
White Crane

WHITE CRANE SYSTEMS
WCS DISK UTILITIES

for the

VICTOR 9000
Personal Computer

REQUIRES MS-DOS 2.11

$50.00

Copyright © 1984
WHITE CRANE SYSTEMS
3194 Friar Tuck Way
Doraville, GA 30340

The White Crane Systems Disk Utilities package contains the following
programs:

FPATH.COM
MV.COM
RM.COM
CP.Com
SORTDISK.COM
X.COM
PPORT.SYS
PBUFF16.SYS
PBUFF32.SYS
PBUFF64.SYS

File Path facility
Move files
Remove files
Copy files
Sort Disk directory
Execute multiple commands
Parallel Port driver
16K Print Buffer
32K Print Buffer
64K Print Buffer

In addition, the following two public domain programs are provided free
of charge:

SCRNSAVE.COM - Automatically Dim Screen
SDIR.COM - Display Sorted Directory

Fifteen pages of documentation are provided, designed to fit into the MS-
DOS Users Guide.

FPATH.COM
MV.COM
RM.COM
CP.Com
SORTDISK.COM
X.COM
SCRNSAVE.COM
SDIR.COM

NEW PROGRAMS ADDED TO THE WCS DISK UTILITIES
8 April 1986

Reformatted for PS Technical Wordprocessor
by R.N. Folsom, I December 1989.

This fiie covers new programs have been added to
the WCS Disk Utilities with version 2.00. (RNF:
BK, CP, MV, and RM have been renamed BKF, CPF, MVF,
and RNF.)

WHEREIS.COM is a utility for finding files on a
hard disk that has many sub-directories.

BACKLIP.COM (BKF.COM) is used to copy only new files
from one drive or directory to another. A full
page of documentation has been added to the manual
cover ing BACKUP.

CHKLABEL.COM is a new utility for which printed
documentation is not yet available. You can use
CHKLABEL in a batch file to make certain that the
correct diskette has been inserted. The command
"CHKLABEL d:label" will set the error level to 1 if
the diskette in drive ds does not have the Volume
Label "label'’. Here is an example of its use with
BACKUP:

sNEXT Mabel to ask for next disk
REM Please insert diskette BACKUPS in drive Bs
PAUSE
CHKLABEL B:BACKUPS
IF ERRORLEVEL 1 GOTO NEXT
BKF C:\DIR3 B:

PARK.COM will park the read/write heads of al 1
drives C: and above. Simply run the command PARK
before turning off your machine. You may change
your mind and continue operations by pressing any
key to return to DOS.
If you have a single hard disk volume as A:, then
use the program PARKA.COM instead of PARK. PARKA
parks drive As, skips B:, and parks all drives C:
and above.

WHEREIS.COM
BACKLIP.COM
BKF.COM
CHKLABEL.COM
PARK.COM
PARKA.COM

DOCUMENTATI ON FOR SCREEN.COM

White Crane Systems utility
Originally for Dbase 111 on the Victor 9000

The program SCREEN handies most of the IBM style
screen and keyboard functions. It replaces another
White Crane Systems utility called SCRNSAVE which
performs only the one function of dimming the screen.
If you are currently using SCRNSAVE, you must discard it
and use SCREEN instead. Be sure to remove SCRNSAVE from
your AUTOEXEC.BAT file and replace it with SCREEN, as
SCREEN will not install properly if SCRNSAVE has already
been run.

Screen performs three different user functions in
addition to working with the BIOS enhancements:

The command "SCREEN 5" will automatically dim your CRT
5 minutes after you stop typing. Pressing any key, such
as shift or ALT, will restore the screen to its previous
brightness. You may specify a timeout value of from 3
to 30 minutes. The default timeout is 3 minutes.

There will be times when you do not want the screen
turning off after a few minutes of inactivity. You can
disable the screen save function with the command
"SCREEN-0". Also, some programs bypass the Victor
keyboard handier. If you run Lotus 123 with screen save
active, your screen will go blank 5 minutes after you
enter 123 even though you are typing. In this case, use
the ALT-UP cursor key to raise the brightness of the
screen. Before running programs such as 123 or
Crosstalk, it is a good idea to disable screen save
first, then turn it back on with "SCREEN 5" when you
exit the program.

SCREEN provides you with a text Print Screen facility,
if you press the CTRL (LOCK), ALT, and RIGHT SHIFT keys
at the same time, SCREEN will dump a copy of your screen
to the parallel printer. If you have the WCS Print
Buffer (PBUFF) installed, the screen dump will go into
the buffer rather than straight to the printer.

With SCREEN installed, you can reboot your Victor
from the keyboard by pressing the CTRL-ALT-DEL keys at
the same time.

SCREEN.COM

Instead of the Victor Supplied parallel port driver PPORT.EXE, you
can install a Print Buffer by putting the line “DEVICE =
PBUFF64.SYS” in the file CONFIG.SYS in place of the line naming
PPORT.EXE. The files PBUFFnn.SYS (where nn = 2, 4, 8, 16, 32,
or 64) set aside 2 to 64K of system memory for use as a Parallel Port
Print Buffer. If you have a large system (512K), you will probably want
to use a 32K or 64K buffer. Smaller systems may dictate the use of
a smaller buffer.

With a Print Buffer installed, characters sent to the Listing Device (LST:
or PRN:) are not immediately sent to the printer. Instead, PBUFF stores
them in its buffer. Printing is done in background whenever there is
free system time. This way you can execute other programs while the
printer runs. Free system time is found whenever keyboard input is called
for. PBUFF then prints one character if the printer is ready. Your printer
should print at full speed whenever the program running on the com­
puter is expecting you to type something on the keyboard. The printer
will slow down or even stop temporarily when you are running a disk
intensive program such as FORMAT or DISKCOPY.

PRINT.COM (page 7-75) may be used to spool files to the printer, but
this will be noticeable slower than using the command “COPY
FILENAME PRN” to copy your file to the printer. Typically it may
take 2-3 minutes to copy a 40K file into the Print Buffer, following
which the printer will run for 15 minutes while you are able to do other
work. Be aware that PRINT.COM expands tabs while COPY does not.
If the file you are printing contains tabs, you may need to preset the
tab settings on your printer.

You can clear out the print buffer by holding down the ALT key and
pressing the CAN key. You can send a Form Feed to the printer with
the ALT-EOL key combination. Not that these two features depend on
the standard Victor definition of these keys as hex codes DE and DF.
These keys may not put out the right codes if you use MODCON to
install a special keyboard.

If you really have to conserve memory on your system, you can use
the file PPORT.SYS. This is a direct replacement for the Victor parallel
port driver PPORT.EXE. It requires IK less system memory. Also,
you can remove the serial port drivers PORTA.EXE and PORTB.EXE
if you are not driving a serial printer. This will save an additional 7K
of memory.

MS-DOS COMMANDS 7-12a

PRINT.COM
PRINT.COM

COPY FILES (CP) &PF

CP [/D] [/0] [/V] source [source] . . . [destination]

where source, destination — [path] [filename]

CP.COM is an external command that copies files. It is based upon
the UNIX CP command and compliments the MV and RM commands.
Its advantages over the COPY command are the use of multiple source
files and the Verify option. It may also be used for additional safety
as it will not automatically copy over an existing file.

CP copies the source files specified on the command line to the destina­
tion path\file. Wild cards may be used. For example:

CP B:*.BAS

Copies all BASIC files from drive B: to the current directory, provid­
ed they do not already exist there. You may also specify a different
destination:

CP B:\ASM A:

Copies all assembly files from B: to A: Unlike the COPY command,
multiple files may be copied with one command. For example:

CP *.COM *.EXE *.BAT C:\BIN

Copies all binary and batch files to the \BIN directory on drive C:

Note that if there is more than one path or file name on the command
line, the last one is taken as the destination.

MS-DOS COMMANDS 7-28a

CP.COM

CP has several option flags:

/D Destructive copy. Unlike the COPY command, CP will not
automatically copy over a file which already exists. If the /D op­
tion is specified, CP will overwrite an existing file.

/O Override. This option causes CP to override the read-only attribute
of any file and copy over it anyway.

/V Verify copy. If this option is specified, CP will display the name
of the file that is about to be copied. You are given the choice
to copy it or not. Valid responses are:

Y - Yes Copy this file.
N - No Skip this file.
C - Continue Copy this and all remaining

files without verify.
Q - Quit Skip this file and Quit.

Your answers do not have to be upper case, and the action is taken
as soon as one valid letter is typed. For example, the command
“CP /V A:*.COM D:", followed by “ynnyync”, gives the following
output:

Copy A:CP.COM [yncq]? Yes
Copy A:FPATH.COM [yncq]? No
Copy A:MV.COM [yncq]? No
Copy A:RM.COM [yncq]? Yes
Copy A:SCRNSAVE.COM [yncq]? Yes
Copy A:SDIR.COM [yncq]? No
Copy A:SORTDISK.COM [yncq]? Continue
A:SORTDISK.COM
A:S.COM

5 File(s) copied

The error level is set if an error is encountered, and may be tested in
a batch file to branch to other operations if there was an error, (see MV.)

7-2 8b MS-DOS COMMANDS

A:CP.COM
A:FPATH.COM
A:MV.COM
A:RM.COM
A:SCRNSAVE.COM
A:SDIR.COM
A:SORTDISK.COM
A:SORTDISK.COM
A:S.COM

FILE PATH (FPATH)

FPATH [path] [;path] ...

FPATH.COM is an external command that allows the user to define
a “file path” similar to the DOS PATH. When any application pro­
gram attempts to open a file in the current directory, such as an overlay
or data file, FPATH first tries to open the file in the current directory.
If that fails, FPATH attempts to open the file in each directory specified
in the File Path.

You may specify a list of path names and optionally drive letters,
separated by semicolons. For example, to set the File Path to first search
a RAM disk (D:) and then the BIN directory on drive C: you would use:

FPATH D:\;C: \BIN

Entering FPATH with no parameters displays the current File Path,
while FPATH; resets the File Path to no search.

FPATH is especially useful with programs that use overlays or “help”
files. If these files are placed in the \BIN directory along with the ex­
ecutable program, and both the path and fpath contain the path \BIN,
then you will be able to run the program from any drive or directory,
and both overlays and help files will be available to the program from
any drive or directory. This specifically does not work with dBase II
overlays because dBase looks first to see it the file is present before
trying to open it. Note that if an application attempts to open a file in
a specific directory, only that directory is tried, not the whole File Path.

Programmers can use FPATH to let their compilers find headers, in­
clude files, object files, or libraries on a RAM disk or in a library
directory.

MS-DOS COMMANDS 7-52a

FPATH.COM

MOVE FILES (MV) /1\VP

MV [/D] [/0] [/V] source [source] ... [destination]

where source, destination = [path] [filename]

MV.COM is an external command that moves files from one drive or
directory to another. If the source and destination drives are the same,
only the directory entry is moved to the new directory. This is much
faster than COPY followed by DEL as no physical copy of data is
necessary. If the destination directory is on another drive then the file
is copied to the destination and the source file is deleted. Thus the MV
command is more efficient than COPY followed by DEL, and safer
as MV will not automatically write over any file.

If only one file path\name is specified, it is moved to the current direc­
tory. Wild cards are allowed in the file name. If a drive letter is not
specified the default drive will be used. If a path is not specified the
current directory will be used. For example:

MV A:*.COM

Moves all .COM files from A: to the current directory. You may also
specify a different destination:

MV \SOURCE *.ASM \SOURCE\ASM

Moves all assembly code files from the \SOURCE directory to the
XSOURCE \ASM directory. Since these are both on the default drive,

only the file names will have to be moved.

MS-DOS COMMANDS 7-68a

MV.COM

If multiple file paths \names are given, the last is taken as the destina­
tion directory. Multiple source files can be named. For example:

MV *.COM *.EXE C: \BIN

Will move all .COM and .EXE files in the current directory to the XBIN
directory of drive C:. The file names will not be changed. The
command:

MV A:PROG.EXE D:NEWPROG.EXE

Copies the file A:PROG.EXE to drive D: under the new name
NEWPROG.EXE and deletes the original file.

MV has several option flags:

/D Destructive Move. MV will not automatically destroy a destina­
tion file that already exists. If the option /D is added to the com­
mand line, MV will Delete any destination files of the same names
before it moves the source files.

IO Override. This option causes MV to override the read-only at­
tribute of any file and delete it if necessary before a move.

/V Verify Move. This option causes MV to display the name of the
file that is about to be moved, and have you verify the name. Valid
responses are:

Q - Quit

Y - Yes
N - No
C - Continue

Move this file.
Skip this file.
Move this and all remaining
files without verify.
Skip this file and Quit.

7-68b MS-DOS COMMANDS

Your answers do not have to be upper case, and the action is taken
as soon as one valid letter is typed. For example, the command
6 ‘MV /DV * .COM \BIN”, followed by ‘ ‘ynnc’', gives the follow­
ing output:

Move D:CP.COM [yncq]? Yes
Move D:EDT.COM [yncq]? No
Move D:RM.COM [yncq]? No
Move D:SCRNSAVE.COM [yncq]? Continue
D:SCRNSAVE.COM
D:SORTDISK.COM
D:X.COM

4 File(s) moved

The error level is set as shown below if an error is encountered. This
may be tested in a batch file to verify that the move occurred, and branch
to other operations if there was an error.

0 No Error.
1 invalid parameter.
2 Invalid number of parameters.
3 Parameter out of order.
4 Invalid directory.
5 No free file handles.
6 File creation error.
7 Insufficient disk space.
8 No files found.

MS-DOS COMMANDS 7-68c

D:CP.COM
D:EDT.COM
D:RM.COM
D:SCRNSAVE.COM
D:SCRNSAVE.COM
D:SORTDISK.COM
D:X.COM

REMOVE FILES (RM)

RM [/O] [/V] [/Z] [pathjfile [pathjfile

RM.COM is an external command that deletes files. It is based upon
the UNIX RM command to remove (delete) files.

RM deletes the files specified on the command line. Wild cards may
be used. Unlike the DOS DEL and ERASE commands, multiple files
may be removed with one command. For example:

RM *.OBJ *.EXE PROG.COM

Deletes all .OBJ and all .EXE files from the current directory, as well
as the file PROG.COM.

RM has several option flags:

/O Override. If this option is specified, RM will override the read­
only attribute of a file and delete it anyway.

/V Verify. This option causes RM to display the name of each file
that is about to be deleted, and ask you to verify the deletion.
Valid responses are:

Y - Yes
N - No
C - Continue

Delete this file.
Skip this file.
Delete this and all
remaining files without verify.
Skip this file and Quit.Q - Quit

MS-DOS COMMANDS 7-86a

RM.COM
PROG.COM
PROG.COM

For example, the command ‘ ‘RM /V \BIN’ ’ followed by ‘‘ynyynq’ ’
gives the following output:

Remove \BIN\ CP.COM [yncq]? Yes
Remove \BIN\ SCRNSAVE.COM [yncq]? No
Remove \BIN\FPATH.COM [yncq]? Yes
Remove \BIN\X.COM [yncq]? Yes
Remove \BIN\ MV.COM [yncq]? No
Remove \BIN\ PBUFF16.SYS [yncq]? Quit

/Z This option causes all specified files to be Zeroed first before dele­
tion. This process of writing zeroes over the entire file ensures
data security as the file cannot be recovered after deletion.

The error level is set as shown below if an error is encountered. This
may be tested in a batch file to verify that the deletion occurred, and
branch to other operations if there was an error.

0
1
2
3
4
5

No Error.
Invalid parameter.
Invalid number of parameters.
Parameter of out order.
Invalid directory.
No files found.

7-86b MS-DOS COMMANDS

CP.COM
SCRNSAVE.COM
/BIN/FPATH.COM
/BIN/X.COM
MV.COM

AUTOMATICALLY DIM SCREEN (SCRNSAVE)

SCRNSAVE n

SCRNSAVE.COM is an external command that dims your CRT screen
from 3 to 30 minutes after the last activity from the keyboard or the
screen. For example, the command:

SCRNSAVE 5

In your AUTOEXEC.BAT file will cause your screen to dim 5 minutes
after you last press a key, or your program last displays a character.
Pressing any key (including the shift keys) will restore the screen to
its original brightness. You may run SCRNSAVE to change the time
out value as often as you like. The default time out value is 3 minutes.
The command:

SCRNSAVE -D

Will disable SCRNSAVE. That is, the screen will never time out. This
is necessary-for some programs, such as Lotus 123, which bypass the
BIOS screen and keyboard routines. If you did not disable SCRNSAVE
before running 123, the screen would go blank 3 to 30 minutes after
you started. If this happens to you, simply use the ALT cursor keys
to increase the brightness. Programs that write directly to the screen
but still read the keyboard normally, such as Crosstalk, will allow the
screen to dim even though they are actively writing to it. In this case
you can turn the screen back on by pressing a shift key. To avoid frustra­
tion, you may want to use a batch file to disable SCRNSAVE, run 123,
then enable SCRNSAVE automatically.

MS-DOS COMMANDS 7-88a

SCRNSAVE.COM

SORTED DIRECTORY (SDIR)

SDIR [path] [filenamef.ext]] [options]

[options] /P - Print image - no esc sequences
ZE - No screen Erase
ZC - Single Column display
ZH - List Hidden files
ZB - List file size in Blocks (clusters)

* ZX - Sort by Extension
* ZS - Sort by Size
* ZD - Sort by DateZtime
* ZN - No sort, original order

SDIR.COM is an external command that lists the files in a directory
sorted in a chosen order. By default, SDIR lists all files in the current
directory, sorted by filename.ext with screen erase and pause. You may
specify any valid DOS path and obtain a listing of all or selected files
in any directory.

The option switches allow you to change the manner in which the files
are displayed. Multiple options are allowed, but only one of the four
sort options (labeled with ★ above) may be used at one time. For
example:

SDIR \BIN ZHZXZCZP

Lists all files (including hidden files) in the \BIN directory, sorted by
extension and displayed in a single column and in print image.

/Vote'.
q ^0^7/ v carcA/ve '=* •^'3

repoS* bi '7 —-X ,

MS-DOS COMMANDS 7-90a

SDIR.COM

The bottom line displays the total number of files listed, the number
of bytes they contain, and the number of bytes free on the disk. The
/B option shows file sizes in Blocks instead of bytes. Blocks (or clusters)
are the actual units of space allocated to a file. Thus a 40 byte file uses
up one Block on the disk. Block sizes are different for Single Sided,
Double Sided and Hard disks. You may specify a different block size
to be displayed with /B=nnn or /B=nnnK.

Files will be displayed in a single column unless there are more than
8 files. More than 8 files will be displayed in two columns unless you
use the /C option to force single Column display. The number of lines
at which SDIR switches to two columns is the fourth byte in the pro­
gram and can be changed to suit your preference using DEBUG (e.g.
debug sdir.com, elO3 14 (hex), w, q).

Unless the /E option is used, the screen is erased before the files are
displayed.

The directory will pause when the screen is full until a key is struck.
Headers and footer are displayed in bold with the file headers underlined.
Since these features use escape sequences which interfere with a printer
listing or use in a batch file, the /P option (Print image) turns off the
pause and all escape sequences.

7-90b MS-DOS COMMANDS

sdir.com

SORT DISK DIRECTORY (SORTDISK)

SORTDISK d: [/X | /S | /D]

where d: is the disk to sort
/X sorts by file extension
/S sorts by file size
/D sorts by date and time

default: sorts by filename.ext

SORTDISK.COM is an external command that sorts the root directory
of any disk. Since the sorted directory is written back to the disk, the
files will remain in sorted order. Deleted entries are sorted to the end
of the directory.

The disk may be sorted according to one of the following options:

/X Sorts the files alphabetically by file extension.

/S Sorts the files by increasing file size.

/D Sorts the files by file creation Date and time.

The drive to be sorted must be specified. If no option is specified the
files are sorted alphabetically by file name and extension.

Upon successful completion the Error Level is set to 0. Failure sets
the Error Level to 1. In batch files this may be tested with the IF
command.

=■ X. Oe /A

MS-DOS COMMANDS 7-110a

SORTDISK.COM

EXECUTE MULTIPLE COMMANDS (X)

X[;][command][;command] ...

X.COM is an external command that provides a simple way to execute
multiple commands and to create small batch files. A semi-colon is used
to separate multiple commands on a single line and to continue to the
next line. X creates a batch file, Z.BAT, containing all of the com­
mands, then executes Z. If a semi-colon was included before the first
command, Z.BAT is then deleted. If the leading semi-colon was not
included then you can re-run the commands simply by typing Z.

The list of commands can be continued on additional lines by ending
the current line with a semi-colon. If a semi-colon is required inside
one of the commands, it may be inserted by using ;; to represent one
semi-colon. For example:

X MASM PROG,PROG;; ;LINK PROG,PROG;; ;
EXE2BIN PROG PROG.COM ;RM PROG.OBJ PROG.EXE

Creates and executes a file Z.BAT containing:

MASM PROG,PROG;
LINK PROG,PROG;
EXE2BIN PROG PROG.COM
RM PROG.OBJ PROG.EXE

If you wish to keep the batch file you should rename Z.BAT to some
other, more descriptive name. Otherwise Z.BAT will be written over
the next time X is run.

MS-DOS COMMANDS 7-122

X.COM
PROG.COM
PROG.COM

RamDrive

INSTRUCTIONS FOR THE

WHITE CRANE SYSTEMS

RAM DRIVE
for the

VICTOR 9000
Personal Computer

REQUIRES MS-DOS 2.11

Copyright © 1984
WHITE CRANE SYSTEMS
Suite 151
6889 Peachtree Ind. Blvd.
Norcross, GA 30092

The White Crane Systems RAM DRIVE acts as an additional disk drive
which is up to 50 times faster than a floppy disk and 10 times faster than
a hard disk system. The size of the Ram Disk is chosen by the user, limited
to the amount of available memory. Unlike all other Ram Drives, the White
Crane Systems Ram Drive may be changed in size at any time without
having to re-boot the operating system. Ram Drive 2.11 works with both
Graphics and fixed disks.

CONTENTS

I. INSTALLING THE RAM DRIVE............................... p. 2

II. SETTING THE RAM DISK SIZE p. 2

III. CHANGING THE RAM DISK SIZE.................................. p. 3

IV. TECHNICAL INFORMATION p. 4

1

I. INSTALLING THE RAM DRIVE

The first thing you should do upon opening this package is put a write
protect tab on the disk and make a working copy of the programs.
The White Crane Systems Ram Drive consists of two files: RAM-
DRIVE.SYS and RAMDRIVE.COM. You should copy both of these files
onto your system boot disk (either your hard disk or the floppy disk you
use when you first turn on your computer). Do not proceed with any of
the operations below until you have made your working copy and safely
stored your original disk.

RAMDRIVE.SYS is an installable device driver under MS-DOS 2.00 and
above. It is installed when DOS boots if it is named as a device in the
file CONFIG.SYS. Edit the file CONFIG.SYS using EDLIN (supplied
with the operating system) or any other text editor or word processor. Enter
the line “DEVICE - RAMDRIVE.SYS” in the file and exit your text

% editor. A sample CONFIG.SYS file is included with Ram Drive. ;

You should now re-boot your computer. The Ram Drive will appear as
the next drive letter available on your system. If you have two diskette
drives (A: and B:) the Ram Drive will automatically become C:. If you
have a hard disk as drive C: the Ram Drive will become drive D:, etc.

II. SETTING THE RAM DISK SIZE

The command to set the Ram Disk size is:

RAMDRIVE /S = nK /D = m /X

Where the parameters set the disk size, number of directory entries, and
erase the disk respectively.

When your computer is first turned on, (or rebooted), the Ram Disk will
have a size of near zero (256 bytes,, the smallest allowed by the operating
system). In order to make the disk large enough to be useful, you must
run the program RAMDRIVE.COM to set the disk size. For example:

j) u/ A*- 'J y
l-C J o

b

Covh ~ _Y

cpevYeo ==• jyj
2

RAMDRIVE.COM
RAMDRIVE.COM

RAMDRIVE /S=200K

The above command enlarges the Ram Disk to 200 Kb. You may now
copy files to drive C: (or whichever drive letter is next after your physical
drives). This command may be placed in your AUTOEXEC.BAT file where
it will be executed automatically on power up or re-boot.

III. CHANGING THE RAM DISK SIZE

A unique feature of the White Crane Systems Ram Drive is the ability
to change the disk size at any time, without having to re-boot the com­
puter. To change the disk size, simply enter the command:

RAMDRIVE /S=nK

Where n is the size in K that you want the Ram Disk to become (0 to 900
kilobytes). For clarity, you may want to add the letter K after the size,
but this is not necessary.

If you try to make the Ram Disk too small for the files already present,
the message “ERROR: Change would have destroyed files” will appear
instead, and no change will be made. You will have to delete some files
in order to shrink the Ram Disk to that size. Alternatively, you can specify
the switch /X on the command line, causing RAMDRIVE to delete all files
on the disk before changing size. For example, the command:

RAMDRIVE /S=50K /X

Will give you an empty 50K Ram Disk.

REMEMBER: The Ram Disk is temporary. If you wish to save your
files, you must copy them to a physical disk before turning off the power
or re-booting the computer. You should save important files often to guard
against the possibility of a power failure.

3

IV. TECHNICAL INFORMATION

None of the information in this section need be understood in order to use
the Ram Drive. It is included for the technically inclined user.

The Ram Disk defaults to 64 possible directory entries. This value may
be changed by using /D=m on the command line, where m is the max­
imum number of files allowed on the disk (up to 2048). Making this number
small (e.g. 16) can save up to 2K on a small system. For efficiency you
should use multiples of 8. If the /S switch is not specified in the RAM­
DRIVE command, the disk size will not change, only the directory size.
To make the Ram Disk as small as possible, enter:

RAMDRIVE /S=O /D = 1 /X

Ram Drive uses a cluster size of one 256 byte sector. This makes for very
efficient use of memory. On a hard disk, a 20 byte BATCH file might
actually take up 4 or 8 K, while on the Ram Disk it will take up only 1/4 K.

The disk size specified in the /S parameter is the amount of free space
on the disk, and does not include the space used by the FAT and direc­
tory. You can use the command CHKDSK to display the disk size and
the amount of free memory.

Space for the Ram Disk is allocated at the top of memory. This is impor­
tant to VICTOR 9000 users because it leaves the lower 128K of memory
available for use with GRAPHICS. The transient portion of COM­
MAND. COM is reloaded below the Ram Disk whenever the disk size is
changed.

Programmers may call RAMDRIVE.COM using the DOS EXEC func­
tion, thus changing the size of the disk from within an application. Ram
Drive makes use of interrupt 84h and thus is incompatible with other soft­
ware using the same interrupt (none known).

4

RAMDRIVE.COM

(2_(L<c

(UjrjoS fce/J '- pafr-(-' !-?

WHITE
CRANE
SYSTEMS

Copyright 1984 by
Dr. Guy C. Gordon

DISK TOOLS DOCUMENTATION

WHAT DISK TOOLS WILL DO

Disk Tools is designed to be as simple to use as possible,
while performing the complicated task of recovering deleted
disk files. Disk Tools will also help you recover files and
even parts of files from damaged disks.

When you erase a file under MS-DOS, using the DEL or
ERASE commands, the contents of the file are not actually
lost. All that is erased is the first letter of the file name, and
the allocation table that tells DOS where the file resides on
disk. All of the information in the file is there, waiting to be
recovered, until you copy something else over it. If you stop
immediately after your mistake you can almost certainly
recover the file using Disk Tools. If you copy another file
onto the disk, chances are good that you will wipe out at least
part of the deleted file, but you may still be able to recover
the rest of it. If you Format the disk, there is absolutely no
way to recover what was once on it.

Disk Tools will let you find the deleted file entry in the
disk directory, put back the first letter of the file name, and
help you find where the file resides on disk. In fact, in most
cases, Disk Tools will do all the work for you auto­
matically, asking only simple questions such as "what was the
first letter of the file name."

Disk Tools also provides an easy way to change file dates,
times, and attributes.

In more technical terms, Disk Tools allows you to view
and edit the file control areas of an MS-DOS disk known as
the Directory and the File Allocation Table (FAT). You may
view any sector on the disk as a hex/ASCII dump and as
readable text. The FAT and Directory are presented in a
tabular manner, allowing you to point to entries with the
cursor keys and change any part of an entry. Using this
feature you may change any part of a Directory entry such as
file name, date, time, size or attributes. You may also edit the
FAT to link any sector on the disk into your file. Using these
tools you can recover sectors from a damaged disk or a
deleted file "by hand" as it were.

The automatic file recovery feature will rebuild the FAT
by linking together contiguous clusters. If the deleted file was
not contiguous, Disk Tools will ask you to intervene and
provide the needed information of where the file continues
on disk. You will be able to determine this using the Sector
and FAT display facilities. This procedure recovers files in
place. You do not need a second disk to receive the recovered
files.

If the above two paragraphs are not clear to you, please
do not be discouraged. Disk Tools is really very simple in
operation, and the technical parts will be explained more
fully below. If you make a mistake and recover a file
incorrectly, you can always simply delete the file and start
over. And remember—understanding how best to use Disk
Tools will prove invaluable to you when Fred, down the hall,
erases your accounts receivable file next week.

2

FIRST THINGS FIRST

Upon receiving your Disk Tools package, please take the
time to read the licensing agreement printed on the cover.
When you have opened the package, FIRST put a write
protect tab on the diskette, and second, copy all the files to
your MS-DOS boot disk. Put your original Disk Tools
diskette away in a safe place.

FOR THE IMPATIENT

Here are the steps to follow in recovering a deleted file:
Run Disk Tools by typing DT followed by the drive letter of
the disk containing the file. Under MS-DOS 2.11 you may
specify the drive and path where the file was located. Use
Function Key C F21 to display the directory. Point to your
deleted file with the cursor keys and press RETURN. When
Disk Tools asks, supply the first letter of the file name.
When Disk Tools asks if you wish to save the recovered file
to disk answer Y for yes. Exit by using the t F71 Function
Key.

You can even combine the first three steps by specifying
the drive, path, and file name on the command line. Disk
Tools will automatically search the directory for your file.

However, I advise you to read the following instructions.
They will help you understand not only what to do, but why
you are doing it.

3

GETTING STARTED

To use Disk Tools to recover a deleted file (in this
example on drive A:) first enter the command DT A:. Under
MS-DOS 2.11 you can specify both a drive and a path name.
If none is given, Disk Tools will use the default drive and
directory.

Disk Tools is designed for use with any of the standard
Victor keyboards. These keyboards define the function keys
as hex codes Fl - FA or as Bl - BA, and the cursor keys as
"A, ''B, AC, AD. If you are using a program such as dBase II,
Wordstar, or Spellbinder, that install a different keyboard
you will need to use MODCON to install a Disk Tools
compatible keyboard. The file DT.KB is supplied and can be
installed with the command "MODCON DT.KB". You do not
need to use it if your standard function and cursor keys work
in DT.

Disk Tools will begin by showing you the "vital statistics"
for the chosen disk drive. You may never need the
information presented on this screen, but you can always
return to it if you do need it. From this screen you can exit
Disk Tools by pressing Function Key 7.

At the bottom of the screen is a short description of the
purpose of each of the Function Keys C Fl 1 - C F71, and a
status line showing the current disk drive, directory path
(MS-DOS 2.11 only), cluster and sector. Throughout this
document the wide Function Keys across the top of your
keyboard will be referred to by number and in brackets (e.g.
1 Fl 1 for Function Key 1).

Disk Tools uses the Function Keys to make it easy for
you to move around on the disk, looking at various parts of it
before making changes. Any time the Function Keys are
displayed at the bottom of the screen you may press one of
the keys EF11- 1F7 Jto perform its function. For example if
you are in the Directory with the cursor pointing to your file,
you can press E F51 to view the first sector of that file.

4

The Function Keys perform the following functions:

EFl] HELP - displays help for the current screen.

EF21 DIR - displays the current directory.

E F31 NAME - changes drive and directory and
searches for a file you name.

EF4] FAT - displays the File Allocation Table.

E F5] SECTOR - displays the Sector listed on the status
line.

EF6J - prints the directory or FAT

E F7] EXIT - exits from the current screen.

FUNCTION KEY EF13 HELP: Help is available at
almost every point within Disk Tools. Pressing the EFl]key
will display a help screen designed to give useful information
about the part of Disk Tools with which you are currently
working. Thus when you are in the Directory display, EFl]
will give you help on what you are seeing and what you can
do from the directory display.

FUNCTION KEY E F2] DIR: This function displays the
disk directory and allows you to choose a file by pointing to
it. The directory is presented one sector at a time, which is 16
entries on a normal MS-DOS disk, but may be fewer on a
RAM disk. Use the WORD <- and -> keys to page through
the directory one sector at a time.

5

The file name, extension, size, date, and time displayed
are the same as you would see if you simply executed the
DIR command from DOS. However in the Disk Tools
directory you will also see deleted and hidden entries, as well
as two other fields (PTR and Attributes).

Deleted files have had the first letter of the file name
replaced with a hex E5, which is displayed as the character
sigma (all other characters in a file name are upper case). The
PTR field indicates the starting cluster of the file (i.e. where
the file is located on the disk). The file Attribute may be any
combination of Read-Only, System, Hidden, Archive, Volume
ID, Directory, or deleted. If you are unsure of what any of
these attributes mean, please see your MS-DOS manual for
an explanation. Disk Tools shows you both the number which
is the attribute, and a list of what that number means. An
attribute of 0 means a normal every-day file.

When you enter the Directory display, the cursor is on a
message telling you that the RETURN key displays more file
entries. If you press the down cursor key, the cursor will
move down to the first file name. At the same time the status
line at the bottom of the screen (which had been displaying
the current directory sector) will display the starting cluster
and sector of this file.

Moving the cursor up and down with the cursor keys
allows you to choose any file on the screen. When you have
chosen a file, you can press C F41 to look at its linked list in
the FAT, or C F51 to display the starting sectors of the file, or
RETURN to go on to the File Access Screen. If you choose a
deleted file, Disk Tools will first ask if you want to recover
it before going on to the File Access Screen.

6

Under MS-DOS 2.11 you will see directory names listed
as well as file names. You can change directories from this
screen by pointing to a directory entry and pressing f F21.

FUNCTION KEY [F31 NAME: Pressing EF31 allows you
to enter a new drive, path or file name. If a file name is
given, Disk Tools will search the directory for the file, and if
found, will take you to the File Access Screen. If the file you
name has been deleted, Disk Tools will ask if you want to
recover the file.

For example you could enter B:REMIND.COM and Disk
Tools would switch to drive B: and search the current B:
directory for the file REMIND.COM. Under MS-DOS 2.11
you could enter \XTALK\IN and Disk Tools would switch to
that directory on the current drive. You could also combine
all three by entering B:\XTALK\IN\REMIND.COM.

If you wish to change diskettes while running Disk Tools,
you should first use H F71 to go back to the Disk Information
Table (the first screen). Now change disks and use C F31 to
tell Disk Tools to read the new drive. Changing diskettes
without using f F3 lean destroy data.

FILE ACCESS SCREEN: The net result of choosing a
file with either [F21or 1F3 J is to bring you to the File
Access Screen (unless the file is deleted, in which case you
are first asked if you want to recover the file). This screen
displays all the directory information about the chosen file,
and allows you to make changes. A menu is presented giving
you the choice of changing:

1) the file name
2) the file size
3) the file date and time
4) the first cluster pointer
5) the file attributes
6) delete the file

7

B:REMIND.COM
REMIND.COM
file://B:/XTALK/IN/REMIND.COM

You choose one of the above functions by pressing the
number indicated (not the Function Keys since they take you
to the other Disk Tools screens). Each of the above functions
will ask you to enter a new value for that particular field. If
you change your mind you may press RETURN to make no
change. Or you can enter the new name, or date, etc. and
then press RETURN. Number 6 is slightly different. Disk
Tools will show you the clusters linked to this file (from the
FAT) and ask that you confirm deleting this file. If you
answer Y for yes the file will be deleted.

You may make as many changes to this directory entry as
you like, even just to experiment. The results of the change
are displayed, but none of the changes are made permanent
by writing the directory back to the disk until you try to
leave the File Access Screen. If you have made changes, and
you press a Function Key, such as [F7] to exit, Disk Tools
will ask if you want to save those changes to disk. If you
answer Y for yes, the changes are made permanent on the
disk. If you press N for no the changes are discarded (not
written to disk).

FILE RECOVERY SCREEN: When the file you choose
with [F2] or C F3 3 is a deleted file, Disk Tools takes you to
the File Recovery Screen. You are asked to supply the first
letter of the file name. If you press RETURN at this point,
you will move on to the File Access Screen discussed above.
If you enter any letter (A - Z) Disk Tools will try to recover
the deleted file. You do not have to enter the original first
letter of the file name, but that is most likely the letter you
want.

8

Disk Tools will now proceed to recover the file by
rebuilding the FAT. The directory entry for your file
contains a pointer to the first cluster of this file. Thus we
know where to start. Unfortunately, the linked list in the
FAT which tells where the file continues was erased when the
file was deleted. Disk Tools attempts to rebuild this list by
making assumptions that match how MS-DOS creates files.

When MS-DOS writes a file, it starts with the first free
cluster on the disk, then continues in the next free cluster,
whether it is contiguous or not. Thus your file might end up
scattered over a large area of the disk, or it may be in one
contiguous group of clusters (called an extent).

Disk Tools first assumes that your file is contiguous. This
is a very good assumption for a fairly new disk onto which
you have just copied files. Older disks on which files have
been deleted and new ones copied are more likely to be
fragmented (i.e. the files will not be contiguous).

Disk Tools displays the clusters it is linking together as it
recovers your file. If enough contiguous clusters are available
for the size of file you are recovering, Disk Tools reports its
success and asks if you want to save these changes (i.e. the
file recovery) to disk, before taking you on to the File Access
Screen.

If Disk Tools runs into a cluster which is not free, then
the file must not have been contiguous. In this case you will
be asked to provide the next cluster number to link to this
file. Disk Tools will helpfully suggest that the most likely
number is that of the next free cluster, and tell you what that
is. The best thing to do here is to press RETURN to accept
the cluster number that Disk Tools has suggested. Instead, you
may enter any cluster number you like, or you may press a
Function Key such as [F4 J to look at the FAT or [F51 to
display sectors in order to find the rest of your file. If you
enter a cluster number, Disk Tools will continue linking
consecutive clusters until it either has enough clusters to hold
the file size, or it again runs into an allocated cluster.

9

The major problem with file recovery under MS-DOS is
that there is no automatic way to know if the next free
cluster really is part of your file. That information was
erased when the file was deleted. Only you can tell if a
cluster is part of your file. If the file is readable text, such as
a letter or a report, then it is very easy to spot the next
cluster of your file just by looking at it. Binary files, such as
.COM and .EXE programs are more difficult. Generally you
have to run the recovered program to see if it works. But you
can still look at the clusters to be certain you are not linking
text with the binary file you are trying to recover.

To this end, Disk Tools allows you to look at the File
Allocation Table (FAT) with t F4 1 to see which clusters are
free, and to view sectors on the disk with IIFZ H to see if they
contain parts of the file you are trying to recover. You
should always view the first sector of each cluster in a
recovered file, even if Disk Tools recovers the file without
having to ask you to intervene. If a wrong cluster does get
linked into your file, you can simply delete the file and try
again.

FILE ALLOCATION TABLE E F4D: The FAT is where
MS-DOS keeps information on which clusters on the disk are
free and which are allocated to files. A cluster is simply a
fixed number of sectors in a row. The Disk Tools drive
information table will tell you how many sectors there are in
each cluster on your disk.

There is one FAT entry for each cluster on the disk.
Each FAT entry is a hexadecimal number from 0 to FFF. (In
hexadecimal, the number 9 is followed by A (10), then B (11)
up to F (15), then 10 (16), 11 (17) etc.) If a FAT entry is 0
then that cluster is free and may be written over when a new
file is created. Any number from 2 to FF7 indicates that the
cluster is part of a file, AND points to the next cluster in the
file. The number FFF is used to indicate the End of File.
(FF7 is also used to indicate a bad- or reserved cluster if it is
not linked to a file.)

10

As an example of how the FAT works, consider the file
COMMAND.COM on a bootable single sided floppy diskette.
(You may want to use Disk Tools to actually look at an
MS-DOS boot disk while following this example.) In the
Drive Information Table (first Disk Tools screen) we see that
a single sided disk has 4 sectors per cluster.

Looking at the directory with CF21, we see that
COMMAND.COM is the second directory entry, right after
the hidden file MSDOS.SYS. The value PTR tells us that the
file starts at cluster 2. (Cluster 2 is the first cluster on the
disk—0 and 1 are not valid cluster numbers.) Since
COMMAND.COM is 19456 bytes long (MS-DOS 2.11) it will
use up 10 clusters on this disk. If you use the cursor keys to
move the cursor over the file name, the status line at the
bottom of the screen will display the starting cluster and
sector numbers.

Pressing C F41 displays the FAT. Since we were pointing
to C0MMAND.COM, the cursor is now pointing to the FAT
entry for the first cluster of that file. At the bottom of the
screen the status line tells us that we are pointing to cluster 2.
Also, a line asks us if we want to enter a new value for
Pointer 2.

The number in FAT entry 2 is 3. This means that the
next cluster in COMMAND.COM is cluster 3. Note that the
number under the cursor is a pointer to the NEXT cluster in
the file, NOT the current cluster number. The current cluster
is shown on the status line.

The number in entry 3 is 22. This means that the file is
non-contiguous. Instead of continuing in cluster 4, it
continues in cluster 22. Entry 22 contains a 23, and so on to
entry 29 which contains an FFF indicating that the file does
not continue anywhere (End of File). While the cursor is on
FAT entry 2, all clusters linked together in this file are
highlighted. This makes it easy to see just how fragmented
the file is. For C0MMAND.COM we see that the file is
contained in two extents.

11

COMMAND.COM
COMMAND.COM
COMMAND.COM
C0MMAND.COM
COMMAND.COM
C0MMAND.COM

Very seldom will you want to change a FAT entry
directly. If you do enter any new values, Disk Tools will ask
if you want to save the changes to disk when you exit the
FAT display.

For a single sided diskette the entire FAT fits on one
screen. For larger disks the FAT is displayed one screen at a
time. Pressing WORD -> pages to the next screen. The
WORD <- key will back up a page. A line at the top of the
screen tells you which clusters are displayed on this screen.
The status line will tell you where the cursor is, and clusters
on this screen will be highlighted if they are linked to the
cluster the cursor is on—even if the cursor is off screen.

Using the cursor keys, you may move the cursor to any
cluster. The current cluster and sector numbers are displayed
on the Status line at the bottom of the screen. The first two
entries in the FAT (0 and 1) do not point to clusters on the
disk. Rather, these numbers FF8 FFF identify the beginning
of the FAT. Pointing to any FAT entry, we can view the
contents of those disk sectors using.t F5 1

VIEW SECTORS EF5J: Any time you press t F5 1, Disk
Tools will display the contents of the sector shown on the
Status Line. If you are in the directory E F2 1, this is the first
sector of the file the cursor is pointing to. If you are in the
FAT display E F41, this is the first sector of the cluster the
cursor points to. When you are at the Drive Information
Table, or in the FAT display with the cursor pointing to the
FAT Identification entry, EF51 displays the sector 0
(normally the boot sector).

The sector display splits the screen into two parts. The
top 16 lines are used to show the contents of the sector in
both a Hexadecimal Dump with 16 bytes per line, and in
ASCII (text). This is the same kind of dump that DEBUG
displays. The lower part of the screen shows the sector as
seven lines of continuous text. If the sector contains text,
such as a letter, the bottom display will be the most readable,
whereas binary information will be readable in the
HEX/ASCII dump.

12

The HEX/ASCII dump can only display 256 bytes, or
half a sector on one screen, while the text display at the
bottom shows the entire 512 byte sector. Pressing the space
bar will display the second half of the sector in the
HEX/ASCI I dump.

Use the UP and DOWN cursor keys to move the display
forward or back one sector. The WORD <- and -> keys
move you forward and back by clusters.

You should always use the Sector display to page through
a file that you have just recovered, verifying that every
cluster is really part of your file. Note that where your file is
non-contiguous, you do not want the NEXT cluster, but
rather the next cluster linked to your file. In this case, use
the LEFT and RIGHT cursor keys to move to the previous or
next cluster within your file.

FUNCTION KEY CF61 PRINT: When in the FAT EF43
display, or the Directory [F21, the C F61 function key will
print a copy of the entire FAT or the current Directory on
your printer. A hard copy of the FAT is especially useful
when recovering a large, discontinuous file, or multiple files.

FUNCTION KEY E F7] EXIT: The EF7 3key is always
the way to exit the screen you are in. If you are in a
sub-function such as changing the file name, EF7 3 returns
you to the previous screen (in this case the File Access
Screen). If you are in one of the main function screens, such
as the Directory or FAT displays, f F7 J returns you to the
Disk Information Table—the first screen on startup.

From the Disk Information Table, the EF7 2 key exits to
DOS.

13

RECOVERING FILES

Most files are very easy to recover using Disk Tools.
Often, there will be a "hole" in the FAT (an area of
un-allocated clusters) exactly the size of your file, and
starting where your file started. In this case all you need to
do is follow these steps:

1. Enter Disk Tools with the command:
DT filename.ext

or:
DT d:\path\filename.ext

2. Disk Tools will search the directory for your file, and
take you to the File Recovery Screen. Alternatively,
you could use CF21 to find your file.

3. When asked, provide Disk Tools with the original first
letter of the file name.

4. Disk Tools will show you the linked list of clusters it
rebuilds for your file, then announce the successful
recovery of your file and ask if you want to save these
changes to disk.

5. Answer Yes to the above question, then use [F51 to go
to the Sector Display screen. Here you should see the
begining of your file.

6. Use the LEFT and RIGHT cursor keys to view the
first sector of each cluster linked in your file. You
could also use the UP and DOWN arrows to see each
sector in the cluster, but it is only necessary to check
the beginning of each cluster.

7. When you have verified that everything linked to your
recovered file is part of the original, use the C F7 3 key
to exit Disk Tools.

14

If you have trouble with any of the above steps, there
are still things that can be done to recover all or part of your
file.

The most common problem arises when your file is not
contiguous. In this case, Disk Tools reports this to you in the
File Recovery Screen, when it tries to re-build the FAT
linked list. When you first try to recover a file, you should
always use the clusters Disk Tools suggests should be linked
together. When enough clusters have been linked to account
for the file length, and you are asked if you want to save
these changes, answer Yes, even if you are not sure these are
the right clusters.

Next, step through the file in the [F51 display. Write
down the clusters that are not a part of your original file.
When you have gone through the entire file, as Disk Tools
recovered it, go back to the File Access Screen (using CF2 J or
IFZ1 to name your file) and use function 6 to delete the file.
Everything is now exactly as it was before you recovered the
file.

Now you can recover the file again, only this time skip
the clusters that you have listed as not being part of your
file. Be sure to repeat the process of viewing the linked
clusters untill all of them belong to your file.

Another method that is sometimes useful in making Disk
Tools recover your file, is to recover another, smaller file
first. Since this allocates clusters to the smaller file, Disk
Tools will not try to allocate them to your file, but will skip
around them.

If you really feal you know what you are doing, you can
edit the FAT directly from the LF4 H display. You can really
mess up a disk by changing the FAT incorrectly, so be sure to
be working with a DISKCOPY of a floppy diskette, or to
have backed up everything important on your hard disk.

15

To recover a file by editing the FAT, make a list of the
clusters you want linked to the file by browsing through the
Sector CF5 J display. Then build the FAT linked list by hand.
Use the Change Name function in the File Access Screen to
get rid of the E5 character in the file name.

You can also use this method to link random clusters
from the disk into a file. Pick a deleted file entry, or a file
you don’t need from the Directory E F2 J display. In the File
Access Screen, use function 4 to change the file pointer to
the number of the first cluster you want to link. Then edit
the FAT from the CF4 3 display to link together the rest of
the clusters you want. Be sure to change the file size to
include all the clusters you link together. Using the numbers
in the Disk Information table, multiply the number of
clusters by the number of sectors per cluster, and then
multiply by the number of bytes per sector. Use this number
as the file size. (e.g. 3 clusters * 4 sectors * 512 bytes - 6144
bytes.)

You can also edit the FAT in order to allocate some
clusters to make sure that they are not used. For example, to
keep Disk Tools from allocating a cluster to your recovered
file you could mark it with a 1 in the FAT. Then you could
change the 1 back to 0 after the file is recovered. The
number FF7 is used by MS-DOS to mark bad clusters. These
clusters will not be freed by CHKDSK and DOS will never
write on them.

Sub-directories that have been removed with the RMDIR
or RD command can be recovered using Disk Tools. Since
DOS does not record the size of the directory in the
directory entry, Disk Tools will only recover the first cluster
of a sub-directory. This is usually all there is. If you have a
very large sub-directory that spans clusters, you will have to
find the next directory cluster using the VIEW EF5]
command and then link it to the first directory cluster by
editing the FAT [F41 Simply point to the first directory
cluster and change the FFF you find there to the number of
the next cluster. Then change THAT cluster pointer to FFF.

16

FIXING THE BIG MISTAKE

You’re working on your dual floppy system, copying
some files from the diskette in drive A. Now you walk over
to your Victor 9000 with the internal hard disk. You put in
the floppy and enter DEL A:*.*. You’ve just erased every file
on your hard disk Volume A.

Yes, Disk Tools can recover the files, but it will be
difficult. When you need to recover just one file, there is
generally a hole in the FAT that exactly fits your file. At the
very least, you know your file isn’t where all the other files
are located. But when all the files have been deleted you’re
lacking all those clues.

The best strategy to use in this case is to recover the
easiest files first. You have to be careful not to allocate the
wrong cluster to a file, since you will need that cluster later.
Therefore I recommend that you recover your files in the
following order:

1. All one cluster files.
2. Text files, starting with the smallest.
3. .BAS files, starting with the smallest.
4. .COM & .EXE files, smallest first.

The Disk Information Table displayed when you start up
Disk Tools will tell you the cluster size in sectors and the
sector size in bytes. Thus on a Double Sided floppy a cluster
is 4 sectors of 512 bytes each. This means any file less than
2048 bytes fits in one cluster. Since we always know the
starting cluster of a deleted file, we can recover these one
cluster files with complete certainty.

17

Next you should recover all text files, including letters,
documents, source code, etc. These are easy to recover since
you can use the [F51 View Sector function to read the file
and be certain it is correct. It is also best to start with the
smallest files and work up.

After that, any .BAS files should be recovered. This is
because you can recover the file and load it in BASIC where
it is readable. You should do this to verify the correctness of
each .BAS file you recover.

Finally recover the binary files (extensions .COM and
.EXE). You cannot read these files, but you can try running
them to see if the recovered file works. Often you will not
even need to recover these files as you will have backup
copies on your original product disks.

18

A NOTE FROM THE AUTHOR

I want to thank everyone who buys my programs for
their support. But I’m not sure all of you realize that when
you give away a copy, your friend gives away two copies, and
each of his friends give away more copies.

Low price does not seem to discourage people from
stealing software. Copy protection does, but makes the
software harder to use. Instead, I have devised a copy
labeling system. Every copy of Disk Tools has a serial number
registered to its owner. This serial number is displayed on
start up and is also encoded in an unspecified number of
places within the program. This will allow me to track pirated
copies back to the original owner.

Note that this will be no impediment to others giving
away the copy you gave them. They won’t care that they are
spreading around a program with your name on it. It is up to
you to keep your copy secure. Remember, when you give
away software to someone, they are not the only ones stealing
it—you are.

Please don’t give away copies of my software. The next
time someone asks, suggest that for a $3500 machine they can
afford to spend $85 on some very useful utilities. Besides,
ordering from me gets them on the mailing list for future
offerings of both free and low-priced utilities.

Ultimately YOU will be the beneficiary of making others
pay for their software. I am attempting to make White Crane
Systems a source of quality software designed specifically for
the Victor 9000. While companies like Lotus and others are
abandoning the Victor I am trying to expand my support for
this superior machine. You have already helped by purchasing
this program. Please make others pay for their copy.

A R

A R
)NT
A R
5NT

>MT
, A R
3MT
.AR
3 AIT
:a r
DNT
-« ff

$

pa.
;aa

i?a S
•pnt
La R

UR
'OUT
Lar
>OU7
LAR
>n&T

LAR

.

l

Lak

L A n
^OMT

LA R
>O«T

»OWT

>ONT
LAR
’OHT
LAR
3ON f
LA A

3 ONT
LAR

3 ONT

bn
np'ss •
f. L A .
LOM

NOM
L L --
ijfOL
; -

I
I RO Hl

L
JPOtt '

SST+

INTRODUCTION TO SCROLL SYSTEMS' SST+

From Michael Wishnietsky's PUB Bulletin Board

#278 (of 290) CH CARLISLE, on 12-MAR-86 01:58
Subject: SST+ ver.1.2

Scroll Screen Tracer is a high-powered replacement
for Debug. Since I'm not an assembly language
programmer I find SST+ a little intimidating, but
there are a few functions that I use fairly often.

Display/Patch

To look at or modify any file that can fit in
memory just type

SST <fi1 ename>
D

You get a ful1 screen display in standard Debug
format with hex on left and corresponding ASCII
characters on right side of screen. Works just
like a word processor.

Cursor control:
. horizontal cursors move 1 hex digit left or

r i ght
. vertical cursors scrol1 the screen up and
down

. scrol 1 key moves one page up and down
. tab key moves cursor from hex display to
corresponding position in the ASCI I display
or from ASCI I back to hex display

. AR (alt-R) homes the cursor to the address
given in the D command, 100 assumed if
omitted.

. AT (alt-T) tags the cursor position, and

. AG (alt-6) returns cursor to tagged
posit i on.

Display control:
. AA (alt-A) toggles screen display from
hex/ASCII to only ASCI I so that you get a
lot more information on the screen - useful
if you're interested only in the text
content of the file.

2

Updat ing:
. A0 (alt-0) toggles from display mode into
overtype mode; anything you type will
overwrite hex digit/character at cursor.

Exiting display mode:
. a carriage return gets you out of
disp1ay/overtype mode.

Changes are made in memory only, not on disk. If
you want changes saved then use the Write command
same as Debug. SST+ can write any file including
.EXEs.

You don't have to memorize any of the above keys
because SST+ displays a one line menu at top of
screen giving most or al 1 of the keys. Typing ?
wi 11 get you a help screen applicable to the menu
di splayed.

Un 1 ike word processors, SST+ has no insert mode;
moving things around in a program wi11 screw up
all the addresses.

I use the display mode for looking at programs,
patching, or replacing unwanted messages or
carriage return/1ine feeds with binary zeroes.

Search

Unfortunately you can't search in di splay mode
1 ike a word processor does. However SST+ searching
is much easier than Debug. Eg:

. SST <th i s document>

. sLcx "SST" [lists al 1 locations of string
"SST"]

. d [point cursor at one of the locations
listed above] <cr>

. s [repeat previous search]

. d [point cursor at another 1ocation 1isted
above] <cr>

The first search is from beginning of this file

- 3 -

(loaded at lOOh) for a length equal to the size of
this file (the 1ength is in register LX). The
search lists the addresses where it found "SST",
up to 12 addresses per line.

To display the memory just type D, point cursor at
the first address 1isted by search and then hit
carriage return.

To display all memory areas containing "SST" just
repeat the search without arguments (SST assumes
same arguments as previous search) and then
di splay another address.

Faster to do than to explain. Why? Because in
the above example we never had to type an address
or register value. Same commands as Debug but
with lots of short-cuts. Like searching for
assembly language instructions rather than the
equ i va1 ent hex digits.

Unassemble

Same as Debug except that
. down cursor/space bar unassembles next
instruction

. scr1 down unassembles next screenful of
instructions

Trace

Debug is adequate for most things but hopeless at
tracing. If you're a raw beginner and you want to
try a little tracing then forget it, or buy SST+.

Typing T puts you into full screen single step
trace mode. Hitting the space bar executes one
instruction and holding down the space bar runs
the program in super-slow mode which 1s as fast as
I dare to go.

You need a good assembly language reference manual
and Microsoft's MSDOS Programmers Reference Manual
($40) that documents function calls & interrupts.

- 4 -

Disk Display/Modify

The disk function lets you edit the disk directory
and FAT, although this feature is nowhere near as
slick as White Crane's Disk Tools. SST+ is useful
if you encounter some problem that Disk Tools
can't fix.

Conclusion

I've described about 10% of what SST+ can do.
Scrol1 Systems mentions that the manual is a
reference and not a tutorial. To use the
remaining 90% of SST+, I'll have to do some book
learning and assembly language programming.
Scroll Systems pitches SST+ as an assembly
language interpreter (use like BASIC - no
Assembler/Linker required), powerful debugger,
disk utilities - al 1 in one.

Do you need it? For tracing or assembly language
programming, yes. Especially if your time is worth
more than $1.00 per hour. For the other stuff,
Debug is adequate and free although SST+ is nicer.

A R

A fl
NT

w,
AR

3 MT
A R

ONT
.Aft
ONT
.AH
ONT
. A R

'NA
AX
Wi
AR

’TiI

J NT
A R
>Nr
A R
?NT
A K
>NT
A R
)NT
A R

A H
ONT

ONT
A T

ONT
■ A R
ONT
.AR
ON'"
A R

.A R
ONT
,A R
~ NT

R

M
-NT
A R

ONT
A R

0 NT
A R
>NT
AR
)NT
AR
wr
A R

A R

SCROLL SYMBOLIC TRACER
An 8086 Family Symbolic Debugger/Interpreter

by
Murray Sargent III

Lillard Darwin Sanders III

8087 display/modify facility by
Matt Derstine

Scroll Systems, Inc., 5530 N. Camino Escuela, Tucson, AZ 85718

SCROLL SYMBOLIC TRACER
An 8086 Family Symbolic Debugger/Inter prefer

by
Murray Sargent III

Lillard Darwin Sanders III

8087 display/modify facility by
Matt Derstine

^°roll Systems, Inc., 5530 N. Camino Escuela, Tucson, AZ 85718

Version 2.0
January 14, 1988

© Copyright by Scroll Systems, Inc. 1985, 1986, 1987

All rights reserved. No part of this publication may be repro­
duced in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information
storage and retrieval system, without permission in writing
from Scroll Systems, Inc.

Changes are periodically made to the information herein and
these changes will be incorporated in new editions of this
publication. The information furnished herein is believed to
be accurate and reliable. However, no responsibility is
assumed by Scroll Systems, Inc. for its use, nor for any in­
fringements of patents or other rights of third parties resulting
from its use. Comments on this publication and on SST are
invited.

This manual is a combination of the SST 1.4 manual and four
new chapters, Chaps. 11 through 14. As such references to
the special features of SST 2.0 are not found in Chaps. 1
through 10. A subsequent manual will integrate these fea­
tures.

Printed in the United States of America

This manual was prepared and printed using the Scroll
Systems PS™ Technical Word Processor on an Imprint Techno­
logies LightWriter laser printer.

CONTENTS

1. INTRODUCTION .. 1-1
SST, The Integrated Debugger 1-2
Full Screen Display Mode 1-3
Trace Mode ... 1-3
Trace Mode Demonstration .. 1-4
Back Tracing 1-5
8087/80186/80286/80386 Support 1-5
Labels 1-6
Calculators... 1-6
Synergy .. 1-7
Menu Line.. 1-7
Register Window .. 1-8
80386 Register Window 1-10
Disk and RamFont Editors.......................... 1-10
Mouse Support 1-10
Super-Trace................................ 1-11
Conditional Breakpoints... 1-11
How to Use this Manual 1-12

2. HELP FACILITY 2-1
ASCII/EBCDIC Chart.................... 2-6
Sample Program 2-7
INT21 Command 2-10
Help Command 2-10

3. RUNNING SST 3-1
Backtrace Demonstration 3-2
Display Demonstration 3-2
Overtype Mode....................... 3-3
Command Line Parameters 3-4
Resident Operation 3-5
Screen Save Option .. 3-5
Multiple Screens .. 3-6
Configuring SST .. 3-7
Echoing Output to a File.............. 3-8

iii

CONTENTS

Super-Trace Demonstration .. 3-9
Terminating User Programs ... 3-10
SST initialization.................................. 3-11

4. SYNTAX .. 4-1
Syntax Type Fonts.. 4-2
Specifying an Argument Using Cursor Arrow Keys 4-4
DOS Commands ... 4-5
Editing Command Lines 4-6
Modifying Edit Command Characters........................... 4-7
Labels.. 4-8
Blocks.. 4-10
User Strings and Keyboard Macros4-11

5. CALCULATOR.. 5-1
Converting between Hexadecimal and Decimal 5-2
Use of Register Values... 5-2
Floating Point Calculator.. 5-3
8087 CALCULATOR MODE... 5-4
Calculator Stack ... 5-4
8087 Built-in Functions... 5-6

6. INTERRUPTS.. 6-1
Hardware Interrupts ... 6-2
NMI Button 6-3
Interrupt Mask Control... 6-3
DOS and 8087-Emulation Interrupt Definitions 6-4
Examining Interrupt Vectors 6-4

iv

CONTENTS

7. COMMAND DESCRIPTIONS 7-1
! SHELL Command 7-2

& Address Command 7-2
. Calculator Command 7-2
0-9 Calculator Command 7-3
< Command .. 7-3
> Command .. 7-3
@ Command 7-3

A Command .. 7-3
Assembler Syntax 7-4
8087 Instructions .. . 7-5
8086/80186/80286 Mnemonics 7-6
8087 Mnemonics 7-7
Labels and Comments 7-7
Program Mode ... 7-8

AND Command ... 7-9

B Command .. 7-9
Breakpoint Commands ...7-10

BLINK Command .. 7-12
BYE Command ...7-12
BYTE Command 7-12

C Command ...7-13
CD Command ... 7-13
CHAR Command ...7-14
CLOCK command ... 7-14
CLOSE Command ...7-15
CLS Command ... 7-15
CONFIRM Command.. . . . 7-15
CONT Command.................................. 7-15
CPU Command............ 7-15
CSRSIZE Command.................... .. 7-17

D Command 7-18
Linear Address Display ... 7-19
Screen Display 7-19

CONTENTS

Cursor Movement and Memory Display Format . . 7-20
Memory Pointers...7-22
Overtyping Memory with SST...................................... 7-23
Binary Editor...7-23
Displaying Labels ..7-24

DATE Command..7-24
DEL Command ...7-24
DELAY Command...7-25
DELETE Command .. 7-25
DIR Command ...7-25
DISK Command...7-26
DOS Command 7-26
DOUBLE Command .. 7-26
DR Command..7-27
DWORD Command .. 7-27

E Command................................... 7-27
Floating Point Values .. 7-28
Structure Templates...7-29
Useful DOS Examine Templates 7-31

ECHO Command..7-32
EDIT Command ..7-32
EGA n Command 7-32
ERASE Command 7-33

F Command 7-33
FILES Command.. 7-34
FONT Command..7-35

G Command... 7-35
Conditional Breakpoints 7-36
Writing Conditional Code ... 7-37

H Command................................ 7-38
HELP Command 7-38

I Command 7-38
INI Command.......................... 7-39
INSERT Command 7-39

vi

CONTENTS

I NT Command 7-39
INT21 Command 7-40
IV Command 7-40

J Command 7-40

K Command............................. 7-40
K - Stack Frame Display 7-40

Hearing the screen and §087 7-42
KEY Command.................................. 7-42
KEYBOARD command 7-42
KILL Command ... 7-43

L Command s 7-43
Load Labels .. 7-44

LIST Command .. 7-45
LLIST Command.............. 7-45
LOAD Command... 7-45
LONG Command 7-45

M Command ... 7-46
MAP Command .. 7-47
MOUSE Command.. 7-47
MSW Command ... 7-47

N Command... 7-48
Saving Display and Unassemble Output to File . . 7-48
Defining User Strings... 7-49

NEW Command...7-49
NMI Command 7-50
NOT Command..................................... 7-50

O Command..7-50
OPCODE Command... 7-51
OR Command...7-51

P Command 7-51
PAGE Command 7-52
PAUSE Command.............. ...7-52

vii

CONTENTS

PP Command ..7-52
PROMPT Command ... 7-52

Q Command.. 7-53
Screen Characteristics..7-53
Screen Save..7-54
Where to Display SST ... 7-55
Interrupt Mask..7-56
Undercover (Periscope) Debugger 7-56

QUIT Command .. 7-56

R Command.. 7-57
Changing Register Values... 7-57

Real Mode... 7-58
Restoring Registers and NMI Interrupt.......................... 7-59
RAM Command ..7-59
RAMFONT Command ..7-59
REDIT Command ...7-60
REN Command.. 7-60
RUN Command.. 7-60

S Command .. • 7-61
Searching for Assembly Language 7-61
Searching for Jumps/Calls to Location 7-62

SAVE Command 7-63
SNOW Command ...7-63
SYSTEM Command .. 7-63

T Command... 7-63
TRACE MODE Hotkeys..7-65
Trace Mode Window Control...7-69
Super-Trace... 7-70

TIME Command ... 7-70
TRACE Command.. 7-71
TYPE Command ... 7-71

U Command.. 7-71
USE16/32 Commands ...7-72

viii

CONTENTS

V Command.. 7-72
Virtual Mode . . - ...7-73

W Command ... 7-75
Write Labels .. 7-75

WIDTH Command...7-76
WORD Command . ..7-76

X Command.............. .. 7-76
XOR Command ... 7-77

Y Command................................ 7-77
Defining Global Descriptor Table Descriptors . . . 7-78

Z Command.. 7-79
Trace Mode 7 Option.......................... 7-79
Trace Mode Z Option 7-80
8087 Hexadecimal Display ... 7-81
8087 Status Bits 7-82

8. ASSEMBLY LANGUAGE INTERPRETER............ 8-1
Line Numbers... 8-2
Labels 8-3
Instructions and Pseudo Ops .. 8-3
Edit Command 8-4
Interpreter Commands 8-5

9. DISK DISPLAY/MODIFY FACILITY 9-1
Overtyping Disk .. 9-2
Pointer Facilities 9-2
File Allocation Table (FAT) 9-3

ix

CONTENTS

10. RAM FONT EDITOR... .. . 10-1
Specifying RAM Addresses 10-2
Font Displays 10-3
Copying Fonts and Shifting Characters...........................10-3
Logic Operations ... 10-4
Editing RamFont Characters 10-4
Streamlining Font Loading and Changes10-6
RamFont Command .. 10-7
Modifying SST Screen Attributes 10-8
Resident SST 10-8

11. SOURCE LEVEL DEBUGGING 11-1
Preparing for Source Code Debugging11-1
Source/Assembl y Modes 11-2
Source-Level Tracing 11-3
User Defined Symbols.................... 11-4

12. SPECIAL 80386 SUPPORT 12-1
Hardware Breakpoints .. 12-1
Special displays 12-2
The Infamous 80286 LoadAll Command 12-2
Protected Mode Debugging.............. 12-3

13. MICROSOFT WINDOWS DEBUGGING 13-1
Necessary Equipment 13-2
Debugging Microsoft Windows Applications 13-2
Handling of Symbols .. 13-3
Sample Microsoft Windows Script File....................... 13-4

Chapter 1
INTRODUCTION

If you work with or want to learn assembly
language, SST™ 2.0 is for you. Similarly if you need to
debug programs written in assembly language and in
higher-level languages, SST can be invaluable. SST is a
screen-oriented, upward-compatible replacement for the
ubiquitous DEBUG.COM distributed with DOS. Use SST
like DEBUG and enjoy access to a relaxed syntax, numer­
ous extensions, ready help information (just type Function
Key 1), and instantaneous full screen displays. In partic­
ular, the trace and display functions are much more
powerful than DEBUG’s. SST is to DEBUG much as a
word processor like WORDPERFECT is to EDLIN. In
addition to assembly language and source-level support
for programming under MSDOS, SST 2.0 includes special
support for Microsoft Windows (see Chap. 13) and the
Intel 80386 microprocessor (see Chap. 12).

On an 80386 microprocessor system, SST can run in
protected virtual address mode outside the usual DOS
space (the first megabyte of RAM). In this mode SST has
power beyond all but the most expensive hardware
debuggers. For example, you can break on any
input/oulput operation to any port or on
read/write/execute access of any 4-kilobyte page of
memory. Furthermore your program cannot corrupt SST’s
memory or code since SST lives in "hyperspace" above
the first megabyte of RAM! This incredibly powerful
mode of operation requires the SST DOS Extender
Option.

Introduction 1-1

DEBUG.COM

SST, The Integrated Debugger

SST is an integrated debugger that combines RAM,
disk, screen-font, and code display facilities with syntax is
used for all modes, making them easier to use than a set
of unrelated programs. SST also incorporates an assembly
language interpreter that allows you to write and debug
COM files much as you create BASIC files using a
BASIC interpreter. The COM files so generated can run
stand alone or under SSTs supervision and run at full
machine speed, unlike other interpreter code. Type a or
A to run the Auto demo of the Function Key 7 to see how
the interpreter and other features work and consult Chap.
8 for further information about the interpreter.

In addition, SST 2.0 can single step source code
written for example in the C programming language. At
any point you can work directly in the high-level
language, display mixed high-level code and the corres­
ponding assembly mnemonics, or display the mnemonics
alone. See Chap. 11 for more information on source-level
debugging.

SST runs in both resident and nonresident modes. If
you can afford the extra RAM, we recommend having a
resident copy running to give you instant access to the
built-in calculators, system extensions, ready debugging,
and trapping of errors such as divide overflow. Enter
SST at any time by typing Ctrl-Enter or pressing an NMI
button. Nonresident use is valuable for debugging pro­
grams and running the interpreter.

This manual is primarily a reference to SST and
does not have much tutorial material. We recommend
you take a guided tour through many of SST features by
running the Auto demo offered when you type Function
Key 7 in the SST COMMAND MODE. You might also
find one or more of the many books now available on
8086/8088 assembly language helpful. In particular, the
book The IBM Personal Computer from the Inside Out by
Sargent and Shoemaker (Addison-Wesley) contains several
chapters on assembly language. The "Sample Program"
section of Chap. 2 helps to explain how to load and trace
a program using labels.

1-2 Scroll Symbolic Tracer

This first chapter introduces many of SST’s features
and explains how to use this manual Subsequent
chapters explain the features in greater detail.

Full Screen Display Mode

The display command displays a delimited area of
memory if both the start and end addresses are given.
However if neither or only one address is specified, an
instantaneous full screenful of memory is displayed. This
screen can have the usual hex/ASCII format or a pure
ASCII format. The cursor arrows, PgUp, PgDn, space
bar, and backspace move the cursor around. It is possi­
ble to scroll rapidly (four seconds per 64K in ASCII
mode) through all of memory scanning for text. A
variety of hot keys allow you to use the information at
the cursor as pointers to move around memory and to
define blocks on which to operate. For a demonstration,
run SST, type Function Key 7 followed by d or D. Type
Function Key 1 for context-sensitive help on the display
mode. More complete discussion is given in Chap. 7.

Trace Mode

The trace command allows streamlined screen-oriented
execution of programs in single step or under control of
breakpoints. Single-stroke hot keys are used to advance
execution. The current instruction (at cs:ip) is high­
lighted by a reverse video bar. Whenever execution goes
outside the instructions displayed, the screen is instantane­
ously redrawn with the appropriate new instructions. A
conditional jump or loop that will be successful is identi­
fied by an arrow pointing in the direction of the jump
and the target offset is displayed in boldface if it’s on the
screen. A small display window can display a selected
portion of memory (arrow keys, PgUp, and PgDn can
scroll this window, and Ctrl-U and Ctrl-D change its
size), or it can track the memory locations referenced
during the trace. A program stack window displays
RAM starting at the top of the stack (given by the regis­
ter pair ss:sp) and identifies the stack words by one of
three readout offsets.

Introduction 1-3

Function Key 5 zooms the stack and display windows
into DISPLAY MODE, where you can overtype their
RAM. Similarly the Edit hot key lets you overtype the
register values. Function Key 6 moves the cursor from
one window to another, allowing you to scroll the display,
stack, program output, and trace windows. When in the
trace window, the cursor is used for setting breakpoints,
starting assemblies, and moving the instruction pointer.
When the cursor is in the program-output window, Ctrl-
U moves the window height Up, while Ctrl-D moves it
down. When the cursor is in any other window, Ctrl-U
and Ctrl-D move the memory-examine window height Up
and Down, respectively.

In continuous trace mode, the tracking-memory mode
produces an impressive dynamic screen display that often
reveals how a program works. The multiple-step Undo
option is particularly valuable. This allows you in effect
to execute backwards, discovering why registers or
memory locations got their values, or how you got to the
current instruction. With it you can single-step into a
subroutine, change your mind retracing backwards,
execute the subroutine at full speed, and continue single
stepping afterwards. For an example of how to trace
your own programs, see the "Sample Program" section of
Chap. 2. Chapters 7 and 14 describe the TRACE MODE
further.

Trace Mode Demonstration

For a demonstration, run SST, type Function Key 7
followed by t or T. This starts continuously tracing a
built-in piece of code. You can pause execution by
typing the space bar. Subsequent space bars single step
execution; i.e., advance execution one instruction at a
time. Other single-stroke commands include those to
single-step, break at the current instruction, break at the
current instruction after executing it a specified number
of times, fast execution (e.g., call or loop) at full machine
speed, slow execution which allows single-stepping int
calls (normally executed in Fast mode), and no execution
useful for skipping unwanted instructions. A program
can be traced continously as in the T demo with full
screen updates, or run three times faster in a Quiet mode

1-4 Scroll Symbolic Tracer

that only updates the register values. These continuous
trace modes are interrupted by typing a character or by a
reference to a memory location protected by the p
command. The continuous mode is also interrupted by an
illegal op code or by an op code belonging to a higher-
level microprocessor (e.g., an 80286 instruction executed
on an 80186 or 8088). Type Function Key 1 to see a help
screen defining the TRACE MODE hot keys.

Back Tracing

SST also lets you backtrace program execution up to
twenty steps by default. This can be very handy when
you find the program somewhere and can’t figure out
how it got there. Just type u or U for Undo and watch
your program execute backwards in time. As for Super­
Trace, this has to be seen to be believed! To change the
number of backtrace steps use the /Un switch when
starting SST (see Command Line Parameters in Chap. 3).
Note that currently the backtrace (undo) feature restores
only the 80286 subset of the 80386 machine state and it
cannot undo values output to an I/O device.

8087/80186/80286/80386 Support

The assemble and unassemble commands recognize all
8086/8087 mnemonics. SST supports the 80186, 80286,
and 80386 extensions as well. The search command can
search for assembly language instructions as well as hex
bytes and string literals. See Chap. 12 for discussion of
additional 80386 support.

SST fully supports the 8087 numeric coprocessor
with stack displays in TRACE MODE. Registers and
memory can be changed by simple assignment statements
using ordinary scientific notation, and all status informa­
tion is displayed. An 8087 floating point calculator is
also built in as described in Chap. 5.

Introduction 1-5

Labels

SST supports the full link MAP for the DOS
L1NK.EXE linker. By reading in the map (specify /MAP
option on the LINK.EXE list file entry), you can refer to
program line numbers and external labels (declared
EXTRN in .ASM files and external names in general dec­
lared in compiler source files). See the load label option
in Chap. 7. You can also read in variable names for one
segment. Variable names are not treated as generally as
desired, partly due to the need for telling SST what
segment should be assumed for variable references.
Something like the MASM.EXE ASSUME directive is
needed. Improvements along these line are planned.

Calculators

Both a Polish suffix hex calculator and a floating­
point calculator are included. String literals and decimal
values (indicated by a decimal point) are supported in the
HEX CALCULATOR, SEARCH, and ASSEMBLER
MODEs. Register variables can be used in calculator
expressions, and register and flags can be assigned values
by direct assignment.

The floating point calculator requires an 8087
numeric coprocessor to be installed. It provides 80-bit
trigonometric, exponential, hyperbolic, and arithmetic
functions. The results can be inserted into the keyboard
input queue to obviate the need to retype them perhaps
with errors.

Command editing supports the Function Key 3 DOS
Edit function (repeat to end of last command), although
DOS is bypassed for all operations other than disk. This
allows most DOS functions to be traced and leads to
much faster response (up to 100 times faster than
DEBUG!). In addition, the left and right arrow keys,
Home, End, Del, and several Ctrl keys can be used for
editing.

1-6 Scroll Symbolic Tracer

Synergy

The program serves both to teach people new to
assembly language how the machine works, and to aid the
advanced programmer in finding program bugs. It typi­
cally requires 1 /20th the time to find a bug with SST as
compared to DEBUG or SYMDEB, and sometimes a few
minutes with SST can literally save you days of debug­
ging with DEBUG. The program runs in about 100K
RAM and is written in optimized 8086 assembly language
(some 80286/80386 code is used in special sections off
limits to smaller microprocessors). It has many features
not found in debuggers requiring two or more times as
much memory. SST’s relatively small size per feature is
due partly to tight coding, and partly to a careful integra­
tion of facilities that allows the various components to
take advantage of one another (synergy!).

Menu Line

Initially SST operates in COMMAND MODE. Dep­
ending on the command chosen, SST may switch into one
of several other modes, namely ASSEMBLE MODE,
ASSEMBLE INSERT MODE, UNASSEMBLE MODE,
TRACE MODE, XAMINE MODE, DISPLAY MODE,
OVERTYPE MODE, CALCULATOR MODE, DISK
DISPLAY/OVERTYPE MODEs, FONT D1SPLAY/OVER-
TYPE MODEs. A 4-1 (Enter) returns to COMMAND
MODE (two 4-ps return in ASSEMBLE MODE).

The current mode is displayed on the menu line at
the top of the screen. For example, in COMMAND
MODE, the menu line reads

COMMAND MODE: Fl 0-9 Asm Cmp Dsp Exam Fill...

The menu line is also used to report some errors and
special conditions.

Introduction 1-7

Register Window

A register window is usually displayed at the top of
the screen just below the menu line. In COMMAND
MODE, the command r0 toggles this window on and off,
and in TRACE MODE, the hot key 0 turns it on and off.
Other windows appear for various commands, and pop-up
help screens always appear immediately below the regis­
ter window. This special window has the form:

a x=/2 b x=n ds=/? es=/? cs=n ss=n bp=rt ds: [/?]=/?
dx=/z CX=rt si=/? di---/? ip=/? sp=/? NS NZ NC PE + El

The n's in this figure represent 4-digit hexadecimal
numbers. The third line in general displays the menu for
whatever mode is currently active. Here the COMMAND
MODE menu is showed in part. This particular menu is
displayed when SST is started and whenever you type a
^(double <H’s in ASSEMBLE MODE).

The register window groups the registers according to
their typical usage in 8086 code. The ax, bx, ex, and dx
registers are the general accumulators that can also be
split into pairs of 8-bit registers like ah and al. The
segment registers ds, es, cs, and ss are shown directly
above the 16-bit registers with which they are commonly
paired. Specifically, the addresses ds:[si] and es:[di] are
used with the powerful 8086 string instructions. The
cs:[ip] address gives the current instruction, and the
ss:[sp] address gives the top of the program stack. In
addition, ds:[bx] and ss:[bp] are common addresses, so it
is handy to have the corresponding registers near one
another.

1-8 Scroll Symbolic Tracer

On the top line the ds:[/?]==/?, which appears only
when a memory reference occurs and displays the value
and address of such a reference. If the value is a byte
value, only two hexadecimal digits are displayed.

After the sp=?? field on the second line, the flag
values are displayed. For example, if the Zero flag is set
to 1, you see "Z". If it is reset to 0, you see ”NZH as
shown in the figure. This notation corresponds to the in­
struction mnemonics used by the unassemble and trace
commands. Note that since the TRACE MODE reverse
video bar for the current instruction indicates whether a
conditional jump will occur, it isn’t nearly as important to
consult the flags as it is with DEBUG.COM. PE means
that the last instruction that affects the parity flag found
Even Parity, while PO stands for Odd Parity. A + or -
indicates the direction in memory that repeated string
operations go. The instruction CLD (dear Direction)
gives a plus sign (+), which is the usual direction for most
programs. If Interrupts are Enabled, you then see El,
while if they are Disabled, you see DL The two remain­
ing flags, OV (Overflow Flag) and AC (Alternate Carry)
occur less often and are only displayed if they are on.
This choice helps to reduce screen clutter and separates
the principle set of flags (Sign, Carry, and Zero) from the
others.

Following the Interrupt flag value, four SST status
values are displayed in reverse video if their correspond­
ing functions are enabled. These are @ for active Echo
output (see n> command), S for active Super-Trace condi­
tions (see trace command), 0 for Tracking memory display
window (see trace command), and £9 for 80286 protected
Virtual address mode (see vm command).

Introduction 1-9

DEBUG.COM

80386 Register Window

By default on 80386-based computers, the register
window displays the complete 32-bit 80386 register values
in the form

ea x-/? eb x=« ds =/? 8 8---/? 6 bp--/? ds::[/?>/?
edx=/? ecx=n f s =/? gs =/? esp=/? NS NZ NC
esi =n edi =n 68--/? 68--/? ei p=/? PE + EI

In COMMAND MODE, the r3 command and r1 switch
to the 80386 and 8086 register sets, respectively, while in
TRACE MODE, the hot keys 1 and 3 perform these
switches. The dr command displays special 80386 regis­
ters (see Chap. 12).

Disk and RamFont Editors

SST contains a disk editor invoked by the command
disk in COMMAND MODE. The idea is that in place of
the segment specification for RAM, you type a sector
number. The facility, described further in Chap. 9, has a
variety of options to facilitate moving around a disk.

SST has a RamFont editor that allows you to create
and modify the characters sets that appear on your com­
puter display. This facility requires the use of the Her­
cules Graphics Card Plus or the IBM Enhanced Graphics
Adapter, or other boards compatible with one of these.
See Chap. 10 for further discussion.

Mouse Support

The RamFont editor and the DISPLAY and TRACE
MODEs can use the mouse to move the cursor around.
To enable the mouse, you have to run the appropriate
MOUSE program at the DOS command level, and then tell
SST that it should use the mouse by typing the mouse
command in SST’s COMMAND MODE. The mouse
allows you to move around the display screens rapidly
and to edit character fonts.

1-10 Scroll Symbolic Tracer

Super-Trace

SST has a pair of exceedingly powerful conditional
break facilities for advanced users. The first is the
Super-Trace mode, which traces program execution at
about one tenth full speed and after each instruction it
checks an arbitrary set of conditions specified by the user
in assembly language. If the result of these conditions
sets the Zero flag, tracing is halted; otherwise the trace
continues. This allows a very rapid execution search for
any desired machine state. It implements in software fea­
tures that have been hitherto performed only by expen­
sive hardware tracing boards, and has generality that the
hardware methods cannot match. The user conditions can
even call user-supplied subroutines, allowing specialized
monitoring such as program execution profiling. The use
of ordinary assembly language for the user conditions
combines the highest execution speed, the simplest imple­
mentation and documentation, and the greatest power ava­
ilable in the computer. Because of the great flexibility of
the method, you have to be careful not to include a
command that will crash the computer. Hence we con­
sider the Super-Trace to be a facility for advanced users,
although simple Super-Traces can be run by beginners
(see Chap. 3 demonstrations).

Conditional Breakpoints

Alternatively, breakpoints can be associated with the
same arbitrary set of conditions as the Super-Trace. For
these, execution proceeds at full speed until the computer
attempts to execute the instruction at one of the user-
defined breakpoint locations. The user’s conditions are
then checked. If they succeed in setting the Zero flag,
program execution is halted and control is returned to
SST. Otherwise execution proceeds again at full speed.
If no breakpoint is encountered, you can usually recover
control by typing Ctrl-Enter.

Introduction 1-11

How to Use this Manual

This manual tells you how to use SST. It should be
used in combination with a book or reference manual on
assembly language for the Intel 8088/8086 microprocessor.
The book The IBM Personal Computer from the Inside
Out by Murray Sargent III (SST author) and Richard L.
Shoemaker (Addison-Wesley Publishing Co., 2nd Edition,
1986) is one of several such books. If you are already
familiar with assembly language and DEBUG.COM, you
may just want to glance at this introductory section, at
Chap. 4 on Syntax, and then refer to the command de­
scriptions of Chap. 7 when the built-in help messages are
too terse. If you are learning assembly language, read the
Help section (Chap. 2), the Demonstration section (Chap.
3), run the Auto demo of Function Key 7, read the Syntax
section (Chap. 4), and read your book on assembly
language. Try out the built-in demonstrations to get a
feel for how memory looks and how a program runs.
Assemble some simple code of your own and trace its
execution with the trace command. You’ll learn assembly
language in a fraction the time required by traditional
methods.

1-12 Scroll Symbolic Tracer

DEBUG.COM

Chapter 2
HELP FACILITY

In all modes, typing Function Key 1 displays an
appropriate help screen in a pop-up window just below
the register window. Typing any key (except for Func­
tion Key 1 itself in ASSEMBLE MODE) replaces the
screen text that was covered up by the help window. In
particular, typing Function Key I instead of a command
displays the menu

For more help, type command letter followed by Function

®scii Asm Baud Comp Display Exam Fill
Go Hex In Klear Load Move Name
Out Protect Quit Reg Search Trace Unasm
Vector Write Xam YGDT Zam

Key 1

0-9 start calc entries
address = [segment:] offset

exp -- value | exp, exp2 op
range -- address, address2

This gives the names of the simple commands available
under SST. To run a command type the first letter of
the command name followed by appropriate arguments.
If you type Function Key 1 in the middle of typing a
command, a terse help message for that command is dis­
played in a pop-up window below the register window.
Typing any character gets rid of the help window, replac­
ing the text it covered up. If you type the command

Help Facility 2-1

character immediately followed by the Function Key 1,
then the command line is erased when the help window
goes away. If you type more characters on the line, the
command line remains, ready for further typing. This
allows you to get help whenever you need it. For more
information on each command, please see the correspond­
ing page in Sec. 7, which is ordered alphabetically by
command.

The Function Key 1 help summaries are (for the
complete a Fl displays, see assemble command below):

Brief Command Definitions

and range list
a [address]

And (bitwise) memory in range with list
Assemble. Op codes (186/286 capitalized.
Fl - 8087) are:

a [address]
b rate [.channel]
b c list\ *

Assemble. 8087 op codes (Fl -* 8086) are:
Set the baud rate of serial channel
c breakpoints in list, where c -- c, d, e, for
Clear, Disable, Enable

bl
bs [ft] address [tn]

List breakpoints
Set breakpoint [«] at address [skip tn
passes] Note: b breakpoints are sticky
unlike g’s

cd path
cis
close
c range address

Change Directory to path
Clear Screen
Close all files
Compare memory in range to memory at
address

cpu
date
dir [template]
d [address]

Display info about computer
Display date
Display filenames matching template
Display full screen of memory

d address! address2 Display memory from addressr to address2
Can echo to file - see n>

d/c display labels (c=segment paragraph), vari­
able names (c=v), or user strings (c=u)

dos n
echo
erase filename

Execute DOS (int-21h) function ah=/?
Toggle screen echo on/off
Erase file filename

2-2 Scroll Symbolic Tracer

e address
e address [/type]

Examine address in Byte mode
Examine address by type --- b, d, i, 1, o,
q, s, t, for packed BCD, Double float,
Integer, Long int, Quad int, 0 binary,
Single float, Temp float, respectively
(Needs 8087)

e address [/string]
f range list

Examine with structure template string
Fill memory in range with list

g [^address] [addressJ...
Go execute at cs:ip or =address with
breakpoints at addresslf address^ ... Same
followed by @ allows conditions to be
typed

h value
h valuei value2

Convert hex value to binary
Calculate valueY+value2 and valuel-value2

ini
i portaddress
int21
iv

3
k
k n
kn m
kf
ki 4-1 c
list [address]
Hist [address]
1 [address]

Run first sst.ini file in DOS path
Input byte from portaddress
[n] Display int-21 function definition(s)
Initialize MDS Genius display
(No command)
Klear screen
Klear next n lines
Klear from line n to line m
Klear floating point (8087) registers
Display keyboard input code c
Unassemble screenful starting at address
Unassemble to printer starting at address
Load file named by n at cs: 100 or address

1 address drive sectorj sector2
Load absolute sectors sector{ thru sector2 at
address address

11 Load program labels (use n to name .MAP
file)

Im
Iv
m range address
n filespec
n> filespec
n>
n=

Load program labels for a .COM file
Load variable names (name .LST file)
Move memory in range to address
Name load or write file by filespec
Name echo file by filespec
Toggle echo to file
Display current name file

Help Facility 2-3

n string --
new

Define user string (2 letter names)
Reset labels and paramlers to starting
values

not range
or range list
o portaddress list
pause/?
prompt
P
p address

N (bitwise) memory in range
Or memory in range with list
Output list to portaddress
Pause a time proportional to n
Toggle path prompt
Turn off memory protection
Protect memory address, i.e.,
Stop trace if memory address is referenced

p range Stop trace if memory range is referenced

q
q c n

Quit - return to DOS
Set screen attribute for window c = a, h,
n, r, s, x, z for Assemble, Help, Normal,
Register, Stack, Xam, Zam, respectively

qg«
qi n
ql n
qo n
qol
qp n
qs
qs1
qs3 (2)
qu n
q y"
r [register]

Set SST video RAM segment -- n
Set SST interrupt mask --- n
Set lines/page -- n
Set SST display origin to line n
Display in lower half of 66 line screen
Set 6845 CRT I/O port = n
Swap IBM displays for SST alone
Swap displays for both SST and DOS
Turn screen save on (off)
Set undercover debugger port = n
Set # lines Xam window = n
Display [change] registers. Can change
registers by =

rr
rm
rn
ren filer file2
s range list
s range @
s range
s
system
time
t [address]

Restore registers to initial values
Go to real address mode
Return NMI interrupt to proceeding owner
Rename fileY file2
Search memory in range for list
Search range for assembly language
Search range for last string
Repeat last search
Quit to DOS
Display time
Trace program starting at cs:ip or address

2-4 Scroll Symbolic Tracer

t @
type filename
u [address]

u range

Specify Super-Trace conditions
Type (browse) file filename
Unassemble code at last address or at
address
Unassemble code in range. Use n> to echo
to file

n [ax [bx [ex [dx]]]]

vm

Execute interrupt vector n giving optional
register values
Switch to 80286 protected virtual address
mode (AT only)

widths Set screen width (40 or 80)
w [address] Write file named by n from cs:100 or

address
w address drive sectorj sector2

Write absolute sectors sectori thru sector2
from address

wl Write labels
x address Start trace examine window at address
xor range list Xor memory in range with list
v List 80286 GDT entries, one/space bar
jn List GDT entry n
yn address [access [length]]

Define GDT entry 68</?<D8 at address,
access --- access, length --- length

z examine 8087 status

For definitions of command syntax and words like
address, see Chap. 4 on Syntax. Typing \ followed by
Function Key 1 displays the current disk drive:directory
(to obtain this information continuously in COMMAND
MODE, type the prompt command). Typing a decimal
digit followed by Function Key 1 displays help for the
calculator (see Chap. 5 for more information):

Hex number
decimal number
expi exp2 op

Convert to decimal
Convert to hex
Calculate expi op exp2 (op ---
+-♦/&!)

Help Facility 2-5

ASCII/EBCDIC Chart

When debugging it is often very handy to have
ready access to the ASCII codes. These are usually in­
stantly available in a pop up screen by typing @. In some
situations the @ would be used for other purposes, such
as in an assembly language comment, searching for assem­
bly language, and supertracing. Hence @ doesn’t give the
pop up menu as the second or later character of the
command line. It also works in most non COMMAND
MODEs, and shows you a hexadecimal display of all 256
extended ASCII codes. Type any key other than another
@ and you’re back to the screen displayed before you
typed the @.

The @ option has four pop-up screens. To get to the
next one, type The pop-up screen following the initial
hexadecimal ASCII screen is a decimal ASCII display.
The third screen is an EBCDIC (Extended Binary Coded
Decimal Interchange Code used on IBM mainframes)
display with hexadecimal codes, and the fourth screen is
an EBCDIC with decimal codes. Further @’s repeat this
sequence of four screens.

In RamFont modes (see Chap. 10), you can see the
ASCII and EBCDIC charts displayed with different fonts
by typing the desired font number.

2-6 Scroll Symbolic Tracer

Sample Program

To illustrate the loading and tracing of a program,
the SST distribution diskette includes a simple program to
get and display console input. The program is as follows:

public ci , co, console__loop

;Simple console echo program that illus­
trates
; SST label facility

CR =15
LF =10

cseg segment
assume

console-loop:
call ci

mov dl,al
call co
cmp dl, CR
jnz console^
mov dl,LF
call co
jmp console_

cs:cseg

;Get next charac­
ter
; from console
;Display character

loop
;If CR, output
; LF automatically

loop

ci : mov

int

ret

ah, 7

21 h

;21h direct
console
; input without
echo

co: mov

int
ret

ah, 2

21 h

; 21 h display
output

cseg ends
end console^loop

Help Facility 2-7

You can run the sample CONSOLE program either
by typing it in in ASSEMBLE MODE (see assemble
command in Chap. 7), or by assembling and linking it
with the Microsoft assembler. For the latter you need to
have Microsoft’s MASM.EXE available in your current
directory or in some subdirectory specified by the path
command in your AUTOEXEC.BAT file. If you’re using
DOS 2.0 or later and don’t know about the path
command, immediately go read about it in the DOS
manual, since it can simplify your life considerably.

Suppose for the sake of illustration that the DOS
prompt is C:\) and SST’s prompt is k . Then at the DOS
prompt type

C:\)masm console;
C:\)link console,,console/map;
C:Vsst
knconsole.map
k 11
k nconsole.exe
k 1
k t

This puts you into the SST TRACE MODE all ready to
trace your simple console program. SST allows you to
see what you program displays on the screen in several
ways. For the present case, just type the TRACE MODE
W option, to give yourself a DOS window on screen.
Then start single stepping your way through the program
by typing the space bar. When you reach the int 21 h
for the ci subprogram, the console pauses to let you type
in a character. Type something other than the space bar,
so that the co routine will display something you can see
in the DOS window. Notice that the ASCII code of the
character you type for the ci subroutine is returned in
the al register (low byte of the ax register). The program
then moves this character into the dl register. You can
watch this action by looking at the register window at the
top of the SST display screen.

2-8 Scroll Symbolic Tracer

After single stepping for awhile try some of the SST
options like D for Don’t single-step subroutine, B for
Break when back at the current instruction, and G for
break (Go) at the address you type in. Working with this
simple program can teach you a great deal about the
TRACE MODE. Return to COMMAND MODE at any
time by typing the Enter key or the Esc key.

For simple programs like this one, the DOS window
is fine, but for more typical programs, the whole screen is
needed. If you have two screens on your computer, you
can put SST on the one your program isn’t using (see Sec.
"Multiple Screens" in Chap. 3). Alternatively you can
turn on the screen save option discussed in Sec. "Screen
Save Option" in Chap. 3. For this, just type qs3 at SST’s
COMMAND MODE prompt, and return to TRACE
MODE. In single stepping most instructions, you’ll notice
no difference with the screen save option enabled, but
whenever you do something that SST cannot know
whether the screen will be accessed (e.g„ you use an
explicit or implied breakpoint), you’ll notice a momentary
flashing of the screen. This is because SST restores the
entire screen for the user program.

Any time you want to switch to the user screen, type
v or V for View program screen in TRACE MODE. To
return to SST’s screen type any key.

Help Facility 2-9

INT21 Command

SST automatically comments some unassembled in­
structions, such as DOS calls (int 21 h), 8087 emulation in­
terrupts (int 34h - int 3dh), and immediate byte constant
instructions like mov al ,41H. In addition the int 21h
definitions are displayed when you type the int21 [n]
command in COMMAND MODE. If the optional n is
present, the definition for that entry point alone is displa­
yed. If n is missing the next hexadecade of int 21
entries is displayed. These features are very handy for
working with code that makes DOS calls.

Help Command

For more information, type help in COMMAND
MODE. This displays the file called SST.HLP, which has
a variety of help imformation.

2-10 Scroll Symbolic Tracer

Notes:

Help Facility 2-11

Notes:

2-12 Scroll Symbolic Tracer

Chapter 3
RUNNING SST

The first thing to do with your SST is to see it in
action! Run SST and you’ll see the sign on help message
in the main part of the screen and the COMMAND
MODE window at the top. The 8086 registers are displa­
yed in this window followed by the COMMAND MODE
menu. Type Function Key 7, type t or T for the Trace
demo, and stare at the continuous TRACE MODE in
amazement! What you’ll see is a dynamic screen trace of
the execution of a program, revealing how the registers,
stack, and memory referenced by the program change. In
this continuous trace mode, the program executes about
40,000 times more slowly than normal, which gives you a
chance to see what’s going on. For comparison with the
Super-Trace described below, notice how the di register
increments slowly (due to the stosb instruction) as the
program runs.

Typically the program runs much too fast to under­
stand what’s going on, so to stop execution, type the space
bar. Successive depressions of the space bar single-step
the program, always showing you the latest state of the
machine. You can see what effect the instructions have
on the register, flag, and memory contents. The demo
uses the "tracking display" window in ASCII mode, so
that you always see an 80 hex byte memory window
around the last memory location referenced by the
program. The size of this window is programmable - see
the qyn command in Chap. 7. At the right end of the
second display line from the top, you’ll see a Q. This in­
dicates that the memory window is in Tracking mode.

Running SST 3-1

The TRACE MODE menu indicates many other
options. Type Function Key 1 to see a help screen that
gives brief definitions of most of these options. This help
screen is also shown in Sec. 7 under the trace command,
along with more detailed descriptions of the options. To
get rid of the help screen, type any key.

Backtrace Demonstration

After you’ve traced program execution for awhile,
type u or U for Undo. This causes the program to undo
its steps, literally executing backwards in time. This
feature is handy when you the program ends up some­
where and you don’t remember how it got there. SST
cannot trace backward for ever, or it would unboot your
machine! Actually SST doesn’t execute backwards, it just
restores the preceding machine state for up to 20 back-
states by default. To change this number, use the
SST/Un option described under Command Line Parame­
ters in this chapter.

Display Demonstration

After commands like assemble and load are executed,
the Function Key 7 demo option is suppressed to prevent
SST from overwriting a program you have loaded in or
typed in with the assemble command. If Function Key 7
doesn’t work, quit and rerun SST. Type Function Key 7
followed by d or v to go into the DISPLAY MODE. You
can also do this at any time in COMMAND MODE by
typing d or D followed by a <-*. This gives you a full
screen display of memory with the register values and a
menu at the top of the screen. Type Function Key 1 to
see a help screen that gives a brief definition of the menu
options. Section 7 under the display command also shows
this help screen along with more detailed discussion of the
options. Type any key to get rid of the help screen.

3-2 Scroll Symbolic Tracer

Overtype Mode

SST has a number of other options, including Ctrl-O,
which toggles between OVERTYPE and DISPLAY
MODE. This mode allows you to overtype the memory
location at the cursor position. If you do this by mistake,
type Ctrl-U to Undo the overtype. Hopefully you didn’t
overtype something important, like a keyboard interrupt
vector (crash!). SST allows you to do absolutely anything
with your computer, so be careful. SST isn’t PASCAL,
which usually prevents you from doing something you
might later regret. This kind of freedom is desirable
since it allows you not only to identify a program bug,
but also to try out a possible fix without reassembling or
recompiling and relinking. This can save you consider­
able time, but it does require a bit of care.

Try out the various options, scroll through all of
memory, and learn about your machine as only hands-on
interaction allows.

Running SST 3-3

Command Line Parameters

When invoking SST from 008, you typically type

C:\)sst filename other parameters

SST then loads the file filename, and places the otherpar­
ameters in the command line area reserved in the program
prefix, just as DOS's COMMAND.COM does.

In addition you can specify several useful options as
switches following the SST. These options allow specify­
ing the total amount of SST RAM work area, the number
of back states for the TRACE MODE Undo option, and
making SST resident. The Resident option is described in
the next section.

C:\)sst fn

saves 1024*/? bytes of RAM for SST. A minimum of 9K
is required. No specification results in 9 K bytes (/9).
More RAM is automatically allocated as needed when
labels are read in.

C:\)sst/un

saves room for n backstops in TRACE MODE. The
default for SST is 20.

3-4 Scroll Symbolic Tracer

COMMAND.COM

Resident Operation

Sometimes it’s handy to have SST in memory for
ready access in the event of a problem, or just to see the
ASCII chart or convert between hexadecimal and decimal.
One way to do this is to follow SST on the DOS
command line by the /R switch

C:\)sst/r

This loads SST and returns to the DOS prompt with SST
resident. To have SST take control, type Ctrl-Enter or
press an NMI button. This method doesn’t let you have
the chance to set up special SST features such as loading
in program labels. If these other features are needed, try
the q/R option described in Chap. 7.

Screen Save Option

When going between SST and a program, it’s handy
to be able to see the screen display generated by the
program. The SST/R resident mode option described in
the preceding section does this automatically. More gen­
erally to start up the screen save option, use the qs3
option described in Chap 7. Then whenever you return
to a program using a go command, or use the View
option in TRACE MODE, you can view the program
screen rather than SST’s.

Running SST 3-5

Multiple Screens

For extensive debugging it’s very useful to have more
than one screen. This is particularly true when debug­
ging graphics programs. SST can be put on whatever
screen you desire using various q commands. In particu­
lar on the IBM PC, the monochrome and color/graphics
adapters are so widespread that SST has been setup to
switch very easily between the two. Type the command
(► stands for the SST COMMAND MODE prompt)

► qs

to switch between them without telling DOS. Type qs1
instead to switch screens telling DOS as well. Hence you
can load SST from DOS on either screen and switch back
an forth as the need be and exit SST on either screen.

In addition, SST has special support for 66 line dis­
plays of the Micro Display Systems variety. See the q
section of Chap. 7 for more details on these options.

3-6 Scroll Symbolic Tracer

Configuring SST

With the abundance of different screen sizes, charac­
ter attributes, and other machine characteristics, it is time
consuming to configure SST appropriately each time you
run it. To help out, SST can be reconfigured using the q
commands of Chap. 7 along with appropriate DOS com­
mands. We illustrate this procedure using the screen
attribute specification which allows setting the screen
attribute (color, reverse video) for various SST windows.
This command is defined by

► qc n

which choses a screen attribute n for the window c = a,
h, n, r, s, x, z for Assemble, Help, Normal, Register,
Stack, Xam, Zam, respectively. In particular, experiment­
ing with the qr n (set register window attribute) is a great
way to learn about screen attributes.

You can configure SST.EXE to your tastes by SSTing
a copy of SST.EXE and typing the q commands followed
by /n. When done, type w or V to Write out the modified
SST.EXE file. For example, on the IBM color/graphics
display, to set up

Red background, yellow foreground register
window
Blue background Xam window
Green background stack window
Red foreground assembly language
Yellow foreground normal window
Magenta help screen

type the following DOS and SST commands:

C:\)copy sst.exe newsst.exe
C:\)sst newsst.exe
► qr4 0///
kqx10/n
k qs2Q/n
kqa4/n
k qn6/n
k qh5/n
k w
k q

Running SST 3-7

Here the commands following the SST prompt f are
typed in SST’s COMMAND MODE. The q’s store the
configuration information in your program NEWSST.EXE,
the w or W writes the modified NEWSST.EXE to disk, and
the final q command quits SST. Then type

C:\)newsst

Your file NEWSST.EXE now has these characteristics as
you’ll see by typing Function Key 7 followed by t or T to
see the Trace demo.

Echoing Output to a File

You may want to save disassembled code or
hex/ASCll formatted binary displays on disk files. With
DOS 2.0 or later, such a file could also be the printer.
For this purpose, some SST commands can echo what
they send to the screen to a disk file of your choice. For
explicit discussion, see the n command in Chap. 7.

3-8 Scroll Symbolic Tracer

Super-Trace Demonstration

With SST you can Super-Trace execution at one
tenth full speed looking for a condition of your choice to
occur. For example, type 4-1 to return to COMMAND
MODE, type <-*, which transfers control to the assem­
bler for specifying Super-Trace break conditions, and
type the assembly language instruction

cmp di,600

followed by two +-*’s, which turns on the Super-Trace
mode. At the right end of the second display line, you’ll
see a S to indicate that Super-Trace conditions are in
effect (they apply to breakpoints as well). Now things are
very different. Each time you type the space bar, the
trace stops only if the condition di=600 is satisfied!
Hence the trace sometimes hesitates between single-step­
ping, since the computer has to execute many instructions
in between. You can run the Super-Trace continously by
typing c or C. To turn Super-Trace off, type «-* to return
to COMMAND MODE, type t@ followed by two 4-*’s,
which turns the conditions off, and then type t or T 4-1 to
return to TRACE MODE. Notice that the § at the end of
the second screen line goes away. Type c or c to start
up the Continuous trace mode again, and notice how
slowly the di register changes. This should convince you
that the Super-Trace mode is really super! The Super­
Trace executes about 10 times more slowly than normal,
compared to the continuous trace, which executes 40,000
or more times more slowly than normal. DEBUG traces
270,000 times more slowly than normal and cannot be
read when running continuously.

Another interesting super trace is to have SST load
your favorite word processor (see load command in Chap.
7) and supertrace for a condition that will never be met
like or sp, sp. Since the stack pointer is never 0 for
working programs, SST will simply run your program in
slow motion. To stop, type Ctrl-Enter, or tell your
program to quit. Super-Trace is described further in Sec.
7 under the trace command.

Running SST 3-9

Terminating User Programs

Program terminations of all kinds (int 20h, int 27h,
and int 21h with ah=0, 31h, and 4Ch) are intercepted by
SST, which then gives a menu offering to 1) Restore reg­
isters to their initial values, 2) go into TRACE MODE, or
3) return to COMMAND MODE leaving the registers as
they are. The restore option acts like DEBUG.COM,
allowing you to rerun programs easily. The other two
allow you to investigate the circumstances that led to
program termination. You can also restore the registers at
any time by typing rr in COMMAND MODE.

On terminating execution of a program, SST closes
file handles 5 through 20, and releases all memory owned
by the program’s Program Segment Prefix.

3-10 Scroll Symbolic Tracer

DEBUG.COM

SST initialization

The SST.INI file in the current directory is automati­
cally executed when SST is loaded. This file can consist
of a set of COMMAND-MODE commands that customize
SST as you desire.

The COMMAND MODE ini command executes the
first SST.INI file that it finds by doing a DOS path
search.

Running SST 3-11

Notes:

3-12 Scroll Symbolic Tracer

Chapter 4
SYNTAX

SST accepts the commands in the same format as
DEBUG, so users of DEBUG can continue with their
usual methods. In addtion, many DOS or BASIC like
commands are supported and the two kinds of commands
live together remarkably peacefully. The DEBUG-style
alphabetic commands are identified by a single command
letter that can be preceded or followed by optional blanks
and tabs. Most command take one or more arguments
separated by a blank, comma, or tab. The syntax has
been relaxed in several ways to streamline command
entry and execution. The semicolon (;) can be used in
place of the colon (:) for specifying segment register
values. As in DEBUG, the segment register names (cs,
ds, es, and ss) can be used to specify address segments.
SST allows the program registers (ax, bx, ex, dx, al, ah,
bl, bh, cl, ch, dl, dh, si, di, bp, sp, and ip) to be used as
well in place of hexadecimal values. Five-digit addresses
refer to the entire one-megabyte address space, and
6-digit address correspond to extended RAM available on
the IBM PC AT and compatible computers. If no
segment register is given, ds is assumed for all commands
except for assemble, go, load, trace, unassemble, and
write commands, which assume cs.

Syntax 4-1

Syntax Type Fonts

In this document we indicate characters typed by the
user using the courier font, which resembles the stan­
dard screen characters and we display output from the
program in ordinary print. Each command is defined and
described with examples, and is compared to its DEBUG
version. The Enter key is indicated by 4-1, and is used to
terminate a command line, and to terminate the execution
of certain commands like the DISPLAY and TRACE
MODEs. The usual SST prompt character is shown as k
(similar to the SST prompt on the IBM PC screens.) Var­
iables are given in italics.

Each command is introduced with a SYNTAX speci­
fication. In these specifications, square brackets [] are
used to surround optional fields. For example,

k a [address]

means that the letter a is typed following the SST prompt
k, optionally followed by the address address. The text
following the syntax specification then defines what a
alone means and what a followed by an address means.

In the syntax specifications, the word range stands
for two addresses separated by a comma or blank. The
first address can have an optional segment specification.
The segment used for this first address is automatically
used for the second (the second address for the protect
command can have its own segment). The range can be
used in commands like display, fill, and compare. For
example,

k d [range]

displays the range of memory range. This range can be
given in one of three forms:

1. addresst address2
2. addressj 1 count
3. Ctrl-B

4-2 Scroll Symbolic Tracer

The first form specifies the address explicitly either with
hexadecimal values of the form [segment’.] offset, or with
labels (see Label section in this Chapter). The second
form specifies the number of bytes including the first one
pointed to by the address addressv The third method
uses a block defined by the Ctrl-T and Ctrl-E DISPLAY
MODE options (see Block section in this chapter).

If during execution you type Function Key 1 any­
where after the command letter, the short syntax defini­
tion is displayed in a pop-up window under the register
window. Type any character to get rid of this help
screen. If you type Function Key 1 immediately after the
command letter, both are erased when the help screen
goes away. If you have typed more than two characters
when you type Function Key 1, then those characters are
left, letting you continue your command after seeing the
help screen. The assemble command works a bit differ­
ently in having two help screens. The first time you type
Function Key 1 a terse syntax definition is displayed, fol­
lowed by the full set of possible 8086/80186/80286/80386
instruction mnemonics. Typing Function Key 1 again
toggles the Assemble help screen to the 8087 mnemonics.
Typing any other character replaces the screen text and
cursor to that present before you asked for help. This
lets you check the spelling of a mnemonic in the middle
of typing an instruction.

Syntax 4-3

Specifying an Argument Using Cursor Arrow Keys

If the desired hexadecimal value for an argument
(usually an address) appears on the screen due to display­
ing or unassembling, you can insert this value into your
command line. Use the cursor arrow keys to move the
cursor to the start of the value and then type a blank to
continue the command or a to run it. Both the address
at the cursor as well as the character you type are in­
serted into the command string. This is particularly
useful for beginning a trace at a disassembled instruction
displayed on the screen, for setting a breakpoint at a dis­
assembled instruction, or for starting a disassembly at an
address found by searching for instruction mnemonics.
For example, to start execution at the current instruction
(cs:ip) and break at an address displayed on screen, type

► g

with no 4-1, move the cursor to the desired address on
screen, and type If you want a second breakpoint,
press the space bar instead of the move the cursor to
the second address, and then type the «-*. If you just
want to copy in the segment value from one part of the
screen, move the cursor to the start of the segment value
and type a backspace. This inserts the segment, the colon
and only three digits of the address offset, three more
backspaces delete the rest of the offset to make room for
the value you want. If you’re an accurate typist, insert­
ing a segment value this way isn’t that useful, but it illus­
trates how whatever you insert this way can be further
edited, unless you type the terminating -H.

You can use the arrow-key insertion method to
assemble on top of code, or to set a single temporary
breakpoint. You can also do these things directly from
the UNASSEMBLE and TRACE MODEs.

4-4 Scroll Symbolic Tracer

DOS Commands

A subset of DOS commands has been built into SST
allowing you to change the default drive and directory
path, to display directory filenames, to type files, and to
erase files. The display runs about three times as fast as
DOS, and the type command at least 20 times as fast.
Hence the type command runs in a special paged mode.

To change the current DOS drive letter, type the
desired drive letter followed by the command colon (or
semicolon). For example,

► a:

switches to drive A and displays a screen showing the
current drive (A) and directory path on that drive.

To change the default directory path on the current
drive type cd\ followed by the path name. Hence

►cd\sst

changes to the subdirectory \SST, and displays a screen to
that effect. If no such directory exists, the screen shows
the active directory instead.

To display the current default drive and subdirec­
tory, type \ Function Key 1 in COMMAND MODE or
type the prompt command in COMMAND MODE to con­
tinually see this information.

To display DiRectory information, type dir followed
by the desired filename template. The total number of
bytes in the files matched is displayed in decimal for all
values if you have an 8087, and up to 64K if you don’t
(larger values are then displayed in hex).

Syntax 4-5

To display a file, type

h type filename

which allows you to browse up and down a file with
search capability.

To erase a file, type

►■erase filename

You will be asked to confirm before SST erases the file.
The "ase" in "erase" is optional.

To leave SST, you can type bye, quit, or system, in
upper or lower case. For a complete summary of these
commands, see "Interpreter Commands" in Chap. 8.

Editing Command Lines

SST has a line edit facility patterned after the
PMATE editor that works both in COMMAND and
ASSEMBLE MODEs. While typing in a command or
assembly language statement, you can use the left and
right arrow keys to move around the line. Typing ordi­
nary characters simply inserts them at the cursor position.
Keystrokes are identified as follows:

Home
End
Ctrl-O
Ctrl-P
Ctrl-0
Ctrl-W
Ctrl-K
Del
Backspace

move cursor to beginning of line
move cursor to end of line
move one word left (Ctrl-*- is an alias)
move one word right (Ctrl--* is an alias)
delete word to left
delete word to right
delete (Kill) from cursor to end of line
deletes character under cursor

deletes character before cursor

4-6 Scroll Symbolic Tracer

Modifying Edit Command Characters

If you prefer, you can load in a file to reconfigure
the Ctrl character commands. The distribution diskette
includes such a file called WSKEY.INI, which changes the
command to correspond to MicroPro’s WordStar editor.
This file contains the single command

key leOl, lfl3, 2004, 2106, 0, 2308, 2207, 1414, 1519

Each entry specifies the desired IBM PC character code
for an edit function. These functions appear according to
the order:

LeftWord, LeftChar, RightChar, RightWord
DeleteLeftWord, DeleteLeftChar, DeleteCursorChar
DeleteRightWord, DeleteToEndOfLine

Hence in the WordStar example above, the first entry
leOl (Ctrl-A) corresponds to moving left one word, while
the second entry If 13 (Ctrl-S) corresponds to moving left
one character.

Syntax 4-7

Labels

The load map generated by the DOS L1NK.EXE
program with the /MAP list option can be loaded by SST
to identify locations in memory by name. This works
with large and small memory model programs and greatly
facilitates debugging programs. Once defined, the labels
can be used in place of hexadecimal addresses. For
example you can type

k u alpha

to start unassembling at the double-word address alpha.

To load in program labels, name the .MAP file with
the name command (Chap. 7), and type the 11 command
(see Chap. 7 load command). This automatically reads
the labels in starting at the point in the .MAP file identi­
fied by the words "by Value" and relocates them relative
to the origin of the .EXE module (program prefix segment
paragraph + 10).

To load .MAP labels relative to some other para­
graph, type lln, where n is the desired paragraph
number. This option is useful for debugging resident
programs.

To load .MAP files for use with .COM files, type
Im, which relocates relative to the Program Segment
Prefix (PSP) rather than to the .EXE module paragraph
(lOh paragraphs lower)

SST has limited support for program variables with
the lv option. This option loads the variables defined by
the part of a MASM.EXE listing for a single segment.
The program scans for the word "segment" and sets up
program variable names up to the corresponding ends
pseudo op.

4-8 Scroll Symbolic Tracer

The 11, Im, and Iv options use the user program
area to load in the .MAP and .LST files and hence
overwrite whatever program might have been loaded in.
Hence to debug a program, load in the label files first,
and then the program.

Labels can be displayed by segment paragraph
number by the d/n command of Chap. 7. Variable
names are displayed by d/v and user strings by d/u.

The 11 option can also read in label files generated
by the wl option, which writes the entire SST label
linked list to disk, program labels, variable names, and
user strings. See the write command in Chap. 7.

For the more technically oriented, we note that inter­
nally SST stores all labels in a two-level linked list
format. The outer level linked list consists of one or
more entries having a segment paragraph value (one
word), followed by a one word segment label string
length, followed by a string of that length. In turn, an
outer level string contains one or more inner level linked
lists, each describing a label. An inner level linked list
has the same format for its entries, with a one word
offset value followed by a one word string length, fol­
lowed by a label string of that length. The special seg­
ments for lv and lw are identified by the outer level par­
agraph numbers 0FF00H+"V" and 0FF00H+"W", respec­
tively, which are not likely to occur as program para­
graphs. When you use the wl option, a double linked list
of this form preceded by the special word OFFFAh is
written to the file named by the name command. In
writing the file, the paragraph values less than OFFOOh
are unrelocated by subtracting the Program Segment
Prefix paragraph + lOh. This file can subsequently be
reread by the 11 option, which adds the Program Segment
Prefix + lOh paragraph back in. In this way, the labels
can be used when your program is loaded in a different
place on subsequent occasions.

Syntax 4-9

Blocks

It’s often useful to scan through memory using the
DISPLAY MODE and then examine part of memory in a
different way, or write it out to disk. For such purposes,
SST has a limited form of the word processor block facil­
ity. Specifically any time you type Ctrl-T in DISPLAY
MODE, the address pointed to by the cursor is saved in a
double-word Tag location.

You can examine the memory at the Tag location
using the examine command of Chap. 7 by typing Clrl-B
instead of an address. The Ctrl-B so used displays as a
little box.

Similarly if you type Ctrl-E in DISPLAY MODE, the
address pointed to by the cursor is saved in a double­
word End tag location. You can go back and forth
between these two locations by typing Ctrl-G.

You can use the block of memory between the Tag
and End-tag locations in a number of ways. You can
write a block to disk by naming the desired file with the
name command and then typing

► w Ctrl-B

in COMMAND MODE. The Ctrl-B can also be used in
place of two addresses with the compare, fill, move, and
search commands. For example,

► f Ctrl-B "abed"

fills the memory defined by the previous Ctrl-T Ctrl-E
DISPLAY MODE option with the string "abed". The
compare, fill, move, and search options are limited to
64K, but the write option is limited only by the RAM
and disk sizes.

4-10 Scroll Symbolic Tracer

User Strings and Keyboard Macros

User strings are definable with two character alphan­
umeric names. These strings can be used for defining
memory structures or templates for use with the examine
memory command (see Chap. 7), and for user input
(macros without arguments). The facility makes it much
easier to read the values of data structures stored in
memory. To define any user string, type

k nst = "..."

This defines (names) the string st to have the value

You can also define 40 function key values by
assigning strings to fO - f9, cO - c9, sO - s9, and aO - a9,
which define the unshifted, Ctrl’d, Shifted, and Alt’ed
functions, repectively. For example,

kf9 = "
dd;"

defines Funtion Key 9 to switch back to COMMAND
MODE if it’s not there already, and to display the 8088
interrupt vectors in double-word format.

To use a string in place of keyboard input (limited
macro facility), type the command $ followed by the
string name. Hence the sequence

k nst="dd;"
k $st

generates a full screen double-word display of the 8086
interrupt vectors, just as if you had entered the command
dd; directly. This facility is particularly useful for
abbreviating multiline command sequences that you use
often. For example in debugging SST itself, we might use
the string

k nls = "nsst.map
11
nsst.lst
Iv
nsst.exe
1"

Syntax 4-11

which we keep along with other useful strings in a macro
file called SSS. Then typing

► nsss
k 11
k $13

loads in the current labels, variable names, and SST.EXE
for debugging.

Alternatively, you can put these commands in a file
and run them using keyboard redirection. This method is
really simpler. For example we might debug SST.EXE
by using the file S

nsst.map
Im
nsst.1st
lv
nsst.exe
1
qs3

and then invoke this file by the keyboard redirection
command

k n<s

4-12 Scroll Symbolic Tracer

Chapter 5
CALCULATOR MODE

In addition to the alphabetic commands described in
Chaps. 7 through 13, if a decimal digit or 8086 register
name starts the command, the line is assumed to be calcu­
lator input to a hexadecimal Polish suffix calculator.
This calculator supports 32-bit arithmetic with the arith­
metic operators the binary logical operators
the logical not and the store operator See also
the more limited hex command, which is included to be
compatible with DEBUG.COM. If you have an 8087 or
80287 numerical coprocessor, you can use the floating­
point calculator described below. As an example, typing

f 9 9*

followed by a <-J displays

k 9 9*= 51

Operands must be separated by at least one blank, and
the operators must follow their respective operands
without intervening blanks (the operators are treated as
special operand delimeters)

Calculator Mode 5-1

DEBUG.COM

Converting between Hexadecimal and Decimal

Typing a single value followed by a 4-* with no oper­
ators displays the corresponding decimal value. Similarly,
typing a decimal value (identified by trailing period) fol­
lowed by a 4-* displays the corresponding hexadecimal
value. Examples are

► 0ACE= 2766.
M 27. = 007F

To convert from hexadecimal to binary, in COMMAND
MODE type h or H followed by the hexadecimal value.

6 s-- /y* X//c'o- ec_/ yjt

Use of Register Values

Typing

► d s 4*

displays the value of the ds register multiplied by 4.
More complicated expressions like

► 0FE 4 ds*&

can be used. This one calculates the infix expression
(4*ds)&0FEh. If ds=0BCh, this gives OfOh. Note that a
leading 0 is required to indicate that OFEh is a number
and not a fill command.

To store the value of an expression into one of the 8086
registers, use the --- operator at the end of the expression.
For example, to set bx -- 2*ax+cx, type

► ax 2* cx+ bx=

5-2 Scroll Symbolic Tracer

Floating Point Calculator

SST has an 8087 reverse-Polish-notation (RPN) float­
ing point calculator that supports +-*/*%. trig, hyperbolic,
exponential, and other functions described below. The
calculator requires the presence of the 8087 numeric cop­
rocessor and issues a message encouraging you to install
one if you haven’t. The calculator has several major
advantages over a pocket calculator:

• the large screen allows substantially more infor­
mation to be displayed

• it’s much faster
• it produces 16-decimal place answers (unless you

specify less precision)
• in SST resident mode, the result of a calculation

can be inserted directly into the keyboard input
queue as if you had typed it.

This last feature adds speed and accuracy to your calcu­
lator functions. The 8087 has 8 stack locations, and SST’s
8087 calculator is limited to this depth. Some functions,
such as sin and cos require a total of three stack loca­
tions, which must come from the 8. Trig functions
assume that their arguments are in degrees until in­
structed otherwise by the rad command.

For quick calculations, you can use the calculator
directly in COMMAND MODE by starting the line with a

Quick help in COMMAND MODE is given by typing
. Function Key 1. For example, we have

k .16 2~= 65536

k . 45 sin= 0.707106781186548

Calculator Mode 5-3

8087 CALCULATOR MODE

For more extended calculations, switch into the 8087
CALCULATOR MODE, by typing in COMMAND
MODE followed by <-■. In CALCULATOR MODE, the
leading period is not used and a special menu line shows
some calculator functions along with the degree/radian
and stack status’s. CALCULATOR MODE remains on
until you type the Esc key. For quick help, just type
Function Key 1 at any time.

When SST is resident (SST/R), type Ctrl-, to inter­
rupt the program you’re running and enter CALCULA­
TOR MODE directly. Perform whatever calculations you
want and return to your program by typing bye. If you
want to insert the result of the calculation into the key­
board input queue as if you had typed it in, type the Ins
key. This inserts the result accordingly and returns to
your program. For example, to insert the value of pi
(3.141592653589793) accurate to 16 decimal places at the
cursor position in your word processor, type Ctrl-., pi Ins.
Done! In fact that’s exactly what 1 just did to get that
value into this help file.

Calculator Stack

Ordinarily the 8087 calculator works with its own
stack, saving the complete 8087 state before using the
8087 and restoring the 8087 state when the calculation is
completed. Alternatively, the stack-on command uses the
current user 8087 stack and status. This stack-on mode
is handy for manipulating the 8087 stack while debug­
ging, and it displays the stack continually. The user stack
is the one examined by the z command and displayed by
the 7 option in TRACE MODE.

5-4 Scroll Symbolic Tracer

For either 8087 stack, the x/r function exchanges the
stack top with the nth (0 < n < 7) stack location. For
example, xl exchanges the stack top with the next stack
location. Calling the stack top x and the next location y,
the xl command exchanges the contents of x and y. For
either 8087 stack, the p n command pushes the value of
the nth stack location onto the stack. In particular, pO
duplicates the stack top.

In the stack-on mode, sn works the same way as pn,
but in the stack-off mode, sn pushes the nth user stack
location. This allows you to use the user 8087 stack for
input without affecting that stack. You can also store a
result back into the nth user stack location by typing sn-.

If you type in an integer with no functions or opera­
tors, the calculator displays it in hexadecimal. To convert
from hex to decimal, type in the hexadecimal number fol­
lowed by h or H and 4-1. The advantage of using the
8087 calculator instead of the usual SST hex calculator is
that full 64-bit arithmetic is supported instead of 32-bit.

To get an idea of how to use the calculator, enter
CALCULATOR MODE and start typing commands.
Note that if you push too many values onto the stack,
you’ll start seeing ??, meaning "Not a Number" (NaN),
which is one of several illegitimate values tagged by the
8087. Similarly once you get an infinite answer (perhaps
by dividing by 0), subsequent functions continue to yield
infinity even if you divide it into a finite number. You
can pop illegal values off the stack using the pop
command, or store new values on the stack with the =
command. To reinitialize the user stack (all stack loca­
tions empty), type init.

Calculator Mode 5-5

8087 Built-in Functions

The following gives a brief description of the built-in
8087 functions. In the discussion, x refers to the 8087
stack top, while y refers to the next stack location. For
example, "x --- absolute value of x" means that the abso­
lute value of the slack top replaces the stack top. Push
value pushes the value indicated onto the 8087 stack.
Thus pi pushes the value of it (3.141592653589793) onto
the stack.

abs x --- absolute value of x
acos x --- arc cos(x)
acosh x -- arc cosh(x)
asin x -- arc sin(x)
asinh x -- arc sinh(x)
atan x -- arc tan(x)
atanh x -- arc tanh(x)
bye return to DOS, or if resident, return to interrupted

program
cabs x -- x*x + y*y, and stack is popped once
cexp x = cos(x), y -- sin(x) (stack is pushed once)
chs x = -x
cis clear screen
cos x -- cos(x)
cosh x -- cosh(x)
cot x = cot(x)
esc x = csc(x)
deg interpret trig arguments in degrees (default)
e push e (2.718281828459045)
exp x -- exp(x)
hex display x in hex (automatic if you type in a

number alone)
init reinitialize the user stack
int x = integer(x) (chopped down)
inv x = 1/x (INVerse)
In x --- ln(x)
log2 x = log base 2 (x)
log x -- log base 10 (x)
in push number typed in by user
pi push it (3.141592653589793)
pop pop stack (throw away x, so that y becomes x)
prec set display precision -- x

5-6 Scroll Symbolic Tracer

rad
ranf

interpret trig arguments in radians
push next random number in sequence determined
by seed

sec
sech
seed
sin
sinh
sq
sr
sqrt
stack
tan
tanh
todeg
topol
torad
torec
z

x = sec(x)
x --- sech(x)
seed for random numbers -- x
x -- sin(x)
x -- sinh(x)
x = x*x
push x from last calculation
x -- sqrt(x)
on (off) - turn user 8087 stack on (off)
x -- tan(x)
x -- tanh(x)
x = 180*x/?r
x = sqrt(x*x + y*y), y --- atan (y/x)
x = ?r*x/180
x -- x*cos(y), y = x*sin(y)
display full 8087 status/stack values

The % operator computes the percent difference
between x and y, that is, y = 100 *(x-y)/y, and then it pops
the stack.

Calculator Mode 5-7

Noles:

5-8 Scroll Symbolic Tracer

Chapter 6
INTERRUPTS

Hardware and software interrupts play important
roles in 8086/8088 based computers like the IBM PC.
Hardware interrupts are used to maintain the date and
time of day, keyboard buffering, some disk control opera­
tions, 8087 numeric coprocessor exceptions, and optional
serial and parallel input/outut data transfers. Software
interrupts are used to connect programmer routines with
operating system routines, to handle arithmetic exceptions
such as divide overflow, and to handle single-step and
breakpoint operations. To control these operations effec­
tively, SST takes over many of these interrupts and
restores them to their previous values upon returning to
DOS. For example under IBM DOS and alleged DIVIDE
OVERFLOW interrupt is identified as such and the
machine either halts or returns to DOS, in either case pre­
venting you from finding out where and whether an
overflow occurred or whether a software interrupt
occurred instead. SST gives the same message if a divide
overflow really did occur and in any event leaves you
pointing to the instruction that caused the interrupt. You
can then investigate the conditions that caused the
problem and return to DOS to correct your program
accordingly.

Interrupts 6-1

More specifically, unless you specify /L (for tread
Lightly) when invoking SST on the DOS command line,
SST takes over interrupts 0 (divide overflow), 1 (single-
step), 2 (nonmaskable interrupt), 3 (breakpoint), and 4
(overflow). On 80186/80286-based machines, SST also
takes over 5 (for trapping the bound instruction), 6 (illegal
op code), and on 80286’s 7 (80287 not available). On all
machines it takes over int 9 (keyboard), 20h (return to
DOS), 2th (main MSDOS software interrupt), 22h (termi­
nate address), 23h (Ctrl-Break), 24h (Critical Error
Handler), and 27h (return resident to DOS).

SST takes over the keyboard input interrupt 9 to see
if a Ctrl-Enter has been typed. If so, SST takes control,
which allows you to stop a runaway program. For any
other key combination, SST transfers control to the key­
board routine active at the time SST was loaded. SST
takes over the MSDOS interrupt 21 h to intercept DOS exit
requests (ah=0, 31h, and 4Ch). If these are encountered,
SST takes control issuing the message "Program termi­
nated normally." If not, SST transfers control to the
MSDOS program active at the time SST was loaded.

Hardware Interrupts

For hardware interrupts, the corresponding interrupt
programs can be invoked either by a real hardware inter­
rupt or by software executing an int, far call, far ret, of
far jmp instruction. SST identifies the software intn
cases as such, and otherwise gives the appropriate
hardware interrupt message. For example, if your
program executes an int 0 instruction, you’ll see the
message int 0, rather than code leading to the interrupt
using the unassemble command.

6-2 Scroll Symbolic Tracer

Another example on the IBM PC is the message
"PARITY CHECK 2", which allegedly means that some
memory location may have caused the error. You can
run a memory test program to check your memory, but
the interrupt could have been caused by a software bug,
namely an int, call, ret, or jmp that uses interrupt vector
2, the nonmaskable interrupt vector. Running under SST,
you can check the origin of the problem, and either go fix
your program or your memory accordingly.

NMI Button

Very usefully, the NMI interrupt can be caused by
your shorting the I/O Channel CHK line to ground with
an NMI button (connect normally open push button switch
to top and bottom I/O Channel pins closest to rear of PC).
This is a very powerful way of giving SST control when
ordinary maskable interrupts have been disabled.

Interrupt Mask Control

Particularly in debugging multitasking systems that
use the system clock to switch tasks, it is important that
SST can control the interrupt mask active when SST is
active. Otherwise, SST could regain control and immedi­
ately lose it to some other task. For this purpose, the
command

► qi mask

sets the interrupt controller mask used when SST is active
to the value mask. For example on the IBM PC, to allow
only keyboard interrupts, use

► qiFD

Interrupts 6-3

You can try this option out if you have a resident
clock routine such as that given in the book. The IBM
Personal Computer from the Inside Out. This routine
shows the seconds ticking away in the upper right corner
of the screen. When the OFDh interrupt mask is used,
SST stops the screen update whenever SST is active, and
then restarts it upon return to the user program.

1)08 and 8087-Emulation Interrupt Definitions

SST automatically comments some unassembled in­
structions, such as DOS calls (ini. 21 h) and the 8087 emu­
lation interrupts (int 34h - int 3dh). In addition the int
21h definitions are displayed when you type the int21 [«]
command in COMMAND MODE. If the optional n is
present, the definition for that entry point alone is displa­
yed. If n is missing the next hexadecade of inl21 entries
is displayed. These features are very handy for working
with code that makes DOS calls.

Examining Interrupt Vectors

To facilitate examining interrupt vectors, the suffix
"i" on an address address automatically implies the
address 0:4^address. Hence the command

fdd17 i

displays the 8088 interrupt vector table with the cursor
position at 0:5Ch, which has the double-word vector to
int 17h. You can then type Ctrl-F to begin disassembling
at this routine.

6-4 Scroll Symbolic Tracer

7o ew-
'To •e.xcsw'/oc*/A ’■

Chapter 7
COMMAND DESCRIPTIONS

This section describes the basic SST commands sum­
marized under Sec. 3 on Help as

!&.<> 0-9 @scii Asm Baud Comp Display
Exam Fill Go Hex In Klear Load
Move Name Out Protect Quit Reg Search
Trace Unasm Vector Write Xam YGDT Zam

It addition, this chapter summarizes many DOS-like com­
mands as given in the Table of Contents. Commands
specific to the interpreter, the disk editor, and the
RamFont editor are described in Chaps. 8, 9, and 10, res­
pectively. The remaining commands are discussed in this
and later chapters. They are introduced by a brief
syntax specification (see Chap. 4) followed by an explana­
tion of the command and some examples.

SST Commands 7-1

! SHELL Command

The command I loads and executes copy of the DOS
COMMAND.COM. The syntax is

► ! [.filename [parameters]]

If the optional filename and parameters field are present,
the file is executed with the command-line parameters
specified and control is returned to SST. If the I appears
alone, COMMAND.COM retains control giving the user
the usual DOS command line prompt. Type any com­
mands desired and return to SST by typing the DOS
command exit.

Note that SST and whatever you’re debugging remain
resident during this process, substantially reducing the
amount of RAM left to the new COMMAND.COM
process, relative to the one used to run SST in the first
place. Many DOS commands such as dir are built into
SST, so in many cases you may not have to use the shell
command.

& Address Command

The & label command returns the address of the var­
iable or label label. If label is not in the symbol tables
read in (see LL command), an error message is issued.
Type the d/s command to see what segments have symbol
tables.

. Calculator Command

The . command switches to floating-point CALCU­
LATOR MODE. See Chap. 5 for further description.

7-2 SST Commands

COMMAND.COM
COMMAND.COM
COMMAND.COM

0-9 Calculator Command

Commands beginning with 0-9 invoke the 32-bit hex
calculator option as described in Chap. 5.

< Command

The < filename command redirects keyboard input to
the file filename. This is very useful for reading in script
files to define symbol tables, function keys, and initializa­
tion commands.

> Command

The > filename command defines the file filename to
be used for echoed output.

@ Command

The @scii command displays hexadecimal and
decimal ASCII and EBCDIC charts as described in Chap.
2.

A Command

The a command assembles 8086 and 8087 mnemon­
ics. In SST it assembles 80186 and 80286 extended mne­
monics as well. It has the syntax:

K a [address]

This starts assembling instructions typed in by the user at
the address given following the a, or at the last address
used (initially cs: 100) if no address is given. The menu
line (third line from screen top) changes to

ASSEMBLE MODE: El Esc

A Commands 7-3

The help screens displayed by Function Key 1 are dis­
cussed below. The first time an a <H is typed you see
(suppose cs=1234)

t a
1234:100

After you terminate an assembly language instruction
with a <-*, the screen displays the corresponding machine
language and goes on to the next line. The assembly
language mode is terminated by two <-J’s in a row. Thus
to add the first ten integers one types and sees

K

► a
1234:100 B90A00 mov ex, a
1234:103 3 ICO xor ax, ax
1234:105 01C8 add ax, ex
1234:107
1234:109

E2FC loop 105

You can screen trace the operation of your program by
typing t or T followed by +-1 and single stepping by
typing the space bar. From the TRACE and UNASSEM­
BLE MODEs, you can invoke the assembler on the line
given by the cursor by typing the hot key "a".

Assembler Syntax

In the a option, all numbers are assumed to be hexa­
decimal unless identified as decimal by a trailing period,
or identified as a string literal by enclosing in single or
double quotes. Extra spaces and tabs can be be freely in­
serted to improve readability. Memory references are
usually chosen to be byte or word according to the regis­
ter that appears in the instruction. Hence the instruction
mov [100], ax moves a word to the location 100, while
wav [100], al moves a byte. If no register is mentioned,
such as in immediate transfers like mov word ptr
[100], 10, the usual modifiers word ptr and byte ptr
can be used. These can be abbreviated by word and
byte, respectively, or simply by w, and b,. For example,

7-4 SST Commands

shl word ptr [100],1
shl word [100],1
shl word [100] , 1
shl w,[100],1

all assemble the machine instruction that shifts the word
at location ds: 100 left one bit position. Either a byte or a
word specification must be given. In general syntax
accepted by DEBUG.COM is accepted by SST as well.

In ASSEMBLE MODE, Function Key 3 displays code
for instruction at current address for editing. You can
also edit a sequence of instructions in a row by using the
edit command described in Chap. 8.

8087 Instructions

For the 8087 instructions, the specifications d„ q„
and t, are available to mean double word, quad word,
and ten byte (temporary real — fid and fstp instructions
only), respectively. The usual assembler notation dword,
qword, and tbyte followed optionally by ptr is also
accepted. The stack registers can be referenced by their
full names st(z) with i=0 to 7. For simplicity they can
also be referenced by stO to st7, with st alone meaning
st(O). Most simply, they can be referenced by 0 to 7, an
unambiguous specification since no immediate instructions
exist on the 8087.

The arithmetic instructions fadd, fmul, fsub, and
fdiv can appear with no arguments, in which case the
operand field sl(l),st(O) is implied and a pop occurs. For
example, fadd means

faddp st(1),st(0)

This abbreviation makes arithmetic instructions without
operands work as in a Polish suffix calculator.

A Commands 7-5

DEBUG.COM

8086/80186/80286 Mnemonics

To see all the mnemonics recognized by the assem­
bler, type the command a Fl. This displays the help
screen

a [address] Assemble. Op codes (186/286/386
capitalized. Fl -* 8087) are:

aaa aad aam aas adc add and Arpl
Bound Bsf Bsr Bt Btc Btr Bts call
cbw Cdq clc cld cli cmc cmp cmpsb
Cmpsd cmpsw Cts cwd Cwde daa das db
dec div dw Enter esc hit idiv imul
in inc Insb Insd Insw int into iret
I retd ja jae jb jbe jc jcxz js
jg jge jl jle jmp jmps jna jnb
jnc jne jug jnl jno jnp jns jnz
jo jp jpe jpo js jz ’ lahf Lar
Ids Lfs lea Leave les Lgdt Lgs Lidt
Lldt Lmsw lock lodsb lodsw loop loope loopne
loopnz loopz Lsl Ltr mov movsb Movsd movsw
Movsx Movzx mul neg nop not or out
Outsb Outsd Outsw pop Popa Popad popf Popfd
push Pusha Pushad pushf Pushfd rcl rcr rep
repe repne repnz repz ret rol ror sahf
sal sar sbb scasb scasw seg Sgdt shl
Shld shr Shrd Sidt Sldt Smsw stc std
sti stosb stosw Str sub test Verr Verw
wait xchg xlat xor

Typing any character other than Function Key 1, restores
what was on the screen before you asked for help. If
you type Function Key 1 again, you see the 8087 mne­
monics:

7-6 SST Commands

8087 Mnemonics

a [address] Assemble. 808 7 op codes (Fl -* 8086) are:

f2xml fabs fadd faddp fbld fbstp fchs fclex
fcom fcomp fcomppfdecstp fdisi fdiv fdivp fdivr
fdivrp feni ffree fiadd ficom ficomp fidiv fidivr
fild fimul fincstp finit fist fistp fisub fisubr
fid fldl fldcw fldenv fldl2e fldl2t fldlg2 fldln2
fldpi fldz fmul fmulp fnop fpatan fprem fptan
frndint frstor fsave fscale fsqrt fst fstcw fstenv
fstp
fxam

fstsw
fxch

fsub
fxtract

fsubp
fyl2x

fsubr
fyl2xpl

fsubrp ftst fwait

For use of these commands, see the Intel iAPS 86/88,
186/188 User’s manual, the Intel iAPX 286 Programmer’s
Reference Manual, the Microsoft Macro Assembler
manual, or the book The IBM Personal Computer from the
Inside Out, by Sargent and Shoemaker»

If an error is found, the assemble command indicates
the offending letter or field by an Up arrow followed by
the word error as in

mov ax, q
t error 1

You can then use the command edit keys (see Chap. 4) to
fix the error, or type Esc to return to COMMAND
MODE.

Labels and Comments

You can label instructions as you type them in with
the assemble command. Terminate the labels with a
colon (:), and they are inserted into the label table for use
in later assembles, unassembles, examines, displays, etc.
A colon alone deletes the label at the current program
counter. A new label replaces an old one. You can save
the labels you type and/or read in with the wl command.

A Commands 7-7

Use the 11 command to read in labels written with the wl
command.

You can also define labels by reading them in from
the /MAP option (11 command) on the linker and /LST
option (lv command) on the macroassembler. Currently a
macroassembler listing is the only way to insert variable
names into SST unassembles. The assembly language in­
terpreter (Chap. 8) can have variables of its own by using
the db and dw pseudo-ops, or by storing a value into an
as-yet undefined variable.

Program comments are supported by the assemble
and unassemble commands and are defined by a starting
semicolon. If you type a semicolon at the start of a line,
the comment that follows will automatically be appended
to the instruction for that line. If you type a semicolon
alone, any existing comment for the line is deleted. If
you type a new comment, it replaces the old one.

Program Mode

The end pseudo op stops TRACE MODE unassembly
beyond the end, giving a more readable screen. This
pseudo op can only be used in .COM file mode, i.e., with
cs equal to the program prefix segment. When end is in
effect, you can edit, insert, and delete instructions in the
middle of your program. See Chap. 8 on the built-in
assembly language interpreter.

The a option acts essentially the same way as for
DEBUG.COM with the additions of instant help messages
(just type Function Key 1), of displaying the assembled
machine language, of recognizing the 80186 and 80286
extended mnemonics, use in search strings, with the
change to lower case for increased readability, use of
labels and comments, and with the PROGRAM MODE
allowing insertion and deletion of instructions.

SST also uses the assembler for the Super-Trace and
conditional breakpoint facilities.

7-8 SST Commands

DEBUG.COM

AND Command

The logic operations and, or, xor, and not operate on
memory ranges much like the fill command. The and,
or, and xor have the same syntax as the fill command,
while the not command simply inverts all bits in the
range. The syntax is

k and range list
k or range list
k xor range list
k not range

The bytes in the list list are anded, etc., with the bytes in
the range range. The and operation can be used to kill
the high bit on bytes in WordStar files or the parity bit
included by some communications programs. For
example, to kill the high bit in the file WORD­
STAR. DOC, type

k nwordstar.doc
k 1
k and 100 1 ex 7F
k w

To reverse video font t5, type

k xor t5 11 000 FF

B Command

This command manages breakpoints and setting the
baud rate. To set the baud rate, type a command of the
form

k b rate [.channel}

where rate -- one of 110,150,300,600,1200,2400,4800,9600.
The optional channel value of 1 specifies COMI and 2
gives COM2.

B Commands 7-9

If no number is given, the message

Reboot System (Y/N)?

is displayed. Typing y or Y reboots the system without
erasing memory (works only on older IBM PC’s at the
moment).

Breakpoint Commands

In addition to the 10 normal g breakpoints (see go
command) that go away upon reentry to SST, you can
define up to 10 sticky breakpoints with the breakpoint
command. To set sticky breakpoints type a command of
the form

k bs[rt] address \jn\

which sets breakpoint [n] at the address address and skips
m passes by this address. No blanks can occur between n
and the s if n is given.

To clear breakpoints in list or all (*), type a
command of the form

k be list
or type

k be *

The list list here refers to one or more digits 0 to 9, and
the * refers to all ten possible breakpoints.

Similarly to disable breakpoints in list or all (*), type
a command of the form

k bd list
or type

k bd *

7-10 SST Commands

and to enable breakpoints in list or all (*), type a
command of the form

► be list
or type

► be *

To list your breakpoints and their characteristics,
type

► bl

For example,

► bs0 1 254-: 5678

defines and enables sticky breakpoint 0 at the address
1234:5678.

► bd0

disables sticky breakpoint 0. Hence if you go to the
program, this breakpoint will not be set. The be0
command can reenable the breakpoint.

After defining one or more sticky breakpoints, type
the bl command to see a pop up window telling you
about the status and location of the breakpoints. This
facility is compatible with SYMDEB.EXE’s except that the
latter uses bp instead of bs to set Breakpoints. SST uses
bp to refer the bp register.

B Commands 7-11

BLINK Command

The command

k blink [«]

controls the Hercules Graphics Card Plus blink/reverse-
video attribute. If n = 0 or is missing, then bit 7 = 1 of
the screen attribute byte specifies a high-intensity back­
ground. If n = 1, then bit 7=1 of the screen attribute
byte specifies blinking. Use blink 0!

BYE Command

The command

k bye

quits to DOS. system and quit do the same thing.

BYTE Command

To facilitate both source-level and assembly language
debugging, SST includes commands to define typical data
types. The syntax for the byte type is:

byte [[[[far]] *J variable name address

For example,

byte alpha 505

adds the symbol alpha of type byte (8-bit unsigned
integer) to the segment specified by the ds segment regis­
ter at the offset 305h. You can specify any other
segment. The optional * generates a near ptr to a vari­
able of the type byte. The optional far generates a far
pointer to a variable of the type byte.

7-12 SST Commands

C Command

This command compares the contents of one memory
block to that of another memory block (like DEBUG). It
is useful for checking that two copies of a program are
identical and have not been changed, for example, by a
crash of the system. The command expects the first
block start and end addresses and the second block start
address as arguments. Syntax:

t c range address
For example,

t 0500,595,2000

compares the contents of memory from address 500h
through 595h against the contents of memory from
address 2000h through 2095h. Any differences will be
shown on the display. Thus if location 527h was 00
while 2027h was FFh in the above example, the display
would show

t0500,595,2000
2347:527 00 FF

assuming all other locations in the blocks are identical.

If ip=235, cs-0200, es-3000 and di=495, then

t cos:ip E000 es:di

compares 0200:235 up to 0200:E000 against the memory
block starting at 3000:495.

This command works the same way in DEBUG, and
allows general register names to be used in the address
fields.

CD Command

The cd command changes the directory as for DOS.
Such changes cause the new path name to appear in a
pop-up window. Alternatively, type the prompt
command (described later in this chapter) to display the
current path on all COMMAND MODE command lines

C Commands 7-13

(as for the DOS prompt command). The instead of the i
prompt, you see something like

C: \PS>

To change the current drive, type a command of the
form a: or a\, where a is the desired drive letter.

CHAR Command

To facilitate both source-level and assembly language
debugging, SST includes commands to define typical data
types. The syntax for the char type is:

char [[[[far]] *[) variable name address

For example,

char alpha 505

adds the symbol alpha of type char (8-bit signed integer)
to the segment specified by the ds segment register at the
offset 305h. You can specify any other segment. The
optional * generates a near ptr to a variable of the type
char. The optional far generates a far pointer to a vari­
able of the type char.

CLOCK command

SST can display a time-of-day clock at right side of
menu once a second. The command

r clock status

turns this clock on or off if status = on or off, respec­
tively. If status equals an address instead of on or off,
the word value at that address is displayed once a second.
In addition to reporting the time of day, this feature lets
you know if your machine has totally crashed.

7-14 SST Commands

CLOSE Command

The close command closes all opened files except
those with handles 0 through 4.

CLS Command

The cis command acts as for DOS to clear the
screen, here leaving the register window on top. This
command also works in CALCULATOR MODE.

CONFIRM Command

The confirm command is typically used in demons­
tration script files to bypass the need for the user typing
"y" or "n" to confirm an action. The syntax is

► confirm status

where status --- off turns off the need to confirm, while
the value on turns it back on (default is on).

CONT Command

The cont command continues operation where left
off. It is the same as the g command without arguments,
except that cont requires no confirmation if no breakpo­
ints are implemented.

CPU Command

The cpu command gives you information about your
computer. For example when you type

k Cpu

on a typical IBM PC AT, you might see

C Commands 7-15

CPU: 80286/80287
RAM: 0123456789 ABCDEF
Serial Ports: 3F8 2F8
Parallel Ports: 3BC 378 278
DOS: 3.1
Speed Relative to PC I: 3.0
BIOS ROM: 01/10/84

Here the underlined values in the RAM entry are shown
in reverse video on screen and signify that RAM exists in
those 32K memory banks.

The program used to measure the speed relative to
the IBM PC 1 is as follows:

comment (SPEED - display null-terminated string ds:[si]
followed by ratio of loop speed on machine to that of
IBM PC I. ax, bx, ex, dx, si changed

speed: cii ;No interrupts
call mark ;Get ax = timer start count
mov cx,800h

speed2: push ax ; Delay
pop bx ;bx = original timer count
loop speed2
call mark
sti interrupts back on
sub bx,ax ;bx = binary interval count
call tom ; Display speed message
mov ax,0cl00h ;IBM PC I loop time (OclOO)
xor dx,dx
div bx ;ax = integer ratio
push dx ;Save remainder in OfOOO’s
call dlbyte ; Display integer part
mov al,"." ; Display decimal point
call co
pop ax ;ax = remainder
mov cx,10d ;Convert to tenths
mul ex
div bx
jmp dlbyte ; Display tenths’ part and ret

7-16 SST Commands

comment
changed

|MARK1 - return ax = timer 0 count. ax

timerO = 40h ;8253 timer 0
timet! = 43h ,8253 timer control port

mark: mov
out
in
mov
in
xchg
ret

al,0
timctl,al
al, timerO
ah,al
al,timerO
al,ah

; Latch count

CSRSIZE Command

The command

y csrsize xxyy

begins the cursor on character raster row xx (starting with
row 0 on the top) and ends the cursor on row yy. Hence
the command

V csrsize b0c

gives a two-line cursor starting on line 11 (decimal) and
ending on line 12.

C Commands 7-17

D Command

This command displays the contents of memory in
hex/ASCII (like DEBUG), pure ASCII, word, or double­
word formats. In the hex/ASCII mode, sixteen bytes of
memory are displayed per line with the starting address
of the line given as the first entry on the line. In the
pure ASCII inode, 64 (40 hex) bytes are displayed per
line, allowing one to see four times as much memory on
screen as with the hex/ASCII mode.

The command

f d [range]
displays the memory in the range range. For example,

b d100,200

displays memory from address lOOh to address 200h in­
clusive. Usually this syntax is compatible with
DEBUG.COM. However if one of the characters "abdpw"
follows the d with no intervening blanks, that character is
interpreted to choose the DISPLAY MODE ASCII, BYTE
(hex/ASCII), Double word, triple-nibble (for 12-bit FAT
displays), and Word, respectively. The mode so chosen is
used by subsequent display commands until overruled. A
particularly handy special case is the command

b dd;

which displays the interrupt vectors down at 0000:0000 in
double word format. You can then use the cursor keys,
blanks and backspaces to move to the desired interrupt
vector and type Ctrl-F to start unassembling at the inter­
rupt handler entry point. Note that ddnl displays the in­
terrupt vector table with the cursor at interrupt vector n.

The output of this start/end display option can be
written to a file of your choice (see n> filename
command). Under MSDOS 2.0 and later versions, this file
can be the printer instead of a disk file. The display
command for a range quits with Ctrl-C and pauses with
Ctrl-8. The maximum range length is 8000h.

7-18 SST Commands

DEBUG.COM

Linear Address Display

A linear address display is available for Real Mode
and protected 386 mode operation. In COMMAND
MODE, type

k dx offset

where on an 80386 the offset can be 32-bit. Using this
command in protected mode on the Compaq DeskPro 386,
you can see that this machine wraps its address space at
16 megabytes, in true AT compatible form. If an address
greater than 1 megabyte (100000H) is used, the "x" is
implied.

This display mode is very handy for looking beyond 1
megabyte.

Screen Display

If no address or only the start address is specified,
an instantaneous screenful of memory is displayed with a
register/menu window on top. The offset at the cursor is
displayed in the register window and the registers are
displayed as discussed under the register command below.
SST has the menu

DISPLAY MODE: Fl Tab EJSCII Hag Word Ml
Khar Sir @bnt ®vr Hjndo

The Tab entry means the Tab key. The EJ stands for
Ctrl-A. To type this, type a or A while holding the Ctrl
key down. This toggles the DISPLAY MODE between
hex/ASCII and pure ASCII formats (see below). Typing
Function Key 1 displays the help screen (Ctrl characters
are shown in reverse video on screen)

D Commands 7-19

Hl- move cursor (csr) PgUp/Dn scroll screen
Tab csr: HEX.«-* ASCII EJSC11 toggle ASCII/HEX
Byte Byte format Shift invert case at csr
Hag Tag csr position ®nd End block at csr
®o tag end filestore Restore csr
s display last char read @scii ASCII screen
®vr toggle OVERTYPE fflndo Undo last overtype
B3ord csr -- Word ptr Eouble csr -- Dword ptr
Klear csr -- Near unasm ptr Sar csr -- Far unasm ptr
®ont tgl Continuous update go to COMMAND

unassemble at csr MODE

Cursor Movement and Memory Display Format

The cursor, arrows, PgUp, PgDn, space bar, and
backspace move the cursor around memory, scrolling the
screen to keep the cursor on the middle line of the
display (except near 0000:0000). Memory can be displa­
yed in two formats, hex/ASCII and pure ASCII. The
hex/ASCII format displays 16 (lOh) bytes of memory per
line, in hexadecimal form on the left and middle of the
screen, and in ASCII on the right, as shown on the fol­
lowing page. "Hie ASCII column replaces control charac­
ters (those with codes less than 20h) by periods. The
pure ASCII format displays 40h bytes per line, with all
control characters except code 0 by periods. Code 0
shows up so often that SST represents it by a o character.

Vertical motions can extend arbitrarily far up or
down. In the pure ASCII mode, the autorepeated PgUp
command displays each 64K RAM of memory in about 4
seconds, making it easy to scan all of memory for text. If
you scroll towards lower addresses in memory than those
displayed at the start of the display command, the address
segments decrease by lOh. This allows you for example,
to examine the bytes in the program prefix of an .EXE
file with the program prefix segment displayed. If you
scroll up in memory beyond the segment you started with,
the segment displayed is increment by lOOOh. If you
display memory near or at the start of physical memory

7-20 SST Commands

(0000:0000), the 0000 segment is automatically used. This
area of memory contains the 8086/8088 interrupt vectors,
which consist of 4-byte pointers to the programs that
handle the interrupts.

Stack segment displays automatically display stack
frames pointers in reverse video, and referenced locations
in boldface (as in TRACE MODE).

In hex/ASCII mode, the Tab key switches back and
forth between the hex and ASCII display columns.

Ctrl-A switches back and forth between the hex/ASCII
and pure ASCII formats (used also for X window in
TRACE MODE).

Ctrl-8 switches to the Byte (hex/ASCII) format

Ctrl-E Ends the block at the location pointed to by the
cursor. The other end of the block is defined by Ctrl-T.

Ctrl-G Goes back and forth between the Tag and End tag
locations.

Ctrl-S inverts (Shifts) the case of the character at the
cursor.

Ctrl-T Tags the cursor location for use by the Ctrl-G
command and for defining one end of a block that can be
used in compare, display, examine, fill, move, search, and
write commands (see Block section of Chap. 3).

Ctrl-Z displays last char read in by the last load
command executed

As for all commands, 4-1 (or Esc) returns to
COMMAND MODE (ASSEMBLE MODE typically takes
two <->'s)

D Commands 7-21

Memory Pointers

SST uses certain control characters to specify that the
bytes starting at the cursor are to be used as pointers into
memory for subsequent display and disassembly. This
helps one to move around in memory without typing
addresses.

Ctrl-C Continuously updates the display. This is optional,
since some screens glitch with this process, and the key­
board response may be slowed down. This feature is
handy to watch areas of memory being changed by inter­
rupt-driven routines, such as the time-of-day clock, and
the keyboard input buffer. Try using it while displaying
40:0 on an IBM PC.

Ctrl-D displays memory at the Double-word address indi­
cated by the cursor.

Ctrl-F starts disassembling memory at the Far address in­
dicated by the cursor. This is very handy for looking at
the code of an interrupt handler. Display memory at
0000:0000 (just type the display command dd;, which
acts like dd0000:0000), move the cursor to the desired
interrupt vector and typed Ctrl-F. This displays the first
instruction of the interrupt handler. Typing the space bar
or PgUp displays subsequent instructions.

Ctrl-N starts disassembling memory at the Near address
indicated by the cursor.

Ctrl-O toggles between DISPLAY MODE and OVER­
TYPE MODE as described below.

Ctrl-U Undoes the last overtype in case you type some­
thing by mistake.

Ctrl-W displays memory in the current segment starting
at the offset given by the Word-address indicated by the
cursor.

7-22 SST Commands

Overtyping Memory with SST

By typing Ctrl-O, you toggle between DISPLAY
MODE and OVERTYPE MODE. In the latter when the
cursor is located in the hex columns, typing hex digits
overtypes those in memory. When the cursor is on
ASCII columns, typing characters with blank or larger
ASCII codes overtypes memory. Control characters must
be entered as hex values. Since you may overtype
memory by mistake and not know what value you over­
typed, the Ctrl-U option allows you to replace the value
of the last location overtyped. Use the overtype facility
with caution. You may overtype something you don’t
mean to.

SST display syntax is upward compatible with
Microsoft’s SYMDEB, except that the 8087 modes remain
with the examine command, and SYMDEB lacks the full
screen mode. The command syntax sometimes gives dif­
ferent results from DEBUG.COM, but the result is always
clear and the extra power is worth the change.

Binary Editor

If a non-com, non-exe file smaller than 64K bytes is
read in, an elementary binary mode edit capability exists
in addition to the usual overtype capability. The Del key
deletes the byte at the cursor from the RAM image of the
file, decrementing the user ex value accordingly. The Ins
key inserts a binary null at the cursor, incrementing the
user ex value accordingly. Such a file can be overtyped
and bytes can be inserted and deleted, regardless of the
file content, i.e., the file can have arbitrary binary values.
The w command then rewrites the file with the new
length back to the same place on disk (unless you use the
n command to change the filename).

D Commands 7-23

DEBUG.COM

Displaying Labels

Labels can be displayed by a command of the form

► d/n
where n is the number of a segment paragraph. Often
the desired labels are in the current code segment, in
which case type

k d/cs

To display program variable names, type

► d/v

To display user strings, type

k d/u

To find out the address (segment:offset) of a given label,
type &label_name.

DATE Command

The date command in COMMAND MODE displays
the current system date.

DEL Command

A command of the form

k del filename

deletes the file filename. This form could also have the
unlikey interpretation as a Display command, starting at
the offset OEh with the number of bytes specified after
the "L". This possibility is superseded by the del
command.

7-24 SST Commands

DELAY Command

A command of the form

k delay n

causes the code

mov
loop

CX,fl
$

to be executed each time most characters are displayed on
the screen. This slows down SST displays, mostly to help
in the debugging of SST itself.

DELETE Command

A command of the form

k delete n

deletes the instruction at the offset n. This works only in
Program mode (see Chap. 8).

DIR Command

Typing dir in COMMAND MODE acts very much
like typing dir/W at the DOS command prompt, but also
displays labels, and system, hidden, and directory files.
You can follow the dir command with an arbitrary filen­
ame specification including path and asterisks. For
example, the command

>dir .asm

or just

k dir.asm

displays all files in the default directory on the default
drive with the extension .ASM. The filenames displayed

D Commands 7-25

are alphabetized. At the end of the display the total byte
count for all file whose filenames are displayed is given
in decimal if that number is less than 65536 or if the
computer has an 8087. Otherwise the count is given in
hex.

DISK Command

The command disk changes the display source for
the d command from RAM to disk. See Chap. 9 for
details. The command ram switches the display source
back to RAM.

DOS Command

The dosn command is the equivalent to typing
v21 nOO at the COMMAND MODE prompt. The only
advantage is that if you type it incorrectly you won’t
execute some undefined interrupt vector by a mistake.

DOUBLE Command

To facilitate both source-level and assembly language
debugging, SST includes commands to define typical data
types. The syntax for the double type is:

double [[|[f ar J *J variable name address

For example,

double alpha 505

adds the symbol alpha of type double (8087 64-bit float­
ing-point) to the segment specified by the ds segment reg­
ister at the offset 305h. You can specify any other
segment. The optional * generates a near ptr to a vari­
able of the type double. The optional far generates a far
pointer to a variable of the type double.

7-26 SST Commands

DR Command

On 80386-based computers, the dr command displays
the 80386 debug registers 0, 1, 2, 3, 6, and 7, the tran­
slate-lookaside registers 6 and 7, the control registers 0, 1,
and 3, and the extended flags register. This command
does not work when SST is run as a V86 task. It does
work if SST is run in real or protected mode.

DWORD Command

To facilitate both source-level and assembly language
debugging, SST includes commands to define typical data
types. The syntax for the dword type is:

dword [[[[far]] *] variable name address

For example,

dword alpha 305

adds the symbol alpha of type dword (32-bit unsigned
integer) to the segment specified by the ds segment regis­
ter at the offset 305h. You can specify any other
segment. The optional * generates a near ptr to a vari­
able of the type dword. The optional far generates a far
pointer to a variable of the type dword.

E Command

This command examines or modifies memory on a
byte by byte basis (like DEBUG), in various floating point
formats, and according to user defined templates. The
display command can also be used change memory, but
the examine command is occasionally preferable, since the
screen remains largely unmodified and 8087 data types
are supported. To execute the command, type e or E
plus an address and then hit the space bar. The system
will respond by displaying the contents of memory at that
address. Syntax:

E Commands 7-27

k e address

For example, typing e2000 followed by a 4-1 results in

► e2000 00-

if the contents of location 2000h are 00. Typing in a
value nn at this point will change the contents of location
2000h to nnh, while hitting the space bar will leave the
contents of that location alone and display the contents of
the next higher location. One can continue entering new
values or hitting the space bar as long as desired. The
command is terminated by hitting For example,

t e2000 00- 11-10 22- 33- 44-1210 55- 66-

would change locations 200Ih and 2004h to 10 and leave
the other locations unchanged. Note that the keyboard
input routine uses only the last two characters typed
before the space bar is hit. Thus in the above example,
12 was entered by mistake in location 2004h and then
corrected by immediately typing 10 before the space bar
was hit. One can also correct a mistake in the previous
byte by pressing the backspace key to re-display the
preceeding byte.

Floating Point Values

When an 8087 is installed, the SST examine
command can also be used to examine and change long
integer, packed BCD, and floating-point values in
memory. If e [address] is followed by a / and one of
letters b, d, 1, o, p, q, s, t, or w, memory is examined in
the following formats respectively:

BCD (10 bytes)
Double precision real (8 bytes)
Long integer (4 bytes)
O binary (1 byte)
P binary (2 bytes)
Quad integer (8 bytes)
Single precision float (4 bytes)

7-28 SST Commands

Temp precision (10 bytes)
Word integer (2 bytes)

For example, typing the command e100/d followed
by a 4-1, you might see

k el00/d - 0

At this point if you type a number in like 1 .2345, the 8
bytes at location lOOh would be changed to the floating
point number 1.2345. Subsequent typing of the space bar
examines subsequent 8-byte double precision floating
point quantities.

Structure Templates

Structure templates are used to display memory in
customized formats that reveal the data in its natural
form, rather than in one of the usual uniform formats like
hex/ASCIL Such layouts include linked lists and data
structures with mixed data types. The templates used to
describe these data structures are mixtures of 1) alphanu­
meric names that begin with a letter, 2) single decimal
digits, 3) $n, where n is a value < 100, 4) $b or $w, 5) >n,
and 6) string literals The string names, contents of
the string literals, and all other bytes are displayed as is.
The digits and $ fields have special meanings as follows:

1, 5-9 display the next 1, 5-9 bytes in hex
2 display the next 2 bytes as a 16-bit word
3 display the next 3 bytes as a 24—bit word
4 display the next 4 bytes as a double word

(segment:offsel)

display the next n ASCII characters from
memory

$b display the character string following the next
byte in memory with length given by that byte

$w display the character string following the next
word in memory with length given by that word

$z display null-terminated character string
$$ display $-lerminated character string

E Commands 7-29

The / options require the 8087.

>n
>b

go forward the next n bytes
go forward the number of bytes specified by the
next byte in memory

>w go forward the number of bytes specified by the
next word in memory

>z
>$

skip null-terminated character string
skip ^-terminated character string

<n
<b

go backward the next n bytes
go backward the number of bytes specified by
the next byte in memory

<w go backward the number of bytes specified by
the next word in memory

<z go backward to proceeding null-terminated char­
acter string

<$ go backward to proceeding ^-terminated charac­
ter string

=n
=w

go to offset n in current segment
go to offset specified by the next word in
memory

=d go to address specified by the next double word
in memory

-8 go to offset 0 in segment specified by the next
word in memory

/b
/d
/I
/q
/s
/t

8087 BCD format (10 bytes)
8087 Double precision (8 bytes)
8087 Long integer (4 bytes)
8087 Quad integer (8 bytes)
8087 Single precision (4 bytes)
8087 Temporary real (10 bytes)

7-30 SST Commands

For example, to read out an 80286 descriptor data
structure with the macroassembler form

dscptr struc ; Descriptor
sglen dw ? ;Segment max length
sgbase dw ? ; Segment base low word

db ? ; Segment base high byte
access db ? ; Segment access byte
reswrd dw ? ; Reserved word
dscptr ends

define the string ds by

knds = "sglen 2
sgbase 3
access 1
reswrd 2"

Then use the examine command as follows

k e address/ds

After the first <J, subsequent space bars display the
next structure entry in memory. User strings along with
program labels, comments, and variables are all saved to­
gether by the wl, and can be reread by the 11 command.

Useful DOS Examine Templates

A set of useful examine templates is given on the
SST distribution diskette in the file STRUCT. These
templates include those for the EXE header, the Program
Segment Prefix (PSP), the File Control Block (FCB), the
Extended FCB, the Drive Parameter Table (DPT), the
Device Header, and the Bios Parameter Block. We are
indebted to Guy Gordon of White Crane Systems for
donating these templates for SST users.

The examine command is upward compatible with
DEBUG.COM, except for the use of the backspace and
extra digits in arguments. The command adds the ability
to examine and change floating-point values in IEEE
format and by user-defined structure templates.

E Commands 7-31

DEBUG.COM

ECHO Command

The echo of display and unassemble output to the
printer or echo file set up by the n > filename command
can be controlled by the echo command. Type

k echo on

to turn it on and

kecho on

to turn it off.

EDIT Command

A command of the form

k edit address

enters the ASSEMBLE EDIT MODE for the instruction at
the address address. See the assemble command and
Chap. 8 for further discussion.

EGA n Command

A command of the form

k ega n

determines the Enhanced Graphics Adapter’s line/page
mode. n = 43 chooses the 43-line mode and n = 25
chooses the 25-line mode.

7-32 SST Commands

ERASE Command

SST includes a subset of the DOS file commands for
speed and convenience (see Chap. 4). One of these is the
erase command, which is typed in COMMAND MODE in
the form

► erase filename

After getting this command, SST asks you to confirm that
you really want to erase the file filename. If you type y
or Y, SST erases the file; otherwise it does not. You can
interrogate the directory with the dir command in
COMMAND MODE.

The alternate DOS form for erase, del, can be used
in SST. This form could also have the unlikey interpre­
tation as a Display command, starting at the offset OEh
with the number of bytes specified after the "L". This
possibility is superseded by the del command.

F Command

This command fills a block of memory with a con­
stant of one or more bytes (like DEBUG). Syntax:

k f range list

For example,

► f100.1C0.FF

fills memory locations ds:100h through ds:!C0h with the
hex value FF.

The command can also fill a block of memory with a
list of assembly language instructions, handy for checking
speed of execution. For this option, the list is replaced by
@ 4-1, which transfers control to the assembler. Type in
the instructions you want followed by two <->'s in a row.
This fills the memory range you give repeatedly with the
instructions you give. For example,

F Commands 7-33

k f 100 1FE @
1234:0100
1234:0102

loop 100

fills 100k through IFEh with a loop to here instruction.
This sort of fill command is useful for finding out how
fast pieces of code run (see Sec. 9-4 of The IBM Personal
Computer from the Inside Out).

The command is upward compatible with
DEBUG.COM, and adds the ability to fill memory with a
set of instructions.

FILES Command

The files command is an alias for the dir command
and has the same syntax.

,se"FLOAT Command"

To facilitate both source-level and assembly language
debugging, SST includes commands to define typical data
types. The syntax for the float type is:

k float [[[farJ *]] variable name address

For example.

k float alpha 505

adds the symbol alpha of type float (8087 32-bit floating
point) to the segment specified by the ds segment register
at the offset 305h. You can specify any other segment.
The optional * generates a near ptr to a variable of the
type float. The optional far generates a far pointer to a
variable of the type float.

7-34 SST Commands

DEBUG.COM

FONT Command

The font address command displays memory in the
special screen font format described in Chap. 10 on the
Ramfont editor.

G Command

The g command allows a user to go execute a
program with breakpoints (like DEBUG). These breakpo­
ints go away when SST regains control. Sticky breakpo­
ints are also available as described under the breakpoint
command in this chapter. In addition, the SST go and
sticky breakpoints can be made conditional, that is,
whether execution is stopped when the instruction at a
breakpoint is reached can be made to depend on a set of
conditions specified by the user. When the go command
is executed, SST loads the values in the register storage
area into the proper registers, and then jumps to the
requested program address.

The go breakpoint syntax is:

f g [=address] [address]...

For example,

► g1000

starts execution at cs:ip and breaks if cszlOOO is reached.

g=1 000,1020,es: 1250

starts executing at cs:1000h, and breaks at cs:1020h or
es:1230h, the program will return to the monitor, printing
the register values. All register contents at the time of
the breakpoint are saved. All previously set go breakpo­
ints are cancelled when any breakpoint is reached.
Breakpoints must be set only at locations corresponding to
the first byte of an instruction. Additional breakpoint
facilities are built into the screen trace mode, and greatly
reduce the frequency that you need to use the uncondi-

G Commands 7-35

lional go command. The breakpoint facilities use the int
3 instruction, and only work in RAM.

Conditional Breakpoints

To make the breakpoints depend on a set of condi­
tions, follow the go command specification (i.e., just
before the 4-1) by This transfers control to the
assembler to allow the set of conditions to be entered.
The conditions are expressed by an arbitrary set of
assembly language instructions. These instructions could
in principle invoke software interrupts, call user subrou­
tines, and do anything else that the machine can do. The
conditions are specified the same way for the Super­
Trace and for conditional breakpoints. Hence after a
conditional breakpoint succeeds, a subsequent trace will
automatically be a Super-Trace (note the Z at the end of
the second line from the top of the screen), unless the
conditions are turned off with either a g@ 4-1 4-* or a
4-M-teommand.

There are three basic guidelines to writing condi­
tional breakpoint code:

1. The ax and bp registers are saved before the user
code is executed. It is your responsibility to save
and restore any other registers you wish to use. The
bp register is initialized to point to the program
stack, with bp-2 giving the user ax value, bp+0
giving the bp value when the breakpoint was
encountered, bp+2 giving the ip, bp+4 giving the cs,
and bp+6 giving the flags. The ax register is initial­
ized to the first word of the current user instruction.
For example, if the current instruction is a ret, then
al = 0C3h, something you can break on.

2. The area reserved for user code is 40h bytes long.
This is more than enough if you plan to type condi­
tions in hand, but could be easily exceeded if you
load a .COM file into the condition memory (to find
the address of this memory, type g@ 4-1 or t@ <-■
<-*, which in addition to displaying the condition

7-36 SST Commands

memory address turn off any active conditions). If
you want to access a large amount of condition code
such as a program profiler, make it a resident routine
and access it through an int instruction.

3. Program execution is interrupted if the instructions
set the Zero flag to 1, that is, if a jz instruction
would jump. Otherwise program execution contin­
ues.

Writing Conditional Code

Chapter 3’s section on ’’Super-trace Demonstration”
illustrates the simple condition

cmp di,600

which succeeds if and only if di=600. Sometimes it is
easy to express a condition that yields NZ rather than Z.
For example, suppose you want the condition that di/600.
For this use the code

cmp di,600
lahf
test ah,4-0

Here the lahf, test ah,40 complements the Zero flag.
Since SST saves ax for you, you don’t have to worry
about clobbering the ah register. More complicated con­
ditions often require some conditional jump instructions as
well.

If you want to stop supertracing on the next ret in­
struction, use the condition

cmp al,00)

O Commands 7-37

H Command

This command is included for primarily for compati­
bility with DEBUG.COM. The SST calculator provides a
much more powerful facility. The hex command adds
and subtracts two hexadecimal numbers. Syntax:

k h valuex value2

If the value2 is missing, the binary equivalent of value{ is
displayed. To get hex/decimal conversions, see Chap. 5
on the "Calculator" section.

Examples:

k h34-5 , abc E01 F889

k K1S- 00010000

This command is upward compatible with
DEBUG.COM’s, adding the hex to binary conversion fac­
ility (used mostly for tutorial purposes).

HELP Command

The help command subjects the file SST.HLP to the
SST type command. This allows you to browse/search
through the SST.HLP file looking for online help.

I Command

This command displays the binary value read from
any input port (like DEBUG). Type i or I followed by
the port number. Syntax:

k i portaddress

Thus

k 120

7-38 SST Commands

DEBUG.COM

inputs a byte from input port 20h. The input value is
displayed in binary, i.e., if the value obtained from the
input port was 45h, the display would show

► 120 45=01000101

INI Command

The ini command reads and executes the file called
SST.INI. This can be used to initialize SST for your
standard set of parameters (see also the q command).

NOTE: If an sst.ini file exists in the default direc­
tory, it is automatically executed before SST displays its
signon message.

INSERT Command

The command insert n enters the ASSEMBLE
INSERT MODE at offset n. This works only in Program
mode. See the assemble command and Chap. 8 for
further details.

1NT Command

To facilitate both source-level and assembly language
debugging, SST includes commands to define typical data
types. The syntax for the int type is:

► int d[[far]] *J variable name address

For example,

►int alpha 505

adds the symbol alpha of type int (16-bit signed integer)
to the segment specified by the ds segment register at the
offset 305h. You can specify any other segment. The
optional * generates a near ptr to a variable of the type
int. The optional far generates a far pointer to a vari­
able of the type int.

I Commands 7-39

1NT21 Command

DOS int 21h entry definitions are displayed when
you type the inl21 [«] command in COMMAND MODE.
If the optional n is present, the definition for that entry
point alone is displayed. If n is missing the next hexade­
cade of int 21 entries is displayed. In addition unassem­
bled int 21 h instructions are commented with the corres­
ponding entry descriptions. These features are very
handy for working with code that makes DOS calls.

IV Command

The iv command initializes the screen RAM of the
Micro Display Systems VHR monitor. This is a full
screen display with 66 lines and graphics that can overlay
the text-mode screen.

J Command

No commands currently begin with J.

K Command

The k command is used to clear (klear) the screen, to
give a program stack trace, to reset the 8087 registers and
status, and to get keyboard input codes.

K - Stack Frame Display

A special stack readout may enable you to trace sub­
routine calls. Most higher level languages support a rec­
ursive subroutine linkage convention that creates a slack
frame for each call. Unless the compiler is optimizing
code, each subroutine call saves the current value of bp
on the stack and points bp at the saved value. Use of bp
then allows access to the subroutine arguments which
have been pushed onto the stack before the call and to

7-40 SST Commands

local variable storage on the stack which is allocated upon
entry to the subroutine. Immediately above the save bp
value is the Near or Far return address.

To display such a stack trace, type

k k

in COMMAND MODE. Note that the k command can
take arguments, which cause it to do other things as
described in Chap. 7. For SST to display the trace, the
numbers it encounters on the Stack must make sense as
stack frames. The bp register must contain a value at
least as large as the sp register. The saved bp values
must be greater than the current bp value and must in­
crease monotonically. As soon as one of these require­
ments is violated, the trace terminates.

SST stack traces use the Microsoft Windows conven­
tion to determine if a return address is Near (16-bits) or
Far (32-bits). Specifically, if the saved bp value is even
(as it is whenever loaded as a frame pointer into bp), the
return address on the stack is assumed to be a Near
address, that is, 16-bits long. In contrast for a Far
(32-bit) return address, the Microsoft Windows subroutine
initialization code saves the bp value + 1, i.e., an odd
value. SST’s stack trace therefore assumes that an odd
saved bp value signals the presence of a Far return
address. The instruction proceeding that at the return
address given in this fashion is examined to see if it is an
appropriate call instruction. If so, a call trace display is
given and the next frame is examined. SST also displays
up to eight stack values in between the frames.

For a more general call trace, special coordination
between SST and the .EXE symbol tables is needed.
CodeView, for example, has such a facility.

K. Commands 7-41

Klearing the screen and 8087

The k command clears the screen (except for the reg­
ister window at the top). This is useful when starting to
assemble code following displays or traces that are irrele­
vant to your assembly. The cis command is an alias.
This command does not exist in DEBUG.COM.

To Hear screen lines n through m (n=0 is screen top),
type a command of the form

k k n,m

To klear the floating point (8087) registers, type

k kf

To display the keyboard input code c, type a
command of the form

k ki <-■ c

where stands for the Enter key.

KEY Command

The key command modifies the control characters
used to edit command lines. See the section Modifying
Edit Command Characters in Chap. 4.

KEYBOARD command

To deal with hostile keyboard environments, SST has
a built-in int 9 keyboard encoder. When debugging pro­
grams under Microsoft Windows or in Protected Virtual
Address Mode, this keyboard facility is ordinarily on.
Otherwise is is left off, and SST gets its keyboard input
from int 16, unless keyboard redirection of some sort is
enabled. A command of the form

k keyboard status

7-42 SST Commands

DEBUG.COM

enables or disables the built-in keyboard support if status
-- on or off, respectively. The facility doesn’t handle the
enhanced keyboard new keys yet.

KILL Command

The kill command works like the erase command to
erase disk files, but allows the filename to be quoted (as
in BASIC).

L Command

This command loads a file or absolute sectors (like
DEBUG)

V L [address [drive sectorj count]}

If the drive and sector specifications are missing, it loads
file named by name command (see below) at the address
specified on the 1 command line. If the address is
missing, the file is loaded at cs:100. If the file has an
.EXE extension, it is loaded as an .EXE file with appro­
priate address relocation and segment register initializa­
tion.

For example to name and load a program called
TEST.COM, type

► ntest.com
K 1

You can then type t or T to trace program execution, u
or U to unassemble some code, or d or D to display the
program in hex/ASCII.

If you make changes in the program, you can write
the revised version back to disk using the write
command. Be sure the bx and ex registers have the
values they had when you loaded the file, since they det­
ermine how many bytes will be written. With SST you
can not only read .EXE files as can DEBUG, but also

L Commands 7-43

TEST.COM
ntest.com

write them back to disk. This is very handy for patching
your favorite system programs.

The following error messages can occur:

File not found
Error in .EXE file

Load Labels

The load command is used also to load in program
labels, variable names, and user macro and examine tem­
plate strings. These facilities are described in greater
detail in Secs. "Labels" and "User Strings and Keyboard
Macros" in Chap. 4.

To load in program labels, name the .MAP file with
the n command (Chap. 7), and type the 11 command (see
Chap. 7 load command). This automatically reads the
labels in starting at the point in the .MAP file identified
by the words "by Value" and relocates them relative to
the origin of the .EXE module (program prefix segment
paragraph + 10).

To load .MAP labels relative to some other para­
graph, type 11 n, where n is the desired paragraph
number. This option is useful for debugging resident
programs.

To load .MAP files for use with .COM files, type
Im, which automatically adds lOOh to the label offsets.

SST has limited support for program variables with
the lv option. This option loads the variables defined by
the part of a MASM.EXE listing for a single segment.
The program scans for the word "segment" and sets up
program variable names up to the corresponding ends
pseudo op.

The 11, Im, and lv options use the user program
area to load in the .MAP and .LST files and hence
overwrite whatever program might have been loaded in.
Hence to debug a program, load in the label files first,
and then the program.

7-44 SST Commands

LIST Command

The command

► list [address]

unassembles the code starting at the address address if
specified, at lOOh if a .COM file, or at the initial cs:ip if
an .EXE file. The command goes into the unassemble
full screen mode automatically.

LLIST Command

The command

► Hist [address]

acts as the list command and echos the output to the
lister.

_ .OA D Command

The load command is used to load in an SST
Program saved by the save command. See Chap. § for
details.

LONG Command

To facilitate both source-level and assembly language
debugging, SST includes commands to define typical data
types. The syntax for the long type is:

t long [[UfarU *J variable name address

For example,

tlong alpha 305

adds the symbol alpha of type long (32-bit signed

L Commands 7-45

integer) to the segment specified by the ds segment regis­
ter at the offset 305h. You can specify any other
segment. The optional * generates a near ptr to a vari­
able of the type long. The optional far generates a far
pointer to a variable of the type long.

M Command

This command moves a block of memory from one
location to another (like DEBUG). The command expects
original start address, original end address, and destination
start address as arguments. Syntax:

k m range address

For example,

km2200,2280,1 000

moves the contents of memory contained in the block
ds:2200h through ds:2280h (inclusive) to ds:1000h through
ds:1080h. If the original and destination memory blocks
do not overlap, the original memory block is left undis­
turbed. However the two memory blocks can overlap
with no ill effects. For example,

km2200,2275,2203

moves the contents of ds:2200h through ds:2275h up by
three bytes in memory to ds:2203h through ds:2278h.

This command moves a maximum of 64K in any one
move. As elsewhere, segment values can be used to
override the default value in ds:

k mcs:2200,2275,es:2203

moves cs:2200 through cs:2275 to the block starting at
es:2203.

7-46 SST Commands

MAP Command

MSDOS 2.0 and later has a linked list distributed
throughout the low 640K. bytes of RAM that defines how
the RAM is allocated. This list consists of 5-byte para-
graph-aligned entries. These entries immediately preceed
the memory block (also paragraph aligned) that they
describe. The first byte is an "M" for all control blocks
except for the last, which has a "Z" for the first byte.
MZ are the initials for one of the principal architects
(Mark Zibowsky) of MSDOS, and also appear as the first
two initials in an .EXE file. The second and third bytes
give the 16-bit paragraph that owns the block, and the
fourth and fifth bytes give the length of the block in par­
agraphs.

Specifically, the command

k map

displays the five bytes of all DOS memory-control-blocks
each followed by a two-line display of the start of the
memory block they describe.

MOUSE Command

The command

k mouse status
turns mouse control on if status -- on and off if status =
off. The mouse is used to control cursor motion for the
FONT, DISPLAY, and TRACE modes.

MSW Command

The command

k msw n

exclusive or’s the value n with the SST byte that controls
SST Microsoft Windows debugging. See Chap. 13 for
details.

M Commands 7-47

N Command

This command names a file for reading or writing
using MSDOS int 21 routines (like DEBUG). Syntax:

k n filespec

names the file given by the file specification filespec. For
example,

k nmyfile.exe

sets up the load command to be able to read in the file
MYFILE.EXE.

The name command stores the name at 81 h in the
program prefix as does DEBUG.COM and sets up the
first and second filenames at the 5Ch and 6Ch File
Control Block areas in the program prefix. Note: when
you load a program and then go to it, it may use its own
name unless you issue a second name command to rewrite
the one used to load the program. For example, if you
load PS’s editor module, PS.COM (a version of
PMATE.COM with menu macros), and then go to it, it
will open a file called PS.COM, which looks bizarre to
say the least, since it’s a binary file. To avoid this, type
n <-<, which gives no parameters, or type n followed by
the desired parameters. n= displays the current command
line.

Saving Display and Unassemble Output to File

To define a file for output from the display and
unassemble commands, type

k n> filespec

This sets up the file given by filespec to receive display
and unassemble output when those commands are typed
with a range, e.g., d20,50 or u100 1 50. if the filen­
ame already exists, you are asked the question.

7-48 SST Commands

DEBUG.COM
PS.COM
PMATE.COM
PS.COM

"Overwrite existing file (Y/N)?" In this case, the file is
opened for display and unassemble output if and only if
you type y or Y. The n> output can be toggled on and
off by typing

► n>

i.e., without a filename. If n> echo output is enabled, a
Z shows up at the end of the second line from the top of
the screen. If you attempt to toggle the file echo on
without having defined a file for output, you’ll see the
message

Echo file undefined

Defining User Strings

To define a user string, type a command of the form

> nst=" string"

This defines (names) the string st (two letters long) to
have the value string. User strings are used for examine
memory templates (see e command) and keyboard macros
as described in Chap. 4.

This command is upward compatible with
DEBUG.COM’s and adds file echo capabilities.

NEW Command

The new command restores the registers to the
values used upon running SST, deletes all labels, and
enables demostration and program facilities. Essentially
new returns SST to its initial state.

N Commands 7-49

NMI Command

The command

k nmi status

enables (status --- on) or disables (status - off) NonMask-
able Interrupts on return from SST to the user program.

NOT Command

The command

► not range

not’s all bits in the bytes in the range range.

O Command

This command allows you to output any value to an
output port. Type o or o followed by the port number
and the desired value to output in hex. Syntax:

k o portaddress list

For example,

ko20,7F

outputs the value 7Fh to output port 20h. The list can
have many bytes given by combinations of hex and
quoted values. Hex values larger than OFF are treated as
word values.

Output to ports 3F8 and 2F8 wait for the TRHE bit
(bit 5 of port 3FD and 2FD, respectively) to go high, indi­
cating that the serial port is ready to transmit.

This command is upward compatible with
DEBUG.COM’s, and includes the ability to output words
at a time and to handshake on the IBM PC serial ports.

7-50 SST Commands

OPCODE Command

The command

► opcode n

displays the (or a) mnemonic for the byte opcode given by
n.

OR Command

The command

k or range list

or’s the bytes in the range range with the bytes in the list
list. The list is repeated as often as necessary to cover
the complete range. This command is similar to the fill
command, but or’s the list into memory rather than
overwriting the bytes in memory.

P Command

The p command allows you to protect memory from
being referenced in continous and quiet tracing. It has
the syntax

k p addresst address2

where both addresses can have segment specifications.
This allows up to the full megabyte of memory to be pro­
tected. If address2 is missing, only addressx is protected.
In the continuous and quiet trace modes, if protected
memory will be referenced by executing the next instruc­
tion, the trace halts and the message "Protected Memory
Referenced, Continue Trace (Y/N)?" appears. If you type
y or Y, the trace continues; else COMMAND MODE takes
over. To turn memory protection off, type the p
command with no addresses.

P Commands 7-51

If you can type appropriate commands for Super­
Trace, you can catch an undesired memory reference
much faster than with this mode. If you can get near the
bad reference with breakpoints, the continuous traces may
give you just what you want.

PAGE Command

The page command is used to control page protection
on 80386-based machines running in protected mode. See
Chap. 12 for details. See also the p command.

PAUSE Command

The pause n command pauses a time proportional to
n whenever a Ctrl-\ is encounted in the keyboard input.
This is used to pace demonstrations such as that invoked
by the A option on Function Key 7.

PP Command

The port protect command

tpp n [status}

protects the port n from being read or written when
running in 80386 VM mode (see Chap. 12 for details).
The optional status turns port protection on (status = on)
or off (status -- off).

PROMPT Command

The prompt command changes the usual
COMMAND MODE prompt to a DOS-like pathname
prompt. For example, if you’re in subdirectory \BIN on
drive C, the COMMAND MODE prompt becomes

C:\BIN>

7-52 SST Commands

This can be a bit confusing if that's the same prompt you
use for 1)08 itself, but in any event you see the register
window at the top of the screen, indicating that SST is
active.

O Command

This command is used to return to DOS and also to
define a number of SST system parameters controlling
screen attributes and other machine characteristics. To
return to DOS, type

► q

which asks if your want to leave SST. If you type y or
Y, you get back to the DOS system command prompt, just
like DEBUG.COM. You can also return to DOS by
typing any of the commands quit, bye, or system. These
commands do not require confirmation.

To return resident, i.e., with SST available by typing
Ctrl-Enter or by pressing an NMI button, type

k q/R.

If you want the user screen to be saved in this mode, be
sure to use the qs3 command below before typing the
q/R.

Screen Characteristics

Various screen characteristics are defined by the fol­
lowing q commands:

• q c n Set screen attribute for window c = a, h, n, r, s,
x, z, for Assemble, Help, Normal, Register,
Stack, Xam, Zam

• ql/z Set lines/page ----- n
• qyn Set ff lines Xam window ----- n

To see an example of configuring the colors attributes for

Q Commands 7-53

DEBUG.COM

various SST windows, see the section "Configuring SST'
in Chap. 3

The qnn command is used to set the normal screen
attribute and also to control screen "snow" for IBM
color/graphics type displays. SST automatically recog­
nizes the IBM color/graphics display and eliminates most
of the snow. qn80xx sets the normal screen attribute to
xx and suppresses deglitching (good, e.g., for COMPAQ,
which doesn’t have snow). This speeds up screen dis­
plays by about a factor of three. qn40xx forces deglitch­
ing (good for AT&T 6300)

The qs n command with n missing or less than 4 is
used for various screen save and switching options
described below. To set the stack window attribute to a
number less than four, set the high bit of the word to 1.
For example to set the stack attribute to green on a black
background, type

k qs800.2

Screen Save

SST’s screen saving facility is described in Sec.
"Screen Save Option" in Chap. 3. The command

► qs3

turns on the screen save option if enough room is allo­
cated (see sst /n option in the "Command Line Parame­
ters" section of Chap. 3 to increase this allocation).

The command

qs2

turns off the screen save feature. The COMMAND
MODE or TRACE MODE V option switches to the saved
user screen. Typing any character thereafter returns to
the mode before the V option was chosen.

7-54 SST Commands

Where to Display SST

SST display output can be sent to many different
places to allow maximum flexibility in debugging pro­
grams that themselves use the screen. The options allow
you to display SST output in various parts of a given
screen (particularly useful on screens larger than 25 lines),
on different screens, and in aribitrary parts of memory
for use with nonstandard video RAM and multitasking
window programs like TOPVIEW (note SST doesn’t cur­
rently run under TOPVIEW, but we hope to make it do
so soon).

To set the origin of the SST display output for a
given screen to line n, type

>• qo n

To display SST output in the lower half of 66 line
screen, type

t qol

To swap IBM monchrome and color/graphics displays
for SST alone, type

► qs

To swap IBM monchrome and color/graphics displays
for both SST and DOS, type

t qs1

SST choses the screen RAM segment by consulting
int lOh on the IBM PC machines. To overrule this
choice, you can set the segment to the paragraph n by a
command of the form

h qg n

Similarly the 6845 CRT controller port is chosen
according to int lOh information, but can be overruled by
a command of the form

Q Commands 7-55

hqpn

which sets 6845 CRT I/O port -- n. The IBM PC mono­
chrome display has the value 3B4h and the color/graphics
display has the value 3D4h, both of which are recognized
automatically by SST. To configure on some other
machine, e.g., the Toshiba T300, you need this command
(e.g., qp90)

Interrupt Mask

The command

k qi mask

sets the interrupt controller mask to the value mask. This
is useful in debugging multitasking systems in which the
system clock might be used to switch tasks after SST
gains control. For example, to allow only keyboard inter­
rupts use qiFD.

Undercover (Periscope) Debugger

To allow the periscope undercover hardware
debugger to gain control on receipt of a NMI interrupt
instead of SST, type the rn command to return the NMI
interrupt to the vector active before SST was loaded and
type a command of the form

k qu port

which instructs SST that the Periscope NMI button port is
the value port.

QUIT Command

The command

k quit

returns to DOS. bye and system do the same thing.

7-56 SST Commands

R Command

The r command allows you to examine and change
the contents of the 8088 registers and flags as for
DEBUG.COM. Under SST the r command is basically
useless, since the register and flag value are always dis­
played in the register window at the top of the screen,
and the values can be changed by more easily by simple
assignments like

ax=100

The usual DEBUG command

k r

displays the current register values in the COMMAND
window. This is useful for echoing the results of a
debug session to a file or printer.

Changing Register Values

As for DEBUG,

k r register

displays the contents of the register register. Entering a
new value nn from the keyboard enters a new value for
the register. For example, entering rdx when dx=OOOO
results in the display

k rdx 0000-

If nnnn is now typed, dx will have the new value nnnnh.
If you do not want to modify the value, hit the space bar
to display the next register or hit return to terminate the
command.

R Commands 7-57

DEBUG.COM

Alternatively, the command

► register=value

sets the register register equal to the value value. Valid
register names are ax, bx, ex, dx, al, bl, cl, dl, ah, bh,
ch, dh, si, di, bp, sp, eax, ebx, ecx, edx, esi, edi, ebp,
esp, ds, es, cs, ss, fl, and ip.

With SST the 8087 floating point stack values can be
changed by typing

s n=value

where sn can be sO through s7.

The flags Auxiliary Carry, Carry, Parity, Sign, Zero,
Direction, Interrupt Enable, Overflow, and Trap can be
set to 1 or reset to 0 by typing their leading letter fol­
lowed by f as in

h cf=1

which sets the carry flag to 1.

The register command is upward compatible with
DEBUG.COM’s. Its display differs in that the most
recent values alone are always displayed at the top of the
screen. This approach is much easier on the eyes than
DEBUG.COM’s, which constantly scrolls the screen. Note
that in TRACE MODE, SST can retrace up to 20 steps
(or more - see "Command Line Parameters" in Chap. 3),
allowing you to see earlier values of the registers.

Real Mode

SST can run in the 8086/8088 Real Address Mode or
on the IBM PC AT in the 80286 Protected Virtual
Address Mode (see Y286 command in this chapter). To
return to real mode after running in Virtual Mode, type
the command

7-58 SST Commands

k rm

This restores SST segments to those appropriate for a
.COM file.

Restoring Registers and NMI Interrupt

To restore registers to their values when the last
.COM or .EXE file was loaded, type the command

k rr

This is handy for rerunning a program after examining
how it terminated.

To return the NMI interrupt vector back to the
program used before SST was loaded, type the command

► rn

We find this handy for debugging SST itself, and it is
also useful for tricky situations when a special hardware
debugger has advantages over a software debugger.

RAM Command

The RAM command returns the display source to
RAM from disk as established by the disk command.
See Chap. 9 for details. !

RAMFONT Command

The ramfont command sets the Hercules Graphics
Card Plus RamFont control byte. See Chap. 10 for
details.

R Commands 7-59

REDIT Command

The redit command puts the cursor into the register
window, where you can overtype register values. The
facility is also available in TRACE MODE by typing the
"e" hot key.

REN Command

The command

t ren filel file2
renames the file filej to file2 like the corresponding DOS
command.

RUN Command

The run command restores the registers to their
initial values and transfers control to the program entry
point.

7-60 SST Commands

S Command

This command searches for a string of characters or
bytes (like DEBUG), or for a string of assembly language
instructions. Syntax:

► s range list

where list can be composed of one or more strings of the
form and bytes consisting of one or two hexadecimal
digits. For example with ds--1234,

► s100 4000 1A 3E "abc"

would display

1234:856 AOC FFE 3254

if the string of five bytes 1A 3E 61 62 63 starts at the
locations 1234:856, 1234:A0C, etc. If the string of bytes
is not found, the message

String not found

is displayed.

For convenience, two abbreviated forms of the search
command are included. Typing s or S with a range only
searches that range for the last string entered. This
allows you to change the range of your search. Typing s
or S alone repeats the last search. This is handy after the
original search hits are scrolled off the screen.

The search command quits with Ctrl-C and pauses
with Ctrl-S.

Searching for Assembly Language

To search for assembly language instructions, type @
<-for the list field. This leads to the same kind of display
and entry as given by the assemble command. The list of
instructions is terminated by a hitting <-* twice as for the

S Commands 7-61

assemble command, and is followed by a display of all
addresses (if any) where the instructions given are found.
For example,

k s cs;0 1000 @
1111:0088 mov ax,1
1111:008B push ax

searches the memory from cs:0 to cs: 1000 for the instruc­
tions that push a 1 onto the stack (with the SST running
on an 80186 or 80286-based computer, you can type push
1 for this, but that might not correspond to the code
you’re searching). Here the 1111:0088 is a sample starting
location of SST’s search string memory. SST’s data
segment value 1111: will almost certainly be something
different when you run SST.

Being able to search for assembly language mnemon­
ics is very useful for debugging programs consisting of
many separately assembled modules, since you typically
only know the addresses of code relative to the module
origins.

Searching for Jumps/Calls to Location

SST also allows you to find all jump and call refer­
ences to a particular program offset within a range of
memory. Type

k s range j n

This lists the offsets (relative to the segment register given
by range) of instructions that jump to the offset n. The
instructions checked for are: near/far direct call,
short/near/far direct jmp, the 17 conditional jumps like
jz, and the three loops. Indirect jumps and calls are not
checked.

This option differs from the corresponding DEBUG
option in that twelve addresses are displayed per line
instead of one, so as to use up less screen display, and in
its ability to search for assembly language instructions.

7-62 SST Commands

SAVE Command

The save command is used to save an SST Program
as a COM file with a special header allowing labels and
comments to be saved as well. Subsequently, such COM
files can be loaded in by the load command. See Chap.
8 for details.

SNOW Command

The infamous Color/Graphics Adapter snow can be
controlled by the command

k snow status

which turns CGA snow check on (status = on) or off
(status -- off).

SYSTEM Command

The command

k system

returns to DOS. bye and quit do the same thing.

T Command

This command traces program execution with full
screen displays (unlike DEBUG). Syntax:

kt [n]

turns on the TRACE MODE. If n is missing, the trace
starts at cs:ip; if n is present, the trace starts at n.
TRACE MODE displays the registers as for the r
command followed by the menu

T Commands 7-63

TRACE MODE: Fl Break # Go Cont DiFast Slow
Jmp Nop Re Win TIXam 8087

and a screenful of machine language and disassembled in­
structions starting at the starting trace address. The
current instruction line is highlighted by a reverse video
bar. Each depression of the space bar single steps the
program. Typing Function Key 1 displays the help screen

Break Break at IP # n break al IP after
n passes

Go adr break at adr Line break at next
source Line

Here break at cursor Point toggle break­
point at cursor

Fast break following IP Slow trace IP
Space Single step Don’t call single step
Undo last instruction Nop skip IP
Jmp Jump unconditionally Kick IP to cursor
Quiet trace Cont Continuous trace
@scii display ASCII screen +-& source/asm/mix
Ice stack Offset change stack

readout offset
®vertyp stack/xam window Asm at cursor
Edit registers Z 8087 status
HSCII toggle ASCII vs HEX Txam toggle Tracking
F5 zoom window F6 change window
n scroll window PgUp/Dn scroll window
w/x toggle Program/Xam View program window
2/7/8 toggle menu/8087/stack 0/1/3 no/8086/80386
Redraw screen -* COMMAND

MODE

7-64 SST Commands

TRACE MODE Hotkeys

In alphabetical (ASCII) order, the hot keys are
defined as follows:

Ctrl-A toggles ASCII vs hex/ASCII display modes in the
memory eXamine window.

Ctrl-8 forces hex/ASCII (Byte) display mode in the
memory eXamine window.

Ctrl-D moves the top bar of the program-output down if
the cursor is in the program-output window. If the
cursor is any other window, the memory eXamine
window’s top bar is moved down.

<-* returns to COMMAND MODE

Ctrl-O zooms the cursor’s window directly into OVER­
TYPE MODE. Typing the Esc key, the Enter (<-/) key, or
Function Key 5 again returns to TRACE MODE.

Ctrl-U moves the top bar of the program-output up if the
cursor is in the program-output window. If the cursor is
any other window, the memory eXamine window’s top
bar is moved up.

Space single steps the program, and 4-1 returns to
COMMAND MODE.

Note: on 8088’s manufactured after 1981, single
step doesn’t stop until two instructions after a
segment modification instruction like mov ds,ax.
On the 80386, single-step may step two iterations
of a rep string instruction.

displays

iterations =

to which you type the number of times, n, the current in­
struction should be allowed to execute before breaking
(equivalent to typing n B’s for break).

T Commands 7-65

&-+ switch between assemble/source modes. - switches
to pure assembly mnemonics, + switches to pure source
code, and & displays mixed source and assembly mne­
monics.

0-8 toggle the display of SST windows as follows:

0 - toggle register window
1 - set 16-bit register display
2 - toggle menu window
3 - 32—bit register display
7 - toggle 8087 window
8 - toggle program stack window
x - toggle Xamine window
w - toggle program output window

If option 7 is used with no 8087, the error message "No
8087 installed" is displayed. The 8087 condition codes
and register stack are displayed below the program stack.
See the zamine command for a complete description.
Since ordinary decimal and scientific notation is used, this
display makes debugging 8087 code fairly easy (with
DEBUG.COM it’s essentially impossible).

@SCII displays the ASCII help screens (see Chap. 2 for
full description).

Assemble (a or A) switches to ASSEMBLE EDIT MODE
at address at the cursor. The Enter key enters the
current instruction and goes onto the next. The Esc key
returns to TRACE MODE without entering the current
line.

Break executes the instruction at cs:ip and then sets a
breakpoint the execution on the next encounter (RAM
only).

Continuous runs continuously until a key is depressed.
The continous trace stops if protected memory (see protect
command) is referenced, or if an illegal op code is
encountered, or if an instruction for a higher-level
machine is attempted, e.g., running a pusha (push all) on
an 8088.

7-66 SST Commands

DEBUG.COM

Don’t single-step calls executes call instructions at full
speed by setting a breakpoint following the call instruc­
tion. On other instructions it simply single steps like the
space bar. This differs from the Fast hot key, which
executes any current instruction at full speed by putting a
breakpoint after that instruction. The don’t hot key
allows you to see the general flow of a routine without
getting sidetracked down subroutines. The Don’t option
marks the first 10 subroutines it encounters as Don’t-trace
subroutines. These subroutines can be returned to trace
mode by using the Slow option.

Edit (e or E) switches into the register window and allows
you to overtype register values, and the Zero, Carry, and
Sign flags. Use the arrow and tab keys to move around
the window. Type the Enter key to enter the new values
and continue tracing. Type the Esc or Ctrl-C keys to
suppress the new values and continue tracing.

Fast executes the current instruction at full machine
speed, breaking when encountering the instruction after
the current instruction (RAM only). This is useful for
calling a subroutine or finishing a loop instruction without
single-stepping through it. Note that if the current in­
struction is a jump, the fast hot key may amount to a go.

Go address sets a breakpoint at the address address while
remaining in TRACE MODE. This saves the effort of
returning to COMMAND MODE and then to TRACE
MODE when you know the breakpoint address you need.
In addition, G*s, G*b, G*c set temporary breakpoints at
[sp], [bp], and offset at stack-window cursor, respectively
and go. The stack values used are near addresses. To
specify far addresses, use G*fs, G*fb, and G*cb, respec­
tively. G*s is useful for breakpointing upon returning
from a subroutine. Be sure that the return address is in
fact at [sp]. Another way to return from a subroutine if
you haven’t executed too far into it is to Undo back out
of the subroutine and Don’t call around it.

Here sets a temporary breakpoint at trace-window cursor
position and goes. This hot key is available in UNAS­
SEMBLE MODE as well.

T Commands 7-67

Ice ices the stack readout offsets at their current values.
This iced mode is indicated by reverse video offsets.

Jmp causes an unconditional jump (useful for overruling
a conditional jump) to cs:ip+(ip+l).

Kick kicks the Instruction Pointer to the address at the
cursor. Only the instruction pointer is changed by this
hot key. This hot key is available in UNASSEMBLE
MODE as well.

Line single-steps with no screen updated until the next
source-code line is encountered.

Nop skips the next instruction altogether (but doesn’t
change the code).

Offset cycles between stack offset value modes. These
offsets can be made relative to ss:0, to sp, or to bp.
Stack segment displays show all stack frames in range in
reverse video and a referenced location in bold. This
feature also works in DISPLAY MODE when the segment
displayed is the same as that given by the stack segment
register ss. SST also bolds the target offset of a condi­
tional jump that will jump.

Point toggles the sticky breakpoint at the cursor position.
This hot key is available in UNASSEMBLE MODE as
well.

Quiet toggles quiet continuous trace. This mode only
updates the registers and runs about three times as fast as
the Continuous trace. The quiet trace stops if protected
memory (see protect command) is referenced.

Re Redraws the screen with the currrent instruction at
the top. This is handy if the current instruction is dis­
played at or near the bottom of the display and you want
to see the following instructions.

Slow single-steps the next instruction, which lets you
trace execution of an int instruction (normally executed in
Fast mode).

7-68 SST Commands

Txam toggles the Tracking feature of the eXamine
window. When tracking is on a 0 appears at the end of
the second line from the screen top. The eXamine
window always displays the memory around the last loca­
tion referenced by the program, and the cursor identifies
this location. This is a useful feature and leads to fasci­
nating demos when run continuously.

Undo Undoes the last single step. This can be repeated
up to 20 times (or more - see Chap. 3), literally allowing
you to see your program execute backwards. This is
very useful for recalling the steps that lead to an anomal-

0 ous condition.

View switches to the user screen if the screen save
option is enabled (see the qs3 command)

Win toggles a Window 15 lines down from the screen top
for MSDOS CRT output. This is handy for debugging
routines that write a moderate amount of text to the
screen using standard system calls.

Xam toggles a two-line memory eXamine window at the
bottom of the screen. This window displays 20h bytes in
hex/ASCII format and 80h bytes in pure ASCII format.
If the window is not. in tracking mode (see next option),
you can scroll through memory using the arrow keys and
the PgUp PgDn keys. The cursor is displayed at the last
location referenced in the window.

Z gives you a pop-up full screen of information about the
8087 status. Typing x or X when this Z screen is present
shows you the heX values of the 8087 floating point reg­
isters, regardless of whether they are tagged "empty", or
invalid.

Trace Mode Window Control

Function Key 5 zooms the stack/xamine windows into
DISPLAY MODE. This gives a full screen with full
DISPLAY MODE features including overtype capability.
The Ctrl-O hot key zooms these windows directly into

T Commands 7-69

OVERTYPE MODE. Typing the Esc key, the Enter key,
or Function Key 5 again returns to TRACE MODE.

Funtion Key 6 switches between windows in TRACE
MODE. The window with the cursor can be scrolled up
and down with arrow, PgUp, and PgDn keys. When in
the trace window, the up and down-arrow keys are
useful in combination with the Assemble, Here, Point,
and Kick hot keys. To toggle windows on and off, see
the 0-8 hot keys.

Super-Trace

Section "Super-Trace Demonstration" of Chap. 3
describes a special SST+ facility called Super-Trace.
This facility single steps a program in a very tight loop,
executing a set of user-specified conditions after each
single step. These conditions are written in ordinary
assembly language and are assembled by the assemble
command module. The requirements for the code are
given under the Conditional Breakpoint section of the go
command. Basically ax and bp are saved before entering
the user code, and bp points at the program stack and ax
has the first word of the current instruction. No return
instruction is necessary, since SST+ automatically supplies
the return. If the code sets the Zero flag, SST+ takes
over, allowing the user to examine the machine. If the
Zero flag is reset to 0, the Super-Trace continues. Typi­
cally Super-Trace runs at about one tenth full machine
speed, although this depends markedly on how much code
the user specifies for conditions. If a whole execution
profile routine is called, execution could easily be slowed
down another factor of ten.

TIME Command

The time command displays the current time of day
as calculated by the computer.

7-70 SST Commands

TRACE Command

The trace command restores the registers to their
initial values and goes into TRACE MODE at the
program start address.

TYPE Command

The SST type command displays a file in a full­
screen menu-driven mode that scrolls forward and back­
ward with the PgUp, PgDn, and up and down arrow
keys, goes to the start/end of the file with the Home/End
key, toggles the display of line numbers with the # key,
goes to line n with the Line option, and searches forward
or backward for an arbitrary literal string.

To display the file filename in this mode, type a
command of the form

► type filename

Typing the command

► type

with no argument displays the file previously typed at the
same location that you left it. To leave the TYPE MODE,
press the Esc key.

U Command

This command unassembles machine-language in­
structions. Syntax:

► u address

unassembles the instruction at the address address and
goes into UNASSEMBLE MODE. If address is missing,
the instruction following the last one unassembled is unas­
sembled, or if no previous unassemble command has been
executed the instruction at cs:ip is used. Typing the

U Commands 7-71

space bar unassembles the next instruction. Typing a
PgDn unassembles a whole screenful (except for the regis­
ter window at the top of the screen). PgUp does a rudi­
mentary Page Up procedure that subtracts a number of
bytes from the current unassemble address and unassem­
bles a screeful from that lower address. To be sure
you’re properly synchronized, type a few space bars.
and Esc go back to COMMAND MODE. The unassemble
display format is the same as that for the assemble in­
struction illustrated above.

Alternatively

b u range

unassembles the instructions within the range specified.
This version of the unassemble command works as for
DEBUG.COM, while the other two options are different.
The output of this start/end unassemble option can be
written to a file of your choice (see n> filename
command).

USE 16/32 Commands

The commands use 16 and use32 control the 80386
segment D bit of the assembler. The default is use 16,
which generates code according to the standard 8086
segment addressing. The use32 command switches to the
80386 32-bit addressing mode, which allows access to
4-gigabyte segments, greatly increased indexing facilities,
etc. See the Intel Programmer's Reference Manual for a
detailed discussion of these modes.

V Command

The v command alone (followed by a P) swaps to
the user screen if enabled by the qs3 option. Alterna­
tively the V option in TRACE MODE flips between SST
and user screens (on the same monitor).

7-72 SST Commands

DEBUG.COM

When followed by a hexadecimal number, the v
command calls an interrupt vector. Syntax:

f vn [ax [bx [ex [dx]]]]

where n is the desired interrupt vector number, and the
indicated registers are assigned values optionally. Current
register values are used for values not given on the
command line.

For example,

►v21,600,,,7

rings the bell, since an ah=6 int 21 instruction outputs the
character in dl (here 7) to the system console. After
returning from the vector command, the user ax, bx, ex,
dx, and flags are updated to show what called interrupt
vector did.

The vector command saves and restores the user
screen if the save screen option is enabled by typing qs3
in COMMAND MODE.

Virtual Mode

On the IBM PC AT compatible computers and
80386-based computers, you can enter the 80286/80386
Protected Virtual Address Mode by the command

f vm

and return to Real Address Mode by the command

► rm

The Protected Virtual Address Mode gives you direct
access to the 80286’s entire 16 megabyte address space as
well as to various protected mode features. You can use
SST to debug .COM files in this mode, run programs in
extended memory up above the Real Address Mode’s
megabyte, examine memory in extended memory, and so

V Commands 7-73

on. See Chap. 12 for discussion of special 80386 pro­
tected mode operation.

The user program can change the Interrupt Descriptor
Table origin from what SST sets up, but must leave the
IDT descriptor in the GDT at offset 90h.

The SST vm command sets up user stack selector -- 60,
data selectors -- 68 and code selector at 70. This works
for .COM and .EXE files.

The Ctrl-Enter key interrupts vm operation as in Real
Mode and Ctrl-Alt-Del works. In addition sticky break­
points work. DOS commands in general work in the
80386 DOS extender protected mode (see Chap. 12). In
other protected modes, the DOS dir, chdir, prompt, and
type commands work, although not in a completely
general way. After typing vm in COMMAND MODE,
which switches to Protected Virtual Address Mode,
typing any one of these DOS-like commands invisibly
switches back to Real Mode, calls needed DOS commands,
displays the desired information, and then switches back
to protected mode. The screen pretends that protected
mode is always enabled (LU at lower right of the register
window).

In all protected modes, SST’s built-in keyboard (int
9) program is used. The time-of-day clock is also turned
on to convince you that the machine is still running.

The SST protected mode tracks 80286 Real/Virtual
Mode on all trace/breakpoint options. Hence if you leave
SST in Real Mode, and SST traps an interrupt occurs in
protected mode, SST automatically switches itself to pro­
tected mode. Similarly if you leave SST in protected and
reenter in Real Mode, SST switches itself to Real Mode
operation. This facility is required for operation under
OS/2.

7-74 SST Commands

W Command

This command writes a file or absolute disk sectors
(like DEBUG). Syntax:

i
► w [address [drive sectort sector

If the drive and sector specifications are missing, it writes
the file named by the name command (see above) at the
address specified on the 1 command line. If the address
is missing, the file is written starting from cs:100.

.EXE files can also be written provided they are read
in first. This allows you to patch an .EXE file. Be sure
not to change the segment specification values inadver­
tently.

The following error messages can occur:

No room in disk directory
Insufficient disk space
Insufficient memory
Error in .EXE file
Read .EXE file before writing

Write is very useful for modifying a disk file.
Name the file with the name command, load it with the
load command, make the changes you want being sure not
to change the values of the bx and ex registers, and then
type w or W to Write the modified version back to disk.

Write Labels

The labels, variable names, and user strings currently
defined can be written to the file named by the last n
command by typing

► wl

See Sec. "Labels" in Chap. 4 for further information.

W Commands 7-75

WIDTH Command

The command

k width/?

sets the screen width to n = 40 or 80. The value 40 is
nice for big room demonstrations, but is not able to
display all features of SST.

WORD Command

To facilitate both source-level and assembly language
debugging, SST includes commands to define typical data
types. The syntax for the word type is:

k word [[[far]] *]] variable name address

For example,

kword alpha 505

adds the symbol alpha of type word (16-bit unsigned
integer) to the segment specified by the ds segment regis­
ter at the offset 305h. You can specify any other
segment. The optional * generates a near ptr to a vari­
able of the type word. The optional far generates a far
pointer to a variable of the type word.

X Command

The x (eXamine) command sets up the display of 20
hex locations used primarily in TRACE MODE. Syntax:

k x address
causes bytes starting at hexadecade that includes the
address address to be displayed and updated automatically
in TRACE MODE. When this command is executed, the
two-line window immediately shows up at the bottom of
the screen and the menu line changes to

7-76 SST Commands

XAMINE MODE: -tl-* PgUp PgDn

In this mode, the Xamine window is continously updated
many times a second, allowing you to monitor input from
interrupt driven devices like the system clock and key­
board. For example, on an IBM PC, type

►x40:6C

and watch the clock tick away. Scroll up in memory to
see the keyboard input queue change as you type the
right arrow. In either XAMINE MODE or TRACE
MODE, the up and down arrows scroll the memory
display up (towards smaller memory addresses) and down
respectively. The PgUp and PgDn keys scroll up and
down by 100 hex at a time.

XOR Command

The command

► xor range list
xor’s the bytes in the range range with the bytes in the
list list. The list is repeated as often as necessary to
cover the complete range. This command is similar to the
fill command, but or’s the list into memory rather than
overwriting the bytes in memory.

Y Command

Development of protected-mode applications requires
a careful understanding of how the Global and Local
Descriptor Tables work. In SST Protected Modes, the
segment values for ds, cs, es, and ss, along with many
internal values have be changed to correspond to values
in SST’s vm Global Descriptor Table (GDI). Notice after
executing the virtual mode command that the segment
register values are relatively small numbers. These cor­
respond to entries in the GDT. To read the GDT table,
use the y command as follows:

Y Command 7-77

► y«

If n is present, list the GDT (or LDT) entry n\ if not, list
80286 GDT entries one per space bar. RAM and Global
Descriptor Table displays beyond the segment limit have
the offset field displayed in reverse video.

Defining Global Descriptor Table Descriptors

To define new descriptors to refer to areas of
memory of your choice use the command

> y n address [access [length]]

This define a GDT entry 70< n <D8 at address,
access=access, with ien$h=length. If the access and length
fields are missing, 93h is assumed for the access (writable
data segment) and the maximum 80286 segment length of
OFFFFh is used for length.

For example, to be able to examine, compare, move,
etc. memory starting at the second megabyte in physical
memory, type the command

ky70 100000

Then in Virtual Mode, the command

kd70;

will display a full screen displaying this RAM. If you
have a VDISK installed, you’ll see the VDISK copyright
notice.

At present, the SST vm facility is intriguing and
useful, but still in its infancy. Hope you enjoy it.

7-78 SST Commands

Z Command

This SST+ command displays the complete 8087 state
in greater detail than in the TRACE MODE. If you
attempt to use the 8087 facility without an 8087, you see
the pop-up message

No 8087 installed
Better go get one!

Trace Mode 7 Option

Typing 7 in TRACE MODE toggles the 8087
window underneath the program stack window. The
8087 window has the 8087 condition codes on top fol­
lowed by the values of the eight 8087 80-bit registers.
They are displayed with st(O) on top and with nine
decimal places for integers and for typical floating point
values, and about five for those requiring exponent nota­
tion. For example, you might see a window like

1001

12
123456

789
1.25000

000
-123.456

000
-1.23456

e-4
empty
empty
empty

The 1001 tell you the 8087 condition code bits c3, c2, cl,
, and cO, respectively, which reflect the results of 8087
compare, test, examine and remainder instructions. Other
status bits can follow as discussed under "8087 Status
Bits" below. The word empty means that the corres­
ponding stack registers have not been loaded. Some other
special values such as infinity and unnormal are labeled
accordingly.

Z Command 7-79

Trace Mode Z Option

For more accuracy in either TRACE or COMMAND
MODE’S, type z or Z, which gives the full 80-bit values
in scientific notation along with some help information.
For the example above, you’d see the screen

The 8087 is set with projective infinity, full precision, and
round to even

i
stack index = 0 cc=1001

st(O) -- 12 Status codes:
st(l) = 123456789 P-Precision exception
st(2) = 1.2500000000000000 U-Underflow
st(3) =-1.2345600000000000 O-Overflow
st(4) =-1.2340000000000e-4 Z-Zero divide
st(5) -- empty D-Denormalized

operand
st(6) --- empty I-Invalid 8087 instruc­

tion
st(7) --- empty

Letters above the bar indicate normal interrupts, below in­
dicate masked interrupts. Type x or X for heX display of
registers.

______________________ Tvnp anv Vpv tn rnn 1 i n 11 a _____________________

7-80 SST Commands

8087 Hexadecimal Display

Typing x or X replaces the help on the right by the
hexadecimal values of the registers. The screen above
changes to

The 8087 is set with projective infinity, full precision, and
round to even

i
stack index --- 0 cc=1001

st(0) - 12
st(l) = 123456789
st(2) = 1.2500000000000000
st(3) =-1.2345600000000000
st(4) =-1.2340000000000e-4
st(5) -- empty
st(6) = empty
st(7) = empty

0 4002 COOOOOOOOOOOOOOO
0 40ID 932C05A400000000
0 3FFF A000000000000001
1 4005 F6E978D4FDF3B647
1 3FF2 8164EF6DE184EAB8
1 795F DD768A987E5689F2
1 795F DD768A987E5689F2
1 795F DD768A987E5689F2

Letters above the bar indicate normal interrupts, below in­
dicate masked interrupts. Type x or X for heX display of
registers.

======== Type any key to continue —

Note that the empty registers do have values, although
they don’t mean anything. The values may be left over
from earlier computations. Registers with invalid contents
are flagged by "??" which have special hex values identi­
fying the nature of the problem. These special values are
easily examined with the zamine X option.

Z Command 7-81

8087 Status Bits

The condition code bits, interrupt request bit, and
exception flag bits from the 8087 status word are reported
immediately above the register stack. The binary values
of the four condition code bits are always displayed at
the upper left of the 8087 window. These bits reflect the
results of 8087 compare, test, examine, and remainder in­
structions. The other bits are displayed'by letter if they
equal 1, and are represented by blanks if they equal 0.
A pending interrupt request is displayed as an "i" follow­
ing the condition codes. The six exception flags are iden­
tified by the corresponding capital letters in the following
list: Precision, Underflow, Overflow, Zerodivide, Denor­
malized operand, Invalid operation. For example, you
may see a P fairly often, since precision exceptions are
not unusual. For a detailed discussion of these bits,
please consult one of the Intel manuals on the 8087 or
80287 numeric coprocessors.

This command doesn’t exist in DEBUG.COM.

Note that SST has a useful floating-point calculator based
on the 8087. See Chap. 5.

7-82 SST Commands

DEBUG.COM

Chapter 8
ASSEMBLY LANGUAGE INTERPRETER

SST has a built-in simple assembly-language inter­
preter. Typically this interpreter mimics the BASIC in­
terpreter, except that it expects assembly language state­
ments instead of BASIC statements. It also differs from
previous interpreters in a number of ways, such as
having the full power of a screen debugger and using
native machine code as the intermediate interpreter
language, which can lead to faster programs than those
from compilers let alone usual interpreters.

The BASIC-like word commands coexist with the
DEBUG-style single letter commands remarkably peace­
fully. Words like load, save, list, Hist, run, and delete
are syntactically illegal from DEBUG’s point of view, and
hence can be used unambiguously directly in SSTs
COMMAND MODE. The BASIC command new is
ambiguous, since to debug it means name the file called
ew, but if you really want to name such a file you could
type n ew, which is not recognized as new. A complete
list of such command appears under the heading "Inter­
preter Commands" in this chapter.

To see a demonstration of the interpreter, use the
SST Auto demo option given by typing Function Key 7.

Assembly Language Interpreter 8-1

Line Numbers

BASIC uses statement line numbers for branching
and editing purposes. Similarly the assembly language in­
terpreter instructions are automatically located in memory
and can be referred to by their hexadecimal memory
offset values. You use these offset values like line
numbers to insert, delete, edit, trace, and execute instruc­
tions. Since many instructions are longer than one byte,
there are many illegal "line numbers" referring to the
middles of instructions. The assembly language inter­
preter tells you if you try to refer to one of these illegal
numbers.

To make sure that it knows what’s an instruction
without undue overhead, the interpreter insists that its
code area (code segment) contains only instructions. If
you use a db or dw pseudo op to define variable storage,
that storage will automatically be allocated to the program
data segment, rather than to the code segment. The inter­
preter has a very fast algorithm for scanning through a
program up to the end statement that allows it to check
for legal line numbers. This same algorithm is used to
insert, delete and overtype instructions, all of which can
involve shifting the code up or down in memory. When
you make a change in a program, the interpreter reassem­
bles the code at about 11,000 instructions a second on an
ordinary PC. Actually it doesn’t have to completely reas­
semble the code; it only has to shift the code as needed
and update all relative offsets in jmp and call instruc­
tions appropriately.

8-2 Assembly Language Interpreter

Labels

The assembly language interpreter allows the use of
labels for referring to variables and jump addresses. As
you type in or list a program, references to undefined
labels are stamped with a "U" to the left of the corres­
ponding machine code. When you resolve these refer­
ences by typing in a statement with a missing label, the
references are filled in. For example, you can type call
alpha, where alpha hasn’t been defined previously, and
then later type in the subroutine called alpha. If you
subsequently delete with instruction with the label alpha,
all corresponding references are stamped as Undefined,
until you redefine their target again.

Instructions and Pseudo Ops

The interpreter accepts all instructions in the
8086/80186/80286/8087 repertoire. In addition three
pseudo ops are recognized, end, db, and dw. The pseudo
op end is used to specify the end of the code. Typically
you don’t have to use the end pseudo op, since the inter­
preter knows where your code ends. However if you
want to delete the code from some point through the end
of what you’ve typed in, you can type end in sooner. To
start over, you should use the word new instead, since
that also deletes the labels you’ve typed in.

The db and dw pseudo ops are used to define
program variables and assign them initial values. For
example,

message db "This is a message",0

defines memory for the user variable message. The trace
command reinitializes all variables to the values given by
the db and dw pseudo ops.

Assembly Language Interpreter 8-3

Edit Command

The SST edit facility described in Chap. 4 can be
used to edit assembly language instructions. To edit a
line, type

►■edit line_number

in COMMAND MODE. This switches to ASSEMBLE
MODE and automatically calls up the line with the
line_nitmber (instruction offset) specified. Make the
changes you want and type 4-1 to go onto the next line.
To quit editing, type Esc, which returns to COMMAND
MODE.

While in UNASSEMBLE and TRACE MODEs, you
can also move the cursor in the trace window to any in­
struction and switch to ASSEMBLE EDIT MODE by
typing the hot key "a".

8-4 Assembly Language Interpreter

Interpreter Commands

SST recognizes the following DOS/BASIC-like com­
mands while in COMMAND MODE (see also Chap. 7).

bye return to DOS
close close all disk files
cis clear screen
cont continue execution at full speed (not tracing)
delete/? delete instruction at offset n
edit?? edit statement at offset n
files template list directory with template template
insert/? insert instruction^) starting at offset n
list [n] list (display) program from start [from offset

n\
Hist [/?] print program from start [from offset rt]
load file load file with filename file.COM
new delete all labels, restore initial registers

values
run run program from start at full speed (not

trace)
save file save file with filename file.COM
system return to DOS
trace [/?] trace program from start [from offset /?]

These commands exist in similar forms in DOS or
BASIC. SST accepts relaxed syntax. For example, on the
files command, you can enclose the filename template in
double quotes or not as you choose. The insert command
is added since legal line numbers always correspond to
addresses of current instructions. On the other hand, ren­
umbering is automatic, so BASIC’s renumber command is
superfluous.

In addition to these commands, you have, of course,
the standard SST commands, which can also be useful,
particularly the a (assemble) and t (trace) commands.

Assembly Language Interpreter 8-5

file.COM
file.COM

Notes:

8-6 Assembly Language Interpreter

Notes:

Assembly Language Interpreter 8-7

Chapter 9
DISK DISPLAY/MODIFY FACILITY

SST has a disk display/modify facility. Essentially
the disk display/modify facility works like the memory
display/modify facility except that you specify sectors
instead of segments. The facility uses a 64K RAM
buffer directly following the user program segment prefix,
thereby overwriting anything you may have read in there.
You can display the sectors in any of the standard SST
display formats using the d command and scroll through
the entire disk if you have enough time.

To switch into DISK DISPLAY MODE, type

V disk [sector:offset]

where the sector:offset specification is optional. Leaving
it out starts displaying at sector 0, offset 0. To return to
memory display mode, type RAM in COMMAND MODE.

Disk Display/Modify Facility 9-1

Overtyping Disk

You. can switch into DISK OVERTYPE MODE by
typing Ctrl-O and overwrite the disk image in memory.
To update the corresponding sector on disk, type Ctrl-X,
which asks if you want to overwrite the sector in ques­
tion. Type y or Y to confirm the overwrite request and
the disk sector will be overwritten.

Pointer Facilities

Some pointer facilities are available to help you move
rapidly from one part of the disk to another by using the
hierarchical directory structure. These are defined as
follows:

Ctrl-P Display root directory in current display
format.

Ctrl-D Display cluster corresponding to Directory
Entry (DE) at cursor or if in FAT to cluster
identified by cursor. Saves current disk loca­
tion so that Ctrl-G returns to this location.

Ctrl-C Display cluster chain for file described by DE
at cursor.

Ctrl-L List DE in human-oriented form in pop-up
window. While this window is active, typing
down (up) arrow moves to the next (previous)
DE. When pointing at FAT, Link cluster into
cluster chain for file chosen by Ctrl-C option.

We recommend displaying the root directory and the sub­
directories in pure ASCII format and use the Ctrl-L
option to obtain more specific information. When you
want to examine a file or subdirectory, position the cursor
somewhere on the corresponding Directory Entry and type
Ctrl-D.

9-2 Disk Display/Modify Facility

File Allocation Table (FAT)

The disk space is assigned to files by use of linked
chains of clusters stored in the FAT (File Allocation
Table). A cluster consists of one or more sectors, 2 on a
360K floppy, 4 on the 20M AT hard disk. The FAT
itself starts at sector 1. If you display the FAT in word
format on hard disks with more than 10 megabytes or in
triple-nibble (dp) format for floppies and smaller hard
disks, the disk cluster chain pointed to by the cursor is
highlighted. This is both instructive and useful, since you
can see how the disk space is allocated. The appropriate
display formats are automatically used when the Ctrl-F

»FAT display command is typed in the DISK DISPLAY
MODEs. The offset field is also treated specially to give
the cluster value in reverse video, rather than the FAT
sector offset.

You can change the cluster allocation if you want to
unerase a file or to construct a file from data on the disk.
Move the cursor to the directory entry for the desired
file, switch into DISK OVERTYPE MODE by typing the
Ctrl-O toggle, type Ctrl-C to display its cluster chain, pos­
ition the cursor at the desired cluster position and type
Ctrl-L. To update the disk FAT, type Ctrl-X as
described in the Overtying Disk section. You can also
modify the chains by overtyping in hex/ASCII mode, but
this is hard to decipher, expecially for 12-bit FAT
formats (diskettes and smaller hard disks).

The disk display/modify facilility doesn’t yet qualify
as a full disk utility package since unerasing a file is not
yet menu driven. Nevertheless the display capabilities
typically exceed other disk utility packages both in sheer
speed and in the variety of display formats which
include, for example, unassemble and assemble facilities.

Disk Display/Modify Facility 9-3

Notes:

9-4 Disk Display /Modify Facility

Chapter 10
RAMFONT EDITOR

SST includes a powerful screen font editor that uses
the RamFont features of the Hercules monochrome
Graphics Card Plus (GCP model GB112) and of the IBM
Enhanced Graphics Adapter (EGA). These enhancements
dramatically reduce the effort needed to create new fonts
and to debug programs that use RamFont features. The
Hercules GCP offers 12 user definable fonts in an 8x16
cell, while the IBM EGA offers 4 fonts in an 8x32 cell.
Characters from all 12 fonts can be simultaneously displa­
yed on the GCP, while characters from only two of the
four EGA fonts can be simultaneously displayed. SST’s
RamFont editor works essentially the same way on both
cards. In particular, only 16 bytes of the EGA’s 32 bytes
in a character can be edited and displayed, although rows
shifted down below the sixteenth line are preserved.
Specifically,

• Font files can be loaded and saved
• Fonts can be easily displayed and modified
• Fonts can be moved and operated on logically
• Hercules RamFont/blink modes can be changed

any time

SST’s RamFont facilities include those of Hercules’
FONTMAN.COM and Victor’s EFONT.EXE as subsets,
while offering substantially more font visibility and
editing power. The embedding of a font editor in a
debugger has a number of advantages over other environ­
ments, such as using a single move command to turn a
small font into a subscript or a superscipt font.

RamFont Editor 10-1

FONTMAN.COM

Specifying RAM Addresses

in specifying any address, a leading t implies the
base RamFont segment (0B400h on the GCP, OAOOOh on
the EGA) added to the value following the t times lOOh
for the GCP or 400h for the EGA. Hence

► dt3

displays video RAM around OB7OOh:O on the GCP and
0AC00h:0 on the EGA, which is where font t3 resides.

The t field can be followed by a colon (or semicolon) and
offset as usual.

Any address oriented command can use this feature,
including the load and save commands. Hence

f nstandard. fnt
lt7

loads STANDARD.FNT into t7. We recommend loading
the standard font into t7 on the GCP and into tO on the
EGA, since the standard character attributes used by non-
RamFont software then automatically look correct.

To facilitate importing standard 16-byte/character
fonts to the EGA, a font file exactly 4096 bytes long (256
characters in 16-byte format) read into an EGA font loca­
tion (tO through t3) is automatically expanded to the EGA
32-byte/character format. Files written from EGA
RamFont RAM are left in 32-byte format.

Note that FONTMAN.COM specifies the character
"a" in font 3 as 14:61 rather than 13:61, since
FONTMAN numbers fonts from 1 rather than from 0.
Although this might be clearer in the abstract, SST’s
choice is clearer if you want to keep track of where
things are in memory and how the hardware is accessed.
Just remember that SST starts with font 10 (FONTMAN’S
tl) and a character with code 41 has top-line offset 410
(fontman’s 41). SST’s t field is the same as the low
nibble attribute byte, while FONTMAN’s is one higher.

10-2 Scroll Symbolic Tracer

FONTMAN.COM

Font Displays

To display a font on the EGA, type

► font [t ri\

where the tn is an optional font specification. If missing,
the last display location is used, or on the first font
command, the zeroth character in font 0. This causes a
256-character font to be displayed at the right of the
screen and the current character within that font to be
displayed in the large at the left of the screen. The
cursor keys move to other characters, displaying them in
the large accordingly. The Home and End keys move to
the zeroth and 255th characters in the font. The PgUp
and PgDn keys move to the next and previous fonts, res­
pectively.

To display a font on the GCP, you must first be in
48K RamFont mode (the EGA is always in RamFont
mode). If not, first switch into this mode by typing

kramfont 5

(or ramfont 7 for 8-bit wide characters) and then type
the desired font command.

The ASCII chart option given by in many
modes can also display in different RAM fonts. Type the
desired font number.

Copying Fonts and Shifting Characters

The move command can be used to make copies of
fonts and to shift them up and down. For example,

► mt2 11000 t3:3

moves font 2 to font 3 shifting all characters down three
raster lines (use 2000 for the EGA). This feature is
handy for making a set of subscripts or superscripts.

You can also copy part of a font by Tagging one end
of a block by typing t or T, moving to the other End and
typing e or E, and then moving to the desired target posi­
tion and typing c or C for Copy.

RamFont Editor 10-3

Logic Operations

The logic operations and, or, xor, and not are
general features of SST+, but are particularly useful in
special font manipulations, and, or, and xor have the
same syntax as the fill command, while the not command
simply inverts all bits in the range. The syntax is

►■and range list
► or range list
► xor range list
► not range

The bytes in the list are and’ed, etc., with the bytes in
the range. See the and operator in Chap. 7 for an
example.

Editing RamFont Characters

Characters are easily edited using the SST font
command, which displays the current character in the
large on the left of the screen and 256 characters in the
small on the right of the screen. The changes you make
show up in the large on the left display and in the small
on the right display. Both displays have cursors. The
cursor on the left is called the cell cursor, and the one on
the right is called the font cursor. The font cursor is
moved by the cursor-pad keys as described earlier.

You use the cell cursor to specify where you want to
make changes in a character. A Microsoft compatible
mouse can be used to move the cell cursor and to store a
dot or blank at the cell cursor position. To enable the
mouse, type the mouse command at the DOS prompt, and
then run SST and tell SST that a mouse is available by
typing the command mouse in COMMAND MODE. The
mouse also drives the cursor in the ordinary DISPLAY
MODE.

10-4 Scroll Symbolic Tracer

Alternatively, you can move the cell cursor with the
"cursor diamond" given by numbers on the numeric
keypad (NumLock the IBM PC keyboard) as follows:

toggle INSERT/OVERTYPE mode
move down and left
move down
move down and right
move left
toggle dot at cell cursor
move right
move up and left
move up
move up and right

0
1
2
3
4
5
6
7
8
9

A control cursor diamond is also available: Ctrl-Y (up),
Ctrl-G (left), Ctrl-H (right), and Qrl-B (down). Ctrl-A
moves the cell cursor to the upper left corner of the font
cell.

To store a dot at the cell cursor, type Ctrl-8 (for Set)
or type a period. To store a blank, type Ctrl-D (for
Delete) or the space bar. The space bar moves right one
dot after storing a blank. On the font display, you see
the corresponding changes in the small. The
Set/Delete/Blank meanings are changed slightly in FONT
INSERT MODE. To toggle between the default FONT
OVERTYPE MODE and the FONT INSERT MODE, type
the Ins key. In the FONT INSERT MODE, the Ctrl-S
sets a dot at the cell cursor after shifting the remainder of
the character row one dot to the right, that is, it inserts a
dot. Similarly, the space bar inserts a blank. The Ctrl-D
key deletes the dot, shifting the remainder of the charac­
ter row left. These functions are similar to the OVER­
TYPE and INSERT MODE’S in text editors. The left and
right keys of the Microsoft mouse are aliases for the Ctrl-
S and Ctrl-D keys, respectively.

RamFont Editor 10-5

In addition to these single dot commands, there are
two row and two column commands, and five cell com­
mands. To insert a blank row at the cell cursor, type h
or H (for Horizontal) or Ctrl-L (for Line). To delete the
row at the cell cursor, type x or X or Ctrl-K (for Kill).
To insert a blank column at the cell cursor, type v or V
(for Vertical). To delete the column at the cell cursor,
type y or Y.

The cell commands are b or B, which Blanks the
character cell, f or F, which Flips the character upside
down, m or M, which gives the Mirror image, r or R,
which Reverse videos the character, and u or U, which
Undoes the changes made so far on this character.

The Function Key 1 help screen in the FONT
OVERTYPE MODE and FONT INSERT MODE summar­
izes these functions.

Streamlining Font Loading and Changes

SST’s keyboard redirection feature executes files of
commands that can load fonts as desired. For example,
the file

o?BF 5
n\herc\standard.fnt
lt7
It?
It5
n\ her c:\sanser if .fnt
its
lt2
lt4
n\herc\small.fnt
It 1
It6
ramfont 5
blink
mouse

10-6 Scroll Symbolic Tracer

turns on both graphics pages (like Hercules HGC.COM
full option at the DOS prompt), loads a number of fonts
from a subdirectory \HERC into the RamFont, turns on
the 48K RamFont mode, turns the blink attribute into a
double width attribute, and enables the mouse (if it was
enabled at the DOS prompt as well).

You can define the function keys to perform repeti­
tive changes. For example, in COMMAND MODE,
typing

fF9=""k~k~6"

sets up Function Key 9 to delete two rows in the current
character and then moves to the next character. By
holding the Function Key 9 key down, you autorepeat this
function, processing a set of characters rapidly.

RamFont Command

To control getting into and out of the Hercules
RamFont modes, the RamFont command has beed added.
This has the syntax

k ramfont [n [/n]]

where if m is missing, n=0 or missing restores the ROM
generator with 9—bit wide characters, n= 1 turns on 4K
RamFont, n=5 turns on 48K RamFont (n is the value sent
to the xModeReg described under RamFont registers in
the Hercules manual). If only jibberish appears on the
screen in 48K RamFont mode, type 4-1 ramfont <-*. This
should get you back to TEXT MODE, where you can see
what you’re doing while you set up your fonts. If you’re
running a program under SST (or have a resident SST),
you can get into SST by typing Ctrl-Enter, and then type
the above. Be sure to enable Hercules half or full page
operation before using RamFont mode.

If tn is present, tn= 15 writes n to the underscore register
(line 0 to F on which the underscore should appear), and
m=16 writes n to the overscore register. These options
imply 48K RamFont operation, although they do not

RamFont Editor 10-7

HGC.COM

switch into this mode (use ramfont 5 or ramfont 7 to
switch).

The command

k blink 0

or blink without an argument turns the blink enable bit
off. The command

kblink 1

turns it on. We turn it off. Whew!

Modifying SST Screen Attributes

Use the q commands (see Chap. 7) to modify the
screen attributes and hence character fonts in Hercules
48K RamFont mode. In particular, we recommend
loading the standard font into t7, since then most every­
thing works immediately without q commands. Load an
italics font into tl since then IBM underlining displays in
italics. Be sure to tell SST to run in 48K RamFont mode
if the board has already been so configured, since other­
wise IBM bold and reverse video attributes will be used.

Resident SST

Note that a resident SST (include SST/R in your
AUTOEXEC.BAT file) can be used at any time to
examine fonts, change RamFont modes, etc. It cannot be
used to load in new fonts if DOS is busy (unfortunately,
DOS is not reentrant). A non-resident SST (usual
DEBUG MODE) can be used to load and save fonts at
anytime while debugging another program. To get into
SST while running another program, type Ctrl-Enter or
push an NMI button. This button is a normally open
push button switch connected to the top and bottom pins
closest to the rear of the computer on any I/O channel
connector. If you make modifications in your characters
that you want to keep, you can load a nonresident SST to
save the desired updated fonts from the font RAM.

10-8 Scroll Symbolic Tracer

Chapter 11
SOURCE LEVEL DEBUGGING

SST has the ability to display and single-step source
code for programs provided source code line numbers are
available from the map file or from the .EXE file com­
piled and linked with the Microsoft CodeView options.
Single stepping and breakpointing directly in source code
may allow you to home in on an error much more rapidly
than working with the assembly mnemonics. At any time
you can switch between pure source code, mixed assem-
bly/source, and pure assembly code. Most of the SST
TRACE MODE hot keys like Don’t call subroutine, Fast,
and Continuous trace work in source mode debugging as
well. This chapter explains how to prepare .EXE and
.MAP files for source level debugging and how the trace
and unassemble commands are enhanced to deal with
source code.

The type (browse) command is also very handy for
searching through source files, although it doesn’t support
setting breakpoints directly in the source code as the trace
and unassemble commands do.

Preparing for Source Code Debugging

You can set up an EXE file for source-level debug­
ging either by loading an appropriate .MAP file, or by
loading an .EXE file prepared for use with Microsoft’s
CodeView debugger. Load the .MAP file with the 11
command as described under Labels in Chap. 4. What

Source Level Debugging 11-1

distinguishes these .MAP files from others is that line
numbers for various source files appear at the end. To
obtain these line numbers, you have to instruct the com­
piler to generate them in the first place and then instruct
the linker to include them in the .MAP file. For
example, in using Microsoft C, include the /Zi switch for
programs you wish to debug at the source level. Then
for the linker, use the /MAP and /LI switches to create a
.MAP file with Line numbers.

Alternatively use the /Zi switch for the compiler and
the /CO switch for the linker. This generates an .EXE
file for use with Microsoft’s CodeView debugger. Such
.EXE files can be used directly, simply by loading them
as you would any other .EXE files. The CodeView
compile and link options automatically tack the appropri­
ate source line number and symbol-table information onto
the back of these special .EXE files. SST detects the
presence of this information and translates it for internal
use.

If SST detects source code for the C-language main()
routine, SST automatically switches to source-level debug­
ging and displays the beginning of the source file for the
main program. Typing the space bar then breaks at
mainO rather than single stepping through the C-system
set up code. Hopefully that setup code is thoroughly
debugged by now!

Source/Assembly Modes

Unassembled code can always be displayed using
8086/8087/80386 assembly language mnemonics. If the
appropriate source code files and corresponding line
numbers are available, code can also be displayed in
mixed SOURCE/ASSEMBLY MODE, and in pure
SOURCE MODE. Mixed mode displays the source line
first followed by the corresponding assembly mnemonics.

To switch between these formats in COMMAND
MODE, type

11-2 Scroll Symbolic Tracer

s+
s&
s-

for source, mixed, and assembly formats, respectively. To
switch between formats in TRACE MODE, type +, &, or
-, respectively.

Source-Level Tracing

As for assembly-level tracing, a number of hot keys
are available for source-level tracing. These correspond
closely to their assembly-level counterparts described in
Chaps. 7 and 14, and are described in this section.

The Don’t call hot key single-steps source code
without going down calls. The " " hot key single-steps
source code going down calls (but not ints). Extra space
bars encountered while source-level single stepping are
ignored. The Fast hot key sets temporary breakpoint at
next source line. The Nop hot key skips current line.
The Continue hot key works at the source level.
EXE’s/MAP’s with a linenumber for main come up in
TRACE MODE with source file display. The first " " or
D breaks on main.

If you stop on nonsource code due to a console inter­
rupt or other reason, you can don’t trace to the next
source line by typing 1 or L (for Line). If a source single
step initiated by " " runs too slow, type d or D, to switch
to the Don’t call subroutine single step. Other keys inter­
rupt on nonsource code, giving an assembly language
display.

The Undo hot key works up to the number of
assembly language instructions saved. Source code is dis­
played whenever the instruction pointer (cs:ip) points at a
source line.

The PgUp, PgDn, up/down arrows, and Function Key
3 Search options work with source-level tracing and
unassembling.

Source Level Debugging 11-3

In both UNASSEMBLE and TRACE MODE’S,
breakpoints are toggled by P at cursor, and the Here hot
key sets a temporary breakpoint at the address at the
cursor and goes. The Kick hot key moves the Instruction
Pointer to the address at the cursor.

User Defined Symbols

To facilitate both source-level and assembly language
debugging, SST includes commands to define typical data
types. Specifically in COMMAND MODE, you can
execute the char, int, long, float, and real commands.
Other C types will be added in the future. The syntax
is:

type [[[[far]] *]] variable name address

For example,

int alpha 305

adds the symbol alpha of type int (signed 16-bit integer)
to the segment specified by the ds segment register at the
offset 305. You can specify any other segment. The
optional * generates near plr to variable of type type.
The optional far generates a far pointer to the variable of
type type.

The C-language types char, int, long, float, and double
are supported as well as the hexadecimal types byte,
word (unsigned 16-bits), and dword (dd).

The space for symbol tables is allocated dynamically with
up to 64K bytes of tables. Each symbol has a 6-byte
header as well as the symbol name. The header contains
a 16-bit offset value, a 16-bit type, and a 16-bit length.
Line numbers require the header alone unless a label or
comment is included. The symbol entries are grouped
into symbol segment lists. If the average symbol is 6
bytes in length, then up to about 5000 symbols can be
referenced by name. The /n RAM option on the DOS
command line is not needed for symbols.

11-4 Scroll Symbolic Tracer

Chapter 12
SPECIAL 80386 SUPPORT

SST supports 80386 mnemonics for the assembling,
unassembling, and tracing. In addition a number of
special features have been added to take advantage of the
80386’s special hardware. This chapter describes these
features.

Hardware Breakpoints

The 80386 has four hardware breakpoints capable of
breaking when a location (byte, word, or dword) is read,
written, or executed. These breakpoints occur while the
80386 runs full speed. In particular, you can break exe­
cution as soon as a variable is written to or from, and
you can set breakpoints in ROM. For a full discussion of
this powerful feature of the 80386, please consult the
chapter on debugging in the Intel 80386 Programmer's
Reference Manual.

SST uses sticky breakpoints 30 to 33 are for the
80386 debug registers. The syntax is a slight extension of
the standard sticky breakpoint syntax (see the breakpoint
command in Chap. 7). It is

tbsn address [//?] [/st]

which sets 80386 hardware breakpoint n = 30 to 33 at the
address address and skips in passes by this address. The
special 80386 optional switch field /n st can be used to

Special 80386 Support 12-1

specify the Scope and Type of hardware breakpoint
desired. The scope letter s can be omitted or be "g" for
Global, or "1" for Local. Global is the default. If you
specify Local, the breakpoints are automatically disabled
as soon as a task switch occurs.

The breakpoint type letter t can be "r" for break on
data reads or writes, but not on instruction fetches; "w"
for break on data writes only (default); or "x" for break
on instruction execution only.

These 80386 hardware sticky breakpoints can be
enabled, disabled, cleared, and listed just as regular sticky
breakpoints can.

Special displays

The dr displays the 80386 special debug registers
(drO, drl, dr2, dr3, dr6, dr7), the control registers (crO,
cr2, cr3), the test registers (tr6 and tr7), and the extended
flags register. Type dr in COMMAND MODE.

Memory can be displayed with a linear address in
real and protected 386 modes. Type the command

k dx offset

where on the 80386 the offset can be 32-bit.

The Infamous 80286 Load All Command

The 80286 microprocessor has an undocumented in­
struction called the loadall instruction with the op code
0F05. This instruction is very useful because it loads up
the 80286’s many registers rapidly in comparison to
loading them up with documented instructions.

The 80386 has no such instruction and therefore gen­
erates an undefined op code exception (int 6) when it
encounters the 0F05. The BIOS in the Compaq DeskPro
80386 emulates the loadall instruction. SST’s int-6

12-2 Scroll Symbolic Tracer

handier passes the loadall instruction on to previous int-
6 handler. The loadall instruction is also unassembled,
but it is not supported by the assembler.

Protected Mode Debugging

On 80386 machines with 2 or more megabytes of
memory, you can run SST in a special protected mode
environment with special powers hitherto limited to the
most advanced hardware debuggers. To do this, run the
SST DOS Extender program V86MON.EXE, and switch
SST into protected mode with the COMMAND MODE
command "vm". It seems as if SST is running as usual,
except for the display of a reverse-video lower-case "v"
in the lower right corner of the register window. This
character signifies the special "V86" debug mode.

In this mode, SST runs in protected paged mode
outside of the usual DOS space, which is the first mega­
byte of RAM. You can run the dr command to display
the 80386 special registers, and you can display memory
in the linear address mode (dxn). In addition, you can
protect I/O ports and pages of memory with the pp n and
page n [m\ commands. These commands are defined as
follows:

To prevent any I/O port from being read or written,
use the Port Protect command i

PP?7

where n is the desired port to protect. If any port so
protected is subjected to an I/O reference, SST interrupts
program execution displaying the message "PORT PRO­
TECTION". Going into TRACE MODE, you see the in­
struction that tried to reference a port.

The 80386 has a paged memory facility used to
implement multitasking operating systems. In addition,
SST uses it to implement a powerful memory protection
scheme. SST’s page command gives substantial access to
the 80386 paging mechanism (see Chap. 5 of the Intel

Special 80386 Support 12-3

Programmer's Reference Manual). The syntax of the page
command is as follows:

page n [m\

where n is the absolute (flat) address of the start of a
page + a low byte value specifying the desired 80386
page-table protection/attribute characteristics (see section
5.2.4 of the Intel 80386 Programmer's Reference Manual).
The optional m value specifies the number of page table
entries to receive the protection/attribute byte. This byte
with the bit meanings

bit 0 - 1 means the page is present; - 0 means it is not
present (80386 page Present bit)

bit 1 -- 1 means the page is writeable; -- 0 means it is
read only (for users) (80386 page Read/Write
bit)

bit 2 - 1 means the page is can only be accessed by
the supervisor (SST); --- 0 means both the user
and the supervisor can access the page (80386
page User/Supervisor bit)

bit 3 - 1 illegal page table entry causing SST to display
a full screen of the page table with the
cursor pointing at the entry specified.

bit 4 Intel reserved, must be 0
bit 5 - 1 means page has be read or written since last

page table entry setting (80386 Access bit)
bit 6 = 1 means page has be written since last page

table entry setting (80386 page Dirty bit)
bit 7 Intel reserved, must be 0

The SST protected-mode V86 debugging facility is
compatible with RAM disk and disk caches that use
extended RAM, but not yet with Expanded Memory
Managers that use the 80386 protected mode, or with
other protected mode programs. SST in V86 debug mode
is new and probably still has problems, but in principle
it’s incredibly powerful and exciting.

12-4 Scroll Symbolic Tracer

Chapter 13
MICROSOFT WINDOWS DEBUGGING

Microsoft Windows provides an extensive multitask­
ing graphics interface for programs running under
MSDOS. Because it can swap user applications in and
out of RAM, the location of the application segments and
of application breakpoints can change at any time. To
aid in the debugging in such an environment, Microsoft
Windows checks to see if a Microsoft Windows cognizant
debugger resides in RAM. Specifically it checks to see if
the word SEGDEBUG is at offset lOOh of the segment
given by interrupt vector 3, the breakpoint interrupt. If
so, Microsoft Windows far calls offset OFBh of that
segment with a variety of information about where and if
application segments are loaded in memory. Furthermore,
the Sys Req key causes Microsoft Windows to issue an
int 2, which the debugger can trap.

SST has an appropriate Microsoft Windows interface
that let’s you set virtual breakpoints in user applications
even before Microsoft Windows itself is loaded, let alone
the applications themselves. By using the /LI option for
the linker, you can have line number information in the
application .MAP file, which allows multitasked source
level debugging. This chapter describes how to set up
SST to debug Microsoft Windows applications.

Microsoft Windows Debugging 13-1

Necessary Equipment

To run Microsoft Windows with SST debug support,
you need a monochrome card for SST and a color card
for Microsoft Windows. This is also a good combination
for debugging programs in general. Other combinations
may work, but haven’t been checked out at Scroll
Systems.

Debugging Microsoft Windows Applications

First load SST on the monochrome monitor and load
in the desired symbol tables from LINK4.EXE .MAP files
using the 11 command. Then type qs1 and qs to change
DOS to the EGA card and return SST to the monochrome
monitor. Set any desired sticky breakpoints. Then type
q/ry to quit and leave SST resident. These commands
can be included in a script file. Back at the DOS prompt,
type win to bring up Microsoft Windows.

As Microsoft Windows loads applications, assigns and
reassigns segments, the monochrome screen reports what’s
going on. The COMMAND MODE command

► msw 000

turns on a debug screen update mode that overwrites old
segment values with new ones. The screen so written are
much easier to read than the standard ones.

If a sticky breakpoint is encountered, control is ret­
urned to SST. Typing g or G ■H or bye 12 returns to
Microsoft Windows.

A sample Microsoft Windows script file called W is
listed below and appears on the diskette to read in .MAP
files for the SHAPES.EXE and CLOCK.EXE programs
and leave SST resident. Run this script file with the <w
command in SST’s COMMAND MODE. Then type win
at the EGA DOS prompt.

13-2 Scroll Symbolic Tracer

The Sys Req key interrupts Microsoft Windows and
returns control to SST. The go or bye commands return
control to Microsoft Windows.

Handling of Symbols

The LINK4.EXE .MAP files are loaded by the SST
11 command. Since this occurs before Microsoft
Windows itself if loaded, the segments are assigned
handles (pseudosegments) starting at 0FF81h. These
handles are changed to real segment paragraphs when
Microsoft Windows loads the corresponding application
and assigns the application segments. Subsequent in­
stances, i.e., two or more instances of the same application
executing simultaneously, automatically link to the symbol
tables for the first instance.

Sticky breakpoints can be set using the symbols from
the LINK4.EXE .MAP files and are assigned the appro­
priate 0FF80h handles. When the corresponding applica­
tions are active, the breakpoints are assigned to the real
segment paragraphs. When the applications are disabled,
the breakpoint segments revert to their handle values,
ready to be reassigned if the applications are reloaded.

The application name can be used to identify which
symbol to use. For example, HELLO!WINMA1N refers to
HELLO.EXE’s WinMain rather than to some other appli­
cation’s WinMain whose symbol table is also loaded.

When Microsoft Windows symbol tables are loaded,
SST becomes case sensitive. All DOS-like commands like
dir are recognized only in lower case (DIR and BYE do
not work). Assemble mnemonics and registers must be
typed in lower case.

SST also accepts Microsoft .SYM files. You can load
WIN.COM under SST and run, but for some reason, SST
can’t then return to DOS correctly.

Microsoft Windows Debugging 13-3

WIN.COM

Sample Microsoft Windows Script File

Sarting on the monochrome monitor, the following
SST script file loads in the .MAP files for CLOCK.EXE
and SHAPES.EXE, initializes the EGA monitor for Micro­
soft Windows, returns the SST to the monochrome
monitor, and terminates and stays resident. Execute this
file from the SST COMMAND MODE by typing <w,
where W is the filename of the script file.

nclock.map
11
nshapes.map
11
qs3
qs1
qs
msw c0
q/ry

13-4 Scroll Symbolic Tracer

•s
ew

i ^
O

0^
(]

THUMBNAIL TUTORIAL ON HOW YOU CAN USE DEBUG
by

Gratz Roberts

This is a simple demonstration to show how one might make use of the
DEBUG commands. It is not intended to be all Inclusive, but something
to stimulate your interest and help you better understand that you really
can't hurt anything by using DEBUG if you follow the rules — ALWAYS WORK
ON A COPY and CHECK YOUR WORK BEFORE YOU OVERWRITE THE ORIGINAL PROGRAM.

A short four-line text data file (DEBUGTNG.FIL) is used in demonstrating
DEBUG to provide a controlled environment. The contents of the text file is
as foilows:

Now is the time for him to come to her aid because the kids are unruly.
Now is the time for her to come to his aid because the kids are unruly!
Now is the time for al 1 good men to come to the aid of their country.
Now is the time for al 1 good women to come to the aid of their country.

For sake of simplicity assume DEBUG.COM and DEBUGTNG.FIL are both on
the default drive.

Note that debug command parameters can be separated by either a " "
(space) or a (comma).

ALWAYS WORK WITH A COPY of the file you want to use DEGUG on. If the
file you are copying from contains the .EXE extension, rename it in the copying
process so that it no longer ends with .EXE. You could, for example, leave
the extension completely off. Make it easy on yourself. Just Hon't try to
debug a file that has the .EXE extension. (Two identical files, one with a

.EXE and one without the .EXE will not load all the instructions In the same
places in memory. Furthermore, the system will not let you save any changes
you might make if the file has the .EXE extension.)

The DEBUG display layout is as follows?

*10 Memory Content at this
Mem HEX ------------------------------ - unit Byte ---------------------------—
Seg rAddr 0123456789ABCDEF ASCII Translation

xxxx:0200 43 6F 70 79 72 69 67 66-74 20 31 39 38 35 20 62 Copyright 1985 b

The above sample shows a typical line from a debug display. If no addresses
were issued with the Dump command, 8 such lines would be displayed. In the
example, address 0200 contains the letter "C", 0201 contains the letter "o",
etc. up through 020F which contains the letter ”b”. If the hex value to be
translated is a non-printabIe character, it will be translated as a
Thus the period translation is ambiguous.

Issue the command DEBUG without a file and you will debug current
memory. If the DEBUG command is followed by a valid filename, that file

DEBUG.COM

- 2 -

will be loaded into memory. In either case, the starting address is
xxxx:0100, where xxxx represents memory segments and generally you need not
worry about them unless you want to patch a program that is larger than 64K.
The value of xxxx may differ from machine to machine, depending on its
configuration and available memory. Note that the 4-digit address following
the segment will always end in zero as it is incremented in multiples of 10
hex.

Assume that we type DEBUG DEBUGTNG.FIL L press RETURN.
DEBUG will display either the or the as a prompt in column 1 of the
display. The > will be displayed for Versions 1.x, whereas the - will be
displayed for Version 2.x.

REGISTER COMMAND:
Use the Register command to display the contents of the various
registers, e.g.:

-r (Register)
AX-0000 BX-0000 CX-0125 DX-0000 SR-FFEE BP-0000 SI-0000 DI-0000
D5-05D9 ES-05D9 SS-05D9 C8--0509 IR-0I00 NV UR D! PL NZ NA PO NC
0509:0100 4E DEC SI

At this stage of the game, you need only be concerned with the CX Register,
because it contains the size of the file that was loaded. Since DEBUG loads
the beginning of the file at address 0100, this offset must be used in
computing the end of the file. Fortunately, DEBUG does this computation for
you. You only have to ask!

HEX COMMAND:
Use the Hex command to generate the sum and difference of two hex
numbers.

-h 100 125 (Hex address address)
0225 FFDB (Yields the sum and difference of the two numbers, pick

the one you are interested in, in this case, the sum.)

-h 125 100 (Note that is may be easier to understand when the
0225 0025 larger number is listed first.)

We now know that the end of the file should be at address 225 because we
just added the number of bytes in register CX to the starting address to
get the final address. To demonstrate, we'll now dump from 100 through
23F hex (end of the next line of memory).

DUMP COMMAND:
Use the Dump command to display (dump) the contents of memory.

-d 100 23f (Dump 100 through 23F)
05D9:0100 4E 6F 77 20 69 73 20 74-68 65 20 74 69 6D 65 20 Now is the time
0509:0110 66 6F 72 20 68 69 60 20-74 6F 20 63 6F 60 65 20 for him to come
05D9.-0120 74 6F 20 68 65 72 20 61-69 64 20 62 65 63 61 75 to her aid becau
0509:0130 73 65 20 74 68 65 20 6B-69 64 73 20 61 72 65 20 se the kids are

- 3 -

0509:0140 75 6E 72 75 6C 79 2E 00-0A 4E 6F 77 20 69 73 20 unruly...Now is
05D9:0150 74 68 65 20 74 69 60 65-20 66 6F 72 20 68 65 72 the time for her
0509:0160 20 74 6F 20 63 6F 6D 65-20 74 6F 20 68 69 73 20 to come to his
0509:0170 61 69 64 20 62 65 63 61-75 73 65 20 74 68 65 20 aid because the
0509:0180 68 69 64 73 20 61 72 65-20 75 6E 72 75 6C 79 21 kids are unruly!
0509:0190 00 0A 4E 6F 77 20 69 73-20 74 68 65 20 74 69 60 ..Now is the tim
0509:01A0 65 20 66 6F 72 20 61 6C-6C 20 67 6F 6F 64 20 20 e for al 1 good
05D9:01B0 20 60 65 6E 20 74 6F 20-63 6F 6D 65 20 74 6F 20 men to come to
05D9:01CO 74 68 65 20 61 69 64 20-6F 66 20 74 68 65 69 72 the aid of their
05D9:01D0 20 63 6F 75 6E 74 72 79-2E 00 OA 4E 6F 77 20 69 country...Now i
05D9:01EO 73 20 74 68 65 20 74 69-6D 65 20 66 6F 72 20 61 s the time for a
05D9:01F0 6C 6C 20 67 6F 6F 64 20-77 6F 60 65 6E 20 74 6F 11 good women to
0509:0200 20 63 6F 60 65 20 74 6F-20 74 68 65 20 61 69 64 come to the aid
0509:0210 20 6F 66 20 74 68 65 69-72 20 63 6F 75 6E 74 72 of their countr
0509:0220 79 2E 00 0A 1A 21 64 40-64 23 64 24 64 25 64 A5 y....!d@d#d$d%d%
0509:0230 64 26 64 2A 64 28 64 29-64 5F 64 2B 64 00 20 00 d&d*d(d)d_d+d. .

Examine the dump at 0509:0220. You will find the first character of that
line of the dump is the letter "y" followed by a period. Then there is a
carriage return (00) followed by a line feed (0A) followed by an EOF (end-of-
file flag 1A). The rest of the line contains data that was resident in
memory when DEBUG loaded the current file. But before going on to that,
by now you have noticed that the last byte of the file is not in location
225 as we previously computed! What did we do wrong? Note that when you
give the starting address and the length, the computed sum will be one
too large. Conversely, the computed difference will be one less than the
correct value.

When you load a file, you'd like to be sure you can tell what is being loaded
from what might have been there before. A simple way to do that in this case
would be to issue the Fill command (F 225 23F 00)? however, why not clear all
the area we are going to load into and pick up another command in the process

FILL COMMAND:
Use the Fill command to preload or to flood the contents of memory with
a given value.

-f 100 23f 00 (Fill 100 through 23F with 00. You could also have filled
it with 77 or AA or FF, but 00 usually means empty.)

(Dump 100 through 23F just to see what it looks like)-d 100 23f

05D9:0100
0509:0110
0509:0120

00
00

00 00 00 00
00

00 00 00-00
00-00

00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
ETC
000509:0210 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0509:0220
0509:0230

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

Now load the data back into memory. You could accomplish this be exiting
DEBUG and then entering It again as we did initially, or we could simply

- 4 -

tell DEBUG that we want to load the file. But before we can load a file
at this point, we must tell DEBUG the name of the file to be loaded.

NAME COMMAND:
Use the Name command to tell DEBUG the name of the file to be
subsequently read (when Load command is issued) or written (when the
Write command is issued).

-n debugtng.fi! (Name DEBUGTNG.FIL is the name of the file to be loaded)

LOAD COMMAND:
Use the Load command to load a file into memory so that DEBUG can process
it.

-1 100 (Load the file beginning at address 100. Actually you
could have left the address off and it would still have
loaded at address 100. The address is being used here
to show that it could have been loaded at some other
location, at the end of another file, for example.)

Notice that the memory locations between the EOF flag and 23F have been loaded
with 00 just as we told it.

-d 100 23f (Dump 100 through 23F again)
05D9:0100 4E 6F 77 20 69 73 20 74-68 65 20 74 69 6D 65 20 Now is the time
0509:0110 66 6F 72 20 66 69 60 20-74 6F 20 63 6F 60 65 20 for him to come
0509:0120 74 6F 20 68 65 72 20 61-69 64 20 62 65 63 61 75 to her aid becau
05D9:0130 73 65 20 74 66 65 20 68-69 64 73 20 61 72 65 20 se the kids are
05D9:0140 75 6E 72 75 6C 79 2E OD-OA 4E 6F 77 20 69 73 20 unruly...Now is
0509:0150 74 68 65 20 74 69 60 65-20 66 6F 72 20 66 65 72 the time for her
0509:0160 20 74 6F 20 63 6F 6D 65-20 74 6F 20 68 69 73 20 to come to his
0509:0170 61 69 64 20 62 65 63 61-75 73 65 20 74 68 65 20 aid because the
0509:0160 6B 69 64 73 20 61 72 65-20 75 6E 72 75 6C 79 21 kids are unruly!
0509:0190 0D 0A 4E 6F 77 20 69 73-20 74 68 65 20 74 69 60 □.Now is the tim
05D9:01A0 65 20 66 6F 72 20 61 6C-6C 20 67 6F 6F 64 20 20 e for al 1 good
0509:0180 20 60 65 6E 20 74 6F 20-63 6F 60 65 20 74 6F 20 men to come to
05D9:01C0 74 68 65 20 61 69 64 20-6F 66 20 74 68 65 69 72 the aid of their
0509:0100 20 63 6F 75 6E 74 72 79-2E 00 0A 4E 6F 77 20 69 country...Now i
05D9:01E0 73 20 74 68 65 20 74 69-6D 65 20 66 6F 72 20 61 s the time for a
05D9:01FO 6C 6C 20 67 6F 6F 64 20-77 6F 60 65 6E 20 74 6F 11 good women to
0509:0200 20 63 6F 6D 65 20 74 6F-20 74 68 65 20 61 69 64 come to the aid
0509:0210 20 6F 66 20 74 68 65 69-72 20 63 6F 75 6E 74 72 of their countr
0509:0220 79 2E 00 0A 1A 00 00 00-00 00 00 00 00 00 00 00 v°°........................
0509:0230 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

-d 100 L125 (Dump starting at 100 a total of 123 hex bytes)
0509:0100 4E 6F 77 20 69 73 20 74-68 65 20 74 69 60 65 20 Now is the time
0509:0110 66 6F 72 20 68 69 60 20-74 6F 20 63 6F 60 65 20 for him to come
0509:0120 74 6F 20 68 65 72 20 61-69 64 20 62 65 63 61 75 to her aid becau
0509:0130 73 65 20 74 68 65 20 68-69 64 73 20 61 72 65 20 se the kids are
05D9.-0140 75 6E 72 75 6C 79 2E OD-OA 4E 6F 77 20 69 73 20 unruly...Now is
0509:0150 74 68 65 20 74 69 6D 65-20 66 6F 72 20 68 65 72 the time for her

debugtng.fi

- 5 -

0509:0160 20 74 6F 20 63 6F 60 65-20 74 6F 20 68 69 73 20 to come to his
0509:0170 61 69 64 20 62 65 63 61-75 73 65 20 74 68 65 20 aid because the
0509:0180 68 69 64 73 20 61 72 65-20 75 6E 72 75 6C 79 21 kids are unruly!
0509:0190 00 0A 4E 6F 77 20 69 73-20 74 68 65 20 74 69 60 ..Now is the tim
05D9:01AO 65 20 66 6F 72 20 61 6C-6C 20 67 6F 6F 64 20 20 e for al 1 good
05D9:01B0 20 60 65 6E 20 74 6F 20-63 6F 60 65 20 74 6F 20 men to come to
05D9:01C0 74 68 65 20 61 69 64 20-6F 66 20 74 68 65 69 72 the aid of their
0509:0100 20 63 6F 75 6E 74 72 79-2E 00 0A 4E 6F 77 20 69 country.. .Now i
05D9:01E0 73 20 74 68 65 20 74 69-6D 65 20 66 6F 72 20 61 s the time for a
0509:01F0 6C 6C 20 67 6F 6F 64 20-77 6F 60 65 6E 20 74 6F 11 good women to
0509:0200 20 63 6F 60 65 20 74 6F-20 74 68 65 20 61 69 64 come to the aid
0509:0210 20 6F 66 20 74 68 65 69-72 20 63 6F 75 6E 74 72 of their countr
0509:0220 79 2E 00 0A 1A y°...

Note that the dump ended with the EOF flag.

-d 10a 148 (Dump 10A through 148)
0509:0100 20 74 69 60 65 20 time
0509:0110 66 6F 72 20 68 69 6D 20-74 6F 20 63 6F 60 65 20 for him to come
0509:0120 74 6F 20 68 65 72 20 61-69 64 20 62 65 63 61 75 to her aid becau
0509:0130 73 65 20 74 68 65 20 68-69 64 73 20 61 72 65 20 se the kids are
0509:0140 75 6E 72 75 6C 79 2E OD-OA unruly...

Notice what happens above when the dump doesn't either start or terminate
with full lines. Note that the hex address always increments in steps of 10.

-d 10a L3f (Dump beginning at 10A a total of 3F bytes — the L means
length)

0509:0100 20 74 69 6D 65 20 time
0509:0110 66 6F 72 20 68 69 6D 20-74 6F 20 63 6F 60 65 20 for him to come
0509:0120 74 6F 20 68 65 72 20 61-69 64 20 62 65 63 61 75 to her aid becau
0509:0130 73 65 20 74 68 65 20 6B-69 64 73 20 61 72 65 20 se the kids are
0509:0140 75 6E 72 75 6C 79 2E OD-OA unruly...

Suppose you need to compare two streams of memory to find out what, if
anything, differs between the two streams. To demonstrate, compare the
first sentence of the file with the second sentence of the file.

COMPARE COMMAND:
Use the Compare command to locate variations between two streams (ranges)
of memory.

-c 100 148 149 (Compare 100 through 148 with the same number of bytes that
begin at address 149)

First Stream Second Stream
0509:0115 69 65 0509:015E (i is not equal to e)
0509:0116 60 72 0509:015F (m is not equal to r)
0509:0124 65 69 0509:0160 (e is not equal to i)
0509:0125 72 73 05D9:016E (r is not equal to s)
0509:0146 2E 21 05D9:018F k. is not equal to ’)

- 6 -

So you can see that each character that did not match was printed out for
your examination. Thus the Compare command essentially says that both
streams are identical, except for the addresses and data listed.

-h 148 10a
0252 003E

(Hex 148 and 10A, Get sum and difference, remember?)

MOVE COMMAND?
Use the Move command to copy the contents of one stream in memory
to another location. Note that the Move does not destroy the source
stream.

-m 17c L16 225 (Move starting at location 17C, 16 hex bytes to a new
location starting at address 225. Note that the move
command is a misnomer inasmuch as it copies into a new
location rather than moving the original contents.)

-d 170 23F (Dump 170 through 23F)
0509:0170 61 69 64 20 62 65 63 61-75 73 65 20 74 68 65 20 aid because the
0509:0180 68 69 64 73 20 61 72 65-20 75 6E 72 75 6C 79 21 kids are unruly!
05D9.-0190 0D 0A 4E 6F 77 20 69 73-20 74 68 65 20 74 69 6D ».Now i s the t i m
0509:01A0 65 20 66 6F 72 20 61 6C-6C 20 67 6F 6F 64 20 20 e for a 11 good
05D9:01B0 20 6D 65 6E 20 74 6F 20-63 6F 60 65 20 74 6F 20 men to come to
0509:0100 74 68 65 20 61 69 64 20-6F 66 20 74 68 65 69 72 the aid of their
0509:0100 20 63 6F 75 6E 74 72 79-2E 00 0A 4E 6F 77 20 69 country...Now i
05D9:01E0 73 20 74 68 65 20 74 69-60 65 20 66 6F 72 20 61 s the time for a
05D9:01F0 6C 6C 20 67 6F 6F 64 20-77 6F 60 65 6E 20 74 6F 11 good women to
0509:0200 20 63 6F 6D 65 20 74 6F-20 74 68 65 20 61 69 64 come to the aid
0509:0210 20 6F 66 20 74 68 65 69-72 20 63 6F 75 6E 74 72 of their countr
05D9.-0220 79 2E 00 0A 1A 74 68 65-20 68 69 64 73 20 61 72 y....the kids ar
0509:0230 65 20 75 6E 72 75 6C 79-21 00 0A 28 64 00 20 00 e unruly!..+d. .

Note that the data we moved (copied) is not at the end of the file but has
not overwritten the EOF flag. If we were to tell DEBUG to save our data now,
it would only save the original data. The data we just appended to the end
of the file would not be written out. We take care of that by erasing the
EOF flag and telling DEBUG how long the file is via the RCX (Register CX
command).

But first, why not enter new data for the EOF flag and the "the" that follows?
We'll enter the word "Your" In place of those 4 bytes.

ENTER COMMAND?
Use the Enter command to replace one or more bytes in memory with new
values.

-e 224 (Enter bytes beginning at 224)

0509:0224 1A. (The machine responds with address then data)
(type 59 after the period, press the SPACE bar and the
contents of the next cell will be displayed followed by

- 7 -

the period, etc. To terminate the entry press RETURN)

0509:0224 1A.59 74.6F 68.75 65.72 (This is how the line would look before
the RETURN key is pressed)

Note that it would have been much easier to have used the Fill instruction
(e.g. F 224 L4 ’’Your”) instead of the Enter, because the Fill does not
require dialog in HEX.

-d!70 23F (Dump the data again L look at result)
05D9:0170 61 69 64 20 62 65 63 61-75 73 65 20 74 68 65 20 aid because the
05D9:0180 6B 69 64 73 20 61 72 65-20 75 6E 72 75 6C 79 21 kids are unruly!
0509:0190 00 0A 4E 6F 77 20 69 73-20 74 68 65 20 74 69 60 ..Now is the tim
05D9:01A0 65 20 66 6F 72 20 61 6C-6C 20 67 6F 6F 64 20 20 e for al 1 good
05D9.-01B0 20 6D 65 6E 20 74 6F 20-63 6F 60 65 20 74 6F 20 men to come to
05D9:0ICO 74 68 65 20 61 69 64 20-6F 66 20 74 68 65 69 72 the aid of their
05D9.-01D0 20 63 6F 75 6E 74 72 79-2E 0D 0A 4E 6F 77 20 69 country...Now i
05D9:01E0 73 20 74 68 65 20 74 69-60 65 20 66 6F 72 20 61 s the time for a
05D9.-01F0 6C 6C 20 67 6F 6F 64 20-77 6F 60 65 6E 20 74 6F 11 good women to
0509:0200 20 63 6F 60 65 20 74 6F-20 74 68 65 20 61 69 64 come to the aid
0509:0210 20 6F 66 20 74 68 65 69-72 20 63 6F 75 6E 74 72 of their countr
0509:0220 79 2E 0D 0A 59 6F 75 72-20 68 69 64 73 20 61 72 y...Your kids ar
0509:0230 65 20 75 6E 72 75 6C 79-21 00 0A IA 20 21 22 00 e unruly’...

Now before we save our work, we must load the CX register with the correct
number of bytes to be written. How many?

-h 23B 100 (Hex command — find the difference)
0330 0130 (Difference - 013b; therefore we must write a total of

0130 + 1 or 013C bytes out to the file.)

REGISTER COMMAND (SPECIFIC):
Use the Register command followed by the register name to display the
contents of and/or modify the designated register.

-rex
CX 0125

(Display contents of the CX register)
(CX register has 0125 hex)
(Enter new value after the colon, i.e. 0130

-r ex
CX 013C

(Display CX again to be sure we did it right. Press
the RETURN key at the colon and contents will remain
unchanged)

WRITE COMMAND:
Use the Write command to write the modified program back out to a
file.

-w (Write the data out to the file)
Writing 013C bytes (DEBUG tells you how many bytes it is writing)

Now for a more practical example

- 8 -

Use the Search command to locate the "ESCape" string in VICMINI.EXE.
If the file did not have the .EXE extension, we could use the Name
and Load commands and then proceed; however, in this case we must
exit DEBUG and change the name of the VICMINI.EXE file before we can
modify it properly.

QUIT COMMAND:
Use the Quit command to exit the DEBUG program. Note that changes
made but not written out to a file may be lost when you Quit.

-q (Quit DEBUG L return to DOS)
copy bsvicmini.exe a.b
debug a.b

Display the registers (Remember we need to know how big the file is).

-r
AX=0000 BX=0000 CX=B100 DX=0000 SP=FFEE BP=0000 SI-ODDD Dl-0000
0S--0509 ES-05D9 SS-D5D9 CS--D5D9 I P-01 DO NV UP DI PL NZ NA PO NC
0509:0100 40 DEC BP

The file is BlOO bytes long. Thus, we can now search from beginning to
end as fol lows:

SEARCH COMMAND;
Use the Search Command to locate text or other strings of data in
memory.

-s 100 LB 100 "ESC" (Search beginning at 100 a total length of BlOO bytes
for the string "ESC")

0509:9535 (Found string "ESC" at location 9535)
0509:9851 (Found string "ESC" at location 9851)
05D9:AF3F (Found string "ESC" at location AF3F)

(I've started at the last one, working back toward the beginning, because 1
already know the the first one is the correct one.)

-d AFOO (Dump AFOO. Note that I picked a few bytes in from of the
target string to get a better appreciation of what is
present in this area)

0509:AFOO 16 IB 70 73 79 6E IB 71-00 00 00 00 17 IB 70 65 ..psyn.q..... .pe
05D9:AF10 74 62 IB 71 00 00 00 00-18 IB 70 63 61 6E IB 71 tb.q...........pcan.q
05D9:AF20 00 00 00 00 19 IB 70 65-60 IB 71 00 00 00 00 00pern.q.........
05D9:AF30 1A IB 70 73 75 62 IB 71-00 00 00 00 IB IB 70 45 ..psub.q..... .pE
05D9:AF40 53 43 IB 71 00 00 00 00-1C IB 70 66 73 IB 71 00 SC.q..... .pfs.q.
05D9:AF50 00 00 00 00 ID IB 70 63-73 IB 71 00 00 00 00 00pcs.q.....
05D9:AF60 IE IB 70 72 73 IB 71 00-00 00 00 00 IF IB 70 75 ..prs.q...... .pu
05D9:AF70 73 IB 71 00 00 00 00 00-F1 IB 70 20 31 20 IB 71 s.q.....q.p 1 .q

The ESC above, was not the one we were trying to find. Try the next one

- 9 -

-d 9800 (Dump 9800)
0509:9800 49 4C 45 53 20 20 20 20-20 20 20 20 20 20 20 20 ILES
0509:9810 20 20 20 20 20 20 20 20-20 20 20 20 20 53 50 45 SPE
0509:9820 43 49 41 4C 00 20 59 20-2E 2E 2E 20 4C 69 73 74 CI AL. Y ... List
0509:9830 20 64 69 73 6B 20 66 69-6C 65 73 20 20 20 20 20 disk files
0509:9840 20 20 20 20 5A 20 2E 2E-2E 20 43 68 61 6E 67 65 Z ... Change
0509:9850 20 45 53 43 61 70 65 20-6B 65 79 00 20 57 20 2E ESCape key. W .
0509:9860 2E 2E 20 54 79 70 65 20-28 76 69 65 77 29 20 61 .. Type (view) a
0509:9870 20 66 69 6C 65 20 20 20-20 20 20 21 20 2E 2E 2E file ! ...

The ESC here 1Is not the one either as it is from the full !screen menu.

-d 9500 (Dump 9500)
0509:9500 2A 20 40 69 6E 69 74 65-6C 20 63 61 6E 6E 6F 74 * Mini tel cannot
0509:9510 20 62 65 20 72 75 6E 20-2A 2A 2A 2A 07 0A 00 00 be run ****....
0509:9520 25 73 20 20 76 25 73 20-20 20 20 20 20 20 20 20 %s v%s
0509:9530 54 79 70 65 20 45 53 43-61 70 65 20 66 6F 72 20 Type ESCape for
0509:9540 4D 65 6E 75 00 00 44 69-73 6B 20 46 75 6C 6C 21 Menu..Disk Full!
0509:9550 20 28 54 65 78 74 20 43-6F 6C 6C 65 63 74 69 6F (Text Col lectio
0509:9560 6E 29 07 20 20 00 43 6F-60 60 61 6E 64 3A 20 00 n). .Command: .
0509:9570 20 20 20 20 20 20 20 20-20 00 4D 49 4E 49 54 45 .MI NITE

This is the one we're looking for. Now change the ’’ESCape" to ”FKEY 1".

-f 9535 L6 "EKEY !" (Fill the six cells beginning at 9535 with the text
string enclosed by the quotation marks.)

(Write the

-d9500 (Dump 9500 -— check our work!)
0509:9500 2A 20 40 69 6E 69 74 65-6C 20 63 61 6E 6E 6F 74 » Minitel cannot
0509:9510 20 62 65 20 72 75 6E 20-2A 2A 2A 2A 07 0A 0D 00 be run ****....
0509:9520 25 73 20 20 76 25 73 20-20 20 20 2D 20 20 20 20 %s v7.s
0509:9530 54 79 70 65 20 46 4B 45-59 20 31 20 66 6F 72 20 Type FKEY 1 for
0509:9540 4D 65 6E 75 00 00 44 69-73 6B 20 46 75 6C 6C 21 Menu..Disk Full!
0509:9550 20 28 54 65 78 74 20 43-6F 6C 6C 65 63 74 69 6F (Text Col lectio
0509:9560 6E 29 07 20 20 00 43 6F-6D 60 61 6E 64 3A 20 00 n). .Command: .
0509:9570 20 20 20 20 20 20 20 20-20 00 40 49 4E 49 54 45 .MINITE

corrections back out to the File-

Writing 8100 bytes (Wrote the same number of bytes it started with)

(Quit — return to DOS)

Now correct the name, rename a°b vicmini -exe, and then check the program
out to see if it works 0K° If so, replace the original version with the
patched copy.

This covers most of DEBUG except for Input, Output, Trace, and Unassemble,
which are probably a little too complex for beginning DEBUG users. Hope
you have found it to be a little useful.

SUMMARY OF DEBUG COMMANDS & FUNCTIONS

Memory to File, where
NNNN=Contents of CX
Register.

FUNCTION COMMAND & PARAMETER RESULT

Compare C <range> <address> Compares Memory Ranges
Dump D [<address> [L (valued)) Displays Specified Range

D <range> of Memory
Enter E <address> [<list>] Change contents of Memory
Fi 11 F <range> <1i st> Flood Memory with Value
Go G [= <address- [<a&dress> .,.]) Execute Memory
Hex H <address- (address- Sum L Difference Calc.
Input I <value- Get Data from Port
Load L ((address^ [(drive> (record^ (record^)] Load Memory from File
Move M (range- (address- Move Memory to new Loc.
Name N (file name- Spec i fy File to be Read
Output 0 (value- (byte- Send Data to Port
Quit Q (Exit DEBUG) Exit the DEBUG Program
Regi ster R [(register name-) Disp/Change Registers
Search S (range- dist­ Find String/Value Loc.
Trace T il (address-) s(value-) For use with ASM Prog.
Unassemble U l(address- [L (value-)) Generates ASM like code

u [(range-)
Write w l(address- ((drive- (record- (record-)) Write NNNN Bytes of

PARAMETER DEFINITION

Address A two-part designation consisting of a Segment Register
designation followed by a 4-digit memory address (e.g. 05:0100) or a
4-digit segment address followed by an offset value (e.g. OABCsOlOO).
If the address is omitted, debug will assume the first address after the
last one it processed. On entering DEBUG, the default address is 0100
hex.

Byte A two-digit hexadecimal value (e.g. 01 or 2A or FF, etc.) from
00 hex thru FF hex.

Dri ve A one-digit hexadecimal value indicating the drive to which the
file will be read and/or written. (Values are 0 = Drive A, 1 = Drive B,
2 = drive C, 3 = Drive D, etc.)

L i st A series of byte values or strings. If List is used, it MUST
be the last parameter on the command line.

Range The range parameter consists of two addresses, or one address
followed by the letter L and a value, where the value indicates the
number of bytes that the command acts upon.

Record A one-, two-, or three-digit hexadecimal value that indicates
the logical record number of the disk and number of disk sectors to be
written or loaded.

String Any number of characters enclosed in quotation marks, where
quotation marks in this case can be either the * or the ”, but must be
consistent. Within one, the other can be used as a literal string.

Va 1 ue A hexadecimal value in the range of 0000 thru FFFF inclusive.

DEBUG

COPYRIGHT

(c) 1983 by VICTOR (R).
(c) 1982 by Microsoft (R) Corporation.

Published by arrangement with Microsoft Corporation, whose
software has been customized for use on various desktop
microcomputers produced by VICTOR. Portions of the text
hereof have been modified accordingly.

All rights reserved. This publication contains proprietary
information which is protected by copyright. No part of this
publication may be reproduced, transcribed, stored in a retrieval
system, translated into any language or computer language, or
transmitted in any form whatsoever without the prior written
consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, California 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
MS-DOS (including the names of its constituent programs EDLIN and
DEBUG) is a trademark of Microsoft Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind
whatsoever with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or fitness
for any particular purpose. VICTOR shall not be liable for
errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of
this publication or its contents.

VICTOR reserves the right to revise this publication from time to
time and to make changes in the content hereof without obligation
to notify any person of such revision or changes.

Second VICTOR printing November, 1983.

ISBN 0-88182-093-8 Printed in U.S.A.

DEBUG

Overview
DEBUG is a debugging program that provides a controlled testing
environment for binary and executable object files. DEBUG works on
binary files in the same way a text editor works on source files. It lets
you alter the contents of a file or CPU register, and then immediately
reexecute a program to check the validity of the changes. DEBUG
eliminates the need to reassemble a program to see if a problem has
been fixed by a minor change.

You can abort all DEBUG commands at any time by pressing Ctrl-C.
Ctrl-8 freezes the display, so that you can read it before the output
scrolls away. Pressing any other key restarts the display.

D.l Using DEBUG

You can start DEBUG using two methods. With method 1, you type
all commands in response to the DEBUG prompt. With method 2,
you type all commands at the same time.

Table D-l: Methods to Start DEBUG

METHOD COMMAND

1 DEBUG

2 DEBUG [filespec [arglist]]

DEBUG D-l

0.1.1 Method 1: Prompts

To start DEBUG using method 1, type

DEBUGj

DEBUG responds with the hyphen (-) prompt, signaling that it is ready
to accept your commands. Because you have not specified a filename,
you can use other commands to work on current memory, disk
sectors, or disk files.

WARNING: When DEBUG starts, it sets up a program header at
offset 0 in the program work area. On previous versions of DEBUG
you could overwrite this header. You can still overwrite the default
header if you do not specify a filespec. If you are debugging a .COM or
.EXE file, however, do not tamper with the program header below
address 5CH, or DEBUG terminates.

Do not restart a program after the “Program terminated normally”
message is displayed. You must reload the program with the N and L
commands for it to run correctly.

D.1.2 Method 2: Complete Command Line

To start DEBUG using a command line, type:

DEBUG [filespec [arglist]] <j

filespec is the file to be debugged, and arglist is the rest of the
command that DEBUG uses when filespec is loaded into memory,
arglist is a list of filename parameters and switches that you want
passed to the program filespec. You can specify an arglist if you gave a
filespec. Thus, when filespec is loaded into memory, it is loaded as if it
had been started with the command filespec arglist.

D-2 MS-DOS 3.1 Reference

If, for example, you type

DEBUG FILE.EXE <j

DEBUG loads FILE.EXE into memory starting at 100 hexadecimal in
the lowest available segment. The BX:CX registers load with the
number of bytes placed into memory.

D.2 Commands

Each DEBUG command consists of a single letter followed by one or
more parameters. You can use any combination of uppercase and
lowercase letters in commands and parameters. Note: The control
characters and the special editing functions described in this manual
apply here.

If you make a syntax error in a DEBUG command, DEBUG reprints
the command line and indicates the error with an up-arrow f) and the
word “error.” For example:

des:100 cs:110
A error

Table D-2 summarizes DEBUG commands. They are explained in
detail, with examples, later in this section.

DEBUG D-3

Table D-2: DEBUG Commands

COMMAND FUNCTION

^^Afaddress]
LyC range address

n5[range]

E address [list]

^'F range list

.>G[— address [address...]]

H value value

Assemble

Compare

Dump

Enter

Fill

Go

Hex

I value Input

L[address [drive record record]]

M range address

N filename filename

Load

Move

Name

O value byte

Q
R[register-name]

S range list

T[----- address][value]

Ufrange]

W[address [drive record record]]

Output

Quit

Register

Search

Trace
Unassemble

Write

All DEBUG commands except Quit accept parameters. You can
separate parameters by delimiters (spaces or commas), but you must
use a delimiter between two consecutive hexadecimal values. Thus, the
following commands are equivalent:

dcs:1OO 110
d 08:100 110
d,c$:100,110

D-4 MS-DOS 3.1 Reference

Table D-3 defines DEBUG command parameters.

Table D-3: Command Parameters

PARAMETER DEFINITION

drive A one-digit hexadecimal value that indicates which drive a file is
loaded from or written to. These values designate drives as follows:
0 = A:, 1 = B:, 2 = C:, 3 — D:.

byte A two-digit hexadecimal value placed in or read from an address or
register.

record A one- to three-digit hexadecimal value that indicates the logical
record number on the disk and the number of disk sectors you want
to write or load. Logical records correspond to sectors; however,
their numbering differs because they represent the entire disk space.

value A hexadecimal value of up to four digits that specifies a port
number or the number of times a command should repeat its
functions.

address A two-part designation consisting of either an alphabetic segment
register designation or a four-digit segment address and an offset
value. The segment designation or segment address can be omitted;
in these cases the default segment is used.

DS is the default segment for all commands except G, L, T, U, and
W. For these commands, the default segment is CS. All numeric
values are hexadecimal. In these addresses, for example, you must
put a colon between a segment designation (whether numeric or
alphabetic) and an offset:

CS:0100
04BA:0100

range range consists of two addresses, an L, and a value, where value is the
number of lines the command operates on, and L80 is assumed.
You cannot use the last form if another hex value follows the range,
since the hex value would be interpreted as the second address of
the range. For example:

CS:100 110
CS:100 L 10

This example is illegal:

CS:100 CS:110
* error

The limit for range is 10000 hex. To specify a value of 10000
hex within four digits, type 0000 (or 0).

DEBUG D-5

DEFINITIONPARAMETER

list A series of byte values or strings, list must be the last parameter on
- the command line. For example:

fcs:100 42 45 52 54 41

string Any number of characters enclosed in quotation marks. Quotation
- marks can be single (') or double ("). If the delimiter quotation

marks appear within a string, double the quotation marks. For
example, the following strings are legal:

'This is a "string" is okay.'

However, this string is illegal:

'This is a 'string' is not.'

Similarly, these strings are legal:

"This is a 'string' is okay."
"This is a ""string"" is okay."

but this string is illegal:

"This is a "string" is not."

Double quotation marks are not needed in the following strings:

"This is a "string" is not necessary."
'This is a ""string"" is not necessary.'.

The ASCII values of the characters in the string are used as a list of
byte values.

D-6 MS-DOS 3.1 Reference

Assemble (A)

A[address]

Assembles 8086/8087/8088 mnemonics directly into memory.

All numeric values are hexadecimal and you must enter them as 1-4
characters. Specify prefix mnemonics in front of the opcode to which
they refer. You can also enter them on a separate line.

The segment override mnemonics are CS:, DS:, ES:, and SS:. The
mnemonic for the far return is RETF. String manipulation mnemonics
must explicitly state the string size. For example, use MOVSW to
move word strings, and MOVSB to move byte strings.

The assembler automatically assembles short, near or far jumps and
calls, depending on byte displacement to the destination address. You
can override the defaults with the NEAR or FAR prefix. For example:

abbreviate the FAR prefix.

0100:0500 JMP 502 ; a 2-byte short jump
0100:0502 JMP NEAR 505 ; a 3-byte pear jump
0100:505 JMP FAR 50A ; a 5-byte far jump

You can abbreviate the NEAR prefix to NE, but you cannot

DEBUG cannot tell whether some operands refer to a word memory
location or to a byte memory location. In these cases, you must ex­
plicitly state the data type with the prefix WORD PTR or BYTE PTR.
You can also use WO and BY. For example:

NEG BYTE PTR [128]
DEC TO [SI]

DEBUG D-7

DEBUG also cannot tell whether an operand refers to a memory
location or to an immediate operand. DEBUG uses the common
convention that operands enclosed in square brackets refer to memory.
For example:

MOV AX,21 ; Load AX with 21H
MOV AX,[21] ; Load AX with the contents

; of memory location 21H

Assemble has two popular pseudo-instructions available. The DB
opcode assembles byte values directly into memory. The DW opcode
assembles word values directly into memory. For example:

DB 1,2,3,4,"THIS IS AN EXAMPLE"
DB 'THIS IS A QUOTE:
DB "THIS IS A QUOTE:

DW 1000,2000,3000,"BACH"

Assemble supports all forms of register indirect commands. For
example:

ADD BX,34,[BP+2].[SI-1]
POP [BP+DI]
PUSH [SI]

Assemble also supports all opcode synonyms. For example:

LOOPZ 100
LOOPE 100

JA 200
JNBE 200

For 8087 opcodes, you must explicitly specify WAIT or FWAIT. For
example:

FWAIT FADD ST,ST(3)

LD TBYTE PTR [BX]

; This line will assemble an
; FWAIT prefix
; This line will not

D-8 MS-DOS 3.1 Reference

Compare (C)

C range address

Compares the portion of memory specified by range to a portion of the
same size beginning at address.

If the two areas of memory are identical, there is no display and
DEBUG returns with the MS-DOS prompt. Differences are displayed
in this format:

addressl bytel byte2 address2

These two commands have the same effect:

0100,200 300

C100L100 300

Each command compares the block of memory from 100 to 1FFH
with the block of memory from 300 to 3FFH.

Dump (D)

D[range]

Displays the contents of the specified region of memory.

If you specify a range of addresses, DEBUG displays the contents. If
you enter the D command without parameters, 128 bytes display at
the first address (DS: 100) after the address displayed by the previous
Dump command.

DEBUG D-9

The dump displays in two portions: a hexadecimal dump (each byte is
shown in hexadecimal value) and an ASCII dump (the bytes are shown
in ASCII characters). Nonprinting characters are indicated by a period
(.) in the ASCII portion of the display.

The display line shows 16 bytes with a hyphen between the eighth and
ninth bytes. Each displayed line begins on a 16-byte boundary.

If you type the command:

dcs:100 110

DEBUG displays:

04BA:0100 42 45 52 54 41 ... 4E 44 TOM SAWYER

If you type the following command:

D

DEBUG displays 128 bytes. Each line of the display begins with an
address, incremented by 16 from the address on the previous line.
Each subsequent D (without parameters) displays the bytes imme­
diately following those last displayed.

If you type the command:

DCS: 100 L 20

then the display is formatted as described above, but 20H bytes are
displayed.

If you then type the command:

DCS: 100 115

the display is formatted as described above, but all the bytes in the
range from 100H to 115H in the CS segment display.

D-10 MS-DOS 3.1 Reference

Enter (E)

E address[list]

Enters byte values into memory at the specified address.

If you type the optional list of values, DEBUG automatically replaces
the byte values. If an error occurs, no byte values are changed.

If you type the address without the list, DEBUG displays the address
and its contents, then repeats the address on the next line and waits for
your input. At this point the Enter command waits for you to do one
of the following:

1. Replace a byte value with another value by typing the value after
the current value. If the value you type is not a legal hexadecimal
value, or if you enter more than two digits, DEBUG does not echo
the illegal or extra character.

2. Press the Spacebar to advance to the next byte. To change the value,
enter the new value after the current value. If you space beyond an
8-byte boundary, DEBUG starts a new display line with the address
displayed at the beginning.

3. Type a hyphen (-) to return to the preceding byte. If you decide to
change a byte behind the current position, type the hyphen to return
the current position to the previous byte. When you type the
hyphen, a new line is started with the address and its byte value
displayed.

4. Press the Enter key to terminate the Enter command. You can press
the Enter key at any byte position.

D

DEBUG D-l 1

Assume you enter the following command:

ECS:100

DEBUG displays

04BA:0100 EB._

To change this value to 41, type 41 as shown:

04BA:0100 EB.41-

To step through the subsequent bytes, press the Spacebar to see

04BA:0100 EB.41 10. 00. BC._

To change BC to 42, type

04BA.-0100 EB.41 10. 00. BC.42-

Now, to change 10 to 6F, type the hyphen as many times as needed to
return to byte 0101 (value 10). Then replace 10 with 6F:

04BA:0100 EB.41 10. 00. BC.42-
04BA:0102 00.-,
04BA:0101 10.6F_

Press Enter to end the Enter command and return to the DEBUG
command level.

D-12 MS-DOS 3.1 Reference

Fill (F)

F range list

Fills the addresses in the range with values in the list.

If the range contains more bytes than the number of values in the list,
the list is used repeatedly until all bytes in the range are filled. If the list
contains more values than the number of bytes in the range, the extra
values in the list are ignored. If any of the memory in the range is not
valid (bad or nonexistent), the error occurs in all succeeding locations.

Assume you type the following command:

F04BA:100 L 100 42 45 52 54 41 D

DEBUG fills memory locations (MBA: 100 through O4BA:1FF with the
bytes specified. The five values are repeated until all 100H bytes are
filled.

Go (G)

G[= address! address...]]

Executes the program currently in memory.

If you type only the Go command, the program runs as it would
outside DEBUG.

If you set — address, execution begins at the address specified. The
equals sign (=) is required, so that DEBUG can distinguish the start
— address from the breakpoint addresses.

DEBUG D-13

When the other optional addresses are set, execution stops at the first
address encountered, regardless of that address’s position in the list of
addresses to halt execution or program branching. When program
execution reaches a breakpoint, the registers, flags, and decoded in­
struction display for the last instruction executed. The result is the
same as if you had entered the Register command for the breakpoint
address.

You can set up to ten breakpoints. Breakpoints must be set, however,
only at addresses containing the first byte of an 8086-88 opcode. If you
set more than ten breakpoints, DEBUG returns the BP error message.

The user stack pointer must be valid and have 6 bytes available for this
command. The Go command uses an IRET instruction to cause a
jump to the program under test. The user stack pointer is set, and the
user flags, Code Segment register, and Instruction Pointer are pushed
on the user stack. Thus, if the user stack is not valid or is too small,
MS-DOS can crash. DEBUG places an interrupt code (OCCH) at the
specified breakpoint addresses).

When DEBUG encounters an instruction containing the breakpoint
code, all breakpoint addresses are restored to their original instruc­
tions. If execution does not halt at one of the breakpoints, the interrupt
codes are not replaced with the original instructions.

Assume you type the following command:

GCS:7550

The program currently in memory executes up to the address 7550 in
the CS segment. DEBUG then displays registers and flags, and the Go
command terminates.

After DEBUG encounters a breakpoint, you can type the Go
command again and the program executes just as if you had typed the
filename at the MS-DOS command level. The only difference is that
program execution begins at the instruction after the breakpoint rather
than at the usual start address.

D-14 MS-DOS 3.1 Reference

Hex (H)

H value value

Performs hexadecimal arithmetic on the two parameters specified.

DEBUG adds the two parameters and subtracts the second parameter
from the first. The results of the arithmetic display on a single line: first
the sum, then the difference.

If you type the command:

H19F 10A

DEBUG performs the calculations and then displays the results:

02A9 0095

Input (I)

I value

Inputs and displays one byte from the port specified by value.

This command allows a 16-bit port address.

Assume you type the following command:

I2F8

Assume also that the byte at the port is 42H. DEBUG inputs the byte
and displays the value 42.

DEBUG D-15

Load (L)

(-[address [drive record record]]

Loads a file into memory.

Set BX:CX to the number of bytes read. The file loaded must already
be named. Name the file either when you start DEBUG or with the N
command. Both the DEBUG invocation and the N command format
a filename properly in the normal format of a file control block at
CS:5C.

D
If you type the L command without any parameters, DEBUG loads
the file into memory beginning at address CS:100 and sets BX:CX to
the number of bytes loaded. If you type the L command with an
address parameter, loading begins at the memory address specified.

If you type L with all the parameters, DEBUG loads absolute disk
sectors instead of a file. The records are taken from the drive specified.
The drive designation is numeric—0 — A:, 1 — B:, 2 — C:. DEBUG be­
gins loading with the first record specified, and continues until the
number of sectors specified in the second record are loaded.

Assume you type the following commands:

A > DEBUG
-NFILE.COM

To load FILE.COM, type L. DEBUG loads the file and displays the
DEBUG prompt. To load portions of a file or certain records from a
disk, type

L04BA:100 2 OF 6D

DEBUG then begins with logical record number 15 and loads 109 (6D
hex) records into memory beginning at address 04BA:0100. When the
records are loaded, DEBUG returns the hyphen prompt.

0-16 MS-DOS 3.1 Reference

NFILE.COM
FILE.COM

If the file has an .EXE extension, it is relocated to the load address
specified in the header of the .EXE file: the address parameter is always
ignored for .EXE files. The header itself is stripped off the .EXE file
before it is loaded into memory. Thus, the size of an .EXE file on disk
differs from its size in memory.

If the named file is a .HEX file, typing the L command with no
parameters tells DEBUG to load the file beginning at the address
specified in the .HEX file. If the L command includes the option
address, DEBUG determines the start address by adding the address
specified in the L command to the address found in the .HEX file.

Move (M)

M range address

Moves the block of memory specified by range to the location
beginning at the address specified.

DEBUG always performs overlapping moves. Overlapping moves are
where part of the block overlaps some of the current addresses without
loss of data. Addresses that could be overwritten are moved first. When
you want to move from higher addresses to lower addresses, this
command moves the data beginning at the block’s lowest address and
then works toward the highest. When you want to move from lower
addresses to higher addresses, DEBUG moves the data beginning at the
block’s highest address and works toward the lowest.

The M command actually copies data rather than moves it. If you do
not plan to write new data to the addresses in the block you are
moving, the existing data remains intact. Consequently, the sequence
of the move is important.

DEBUG D-17

Assume that you type

MCS:100 110 68:500

DEBUG first moves data from address CS:110 to address CS:510, then
CS:10F to CS:50F, and so on until CS:100 is moved to CS:500. You
can review the results of the move by typing the D command, with the
same address you typed for the M command.

Name (N)

N filename [filename]

Sets filenames.

The Name command performs two functions:

1. Name assigns a filename for a later Load or Write command. Thus,
if you start DEBUG without naming a file to debug, you must type
the N filename command before a file can be loaded.

2. Name assigns filename parameters to the file you are debugging. In
this case, Name accepts a list of parameters that are used by the file
being debugged.

These two functions overlap. Consider the following set of DEBUG
commands:

-NFILE1.EXE
-L
-G

D-18 MS-DOS 3.1 Reference

These commands result in four steps:

1. (N)ame assigns the filename FILE1.EXE to the filename used in any
later Load or Write commands.

2. (N)ame also assigns the filename FILE1.EXE to the first filename
parameter used by any program that is later debugged.

3. (L)oad loads FILE1.EXE into memory.

4. (G)o executes FILE1.EXE with FILE1.EXE as the single filename
parameter, that is, FILE1.EXE is executed as if FILE1.EXE had
been typed at the command level.

A more useful chain of commands might be:

-NFILE1.EXE
-L
-NFILE2.DAT FILE3.DAT
-G

Here, Name sets FILE1.EXE as the filename for the subsequent Load
command. The Load command loads FILE1.EXE into memory, and
then the Name command is used again, this time to specify the
parameters used by FILE1.EXE. Finally, when the Go command is
executed, FILE1.EXE executes as if you had typed FILE1 FILE2.DAT
FILE3.DAT at the MS-DOS command level.

If DEBUG executes a Write command, then FILE1.EXE—the file
being debugged—is saved with the name FILE2.DAT. To avoid these
results, always execute a Name command before either a Load or a
Write command.

The Name command can affect four regions of memory:

CS:5C FOB for file 1

CS:6C FOB for file 2

OS: 80 Count of characters

CS:81 All characters typed

DEBUG D-19

DEBUG sets up a File Control Block (FCB) for the first filename
parameter you gave at CS:5C. If you type a second filename
parameter, you set up an FCB beginning at CS:6C. The number of
characters you type, exclusive of the first character, “N”, is given at
location C8:80. The actual stream of characters given by the command
(again, exclusive of the letter “N”) begins at CS:81.

This stream of characters might contain switches and delimiters that
would be legal in any command typed at the MS-DOS command level.

A typical use of the Name command is

D

DEBUG PROG.COM
-NPARAM1 PARAM2/C
-G

In this example, the Go command executes the file in memory as if
you had typed the following command line:

PROG PARAM1 PARAM2/C

Output (O)

O value byte

Send the byte specified to the output port specified by value.

This command allows a 16-bit port address.

If you type O2F8 4F, DEBUG outputs the byte value 4F to output
port 2F8.

D-20 MS-DOS 3.1 Reference

PROG.COM

Quit (Q)

Q

Terminates the DEBUG utility.

The Q command takes no parameters and exits DEBUG without
saving the file you are currently working on. You are returned to the
MS-DOS command level.

To end the debugging session, type

Q

DEBUG terminates and control returns to the MS-DOS command
level.

Register (R)

R[register-name]

Displays the contents of one or more CPU registers.

If you do not type register-name, the R command dumps the register
save area and displays the contents of all registers and flags.

If you type a register name, the 16-bit value of that register displays in
hexadecimal and a colon appears as a prompt. You can then either
type a value to change the register, or, if you do not want any changes,
press Enter.

DEBUG D-21

The only valid register names are

AX DI PC
BP DX SI
BX ES SP
CS F SS
CX IP sx

(IP and PC both refer to the Instruction Pointer.)

Any other entry for register-name results in a BR error message. See
the end of this appendix for a list of DEBUG error messages.

If you enter F as the register-name, DEBUG displays each flag with a
two-character alphabetic code. To alter any flag, type the opposite
two-letter code. The flags are either set or cleared.

Table D-4 lists the flags with their codes for SET and CLEAR.

Table D-4: Register Flag Codes

FLAG NAME SET CODE

Overflow
Direction
Interrupt
Sign
Zero
Auxiliary Carry
Parity
Carry

OV
DN (Decrement)
El (Enabled)
NG (Negative)
ZR
AC
PE (Even)

CLEAR CODE

NV
UP (Increment)
DI (Disabled)
PL (Plus)
NZ
NA
PO (Odd)
NC

Whenever you type the RF command, the flags display in a row at the
beginning of a line, in the order shown in Table D-4. At the end of the
list of flags, DEBUG displays a hyphen (-). You can enter new flag
values as alphabetic pairs, in any order. You do not have to leave
spaces between the flag entries.

D-22 MS-DOS 3.1 Reference

To exit the R command, press the Enter key. Any flags for which you
did not enter new values remain unchanged.

If you enter more than one value for a flag, DEBUG returns a DE
error message. If you enter a flag code other than those shown in Table
D-4, DEBUG returns a BE error message. In both cases, flags up to the
error in the list are changed; those flags at and after the error are not.

At startup, the segment registers are set to the bottom of free memory,
the Instruction Pointer is set to 01 OOH, all flags are cleared, and the
remaining registers are set to zero.

If you type

R

DEBUG displays all registers, flags, and the decoded instruction for the
current location. If the location is CS:11A, the display looks similar to
this:

AX=0E00 BX=00FF CX-0007 DX=01FF SP=039D BP-0000
SI-0050 DI-0000 DS-04BA ES=04BA LS-04BA 0S-04BA
IP-OIIA NV UP DI NG NZ AC PE NC
04BA:011A CD21 INT 21

If you type

RF

DEBUG displays the flags:

NV UP DI NG NZ AC PE NC -

Now type any valid flag designation, in any order, with or without
spaces. For example:

NV UP DI NG NZ AC PE NC - PLEICY

DEBUG D-23

DEBUG responds only with the DEBUG prompt. To see the changes,
type either the R or RF command:

RF

DEBUG displays

NV UP El PL NZ AC PE CY -

Press Enter to leave the flags this way, or to specify different flag
values.

Search (S)

S range list

Searches the range specified for the list of bytes specified.

The list can contain one or more bytes, each separated by a space or
comma. If the list contains more than one byte, only the first address
of the byte string is returned. If the list contains only one byte, all
addresses of the byte in the range are displayed.

If you type

SCS:100 110 41

DEBUG responds

(MBA:0104
04BA:010D
-type:

D-24 MS-DOS 3.1 Reference

Trace (T)

T[= address][value]

Executes one instruction and displays the contents of the decoded in­
struction and all registers and flags.

If you type the optional = address, DEBUG traces at the address
specified. The optional value tells DEBUG to execute and trace the
number of steps specified by value.

The T command uses the hardware trace mode of the 8086 or 8088
microprocessor. Consequently, you can also trace instructions stored in
ROM, read-only memory.

If you type

T

DEBUG returns a display of the registers, flags, and decoded in­
struction for that one instruction. Assume that your current position is
O4BA:O1 1A; DEBUG might return the display:

AX-0E00 BX-00FF CX-0007
81-0050 01-0000 DS-04BA
IP-011A NV UP DI NG NZ

DX-01FF SP-039D BP-0000
ES-04BA SS-04BA CS-04BA
AC PE NC

04BA:011A CD21 INT 21

If you type

T = 011A 10

DEBUG executes sixteen (10 hex) instructions beginning at Oil A in
the current segment, and then displays all registers and flags for each
instruction as it is executed. The display scrolls until the last
instruction is executed. Then the display stops, and you can see the
register and flag values for the last few instructions performed.
Remember that Ctrl-8 suspends the display at any time, so that you
can study the registers and flags for any instruction.

DEBUG D-25

Unassemble (U)

Ufrange]

Disassembles bytes and displays the source statements that correspond
to them, with addresses and byte values.

The display of disassembled code looks like a listing for an assembled
file. If you type the U command without parameters, DEBUG
disassembles 20 hexadecimal bytes at the first address after that
displayed by the previous Unassemble command. If you type the U
command with the range parameter, then DEBUG disassembles all
bytes in the range. If the range is given as an address only, then 20H
bytes are disassembled instead of 80H that the Dump command would
default to.

If you type

U04BA:100 L10

DEBUG disassembles 16 bytes beginning at address 04BA:0100:

04BA:0100 206472 AND [SI+72],AH
04BA:0103 69 DB 69
04BA:0104 7665 JBE 016B
04BA:0106 207370 AND [BP+DI+70],DH
04BA:0109 65 DB 65
04BA:010A 63 DB 63
04BA:010B 69 DB 69
04BA:010C 66 DB 66
04BA:010D 69 DB 69
04BA:010E 63 DB 63
04BA:010F 61 DB 61

If you enter

U04BA:0100 0108

D-26 MS-DOS 3.1 Reference

The display shows

04BA:0100 206472 AND [SI+72],AH
04BA: 0103 69 DB 69
04BA:0104 7665 JBE 016B
04BA:0106 207370 AND [BP+DI+70],DH

If you change bytes in some addresses, the disassembler alters the in­
struction statements. You can type the U command for the changed
locations, the new instructions viewed, and the disassembled code used
to edit the source file.

Write (W) D

W[address[drive record record]]

Writes the file being debugged to a disk file.

If you type W with no parameters, BX:CX must already be set to the
number of bytes to be written; the file is written beginning from
CS:100. If you type the W command with just an address, DEBUG
writes the file beginning at that address.

If you use a G or T command, BX:CX must be reset before you use
the Write command without parameters. Note that if DEBUG loads
and modifies a file, the name, length, and starting address are all set
correctly to save the modified file, as long as the length has not
changed.

The file must be named either with the DEBUG invocation command
or with the N command. Both the DEBUG invocation and the N
command format a filename properly in the normal format of a file
control block at CS:5C.

DEBUG D-27

If you use the W command with parameters, DEBUG writes the file
beginning from the memory address specified. The file is written to the
specified drive (the drive designation is numeric here—0 = A, 1 =B,
2 = C, and so on) beginning at the logical record number specified by
the first record. DEBUG continues until the number of sectors
specified in the second record are written.

Note: Writing to absolute sectors is extremely dangerous because the
process bypasses the file handler.

If you type

W

D
DEBUG writes the file to disk and then displays the DEBUG prompt.

If you type

W
CS:100 1 37 2B

DEBUG writes out the contents of memory, beginning with the
address CS:100, to the disk in drive B:. The data written out starts at
logical record number 37H and consists of 2BH records. When the
write is finished, DEBUG displays

WCS:100 1 37 2B

D-28 MS-DOS 3.1 Reference

D.3 DEBUG Error Messages

You might see any of the following error messages during a DEBUG
session. Each error terminates DEBUG command under which it
occurs, but it does not terminate DEBUG itself.

ERROR CODE DEFINITION

BE Bad flag: You attempted to alter a flag, but the
characters typed were not one of the acceptable
pairs of flag values. See the Register command
for the list of acceptable flag entries.

BP Too many breakpoints: You specified more than
ten breakpoints as parameters to the Go com­
mand. Retype the Go command with ten or
fewer breakpoints.

BR Bad register: You typed the R command with an
invalid register name. See the Register command
for the list of valid register names.

DE Double flag: You typed two values for one flag.
You can specify a flag value only once per RF
command.

DEBUG D-29

