
Programmer’s
Tool Kit

Volume I

COPYRIGHT

© 1983 by VICTOR®. © 1982 by Microsoft Corporation.
© 1982 by Computer Control Systems, Inc., Largo, FL 33541.
© 1982 by Phoenix Software Associates Ltd.

Published by arrangement with Microsoft Corporation, Computer Control
Systems, Inc., and Phoenix Software Associates Ltd., whose software has
been customized for use on various desktop microcomputers produced by
VICTOR. Portions of the text hereof have been modified accordingly.

All rights reserved. This publication contains proprietary information which
is protected by copyright. No part of this publication may be reproduced,
transcribed, stored in a retrieval system, translated into any language or
computer language, or transmitted in any form whatsoever without the prior
written consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road Scotts Valley, CA 95066 (408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
MS-DOS is a registered trademark of Microsoft Corporation.
CP/M-86 is a trademark of Digital Research, Inc.
FABS/86 and AUTOSORT are trademarks of Computer Control Systems, Inc.
PMATE-86 is a registered trademark of Phoenix Software Associates Ltd.
WordStar is a trademark of MicroPro.

NOTICE

VICTOR makes no representations or warranties of any kind whatsoever with
respect to the contents hereof and specifically disclaims any implied warranties
of merchantability or fitness for any particular purpose. VICTOR shall not be
liable for errors contained herein or for incidental or consequential damages
in connection with the furnishing, performance, or use of this publication
or its contents.

VICTOR reserves the right to revise this publication from time to time and to
make changes in the content hereof without obligation to notify any person
of such revision or changes.

First VICTOR printing February, 1983.

ISBN 0-88182-018-0 Printed in U.S.A.

II PROGRAMMER’S TOOLKIT, I

CONTENTS Programmer’s Tool Kit, Volume I

* 1. FABS/86

2. AUTOSORT/86

pPZ. PMATE-86

X 4. EFONT

X5. KEYGEN

* 6. MODCON
JUP&KSZO £ & ?3 y
Afp ZC

T^d>(77~ v/b/o,'^< i

A./7^ ZZ Z

PROGRAMMER’S TOOL KIT, I III

CONTENTS Programmer’s Tool Kit, Volume II

1. Introduction

2. MS-LIB

3. MS-LINK

4. MS-CREF

5. DEBUG

6. MACRO-86

7. SYSELECT

IV PROGRAMMER’S TOOL KIT, I

OVERVIEW

This kit describes the following utilities:

► FABS/86 A Fast Access B-tree System used to organize data
for minimum retrieval time; designed to be called
from high-level languages.

► AUTOSORT/ 86 A comprehensive sort utility that can be used
stand-alone or called from application programs.

► PMATE-86 A full-screen, expandable editing system that allows
you to create and maintain text files.

► EFONT A font editor used to define or modify the char­
acteristics of individual keys on the keyboard.

► KEYGEN A keyboard generator used to define the charac­
teristics of individual keys on the keyboard.

► MODCON A console modification utility that allows you to
set and save keyboard tables and character sets.

PROGRAMMER’S TOOL KIT, I V

IMPORTANT SOFTWARE
DISKETTE INFORMATION

For your own protection, do not use this product until you have made a
backup copy of your software diskette(s). The backup procedure is described
in the user’s guide for your computer.

Please read the DISKID file on your new software diskette. DISKID contains
important information including:

► The product name and revision number.

► The part number of the product.

► The date of the DISKID file.

► A list of the files on the diskette, with a description and revision number
for each one.

► Configuration information (when applicable).

► Release notes giving special instructions for using the product.

► Information not contained in the current manual, including updates,
additions, and deletions.

To read the DISKID file onscreen, follow these steps:

1. Load the operating system.

2. Remove your system diskette and insert your new software diskette.

3. Enter —

TYPE DISKID

and press Return.

4. The contents of the DISKID file is displayed on the screen. If the file
is large (more than 24 lines), the screen display will scroll. Type ALT-S
to freeze the screen display; type ALT-S again to continue scrolling.

PROGRAMMER’S TOOL KIT, I VII

FABS/86

COPYRIGHT

© 1983 by VICTOR®.
© 1982 by Computer Control Systems, Inc.

Published by arrangement with Computer Control Systems, Inc., whose
software has been customized for use on various desktop microcomputers
produced by VICTOR. Portions of the text hereof have been modified
accordingly.
All rights reserved. This publication contains proprietary information which
is protected by copyright. No part of this publication may be reproduced,
transcribed, stored in a retrieval system, translated into any language or
computer language, or transmitted in any form whatsoever without the prior
written consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
FABS/86 is a trademark of Computer Control Systems, Inc.
CP/M-86 is a trademark of Digital Research, Inc.
MS-DOS is a registered trademark of Microsoft Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind whatsoever with
respect to the contents hereof and specifically disclaims any implied warranties
of merchantability or fitness for any particular purpose. VICTOR shall not be
liable for errors contained herein or for incidental or consequential damages
in connection with the furnishing, performance, or use of this publication
or its contents.

VICTOR reserves the right to revise this publication from time to time and to
make changes in the content hereof without obligation to notify any person
of such revision or changes.

First VICTOR printing February, 1983.

ISBN 0-88182-011-3 Printed in U.S.A.

II PROGRAMMER’S TOOL KIT I

CONTENTS

1. An Overview of FABS/86 .. 1-1
1.1 General Information .. 1-1
1.2 Data Storage and Retrieval.. 1-1

The FABS/86 Difference.. 1-3
Using FABS/86 to Retrieve a Record................................... 1-3
Keys.. 1-4

2. FABS/86 Commands.. 2-1
2.1 Build... 2-2
2.2 Close... 2-3
2.3 Create... 2-3
2.4 Delete... 2-4
2.5 Get Maximum Key Length.. 2-5
2.6 Get Next Record Number.. 2-6
2.7 Get Number of Deletes.. 2-6
2.8 Get Number of Primary Keys.. 2-7
2.9 Get Number of Records.. 2-8
2.10 Insert... 2-8
2.11 Open... 2-9
2.12 Replace... 2-10
2.13 Search... 2-10
2.14 Search First... 2-12
2.15 Search Generic ... 2-12
2.16 Search Last... 2-13
2.17 Search Next... 2-14
2.18 Search Previous... 2-15
2.19 Write Page Map... 2-15

FABS/86 III

3. Using FABS/86 With Programming Languages........... 3-1
3.1 FABS/86 and the MS-BASIC Interpreter............................. 3-1

Calling FABS/86 from MS-BASIC.. 3-1
Test Programs... 3-3

3.2 FABS/86 and the MS-BASIC Compiler................................. 3-5
Calling FABS/86 from the MS-BASIC Compiler............... 3-5
Test Programs for the BASIC Compiler............................... 3-6

3.3 Using FABS/86 With MS-Pascal.. 3-7
3.4 FABS/86 and MS-FORTRAN.. 3-8
3.5 FABS/86 and MS-COBOL.. 3-10

4. FABS/86 Error and Warning Codes............................. 4-1

Appendix A: FABS/86 PUBLIC Interfaces and
Absolute Offset Entry Points. A-l

IV PROGRAMMER’S TOOL KIT I

CHAPTERS

1. An Overview of FABS/86

2. FABS/86 Commands ..

3. Using FABS/86 With Programming Languages

1

I
2

I
3

4. FABS/86 Error and Warning Codes 4

Appendix A: FABS/86 PUBLIC Interfaces and
Absolute Offset Entry Points

FABS/86 V

AN OVERVIEW OF FABS/86

GENERAL INFORMATION 1.1

One of the biggest problems when you compile data with a computer is
how to retrieve that data once you’ve compiled it. How can you locate the
information you want in the least amount of time using the simplest search
procedure? The FABS/86 (Fast Access Btree Structure) program can help
you solve this problem.

FABS/86 is an assembly language program module that uses key files for
fast data retrieval with large data files. FABS/86 assigns input data to key
files, and arranges those files in balanced trees (Btrees) to speed data retrieval.
When you need to access a record in your data file, FABS/86 searches down
the tree to locate that record. If necessary, FABS/86 rearranges the key files
on that tree for easier access to your data base.

You should have at least a basic knowledge of programming in a high-level
language (such as Pascal or BASIC) before you start using FABS/86. You
should also have a rudimentary knowledge of how files are maintained in
a computer system. If you are a beginning programmer, you should find
FABS/86 easy to understand once you have mastered the data file concepts
in your programming language.

DATA STORAGE AND RETRIEVAL 1.2

Whether you are using a computer or a file cabinet, the first step in the
process of storing data is about the same. You give each piece of data a
key name (an account number, subject, and so on) that distinguishes it
from other pieces of data in the same filing system. The difference between
computers and file cabinets starts when you actually put the new piece of
data into the system. With a file cabinet, you shift all of the other records
in the cabinet to make room for the new data. When you’re storing data

FABS/86 1-1

on a diskette or hard disk, however, it takes too long for the computer to
move all of the other records. This problem is generally overcome with one
of the following techniques:

1. The new data is kept separate from the existing records until the insertion
process is complete. After you’ve entered all of the new data, it is sorted
into the existing data file.

2. An additional file (a key file) is created. This key file contains a field
(key) into which the data is sequenced. It also contains an associated
record pointer (the record number) of the data record that contains the
key. Using this system, only the smaller key file has to be shuffled around
each time you enter new data. Any data you enter is easily retrievable:
Once the key is found, the data record pointer is used to access the
data you want.

Both of these techniques have their problems, however. If you’re using the
first method, for example, your data is normally retrieved by using a “binary
search.” A binary search divides the data file in half, and determines whether
the desired field (key) is in the upper or lower half of the file. Then, the
search determines if the key is in the upper or lower half of the half chosen
in the first step and so on, until the key is found or the file is exhausted.
With large data files, a binary search can take a long time.

A binary search also causes problems during the insertion process, when
you need to make sure that none of the inserted records are already in your
file. In this case, all unsorted data inserts are searched to ensure that they
do not already exist in your file.

Another method maintains keys in a sorted key file and uses an overflow
file for inserted keys not yet sorted into the key file. The binary search
technique is used to find the key and the associated data record pointer.
If the key is not found in the sorted key file, the overflow file is searched.
As the overflow file gets bigger, retrieval gets slower. Periodically, you must
resort the key file to incorporate the keys in the overflow file.

1-2 PROGRAMMER’S TOOL KIT I

THE FABS/86 DIFFERENCE

FABS/86 also maintains keys in a sequential key file — but that is where the
similarity ends. Instead of storing data in a linear manner, the FABS/86 key
file is a multi-path balanced tree. This design makes FABS/86 well suited for
the maintenance and manipulation of very large data files (the most difficult).

With FABS/86, the data file and key file space is dynamically allocated —
that is, the files grow as needed. Although FABS/86 does not actually read
or write to your data file, it does provide you with the record number for
all of your data file reads and writes.

Suppose you have a data file that you want to access by the name field.
To insert a new record (with a given name) into the file, you must call
FABS/86 with the Insert command and the key. In about two seconds,
FABS/86 returns the number of the data record where you must write the
data associated with that key. After another quarter-second or so, your key
file and data file are in perfect order. (These times assume that you are using
a floppy disk system. A hard disk is faster.)

If you have enough room on your diskette or hard disk (and you are not
limited by your programming language), you can insert 50 thousand keys
or more without much effect on the access time. Typically, this time is one
second or less to search for the key and read the data record. Repeated
accesses normally take about a quarter of a second each.

You should note that there are no overflow files associated with FABS/86.
The estimated insertion times mentioned include reorganizing the key file
(if necessary). Any portions of the key file that are changed during insertion
are saved on diskette (or hard disk) so that the key file is always current.
Sorting is not required at any time on either the data file or the key file.

USING FABS/86 TO RETRIEVE A RECORD

Since FABS/86 knows which data record has been attached to what key,
finding a record is easy — all you have to do is tell FABS/86 to search for

FABS/86 1-3

a particular key. FABS/86 gives you the random data record number that
you must read to get the desired record. Each time you delete a record,
FABS/86 retains the record numbers for automatic re-use when you insert
more records.

FABS/86 also lets you look for groups of records, rather than just a specific
record. (This is called a “generic” search.) For example, you could do a
generic search for every record with a name field that starts with the letter
“M”. After you give the proper instructions, FABS/86 finds the record
number of the first occurrence of a name field starting with “M”. A Search
Next command (discussed in Chapter 2) continues the search sequentially
through the name field.

A generic search is also useful in accessing data that is sequenced in several
levels. For example, the data file you’re searching might be in alphabetical
order by state, then by city under each state, and by ZIP code under each
city. First, you concatenate the state, city and zip code fields to form the
insert key. The Search Generic command is then used along with the Search
Next command to access only those records associated with a particular
state, or a particular state and city.

With FABS/86, you can retrieve data sequenced on more than one key by
using a single key file. When the key file is created, you specify the number
of primary keys that you want for the data file. When inserting or deleting,
you must specify all of the key values for the data record. When searching
your file, you specify which primary key number you want.

KEYS

Duplicate Keys
FABS/86 lets you assign the same value to more than one key (“duplicate”
keys). When you want to access a record assigned to a duplicate key, FABS/86
supplies the number of the first occurrence of that key in the index file.
Use the Search Next command to find the next occurrence of the key. To
access a series of duplicate keys, test the key of each data record you read
against the original key to see if you are still in the block of duplicates. This

1-4 PROGRAMMER’S TOOL KIT I

procedure is also used when you need to read through a block to determine
which keys are to be deleted.

Multiple Keys
FABS/86 also supports multiple primary keys — that is, an area of the data
file can be accessed in ascending or descending order by more than one key.
The number of primary keys you can use is limited only by the length of
the Insert and Delete command strings (255 bytes). Of course, the more
keys you use, the longer it takes to insert or delete them. The search time
should not be seriously affected, however.

When you create an index file, you must specify the number of primary
keys. When inserting and deleting keys, all of the primary keys must be
specified (except for the Replace command).

FABS/86 also lets you use duplicate multiple primary keys. You should be
aware, though, that using this type of key presents some problems. If you
want to delete a duplicate multiple key, you must decide which of the records
is to be deleted. Then, you have to extract all of the primary keys from
that record and use them to form the Delete command.

ASCII Keys
Keys are normally maintained in the key file as ASCII characters. (This mode
is specified by entering an “A” for the KEYTYPE when you create the
key file.) Any key having less than the maximum length is padded with zeros
to bring it up to maximum length. When more than one primary key is
specified, the maximum length applies to all keys. Each key occupies the
maximum space.

Integer Keys
When creating a key file, you can specify the KEYTYPE as I (for Integer).
With an integer file, FABS/86 converts the keys to a 2-byte integer numeric
value. There are some limitations that must be observed when you use Integer
keys: Any keys specified in the command string must be ASCII strings with
a range of 0 to 65535. They cannot contain nulls, signs or other characters.

FABS/86 1-5

The maximum key length will be forced to 2 bytes. When a key file is specified
as Integer, all the primary keys must be integer. Also, generic searches are
not permitted with integer keys.

Maximum Number of Keys
With a balanced tree, it is impossible to predict the maximum number of keys
you can use in a data file. This number depends on the length of the key,
and on the sequence in which your keys are inserted. However, you can
establish a “worst case” and a “best case” for each length; the average
gives you an idea of how many keys of a particular length can probably
be used.

FABS/86 has a constant node length of 512 bytes and can have up to 5 levels.
The root node can have anywhere from one key to the maximum number
of keys. All other nodes will be between half full and full depending upon
the insertion sequence.

The following table gives you an idea of how many keys can be used
with various key lengths. (N is the minimum number of keys per node —
512 bytes.)

Exhibit la: Maximum Keys

KEY LENGTH N WORST CASE BEST CASE AVERAGE

2 36 107,136 214,272 160,704
4 28 83,328 166,656 124,992
6 23 68,448 136,896 102,672
8 19 56,544 113,088 84,816

10 16 47,616 95,232 71,424
14 13 38,688 77,376 58,032
20 10 29,760 59,520 44,640
30 7 20,832 41,664 31,248
40 5 14,250 29,760 22,005
50 4 5,620 23,808 14,714

1-6 PROGRAMMER’S TOOL KIT I

FABS/86 COMMANDS

The following commands can be executed with FABS/86:

Exhibit 2a: Commands
COMMAND DESCRIPTION

B
K
C
D
M
Q
u
H
T
I
0
R
S
F
G
L
N
P
W

Build key file
Close key file
Create key file
Delete key(s)
Get maximum key length
Get next record number
Get number of open deletes
Get number of primary keys
Get number of records
Insert key
Open key file
Replace key
Search for key
Search for first key
Search for generic key
Search for last key
Search for next key
Search for previous key
Write page map

This chapter discusses the functions of these FABS/86 command strings.
Each string is described in the following manner:

► First, you are given the format to use when you enter the command.
Each element of the string is explained.

► Next, you are told the operation the command performs and when the
string should be used. When appropriate, you are referred to other
command strings that can be used with the one being explained.

► Last, any parameters returned by the string are explained. This tells you
the meaning of each of the parameters that FABS/86 returns when you
use the command string.

FABS/86 2-1

2.1 BUILD (B)

The command string is:

CMND$ = "B\FN\" + PK1$ + "\" + ... + "\" + PKn$

where:

B is the command.

FN is the file number (1 to 6).

PKn$ is the value of the nth primary key.

This command is identical to the Insert (I) command, except that Build does
not write the map file to your diskette. All other FABS/86 commands update
the diskette before returning to the calling program.

Because the Build command does not write to the map file (as the Insert
command does), you save time if you use Build instead of Insert when
building key files for large data files.

The Write Map File command must be executed after a series of Build
commands to ensure that the correct map data has been entered on diskette.
No other FABS/86 command should be executed during this procedure.

When in doubt use the Insert (I) command.

Parameters returned:

ERRF% - Err or/Warning code

RECNO - The date record number

ADRKEY - No significance

2-2 PROGRAMMER’S TOOL KIT, I

CLOSE (K)

The command string is:

2.2

CMND$ - "K\FN"

where:

K is the command.

FN is the file number (1 to 6).
2

The Close command closes a key file when you reach the end of the host
language program. (This is the only time that you need to close a key file.)
The index file on your diskette is updated after each FABS/86 operation
(unless you used the Build command).

Parameters returned:

ERRF% = Err or/Warning code

RECNO = No significance

ADRKEY = No significance

CREATE (C) 2.3

The command string is:

CMND$ = "C\[d:]filename[.ext]\MAXKL\NPK\KT\FN"

where:

C is the command.

MAXKL is the maximum key length (100 bytes max). The usual key
length is 8 to 10 bytes.

NPK is the number of primary keys for this file.

KT is the key type (I = Integer, A = ASCII).

FN is the file number (1 to 6).

FABS/86 2-3

Use Create to create a key file (filename.ext) and a map file (filename.MAP)
with the attributes specified in the command string. The key file is opened
for access under the file number contained in the command string. If a file
with the same name already exists, that file is deleted.

2

Parameters returned:

ERRF% = Error/Warning code

RECNO = No significance

ADRKEY = No significance

2.4 DELETE (D)

The command string is:

CMND$ = "D\RN\SBDFL\FN\" + PK1$ + "\" + ... + "\" + PKn$

where:

D is the command.

RN is the record number of the data record containing the keys.

SBDFL is the prompt “Search Before Delete Flag (Y/N).” If you answer
yes, all primary keys are searched to ensure their presence before any
are deleted. This process protects your key file against faulty programs.

FN is the file number (1 to 6).

PKn$ is the value of the nth primary key.

Use Delete to delete the specified keys from the key file and return the
associated data record number in the data file. You should put “deleted”
into some field of the data record if the key file is destroyed. Doing so lets
you rebuild the key file, excluding the deleted data records.

FABS/86 maintains pointers to all deleted records and reclaims these records
on future inserts on a last-in, first-out basis.

2-4 PROGRAMMER’S TOOL KIT, I

Parameters returned:

ERRF% - Err or/Warning code

RECNO - The deleted data record number

ADRKEY = No significance

2

GET MAXIMUM KEY LENGTH (M) 2.5

The command string is:

CMND$ = "M\FN"

where:

M is the command.

FN is the file number (1 to 6).

This command causes FABS/86 to return the maximum key length permitted
in the key file. (The maximum key length was specified by a Create command.)
Any attempt to insert a longer key causes a syntax error.

Parameters returned:

ERRF% = Err or/Warning code

RECNO - The maximum key length

ADRKEY - No significance

FABS/86 2-5

2.6 GET NEXT RECORD NUMBER (Q)

The command string is:

CMND$ = "Q\FN"

where:

Q is the command.

FN is the file number (1 to 6).

When you use the Get Next Record Number command, FABS/86 returns
the record number to be assigned the next time you use the Insert command.
(This assumes that no Delete command is used prior to the Insert command.)
If there are no unreclaimed deleted data records, this command returns the
next available data record in the file. If there are unreclaimed deletes, the
record number of the last delete is returned.

Parameters returned:

ERRF% - Err or/Warning code

REGNO - The next data record number

ADRKEY - No significance

2.7 GET NUMBER OF DELETES (U)

The command string is:

CMND$ = "U\FN"

where:

U is the command.

FN is the file number (1 to 6).

2-6 PROGRAMMER’S TOOL KIT, I

This command returns the number of unreclaimed deleted data records.
This number tells you how many records can be inserted before your data
file expands.

Parameters returned:

ERRF% - Error/Warning code

RECNO - The number of deleted records

ADRKEY = No significance

GET NUMBER OF PRIMARY KEYS (H) 2.8

The command string is:

CMND$ = "H\FN"

where:

H is the command.

FN is the file number (1 to 6).

This command returns the number of primary keys in the key file. (This
number is specified in the Create command.)

Parameters returned:

ERRF% - Error/Warning code

RECNO - The number of primary keys

ADRKEY - No significance

FABS/86 2-7

2

2.9 GET NUMBER OF RECORDS (T)

The command string is:

CMND$ = "T\FN"

where:

T is the command.

FN is the file number (1 to 6).

Get Number of Records returns the total number of records in your data file,
including the unreclaimed deleted records. To determine the number of active
data records, subtract the value returned by Get Number of Deletes (U).

Parameters returned:

ERRF% = Err or/Warning code

REGNO - The number of records

ADRKEY = No significance

2.10 INSERT (I)

The command string is:

CMND$ = "l\FN\" + PK1$ + "\" + ... + "\" + PKn$

where:

I is the command.

FN is the file number (1 to 6).

PKn$ is the nth primary key value.

2-8 PROGRAMMER’S TOOL KIT, I

Use this command to insert keys into the key file. The number of primary
keys included in the command must equal the number you specified in the
Create command. Duplicate keys are permitted. Variable length keys are
also permitted, but are padded with zeros (not spaces) to bring them up
to the maximum key length. If you want the keys padded with spaces, you
must enter the spaces yourself. Each key in your key file has the maximum
length specified in the Create command.

When control is returned to the calling program, you should write the entire
data record to the data file at the record number specified by RECNO.

Parameters returned:

ERRF% = Err or/Warning code

RECNO = The data record number

ADRKEY - No significance

2

OPEN (O) 2.11

The command string is:

CMND$ = "O\[d:]filename[.ext]\FN"

where:

O is the command.

FN is the file number (1 to 6).

Use this command to open an existing key and map file for access. You can
open up to six key files at a time.

Parameters returned:

ERRF% - Err or/Warning code

RECNO - No significance

ADRKEY = No significance

FABS/86 2-9

2.12 REPLACE (R)

The command string is:

CMND$ = "R\PKN\RN\FN\" + OLDKEY$ + "\" + NEWKEY$

2
R is the command.

PKN is the primary key number.

RN is the record number of OLDKEY$.

FN is the file number (1 to 6).

OLDKEYS is the value of the key to be replaced.

NEWKEY$ is the new key value.

Use this command to replace a single key with another key having the same
record number and primary key number. The returned record number is
the same as the specified record number.

Parameters returned:

ERRF% = Error/Warning code

RECNO - Same as specified record number

ADRKEY = No significance

2.13 SEARCH (S)

The command string is:

CMND$ = "S\PKN\FN\" + KEY$

2-10 PROGRAMMER’S TOOL KIT, I

where:

S is the command.

PKN is the primary key number.

FN is the file number (1 to 6).

KEYS is the value of the key.

This command returns the record number of the specified key string (KEYS).
The record number associated with the first duplicate is returned if there
are duplicate keys with the value KEYS. You can use the Search Next (N)
command to access the others. (You should test each time to see if the key
value is equal to KEYS.)

Parameters returned:

ERRF% = Err or/Warning code

► If ERRF% = 0, KEYS was found.

► If ERRF% - 12, KEYS was not found and the value of KEYS is
between the first key and the last key.

► If ERRF% = 13, KEYS was not found and the value of KEYS is
less than the value of all existing keys. The record number of the
first key is returned.

► If ERRF% = 15, KEYS was not found and the value of KEYS is
greater than the value of all existing keys. The record number of
the last key is returned.

► If ERRF% = 16, there are no keys in the key file.

RECNO - The appropriate record number

ADRKEY - The FABS/86 memory address where the key can be found

FABS/86 2-11

2.14 SEARCH FIRST (F)

The command string is:

CMND$ = "F\PKN\FN"

2

where:

F is the command.

PKN is the primary key number.

FN is the file number (1 to 6).

Search First returns the number of the data record containing the smallest
key value for the specified primary key.

Parameters returned:

ERRF% - Error/Warning code

RECNO - The record number

ADRKEY - The FABS/86 memory address where the key can be found

2.15 SEARCH GENERIC (G)

The command string is:

CMND$ = "G\PKN\FN\" + KEY$

where:

G is the command.

PKN is the primary key number.

FN is the file number (1 to 6).

KEYS is a left-justified partial key.

2-12 PROGRAMMER’S TOOL KIT, I

Search Generic returns the number of the first occurrence of the left-justified
partial key. This number helps you find the start of a category of keys. The
Search Next (N) command can then be used to access the remainder of the
category of keys. Remember to test each time to see if the key in the data file
is the same as KEYS.

The Search Generic command cannot be used with Integer keys.

See the discussion of the Search (S) command for the values of the error/
warning code (ERRF%) returned if KEYS is not found in the key file.

Parameters returned:

ERRF% = Err or/Warning code

REGNO - The record number

ADRKEY - The memory address (in FABS/86 segment) where the
key can be found

SEARCH LAST (L) 2.16

The command string is:

CMND$ = "L\PKN\FN"

where:

L is the command.

PKN is the primary key number.

FN is the file number (1 to 6).

Search Last returns the number of the data record that contains the largest
key value for the specified primary key.

FABS/86 2-13

Parameters returned:

ERRF% - Error/Warning code

RECNO - The record number

ADRKEY - The FABS/86 memory address where the key can be found

2.17 SEARCH NEXT (N)

The command string is:

CMND$ = "N\FN"

where:

N is the command.

FN is the file number (1 to 6).

Search Next returns the number of the data record containing the next key
in sequence. This command is reliable only if the last command for the same
file number was one of the Search commands. The Search Next command
does not cross over primary key boundaries. Error code 15 appears when
Search Next reaches the end of the group of primary keys.

Parameters returned:

ERRF% - Err or/Warning code

RECNO - The record number

ADRKEY - The FABS/86 memory address where the key can be found

2-14 PROGRAMMER'S TOOLKIT, I

SEARCH PREVIOUS (P)

The command string is:

CMND$ = "P\FN"

where:

P is the command.

FN is the file number (1 to 6).

2.18

Search Previous returns the number of the data record containing the previous
key in sequence. This command is reliable only if the last command for
the same file number was one of the Search commands. The Search Previous
command does not cross over primary key boundaries. Error code 13 appears
when the bottom of the group of primary keys is reached.

Parameters returned:

ERRF% - Err or/Warning code

RECNO - The record number

ADRKEY = The memory address where the key can be found

WRITE PAGE MAP (W) 2.19

The command string is:

CMND$ = "W\FN"

where:

W is the command.

FN is the file number (1 to 6).

FABS/86 2-15

Use this command to write the page map to your diskette (or hard disk)
after a series of Build (B) commands. The Write Page Map command should
be executed immediately after the Build commands; no other FABS/86
command should be used between the Build commands.

Parameters returned:

ERRF% = Error/Warning code

RECNO - No significance

ADRKEY = No significance

2-16 PROGRAMMER’S TOOL KIT, I

3
USING FABS/86 WITH
PROGRAMMING LANGUAGES

FABS/86 AND THE
MS-BASIC INTERPRETER 3.1

The FABS86M.COM module is loaded and fixed in memory (until the next
restart) by executing it as you would any transient program: 3

FABS86M

This loads the module and displays the sign-on along with the “FSEG -
&HXXXX” statement showing the segment where the module was loaded.
This segment is different for different system configurations.

When you use this procedure, FABS86M.COM should always be the first
program you load when your computer is powered up or restarted. By doing
this, you ensure that the FABS86M.COM module is loaded in the same place.

WARNING: Don’t load FABS86M.COM more than once between restarts.
It will load higher each time you load it.

The FABS86M.OBJ file is a relocatable module used to link FABS/86 to
compiled (.OBJ) files generated by the MS-BASIC Compiler, MS-COBOL,
MS-Pascal and other compiled languages. Public declarations in the
FABS86M.OBJ module provide linkages to the calling programs.

CALLING FABS/86 FROM MS-BASIC

Before you can begin the FABS/86 calling subroutine, your MS-BASIC
program must have the FSEG statement declared. This statement is displayed
when the FABS86M.COM module is loaded:

FABS/86 3-1

FABS86M.COM
FABS86M.COM
FABS86M.COM
FABS86M.COM
FABS86M.COM

FSEG = &Hxxxx

where

xxxx is the load segment.

Your BASIC program must contain the following FABS/86 calling subroutine:

DEF SEG = FSEG
FABS86M = &H5
CALL FABS86M(CMND$,ERRF% ,RECNO%, ADRKE Y%)
DEF SEG
RECNO = RECNO%
IF RECNOCO THEN RECNO = RECNO + 65536
RETURN

(Chapter 2 defines the CMND$, ERRF°7o, RECNO% and ADRKEY%
parameters for each FABS/86 command string.)

The value of the key can be returned after a FIRST, LAST, NEXT, or
PREVIOUS command by using the following subroutine:

RKEY$="»
ADRKEY = ADRKEY%
IF ADRKEYCO THEN ADRKEY = ADRKEY + 65536!
FOR I = ADRKEY TO ADRKEY + MAXKLEN - 1

DEF SEG - FSEG
RCHAR = PEEK(I)
DEF SEG
RKEYtz = RKEYtz = CHRtz (RCHAR)

NEXT I

where:

MAXKLEN is the maximum key length (specified in the Create
command).

RKEY$ is the key value.

3-2 PROGRAMMER’S TOOL KIT, I

To execute FABS/86, you simply define a command string (CMND$) for the
particular command you desire and then GOSUB to the calling subroutine
which actually calls FABS/86.

TEST PROGRAMS

The following test programs are included on the FABS/86 program diskette
to show the capabilities of FABS86M:

► : The FABS/86 module.FABS86M.COM

► FABSBLD.BAS: Builds test key and data files.

► FPRINT.BAS: Displays the data file.

► FABSTEST.BAS: Demonstrates the execution of FABS/86 commands.

The FABSBLD.BAS program constructs the FTEST.DAT, FTEST.KEY and
FTEST.MAP files needed by the FABSTEST.BAS program. If they are not
already present on your diskette, run FABSBLD.BAS to create them.

Follow these steps to run the test programs:

1. Copy the test programs from the FABS/86 program diskette to a diskette
that contains the MS-DOS operating system. Save the original for backup.

2. Reboot your computer with the MS-DOS diskette in drive A. Load
FABS/86 by typing FABS86M after the A> prompt.

3. Ensure that the FSEG statement displayed when FABS/86 is loaded is the
same as the one at the beginning of the FABSBLD.BAS, FPRINT.BAS,
and FABSTEST.BAS programs. If the FSEG statement is not the same,
change the others to reflect the segment where was
loaded.

FABS86M.COM

4. Transfer your (hereafter called MS-BASIC) to the
MS-DOS diskette.

MSBASIC.COM

FABS/86 3-3

FABS86M.COM
FABS86M.COM
MSBASIC.COM

5. Enter:

MSBASIC FABSBLD

to build the test files. It takes about 20 minutes to insert the 1000 keys
(500 records of 2 primary keys each). About half of this time is used
to generate the keys randomly. The keys have a maximum length of
10 bytes. The data file contains the 2 primary keys and a 12-byte string.

6. Enter:

MSBASIC FPRINT

to run the FPRINT.BAS program. When prompted, select key sequence,
primary key 1, and ascending order. The data record number is displayed
on the right.

7. Run the FABSTEST.BAS program by entering:

MSBASIC FABSTEST

The list of FABS/86 commands is displayed.

When prompted, select Generic search, primary key 1, and "R" for
the key value. The data record for the first key beginning with "R"
is returned. Use the Previous and Next commands to verify the key.

You can insert and delete records at will. Remember that deleted records
are reused on a last-deleted, first-reused basis.

3-4 PROGRAMMER’S TOOL KIT, I

FABS/86 AND THE MS-BASIC COMPILER 3.2

CALLING FABS/86 FROM THE MS-BASIC COMPILER

The FABS86M.OBJ object file lets you link FABS/86 with compiled programs
using the LINK.EXE program. The compiled BASIC program must contain
the following FABS/86 calling subroutine:

CALL FABSMB(CMND$,ERRF%,RECNO%,ADRKEY%)
RECNO = RECNO%
IF RECN0<0 THEN RECNO = RECNO + 65536!

See Chapter 2 for an explanation of CMND$, ERRF%, RECNO%, and
ADRKEY% for each command string.

The actual key value can be returned after any Search command by using
the following subroutine:

ADRKEY = ADRKEY%
IF ADRKEY<0 THEN ADRKEY = ADRKEY + 65536!
CALL GFSEG(FSEG%)
FSEG = FSEG%
IF FSEG<0 THEN FSEG = FSEG + 65536!
RKEY$ = ""
FOR I = ADRKEY TO ADRKEY + MAXKLEN - 1

DEF SEG = FSEG
RCHAR = PEEK(I)
DEF SEG
IF RCHAR = 0 THEN YYY
RKEY$ = RKEY$ + CHR$ (RCHAR)

NEXT I
YYY REM RKEY$ = ACTUAL KEY VALUE

FABS/86 3-5

TEST PROGRAMS FOR THE BASIC COMPILER

The following example programs are included on the distribution diskette.

► FABS86M.OBJ: The FABS/86 relocatable object module.

► MCBUILD.BAS: Test build program.

► MCBUILD.OBJ: The object file.

► MCTEST.BAS: FABS/86 test program.

► MCTEXT.OBJ: The object file.

► MCPRINT.BAS: Prints the files.

► MCPRINT.OBJ: The object file.

► FTEST.KEY: The test key file.

► FTEST.MAP: The test map file.

► FTEST.DAT: The test data file.

Follow these steps to run a test program:

1. Copy the test programs from the distribution diskette to another that
contains the MS-DOS operating system. Save the original for backup.

2. Using LINK.EXE, link the following .OBJ files to form the indicated
RUN (.EXE) files. (See the MS-LINK Section of the Programmer's
Tool Kit, Volume II for instructions on using LINK.EXE.)

RUN FILE _______ OBJECT FILES________

MCPRINT.EXE
MCTEST.EXE
MCBUILD.EXE

MCPRINT.OBJ + FABS86M.0BJ
MCTEST.OBJ + FABS86M.0BJ
MCBUILD.OBJ + FABS86M.0BJ

3. Run the MCPRINT.EXE program by entering:

MCPRINT

Answer the prompts that follow by selecting key sequence, primary key

3-6 PROGRAMMER’S TOOL KIT, I

1, and ascending order. Observe the speed with which FABS/86 displays
the data file in key sequential order. The data record is displayed on
the right.

4. Run the MCTEST.EXE program by entering:

MCTEST

The key and data files are opened and the list of FABS/86 commands is
displayed. When prompted, select Generic search, primary key 1, and "R"
for the key value. The data record for the first key beginning with R
is returned. Use the Previous and Next commands to verify the key.
You can insert and delete records at will. Remember that deleted records
are reused on a last-deleted, first-reused basis.

5. If you want to build a larger set of test files, change the FOR-NEXT
loop in the MCBUILD.BAS program to reflect the number of records
you desire. Then, use to compile it and obtain the
MCBUILD.OBJ file for linking with the FABS86M.OBJ file to form
MCBUILD.EXE. Then, run MCBUILD.EXE to build the new set of
test programs.

BASCOM.COM

USING FABS/86 WITH MS-PASCAL 3.3

The following is a typical calling program from Pascal:

program pastest;
type

cmdstring = lstring(255);
var

errf: word;
recno: word;
cmnd: cmdstring;

function fbspas (vars cmd: Istring;
vars err: word) : word; external;

begin
cmnd: = "C\FTEST.KEY\10\2\A\3";
recno: = fbspas (cmnd,errf);
end.

FABS/86 3-7

BASCOM.COM

3

This program creates the FTEST.KEY and FTEST.MAP files. The key file
is set for two primary keys with a maximum key length of ten bytes. Both
keys are ASCII keys; the key file is opened as file number 3.

The returned parameter (recno) has no significance with a Create command.
The error code (errf) should be tested for zero to ensure that there was
no error.

An additional entry point (FBPAS1) is provided. It returns the key address
(in the FABS segment) in addition to the preceding parameters. The function
call is:

recno: = fbpasl (cmnd,errf,keyadr);

To get the KEYADR segment, enter:

fseg:= gfsegl

You can access the key if you know the segment and the offset of the key.

FABS86M.OBJ is linked to your Pascal object file using LINK.EXE.

3.4 FABS/86 AND MS-FORTRAN

To call FABS/86 from MS-FORTRAN, you must define the command
string (CMND) and execute an external function as follows:

C TEST PROGRAM FOR CALLING FABS/86

PROGRAM FBSTST
CHARACTER *80 CMND
INTEGER *2 ERRF, RECNO, KEYADR, FBSFOR

CMND = "C\TEST.KEY\10\2\A\3"
RECNO = FBSF0R(CMND, ERRF, KEYADR)

WRITE(* ,200) "ERCODE = " ERRF
200 FORMAT(1X,A8,I6)

STOP
END

3-8 PROGRAMMER’S TOOL KIT, I

This program creates empty FABS/86 key and map files (TEST.KEY and
TEST.MAP) which are ready for keys to be inserted. The key file has two
primary ASCII keys of ten bytes each; it is opened for access as file number 3.

With MS-FORTRAN, the command string must be terminated with an
up-arrow (A) because no length byte is passed with the string. The returned
parameter RECNO (normally record number) is returned in the AX register
as the returned function. FABS/86 treats RECNO as a 16-bit positive number
with a range of 0 to 65535. MS-FORTRAN may return a negative number
if greater than 32767. In this case, you would add 65536 to RECNO to
place it in the range of 0 to 66535.

The error code is returned in ERRF. This will be zero if there is no error
or warning.

The pointer to the actual key in memory after any Search command is returned
in KEYADR. This is the temporary address of the key in the FABS segment.
You can get the FABS segment by using the following external function:

FSEG= GFSEG1

where:

FSEG is the FABS segment.

The FABS86M.OBJ module is linked to your FORTRAN object file using
LINK.EXE.

FABS/86 3-9

3.5 FABS/86 AND MS-COBOL

To call FABS/86 from MS-COBOL, you must define the command string
(CMND) and call an external procedure as shown by the following sample
program.

IDENTIFICATION DIVISION.
PROGRAM-ID. COBTST.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 CMND PIC X(80) VALUE IS 'C\TEST.KEY\10\2\A\l'

PROCEDURE DIVISION.
MAIN.

77 ERRF PIC 99999 COMP-O VALUE 0.
77 REGNO PIC 99999 COMP-O VALUE 0.
77 KEYADR PIC 99999 COMP-O VALUE 0.
77 ERC PIC 99999.
77 RN PIC 99999.
77 KA PIC 99999.

CALL "FBSCOB" USING CMND, ERRF, REGNO, KEYADR
MOVE ERRF TO ERC.
MOVE REGNO TO RN.
MOVE KEYADR TO KA.
DISPLAY 'ERRF - ' ERC.
DISPLAY 'REGNO =' RN.
DISPLAY 'KEYADR = ' KA.
STOP RUN

This program creates a TEST.KEY and TEST.MAP file on the disk and
opens the key file for access as file number 1. The key file has two ASCII
primary keys of ten bytes each.

The command string (CMND) must be terminated with an up-arrow (A)
since MS-COBOL does not provide a length byte.

3-10 PROGRAMMER’S TOOL KIT, I

The KEYADR pointer gives the offset of the actual key in the FABS segment.
It is important for all Search commands. The FABS segment is returned
by the following external procedure:

CALL 'GFSEG' USING FSEG

where:

FSEG is the FABS segment.

The FABS86M.OBJ module is linked to your COBOL Object file using
LINK.EXE.

FABS/86 3-11

FABS/86 ERROR
AND WARNING CODES

Exhibit 4a describes the error and warning codes displayed by FABS/86.
Except for 0, any error code numbered 12 or less is normally a fatal error.
The same is true of error codes numbered 16 or higher. All error and warning
codes are returned from the calling subroutine in the variable ERRF%.

Exhibit 4a: FABS/86 Error and Warning Codes
WARNING NUMBER __________________DESCRIPTION__________________

0
4
5
6
7
8
9

10
11
12

The FABS/86 operation was successful.
Improper key for Integer key file.
Attempted Generic search on Integer key.
Key not found on Delete.
Incorrect number of primary keys.
Syntax error in command string.
No more key space.
Input key larger than maximum.
Tried to access unopened file.
Key specified was not found, but smaller and larger keys
were found.

13
15
16
22
23
24
25
26
27

Key not found. Key smaller than all keys.
Key not found. Key larger than all keys.
Key not found. No keys in key file.
File not present when opened.
Out of directory space.
Diskette full.
Write error.
File not present when closed.
Read error. End of file.

FABS/86 4-1

FABS/86 PUBLIC INTERFACES AND
ABSOLUTE OFFSET ENTRY POINTS

PUBLIC INTERFACES A.l

The following are the FABS/86 PUBLIC entry and access locations:

Exhibit Aa: FABS/86 PUBLIC Entry and Access
NORMALLY USED BYPUBLIC SYMBOL

FABSMB MS-BASIC Compiler
FBSPAS MS-Pascal (doesn’t return key address)
FBPAS1 MS-Pascal (returns key address)
FBSFOR MS-FORTRAN
GFSEG General
GFSEG1 General
KEYADR General

Each is discussed in the following sections.

FABSMB ENTRY POINT

On entering at FABSMB, nonsegmented pointers representing the addresses
of CMND, ERROR CODE, RECNO, and KEYADR (in that order) must
have been pushed on the stack.

All pointers are assumed to be offsets to the Data Segment register (DS) at
entry. CMND must be four bytes: the first two bytes contain the length of the
command string; the next two bytes contain the offset of the command string
relative to the DS register at entry.

FABS/86 A-1

At exit from FABS/86, the four pointers (8 bytes) are removed from the
stack and the returned parameters are placed in the specified addresses. The
segment associated with the key address can be obtained by calling either
GFSEG or GFSEG1.

FBSPAS ENTRY POINT

On entering at FBSPAS, segmented pointers (8 bytes) representing the
addresses of CMND and ERROR CODE (in that order) must have been
pushed on the stack. The first byte of CMND must contain the length
followed by the actual string of characters.

At exit from FABS/86, the two pointers (8 bytes) are removed from the stack
and the error code is placed in the specified offset and segment. The returned
parameter (RECNO) is placed in the AX register as the returned function.

If the key address is needed, use the FBPAS1 entry point.

FBPAS1 ENTRY POINT

On entering at FBPAS1, segmented pointers representing the addresses of
CMND, ERROR CODE and KEYADR (in that order) must have been
pushed on the stack.

The first byte of CMND must contain the length of the command string
followed by the actual string of characters.

At exit from FABS/86, the three pointers (12 bytes) are removed from the
stack, and the error code and key address are placed in the specified segment
and offset. You must use either GFSEG or GFSEG 1 to get the FABS segment
(same as the KEYADR segment) if you want to access the key. The returned
parameter (RECNO) is returned in the AX register.

A-2 PROGRAMMER’S TOOL KIT\ I

FBSFOR ENTRY POINT

On entering at FBSFOR, segmented pointers representing the addresses of
CMND, ERROR and KEYADR (in that order) must have been pushed on the
stack. The CMND pointer must point to the first actual byte of the command
string. The command string must be terminated with an up-arrow (A), so
that FABS/86 can determine the string length.

At exit, the three segmented pointers (12 bytes) are removed from the stack,
and ERROR CODE and KEYADR are placed in the specified addresses. You
must use either GFSEG or GFSEG1 to get the KEYADR segment (same as
the FABS segment) to access the key value. The returned parameter (RECNO)
is returned in the AX register.

FBSCOB ENTRY POINT

On entering at FBSCOB, nonsegmented pointers representing the addresses
of CMND, ERROR CODE, RECNO, and KEYADR (in that order) must
have been pushed on the stack. All pointers are assumed to be offsets to
the Data Segment register (DS) at entry. The command string (CMND) must
be terminated with an up-arrow (A) so that FABS/86 can determine the
string’s length.

At exit the parameters ERROR CODE, RECNO, and KEYADR are placed
in the specified addresses. You must use either GFSEG or GFSEG 1 to get
the KEYADR segment (same as FABS segment) to access the actual value
of the key.

GFSEG ENTRY POINT

This procedure returns the FABS segment in the specified variable as follows:

CALL GFSEG(FSEG)

FABS/86 A-3

On entering at GFSEG, a nonsegmented pointer must have been pushed
on the stack. The FABS segment is placed in the specified address relative
to the Data Segment register (DS) at entry.

At exit, the pointer (2 bytes) is removed from the stack.

GFSEG1 ENTRY POINT

This is used as an external function to return the FABS segment as follows:

FSEG = GFSEG1

When this function is called, FABS/86 returns the FABS segment in the
AX register.

KEYADR PUBLIC VARIABLE

The FABS/86 internal variable KEYADR contains the temporary address of
the actual key value (in the FABS segment) after any normal Search command.

KEYADR resides at offset 28 (hex) in the FABS segment. It consists of a
2-byte offset pointer followed by a 2-byte variable containing the KEYADR
segment (same as the FABS segment).

A.2 ABSOLUTE OFFSET ENTRY POINTS

Absolute entry points let compiled languages call an absolute offset in the
FABS/86 segment, instead of a PUBLIC entry point. The FABS.COM

A-4 PROGRAMMER ’.S’ TOOL KIT, I

FABS.COM

module can then be loaded and fixed in memory, as is normally done with
the MS-BASIC Interpreter. By loading this module, you eliminate the need to
link the FABS.REL file into all programs that use large amounts of disk space.

The FABS.COM file is loaded by typing:

FABS86M

following the A> prompt.

The FABS segment is displayed when the FABS module is loaded. The
absolute entry points are offsets in the FABS segment. Exhibit Ab shows
the absolute offsets to call for the various languages.

Exhibit Ab: FABS/86 Absolute Offsets

LANGUAGE
EQUIVALENT

PUBLIC SYMBOL
OFFSET

(DECIMAL)

MS-BASIC Interpreter None 5
MS-BASIC Compiler FABSMB 8
MS-Pascal FBSPAS 11
Any GFSEG 14
MS-FORTRAN FBSFOR 17
MS-COBOL FBSCOB 20
MS-Pascal FBPAS1 23
Any GFSEG 1 26

If you are using the MS-BASIC Compiler, for example, you load the FABS
module and note the load segment:

FSEG = &Hxxxx

where:

xxxx is the start segment of the beginning of the FABS module.

FABS/86 A-5

FABS.COM

The following statement must be included in your BASIC program just prior
to calling FABS/86:

DEF SEG = FSEG

Then execute an absolute call with an offset of 8. You return to the BASIC
segment: DEF SEG.

A-6 PROGRAMMER'S TOOL KIT I

AUTOSORT/86

COPYRIGHT

© 1983 by VICTOR®.
© 1982 by Computer Control Systems, Inc.

Published by arrangement with Computer Control Systems, Inc., whose
software has been customized for use on various desktop microcomputers
produced by VICTOR. Portions of the text hereof have been modified
accordingly.

All rights reserved. This publication contains proprietary information which
is protected by copyright. No part of this publication may be reproduced,
transcribed, stored in a retrieval system, translated into any language or
computer language, or transmitted in any form whatsoever without the prior
written consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
AUTOSORT is a trademark of Computer Control Systems, Inc.
MS-DOS is a registered trademark of Microsoft Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind whatsoever with
respect to the contents hereof and specifically disclaims any implied warranties
of merchantability or fitness for any particular purpose. VICTOR shall not be
liable for errors contained herein or for incidental or consequential damages
in connection with the furnishing, performance, or use of this publication
or its contents.

VICTOR reserves the right to revise this publication from time to time and to
make changes in the content hereof without obligation to notify any person
of such revision or changes.

First VICTOR printing February, 1983.

ISBN 0-88182-010-5 Printed in U.S.A.

II PROGRAMMER’S TOOL KIT, I

CONTENTS

1. General Information... 1-1
1.1 AUTOSORT/86 Features.. 1-1
1.2 Getting Started... 1-3

2. AUTOSORT/86 Command Strings...............................2-1
2.1 AUTOSORT/86 Modes.. 2-2

Mode Parameters...2-2
Mode Description...2-3
Parameter String Description..2-9

2.2 Sample Command String ...2-10

3. Sort Parameters... 3-1
3.1 Parameter File Overview.. 3-1
3.2 Sort Parameter Definition.. 3-1

4. Record Select Features..4-1

5. Using AUTOSORT/86 With
Programming Languages... 5-1
5.1 AUTOSORT/86 and MS-BASIC.. 5-1
5.2 AUTOSORT/86 and the MS-BASIC Compiler 5-3
5.3 AUTOSORT/86 and MS-Pascal.. 5-5
5.4 AUTOSORT/86 and MS-FORTRAN...................................... 5-8
5.5 AUTOSORT/86 and MS-COBOL.. 5-9

6. Error Indications.. 6-1

Appendix A: AUTOSORT/86 PUBLIC Interfaces..........A-l

Appendix B: Stand-Alone Sorting..................................... B-l

AUTOSORT/86 III

EXHIBITS
2a: Order of Parameters in Parameter String..................................... 2-8
2b: Sample Command String Parameter Description....................... 2-10
Aa: PUBLIC Entry and Access Locations .. A-l
Ba: TEST.DAT Field Description.. B-2

IV PROGRAMMER’S TOOL KIT\ I

CHAPTERS

1. General Information

2. AUTOSORT/86 Command Strings

3. Sort Parameters

4. Record Select Features

1

I
2

I
3

I
4

5. Using AUTOSORT/86 With
Programming Languages 5

6. Error Indications

Appendix A: AUTOSORT/86 PUBLIC Interfaces

Appendix B: Stand-Alone Sorting B

AUTOSORT/86 V

GENERAL INFORMATION

AUTOSORT/86 is a sort/merge/select utility designed for use with very
large files that have fixed-length fields within fixed-length records. It is
compatible with Microsoft’s MS-DOS operating system, and it supports
string fields and the MS-BASIC Integer, Single Precision, and Double
Precision fields.

AUTOSORT/86 FEATURES 1.1

Nine modes of sort/merge/select are available. The mode is specified in
the command string (CMND$).

► Mode 0: Full record sort/select using an existing parameter file.

► Mode 1: Merges two sorted files into one sorted file using an existing
parameter file to specify the sort keys.

► Mode 2: Full record sort/select using the parameters specified in the
command string and does not write the parameter file to the disk.

► Mode 3: Full record sort/select using the parameters specified in the
command string and writes the parameter file to the disk.

► Mode 4: Sort/select using a parameter file. Output file contains only
the Data Record pointer and sort keys.

► Mode 5: Sort/select using a command string. The Output file contains
only the Data Record pointer and sort keys.

► Mode 6: Sort/select using a parameter file. Output file contains only
the 2-byte Data Record pointer.

► Mode 7: Sort/select using a command string. Output file contains only
the 2-byte Data Record pointer.

► Mode 8: Creates a parameter file on the disk from the command string.
No sort/select is done.

AUTOSORT/86 1-1

AUTOSORT/86 can be used as a stand-alone sort routine, or it can be called
from the MS-BASIC Interpreter, the MS-BASIC Compiler, MS-Pascal,
MS-FORTRAN or MS-COBOL. Multiple users can sort simultaneously as
long as each user’s program specifies a different user number in the command
string. AUTOSORT/86 creates unique temporary files for each user, elim­
inating the possibility of conflicting temporary file names.

Record lengths can be 5000 bytes or more if the specified sort buffer is at
least 40K. File size is determined by your operating system and the available
disk work file space. The logical record counter overflows at 65536.

In a 128K system, a typical default buffer size is about 60K if the sort module
is loaded low enough to permit a 60K buffer. AUTOSORT/86 creates up
to 30 work files, with each work file a little smaller than the sort buffer
size. When you still have more to sort after these 30 work files are filled,
AUTOSORT/86 temporarily merges the work files into a single file and creates
up to 29 more work files. This process continues until either the input file
or work space is depleted. The worst-case requirement for work space is
about twice the size of the input file, if temporary merges are required. The
temporary merge occurs when there are less than 30 work files and the
specified buffer size is too small to allow 30 work files to be merged. A
maximum of 10 sort keys are permitted, either ascending or descending
(independently) on each key.

AUTOSORT/86 deletes or retains records by comparing up to four inde­
pendent select keys with any fields in the record (fixed, variable, string, or
numeric); AUTOSORT/86 checks whether the select key is "less than”,
"equal to” or "greater than” the selected fields. A select OR function (if
activated) lets records be retained if any one of several select keys matches
the fields.

An alpha option translates all lowercase alpha characters to uppercase for
sorting. This causes "a” and "A” to sort as the same character.

The disk change capability is directed by the sort parameters. This capability
lets you change the work file disk or the output disk during the sort process.
(A screen prompt appears when you must change a diskette.) If the output
file is given the same name as the input file, the input file is deleted after

1-2 PROGRAMMER’S TOOL KIT, I

the work files are created. This saves disk space; however, a power loss
or malfunction during the final merge can cause you to lose the data file.
For this reason, you should always back up your data files.

GETTING STARTED 1.2

Before using AUTOSORT/86, you should read the manual and then run
the stand-alone test programs in Appendix B. Then, the chapter on high-level
languages explains how to call the sort as a subroutine.

AUTOSORT/86 1-3

2
AUTOSORT/86 COMMAND STRINGS

Mode and sort parameters are passed to the AUTOSORT/86 module
in a single command string (CMND$) with each parameter separated by
a backslash (\).

For simplicity, the command string (CMND$) is shown as two strings
separated by a backslash. The “\” indicates a backslash is necessary between
the adjacent parameters when the two strings are concatenated.

The AUTOSORT/86 command string format is:

CMND$ = AMODE$ + "\" + PARM$

where:

AMODE$ contains parameters that must be defined during run time,
and are associated with the sort mode.

PARM$ represents the sort parameters defined during run time or specified
as parameters in a parameter file that has been previously stored on disk.

The sort parameter string (PARM$) begins with the input file name. String
elements are in the same order as they were entered into the sort parameter
file created by the parameter file generator program, PFG86M.COM.
(See the section, "Parameter String Description,” for a description of these
parameters.) To call AUTOSORT/86, you create the command string
(CMND$) for the desired mode. Then, call the AUTOSORT/86 module
according to the procedure specified for your higher-level language.

AUTOSORT/86 2-1

PFG86M.COM

2.1 AUTOSORT/86 MODES

MODE PARAMETERS

The first parameter in the mode parameter string (AMODE$) defines the
mode of operation of the sort module. (An explanation of the various modes
follows later in this section.)

The second parameter is the user number — a single character inserted into
all temporary files to make them unique. Any normal file name character
is permitted. The user number lets several users sort simultaneously on
the same disk.

The third parameter sets the drive where the sort buffer memory area is
saved during the sort process. Drives A through Z can be specified. (Use “0”
for the default drive.)

The fourth parameter sets the sort buffer size (in bytes). You should make
this size as large as possible; a zero defaults to the maximum size (approxi­
mately 60K for a 128K system). The sort buffer is above the sort module
in memory. Its contents are written to disk before the sort and restored to
disk after the sort. If you have limited disk space, you might want to set
the sort buffer size to some smaller value. If you have very large records,
be sure to leave enough room for the parallel merge. Work files, if needed,
require additional disk space.

Some modes may have additional parameters in the mode parameter portion
(AMODE$) of the command string (CMND$).

Sort parameters can be defined dynamically during run time as a sort
parameter string (PARM$); or they can be defined external to the program
by using the PFG86M.COM program. Also, certain modes let you define the
sort parameters dynamically and write them to the disk as a sort parameter
file for later use.

The parameter file generator (PFG86M.COM) creates the parameter files
for modes 0, 1,4, and 6. It is also useful when creating the parameter string

2-2 PROGRAMMER’S TOOL KIT\ I

PFG86M.COM
PFG86M.COM

(PARM$) for modes 2, 3, 5, 7, and 8. PFG86M.COM requests the identical
parameters (starting with the input file name) in the same order as are needed
to form the sort parameter string (PARM$). Remember that the parameters
in PARM$ must be separated by backslashes. To create a parameter file
using PFG86M.COM, enter:

PFG86M

and then answer the questions. (See Chapter 3, “Sort Parameters,” for a
detailed description of PFG86M.)

MODE DESCRIPTION

Mode 0
The command string format is:

AMODE$ = "O\Un\Dm\Bufsize"

PARM$ = "D:PFNAME"

CMND$ = AMODE$ + "\" + PARM$

where:

0 is the mode.

Un is the user number. For a single user, enter 1.

Dm is the temporary memory storage drive. Drives A through Z can be
specified. (Use zero for default drive.)

Bufsize is the number of bytes in the buffer. 0 defaults to maximum.

D is the drive containing PFNAME (optional).

PFNAME is the name of the parameter file. The extension must be .SRT.

In mode 0, a full record sort/select is performed using sort parameters from a
parameter file previously created by PFG86M.COM or by using modes 3 or 8.

See the section, “Parameter String Description.”

AUTOSORT/86 2-3

PFG86M.COM
PFG86M.COM
PFG86M.COM

Mode 1
The command string format is:

AMODE$ = "1\Un\Dm\Bufsize"

PARM$ = "D:PFNAME\D:INPUT1\D:INPUT2\D:OUTPUT"

CMND$ = AMODE$ + "\" PARM$

where:

1 is the mode.

Un is the user number. Use 1 for single user.

Dm is the temporary memory storage drive. (0 is the default.)

Bufsize is the buffer size. 0 defaults to the maximum.

D is the appropriate drives (optional).

PFNAME is the parameter file name with extension .SRT.

INPUT1 is the name of the first input file.

INPUT2 is the name of the second input file.

OUTPUT is the name of the output file.

This mode merges two sorted files into one sorted file. A previously created
parameter file must exist on disk to provide the sort/select key information.
If the parameter file is set to skip records, the records in the first input file
(INPUT 1) are skipped.

The input and output file names specified in the parameter file on the disk
are ignored since they are already specified in the command string. For a
properly ordered merge, the sort keys must specify the same order as the
sorted input files; otherwise, the sorted results are unpredictable.

If select keys are specified in the parameter file, the appropriate records
are selected.

2-4 PROGRAMMER’S TOOL KIT, I

Mode 2
The command string format is:

AMODE$ - "2\Un\Dm\Bufsize"

PARM$ -- The sort parameters

CMND$ = AMODE$ + "\" + PARM$

2
2 is the sort/select mode.

Un is the user number. Use 1 for single user.

Dm is the temporary memory storage drive. (0 is the default.)

Bufsize is the buffer size. 0 defaults to maximum.

PARM$ is the sort parameter string beginning with the input file name.

This mode does a full record sort/select using the parameters specified in
the command string. No parameter file is written to disk.

See the section, “Parameter String Description.”

Mode 3
The command string format is:

AMODE$ = "3\Un\Dm\Bufsize\D:PFNAME"

PARM$ = The sort parameters

CMND$ = AMODE$ + "\" + PARM$

where:

3 is the mode.

Un is the user number. Use 1 for single user.

Dm is the temporary memory storage drive. (0 is the default.)

Bufsize is the buffer size. 0 defaults to maximum.

AUTOSORT/ 86 2-5

D is the drive on which to put the parameter file.

PFNAME is the name to give the parameter file.

PARM$ is the sort parameter string beginning with the input file name.

2

This mode writes a parameter file to the disk for later use and then does
a full record sort using the parameters specified. The name you give the
parameter file is inserted as parameter number 5 in AMODE$.

See the section, “Parameter String Description.”

Mode 4
The command string format is:

AMODE$ = "4\Un\Dm\Bufsize"

PARM$ = "D:PFNAME"

CMND$ = AMODE$ + "\" + PARM$

where:

4 is the mode.

Un is the user number. Use 1 for single user.

Dm is the temporary memory storage drive. (0 is the default.)

Bufsize is the buffer size. 0 defaults to the maximum.

D is the drive containing the sort parameter file to use.

PFNAME is the sort parameter file name. (The extension is assumed
to be .SRT.)

This mode uses a previously created sort parameter file. It creates an output
file with records containing only the data record number (2 bytes) and the
sorted fields in the order specified:

output record = [rec. no.][field #1]..[field #n]

The output record length equals 2 plus the sum of the sort key lengths.

2-6 PROGRAMMER’S TOOLKIT, I

Mode 5
The command string format is:

AMODE$ -- "5\Un\Dm\Bufsize"

PARM$ = The sort parameters

CMND$ -- AMODE$ + "\" + PARM$

2
5 is the mode.

Un is the user number. Use 1 for a single user.

Dm is the temporary memory storage drive. (0 is the default.)

Bufsize is the buffer size. 0 defaults to the maximum.

PARM$ is the sort parameter string beginning with the input file name.

This mode uses a sort parameter string (PARM$). Mode 5 creates an output
file which contains only the data record pointer (2 bytes) and the sort keys
in the order specified:

output record = [rec. no.][field #1]..[field #n]

Mode 6
The command string format is:

output record = [rec. no. (2 bytes)]

AMODE$ = "6\Un\Dm\Bufsize"

PARM$ = "D:PFNAME"

CMND$ = AMODE$ + "\" + PARM$

AUTOSORT/ 86 2-7

where:

6 is the mode.

Un is the user number. Use 1 for a single user.

Dm is the temporary memory storage drive. (0 is the default.)

Bufsize is the buffer size. 0 defaults to the maximum.

D is the drive containing the sort parameter file to use.

PFNAME is the sort parameter file name. (The file extension is assumed
to be .SRT.)

This mode uses a sort parameter file to do the sort/select. Then, it produces
an output file consisting of only the input data record pointers (2 bytes
per data record).

Mode 7
The command string format is:

output record = [rec. no. (2 bytes)]

AMODE$ = "7\Un\Dm\Bufsize"

PARM$ = The sort parameters

CMND$ = AMODE$ + "\" + PARM$

where:

7 is the mode.

Un is the user number. Use 1 for a single user.

Dm is the temporary memory storage drive. (0 is the default.)

Bufsize is the buffer size. 0 defaults to the maximum.

PARM$ is the sort parameters beginning with the input file name.

This mode uses a sort parameter string (PARM$) to do the sort/select, and
produces an output file containing only the input data record pointers
(two bytes per record).

2-8 PROGRAMMER’S TOOL KIT\ I

Mode 8

The command string format is:

AMODE$ -- "8\Un\Dm\Bufsize\D:PFNAME"

PARM$ = The sort parameters

CMND$ = AMODE$ + "\" + PARM$

2
where:

8 is the mode.

Un is the user number. Use 1 for a single user.

Dm is the temporary memory storage drive. (0 is the default.)

Bufsize is the buffer size. 0 defaults to the maximum.

D is the drive on which to put the sort parameter file.

PFNAME is the name to give the parameter file. (The extension is
assumed to be .SRT.)

PARM$ is the sort parameter string beginning with the input file name.

NOTE: Although Un, Dm and Bufsize are not used, each must still be set
to an acceptable value.

This mode only creates a sort parameter file on a disk. No sort/select is done.

PARAMETER STRING DESCRIPTION

The following table shows the order of the parameters in the parameter
string (PARM$) for modes 2, 3, 5, 7 and 8. This is the same order in which
the parameters are requested when building a parameter file on disk.

AUTOSORT/ 86 2-9

Exhibit 2a: Order of Parameters in Parameter String
MAX.

CHARS.__________ PARAMETER__________ __________ INPUT__________

INPUT FILE d: filename.ext 14
OUTPUT FILE d:filename.ext 14
NUMBER RECS TO SKIP nnn 3
LOGICAL RECORD LENGTH nnnn 4
CHANGE WORK FILE DISK Y/N 1
CHANGE OUTPUT FILE DISK Y/N 1
WORK FILE DRIVE A-Z or 0 1

Sort Key 1

FIELD STARTING POSITION 0 or nnnn (0 to stop key input) 4
FIELD LENGTH nnn 3
ASCEND OR DESCEND FLAG A or D 1

Sort Key 1

ALPHA/ HEX/ INTEGER/SGL/ DBL A/H/I/S/D 1
(Repeats the last 4 for next
key. Enter 0 to stop key input,
except when all 10 keys are used;
then go to the next input.)

ACTIVATE SEL “OR” FUNCTION Y/N 1

Select Key 1

DELETE OR RETAIN 0 or D or R 1
(0 to stop key input)

FIELD STARTING POSITION nnnn 4
FIELD LENGTH nnn 3
ALPHA/HEX/INTEGER/SGL/DBL A/H/I/S/D 1
LESS-EQUAL-GREATER L or E or G
DELETE-RETAIN KEY (Repeats the last 6 for next 135
(Sum of all keys must not exceed 135.) key. Enter 0 to stop key input

if all 4 keys are not used;
otherwise input is complete.)

2.2 SAMPLE COMMAND STRING

The following command string (CMND$) sorts the input file TEST.DAT.
TEST.DAT contains 128 byte records in ascending order on the field starting
at byte 4; each byte record has a length of 8 bytes in ascending order. The

2-10 PROGRAMMER’S TOOL KIT, I

command string deletes all records that have “DELETED” at byte position 4.
Mode 2 is used for a full record sort, so the parameter file is not written
to the disk. The output file is named SORTED.

See Chapter 3, “Sort Parameters,” for the definition of each parameter.

AMODE$ = "2\1\A\0" (mode parameter string)

PARM1$ - "TEST.DAT\SORTED\0\128\N\N\B"

PARM2$ = "4\8\A\A\0" (sort keys)

PARM3$ - "N\D\4\7\A\E\DELETED\0" (sei keys)

PARM$ = PARM1$ + "\" + PARM2$ + "\" + PARM3$
(sort parameter string)

CMND$ = A MODES + "\" + PARM$ (final command string)

2

Exhibit 2b explains the parameters contained in the sample command string.

AUTOSORT/ 86 2-11

Exhibit 2b: Sample Command String Parameter Description
PARAMETERS _________________DESCRIPTION_________________

(AMODE$)

2 Mode
1 User number
A Memory storage drive is “A”
0 Default to maximum buffer size

(PARMIL)

■ TEST.DAT
SORTED

Input file (default drive)
Output file (default drive)

0 Skip 0 header records
128 Record length - 128 bytes
N Do not change work diskette
N Do not change output diskette
B Work file drive is “B”

(PARM2S) SORT KEYS

4 Sort key starts at byte 4
8 Sort key is 8 bytes long
A Ascending order
A Alpha (make upper/lowercase same)
0 End of sort keys (repeat the last 4 if more sort keys)

(PARM3$)

N Do not use select "OR " function

SELECT KEYS

D Delete option (0 if no select keys)
4 Select key starts at byte 4
7 Select key is 7 bytes long
A Alpha (upper/lowercase same)
E Select on "EQUAL"
DELETE Select key value = "DELETED"
0 No more select keys (repeat last 6 if more select keys)

2-12 PROGRAMMER’S TOOL KIT, I

SORT PARAMETERS

PARAMETER FILE OVERVIEW 3.1

The sort parameter files contain three types of parameters: file, key
and control.

The file parameters specify the drive, file name, and file type of the output
and input files. The allowable drives are A through Z.

The sort and select key parameters are specified by the byte position in the
record and the number of bytes in the key. Up to ten ascending or descending
keys are allowed. The keys are sorted on the hex value of each byte if the
Hex (H) control character is selected. If the Alpha (A) control character
is selected, upper- and lowercase characters sort as the same value. The
Integer (I), Single Precision (S), and Double Precision (D) control characters
expect to find fields that are compatible with Microsoft BASIC integer, single
precision, and double precision fields. Negative numbers are considered
smaller than positive; a larger negative number sorts smaller than a lesser
negative number.

If the disk change options are used, a screen prompt asks you to insert either
the work file diskette or the output diskette, and tells you the drive in which
to place it.

SORT PARAMETER DEFINITION 3.2

Generally, parameter files are created dynamically (if needed) during run-time;
however, they can also be created by the PFG86M.COM program.

When the command string (CMND$) is used to specify the sort parameters,
the actual sort parameters begin with the input file name contained in

AUTOSORT/ 86 3-1

PFG86M.COM

the command string. The first four parameters specify the mode, the user
number, the memory storage drive, the sort buffer size, and possibly
additional parameters.

The parameter file generator program is executed by entering “PFG86M”
after the system prompt. Then the following prompts appear. (The action
you need to take is described following each prompt.)

3
ENTER PARAMETER FILE TO CREATE (D:FILENAME),
DO NOT ENTER FILE EXTENSION (ASSUMED .SRT).

Enter the desired name.

ENTER 'INPUT" FILE (D:FILENAME.EXT)

Enter the input file.

ENTER "OUTPUT" FILE (D-FILENAME.EXT)

Enter the output file.

ENTER NUMBER OF RECORDS TO SKIP

Enter the number of header records to skip.

ENTER LOGICAL RECORD LENGTH

Enter the record length.

CHANGE WORK FILE DISKETTE?

Enter Y or N.

CHANGE OUTPUT FILE DISKETTE?

Enter Y or N.

ENTER WORK FILE DRIVE

Enter drive names from A to Z. Enter 0 to use default drive.

3-2 PROGRAMMER’S TOOL KIT, I

ENTER KEY #1 STARTING POSITION (0 TO STOP)

Enter starting byte (0 if no more keys). Enter 0 for the first key if there
are no select keys.

ENTER KEY #1 LENGTH

Enter the length (1 to 255).

ENTER ASCEND/DESCEND FLAG

Enter A or D.

ENTER ALPHA/HEX/INTEGER/SGL/DBL FLAG

Enter A to sort upper/lowercase as the same value. Enter H to sort on
the hex value. Enter I to sort integer fields. Enter S to sort single precision
fields. Enter D to sort double precision fields.

The sort keys repeat until a 0 is entered for the FIELD ^/STARTING
POSITION, or until 10 keys are used.

ACTIVATE THE SELECT KEY OR FUNCTION?

Enter N to use multiple select keys as an AND function and Y to use
multiple keys as an OR function. For single select keys use N. If there
are no select keys, use either.

DELETE OR RETAIN RECORD?

Enter D to delete or R to retain the records whose fields match the
select key. Enter 0 if no more select keys. Entering 0 for the first
select key results in no select function being applied.

ENTER SELECT FIELD STARTING POSITION

Enter the starting byte number.

ENTER SELECT FIELD LENGTH

Enter the length of the select field in the data record.

AUTOSORT/86 3-3

ALPHA/HEX/INTEGER/SGL/DBL FLAG

Enter A to treat upper/lowercase same. Enter H to use actual hex value.
Enter I to sort integer fields. Enter S to sort single precision fields. Enter
D to sort double precision fields

DELETE ON "LT, EQ, GT" THE SELECT KEY?

Enter L for less than. Enter E for equal. Enter G for greater than.

ENTER D/R (DELETE/RETAIN) KEY
D/R KEY:

Enter the actual select key value.

The select keys repeat until a 0 is entered for the DELETE or RETAIN
parameter, or until 4 select keys are used. The parameter file is created
on the specified drive.

3-4 PROGRAMMER’S TOOL KIT, I

RECORD SELECT FEATURES

AUTOSORT/86 can create an output file that contains only selected records
from the input file. The select can occur during the sort process, or it may
occur independent of a sort (if no sort keys are specified).

Four independent select keys can be specified. This lets you delete or retain
records if the specified fields are less than, equal to, or greater than the
DELETE/RETAIN select keys.

If Y is entered for the select key OR function and more than one select key
is used, records that match any of the keys can be deleted or retained.

If N is entered for the select key OR function and more than one select key
is used, all fields must match for the record to be retained (AND function).

The select keys are totally independent of the sort keys. Selects can be
performed on the same keys or on different keys than the sorts.

For additional flexibility, the characters <, =, > can be inserted at any place
in the select key, with the following results:

► When a < is encountered in the select key, the select key character is
considered “less than” the corresponding character in the data field.

► When a > is encountered in the select key, the select key character is
considered “greater than” the corresponding character in the data field.

► When an = is encountered in the select key, the select key character
is considered “equal to” the corresponding character in the data field.

If the select key is longer than the data field, it is truncated to the length of
the data field. If the select key is shorter than the data field, the data field
is compared only for the length of the select key. The select key is considered
a “match” if all characters in the select key match the data field for the
length of the select key.

The select characters can only be used with string fields. They are not
permitted with integer, single precision, or double precision fields.

AUTOSORT/86 4-1

....

5
USING AUTOSORT/86 WITH
PROGRAMMING LANGUAGES

Read Appendix B and run the stand-alone tests before continuing with
this chapter.

AUTOSORT/86 AND MS-BASIC 5.1

To call AUTOSORT/86 from an MS-BASIC program, the AS86M.COM
module must be resident at a known segment in memory. To load the
AS86M.COM module, type:

AS86M

after the A> prompt. The BASIC Interpreter and programs are loaded above
the AS86M.COM module by MS-DOS. When the AS86M.COM module
is loaded, the load segment is displayed as:

ASSEG = &Hnnnn

where:

nnnn is the segment where the AS86M.COM module is loaded.

This statement must be placed at the beginning of all MS-BASIC programs
that call the AUTOSORT/86 program (AS86M.COM). Also, you need the
following subroutine in your MS-BASIC program:

DEF SEG --- ASSEG
ASORT = &H3
CALL ASORT(CMNDH,SORTERR%,RECCNT%)
DEF SEG
RECCNT = RECCNT%
IF RECCNTCO THEN RECCNT = RECCNT + 65536!
RETURN

AUTOSORT/86 5-1

AS86M.COM
AS86M.COM
AS86M.COM
AS86M.COM
AS86M.COM
AS86M.COM

To call a sort, simply declare a command string (CMND$) and GOSUB
to the preceding subroutine. After a Return, you should test the returned
variable SORTERR%. If it is not zero, there was an error. The variable
RECCNT is equal to the number of logical records in the output file.

Follow these steps to run the test programs:

1. Copy the following programs from your AUTOSORT/86 disk to a
new, formatted disk:

► AS86M.COM

► TEST.DAT

► TEST. BAS

► PRINT. BAS

2. Copy your file to the new diskette.MSBASIC.COM

3. Place the new diskette in drive A and type AS86M so that the
module is loaded and fixed in memory.

AS86M.COM

4. Record the ASSEG statement displayed when was loaded.AS86M.COM

5. Edit the TEST.BAS and PRINT.BAS programs so that the ASSEG
statement is replaced with the one displayed for your system configuration.

6. Run the test program by entering:

MSBASIC TEST

after the A> prompt.

A mode 2 (full record) sort is done on 500 25-byte records. See Appendix B
for a description of the parameters used in this sort.

7. Run the PRINT.BAS program to display the TEST.DAT (input) file or
the SORTED (output) file.

8. List the TEST. BAS program and use it as an example of how this particular
command (CMND$) was formed.

5-2 PROGRAMMER’S TOOL KIT, I

AS86M.COM
MSBASIC.COM
AS86M.COM
AS86M.COM

You can change the mode from 2 to 5 or 7 to do different kinds of sorts. If
the mode is changed to 5, the output records consist of a 2-byte integer field
(the data record pointer) and an 8-byte string field (10-byte record length).
If you set the mode to 7, the output records consist of a 2-byte integer field
for a total record length of 2 bytes. The PRINT.BAS program must be
modified to print the output file for mode 5 or 7 because it expects a 25-byte
record and the same fields as in the input file.

AUTOSORT/86 AND THE
MS-BASIC COMPILER 5.2

Follow these steps to combine AUTOSORT/86 with a compiled MS-BASIC
program:

1. Put this subroutine in the MS-BASIC program:

CALL SORTMC(CMND$,SORTERR%,RECCNT%)
RECCNT = RECCNT%
IF RECCNT<0 THEN RECCNT = RECCNT + 65536!
RETURN

2. To call a sort, you simply define a command string (CMND$) and
GOSUB to the preceding subroutine. The command string provides the
sort attributes.

3. Compile your MS-BASIC program using the BASCOM program. (See
your programmer’s guide for the BASIC Compiler.) You now have an
.OBJ file for your program.

4. Using LINK.EXE, link your .OBJ file with the AS86M.OBJ file to form
the executable program. (See the MS-LINK Section of the Programmer's
Tool Kit, Volume IL)

NOTE: When linking the AS86M.OBJ module to your programs, the
AS86M.OBJ module MUST NOT be loaded first.

5. Execute your program.

AUTOSORT/86 5-3

Follow these steps to run the MS-BASIC Compiler test program:

1. Copy the following programs from your AUTOSORT/86 disk to a
new, formatted disk:

► AS86M.OBJ The sort module

► TEST.DAT Test data file

► TESTBC.BAS BASIC test program

► TESTBC.OBJ Object file for test program

► PRINT.BAS Program for printing files

► PRINT.OBJ Object file for PRINT.BAS

2. Copy your BASRUN.EXE file to the new diskette.

3. Link the following object files to form the indicated executable files.

Executable File _______ Object Files_______

TESTBC.EXE
PRINT.EXE

TESTBC.OBJ + AS86M.OBJ
PRINT.OBJ

4. Run the test program by entering:

TESTBC

after the system prompt.

A mode 2 (full record) sort is done on 500 25-byte records. The sort field
starts at byte 4 and is 8 bytes long. See Appendix B for a description
of the parameters used in this sort.

5. Run the PRINT.EXE program to display the TEST.VAT (input) file
or SORTED (output) file.

6. List the TESTBC.BAS program and use it as an example of how this
particular command (CMND$) was formed.

5-4 PROGRAMMER’S TOOL KIT, I

You can change the mode to 5 or 7 for different kinds of sorts. If the mode
is 5, the output records consist of a 2-byte integer field (the data record
pointer) and an 8-byte string field (10-byte record length). If the mode is 7,
the output records consist only of a 2-byte integer field for a total record
length of 2 bytes. The PRINT.BAS program must be modified to print the
output file for mode 5 or 7 because the program expects a 25-byte record
and the same fields as in the input file.

AUTOSORT/86 AND MS-PASCAL 5.3

The following sample Pascal program does a mode 0 (zero) sort (full record
sort using a parameter file from the disk), saves the buffer area on the
default drive, and uses the maximum buffer space.

program pasprog(output);
type

cmdstring = lstring(255);
var

er code: word;
recent: word;
command: cmdstring;

function sortps(vars emd: Istring;
vars err: word) : word; external;

PROCEDURE errtn(code:word);
BEGIN

writeln(output,"Fatal error number " ,code)
END;

PROCEDURE rent(nrecs:word);
BEGIN

writein (output," Number of records is ", nrecs)
END;

begin
command: = "0\l\0\20000\TEST";
recent: = sortps(command,ercode);
rcnt(reccnt);
if ercode <> 0 then errtn(ercode)

end.

AUTOSORT/86 5-5

To call a sort, simply define a command string and execute the external
procedure (sortps). Remember to use an Istring for the command string and
segmented variables (vars) where indicated.

To link AUTOSORT/86 to the Pascal program, you must first compile
your Pascal program using the directions given in your MS-Pascal Ref­
erence Manual. This will produce an object version of your program
(YOURPROG.OBJ).

Then, you must link your program with the AS86M.OBJ module using the
instructions given for linking modules using LINK.EXE. (See the MS-LINK
Section of the Programmer's Tool Kit, Volume II.)

NOTE: The AS86M.OBJ module must not be the first module specified.

When requested by the linker, enter the object modules as shown:

Object Modules: Y0URPR0G,AS86M

AUTOSORT/86 assigns buffer space above its location in memory. The
contents of this buffer area are written to the specified diskette during the
sort procedure and are replaced before returning to the Pascal program.
This lets you sort large files (several megabytes) from within the Pascal
program in a reasonable time without the overhead of dedicated buffer space.

A sample Pascal program (PASTEST.PAS and PASTEST.OBJ) is provided
on the distribution diskette. (The sample Pascal program on the disk is
not the same as that in the last example.) Follow these steps to run the
sample program:

1. Copy the following programs to a new, formatted diskette:

► PASTEST.PAS: The sample source file.

► PASTEST.OBJ: The sample object file.

► TEST.VAT: The test data file.

5-6 PROGRAMMER’S TOOL KIT\ I

► AS86M.OBJ: The AUTOSORT/86 module.

► PRINT.BAS: A BASIC file used to display the TEST.DAT and
SORTED files.

2. Link the PASTEST.OBJ and the AS86.OBJ file to create PASTEXT.EXE.
(See your MS-Pascal Reference Manual.)

3. Run the PASTEST.EXE program.

A mode 2 (full record) sort is done on 500 25-byte records. The sort field
starts at byte 4 and is 8 bytes long. See Appendix B for a description
of the parameters used in this sort.

4. If you have the MS-BASIC Interpreter, run the PRINT.BAS program
to display the TEST.DAT (input) file or the SORTED (output) file. If
you do not have the interpreter, use the PRINT.BAS program as a guide
to constructing a Pascal program that displays the files.

5. List the PASTEST.PAS program and use it as a guide to incorporate
AUTOSORT/86 into your Pascal program.

You can change the mode (the first parameter) in the command string to
produce different types of output files. If the mode is 5, the output records
consist of a 2-byte integer field, the data record pointer, and an 8-byte string
field (for 10 byte total record length). If the mode is 7, the output records
consist only of a 2-byte integer field (for a total record length of 2 bytes). The
PRINT.BAS program must be modified to print the output file (SORTED)
for mode 5 or 7 because the program expects a 25-byte record and the same
fields as the input file (TEST.DAT).

AUTOSORT/86 5-7

5.4 AUTOSORT/86 AND MS-FORTRAN

The following sample FORTRAN program does a mode 0 sort (full record
sort using a parameter file from the disk), saves the buffer area on the
default drive, and uses the maximum buffer space.

C TEST PROGRAM FOR AUTOSORT AND FORTRAN

PROGRAM FORTEST
CHARACTER *80 CMND
INTERGER *2 RECCNT, ERCODE, SORTFO

CMND = '0\1\0\0\TESTA'
RECCNT = SORTFO(CMND, ERCODE)

WRITE (*,100) ' ERCODE = ' , ERCODE
WRITE (*,200) ' RECCNT = ' , RECCNT

100 FORMAT (1X,A8,I6)
200 FORMAT (IX,A8,16)

STOP
END

5
The CMND character string must be terminated with an up-arrow. This is
because no length byte is passed with a FORTRAN string. See the description
of mode 0 in Chapter 2 for an explanation of this command string.

To link AUTOSORT/86 with your FORTRAN program, first compile your
program to produce the Object file. Using LINK.EXE, link your program
with AS86M.COM when requested by the linker:

Object Modules: Y0URPR0G + AS86M

Do not load the AS86M.OBJ module first.

AUTOSORT/86 assigns buffer space above its location in memory. The
contents of this buffer area are written to the specified diskette during the
sort procedure and are replaced before returning to the FORTRAN program.
This lets you sort large files (several megabytes) from within the FORTRAN
program in a reasonable time without the overhead of dedicated buffer space.

5-8 PROGRAMMER’S TOOL KIT\ I

AS86M.COM

AUTOSORT/86 AND MS-COBOL 5.5

The following sample COBOL program does a mode 0 sort (full record sort
using a parameter file from the disk), saves the buffer area on the default
drive, and uses the maximum buffer space.

IDENTIFICATION DIVISION.
PROGRAM-ID. COBTEST.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 CMND PIC X(80) VALUE IS "O\1\O\O\TESTA"
77 ERCODE PIC 99999 COMP-O VALUE 0.
77 RECCNT PIC 99999 COMP-O VALUE 0.
77 ERC PIC 99999.
77 RCNT PIC 99999.
PROCEDURE DIVISION.
MAIN.

CALL "SORTCO" USING CMND, ERCODE, RECCNT
MOVE ERCODE TO ERC.
MOVE RECCNT TO RCNT.
DISPLAY "ERCODE = " ERC.
DISPLAY "RECCNT = " RCNT.
STOP RUN

The CMND character string must be terminated with an up-arrow so that
AUTOSORT/86 can find the length of the string. See the discussion of
mode 0 in chapter 2 for an explanation of this command string.

To link AUTOSORT/86 with your COBOL program, first compile your
program to produce the Object file. Using LINK.EXE, link your program
with AS86M.OBJ when requested by the linker:

Object Modules: Y0URPR0G + AS86M

Do not load the AS86M.OBJ module first.

AUTOSORT/86 5-9

AUTOSORT/86 assigns buffer space above its location in memory. The
contents of this buffer area are written to the specified diskette during the
sort procedure, and are replaced before returning to the COBOL program.
This lets you sort large files (several megabytes) from within the COBOL
program in a reasonable time without the overhead of dedicated buffer space.

5-10 PROGRAMMER’S TOOL KIT, I

6
ERROR INDICATIONS

When an error is detected, the error number is returned to the calling program.
If the returned error number is 0, no error occurred.

The following error numbers are generated by AUTOSORT/86. Each is
followed by an explanation and suggestions for correcting the error condition.

1 READ PAST END OF FILE

This error should not occur. It probably indicates a system or diskette
malfunction.

2 READ ERROR OR BAD FILE

Same as error 1.

3 FILE NOT PRESENT WHEN OPENED

A file was not present on a specified drive. Check the directory.

4 OUT OF DIRECTORY SPACE
6

Too many directory entries. Delete unnecessary files.

5 NOT USED

6 NOT USED

7 FILE NOT PRESENT WHEN CLOSED

Same as error 1.

8 INSUFFICIENT DISK SPACE

Delete unnecessary files.

9 SORT BUFFER SPACE TOO SMALL

Set larger buffer size in the command string.

AUTOSORT/86 6-1

11 NOT USED

13 SYNTAX ERROR IN THE COMMAND STRING

Check the command string carefully.

14 SELECT KEY LENGTH IS ZERO

Select key length cannot be zero.

15 SYNTAX ERROR IN THE COMMAND STRING

Check the command string carefully.

6-2 PROGRAMMER’S TOOL KIT, I

AUTOSORT/86 PUBLIC INTERFACES

Exhibit Aa shows the PUBLIC entry and access locations used by
AUTOSORT/86:

Exhibit Aa: PUBLIC Entry and Access Locations
PUBLIC SYMBOL NORMALLY USED BY

SORTMC
SORTPS
SORTFO
SORTCO

MS-BASIC Compiler
MS-Pascal
MS-FORTRAN
MS-COBOL

SORTMC ENTRY POINT

On entering at SORTMC, three nonsegmented pointers must be pushed on
the stack. These represent the addresses of the command string descriptor,
sort error code, and record count, in that order. All pointers are assumed
to be offsets to the Data Segment register (DS) at entry.

The command string descriptor must be 4 bytes. The first 2 bytes contain
the length of the command string; the next 2 bytes contain the offset of
the command string relative to the DS register at entry.

At exit from AUTOSORT/86, the three pointers (6 bytes) are removed from
the stack and the returned parameters are placed in the specified addresses.

AUTOSORT/86 A-l

A.2 SORTPS ENTRY POINT

On entering at SORTPS, two segmented pointers (8 bytes) must be pushed
on the stack. These represent the addresses of the command string descriptor
and error code, in that order. The segment is pushed on the stack first,
followed by the offset. The first byte of the command descriptor must
contain the length, followed by the actual string of characters.

At exit from AUTOSORT/86, the two pointers (8 bytes) are removed from
the stack and the error code is placed in the specified offset and segment.
The returned parameter (RECCNT) is placed in the AX register as the
returned function.

A.3 SORTFO ENTRY POINT

On entering at SORTFO, two segmented pointers must have been pushed
on the stack. These represent the addresses of the command string descriptor
and error code, in that order.

The command string segmented pointer must point to the first actual byte
of the command string. The command string must be terminated with an
up-arrow so that AUTOSORT/86 can determine the length.

At exit, the two segmented pointers (8 bytes) are removed from the stack
and the error code is placed in the specified address. The returned parameter
(RECCNT) is returned in the AX register.

A.4 SORTCO ENTRY POINT

On entry at SORTCO, three nonsegmented pointers must be pushed on
the stack. These represent the addresses of the command string descriptor,
error code, and RECCNT, in that order.

A-2 PROGRAMMER’S TOOL KIT, I

All pointers are assumed to be offsets to the Data Segment register (DS)
at entry. The command string must be terminated with an up-arrow, so that
AUTOSORT/86 can determine the length.

At exit, the parameters ERROR CODE and RECCNT are placed in the
specified addresses.

AUTOSORT/86 A-3

STAND-ALONE SORTING

To do a stand-alone sort/select, the following files must be available on
one of the drives:

► : This program requests some information and then loadsSORTM.COM
and calls the sort module.

► : The sort module.AS86M.COM

► A previously created sort parameter file.

Follow these steps to run a sample stand-alone sort:

1. Copy , , TEST.DAT and TEST.SRT from
the distribution disk to a freshly formatted disk in drive A.

SORTM.COM AS86M.COM

2. Execute the sort caller by entering “SORTM” after the system prompt.
A series of prompts appears.

3. Enter:

A:

when the sort program drive is requested.

4. Enter:

0

when the sort mode is requested.

5. Enter:

1

when the user number is requested.

AUTOSORT/ 86 B-l

SORTM.COM
AS86M.COM
SORTM.COM
AS86M.COM

6. When the parameter file name is requested, enter:

TEST

The sort begins and will complete in 10 to 15 seconds.

The TEST.DAT file consists of 500 records of 25 bytes each. Exhibit Ba
shows the fields contained in TEST.DAT.

Exhibit Ba: TEST.DAT Field Description
START LENGTH DESCRIPTION

1 1 Constant “R”
2 2 2-character string
4 8 8-character string

12 2 Integer
14 4 Single precision
18 8 Double precision

The parameter file (TEST.SRT) specifies a sort on the string field, starting
at byte position 4. The field is 8 bytes long. Mode 0 is selected for a full
record sort. The output file is named SORTED.

IMPORTANT NOTE: Since the record is less than 128 bytes long and
the file was created using Microsoft’s MS-BASIC, you may have enough
null bytes at the end of the file for them to appear as additional null
records. In an ascending sort, these null records migrate to the beginning
of the file. To avoid this problem, a single byte field with a constant “R” is
placed at the beginning of each record. Then, a select key that retains only
those fields having an “R” at position 1 is defined in the parameter file.

If you have MS-BASIC, run the PRINT.BAS program to display the
TEST.DAT and SORTED files. Here is how the parameter file TEST.SRT
is created using PFG86M.COM.

B-2 PROGRAMMER’S TOOL KIT, I

PFG86M.COM

First, “PFG86M” is entered after the system prompt. Then, the following
answers are given in response to prompts:

PARAMETER FILE NAME: TEST
INPUT FILE NAME: TEST NAT
OUTPUT FILE NAME: SORTED
NO. OF REGS TO SKIP: 0
LOGICAL REC LENGTH: 25
CHANGE WORK DISK? N
CHANGE OUTPUT DISK? N
WORK FILE DRIVE: 0
KEY #1 START POSITION: 4
KEY #1 LENGTH: 8
KEY #1 ASCEND/DESCEND A
KEY #1 ALPHA/HEX/INTEGER/SGL/DBL: A

KEY #2 START POSITION: 0

SEL KEY "OR" FUNCTION: N

SELECT KEY #1

DELETE OR RETAIN: R
SEL FIELD START: 1
SEL FIELD LENGTH: 1

ALPHA/HEX/INTEGER/SGL/DBL: A
LT,GT,EQUAL: E
ACTUAL SELECT KEY: R

SELECT KEY #2

DELETE OR RETAIN: 0

When all of these prompts are answered, AUTOSORT/86 creates parameter
file TEST.SRT.

AUTOSORT/86 B-3

PMATE-86

COPYRIGHT

© 1983 by VICTOR®.
© 1982 by Phoenix Software Associates Ltd.

Published by arrangement with Phoenix Software Associates Ltd., whose
software has been customized for use on various desktop microcomputers
produced by VICTOR. Portions of the text hereof have been modified
accordingly.

All rights reserved. This publication contains proprietary information which
is protected by copyright. No part of this publication may be reproduced,
transcribed, stored in a retrieval system, translated into any language or
computer language, or transmitted in any form whatsoever without the prior
written consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
PM ATE-86 is a trademark of Phoenix Software Associates Ltd.

NOTICE

VICTOR makes no representations or warranties of any kind whatsoever with
respect to the contents hereof and specifically disclaims any implied warranties
of merchantability or fitness for any particular purpose. VICTOR shall not be
liable for errors contained herein or for incidental or consequential damages
in connection with the furnishing, performance, or use of this publication
or its contents.

VICTOR reserves the right to revise this publication from time to time and to
make changes in the content hereof without obligation to notify any person
of such revision or changes.

First VICTOR printing February, 1983.

ISBN 0-88182-009-1 Printed in U.S.A.

II PROGRAMMER’S TOOL KIT, I

CONTENTS

1. Introduction.. 1-1
1.1 Text Editing, Word Processing, Output Processing.......... 1-1
1.2 How This Manual Is Organized ... 1-2

2. An Overview of PM ATE-86 .. 2-1
2.1 PMATE-86 and the Operating System................................. 2-1
2.2 Buffers, Display, and Cursor... 2-2
2.3 Manipulating Text .. 2-3
2.4 Line Formatting.. 2-4
2.5 Instant Commands.. 2-4

Mode Switching .. 2-4
Cursor Motion .. 2-5
Scrolling... 2-5
Deletion... 2-6
Moving Text ... 2-6
Automatic Indent.. 2-7
Miscellaneous... 2-8

2.6 Command Overview.. 2-9
Numeric Arguments.. 2-9
Command Strings.. 2-9
String Arguments.. 2-10
Reexecuting Commands .. 2-10
Error Messages.. 2-11
Basic Commands .. 2-11

2.7 Go To It.. 2-13

3. Advanced Text Editing.. 3-1
3.1 Signed Numeric Arguments.. 3-1
3.2 Text Formatting.. 3-1

Word Wrap... 3-1
Indents and Margins.. 3-2

PM ATE III

3.3 Control Characters... 3-3
3.4 Input Files, Output Files, and

Automatic Disk Buffering .. 3-4
3.5 Manual Mode... 3-5
3.6 Global Commands... 3-6
3.7 Directory Maintenance.. 3-6
3.8 Iteration... 3-7
3.9 Other Buffers ... 3-8
3.10 Macros... 3-9
3.11 Error Traceback... 3-9
3.12 Auxiliary File I/O ... 3-10
3.13 Duplicating PMATE-86.. 3-10
3.14 Get Some Hard Copy.. 3-11

4. Complete Command Set.. 4-1
4.1 Numeric Arguments and Variables....................................... 4-1

Arithmetic Operations....................................... 4-2
Logical Operations... 4-2
Variables and the Number Stack.. 4-3
Block Operations... 4-5
Variable and Number Stack Commands............................... 4-6

4.2 The Error Flag... 4-6
4.3 Mode and Format Commands.. 4-7
4.4 Cursor Motion Commands.. 4-7
4.5 Deletion Commands.. 4-8
4.6 Insertion Commands.. 4-9
4.7 String Search Commands.. 4-11

String Change Command.. 4-12
Global Commands.. 4-12
Setting Tab Stops... 4-13
In-Line Text Formatting.. 4-13
Flow Control Commands.. 4-14

4.8 Buffer Commands... 4-16
Executing Macros... 4-18

IV PROGRAMMER’S TOOL KIT\ I

4.9 String Arguments.. 4-19
4.10 Command String Formatting.. 4-20
4.11 Permanent Macros.. 4-21
4.12 Breakpoints... 4-22
4.13 Keyboard Input... 4-23
4.14 Miscellaneous Commands.. 4-24
4.15 Input, Output, and Directory Maintenance Commands ... 4-27

Disk I/O ... 4-27
Directory Maintenance.. 4-30
Other Commands.. 4-30

5. Macro Examples and Ideas... 5-1
5.1 Adding or Deleting Comments .. 5-1
5.2 Search and Replace Macros.. 5-2
5.3 Text Output Processing.. 5-3

Line Centering and Margin Alignment................................. 5-4
Page Headings and Page Numbers....................................... 5-5

5.4 Forms and Math... 5-4
5.5 Two Print Macros .. 5-8
5.6 Cursor Motion... 5-9

Appendix A: Command Summary.................................. A-l

Appendix B: Customization Guide.................................. B-l

PM ATE V

CHAPTERS

1. Introduction

2. An Overview of PMATE-86 2

3. Advanced Text Editing

4. Complete Command Set

5. Macro Examples and Ideas

3

I
4

I
5

Appendix A: Command Summary A

Appendix B: Customization Guide B

PM ATE VII

INTRODUCTION

TEXT EDITING, WORD PROCESSING, 1.1
OUTPUT PROCESSING

A “text editor” is a computer program that helps people create and modify
text. Traditionally, text editors have been oriented toward the needs of
programmers; they move, copy, modify or eliminate portions of computer
programs. Very quickly, it became obvious that these capabilities would be
useful in creating and editing documents written in plain English. So, word
processing programs were developed that let people enter text into a computer’s
memory and then edit that text as needed.

Text editors and word processors each have advantages in the manipulation
of text. Originally, a text editor program was meant for use on a teletype,
or some other type of “slow” terminal. Because of this, it takes a lot of
time for a text editor to print out a version of a document. You would not
want to print a new copy of the text each time you made a change, so you
wind up working “blind.” Sections of text are typed out only when you
request them. To make up for this inconvenience, text editors usually have
powerful text editing commands that will let you totally rearrange all your
text with a few keystrokes.

On the other hand, word processing programs usually display the current
appearance of your text on a video screen. As you change the text, the
display changes instantly. The penalty you pay for seeing your work is that a
word processor usually allows you to make only simple changes in your text.

A “text output processor” tries to make a text editor compatible with the
real world of pages, paragraphs, underlines, and so on. You use a text editor
to enter text, including a set of control words that indicate whether it’s time
to start a new page, indent a margin 20 spaces, or perform other text manip­
ulations. After you finish your document, you run the output of the text
editor through a text output processor, which types it out on your printer,
nicely formatted. Text output processors give you a great deal of control

PM ATE 1-1

over the form of your final document; however, they have the disadvantage
that the required input — the part created and updated by your text editor —
looks very little like the final printed document. PMATE-86 combines some of
the best features of text editors, word processors, and text output processors.

1

1.2 HOW THIS MANUAL IS ORGANIZED

Writing a manual for PMATE-86 presents problems. Since PMATE-86 is
such a versatile program, its features are useful to people with vastly differing
computer experience. This manual is designed to help any user. It begins
with a discussion of the more basic features of the PMATE-86 program,
and works its way through the more sophisticated applications. Some ideas
and commands are presented in several places, each time at a higher level.

► Chapter 2 is for people who have a minimum of experience with
computers or word processors. It tells how PMATE-86 implements basic
text editing functions.

► Chapter 3 explains more advanced concepts and commands.

► Chapter 4 describes the complete PMATE-86 command set. You can
start here if you have had experience with other text editors and only
need to know the correct command formats in order to get going.

► Chapter 5 discusses the use of macros. After you are well acquainted with
PMATE-86, work through the examples in this chapter. They’ll show you
how to use macros to greatly expand PMATE-86’s built-in capabilities.

► Appendix A is a summary of commands that you can refer to while
using PMATE-86.

► Appendix B provides configuration information. Read this chapter to
customize PMATE-86 for your personal requirements and preferences.

1-2 PROGRAMMER’S TOOL KIT, I

AN OVERVIEW OF PMATE-86

PMATE-86 AND THE OPERATING SYSTEM 2.1

PMATE-86 resides on disk as the command file PMATE.CMD or
PMATE.COM. Call the command file by typing:

PMATE

In a few seconds, PMATE-86 appears on the screen in Command mode.
Typing Alt-N puts PMATE-86 in Insert mode. You can now enter and edit
text. If you call PMATE-86 by typing:

PMATE file

"file" is opened as your input and output file.

If you want to save your work on disk, you must define an "output file."
First, return to Command mode with an Alt-X. Then enter XF followed
by the name you want to give to the output file. Next, strike the ± key
twice. This produces two escape characters (each displayed on the screen
as a dollar sign [$]). A single escape character terminates or separates
commands; two escape characters in a row cause the previous command
string to be executed.

When you finish editing, use one of these:

XE End edit pass by writing entire text buffer to output file, and
closing it.

XK End edit pass without writing anything on the disk.

Both commands erase your text buffer, but only XE saves those contents
on disk. After these commands, you are still in PMATE-86. To return to
the operating system, use:

PMATE 2-1

PMATE.COM

XH Go to the operating system. This command gives an error
message if there are files open. This prevents you from exiting
before you save your work on disk. To end the error condition,
you must enter an XK or XE.

PM ATE-86 can be used to modify an already existing file. To do this, you
must create an input file. Again use:

XFfile Edit “file” (this time, assume “file” already exists). The file
is opened for input, and the text is read in.

You can now modify the text, and again finish up with an XE or an XK.
An XK leaves the original file intact. An XE, however, updates the input file
to include the changes you have made. A copy of the input file as it was
before modification is kept under the same file name with the extension
.BAK (the previous backup file is deleted).

2.2 BUFFERS, DISPLAY, AND CURSOR

PMATE-86 stores text in the computer memory as a continuous stream of
characters placed into any of 11 edit buffers. If you insert a character into
existing text, all following characters are moved to make room for the new
character. If a character is deleted, all the following characters move to
fill in the space opened by the deleted character. Text lines are separated
by carriage returns.

A video display shows you the part of the edit buffer that you are working
on. As you enter or modify text, the display immediately shows the results
of your actions.

A cursor shows exactly where any modifications take place. (The character
to which the cursor points is displayed in reverse video.) The cursor can
be moved around the screen by using the appropriate keys on your keyboard.
As the cursor moves through the text, the screen scrolls up or down (vertical
scrolling). If a line is too long to fit on the screen, the whole text display
shifts to keep the cursor from moving off the right edge of the screen
(horizontal scrolling). Lines are up to 250 characters long.

2-2 PROGRAMMER’S TOOL KIT, I

MANIPULATING TEXT 2.3

There are several ways to enter or modify text. The simplest way is to use
Overtype mode or Insert mode. In these modes, any characters you type
appear on the screen at the cursor location. In Insert mode, characters at
or beyond the cursor location are shifted to the right to make room for
the new ones. If you make a mistake, the Backspace or Delete keys are used
to eliminate the incorrect characters. In Overtype mode, any character you
type replaces the one beneath the cursor. (However, neither Returns nor
Tabs are overwritten.) The bottom line of the command display tells you
whether you are in Overtype or Insert mode.

"Instant commands” are also used in the text editing process. These are
key sequences that do not appear in the text; they let you move the cursor,
delete characters or lines, shift from upper- to lowercase letters, or do other
editing operations. Instant commands are useful for entering text, and
making minor changes in existing text.

For more complex text editing, you can use command strings. For instance,
you could use a command string to tell PMATE-86: Find the third occurrence
of "George” and change it to "Harry”. Then, delete all characters until you
find an F. Then, insert the numbers from 240 to 1000 in base 5, one per line.
Finally, tell me how much (3*46/(5+ (3*7))) is. Of course, you wouldn’t
use exactly that language, but such a command string is easily constructed.

PMATE-86 executes command strings while in Command mode (the mode
that PMATE-86 enters immediately after being loaded). Command mode
is indicated by the absence of an Overtype or Insert mode message in the
command line (the last one in the command display located at the top
of the screen).

In Command mode, your keystrokes don’t immediately affect the text;
instead, they are entered into the command buffer and appear on the
command line. (An underline cursor indicates where the next character
will be entered.) A single command is usually one or two characters, but
commands can be strung together into longer command strings. As soon
as a command is executed, the display shows the updated edit buffer.

PM ATE 2-3

2.4 LINE FORMATTING

A line is a string of characters that ends with a carriage return. When you
enter a Return, the cursor moves down to the beginning of the next line.
Returns always indicate the end of a line. They should be used whenever
characters must appear on a new line.

PMATE-86 also has an automatic line formatting facility for entering and
editing text. When using this facility, text automatically “wraps around”
as you enter: a new line is started each time a line reaches a specified length.
Words are not broken up, however — the complete word is moved down
to the next line. This line formatting is preserved, even as portions of the
text are edited. When operating in this mode, Returns are normally entered
only at the end of a paragraph.

2.5 INSTANT COMMANDS

Instant commands are keystrokes that don’t appear in the command or
text buffers. Instead, they have an immediate effect on your work. Instant
commands are used all the time; a complete listing and description of Instant
command actions follows.

MODE SWITCHING

These Instant commands set the mode of the editor.

AX Go into Command mode.

AN Go into Insert mode.

AV Go into Overtype mode.

2-4 PROGRAMMER’S TOOL KIT, I

CURSOR MOTION

These Instant commands move the cursor throughout the text buffer. As
the cursor moves, the display updates in order to keep itself centered on
the cursor. The cursor is never allowed to move outside of the text buffer.

AA Move the cursor to the beginning of the text buffer.
If the cursor is already at the beginning of the buffer,
it moves to the end. i

or AG Move the cursor to the left.

-> Move the cursor to the right.

l or AB Move the cursor down one line.

t or AY Move the cursor up one line.

Shift-scroll or AU Move the cursor up six lines.

Scroll or AJ Move the cursor down six lines.

AP Move the cursor to the beginning of the next word.

AO Move the cursor to the beginning of the word. If it
is already there, the cursor moves to the beginning
of the preceding word.

AFAM Move the cursor to the beginning of the line. (AM
is a Return.)

SCROLLING

These commands scroll the screen, while leaving the cursor at the same
character.

PM ATE 2-5

afag Scroll left one column.

afah Scroll right one column.

ApAy Scroll up one line.

afab Scroll down one line.

DELETION

These commands let you delete characters from the text. The remaining
characters move down to fill in the space vacated by the deleted characters.

AD Delete the character under the cursor.

AK Delete characters from the cursor position to end
of line.

AW Delete the next word, starting at the cursor.

AQ Delete the word preceding the cursor.

Backspace Delete the character just put into the buffer. In
Command mode, this deletes the character just
entered into the command. When in Insert mode,
this deletes the character just before the cursor.
(AD deletes the character at the cursor.)

MOVING TEXT

These commands provide easy ways to copy or move sections of text.

2-6 PROGRAMMER’S TOOL KIT, I

Ay Tag the cursor location. This marks one end of the
text to be moved.

AE Move the section of text between the tagged location
and the cursor location to a special buffer. The text
is deleted from the text buffer.

AZ Insert contents of the special buffer at the cursor
location.

AFAT Exchange the tag and cursor. This lets you see both
ends of the block you have defined — the block
remains the same. This command is also useful for
moving between two different sections of text.

To move a block of text, type Alt-T at the beginning of the block, then go to
the end and type Alt-E. Move the cursor to the destination and type Alt-Z.

To copy a section of text without deleting it, type Alt-Z immediately after
the Alt-E. Subsequent Alt-Zs produce copies of the text elsewhere.

AUTOMATIC INDENT

When entering text in Insert or Overtype mode, a Return normally brings the
cursor back to column 0. However, it is possible to indent this margin. Indents
work best in Overtype mode; they’re useful when writing code in structured
languages, when writing outlines, or when dealing with columns of data.

AFAI Set the auto-indent level to cursor column.

ApAp Increment the auto-indent level by four columns and
move the cursor to the new indent.

AFAO Decrement the auto-indent level by four columns
and move the cursor to the new indent.

PM ATE 2-7

MISCELLANEOUS

As Repeat the next keystroke four times. If multiple
Alt-Ss are struck, the repeat count is multiplied by
four with each Alt-8. For example, ASASASa is
equivalent to striking “a” 64 times. Alternately, if
Alt-8 is followed by a number, the next non-numeric
keystroke repeats that number of times. AS12AD
deletes 12 characters.

A Edit command string. If you make a mistake when
entering a long command string, this command lets
you edit the string. When you type Alt-_, the old
command buffer becomes the text buffer, and can
be edited just like text. Striking Alt-_ again restores
the old text. The edited command string returns to
the command area, ready for execution.

Ac Abort. Clears the command area. If you type Alt-C
while a command string is being executed, execution
aborts at the earliest opportunity.

AL Insert a line. Inserts a new line into the text and
puts the cursor at the beginning of the new line.

ApAp Redraw and reformat display. This is usually neces­
sary only if your screen is disturbed by a “foreign
influence.”

AFAS Shift default case. Characters toggle between upper-
and lowercase.

aFaC Change the case of the character at the cursor and
advance the cursor one character space.

AR Insert last deleted item at cursor position.

2-8 PROGRAMMER'S TOOLKIT, I

COMMAND OVERVIEW 2.6

A command consists of one, two, or three characters that are entered into
the command buffer. The command is executed by striking the ± key twice.
This escape character sequence appears on the screen as two dollar signs.
Throughout this manual, $ indicates an escape. Control characters appear
in the command line as a caret (A) followed by the associated uppercase
character. A Return, for example, appears as AM.

NUMERIC ARGUMENTS

Many commands can take “numeric arguments” — numbers that precede
the command and give additional information to PM ATE-86. For example,
while D$$ deletes one character from the text, 3D$$ deletes the next 3
characters. Numeric arguments take integer values from - 32768 to + 32767.
They can be complex expressions (explained in Chapter 3). If an argument
is missing, it is usually assumed to be 1. A minus sign before a command
is usually equivalent to -1.

COMMAND STRINGS

PMATE-86 gets much of its power by combining a number of commands into
a command string. For example, M is the command to move the cursor a
number of character positions, and M$$ moves the cursor one character space.
The command string D5MD$$ deletes one character, then moves over 5
character spaces and deletes the character there. The command string appears
on the screen as it is entered; it is not until two consecutive ± s have been
entered that any change takes place in the text. At this time, the whole
command string is executed. Single ±s can be freely inserted between
commands without causing execution. So, D5MD$$, D5M$D$$, and
D$5M$D$$ all have the same effect.

PM ATE 2-9

STRING ARGUMENTS

While numeric arguments often precede commands, some commands are
followed by "string arguments.” These arguments can be a string of characters
you want to insert into the text, a string you want to search for, or a string
you want to do some other operation upon. For example, I is the command
that inserts the string argument following it into the text buffer. Suppose
the text buffer contains:

PMATE-86 is a very easy-to-use and helpful text editing program.

Typing the command Inot $$ might help you express your true feelings:

PMATE-86 is not a very easy-to-use and helpful text editing
program.

If you want to enter the Insert command as part of a command string, you
must tell PMATE-86 that the string argument is finished and a new command
is being entered. Do this by using an escape to separate the string argument
from the command.

REEXECUTING COMMANDS

What happens to the command string after it has been executed? Simple —
it stays in the command area of the display, followed by the two escapes
that caused it to be executed. If you type another escape the command is
repeated. If you type a backspace, the second escape is deleted, and the
old command string can be modified or extended. If you enter any other
command character, the old command string disappears, and the new
character becomes the first character of a new command string.

2-10 PROGRAMMER’S TOOL KIT, I

The ability to repeat commands easily can be extremely useful. For example,
“S” is the search command. Shello$$ searches through the text (starting
at the cursor) and leaves the cursor located just after the first “hello”
that it finds. The text display shows you immediately whether this is the
occurrence of “hello” you are interested in. If not, hit the Escape key and
PMATE-86 finds the next occurrence of “hello.” Continue until you locate
the section you want.

ERROR MESSAGES

2

Some commands and conditions produce error messages. These messages
are usually self-explanatory. If Shello$$ is executed and “hello” is not found,
then the “String not found” message appears. PMATE-86 stops executing
the command string as soon as the command produces an error. The cursor
in the command display area points to the command just after the one that
caused the error. The error message won’t go away until you hit Return
or the Space bar. The command remains in the command area as if it has
finished executing. You can now reexecute, modify, or ignore it.

BASIC COMMANDS

PMATE-86 has enough commands to keep you busy for a long time.
However, a few basic ones are all you need for most text editing work. In
the following list, n indicates a numeric argument.

nD Delete n characters starting at the cursor. If n is missing, it is
assumed to be 1.

nK Kill n lines starting at the cursor. If n is missing, it is assumed
to be 1.

I Insert the string that follows. (End the string by typing a ±.)
Igarbage$$ inserts “garbage” just ahead of the cursor.

PM ATE 2-11

S Search for the string which follows S. The string ends with
a ±. The search starts at the cursor. If you enter Sgarbage$$,
PMATE-86 looks through the text for “garbage” and moves the
cursor to just after the next occurrence. If the string is not found,
an error message is produced.

Change the first occurrence of the first string following to the
next string following. If you enter Cgarbage$junk$$, PMATE-86
will search for “garbage” and change the next occurrence to
“junk.” If “garbage” is not found, an error message is given.
Remember that the search for garbage begins at the current
cursor location.

You can use the following commands for moving blocks of text:

nBC Copy n lines of text into a special buffer. If n is missing, it is
assumed to be 1.

nBM Move n lines of text into a special buffer. If n is missing, it is
assumed to be 1. BM is like BC except that the lines copied into
the special buffer are deleted from the text buffer.

BG Insert contents of special buffer into text just before cursor.

To move 5 lines of text, put the cursor at the beginning of the lines to be
moved (using the cursor control Instant commands). Then, type 5BM$$.
The 5 lines disappear from the text. Then, move the cursor to the new
location of the lines and type BG$$. This restores the lines. (The special
buffer still contains those 5 lines.)

Tags

If you want to move a large block of text around, it may not be obvious
how many lines are in the block. There is an alternative to counting lines.
First, put the cursor at the beginning of the section you want to move. Use
an Alt-T Instant command to “tag” that location. Then, move the cursor
to the end of the block. An Alt-F followed by an Alt-T exchanges the tag and
the cursor, letting you examine the boundaries of the block. This procedure
does not affect the definition of the block. The special symbol causes

2-12 PROGRAMMER'S TOOLKIT, I

the next command to act on this whole block. So, #BC copies the block
into the special buffer, #BG copies the block from the special buffer into
the text, and #K deletes it.

When used in front of a command that takes a numeric argument, # indicates
the number of lines or characters that the command acts upon (such as D
or K). Even if the command normally acts upon a fixed number of lines
(such as the B commands), parts of a line can be moved by tagging a position.

The Garbage Stack
When PMATE-86 deletes text, it dumps that text on a “garbage stack.”
A certain amount of space is reserved for this stack; any memory space
not used by text is also used for garbage. If you accidentally delete a line,
it’s easy to restore that line with an Alt-R. Alt-R “pops” the last item off
the stack, and puts it back in the text. The most recently deleted item is
available first. Items lost long ago may have gone permanently out to pasture
if there is not enough memory to hold them all.

You can also use the garbage stack as an easy method to move a bit of text
around. To move a line of text, for instance, put the cursor at the beginning of
that line and type Alt-K. Then, move the cursor to the required destination,
and type Alt-R. Use Alt-W to move a word or two around in a sentence.

GO TO IT 2.7

At this point, you know enough to utilize PMATE-86 very effectively.
By using the commands, Instant commands, and other information covered
in this chapter, you can confidently enter and modify programs and other
text. It is important to master the material in this chapter before attempting
to learn the complete command set.

PM ATE 2-13

3
ADVANCED TEXT EDITING

SIGNED NUMERIC ARGUMENTS 3.1

Until now, we have assumed that all numeric arguments are positive integers.
They can in fact be much more complex expressions. For now, we’ll look
just at negative numbers.

Commands with a negative argument work backwards through the text.
- 3D deletes the three characters just preceding the cursor (leaving the cursor
located at the same character). Similarly, - 2K deletes the two lines preceding
the cursor. - S searches backwards through the text (from the cursor) until
it finds the string which follows the "S".

3

TEXT FORMATTING 3.2

WORD WRAP

Editing text presents very different problems than editing programs. Suppose
you enter the following paragraph:

Editing textual material presents very different problems than
editing programs. You write the following paragraph:

Soon you decide that you want to insert another sentence between the two
you’ve already written. You need to be able to add this sentence and still
keep the right number of words on a line. As you add words between the
existing sentences, the PMATE-86 Format mode automatically takes care
of line formatting.

PM ATE 3-1

In Format mode, lines end not only on a Return, but also on the last empty
space before the line exceeds the allowed length. (Words are never broken up.)
The rule is to enter text without any Returns — PMATE-86 takes care of
the line length for you. Use a Return only to end a paragraph or at a place
where a new line is always necessary. When in Format mode, each return
character is displayed as a "<".

To enter Format mode, use the command F. Repeating F restores PMATE-86
to normal mode. You can also use the F command with a numeric argument.
30F enters Format mode and sets the maximum line length to 30 (the
default is 77).

PMATE-86 always keeps the screen up to date and properly formatted.
You may find this annoying while entering text in the middle of a paragraph,
since the margins can change with every keystroke and produce a display
that jumps around quite a bit. If this bothers you, an Alt-L Instant command
inserts a Return and stabilizes the situation by moving the cursor to the
end of a paragraph. As soon as you are finished with the addition, type
an Alt-D to delete the excess Return.

INDENTS AND MARGINS

It is very useful to be able to indent sections of text. One method is to precede
each line with one or more Tabs. This method causes a problem, however,
as the Tab is now fixed between two specific words. As words are deleted
or inserted, the Tabs slide around to different locations on the screen and
play havoc with your margins. For this reason, PMATE-86 interprets the
Tab as a margin indent character when in Format mode. If an indent is
set to the same column as the Tab, putting a Tab ahead of an indented
section causes each subsequent line to indent to the same point until a
Return is reached.

An indent is set with a YI command.

nYI Set an indent at column n. Any Tab to column n causes the rest
of the paragraph to be indented.

3-2 PROGRAMMER’S TOOL KIT\ I

For example, 8YI sets an indent at column 8 (the first Tab stop). If you
follow nYI with a Tab to column 8, the rest of the paragraph is indented.

When you use the YI command, be sure not to use a Tab to indent the first
word in a paragraph. If you do, it indents the whole paragraph. Type in
the spaces instead.

For some applications, you might want to change the left and right margins
only for a particular section of text — say to move the left margin over
40 spaces to accommodate a picture. PM ATE-86 lets you enter margin and
Tab information in a special non-printing control line in the text. This control
line begins with an Alt-F (F for Format), and ends in a Return:

AFL20;R60^J

This control line changes the left margin to 20 and the right to 60 from
that point onward. These margins are reflected in the text display. (You might
find it hard to enter that Alt-F in text, since Alt-F is also an Instant command.
See Section 3.3 for help.) After altering a format line, an F$$ command
tells PMATE-86 to recompute its formatting and bring everything up to date.

One final thought: Format mode is useful when writing programs, too. If the
language you are using supports a start- and stop-comment command (so
that comments don’t automatically end with a line), using PMATE-86 in
Format mode lets your programs read like a book, with extensive, easily
modified comments. Of course, program lines must all be terminated with
Returns, but comments can have as many lines as you want.

CONTROL CHARACTERS 3.3

Since control (Alt) characters are used as Instant commands, it might seem
difficult to enter a control character into the text. You can do this using
an Alt-7. When you enter this character, nothing happens. The next character
to be entered, however, becomes the equivalent control character. To enter an
Alt-F into the text without executing a command, enter an Alt-7 and then F.

PM ATE 3-3

3.4 INPUT FILES, OUTPUT FILES, AND
AUTOMATIC DISK BUFFERING

You must answer two questions before PMATE-86 can do any editing:

1. Where is the text to be edited?

2. Where should the text be put after it’s been edited?

You answer these questions when you first invoke the editor. For example:

PMATE GARBAGIN GARBAGOU

is the command to start editing the file GARBAGIN. It is opened as the
input file. Changes and additions are made, and the result is left in the file
GARBAGOU — the output file.

PMATE-86 normally operates with automatic disk buffering in effect (referred
to as “auto-buffer mode”). This means that you can edit a file larger than
available memory without having to read text in and write it out explicitly.
PMATE-86 reads text in from the input file as needed and writes it out to
the output file when it has been processed. XE completes the edit and finishes
transferring the edited text from the input file to the output file. XE does not
return you to the operating system — you are still in PMATE-86. You can
return by using an XH command or you can use XF to open new input and
output files. (XFGARBAGIN GARBAGOU$$ opens the same files as above.)

It is also possible to use PMATE-86 in a manual mode, giving you exact
control over which sections of text are in memory, and which sections are
on the disk. Manual mode is discussed in detail in Section 3.5. Even if you
always use PMATE-86 in auto-buffering mode, read that section to under­
stand the actions PMATE-86 is automatically doing for you.

Often, you’ll do an editing operation to update a file. When you finish, it’s
convenient to give your output file the same name as the input file. You can
do this by deleting the old input file and assigning its name to the output file.
PMATE-86 does this for you automatically if you specify only one file name
in the command line (or in an XF command). PMATE-86 opens an input file

3-4 PROGRAMMER’S TOOL KIT, I

with the specified file name and an output file with the same name and
extension .$$$. XE then outputs everything to the output file as usual.
When the edit is finished, the old input file is given extension .BAK and
the output file is given the name of the original input file.

For example:

PMATE JUNK.ASM

opens JUNK. ASM as the input file and JUNK.$$$ as the output file. XE then
renames JUNK.ASM to JUNK.BAK, and JUNK.$$$ to JUNK. ASM.

In the PM ATE-86 command line (or in an XF command), the input file or
the output file can be preceded by a drive specifier (A:, B:, etc.) that tells
which disk contains the file. If there is no specifier, the logged disk is assumed
to be the one you want.

MANUAL MODE 3.5

In manual mode, you can break the input file into pages that you can read
from the input file one or two at a time. Then, you can write them to the
output file a few at a time. XA is the command that reads in the next page,
appending it to the text buffer. XA can even take a numeric argument —
5XA will append 5 pages. The command nXW writes out n pages from
the beginning of the text to the output file.

It is also possible to edit backward through a file. -XA brings back text
already written to the output file by the XW command. - XW writes out text
from the end of the current buffer, effectively putting it back at the end of
the input file. (Actually, it is written to a temporary file called PMATE .TMP
in order to preserve the input file.)

The nXR command is a very useful one. (It is equivalent to nXWnXA.)
2XR writes two pages from the beginning of the buffer to the output file
and then reads two pages from the input file into the buffer file. The XE
command means “all done.” XE writes the text buffer to the output file,
reads in the rest of the input file, and then writes it to the output file.

PMATE 3-5

Once you set it, the size of a page is a fixed number of lines. This number
is set by using the nQP command. 75QP sets the page size to 75 lines: the
command 3XA appends 225 lines and XW writes 75 lines. Pages can be ended
prematurely by a form feed character (Alt-L). If the page size is set to 0 (OQP),
form feeds are the only method of separating pages.

If you run out of memory space while you are entering text, use XW to
write out some of the text at the beginning of the buffer. XA brings in more
text from the disk. If you need to start a new pass, XJ writes all text out
to the output file and then reopens the buffer for input.

3.6 GLOBAL COMMANDS

Although some commands work only on text presently in memory, many
commands also have a “global” version. Global commands begin with U,
and proceed through an entire file, reading and writing to disk as necessary.
For example, A and Z move the cursor to the beginning and end (respectively)
of text in memory. UA and UZ move to the beginning and end of the entire
file. (If you are editing near the end of a long file, XJ is often a better choice
than UA for getting back to the beginning. XJ writes the remainder of the
edit file to disk and reopens the edit file from the beginning; UA must scroll
back through the entire file.)

The search command S is a “local search,” proceeding only through the text
currently in memory. The global command US carries the search through the
entire file. By using S rather than US, you are protected from inadvertently
searching the entire file for something you expect to find nearby. Similarly,
the C command performs a local replace operation, while UC is used globally.

3.7 DIRECTORY MAINTENANCE

PM ATE-86 lets you do disk directory lists and file deletes. This is handy
if you get a “Disk full” message when trying to write a file to disk. You can
then list your directory, delete unwanted files, and make another attempt
to write the file out to disk.

3-6 PROGRAMMER’S TOOL KIT, I

XL lists the entire file directory, entering it into the text buffer at the cursor
location. This lets you scroll through large listings and edit the directory
just like any other text. There can be problems, though, because the directory
may appear in the middle of your working text. In this case, you can always
delete it. Other ways are to edit in another buffer (see Section 3.9) or use
the A_ Instant command to edit the command string.

Partial directory listings are obtained by following XL with a file name. As in
the MS-DOS DIR command, the file name can contain ?s and *s.

XL JUNK inserts the file name JUNK at the cursor if file JUNK exists;
otherwise it does nothing. XL*.COM inserts the names of all files with
extension .COM at the cursor.

Files are deleted with the XX command. XXfile deletes “file” from the disk.
The file name cannot contain the ambiguous characters ? or *. Do not delete
the input or output files.

You can also switch the logged disk drive by using the XS command.
XS A selects drive A.

ITERATION 3.8

Often you’ll want to repeat a command or a command string. The iteration
brackets ([]) let you to do this easily. The command string:

5[Igood morning!
$]

produces this display:

good morning!
good morning!
good morning!
good morning!
good morning!

PM ATE 3-7

3 [K] produces the same result as 3K.

Iteration brackets can be “nested,” as long as you make sure you have
the same number of left and right iteration brackets. The command:

100[40[l*$]l
ri

fills up your text buffer with 100 lines of 40 stars each.

If there is no numeric argument in front of the iteration brackets, the operation
is repeated forever (that is, about 65,000 times) or until an error occurs.
[I*$] fills up all available memory with stars, and then tells you that there
is no more memory left. [K] starts erasing lines and continues until there
are none left. [Cgoodbad] changes all occurrences of “good” (after the
cursor) to “bad”.

3.9 OTHER BUFFERS

PMATE-86 has 11 buffers that you can enter text into (as well as two buffers
for command strings). The size of a buffer varies — any one expands to
fill most of the remaining memory. If you delete text from one buffer, the
space that you free is available to any of the others.

Usually, you edit in the T (text) buffer. This is the only buffer that has an
associated edit file and that supports automatic disk buffering. The ten other
buffers are labeled 0-9. (You already know about the 0 buffer — all special
buffer commands, like BC and BO, copy to or from buffer 0.) These buffers
are used for temporary work space, for storing blocks of text that will later
be moved, and for storing command strings (macros). To edit in a buffer
other than the T buffer, type BnE (buffer n edit) where n is 0-9 or T.
B3E opens buffer 3 and BTE puts you back in the text buffer again.

3-8 PROGRAMMER’S TOOL KIT, I

MACROS 3.10

A macro is a long command string that tells PMATE-86 to do a series of
operations in a particular order (much like a subroutine). If you have a
command string you need to use several times, put that command string in
buffer n. Any time you like, you can execute it with the command .n. If you
find that you’re using a macro frequently, you can make it a permanent part
of PMATE-86. These “permanent macros” are executed by the command .x
(where x is any character other than the digits 0-9).

There are several ways to put a command string into a buffer. The easiest
way is to start editing in the buffer using the BnE command. Then, go into
Insert mode and enter the command into the buffer. 3

Macros can be “nested”; that is, one macro can in turn call other macros.
Macros can also require passed string arguments. You will learn later how
to pass arguments to macros and how to create your own permanent macros.

ERROR TRACEBACK 3.11

Sometimes errors occur while a macro is executing. In this case, the usual
error message appears in the text area of the screen. In the command area,
however, the macro string that caused the error is displayed with the cursor
pointing to the command character just after the one that caused the error.
The status line tells which buffer (or which permanent macro) was being
executed at the time of the error. You have a choice of hitting a Return
or the Space bar. A Return behaves as usual — you’ll be ready to enter
the next string. Striking the Space bar “pops a level,” and lets you see the
command string that called the troublesome macro. If this command string
is also a macro, you can hit the Space bar again and pop another level.
When you reach the original command string, the Space bar and Returns have
the same effect. If a macro is called from several places in a command string,
this error traceback facility lets you find out exactly where the trouble occurred.

PM ATE 3-9

3.12 AUXILIARY FILE I/O

At any time, PMATE-86 can output sections of your current edit buffer
to disk, or it can read disk files into the current buffer. This can occur while
input and output files are defined, and does not upset them. Xlfile inputs
all of “file” and puts it just before the cursor. nXIfile reads in n pages
from “file.” Nxl can subsequently read in more pages. (If no file name
is specified, input continues from the last named auxiliary input file.) nXOfile
outputs the next n lines of text (after the cursor) to “file.” If there is no
numeric argument n, the entire edit file is output.

You can use these commands to merge sections of files (even if larger than
available memory), load macros into buffers for execution, and use the disk
for temporary storage.

3.13 DUPLICATING PMATE-86

You probably have noticed that PMATE-86 has a number of “parameters”
that are easily changed. Sometimes your favorite parameters differ from
the default values. If you like a page size of 100 lines, you can give the
command 100QP every time you begin editing — or you can create a custom
version of PMATE-86 that automatically makes 100-line pages. Here’s how:

1. Execute PMATE-86 without input or output files and make any
desired changes.

2. Give the command XDfile (D for “duplicate”) where file is the name
of your new version of PMATE-86 (the .COM extension is added
automatically).

3. Give your new PM ATE version a name (PMATE1 or PMATE2 or
anything you like).

4. Use XH to return to the operating system, and then verify the new version.
If you are happy with it, you can erase the original or
you can keep several versions around for different purposes.

PMATE.COM

3-10 PROGRAMMER’S TOOL KIT, I

PMATE.COM

GET SOME HARD COPY 3.14

PMATE-86 outputs your entire edit file to a printer if you use the command
XT. If there is a numeric argument, nXT prints the number of text lines
you specify, starting at the cursor. Use this command when you want to
print out only the changes you have made to a file. If you feel ambitious,
you can write macros to output text in any format you want.

PM ATE 3-11

4
COMPLETE COMMAND SET

NUMERIC ARGUMENTS AND VARIABLES 4.1

Numeric arguments are integers — usually signed numbers between - 32,768
and 32,767. Sometimes they are unsigned numbers from 0 to 65,535. However,
numeric arguments are more than just decimal numbers — they can be
complex expressions consisting of numbers, variables, arithmetic and logical
operations, and parentheses.

In numeric arguments, operations are done from left to right. Any operator
precedence must be determined by parentheses. So, 5 + 3*2 has the value 16
and 5 + (3*2) has the value 11. You can put up to 15 levels of parentheses
in an expression.

Numbers in command strings are usually decimal numbers (base 10). However,
the base (or current input radix) can be changed. (See the Q commands.)
10D$$ usually deletes 10 characters, but if the input radix is 8 (octal), it
deletes only 8 characters.

If the radix is greater than 10, several rules must be observed. In hex,
for instance, PMATE-86 must know if D is the hex digit D or if it is the
command to delete a character. The rule is that any number must begin with
a digit from 0-9; then each succeeding character is interpreted as a digit if at
all possible. If the input radix is hex, DDK means to delete two characters and
then erase a line. ODDK, however, erases 221 lines (the value of DD in hex).
If you need to terminate a hex number, an escape can be used. 0D$DK deletes
13 characters and then erases a line. 2$D will delete two characters, while
2D is interpreted as 45 (decimal).

You can display numeric arguments on the status line. If you type a numeric
argument followed by two escapes, the status line shows the value of that
argument in the current output radix (decimal by default) after the words
ARG - . In this way, you can use the editor to do integer arithmetic. If you
make the output radix different from the input radix, you can do number
conversions (such as hex to decimal).

PM ATE 4-1

ARITHMETIC OPERATIONS

The following are valid arithmetic operations within a numeric argument.

+ Addition.

- Subtraction or negation. -(3) is a valid expression.

* Multiplication.

/ Integer division, leaving just the quotient. The remainder of the last
division performed is available as @R (see the @ numeric arguments).

LOGICAL OPERATIONS
4

Logical operations leave the value -1 if true, and 0 if false. The following are
valid logical operations within a numeric argument. (In the expression 3 = 5,
3 is the first operand, and 5 is the second operand.)

= Equal. True if the first and second operand are equal.

< Less than. True if the first operand is less than the second.

> Greater than. True if the first operand is greater than the second.

& And. True if both operands are true.

! Or. True if either operand is true.

' Logical complement (Not).

Examples:

3<2 has the value 0.

3<2 ' has the value - 1.

2<3 has the value - 1.

4-2 PROGRAMMER’S TOOL KIT, I

2<3! (5 = 2) has the value - 1.

2<3&(5 - 2) has the value 0.

5 + 3 = (1 + 7) has the value - 1.

5 + 3 = (1 + 7)' has the value 0.

VARIABLES AND THE NUMBER STACK

There are ten numeric variables (0-9) available for your use. They are set
with the V command and used as part of a numeric argument having an
@ argument. A number stack is also available. Any numeric argument can
be “pushed” on this stack (see “n”) and “popped off” later (see @S). The
stack holds up to 20 entries during the execution of a command, but is cleared
upon completion. Some of the variables used internally in the editor are
also available for use in numeric arguments. Here is the complete list of
@ arguments:

@i The value of variable i, where i is a digit 0-9.

@A The numeric argument preceding the last macro call.

@B The current edit buffer: 0 if buffer T, 1 if buffer 0, 2 if
buffer 1, ... 10 if buffer 9, and 11 when editing the
command line.

@c The current character number. This is the number of
characters from the beginning of the text buffer to the
character at the cursor. This value is 0 when the cursor is
at the beginning of the buffer.

@D Returns the number of lines (set by QL) scrolled by the
multiple-line movement Instant commands AU and AJ.

@E The value of the error flag.

PM ATE 4-3

@Ffile$ Returns -1 if the file exists on the current directory,
0 if it doesn’t.

@G The length of the string argument just referenced by an
I, S, or C command.

@Hstrng$ Compares "strng” to the characters at the cursor in the
current text buffer. Returns 0 if they match, otherwise
1 or -1, depending upon which string is greater. Wildcards
(as in S command) are acceptable in the command string.

@1 The number of pages read in from the input file. Pages
are counted only if they are delimited by form feeds.
Pages written backward to or read from the temporary file
PMATE.TMP are not counted.

@J The number of screen lines available for text display. Does
not include the three status and command lines at the top
of the screen.

@K The ASCII value of the key struck after a command.

@L The current line number. If the cursor is on the first line,
this is 0. This value is the line number of text in memory
if auto-buffering is off (or when not in buffer T), and the
line number in the entire edit file when auto-buffering is on.

@M The amount (in bytes) of working memory space remaining.

@o Number of pages written to the output file. Pages are counted
only if they are delimited by form feeds. The page number
is decremented for each page read back in by the automatic
disk buffering action, or by a -XA. @0 gives the page
number of the line at the top of memory (A command),
so the current page can be quickly computed.

@P The absolute memory address pointed to by the cursor.

@Q The column of the previous Tab stop.

4-4 PROGRAMMER’S TOOL KIT, I

@R The remainder of the last division performed.

@s The value of the top of the number stack. The number stack
is popped.

@T The ASCII value of the character pointed to by the cursor.

@u Indicates whether auto-buffering is in effect. Returns -1
if it is, and 0 if not.

@v The current mode — 0 for Command, 1 for Insert, 2 for
Overtype.

@W The right margin.

@x The column containing the cursor.

@Y The left margin.

@z The column of the next Tab stop.

@@ The value of the memory byte pointed to by variable 9.

@/ The indent setting.

"x The ASCII value of the character x, where x is any character.

BLOCK OPERATIONS

Commands which take a numeric argument to indicate the number of
characters or lines can also be used to act upon a defined block.

T Tag the current cursor position as the beginning of a block.
(Equivalent to Alt-T Instant command.)

Move the cursor to the tagged position, and use the dif­
ference between the old cursor and the tagged position as
the numeric argument.

PM ATE 4-5

If you want to type out a large block of text, move the cursor to the beginning
of the block and tag that position with T$$ or Alt-T. Then, move the cursor
to the end of the block and print out your text with #XT. # is also useful
with delete and buffer commands.

A tagged block must reside entirely in memory. If a tagged position is moved
to the disk, attempting to access the block with a # command produces the
“Block too large” error message.

VARIABLE AND NUMBER STACK COMMANDS

nVi Set variable i (a digit from 0-9) to the value of numeric
argument n. @C + 3V2 sets variable 2 to 3 greater than the
current character position.

nVAi Add the value of numeric argument n to variable i. If n
is missing it has the default value of 1. 3VA5 adds 3 to
variable 5.

n, Push numeric argument n on the number stack.

4.2 THE ERROR FLAG

Certain commands produce non-fatal error conditions. For example, an M
command cannot move the cursor if it is already at the end of the text buffer.
The command string execution is not interrupted to give an error message.
However, you can determine that an error condition exists by looking at
the error flag. It is possible to suppress some fatal errors, such as those that
occur if a string cannot be found during a search command. If these error
messages are suppressed, the error flag tells you whether an error has occurred.

@E Gets the value of the error flag. The error flag is reset before
executing a command string, and every time it is tested by
@E. It is also reset when beginning an iteration.

E Set the error suppress flag. This flag is reset before executing
a command string, and by every command that might test it.

4-6 PROGRAMMER’S TOOL KIT, I

MODE AND FORMAT COMMANDS 4.3

nN Change modes. If n is 0, remain in Command mode. If n
is 2, go into Overtype mode. For any other n (or if n is
missing), go into Insert mode.

PMATE-86 has an automatic word-wrap feature when in Format mode.
This feature ends a line after the last complete word that fits within the
allowed line length. A Return is entered only to indicate that the next word
must begin on a new line (i.e., end of paragraph).

nF Enter Format mode. The line length is set to n.

F Toggle in and out of Format mode.

CURSOR MOTION COMMANDS 4.4

The following commands move the cursor. While you can also move the
cursor using Instant commands, you need cursor motion command characters
when constructing command strings.

+ /-nM Move the cursor n characters. If n is positive, the cursor
moves forward. If n is negative, the cursor moves backward.
If n is 0, no action is taken.

+ / - nL Move the cursor n lines. Consider the following example:

line a
line b
line c
line d
line e

PM ATE 4-7

4

Suppose the cursor is on the e in line c. IL or L moves the
cursor to the beginning of line d. 2L moves it to the beginning
of line e. OL moves to the beginning of the current line (c).
- L or - IL moves the cursor to the beginning of line b,
while -2L moves it to line a.

+ / - nP Move the cursor n paragraphs. When not in Format mode,
this works like L. When in Format mode, it seeks the Return
that makes the next word begin on a new line.

+ /-nW Move the cursor n words. Words are separated by any
combination of spaces, Tabs, and Returns. OW moves to
the beginning of the current word. If n is negative, the
cursor is moved to the beginning of the nth preceding word.
If n is positive, the cursor is moved to the beginning of the
nth following word.

A Move the cursor to the beginning of the text buffer.

Z Move the cursor to the end of the text buffer.

If an M, L, P, or W command would make the cursor go past the end of the
edit buffer, the cursor goes only to the end of the buffer and the error flag
is set. Similarly, if the cursor would be moved past the beginning of the
buffer, it moves only to the beginning, and the error flag is set. The value
of the error flag is obtained with the numeric argument @E. It is -1 (true)
when set, 0 (false) when clear.

4.5 DELETION COMMANDS

+ /~nD Delete n characters starting at the cursor. If n is positive,
characters are deleted from the cursor position to the end
of the text buffer. If n is 0, no action takes place. If n is
negative, the first character deleted is the one just before
the cursor. Characters are then deleted toward the beginning
of the text.

4-8 PROGRAMMER’S TOOL KIT, I

+ / - nK Kill n lines starting at the cursor. K deletes all characters from
the cursor up to and including the Return at the end of the
line. 2K deletes the next line as well. OK deletes characters
from just before the cursor up to (but not including) the
Return at the end of the preceding line. -IK deletes the
preceding line also. OKK deletes the line containing the cursor.

INSERTION COMMANDS 4.6

I Insert the following string into the text just ahead of the
cursor. Istring$ inserts “string”.

nl If I has a numeric argument, the character represented by
that ASCII value is inserted into the text. If the input radix
is decimal, 651 inserts A. Any character can be inserted
with this command.

n\\ Insert the ASCII string representing the value of argument n
in the current output radix. The string is inserted imme­
diately before the cursor. If variable 0 has the value 23,
@0\\I $@0 + 3\\ inserts "23 26” into the text.

R Replace the text immediately after the cursor with the
following string. No text is moved; the new characters
overwrite the old text. If the cursor is too close to the end of
the text buffer, an error message is given and the substitution
is not performed.

nR When R has a numeric argument, the character represented
by that ASCII value replaces the one already at the cursor
position.

PM ATE 4-9

4.7 STRING SEARCH COMMANDS

+ nS Starting at the cursor, search forward for the following string.
If n is present, search only the next n lines (defined as in
the L command). If n is missing, continue the search until
the end of the edit buffer is reached. The cursor is left
positioned just after the located string.

-nS Starting just before the cursor, search backward for an
occurrence of the following string. If n is present, search
only the preceding n lines (defined as in the L command).
If n is missing, continue the search back to the beginning
of the edit buffer. The cursor is left positioned on the first
character of the located string.

Normally, an error message is given if the string is not found. However,
in some instances you need to continue execution of a command string after
all occurrences of the string have been found. In this case, no error message
is given. Command execution continues if the error message suppress flag
is set. This flag is set by the E command, and is reset on completion of
every search. If an error does occur while the error message suppress flag
is set, the error flag is set. The value of the error flag is given by @E. It is
-1 (true) when set; 0 (false) when clear.

Uppercase characters in the search string match only uppercase characters
in the text. Lowercase characters match either upper- or lowercase in text.
(To match only lowercase, see AL wildcard.)

The following “wildcards” are used in the search string to match any of
several specified characters.

AN Match anything but the following character. SMAANTE$
finds “MALE” or “MADE” but not “MATE”.

AE Match any character. MAAEE matches “MALE”,
“MADE”, and “MATE”.

AL Take next character literally. This lets you search for a
wildcard character. SMAaLaEE matches neither “MALE”
nor “MADE”, but only “MAAEE”.

4-10 PROGRAMMER’S TOOL KIT, I

As Matches either a space or a Tab.

Aw Matches any word terminator (a character other than a
letter or a number).

STRING CHANGE COMMAND

nC Search forward or backward for the string which follows,
as in nS. Change that string to the second following string.
Cstringl$string2$ locates the first occurrence of string 1 and
replaces it with string2. If the string is not located, errors
are treated as with S. In particular, error messages can
be suppressed. ,

GLOBAL COMMANDS

Some commands which act only on the text in memory have “global”
counterparts. These, if necessary, read in more text from the disk, and
search through the entire edit file.

UA Move the cursor to the beginning of the edit file.

UZ Move the cursor to the end of the edit file.

nUS Starting at the cursor, search forward for the following string.
If n is present, search only through the next n lines (defined
as in the L command). If n is missing, continue the search
until the end of the edit file is reached. The cursor is left
positioned just after the located string.

nUC Search forward or backward for the following string, as in
nUS (wildcards are allowed). Change the located string to
the second following string.

PM ATE 4-11

SETTING TAB STOPS

Tab stops are set every 8 spaces by default. However, this assignment is
easily modified. A maximum of 15 Tab stops can be defined.

YK Erase all Tab stops. A Tab is now equivalent to a space.

nYS Set a Tab stop at column n.

nYD Delete the Tab stop at column n (if there is one).

nYE Erase all old Tab stops, and set new ones at every nth column.
8YE restores the conventional settings.

nYI Set the default indent to column n. If n is 0, no indent is used.
(See the next section for use of indents.)

For example, YK10YS30YS sets Tab stops at columns 10 and 30. This might
be useful for assembly language programming with labels in the first column,
then instructions, and then comments. You could then save a version of
PM ATE-86 containing these Tab settings (see XD command).

The following commands make it easy to change Tab settings without
changing the rest of the text.

nYF For the next n lines (beginning at the cursor), replace all Tabs
with an equal number of spaces.

nYR For the next n lines (beginning at the cursor), replace blocks
of spaces by Tabs wherever possible.

IN-LINE TEXT FORMATTING

While in Format mode, you can set Tab stops and margins in non-printing
control lines placed directly in the text. You must do this when any of these
parameters change within the text. Even when this isn’t the case, it’s still
a good idea to put this format information on the first line of the text file.
You won’t need to wonder which margins and Tab stops you used the last time
you edited the file.

4-12 PROGRAMMER’S TOOL KIT, I

Control lines must begin with an AF and end in a Return. These lines are
not printed by the XT command, so that usually unprintable language can
be entered. Certain letters are recognized as commands and must often be
followed by a number. These commands can be strung together if separated
by semicolons.

Ln Set the left margin to column n.

Rn Set the right margin to column n.

K Erase all Tab stops.

Sn Set a Tab stop at column n.

Dn Delete the Tab stop at column n.

En Erase old Tab stops, and set new ones at every nth column.

In Set an indent to column n. If n is also a Tab stop, tabbing
to this column causes subsequent text to indent to column n
until a Return is reached.

The line:

AFL5;R50;E10

sets the left margin to column 5, the right to column 50, and sets a Tab stop
at every 10th column.

Any margin or Tab stop information not specified in the format line reverts
to the default: 0 for the left margin; the right margin default is set by the
F command; and the Tab stop defaults according to the Y commands.

FLOW CONTROL COMMANDS

Conditional branching and iteration within commands let you construct
command strings equivalent to small text editing programs. Iteration is

PM ATE 4-13

accomplished as follows:

where:

" ... " represents any command string.

This command string is executed n times. If n is missing, it is iterated
64K times. If n is 0, the command string in brackets is skipped over. If n
is - I, the command string is executed once. If iteration brackets are preceded
by a logical expression, the enclosed command string is executed once if
the expression is true, and skipped over if the expression is false. If m (an
optional numeric argument) is present, iteration of the loop ends prematurely
if m becomes non-zero (true). If m is missing, its value is that of the error flag;
that is, iteration of the loop terminates if the error flag is set.

5[D] has the same effect as 5D. 5V0[D- VA0@0 = 0] also has the same
effect as 5D. 5V0 initializes variable 0. Within the iteration brackets, - VAO
decrements variable 0. The iteration continues until the final numeric argument
is true, when variable 0 is 0.

[Chello$goodbye$] changes all occurrences of “hello” to “goodbye”.
[Chello$goodbye] changes the first occurrence of “hello” to “goodbye”
(remember, all string arguments must be terminated by an escape).

Iterations can be nested to a maximum depth of 15.

I [...] Execute the expression in brackets if logical expression I
is true. Skip past matching bracket if it is false.

Execute instructions within first set of brackets if logical
expression I is true; otherwise execute instructions within
second set. (NOTE: There must not be any spaces between
the two sets of brackets.)

Further control of these iteration and if-then loops is provided by the next
and break commands. These work only within matching iteration brackets.

nA Next. If n is non-zero (true) or missing, proceed to the
next iteration.

4-14 PROGRAMMER’S TOOL KIT, I

n_ Break. If n is non-zero (true) or missing, exit immediately
from the enclosing iteration brackets.

As with other command characters, upper- or lowercase brackets ({ } or [])
are used for iteration. However, the break and next commands do distinguish
case. They skip past} to the next]. Put if-then-else constructions in uppercase
brackets ({ }) so that any break or next command within exits the iteration
loop (not just the if clause).

NOTE: Be careful. PMATE-86 is easily fooled by iteration brackets within
strings. Make sure the next bracket PMATE-86 finds is intended as an
iteration bracket, and not as part of a search or insert string.

Conditional and unconditional branching within a command string is
permitted. The proper point to branch to is designated by a label. (A label
is any character, preceded by a colon. ":A" and are examples of
valid labels.) The branch command is: 4
nJ If n is missing or non-zero (true), transfer control to the

command immediately following the referenced label.
If n is 0, proceed with normal command execution.
@M>100JL$10K:L erases 10 lines if there are fewer than
100 bytes of memory left. JL$1000K:L does nothing.

Never jump in or out of an iteration loop. This leads to very erratic results.

Finally, it is possible to exit at any point from an entire macro.

n% Exit macro. If n is non-zero (true) or missing, exit from
macro.

BUFFER COMMANDS 4.8

The editor contains 11 buffers that you can use for entering text. The buffer
initially used is called the T (text) buffer. The other buffers are labeled 0-9.
Independent text can be contained in each of these buffers. Text can also
be transferred from one to the other. The buffer currently being edited is

PM ATE 4-15

displayed in the status line. The Instant command A_ causes the command
buffer to become the current edit buffer; C is displayed in the status line.

All buffers (including the command buffer) expand and contract dynamically.
Each buffer uses as much memory as it needs, until available memory
is exhausted.

In the following buffer commands, b refers to a buffer number (either 0-9
or T). In all cases, buffer 0 is assumed if b is left out. Some commands
have a numeric argument (n) that refers to the number of lines to be moved
or copied. The numeric argument can be positive or negative, and the affected
lines are determined as in the L and K commands.

BbK Erase buffer b. All the text in buffer b is deleted, and the
space it occupied is reclaimed.

BbE Buffer b becomes the current edit buffer. When the edit
buffer is changed, the cursor location of the old edit buffer
is preserved. When the old edit buffer is reinstated, the
cursor is restored.

nBbC Copy n lines from the edit buffer to buffer b. The old
contents of buffer b are destroyed. The cursor in buffer b
is placed at the end of the entered lines. The copied lines
in the edit buffer are preserved, and the cursor is placed
after them.

nBbD Insert n lines from the edit buffer into buffer b (just before
the cursor). The copied lines in the edit buffer are preserved,
and the cursor is placed after them.

nBbM Move n lines from the edit buffer to buffer b. The old
contents of buffer b are destroyed. The cursor in buffer b
is placed at the end of the entered lines. The copied lines
in the edit buffer are deleted.

nBbN Insert n lines from the edit buffer into buffer b (just before
the cursor). The copied lines in the edit buffer are deleted.

BbG Get the contents of buffer b and insert them ahead of the
cursor. The contents of buffer b are not affected.

4-16 PROGRAMMER’S TOOL KIT, I

You can use these buffer commands to move or copy blocks of text. For
example, BM moves one line of text to buffer 0 after deleting the old text
there. You can then execute BN repeatedly, each time moving the next line
of text to the end of buffer 0. This is just an alternative to counting lines
and typing 15BM$$. In this way, you can assemble a whole block of text
in buffer 0. You can then move the cursor in the edit buffer elsewhere, and
BG moves that block of text to this new position.

When in auto-buffer mode, you don’t usually get a “Memory space
exhausted” error message. However, buffers other than T can take up the
available memory. Since they are not disk-buffered, BM and BC commands
may not have enough room to execute. If you need to move very large blocks
of text, XO and XI commands can move them through a temporary file.

EXECUTING MACROS

The contents of any buffer can be executed as though it were a command.

.b Execute buffer b. There is no default option; b must be present.

An executed buffer can in turn execute another buffer. You can do this to
a level of 15 deep.

You can use two methods to insert a command string into a buffer for
execution as a macro. The easiest is to make the edit buffer the one that
will hold the command string. Then, you can enter and edit the command
string while in Insert mode. (In command mode, it is hard to enter an escape
into the text area.) When finished, change the edit buffer back to the original.

Another way is to type the command string as if it were to be executed now.
When it is finished, use the Instant command A_ to edit the command string.
BbM then moves the macro to buffer b where it can be executed by the
command .b.

1% Return early from macro if I is true (non-zero) or missing. This is
like a subroutine RET statement in that 1% makes it easy to leave
a macro if a specified condition is met.

PM ATE 4-17

4.9 STRING ARGUMENTS

Commands such as I, S, and C take string arguments. String arguments
usually follow the command directly, but there are ways to get the arguments
from other places (i.e., the contents of a buffer). An Alt-A tells the editor
that this is not an ordinary string argument.

AA@b Get string argument from buffer b. When a buffer is executed as
a macro, the macro can get string arguments from the command
string that called it. Suppose buffer 2 contains “trash”. In
that case, SAA@2$ searches the text for “trash”. IAA@0$ is
equivalent to BG.

AAa Get string argument from calling command, where a is a letter
from A-Z. A refers to the first passed argument, B the second,

4

This should be clearer after an example. Suppose buffer 1 contains:

IDear Mr. $IaAA$I,
You, Mr. $IaAA$I have the opportunity to be the first on

your block in beautiful $IAAB$I to own your own copy of an
exciting new editor. Imagine what you and Mrs. $IaAA$I can
do with it. The rest of $IAAB$I will be so jealous. Blahhh,
blahhh, blahhhS

The command .lJones$Cambridge$$ enters the following into the text:

Dear Mr. Jones,
You, Mr. Jones have the opportunity to be the first on your

block in beautiful Cambridge to own your own copy of an
exciting new editor. Imagine what you and Mrs. Jones can do
with it. The rest of Cambridge will be so jealous. Blahhh,
blahhh, blahhh

4-18 PROGRAMMER’S TOOL KIT, I

Unfortunately, that is not all this command does. After .1 is executed, the
editor comes back and executes the command J. When it tries to execute
buffer 1, PMATE-86 can’t tell how many string arguments are required.
Consequently, PMATE-86 doesn’t know where in the command string to
return in order to execute the next command. Buffer 1 must contain the
needed information. The number of passed string arguments must be set
in the macro by the QA command (see Q commands).

If buffer I contains 2QAIDear . . . , then .1 Jones$Cambridge$$ does not
attempt to execute the J.

When macros are nested several levels deep, the string arguments can
also be nested.

COMMAND STRING FORMATTING 4.10

Since command strings are actually text editing programs, PMATE-86 has
facilities that format these command strings for easy reading and modification.
Spaces, Tabs, and Returns are all ignored as commands. They can be placed
between commands to enhance readability.

; A semicolon indicates that what follows is a comment. All characters
through the next Return are ignored.

A command string can be written to look like a well-commented program.
For example, here’s a short command string that changes all uppercase
alphabetic characters to lowercase:

A
[
@T<"A JA

GT!" VO

D @01
-M
:A M

]

; start at beginning of edit buffer
;begin iteration
;if the current text character is not an
; alphabetic character (if its ASCII value is
;less than that of "A"), jump to label "A"
; change character to lowercase by ORing
;it with ASCII value of space (LOH)
;save result in variable 0.
;delete old character and insert shifted one.
;move back to same character.
;move cursor to next character, setting
; error flag if it is at the end
;continue with next character,
;unless error flag had been set.

PM ATE 4-19

Of course, the whole command could also have been written as:

A[@T<"AJA@T!" VOD@OI - M:AM]

And here’s a much better way to do the same thing:

A[@T<"A[M][@T!" R]@T = 0]

4.11 PERMANENT MACROS

4

There are some macros you’ll want to use frequently. These can be made
permanent. Think of this permanent macro facility as a way to add your
own commands to the PMATE-86 command set. You can make a new version
of PMATE-86 that incorporates your new commands (see the XD command).
You can also define your own Instant commands by configuring PMATE-86
to execute a given permanent macro when you press a particular key (see
Appendix B).

Permanent macros have a label that can be any character other than a digit.

.a Execute permanent macro a, where a is any character other than 0-9.

To add or remove a permanent macro, you must edit the permanent macro
area. This area can be copied to or from the text buffer with the QMG and
the QMC commands (see Q commands). This area must begin and end with
an AX. The AX also separates different macros within the area. Immediately
following each AX is the character that labels the macro, followed by the
macro itself. Here is a macro area containing macros # and C:

AX# lyou have just executed macro #$
AXC 2QAECaAAaAB
AX

4-20 PROGRAMMER’S TOOL KIT, I

Executing the command .# inserts “you have just executed macro #” into
the text. The command .C behaves just like C, except it does not generate
an error message if the string is not found.

It is possible for you to define a macro that PMATE-86 executes each time
it is initialized. The first macro in the permanent macro area is executed as
part of PMATE-86’s initialization procedure if it is preceded by an AI (Tab),
rather than the usual AXx (where x is the name of the macro). This macro
can even end in XH, causing it to generate a program that acts on a file
and returns without displaying anything on the screen.

If you put AS (rather than AI) before the first macro, the macro is still
executed initially, but the files specified in the command line following
“PMATE” are not opened. The command line can then be referenced as a
string argument by using AA:. (For instance, IAA:$$ inserts the command line
into the text buffer.) You must call the command line immediately if you
need it, since it’s not available after any file activity has taken place. This
lets you make a customized version of PMATE-86 that processes commands
given directly from the operating system command line.

BREAKPOINTS 4.12

PMATE-86 has a breakpoint and trace facility that helps you debug complex
commands and macros.

? Stop executing the command. PMATE-86 is now in Trace mode
and the cursor in the command area points to the next command
to be executed. The current value of the numeric argument is
displayed in the status line. Instant commands are active, and
you can go into and out of Insert mode. If you press the Escape
key, command execution resumes until the next ? command.
If you press a key that is not an Instant command, PMATE-86
executes the next command and stays in Trace mode.

If you have trouble figuring out what is wrong with your macro,
insert question marks at strategic places in the macro. You can
use these question marks to see what has happened after partial
execution of the command.

PMATE 4-21

4.13 KEYBOARD INPUT

G Get the following key from the keyboard. Pause during the
execution of the command and update the display. The string
argument following G is displayed as a prompt in the command
display area. Instant commands are active. The command con­
tinues executing when you enter a character (other than an Instant
command) from the keyboard. The ASCII value of this key is
available by using @K in a numeric argument.

For example, gTYPE A KEY$@Ki$$ displays “TYPE A KEY”
on the command line. The next character entered is inserted into
the text buffer in front of the cursor.

OG The string argument following G is displayed as a prompt in
the command display area. The command continues executing
without further keyboard input.

This command gives PMATE-86 I/O power. PMATE-86 can
stop in the middle of an editing operation, and ask you how to
proceed. Macros can expand upon the power of the G command
— accepting either character strings (putting them in an available
text buffer) or numbers (putting them in variables).

4-22 PROGRAMMER’S TOOLKIT\ I

MISCELLANEOUS COMMANDS 4.14

nQA Set the number of passed string arguments to n. (See macro
description.)

QB Ring bell. This can tell you that a long command string has
finished executing.

nQC Set the control shift character to the character represented by the
ASCII value n. The shift character is ignored when input, but
enters the next character as a control character. This command
lets you enter text characters that would otherwise be interpreted
as Instant commands.

nQD Delay for a time proportional to n. This can be used with L and
QR to implement variable speed scrolling.

nQE Set type-out mode to n. (See XT.)

nQF Set the form feed character to that represented by the ASCII
value n.

nQG Turn off garbage stacking if n equals 0. If n is non-zero or
missing, turn on garbage stacking.

nQH Insert n spaces at the cursor. This is useful for operations such
as centering. Since all spaces are inserted at once, this operation
is much faster than n[I $].

nQI Set the input radix to numeric argument n. If n is missing, set
the radix to decimal. Remember, if the old input radix is octal,
10QI does not set it to decimal. Since the 10 is interpreted in
the old radix, the input radix remains octal.

nQJ Shift the text display up n lines (or down if n is negative) without
changing the cursor location. This command shifts the display
as far as possible without moving the cursor from its allowed
screen positions.

PM ATE 4-23

nQK Set backup mode for files. If n is 0, .BAK files are not created
from old input files; if n is non-zero or missing, .BAK files
are created.

nQL Set number of lines that Instant commands AU and AJ scroll.

QMG Insert contents of the permanent macro area into the text buffer
just ahead of the cursor.

QMC Copy the entire text buffer to the permanent macro area. The
previous contents of the macro area are lost. If you want to
save them, do a QMG first. Then, add to or modify the text
before copying it back.

nQNstrng$
Direct console I/O, similar to the G command. The specified
string outputs directly to the console. If n is missing or non-zero,
the string is output only after a key is pressed. The ASCII value
of this key is then available by using @K in a numeric argument.
Unlike G input, this is direct console input, without any pre­
processing or Instant command translation.

nQO Set the output radix to n. If n is missing, the radix is set to decimal.

nQP Set input and output page size to n. If n is 0, pages are delimited
by form feed characters, rather than breaking when a certain
number of lines has been reached.

nQQ Shift the text display left n columns (or right if n is negative)
without moving the cursor. This command shifts the display
as far as possible without moving the cursor from its allowed
screen positions.

nQR Redraw screen. The argument @K contains the value of any
key struck, or 0 if none. Use this command to create interactive
command strings (strings where PMATE-86 continues doing
something and showing you the results until you tell it to stop).

nQS Set the uppercase/lowercase shift character to the character
represented by the ASCII value n. This shift character is ignored
when input, but shifts the case of the next character entered.

4-24 PROGRAMMER'S TOOL KIT, I

nQT Type the character represented by the ASCII value n on the
listing device.

nQU Set PMATE-86 to automatic disk buffering mode if n is non-zero
or missing. If n is 0, automatic disk buffering is disabled.

nQV Enable Tab-fill unless n is 0. When a character is inserted past
the end of an existing line, PMATE-86 inserts as many Tabs and
spaces as needed to fill out the line (see QY). If Tab-fill is not
enabled, only spaces are used.

nQX Move screen cursor to column n on the current line. Depending
on the state of the free-space flag (see QY), the cursor may not
be able to go past the last character in a line.

nQY If n is 0, set the free-space flag so that the screen cursor can
move past the end of a line. When a character is inserted at such
a cursor position, the necessary amount of spaces (or Tabs —
see QV) is inserted to extend the line to the new cursor location.
If n is non-zero, reset the flag so that the cursor is restricted
to existing text.

nQZ Don’t allow cursor to move past column n. Use this when you
want to control the width of your text — usually when you need
clean output on a limited-width printer. When the cursor reaches
the restricted column, it stops advancing and a warning tone
is sounded. If n is missing, the default width of 250 columns
is restored.

nQ! Set byte in memory whose address is held in variable 9 to n.
This command lets PMATE-86 alter any byte in memory (and,
of course, crash the system). Used with @ @, a monitor could be
constructed in macros. Other macros might change I/O driver
parameters. However, for altering text, just move the cursor
and use nR.

nQ- Sets flag to indicate whether numbers are displayed as signed or
positive only. If n is 0, numbers are displayed as positive only;
otherwise they are displayed as signed numbers. This affects the
argument display (ARG) in the status line, as well as numbers

PM ATE 4-25

inserted in the text by the \\ command. If more than 32K of
memory remains, you see ARG= -30536 in the display after
you type the command @m$$ (in order to see how much
memory remains). Then entering 0Q- gets you a more meaning­
ful display.

Q# Exchange the tag and cursor.

nQ/ Set the indent to n. After a Return is entered in Overtype or Insert
mode, PMATE-86 advances the cursor to column n. Set the
free-space flag (see QY) to use this feature, as spaces (or Tabs)
are not inserted until a character is typed (so that blank lines
do not contain unnecessary spaces). If n is missing, Q/ increments
the indent by one column, and - Q/ decrements it one column.

nQm Set user variable m to value n (m is a digit from Oto 9). These ten
variables are used by user-written I/O drivers. For instance, you
can control whether hard copy output goes to a TTY console,
or to a line printer.

4.15 INPUT, OUTPUT, AND DIRECTORY
MAINTENANCE COMMANDS

All input and output commands begin with an X. This helps prevent accidental
I/O, which can cause big problems.

DISK I/O

PMATE-86 has automatic, bidirectional disk buffering facilities. When
in auto-buffer mode, files as large as 512K are edited without having to
transfer pages explicitly between memory and the disk. Automatic disk
buffering helps you edit files larger than available memory; the commands
L, M, P, and W, and the cursor motion Instant commands don’t stop at
the end of memory. Instead, they scroll through the disk, reading in text
as needed and writing out text from the other end. Auto-buffering is only
in effect when editing an open file in buffer T.

4-26 PROGRAMMER’S TOOL KIT, I

If you don’t use auto-buffer mode, files that are too large for memory must
be broken into pages. Pages are divided by a character you define (usually
a form feed), or they given a fixed number of lines (see the QP command).

nXA Append n pages from the input file to the edit buffer.

-nXA Bring n pages already written out to the output file back into
the edit buffer.

nXW Write n pages from the beginning of the edit buffer to the
output file, and then delete them from the buffer.

-nXW Write n pages from the end of the edit buffer back to the
input file (actually to a file called PMATE.TMP).

nXR Replace n pages by appending n pages from the input file, and
writing n pages to the output file.

-nXR Replace n pages by retrieving n pages from the output file and
writing n pages back to the input file.

nXY Yank n pages from the input file. Each page overwrites the
old one, without writing the old one to the output file.

This command is used for reviewing an existing file. Except in
special circumstances, the file should be XKed when done.

XFfilel If file exists, open it as the input file and open file.$$$ as the
output file. If the file does not exist, create it and make it the
output file. The filename can be preceded by a drive specifier.

XFfilel file2
Open filel as input and file2 as output, filel should already
exist on the disk (if it doesn’t, filel is opened as the output file)
and file2 shouldn’t exist (if it does, an error message appears).
Both filel and file2 can be preceded by drive specifiers.

XE End of editing pass. Write the text buffer to the output file.
Read in the remainder of the input file and write it to the output
file. Close the input and output files and clear the text buffer.

PM ATE 4-27

If the output file is the same as the input file (with a .$$$
extension), rename the input file to file.BAK, delete the old
backup, and give the output file the name of the old input file.

XEfile End of editing pass, as above — but output file is renamed "file"
and the original input file is undisturbed.

XJ Start a new editing pass. Equivalent to an XE and then an XF of
the original file name. Used for editing a page already written out
with XW or XR. Don’t go too long without an XJ, even on
files that fit entirely in memory. This ensures that your editing
work is saved if there is a power failure, or catastrophic error.

XJfile Equivalent to XEfile, followed by reopening the new file.

XC Close input and output files as they are. Neither the contents
of the text buffer nor the rest of the input file is written to the
output file. File renaming does not take place, even if the
output file is temporary with extension .$$$).

XK If in buffer T, delete the output file and clear the text buffer.
If in another buffer, clear buffer without affecting the input
and output files.

XH Return to the operating system. This is the usual way to exit
from the editor.

XDfile Duplicate PMATE-86; write it as it now exists to file.COM.
This output file can later be renamed PMATE.COM.

nXIfile Auxiliary input. Read the first n pages of file into edit buffer
at cursor location, even if another file is open as the input file.
If n is missing, read in the entire file. If the entire file is not
read in, the remainder can be read in later.

nXI Input the next n pages from the input file last defined by the
Xlfile command. If n is missing, input the entire remainder of
the file.

nXOfile Create file and write n lines of text (beginning at the cursor)
out to the new file. If n is missing, write out the entire edit buffer.

4-28 PROGRAMMER’S TOOL KIT, I

file.COM
PMATE.COM

DIRECTORY MAINTENANCE

XSb Change the disk to b. PM ATE-86 does not respond to this
command while input and output files are defined.

XLfile Like operating system DIR command. Lists all files which match
the file name in the command (* and ? can be included in the
file specification). If file is missing, the entire directory is listed.

The directory listing is placed in the text buffer at the cursor
location. This lets you print the directory or manipulate it as
you would regular text. However, if desired text is already in
the text buffer, it may be necessary to delete the directory text.
Alternately, change the current text buffer before giving the
XL command.

XXfile Delete file from the disk. Ambiguous file names (containing
* and ?) are not allowed.

OTHER COMMANDS
nXT Starting at the cursor, type n lines on the listing device.

If n is missing, type out the entire edit file. There are
3 type-out modes (set by the QE command):

► Mode 0 prints text almost exactly as it is displayed.
Format lines are printed, escapes type out as $, and
other control characters are printed as an up-arrow
followed by an uppercase letter. Use this mode for
printing macros and for draft output.

► Mode 1 (the default mode) is used to print programs
or text on a regular printer. Tabs are expanded to
spaces. Format lines are not printed, but affect the
margins and Tab stop settings. Other control characters
are sent through to the printer.

► Mode 2 is used with intelligent printers that do their
own formatting. Returns are sent only at the end of

PM ATE 4-29

a paragraph; Tabs are not expanded to spaces; and
all control sequences are passed on to the printer.

Even in auto-buffer mode, nXT types only lines
currently resident in memory. However, TnL#XT
types out n lines, reading them from the disk as
necessary. In addition, XT, without an argument,
types out the entire edit file.

4-30 PROGRAMMER’S TOOL KIT, I

5
MACRO EXAMPLES AND IDEAS

This chapter contains examples of macros which you can use as presented
or as a guide for building your own macros. Some of the examples are
relatively simple macros; they are explained in more detail than later ones.
None of the examples, however, are supposed to be polished final products.
Instead, they should give you an idea of the types of operations you can
perform with macros, and provide you with a foundation on which to build.

The best way to understand how and why these macros work is to enter
them, execute them, and then run them in Trace mode. You should read up
on Trace mode and breakpoints in the last chapter before using the sample
macros. To refresh your memory, though, here’s a summary: Put a question
mark (?) at the beginning of the macro or at the place where you stop
understanding what’s going on. At this point, the macro executes one step
at a time, showing you the results of its latest operation. The macro continues
only when you press a key.

ADDING OR DELETING COMMENTS 5.1

Programmers often “comment out” sections of code — a way of deleting
a section from the program, but keeping the code in memory just in case
it has to be replaced. In many programming languages, this is done by
putting a semicolon at the beginning of each line. In PMATE-86, you can
go into Insert mode, enter a semicolon, move the cursor down, enter another
semicolon, move the cursor, and so on. This isn’t much trouble for a few
lines, but the macro I;$L$$ works better if you need to enter a lot of lines.
This macro inserts the semicolon and moves the cursor all at once. If you
enter a series of escapes, the command repeats until you reach your last line.
Finally, try 20[I;$L]$$. This command repeats the above sequence 20 times,
commenting out 20 lines at a time. Any time you need to perform a repetitive
sequence, think macro.

PM ATE 5-1

What if you need to delete all the comments from a file? If you’ve ever done
that by hand, you will appreciate a macro which does it for you automatically.
This macro assumes that comments begin with a semicolon; it deletes the
comment starting at the semicolon, as well as any preceding tabs. Use it
on programs, or on PM ATE-86 macros themselves:

[S;$ -M - SANAI$ M K I
•]

The left bracket starts a loop that deletes all comments. The first S finds
a comment by searching for ;. Then, the macro looks for the Tabs preceding
the semicolon. Since the S left the cursor on the character just after the
semicolon, the macro must move back one (- M) before looking for Tabs.
The next S searches backwards until it arrives at the first character that isn’t
a Tab (ANAI matches anything except Alt-I, which is a Tab) and leaves the
cursor on that non-Tab character. Then, the cursor points to the entire
comment to be deleted. K deletes the comment, as well as the Return at
the end of the line. The Return is then restored by the I. The right bracket
loops back to the start of the macro. The macro terminates when the first
S command cannot find any more comments.

5.2 SEARCH AND REPLACE MACROS

Escape characters in text present problems when a macro string needs to
operate on those characters. If you want to put an escape into text, I$$$
doesn’t work, but 271 does. To avoid this problem, here’s a macro that
changes all escapes in text to dollar signs (in case you ever need to write
a section like this one):

[@T = 27[36R][M]@T = 0]

The first bracket starts iteration, for we want to change the entire text buffer.
@T = 27 tests the character under the cursor to see if it’s an escape (ASCII
code 27). If it is an escape, the expression in the first set of brackets (36R)
is executed. This replaces the escape with a dollar sign (ASCII code 36).

If the character at the cursor is not an escape, the expression in the second
set of brackets moves the cursor on to the next character. (AT-0 tests to

5-2 PROGRAMMER’S TOOLKIT, I

see if the cursor has reached the end of the text buffer (always a null). If the
end has been reached, the iteration ends; if not, the macro goes back and
checks the next character.

The command [Cblah$blew$] changes all occurrences of “blah” in the text
buffer to “blew”. Sometimes, though, you will want to replace only some
of the occurrences. It’s possible for you to write a macro that stops at each
“blah” and asks you whether you want to replace it. Put this command
string in buffer 1:

2QA
[SaAA$

GType space to replace# @K = 32[-CaAA$aAB]
]

Then type .lblah$blew$$.

The first line of the macro sets the number of string arguments required
from the calling command (in this case, “blah” is the first and “blew” is the
second). The next line searches for the first argument (blah). The G command
then gives a prompt, displays the text buffer with the cursor located just past
the next “blah”, and waits for you to respond. If you respond with a space,
@K = 32 is true, and the expression in brackets is executed. The “blah”
changes to “blew” (the - C is necessary because the cursor has already been
moved past “blah”). If you press anything other than the Space bar, the
expression in brackets is ignored. The last line iterates back to the first
bracket and the macro keeps looking for the “blah”s. The process will
continue until the last “blah” or until you enter Alt-C.

TEXT OUTPUT PROCESSING 5.3

By itself, PMATE-86 does not perform many print functions often associated
with word processors. However, you can use PMATE-86 with a separate
output processor or you can write macros to do these functions. Here are
a few ideas to get you started.

PM ATE 5-3

LINE CENTERING AND MARGIN ALIGNMENT

In Format mode, this macro centers a line. Start by putting the cursor
anywhere on the line to be centered.

L-M
@W-@X/2V0

OL
@OQH
L

;move to end of current line
;get one half the distance from right margin
;to current cursor position
;save it in variable 0.
;back to beginning of line
;insert number of spaces computed above
;move on to next line

It’s easy to make a macro that moves the line flush with the right margin —
just get rid of the /2 after the @W - @X.

This next macro copies the character at the cursor position, leaving the rest
of the line flush with the right margin. Use it, for example, on a table of
contents. Start with:

Chapter l.pg 1
Chapter 2.pg 24
Chapter 3.pg 30

Put the cursor on each decimal point in turn, execute the macro three times,
and you are left with:

Chapter 1... pg 1
Chapter 2... pg 24
Chapter 3... pg 30

@XV0
L-M
@W-@XV1
@0QX
@TV2

;save the current column in variable 0
;find end of line
; amount of space needing fill to variable 1
;back to original cursor position
;save the character there in V2

5-4 PROGRAMMER’S TOOL KIT, I

@1QH
@OQX
@1[@2R]

;fill out line with spaces
;back to original cursor position again
;now overtype spaces with the original character

The last three lines could have been replaced with @1[@2I]. However,
replaces require much less memory than inserts; the suggested method
executes faster.

PAGE HEADINGS AND PAGE NUMBERS

Here is an easy way to write a macro for page headings and numbering.
Suppose buffer 1 contains a one-line heading which you want printed at
the top of every page. And suppose you have put a # in that line at the
place you want a page number inserted. Buffer 1 might contain:

Chapter 2 EXCITING DOCUMENT! page #

Enter into variable 0 the first page number: 5V0$$ is appropriate if Chapter 2
starts on page 5. Then, the following macro prints your file, using the above
header and printing page numbers:

[
B2K
BSE
BIG
A
S#$ - D
@o\\
VAC
XT
1OQT
BTE
60XT
4[1OQT]
@T = 0]

; start iteration — will type till end of buffer
; empty buffer 2
;edit buffer 2
;get prototype page header from buffer 1
;find its beginning
;find and delete it
;insert page number there instead
;increment page number — ready for next page
;type header
;send a linefeed to skip line after header
;back to text buffer
;type next 60 lines of document
;send 4 linefeeds to complete a 66 line page
;keep typing until the text buffer is finished

PM ATE 5-5

There are lots of ways to expand on this. For documents larger than available
memory, have the macro read in successive pages. Define a print format
line, starting with a unique character (maybe AP). The print macro does
not type this line, but uses its information for further formatting. The print
format can include output functions like double space, center (see macro
above), and so on. Header information no longer needs to be put in a
buffer beforehand, but can be moved there from the print format line as
the macro proceeds.

5.4 FORMS AND MATH

5

Sometimes you need to get a whole string from the keyboard. The next
example macro gets a string from the keyboard, echoes what is typed in
the command/prompt line, and saves that string in buffer 9. The string ends
on a Return. In order to correct mistakes on entry, a backspace deletes the
last character entered.

B9K
[
GAA@9$

@ K = 13—
B9E
@K = 8[-D][@KI]

BTE
]

; delete old contents of buffer 9
; start iteration
;get a character, displaying contents
;of buffer 9 on command line
;if character is a Return, break (all done)
;now go into buffer 9
;if character is a backspace
; delete previously entered character
;otherwise, insert new character
;back to text buffer

You can use this macro to create an interactive macro for filling out forms.
For instance, a preexisting invoice skeleton can be read in. You can then
use the full capabilities of PM ATE-86 to fill in the blanks, or an invoice
macro can set the cursor into each field and prompt for information. The
entry is accumulated in buffer 9 and inserted in the text when all done.
The invoice macro can check for illegal entries and prevent you from totally
destroying the invoice form. Furthermore, the macro can be used by someone
unfamiliar with PM ATE-86.

5-6 PROGRAMMER’S TOOL KIT, I

You frequently need to add up numbers when you’re filling out a form.
Here’s a macro that helps you do this. It adds the number pointed to by
the cursor to a number stored in buffer 9.

[M (@T>"9) ! (@T<"0)]

0V1
B9E
Z
[

BTE
-M
(@T>"9) ! (@T<"0)
M 0V0][

@T- "0V0]

B9E
-M
@E_
@T + @0 + @1VO

@0>"9[lVl @0-10 R

][OV1 @0R]

-M
]
BTE

;Move cursor until end of number
;is found
initialize carry
;number to add to is in buffer 9
;move to end of that number
iterate one digit at a time
; starting with least significant
;back to first number
;get next most significant digit
;not a digit?
;no, don’t move past it
;0 to VO is number to be added
;a digit — gets its numeric
;value to VO
;now go to buffer 9
;get next most significant digit
;done if out of digits
;add digit from text, and carry
;to it result to VO
;if greater than 9, set carry to 1,
; subtract 10 and store result in text
;not greater than 9, set carry to
;0 and store in text
;R has moved cursor, so move back
;on to next digit

The number of digits stored in buffer 9 controls the precision of the result.
If you start with 000000000, numbers up to 999,999,999 can be accumulated.
The result can be moved back into the main text buffer.

PM ATE 5-7

5.5 TWO PRINT MACROS

This simple macro lets you type directly on your printer, using the keyboard
as if it were a typewriter:

[
GDIRECT TYPES
@K = 13[13QT 10QT][@KQT]
]

The third line implements an automatic line feed. If the macro finds a Return,
it sends a line feed also. Any other character is sent as is.

Here’s a macro that prints an alphabetized directory listing. It should suggest
many other applications:

BIX
B1E

1 XL$
A
[
BC

; clear buffer 1 to hold directory list
;go into buffer 1
;get a directory listing
;go to beginning of directory
;begin overall loop
;copy first file name to buffer 0 —
;will try to find file names earlier
; alphabetically.

[
@HAA@O$<O[BC][L]

;this loop finds earliest file name
;compare next file name to earliest
; already found — if this one is
;earlier, copy it to buffer 0,
;otherwise, advance to next

@T = 0]
A
SAA@0$

; iterate until end of directory list
;back to top of directory list
; match the earliest entry stored in

buffer 0
-1XT
-K
A@T = 0]

;type it out
;and then delete it
;back to beginning — continue unless
;list is now empty

BTE ;back to text buffer when all done

5-8 PROGRAMMER'S TOOL KIT, I

CURSOR MOTION 5.6

Here (without comment) are the macros that PMATE-86 uses to implement
the cursor motion Instant commands. If you want to customize cursor motion
to your own taste, this gives you a place to start.

Up: @V = 2[@X, - L@SQX][- MOL]

Down: @V = 2[@X,L@SQX][L]

Left: @V = 2[@X>0[@X-1QX]][-M]

Right: @V = 2[@X + 1QX][M]

5

PM ATE 5-9

COMMAND SUMMARY

The following Instant commands are not entered into the command or
text buffers; instead, they are executed immediately.

CURSOR MOTION A.l

AA Move to the beginning of the text buffer. If cursor is already
there, move to the end.

AG
AH
AY
AB
AU
AJ
Ao
Ap
AFAM

Move left one character.
Backspace and erase character left of cursor.
Move up one line.
Move down one line.
Move up multiple lines.
Move down multiple lines.
Move left one word.
Move right one word.
Move to beginning of line.

SCROLLING A.2

aFaG
AFAH
ApAy

afab

Scroll left one column.
Scroll right one column.
Scroll up one line.
Scroll down one line.

PM ATE A-1

A.3 DELETE

AD
AK
AW
AQ

Delete the character at the cursor.
Kill the line beginning at the cursor.
Delete one word beginning at cursor.
Delete one word backwards from cursor.

A.4 TEXT MOVEMENT AND RECOVERY
Ay
AE
AZ
AR

Tag the current cursor location.
Move block between tag and cursor to special buffer.
Move contents of special buffer to cursor location.
Retrieve most recently deleted item from garbage stack.

A.5 MODE

Ax
Av
AN

Go to Command mode.
Go to Overtype mode.
Go to Insert mode.

A.6 AUTO-INDENT

AFAI
ApAp
AFAO

Set auto-indent to current column.
Increment auto-indent four columns.
Decrement auto-indent four columns.

A-2 PROGRAMMER’S TOOL KIT, I

OTHER A.7

As Repeat next keystroke four times (or number immediately
following).

AL
AC
afat
ApAp
A

AFAS
AFAC

Insert line.
Cancel operation in progress and return to Command mode.
Exchange tag and cursor.
Redraw and reformat display.
Edit the command string.
Shift default case.
Change case of character at cursor.

These characters are not really Instant commands, but they do have special
meanings:

$ The “escape” key separates commands in Command mode.
Two consecutive escapes execute the command shown as $ in this
text and on the screen.

TAB The tab character in text positions the following character at
the next Tab stop.

DEL Delete the character at cursor position.

A If entered once, the following character entered is a control
character. If entered twice, an up-arrow is entered.

COMMANDS WHILE IN A.8
COMMAND MODE

Now come the real commands. When in Command mode, these are entered
into the command buffer and then executed.

CURSOR MOVEMENT

L
+ nL

Move forward one line.
Move forward n lines.

PM ATE A-3

-nL
M
nM
-nM
W
nW
-nW
P
nP
-nP
A
UA
Z
uz

Move backward n lines.
Move forward one character.
Move forward n characters.
Move backward n characters.
Move forward one word.
Move forward n words.
Move backward n words.
Move forward one paragraph.
Move forward n paragraphs.
Move backward n paragraphs.
Move to beginning of text resident in memory.
Move to beginning of file.
Move to end of text resident in memory.
Move to end of file.

DELETING CHARACTERS

D
nD
-nV
K
nK
-nK

Delete character at cursor.
Delete n characters, from cursor forward.
Delete n characters, from cursor backward.
Delete line containing cursor.
Delete n lines, from cursor forward.
Delete n lines, from cursor backward.

INSERTING CHARACTERS INTO BUFFER

Istring
nl
Rstring
nR
n\\

Insert “string” immediately after cursor.
Insert character with ASCII code n.
Overwrite text with “string”.
Overwrite character at cursor with ASCII code n.
Insert number n into the text.

A-4 PROGRAMMER’S TOOL KIT, I

SEARCH AND CHANGE

Sstring Search forward for next occurrence of “string”, con­
fining search to memory.

nSstring Search forward for next occurrence of “string”, con­
fining search to n lines.

- Sstring Search backward for next occurrence of “string”,
confining search to memory.

- nSstring Search backward for next occurrence of “string”,
confining search to n lines.

USstring Search forward through the entire file for next occur­
rence of “string”.

-USstring Search backward through the entire file for next occur­
rence of “string”.

Cstrngl$strng2 Change next occurrence of “strngl” to “strng2”.

nC, -C, -nC Search for “strngl” as in equivalent S command, then 1
change it to “strng2”.

UC,-UC Search for “strngl” as in equivalent US command,
then change it to “strng2”.

ITERATION AND CONTROL

Ulabel
H • •]
I[••][••]

Jump if I is true to “label”.
Execute expression in brackets only if I is true.
Execute expression in first brackets if I is true; other­

wise execute expression in second set of brackets.
n[. .]
[. . I]
IA
I_

Iterate expression in brackets n times.
Iterate until I is true.
Proceed to next iteration if I is true.
Exit enclosing iteration loop if I is true.

PM ATE A-5

MISCELLANEOUS COMMANDS

E
nF
F
Gstrng
OGstrng
N
T
.b
1%
:x

Suppress error messages.
Enter Format mode, setting line width to n.
Toggle in and out of Format mode.
Get key from keyboard, giving user prompt "strng".
Give user prompt “strng”, without waiting for key.
Go into Insert mode.
Tag current cursor position.
Execute macro b.
Return early from macro if I'is true.
Label this position in command with character x.
Comment — ignore all characters until end of line.

? Enter Trace mode.

STORING INTERMEDIATE RESULTS

There are 10 numeric variables and a number stack for storing intermediate
results, along with commands to set them.

nVi
VAi
nVAi
n,

Set variable i to value n.
Increment variable i.
Add n to variable i.
Push n on number stack.

Q COMMANDS

The following Q commands perform miscellaneous functions, usually setting
some internal parameter:

nQA
QB
nQC
nQD
nQE
nQF

Set the number of passed string arguments in a macro call.
Ring the bell.
Set control shift character to ASCII n.
Delay for a time proportional to n.
Set type-out mode to n.
Set page separator character to ASCII n.

A-6 PROGRAMMER’S TOOL KIT, I

nQG
nQH
nQI
nQJ
nQK
nQL
QMC
QMG
nQNstrng

Enable garbage stacking unless n is zero.
Insert n spaces at cursor position.
Set input radix to n.
Scroll display up n lines.
Create .BAK files unless n is 0.
Set number of lines for AU and AJ commands to scroll.
Copy to permanent macro area.
Get contents of permanent macro area.
Send "strng" directly to console, if n is non-zero, wait for

key from console, and return as @K.
nQO
nQP
nQR
nQS
nQT
nQU
nQV
nQX
nQY
nQZ
nQ!
nQ-
nQ/
Q#
nQm

Set output radix to n.
Set page size to n.
Redraw screen — return any key struck as @K.
Set lowercase shift character to ASCII n.
Type the character represented by ASCII n.
Set automatic disk buffering unless n is 0.
Enable tab-fill unless n is 0.
Move screen cursor to column n.
Allow cursor motion in free space if n equals 0.
Don’t allow cursor to move past column n.
Store n in memory at location pointed to by variable 9.
Display numbers as positive only if n equals 0.
Set auto-indent to column n.
Exchange tag and cursor.
Set user variable m (0-9) to n. These 10 user variables are

available to user-written IO drivers.

X COMMANDS

The following X commands generally perform disk I/O. They begin with
an X in order to make them hard to execute accidentally, as they cause
major upheaval.

XA
nXA
-XA
-nXA

Append next page of input file.
Append next n pages of input file.
Retrieve last page written to output file.
Retrieve last n pages written to output file.

A-7PM ATE

xw
nXW
-XW
— nXW
XR
nXR
-XR

Write next page to output file.
Write next n pages to output file.
Write page back to (temporary) input file.
Write n pages back to (temporary) input file.
Write one page to output file, read one from input file.
Do this n times.
Write one page back to (temporary) input file, read one back

from output file.
— nXR
XE

Do this n times.
End of editing.Write out all remaining text from buffer

and input file.
XJ
XF
XK
xc
XH
Xlfile
nXIfile
nXI
XOfile
nXOfile
XDfile

Do XE, then reopen file.
Define new input and output files.
Delete output file and scratch edit buffer.
Close input and output files as they are.
Return to operating system.
Input entire file “file”.
Input n pages of “file”.
Input n pages of last named auxiliary input file.
Output entire edit buffer to “file”.
Output n lines, beginning at cursor, to “file”.
Create new version of PMATE-86, including any new changes

or permanent macros. New version is called file.COM.
XSa
XT
nXT
XL
XLfile
XXfile

Log in disk drive 'a ' ('a ' is A, B, C, etc.).
Type entire text buffer on printer.
Type n lines, beginning at cursor.
List disk directory at cursor.
List just those files in directory which match “file”.
Delete “file” from disk.

B COMMANDS

The following B commands act on buffers 0-9 or the text buffer T. Buffer 0
is assumed, unless a buffer number is placed between the two characters
of the command.

BK
BG

Kill the entire contents of the specified buffer.
Get the contents of the specified buffer.

A-8 PROGRAMMER’S TOOL KIT, I

file.COM

nBC
nBD
nBM
nBN
BE

Copy n lines to the specified buffer.
Append n lines to the specified buffer.
Move n lines to the specified buffer.
Append move n lines to the specified buffer.
Edit the specified buffer.

TAB STOP COMMANDS

nYD
nYS
YK
nYE
YF
YR
nYI

Delete Tab stop at position n.
Set a Tab stop at position n.
Kill all Tab stops.
Set a Tab stop every n spaces.
Fill Tabs with appropriate number of spaces.
Replace spaces with Tabs where possible.
Set indent at column n.

NUMERIC ARGUMENTS

Numeric arguments can be complex expressions, involving up to 15 levels
of parentheses, and the following operations:

+ Addition.

*

/
!

Subtraction.
Multiplication.
Division.
Logical OR.

& Logical AND.
Logical complement (Not).
Less than.
Greater than.

— Equal.

PM ATE A-9

In addition, the following expressions can be used with the above operations
to form numeric arguments.

"a
@i
@A
@B
@c
@D
@E
@Ffile
@G
@Hstrng

The ASCII value of character a.
The value of numeric variable i.
The numeric argument when macro was called.
Current edit buffer (0 for T, 1 for buffer 0, etc.).
The character number.
The number of lines scrolled by AU and AJ (set by QL).
The value of the error flag.
-1 if “file” exists on the current directory; 0 if it doesn’t.
The length of the last referenced string.
Compare “strng” to text at cursor. Return 0 if equal;

otherwise 1 or -1, depending upon which string is greater.
@1
@J
@K
@L
@M
@o
@P
@Q
@R
@s
@T
@u
@v
@W
@x
@Y
@z
@@
©/
#

The current input page.
The number of lines in the text display.
The ASCII value of the key struck after a G or QR command.
The line number.
The amount of memory remaining.
The current output page.
The absolute memory address pointed to by the cursor.
The column of the previous Tab stop.
The remainder of the last division.
Pop the number stack — get value of top.
The ASCII value of the character pointed to by the cursor.
-1 if auto-buffering is enabled; 0 otherwise.
The mode.
The right margin.
The column.
The left margin.
The column of the next Tab stop.
The byte pointed to by variable 9.
The current auto-indent column.
Move cursor to tagged position, and get difference between

tagged position and current position as argument. Can be
used with any character- or line-oriented command to
operate on a block of text.

A-10 PROGRAMMER’S TOOLKIT, I

B
CUSTOMIZATION GUIDE

GENERATING A CUSTOM
CONFIGURATION FILE B.l

CONFIG.CNF is a file that contains a series of questions and answers
(in ASCII). You can use PMATE-86 to create a custom version of this file.
To do so, you need to answer a series of configuration questions; each
requires a yes/no answer, a letter, or a series of numbers. All answers follow
three stars (***), Numbers can be in decimal or hex. Hex numbers are
identified by the ending "H". If more than one number is required, separate
them by spaces.

You can give your custom version of CONFIG.CNF a new file name, as long
as it has extension .CNF. When running CONPMATE, you must specify
your custom configuration file after entering the command; otherwise,
CONFIG.CNF is used.

To configure a version of PMATE-86, obtaining information from the file
MYCONFIG.CNF, type:

CONPMATE MYCONFIG B
Upon completion, you must save this custom version of PMATE-86 on disk.
To do so, type:

XDPMATE$$

If PMATE.COM already exists on this disk, you can use PM ATE 1
(XDPMATE1$$) and rename it later.

CONFIGURATION INFORMATION

CONFIG.CNF asks you these questions during the configuration process.

PM ATE B-l

PMATE.COM

► How many lines from the center of screen can cursor wander?

Since the display screen can hold only a small portion of the text file
being edited, you need to scroll the display as the cursor moves off of it.
Typically, the display scrolls to prevent the cursor from moving down
past the bottom line or up past the top. Keep one or two lines above
or below the cursor at all times, so you can easily see the context you
are working in.

The number you enter in response to the question indicates how far from
the center line of the text display the cursor is allowed to move before
a scroll occurs. If this number is 0, the cursor remains on the middle line
of the display. Any up or down cursor motion causes a screen scroll.
Using 0 (or a small number) keeps maximum context and requires the most
screen scrolling. For example, on a 24-line screen, 21 lines are dedicated
to text display. Entering 10 (don’t use anything bigger!!) produces a
display that scrolls only at either limit; 8 leaves two lines on top or
bottom before scrolling; and 1 restricts the cursor to the three center lines.

► How many lines do you wish redrawn in foreground?

This sets the number of lines to be redrawn on the screen before
PM ATE-86 responds to the next keystroke. (In other words, this many
lines are kept up to date at all times; the rest are redrawn when PMATE-86
has the time.) The smaller this number, the faster PMATE-86’s overall
response is, but the less you can see the effect of your keystrokes.

► Should display proceed from top to bottom (or from cursor outward)?

PMATE-86 screen redraws proceed in one of two ways. The traditional
method is to start at the top, and work down. PMATE-86 can also start
drawing on the line containing the cursor, and work outward, alternately
displaying lines on either side. If the cursor is on the bottom line, the
display proceeds from bottom up; if the cursor is at the top, the display
proceeds in the usual top-down manner. This second method has the
advantage of showing you the text in which you are most interested —
that near the cursor.

Answer yes to get a top-down display, and no to get a display proceeding
from the cursor outward.

B-2 PROGRAMMER’S TOOL KIT, I

► Should cursor be displayed before each line is redrawn?

By addressing the cursor to its final position before each line is redrawn,
you don’t lose track of where the cursor is as the screen redraw proceeds.
As usual, there is a trade-off. Twice as many cursor addressing sequences
now need to be performed. If your display requires a significant delay
after each cursor addressing operation, this can slow down a screen
redraw noticeably.

► Maximum number of Instant commands to buffer.

PMATE-86 constantly polls the keyboard to keep from missing any
keystrokes while it is doing other tasks. This buffering, however, can
allow certain Instant commands (such as deletes or cursor motion) to
run away when used with auto-repeat. You can limit the severity of this
run-away by answering this question with a small number (at least 1).
If you quickly enter four Alt-Os and only two characters are deleted,
you will know why. As always, compromise.

► Number of characters to shift for horizontal scroll.

PMATE-86 allows lines of up to 250 characters in length. Since displays
rarely show more than 80 of those, PMATE-86 shifts the entire display
over to keep the cursor from moving off the right end.

Enter the number of characters to be shifted at one time. If you enter 1,
the display scrolls one character at a time as you enter a long line. This
is very natural, but you’ll notice continual screen activity as the line
progresses. If this bothers you, choose a larger number.

► Are carriage returns and Tabs to be inserted while in Overtype mode?

If you answer no, Returns are inserted only at the end of text, and Tabs
are inserted only at the end of a line. Except in Overtype mode, these
characters just move the cursor — to the beginning of the next line, or to
the character following the next Tab. If you answer yes, these characters
are inserted any time they are typed (and the cursor motion keys must
be used for moving the cursor).

► Do you wish .BAK files to be generated automatically?

Most text editors do not delete the original input file after a completed
edit pass. Instead, they rename it, giving it the extension .BAK (any old file

PM ATE B-3

by that name is deleted). If you answer yes to this question, PMATE-86
does this, too. If you don’t like to clutter your disks with two copies
of every file, answer no. You can use the QK command to change this
while editing.

► Reserved size of garbage area.

PMATE-86 stacks its garbage in any available memory space so it can be
retrieved later if needed. By permanently reserving some space for garbage,
you ensure that you can recover at least a small item or two. Reserving
space for garbage also lets you use the stack for moving text. Enter the
number of bytes you want to reserve. (It must be at least 1.) Remember
to leave some room to edit text.

► Size of permanent macro area.

Enter the amount of memory (in bytes) you want to reserve for permanent
macros. PMATE-86 doesn’t let you load permanent macros requiring
more space than you have allocated.

► Should disk buffering be automatic?

Answer yes if you want automatic disk buffering; no if you don’t. This
can be later changed by the QU command.

► Start in command mode (0), insert mode (1), or overtype mode (2)7

Your answer to this question sets the mode that PMATE-86 is in when you
initialize the program. This mode is also entered after Alt-C abort and after
any errors. By choosing 1 or 2 and adding appropriate permanent macros
(with associated Instant commands), you can eliminate Command mode.

8.2 CUSTOMIZING THE KEYBOARD

PMATE-86 lets you determine the keystroke required to execute Instant
commands. To better suit your preferences and hardware, CONPMATE
can create a version of PMATE-86 that assigns any keystrokes you want
to any one of a list of commands.

B-4 PROGRAMMER’S TOOL KIT, I

CONPMATE asks for the following information during the configuration
process.

► Maximum number of codes entered for Instant commands below.

You can enter as many as eight codes before an Instant command executes.
This can be a series of keystrokes or the multi-code sequence sent out
by function keys. Enter the maximum number of codes entered for any
of the commands below.

► Control shift character.

If you are using control (Alt) codes for Instant commands, you need
to designate a “control shift character” if you want to enter these control
characters in text (see the QC command). Enter the ASCII code for your
control shift character in response to this question (up-arrow is the
usual choice).

After these questions, you’ll see a list of Instant command functions. After
each function, enter the ASCII codes of the required keystroke sequence.
Not all functions must be implemented (leave the function blank if you
choose not to implement it). You can assign several different sets of keystrokes
to the same Instant command using the configuration file. CONPMATE
interprets all lines that start with *** as subsequent entries for the Instant
command listed previously.

An example should make this clearer:

Delete character *** 4

Delete line * * * 11
*** 29 49
*** 29 50

Delete word forwards * * * 23
***30

Delete word backwards * * * 17

The CONFIG file provided implements the standard PMATE-86 instant
command set.

PM ATE B-5

The PM ATE-86 cursor motion commands require more explanation. Line-
oriented cursor motion is implemented as follows:

Left: Move cursor one character to the left. If cursor is at the beginning
of a line, it moves to the last character of the preceding line.

Right: Move cursor one character to the right. If cursor is at the last
character of a line, it moves to the beginning of the following line.

Up: Move to the beginning of the current line. If cursor is at the begin­
ning of a line, it moves to the beginning of the preceding line.

Down: Move cursor to the beginning of the following line.

This combination of cursor motion is selected by entering codes next to
Move left, Move right, Move up, and Move down. These commands make it
easy for you to move the cursor to either end of a line, and they are well-suited
to editing programs. These commands do not, however, let you easily move
the cursor down through columnar material.

Another way to move the cursor vertically is geometric motion. If the cursor is
at column 5, moving up one line does not move the cursor out of column 5.
Normally, the cursor can’t go past the Return at the end of a line or move
to the middle of a Tab space; the cursor lands only on a text character.
If you answer “Allow cursor to move into free space?” with yes, the cursor
can move anywhere on the screen as long as it stays in the same column
it occupied in its original location. If you insert a character while the cursor
is “floating,” the appropriate number of spaces (and possibly Tabs — see QV
command) are inserted so that the character actually appears where you expect.

Move right (geometric) and Move left (geometric) always keep the cursor on
the same line and always move it one column at a time. This causes trouble
if the cursor has not been allowed into free space. Whenever the cursor reaches
a Tab, it tries to move over another column but can’t land there. When this
happens, the cursor goes back to the beginning of the Tab and stays there.

A final option mixes the two approaches just mentioned. Overtype mode
works well with a column format since it is a geometric cursor (a Return moves
the cursor to the beginning of a line). When working on line-oriented material,
you usually use Insert mode. When you enter codes in the Move up (mixed)
and other (mixed) categories, the line-oriented cursor routines are used in
Insert mode, and the geometric routines are used in Overtype mode.

8-6 PROGRAMMER’S TOOL KIT, I

The move-multiple-lines commands also have geometric and mixed variants.
The number of lines moved by any of these commands is set by the QL
command. The Move Page Up and Move Page Down commands move up or
down exactly one screen, independent of the QL setting.

The Instant commands that move the cursor to the top and bottom of text
have several more varieties. You can configure PM ATE-86 so that Alt-A
(or another chosen keystroke) moves the cursor to the beginning or end
of the file, or to the beginning or end of the text in memory. The first choice
is the default. If you want better control over what is in memory and what
is on disk, you can choose the latter. Then a UA or UZ command moves
the cursor to the beginning or end of the file.

The next section of the configuration file lets you redefine the codes that
control certain built-in PMATE-86 functions. If you want to redefine one
of these, enter the new code (or codes) following the *** as for any of the
Instant commands. The Escape, Tab, and Return can also be redefined,
but you will rarely want to do this.

The end of the keyboard configuration section lets you define your own Instant
commands by assigning keystrokes to permanent macros 0-9. The macro
named “0” in the permanent macro area can be executed every time an
assigned key is pressed. Macros 0-9 are used because they cannot be executed
from the command line and serve no other purpose (.0$$ executes buffer 0,
not permanent macro 0). However, additional macros can be added to the list.
For example, permanent macro A can be invoked every time you type Alt-A
by adding the line:

A *** 1

PM ATE 8-7

EFONT

COPYRIGHT

© 1983 by VICTOR®.

All rights reserved. This publication contains proprietary information
which is protected by copyright. No part of this publication may be
reproduced, transcribed, stored in a retrieval system, translated into
any language or computer language, or transmitted in any form what­
soever without the prior written consent of the publisher. For informa­
tion contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
EFONT is a trademark of Victor Technologies, Inc.
MS-DOS is a trademark of Microsoft Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind
whatsoever with respect to the contents hereof and specifically dis­
claims any implied warranties of merchantability or fitness for any
particular purpose. VICTOR shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this publication or its contents.

VICTOR reserves the right to revise this publication from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

First VICTOR printing February, 1983.

ISBN 0-88182-004-0 Printed in U.S.A.

II PROGRAMMER’S TOOL KIT, I

CONTENTS

1. Introduction ... 1-1
1.1 EFONT Capabilities .. 1-1
1.2 Using this Manual .. 1-2

2. The Work Screen and the Main Menu 2-1

3. Functions Accessed Through the Main Menu 3-1
3.1 EXIT .. 3-1
3.2 Cell Mode ... 3-1
3.3 COPY .. 3-2
3.4 Line Mode ... 3-3
3.5 Disk Mode ... 3-4
3.6 Width Mode 3-7

4. Editing Keys .. 4-1
4.1 Cursor Keys ... 4-1
4.2 Dot Edit Modes ... 4-1

5. Sample Font Editing Session ..5-1

EFONT III

CHAPTERS

1. Introduction 1

2. The Work Screen and the Main Menu

3. Functions Accessed Through the Main Menu

2

4. Editing Keys

5. Sample Font Editing Session

EFONT V

o

INTRODUCTION

If you take a close look at your screen, you’ll see that each letter or
character on the screen is made up of many small dots. The arrangement
of these dots gives each character its distinctive shape. If you could
change the arrangements of the dots, you could create letters and
characters that aren’t found in any of the character sets supplied with
your operating system. The EFONT font editor lets you create these
custom characters.

With EFONT, you can change the appearance of the letters and charac­
ters that appear on the screen or you can design your own character sets
from scratch. The characters that you create can be loaded into your
operating system and appear on-screen as you work with an application
or language program. (EFONT is especially useful with the graphics
package, GRAFIX.) In addition, your edited character set can be
printed if you have a dot-matrix printer.

EFONT CAPABILITIES 1.1

The EFONT font editor is a menu-driven program. This section gives a
brief description of the various menu options.

► Cell mode: Lets you make changes to the currently displayed charac­
ter. The character can be rotated, mirrored, put into reverse video, or
erased.

► Copy: Lets you move a range of characters from one place to another
within a character set, or from one character set to another.

► Line mode: Controls the insertion and deletion of horizontal and
vertical lines. Using this mode, you can change the horizontal size of
a character or change that character’s position within the character
matrix display.

EFONT 1-1

► Disk mode: Lets you load and store your new or modified character
sets onto a diskette. Disk mode is also used to edit the header. (The
header contains important information used by the operating system
configuration program.)

► Width mode: Lets you construct proportionally sized characters.

► Exit: Takes you from the DISK or other editing menu back to the
Main menu. If Exit is used at the Main menu, you will return to the
operating system.

1.2 USING THIS MANUAL

This manual gives you all the information you need to start using
EFONT. The first portion of the manual explains the various EFONT
screen displays and menus, and describes the functions which the pro­
gram can perform. The second part takes you through a sample font
editing session. (You may want to run through that sample session before
you read the rest of the manual.)

Before running EFONT, make sure that your operating system includes
a standard keyboard and the International character set. (If you want to
load your edited character set onto a program or application diskette,
you’ll also need to have a copy of the Operating System Configuration
program.) Programmers should note that the EFONT program is written
in assembly language.

1-2 PROGRAMMER’S TOOL KIT, I

2
THE WORK SCREEN AND THE
MAIN MENU
To start EFONT, boot your operating system. When the A> prompt
appears on your screen, type EFONT and then enter a Return. This
display appears:

CHARACTER FONT EDITOR U2.101234567B9ABCDEF
(fl
1

■0
■1
•2
•3
•4
•5

2
3-
4-
5-
6-
?■
8
9-
ft-
B-i

FILE NflUE = SAMPLE CHR
CHfiRfiCTER SET NUMBER 0
POSITION MODE
EMPTY COPY BUFFER
CHARACTER WIDTH I

6
7
8
9
fl

0123456789:;<->q
DflBCGCHURLMq
pQRSTUUUXYZlxrj
! abcdefghijkl»no]
pqrstuvwxyz{ I }~a|

B
C
D

C
B
E
F

|E

0123456789flBCDEF

1 EXIT 3 COPY 14 LINE 115 DISK I16 WIDTH I17 HELP

This display is the “work screen"—the place where you edit an existing
character set or create a new one. The work screen has the following
parts:

► Character cell: An enlarged view of the character being edited. It
contains one of the two cursors present in the work screen. The
character is displayed on a grid with 16 vertical columns and 16
horizontal rows (for 256 possible positions). A period marks each
spot where a row and a column intersect. If you put the cursor on one
of these periods, you can enter a dot that becomes part of the
character you’re editing. You can also remove a dot.

EFONT 2-1

► Character set table: Consists of two parts: the character set display
and the attribute field.

The character set display shows the character set you're editing
(character set 0, unless you change it). Each time you change the
character set, the work screen and the characters in the character set
display also change. The character set display also contains the other
cursor present in the work screen. The position of this cursor deter­
mines which character is displayed in the character cell and in the

2
The attribute field shows the character pointed to by the cursor in the
character set display. That character is shown in several ways:
reverse video, underlined, half-intensity, and all possible combina­
tions of the three. Two additional displays of the character being
edited are at the right side of the attribute field: one in normal video
and the other in reverse video. These displays are larger than the
others, and are used to view characters larger than the normal text
mode. (Characters up to 16 dots wide by 16 dots high can be dis­
played; the normal size is 10 by 16 dots.)

► Status area: Consists of the five lines of information you see at the
center right of your screen. Each line tells you something about the
current edit.

The first line is the file name of the character set being edited; the
second is the number of that character set; the third line shows the
edit mode; the fourth line tells the status of the copy buffer; and the
last line tells you the width of the character under edit (useful when
making proportionally spaced character sets).

► The Main menu: The row of numbered functions at the bottom of the
screen. The Main menu is the first one you see when you begin a
session with EFONT; each of the other menus returns you to the
Main menu.

Each function on the Main menu is controlled by a like-numbered
key at the top of your keyboard (the function keys). Each function
displays its own menu after you press its function key.

2-2 PROGRAMMER’S TOOL KIT, I

FUNCTIONS ACCESSED THROUGH
THE MAIN MENU

EXIT 3.1

The EXIT key is at the left of the Main menu. If you press it, the screen
clears and displays two new function keys:

NO YES

If you press NO, the Main menu reappears. If you press YES, you exit
EFONT and return to the operating system.

CELL MODE 3.2

The CELL key is the second function key on the Main menu. It lets you
alter the character displayed in the character cell. When you press the
CELL key, this menu appears at the bottom of the screen:

MENU REVERSE MIRROR ROTATE CLEAR HELP

The MENU key is an exit key; it returns you to the Main menu. (This is
true for the MENU keys on all other menus as well.) The last function
key on this (and any other) menu is a HELP key. When you press it, the
work screen disappears to be replaced by a screen full of directions on
how to use the function keys in the current menu.

EFONT 3-1

The REVERSE key reverses the display in the character cell—all of the
“on” dots turn off, and all of the “off” dots turn on.

The MIRROR key rotates the character in the character cell on its
vertical axis, producing a “mirror image” of that character.

If you press the ROTATE key, the character in the character cell rotates
90 degrees clockwise. The ROTATE function can be used to create
sideways character sets.

The CLEAR key erases the character in the character cell.

3

3.3 COPY

The third function key on the Main menu is the COPY key. It lets you
move characters from one location to another. You can use COPY to
move characters from one character set to another, for example, or
within a character set to exchange the positions of the upper- and
lowercase letters.

When you press COPY, the Main menu is replaced by the Copy menu:

MENU RANGE COPY HELP

As with the last menu, the MENU key returns you to the Main menu.

The RANGE key lets you identify a group of characters (range) that you
want to copy to another location. To do this, you must define the starting
character of the range and limit the range with an ending character.

COPY moves a range of characters from one place to another. To use
COPY:

3-2 PROGRAMMER’S TOOLKIT, I

1. Define the range of characters to be moved. Mark the first character
of the range with the RANGE key. Then, mark the end of the range by
moving the character set cursor to the character immediately after
the last character in the range. Then, press RANGE again. The range
you’ve marked is highlighted with bright video. Make sure that it
includes all the characters you want to move; if it doesn’t, redefine
the range.

2. After you define the range, the fourth line in the status area of the
work screen tells you that the copy buffer is full. (The copy buffer
holds up to 256 characters.) An error message appears if you try to
move a larger range of characters.

3. When the range is correctly defined, move the character set cursor to
the place to which you want to move the range of characters. Then,
press COPY to copy your range to the new location.

The remaining key on the Copy menu displays HELP information.

LINE MODE 3.4

The LINE key controls the insertion and deletion of horizontal or
vertical lines. It lets you change the horizontal size of a character or that
character’s position within the character cell. When you press the LINE
key, the Line menu appears:

MENU INSERT H DELETE H INSERT V DELETE V HELP

As with other menus, MENU returns you to the Main menu.

The INSERT H key scrolls the lines between the cursor location and the
bottom of the character cell matrix down one position. At the same time,
a row of periods is inserted at the cursor location.

EFONT 3-3

If you press the DELETE H key, it deletes the row of dots at the cursor
position and scrolls up all the rows below the cursor position. At the
same time, a row of periods is added at the bottom of the character cell.

If you press INSERT V, it inserts a column of periods at the cursor
position. All columns to the right of the cursor position are scrolled one
position to the right. The rightmost column is erased.

The DELETE V key erases the column of periods including the cursor
position and all columns to the right of the cursor scroll left one position.
At the same time, a column of periods is added at the right edge of the
cell.

3

3.5 DISK MODE

The fifth key on the Main menu is the DISK key. It lets you load and store
any character set you create onto diskette. The DISK key also lets you
edit the header. When you press the DISK key, the Main menu is
replaced by the Disk menu.

MENU LOAD SAVE HEADER HELP

As before, the MENU key returns you to the Main menu when you’re
finished with DISK operations.

The LOAD key loads any existing character into the active character set
shown on the work screen. To load a character set:

1. Return to the main menu and choose a number for the character set
you want to load. (To do this, press the plus (+) key or minus (-) key
until the desired number appears in the status area of the work
screen. These numbers range from 0 to 7; in most cases, 2 through 7
are empty.)

3-4 PROGRAMMER’S TOOL KIT\ I

WARNING: Don’t select character set 0 unless you actually want to
replace the system character set.

2. Press the DISK function key to call the list of file names of the
available character fonts.

3. Use the cursor movement keys (described in Chapter 4) to move the
highlight to the name of the character set you want to load. Then,
press the LOAD key. The new character set is loaded, and you return
to the Main menu.

The SAVE key is used to save any new or edited character set on disk. If
you press SAVE, the screen clears, displays the file name of the charac­
ter set being edited, and then replaces the Disk menu with the following:

DISK NAME OK HELP

If you want to change the file name of your character set, use the cursor
keys to position the cursor in the file name field and type new characters.
(The BACKSPACE key erases characters preceding the cursor. The
DEL key deletes characters at the cursor.) When the name is correct,
press the NAME OK key to save the character set on the disk. When the
set is saved, you return to the Disk menu.

If you don’t want to save your character set, press the DISK key to
return to the Disk menu.

The HEADER key allows you to edit the header block. (This block is
saved at the same time you save a character set file. It contains important
information for the system configuration program and the GRAFIX
graphics package.) Pressing the HEADER key clears the current screen
display and replaces it with the header form and the Header menu.

EFONT 3-5

Sei Type (C2character) .
Formal Uersion .
Display Class
Banner Na»e
Banner Uersion
C oilmen i
Originator
Date (yyAm/dd)
Number of Records (4 chars/record)
Character Height (1~16)
Super/Suhscript Shift (0~7)
Horizontal/Vertical Printing .
User/Syster Charset
Stock/Special Flag .
Width Flag (l_16)/Proportional

I RETURN TO DISK HENU 7 HELP

There are three types of fields in the header form:

► The first nine are ASCII fields. They are changed in the same way as
the file name fields in the DISK SAVE function described above.

► Three form increment fields contain numeric data. These are: Char­
acter Height, Super/Subscript Shift, and Width Flag. You can change
the numbers in these fields by pressing any key.

► There are three toggle fields: Horizontal/Vertical Printing, User/
System Charset, and Stock/Special Flag. When the cursor is in one
of these fields, you can choose an option by pressing any key.

Use the up- and down-cursor keys if you want to move from one header
block field to another. The cursor-left and cursor-right keys move from
one character to another within an ASCII field.

Press RETURN TO DISK when all of the header fields are correct. The
HELP key displays a listing of the fields and their types.

3-6 PROGRAMMER’S TOOLKIT, I

WIDTH MODE 3.6

The WIDTH key is used when you construct proportionally sized
characters. The width of a character dictates how close the next charac­
ter in a word can appear. If you press the WIDTH key, a new menu
appears:

MENU AUTO MANUAL HELP

The MENU and HELP keys work as described earlier. The AUTO
function key tells EFONT to automatically set the width of the character
under edit. If you press MANUAL, the width of the character under edit
is increased. (The character width is listed in the fifth line in the status
area of the screen. If you want proportional characters, be sure to set the
width field in the header form to proportional.)

3

EFONT 3-7

u

EDITING KEYS

CURSOR KEYS 4.1

The EFONT program has several cursor keys that operate in most edit
modes.

► The cursor arrow keys (-►,<-, f +) move the character set cursor
to a new character.

► The number keys on the numeric pad move the cursor within the
character cell. (The HELP key on the Main menu shows you an
example of how the number keys move this cursor.)The number keys
are positioned around the 5 key in the same way that they move the
cursor.

4

DOT
CURSOR
MOVEMENT

UP UP UP
&

LEFT

DOWN
&

LEFT

LEFT

DOWN

&
RIGHT

RIGHT

DOWN
&
RIGHT

► The RETURN key (and the ENTER key on the 10-key pad) are
toggles for the dots in the character cell. Pressing one of these keys
either makes a dot appear at a blank location or erases an existing
dot.

► The BACKSPACE key restores the character cell to its original
condition. This is a big help when you want to erase your changes and
start the edit process over with the original character.

DOT EDIT MODES 4.2

The Dot Edit mode is displayed in the third line of the status area. You
change the mode by using the Equals (=) key on the 10-key pad. The

EFONT 4-1

character set under edit is changed by using the plus (+) key or the minus
(-) key on the 10-key pad.

A
There are four edit modes.

► Position mode: The safest of the four modes because it is non­
destructive—it lets you move the dot cursor around the character
cell without changing any dots. The cursor keys described above
function normally.

► Reset mode: Dots are turned off when the cursor passes over them,
regardless of their current status.

► Toggle mode: Dots beneath the cursor switch to the opposite status
when the cursor is moved: "On" dots are turned off; "off" dots are
turned on.

4 ► Set mode: Dots are turned on when the cursor passes over them,
regardless of their current status.

4-2 PROGRAMMER’S TOOL KIT, I

5
SAMPLE FONT EDITING SESSION

Now that we’ve seen the various menus, Function keys, and editing
keys that EFONT uses, we’ll use them to create a character set. Our
example will go through the process step by step. If you’re unsure of any
step, check the previous sections for details.

1. After booting your operating system, type "EFONT” to load the
font editing program.

2. When the work screen appears, press DISK at the Main menu to call
the directory of character set file names.

3. Use the cursor arrow keys to move the reverse video highlight over
NORMAL.CHR.

4. At the Disk menu, press LOAD to load the Normal character set into
EFONT. (The letters on your screen display remain the same, since
the Normal character set is also used by the SAMPLE.CHR set
automatically loaded when the work screen appears.)

5. As practice, we’re going to copy character set 0 of the Normal font,
rather than editing the original. Press MENU to return to the Main
menu, then press COPY. The Copy menu appears at the bottom of
your screen.

6. The character set cursor should be at the first character of character
set 0. Press the RANGE key to set the beginning of the range at the
first character.

7. Using the cursor arrow key, move the cursor over ALL the charac­
ters in the Normal character set. When you reach the last character,
press the right-arrow one more time. This puts the cursor on the first
character in character set 1.

EFONT 5-1

8. Press RANGE again. This defines the range of characters that we’ll
copy. If you move the character set cursor back one space, you’ll see
that all of character set 0 is highlighted in bright video. The copy
buffer line in the status area now reads "COPY BUFFER FULL.”

9. Using the cursor arrow keys again, move the cursor to the upper left
character in character set 1.

10. Press the plus (+) key on the 10-key pad. Character set 2 is dis­
played. (This set is blank.)

11. Press COPY. The character range we defined earlier (all of character
set 0) appears in the character set display. Then, press MENU to
return to the Main menu.

12. Use the cursor arrow keys to move the character set cursor to the
uppercase A. The uppercase A appears in the character dot matrix.

13. Using the cursor movement keys and the ENTER key on the 10-key
pad, add or delete dots until you’re satisfied with the new look of the
uppercase A. When you have finished editing the character, go on to
uppercase B, and then to each uppercase letter in the character set
display.

14. When you have edited all of the uppercase characters, press SAVE
at the Disk menu to save your edited character set on the EFONT
diskette.

15. Now, EFONT asks you to verify or change the name of your edited
character set. Use the cursor arrow keys to move the cursor to the
file name field, and enter the name NEWONE.CHR. Then, press
NAME OK to record the file name on the diskette.

16. If you press DISK, you can see that the file name NEWONE.CHR is
now in the directory.

5-2 PROGRAMMER’S TOOL KIT, I

Now that you have edited and saved a character set, you still need to
make it available for use with your system and application diskettes. To
do this, you need an Operating System Configuration diskette (available
from your dealer). If you have the diskette, follow these instructions:

1. With the EFONT diskette in drive A, insert the Operating System
Configuration diskette into drive B.

2. Using the operating system’s copy command, copy NEWONE.CHR
from drive A to drive B.

3. Remove the EFONT diskette, and move the System Configuration
diskette into drive A.

4. Re boot your operating system. When the first System Configura­
tion menu appears, select GENERATE A NEW OPERATING
SYSTEM and press the Return key.

5. Select the appropriate keyboard at the Keyboard table, and press
the Return key.

6. Answer Yes when the program asks if you want a second character
set.

7. When the next display appears, choose NEWONE as your second
character set. Then, press the Return key.

8. Select the other elements of your operating system as you are asked
for them.

9. When the “Current Configuration” display appears, accept the con­
figuration as listed and press the Return key.

10. When the next display appears, select USER ENTERED
FILENAME and press Return.

11. Enter NEWSYS and press the Return key.

EFONT 5-3

5

12. Answer Yes when the program asks if you’re sure you want to write
your operating system to NEWSYS. Then, press the Return key.

13. Insert a program or application diskette into drive B. When the
BOOTCOPY program prompt appears on your screen, copy your
operating system onto the diskette in drive B.

14. Your edited character set is now the second character set in your
operating system; however, one more step is needed before you can
use that new character set. When you load your new operating
system into your computer, press the Shift key and enter an Alt-N
while at operating system level. This loads your edited character set
into the operating system. If you want to use the other character set
in the operating system, enter an Alt-O without pressing the Shift
key.

5-4 PROGRAMMER’S TOOL KIT, I

KEYGEN

COPYRIGHT

© 1983 by VICTOR®.

All rights reserved. This publication contains proprietary information
which is protected by copyright. No part of this publication may be
reproduced, transcribed, stored in a retrieval system, translated into
any language or computer language, or transmitted in any form what­
soever without the prior written consent of the publisher. For informa­
tion contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
KEYGEN is a trademark of Victor Technologies, Inc.

NOTICE

VICTOR makes no representations or warranties of any kind
whatsoever with respect to the contents hereof and specifically dis­
claims any implied warranties of merchantability or fitness for any
particular purpose. VICTOR shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this publication or its contents.

VICTOR reserves the right to revise this publication from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

First VICTOR printing February, 1983.

ISBN 0-88182-005-9 Printed in U.S.A.

II PROGRAMMER’S TOOL KIT, I

CONTENTS

1, Introduction ... 1-1

2, Functional Description .. 2-1
2.1 File Operations 2-1
2.2 Table Operations 2-2
2.3 Key Operations 2-3

3, Sample Run .. 3-1

EXHIBITS
3a; Menu 1—File Selection 3-1
3b: Menu 2—Header 3-2
3c; Menu 3—Select a Key 3-4
3d; Menu 4—Select Characters .. ,,,.3-5
3e; Menu 5-—Select a Function 3-6

KEYGEN III

CHAPTERS

1. Introduction ..

2. Functional Description

3. Sample Run 3

KEYGEN V

INTRODUCTION

KEYGEN lets you modify the keyboard of your computer by specifying
the character code generated by a particular key. In this way, you can
customize the keyboard to suit your particular needs.

1

The keyboard of your computer is a "soft" keyboard—the code
generated by pressing a key is under software control. The keyboard
"table" (a disk file with the .KB extension) defines the codes generated
by each key. These "ASCII codes" are the computer’s internal represen­
tation of characters. KEYGEN lets you create your own keyboard table,
giving each key the character code of your choice.

Each key generates up to three different sets of codes—one set each for
unshifted, shifted, and alternate modes. (Control mode is also available
as a function.) Each key also has two key attributes and two mode
attributes. The key attributes indicate whether the key is affected by
Caps Lock or Shift Lock. The mode attributes determine whether the
generated codes are automatically repeated when the key is held down
(Repeat) or if they are sent directly to the console, bypassing the operat­
ing system and the application program (Local).

Character sets are also under software control. The character set defines
the shapes of symbols displayed on the screen. Existing character sets
can be selected when configuring the keyboard with KEYGEN, or you
can create your own character sets with the EFONT utility. This gives
you complete control over the keyboard and the character set you’ll be
using.

When used with MODCON and SYSELECT, a keyboard table defined
using KEYGEN can be installed into the operating system. MODCON
lets you choose the new keyboard table before entering an application
program. It also lets you save the old keyboard table for restoration after
you’ve finished using the application program. SYSELECT configures
your operating system to contain the keyboard table defined by
KEYGEN.

KEYGEN 1-1

The following restrictions apply when using KEYGEN:

1. The computer must be connected to a printer when you issue print
commands.

2. The printer must support the character set selected.

3. Most applications programs use certain codes to generate particular
functions. When designing a keyboard table, make sure that the keys
will function properly with all desired applications requirements.

4. KEYGEN makes new keyboard tables by altering existing ones. To
use KEYGEN, at least one keyboard file must already exist
(keyboard files have the .KB extension).

5. You must select a character set when you define the new keyboard
table. Character sets are obtained by:

► Selecting an existing character set (character sets have the .CHR
extension).

► Modifying any available character set file using the character font
editor, EFONT.

6. The files KEYGEN.EXE and KEYGEN.DAT must be on the same
disk.

1-2 PROGRAMMER’S TOOL KITI

2
FUNCTIONAL DESCRIPTION

This chapter gives a brief overview of the operation of KEYGEN. More
detailed information is available in the next chapter.

FILE OPERATIONS 2.1

1. Load a character set file into memory for use in configuring a key­
board (Menu 1—Character Set File Selection).

Names of existing character set files are displayed on the screen. You
can move the cursor over the file names (using the cursor arrow keys)
until it is at the desired file. Then, press LOAD to load the file into
memory. Menu 1 appears.

2. Load a keyboard table file into memory for modification (Menu
1—File Selection).

After a character set file is chosen, the names of existing keyboard
files are displayed on the screen. You can move the cursor over the
file names until it is positioned at the desired file. Then, press LOAD
to load the file into memory. Menu 2 appears.

3. Change keyboard file name (Menu 2—Modify Header Information
and Keyboard File Name).

You may want to save your reconfigured keyboard in a file other than
the one that was loaded. The name of the loaded file is displayed in
Menu 2, along with header information. The file name is modified by
placing the cursor at the “File name” heading line and typing in the
new name. You edit by using the destructive backspace. Pressing
ENTER enters the new file name onto the disk when the file is saved.

KEYGEN 2-1

4. Save a modified table file on diskette (Menu 2—Modify Header
Information and Keyboard File Name).

Pressing SAVE at Menu 2 saves the reconfigured keyboard file on
diskette. The program uses the name of the file that was originally
loaded, unless you supply a different name. If the diskette is full, you
must use the original file name and overwrite the original file with the
newly configured file.

2.2 TABLE OPERATIONS

1. Maintain header in keyboard table (Menu 2—Select Header Infor­
mation and Keyboard File Name).

All header information is displayed on the screen. You select the data
to be changed by using the cursor arrow keys to move the cursor to
the desired line. New information is typed over the existing line with
the destructive backspace. Hitting the Return key erases the old
header information and enters the new information into the table.

2. Position to a key (Menu 2—Select Header Information and Key­
board File Name).

You can move the cursor up, down, left, and right over the keyboard
picture with the arrow keys. When the cursor is at a particular key,
KEYGEN can access the keyboard table information that cor­
responds to that key. The value of that key (for all three modes) is
displayed on the screen below the keyboard picture.

3. Position to a mode (Menu 2—CH KEYS; Menu 3—UNSHIFT,
SHIFT, ALT).

Once you move the cursor to the desired key, press CH KEYS. Menu
3 (Select a Key) appears. New menu choices UNSHIFT, SHIFT, and
ALT each let KEYGEN access the value associated with the speci­
fied key and mode in the table, and each causes Menu 4 (Select
Characters) to appear.

4. Display all key values (Menu 2—DISPLAY).

2-2 PROGRAMMER’S TOOL KIT\ I

When you press DISPLAY, the entire keyboard configuration ap­
pears in a non-pictorial format, one screen at a time. Keys are
displayed by key number. Their ASCII and hex values are shown for
all three modes, as are their assigned attributes and mode attributes.
Press CONTINUE to continue to the next screen. Press STOP to
return to Menu 2.

5. Print all key values (Menu 2—PRINT).

PRINT sends the entire keyboard configuration (in the format
described for DISPLAY) to the printer, along with some header
information. STOP stops the printout. Control is returned to Menu 2
when the printout is finished (or stopped).

2

KEY OPERATIONS 2.3

1. Change key code (Menu 2—CH KEYS; Menu 3—UNSHIFT,
SHIFT, ALT; Menu 4—UNDO).

While at Menu 2, you must press CH KEYS to see Menu 3. When the
cursor is on the key to be modified, the key code can be changed in
the table. You can now select one of three modes (UNSHIFT, SHIFT,
ALT). Any of the three causes Menu 4 to appear, allowing you to
select a character by moving the cursor over the name of the charac­
ter set. When you press RETURN, the character at the cursor is
entered on the scratch pad display line. Subsequent character
choices are entered to the right of earlier ones. Use the Backspace
key to edit your entries. Once the desired characters are entered on
the display line, press RETURN to enter the key code into the table
(deleting the previous value) and return control to Menu 3.

If you choose a control character from the symbol set, its ASCII
mnemonic is displayed to the left of the symbol set.

While at Menu 4, you can change the key code that you’ve modified;
pressing UNDO restores the original value of the key to the display
line. Once you have pressed RETURN, however, you can’t undo the
character selection except by choosing a new key value at Menu 4.

KEYGEN 2-3

2. Change key attributes (Menu 3—LOCK and CAPS LK).

Once you select a key at Menu 3, you can change the ways in which
Shift and Caps Lock affect that key. LOCK and CAPS LK toggle the
setting of their respective key attributes; they are displayed if they
are set for the key in question. If the chosen key is unaffected by Shift
Lock, press LOCK to assign that attribute to the key. If Shift Lock is
already assigned, press LOCK to unassign it.

2 3. Change key mode attributes (Menu 4—REPEAT and LOCAL).

Menu 4 helps you change the key mode attributes. REPEAT (auto
repeat) and LOCAL are toggles; they are displayed if their attributes
are assigned to the chosen key. (See the explanation of LOCK and
CAPS LK.)

4. Change function keys (Menu 4—FUNCTN).

Menu 5 appears if you press FUNCTN at Menu 4. Then, you change
the special function keys by moving the cursor to the desired func­
tion and pressing RETURN. This enters the appropriate code into
the table, replacing the previous value. Control is returned to Menu
3.

2-4 PROGRAMMER’S TOOL KIT, I

SAMPLE RUN

This sample run of KEYGEN takes you through the steps needed to
define a keyboard table. You should duplicate the sample run to fully
understand the procedures being illustrated.

Start by putting the KEYGEN diskette into drive B (after booting up
your operating system) and typing:

KEYGEN 3

Menu 1 (File Selection) appears. All character set files (files with a .CHR
extension) on the default drive are displayed at the center of the screen.

KEYGEN 3-1

The function keys and their values are displayed at the bottom of the
screen. These keys change with each successive menu. A HELP key is
always available to help you decide on your next step. For example,
pressing HELP displays an explanation of Menu 1. To return from a Help
screen, press MENU.

All prompts are issued in reverse video at the upper left of the screen.
The messages ask you to select a character set file. To make the selec­
tion, use the arrow keys to move the cursor over the character set file of
your choice. Then, press LOAD to load the file. If the character set you
want is on another drive, enter DRIVE. KEYGEN asks you for the drive
letter and then loads the character set.

After you choose a character set, KEYGEN asks you to select a key­
board file. Follow the same procedure as in selecting a character set.

If you had pressed EXIT instead of LOAD, KEYGEN would have asked
if you were sure you wanted to return to the operating system. The menu
choice keys would have also changed value, so that key 1 would have
been YES and key 2 NO. Pressing YES would have returned control to
the operating system; pressing NO would have returned to KEYGEN.

After you select a keyboard file, Menu 2 appears on the screen.

Exhibit 3b: Menu 2—Header

lodify header information and keyboard file name: KEYGEM Uersion 1.2

IFile name I
Display class

Style
Description..
Originator...
Date

GRYPHOM.KB
Internat 1
American
01
Special Graphics
April Atwood
83/01/06

IMNMLI aflfcmi MillllM MUM WWW

3-2 PROGRAMMER'S TOOLKIT, I

The keyboard file name and header information are displayed in the
center of the screen. (Header information is the information about
keyboard display class, name, date, and so on, located below the file
name.) To change the file name or any header information, use the arrow
keys to move the cursor to the desired line. The first data field (File
Name) is displayed in reverse video, with its current value to the right of
it. To change the value, type:

MYKEYBRD.KB

The file MYKEYBRD.KB is your new keyboard file. As the new name
appears on the screen, the values of the function keys change. Key 1 is
now UNDO; pressing it restores the old file name. Pressing ENTER
saves the new name.

After you have ENTERed or UNDOne the new file name, the Function
keys revert to their previous values. Continue to make changes in the
header information as you see fit.

You now have several options, RETURN returns you to the previous
menu (in this case, the file selection menu). HELP, as always, provides
more information about this menu and the choices you can make. SAVE
records the keyboard you have configured under the file name you have
selected (or under the original file name, if no modifications were made),
PRINT prints out all keyboard information, including key numbers,
character codes, and attributes, DISPLAY displays on the screen a
listing of all keys and their associated character codes and attributes, CH
KEYS brings up a new menu that lets you choose the keys to be
configured,

Since you haven’t configured a new keyboard table, press CH KEYS to
continue the configuration process. Menu 3 (Select a Key) appears. This
menu lets you choose a key and configure it by giving it character codes
and attributes. The keyboard is now displayed on the screen. Use the
cursor movement keys to move the highlighting to the key you want to
reconfigure.

KEYGEN 3-3

Exhibit 3c: Menu 3—Select a Key

"e'ft B cl) E F 8 H*! *J K L H N 0 P © R S T 0 V U X V Z^L \"1

()*+,-./0123456789: ;<->?
8RBCDEFGHI JKLflHOPQRSTUUUXYZ (\ 1 A_
abcdefghijkl»nopqrsiuvwxgz{‘}"a

Qiieaaaageeei liAfiEllfobouilybuCI^Rf

I r t Hririrlrir^fK Flrirr rle
aprnXffpT50ftM£nH+><fP=o J™

HIM WWW MftHM MMLVlN WWW MSMLI

Below the keyboard, you’ll see a display showing the status of the
highlighted key in each of its modes (shifted, unshifted, and alternate).
The values of each key are displayed to the right of the keyboard. The
character set is displayed at the lower right.

The menu choices available at Menu 3 are UNSHIFT, SHIFT, ALT,
LOCK, CAPS LK, HELP, and RETURN. HELP displays a Help screen
for this menu, while RETURN redisplays the last menu. CAPS LK acts
as a toggle on the Caps Lock attribute of the selected key. (If the key
already has the Caps Lock attribute, this menu choice turns it off; if it
doesn’t have the attribute, CAPS LK turns it on. The same is true for the
[Shift] LOCK.) UNSHIFT, SHIFT, and ALT let you configure a key in
the Unshifted, Shifted, and Alternate modes. For this sample run, enter
UNSHIFT to define the Unshifted mode. Menu 4 (Select Characters)
appears.

3-4 PROGRAMMER’S TOOL KIT, I

Exhibit 3d: Menu 4—Select Characters

me o e rm j >. l mp mYumVz't \it *
! ’()*<-./8123456789: ;<->?

8ABCDEFGHIJKLUHOPQRSTUUUgYZ[\ }* _
abcdeFghijkl»nopqrstuvwxyz{I}‘a

Queaaaaseeeii iAAE»ftooouuybtjC£¥Rf

WMffll MllillliM MW WWW — MUaMIkKI

Menu 4 is used to assign characters to the selected key. Since you chose
UNSHIFT at the last menu, assign characters to the key in its Unshifted
mode.

The keyboard picture reappears, with the chosen key highlighted. The
three modes are again displayed at left, with their values at right. The
value for Unshifted mode is a blank block of highlight. The Caps Lock
and Lock attributes appear to the right of this block if they were set at
the previous menu. The Local and Repeat mode attributes are also
displayed if the key has these attributes.

The Function keys for this menu are: FUNCTN, UNDO, REPEAT,
LOCAL, HELP, and RETURN. RETURN and HELP work the same as
they have in previous menus. LOCAL toggles the mode attribute Local,
which is displayed when it is on (set to Local). LOCAL sends all
character codes and attributes directly to the display driver. REPEAT
toggles the mode attribute Repeat, which automatically repeats the
generated codes when the REPEAT key is held down. Repeat is also
displayed when toggled on.

KEYGEN 3-5

To select a character (or characters) for assignment to the chosen key
and mode, use the cursor arrow keys to move around the character set
displayed at the lower right. Place the cursor on the desired character.

NOTE: The top row of characters are control characters. Placing the
cursor on one of these displays the corresponding ASCII mnemonic
character to the left of the character set.

Enter the chosen character into the keyboard file by pressing Return,
The character is now displayed in the highlighted field. Enter subsequent
characters (to a maximum of 32) in the same way. By doing this, a single
key can produce a string of characters (such as a corporation’s name).
The Backspace key lets you delete characters, Pressing UNDO restores
the original character field to the key mode field.

FUNCTION lets you assign a function (such as Caps Lock) to the
selected key. For this demonstration, press FUNCTN, Menu 5 (Select a
Function) appears.

Exhibit 3e: Menu 5—Select a Function

i—ii—ii—ir~—3i—ir~ ,n ' . i ezzz3 mnnm
□ □□□□□□□□□□□□□□ □□ □□□□
□ □□ □□□□
□ □□□□□□□□□□□□□_] □□ □□□□
□ i----- innnnmnmnririi----- 1 □□ noon
■ □! ~1D □□ □□□U
Unshift: HHIHHflBEHSHRBBRHI
Shift: (Repeat)
flit: (Repeat)

(Mull)
(Shift lock)
(Right shift)
(Control)
(Clear keyhoard)
(Hold screen page advance)

i— MM WWW WWW WWW MlRM fMMM

(Caps lock)
(Left shift)
(flit)

3-6 PROGRAMMER'F TOOL, KIT, I

A list of special functions is displayed. Any function you select from this
list is assigned to the chosen key and mode. (A function assignment
cannot be made in conjunction with character assignments.) The avail­
able functions are:

► Null: Causes the selected key and mode to have no effect and no
value.

► Right Shift: Right Shift and Left Shift have the same effect on other
keys. Pressing either shift key and another key forces the second key
into Shift mode. Right and Left Shift functions are commonly as­
signed to keys on opposite sides of the keyboard.

► Left Shift: See Right Shift.

► Shift Lock: A key with this assignment acts as a toggle. Pressing it
once forces all keys with the Shift attribute into the Shift mode.
Pressing the key again undoes the previous action.

► Caps Lock: This function works in the same way as Shift Lock.

► Control: The Control key is used with other keys to produce one of
the 32 ASCII control codes. Only certain keys are affected by the
Control key: those keys with character codes corresponding to the
hex values 40 through 7F. The Control key has no effect on keys with
values outside this range.

► Clear Keyboard: Disables the keyboard. Keys are inoperable until
the computer is rebooted.

► Hold Screen Page Advance: The selected key becomes a Page Ad­
vance key when used with another key that has been assigned the
Hold Screen escape sequence. The Hold Screen escape sequence
must be enabled for this function to be used. Each time the Hold
Screen Page Advance key is pressed, 24 lines of text (one page) scroll
up the screen.

► Hold Screen Line Advance: The selected key becomes a Line Ad­
vance key when used with another key that has been assigned the
Hold Screen escape sequence. The function is used much like Hold
Screen Page Advance, but it causes the screen to scroll up one line
instead of an entire page.

KEYGEN 3-7

► Alt: When used with a second key, Alt forces the second key into
Alternate mode.

► Repeat: When used along with another key, Repeat causes that key
to be repeated as long as the Repeat key is depressed.

Use the cursor arrow keys to move the cursor to the desired function.
Then, press ENTER to enter the assignment to the keyboard file and
automatically return to Menu 4. If you decide not to assign a function
after all, press MENU to return to the previous menu. As always, HELP
is available if you need it.

You have just assigned a function to the selected key and are now at
Menu 3, “Select a Key”. The key that you have just reconfigured is
highlighted on the keyboard display; its unshifted value reflects the
function assignment. At this point, you can make more changes until you
have fully configured the keyboard. When the configuration process is
complete, press RETURN to return to the Header menu (Menu 2).

Press SAVE to save your new keyboard file. When the save is success­
fully completed, a message to that effect appears. You might also want to
press DISPLAY, which displays all keys and their associated character
codes and attributes on the screen; or PRINT, which sends the same
information (along with header information) to the printer. After this is
done, press RETURN to return to the file selection menu (Menu 1).
Now, you can create another keyboard or you can press EXIT to leave
KEYGEN. If you choose to EXIT, a message asks you if you really want
to return to the operating system. Press YES to return to the operating
system.

3-8 PROGRAMMER’S TOOL KIT\ I

MODCON
Utility

COPYRIGHT

© 1983 by VICTOR®.

All rights reserved. This publication contains proprietary information
which is protected by copyright. No part of this publication may be
reproduced, transcribed, stored in a retrieval system, translated into
any language or computer language, or transmitted in any form what­
soever without the prior written consent of the publisher. For informa­
tion contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
MODCON is a trademark of Victor Technologies, Inc.
WordStar is a trademark of MicroPro.

NOTICE

VICTOR makes no representations or warranties of any kind
whatsoever with respect to the contents hereof and specifically dis­
claims any implied warranties of merchantability or fitness for any
particular purpose. VICTOR shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this publication or its contents.

VICTOR reserves the right to revise this publication from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

First VICTOR printing February, 1983.

ISBN 0-88182-006-7 Printed in U.S.A.

II PROGRAMMER’S TOOL KIT, I

CONTENTS

1. Overview .. 1-1

2. Operating Environment ..2-1
2.1 Character Sets, Keyboard Tables, and Translate Tables . 2-1
2.2 MODCON Operation ...2-2
2.3 Command Syntax ... 2-2
2.4 Error Conditions ... 2-3

3. Using MODCON .. 3-1
3.1 Commands .. 3-1
3.2 Applications ..3-2

MODCON UTILITY 111

CHAPTERS

1. Overview

2. Operating Environment

3. Using MODCON

MODCON UTILITY V

OVERVIEW

MODCON is designed to take advantage of one of the most powerful
features of your computer—its flexibility. With MODCON, you can
modify the configuration of the operating system with respect to the
keyboard table, character set, and translate table. When used with
EFONT and KEYGEN, MODCON provides you with a personalized
environment not possible on other machines.

MODCON lets you select a new keyboard table, translate table, and/or
character set before entering an application program. The current set(s)
can be saved and restored when you exit the application program.

MODCON is supported by the following operating systems:

► MS-DOS: Vl.25/2.5 or later

► CP/M: VI. 1/2.4 and later

If you try to use MODCON with earlier versions of either operating
system, an error message appears.

Note: Translate table functionality is available with MS-DOS V1.25/2.6
and later.

MODCON UTILITY 1-1

2
OPERATING ENVIRONMENT

Before you can use MODCON, you must set up any keyboard and
character files and translate tables.

2

CHARACTER SETS, KEYBOARD TABLES,
AND TRANSLATE TABLES 2.1

Character sets are obtained by:

► Selecting a set provided on the system selection (SYSELECT) disk­
ette included in the Programmer’s Tool Kit.

► Selecting a graphics character set provided with CHARGRAF in the
Graphics Tool Kit.

► Modifying the current set (or any available set) using the EFONT
character-font editor.

Keyboard tables are obtained by:

► Selecting a table provided on the system selection (SYSELECT)
diskette included in the Programmer’s Tool Kit.

► Modifying the current table (or any available table) using the key­
board table editor KEYGEN.

Translate tables are associated with character sets requiring dead key
sequences. These are provided for each appropriate language on the
SYSELECT diskette.

MODCON UTILITY 2-1

2.2 MODCON OPERATION

If you request it, MODCON saves the current keyboard table or translate
table and/or character set in a file on the drive you specify. The keyboard
file and translate table is 2K bytes and the largest character set file is 10K
bytes. All header fields are initialized with blanks except for the following:

► TYPE is K (keyboard), C (character).

► VERSION is 0.
2

► BANNER NAME is the file name you specify.

► FILE SECTOR COUNT is the appropriate value.

Translate table header fields are set to nulls.

Any valid keyboard or character file created by KEYGEN, EFONT or
MODCON—or taken from a system selection, graphics or other
diskette—can be loaded from a file and set as the active keyboard table
or character set.

Translate tables are processed only when a character set is being pro­
cessed. If there is a translate table with the same name as the character
set you have selected, that translate table is automatically included in
your configuration. If no such translate table exists, a translate table is
not included.

When you save a character set, any active translate table is automati­
cally saved on the same diskette. The translate table has the same file
name as the character set file, and the extension .XLT.

2.3 COMMAND SYNTAX

To invoke MODCON, type:

MODCON <command>

2-2 PROGRAMMER’S TOOL KIT, I

The command portion of the invocation can have any of these formats
(items enclosed in brackets are optional):

<source file>[.<source ext.>]<save file>[.<save ext.>]
<source file>[.<source ext.>]
*<save file>[.<save ext.>]

where:

<source filo is the name of the file(s) that contain the sets to be
made active. If you enter an asterisk (*), no new sets are made
active and the configuration remains unchanged.

<source ext. > is .KB for keyboard or .CHR for character set. If the
extension is omitted, then both keyboard and character files are
made active.

<save filo is the name of the file(s) used to save the currently
active keyboard table and/or character set. If you use MODCON to
set a new configuration, <save filo is optional.

<save ext.> is .KB for keyboard or .CHR for character set. If the
extension is omitted, then both keyboard and character sets are
saved.

NOTES: (1) The <source ext.> option is independent from the <save
ext.> option.

(2) Translate tables can be acted on only if a character set is
being processed.

ERROR CONDITIONS 2.4

Any of the following errors cause MODCON to terminate prematurely.
When this happens, none of your new configuration is saved, and the
operating system is unchanged. Any BDOS or BIOS errors are returned
in the normal manner.

CANNOT OPEN FILE <filename>

Make sure the file exists on the specified drive.

MODCON UTILITY 2-3

DISK FULL

Make room for the new file(s). Keyboard files and translate tables
need 2K bytes; a character set file needs 10K.

DIRECTORY FULL

Make room for one or two new entries.

INVALID FILE EXTENSION

Specify the proper extension (.KB or .CHR).

INVALID DELIMITER

The correct delimiter is an asterisk (*).

SYSTEM ERROR

Run system diagnostics.

OPERATING SYSTEM MISMATCH

Reboot with the correct version of the operating system.

DISK ERROR <filename>

Use a different diskette.

2-4 PROGRAMMER’S TOOL KIT, I

USING MODCON

This chapter shows how MODCON is used both at the command level
and to create a prepackaged set of programs intended for end-users.

COMMANDS 3.1

The following examples show how commands are used:

► MODCON GERM01 G02SAVE
This saves the current keyboard table and character set in files
G02SAVE.KB and G02SAVE.CHR on the default drive. The data in
GERM01.KB and GERM01.CHR become the new active sets.

► MODCON MOI GERM01
This does the same as the previous example except that the original
GERM01.KB and .CHR files are overwritten in the save operation.

► MODCON AUST01
This sets the new keyboard table and character sets, both named
AUST01. The previous keyboard table and character sets are not
saved.

► MODCON B: GRAPHIC. CHR SAVE.CHR
This saves the current character set in SAVE.CHR on the default
drive. The new active character set is GRAPHIC.CHR on drive B.
The keyboard tables are not changed.

► MODCON * BRIT01.KB
This saves the current keyboard table in file BRIT01.KB on the
default drive while leaving it as the active keyboard. The character
set is not changed.

► MODCON FRENCH.KB B:SWEDISH.CHR
This saves the current character set in file SWEDISH.CHR on drive
B, while leaving that character set active. It also sets the keyboard
table from the default drive file FRENCH.KB, and overwrites the
existing keyboard table without saving it.

MODCON UTILITY 3-1

3.2 APPLICATIONS

The following example shows how a series of commands in a batch file
(MS-DOS) or submit file (CP/M-86) set up a dedicated keyboard for a
WordStar word processing session. The original keyboard is restored
when WordStar is terminated.

MODCON WORDAMER.KB SAVED.KB
The American keyboard is set as the
dedicated keyboard for the WordStar ses­
sion. The original keyboard is saved so it can
be restored at the end of the session.

WS WordStar is invoked.

MODCON SAVED.KB The original keyboard is restored.

DEL SAVED.KB This deletes the original keyboard file
(MS-DOS).

[ERA SAVED.KB] This deletes the original keyboard (CP/M-
86).

3-2 PROGRAMMER’S TOOL KIT, I

ASCII CHARACTER CODES

In the column headings, Dec means decimal, Hex means hexadecimal (H) and
CHR means character.

Dec Rex CHR Dec Hex CHR

000 00R NUL 034 22R n

001 01H SOH 035 23H #
002 02H STX 036 24H $
003 03H ETX 037 25H %
004 04H EOT 038 26H &
005 05H ENQ 039 27H i
006 06H ACK 040 28H (

007 07H BEL 041 29H)

008 08H BS 042 2AH -i-

009 09H HT 043 2BH +
010 OAH LF 044 2CH
Oil OBH VT 045 2DH -
012 OCR FF 046 2EH
013 ODH CR 047 2FH /

014 OEH SO 048 30H 0
015 OFH SI 049 31H 1
016 10H DEE 050 32H 2
017 HR DC1 051 33H 3
018 12H DC2 052 34H 4
019 13H DC3 053 35H 5
020 14H DC4 054 36H 6
021 15H NAK 055 37H 7
022 16H SYN 056 38H 8
023 17H ETB 057 39H 9
024 18H CAN 058 3AH
025 19H EM 059 3BH
026 1AH SUB 060 3CH <
027 1BH ESCAPE 061 3DH —

028 1CH FS 062 3EH >
029 1DH OS 063 3FH ?
030 1EH RS 064 40H @
031 1FH US 065 41H A
032 20H SP 066 42H B
033 21H j 067 43H C

068 44H D

MACRO-86 A-l

Dec Hex CHR Dec Hex CHR

069 45 H E 099 63H c
070 46H F 100 64H d
071 47 H G 101 65H e
072 48H H 102 66H f
073 49H I 103 67H g
074 4AH J 104 68H h
075 4BH K 105 69H i
076 4CH L 106 6AH j
077 4DH M 107 6BH k
078 4EH N 108 6CH 1
079 4FH O 109 6DH m
080 50H P 110 6EH n
081 51H Q 111 6FH o
082 52H R 112 70H P
083 53H S 113 71H q
084 54H T 114 72H r
085 55H U 115 73H s
086 56H V 116 74H t
087 57H w 117 75H u
088 58H X 118 76H V

089 59H Y 119 77H w
090 5AH Z 120 78H X

091 5BH [121 79H y
092 5CH \ 122 7AH z
093 5DH] 123 7BH {
094 5EH 124 7CH
095 5FH _ 125 7DH }
096 60H 126 7EH
097 61H a 127 7FH DEL
098 62H b

Note: LF = Linefeed, FF = Form feed, CR — Carriage return, and DEL = Delete.

A-2 PROGRAMMER’S TOOL KIT, II

B
MACRO-86 DIRECTIVES

MEMORY DIRECTIVES B.l

ASSUME <seg-reg>:<seg-name>[,<seg-reg>:<seg-name>...]
ASSUME NOTHING
COMMENT <delim><text><delim> B

<vamame> DB <exp> [,<exp>,...]
<vamame> DQ <exp> [,<exp>,...]
<vamame> DT <exp> [,<exp>,...]
<vamame> DW <exp> [,<exp>,...]
<vamame> DD <exp> [,<exp>,...]

END [<exp>]
<name> EQU <exp>
<name> =<exp>

EVEN
EXTRN < name>: <type > [, <name>: <type>...]

<name> GROUP <segment-name>[,...]
INCLUDE <filename>

<name> LABEL <type>
NAME <module-name>
ORG <exp>

<name> PROC [NEAR]
<name> PROC [FAR]

1
RET

<proc-name> ENDP

PUBLIC <symbol>[,<symbol>...]
.RADIX <exp>

<name> RECORD <field>:<width>[= <exp>][,...]

<seg-name> SEGMENT [<align>][<combine>][< ' class ’ >]
1

<seg-name> ENDS

<struc-name> STRUC
1

<struc-name> ENDS
<variable> <field>

MACRO-86 B-l

B. 2 MACRO DIRECTIVES

ENDM
EXITM
IRP <dummy>,<parameters in angle brackets>
IRPC <dummy>,<string>
LOCAL < parameter> [,< parameter>...]

<name> MACRO <parameter>[,<parameter>...]
PURGE <macro-name>[,...]
REPT <exp>

B. 2.1 SPECIAL MACRO OPERATORS

& (ampersand)—concatenation
<text> (angle brackets)—single literal
;; (double semicolons)—suppress comment
! (exclamation point)—next character literal
% (percent sign)—convert expression to number

B. 3 CONDITIONAL DIRECTIVES

ELSE
ENDIF
IF <exp>
IFB <arg>
IFDEF < symbol >
IFDIF <argl>,<arg2>
IFE <exp>
IFIDN <argl>,<arg2>
IFNB <arg>
IFNDEF < symbol>
IF1
IF2

B-2 PROGRAMMER’S TOOL KIT, II

LISTING DIRECTIVES B.4

.CREF

.LALL

.LFCOND

.LIST
%OUT <text>
PAGE [<length>] [,<width>]
PAGE [+]
.SALL
.SECOND
SUBTTL <text>
.TFCOND
TITLE <text>
.XALL
.XCREF [<variable list>]
.XLIST

ATTRIBUTE OPERATORS B.5

OVERRIDE OPERATORS

Pointer (PTR)
<attribute> PTR <expression>

Segment Override (:)
< segment-register >: < address-expression >
< segment-name >: <address-expression>
<group-name>:<address-expression>

SHORT
SHORT <label>

THIS
THIS <distance>
THIS <type>

8.5.1

MACRO-86 B-3

8.5.2 VALUE-RETURNING OPERATORS

SEG
SEG <label >
SEG <variable>

OFFSET
OFFSET <label>
OFFSET <variable>

TYPE
TYPE < label >
TYPE < variable >

.TYPE
.TYPE <variable>

LENGTH
LENGTH <variable>

SIZE
SIZE <variable>

8.5.3 RECORD-SPECIFIC OPERATORS

Shift-count—(Record fieldname)
<record-fieldname>

MASK
MASK <record-fieldname>

WIDTH
WIDTH <record-fieldname>
WIDTH <record>

8-4 PROGRAMMER’S TOOL KIT, II

PRECEDENCE OF OPERATORS B.6

All operators in a single item have the same precedence, regardless of the order
listed within the item. Spacing and line breaks are used for clarity, not to
indicate functional relations.

1. LENGTH, SIZE, WIDTH, MASK: Entries can be inside parentheses (),
angle brackets <>, and square brackets []. The structure of a variable
operand is:

<variable>.<field>

2. Segment override operator (:)

3. PTR, OFFSET, SEG, TYPE, THIS

4. HIGH, LOW

5. Asterisk (*), slash (/), MOD, SHL, SHR

6. Plus sign (+) and minus sign (—), both unary and binary.

7. EQ, NE, LT, LE, GT, GE

8. Logical NOT

9. Logical AND

10. Logical OR, XOR

11. SHORT, .TYPE

MACRO-86 B-5

8086 INSTRUCTIONS

The mnemonics are listed alphabetically with their full names. The 8086
instructions are also listed in groups based on the types of arguments the
instruction takes.

ALPHABETICAL LIST C. 1
OF 8086 INSTRUCTION MNEMONICS

MNEMONIC ________ FULL NAME________

AAA
AAD
AAM
AAS
ADC
ADD
AND
CALL
CBW
CLC
CLD
CLI
CMC
CMP
CMPS
CMPSB
CMPSW
CWD
DAA
DAS
DEC
DIV
ESC
HLT
IDIV
IMUL

ASCII adjust for addition
ASCII adjust for division
ASCII adjust for multiplication
ASCII adjust for subtraction
Add with carry
Add
AND
CALL
Convert byte to word
Clear carry flag
Clear direction flag
Clear interrupt flag
Complement carry flag
Compare
Compare byte or word (of string)
Compare byte string
Compare word string
Convert word to double word
Decimal adjust for addition
Decimal adjust for subtraction
Decrement
Divide
Escape
Halt
Integer divide
Integer multiply

MACRO-86 C-l

MNEMONIC FULL NAME

IN
INC
INT
INTO
IRET
JA
JAE
JB
JBE
JC
JCXZ
JE
JG
JGE
JL
JLE
JMP
JNA
JNAE
JNB
JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE
JNO
JNP
JNS
JNZ
JO
JP
JPE
JPO
JS
JZ
LAHF
LDS
LEA
LES
LOCK
LOOS
LODSB
LODSW

Input byte or word
Increment
Interrupt
Interrupt on overflow
Interrupt return
Jump on above
Jump on above or equal
Jump on below
Jump on below or equal
Jump on carry
Jump on CX zero
Jump on equal
Jump on greater
Jump on greater or equal
Jump on less than
Jump on less than or equal
Jump
Jump on not above
Jump on not above or equal
Jump on not below
Jump on not below or equal
Jump on no carry
Jump on not equal
Jump on not greater
Jump on not greater or equal
Jump on not less than
Jump on not less than or equal
Jump on not overflow
Jump on not parity
Jump on not sign
Jump on not zero
Jump on overflow
Jump on parity
Jump on parity even
Jump on parity odd
Jump on sign
Jump on zero
Load AH with flags
Load pointer into DS
Load effective address
Load pointer into ES
LOCK bus
Load byte or word (of string)
Load byte (string)
Load word (string)

C-2 PROGRAMMER’S TOOL KIT, II

MNEMONIC FULL NAME

LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ
MOV
MOVS
MOVBS
MOVSW
MUL
NEG
NOP
NOT
OR
OUT
POP
POPE
PUSH
PUSHF
RCL
RCR
REP
RET
ROL
ROR
SAHF
SAL
SAR
SBB
SCAS
SCASB
SCASW
SHL
SHR
STC
STD
STI
STOS
STOSB
STOSW
SUB
TEST
WAIT
XCHG
XLAT
XOR

LOOP
LOOP while equal
LOOP while not equal
LOOP while not zero
LOOP while zero
Move
Move byte or word (of string)
Move byte (string)
Move word (string)
Multiply
Negate
No operation
NOT
OR
Output byte or word
POP
POP flags
PUSH
PUSH flags
Rotate through carry left
Rotate through carry right
Repeat
Return
Rotate left
Rotate right
Store AH into flags
Shift arithmetic left
Shift arithmetic right
Subtract with borrow
Scan byte or word (of string)
Scan byte (string)
Scan word (string)
Shift left
Shift right
Set carry flag
Set direction flag
Set interrupt flag
Store byte or word (of string)
Store byte (string)
Store word (string)
Subtract
TEST
WAIT
Exchange
Translate
Exclusive OR

MACRO-86 C-3

C. 2 8086 INSTRUCTION MNEMONICS
BY ARGUMENT TYPE

In this section, instructions are grouped by the type of argumentss) that they
take. In each group, the instructions are listed alphabetically in the first column.
The formats of the instructions with the valid argument types are shown in the
second column. If a format shows OP, that format is legal for all the instructions
shown in that group. If a format is specific to one mnemonic, that mnemonic is
shown in the format in place of OP.

The following abbreviations are used in this section:

► OP: Opcode; instruction mnemonic.

► reg: Byte register (AL, AH, BL, BH, CL, CH, DL, DH) or word register
(AX, BX, CX, OX, SI, DI, BP, SP).

► r/m: Register or memory address; or indexed and/or based.

► accum: AX or AL register.

► immed: Immediate.

► mem: Memory operand.

► segreg: Segment register (CS, DS, SS, ES).

INSTRUCTION
TYPE MNEMONIC _______ ARGUMENT TYPES_______

General 2-Operand ADC
ADD
AND
CMP
OR
SBB
SUB
TEST
XOR

OP reg, r/m
OP r/m, reg
OP accum, immed
OP r/m, immed

CALL/JUMP Type CALL
JMP

OP mem {NEAR}{FAR} direction OP r/m
(indirect data: DWORD, WORD)

Relative Jumps JA
JAE

OP addr (+ 129 or -126 of IP at start, or
±127 at end of jump instruction)

C-4 PROGRAMMER’S TOOLKIT, II

INSTRUCTION
________ TYPE________ MNEMONIC _______ ARGUMENT TYPES_______

JB
JBE
JC
JCXZ
JE
JG
JGE
JL
JLE
JNA
JNAE
JNB
JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE
JNO
JNP
JNS
JNZ
JO
JP
JPE
JPO
JS
JZ

Loop LOOP Same as relative jumps
LOOPE
LOOPZ
LOOPNE
LOOPNZ

Return RET [immed] (optional, number of words to
POP)

No Operand AAA
AAD
AAM
AAS
CBW
CLC
CLD
CLI

MACRO-86 C-5

INSTRUCTION
TYPE MNEMONIC ARGUMENT TYPES

Move

CMC
CMPSB
CMPSW
CWD
DAA
DAS
HLT
INTO
IRET
LAHF
LODSB
LODSW
MOVSB
MOVSW
NOP
POPF
PUSHF
SAHF
SCASB
SCASW
STC
STD
STI
STOSB
STOSW
WAIT
XLATB

EDS
LEA
LES

MOV

Push/Pop

Shift/Rotate Type

PUSH
POP

RCL
RCR
ROL
ROR
SAL
SHL
SAR
SHR

OP r/m (except that OP reg is illegal)

OP mem, accum
OP accum, mem
OP segreg, r/m (except CS is illegal)
OP r/m, segreg
OP r/m, reg
OP reg, r/m
OP reg, immed
OP r/m, immed

OP word-reg
OP segreg (POP CS is illegal)
OP r/m

OP r/m, 1
OP r/m, CL

C-6 PROGRAMMER ’.S TOOL KIT, II

INSTRUCTION
TYPE MNEMONIC _______ ARGUMENT TYPES_______

Input/Output IN IN accum, byte-immed (immed - port
0-255)
IN accum, DX

OUT OUT immed, accum
OUT DX, accum

Increment/Decrement INC OP word-reg
DEC OP r/m

Arithmetic Multiplication/ DIV OP r/m (implies AX OP r/m,
Division/Negate/Not IDIV

MUL
IMUL

except NEG)

NEG
NOT

(NEG implies AX OP NOP)

Interrupt INT INT 3 (value 3 is one byte instruction)
INT byte-immed

Exchange XCHG XCHG accum, reg
XCHG reg, accum
XCHG reg, r/m
XCHG r/m, reg

Miscellaneous XLAT XLAT byte-mem (only checks argument,
not in opcode)

ESC ESC 6-bit-number, r/m

String Primitives (1) CMPS CMPS byte-word, byte-word (CMPS
right operand is ES)

LODS LODS byte/word, byte/word (LODS one
argument - no ES)

MOVS MOVS byte/word, byte/word (MOVS left
operand is ES)

SCAS SCAS byte/word, byte/word (SCAS one
argument - ES)

STOS STOS byte/word, byte/word (STOS one
argument = ES)

Repeat Prefix To String LOCK
REP
REPE
REPZ
REPNE
REPNZ

Note (1): These instructions have bits to record only their operands, if they are byte or word and
if a segment override is involved.

C-7MACRO-86

D
MS-DOS FILE CONTROL BLOCK
DEFINITION

The MS-DOS File Control Block (FCB) is defined as follows:

Byte 0 Drive Code. Zero specifies the default drive, 1 is drive
A, 2 is drive B, and so on. After a successful open, the
drive letter specification is always a physical drive,
and the default specification is changed to the current
default physical drive. ,

Bytes 1-8 Filename. If the file is less than 8 characters, the name
must be left-justified with trailing blanks. A filename
must consist of letters (lowercase is converted to up­
percase), numbers, and special characters. A filename
cannot contain these characters:

+ ,./:; = []

and must not contain alternate characters (<20H).

Bytes 9-11 Extension to filename. If the extension is less than
three characters, it must be left-justified with trailing
blanks. The extension can also be all blanks.

Bytes 12-13 Current block (extent). This word (low byte first) spec­
ifies the current block of 128 records, relative to the
start of the file, in which sequential disk reads and
writes occur. If the current block is zero, then the first
block of the file is accessed; if one, then the second is
accessed, and so on. When combined with the current
record field (byte 32), a particular logical record is
identified.

MACRO-86 D-l

Bytes 14-15 Size of the record you want to work with. This word
can be filled immediately after an OPEN of the file if
you do not want the default logical record size (128
bytes). The Open and Create functions set this field to
128; it is also changed to 128 if a read or write is
attempted with the field set to zero.

Bytes 16-19 File size. This is the current size of the file, in bytes. It
can be read by user programs but must not be written
by them.

Bytes 20-21 Date. This is normally the date of the last write to the
file. These bytes are set to today’s date by all disk write
operations and by Create. It is set by Open to the date
recorded in the disk directory for the file.

You can modify this field after writing to a file (but
before closing it) to change the date recorded in the
disk directory.

The format of this 16-bit field is:

► Bits 0-4: Day of month.

► Bits 5-8: Month of year.

► Bits 9-15: Current year minus 1980.

All zeros means no date.

Bytes 22-23 Time. Similar to Date. The format is:

► Bits 0-4: Seconds divided by 2.

► Bits 5-10: Minutes.

► Bits 11-15: Hours.

Bytes 24-31 Reserved for MS-DOS.

Byte 32 Current record. Within the current block of 128
records, this byte identifies the record accessed by a
sequential read or write function. See bytes 12-13.

D-2 PROGRAMMER’S TOOL KIT, II

Bytes 33-36 Random Record. This field is set only if the file is to be
accessed with a random read or write function. If the
record size is greater than or equal to 64 bytes, only the
first three bytes are used. (These bytes are a 24-bit
number that represents the record’s file position.) If the
record size is less than 64 bytes, all four bytes are used
as 32-bit numbers with the same purpose. This field is
large enough to address any byte in a file of the maxi­
mum size.

THE EXTENDED FCB

The extended FCB is a special format used to search the disk directory for files
with special attributes. The extended FCB consists of seven bytes in front of a
normal FCB, formatted as follows:

FCB-7 Flag. FF hex is placed here to signal an extended FCB.

FCB-6 to FCB-2 Zero field.

FCB-1 Attribute byte. If bit 1 equals 1, hidden files are in­
cluded in directory searches. If bit 2 equals 1, system
files are included in directory searches.

Any reference to an FCB in the description of MS-
DOS function calls, whether opened or unopened, can
use either a normal FCB or an extended FCB. A
normal FCB has the same effect as an extended FCB
with the attribute byte set to zero.

MS-DOS BASE PAGE

The Base Page contains information about the standard execution environment
established by COMMAND. The Base Page is always pointed to by DS:0 at
program startup. A new Base Page can be created by a system call, but it does
not override the current Base Page.

MACRO-86 D-3

The Base Page is actually defined as the storage at CS:0 for certain system calls.
Another Base Page can be created by a system call, but is not used until control
is transferred to another program. A program that does not follow the CS:0 —
Base Page convention must ensure that a Base Page is addressable by any
system calls that depend on the CS:0 convention.

Program termination is of particular significance. It is handled through the INT
20H in the Base Page. A program can save DS at startup and, at termination,
execute a long jump to the DS:0.

The MS-DOS Base Page is defined as follows:

Bytes 0-1H These bytes contain an INT 20H instruction that
simplifies termination in programs that do not preserve
CS:0 — Base Page.

Bytes 2-3H This word contains the value of the last segment in the
TPA + 1. This value is the first unavailable memory
segment at the high end. The low end of the TPA is
contained in CS and DS at the time a program begins
execution.

Byte 4H Undefined.

Byte 5H Alternate function request entry point.

Bytes 6-7H This word contains the byte count of the TPA. If the
TPA exceeds 64K, then this value is OFFFOH.

Bytes 8-9H Reserved.

Bytes OA-OCH Exit interrupt vector at startup (INT 22H).

Bytes 0D-11H ALT-C interrupt vector at startup (INT 23H).

Bytes 12-15H Fatal error interrupt vector at startup (INT 24H).

Bytes 16-5BH Reserved.

D-4 PROGRAMMER’S TOOL KIT, II

Bytes 5C-67H First filename parameter. By convention, the input
command tail is parsed for two filenames when the
Base Page is created by the invoking program (usually
COMMAND). These bytes are the first filename en­
countered.

Bytes 68-6BH Reserved.

Bytes 6C-77H Second filename parameter.

Bytes 78-7FH Reserved.

Bytes 80-FFH Command parameters unformatted. The command
name is not included here. COMMAND recognizes
commands of the format:

<commandname> <parameters>

If present, the parameters are copied into bytes 81H
through FFH, with byte 80H equal to the length of the
parameters. The parameters are followed by a carriage
return.

MACRO-86 D-5

MS-DOS INTERRUPTS
AND FUNCTION CALLS

INTERRUPTS E. 1

MS-DOS reserves interrupt types 20 to 3F hex for its use. Absolute locations 80
to FF hex are the transfer address storage locations reserved by the DOS.

This section describes the defined interrupts. All values are in hexadecimal.

20 Program terminate. This is the normal way to exit a program. When
this interrupt is executed, CS:0 must point to the 100H parameter area.
This vector transfers control to the DOS for restoration of exit ad­
dresses (interrupts 22H, 23H, 24H) to the values they had on entry to
the program. All file buffers are read to disk. Before issuing this
interrupt, you should close any files that have changed in length (see
function call 10 hex). If the changed file was not closed, its length is not
recorded correctly in the directory. Control is then transfered to INT
22H.

21 Function request. See Section E.2.

22 Termination handler. When the program terminates, control is trans­
ferred to the address represented by this interrupt (88-8B hex) after the
DOS does the processing described in INT 20H. This address is copied
into the Base Page at the time the Base Page is created. If a program is
to execute a second program, the first program must set the terminate
address before creating the Base Page for the second program. Other­
wise, control would transfer to the host program’s termination address
when the second program terminates.

MACRO-86 E-l

23 ALT-C handler. If you type ALT-C during keyboard input, video
output, list output or auxiliary input/output, an ALT-C and a carriage
return/linefeed appear on the screen and an INT 23H is executed. If the
INT 23H routine saves all registers, the routine can end with a return-
from-interrupt instruction (IRET) to continue execution of the DOS
request. If functions 9 or 10 (buffered output and input) were being
executed, then I/O continues from the start of the line. All other
functions are started anew (the ALT-C check is made before function
execution).

When the INT 23H is executed, all registers are set to the value they
had when the original call to MS-DOS was made, and the top-of-stack
contains the interrupt return address to the DOS, followed by the
interrupt return address to the program that invoked the DOS. There are
no restrictions on what the ALT-C handler is allowed to do, as long as
the registers are unchanged when IRET is used.

If the program creates a new segment and loads in a second program
which itself changes the ALT-C address, termination of the second
program and return to the first causes the ALT-C address to be restored
to the value it had before execution of the second program. (See INT
20H.)

24 Fatal error handler. When a fatal error occurs within MS-DOS, control
is transferred with an INT 24H. On entry to the error handler, bit 7 of
AH equals 0 if the error was a hard disk error (probably the most
common occurrence); bit 7 equals 1 if the error was of some other type.

With a hard disk error, bits 0-2 include the following:

► Bit 0: 0 if read, 1 if write.

► Bits 1 and 2 identify the affected disk area:

BIT 2 BIT 1 AFFECTED DISK AREA
0 0 Reserved area
0 1 File allocation table
1 0 Directory
1 1 Data area

AL, CX, DX, and DS:BX are set up to retry the transfer with INT 25H
or INT 26H. DI has a 16-bit error code returned by the BIOS. The
values returned are defined by the BIOS.

E-2 PROGRAMMER’S TOOL KIT, II

The registers are set up for a BIOS disk call and the returned code is in
the lower half of the DI register; the upper half is undefined. The user
stack looks like this:

| IP | Registers such that if an IRET is executed, the DOS
| CS | responds according to (AL) as follows:

FLAGS . / a T \ n t► (AL) — 0: Ignore the error.

► (AL) — 1: Retry the operation. Stack DS, BX, CX
and DX must not be modified.

► (AL) — 2: Abort the program.

| AX
| BX
| CX
| DX
I SI
I DI
| BP
| DS
| ES
I IP
I cs
|FLAGS I

User registers at time of request.

The interrupt from the user to the DOS.

Currently, the only error possible when AH bit 7 equals 1 is a bad
memory image of the file allocation table.

25 Absolute disk read. Transfers control directly to the BIOS. On return,
the original flags are still on the stack (put there by the INT instruction).
This allows return information to be passed back in the flags. Be sure to
pop the stack to prevent uncontrolled growth.

For this entry point, records and sectors are the same size. The request
is as follows:

(AL) Driver number (defined by BIOS)
(CX) Number of sectors to read
(DX) Beginning logical record number
(DS:BX) Transfer address

MACRO-86 E-3

The number of records specified are transferred using the given driver
and the transfer address. The driver number is defined at the DOS/BIOS
interface and is implementation-specific. Logical record numbers are
obtained by numbering each sector sequentially starting from zero and
continuing across track boundaries. For example, logical record num­
ber 0 is track 0, sector 1; logical record number 12 hex is track 2, sector
3.

All registers except the segment registers are destroyed by this call. If
the transfer was successful the carry flag (CF) is zero. If the transfer
was not successful CF equals 1 and (AL) indicates the error as defined
by the BIOS.

26 Absolute disk write. This is the counterpart to interrupt 25. Except that
this is a write, the description of interrupt 25 applies to interrupt 26 as
well.

27 Terminate but stay resident. Used by programs that are to remain
resident when COMMAND regains control. A program of this type is
loaded as an executing .COM file by COMMAND. After the program
initializes, it must set DX to its last address plus one in the segment in
which the program is executing; then, it executes an interrupt 27H.

COMMAND then treats the program as an extension of MS-DOS. The
program is not overlaid when other programs are executed. The area
occupied by the program is at the lower end of the TPA. More storage
can be reserved by first establishing a new Base Page; the TPA is
adjusted relative to the Base Page at CS:0.

E.2 FUNCTION CALLS

You call a function by putting a function number in the AH register, supplying
additional information in other registers as necessary for the specific function,
and then executing an interrupt 21H. When MS-DOS takes control, it switches
to an internal stack after pushing the registers. All user registers are preserved
(except AX), unless information is passed back to the calling program. The user
stack must be able to accommodate the interrupt and the environment save. We
recommend that the stack be 80 hex in addition to any user registers.

E-4 PROGRAMMER’S TOOLKIT, II

There is an additional calling method that conforms to CP/M calling conven­
tions. The function number is placed in the CL register; other registers are set as
normal according to the function specification. Then, an intrasegment call is
made to location 5 in the Base Page. This method is available only to functions
which do not pass a parameter in AL, and whose numbers are equal to or less
than 36. Register AX is always destroyed if this mechanism is used; otherwise,
the method works the same as other function calls.

These functions are available. All values are in hex.

SYSTEM SERVICE CALLS E.2.1

0 Program terminate. The Base Page must be addressed by CS:0. The
terminate and ALT-C exit addresses are restored to the values they had
on entry to the terminating program. All file buffers are read to disk.
Files that have changed in length without being closed are not recorded
correctly in the disk directory. Control transfers to the termination
handler (INT 22H).

IB Allocation table address. On return, DS:BX points to the allocation
table for the current drive. DX contains the number of allocation units,
AL contains the number of records per allocation unit, and CX contains
the size of the physical sector. The byte at DS:[BX-1] (just ahead of the
allocation table) is the "dirty byte” for the table. If the dirty byte is set
to 01, the table has been modified and must be written back to disk. If
set to 00, the table is not modified. Any programs that get the address
and directly modify the table must set this byte to 01 for the changes to
be recorded. The dirty byte should never be set to 00; instead, do a
DISK RESET function (#0D hex) to write the table and reset the bit.

1C This function is equivalent to IB above, except that DL is the letter
drive for the allocation table wanted. If AL — 0FFH, then the supplied
drive is invalid.

25 Set vector. The interrupt type specified in AL is set to the 4-byte
address DS:DX.

MACRO-86 E-5

26 Create a new program segment. On entry, DX contains a segment
number at which to set up a new program segment. The entire 100-hex
area at location CS:0 (the current program segment) is copied into
location DX:0 (the new program segment). The memory-size informa­
tion at location 6 in the new segment is updated, and the current
termination and ALT-C exit addresses are saved at DX:0AH (see Base
Page definition).

29 Parse filename. On entry, DS:SI points to a command line to parse, and
ES:DI points to a portion of memory to be filled with an unopened
FCB. Leading tabs and spaces are ignored when scanning. If bit 0 of
AL is equal to 1 on entry, then one leading filename separator (at most)
is ignored, along with any trailing tabs and spaces. The four filename
separators are:

; , = +

If bit 0 of AL is equal to 0, then all parsing stops when a separator is
encountered. The command line is then parsed for a filename of the

E
ckfilename.ext

If found, a corresponding unopened FCB is created at ES:DI. The entry
value of AL bits 1,2, and 3 determine what to do if the drive, filename,
or extension, respectively, are missing. In each case, if the bit is a zero
and the field is not present on the command line, then the FCB is filled
with a fixed value. This value is 0 for the default drive of the drive field;
and all blanks for the filename and extension fields. If the bit is a 1, and
the field is not present on the command line, then the corresponding
field in the destination FCB at ES:DI is left unchanged. If an asterisk
(*) appears in the filename or extension, then all remaining characters
in the name or extension are question marks (?).

These characters are illegal within MS-DOS file specifications:

"/[] + = ;,

In addition, alternate characters and spaces cannot appear in file
specifications. Parsing stops when any of these characters are encoun­
tered, or when the period (.) or colon (:) is found in an invalid position.

E-6 PROGRAMMER’S TOOL KIT, II

If the drive is invalid, then AL - OFFH and filename is parsed. If / or *
appear in the filename or extension of a file on a valid drive, then AL
returns 01; otherwise, it returns 00. DS:SI returns pointing to the first
character after the filename. ES:DI is unchanged.

2A Get date. Returns date in CX:DX.

► CX contains the year.

► DH contains the month (January = 1, February = 2 and so on).

► DL contains the day of the month.

► AL contains the day of week (Sunday — 0, Monday = 1 and so on).

The number of days in each month (and the variation in month length
during leap years) is taken into account when incrementing the regis­
ters.

2B Set date. On entry CX:DX must contain a valid date in the same format
used by function 2A. If the date is valid and the set operation is
successful, then AL returns 00. If the date is not valid, AL returns FF.

2C Get time. Returns with time-of-day in CX:DX. Time is represented as
four 8-bit binary quantities:

► CH contains the hour (0-23).

► CL contains the minute (0-59).

► DH contains the second (0-59).

► DL contains the 1/100 second (0-99).

This format can be easily converted to a printable form or used in
calculations.

2D Set time. On entry, CX:DX contains the time in the same format as
returned by function 2C. If any component of the time is not valid, the
set operation is aborted and AL returns FF. If the time is valid, AL
returns 00.

MACRO-86 E-7

2E Set/Reset Verify Flag. On entry, DL must be 0. AL contains the verify
flag:

► 0 indicates no verify.

► 1 indicates verify after write.

On each write, this flag is passed to the I/O system for interpretation.

E.2.2 BYTE I/O

1 Keyboard input. Waits for you to type a character at the keyboard, then
sends that character to the screen and returns it in AL. The character is
checked for an ALT-0. If ALT-0 is detected, an INT 23 hex is
executed.

E Video output. The character in DL is output to the screen. If an ALT-0
is detected after the output, an INT 23 hex is executed.

3 Auxiliary input.Waits for a character from the auxiliary input device,
then returns that character in AL. If an ALT-0 is detected after the
output, an INT 23 hex is executed.

4 Auxiliary output. The character in DL is output to the auxiliary device.
If an ALT-0 is detected after the output, an INT 23 hex is executed.

5 Printer output. The character in DL is output to the printer. If an ALT-0
is detected after the output, an INT 23 hex is executed.

6 Direct keyboard I/O. If DL is FF hex, then AL returns with the key­
board input character, if one is available; otherwise, AL returns 00. If
DL is not FF hex, then DL is assumed to have a valid character. That
character is output to the screen.

7 Direct keyboard input. Waits for you to type a character at the key­
board, then returns that character in AL. As with function 6, no checks
are made on the character.

E-8 PROGRAMMER’S TOOL KIT, II

8 Keyboard input without echo. This function is identical to function 1,
except the input key is not displayed. If an ALT-C is detected after the
output, an INT 23 hex is executed.

9 Print string. On entry, DS:DX must point to a character string in
memory that ends with a dollar sign (24 hex). Each character in the
string is output to the screen in the same form as with function 2. If an
ALT-C is detected after the output, an INT 23 hex is executed.

Buffered keyboard input. On entry, DS:DX points to an input buffer.
The first byte specifies the number of characters the buffer can hold;
this byte cannot be 0. The second byte of the buffer is set to the number
of characters input at the keyboard, excluding the carriage return (0D
hex) which is always the last character. Characters are read from the
keyboard and put into the buffer, beginning at the third byte. The buffer
continues to fill with characters until you press Return. If you type
characters until the buffer has room for only a single additional charac­
ter, then your input is ignored until you type a Return.

Editing the keyboard input buffer is described in the Operator s Refer­
ence Guide. If an ALT-C is detected after the output, an INT 23 hex is
executed.

E

B Check keyboard status. If a keyboard character has been typed, AL is
EE hex; otherwise, AL is 00. If an ALT-C is detected after the output,
an INT 23 hex is executed.

C Character input with buffer flush. First the keyboard type-ahead buffer
is emptied. If AL is 1,6, 7, 8, or 0A hex, the corresponding MS-DOS
input function is executed. If AL is not one of these values, no further
operation occurs, and AL returns 00.

MACRO-86 E-9

E.2.3 DISK FUNCTIONS
All references to FCB can be normal format or extended format. These
functions are also referred to as block I/O functions.

D Disk reset. Reads all file buffers to disk. Unclosed files that have
changed in size are not correctly recorded in the disk directory until
they are closed. You do not need to call this function before a disk
change if all files have been closed.

E Select disk. The drive letter specified in DL (0—A, 1 = B, and so on) is
selected as the default disk. The number of drives is returned in AL.

F Open file. On entry, DS:DX points to an unopened file control block
(FCB). The disk directory is searched for the named file and AL returns
FF hex if the file is not found. If the file is found, AL returns a 00 and
the FCB is filled as follows:

► If the drive code is 0 (default disk), the code changes to the physical
disk used (A = 1, B=2, and so on). This lets you change the default
disk without interfering with subsequent operations on this file.

► The high byte of the current block field is set to zero.

► The size of the record to be worked with (FCB bytes E-F hex) is set
to the system default of 80 hex.

► The time, date, and size of the file are set in the FCB from informa­
tion obtained from the directory.

If the 80 hex default is not appropriate, you must set the record size
(FCB bytes E-F) to the size you want. You must also set the random
record field and/or current block and record fields before further use of
the FCB.

10 Close file. This function must be called after file writes to ensure that
all directory information is updated. On entry, DS:DX points to an
opened FCB. The disk directory is searched and, if the file is found, its
position is compared with that stored in the FCB. If the file is not found
in the directory, it is assumed that the disk has been changed. In this
case, AL returns FF hex. If the file is found, the directory is updated to
reflect the status in the FCB and AL returns 00.

E-10 PROGRAMMER’S TOOL KIT, II

11 Search for the first entry. On entry, DS:DX points to an unopened FCB.
The disk directory is searched for the first matching name (this name
can contain the ? wild-card character) and, if none are found, AL
returns FF hex. Otherwise, locations at the disk transfer address are set
as follows:

► If the FCB used in the search is an extended FCB, then the first byte
is set to FF hex and the following five bytes contain zeros. The next
byte is the attribute byte from the search FCB, followed by a byte
that contains the drive number used (A = 1, B=2, and so on). Last
comes the 32 bytes of the directory entry. In this way, the disk trans­
fer address contains a valid unopened extended FCB with the same
search attributes as the search FCB.

► If the FCB used in the search is a normal FCB, the first byte is set to
the drive number used (A= 1, B=2, and so on) and the next 32 bytes
contain the matching directory entry. This disk transfer address con­
tains a valid unopened normal FCB.

Directory entries are formatted as follows:

LOCATION BYTES _________DESCRIPTION__________

0 11 Filename and extension.
11 1 Attributes. Bits 1 or 2 make file hidden.
10 10 Zero field (for expansion).

LOCATION BYTES _________ DESCRIPTION__________

22 2 Time:
► Bits 0-4 are the second times 2.
► Bits 5-10 are the minute.
► Bits 11-15 are the hour.

24 2 Date:
► Bits 0-4 are the day.
► Bits 5-8 are the month.
► Bits 9-15 are the year.

26 2 First allocation unit.
28 4 File size, in bytes (30 bits maximum).

MACRO-86 E-l 1

11 Search for the next entry. After function 11 is called and finds a match,
you can call function 12 to find the next match to an ambiguous request
(for example, wild-card characters in the search filename). Inputs and
outputs are the same as with function 11. The reserved area of the FCB
keeps information necessary for continuing the search, so that area
must not be modified.

13 Delete file. On entry, DS:DX points to an unopened FCB. All match­
ing directory entries are deleted. If no directory entries match, AL
returns FF; otherwise, AL returns 00.

14 Sequential read. On entry, DS:DX points to an opened FCB. The
record addressed by the current block (FCB bytes C-D) and the current
record (FCB byte IF) is loaded at the disk transfer address. Then, the
record address is incremented. If end-of-file is encountered, AL
returns either 01 or 03:

► A return of 01 indicates that there is no data in the record.

► A return of 02 indicates that there is not enough room in the
disk-transfer segment to read one record. The transfer is aborted.

► 03 indicates a partial record is read and filled out with zeros.

AL returns 00 if the transfer completed successfully.

15 Sequential write. On entry, DS:DX points to an opened FCB. The
record addressed by the current block and current record fields is
written from the disk transfer address. (If a record is of less-than-sector
size, it is put into a buffer until a sector’s worth of data is accumulated.)
The record address is then incremented. If the disk is full, AL returns
with a 01. A return of 02 means the transfer was aborted because there
was not enough room in the disk transfer segment to write one record.
AL returns 00 if the transfer was completed successfully.

16 Create file. On entry, DS:DX points to an unopened FCB. The disk
directory is searched for an empty entry. If none is found, AL returns
FF; otherwise, the entry is initialized as a zero-length file, the file is
opened (see function F), and AL returns 00.

E-12 PROGRAMMER’S TOOLKIT, II

17 Rename file. On entry, DS:DX points to a modified FCB which has a
drive code and filename in the usual position, and a second filename
starting 6 bytes after the first (DS:DX+11 hex) in what is normally a
reserved area. Each matching occurrence of the first filename is
changed to the second (with the restriction that two files cannot have
the exact same name and extension). If question marks (?) appear in the
second filename, then the corresponding positions in the original name
are unchanged. AL returns FF hex if no match was found; otherwise,
AL returns 00.

19 Current disk. AL returns with the code of the current default drive
(0=A, 1=B, and so on).

1A Set disk transfer address. The disk transfer address is set to DS:DX.
MS-DOS does not let disk transfers wrap around within the segment,
nor overflow into the next segment.

21 Random read. On entry, DS:DX points to an opened FCB. The current
block and current record are set to agree with the random record field,
then the record addressed by these fields is loaded at the current disk
transfer address. If end-of-file is encountered, AL returns either 01 or
03. If 01 is returned no more data is available. If 03 is returned, a partial
record is available, filled out with zeros. A return of 02 means there
was not enough room in the disk transfer segment to read one record, so
the transfer was aborted. AL returns 00 if the transfer was completed
successfully.

E

22 Random write. On entry, DS :DX points to an opened FCB. The current
block and current record are set to agree with the random record field.
The record addressed by these fields is written (or, in the case of
records less than sector-sized, buffered) from the disk transfer address.
If the disk is full, AL returns 01. A return of 02 means the transfer was
aborted because there was not enough room in the disk transfer seg­
ment to write one record. AL returns 00 if the transfer was completed
successfully.

MACRO-86 E-13

23 File size. On entry, DS:DX points to an unopened FCB. The disk
directory is searched for the first matching entry and, if none is found,
AL returns FF. Otherwise, the random record field is set with the size
of the file (in terms of the record-size field rounded up) and AL returns
00.

24 Set random record field. On entry, OS:OX points to an opened FCB.
This function sets the random record field to the same file address as the
current block and record fields.

27 Random block read. On entry, DS:DX points to an opened FCB, and
CX contains a record count that must not be zero. The specified number
of records (in terms of the record-size field) are read from the file
address specified by the random record field into the disk transfer
address. If end-of-file is reached before all records are read, AL returns
either 01 or 03:

E
► A return of 01 indicates end-of-file; the last record is complete.

► A 03 indicates that the last record is a partial record.

If wrap-around occurs above address FFFF hex in the disk transfer
segment, as many records as possible are read, and AL returns 02. If all
records are read successfully, AL returns 00. In any case, CX returns
with the actual number of records read. The random record field and
the current block/record fields are set to address the next record.

28 Random block write. The same as function 27, except for writing and a
write-protect indication. If there is insufficient space on the disk, AL
returns 01 and no records are written. If CX is 0 at entry, no records are
written; instead, the file is set to the length specified by the random
record field (allocation units are released or allocated as appropriate).

E-14 PROGRAMMER’S TOOL KIT, II

n

