch (reserved).
(Reserved)
(Reserved)
Parallel Port (Centronics)
Serial Printer - Port B

CP/M Logical Device Name

CON: Logical Console device
Typical Assignment: CRT:
Assignment options: TTY:, UCl:, BAT: (see below)

LST:

RDR:

PUN:

Logical List device
Assignment options:

Logical Reader Device
Assignment options:

Logical Punch device
Assignment options:

I/O PORT SPECIFICATIONS

LPT:, ULl:, TTY:, CRT:

TTY:, PTP:, UPl:, UP2:

TTY: , PTP: , UPl: , UP2 :

3-12

l
1

! ,
I ,
!

l
1

!

1

1

1
,

I

l
!

! ,
J

1
1 ,

I

1
I

i
I ,

r
r
r
r
r
r
r
r
r
r
r
r
r
l

r
r
r
r
r
r

I/O PORT SPECIFICATIONS 3-13

BAT: Batch mode reader (RDR:) as input, a printer (LST:) as
output.

Logical Device Characters

CONSOLE The principal interactive console which communicates
with the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CRT or teletype.

LIST The principal listing device, if it exists on your
system, is usually a hard-copy device such as a printer
or teletype.

PUNCH The principal tape punching device, if it exists, which
is normally a high-speed paper tape punch or teletype.

READER The principal tape reading device, such as a simple
.optical reader or teletype.

IOBYTE Field Definitions

CONSOLE field (bits 0,1) (CON:)

0 - console is assigned to the console printer (TTY:)
1 - console is assigned to the CRT device (CRT:)
2 - batchmode: use the READER as the CONSOLE INPUT, and the

LIST device as the CONSOLE output (BAT:)
3 - user defined console device (UCl:)

READER field (lits 2,3) (RDR:)

0 - READER is the Teletype device (TTY:)
1 - READER is the high-speed reader device (PTR:)
2 - user defined reader #l (URl:)
3 - user defined reader #2 (UR2:)

PUNCH field (bits 4,5) (PUN:)

0 - PUNCH is the teletype device (TTY:)
1 - PUNCH is the high-speed punch device (PTP:)
2 - user defined punch #l (UPl:)
3 - user defined punch #2 (UP2:)

I/O PORT SPECIFICATIONS 3-13

I/O PORT SPECIFICATIONS

LIST field (bits 6,7) (LST:)

0 LIST is the teletype device (TTY:)
1 LIST is the CRT device (CRT:)
2 LIST is the line printer device (LPT:)
3 - user defined list device (ULl:)

3.6.3 PORTSET - MS-DOS Baud Rate Selection Utility

3-14

To select the correct baud rate for ports A or B (but this
is not applicable to the parallel port), the PORTSET program is
provided. This program is menu driven, and is used as follows:

To the prompt type PORTSET, the screen will display a choice
of three ports:

1) Port A (RS232C)
2) Centronics/Parallel Port
3) Port B (RS232C)

Type either 1,2 or 3. If you type 1 or 3, the next menu
screen is displayed - this screen has baud-rate choices labelled
A through N - select one of the baud-rates.

3.6.4 PORTCONF - CP/M-86 Baud Rate Selection Utility

This program is used in exactly the same manner as PORTSET
(see 3.6.3).

3.7 Serial Input/Ouput Port Addresses

The
located
follows:

two serial input/output ports are memory mapped ports
in the memory segment EOOOhex; and they are mapped as

E000:40
E000:41
E000:42
E000:43

port A data (input/output)
port B data (input/output)
port A control (read/write)
port B control (read/write)

The following
control register:

information is available in each port's

bit 0
bit 1
bit 2
bit 3
bit 4

I/O PORT SPECIFICATIONS

rx character available
not used
tx buffer empty
DCD
not used

3-14

l
1

J

1

1

1 ,
! ,
J

i
I

1
1

I

1
'

1

1
I
) ,
j

1
I ,
I

1 ,

r
r
r
r
r
r
r
r
r
r
r
r
r
r
l

r
r
r
r
r

I/O PORT SPECIFICATIONS 3-15

bit 5 CTS
bit 6 not used
bit 7 not used

See Section 3.4 for information on each port's pinouts.

Note that writing a lOhex to the relevant control register
allows the resensing of the modem leads (i.e. DCD and CTS) with
their current values being updated in the port's control
register.

Since the Sirius 1 configures the NEC 7201 chip to operate
in auto-enable mode, DCD (pin 8 on the port connector) must be
ON, and CTS (pin 5 on the port connector) must be ON to enable
the 720l's receiver and transmitter respectively. RTS and DTR are
always ON as a convenient source for an RS-232C control ON (+12
volts).

3.8 Baud Rate and Data Input/Output - Sample Programs

The means of establishing the baud rates, receiving and
transmitting data are discussed in the following programs. The
serial port's control register are discussed in 3.7 - the means
of accessing them is better described with the programming
examples that follow.

The following programs provide information on how to set up
the baud rates on the serial ports (A and B) - they also
demonstrate how to send and receive data from these ports.

3.8.l Microsoft MS-BASIC -- Baud Rate and Data Input/Output

The following program may be used in place of PORTSET or
PORTCONF if you omit the lines 500 through 740 inclusive.

10 DIM RATE(l4)
20 REM Select the data port
30 PRINT CHR$(27)+ 11 E11

; : REM Clear the screen
40 PRINT : PRINT : PRINT : PRINT
50 PRINT "The serial ports are:" : PRINT
60 PRINT 11 A - Serial Port TTY - left hand on back"
70 PRINT 11 B - Serial Port ULl right hand on back"
80 PRINT : PRINT
90 PRINT ,"Select the port you want to use, A or B 11

;

100 PORT$ = INPUT$(1)
110 PRINT PORT$
120 IF PORT$ = "a" THEN STATI0-2
130 IF PORT$ = "A" THEN STATI0=2

I/O PORT SPECIFICATIONS

DATIO=O
DATIO=O

GOTO 210
GOTO 210

3-15

I/O PORT SPECIFICATIONS

140 IF PORT$ = "b" THEN STATI0=3 DATIO=l GOTO 210
150 IF PORT$... "B" THEN STATI0=3 DATI0-1 GOTO 210
160 GOTO 30
200 REM Set the baud rate
210 PRINT CHR$ (27)+"E"; : REM Clear the screen
220 PRINT : PRINT : PRINT : PRINT

3-16

230 PRINT "The available baud rates are as follows:" PRINT
240 PRINT " 1 ... 300 baud"
250 PRINT " 2 - 600 baud"
260 PRINT " 3 - 1200 baud"
270 PRINT " 4 - 2400 baud"
280 PRINT " 5 = 4800 baud"
290 PRINT " 6 - 9600 baud"
300 PRINT " 7 =- 19200 baud"
310 PRINT : PRINT : PRINT
320 PRINT "Select one of the above baud rates: ";
330 RATE$ - INPUT$(1)
340 IF RATE$ > "7" THEN 210
350 IF RATE$ < "1" THEN 210
360 PRINT RATE$
400 REM Now set the baud rate in the port selected
410 DEF SEG = &HE002
420 IF DATIO - 0 THEN POKE 3,54 : IF DATIO =- 1 THEN POKE 3,118
430 FOR I - 1 TO 14
440 READ RATE(!) : REM Set the baud rate matrix
450 NEXT I
460 NODE= (VAL(RATE$)-1)*2+1
470 POKE DATIO,RATE(NODE)
480 POKE DATIO,RATE(NODE+l)
500 REM Now data may be entered and sent down line
510 PRINT CHR$(27)+"E"; : REM Clear the screen
520 PRINT : PRINT ,"Baud rate established"
530 PRINT : PRINT : PRINT
540 DEF SEG = &HE004
550 PRINT ,"Enter data to be sent down line with return to end"
560 PRINT ,"or just press return to receive data-"
570 PRINT
580 TEXT$=INKEY$
590 IF TEXT$="" THEN 630
600 IF TEXT$=CHR$(13) THEN PRINT TEXT$:TEXT$=CHR$(126) :GOTO 620
610 PRINT TEXT$;
620 GOSUB 650
630 GOSUB 690
640 GOTO 580
650 STATUS=PEEK (STATIO) : STATUS=STATUS AND 4
660 IF STATUS = 0 THEN 650 :REM Waiting to send char
670 POKE DATIO, ASC(TEXT$)
680 RETURN

I/O PORT SPECIFICATIONS 3-16

1

1
1

1
l

l

l

1

1
1

,
I
I

i
I

1

1
.,

j

1
1

•

r
r
r
r
r
r
r
r
r
r

I/O PORT SPECIFICATIONS

690 STATUS = PEEK(STATIO) :STATUS - STATUS AND 1
700 IF STATUS - 0 THEN RETURN : REM No char available
710 DATUM = PEEK (DATIO) : DATUM = DATUM AND 127
720 IF DATUM = 126 THEN PRINT CHR$(13) : RETURN
730 PRINT CHR$(DATUM); :REM Show char from line
740 RETURN
1000 DATA 04,l,&H82,0,&H41,0,&H20,0,&Hl0,0,8,0,4,0

3-17

The above program may be used to send characters between two
Sirius'. Use the following cable connection.

CABLE SIRIUS TO SIRIUS

1 -------------------- 1
2 -------------------- 3
3 -------------------- 2
7 -------------------- 7
5 1----- 5
8 1----- 8

20 1----- 20

3.8.2 MACR0-86 Assembler -- Baud Rate and Data Input/Output

The following assembler modules may be included in a program
and called with the stated parameters. The character input and
output modules will need re-coding if your program requires
status return rather than looping for good status.

rates db
db
db
db

04h,lh,82h,Oh
4lh,Oh,20h,Oh
10h,Oh,8h,Oh
4h,Oh

;baud rate conversion table

;**

Routine:

Function:

Entries:

Returns:

BAUD SET

To set Port A or B baud rate

AL = 0-PortA, 1-PortB
DX - 0=300 baud, 1=600 baud, 2=1200 baud

3=2400 baud, 4-4800 baud, 5=9600 baud
6-19200 baud

None

Corruptions: ES, AX, BX, CX, DX

I/O PORT SPECIFICATIONS 3-17

I/O PORT SPECIFICATIONS 3-18

;**

baud set:
mov
mov
mov
or
jnz

set B:

mov
jmp

mov

set rate:
mov
shl
add
mov
xor
mov
mov
mov
ret

cx,Oe002h
ES,cx
bx,3
al,al
set B

byte ptr ES:[bx],36h
short set rate

byte ptr ES:[bx],76h

bx,offset rates
dx,l
bx,dx
dx, [bx]
bh,bh
bl,al
byte ptr ES:[bx],dl
byte ptr ES: [bx], dh

;get the segment
;init the segment register
;point to counter control
;see if Port A or B to be set
;AL > 0, so set Port B counter

;set it for port A
and input the Baud rate

;set port B counter

;get the baud rate table
;DX - DX * 2 for words
;point to baud rate entry
;get the baud rate
;BH=O
;get the required port
;send first byte
; and last byte of rate
;baud rate established

; **********************.,.'***********************************

Routine: SEND CHAR

Function: To output a character to a serial port

Entries:

Returns:

AL
AH

None

O=PortA, l=PortB
Character to send

Corruptions: ES, AX, BX

•** '
send char:

mov
mov
xor
mov
add

bx,Oe004h
ES,bx
bh,bh
bl,al
bl,2

I/O PORT SPECIFICATIONS

;get the port segment
;set the segment
;BH=O
;get the required port
;required port status

3-18

l
1

' ,
!

1
1

}

1

1 ,
I

1
1

}

1 ,
..,
I

,,
:

-!

1
\

1

l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
t

r
r
r
r
r

I/O PORT SPECIFICATIONS

in_status_loop:
mov
and
jz

sub
mov
ret

al, ES: [bx]
al,4h
in_status_loop

bl,2
ES: [bx] ,ah

3-19

;get the status
;mask for TX empty
;not ready - loop

;point to data
;character gone

•** '
Routine: GET CHAR

Function: To input a character from a serial port

Entries: AL O=PortA, l=PortB

Returns: AL character

Corruptions: ES, AX, BX

•** '
get_char:

mov bx,Oe004h
mov ES,bx
xor bh,bh
mov bl,al
add bl,2

out_status_loop:
mov al,ES:[bx]
and al,lh
jz out_status_loop

sub
mov
ret

bl,2
al,ES:[bx]

;get the port segment
;set the segment
;BH=O
;get the required port
;required port status

;get the status
;mask for RX character avail
;not ready - loop

;point to data
;character received

3.9 Transferring Files to and from another computer

ASCII files may be transferred to and from another computer
using the serial communications port (DB25 connector nearest the
video connector).

Using the CP/M or MS-DOS system generation package,
configure a system with the serial ports set to the required baud
rates, stop and parity bits. (Avoid baud rates above 2400).

I/O PORT SPECIFICATIONS 3-19

I/O PORT SPECIFICATIONS 3-20

Make up a cable to connect the serial port to the other
computer. Consult the specifications of the other computer
carefully. The connection diagram for the MT-180 printer cable
has been used successfully to communicate with other computers.
Also strapping pins 4, 5 and 8 has been used with success.

Using PIP treat the communications port as the logical paper
tape reader (RDR:) and punch (PUN:). (to run PIP under MS-DOS,
use the CP/M-86 emulator).

To transfer a file into Sirius start with the following
command:

PIP CON:=RDR:

to see if Sirius is receiving. If not receiving, check your
connection cable, try swapping connections to pins 2 and 3. Make
sure all signals going to the Sirius are correct.

If the above command produces weird characters (when
transmitting ASCII) then it is possible that the top bit is set
on some bytes (WordStar files do this, Sirius displays a 256
character set), try the following command:

PIP CON:=RDR:[Z]

which zeros the top bit.

Otherwise, if you get normal characters bearing little
relationship to the original file, check the baud rates.

When communication is established, transfer data to a named
file:

PIP FILENAME=RDR:

Remember to send an EOF (AZ) from the other computer so that
PIP knows it has finished. Limit the size of the files
transferred to under 32K (the size of PIP's buffer) otherwise
characters will be lost.

If you wish to transfer binary files you will have to encode
the binary data into ASCII. The problem with binary is that AZ
may be valid data. Certainly the [O] option can be used for
transferring binary files internally but externally there is no
way for PIP to know that the transfer is complete.

An alternative method of transferring files is to use the

I/O PORT SPECIFICATIONS 3-20

1

1

1
1 ,

I

1

1
1
~
!

1

1
1

i

l
i

I
I

,
I

1

r
r
r
r
r
r
c

r
r
r
r
r
r
r
r
l

r
r
r
r
r

I/O PORT SPECIFICATIONS 3-21

VT52 emulation package and use the Sirius as a terminal onto
another computer. This package allows the transfer of files to
and from the host.

There is also some software available from Barson
which allows the Sirius to emulate a printer. Thus,
computer need only list to the Sirius.

3.10 Sirius 1 IEEE-488 Port

Computers
the other

The Sirius 1 IEEE-488 cable attaches to the parallel port -
the pin number refers to the actual computer port connector; the
IEEE-488 pin number refers to the standard IEEE-488 pin-out as
they must attach to the parallel port.

The IEEE pin numbers referred to with the (**z) are wires
that are to be bound together as twisted pairs.

An IEEE 488 operating system must first be created using the
IEEE 488 Toolkit and the Programmer's Toolkit. The necessary
IEEE 488 system files are copied to the system generation disc
found in the Programmer's Toolkit and used to generate the
operating system.

Sirius Pin Number IEEE Signal IEEE Pin Number

1 ----------- DAV ------------- 6 (**a)
19 ----------- GND ------------- 18 (**a)
2 ----------- DIOl ------------- 1
3 ----------- DI02 ------------- 2
4 ----------- DI03 ------------- 3
5 ----------- DI04 ------------- 4
6 ----------- DI05 ------------- 13
7 ----------- DI06 ------------- 14
8 ----------- DI07 ------------- 15
9 ----------- DI08 ------------- 16
10 ----------- NRFD ------------- 7 (**b)
28 ----------- GND ------------- 19 (**b)
11 ----------- SRQ ------------- 10 (**c)
29 ----------- GND ------------- 22 (**c)
13 ----------- NDAC ------------- 8 (**d)
33 ----------- GND ------------- 20 (**d)
15 ----------- EOI ------------- 5
17 ----------- shield ----------- 12
34 ----------- REN ------------- 17
35 ----------- ATN ------------- 11 (**e)
16 ----------- GND ------------- 23 (**e)
36 ----------- IFC ------------- 9 (**f)

I/O PORT SPECIFICATIONS 3-21

I/O PORT SPECIFICATIONS 3-22

27 ----------- GND
GND

------------- 21 (**f)
20 24

3.11 Sirius 1 Control Port (internal port)

Pin Number Signal

1 --------------- -12V
2 --------------- -12V
3 --------------- Not connected
4 --------------- Not connected
5 --------------- +12V
6 --------------- +12V
7 --------------- +sv
8 --------------- +sv
9 --------------- Not connected

10 --------------- Light Pen
11 --------------- GND
12 --------------- CAl
13 --------------- GND
14 --------------- CA2
15 --------------- GND
16 --------------- PAO
17 --------------- GND
18 --------------- PAl
19 --------------- GND
20 --------------- PA2
21 --------------- GND
22 --------------- PA3
23 --------------- GND
24 --------------- PA4
25 --------------- GND
26 --------------- PAS
27 --------------- GND
28 --------------- PA6
29 --------------- GND
30 --------------- PA7
31 --------------- GND
32 --------------- PBO
33 --------------- GND
34 --------------- PBl
35 --------------- GND
36 --------------- PB2
37 --------------- GND
38 --------------- PB3
39 --------------- GND
40 --------------- PB4
41 --------------- GND

I/O PORT SPECIFICATIONS 3-22

i
l ,
I

1

1

1

1
I

1

1

1
....,

I
I
I

.,
i
I

,
! ,

.,
I

Pl
I

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

I/O PORT SPECIFICATIONS 3-23

42
43
44
45
46
47
48
49
50

PBS
GND
PB6
GND
PB7 / CODEC Clock Output
GND
CBl
GND
CB2

3.12 MS-DOS Logical Devices

As explained in the MS-DOS operating system manual, certain
3-letter file names are reserved for I/O devices:

0

0

0

0

AUX refers to input from or output to an auxiliary device
connected to serial port A (TTY).

CON refers to keyboard input or output to the screen (CRT).

LST refers to the printer which may be redirected to any of
the I/O ports using SETIO.

NUL does not refer to a particular file or device. NUL is
used when the syntax of a command requires an input or
output file name. NUL is sometimes referred to as a 'bit­
bucket'. Any output to NUL will be lost, but will not cause
the system to 'hang'. It is useful for debugging programs.

Examples of use:

1. At the Command level.

COPY FILENAME AUX

This command will transmit the file 'FILENAME' to the device
connected to port A (the TTY device).

2. At the Command level.

COPY CON LST

This command will cause any keyboard input to be sent to the
printer rather than the screen.

3. In Basic.

10 OPEN 11 0 11 ,#l,"AUX"

I/O PORT SPECIFICATIONS 3-23

I/O PORT SPECIFICATIONS

20 PRINT #l,"XYZ"
30 CLOSE #l

3-24

This program will cause the string 'XYZ' to be sent to the
device connected to serial port A. Note that the string is
only sent after the file is closed or the internal buffer is
full.

Using this technique, it is possible to toggle output
between the printer (LST) and a device, such as another
printer or a plotter, connected to port A (AUX).

4. In Basic.

10 INPUT "Do you have a printer attached (Y/N)",A$
20 IF A$-="Y" OR A$-"y" THEN F$="LST" ELSE F$="CON"
30 OPEN "0",#l,F$
40 PRINT #1,

This example demonstates the ability to send output to the
screen if no printer is present. Useful for debugging.

5. In Basic.

An MS-BASIC demonstration program (only to be run under MS­
DOS Vl.25 BIOS 2.5 or later) allows the operator to choose the
destiny of the output. The output can be to a file, or to a
logical device. The logical devices are "CON" (=console), "LST"
(=primary list device), or "AUX" (=auxiliary port).

In this example the "AUX" logical device is being used as a
secondary printer.

10 PRINT CHR$(27)+"E"
20 PRINT CHR$(27)+"Y"+CHR$(4l)+CHR$(35);
30 PRINT"'WHERE IS THE DESTINATION OF THE LISTING TO BE?"
40 PRINT CHR$(27)+"Y"+CHR$(44)+CHR$(45);
50 PRINT"CONSOLE, PRIMARY LIST DEVICE, AUXILIARY PORT"
60 PRINT CHR$(27)+"Y"+CHR$(46)+CHR$(35);
70 PRINT"PLEASE TYPE IN F,C,P,or A"
80 PRINT CHR$(27)+"Y"+CHR$(52)+CHR$(60);
90 INPUT A$
100 IF A$<>"F" THEN IF A$<>"C" THEN IF A$<>"P" THEN IF A$<>"A" THEN 80
110 IF A$="C" THEN A$="CON"
120 IF A$="P" THEN A$="LST"
130 IF A$="A" THEN A$="AUX"
140 IF A$="F" THEN INPUT "FILE SPECIFIER";A$
150 CLOSE

I/O PORT SPECIFICATIONS 3-24

1
1
l
1
1

l
1

I

'i
l

1
i

I

1 ,
I

...,
I
'

1
I

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

I/O PORT SPECIFICATIONS

160 PRINT CHR$ (27)+"E"
170 OPEN "0",#l,A$
180 FOR I=l TO 20
190 B$="TEST DATA 1234567890
200 PRINT #l,B$
210 NEXT I
220 CLOSE
230 SYSTEM

3-25

'OPEN A SEQUENTIAL FILE
'CREATE TEST DATA

abcdefghijklmnopqrstuvwxyz"

3.13 Sample Program for Initialising Printers

PROGRAM NAME -- INIT

Program to print a string to the printer. You will need the
Programmers Toolkit and a suitable editor to proceed. Use the
editor to generate or alter this program and store it in the
file INIT.ASM.

Change the string 'AAAAAA' at 'BUFFER' to the string you want.
(This string can be any length you want)

Use MACR086 to assemble the program then use LINK to link it
as follows:

MACR086 INIT;
LINK !NIT;

LINK will produce an error 'Warning: No STACK segment', ignore it.
The file INIT.EXE produced by LINK will not run. You must use
DEBUG to generate INIT.COM as follows:

DEBUG INIT.EXE
N INIT.COM
w
Q

The resulting program INIT.COM will run
code segment
assume cs:code, ds:code

boot equ 0
listout equ 5 list output function
bdos equ 2lh DOS function call

er equ Odh carriage return
lf equ Oah line feed

I/O PORT SPECIFICATIONS 3-25

INIT.COM
INIT.COM

1
I/O PORT SPECIFICATIONS 3-26

I

1
I

org lOOh
start:

mov bx, offset buff er . point to output string
' 1

again:
mov ah,listout set parameters for list output
mov dl, [bx] get next character 1
cmp dl,O test for end
jz cont
push bx
int bdos print it 1
pop bx
inc bx next
jmp again 1

cont:
mov ah,boot reboot
int bdos 1

buffer db 'AAAAAA' place initialisation string here
db cr,lf 1
db 0 end of print string

code ends l
end

l
1 ,

!

,
~

I

j

i
I/O PORT SPECIFICATIONS 3-26

l
I

r
r
r
r
r
r
r
r
r
r
r c

r
r
r
(

r
r
r
r
r

MS-DOS NOTES 4-1

MS-DOS NOTES

4.1 MS-DOS PROGRAM LOAD

The operating system core provides no direct means to run
user programs. Instead, to run a given program represented by a
disc file, the file must be opened and read into memory using the
normal system functions. These functions are requested by the
user program that is currently running.

The first user program to run is the initialisation routine
that follows a system boot, which normally loads and executes the
file COMMAND.COM. This is a user program that accepts commands
from the console and translates them into system function calls.
COMMAND includes the capability to load and execute other program
files; when these other programs terminate, COMMAND regains
control. Thus COMMAND is responsible for the initial conditions
that are present when a program is executed.

A standard set of initial conditions is provided by COMMAND
on entry to another program. It is possible for programs other
than COMMAND to load and execute program files, and they must
also provide the same initial conditions so that a consistent
interface may be assumed by the newly executing program.

4.1.l MS-DOS Base Page Structure (see also Section 4.4)

The MS-DOS Base Page (sometimes called the Program Segment
Prefix or PSP), is created when you enter an external command.
COMMAND.COM will allocate a memory region to the external
program, and will insert the Base Page prior to the origin of
this program.

In the memory segment that the program is to load,
COMMAND.COM places a Base Page, COMMAND.COM then loads the
program at an offset of lOOH, and hands over control to the
external program. The external program, once its function is
complete, hands control back to the operating system by a far
JUMP or far RETURN to location zero within the Base Page; the
instruction at this location is an INT 20, or return control to
MS-DOS. This stage must be executed to allow MS-DOS to recover
memory correctly (see Appendix I).

When an external program is loaded, the following conditions
are true:

The file control blocks at Base Page locations SCH and 6CH
are created from the first two parameters entered on the

MS-DOS NOTES 4-1

COMMAND.COM
COMMAND.COM
COMMAND.COM
COMMAND.COM

MS-DOS NOTES

command line.

The command line at Base Page location 80H
the command line entered AFTER the program
byte at location 80H contains the command
count, the following bytes contain the raw
entered at the keyboard.

4-2

is created from
filename. The
line character

command line as

The word at offset 6; in the Base Page contains the number
of bytes available in the segment.

The contents of register AX are established to reflect the
validity of the drive(s) on the command line. Thus the
following may be found:

AL - FFH when the first drive letter on the command
line was not recognised by MS-DOS.

AH FFH when the second drive letter on the command
line was not recognised by XS-DOS.

The above applies equally to both .EXE and .COM type files.
The EXE and .COM files do have differences when they load,
and these are described more fully below.

When .EXE files load:

The contents of register DS and register ES are pointing at
the Base Page segment address.

The registers CS, IP, SS and SP are initialised to those

values passed by the linker.

When .COM files load:

The contents of registers CS, DS, ES and SS are pointing to
the Base Page segment address.

The register IP is set at lOOH.

The register SP is set the high address in the program
segment, or to the base of the transient portion of
COMMAND.COM, whichever is the lower. The contents of the
word at Base Page offset 6 are decremented by lOOH to allow
for a stack of that size.

A word of zeros is placed at the top of the stack.

MS-DOS NOTES 4-2

1
1
1
1
1 ,

I

l

1
~

I

1

1

1

1

COMMAND.COM

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

MS-DOS NOTES 4-3

All four
corresponding
segment". The
100 hex in the
segment are:

segment registers have the same value, and the
absolute memory address is the base of a "program
program is loaded and begins execution at location
program segment. Other assignments in the program

00-01

02-03

05-09

OA-OB

OE-11

22-SB

SC-67

6C-77

80-FF

Termination point. Contains an interrupt type 20 hex,
which returns control to the originating program. Thus
a JMP 0 or INT 20H are the normal ways to terminate a
program.

Memory size in paragraphs. End of current allocation
block contains the first segment number after the end
of memory.

Far CALL to MS-DOS function dispatcher.

Program terminate address as IP and CS.

Address as CS and IP.

Default stack. The stack pointer is initially SA hex,
with a word of zeros on the top. Thus executing a
"return" instruction will cause a transfer to location
0 and the program will terminate normally. This stack
may be used as-is, or a new one may be set up.
remember that 32 bytes of stack space are required to
perform system calls.

File Control Block #l, formatted as normal unopened
FCB.

File Control Block #2, formatted as normal unopened
FCB.

Unformatted parameters. Count of characters on command
line; followed by command line entered.

COMMAND prepares the parameter areas from the console input
line that specified the program to be executed. For example, if
COMMAND sees a line of the form

<progname> <filel> <file2>

this is a request to execute the file <progname>.COM. <filel>
and <file2> each may or may not include a disc specifier or a
file name extension, but in any case they appear in the formatted
parameters at SC hex and 6C hex. In addition, the entire input

MS-DOS NOTES 4-3

MS-DOS NOTES 4-4

line after the last letter of <progname> appears in the
unformatted parameter area beginning at 81 hex, with the number
of characters placed at 80 hex.

Suppose the input line is:

COPY T.BAK B:TEST.ASM

The formatted parameter at SC hex will contain:

00 "T BAK"

At 6C hex will be:

02 "TEST ASM"

And at 80 hex will be:

17 " T.BAK B:TEST.ASM"

where the 17 is decimal.

CGROUP NAME
DGROUP GROUP
code GROUP

SEGMENT
ASSUME

EXTRN
PUBLIC

Start_of_program PROC
MOV
MOV
MOV

MOV

CALL
End_of_program:

JMP

Start_of _program ENDP

code ENDS
data SEGMENT

PUBLIC

MS-DOS NOTES

BASEPAGE
CODE
DATA
PUBLIC I CODE I
CS:CGROUP,DS:GROUP

MAIN : NEAR
End_of_program

NEAR
BX,DS ;Hold base page segment
AX,DGROUP
DS,AX ;Fix OS to point to data
group
Base_page_ptr+2,BX ;Save base page
seg.
MAIN ;Execute program
;Can jump here to end, if unable to
;RET
DWORD PTR (Base_page_ptr]

PUBLIC 'DATA'
Base_page_ptr

4-4

1
1
1
-,
I

1
l
1""'l
I

1

1

1
1

)

l

l
1

1

1

r
r
r
r
r
r
r
r
r
r
r
(

r
r
r
r
r
r
r
r

MS-DOS NOTES 4-5

Base _page _ptr DD 0

data ENDS

end · START OF PROGRAM

Above is a sample "base" page for a type .EXE file for MS­
DOS, which executes a program starting at "MAIN". Note the fix
up required for DS. When program starts DS/ES point to DOS
related base. (Note, this is not required for .COM files for
them DS, ES, CS are O.K. and IP is at lOOh).

4.2 The Command Processor

4.2.l Introduction

The command processor supplied with MS-DOS
COMMAND.COM) consists of three distinctly separate parts:

(file

1.

2.

3.

A resident portion resides in memory immediately below the
BIOS (see Section 1.6.1). This portion contains routines to
process interrupt types 22H (end address), 23H (CTRL-C
handler), 24H (critical error handling) and 27H (end but
stay resident), as well as a routine to reload the transient
portion if needed. (When a program ends, a checksum
determines if the program had caused the transient portion
to be overlaid. If so, it is reloaded). Note that all
standard MS-DOS disc error handling is done within this
portion of COMMAND. This includes displaying error messages
and interpreting the reply of Abort, Retry, or Ignore.

An initialisation portion is given control during startup.
This section contains the AUTOEXEC file processor setup and
also the date prompt routine (used if no AUTOEXEC file is
found). The initialisation portion determines the segment
address at which programs can be lQaded. It is overlaid by
the first program COMMAND loads because it is no longer
needed.

A transient portion is loaded below the resident portion.
This is the command processor itself, containing all of the
internal command processors, the batch file processor, and a
routine to load and execute external commands (files with
filename extensions of .COM or .EXE). This portion of
COMMAND produces the system prompt (such as A>), reads the
command from the keyboards (or batch file) and causes it to
be executed. For external commands, it builds a Program
Segment Prefix control block, loads the program named in the

MS-DOS NOTES 4-5

COMMAND.COM

MS-DOS NOTES 4-6

command into the segment just created, sets the end and
CTRL-C exit address (interrupt vectors 22H and 23H) to point
to the resident portion of COMMAND, then gives control to
the loaded program.

Note: Files with an extension of .EXE which are designated
to load into high memory are loaded immediately below the
transient portion of COMMAND to prevent the loading process
from overlaying COMMAND itself.

Section 4.3 contains information describing the conditions
in effect when a program is given control by COMMAND.

4.2.2 Replacing the Command Processor

Though the
its functions
Therefore, it
replacement.
processor;

command processor is an important part of MS-DOS,
may not be needed in certain environments.

has been designed as a user program to allow its
If you decide to replace it with your own command

1. Name your program file COMMAND.COM.

2. The entry conditions are the same as for all .COM
programs.

3. Be sure to set the end and CTRL-C exit addresses in the
interrupt vectors and in your own Program Segment Pref ix
to transfer control to your own code.

4. You must provide code to handle (and set the interrupt
vectors for) interrupt types 22H (end address), 23H
(CTRL-C handler), 24H (critical error handling) and if
needed 27H (end but stay resident). Your COMMAND.COM is
also responsible for reading commands from the keyboard
and loading and executing programs, if needed.

4.2.3 Available MS-DOS Functions

MS-DOS provides a number of functions to user programs, all
available through issuance of a set of interrupt codes. There
are routines for keyboard input (with and without echo and CTRL-C
detection), console and printer output, constructing file control
blocks, memory management, date and time functions, and a variety
of diskette and file handling functions. See MS-DOS Interrupts
and Function Calls in Programmer's Toolkit for detailed
information

MS-DOS NOTES 4-6

1
~

I ,
I

1
1

1 ,
1

1

1

1 ,
\

,
\ ,
I

l

1

l

COMMAND.COM
COMMAND.COM

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

MS-DOS NOTES 4-7

4.2.4 Diskette/File Management Notes

Through the INT 21H (function call) mechanism, MS-DOS
provides methods to create, read, write, rename and erase files.
Files are not necessarily written sequentially on diskette
space is allocated one sector at a time as it is needed, and the
first sector available is allocated as the next sector of a file
being written. Therefore, if considerable file creation and
erasure activity has taken place, newly created files will
probably not be written in sequential sectors.

However, due to the mapping (chaining) of file sectors via
the File Allocation Table, and the fields defined in the File
Control Block, any file can be used in either a sequential or
random manner. By using the current block and current record
fields of the FCB and the sequential disc read or write
functions, you can make the file appear sequential - MS-DOS will
do the calculations necessary to locate the proper sectors on the
diskette. On the other hand, by using the random record field
and random disc functions, you can cause any record in the file
to be accessed directly - again. MS-DOS will locate the correct
sectors on the diskette for you. Among the most powerful
functions are the random block read and write functions which
allow reading or writing a large amount of data with one function
call - this is how MS-DOS loads programs. As above, MS-DOS will
handle locating the correct sectors on diskette to provide the
image of sequential processing - you need not be concerned about
the physical location of data on diskette.

4.2.5 The Disc Transfer Area (DTA)

The Disc Transfer Area (also commonly called "buffer") is
the memory area MS-DOS will use to contain the data for all disc
reads and writes. This area can be at any location within
memory, and should be set by your program. (See function call
lAH).

Only one DTA can be in effect at a time, so it is the
program's responsibility to inform MS-DOS what memory location to
use before using any disc read or write functions. Once set, MS­
DOS continues to use that area for all disc operations until
another function call lAH is issued to define a new DTA. 'When a
program is given control by COMMAND a default DTA has already
been established at SOH in the program's Program Segment Prefix
large enough to hold 128 bytes.

MS-DOS NOTES 4-7

MS-DOS NOTES 4-8

4.2.6 Error Trapping

MS-DOS provides a method by which a program can receive
control whenever a disc read/write error occurs, or when a bad
memory image of the file allocation table is detected. When
these events occur, MS-DOS executes an INT 24H to pass control to
the error handler. The default error handler resides in
COMMAND.COM but any program can establish its own by setting the
INT 24H vector to point to the new error handler. MS-DOS
provides error information via the registers and provides Abort,
Retry or Ignore support via return codes. (See MS-DOS Interrupts
and Function Calls in the Programmer's Toolkit).

Unlike the end and CTRL-C exit addresses, MS-DOS does not
preserve the original contents of the critical error exit address
when a program is given control. It is your program's
responsibility to preserve the original contents (two words) of
the INT 24H vector prior to setting this vector, and to restore
the original contents before ending.

4.2.7 General Guidelines

The
developing
functions.

following guidelines and tips should
applications using the MS-DOS disc read

assist in
and write

1. All disc operations require a properly constructed FCB
that the program must supply.

2.

3.

4.

Remember to set the Disk Transfer Area address
(function lAH) before p.erforming any reads or writes to
a file.

All files must be opened (or created, in the case of a
new file) before being read from or written to. Files
which have been written to must also be closed to
ensure accurate directory information.

A program may define its own logical record size by
placing the desired size into the FCB. MS-DOS then
uses that value to determine a record's location within
the file. If using the "file size" function call, this
field must be set by the calling program prior to the
function call. If using the disc read and write
routines, the field should be set after opening (or
creating) the file but before any read or write
functions are used. (Open function sets the field to a
default value of 128 bytes).

MS-DOS NOTES 4-8

,
I

1
~

I

\

~
I

!

1
l

1
l

1
1

)

1
1

1

1 ,
I

llillil1I
I

I

1

COMMAND.COM

r
r
r
r

r
r
r
r
r
r
r
r
r
r
r
r
r
r

MS-DOS NOTES 4-9

5.

6.

New files must be created (function call 16H) before
they can be written to. This call creates a new
directory entry and opens the file.

If the amount of data being transferred is less than
one sector (512 bytes), MS-DOS will "buffer" the data
for the requesting program in an internal buffer within
BIOS. Because there is only one disc buffer,
performing less-than-sector-size operations in a random
manner or against multiple files concurrently causes
MS-DOS to frequently change the contents of the buffer.
If such operations are in output mode, this forces MS­
DOS to write a partially full sector to make the buffer
available for any other diskette operation.
Subsequently, the partially full sector would have to
be re-read before further data could be written to the
file. This is called "thrashing" and can be very time
consuming. To remedy this situation, use of the Random
block read and write routines is recommended, with a
data transfer size as large as possible. (An entire
file can be read this way, provided enough memory
exists.) This method bypasses the "buffering"
described above, by reading or writing directly to or
from the DTA for as much of the data as possible. If
the file size is not a multiple of 512 bytes, only the
last portion of the file (the portion past the last
512-byte multiple) is buffered by MS-DOS.

4.2.8 Examples of Using MS-DOS Functions

This example illustrates the steps necessary for a program
named TEST.COM to:

1. Create a new file named FILEl.

2. Load and execute a second program named PGMl.COM from
the diskette in drive B.

The program is in a file named TEST.COM and was invoked from
the keyboard by the command TEST FILEl B:PGMl.COM.

When the program (TEST) received control the Program Segment
Prefix has been set up as shown in section 4.3. The end and
CTRL-C exit addresses in the Program Segment Prefix are the ones
which the host (calling program) had established and should not
be modified - they are restored to interrupt 22H and 23H vectors
when this program ends. The FCBs at SCH and 6CH are formatted to
contain file names of FILEl and PGMl.COM respectively - the first

MS-DOS NOTES 4-9

TEST.COM
PGM1.COM
TEST.COM
PGM1.COM
PGM1.COM

MS-DOS NOTES 4-10

FCB reflects the default drive and the second drive B. The
default DTA is set to BOH into the segment (the unformatted
parameter area of the Program Segment Prefix).

4.2.9 To Create File FILEl

Because it is known that the data in the FCB at 6CH is
needed to load and execute the program whose name it contains in
a subsequent step that FCB must be preserved: opening the FCB at
SCH would cause it to be overlayed. The program should:

1.

2.

3.

4

Copy the FCB at 6CH to an area within itself.

Using the FCB at SCH call function llH to be sure FILEl
does not already exist - if it did exist, it would be
overwritten by this program.

Assuming it did not exist, create the file (function
call 16H) - the file is now open.

Set the FCB current record and random record fields to
zero, and the record size field to the desired size.

S. Build the memory image of the file's data.

6.

7.

8.

Set the DTA to point to the memory image (function call
lAH).

Use the sequential write (lSH), random write (22H), or
random block write (28H) calls to write the file,
ensuring the FCB fields and DTA are set properly for
each call. In the case of call 28H (the preferred
method) the entire file can be written with one call by
setting CX to the number of records to be written (in
terms of the FCB record size field).

Close the FCB at SCH - the directory and file
allocation table are updated and any partial data in
MS-DOS's disc buffer (if it were performing blocking)
are written to disc.

To Load and Execute Program PGMl.COM from drive B.

Assume that the current program (TEST) wished to control the
action taken if CTRL-C is entered. (Until now, the CTRL-C address
still pointed to COMMAND.COM which would end program TEST if
CTRL-C were pressed).

MS-DOS NOTES 4-10

1

1

l
1
1

I

i
!

l
1
1

)

i
l

1

1
~

I
'

1
!

~

I
I ,
I

~
i

PGM1.COM
COMMAND.COM

r
r
r
r
r
r
r
L

r
r
r
r
r

MS-DOS NOTES 4-11

TEST should:

1.

2.

3.

4.

5.

6.

7.

8.

9.

Set the end and CTRL-C exit vectors (call 25H) to point
to code within itself (the end address is where the
program to be loaded will return when it ends).

Determine where PGMl.COM should reside in memory and
set up a segment for it, including a Program Segment
Prefix (call 26H). This copies the end and CTRL-C exit
addresses just set into the new segment's Program
Segment Prefix.

Set the DTA to offset lOOH into the just-created
segment. (Be sure the DS register contains the correct
segment address). This is the offset at which PGMl.eOM
will be loaded.

Open the FeB that had been copied earlier (for
PGMl.eOM). The FeB file size field will be filled in
by open to a default value of 128 bytes.

Set the FeB record size field to the desired size.
(Setting it to 1 is very useful in this case).

Set the ex register to the number of records (based on
the record size field) to read. If the record size was
set to 1, then the number of records to read does not
have to be computed - it can be obtained directly from
the FeB file size field. In any case, if the product
of the record size field and contents of the ex
register are equal to or greater than the file size,
then the entire file is read in the following step.

Read
(call
step
since

the file using the Random Block Read function
27H) into the new segment at offset lOOH. (See

3 above). There is no need to close the file
it was not written to.

Prepare the DS, ES, SS and SP registers for the loaded
program and push a word of zeros on the top of its
stack.

Set the DTA to offset SOR into the new segment.

10. Give
jump
'When

control to the loaded program. (An intersegment
is ideal, since it does not use stack space).
the called program ends via INT 20H, MS-DOS

MS-DOS NOTES 4-11

PGM1.COM
PGM1.COM
PGM1.COM

MS-DOS NOTES 4-12

restores interrupt vectors 22H and 23H from the values
in the ending program's Program Segment Prefix (the
values established in step 1) and pass control to the
end exit address. TEST is now back in control, and can
itself issue an INT 20H which will cause its caller
(COMMAND.COM) to regain control.

Note: The example above was simplified by not discussing the
checking of return codes from the function calls. Nearly all
function calls do return exception or error indications, which
should be checked by the calling program.

4.3 MS-DOS Diskette Directory

FORMAT builds the directory for
3-10, a total of 4096 bytes.
entries, each 32 bytes long.

each diskette on track 0 sectors
The directory has room for 128

Each directory encry is formatted
in decimal). as follows. (Byte offsets are

0-7 Filename. (ESH in byte 0 means this directory entry is
not used.)

8-10 Filename extension.

11 File attribute. Contents can be 02H for a hidden file
and 04H for a system file. (Both files are excluded from
all directory searches unless an extended FCB with the
appropriate attribute byte is used). For all other files
this byte contains OOH. A file can be designated as hidden
when it is created.

12-21Reserved

22-23Time

< 24 > < 22 >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
h h h h h mmmmmmsssss

24-25Date the file was created or last
mm/dd/yy are mapped in the bits as follows:

< 25 >< 24 >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

y y y y y yymmmmddddd

where:
yy is 0-119 (1980-2099)

MS-DOS NOTES

updated. The

4-12

1
l
1

l
ci

I
l

1
1

I ,
\

"""" !

1
1

I

.,
I ,
!

1
I

,
.1

1 ,
!

illll

I

r
r
r
r
r
r
r
r
r
r
r
r

MS-DOS NOTES

mm is 1-12
dd is 1-31

4-13

26-27 Starting sector: the relative sector number of the
first block in the file. (For file allocation purposes
only, relative sector numbers start at 000 with track 0
sector 6. This is in contrast with DEBUG and the absolute
disc read write routines, interrupts 25H and 26H which
number relative sectors from the beginning of the diskette.)

The relative sector number is stored with the least
significant byte first.

28-31 File size in bytes. The first word contains the low­
order part of the size. both words are stored with the
least significant byte first.

4.4 MS-DOS Program Segment

When you enter an external command, the COMMAND processor
(see also Section 4.1.1) determines the lowest available address
(immediately after the character fonts, see Section 1.6.1) to use
as the start of available memory for the program invoked by the
external command. This area is called the Program Segment.

At offset 0 within the Program Segment. COMMAND builds the
Program Segment Prefix control block. (See section 4.1.)
COMMAND loads the program at offset lOOH and gives it control.
(.EXE files can be loaded into high memory just below the
transient portion of COMMAND.COM but the Program Segment Prefix
will still be in low memory.)

The program returns to COMMAND by a jump to off set 0 in the
Program Segment Prefix (The instruction INT 20 is the first item
in the control block) by issuing an INT 20, or by issuing an INT
21 with register AH=O

NOTE: It is the responsibility of all programs to ensure
that the CS register contains the segment address of the
Program Segment Prefix when ending via any of these methods.

All three methods result in an INT 20 being issued, which
transfers control to the resident portion of COMMAND.COM. It
restores interrupt vectors 22H and 23H (end and CTRL-C exit
addresses) from the values saved in the Program Segment Prefix of
the ending program. Control is then given to the end address.
(If this is a program returning to COMMAND, control transfers to
its transient portion.) If a batch file was in process, it is

MS-DOS NOTES 4-13

COMMAND.COM
COMMAND.COM

MS-DOS NOTES 4-14

continued: otherwise, COMMAND issues the system prompt and waits
for the next command to be entered from the keyboard.

When a program receives control, the following conditions
are in effect.

For all programs:

0

0

0

0

0

Disk transfer address (DTA) is set to 80H (default DTA
in the Program Segment Prefix).

File control blocks at SCH and 6CH are formatted from
the first two parameters entered when the command was
invoked.

Unformatted parameter area at SlH contains all the
characters entered after the command name (including
leading and embedded delimiters with BOH set to the
number of characters).

Offset 6 (one word) contains the number of bytes
available in the segment. If the resident portion of
COMMAND.COM is within the segment its value is reduced
by its size.

Register AX reflects the validity of drive specifiers
entered with the first two parameters as follows:
- AL=FF if the first parameter contained an invalid
drive specifier (otherwise AL=OO).
-AH=FF if the second parameter contained an invalid
drive specifier (otherwise AH=OO).

For .COM programs:

0 All four segment registers contain the segment address
of the Program Segment Prefix control block.

o The Instruction Pointer (IP) is set to lOOH.

0

0

SP register is set to the end of the program's segment
or the bottom of the transient portion of COMMAND.COM,
whichever is lower. The segment size at offset 6 is
reduced by lOOH to allow for a stack of that size.

A word of zeros is placed on the top of the stack.

MS-DOS NOTES 4-14

1
1
~

I
,

~
i

,
1

1
~

I
l

1
~

I
I

1
i ,
~

I
I

~
I

I

1
"'Ill

I
!

i

COMMAND.COM

MS-DOS NOTES 4-15

For .EXE programs:
jiil
!,

0 DS and ES registers are set to point to the Program I

Segment Prefix. (See below).

!ii)
0 CS,IP, SS and SP registers are set to the values

passed by the linker.

r '

r .

r '

r .

r i

r '

r
r
r MS-DOS NOTES 4-15

r I

MS-DOS NOTES

MS-DOS NOTES

4-16

4-16

,
1
1
l
1
1
1
1
l
1
1
1
l
l
1
1
1
1
1

r
r
r
r
r
r
r
r
r
r

MISCELLANEOUS NOTES 5-1

MISCELLANEOUS PROGRAMMING NOTES

5.1 ROUNDING NUMBERS IN BASIC-86

The following is a short program to illustrate one technique
for rounding numbers to any number of decimal places, (within the
limits of the machine).

10 DEFINT N
20 DEFDBL X
30 INPUT "ENTER NUMBER TO BE ROUNDED";X
40 IF X<l OR X>7 GOTO 110
50 INPUT "ENTER NUMBER OF DECIMAL PLACES";N
60 A$=STR$(X+.5*10A-N*SGN(X))
70 NO=INSTR(A$,".")
80 Xl=VAL(LEFT$(A$,N+NO))
90 PRINT "X=;X, "Xl=" ;Xl
100 GOTO 30
110 PRINT "END"
120 END

Rounding to zero decimal places can of course be achieved by
using the INT function.

Rounding numbers to be output to the screen, printer or file
can be achieved by the use of PRINT USING.

The routine given above can easily be simplified if it is
always required that numbers be rounded to a fixed number of
decimal places (eg. 2).

5.2 Undocumented Commands and Functions of the BASIC86 Interpreter

5.2.l DATE$

The DATE$ function returns a ten character string variable
that has the following format:

MM-DD-YYYY

where:

MM - month (1 - 12)
DD = day (1 - 31)
YYYY = year (1980 - 2099)

The delimiter is either - or/.

MISCELLANEOUS NOTES 5-1

MISCELLANEOUS NOTES 5-2

The date can be set through BASIC86, when doing
leading zeros are presumed for single months and days.
can be entered as a 2 digit number.

Examples:

PRINT DATE$
DATE$=-"10-6-83"
DATE$-"10/06/83"
DATE$-"10-06-83"
DATE$=VAR$

5.2.2 TIME$

so, the
The year

The
"\Tariable,
format:

TIME$
2 of

function returns an
which are delimiters.

eight character string
It takes the following

HH:MM:SS

where:

HH - hour of day (0-23)
MM = minutes (0-59)
SS = seconds (0-59)

delimiter is

The Time can be altered within BASIC86, when doing so
minutes and seconds are optional and so are leading zeros. The
time is being constantly incremented by a hardware clock.

Examples:

PRINT TIME$
TIME$-"15:10:40"
TIME$="7:5"
TIME$=-"8"
NOW$=-"14:15:06"
TIME$=NOW$

5.2.3 DATE

The DATE variable contains the numbers of days since the
beginning of the year. (Does not work on compiler)

MISCELLANEOUS NOTES 5-2

,,
I

1
1

'

1 ,

1
I ,
I

,
l
,,

I
I
I

"""l
I

1
;

1

1

-

r
l

r
r
r
r
r
r
r
r
r
r
r
t-l

l

r
r
r
r
r
r

MISCELLANEOUS NOTES 5-3

Example:

PRINT DATE

5.2.4 TIME

The TIME variable contains the number of seconds since
midnight (00:00:00). (Does not work on compiler)

Examples:

5.2.5

PRINT TIME

The following is a self-timing program:

10 X=TIME
20 FOR I-1 TO 10000
30 NEXT I
40 PRINT TIME-X

BLOAD

Format:

BLOAD <filespec>[,<offset>]

Purpose: Loads a memory image into memory.

<f ilespec> is a string expression returning a valid file
specification as described in "Input and Output," except for the
extension. If the device name is omitted, the current diskette
drive is assumed. The only valid extensions are:

(none)

.B

.P

.A

. M

MISCELLANEOUS NOTES

(no extension)

for Basic programs in the internal format
(created with the SAVE command).

for protected Basic programs in the internal
format (created with SAVE ,P command).

for Basic programs in ASCII format (created
with SAVE ,A command) .

for memory image files (created with BSAVE
command).

5-3

MISCELLANEOUS NOTES 5-4

.D for data files (created by OPEN followed by
output statements.

<offset> is a numeric expression in the range 0 to 65535.
This is the address at which the loading is to start, specified
as an offset into the segment declared by the last DEF SEG
statement. If the <offset> is omitted, the <offset> specified in
the last BSAVE is assumed.

WARNING: BLOAD does not perform address range checking. That
is, it is possible to BLOAD anywhere in memory! You should be
absolutely sure you are not overwriting the operating system,
Basic, or your own program.

EXAMPLE

10 'LOAD AN ASSEMBLY PROGRAM INTO BASIC DS ASSUMING
20 'NO PROGRAM HAS BEEN LOADED.
30 DEF SEG 'SET THE DATA SEGMENT TO BASIC'S
40 BLOAD "MOVE",0 'LOAD THE CALLABLE PROGRAM.

5.2.6 BSAVE

Format:

BSAVE <filespec>,<offset>,<length>

Purpose:

Allows you to save portions of the computer's memory on the
specified device.

<filespec> is a string expression returning a valid file
specification as described in BLOAD.

<offset> is a numeric expression in the range 0 to 65535.
This is the address at which the saving is to start, specified as
an offset into the segment declared by the last DEF SEG
statement.

<length> is a valid numeric expression returning an unsigned
integer in the range 1 to 65535. This is the length of the
memory image to be saved.

Example:

10 'save the first 100 bytes of memory located

MISCELLANEOUS NOTES 5-4

l
1
l

1
'

i

1
1

.,
I

'

...,
I

1

-
-
-

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

MISCELLANEOUS NOTES

20 'at the start of Basie's Data Segment.
30 DEF SEG
40 BSAVE "PROGRAM.M",0,100

5.2.7 OPEN

5-5

In addition to the syntax described in the MS-BASIC manual,
MS-BASIC supports the more powerful GW-BASIC syntax described in
the Graphics Toolkit.

Format:

OPEN [<dev>] <filename> [FOR <mode>] AS[#]
<file number>[LEN=<lrecl>]

Purpose:

The OPEN statement establishes addressability between a
physical device and an I/O buffer in the data pool.

Remarks:

<dev> is optionally part of the file name string and
conforms to the description in section 3.12.

<filename> is a valid string literal or variable optionally
containing a <dev>. If <dev> is omitted, disc A: is assumed.
Disc file names follow the normal MS-DOS naming conventions.

<mode> determines the initial positioning within the
and the action to be taken if the file does not exist.
valid modes and actions taken are:

INPUT Position to the beginning of an existing
The "File Not Found" error is given if the
does not exist.

file
The

file.
file

OUTPUT Position to the beginning of the file.
file does not exist, one is created.

If the

APPEND Position to the end of the file. If the file does
not exist, one is created.

If the FOR <mode> clause is omitted, the initial position is
at the beginning of the file. If the file is not found, one is
created. This is the Random I/O mode. That is, records can be
read or written at will at any position within the file.

MISCELLANEOUS NOTES 5-5

MISCELLANEOUS NOTES 5-6

<file number> is an integer expression returning a number in
the range 1 through 15. The number is used to associate an I/O
buffer with a disc file or device. This association exists until
a CLOSE <file number> or CLOSE statement is executed.

<lrecl> is an integer expression in the range 2 to 32768.
This value sets the record length to be used for random files.
If omitted, the record length defaults to 128-byte records.

When a disc file is OPENed FOR APPEND, the position is
initially at the end of the file and the record number is set to
the last record of the file (LOF(x)/128). PRINT, WRITE or PUT
then extends the file. The program can position elsewhere in the
file with a GET statement. If this is done, the mode is changed
to random and the position moves to the record indicated.

Once the position is moved from the end of the file,
additional records can be appended to the file by executing a GET
#x,LOF(x)/<lrecl>.

5.3 An Example of Calling an Assembler routine from the MS-BASIC
Compiler (For an example of calling an Assembler routine
from the Interpreter, see Section 10.5)

The Assembler routine is coded and written to disc as a .ASM
FILE using EDLIN or PMATE (fig 1). This is then assembled using
MACR0-86 (fig 2).

The Basic program is coded and written to disc with the
BASIC interpreter (ie. 'SAVED' with the ',A' option to produce an
ASCII text file), (fig 3). This is then compiled using BASCOM
(fig 4).

The object (.OBJ) modules produced by MACR0-86 and BASCOM
are then linked using MS-LINK (fig 5). The Assembler object
module must precede the Basic object module in the Link
statement.

The resultant Run file (.EXE) may then be run simply by
typing the name given to it during the link.

When writing the 'CALL' statement in BASIC the name used
(lines 160, 220, and 280) must be the name that appears in the
'PUBLIC' statement in the assembler code and must also be the
label used in the assembler code 'PROC' statement.

See also section 10.5 and chapter 11 for further examples.

MISCELLANEOUS NOTES 5-6

1
1
1

1
~

i
'

1
'

~
' I

1 ,

1
i

!
I

1

-
-

r
r
r
r
r
r
r
r
r
l

r
r
r
r
r
r
r
l

r
r
r

MISCELLANEOUS NOTES

b:asmex.asm
EXAMPLE NAME

CGROUP
CODE
ASSUME
PUBLIC
PFKDI

GROUP CODE
SEGMENT PUBLIC 'CODE'
CS:CGROUP,DS:CGROUP
PFKDI

FAR
DS

5-7

;save BASIC DS
PROC
PUSH
MOV
MOV
MOV
MOV
INT
POP
RET

AX,CS ;set-up DS for this module

LINE

PFKDI
CODE

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
ENDP
ENDS
END

DS,AX
DX,OFFSET LINE
AH,9
21H
DS

1BH,78H,31H
lBH, 59H, 38H, 20H

;restore BASIC DS & return to
;caller

20H, 20H, lBH, 70H
'FKEYl'
1BH,71H,20H,20H,1BH,70H
I F KEY 2 I

1BH,71H,20H,20H,1BH,70H
'FKEY3'
1BH,71H,20H,20H,1BH,70H
I F KEY 4 I

1BH,71H,20H,20H,1BH,70H
I F KEY 5 I

1BH,71H,20H,20H,1BH,70H
I F KEY 6 I

1BH,71H,20H,20H,1BH,70H
I FKEY7 I

1BH,71H,20H,20H,20H
1BH,48H
1BH,79H,31H
1BH,45H
I$'

FIG. 1 SAMPLE ASSEMBLY MODULE

MISCELLANEOUS NOTES 5-7

MISCELLANEOUS NOTES

A>MACR086 B:ASMEX;
The Microsoft MACRO Assembler
Version 1.00 (C)Copyright Microsoft 1981

Warning Severe
Errors Errors
0 0

5-8

FIG 2. INVOCATION OF MACR0-86 TO PRODUCE .OBJ FILE

b:msbex.bas
100 FOR X=l TO 10
110 PRINT "THIS IS TEST LINE A 1234567890"
120 PRINT "THIS IS TEST LINE B 1234567890"
130 PRINT "THIS IS TEST LINE C 1234567890"
140 PRINT "THIS IS TEST LINE D 1234567890"
150 PRINT "THIS IS TEST LINE E 1234567890"
160 CALL PFKDI
170 FOR D=l TO 250 : NEXT
180 PRINT "THIS IS TEST LINE F 0987654321"
190 PRINT "THIS IS TEST LINE G 0987654321"
200 PRINT "THIS IS TEST LINE H 0987654321"
210 PRINT "THIS IS TEST LINE I 0987654321"
220 CALL PFKDI
230 FOR D=l TO 250 : NEXT
240 PRINT "THIS IS TEST LINE J ABCDEFGHIJ"
250 PRINT "THIS IS TEST LINE K ABCDEFGHIJ"
260 PRINT "THIS IS TEST LINE L ABCDEFGHIJ"
270 PRINT "THIS IS TEST LINE M ABCDEFGHIJ"
280 CALL PFKDI
290 FOR D-1 TO 250 : NEXT
300 NEXT

FIG. 3. SAMPLE BASIC MODULE

MISCELI.ANEOUS NOTES 5-8

1
1
l

1
1

I

i

,
!

l

1

1
l

i
1
! ,
I

.,

1

i
'

1

r
r
r
r
r
r
r
r
r
r
r
r

r
r
r
r
r

MISCELLANEOUS NOTES

A>bascom b:msbex;

Microsoft BASIC Compiler
Version 5.32
(C)Copyright Microsoft Corp 1982

24241 Bytes Available
23463 Bytes Free

0 Warning Error(s)
0 Severe Error(s)

5-9

FIG. 4. INVOCATION OF BASIC COMPILER TO PRODUCE .OBJ FILE

A>link b:asmex+b:msbex

Microsoft Object Linker Vl.08
(C) Copyright 1981 by Microsoft Inc.

Run file [A:ASMEX.EXE]: b:msbatst.exe
List file [NUL.MAP]: b:msbatst.map
Libraries [. LIB] :

FIG. 5. INVOCATION OF MS-LINK TO PRODUCE .EXE FILE

5.4 Program Size Limitations

The following limitations apply to program size as indicated:

CBASIC 62K

MS-BASIC INTERPRETER 62K

MS-BASIC COMPILER

MS PASCAL

MS FORTRAN

In FORTRAN and
compilands separately

MISCELLANEOUS NOTES

64K code
64K data

64K object code
64K default data segment
32767 lines of source code

64K object code
64K each named common block
64K all local variables
32767 lines of source code

Pascal you can compile any
and link them together later;

number of
the real

5-9

MISCELLANEOUS NOTES 5-10

limit on program size is thus determined by the capability of the
linker (MS-LINK) which is approximately 386K.

In CBASIC and both MS-BASIC's, multiple programs may be
linked together using the CHAIN command.

5.4.1 Memory Usage outside the default 64K segment in MSBASIC

The following
memory. The DEF
POKEing to.

routine is an example of the use of extra
SEG statement defines a segment address for

In this case,
memory board.

the address chosen is the start of the second

10 DEF SEG=&H2000
20 FOR I%=0 TO 20000
30 POKE I%,65
40 NEXT !%
50 FOR I%=0 TO 20000
60 J%=PEEK(I%)
70 A$=CHR$(J%)
80 PRINT "BYTE NUMBER ";I%;" - VALUE ~";A$
90 NEXT I%
100 END

5.4.2 Memory Usage outside of the default 64K segment in MS­
Pascal

A technique to access more than 64K of data space in MS­
Pascal is to use the ADS facility of the language implementation.

Due to the storage mechanism of the language it is
impossible to change segment under program control as in BASIC or
to use named common blocks as in FORTRAN.

ADS gives a method of creating,
dereferencing actual machine addresses.

manipulating and

Examples of ADS are given in the Pascal Reference Manual,
(Section 8, in V3.04 "Reference Types") and a more complete
program listing using ADS and ADR is given on the following page.

NOTE. Great care must be taken with the use of this facility as
you do deal with actual memory locations and, as no memory
available for use at run-time the decision on where to
variables etc requires a great deal of thought.

MISCELLANEOUS NOTES 5-10

map is
store

1
1
1

1 ,
I
)

1
1

1
1
,
1

! ,
!

i
I

"'"I

1 ,
'

1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

MISCELLANEOUS NOTES

TYPE B:MEM64.PAS
{

5-11

PROGRAM TO TEST THE ALLOCATION OF STORAGE AREAS OUTSIDE OF THE
DEFAULT 64K SEGMENT OF MEMORY.

DETAILS OF THE FUNCTIONS USED ARE FOUND IN SECTION 6 OF THE
SIRIUS MS-PASCAL MANUAL.

PROGRAM MEM64(INPUT,OUTPUT);

VAR
INT_VAR : INTEGER;
REAL_VAR : REAL;
A_INT : ADR OF INTEGER;

AS REAL : ADS OF REAL;
BEGIN

INT_VAR :=l;
REAL_VAR :-3.1415;
A_INT : ADR INT_VAR;

AS REAL : =ADS REAL VAR

WRITELN (A_INT",AS_REAL");

AS_REAL.S :- 16#0006;

AS REAL" :-=REAL_VAR;

REAL VAR :- 9.81;
WRITELN (REAL_VAR,AS_REAL");

AS_REAL.S :- 16#0007;

AS REAL" :- REAL_VAR;

REAL VAR :- 1.0;

{relative machine address of
integer}
{segmented machine address of real)

{A_INT=relative machine address of
INT_VAR}
{AS_REAL=segmented machine address
of REAL_VAR}
{write values pointed at by A_INT
and AS_REAL}
{change AS_REAL segment pointer to
0006 HEX}
{load address pointed at by AS-REAL
with REAL_VAR}

{write REAL VAR and the value
pointed at by AS_REAL}
{change AS_REAL segment pointer to
0007 HEX}
{load address pointed at by AS_REAL
with REAL_VAR}

WRITELN (REAL_VAR,AS_REAL"); {write REAL_VAR and the value

END.

AS REAL.S :- 16#0008;
AS=REAL" :- REAL_VAR;
REAL VAR :- 0.15;
WRITELN (REAL_VAR,AS_REAL")

pointed at by AS_REAL}
{etc......... }

{ THIS PROGRAMME IS BASED ON THE EXAMPLE GIVEN ON PAGE 6.38 OF THE
PASCAL REFERENCE MANUAL. l

MISCELLANEOUS NOTES 5-11

MISCELLANEOUS NOTES

A>

B:MEM64
1 3.141SOOOE+OO

9.8099990E+OO 3.141SOOOE+OO
l.OOOOOOOE+OO 9.8099990E+OO
l.SOOOOOOE+Ol l.OOOOOOOE+OO

5-12

5.4.3 Memory usage outside of the default 64K segment in MS-FORTRAN

A technique to access more than 64K of data space in MS­
FORTRAN is shown below. Named COMMON blocks, each of which may
be up to 64K bytes in size can be used.

In the example, three COMMON blocks are used, each with
10,000 elements of four bytes each, thus allowing access to
120,000 bytes of data storage.

$STORAGE:2
PROGRAM BIGMEM
COMMON /COMl/ARRAYl(lOOOO)
COMMON /COM2/ARRAY2(10000)
COMMON /COM3/ARRAY3(10000)
DO 10 I=l,10000

ARRAYl(I)=I
ARRAY2(I)=I+l0000
ARRAY3(I)=I+20000

10 CONTINUE
OPEN(l,FILE='LST')
DO 20 I=l,10000,1000

WRITE(l,lOO)'ARRAYl(I)=' ,ARRAYl(I),'ARRAY2(I)=' ,ARRAY2(I),
l'ARRAY3(I)=' ,ARRAY3(I)

20 CONTINUE
100 FOR.MAT(lX,All,F7.0,All,F7.0,All,F7.0)

END

5.5 Fix for ASYNC so it will load default file ASYN.IEM when
running under MS-DOS.

Using DDT:
-rasync.mnu

START END
02C8:0000 02C8:SlFF
-dSlOO
02C8:5100 3B S3 OB 49 lE 49 45 S4 52 53 44 3F lB 6E 49 6E ;S.I.IETRSD?.nln
02C8:Sll0 49 6E 49 6E 49 6E 49 AC 49 A9 49 7F 03 OS 08 OA InininI.1.1
02C8:Sl20 OD 12 15 18 lB 17 SS 24 SS CA S4 17 SS CA S4 CA U$U.T.U.T.
02C8:Sl30 S4 02 54 01 SS 01 SS F8 S4 00 49 45 2F 4D 4F 44 T.T.U.U.T.IE/MOD *

MISCELLANEOUS NOTES 5-12

l
1 ,

I

1
~
!

l
~

I

I ,
,

j

1
I

1

1
I ,

1

1
1
l
1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

MISCELLANEOUS NOTES 5-13

02CB:Sl40 4S 4D 49 4S 4D 00 00 00 00 13 14 lS 16 00 02 lF EMIEM
02CB:Sl50 01 7E 4E FA BE 03 lF OS 9A 00 00 00 00 32 30 S4 .-N 20T
02CB:Sl60 31 32 33 34 3S 36 37 33 30 30 00 31 32 33 34 3S 1234S67300.12345
02CB:Sl70 36 37 3B 31 32 33 01 24 OD 23 01 D3 4E BF 91 OE 67Bl23.$.# .. N .. .
02CB:SlBO 23 01 D3 4E OA 92 04 49 01 D3 4E 93 SF OS 49 01 # .. N ... I .. N ... I.
02CS:Sl90 D3 4E DE SF 06 49 01 D3 4E 29 90 07 49 01 D3 4E .N ... I .. N) .. I .. N
02CS:SlAO 74 90 OB 49 01 D3 4E BF 90 OC 49 01 D3 4E 9A 91 t .. I .. N ... I .. N ..
02CS:SlBO OD 49 01 D3 4E ES 91 OE 49 01 D3 4E 30 92 41 44 .I .. N ... I .. NO.AD
-sS13a
02CS:Sl3A 49 41
02CS:Sl3B 4S S3
02CB:Sl3C 2F S9
02CB:Sl3D 4D 4e
02CS:Sl3E 4F 43
02C8:Sl3F 44 20
02C8:Sl40 4S 20
02C8:Sl41 4D 20
02C8:Sl42 49 "z

E>dSlOO
02C8:Sl00 3B S3 OB 49 lE 49 4S S4 52 S3 44 3F lB 6E 49 6E ;S.I.IETRSD?.nin
02C8:Sll0 49 6E 49 6E 49 6E 49 AC 49 A9 49 7F 03 OS 08 OA InininI.I.I
02C8:Sl20 OD 12 lS 18 lB 17 S5 24 S5 CA S4 17 SS CA S4 CA U$U.T.U.T.
02C8:S130 S4 D2 S4 91 55 91 55 F8 S4 00 41 S3 S9 4E 43 20 T.T.U.U.T.ASYNC >h':

02C8:Sl40 20 20 49 4S 4D 00 00 00 00 13 14 lS 16 00 02 lF IEM
02C8:SlSO 01 7E 4E FA BE 03 lF OS 9A 00 00 00 00 32 30 S4 .-N 20T
02CB:Sl60 31 32 33 34 3S S6 S7 33 30 30 00 31 32 33 34 3S 1234S67300.12345
02CB:5170 36 37 3B 31 32 33 01 24 OD 23 01 D3 4E BF 91 OE 67Bl23.$.# .. N .. .
02CB:S1BO 23 01 D3 4E OA 92 04 49 01 D3 4F 93 BF OS 49 01 # .. N ... I .. N ... I.
02CB:5190 D3 4E DE BF 06 49 01 D3 4E 29 90 07 49 01 D3 4E .N ... I .. N) .. I .. N
02CB:SlAO 74 90 OB 49 01 D3 4E BF 90 OC 49 01 D3 4E 9A 91 t .. I .. N ... I .. N ..
02CB:SlBO OD 49 01 D3 4E ES 91 OE 49 01 D3 4E 30 92 41 44 .I .. N ... I .. NO.AD
?
-wasync.mnu
-"c
* No "/" allowed under MS-DOS
** Fixed

5.6 Creating ASCII Text Files

Under MS-DOS it is possible to create an ASCII text file
(such as a batch file) directly from the keyboard.

From the A> prompt type:

COPY CON A:FILENAME.EXT <CR>

MISCELLANEOUS NOTES 5-13

MISCELLANEOUS NOTES 5-14

This will allow you to type onto the screen, the text you
wish to create. After each line hit the RETURN key.

You can edit the current line you are typing by back spacing
over any errors. When finished do a control-Z [AZ] then press
RETURN. This will then close the disk file.

For CP/M-86 you will need PIP:

PIP A: FILENAME. EXT=CON: "<CR>

PIP will then allow you to create a file as above but with
the exception that after each line is entered and the RETURN key
hit you must also do a control-J [AJ] to force a line feed. When
finished do a control-Z [AZ] to close the file.

5.7 CODEC PROGRAMMING

This describes what needs to be done in order to generate
sound using the codec audio section of the Sirius 1.

Ref er to technical
explanation of the CODEC.

reference manual for technical

Software has control over the following functions:

5.7.1

1.
2.
3.
4.
5.
6.

Volume clock rate
Volume level
Codec clock rate
Codec mode (Play/Record)
SDA Initialisation
SDA data transfers

Volume

Volume is controlled by the duty cycle of the ultra-audio
chopper. The chop rate is generated by a 6522 VIA. This clock
can be set once and left. The clock rate should be set at a rate
above 20khz in order not to be heard as a tone in the audio
output. The system normally sets this clock to the maximum rate
the 6522 will generate.

Volume clock rate setup example:

INIT VOLUME CLOCK: proc;
port$ptr= via_20;
/* set shift register mode in acr to shift out on t2 */
via(acr)= (via(acr) and not(lch)) or lOh;

MISCELLANEOUS NOTES 5-14

1
1
1
1
1
l

1

,
l

.1 ,
\

1
i

I

1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
(

r
r

MISCELLANEOUS NOTES

/* set t2 to fastest clock rate */
via(t2)= l;

5-15

/* init volume level to off value, 0= max,ff= off*/
/* OO,Ol,03,07,0f,3f,7f,ff are valid volume values*/
via(sr)= Offh;
end INIT_VOLUME-CLOCK;

Volume level set example:

SET_VOLUME: proc(level);
dcl level byte;

port$ptr= via_20;
/* move new level into sr to control duty cycle */
via(sr)= level;
end SET VOLUME

5.7.2 CODEC Clock

The codec clock rate determines the quality of the recorded
message. The higher the clock rate the higher the quality. This
clock should be adjusted to fit the need of the application as
far as quality and data space require.

Typical clock rate is 16khz for good speech,
very good speech quality. The data rate at
bytes/second and at 32khz it is 4k bytes/second.

and 32khz for
16khz is 2k

The codec clock is generated by a 6522 via using timer 1.
The value stored in the 6522 timer is one half the period of the
codec clock.

N= (500,000/(F*S))-1 or N= (62500/F)-l
N is the 6522 timer value
F is the desired clock frequency in Hz

Codec clock setup example:

/* freq is the desired clock rate in hz */
SET_CODEC_CLOCK: proc(freq);

dcl freq word;
port$ptr= via_80;
/* set new timer value for freq */
via(tl)= (62500/freq)-l;
end SET_CODEC_CLOCK;

MISCELLANEOUS NOTES 5-15

MISCELLANEOUS NOTES 5-16

5.7.3 Codec Mode Control

The codec can both encode speech input to digital data, and
decode stored digital data back to speech output. The mode
control for the codec is supplied by using the SM/DTR output of
the SDA chip.

Example of codec mode control:

/* set mode of code to play or record */
/* 0 is play 1 is record */
SET_CODEC_MODE: proc(mode);

5.7.4

dcl mode byte;
if mode-0 then

else

end

do;
sda.rO=O;
sda.rl=Sbh;
end;

do;
sda.rO=O;
sda.rl=58h;
end;

SET_CODEC_MODE;

/* select control reg 2 */
/* this sets SM/DTR low */

/* select control reg 2 */
/* this sets SM/DTR high */

SDA Initialisation

The SDA performs the parallel to serial conversion and data
buffering function for the CPU. This helps cut down the amount
of time needed to service the CODEC data feeding and reading.
The SDA must be initialised before any other codec operation is
performed.

The functions that are setup are:

1.
2.
3.

set word length to 8 bits no parity, play mode
set sync code to Oaah, on underflow send sync
set byte transfer ready to 2 bytes

SDA initialisation example:

SDA_INIT: proc;
/* set word length to 8,play mode,2 byte ready*/
sda.rO=O; /* select control reg 2 */
sda.rl=Sbh;
/* set sync code to Oaah for quite pattern on underflow */
sda.r0=80h; /* select sync code */

MISCELLANEOUS NOTES 5-16

l
1

1
i ,

\

I
J

i

1 ,
1

I ,
'i

' i

,
i

-i
' i

~!

-

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

MISCELLANEOUS NOTES 5-17

5.7.5

sda.rl=Oaah;
/* set external
sda.r0=40h;
sda.rl-Odh;
sda.r0==40h;
sda.rl=Olh;
end SDA_INIT;

sync mode for par to ser operation */
/* select control reg 3 */
/* clear TUF and CTS */

/* enable TUF and CTS*/

SDA Data Transfer

The SDA is the interface the CPU uses to generate sound from
the codec. This example is for educational purposes and is NOT
the only method that can be used to drive the codec.

In order to record speech from the codec the CPU must:

1.
2.
3.
4.
5.
6.

initialise the SDA
set clock rate
set volume to off
set codec to record mode
read data from SDA receive register
set codec back to play mode

Example of recording data from codec:

/* record a buffer of codec data at buf$ptr */
/* record count bytes of data */
RECORD: proc(buf$ptr,count);

dcl buf$ptr pointer;
dcl count word;
dcl buffer(l) based buf$ptr;
dcl i word;

/* set volume off */ call SET_VOLUME(Offh);
call SET_MODE(l); /* set to record mode */
i=O;
do while (count [I O); /*read in count bytes of data*/

/* wait for receive byte ready in rO */
do while (sda.rO and 1) [11; end;
buffer(i)=dsa.rl; /* read and store data byte */
i-i+l;

end;
call SET_MODE(O);

end RECORD;

Play back of codec data example:

/* play a buffer of codec data back */
/* buffer pointed at by buf$ptr */

MISCELLANEOUS NOTES 5-17

MISCELLANEOUS NOTES

/* play count bytes */
PLAY; proc(buf$ptr,count);

dcl buf$ptr pointer;
dcl count word;
dcl i word;
call SET_MODE(O); /*set play mode*/
do i-0 to count;

/* wait for ready to send flag */
do while (sda.rO and 2)-0; end;
sda.rl- buffer(i); /*store next byte*/

end;
end PLAY;

5.8 Data Security

5-18

This sample program appends characters to a file. It closes
the file and then re-opens it after writing every character to
ensure that at most one character is lost if the system crashes.

name test

code
assume

segment public 'code'
cs:code, ds:code

NOTE: This program assumes that an ASCII file named TEST is
located on the default drive. TEST is the file that the data
is appended to.

lf
er
altz

equ Oah
equ Odh
equ lah

dir_con_io equ
print equ
open equ
close equ
write equ
setdrna equ

test :
push

06h
09h
Ofh
lOh
lSh
lah

es

mov ax,code
mov ds,ax

lea dx, buffer
mov ah, setdma
int 2lh

MISCELLANEOUS NOTES

;save ptr to base page

;set up OS

;set up dma

5-18

l
1

l

1
1
1
1

1

1
1
,

I

....,
I

i

""'I

I

1
i

1,

1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

MISCELLANEOUS NOTES 5-19

open_ it:
lea dx, f cb
mov ah, open ;open file
int 2lh
inc al
jz file not found

mov fcb_recsize, 1 ;set record size to 1 byte

set the current block and current record to point at the last
byte of the file since we want to append it.

mov ax, fcb filesize
xor dx, dx
mov ex, 128
div ex
mov fcb cur_block, ax
mov fcb_cur_rec, dl

-- listing continued on next page -­
; get a character from the keyboard

get_char_from_kb:
mov ah, dir con io
mov dl, Offh
int 2lh
jz get_char_from_kb

if the character is ALT-Z, then stop

cmp al, altz
jz end_prog

write the character to the file

mov buffer, al
mov ah, write
lea dx, fcb
int 2lh

if the character was a carriage return, then write a line feed
also

cmp
jnz

mov
mov
lea
int

byte ptr buffer, er
close it

byte ptr buffer, lf
ah, write
dx, fcb
2lh

MISCELLANEOUS NOTES 5-19

MISCELLANEOUS NOTES 5-20

close the file to save what we just wrote in case the system
crashes

close it:
mov ah, close
lea dx, fcb
int 2lh

go to open the file and get the next character

jmp open_it

file not found:

end_prog:

lea dx, not_found_msg
mov ah, print
int 2lh

return proc far
do a far return to the first byte of the basepage, which
contains an int 20 operation to terminate the program

xor ax, ax
push ax
ret

return endp

fcb db 0
f cb name db 'TEST
fcb cur block dw ?
fcb recsize dw ?
fcb filesize dw ?

dw ?
f cb date dw ?
fcb time dw ?
fcb reserved db 8 dup (?)
f cb cur rec db ? - -f cb rel rec db 4 dup (?)

buff er db 0

not_found_msg db 13, 10, 'The sample file TEST was not
found.' ,13,10,'$'

code ends
end

MISCELLANEOUS NOTES 5-20

1
1
1
1
1
1
l
1

l

"""')

I

l
i ,
!

1
1
_,

!
I

..,
i
\

..,
I

I

1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

MISCELLANEOUS NOTES 5-21

5.9 MS-Pascal Date and Time Program (input, output)

This program demonstrates the use of the MS-Pascal Date and
Time procedures, as well as showing how to change the date by
using the MS-DOS 1.25 Set Date function with the DOSXQQ function
call.

PROGRAM Date_Time (INPUT,OUTPUT);

PROCEDURE DATE(VAR s: STRING); EXTERNAL;

PROCEDURE TIME(VAR s: STRING);EXTERNAL;

FUNCTION DOSXQQ(command,parameter: WORD): BYTE;EXTERNAL;

VAR date_str,time_str: LSTRING(8);

FUNCTION Set_Date(CONST date_str: STRING):BOOLEAN;
(* Changes the system date if date str is valid, otherwise
returns FALSE. *)

CONST setdate = QN2B;

VAR month_word,day_word,year_word,param: WORD;
date_lstr: LSTRING(2);
date_status,month_byte,day_byte: BYTE;

BEGIN
Set_date: - FALSE;
date_lstr.LEN: - 2;
FOR VAR l:= 1 TO 2 DO date_lstr[l]: - date_str[l];
IF NOT DECCDE(date_lstr,month_word) THEN RETURN;
FOR VAR 1: = 4 TO 5 DO date_lstr[l-3]: = date_str[l];
IF NOT DECODE(date_lstr,day_word) THEN RETURN;
month_byte:- LOBYTE(month_word);
day_byte:= LOBYTE(day_word);
param:= BYWORD(month_byte,day_byte);
FOR VAR l:= 7 TO 8 DO date_lstr[l-6]:= date_str[l];
IF NOT DECODE(date_lstr,year_word) THEN RETURN;
year_word:- year_word + 1900;
CRCXQQ:= year_word;
date_status:- DOSXQQ(setdate,param);
IF date_status <> QNFF THEN
Set_Date:= TRUE;

END;

BEGIN
time_str.LEN:= 8;

MISCELLANEOUS NOTES 5-21

MISCELLANEOUS NOTES

TIME(time_str);
WRITELN('The current system time is ',time_str);
date_str.LEN:= 8;
DATE(date_str);
WRITELN('The current system date is ',date_str);

5-22

WRITE('Enter a new date (mm-dd-yy) to change the date, or
else <er>:');

READLN(date_str);
WRITELN;
IF date str.LEN > 0 THEN

BEGIN
IF Set_Date(date_str) THEN

BEGIN
DATE(date_str);
WRITELN('The new system date is ',date_str);

END
ELSE
WRITELN('Date ',date_str,'is not a valid date');

END;
END.

5.10 Accessing System Time in dBASE II

ENTRY:BX - Pointer to length byte at start of string
- 11 byte (space) string passed from dBASE

EXIT: string is passed back to dBASE with time
CHANGE: All registers destroyed, but dBASE will return machine's

state when it regains control.

This program takes an 11 byte long string from dBASE and
puts the MS-DOS time into it. The string must be of character
type. If the string is not 11 bytes long, the routine is exited
with no change. By typing DTIME at the system prompt before
entering dBASE, the first part of the program loads the second
half at address 65024 decimal in the current program segment.
(Actually, any location above A400H is okay. Further, the dBASE
command load [filename] could load an assembly language routine
within dBase). This address is then used inside dBASE as the
argument for the SET CALL TO command. Because the l/lOOth
seconds clock in MS-DOS returns either 00 or 50 it was felt to be
of limited use and was not included in this program. A 12 hour
clock with an AM or PM tag at the end was employed for ease of
use. If a 24 hour clock is desired the conversion code can
easily be eliminated. A SORT routine might overwrite the time
code if it is large enough. If this is a problem, the code can
be modified to use INT 27H to create a protected area in MS-DOS.
A common sequence of commands to get the time would be:

MISCELLANEOUS NOTES 5-22

~
I

I

~
I
I

l
1

l

1
I

1
~

!
I

1 ,
i

1
~

I

~
I

I

1

i

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

MISCELLANEOUS NOTES 5-23

A>DTIME

A>DBASE

Copyright (C) 1982 RSP Inc.

*** dBASE II/86 Ver 2.4 1 July 1983

STOUT
ASSUME

.STORE"l2345678901" TO TIME
12345678901
.SET CALL TO 65024
.CALL TIME
? TIME
5:23:00 PM

GROUP CODE
CS:STOUT,DS:STOUT ;"STring OUT"

This first
CODE

part loads GETTIME
SEGMENTPUBLIC 'CODE'
ORG lOOH ;load over PSP
MOV CX,OA6H ;prepare to move A6H bytes
LEA SI,GETTIME ;put start of time code in SI
MOV DI,OFEOOH ;set destination above dBASE
CLD
REP MOVSB
INT 20H

;move it
;terminate

This is the actual time code

GETTIME PROC NEAR

NOP ; entry target
MOV DI,BX ;put address of length byte in DI
XOR BX,BX ;clear it
MOV BL,OBH ;put expected length in BL
CMP [DI],BL ;is it 11 bytes long?
JNZ SHORT DONE ;no, exit with no change

INC DI
MOV AH,2CH
INT 21H

;move DI to start of string
;get time in CX and DX request
;get it

MOV AL,CH ;put hours in AL
CMP AL,OCH ;after 12:00 noon?
JGE AMPM FLAG ;keep under 12, flag as PM
CMP AL,00 ;is it zero o'clock?
JZ SHORT MIDNIGHT ;make it midnight

MISCELLANEOUS NOTES 5-23

MISCELLANEOUS NOTES 5-24

CONHOURS:

MOUT:

POUT:

DONE:

CONVERT:

CONVERT2:

ONEDIGIT:

CVRTDONE:

CALL CONVERT
MOV BH,OFFH
CALL OUT

MOV AL,C
CALL CONVERT
CALL OUT

MOV AL,DH
CALL CONVERT
MOV BH,OAAH
CALL OUT

CMP BL,OFFH
JZ SHORT POUT
MOV [DI] ,BYTE PTR
INC DI
MOV [DI] ,BYTE PTR
JMP SHORT DONE
MOV [DI] ,BYTE PTR
JMP SHORT MOUT

RET ; all finished

XOR BH,BH
PUSH BX

;convert to ASCII
;flag to OUT that this is hours
;put hours in string

;put minutes in AL

;put seconds in AL

; flag for OUT

;is it night?

'A' ;give me an A

'M' ;give me an M

'P' ;give me a p

;clear counter
; save AM/PM flag

AAM ;unpack AL
ADD AL,30H ;bump to ASCII
ADD BH,01 ;loop count
CMP AH,0 ;quotient zero?
JZ SHORT CVRTDONE ;then we're through
MOV BL,AL ;save LSD
MOV AL,AH ;for next unpack
JMP SHORT CONVERT2 ;do it again

MOV AH,30H
POP BX
RET

;MSD is zero

CMP BH,01 ;one digit number?
JZ SHORT ONEDIGIT ;put '0' in AH
MOV AH, AL ; put MSD in AL for OUT
MOV AL,BL ;put LSD in AL for OUT
POP BX
RET

MISCELLANEOUS NOTES 5-24

1
1
1
1

1 ,
I

i
I
'

1
i

1

"""\
I

1

_,
I

i
I
i

,...,
l

'i
I

1
I

r
r
r
r
r
r
r
r
r
r
I.

r
r
r
r
r
r
r
r
r

MISCELLANEOUS NOTES 5-25

AMPM FLAG:

CHOP:

MIDNIGHT:

OUT:

OUT2:

OUT3:

ZEROKILL:

ZEROFF:

BLANKOUT:

MOV BL,OFFH ;flag as PM
CMP AL,OCH ;is it after 12 noon?
JG SHORT CHOP ;then keep hours under 12
JMP SHORT CONHOURS

SUB AL,OCH
JMP SHORT CONHOURS

MOV AL,OCH
JMP SHORT CONHOURS

CMP BH,OFFH ;is it hours?
JZ SHORT ZEROKILL ;might kill first zero
MOV [DI] ,AH ;move out first digit
INC DI ;point to next string position
MOV [DI] ,AL ;move out second digit
INC DI ;point to next string position
CMP BH,OAAH ;is it end of time numbers?
JZ SHORT BLANKOUT ;send a space
MOV [DI],BYTE PTR ':' ;send out colon
INC DI ;advance to next position
RET

XOR BH,BH
CMP AH, '0'

;clear flag that got us here

JZ SHORT ZEROFF
JMP SHORT OUT2

MOV
JMP

XOR
MOV
INC
JMP

AH I I

•
SHORT OUT2

BH,BH
[DI] ,BYTE
DI
SHORT OUT3

;clear flag that got us here
PTR ' ' ;send space

GETTIME ENDP

CODE ENDS

END

MISCELLANEOUS NOTES 5-25

MISCELLANEOUS NOTES 5-26

5.11 Programming the 8253 Timer

The 8253 Timer, counter 2 is used for timer interrupt.
Clock rate from Sirius hardware is 100 kHz.

For example, to obtain 100 microsecond interrupts we need to
divide by 10. The 8253 can be used in a BCD or binary mode.

In assembler:

org lOOh

start:
mov bx,OeOOOh ES points to I/O
mov es,bx
mov bx,23h address mode register
mov al,Ob5h counter 2, mode 2, BCD
mov es: [bx] ,al write mode word
mov bx,22h address counter 2
mov al,lOh least significant byte (LSB)
mov es: [bx] ,al
mov al,O most significant byte (MSB)
mov es: [bx] ,al

The result is a 10 microsecond pulse every 100 microseconds.

Maximum time - 620 milliseconds (ms) approx. (MSB=O, LSB=O)
Minimum time - 20 microseconds (us) approx. (MSB=O, LSB=2)
(Binary mode)

104 100 ms (0,0)

io3 10 ms (lOh,0)

1 ms (1,0)

100 us (O,lOh)

5.12 Manipulating a Batch File

100 ·--
110 ' START.BAS by Keith Pickup
120 ' Barson Computers (Sydney - Australia)
130 I

140 I

150 I

160 I

This program manipulates a batch file so that programs
may be executed by selecting them from a master menu.
Parameters may be passed to the command string by tagging

MISCELLANEOUS NOTES 5-26

1
:

i
I

1
l

1
1

!

i
I ,
!

i

-
-

""'

•

•

r
r
r
r
r
r
r

r

MISCELLANEOUS NOTES 5-27

170 I

180 I

190 I

200 , __ _
210 I

220 I

230 I

240 I

250 '
260 I

270 I

280 I

290 I

300 '
310 I

320 I

330 I

340 I

350 I

360 I

370 I

380 I

them to the program name string as in lines 710 & 720
The program could also be compiled which would help
speed it up.

This program requires an AUTOEXEC.BAT file to be created
which contains the command 'MENU'.
MENU is in fact MENU.BAT which contains the following

MSBASIC START (or just START if compiled)
OPTION (which is a dummy command)
PAUSE **** Program Terminated ****
MENU (which calls the original .BAT file

The PAUSE allows programs like CHKDSK to display their
information and wait for a response from the keyboard
before re-loading the master menu program

Lastly there is a file called FINISH.BAT which contains
no commands at all therefore allowing exit to the system

NOTE: The command 'dir/wlsortlmore' relates to DOS 2.0

390 ·--
400 I

410 ' *** define program variables ***
420 '
430 WIDTH 255:HEADING$-" **** MASTER MENU **** "
440 ESC$-CHR$(27):REV$-=ESC$+"p":ROFF$=ESC$+"q":CLR$-=ESC$+"z":HOME$=ESC$+"H"
450 DIM SELECT$(10),PROG$(7),TEMP$(4),FK$(7):TOTAL.OPTIONS=7
460 FOR K%=1 TO TOTAL.OPTIONS:READ SELECT$(K%):NEXT K%
470 DATA "Sorted Directory Listing","Check disk space","Format new disk"
480 DATA "Copy diskettes","Edit ASCII file","Microsoft Basic"
490 DATA "Return to Operating System"
500 PAUSE$="pause **** Program Terminated ****"
510 PROG$(l)="dir/wlsortlmore":PROG$(2)="chkdsk":PROG$(3)="format/e"
520 PROG$(4)="dcopy/e":PROG$(5)-"edlin":PROG$(6)-="msbasic":PROG$(7)="finish"
530 I

540 ' *** read current contents of the MENU.BAT file ***
550 I

560 OPEN "I",#1,"MENU.BAT"
570 FOR K%-l TO 4
580 INPUT #l,TEMP$(K%)
590 NEXT K%:CLOSE 1
600 I

610 ' *** display menu for selection of option ***
620 I

630 PRINT CLR$;:KEYBASE=l:GOSUB 820
640 PRINT HOME$;TAB(40-(LEN(HEADING$)/2)+.5) REV$;HEADING$;ROFF$:PRINT:PRINT

MISCELLANEOUS NOTES 5-27

MISCELLANEOUS NOTES 5-28

650 FOR K%=1 TO TOTAL.OPTIONS
660 PRINT TAB(25);REV$;K%;ROFF$;" ";SELECT$(K%):PRINT
670 NEXT K%
680 PRINT:PRINT TAB(25) "Please select option required";
690 IP$=-"":IP$=INKEY$:IF IP$=-"" THEN 690
700 IP-VAL(IP$):IF IP< l OR IP> TOTAL.OPTIONS THEN 690
710 IF IP=S THEN PRINT:PRINT TAB(25);:INPUT "Edit file name ";FILE.NAME$
720 IF IP-5 THEN PROG$(5)-PROG$(5)+" "+FILE.NAME$
730 TEMP$(2)=PROG$(IP):TEMP$(3)-PAUSE$
735 FOR 1%-1 TO 7:PRINT ESC$+"4l"+CHR$(1%)+CHR$(&HFO+I%):NEXT 1%
740 '

1
1
1 ,

!

1
750 ' ***write out new batch file replacing 'option' with program name *** '1
760 ' j
770 OPEN "0",#1,"MENU.BAT"
780 FOR K%=l TO 4
790 PRINT #l,TEMP$(K%)
800 NEXT K%:CLOSE l
810 PRINT CLR$:SYSTEM
820 I

830 ' *** set up for the 25th line ***
840 I

850 IF KEYBASE-1 THEN RESTORE 1010
860 IF KEYBASE=2 THEN RESTORE 1020
870 IF KEYBASE-3 THEN RESTORE 1030
880 FOR 1%=1 TO 7:PRINT ESC$+"4l"+CHR$(1%)+CHR$(&H30+I%):NEXT I%
890 READ FKCT
900 FOR I%=1 TO FKCT:READ FK$(I%):NEXT I%
910 GOSUB 920:RETURN
920 FKSZ=INT((80-(FKCT-l))/FKCT)
930 X9$-"":C9$-ESC$+"q"+" "+ESC$+"p"
940 FOR I%-l TO FKCT
950 B9$-LEFT$(FK$(I%),FKSZ):J9%=INT((FKSZ-LEN(B9$)+1)/2)
960 X9$=X9$+C9$+LEFT$(SPACE$(J9%)+B9$+SPACE$(FKSZ),FKSZ)
970 NEXT I%
980 X9$=ESC$+"p"+X9$+ESC$+"q"
990 PRINT ESC$"xl";ESC$"j";ESC$"Y8 ";ESC$"l";X9$;ESC$"Y ";ESC$"k";
1000 RETURN
1010 DATA 7,"SORT DIR","CHK DISK","FORMAT","DCOPY","EDIT","MSBASIC","EXIT"
1020 DATA 7, 11 11, 11 II , 11 n , 11 11 , 11 11, 11 11 , 11 11

1030 DATA 7, " " , II II, " II , II II, II II , " II, " "

5.13 CALC (or UDCCALC) - Calculator Function

CALC, the calculator function (version 1.1 or later) on both
MS-DOS and CP/M-86 work as follows:

Call up the calculator function by typing:

MISCELLANEOUS NOTES 5-28

,
i

1
1
1

i

""'I

I

"""'!
I

.,,.,
I

1

i
!

""'I
I
i

1
I
I

l
I

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

MISCELLANEOUS NOTES 5-29

CALC <CR>

and striking SHIFT with CALC key.

Division

no quirks

eg. 9t6 (CALC KEY)

Multiplication

one quirk - Your X key on the keyboard may not be configured
so use the* key instead. (ie. SHIFT and 8 key).

eg. 9 X 6 (CALC KEY)

or 9 * 6 (CALC KEY)

Addition and Subtraction

- many quirks - Do not use the (CALC KEY) for the equal sign as
it does not work. Only use it to clear the
accumulator.

eg. 9 + 6 - would be 9 + 6 +

9 - 6 - would be 9 - 6 -

5.14 Directory Entries

The maximum number of directory entries in each version of
the operating system is as follows:

CP/M 1.0

CP/M 1.1

MS-DOS 1.25/2.5 or earlier (floppy discs)

MS-DOS 1.25/2.5 (hard discs)

MISCELLANEOUS NOTES

128

128

128

no
practical
upper
limit

5-29

MISCELLANEOUS NOTES 5-30

Notes

1. The maximum number of directory entries possible is not
necessarily the same as maximum number of files.

a.

b.

CP/M-86 records are 128-byte blocks of data. When a
file is created an extent (area) of disc is allocated
to contain a maximum of 128 records i.e. 16K bytes of
data. If files are larger than 16K bytes they will
need extra extents.

The directory of a CP/M-86 disc contains an entry
each extent of each file. Therefore a file with
than one extent will have a multiple directory
for each file displayed.

for
more

entry

MS-DOS does not block records into 128 bytes each, nor
does it use 16K file extents. A file can be scattered
over the disc, not necessarily residing in contiguous
sectors. Therefore the directory contains an entry for
each block of file on disc.

It is advisable
(CHKDSK.COM) to
been deleted.

to run the Check disc utility
reclaim disc space after files have

5.15 MS-DOS File Sizes and Disc Structure

Floppy disc

The CP/M-86 operating system blocks individual records into
multiples of 128 bytes. eg. An 80 character record will always
occupy 128 bytes of disc space.

MS-DOS on the otherhand, does not do this. It does however,
group records together into blocks or allocation units of 2K
bytes (2048 bytes). These are the smallest units that can be
written to or read from disc at any one time. Therefore a file
will always occupy multiples of 2K bytes.

example

A file with fixed
containing 150 records.

length

Data file

MISCELLANEOUS NOTES

80 * 150 bytes
12000 bytes

records of 80 characters,

5-30

1
1
1
1
l
1

J

~

I ,
\

1
i

i

l

1
1
~

l

1 ,
!

1
1

CHKDSK.COM

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

MISCELLANEOUS NOTES 5-31

The disc space will then be allocated as follows:

Number of 2K byte blocks = size of data file divided by 2048
- 12000 divided by 2048
- 5.859
- 6 (rounding upwards to the nearest

whole block)

Total disc space - 6 * 2K blocks
... 6 * 2048 bytes
- 12228 bytes

The DIR command will give the file size as 12000
however, the actual amount of disc space allocated for the
is 12228 bytes.

The CHKDSK command will give the sum of the actual
space allocated for the files.

bytes
file

disc

FILES DIRECTORY SIZE DISC SPACE

COMMAND.COM
SETIO.COM

CHKDSK.COM
DCOPY.COM

FORMAT.COM
RDCPM.COM

MSBASIC.COM
UDCCALC.COM

EDLIN.COM
DI SKID

5737
1012
1976

15776
17132
11214
31360
4917
2432
1536

93092

CHKDSK gives the value of 102400 bytes.

Hard Disc

6144
2048
2048

16384
18432
12288
32768

6144
4096
2048

102400

The only difference with the Internal Winchester Sirius and
the floppy disc drive Sirius is the size of the allocation units.
On the floppy disc drive the allocation unit size is fixed at 2K.
On the hard disc the user can specify different allocation units
for each volume. therefore files on disc can be multiples of 2K,
4K, 8K etc.

MISCELLANEOUS NOTES 5-31

COMMAND.COM
SETIO.COM
CHKDSK.COM
DCOPY.COM
FORMAT.COM
RDCPM.COM
MSBASIC.COM
UDCCALC.COM
EDLIN.COM

MISCELLANEOUS NOTES 5-32 1
l
1
1
l
1
1
l
l
l
1
1
1
1
1
1

MISCELLANEOUS NOTES 5-32 1
l
1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
l

r
r
r
l

r
r

WORDPROCESSING NOTES 6-1

WORD PROCESSING NOTES

6.1 INSTALL - Brief notes on the use of Install supplied with
Wordstar Ver 3.21 (MS DOS VERSION)

** BACK UP YOUR MASTER DISC BEFORE INSTALLING WORDSTAR

The install program allows you to change Wordstar to suit
different installations.

When you invoke Install (by typing INSTALL <CR>) it logs on
and provides you with most of the information you require. It
then asks a number of questions.

Please read the questions carefully before answering. Below
are some of the questions (in brief) with the usual answer.

Q.

A.

Q.

A.

Q.
A.

Which MicroPro product do you wish to install?

WS <CR>

Name of file to install, or <RETURN> for WSU.COM

<RETuRN> or WS.COM

(The file WSU.COM is an uninstalled version of Wordstar
WS.COM has been installed for the Sirius and Diablo printer.
Normally you would simply want to make minor changes to an
already installed version. If you want to start from
scratch then install WSU.COM

Name of file for installed WORDSTAR, or <RETURN> for WS.COM
<RETURN> or filename.COM

(You can write your installed WORDSTAR back to WS.COM if you
like but make sure you have a backup of the old version just
in case.)

A
B
c
E
F
x

Menu of Terminals
Custom Installation of Terminals
Menu of Printers
Menu of WORDSTAR features
Custom Modification of WORDSTAR
Exit

WORDPROCESSING NOTES 6-1

WSU.COM
WS.COM
WSU.COM
WS.COM
WSU.COM
WS.COM
filename.COM
WS.COM

WORDPROCESSING NOTES

In more detail -

A
B

Menu of Terminals
Custom Installation of Terminals

6-2

Normally you would make no changes here since WS is already
installed for the Sirius terminal, otherwise select option E from
Menu 2.

If you want to install Wordstar for use with 132 column mode
or you don't like the method of highlighting, then try option B.

If you want to change any of the screen attributes you must
refer to the screen driver escape codes found in the Dealer Users
Guide. (Which can be obtained from Barsons).

C Menu of Printers

Select
cannot be
printer".

your printer from the list given.
found (eg MT180) then select "I

Communication protocol.

If your printer
- Teletype-like

Answer A. (handled outside Wordstar by the interface if your
cable is correct).

List device is normally "Primary List Device".

E Menu of WORDSTAR features

This section allows you to choose such things as initial
help level, decimal tab character, initial justification etc.

F Custom Modification of Wordstar

Allows you to change individual bytes.
with listing of user-definable section.

Use in conjunction

This section only allows you to change bytes at addresses in
the range 100H-949H. (Use DEBUG to change bytes outside this
range.)

6.2 Summary of the WordStar Patch Locations

(For a more detailed description, see WordStar Patch notes,
obtainable from your dealer).

WORDPROCESSING NOTES 6-2

1
1
1 ,

J

1
I ,
I

i
I

,
i

1

1
J

1 ,
!

1 ,
,,

I ,
I ,
1
1

111111

WORDPROCESSING NOTES 6-3

Use the "F" command in Install to make these changes:

Example 1:

The byte at location 2D2H (hexadecimal notation) controls
the length of time the WordStar Sign-on banner remains on the
screen. Its initial value is 16 (lOH). To change this to a
smaller value (say zero) enter the Install program and select the
"F" option (custom modification of WordStar).

Enter a starting address of 2D2H and Install will display
the contents of 2D2H and the next 15 characters (bytes). Check
that the first byte has the value lOH and if so, answer the next
question with "Y". Enter the new value 0 then enter a full stop
" " to exit this mode. Follow the remaining instructions to
return to the main menu.

Example 2:

WordStar on the Sirius uses
and other messages. Some people
this. The strings required by
video are "Esc p" and "Esc q"
lB,71). The strings required to
"Esc,(" and "Esc,)" respectively

reverse video to highlight menus
prefer to use high intensity for
Sirius to set and clear reverse
respectively (hex: lB,70 and

set and clear high intensity are
(hex: lB,28 and lB,29).

The "turn on highlighting" string starts at location 284H,
therefore we must enter three bytes starting at this location.
The first byte is a byte count (in this case 2) followed by the
required bytes. Thus we enter the three bytes (in hex) 02, lB,
28 starting at location 284H and the three bytes 02, lB, 29
starting at location 28BH.

STARTING
ADDRESS
(in hex)

248

249

284
28B

2D2

NAME

HITE

WID

IVON
IV OFF

DEL4

NUMBER OF BYTES
AVAILABLE
FOLLOWING
BYTE COUNT
(IF ANY)

NIL

NIL

6
6

NIL

WORDPROCESSING NOTES

PURPOSE

Screen height (in
lines)

Screen width (in
characters)

Turn on highlighting
Turn off

highlighting
Sign-on delay 0-16

6-3

WORDPROCESSING NOTES

2D3 DEL5 NIL

360 ITHELP NIL

362 IT I TOG NIL

363 ITDSDR NIL

385 NIL
386 NIL
387 NIL
388 NIL
389 NIL
38A NIL

38B NIL
38C NIL

38D NIL

38E NIL

746 POSHTH NIL

747 BLDSTR NIL

748 DB LS TR NIL

74C PSCRLF 10

757 PSCR 6

75E PS HALF 6

765 PBACKS 5
76B PALT 4

770 PSTD 4

WORDPROCESSING NOTES

6-4

Screen refresh delay
0-10

Initial help level
0-3

Set to zero to boot
with Insert Off

Set to zero for
initial no file
display

Word wrap flag
Justify flag
Variable tabs flag
Soft hyphen flag
Hyphen help flag
Print control & soft

hyphen display flag
Display r~ler flag
Dynamic page break

flag
Page break display

flag
Initial line spacing

flag
=l for daisy wheel,

=0 for backspacing
printer, =FF for CR
then another whole
line

Number of strikes
for "boldface"

Number of strikes
for "double strike"

String to advance
printer to next line

String to return
carriage to start of
same line

String to do
carriage return &
half line feed

String to backspace
String to set

alternate character
width

String to reset to
standard character
width

6-4

1
....,
I

l"'"J

I

1
I

1
1

!

1
I

1
1
~
I

1
1

I
I

1
1
"""!

I

I

1

'i
I

1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

YORDPROCESSING NOTES

STARTING NAME NUMBER OF BYTES
ADDRESS AVAILABLE

FOLLOWING
(in hex) BYTE COUNT

(IF ANY)

775 ROLUP 4

77A ROLDOW 4

77F USRl 4

784 USR2 4

789 USR3 4

78E USR4 4

793 RIBBON 4

798 RI BO FF 4

79D PSINIT 16

7AE PS FINI 16

6.3 Summary of the keyboard table
KEY LABEL UN SHIFTED

ESC ESCAPE
ESC

INT ON/OFF BOLD ON/OFF

"PB

RVS ON/OFF DISPLAY HELP
MENU

... J

UNDL ON/OFF UNDERLINE
ON/OFF

"ps

WORDPROCESSING NOTES

6-5

PURPOSE

String to roll
carriage up partial
line

String to roll
carriage down
partial line

String for user
function 1

String for user
function 2

String for user
function 3

String for user
function 4

String to change
ribbon to alternate
colour

String to reset
ribbon colour

String to initialise
printer

String to reset

AUSYP4.KB
SHIFTED ALTERNATE

ESCAPE ABANDON FILE
ESC "KQ

LEFT END RIGHT END
OF LINE OF LINE

"qs "QD

SET MIN. HELP SET MAX. HELP

"JHO "JH3

DIRECTORY HIDE MARKERS
ON/OFF

"KF "KH

6-5

,
I

WORDPROCESSING NOTES 6-6

1
Fl SET TEMP. SET LEFT MARGIN SET LEFT HGN

LEFT MARGIN AT CURSOR AT COL. ENTRY 1 "OG "OL,ESC "OL

F2 MARK BEGINNING MARK END COPY MARKED 1 OF BLOCK OF BLOCK TEXT
"KB "KK "KC

F3 READ FILE WRITE MARKED MOVE MARKED
,

INTO TEXT TEXT TEXT
"KR "KW "KV

F4 REFORM PARAGRAPH CENTRE TEXT PAGE BREAK l
"B "oc .PA

FS FIND (ONLY) FIND & REPLACE GLOBAL CHANGE 1
"QF "QA G,W,<CR>

F6 BACK UP FILE END EDIT EXIT WS 1 AND RETURN WITH SAVE WITH SAVE
"KS"QP "KD "KX

F7
,

SET RIGHT MARGIN SET RIGHT MARGIN TOGGLE JUSTIFY I

AT CURSOR AT COL. ENTRY
"OR,ESC "OR "OJ ,

BACKSPACE BACKSPACE & DELETE WORD BACKSPACE
DELETE LEFT

DEL "A"T "H

CLR GO TO TOP OF GO TO BOTTOM
SCREEN OF SCREEN

"QE "QX

DEL CHAR DELETE CHAR DELETE WORD
RIGHT RIGHT

"G "T

INS MODE/LINE INSERT ON/OFF INSERT CARRIAGE
RETURN

"v "N

DEL EOL/LINE DELETE EOL DELETE LINE DELETE BLOCK
"QY "y "KY

SCROL SCROLL DOWN SCROLL UP SCROLL UP
CONTINUOUSLY

"w "z "Q"Q"C

WORDPROCESSING NOTES 6-6

'""'

...

r
r
l

r
r
r
r
r
r
r
r
r
r
r
r
r
~

I'
L

r
r
r

WORDPROCESSING NOTES

LTRL REPEAT FIND/
REPLACE

"L

CURSOR UP CURSOR UP ONE
LINE

"E

CURSOR DOWN CURSOR DOWN
ONE LINE

"x

CURSOR LFT LEFT ONE
CHARACTER

"s

CURSOR RGHT RIGHT ONE
CHARACTER

"D

TAB TAB

"I

z (NORMAL)

x (NORMAL)

+ CANCEL FUNCTION
"u

00 (COMMA)

WORDPROCESSING NOTES

6-7

RE-ENTER LAST
FILE

"R

CURSOR UP
ONE SCREENFULL

"R

CURSOR DOWN
ONE SCREENFULL

"c

LEFT ONE WORD

"A

RIGHT ONE WORD

"F

SET TAB @ CURSOR DEL. TAB AT
CURSOR

"OI,ESC "ON,ESC

(NORMAL) SUBSCRIPT
ON/OFF

"pv

(NORMAL) SUPERSCRIPT
ON/OFF

"PT

TOP OF FILE BOTTOM OF FILE
"QR "QC

(COMHA) 00

6-7

WORDPROCESSING NOTES 6-8

6.4 How to turn a CP/M version of WordStar 3.21 into an MS-DOS
version using DDT86

DDT86
DDT86 1.1
-RWS.CMD

START END
03CO:OOOO 03C0:52FF
-S0324
03C0:0324 E9 90
03C0:0325 39 90
03C0:0326 00 C3
03C0:0327 E9 90
03C0:0328 4A 90
03C0:0329 00 C3
03C0:032A 01 00
03C0:0328 00
-S0356
03C0:0356 00 FF
03C0:0357 00
-WWS.COM,180,52FF

Use RDCPM to copy WS.COM and all overlays to an MS-DOS disc.
Depending on the version of DDT86, and the version of the
operating system, DDT86 may load to a different segment address.
Start changing bytes at location 324 anyway. You may also find
that some of your original bytes differ from those shown above,
change them regardless.

6.5 Using the C.Itoh FlO printer with WordStar

To use
right-hand
as follows:

the FlO with WordStar the switch pack SW41
set of switches under the front panel) should be

0 0 c c c c c 0 c 0

where O=Open and C=Closed.

(the
set

Using the Install program supplied with WordStar select the
C.Itoh/Starwriter printer option.

If you are using the Easifeed cut-sheet feeder then use the
following codes at the top of each file:

.PL90

.MB32

WORDPROCESSING NOTES 6-8

,
I

,
,

J ,
I

l

1

1

1

l

1
l

1
1 ,

I

1
I

,...,
I

1

WS.COM

r
r
r
r
r
r
r
r
r
(

r
r
r
r
r
r
r
r
r
r

WORDPROCESSING NOTES 6-9

to set the page length at 90 lines and the bottom margin at 32
lines.

6.6 Benchmark

Function keys 6 and 7 are implemented within Benchmark 3.0M
Rev C, as described below:

ALT-function key 6 - Prints Content of Screen to Printer

This allows either a menu or any page within a document
displayed on the screen to be sent out to a printer. Once ALT­
function key 6 (ALT-F6) is pressed, the following message will be
displayed on the bottom of the screen:

"Press:CONT to Print theScreen; Fl to Go to Top of Form; CAN
to Skip"

To obtain a printout of the screen, press the PAUSE/CONT key.

NOTE: On the Sirius the CAN key is the DEL EOL key.

ALT-function key 7 - System Interrupt/Stop Print

While in "Print" mode, depression of ALT-function key 7
(ALT-F7) will stop the printing of a document. The following
message will appear at the bottom of the screen:

"Printer Interrupt, Restart Printer?; Press Y -Yes or N-No"

If "Y" is pressed, the document will continue to print. If
"N" is pressed, all printing stops and the program will return to
the main screen (create, revise, print, etc.).

6.7 XON/XOFF Printer Driver for WordStar

This patch uses the user-installed patch areas. To use this
patch install Wordstar for user-installed printer driver and
XON/XOFF protocol. Enter the patch starting at location 08llh.

Use the Wordstar Install program to make the patches. With
Wordstar version 3.3 you must use DDT-86 (CP/M) or DEBUG (MS-DOS)
to make the patches because the install program does not give you
full access to the code.

Refer to the Wordstar Installation Guide and patch listings
for further information

WORDPROCESSING NOTES 6-9

WORDPROCESSING NOTES 6-10

Before exiting the Wordstar Install program (or DDT-86 or
DEBUG), check that the following locations have these values:

Location
7C9h
7CAh
879h

Name
CSWITCH
HAVBSY
PROTCL

Value
2
FFh
2

The patch uses direct I/O to the Sirius hardware serial port
B. To use port A, change iostat to 2 and iodat to 0.

E004 iobase
0003 iostat
0001 iodat
0001 ins tat
0004 outs tat

0811 E9 06 00
0814 E9 16 00
0817 E9 20 00

pubsy:
081A BB 04 EO
0810 8E C3
081F BB 03 00
0822 26 8A 07
0825 24 04
0827 75 02
0829 F9
082A C3

pubsyl:
082B F8
082C C3

pusend:
0820 BB 04 EO
08JO 8E CJ
08J2 BB 01 00
0835 26 88 07
08J8 F8
0839 CJ

puinp:
083A BB 04 EO
08JD 8E CJ
08JF BB 03 00
0842 26 8A 07

WORDPROCESSING NOTES

equ
equ
equ
equ
equ

org
jmp
jmp
jmp

mov
mov
mov
mov
and
jnz
stc
ret

clc
ret

mov
mov
mov
mov
clc
ret

mov
mov
mov
mov

Oe004h
J
1
1
4

8llh
pubsy
pus end
puinp

bx,iobase
es,bx
bx,iostat
al,es:[bx]
al,outstat
pubsyl

bx, iobase
es,bx
bx,iodat
es:[bx],al

bx, iobase
es,bx
bx,iostat
al,es: [bx]

i/o port address
status port (2=A, 3=B)
data port (O=A, l=B)
input status mask
output status mask

test for printer busy
print a character
input a character

point to i/o port

point to status port
get status in AL
bit 2=0 if busy

return CY=l if busy

return CY=O if not busy

point to i/o port

point to data port
print data from AL
return CY=O if done

point to i/o port

point to status port
get status byte in AL

6-10

1
l
l ,

I

l

l
1
1

1
)

1
l

1

1
1
1
1 ,

i

l
!

1

r '
I

[I

r'
L

r
r . I

r
r
r '

r I

'

r
r
L

r
r I

r
r
r
r I

r
r1
t

WORDPROCESSING NOTES

0845 24 01
0847 74 08
0849 BB 01 00
084C 26 8A 07
084F F8
0850 C3

0851 F9
0852 C3

puinpl:

WORDPROCESSING NOTES

and
jz
mov
mov
clc
ret

stc
ret

al,instat
puinpl
bx,iodat
al,es:[bx]

6-11

bit 0=0 if no data

data ready, so get it

CY=O if we have data

CY=l if no data ready

6-11

WORDPROCESSING NOTES
6-12

WORDPROCESSING NOTES 6-12

,
l
1
1
1
1
1
1
1
1
l
1
1
1
1
l
l
1
1

r
r
r
r
r
r
r
r
[

r
r
r
r
r
r
r
r
r
r
r

CP/M-80 SYSTEM - Z-80 CARD 7-1

CP/M-80 SYSTEM - Z-80 CARD

7.1 Z-80 CPU CARD

The Z-80 CPU board was designed to accommodate software
written to run under the CP/M-80 operating system. The Z-80 card
allows users to run existing Z-80 software while using all the
advantages of the Sirius 1 computer system. The Z-80 board
contains a Z-80B microprocessor running at 6 MHZ, 64K of dynamic
RAM memory, and a Corvus hard disc interface.

The Z-80 board uses the Sirius 1 for all I/O including
graphics capabilities, disc storage, and access to I/O ports.
The Corvus hard disc interface allows the user to connect a
Corvus 5, 10, or 20 megabyte hard disc to the Sirius 1. Up to
four 20 megabyte drives may be on line at one time and up to 64
Sirius 1 computers may be networked together using the Corvus
constellation multiplexer board. High speed backup onto standard
video tape is available from Corvus by ordering the corvus mirror
option.

CP/M-80 is a disc operating system that manages program and
data files. CP/M-80 programs will run on a Z-80 system provided
sufficient memory is available (64K bytes max).

The Z-80 card occupies one of the available I/O port
addresses. The Z-80 board comes factory set for I/O port address
0. This address may be changed if necessary. The two 10
position dip switch banks set the 1/0 port address for the Z-80
card.

(NOTE: When the Z-80 card hardware port address is changed, the
user must also change the CP/M-80 software I/O port address for
the Z-80 board by using the NEWSYS program).

The table below describes the I/O port address switch banks.

SWITCH 1 (near centre of card)

PIN #

1
2
3
4
5
6
7

CP/M-80 SYSTEM - Z-80 CARD

I/O ADDRESS BIT #

0
1
2
3
4
5
6

7-1

CP/M-80 SYSTEM - Z-80 CARD 7-2

8 7
9 8

10 9

SWITCH 2 (furthest from centre of card)

PIN # I/O ADDRESS BIT
1'r

1 10
2 11
3 12
4 13
5 14
6 15
7 RESERVED
8 RESERVED
9 RESERVED

10 RESERVED

By typing a command, the Sirius 1 user can switch between
CP/M-80 and CP/M-86 operating systems. (Note: CP/M operating
system disc must be loaded to access CP/M-80 operating system.)

To load CP/M-80, from CP/M-86 type:
80<CR>

To return to CP/M-86 from CP/M-80 type:
86<CR>

Refer to the CP/M-80 User's Guide for further software
information.

Note that the Z-80 card cannot be used with the MS-DOS
operating system and therefore cannot be used in a hard-disc
based Sirius 1 to access the hard disc.

CP/M-80 SYSTEM - Z-80 CARD 7-2

1
l

J

1
' ,
j

1

l
,

! ,
!

l
1

I ,
I

1
I

1

1

1
1

I

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

HARD DISC 8-1

HARD DISC

8.1 HARD DISC

Victor currently offers an internal or external hard disc
drive with their microcomputer. Although it is similar in
physical size to the floppy disc drive nearly nine times the
amount of data can be stored (approximately 10.6 megabytes
formatted) and the speed of data access is much greater than the
speed of the floppy disc drive. Programs will run significantly
faster and larger data files can be maintained.

Also known as the Winchester disc drive, a name coined by
IBM in 1973 to describe a dual 30 megabyte disc configuration
(30/30), Tandon Corporation became the initial supplier. Two
different models may be encountered when servicing the hard disc,
the TM502 or the TM603SE, both of which are compact units that
use a moving head, noncontact recording method with standard
Winchester technology on a 130rnrn rigid medium. The storage
medium is contained within the drive in a fixed, non-operator
removable, configuration.

The hard disc subsystem consists of five major hardware
components; the Winchester disc drive, Spindle and Motor Control
Board, TM600 Main uP Board, Xebec Controller (pronounced zee­
beck), and the OMA Interface Board.

8.2 Disc Drive Functional Characteristics

The following information pertains to the TM502 and TM603SE:

8.2.1 Disc Rotation

The medium is rotated at 3,600 rpm ±1 percent by a direct
drive brushless D.C. motor, giving an average latency of 8.3
milliseconds. Multiple track access time is reduced (TM502
drives only) by the use of an on-board 8748 microprocessor which
calculates the optimum positioning algorithm.

8.2.2 Head Positioning

Head positioning is by a split band, open loop, rotary
positioning system. The track-to-track step time is three
milliseconds plus fifteen milliseconds for head settling time
after the last step of a seek. Heads automatically reposition to
Track 000 at power up.

HARD DISC 8-1

HARD DISC 8-2

8.2.3 Start/Stop

The drive reaches its operating speed 15 seconds after power
is applied to the drive circuitry. Internal hard disc units
reach operating speed 15 seconds after the power switch on the
microcomputer mainframe is switched on. External hard disc units
reach operating speed 15 seconds after the power switch on the
external hard disc unit is turned on. In addition, the disc
stops rotating within 15 seconds after power is removed from the
motor drive circuitry. A solenoid-operated, mechanical brake is
provided for rapid spindle deceleration, and to preclude the
possibility of head or disc damage during shipping.

8.2.4 Air Filtration

A self-contained, recirculating air filcration system
supplies clean air through a 0.3 micron filter. A secondary
absolute filter is provided to allow pressure equalisation with
the ambient atmosphere without contamination. The entire head­
disc-actuator compartment is maintained at a slightly positive
pressure to further ensure an ultraclean environment.

8.2.5 Media

The TM502 media consists of two (2) lubricated 130mm
platters providing six recording surfaces.

The TM603SE media consists of three (3) lubricated 130mm
platters providing six recording surfaces.

8.2.6 Storage Capacity

Storage capacities are listed in Table 1. Capacity is the
maximum number of bytes that can be recorded irrespective of any
gaps and formatting.

Table 1: Storage Capacities

Capacity Unformatted:
per drive .
per surface
per track .

Number of:
platters
Active data surfaces

HARD DISC

TM502

12.75mb
3.19mb

10.40kb

2
4

TM603SE

14.40mb
2.40mb

10.40kb

8-2

3
6

l
1
l
1
,,

I

1 ,
i
j

1
1

1
1 ,

I

1
1
1

I ,
!

"""1
I

!

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

HARD DISC 8-3

Maximum flux reversal density 7690 FRPI 9625 FRPI

Track density 345 TPI 255 TPI

Cylinders 306 230

Tracks 1224 1380

Read/Write heads 4 6

Data Transfer Rate 104kb/sec 104kb/sec

8.3 Winchester Drive Handling Precautions

Winchesters are delicate instruments that require proper
care and handling. These units are expected to perform when
needed. Misuse and/or reishandling will adversely affect the
expected performance.

The Winchester drive presents a new set of problems to the
field in the sense that much care must be taken in handling the
product. Because of the small size and light weight Winchesters
are much more susceptible to damage. This product can be carried
in one hand and is easily taken for granted, thus making it an
easy candidate for unintentional exposure to high shock forces
during handling.

8.3.1 DO'S AND DON'TS

1. The hard disc unit should be placed on a side or end when
not in a system or shipping container.

2. Never drop or jar a hard disc unit, place the unit carefully
on foam padding on work or storage surfaces.

3. NEVER TURN DAMPER OR SPINDLE MOTOR BY HAND ! !

8.4 Hard Disc System Diagnostics

Designed for use in the end user's environment the
diagnostic diskette HDFIELD will help the field engineer diagnose
hardware and media related problems in hard disc systems.
Whether the problem is with the hard disc subsystem or any of the
other major subsystems of the microcomputer HDFIELD's primary
objectives are to:

HARD DISC 8-3

HARD DISC 8-4

1. Determine if the hardware components are defective or
degraded.

2. Determine
which is
label.

the existence of defective hard disc
not currently logged in the drive

media
header

NOTE: Users of the current Sirius Level 1 diagnostic disc
(LEVlP) will experience a BOOS error if attempting to use that
particular disc in a hard disc system. When this occurs (if you
wish to use these diagnostics) simply type ALT C, and then log on
to the B drive by typing B:

Following is a brief description of the programs which are
included in the HDFIELD package that exercise the hard disc
subsystem:

SHOWSTAT Program SHOWSTAT reads the drive label and prints
a summary of the label to the screen. This specifically includes
a list of the current bad tracks. The distinction is made
between bad tracks listed when the hard disc was initialised and
those added after its initialisation. The number of bad tracks
which have been added during normal usage should be monitored as
an indication of disc drive performance degradation. Also
displayed is the recorded serial number. Optionally, all
displayed data can also be printed as hard copy output to the LST
port.

DMATEST Program DMATEST tests the hard disc OMA interface
to CPU board expansion bus. This testing is also performed in
HDDISK under the OMA test (F2) option. The distinction is that
DMATEST is limited to transferring data between the system main
memory and hard disc controller memory. No drive access is
performed.

HDDISK Program HDDISK is the hard disc test utility
program. This utility allows the operator to test each component
in the hard disc subsystem. The program is menu driven. The
auto test (Fl) is recommended as a start. If longer term tests
are desired, either the random read (FS) or butterfly test (F6)
should be executed. This program writes only to the pre­
established inservice diagnostic track (if it can be identified).

8.5 Hard Disc Problems

1. When using the HDSETUP program, never assign the boot volume
to the floppy. If you insert a floppy in the right-hand
drive and close the door, and then press the reset button,

HARD DISC 8-4

1
l
1
l
1
1
l
1

J

i
)

1
1 ,

I
)

1
i

)

1
i

l

1
!

l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

HARD DISC 8-5

2.

3.

4.

the system will boot from the floppy automatically.
Assigning the boot volume to the floppy is, therefore,
unnecessary and will cause the system to hang.

When creating device assignments, you must ensure that the
assignments are contiguous. There must be no 'holes' in the
list. We have discovered that a number of people were
creating systems with Volumes A and B on the hard disc and
volume F on the floppy. This will cause the system to hang
the next time you boot and is a very difficult situation to
recover from.

RDCPM and FORMAT are two utility programs which are designed
to perform functions with the floppy. They were written in
the days when Sirius 1 had only a floppy based system where
the left drive was 'A' and the right drive was 'B'. Both of
these programs adhere to this method of naming drives. Thus
if you have a system ~ith volumes A and B on the hard disc
and volume C on the floppy, you would expect to address the
floppy as drive C. Unfortunately, this is not the case.
You must address the floppy as B. You might find it easier
in this case to consider that the B stands for the right
(physical) drive and not the logical volume.

In HDSETUP (version 1.0 or 1.1), only configure volume sizes
of 2 megabytes, 4 megabytes or 10 megabytes. Any other
values may result in problems.

HARD DISC 8-5

J
l;L\RD DISC 8-6

]

J
l
J
J
J
J
J
J
J
1
1
1
1
1
1

HARD DISC 8-6

1
1

r
r
r
r
r
r
r
r
r

LOCAL AREA NETWORK 9-1

LOCAL AREA NETWORK

9.1 LOCAL AREA NETWORK

9.1.1 Introduction to Local Area Networking

Today's businesses require a computer system capable of
multiple input and processing. These capabilities have been
available in minicomputer systems for many years. In recent
years the microcomputer has been replacing the minicomputer in
office environments. This has forced micro systems to have the
same multi input and processing features as minicomputer systems.
Microcomputer systems are now being used in multi-terminal
configurations to form local area networks (LAN).

LAN's are distributed processing systems that incorporate
multiple user stations, mass data storage, and background
printing facilities. there are basically three types of
networks; centralised, decentralised and distributed. A
centralised network has a "master" system controller controlling
network operation. A decentralised network is basically a group
of interconnected centralised networks. A distributed network
has no main controller and each node on the system shares in the
network control process.

The microcomputer operating system along with the network
hardware allows the user multiple station input (multi-user) and
concurrent processing (multi-tasking). The Sirius I.AN will be
initially offered in a multi-user, single tasking configuration.
The network software for this configuration will be MS-DOS
version 2.0 (servers) and MS-DOS version 1.25 for network
stations. The network will (at a later date) be offered in a
multi-user, multi-tasking configuration. The multi-tasking
operating system will be based on the BELL I.ABS UNIX III
operating system. Multi-tasking will allow concurrent processing
of data, thus increasing system throughput.

The International Standards Organisation (ISO) and the
American National Standards Institute have developed a seven
layer hierarchical network model. The Sirius LAN board will
implement the four lower levels.

9.1.2 ISO Seven Layer Network Model

Layer 1, Physical layer

The unit of exchange is the bit; considerations are voltage
or current levels, signal timing, and connector pin assignments.

LOCAL AREA NETWORK 9-1

LOCAL AREA NETWORK 9-2

Layer 2, Data link layer

The unit of exchange is the frame, independent of any data
content; considerations are error detection, frame
acknowledgement, retransmission on errors, and duplicate frame
detection.

Layer 3, Network layer

The unit of exchange is the packet; considerations are
message/packet conversion, verification of receipt, etc.

Layer 4, Transport layer

The unit of exchange is the message; considerations are
message ordering, host to host communication, etc.

Layer 5-7, Session Presentation and Application layers.

The unit of exchange is the
applications oriented, such as
compression etc.

message;
billing,

considerations are
encryption, code

The Sirius network software and applications software will
implement the upper three layers.

Network communication protocol will be the packet. A packet
may contain data, node addresses, error information and control
information.

Each station on the network will need some method of
accessing the network communications channel. The technique used
will be carrier sense multiple access (CSMA). CSMA is a
technique where a node requiring access to the channel will sense
the channel for the presence of a carrier (activity), if no
carrier is sensed for a predetermined amount of time, the node
accesses the channel. If activity is sensed, the node will
calculate a "waiting" period before trying to access the channel
again. The "wait for retry" period is calculated only when no
carrier is sensed to prevent nodes from queueing up to the
channel.

The Sirius LAN system uses Positive message acknowledgement
to ensure proper message reception. Positive message
acknowledgement is a system in which all packet(s) transmitted
MUST be acknowledged by the receiving station. If the packet is
not acknowledged the host retransmits the packet until it is
acknowledged or the packet retry limit is reached. CSMA along

LOCAL AREA NETWORK 9-2

1
-'I

I

1
1

1
1
1
1
1

I

1
l
1
1
l
i

!

1 ,
I

.,
i

1

r
r
r
r
r
r
r

r
r

LOCAL AREA NETWORK 9-3

with positive message acknowledgement
eliminate collisions.

should effectively

Mass data storage is an important feature of a LAN. The
Sirius LAN mass storage units will be hard disk units with
expanded memory (256K min.). These units will be called network
servers. The network servers will also handle background
printing of user files (spooling).

9.2 Sirius 1 Local Area Network Overview

The Sirius LAN is based on the Corvus OMNI-NET network
system. The network supports 64 users (10 servers, 54 stations).
The communications channel is a shielded, twisted pair cable with
a maximum end to end length of l.2km. The network data transfer
rate approaches 1 mega-bit per second.

Each node on the network will contain a transponder board
(network card). The network card is directly connected to the
network communications channel and the host (node) computer's
data bus. The network card will handle all network functions
thus freeing the host processor from the duty of controlling the
network. The network board communicates with the host system
data bus. The network board contains a DMA (direct memory
access) controller that allows the network card direct access to
memory without host CPU intervention.

The network card will perform functions
transmission and reception, packet formatting,
and DMA transfers.

such as packet
error detection,

Each node on the network has a unique address. The address
is switch selectable on the network card. The eight position DIP
switch at location lA is used to select the board address segment
and set the interrupt priority level.

The network board default setting is at E810h (hexadecimal
segment address). Switches 1-6 on switch lA select the board
segment address.

Switch #

1
2
3
4
5
6

LOCAL AREA NETWORK

Address bit #

Al2
All
AlO
A9
A13
Al4

9-3

LOCAL AREA NETWORK 9-4

Example: SW. 1-6 "ON" selects address segment E810h

Switches 7 and 8 are for selecting interrupt priority levels.

Switch #

7 (ON)
8 (ON)
7,8 (OFF)

Interrupt Level

4
5

Disable interrupts

The eight position DIP switch at location 3M is used to
select the user node address (0-9 servers, 10-63 stations). The
switches are used to set a binary value from 0 to 63. A switch
in the "ON" position represents a binary 0.

Switch # Value

1 1
2 2
3 8
4 4
5 16
6 32
7,8 not used

Example: switches 1,3,5 "ON" all others "OFF" selects node
address 38.

The network card can be functionally broken down into four parts:

1. OMA controller
2. HC6854 advanced data link controller
3. 6801 microprocessor
4. RS-422 transceivers SN74174/SN74175

The OMA controller chip is a custom gate array chip designed
to control the interface between the Sirius computer bus and the
Network card. Each OMA cycle is explicitly invoked by the 6801
microprocessor allowing the network software complete control of
the OMA transfer between the Sirius computer and the network
card.

The MC6854 advanced data link controller (ADLC) controls
many of the functions specified in the ISO data link and network
layers. The ADLC performs such functions as data serialisation,
error code detection (CRC) and generation, packet framing, bit
protocol implementation (NRZI non return to zero inverted) and
zero insertion.

LOCAL AREA NETWORK 9-4

1
i ,

I , ,
J

1
1

I

1
1 ,

I

1
i

I

1
1 ,

I

1
i

i

,
i

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

LOCAL AREA NETWORK 9-5

The 6801 microprocessor oversees the operation of the DMA
controller and the ADLC. The 6801 controls the transfer of data
and control information between the Sirius computer and the
Network card.

The SN75174/75175 chips form the RS-422 transceiver. The
75174 is a differential line driver, and the 75175 is a
differential line receiver. Because the driver and receiver use
differential circuits, they offer high noise immunity. The
twisted wire pair was chosen as the communications medium because
of its ease of installation and RFI (radio frequency
interference) immunity level.

9.3 Network Software Overview

The Server Network product supports a local network of
Sirius workstations with one or more network servers providing
mass storage and printer access for network users. The network
servers are dedicated to providing services for network users and
cannot be used as work stations. The network can include
discless network stations that boot from the network and have all
their mass-storage on the network server(s). Each network server
supports a ten megabyte hard disc and double-sided floppy disc
drive, but does not need a screen or keyboard.

The network servers run network software under the MS-DOS
2.0 operating system while the network stations run a network
interface in conjunction with MS-DOS 1.25. The appearance of the
file system on a network server is transparent to programs
running on the work station, with the network server's
hierarchical file system being used to provide each user with
private directories. Except for the private directories, all
directories on a network server are treated as common storage and
can be shared by one or more network users.

The Server Network product satisfies the following
requirements:

1. The product supports discless network stations.

2.

3.

4.

The product supports multiple network servers.

The product supports existing MS-DOS based applications
consistently.

Each network station user can keep private files on the
servers.

LOCAL AREA NETWORK 9-5

LOCAL AREA NETWORK 9-6

5.

6.

7.

8.

Network stations can have common access to public files on
network servers.

The product does not require a "super user" or system
administrator. Configuration of the system and addition of
network stations requires only basic MS-DOS 1.25 operation
and usage familiarity.

Network server and station failures do not bring down the
network, as long as at least one network server and station
are operative.

The product supports background printing of files on the
network servers.

An INSTALL program adds users to the network by taking an
eleven-character user name, optional password, and assigning
drive designators to link the user to disc volumes on the network
servers. The INSTALL program takes the available drive
designators (those not used for local work station storage) and
sequentially assigns them to network server volumes with private
and common directories being assigned in a ratio of one to two.
The assignments are displayed, and can be changed if desired.
Choosing the default assignments ensures that all users have
consistent links to all network server volumes. Network
installation is simplified by the use of standard AUTOSET files
to configure network server hard disc volumes.

Common directory assignments can be made to a subset of
network users allowing groups that work on common data to share
files that, by installation conventions, are unavailable to other
users of the network. Login to the network can be performed
automatically if the network station is not shared among several
people, or a user can be required to login by giving his or her
name and password (if required). Utilities can be run to check
the status of the network, list the network users, print files on
the network server, or reserve files for exclusive access.

The network server supports three protection schemes for
basic file sharing in common directories.

1.

2.

Files on a network server can be set to read/only using the
PROTECT command. Any writes to a read/only file fail with a
"write protect" error.

For read/write files, an automatic mechanism prevents
concurrent access to a file that is being written or
updated. Writes to the file succeed only if no one else has

LOCAL AREA NETWORK 9-6

1
1
1

,
l

l
J

1
j

i

1 ,
l ,
I

l
1
1
1 ,

I

1

..,
I

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
l

r
r

LOCAL AREA NETWORK 9-7

3.

opened the file, and effectively lock the file so that no
one else can open or modify it until the writing process
closes the file. Attempts to write to a file opened by two
or more users generates a write protect error, while
attempts to open a file that is write-locked generate a
"file locked or reserved" error. This mechanism can be
turned off for applications capable of managing their own
concurrent access to a file or files.

A user can reserve a set of files that are located on a
network server using the RESERVE command. The reserve
command ensures that no other network station will be able
to open or modify the files until they are released by the
user with the RELEASE command. This facility allows a set
of files to be updated without the danger of concurrent
access by another user or an unexpected error from the
automatic mechanism described above. Attempts to open a
file reserved by another user result in a "file locked or
reserved" error. A RESERVE-KEY option allows a process to
reserve an arbitrary semaphore for applications that provide
their own concurrent access management.

To facilitate sharing of up to three printers connected to a
network server the network station interface can redirect list
output at the network station to a specified file on a network
server for later printing.

Network server volume organisation is determined by choosing
an AUTOSET file or using HDSETUP with the server machine
configured as a local work station (keyboard and screen
connected). AUTOSET configuration can be performed by creating a
special configuration disc, keyed to the server number, that
automatically formats the server when booted. This alleviates
the need to have a screen and keyboard connected to the server.

Each server's hard disc can be configured as a number of
logical disc volumes, but must have at least two. These are
assigned to A: and C: (B: is used for the floppy). The hard disc
is optimised for the smallest possible allocation unit size
without regard for memory usage (this is why 256K RAM is required
in network servers). Small allocation unit sizes have the effect
of increasing the effective size of the disc and allow more files
to be stored for the network users.

A network server appears as a set of remote volumes to
programs running on the network stations, with the server's
hierarchical directories providing private directories for each
user. A users private directory is a sub-directory on a network

LOCAL AREA NETWORK 9-7

LOCAL AREA NETWORK 9-8

server volume named with the user's eleven character login name.
Each volume's root directory contains the common files for that
volume. No change directory command is provided, so that network
users do not have to understand hierarchical directories, and,
they cannot access any sub-directories that have not been
assigned to them by INSTALL. This ensures that other user's sub­
directories are not accessible, and remain private to their
owners.

The network station accesses remote volumes on the network
by using standard MS-DOS drive designators (A: to 0:). If a
network station has local disc drives, the remote volumes should
use different drive designators than the local drives, although
the INSTALL program does not prohibit this.

The file system is composed of all network servers on the
network. Each network server has its hard disc volumes
partitioned into multiple directories. The private directories
of each user are only accessible by that user. ~S-DOS 2.0 will
enforce "read/only" or "read/write" protection on all files on
both regular and private directories. These file attributes are
setable by anyone able to access that file (only the user for
private directories, and anyone with a drive assignment for
common directories).

A network server may have attached printers, or other output
devices which may be in demand by multiple network users. The
devices may be connected to the server through the parallel
interface or through Serial A or Serial B RS232 ports. In order
to share these devices output is spooled to the network server's
disc. The names of the spool files and the user names are placed
into a queue maintained by the network server for each printer
attached to the server.

LOCAL AREA NETWORK 9-8

1
1
1
1
1

1
)

1
I

1
1
1

I

1

1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

HIGH RESOLUTION GRAPHICS 10-1

HIGH RESOLUTION GRAPHICS

10.1 HIGH RESOLUTION GRAPHICS

In the high resolution mode, all 16 bits of each font cell
word are displayed. The screen buffer is filled with pointers to
successive cells in dynamic RAM and the programmer must
manipulate the contents of dynamic RAM to create the required
display. To set up a hi-res screen, there are 3 steps which must
be performed.

1. A 40k byte region in dynamic RAM should be chosen and
cleared for use as a high-res screen area.

2. The screen buffer is then filled with pointers to this
area of dynamic RAM.

3. The CRT controller is reprogrammed to give the correct
timing for the hi-res mode.

10.2 Clearing a Hi-Res area

The starting address of the hi-res screen must be on a 32
byte boundary (ie. an address that is divisible by 32). This is
because the lower 4 address bits are used by the CRT controller
to address the 16 words of the font cell. The hi-res screen must
be contained completely in the upper or lower 64K segment of the
first 128K block of memory (0 - lFFFFh).

As CP/M loads into the top of memory and loads programs
directly below itself, a convenient place for a hi-res screen is
directly above the operating system character table at location
2C00h (see Memory Allocation Map of CP/M system, section 1.6.2).

This area can also be used under MS-DOS except that this
area above the character table must be claimed by the user. This
is because the programs are loaded directly above the character
table under MS-DOS. It is therefore necessary for the user to
include a 40,000 byte buffer at the start of the software. It is
also necessary for the user to ensure that the start of the
buffer lies on a 32 byte boundary. This can be done by loading
the ES segment register contents and ensuring that it is
divisible by 32 with no remainder.

The following routine clears 40,000 bytes starting at
location 2COOh.

HIGH RESOLUTION GRAPHICS 10-1

HIGH RESOLUTION GRAPHICS

MOV BX,02COH
MOV ES,BX
MOV BX,O
MOV CX,4E20H
MOV AX,0

CLEAR:MOV ES: [BX] ,AX
INC BX
INC BX
LOOP CLEAR

10-2

;ES segment points to our hi-res screen

;use BX to index the 40k byte RAM area
;counter for 20,000 words
;we want to store 0 throughout the RAM
;area

;next word

10.3 Setting the Screen Buffer Pointers

We have defined our high resolution screen to start at
address 2C00h and so our first pointer must be 2C00h divided by
32. (ie. the word in screen RAM represents the upper 11 bits of
address to dynamic RAM; the CRT controller supplies the lower 4
bits). This means the screen pointers should scart at 0160h.
Incrementing this number by one translates to an increment in the
address of 16 (ie. one complete cell). The following routine
fills the screen buffer with pointers to our high resolution
screen. Note we only fill 25 rows x 50 columns = 1250 bytes of
the 4096 bytes available in the buffer.

MOV BX,OFOOOH ;address screen buffer RAM
~10V ES,BX
MOV BX,O ;BX indexes the 4k RAM area
MOV CX,0432H ;1250 byte counter
MOV AX,0160H ;starting address of DRAM pointers

STORE:
MOV ES: [BX] ,AX ; store font pointer
INC BX ;next word
INC BX
INC AX ;next DRA..'1 pointer
LOOP STORE

10.4 Reprogramming the 6845 CRT Controller

In order to derive the correct timing from the display
circuit, 16 of the internal registers should be reloaded. The
correct data for both the text and high resolution modes are
shown on page 99 of the Hardware Reference Manual. The following
routine transfers the 16 bytes of data in the table to the 16
internal registers of the CRT controller.

mov bx,OE800h
mov ex,bx
mov bx,O

HIGH RESOLUTION GRAPHICS

;address CRT controller

10-2

1
I

l
1

I

1
1
1

l

l

1
1
1
..,

!
i

1

1
I

1 ,
I

1

1 ,
I

r
r
r
r
r
r

r
r
r
r
r
r
r
r
r
r
r
r

HIGH RESOLUTION GRAPHICS 10-3

loop:

data

mov
mov
mov
mov
inc

si,OOOlh
cx,offset
dl,O
al,dl

data ;pointer to register string

dl
mov es: [bx], al
xchg bx,cx
mov al, [bx]
xchg bx,cx
inc
mov
cmp
jnz

ex
es: [bx+si], al
dl,llh
loop

;set address register AR
;address next register

;point to data
;get data byte

;address next byte
;set register
;last register ?
;no: address next register

db
db

3Ah,32h,34h,OC9h,19h,06h,19h
19h,03h,0Eh,20h,0Fh,20h,O,O,O

10.5 Examples

10.5.l Microsoft MACR0-86 Assembly Language

This assembly-language routine demonstrates two things, one,
interfacing an assembly-language routine to the MS-Basic
interpreter and two, using the high-resolution graphics from MS­
Basic.

1. To interface an assembly-language routine to MS-Basic the
routine must load itself into memory then exit and remain
resident (int 27h). This is done before Basic is loaded.
The routine must locate its position in memory and report
this either to the programmer or to the subsequent Basic
program. This example does the former. It determines the
value of the CS register which is to be used in a Basic
DEF SEG statement and the entry point for Basic to be used
as an OFFSET.

The program prints these values on the screen in a form
which can be used by Basic directly. The form is:

10 DEF SEG=&Hxxxx
20 HI.RES=&Hyyyy
30 CALL HI. RES

where xxxx is the hexadecimal value of CS and yyyy is the
hexadecimal value of the offset within the segment. A Basic
program including the above code execute the code starting
at location INIT: in the listing. The alternative method is
for the routine to leave these values in some known memory

HIGH RESOLUTION GRAPHICS 10-3

HIGH RESOLUTION GRAPHICS 10-4

location which can be interrogated by a Basic program.
Suitable locations are to be found in the Interrupt Vector
Table (see Appendix I.2), namely interrupts 80h to BFh,
which are reserved for use by application programs. See the
IEEE-488 Toolkit, Audio Toolkit and Network Users Guide for
examples.

2. Details of how the high-resolution screen works can be found
in the Hardware Reference Manual and the Supplementary
Technical Reference Manual. This program sets aside a 40k
(decimal) buffer (initialised to zero) for the high­
resolution screen, which must start on a 32-byte boundary.
The software locates the first available 32-byte boundary
and reports this to the programmer. When called from Basic
the routine initialises the screen pointers and the CRT
controller then returns to Basic. This routine could be
extended to include specialised graphics functions for
particular applications where the Grafix Kernel (found in
the Graphics Toolkit) either does not provide the required
functions or is too general. Provided this extended routine
and the application package are not too large, they could
easily run in a 128K machine.

When Basic calls an assembly-language routine it pushes the
return address and the value of its CS onto the stack, then
enters the called routine. This routine must save any other
segment registers it intends using. This example uses DS and ES.

code

Written by

Program HI-RES

segment
assume cs:code,ds:code
Greg Johnstone and Keith Rea
Barson Computers
335 Johnston St.
Abbotsford, 3067

16-9-83

Assemble this program as follows

MACR086 HI-RES;
LINK HI-RES;

Link will produce a warning - 'No stack segment', ignore it. Link
produces a file HI-RES.EXE which will not run. You must produce a
file as follows:

HIGH RESOLUTION GRAPHICS 10-4

l
1
1

!

1
1 ,

J

l
1
1

1
1
1 ,

!

1
1
1

.COM

1
j

1

1 ,

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

HIGH RESOLUTION GRAPHICS

DEBUG HI-RES.EXE
N HI-RES.COM
w
Q

10-5

The resulting program HI-RES.COM will run

buf st
scrn rm
count
crt
bdos
boot
conout
er
lf
esc

loader

start:

Exit

equ 190h
equ OfOOOh
equ 1250
equ Oe800h
equ 2lh
equ OOh
equ 02h
equ Odh
equ Oah
equ lbh

org lOOh

proc near

call main

and remain resident

mov
int

dx,offset top+l
27h

loader endp

basic proc far

offset to hi-res buffer
segment address of screen RAM
no. of cell locations in hi-res mode
segment address of CRT controller
MS-DOS function call
exit to MS-DOS function.
console output function.
carriage return
line feed
escape

find out where routine loaded in RA~1

Set DX to the top of part to remain
.. resident then quit.

; Set screen RAM pointers to font RAM work area

init:
push es save segment registers used by Basic ..
push ds
mov ax,cs .. and point DS to current CS
mov ds,ax
rnov bx,scrn_ rm point to screen ram
mov es,bx
mov bx,O

HIGH RESOLUTION GRAPHICS 10-5

RES.COM
RES.COM

HIGH RESOLUTION GRAPHICS 10-6

mov cx,count counter for 1250 cells
mov ax,hi res starting address of pointers -
shr ax,l .. = RAM address/2

initl:
mov es: [bx], ax store font pointer
inc bx address next word and put ..
inc bx
inc ax .. next font cell
loop initl

set CRT controller for high resolution

mov
mov
mov
mov
mov
mov

init2:
mov
inc
mov
xchg
mov
xchg
inc
mov
cmp
jnz

pop
pop

ret

data: db
db

enddata:

org

buff: db
hi res: dw -
top:

basic endp

bx,crt ; point to CRT controller
es,bx
bx,O
si,l
cx,offset data point to register string
dl,O

al,dl
dl
es: [bx] ,al
bx,cx
al,[bx]
bx,cx
ex
es: [bx+si] ,al
dl, llh
init2

ds
es

set address register AR
address next register

point to data
get data byte

address next byte
set register
last register?
no, address next register

restore Basie's segment registers

3ah,32h,34h,Oc9h,19h,06h,19h
19h,03h,Oeh,20h,Ofh,20h,0,0,0

buf st

40016
0

dup(O)

start graphics buffer on 16 ..
.. byte boundary. Initialise to 0
reserve extra 16 bytes just in case
.. it falls on an odd boundary.
segment address of hi-res RAM
routine up to here needs to stay in RAN.

HIGH RESOLUTION GRAPHICS 10-6

1

1
1
1
1

1
1

)

1
1
1
1
1
1

1
1
1

)

i
I ,

1
1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

HIGH RESOLUTION GRAPHICS 10-7

load2 proc near

Now we have to figure out where we are in memory and tell everyone
about it.

main:

call

db
db
db
db
db

msprnt ; Print the following message

esc, 'E', 'HI-RES ver. 1.0' ,cr,lf
cr,lf, 'Hi-res graphics interface for MS-Basic interpreter'
cr,lf ,cr,lf
'Include the following statements in your program' ,cr,lf,cr,lf

10 DEF SEG=&H' , 0

get the segment address

mov ax,cs Get the contents of CS register
call hexprnt .. convert to hex and print it

call msprnt print next message

db er, lf
db 20 HI. RES=&H' , 0

get the entry point for Basic

mov
call

call

db
db
db
db

ax,offset init
hexprnt

msprnt

cr,lf

Get offset of the start of the ..
.. routine and print it.

30 CALL HI.RES'
cr,lf
'The hi-res screen starts at segment address &H' ,0

now lets find where we put the hi-res screen

mov
add
test

ax,cs
ax,buf_st/16
al,l

HIGH RESOLUTION GRAPHICS

point to CS
add offset to start of hi-res ram
check if on 32-byte boundary. Segmen:

10-7

HIGH RESOLUTION GRAPHICS 10-8

mainl:

jz
inc

mov
call
call

db
db

ret

mainl
ax

hi res,ax
hexprnt
msprnt

address should be even if it is.
if odd, make it even

and save it.

cr,lf,'Use DEF SEG to point to this location in memory and'
cr,lf, 'start POKEing data into hi-res RAM' ,cr,lf,O

subroutine MSPRINT - print bytes following the CALL till zero

msprnt:
pop
mov
inc
push
and
jnz
ret

msprntl:
mov
mov
int
jmp

bp
al,cs:[bp]
bp
bp
al,al
msprntl

dl,al
ah,conout
bdos
msprnt

get message starting address
get byte pointed to by bp
next byte

is the byte equal to 0 ?
no: print it
yes: end of string

console output routine

subroutine HEXPRNT - convert a byte to hex and print it

hexprnt:
push
xchg
call
pop
call
ret

hexprntl:
mov
and
mov
sar
and
cmp

ax
ah,al
hexprntl
ax
hexprntl

dl,al
al,Ofh
cl,04h
dl,cl
dl, Ofh
dl,09h

HIGH RESOLUTION GRAPHICS

save the byte
get lower nibble
then the upper nibble

if less than 10 then get the ..

10-8

1
1
1
1

1 ,
.I

1

1
1

1
1

1
I

1

1

1
1

i

1
1

~
I
!

r
r
r
r
r
r
r
r
r
r
r

HIGH RESOLUTION GRAPHICS

jg hexprnt2
add dl,30h
mov hi_byte,dl
jmp hexprnt3

hexprnt2:
add dl,37h
mov hi_byte,dl

hexprnt3:
cmp al,09h
jg hexprnt4
add al,30h
mov lo_byte,al
jmp hexprntS

hexprnt4:
add al,37h
mov lo_byte,al

hexprntS:
mov dl,hi_byte
mov ah,conout
int bdos
mov dl,lo_byte
mov ah,conout
int bdos
ret

lo_byte db '0'
hi_byte db '0'

load2 endp

code ends
end start

10-9

.. ASCII value of the numeric digit

else get the ASCII value of the ..
. . alpha digit

repeat for upper nibble

print the hex. bytes, one at a time

hex value of lower nibble (in ASCII)
hex value of upper nibble (in ASCII)

10.5.2 Microsoft MS-BASIC Interpreter

This program calls the routine given in section 10.5.1.

100 ROUTINE=&H2C8
110 SCREEN=&H2E2
120 PRINT CHR$(27);"z"
130 PRINT CHR$(27);"x5"
140 DEF SEG=ROUTINE
150 HI.RES=&H108

HIGH RESOLUTION GRAPHICS

'Segment address of HI-RES
'Segment address of hi-res screen
'Clear screen

'Point to start of HI-RES segment
'Offset to HI-RES

10-9

HIGH RESOLUTION GRAPHICS

160 CALL HI.RES
170 GOSUB 250
180 A$=""
190 WHILE A$=""
200 A$=INKEY$
210 WEND
220 PRINT CHR$(27);"z"
230 END
240 I

'Initialise hi-res screen
'Throw some data in it

10-10

'Hang about till someone presses a key

'Put screen back into character mode
'And that's it folks

250 DEF SEG=SCREEN 'Point to start of hi-res screen
260 FOR I=O TO 31 STEP 2'Start filling hi-res RAM, a word at a time
270 READ HI,LO 'Remember that the screen displays bit 0 first
280 POKE I,LO: POKE I+l,HI
290 NEXT
300 RETURN
310 'This data prints the letter G in the top left corner
315 ' of hi-res screen
320 DATA 255,255,128,l,128,l,128,l,O,l,O,l,O,l,O,l
330 DATA O,l,255,l,128,l,128,1,128,1,128,l,128,l,255,255

10.6 Printer Configuration Tables in the Grafix Kernel

HIGH RESOLUTION GRAPHICS

Printer configuration tables for Grafix ver.
1.2. To get addresses for Grafix ver. 1.3 add
lOh to each address.

The printer configuration tables contain the
following information.

prttyp - printer algorithm type. Currently,
all printers use the same algorithm,
which is defined as type 1. This is
the sequence of events:

1) send initialisation string
(initstr)

2) send beginning of line string
(bolstr)

3) send graphics string 1 (grstrl)
4) send count of graphics

characters
5) send graphics string 2 (grstr2)
6) send graphics characters
7) send end of line string (eolstr)
8) if more data, go to 2
9) send final string (finalstr)

grcnt_typ - graphics character count type.

10-10

1
1

1
1
1

1

1
ri

I
' ,
j

1

l ,
,

'

1

1
'i

I

1
1

r
r
r
r
r
r
r
r
L

r
r
r
r
r
r
r
r
r
r
r

HIGH RESOLUTION GRAPHICS

0000
0002
0003
OOOA
OOOD
OOOE
OOlB
0020

= OOFF

OOOA

= 3B41

3B41 01
3B42 01

3B43 0008

3B45 0000

3B47 04 OA lB 41 08

10-11

There are currently 3 count types
implemented. 1 = 2 hex bytes sent
as count.
2 3 ASCII numeric characters
sent as count
3 = no count is sent

eneedles - the number of needles used in the
print head to print graphics
characters. This is positive if
the top dot is the least
significant bit of the data sent.
negative if it is the most
significant bit.

rtmin - the minimum number of characters that
will be printed on a line. If the user
data contains fewer characters, the
remainder sent will be blank (spaces).

nul equ 0
stx equ 2
etx equ 3
lf equ 10
er equ 13
so equ 14
escape equ 27
space equ 32

end tblf equ Of fh ;end of table
;flag

tbl_entry_lgth equ 10 ;maximum table
;string length

Epson MX80/MX100 Configuration Data

epson_tbl equ $

ep_prttyp db 1 ;epson algorithm typ
ep_grcnt_typ db 1 ;epson format of

;graphics bytes
ep_eneedles dw 8 ;Epson num of scan

;lines/printed line
ep_rtmin dw 0 ;epson min line

;length to print
ep_ initstr db 4,lf,escape,'A' ,8;epson

;init string

HIGH RESOLUTION GRAPHICS 10-11

HIGH RESOLUTION GRAPHICS 10-12

3B4C 02 lB 32 ep_finalstr db 2,escape,'2' ;epson
;final string

3B4F 00 00 ep_bolstr db O,nul ;epson beginning
;of line string 1111!11

3B51 02 OD OA ep_eolstr db 2,cr,lf ;epson end
;of line string

3854 02 lB 4C ep_grstrl db 2, escape, 'L' ;epson
;graphics mode

3BS7 00 00 ep_grstr2 db O,nul ;epson
;graphics mode

3B59 FF ep_endf db end tblf ;end of
;table flag

Tally Configuration Data ________________________ ,.. ______________________

= 3BSA tally_tbl equ $

3BSA 01 t_prttyp db 1 ; tally
;algorithm type

3BSB 01 t_grcnt_typ db 1 ; tally
;format of graphics
;bytes

3BSC FFF8 t eneedles dw -8 ;tally num
;of scan lines/printed
; lines

3BSE OOC8 t rtmin dw 200 ; tally min
;line length to
;print

3B60 00 00 t initstr db O,nul ;tally init
;string

3B62 00 00 t finalstr db O,nul ; tally
11!

;final string
3B64 00 00 t bolstr db O,nul ; tally beg

;of line string
3B66 02 OD OA t eolstr db 2,cr,lf ; tally end

;of line string
3869 02 lB 4C t_grstrl db 2,escape, 'L' ; tally

;graphics mode
3B6C 01 20 t_grstr2 db l,space ; tally

;graphics mode
3B6E FF t endf db end tblf ;table end

;flag

HIGH RESOLUTION GRAPHICS 10-12

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

HIGH RESOLUTION GRAPHICS

= 3B6F

3B6F 01

3B70 02

3B71 FFF8

3B73 0000

10-13

C. Itoh Configuration Data
;---·--

ci toh tbl equ

c_prttyp db

c_grcnt_typ db

c eneedles dw

c rtmin

$

1

2

-8

dw

; c. itoh
;algorithm type

;c.itoh
;format of graphics
;bytes

;c.itoh num
;of scan lines/printed
;line

0 :c.itoh
;line length to
;print

3B75 08 lB 45 lB 54 31 c initstr
36 OD OA

db 8,escape, 'E' ,escape, 'Tl6' ,cr.lf
;c.itoh init string

3B7E 04 lB 4E lB 41 c finalstr db 4, escape, 'N' , escape, 'A'

3B83 00 00

3B85 02 OD OA

3B88 03 lB 53 30

3B8C 00 00

3B8E FF

3B8F

HIGH RESOLUTION GRAPHICS

;c.itoh final string
c bolstr db O,nul ;c.itoh beg

;of line string
c eolstr db 2, er, lf ; c. i toh end

;of line string
c_grstrl db 3,escape, 'SO' ;c.itoh

;graphics mode
c_grstr2 db 0, nul ; c . itoh

;graphics mode
c endf db end tblf ;table end

;flag

Okidata Configuration Data

The Okidata printer has a 7 dot graphics head
instead of 8 dots. Since our characters are
10xl6, the Okidata is programmed to print the
dots out in 4 rows of 4 dots each (instead of
2 rows of 7 dots, with 2 dots left over). This
allows the program to use the same algori tlrn1
type for the Okidata as it uses for the other
printers. However, it is slower since it
requires 4 passes for every line of characters
instead of two passes.

okidata tbl equ $

10-13

c_eneedl.es

HIGH RESOLUTION GRAPHICS 10-14

388F 01 ok_prttyp db 1 ;okidata
;algorithm type

3890 03 ok_grcnt_typ db 3 ;okidata
;format of graphics
;bytes

3B91 FFF9 ok eneedles dw -7 ;okidata
;num of scan
;lines/printed line

3893 0001 ok rtmin dw 1 ;okidata
;line length to
;print

3B95 01 lD ok initstr db 1,29 ;okidata
;init string - 12
;chars/inch

3B97 02 03 02 ok finalstr db 2,etx,stx ;okidata
;final string

389A 00 00 ok bolstr db O,nul ;okidata
;beg of line string

389C 02 03 OE ok eolstr db 2,etx,so ;okidata
;end of line string

389F 01 03 ok_grstrl db l,etx ;okidata
;graphics mode

38Al 00 00 ok_grstr2 db O,nul ;okidata
;graphics mode

38A3 FF ok endf db end tblf ;table end
;flag

10.7 Pat<hing the Grafix Kernel for the MT-180 Printer

A>DE8UG GRAFIX.COM

DE8UG-86 VERSION 1.07
>d3b00
0473:3800 2E AO 3F OE 2E 08 06 lA-OB C3 00 00 00 00 00 00
0473:3810 OA 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0473:3820 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0473:3830 00 00 00 00 32 00 00 00-00 00 00 00 00 00 00 00
0473:3840 00 01 01 08 00 00 00 04-0A 18 41 08 02 18 32 00
0473:3850 00 02 OD OA 02 18 4C 00-00 FF 01 01 F8 FF CS 00
0473:3860 00 00 00 00 00 00 02 OD-OA 02 18 4C 01 20 FF 01
0473:3870 02 F8 FF 00 00 08 18 45-18 54 31 36 OD OA 04 lB
>e3b5c
0473:385C F8.08 FF.00 C8.00 00.
0473:3860 00.01 00.0D 00.01 00.0C 00. 00. 02.

0473:3868 OA. 02.03 18. 4C.25 01.34 20.00 FF.00
>d3b00

HIGH RESOLUTION GRAPHICS 10-14

? c

.... 2

.......... A ... 2.

...... L x.H.

........... L

.x E.Tl6

OD.

01.FF

1
1
l

1

1
i

1
1
1

\

1
l

1

1
I

" ,
I

1
,..,

I
I

1
1

GRAFIX.COM

HIGH RESOLUTION GRAPHICS 10-15

0473:3BOO 2E AO 3F OE 2E 08 06 lA-OB C3 00 00 00 00 00 00
0473:3Bl0 OA 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0473:3B20 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0473:3B30 00 00 00 00 32 00 00 00-00 00 00 00 00 00 00 00
0473:3B40 00 01 01 08 00 00 00 04-0A lB 41 08 02 lB 32 00
0473:3B50 00 02 OD OA 02 lB 4C 00-00 FF 01 01 08 00 00 00
0473:3B60 01 OD 01 OC 00 00 02 OD-OA 03 lB 25 34 00 00 FF
0473:3B70 02 F8 FF 00 00 08 lB 45-lB 54 31 36 OD OA 04 lB
>ngrl80.com
>w
Writing 5409 bytes
>q
A>

? c

.... 2

. A ... 2.

...... L
•.•.•.•.... %4 .. .
. x E.Tl6

Procedure for
Tally MT180 printer.
escape codes. To
example, type:

modifying GRAFIX Ver 1.2 to work with the
This modifies the MT140 driver to use MT180

invoke the new version for BUSIGRAF, for

GR180 $SlC3PS <er>

NOTE that this modification clobbers the ability of GRAFIX
to operate the C.ITOH printer, so you should keep your original
copy of GRAFIX in case you wish to use a C.ITOH at a later date.

This modification also prints a Formfeed after the graphics
dump is finished. If you do not want this feature then change
bytes 3B62 and 3B63 to 00.

To patch Grafix Ver 1.3, add lOh to each of the above
addresses. That is, start changing bytes at location 3B6C.

10.8 Character Printing

One of the Sirius l's most useful graphics features seems to
be greatly overlooked: its ability to do character graphics
printing. If you design a keyboard file using Keygen that has
special non-ASCII characters, and you try printing a document in
the standard fashion, you will find that these special characters
will not be printed.

Suppose, for instance, that you have loaded the future
character set (FUTURE.CHR) into your system from the Graphics
Toolkit. All the characters displayed on the CRT are in the
future type, but when you try printing the file, you will find
that the printed characters are once again the standard ASCII
type. To remedy this, you must use the CHRPRINT.EXE file, also
found on the Graphics Toolkit.

HIGH RESOLUTION GRAPHICS 10-15

ngrl80.com

HIGH RESOLUTION GRAPHICS 10-16

CHRPRINT.EXE causes documents to be printed in the same
style in which they appear on the screen. This utility will work
with any file, as long as the file has been saved in a standard
ASCII format; thus, any file created with EDLIN, PMATE, BENCHMARK
or WORDSTAR (using non-document mode), or any file just copied
from the screen to a file, can be printed with a dot matrix
printer in any number of character styles and scripts.

To call up CHRPRINT, type:

CHRPRINT filename<cr>

The computer will ask you to identify your printer from a
menu displayed on the screen; once you have done this, the
document will start printing.

10.9 Patching CHRPRINT for MT-180

A>ren chrprint.exe=temp

A>debug temp

DEBUG-86 version
>d06c0

1.07

0473:06CO
0473:06DO
0473:06EO
0473:06FO
0473:0700
0473:0710
0473:0720
0473:0730
>e06b

02 OD OA 02 lB 4C 00 00-46 01 01 F8 FF C8 00 00
00 00 00 00 00 02 OD OA-02 lB 4C 01 20 46 01 02
F8 FF 00 00 08 lB 45 lB-54 31 36 OD OA 04 lB 4E
lB 41 00 00 02 OD OA 03-lB 53 30 00 00 46 01 03
FC FF 00 00 03 lD OD OA-07 lB 25 39 00 lE OD OA
00 00 08 03 02 lB 25 39-08 OD OA 01 03 00 00 46
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

..... L .. F .. x.H ..

.......... L. F ..

0473:06CB
0473:06DO
0473:06D8
0473:06EO
>w

F8.08
00.0d
02.03
f8.02

Writing 0980 bytes
>q

FF.00
00.01
lB.

A>ren temp=chrprint.exe

CB.00
00.0c
4C.25

00.
00.
01.34

00.01
00.
20.00

02.
46.00

x E.Tl6 N
.A SO .. F ..
I %9
.•.••• %9 F

OD.
01.46

OA.
02.01

N.B. This fix probably clobbers other printer drivers so keep a
spare copy of the original.

HIGH RESOLUTION GRAPHICS 10-16

1
l
1
1
1

)

1
1
1
1

)

1
l
1
l
1

1
l

1
l

r
r
r
r
r

r
r
r
r
r
r
r
r
r
r
r
r
r

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-1

ASSEMBLY TO HIGH-LEVEL INTERFACE

11.1 Interfacing Basic with Assembly Language

Sometimes it may be desirable to write certain subroutines
in assembly language instead of BASIC because of speed, size, or
other constraints. This section explains how to successfully
combine BASIC programs with assembly language modules so that
parameters are passed correctly between the BASIC program and the
assembly language subroutine.

To understand this section fully, the reader should have a
basic knowledge of the following:

1) The BASIC interpreter

2) The assembler

3) The register structure of the 8086/8088

11.1.1 Calling Assembly Language Subroutines

In order to call an assembly language subroutine from an
interpretive BASIC program, it is necessary to know the address
of the assembly language routine. The routine must be resident in
memory when BASIC is loaded, and its entry address must be known.
The module containing the subroutine should also contain a short
program that loads the module into memory, using the MS-DOS
terminate and remain resident function (Int 27 Hex). When the
program is run, it loads the subroutine into memory permanently.
The program should also display the entry address of the
subroutine, or store the entry address to some specific memory
location that the BASIC program can PEEK in order to determine
where the routine is. A possible location to store this
information is an Interrupt Vector Table entry, but be very
careful not to use an entry that is used by the operating system!
Interrupt Vector Table entries available for use include 128
through 191 (80 - BF Hex). Since each entry is four bytes long,
entry 128 is at memory address 0:200 Hex, entry 129 is at address
0:204 hex, and so on, with entry 191 at address 0:2FC Hex.

The BASIC program can then determine the address of the
subroutine by PEEKing the four consecutive bytes that were saved
by the assembly loader program. After the BASIC program has
PEEKed these locations, it can set up the entry address of the
assembly language subroutine. The following program segment shows
how this is done.

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-1

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-2

10 I

20 ' do a DEF SEG to the segment where the entry
25 ' address is stored
30 ' LOCATION off set address of the entry address
35 ' location
40 I

SO LOWOFF = PEEK(LOCATION)
60 HIOFF = PEEK(LOCATION+l)
70 LOWSEG = PEEK(LOCATION+2)
80 HISEG = PEEK(LOCATION+3)
90 ASM.SEG = (256*HISEG)+LOWSEG
100 SUBROUTINE = (256*HIOFF)+LOWOFF
110 DEF SEG = ASM.SEG

After these statements have been executed, calls to the
assembly language subroutine can be performed as follows:

150 CALL SUBROUTINE(PARAMETERl, PARAMETER2, ...)

The assembly language subroutine must follow
rules in order to work correctly.

some simple

1) It must be declared FAR.

2)

3)

4)

5)

6)

Segment registers DS and ES must be restored to their
entry values before returning to BASIC.

The general purpose registers (AX, BX, CX, DX, SI, DI,
and BP) can have any value when when returning to
BASIC.

The assembly language routine MUST NOT change the
length of any BASIC strings.

The assembly language routine must perform a RET <n>
(where n = 2 times the number of parameters) to
restore the stack pointer to its proper value.

Values can be returned to BASIC by passing a parameter
that the result will be returned in.

11.1.2 Basic Data Types

It is necessary to understand how the various data types
are represented in memory. When a subroutine is called, BASIC
will pass the address of one of the following data
representations.

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-2

1
1
1

J

1
1
1

l ,
J

1
1
1

J ,
i

1
1
~
I

1
1
1

r
r
r
r
r
r
r

r
r
r
r
r
r
r
r
r
r
r

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-3

1)

2)

3)

4)

5)

Integer - two byte two's complement number

Single Precision Number - four byte binary floating
point quantity. The most significant byte contains
the value of the exponent minus 127. The remaining
three bytes contain the mantissa. The most
significant byte of the mantissa contains the sign
bit, followed by the seven highest bits of the
mantissa. A positive number is represented with a 0 as
the sign bit, a negative number with a 1 as the
sign bit. The binary point is to the left of the most
signifi- cant bit of the mantissa. A 1 is always
assumed to exist immediately to the left of the
mantissa, although it is not represented. Thus the
number is represented as

(<sign> l.<mantissa> * 2) A (exponent-127)

Double Precision Number - eight byte binary floating
point quantity. It is represented exactly the same
as a single precision number, except that the mantissa
is made up of 41 bits (7 bytes less the sign bit).

String - BASIC will pass a pointer to a 'string
descriptor' which is a three byte data structure. The
first byte of the string descriptor contains the
length of the string. The second and third bytes
contain the address where the actual ASCII string is
located. The assembly language subroutine is allowed
to modify the string, but must not change the string
descriptor.

Array - arrays are made up of sequential elements of
the array type. For example, an integer array
containing twenty elements is represented as twenty
sequential integers in memory.

11.1.3 Passing Parameters

BASIC passes all subroutine parameters by reference. The
offset of each parameter's address is pushed onto the stack in
the same order that the parameters are listed in the procedure
call. Upon entry to the subroutine, the stack will be arranged
as follows:

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-3

ASSEMBLY TO HIGH-LEVEL INTERrACE 11-4

SP+8 -> etc.
+-----------------+

SP+6 -> I Offset of
I 2nd parameter
+-----------------+

SP+4 -> I Offset of
I 1st parameter Stack grows down
+-----------------+

SP - - -> I return address v
I (4 bytes)
+-----------------+

The parameters can then be referenced by
register to get their address off of the stack.
example shows how to do this.

11.1.4 Example

using the BP
The following

This example shows how to call an assembly language routine
from BASIC. The assembly language routine performs modulo
arithmetic on two integers, returning the remainder that
results when the first integer is divided by the second. The
assembly language module consists of two procedures. The first
procedure loads the module into memory, and puts the entry
address of the second procedure into interrupt vector table entry
128. The second procedure is called from BASIC, and performs
the modulo function. The BASIC program peeks the Interrupt
Vector Table to get the entry address of the modulo function,
and the performs the call with some sample data.

ASSEMBLY LANGUAGE MODULE

name modulo

code segment public 'code'
assume cs:code, ds:code

org lOOh ; necessary for .COM program

This procedure loads the module into memory and sets up
interrupt vector table entry 128.

loader proc near

IVT_seg equ 0
Intl28 off equ 512

push cs

ASSEMBLY TO HIGH-LEVEL INTERFACE

Interrupt Vector Table
entry 128 is at 0:512

11-4

l
1
1 ,
l
l ,

!

'"'1
I

l
J

1
l
1 .,

I
I
}

1
~
I ,
I

1 ,
i

l

r
r

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-5

pop ds ; DS = CS in .COM program

set up Interrupt vector table entry 128 to
point to the Modulo arithmetic function.

mov ax, IVT_seg
mov es, ax
mov bx, Intl28 off
mov ax, off set modulo
mov es: [bx], ax
mov es: [bx+2], cs

Terminate and remain resident. Dx last byte of program+ 1.

mov dx, offset mod ends
inc dx
int 27h

loader endp

modulo proc far ; must be declared far

This module is called from BASIC with 3 parameters.
It divides the first parameter by the second and
returns the remainder in the third.

mov
mov
mov
mov
mov
mov
idiv
mov
mov
ret

mod ends:
modulo endp
code ends

end

BASIC PROGRAM

bp, sp
bx, [bp+8]
ax, [bx]
bx, [bp+6]
ex, [bx]
dx, 0
ex
bx, [bp+4]
[bx], dx
6

BP used to get parameters
BX pointer to dividend
AX value of dividend
BX pointer to divisor
ex value of divisor
DX:AX = dividend
AX = quotient, DX = remainder
BX = address of result
return result to BASIC

5 ' Get address of assembly language MODULO routine from
6 ' Interrupt Vector Table entry 128, which is located at
7 ' memory address 0:512.
8 '

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-5

ASSEMBLY TO HIGH-LEVEL INTERr'ACE

10 DEF SEG = 0
20 LOWOFF PEEK(512)
30 HIOFF PEEK(Sl3)
40 LOWSEG PEEK(514)
50 HISEG PEEK(SlS)
60 SEG = (256*HISEG)+LOWSEG
70 MODULO = (256*HIOFF)+LOWOFF
80 DEF SEG = SEG
85 I

90 ' call the MODULO routine
95 I

100 A% = 140
110 B% = 11
120 REMAINDER% = 0
130 CALL MODULO(A%,B%,REMAINDER%)
140 PRINT A%;"modulo";B%;"is";REMAINDER%
150 END

11-6

This example illustrates one other important point. All
parameters must be variables, and they must be initialized before
calling the assembly language subroutine. After assembling and
linking the assembly language module, it is necessary to convert
the resulting .EXE file into a .COM file in order for the
terminate and remain resident function to work correctly. An easy
way to do this is with the Microsoft debugger, using the
following sequence of instructions:

debug asm_module.exe
nasm module.com
w
q

Then the assembly language module can be loaded by running
the .COM program. After it has loaded, you can run your BASIC
program which calls the assembly language module.

11.2 Interfacing Compiled Basic with Assembly Language

Occasionally, you may wish to write certain subroutines
in assembly language instead of Compiled BASIC because of
speed, size, or other constraints. This section explains how
to combine compiled BASIC programs with assembly language modules
so that parameters are passed correctly between the Compiled
BASIC program and the assembly language subroutine.

To understand this section fully,
basic knowledge of the following:

ASSEMBLY TO HIGH-LEVEL INTERFACE

the reader should have a

11-6

1
1
1
1

I

nasm%25E2%2580%2594module.com

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-7

1) The MS-BASIC Compiler

2) The Microsoft assembler

3) The Microsoft linker

4) The register structure of the 8086/8088

11.2.1 Assembly Language Subroutines

Assembly language subroutines can be invoked from compiled
BASIC using either the CALL statement or the CALLS statement.
The CALL statement pushes the offset addresses of any parameters
on the stack before it transfers execution to the subroutine,
while the CALLS statement pushes both the segment and offset
addresses of any parameters on the stack. The example later in
this discussion will fully illustrate this difference.

The assembly language subroutine must follow
rules in order to work correctly.

some simple

1) It must be declared FAR.

2)

3)

4)

5)

6)

7)

It must be declared PUBLIC.

Segment registers DS and ES must be restored to their
entry values before returning to Compiled BASIC.

The general purpose registers (AX, BX, CX, DX, SI, DI,
and BP) can have any value when returning to Compiled
BASIC.

The assembly language routine MUST NOT change the
length of any Compiled BASIC strings.

The assembly language routine must perform a RET <n>
(where n 2 times the number of parameters) to
restore the stack pointer to its proper value.

Values can be returned to Compiled BASIC by passing a
parameter that the result will be returned in.

11.2.2 Compiled Basic Data Types

In order to manipulate data passed to an assembly language
subroutine, it is necessary to understand how the various data
types are represented in memory. When a subroutine is called,
Compiled BASIC will pass the address of one of the following data

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-7

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-8

representations.

1) Integer - two byte two's complement number

2) Single Precision Number - four byte binary floating
point quantity. The most significant byte contains
the value of the exponent minus 127. The remaining
three bytes contain the mantissa. The most
significant byte of the mantissa contains the sign
bit, followed by the seven highest bits of the
mantissa. A positive number is represented with a 0 as
the sign bit, a negative number with a 1 as the
sign bit. The binary point is to the left of the
most significant bit of the mantissa. A 1 is always
assumed to exist immediately to the left of the
mantissa, although it is not represer.ted. Thus the
number is represented as

(<sign> l.<mantissa> * 2) A (exponent-127)

3) Double Precision Number - eight byte binary floating
point quantity. It is represented exactly the same
as a single precision number, except that the mantissa
is made up of 41 bits (7 bytes less the sign bit).

4) String - Compiled BASIC will pass
'string descriptor' which is a
structure. The first two bytes
descriptor contain the length of
last two bytes contain the address
ASCII string is located. The
subroutine is allowed to modify the
not change the string descriptor.

a pointer to a
four byte data
of the string

the string. The
where the actual

assembly language
string, but must

5) Array - arrays are made up of sequential elements of
the array type. For example, an integer array
containing twenty elements is represented as twenty
sequential integers in memory.

11.2.3 Passing Parameters

Compiled BASIC passes all subroutine parameters by
reference. In a CALL statement, the offset of each parameter's
address is pushed onto the stack in the same order that the
parameters are listed in the procedure call. It is important to
note that all parameters to the assembly language subroutine must
be variables. Upon entry to the subroutine, the stack will be
arranged as follows:

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-8

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-9

SP+8 -> etc.
+-----------------+

SP+6 -> Off set of
2nd parameter

+-----------------+
SP+4 -> Off set of

1st parameter Stack grows down
+-----------------+

SP ---> return address I
(4 bytes) I v

+-----------------+

If a CALLS statement is used instead, then the stack will
look like this when a subroutine is entered:

SP+12 > etc.
+-----------------+

SP+B -> I Full Address of I
I 2nd parameter I
+-----------------+

SP+4 -> I Full Address of I
I 1st parameter I Stack grows down
+- - - - - - - - - - - - - - - - -+

SP ---> I return address
I (4 bytes) v
+- - - - - - - - - - - - - - - - -+

The parameters can then be referenced by
register to get their address off of the stack.
example shows how to do this.

11.2.4 Example

using the BP
The following

This example shows how to link an assembly language
subroutine with a Compiled BASIC program. The assembly language
routine performs modulo arithmetic on two integers, returning the
remainder that results when the first integer is divided by the
second. The example program is shown twice, once using a CALL
statement and once using a CALLS statement.

1) Compiled BASIC program with CALL statement

10 I

20 ' call the MODULO routine
30 I

40 A% = 140
50 B% = 11
60 REMAINDER% = 0

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-9

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-10

70 CALL MODULO(A%,B%,REMAINDER%)
80 PRINT A%; 11 modulo";B%; 11 is 11 ;REMAINDER%
90 END

Assembly language module for use with CALL statement

name modulo

code segment public 'code'
assume cs:code, ds:code

public modulo

modulo proc far

This module is called from Compiled BASIC with 3 parameters,
using the CALL statement. It divides the first parameter by
the second and returns the remainder in the third.

mov
mov
mov
mov
mov
mov
idiv
mov
mov
ret

modulo endp
code ends

end

bp, sp
bx, [bp+8]
ax, (bx]
bx, [bp+6]
ex, [bx]
dx, 0
ex
bx, [bp+4]
[bx], dx
6

BP used to get parameters
BX = pointer to dividend
AX value of dividend
BX = pointer to divisor
ex = value of divisor
DX:AX = dividend
AX = quotient, DX = remainder
BX = address of result
return result to BASIC

2) Compiled BASIC program with CALLS statement

10 I

20 ' call the MODULO routine
30 I

40 A% = 140
50 B% = 11
60 REMAINDER% = 0
70 CALLS MODULO(A%,B%,REMAINDER%)
80 PRINT A%;"modulo";B%;"is";REMAINDER%
90 END

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-10

1
1 ,

I

.,
I ,
I ,
I
I

1

1
I

1
I

1 ,
1
.,

!
'

l ,
1

1
1
1

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-11

Assembly language module for use with CALLS statement

name modulo

code segment public 'code'
assume cs:code, ds:code

public modulo

modulo proc far

This module is called from Compiled BASIC with 3 parameters, using
the CALLS statement. It divides the first parameter by the second
and returns the remainder in the third.

mov
les
mov
les
mov
mov
idiv
les
mov
ret

modulo endp
code ends

end

bp, sp
bx, dword ptr
ax, es: [bx]
bx, dword ptr
ex, es:[bx]
dx, 0
ex
bx, dword ptr
es: [bx], dx
6

[bp+12]

[bp+8]

[bp+4]

BP used to get parameters
ES:BX = pointer to dividend
AX = value of dividend
ES:BX = pointer to divisor
ex = value of divisor
DX:AX = dividend
AX = quotient, DX = remainder
ES:BX = address of result
return result to BASIC

After compiling and assembling the various modules, use
the Microsoft linker to create the executable program. The
compiled BASIC object modules should be listed before the names
of the assembly language object modules. After your modules have
been linked, your program is ready to run.

11.3 Calling Assembly Language Subroutines from GWBasic

Assembly language subroutines can be invoked from
GWBASIC using the CALL statement. The CALL statement pushes the
offset addresses of any parameters on the stack before it
transfers execution to the subroutine.

The assembly language subroutine must follow some simple
rules in order to work correctly.

1) It must be declared FAR.

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-11

ASSEMBLY TO HIGH-LEVEL INTERiACE 11-12

2)

3)

4)

5)

6)

Segment registers DS and ES must be restored to their
entry values before returning to Compiled BASIC.

The general purpose registers (AX, BX, CX, DX, SI, DI,
and BP) can have any value when returning to GWBASIC.

The assembly language routine MUST NOT change the
length of any GWBASIC strings.

The assembly language routine must perform a RET <n>
(where n 2 times the number of parameters) to
restore the stack pointer to its proper value.

Values can be returned to GWBASIC by passing a
parameter that the result will be returned in.

11.3.l GWBasic Data Types

In order to manipulate data passed to an assembly language
subroutine, it is necessary to understand how the various data
types are represented in memory. When a subroutine is called,
GWBASIC will pass the address of one of the following data
representations.

1)

2)

3)

4)

Integer - two byte two's complement number

Single Precision Number - four byte binary floating
point quantity. The most significant byte contains
the value of the exponent minus 127. The remaining
three bytes contain the mantissa. The most
significant byte of the mantissa contains the sign
bit, followed by the seven highest bits of the
mantissa. A positive number is represented with a 0 as
the sign bit, a negative number with a 1 as the
sign bit. The binary point is to the left of the most
significant bit of the mantissa. A 1 is always
assumed to exist immediately to the left of the
mantissa, although it is not represented. Thus the
number is represented as

(<sign> l.<mantissa> * 2) A (exponent-127)

Double Precision Number - eight byte binary floating
point quantity. It is represented exactly the same
as a single precision number, except that the mantissa
is made up of 41 bits (7 bytes less the sign bit).

String - GWBASIC will pass the offset address of a

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-12

1
)

l

1
1

)

1
(;IOlj

I
l ,
I

1

1
l
1 ,

J

1
1

l
l
1
1

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-13

'string descriptor' which is a three byte data
structure. The first byte of the string descriptor
contains the length of the string. The last two bytes
contain the address where the actual ASCII string is
located. The assembly language subroutine is allowed
to modify the string, but it must not change the
string descriptor.

5) Array - arrays are made up of sequential elements of
the array type. For example, an integer array
containing twenty elements is represented as twenty
sequential integers in memory.

11.3.2 Passing Parameters

GWBASIC passes all subroutine parameters by reference. In a
CALL statement, the offset of each parameter's address is pushed
onto the stack in the same order that the parameters are
listed in the procedure call. It is important to note that
all parameters to the assembly language subroutine must be
variables. Upon entry to the subroutine, the stack will be
arranged as follows:

SP+B -> etc.
+-----------------+

SP+6 -> Off set of
2nd parameter

+-----------------+
SP+4 -> Off set of I

1st parameter I Stack grows down

+-----------------+
SP ---> I return address

I (4 bytes) v

+-----------------+
The parameters can then be referenced by

register to get their address off of the stack.
example shows how to do this.

11.3.3 Example

using the BP
The following

This example shows how to load an assembly language
subroutine from a GWBASIC program. The assembly language routine
performs modulo arithmetic on two integers, returning the
remainder that results when the first integer is divided by the
second. In this example, the assembly language module is
loaded at address 1664:0 Hex, but this address will be different
for different applications. The method of determining this

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-13

ASSEMBLY TO HIGH-LEVEL INTERr'ACE 11-14

address is explained after the example.

GWBASIC program

10 I

20 ' load the MODULO routine
30 I

40 DEF SEG = &Hl664
50 BLOAD "MODUL0",0
60 MODULO = 0
70 I

80 ' call the MODULO routine with some sample data
90 I

100 A% = 140
110 B% = 11
120 REMAINDER% = 0
130 CALL MODULO(A%,B%,REMAINDER%)
140 PRINT A%;"modulo";B%;"is";REMAINDER%
150 END

Assembly language module for use with CALL statement

name modulo

code segment public 'code'
assume cs:code, ds:code

modulo proc far

This module is called from GWBASIC with 3 parameters,
using the CALL statement. It divides the first parameter by
the second and returns the remainder in the third.

mov bp, sp BP used to get parameters
mov bx, [bp+8] BX pointer to dividend
mov ax, [bx] AX = value of dividend
mov bx, [bp+6] BX pointer to divisor
mov ex, [bx] ex = value of divisor
mov dx, 0 DX:AX = dividend
idiv ex AX = quotient, DX = remainder
mov bx, [bp+4] BX = address of result
mov [bx], dx return result to BASIC
ret 6

modulo endp
code ends

end

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-14

1
1
1

1
1

1
l
"'i

I

1

1

1
1

1

1
1

[

1

..
1111

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-15

LOADING THE ASSEMBLY LANGUAGE MODULE

In order to call the assembly language module, it is
necessary to know the address that it is located at. The BLOAD
statement allows you to load the module at any physical address
desired. However, to use the BLOAD statement to load a module,
you must first create the disk file containing the module with
the Microsoft linker and debugger and the BSAVE statement, as
follows:

1) After assembling your module to
use the linker to create the
/HIGH switch when linking so
load in high address memory.

create the object file,
.EXE file. Use the

that the module will

2) Use the debugger to load the .EXE file produced in step 1.

3) Display the register values (with the R command) to
determine where the subroutine was loaded. Write down
the values contained in the CS:IP register pair and
the CX register. The CS:IP register pair contains the
starting address of the subroutine and the ex register
contains its length.

4) Load and execute GWBASIC from DEBUG
sequence of commands:

NGWBASIC
L
N
G

with this

Note that your assembly language module is still
loaded in high address memory.

5) Set the segment value in GWBASIC with a DEF SEG statement:

DEF SEG = <value in CS register>

6) Save the module with a BSAVE statement:

BSAVE "module_name", <value in IP reg.>, <value in CX reg.>

The assembly language subroutine is now ready to be called
from your GWBASIC program. The following statements are required
in your GWBASIC program before the subroutine can be called:

DEF SEG = <value in CS register>
BLOAD "module_name", <value in IP register>

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-15

ASSEMBLY TO HIGH-LEVEL INTERr'ACE 11-16

SUBROUTINE = <value in IP register>

The subroutine can then be called with statements of the form:

CALL SUBROUTINE(PARAMETERl, PARAMETER2, ...)

11.4 Interfacing COBOL with Assembly Language

Occasionally, you may wish to write certain subroutines
in assembly language instead of Cobol because of speed, size,
or other constraints. This section explains how to combine
Cobol programs with assembly language modules so that
parameters are passed correctly between the Cobol program and
the assembly language subroutine.

To understand this section fully,
basic knowledge of the following:

the reader should have a

1) The Cobol Compiler

2) The Microsoft MACRO Assembler

3) The Microsoft linker

4) The register structure of the 8086/8088

11.4.l Calling Assembly Language Subroutines

Assembly language subroutines can be invoked from Cobol
using the CALL statement with the assembly language module name
as a literal. Parameters can be passed to the assembly
language routine with the addition of the USING clause. The
CALL statement pushes the offset addresses of any parameters on
the stack before it transfers execution to the subroutine. The
examples later in this discussion will fully illustrate
the calling procedure.

The assembly language subroutine must follow some simple
rules in order to work correctly.

1) It must be declared FAR.

2) It must be declared PUBLIC.

3) Segment registers DS and ES along with register BP must
be restored to their entry values before returning to
Cobol.

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-16

"'

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-17

4)

5)

The general purpose registers (AX, BX, CX, DX, SI, and
DI) can have any value when returning to Cobol.

The assembly language routine must perform a RET <n>
(where n 2 times the number of parameters) to
restore the stack pointer to its proper value.

6) Values can be returned
parameter to the assembly
the result be returned in.

to Cobol
language

by passing a
subroutine that

11.4.2 COBOL Data Types

In order to manipulate data passed to an assembly language
subroutine, it is necessary to understand how the various data
types are represented in memory. When a subroutine is called,
Cobol will pass the address of one of the following data
representations.

1) Computational-0
Also known as a binary item, uses the base 2
system to represent an integer in the range
-32768 to 32767. It occupies one 16-bit word,
with the leftmost bit reserved for the opera­
tional sign.

It should also be noted that Cobol represents
all data types, except Index, internally in re­
verse order. For example, if you have the fol­
lowing Cobol declaration :

77 EXAMPLEl PIG 99 COMP-0 VALUE 50.

It would be represented internally, in hex, as:

instead of

2) Computational-3

low byte
00

low byte
32

high byte
32

high byte
00

Also known as an internal decimal item, is
stored internally is binary-coded decimal for­
mat. A Computational-3 data item, defined by n
9's in its PICTURE, occupies 1/2 of (n + 2)

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-17

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-18

bytes of memory. All bytes except the rightmost
contain a pair of digits, and each digit is
represented by the binary equivalent of a valid
digit value from 0 to 9. The item's low order
digit and the operational sign are found in the
rightmost byte. The compiler considers a Comp­
utational-3 item to have an arithmetic sign,
even if the original PICTURE lacked an S char­
acter. The operational sign, contained in the
rightmost byte, is hexadecimal F for positive
numbers and hexadecimal D for negative numbers.

3) External Decimal
An external data item is an item in which one
byte is employed to represent one numeric
digit. An unsigned external data item is
reprepresented internally as its ASCII
equivalent. A signed external data item is
represented internally as its ASCII
equivalent, EXCEPT the low order byte on
negative items, which have the following
rules

If the low The value
order digit is internally is

- - - - - - - - - - - - - - - - - - - -+- - - - - - - - - - - - - - - - - - -
0 70 hex
1 4A hex
2 4B hex
3 4C hex
4 40 hex
5 4E hex
6 4F hex
7 50 hex
8 51 hex
9 52 hex

For example, if you have the following Cobol
declaration :

77 EXAMPLE2 PIC S999 VALUE -121.

The value internally would be

31 32 4A

4) Alphanumeric
An alphanumeric data item is represented

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-18

ti

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-19

internally as its ASCII equivalent.

5) Alphabetic
An alphabetic data item is represented in­
ternally as its ASCII equivalent.

6) Index
An index data item is represented internally as
a binary word.

11.4.3 Passing Parameters

Cobol passes all subroutine parameters by reference.
In a CALL statement, the offset of each parameter's address is
pushed onto the stack in the same order that the parameters
are listed in the USING clause. Upon entry to the assembly
language subroutine, the stack will be arranged as follows:

SP+B -> etc.
+-----------------+

SP+6 -> Off set of
2nd parameter

+-----------------+
SP+4 -> Off set of

1st parameter Stack grows down
+-----------------+

SP ---> I return address
I (4 bytes) v
+-----------------+

The parameters can then be referenced by
register to get their address off of the stack.
example shows how to do this.

11.4.4 Example

using the BP
The following

This example shows how to link an assembly language
subroutine with a Cobol program. The assembly language routine
performs modulo arithmetic on two Computational-0 variables,
returning the remainder that results when the first variable is
divided by the second.

Cobol program with CALL/USING statement

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
ENVIRONMENT DIVISION.
DATA DIVISION.

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-19

ASSEMBLY TO HIGH-LEVEL INTER;ACE

WORKING-STORAGE
77 PARMl PIC
77 PARM2 PIC
77 PARM3 PIC
77 PARl PIC
77 PAR2 PIC
77 PAR3 PIC

SECTION.
99 COMP-0 VALUE
99 COMP-0 VALUE
99 COMP-0 VALUE
99.
99.
99.

PROCEDURE DIVISION.
MAIN.

50.
11.
0.

11-20

CALL "MODULO" USING
MOVE PARMl TO PARl.
MOVE PARM2 TO PAR2.
MOVE PARM3 TO PAR3.
DISPLAY PARl II MOD

PARMl, PARM2, PARM3

II PAR2 If. " PAR3.
STOP "Hit <er> to return to system"

Assembly language module for use with CALL/USING statement

name modulo

code segment public 'code'
assume cs:code, ds:code

pub lie modulo

This module is called from Cobol with 3 parameters,
using the CALL statement. It divides the first parameter
the second and returns the remainder in the third.

by

Stack structure after saving BP

parml equ 10
parm2 equ 8
parm3 equ 6
off equ 4
seg equ 2
bp equ 0

modulo proc far

push bp
mov bp, sp
mov bx, [bp+parml]
mov ax, [bx]
mov bx, [bp+parm2]
mov ex, [bx]
mov dx, 0
idiv ex
mov bx, [bp+parm3]

ASSEMBLY TO HIGH-LEVEL INTERFACE

pointer to dividend
pointer to divisor
pointer to return variable
return offset
return segment
save BP

Save BP
BP used to get parameters
BX = pointer to dividend
AX = value of dividend
BX = pointer to divisor
ex = value of divisor
DX:AX = dividend
AX quotient, DX = remainder
BX = address of result

11-20

l
1 ,

(

1
1
1
1
1
,,

I

I

ii

r
r
r
r
r
r
r
r
\

r
l

r
r
r
r
r
r
r
r
r
r

ASSEMBLY TO HIGH-LEVEL INTERFACE

mov
pop
ret

modulo endp
code ends

end

[bx], dx
bp
6

11-21

return result to COBOL
Restore BP

After compiling and assembling the various modules, use
the Microsoft linker to create the executable program. The Cobol
object modules should be listed before the names of the assembly
language object modules. After your modules have been linked,
your program is ready to run.

11.5 Interfacing Pascal Programs with Assembly Language Subroutines

Sometimes it may be desirable to write certain procedures
or functions in assembly language instead of Pascal, because of
speed, size, or other constraints. This section explains how to
successfully link Pascal programs with assembly language
subroutines so that parameters and function return values are
passed correctly between the Pascal and assembly code modules.
The terms subroutine and procedure used interchangably to
mean either a Pascal procedure or function, while the term
function applies specifically to functions. In order to best
understand this section, kno~ledge of the following is
desirable:

1). The Pascal compiler

2). The assembler

3). The linker

4). The register structure of the 8086/8088

11. 5 .1 Calling External Subroutines

To call an assembly language subroutine from a Pascal
program, it is necessary to declare the assembly language
subroutine as an external procedure or function. The format of
an external procedure declaration in Pascal is exactly like
that of a standard Pascal procedure declaration with the
addition of the external directive and no procedure body. See
the section on directives in the 'Reference Manual for MS-Pascal'
for detailed information.

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-21

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-22

The assembly language subroutine must have the far attribute
in its 'proc' statement, since Pascal assumes that all external
procedures are far. Pascal also requires assembly language rout­
ines to have identical class names to Pascal routine class names.
The acceptable class names can be found in the file ENTX6L.ASM,
found on the Pascal compiler diskette. For example, code of an
assembly language routine should have ·the class name 'CODE' and
data used by an assembly language routine should have the class
name 'DATA'. In addition, the name of the subroutine must be
declared public in the assembler code. This must be the same
name that is declared as an external procedure in Pascal. The
two examples later in this chapter illustrate the relationship
between the external declaration in Pascal and the public declar­
ation in assembler.

The user written subroutine can modify the AX, BX, CX, DX,
DI, SI, and ES registers. The SP, BP and OS registers can also be
modified, but their values must be restored before returning to
Pascal. The SS register should NEVER be modified. The user should
also pop all parameters off of the stack by using a ret N state­
ment, where N equals the number of bytes on the stack used by the
parameters.

11.5.2 Passing Parameters

When a procedure is called in Pascal, either the address or
the value of any parameters are passed to the procedure on the
stack. The address of a parameter is pushed on the stack when the
formal parameter is declared as a VAR, VARS, CONST, or CONSTS
type. The value of a parameter is passed on the stack if the for­
mal parameter in the procedure declaration does not have one of
these types. The following example code should clarify this dis­
tinction.

--------------------------- Figure 1 ----------------------------

PROGRAM Sample (INPUT,OUTPUT);

VAR
alpha, delta : INTEGER;

PROCEDURE Garnma(VARS x:INTEGER; z:INTEGER);
BEGIN

{ body of procedure here }
END;

BEGIN { main program body
alpha := 10;

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-22

1
1
1
1 ,

I

1
l
1

l
l ,
l
l
l ,

J

1
1
l ,

l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

ASSEMBLY TO HIGH-LEVEL INTERFACE

delta := 21;
Gamma(alpha, delta);

END.

11-23

------------------------ End of Figure 1 ------------------------

The declaration for procedure gamma defines gamma as having
two parameters: x and y. The first parameter is passed by address
(this is also known as 'passing by reference'), while the second
parameter is passed by value. When gamma is actually called, the
address of alpha is pushed onto the stack, while delta is passed
by having its value (21 in this case) pushed onto the stack.

In the 8086, addresses can be one of two types: near or far.
A near address consists of the sixteen bit off set address in the
current segment, while a far address consists of a full twenty
bit address made up of specified segment and offset values. In
Pascal, the user has the ability to specify which form of addres­
sing to use for parameters (in relation to the data segment) when
they are passed by reference. In the declaration of a procedure
or function, near addresses are specified by declaring formal
parameters as VAR or CONST, while far addresses are specified by
declaring parameters as VARS or CONSTS. In the above example, the
address of alpha is passed to the procedure by pushing the seg­
ment address (i.e. the value of the DS register) of alpha on the
stack, followed by its offset address. The segment address of a
parameter is the value contained in the DS register. If the for­
mal parameter x in the procedure declaration had been declared as
VAR instead of VARS, then only the offset address of alpha would
have been pushed onto the stack. Note that the declared type of
the variable does not affect the way that the parameter address
is passed.

When a parameter is passed by value, the actual value of the
variable at that time is pushed onto the stack. For variables of
large size (such as large arrays, records, etc.), this causes the
stack to grow quickly and potentially overflow. It is usually
preferable to pass structured variables by reference to prevent
this occurrence.

11.5.3 Pascal Data Types

1) Byte - simple 1 byte unsigned value.

2) Char - 1 byte ASCII character representation.

3) Boolean - 1 byte value. FALSE is represented with a 0 in
the low order bit (bit 0). TRUE is represented with a 1

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-23

ASSEMBLY TO HIGH-LEVEL INTERiACE 11-24

in bit 0. Bits 1-7 should be 0.

4) Word - Normally, a 2 byte unsigned value. However, Word
subranges in the range 0 .. 255 are represented by a one
byte unsigned value.

5) Integer - Normally, a 2 byte two's complement number.
Subranges in the range -128 .. 127 are represented using
one byte only.

6) Integer4 - 4 byte two's complement number.

7) Real4 - 4 byte IEEE standard real format. The most 'sig­
nificant bit is the sign bit, followed by an 8 bit expo­
nent with a bias of 127. This is followed by a 23 bit
mantissa. The mantissa has a 'hidden' most significant
bit that is always a l, so the mantissa is actually a 24
bit quantity that represents a number greater than or
equal to 1.0 but is less than 2.0.

8) Real8 - 8 byte IEEE format.
a 11 bit exponent with bias
bit mantissa. As in Real4,
most significant bit that is

The sign bit is followed by
of 1023, followed by a 52
the mantissa has a 'hidden'
always a 1.

9) arrays and records - the internal format of arrays and
records is composed of the internal forms of the compo­
nents, in the same order as in the array or record dec­
laration.

10) super arrays - like arrays, super arrays are composed of
the form of its declared component type. In a procedure
declaration, a super array type can be defined as an
address parameter. When the procedure is called, the
actual parameter is substituted for the formal paramater
and the size of the super array is pushed onto the stack
before its address is pushed. This allows the procedure
to be more general, as it can operate on arrays of dif­
ferent lengths. If the formal parameter is a dimensioned
super array type, then the length of the super array is
not passed on the stack. It is important to note that an
undimensioned super array type cannot be passed by value
and cannot be a function return type.

11) string - the string type is a predeclared super array,
and as such has the same restrictions as a super array.
The string itself is just a sequential array of type
Char, with each element represented by its ASCII value.

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-24

,
)

J
1 ,

I

J
J
1

1
1
1
1

....

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

r
r
r

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-25

12) lstring - the lstring type is also a predeclared super
array. It is exactly like the string type, except that
the first byte of the array contains the length of the
string. This allows lstrings to have variable lengths
but limits their maximum length to 255 characters.

13) Enumerated types - If there are 256 or fewer values in
the enumerated type, 1 byte is required. If the enumer­
ated type has more than 256 possible values, two bytes
are required. The values are numbered from 0 to n-1, in
the order declared (i.e. the value returned by the ord
function on the type).

14) Address types - the ADR type is represented by a 2 byte
value containing the offset address of the value. The
ADS type is a 4 byte value containing both the segment
and offset addresses of the value.

11.5.4 Returned Values

In Pascal, the returned value of a function is passed back
to the calling module in specific registers. For small data types
the actual value is returned, while for large data types the ad­
dress of the result is returned. It is necessary for user written
functions to follow the Pascal conventions.

Return values declared as one of the simple types Boolean,
Byte, Char, Integer2, Word, or Integer4, or as one of the address
types Adr or Ads, or an Enumerated type are returned by value in
specified registers. The value of single byte types (Boolean,
Byte, or Char) should be returned in the AL register. The value
of single word types (Adr, Integer2, or Word) should be returned
in the AX register. An enumerated type is returned in either the
AL or AX register, depending on whether it has more or less than
256 declared elements. The value of double word types (Ads and
Integer4) should be returned in the DX and AX registers, with the
most significant word in DX.

Function return values of any other type (such as Real, Rec­
ord, and Super Array based types) are returned by address. This
address should be returned in the AX register. When a function
with one of these types is called, a temporary variable is allo­
cated by Pascal. The near address of this temporary variable is
pushed onto the stack just before the return address (i.e. after
all the parameters have been pushed). The user function should
put the value to be returned in this variable, and return the
address in the AX register. The second example below shows how
this mechanism works.

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-25

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-26

11.5.5 Example 1 - Sum function

This example (Figure 2) shows a user written assembly lan­
guage routine that performs a sum function. The routine requires
two input parameters - an integer super array of type vector and
an integer value that contains the number of valid elements in
the array. The function adds all of the valid elements in the
array (which should be in array positions 1 to count) and returns
the total of these values as an integer in the AX register.

It is important to note that the function has been declared
external in the Pascal program and public in the assembler sub­
routine. It should also be noted that the return statement in
Pascal pops six bytes off of the stack, even though there are
only two parameters. This is due to the fact that one of the for­
mal parameters is an undimensioned super array type, so that when
the function is called, the size of the actual super array para­
meter is pushed onto the stack just before its address. The state
of the stack just after the call to sum is shown here:

High addresses:
+-------------+

8 adr of cnt I
+-------------+

6 size of v Stack
+-------------+ grows

4 adr of v down
+-------------+
I return adr I v

SP - -> 2 I (4 bytes) I
+-------------+

Low addresses:

In the assembly language function below, the value of the BP
register is pushed on the stack, and then BP is used to access
the values on the stack. Note that the offsets from BP are two
greater than the offsets in the above diagram, because the value
of BP has been saved on the stack, increasing the stack size by
two bytes.

--------------------------- Figure 2 ----------------------------

PASCAL PROGRAM:

PROGRAM Sumtest (input, output);

TYPE
VECTOR SUPER ARRAY (1.. ~~] OF INTEGER;

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-26

1
1
1
1
1

1
ii

I

1
1

I

~
I

1
..,
I ,
I

..,
\ ,
!

~

1,

•

ASSEMBLY TO HIGH-LEVEL INTERFACE

VAR
scores
total
count

VECTOR(lO);
INTEGER;
INTEGER;

11-27

FUNCTION Sum (cnt:INTEGER; VAR v:VECTOR) : INTEGER; EXTERNAL;
(* sum must be declared as an external function *)

BEGIN

(* User code here sets values for count and scores array -;,)

total := Sum(count, scores);
WRITELN('The total is: ',total);

END.

ASSEMBLY LANGUAGE FUNCTION

name sum

This subroutine is called from PASCAL.

This
1
2 -

cgroup
dgroup

assume
code

public

sum

subroutine requires two parameters:
an integer containing the number of elements to sum
a super array of integers containing the values to sum
(in elements l .. n)

group code
group data

cs:cgroup, ds:dgroup
segment public 'code'

sum

proc far
push bp
mov bp, sp
mov ax, 0
mov dx, ax
mov bx, [bp+6]
mov ex, [bp+lO]

segment uses class name
of 'code'

sum must be 'public'

sum must be 'far'

initialize sum
initialize array index
bx <- adr of array
ex <- length of array

sumloop:
mov di, dx
shl di, 1
add ax, [bx+di)
inc dx

ASSEMBLY TO HIGH-LEVEL INTERFACE

di <- index into array
convert to word index
add in next value of array
increment array index

11-27

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-28

loop sumloop

pop bp
ret 6 return - sum in ax

sum endp

code ends
end

----------------------- End of Figure 2 -------------------------

11.5.6 Example 2: String concatenation function

This example illustrates how to return a value of a struc­
tured type to a Pascal program. The Pascal program passes two
strings to the subroutine, which returns the string that results
from cancatenating the second string to the first.

Note that the function requires two lstrings (declared as
type shortstring) as parameters, and returns a third lstring (of
type longstring) to the calling program. Since the returned value
is a structured type, Pascal passes the address of a temporary
variable of this type on the stack immediately before calling the
user function. The assembly language routine uses this temporary
variable to build the concatenated string, and then returns this
address to the caller in the AX register. Just after the call,
the stack is structured as follows:

High addresses:
+-------------+

8 adr of sl
+-------------+

6 adr of s2
+-------------+ Stack

4 I adr of temp I grows
I variable I down
+-------------+
I return adr I v

SP - -> 2 I (4 bytes) I
+-------------+

Low addresses:

As in the first example,
parameters passed on the stack.
the stack is used to build the
is returned in the AX register

the BP register is used to access
The temporary variable passed on

new string, and then the address
to the Pascal program.

It is important that the programmer of the assembler func-

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-28

1
I

1
l
1
1

)

..,
I

l

1 ,
I

1
.,
I

1
I

..,
I

1
1

1
,.,

i
I ,
J

1

Iii

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-29

tion understands the data structures of any types being used by
his routine. In this example, the structure of the lstring type
needed to be known in order for the concatenated string to be
correctly built and correctly interpreted by the Pascal program
when it is returned.

--------------------------- Figure 3 ----------------------------

PROGRAM Myname (INPUT, OUTPUT);

TYPE
SHORTSTRING
LONG STRING

VAR
first name
last name
full name

LSTRING(lS);
LSTRING(30);

SHORTSTRING;
SHORTSTRING;
LONGSTRING;

FUNCTION Concat(VAR sl,s2:SHORTSTRING)
(* Concat must be external *)

LONGSTRING; EXTERNAL;

BEGIN
first name := 'Mortimer ';
last name := 'Freeblekoff';
full name := concat(first_name, last name);
writeln('My first name is ',first_name);
writeln('My last name is ',last_name);
writeln('My full name is ',full_name);

END.

ASSEMBLY LANGUAGE CONCATENATION ROUTINE:

name concat

cgroup group code
assume cs:cgroup

code segment public 'code'

public concat

concat proc
push
mov

far
bp
bp, sp

ASSEMBLY TO HIGH-LEVEL INTERFACE

segment uses class name
of 'code'

concat must be 'public'

' concat must be 'far'

11-29

ASSEMBLY TO HIGH-LEVEL INTERFACE

push
pop
cld

mov
mov
inc
mov
mov
mov
mov
inc
rep

mov
mov
add
mov
inc
rep

mov
mov
pop
ret

concat endp
code ends

end

ds
es

di, [bp+6]
bx, di
di
si, [bp+lO]
cl, [si]
al, cl
ch, 0
si
movsb

si, [bp+8]
cl, [si]
al, cl
ch, 0
si
movsb

[bx], al
ax, bx
bp
6

11-30

set up ES for string moves

di <- address of result string

advance to string field
si <- address of 1st string
cl <- length of 1st string

mov 1st string to result

si <- address of 2nd string
cl <- length of 2nd string
al <- langth of result string

add 2nd string to result

mov length to result string
return address of resultant

string to Pascal in AX.

----------------------- End of Figure 3 -------------------------

11.5.7 Linking

After running the Pascal compiler and the macro assembler,
it is necessary to link the object modules produced to create the
executable .EXE file. The order of the object modules given to
the linker is important - The Pascal program module must be the
first module in the list of objects, with the assembly objects
last. The order of the assembly objects does not matter, but they
must come after all Pascal modules. Thus, the proper link command
for the second example above is

A>link myname+concat

Refer to the "User's Guide for MS-DOS Utility Software" for more
information on the Microsoft Linker.

ASSEMBLY TO HIGH-LEVEL INTERFACE 11-30

1
1 ,
1

1
i

1
1
l ,

:

1
I

_,
I

1
.1

,
I

,
I ,
I

_,
i
\

r
r
r
r
r
l

r
r
r
r
r
r
l

r
r
r
r
r
r
r
r

APPENDIX A A-1

A. ASCII CODES

A.l ASCII CODES USED IN THE SIRIUS 1 COMPUTER

The American Standard Codes for Information Interchange
(ASCII) has been defined to allow data communication between
computers, their peripherals, and other computers. The other
major code standard is the Extended Binary Coded-Decimal
Interchange Code (EBCDIC) used on some mainframe computers. The
Sirius 1 computer is designed to function in ASCII, but
communication software is available that allows the Sirius 1 to
receive EBCDIC data and have it translated into ASCII, and vice
versa.

The following table contains the 7-ASCII codes and their
meanings. It is called 7-ASCII as only 7-bits of the potential 8-
bits are used to carry data; the "spare" bit is used in the
Sirius 1 computer to support characters not otherwise available
in the 7-ASCII set.

An Eight Bit Byte is pictured as follows:

[7][6][5][4][3][2][1][0 l

the bits are numbered 0 through 7 (which adds up to eight bits),
and it is the 8th bit (bit 7 in computer jargon) which is not
used in 7-ASCII.

APPENDIX A A-1

APPENDIX A A-2

A.2 ASCII / HEXADECIMAL / DECIMAL Character Set

ASCII Hex Dec ASCII Hex Dec ASCII Hex Dec ASCII Hex Dec

NUL 00 00 space 20 32 @ 40 64 60 96
SOH 01 01 ! 21 33 A 41 6S a 61 97
STX 02 02 II 22 34 B 42 66 b 62 98 "' ETX 03 03 # 23 3S c 43 67 c 63 99
EOT 04 04 $ 24 36 D 44 68 d 64 100
ENQ OS OS % 2S 37 E 4S 69 e 6S 101
ACK 06 06 & 26 38 F 46 70 f 66 102

,.
BEL 07 07 27 39 G 47 71 g 67 103
BS 08 08 (28 40 H 48 72 h 68 104
HT 09 09) 29 41 I 49 73 i 69 lOS "' LF OA 10 * 2A 42 J 4A 74 j 6A 106
VT OB 11 + 2B 43 K 4B 7S k 6B 107
FF oc 12 2C 44 L 4C 76 1 6C 108
CR OD 13 2D 4S M 4D 77 m 6D 109 so OE 14 2E 46 N 4E 78 n 6E 110
SI OF lS I 2F 47 0 4F 79 0 6F 111
OLE 10 16 0 30 48 p so 80 p 70 112
DCl 11 17 1 31 49 Q Sl 81 q 71 113
DC2 12 18 2 32 so R S2 82 r 72 114
DC3 13 19 3 33 Sl s S3 83 s 73 llS
DC4 14 20 4 34 S2 T S4 84 t 74 116
NAK lS 21 s 3S S3 u SS 8S u 7S 117
SYN 16 22 6 36 S4 v S6 86 v 76 118
ETB 17 23 7 37 SS w S7 87 w 77 119
CAN 18 24 8 38 S6 x S8 88 x 78 120
EM 19 2S 9 39 S7 y S9 89 y 79 121
SUB lA 26 3A S8 z SA 90 z 7A 122
ESC lB 27 3B S9 [SB 91 7B 123
FS lC 28 < 3C 60 \ SC 92 7C 124
GS 10 29 30 61 l SD 93 70 12S
RS lE 30 > 3E 62 " SE 94 7E 126
us lF 31 ? 3F 63 SF 9S DEL 7F 127

APPENDIX A A-2

r
r
r
r
r
r
r
r
c

r
r
r
r
·r
r
r
r
r
r
l

r

APPENDIX B B-1

B.l SIRIUS 1 KEYBOARD LAYOUT

-- -- -- -- -- --
1 II 2 II 3 II 4 II 5 II 6 II 7 8 I I 9 I I 10

---- -------- ------
1111112111311141115111611171118111911201121112211231124112511261271128129113011311

13211331134113511361137113811391140114111421143114411451 I 11471481149150115111521
______________ I I _____ _

1531154115511561157115811591160\ \61116211631164\ \65\ I 87\ \67\68\ 169170117111721

17311

12.§1

74 117611771 \781179\ \8011811182118311841 \85\ I 86 11881891190191119211931
_____ I I

19511 96 11971 1981991100110111021 I I

Sirius 1 Keyboard Configuration
with Key Switch Positions and Logical Key Numbers

APPENDIX B B-1

APPENDIX B

APPENDIX B

B-2

B-2

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX C

C. PRINTER OUTPUT

C.l Switch Settings for C.Itoh Printers

Fl0-40P Daisywheel

Switch 40
1 2 3 4 5 6 7 8
c 0 0 c 0 0 c c

1550 Dot Matrix

Switch 1
Normal 1 2 3 4 5 6 7 8

0 c 0 0 0 c c 0

Graphics 1 2 3 4 5 6 7 8
c c 0 0 0 c c 0

Where 0 = Open and C = Closed

Printing Graphics on the 1550 Printer

C-1

Switch 41
1 2 3 4 5 6 7 8 9 10
0 0 c 0 c 0 0 c 0 0

Switch 2
1 2 3 4 5 6 7 8
0 0 0 0 0 c 0 0

1 2 3 4 5 6 7 8
0 0 0 0 0 c 0 c

It is possible to demonstrate the graphics capability of the
C.Itoh 1550 printer from the graphics demonstration disc. This is
done by typing "P" when the graphics routine required to be
printed is being displayed on the VDU, eg. pie charts. This
causes the graphics program to produce pixel dump to the printer.

In order to achieve this the following adjustments must be
made to the printer and cable

1. The switches on the printer should be set as follows:

SW 1

SW 2

1 2 3 4 5 6 7 8
c c 0 0 0 c c c

1 2 3 4 5 6 7 8
0 0 0 0 0 c 0 c

where C = Closed and 0 = Open

APPENDIX C C-1

APPENDIX C

C.2 Parallel Printer Cables

Parallel Cable for Paper Tiger

APPENDIX C

Sirius
1
2
3
4
5
6
7
8

10
11
14
17

Printer
--------------- 3
--------------- 14
--------------- 13
--------------- 12
--------------- 11
--------------- 10
--------------- 9
--------------- 15

--------------- 22
--------------- 19
--------------- 7
--------------- 1

Parallel Cable for Olivetti Bytewriter

Sirius
1
2
3
4
5
6
7
8

11
14
16

Printer
--------------- 1
--------------- 3
--------------- 5
--------------- 7
--------------- 9
--------------- 11
--------------- 13
--------------- 15
--------------- 17
--------------- 2
--------------- 4

1
C-2 1

1
1

I

C-2

r
r
r
r
r
r
r
r
r
r
r
r
r
L

r
r
r
r
r
r

APPENDIX C

APPENDIX C

Parallel Cable for Crown Ranier Typewriter

Sirius Printer
1

1 --------------- 2
3

2 --------------- 4
10 --------------- 5

3 --------------- 6

11 --------------- 7
4 --------------- 8
9 --------------- 9

5 --------------- 10
8 --------------- 11
6 --------------- 12
7 --------------- 13

14 --------------- 14

Parallel Cable for Trend Com-200

Sirius
1
2
3
4
5
6
7
8
9

11
20
21

Printer
--------------- 8
--------------- 10
--------------- 11
- - - - - - - - - - - - - - - 12
--------------- 13
--------------- 14
--------------- 15
--------------- 16
--------------- 17
--------------- 2
--------------- 1
--------------- 5

C-3

C-3

APPENDIX C

APPENDIX C

Parallel Cable for IBM

Sirius
1
2
3
4
5
6
7
8
9

10
11
13
15
16
24
25

Printer
--------------- 1
--------------- 2
--------------- 3

--------------- 4
--------------- 5
--------------- 6
--------------- 7
--------------- 8

--------------- 9
--------------- 10
--------------- 11
--------------- 13
--------------- 16
--------------- 12
--------------- 24
--------------- 25

Parallel Cable for Epson MX80

Sirius
1
2
3
4

Printer
--------------- 1
--------------- 2
--------------- 3
--------------- 4

5 --------------- 5
6 --------------- 6
7 --------------- 7
8 --------------- 8
9 --------------- 9

10 --------------- 10
11 --------------- 11
17 --------------- 17
19 --------------- 19
20 --------------- 20
21 --------------- 21
22 --------------- 22

C-4

C-4

1
J

1

1

1

1
~

I ,
J

1

,
I
I

l

1 ,
I

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX C

Parallel Cable for Oki Microline 84

Switch Settings:

1 2 3 4 5 6 7 8
c c c c 0 c c c

APPENDIX C

1
2
3
4
5
6
7
8
9

27
10
11
17

--
--
--
--
--
--
--
--
--
--
--
- -
--

-- ---

-- ---

- I

----- -- - 1
-------- 2
------- - 3
-------- 4
-------- 5
-------- 6
-------- 7
-------- 8
-------- 9

-------- 10
-------- 11
-------- 17

C-5

C-5

APPENDIX C C-6

C.3 Serial Printer Cables

Serial Cable for QUME Sprint 5, DTC-300, Epson MXSO, Datasouth
DS180

Sirius
1
2
3
5
7

20

Printer
--------------- 1
--------------- 3
--------------- 2
--------------- 20
--------------- 7
--------------- 5

Serial Cable for Diablo 630

Sirius Printer
1 --------------- 1
2 --------------- 3
3 --------------- 2

5 --------------- 20
7 --------------- 7
8 --------------- 5
20 ---1 1---- 6

1---- 8

Serial Cable for Mannesman-Tally (1805) and Anadex

Sirius
1
2
3
5
7
8

20

Printer
--------------- 1
--------------- 3
--------------- 2
--------------- 19
--------------- 7
- - - - I
- - - - I

Serial Cable for Mannesman Tally MT-140 & MT-180

Sirius

APPENDIX C

2 ----------------
3
5
7

11
8

20
----1-------1---
----1 1---

Tally
3
2
11
7
5
8
20

C-6

1
)

1
1
1
1

1
1

1
1

1
1 ,

!

1

l

1
1

1

J
l

r
r
r
L

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX C C-7

Serial Cable for NEC Spinwriter 5520

Printer Sirius
2
3
7
5

--------------- 3
--------------- 2

--------------- 7
--------------- 19

1------ 25
1------ 6
1------ 8

Serial Cable for Oki Microline - Series (80/82A)

Sirius
1
2
7
5

SWl
OFF

SW2
ON

SW6
OFF

Printer
--------------- 1
--------------- 3
--------------- 7
- - - - - - - - - - - - - - - 11

1------ 6
1------ 8
1------ 20

(Busy polarity)

SW4 (1200 Baud)
ON

(No Parity)

Serial Cable for Qume Sprint 9

Sirius
1
2
3
7
5

Printer
--------------- 1
--------------- 3
--------------- 2
--------------- 7
--------------- 20

1------ 4
1------ 6
1------ 8

A-1 A-2 A-3 (4800 baud) A-4 (Self Test OFF)
OFF ON ON OFF

A-5 (H/duplex) B-7 ·B-8 (H/ware handshake) C-3(WPS OFF)
OFF OFF OFF OFF

APPENDIX C C-7

APPENDIX C

Serial Cable for Olympia 103

Sirius
1
2
3
7
5

Printer

--------------- 1
--------------- 3
--------------- 2
--------------- 7
--------------- 4

Switch Settings for 4800 baud
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9
c c c 0 c c 0 0 0 c 0 c 0 0 c c 0

Sirius
1
2
3

Serial Cable for TRD 170

Printer
--------------- 1
--------------- 3
--------------- 2

5 --------------- 4
7 --------------- 7

Sirius
1
2
3
5
7
8

20

Serial Cable for IDS 560

Printer
--------------- 1
--------------- 3
--------------- 2
--------------- 20
--------------- 7
-----1
-----1

10
0

Serial Cable for Lear System 300

APPENDIX C

Sirius
1
2
3
7
5

Printer
--------------- 1
--------------- 3
--------------- 2
--------------- 7
--------------- 14

1------ 6
1------ 8
1------ 20

1
C-8

1
1

J

1

1
1

1

1
l
1
1

~
1

1
I

1

1 ,
I

C-8

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX C

Serial Cable for Brother HRl

Sirius
1
2
3
7
5

20

Printer
--------------- 1
--------------- 3
--------------- 2
--------------- 7
--------------- 20
--------------- 6

1------ 8

Serial Cable for Toshiba

Sirius
1
2
3

Toshiba
--------------- 1
--------------- 3
--------------- 2

1-- 5
5 --------------- 20
7 --------------- 7

Serial Cable for Texas 810 with D.N.B. option

APPENDIX C

Sirius
1
2
3
7
5

Texas
--------------- 1
--------------- 3
--------------- 2
--------------- 7

--------------- 20
1--- 6
1--- 8
1--- 9

C-9

C-9

APPENDIX C C-10

APPENDIX C C-10

1
1
1 ,
1
1
1
1
1
1
1
1
1 ,
1
1
1
1 ,

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX D D-1

D. ASSEMBLER EXAMPLES

D.1 EXAMPLE ASSEMBLER SHELL PROGRAM FOR MS-DOS INTERFACING

The Microsoft MACR0-86 assembler follows closely the Intel
ASM-86 specifications. The operating system interfacing technique
is via a straightforward interrupt (INT 21Hex), with the required
operational parameter in the AH register. MS-DOS does not corrupt
any registers other than the ones used for the sending or
receiving of data. An example of the running and exiting program
technique, plus the required assembler directives, follows. The
program example is for the small memory model; but it will apply
equally well to the compact or large memory model. The 8080
memory model is not recommended as it results in poor usage of
the potential of the 8086/8088 processor. At link time, this
programming example will generate an .EXE file - the header
information on this file type will be found in E.l.

title Example of MS-DOS/MACR0-86 Assembly Programming

dgroup group
cgroup group

ms dos equ

data
code

0002lh

data segment public 'data'

;interrupt to operating system

;###### insert your data here ######

data ends

code segment public 'code'
assume CS: cgroup, DS: dgroup

example proc

begin:
push
call

run ends -

exit

exit

proc
xor
push
ret
endp

APPENDIX D

near

ES
run module

select close down

far
ax, ax
ax

;origin of code

;save return segment address
;run the program

;close down code
;zero for PSP:O
;save for far return
;and close down
;close down code ends

D-1

APPENDIX D

run module:
mov ax,DATA
mov DS,ax

;##### insert your code at this
ret
example endp
code ends
end

D-2

;get the data segment origin
·; and initialise the segment

point ######

;return to exit module

D.2 Example Assembler Shell Program for CPjM-86 Interfacing

The Digital Research ASM-86 assembler does not follow the
standard Intel ASM-86 structure - this makes for a more complex
task when transferring assembler programs between the CP/M-86 and
the MS-DOS operating systems. The operating system interfacing
technique is via a straightforward interrupt (INT EOHex), with
the required operational parameter in the CL register. CP/M-86
corrupts all registers, excepting the CS and IP - it is,
therefore, recommended that all registers be pushed prior to the
INT EOHex being issued. An example of the running and exiting
program technique, plus the required assembly directives,
follows. The program example follows that of the MS-DOS MACR0-86
example. At GENCMD time, this programming example will generate
a .CMD file - the header information on this file type is shown
in the System Guide for CP/M-86.

title 'Example of CP/M-86/ASM-86 Programming'

reset
cpm

begin:

run

equ
equ

cseg

call

ends -

mov
mov
int

run module:

OOOOOh
OOOeOh

run module

select close

cl,reset
dl,OOh
cpm

down

;system reset function
;interrupt to operating system

;run the program

;select system reset
;select memory recovery
;return to operating system

;##### insert your code at this point ######
ret ;return to exit module

dseg
;##### insert your data here #####

end

APPENDIX D D-2

1
1
1
1
1

)

1
1

1
1

I

1
1
l
1
J
1

1
1

1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX E E-1

E. MS-DOS - .EXE FILE HEADER STRUCTURE

The Microsoft linker outputs .EXE files in a relocatable
format, suitable for quick loading into memory and relocation to
any paragraph (16-byte) boundary. EXE files consist of the
following parts:

o Fixed length header
o Relocation table
o Memory image of resident program

EXE files are loaded in the following manner:

o Read into RAM at any paragraph (16 byte) boundary
o Relocation is then applied to all words described by

the relocation table.

The resulting relocated program is then executable.
Typically, programs using the PL/M small memory model have little
or no relocation; programs using larger memory models have
relocation for long calls, jumps, static long pointers, etc.

The following is a detailed description of the format of an
EXE file:

APPENDIX E E-1

APPENDIX E

Byte

O+l

2+3

4+5

6+7

8+9

A+B

C+D

E+F

10+11

12+13

14+15

16+17

18+19

lA+lB

E-2

Microsoft .EXE File Main Header

Name

wSignature

cbLastp

cpnRes

irleMax

cparDirectory

cparMinAlloc

cparMaxAlloc

saStack

raStackinit

wchksum

raStart

saStart

rbrgrle

iov

Function

Must contain 4D5Ahex, this is the MS­
LINK signature to mark the file as
a valid .EXE file.
Number of bytes in the memory image
modulo 512. If this is 0 then the last
page is full, else it is the number of
bytes in the last page. This is useful
in reading overlays.
Size of the file in 512-byte pages
including the end of the EXE file
header.
Number of relocation entries in the
table.
Number of paragraphs in EXE file
header, used to locate the beginning
of the memory image in the field.
Minimum number of 16-byte paragraphs
required above the end of the loaded
program.
High/low loader switch, maximum number
of 16-byte paragraphs required above
the end of the loaded program. OFFFFh
means that the program is located as
low as possible into memory.
Initial value to be loaded into SS
before starting program execution.
Initial value to be loaded into SP
before starting program execution.
Negative of the sum of all the words
in the run file, ignoring overflow.
Initial value to be loaded into IP
before starting program execution.
Initial value to be loaded into CS
before starting program execution.
Relative byte offset from beginning of
run file to the relocation table.
Number of the overlay as generated by
LINK-86. The resident part of a
program will have iov = 0.

APPENDIX E E-2

liiil&

l

1

1
1

I

1

l

1
1
"'i

I
I

1
1
l
1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX E E-3

The relocation table follows the fixed portion of the run
file header and contains irleMax entries of type rleType, defined
by:

rleType bytes 0+1 ra
bytes 2+3 sa

Taken together, the ra and sa fields are an 8086/8088 long
pointer to a word in the EXE file to which the relocation factor
is to be added. The relocation factor is expressed as the
physical address of the first byte of the resident divided by 16.
Note that the sa portion of an rle must first be relocated by the
relocation factor before it in turn points to the actual word
requiring relocation. For overlays, the rle is a long pointer
from the beginning of the resident into the overlay area.

The format of the EXE file is:

28 byte Header

Relocation Table

Padding (<200h bytes)

Memory Image

The Memory Image begins at the first 512-byte boundary
following the end of the Relocation table.

APPENDIX E E-3

APPENDIX E E-4

APPENDIX E E-4

1
1
1
1
1
1
1
1
1
1
1 ,
1
1
1
1
l
l
1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX F F-1

SIRIUS 1 SPECIFICATIONS

F.l TECHNICAL SPECIFICATIONS

Processor
o Intel 8088 16-bit microprocessor
o 128k or 2S6k bytes standard (depending on model)
o 33Sns cycle time, 64k Dynamic RAM
o 4 internal expansion slots for plug-in card options
o 2 x RS232C serial communications ports. standard DB2S­

type connectors
o 1 x Parallel (Centronics) or IEEE-488 port. 36 way amphenol

connector
o 2 x Parallel user port (SO-way KK Connector on CPU board)
o Expandable to 896K
o 8k bytes of ROM (boot and diagnostic)
o 4k bytes of screen RAM

Display System
o 2S line x 80 column screen; 8 x 12 characters in a 10 x 16

cell
o SO line x 132 column screen
o 300mm CRT, Green p39 phosphor
o Adjustable horizontal viewing angle (± 4S degree swivel)
o Adjustable vertical viewing angle (0 deg to +11 deg tilt)

Disc Drives
o Standard 130cm, single-sided 96 TPI dual disc drives, with a

maximum capacity of 600k bytes per drive.
o Optional 130cm, double-sided 96 TPI dual disc drives, with a

maximum capacity of 1200k bytes per drive.
o Optional single 10,000k byte Hard Disc - non-removable; with

single 130cm, double sided 96 TPI disc drive with a maximum
capacity of 1200k bytes.

o Single-sided floppy drive offers 80 tracks at 96 TPI
o Double-sided floppy drive offers 160 tracks at 96 TPI
o Floppy drives have Sl2 byte sectors; utilising a GCR, 10-bit

recording technique.
o Floppy access times:

2 micro-seconds per bit data transfer rate, with an
interleave factor of 3. Average seek time is
approximately 94 milli-seconds.
Track-to-track step time is 3ms. Latency= lOOms.

o Hard Disc access times:

APPENDIX F

0.2 micro-second per bit data transfer rate, with an
interleave factor of S. Average seek time is
approximately 8S milli-seconds.
Head settling time lSms. Latency 8.33ms.

F-1

APPENDIX F F-2

Keyboard
Separate Intel 8048 microprocessor
Fully software definable with·lO soft function keys
Full IBM Selectric II (56 key) keyboard layout
Type ahead buffering to 32 levels and full n-key rollover
Capacitive keyswitches rated for 100 million operations
Keyboard contains PCB with on-board drivers

Electrical
Input voltage 90-137 VAC or 190-270 VAC (internal jumper)
Input frequency 47-63 Hz

Environment
Operating temperature OoC to 40oC
Operating humidity 20% to 80% (non-condensing)
Storage temperature -20oC to 70oC
Storage humidity 5% to 95% (non-condensing)

F.2 Physical Specifications

Mainframe Assembly

Height
178 mm

Display Assembly

Height
264 mm

Keyboard Assembly

Height
45 mm

System Assembly

Height
457 mm

Width
422 mm

Width
326 mm

Width
483 mm

Width
483 mm

Depth
356 mm

Depth
339 mm

Depth
203 mm

Depth
559 mm

Width without the keyboard module is 396mm.

APPENDIX F

Weight (approx)
12.6 kg

Weight (approx)
8.1 kg

Weight (approx)
1.5 kg

Weight (approx)
22.2 kg

F-2

lilllil
I

1
1

J ,
!

1
1
1
1 ,

I

i
1

i ,
l

1 ,
i

1

l
J ,
i ,
I

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX G G-1

G. GLOSSARY OF TERMS

The following table is a glossary of terms found in this manual:

BAUD

BIOS

BIT

BOOT

BUS

APPENDIX G

The term baud rate means the number of bits
sent down a line per second. A baud rate of
300 will, therefore, be capable of
transmitting data at 300 bits per second.
Since a textual character is composed of 8
bits, then 37.5 characters could be sent per
second at this baud rate.

This means the Basic Input Output System. The
BIOS is a fundamental portion of an Operating
System, allowing the operating system to
communicate correctly with any peripheral
devices; typical BIOS modules include the
disc driver; the keyboard input driver; the
screen driver; the printer driver.

A bit is a binary digit. The bit can,
therefore, contain either One or Zero. A One
is bit HIGH or ON. A zero is bit LOW or OFF.
A bit may be likened to a light-switch - the
switch can only be on or off. See BYTE.

This term comes from the phrase "the computer
pulls itself up by its boot-strap". The term
boot-strap means the same, but is no longer
in such common use. To boot a computer is to
load an operating system - the computer does
this by means of a boot-strap program. The
computer, when switched on, is not aware of
its environment - but it automatically runs
its boot-strap program. The Sirius 1 boot­
strap program is stored in the boot PROM; it
first causes the display of the little disc
picture - it then searches for a disc with an
operating system - when it finds this disc,
it loads the operating system and begins to
execute it. The boot-strap program is not
used again until the reset switch is pressed,
or the power is switched off and on.

A bus in computer jargon is not unlike a bus
to carry passengers. When data is moved

G-1

APPENDIX G

BYTE

DOT MATRIX

FONT CELL

HEADER

INTERRUPT

APPENDIX G

G-2

around inside a computer it is moved along
the bus wires. These bus wires connect the
Sirius 1 microprocessor to its memory,
disc(s) and screen.

A byte is a collection of 8-bits or two
nibbles. A byte may store one character of
text, or a number from 0 to 255 in binary.

A printed character on the screen or a dot­
matrix printer may be viewed as a square
containing dots. On the Sirius 1 screen a
character has a square cell (matrix) of 16
dots high by 10 dots wide - within this box,
the dot on/off patterns create a viewable
character.

In reference to DOT MATRIX, the font cell is
the collection of bytes of data that make up
the character dots that are to be displayed
on the screen. Each character on the screen
is composed of pre-defined patterns of dots
to make the viewed dot matrix. These patterns
of dots are stored in the Sirius 1 memory as
data - the screen controller chip scans these
data bytes and the resulting character image
is displayed on the screen.

A header on a file gives information to the
operating system on where and how the file is
to be loaded in to memory. Many files
provided by Victor Technologies (such as
keyboard and character set files) contain
headers that are not used by the operating
system, but are used by Victor Technologies
utilities.

An interrupt is some event occurring in the
computer's environment that the computer will
stop all other activities for. An example of
an interrupt is a key-press. If you press a
key on the Sirius 1, an interrupt is
generated; at this point the processor stores
all information on its current task and gets
and saves the value of the key pressed; it
then picks up all the information it stored
on its last task and continues where it left
off. This whole series of events takes only a

G-2

l
l
1
~

I
I

1
) ,
I

1
1
1

I

i
I
I

l

1
1

J

1
1

~
l

1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
l

r
r

APPENDIX G

NIBBLE

OPERATING
SYSTEM

PROM

RAM

REGISTER

WORD

APPENDIX G

G-3

few micro-seconds.

Sometimes spelled NYBBLE; a nibble is half a
byte or 4-bits. See BYTE and BIT.

An operating system allows the computer to be
aware of its environment and gives the user
the ability to enter and retrieve data from
the computer.

Programmable Read Only Memory, PROM, is a
chip or collection of chips that is used to
store permanently a single computer program
or collection of computer programs. The boot­
prom, sometimes called boot-rom, contains all
the information the Sirius 1 computer needs
to read an operating system from disc. There
are different types of prom; EPROM which is
erasable prom, simply shine a high-powered
ultra-violet lamp on the chip, and it can be
re-programmed; etc.

Random Access Memory, RAM, is a chip or
collection of chips that is used to store
temporarily (until the power is removed)
data, computer program(s), text, etc. This is
the memory of a computer.

A computer register is a portion of the
processor. The Sirius 1 uses the Intel 8088
micro-processor - there are several different
types of registers within this chip; there
are 8-bit registers, and 16-bit registers.
Data is generally not manipulated in RAM, but
is brought in to a register of the processor
and manipulated there, then the result saved
from the register back into RAM.

A word is a number of bits, generally greater
than 8. The Sirius 1 has a 16-bit word - thus
a word in the Sirius 1 is composed of two
bytes. The DEC PDP-8 computer has a 12-bit
word - on this machine, therefore, a word is
composed of one byte and one nibble.

G-3

APPENDIX G G-4

APPENDIX G G-4

1
1
1
1
1
1
l
1
1
1
1 ,
1
1
1
1
l
1 ,

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX H H-1

H. DEALERS DEMONSTRATION PACKAGE

H.l Disc 1 'Latest Graphics Demo'

Disc 1 Menu contains:

1. SYSPEC

2. BARS

3. PIE

4. CALENDAR

5. NOVEMBER

6. PLOT

7. SCIENCE

8. GRAPHICS

9. KEYS

APPENDIX H

System Information
A written description of the business uses of
the Sirius 1. Including a brief overview of
the separate modules and system
specifications.

Bar Graph
A demonstration of a bar chart depicting
Snoocorp Profits.

Pie Chart
2 sets of pie charts depicting the National
Budget.

1982 Calendar.

Sirius calendar 1981.

Multiple Function Plots
Demonstrating the capabilities of the Sirius
1 for drawing frequency curves.

Scientific Demonstration
Showing how the Sirius 1 can cope with
scientific and mathematical notation and
diagrams (eg. circuit diagrams).

Graphics Show
Gives a small graphics demonstration.

Soft Keys - You Draw
Using the soft keys, numbers 1 to 7 - the
operator can draw circles of different radii
or draw lines given start and end positions.

H-1

APPENDIX H H-2

Operating Instructions

To run this demonstration package type:

SUBMIT START <CR>

Before reaching the Menu options a voice message will be
heard.

When the Menu is displayed, type a number between 1 and 9,
selecting the options you require.

N.B. To proceed on certain options hit any key on the
keyboard.

Options 1 to 8 are not interactive except for proceeding
with the next display.

Option 9 - Keys - Soft Keys - You draw

Having selected this option, on line 25 will
functions which relate to the soft keys 1 - 7 on the
When used together, these keys allow the user to draw
simple graphics ie. drawing lines and circles. The
state where on the screen to construct the graphics.
relation to a pixel (matrix dot) which is originally
in the centre of the screen. The screen is divided
pixels by 400 pixels.

Function keys are:

1. END

appear 7
keyboard.
their own
user can

This is in
positioned

into 800

This will finish the option and return to the menu.

2.

3.

4.

PRINT (on/off switch)
Allows the printing of any keyboard character.

DRAW CIRCLE
When pressed, the command "Enter Centre" will appear.
You move the illuminated pixel to the required centre
then press soft key 3 again. "Enter Radius" will come
up. You enter the required radius and press function
key 3 again.

CONTINUOUS (on/off switch)
This allows a solid line to be drawn when moving the
illuminated pixel.

APPENDIX H H-2

l
1
1
1
1
l

J

1
I

1
i

I

l
1
1
1
1
1
1

I

'i
i ,
I

1

r
. r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX H H-3

5. X=O;Y=O
This displays the position of the illuminated pixel on
the screen as co-ordinates (to a maximum of + x = 400,
x = -399, y = 190, y = 190).

Pressing function key 5 return the illuminated pixel to
the centre of the screen.

6. STEP= 1

7.

This shows the amount of pixels that will be covered
when the highlighted pixel is moved. It has 4 settings
1,4,16 and 64.

ERASE BLOCK
This operation allows the user to erase a mistake or
clear the screen by putting a block (rectangle) round
it. All inside the block will be erased. When
function key 7 is pressed "upper left" appears. You
need to . move the illuminated pixel to the top left
position of an (imaginary) rectangle. When in
position, press function key 7 again, "lower right"
will be displayed. Position the illuminated pixel to
the bottom right hand corner of the (imaginary)
rectangle. Pressing function key 7 will erase the
block.

UPPER LEFT X------
1 I
I I
I I
-------X LOWER RIGHT

APPENDIX H H-3

APPENDIX H H-4

Pixel Movement

To move the illuminated pixel around the screen use the
numeric block numbers 1 to 9.

7

4

1

Graphics Dump

8

CHANGE
5

STEP

2

9

6

3

Options 2 to 8 can be dumped to various printers eg. Epson, Prism
·but not the C.Itoh 1550.

In order to use the Epson MX80 Type 2 or 3 the operator would
type:

SUBMIT START MX80
or SUBMIT START MXSD

the MXSO is for sideways print out and MXSD for upright print.

In order to use a Prism printer the operator would type:

SUBMIT START PRSM

To dump any screen type P.

APPENDIX H H-4

1
!

,.,
I

1

l
I

1
1 ,

1
i

"""l
!

1
i

1
1

I

1

1 ,
!

1 ,
I

I r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX H H-5

H.2 Disc 2 - 'Sliding Picture Show'

Disc 2 contains the following demonstration programs:

1. DEMO

2. DEM OT

3. DEMOS

4. DEMON

5. DEM03D

APPENDIX H

Displays pictures to show different aspects of the
hi-res graphics.

(cannot exit from program - need to reboot the
system by pressing the reset switch at the back of
the machine) .

Shows the same pictures but slides them over the
pixels (matrix dots) to appropriate position.
(ALT-C to terminate program).

Slides the pictures in using complete blocks
also includes page 3 ladies (ALT-C to terminate
program).

Same as DEMOS except no nudes - cleaned up
version. (Cannot exit program - need to reboot
the system) .

Shows a revolving outline of the Sirius. The
picture can be altered using the following keys:

y
shift Y

B
shift B

R
shift R

Lowers the Sirius
Raises the Sirius

Tilts the Sirius backwards
Tilts the Sirius forwards

Reduces the Sirius
Enlarges the Sirius

(ALT-C to terminate program).

H-5

APPENDIX H H-6

H.3 Disc 3 - 1550 (C.Itoh) Graphics

This disc contains the same menu as the disc 1 - 'Latest
Graphics Demo' when the operator types:

SUBMIT START <CR>

For a complete explanation of the Menu options see pages H-1
to H-3.

The difference is that 1550 graphics will allow options 2 to
8 inclusive to be printed on the printer, whereas disc 1 dumps to
Epson printers.

Type "P" when the graphics routine required to be printed is
being displayed on the CRT, eg. pie charts. This causes the
program to produce a pixel dump to the printer.

In order to achieve this the printer switches should be re-
set to the graphics set shown on page and the printer cable
should be modified to the graphics cable shown on page

Alternately the same demonstration without the voice can be
started

SUBMIT DEMO <CR>.

The disc contains DEM03D which is also on sliding picture
show.

Instructions for moving the display are:

B
shift B

R
shift R

Tilts the Sirius backwards
Tilts the Sirius forwards

Reduces the Sirius
Enlarges the Sirius

A full screen picture of the Sirius logo and the word Sirius
which fades and glows can be obtained by typing LOGO<CR>.

H.4 Disc 4 - 'Arabic Demonstration'

As you would imagine instructions on how to obtain the best
out of this demonstration are limited. The submit file START.SUB
is automatically called in on booting up the machine.
Unfortunately there is no picture show.

APPENDIX H H-6

1
1

1
1

'

1
1

I

i
'·

1
1
1
1

1
! ,
I
I

1
1
""')

!
I

l

1

r '

'

r '
'

r
r '

'

r ' I

r I

r '
'

r ' '

r I

r1
~

r I

r1
~'

r
~

r '

r1
~ '

r

APPENDIX H H-7

For those dealers who want to impress French customers there
is a French Vocal file.

Instructions

1.

2.

3.

4.

Boot up the machine.

When BASIC86 is first called in (easy to guess when) hit
control and C.

Type SYSTEM<CR>.

Type VOCF<CR>.

APPENDIX H H-7

1
APPENDIX H H-8

]

1
1
1
]

]

J
]

]

J
1
l
]

J
]

J
APPENDIX H H-8

J
]

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX I I-1

I. INTERRUPT DRIVEN SERIAL INPUT/OUTPUT

I.l Introduction

This appendix is designed to show the methodology involved
in driving the Sirius 1 in interrupt mode when communicating via
the serial port(s). Some pitfalls are described, and tested
sample routines are included. There are, currently, no system
level facilities that enable this task to be accomplished easily,
and some chips, namely the PIC 8259, PIT 8253, SIO 7201 and the
VIA 6522 will require re-programming. It is up to the programmer
to reset the machine to the original state prior to exiting the
interrupt driven application.

A typical interrupt driven application will normally follow
the steps outlined below:

1. Save the original vector, set the new vector.
2. Set the direction bits.
3. Enable clocks (internal or external).
4. Reset SIO 7201 device, define your communication

characteristics.
5. Set the baud rate.
6. Set the PIC 8259 to enable SIO interrupts.

These steps will be discussed in more detail below.

I.2 Interrupt Vectors

There are 256 software interrupts available to the Sirius 1.
Most are reserved for system functions, and diagnostics. A block
of vectors from 80H through BFH are set aside for applications.

I.2.1 Vectors available on the Sirius 1

00-lFhex
20-3Fhex
40-7Fhex
80-BFhex
CO-FFhex

Intel reserved
Microsoft reserved
Victor reserved
Applications reserved
Victor reserved

Vectors 40H through 47H are those belonging to devices
controlled by the Programmable Interrupt Controller (PIC).

40hex
4lhex
42hex
43hex

APPENDIX I

Sync IRQ
SIO 7201
Timer 8253
General Interrupt Handler (all 6522 IRQ's)

I-1

APPENDIX I

44hex
4Shex
46hex
47hex

IRQ4
IRQS
Keyboard - keystroke
8087 math processor

I.2.2 Location of Vectors

I-2

Vectors consist of a long pointer (double word) to an
interrupt service routine. This pointer is a 4 byte entry
consisting of the Segment and Offset of the Interrupt Service
Routine. The vectors are stored in a table that has its origin
at 0000:0000. The first entry in this table is, therefore,
Interrupt O; the vector for Interrupt 1 is the second, with its
vector having an origin of 0000:0004. the interrupt vector for
Interrupt 4lhex (the SIO 7201) will be found at location
0000:0104 (4*4lhex).

To set a vector into this table, the MS-DOS function 2Shex
can be used, but since it is desirable to restore the old vector
prior to the application program exiting, it is less cumbersome
to simply set the new vector "by hand", and restore the old
vector when the application terminates.

I.2.3 Set Vector - Assembler Example

;store old vector, and set new vector for SIO
cli ;clear interrupts
xor ax,ax ;AX=OOOO
mov ES,ax ;access table via ES
mov ax,word ptr ES:[l04h] ;get old offset
mov word ptr old_offset,ax ;save old offset in OS
mov ax,word ptr ES:[l06h] ;old segment
mov word ptr old_segment,ax ;save old segment
mov ax,my_sio_isr ;get offset to my code
mov word ptr ES:[l04h],ax ;set vector offset
mov word ptr ES: [106h],CS ; and the new segment
sti ;enable interrupts
ret ;all done, exit

;to replace the old vector prior to exit
cli ;clear interrupts
xor
mov
mov
mov
mov
mov
sti
ret

APPENDIX I

ax,ax
ES,ax
ax,word ptr old_offset
word ptr ES:[l04h] ,ax
ax,word ptr old_segment
word ptr ES:[l06h],ax

;AX=OOOO
;access table via ES
;get old offset
;restore old offset
;get old segment
;restore old segment
;enable interrupts
;all done, exit

I-2

l

1
1

1

l
1
1
1
1

1
l

l

l
1
1
l ,

I

1 ,
J

r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX I I-3

I.3 Enabling Internal and External Clocks

In
generated
where the
source.

an asynchronous environment the transmit clock is
internally, as opposed to a synchronous environment
transmit clock is typically provided by an external

Internal clocking is selected by masking off the appropriate
bit in register 1 of the keyboard Versatile Interface Adaptor
(VIA).

The keyboard VIA, register 1, is located at E804:0001.

The appropriate bits are:

Bit 0 (PAO) for Port A
Bit 1 (PAl) for Port B

Thus, by setting PAO to zero, the internal clock is enabled
for port A; setting PAl to zero will enable the internal clock
for port B. Setting PAO or PAl to one will enable the external
clock disabling the internal clock. CAUTION: Care must be taken
to leave the other bits in the pre-selected state.

To enable internal clocks for ports A and B then mask off
the two least significant bits in register 1:

mov ax,Oe804h
mov ES,ax
and byte ptr ES:[OOOl] ,Ofch

;keyboard VIA segment
;select the segment register
;A & B internal clocks done

To enable external clocks on either channel then set the
relevant bit by OR'ing the bit in. The following sample sets the
external clocks for both ports A and B:

mov ax,Oe804h
mov ES,ax
or byte ptr ES:[0001],03h

I.3.1 Providing Clocks

;keyboard VIA segment
;select the segment register
;A & B external clocks done

In a synchronous environment it sometimes becomes necessary
to provide transmit and receive clocks from the Sirius 1. This
requires that the cable used has to have pins 15, 17 and 24
jumpered at the Sirius 1 end. The Sirus 1 always has a clock on
pin 24, this being provided by the internal baud rate generator;
thus by jumpering pin 24 to.both pins 15 and 17, this clock
becomes available for both the transmitter and the receiver, at

APPENDIX I I-3

APPENDIX I I-4

both ends of the cable.

When providing clocks from the Sirius 1, the external clock
must be set as well as a baud rate selected. In synchronous
mode, the "divide by rate" of the PIT 8253 is l, therefore the
values used to set the required baud rate is 1/16 the values used
in an asynchronous environment. (see section 3.8.2 for values).

I.4 Initialising the SIO

There is little magic used in this step, but it is
recommended that the programmer read the entire Intel/NEC 7201
chip data sheet. The SIO segment is found in segment location
E004hex. The offsets for the data ports A and B and control
ports A and B are at 0, l, 2, 3 respectively.

The following example of initialising the SIO 7201 is for
Port A:

cli
mov ax,Oe004h
mov ES,ax
mov byte ptr ES:[0002h] ,18h

;disable interrupts
;the SIO segment
; using ES
;channel reset

;now delay at least 4 system clock cycles

nop
nop ; delay for 7201

mov byte ptr ES:[0002h],12h ;reset external/status
; interrupts

;and select register 2

mov byte ptr ES: [0002h] I 14h ;non-vectored
mov byte ptr ES: [0003h] I 02h ;select CR2 B
mov byte ptr ES: [0003h] ,OOh ;set vector to 0

;set for clock rate of 16*; 1 stop bit; parity disabled

move byte ptr ES: [0002h] , 04h ;select CR4 A
move byte ptr ES: [0002h] I 44h

;this register defines the operation of the receiver:
;7 data bits; auto enable and receive enable

mov byte ptr ES:[0002h],03h ;select CR3 A
mov byte ptr ES:[0002h] ,6lh

APPENDIX I I-4

l
l

1
1
1
1
1

1
i ,
i

1
1
1
1
l
1
l

1
1
i

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX I

;GR5 controls the operation of the transmitter
;7 data bits, dtr; assumes half-duplex

mov byte ptr ES: [0002h],05h ;select GRS A
mov byte ptr ES:[0002h] ,OaOh

I-5

;set status: affects the vector, interrupt on every character,
;enable transmitter interrupt

mov byte ptr ES:[0002h],Olh ;select GRl A
mov byte ptr ES: [0002h],17h
sti ;enable interrupts

I.4.1 Baud Rate for SIO

At this point, baud rate must be selected. In an
asynchronous environment the PIT 8253 divides the supplied baud
rate by 16; but in a synchronous environment the baud rate is
divided by 1. Thus, to set the baud rate in an asynchronous
environment, the value written to the PIT 8253 is 16 times the
desired baud rate value. The common baud rate values, and the
method of establishing the baud rates, are shown in section 3.8.2
of this manual.

I.4.2 Set the PIG to Enable SIO Interrupts

In the Sirius 1 the PIG is normally initialised to operate
the SIO in a polled environment. The following lines of code
sets the PIG to operate the SIO in an interrupt environment:

The PIG resides at segment EOOOhex and the register required
here is at offset 0001:

cli
mov ax,OeOOOh
mov ES,ax

;disable interrupts
;get the PIC segment

and byte ptr ES: [OOOlh],(not 02h) ;mask off bit 1

sti ;allow interrupts

Prior to exiting the interrupt driven application,
should be returned to operating the SIO in polled mode.
done by setting bit 1:

cli
mov ax,OeOOOh

APPENDIX I

;disable interrupts
;get the PIC segment

I-5

the PIC
This is

APPENDIX I I-6

ES,ax mov
or
sti

byte ptr ES:[OOOlh] ,02h ; set polled
·;allow interrupts

I.S Interrupt Service Routine - !SR

When an interrupt occurs in non-vectored mode, SIO register
CR2 B contains the vector number of the interrupting device.
Assuming the SIO was initialised as earlier described in this
appendix, CR2 B contains a value in the range 0-7, which serves
as the index to the following interrupt vector table

I.5.1 Sample Interrupt Service Routine

data segment public 'data'
int vectors dw tx int b

dw ext status b - -dw recv int b
dw recv err b
dw tx int a
dw ext status a
dw recv int a
dw recv err a

data ends

code segment
assume

public 'code'
CS:cgroup, DS:dgroup

sio isr:
mov word ptr CS:current ss,SS
mov word ptr CS:current_sp,SP
mov SS,word ptr CS:ss_origin
mov SP,offset dgroup:stack top
push ax
push bx
push ex
push dx
push bp
push DS
push ES

mov
mov
mov
mov
mov
add
mov
mov

DS,dgroup
ax,Oe004h
ES,ax
byte ptr ES:[003h],02h
al,ES:[0003h]
al,al
ah,O
bx,offset int vectors

APPENDIX I

;tx int for port B
;external status changed
;recv int port B
;recv error port B
;tx in for port A
;external status changed
;recv in port A
;recv error port A

;save stack seg
; and stack pointer
;internal stack
;defined in DS (dgroup)
;save environment

;set to internal data
;set SIO segment

;select CR2 B
;read int device
;word align
; hi = 0
;get vector table

I-6

1
1
1

J

l ,
I
I

1
l
1 ,

I

1
'lillil

I
)

1 ,
l

1

1
i

-

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX I

add bx,ax
call [bx]
cli

I-7

;point to entry
;service routine
;keep disabled

;now an "end of interrupt" (EOI) must be issued to the
;SIO (port A) and to the PIC.

mov ax,OeOOOh
mov DS,ax
mov byte ptr [0042h] ,38h
mov byte ptr [OOOOh] ,6lh

pop ES
pop DS
pop bp
pop dx
pop ex
pop bx
pop ax

mov SS,word ptr CS:current ss
mov SP,word ptr CS:current_sp
iret

;the SS origin is stored here during
ss_origin dw 0
current _sp dw 0
current SS dw 0 -

;PIC segment

;EOI to ctrl A of SIO
;EOI to PIC ctrl port A

;restore environment

;get SS
;get SP
;interrupt return

initialisation
;stack segment origin
;SP on ISR entry
;SS on ISR entry

NOTE: Some variables are stored within the code segment, as the
CS register is the only register containing a known value at the
time of interrupt.

I.6 Setting Direction Bits

This function need only be performed once, and is performed
by the operating system BIOS following a hardware reset. This
step need not be implemented, therefore, if a standard Sirius
operating system is used. If a standard operating system is not
used, then this step needs to be performed immediately prior to
the enable clock code.

;The offset to the data direction register is 0003hex.

cli
mov ax,Oe804h
mov ES,ax

;disable interrupts
;kbd VIA segment

APPENDIX I I-7

1
APPENDIX I I-8

1
rnov al,byte ptr ES: [0003h] ;get the old value

l or al,03h ;set for output

;set the PA2-5 to zero, to enable DSR and RI input

l and al,Oc3h ;mask in
rnov byte ptr ES: [0003h] , al ;rewrite new value

l
sti ;enable interrupts

1
1
1

)

1
1
1
1
1
1
1
1
1

APPENDIX I I-8

l
1

APPENDIX J J-1

J. FILE HEADER INFORMATION

J.l Character Set Header

All files with the extension .CHR are Character Set table
files. These files contain data corresponding to the actual dot
matrix displayed for each character on the console. These files
also contain information regarding the character set name,
version number, origin, date of creation, and display class. The
Character Set table file header is a 128 byte field, structured
as follows:

Byte No.
Hex

00

01

02-0D

OE-lS

16

17-19

lA

1B-3D

3E-4D

4E-SS

S6-S9

SA-SB

APPENDIX J

Dec

00

01

02-13

14-21

22

23-2S

26

27-61

62-77

78-SS

86-89

90-91

Function

Character Set type, ASCII 'C'=character

Character Set Version No.
through 9)
Display Class

Character Set Name

Filler (ASCII Space)

Banner Class

Filler (ASCII Space)

Col!llllent

Originator

(ASCII 0

Creation Date - arranged as YY/MM/DD

Number of records in the file in ASCII.
A character set file of 128 characters
has 32 records; a character set file of
2S6 characters has 64 records. The
record count for a 32 record file is
stored as 30 30 33 32 (0032)

Reserved

J-1

APPENDIX J

Byte No.
Hex

SC

SD

SE

Bit
Function

APPENDIX J

Dec

92

93

94

J-2

Function

This byte is used to house three
variables. Bit 7 is used to show the
Horizontal/Vertical alignment of the
character set - bit 7 ON infers a
Vertical character set. Bits 6 through
4 of the high nibble is used to store
the binary Super/Subscript value (which
may be 1 through 7) offset from 1 - thus
a Super/Subscript value of two would be
stored as binary 2. The low nibble is
used to store the binary Character
Height offset from 0 - thus a Character
Height value of 16 would be stored as
binary F. The Character height is a
function of the number of vertical
pixels the character will occupy in the
16xl0 pixel matrix available for each
character on the screen.
If the Horizontal/Vertical bit, the
Super/Subscript value and the Character
Height value was as stated above, then
this byte would read AF. The byte
appears:

[7]
Horiz/Vert

[6 s 4]
Super/Sub

[3 2 1 0
Character
Height

This byte contains two values; the
User/System character set toggle, bit 0
stores this value; and the Stock/Special
character set toggle, bit 1 stores this
value. Bit 0 ON infers that the
character set is a special character
set.

This byte contains information on the
character set width. If the high nibble
is 0, then the low nibble contains the
binary information, offset from 0, of
all the characters in the character set
- thus a character set width value of 16
would be stored as F. If the high
nibble is F, then the character set is a
proportional one - the proportional

J-2

l
1 ,

)

1
~
I

l
~
I

1
1
1

I

1
I

1
I

l
1

l

1
i

!
I

1
I

1

APPENDIX J

5F-7F 95-127

80- 128-

J-3

character set has a trailing record
containing information on the width of
each individual character in the
character set . A proportional character
set is designed to be used in high­
resolution mode as it requires a 16xl6
screen cell.

Reserved.

The character set font information.

J .1.1 Sample Character Set Table File Header

Following is an actual header taken from the Character Set
table file for the character set PROP.CHR. PROP contains 128
characters, and is a proportional character set:

Hex Off set Value in Hex

0: 43 30 49 6E 74 27 6C 20 20 20 20 20 20 20 50 52
10: 4F 50 20 20 20 20 20 43 48 52 20 54 68 69 6E 20
20: 70 72 6F 70 6F 72 74 69 6F 6E 61 6C 20 63 68 61
30: 72 61 63 74 65 72 20 73 65 74 20 20 20 20 53 69
40: 72 69 75 73 20 53 79 73 74 65 6D 73 20 20 38 32
50: 2F 30 37 2F 31 36 30 30 33 30 00 00 7F 00 FF 00
60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

J.2 Proportional Character Set Trailer Information

In the case of a proportional character set, the trailing
128 bytes of the character set file contains information on the
proportional width of each of the characters in the file. A
proportional character set may not, therefore, contain more than
256 characters.

The following is a sample taken from the character set PROP.CHR;
the hex figures represent the width for each proportional
character starting with the space character. Note that each
width value is offset from 0, with a value range of 1 through 16
decimal. Each byte is stored, and represented below, in low/high
order; the two nibbles would be exchanged to give the value to
the character(s) in high/low order. Each character is mapped
from the proportional width as follows:

29 95 98 49 77 88 84 93

APPENDIX J J-3

APPENDIX J J-4

The above figures are for the first 16 display characters
including the space character - they correspond as follows:

space ... 10 (corresponding to 9)
! 3 (corresponding to 2)
II 6 (corresponding to 5)
10 (corresponding to 9)
$ 9 (corresponding to 8)
% ... 10 (corresponding to 9)
& = 10 (corresponding to 9)

5 (corresponding to 4)
(8 (corresponding to 7)
) 8 (corresponding to 7)

* 9 (corresponding to 8)
etc.

J.3 Keyboard Table Header

All files with the extension .KB are Keyboard Table files.
these files contain information regarding keyboard code generated
when a key on the keyboard is pressed. These files also contain
information regarding the Keyboard Table name, version number,
origin, date of creation, and display class. The Keyboard Table
table file header is a 128 byte field, structured as follows:

Byte No. Function
Hex Dec

00 00 Keyboard table type, ASCII 'K'=character

01 01 Keyboard table Version No. (ASCII 0
through 9)

02-0D 02-13 Display Class

OE-15 14-21 Keyboard Table Name

16 22 Filler (ASCII Space)

17-19 23-25 Banner Class

lA 26 Filler (ASCII Space)

1B-3D 27-61 Comment

3E-4D 62-77 Originator

4E-55 78-55 Creation Date - arranged as YY/MM/DD

APPENDIX J J-4

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX J J-5

56-59 86-89

5A-7F 90-127

80- 128-

Number of records in the file in ASCII.
A character set file of 128 characters
has 32 records; a character set file of
256 characters has 64 records. The
record count for a 32 record file is
stored as 30 30 33 32 (0032)

Reserved

Keyboard table information

J.4 Banner Skeleton Files

Files with the extension .BAN are banner skeleton files.
The banner is information printed on the screen during system
boot. The banner also prints the Logo (if selected) along with
other information regarding configuration. The banner is a set
of ASCII strings containing the escape sequences and characters
necessary to print the logo and configuration information on the
console.

The first 128 bytes of the Banner Skeleton has the following
format. The first byte is zero followed by ODh, OAh. This is
followed by the length of the file in ASCII decimal with a
leading and trailing space, and followed by ODh, OAh.

The location of the keyboard name and character set name
follow in the same format as the file name length. If the file
length is 639 characters, the keyboard name is at byte 502, and
the character set name is at 541, then the first 24 bytes of the
banner file would be as follows:

30 OD OA 20 36 33 39 20 OD OA 20 35 30 32 20 OD OA 20
35 34 31 20 OD OA

J.5 Banner Customisation

Would you like your company name included on the Sirius
banner? Syselect permits the selection to be made, but first you
need to create a banner.

This may be achieved by using ED (under CP/M-86), EDLIN
(under MS-DOS) or WordStar.

1. CP/M-86

A>PIP YOUR.BAN-SIRIUS.BAN<CR>
A>ED YOUR.BAN<CR>

APPENDIX J J-5

APPENDIX J

:*#a<CR>
1:*2:0tt<cr>

J-6

2: xxxxx SIRIUS I MICROCOMPUTER xxxxx

(must be exactly as shown)
2:*sSIRIUS I MICROCOMPUTERAZ
2:*e
A>

2. MS-DOS

A>COPY SIRIUS.BAN YOUR.BAN<CR>
A>EDLIN YOUR.BAN<CR>

EDLIN version 1.01
End of input file

(must be exactly 24 chrs)
PUT YOUR NAME HERE AZOtt<cr>

*alt clr (clear screen)

rSIRIUS I MICROCOMPUTERAZ PUT YOUR NAME HERE
PUT YOUR NAME HERE

AZOtt<cr>
(EDLIN
repeats)

*E
A>

Syselect may now be used to include your banner file in an
operating system.

J.6 Logo Creation

A logo editor is available.
details.

Contact Barson Computers for

J.7 Normal File Control Block

The normal file control block is structured as
with offsets in decimal:

follows

Byte

0

APPENDIX J

Contents

The drive number. The drives are numbered as
follows:

Before opening file: 0 - default drive
1 = drive A
2 = drive B
3 = drive C, etc.

J-6

i
I

l ,
J

1
l ,

j ,
I ,,
I

I
I ,
J

,
1
l ,
i

-

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX J

1-8

9-11

12-13

14-15

16-19

20-21

22-23

APPENDIX J

After opening file: 1
2

J-7

drive A
drive B, etc.

MS-DOS replaces the default drive prefix of 0
with the correct drive number after the open
is processed.

Filename, left justified with trailing ASCII
space(s). If a device name is placed in this
region, the trailing colon should be omitted.

Extent, left justified with trailing ASCII
space(s).

Current block number relative to the
beginning of the file, starting with zero
(automatically set to zero by the open
function request). A block consists of 128
records, each record being of the size
specified in the logical record size field.
The current block number is used with the
current record field for sequential
reads/writes.

Logical record size in bytes.
the open function request.

Set to 80H by

File size in
represents the
size.

bytes. The first
low-order part of the

word
file

Date the file was created or last updated.
The date is set by the open function request.
The date is formatted as follows:

< 21 > < 20 >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

y y y y y yymmmmddddd

where m -= month 1-12
d day 1-31
y year 0-119 (1980 - 2099)

Time the file was created or last updated.
The time is set by the open function request.
The time is formatted as follows:

J-7

APPENDIX J

24-31

32

33-36

Notes:

J-8

< 23 > < 22 >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
h h h h h mmmmmmsssss

where h - hours 0-23
m - minutes 0-59
s - seconds*2 0-59

Reserved for system use.

Current relative record number (0-127) within
the current block. This must be set before
doing sequential read/write operations on the
file. The open function request does not set
this field.

Relative record number, relative to the
origin of the file, starting at zero. This
field must be set prior to doing random
read/write operations on the file. The open
function request does not set this field.

If the record size is
both words are used.
greater than 64 bytes,
three bytes are used.

less than 64 bytes,
If the record size is

then only the first

The File Control Block at SCH in the Base Page overlaps
both the File Control Block at 6CH and the first byte
of the command line area/disc transfer area at 80H.

Bytes 0 - 15 and 32 - 36 must be set by the
program. Bytes 16 - 31 are set by MS-DOS and may
be changed at the programmers own risk.
In the 8086/8088 all word fields are stored
significant byte first - this is true in setting
record length, etc.

user
only

least
the

J.8 Extended File Control Block

The extended FCB is
having special attributes.
bytes preceeding the normal
as follows:

APPENDIX J

used to create or search for files
The extended FCB adds an additional 7
FCB. The extended FCB is structured

J-8

1

1
1
1
1

I ,
i

1
1
1 ,

I

1
'

1

i
!

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX J J-9

Byte Contents

FCB-7 Set to FFH indicates that an extended FCB is
being used.

FCB-6 - FCB-2 Are reserved.

FCB-1 Attribute byte to include hidden files (02H)
or system files (04H) in directory searches.

FCB-0 Origin of normal FCB (drive byte).

APPENDIX J J-9

APPENDIX J J-10

APPENDIX J J-10

1
1
1
1
1
1
1
l
1
1 ,
1
1
1
1
1
1
1 ,

r
r APPENDIX K

r
FUNCTION r Terminate

r Con in

r
r Conout

Aux /rdr

r Aux/pun

r Print

Dir Con I/O

r
r
L

r Dir con Input I
Get I/O byte

Conin,No Echo/
Set I/O byte r

r Print String

Read console
Buffer r

r
r
r APPENDIX K

r

K-1

K. COMPARISONS BETWEEN MS-DOS AND CP/M-86

NR

0

1

2

3

4

5

6

7

8

9

A

MSDOS(AH)

NC

Returns:
AL=ascii char
checks are made
input is echoed

DL is char

Returns:
AL is char

DL is char

DL is char

DL=FF=>Cons input
Returns:
AL=OO=>no char
AL<>OO=>Cons char
DL<>FF=>Cons output
DL is char

Return AL=char

See func 1

DS:DX=[charstr$]
uses func 2

DS:DX=[datalen,
inlen, data ..]
last char always CR
inlen doesn't
include CR.
Editing functions
apply. .

CPM-86(CL)

DL=O =>back to CCP
DL=l =>remain in

memory

Returns:
AL=ascii char
checks are made
input is echoed

DL is char

Returns:
AL is char

DL is char

DL is char

DL=FF=>Cons input
Returns:
AL=cons char
DL=FE=>Cons stat
Returns:
AL=OO=>no char
DL<FE=>cons output
DL is char

Returns:
AL=IOBYTE

DL=IOBYTE

DX=[charstr$]

DX=[datalen,
inlen, data ..]
CR not in data

K-1

APPENDIX K

FUNCTION NR

Cons tat B

Con in with flush/ C
Get version #

Disc reset (system) D

Select disc E

Open file F

Close file 10

Search 1st entry 11

Search next entry 12

Delete file 13

APPENDIX K

MSDOS(AH)

Returns:
AL=FF=>char

=00=>no char

Flush buff er then
do function 1,6,7,8
or A if in AL.
See above for
parameters

Set A, flushes
buffers

DL=drive
Returns:
AL=nurnber of drives

DS:DX=[FCBu]
FCB (E,F,20)=00H
Returns:
AL=OO=>Okay

=FF=>not found

DS:DX=[FCBo]
Returns:
AL=OO=>Okay

=FF=>not found

DS:DX=[FCBu]
Return:
AL=FF=>not found
2 FCB's: extended,
normal

DS:DX=[FCB] see 11
Return:
AL=FF=>not found

DS:DX=[FCBu]
Return:
AL=FF=>not found

=00=>okay

K-2

CPM-86(CL)

Returns:
AL=Ol=>char

=00=>no char

Returns:
BX=version

Select A and
makes all R/W

DL=drive

DX=[FCBu]
FCB(C)=O
Returns:
AL=00=>0kay

=FF=>not found

DX=[FCBo]
Returns:
AL=(0,l,2,3)=>0k

=FF=>not found

DX=[FCBu]
Return:
AL=FF=>not found
AL=(0,1,2,3)=> Okay
Curr DMA=dir record

Must be preceded
by 11 or 12.
See 11 for return

DX=[FCB]
Return:
AL=FF=not found

=00=>okay

K-2

,
1
l ,
,
1
1
1

1

1
J ,
J

1
l
i

1 ,
I

1

1
J

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX K

FUNCTION NR

Read sequential 14

Write seg. 15

Make file 16

Rename file 17

Not defined / 18
Return login vect

Current disc 19

Set disc xfr / lA
addr set DMA
offset

Allocation table/
vector

APPENDIX K

lB

MSDOS(AH)

DS:DX=[FCBo]
Return:
AL=OO=>okay

=Ol=>no data
=02=>not enough mem
=03=>partial record

Into current
transfer address

DS:DX=[FCBo]
Return:
AL=OO

=Ol=>disc full
=02=>not enough

memory

DS:DX=[FCBu]
Return:
AL=OO

=FF=>no dir.space
!nits to zero len
file
DS:DX=[FCBr]
Return:
AL=OO>ok

-=FF==>not found
DS:DX+llH=new filename
"?"supported

ND

Return:
AL=current sel drive

O=>A, ...

DS:DX=disc
transfer addr

Return:

K-3

CPM-86(CL)

DX=[FCBo]
Return:
AL=OO=>okay

=Ol=>eof-no data

Into current DMA

DX=[FCBo]
Return:
AL=OO=>okay

=Ol=>dir full
=02=>data full

DX=[FCBu]
Return:
AL=OO,Ol,02,03=>0k

!nits to zero
len file
DX=[FCBr]
Return:
AL=OO=>ok

=FF-=>not found
DX+lOH=new filename
unambiguous filename

Return:
BX=login vector

for discs

Return:
AL=current disc

O=>A, ...

DX=DMA off set

Return:
DS:BX=allocation table
DX=alloc unit count
AL=records per alloc unit
CX=sector size

ES:BX=allocation vector

K-3

APPENDIX K

FUNCTION

Not defined I
writ prot. disc

/Get R/O vector

/Set file
attributes

/Get disc
parameter

/Set/get user
code

Random read

Random write

File size

APPENDIX K

NR

le

lD

lE

lF

20

21

22

23

MSDOS(AH)

ND

ND

ND

ND

ND

DS:DX=[FCBo]
Return:
AL=OO=>ok

Ol=>no more data
02=>not enough mem
03=>partial

DS:DX[FCBo]
Return:
AL=OO=>ok

Ol=>disc full
02=>not enough mem

DS:DX=[FCBu]
Return:
AL=OO=>ok

=FF=>not found
Random record set

K-4

CPM-86(CL)

No parameters

BX=R/O Vector

DX=[FCB]
with attributes set
Return:
AL=00=>ok

=FF=>not found

ES:BX=[disc parameters]

DL=FF=>gets user code
0->F=>set user code

Return:
AL=current code
if FF in DL

DX=[FCBo]
Return:
AL=00=>ok

Ol=>read unwritten.
02=>NC
03=>can't close ext.
04=>unwritten extent
OS=>NC
06=>out of range

DX=[FCBo]
Return:
AL=OO=>ok

Ol=>NC
02=>no avail data
03=>can't close ext
04=>NC
OS=>no dir space
06=>out of range

DX=[FCB]random
Return:
AL=OO=>ok

FF=>not found
Random record set

K-4

l
1

1
I

l

1 ,
I

l

1

l
l

1
I

1

1
1
1

1

1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX K

FUNCTION

Set random rec

Set vector /
Reset drive

Create program/

Random block rd/

Random block wrt

Parse file name/

Get date I

Set date/

APPENDIX K

NR

24

25

26

27

28

29

2A

2B

K-5

MSDOS(AH)

DS:DX=[FCBo]
Set random record
in record FCB=
current blocks

AL=interrupt to set
DS:DX=vector values

DX=new prog segment

DS:DX=[FCBo]
CX=record count
Return:
Ol=>eof, complete
02=>not enough mem.
03=>eof,partial
CX=record count of read
FCB updated

See 27 except
Return:
AL=Ol=>no disc space
If CX=O=>set file
size to random record

DS:SI=[string,cr]source
ES:DI=[FCBu] destination
AL=O=>no scan off

reading gaps
l=>scan off

FCBu is created
Return:
AL=OO=>ok

CPM-86(CL)

DX=[FCBo]
Set random record
in record FCB=
next sequential

DX=drive vector
return AL=OO

ND

ND

See 22 DX=[FCBo]
Zero fills data
block

ND

AL=Ol=>ok, ? Or * present
DS: Sl=[name]
ES:DI=[blank] if no name

Return:
CX=year
DH=month
DL=day

CX,DX as 2A

ND

ND

K-5

APPENDIX K

FUNCTION

Get time/

Set time/

Set/Reset verify
flag/

/Direct Bias call

/Set DHA base

/Get OMA base

/Get max mem

/Get ABS max

/Alloc. mem

/Alloc ABS mem

/Free mem

/Free all mem

/Program Load

APPENDIX K

NR

2C

2D

2E

32

33

34

35

36

37

38

39

3A

3B

MSDOS(AH)

CH=hour
CL=min
DH=sec
DL=l/lOOths

CX,DX as 2C

DL=O

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

K-6

CPM-86(CL)

ND

ND

ND

DX=[parameter block]

DX=DMA base

Return:
ES:BX=DMA base

DX=[MCB]
Return:
AL=00=>0k

=FF=>no mem.

DX=[MCB]
Return:
as for 35

DX=[MCB]
Return:
AL=OO=>Ok

=FF=>insuff. mem.

DX=[MCB]
Return:
as for 37

DX=[MCB]

No parameters

DX=[FCBo]
ret AX=FFFFH=>
bad load else
AX=base page
BX=base page.

K-6

l

,
l
l
!

'

1 ,
1
~

I ,
1

1
1

,
1 ,
' ,
I ,

r
r
r
r
r'
L

r
r
r
t

r
r
r
r
'·

r
r
r
r
r
r
r

APPENDIX L L-1

ITEM

1

2

3

4

5

6

7

8

L. FEATURES TO BE INCLUDED IN MS-DOS VERSION 2

DESCRIPTION

A DOS function call will be added to the DOS to allow a
program to load/give control to a ".EXE" file beginning at
the current DMA address. The calling program would simply
provide an FCB formatted with the called program filename,
any parameters, the segment at which to set up the PSP, and
a flag (more on flag later). The function would (1) set up
the program segment and parameters, (2) load the program
(any file can be loaded this way, but if its extension is
.EXE, it is relocated on the way in), and (3) optionally
give the program control.

A volume identification will be internally stored on a
diskette and a mechanism for specification and display of
this identification will be provided.

Function key assignments will be made to facilitate use of
the most commonly used DOS functions. An external command
will allow character strings to be assigned by the user,
with special keyword or parameter to reset keys back to DOS
defaults.

XENIX-compatible function calls.

The DOS will be modified to allow the use of more disc I/O
buffers as memory allows.

A spooling utility will be incorporated for the printer that
will allo~ processing to continue with printing performed in
a background environment. A mechanism will be provided to
disable this function for users that cannot spare the
necessary spooling disc space.

A conditional continuation will be added to the BATCH
facility that allows the user to conditionally continue with
a batch file based upon the results of preceeding programs
and utilities. As a part of this capability a function call
will be added to allow user programs to terminate and store
the user program termination condition code.

The 1/0 system is redefined to perform character 1/0 using
named device drivers. When input or output with a named
device is requested by a program, the device name table is
searched for the needed driver. If no matching name is
found as a character device, the name is assumed to refer to
a disc file.

APPENDIX L L-1

APPENDIX L L-2

ITEM

9

10

11

12

13

14

15

16

DESCRIPTION

Device error trapping will.be expanded such that at the
option of the program, I/O device errors are trappable, in
the same manner (but using a different interrupt vector) as
disc errors are trapped. This approach is consistent with
XENIX Signals.

Console input and/or console output may be assigned
file before execution of a command or program. Or,
output of one command or program may be directed as
input to the next. This approximates the XENIX Pipe.
goes beyond the CP/M XSUBMIT facility.

to a
the
the

This

The utility EDLIN will be enhanced and modified with the
following:
a. The backup file is not deleted until necessary.
b. It is possible to recover from a full disc.
c. Multiple commands are allowed on one line.
d. Search and Replace commands continue searching with the

line after the previous match (ie. default first
parameter is current line plus one).

e. Search and Replace default to the previous search

f.

g.
h.
i.

string.
A new listing command "P" moves the current line as it
lists.
Lines may be referenced relative to the current line.
Allow the user to move text around within the file.
Allow the user to copy outside files into his text.

Microsoft will consolidate MS-DOS messages within the DOS
and utilities.

DEBUG - add an ASSEMBLE option using M86 assembler syntax,
and change UNASSEMBLE to use the same syntax.

CLS command to clear the screen from the console or batch
file - this could also be a useful function call.

Disc catalogue - holds names/volids of all files, used for
prompting user to insert required diskette when correct
volume not currently mounted.

Security scheme for data integrity/protection (file ?).
Details to be determined.

APPENDIX L L-2

1
1
1
l ,

J ,
!

1
1

1
l ,

J

l ,
j

l
'"'I

)

1
1

) ,
) ,
I
;

r
r
r
r
'

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX M M-1

M. SIRIUS 1 DEALER SPARE PARTS KIT

SIRIUS P/N

100617-01
100078-02
100353-01 (5)
100092-01
100670-01
100812-01
100470-01
100480-01
100516-01
100792-01 (5)
100820-01
100036-02
100007-05

APPENDIX M

DESCRIPTION

PCB, Video
PCB Assy, Power Supply 220/240V
Fuse, 20/240V
Disc Drive Floppy
PCB Assy,Disc Drive
Fan Assy,220/240V
PCB Assy,CPU
Switch,Rock
Switch Assy, Reset
Switch, Keyboard
Suitcase,Spares Kit
Cable, Keyboard
Keyboard,

M-1

APPENDIX M M-2

APPENDIX M M-2

1
1
1
1
1
1
1
1
1
1 ,
l
1
1
1
1
l
1
l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX N N-1

N. DOUBLE SIDED DISKETTES

N.l DOUBLE SIDED DISKETTES

Release 2.2 of the CP/M-86 operating system can use double­
sided floppy drives. If you are using a machine with double­
sided drives, you can create diskettes which have roughly twice
the storage capacity that was possible with earlier releases of
the operating system.

A Word of Caution about using Double-sided Diskettes

The great advantage in using double-sided diskettes is that
the amount of data stored on the diskette is almost twice that of
a standard single-sided diskette: 1.2 megabytes compared to 610
kilobytes. A single-sided diskette can be used on a computer
with either single-or double-sided drives. However, once a
diskette is formatted as double-sided NONE of the data on it can
be accessed by a computer which has single-sided drives.

If you have a computer which has double-sided drives, you
may not want to convert all of your diskettes into double-sided
diskettes right away, since a majority of the computers currently
in use are only single-sided and you will not be able to use your
diskettes on them.

Creating a Double-sided Diskette

You can only create a double-sided diskette on a computer
which has double-sided floppy drives. To create a double-sided
diskette, you need to use version 2.8 of the FORMAT program. If
your computer has double-sided drives, the FORMAT program asks
the following question on the 25th line of the screen:

Format both sides of the diskette (y/n) ?

If you answer by typing a 'Y' the program creates a double­
sided diskette. If you answer with a 'N' just the first side of
the diskette is formatted and you have a single-sided diskette
which can be used on both single- and double-sided machines.

Remember that you can only create double-sided diskettes on
a computer with double-sided floppy drives, having created the
double-sided diskette you can copy the operating system across
using either BOOTCOPY (CP/M-86) or SYSCOPY (MS-DOS).

APPENDIX N N-1

APPENDIX N N-2

Copying a Double-sided Diskette

To make a copy of a double-sided diskette, you must use
Version 2.5 or later, of the DCOPY program. You do not have to
tell the DCOPY program whether or not the diskette to be copied
is double-sided: the program automatically knows. To copy a
double-sided diskette, you must have double-sided drives in your
computer. If you try to DCOPY a double-sided diskette on a
computer which has only single-sided drives, DCOPY prints an
error message and aborts the copy.

Converting Single- and Double-sided Diskettes

If you have a computer that has double-sided floppy drives,
you may want to convert some of your single-sided diskettes into
double-sided diskettes (see the caution above). To do this,
create a double-sided diskette by using the FORMAT program as
described above. Then use PIP (CPM/86) or COPY (MS-DOS) to copy
the desired files from the single-sided diskette to the double­
sided diskette you just created.

At times you may need to convert a double-sided diskette
back into a single-sided diskette. Using the FORMAT program
create a single-sided diskette. Then use PIP (CPM/86) or COPY
(MS-DOS) to copy the desired files from the double-sided
diskette to the single-sided diskette. You may need two or more
diskettes to hold all of the data from a double-sided diskette.

Diskette LED's

The LED associated with each diskette is lit during diskette
I/O. Specifically, it is lit at the initiation of a read or
write and remains lit for approximately 1/2 second after the I/O
is completed. The LED also stays lit as long as there is a
"dirty buffer" in RAM since this is considered as being "in the
middle" of a write operation.

This implementation permits the following simple rule for
end users: "do not remove the diskette when the LED is lit."

If a diskette is removed while there is a "dirty buffer" in
RAM, the drive is marked Read Only (R/O). This prevents
destroying disc data in case the diskette is replaced by another
diskette.

Diskette Label

Track 0 of each disc has a label which contains information

APPENDIX N N-2

1
1
l
1

1
i

I

1

l
I

1
1

i

1
1 ,
1 ,
1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX N N-3

relating to the structure of the diskette (such as location of
the directory).

Prior to the 2.0 release space was reserved for the label,
but the label was not used by the system.

With release 2.0, two types of diskette may exist. One type
contains boot tracks, starting with track 1, with the directory
and data following. The other type has the directory and data
starting at track 1.

N.2 Boot Disc Label Format

Track 0 Sector 0

Byte
Offset

0

2

4

6

8

10

18

26

28

30

APPENDIX N

Name

System disc ID

Load address

Length

Entry offset

Entry segment

l.D.

Part number

Sector size

Data start

Boot start

Description

literally, ff ,OOh for a system
disc

paragraph to load booted
program at. If zero then boot
loads in high memory.

paragraph count to load.

l.P. value for transfer of
control.

C.S. value for transfer of
control.

disc identifier.

system identifier - displayed
by early versions of boot.

byte count for sectors.

first data sector on disc
(absolute sectors).

first absolute sector of
program for boot to load at
'load address' for 'length'
paragraphs.

N-3

APPENDIX N N-4

32 Flags indicators:
bit meaning

15-12 interleave factor
(0-15)

0 O=single sided
l=double sided

34 Disc type 00 = CP/M
01 = MS-DOS

35 Reserved

38 Speed table information for speed control
proc.

56 Zone table high track for each zone.

71 Sector/track sectors per track for each
zone.

APPENDIX N N-4

~

I
I

1
1

1
}

191'1
I

..,
I

1
...,

I
I

~
\
)

-,
!

1
1

1

1

1

r
r
r
r
r
r
r
r
r
r
r
r

r
r
r
r
r
r

APPENDIX 0 0-1

0. FUNCTIONAL SPECIFICATIONS OF THE BOOT ROM

0.1 Diagnostic ROM Board Support

1. Access to disc routines in boot ROM provided.

2. CPU registers are saved in low memory prior to memory test.
Low memory from 0 to Offh is not tested or cleared.

The boot ROM
description contained
logical flow follows:

loads diskette resident
on track 0 sector 0 of

1. Disable interrupts.

2. Clear the CRT controller.

systems from
a diskette.

a
A

3. If a memory test of the first 16K of memory fails then halt
the boot. Else set the first 16K of memory to zero.

4.

5.

If a test of the screen RAM fails then halt the boot. Else
set the screen RAM to zero.

Load the character set into the dot matrix.

6. Initialise, clear and set to high intensity the CRT.

7. Turn on the arrow display.

8. Initialise the diskette and display the diskette image at
middle screen.

9. Turn off all disc drives.

10. Select drive A.

11. If a drive door closes, select that drive as the boot disc
otherwise every 32nd time blink the arrow display.

12. When a drive has been selected then turn off the display and
turn on the disc drive motor.

13. Read a header record from track 0 sector 0 and if an error
go to the disc error output.

14. Otherwise display the clock and memory determination icons
and test for end of memory.

APPENDIX 0 0-1

APPENDIX 0 0-2

15. Save the memory size for comparison with system requirements
and display it on the CRT with the clock off.

16. Turn the clock on and read the diskette definitions and if a
disc read error occurs report it via the disc display.

17. Check the disc label and if invalid go to the not a system
disc error display.

18. Bring the disc online with all disc parameters loaded.

19. Compute the parameters to load the system and then load the
system into memory. After successfully loading it transfers
to the system via a programmed interrupt 255.

20. On the event of a reportable error display it then waits for
the disc door to open at which time control is passed to 6.
above.

0.2 ICONS for boot ROM Version Pl

At power on in the middle of the bottom line a flashing
arrow and a diskette are displayed if both disc drive doors are
open. When a drive door is detected to have closed that disc is
selected for loading a system. A memory symbol, a large 'M' at
the left of middle is displayed and a clock image replaces the
arrow/disc formerly displayed. If the memory required cannot be
read from the disc record then an image containing, diskette,
large 'X', and an error code is displayed on right of middle. If
the memory required by the target system is more than the
processors capacity then an image with a large 'X' and the size
of memory in paragraphs follows the 'M' at left of middle.

Normal load sequence

1. arrow/disc

2. M clock

3. M PPPP clock []

4. M PPPP []

5. clock

6. Target system display.

APPENDIX 0 0-2

l
1
1
1
l
1

l
1

I

1
i

_,
i
l

1 ,
\

!111111/

\

1
.,
I

1 .,
\

1
J ,
I

r
r
r
l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX 0 0-3

0.3 Exception Displays

1. M X PPPP
Means that the disc system requested more memory than the
processor has.

2. [] X ee where [] =diskette image.
Means that a diskette error occurred of type 'ee'.

'ee' Error Codes

ee
value error description

01 no sync pulse detected

02 no header track

03 checksum error in header

04 not right track

05 not right sector

06 not a data block

07 data checksum error

08 sync too long

99 not a system disc

0.4 Universal Boot EPROMS

New boot EPROMs have been developed which allow the Sirus 1
to boot off any available device; ie. floppy, hard disc, network,
etc. These EPROMs not only eliminate the need for specialised
sets which were used in the past, but also provide some primitive
yet effective diagnostic capabilities to field service personnel.

A system equipped with Universal EPROMs can be easily
identified by the different ICONS which are displayed following a
power on reset or push button reset. The memory sizing ICON is
reported in kilo-bytes rathe~ than Segments (M 128K instead of M
2000). The type of device ICON from which the CPU is trying to

APPENDIX 0 0-3

APPENDIX 0 0-4

boot from is displayed along with the specific number
floppy A or hard disc 0,. and 1 for floppy B or hard disc
new ICON has been installed and will be presented to the
while the system tries to boot off the Network.

(0 for
1). A
screen

When the CPU is powered on, or reset, the Universal EPROMs
will execute diagnostic tests on the screen RAM, boot ROM
checksum, dynamic RAM (DRAM), programmable interrupt controller
(PIG), and some of the I/O devices. If the CPU encounters an
error during these diagnostic tests, it will report the error
either to the screen (assuming enough RAM is functional), or via
an OUTPUT instruction to I/O port OFFFF hex.

In the case where there is enough functional circuitry to
report the error to the screen, the error code will be reported
on the 25th line along with ICON display.

The method for more catastrophic errors is to report, via
the output instruction, the type of error in the UPPER NIBBLE of
the data byte, and if possible the failing device in the LOWER
NIBBLE of the data byte. This is done by doing a write to I/O
port OFFFF hex. The boot code then loops on this instruction
allowing a technician to use an oscilloscope to analyse the
failure.

ERROR CODE TYPE OF ERROR BAD DEVICE
UPPER I LOWER

0 1 Screen Ram, not reproduced Undetermined
0 2 Rom Checksum Error Boot Rom
0 3 DRAM, not reproduced Undetermined
0 4 Internal CPU Error 8088 Failure
1 x Screen Ram, Single Bit X=failing bit
2 x Screen Ram, Multiple Bits X=lst fail bit
3 x DRAM, Single Bit X=failing bit
4 x DRAM, Multiple Bits X=lst fail bit

Two examples of CPU error detection where there is
sufficient circuitry available to report failure to the screen,
are listed below.

M 16K 3X

In this example, the CPU has found the first 16K bytes of
dynamic ram to be functional but found a faulty ram location in
an area above the 16K bytes. The code 3X hex is defined as

APPENDIX 0 0-4

,
l

l
...,
!

l
~

\

1

1

l

1 ,
\

1
1
1 ,

\ ,
\

1

l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX 0 0-5

follows; the upper nibble 3 indicates a single bit failure in
dynamic ram, and the X would be in the range of 0 - F to indicate
which ram bit contained the failure.

M 16K 4X

This error code is defined as follows; the upper nibble 4
indicates a multiple bit dynamic ram failure, and the lower
nibble X indicates the first failing ram bit (starting with the
most significant bit). Replace this device and repeat test until
system boots or other error code is present.

As stated previously the Universal Boot EPROM also tests the
PIG and the three 6522's resident on the CPU board. The CPU will
write to some of the registers within the devices and then
attempt to read back the value written to that register. If the
CPU cannot read back the same value written, then the faulty I/O
device will be reported to the 25th line on the CRT screen. This
error code will appear to the right of the Device ICON, and is
described below.

(25th line) M 128K

Example:

M

1
2
3
4

128K

programmable interrupt controller
parallel port interface
keyboard interface
user port interface

x 1234

X0030

This indicates a diagnostic fault while trying to access the
keyboard interface.

APPENDIX 0 0-5

APPENDIX 0 0-6

APPENDIX 0 0-6

,
1
1
1

]

1
]

1
1
1
]

1
j

1
j

J
1 ,

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX P P-1

P. TRANSFERRING ASCII FILES FROM COMMODORE TO SIRIUS

ASCII files including programs may
C.B.M. computers to SIRIUS via the C.B.M.
SIRIUS 1 control port.

be transferred
user port and

from
the

CABLE - a download cable is attached to the SO-pin internal
user port (Jack-S) on the SIRIUS CPU board. The
other end of the cable is connected to the user port
(J2) of the Commodore.

C.B.M. (J2) SIRIUS (JS)

GND A --------------------------- 11 GND
PAO c --------------------------- 16 PAO
PAl D --------------------------- 18 PAl
PA2 E --------------------------- 20 PA2
PA3 F --------------------------- 22 PA3
PA4 H --------------------------- 24 PA4
PAS J --------------------------- 26 PAS
PA6 K --------------------------- 28 PA6
PA7 L --------------------------- 30 PA7
CB2 M --------------------------- 12 DSTB

SOFTWARE - For Sirius, a utility called PIPPIN.CMD is available
from most dealers and distributers. It will work under
CP/M-86 or MS-DOS (with emulation) perfectly.

By invoking A>PIPPIN FILENAME=INP: [E] <er>

PIPPIN can also be invoked by PIPPIN <er> and a '*' will
appear to accept the remaining command, the difference is that
PIPPIN will &tay active if invoked this way and allow for
multiple transfer of files without it returning to the operating
system and having to be re-loaded each time.

The byte-stream transmitted from the source machine can be
stored in the file, FILENAME, on the SIRIUS. This byte-stream
must be terminated with an ASCII end-of-file character, AZ (lAH).
The [E] option causes PIPPIN to echo the transfer to the screen.
"'Wildcard" file designators may not be used in this operation.

SOFTWARE - For C.B.M., the following program may be used for the
Commodore computer. If compiled it will run
significantly faster.

APPENDIX P P-1

APPENDIX P P-2

Note: If you wish to transfer programs from the Commodore,
you must first convert them to ASCII. This may be done
as follows:

DLOAD"PROGRAM NAME",DO <er>
DOPEN#S,"ASCII NAME",W,DO:CMDS:LIST <er>
PRINT#S,:DCLOSE <er>

You now have an ASCII version of your program on disc.
10 REM)'d:**************************************
20 REM * *
30 REM)°: C. B .M. TO SIRIUS ASCII FILE TRANSFER *
40 REM * *
50 REM * BY KEITH PICKUP - BARSON COMPUTERS *
55 REM * *
60 REM * this version for C.B.M. 8032 *
65 REM * *
70 REM)°: s=home ... =clr/home q=cursor down *
80 REM * r=rvs/on o=rvs/off *
85 REM * *
90 REM 'Id:**************************************
100 PRINT"sss ... ";
110 SP$=" II: SP$=SP$+SP$
120 PRINT""qr C.B.M. TO SIRIUS 1 FILE TRANSFER PROGRAM - (C) KEITH PICKUP";
130 PRINT" [BARSON COMPUTERS] o";
140 PRINT:PRINT:INPUT"WHAT IS THE NAME OF THE PROGRAM TO TRANSFER ";PG$
150 DOPEN#S,(PG$),R:SC=33487
160 IFDS=62THENPRINT"qrFILE - NOT FOUNDo":FORY=lTOlSOO:NEXT:DCLOSE:GOTOlOO
170 PRINT:PRINT"TRANSFERRING FILE r";PG$;"o TO SIRIUS 1"
175 PRINT CHR$(15);
180 GET#S,A$
190 IFST=64THEN460 :REM DO END OF FILE lA HEX
200 X=ASC(A$):IF X>l27 THEN X=X-128 :REM KEEP TO ASCII
205 : :REM <CR> & <LF>
210 IFX=l3THENGOSUB1000:X=10:GOSUB1000:CT=O:PRINT" ... ";:GOT0180
270 IFX<lTHEN X=32
280 POKESC+CT,X
300 GOSUB lOOO:GOTO 180 :GO TO MAIN OUTPUT ROUTINE
460 REM END OF JOB
470 X=l3:GOSUBlOOO:X=10:GOSUB1000:X=26:GOSUB1000:X=O:GOSUBlOOO:DCLOSE
480 PRINT"qqqqqqqqJOB COMPLETED - O.K. ":FORK=lT03000:NEXT:CLR:GOT0100
1000 POKE59459,255 :REM SET DDR 0-7 AS OUTPUTS
1010 POKE59467,PEEK(59467)AND227 :REM DISABLE SHIFT REG
1020 POKE59468,PEEK(59468)AND310Rl92 :REM SET CB2 LOW
1030 POKE 59471,X:CT=CT+l :REM WRITE VAR. X TO ORA
1040 POKE59468,PEEK(59468)AND310R224 :REM SET CB2 HIGH
1050 RETURN

APPENDIX P P-2

.,
I ,
)

1

l
,..,
I

1
~

I

111!11

I
)

"" .I I ,
\

""" I

l"1I!!)

I
)

.,,..,

I ,
I

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX Q Q-1

Q. UNPROTECTING DISCS

If you have ever accidentally re-saved your basic program
onto disc in protected mode, overwriting your existing source
program, it is possible to recover it. Below is a sample session.

A>MSBASIC
BASIC-86 Rev. 5.27
[MS-DOS Version]
Copyright 1977-1982 (C) by Microsoft
Created: 8-Nov-82
62281 Bytes free
Ok
load"pinstall" ** load in protected program MSBASIC will

Ok

find the first byte read is 'FE', this
tells BASIC that it must unscramble the
following program

new ** type new, this does not erase the program

Ok

but inserts 3 bytes '00 00 00' at the
start of memory for program storage.
These 3 bytes normally are at the end of
your program to signify it's end mark.

def seg:bsave"prog",2700,50000

Ok
system

A>debug prog

APPENDIX Q

** this sets the default segment and saves a
block of memory to disc. Within this block
is your program in it's unscrambled form

** exit to the operating system

** load DEBUG and your saved memory block

Q-1

APPENDIX Q Q-2

DEBUG-S6
>d
05A7:0100
05A7: 0110
05A7:0120
05A7: 0130
05A7:0140
05A7:0150
05A7:0160
05A7:0170

version 1. 07
** display memory from 0100

FD 79 OA SC OA 50 C3 00-00 00 00 ·oo 00 00 00 00
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
64 00 3A SF DB 00 B3 0A-6E 00 3A SF DB 00 C4 OA
7S 00 3A SF DB 20 SO 49-4E S3 S4 41 4C 4C 00 OS
OB S2 00 3A SF DB 20 S4-68 69 73 20 70 72 6F 67
72 61 6D 20 69 6E 73 74-61 6C 6C 73 20 76 61 72
69 6F 7S 73 20 70 72 69-6E 74 6S 72 73 20 66 6F
72 20 S7 6F 72 64 S3 74-61 72 20 33 2E 30 32 00

}y ... PC

d.:.[.3.n.:.[.D.
x.:. [PINSTALL ..
... : .[This prog
ram installs var
ious printers fo
r WordStar 3.02./

** at address OllD are the 3 bytes that were
inserted after the 'new' command, so by
placing a 'FF' byte at OllE we are setting
the normal unprotected first byte

>eOlle
OSA7:011E 00.ff
>nprog.bas ** rename the program with a .BAS extension

1 ,
i

1
'""" I

..,
\

1

1

1

1
1 ,

\

1

1

l

1
)

.,
I

'1lill!

I

1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX R R-1

R. ASYNC PROTOCOL

R.l Data Block

Async transmits
trailers as follows.

data in 133-byte blocks with headers
All byte values are in hexadecimal.

and

header
byte

Olh

block # I block #

1 to FFhl XOR FFh
then I
0 to FFhl

128 data bytes checksum NAK

15h

~~~~ ~~~~-'~~~~- -~~~~~~~- -~~~~- -~~-

Notes: 

1. The first byte in the block is a header byte. A value of 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Olh indicates that this block is a data block. 

The second byte in the block is the block number which is 1 
for the first block transmitted, 2 for the second block, 
etc. When the value passes FFh the block numbers start 
again at zero. 

The third byte is the value of block number exclusive-or'd 
with FFh. This provides a check on the integrity of the 
block number. 

Following the third byte is 128 bytes of data. 

Following the data is a checksum byte. The 
formed by taking the algebraic sum of all the 
any carry or overflow is discarded. 

checksum is 
data bytes, 

The last byte in the block is the NAK character (15h). 

The receiver commences by sending NAK characters. When the 
transmitter receives a NAK character it starts transmitting. 

The receiver responds with the following single characters: 

ACK (06h) - block received correctly 
NAK (15h) - incorrect frame, checksum not correct 
CAN (18h) - receiver wishes to abort 

The transmitter may send the following single characters: 

CAN (18h) abort 
EOT (04h) - end of transmission 

APPENDIX R R-1 



APPENDIX R R-2 

R.2 File Name Transmission Blocks 

Multiple files may be transmitted by the sender, in which 
case the data is preceded by a file name block. 

There are two types of file name blocks: 

1. Block containing a file name. 

header file name file name I checksum EOT I 

2. 

byte indicator I 
8-byte name plus! 

02h 24h 3-byte extension I 
I 

Block indicating no more files. 

header 
byte 

02h 

no-more-files 
byte 

25h 

EOT I 
I 
I 

I 04h I 

on file I 
name I 
1 byte I 04h I 

l __ I 

~~~ ~~~~~~'~~' 

Notes:

1. A header byte of 02h indicates a file name block.

2.

3.

The second byte has the value 24h if the block contains a
file name or the value 25h if there are no more files names
to come.

The file name is an 11-byte string containing 8 bytes for
the file name (packed with spaces if necessary) and 3 bytes
for the extension.

4. The checksum is on the 11-byte file name.

5. The last byte is the EQT character (04h).

APPENDIX R R-2

i-.,

I

1
\

~

\

1

1
J

,,
I

1
..,
i

1
...,

\

1
"""" i I

l

l ,
I

"""!
\

.,
\

l ,
\

r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX S S-1

S. COMMUNICATIONS

S.l IBM REMOTE BATCH EMULATION

Product Description

1. Half Duplex, synchronous operation.

2. Requires no additional hardware.

3. 1200 to 9600 Baud.

4. Device types supported by the package are 2770, 2780, 3741
or 3780.

5. Can be used to transfer files between two Sirius computers.

6. Files can be transmitted from the Sirius and both line
printer and punch data can be received either to disc files
or direct to the printer.

7. Console support is included to allow interaction with the
host processor and local control of the emulator functions.

8. Commands normally input by the operator at the console may
be prepared in a disc file and submitted to the emulator
with a single command, thereby making the package suitable
for use by operators unfamiliar with the syntax required by
the host machine.

9. Chaining can be invoked to enable multiple receive files to
be written to individual disc files.

10. Transmission can be in either transparent or non-transparent
mode.

11. The emulator will not operate in a multidrop environment
(ie. point-to-point link only).

12. Operating System - CP/M-86 or CP/M-86 emulator under MS-DOS.

Product Requirements:

To enable the remote batch emulation package to operate the
following conditions must be satisfied on the host computer:

APPENDIX S S-1

APPENDIX S S-2

tick
.

a. Binary Synchronous communications port

b.

c.

d.

Half Duplex

System is generated with:

(i) Only one terminal configured on the port

(ii) This terminal to be either:

or
or
or

2770
2780
3741
3780

The Sirius must be connected to the host by
one of the following methods:

Synchronous modems

A modem eliminator

Short haul modems (limited distance)

or

or

S.2 IBM 3270 EMULATION PACKAGE

Product Description

1. Half Duplex, synchronous operation.

2. Requires no additional hardware.

3.

4.

5.

6.

1200 to 9600 Baud.

The package is capable of interpreting screen formatting
sequences, data link control and handling polling responses,
time out control and cyclic redundancy checking to ensure
the integrity of received data.

Printer support is provided to emulate IBM printer types
3284 or 3286. The printer definition can define the
operating system list device as the printer or a disc file
may be used.

Diagnostic aids
analog loop back

incorporated in the
test for terminal

package
to modem

include an
interface

APPENDIX S S-2

1

1
~

\

l

1

,
I

....,
I

l
l
1
llllil
I ,
l
l
1
1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX S S-3

7.

checking and a built-in trace buffer used to keep a cyclic
record of all data and protocol traffic transmitted and
received.

Device types supported by the package are 3271 controller
with 3277 video display or optionally a 3275 video display
may be emulated.

8. The Sirius keyboard can be configured to provide the special
key functions found on the 3277 device (eg. PFl, PAl etc).

9. The package is capable of communicating in either ASCII or
EBCDIC codes. Built in translation tables are automatically
invoked for EBCDIC transmissions.

10. Operating System - MS-DOS.

Product Requirements

To enable the 3270 emulation package to operate the
following conditions must be satisfied on the host computer:

a.

b.

c.

Binary Synchronous communications port

Half Duplex

System is generated with:

(i) Only one terminal configured on the port

(ii) This terminal to be a 3271 controller
with a 3277 video display

(iii) The control unit address (CUA) should
be set to hex 40 *

(iv) The device unit address (DUA) should
be set to hex 40 *

(v) The Sirius must be connected to the host
by one of the following methods:

Synchronous moderns

A modern eliminator

APPENDIX S

tick

S-3

or

APPENDIX S S-4

*

or
Short haul modems (limited distance)

This package can be configured to use different control unit
address or device unit address.

S.3 ASYNCHRONOUS COMMUNICATIONS PACKAGE

Product Description

1. Full or Half Duplex.

2.

3.

4.

5.

6.

7.

50 to 4800 Baud.

Terminal Emulation mode allows the Sirius to emulate a
teletype compatible device for interactive sessions with a
host computer.
Files may also be transmitted and received in this mode
subject to the limitations/coinditions detailed below.

The user may configure the package in terms of bits per
character, parity checking and number of stop bits.

Handshaking is defined by the rules outlined below.

Datalink mode allows the Sirius to transfer files to
another Sirius using the ASYNC package or to
computer capable of handling the special protocol
and checksum sequences used for this transmission
(See appendix R for details of the protocol).

either
another
framing
method.

Configuration options also allow the user to select how much
memory is used within the Sirius for data buffers ie. how
much data is received from the transmission line before
handshaking procedures are invoked.

Requires no additional hardware.

8. Operating System - CP/M-86 or CP/M-86 emulator under MS-DOS.

Product Requirements

1. Terminal Emulation - Interactive Use

To enable the ASYNC comms package to communicate
"teletype compatible" device in an interactive mode the
machine must have the following facilities:

APPENDIX S S-4

as a
host

1 ,
,

I

l

l
1 ,

I

Piii!

I

1

'lli!il

I ,
I

....,
i
I

1 ,
1 ,

l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX S S-5

tick

a. Asynchronous Communications Interface

b. Baud rate selectable in range 50-4800 Baud

c. Full or Half Duplex facilities

d. Eight bits per character

e. No parity

f. One stop bit

If all of the above conditions are satisfied then the
package, as supplied, will function provided a suitable cable is
used for connection.

N.B. Conditions d,e and f are re-configurable in the ASYNC
package, if the host settings are different. Note that the
terminal emulation only provides for teletype compatibility, and
therefore will not function correctly if it receives special
screen control characters eg. VTlOO interfaces.

2. Terminal Emulation - File transfer

File transfer is possible in terminal emulation mode under
the following conditions:

a.

b.

Host ----> Sirius

(i) Host machine must obey CTL/S - CTL/Q
(XON/XOFF) handshaking

(ii) The file to be received must fit on
available disc space

(iii) No error checking is carried out

Sirius ---->Host

(i) Host must transmit a linefeed character
(decimal 10) to the Sirius each time a
carriage return (decimal 13) is received
from the Sirius

(This is the handshaking procedure

APPENDIX S

tick

S-5

APPENDIX S

employed for file transfer from the
Sirius)

(ii) No error checking is carried out

3. Datalink Mode

S-6

This mode employs an error checking protocol whereby the
transmitting Sirius envelopes consecutive blocks of data with
frame header and trailer characters and also appends a block
check character to each block. The receiving Sirius strips off
the frame characters and validates the block check character.
The Datalink mode incorporates all error checking and automatic
retransmission in the event of errors.

a. This mode can only be used to transfer files
between two Sirius machines or between
Sirius and Apricot

For a description of the datalink mode, see appendix R.

S.4 ASYNC PACKAGE - REMOTE TERMINAL

An attractive feature of the Asynchronous Communications
package allows for remote operation of another Sirius. When one
Sirius computer is connected to another Sirius (or to another
computer of similar capabilities), the second computer can be
driven from the keyboard and screen of the first.

To use this technique, the 'IOBYTE' facility must
implemented on the second machine (allowing redirection
logical devices to any physical device). The console of
second computer is redirected to the communications link
therefore, to the screen and keyboard of the first Sirius
computer.

be
of

the
and

1

In the case of Sirius to Sirius this is supported under
CP/M-86 version 1.1/2.4 or later and MS-DOS version 1.25/2.5 or
later, using port A.

Remote Operations

The operator of the
terminal) redirects the
communications port, port A.

APPENDIX S

second machine
console to

(known
the

as remote
asynchronous

S-6

1

1
1

I

l

1

1

~

I
1!111111

I
I

1
1

I

1
1
1
~

I

I ,
I

IJillil
I

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX S S-7

Type:

STAT CON:=TTY: <CR>

The screen at the remote terminal is normally blank during
the communication operations but everything that appears on the
first Sirius' (local terminal) screen can be echoed remotely so
before typing STAT CON:=TTY:

Type:

STAT LST:=CRT: <CR>
<ALT>P

To run the remote terminal from the keyboard of the
machine (local terminal) load the ASYNC package into the
terminal and put it into terminal emulation mode.

Type:

ASYNC T <CR>
press the <CR> key twice

first
local

The remote terminal operating system prompt should appear.
The local terminal can now access files and programs from the
remote terminal.

eg. DIR <CR>

Produces a directory listing on the local screen of the disc
file contents of the remote Sirius.

Transferring Files from one Computer to Another

If both computers have ASYNC on line, no one needs to be at
the remote terminal - the whole process can be run from your
local terminal. Transfer of files is carried out in datalink
mode.

Remote Terminal to Local Terminal

1. On remote terminal type:

STAT CON:=TTY: <CR>

APPENDIX S S-7

APPENDIX S S-8

2.

3.

4.

5.

On local terminal type:

ASYNC T <CR>
press <CR> once or twice

The operating system prompt of the remote terminal will
appear.
On local terminal invoke datalink mode for remote terminal,
in preparation to send a file eg. TEST.DAT.

Type:

ASYNC SQ TEST.DAT <CR>

(The secondary option, Q, keeps cursor control characters
and status messages from disturbing transmission).

On local terminal exit from ASYNC.

Type:

<ALT> V
<ALT> E

On local terminal invoke ASYNC in datalink mode in order to
receive file eg. TEST.DAT. Then revert to Terminal mode
when transfer is complete.

Type:

ASYNC RT TEST.DAT <CR>

Local Terminal to Remote Terminal

1. On remote terminal type:

STAT CON:=TTY: <CR>

2. On local terminal type:

3.

ASYNC T <CR>
press <CR> once or twice

The operating system prompt of the remote terminal should
appear.
On local terminal invoke datalink mode for remote terminal,
in preparation to receive a file eg. DEMO.TX!

APPENDIX S S-8

,
I

~

I ,
I

l

1
'liiilJ
I

1
,,
I

liii!il

l
I

,,
I
i

1
1

) ,
l
,,

I

1
~

I ,
i

r
r '

r '

'

r '
'

r '
.

r .

r '

r '

r .
.

r ' '

. r
r)

'

r '
'

r
r '

'

r
w

r ' .

r '

r ' .

APPENDIX S S-9

4.

5 .

Type:

ASYNC RQ DEMO.TXT <CR>

On local terminal exit from ASYNC.

Type:

<ALT> V
<ALT> E

On local terminal invoke ASYNC in datalink mode in order to
send a file eg. DEMO.TXT. Then reset to terminal mode when
transfer is complete.

Type:

ASYNC ST DEMO.TXT <CR>

APPENDIX S S-9

APPENDIX S S-10

APPENDIX S S-10

,
1
j

1
1
1
1
1 ,
1
1
]

1
1
]

]

1
1
1

II\

READER'S COMMENT FORM

Your comments are our main source of ideas for improvement.
Please use this form to provide us with feedback on this
document.

DOCUMENT:
Title: Supplementary Technical Reference Manual

YOUR GENERAL REACTION:

Overall quality:
Text Clarity:
Usefulness of format:

YOUR SPECIFIC COMMENTS:

[]Excellent
[)Very clear
[]Helpful

Did you find any errors in the document?
If so, describe:

[]Adequate
[)Adequate
[]Adequate

[]Poor
[]Poor
[]Poor

Was any important information omitted from the document?
If so, describe:

What sections of the document were especially useful to you?

What sections were of no use to you?

How could the material be presented to be more helpful to you?

READER'S NAME:
JOB TITLE:
COMPANY:
ADDRESS:

- 0 V E R -

Please complete and return this form to:
Attn: Sirius

Barson Computers Pty.
335 Johnston St.,
MELBOURNE VIC 3067

Technical Support .
Ltd. or Barson Computers P/L.,

331 Pacific Hwy.,
CROWS NEST NSW 2065

or Barson Computers (NZ)
P.O. Box 36045,
AUCKLAND NEW ZEALAND

