SUPPLEMENTAL TECHNICAL REFERENCE MATERIAL

APPLICATION NOTE: 202

Revision @

COPYRIGHT

TRADEMARKS

NOTICE

oy 19E2 by VIOTUR.

All rights reserved. This publication contains
proprietary intormation which 1s protected by this
copyright. No part of this publication may be
reproduced, transcribed, stored in a retrieval
system, translated into any language or computer
language, or transmitted in any form whatsoever
without the prior written consent of the
publisher.

For information contact:

VICTOR Publications

383 El1 Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

VICTOR is a registered trademark of Victor
Technologies, Inc.

VICTOR makes no representations or warranties of
any kind whatsoever with respect to the contents
hereof and specifically disclaims any implied
warranties of merchantability or fitness for any
particular purpose. VICTOR shall not be liable for
errors contained herein or for incidental or
consequential damages in connection with the
furnishing, performance, or use of this
publication or its contents.

VICTOR reserves the right to revise this
publication from time to time and to make changes
in the content hereof without obligation to notify
any person of such revision or changes.

First VICTOR printing March 1983.

ooy Dt i R e A SIS P B

CONTENTS

Victor 9008 System Overview Page Rev
1.1 COMPULEL ti ittt i seeeassaonsnnnssos 1-1 ¢
1.2 Memory ..ieeiieeinennnnnns et et 1-1)
1.3 Disk System ...t iiieeeeanononsas ceeee 1-2)
1.4 Display SYSEEmM .ttt eiennnenanncasaeens 1-3)
1.5 Keyboard ...eiiiiieiineioerceeeaancnsns 1-4 ?
1.5 Memory Map «.oeeeeeeeeans st e e 1-5)
1.6.1 MS-DOSiveene.n. e e e et e, 1-6 2
1.6.2 CP/M-86 et e e et - 1-7]

Display Driver Specifications
2.1 Overview ...ieiieeeeacecescanns
2.2 Screen Control Sequences ceeeeeenn
2.3 Multi-Character Escape Sequences
2.3.1 Cursor Functionscceeeeacccns
2.3.2 Editing Functions ...ieececeeeacces
2.3.3 Configuration Functionsc¢.....
.3.4 Operation Mode Functions
.5 Special FunctionsS ..eieeseeeeecans
ect Cursor Addressing - Examples

|
b= = 00 ~d DV W W N

[\

1 Microsoft MS-BASIC ..iceeeocceaccns
2 Microsoft MACRO=86 ..c.ceeeoeoccnsn
3 Microsoft MS=Pascalcceeeeeces
nsmit Page - Examplesc.ccccuo..n
.1 Microsoft MS-BASIC ..ceeeeeccecs - 2-13
.2 Microsoft MACRO=8% ..iuicrieeosconcesa 2-14
.3 Microsoft MS-Pascalcvieeecesese . 2-15

|

NN NN
| |
—
H

Lo SIK

|
—
w

[\
[SESESEC RS RS SIS IS G R RS RS RS R

DN ENDNDNDDO NN
.

3
r
4
4
4
a
5
5
.5

nput/Output Port Specifications

1 Device Connectioncevieeeeeceens

2 Parallel Printer Connection
3 Parallel Cable Requirements
4
5
6

Serial Printer Connectioneeeeeon.
Serial Cable Requirements
Operating System Port Utilities
3.6.1 SETIO - List Device Selection ...
3.6.2 STAT - List Device Selection
3.6.3 PORTSET - Baud Rate Selection ...
3.6.4 PORTCONF - Baud Rate Selection ..
7 Serial Input/Output Ports
.8 Baud Rate / Transmission - Examples ...
3.8.1 Microsoft MS-BASICcevueeeens
3.8.2 Microsoft MACRO=86ceeeeeeen

I
3
3
3
3
3
3

WWWwWwWwwWwWwwwwwwww
|
= WO~ UTULWUL LB WN N

-

w W
[I T

RS I K RS S A

CONTENTS
continued

Appendices Page Rev

Appendix A: ASCII Codes

A.l1 ASCII Codes used in the Victor 9009 A-1 2

A.2 ASCII/Hex/Decimal Chart Ceee e A-2 0
Appendix B: Keyboard

B.l Victor 9000 Keyboard Layout B-1]
Appendix C: Input/Output Ports

C.l Parallel (Centronics) Porto c-1 ?

C.2 Serial (RS232C) Port ...eeeecescans c-2)

C.3 TIEEE-488 Porteieceeeesns e e oo s Cc-3 @

C.4 Control Port ceee s ecs s ene e c-4 a
Appendix D: Assembler Examples

D.1 MACRO-86 Assembler Shell D-1 ?

D.2 ASM-86 Assembler Shellcc..0 D-2 @
Appendix E: File Header Structure

E.l EXE File Header Structure E-1 2
Appendix F: Victor 9600 Specifications

F.l1 Technical Specificationsc.00. F-1)

F.2 Physical Specifications F-2 2
Appendix G: Glossary

G.l Glossary of Terms ...ceeececoccsens -1 Y]

CHAPTER 1

Victor 9000 System Overview

Computer

The Victor 9000 computer is based upon the Intel 8088 1l6-bit
microprocessor. This processor chip is directly related to
the Intel 8086 16-bit microprocessor, but with two subtle
differences:

8488 8886
8-bit data bus 16-bit data bus
4 instruction look-ahead 6 instruqtion look—-ahead

The major difference, the 8-bit data bus, has some effect on
the relative abilities of the two chips; the main difference
is that while the 8086 can load an entire 16-bit word of
data directly, the 8088 has to load two 8-bit bytes to
achieve the same result - the outcome of which being that
the 8088 processor is a little slower than the 8885. The
loss of speed, however, is balanced by the fact that the
cost of the main circuit board and add-on boards are lower
than for the wider 8086 requirement. This means that the
end-user will have the best cost/performance ratio for a 16-
bit computer.

1.2 Memory

The Victor 9080 has a maximum memory capacity of 8956
kilobytes of Random Access Memory or "RAM" (a measure of a
computer's internal storage capacity; a "kilobyte" is 1,024
bytes). A byte is able to store one character of data - thus
the Victor 90906, with full 896k memory capacity is able to
hold, internally, nearly 1 million characters - compare this
figure with the older 280 or 6582 computers that have a
maximum memory capacity of less than 70,000 characters or
64k bytes of RAM.

-

-1 Rev & - 3/23/!

Q

Supplemental Tochnloa . otoranse M

1.3 Disk System

The Victor 9000 has several integral disk configurations
available; these are:

o} Twin single-sided 600k bytes per drive 5 1/4-inch
minifloppies, giving a total capacity of l.2Mbytes
(1,200kbytes) available on-line.

o Twin double-sided 1.2M bytes per drive 5 1/4-inch
minifloppies, giving a total capacity of 2.4Mbytes
(2,400kbytes) available on-line.

o Single 16M byte hard disk (Winchester) plus a
single double-sided 1.2M byte 5 1l/4-inch mini-
floppy, giving a total capacity of 1ll.2Mbytes
(11,200kbytes) available on-line.

Future disk systems will include an external 18Mbyte hard
disk (Winchester) that will allow expansion of any of the
above systems by a further 10,0080k bytes.

Although the Victor 9600 uses 5 1/4-inch minifloppies of a
similar type to those used in other computers, the floppy
disks themselves are not readable on other machines, nor can
the Victor 9608 read a disk from another manufacturers
machine. The Victor 90008 uses a unique recording method to
allow the data to be packed as densely as 6808kbytes on a
single-sided single-density minifloppy; this recording
method involves the regulation of the speed at which the
floppy rotates, explaining the fact that the noise from the
drive sometimes changes frequency.

1-2 Rev & - 3/23/8

1.4 Display System

The display unit swivels and tilts to permit optimum
adjustment of the viewing angle, and the unit lincorporates a
12-inch antiglare screen to prevent eye strain. The display,
in normal mode, is 25 lines, each line having 80 columns.
Characters are formed, in normal mode, in a 10-x-16 font
cell, providing a highly-readable display. The screen may be
used in high-resolution mode, providing a bit-mapped screen
with 808-x-400 dot matrix resolution. The high-resolution
mode is available only under software control, there is no
means of simply "switching" in to high-resolution. Victor
Technologies has provided software to allow full use of the
screen.in high-resolution mode in the Graphics Tool Kit.

Character sets are "soft" - that is they may be substituted
for alternative character sets of the users choice, or
creation. Only one 256-character character set may be
displayed on the screen at one time - multiple character
sets cannot, currently, be displayed simultaneously - but
this feature may well become available in the future.
Character set manipulation software is available in both the
Graphics and Programmers Tool Kits.

1-3 Rev 9 - 2/23/83

[P TR TRES IS BN SIS S 5 U SRS EUUNAN D SR S S

Keybhoard

Several different types of keyboards are offered. Each
keyboard is a separate, low-profile module with an optional
palm rest for ease of use. Every key is programmable,
permitting the offering of a National keyboard in each
country in which it is marketed. As a result, the keyboard
can be customized to satisfy the requirements of foreign
languages and so that striking a key enters a character or
predetermined set of commands.

Keyboards are as soft as the character sets - this allows a
keyboard to be generated to match a newly created or special
character set. Each key on the keyboard has three potential
states; the unshifted, shifted and alternate. The unshifted
mode is accessed when the shift key is not depressed along
with the desired key; the shifted mode is accessed when the
shift key is depressed along with the desired key; and the
alternate mode is accessed when the ALT key is depressed
along with the desired key. Keyboard manipulation software
is available in both the Graphics and Programmers Tool Kits.

1-4 Rev @ - 3/23/83

Sapulomental Tecnhnioal selerenoe Mot b

Memory Map

The Victor 9000 is currently supplied with two major disk
operating systems; CP/M-86 from Digital Research, and MS-DOS
from Microsoft. Athough these two operating systems appear
superficially similar, they are quite different in their
operation, program interfacing techniques, and their memory
structure. The following diagrams are the memory maps for
CP/M-86 and MS-DOS; you will notice that some aspects of
the machine never change, such as the screen RAM and
interrupt vector locations, these areas are hardware
defined, and as such never alter. The memory maps for MS-DOS
and CP/M-86 are not fixed in the Victor 9900, thus some of
the elements of the map will not be specific; this is not to
be deliberately vague, but improvements to the performance
aspects of the software do take place forcing the diagrams
to be unspecific to some degree.

1-5 Rev & - 3/23/

1.6.1 Memory Map —-- MS-DOS Operating System
FFFFF
Boot Proms
FC004
Reserved for Future Expansion
F400¢
Screen High-Speed Static RAM
Fooog
Memory—-Mapped I/0 Space
EQQ00Q
etc. BIOS
256k=3FFF@ Operating System —--==—=—==——-
128k=1FFF@ MS-DOS
Command - Resident Portion
Command - Transient Portion
Transient Program Area (TPA)
Alternate Character Set 4k bytes
128 Character Set 4k bytes
Logo 2k bytes
00489
"Stub" - Jump Vectors 128 bytes
004900
Interrupt Vector Table lk bytes
00009

Rev @ - 3/23/83

Supplemental Technicai Retfer=snce Material

1.6.2 Memory Map -— CP/M-86 Operating System
FFFFF
Boot Proms
FCoa49d
Reserved for Future Expansion
F4000
Screen High-Speed Static RAM
F9000
Memory-Mapped I/O Space
EQ0O0
BIOS
Operating System ——==—===———=
BDOS
Transient Program Area (TPA)
Alternate Character Set 4k bytes
128 Character Set 4k bytes
Logo 2k bytes
#0484
"Stub" - Jump Vectors 128 bytes
00400
Interrupt Vector Table lk bytes
p0000

1-7 Rev @ - 3/23/83

Supplemental Technical Reference Material

CHAPTER 2

Display Driver Specifications

Overview

The display system in the Victor 9060 is, like so much of
the machine, soft. The operating system BIOS contains the
7enith H-19 video terminal emulator, which is an enhanced
control set of the DEC VT52 crt. The BIOS takes all ASCII
characters received and either displays them or uses their
control characteristics. The control characters @0hex
(d@decimal) thru lFhex (3ldecimal) and 7Fhex (127decimal)
are not displayed under normal circumstances. The non-
display characters previously discussed, plus those
characters having the high-bit set, being 8fhex (l128decimal)
through FFhex (255decimal), may be displayed on the screen
under program control, but extensive use of these characters
is easier with the Victor Technologies character graphics
utilities.

Most of the control characters act by themselves; for
example, the TAB key (Control I, #9%hex, 09decimal) will
cause the cursor to move to the right to the next tab
position. For more complex cursor/screen control the
multiple character escape sequences should be used. The
control characters, and the escape sequences are fully
described below.

2-1 Rev @ - 3/23/83

Supplemental Technical Reterence Material

2.2 Screen Control Sequences
Single Control Characters

Bell (Control G, B7hex, @7decimal - ASCII BEL)
This ASCII character is not truly a displaying
character, but causes the loudspeaker to make a beep.

Backspace (Control H, #8hex, @#8decimal - ASCII BS)
Causes the cursor to be positioned one column to the
left of its current position. If at column 1, it causes
the cursor to be placed at column 89 of the previous
line; if the cursor is at column 1, line 1, then the
cursor moves to column 80 of line 1.

Horizontal Tab (Control I, @9%hex, ©69decimal - ASCII HT)
Positions the cursor at the next tab stop to the right.
Tab stops are fixed, and are at columns 9, 17, 25, 33,
41, 49, 57, 65, and 72 through 808. If the cursor is at
column 88, it remains there.

Line Feed (Control J, @Ahex, l@decimal - ASCII LF)
Positions the cursor down one line. If at line 24, then
the display scrolls up one line. This key may be
treated as a carriage return -- see ESC x9.

Carriage Return (Control M, @Dhex, l3decimal - ASCII CR)
Positions the cursor at column 1 of the current line.
This key may be treated as a line feed -- see ESC x8.

Shift Out (Control N, @Ehex, l4decimal - ASCII SO)
Shift out of the standard system character set, and
shift into the alternative system character set
(Character set 1, Gl). This gives the ability to access
and display those characters having the high-bit set -

being those characters from 80fhex (l28decimal) through
FFhex (255decimal).

Shift In (Control O, @Fhex, l1l5decimal - ASCII SI)
Shift into the standard system character set (Character
set @, GO). This gives the ability to access and
display the standard ASCII character set - being those

characters from @6hex (008decimal) through 7Fhex
(127decimal) .

2=-2 Rev @ - 3/23/83

Supplemental

Technical

Reference Materlai

2.3 Multi—-Character Escape Sequences

2.3.1 Cursor Functions

Escape
Sequence/Function ASCII Code
ESC A 1B, 4lhex
27, 65dec
ESC B 1B, 42hex
27, 66dec
ESC C 1B, 43hex
27, 67dec
ESC D 1B, 44hex
27, 68dec
ESC H 1B, 48hex
27, 72dec
ESC I 1B, 49hex
27, 73dec
ESC ¥ 1 ¢ 1B, 59hex
27, 89dec
ESC j 1B, 6Ahex
27, l@6dec
ESC k 1B, 6Bhex
27, l@7dec
ESC n 1B, 6Ehex
27, 1llddec

Performed Function

Move cursor up one 1line
without changing column.

Move cursor down one line
without changing column.

Move cursor forward one
character position.

Move cursor backward one
character position.

Move cursor to the home
position. Cursor moves to line
1, column 1.

Reverse index. Move cursor up
to previous line at current
column position.

Moves the cursor via direct
(absolute) addressing to the
line and column 1location
described by 'l' and 'c'. The
line ('1') and column ('c')
coordinates are binary values
offset from 28hex (32decimal).
(For further information on
the use of direct addressing
see section 2.4).

Store the current cursor
position. The cursor location
is saved for later restoration
(see ESC k).

Returns <curscor to the
previously saved location (see
ESC j).

Return the current cursor
position., The current cursor
location is returned as line
and column, offset from 20hex
(32decimal), in the next
character input request.

Rev @ - 3/23/83

Supplemental Technical Reference Material

2.3.2 Editing Functions

Escape
Sequence/Function ASCII Code Performed Function
ESC @ 1B, 40hex Enter the character insert
27, 64dec mode. Characters may be added
at the current cursor
position, as each new
character 1is added, the
character at the end of the
line is lost.
ESC E 1B, 45Shex Erase the entire screen.
27, 69dec
ESC J 1B, 4Ahex . Erase from the current cursor
27, 74dec position to the to the end of
the screen.
ESC K 1B, 4Bhex Erase the screen from the
27, 75dec current cursor position to the
end of the line,
ESC L 1B, 4Chex Insert a blank line on the
27, 76dec current cursor line. The
current 1line, and all
following lines are moved down
one, and the cursor is placed
at the beginning of the blank
line.
ESC M 1B, 4Dhex Delete the line containing the
27, 77dec cursor, place the cursor at
the start of the line, and
move all following lines up
one - a blank line is inserted
at line 24.
ESC N 1B, 4Ehex Delete the character at the
27, 78dec cursor position, and move all
other characters on the line
after the cursor to the left
one character position.
ESC O 1B, 4Fhex Exit from the character insert
27, 79dec mode (see ESC Q).
ESC b 1B, 62hex Erase the screen from the
27, 98dec start of the screen up to, and

including, the current cursor
position.

2-4 Rev @ - 3/23/83

Supplemental Technical Reterence Material

2.3.2 Editing Functions -- continued
Escape
Sequence/Function ASCII Code Performed Function
ESC 1 1B, 6Chex Erase entire current cursor
27, 1l@8dec line.
ESC o 1B, 6Fhex Erase the beginning of the
27, llldec line up to, and including, the

current cursor position.

Rev @ - 3/23/83

Supplemental Technical Reference Material

2.3.3 Configuration Functions

Escape
Sequence/Function ASCII Code Performed Function
ESC x Ps 1B, 78hex Sets mode(s) as follows:
27, l120dec
Ps Mode
3lhex, 49dec 1 Enable 25th line
33hex, 5ldec 3 Hold screen mode on
34hex, 52dec 4 Block cursor
35hex, 53dec 5 Cursor off
38hex, 56dec 8 Auto line feed on receipt
of a carriage return.
39hex, 57dec 9 Auto carriage return on
receipt of line feed
4lhex, 65dec A Increase audio volume
42hex, 66dec B Increase CRT brightness
43hex, 67dec C Increase CRT contrast
ESC y Ps 1B, 79hex Resets mode(s) as follows:
27, l28dec
Ps Mode
31lhex, 49dec 1 Disable 25th line
33hex, 5ldec 3 Hold screen mode off
34hex, 52dec 4 Underscore cursor
35hex, 53dec 5 Cursor off
38hex, 56dec 8 No auto line feed on rec-
eipt of a carriage return.
39hex, 57dec 9 No auto carriage return on
receipt of line feed 4
4lhex, 65dec A Decrease audio volume
42hex, 66dec B Decrease CRT brightness
43hex, 67dec C Decrease CRT contrast
ESC [1B, 5Bhex Set hold mode
27, 9ldec
ESC \ 1B, S5Chex Clear hold mode
27, 92dec
ESC ~ 1B, S5Ehex Toggle hold mode on/off.
27, 94dec

2-6 Rev @ - 3/23/83

N

Supplemental Techni

2.3.4 Operation Mode Functions

Escape
Sequence/Function ASCII Code
ESC (1B, 28hex
27, 4@dec
ESC) 1B, 29%hex
1B, 4ldec
ESC @ 1B, 3Bhex
27, 48dec
ESC 1 1B, 3lhex
27, 49dec
ESC p 1B, 70hex
27, ll2dec
ESC g 1B, 71lhex
27, 1ll3dec

cal

reference

Material

Performed Function

Enter high intensity mode., All
characters displayed after
this point will be displayed
in high-intensity.

Exit high intensity mode.
Enter underline mode. All
characters displayed after
this point will be underlined.
Exit underline mode.

Enter reverse video mode. All
characters displayed after
this point will be displayed

in reverse video.

Exit reverse video mode.

Rev © ~ 3/23/83

Supplemental Technical Reference Material

2.3.5 Special Functions

Escape
Sequence/Function ASCII Code
ESC # 1B, 23hex
27, 35dec
ESC $ 1B, 24hex
27, 36dec
ESC + 1B, 2Bhex
27, 43dec
ESC 2 1B, 32hex
27, S5@dec
ESC 3 1B, 33hex
27, 5ldec
ESC 8 1B, 38hex
27, 56dec
ESC 2 1B, S5Ahex
27, 9@dec
ESC] 1B, S5Dhex
27, 93dec

Performed Function

Return the current contents of
the page. The entire contents
of the screen are made
available at the next
character input request(s).
(For further information on
the use of this function, see
section 2.5).

Return the value of the
character at the current
cursor position. The character
is returned in the next
character input request.

Clear the foreground. Clear
all high-intensity displayed
characters.

Make cursor blink.
Stop cursor blink.

Set the text (literally) mode
for the next single character.
This allows the display of
characters from flhex (8ldec)
thru lFhex (3ldec) on the
screen. Thus ¢the BELL
character (@7hex, @07dec) will
not cause the bleep, but a
character will appear on the
screen.

Identify terminal type. The
VTS52 emulator will return
ESC\Z in the next character
input request.

Return the value of the 25th
line. The next series of
character input requests will
receive the current contents
of the 25th line.

Rev @ - 3/23/83

Supplemental Technical Reference Material

2.3.5 Special Functions -- continued
Escape
Sequence/Function ASCII Code Performed Function
ESC v 1B, 76hex Enable wrap-around at the end
27, 1ll8dec of each screen 1line. A

character placed after column
80 of a line will be placed on
the next line at column 1.

ESC w 1B, 77hex Disable wrap-around at the end
27, 1l19dec of each line.

ESC z 1B, 7Ahex Reset terminal emulator to the
27, 122dec power-on state. This clears

all user selected modes,
clears the Sscreen, and homes
the cursor.

ESC { 1B, 7Bhex Enable keyboard input. (see
27, 123dec ESC 1}).

ESC } 1B, 7Dhex Disable keyboard input. This

: 27, 125dec locks the keyboard. Any

character(s) typed are ignored
until an ESC { is issued.

ESC i Ps 1B, 69%hex Displays banner as follows:
27, 1l@5dec :
Ps Mode
3B8hex, 48dec B Display entire banner
3lhex, 49dec 1 Display company logo
32hex, 5@0dec 2 Display operating system
33hex, 5ldec 3 Display configuration

2-9 Rev @ - 3/23/83

2.4.1

Supplemental Technical Reference Material

Direct Cursor Addressing —-—- Examples of Use

The direct cursor addressing function is accessed by sending
the ESC Y 1 ¢ sequence to the screen (see section 2.3.1).
"}j" is the line number required, whose valid coordinates are
between 1 and 24. An offset of lFhex (3ldecimal) must be
added to the location required in order to correctly locate
the cursor. "c" is the column number required, whose valid
coordinates are between 1 and 80. An offset of 1lFhex
(31decimal) must be added to the location required in order
to correctly locate the cursor.

Note that the true offset requirement of 2@8hex (32decimal)
for line and column may only be used accurately when the
line number is viewed @ to 23, and the column number @ to
79.

The line/column number requested must be handled as a binary
digit, examples of this follow:

Microsoft MS-BASIC -- Direct Cursor Positioning

The following method uses offsets from line 1, column 1:

190
20
30
49
50
60
70

PRINT CHRS (27)+"E" :REM CLEAR THE SCREEN

DEF FNM$(LIN,COL)=CHR$(27)+"Y"+CHR$(31+LIN)+CHR$(31+COL)
PRINT "Enter line (1-24) and column (1-80), as LINE,COL “;
INPUT LIN, COL

PRINT FNM$(LIN,COL);

FOR I =1 TO 1000 +:REM PAUSE BEFORE OK MESSAGE DISPLAYED
NEXT I

The alternative method, using offsets from zero is shown below:

19
20
30
49
50
60
70

PRINT CHRS$ (27)+"E" :REM CLEAR THE SCREEN

DEF FNMS(LIN,COL)=CHR$(27)+"Y"+CHR$(32+LIN)+CHR$(32+COL)
PRINT "Enter line (#-23) and column (9-79), as LINE,COL ";
INPUT LIN, COL

PRINT FNMS (LIN,COL);

FOR I =1 TO 1900 :REM PAUSE BEFORE OK MESSAGE DISPLAYED
NEXT I

2=-190 Rev @0 - 3/23/83

Supplemental Technical

Reference Material

2.4.2 Microsoft MACRO-86 Assembler -— Direct Cursor Positioning
line_off equ 20h ;line position offset from @
col off equ 20h ;column position offset from @
esc equ 1lbh ;escape character

msdos equ 21h ;interrupt to MS-DOS

clear_screen
dir_cur_pos_lead

e “we

where BH =

clear_and_locate:

mov
mov
int

~e “e we

add

~s N we

mov
mov
int

now the

~e wo we

mov
mov
int

~e

mov
mov
int

~

ah,9%h

dx,offset clear_screen

msdos

bh,line_off
add bl,col_off

ah,9%h

esc,'ES!
esc,'Ys'

;clear screen request
;cursor positioning lead-in

the cursor position required is handed down in BX
line (2-23 binary),

BL = column (0-79 binary)

;string output up to $
;get the clear screen string
;and output it up to the $

the cursor position required is in BX

;normalize line for output
;normalize column for output

send the direct cursor positioning lead-in

;select screen output up to $

dx,offset dir_cur_pos_lead ;select the lead in ESC Y

msdos

;and output it up to $

contents of BX must be sent to the terminal emulator

dl,bh
ah,6h
msdos

dl,bl
ah,6h
msdos

|

11

;ready the line number
;direct console output of DL
;output the line coordinate

;ready the column number
;direct console output of DL
;send the column coordinate

the cursor is now at the location selected in BX

Rev @ - 3/23/83

2.4.3

Supplemental Technical Reference Material

Microsoft Pascal Compiler —-— Direct Cursor Positioning

program position (input,output);
{This method uses offsets from line @, column 0.}

const

var

beg

clear_screen = chr(27) * chr(69);

result : array(l..4] of char;
i, line, column : integer.
row, col : char;

in
result[l] := chr(27); {RESULT =
result{2] := chr(89); {RESULT =

write (clear_screen);

write (' Enter line (8-23) and column

readln (line, column);

writeln (clear_screen);

row := chr(32 + line);

col := chr(32 + column);

result(3] := row; {RESULT

result[4] := col; {RESULT

for i := 1 to 4 do
write (result[i]);

for i := 1 to 32000 do {PAUSE}

end.

ESC}
"Yn}

(8-79),

ROW}.
CcoL}

Rev 0

as LINE COLUMN:

{PRINT CURSOR TO SCREEN}

- 3/23/83

")

2.5

2.5.1

Supplemental Technical Reference Material
Transmit Page —— Examples of Use

The transmit page function is accessed by sending the ESC #
sequence to the screen (see section 2.3.5). The result of
this sequence is that all characters on the screen, as well
as the cursor positioning sequences required to re-create
the screen, are sent to the keyboard buffer. Reading the
keyboard via a normal keyboard input request will return the
entire screen of data to the program. The screen buffer
within the program should be at least 1920decimal bytes long
to accomodate the entire screen - the program will need to
perform 1920 single character inputs to empty the keyboard
buffer. Note that the character input requests must be done
rapidly to prevent the keyboard buffer overflowing and
causing loss of data - note, too, that on a keyboard buffer
overflow, the bell sounds.

The following sample programs demonstrate the use for this
function request:

Microsoft MS-BASIC -- Transmit Page

10 DIM A$(1928) :
2@ PRINT CHRS$ (27)+"#";

30 FOR I =1 TO 1929

40 AS$(I)=INKEYS

50 NEXT I

68 PRINT CHRS (27)+"E";

70 FOR I =1 TO 1920

80 PRINT AS(I);

99 NEXT I

2-13 Rev @ - 3/23/83

Supplemental Technical Reference Material

2.5.2 Microsoft MACRO-86 Assembler —— Transmit Page
coniof equ 6h ;direct console i/o function
conin equ Bffh ;console input request
printf equ 9h ;screen o/p up to $
msdos equ 21h ;interrupt operating system
buffer length equ 1929 ;entire screen count
read_screen db lbh,'#$" ;read entire screen
clear_screen db l1bh,'ES' ;clear screen/home cursor
buffer db

mov ax,Ds

mov ES,ax

mov di,offset buffer

mov si,di

mov dx,offset read _screen

mov ah,printf

int msdos

~o wo we

mov ah,coniof
mov dl,conin
mov cx,buffer_length
’
in_loop:
int msdos
stosb
loop in_loop
’
mov ah,printf
mov dx,offset clear_screen
int msdos

now replace the screen data

—e wo “o

mov cx,buffer_length
mov ah,coniof

out loop:

lodsb

mov dl,al
int msdos
loop out_loop
ret

buffer length dup (?) ;main buffer region

;get buffer data segment
;ready for store

;get storage buffer

;init for later use

;read entire screen string
;o/p it up to $

;call the OS

now read entire screen in to BUFFER

;read from keyboard buffer
;ready to read
;count of chars to read

;get a char in AL
;save the char in BUFFER
; and loop til buffer full

;ready to clear the screen
:get the string
; and o/p it up to $

;get the count
;get the o/p char function

;get a char

; ready to go

;o/p it

;loop til buffer empty

’

Rev 0 - 3/23/83

Supplemental Technical Reference Material

2.5.3 Microsoft Pascal Compiler -- Transmit Page

PROGRAM Scrnbuf;

CONST
clear_screen
transmit_page

CHR (27)*CHR(69) *CHR (36);
CHR (27) *CHR (35) *CHR(36) ;

err_msg = 'ERRORS';
direct_conio = #6;

conin = #0FF;
print_string = #9;

VAR
screen_dump : ARRAY {1..1928] OF CHAR;
ch : CHAR;
i : INTEGER;
param : WORD;
status : BYTE;

FUNCTION DOSXQQ(command, parameter : WORD) : BYTE; EXTERNAL;

BEGIN
EVAL(DOSXQQ(print_string,WRD(ADR(transmit_page))))
param:= BYWORD(@, conin);
status:= DOSXQQ(direct_conio, param);
IF status <> @ THEN
BEGIN
i:= 1;
WHILE status <> @ DO
BEGIN
ch:= CHR(status);
screen_dump(i]:= ch;
i:= 1 + 1;
status:= DOSXQQ(direct_conio, param);
END;
is= 1 - 1;
EVAL(DOSXQQ(print_string,WRD(ADR(clear_screen) Yy)Y)
FOR VAR J:= 1 TO i DO
EVAL (DOSXQQ(direct conio, WRD(screen dump{J])))
END - - -
ELSE
EVAL(DOSXQQ(print_string,WRD(ADR(err_msg) Y))
END.

2-15 Rev 0 - 3/23/83

Supplemental Technical Reference Material

CHAPTER 3

Victor 9680 Input/Output Port Specification

3.1 Device Connection

There are 5 ports available on the Victor 900840 -

they are as
follows:

Serial (RS232C) - Ports A and B
Parallel (Centronics)

Parallel (control - located on CPU board)

[Nl V]
x KX

The ports are located on the rear of the Victbr 9000 as shown in
the following diagram:

©)

T
|
ﬂ
-_.;—-——~———-~"“"""’J

Uy UU

h
n o
!

—@‘[le %

- =
SCEL=r==Y==

PARALLEL
PORT

el

YIDEO RS232 SERIAL
CONNECTOR PORTA-TTY RSESE SERIAL
PORT B -UL1
Figure 1

Victor 9006 Parallel and Serial Ports

3-1 Rev @ - 3/23/83

Supplemental Technical Reterence Material

3.2 Parallel Printer Connection

To connect a parallel printer to the Victor 90060, a sultable
cable is required - if the printer is supplied by Victor
Technologies, then it will be a matter of plugging the cable into
both machines; cables should be attached as follows:

1) Disconnect power from both the computer and printer.
2) Disconnect the Victor video connector (see 3.1)

3) Attach interface cable to Victor and printer

4) Re—attach the video connector

5) Set the printer dip-switches as required

3.3 Parallel Cable Requirements

If a suitable parallel cable is not available, you will need to

make one - use the guidelines that follow to create your own
cable:

You will need a male centronics—compatible Amphenol 57-30360
type connector for the Victor 96008 end of the cable; use the
type of connector suggested by the printer manufacturer for
the printer end, in general, another male centronics-
compatible Amphenol 57-30368 type connector will be
required. You will also require a length of 12-core cable
(13 feet maximum length).

Refer to the port layout in your printer handbook - compare this
with the Victor 9000 parallel port layout (see C.l). If the pin
numbers and signal requirements are the same, then construct the
cable as follows:

1
2 mmm——mmm e 2
LR 3
4 ——mmmmmm e 4
e 5
6 ————m—mmmm 6
y S 7
S E——— 8
e 9

1 —————mmmmmm e 10

1] ——mmmmmmmm e 11

16 ——mmmmmmmmm e 16

It does not matter which end of the cable is connected to
the printer or the computer.

3-2 Rev 0 - 3/23/83

Supplemental Technical Reference Material

3.6 Operating System Port Utilities

Victor Technologies supplies a selection of programs under
both CP/M-86 and MS-DOS to allow the temporary selection of
both baud rate and list device port. If you attach a printer
to your system you may be required to perform some of the
following steps in order to utilize the printer. Before you
use any of the utilities discussed you need to be aware of
the port the printer is attached to; Port A, B or Parallel. -
Youwill also need to know, except in the case of a parallel
printer, what the baud rate, stop-bits and parity your
printer is set up at. Note that many printers will start to
lose data at baud rates above 4800, you must, therefore,
select a baud rate that your printer can handle.

3.6.1 SETIO - MS-DOS List Device Selection Utility

To select the correct port for the list device you have

attached, the SETIO program has been provided. This program
is used as follows:

SETIO LST = TTY - printer is attached to port A
SETIO LST = ULl - printer is. attached to port B
SETIO LST = LPT - printer is attached to parallel port

It is recommended that your printer be attached to either
port B or the parallel port.

Once SETIO has executed, it displays a map of the ports,
with the ones you‘gglected highlighted on the screen - if
this is not .corrcet,; repeat the process.

3.6.2 STAT - CP/M-86 List Device Selection Utility

To select the correct port for the list device you have

attached, the STAT program has been provided. This program
is used as follows:

STAT LST:=TTY: - printer is attached to port A
STAT LST:=ULl: =~ printer is attached to port B
STAT LST:=LPT: - printer is attached to parallel port

It is recommended that your printer be attached to either
port B or the parallel port.

3-5 Rev @ - 3/23/83

Supplemental Technical Reference Materilial

3.6.3 PORTSET - MS-DOS Baud Rate Selection Utility

To select the correct baud rate for ports A or B (but this
is not applicable to the parallel port), the PORTSET program

is provided. This program is menu driven, and is used as
follows:

To the prompt type PORTSET, the screen will display a
choice of three ports:

1) Port A (RS232C)

2) Centronics/Parallel Port
3) Port B (RS232C)

Type either 1,2 or 3. If you type 1 or 3, the next menu
screen is displayed - this screen has baud-rate choices
labelled A through N - select one of the baud~-rates.

3.6.4 PORTCONF - CP/M-86 Baud Rate Selection Utility

This program is used in exactly the same manner as PORTSET
(see 3.6.3).

3-6 Rev @ - 3/23/83

Supplemental Technical Reference Material

Serial Input/Ouput Ports

The two serial input/output ports are memory mapped ports
located in the memory segment E@@0hex; and they are mapped
as follows:

EQQ0: 40 - port A data (input/output)
E000:41 - port B data (input/output)
EQOQ:42 - port A control (read/write)
E0Q@:43 - port B control (read/write)

The following information is available in each port's
control register:

bit @ - rx character available
bit 1 - not used

bit 2 - tx buffer empty

bit 3 - DCD

bit 4 - not used

bit 5 - CTS

bit 6 - not used

bit 7 - not used

See Appendix C.2 for information on each port's pinouts.

Note that writing a lfhex to the relevent control register
allows the resensing of the modem leads (i.e. DCD and CTS)
with their current values being updated in the port's
control register.

Since the Victor 9868 configures the NEC 72061 chip to
operate in auto-enable mode, DCD (pin 8 on the port
connector) must be ON, and CTS (pin 5 on the port connector)
must be ON to enable the 7201's receiver and trasmitter
respectively. RTS and DTR are always ON as a convenient
source for an RS-232C control ON (+1l1 volts).

3-7 Rev @ - 3/23/83

Supplemental Technical Reference Material

Baud Rate and Data Input/Output — Sample Programs

The means of establishing the baud rates, receiving and
transmitting data are discussed in the following programs.
The serial port's control register are discussed in 3.7 -
the means of accessing them is better described with the
programming examples that follow.

The following programs provide information on how to set up

the baud rates on the serial ports (A and B) - they also
demonstrate how to send and receive data from these ports.

3-8 Rev @ - 3/23/83

Supplemental Technical Reference Material

3.8.1 Microsoft MS-BASIC —-- Baud Rate and Data Input/Output

The following program may be used in place of PORTSET or
PORTCONF if you omit the lines 508 through 748 inclusive.

14 DIM RATE (14)

20 REM Select the data port

‘3¢ PRINT CHRS$(27)+"E"; : REM Clear the screen
40 PRINT : PRINT : PRINT : PRINT

5¢ PRINT "The serial ports are:" : PRINT

68 PRINT ," A - Serial Port TTY - left hand on back"
70 PRINT ," B - Serial Port ULl - right hand on back"
84 PRINT : PRINT .

99 PRINT ,"Select the port you want to use, A or B ";

189 PORTS$ = INPUTS(1l)
116 PRINT PORTS

120 IF PORTS
130 IF PORTS
140 IF PORTS
150 IF PORTS
160 GOTO 30
200 REM Set the baud rate

210 PRINT CHRS$(27)+"E"; : REM Clear the screen
220 PRINT : PRINT : PRINT : PRINT

"a" THEN STATIO=2 : DATIO=0§ : GOTO 210
"A" THEN STATIO=2 : DATIO=0 GOTO 210
"b" THEN STATIO=3 : DATIO=1 : GOTO 219
"B" THEN STATIO=3 : DATIO=1 : GOTO 210

wnuu

239 PRINT "The available baud rates are as follows:" - -: PRINT
248 PRINT ," 1 = 308 baud"
250 PRINT ," 2 = 600 baud"
268 PRINT ," 3 = 1200 baud"
270 PRINT ," 4 = 2400 baud"
288 PRINT ," 5 = 4800 baud"
290 PRINT ," 6 = 9600 baud"
380 PRINT ," 7 = 19208 baud"

310 PRINT : PRINT : PRINT

320 PRINT "Select one of the above baud rates: ";

330 RATES = INPUTS (1)

349 IF RATES > "7" THEN 2190

35¢0 IF RATES < "1" THEN 2190

368 PRINT RATES

400 REM Now set the baud rate in the port selected

4109 DEF SEG = &HE@02

42¢ IF DATIO = @ THEN POKE 3,54 : IF DATIO = 1 THEN POKE 3,118
430 FOR I = 1 TO 14

449 READ RATE(I) : REM Set the baud rate matrix
450 NEXT I

460 NODE = (VAL (RATES)-1)*2+1
470 POKE DATIO,RATE (NODE)
480 POKE DATIO,RATE (NODE+l)

~- Listing Continued on Next Page --

3-9 Rev @ - 3/23/83

Supplemental Technical Reference Material

50@ REM Now data may be entered and sent down line
519 PRINT CHRS(27)+"E"; : REM Clear the screen

529 PRINT : PRINT ,"Baud rate established"

538 PRINT : PRINT : PRINT

5409 DEF SEG = &HE@04

55@ PRINT ,"Enter data to be sent down line with return to end"
568 PRINT ,"or just press return to receive data -"
570 PRINT

580 TEXTS$=INKEYS

590 IF TEXTS="" THEN 630

688 IF TEXTS$S=CHRS$(13) THEN PRINT TEXTS$:TEXT$=CHR$(126) :GOTO 620
610 PRINT TEXTS;

620 GOSUB 659

630 GOSUB 694

640 GOTO 5890

650 STATUS=PEEK (STATIO) : STATUS=STATUS AND 4

660 IF STATUS = @ THEN 650 :REM Waiting to send char
670 POKE DATIO, ASC(TEXTS)

688 RETURN

690 STATUS = PEEK(STATIO) :STATUS = STATUS AND 1

709 IF STATUS = @ THEN RETURN : REM No char available
710 DATUM = PEEK (DATIO) : DATUM = DATUM AND 127

720 I1IF DATUM = 126 THEN PRINT CHR$(13) : RETURN

730 PRINT CHRS (DATUM); :REM Show char from line

740 RETURN)

1000 DATA 0,1,&H80,0,&H40,0,8H20,0,&H16,0,8,0,4,0

3-10 Rev @ - 3/23/83

Supplemental Technical Reference Material

3.8.2 MACRO-86 Assembler -- Baud Rate and Data Input/Output

The following assembler modules may be included in a program
and called with the stated parameters. The character input
and output modules will need re-coding if your program
requires status return rather than looping for good status.

rates db
db
db
db

Routine:
Function:

Entries:

Returns:

Corruptio

P T YT TR TR TR YRR THE YR YR YL TR TR 1)

-

baud_set:
mov
mov
mov
or
jnz

mov
jmp

I

set B:
mov

H

set_rate:
mov
shl
add
mov
Xor
mov
mov
mov
ret

gh,1h,80h,0h ;baud rate conversion table

40h,0h,20h,0h
16h,%h,8h,0h
4h,0h

BAUD_SET

khkhkhkkkhhkhkhhkhhhhkhhkhkhkhkhkhkhkhhhkhkhhhkhkhkkhkhkkkhkkhkkhhkhkhkhkhkhhkhhhhhhhkkk

To set Port A or B baud rate

@=300 baud, 1=6080 baud, 2=1200 baud

3=2409 baud, 4=4800 baud, 5=9600 baud

AL = @=PortA, l=PortB
DX =

6=19200 baud
None

ns: ES, AX, BX, CX, DX

cx,%e0d2h
ES,cx
bx,3
al,al
set_B

byte ptr ES:[bx],36h
short set_rate

byte ptr ES:[bx],76h

bx,offset rates
dx,1

bx ,dx

dx, [bx]

bh,bh

bl,al

byte ptr ES:[bx],dl
byte ptr ES:[bx],dh

ekhkhhhhkhhkhkhhkhkhhhhhhhhkhhkhkhhkhkhkkkkkkhkkkkkhkkhkhhkhhhhkdhhkhkhkkkkkkkkk

;get the segment

;init the segment register
;point to counter control

;see if Port A or B to be set
;AL > 0, so set Port B counter

;set it for port A
; and input the Baud rate

;set port B counter

;get the baud rate table
;DX = DX * 2 for words
;point to baud rate entry
;get the baud rate

; BH=0

;get the required port
;send first byte

; and last byte of rate
;baud rate established

Rev @ - 3/23/83

Supplemental Technical Reference Material

3.8.2 Baud Rate and Data Input/Output -—- continued

Routine:
Function:

Entries:

Returns:

Corruptions:

Mo Ne Ne Ne We Ne We N Ws N Ne e NS¢ N

send_char:
mov
mov
Xor
mov
add

’
in_status_loop:
mov
~and
jnz

~e

sub
mov
ret

SEND_CHAR

khkhkhkhkhkhhkhkhkhhkhkhkhhkhkhkhkkhkkhhhkrkkhkhkhkhkhkhhhkhkhhkhkkhkkkkhhhkhhhkhhhhkhkk

To output a character to a serial port

AL
AH

g=PortA,

None

ES, AX, BX

bx,0e084h
ES,bx
bh,bh
bl,al
bl,2

al ,ES: [bx]
al,4h
in_status_loop

bl,2
ES:[bx],ah

1=PortB
Character to send

w
|

12

I X 2222 XSRS RS RRRRRRSRRR SRR SR RS R R AR AR R R R R R A S

;get the port segment
;set the segment

; BH=0

;get the required port
;required port status

;get the status
;mask for TX empty
;not ready - loop

;point to data
;character gone

Rev 0 - 3/23/83

Supplemental Technical Reference Material

3.8.2 Baud Rate and Data Input/Output —-- continued

kkkkhkhkhhkhkhkhkhkkhkhkkhkhkhhhhhhhhhhkhkkhhkhkhkkkkhkkkhkkhkhkhkhkhhkkkhkhkkkkkk

Routine: GET_CHAR
Function: To input a character from a serial port
Entries: AL = @=PortA, l=PortB

Returns: AL

character

Corruptions: ES, AX, BX

khkkkhkkhkkhhhkhkhkhkhhhkhhkhhhhkhkhkkhkhkhhkhkhhhkhkhhkhhhkhkhkhkhhkhhkhkhkhkkkkhhkkk

W6 Me N WM e Ns e We N N Ne W “wo

get_char:

mov bx,0ef84h ;get the port segment
mov ES,bx ;set the segment
Xor bh,bh. ‘ ; BH=0
mov bl,al ‘ ;get the required port
add bl,2 ;required port .status
out_status_loop:
- mov al ,ES: [bx] ;get the status
and al,lh ;mask for RX character avail
jnz out_status_loop ;not ready - loop
’
sub bl,2 ;point to data
mov al,ES: [bx] ;character received
ret

3-13 Rev @0 - 3/23/83

Supplemental Technical Reference Material

APPENDIX A

A.l

ASCII Codes Used in the Victor 9668 Computer

The American Standard Codes for Information Interchange
(ASCII) has been defined to allow data communication between
computers, their peripherals, and other computers. The other
major code standard is the Extended Binary Coded-Decimal
Interchange Code (EBCDIC) used on some mainframe computers.
The Victor 90008 computer is designed to function in ASCII,
but communication software is available that allows the
Victor 9600 to receive EBCDIC data and have it translated
into ASCII, and vice versa. '

The following table contains the 7-ASCII codes and their
meanings. It is called 7-ASCII as only 7-bits of the
potential 8-bits are used to carry data; the "spare" bit is
utilized in the Victor 9000 computer to support characters
not otherwise available in the 7-ASCII set.

An.Eight Bit Byte is pictured as follows:
(7106105104103 1021011(8)]

the bits are numbered @ through 7 (which adds up to eight
bits), and it is the 8th bit (bit 7 in computer jargon)
which is not used in 7-ASCII.

A-1 Rev @ - 3/23/83

A.2

ASCII Hex Dec

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
vT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SuUB
ESC
FS
GS
RS
us

20
g1
B2
23
04
25
06
87
28
29
oA
B
@c
8D
PE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

Supplemental Technical Reference Material

ASCII / HEXADECIMAL / DECIMAL Character Set

00
01
g2
g3
g4
a5
26
87
28
29
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

AS

Sp

CII

ace
1

4+ A~ = 0N

WV Il AN e lom\lmm.waHQ\i

Hex

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3a
3B
3C
3D
3E
3F

Dec

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

ASCII Hex Dec

)~—‘/r—-NP<><S.<C'—3U)$UOO'UOZZF"9<C4H:EC)"‘]FJUOODD’®

49
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4B
4F
50
51
52
53
54
55
56
57
58
59
S5A
5B
5C
5D
5E
S5F

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

ASCI1I Hex Dec
* 60 96
a 61 97
b 62 98
c 63 99
d 64 100
e 65 161
f 66 102
g 67 103
h 68 104
i 69 105
j 6A 106
k 6B 107
1 6C 108
m 6D 109
n 6E 110
o) 6F 111
p 70 112
q 71 113
r 72 114
S 73 115
t 74 116
u 75 117
v 76 118
W 77 119
X 78 120
% 79 121
A 7A 122
{ 7B 123
| 7C 124
} 7D 125
- 7E 126
DEL 7F 127

Rev 0 - 3/23/83

Supplemental Technical Reference Material

APPENDIX B
B.1 Victor 9600 Keyboard Layout
Legend:
Shaded region indicates unused key switch
1 2 3 - 4 S 6 7

\
12 Y113 [Y]114 1YL 15 1Y] 16 1Y] 17 Y] 18 {Y] 19 {Y]20 [Yi21 {Y]22 [Y}e3 [Y|24 25

33 a4}Mas M 3e a7 a8 Mas Y40¥ 41 V42 M43 V44 W45 N{AEA

4 55 (Y156 Y157 [Y] 581Y158 [yl €0 (Y] 61 jY{e2 Y| €3 [Y{e4 [Y|6S 87

A

&) [
g] [2] |2] [&]

4 16 (Y] 77{Y1 78 |Y1 73 Y| 8o |Y|81 [Yl82 {Y| 83 Y| 84]Y|85 86

85 - g6 %&7

2] [a) Jg) [&) =)

100

Figure 2
Victor 9068 Keyboard Configuration
with Key Switch Positions and Logical Key Numbers

B-1 Rev @ - 3/23/83

Supplemental Technical Reference Material

APPENDIX C

c.l Victor 90969 Parallel (Centronics) Port

Pin Number Signal
] = e Data Strobe
D Data 1
3 e e e Data 2
§ mmmmee - Data 3
§ e Data 4
f ———m———— e —————————— Data 5
T e Data 6
8 mm—mmmm—mm— e Data 7
9 e Data 8
10 ==——mmmmm e ACK
1] === e — e Busy
) Ry A Pshield
12,18,30,3] =—==——————mmmmmee Not connected
Remaining —=====—=———ecea——a———- GND

Cc-1 Rev @ - 3/23/83

Supplemental Technical Reference Material

Victor 9469 IEEE-488 Port

The Victor 90008 IEEE-488 cable attaches to the parallel port -
the pin number refers to the actual computer port connector; the
IEEE-488 pin number refers to the standard IEEE-488 pin-out as
they must attach to the parallel port.

The IEEE pin numbers referred to with the (**z) are wires that
are to be bound together as twisted pairs.

Pin Number IEEE Signal IEEE Pin Number

1l - DAV —==—————————- 6 (**a)
19 —=—=m——m—- GND ==———=—=————— 18 (**a)
2 m—mmmmm——e- DIOl ===—==—=————= 1
3 e DIO2 ====——=—m———— 2
4 —emmm————— DIO3 ====————————- 3
5 —mm——————— DI04 ~===————————- 4
6 ——————————- DIO5 —=—==—==——====-= 13
7T mm——————— DIO6 —==—==——————— 14
8 —mmmm——————- DIO7 ====————————- 15
9 ———m——— - DIO8 =—=—=—————=== 16
10 ——m=——————e NRFD =~===—=——————— 7 (**Db)
28 —m———— e GND =—====———————— 19 (**Db)
11 —=m————— - SRQ =—=—==———————=- 18 (**c)
29 —=—————momn GND ==———=—-————- 22 (**c)
13 —————m—m- NDAC ===—=——==—=—== 8 (**qd)
33 =———mmmm e GND =—~———=m—————- 20 (**d)
15 ==—m=m—meme EQI —=—————=————- 5
17 —————mmm shield ~=-=-—===——-- 12
34 —=m———————— REN ———=———e————— 17
35 ————m——— e ATN =———————————= 11 (**e)
16 —=—=——=——=o GND —=——=———————— 23 (**e)
36 —=—=——————- IFC =—=——————————- 9 (**f)
27 ——mmmm—————— GND —===————————- 21 (**f)
20 ———m—————— GND —~—m==m———————— 24

Cc-3 " Rev 0

- 3/23/83

Supplemental Technical Reterence Material

Victor 9608 Control Port

Pin Number Signal
N -12v
2 mm—mmmmmmm— o -12v
3 —m—mmmm e Not connected
4 ————mmmm Not connected
§ —mmmmmmm——— +12V
f ——mmm——————————- +12V
7 e +5V
8 ——mmm——— - +5V
9 ——mmmmmmmm - Not connected

10 ———=m=mmmmmm Light Pen
1] ——mmmmm e GND
I cal
13 ==—mmmmmm e GND
14 —mmmmmm—m e CA2
15 ~m—mmmm————m e GND
16 ————mmmm—— e PAD
17 ——mmmmmmmmm——m GND
18 ———mmmmmm— PAl
19 ——mmmm—m——m e GND
20 —=mmmmmm———— PA2
2] =mmmmm———— e GND
22 —tm—mmmmm—m e PA3
23 =mmmmmmm e GND
24 —mmmmmm e PA4
25 ~mmm——m———— e GND
26 —mmmm—————— e PAS
27 m—mmmmmmmm e GND
28 =mmmm PA6
29 —=mmmm—m e GND
30 —m—mmmm PA7
3] =mmmmm GND
32 —mmmmmm e PBO
33 mmmmmmm e GND
34 ~==-mm—mmmm o PBl
35 ===-mmmmom o GND
36 mmmmmm——————— PB2
37 —mmmmmmm e GND
38 ===—mmmmm e PB3
39 —mmmmm e GND
4 ——===——m—m————= PB4
4] ~—mmmmmm = GND
R PB5
43 wmmmmmm e GND
44 ——mmmmmm——————= PB6
45 —mmmmmmm GND
46 —=mmmmmm e PB7
47 —mm e GND
48 =mmmmm—mm—— oo cBl
R GND
50 =mmmmmmm CB2

Rev 0

/ CODEC Clock Output

3/23/83

Supplemental Technical Reference Material

APPENDIX D

D.1 Example Assembler Shell Program for MS-=DOS Interfacing

The Microsoft MACRO-86 assembler follows closely the Intel ASM-86
specifications. The operating system interfacing technique is via
a straightforward interrupt (INT 2lHex), with the required
operational parameter in the AH register. MS-DOS does not corrupt
any registers other than the ones used for the sending or
receiving of data. An example of the running and exiting program
technique, plus the required assembler directives, follows. The
program example is for the small memory model; but it will apply
equally well to the compact or large memory model. The 808¢9
memory model is not recommended as it results in poor usage of
the potential of the 8086/8@88 processor. At link time, this
programming example will generate an .EXE file - the header
information on this file type will be found in E.l.

title Example of MS~DOS/MACRO-86 Assembly Programming

dgroup group data
cgroup group code

msdos equ g0@021h ;interrupt to operating system
data segment public 'data’

;B44#%## insert your data here ######

data ends

code segment public 'code'

assume CS: cgroup, DS: dgroup

example proc near ;origin of code

begin:
push ES ;save return segment address
call run_module ;run the program

H
; run ends -~ select close down

-
’

exit proc far ;close down code
Xor ax,ax ;zero for PSP:0
push ax ;save for far return
ret ;and close down

exit endp ;close down code ends

run_module:

mov ax,DATA ;get the data segment origin

mov DS, ax ; and initialize the segment
;####4 insert your code at this point ######

ret ;return to exit module

example endp
code ends
end

D-1 Rev 0 - 3/23/83

Supplemental Technical Reference Material

D.2 Example Assembler Shell Program for CP/M-86 Interfacing

The Digital Research ASM-86 assembler does not follow the
standard Intel ASM-86 structure - this makes for a more complex
task when transferring assembler programs between the CP/M-86 and
the MS-DOS operating systems. The operating system interfacing
technique is via a straightforward interrupt (INT E@Hex), with
the required operational parameter in the CL register. CP/M-86
corrupts all registers, excepting the CS and IP - it 1is,
therefore, recommended that all registers be pushed prior to the
INT E@Hex being issued. An example of the running and exiting
program technique, plus the required assembly directives,
follows. The program example follows that of the MS-DOS MACRO-86
example. At GENCMD time, this programming example will generate a
.CMD file - the header information on this file type is shown in
the System Guide for CP/M-86.

title 'Example of CP/M-86/ASM-86 Programming'
reset equ 000d0h ;jsystem reset function
cpm equ g@dedh ;interrupt to operating system
cseg
begin:
call run_module ;run the program
;
; run ends - select close down
H .
mov cl,reset ;select system reset
mov dl,9@h ;select memory recovery
int cpm ;return to operating system

run_module:
;#4F## insert your code at this point k#####
ret ;return to exit module

dseg

;4444 insert your data here #####
end

D-2 Rev @ - 3/23/83

Supplemental Technical Reterence Materlial

MS-DOS —-- EXE File Header Structure

The Microsoft linker outputs .EXE files in a relocatable
format, suitable for quick loading into memory and
relocation. EXE files consist of the following parts:

o Fixed length header
o Relocation table
o Memory image of resident program

A run file is loaded in the following manner:

o Read into RAM at any paragraph (16 byte) boundary
o Relocation is then applied to all words described by
the relocation table.

The resulting relocated program is then executable.
Typically, programs using the PL/M small memory model have
little or no relocation; programs using larger memory models
have relocation for long calls, jumps, static long pointers,
etc.

The following is a detailed description of the format of an
EXE file:

E-1 Rev @ - 3/23/83

Byte
g+1
2+3

4+5

6+7
8+9

A+B

C+D

E+F

19+11
12+13
14+15
16+17
18+19

1A+1B

Supplemental Technical Reference Material

Microsoft .EXE File Main Header

Name Function
wSignature Must contain 4D5Ahex.
cbLastp Number of bytes in the memory image

modulo 512. If this is @ then the last
page is full, else it is the number of
bytes in the last page. This is useful
in reading overlays.

cpnRes Number of 512 byte pages of
memory needed to load the resident and
the end of the EXE file header.

irleMax Number of relocation entries in the
table.

cparDirectory Number of paragraphs in EXE file
header.)

cparMinAlloc Minimum number of 16-byte paragraphs
required above the end of the loaded
program.

cparMaxAlloc Maximum number of l6-byte paragraphs

required above the end of the loaded
program. @FFFFh means that the program
is located as low as possible into

memory.

saStack Initial value to be loaded into SS
before starting program execution.

raStackInit Initial value to be loaded into SP
before starting program execution.

wchksum Negative of the sum of all the words
in the run file.

raStart Initial value to be loaded into IP
before starting program execution.

saStart Initial value to be loaded into CS
before starting program execution.

rbrgrle Relative byte offset from beginning of
run file to the relocation table.

iov Number of the overlay as generated by

LINK-86. The resident part of a
program will have iov = 0.

The relocation table follows the fixed portion of the run

file header and contains irleMax entries of type rleType,
defined by:

rleType bytes 0+l ra
bytes 2+3 sa

Taken together, the ra and sa fields are an 8986/8388 long
pointer to a word in the EXE file to which the relocation
factor is to be added. The relocation factor is expressed as
the physical address of the first byte of the resident
divided by 16. Note that the sa portion of an rle must first

E~2 Rev @ - 3/23/83

Supplemental Technical Reference M

be relocated by the relocati
oints to the actual word requir
ong pointer
rlay area.

overlays: the rle is @ 1
the resident into the ove

The resident begins at the fi

the end of the relocation

The layout of the EXE £il

28-byte Header
Relocation Tabl
padding (<2008he

memory image

table.

e is:

e

X bytes)

tor pefore
reloC
from the

on fac

rst 512 byte bou

aterial

Rev 0

in turn

ation. FOT
pbeginning of

ndary following

- 3/23/83

S

o etmse

F.1l

Supplemental Technical Reference Material

Victor 96@8¢ Technical Specification

Processor

O 000000

Intel 8088 16-bit microprocessor

128k bytes RAM internally upgradeable to 896k bytes

4k bytes Auto-boot ROM (read only memory)

4 internal expansion slots for plug-in card options

2 x RS232C serial communications ports

1 x Parallel (Centronics) or IEEE-488 port

2 x Parallel user port (58-way KK Connector on CPU board)

Display System

o

0 0O

25 line x 80 column screen / 58 line x 132 column screen
12" CRT, Green p39 phosphor

Adjustable horizontal viewing angle (+ 45 degree swivel)
Adjustable vertical viewing angle (8 deg to 11 deg tilt)

Floppy Drives

o

o}

o}

Standard 5 1/4-inch, single-sided 96 TPI dual disk drives,
with a maximum capacity of 608k bytes per drive.

Optional 5 1l/4-inch, double-sided 96 TPI dual disk drives,
with a maximum capacity of 12008k bytes per drive.

Optional single 10,0008k byte Hard Disk - non-removable; with
single 5 1/4-inch, double sided 96 TPI disk drive with a
maximum capacity of 1288k bytes.

Single-sided floppy drive offers 80 tracks at 96 TPI
Double-sided floppy drive offers 168 tracks at 96 TPI

Floppy drives have 512 byte sectors; utilising a GCR, 1@-bit
recording technique.

Floppy access times:
2 micro-second per bit data transfer rate, with an
interleave factor of 3. Average seek time 1is
approximately 90 milli-seconds.

Hard Disk access times:
¢.2 micro-second per bit data transfer rate, with an
interleave factor of 5. Average seek time 1is
approximately 100 milli-seconds.

F-1 Rev @ - 3/23/83

Supplemental Technical Reference Material

F.2 Victor 9008 Physical Specifications

Mainframe Assembly
Height
178 mm
7 in

Display Assembly
Height

264 mm
18.4 in

Keyboard Assembly
Height
45 mm
1.8 in
System Assembly
Height
457 mm
18 in

Width without

wWidth
422 mm
16.6 in

Width
326 mm
12.9 in

Width
483 mm
19 in

Width
483 mm
19 in

Depth
356 mm
14 in

Depth
339 mm
13.4 in

Depth
203 mm
6.4 in

Depth
559 mm
28.4 in

Weight (approx)
12.6 kg
281 1lbs

Weight (approx)
8.1 kg
18 1bs

Weight (approx)
1.5 kg
3 1bs

Weight (approx)
22.2 kg
49 1lbs

the keyboard module is 396 mm / 15.6 in

Rev @ - 3/23/83

128K Memory Configurations

Figure 1 shows the 1 Megabyte memory space partitioned
into 128K segments. Switch settings (SW) are shown for
all possible memory configurations. Figure 2 shows physical
location of Switches on the 128K memory board.

896 ~tooog | FOMIO
768 — coo:o 6 | —
G40 — et 5 —=
S7/2 — o000 4 —
3% — 60000 3 —
25¢ — o000 2 —swes
/2% — 30000 1 L SW18
17FF:0 [SYSTEM
0000:0 RAM

Figure 1: Memory Space Segments

HHHAHERE

128K MEMORY

Figure 2: Memory Configuration Switches

Part Number 102545-01

®
VICTQR 380 El Pueblo Rd., Scotts Valley, CA 95066 USA Telephone 408/438-6680

DATA SHEET
Page 1 of 1

Auxiliary PCB Installation Instructions

The following steps are required to install auxiliary PC boards in the processor. The auxiliary PC
board connectors are located on the right side of the processor unit between the speaker and
the fan (see Figure 1).

- 0O WoONOOOD>WN -~

— ot

. Remove power from the system.

. Disconnect and carefully remove the CRT and keyboard.
. Remove the rear panel cover (4 screws).

. Slide the top cover back and out of the front cover.

. Remove the auxiliary PC board retainer (see Figure 1).

. Insert the auxiliary PC board into the socket WITH THE COMPONENT SIDE OUT.
. Reinstall the auxiliary PC board retainer.

. Reinstall the top cover under the front cover.

. Reinstall the rear panel cover (4 screws removed in 3).

. Carefully install and connect the CRT and keyboard.

. Connect power to the system.

AUX PCB INSTALLATION INSTRUCTIONS

T] —
n | e——— b
FRONT = ? B REAR
“ % 51
L@ | 2 \
PCB RETAINER COMPONENT SIDE OUT

MAINFRAME WITH COVER REMOVED

Figure 1: Processor Unit with Cover Removed

Part Number 102849-01

VICTSR

Telephone (408) 438-6680
380 El Pueblo Road
Scotts Valley, CA 95066 USA

DATA SHEET

256K Memory Configurations

Figure 1 shows the 1 Megabyte memory space partitioned
into 128K segments. Switch settings (SW) are shown for
possible memory configurations. Figure 2 shows physical
locations of switches on the 256K memory board.

FFFF:F
E000:0 572,0'\,'"0

ook
DFFF:F 6 2
C000:0 1742) SW5.,6

BFFF:F
A000:F [

9FFF:F

' di= | Lesex
2 N> 7| S¥s_
8000:0 |57 2 T) swaa 256K :
7FFF:F ’

6000:0 & ¥ W2 3 256K
5FFF:F -

4000:0 2%, SW1.2 266KR—

3FFF:F 1
2000:0 2 256K

1FFF:0 SYSTEM

" o
owo | | o DIk wo/memory BosRb SAYS 4000

w]l O

n

Figure 1: Memory Space Segments

S

256K MEMORY

HHHHHEAS

I

Figure 2. Memory Configuration Switches

