
Programmer’s
Tool Kit

Volume II

COPYRIGHT

©1983 by VICTOR.®
©1982 by Microsoft Corporation.

Published by arrangement with Microsoft Corporation, whose software has
been customized for use on various desktop microcomputers produced by
VICTOR. Portions of the text hereof have been modified accordingly.

All rights reserved. This publication contains proprietary information which
is protected by copyright. No part of this publication may be reproduced,
transcribed, stored in a retrieval system, translated into any language or com­
puter language, or transmitted in any form whatsoever without the prior writ­
ten consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
MS-DOS, MACRO-86, MS-LINK, MS-LIB, MS-CREF, and DEBUG are
registered trademarks of Microsoft Corporation.
CP/M-86 is a trademark of Digital Research, Inc.
Intel and ASM86 are trademarks of Intel Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind whatsoever with
respect to the contents hereof and specifically disclaims any implied warran­
ties of merchantability or fitness for any particular purpose. VICTOR shall
not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this
publication or its contents.

VICTOR reserves the right to revise this publication from time to time and to
make changes in the content hereof without obligation to notify any person
of such revision or changes.

First VICTOR printing February, 1983.

ISBN 0-88182-024-5 Printed in U.S.A.

II PROGRAMMER’S TOOL KIT, II

CONTENTS Programmer’s Tool Kit, Volume II

1. Introduction

2. MS-LIB

3. MS-LINK

4. MS-CREF

5. DEBUG

6. MACRO-86

7. SYSELECT

PROGRAMMER’S TOOL KIT, II III

CONTENTS Programmer’s Tool Kit, Volume I

1. FABS/86

2. AUTOSORT/ 86

3. PMATE-86

4. EFONT

5. KEYGEN

6. MODCON

IV PROGRAMMER’S TOOL KIT, II

IMPORTANT SOFTWARE
DISKETTE INFORMATION

For your own protection, do not use this product until you have made a
backup copy of your software diskette(s). The backup procedure is described
in the user’s guide for your computer.

Please read the DISKID file on your new software diskette. DISKID contains
important information including:

► The product name and revision number.

► The part number of the product.

► The date of the DISKID file.

► A list of the files on the diskette, with a description and revision number
for each one.

► Configuration information (when applicable).

► Release notes giving special instructions for using the product.

► Information not contained in the current manual, including updates,
additions, and deletions.

To read the DISKID file onscreen, follow these steps:

1. Load the operating system.

2. Remove your system diskette and insert your new software diskette.

3. Enter —

TYPE DISKID

and press Return.

4. The contents of the DISKID file is displayed on the screen. If the file
is large (more than 24 lines), the screen display will scroll. Type ALT-S
to freeze the screen display; type ALT-S again to continue scrolling.

PROGRAMMER’S TOOLKIT, II V

INTRODUCTION

o

CONTENTS

1. Major Features of Volume II ... 1-1
1.1 MS-LINK Linker Utility .. 1-1
1.2 MS-LIB Library Manager ... 1-1
1.3 MS-CREF Cross-Reference Facility .. 1-1
1.4 MS-DEBUG Debug Utility .. 1-2
1.5 MACRO-86 Macro Assembler .. 1-2
1.6 SYSELECT ... 1-2

2. Using Volume II .. 2-1
2.1 Syntax Notation ... 2-1
2.2 Learning More About Assembly Language

Programming ... 2-3

3. Overview of Program Development 3-1

EXHIBITS
2a: Using the Programmer’s Tool Kit, Volume II,

Software Package ... 2-2
2b: Syntax Notation ... 2-2
3a: Program Development... 3-2

INTRO III

o

CHAPTERS

1. Major Features of Volume II 1

2. Using Volume II 2

3. Overview of Program Development . 3

INTRO V

MAJOR FEATURES OF VOLUME II

MS-LINK LINKER UTILITY 1.1

► MS-LINK is a virtual linker that can link programs that are larger than
available memory.

► MS-LINK produces relocatable executable object code.

► MS-LINK handles user-defined overlays.

► MS-LINK performs multiple library searches, using a dictionary
library search method.

► MS-LINK prompts you for input and output modules and other link ses­
sion parameters.

► MS-LINK can be run with an automatic response file to answer the linker
prompts.

MS-LIB LIBRARY MANAGER 1.2

► MS-LIB can add, delete, and extract modules in your library of program
files.

► MS-LIB prompts you for input and output file and module names.

► MS-LIB can be run with an automatic response file to answer the library
prompts.

► MS-LIB produces a cross reference of symbols in the library modules.

MS-CREF CROSS-REFERENCE FACILITY 1.3

MS-CREF produces a cross-reference listing of all symbolic names in the
source program, giving both the source line number of the definitions and the
source line numbers of all other references to them.

INTRO 1-1

1.4 MS-DEBUG DEBUG UTILITY

DEBUG is a debugging program used to provide a controlled testing
environment for binary and executable object files. Note that text editors
are used to alter source files; DEBUG is the text editor’s counterpart for
binary files. DEBUG eliminates the need to reassemble a program to see if
a problem has been fixed by a minor change. It allows you to alter the con­
tents of a file or the contents of a CPU register, and then to reexecute a
program immediately to check the validity of the changes.

1.5 MACRO-86 MACRO ASSEMBLER

The MACRO-86 Macro Assembler is a very rich and powerful assembler for
8086 based computers. MACRO-86 is more complex than any other
microcomputer assembly.

MACRO-86 supports most of the directives found in Microsoft’s
MACRO-86 Macro Assembler. Macros and conditionals are Intel 8086
standard.

MACRO-86 is upward compatible with Intel’s ASM-86, except Intel
codemacros, macros, and a few $ directives.

Some prefer relaxed typing. If you enter a typeless operand for an instruction
that accepts one type of operand, MACRO-86 assembles the statement cor­
rectly instead of returning an error message.

1.6 SYSELECT

SYSELECT is an operating system builder that allows you to create an
operating system with custom keyboard tables, character sets, default printer
types, serial port specifications, logos, and banners.

1-2 PROGRAMMER’S TOOL KIT, II

USING VOLUME II

The Sections in this volume are designed to be used both as a set and in­
dividually. Each Section is mostly self-contained and refers to the other Sec­
tions only at junctures in the software. The following overview describes the
flow of program development from creating a source file through program
execution. The processes described in this overview are echoed and expand­
ed in overviews in each of the Sections.

SYNTAX NOTATION 2.1

The following notation is used throughout this volume in descriptions of com­
mand and statement syntax:

[] Square brackets indicate that the enclosed entry is optional.

< > Angle brackets indicate user-entered data. When the angle brackets
enclose lowercase text, you must type in an entry defined by the
text; for example, <filenames When the angle brackets enclose
uppercase text, you must press the key named by the text; for ex­
ample, < RETURN >

{ } Braces indicate that you have a choice between two or more entries.
You must choose at least one of the entries enclosed in braces
unless the entries are also enclosed in square brackets.

Ellipses indicate that an entry may be repeated as many times as
needed or desired.

CAPS Uppercase letters indicate portions of statements or commands
that must be entered, exactly as shown.

All other punctuation, such as commas, colons, slash marks, and equal signs,
must be entered exactly as shown. Refer to Exhibit 2b.

INTRO 2-1

Exhibit 2a: Using the Programmer’s Tool Kit,
Volume II, Software Package

Exhibit 2b: Syntax Notation

You have an option;
you may stop here,
or enter more

Enter a value here
to replace the
“dummy” entry and
the angle brackets

CALL (< parameter >
ft_________

Enter CAPS
exactly as
shown

Enter as many more
parameters as you want,
up to end of line

[,< parameter >..])

,t t
Enter punctuation as snown

inside angle
brackets, press
this key

2-2 PROGRAMMER'S TOOL KIT, II

LEARNING MORE ABOUT ASSEMBLY
LANGUAGE PROGRAMMING 2.2

These Sections explain how to use the Programmer's Tool Kit, Volume II, but
they do not teach you how to program in assembly language.

We assume that the user of this volume has had some experience programming
in assembly language. If you do not have any experience, we suggest two
courses:

1. Gain some experience on a less sophisticated assembler.

2. Refer to any or all of the following books for assistance:

Morse, Stephen P. The 8086 Primer. Rochelle Park, NJ: Hayden
Publishing Co., 1980.

Rector, Russell, and George Alexy. The 8086 Book. Berkeley, CA:
Osborne/McGraw-Hill, 1980.

The 8086 Family User's Manual. Santa Clara, CA: Intel Corporation,
1979.

8086/8087/8088 Macro Assembly Language Reference Manual. Santa
Clara, CA: Intel Corporation, 1980.

NOTE: Some of the information in these books is based on preliminary data
and may not reflect the final functional state. Information in these Sections
is based on Microsoft’s development of its 16-bit software for the 8086 and
8088.

INTRO 2-3

3
OVERVIEW OF PROGRAM
DEVELOPMENT

This overview describes generally the steps of program development. Each
step is described fully in the individual product Sections. The numbers in
parentheses match the numbers in Exhibit 3a.

1. Use an MS-DOS editor to create an 8086 assembly language source file.
Give the source file the filename extension .ASM (MACRO-86 recognizes
.ASM as default).

2. Assemble the source file with MACRO-86, which outputs an assembled
object file with the default filename extension .OBJ (2a). Assembled files,
the user’s program files (2b), can be linked together in step 3.

MACRO-86 (optionally) creates two types of listing file:

(2c) A normal listing file which shows assembled code with relative ad­
dresses, source statements, and full symbol table;

(2d) A cross-reference file, a special file with special control characters
that allow MS-CREF (2e) to create a list showing the source line
number of every symbol’s definition and all references to it (2f). When
a cross-reference file is created, the normal listing file (with the .LST
extension) has line number placed into it as references for line numbers
following symbols in the cross-reference listing.

3. Link one or more .OBJ modules together, using MS-LINK, to produce an
executable object file with the default filename extension .EXE (3a).

While developing your program, you may want to create a library file for
MS-LINK to search to resolve external references. Use MS-LIB (3b) to
create user library files (3c) from existing library files (3c) and/or user pro­
gram object files (2b).

4. Run your assembled and linked program, the .EXE file (3a), under
MS-DOS or your operating system.

INTRO 3-1

Exhibit 3a: Program Development

3

3-2 PROGRAMMER’S TOOL KIT, II

MS-LIB

COPYRIGHT

©1983 by VICTOR.®
©1982 by Microsoft Corporation.

Published by arrangement with Microsoft Corporation, whose software has
been customized for use on various desktop microcomputers produced by
VICTOR. Portions of the text hereof have been modified accordingly.

All rights reserved. This publication contains proprietary information which
is protected by copyright. No part of this publication may be reproduced,
transcribed, stored in a retrieval system, translated into any language or
computer language, or transmitted in any form whatsoever without the prior
written consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
MS-LIB, MS-LINK, MACRO-86, MS-CREF and MS-DOS (and its consti­
tuent program names EDLIN and DEBUG) are trademarks of Microsoft
Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind whatsoever with
respect to the contents hereof and specifically disclaims any implied warranties
of merchantability or fitness for any particular purpose. VICTOR shall not
be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this
publication or its contents.

VICTOR reserves the right to revise this publication from time to time and to
make changes in the content hereof without obligation to notify any person
of such revision or changes.

First VICTOR printing February, 1983.

ISBN 0-88182-012-1 Printed in U.S.A.

II PROGRAMMER’S TOOL KIT, II

CONTENTS

1. Introduction .. 1-1
1.1 Features and Benefits of MS-LIB ..1-1
1.2 Overview of MS-LIB Operation .. 1-1

2. Running MS-LIB ...2-1

2.1 Invoking MS-LIB .. 2-1

Methodi: LIB .. 2-1
Method 2: LIB<library><operations>,<listing >...................... 2-2
Method 3: LIB @<filespec> ... 2-4

2.2 Command Prompts ..2-5

Library File...2-5
Operation ...2-6
List File ...2-7

2.3 Command Characters .. 2-7

3. Error Messages .. 3-1

EXHIBITS
2a: Summary of Command Prompts ... 2-2
2b: Summary of Command Characters ...2-2

MS-LIB III

CHAPTERS

1. Introduction 1

2. Running MS-LIB 2

3. Error Messages 3

MS-LIB V

INTRODUCTION

FEATURES AND BENEFITS OF MS-LIB 1.1

MS-LIB creates and modifies the library files used by the MS-LINK Linker
Utility. MS-LIB can add object files to a library, delete modules from a
library, or extract modules from a library and place them into separate object
files.

MS-LIB lets you create general or special libraries for a variety of programs.
With MS-LIB you can create a library for a language compiler, or you can
create a library for one program only (allowing very fast linking and possibly
more efficient execution).

You can modify individual modules within a library by extracting the
modules, making changes, and then adding the modules to the library again.
You can also replace an existing module with a different module or with a new
version of an existing module.

The command scanner in MS-LIB is the same one used in MS-LINK,
MS-Pascal, MS-FORTRAN, and other 16-bit Microsoft products. If you
have used any of these programs, MS-LIB should seem familiar. Command
syntax is straightforward, and MS-LIB prompts you for any command it
needs.

OVERVIEW OF MS-LIB OPERATION 1.2

MS-LIB performs two basic actions: it deletes modules from a library file,
and it changes object files into modules and appends them to a library file.
These two actions provide the underpinnings for five library manager
functions:

► Deleting modules.

MS-LIB 1-1

► Extracting modules and placing them into separate object files.

► Appending object files as modules of a library.

► Replacing modules in the library file with a new module.

► Creating library files.

During each library session, MS-LIB deletes or extracts modules and then ap­
pends new ones. In a single operation, MS-LIB reads each module into
memory, checks it for consistency, and writes it back to the file. If you delete
a module, MS-LIB reads in that module but does not write it back to the file.
When MS-LIB writes back the next module to be retained, it places that
module at the end of the last module written to the file.

When MS-LIB has read through the entire library file, it appends any new
modules to the end of the file. Then, MS-LIB creates an index to the file
(which MS-LINK uses to find modules and symbols in the library file) and
outputs a cross reference listing of the PUBLIC symbols in the library, if you
request such a listing. (Building the library index may take extra time, up to
20 seconds in some cases.)

For example:

LIB PASCAL + HEAP - HEAP;

deletes the library module HEAP from the library file, then adds the file
HEAP.OBJ as the last module in the library. This order of execution keeps
MS-LIB from getting confused when a new version of a module replaces one
already in the library file.

1-2 PROGRAMMER’S TOOL KIT, II

RUNNING MS-LIB

Two types of commands are used in running MS-LIB: a command to invoke
MS-LIB and commands issued as you respond to command prompts. Usual­
ly, commands to MS-LIB are entered at the keyboard; however, answers to
the prompts can be contained in a response file. MS-LIB also uses command
characters, either as a required part of commands or to assist you while enter­
ing them.

INVOKING MS-LIB 2.1

MS-LIB is invoked in three ways. With the first method, you enter commands
as answers to individual prompts. With the second, you enter commands on
the line used to invoke MS-LIB. The third method involves creating a response
file that contains all the necessary commands.

METHODI: LIB

Enter:

LIB

MS-LIB is loaded into memory and returns a series of three text prompts, one
at a time. Your answers to the prompts tell MS-LIB to perform specific tasks.

Exhibits 2a and 2b summarize the command prompts and command
characters used by MS-LIB. They are fully described later in this chapter.

MS-LIB 2-1

Exhibit 2a: Summary of Command Prompts

PROMPT RESPONSES

Library file: List file name of library to be manipulated. Default file extension:
.LIB.

Operation: List command character(s) followed by module name(s) or object file
name(s). Default action: no changes; default object file extension:
.OBJ.

List file: List file name for a cross reference listing file. Default: NUL (no file).

Exhibit 2b: Summary of Command Characters

CHARACTER ____________________ ACTION____________________

+ Append an object file as the last module

- Delete a module from the library
* Extract a module and place it in an object file

Use default responses to remaining prompts

& Extend current physical line; repeat command prompt

AC Abort library session

METHOD 2: LIB<libraryxoperations>,<listing >

Enter:

LIB <libraryxoperation>,< listing >

2-2 PROGRAMMER’S TOOL KIT, II

where:

library is the name of a library file. MS-LIB assumes a file extension of
.LIB.If the file name you give does not exist, MS-LIB prompts you:

Library file does not exist. Create?

Enter Y to create a new library file. Enter N to abort the library session,

operation can be deleting a module, appending an object file as a module,
or extracting a module as an object file from the library file. Use the three
command characters and *) to tell MS-LIB what to do with each
module or object file.

listing is the name of the file that receives the cross reference listing of
PUBLIC symbols in the library modules. The list is compiled after all
module manipulation has taken place.

All the entries following LIB are responses to the command prompts. The
library and operations fields and all operations entries must be separated by
command characters. If a cross reference listing is wanted, the name of the
file must be separated from the last operations entry by a comma (,). If you
want to select the default value for the remaining field(s), enter a semicolon (;).

If you enter a library file name followed by a semicolon, MS-LIB reads
through the library file and performs a consistency check. No changes are
made to the modules in the library file. If you enter a library file name
followed immediately by a comma and a list file name, MS-LIB performs its
consistency check of the library file, then produces the cross reference listing
file.

Examples:

LIB PASCAL - HEAP + HEAP;

deletes the module HEAP from the library file PASCAL.LIB, then appends
the object file HEAP.OBJ as the last module of PASCAL.LIB (the module
will be named HEAP).

MS-LIB 2-3

If you want to do several operations during a library session, use the amper­
sand (&) command character to extend the command line. This lets you enter
additional object file names and module names. Always remember to include
one of the operations command characters before the name of each module
or object file name.

LIB PASCAL

performs a consistency check of library file PASCAL.LIB. No other action
is performed.

LIB PASCAL,PASCROSS.PUB

performs a consistency check of the library file PASCAL. LIB, then outputs
a cross reference listing file named PASCROSS.PUB.

METHOD 3: LIB @<filespec>

Enter:

LIB @<filespec>

where:

filespec is the name of a response file. A response file contains answers to
the MS-LIB prompts.

This method lets you conduct the MS-LIB session without interactive (direct)
user responses to the MS-LIB prompts. Remember to create the response file
before you use this method.

A response file contains text lines, one for each prompt. Responses must ap­
pear in the same order as the command prompts appear. Command characters
are used just as they are when entering responses on the keyboard.

When the library session begins, each prompt is displayed along with the
matching responses from the response file. If the response file does not contain
answers for all the prompts, MS-LIB uses the default responses.

2-4 PROGRAMMER’S TOOL KIT, II

If you enter a library file name followed by a semicolon, MS-LIB reads
through the library file and performs a consistency check. No changes are
made to the modules in the library file.

Example:

PASCAL^
+ CURSOR + HEAP - HEAP*FOIBLES
CROSSLST ◄J

This deletes the module HEAP from the PASCAL.LIB library file, and
extracts the module FOIBLES. Then it creates an object file named
A:FOIBLES.OBJ, and appends object files CURSOR.OBJ and HEAP.OBJ
as the last two modules in the library. Finally, MS-LIB creates a cross
reference file named CROSSLST.

2

COMMAND PROMPTS 2.2

You command MS-LIB by entering responses to three text prompts. These ask
you for the name of the library file, the operation(s) you want to perform, and
the name you want to give to a cross reference listing file. When you enter your
response to one prompt, the next one appears. When the last prompt has been
answered, MS-LIB does its library management functions without further
command. When the library session is over, MS-LIB exits to the operating
system. (You’ll know that this has occurred when the operating system prompt
appears on the screen.) If the library session is unsuccessful, MS-LIB returns
the appropriate error message.

LIBRARY FILE

Enter the name of the library file that you want to manipulate. Unless you
enter a file extension when you give the library file name, MS-LIB assumes
that the file extension is .LIB. Because MS-LIB can manage only one library
file at a time, you can enter only one file name in response to this prompt. Ex­
cept for the semicolon command character, additional responses are ignored.

MS-LIB 2-5

If you enter a library file name followed by a semicolon, MS-LIB does a con­
sistency check and returns to the operating system. Any errors in the file are
reported.

If the file name you enter does not exist, MS-LIB returns the prompt:

Library file does not exist. Create?

You must answer Y or N . If N , or any other character is entered, MS-LIB
terminates and returns to the operating system.

OPERATION

Enter one of the three command characters for manipulating modules (+, -,
and *), followed immediately by the module name or the object file name. (Do
not put a space between the command character and the module name or ob­
ject file name.) If you choose the plus-sign command character, an object file
is appended as the last module in the library file. A minus sign (-) deletes a
module from the library file. Entering an asterisk (*) extracts a module from
the library and places it into a separate object file having the same name as the
module and file extension .OBJ.

Operations on modules and object file names can be entered in any order.
When you have a large number of modules to manipulate, enter an amper­
sand (&) as the last character on the line. MS-LIB repeats the Operation
prompt, allowing you to enter additional module names and object file names.

More information about order of execution and what MS-LIB does with each
module is given in the descriptions of each command character.

2-6 PROGRAMMER’S TOOLKIT, II

LIST FILE

If you want a cross reference list of the PUBLIC symbols in the modules in
the library file after your library session, enter the name of the file where you
want MS-LIB to put the cross reference listing. If you do not enter a file name,
no cross reference listing is generated (a NUL file).

The cross reference listing file contains two lists. The first list is an alphabetical
listing of all PUBLIC symbols where each symbol name is followed by the
name of its module. The second list is an alphabetical list of the modules in
the library. Under each module name is an alphabetical listing of the PUBLIC
symbols in that module.

When you respond to the list file prompt, you can specify (along with the file
name) a drive or device designation and a file extension. If you want the file
to have a file extension, you must specify it when entering the file name.

COMMAND CHARACTERS 2.3

MS-LIB has six command characters: three of these are required in responses
to the Operation prompt; the other three give you additional commands.

+ When followed by an object file name, the plus sign appends the
object file as the last module in the library specified at the library
file prompt. MS-LIB assumes that the file extension is .OBJ. You
can override this assumption by specifying another extension.

MS-LIB strips the drive designation and extension from the ob­
ject file specification, leaving only the file name. If the object file
to be appended as a module to a library is B: CURSOR. OB J, a
response to the Operation prompt of:

+ B:CURSOR.OBJ

strips off the B: and the .OBJ, leaving only CURSOR. This
becomes the name of the module added to the library file.

MS-LIB 2-7

NOTE: The difference between an object file and a module (or
object module) is that the file has a drive designation (even if it
is default drive) and a file extension. Object modules possess
neither of these.

Followed by a module name, a minus sign deletes that module
from the library file. MS-LIB then “closes up” the file space left
empty by the deletion. This cleanup action keeps the library file
from containing a lot of empty space. Remember that new
modules are added at the end of the file, not stuffed into space
vacated by deleted modules.

When followed by a module name, the asterisk makes a copy of
that module and places the copy into a separate object file. (This
process is called “extraction. ”)The module name is used as the
file name. MS-LIB adds the default drive designation and the file
extension .OBJ. For example, if the module to be extracted is
CURSOR and the current default disk drive is A:, a response to
the Operation prompt of:

‘CURSOR

extracts the module named CURSOR from the library file and
copies it into an object file with the file specification of
A:CURSOR.OBJ.

The drive designation and file extension cannot be overridden.
However, you can rename the file and give it a new file extension,
or you can copy the file to a new disk drive, giving a new file
name and/or file extension.

A single semicolon followed immediately by a Return selects
default responses to the remaining prompts. This feature saves
time and eliminates the need to answer additional prompts.

NOTE: Once you enter a semicolon, you can’t respond to any
of the remaining prompts in that library session. Do not use the
semicolon if you only want to skip some of the prompts. In that
case, use the carriage return instead.

2-8 PROGRAMMER’S TOOL KIT, II

Example:

Library file: FUN
Operation: + CURSOR; ◄-*

The remaining prompts do not appear, and MS-LIB uses the
default value (no cross reference file).

& MS-LIB can perform many functions during a single library
session. The number of modules you can append is limited only
by disk space. The number of modules you can replace or extract
is also limited only by disk space. The number of modules you
can delete is limited only by the number of modules in the library
file. However, the line length for a response to any prompt is
limited to the line length of your system. To enter a large number
of responses to the Operation prompt, place an ampersand at the
end of a line. MS-LIB displays the Operation prompt again, then
you can enter more responses. You can use the ampersand as
many times as you like.

For example:

Library file: FUN
Operation: + CURSOR - HEAP + HEAP * FOIBLES&
Operation: *INIT + ASSUME + RIDE;

MS-LIB deletes the module HEAP, extracts the modules
FOIBLES and INIT (creating two files, A: FOIBLES.OBJ
and A: INIT. OB J), then appends the object files CURSOR,
HEAP, ASSUME and RIDE.

AC Alt-C aborts the library session. If you enter an incorrect
response, such as the wrong file name or an incorrectly spelled
module name, press Alt-C to exit MS-LIB. Then, reinvoke MS-
LIB and start over.

MS-LIB 2-9

o

3
ERROR MESSAGES

These error messages are used by MS-LIB:

<symbol >i8 a multiply defined PUBLIC. Proceed?

Two modules define the same PUBLIC symbol. You need to confirm the
removal of the definition of the old symbol. If you answer No, then the
library is left in an undetermined state.

To correct this error condition, remove the PUBLIC declaration from one
of the object modules and recompile or reassemble.

Allocate error on VM.TMP

There is no space left on the disk.

Cannot create extract file

No room in directory for extract file.

Cannot create list file

No room in directory for library file.

Cannot nest response file

Caused by “@filespec” in response (or indirect) file.

Cannot open VM.TMP

No room for VM.TMP in disk directory.

Cannot write library file

No space left on disk.

Close error on extract file

Out of space.

MS-LIB 3-1

Error: An internal error has occurred

Contact Victor Technologies, Inc.

Fatal Error: Cannot open input file

Caused by mistyped object file name.

Fatal Error: Module is not in the library

This error occurs if you try to delete a module that is not in the library.

Input file read error

Bad object module or faulty disk.

Invalid object module/library

Bad object module and/or library.

Library Disk is full

No more room on disk.

Listing file write error

Out of space.

No library file specified

Occurs if you fail to respond to library file prompt.

Read error on VM.TMP

Disk not ready for read.

Symbol table capacity exceeded

Too many PUBLIC symbols.

Too many object modules

There are more than 500 object modules.

3-2 PROGRAMMER’S TOOL KIT, II

Too many PUBLIC symbols

1024 PUBLIC symbols maximum.

Write error on library/extract file

Out of space.

Write error on VM.TMP

Out of space.

3

MS-LIB 3-3

MS-LINK

COPYRIGHT

©1983 by VICTOR.®
©1982 by Microsoft Corporation.

Published by arrangement with Microsoft Corporation, whose software has
been customized for use on various desktop microcomputers produced by
VICTOR. Portions of the text hereof have been modified accordingly.

All rights reserved. This publication contains proprietary information which
is protected by copyright. No part of this publication may be reproduced,
transcribed, stored in a retrieval system, translated into any language or com­
puter language, or transmitted in any form whatsoever without the prior writ­
ten consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
MS-LINK, MACRO-86, MS-LIB, MS-CREF, and MS-DOS (and its consti­
tuent program names EDLIN and DEBUG) are trademarks of Microsoft
Corporation.
Intel and ASM86 are trademarks of Intel Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind whatsoever with
respect to the contents hereof and specifically disclaims any implied warran­
ties of merchantability or fitness for any particular purpose. VICTOR shall
not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this
publication or its contents.

VICTOR reserves the right to revise this publication from time to time and to
make changes in the content hereof without obligation to notify any person
of such revision or changes.

First VICTOR printing February, 1983.

ISBN 0-88182-013-X Printed in U.S.A.

II PROGRAMMER’S TOOLKIT, II

CONTENTS

1. Introduction.. 1-1
1.1 Features and Benefits of MS-LINK... 1-1
1.2 Overview of MS-LINK Operation... 1-1
1.3 Definitions... 1-2

Segment... 1-2
Group... 1-3
Class... 1-3

1.4 How MS-LINK Combines and Arranges Segments.............. 1-3
1.5 Files Used by MS-LINK.. 1-6

Input Files...1-6
Output Files...1-7
VM.TMP File...1-7

2. Running MS-LINK...2-1
2.1 Invoking MS-LINK.. 2-1

Method 1: LINK..2-1
Method 2: LINK <filenames> [/switches2-4
Method 3: LINK @<filespec>... 2-5

2.2 Command Prompts..2-6
Object Modules..2-6
Run File.. 2-6
List File... 2-7
Libraries... 2-7

2.3 Switches... 2-8
/DSALLOCATE.. 2-9
/HIGH... 2-9
/LINENUMBERS..2-9
/MAP...2-10
/PAUSE... 2-10
/STACK: <number>.. 2-10

3. Error Messages.. 3-1

MS-LINK III

EXHIBITS
la: MS-LINK Operation...1-2
2a: LINK Command Prompts.. 2-2
2b: LINK Switches...2-2

IV PROGRAMMER’S TOOL KIT, II

CHAPTERS

1. Introduction

2. Running MS-LINK

3. Error Messages

MS-LINK V

o

INTRODUCTION

FEATURES AND BENEFITS OF MS-LINK 1.1

MS-LINK is a relocatable linker designed to link separately produced modules
of 8086 object code. The object modules must be 8086 files only. MS-LINK
can link files totalling 384K bytes.

MS-LINK is user-friendly. When a command needs to be issued (or when
there is a choice of several commands), MS-LINK prompts you for that
command. Your answers to the prompts are the commands. The MS-LINK
output file (run file) is not bound to specific memory addresses and can be
loaded and executed by your computer’s operating system at any convenient
address.

MS-LINK uses a dictionary-indexed library search method, which
substantially reduces link time for sessions involving library searches.

OVERVIEW OF MS-LINK OPERATION 1.2

MS-LINK combines several object modules into one relocatable load module,
or run file. As it combines modules, MS-LINK resolves external references
between object modules and searches multiple library files for the definition
of any unresolved external references. MS-LINK also produces a list file that
shows the external references resolved and any error messages.

MS-LINK uses available memory as much as possible. When available
memory is exhausted, MS-LINK creates a disk file and becomes a virtual
linker.

MS-LINK 1-1

Exhibit la: MS-LINK Operation

1.3 DEFINITIONS

Three terms appear in some of the error messages listed in Chapter 2. An
understanding of these terms will give you a good idea of how MS-LINK
works.

SEGMENT

A segment is a contiguous area of memory up to 64K bytes in length that can
be located anywhere in memory on a "paragraph" (16-byte) boundary. The
contents of a segment are addressed by a segment register/offset pair.

1-2 PROGRAMMER’S TOOL KIT\ II

GROUP

A group is a collection of segments that fits within 64K bytes of memory. The
segments are named to a group by MS-LINK, by the compiler, or by you. You
assign the group name while in the assembly language program except in high-
level languages (BASIC, FORTRAN, COBOL, Pascal), where naming is
done by the compiler.

The group is used for addressing segments in memory. Each group is
addressed by a single segment register. The segments within the group are
addressed by the segment register and an offset. MS-LINK checks to see that
the object modules of a group meet the 64K-byte constraint.

CLASS

A class is a collection of segments used to control the order and relative
placement of segments in memory. You assign the class name while in the
assembly language program except for high-level languages (BASIC,
FORTRAN, COBOL, Pascal), where naming is done by the compiler.
Segments are named to a class at compile time or assembly time, and are
loaded into memory contiguously. Within a class, segments are ordered as
MS-LINK encounters them in the object files. One class precedes another in
memory only if a segment in the first class precedes all segments in the second
class in the input to MS-LINK.

Classes can be loaded across 64K-byte boundaries and are divided into groups
for addressing.

HOW MS-LINK COMBINES AND ARRANGES
SEGMENTS 1.4

MS-LINK works with four combine types that are declared in the source
module for the assembler or compiler. These types are private, public, stack,
and common. (The memory combine type available in MACRO-86 is treated
the same as public. MS-LINK does not automatically place memory combine
type as the highest segments.)

MS-LINK 1-3

MS-LINK combines segments for these combine types as follows.

► Private

A

A'

__ 0
A

A' 0

► Public

► Common

Private segments are loaded separately and remain
separate. They can be contiguous physically but not
logically, even if the segments have the same name.
Each private segment has its own base address.

Public segments of the same name and same class are
loaded contiguously. Offset is from beginning of
first segment loaded through last segment loaded.
There is only one base address for all public segments
of the same name and class. (Stack and memory
combine types are treated the same as public.
However, the stack pointer is set to the first address of
the first stack segment.)

Common segments of the same name and class are
loaded overlapping one another. There is only one
base address for all common segments of the same
name. The length of the common area is the length
of the longest segment.

If segments are placed into the assembler in a group, it provides offset
addressing of items from a single base address for all segments in that group.

A

B
----- FOO
C

DS:DGROUP ---- ► XXXXOH

Any number of -
other segments
can intervene------
between segments
of a group. The
offset of FOO

04

can be greater than
the size of segments
in group combined, but
no larger than 64K.

relative offset

An operand of
DGROUP:FOO
returns the offset of
FOO from the beginning
of the first segment of
DGROUP (segment A here).

1-4 PROGRAMMER’S TOOL KIT, II

Segments are grouped by their class names. MS-LINK loads all the segments
in the first class name encountered, then all the segments of the next class name
encountered, and so on until all classes have been loaded.

If your program contains: They will be loaded as:

A SEGMENT 'FOO ' 'FOO '
B SEGMENT 'BAZ' A
C SEGMENT 'BAZ' E
D SEGMENT ZOO' 'BAZ'
E SEGMENT FOO' B

C
'ZOO'

D

If you are writing assembly language programs, you can control the ordering
of classes in memory by writing a dummy module and listing it as the first
entry after the MS-LINK Object Modules prompt. The dummy module
declares segments into classes in the order you want the classes loaded.

WARNING: Do not use this method with BASIC, COBOL, FORTRAN, or
Pascal programs. Let the compiler and the linker work in the normal way.

Example:

A SEGMENT 'CODE '
A ENDS
B SEGMENT 'CONST '
B ENDS
C SEGMENT 'DATA'
C ENDS
D SEGMENT STACK 'STACK'
D ENDS
E SEGMENT 'MEMORY'
E ENDS

Make sure that you declare all classes to be used in your program in this
module. If you don’t, you lose absolute control over the ordering of classes.

MS-LINK 1-5

If you want the memory combine type to be loaded as the last segments of
your program, use this method. Just add MEMORY between SEGMENT
and 'MEMORY' in the E segment line above. However, these segments are
loaded last only because you imposed this control on them, not because of any
inherent capability of the linker or assembler operations.

1

1.5 FILES USED BY MS-LINK

MS-LINK uses several kinds of files. It works with one or more input files and
produces two output files. MS-LINK can create a virtual memory file, and can
search up to eight library files. For each type of file, you can give a three-part
file specification. The MS-LINK file specification format is:

drv:filename.ext

where:

drv: is the drive designation. Legal drive designations are A: through
O:. The colon is always required.

filename is any legal file name of up to eight characters.

.ext is a one to three character extension that describes the type of file.
The period is always required.

INPUT FILES

If no extension is explicitly set, MS-LINK provides the following default
extension for the input file:

File Default Extension

Object
Library

.OBJ

.LIB

1-6 PROGRAMMER’S TOOL KIT, II

OUTPUT FILES

MS-LINK gives the output files the following default extensions:

File Default Extension
Run .EXE (cannot be overridden)
List .MAP (can be overridden)

VM.TMP FILE

MS-LINK uses available memory for the link session. If the files to be linked
create an output file larger than available memory, MS-LINK creates a
temporary file named VM.TMP. When this happens, the following message
is displayed:

VM.TMP has been created.
Do not change diskette in drive, <drv:>

Do not remove the diskette from the default drive until the link session ends.
If the diskette is removed, the operation of MS-LINK becomes unpredictable,
and this message may appear:

Unexpected end of file on VM.TMP

MS-LINK uses VM.TMP as a virtual memory. The contents of VM.TMP are
subsequently written to the file named in response to the run file: prompt.
VM.TMP is deleted at the end of the linking session.

WARNING: Do not assign the name VM.TMP to any file. If you do this,
MS-LINK erases the contents of your VM.TMP file if it needs to create its
own VM.TMP file. When this happens, the contents of your VM.TMP file
are lost.

MS-LINK 1-7

RUNNING MS-LINK

Two types of commands are used when running MS-LINK: a command to
invoke MS-LINK and commands given in response to command prompts. In
addition, there are six switches that control alternate MS-LINK features.
Usually, you’ll enter all the commands to MS-LINK at the key­
board; however, answers to the command prompts and any switches can be
kept in a response file. Some command characters are provided to help you
enter linker commands.

INVOKING MS-LINK 2.1

You can invoke MS-LINK in three ways. If you use the first method,
commands are entered as responses to individual prompts. With the second
method, you enter commands on the line used to invoke MS-LINK. If you use
the third method, all necessary commands are contained in a response file.

METHOD 1: LINK

Enter:

LINK

MS-LINK is loaded into memory and returns a series of four text prompts that
appear one at a time. Your answers to the prompts tell MS-LINK to perform
specific tasks.

At the end of each line, you can enter one or more switches, each of which
must be preceded by a slash mark. If a switch is not included, MS-LINK will
not perform the function controlled by that switch.

The command prompts and switches are summarized here and described in
more detail later in this chapter.

MS-LINK 2-1

Command Prompts

Exhibit 2a: LINK Command Prompts

PROMPT RESPONSES

Object Modules [.OBJ]: List .OBJ files to be linked, separated by blank spaces
or plus signs. If a plus sign is the last character entered,
the prompt reappears. (No default; response required)

Run File [Object-file.EXE]: List file name for executable object code. (Default:
first-Obj ect-filename .EXE)

List File [Run-file.MAP]: List file name for listing. (Default: RUN filename)

Libraries []: List file names to be searched, separated by blank
spaces or plus signs. If a plus sign is the last character
entered, the prompt reappears. (Default: no search)

Exhibit 2b: LINK Switches

SWITCH _______________________ ACTION_______________________

/DS ALLOC ATE Load data at high end of Data Segment. Required for Pascal
and FORTRAN programs.

/HIGH Place run file as high as possible in memory. Do not use with
Pascal or FORTRAN programs.

/LINENUMBERS Include line numbers in list file.

/MAP List all global symbols and definitions.

/PAUSE Halt link session and wait for carriage return.

/STACK:<number> Set fixed stack size in run file.

2-2 PROGRAMMER'S TOOL KIT, II

Command Characters
MS-LINK has three command characters.

+ Separates entries and extends the current physical line after the Object
Modules and Libraries prompts. (A space can be used to separate object
modules.) To enter a large number of responses, use a plus sign/carriage
return sequence at the end of the physical line (to extend the logical line).
If the plus sign/carriage return is the last entry after the Object Modules
or Libraries prompts, MS-LINK will prompt you for more module names.
When either prompt reappears, continue to enter responses.When all the
modules to be linked have been listed, make sure that the response line ends
with a module name and a carriage return.

Example:

Object Modules [.OBJ]: FUN TEXT TABLE CARE +
Object Modules [.OBJ]: FOO + FLIPFLOP + JUNQUE +
Object Modules [.OBJ]: CORSAIR

; A semicolon followed by a carriage return selects the default responses to
all remaining prompts.This saves time and eliminates having to enter a
series of carriage returns.

NOTE: Do not use the semicolon if you want to skip some, but not all, of
the remaining prompts. Once the semicolon has been entered, you can no
longer respond to any of the prompts for that link session.

Example:

Object Modules [.OBJ]: FUN TEXT TABLE CARE
Run Module [FUN.EXE]: ;

The remaining prompts will not appear, and MS-LINK will use the default
values (including FUN.MAP for the list file).

MS-LINK 2-3

AC An Alt-C immediately aborts the link session. If you enter a wrong
response, such as the wrong file name or an incorrectly spelled file name,
press Alt-C to exit MS-LINK. Then, reinvoke MS-LINK and start over.

METHOD 2: LINK <filenames>[/switches]

Enter:

LINK<object-list>,<runfile>,<listfile>J<lib-list>[/switch...]

where:

object-list is a list of object modules, separated by plus signs.

runfile is the name of the file that will receive the executable output.

listfile is the name of the file that will receive the listing.

lib-list is a list of library modules to be searched.

/switch are optional switches, which can be placed after any of the
response entries, before a comma or after <lib-list>. The entries following
LINK are responses to the command prompts. The entry fields for the
different prompts must be separated by commas. To select the default for
a field, simply enter a second comma without spaces in between (see the
example).

Example:

LINK FUN + TEXT + TABLE + CARE/P/M,,FUNLIST,COBLLB.LIB

This loads MS-LINK and then causes object modules FUN.OBJ, TEXT.OBJ,
TABLE.OBJ, and CARE.OBJ to be loaded. MS-LINK then pauses (this is
caused by the /P switch). When you press any key, MS-LINK links the object
modules, produces a global symbol map (the /M switch), and defaults to
FUN.EXE run file. Then, MS-LINK creates a list file named FUNLIST.MAP,
and searches the library file COBLIB.LIB.

2-4 PROGRAMMER’S TOOL KIT, II

METHOD 3: LINK @<filespec>

Enter:

LINK @<filespec>

where:

filespec is the name of a response file.

A response file contains answers to the MS-LINK prompts and may also
contain any of the switches. Method 3 lets you conduct the MS-LINK session
without interactive (direct) user responses to the MS-LINK prompts.

A response file contains text lines, one for each prompt. Responses must
appear in the same order as the command prompts appear. Switches and
command characters in the response file are used in the same way as when you
respond to MS-LINK prompts.

When the MS-LINK session begins, each prompt will be displayed along with
the response you put into the response file. If the response file does not contain
answers for all the prompts, MS-LINK will display any prompt that is without
a response and wait for you to enter a legal response. When you enter a legal
response, the link session continues.

Example:

FUN + TEXT + TABLE + CARE +
/PAUSE/MAP
FUNLIST
COBLIB.LIB

This response file causes MS-LINK to load the four object module . MS-
LINK will pause before creating a public symbol map that allows you to
swap diskettes. (Be sure you understand how to use the /PAUSE switch
before using this feature.) When any key is pressed, the output files will
be named FUNLIST.EXE and FUNLIST.MAP, MS-LINK will search the
library file COBLIB.LIB, and will use the default settings for the flags.

2

MS-LINK 2-5

2.2 COMMAND PROMPTS

You command MS-LINK by entering responses to four text prompts. After
you enter a response to the current prompt, the next prompt appears. When
the last prompt has been answered, MS-LINK starts linking without further
command.

When the link session is finished, MS-LINK exits to the operating system. If
MS-LINK has finished successfully, the operating system prompt is displayed.
If the link session is unsuccessful, MS-LINK returns the appropriate error
message.

MS-LINK prompts the user for the names of object, run, and list files, and
for libraries. In the following sections, the prompts are listed in their order of
appearance. If a prompt has a default value, that value is shown in square
brackets ([]) following the prompt.

OBJECT MODULES [.OBJ]:

Enter a list of the object modules to be linked. MS-LINK assumes by default
that the file extension is .OBJ. If an object module has any other file
extension, that extension must be given here.

Modules must be separated by plus signs (+).

Remember that MS-LINK loads segments into classes in the order that they
are encountered.

RUN FILE [First-Object-filename.EXE]:

After you enter a file name, MS-LINK uses that file to store the run
(executable) file that results from the link session. All run files receive the file
extension .EXE, even if you specify another extension (the user-specified
extension is ignored).

2-6 PROGRAMMER’S TOOL KIT, II

If no response is entered to the run file prompt, MS-LINK will use the first
file name entered in response to the Object Modules prompt as the RUN file
name.

Example:

Run File [FUN.EXE]: B:PAYROLL/P

This tells MS-LINK to create the run file PAYROLL.EXE on drive B:. It also
tells MS-LINK to pause so you can insert a new diskette to receive the run file.

LIST FILE [Run-Filename.MAP]:

The list file contains an entry for each segment in the input (object) modules.
Each entry also shows the offset (addressing) in the run file.

The default response is the run file name with the default file extension .MAP.

LIBRARIES []:

You can respond with up to eight library file names or just a carriage return
(indicating that there will be no library search). Library files must have been
created by a library utility. MS-LINK assumes a default extension of .LIB for
library files.

Library file names must be separated by blank spaces or plus signs (+).

MS-LINK searches the library files in the order listed to resolve external
references. When it finds the module that defines the external symbol,
MS-LINK processes the module as another object module.

MS-LINK 2-7

If MS-LINK cannot find a library file on the drive specified, it returns the
message:

Cannot find library < library-name >
Enter new drive letter:

Simply press the letter for the drive designation (for example, B).
2

MS-LINK does not search within each library file sequentially. Instead, it uses
a method called dictionary-indexed library search. This means that MS-LINK
finds definitions for external references by index access rather than by
searching the entire file for each reference. This indexed search reduces
substantially the link time for sessions involving library searches.

2.3 SWITCHES

Six switches control alternate linker functions. These switches must be entered
at the end of a prompt response, regardless of the method used to invoke
MS-LINK. Switches can be grouped at the end of a single response, or they
can be entered at the ends of several. If more than one switch is placed at the
end of a response, each switch must be preceded by a slash (/).

All switches may be abbreviated; those abbreviations can consist of anything
from a single letter to the complete switch name. The only restriction is that
an abbreviation must be a sequential sub-string; no gaps or transpositions are
allowed. For example, here are some legal and illegal abbreviations of the
/DSALLOCATE switch:

LEGAL ILLEGAL

/D
/DS
/DS A
/DSALLOCA

/DSL
/DAL
/DLC
/DSALLOCT

2-8 PROGRAMMER’S TOOL KIT, II

/DSALLOCATE

/DS ALLOC ATE tells MS-LINK to load all data (DGroup) at the high end
of the Data Segment. At run time, the DS pointer is set to the lowest possible
address, allowing the entire DS segment to be used.

If you use /DSALLOCATE in combination with the default load low (that
is, the /HIGH switch is not used), application programs can allocate
dynamically any available memory below the area specifically allocated within
DGroup. The data will remain addressable by the same DS pointer. This
dynamic allocation is needed for Pascal and FORTRAN programs.

2

NOTE: Your application program can dynamically allocate up to 64K bytes
(or the actual amount available less the amount allocated within DGroup).

/HIGH

/HIGH tells MS-LINK to place the run image as high as possible in memory.
Otherwise, MS-LINK places the run file as low as possible.

IMPORTANT: Do not use /HIGH with Pascal or FORTRAN programs.

/LINENUMBERS

The /LINENUMBERS switch tells MS-LINK to include in the list file the line
numbers and addresses of the source statements in the input modules.
Otherwise, line numbers are not included in the list file.

NOTE: Not all compilers produce object modules that contain line number
information. In these cases, MS-LINK cannot include line numbers.

MS-LINK 2-9

/MAP

/MAP tells MS-LINK to list all public (global) symbols defined in the input
modules. If /MAP is set, MS-LINK lists only errors (which includes
undefined globals).

The symbols are listed alphabetically. For each symbol, MS-LINK gives its
value and its segment:offset location in the run file. The symbols are listed at
the end of the list file.

/PAUSE

Normally, MS-LINK performs a linking session from beginning to end
without stopping. /PAUSE causes MS-LINK to pause in the link session at
the point where the switch is encountered. This allows you to change diskettes
before MS-LINK outputs the run (.EXE) file.

When MS-LINK encounters a /PAUSE switch, it displays the message:

About to generate .EXE file
Change disks <hit any key >

MS-LINK resumes processing when you press any key.

CAUTION: Do not swap the diskette which will receive the list file, or the
diskette used for the VM.TMP file, if created.

/STACK: <number>

< number > represents any positive numeric value (in hexadecimal radix) up to
65536 bytes. If the /STACK switch is not used in a link session, MS-LINK
calculates the necessary stack size automatically. If a value from 1 to 511 is
entered, MS-LINK uses 512.

2-10 PROGRAMMER’S TOOLKIT\ II

All compilers and assemblers should provide information in the object
modules that allows the linker to compute the required stack size. At least one
object (input) module must contain a stack allocation statement. If not,
MS-LINK returns a “WARNING: NO STACK STATEMENT” error
message.

MS-LINK 2-11

ERROR MESSAGES

All errors cause the link session to abort. After the cause is found and
corrected, MS-LINK must be rerun.

ATTEMPT TO ACCESS DATA OUTSIDE OF SEGMENT BOUNDS,
POSSIBLY BAD OBJECT MODULE

Probably a bad object file.

BAD NUMERIC PARAMETER

Numeric value not in digits.

CANNOT OPEN TEMPORARY FILE

MS-LINK is unable to create the file VM.TMP because the disk directory
is full. This can be remedied by inserting a new diskette. Do not change
the diskette that will receive the list.MAP file.

ERROR: DUP RECORD TOO COMPLEX

DUP record in assembly language module is too complex. Simplify DUP
record in assembly language program.

ERROR: FIXUP OFFSET EXCEEDS FIELD WIDTH

An assembly language instruction refers to an address with a short
instruction instead of a long one. Edit the assembly language source and
reassemble.

INPUT FILE READ ERROR

Probably a bad object file.

INVALID OBJECT MODULE

Object module(s) incorrectly formed or incomplete (as when assembly was
stopped in the middle).

MS-LINK 3-1

3

SYMBOL DEFINED MORE THAN ONCE

MS-LINK found two or more modules that define a single symbol name.

PROGRAM SIZE OR NUMBER OF SEGMENTS EXCEEDS
CAPACITY OF LINKER

The total size cannot exceed 384K bytes; the number of segments cannot
exceed 255.

REQUESTED STACK SIZE EXCEEDS 64K

Use the /STACK switch to specify a size smaller than 64K bytes.

SEGMENT SIZE EXCEEDS 64K

64K bytes is the addressing system limit.

SYMBOL TABLE CAPACITY EXCEEDED

Many long names have been entered,exceeding approximately 25K bytes.

TOO MANY EXTERNAL SYMBOLS IN ONE MODULE

The limit is 256 external symbols per module.

TOO MANY GROUPS

The limit is ten groups.

TOO MANY LIBRARIES SPECIFIED

The limit is eight libraries.

TOO MANY PUBLIC SYMBOLS

The limit is 1024.

TOO MANY SEGMENTS OR CLASSES

The limit is 256 (segments and classes taken together).

UNRESOLVED EXTERNALS: <list>

The external symbols listed have no defining module among the modules
or library files specified.

3-2 PROGRAMMER’S TOOL KIT, II

VM READ ERROR

A disk problem; not caused by MS-LINK.

WARNING: NO STACK SEGMENT

Appears after entering the /STACK switch. None of the object modules
specified contains a statement allocating stack space.

WARNING: SEGMENT OF ABSOLUTE OR UNKNOWN TYPE

A bad object module or an attempt to link modules MS-LINK cannot
handle (e.g., an absolute object module).

WRITE ERROR IN TMP FILE

No disk space available for VM.TMP file expansion.

WRITE ERROR ON RUN FILE

Usually means not enough disk space for run file.

MS-LINK 3-3

MS-CREF

COPYRIGHT

©1983 by VICTOR.®
©1982 by Microsoft Corporation.

Published by arrangement with Microsoft Corporation, whose software has
been customized for use on various desktop microcomputers produced by
VICTOR. Portions of the text hereof have been modified accordingly.

All rights reserved. This publication contains proprietary information which
is protected by copyright. No part of this publication may be reproduced,
transcribed, stored in a retrieval system, translated into any language or
computer language, or transmitted in any form whatsoever without the prior
written consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
MS-CREF, MACRO-86, MS-LIB, MS-LINK, and MS-DOS (and its consti­
tuent program names EDLIN and DEBUG) are trademarks of Microsoft
Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind whatsoever with
respect to the contents hereof and specifically disclaims any implied warranties
of merchantability or fitness for any particular purpose. VICTOR shall not
be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this
publication or its contents.

VICTOR reserves the right to revise this publication from time to time and to
make changes in the content hereof without obligation to notify any person
of such revision or changes.

First VICTOR printing February, 1983.

ISBN 0-88182-014-8 Printed in U.S.A.

II PROGRAMMER’S TOOL KIT, II

CONTENTS

1. Introduction ..1-1
1.1 Features and Benefits of MS-CREF ... 1-1
1.2 Overview of MS-CREF Operation ... 1-1

2. Running MS-CREF ...2-1
2.1 Creating a Cross-Reference File..2-1
2.2 Invoking MS-CREF ..2-2

Methodi: CREF ..2-2
Method 2: CREF<crffile>,<listing> ...2-3

2.3 Format of Cross-Reference Listings ...2-4

3. Error Messages .. 3-1

4. Format of MS-CREF Compatible Files 4-1
4.1 MS-CREF File Processing .. 4-1
4.2 Format of Source Files .. 4-1

First Three Bytes .. 4-2
Control Symbols ... 4-2

EXHIBITS
la: Overview of MS-CREF Operation .. 1-2
4a: Records That Begin with a Control Symbol....................................... 4-2
4b: Records That End with a Control Symbol ... 4-3

MS-CREF III

CHAPTERS

1. Introduction 1

2. Running MS-CREF 2

3. Error Messages

44. Format of MS-CREF Compatible Files

MS-CREF V

INTRODUCTION

FEATURES AND BENEFITS OF MS-CREF 1.1

The MS-CREF Cross Reference Facility helps you debug assembly language
programs. MS-CREF produces an alphabetical listing of all the symbols in a
special file produced by your assembler. With this listing, you can quickly
locate the line number of each occurrence of any symbol in your source
program.

The MS-CREF produced listing is meant to be used with the symbol table pro­
duced by your assembler. The symbol table lists the value of each symbol and
its type and length. This information is needed to correct wrong symbol defini­
tions or uses.

OVERVIEW OF MS-CREF OPERATION 1.2

MS-CREF produces a file that lists each symbol used in your program along
with the line numbers where it appears, and the line number where it is de­
fined. To create this listing, you must first use the assembler to make a cross­
reference file. Then, MS-CREF takes this cross-reference file and turns it into
an alphabetical listing of the symbols in the file.

Beside each symbol in the listing, MS-CREF lists (in ascending sequence) the
line numbers in the source program where the symbol occurs. The line number
where the symbol is defined is indicated by a pound sign (#).

MS-CREF 1-1

Exhibit la: Overview of MS-CREF Operation

FOO 20 64 123# 145...
GAD 21 45# 49 120...

1-2 PROGRAMMER’S TOOL KIT, II

RUNNING MS-CREF

Two types of commands are used when running MS-CREF: a command that
invokes MS-CREF and commands issued as you respond to command
prompts. All commands are entered at the keyboard. Command characters
exist to help you enter MS-CREF commands.

CREATING A CROSS-REFERENCE FILE 2.1

Before you can use MS-CREF to create a cross-reference listing, you must first
create a cross-reference file with the MACRO-86 Macroassembler. To create
a cross-reference file, answer the fourth assembler command prompt with the
name of the file you want to receive the cross-reference file.

The fourth assembler prompt is:

Cross-reference [NUL.CRF]:

If you don’t enter a file name, the assembler will not create a cross-reference file.
When you enter the file name, you can also specify the drive or device that you
want to receive the file, and what extension you want the file to have, if other
than .CRF. If you change the extension from .CRF to something else,
remember to specify the file extension when naming the file at the first
MS-CREF prompt.

After you have responded to the fourth assembler prompt, the cross-reference
file will be generated during the assembly session. Then, you can convert the
cross-reference file produced by the assembler into a cross-reference listing
using MS-CREF.

MS-CREF 2-1

2.2 INVOKING MS-CREF

MS-CREF is invoked in two ways: (1) by entering commands as answers to
individual prompts; and (2) by entering all commands on the line used to in­
voke MS-CREF.

METHOD 1: CREF

Enter:

CREF

MS-CREF is loaded into memory and then returns two text prompts, one at
a time. Your answers to these prompts tell MS-CREF to convert a cross­
reference file into a cross-reference listing.

Command Prompts
Cross-reference [.CRF]:
Enter the name of the cross-reference file that you want MS-CREF to convert
into a cross-reference listing. The file name should be the name you gave your
assembler when you commanded it to produce the cross-reference file.

If you don’t specify a file extension when you enter the cross-reference file
name, MS-CREF will look for a file with the name you specified and the ex­
tension .CRF. If your cross-reference file has a different extension, make sure
to specify it when entering the file name.

Chapter 3 describes what MS-CREF expects to see in the cross-reference file.
You will need this information if your cross-reference file was not produced
by a Microsoft assembler.

Listing [crffile.REF]:
Enter the name you want to give to the cross-reference listing file. MS-CREF
will automatically assign the file extension .REF.

2-2 PROGRAMMER’S TOOL KIT, II

If you want your cross-reference listing to have the same file name as the cross­
reference file (except that it will have the extension .REF), press the carriage
return key when the Listing prompt appears. If you want to give it another
name, or a different extension, you must enter a response to the Listing
prompt.

If you want the listing file placed anywhere other than the default drive,
specify that drive or device when responding to the Listing prompt.

Special Command Characters
; A single semicolon (;) followed by a carriage return selects the default response

to the listing prompt. This feature saves time and makes it unnecessary to
answer the Listing prompt.

If you use the semicolon, MS-CREF gives the listing file the same name as the
cross-reference file and the default file extension .REF. For example:

Cross reference [.CRF]: FUN;

MS-CREF will process the cross-reference file named FUN.CRF and output
a listing file named FUN.REF.

AC Alt-C will abort the MS-CREF session. If you make a wrong response or enter
an incorrectly spelled file name, press Alt-C to exit MS-CREF. Then, rein­
voke MS-CREF and start over.

METHOD 2: CREF < erf filo,listing >

Enter:

CREF <crffile>,<listing>

where:

<crffile>is the name of a cross-reference file produced by your assembler.

< listing > is the name of the file you want to receive the cross-reference
listing of symbols in your program.

MS-CREF 2-3

MS-CREF is loaded into memory and starts converting your cross-reference
file into a cross-reference listing. The entries following CREF are responses
to the command prompts. The <crffile> and <listing> fields must be
separated by a comma.

MS-CREF assumes that the file name extension is .CRF; you can override
this by specifying a different extension. To select the default file name and ex­
tension for the listing file, enter a semicolon after you enter the<crffile>
name. If the file named for the <crffile>does not exist, MS-CREF displays
the message:

Fatal I/O Error 110
in. File: <crffile>.CRF

Control will return to your operating system. For example:

CREF FUN; ◄J

causes MS-CREF to process the cross-reference file FUN.CRF and to produce
a listing file named FUN.REF.

To give the listing file a different name, extension, or destination, simply
specify these differences when entering the command line.

CREF FUN,B:WORK.ARG

causes MS-CREF to process the cross-reference file RUN.CRF and to pro­
duce a listing file named WORK. ARG which will be placed on drive B:.

2.3 FORMAT OF CROSS-REFERENCE LISTINGS

The cross-reference listing is an alphabetical list of all the symbols in your pro­
gram. Each page is headed with the title of the program or program module,
followed by the list of symbols. After each symbol name is a list of the line
numbers where the symbol occurs in your program. The number of the line
where the symbol is defined is followed by a pound sign (#).

2-4 PROGRAMMER’S TOOL KIT, II

Here is a sample cross-reference listing.

MS-CREF (vers no.) (date)
comes from

ENTX PASCAL entry < TITLE directive

Symbol Cross-Reference (# is definition) Cref-1

AAAXQQ 37# 38

BEGHQQ 83 84# 154 76
BEGOQQ 33 162
BEGXQQ 113 126# 164 223

CESXQQ 97 99# 129
CLNEQQ 67 68#
CODE 37 182
CONST 104 104 105 110
CRCXQQ 93 94# 210 215
CRDXQQ 95 96# 216
CSXEQQ 65 66# 149
CURHQQ 85 86# 155

DATA 64# 64 100 110
DGROUP 110# 111 111 111 127 153 171 172
DOSOFF 98# 198 199
DOSXQQ 184 204# 219

ENDHQQ 87 88# 158
ENDOQQ 33# 195
ENDUQQ 31# 197
ENDXQQ 184 194#
ENDYQQ 32# 196
ENTGQQ 30# 187
ENTXCM 182# 183 221

FREXQQ 169 170# 178

HDRFQQ 71 72# 151
HDRVQQ 73 74# 152

2

MS-CREF 2-5

HEAP 42 44 110
HEAPBEG 54# 153 172
HEAPLOW 43 171

INIUQQ 31 161

(# is definition) Cref-2Symbol Cross-Reference

MAIN_STARTUP. . . . 109# 111 180
MEMORY 42 48# 48 49 109 110

i PNUXQQ 69 70 150
2

RECEQQ 81 82#
REFEQQ 77 78#
REPEQQ 79 80#
RESEQQ 75 76# 148

ENTX PASCAL entry for initializing programs

SKTOP 59#
SMLSTK 135 137#
STACK 53# 53 60 110
STARTMAIN.............. 163 186# 200
STKBQQ 89 90# 146
STKHQQ 91 92# 160

2-6 PROGRAMMER’S TOOL KIT, II

ERROR MESSAGES

All errors cause MS-CREF to abort. Control will be returned to your
operating system. All error messages have this format:

Fatal I/O Error <error number>
in File: <filename>

where:

<filename> is the name of the file where the error occurs.

<error number> is one of the numbers in the following list of errors.

NUMBER _____________________ ERROR_____________________

101 Hard data error
Unrecoverable disk I/O error

102 Device name error
Illegal device specification (for example, X:FOO.CRF)

103 Internal error
Report to Victor Technologies, Inc.

104 Internal error
Report to Victor Technologies, Inc.

105 Device offline
Disk drive door open, no printer attached, etc.

106 Internal error
Report to Victor Technologies, Inc.

108 Disk full

110 File not found

111 Disk is write-protected

MS-CREF 3-1

ERRORNUMBER

112 Internal error
Report to Victor Technologies, Inc.

113 Internal error
Report to Victor Technologies, Inc.

114 Internal error
Report to Victor Technologies, Inc.

115 Internal error
Report to Victor Technologies, Inc.

3-2 PROGRAMMER’S TOOLKIT, II

FORMAT OF MS-CREF COMPATIBLE
FILES

MS-CREF will process files other than those generated by the MACRO-86
Macroassembler as long as the files conform to the format that MS-CREF
expects.

MS-CREF FILE PROCESSING 4.1

MS-CREF reads a stream of bytes from the cross-reference file (or source file),
sorts them, then emits them as a printable listing file (the .REF file). The sym­
bols are held in memory as a sorted tree. References to the symbols are held
in a linked list.

MS-CREF keeps track of line numbers in the source file using the number of
end-of-line characters it encounters. Every line in the source file must contain
at least one end-of-line character.

MS-CREF attempts to place a heading at the top of every page of the listing.
The name used as a title is the text passed by your assembler from a TITLE
(or similar) directive in your source program. The title must be followed by
a title symbol. If there is more than one title symbol in the source file,
MS-CREF uses the last title read for all page headings. If MS-CREF does not
encounter a title symbol in the file, the title line is left blank.

FORMAT OF SOURCE FILES 4.2

MS-CREF uses the first three bytes of the source file as format specification
data. The rest of the file is processed as a series of records that either begin or
end with a byte that identifies the type of record.

MS-CREF 4-1

FIRST THREE BYTES

The PAGE directive in your assembler takes arguments for page length and
line length. It passes this information to the cross-reference file.

► First byte: The number of lines to be printed on a page. Page length can
range from 1 to 255 lines.

► Second byte: The number of characters per line. Line length can range
from 1 to 132 characters.

► Third byte: The page symbol (07) that tells MS-CREF that the two
preceding bytes define the listing page size.

If MS-CREF does not see these first three bytes in a file, it uses default values
for page size (page length: 58 lines; line length: 80 characters).

4

CONTROL SYMBOLS
Exhibits 4a and 4b show the types of records that MS-CREF recognizes, and
the byte values and placement it uses to recognize record types. Records have
a control symbol (which identifies the record type) as the first or last byte of
the record.

Exhibit 4a: Records That Begin with a Control Symbol

BYTE VALUE CONTROL SYMBOL SUBSEQUENT BYTES

01 Reference symbol Record is a reference to a symbol name
(1 to 80 characters).

02 Define symbol Record is a definition of a symbol
name (1 to 80 characters).

04 End of line (none)

05 End of file 1AH

4-2 PROGRAMMER’S TOOL KIT, II

Exhibit 4b: Records That End with a Control Symbol

BYTE VALUE CONTROL SYMBOL SUBSEQUENT BYTES

06 Title defined Record is title text (1 to 80 characters).

07 Page length/
line length

One byte for page length followed by
one byte for line length.

For all record types, the byte value represents an alternate (Alt) character, as
follows:

01 Alt-A
02 Alt-B
04 Alt-D
05 Alt-E
06 Alt-F
07 Alt-G

The control symbols are defined as follows:

► Reference symbol: Record contains the name of a symbol that is refer­
enced. The name can be from 1 to 80 ASCII characters long. Additional
characters are truncated.

► Define symbol: Record contains the name of a symbol that is defined.
The name can be from 1 to 80 ASCII characters long. Additional
characters are truncated.

► End of line: Record is an end-of-line symbol character only (04H or
Alt-D).

► End of file: Record is the end-of-file character (1 AH).

► Title defined: ASCII characters of the title to be printed at the top of each
listing page. The title can be from 1 to 80 characters long. Additional
characters are truncated.

The last title definition record encountered is used for the title placed at
the top of all pages of the listing. If a title definition record is not en­
countered, the title line on the listing is left blank.

MS-CREF 4-3

► Page length/line length: The first byte of the record contains the number
of lines to be printed per page (range is from 1 to 255 lines). The second
byte contains the number of characters to be printed per page (range is
from 1 to 132 characters). The default page length is 58 lines. The default
line length is 80 characters.

Summary of CRF file record contents:

BYTE CONTENTS LENGTH OF RECORD

|01|symbol_name|
|02|symbol_name|
|04|
|0511 A|
|title_text|06|
|PL|LL|07|

2-81 bytes
3 bytes

2 bytes

2-81 bytes
2-81 bytes
1 byte

4-4 PROGRAMMER’S TOOL KIT\ II

MACRO-86

COPYRIGHT

©1983 by VICTOR.®
©1982 by Microsoft Corporation.

Published by arrangement with Microsoft Corporation whose software has
been customized for use on various desktop microcomputers produced by
VICTOR. Portions of the text hereof have been modified accordingly.

All rights reserved. This publication contains proprietary information which
is protected by copyright. No part of this publication may be reproduced,
transcribed, stored in a retrieval system, translated into any language or com­
puter language, or transmitted in any form whatsoever without the prior writ­
ten consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
MS-DOS is a registered trademark of Microsoft Corporation.
MACRO-86, MS-LINK, MS-CREF and DEBUG are trademarks of
Microsoft Corporation.
Intel and ASM86 are trademarks of Intel Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind whatsoever with
respect to the contents hereof and specifically disclaims any implied warran­
ties of merchantability or fitness for any particular purpose. VICTOR shall
not be liable for errors contained herein or for incidental or consequential per­
formance, or use of this publication or its contents.

VICTOR reserves the right to revise this publication from time to time and to
make changes in the content hereof without obligation to notify any person
of such revision or changes.

First VICTOR printing February, 1983.

ISBN 0-88182-016-4 Printed in U.S.A.

II PROGRAMMER’S TOOL KIT, II

CONTENTS

1. Introduction .. 1-1
1.1 General Description ... 1-1
1.2 Overview of MACRO-86 Operation .. 1-5

2. Creating a MACRO-86 Source File 2-1
2.1 General Facts About Source Files .. 2-1

Naming Your Source File .. 2-1
Legal Characters ... 2-2
Numeric Notation ... 2-2
Source File Contents .. 2-3

2.2 Statement Line Format .. 2-4
Names ... 2-4
Comments ... 2-5

2.3 The Action Field ... 2-6
2.4 The Expression Field .. 2-7

3. Names: Labels, Variables, and Symbols 3-1
3.1 Labels ... 3-1

Segment... 3-3
Offset ... 3-3
Type... 3-3

3.2 Variables ... 3-4
3.3 Symbols... 3-6

4. Expressions: Operands and Operators 4-1
4.1 Memory Organization ... 4-1

Segments and Groups .. 4-1
Segment and Group References .. 4-2
Reference Definition During Assembly... 4-5

MACRO-86 III

4.2 Operands... 4-7
Immediate Operands ... 4-8
Register Operands ... 4-10
Memory Operands ... 4-12

4.3 Operators ..4-15
Attribute Operators ...4-15
Arithmetic Operators ...4-26
Relational Operators ...4-28
Logical Operators ...4-28
Expression Evaluation: Precedence of Operators 4-29

5. Action: Instructions and Directives 5-1
5.1 Instructions... 5-1
5.2 Directives ... 5-2

Memory Directives... 5-3
Conditional Directives... 5-27
Macro Directives ... 5-30
Listing Directives ... 5-43

6. Assembling a MACRO-86 Source File 6-1
6.1 Invoking MACRO-86 ... 6-1

Method 1:MASM ... 6-1
Method 2: < filenames > [/switches] .. 6-3

6.2 MACRO-86 Command Prompts .. 6-4
Command Prompt Descriptions .. 6-5

6.3 MACRO-86 Command Switches .. 6-6
6.4 Formats of Listings and Symbol Tables ... 6-9

Program Listing ... 6-9
Symbol Table Format ... 6-14

7. MACRO-86 Messages .. 7-1
7.1 Operating Messages ... 7-1
7.2 Error Messages... 7-2

Assembler Errors ... 7-2
I/O Handler Errors ... 7-10

7.3 Numerical List of Error Messages .. 7-12

IV PROGRAMMER’S TOOL KIT, II

EXHIBITS
la: MACRO-86 Features ... 1-2
lb: Macro Call Statement ... 1-3
1c: Conditional Assembly Facility .. 1-4
1 d: Overview of MACRO-86 Operation .. 1-6
le: Source File Assembly... 1-7
If: Cross-Reference File ... 1-8
2a: Special Notation and Numeric Values .. 2-3
2b: Operators and Operands Legal in Expression Field............................... 2-8
3a: Define Directive and Variable Type Sizes .. 3-5
4a: Diagram of MACRO-86 Program Statements 4-4
4b: Contents of Operand Types ... 4-8
4c: Format of Data Types Contained in Operands.. 4-9
4d: Register/Memory Field Encoding ... 4-11
4e: Use of Structure Operand in a Stack Operation 4-14
4f: MACRO-86 Attribute Operators ... 4-15
6a: MACRO-86 Command Prompts .. 6-2
6b: MACRO-86 Command Switches .. 6-2
6c: Combining Conditional Listing Directives

with the /X Switch... 6-8

MACRO-86 V

(J

CHAPTERS

1. Introduction

2. Creating a MACRO-86 Source File 2

3. Names: Labels, Variables, and Symbols

4. Expressions: Operands and Operators

5. Action: Instructions and Directives

3

I
4

I
5

6. Assembling a MACRO-86 Source File 6

7. MACRO-86 Messages

MACRO-86 VII

n

INTRODUCTION

GENERAL DESCRIPTION 1.1

The MACRO-86 Macro Assembler is a very powerful assembler for
8086-based computers. MACRO-86 has many features usually found only in
large computer assemblers. Macro assembly, conditional assembly, and a
variety of assembler directives give you all the tools you need to get full use and
power from an 8086 or 8088 microprocessor. Even though MACRO-86 is
more complex than other microcomputer assemblers, it is still easy to use.

MACRO-86 produces relocatable object code. Each instruction and directive
statement is given a relative offset from its segment base. Then, the assembl­
ed code can be linked (using the MS-LINK linker utility) to produce
relocatable, executable object code. Relocatable code can be loaded anywhere
in memory. So, MACRO-86 can execute where it is most efficient, not just in
a fixed range of memory addresses.

Relocatable code lets you create programs in modules that can be assembled,
tested, and perfected individually. This saves recoding time because testing and
assembly is done on smaller pieces of program code. All modules can be error-
free before being linked together into larger modules or into the entire
program.

MACRO-86 1-1

Exhibit la: MACRO-86 Features

The macro facility lets you write “macros” — blocks of code that represent
sets of instructions you use often. So you don’t have to recode these instruc­
tions each time you use them.

Macro definitions are the instructions that a macro contains. Each time you
need the instructions, you place a call to the macro in the source file (instead
of recoding the set of instructions). MACRO-86 expands the macro call by
assembling the block of instructions into the program automatically. The
macro call also passes parameters to the assembler for use during macro ex­
pansion. The use of macros reduces the size of source modules because the
macro definitions are given only once; each subsequent call takes only one line.

Macros can be “nested”; that is, a macro can be called from inside another
macro. Nesting of macros is limited only by memory.

The macro facility includes repeat, indefinite-repeat, and indefinite-repeat­
character directives to help program repeat-block operations. You can also use
the Macro directive to change the action of any instruction or directive; just
use the instruction or directive name as the macro name. When you put an in­
struction or directive statement into your program, MACRO-86 first checks

1-2 PROGRAMMER’S TOOLKIT, II

the symbol table it created to see if the instruction or directive is a macro name.
If it is, MACRO-86 replaces the macro call statement with the body of instruc­
tions in the macro definition. If the name is not defined as a macro,
MACRO-86 tries to match the name with an instruction or directive. The
Macro directive also supports local symbols and conditional exiting from the
block if further expansion is unnecessary.

Exhibit lb: Macro Call Statement

MACRO-86 supports an expanded set of conditional directives. Directives that
evaluate a variety of assembly conditions can test assembly results and branch
when required. Unneeded or unwanted code portions are left unassembled.
MACRO-86 tests for blank or nonblank, for defined or not-defined symbols,
for equivalence, and for first or second assembly pass. MACRO-86 also com­
pares strings for identity or difference. Conditional directives simplify the
evaluation of assembly results, and make it easier to program condition-testing
code (as well as making that code more powerful).

MACRO-86 1-3

The MACRO-86 conditional assembly facility also supports conditionals in­
side conditionals (“nesting”). Conditional assembly blocks can be nested up
to 255 levels.

Exhibit 1c: Conditional Assembly Facility

ELSE

STATEMENT
STATEMENT
STATEMENT
IF <EXP TRUE>

ENDIF
STATEMENT
STATEMENT

in the expression
(shown by <exp
true>) is true,
the IF block is
assembled up to
ELSE, then skips
to ENDIF. If no
ELSE, then simply
assembles the
whole conditional
block.

If the condition in the expression
is false, MACRO-86 skips to ELSE
then resumes assembly at the
next statement.

IF ELSE is not used, MACRO-86
skips to ENDIF and resumes
assembly with next statement.

IF...

IF...

IF...

ENDIF

ELSE

ENDIF

ENDIF

Nesting of conditionals
is allowed; up to 255
levels.

1-4 PROGRAMMER'S TOOL KIT, II

MACRO-86 is upward-compatible with MACRO-80 and with Intel’s ASM86,
except for Intel codemacros and macros.

Some 8086 instructions use only one operand type. If you give a typeless
operand for an instruction that accepts only one type of operand (e.g., in
PUSH [BX], [BX] has no size, but PUSH only takes a word), MACRO-86
does not return an error. When the wrong type-choice is made, MACRO-86
returns an error message and also tells you the ‘ ‘correct’ ’ code. For example,
if you enter:

MOV AL,WORDLBL

you may mean (1) MOV AX,WORDLBL, (2) MOV AL,BYTE PTR
WORDLBL, or (3) MOV AL,<other>. MACRO-86 generates the second in­
struction because it assumes that when you specify a register, you mean that
register and that size; therefore, the other operand is the “wrong size.”
MACRO-86 accordingly modifies the “wrong” operand to fit the register size
(in this case) or the size of whatever is the most likely “correct” operand in an
expression. This modification eliminates a lot of debugging work. MACRO-86
still returns an error message, however, because you may have misstated the
operand the MACRO-86 assumes is “correct.”

OVERVIEW OF MACRO-86 OPERATION 1.2

The first task is creating a source file. Use PMATE or any other 8086 editor
to create the MACRO-86 source file. MACRO-86 assumes a default file
extension of .ASM for the source file. Creating the source file involves
creating instruction and directive statements that follow the rules and con­
straints described in Chapters 2-5 in this manual.

When the source file is ready, run MACRO-86 as described in Chapter 6. Refer
to Chapter 7 for explanations of messages displayed during or immediately
after assembly.

MACRO-86 1-5

Exhibit Id: Overview of MACRO-86 Operation

MACRO-86 is a two-pass assembler. The source file is assembled twice; slightly
different actions occur during each pass. On the first pass, MACRO-86
evaluates the statements and expands macro call statements, calculates the
amount of code it must generate, and builds a symbol table where all symbols,
variables, labels, and macros are assigned values. During the second pass,
MACRO-86 uses the symbol table to fill in the symbol, variable, label, and ex­
pression values. It also expands macro call statements and puts the relocatable
object code into a file with the default file extension .OBJ. The .OBJ file can
be processed with MS-LINK. The .OBJ file can be stored as part of your
library of object programs for later linking with one or more .OBJ modules.
.OBJ modules can also be processed with the MS-LIB library manager.

The source file can also be assembled without creating an .OBJ file. All the
other assembly steps are performed, but the object code is not sent to disk. On­
ly erroneous source statements are displayed on the terminal screen. This
method helps you check the source code for errors. It is faster than creating
an .OBJ file because no file-creating or writing is performed. Modules are test-
assembled quickly and errors are corrected before the object code is put on
disk. Modules that assemble with errors do not clutter the diskette.

1-6 PROGRAMMER’S TOOL KIT, II

Exhibit le: Source File Assembly

PASS 1

STATEMENT

PASS 2

STATEMENT
STATEMENT

MACRO CALL

SOURCE
.ASM

MACRO-86

SYMBOL
TABLE

OBJECT

be generated

SYMBOL — DEF
SYMBOL — DEF
VARIABLE — DEF
VARIABLE — DEF
LABEL — DEF
MACRO NAME

Exact amount
----------------- of code to ------------

SOURCE

MACRO-86

MACRO-86 1-7

On command, MACRO-86 creates a listing file and a cross-reference file. The
listing file contains the initial relative addresses (offsets from segment base)
assigned to each instruction, the machine code translation of each statement
(in hexadecimal), and the statement itself. The listing also contains a symbol
table showing the values of all symbols, labels, and variables, plus the names
of all macros. The listing file has the default file extension .LST.

1
The cross-reference file is a compact representation of variables, labels, and
symbols. It has the default file extension .CRT. When a cross-reference file
is processed by MS-CREF, the file is converted into an expanded symbol
table that lists all variables, labels, and symbols in alphabetical order. The
table is followed by the line number of the source program where each sym­
bol is defined, and by the line numbers where each symbol is used. The final
cross-reference listing has the file extension .REF. (See the MS-CREF Sec­
tion of the Programmer's Tool Kit, Volume II for further explanation and
instructions.)

Exhibit If: Cross-Reference File

1-8 PROGRAMMER’S TOOL KIT, II

CREATING A MACRO-86 SOURCE
FILE

To create a source file for MACRO-86, you first need to use an editor
program (such as PMATE) to create a program file as you would for any
assembly or high-level programming language. The information and descrip­
tions in this and the next three chapters will help you create this file.

This chapter discusses statement format and introduces its components.
Chapter 2 describes names: variables, labels, and symbols. Chapter 3 describes
expressions and their components, operands and operators. Chapter 4
describes the assembler directives.

GENERAL FACTS ABOUT SOURCE FILES 2.1

NAMING YOUR SOURCE FILE

You need to give a name to any source file you create. You can use any name
that is legal for your operating system. MACRO-86 expects, however, a
specific three-character file extension: .ASM. If you want an extension other
than .ASM, you must specify that extension when you begin running the
assembler. If you don’t specify, MACRO-86 assumes that your file has an
.ASM extension. MACRO-86 will either find and assemble the wrong file, or
display an error message telling you that the requested file can’t be found.

MACRO-86 gives the default extension .OBJ to any object file it outputs. Con­
sequently, you should never give this extension to your source file because it
would be destroyed. For similar reasons, you should also avoid the extensions
.EXE, .EST, .CRF, and .REF.

MACRO-86 2-1

LEGAL CHARACTERS

You can use any of these characters in your symbol names:

A-Z 0-9 ? @ _ $

You cannot use a numeral as the first character of a name.

MACRO-86 also uses these special characters as operators or delimiters:

Colon (:) Segment override operator.

Period (.) Operator for field name of a record or structure. A
period can be used in a file name only if it is the first
character.

Square brackets ([]) Placed around register names to indicate the ad­
dress value in register, as opposed to the value of the
data in the register.

Parentheses () Used as operator in DUP expressions and to change
precedence of operator evaluation.

Angle brackets (<>) Operators placed around initialization values for
records or structure or around parameters in IRP
macro blocks. Also used to indicate literals.

Square brackets and angle brackets are also used for syntax notation in
assembler directives.

NUMERIC NOTATION

Any numeric value has a decimal input radix. In listings, the output radix is
hexadecimal for code and data items, and decimal for line numbers. You can
change the output radix to octal radix by using the /O switch when you run
MACRO-86 (see Section 6.3, “Command Switches”). The input radix is
changed by using the .RADIX directive, or by appending special notation to
a numeric value (see Exhibit 2a).

2-2 PROGRAMMER’S TOOLKIT, II

Exhibit 2a: Special Notation and Numeric Values

* When .RADIX directive changes default radix to not-decimal.
** First character must be a numeral in range 0-9.

RADIX RANGE NOTATION EXAMPLE

Binary 0-1 B Oil10100B

Octal 0-7 Q or O 735Q, 6210

Decimal 0-9 None 9384 (default)
or D or 8149D*

Hexadecimal 0-9, A-F H 0FFH, 80H**

SOURCE FILE CONTENTS

A MACRO-86 source file contains instruction statements and directive
statements. Instruction statements consist of 8086 instruction mnemonics and
operands; they tell the 8086 processor to perform specific tasks. Directive
statements tell MACRO-86 to prepare data for use in and by instructions.

Statements are usually put into blocks of code assigned to a specific segment
(code, data, stack, extra). The segments can appear in any order in the source
file. Within the segments, statements can appear in any order that creates a
valid program. Some exceptions to random ordering do exist; these are
discussed under the affected assembler directives.

Each segment must end with an end-segment statement (ENDS); each pro­
cedure must end with an end-procedure statement (END?); and each struc­
ture must end with an end-structure statement (ENDS). The source file must
end with an END statement, telling MACRO-86 where program execution
should start.

MACRO-86 2-3

2.2 STATEMENT LINE FORMAT

Statements in source files follow a strict format (although some variations are
allowed).

Directive statements consist of four fields: name, action, expression, com­
ment. For example:

FOO

Name

DB 0D5EH

Action Expression

; create variable FOO
;containing the value 0D5EH

; Comment

Instruction statements usually consist of three fields: action, expression, com­
ment. For example:

MOV

Action

CX,FOO

Expression

;here's the count number

; Comment

Under some conditions, an instruction statement can also have a name field.

NAMES

When present, a name field is the first entry on the statement line. Names can
begin in any column, although they are usually started in column 1. Names can
be any length you choose. MACRO-86 recognizes, however, only the first 31
characters when your source file is assembled.

When placed in a statement line, you can use names for three purposes: (1) to
represent code, (2) to represent data, and (3) to represent constants.

Any of these formats can make a name represent code:

► NAME: (By itself or followed by a directive or instruction)

► NAME LABEL NEAR (For use inside its own segment only)

► NAME LABEL FAR (For use outside its own segment)

2-4 PROGRAMMER’S TOOLKIT, II

► EXTRN NAME:NEAR (For use outside its own module but inside
its own segment)

► EXTRN NAMErFAR (For use outside its own module and segment)

For a name to represent data:

► NAME LABEL < typo

► NAME Dx <exp>

► EXTRN NAME :< typo

For a name to represent a constant:

► NAME EQU <constant>

► NAME = < constant >

► NAME SEGMENT < attributes >

► NAME GROUP < segment-names>

COMMENTS

Comments explain the processing necessary at any point in a program. These
comments are useful for debugging, for altering code, or for updating code.
You don’t need to include comments for your assembly language program to
operate successfully; however, we strongly recommend that you use them. You
should consider putting comments at the beginning of each segment, pro­
cedure, structure, and module; and after each code line that begins a step in
the processing.

If you use comments in your program, each one must be preceded by a
semicolon. If your comment runs onto a second or third line, each of those
lines must also be preceded by a semicolon. If you want to place a very long
comment in your program, the COMMENT directive frees you from enter­
ing a semicolon on every line (see COMMENT in Section 5.2).

Comments are ignored by MACRO-86. They do not add to the memory re­
quired to assemble or to run your program, except in macro blocks where com­
ments are stored with the code.

MACRO-86 2-5

2.3 THE ACTION FIELD

The action field contains either an 8086 instruction mnemonic or a
MACRO-86 assembler directive. If the name field is blank, the action field is
the first entry in the statement format. In this case, the action field can start
anywhere from column 1 to the last column of the maximum line length.

The entry in the action field tells the processor or assembler to perform a
specific function. The action field can contain instructions or directives.

Instructions command processor actions. You can build the necessary data or
addresses into an instruction or they can be found in the expression part of an
instruction. For example:

t * t

opcode operand data data

opcode operand addr addr

supplied supplied or found

Supplied: Part of the instruction

Found: Assembler inserts data and/or address from the information
provided by expression in instruction statements.

(The opcode is the action part of an instruction.)

Directives give the assembler directions for I/O, memory organization, con­
ditional assembly, listing and cross reference control, and definitions.

2-6 PROGRAMMER’S TOOL KIT, II

THE EXPRESSION FIELD 2.4

The expression field contains operands and/or combinations of operands and
operators. Some instructions use no operands, some use one, and some use
two. One-operand instructions must contain either a source operand or a
destination operand, depending on the instruction. If you want two operand
instructions, the expression field must contain a destination operand and a
source operand (in that order) separated by a comma.

If one or both of the operands is omitted, the instruction carries that informa­
tion in its internal coding.

Source operands can be immediate operands, register operands, memory
operands or attribute operands. Destination operands can be register operands
and memory operands.

For directives, the expression field usually contains a single operand. For
example:

directive operand

A directive operand is a data operand, a code (addressing) operand or a con­
stant, depending on the directive. In many instructions and directives,
operands are connected with operators to form complex operands — longer
operands that look like mathematical expressions. Complex operands allow
you to specify addresses or data derived from several places. For example:

MOV FOO[BX] ,AL

is a destination operand that results from adding the address represented by
FOO and the address found in register BX. The processor moves the value in
register AL to the destination calculated from these two operand elements.

Another example:

MOV AX, FOO + 5[BX]

MACRO-86 2-7

In this case, the source operand results from adding the value of FOO plus 5
to the value found in the BX register.

MACRO-86 supports the following operands and operators in the expression
field. (They are shown in order of precedence.)

Exhibit 2b: Operators and Operands Legal in Expression Field

OPERANDS

Immediate
(incl. symbols)

Register
Memory

label
variables

simple
indexed
structures

Attribute
override

PTR
:(seg)
SHORT
HIGH
LOW
value returning
OFFSET
SEG
THIS
TYPE
.TYPE
LENGTH
SIZE

record specifying
FIELD
MASK
WIDTH

OPERATORS

LENGTH, SIZE, WIDTH, MASK, FIELD
[L(),<>

segment override(:)

PTR, OFFSET, SEG, TYPE, THIS

HIGH, LOW

*, /, MOD, SHL, SHR

+ , —(unary), -(binary)

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR

SHORT,.TYPE

NOTE: Some operators can be used as operands or as part of an operand ex­
pression. Refer to Sections 4.2 and 4.3 for details on operands and operators.

2-8 PROGRAMMER’S TOOL KIT, II

NAMES: LABELS, VARIABLES,
AND SYMBOLS
Names are symbolic representations of values used for several functions by
MACRO-86, whenever naming is allowed or required. The values represented
by names can be addresses, data, or constants.

Names can have any length you choose. MACRO-86 truncates, however,
names longer than 31 characters when assembling your source file.

MACRO-86 supports three types of names in statement lines: labels, variables,
and symbols. This chapter explains how to define and use these three types of
names.

3

LABELS 3.1

Labels are targets for JMP, CALL, and LOOP instructions. MACRO-86
assigns an address to each label as it is defined. When you use a label as an
operand for JMP, CALL, or LOOP, MACRO-86 substitutes the attributes of
that label for the label name, and sends processing to the appropriate place.

Labels are defined in one of four ways:

1. <name>:

A name followed immediately by a colon defines the name as a NEAR
label. <name>: can be placed ahead of any instruction and all directives that
allow a name field.<name>: can also be placed on a line by itself.

Examples:

CLEAR SCREEN: MOV AL,20H
FOO: DB OFH
SUBROUTINES:

MACRO-86 3-1

2. <name> LABEL
<name> LABEL

NEAR
FAR

Use the LABEL directive. Refer to the discussion of LABEL in Section 5.2.

NEAR and FAR are discussed under the following type attribute.

Examples:

FOO LABEL
GOO LABEL

NEAR
FAR

3. <name> PROC NEAR
<name> PROC FAR

Use the PROC directive. Refer to the discussion of PROC in Section 5.2.

NEAR is optional. It is the default if you enter only <name> PROC. NEAR
and FAR are discussed under the following type attribute.

Examples:

REPEAT PROC
CHECKING PROC
FIND _ CHR PROC

NEAR

FAR

4. EXTRN <name>:NEAR
EXTRN <name>:FAR

Use the EXTRN directive. Refer to the discussion of EXTRN in Section
5.2.

NEAR and FAR are discussed under the following type attribute.

Example:

EXTRN FOO:NEAR

A label has four attributes: segment, offset, type, and the CS ASSUME in
effect when the label is defined. Segment is the segment where the label is
defined. Offset is the distance from the beginning of the segment to the
label’s location. Type is either NEAR or FAR.

3-2 PROGRAMMER’S TOOL KIT, II

SEGMENT

Labels are defined inside segments. The segment must be assigned to the CS
segment register to be addressable. (The segment can be assigned to a group
addressable through CS.) The segment (or group) attribute of a symbol is the
base address of the segment (or group) where it is defined.

OFFSET
3

The offset attribute is the number of bytes from the beginning of a segment
to the location where the label is defined. The offset is a 16-bit unsigned
number.

TYPE

Labels are one of two types: NEAR or FAR. NEAR labels are used for
references from within the segment where the label is defined. NEAR labels
can be referenced from more than one module, as long as the references are
from a segment with the same name, attributes, and CS ASSUME. FAR labels
are used for references from segments with a different CS ASSUME, or when
there is more than 64K bytes between the label reference and the label
definition.

NEAR and FAR cause MACRO-86 to generate slightly different code. NEAR
labels supply their offset attribute only (a 2-byte pointer); FAR labels supply
both their segment and offset attributes (a 4-byte pointer).

MACRO-86 3-3

3.2 VARIABLES

Variables are names used in expressions (as operands for instructions and
directives) to represent an address where a specified value can be found.
Variables look much like labels and are similar in some ways; however, the dif­
ferences are important.

Variables are defined in three ways:

1. <namexdefine-dir>
< namexstruc-name> <expression >
< namex rec-name xexpression >

<define-dir> is any of the five Define directives: DB, DW, DD, DQ, DT.

Example:

START MOVE DW ?
<struc-name>is a structure name defined by the STRUC directive.

<rec-name> is a record name defined by the RECORD directive.

Examples:

CORRAL STRUC

HORSE
ENDS
CORRAL <'SADDLE '>

HORSE has the same size as the structure CORRAL.

GARAGE RECORD CAR:8 = 'P '
SMALL GARAGE 10 DUP (<'Z '>)

SMALL has the same size as the record GARAGE.

See the Define, STRUC, and RECORD directives in Section 5.2.

2. <name> LABEL <size>

Use the LABEL directive with one of the size specifiers.

3-4 PROGRAMMER’S TOOL KIT, II

<size> is one of the following size specifiers:

► BYTE specifies 1 byte.

► WORD specifies 2 bytes.

► DWORD specifies 4 bytes.

► QWORD specifies 8 bytes.

► TBYTE specifies 10 bytes.

Example:

CURSOR LABEL WORD
See LABEL in Section 5.2.

3
3. EXTRN <name>:<size>

Use EXTRN with one of the size specifiers described above. See EXTRN
in Section 5.2.

Example:

EXTRN F00:DW0RD

Like labels, variables have three attributes: segment, offset, and type. Segment
and offset are used as they are with labels; type is used differently.

The type attribute is the size of the variable’s location, as specified when the
variable is defined. The size depends on which Define directive was used and
which size specifier was used to define the variable.

Exhibit 3a: Define Directives and Variable Type Sizes

DIRECTIVE TYPE SIZE

DB BYTE 1 byte
DW WORD 2 bytes
DD DWORD 4 bytes
DQ QWORD 8 bytes
DT TBYTE 10 bytes

MACRO-86 3-5

3.3 SYMBOLS

Symbols are names defined without reference to a Define directive or to code.
Like variables, symbols are used in expressions as operands to instructions and
directives.

Symbols are defined three ways:

1. <name> EQU <expression>

Use the EQU directive. See EQU in Section 5.2.

<expression> is another symbol, an instruction mnemonic, a valid expres­
sion, or any other entry (such as text or indexed references).

Examples:

FOO EQU 7H
ZOO EQU FOO

2. <name> = <expression>

Use the Equal Sign directive. See Equal Sign in Section 5.2.

<expression> is any valid expression.

Examples:

GOO - OFH
GOO = $ + 2
GOO = GOO + FOO

3. EXTRN<name>:ABS

Use the EXTRN directive with type ABS. See EXTRN in Section 5.2.

Example:

EXTRN BAZ:ABS
An EQU or - directive must define BAZ to a valid expression.

3-6 PROGRAMMER’S TOOL KIT, II

EXPRESSIONS: OPERANDS
OPERATORS

An expression indicates the values on which an instruction or directive per­
forms its functions. Each expression contains at least one operand (a value),
but expressions can contain two or more. Multiple operands are joined by
operators, resulting in a series of elements that look like a mathematical ex­
pression. This chapter describes the types of operands and operators supported
by MACRO-86.

MEMORY ORGANIZATION 4.1

SEGMENTS AND GROUPS

Most of your assembly language program is written in segments. In the source
file, a segment is a block of code that begins with a SEGMENT directive and
ends with an ENDS directive. In an assembled and linked file, a segment is any
block of code addressed through the same segment register and less than 64K
bytes long.

MACRO-86 does not do any segment operations; these are left to MS-LINK.
MACRO-86 does not check whether your references are entered with the cor­
rect distance type. Values such as offset are also left for MS-LINK to resolve.

As long as you observe the 64K limit, you can divide a segment among two or
more modules. (However, the SEGMENT statements in each module must be
identical.) When the modules are linked, the segments become one. Any
references to labels, variables, and symbols within each module take on the
offset from the beginning of the whole segment, not just from the beginning
of their portion of the segment.

MACRO-86 4-1

You can use the GROUP directive to place several segments into a group. By
doing this, you tell MACRO-86 that you want to refer to all of these segments
as a single entity. (This does not eliminate segment identity, nor does it make
values within a particular segment less accessible. It does make value relative
to a group base.) Grouping lets you refer to data items without worrying about
segment overrides or having to frequently change segment registers.

SEGMENT AND GROUP REFERENCES

4

References within segments or groups are relative to a segment register, and
the final offset of a reference is relocatable until linking is completed. Conse­
quently, the OFFSET operator does not return a constant. Instead, OFFSET
causes MACRO-86 to generate an immediate instruction; that is, to use the ad­
dress of the value instead of the value itself.

There are two kinds of references in a program:

1. Code references (JMP, CALL, LOOPxx): These are relative to the address
in the CS register. You cannot override this assignment.

2. Data references (all other references): These are usually relative to the DS
register, but this assignment can be overridden.

Suppose you give this forward reference in a program statement:

MOV AX,<ref>

MACRO-86 looks first for the segment of the reference, then scans the segment
registers for the SEGMENT of the reference. Lastly, MACRO-86 looks for
the GROUP (if any) of the reference.

If you use the OFFSET operator, however, it always returns the offset relative
to the segment. If you want the offset relative to a GROUP, you must use the
GROUP name and the colon operator, as in this example:

MOV AX,OFFSET<group-name>:<ref>

4-2 PROGRAMMER’S TOOLKIT, II

If you use the ASSUME directive to set a segment register to a group, then you
can also override the restriction on OFFSET by using the register name.

MOV AX,OFFSET DS:<ref>

The result of both of these statements is the same.

Code labels have four attributes:

1. Segment: The segment that the label belongs to.

2. Offset: The number of bytes from the beginning of its segment.

3. Type: NEAR or FAR.

4. CS ASSUME: The CS ASSUME used when the label was coded.
4

When you enter a NEAR JMP or NEAR CALL, you change the offset (IP)
in CS. MACRO-86 compares the CS ASSUME of the target (where the label
is defined) with the current CS ASSUME. If they differ, MACRO-86 returns
an error. (In this case, you must use a FAR JMP or CALL.)

When you enter a FAR JMP or FAR CALL, you change both the offset (IP)
in CS and the paragraph number. The paragraph number changes to the CS
ASSUME of the target address.

Let’s look at a common case: a segment (called CODE) and a group
(DGROUP) that contains three segments (DATA, CONST, and STACK).
The program statements are:

DGROUP GROUP
ASSUME
MOV
MOV

DATA, CONST, STACK
CS:CODE,DS:DGROUP,SS:DGROUP,ES:DGROUP
AX,DGROUP ;CS initialized by entry;
DS,AX ;you initialize DS, do this

;as soon as possible, especially
;before any DS relative references

This arrangement is represented by the following diagram.

MACRO-86 4-3

Exhibit 4a: Diagram of MACRO-86 Program Statements

4

Given this arrangement, a statement like:

MOV AX,<variable>

makes MACRO-86 find the best segment register to reach this variable. (The
“best” register is the one that requires no segment overrides.)

This statement:

MOV AX,OFFSET< variable >

tells the MACRO-86 to return the offset of the variable relative to the begin­
ning of the segment.

If the variable is in the CONST segment and you want to reference its offset
from the beginning of DGROUP, you need a statement like:

MOV AX,OFFSET DGROUP:<variable>

4-4 PROGRAMMER’S TOOL KIT, II

REFERENCE DEFINITION DURING ASSEMBLY

MACRO-86 makes two assembly passes. During the first, it builds a symbol
table and calculates how much code is generated; however, MACRO-86 does
not produce object code. If undefined items are found (including forward
references), assumptions are made about the reference so that the correct
number of bytes are generated. Only those errors involving items that must be
defined on the first pass are displayed. No listing is produced unless you give
a / D switch when you run the assembler. (The /D switch produces a listing for
both passes.)

On the second pass, MACRO-86 uses the values defined during the first pass
to generate the object code. References defined in the second pass are check­
ed against the pass 1 value in the symbol table. The amounts of code generated
during each pass must be the same. If they differ, MACRO-86 returns a phase
error.

Because the first pass must keep track of the relative offset, some references
must be known. If they are not known, the relative offset is incorrect. These
references must be known on the first pass:

► IF/IFE<expression>

If expression >is not known, MACRO-86 cannot assemble the conditional
block (or which part of the block to assemble if ELSE is used). The con­
ditional block will be assembled on the second pass, resulting in a phase
error.

► <expression>DUP(. . .)

Since this operand changes the relative offset, the value of the expression
must be known on the first pass. The value in parentheses need not be
known because it doesn’t affect the number of bytes generated.

► .RADIX<expression>

Since this directive changes the input radix, constants could have a dif­
ferent value. This can cause MACRO-86 to evaluate IF or DUP statements
incorrectly.

MACRO-86 4-5

4

Assembler Operators
MACRO-86 has to solve a major problem during its two passes: how to know
the kind of references it’s working with even though it has not seen their defini­
tions. Unless the statement containing the forward reference tells the size,
distance, or other attribute of the reference, MACRO-86 must take the safe
route and generate the largest possible instruction. (Segment overrides and
FAR are exceptions to this pattern.) But the result is an extra code that does
nothing. Even though MACRO-86 figures this out by the second pass, it can­
not reduce the size of the instructions without causing an error.

For this reason, MACRO-86 includes several operators that help the
assembler. These operators tell MACRO-86 the size of the instruction to
generate when it has to make a choice without sufficient data. You can also
use these operators to change the nature of the instruction arguments and
reduce the size of your program.

For example:

MOV AX,FOO ;F00 — forward, constant

tells MACRO-86 to generate a move from memory instruction on the first
pass. If you use the OFFSET operator, MACRO-86 generates an immediate
operand instruction.

MOV AX,OFFSET FOO ;OFFSET

tells MACRO-86 to use the address FOO. In this case, the assembler knows
that the value is immediate (saving a byte of code).

If you have a CALL statement that calls to a label in a different CS ASSUME,
you can prevent problems by attaching the PTR operator to the label:

CALL FAR PTR <forward-label >

4-6 PROGRAMMER’S TOOL KIT, II

On the other hand, you may have a JMP forward that is less than 127 bytes.
You can save a byte if you use the SHORT operator.

JMP SHORT <forward-label >

Be sure that the target is within 127 bytes; otherwise, MACRO-86 can’t find it.

The PTR operator is also used to save a byte when using forward references.
If you defined FOO as a forward constant, entering the statement:

MOV [BX],FOO

If you want FOO to be a byte immediate, you enter either of these statements
(they are equivalent):

MOV BYTE PTR [BX],FOO

MOV [BX],BYTE PTR FOO

Both statements tell MACRO-86 that FOO is a byte immediate, and a smaller
instruction is generated.

OPERANDS 4.2

There are three types of operands: immediate, register, and memory. There
are no restrictions on combining the various types of operands.

The following list shows all the types and the items that comprise them.

MACRO -86 4-7

Exhibit 4b: Contents of Operand Types

Structure

OPERAND TYPE ITEMS CONTAINED IN OPERAND

Immediate

Register

Memory:

Data items, symbols

Direct Labels, variables, offset (field name)

Indexed Base register, index register, [constant],
displacement (plus/minus)

IMMEDIATE OPERANDS

Immediate operands are constant values that you supply when entering a state­
ment line. The value is entered either as a data item or as a symbol.

If an instruction takes two operands, you can use an immediate operand on­
ly as a source operand (the second operand in an instruction statement). For
example:

MOV AX,9

Data Items
The default input radix is decimal. If you enter a numeric value without ap­
pending numeric notation, MACRO-86 treats it as a decimal value.
Nondecimal values are recognized when special notation is appended; these
values include ASCII characters and numeric values.

4-8 PROGRAMMER’S TOOL KIT, II

Exhibit 4c: Format of Data Types Contained in Operands

DATA FORM FORMAT ___________ EXAMPLE___________

Binary xxxxxxxxB 01110001B

Octal xxxO
xxxQ

7350 (letter O)
412Q

Decimal xxxxx
xxxxxD

65535 (default)
1000D (when .RADIX changes input
radix to nondecimal)

Hexadecimal xxxxH OFFFFH (first digit must be 0-9)

ASCII 'xx'
"XX "

OM ' (more than two with DB only;
"OM" both forms are synonymous)

10 real xx.xxE + xx 25.23E-7 (floating point format)

16 real X. . xR 8F76DEA9R (The first digit must be
0-9. The total number of digits must be
8, 16 or 20; or 9, 17, 21 if first digit is 0.)

Symbols
Symbols are names representing constants. They can be used as immediate
operands. In a statement, you can use a symbol constant in the same way you
would use a numeric constant. If you continue with the sample statement we’ve
used in the last few examples, you can enter:

MOV AX,FOO

if FOO is defined as a symbol constant. For example:

FOO EQU 9

MACRO-86 4-9

REGISTER OPERANDS

The 8086 processor contains a number of registers; each is identified by two-
letter symbols recognized by the parser. Each register has a different task.
There are general registers, pointer registers, counter registers, index registers,
segment registers, and a flag register. You can use any of these (except segment
registers and flags) as an operand in arithmetic and logical operations.

General Registers
The general registers are both 8-bit and 16-bit. All other registers are 16-bit.
The 16-bit general registers consist of a pair of 8-bit registers: one for the low
byte (bits 0-7) and one for the high byte (bits 8-15). Each 8-bit general register,
however, contains bits 0-7 and can be used independently from its mate.

4
Segment Registers
Segment registers contain segment base values that you initialize. You can use
segment register names (CS, DS, SS, ES) with the colon (a segment override
operator) to tell MACRO-86 that an operand is not in the segment specified
in an ASSUME statement.

Flag Register
The flag register is a single 16-bit register that contains nine 1 -bit flags (six
arithmetic flags and three control flags).

4-10 PROGRAMMER’S TOOL KIT, II

Exhibit 4d: Register /Memory Field Encoding

REGISTER MODE (MOD) 11:

R/M W = 0 W = 1

000 AL AX
001 CL CX
010 DL DX
Oil BL BX
100 AH SP
101 CH BP
110 DH SI
111 BH DI

EFFECTIVE ADDRESS CALCULATION:

R/M MOD = 00 MOD = 01 MOD =10

000 [BX] + [SI] [BX] + [SI] + D8 [BX] + [SI] + D16
001 [BX] +. [DI] [BX] + [DI] + D8 [BX] + [DI] + D16
010 [BP] + [SI] [BP] + [SI] + D8 [BP] + [SI] + D16
Oil [BP] + [DI] [BP] + [DI] + D8 [BP] + [DI] + D16
100 [SI] [SI] + D8 [SI] + D16
101 [DI] [DI] + D8 [DI] + D16
110 Direct Address [BP] + D8 [BP] + D16
111 [BX] [BX] + D8 [BX] + D16

NOTE: D8 is a byte value; D16 is a word value.

4

OTHER REGISTERS:

CS = Code segment
DS = Data segment
SS - Stack segment
ES = Extra segment

FLAGS:

ARITHMETIC FLAGS

CF = Carry flag
PF - Parity flag
AF = Auxiliary flag
ZF = Zero flag
SF = Sign flag

CONTROL FLAGS

DF = Direction flag
IF = Interrupt-enable
TF = Trap flag

NOTE: The BX, BP, SI, and DI registers are also used as memory operands. When these registers are
enclosed in square brackets, they are memory operands; otherwise, they are register operands.

MACRO-86 4-11

MEMORY OPERANDS

A memory operand represents an address in memory. When you use a memory
operand, MACRO-86 goes to a particular address to find data or instructions.
A memory operand always consists of an offset from a base address.

Memory operands fit into three categories:

► Direct memory operands that do not use a register.

► Indexed memory operands that use a base or index register.

► Structure operands.

Direct Memory Operands

4 Direct memory operands do not use registers and they consist of a single off­
set value. Direct memory operands are labels, simple variables, and offsets.

You can use memory operands as destination operands or as source operands
in instructions that take two operands. For example:

MOV AX,FOO
MOV FOO,CX

Indexed Memory Operands
Indexed memory operands use base and index registers, constants, displace­
ment values, and variables — often in combination. Each time you combine
indexed operands, you create an address expression.

Indexed memory operands use square brackets to indicate indexing (by a
register or by registers) or subscripting. The square brackets are treated like
plus signs. So, FOO[5] is the same as FOO 4- 5, and 5[FOO] is equivalent to
5 +FOO.

The only difference between square brackets and plus signs is when a register
name appears inside the square brackets. In this case, the operand is indexed.

4-12 PROGRAMMER’S TOOL KIT, II

The types of indexed memory operands are:

► Base registers: [BX], [BP]. BP has SS as its default segment register;
all others have DS as default.

► Index registers: [DI], [SI].

► [constant]: Immediate in square brackets [8], [FOO].

► + Displacement: 8-bit or 16-bit value. Used only with another indexed
operand.

You can combine these elements in any order. The only restriction is that no
two base registers or indexed registers can be combined.

Some examples of indexed memory operand combinations:

[BP + 8]
[SI + BX] [4]
16 [DI + BP + 3]
8[F00] - 8

4

More examples of equivalent forms:

5[BX] [SI]
[BX + 5] [SI]
[BX + SI + 5]
[BX]5[SI]

Structure Operands
Structure operands have this form:

<variable>.<field>.

where:

<variable>is a name that initializes a structure field when you are coding
a statement line. The variable can be an anonymous variable (such as an
indexed memory operand).

<field >is a name defined by a Define directive within a STRUC block. The
field is a typed constant.

MACRO-86 4-13

You must include the period between the elements of a structure operand.

Example:

ZOO STRUC
GIRAFFE DB ?
ZOO ENDS

LONG NECK ZOO <16 >

MOV AL,LONG NECK.GIRAFFE

MOV AL,[BX].GIRAFFE ;anonymous variable

Structure operands are helpful in stack operations. If you set BP to the top of
the stack (BP - SP), then you can access any value in the stack structure by
a field name indexed through BP.

4
Exhibit 4e: Use of Structure Operand in a Stack Operation

SP

With this method, all values on the stack are available at all times, not just the
value at the top. The stack, then, is a handy place for passing parameters to
subroutines.

4-14 PROGRAMMER'S TOOL KIT, II

OPERATORS 4.3

There are four types of operators: attribute, arithmetic, relational, and logical.
Attribute operators are used with operands to override their attributes, return
the value of the attributes, or isolate fields of records. Arithmetic, relational,
and logical operators are used to combine or compare operands.

ATTRIBUTE OPERATORS

An attribute operator used as an operand performs one of three functions. It
can:

► Override an operand’s attributes.

► Return the values of operand attributes.

► Isolate record fields (record-specific operators).

The following list shows all the attribute operators by type.

Exhibit 4f: MACRO-86 Attribute Operators

OVERRIDE VALUE-RETURNING RECORD-SPECIFIC
OPERATORS OPERATORS OPERATORS

PTR SEG Shift count
: (segment override) OFFSET (Field name)
SHORT TYPE WIDTH
THIS .TYPE MASK
HIGH LENGTH
LOW SIZE

MACRO-86 4-15

Override Operators
These operators override the segment, offset, type, or distance.of variables and
labels.

POINTER (PTR):

cattribute > PTR < expression >

where:

< attribute>is the new type or new distance.

<expression> is the operand whose attribute is to be overridden.

PTR overrides the type(BYTE, WORD, DWORD) or the distance (NEAR,
FAR) of an operator. PTR is commonly used to ensure that MACRO-86
understands which attribute an expression should have (especially for the type
attribute). If your program contains forward references, PTR makes clear the
distance or type of the expression and helps you avoid phase errors.

PTR is also used to access data by a type other than that in the variable defini­
tion. This usually occurs in structures. For example, you could use PTR if a
structure is defined as WORD but you want to access an item as a byte. (A
much easier method is to enter a second statement that defines the structure
in bytes, which eliminates the need to use PTR for every reference to the
structure.)

Examples:

CALL WORD PTR [BX] [SI]
MOV BYTE PTR ARRAY

ADD BYTE PTR FOO,9

4-16 PROGRAMMER’S TOOL KIT, II

SEGMENT OVERRIDE (:):

< segment-register>:<address-expression >
<segment-name>:<address-expression>
<group-name>:<address-expression>

where:

< segment-register>is one of the four segment register names: CS, DS,
SS, ES.

< segment-name> is a name defined by the SEGMENT directive.

<group-name>is a name defined by the GROUP directive.

This operator overrides the assumed segment of an address expression (which
can be a label, variable, or other memory operand). It tells MACRO-86 the seg­
ment, group, or segment register to which a reference is relative.

MACRO-86 assumes that labels are addressable through the CS register and
that variables are addressable through the DS register or the ES register (by
default). If you have not used ASSUME to tell MACRO-86 that the operand
is in another segment, you need to use a segment override operator. You also
need to use a segment override operator for forward references, if you want
to use a nondefault relative base (i.e., one other than default segment register).

Examples:

MOV EX,ES:[BX + SI]
MOV CSEG:FAR LABEL,AX

MOV AX,OFFSET DGROUP: VARIABLE

SHORT:

SHORT <label>

SHORT overrides the NEAR distance attribute of labels used as targets for the
HMP instruction. SHORT tells MACRO-86 that the distance between the
JMP statement and the specified label is 127 bytes or less in either direction.

MACRO-86 4-17

SHORT is helpful if you need to save a byte in your program. Normally, the
label carries a 2-byte segment offset pointer. Since SHORT handles a range
of 256 bytes in a single byte, it eliminates the need for the second byte.

Example:

JMP SHORT REPEAT

REPEAT:

THIS:

THIS has two forms:

THIS <distance>

creates an operand with the distance attribute you specify, an offset equal to
the location counter, and the same segment attribute (segment base address)
as the enclosing segment.

THIS<type>

creates an operand with the type attribute you specify, an offset equal to the
location counter, and the same segment attribute (segment base address) as the
enclosing segment.

Each of the following pairs are equivalent:

TAG EQU THIS BYTE
TAG LABEL BYTE

SPOT CHECK = THIS NEAR
SPOT CHECK LABEL NEAR

4-18 PROGRAMMER’S TOOL KIT, II

HIGH, LOW:

HIGH and LOW are byte-isolation operators that provide 8080 assembly
language compatibility.

HIGH <expression>

isolates the high 8 bits of an absolute 16-bit value or address expression.

LOW expression >

isolates the low 8 bits of an absolute 16-bit value or address expression.

Examples:

MOV AH,HIGH WORD-VALUE ;get byte with sign bit

MOV AL, LOW OFFFFH

Value Returning Operators
Since MACRO-86 variables have three attributes, you need value returning
operators to isolate single attributes. These operators are available:

► SEG isolates the segment base address.

► OFFSET isolates the offset value.

► TYPE isolates either type or distance.

► LENGTH and SIZE isolate the memory allocation.

These operators return the attribute values of the operands that follow them
but do not override the attributes. All of them take labels and variables as their
arguments.

MACRO-86 4-19

SEG:

SEG returns the segment value (segment base address) of the segment enclos­
ing the label or variable. It has two forms:

SEG < label >
SEG<variable>

Example:

MOV AX,SEG VARIABLE NAME
MOV AX,<segment-variable>:<varia'ble>

OFFSET:

OFFSET returns the segment offset value (the number of bytes between the
segment base address and the address where a label or variable is defined) of
a variable or label. It has these forms:

OFFSET <label>
OFFSET <variable>

OFFSET is used mainly to tell the assembler that the operand is an immediate.

OFFSET does not make the value a constant. Only MS-LINK can resolve the
final value. OFFSET is not required with uses of the DW or DD directives.
MACRO-86 applies an implicit OFFSET to variables in address expressions
following DW and DD.

Example:

MOV BX,OFFSET FOO

If you use an ASSUME to GROUP, OFFSET does not automatically return
the offset of a variable from the base address of the group. Unless you use the
segment override operator, OFFSET returns the segment offset. For exam­
ple, if you want to get the offset of the variable GOB that is defined in a seg­
ment placed in DGROUP, enter a statement such as:

MOV BX,OFFSET DGROUP:GOB

4-20 PROGRAMMER’S TOOL KIT, II

Be sure that the GROUP directive precedes any reference to a group name, in­
cluding its use with OFFSET.

TYPE:

This operand has two forms:

TYPE<label>

returns a value equal to the number of bytes of the variable type, as follows:

BYTE = 1
WORD = 2
DWORD = 4
QWORD = 8
TBYTE = 10
STRUG - Number of bytes declared by STRUG

TYPE < variable >

returns NEAR (EFFFH) or FAR (FFFEH).

Examples:

MOV AX,(TYPE FOO BAR) PTR [BX + SI]

.TYPE:

.TYPE<variable>

The .TYPE operator returns a byte that describes two characteristics of the
variable: (1) the mode, and (2) whether or not the variable is External. You can
use any expression (string, numeric, logical) as an argument. If the expression
is invalid, .TYPE returns zero.

.TYPE returns a byte configured as follows:

► The lower two bits are the mode. If 0, the mode is absolute; if 1, the mode
is program related; if 2, the mode is data related.

4

MACRO-86 4-21

► The high bit (80H) is the external bit. If the high bit is on, the expression
contains an external. If the high bit is off, the expression is not external.

► The defined bit is 20H. This bit is on if the expression is locally defined, and
it is off if the expression is undefined or external. If neither bit is on, the
expression is invalid.

The .TYPE operator is usually used inside macros where you may need to test
an argument type to make a decision about program flow (i.e., in conditional
assembly).

Example:

FOO MACRO
LOCAL z
Z — .TYPE X
IF z. . .

.TYPE tests the mode and type of X. Depending on the evaluation of X, a
block of code beginning with IF Z. . . is either assembled or omitted.

LENGTH:

LENGTH < variable >

LENGTH returns the number of type units (BYTE, WORD, DWORD,
QWORD, TBYTE) allocated for a variable. LENGTH accepts only one
variable as its argument.

If a variable is defined by a DUP expression, LENGTH returns the number
of type units duplicated (that is, the number that precedes the first DUP in the
expression). If the variable is not defined by a DUP expression, LENGTH
returns 1.

Examples:

FOO DW 100 DUP(l)

MOV CX,LENGTH FOO ;get number of elements
;in array
;LENGTH returns 100

4-22 PROGRAMMER’S TOOL KIT, II

In this example:

BAZ DW 100 DUP(l,10 DUP(?))

LENGTH BAZ is still 100, regardless of the expression tonowing DUP. In this
example, however:

GOO DD (?)

LENGTH GOO returns 1 because only one unit is involved.

SIZE:

SIZE <variable>

SIZE is the product of the value of LENGTH times the value of TYPE. It tells
you the total number of bytes allocated for a variable.

Example:

FOO DW 100 DUP(l)
MOV BX,SIZE FOO ;get total bytes in array

SIZE = LENGTH X TYPE
SIZE = 100 X WORD
SIZE = 100X2
SIZE = 200

Record-Specific Operators
Records are defined by the RECORD directive; each can be up to 16 bits long.
Each record is defined by fields, which range from one to 16 bits long. To
isolate one of the three characteristics of a record field, you need one of these
record-specific operators:

► Shift count: The number of bits from low end of record to low end of field.

► WIDTH: The width of a field or record, expressed in bits.

► MASK: The value of record if field contains its maximum value and all
other fields are zero.

MACRO-86 4-23

In the following discussions of the record-specific operators, the following
symbols are used:

► FOO: A record defined by the RECORD directive:

FOO RECORD FIELD 1:3,FIELD2:6,FIELDS: 7
► BAZ: A variable used to allocate FOO.

► FIELD1, FIELD2, FIELD3: The fields of the record FOO.

SHIFT-COUNT:

< record-fieldname >

This shift count is derived from the record field name to be isolated. The shift
count is the number of bits the field must be right-shifted in order to place the
lowest bit of the field in the lowest bit of the record byte or word.

If a 16-bit record (FOO) contains three fields (FIELD1, FIELD2, and
FIELD3), the record is diagrammed as follows:

FIELD1 FIELD2 FIELD3

FIELD1 has a shift count of 13. FIELD2 has a shift count of 7. FIELD3 has
a shift count of 0.

When you want to isolate the value in one of these fields, you enter its name
as an operand.

Example:

MOV DX,BAZ
MOV CL,FIELDS
SHR DX,CL

FIELD2 is now right-shifted and ready for access.

4-24 PROGRAMMER’S TOOL KIT, II

MASK:

MASK <record-fieldname >

MASK accepts a field name as its only argument. It returns a bit-mask defined
by 1 for those bit positions included by the field, and 0 for bit positions not in­
cluded. The value returned is the maximum value for the record when the field
is masked.

Using the diagram for shift count, MASK is diagrammed as:

i i t i i r ..rm i i r
000111 1110000000

1 I F I 8 I 0
4-MASK

The MASK of FIELD2 equals 1F80H.

Example:

MOV DX,BAZ
AND DX,MASK FIELDS

FIELD2 is now isolated.

WIDTH:

WIDTH <record-fieldname>
WIDTH < record >

When <record-fieldname> is given as the argument, WIDTH returns the
width of a record field expressed in bits. If <record >is given as the argument,
WIDTH returns the width of a record, expressed in bits.

MACRO-86 4-25

Using the diagram for shift count, WIDTH is diagrammed as:

The WIDTH of FIELD1 equals 3. The WIDTH of FIELD2 equals 6. The
WIDTH of FIELD3 equals 7.

Example:

MOV CL,WIDTH FIELDS

The number of bits in FIELD2 is now in the count register.

ARITHMETIC OPERATORS

Eight arithmetic operators provide the common mathematical functions (add,
subtract, divide, multiply, modulo, negation) as well as two shift operators.

The arithmetic operators combine operands to form an expression that results
in a data item or an address. These restrictions must be observed:

► Operands must be constants, except for + and - (binary).

► For plus (+), one operand must be a constant.

► For minus (-), the first (left) operand can be a nonconstant or both
operands can be nonconstants. However, the right operand cannot be a
nonconstant if the left is a constant.

Here is a list of MACRO-86 arithmetic operators:

Multiply*

Divide

4-26 PROGRAMMER'S TOOLKIT, II

MOD Modulo: Divide the left operand by the right operand and return
the value of the remainder (modulo). Both operands must be
absolute.

Example:

MOV AX,100 MOD 17

The value moved into AX will be OFH (decimal 15).

SHR Shift Right. SHR is followed by an integer which specifies the
number of bit positions the value is to be right-shifted.

Example:

MOV AX, 11000008 SHR 5

The value moved into AX is 1 IB (03).

SHL Shift Left. SHL is followed by an integer that specifies the number
of bit positions the value is to be left-shifted.

Example:

MOV AX,0HOB SHL 5

The value moved into AX is 011000000B (OCOH).

- Unary Minus. Indicates that following value is negative, as a
negative integer.

+ Add. One operand must be a constant. The other can be a
nonconstant.

- Subtract the right operand from the left operand. The first (left)
operand can be a nonconstant or both operands can be non­
constants. However, the right operand can be a nonconstant only
if the left is another nonconstant in the same segment.

MACRO-86 4-27

RELATIONAL OPERATORS

Relational operators compare two constant operands. If the relationship be­
tween the two operands matches the operator, FFFFH is returned. A zero is
returned if the relationship between the two operands does not match the
operator.

Relational operators are usually used with conditional directives and condi­
tional instructions to direct program control.

These relational operators are available for use:

► EQ: Equal. Returns true if the operands equal each other.

► NE: Not Equal. Returns true if the operands are not equal to each other.

► LT: Less Than. Returns true if the left operand is less than the right
4

► LE: Less than or Equal. Returns true if the left operand is less than or
equal to the right operand.

► GT: Greater Than. Returns true if the left operand is greater than the
right operand.

► GE: Greater than or Equal. Returns true if the left operand is greater
than or equal to the right operand.

LOGICAL OPERATORS

Logical operators compare the binary values of corresponding bit positions
in each operand. Logical operators are used in two ways:

1. To combine operands in a local relationship. All bits in the operands have
the same value (either 0000 or FFFFH).

2. In bitwise operations. In this case, the bits are different and the logical
operators act like the instructions of the same name.

4-28 PROGRAMMER’S TOOL KIT, II

These are the MACRO-86 logical operators:

► NOT: Logical NOT. Unary operator which returns false if operand is
true, returns true if operand is false.

► AND: Logical AND. Returns true if both operators are true. Returns
false if either operator is false or if both are false. Both operands must be
absolute values.

► OR: Logical OR. Returns true if either operator is true or if both are
true. Returns false if both operators are false. Both operands must be ab­
solute values.

► XOR: Exclusive OR. Returns true if one operator is true and the other
is false. Returns false if both operators are true or if both operators are
false. Both operands must be absolute values.

EXPRESSION EVALUATION: PRECEDENCE OF
OPERATORS

When expressions are evaluated, the higher-precedence operators are
evaluated first. Equal-precedence operators are evaluated from left to right.
Parentheses can be used to alter precedence.

For example:

MOV AX,101B SHL 2*2 - MOV AX,00101000B
MOV AX,101B SHL (2*2) = MOV AX,01010000B

SHL and * have equal precedence. Their functions are performed in the order
in which the operators are encountered (left to right).

MACRO-86 4-29

In the following list, all operators in a single item have the same precedence,
regardless of their order within the item. Spacing and line breaks are used for
visual clarity, not to indicate functional relations.

1. LENGTH, SIZE, WIDTH, MASK
Entries inside: Parentheses ()

angle brackets < >
square brackets []

structure variable operand: <variable>.<field >

2. Segment override operator (:)

3. PTR, OFFSET, SEG, TYPE, THIS

4. HIGH, LOW

5. *, /, MOD, SHL, SHR

6. +, — (both unary and binary)

7. EQ, NE, LT, LE, GT, GE

8. Logical NOT

9. Logical AND

10. Logical OR, XOR

11. SHORT,.TYPE

4-30 PROGRAMMER’S TOOLKIT, II

5
ACTION: INSTRUCTIONS AND
DIRECTIVES

MACRO-86 receives your instructions in the action field. The field contains
either an 8086 instruction mnemonic that tells the processor to perform a
specific function or a MACRO-86 assembler directive.

Action field entries can begin in any column, following a name field entry (if
any). Specific spacing is not required; consistent spacing only helps make your
program more readable.

INSTRUCTIONS
5

5.1

Instructions tell the processor what to do. An instruction can have the data
and/or addresses it needs built into it, or that data and/or addresses can be
found in the expression portion of an instruction. For example:

opcode

opcode

T-
supplied

data dataoperand

Supplied: Part of the instruction.

Found: Assembler inserts data and/or address using information provided by
expression in instruction statements.

(Opcode is the binary code for the action of an instruction.)

MACRO-86 5-1

This manual does not contain detailed descriptions of the 8086 instruction
mnemonics and their characteristics. For this, you can consult the following
texts:

► Morse, Stephen P. The 8086 Primer. Rochelle Park, NJ: Hayden
Publishing Co., 1980.

► Rector, Russell, and George Alexy. The 8086 Book. Berkeley, CA:
Osbourne/McGraw-Hill, 1980.

► The 8086 Family User's Manual. Santa Clara, CA: Intel Corporation,
1980.

Appendix C gives the instruction mnemonics. An alphabetical listing shows
the full name of the instruction. Following the alphabetical list, a second listing
groups the instruction mnemonics by the number and type of arguments they
take.

5.2 DIRECTIVES

Directives give MACRO-86 directions for input and output, memory organiza­
tion, conditional assembly, listing and cross reference control, and definitions.
In this section, the directives are divided into groups by function. The direc­
tives are listed alphabetically within each group.

The groups are:

► Memory directives: These organize memory. This group also contains
directives (such as COMMENT) that do not organize memory.

► Conditional directives: These test conditions of assembly before pro­
ceeding with assembly of a block of statements. This group contains all of
the IF (and related) directives.

► Macro directives: These create blocks of code called macros. This group
also includes special operators and directives used only inside macro
blocks. The repeat directives are considered Macro directives for descrip­
tive purposes.

► Listing directives: These directives control the format and, to some extent,
the content of listings produced by the assembler.

5-2 PROGRAMMER’S TOOL KIT, II

Here is an alphabetical list of the directives supported by MACRO-86.

ASSUME EVEN
EXITM

LABEL
.LALL

.RADIX
RECORD

COMMENT EXTERN .LFCOND REPT
.CREE .LIST

GROUP .SALL
DB MACRO SEGMENT
DD IF .SECOND
DQ IFB NAME STRUC
DT IFDEF SUBTTL
DW IFDIF ORO

IFE %OUT .TFCOND
ELSE IFIDN TITLE
END IFNB PAGE
ENDIF IFNDEF PROC .XALL
ENDM IF1 PUBLIC .XCREF
ENDP IF2 PURGE .XLIST
ENDS IRP
EQU IRPC

MEMORY DIRECTIVES

ASSUME

ASSUME <seg-reg>:<seg-name>[,...]

or

ASSUME NOTHING

ASSUME tells MACRO-86 that symbols in a segment or group can be accessed
with a particular segment register. When MACRO-86 encounters a variable,
it automatically assembles the variable reference under the proper segment
register. You can use up to four arguments with ASSUME.

The valid<seg-reg> entries are CS, DS, ES, and SS.

MACRO-86 5-3

The possible entries for<seg-name>are:

► The name of a segment declared with the SEGMENT directive.

► The name of a group declared with the GROUP directive.

► An expression: either SEG <variable-name> or SEG<label-name> (see
SEG operator in Chapter 4).

► The key word NOTHING. ASSUME NOTHING cancels all register
assignments made by a previous ASSUME statement.

Unless you use ASSUME (or if NOTHING is entered as the ASSUME seg­
ment name), each reference to variables, symbols, labels, and so forth in a par­
ticular segment must be prefixed by a segment register. For example, you’d
have to use DF:FOO instead of FOO.

Example:

ASSUME DS: DATA, SS: DATA, CS: CGROUP, ES: NOTHING

COMMENT

COMMENT<delim><textxdelim>

COMMENT lets you enter comments about your program without entering
a semicolon (;) before each line. If you use COMMENT inside a macro block,
the comment does not appear on your listing unless you also put the .LALL
directive in your source file.

The first non-blank character encountered after COMMENT is the delimiter.
The following text is a comment block that continues until the next occurrence
of the specified delimiter.

If you use an asterisk as a delimiter, the format of the comment block is:

COMMENT *
this is the comment block.
you can enter any amount
of text between
the two delimiters

. * ; return to normal mode

5-4 PROGRAMMER’S TOOL KIT, II

DEFINE

<varname> DB
<varname> DW
<varname> DD
<varname> DQ
<varname> DT

<exp>[,<exp>,...]
<exp>[,<exp>,...]
<exp>[,<exp>,...]
<exp>[,<exp>,...]
<exp>[,<exp>,...]

The Define directives define variables or initialize portions of memory. They
allocate memory in units specified by the second letter of the directive:

► DB allocates one byte (8 bits).

► DW allocates one word (2 bytes).

► DD allocates two words (4 bytes).

► DQ allocates four words (8 bytes).

► DT allocates ten bytes.

If a variable name is entered, the Define directives define the name as a
variable. If <varname>contains a colon, it becomes a NEAR label instead of
a variable. (See the sections on Labels and Variables in Chapter 3.)

The expression used by Define can be one or more of the following:

► A constant expression.

► A question mark (?). This is usually used to reserve space without placing
any particular value into it. (It equals the DS pseudo-operator in
MACRO-80.)

► An address expression (for DW and DD only).

► An ASCII string. Except with DB, it cannot be longer than 2 characters.

► <exp> DUP (?). When this type of expression is the only argument to a
Define, Define produces an uninitialized data block. If used with a ques­
tion mark, this expression results in a smaller object file because only the
segment offset is changed to reserve space.

► <exp> DUP (<exp> [,...]). Like the last item, this expression produces a
data block, but initializes it with the value of the second expression. The
first expression must be a constant greater than zero and cannot be a for­
ward reference.

MACRO-86 5-5

Here are examples of how the various Define directives are used.

Define Byte (DB):

Define Word (DW):

NUM_BASE DB 16
FILLER DB ? initialize with

indeterminate value
ONE_CHAR DB 'M '
MULT-CHAR DB 'MARC MIKE ZIBO PAUL BILL '
MSG DB 'MSGTEST ', 13, 10 ;message, carriage return,

;and linefeed
BUFFER DB 10 DUP (?) indeterminate "block
TABLE DB 100 DUP (5 DUP (4), 7)

; 100 copies of "bytes
;with values 4,4,4,4,4,7

NEW-PAGE DB OOH ;form feed character
ARRAY DB 1,2,3,4,6,6,7

ITEMS
SEGVAL
BSIZE
LOCATION
AREA
CLEARED
SERIES

DW TABLE, TABLE + 10, TABLE 4- 20
DW OFFFOH
DW 4 * 128
DW TOTAL 4 1
DW 100 DUP (?)
DW 50 DUP (0)
DW 2 DUP (2,3 DUP (BSIZE))
;two words with the byte values
;2, BSIZE, BSIZE, BSIZE, 2, BSIZE, BSIZE, BSIZE

DISTANCE DW START_TAB - END.TAB
;difference of two labels is a constant

Define Doubleword (DD):

DBPTR DD TABLE ;16-bit OFFSET, then 16-bit
;SEG base value

SEC_PER_DAY DD 60*60*24 arithmetic is performed
;by MACRO-86

LIST DD 'XY ',2 DUP (?)
HIGH DD 4294967295 ; maximum
FLOAT DD 6.735E2 ;floating point

5-6 PROGRAMMER’S TOOL KIT, II

Define Quadword (DQ):

L0NG_REAL
STRING
HIGH
LOW
SPACER
FILLER

DQ 3.141597 ; decimal makes it real
DQ 'AB ' ;no more than 2 characters
DQ 18446744073709661615 ;maximum
DQ -18446744073709661615 ;minimum
DQ 2 DUP (?) ;uninitialized data
DQ 1 DUP (?,?) initialized with

indeterminate value
HEX_REAL DQ 0FDCBA9A98765432105R

Define Tenbytes (DT):

ACCUMULATOR DT ?
STRING DT 'CD ' ;no more than 2 characters
PACKED-DECIMAL DT 1234567890
FLOATING-POINT DT 3.1415926

END

END [<exp>]

END specifies the end of the program. Any expression present is the start ad­
dress of the program. If several modules are to be linked, only the main module
can use END (exp) to specify the start of the program.

If no expression is used, then no start address is passed to MS-LINK for that
program or module.

Example:

END START ;START is a label somewhere in the program

EQU

<name> EQU < exp >

EQU assigns the value of the expression to the specified name. EQU is often
used like a macro as a primitive text substitution. (If you want to be able to
redefine a name in your program, use the Equal-sign directive instead.)

MACRO-86 5-7

An error is generated if the expression is an external symbol or if the specified
name already has a value. The expression used can be any of the following.

► A symbol. <name> becomes an alias for the symbol in< exp>. Shown as an
alias in the symbol table.

► An instruction name. Shown as an opcode in the symbol table.

► A valid expression. Shown as a Number or L (label) in the symbol table.

► Any other entry, including text, index references, segment prefix, and
operands. Shown as text in the symbol table.

Example:

FOO EQU BAZ ;must be defined in this
;module or an error results

B EQU [BP + 8] ;index reference (Text)
P8 EQU DS:

;segment prefix
;and operand (Text)

CBD EQU AAD ;an instruction name (Opcode)

ALL EQU DEFREC<2,3,4 > ;DEFREC — record, name
;<2,3,4> •= initial values
;for fields of record

EMP EQU 6 ;constant value
FPV EQU 6.3E7 ;floating point (Text)

EQUAL-SIGN

<name> < exp>

<exp> must be a valid expression. (It is shown as a number or L (label) in the
symbol table.) The equal sign lets you set and redefine symbols. The equal sign
is used much like the EQU directive, except that you can redefine the symbol
without generating an error. You can redefine the symbol as many times as you
like, even to a definition that you have already used.

5-8 PROGRAMMER’S TOOL KIT, II

Example:

FOO = 5
FOO EQU 6;

FOO = 7

FOO = FOO + 3

EVEN

;the same as FOO EQU 5
;error, FOO cannot be
Redefined by EQU
;FOO can be redefined
;only by another —
Redefinition may refer
;to a previous definition

EVEN

EVEN causes the program counter to go to an even boundary — that is, to go
to an address that begins a word. If the program counter is not already at an
even boundary, EVEN tells MACRO-86 to add an NOP instruction so that the
counter will reach an even boundary.

Suppose the PC in your program points to 0019 hex (25 decimal). Using EVEN
makes the PC point to 1A hex (26 decimal), and the 0019 hex will contain an
NOP instruction.

An error results if EVEN is used with a byte-aligned segment.

EXTRN

EXTRN <name>:<type>[,...]

where:

<name>is a symbol defined in another module. <name> must have been
declared PUBLIC in the module where it is defined.

<type> can be any one of the following, as long as it is a valid type for
<name>:

► BYTE, WORD, or DWORD

► NEAR or FAR for labels or procedures (defined under a PROC
directive)

► ABS for pure numbers (implicit size is WORD, but includes BYTE).

MACRO-86 5-9

The placement of the EXTRN directive is significant. If the directive is given
with a segment, MACRO-86 assumes that the symbol is located within that
segment. If the segment is not known, you should place the directive outside
all segments and use either:

ASSUME <seg-reg>:SEG<name>

or an explicit segment prefix.

NOTE: If you don’t place the symbol in the segment, MS-LINK takes the off­
set relative to the given segment, if possible. If the correct segment is less than
64K bytes from the reference, MS-LINK may find the definition. If the cor­
rect segment is more than 64K bytes away, MS-LINK can’t make the link be­
tween the reference and the definition. An error message is returned.

Example:

In same segment:

In Module 1:

CSEG SEGMENT
PUBLIC TAGN

In another segment:

In Module 1 :

CSEGA SEGMENT
PUBLIC TAGF

TAGN: TAGF:

CSEG ENDS CSEGA ENDS

In Module 2: In Module 2:

CSEG SEGMENT
EXTRN TAGN:NEAR CSEGB

EXTRN TAGF:FAR
SEGMENT

CSEG
<JMP TAGN JMP TAGF
ENDS CSEGA ENDS

5-10 PROGRAMMER’S TOOLKIT, II

GROUP

<name> GROUP <seg-name>[,...]

This directive gives the segments named a single name so that MS-LINK loads
them together. (The order in which the segments are named does not affect the
order in which they are loaded. This is handled by the CLASS designation of
the SEGMENT directive or by the order in which you name object modules
when responding to the MS-LINK object module prompt.)

All segments in a Group must fit into 64K bytes of memory.

The segments named in the GROUP directive are one of the following:

► A segment name assigned by a SEGMENT directive. The name can
be a forward reference.

► An expression: either SEG<var>or SEG<label >. Both of these resolve
themselves to a segment name.

Once you have defined a group name, you can use it:

► As an immediate value:

MOV AX,DGROUP
MOV OS,AX

DGROUP is the paragraph address of the base of DGROUP.

► In ASSUME statements:

ASSUME DS:DGROUP
You can use the DS register to reach any symbol in any segment of the
group.

► As an operand prefix (for segment override):

MOV BX,OFFSET DGROUP:F00
DW DGROUP :F00
DD DGROUP :F00

DGROUP: makes the offset relative to DGROUP, instead of to the
segment where FOO is defined.

MACRO-86 5-11

In this example, GROUP is used to combine segments.

In Module A:

CGROUP GROUP XXX,YYY
XXX SEGMENT

ASSUME CS:CGROUP

XXX ENDS
YYY SEGMENT

YYY ENDS
END

In Module B:

CGROUP GROUP ZZZ
ZZZ SEGMENT

ASSUME CSUGROUP

ZZZ ENDS
END

INCLUDE

INCLUDE <filename>

INCLUDE takes source code from an alternate assembly language source file
and inserts it into the source file during assembly. The INCLUDE directive
eliminates the need to repeat an often-used sequence of statements in the
source file.

The file name you use can be any valid file specification. Unless you use the
default device, you must include a device or drive designation in the file name.
(The default device designation is the logged drive or device.)

5-12 PROGRAMMER’S TOOLKITII

An INCLUDEd file is opened and assembled into the source file immediately
following the INCLUDE statement. When end-of-file is reached, assembly
resumes with the next statement.

A file inserted with an INCLUDE statement can contain an INCLUDE direc­
tive. However, this can cause problems if you have only a limited amount of
memory left.

The file specified in the INCLUDE statement must exist. If the file is not
found, MACRO-86 returns an error and aborts the assembly.

On a MACRO-86 listing, the letter C is printed between the assembled code
and the source line on each line that is assembled from an INCLUDEd file.
(See Chapter 6 for a description of listing file formats.)

Example:

INCLUDE ENTRY
INCLUDE B:RECORD.TST

LABEL

<name> LABEL <type>

By using LABEL to define a name, you tell MACRO-86 to associate the cur­
rent segment offset with the name you have defined. The item is assigned a
length of 1.

The type varies depending on the use of the defined name.

The name you define can be used for code or for data.

FOR CODE: If you use LABEL for code (for example, as a JMP or CALL
operand), the type can be NEAR or FAR. The name cannot be used in data
manipulation instructions without using a type override.

You can define a NEAR label using the <name>: form. If you are defining a
BYTE or WORD NEAR label, you can place the <name>: in front of a Define
directive. When you use a LABEL for code (NEAR or FAR), the segment
must be addressable through the CS register.

MACRO-86 5-13

Example:

SUBRTF LABEL FAR
SUBRT: (first instruction) ;colon — NEAR label

FOR DATA: The type can be BYTE, WORD, DWORD, STRUC <name> or
RECORD<name>. When STRUC <name> or RECORD <name> is used,
<name> is the size of the structure or record.

Example:

BARRAY LABEL BYTE
ARRAY DW 100 DUP(O)

ADD AL,BARRAY[99] ;ADD 100th byte to AL
ADD AX,ARRAY[98] ;ADD 50th word to AX

5 Since you defined the array in two ways, you can access entries by byte or by
word. (You can also use this method for STRUC.) This lets you put your data
in memory as a table and to access it without the offset of the STRUC.

By defining the array in two ways you can avoid using the PTR operator. This
is especially effective if you access the data in different ways; giving the array
a second name is easier than remembering PTR.

NAME

NAME <module-name>

where:

<module-name> is not a reserved word. The module name can be any
length, but MACRO-86 uses only the first six characters and truncates the
rest.

Every module has a name. MACRO-86 derives the module name from:

► A valid NAME directive statement.

5-14 PROGRAMMER’S TOOL KIT, II

► The first six characters of a TITLE directive statement, if the module does
not contain a NAME statement. These characters must be legal as a name.

NAME passes the module name to MS-LINK, but otherwise does not affect
MACRO-86. MACRO-86 does check if more than one module name has been
declared.

Example:

NAME CURSOR

ORG

ORG <exp>

The location counter is set to the value of the expression. MACRO-86 assigns
generated code starting with that value.

All names in the expression must be known on the first pass. The value of the
expression must evaluate to an absolute or else it must be in the same segment
as the location counter.

5

Example:

ORG 120H

ORG $ + 2

;2-byte absolute value
;maximum — OFFFFH
;skip two bytes

To ORG to a boundary (conditional):

CSEG SEGMENT PAGE
BEGIN = K

IF (K-BEGTN) MOO 236 ;if not already on
;256 byte boundary

ORG (&-BEGIN) + 256 - ((tz-BEGIN) MOD 256)
ENDIF

MACRO-86 5-15

PROC

<procname>
or
<procname>

PROC

PROC

[NEAR]

[FAR]

RET
<procname> ENDP

PROC is a structuring device that makes your programs more understandable.
Using the NEAR/FAR option, PROC tells CALLs which procedure to use to
generate a NEAR or FAR CALL. PROC also tells RETs to generate a NEAR
or FAR RET, eliminating the need for you to assign NEAR or FAR to CALLs
and RETs.

If no operand is specified, the default is NEAR. Use FAR if the procedure
name is an operating system entry point or if the procedure is called from code
that has another ASSUME CS value. Each PROC block should contain a RET
statement. PROCs can be nested.

A NEAR CALL or RETURN changes the IP but not the CS register. A FAR
CALL or RETURN changes both the IP and the CS registers.

If you combine the PUBLIC directive with a PROC statement (both NEAR
and FAR), you can make external CALLs to the procedure or make other ex­
ternal references to the procedure.

Example:

PUBLIC FAR_NAME
FAR_NAME PROC FAR

CALL NEAR.NAME
RET

FAR_NAME ENDP
PUBLIC NEAR.NAME

NEAR_NAME PROC NEAR

RET
NEAR.NAME ENDP

5-16 PROGRAMMER*S TOOL KIT, II

The second subroutine can be called directly from a NEAR segment (that is,
a segment addressable through the same CS and within 64K):

CALL NEAR.NAME

A FAR segment must call to the first subroutine, which then calls the second
(an indirect call):

CALL EAR-NAME

PUBLIC

PUBLIC <symbol>[,...]

where:

<symbol> is a number, a variable or a label (including PROC labels).
< symbol > cannot be a register name or a symbol defined by floating point
numbers (with EQU) or by integers larger than 2 bytes.

Put a PUBLIC directive statement in any module containing a symbol you
want to use in other modules without redefining it. PUBLIC makes the listed
symbol(s) available to other modules when they are linked to the module that
defines the symbol(s). This information is passed to MS-LINK.

Example:

GETINFO ENDP

PUBLIC GETINFO
GETUJFO PROC FAR

PUSH BP ;save caller’s register
MOV BP,SP ;get address parameters

;t>ody of subroutine
POP BP ;restore caller’s reg
RET ;return to caller

MACRO-86 5-17

This is an illegal use of PUBLIC:

PUBLIC PIE_BALD, HIGH-VALUE
PIE-BALD EQU 3.1416
HIGH_VALUE EQU 999999999

.RADIX

.RADIX <exp>

where:

<exp>is in decimal radix, regardless of the current input radix.

This directive lets you change the input radix to any base in the range from 2
to 16. The default input base (or radix) for all constants is decimal.

The two MOVs in this example are identical.

MOV BX,OFFH
.RADIX 16
MOV BX,OFF

The .RADIX directive does not affect the generated code values in the .OBJ,
.LST, or .CRF output files. It does not affect the DD, DQ, or DT directives.
Expressions entered in these directives are always evaluated as decimal numeric
values unless a data-type suffix is appended.

Example:

NUM HAND
HOT HAND
COOL HAND

773
773Q
773H

;773 — decimal
;773 = octal here only
;now 773 — hexadecimal

.RADIX 16
DT
DQ
DD

5-18 PROGRAMMER’S TOOL KIT, II

RECORD

<recordname>RECORD<fieldname>:<width>[=<exp>] [,...]

where:

<fieldname> is the name of the field. When you use <fieldname> in an ex­
pression, its value is the shift count for moving the field to the far right. If
you use MASK with <fieldname>, it returns a bit mask for that field.

<width> is a number from 1 to 16 returned by the WIDTH operator. It
specifies the number of bits in the field defined by <fieldname >. If the total
width of all declared fields is larger than 8 bits, then MACRO-86 uses two
bytes. Otherwise, only one byte is used.

<exp> contains the initial (or default) value for the field. Forward
references are not allowed in a RECORD statement.

The first field you declare goes into the most significant bits of the record. Suc­
cessive fields are placed in the bits to the right. If the fields you declare do not
total exactly 8 bits or exactly 16 bits, the entire record is right-shifted so that
the last bit of the last field is the lowest bit of the record. Unused bits will be
in the high end of the record.

If you enter:

FOO RECORD HIGH:4,MID:3,LOW:3

Initially, the bit map is:

1 1 1 1 I 1 1 1 II 1 1
<HIGH-> <MID> <LOW>

If the bit total is less than 8, MACRO-86 uses a word; if the total is less than
16, MACRO-86 shifts them right and places undeclared bits at the high end of
the word.

MACRO-86 5-19

0000001 1 1 100000 0<4-----MASK

1 1J 1J Ljl 1 1 1 1 1
not

declared
< HIGH —> < MID> <LOW>

WIDTH shift count

<exp> contains the initial value for the field. If the field is at least 7 bits wide,
you can use an ASCII character as the<exp>.

For example:

HIGH: 7= 'Q '

To initialize records, use the same method used for DB. The format is:

[<name>]<recordname><[exp] [,...]>
or
[<name>]<recordname>[<exp>DUP (<[exp] [,...]>)

The name is optional. When given, the name is a label for the first byte or word
of the record storage area. The record name is the name used as a label by the
RECORD directive.

In both forms, the expression contains the values you want placed into the
fields of the record. In the second form, parentheses and angle brackets are
required only around the second expression. If [exp] is left blank, either the
default value applies (the value given in the original record definition) or the
value is determinant (not initialized in the original record definition). If a field
is initialized to a value you want, enter consecutive commas (,,) so that
MACRO-86 uses the default values of those fields.

For example:

FOO <„7 >

The 7 is placed into the LOW field of the record FOO. The fields HIGH and
MID would be left as declared (in this case, uninitialized).

5-20 PROGRAMMER’S TOOL KIT, II

Records are used in expressions (as an operand) in the form:

recordname<[value[,...]]>

The value entry is an optional value placed into a field of the record. Angle
brackets must be entered as shown, even if you don’t give the optional values.
If a value already has the value you want, enter consecutive commas so that
MACRO-86 uses the default values.

Example:

FOO RECORD HIGH:5,MID:3,L0W:3

BAX FOO
JANE FOO

< > ;leave undeterminate here
10 DUP(< 16,8 >) ;HIGH = 16,MID = 8,
;L0W = ?

MOV DX,OFFSET JANE [2]
;get beginning record address

AND
MOV
SHR
MOV

DX,MASK MID
CL,MID
DX,CL
CL,WIDTH MID

SEGMENT

<segname> SEGMENT [<align>] [<combine>] [<'class >]

<segname> ENDS

where:

< segname> is a unique, legal name. The segment name must not be a
reserved word.

<align>is PARA (paragraph-default), BYTE, WORD, or PAGE.

MACRO-86 5-21

< combine > is PUBLIC, COMMON, AT<exp>, STACK, MEMORY, or
no entry (which defaults to not combinable).

c'class '> is a name used to group segments at link time.

All three operands are passed to MS-LINK.

At run time, all instructions that generate code and data are in separate
segments. Your program can be a segment, part of a segment, several
segments, parts of several segments or a combination. If your program has no
SEGMENT statement, an MS-LINK error (invalid object) results at link time.

The alignment lets the linker know the kind of boundary where you want the
segment to begin. The first address of the segment is (for each alignment type):

► PAGE: Address is xxxOOH (low byte is 0).

► PARA: Address is xxxxOH (low nibble is 0).
Bit map: |x|x|x|x|0|0|0|0|

► WORD: Address is xxxeH (e = even number; low bit is 0).
Bitmap: |x|x|x|x|x|x|x|0|

► BYTE: Address is xxxxxH (place anywhere).

The combine type tells MS-LINK how to arrange the segments of a particular
class name. The segments are mapped as follows for each combine type:

► None (not combinable or Private)

____ 0
A

A' 0

Private segments are loaded separately and remain
separate. They can be physically contiguous but
not logically, even if the segments have the same
name. Each private segment has its own base
address.

5-22 PROGRAMMER’S TOOL KIT, II

► Public and Stack

A

A'

0 Public segments of the same name and class name
name are loaded contiguously. Offset is from
beginning of first segment loaded through last
segment loaded. There is one base address for all
public segments of the same name and class name.
(Combine type stack is treated the same as Public;
however, the stack pointer is set to the first address
of the first stack segment. MS-LINK requires at least
one stack segment.)

Common segments of the same name and class
name are loaded overlapping one another. There is
only one base address for all common segments of
the same name. The length of the common area is
the length of the longest segment.

► Memory

The memory combine type causes the segment(s) to be placed as the highest
segments in memory. The first memory-combinable segment encountered
is the highest segment in memory. Subsequent segments are treated the
same as Common segments.

NOTE: This combine type is not supported by MS-LINK. MS-LINK treats
Memory segments the same as Public segments.

► AT <exp>

The segment is placed at the PARAGRAPH address specified in<exp>.
The expression cannot be a forward reference. Also, the AT type cannot
be used to force loading at fixed addresses. Instead, AT lets you define
labels and variables at fixed offsets within fixed areas of storage (such as
ROM or the vector space in low memory). This restriction is imposed by
MS-LINK and MS-DOS.

Class names must be enclosed in quotation marks-. Class names can be any
legal name. See MS-LINK in this volume for more information.

MACRO-86 5-23

Segment definitions can be nested. When this is done, segments are handled
sequentially by appending the second part of the split segment to the first.
When MACRO-86 reaches a nested segment, it treats that segment as a new
segment. MACRO-86 completes it, and then moves on to the remaining por­
tion of the surrounding segment. Overlapping segments are not permitted.

These two segment arrangements are legal:

A SEGMENT A SEGMENT

B SEGMENT A ENDS
B SEGMENT

B ENDS
B ENDS
A SEGMENT

A ENDS

A ENDS

The following arrangement is not allowed:

A SEGMENT

B SEGMENT

A ENDS

B ENDS

;This is illegal

5-24 PROGRAMMER'S TOOL KIT, II

Here is another legal use of SEGMENT:

In Module A:

SEGA SEGMENT PUBLIC 'CODE '
ASSUME CS:SEGA

SEGA ENDS
END

In Module B:

SEGA SEGMENT
ASSUME

SEGA ENDS
END

PUBLIC 'CODE '
CSrSEGA
;MS-LINK adds this segment to same
; named segment in module A (and
;others) if class name is the same.

STRUC

STRUC<structurename>

<structurename> ENDS

The STRUC directive is much like RECORD, except that it has a multiple byte
capability. The allocation and initialization of a STRUC block is the same as
for RECORDS.

The Define directives (DB, DW, DD, DQ, DT) are used to allocate space in­
side the STRUC block. The Define directives and comments are the only state­
ment entries allowed.

Any Define directive label inside a STRUC block becomes a field name of the
structure (which is how structure field names are defined). Initial values given
to field names in the STRUC block are default values for the various fields.

MACRO-86 5-25

These field values are either overridable or not overridable. A field with only
one entry (but not a DUP expression) is overridable. A field with more than
one entry is not overridable.

For example:

FOO
BAZ
ZOO

DB
DB
DB

1,2 ;is not overridable
10 DUP (?) ;is not overridable
5 ;is oveiridable

If the expression following the Define directive contains a string, it can be over­
ridden by another string. If the overriding string is shorter than the initial
string, the assembler pads it with spaces. If the overriding string is longer,
MACRO-86 truncates the extra characters.

Structure fields are usually used as operands in an expression. The format for
a reference to a structure field is:

<variable>. field>

where:

< variable> is an anonymous variable, usually set up when the structure is
allocated.

.<field> is a label given to a Define directive inside a STRUC/ENDS. The
value of the field is the offset within the addressed structure.

If you want to allocate a structure, use the structure name as a directive with
a label and enclose any override values in angle brackets:

FOO STRUCTURE

FOO ENDS

GOO FOO <,7„ 'JOE '>

5-26 PROGRAMMER’S TOOL KIT, II

To define a structure:

s STRUC
FIELD 1 DB 1,2 ;not overridable
FIELDS DB 10 DUP (?) ;not overridable
FIELDS DB 5 ;overridat>le
FIELD4 DB 'D0B0SKY ' ;overridat>le
S ENDS

In this example, the Define directives define the fields of the structure. The
order corresponds to the values given in the initialization list when the struc­
ture is allocated. Each Define directive inside a STRUC block defines a field,
whether or not the field is named.

To allocate the structure:

DBAREA S < ,7, 'ANDY ' > overrides 3rd and 4tti
;fields only

To refer to a structure:

MOV AL,[BX].FIELD3
MOV AL,DBAREA.FIELD3

CONDITIONAL DIRECTIVES

With conditional directives, you can design blocks of code which test for
specific conditions and then proceed accordingly.

All conditionals have this format:

IFxxxx [argument]

[ELSE

ENDIF

MACRO-86 5-27

Each IFxxxx must have a matching ENDIF to terminate the conditional.
Otherwise, an “Unterminated conditional” message appears at the end of each
pass. If you enter an ENDIF without a matching IF, you’ll get a “Code 8, Not
in conditional block” error.

Each conditional block can include the optional ELSE directive. This direc­
tive allows alternate code to be generated when the opposite condition exists.
An ELSE is bound to the most recent, open IF; only one ELSE is allowed for
a given IF.

A conditional with more than one ELSE or an ELSE without a conditional
causes a “Code 7, Already had ELSE clause” error.

Conditionals can be nested up to 255 levels. An argument to a conditional must
be known on the first pass to avoid phase errors and incorrect evaluation. For
IF and IFE conditionals, values in the expression must have been previously
defined and the expression must be absolute. If the name is defined after an
IFDEF or IFNDEF, MACRO-86 considers the name undefined on the first
pass, but defined on the second pass.

MACRO-86 evaluates a conditional statement to TRUE (which equals any
non-zero value) or to FALSE (which equals 0000H). If this evaluation matches
the condition defined in the conditional statement, MACRO-86 assembles the
whole conditional block or (if the block contains an ELSE directive) assembles
from IF to ELSE. The ELSE-to-ENDIF portion of the block is ignored. If the
evaluation does not match, MACRO-86 ignores the conditional block com­
pletely or (if the block contains an ELSE directive) assembles only the ELSE
to ENDIF portion. The IF-to-ELSE portion is ignored.

These are the MACRO-86 conditional directives:

IF<exp>
If the value of the expression is non-zero, statements within the conditional
block are assembled.

IFE<exp>
If the value of the expression is zero, statements in the conditional block are
assembled.

5-28 PROGRAMMER’S TOOL KIT, II

IF1
Pass 1 conditional. If MACRO-86 is in the first pass, statements in the
conditional block are assembled. IF1 takes no expression. For IF1 use, refer
to %OUT.

IF2
Pass 2 conditional. If MACRO-86 is in the second pass, statements in the
conditional block are assembled. IF2 takes no expression. For IF2 use, refer
to %OUT.

IFDEF<symbol>
Statements in the conditional block are assembled if <symbol> is defined or
has been declared external.

IFNDEF<symbol>

Statements in the conditional block are assembled if <symbol> is not defined
or not declared external.

IFB<arg>

Statements in the conditional block are assembled if <arg> is blank (none
given) or null (two angle brackets with nothing between). The angle brackets
around <arg> are required.

IFB is usually used inside macro blocks. The expression following the IFB
directive is typically a dummy symbol. When the macro is called, the dummy
symbol is replaced by a parameter passed by the macro call. If no parameter
is specified, the expression is blank and the block is assembled.

5

IFNB<arg>

If <arg>is not blank, the statements in the conditional block are assembled.
The angle brackets around <arg> are required.
IFNB is normally used inside macro blocks. The expression following the
IFNB directive is generally a dummy symbol. When the macro is called, the
dummy is replaced by a parameter passed by the macro call. When this hap­
pens, the expression is not blank and the block will be assembled.

IFIDN <arg1 >,<arg2>

If the string<argl>is identical to the string <arg2>, the statements in the con­
ditional block are assembled. The angle brackets around<argl> and <arg2>
are required.

MACRO-86 5-29

IFIDN is generally used inside macro blocks. The expression after IFIDN is
typically two dummy symbols. When the macro is called, the dummies are
replaced by parameters passed by the macro call. If two identical parameters
are specified, the block is assembled.

IFDIF <arg1>,<arg2>
If the string <arg 1> is different from the string <arg2>, the statements in the
conditional block are assembled. The angle brackets around <argl> and
<arg2> are required.

IFDIF usually occurs inside macro blocks. The expression IFDIF is typically
two dummy symbols. When the macro is called, the dummies are replaced by
parameters passed by the macro call. If two different parameters are specified,
the block is assembled.

ELSE
ELSE lets you generate alternate code when the opposite condition exists. It
can be used with any of the conditional directives; however, only one ELSE
is allowed for each IFxxxx conditional directive. ELSE takes no expression.

ENDIF
ENDIF terminates a conditional block by closing the most recent untermi­
nated IF. An ENDIF directive must be given for every IFxxxx directive used.
ENDIF takes no expression.

MACRO DIRECTIVES

Macro directives let you write blocks of code which can be repeated without
recoding. These blocks begin with the Macro definition directive or one of the
repetition directives and end with the ENDM directive. All Macro directives
can be used inside a macro block. Nesting of macros is limited only by
memory. MACRO-86 has Macro directives for:

► Macro definition: MACRO.

► Termination: ENDM, EXITM.

► Unique symbols within macro blocks: LOCAL.

► Undefining a macro: PURGE.

5-30 PROGRAMMER’S TOOL KIT\ II

► Repetitions: REPT (repeat), IRP (indefinite repeat), and IRPC (in­
definite repeat character).

The Macro directives also include these special macro operators:

& ;; ! %

Macro Definition
<name> MACRO [<dummy>,...]

ENDM

where:

<name> is like a LABEL and conforms to the rules for forming symbols.
After the macro is defined, <name> is used to invoke the macro.

< dummy > is a place holder that’s replaced by a parameter when the macro
block is used. All dummies inside the macro should be included on the
same line. A dummy is formed in the same way as any other name.

The block of statements from the macro statement line to the ENDM state­
ment line is the body of the macro (the macro’s definition).

Macro is a very powerful directive. With it, you can change the value and effect
of any instruction, directive, label, variable, or symbol. When MACRO-86
evaluates a statement, it first looks at the macro table it builds during the first
pass. If it sees a name that matches an entry in a statement, it replaces that entry
with the macro it found in the table. (Remember: MACRO-86 evaluates
macros first, then goes on to instructions and directives.)

The number of dummies you can use with a Macro directive is limited only by
the length of a line. If you specify more than one dummy, they must be
separated by commas. MACRO-86 interprets a series of dummies the same
way it interprets any list of symbol names.

NOTE: A dummy is always recognized only as a dummy. Even if you use a
register name (such as AX or BH) as a dummy, MACRO-86 replaces it with
a parameter during expansion.

MACRO-86 5-31

Another way to use the Macro directive is to list no dummies:

<name> MACRO

This lets you call the block repeatedly, even if you don’t need to pass
parameters to the block. In this case, of course, the block contains no
dummies.

A macro block is not assembled when it is encountered. Instead, MACRO-86
“expands” the macro call statement by bringing in and assembling the
appropriate macro block.

If you want to use the TITLE, SUBTTL, or NAME directives as the portion
of your program where a macro block appears, you should be careful about
the form of the statement. For example, if you enter:

SUBTTL MACRO DEFINITIONS

MACRO-86 assembles the statement as a macro definition with SUBTTL as
the macro name and DEFINITIONS as the dummy. To avoid this problem,
change the word macro in some way — use macroe, macros, and so on.

CALLING A MACRO: To use a macro, enter a macro call statement:

< name> [<parameter

where:

<name> is the <name> of the MACRO block.

<parameter> replaces a <dummy> on a one-for-one basis.

The number of parameters is limited only by the length of a line. If you enter
more than one parameter, they must be separated by commas, spaces, or tabs.
If you put angle brackets around parameters separated by commas, the
assembler passes the items inside the angle brackets as a single parameter.

For example:

FOO 1,2,3,4,5

5-32 PROGRAMMER’S TOOL KIT, II

passes five parameters to the macro, but:

FOO <1,2,3,4,5*

passes only one.

You don’t need to use the same number of parameters in a macro call state­
ment and the macro definition. If there are more parameters than dummies,
MACRO-86 ignores the extras. If there are fewer, the extra dummies are null.
The assembled code includes the macro block after each macro call statement.

Suppose you enter the following:

GEN MACRO XX,YY,ZZ
MOV AX,XX
ADD AX,YY
MOV ZZ,AX
ENDM

If you enter a macro call statement:

GEN DUCK,DON,FOO

assembly generates the statements:

MOV AX,DUCK
ADD AX,DON
MOV FOO,AX

On your program listing, these statements are preceded by a plus sign to show
that they came from a macro block.

END MACRO

ENDM

ENDM tells MACRO-86 that the macro or repeat block is ended. Each macro,
REPT, IRP, and IRPC must be terminated with the ENDM directive. Other­
wise, the “unterminated REPT/IRP/IRPC/MACRO” message is generated
at the end of each pass. An unmatched ENDM also causes an error.

MACRO-86 5-33

If you want to exit from a macro or repeat block before expansion is com­
pleted, use EXITM.

EXIT MACRO

EXITM

EXITM is used inside a macro or repeat block to stop an expansion when con­
tinuing becomes unnecessary or undesirable.

When an EXITM is assembled, the expansion is halted immediately. If the
block containing the EXITM is nested within another block, the outer level
continues to be expanded.

EXITM is usually used with a conditional directive.

Example:

FOO MACRO X
X — 0

REPT X
X — X+l

IFE X-OFFH ;test X
EXITM ;if true, exit REPT
ENDIF
DB X
EETDM
EFTDM

LOCAL

LOCAL <dummy>[,<dummy>...]

The LOCAL directive is allowed only inside a macro definition block. A
LOCAL statement must precede all other types of statements in the macro
definition.

When LOCAL is executed, MACRO-86 creates a unique symbol for each
<dummy>and substitutes that symbol for each occurrence of the<dummy>

5-34 PROGRAMMER’S TOOL KIT, II

during expansion. These unique symbols usually define labels within a macro
and eliminate multiple-defined labels on successive expansions of the macro.
You should avoid creating symbols with the form ??nnnn, since MACRO-86
uses the same form when it creates its own symbols.

Example:

OOOO FUN SEGMENT
ASSUME CS:FUN,DS:FUN

FOO MACRO NUM,Y
LOCAL A,B,C,D,E

A: DB 7
B: DB 8
C: DB Y
D: DW Y +1
E: DW NUM +1

JMP A
ENDM
FOO 0C00H,0BEH

0000 07 + ??0000: DB 7
0001 08 + ??0001: DB 8
0002 BE + ??0002: DB 0BEH
0003 OOBF + ??0003: DW 0BEH+1
0005 0001 + ??0004: DW 0C00H+1
0007 EB F7 + JMP ??0000

FOO 03C0H,0FFH
0009 07 + ??0005: DB 7
000A 08 + 770006: DB 8
000B FF + 770007: DB OFFH
0000 0100 + 770008: DW OFFH+1
OOOE 0301 + 770009: DW 03C0H+1
0010 EBF7 JMP 770005
0012 FUN ENDS

END

5

Notice that MACRO-86 has substituted LABEL names in the form ??nnnn
for the instances of the dummy symbols.

MACRO-86 5-35

PURGE

PURGE <macro-name> [,...]

PURGE deletes the definition of any macro(s) listed after it.

PURGE provides three benefits:

1. It frees text space in the macro body.

2. Any instruction or directive redefined by a macro is returned to its original
function.

3. It edits out macros from a macro library file. This lets you use macros
repeatedly with easy access to their definitions. Typically, you place an
INCLUDE statement in your program file. After the INCLUDE, place a
PURGE statement to delete any macros you won’t use in your program.

5
You don’t need to PURGE a macro before you redefine it. All you need to do
is place another macro statement in your program, reusing the macro name.

Example:

INCLUDE MACRO.LIB
PURGE MAC I
MAC I ;tries to invoke purged macro

;returns a syntax error

Repeat Directives
The directives in this group let you repeat an operation for as many times as
you specify. They are convenient when you know in advance that a parameter
won’t change while your program is executing. Unlike with the Macro direc­
tive, you don’t have to call in the parameter each time it is needed.

Repeat directive parameters must be assigned as a part of the code block. Each
Repeat directive must be matched with the ENDM directive to terminate the
repeat block.

5-36 PROGRAMMER’S TOOL KIT, II

REPEAT:

REPT <exp>

ENDM

Repeat statements between REPT and ENDM <exp> times. <exp> is
evaluated as a 16-bit unsigned number. An error is generated if<exp>contains
an External symbol or undefined operands.

The following example:

X — 0
REPT 10 generates DB 1 — DB 10

X — X+l
DB
ENDM

X

5

assembles as:

0000 X — 0
KEPT 10 ^generates DB 1 — DB 10

X — X+ 1
DB
ENDM

X

0000' 01 + DB X
0001 ' 02 + DB X
0002' 03 + DB X
0003' 04 + DB X
0004' 05 + DB X
0005 ' 06 + DB X
0006' 07 + DB X
0007 ' 08 + DB X
0008 ' 09 + DB X
0009 ' OA + DB X

END

MACRO-86 5-37

INDEFINITE REPEAT:

IRP<dummy>,<parameters inside angle brackets>

ENDM

Parameters must be enclosed in angle brackets. They can be any legal symbol,
string, numeric, or character constant.

The statement block is repeated for each parameter. With each repetition, the
next parameter is substituted for every occurrence of <dummy> in the block.
If a parameter is null, the block is processed once with a null parameter.

Example:

IRP X,<1,2,3,4,5,6,7,8,9,10 >
DB X
ENDM

This generates the same bytes (DB 1 - DB 10) as the REPT example.

When you use IRP inside a macro definition block, the angle brackets around
parameters in the macro call statement are removed before the parameters are
passed to the macro block. The next example generates the same code as the
one above, but shows the removal of one level of brackets from the
parameters.

FOO MACRO X
IRP
DB
ENDM
ENDM

Y,<X>
Y

5-38 PROGRAMMER’S TOOL KIT, II

When the macro call statement:

FOO <1,2,3,4,5,6,7,8,9,1O>

is assembled, the macro expansion is:

IRP Y ,< 1,2,3,4,5,6,7,8,9,10 >
DB Y
ENDM

The angle brackets around the parameters are removed and all items are passed
as a single parameter.

INDEFINITE REPEAT CHARACTER:

IRPC <dummy>,<string >

ENDM

The statements in the block are repeated once for each character in the string.
With each repetition, the next character in the string is substituted for every
occurrence of <dummy>in the block.

Example:

IRPC X,0123456789
DB X+l
ENDM

This generates the same code (DB 1 — DB 10) as the two previous examples.

Special Macro Operators
Several special operators are used in a macro block to select additional
assembly functions.

& Concatenates text or symbols. (Ampersands cannot be used in
macro call statements.) A dummy parameter in a quoted string
is not substituted in expansion unless preceded by an ampersand.
Put an ampersand between text and a dummy to form a symbol.

MACRO-86 5-39

If you enter:

ERRGEN
ERROR&X:

MACRO X
PUSH BX
MOV BX, '&X'
JMP ERROR
ENDM

the call ERRGEN A generates:

ERROR A: PUSH B
MOV BX, 'A'
JMP ERROR

The ampersand does not appear in the expansion. One amper­
sand is removed each time a dummy& or &dummy is found.
Extra ampersands may be needed for complex macros, where
nesting is involved. You need to supply as many ampersands as
there are levels of nesting.

For example:

CORRECT FORM INCORRECT FORM

FOO MACRO X
IRP Z,<1,2,3 >

X&&Z DB Z
ENDM
ENDM

FOO MACRO X
IRP Z,<1,2,3>

X&Z DB Z
ENDM
ENDM

When the previous example is expanded (when called by FOO
BAZ), the expansion follows these steps. (As shown, the correct
form is expanded in the left column; the incorrect in the right.)

1. Macro build, find dummies and change to dl

IRP Z,<1,2,3* IRP Z,<1,2,3
dl&Z DB Z

ENDM
dlZ DB Z

ENDM

5-40 PROGRAMMER’S TOOL KIT, II

2. Macro expansion, substitute parameter text for dl

IRP Z,<1,2,3> IRP Z,<I,2,3>
BAZ&Z DB Z BAZZ DB Z

ENDM ENDM

3. IRP build, find dummies and change to dl

BAZ&dl DB dl BAZZ DB dl

4. IRP expansion, substitute parameter text for dl

BAZ1 DB 1 BAZZ DB 1
BAZ2 DB 2 BAZZ DB 2;error
BAZ3 DB 3 BAZZ DB 3

The error is due to a multi-defined symbol.

<text> The angle brackets tell MACRO-86 to treat the enclosed text as
a single literal. If you use them to enclose parameters to a macro
call or the list of parameters following the IRP directive inside
angle brackets, there can be two results:

1. All text within the angle brackets is seen as a single
parameter, even if commas are used.

2. Characters with special functions are taken as literal
characters. For example, a semicolon inside angle brackets
becomes a character, not an indicator that a comment
follows.

One set of angle brackets is removed each time you use a
parameter in a macro. If you're using nested macros, you need
to supply as many sets of angle brackets as there are levels of
nesting.

Used in a macro or repeat block. A comment preceded by two
semicolons is not saved in the expansion.

The default listing condition for macros is .XALL (see “Listing
Directives”). Under .XALL, comments in macro blocks are not
listed because they do not generate code.

MACRO-86 5-41

If you put the .LALL listing directive in your program, com­
ments inside macro and repeat blocks are saved and listed.
However, this can cause an out-of-memory error. To avoid this,
put double semicolons before comments inside macro and
repeat blocks unless you want a particular comment to be
retained.

An exclamation point in an argument indicates that the next
character is to be taken literally. So, !; is the same as<;>.

% Used only in macro arguments. Converts the following expres­
sion (usually a symbol) to a number in the current radix. During
macro expansion, the number derived from converting the
expression is substituted for the dummy. Using the % operator
allows a macro call by value.

The expression following the % must be an absolute (non-
relocatable) constant.

5
Example:

PRINTE MACRO MSG,U
%0UT
ENDM

* MSG,N *

SYM1 EQU 100
SYM2 EQU

PRINTE
200
<SYM1 + SYM2 =>

, % (S YM1 +SYM2)

Normally, the macro call statement substitutes the string (SYM1
4- SYM2) for the dummy N. The result is:

<7oOUT * SYM1 + SYM2 = (SYM1 4- SYM2) *

When the % is placed in front of the parameter, the assembler
generates:

<7oOUT * SYM1 4- SYM2 = 300 *

5-42 PROGRAMMER'S TOOL KIT, II

LISTING DIRECTIVES

Listing directives perform two general functions: format control and listing
control. Format control directives let you insert page breaks and page
headers. Listing control directives turn on and off the listing of any part of
the assembled file (or the entire file).

PAGE

PAGE [<length>] [,<width>]
PAGE[+]

where:

<length> is the new page length (measured in lines per page). The length
must be in the range 10 to 255. The default page length is 50 lines per
page.

<width>is the new page width (measured in characters). It must be in the
range 60 to 132. The default page width is 80 characters. 5
[+] tells MACRO-86 that there is a major and minor page number and
resets the minor page number to 1. (In the page number 2-1, for example,
the 2 is the major page number and the 1 is the minor page number.) If
the plus sign is not present, only the minor portion of the page number
is incremented.

If used without an argument or with the optional [, +] argument, PAGE tells
MACRO-86 to start a new output page. MACRO-86 puts a form-feed
character in the listing file at the end of the page.

If used with the length or width argument, PAGE does not start a new listing
page.

MACRO-86 5-43

Example:

PAGE 4- increment Major, set minor to 1

PAGE 58, 60 ;page length. — 58 lines,
;width — 60 characters

TITLE

TITLE <text>

TITLE sets the title listed on the first line of each page. The text can be up
to 60 characters long. If you give more than one TITLE, an error results. The
first six characters of the title (if legal) are used as the module name unless
a NAME directive is used.

Example:

TITLE PR0G1 — 1st Program

If the NAME directive is not used, the module name is now “PROG1 — 1st
Program.” This title appears at the top of every page of the listing.

SUBTITLE

SUBTTL<text>

5-44 PROGRAMMER’S TOOLKIT, II

SUBTTL sets the subtitle listed in each page heading on the line below the
title. The text is truncated after 60 characters.

You can use any number of subtitles in a program. Each time MACRO-86
encounters a SUBTTL directive, it replaces the text of the previous subtitle
with that of the latest subtitle. If you want to turn off SUBTTL for part of
the output, enter SUBTTL followed by a null string.

Example:

SUBTTL SPECIAL I/O ROUTINE

SUBTTL

The first SUBTTL causes the subtitle “SPECIAL I/O ROUTINE” to print
at the top of every page. The second SUBTTL turns off the subtitle (the sub­
title line is left blank).

%OUT

%OUT<text>

The text is listed on the terminal during assembly. Use %OUT when you
want to display progress through a long assembly or see the value of condi­
tional assembly switches.

%OUT outputs on both passes. If you want only one printout, use the IF1
or IF2 directive, depending on the pass you want to see.

When MACRO-86 encounters the following:

%0UT * Assembly half done*

MACRO-86 5-45

this message is sent to the screen:

% OUT* Pass 1 started.*
ENDIF
IF2
% OUT* Pass 2 started*
ENDIF

.LIST, .XLIST

The .LIST directive lists all lines with their code (the default condition).
.XLIST suppresses all listings.

If you specify a listing file after the Listing prompt, a listing file including
all source statements is listed.

An .XLIST overrides all other listing directives. When .XLIST is en­
countered in the source file, source and object code are not listed. .XLIST
stays in effect until a .LIST is encountered.

5 Example:

.XLIST ;listing suspended here

.LIST ;listing resumes here

There are several other associated directives that you can use to control a
listing.

► .SFCOND: Suppresses any part of the listing containing conditional
expressions that evaluate as false.

► .LFCOND: Ensures the listing of conditional expressions that evaluate
false. This is the default condition.

► .TFCOND: Operates independently of .LFCOND and .SFCOND to
toggle the current setting. The default setting is set by the presence or

5-46 PROGRAMMER’S TOOL KIT, II

absence of the /X switch when running MACRO-86. When /X is used,
.TFCOND causes false conditionals to list. When /X is not used,
.TFCOND suppresses false conditionals.

► .XALL: The default. It lists source code and object code produced by a
macro. Source lines which do not generate code are not listed.

► .LALL: Lists the complete macro text for all expansions, including lines
that do not generate code. Comments preceded by two semicolons (;;) are
not listed.

► .SALL: Suppresses listing of all text and object code produced by
macros.

.CREF, .XCREF

.CREF

.XCREF [cvariable list>]

The .CREF directive is the default condition. .CREF remains in effect until
MACRO-86 encounters .XCREF.

Used without an argument, .XCREF turns off the .CREF (default) directive.
It remains in effect until MACRO-86 encounters another .CREF. Use
.XCREF to suppress cross references in selected portions of the file. Use
.CREF to restart the creation of a cross-reference file after using the
.XCREF directive.

If you include one or more variables after .XCREF, they don’t appear in the
listing or cross-reference file. No other cross-referencing is affected.
(Separate the variables with commas.)

When used without arguments, neither .CREF nor .XCREF takes effect
unless you specify a cross-reference file when running MACRO-86. If you
use .XCREF <variable list>, it suppresses the variables from the symbol
table listing regardless of whether a cross-reference file is being created.

Example:

.XCREF CURSOR,FOO,GOO,BAZ,ZOO ;these variables won’t
;appear in the listing
;or cross-reference file

MACRO-86 5-47

ASSEMBLING A MACRO-86
SOURCE FILE

There are two types of commands used when assembling with MACRO-86:
a command that invokes MACRO-86 and others that result from your answers
to command prompts. In addition,there are three switches that control alter­
nate MACRO-86 features and a set of command characters that help you enter
assembler commands.

Usually, you’ll enter all MACRO-86 commands at the keyboard. As an op­
tion, answers to the command prompts and any switches can be put into a
batch file.

INVOKING MACRO-86 6.1

MACRO-86 is invoked in two ways. With the first method, you enter com­
mands as answers to individual prompts. With the second method, you enter
all commands on the line used to invoke MACRO-86.

METHOD 1: MASM

Enter:

MASM

MACRO-86 is loaded into memory and a series of four text prompts appear
on your screen one at a time. Your answers to the prompts tell MACRO-86 to
perform specific tasks.

MACRO-86 6-1

At the end of each line, you can enter one or more switches, each of which must
be preceded by a slash mark. If you don’t enter a switch, MACRO-86 does not
carry out the function controlled by that switch.

The command prompts are summarized here and described in more detail in
Section 6.2. Following the summary of prompts is a summary of switches.
These are described in Section 6.3.

6

Exhibit 6a: MACRO-86 Command Prompts

_________ PROMPT_______ _________________RESPONSES_________________

Source filename [.ASM]: Lists .ASM file to be assembled. No default value; you
must supply a file name.

Object filename [source.OB J]: Lists file name for relocatable object code. Default:
source filename .OBJ.

Source listing [NUL.LST]: Lists file name for listing. Default: no listing file.

Cross reference [NUL.CRF]: Lists file name for cross-reference file (used with
MS-CREE to create a cross-reference listing). Default:
no cross-reference file.

Exhibit 6b: MACRO-86 Command Switches

SWITCH _____________________________ ACTION____________________________

/D Produces a listing on both assembler passes.

/O Shows generated object code and offsets in octal radix on listing.

/X Suppresses the listing of false conditionals. Also used with the .TFCOND
directive.

Command Characters
MACRO-86 has two command characters.

This can be used any time after you respond to the first prompt.
Use a semicolon followed immediately by a carriage return to

6-2 PROGRAMMER'S TOOL KIT, II

select default responses to the remaining prompts. This saves time
and ends the need to enter a series of carriage returns.

Do not use the semicolon to skip over some prompts and not
others. Once the semicolon has been entered, you can no longer
respond to any of the prompts for that assembly. Use the Return
key to skip single prompts.

Example:

Source filename [.ASM]: FUN ◄J

Object filename [FUN.OBJ]: ;

The remaining prompts do not appear. Instead, MACRO-86 uses
the default values (including no listing file and no cross-reference
file).

You get the same result by entering:

Source filename [.ASM]: FUN; 4-1

Alt-C Alt-C aborts the assembly at any time. If you make an incorrect
response, enter Alt-C to exit MACRO-86. Then reinvoke
MACRO-86 and start over.

METHOD 2: MASM<filenames>[/switches]

Enter:

MASM <source>,<object>,<listing>,<cross-ref>[/switch...]

where:

<source> is the name of the source file.

<object> is the name of the file to receive the relocatable output.

<listing> is the name of the file to receive the listing.

< cross-ref >is the name of the file to receive the cross-reference output,

[/switch...] are optional switches placed following any of the response en­
tries (just before any of the commas or after <cross-ref>, as shown).

MACRO-86 6-3

MACRO-86 is loaded into memory and immediately begins assembly. The en­
tries following MASM are responses to the command prompts. The entry
fields for the different prompts must be separated by commas.

To select the default for a field, enter a second comma without space in be­
tween. For example:

MASM FUN„FUN/D/X,FUN

loads MACRO-86 and causes the source file FUN.ASM to be assembled.
MACRO-86 then outputs the relocatable object code to a file named
FUN.OBJ (a default caused by the two commas in a row). Then, it creates a
listing file named FUN.LST for both assembly passes (but with false condi­
tionals suppressed) and creates a cross-reference file named FUN.CRF. If
names are not given for listing and cross-reference files, those files are not
created. If listing file switches are given without a file name, the switches are
ignored.

6.2 MACRO-86 COMMAND PROMPTS

MACRO-86 is commanded by the responses you give to four text prompts.
These ask you for the names of source, object, listing, and cross-reference files.
Each time you respond to a prompt, the next one appears. When the last
prompt has been answered, MACRO-86 begins assembly automatically.
When it finishes assembly, MACRO-86 exits to the operating system. When
you see the operating system prompt, you know that MACRO-86 has finished
successfully. If the assembly is not successful, MACRO-86 returns an
appropriate error message.

All command prompts accept a file specification as a response. You can enter:

► A file name only.

► A device designation only.

6-4 PROGRAMMER’S TOOL KIT, II

► A file name and an extension.

► A device designation and file name.

► A device designation, file name, and extension.

You cannot enter only a filename extension.

COMMAND PROMPT DESCRIPTIONS

Source filename [.ASM]:

Enter the file name of your source program. MACRO-86 assumes that its ex­
tension is .ASM, as shown in square brackets in the prompt text. If your source
program has another extension, you must enter it along with the file name.
Otherwise, the extension can be omitted.

Object filename [source.OB J]:

Enter the name of the file to receive the generated object code. If you press
Return, the object file is given the same name as the source file, but with the
extension .OBJ. If you want a different name or extension, you must enter
your choice(s). If you want to change only the file name, enter the file name
only. To change the extension only, you must enter both the file name and the
extension.

6

Source listing [NUL.LST]:

Enter the name of the file you want to receive the source listing. If you press
Return, MACRO-86 does not produce a listing file. If you enter a file name
only, the listing is created with the name you chose and extension .EST. You
can also enter your own extension.

The source listing file lists all the statements in your source program and shows
the code and offsets generated for each statement. The listing also shows any
error messages generated during the session.

Cross reference [NUL.CRF]:

Enter the name of the file to receive the cross-reference file. If you press
Return, MACRO-86 does not produce a cross-reference file. If you enter a file

MACRO-86 6-5

name only, the cross-reference file is created with the name you chose and the
extension .CRF. You can also choose your own extension.

The cross-reference file is the source file for the MS-CREF cross-reference
utility. MS-CREF converts this file into a cross-reference listing that you can
use during program debugging.

The cross-reference file contains a series of control symbols that identify
records in the file. MS-CREF uses these control symbols to create a listing that
shows each occurrence of every symbol in your program. The occurrence that
defines the symbol is marked.

6.3 MACRO-86 COMMAND SWITCHES

6

Three switches control alternate assembler functions. They must be entered
at the end of a prompt response, regardless of the method used to invoke
MACRO-86. You can group switches at the end of a single response or they
can be scattered at the end of several. If you enter more than one switch at the
end of a response, each switch must be preceded by the slash mark (/). You
cannot enter a switch by itself in response to a command prompt.

These switches are available when using the assembler:

/D Produces a source listing on both assembler passes. When compared,
the listings show where errors occur and, possibly, give you a clue as
to why the errors occur. The /D switch does not take effect until you
tell MACRO-86 to create a source listing.

/O Outputs the listing file in octal radix. The generated code and the off­
sets shown on the listing are all given in octal. The actual code in the
object file will be the same as if the /O switch were not given. The /O
switch affects only the listing file.

/X Suppresses the listing of false conditionals. If your program contains
conditional blocks, the listing file shows the source statements but
no code if the condition evaluates false. To avoid the clutter of condi­
tional blocks that do not generate code, use the /X switch to suppress
these blocks from your listing.

6-6 PROGRAMMER’S TOOL KIT, II

The /X switch does not affect any block of code that is controlled
by the .SFCOND or .LFCOND directives.

If your source program contains the .TFCOND directive, the /X
switch has the opposite effect. Normally, the .TFCOND directive
causes listing or suppressing of blocks of code that it controls. The
first .TFCOND suppresses false conditionals; the second restores
listing of false conditionals, and so on. When you use /X, false
conditionals are suppressed. When MACRO-86 reaches the first
.TFCOND directive, listing of false conditionals is restored. When
MACRO-86 reaches the second .TFCOND, false conditionals are
again suppressed from the listing.

Of course, the /X switch has no effect if a listing is not created. See
additional discussion under the .TFCOND directive in Chapter 5.

The following chart shows the effects of the conditional listing direc­
tives when combined with the /X switch.

6

MACRO-86 6-7

Exhibit 6c: Combining Conditional Listing Directives with the
/X Switch

DIRECTIVE /X OFF /X ON

— ON OFF
• • •
• • •
• • •

.SECOND OFF OFF
• • •
• • •
• •

.LFCOND ON ON
• • •
• • •
• • •

.TFCOND OFF ON
• • •
• • •
• • •

.TFCOND ON OFF
• • •
• • •
• • •

.SECOND OFF OFF
• • •
• • •
• • •

.TFCOND OFF ON

.TFCOND ON OFF
• • •
• • •
•

.TFCOND OFF ON

6-8 PROGRAMMER’S TOOL KIT, II

FORMATS OF LISTINGS AND
SYMBOL TABLES

6.4

The source listing produced by MACRO-86 (created when you use a file name
in response to the Source listing prompt) is divided into two parts.

The first part of the listing shows:

► The line number for each line of the source file, if a cross-reference file is
also being created.

► The offset of each source line that generates code.

► The code generated by each source line.

► A plus sign (-«-) if the code came from a macro.

► The letter C if the code came from an INCLUDE file.

► The source statement line.

The second part of the listing shows:

► Macros: Name and length (in bytes).

► Structures and records: Name, width, and fields.

► Segments and groups: Name, size, align, combine, and class.

► Symbols: Name, type, value, and attributes.

► The number of warning errors and severe errors.

6

PROGRAM LISTING

The program portion of the listing contains your source program file with the
line numbers, offsets, and generated code. Where applicable, it also contains
plus signs to show that the source statements are part of a macro block; or a
C to show that the source statements come from a file input by the INCLUDE
directive. If errors occur during assembly, an error message is printed directly
below the statement where the error occurred.

MACRO-86 6-9

Following this section you’ll see part of a listing file, with notes explaining what
the various entries represent. The comments have been moved down one line
because of format restrictions. If you print your listing on 132-column paper,
the comments shown here will easily fit on the same line as the rest of the
statement.

Explanatory notes are inserted into the listing at points of special interest.

Summary of listing symbols:

R Linker resolves entry to left of R.

E External.

— Segment name, group name, or segment variable used in
MOV: AX,<-> , DD , JMP , and so on.

= Statement has an EQU or - directive.

rm: Statement contains a segment override.

rm/ REPxx or LOCK prefix instruction.

l DUP expression; xx is the value in parentheses following
XX

]
DUP. For example, DUP(?) puts ?? where xx is shown here.

+ Line comes from a macro expansion.

C Line comes from file named in INCLUDE directive statement.

6-10 PROGRAMMER’S TOOL KIT, II

Microsoft MACRO-86 MACRO Assembler 1-Dec-81 PAGE 1-3

ENTX PASCAL entry for initializing programs

0000
= 0000

STACK
HEAPbeg

------- Indicates EQU or = directive--------------------------------------

SEGMENT
E^U

WORD
THIS

STACK 'STACK'
BYTE

0000 14 [_____ DB

;Base of heap before init

20 DUP(?)

____________]_

+ —Indicates DUP expression-------------—

= 0014
0014

SKTOP
STACK

EQU
ENDS

THIS BYTE

0000 MAIN STARTUP SEGMENT 'MEMORY'
DGR0UP GROUP DATA,STACK,CONST,HEAP,MEMORY

ASSUME CS:MAINSTARTUP,DS:DGROUP,
ES:DGROUP,SS:DGROUP

PUBLIC BEGXQQ Main entry

0000 BEGXQQ PROC FAR
0000 B8 --------- R MOV AX,DGR0UP

;get assumed data segment
value
0003 8E D8 MOV DS,AX ;Set DS seg

0005 80 06 0022 R MOV CESXQQ,ES
________________ commentt generated name action fJ. expression

0000 26: 8B IE 0002 MOV BX,ES:2 ;Highest paragraph

segment override

MACRO-86 6-11

Microsoft MACRO-86 MACRO Assembler l-Dec-81 PAGE 1-4

ENTX PASCAL entry for initializing programs

0011 2B D8
0013 81 FB 1000
0017 7E 03
0019 BB 1000

0010 SMLSTK:

SUB BX,AX ;Get # paras for DS
CMP BX.4096 ;More than 64K?
JLE SMLSTK ;No, use what we have
MOV BX,4096 ;Can only address 64K

+ REPT ---------------h
SHL BX,1

[Convert para to offset
ENDM

001C DI E3

00 IE DI E3

0020 DI E3

0022 DI E3

t
macro these lines
block from macro

macro number of

SHL BX, 1
[Convert para to offset

SHL BX,1
[Convert para to offset

SHL BX,1
[Convert para to offset

SHL BX,1
[Convert para to offset

directive repetitions

0024 8B E3 MOV SP,BX
;Set stack to top of memory

0069 EA 0000 JMP

+ linker resolves: indicates segment name,
group name, or segment variable used in MOV AX, <----->;

examples in this listing.)

FAR PTR STARTmain

+ -segment variable

006E BEGXQQ ENDP

007E MAINSTARTUP ENDS

0000 ENTXCM SEGMENT WORD 'CODE '
ASSUME CS:ENTXCM
PUBLIC ENDXQQ,DOSXQQ

6-12 PROGRAMMER’S TOOL KIT, II

Microsoft MACRO-86 MACRO Assembler l-Dec-81 PAGE 1-5

ENTX PASCAL entry for initializing programs

0000
0000 9A 0000

STARTmain PROC FAR jTtiis code remains
E CALL ENTGQQ

;call main program

0005 ENDXQQ LABEL FAR
;termination entry point

0005 9A 0000 --------- E

000A 9A 0000 --------- E

CALL

CALL

ENDOQQ
;user system termination

ENDYQQ
;close all open files

000F 9A 0000 --------- E 4—

0014 C7 06 0020 R 0000

CALL

MOV

ENDUQQ
;file system termination

DOSOFF,0

linker signal;-----------
goes with + -External
number to left; symbol
shows DOSOFF is in segment

00 2E

001E

0020 R

STARTmain

-IMP

ENDP

DWORD PTR DOSOFF
,return to DOS

0037 ENTXCM ENDS
END BEGXQQ

6

Differences Between Pass 1 Listing and Pass 2 Listing
If you give the /D switch when you use MACRO-86 to assemble a file, the
assembler produces a listing for both passes. This option is especially helpful
when looking for the cause of phase errors.

The following example was taken from a source file that assembled without
reporting any errors. When the source file was reassembled using the /D
switch, an error was produced on pass 1 but not on pass 2 (which is when er­
rors are usually reported).

MACRO-86 6-13

Example:

During pass 1 a jump with a forward reference produces:

During pass 2 this same instruction does not return an error.

0017 7E 00 JLE SMLSTK ;No, use what we have
E r r o r — 9: Symbol not defined

0019 BB 1000 MOV BX,4096 ;Can only address 64K
0010 SMLSTK: RE PT 4

0017 7E 03
0019 BB 1000
0010 SMLSTK:

JLE SMLSTK ;No, use what we have
MOV BX,4096 ;Can only address 64K
RE PT 4

Notice that the JLE instruction’s code now contains 03 instead of 00 — a jump
of 3 bytes.

The same amount of code was produced during both passes, so there was no
phase error. The only difference is in the contents, not in the size.

SYMBOL TABLE FORMAT

The symbol table portion of a listing separates all symbols into their respec­
tive categories, with appropriate descriptive data. This data gives you an idea
how your program is using various symbolic values. Use this information to
help you debug.

You can also use a cross-reference listing (produced by MS-CREF) to help you
locate uses of the various symbols in your program.

A complete symbol table listing is on the next page. Following the complete
listing, sections from different symbol tables are shown with explanatory
notes.

This rule applies to all sections of symbol tables: If your program doesn’t con­
tain symbolic values for a particular category, the heading for that category
is left out of the symbol table listing. If you don’t use macros in your program,
you won’t see a macro section in the symbol table.

6-14 PROGRAMMER’S TOOL KIT, II

Microsoft MACRO-86 MACRO
Assembler date PAGE Symbols-1
CALLER - SAMPLE ASSEMBLER ROUTINE (EXMP1M.ASM)

Macros:

Name Length
BIOSCALL.......................... 0002
DISPLAY.......................... 0005
DOSCALL.......................... 0002
KEYBOARD...................... 0003
LOCATE 0003
SCROLL............................... 0004

Structures and records:

Name Width
Shift

fields
Width Mask Initial

P ARMLIST......... 0010 0004
BUFSIZE......... 0000
NAME SIZE 0001
NAMETEXT 0002
TERMINATOR 001B

Segments and groups:

Name Size align combine class

CSEG................... 0044 PARA PUBLIC 'CODE '
STACK.............. 0200 PARA STACK 'STACK'
WORKAREA. 0031 PARA PUBLIC 'DATA '

Symbols:

Name type Value Attr

CLS..................... N PROC 0036 CSEG Length — OOOE
MAXCHAR Number 0019
MESSG.............. L BYTE 0010 WORKAREA
FARMS.............. LOGIC 0000 WORKAREA
RECEIVR......... L FAR 0000 External
START F PROC 0000 CSEG Length =0036

6

Warning Severe
Errors Errors
0 0

MACRO-86 6-15

Macros:
Name Length

BIOSCALL 0002
DISPLAY 0005
DOSCALL 0002
KEYBOARD 0003
LOCATE 0003
SCROLL 0004

names of macros

Number of 32-byte blocks
macro occupies
in memory

This section of the symbol table tells you the names of your macros and how
big they are (in 32-byte block units). In this listing, the macro display is 5 blocks
long or (5 x 32 bytes =) 160 bytes long.

This line applies to structure names
Structures: (begin in column 1)

Name Width # fields
Shift Width Mask Initial

PARMLIST 001C - 0004 A
BUFSIZE 0000^ ▲ 1
NAMESIZE 0001 \ '— Number of fields This line
NAMETEXT 0002 \ in structure for fields
TERMINATOR 001B \ of records

A Width of structure (indented).
(in bytes)

Offset of field
into structure

field names of
PARMLIST structure

6-16 PROGRAMMER’S TOOL KIT, II

Records:

Name Width
Shift

fields
Width Mask Initial ----- 1

This line is for fields of records.
Number of bits in record

Number of fields in record

BAZ
FLD1
FLD2
FLD3

0008
0006

0003
0002 0000

0038
0007

0040
0000 —Initial
0003 value

0003 + 0003 +

BAZ1
BZ1
BZ2

0000
000B
0003
0000 +

0003
0002
0008
0003

07F8
0007

0400
0002

Number of
bits in record

Shift
count Number of

bits in field

MASK of field
(maximum value)

to right

The preceding section lists your structures and/or records and their fields. The
upper line of column headings applies to structure names, record names, and
field names of structures. The lower line of column headings applies to field
names of records.

For structures, Width (upper line) shows the number of bytes your structure
occupies in memory. # fields shows how many fields are in your structure.

For records, Width (upper line) shows the number of bits the record occupies.
fields shows how many fields are in your record.

For fields of structures, Shift shows the number of bytes the fields is offset into
the structure. The other columns are not used.

For fields of records, Shift is the shift count to the right. Width (lower line)
shows the number of bits this field occupies. Mask shows the maximum value
of record (in hexadecimal) if one field is masked and ANDed (field is set to all
I’s; all other fields are set to all 0’s).

MACRO-86 6-17

Using field BZ1 of the record BAZ1 above to illustrate:

000001111111100 0^-MASK - 07F8

WIDTH = 0008

Initial shows the value specified as the initial value for the field, if any.

When naming the field, you specified: fieldname:# - value

Fieldname is the name of the field. # is the width of the field in bits. Value is
the initial value you want this field to hold. The symbol table shows this value
as if it is placed in the field and all other fields are masked (equal to 0). Using
the example and diagram from above:

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ^-Initial - 0400

1 1 II 1 1 1 1 1 1 1 1 | | |
initial - 80H

80H = 128 decimal

6-18 PROGRAMMER’S TOOL KIT, II

group

Segments and groups:

Name Size

AAAXQQ............................ OOOO
DGROUP............................ GROUP-1

DATA............................ 0024
STACK......................... 0014
CONST............................ 0000
HEAP............................ 0000
MEMORY..................... 0000

ENTXCM............................ 0037
MAIN _ STARTUP 007E

length
of

segment

called Private
in MS-LINK

segment

align combine class

WORD -NONE ‘CODE’------

WORD
WORD
WORD
WORD
WORD
WORD

PUBLIC
STACK
PUBLIC
PUBLIC
PUBLIC
NONE

“'DATA '
'STACK '

■ 'CONST'
'MEMORY '

L- 'MEMORY '
'CODE '

PARA NONE 'MEMORY'

statement line entries

------ segments
of
DGROUP

6

MACRO-86 6-19

For groups, the name of the group appears in the Name column, beginning in
column 1 with the applicable segment names indented 2 spaces. The word
Group will appear under the Size column.

For segments, the segment names appear in column 1 (as here) if you do not
declare them part of a group. If you do declare a group, the segment names
appear indented under their group name.

For all segments, whether a part of a group or not:

► Size is the number of bytes the segment occupies.

► Align is the type of boundary where the segment begins For example:

PAGE - page - address is xxxOOH (low byte - 0);
begins on a 256-byte boundary

PARA = paragraph - address is xxxxOH
(low nibble - 0); default

WORD - word - address is xxxxeH
(e - even number;
low bit of low byte = 0)

bit map - |x|x|x|x|x|x|x|0|
BYTE — byte — address is xxxxxH (anywhere)

► Combine describes how MS-LINK combines the various segments.

► Class is the class name under which MS-LINK combines segments in
memory.

Symbols:

Name Type

FOO Number
FOO I Text
FOOL Number

 F003 Alias
F004 Text
FOOS Opcode

Value Attr

all formed by
— EQU or =

directive

0005
1.234
0008
FOO
5 [BP] [DI]

6-20 PROGRAMMER'S TOOL KIT, II

Symbols:
Name Type Vallie Attr

BEGHQQ................ L WORD 0012 DATA Global
BEGOQQ................ L FAR 0000 External
BEGXQQ................ F PROC 0000 MAIN-STARTUP Global Dength — 006E
CESXQQ................ L WORD 0022 DATA Global
CDNEQQ................ L WORD 0002 DATA Global

lengthCRCXQQ................ L WORD 0010 DATA Global
CRDXQQ................ L WORD 001E DATA Global of PROC
CSXEQQ................ L WORD 0000 DATA Global
CURHQQ L WORD 0014 DATA Global
DOSOFF L WORD 0020 DATA
DOSXQQ................ F PROC 001E ENTXCM Global Dength = 0019
ENDHQQ L WORD 0016 DATA Global
ENDOQQ................ L FAR 0000 External
ENDUQQ L FAR 0000 External
ENDXQQ L FAR 0005 ENTXCM Global
ENDYQQ L FAR 0000 External
ENTGQQ................ L FAR 0000 External
FREXQQ................ F PROC 006E MAIN. STARTUP Global Dength =0010
HDRFQQ................ L WORD 0006 DATA Global
HDRVQQ..............
HEAPBEG

L WORD
BYTE

0008
0000

DATA Global equ statements
STACK

HEAPDOW............ BYTE 0000 heap - ________ | + showing segment
INIUQQ................ L FAR 0000 External
PNUXQQ.............. L WORD 0004 DATA Global
RECEQQ L WORD 0010 DATA Global
REFEQQ L WORD 0000 DATA Global
REPEQQ L WORD OOOE DATA Global
RESEQQ
SKTOP...................

L WORD
BYTE

OOOA
0014

DATA
STACK' ____

Global

SMDSTK................ L NEAR 0010 MAIN-STARTUP
STARTMAIN F PROC 0000 ENTXCM Dength =00 IE
STKBQQ................ DWORD 0018 DATA Global
STKHQQ................ DWORD 001A DATA Global

6

+ - If MACRO-86 knows this length as one of the
type lengths (BYTE, WORD, DWORD, QWORD,
TBYTE), it shows that type name here.

The preceding section lists other symbolic values in your program that do not
fit other categories. Type shows the symbol’s type:

all defined by EQU or = directive

L - Label
F = Far
N - Near
PROC - Procedure
Number
Alias
Text
Opcode

MACRO-86 6-21

These entries can be combined to form the various types shown in the example.

For all procedures, the length of the procedure is given after its attribute (seg­
ment). You may also see an entry under type like:

L 0031

This entry results from code such as:

BAZ LABEL FOO

where FOO is a STRUC that is 31 bytes long. BAZ is shown in the symbol table
with the L 0031 entry. Basically, Number (and some other similar entries) indi­
cates that the symbol was defined by an EQU or = directive. Value (usually)
shows the numeric value the symbol represents. (In some cases, the Value
column will show some text — when the symbol was defined by EQU or -
directive.) Attr always shows the segment of the symbol, if known. Otherwise,
the Attr column is blank.

Following the segment name, the table shows either External, Global or a
blank (which means not declared with either the EXTRN or PUBLIC direc­
tive). The last entry applies to PROC types only. This is a length - entry,
which is the length of the procedure.

6
If type is Number, Opcode, Alias, or Text, the Symbols section of the listing
is structured differently. Whenever you see one of these four entries, the sym­
bol was created by an EQU directive or an - directive. All information that
follows one of these entries is considered its “value,” even if the “value” is
simple text.

Each of the four types shows a value as follows:

► Number shows a constant numeric value.

► Opcode shows a blank. The symbol is an alias for an instruction
mnemonic. Sample directive statement:

FOO EQU ADD

6-22 PROGRAMMER’S TOOL KIT, II

► Alias shows a symbol name equal to the named symbol. Sample directive
statement:

FOO EQU BAX

► Text shows the “text” the symbol represents. “Text” is any EQU direc­
tive operand that does not fit one of the three categories above. Sample
directive statements:

GOO EQU 'WOW '
BAZ EQU DS:8[BX]
ZOO EQU 1.234

6

MACRO-86 6-23

MACRO-86 MESSAGES

MACRO-86 outputs two kinds of messages. Most are error messages. These
messages are classified as assembler errors, I/O handler errors and run-time
errors. The non-error messages output by MACRO-86 are the banner
displayed when MACRO-86 is first invoked, the command prompt messages,
and the end of (successful) assembly message. These non-error messages are
classified here as operating messages.

OPERATING MESSAGES 7.1

Banner Message and Command Prompts:

MACRO-86 vl.O Copyright (C) Microsoft, Inc.
Source filename [.ASM]:
Object filename [source.OBJ]:
Source listing [NUL.LST]:
Cross reference [UUL.CRF]:

7

End of Assembly Message:

Warning Fatal
Errors Errors
n n (n — number of errors)

MACRO-86 7-1

7.2 ERROR MESSAGES

MACRO-86 outputs error messages when it encounters errors. It tells you the
numbers of warning and fatal errors and returns control to your operating
system. The error message is sent either to your screen or to the listing file (if
you have created one).

In the following listing, error messages are divided into three categories:
assembler errors, I/O handler errors, and run-time errors. In each category,
messages are listed in alphabetical order, along with a short explanation when
necessary. At the end of this chapter, the error messages are listed in a single
numerical order list without explanations.

ASSEMBLER ERRORS

Already defined locally (Code 23)
You tried to define a symbol as external when it had already been defined
locally.

Already had ELSE clause (Code 7)
You attempted to define an ELSE clause within an existing ELSE clause.
(You cannot nest ELSE without nesting IF...ENDIF.)

Already have base register (Code 46)
You tried to double base register.

Already have index register (Code 47)
You tried to double index address.

Block nesting error (Code 0)
You have not properly terminated nested procedures, segments, structures,
macros, IRC, IRP, or REPT. An example of this error is closing an outer
level of nesting when inner level(s) are still open.

7-2 PROGRAMMER’S TOOL KIT, II

Byte register is illegal (Code 58)
You’ve used one of the byte registers in context where it is illegal. For ex­
ample: PUSH AL.

Can’t override ES segment (Code 67)
You’ve tried to override the ES segment in an instruction where this over­
ride is not legal. For example: store string.

Can’t reach with segment reg (Code 68)
There is no assume that makes the variable reachable.

Can’t use EVEN on BYTE segment (Code 70)
You attempted to use EVEN on a segment that was declared to be byte
segment.

Circular chain of EQU aliases (Code 83)
An alias EQU eventually points to itself.

Constant was expected (Code 42)
MACRO-86 expected a constant and received something else.

CS register illegal usage (Code 59)
You’re trying to use the CS register illegally. For example: XCHG OS,AX.

Directive illegal in STRUC (Code 78)
All statements within STRUC blocks must be Define directives or com­
ments preceded by a semicolon (;).

7

Division by 0 or overflow (Code 29)
An expression is given that results in a divide by 0.

DUP is too large for linker (Code 74)
Nesting of DUPs was such that the record created was too large for the
linker.

Extra characters on line (Code 1)
This occurs when MACRO-86 has not received enough information on a
line to define the instruction directive. Superfluous characters are received.

MACRO-86 7-3

Field cannot be overridden (Code 80)
In a STRUC initialization statement, you tried to give a value to a field that
cannot be overridden.

Forward needs override (Code 71)
This message not currently used.

Forward reference is illegal (Code 17)
You’ve attempted to forward reference something that must be defined in
the first pass.

Illegal register value (Code 55)
The register value specified does not fit into the register field (the field takes
values up to 7).

Illegal size for item (Code 57)
Size of referenced item is illegal. For example: shift of a double word.

Illegal use of external (Code 32)
You’ve used an external in some illegal manner. For example: DB M DUP
(?) where M is declared external.

Illegal use of register (Code 49)
You’ve used a register with an instruction where there is no 8086 or 8088

7

Illegal value for DUP count (Code 72)
DUP counts must be a non-negative constant other than 0.

Improper operand type (Code 52)
You’ve used an operand in a way such that an opcode cannot be generated.

Improper use of segment reg (Code 61)
You’ve specified a segment register where this is illegal. For example: an
immediate move to a segment register.

Index displ. must be constant (Code 54)

7-4 PROGRAMMER’S TOOL KIT, II

Label can’t have seg. override (Code 65)
Illegal use of segment override.

Left operand must have segment (Code 38)
You’ve used something in the right operand that required a segment in the
left operand. (A colon, for example.)

More values than defined with (Code 76)
Too many fields are given in REC or STRUC allocation.

Must be associated with code (Code 45)
You’ve used a data-related item where a code item was expected.

Must be associated with data (Code 44)
You’ve used a code-related item where a data-related item was expected.
For example: MOV AX,<code-label>.

Must be AX or AL (Code 60)
You’ve specified a register other than AX or AL where only these are
acceptable.

Must be index or base register (Code 48)
The instruction requires a base or index register. Some other register was
specified in square brackets.

7
Must be declared in pass 1 (Code 13)

MACRO-86 was expecting a constant value but got something else. An ex­
ample of this is using a vector size as a forward reference.

Must be in segment block (Code 69)
You’ve attempted to generate code when not in a segment.

Must be record field name (Code 33)
MACRO-86 was expecting a record field name but got something else.

Must be record or field name (Code 34)
MACRO-86 was expecting a record name or field name and received
something else.

MACRO-86 7-5

Must be register (Code 18)
Register unexpected as operand but user furnished symbol — was not a
register.

Must be segment or group (Code 20)
MACRO-86 expected a segment or group but something else was specified.

Must be structure field name (Code 37)
MACRO-86 expected a structure field name but received something else.

Must be symbol type (Code 22)
MACRO-86 needed WORD, DW, QW, BYTE, or TB but received
something else.

Must be var, label or constant (Code 36)
MACRO-86 expected a variable, label, or constant but received something
else.

Must have opcode after prefix (Code 66)
You have used a prefix instruction without specifying an opcode.

7

Near JMP/CALL to different CS (Code 64)
You have attempted to do a NEAR jump or call to a location in a different
CS ASSUME.

No immediate mode (Code 56)
No immediate mode has been specified, or you’ve specified an opcode that
cannot accept the immediate. For example: PUSH.

No or unreachable CS (Code 62)
You’ve tried to jump to a label that is unreachable.

Normal type operand expected (Code 41)
MACRO-86 received STRUC, FIELDS, NAMES, BYTE, WORD, or
DW when expecting a variable label.

7-6 PROGRAMMER’S TOOL KIT, II

Not in conditional block (Code 8)
You’ve specified an ENDIF or ELSE without a previous conditional
assembly directive active.

Not proper align/combine type (Code 25)
SEGMENT parameters are incorrect.

One operand must be const (Code 39)
This is an illegal use of the addition operator.

Only initialize list legal (Code 77)
You’ve attempted to use STRUC name without angle brackets.

Operand combination illegal (Code 63)
You’ve specified a two-operand instruction where that combination is
illegal.

Operands must be same or 1 abs (Code 40)
Illegal use of the subtraction operator.

Operand must have segment (Code 43)
Illegal use of SEG directive.

Operand must have size (Code 35)
MACRO-86 expected operand to have a size, but it did not.

Operand not in IP segment (Code 51)
Operand cannot be accessed because it is not in the current IP segment.

Operand types must match (Code 31)
MACRO-86 gets arguments of different kinds or sizes in a case where the
arguments must match. For example: MOV.

Operand was expected (Code 27)
MACRO-86 is expecting an operand but has received an operator.

Operator was expected (Code 28)
MACRO-86 was expecting an operator but received an operand.

MACRO-86 7-7

Override is of wrong type (Code 81)
You’ve tried to use the wrong size on an override in a STRUC initializa­
tion statement. For example: ‘HELLO’ for DW field.

Override with DUP is illegal (Code 79)
You’ve tried to use DUP in an override in a STRUC initialization
statement.

Phase error between passes (Code 6)
MACRO-86 has received ambiguous instruction directives. These caused
the location of a label to change in value between the first and second
assembler passes. One example of this is a forward reference coded without
a segment override where one is required. There is an additional byte (the
code segment override) generated in the second pass, causing the next label
to change. You can use the /D switch to produce a listing to help you
resolve phase errors between passes (see Section 5.3).

Redefinition of symbol (Code 4)
This error occurs on the second pass and on succeeding definitions of a
symbol.

Reference to mult defined (Code 26)
The instruction references something that has been multi-defined.

Register already defined (Code 2)
This occurs only if MACRO-86 has internal logic errors. Report this prob­
lem to your dealer.

Register can’t be forward ref (Code 82)

Relative jump out of range (Code 53)
Relative jumps must be within the range - 128 to +127 of the current
instruction. You’ve tried to jump beyond this range.

Segment parameters are changed (Code 24)
The list of SEGMENT arguments is not identical to that at the first time
this segment was used.

7-8 PROGRAMMER’S TOOL KIT, II

Shift count is negative (Code 30)
The shift expression generated results in a negative shift count.

Should have been group name (Code 12)
MACRO-86 expects a group name but something else was given.

Symbol already different kind (Code 15)
You’ve attempted to define a symbol differently than in a previous
definition.

Symbol already external (Code 73)
You’ve attempted define a symbol as local when it has already been defined
as external.

Symbol has no segment (Code 21)
You’re trying to use a variable with SEG when the variable has no known
segment.

Symbol is multi-defined (Code 5)
This error occurs when MACRO-86 encounters a symbol that is later
redefined.

Symbol is reserved word (Code 16)
You’ve attempted to use an assembler reserved word illegally. (For exam­
ple: declaring MOV as a variable.)

Symbol not defined (Code 9)
You’ve used a symbol that has no definition.

Symbol type usage illegal (Code 14)
Illegal use of a PUBLIC symbol.

Syntax error (Code 10)
The syntax of the statement does not match any recognizable syntax.

Type illegal in context (Code 11)
The type specified has an unacceptable size.

MACRO-86 7-9

Unknown symbol type (Code 3)
A symbol statement has something in its type field that MACRO-86 can­
not recognize.

Usage of ? (indeterminate) bad (Code 75)
You’ve used "?” incorrectly. For example: ? + 5.

Value is out of range (Code 50)
Value is too large for the expected use. For example: MOV AL,5000.

Wrong type of register (Code 19)
The directive or instruction expected one type of register, but another was
specified. For example: INC CS.

I/O HANDLER ERRORS

These error messages are generated by the I/O handlers. They have a different
format from that used by other error messages.

7
Assembler Errors
The general format for assembler errors is:

MASM Error — error-message-text
in: filename

Filename is the name of the file being handled when the error occurred.

The error-message-text is one of the following messages:

Data format (Code 114)

Device full (Code 108)

Device name (Code 102)

File in use (Code 112)

7-10 PROGRAMMER’S TOOL KIT, II

File name (Code 107)

File not found (Code 110)

File not open (Code 113)

File system (Code 104)

Hard data (Code 101)

Line too long (Code 115)

Lost file (Code 106)

Operation (Code 103)

Protected file (Code 111)

Unknown device (Code 109)

Run-Time Errors
These messages are displayed while your assembled program is being executed.

Internal Error
Usually caused by an arithmetic check. Notify your dealer if this error occurs.

Out of Memory
This message has no corresponding number. Either the source is too big or
there are too many labels in the symbol table.

MACRO-86 7-11

7.3 NUMERICAL LIST OF ERROR MESSAGES
CODE __________ MESSAGE_________

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1 21
1 22

23
24
25
26
27
28
29
30
31
32
33
34
35

Block nesting error
Extra characters on line
Register already defined
Unknown symbol type
Redefinition of symbol
Symbol is multi-defined
Phase error between passes
Already had ELSE clause
Not in conditional block
Symbol not defined
Syntax error
Type illegal in context
Should have been group name
Must be declared in pass 1
Symbol type usage illegal
Symbol already different kind
Symbol is reserved word
Forward reference is illegal
Must be register
Wrong type of register
Must be segment or group
Symbol has no segment
Must be symbol type
Already defined locally
Segment parameters are changed
Not proper align/combine type
Reference to mult defined
Operand was expected
Operator was expected
Division by 0 or overflow
Shift count is negative
Operand types must match
Illegal use of external
Must be record field name
Must be record or field name
Operand must have size

7-12 PROGRAMMER'S TOOL KIT, II

CODE MESSAGE

36 Must be var, label or constant
37 Must be structure field name
38 Left operand must have segment
39 One operand must be const
40 Operands must be same or 1 abs
41 Normal type operand expected
42 Constant was expected
43 Operand must have segment
44 Must be associated with data
45 Must be associated with code
46 Already have base register
47 Already have index register
48 Must be index or base register
49 Illegal use of register
50 Value is out of range
51 Operand not in IP segment
52 Improper operand type
53 Relative jump out of range
54 Index displ. must be constant
55 Illegal register value
56 No immediate mode
57 Illegal size for item
58 Byte register is illegal
59 CS register illegal usage
60 Must be AX or AL
61 Improper use of segment reg
62 No or unreachable CS
63 Operand combination illegal
64 Near JMP/CALL to different CS
65 Label can’t have seg. override
66 Must have opcode after prefix
67 Can’t override ES segment
68 Can’t reach with segment reg
69 Must be in segment block
70 Can’t use EVEN on BYTE segment
71 Forward needs override
72 Illegal value for DUP count
73 Symbol already external

7

MACRO-86 7-13

CODE MESSAGE

74
75

DUP is too large for linker
Usage of ? (indeterminate) bad
(Code 75)

76
77
78
79
80
81
82
83

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

More values than defined with
Only initialize list legal
Directive illegal in STRUC
Override with DUP is illegal
Field cannot be overridden
Override is of wrong type
Register can’t be forward ref
Circular chain of EQU aliases
Hard data
Device name
Operation
File system
Device offline
Lost file
File name
Device full
Unknown device
File not found
Protected file
File in use
File not open
Data format
Line too long

7-14 PROGRAMMER’S TOOL KIT, II

SYSELECT

COPYRIGHT

© 1983 by VICTOR.®

All rights reserved. This publication contains proprietary information which
is protected by copyright. No part of this publication may be reproduced,
transcribed, stored in a retrieval system, translated into any language or com­
puter language, or transmitted in any form whatsoever without the prior writ­
ten consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
MS-DOS and MS-LINK are registered trademarks of Microsoft Corporation.
CP/M-86 is a trademark of Digital Research.
Intel is a trademark of Intel Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind whatsoever with
respect to the contents hereof and specifically disclaims any implied warranties
of merchantability or fitness for any particular purpose. VICTOR shall not
be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this
publication or its contents.

VICTOR reserves the right to revise this publication from time to time and to
make changes in the content hereof without obligation to notify any person
of such revision or changes.

First VICTOR printing February, 1983.

ISBN 0-88182-017-2 Printed in U.S.A.

II PROGRAMMER’S TOOL KIT, II

CONTENTS

1. Operating System Generation... 1-1
1.1 Introduction...1-1
1.2 Diskette Space...1-1
1.3 Using SYSELECT...1-2
1.4 Selection Menus... 1-3

Character Set Selection...1-3
Alternate Character Set...1-3
Keyboard Selection Set ...1-3
Primary Printer Selection...1-4
Secondary Printer... 1-4
Serial Port Configuration...1-4
Logo Selection..1-4
Banner Skeleton Selection...1-5
Current Configuration... 1-5
Writing the Operating System Out.. 1-5

2. System Operation...2-1
2.1 SYSELECT Batch Files...2-1
2.2 System Selection Files..2-2

Character Set Files... 2-3
Keyboard Table File... 2-4
Banner Skeleton File...2-4
Logo Files..2-5

2.3 Files Generated by SYSELECT... 2-5
2.4 Instruction Files... 2-6

EXHIBITS
2a: System Selection File Extensions.. 2-3
2b: Information Displayed by Character Set Tables..................................... 2-4

SYSELECT III

CHAPTERS

1. Operating System Generation 1

2. System Operation 2

SYSELECT V

OPERATING SYSTEM GENERATION

INTRODUCTION 1.1

SYSELECT is a system selection program that lets you generate a custom
operating system for MS-DOS. Operating system components are con­
figured for International, British, French, Italian and German variations.
Configurable system components include character set, alternate character
set, keyboard, logo and banner selection. User-configured I/O com­
ponents include primary printer, secondary printer and serial communica­
tions port.

SYSELECT produces three intermediate program files that describe the
system being generated. The operating system is generated by
BIN2REL.EXE and LINK.EXE. BIN2REL.EXE converts binary image
files to relocatable Intel object module format files. LINK.EXE combines
component system files into an operating system. SYSLOC.EXE
reformats the output of LINK.EXE to the appropriate form for
SYSCOPY.EXE. SYSCOPY.EXE writes the operating system to diskette
or hard disk.

DISKETTE SPACE 1.2

The configuration diskette contains a large number of files, reducing the
available user space. The linker and SYSLOC create the files
MSDOS.EXE and MSDOS.BIN which SYSCOPY.EXE copies onto the
boot tracks. These files can be deleted before starting another SYSELECT
session. Space can also be increased by creating a separate configuration
diskette without unneeded .CHR, .KB, and .LGO files.

SYSELECT 1-1

1.3 USING SYSELECT

1. Before beginning system selection and generation, use DCOPY to
duplicate the system generation diskette. Store the original system diskette
in a safe place.

2. Make sure you have a formatted diskette (or a hard disk volume that has
already been set up using HDSETUP) in the destination drive. Place the
SYSELECT diskette in drive A (or in the floppy drive of a hard disk
system) and press the reset button to boot the computer. MS-DOS signs
on and asks you to set the time and date. Then SYSELECT prompts you
for the type of system you want to generate.

3. System parameters are selected from menus. The first SYSELECT menu
gives you three choices:

► Generate a New Operating System

► Modify an Existing Operating System

► Help — Display Instructions

The first choice (“Generate a New Operating System”) is highlighted. To
generate a new system, press the Return key. To modify an existing
operating system, press the space bar to advance to that selection. When
“Modify an Existing Operating System” is highlighted, press the Return
key. To get Help, press the space bar again and then press the Return key
when “Help — Display Instructions” is highlighted.

The “Generate a New Operating System” option takes you through the
entire process of creating a new configuration. If you make an error during
this process, the configuration acceptance display at the end of the pro­
gram lets you correct that mistake.

The “Modify an Existing Operating System” option lets you change an
existing configuration. When you select an existing control file for
modification, SYSELECT displays the configuration specified by that
control file. Any part of that configuration can then be changed without
going through an entire reselection process.

1-2 PROGRAMMER’S TOOLKIT, II

SELECTION MENUS 1.4

CHARACTER SET SELECTION

The available character sets are displayed. Each set is described by banner
name, display class, descriptive comment and file name.

► The banner name is the name of the character set (including version
number) displayed in the banner.

► The display class describes the graphic subset (hex 21 through hex 7E) of
the character set and helps you avoid incompatible combinations of
character set and keyboards. For example, the International display class
defines hex 23 as the crosshatch (#) and the British class defines the same
hex as the British monetary sign.

► The file name is the name of the file containing the character set.

ALTERNATE CHARACTER SET

An alternate character set lets application programs display an entirely dif­
ferent character set of 128 or 256 characters. Including an alternate character
set in a configuration decreases the available memory by up to 8K bytes.

KEYBOARD SELECTION

This menu lets you select a new keyboard table. (The keyboard table defines
the codes generated or keyboard functions done when a key is pressed.) The
standard keyboard tables are provided on your SYSELECT disk­
ette; however, it is possible to generate your own keyboard tables using the
KEYGEN utility.

The Keyboard Selection menu has the same format as the Character Set Selec­
tion menu.

SYSELECT 1-3

PRIMARY PRINTER SELECTION

The Primary Printer Selection menu sets the name of the default printer of the
logical device LST:. The choices available are serial printer (ULI:) or parallel
printer (LPT:). You can change these values at run time by using the SETIO
utility program.

If a serial printer is selected, SYSELECT displays the menu for serial port con­
figuration. (Refer to the Serial Port Configuration menu for more details.)

SECONDARY PRINTER

You can select a secondary printer as well as a primary printer. If a serial
printer is chosen as the secondary printer, the next menu to appear is the Serial
Port Configuration menu. The primary and secondary printers cannot both
be parallel printers because the system supports only one parallel port.

SERIAL PORT CONFIGURATION

This menu lets you set the baud rate, stop bits and parity of the two serial
ports. Information on these settings is contained in the user menu for each
device you want to connect to a serial port.

The available baud rate choices are 50, 75, 110, 134.5, 150, 200, 300, 600,
1200, 1800,2000, 2400, 3600 and 4800. The choices for stop bits are 1,1.5 and
2. The choices for parity are even, odd and none. (The parity bit can be set by
software for transmission; parity is not checked on incoming characters.)

LOGO SELECTION

The logo is a unique set of graphics characters that form the logo display. Nor­
mally, the logo is displayed as part of the banner when the operating system
is loaded. If you’ve generated a system without a logo character, then you
must select a banner without a logo.

1-4 PROGRAMMER’S TOOLKIT, II

BANNER SKELETON SELECTION

The banner skeleton is a framework that holds the logo and configuration in­
formation displayed in the banner. For each configuration, the banner
skeleton contains different character set, keyboard, and other information.

CURRENT CONFIGURATION

This menu displays the current configuration. The first selection in the upper
box starts the process of writing the intermediate files onto disk. The second
choice starts the selection process from the beginning. The items displayed in
the lower box are the values of the current configuration. Any of these values
can be changed by moving the highlight to the item to be changed and press­
ing the Return key. The menu for the specified selection is displayed for
modification.

After the modification is made, the updated Current Configuration menu is
displayed. If you choose “Accept the Current Configuration”, SYSELECT
displays the menu for writing the operating system out.

WRITING THE OPERATING SYSTEM OUT

This menu displays the current intermediate files. You can select an existing
file, or you can enter a new file name by selecting the “User Entered File” op­
tion. After you make your choice, you’ll be asked to confirm it. If you answer
No, control returns to the Current Configuration menu. If you choose to write
the operating system to the specified file, SYSELECT does this job (which can
take several minutes).

SYSELECT 1-5

2
SYSTEM OPERATION

This chapter describes the operation of the system selection program, in­
cluding SYSELECT programs, system selection files and files generated by
SYSELECT.

2
SYSELECT BATCH FILES 2.1

There are four SYSELECT batch files: FL.BAT, HD.BAT, FLIEEE.BAT
and HDIEEE.BAT. Each batch file runs the same five programs:
SYSELECT.EXE, BIN2REL.EXE, LINK.EXE, SYSLOC.EXE and
SYSCOPY.EXE. The difference between the batch files is that each tells
the linker to link different object files, depending on the configuration.

For example, if you have a hard disk system and you want to use the IEEE 488
driver in your operating system, then choose the HDIEEE.BAT file. This file
tells the linker to link the appropriate object modules for your system. To in­
voke HDIEEE.BAT, type HDIEEE after the A> prompt.

SYSELECT.EXE
SYSELECT.EXE makes the system component selection. Available options
are:

► Generate a new system, or modify an existing one.

► Select a keyboard table.

► Select a display character set.

► Select the printer type.

► Select the serial ports options (baud rate, stop bits, parity).

► Select the logo file.

► Select the banner file.

SYSELECT 2-1

2

BIN2REL.EXE
BIN2REL.EXE converts binary image files to relocatable Intel object module
format files.

LINK.EXE
LINK.EXE collects the files selected and created by SYSELECT and links
them into a single file called MSDOS.EXE.

SYSLOC.EXE
SYSLOC.EXE reformats the MSDOS.EXE file into the proper format for
SYSCOPY.EXE.

SY SCOP Y. EXE
The SYSCOPY utility makes a diskette or hard disk volume into a bootable
diskette or volume. It is also used to replace a system image on a diskette or
on a hard disk volume.

In order to boot the system on a hard disk volume, you must use HDSETUP
to select that volume as the primary boot volume (in addition to making the
volume bootable with SYSCOPY.EXE). If a hard disk volume is the current
primary boot volume, the newly copied system is used on the next boot from
the hard disk.

Similarly, a diskette must first be formatted in order for SYSCOPY.EXE to
work.

2.2 SYSTEM SELECTION FILES

The directory has information on keyboards, character sets, translation tables,
banner skeletons and the logo. These files can be found by searching the direc­
tory for their file extensions. These extensions are listed in Exhibit 2a.

2-2 PROGRAMMER’S TOOL KIT, II

Exhibit 2a: System Selection File Extensions

FILE TYPE EXTENSION

Keyboard
Character set
Banner skeleton
Translation table
Logo

.KB

.CHR

.BNR

.XLT

.LGO

SYSELECT expects a particular format for each file type. Errors occur if
other file types use any of the extensions in Exhibit 2a, or if the format of a
file type is modified.

CHARACTER SET FILES

Files with the .CHR extension contain character set tables. These tables con­
tain data corresponding to the dot matrix displayed by each character on the
keyboard, and information on the character set name, version number, origin
and date of origin, and display class. Most of this information is displayed by
SYSELECT to help you select the correct character set. The format of the in­
formation in the first sector of these files is shown in Exhibit 2b.

The banner name and version are the name and version number of the
character set placed in the banner. The banner is displayed when the system
is booted.

SYSELECT 2-3

Exhibit 2b: Information Displayed by Character Set Tables

* 31 bytes are displayed by SYSELECT
** Not displayed by SYSELECT

LENGTH
TYPE OF INFORMATION (BYTES)

File type (K - keyboard; C = character)
Format version
Display class
Banner name
Filler (a space)
Comment
Originator**
Date (yy/mm/dd)**
Length**
Unused**

1
1

12
8
1

35*
16

8
4

51

KEYBOARD TABLE FILE

Files with the .KB extension are keyboard table files. These files contain in­
formation on the keyboard code sent to the processor when a key is pressed,
and information on the keyboard table name, version number, origin, date
of origin, and display class displayed by the system selection program.

BANNER SKELETON FILE

Files with the .BAN extension are banner skeleton files. (The banner is infor­
mation displayed during system boot, including the logo and configuration
information.) The banner skeleton is a set of ASCII strings containing the
escape sequences and characters needed to display the logo and configuration
information.

SYSELECT displays the banner files available for selection. A copy of the
banner you specify is made with the names of the chosen keyboards and

2-4 PROGRAMMER’S TOOL KIT, II

character sets placed in the correct locations. The first sector of the banner
contains the location of these fields. If the first byte is not zero, SYSELECT
does not customize the banner. If data in the first sector is not “recognizable,”
default locations are used during custom banner generation.

If a custom banner is written, the first sector has this format: The first byte
is zero, followed by ODH OAH. This is followed by the length of the file in
decimal (with a leading and a trailing space), followed by ODH OAH.

The location of the keyboard name and character set name follow the same
format as the file length. If the file length is 639 characters, the keyboard name
is at byte 502, and the character set name is at 541. The first 24 bytes of the
banner file are shown below (in hex):

00 0D 0A 20 36 33 39 20 0D 0A 20 35 30 32 20 0D 0A 20
35 34 31 20 OD OA

LOGO FILES

Like the character set, the logo contains data that corresponds to a set of
special characters. These characters represent the set of dots in the logo. If the
size of the logo is nonstandard, the first byte must contain its length in sectors.
Sixteen-sector logo files are supported.

FILES GENERATED BY SYSELECT 2.3

*.CTL Files
The primary output of SYSELECT is a control file containing the specifica­
tions of the operating system. Existing control files can be modified by using
the “Modify an Existing Operating System” option.

SYSELECT 2-5

*.SPR Files
An *.SPR file is generated for each operating system selected by SYSELECT.
This file contains system parameter data to be loaded into the operating
system.

*.BNR Files
A *.BNR file (banner file) is generated each time you select an operating
system. This file is a customized version of the selected banner skeleton file.

2.4 INSTRUCTION FILES

The file in the SYSELECT.HLP program contains information that tells you
how to use SYSELECT.

2-6 PROGRAMMER’S TOOL KIT, II

