
VMIVME-7697
Tundra Universe IITM Based VMEbus Interface
Product Manual
12090 South Memorial Parkway
Huntsville, Alabama 35803-3308, USA

(256) 880-0444 w (800) 322-3616 w Fax: (256) 882-0859 500-007697-001 Rev. A
27-May-99

VMIVME-7697 Tundra Universe IITM Based VMEbus Interface
2

© Copyright 1999. The information in this document has been carefully checked and is believed to be entirely reliable.
While all reasonable efforts to ensure accuracy have been taken in the preparation of this manual, VMIC assumes no
responsibility resulting from omissions or errors in this manual, or from the use of information contained herein.

VMIC reserves the right to make any changes, without notice, to this or any of VMIC’s products to improve reliability,
performance, function, or design.

VMIC does not assume any liability arising out of the application or use of any product or circuit described herein; nor
does VMIC convey any license under its patent rights or the rights of others.

For warranty and repair policies, refer to VMIC’s Standard Conditions of Sale.

AMXbus, BITMODULE, COSMODULE, DMAbus, Instant OPC wizard logo, IOWorks Access, IOWorks Foundation,
IOWorks man figure, IOWorks Manager, IOWorks Server, MAGICWARE, MEGAMODULE, PLC ACCELERATOR
(ACCELERATION), Quick Link, RTnet, Soft Logic Link, SRTbus, TESTCAL, “The Next Generation PLC”, The PLC
Connection, TURBOMODULE, UCLIO, UIOD, UPLC, Visual Soft Logic Control(ler), VMEaccess, VMEmanager,
VMEmonitor, VMEnet, VMEnet II, and VMEprobe are trademarks and The I/O Experts, The I/O Systems Experts, The Soft
Logic Experts, and The Total Solutions Provider are service marks of VMIC.

COPYRIGHT AND TRADEMARKS

VMIC
All Rights Reserved

This document shall not be duplicated, nor its contents used for any
purpose, unless granted express written permission from VMIC.

The I/O man figure, IOWorks, UIOC, Visual IOWorks, and WinUIOC are registered trademarks of VMIC.

ActiveX is a trademark and Microsoft, Microsoft Access, MS-DOS, Visual Basic, Visual C++, Win32, Windows,
Windows NT, and XENIX are registered trademarks of Microsoft Corporation.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

PICMG and CompactPCI are registered trademarks of PCI Industrial Computer Manufacturers’ Group.

Other registered trademarks are the property of their respective owners.

(I/O man figure) (IOWorks man figure)(Instant OPC wizard logo)

4

VMIVME-7697 Tundra Universe IITM Based VMEbus Interface

Table of Contents
Overview . 25

Organization of the Manual . 26

References . 27

Safety Summary . 29

Safety Symbols Used in This Manual . 30

Notation and Terminology . 31

Signals . 31

Chapter 1 - General Information . 33

Introduction . 33

Programming the VMIVME-7697 VMEbus Interface . 34

Document Overview . 35

Tundra Corporation Reprinted Information . 36

Benefits of the Universe II . 37

Features . 37

Past and Future of the Universe . 39

Chapter 2 - Functional Description . 41

Architectural Overview of the VMIVME-7697 VMEbus Interface . 41

PCI-to-VMEbus Interface Jumpers . 43

Universe II Architectural Overview . 45

VMEbus Interface . 45

Universe II as VMEbus Slave . 45

Universe II as VMEbus Master . 46

PCI Bus Interface . 48

Universe II as PCI Target . 48

Universe II as PCI Master . 48
5

VMIVME-7697 Product Manual
Interrupter and Interrupt Handler . 48

Interrupter . 48

VMEbus Interrupt Handling . 49

DMA Controller . 49

VMEbus Interface . 49

VMEbus Requester . 50

Internal Arbitration for VMEbus Requests . 50

Request Modes . 51

VMEbus Release . 51

Universe II as VMEbus Master . 53

Addressing Capabilities . 53

Data Transfer Capabilities . 54

Cycle Terminations . 56

Universe as VMEbus Slave . 57

Coupled Transfers . 58

Posted Writes . 58

Prefetched Block Reads . 60

VMEbus Lock Commands (ADOH Cycles) . 62

VMEbus Read-Modify-Write Cycles (RMW Cycles) . 62

Register Accesses . 63

Location Monitors . 63

Generating PCI Configuration Cycles . 64

Generating Configuration Type 0 Cycles . 64

VMEbus Configuration . 66

First Slot Detector . 66

VMEbus Register Access at Power-up . 67

Automatic Slot Identification . 67

Auto Slot ID: VME64 Specified . 67

Universe II and the Auto-ID Monarch . 68

Auto-ID: A Proprietary Tundra Method . 68

System Controller Functions . 69

System Clock Driver . 70

VMEbus Arbiter . 70

Fixed Priority Arbitration Mode (PRI) . 70

Single Level Arbitration Mode (SGL) . 70

Round Robin Arbitration Mode (RRS) . 70

VMEbus Arbiter Time-out . 70

IACK Daisy-Chain Driver Module . 71
6

Table of Contents
VMEbus Time-out . 71

BI-Mode . 71

PCI Bus Interface . 73

PCI Cycles—Overview . 73

32-Bit Versus 64-Bit PCI . 73

PCI Bus Request and Parking . 74

Address Phase . 74

Data Transfer . 76

Termination Phase . 76

Parity Checking . 77

Universe II as PCI Master . 77

PCI Burst Transfers . 78

Termination . 79

Parity . 79

Universe II as PCI Target . 81

Overview . 81

Data Transfer . 82

Coupled Transfers . 85

Coupled Request Phase . 85

Coupled Data-Transfer Phase . 86

Coupled Wait Phase . 86

Posted Writes . 87

The Special Cycle Generator . 88

 Read-Modify-Write . 89

VME Lock Cycles—Exclusive Access to VMEbus Resources . 90

Using the VOWN bit . 91

Terminations . 91

Slave Image Programming . 93

VME Slave Images . 93

VMEbus Fields . 94

PCI Bus Fields . 94

Control Fields . 95

PCI Bus Target Images . 96

PCI Bus Fields . 97

VMEbus Fields . 97

Control Fields . 99

Special PCI Target Image . 99

Bus Error Handling . 101
7

VMIVME-7697 Product Manual
Coupled Cycles . 101

Decoupled Transactions . 101

Posted Writes . 101

Prefetched Reads . 103

DMA Errors . 103

Parity Errors . 103

Interrupter . 105

Interrupt Generation . 105

PCI Interrupt Generation . 107

Auxiliary BERR Interrupt Generation . 109

VMEbus Interrupt Generation . 109

Interrupt Handling . 113

PCI Interrupt Handling . 113

VMEbus Interrupt Handling . 114

Bus Error During VMEbus IACK Cycle . 115

Internal Interrupt Handling . 116

VMEbus and PCI Software Interrupts . 118

Interrupting the VMEbus through software . 118

Interrupting the PCI bus through software . 118

Termination of software interrupts . 119

Software IACK Interrupt . 119

VMEbus Ownership Interrupt . 120

DMA Interrupt . 120

Mailbox Register Access Interrupts . 120

Location Monitors . 120

PCI and VMEbus Error Interrupts . 121

VME64 Auto-ID . 121

DMA Controller . 122

DMA Registers Outline . 122

Source and Destination Addresses . 123

Transfer Size . 123

Transfer Data Width . 124

DMA Command Packet Pointer . 125

DMA Control and Status . 125

DMA Initiation . 125

DMA VMEbus Ownership . 126

DMA Completion and Termination . 127

Direct Mode Operation . 128
8

Table of Contents
Linked-List Operation . 131

Linked List Updating . 136

FIFO Operation and Bus Ownership . 137

PCI-to-VMEbus Transfers . 137

VMEbus-to-PCI Transfers . 139

DMA Interrupts . 140

Interactions with Other Channels . 140

DMA Error Handling . 141

DMA Software Response to Error . 141

DMA Hardware Response to Error . 142

Interrupt Generation During Bus Errors . 142

Resuming DMA Transfers . 142

Registers . 144

System Registers . 145

Universe II Registers . 145

Universe II Registers . 146

Overview of Universe II Registers . 146

Register Access from the PCI Bus . 147

PCI Configuration Access . 147

Memory or I/O Access . 148

Eliciting Conditions of Target-Retry . 148

Locking the Register Block from the PCI bus . 149

Register Access from the VMEbus . 149

VMEbus Register Access Image (VRAI) . 149

CR/CSR Accesses . 151

RMW and ADOH Register Access Cycles . 151

Mailbox Registers . 153

Semaphores . 153

Utility Functions . 155

Resets . 155

Overview of Reset Support . 155

Universe II Reset Circuitry . 156

Reset Implementation Cautions . 158

Power-Up Options . 160

Power-up Option Descriptions . 162

VMEbus Register Access Image . 162

VMEbus CR/CSR Slave Image . 162

Auto-ID . 163
9

VMIVME-7697 Product Manual
BI-Mode . 163

Auto-Syscon Detect . 163

SYSFAIL* Assertion . 163

PCI Target Image . 164

PCI Register Access . 164

PCI Bus Width . 164

PCI CSR Image Space . 164

Power-Up Option Implementation . 165

Hardware Initialization (Normal Operating Mode) . 166

Test Modes . 166

Auxiliary Test Modes . 166

JTAG support . 167

Clocks . 168

Chapter 3 - Auxiliary Functions . 169

Auxiliary Bus Timeout Timer . 169

Auxiliary BERR Interrupt . 170

Chapter 4 - Endian Conversion . 171

VMEbus Byte Lanes . 171

Byte Ordering: Big Endian / Little Endian . 173

Endian Conversion Hardware . 176

Unaligned Transfers with Endian Conversion Enabled . 176

PCI Bus Data Combining: Byte Swap . 177

Chapter 5 - PCI/VMEbus Deadlock . 179

Scenario Overview . 179

An Example . 180

Possible Solutions . 180

Chapter 6 - Universe II Errata And Notes . 181

Universe II Errata . 182

Universe II Design Notes . 184

Other Compatibility Issues . 185

Universe II Changes . 187

Register Reset Values . 187

Coupled Request Timer . 187

MFUNCT Field In PCI_MISC0 . 187
10

Table of Contents
Config Type 1 Accesses . 187

PCI Base Address Registers . 187

DGCS VON[3] . 187

IACKIN* Monitoring . 188

Rescinding DTACK . 188

Reset Operation . 188

Universe II Additions . 188

General Feature Additions/Enhancements . 188

Mailboxes . 188

Location Monitor . 189

Additional Slave Images . 189

VME Software Interrupts . 189

Semaphores . 189

New SCYC_CTL LAS Field . 189

Performance Enhancements . 189

Early Release Of BBSY* . 189

VOFF/VON . 190

Aligned Burst Size . 190

PCI Bus Parking . 190

Universe I/Universe II Detection . 190

Chapter 7 - Description of Signals . 191

Chapter 8 - Signals and DC Characteristics . 199

Terminology . 199

DC Characteristics and Pin Assignments . 200

Appendix A - System Registers . 211

Appendix B - Universe II Registers . 215

Appendix C - Performance . 331

PCI Slave Channel . 333

Coupled Cycles . 333

Request of VMEbus . 333

Read Cycles . 333

Write Cycles . 335

Decoupled Cycles . 335

VME Slave Channel . 338
11

VMIVME-7697 Product Manual
Coupled Cycles . 338

Block vs. non-Block Transfers . 338

Read Cycles . 338

Write Cycles . 339

Decoupled Cycles . 340

Write Cycles . 340

Prefetched Read Cycles . 343

DMA Channel . 345

Relative FIFO sizes . 345

VMEbus Ownership Modes . 345

VME Transfers . 345

Read Transfers . 346

Write Transfers . 346

PCI Transfers . 346

Summary . 348

Appendix D - Typical Applications . 351

VME Interface . 351

Transceivers . 351

Pull-down resistors . 355

Direction Control . 356

Power-up Options . 356

PCI Bus Interface . 358

Resets . 358

VMEbus Resets . 358

PCI bus Resets . 359

Power-Up Reset . 359

JTAG Reset . 359

Local Interrupts . 360

Manufacturing Test Pins . 361

Decoupling VDD and VSS on the Universe II . 361

Appendix E - Reliability Prediction . 363

Physical Characteristics . 363

Thermal Characteristics . 364

Universe II Ambient Operating Calculations . 364

Thermal Vias . 365
12

Table of Contents
Appendix F - Cycle Mapping . 367

Little-endian Mode . 367

Appendix G - Operating and Storage Conditions . 371
13

VMIVME-7697 Product Manual
14

List of Figures
Figure 2-1 Universe II-Based PCI-to-VMEbus Interface . 42
Figure 2-2 Edge View of the Jumper Locations . 43

Figure 2-3 Architectural Diagram for the Universe II . 46

Figure 2-4 Influence of Transaction Data Width and Target Image
Data Width on Data Packing/Unpacking . 55

Figure 2-5 VMEbus Slave Channel Dataflow . 57

Figure 2-6 Timing for Auto-ID Cycle . 69

Figure 2-7 PCI Bus Target Channel Dataflow . 82

Figure 2-8 Influence of Transaction Data Width and Target Image Data
Width on Data Packing/Unpacking . 84

Figure 2-9 Address Translation Mechanism for VMEbus-to-PCI Bus Transfers 95

Figure 2-10 Address Translation Mechanism for PCI Bus to VMEbus Transfers 98

Figure 2-11 Memory Mapping in the Special PCI Target Image . 100

Figure 2-12 Universe Interrupt Circuitry . 106

Figure 2-13 STATUS/ID Provided by Universe II . 111

Figure 2-14 Sources of Internal Interrupts . 117

Figure 2-15 Direct Mode DMA transfers . 129

Figure 2-16 Command Packet Structure and Linked List Operation . 132

Figure 2-17 DMA Linked List Operation . 133

Figure 2-18 Universe II Control and Status Register Space . 146

Figure 2-19 PCI Bus Access to UCSR as Memory or I/O Space . 147

Figure 2-20 UCSR Access from the VMEbus Register Access Image . 150

Figure 2-21 UCSR Access in VMEbus CR/CSR Space . 152

Figure 2-22 Reset Circuitry . 158

Figure 2-23 Resistor-Capacitor Circuit Ensuring Power-Up Reset Duration . 159

Figure 2-24 Power-up Options Timing . 165

Figure 4-1 Byte Relationships Using the Little-Endian Pentium III Microprocessor 173

Figure 4-2 Byte Relationships Using the Big-Endian 68040 Microprocessor 174
15

VMIVME-7697 Product Manual
Figure B-1 UCSR Access Mechanisms . 215
Figure C-1 Coupled Read Cycle - Universe II as VME Master . 334
Figure C-2 Several Coupled Read Cycles - Universe II as VME Master . 334

Figure C-3 Coupled Write Cycle - Universe II as VME Master . 335

Figure C-4 Several Non-Block Decoupled Writes - Universe II as VME Master 337

Figure C-5 BLT Decoupled Write - Universe II as VME Master . 337

Figure C-6 Coupled Read Cycle - Universe II as VME Slave . 339

Figure C-7 Coupled Write Cycle - Universe II as VME Slave (bus parked at Universe II) 340

Figure C-8 Non-Block Decoupled Write Cycle - Universe II as VME Slave . 341

Figure C-9 BLT Decoupled Write Cycle - Universe II as VME Slave . 342

Figure C-10 MBLT Decoupled Write Cycle - Universe II as VME Slave . 342

Figure C-11 BLT Pre-fetched Read Cycle - Universe II as VME Slave . 344

Figure C-12 PCI Read Transactions During DMA Operation . 347

Figure C-13 Multiple PCI Read Transactions During DMA Operation . 347

Figure D-1 Universe II Connections to the VMEbus Through TTL Buffers . 353
Figure D-1 Universe II Connections to the VMEbus Through TTL Buffers (continued) 354
Figure D-2 Power-up Configuration Using Passive Pull-ups . 356

Figure D-3 Power-up Configuration Using Active Circuitry . 357

Figure D-4 Analog Isolation Scheme . 361

Figure D-5 Noise Filter Scheme . 362
16

List of Tables
Table 2-1 VMIVME-7697 Interface Jumper Functions and Factory Settings 44
Table 2-2 PCI Address Line Asserted as a Function of VA[15:11] . 65
Table 2-3 Command Type Encoding for Transfer Type . 75
Table 2-4 Register Fields for the Special Cycle Generator . 89
Table 2-5 VMEbus Fields for VMEbus Slave Image . 93
Table 2-6 PCI Bus Fields for VMEbus Slave Image . 93
Table 2-7 Control Fields for VMEbus Slave Image . 93
Table 2-8 PCI Bus Fields for the PCI Bus Target Image . 96
Table 2-9 VMEbus Fields for the PCI Bus Target Image . 96
Table 2-10 Control Fields for PCI Bus Target Image . 97
Table 2-11 PCI Bus Fields for the Special PCI Target Image . 99
Table 2-12 VMEbus Fields for the Special PCI Bus Target Image . 99
Table 2-13 Control Fields for the Special PCI Bus Target Image . 99
Table 2-14 Source, Enabling, Mapping, and Status of PCI Interrupt Output 108
Table 2-15 Source, Enabling, Mapping, and Status of VMEbus Interrupt Outputs 111
Table 2-16 PCI bus LINT_MAP Registers . 114
Table 2-17 Internal Interrupt Routing . 116
Table 2-18 DMA Interrupt Sources and Enable Bits . 140
Table 2-19 Interface Base Address Map . 144
Table 2-20 Programming the VMEbus Register Access Image . 149
Table 2-21 Hardware Reset Mechanism . 155
Table 2-22 Software Reset Mechanism . 156
Table 2-23 Functions Affected by Reset Initiators . 157
Table 2-24 Power-Up Options . 161
Table 2-25 VRAI Base Address Power-up Options . 162
Table 2-26 Manufacturing Pin Requirements for Normal Operating Mode 166
Table 2-27 Test Mode Operation . 167
Table 3-1 Auxiliary Bus Timeout Timer Settings . 169
Table 4-1 VMEbus Byte Assignment to the Data Lines . 172
Table 6-1 Universe II Errata and Solutions . 182
Table 6-2 Universe II Design Note Matrix . 184
Table 7-1 VMEbus Signals . 191
Table 7-2 PCI Bus Signals . 195
Table 8-1 DC Electrical Characteristics (VDD = 5 V ± 10%) . 200
17

VMIVME-7697 Product Manual
Table 8-2 Pin List and DC Characteristics for Universe II Signals . 201
Table 8-3 PCI Bus Address/Data Pins . 205
Table 8-4 VMEbus Address Pins . 206
Table 8-5 VMEbus Data Pins . 207
Table 8-6 Pin Assignments for Power and Ground . 207
Table 8-7 Pinout for 313-pin Plastic BGA Package . 209
Table 8-8 Pinout for 324–pin Ceramic BGA Package . 210
Table A-1 System Register Map . 212
Table B-1 Universe II Register Map . 216
Table B-2 PCI Configuration Space ID Register (PCI_ID) . 222
Table B-3 PCI_ID Description . 222
Table B-4 PCI Configuration Space Control and Status Register (PCI_CSR) 222
Table B-5 PCI_CSR Description . 223
Table B-6 PCI Configuration Class Register (PCI_CLASS) . 225
Table B-7 PCI_CLASS Description . 226
Table B-8 PCI Configuration Miscellaneous 0 Register (PCI_MISC0) 226
Table B-9 PCI_MISC0 Description . 226
Table B-10 PCI Configuration Base Address Register (PCI_BS0) . 227
Table B-11 PCI_BS0 Description . 227
Table B-12 PCI Configuration Base Address 1 Register (PCI_BS1) . 228
Table B-13 PCI_BS1 Description . 228
Table B-14 PCI Configuration Miscellaneous 1 Register (PCI_MISC1) 229
Table B-15 PCI_MISC1 Description . 229
Table B-16 PCI Target Image 0 Control (LSI0_CTL) . 229
Table B-17 LSI0_CTL Description . 230
Table B-18 PCI Target Image 0 Base Address Register (LSI0_BS) . 231
Table B-19 LSI0_BS Description . 231
Table B-20 PCI Target Image 0 Bound Address Register (LSI0_BD) . 231
Table B-21 LSI0_BD Description . 232
Table B-22 PCI Target Image 0 Translation Offset (LSI0_TO) . 232
Table B-23 LSI0_TO Description . 232
Table B-24 PCI Target Image 1 Control (LSI1_CTL) . 233
Table B-25 LSI1_CTL Description . 233
Table B-26 PCI Target Image 1 Base Address Register (LSI1_BS) . 234
Table B-27 LSI1_BS Description . 234
Table B-28 PCI Target Image 1 Bound Address Register (LSI1_BD) . 234
Table B-29 LSI1_BD Description . 235
Table B-30 PCI Target Image 1 Translation Offset (LSI1_TO) . 235
Table B-31 LSI1_TO Description . 235
Table B-32 PCI Target Image 2 Control (LSI2_CTL) . 236
Table B-33 LSI2_CTL Description . 236
Table B-34 PCI Target Image 2 Base Address Register (LSI2_BS) . 237
Table B-35 LSI2_BS Description . 237
Table B-36 PCI Target Image 2 Bound Address Register (LSI2_BD) . 237
Table B-37 LSI2_BD Description . 238
Table B-38 PCI Target Image 2 Translation Offset (LSI2_TO) . 238
Table B-39 LSI2_TO Description . 238
Table B-40 PCI Target Image 3 Control (LSI3_CTL) . 239
18

Table of Contents
Table B-41 LSI3_CTL Description . 239
Table B-42 PCI Target Image 3 Base Address Register (LSI3_BS) . 240
Table B-43 LSI3_BS Description . 240
Table B-44 PCI Target Image 3 Bound Address Register (LSI3_BD) . 240
Table B-45 LSI3_BD Description . 241
Table B-46 PCI Target Image 3 Translation Offset (LSI3_TO) . 241
Table B-47 LSI3_TO Description . 241
Table B-48 Special Cycle Control Register (SCYC_CTL) . 242
Table B-49 SCYC_CTL Description . 242
Table B-50 Special Cycle PCI Bus Address Register (SCYC_ADDR) . 242
Table B-51 SCYC_ADDR Description . 243
Table B-52 Special Cycle Swap/Compare Enable Register (SCYC_EN) 243
Table B-53 SCYC_EN Description . 243
Table B-54 Special Cycle Compare Data Register . 244
Table B-55 SCYC_CMP Description . 244
Table B-56 Special Cycle Swap Data Register (SCYC_SWP) . 244
Table B-57 SCYC_SWP Description . 245
Table B-58 PCI Miscellaneous Register (LMISC) . 245
Table B-59 SLSI Description . 245
Table B-60 Special PCI Target Image (SLSI) . 246
Table B-61 SLSI Description . 246
Table B-62 PCI Command Error Log Register (L_CMDERR) . 247
Table B-63 L_CMDERR Description . 248
Table B-64 PCI Address Error Log (LAERR) . 248
Table B-65 LAERR Description . 249
Table B-66 PCI Target Image 4 Control Register (LSI4_CTL) . 249
Table B-67 LSI4_CTL Description . 249
Table B-68 PCI Target Image 4 Base Address Register (LSI4_BS) . 250
Table B-69 LSI4_BS Description . 251
Table B-70 PCI Target Image 4 Bound Address Register (LSI4_BD) . 251
Table B-71 LSI4_BD Description . 251
Table B-72 PCI Target Image 4 Translation Offset (LSI4_TO) . 252
Table B-73 LSI4_TO Description . 252
Table B-74 PCI Target Image 5 Control Register (LSI5_CTL) . 252
Table B-75 LSI5_CTL Description . 253
Table B-76 PCI Target Image 5 Base Address Register (LSI5_BS) . 254
Table B-77 LSI5_BS Description . 254
Table B-78 PCI Target Image 5 Bound Address Register (LSI5_BD) . 254
Table B-79 LSI5_BD Description . 255
Table B-80 PCI Target Image 5 Translation Offset (LSI5_TO) . 255
Table B-81 LSI5_TO Description . 255
Table B-82 PCI Target Image 6 Control Register (LSI6_CTL) . 256
Table B-83 LSI6_CTL Description . 256
Table B-84 PCI Target Image 6 Base Address Register (LSI6_BS) . 257
Table B-85 LSI1_BS Description . 257
Table B-86 PCI Target Image 6 Translation Offset (LS16_TO) . 257
Table B-87 LSI6_BD Description . 258
Table B-88 PCI Target Image 6 Translation Offset (LSI6_TO) . 258
19

VMIVME-7697 Product Manual
Table B-89 LSI6_TO Description . 258
Table B-90 PCI Target Image 7 Control Register (LSI7_CTL) . 259
Table B-91 LSI7_CTL Description . 259
Table B-92 PCI Target Image 7 Base Address Register (LSI7_BS) . 260
Table B-93 LSI7_BS Description . 260
Table B-94 PCI Target Image 7 Bound Address Register (LSI7_BD) . 260
Table B-95 LSI7_BD Description . 261
Table B-96 PCI Target Image 7 Translation Offset (LSI7_TO) . 261
Table B-97 LSI7_TO Description . 261
Table B-98 DMA Transfer Control Register (DCTL) . 262
Table B-99 DCTL Description . 262
Table B-100 DMA Transfer Byte Count Register (DTBC) . 263
Table B-101 DTBC Description . 263
Table B-102 DMA PCI Bus Address Register (DLA) . 263
Table B-103 DLA Description . 264
Table B-104 DMA VMEbus Address Register (DVA) . 264
Table B-105 DVA Description . 264
Table B-106 DMA Command Packet Pointer (DCPP) . 265
Table B-107 DCPP Description . 265
Table B-108 DMA General Control/Status Register (DGCS) . 265
Table B-109 DGCS Description . 266
Table B-110 DMA Linked List Update Enable Register (D_LLUE) . 267
Table B-111 D_LLUE Description . 267
Table B-112 PCI Interrupt Enable Register (LINT_EN) . 268
Table B-113 LINT_EN Description . 268
Table B-114 PCI Interrupt Status Register (LINT_STAT) . 270
Table B-115 LINT_STAT Description . 270
Table B-116 PCI Interrupt Map 0 Register (LINT_MAP0) . 272
Table B-117 LINT_MAP0 Description . 272
Table B-118 PCI Interrupt Map 1 Register (LINT_MAP1) . 273
Table B-119 LINT_MAP1 Description . 273
Table B-120 VMEbus Interrupt Enable Register (VINT_EN) . 274
Table B-121 VINT_EN Description . 274
Table B-122 VMEbus Interrupt Status Register (VINT_STAT) . 276
Table B-123 VINT_STAT Description . 277
Table B-124 VME Interrupt Map 0 Register (VINT_MAP0) . 278
Table B-125 VINT_MAP0 Description . 278
Table B-126 VME Interrupt Map 1 Register (VINT_MAP1) . 279
Table B-127 VINT_MAP1 Description . 279
Table B-128 Interrupt STATUS/ID Out Register (STATID) . 279
Table B-129 STATID Description . 280
Table B-130 VIRQ1 STATUS/ID Register (V1_STATID) . 280
Table B-131 V1_STATID Description . 280
Table B-132 VIRQ2 STATUS/ID Register (V2_STATID) . 281
Table B-133 V2_STATID Description . 281
Table B-134 VIRQ3 STATUS/ID Register (V3_STATID) . 282
Table B-135 V3_STATID Description . 282
Table B-136 VIRQ4 STATUS/ID Register (V4_STATID) . 283
20

Table of Contents
Table B-137 V4_STATID Description . 283
Table B-138 VIRQ5 STATUS/ID Register(V5_STATID) . 284
Table B-139 V5_STATID Description . 284
Table B-140 VIRQ6 STATUS/ID Register (V6_STATID) . 285
Table B-141 V6_STATID Description . 285
Table B-142 VIRQ7 STATUS/ID Register (V7_STATID) . 286
Table B-143 V7_STATID Description . 286
Table B-144 PCI Interrupt Map 2 Register (LINT_MAP2) . 287
Table B-145 LINT_MAP2 Description . 287
Table B-146 VME Interrupt Map 2 Register (VINT_MAP2) . 288
Table B-147 VINT_MAP2 Description . 288
Table B-148 Mailbox 0 Register (MBOX0) . 289
Table B-149 DVA Description . 289
Table B-150 Mailbox 1 Register (MBOX1) . 289
Table B-151 DVA Description . 289
Table B-152 Mailbox 2 Register (MBOX2) . 290
Table B-153 DVA Description . 290
Table B-154 Mailbox 3 Register (MBOX3) . 290
Table B-155 DVA Description . 291
Table B-156 Semaphore 0 Register (SEMA0) . 291
Table B-157 SEMA0 Description . 291
Table B-158 Semaphore 1 Register (SEMA1) . 292
Table B-159 SEMA1 Description . 292
Table B-160 Master Control Register (MAST_CTL) . 293
Table B-161 MAST_CTL Description . 293
Table B-162 Miscellaneous Control Register (MISC_CTL) . 295
Table B-163 MISC_CTL Description . 295
Table B-164 Miscellaneous Status Register (MISC_STAT) . 296
Table B-165 MISC_STAT Description . 297
Table B-166 User AM Codes Register (USER_AM) . 297
Table B-167 USER_AM Description . 298
Table B-168 VMEbus Slave Image 0 Control (VSI0_CTL) . 298
Table B-169 VSI0_CTL Description . 298
Table B-170 VMEbus Slave Image 0 Base Address Register (VSI0_BS) 299
Table B-171 VSI0_BS Description . 300
Table B-172 VMEbus Slave Image 0 Bound Address Register (VSI0_BD) 300
Table B-173 VSI0_BD Description . 300
Table B-174 VMEbus Slave Image 0 Translation Offset (VSI0_TO) . 301
Table B-175 VSI0_TO Description . 301
Table B-176 VMEbus Slave Image 1 Control (VSI1_CTL) . 301
Table B-177 VSI1_CTL Description . 302
Table B-178 VMEbus Slave Image 1 Base Address Register (VSI1_BS) 303
Table B-179 VSI1_BS Description . 303
Table B-180 VMEbus Slave Image 1 Bound Address Register (VSI1_BD) 303
Table B-181 VSI1_BD Description . 303
Table B-182 VMEbus Slave Image 1 Translation Offset (VSI1_TO) . 304
Table B-183 VSI1_TO Description . 304
Table B-184 VMEbus Slave Image 2 Control (VSI2_CTL) . 304
21

VMIVME-7697 Product Manual
Table B-185 VSI2_CTL Description . 305
Table B-186 VMEbus Slave Image 2 Base Address Register (VSI2_BS) 306
Table B-187 VSI2_BS Description . 306
Table B-188 VMEbus Slave Image 2 Bound Address Register (VSI2_BD) 306
Table B-189 VSI2_BD Description . 306
Table B-190 VMEbus Slave Image 2 Translation Offset (VSI2_TO) . 307
Table B-191 VSI2_TO Description . 307
Table B-192 VMEbus Slave Image 3 Control (VSI3_CTL) . 307
Table B-193 VSI3_CTL Description . 307
Table B-194 VMEbus Slave Image 3 Base Address Register (VSI3_BS) 308
Table B-195 VSI3_BS Description . 309
Table B-196 VMEbus Slave Image 3 Bound Address Register (VSI3_BD) 309
Table B-197 VSI3_BD Description . 309
Table B-198 VMEbus Slave Image 3 Translation Offset (VSI3_TO) . 309
Table B-199 VSI3_TO Description . 310
Table B-200 Location Monitor Control Register (LM_CTL) . 310
Table B-201 LM_CTL Description . 310
Table B-202 Location Monitor Base Address Register (LM_BS) . 311
Table B-203 LM_BS Description . 311
Table B-204 VMEbus Register Access Image Control Register (VRAI_CTL) 311
Table B-205 VRAI_CTL Description . 312
Table B-206 VMEbus Register Access Image Base Address Register (VRAI_BS) 312
Table B-207 VRAI_BS Description . 313
Table B-208 VMEbus CSR Control Register (VCSR_CTL) . 313
Table B-209 VCSR_CTL Description . 313
Table B-210 VMEbus CSR Translation Offset (VCSR_TO) . 314
Table B-211 VCSR_TO Description . 314
Table B-212 VMEbus AM Code Error Log (V_AMERR) . 315
Table B-213 V_AMERR Description . 315
Table B-214 VMEbus Address Error Log (VAERR) . 316
Table B-215 VAERR Description . 316
Table B-216 VMEbus Slave Image 4 Control (VSI4_CTL) . 316
Table B-217 VSI4_CTL Description . 317
Table B-218 VMEbus Slave Image 4 Base Address Register (VSI4_BS) 318
Table B-219 VSI4_BS Description . 318
Table B-220 VMEbus Slave Image 4 Bound Address Register (VSI4_BD) 318
Table B-221 VSI4_BD Description . 319
Table B-222 VMEbus Slave Image 4 Translation Offset (VSI4_TO) . 319
Table B-223 VSI4_TO Description . 319
Table B-224 VMEbus Slave Image 5 Control (VSI5_CTL) . 320
Table B-225 VSI5_CTL Description . 320
Table B-226 VMEbus Slave Image 5 Base Address Register (VSI5_BS) 321
Table B-227 VSI5_BS Description . 321
Table B-228 VMEbus Slave Image 5 Bound Address Register (VSI5_BD) 321
Table B-229 VSI5_BD Description . 322
Table B-230 VMEbus Slave Image 5 Translation Offset (VSI5_TO) . 322
Table B-231 VSI5_TO Description . 322
Table B-232 VMEbus Slave Image 6 Control (VS16_CTL) . 323
22

Table of Contents
Table B-233 VSI6_CTL Description . 323
Table B-234 VMEbus Slave Image 6 Base Address Register (VSI6_BS) 324
Table B-235 VSI6_BS Description . 324
Table B-236 VMEbus Slave Image 6 Bound Address Register (VSI6_BD) 324
Table B-237 VSI6_BD Description . 325
Table B-238 VMEbus Slave Image 6 Translation Offset (VSI6_TO) . 325
Table B-239 VSI6_TO Description . 325
Table B-240 VMEbus Slave Image 7 Control (VSI7_CTL) . 326
Table B-241 VSI7_CTL Description . 326
Table B-242 VMEbus Slave Image 7 Base Address Register (VSI7_BS) 327
Table B-243 VSI7_BS Description . 327
Table B-244 VMEbus Slave Image 7 Bound Address Register (VSI7_BD) 327
Table B-245 VSI7_BD Description . 328
Table B-246 VMEbus Slave Image 7 Translation Offset (VSI7_TO) . 328
Table B-247 VSI7_TO Description . 328
Table B-248 VMEbus CSR Bit Clear Register (VCSR_CLR) . 329
Table B-249 VCSR_CLR Description . 329
Table B-250 VMEbus CSR Bit Set Register (VCSR_SET) . 329
Table B-251 VCSR_SET Description . 330
Table B-252 VMEbus CSR Base Address Register (VCSR_BS) . 330
Table B-253 VCSR_BS Description . 330
Table C-1 PCI Slave Channel Performance . 348
Table C-2 VME Slave Channel Performance . 348
Table C-3 DMA Channel Performance . 349
Table D-1 VMEbus Signal Drive Strength Requirements . 352
Table D-2 VMEbus Transceiver Requirements . 352
Table D-3 Reset Signals . 358
Table E-1 Ambient to Junction Thermal Impedance . 365
Table E-2 Maximum Universe II Junction Temperature . 365
Table F-1 Mapping of 32-bit Little-Endian PCI Bus to 32-bit VMEbus . 367
Table F-2 Mapping of 32-bit Little-Endian PCI Bus to 64-bit VMEbus . 369
Table G-1 Recommended Operating Conditions . 371
Table G-2 Absolute Maximum Ratings . 371
Table G-3 Power Dissipation . 372
23

VMIVME-7697 Product Manual
24

Overview
Introduction

VMIC’s VMIVME-7697 is a complete IBM PC/AT-compatible Pentium III
processor-based computer with the additional benefits of Eurocard construction and
full compatibility with the VMEbus Specification Rev. C.1. The VMIVME-7697, with
advanced VMEbus interface and DRAM that is dual-ported to the VMEbus, is ideal
for multiprocessor applications.

The CPU board contains a Pentium III high-performance microprocessor and
functions as a standard PC/AT, executing a PC/AT-type power-on self-test, then
boots up MS-DOS, Windows 3.11, Windows 95, Windows NT, or any other
PC/AT-compatible operating system.

The VMIVME-7697 programmer may quickly and easily control all the VMEbus
functions simply by linking to a library of VMEbus interrupt and control functions.
This library is available with VMIC’s VMISFT-9420 IOWorks Access software for
Windows NT users.

The VMIVME-7697 also provides capabilities beyond the features of a typical IBM
PC/AT-compatible CPU including general-purpose timers, a programmable
watchdog timer, a bootable Flash Disk system, and nonvolatile, battery-backed
SRAM. These features make the unit ideal for embedded applications.
25

VMIVME-7697 Product Manual
Organization of the Manual

This manual is composed of the following chapters and appendices:

Chapter 1 - General Information introduces the interface, the Universe II chip, and
provides the reader with information about references, concepts, and conventions
required to use the manual.

Chapter 2 - Functional Description describes the VMIVME-7697 VMEbus board and
the Universe II functions, beginning with overall functionality.

Chapter 3 - Auxiliary Functions describes the programmable bus timeout timer
capability of the VMIVME-7697 VMEbus interface and the BERR* signal-masking
capability of the interface.

Chapter 4 - Endian Conversion includes the instructions for endian conversion.

Chapter 5 - PCI/VMEbus Deadlock describes a deadlock scenario that could occur
when using the interface and describes how to avoid this.

Chapter 6 - Universe II Errata and Enhancements describes errata associated with the
Universe II that must be considered when programming the VMIVME-7697 VMEbus
interface.

Chapter 7 - Description of Signals describes the various VMEbus and PCI signals
used on the VMIVME-7697 board.

Chapter 8 - Signals and DC characteristics details the pin assignments and DC
characteristics for the Universe II chip signals, the PCI bus address and data pins, the
VMEbus address pins, pin assignments for power and ground, and the pin
assignments for the two BGA packages.

Appendix A - Interface Registers includes references necessary for the implementation
of the VMIVME-7697 VMEbus interface. Appendix A provides reference I/O maps
and register-level descriptions of the interface.

Appendix B - Universe II Registers includes references necessary for the
implementation of the VMIVME-7697 VMEbus interface. Appendix B provides
reference I/O maps and register-level descriptions of the Universe II registers.

Appendix C - Performance describes the data transfer performance of the PCI Slave
channel, the VME Slave channel, and the DMA channel.

Appendix D - Typical Applications provides a general description of the applications
for which the Universe II may be used.

Appendix E - Reliability Prediction designed to help the user to estimate the inherent
reliability of the Universe II.

Appendix F - Cycle Mapping illustrates the mapping of 32-bit Little-Endian PCI bus to
the 32 and 64-bit VMEbus.

Appendix G - Operating and Storage Conditions describes the recommended storage
and operating environments.
26

References
References

For the most up-to-date specifications for the VMIVME-7697, please refer to:

 VMIC specification number 800-007697-000
The following books refer to the Tundra Universe-based interface available in the
VMIVME-7697:

VMIVME-7697, Tundra Universe II™-Based VMEbus Interface
Product Manual

VMIC Doc. No. 500-007697-001

VMEbus Interface Components Manual
Tundra Semiconductor Corporation

603 March Rd.
Kanata, Ontario

Canada, K2K 2M5
(613) 592-0714 FAX (613) 592-1320

www.tundra.com

There are many books widely available on the subject of general PC/AT use and
programming. Some reference sources helpful in using or programming the
VMIVME-7697 include:

PCI Special Interest Group
P.O. Box 14070

Portland, OR 97214
(800) 433-5177 (U.S.) (503) 797-4207 (International) FAX (503) 234-6762

www.pcisig.com

Award BIOS
Award Software International, Inc.

777 East Middle Field Road
Mountain View, CA 94043-4023

(650) 237-6800 FAX: (650) 968-0274 BBS: (650) 968-0249
www.award.com

The VMEbus interrupt and control software library references included for
Windows NT:

VMISFT-9420 IOWorks Access User’s Guide
Doc. No. 520-009420-910

VMIC
12090 South Memorial Parkway

Huntsville, AL 35803-3308
(800) 322-3616 FAX: (256) 882-0859

www.vmic.com

For a detailed description and specification of the VMEbus, please refer to:
27

VMIVME-7697 Product Manual
VMEbus Specification Rev. C. and The VMEbus Handbook
VMEbus International Trade Association (VITA)

7825 East Gelding Drive
Suite No. 104

Scottsdale, AZ 85260
(602) 951-8866 FAX: (602) 951-0720

 www.vita.com

VMEbus Specification Rev. C.1 and The VMEbus Handbook
VITA

VMEbus International trade Association
7825 East Gelding Drie

No. 104
Scottsdale, AZ 85260

(602) 951-8866 FAX: (602) 951-0720
www.vita.com
28

Safety Summary
Safety Summary

The following general safety precautions must be observed during all phases of the
operation, service, and repair of this product. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of this product.

VMIC assumes no liability for the customer’s failure to comply with these
requirements.

Ground the System

To minimize shock hazard, the chassis and system cabinet must be connected to an
electrical ground. A three-conductor AC power cable should be used. The power
cable must either be plugged into an approved three-contact electrical outlet or used
with a three-contact to two-contact adapter with the grounding wire (green) firmly
connected to an electrical ground (safety ground) at the power outlet.

Do Not Operate in an Explosive Atmosphere

Do not operate the system in the presence of flammable gases or fumes. Operation of
any electrical system in such an environment constitutes a definite safety hazard.

Keep Away from Live Circuits

Operating personnel must not remove product covers. Component replacement and
internal adjustments must be made by qualified maintenance personnel. Do not
replace components with power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed. To avoid injuries,
always disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone

Do not attempt internal service or adjustment unless another person capable of
rendering first aid and resuscitation is present.

Do Not Substitute Parts or Modify System

Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification to the product. Return the product to
VMIC for service and repair to ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede only potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present in this system. Use extreme
caution when handling, testing, and adjusting.

W A R N I N G
29

VMIVME-7697 Product Manual
Safety Symbols Used in This Manual

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding
1000 V are so marked).

Protective conductor terminal. For protection against electrical shock in case of a fault.
Used with field wiring terminals to indicate the terminal which must be connected to
ground before operating equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common, as
well as providing protection against electrical shock in case of a fault. Before
operating the equipment, terminal marked with this symbol must be connected to
ground in the manner described in the installation (operation) manual.

Frame or chassis terminal. A connection to the frame (chassis) of the equipment which
normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

The STOP symbol informs the operator that a practice or procedure should not be
performed. Actions could result in injury or death to personnel, or could result in
damage to or destruction of part or all of the system.

The WARNING sign denotes a hazard. It calls attention to a procedure, a practice, or
condition, which, if not correctly performed or adhered to, could result in injury or
death to personnel. This symbol also alerts the reader to procedures or operating
levels which will result in the misuse of or damage to the VMEbus interface.

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, a
practice, or a condition, which, if not correctly performed or adhered to, could result
in damage to or destruction of part or all of the system.

The NOTE sign denotes important information. It calls attention to a procedure, a
practice, a condition or the like, which is essential to highlight.

Note: This symbol indicates text built by VMIC and injected into Tundra provided
information.

OR

OR

Stop

 W A R N I N G
30

Notation and Terminology
Notation and Terminology

This product bridges the traditionally divergent worlds of Intel-based PCs and
Motorola-based VMEbus controllers; therefore, some confusion over conventional
notation and terminology may exist. Every effort has been made to make this manual
consistent by adhering to conventions typical for the Motorola/VMEbus world;
nevertheless, users in both camps should review the following notes:

• Hexadecimal numbers are listed Motorola-style, prefixed with a dollar sign:
$F79, for example. By contrast, this same number would be signified 0F79H
according to the Intel convention, or 0xF79 by many programmers. Less
common are forms such as F79h or the mathematician’s F7916.

• An 8-bit quantity is termed a byte, a 16-bit quantity is termed a word, and a
32-bit quantity is termed a longword. The Intel convention is similar, although
their 32-bit quantity is more often called a doubleword.

• Motorola programmers should note that Intel processors have an I/O bus that
is completely independent from the memory bus. Every effort has been made in
the manual to clarify this by referring to registers and logical entities in I/O
space by prefixing I/O addresses as such. Thus, a register at I/O $140 is not the
same as a register at $140, since the latter is on the memory bus while the former
is on the I/O bus.

• Intel programmers should note that addresses are listed in this manual using a
linear, flat-memory model rather than the old segment:offset model associated
with Intel Real Mode programming. Thus, a ROM chip at a segment:offset
address of C000:0 will be listed in this manual as being at address $C0000. For
reference, here are some quick conversion formulas:

Segment:Offset to Linear Address

Linear Address = (Segment × 16) + Offset

Linear Address to Segment:Offset

Segment = ((Linear Address ÷ 65536) − remainder) × 4096

Offset = remainder × 65536

Where remainder = the fractional part of (Linear Address ÷ 65536)

Note that there are many possible segment:offset addresses for a single location. The
formula above will provide a unique segment:offset address by forcing the segment to
an even 64 Kbyte boundary, for example, $C000, $E000, etc. When using this formula,
make sure to round the offset calculation properly!

Signals

Signals on the VMEbus and PCI bus are either active high or active low. Active low
signals are defined as true (asserted) when they are at logic low. Similarly, active high
signals are defined as true at a logic high. Signals are considered asserted when active
and negated when inactive, irrespective of voltage levels.
31

VMIVME-7697 Product Manual
For voltage levels, the use of 0 indicates a low voltage while a 1 indicates a high
voltage.

The names of Universe II signals on the VMEbus interface start with the letter V (for
example, VRSYSRST#). Input signals on that interface start with VR (for example,
VRSYSRST#), output signals start with ‘VX’ (for example, VXBERR). The table below
shows the convention for denoting active low signals.

To eliminate ambiguity, the expression external master is used to denote a master that
is not the Universe II (or is a different Universe II). The capitalized expression Master
Interface is used to denote the Universe II as bus master. The expression external target
is used to denote a target that is not the Universe II (or is a different Universe II). The
capitalized expression Target Interface or Slave Interface is used to denote the Universe
II as target (or slave) of the bus. For example if the Universe II accesses a memory chip
on the PCI bus, we might write: The PCI Master Interface writes to the external PCI target.

Suffixes for Active Low Signals

Suffix Used for Example

active low signals on PCI, and RST#

active low signals on VMEbus interface of the Universe II VRSYSRST#

SIGNAL* active low signals on the VMEbus backplane SYSRESET*
32

CHAPTER

1

General Information
Contents

Document Overview . 35
Tundra Corporation Reprinted Information . 36
Benefits of the Universe II . 37
Past and Future of the Universe . 39

Introduction

The VMIVME-7697 PCI-to-VMEbus interface is built around the Tundra Universe II
interface chip (CA91C142) and provides the following features:

• 33 MHz PCI local bus interface with five separate PCI-to-VMEbus slave images
(windows)

• High-performance 64-bit (multiplexed) VMEbus interface with four separate
VMEbus-to-PCI slave images (windows)

• Programmable DMA controller with linked list support
• VMEbus system controller functionality
• Automatic slot 1 controller detection
• PCI and VMEbus interrupt generation
• VMEbus interrupt handler
• Communication support via four 32-bit mailbox registers with interrupt

capabilities
• Real-time OS support with eight semaphores
• Master/Slave endian conversion hardware (Patent Pending)
• Non slot 1 bus timeout timer
• Auxiliary BERR VME address and Address Modifier capture with interrupt
33

1 VMIVME-7697 Product Manual
Since the interface board is built around the Tundra Universe II chip, the majority of
this documentation is extracted from the Universe II manual itself. However, there are
features of the Universe II chip that are not supported at the board level, such as a
64-bit PCI interface, JTAG testability, and certain powerup options. These
unsupported features are appropriately noted within the documentation.

In addition, auxiliary functionality has been added to provide various features such as
master/slave endian conversion and a non slot 1 bus timeout timer.

Programming the VMIVME-7697 VMEbus Interface

The VMIVME-7697 VMEbus interface is configured by programming the auxiliary
function global interrupt mask register, the external system registers, and the
Universe II Control and Status Registers. In addition, the board has four jumpers
which configure the board for generating/receiving VMEbus reset, asserting SYSFAIL
on powerup, and mapping the Universe II registers in memory or I/O space. Refer to
Chapter 2, Functional Description.

The base address of the various registers are located in either configuration space or
memory and can be accessed using PCI BIOS calls, or VMIC control function library
software. Refer to Appendix A for a complete description of interface registers.

In order to enable access to the VMEbus, both bits (11,10) must be set to high in the
System COMM register located at $D800E in memory.
34

Document Overview 1
Document Overview

This document serves as both a programmer’s instruction manual and a reference
guide to the VMIVME-7697 VMEbus interface. The manual is organized as follows:

• Chapter 1 - General Information - Introduces the interface, the
Universe II chip, and provides the reader with information about references,
concepts, and conventions required to use the manual.

• Chapter 2 - Functional Description - Describes the PCI-to-VMEbus interface
and the Universe II functions, beginning with overall functionality.

• Chapter 3 - Auxiliary Functions - Describes the programmable bus timeout
timer capability of the VMIVME-7697 VMEbus interface and the BERR*
address/address modifier capture capability.

• Chapter 4 - Endian Conversion - Includes the instructions for endian
conversion.

• Chapter 5 - PCI/VMEbus Deadlock - Describes a deadlock scenario that could
occur when using the PCI-to-VMEbus interface and describes how to avoid this.

• Chapter 6 - Universe II Errata and Enhancements - Describes errata associated
with the Universe II that must be considered when programming the
VMIVME-7697 VMEbus interface.

• Chapter 7 - Description of Signals - Describes the various VMEbus and PCI
signals used on the VMIVME-7697 board.

• Chapter 8 - Signals and DC characteristics - Details the pin assignments and DC
characteristics for the Universe II chip signals, the PCI bus address and data
pins, the VMEbus address pins, pin assignments for power and ground, and the
pin assignments for the two BGA packages.

• Appendix A - PCI-to-VMEbus Interface Registers - Includes references
necessary for the implementation of the VMIVME-7697 VMEbus interface.
Appendix A provides reference I/O maps and register-level descriptions of the
interface.

• Appendix B - Universe II Registers - Includes references necessary for the
implementation of the VMIVME-7697 VMEbus interface. Appendix B provides
reference I/O maps and register-level descriptions of the Universe II registers.

• Appendix C - Performance - Describes the data transfer performance of the PCI
Slave channel, the VME Slave channel, and the DMA channel.

• Appendix D - Typical Applications - Provides a general description of the
applications for which the Universe II may be used.

• Appendix E - Reliability Prediction - Designed to help the user to estimate the
inherent reliability of the Universe II.

• Appendix F - Cycle Mapping - Illustrates the mapping of 32-bit Little-Endian
PCI bus to the 32-bit and 64-bit VMEbus.

• Appendix G - Operating and Storage Conditions - Describes the recommended
storage and operating environments.
35

1 VMIVME-7697 Product Manual
Tundra Corporation Reprinted Information

The information about the Tundra Universe II product is provided by Tundra
Corporation and is reprinted here within with permission. This material is used
extensively throughout this document. The only changes made to this text were made
for section numbering purposes; VMIC-specific information injected directly into the
Tundra text is preceded by the VMIC logo:

All of Chapter 2 is provided by Tundra except for the following VMIC-generated
sections: Architectural Overview of the VMIVME-7697 VMEbus Interface on page 41,
PCI-to-VMEbus Interface Jumpers on page 43, Linked-List Operation on page 131, FIFO
Operation and Bus Ownership on page 137.

Chapters 3, 4, 5, and 6, are exclusively VMIC.

Appendix A contains the following VMIC information:

• the auxiliary function global interrupt mask register,
• the system register section, and
• the mailbox register section.

The Universe Control and Status Register material in Appendix B is a direct reprint of
the Tundra-provided information.

Appendixes B thru G are reprinted information from Tundra.
36

Benefits of the Universe II 1
Benefits of the Universe II

Interfacing the VMEbus with PCI presents a number of opportunities and challenges.
The Universe II solves the problems and allows you to benefit from the opportunities.

The opportunities involve merging the best of the VMEbus and PCI bus worlds. The
VMEbus is a proven standard specifically designed to support embedded systems.
The distributed environment of the VMEbus supports multiprocessing and real-time
intensive applications. A large number of off-the-shelf boards, software, and chassis
components are available. VMEbus supports 21-slot systems without bridging, and is
continually evolving while providing backward compatibility. Hot swap solutions
and higher performance protocols have been defined and will be incorporated in
future revisions of VMEbus.

Meanwhile, PCI has become a standard local bus. As a result, the leading
semiconductor vendors have built PCI support into their newest processor and
peripheral families.

The challenges involved in interfacing VMEbus to PCI include: address mapping,
byte-lane swapping, and cycle mapping.

To allow VMEbus single-board computer vendors to benefit from PCI components,
while overcoming the challenges involved in merging PCI with VMEbus, Tundra has
developed a PCI-to-VMEbus interface controller, the Universe II. The Universe II is
the industry-proven, high-performance 64-bit VMEbus-to-PCI interface, fully
compliant with VME64 and tailored for the new generation of high performance PCI
processors and peripherals.

The availability of the Universe II eases the development of multimaster,
multiprocessor architectures on VMEbus systems using PCI. The Universe II is ideally
suited for CPU boards acting as either master or slave in the VMEbus system and that
require access to PCI systems. With the Universe II, you know that as your system
increases in complexity, you have silicon that continues to provide everything you
need in a bridge. The elegant design of the Tundra Universe II, some of the best
applications engineers in the industry, and this manual will make it as easy as
possible for you to use the most sophisticated VMEbus interface.

Features

The Universe II (CA91C142) is the de facto industry-standard PCI bus-to-VMEbus
bridge, providing:

• 64-bit, 33 MHz PCI bus interface
• fully compliant, high-performance 64-bit VMEbus interface
• integral FIFOs buffer multiple transactions in both directions
• programmable DMA controller with linked-list support
• industry leading performance
• wide range of VMEbus address and data transfer modes
37

1 VMIVME-7697 Product Manual
– A32/A24/A16 master and slave, (not A64 or A40)

– D64/D32/D16/D08 master and slave, (no MD32)

– MBLT, BLT, ADOH, RMW, LOCK, location monitors

• nine user-programmable slave images on VMEbus and PCI bus ports
• seven interrupt lines on either bus and flexible mapping of software and

hardware sources of hardware interrupt
• automatic initialization for slave-only applications
• flexible register set, programmable from both the VMEbus and the PCI bus

• four mailboxes and location monitor for message-oriented system
• support for RMWs, lock cycles, and semaphores guarantee exclusive access
• bus isolation mode for board maintenance, diagnostics, and live fault recovery
• full VMEbus system controller functionality
• several powerup options
• IEEE 1149.1 JTAG testability support
• commercial (0º to 70º C), industrial (-40º to 85º C) and extended temperature

(-55º to 125ºC) options
• available in 313-pin Plastic BGA and 324-pin Ceramic BGA.
38

Past and Future of the Universe 1
Past and Future of the Universe

The Universe II (CA91C142) is a pin and software-compatible revision of the Universe
(CA91C042). The Universe was developed subsequently to the SCV64, Tundra’s VME
interface for non-PCI applications. The Universe II is the next generation of the
Universe, and has been designed to exceed new customer expectations and to correct
errata in the original Universe. The rich set of feature and performance enhancements
are based on extensive consultation with our customers.

The Universe II offers a low-risk, feature-rich, high-performance solution for
VMEbus-based PCI applications. Some of the performance enhancements offered by
the Universe II include:

• improved PCI bus bandwidth utilization
• improved register access performance
• improved VMEbus slave and VME master performance
• increased FIFO depth
• DMA improved to optimize transfer rate on each bus
• improved linked-list DMA performance
• significantly improved coupled transfer performance
• reduced power consumption

Additional features include:

• four mailbox registers
• eight semaphores
• four location monitors
• new software interrupts
• more slave images

The Universe II revision is another example of Tundra’s commitment to supporting
the VMEbus community. Tundra is actively participating in VMEbus, PCI bus, and
Compact PCI bus standards and vendor associations, as well as related SIGs. Tundra
will continue to propose and support enhancements to these specifications, while
increasing both the range of options available to our customers and the compatibility
between VME and PCI. Please visit their web site at http://www.tundra.com to keep
abreast of these developments.
39

1 VMIVME-7697 Product Manual
40

CHAPTER

2

Functional Description
Contents

PCI-to-VMEbus Interface Jumpers . 43
Universe II Architectural Overview . 45
VMEbus Interface . 49
Universe as VMEbus Slave . 57
PCI Bus Interface . 73
Universe II as PCI Target . 81
Slave Image Programming . 93
Bus Error Handling . 101
Interrupter . 105
Interrupt Generation . 105
Interrupt Handling . 113
DMA Controller . 122
Registers . 144
Universe II Registers . 146
Utility Functions . 155

Architectural Overview of the VMIVME-7697 VMEbus Interface

The VMIVME-7697 Universe II based PCI-to-VMEbus interface consists of a Universe
II chip, endian conversion hardware, and miscellaneous auxiliary functions hardware.
These components are graphically illustrated in Figure 2-1. The majority of the
interface functionality including the basic PCI-to-VMEbus interface, DMA controller
functionality, and VMEbus system controller functionality, is provided by the
Universe II chip. The auxiliary functions hardware provides the system registers, the
endian conversion control logic, the non-slot 1 bus timeout timer, the VME BERR
address capture and interrupt logic, as well as various other miscellaneous logic.
41

2 VMIVME-7697 Product Manual
Figure 2-1 Universe II-Based PCI-to-VMEbus Interface

Universe II
Endian

Conversion
Muxing

VMEbus
Buffers

to
ISA Bridge

PCI
Auxiliary
Functions

PCI Bus VMEbus

ISA
42

PCI-to-VMEbus Interface Jumpers 2
PCI-to-VMEbus Interface Jumpers

The VMEbus interface is tested for system operation and shipped with
factory-installed header jumpers. The interface is shipped with the VME board as part
of the VMIVME-7697. Figure 2-2 illustrates the physical location of the
user-configurable jumpers. Table 2-1 on page 44 lists each jumper designator, its
function, and the factory-installed default configuration.

Figure 2-2 Edge View of the Jumper Locations

E
6

E
7

E
8

E4
E1

0
E1

1 E
12

E3

E1
3

J1

E17

J2

J5

E
1

P
3

E
14

E
2

E
16

E
15

E
18

E
9

T
P

1

43

2 VMIVME-7697 Product Manual
Please refer to the VMIVME-7697 Volume I manual for other jumper settings.

The Universe II chip maps the 4K register set in both I/O and memory space each
with 4 Kbyte resolution. The registers may thus be accessed using either mode.
However, in order to maintain compatibility with existing software, memory space
access should be used. The address of the registers are contained in the Universe II’s
configuration space base address registers 0 and 1 (for example, config space offset
0x10 and 0x14).

Table 2-1 VMIVME-7697 Interface Jumper Functions and Factory Settings

Jumper Function Factory Setting

E6 Installed - Drives VMEbus SYSRESET
Removed - Does not drive

Installed

E7 Installed - Receives VMEbus SYSRESET
Removed - Does not receive

Installed

E8 Installed - SYSFAIL not asserted upon reset
Removed - SYSFAIL asserted upon reset

Installed

E9 Installed - Universe memory mapped
Removed - Universe I/O mapped

Installed (Should not be
removed)
44

Universe II Architectural Overview 2
Universe II Architectural Overview

This section introduces the general architecture of the Universe II. This description
makes frequent reference to the functional block diagram provided in Figure 2-3 on
page 2-46. Notice that for each of the interfaces, VMEbus and PCI bus, there are three
functionally distinct modules: master module, slave module, and interrupt module.
These modules are connected to the different functional channels operating in the
Universe II. These channels are:

• VMEbus Slave Channel
• PCI bus Target Channel
• DMA Channel
• Interrupt Channel
• Register Channel

The Architectural Overview is organized into the following sections:

• VMEbus Interface
• PCI Bus Interface
• Interrupter and Interrupt Handler
• DMA Controller

These sections describe the operation of the Universe II in terms of the different
modules and channels illustrated in Figure 2-3.

VMEbus Interface

Universe II as VMEbus Slave

The Universe II VMEbus Slave Channel accepts all of the addressing and data transfer
modes documented in the VME64 specification (except A64 and those intended to
augment 3U applications, for example, A40 and MD32). Incoming write transactions
from the VMEbus may be treated as either coupled or posted, depending upon the
programming of the VMEbus slave image (see VME Slave Images on page 93). With
posted write transactions, data is written to a Posted Write Receive FIFO (RXFIFO),
and the VMEbus master receives data acknowledgment from the Universe II. Write
data is transferred to the PCI resource from the RXFIFO without the involvement of
the initiating VMEbus master (see Posted Writes on page 58 for a full explanation of
this operation). With a coupled cycle, the VMEbus master only receives data
acknowledgment when the transaction is complete on the PCI bus. This means that
the VMEbus is unavailable to other masters while the PCI bus transaction is executed.
45

2 VMIVME-7697 Product Manual
Read transactions may be either prefetched or coupled. If enabled by the user, a
prefetched read is initiated when a VMEbus master requests a block read transaction
(BLT or MBLT) and this mode is enabled. When the Universe II receives the block read
request, it begins to fill its Read Data FIFO (RDFIFO) using burst transactions from
the PCI resource. The initiating VMEbus master then acquires its block read data from
the RDFIFO rather than from the PCI resources directly.

Universe II as VMEbus Master

The Universe II becomes VMEbus master when the VMEbus Master Interface is
internally requested by the PCI Bus Target Channel, the DMA Channel, or the
Interrupt Channel. The Interrupt Channel always has priority over the other two
channels. Several mechanisms are available to configure the relative priority that the
PCI Bus Target Channel and DMA Channel have over ownership of the VMEbus
Master Interface.

Figure 2-3 Architectural Diagram for the Universe II

PCI
Slave

PCI
Interrupts

Register Channel

DMA Channel

PCI
Master

VME
Master

VME
Interrupts

VME
Slave

VMEbus Slave Channel

VMEbusPCI
BUS

Interrupt Channel

PCI Bus Slave Channel

PCI Bus
Interface

VMEbus
Interface

DMA bidirectional FIFO

prefetch read FIFO
coupled read

posted writes FIFO

coupled read logic

posted writes FIFO

Interrupter

Interrupt Handler
46

Universe II Architectural Overview 2
The Universe II’s VMEbus Master Interface generates all of the addressing and data
transfer modes documented in the VME64 specification (except A64 and those
intended to augment 3U applications, for example, A40 and MD32). The Universe II is
also compatible with all VMEbus modules conforming to pre-VME64 specifications.
As VMEbus master, the Universe II supports Read-Modify-Write (RMW), and
Address-Only-with-Handshake (ADOH) but does not accept RETRY* as a
termination from the VMEbus slave. The ADOH cycle is used to implement the
VMEbus Lock command allowing a PCI master to lock VMEbus resources.
47

2 VMIVME-7697 Product Manual
PCI Bus Interface

Universe II as PCI Target

Read transactions from the PCI bus are always processed as coupled. Write
transactions may be either coupled or posted, depending upon the setting of the PCI
bus target image (see PCI Bus Target Images on page 96). With a posted write
transaction, write data is written to a Posted Write Transmit FIFO (TXFIFO) and the
PCI bus master receives data acknowledgment from the Universe II with zero
wait-states. Meanwhile, the Universe II obtains the VMEbus and writes the data to the
VMEbus resource independent of the initiating PCI master (see Posted Writes on
page 87 for a full description of

this operation).

To allow PCI masters to perform RMW and ADOH cycles, the Universe II provides a
Special Cycle Generator. The Special Cycle Generator can be used in combination
with a VMEbus ownership function to guarantee PCI masters exclusive access to
VMEbus resources over several VMEbus transactions (see The Special Cycle
Generator on page 88 and Using the VOWN bit on page 91 for a full description of
this functionality).

Universe II as PCI Master

The Universe II becomes PCI master when the PCI Master Interface is internally
requested by the VMEbus Slave Channel or the DMA Channel. There are mechanisms
provided which allow the user to configure the relative priority of the VMEbus Slave
Channel and the DMA Channel.

Interrupter and Interrupt Handler

Interrupter

The Universe II Interrupt Channel provides a flexible scheme to map interrupts to the
PCI bus or VMEbus Interface. Interrupts are generated from hardware or software
sources (see Interrupt Generation on page 105 and Interrupt Handling on page 113 for
a full description of hardware and software sources). Interrupt sources can be mapped
to any of the PCI bus or VMEbus interrupt output pins. Interrupt sources mapped to
VMEbus interrupts are generated on the VMEbus interrupt output pins VIRQ# [7:1].
When a software and hardware source are assigned to the same VIRQn# pin, the
software source always has higher priority.

Interrupt sources mapped to PCI bus interrupts are generated on one of the INT# [7:0]
pins. To be fully PCI compliant, all interrupt sources must be routed to a single INT#
pin.
48

PCI Bus Interface 2
For VMEbus interrupt outputs, the Universe II interrupter supplies an 8-bit
STATUS/ID to a VMEbus interrupt handler during the IACK cycle, and optionally
generates an internal interrupt to signal that the interrupt vector has been provided
(see VMEbus Interrupt Generation on page 109).

Interrupts mapped to PCI bus outputs are serviced by the PCI interrupt controller.
The CPU determines which interrupt sources are active by reading an interrupt status
register in the Universe II. The source negates its interrupt when it has been serviced
by the CPU (see PCI Interrupt Generation on page 107).

VMEbus Interrupt Handling

A VMEbus interrupt triggers the Universe II to generate a normal VMEbus IACK
cycle and generate the specified interrupt output. When the IACK cycle is complete,
the Universe II releases the VMEbus and the interrupt vector is read by the PCI
resource servicing the interrupt output. Software interrupts are ROAK, while
hardware and internal interrupts are RORA.

DMA Controller

The Universe II provides an internal DMA controller for high performance data
transfer between the PCI and VMEbus. DMA operations between the source and
destination bus are decoupled through the use of a single bidirectional FIFO
(DMAFIFO). Parameters for the DMA transfer are software configurable in the
Universe II registers (see DMA Controller on page 122).

The principal mechanism for DMA transfers is the same for operations in either
direction (PCI-to-VMEbus, or VMEbus-to-PCI), only the relative identity of the source
and destination bus changes. In a DMA transfer, the Universe II gains control of the
source bus and reads data into its DMAFIFO. Following specific rules of DMAFIFO
operation (see FIFO Operation and Bus Ownership on page 137), it then acquires the
destination bus and writes data from its DMAFIFO.

The DMA controller can be programmed to perform multiple blocks of transfers using
entries in a linked-list. The DMA will work through the transfers in the linked-list
following pointers at the end of each linked-list entry. Linked-list operation is initiated
through a pointer in an internal Universe II register, but the linked-list itself resides in
PCI bus memory.

VMEbus Interface

The VMEbus Interface incorporates all operations associated with the VMEbus. This
includes master and slave functions, VMEbus configuration and system controller
functions. These operations are covered as follows:

• VMEbus Requester below,
• Universe II as VMEbus Master on page 53,
• Universe as VMEbus Slave on page 57,
• VMEbus Configuration on page 66,
49

2 VMIVME-7697 Product Manual
• Automatic Slot Identification on page 67, and
• System Controller Functions on page 69.
• BI-Mode on page 71.

For information concerning the Universe II VMEbus slave images, see VME Slave
Images on page 93.

VMEbus Requester

Internal Arbitration for VMEbus Requests

Three different internal channels within the Universe II require use of the VMEbus:
the Interrupt Channel, the PCI Target Channel, and the DMA Channel. These three
channels do not directly request the VMEbus, instead they compete internally for
ownership of the VMEbus Master Interface.

The Interrupt Channel (refer to Figure 2-3 on page 46) always has the highest priority
for access to the VMEbus Master Interface. The DMA and PCI Target Channel
requests are handled in a fair manner. The channel awarded VMEbus mastership
maintains ownership of the VMEbus until it is ‘done’. The definition of ‘done’ for each
channel is given below in VMEbus Release on page 51.

The Interrupt Channel requests the VMEbus master when it detects an enabled
VMEbus interrupt line asserted and needs to run an interrupt acknowledge cycle to
acquire the STATUS/ID.

The PCI Target Channel requests the VMEbus Master Interface to service the
following conditions:

• the TXFIFO contains a complete transaction, or
• if there is a coupled cycle request.

The DMA Channel requests the VMEbus Master Interface if:

• the DMAFIFO has 64 bytes available (if it is reading from the VMEbus) or 64
bytes in its FIFO (if it is writing to the VMEbus), or

• the DMA block is complete (see DMA Controller on page 122).

In the case of the DMA Channel, the user can optionally use the DMA Channel
VMEbus-off-timer to further qualify requests from this channel. The
VMEbus-off-timer controls how long the DMA remains off the VMEbus before
making another request (see PCI-to-VMEbus Transfers on page 137).
50

PCI Bus Interface 2
The Universe II provides a software mechanism for VMEbus acquisition through the
VMEbus ownership bit (VOWN in the MAST_CTL register, Table B-160 on page 293).
When the VMEbus ownership bit is set, the Universe II acquires the VMEbus and sets
an acknowledgment bit (VOWN_ACK in the MAST_CTL register) and optionally
generates an interrupt to the PCI bus (see VME Lock Cycles—Exclusive Access to
VMEbus Resources on page 90). The Universe II maintains VMEbus ownership until
the ownership bit is cleared. During the VMEbus tenure initiated by setting the
ownership bit, only the PCI Target Channel and Interrupt Channel can access the
VMEbus Master Interface.

Request Modes

Request Levels

The Universe II is software configurable to request on all VMEbus request levels:
BR3*, BR2*, BR1*, and BR0*. The default setting is for level 3 VMEbus request. The
request level is a global programming option set through the VRL field in the
MAST_CTL register (Table B-160 on page 293). The programmed request level is used
by the VMEbus Master Interface regardless of the channel (Interrupt Channel, DMA
Channel, or PCI Target Channel) currently accessing the VMEbus Master Interface.

Fair and Demand

The Universe II requester may be programmed for either Fair or Demand mode. The
request mode is a global programming option set through the VRM bits in the
MAST_CTL register (Table B-160 on page 293).

In Fair mode, the Universe II does not request the VMEbus until there are no other
VMEbus requests pending at its programmed level. This mode ensures that every
requester on an equal level has access to the bus.

In Demand mode (the default setting), the requester asserts its bus request regardless
of the state of the BRn* line. By requesting the bus frequently, requesters far down the
daisy chain may be prevented from ever obtaining bus ownership. This is referred to
as “starving” those requesters. Note that in order to achieve fairness, all bus
requesters in a VMEbus system must be set to Fair mode.

VMEbus Release

The Universe II VMEbus requester can be configured as either RWD (release when
done) or ROR (release on request) using the VREL bit in the MAST_CTL register
(Table B-160 on page 293). The default setting is for RWD. ROR means the Universe II
releases BBSY* only if a bus request is pending from another VMEbus master and
once the channel that is the current owner of the VMEbus Master Interface is done.
Ownership of the bus may be assumed by another channel without re-arbitration on
51

2 VMIVME-7697 Product Manual
the bus if there are no pending requests on any level on the VMEbus. When set for
RWD, the VMEbus Master Interface releases BBSY* when the channel accessing the
VMEbus Master Interface is done (see below). Note that the MYBBSY status bit in the
MISC_STAT register (Table B-164 on page 296) is set while the Universe II asserts the
BBSY* output.

In RWD mode, the VMEbus is released when the channel (for example, the DMA
Channel) is done, even if another channel has a request pending (for example, the PCI
Target Channel). A re-arbitration of the VMEbus is required for any pending channel
requests. Each channel has a set of rules that determine when it is ‘done’ with its
VMEbus transaction.

The Interrupt Channel is done when a single interrupt acknowledge cycle is complete.

The PCI Target Channel is done under the following conditions:

• when the TXFIFO is empty (the TXFE bit is set by the Universe II in the
MISC_STAT register, Table B-164 on page 296),

• when the maximum number of bytes per PCI Target Channel tenure has been
reached (as programmed with the PWON field in the MAST_CTL register, Table
B-160 on page 293)1,

• after each posted write, if the PWON is equal to 0b1111, as programmed in the
MAST_CTL register, Table B-160 on page 293

• when the coupled cycle is complete and the Coupled Window Timer has
expired,

• if the Coupled Request Timer (page 85) expires before a coupled cycle is retried
by a PCI master, or

• when VMEbus ownership is acquired with the VOWN bit in the MAST_CTL
register and then the VOWN bit is cleared (in other words, if the VMEbus is
acquired through the use of the VOWN bit, the Universe II does not release
BBSY* until the VOWN bit is cleared—see VME Lock Cycles—Exclusive Access
to VMEbus Resources on page 90).

The DMA Channel is done under the following conditions (see FIFO Operation and
Bus Ownership on page 137 and DMA Error Handling on page 141):

• DMAFIFO full during VMEbus-to-PCI bus transfers,
• DMAFIFO empty during PCI bus to VMEbus transfers,
• if an error is encountered during the DMA operation,
• the DMA VMEbus Tenure Byte Counter has expired, or
• DMA block is complete.

The Universe II does not monitor BCLR* and so its ownership of the VMEbus is not
affected by the assertion of BCLR*.

1. This setting is overridden if the VOWN mechanism is used.
52

PCI Bus Interface 2
Universe II as VMEbus Master

The Universe II becomes VMEbus master as a result of the following chain of events:

1. a PCI master accesses a Universe II PCI target image (leading to VMEbus access)
or the DMA Channel initiates a transaction,

2. either the Universe II PCI Target Channel or the DMA Channel wins access to
the VMEbus Master Interface through internal arbitration, and

3. the Universe II Master Interface requests and obtains ownership of the VMEbus.

The Universe II will also become VMEbus master if the VMEbus ownership bit is set
(see VME Lock Cycles—Exclusive Access to VMEbus Resources on page 90) and in its
role in VMEbus interrupt handling (see VMEbus Interrupt Handling on page 114).

The following sections describe the function of the Universe II as a VMEbus master in
terms of the different phases of a VMEbus transaction: addressing, data transfer, cycle
termination, and bus release.

The Universe I chip is unable to perform a 64-bit (double type) floating point
operation on a read from VMEbus address, e.g., T=*Vme and T=T+1.0. This problem
does not occur with the Universe II chip. However, to maintain backward
compatibility, use two operations.

Addressing Capabilities

Depending upon the programming of the PCI target image (see PCI Bus Target
Images on page 96), the Universe II generates A16, A24, A32, and CR/CSR address
phases on the VMEbus. The address mode and type (supervisor/non-privileged and
program/data) are also programmed through the PCI target image. Address
pipelining is provided except during MBLT cycles, where the VMEbus specification
does not permit it.

The address and AM codes that are generated by the Universe II are functions of the
PCI address and PCI target image programming (see PCI Bus Target Images on
page 96) or through DMA programming.

The Universe II generates Address-Only-with-Handshake (ADOH) cycles in support
of lock commands for A16, A24, and A32 spaces. ADOH cycles must be generated
through the Special Cycle Generator (see The Special Cycle Generator on page 88).

There are two User Defined AM codes that can be programmed through the
USER_AM register (Table B-166 on page 297). The USER_AM register can only be
used to generate and accept AM codes 0x10 through 0x1F. These AM codes are
designated as USERAM codes in the VMEbus specification. After power-up, the two
values in the USER_AM register default to the same VME64 user-defined AM code.

If USER_AM codes are used with the VMEbus Slave Interface, ensure that the cycles
use 32-bit addressing, and that only single cycle accesses are used. BLTs and MBLTs
with USER_AM codes will lead to unpredictable behavior.
53

2 VMIVME-7697 Product Manual
Data Transfer Capabilities

The data transfer between the PCI bus and VMEbus is depicted in Figure 2-4 on page
55. The Universe II can be seen as a funnel where the mouth of the funnel is the data
width of the PCI transaction. The end of the funnel is the maximum VMEbus data
width programmed into the PCI target image. For example, consider a 32-bit PCI
transaction accessing a PCI target image with VDW set to 16 bits. A data beat with all
byte lanes enabled will be broken into two 16-bit cycles on the VMEbus. If the PCI
target image is also programmed with block transfers enabled, the 32-bit PCI data
beat will result in a D16 block transfer on the VMEbus. Write data is unpacked to the
VMEbus and read data is packed to the PCI bus data width.

If the data width of the PCI data beat is the same as the maximum data width of the
PCI target image, then the Universe II maps the data beat to an equivalent VMEbus
cycle. For example, consider a 32-bit PCI transaction accessing a PCI target image
with VDW set to 32 bits. A data beat with all byte lanes enabled is translated to a
single 32-bit cycle on the VMEbus.

As the general rule, if the PCI bus data width is less than the VMEbus data width then
there is no packing or unpacking between the two buses. The only exception to this is
during 32-bit PCI multi-data beat transactions to a PCI target image programmed
with maximum VMEbus data width of 64 bits. In this case, packing/unpacking occurs
to make maximum use of the full bandwidth on both buses.

Only aligned VMEbus transactions are generated, so if the requested PCI data beat
has unaligned or non-contiguous byte enables, then it is broken into multiple aligned
VMEbus transactions no wider than the programmed VMEbus data width. For
example, consider a three-byte PCI data beat (on a 32-bit PCI bus) accessing a PCI
target image with VDW set to 16 bits. The three-byte PCI data beat will be broken into
two aligned VMEbus cycles: a single-byte cycle and a double-byte cycle (the ordering
of the two cycles depends on the arrangement of the byte enables in the PCI data
beat). If in the above example the PCI target image has a VDW set to 8 bits, then the
three-byte PCI data beat will be broken into three single-byte VMEbus cycles.

BLT/MBLT cycles are initiated on the VMEbus if the PCI target image has been
programmed with this capacity (see PCI Bus Target Images on page 96). The length of
the BLT/MBLT transactions on the VMEbus will be determined by the initiating PCI
transaction or the setting of the PWON field in the MAST_CTL register (Table B-160
on page 293). For example, a single data beat PCI transaction queued in the TXFIFO
results in a single data beat block transfer on the VMEbus. With the PWON field, the
user can specify a transfer byte count that will be dequeued from the TXFIFO before
the VMEbus Master Interface relinquishes the VMEbus. The PWON field specifies the
minimum tenure of the Universe II on the VMEbus. However, tenure is extended if
the VOWN bit in the MAST_CTL register is set (see Using the VOWN bit on page 91).

During DMA operations, the Universe II will attempt block transfers to the maximum
length permitted by the VMEbus specification (256 bytes for BLT, 2 Kbytes for MBLT)
and as limited by the VON counter (see DMA VMEbus Ownership on page 126).
54

PCI Bus Interface 2
The Universe II provides indivisible transactions with the VMEbus lock commands
and the VMEbus ownership bit (see VME Lock Cycles—Exclusive Access to VMEbus
Resources on page 90).

Data width of PCI
transaction

Maximum data width
programmed into PCI
target image

PCI BUS SIDE VMEbus SIDE

Data width exceeds
maximum data width of the
PCI target image

Data width fits with
maximum data width of the
PCI target image

Figure 2-4 Influence of Transaction Data Width and Target Image
Data Width on Data Packing/Unpacking

WRITE (UNPACKING)

READ (PACKING)
55

2 VMIVME-7697 Product Manual
Cycle Terminations

The Universe II accepts BERR* or DTACK* as cycle terminations from the VMEbus
slave. It does not support RETRY*. The assertion of BERR* indicates that some type of
system error occurred and the transaction did not complete properly. A VMEbus
BERR* received by the Universe II during a coupled transaction is communicated to
the PCI master as a Target-Abort. No information is logged if the Universe II receives
BERR* in a coupled transaction. If an error occurs during a posted write to the
VMEbus, the Universe II uses the V_AMERR register (Table B-212 on page 315) to log
the AM code of the transaction (AMERR [5:0]), and the state of the IACK* signal
(IACK bit, to indicate whether the error occurred during an IACK cycle). The current
transaction in the FIFO is purged. The V_AMERR register also records if multiple
errors have occurred (with the M_ERR bit), although the actual number of errors is
not given. The error log is qualified by the value of the V_STAT bit. The address of the
errored transaction is latched in the V_AERR register (Table B-214 on page 316). When
the Universe II receives a VMEbus error during a posted write, it generates an
interrupt on the VMEbus and/or PCI bus depending upon whether the VERR and
LERR interrupts are enabled (see Interrupt Handling on page 113, Table B-120 on page
274).

DTACK* signals the successful completion of the transaction.
56

Universe as VMEbus Slave 2
Universe as VMEbus Slave

This section describes the VMEbus Slave Channel and other aspects of the Universe II
as VMEbus slave. The following topics are discussed:

• Coupled Transfers on page 58,

• Posted Writes on page 58,
• Prefetched Block Reads on page 60,
• VMEbus Lock Commands (ADOH Cycles) on page 62,
• VMEbus Read-Modify-Write Cycles (RMW Cycles) on page 62,
• Location Monitors on page 63 and
• Generating PCI Configuration Cycles on page 64.

The Universe II becomes VMEbus slave when one of its eight programmed slave
images or register images are accessed by a VMEbus master (note that the Universe II
cannot reflect a cycle on the VMEbus and access itself). Depending upon the
programming of the slave image, different possible transaction types result (see VME
Slave Images on page 93 for a description of the types of accesses to which the
Universe II responds).

For reads, the transaction can be coupled or prefetched. Similarly, write transactions
can be coupled or posted. The type of read or write transaction allowed by the slave
image depends on the programming of that particular VMEbus slave image (see
Figure 2-5 below and VME Slave Images on page 93). To ensure sequential
consistency, prefetched reads, coupled reads, and coupled write operations are only
processed once all previously posted write operations have completed (for example,
the RXFIFO is empty).

Figure 2-5 VMEbus Slave Channel Dataflow

Incoming cycles from the VMEbus can have data widths of 8-bit, 16-bit, 32-bit, and
64-bit. Although the PCI bus supports only two port sizes (32-bit and 64-bit), the byte
lanes on the PCI bus can be individually enabled, which allows each type of VMEbus
transaction to be directly mapped to the PCI data bus.

RDFIFO

RXFIFO

PCI BUS
MASTER

INTERFACE

VMEbus
SLAVE

INTERFACE

PREFETCHED READ DATA

COUPLED READ DATA

COUPLED WRITE DATA

POSTED WRITE DATA
57

2 VMIVME-7697 Product Manual
In order for a VMEbus slave image to respond to an incoming cycle, the PCI Master
Interface must be enabled (bit BM in the PCI_CSR register, Table B-4 on page 222). If
data is enqueued in the VMEbus Slave Channel FIFO and the PCI BM bit is cleared,
the FIFO will empty but no additional transfers will be received.

The VMIVME-7697 interface supports a 32-bit PCI bus only

Coupled Transfers

A coupled transfer means that no FIFO is involved in the transaction and handshakes
are relayed directly through the Universe II. Coupled mode is the default setting for
the VMEbus slave images. Coupled transfers only proceed once all posted write
entries in the RXFIFO have completed (see Posted Writes below).

A coupled cycle with multiple data beats (for example, block transfers) on the
VMEbus side is always mapped to single data beat transactions on the PCI bus, where
each data beat on the VMEbus is mapped to a single data beat transaction on the PCI
bus regardless of data beat size. No packing or unpacking is performed. The only
exception to this is when a D64 VMEbus transaction is mapped to D32 on the PCI bus.
The data width of the PCI bus depends on the programming of the VMEbus slave
image (32-bit or 64-bit, see VME Slave Images on page 93). The Universe II enables the
appropriate byte lanes on the PCI bus as required by the VMEbus transaction. For
example, a VMEbus slave image programmed to generate 32-bit transactions on the
PCI bus is accessed by a VMEbus D08 BLT read transaction (prefetching is not
enabled in this slave image). The transaction is mapped to single data beat 32-bit
transfers on the PCI bus with only one byte lane enabled.

Target-Retry from a PCI target is not communicated to the VMEbus master. PCI
transactions terminated with Target-Abort or Master-Abort are terminated on the
VMEbus with BERR*. Note that the Universe II sets the R_TA or R_MA bits in the
PCI_CS register (Table B-4 on page 222) when it receives a Target-Abort or
Master-Abort.

Posted Writes

A posted write involves the VMEbus master writing data into the Universe II’s
RXFIFO, rather than directly to the PCI address. Write transactions from the VMEbus
are processed as posted if the PWEN bit is set in the VMEbus slave image control
register (see VME Slave Images on page 93). If the bit is cleared (the default setting)
the transaction bypasses the FIFO and is performed as a coupled transfer (see above).
Incoming posted writes from the VMEbus are queued in the 32-entry deep RXFIFO.
(The RXFIFO is the same structure as the RDFIFO. The different names are used for
the FIFO’s two roles, only one of which it can implement at once.) Each entry in the
RXFIFO can contain 64 address bits, or 64 data bits. Each incoming VMEbus address
phase, whether it is 16-bit, 24-bit, or 32-bit, constitutes a single entry in the RXFIFO
and is followed by subsequent data entries. The address entry contains the translated
58

Universe as VMEbus Slave 2
PCI address space and command information mapping relevant to the particular
VMEbus slave image that has been accessed (see VME Slave Images on page 93). For
this reason, any re-programming of VMEbus slave image attributes will only be
reflected in RXFIFO entries queued after the re-programming. Transactions queued
before the re-programming are delivered to the PCI bus with the VMEbus slave image
attributes that were in use before the re-programming.

Incoming non-block write transactions from the VMEbus require two entries in the
RXFIFO: one address entry (with accompanying command information) and one data
entry. The size of the data entry corresponds to the data width of the VMEbus transfer.
Block transfers require at least two entries: one entry for address and command
information, and one or more data entries. The VMEbus Slave Channel packs data
received during block transfers to the full 64-bit width of the RXFIFO. For example, a
ten data phase D16 BLT transfer (20 bytes in total) does not require ten data entries in
the RXFIFO. Instead, eight of the ten data phases (16 bits per data phase for a total of
128 bits) are packed into two 64-bit data entries in the RXFIFO. The final two data
phases (32 bits combined) are queued in the next RXFIFO entry. When you add the
address entry to the three data entries, this VMEbus block write has been stored in a
total of four RXFIFO entries.

Unlike the PCI Target Channel (see page 81), the VMEbus Slave Channel does not
retry the VMEbus if the RXFIFO does not have enough space to hold an incoming
VMEbus write transaction. Instead, the DTACK* response from the VMEbus Slave
Interface is delayed until space becomes available in the RXFIFO. Since single
transfers require two entries in the RXFIFO, two entries must be freed up before the
VMEbus Slave Interface asserts DTACK*. Similarly, the VMEbus Slave Channel
requires two available RXFIFO entries before it can acknowledge the first data phase
of a BLT or MBLT transfer (one entry for the address phase and one for the first data
phase). If the RXFIFO has no available space for subsequent data phases in the block
transfer, then the VMEbus Slave Interface delays assertion of DTACK* until a single
entry is available for the next data phase in the block transfer.

The PCI Master Interface uses transactions queued in the RXFIFO to generate
transactions on the PCI bus. No address phase deletion is performed, so the length of
a transaction on the PCI bus corresponds to the length of the queued VMEbus
transaction. Non-block transfers are generated on the PCI bus as single data beat
transactions. Block transfers are generated as one or more burst transactions, where
the length of the burst transaction is programmed by the (PABS field in the
MAST_CTL register, Table B-160 on page 293).

The Universe II always packs or unpacks data from the VMEbus transaction to the
PCI bus data width programmed into the VMEbus slave image (with all PCI bus byte
lanes enabled). For example, consider a VMEbus slave image programmed for posted
writes and a D32 PCI bus that is accessed with a VMEbus D16 block write transaction.
The VMEbus D16 write transaction is mapped to a D32 write transaction on the PCI
bus with all byte lanes enabled. (However, note that a single D16 transaction from the
VMEbus is mapped to the PCI bus as D32 with only two byte lanes enabled).
59

2 VMIVME-7697 Product Manual
During block transfers, the Universe II will pack data to the full negotiated width of
the PCI bus. This may imply that for block transfers that begin or end on addresses
not aligned to the PCI bus width different byte lanes may be enabled during each data
beat.

If an error occurs during a posted write to the PCI bus, the Universe II uses the
L_CMDERR register (Table B-62 on page 247) to log the command information for the
transaction (CMDERR [3:0]). The L_CMDERR register also records if multiple errors
have occurred (with the M_ERR bit) although the actual number is not given. The
error log is qualified with the L_STAT bit. The address of the errored transaction is
latched in the LAERR register (Table B-64 on page 248). An interrupt is generated on
the VMEbus and/or PCI bus depending upon whether the VERR and LERR
interrupts are enabled (see Bus Error Handling on page 101 and Interrupt Handling
on page 113).

Prefetched Block Reads

Prefetching of read data occurs for VMEbus block transfers (BLT, MBLT) in those slave
images that have the prefetch enable (PREN) bit set (see VME Slave Images on
page 93). In the VMEbus Slave Channel, prefetching is not supported for non
BLT/MBLT transfers.

Without prefetching, block read transactions from a VMEbus master are handled by
the VMEbus Slave Channel as coupled reads. This means that each data phase of the
block transfer is translated to a single data beat transaction on the PCI bus. In
addition, only the amount of data requested during the relevant data phase is fetched
from the PCI bus. For example, a D16 block read transaction with 32 data phases on
the VMEbus maps to 32 PCI bus transactions, where each PCI bus transaction has
only two byte lanes enabled. Note the VMEbus lies idle during the arbitration time
required for each PCI bus transaction, resulting in a considerable performance
degradation.

With prefetching enabled, the VMEbus Slave Channel uses a 32-entry deep RDFIFO to
provide read data to the VMEbus with minimum latency. (The RXFIFO is the same
structure as the RDFIFO. The different names are used for the FIFO’s two roles, only
one of which it can implement at once.) The RDFIFO is 64 bits wide, with additional
bits for control information. If a VMEbus slave image is programmed for prefetching
(see VME Slave Images on page 93), then a block read access to that image causes the
VMEbus Slave Channel to generate aligned burst read transactions on the PCI bus
(the size of the burst read transactions is determined by the setting of the aligned
burst size, PABS in the MAST_CTL register). These PCI burst read transaction are
queued in the RDFIFO and the data is then delivered to the VMEbus. Note that the
first data phase provided to the VMEbus master is essentially a coupled read, but
subsequent data phases in the VMEbus block read are delivered from the RDFIFO and
are essentially decoupled (see Prefetched Reads on page 103 for the impact on bus
error handling).
60

Universe as VMEbus Slave 2
The data width of the transaction on the PCI bus (32-bit or 64-bit) depends on the
setting of the LD64EN bit in the VMEbus slave image control register (e.g. see Table
B-168 on page 298) and the capabilities of the accessed PCI target. Internally, the
prefetched read data is packed to 64 bits, regardless of the width of the PCI bus or the
data width of the original VMEbus block read (no address information is stored with
the data). Once one entry is queued in the RDFIFO, the VMEbus Slave Interface
delivers the data to the VMEbus, unpacking the data as necessary to fit with the data
width of the original VMEbus block read (e.g. D16, or D32). The VMEbus Slave
Interface continuously delivers data from the RDFIFO to the VMEbus master
performing the block read transaction. Because PCI bus data transfer rates exceed
those of the VMEbus, it is unlikely that the RDFIFO will ever be unable to deliver data
to the VMEbus master. For this reason, block read performance on the VMEbus will
be similar to that observed with block writes. However, should the RDFIFO be unable
to deliver data to the VMEbus master (which may happen if there is considerable
traffic on the PCI bus or the PCI bus target has a slow response) the VMEbus Slave
Interface delays DTACK* assertion until an entry is queued and is available for the
VMEbus block read.

On the PCI side, prefetching continues as long as there is room for another transaction
in the RDFIFO and the initiating VMEbus block read is still active. The space required
in the RDFIFO for another PCI burst read transaction is determined by the setting of
the PCI aligned burst size (PABS in the MAST_CTL register, Table B-160 on page 293).
If PABS is set for 32 bytes, there must be four entries available in the RDFIFO; for
aligned burst size set to 64 bytes, eight entries must be available, for aligned burst size
set to 128 bytes, there must be 16 entries available. When there is insufficient room in
the RDFIFO to hold another PCI burst read, the read transactions on the PCI bus are
terminated and only resume if room becomes available for another aligned burst
AND the original VMEbus block read is still active. When the VMEbus block transfer
terminates, any remaining data in the RDFIFO is purged.

Reading on the PCI side will not cross a 1024-byte boundary. The PCI Master Interface
will release FRAME# and the VMEbus Slave Channel will relinquish internal
ownership of the PCI Master Interface when it reaches this boundary. The VMEbus
Slave Channel will re-request internal ownership of the PCI Master Interface as soon
as possible, in order to continue reading from the external PCI target. (As described
elsewhere, the PABS setting determines how much data must be available in the
RDFIFO before the VMEbus Slave Channel continues reading.)

Regardless of the read request, the data width of prefetching on the PCI side is full
width with all byte lanes enabled. If the request is unaligned, then the first PCI data
beat will have only the relevant byte lanes enabled. Subsequent data beats will have
full data width with all byte lanes enabled. If LD64EN is set in the VMEbus Slave
image, the Universe II requests D64 on the PCI bus by asserting REQ64# during the
address phase. If the PCI target does not respond with ACK64#, subsequent data
beats are D32.

If an error occurs on the PCI bus, the Universe II does not translate the error condition
into a BERR* on the VMEbus. Indeed, the Universe II does not directly map the error.
By doing nothing, the Universe II forces the external VMEbus error timer to expire.
61

2 VMIVME-7697 Product Manual
The VMIVME-7697 interface supports a 32-bit PCI bus only

VMEbus Lock Commands (ADOH Cycles)

The Universe II supports VMEbus lock commands as described in the VME64
specification. Under the specification, ADOH cycles are used to execute the lock
command (with a special AM code). Any resource locked on the VMEbus cannot be
accessed by any other resource during the bus tenure of the VMEbus master.

When the Universe II receives a VMEbus lock command, it asserts LOCK# to the
addressed resource on the PCI bus. The PCI Master Interface processes this as a read
transfer (with no data). All subsequent slave VMEbus transactions are coupled while
the Universe II owns PCI LOCK#. Note that the VMEbus Slave Channel has dedicated
access to the PCI Master Interface during the locked transaction. The Universe II holds
the PCI bus lock until the VMEbus lock command is terminated, for example, when
BBSY* is negated.

The Universe II accepts ADOH cycles in any of the slave images when the Universe II
PCI Master Interface is enabled (BM bit in PCI_CSR register) and the images are
programmed to map transactions into PCI Memory Space.

In the event that a Target-Abort or a Master-Abort occurs during a locked transaction
on the PCI bus, the Universe II will relinquish its ownership of LOCK# in accord with
the PCI bus Specification. It is the responsibility of the user to verify the R_MA and
R_TA status bits of the PCI_CSR status register to determine whether or not
ownership of LOCK# was lost.

Once an external VMEbus masters locks the PCI bus, the Universe II DMA will not
perform transfers on the PCI bus until the bus is unlocked.

VMEbus Read-Modify-Write Cycles (RMW Cycles)

A read-modify-write (RMW) cycle allows a VMEbus master to read from a VMEbus
slave and then write to the same resource without relinquishing bus tenure between
the two operations. Each of the Universe II slave images can be programmed to map
RMW transactions to PCI locked transactions. If the LLRMW enable bit is set in the
selected VMEbus slave image control register (e.g. Table B-168 on page 298), then
every non-block slave read is mapped to a coupled PCI locked read. LOCK# will be
held on the PCI bus until AS* is negated on the VMEbus. Every non-block slave read
is assumed to be a RMW since there is no possible indication from the VMEbus master
that the single cycle read is just a read or the beginning of a RMW.
If the LLRMW enable bit is not set and the Universe II receives a VMEbus RMW cycle,
the read and write portions of the cycle will be treated as independent transactions on
the PCI bus: for example, a read followed by a write. The write may be coupled or
decoupled depending on the state of the PWEN bit in the accessed slave image.
62

Universe as VMEbus Slave 2
Note: There may be an adverse performance impact for reads that are processed
through a RMW-capable slave image; this may be accentuated if LOCK# is currently
owned by another PCI master.

RMW cycles are not supported with unaligned or D24 cycles.

When an external VMEbus Master begins a RMW cycle, at some point a read cycle
will appear on the PCI bus. During the time between when the read cycle occurs on
the PCI bus and when the associated write cycle occurs on the PCI bus, no DMA
transfers will occur on the PCI bus.

Register Accesses

See Universe II Registers on page 146 for a full description of register mapping and
register access.

Location Monitors

Universe II has four location monitors to support a VMEbus broadcast capability. The
location monitors’ image is a 4-Kbyte image in A16, A24 or A32 space on the VMEbus.
If enabled, an access to a location monitor causes the PCI Master Interface to generate
an interrupt.

The Location Monitor Control Register (LM_CTL, Table B-200 on page 310) controls
the Universe II’s location monitoring. The EN field of the LM_CTL register enables
the capability. The PGM[1:0] field sets the Program/Data AM code. The SUPER[1:0]
field of the LM_CTL register sets the Supervisor/User AM code to which the
Universe II responds. The VAS[3:0] field of the LM_CTL register specifies the address
space that is monitored. The BS[31:12] field of the location monitor Base Address
Register (LM_BS, Table B-202 on page 311) specifies the lowest address in the 4 Kbyte
range that will be decoded as a location monitor access. While the Universe II is said
to have four location monitors, they all share the same LM_CTL and LM_BS registers.

In address spaces A24 and A16, the respective upper address bits are ignored.

When an access to a location monitor is detected, an interrupt is generated on the PCI
bus. VMEbus address bits [4:3] determine which Location Monitor will be used, and
hence which of four PCI interrupts to generate. (See Location Monitors on page 120
for details on mapping the interrupts from the location monitor.)

The location monitors do not store write data. Read data from the location monitors is
undefined. Location monitors do not support BLT or MBLT transfers.
63

2 VMIVME-7697 Product Manual
Each Universe II on the VMEbus should be programmed to monitor the same 4
Kbytes of addresses on the VMEbus. Note that the Universe II may access its own
location monitor. If the Universe II accesses its own (enabled) location monitor, the
same Universe II generates DTACK* on the VMEbus and thereby terminates its own
cycle. This removes the necessity of the system integrator ensuring that there is
another card enabled to generate DTACK*. The generation of DTACK* happens after
the Universe II has decoded and responded to the cycle. If the location monitor is
accessed by a different master, the Universe II does not respond with DTACK*.

Generating PCI Configuration Cycles

PCI Configuration cycles can be generated by accessing a VMEbus slave image whose
Local Address Space field (LAS) is set for Configuration Space.

Both Type 0 and Type 1 cycles are generated and handled through the same
mechanism. Once a VMEbus cycle is received and mapped to a configuration cycle,
the Universe II compares bits [23:16] of the incoming address with the value stored in
the MAST_CTL Register’s Bus Number field (BUS_NO[7:0] in Table B-160 on page
293). If the bits are the same as the BUS_NO field, then a TYPE 0 access is generated. If
they are not the same, a Type 1 configuration access is generated. The PCI
bus-generated address then becomes an unsigned addition of the incoming VMEbus
address and the VMEbus slave image translation offset.

Generating Configuration Type 0 Cycles

The Universe II asserts one of AD[31:11] on the PCI bus to select a device during a
configuration Type 0 access. To perform a configuration Type 0 cycle on the PCI bus:

• Program the LAS field of VSIx_CTL for Configuration Space,
• Program the VSIx_BS, VSIx_BD registers to some suitable value,
• Program the VSIx_TO register to 0, and
• Program the BUS_NO field of the MAST_CTL register to some value.

Perform a VMEbus access where:

• VA[7:2] identifies the PCI Register Number and will be mapped directly to
AD[7:2],

• VA[10:8] identifies the PCI Function Number and will be mapped directly to
AD[10:8],

• VA[15:11] selects the device on the PCI bus and will be mapped to AD[31:12]
according to Table 2-2 on page 65,

• VA[23:16] matches the BUS_NO in MAST_CTL register, and
• Other address bits are irrelevant—they are not mapped to the PCI bus
64

Universe as VMEbus Slave 2
Generating Configuration Type 1 Cycles

To generate a configuration Type 1 cycle on the VMEbus:

• Program LAS field of VSIx_CTL to Configuration Space,

Table 2-2 PCI Address Line Asserted as a Function of VA[15:11]

VA[15:11]1
PCI Address Line

Asserted2

00000 11

00001 12

00010 13

00011 14

00100 15

00101 16

00110 17

00111 18

01000 19

01001 20

01010 21

01011 22

01100 23

01101 24

01110 25

01111 26

10000 27

10001 28

10010 29

10011 30

10100 31

1The other values of VA[15:11] are not defined and must not be used
2Only one of AD[31:11] is asserted; the other address lines in
AD[31:11] are negated.
65

2 VMIVME-7697 Product Manual
• Program the VSIx_BS, VSIx_BD registers to some suitable value,
• Program the VSIx_TO register to 0 and
• Program the BUS_NO field of the MAST_CTL register to some value.

Perform a VMEbus access where:

• VMEbus Address [7:2] identifies the PCI Register Number,
• VMEbus Address [10:8] identifies the PCI Function Number,
• VMEbus Address [15:11] identifies the PCI Device Number,

• VMEbus Address [23:16] does not match the BUS_NO in MAST_CTL register,
and

• VMEbus Address [31:24] are mapped directly through to the PCI bus.

VMEbus Configuration

The Universe II provides the following functions to assist in the initial configuration
of the VMEbus system:

• First Slot Detector,
• Register Access at Power-up, and
• Auto Slot ID (two methods).

These are described separately below.

First Slot Detector

As specified by the VME64 specification the First Slot Detector module on the
Universe II samples BG3IN* immediately after reset to determine whether the
Universe II’s host board resides in slot 1. The VMEbus specification requires that
BG[3:0]* lines be driven high after reset. This means that if a card is preceded by
another card in the VMEbus system, it will always sample BG3IN* high after reset.
BG3IN* can only be sampled low after reset by the first card in the system (there is no
preceding card to drive BG3IN* high). If BG3IN* is sampled at logic low immediately
after reset (due to the Universe II’s internal pull-down), then the Universe II’s host
board is in slot 1 and the Universe II becomes SYSCON: otherwise, the SYSCON
module is disabled. This mechanism may be overridden by software through clearing
or setting the SYSCON bit in the MISC_CTL register (Table B-162 on page 295).

The Universe II monitors IACK* (rather than IACKIN*) when it is configured as
SYSCON. This permits it to operate as SYSCON in a VMEbus chassis slot other than
slot 1, provided there are only empty slots to its left. The slot with SYSCON in it
becomes a virtual slot 1.
66

Universe as VMEbus Slave 2
VMEbus Register Access at Power-up

The Universe II provides a VMEbus slave image that allows access to all Universe II
Control and Status Registers (UCSR). The base address for this slave image is
programmed through the VRAI_BS register (Table B-207 on page 313). At power-up,
the Universe II can program the VRAI_BS and VRAI_CTL (Table B-204 on page 311)
registers with information specifying the UCSR slave image (see Power-Up Options
on page 160).

Register access at power-up would be used in systems where the Universe II’s card
has no CPU, or where register access for that card needs to be independent of the local
CPU.

Automatic Slot Identification

The Universe II supports two types of Auto-ID functionality. One type uses the Auto
Slot ID technique as described in the VME64 specification. The other type uses a
proprietary method developed by DY4 Systems and implemented in the Tundra
SCV64. Neither system identifies geographical addressing, only the relative position
amongst the boards present in the system (for example, fourth board versus fourth
slot).

Auto-ID prevents the need for jumpers to uniquely identify cards in a system. This
can:

• increase the speed of system level repairs in the field,
• reduce the possibility of incorrect configurations, and
• reduce the number of unique spare cards that must be stocked.

Both methods of Auto ID employed by the Universe II are described below.

Auto Slot ID: VME64 Specified

The VME64 auto ID cycle (described in the VME64 Specification) requires at
power-up that the Auto ID slave

• generate IRQ2*, and
• negate SYSFAIL*.

When the Auto ID slave responds to the Monarch’s IACK cycle, it will

• enable accesses to its CR/CSR space,
• provide a Status/ID to the Monarch indicating the interrupt is an Auto-ID

request,
• assert DTACK*, and
• release IRQ2*.
67

2 VMIVME-7697 Product Manual
The Universe II participates in the VME64 auto ID cycle in either an automatic or
semi-automatic mode. In its fully automatic mode, it holds SYSFAIL* asserted until
SYSRST* is negated. When SYSRST* is negated, the Universe II asserts IRQ2* and
releases SYSFAIL*. In its semi-automatic mode, the Universe II still holds SYSFAIL*
asserted until SYSRST* is negated. However, when SYSRST* is negated, the local CPU
performs diagnostics and local logic sets the AUTOID bit in the MISC_CTL register
(Table B-162 on page 295). This asserts IRQ2* and releases SYSFAIL*.

After SYSFAIL* is released and the Universe II detects a level 2 IACK cycle, it
responds with the STATUS/ID stored in its level 2 STATID register (which defaults to
0xFE).

The Universe II can be programmed so that it will not release SYSFAIL* until the
SYSFAIL bit in the VCSR_CLR register (Table B-249 on page 329) is cleared by local
logic (SYSFAIL* is asserted if the SYSFAIL bit in the VCSR_SET register, Table B-251
on page 330, is set at power-up). Since the system Monarch does not service the
Auto-ID slave until after SYSFAIL* is negated, not clearing the SYSFAIL bit allows the
Auto-ID process to be delayed until the CPU completes local diagnostics. Once local
diagnostics are complete, the CPU clears the SYSFAIL bit and the Auto-ID cycle
proceeds.

The Monarch can perform CR/CSR reads and writes at A[23:19]= 0x00 in CR/CSR
space and re-locate the Universe II’s CR/CSR base address.

Universe II and the Auto-ID Monarch

At power-up an Auto-ID Monarch waits to run a level 2 IACK cycle until after
SYSFAIL* goes high. After the IACK cycle is performed and it has received a
Status/ID indicating an Auto-ID request, the monarch software

• masks IRQ2* (so that it will not service other interrupters at that interrupt level
until current Auto-ID cycle is completed),

• performs an access at 0x00 in CR/CSR space to get information about Auto-ID
slave,

• moves the CR/CSR base address to a new location, and
• unmasks IRQ2* (to allow it to service the next Auto-ID slave).

The Universe II supports monarch activity through its capability to be a level 2
interrupt handler. All other activity must be handled through software residing on the
board.

Auto-ID: A Proprietary Tundra Method

The Universe II uses a proprietary Auto-ID scheme if this is selected as a power-up
option (see Auto-ID on page 163). The Tundra proprietary Auto-ID function identifies
the relative position of each board in the system, without using jumpers or on-board
information. The ID number generated by Auto-ID can then be used to determine the
board’s base address.
68

Universe as VMEbus Slave 2
After any system reset (assertion of SYSRST*), the Auto-ID logic responds to the first
level one IACK cycle on the VMEbus.

After the level one IACK* signal has been asserted (either through IRQ1* or with a
synthesized version), the Universe II in slot 1 counts five clocks from the start of the
cycle and then asserts IACKOUT* to the second board in the system (see Figure 2-6).
All other boards continue counting until they receive IACKIN*, then count four more
clocks and assert IACKOUT* to the next board. Finally, the last board asserts
IACKOUT* and the bus pauses until the data transfer time-out circuit ends the bus
cycle by asserting BERR*.

Figure 2-6 Timing for Auto-ID Cycle

Because all boards are four clocks “wide”, the value in the clock counter is divided by
four to identify the slot in which the board is installed; any remainder is discarded.
Note that since the start of the IACK cycle is not synchronized to SYSCLK, a one count
variation from the theoretical value of the board can occur. However, in all cases the
ID value of a board is greater than that of a board in a lower slot number. The result is
placed in the DY4AUTOID [7:0] field and the DY4DONE bit is set (both are located in
the MISC_STAT register, Table B-164 on page 296).

System Controller Functions

When located in Slot 1 of the VMEbus system (see First Slot Detector on page 66), the
Universe II assumes the role of SYSCON and sets the SYSCON status bit in the
MISC_CTL register (Table B-162 on page 295). In accordance with the VME64
specification, as SYSCON the Universe II provides:

• a system clock driver,
• an arbitration module,
• an IACK Daisy Chain Driver (DCD), and
• a bus timer.

SYSCLK

AS*

DS0✴

IACK✴

IACKOUT✴
(CARD 1)

IACKOUT✴
(CARD 2)

IACKOUT✴
(CARD 3)

ID COUNTER
VALUE

DCBA

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID = 5

ID = 9

ID = 13
69

2 VMIVME-7697 Product Manual
System Clock Driver

The Universe II provides a 16 MHz SYSCLK signal derived from CLK64 when
configured as SYSCON.

VMEbus Arbiter

When the Universe II is SYSCON, the Arbitration Module is enabled. The Arbitration
Module supports the following arbitration modes:

• Fixed Priority Arbitration Mode (PRI),
• Single Level Arbitration (SGL) (a subset of PRI), or
• Round Robin Arbitration Mode (RRS) (default setting).

These are set with the VARB bit in the MISC_CTL register (Table B-162 on page 295).

Fixed Priority Arbitration Mode (PRI)

In this mode, the order of priority is VRBR#[3], VRBR#[2], VRBR#[1], and VRBR#[0] as
defined by the VME64 specification. The Arbitration Module issues a Bus Grant
(VBGO [3:0]#) to the highest requesting level.

If a Bus Request of higher priority than the current bus owner becomes asserted, the
Arbitration Module asserts VBCLR# until the owner releases the bus (VRBBSY# is
negated).

Single Level Arbitration Mode (SGL)

In this mode, a subset of priority mode, all requests and grants are made exclusively
on level 3. Set the Universe II in PRI mode to use this mode.

Round Robin Arbitration Mode (RRS)

This mode arbitrates all levels in a round robin mode, repeatedly scanning from levels
3 to 0. Only one grant is issued per level and one owner is never forced from the bus
in favor of another requester (VBCLR# is never asserted).

Since only one grant is issued per level on each round robin cycle, several scans will
be required to service a queue of requests at one level.

VMEbus Arbiter Time-out

The Universe II’s VMEbus arbiter can be programmed to time-out if the requester
does not assert BBSY* within a specified period. This allows BGOUT to be negated so
that the arbiter may continue with other requesters. The timer is programmed using
the VARBTO field in the MISC_CTL register (Table B-162 on page 295), and can be set
to 16 µs, 256 µs, or disabled. The default setting for the timer is 16 µs. The arbitration
time-out timer has a granularity of 8 µs; setting the timer for 16 µs means the timer
may timeout in as little as 8 µs.
70

Universe as VMEbus Slave 2
IACK Daisy-Chain Driver Module

The IACK Daisy-Chain Driver module is enabled when the Universe II becomes
system controller. This module guarantees that IACKIN* will stay high for at least 30
ns as specified in rule 40 of the VME64 specification.

VMEbus Time-out

A programmable bus timer allows users to select a VMEbus time-out period. The
time-out period is programmed through the VBTO field in the MISC_CTL register
(Table B-162 on page 295) and can be set to 16µs, 32µs, 64µs, 128 µs, 256 µs, 512 µs,
1024 µs, or disabled. The default setting for the timer is 64 µs. The VMEbus Timer
module asserts VXBERR# if a VMEbus transaction times out (indicated by one of the
VMEbus data strobes remaining asserted beyond the time-out period).

The Universe II time-out timer functions only when the interface is the system
controller. The VMIVME-7697 provides a non-slot 1 bus timeout timer. Refer to
Chapter 3 for additional timer information.

BI-Mode

BI-Mode® (Bus Isolation Mode) is a mechanism for logically isolating the Universe II
from the VMEbus. This mechanism is useful for the following purposes:

• implementing hot-standby systems. A system may have two identically
configured boards, one in BI-Mode. If the board that is not in BI-Mode fails, it
can be put in BI-Mode while the spare board is removed from BI-Mode.

• system diagnostics for routine maintenance, or
• fault isolation in the event of a card failure, even if a spare board is not

provided, at least the faulty board can be isolated.

While in BI-Mode, the Universe II data channels cannot be used to communicate
between VMEbus and PCI (Universe II mailboxes do provide a means of
communication). The only traffic permitted is to Universe II registers either through
configuration cycles, the PCI register image, the VMEbus register image, or CR/CSR
space. No IACK cycles will be generated or responded to. No DMA activity will
occur. Any access to other PCI images will result in a Target-Retry. Access to other
VMEbus images will be ignored.

Entering BI-Mode has the following effects.

• The VMEbus Master Interface becomes inactive. PCI Target Channel coupled
accesses will thereafter be retried. The PCI Target Channel Posted Writes FIFO
will continue to accept transactions but will eventually fill and no further
posted writes will be accepted. The DMA FIFO will eventually empty or fill and
no further DMA activity will take place on the PCI bus. The Universe II
VMEbus Master will not service interrupts while in BI-Mode.
71

2 VMIVME-7697 Product Manual
• The Universe II will not respond as a VMEbus slave, except for accesses to the
register image and CR/CSR image.

• The Universe II will not respond to any interrupt it had outstanding. All
VMEbus outputs from the Universe II will be tri-stated, so that the Universe II
will not be driving any VMEbus signals. The only exception to this is the IACK
and BG daisy chains which must remain in operation as before.

There are four ways to cause the Universe II to enter BI-Mode. The Universe II is put
into BI-Mode:

1. if the BI-Mode power-up option is selected (See Power-up Option Descriptions
on page 162 and Table 2-24 on page 161 on page 161),

2. when SYSRST* or RST# is asserted any time after the Universe II has been
powered-up in BI-Mode,

3. when VRIRQ# [1] is asserted, provided that the ENGBI bit in the MISC_CTL
register has been set, or

4. when the BI bit in the MISC_CTL register is set.

Note that when the Universe II is put in BI-Mode, the BI bit in the MISC_CTL register
(Table B-162 on page 295) is set. Clearing this bit ends Bi-Mode.

There are two ways to remove the Universe II from BI-Mode:

1. power-up the Universe II with the BI-Mode option off (see BI-Mode on
page 163), or

2. clear the BI bit in the MISC_CTL register, which will be effective only if the
source of the BI-Mode is no longer active. That is, if VRIRQ# [1] is still being
asserted while the ENGBI bit in the MISC_CTL register is set, then attempting to
clear the BI bit in the MISC_CTL register will not be effective.

The BI-Mode power-up option is not supported in this product.
72

PCI Bus Interface 2
PCI Bus Interface

The PCI Bus Interface is organized as follows:

• PCI Cycles—Overview below,

• Universe II as PCI Master on page 77, and
• Universe II as PCI Target on page 81.

The Universe II PCI Bus Interface is electrically and logically directly connected to the
PCI bus. For information concerning the different types of PCI accesses available, see
PCI Bus Target Images on page 96.

PCI Cycles—Overview

The PCI bus port of the Universe II operates as a PCI compliant port with a 64-bit
multiplexed address/data bus. The Universe II PCI bus Interface is configured as
little-endian using address invariant translation when mapping between the VMEbus
and the PCI bus. Address invariant translation preserves the byte ordering of a data
structure in a little-endian memory map and a big-endian memory map (see
Appendix F).

The Universe II has all the PCI signals described in the PCI specification with the
exception of SBO# and SDONE (since the Universe II does not provide cache
support).

Universe II PCI cycles are synchronous, meaning that bus and control input signals
are externally synchronized to the PCI clock (CLK). PCI cycles are divided into four
phases:

1. request,

2. address phase,

3. data transfer, and

4. cycle termination.

32-Bit Versus 64-Bit PCI

The Universe II is configured with a 32-bit or 64-bit PCI data bus at power-up (see PCI
Bus Width on page 164 for directions on how to configure the PCI bus width.)

The VMIVME-7697 Universe II based VME interface has been configured for 32-bit
PCI operation and does not support 64-bit PCI operation. No attempt should be made
to perform 64-bit PCI accesses.

Each of the Universe II’s VMEbus slave images can be programmed so that VMEbus
transactions are mapped to a 64-bit data bus on the PCI Interface (with the LD64EN
bit, e.g. see Table B-169 on page 298).
73

2 VMIVME-7697 Product Manual
If the VMEbus slave image is programmed with a 64-bit PCI bus data width and if the
Universe II powered up in a 64-bit PCI environment, then the Universe II asserts
REQ64# during the address phase of the PCI transaction. If the PCI target is 64-bit
capable, then it will respond with ACK64# and the Universe II will pack data to the
full width (64 bits) of the PCI bus. If the PCI target is not 64-bit capable, then it does
not assert ACK64# and the Universe II will pack data to a 32-bit PCI bus.

Note that REQ64# will be asserted if LD64EN is set in a 64-bit PCI system
independent of whether the Universe II has a full 64 bits to transfer. This may result in
a performance degradation because of the extra clocks required to assert REQ64# and
to sample ACK64#. Also, there can be some performance degradation when accessing
32-bit targets with LD64EN set. Do not set this bit unless there are 64-bit targets in the
slave image window.

If the VMEbus slave images are not programmed for a 64-bit wide PCI data bus, then
the Universe operates transparently in a 32-bit PCI environment.

Independent of the setting of the LD64EN bit, the Universe II will never attempt a
64-bit cycle on the PCI bus if it is powered up as 32-bit.

PCI Bus Request and Parking

The Universe II supports bus parking. If the Universe II requires the PCI bus it will
assert REQ# only if its GNT# is not currently asserted. When the PCI Master Module
is ready to begin a transaction and its GNT# is asserted, the transfer begins
immediately. This eliminates a possible one clock cycle delay before beginning a
transaction on the PCI bus which would exist if the Universe II did not implement bus
parking. Bus parking is described in Section 3.4.3 of the PCI Specification (Rev. 2.1).

Address Phase

PCI transactions are initiated by asserting FRAME# and driving address and
command information onto the bus. In the VMEbus Slave Channel, the Universe II
calculates the address for the PCI transaction by adding a translation offset to the
VMEbus address (see Universe as VMEbus Slave on page 57).

The command signals (on the C/BE# lines) contain information about Memory space,
cycle type and whether the transaction is read or write. Table 2-3 on page 75 below
gives PCI the command type encoding implemented with the Universe II.
74

PCI Bus Interface 2
Memory Read Multiple and Memory Read Line transactions are aliased to Memory
Read transactions when the Universe II is accessed as a PCI target with these
commands. Likewise, Memory Write and Invalidate is aliased to Memory Write. As a
PCI initiator, the Universe II may generate Memory Read Multiple but never Memory
Read Line.

PCI targets are expected to assert DEVSEL# if they have decoded the access. During a
Configuration cycle, the target is selected by its particular IDSEL. If a target does not
respond with DEVSEL# within 6 clocks, a Master-Abort is generated. The role of
configuration cycles is described in the PCI 2.1 Specification.

Table 2-3 Command Type Encoding for Transfer Type

C/BE# [3:0] for PCI,
C/BE# [7:4] for

non-multiplexed
Command Type Universe II Capability

0000 Interrupt Acknowledge N/A

0001 Special Cycle N/A

0010 I/O Read Target/Master

0011 I/O Write Target/Master

0100 Reserved N/A

0101 Reserved N/A

0110 Memory Read Target/Master

0111 Memory Write Target/Master

1000 Reserved N/A

1001 Reserved N/A

1010 Configuration Read Target/Master

1011 Configuration Write Target/Master

1100 Memory Read Multiple (See Text)

1101 Dual Address Cycle N/A

1110 Memory Read Line (See Text)

1111 Memory Write and Invalidate (See Text)
75

2 VMIVME-7697 Product Manual
Data Transfer

Acknowledgment of a data phase occurs on the first rising clock edge after both
IRDY# and TRDY# are asserted by the master and target, respectively. REQ64# may be
driven during the address phase to indicate that the master wishes to initiate a 64-bit
transaction. The PCI target asserts ACK64# if it is able to respond to the 64-bit
transaction.

Wait cycles are introduced by either the master or the target by deasserting IRDY# or
TRDY#. For write cycles, data is valid on the first rising edge after IRDY# is asserted.
Data is acknowledged by the target on the first rising edge with TRDY# asserted. For
read cycles, data is transferred and acknowledged on first rising edge with both
IRDY# and TRDY# asserted.

A single data transfer cycle is repeated every time IRDY# and TRDY# are both
asserted. The transaction only enters the termination phase when FRAME# is
deasserted (master-initiated termination) or if STOP# is asserted (target-initiated).
When both FRAME# and IRDY# are deasserted (final data phase is complete), the bus
is defined as idle.

Termination Phase

The PCI Bus Interface permits all four types of PCI terminations:

1. Master-Abort: the PCI bus master negates FRAME# when no target responds
(DEVSEL# not asserted) after 6 clock cycles.

2. Target-Disconnect: a termination is requested by the target (STOP# is asserted)
because it is unable to respond within the latency requirements of the PCI
specification or it requires a new address phase. Target-disconnect means that
the transaction is terminated after data is transferred. The Universe II will
deassert REQ# for at least two clock cycles if it receives STOP# from the PCI
target.

3. Target-Retry: termination is requested (STOP# is asserted) by the target because
it cannot currently process the transaction. Retry means that the transaction is
terminated after the address phase without any data transfer.

4. Target-Abort: is a modified version of target-disconnect where the target
requests a termination (asserts STOP#) of a transaction which it will never be
able to respond to, or during which a fatal error occurred. Although there may
be a fatal error for the initiating application, the transaction completes gracefully,
ensuring normal PCI operation for other PCI resources.
76

PCI Bus Interface 2
Parity Checking

The Universe II both monitors and generates parity information using the PAR signal.
The Universe II monitors PAR when it accepts data as a master during a read or a
target during a write. The Universe II drives PAR when it provides data as a target
during a read or a master during a write. The Universe II also drives PAR during the
address phase of a transaction when it is a master and monitors PAR during an
address phase when it is the PCI target. In both address and data phases, the PAR
signal provides even parity for C/BE#[7:0] and AD[63:0]. The Universe II continues
with a transaction independent of any parity error reported during the transaction.

The Universe II can also be programmed to report address parity errors. It does this
by asserting the SERR# signal and setting a status bit in its registers. No interrupt is
generated, and regardless of whether assertion of SERR# is enabled, the Universe II
does not respond to the errored access. If powered up in a 64-bit PCI environment, the
Universe II uses PAR64 in the same way as PAR, except for AD[63:32] and C/BE[7:4].

Universe II as PCI Master

The Universe II requests PCI bus mastership through its PCI Master Interface. The
PCI Master Interface is available to either the VMEbus Slave Channel (access from a
remote VMEbus master) or the DMA Channel.

The VMEbus Slave Channel makes an internal request for the PCI Master Interface
when:

• the RXFIFO contains a complete transaction,
• sufficient data exists in the RXFIFO to generate a transaction of length defined

by the programmable aligned burst size (PABS), or
• there is a coupled cycle request.

The DMA Channel makes an internal request for the PCI Master Interface when:

• the DMAFIFO has room for 128 bytes to be read from PCI,
• the DMAFIFO has queued 128 bytes to be written to PCI, or
• the DMA block is completely queued during a write to the PCI bus.

Arbitration between the two channels for the PCI Master Interface follows a round
robin protocol. Each channel is given access to the PCI bus for a single transaction.
Once that transaction completes, ownership of the PCI Master Interface is granted to
the other channel if it requires the bus. The VMEbus Slave Channel and the DMA
Channel each have a set of rules that determine when it is ‘done’ with the PCI Master
Interface. The VMEbus Slave Channel is done under the following conditions:

• an entire transaction (no greater in length than the programmed aligned burst
size) is emptied from the RXFIFO, or

• the coupled cycle is complete.

The DMA Channel is done when:
77

2 VMIVME-7697 Product Manual
• the boundary programmed into the PCI aligned burst size is emptied from the
DMAFIFO during writes to the PCI bus, or

• the boundary programmed into the PCI aligned burst size is queued to the
DMAFIFO during reads from the PCI bus.

As discussed elsewhere (Universe as VMEbus Slave on page 57), access from the
VMEbus may be either coupled or decoupled. For a full description of the operation
of these data paths, see Universe as VMEbus Slave on page 57.

The PCI Master Interface can generate the following command types:

• I/O Read,
• I/O Write,
• Memory Read,
• Memory Read Multiple,
• Memory Write,
• Configuration Read (Type 0 and 1), and
• Configuration Write (Type 0 and 1).

The type of cycle the Universe II generates on the PCI bus depends on which VMEbus
slave image is accessed and how it is programmed. For example, one slave image
might be programmed as an I/O space, another as Memory space and another for
Configuration space (see VME Slave Images on page 93). When generating a memory
transaction, the implied addressing is either 32-bit or 64-bit aligned, depending upon
the PCI target. When generating an I/O transaction, the implied addressing is 32-bit
aligned and all incoming transactions are coupled.

PCI Burst Transfers

The Universe II generates aligned burst transfers of some maximum alignment,
according to the programmed PCI aligned burst size (PABS field in the MAST_CTL
register, Table B-160 on page 293). The PCI aligned burst size can be programmed at
32, 64 or 128 bytes. Burst transfers will not cross the programmed boundaries. For
example, when programmed for 32-byte boundaries, a new burst will begin at
XXXX_XX20, XXXX_XX40, etc. If necessary, a new burst will begin at an address with
the programmed alignment. To optimize PCI bus usage, the Universe II always
attempts to transfer data in aligned bursts at the full negotiated width of the PCI bus.

The Universe II can perform a 64-bit data transfer over the AD [63:0] lines, if operated
in a 64-bit PCI environment or against a 64-bit capable target or initiator. The LD64EN
bit must be set if the access is being made through a VMEbus slave image; the
LD64EN bit must be set if the access is being performed with the DMA.

The Universe II generates burst cycles on the PCI bus if it is:

• emptying the RXFIFO (the RXFE status bit in the MISC_STAT register is set
when the RXFIFO empties),

• filling the RDFIFO (receives a block read request from a VMEbus master to an
appropriately programmed VMEbus slave image), or
78

PCI Bus Interface 2
• performing DMA transfers

All other accesses are treated as single data beat transactions on the PCI bus.

During PCI burst transactions, the Universe II dynamically enables byte lanes on the
PCI bus by changing the BE# signals during each data phase.

Termination

The Universe II performs a Master-Abort if the target does not respond within 6 clock
cycles. Coupled PCI transactions terminated with Target-Abort or Master-Abort are
terminated on the VMEbus with BERR*. The R_TA or R_MA bits in the PCI_CS
register (Table B-4 on page 222) are set when the Universe II receives a Target-Abort or
generates a Master-Abort independent of whether the transaction was coupled,
decoupled, prefetched, or initiated by the DMA.

If the Universe II receives a retry from the PCI target, then it relinquishes the PCI bus
and re-requests within 2-3 PCI clock cycles. No other transactions are processed by the
PCI Master Interface until the retry condition is cleared. The Universe II can be
programmed to perform a maximum number of retries using the MAXRTRY field in
the MAST_CTL register (Table B-160 on page 293). When this number of retries has
been reached, the Universe II responds in the same way as it does to a Target-Abort on
the PCI bus. That is, the Universe II may issue a BERR* signal on the VMEbus.
Target-Aborts are discussed in the next two paragraphs. All VMEbus slave coupled
transactions and decoupled transactions will encounter a delayed DTACK once the
FIFO fills until the condition clears either due to success or a retry time-out.

If the error occurs during a posted write to the PCI bus (see also Bus Error Handling
on page 101), the Universe II uses the L_CMDERR register (Table B-62 on page 247) to
log the command information for the transaction (CMDERR [3:0]) and the address of
the errored transaction is latched in the LAERR register (Table B-64 on page 248). The
L_CMDERR register also records if multiple errors occur (with the M_ERR bit)
although the number of errors is not given. The error log is qualified with the L_STAT
bit. The rest of the transaction will be purged from the RXFIFO if some portion of the
write encounters an error. An interrupt is generated on the VMEbus and/or PCI bus
depending upon whether the VERR and LERR interrupts are enabled (see Interrupt
Handling on page 113).

If an error occurs on the PCI bus, the Universe II does not translate the error condition
into a BERR* on the VMEbus. Indeed, the Universe II does not directly map the error.
By doing nothing, the Universe II forces the external VMEbus error timer to expire.

Parity

The Universe II monitors PAR when it accepts data as a master during a read and
drives PAR when it provides data as a master during a write. The Universe II also
drives PAR during the address phase of a transaction when it is a master. In both
address and data phases, the PAR signal provides even parity for C/BE#[3:0] and
AD[31:0]. If the Universe II is powered up in a 64-bit PCI environment, then PAR64
provides even parity for C/BE#[7:4] and AD[63:32].
79

2 VMIVME-7697 Product Manual
The PERESP bit in the PCI_CS register (Table B-4 on page 222) determines whether or
not the Universe II responds to parity errors as PCI master. Data parity errors are
reported through the assertion of PERR# if the PERESP bit is set. Regardless of the
setting of these two bits, the D_PE (Detected Parity Error) bit in the PCI_CS register is
set if the Universe II encounters a parity error as a master. The DP_D (Data Parity
Detected) bit in the same register is only set if parity checking is enabled through the
PERESP bit and the Universe II detects a parity error while it is PCI master (for
example, it asserts PERR# during a read transaction or receives PERR# during a
write).

No interrupts are generated by the Universe II in response to parity errors reported
during a transaction. Parity errors are reported by the Universe II through assertion of
PERR# and by setting the appropriate bits in the PCI_CS register. If PERR# is asserted
to the Universe II while it is PCI master, the only action it takes is to set the DP_D. The
Universe II continues with a transaction independent of any parity errors reported
during the transaction.

As a master, the Universe II does not monitor SERR#. It is expected that a central
resource on the PCI bus will monitor SERR# and take appropriate action.
80

Universe II as PCI Target 2
Universe II as PCI Target

This section covers the following aspects of the Universe as PCI bus target:

• Overview on page 81,

• Data Transfer on page 82,
• Coupled Transfers on page 85,
• Posted Writes on page 87,
• The Special Cycle Generator on page 88,
• Using the VOWN bit on page 91,
• Terminations on page 91.

Overview

The Universe II becomes PCI bus target when one of its eight programmed PCI target
images or one of its registers is accessed by a PCI bus master (the Universe II cannot
be that PCI bus master). Register accesses are discussed elsewhere (see Universe II
Registers on page 146); this section describes only those accesses destined for the
VMEbus.

When one of its PCI target images is accessed, the Universe II responds with
DEVSEL# within two clocks of FRAME# (making the Universe II a medium speed
device, as reflected by the DEVSEL field in the PCI_CS register).

As PCI target, the Universe II responds to the following command types:

• I/O Read,
• I/O Write,
• Memory Read,
• Memory Write,
• Configuration Read (Type 0),
• Configuration Write (Type 0),
• Memory Read Multiple (aliased to Memory Read),
• Memory Line Read (aliased to Memory Read),
• Memory Write and Invalidate (aliased to Memory Write).

Type 0 Configuration accesses can only be made to the Universe II’s PCI configuration
registers. The PCI target images do not accept Type 0 accesses.
81

2 VMIVME-7697 Product Manual
Address parity errors are reported if both PERESP and SERR_EN are set in the
PCI_CS register (Table B-4 on page 222). Address parity errors are reported by the
Universe II by asserting the SERR# signal and setting the S_SERR (Signalled SERR#)
bit in the PCI_CS register. Assertion of SERR# can be disabled by clearing the
SERR_EN bit in the PCI_CS register. No interrupt is generated, and regardless of
whether assertion of SERR# is enabled or not, the Universe II does not respond to the
access with DEVSEL#. Typically the master of the transaction times out with a
Master-Abort.

If the Universe II is accessed validly with REQ64# in Memory space as a 64-bit target,
then it responds with ACK64# if it is powered up as a 64-bit device.

Data Transfer

Read transactions are always coupled (as opposed to VMEbus slave reads, which may
be pre-fetched; see Universe as VMEbus Slave on page 57). Write transactions can be
coupled or posted (see Figure 2-7 below and PCI Bus Target Images on page 96). To
ensure sequential consistency, coupled operations (reads or writes) are only processed
once all previously posted write operations have completed (for example, the TXFIFO
is empty).

The data transfer between the PCI bus and VMEbus is perhaps best explained by
Figure 2-8 below. The Universe II can be seen as a funnel where the mouth of the
funnel is the data width of the PCI transaction. The end of the funnel is the maximum
VMEbus data width programmed into the PCI target image (VDW bit in the PCI
target image control register). For example, consider a 32-bit PCI transaction accessing
a PCI target image with VDW set to 16 bits. A data beat with all byte lanes enabled
will be broken into two 16-bit cycles on the VMEbus. If the PCI target image is also
programmed with block transfers enabled, the 32-bit PCI data beat will result in a D16
block transfer on the VMEbus. Write data is unpacked to the VMEbus and read data is
packed to the PCI bus data width.

Figure 2-7 PCI Bus Target Channel Dataflow

TXFIFO

PCI BUS
SLAVE

INTERFACE

VMEbus
MASTER

INTERFACE
COUPLED WRITE DATA

POSTED WRITE DATA

COUPLED READ DATA
82

Universe II as PCI Target 2
If the data width of the PCI data beat is the same as the maximum data width of the
PCI target image, then the Universe II maps the data beat to an equivalent VMEbus
cycle. For example, consider a 32-bit PCI transaction accessing a PCI target image
with VDW set to 32 bits. A data beat with all byte lanes enabled is translated to a
single 32-bit cycle on the VMEbus.

As the general rule, if the PCI bus data width is less than the VMEbus data width then
there is no packing or unpacking between the two buses. The only exception to this is
during 32-bit PCI multi-data beat transactions to a PCI target image programmed
with maximum VMEbus data width of 64 bits. In this case, packing/unpacking occurs
to make maximum use of the full bandwidth on both buses.

Only aligned VMEbus transactions are generated, so if the requested PCI data beat
has unaligned or non-contiguous byte enables, then it is broken into multiple aligned
VMEbus transactions no wider than the programmed VMEbus data width. For
example, consider a three-byte PCI data beat (on a 32-bit PCI bus) accessing a PCI
target image with VDW set to 16 bits. The three-byte PCI data beat will be broken into
two aligned VMEbus cycles: a single-byte cycle and a double-byte cycle (the ordering
of the two cycles depends on the arrangement of the byte enables in the PCI data
beat). If in the above example the PCI target image has a VDW set to 8 bits, then the
three-byte PCI data beat will be broken into three single-byte VMEbus cycles.
83

2 VMIVME-7697 Product Manual
Figure 2-8 Influence of Transaction Data Width and Target Image Data
Width on Data Packing/Unpacking

Data width of PCI
transaction

Maximum data width
programmed into PCI
target image

PCI BUS SIDE VMEbus SIDE

Data width exceeds
maximum data width of the
PCI target image

Data width fits with
maximum data width of the
PCI target image

WRITE (UNPACKING)

READ (PACKING)
84

Universe II as PCI Target 2
Coupled Transfers

The PCI Target Channel supports “coupled transfers”. In a nutshell, a coupled
transfer through the PCI Target Channel is a transfer between PCI and VME where the
Universe II maintains ownership of the VMEbus from the beginning to the end of the
transfer on the PCI bus (and possibly longer), and where the termination of the cycle
on the VMEbus is relayed directly to the PCI initiator in the normal manner (for
example, Target-Abort, or Target Completion), rather than through error-logging and
interrupts.

By default, all PCI target images are set for coupled transfers. Coupled transfers
typically cause the Universe II to go through three phases: The Coupled Request
Phase, the Coupled Data-Transfer Phase, and then the Coupled Wait Phase. When an
external PCI Master attempts a data transfer through a slave image programmed for
coupled cycles, then:

• If the Universe II currently owns the VMEbus, the PCI Target Channel moves
directly to the Coupled Data-Transfer Phase; otherwise,

• the Universe II moves to the Coupled Request Phase. These three phases are
described below.

Note that once the Coupled Request phase has begun, posted writes may traverse the
PCI Target Channel without affecting coupled transfers.

Coupled Request Phase

During the Coupled Request Phase, the Universe II will attempt to acquire the
VMEbus. But first it must empty any posted writes pending in the TXFIFO, and
obtain ownership of the internal VMEbus Master Interface (see VMEbus Release on
page 51 for more details on how the Universe II shares the VMEbus between
channels.) The PCI Target Channel retries the PCI master until the PCI Target Channel
obtains ownership of the VMEbus. Every time it issues such a retry, the Universe II
restarts the Coupled Request Timer, which counts down a period of 215 PCI clock
cycles. The Coupled Request Timer co-determines how long the Universe II maintains
the VMEbus since the last time the Universe II issued a Target-Retry during a Coupled
Request Phase: the Universe II will release (or terminate its attempt to obtain) the
VMEbus if a coupled transfer is not attempted before the Coupled Request Timer
expires.

Usually, an external PCI Master will attempt a coupled cycle once the Universe II has
acquired the VMEbus during its Coupled Request Phase. In this case the Universe will
proceed to the “Coupled Data-Transfer Phase”. No address matching is performed to
verify whether the current coupled cycle matches the initiating coupled cycle. If an
external PCI Master requests a PCI I/O or RMW transfer with an illegal byte lane
combination, the Universe II will exit the “Coupled Request Phase.”
85

2 VMIVME-7697 Product Manual
Coupled Data-Transfer Phase

At the beginning of the Coupled Data-Transfer Phase, the Universe II latches the PCI
command, byte enable, address and (in the case of a write) data. Regardless of the
state of FRAME#, the Universe II retries1 the master, and then performs the
transaction on the VMEbus. The Universe II continues to signal Target-Retry to the
external PCI master until the transfer completes (normally or abnormally) on the
VMEbus.

If the transfer completes normally on the VMEbus, then in the case of a read, the data
is transmitted to the PCI bus master. If a data phase of a coupled transfer requires
packing or unpacking on the VMEbus, acknowledgment of the transfer is not given to
the PCI bus master until all data has been packed or unpacked on the VMEbus.
Successful termination is signalled on the PCI bus—the data beat is acknowledged
with a Target-Disconnect, forcing all multi-beat transfers into single beat. At this
point, the Universe II enters the Coupled Wait Phase.

If a bus error is signalled on the VMEbus or an error occurs during packing or
unpacking, then the transaction is terminated on the PCI bus with Target-Abort.

See also Data Transfer on page 82.

Coupled Wait Phase

The Coupled Wait Phase is entered after the successful completion of a Coupled
Data-Transfer phase. The Coupled Wait Phase allows consecutive coupled
transactions to occur without releasing the VMEbus. If a new coupled transaction is
attempted while the Universe II is in the Coupled Wait Phase, the Universe II will
move directly to the Coupled Data-Transfer Phase without re-entering the Coupled
Request Phase.

The Coupled Window Timer determines the maximum duration of the Coupled Wait
Phase. When the Universe II enters the Coupled Wait Phase, the Coupled Window
Timer starts. The period of this timer is specified in PCI clocks and is programmable
through the CWT field of the LMISC register (Table B-58 on page 245). If this field is
programmed to 0000, the Universe II will do an early release of BBSY* during the
coupled transfer on the VMEbus and will not enter the “Coupled Wait Phase.” In this
case, VMEbus ownership is relinquished immediately by the PCI Target Channel after
each coupled cycle.

Once the timer associated with the Coupled Wait Phase expires, the Universe II will
release the VMEbus if release mode is set for RWD, or the release mode is set for ROR
and there is a pending (external) request on the VMEbus.

1. PCI latency requirements (as described in revision 2.1 of the PCI Specification) require that only 16 clock cycles can elapse between
the first and second data beat of a transaction. Since the Universe II cannot guarantee that data acknowledgment will be received from
the VMEbus in time to meet these PCI latency requirements, the Universe II performs a target-disconnect after the first data beat of every
coupled write transaction.
86

Universe II as PCI Target 2
Posted Writes

Posted writes are enabled for a PCI target image by setting the PWEN bit in the
control register of the PCI target image (see PCI Bus Target Images on page 96). Write
transactions are relayed from the PCI bus to the VMEbus through a 32-entry deep
TXFIFO. The TXFIFO allows each entry to contain 32 address bits (with extra bits
provided for command information), or up to 64 data bits. For each posted write
transaction received from the PCI bus, the PCI Target Interface queues an address
entry in the FIFO (see errata note 16-Bit PCI Bus Transfers Split Into 8-Bytes on page
185). This entry contains the translated address space and mapped VMEbus attributes
information relevant to the particular PCI target image that has been accessed (see
PCI Bus Target Images on page 96). For this reason, any re-programming of PCI bus
target image attributes will only be reflected in TXFIFO entries queued after the
re-programming. Transactions queued before the re-programming are delivered to the
VMEbus with the PCI bus target image attributes that were in use before the
re-programming.

Caution: Care should be taken before reprogramming target images from one bus
while that image is being accessed from the opposite bus. If there is a chance the
image may be accessed while being reprogrammed, disable the image first before
changing image attributes.

Once the address phase is queued in one TXFIFO entry, the PCI Target Interface may
pack the subsequent data beats to a full 64-byte width before queuing the data into
new entries in the TXFIFO.

For 32-bit PCI transfers in the Universe II, the TXFIFO will accept a single burst of one
address phase and 59 data phases when it is empty. For 64-bit PCI, the TXFIFO will
accept a single burst of one address phase and 31 data phases when it is empty. To
improve PCI bus utilization, the TXFIFO does not accept a new address phase if it
does not have room for a burst of one address phase and 128 bytes of data. If the
TXFIFO does not have enough space for an aligned burst, then the posted write
transaction is terminated with a Target-Retry immediately after the address phase.

When an external PCI Master posts writes to the PCI Target Channel of the Universe
II, the Universe II will issue a disconnect if the implied address will cross a 256-byte
boundary.

Before a transaction can be delivered to the VMEbus from the TXFIFO, the PCI Target
Channel must obtain ownership of the VMEbus Master Interface. Ownership of the
VMEbus Master Interface is granted to the different channels on a round robin basis
(see VMEbus Release on page 51). Once the PCI Target Channel obtains the VMEbus
through the VMEbus Master Interface, the manner in which the TXFIFO entries are
delivered depends on the programming of the VMEbus attributes in the PCI target
image (see PCI Bus Target Images on page 96). For example, if the VMEbus data
width is programmed to 16 bits, and block transfers are disabled, then each data entry
in the TXFIFO corresponds to four transactions on the VMEbus.

!

87

2 VMIVME-7697 Product Manual
If block transfers are enabled in the PCI target image, then each transaction queued in
the TXFIFO, independent of its length, is delivered to the VMEbus as a block transfer.
This means that if a single data beat transaction is queued in the TXFIFO, it appears
on the VMEbus as a single data phase block transfer.

Any PCI master attempting coupled transactions is retried while the TXFIFO contains
data. If posted writes are continually written to the PCI Target Channel, and the FIFO
does not empty, coupled transactions in the PCI Target Channel will not proceed and
will be continually retried. This presents a potential starvation scenario.

The Special Cycle Generator

The Special Cycle Generator in the PCI Target Channel of the Universe II can be used
in conjunction with one of the PCI Target Images to generate read-modify-write
(RMW) and Address Only With Handshake (ADOH) cycles.

The address programmed into the SCYC_ADDR register (Table B-50 on page 242), in
the address space specified by the LAS field of the SCYC_CTL register (Memory or
I/O), must appear on the PCI bus during the address phase of a transfer for the
Special Cycle Generator to perform its function. Whenever this address on the PCI
bus matches the address in the SCYC_ADDR register, the Universe II does not
respond with ACK64# (since the Special Cycle Generator only processes up to 32-bit
cycles).

The cycle that is produced on the VMEbus (if any) will use attributes programmed
into the Image Control Register of the image that contains the address programmed in
the SCYC_ADDR register.
88

Universe II as PCI Target 2
The Special Cycle Generator is configured through the register fields shown in Table
2-4 on page 89 and described below.

The following sections describe the specific properties for each of the transfer types:
RMW and ADOH.

 Read-Modify-Write

When the SCYC field is set to RMW, any PCI bus read access to the specified PCI bus
address (SCYC_ADDR register) will result in a RMW cycle on the VMEbus (provided
the constraints listed below are satisfied). RMW cycles on the VMEbus consist of a
single read followed by a single write operation. The data from the read portion of the
RMW on the VMEbus is returned as the read data on the PCI bus.

RMW cycles make use of three 32-bit registers (see Table 2-4 on page 89 above). The
bit enable field is a bit mask which lets the user specify which bits in the read data are
compared and modified in the RMW cycle. This bit enable setting is completely
independent of the RMW cycle data width, which is determined by the data width of
the initiating PCI transaction. During a RMW, the VMEbus read data is bitwise
compared with the SCYC_CMP and SCYC_EN registers. The valid compared and
enabled bits are then swapped using the SCYC_SWP register.

Each enabled bit that compares true is swapped with the corresponding bit in the
32-bit swap field. A false comparison results in the original bit being written back.

Once the RMW cycle completes, the VMEbus read data is returned to the waiting PCI
bus master and the PCI cycle terminates.

Table 2-4 Register Fields for the Special Cycle Generator

Field Register Bits Description

32-bit address ADDR in Table B-50 on
page 242

specifies PCI bus target image address

PCI Address Space LAS in Table B-48 on page
242

specifies whether the address specified in the ADDR
field lies in PCI memory or I/O space

Special cycle SCYC[1:0] in Table B-48 on
page 242

disabled, RMW or ADOH

32-bit enable EN [31:0] in Table B-52 on
page 243

a bit mask to select the bits to be modified in the
VMEbus read data during a RMW cycle

32-bit compare CMP [31:0] in Table B-54
on page 244

data which is compared to the VMEbus read data during
a RMW cycle

32-bit swap SWP [31:0] in Table B-56 on
page 244

data which is swapped with the VMEbus read data and
written to the original address
during a RMW cycle
89

2 VMIVME-7697 Product Manual
Certain restrictions apply to the use of RMW cycles. If a write transaction is initiated
to the VMEbus address when the special cycle field (SCYC in Table B-48 on page 242)
is set for RMW, then a standard write occurs with the attributes programmed in the
PCI target image (in other words, the special cycle generator is not used). The
Universe II performs no packing and unpacking of data on the VMEbus during a
RMW operation. The following constraints must also be met.

1. The Special Cycle Generator will only generate a RMW if it is accessed with an
8-bit, aligned 16-bit, or aligned 32-bit read cycle.

2. The Special Cycle Generator will only generate a RMW if the size of the request
is less than or equal to the programmed VMEbus Maximum Datawidth.

3. The destination VMEbus address space must be one of A16, A24 or A32.

In the event that the Special Cycle Generator is accessed with a read cycle that does
not meet the three criteria described above, the Universe II generates a Target-Abort.
Thus it is the user’s responsibility to ensure that the Universe II is correctly
programmed and accessed with correct byte-lane information.

VME Lock Cycles—Exclusive Access to VMEbus Resources

The VME Lock cycle is used in combination with the VOWN bit in the MAST_CTL
register to lock resources on the VMEbus. The VME Lock cycle can be used by the
Universe II to inform the resource that a locked cycle is intended (so that the VMEbus
slave can prevent accesses from other masters on a different bus). The VOWN bit in
the MAST_CTL register can be set to ensure that when the Universe II acquires the
VMEbus, it is the only master given access to the bus (until the VOWN bit is cleared).
It may also be necessary for the PCI master to have locked the Universe II using the
PCI LOCK# signal.
When the SCYC field is set to VME Lock, any write access to the specified VMEbus
address will result in a VME Lock cycle on the VMEbus. A VME Lock cycle is
coupled: the cycle does not complete on the PCI bus until it completes on the
VMEbus. Reads to the specified address translate to VMEbus reads in the standard
fashion. The data during writes is ignored. The AM code generated on the VMEbus is
determined by the PCI target image definition for the specified VMEbus address (see
Table 2-12 on page 99).

However, after the VME Lock cycle is complete, there is no guarantee that the
Universe II will remain VMEbus master unless it has set the VOWN bit. If the
Universe II loses VMEbus ownership, then the VMEbus resouce will no longer remain
locked.
The following procedure is required to lock the VMEbus via an ADOH cycle:

• (If there is more than one master on the PCI bus, it may be necessary to use PCI
LOCK# to ensure that the PCI master driving the ADOH cycle has sole PCI
access to the Universe II registers and the VMEbus,)

• program the VOWN bit in the MAST_CTL register to a value of 1 (see Using the
VOWN bit below),
90

Universe II as PCI Target 2
• wait until the VOWN_ACK bit in the MAST_CTL register is a value of 1,
• generate an ADOH cycle with the Special Cycle Generator,
• perform transactions to be locked on the VMEbus,
• release the VMEbus by programming the VOWN bit in the MAST_CTL register

to a value of 0, and
• wait until the VOWN_ACK bit in the MAST_CTL register is a value of 0.

In the event that BERR* is asserted on the VMEbus once the Universe II has locked
and owns the VMEbus, it is the responsibility of the user to release ownership of the
VMEbus by programming the VOWN bit in the MAST_CTL register to a value of 0.

The following restrictions apply to the use of VME Lock cycles:

1. All byte lane information is ignored for VME Lock cycles,

2. The Universe II will generate an VME Lock cycle on the VMEbus only if the PCI
Target Image which subsumes the special cycle has posted writes disabled,

3. The Universe II Special Cycle Generator will not generate VME Lock cycles if the
address space is not one of A16, A24 or A32. Instead it produces regular cycles.

Using the VOWN bit

The Universe II provides a VMEbus ownership bit (VOWN bit in the MAST_CTL
register, Table B-160 on page 293) to ensure that the Universe II has access to the
locked VMEbus resource for an indeterminate period. The Universe II can be
programmed to assert an interrupt on the PCI bus when it acquires the VMEbus and
the VOWN bit is set (VOWN enable bit in the LINT_EN register, Table B-112 on page
268). While the VMEbus is held using the VOWN bit, the Universe II sets the
VOWN_ACK bit in the MAST_CTL register. The VMEbus Master Interface maintains
bus tenure while the ownership bit is cleared. This function is important for the
following two reasons.

If the VMEbus Master Interface is programmed for RWD (VREL bit in MAST_CTL
register), it may release the VMEbus when the PCI Target Channel has completed a
transaction (definition of ‘done’ for the PCI Target Channel, see VMEbus Release on
page 51). Therefore, if exclusive access to the VMEbus resource is required for
multiple transactions, then the VMEbus ownership bit will hold the bus until the
exclusive access is no longer required.

Alternatively, if the VMEbus Master Interface is programmed for ROR, the VMEbus
ownership bit will ensure VMEbus tenure even if other VMEbus requesters require
the VMEbus.

Terminations

The Universe II performs the following terminations as PCI target:

1. Target-Disconnect
91

2 VMIVME-7697 Product Manual
- when registers are accessed with FRAME# asserted (no bursts allowed to
registers),
- after the first data beat of every coupled cycle, or
- after the first data phase of a PCI Memory command (with FRAME# asserted)
if AD[1:0] is not equal to 00, as recommended in Revision 2.1 of the PCI
Specification (page 28).

2. Target-Retry

- for 64-bit PCI, when a new posted write is attempted and the TXFIFO does not
have room for a burst of one address phase and sixteen 64-bit data phases,
- when a coupled transaction is attempted and the Universe II does not own the
VMEbus,
- when a coupled transaction is attempted while the TXFIFO has entries to
process, or
- when a master attempts to access the Universe II’s registers while a VMEbus
master owns the Register Channel (e.g., through a RMW access or another type
of access).

3. Target-Abort

- when the Universe II receives BERR* on the VMEbus during a coupled cycle
(BERR* translated as Target-Abort on the PCI side and the S_TA bit is set in the
PCI_CS register, Table B-4 on page 222).

Whether to terminate a transaction or for retry purposes, the Universe II keeps STOP#
asserted until FRAME# is deasserted, independent of the logic levels of IRDY# and
TRDY#. If STOP# is asserted while TRDY# is deasserted, it means that the Universe II
will not transfer any more data to the master.

If an error occurs during a posted write to the VMEbus, the Universe II uses the
V_AMERR register (Table B-212 on page 315) to log the AM code of the transaction
(AMERR [5:0]), and the state of the IACK* signal (IACK bit, to indicate whether the
error occurred during an IACK cycle). The FIFO entries for the offending cycle are
purged. The V_AMERR register also records whether multiple errors have occurred
(with the M_ERR bit) although the number is not given. The error log is qualified with
the V_STAT bit (logs are valid if the V_STAT bit is set). The address of the errored
transaction is latched in the VAERR register (Table B-214 on page 316). When the
Universe II receives a VMEbus error during a posted write, it generates an interrupt
on the VMEbus and/or PCI bus depending upon whether the VERR and VERR
interrupts are enabled (see Interrupt Handling on page 113).
92

Slave Image Programming 2
Slave Image Programming

The Universe recognizes two types of accesses on its bus interfaces: accesses destined
for the other bus, and accesses decoded for its own register space. Address decoding
for the Universe’s register space is described in Universe II Registers on page 146. This
section describes the slave images used to map transactions between the PCI bus and
VMEbus.

VME Slave Images

The Universe II accepts accesses from the VMEbus within specific programmed slave
images. Each VMEbus slave image opens a window to the resources of the PCI bus
and, through its specific attributes, allows the user to control the type of access to
those resources. The tables below describe programming for the VMEbus slave
images by dividing them into VMEbus, PCI bus and Control fields.

Table 2-5 VMEbus Fields for VMEbus Slave Image

Field Register Bits Description

base BS[31:12] or BS[31:16] in VSIx_BS multiples of 4 or 64 Kbytes (base to bound:
maximum of 4 GBytes)

bound BD[31:12] or BD[31:16] in VSIx_BD

address space VAS in VSIx_CTL A16, A24, A32, User 1, User 2

mode SUPER in VSIx_CTL supervisor and/or non-privileged

type PGM in VSIx_CTL program and/or data

Table 2-6 PCI Bus Fields for VMEbus Slave Image

Field Register Bits Description

translation offset TO[31:12] or TO[31:16] in VSIx_TO offsets VMEbus slave address to a selected PCI address

address space LAS in VSIx_CTL Memory, I/O, Configuration

RMW LLRMW in VSIx_CTL RMW enable bit

Table 2-7 Control Fields for VMEbus Slave Image

Field Register Bits Description

image enable EN in VSIx_CTL enable bit

posted write PWEN in VSIx_CTL posted write enable bit

prefetched read PREN in VSIx_CTL prefetched read enable bit

enable PCI D64 LD64EN in VSIx_CTL enables 64-bit PCI bus transactions
93

2 VMIVME-7697 Product Manual
Note that the Bus Master Enable (BM) bit of the PCI_CS register must be set in order
for the image to accept posted writes from an external VMEbus master. If this bit is
cleared while there is data in the VMEbus Slave Posted Write FIFO, the data will be
written to the PCI bus but no further data will be accepted into this FIFO until the bit
is set.

Tundra recommends that the attributes in a slave image not be changed while data is
enqueued in the Posted Writes FIFO. To ensure data is dequeued from the FIFO, check
the RXFE status bit in the MISC_STAT register (Table B-164 on page 296) or perform a
read from that image. If the programming for an image is changed after the
transaction is queued in the FIFO, the transaction’s attributes are not changed. Only
subsequent transactions are affected by the change in attributes.

Do not set bit LD64EN to ‘1’ in any of the following registers: VSIO_CTL,
VSI1-CTL,VSI2_CTL, or VSI3_CTL. 64-bit PCI bus operation is not supported by the
VMIVME-7697.

VMEbus Fields

Decoding for VMEbus accesses is based on the address, and address modifiers
produced by the VMEbus master. Before responding to an external VMEbus master,
the address must lie in the window defined by the base and bound addresses, and the
Address Modifier must match one of those specified by the address space, mode, and
type fields.

The Universe II’s eight VMEbus slave images (images 0 to 7) are bounded by A32
space. The first and fifth of these images (VMEbus slave image 0 and 5) have a 4 Kbyte
resolution while VMEbus slave images 1 to 3 and 6 to 8 have 64-Kbyte resolution
(maximum image size of 4 GBytes). Typically, image 0 or 5 would be used as an A16
image since they provide the finest granularity of the eight images.

The address space of a VMEbus slave image must not overlap with the address space
for the Universe II’s control and status registers.

PCI Bus Fields

The PCI bus fields specify how the VMEbus transaction is mapped to the appropriate
PCI bus transaction. The translation offset field allows the user to translate the
VMEbus address to a different address on the PCI bus. The translation of VMEbus
transactions beyond 4 GBytes results in wrap-around to the low portion of the
address range.

!

!

94

Slave Image Programming 2
The PAS field controls generation of the PCI transaction command. The LLRMW bit
allows indivisible mapping of incoming VMEbus RMW cycles to the PCI bus via the
PCI LOCK# mechanism Refer to VMEbus Read-Modify-Write Cycles (RMW Cycles)
on page 62. When the LLRMW bit is set, single cycle reads will always be mapped to
single data beat locked PCI transactions. Setting this bit has no effect on non-block
writes: they can be coupled or decoupled. However, note that only accesses to PCI
Memory Space are decoupled, accesses to I/O or Configuration Space are always
coupled.

Figure 2-9 Address Translation Mechanism for VMEbus-to-PCI Bus Transfers

Control Fields

The control fields allow the user to enable a VMEbus slave image (using the EN bit),
as well as specify how reads and writes will be processed. At power-up, all images are
disabled and are configured for coupled reads and writes.

If the PREN bit is set, the Universe II will prefetch for incoming VMEbus block read
cycles. It is the user’s responsibility to ensure that prefetched reads are not destructive
and that the entire image contains prefetchable resources.

If the PWEN bit is set, incoming write data from the VMEbus is loaded into the
RXFIFO (see Posted Writes on page 58). Note that posted write transactions can only
be mapped to Memory space on the PCI bus. Setting the PAS bit in the PCI fields to
I/O or Configuration Space will force all incoming cycles to be coupled independent
of this bit.

Offset [31..12] VME [31..12] VME [11..0]

PCI [31..12] PCI [11..0]

A32 Image
95

2 VMIVME-7697 Product Manual
If the LD64EN bit is set, the Universe II will attempt to generate 64-bit transactions on
the PCI bus by asserting REQ64#. The REQ64# line is asserted during the address
phase in a 64-bit PCI system, and is the means of determining whether the PCI target
is a 64-bit port. If the target asserts ACK64# with DEVSEL#, then the Universe II uses
the 64-bit data bus. If the target does not assert ACK64# with DEVSEL#, then the
Universe II uses a 32-bit data bus. However, note that use of REQ64# requires extra
clocks internally. Therefore, if no 64-bit targets are expected on the PCI bus then
performance can be improved by disabling LD64EN on the VMEbus slave images.

In order for a VMEbus slave image to respond to an incoming cycle, the PCI Master
Interface must be enabled (bit BM in the PCI_CSR register, Table B-4 on page 222).

PCI Bus Target Images

The Universe II accepts accesses from the PCI bus with specific programmed PCI
target images. Each image opens a window to the resources of the VMEbus and
allows the user to control the type of access to those resources. The tables below
describe programming for the eight standard PCI bus target images (numbered 0 to 7)
by dividing them into VMEbus, PCI bus and Control fields. One special PCI target
image separate from the four discussed below is described in Special PCI Target
Image on page 99.

Table 2-8 PCI Bus Fields for the PCI Bus Target Image

Field Register Bits Description

base BS[31:12] or BS[31:16] in LSIx_BS multiples of 4 or 64 Kbytes (base to bound:
maximum of 4 GBytes)

bound BD[31:12] or BD[31:16] in
LSIx_BD

address space LAS in LSIx_CTL Memory or I/O

Table 2-9 VMEbus Fields for the PCI Bus Target Image

Field Register Bits Description

translation offset TO[31:12] or TO[31:16] in
LSIx_TO

translates address supplied by PCI master to a
specified VMEbus address

maximum data width VDW in LSIx_CTL 8, 16, 32, or 64 bits

address space VAS in LSIx_CTL A16, A24, A32, CR/CSR, User1, User2

mode SUPER in LSIx_CTL supervisor or non-privileged

type PGM in LSIx_CTL program or data

cycle VCT in LSIx_CTL single or block
96

Slave Image Programming 2
Tundra recommends that the attributes in a target image not be changed while data is
enqueued in the Posted Writes FIFO. To ensure data is dequeued from the FIFO, check
the TXFE status bit in the MISC_STAT register (Table B-164 on page 296) or perform a
read from that image. If the programming for an image is changed after the
transaction is queued in the FIFO, the transaction’s attributes are not changed. Only
subsequent transactions are affected by the change in attributes.

PCI Bus Fields

All decoding for VMEbus accesses are based on the address and command
information produced by a PCI bus master. The PCI Target Interface claims a cycle if
there is an address match and if the command matches certain criteria.

All of the Universe II’s eight PCI target images are A32-capable only. The first and
fifth of them (for example, PCI target images 0 and 4) have a 4 Kbyte resolution while
PCI target images 1 to 3 and 5 to 8 have 64 Kbyte resolution. Typically, image 0 or
image 4 would be used for an A16 image since they have the finest granularity.

The address space of a VMEbus slave image must not overlap with the address space
for the Universe II’s control and status registers.

VMEbus Fields

The VMEbus fields map PCI transactions to a VMEbus transaction, causing the
Universe II to generate the appropriate VMEbus address, AM code, and cycle type.
Some invalid combinations exist within the PCI target image definition fields. For
example, A16 and CR/CSR spaces do not support block transfers, and A16 space does
not support 64-bit transactions. Note that the Universe II does not attempt to detect or
prevent these invalid programmed combinations, and that use of these combinations
may cause illegal activity on the VMEbus.

Table 2-10 Control Fields for PCI Bus Target Image

Field Register Bits Description

image enable EN in LSIx_CTL enable bit

posted write PWEN in LSIx_CTL enable bit

!

97

2 VMIVME-7697 Product Manual
The 21-bit translation offset allows the user to translate the PCI address to a different
address on the VMEbus. The figure below illustrates the translation process:.

Figure 2-10 Address Translation Mechanism for PCI Bus to VMEbus Transfers

Translations beyond the 4 Gbyte limit will wrap around to the low address range.

The AM code generated by the Universe II is a function of the VMEbus fields, the data
width, and alignment generated by the PCI bus master. For RMW and ADOH cycles,
the AM code also depends on the settings for the Special Cycle Generator (see The
Special Cycle Generator on page 88).

The address space, mode, type, and cycle fields control the VMEbus AM code for
most transactions. Setting the cycle field to BLT enables the BLT cycle generation.
MBLT cycles are generated when the maximum width is set to 64, the BLT bit is set,
and the PCI master queues a transaction with at least 64 bits (aligned) of data.

The Universe II provides support for user defined AM codes. The USER_AM register
(Table B-166 on page 297) contains AM codes identified as User1 and User2. The
USER_AM register can only be used to generate and accept AM codes 0x10 through
0x1F. These AM codes are designated as USERAM codes in the VMEbus specification.
If the user selects one of these two, then the corresponding AM code from the global
register is generated on the VMEbus. This approach results in standard single cycle
transfers to A32 VMEbus address space independent of other settings in the VMEbus
fields.

The VCT bits in the LSIx_CTL registers determine whether or not the VMEbus Master
Interface will generate BLT transfers. The VCT bit will only be used if the VAS field is
programmed for A24 or A32 space and the VDW bits are programmed for 8, 16, or 32
bits. If VAS bits of the control register are programmed to A24 or A32 and the VDW
bits are programmed for 64-bit, the Universe II may perform MBLT transfers
independent of the state of the VCT bit.

Offset [31..12] PCI [31..12] PCI [11..0]

VME [31..12] VME [11..0]

A32 Image
98

Slave Image Programming 2
Control Fields

The control fields allow the user to enable a PCI target image (the EN bit), as well as
specify how writes are processed. If the PWEN bit is set, then the Universe II will
perform posted writes when that particular PCI target image is accessed. Posted write
transactions are only decoded within PCI Memory space. Accesses from other spaces
will result in coupled cycles independent of the setting of the PWEN bit.

Special PCI Target Image

The Universe II provides a special PCI target image located in Memory or I/O space.
Its base address is aligned to 64-Mbyte boundaries and its size is fixed at 64 Mbytes
(decoded using PCI address lines [31:26]). The Special PCI Target Image is divided
into four 16Mbyte regions numbered 0 to 3 (see Figure 2-11 on page 100). These
separate regions are selected with PCI address bits AD [25:24]. For example, if
AD[25:24] = 01, then region 1 is decoded. Within each region, the upper 64Kbytes map
to VMEbus A16 space, while the remaining portion of the 16 Mbytes maps to VMEbus
A24 space. Note that no offsets are provided, so address information from the PCI
transaction is mapped directly to the VMEbus.

The general attributes of each region are programmed according to the tables below.

Table 2-11 PCI Bus Fields for the Special PCI Target Image

Field Register Bits Description

base BS[5:0] in Table B-60 on page 246 64 Mbyte aligned base address for
the image

address space LAS [1:0] in Table B-60 on page
246

Places image in Memory or I/O

Table 2-12 VMEbus Fields for the Special PCI Bus Target Image

Field Register Bits Description

maximum data width VDW in Table B-60 on page 246 separately sets each region for 16 or
32 bits

mode SUPER in Table B-60 on page 246 separately sets each region as
supervisor or non-privileged

type PGM in Table B-60 on page 246 separately sets each region as
program or data

Table 2-13 Control Fields for the Special PCI Bus Target Image

Field Register Bits Description

image enable EN in Table B-60 on page 246 enable bit for the image
99

2 VMIVME-7697 Product Manual
The special PCI target image provides access to all of A16 and most of A24 space (all
except the upper 64 Kbytes). By using the special PCI target image for A16 and A24
transactions, it is possible to free the eight standard PCI target images (see PCI Bus
Target Images on page 96), which are typically programmed to access A32 space.

Note that some address space redundancy is provided in A16 space. The VMEbus
specification requires only two A16 spaces, while the special PCI target image allows
for four A16 address spaces.

Figure 2-11 Memory Mapping in the Special PCI Target Image

posted write PWEN in Table B-60 on page 246 enable bit for posted writes for the
image

Table 2-13 Control Fields for the Special PCI Bus Target Image

Field Register Bits Description

A16

A16

A16

A16

A24

A24

A24

A24

16 Mbytes

64 Kbytes

0

1

2

3

BASE+400 0000

BASE+3FF 0000

BASE+300 0000

BASE+2FF 0000

BASE+200 0000

BASE+1FF 0000

BASE+100 0000

BASE+0FF 0000

BASE+000 0000
100

Bus Error Handling 2
Bus Error Handling

There are two fundamentally different conditions under which bus errors may occur
with the Universe II during coupled cycles or during decoupled cycles. In a coupled
transaction, the completion status is returned to the transaction master, which may
then take some action. However, in a decoupled transaction, the master is not
involved in the data acknowledgment at the destination bus and higher level
protocols are required.

The error handling provided by the Universe II is described for both coupled and
decoupled transactions below.

Coupled Cycles

During coupled cycles, the Universe II provides immediate indication of an errored
cycle to the originating bus. VMEbus-to-PCI transactions terminated with
Target-Abort or Master-Abort are terminated on the VMEbus with BERR*. The R_TA
or R_MA bits in the PCI_CSR register (Table B-4 on page 222) are set when the
Universe II receives a Target-Abort or Master-Abort. For PCI-to-VMEbus transactions,
a VMEbus BERR* received by the Universe II is communicated to the PCI master as a
Target-Abort and the S_TA bit is set (Table B-4 on page 222). No information is logged
in either direction nor is an interrupt generated.

Decoupled Transactions

Posted Writes

The Universe II provides the option of performing posted writes in both the PCI
Target Channel and the VMEbus Slave Channel. Once data is written into the RXFIFO
or TXFIFO by the initiating master (VMEbus or PCI bus respectively), the Universe II
provides immediate acknowledgment of the cycle’s termination. When the data in the
FIFO is written to the destination slave by the Universe II, the Universe II may
subsequently receive a bus error instead of a normal termination. The Universe II
handles this situation by logging the errored transactions in one of two error logs and
generating an interrupt. Each error log (one for VMEbus errors and one for PCI bus
errors) is comprised of two registers: one for address and one for command or address
space logging.

If the error occurs during a posted write to the VMEbus, the Universe II uses the
V_AMERR register (Table B-212 on page 315) to log the AM code of the transaction
(AMERR [5:0]). The state of the IACK* signal is logged in the IACK bit, to indicate
whether the error occurred during an IACK cycle. The address of the errored
transaction is latched in the V_AERR register (Table B-214 on page 316). An interrupt
is generated on the VMEbus and/or PCI bus depending upon whether the VERR and
VERR interrupts are enabled (see Interrupt Handling on page 113). The remaining
entries of the offending transaction are purged from the FIFO.
101

2 VMIVME-7697 Product Manual
If the error occurs during a posted write to the PCI bus, the Universe II uses the
L_CMDERR register (Table B-62 on page 247) to log the command information for the
transaction (CMDERR [3:0]). The address of the errored transaction is latched in the
L_AERR register (Table B-64 on page 248). An interrupt is generated on the VMEbus
and/or PCI bus depending upon whether the VERR and LERR interrupts are enabled
(see Interrupt Handling on page 113).

Under either of the above conditions (VMEbus-to-PCI, or PCI-to-VMEbus), the
address that is stored in the log represents the most recent address the Universe II
generated before the bus error was encountered. For single cycle transactions, the
address represents the address for the actual errored transaction. However, for
multi-data beat transactions (block transfers on the VMEbus or burst transactions on
the PCI bus) the log only indicates that an error occurred somewhere after the latched
address. For a VMEbus block transfer, the logged address will represent the start of
the block transfer. In the PCI Target Channel, the Universe II generates block transfers
that do not cross 256-byte boundaries, the error will have occurred from the logged
address up to the next 256-byte boundary. In the VMEbus Slave Channel, the error
will have occurred anywhere from the logged address up to the next burst aligned
address.

In the case of PCI-initiated transactions, all data from the errored address up to the
end of the initiating transaction is flushed from the TXFIFO. Since the Universe II
breaks PCI transactions at 256-byte boundaries (or earlier if the TXFIFO is full), the
data is not flushed past this point. If the PCI master is generating bursts that do not
cross the 256-byte boundary, then (again) only data up to the end of that transaction is
flushed.

In a posted write from the VMEbus, all data subsequent to the error in the transaction
is flushed from the RXFIFO. However, the length of a VMEbus transaction differs
from the length of the errored PCI bus transaction. For non-block transfers, the length
always corresponds to one so only the errored data beat is flushed. However, if an
error occurs on the PCI bus during a transaction initiated by a VMEbus block transfer,
all data subsequent to the errored data beat in the block transfer is flushed from the
RXFIFO. In the case of BLTs, this implies that potentially all data up to the next
256-byte boundary may be flushed. For MBLTs, all data up to the next 2-KByte
boundary may be flushed.

Once an error is captured in a log, that set of registers is frozen against further errors
until the error is acknowledged. The log is acknowledged and made available to latch
another error by clearing the corresponding status bit in the VINT_STAT or
LINT_STAT registers. Should a second error occur before the CPU has the
opportunity to acknowledge the first error, another bit in the logs is set to indicate this
situation (M_ERR bit).
102

Bus Error Handling 2
The VMIVME-7697 interface provides auxiliary BERR handler logic. When disabled,
the Universe II is responsible for handling BERR. Chapter 3 discusses the function of
the auxiliary BERR handler.

Prefetched Reads

In response to a block read from the VMEbus, the Universe II initiates prefetching on
the PCI bus (if the VMEbus slave image is programmed with this option, see Slave
Image Programming on page 93). The transaction generated on the PCI bus is an
aligned memory read transaction with multiple data beats extending to the aligned
burst boundary (as programmed by PABS in the MAST_CTL register, Table B-160 on
page 293). Once an acknowledgment is given for the first data beat, an
acknowledgment is sent to the VMEbus initiator by the assertion of DTACK*.
Therefore, the first data beat of a prefetched read is coupled while all subsequent
reads in the transaction are decoupled.

If an error occurs on the PCI bus, the Universe II does not translate the error condition
into a BERR* on the VMEbus. Indeed, the Universe II does not directly map the error.
By doing nothing, the Universe II forces the external VMEbus error timer to expire.

DMA Errors

How the Universe II responds to a bus error during a transfer controlled by the DMA
Channel is described in DMA Error Handling on page 141.

Parity Errors

The Universe II both monitors and generates parity information using the PAR signal.
The Universe II monitors PAR when it accepts data as a master during a read or as a
target during a write. The Universe II drives PAR when it provides data as a target
during a read or a master during a write. The Universe II also drives PAR during the
address phase of a transaction when it is a master and monitors PAR during an
address phase when it is the PCI target. In both address and data phases, the PAR
signal provides even parity for C/BE#[3:0] and AD[31:0]. If the Universe II is powered
up in a 64-bit PCI environment, then PAR64 provides even parity for C/BE#[7:4] and
AD[63:32].

The PERESP and SERR_EN bits in the PCI_CS register (Table B-4 on page 222)
determine whether or not the Universe II responds to parity errors. Data parity errors
are reported through the assertion of PERR# if the PERESP bit is set. Address parity
errors, reported through the SERR# signal, are reported if both PERESP and SERR_EN
are set. Regardless of the setting of these two bits, the D_PE (Detected Parity Error) bit
in the PCI_CS register is set if the Universe II encounters a parity error as a master or
as a target. The DP_D (Data Parity Detected) bit in the same register is only set if
parity checking is enabled through the PERESP bit and the Universe II detects a parity
error while it is PCI master (for example, it asserts PERR# during a read transaction or
receives PERR# during a write).
103

2 VMIVME-7697 Product Manual
No interrupts are generated by the Universe II either as a master or as a target in
response to parity errors reported during a transaction. Parity errors are reported by
the Universe II through assertion of PERR# and by setting the appropriate bits in the
PCI_CS register. If PERR# is asserted to the Universe II while it is PCI master, the only
action it takes is to set the DP_D. Regardless of whether the Universe II is the master
or target of the transaction, and regardless which agent asserted PERR#, the Universe
II does not take any action other than to set bits in the PCI_CS register. The Universe II
continues with a transaction independent of any parity errors reported during the
transaction.

Similarly, address parity errors are reported by the Universe II (if the SERR_EN bit
and the PERESP bit are set) by asserting the SERR# signal and setting the S_SERR
(Signalled SERR#) bit in the PCI_CS register. Assertion of SERR# can be disabled by
clearing the SERR_EN bit in the PCI_CS register. No interrupt is generated, and
regardless of whether assertion of SERR# is enabled or not, the Universe II does not
respond to the access with DEVSEL#. Typically the master of the transaction times out
with a Master-Abort. As a master, the Universe II does not monitor SERR#. It is
expected that a central resource on the PCI bus will monitor SERR# and take
appropriate action.
104

Interrupter 2
Interrupter

The VMIVME-7697 interface has two sources of PCI interrupts: the first includes the
Universe II chip with its various PCI interrupt sources, while the second includes the
BERR interrupt logic.

The LINT#2, LINT#3, LINT#4, LINT#5, LINT#6, and LINT#7 are not supported by the
VMIVME-7697 interface and should not be used. Refer to the following Universe II
chip specific material for a detailed description of PCI interrupt handling.

Interrupt Generation

This is the first of two sections in this chapter which describe the Universe II’s
interrupt capabilities. This section describes the Universe II as a generator of
interrupts. The following section, Interrupt Handling on page 113, describes the
Universe II as an interrupt handler. Each of these sections has subsections which
detail interrupt events on the PCI bus and VMEbus (for example, how the Universe II
can generate interrupts on the PCI bus and the VMEbus, and how the Universe II can
respond to interrupt sources on the PCI bus and the VMEbus).

The Interrupt Channel handles the prioritization and routing of interrupt sources to
interrupt outputs on the PCI bus and VMEbus. The interrupt sources are:

• the PCI LINT#[7:0] lines,
• the VMEbus IRQ*[7:1] lines,
• ACFAIL* and SYSFAIL*
• various internal events
105

2 VMIVME-7697 Product Manual
These sources can be routed to either the PCI LINT# [7:0] lines or the VMEbus IRQ*
[7:1] lines. Each interrupt source is individually maskable and can be mapped to
various interrupt outputs. Most interrupt sources can be mapped to one particular
destination bus. The PCI sources, LINT#[7:0], can only be mapped to the VMEbus
interrupt outputs, while the VMEbus sources, VIRQ[7:1], can only be mapped to the
PCI interrupt outputs. Some internal sources (for example, error conditions or DMA
activity) can be mapped to either bus.

Figure 2-12 Universe Interrupt Circuitry

Figure 2-12 above illustrates the circuitry inside the Universe II Interrupt Channel.
The PCI hardware interrupts are listed on the left, and the VMEbus interrupt inputs
and outputs are on the right. Internal interrupts are also illustrated. The figure shows
that the interrupt sources may be mapped and enabled. The Internal Interrupt
Handler is a block within the Universe II that detects assertion of the VRIRQ#[7:1]
pins and generates the VME IACK through the VME Master. Upon completion of the
IACK cycle, the Internal Interrupt Handler notifies the Mapping Block which in turn
asserts the local LINT#, if enabled. (Whereas the Internal Interrupt Handler implies a
delay between assertion of an interrupt condition to the Universe II and the
Universe’s mapping of the interrupt, all other interrupt sources get mapped
immediately to their destination—assertion of LINT# immediately causes an IRQ,
assertion of ACFAIL immediately causes an LINT#, etc.) This is described in more
detail in the following sections.

LINT [7:0]

VRIQ#[7:1]

VXIRQ#[7:1]

VRACFAIL#
VRSYSFAIL#

and Enabling

Mapping

and Enabling

Mapping

Internal
Interrupt
Handler

Internal
Sources
106

Interrupter 2
PCI Interrupt Generation

The Universe II expands on the basic PCI specification which permits “single
function” devices to assert only a single interrupt line. Eight PCI interrupt outputs
provide maximum flexibility, although if full PCI compliancy is required, the user
may route all interrupt sources to a single PCI interrupt output.

Only one of the PCI interrupt outputs, LINT#[0], has the drive strength to be fully
compliant with the PCI specification. The other seven may require buffering if they
are to be routed to PCI compliant interrupt lines. For most applications, however, the
drive strength provided should be sufficient.

PCI interrupts may be generated from multiple sources:

• VMEbus sources of PCI interrupts
- IRQ*[7:1]
- SYSFAIL*
- ACFAIL*

• internal sources of PCI interrupts
- DMA
- VMEbus bus error encountered
- PCI Target-Abort or Master-Abort encountered
-VMEbus ownership has been granted while the VOWN bit is set (see VME Lock
Cycles—Exclusive Access to VMEbus Resources on page 90)
- software interrupt
- mailbox access
- location monitor access
- VMEbus IACK cycle performed in response to a software interrupt
107

2 VMIVME-7697 Product Manual
Each of these sources may be individually enabled in the LINT_EN register (Table
B-112 on page 268) and mapped to a single LINT# signal through the LINT_MAP0,
LINT_MAP1, and LINT_MAP2 registers (Table B-116 on page 272, Table B-118 on
page 273, Table B-120 on page 274). When an interrupt is received on any of the
enabled sources, the Universe II asserts the appropriate LINT# pin and sets a
matching bit in the LINT_STAT register (Table B-114 on page 270). See Table 2-15 on
page 111 below for a list of the enable, mapping and status bits for PCI interrupt
sources.

The LINT_STAT register shows the status of all sources of PCI interrupts,
independent of whether that source has been enabled. This implies that an interrupt
handling routine must mask out those bits in the register that do not correspond to
enabled sources on the active LINT# pin.

Except for SYSFAIL* and ACFAIL*, all sources of PCI interrupts are edge-sensitive.
Enabling of the ACFAIL* or SYSFAIL* sources (ACFAIL and SYSFAIL bits in the
LINT_EN register) causes the status bit and mapped PCI interrupt pin to assert
synchronously with the assertion of the ACFAIL* or SYSFAIL* source. The PCI
interrupt is negated once the ACFAIL or SYSFAIL status bit is cleared. The status bit

Table 2-14 Source, Enabling, Mapping, and Status of PCI Interrupt Output

Interrupt Source
Enable Bit in LINT_EN
(Table on page 268)

Mapping Field in
LINT_MAPx

(Table on page 272, Table
on page 273, Table on

page 287)

Status Bit in
LINT_STAT

(Table on page 270)

ACFAIL* ACFAIL ACFAIL ACFAIL

SYSFAIL* SYSFAIL SYSFAIL SYSFAIL

PCI Software Interrupt SW_INT SW_INT SW_INT

VMEbus Software
IACK

SW_IACK SW_IACK SW_IACK

VMEbus Error VERR VERR VERR

PCI Target-Abort or
Master-Abort

LERR LERR LERR

DMA Event DMA DMA DMA

VMEbus Interrupt Input VIRQ7-1 VIRQ7-1 VIRQ7-1

Location Monitor LM3-0 LM3-0 LM3-0

Mailbox Access MBOX3-0 MBOX3-0 MBOX3-0

VMEbus Ownership VOWN VOWN VOWN
108

Interrupter 2
cannot be cleared if the source is still active. Therefore, if SYSFAIL* or ACFAIL* is still
asserted while the interrupt is enabled the interrupt will continue to be asserted. Both
of these sources are synchronized and filtered with multiple edges of the 64 MHz
clock at their inputs.

All other sources of PCI interrupts are edge-sensitive. Note that the VMEbus source
for PCI interrupts actually comes out of the VMEbus Interrupt Handler block and
reflects acquisition of a VMEbus STATUS/ID. Therefore, even though VMEbus
interrupts externally are level-sensitive as required by the VMEbus specification, they
are internally mapped to edge-sensitive interrupts (see VMEbus Interrupt Handling
on page 114).

The interrupt source status bit (in the LINT_STAT register) and the mapped LINT#
pin remain asserted with all interrupts. The status bit and the PCI interrupt output pin
are only released when the interrupt is cleared by writing a “one” to the appropriate
status bit.

LINT#0 and LINT#1 are supported. LINT#0 maps to PCI INTA#. LINT#1 maps to PCI
SERR#

Auxiliary BERR Interrupt Generation

The VMIVME-7697 interface has an external BERR* circuit which, when enabled is
capable of generating a BERR* interrupt to the CPU via PCI INTA#.

The circuit captures the address and address modifier code of the VMEbus BERR*
cycle and sets the BERR status bit in the Endian Conversion register located at $D800E
in memory. The BERR status bit will in turn generate a PCI interrupt, if enabled. The
BERR interrupt is mapped to PCI INTA#. Once a BERR cycle has been captured, it will
remain captured until the BERR status bit has been processed by writing a 1 to the
BERR status bit. The BERR captured address is available in the BERR address log
register located at $D8010. The BERR address modifier code is available at $D8014.

The BERR interrupt is enabled by setting the BERR Latch Enable bit and BERR
Interrupt EN bit in the endian Conversion register located at $D800E in memory.

LINT#0 and LINT#1 are supported. LINT#0 maps to PCI INTA#. LINT#1 maps to PCI
SERR#

VMEbus Interrupt Generation

This section details the conditions under which the Universe II generates interrupts to
the VMEbus.

Interrupts may be generated on any combination of VMEbus interrupt lines
(IRQ*[7:1]) from multiple sources:
109

2 VMIVME-7697 Product Manual
• PCI sources of VMEbus interrupts

– - LINT#[7:0]

• Internal sources of VMEbus interrupts

– - DMA

– - VMEbus bus error encountered

– - PCI Target-Abort or Master-Abort encountered

– - Mailbox register access

– - software interrupt

Each of these sources may be individually enabled through the VINT_EN register
(Table B-120 on page 274) and mapped to a particular VMEbus Interrupt level using
the VINT_MAPx registers (Table B-124 on page 278, Table B-126 on page 279, and
Table B-146 on page 288). Multiple sources may be mapped to any VMEbus level.
Mapping interrupt sources to level 0 effectively disables the interrupt.

Once an interrupt has been received from any of the sources, the Universe II sets the
corresponding status bit in the VINT_STAT register (Table B-122 on page 276), and
asserts the appropriate VMEbus interrupt output signal (if enabled). When a VMEbus
interrupt handler receives the interrupt, it will perform an IACK cycle at that
interrupt level. When the Universe II decodes that IACK cycle together with IACKIN*
asserted, it provides the STATUS/ID previously stored in the STATID register (Table
B-128 on page 279), unless it is configured as SYSCON in which case it does not
monitor IACKIN*. See Table 2-15 on page 111 below for a list of the enable, mapping
and status bits for VMEbus interrupt sources.
110

Interrupter 2
For all VMEbus interrupts, the Universe II interrupter supplies a pre-programmed
8-bit STATUS/ID: a common value for all interrupt levels. The upper seven bits are
programmed in the STATID register. The lowest bit is cleared if the source of the
interrupt was the software interrupt, and is set for all other interrupt sources. If a
software interrupt source and another interrupt source are active and mapped to the
same VMEbus interrupt level, the Universe II gives priority to the software source.

Figure 2-13 STATUS/ID Provided by Universe II

Table 2-15 Source, Enabling, Mapping, and Status of VMEbus Interrupt Outputs

Interrupt Source
Enable Bit in VINT_EN

(Table B-120 on page 274)

Mapping Field in
VINT_MAPx

(Table B-124 on page 278,
Table B-126 on page 279,
Table B-146 on page 288)

Status Bit in VINT_STAT
(Table B-122 on page 276)

VMEbus Software
Interrupt

SW_INT7-1 N/Aa

a.This set of software interrupts cannot be mapped. That is, setting the SW_INT1 bit triggers VXIRQ1, setting the SW_INT2 bit
triggers VXIRQ2 etc.

SW_INT7-1

VMEbus Error VERR VERR VERR

PCI Target-Abort or
Master-Abort

LERR LERR LERR

DMA Event DMA DMA DMA

Mailbox Register MBOX3-0 MBOX3-0 MBOX3-0

PCI bus Interrupt Input LINT7-0 LINT7-0 LINT7-0

VMEbus Software
Interrupt

(mappable)

SW_INT SW_INT SW_INT

Programmed from
VME_STATUS/ID

Registers

0 if S/W Interrupt Source

1 if Internal or LINT
Interrupt Source

STATUS/ID
111

2 VMIVME-7697 Product Manual
Once the Universe II has provided the STATUS/ID to an interrupt handler during a
software initiated VMEbus interrupt, it generates an internal interrupt, SW_IACK. If
enabled, this interrupt feeds back to the PCI bus (through one of the LINT# pins) to
signal a process that the interrupt started through software has been completed.

All VMEbus interrupts generated by the Universe II are RORA, except for the
software interrupts which are ROAK. This means that if the interrupt source was a
software interrupt, then the VMEbus interrupt output is automatically negated when
the Universe II receives the IACK cycle. However, for any other interrupt, the
VMEbus interrupt output remains asserted until cleared by a register access. Writing a
“one” to the relevant bit in the VINT_STAT register clears that interrupt source.
However, since PCI interrupts are level-sensitive, if an attempt is made to clear the
VMEbus interrupt while the LINT# pin is still asserted, the VMEbus interrupt remains
asserted. This causes a second interrupt to be generated to the VMEbus. For this
reason, a VMEbus interrupt handler should clear the source of the PCI interrupt
before clearing the VMEbus interrupt.

Since software interrupts are ROAK, the respective bits in the VINT_STAT register are
cleared automatically on completion of the IACK cycle, simultaneously with the
negation of the IRQ.
112

Interrupt Handling 2
Interrupt Handling

This is the second of two sections in this chapter which describe the Universe II’s
interrupt capabilities. The previous section, Interrupt Generation on page 105,
described the interrupt outputs of the Universe II on the PCI bus and the VMEbus.
The current section describes how the Universe II responds to interrupt sources. In
other words, this section describes the Universe II as an interrupt handler.

This section is broken down as follows:

• PCI Interrupt Handling on page 113 explains how the Universe II can respond
to hardware interrupts on the PCI bus,

• VMEbus Interrupt Handling on page 114 explains how the Universe II can
respond to hardware interrupts (or SYSFAIL* and ACFAIL*) on the VMEbus,

• Internal Interrupt Handling on page 116 explains how internal states of the
Universe II can trigger interrupts.

PCI Interrupt Handling

This section explains how the Universe II can respond to hardware interrupts on the
PCI bus.

All eight PCI interrupt lines, LINT#[7:0], can act as interrupt inputs to the Universe II.
They are level-sensitive and, if enabled in the VINT_EN register (Table B-120 on page
274), immediately generate an interrupt to the VMEbus. It is expected that when a
VMEbus interrupt handler receives the Universe II’s STATUS/ID from the Universe
II, the interrupt handler will clear the VMEbus interrupt by first clearing the source of
the interrupt on the PCI bus, and then clearing the VMEbus interrupt itself (by writing
a “one” to the appropriate bit in the VINT_STAT register, Table B-122 on page 276).

Note that since PCI interrupts are level-sensitive, if an attempt is made to clear the
VMEbus interrupt while the LINT# pin is still asserted, the VMEbus interrupt remains
asserted. This causes a second interrupt to be generated to the VMEbus. For this
reason, a VMEbus interrupt handler should clear the source of the PCI interrupt
before clearing the VMEbus interrupt.

Since all the interrupt sources share a common PCI interrupt, the interrupt handler
needs to poll all enabled sources and process them as required by the application. The
Universe II based interrupt sources are mapped to the PCI bus by programming the
LINT_MAP2/1/0 registers as follows in Table 2-16 on page 114.
113

2 VMIVME-7697 Product Manual
The LINT#2, LINT#3, LINT#4, LINT#5, LINT#6, and LINT#7 signals are not
supported by the VMIVME-7697 interface and should not be used. Refer to the
following Universe II chip specific material for a detailed description of PCI interrupt
handling.

Do not map any VMEbus interrupt to LINT#(2-7). The VMIVME-7697 interface only
supports LINT#0 and LINT#1.

VMEbus Interrupt Handling

This section explains how the Universe II can respond to hardware events on the
VMEbus as an interrupt handler.

As a VMEbus interrupt handler, the Universe II can monitor any or all of the VMEbus
interrupt levels. It can also monitor SYSFAIL* and ACFAIL*, although IACK cycles
are not generated for these inputs. Each interrupt is enabled through the LINT_EN
register (Table B-112 on page 268).

Once enabled, assertion of any of the VMEbus interrupt levels, IRQ[7:1]*, causes the
internal interrupt handler circuitry to request ownership of the Universe II’s VMEbus
Master Interface on the level programmed in the MAST_CTL register (see VMEbus
Requester on page 50). This interface is shared between several channels in the
Universe II: the PCI Target Channel, the DMA Channel, and the Interrupt Channel.
The Interrupt Channel has the highest priority over all other channels and, if an
interrupt is pending, assumes ownership of the VMEbus Master Interface when the
previous owner has relinquished ownership.

The Universe II latches the first interrupt that appears on the VMEbus and begins to
process it immediately. Thus if an interrupt at a higher priority is asserted on the
VMEbus before BBSY* is asserted the Universe II will perform an interrupt
acknowledge for the first interrupt it detected. Upon completion of that IACK cycle,
the Universe II will then perform IACK cycles for the higher of any remaining active
interrupts.

Table 2-16 PCI bus LINT_MAP Registers

Interrupt Source Register
Mapping

Corresponding PCI
Interrupt

LINT#0 PCI INTA#

LINT#1 PCI SERR#
114

Interrupt Handling 2
There may be some latency between reception of a VMEbus interrupt and generation
of the IACK cycle. This arises because of the latency involved in the Interrupt Channel
gaining control of the VMEbus Master Interface, and because of possible latency in
gaining ownership of the VMEbus if the VMEbus Master Interface is programmed for
release-when-done. In addition, the Universe II only generates an interrupt on the PCI
bus once the IACK cycle has completed on the VMEbus. Because of these combined
latencies (time to acquire VMEbus and time to run the IACK cycle), systems should be
designed to accommodate a certain worst case latency from VMEbus interrupt
generation to its translation to the PCI bus.

When the Universe II receives a STATUS/ID in response to an IACK cycle, it stores
that value in one of seven registers. These registers, V1_STATID through V7_STATID
(Table B-130 on page 280 to Table B-142 on page 286), store the STATUS/ID
corresponding to each IACK level (in the STATID field). Once an IACK cycle has been
generated and the resulting STATUS/ID is latched, another IACK cycle will not be
run on that level until the level has been re-armed by writing a “one” to the
corresponding status bit in the VINT_STAT register (Table B-122 on page 276). If other
interrupts (at different levels) are pending while the interrupt is waiting to be
re-armed, IACK cycles are run on those levels in order of priority and the
STATUS/IDs stored in their respective registers.

Once the IACK cycle is complete and the STATUS/ID stored, an interrupt is generated
to the PCI bus on one of LINT#[7:0] depending on the mapping for that VMEbus level
in the LINT_MAP0 register. The interrupt is cleared and the VMEbus interrupt level is
re-armed by clearing the correct bit in the LINT_STAT register.

Bus Error During VMEbus IACK Cycle

A bus error encountered on the VMEbus while the Universe II is performing an IACK
cycle is handled by the Universe II in two ways. The first is through the error logs in
the VMEbus Master Interface. These logs store address and command information
whenever the Universe II encounters a bus error on the VMEbus (see Bus Error
Handling on page 101). If the error occurs during an IACK cycle, the IACK# bit is set
in the V_AMERR register (Table B-212 on page 315). The VMEbus Master Interface
also generates an internal interrupt to the Interrupt Channel indicating a VMEbus
error occurred. This internal interrupt can be enabled and mapped to either the
VMEbus or PCI bus.

As well as generating an interrupt indicating an error during the IACK cycle, the
Universe II also generates an interrupt as though the IACK cycle completed
successfully. If an error occurs during the fetching of the STATUS/ID, the Universe II
sets the ERR bit in the Vx_STATID register (Table B-130 on page 280 to Table B-142 on
page 286), and generates an interrupt on the appropriate LINT# pin (as mapped in the
LINT_MAP0 register, Table B-116 on page 272). The PCI resource, upon receiving the
PCI interrupt, is expected to read the STATUS/ID register, and take appropriate
actions if the ERR bit is set. Note that the STATUS/ID cannot be considered valid if
the ERR bit is set in the STATUS/ID register.
115

2 VMIVME-7697 Product Manual
It is important to recognize that the IACK cycle error may generate two PCI
interrupts: one through the VMEbus master bus error interrupt and another through
the standard PCI interrupt translation. Should an error occur during acquisition of a
STATUS/ID, the VINT_STAT register (Table B-122 on page 276) will show that both
VIRQx, and VERR are active.

Internal Interrupt Handling

The Universe II’s internal interrupts are routed from several processes in the device.
There is an interrupt from the VMEbus Master Interface to indicate a VMEbus error,
another from the PCI Master Interface to indicate an error on that bus, another from
the DMA to indicate various conditions in that channel, along with several others as
indicated in Table 2-17 on page 116 below. Table 2-17 on page 116 shows to which bus
each interrupt source may be routed (some sources may be mapped to both buses, but
we recommend that you map interrupts to a single bus).

Figure 2-14 shows the sources of interrupts, and the interfaces from which they
originate.

Interrupt handling for each one of these sources is described in the following
subsections.

Table 2-17 Internal Interrupt Routing

Interrupt Source
May be Routed to:

VMEbus PCI Bus

PCI s/w interrupt √

VMEbus s/w
interrupt

√

IACK cycle complete
for s/w interrupt

√

DMA event √ √

Mailbox access √ √

Location monitor √

PCI Target-Abort or
Master-Abort

√ √

VMEbus bus error √ √

VMEbus bus
ownership granted

√

116

Interrupt Handling 2
Figure 2-14 Sources of Internal Interrupts

PCI
Slave

DMA Channel

PCI
Master

VME
Master

VME
Slave

VMEbus Slave Channel

Interrupt Channel

PCI Bus Slave Channel

PCI Bus
Interface

VMEbus
Interface

DMA bidirectional FIFO

coupled read logic

DMA
PCI error

PCI software interrupt

VME error
VME ownership bit

software IACK
VME software interrupt

Interrupt Handler

prefetch read FIFO

posted writes FIFO

coupled path

posted writes FIFO
117

2 VMIVME-7697 Product Manual
VMEbus and PCI Software Interrupts

It is possible to interrupt the VMEbus and the PCI bus through software. These
interrupts may be triggered by writing a “one” to the respective enable bits.

Interrupting the VMEbus through software

There are two methods of triggering software interrupts on the VMEbus. The second
method is provided for compatibility with the Universe I.

1. The first method for interrupting the VMEbus through software involves writing
“one” to one of the SW_INT7-1 bits in the VINT_EN register (Table B-120 on
page 274) while the mask bit is zero.1 This causes an interrupt to be generated on
the corresponding IRQ7-1 line. That is, setting the SW_INT1 bit triggers
VXIRQ1, setting the SW_INT2 bit triggers VXIRQ2, etc.

2. The second method for interrupting the VMEbus through software involves an
extra step. Writing a “one” to the SW_INT bit in the VINT_EN register when this
bit is “zero” triggers one (and only one) interrupt on the VMEbus on the level
programmed in the VINT_MAP1 register (Table B-128 on page 279). Notice that
this method requires that the user specify in the VINT_MAP1 register to which
line the interrupt is to be generated. When the SW_INT interrupt (method 2) is
active at the same level as one of SW_INT7-1 interrupts (method 1), the SW_INT
interrupt (method 2) takes priority. While this interrupt source is active, the
SW_INT status bit in the VINT_STAT register is set.

With both methods, the mask bit (SW_INTx or SW_INT) in the VINT_EN register
must be zero in order for writing “one” to the bit to have any effect.

Regardless of the software interrupt method used, when an IACK cycle is serviced on
the VMEbus, the Universe II can be programmed to generate an interrupt on the PCI
bus by setting the SW_IACK enable bit in the LINT_EN register (see Software IACK
Interrupt on page 119).

Interrupting the PCI bus through software

On the PCI bus, there is only one method of directly triggering a software interrupt.
(This method is analogous to the second method described in the previous section.)
Causing a “zero” to “one” transition in the SW_INT in the LINT_EN (Table B-112 on
page 268) register generates an interrupt to the PCI bus. While this interrupt source is
active, the SW_INT status bit in LINT_STAT is set. The SW_INT field in the
LINT_MAP1 register (Table B-118 on page 273) determines which interrupt line is
asserted on the PCI interface.

1. The term “enable” is more meaningful with respect to the other fields in this register, for example, excluding the software interrupts.
Writing to the software interrupt fields of this register does not enable an interrupt, it triggers an interrupt.
118

Interrupt Handling 2
Termination of software interrupts

Any software interrupt may be cleared by clearing the respective bit in the VINT_EN
or LINT_EN register. However, this method is not recommend for software VME bus
interrupts because it may result in a spurious interrupt on that bus. That is, the
Universe II will then not respond to the interrupt handler’s IACK cycle, and the
handler will be left without a STATUS/ID for the interrupt.

Since the software interrupt is edge-sensitive, the software interrupt bit in the
VINT_EN or LINT_EN register should be cleared any time between the last interrupt
finishing ant the generation of another interrupt. It is recommended that the
appropriate interrupt handler clear this bit once it has completed its operations.
Alternatively, the process generating a software interrupt could clear this bit before
re-asserting it.

Software interrupts on the VMEbus have priority over other interrupts mapped
internally to the same level on the VMEbus. When a VMEbus interrupt handler
generates an IACK cycle on a level mapped to both a software interrupt and another
interrupt, the Universe II always provides the STATUS/ID for the software interrupt
(bit zero of the Status/ID is cleared). If there are no other active interrupts on that
level, the interrupt is automatically cleared upon completion of the IACK cycle (since
software interrupts are ROAK).

While the software interrupt STATUS/ID has priority over other interrupt sources,
the user can give other interrupt sources priority over the software interrupt. This is
done by reading the LINT_STAT register (Table B-114 on page 270) when handling a
Universe II interrupt. This register indicates all active interrupt sources. Using this
information, the interrupt handler can then handle the interrupt sources in any
system-defined order.

Software IACK Interrupt

The Universe II generates an internal interrupt when it provides the software
STATUS/ID to the VMEbus. This interrupt can only be routed to a PCI interrupt
output. A PCI interrupt will be generated upon completion of an IACK cycle that had
been initiated by the Universe II’s software interrupt if:

• the SW_IACK bit in the LINT_EN register (Table B-112 on page 268) is set, and
• the SW_IACK field in the LINT_MAP1 register (Table B-118 on page 273) is

mapped to a corresponding PCI interrupt line.

This interrupt could be used by a PCI process to indicate that the software interrupt
generated to the VMEbus has been received by the slave device and acknowledged.

Like other interrupt sources, this interrupt source can be independently enabled
through the LINT_EN register (Table B-112 on page 268) and mapped to a particular
LINT# pin using the LINT_MAP1 register (Table B-118 on page 273). A status bit in
the LINT_STAT register (Table B-114 on page 270) indicates when the interrupt source
is active, and is used to clear the interrupt once it has been serviced.
119

2 VMIVME-7697 Product Manual
VMEbus Ownership Interrupt

The VMEbus ownership interrupt is generated when the Universe II acquires the
VMEbus in response to programming of the VOWN bit in the MAST_CTL register
(Table B-160 on page 293). This interrupt source can be used to indicate that
ownership of the VMEbus is ensured during an exclusive access (see VME Lock
Cycles—Exclusive Access to VMEbus Resources on page 90). The interrupt is cleared
by writing a one to the matching bit in the LINT_STAT register (Table B-114 on page
270).

DMA Interrupt

The DMA module provides six possible interrupt sources:

• if the DMA is stopped (INT_STOP),
• if the DMA is halted (INT_HALT),
• if the DMA is done (INT_DONE),
• for PCI Target-Abort or Master-Abort (INT_LERR),
• for VMEbus errors (INT_VERR), or
• if there is a PCI protocol error or if the Universe II is not enabled as PCI master

(INT_P_ERR).

All of these interrupt sources are OR’ed to a single DMA interrupt output line. When
an interrupt comes from the DMA module, software must read the DMA status bits
(Table B-108 on page 265) to discover the originating interrupt source. The DMA
interrupt can be mapped to either the VMEbus or one of the PCI interrupt output
lines. See DMA Interrupts on page 140.

Mailbox Register Access Interrupts

The Universe II can be programmed to generate an interrupt on the PCI bus and/or
the VMEbus when any one of its mailbox registers is accessed (see Mailbox Registers
on page 153). The user may enable or disable an interrupt response to the access of
any mailbox register (Table B-112 on page 268). Each register access may be
individually mapped to a specific interrupt on the PCI bus (LINT_MAP2, Table B-114
on page 270) and/or the VMEbus (VINT_MAP2, Table B-146 on page 288). The status
of the PCI interrupt and the VMEbus are recorded in the LINT_STAT (Table B-114 on
page 270) and VINT_STAT registers (Table B-122 on page 276), respectively.

Location Monitors

The Universe II can be programmed to generate an interrupt on the PCI bus when one
of its four location monitors is accessed (see Location Monitors on page 63).

In order for an incoming VMEbus transaction to activate the location monitor of the
Universe II, the location monitor must be enabled, the access must be within 4 kbytes
of the location monitor base address (LM_BS, Table B-202 on page 311), and it must be
in the specified address space.
120

Interrupt Handling 2
When an access to a location monitor is detected, an interrupt may be generated on
the PCI bus (if the location monitor is enabled). There are four location monitors:

• VA[4:3] = 00 selects Location Monitor 1
• VA[4:3] = 01 selects Location Monitor 2
• VA[4:3] = 10 selects Location Monitor 3
• VA[4:3] = 11 selects Location Monitor 4

The user may enable or disable an interrupt response to the access of any location
monitor with bits in the LINT_EN register (Table B-112 on page 268). Access to each
location monitor may be individually mapped to a specific interrupt on the PCI bus
(LINT_MAP2, Table B-144 on page 287)—not to the VMEbus bus. The status of the
PCI interrupt is logged in (LMn bit of the LINT_STAT, Table B-114 on page 270).

PCI and VMEbus Error Interrupts

Interrupts from VMEbus errors, PCI Target-Aborts or Master-Aborts are generated
only when bus errors arise during decoupled writes. The bus error interrupt (from
either a PCI or VMEbus error) can be mapped to either a VMEbus or PCI interrupt
output line.

VME64 Auto-ID

The Universe II includes a power-up option for participation in the VME64 Auto-ID
process. When this option is enabled, the Universe II generates a level 2 interrupt on
the VMEbus before release of SYSFAIL*. When the level 2 IACK cycle is run by the
system Monarch, the Universe II responds with the Auto-ID Status/ID, 0xFE, and
enables access to a CR/CSR image at base address 0x00_0000.

When the Monarch detects an Auto-ID STATUS/ID on level 2, it is expected to access
the enabled CR/CSR space of the interrupter. From there it completes identification
and configuration of the card. The Monarch functionality is typically implemented in
software on one card in the VMEbus system. See Automatic Slot Identification on
page 67.
121

2 VMIVME-7697 Product Manual
DMA Controller

The Universe II has a DMA controller for high performance data transfer between the
PCI bus and VMEbus. It is operated through a series of registers that control the
source and destination for the data, length of the transfer and the transfer protocol to
be used. There are two modes of operation for the DMA: Direct Mode, and Linked
List Mode. In direct mode, the DMA registers are programmed directly by the
external PCI master. In linked list mode, the registers are loaded from PCI memory by
the Universe II, and the transfer described by these registers is executed. A block of
DMA registers stored in PCI memory is called a command packet. A command packet
may be linked to another command packet, such that when the DMA has completed
the operations described by one command packet, it automatically moves on to the
next command packed in the linked-list of command packets.

This section is broken into the following major sub-sections

• DMA Registers Outline on page 122 describes in detail how the DMA is
programmed from a register perspective.

• Direct Mode Operation on page 128 describes how to operate the DMA when
directly programming the DMA registers.

• Linked-List Operation on page 131 describes how to operate the DMA when a
linked-list of command packets describing DMA transfers is stored in PCI
memory.

• FIFO Operation and Bus Ownership on page 137 describes internally how the
DMA makes use of its FIFO and how this affects ownership of the VMEbus and
PCI bus.

• DMA Interrupts on page 140 describes the interrupts generated by the DMA
• Interactions with Other Channels on page 140 discusses the relations between

the DMA Channel and the other data channels.
• DMA Error Handling on page 141 describes how to handle errors encountered

by the DMA

DMA Registers Outline

The DMA registers reside in a block starting at offset 0x200. They describe a single
DMA transfer: where to transfer data from; where to transfer data to; how much data
to transfer; and the transfer attributes to use on the PCI bus and VMEbus. A final
register contains status and control information for the transfer. While the DMA is
active, the registers are locked against any changes so that any writes to the registers
will have no impact.

In direct-mode operation, these registers would be programmed directly by the user.
In linked-list operation, they are repeatedly loaded by the Universe II from command
packets residing in PCI memory until the end of the linked-list is reached (see
Linked-List Operation on page 131).
122

DMA Controller 2
Source and Destination Addresses

The source and destination addresses for the DMA reside in two registers: the DMA
PCI bus Address Register (DLA register, Table B-102 on page 263), and the DMA
VMEbus Address Register (DVA register in Table B-104 on page 264). The
determination of which is the source address, and which is the destination is made by
the L2V bit in the DCTL register (Table B-98 on page 262). When set, the DMA
transfers data from the PCI to the VMEbus. Hence DLA becomes the PCI source
register and DVA becomes the VMEbus destination register. When cleared, the DMA
transfers data from the VMEbus-to-PCI bus and DLA becomes the PCI destination
register; DVA becomes the VMEbus source register.

The PCI address may be programmed to any byte address in PCI Memory space. It
cannot transfer to or from PCI I/O or Configuration spaces.

The VMEbus address may also be programmed to any byte address, and can access
any VMEbus address space from A16 to A32 in supervisory or non-privileged space,
and data or program space. The setting of address space, A16, A24 or A32, is
programmed in the VAS field of the DCTL register (Table B-98 on page 262). The
sub-spaces are programmed in the PGM and SUPER fields of the same register.

Although the PCI and VMEbus addresses may be programmed to any byte aligned
address, they must be 8-byte aligned to each other (for example, the low three bits of
each must be identical). If not programmed with aligned source and destination
addresses and an attempt to start the DMA is made, the DMA will not start, it will set
the protocol error bit (P_ERR) in the DCSR register, and if enabled to, generate an
interrupt. Linked-list operations will cease.

In direct mode the user must reprogram the source and destination address registers
(DMA, DLA) before each transfer. These registers are not updated in direct mode. In
linked-list mode, these registers are updated by the DMA when (and only when) the
DMA is stopped, halted, or at the completion of processing a command packet. If read
during DMA activity, the y will return the number of bytes remaining to transfer on
the PCI side. All of the DMA registers are locked against any changes by the user
while the DMA is active. When stopped due to an error situation, the DLA and DVA
registers should not be used, but the DTBC is valid (see DMA Error Handling on
page 141 for details). At the end of a successful linked-list transfer, the DVA and DLA
registers will point to the next address at the end of the transfer block, and the DTBC
register will be zero.

Transfer Size

The DMA may be programmed through the DMA Transfer Byte Count register
(DTBC register in Table B-100 on page 263) to transfer any number of bytes from 1
byte to 16 MBytes. There are no alignment requirements to the source or destination
addresses. Should the width of the data turnovers (8- through 64-bit on VMEbus and
32- or 64-bit on PCI) not align to the length of the transfer or the source/destination
123

2 VMIVME-7697 Product Manual
addresses, the DMA will insert transfers of smaller width on the appropriate bus. For
example, if a 15-byte transfer is programmed to start at address 0x1000 on the
VMEbus, and the width is set for D32, the DMA will perform three D32 transfers,
followed by a D16 transfer, followed by a D08 transfer. The Universe II does not
generate unaligned transfers. On a 32-bit PCI bus, if the start address was 0x2000, the
DMA would generate three data beats with all byte lanes enabled, and a fourth with
three byte lanes enabled.

The DTBC register is not updated while the DMA is active (indicated by the ACT bit
in the DGCS register). At the end of a transfer it will contain zero. However, if stopped
by the user (via the STOP bit in the DGCS register) or the DMA encounters an error,
the DTBC register contains the number of bytes remaining to transfer on the source
side. See DMA Error Handling on page 141.

Starting the DMA while DTBC=0 will result in one of two situations. If the CHAIN bit
in the DGCS register (Table B-108 on page 265) is not set, the DMA will not start; it
will perform no action. If the CHAIN bit is set, then the DMA loads the DMA registers
with the contents of the command packet pointed to by the DCPP register (Table
B-106 on page 265), and starts the transfers described by that packet. Note that the
DCPP[31:5] field of the DCPP register implies that the command packets be 32-byte
aligned (bits 4:0 of this register must be 0).

Transfer Data Width

The VMEbus and PCI bus data widths are determined by three fields in the DCTL
register (Table B-98 on page 262). These fields affect the speed of the transfer. They
should be set for the maximum allowable width that the destination device is capable
of accepting.

On the VMEbus, the DMA supports the following data widths:

• D08(EO)
• D16
• D16BLT
• D32
• D64
• D32BLT
• D64BLT (MBLT)

The width of the transfer is set with the VDW field in the DCTL register. The VCT bit
determines whether or not the Universe II VMEbus Master will generate BLT
transfers. The value of this bit only has meaning if the address space is A24 or A32
and the data width is not 64 bits. If the data width is 64 bits the Universe II may
perform MBLT transfers independent of the state of the VCT bit.
124

DMA Controller 2
The Universe II may perform data transfers smaller than that programmed in the
VDW field in order to bring itself into alignment with the programmed width. For
example if the width is set for D32 and the starting VMEbus address is 0x101, the
DMA will perform a D08 cycle followed by a D16 cycle. Only once it has achieved the
alignment set in the VDW field does it start D32 transfers. At the end of the transfer,
the DMA will also have to perform more low-width transfers if the last address is not
aligned to VDW. Similarly, if the VCT bit is set to enable block transfers, the DMA
may perform non-block transfers to bring itself into alignment.

On the PCI bus, the DMA provides the option of performing 32- or 64-bit PCI
transactions through the LD64EN bit in the DCTL register (Table B-98 on page 262). If
the Universe II has powered-up on a 32-bit bus (see Power-up Option Descriptions on
page 162), this bit will have no effect. If powered-up on a 64-bit bus, this bit can
provide some performance improvements when accessing 32-bit targets on that bus.
Following the PCI specification, before a 64-bit PCI initiator starts a 64-bit transaction,
it engages in a protocol with the intended target to determine if it is 64-bit capable.
This protocol typically consumes one clock period. To save bandwidth, the LD64EN
bit can be cleared to bypass this protocol when it is known that the target is only 32-bit
capable

DMA Command Packet Pointer

The DMA Command Packet Pointer (DCPP in Table B-106 on page 265) points to a
32-byte aligned address location in PCI Memory space that contains the next
command packet to be loaded once the transfer currently programmed into the DMA
registers has been successfully completed. When it has been completed (or the DTBC
register is zero when the GO bit is set) the DMA reads the 32-byte command packet
from PCI memory and executes the transfer it describes.

DMA Control and Status

The DMA General Control/Status Register (DGCS in Table B-108 on page 265)
contains a number of fields that control initiation and operation of the DMA as well as
actions to be taken on completion.

DMA Initiation

Once all the parameters associated with the transfer have been programmed
(source/destination addresses, transfer length and data widths, and if desired, linked
lists enabled), the DMA transfer is started by setting the GO bit in the DGCS register.
This causes the DMA first to examine the DTBC register. If it is non-zero, it latches the
values programmed into the DCTL, DTBC, DLA, and DVA registers and initiates the
transfer programmed into those registers. If DTBC=0, it checks the CHAIN bit in the
DGCS register and if that bit is cleared it assumes the transfer to have completed and
stops. Otherwise, if the CHAIN bit is set, it loads into the DMA registers the
command packet pointed to by the DCPP register and initiates the transfer described
there.
125

2 VMIVME-7697 Product Manual
If the GO bit is set, but the Universe II has not been enabled as a PCI master with the
BM (bus master enable) bit in the PCI_CSR register, or if the DVA and DLA contents
are not 64-bit aligned to each other, the transfer does not start, a protocol error is
indicated by the P_ERR bit in the DGCS register and, if enabled, an interrupt is
generated.

If the DMA has been terminated for some reason (stopped, halted, or error), all DMA
registers contain values indicating where the DMA terminated. Once all status bits
have been cleared, the DMA may be restarted from where it left off by simply setting
the GO bit. The GO bit will only have an effect if all status bits have been cleared.
These bits include STOP, HALT, DONE, LERR, VERR, and P_ERR; all in the DGCS
register. These bits are all cleared by writing “one” to them, either before or while
setting the GO bit.

The GO bit always returns a zero when read independent of the DMA’s current state.
Clearing the bit has no impact at any time. The ACT bit in the DGCS register indicates
whether the DMA is currently active. It is set by the DMA once the GO bit is set, and
cleared when the DMA is idle. Generally, when the ACT bit is cleared, one of the other
status bits in the DGCS register is set (DONE, STOP, HALT, LERR, VERR, or P_ERR),
indicating why the DMA is no longer active.

DMA VMEbus Ownership

Two fields in the DGCS register determine how the DMA will share the VMEbus with
the other two potential masters in the Universe II (PCI Target Channel, and Interrupt
Channel), and with other VMEbus masters on the bus. These fields are: VON and
VOFF.

VON affects how much data the DMA will transfer before giving the opportunity to
another master (either the Universe II or an external master) to assume ownership of
the bus. The VON counter is used to temporarily stop the DMA from transferring
data once a programmed number of bytes have been transferred (256 bytes, 512 bytes,
1K, 2K, 4K, 8K, or 16K). When performing MBLT transfers on the VMEbus, the DMA
will stop performing transfers within 2048 bytes after the programmed VON limit has
been reached. When not performing MBLT transfers, the DMA will stop performing
transfers within 256 bytes once the programmed limit has been reached. When
programmed for Release-When-Done operation, the Universe II will perform an early
release of BBSY* when the VON counter reaches its programmed limit. VON may be
disabled by setting the field to zero. When set as such, the DMA will continue
transferring data as long as it is able.

There are other conditions under which the DMA may relinquish bus ownership. See
FIFO Operation and Bus Ownership on page 137 for details on the VMEbus request
and release conditions for the DMA.
126

DMA Controller 2
VOFF affects how long the DMA will wait before re-requesting the bus after the VON
limit has been reached. By setting VOFF to zero, the DMA will immediately re-request
the bus once the VON boundary has been reached. Since the DMA operates in a
round-robin fashion with the PCI Target Channel, and in a priority fashion with the
Interrupt Channel, if either of these channels require ownership of the VMEbus, they
will receive it at this time.

VOFF is only invoked when VMEbus tenure is relinquished due to encountering the
VON boundary. When the VMEbus is released due to other conditions (e.g., the
DMAFIFO has gone full while reading from the VMEbus), it will be re-requested as
soon as that condition is cleared. The VOFF timer can be programmed to various time
intervals from 0µs to 1024µs. See FIFO Operation and Bus Ownership on page 137 for
details on the VMEbus request and release conditions for the DMA.

See Interactions with Other Channels on page 140 for information on other
mechanisms which may delay the DMA Channel from acquiring the VMEbus or the
PCI bus.

DMA Completion and Termination

Normally, the DMA will continue processing its transfers and command packets until
either it completes everything it has been requested to, or it encounters an error. There
are also two methods for the user to interrupt this process and cause the DMA to
terminate prematurely: Stop and Halt. Stop causes the DMA to terminate
immediately, while halt causes the DMA to terminate when it has completed
processing the current command packet in a linked list.

When the STOP_REQ bit in the DGCS register is set by the user, it tells the DMA to
cease its operations on the source bus immediately. Remaining data in the FIFO
continues to be written to the destination bus until the FIFO is empty. Once the FIFO
is empty, the STOP bit in the same register is set and, if enabled, an interrupt
generated. The DMA registers will contain the values that the DMA stopped at: the
DTBC register contains the number of bytes remaining in the transfer, the source and
destination address registers contain the next address to be read/written, the DCPP
register contains the next command packet in the linked-list, and the DCTL register
contains the transfer attributes.

If read transactions are occurring on the VMEbus, then setting a stop request can be
affected by the VOFF timer. If the STOP_REQ bit is set while the DMA is lying idle
waiting for VOFF to expire before recommencing reads, then the request remains
pending until the VOFF timer has expired and the bus has been granted.

Halt provides a mechanism to interrupt the DMA at command packet boundaries
during a linked-list transfer. In contrast, a stop requests the DMA to be interrupted
immediately, while halt takes effect only when the current command packet is
complete. A halt is requested of the DMA by setting the HALT_REQ bit in the DGCS
register. This causes the DMA to complete the transfers defined by the current
contents of the DMA registers and, if the CHAIN bit is set, load in the next command
packet. The DMA then terminates, the HALT bit in the DGCS register is set, and, if
enabled, an interrupt generated.
127

2 VMIVME-7697 Product Manual
After a stop or halt, the DMA can be restarted from the point it left off by setting the
GO bit; but before it can be re-started, the STOP and HALT bits must both be cleared.

Regardless of how the DMA stops—whether normal, bus error or user
interrupted—the DMA will indicate in the DGCS register why it stopped. The STOP
and HALT bits get set in response to a stop or halt request. The DONE bit gets set
when the DMA has successfully completed the DMA transfer, including all entries in
the linked-list if operating in that mode. There are also three bits that are set in
response to error conditions: LERR in the case of Target-Abort encountered on the PCI
bus; VERR in the case of a bus error encountered on the VMEbus; and P_ERR in the
case that the DMA has not been properly programmed (the DMA was started with the
BM bit in the PCI_CSR register not enabled, or the DLA and DVA registers were not
64-bit aligned, (see Source and Destination Addresses on page 123). Before the DMA
can be restarted, each of these status bits must be cleared.

When the DMA terminates, an interrupt may be generated to VMEbus or PCI bus.
The user has control over which DMA termination conditions will cause the interrupt
through the INT_STOP, INT_HALT, INT_DONE, INT_LERR, INT_VERR, and
INT_P_ERR bits in the DGCS register.

Direct Mode Operation

When operated in direct mode, the Universe II DMA is set through manual register
programming. Once the transfer described by the DVA, DLA, DTBC and DCTL
registers has been completed, the DMA sits idle awaiting the next manual
programming of the registers. Figure 2-16 describes the steps involved in operating
the DMA in direct mode.
128

DMA Controller 2
Figure 2-15 Direct Mode DMA transfers

Step 1: Program DGCS
with tenure and interrupt

requirements

Step 2: Program
source/destination

addresses, & transfer
size/attributes

Step 4: Set GO bit

Step 5: Await termination
of DMA

Normal
Termination?

More
transfers
required?

No

Yes

Handle error
No

Yes

Done

Step 3: Ensure status bits are clear
129

2 VMIVME-7697 Product Manual
In Step 1, the DGCS register is set up: the CHAIN bit is cleared, VON and VOFF are
programmed with the appropriate values for controlling DMA VMEbus tenure, and
the interrupt bits (INT_STOP, INT_HALT, INT_DONE, INT_LERR, INT_VERR, and
INT_P_ERR) are programmed to enable generation of interrupts based on DMA
termination events. DMA interrupt enable bits in the LINT_EN or VINT_EN bits
should also be enabled as necessary (see PCI Interrupt Generation on page 107 and
VMEbus Interrupt Generation on page 109 for details on generating interrupts).

In Step 2, the actual transfer is programmed into the DMA: source and destination
start addresses into the DLA and DVA registers, transfer count into the DTBC register,
and transfer width, direction and VMEbus address space into the DCTL register.
These should be reprogrammed after each transfer.

In Step 3, ensure that if any status bits (DONE, STOP, HALT, LERR, VERR, or P_ERR)
remain set from a previous transfer they are cleared. P_ERR must not be updated at
the same time as Step 4, otherwise the P_ERR that may be generated by setting GO
may be missed (see Step 4). These bits may be cleared as part of Step 1.

In Step 4, with the transfer programmed, the GO bit in DGCS must be set. If the DMA
has been improperly programmed, either because the BM bit in the PCI_CSR has not
been set to enable PCI bus mastership, or the source and destination start addresses
are not aligned, then P_ERR will be asserted. Otherwise, the ACT bit will be set, and
the DMA will then start transferring data, sharing ownership of the VMEbus with the
PCI Target and Interrupt channels and the PCI bus with the VMEbus Slave Channel.

In Step 5, one waits for termination of the DMA transfers. The DMA will continue
with the transfers until it:

• completes all transfers,
• is terminated early with the STOP_REQ bit, or
• encounters an error on the PCI bus or VMEbus.

Each of these conditions will cause the ACT bit to clear, and a corresponding status bit
to be set in the DGCS register. If enabled in Step 1, an interrupt will also be generated.
Once the software has set the GO bit, the software can monitor for DMA completion
by either waiting for generation of an interrupt, or by polling the status bits. It is
recommended that a background timer also be initiated to time-out the transfer. This
will ensure that the DMA has not been hung up by a busy VMEbus, or other such
system issues.

If an early termination is desired, perhaps because a higher priority operation is
required, the STOP_REQ bit in the DGCS register can be set. This will stop all DMA
operations on the source bus immediately, and set the STOP bit in the same register
when the last piece of queued data in the DMA FIFO has been written to the
destination bus. Attempting to terminate the transfer with the HALT_REQ bit will
have no effect in direct mode operation since this bit only requests the DMA to stop
between command packets in linked-list mode operation.
130

DMA Controller 2
When the software has detected completion, it should verify the status bits in the
DGCS register to see the reason for completion. If one of the error bits have been set, it
proceeds into an error handling routine (see DMA Error Handling on page 141). If the
STOP bit was set, the software should take whatever actions were desired when it set
the STOP_REQ bit. For example, if it was stopped for a higher priority transfer, it
might record the DLA, DVA and DTBC registers, and then reprogram them with the
higher priority transfer. When that has completed, it can restore the DVA, DLA and
DTBC registers to complete the remaining transfers.

If the DONE bit was set, it indicates that the DMA completed its requested transfer
successfully, and if more transfers are required, the software can proceed to Step 2 to
start a new transfer.

Linked-List Operation

Unlike direct mode, in which the DMA performs a single block of data at a time,
linked-list mode allows the DMA to transfer a series of non-contiguous blocks of data
without software intervention. Each entry in the linked-list is described by a
command packet which parallels the DMA register layout. The data structure for each
command packet is the same (see Figure 2-17), and contains all the necessary
information to program the DMA address and control registers. It could be described
in software as a record of eight 32-bit data elements. Four of the elements represent
the four core registers required to define a DMA transfer: DCTL, DTBC, DVA, and
DLA. A fifth element represents the DCPP register which points to the next command
packet in the list. The least two significant bits of the DCPP element (the PROCESSED
and NULL bits) provide status and control information for linked list processing.

The PROCESSED bit indicates whether a command packet has been PROCESSED or
not. When the DMA processes the command packet and has successfully completed
all transfers described by this packet, it sets the PROCESSED bit to “1” before reading
in the next command packet in the list. This implies that the PROCESSED bit must be
initially set for “0” by the user for it to be of use. This bit, when set to 1, indicates that
this command packet has been disposed of by the DMA and its memory can be
de-allocated or reused for another transfer description.
131

2 VMIVME-7697 Product Manual
Figure 2-16 Command Packet Structure and Linked List Operation

The NULL bit indicates the termination of the entire linked list. If the NULL bit is set
to “0”, the DMA processes the next command packet pointed to by the command
packet pointer. If the NULL bit is set to “1” then the address in the command packet
pointer is considered invalid and the DMA stops at the completion of the transfer
described by the current command packet.

Figure 2-17 outlines the steps in programming the DMA for linked-list operation.

Linked-List Start
Address in
Command Packet
Pointer Register

First Command Packet
 in Linked-List

Register information
copied to DMA Control
and Address Registers

DCPP points
 to next command
packet
in Linked-List

Second Command Packet
in Linked-List

Last Command Packet
in Linked-List

DCTL Register

DTBC Register

DLA Register

reserved

DVA Register

reserved

DCPP Register

reserved

r P N

DCTL Register

DTBC Register

DLA Register

reserved

DVA Register

reserved

DCPP Register

reserved

r P N

DCTL Register

DTBC Register

DLA Register

reserved

DVA Register

reserved

DCPP Register

reserved

r P N

r = reserved
P = processed bit
N = null bit

N = 1 for last command packet
132

DMA Controller 2
In Step 1, the DGCS register is set up: the CHAIN bit is set, VON and VOFF are
programmed with the appropriate values for controlling DMA VMEbus tenure, and
the interrupt bits (INT_STOP, INT_HALT, INT_DONE, INT_LERR, INT_VERR, and
INT_P_ERR) are programmed to enable generation of interrupts based on DMA
termination events. DMA interrupt enable bits in the LINT_EN or VINT_EN bits
should also be enabled as necessary (PCI Interrupt Generation on page 107 and
VMEbus Interrupt Generation on page 109).

Figure 2-17 DMA Linked List Operation

Step 1: Program DGCS
with tenure and interrupt

requirements

Step 4 : Set GO bit

Step 5 : Await termination
of DMA

Normal
Termination?

Yes

Step 2 : Set up linked-list
in PCI memory space

Step 3 : Clear DTBC
register, program DCPP

Done

handle error
No
133

2 VMIVME-7697 Product Manual
In Step 2, the linked-list structure is programmed with the required transfers. The
actual structure may be set up at any time with command packet pointers
pre-programmed and then only the remaining DMA transfer elements need be
programmed later. One common way is to set up the command packets as a circular
queue: each packet points to the next in the list, and the last points to the first. This
allows continuous programming of the packets without having to set-up or tear down
packets later.

Once the structure for the linked-list is established, the individual packets are
programmed with the appropriate source and destination addresses, transfer sizes
and attributes.

In Step 3, Clear the DTBC register and program the DCPP register to point to the first
command packet in the list.

When using the DMA to perform linked-list transfers, it is important to ensure that
the DTBC register contains a value of zero before setting the GO bit of the DGCS
register. Otherwise, the DMA may not read the first command packet but instead
perform a direct mode transfer based on the contents of the DCTL, DTBC, DLA, DVA
and DGCS registers. After this direct mode transfer is completed, the PROCESSED bit
of the first command packet is programmed with a value of 1 even though the packet
was not actually processed. The DMA continues as expected with the next command
packet.

In Step 4, to start the linked-list transfer, set the GO bit in the DGCS register. The DMA
will first perform the transfers defined by the current contents of the DCTL, DTBC,
DVA and DLA registers. Once that is complete it will then start the transfers defined
by the linked-list pointed to in the DCPP register.

In Step 5, await and deal with termination of the DMA. Once the DMA channel is
enabled, it processes the first command packet as specified by the DCPP register. The
DMA transfer registers are programmed by information in the command packets and
the DMA transfer steps along each command packet in sequence (see Figure 2-16 on
page 132). The DMA will terminate when it:

• processes a command packet with the NULL bit set indicating the last packet of
the list,

• is stopped with the STOP_REQ bit in the DGCS register,
• is halted with the HALT_REQ bit in the DGCS register, or
• encounters an error on either the PCI bus or VMEbus.

!

134

DMA Controller 2
Each of these conditions will cause the ACT bit to clear, and a corresponding status bit
to be set in the DGCS register. If enabled in step 1, an interrupt will also be generated.
Once the software has set the GO bit, the software can monitor for DMA completion
by either waiting for generation of an interrupt, by polling the status bits in the DGCS
register, or by polling the PROCESSED bits of the command packets. It is
recommended that a background timer also be initiated to time-out the transfer. This
will ensure that the DMA has not been hung up by a busy VMEbus, or other such
system issues.

Linked-list operation can be halted by setting the HALT_REQ bit in the DGCS register
(Table B-108 on page 265). When the HALT_REQ bit is set, the DMA terminates when
all transfers defined by the current command packet is complete. It then loads the
next command packet into its registers. The HALT bit in the DGCS register is asserted,
and the ACT bit in the DGCS register is cleared. The PROCESSED bit in the linked-list
is set to “1” approximately 1 µs after the HALT bit is set: therefore after a DMA halt
the user should wait at least 1 µs before checking the status of the PROCESSED bit.

The DMA can be restarted by clearing the HALT status bit and setting the GO bit if
desired during the same register write. If the DMA is restarted, the ACT bit is set by
the Universe II and execution continues as if no HALT had occurred: for example, the
Universe II processes the current command packet (see Figure 2-17 on page 133).

In contrast to a halt, the DMA can also be immediately terminated through the
STOP_REQ bit. This will stop all DMA operations on the source bus immediately, and
set the STOP bit in the same register when the last piece of queued data in the DMA
FIFO has been written to the destination bus.

Once stopped, the DVA, DLA and DTBC registers contain values indicating the next
addresses to read/write and the number of bytes remaining in the transfer. Clearing
the STOP bit and setting the GO bit will cause the DMA to start up again from where
it left off, including continuing with subsequent command packets in the list.

If the DMA is being stopped to insert a high priority DMA transfer, the remaining
portion of the DMA transfer may be stored as a new command packet inserted at the
top of the linked list. A new command packet with the attributes of the high priority
transfer is then placed before that one in the list. Now the linked list is set up with the
high priority packet first, followed be the remainder of the interrupted packet,
followed in turn by the rest of the linked list. Finally, the DTBC register is cleared and
the DCPP programmed with a pointer to the top of the list where the high priority
command packet has been placed. When the GO bit is set (after clearing the STOP
status bit in the DGCS register), the DMA will perform the transfers in the order set in
the linked list. For more details on updating the linked list see Linked List Updating
on page 136.

DMA transfers continue until the DMA encounters a command packet with the
NULL bit set to “1”, indicating that the last packet has been reached. At this point, the
DMA stops, the DONE bit is set, and the ACT flag is cleared. As it completes the
transfers indicated by each command packet, the DMA sets the PROCESSED bit in
that command packet before reading in the next command packet and processing its
contents.
135

2 VMIVME-7697 Product Manual
Linked List Updating

The Universe II provides a mechanism which allows the linked list to be updated with
additional linked list entries without halting or stopping the DMA. This takes place
through the use of a semaphore in the device: the UPDATE bit in the D_LLUE register
(Table B-110 on page 267). This bit is meant to ensure that the DMA does not read a
command packet into the DMA registers while the command packet (outside the
Universe II) is being updated. This semaphore does not prevent external masters from
updating the DMA registers.

Adding to a linked list begins by writing a “1” to the UPDATE bit. The DMA checks
this bit before proceeding to the next command packet. If the UPDATE bit is “0”, then
the DMA locks the UPDATE bit against writes and proceeds to the next command
packet. If the UPDATE bit is “1”, then the DMA waits until the bit is cleared before
proceeding to the next command packet. Therefore, setting the UPDATE bit is a
means of stalling the DMA at command packet boundaries while local logic updates
the linked list.

In order to ensure that the DMA is not currently reading a command packet during
updates, the update logic must write a “1” to the UPDATE bit and read a value back.
If a “0” is read back from the UPDATE bit, then the DMA is currently reading a
command packet and has locked the UPDATE bit against writes. If a “1” is read back
from the UPDATE bit, then the DMA is idle or processing a transaction and command
packets can be updated. If the DMA attempts to proceed to the next command packet
during the update, it will encounter the set UPDATE bit and wait until the bit is
cleared.

If a set of linked command packets has already been created with empty packets at the
end of new transfers, adding to the end of the current linked list takes the following
procedure:

1. Get UPDATE valid (write “1”, read back “1”),

2. Program attributes for new transfer in next available packet in list.

3. Change “null” pointer (on previous tail of linked list),

4. Release update (clear the UPDATE bit).

After updating the linked list, the DMA controller will be in three possible conditions:

1. It may be active and working its way through the linked list. In this case, no
further steps are required.

2. The DMA may be idle (done) because it reached the final command packet. If a
full set of linked command packets had already been created ahead of time, then
the DCPP register would point to the most recently programmed command
packet, and the DTBC register would be zero. The DMA can be started on the
new packet by simply clearing the DONE bit and setting the GO bit in the DGCS
register. If a set of command packets had not been created ahead of time, the
DCPP register may not be programmed to any valid packet, and will need
programming to the newly programmed packet.
136

DMA Controller 2
3. The DMA has encountered an error. In this circumstance, see DMA Error
Handling on page 141 for how to handle DMA errors.

Operation may be considerably simplified by ensuring that sufficient command
packets have been created during system initialization, probably in a circular queue.
In this fashion, when a new entry is added to the list, it is simply a matter of
programming the next available entry in the list with the new transfer attributes and
changing the previously last packet’s NULL bit to zero. The DCPP register will be
guaranteed to point to a valid command packet, so upon updating the list, both cases
1 and 2 above can be covered by clearing the DONE bit and setting the GO bit. This
will have no effect for case 1 since the DMA is still active, and will restart the DMA for
case 2.

If an error has been encountered by the DMA (case 3), setting the GO bit and clearing
the DONE bit will not be sufficient to restart the DMA—the error bits in the DGCS
register will also have to be cleared before operation can continue.

FIFO Operation and Bus Ownership

The DMA uses a 256-byte FIFO. (The DMA FIFO is 64 bits wide). This supports high
performance DMA transfers. In general, the DMA reads data from the source, and
stores it as transactions in the FIFO. On the destination side, the DMA requests
ownership of the master and once granted begins transfers. Transfers stop on the
source side when the FIFO fills, and on the destination side when the FIFO empties.

PCI-to-VMEbus Transfers

PCI-to-VMEbus transfers involve the Universe II reading from the PCI bus and
writing to the VMEbus.

The PCI bus is requested for the current read once 128 bytes are available in the
DMAFIFO. The DMA Channel fills the DMAFIFO using PCI read transactions with
each transaction broken at address boundaries determined by the programmed PCI
aligned burst size (PABS field in the MAST_CTL register, Table B-160 on page 293).
This ensures that the DMA makes optimal use of the PCI bus by always generating
bursts of 32, 64 or 128 bytes with zero wait states.

The DMA packs read data into the DMAFIFO to the full 64-bit width of the FIFO,
independent of the width of the PCI bus, or the data width of the ensuing VMEbus
transaction. The PCI read transactions continue until either the DMA has completed
the full programmed transfer, or there is insufficient room available in the DMAFIFO
for a full transaction. The available space required for another burst read transaction
is again 128 bytes. Since the VMEbus is typically much slower than the PCI bus, the
DMAFIFO may fill frequently during PCI-to-VMEbus transfers, though the depth of
the FIFO helps to minimize this. When the DMAFIFO fills, the PCI bus is free for other
transactions (for example, between other devices on the bus or possibly for use by the
Universe II’s VMEbus Slave Channel). The DMA only resumes read transactions on
the PCI bus when the DMAFIFO has space for another aligned burst size transaction.
137

2 VMIVME-7697 Product Manual
Caution: The DMA may prefetch extra read data from the external PCI target. This
implies that the DMA should only be used with memory on the PCI bus which has no
adverse side-effects when prefetched. The Universe II will prefetch up to the aligned
address boundary defined in the PABS field of the MASC_CTL register. On the
VMEbus, the actual programmed number of bytes in the DTBC register will be
written. Prefetching can be avoided by programming the DMA for transfers that
terminate at the PABS boundary. If further data is required beyond the boundary, but
before the next boundary, the DTBC register may be programmed to eight byte
transfers. The DMA will fetch the full eight bytes, and nothing more. Programming
the DTBC to less than eight bytes will still result in eight bytes fetched from PCI.

The DMA requests ownership of the Universe II’s VMEbus Master Interface once 64
bytes of data have been queued in the DMAFIFO (see VMEbus Requester on page 50
on how the VMEbus Master Interface is shared between the DMA, the PCI Target
Channel, and the Interrupt Channel). The Universe II maintains ownership of the
Master Interface until:

• the DMAFIFO is empty,
• the DMA block is complete,
• the DMA is stopped,
• a linked list is halted,
• the DMA encounters an error, or
• the DMA VMEbus tenure limit (VON in the DGCS register).

The DMA can be programmed to limit its VMEbus tenure to fixed block sizes using
the VON field in the DGCS register (Table B-108 on page 265). With VON enabled, the
DMA will relinquish ownership of the Master Interface at defined address
boundaries. See DMA VMEbus Ownership on page 126.

To further control the DMA’s VMEbus ownership, the VOFF timer in the DGCS
register can be used to program the DMA to remain off the VMEbus for a specified
period when VMEbus tenure is relinquished. See DMA VMEbus Ownership on
page 126.

The DMA Channel unpacks the 64-bit data queued in the DMAFIFO to whatever the
programmed transfer width is on the VMEbus (e.g. D16, D32, or D64). The VMEbus
Master Interface delivers the data in the DMAFIFO according to the VMEbus cycle
type programmed into the DCTL register (Table B-98 on page 262, see “DMA
Controller on page 122). The DMA provides data to the VMEbus until:

• the DMAFIFO empties, or
• the DMA VMEbus Tenure Byte Count (VON in the DMA_GCSR register)

expires.

!

138

DMA Controller 2
If the DMAFIFO empties, transfers on the VMEbus stop and, if the cycle being
generated is a block transfer, then the block is terminated (AS* negated) and VMEbus
ownership is relinquished by the DMA. The DMA does not re-request VMEbus
ownership until another eight entries are queued in the DMAFIFO, or the DMA
Channel has completed the current Transfer Block on the PCI bus (see VMEbus
Release on page 51).

PCI bus transactions are the full width of the PCI data bus with appropriate byte lanes
enabled. The maximum VMEbus data width is programmable to 8, 16, 32, or 64 bits.
Byte transfers can be only of type DO8 (EO). Because the PCI bus has a more flexible
byte lane enabling scheme than the VMEbus, the Universe II may be required to
generate a variety of VMEbus transaction types to handle the byte resolution of the
starting and ending addresses (see Data Transfer on page 82).

VMEbus-to-PCI Transfers

VMEbus-to-PCI transfers involve the Universe II reading from the VMEbus and
writing to the PCI bus.

With DMA transfers in this direction, the DMA Channel begins to queue data in the
DMAFIFO as soon as there is room for 64 bytes in the DMAFIFO. When this
watermark is reached, the DMA will request the VMEbus (through the VMEbus
Master Interface) and begin reading data from the VMEbus. The Universe II maintains
VMEbus ownership until:

• the DMAFIFO is full,
• the DMA block is complete,
• the DMA is stopped,
• a linked list is halted,
• the DMA encounters an error, or
• the VMEbus tenure limit is reached (VON in the DGCS register).

The DMA can be programmed to limit its VMEbus tenure to fixed block sizes using
the VON field in the DGCS register (Table B-108 on page 265). With VON enabled, the
DMA will relinquish ownership of the Master Interface at defined address
boundaries. See DMA VMEbus Ownership on page 126.

To further control the DMA’s VMEbus ownership, the VOFF timer in the DGCS
register can be used to program the DMA to remain off the VMEbus for a specified
period when VMEbus tenure is relinquished. See DMA VMEbus Ownership on
page 126.

Entries in the DMAFIFO are delivered to the PCI bus as PCI write transactions as soon
as there are 128 bytes available in the DMAFIFO. If the PCI bus responds too slowly,
the DMAFIFO runs the risk of filling before write transactions can begin at the PCI
Master Interface. Once the DMAFIFO reaches a “nearly full” state (corresponding to
three entries remaining) the DMA requests that the VMEbus Master Interface
complete its pending operations and stop. The pending read operations typically fill
139

2 VMIVME-7697 Product Manual
the DMAFIFO. Once the pending VMEbus reads are completed (or the VON timer
expires), the DMA relinquishes VMEbus ownership and only re-requests the VMEbus
Master Interface once 64 bytes again become available in the DMAFIFO. If the bus
was released due to encountering a VON boundary, the bus is not re-requested until
the VOFF timer expires.

PCI bus transactions are the full width of the PCI data bus with appropriate byte lanes
enabled. The maximum VMEbus data width is programmable to 8, 16, 32, or 64 bits.
Byte transfers can be only of type DO8 (EO). Because the PCI bus has a more flexible
byte lane enabling scheme than the VMEbus, the Universe II may be required to
generate a variety of VMEbus transaction types to handle the byte resolution of the
starting and ending addresses (see Universe II as PCI Target on page 81).

DMA Interrupts

The Interrupt Channel in the Universe II handles a single interrupt sourced from the
DMA Channel which it routes to either the VMEbus or PCI bus via the DMA bits in
the LINT_EN and VINT_EN registers. There are six internal DMA sources of
interrupts and these are all routed to this single interrupt. Each of these six sources
may be individually enabled, and are listed in Table 2-18 on page 140 below. Setting
the enable bit enables the corresponding interrupt source.

Once an enabled DMA interrupt has occurred, regardless of whether the LINT_EN or
VINT_EN enable bits have been set, the corresponding DMA bit in the LINT_STAT
(Table B-114 on page 270) and VINT_STAT (Table B-122 on page 276) registers are set.
Each one must be cleared independently. Clearing one does not clear the other. See
Interrupt Handling on page 113.

Interactions with Other Channels

This section describes the impact that the PCI Bus Target Channel and the VMEbus
Slave Channel may have on the DMA Channel.

Table 2-18 DMA Interrupt Sources and Enable Bits

Interrupt Source Enable Bit

Stop Request INT_STOP

Halt Request INT_HALT

DMA Completion INT_DONE

PCI Target-Abort or Master-Abort INT_LERR

VMEbus Error INT_VERR

Protocol Error INT_M_ERR
140

DMA Controller 2
The Universe II does not apply PCI 2.1 transaction ordering requirements to the DMA
Controller. That is, reads and writes through the DMA Controller can occur
independently of the other channels.

ADOH cycles and RMW cycles through the VMEbus Slave Channel do impact on the
DMA Channel. Once an external VMEbus master locks the PCI bus, the DMA
Controller will not perform transfers on the PCI bus until the Universe II is unlocked
(see VMEbus Lock Commands (ADOH Cycles) on page 62). When an external
VMEbus Master begins a RMW cycle, at some point a read cycle will appear on the
PCI bus. During the time between when the read cycle occurs on the PCI bus and
when the associated write cycle occurs on the PCI bus, no DMA transfers will occur
on the PCI bus (see VMEbus Read-Modify-Write Cycles (RMW Cycles) on page 62).

If the PCI Target Channel locks the VMEbus using VOWN, no DMA transfers will
take place on the VMEbus (see Using the VOWN bit on page 91).

DMA Error Handling

This section describes how the Universe II responds to errors involving the DMA, and
how the user can recover from them. As described below, the software source of a
DMA error is a protocol, and the hardware source of a DMA error is a VMEbus error,
or PCI bus Target-Abort or Master-Abort.

DMA Software Response to Error

While the DMA is operating normally, the ACT bit in the DGCS register will be set
(Table B-108 on page 265). Once the DMA has terminated, it will clear this bit, and set
one of six status bits in the same register. The DONE bit will be set if the DMA
completed all its programmed operations normally. If the user interrupted the DMA,
either the STOP or HALT bits will be set. If an error has occurred, one of the remaining
three bits, LERR, VERR, or P_ERR, will be set. All six forms of DMA terminations can
be optionally set to generate a DMA interrupt by setting the appropriate enable bit in
the DGCS register (see DMA Interrupts on page 140).

• LERR is set if the DMA encounters an error on the PCI bus: either a
Master-Abort or Target-Abort. Bits in the PCI_CSR register will indicate which
of these conditions caused the error.

• VERR is set if the DMA encounters a bus error on the VMEbus. This will be
exclusively through a detected assertion of BERR* during a DMA cycle.

• P_ERR is set if the GO bit in the DGCS register is set to start the DMA, and the
DMA has been improperly programmed either because the BM bit in the
PCI_CSR disables PCI bus mastership, or the source and destination start
addresses are not aligned (see Source and Destination Addresses on page 123).

Whether the error occurs on the destination or source bus, the DMA_CTL register
contains the attributes relevant to the particular DMA transaction. The DTBC register
provides the number of bytes remaining to transfer on the PCI side. The DTBC
register contains valid values after an error. The DLA and DVA registers should not be
used for error recovery.
141

2 VMIVME-7697 Product Manual
DMA Hardware Response to Error

This section describes how transfers proceed following a bus error, and how
interrupts can be generated following DMA error conditions.

When the error condition (VMEbus Error, Target-Abort, or Master-Abort) occurs on
the source bus while the DMA is reading from the source bus, the DMA stops reading
from the source bus. Any data previously queued within the DMAFIFO is written to
the destination bus. Once the DMAFIFO empties, the error status bit is set and the
DMA generates an interrupt (if enabled by INT_LERR or INT_VERR in the DGCS
register—see DMA Interrupts on page 140).

When the error condition (VMEbus Error, Target-Abort, or Master-Abort) occurs on
the destination bus while the DMA is writing data to the destination bus, the DMA
stops writing to the destination bus, and it also stops reading from the source bus. The
error bit in the DGCS register is set and an interrupt asserted (if enabled).

Interrupt Generation During Bus Errors

To generate an interrupt from a DMA error, there are two bits in the DGCS register
(and one bit each in the VINT_EN and LINT_EN registers). In the DGCS register the
INT_LERR bit enables the DMA to generate an interrupt to the Interrupt Channel
after encountering an error on the PCI bus. The INT_VERR enables the DMA to
generate an interrupt to the Interrupt Channel upon encountering an error on the
VMEbus. Upon reaching the Interrupt Channel, all DMA interrupts can be routed to
either the PCI bus or VMEbus by setting the appropriate bit in the enable registers. All
DMA sources of interrupts (Done, Stopped, Halted, VMEbus Error, and PCI Error)
constitute a single interrupt into the Interrupt Channel.

Resuming DMA Transfers

When a DMA error occurs (on the source or destination bus), the user should read the
status bits and determine the source of the error. If it is possible to resume the transfer,
the transfer should be resumed at the address that was in place up to 256 bytes from
the current byte count. The original addresses (for example, DLA and DVA) are
required in order to resume the transfer at the appropriate location. However, the
values in the DLA and the DVA registers should not be used to reprogram the DMA,
because they are not valid once the DMA begins. In direct mode, it is the user’s
responsibility to record the original state of the DVA and DLA registers for error
recovery. In Linked-List mode, the user can refer to the current Command Packet
stored on the PCI bus (whose location is specified by the DCPP register) for the
location of the DVA and DLA information.
142

DMA Controller 2
The DTBC register contains the number of bytes remaining to transfer on the source
side. The Universe II does not store a count of bytes to transfer on the destination side.
If the error occurred on the source side, then the location of the error is simply the
latest source address plus the byte count. If the error occurred on the destination side,
then one cannot infer specifically where the error occurred, because the byte count
only refers to the number of data queued from the source, not what has been written
to the destination. In this case, the error will have occurred up to 256 bytes before: the
original address plus the byte count.

Given this background, the following procedure may be implemented to recover from
errors.

1. Read the value contained in the DTBC register.

2. Read the record of the DVA and DLA that is stored on the PCI bus or elsewhere
(not the value stored in the Universe II registers of the same name, see above).

3. If the difference between the value contained in the DTBC register and the
original value is less than 256 bytes (the FIFO depth of the Universe II),
reprogram all the DMA registers with their original values.

4. If the difference between the value contained in the DTBC register and the
original value is greater than 256 bytes (the FIFO depth of the Universe II), add
256 (the FIFO depth of the Universe II) to the value contained in the DTBC
register.

5. Add the difference between the original value in the DTBC and the new value in
the DTBC register to the original value in the DLA register.

6. Add the difference between the original value in the DTBC and the new value in
the DTBC register to the original value in the DVA register.

7. Clear the status flags.

8. Restart the DMA (see DMA Initiation on page 125).
143

2 VMIVME-7697 Product Manual
Registers

The VMIVME-7697 interface has two primary groups of registers:

• System Registers on page 145
• Universe II Registers on page 145

The System Registers (which include the PCI-to-VME Command Register, VME BERR
Address, and VME BERR Address Modifier Register) are located in memory. The user
will need to access these registers to enable access to the VMEbus and make use of the
various auxiliary functions.

In order to enable access to the VMEbus both bits 10 and 11 must be set to high in the
System COMM Register located at $D800E in memory.

The Universe II registers are located internally in the Universe II interface chip. These
registers are initialized by the PCI BIOS during boot time. The registers can be
accessed by PCI BIOS calls or VMIC control function library software. The user will
need to access these registers primarily to obtain the base addresses for the various
user programmable registers. A complete description of the PCI configuration space
registers is included in Appendix A in Figure A-1 and in Figure A-2.

Table 2-19 on page 144 shows the base address mapping for each of the register sets.
These base addresses are mapped by the PCI BIOS at boot time.

The Universe II chip maps the 4K register set in both I/O and memory space each
with 4K byte resolution. The registers may thus be accessed using either mode.
However, in order to maintain compatibility with existing software, memory space
accesses should be used. The address of the registers are contained in the Universe II’s
configuration space base address registers 0 and 1 (for example, config space offset
0x10 and 0x14).

Table 2-19 Interface Base Address Map

Register Group
Base Address

Name
Size

(Bytes)
Type

Memory Space
Location

PCI-to-VME System
Registers

- 10 Bytes Memory $D800E

Universe II Registers
(UCSR)

UNIV_BASE 4K Memory $10 (Universe II)
144

Registers 2
System Registers

The system registers consist of four registers located at Memory Address $D800E.
These registers provide additional control/status not contained within the Universe II
chip, such as master/slave endian conversion and non-slot 1 bus time-out timer
control. A complete description of all System Registers is included in Appendix A,
Table A-1, the System Register Map.

Universe II Registers

Most of the VMIVME-7697 interface’s programmable registers are located within the
Universe II chip. The Universe II chip contains a 4K register set located at base
address UNIV_BASE. The VMIVME-7697 interface contains a configurable jumper
which allows the Universe II based registers to be located in memory space or I/O
space.

A list of Universe II registers is included in Appendix B.
145

2 VMIVME-7697 Product Manual
Universe II Registers

This section is organized as follows:

• Overview of Universe II Registers on page 146,
• Register Access from the PCI Bus on page 147,

• Register Access from the VMEbus on page 149,
• Mailbox Registers on page 153, and
• Semaphores on page 153

Overview of Universe II Registers

The Universe II Control and Status Registers (UCSR) occupy 4 Kbytes of internal
memory. This 4 Kbytes is logically divided into three groups (see Figure 2-18 below):

• PCI Configuration Space (PCICS),
• Universe II Device Specific Registers (UDSR), and
• VMEbus Control and Status Registers (VCSR).

The Universe II registers are little-endian.

The access mechanisms for the UCSR are different depending upon whether the
register space is accessed from the PCI bus or VMEbus. Register access from the PCI
bus and VMEbus is discussed below.

Figure 2-18 Universe II Control and Status Register Space

PCI CONFIGURATION
SPACE
(PCICS)

UNIVERSE DEVICE
SPECIFIC REGISTERS

(UDSR) 4 Kbytes

VMEbus Configuration
and Status Registers

(VCSR)
146

Universe II Registers 2
Register Access from the PCI Bus

There are two mechanisms to access the UCSR space from the PCI bus: through
Configuration space or through PCI Memory or I/O space (Table B-10 on page 227).

PCI Configuration Access

When the UCSR space is accessed as Configuration space, it means that the access is
externally decoded and the Universe II is notified via IDSEL (much like a standard
chip select signal). Since the register location is encoded by a 6-bit register number (a
value used to index a 32-bit chunk of Configuration space), only the lower 256 bytes
of the UCSR can be accessed as Configuration space (this corresponds to the PCICS in
the UCSR space, see Figure 2-20 on page 150). Thus, only the PCI configuration
registers are accessible through PCI Configuration cycles.

Figure 2-19 PCI Bus Access to UCSR as Memory or I/O Space

PCI CONFIGURATION
SPACE
(PCICS)

UNIVERSE DEVICE
SPECIFIC REGISTERS

(UDSR) All 4 Kbytes
Accessible as
Memory or I/O
Space

4 Gbytes
of Memory
or I/O Space

PCI_BS

Accessible
through PCI
Configuration
Cycle

VMEbus Configuration
and Status Registers

(VCSR)
147

2 VMIVME-7697 Product Manual
Memory or I/O Access

Exactly two 4-Kbyte ranges of addresses in PCI Memory space and/or PCI I/O space
can be dedicated to the Universe II registers. The Universe II has two programmable
registers (PCI_BS0 and PCI_BS1) that each specify the base address and address space
for PCI access to the Universe II’s registers. The PCI_BSx registers can be programmed
through PCI Configuration space or through a VMEbus access, to make the Universe
II registers available anywhere in the 32-bit Memory space and in I/O space (as offsets
of the BS[31:12] field in PCIBSx).

The Universe II chip maps the 4K register set in both I/O and memory space each
with 4K byte resolution. The registers may thus be accessed using either mode.
However, in order to maintain compatibility with existing software, memory space
accesses should be used. The address of the registers are contained in the Universe II’s
configuration space base address registers 0 and 1 (for example, config space offset
0x10 and 0x14).

The SPACE bit of the PCI_BSx registers specifies whether the address lies in Memory
space or I/O space. The SPACE bit of these two registers are read-only. There is a
power-up option that determines the value of the SPACE bit of the PCI_BSx registers.
At power-up the SPACE bit of the PCI_BS1 register is the negation of the SPACE bit of
the PCI_BS0 register.

• When the VA[1] pin is sampled low at power-up, the PCI_BS0 register’s SPACE
bit is set to “1”, which signifies I/O space, and the PCI_BS1 register’s SPACE bit
is set to “0”, which signifies Memory space.

• When VA[1] is sampled high at power-up, the PCI_BS0 register’s SPACE
register’s bit is set to “0”, which signifies Memory space, and the PCI_BS1
register’s SPACE bit is set to “1”, which signifies I/O space.

Universe II registers are not prefetchable. The Universe II does not accept burst writes
to its registers.

Eliciting Conditions of Target-Retry

Attempts to access UCSR space from the PCI bus will be retried by the Universe II
under the following conditions:

• While UCSR space is being accessed by a VMEbus master, PCI masters will be
retried.

• If a VMEbus master is performing a RMW access to the UCSRs then PCI
attempts to access the USCR space will result in a Target-Retry until AS* is
negated.

• If the Universe II registers are accessed through an ADOH cycle from the
VMEbus, any PCI attempt to access the UCSRs will be retried until BBSY* is
negated.
148

Universe II Registers 2
Locking the Register Block from the PCI bus

The Universe II registers can be locked by a PCI master by using a PCI locked
transaction. When an external PCI master locks the register block of the Universe II,
an access to the register block from the VMEbus will not terminate with the assertion
of DTACK* until the register block is unlocked. Hence a prolonged lock of the register
block by a PCI resource may cause the VMEbus to timeout with a BERR*.

Register Access from the VMEbus

There are two mechanisms to access the UCSR space from the VMEbus. One method
uses a VMEbus Register Access Image (VRAI) which allows the user to put the UCSR
in an A16, A24 or A32 address space. The VRAI approach is useful in systems not
implementing CR/CSR space as defined in the VME64 specification. The other way to
access the UCSR is as CR/CSR space, where each slot in the VMEbus system is
assigned 512 Kbytes of CR/CSR space.

Each method is discussed below.

VMEbus Register Access Image (VRAI)

The VMEbus register access image is defined by the following register fields:

The VMEbus Register Access Image occupies 4 Kbytes in A16, A24 or A32 space
(depending upon the programming of the address space described in Table 2-20 on
page 149 above, see Figure 2-20 below). All registers are accessed as address offsets
from the VRAI base address programmed in the VRAI_BS register (Table B-207 on
page 313). The image can be enabled or disabled using the EN bit in the VRAI_CTL
register (Table B-104 on page 264).

Note that the VRAI base address can be configured as a power-up option (see
Power-up Option Descriptions on page 162).

Table 2-20 Programming the VMEbus Register Access Image

Field Register Bits Description

address space VAS in Table B-205 on page 312 one of A16, A24, A32

base address BS[31:12] in Table B-207 on page 313 lowest address in the 4Kbyte slave image

slave image enable EN in Table B-205 on page 312 enables VMEbus register access image

mode SUPER in Table B-205 on page 312 Supervisor and/or Non-Privileged

type PGM in Table B-205 on page 312 Program and/or Data
149

2 VMIVME-7697 Product Manual
Figure 2-20 UCSR Access from the VMEbus Register Access Image

PCI CONFIGURATION
SPACE
(PCICS)

VMEbus Configuration
and Status Registers

(VCSR)

UNIVERSE DEVICE
SPECIFIC REGISTERS

(UDSR) 4 Kbytes
of UCSR

Total Memory
in A16, A24 or A32
Address Space

VRAI_BS
150

Universe II Registers 2
CR/CSR Accesses

The PCI-to-VMEbus interface does not support CR/CSR space.

The VME64 specification assigns a total of 16 Mbytes of CR/CSR space for the entire
VMEbus system. The CR/CSR image is enabled with the EN bit in the VCSR_CTL
register (Table B-208 on page 313). This 16 Mbytes is broken up into 512 Kbytes per
slot for a total of 32 slots. The first 512 Kbyte block is reserved for use by the Auto-ID
mechanism. The UCSR space occupies the upper 4 Kbytes of the 512 Kbytes available
for its slot position (see Figure 2-21 below). The base address of the CR/CSR space
allocated to the Universe II’s slot is programmed in the VCSR_BS register (Table B-252
on page 330). For CSRs not supported in the Universe II and for CR accesses, the LAS
field in the VCSR_CTL register specifies the PCI bus command that is generated when
the cycle is mapped to the PCI bus. There is also a translation offset added to the
24-bit VMEbus address to produce a 32-bit PCI bus address (programmed in the
VCSR_TO register, Table B-210 on page 314).

Note that the registers in the UCSR space are located as address offsets from
VCSR_BS. These offsets are different from those used in the VRAI mechanisms, where
the first register in the UCSR has address offset of zero (see Table B-1 on page 216).
When accessing the UCSR in CR/CSR space, the first register will have an address
offset of 508 Kbytes (512 Kbytes minus 4 Kbytes). A simple approach for determining
the register offset when accessing the UCSR in CR/CSR space is to add 508 Kbytes
(0x7F000) to the address offsets given in Table B-1 on page 216.

RMW and ADOH Register Access Cycles

The Universe II supports RMW and ADOH accesses to its registers.

A read-modify-write (RMW) cycle allows a VMEbus master to read from a VMEbus
slave and then write to the same resource without relinquishing VMEbus tenure
between the two operations. The Universe II accepts RMW cycles to any of its
registers. This prevents an external PCI Master from accessing the registers of the
Universe II until VMEbus AS* is asserted. This is useful if a single RMW access to the
ADHO is required.

If a sequence of accesses to the Universe registers must be performed without
intervening PCI access to UCSR is required, then the VMEbus master should lock the
Universe II through the use of ADOH. This prevents an external PCI Master from
accessing the registers of the Universe II until VMEbus BBSY* is negated. It also
prevents other VMEbus masters from accessing the Universe II registers.
151

2 VMIVME-7697 Product Manual
Figure 2-21 UCSR Access in VMEbus CR/CSR Space

PCI CONFIGURATION
SPACE
(PCICS)

UNIVERSE DEVICE
SPECIFIC REGISTERS

(UDSR) 4 Kbytes
of UCSR

Mapped
to
PCI

512 Kbytes
of VMEbus
CR/CSR Space
(Portion of 16 Mbyte
Total for Entire
VMEbus System)

VCSR_BS

VMEbus Configuration
and Status Registers

(VCSR)
152

Universe II Registers 2
Mailbox Registers

The Universe II has four 32-bit mailbox registers which provide an additional
communication path between the VMEbus and the PCI bus (see Table B-148 on page
289 to Table B-154 on page 290). The mailboxes support read and write accesses from
either bus, and may be enabled to generate interrupts on either bus when they are
written to. The mailboxes are accessible from the same address spaces and in the same
manner as the other Universe II registers, as described above.

Mailbox registers are useful for the communication of concise command, status, and
parameter data. The specific uses of mailboxes depend on the application. For
example, they can be used when a master on one bus needs to pass information (a
message) on the other bus, without knowing where the information should be stored
in the other bus’s address space. Or they can be used to store the address of a longer
message written by the processor on one bus to the address space on the other bus,
through the Universe II. They can also be used to initiate larger transfers through the
FIFO, in a user-defined manner.

Often users will enable and map mailbox interrupts, so that when the processor
writes to a mailbox from one bus, the Universe II will interrupt the opposite bus. The
interrupt service routine on the opposite bus would then cause a read from this same
mailbox.

Reading a mailbox cannot automatically trigger an interrupt. However, a similar
effect can be achieved by reading the mailbox and then triggering an interrupt
through hardware or software. Or one may use a “polling” approach, where one
designates a bit in a mailbox register to indicate whether one has read from the
mailbox.

For details on how the mailbox interrupts are enabled and mapped, see Interrupt
Handling on page 113 and Mailbox Register Access Interrupts on page 120.

Applications will sometimes designate two mailboxes on one interface as being
read/write from the PCI bus, and read-only from the VMEbus, and the two other
mailboxes as read/write from the VMEbus and read-only from the PCI bus. This
eliminates the need to implement locking. The Universe II provides semaphores
which can be also be used to synchronize access to the mailboxes. Semaphores are
described in the next section.

Semaphores

The Universe II has two general-purpose semaphore registers each containing four
semaphores. The registers are SEMA0 (Table B-156 on page 291) and SEMA1 (Table
B-158 on page 292). To gain ownership of a semaphore, a process writes a logic one to
the semaphore bit and a unique pattern to the associated tag field. If a subsequent
read of the tag field returns the same pattern, the process can consider itself the owner
of the semaphore. A process writes a value of 0 to the semaphore to release it.

When a semaphore bit is a value of 1, the associated tag field cannot be updated. Only
when a semaphore is a value of 0 can the associated tag field be updated.
153

2 VMIVME-7697 Product Manual
These semaphores allow the user to share resources in the system. While the Universe
II provides the semaphores, it is up to the user to determine access to which part of
the system will be controlled by semaphores, and to design the system to enforce
these rules.

An example of a use of the semaphore involves gating access to the Special Cycle
Generator (page 88). It may be necessary to ensure that while one process uses the
Special Cycle Generator on an address, no other process accesses this address. Before
performing a Special Cycle, a process would be required to obtain the semaphore.
This process would hold the semaphore until the Special Cycle completes. A separate
process that intends to modify the same address would need to obtain the semaphore
before proceeding (it need not verify the state of the SCYC[1:0] bit). This mechanism
requires that processes know which addresses might be accessed through the Special
Cycle Generator.
154

Utility Functions 2
Utility Functions

This section discusses miscellaneous utility functions that are provided by the
Universe II, including:

• Resets on page 155,

• Power-Up Options on page 160,
• Hardware Initialization (Normal Operating Mode) on page 166,
• Test Modes on page 166, and
• Clocks on page 168.

Resets

This section is divided in three sections. The first section lists the pins and registers
that are involved in the reset circuitry. The second section presents and explains the
reset circuitry diagram. The third section provides important suggestions and
warnings about configuring the Universe II reset circuitry.

Overview of Reset Support

The Universe II provides a number of pins and registers for reset support. Pin support
is summarized in Table 2-21 on page 155.

Table 2-21 Hardware Reset Mechanism

Interface and
Direction

Pin Name Long Name Effectsa

a.A more detailed account of the effects of reset signals is provided in Reset Implementation Cautions on
page 158

VMEbus Input VRSYSRST# VMEbus Reset Input Asserts LRST# on the local bus, resets the Universe
II, and reconfigures power-up options.

VMEbus Output VXSYSRST VMEbus System
Reset

Universe II output for SYSRST* (resets the
VMEbus)

PCI Input PWRRST# Power-up Reset Resets the Universe II and reconfigures power-up
options.

RST# PCI Reset Input Resets the Universe II from the PCI bus.

VME_RESET# VMEbus Reset
Initiator

Causes Universe II to assert VXSYSRST

PCI Output LRST# PCI Bus Reset Output Resets PCI resources

JTAG Input TRST# JTAG Test Reset Provides asynchronous initialization of the TAP
controller in the Universe II.
155

2 VMIVME-7697 Product Manual
The Universe II is only reset through hardware. Software can only make the Universe
II assert its reset outputs. In order to reset the Universe II through software, the
Universe II reset outputs must be connected to the Universe II reset inputs. For
example, the SW_LRST bit in the MISC_CTL register, which asserts the LRST# output,
will not reset the Universe II itself unless LRST# is looped back to RST#. As described
in Reset Implementation Cautions on page 158, there are potential loopback
configurations resulting in permanent reset.

Table 2-22 Software Reset Mechanism

More detailed information about the effects of various reset events is provided in the
next section.

Universe II Reset Circuitry

Table 2-23 on page 157 below shows how to reset various aspects of the Universe II.
For example, it shows that in order to reset the clock services (SYSCLK, CLK64
enables, and PLL divider), PWRRST# should be asserted. If the table is read from left
to right, it indicates the effects of various reset sources. Notice that PWRRST# resets
all aspects of Universe II listed in column 1 of Table 2-23 on page 157. Table 2-23 on

Register and
Table

Name Type Function

MISC_CTL
Table B-162
on page 295

SW_LRST W Software PCI Reset
0=No effect, 1=Initiate LRST#
A read always returns 0.

SW_SYSRST W Software VMEbus SYSRESET
0=No effect, 1=Initiate SYSRST*
A read always returns 0.

VCSR_SET
Table B-250
on page 329

RESET R/W Board Reset
Reads: 0=LRST# not asserted, 1=LRST# asserted
Writes: 0=no effect, 1=assert LRST#

SYSFAIL R/W VMEbus SYSFAIL
Reads: 0=VXSYSFAIL not asserted, 1=VXSYSFAIL asserted
Writes:0=no effect, 1=assert VXSYSFAIL

VCSR_CLR
Table B-248
on page 329

RESET R/W Board Reset
Reads: 0=LRST# not asserted, 1=LRST# asserted
Writes: 0=no effect, 1=negate LRST#

SYSFAIL R/W VMEbus SYSFAIL
Reads: 0=VXSYSFAIL not asserted, 1=VXSYSFAIL asserted
Writes:0=no effect, 1=negate VXSYSFAIL
156

Utility Functions 2
page 157 also indicates the reset effects that are extended in time. For example,
VXSYSRST# remains asserted for 256 ms after all initiators are removed—this satisfies
VMEbus rule 5.2 (minimum of 200 ms SYSRST*). The external 64 MHz clock controls
this assertion time. LRST# is asserted for 5 ms or more from all sources except
VRSYSRST#. The same information is presented in pictorial format in Figure 2-22.

The interface includes configurable jumpers for enabling/disabling and
driving/receiving VMEbus SYSRESET*

Table 2-23 Functions Affected by Reset Initiators

Effect of Reseta,b

a.On PWRRST#, options are loaded from pins. On SYSRST and RST#, options are loaded from values that were latched at the
previous PWRRST#.

b.Refer to Appendix-A to find the effects of various reset events

Reset Source

Clock Services
SYSCLK
CLK64 enables
PLL Divider

PWRRST#

VMEbus Services
VMEbus Arbiter
VMEbus Timer
VCSR Registers

PWRRST#, or
VRSYSRST#

General Services
Most registers
Internal state machines

PWRRST#,
RST# or
VRSYSRST#

Power-Up and Reset State Machine
Power-up the device
Reset Registers

PWRRST#, or
VRSYSRST#

VMEbus Reset Output
VXSYSRST# (asserted for more than 200 ms)

PWRRST#, or
VME_RESET#, or
SW_SYSRST bit in MISC_CTL register

PCI Bus Reset Output
LRST# (asserted for at least 5 ms)

PWRRST#, or
SW_LRST bit in MISC_CTL register, or
RESET bit in VCSR_SET registerc

c.LRST# may be cleared by writing 1 to the RESET bit in the CSR_CLR register.
157

2 VMIVME-7697 Product Manual
Figure 2-22 Reset Circuitry

Reset Implementation Cautions

To prevent the Universe II from resetting the PCI bus, the LRST# output may be left
unconnected. Otherwise, LRST# should be grouped with other PCI reset generators to
assert the RST# signal such that:

VME Services

Clock Services

General Services

Power-Up and Reset State Machine

> 200ms

>= 5ms

PWRRST#

VRSYSRST#

RST#

VME_RESET#

MISC_CTL Register
SW_SYSRST

SW_LRST

VCSR_CLR and
VCSR_SET Registers

RESET LRST#

VXSYSRST#

VOE#

(Power-up, reset registers, assert VOE#)

(VME Arbiter, VMEbus timer, VCSR registers)

(SYSCLK, CLK64 enables, PLL divider)

(Most Registers, internal state machines)

hold for

hold for

Note 1: On PWRRST#, options are loaded from pins. On SYSRST and
RST#, options are loaded from values that were latched at the previous
PWRRST#.
158

Utility Functions 2
RST# = LRST# & reset_source1 & reset_source2 &...

If the Universe II is the only initiator of PCI reset, LRST# may be directly connected to
RST#.

Assertion of VME_RESET# causes the Universe II to assert VXSYSRST#.

Caution: Since VME_RESET# causes assertion of SYSRST*, and since SYSRST* causes
assertion of LRST#, tying both VME_RESET# and LRST# to RST# will put the
Universe II into permanent reset. If VME_RESET# is to be driven by PCI reset logic,
ensure that the logic is designed to break this feedback path.

The PWRRST# input keeps the Universe II in reset until the power supply has reached
a stable level (see Table 2-23 on page 157). It should be held asserted for over 100
milliseconds after power is stable. Typically this can be achieved through a
resistor/capacitor combination (see Figure 2-23); however, a more reliable solution
using under voltage sensing circuits (e.g. MC34064) is common.

The Universe II supports the VMEbus CSR Bit Clear and Bit Set registers (Table B-248
on page 329 and Table B-250 on page 329). The VCSR_SET registers allows the user to
assert LRST# or SYSFAIL by writing to the RESET or SYSFAIL bits, respectively.
LRST# or SYSFAIL remains asserted until the corresponding bit is cleared in the
VCSR_CLR register. The FAIL bit in each of these registers is a status bit and is set by
the software to indicate board failure.

Figure 2-23 Resistor-Capacitor Circuit Ensuring Power-Up Reset Duration

!

PWRRST#

47 K

10µF
159

2 VMIVME-7697 Product Manual
Power-Up Options

The Universe II may be automatically configured at power-up to operate in different
functional modes. These power-up options allow the Universe II to be set in a
particular mode independent of any local intelligence. The Universe II power-up
options are listed in Table 2-24 on page 161 and described below.

The majority of the Universe II power-up options (listed below) are loaded from the
VMEbus address and data lines after any PWRRST#. There are two power-up options
that are not initiated by PWRRST#. The first of these is PCI bus width (a power-up
option required by the PCI bus specification), and this is loaded on any RST# event
from the REQ64# pin. The second special power-up option is VMEbus SYSCON
enabling, required by the VMEbus specification. The SYSCON option is loaded
during a SYSRST* event from the BG3IN* signal.

All power-up options are latched from the state of a particular pin or group of pins on
the rising edge of PWRST#. Each of these pins except REQ64# has a weak internal
pull-down to put the Universe II into a default configuration. (REQ64# has an internal
pull-up). If a non-default configuration is required, a pull-up of approximately 10k Ω
(or active drive) is required on the signal. See PCI Bus Width on page 164 and the
VMEbus Specification concerning Auto-Syscon Detect for the exceptions to the rule
described in this paragraph.

The Universe II may be restored to the state it was in immediately following the
previous power-up without re-asserting PWRRST#: after SYSRST* or RST# (with
PWRRST# negated), the values that were originally latched at the rising edge of
PWRRST# will be reloaded into the Universe II (except for PCI bus width and
VMEbus SYSCON enabling, which are loaded from their pins).

Table 2-24 on page 161 lists the power-up options of the Universe II, the pins which
determine the options, and the register settings that are set by this option. Each option
is described in more detail in Power-up Option Descriptions on page 162.
160

Utility Functions 2

is set.
Table 2-24 Power-Up Optionsa

a.All power-up options are latched only at the rising-edge of PWRRST#. They are loaded when PWRRST#, SYSRST*
and RST# are negated.

Option Register Field Default Pins

VMEbus Register Access Slave Image VRAI_CTL EN disabled VA[31]

VAS A16 VA[30:29]

VRAI_BS BS 0x00 VA[28:21]

VMEbus CR/CSR slave image VCSR_CTL LAS[0]b

b.The LAS field will enable the PCI_CSR register’s MS or IOS field if the EN FIELD of the LSIO_CTL register

memory VA[20]

VCSR_TO TO 0x00 VA[19:15]

Auto-ID MISC_STAT DY4AUTO disabled VD[30]

MISC_CTL V64AUTO disabled VD[29]

VINT_EN SW_INT 0

VINT_STAT SW_INT 0

VINT_MAP1 SW_INT 000

BI-Mode MISC_CTL BI disabled VD[28]

Auto-Syscon Detect MISC_CTL SYSCON enabled VBGIN[3]
*

SYSFAIL* Assertion VCSR_SET SYSFAIL asserted VD[27]

VCSR_CLR SYSFAIL

PCI Target Image LSI0_CTL EN disabled VA[13]

LAS[0] memory VA[12]

VAS A16 VA[11:10]

LSI0_BS BS 0x0 VA[9:6]

LSI0_BD BD 0x0 VA[5:2]

PCI Register Access PCI_BS0,
PCI_BS1

SPACE See Table B-10
on page 227
and Table on

page 228

VA[1]

PCI Bus Sizec

c.The PCI Bus Size is loaded on any RST# event, as per the PCI 2.1 Specification.

MISC_STAT LCLSIZE 32-bit REQ64#

PCI CSR Image Space PCI_CSR BM disabled VA[14]
161

2 VMIVME-7697 Product Manual
Power-up Option Descriptions

This section describes each of the groups of power-up options that were listed in Table
2-24 on page 161.

VMEbus Register Access Image

The Universe II has several VMEbus slave images, each of which may provide a
different mapping of VMEbus cycles to PCI cycles. All VMEbus slave images are
configurable through a set of VMEbus slave registers: VSIxCTL, VSIx_BS, VSIx_BA,
and VSIx_IO. No VMEbus-to-PCI transaction is possible until these registers are
programmed.

The VMEbus Register Access Image (VRAI) power-up option permits access from the
VMEbus to the Universe II internal registers at power-up. The power-up option
allows programming of the VMEbus register slave image address space and the upper
five bits of its base address; all other bits will be zero (see Table 2-25 on page 162
below). Once access is provided to the registers, then all other Universe II features
(such as further VMEbus slave images) can be configured from the VMEbus.

Table 2-25 on page 162 above shows how the upper bits in the VRAI base address are
programmed for A16, A24, and A32 VMEbus register access images.

VMEbus CR/CSR Slave Image

CR/CSR space is an address space introduced in the VME64 specification. The
CR/CSR space on any VMEbus device is 512 Kbytes in size: the upper region of the
512 Kbytes dedicated to register space, and the lower region is dedicated to
configuration ROM. The Universe II maps its internal registers to the upper region of
the CR/CSR space, and passes all other accesses through to the PCI bus (see Universe
II Registers on page 146).

Table 2-25 VRAI Base Address Power-up Options

VRAI_CTL: VAS BS [31:24] BS [23:16] BS [15:12]

A16 0 0 Power-up Option VA
[28:25]

A24 0 Power-up Option VA
[28:21]

0

A32 Power-up Option VA
[28:21]

0 0
162

Utility Functions 2
The VMEbus CR/CSR Slave Image power-up option maps CR/CSR accesses to the
PCI bus. CR/CSR space can be mapped to memory or I/O space with a 5-bit offset.
This allows mapping to any 128Mbyte page on the PCI bus. As part of this
implementation, ensure that the PCI Master Interface is enabled through the
MAST_EN bit power-up option (see below) or configured through a register access
before accessing configuration ROM.

Auto-ID

There are two Auto-ID mechanisms provided by the Universe II. One is the VME64
specified version which relies upon use of the CR/CSR space for configuration of the
VMEbus system, and a Tundra proprietary system which uses the IACK daisy chain
for identifying cards in a system. Either of these mechanisms can be enabled at
power-up (see Automatic Slot Identification on page 67).

Because VME64 Auto-ID relies upon SYSFAIL to operate correctly, this power-up
option overrides the SYSFAIL power-up option described below.

BI-Mode

BI-Mode (Bus Isolation Mode) is a mechanism for logically isolating the Universe II
from the VMEbus for diagnostic, maintenance and failure recovery purposes.
BI-Mode may be enabled as a power-up option (see BI-Mode on page 71). When the
Universe II has been powered-up in BI-Mode, then any subsequent SYSRST* or RST#
restores the Universe II to BI-Mode,

Auto-Syscon Detect

The VMEbus SYSCON enabling, required by the VMEbus specification, is a special
power-up option in that it does not return to its after-power-up state following RST#
or SYSRST#. The SYSCON option is loaded during a SYSRST* event from the
VBG3IN* signal.

SYSFAIL* Assertion

This power-up option causes the Universe II to assert SYSFAIL* immediately upon
entry into reset. The SYSFAIL* pin is released through a register access. Note that this
power-up option is over-ridden if VME64 Auto-ID has been enabled. This option
would be used when extensive on-board diagnostics need to be performed before
release of SYSFAIL*. After completion of diagnostics, SYSFAIL* may be released
through software or through initiation of the VME64 Auto-ID sequence if that
mechanism is to be used (see Auto Slot ID: VME64 Specified on page 67).
163

2 VMIVME-7697 Product Manual
PCI Target Image

The PCI Target Image power-up option provides for default enabling of a PCI target
image (automatically mapping PCI cycles to the VMEbus). The default target image
can be mapped with base and bounds at 256Mb resolution in Memory or I/O space,
and map PCI transactions to different VMEbus address spaces. Beyond the settings
provided for in this power-up option, the target image will possess its other default
conditions: the translation offset will be zero, posted writes will be disabled, and only
32-bit (maximum) non-block VMEbus cycles in the non-privileged data space will be
generated. This option would typically be used to access permits the use of Boot ROM
on another card in the VMEbus system.

PCI Register Access

A power-up option determines if the registers are mapped into Memory or I/O space.

PCI Bus Width

The PCI Interface can be used as a 32-bit bus or 64-bit bus. The PCI bus width is
determined during a PCI reset (see Section 4.3.2 of the PCI Specification, Rev. 2.1). The
Universe II is configured as 32-bit PCI if REQ64# is high on RST#; it is configured as
64-bit if REQ64# is low. The Universe II has an internal pull-up on REQ64#, so the
Universe II defaults to 32-bit PCI. On a 32-bit PCI bus, the Universe II drives all its
64-bit extension bi-direct signals at all times; these signals include: C/BE[7:4]#,
AD[63:32], REQ64#, PAR64 and ACK64# to unknown values. If used as a 32-bit
interface, the 64-bit pins, AD[63:32], C/BE[7:4], PAR64 and ACK64# may be left
unterminated.

The VMIVME-7697 interface supports only a 32-bit PCI bus.

PCI CSR Image Space

There is a power-up option (using the VA[1] pin) that determines the value of the
SPACE bit of the PCI_BSx registers. At power-up the SPACE bit of the PCI_BS1
register is the negation of the SPACE bit of the PCI_BS0 register.

• When the VA[1] pin is sampled low at power-up, the PCI_BS0 register’s SPACE
bit is set to “1”, which signifies I/O space, and the PCI_BS1 register’s SPACE bit
is set to “0”, which signifies Memory space.

• When VA[1] is sampled high at power-up, the PCI_BS0 register’s SPACE
register’s bit is set to “0”, which signifies Memory space, and the PCI_BS1
register’s SPACE bit is set to “1”, which signifies I/O space.

Once set, this mapping persists until the next power-up sequence.

See Memory or I/O Access on page 148, Table B-10 on page 227.
164

Utility Functions 2
Power-Up Option Implementation

This section describes pull-up requirements and timing relevant to the power-up
options.

The pull-ups for the general power-up options (if other than default values are
required) must be placed on the VA[31:1] and VD[31:27] lines. During reset, the
Universe II will negate VOE#, putting these signals into a high-impedance state.
While VOE# is negated the pull-ups (or internal pull-downs) will bring the option
pins (on A[31:1] and D[31:27]) to their appropriate state.

Caution: The internal pull-downs are very weak. The leakage current on many
transceivers may be sufficient to override these pull-downs. To ensure proper
operation designers should ensure power-up option pins will go to the correct state.

Within two CLK64 periods after PWRRST# is negated, the Universe II latches the
levels on the option pins, and then negates VOE# one clock later. This enables the
VMEbus transceivers inwards.

Figure 2-24 Power-up Options Timing

The power-up options are subsequently loaded into their respective registers several
PCI clock periods after PWRRST#, SYSRST* and RST# have all been negated.

Because of the power-up configuration, the VMEbus buffers are not enabled until
several CLK64 periods after release of SYSRST* (approximately 45 ns). Allowing for
worst case backplane skew of 25 ns, the Universe II will not be prepared to receive a
slave access until 70 ns after release of SYSRST*.

!

power-up options

CLK64

VOE#

VA, VD

PWRRST#
165

2 VMIVME-7697 Product Manual
Hardware Initialization (Normal Operating Mode)

The Universe II has I/O capabilities that are specific to manufacturing test functions.
These pins are not required in a non-manufacturing test setting. Table 2-26 on page
166 below shows how these pins should be terminated.

Test Modes

The Universe II provides two types of test modes: auxiliary modes (NAND tree
simulation and High Impedance) and JTAG (IEEE 1149.1).

Auxiliary Test Modes

Two auxiliary test modes are supported: NAND tree and high impedance. The
Universe II has three test mode input pins (TMODE[2:0]). For normal operations these
inputs should be tied to ground (or pulled to ground through resistors). Table 2-27 on
page 167 below indicates the 3 operating modes of the Universe II. At reset the
TMODE[2:0] inputs are latched by the Universe II to determine the mode of
operation. The Universe II remains in this mode until the TMODE[2:0] inputs have
changed and a reset event has occurred. PLL_TESTSEL must be high for any test
mode.

Table 2-26 Manufacturing Pin Requirements for Normal Operating Mode

Pin Name Pin Value

TMODE[2] VSS (or pulled-down if board tests will
occasionally be performed, see
Auxiliary Test Modes on page 166)TMODE[1]

TMODE[0]

PLL_TESTSEL VSS

ENID VSS

PLL_TESTOUT N/C

VCOCTL VSS
166

Utility Functions 2
For NAND Tree Simulation, the values of the TMODE pins are latched during the
active part of PWRRST#. These pins can change state during the NAND Tree tests.
The timers are always accelerated in this mode. All outputs are tristated in this mode,
except for the VXSYSFAIL output pin.

For High Impedance mode, the values of the TMODE pins are also latched during the
active part of PWRRST#. All outputs are tristated in this mode, except for the
VXSYSFAIL output pin.

JTAG support

The Universe II includes dedicated user-accessible test logic that is fully compatible
with the IEEE 1149.1 Standard Test Access Port (TAP) and Boundary Scan
Architecture. This standard was developed by the Test Technology Technical
Committee of IEEE Computer Society and the Joint Test Action Group (JTAG). The
Universe II’s JTAG support includes:

• A five-pin JTAG interface (TCK, TDI, TDO, TMS, and TRST#),
• a JTAG TAP controller,
• a three-bit instruction register,
• a boundary scan register,
• a bypass register,
• and an IDCODE register.

The following required public instructions are supported: BYPASS (3'b111),
SAMPLE(3'b100), and EXTEST(3'b000). The optional public instruction
IDCODE(3'b011) selects the IDCODE register which returns 32'b01e201d. The
following external pins are not part of the boundary scan register: LCLK,
PLL_TESTOUT, PLL_TESTSEL, TMODE[3:0], and VCOCTL.

A BSDL file is available upon request from Tundra Semiconductor Corporation.

Table 2-27 Test Mode Operation

Operation Mode TMODE[2:0] PLL_TESTSEL

Normal Mode 000 0

Accelerate 001 0

Reserved 010 1

Reserved 011 1

NAND Tree Simulation 100 1

Reserved 101 1

High Impedance 110 0/1

Reserved 111 1
167

2 VMIVME-7697 Product Manual
Clocks

CLK64 is a 64 MHz clock that is required by the Universe II in order to synchronize
internal Universe II state machines and to produce the VMEbus system clock
(VSYSCLK) when the Universe II is system controller (SYSCON). This clock is
specified to have a minimum 60-40 duty cycle with a maximum rise time of 5 ns.
Using a different frequency is not recommended as it will alter various internal timers
and change some VME timing.
168

CHAPTER

3

Auxiliary Functions
Contents

Auxiliary Bus Timeout Timer . 169
Auxiliary BERR Interrupt . 170

The material in Chapter 3 is exclusively VMIC.

Auxiliary Bus Timeout Timer

The VMIVME-7697 PCI-to-VMEbus interface contains a programmable bus timeout
timer which functions only when the interface is the system controller. The
VMIVME-7697 PCI-to-VMEbus interface also has an auxiliary bus timeout timer
which can be enabled to function when the board is not the system controller. This
timer is enabled by setting the BTO bit (bit 3) in the System COMM register located at
$D800E in memory. The timer has four programmable timeout periods which are set
by the BTOV(1:0) bits (bit 5, 4 respectively) in the System COMM register. The four
settings are shown in Table 3-1.

As shown above, the timeout period is a function of the PCI clock frequency. Care
must be taken when enabling the auxiliary timer when the VMIVME-7697
PCI-to-VMEbus interface is the system controller. Ensure that only one timer is
enabled.

Table 3-1 Auxiliary Bus Timeout Timer Settings

BTOV1 BTOV0 Timeout Period
(PCI CLK = 25,30,33 MHz)

0 0 21 18 16 µs

0 1 85 70 64 µs

1 0 341 282 256 µs

1 1 1.33 1.09 1.00 ms
169

3 VMIVME-7697 Product Manual
Auxiliary BERR Interrupt

The Universe II chip is capable of capturing the VME address and address modifiers
when a BERR occurs on the VME bus for decoupled transactions only. The
VMIVME-7697 contains auxiliary circuitry, external and independent of the Universe
II chip, capable of capturing the VME address and address modifiers of any
transaction which results in a BERR and of which the VMIVME-7697 is master. This
circuitry is capable of generating an interrupt if enabled.

The auxiliary BERR circuitry works as follows: The logic is enabled by setting
Auxiliary BERR Logic Enable bit (ABLE, bit 2) in the System COMM register located
at $D800E in memory. Once enabled the circuitry will, upon receiving a VME BERR
from a VME transaction of which the VMIVME-7697 is master, capture and hold the
VME address and VME address modifiers which caused the BERR. The VME address
will be a long word located in the VME BERR Address register (VBAR) at $D8010 in
memory and the VME address modifiers will be the bits 5 - 0 of a byte located in the
VME BERR Address Modifier Register at $D8014 in memory.

When a BERR occurs the BERR Status Read/Clear bit (BERRST, bit 7) of the System
COMM register will be set. The offending VME Address and Address Modifiers will
be held until the BERR Status Read/Clear bit is cleared. The BERR Status Read/Clear
bit is cleared by writing a one to this bit. This is most easily done by reading the
System COMM register and writing it back into the register. If the BERR Status
Read/Clear is set it will clear, if it is not set nothing will change.

By setting the BERR Interrupt enable (BERRI, bit 6) in the System COMM register, an
interrupt will be generated on PCI int A when the auxiliary BERR circuitry is enabled
as explained above and a BERR occurs from a VME transaction of which the
VMEVME-7697 is master. The interrupt is cleared by clearing the BERR Status
Read/Clear (BERRST, bit 7) of the System COMM register as explained above.
170

CHAPTER

4

Endian Conversion
Contents

VMEbus Byte Lanes . 171
Byte Ordering: Big Endian / Little Endian . 173
Endian Conversion Hardware . 176
Unaligned Transfers with Endian Conversion Enabled 176
PCI Bus Data Combining: Byte Swap . 177

The material in Chapter 4 is exclusively VMIC.

VMEbus Byte Lanes

For a given addressing mode, the VMEbus specification defines various types of data
transfer cycles to access 1-, 2-, 3-, or 4-byte locations at once. A set of four adjacent
byte locations differing only in address bits (A00, A01) is defined as a four-byte group,
or a “byte (0-3)” group. Address lines A02-A31 select a four-byte group, then four
additional addressing lines (DS0*, DS1*, A01, and LWORD*) select which byte(s)
within the group are accessed.

Table 4-1 depicts the Even/Odd Byte assignments to the VMEbus data lines.

It is important to note the major byte-ordering differences between the Motorola and
the Intel based microprocessor. In addition, communication between
Motorola-compatible 680X0 VMEbus modules and the VMIVME-7697
PCI-to-VMEbus interface requires special attention to avoid byte-ordering conflicts.
171

4 VMIVME-7697 Product Manual
Table 4-1 VMEbus Byte Assignment to the Data Lines

DTB CYCLE TYPE D31-D24 D23-D16
D15-D08

EVEN
ADDRESS

D07-D00
ODD

ADDRESS

D08(EO) EVEN OR ODD

Single Odd Byte(3) Byte(3)

Single Even Byte(2) Byte(2)

Single Odd Byte(1) Byte(1)

Single Even Byte(0) Byte(0)

D08(O) ODD ONLY

Single Odd Byte(3) Byte(3)

Single Odd Byte(1) Byte(1)

D16

Double Byte(2-3) Byte(2) Byte(3)

Double Byte(0-1) Byte(0) Byte(1)

D32

Quad Byte(0-3) Byte(0) Byte(1) Byte(2) Byte(3)
172

Byte Ordering: Big Endian / Little Endian 4
Byte Ordering: Big Endian / Little Endian

The byte-ordering issue exists due to the different traditions at the major
microprocessor manufacturers, Motorola and Intel. Much VMEbus equipment is
designed around Motorola’s 680X0 processors and compatibles, which store
multiple-byte values in memory with the most significant byte at the lowest byte
address. This byte-ordering scheme became known as “big-endian” ordering. On the
other hand, Intel’s 80X86 microprocessors, upon which MS-DOS is based, store
multiple-byte values in memory with the least significant byte in the lowest byte
address, earning the name “little-endian” ordering.

The VMIVME-7697 PCI-to-VMEbus interface uses an Intel based microprocessor,
which uses little-endian byte ordering. Byte arrangement and the byte relationship
between data in the processor and transferred data in memory are shown in
Figure 4-1.

Figure 4-1 Byte Relationships Using the Little-Endian Pentium III Microprocessor

Note that in little-endian processors like the Pentium III, the processor’s least
significant byte is stored in the lowest byte address after a multiple-byte write (such
as the longword transfer illustrated), while the processor’s most significant byte is
stored in the highest byte address after such transfers. Conversely, the processor
considers data retrieved from the lowest byte address to be the least significant byte
after a multiple-byte read. Data retrieved from the highest byte address is considered
to be the most significant byte.

Contrast the behavior of the little-endian Pentium III in Figure 4-1 with the same
longword transfer using a big-endian processor like the Motorola 68040 in Figure 4-2
on page 174.

D31-D24 D23-D16 D15-D08 D07-D00

MSB LSB

Data Within the Pentium III Microprocessor

BYTE $03

BYTE $02

BYTE $01

BYTE $00

.

.

.

Data Within
Memory

Longword (32-bit) Transfer
MSB

LSB
173

4 VMIVME-7697 Product Manual
Note that the big-endian 68040 handles the same longword transfer in a completely
different manner than the little-endian Pentium III microprocessor. During a
multiple-byte transfer like the longword transfer illustrated, a big-endian processor
writes its least significant byte in the highest byte address in memory, while its most
significant byte is written to the lowest address. The converse is true during read
operations: the data in the lowest byte address is considered to be the most significant,
while the byte in the highest address is considered to be the least significant.

Figure 4-2 Byte Relationships Using the Big-Endian 68040 Microprocessor

The VMEbus Specification does not specify which byte of a multiple-byte transfer is
most significant. The VMEbus Specification does, however, require certain byte lanes
to be associated with certain byte addresses. As shown in Table 4-1 on page 172,
byte(0) must be transferred on data lines D31-D24 during a longword transfer while
byte(3) must be transferred on lines D7-D0. This byte and address alignment is exactly
the same as that for a big-endian processor such as the Motorola 68040.

If a little-endian Pentium III were to have its data bus directly connected to the
VMEbus (i.e., D31 to D31, D30 to D30, etc.), then the most significant byte data
supplied to the VMEbus D31-D24 byte lane during a longword write would be stored
by the VMEbus in the lowest of the four destination byte addresses – opposite that
expected by the Pentium III microprocessor. This poses no problem if the 32-bit value
written is always read back using a similar longword transfer (i.e., all four bytes at
once), since the swapped data gets swapped again and appears to the Pentium III
microprocessor exactly as it should. However, if the data written by the 32-bit
longword transfer were to be retrieved using any other method, for example, using
four separate byte transfers creates a problem. The data at the lowest byte address
would be incorrectly assumed to be the least significant, while it is actually the most
significant.

D31-D24 D23-D16 D15-D08 D07-D00

MSB LSB

Data Within the 68040 Microprocessor

BYTE $03

BYTE $02

BYTE $01

BYTE $00

.

.

.

DataWithin
Memory

Longword (32-bit) Transfer

MSB

LSB
174

Byte Ordering: Big Endian / Little Endian 4
The problem cannot be solved by simply connecting the Pentium III microprocessor
to the VMEbus with its byte lanes crossed. For example, the Pentium III
microprocessor uses D0-D7 to transfer a byte to address $00, while the VMEbus
requires D8-D15 be used. For this reason, special hardware has been incorporated into
the VMIVME-7697 PCI-to-VMEbus interface to facilitate different kinds of byte
swapping for varying circumstances.
175

4 VMIVME-7697 Product Manual
Endian Conversion Hardware

The Universe II chip performs Address Invariant translation between the PCI and
VMEbus interfaces. Address Invariant mapping or “Non-endian conversion” mode
maintains the byte ordering between the two interfaces (i.e. data originating in
little-endian mode on the CPU/PCI side will remain in little-endian mode on the
VMEbus side of the interface). However, the VMIVME-7697 PCI-to-VMEbus interface
has external endian conversion logic which allows the application to perform
independent master/slave hardware endian conversion. The enables for the circuitry
(MEC,SEC) are located in the System COMM register, bits 0,1.

Unaligned Transfers with Endian Conversion Enabled

The VMIVME-7697 PCI-to-VMEbus interface was designed to be consistent with the
endian conversion approach that was used on previous VMIC products. That
approach is: defeat endian conversion for unaligned transfers to/from VMEbus - two
cases of 3-byte, one unaligned 2-byte case.

The defeat on unaligned transfers (UAT) philosophy was adopted given that data
sharing between CPUs with different endianess only makes sense for longword
aligned and word aligned data. However, the Universe II chip breaks up 3-byte
transfers on the PCI bus into two VMEbus transfers: a byte access and a word access.
Our endian conversion hardware “sees” the word access (which is word aligned) and
performs a byte swap. This causes a word within the 3-byte entity to be swapped. To
avoid this inadvertent swapping, the user should disable master endian conversion
when performing any unaligned transfers to the VMEbus. This only affects transfers
originating from the microprocessor and destined for the VMEbus.
176

PCI Bus Data Combining: Byte Swap 4
PCI Bus Data Combining: Byte Swap

The VMIVME-7697 PCI-to-VMEbus interface performs endian conversion (byte
swapping) based on size. If a longword access is performed, it swaps the two words
and the two bytes within those words. If a word access is performed, it swaps the two
bytes. If byte access is performed, no swapping occurs.

Unfortunately, successive writes from the microprocessor to VME through the host
bridge are subject to combining: four bytes may combine to form one longword, two
words may combine to form a longword, two bytes may combine to form a word.
Since the endian conversion logic swaps on size, the data combining causes data to be
swapped when it shouldn’t have been, or longword swaps to occur when word swaps
should have occurred.

This phenomena only occurs for microprocessor to VME write accesses: reads are not
affected, nor are VME slave accesses or DMA BLTs.

The data combining can be defeated by programming the Universe II VME master
channel (PCI slave channel) to be longword, word or byte wide depending on the size
of accesses being generated from the microprocessor. Data combining may still occur
on the PCI bus, but the Universe II chip will only generate the programmed size
transfers on VMEbus. Thus, the endian conversion logic will “see” the data in the size
that is consistent with swap protocol. Again, reads, VME slave accesses in either
direction, or DMA BLTs are not affected.

Please refer to DMA OPERATION DURING PCI READS on page 184 for addition
information.
177

4 VMIVME-7697 Product Manual
178

CHAPTER

5

PCI/VMEbus Deadlock
Contents

Scenario Overview . 179
An Example . 180
Possible Solutions . 180

The material in Chapter 5 is exclusively VMIC.

Scenario Overview

There is a deadlock scenario which is inherent in systems containing a PCI/VME
interface. The PCI specification allows for and defines devices called bridges. A
bridge could be a host bridge which interfaces a host CPU to the system PCI bus.
Another type of bridge is the PCI-to-PCI bridge which bridges two different PCI
busses.

In order to optimize system performance, PCI specification allows bridges to provide
buffering. Almost all host bridges and PCI-PCI bridges contain write-posting buffers.
These buffers allow writes from one side of the bridge to be acknowledged before the
data is actually written to the other side of the bridge.

Without write posting, the CPU or PCI initiator would have to wait for the device that
is receiving the data to acknowledge the data transfer before it could proceed to the
next bus transaction. In addition to allowing for write posting, the PCI bridge
specification imposes transaction ordering rules on the bridge design to ensure data
consistency in the system. These ordering rules are imposed on host bridges and on
PCI-to-PCI bridges. One ordering rule is that reads cannot traverse across a bridge
until all write-posted data has been flushed. In a PCI/VME system, this ordering rule
coupled with the lack of retry on the VMEbus create the potential for system
deadlocks.
179

5 VMIVME-7697 Product Manual
An Example

To understand the need for ordering rules and the potential for deadlock, examine the
following scenario.

Suppose the CPU writes a buffer to a VMEbus SRAM board, and then sets a flag in the
VMIVME-7697 DRAM. Meanwhile, a VME master, such as a 68000 CPU, is polling the
flag in DRAM, to determine when the SRAM buffer is ready to process. The ordering
rule guarantees that the VMEbus master will not “see” the status flag set in DRAM
until all the VMEbus write data has been flushed from the host bridge. However, a
deadlock condition will occur if the PCI/VME interface has been granted the PCI bus
to perform a read from DRAM while write posting data destined for the VMEbus is
contained in the host bridge. In this case, the write posted data cannot flush (complete
on VME) since the VMEbus is being held by the 68 K CPU, which cannot complete its
read because the host bridge will not allow the read to occur, thus a DEADLOCK
occurs.

The above deadlock scenario is inherent in PCI systems that interface to busses that
do not have retry capability. Since the VMEbus does not currently provide for bus
retry, the resulting deadlock condition will result in a VMEbus error (BERR)
condition.

Possible Solutions

The simplest solution is to never simultaneously enable the VMEbus master and slave
interfaces; however, in most systems this is not practical.

If simultaneous VMEbus master/slave interfacing is required (i.e. shared memory
applications), the user can use the Universe VMEbus ownership bit in the MAST_CTL
register to guarantee exclusive access to the VMEbus. The user would employ the
following protocol when using the VME ownership bit:

1. Set the VME ownership bit in the MAST_CTL register.

2. Poll the VOWN_ACK bit which is asserted when the VMEbus has been
acquired.

3. Once the VOWN_ACK bit is asserted, perform VMEbus master write
operations.

4. Clear the VME ownership bit.

Note that the assertion of the VOWN_ACK bit can be programmed to generate a PCI
interrupt.
180

CHAPTER

6

Universe II Errata And Notes
Contents

Universe II Errata. 182
Universe II Design Notes . 184
Other Compatibility Issues. 185
Universe II Changes . 187
General Feature Additions/Enhancements . 188
Performance Enhancements . 189
Universe I/Universe II Detection . 190

The material in Chapter 6 is exclusively VMIC.

Introduction

The Universe II interface chip is a second-generation integrated circuit that fixes
errata associated with its predecessor and provides new product features. This
chapter describes all of the errata associated with the Universe II and the
work-around and/or fixes provided with the VMEbus interface. Table 6-1 below
shows a matrix of Universe II errata and solutions. Also included in this chapter is a
description of the new features available with the Universe II chip and information
regarding compatibility between Universe I and Universe II.
181

6 VMIVME-7697 Product Manual
Universe II Errata

The following are brief descriptions of all of the device errata associated with the
Universe II interface chip and the solution or work-around used in the VMEbus
interface. For complete errata descriptions, please see the Tundra resource listed in the
Overview chapter.

1. PCI BASE REGISTERS

Problem: PCI base registers accept “zero” as valid decodable address which
violates PCI 2.1 spec.

Solution: Software must be aware that Universe II register space is not
disabled but instead moved to a desired location. The BIOS in
VMIC products set the base registers to a non-zero value. Care
must be taken by the user not to set these registers to zero.

Note: The Universe II decodes for both memory and I/O space.
Therefore, software must appropriately position the Universe II
registers. For backward software compatibility, only access the
Universe II registers through memory space accesses.

Table 6-1 Universe II Errata and Solutions

Errata # Description
Hardware

Workaround
Software

Workaround
Not Fixed

1 PCI Base Registers BIOS Does Not Map
At Address 0000

2 SYSCLK Generation During
SYSRESET

Hardware Designed To
Generate SYSCLK
during SYSRESET

3 Invalid Release Of LOCK#
During Exclusive Access

Use Semaphores To
Gain Exclusive
Access To Resources

4 DY4 Auto-ID Incompatibility DY4 Auto-ID Not
Used And Not
Supported

5 Simultaneous, Single-Level
Interrupts

Hardware Designed To
Prevent This Condition
182

6

2. SYSCLK GENERATION DURING SYSTEM RESET

Problem: The Universe II stops the generation of SYSCLK during system
reset, when the Universe II is the SYSCON and BGIN3 is asserted.

Solution: VMIC products contain hardware to generate SYSCLK
continuously when operating as a system controller.

Note: Very few boards in production today rely upon SYSCLK during
reset for proper operation.

3. INVALID RELEASE OF PCI LOCK# DURING EXCLUSIVE ACCESSES

Problems: When an external VME master generates a VMEbus LOCK/ADOH
to the Universe II, the cycle is processed on the PCI bus as a read
cycle with the LOCK# signal asserted. If the target responds with a
Master Completion Termination, then the Universe II will
improperly relinquish LOCK# even though VME BBSY* is still
asserted.

Solution: The Universe II’s semaphores can be used to ensure exclusive
accesses. Refer to Chapter 2 of this manual.

4. DY4 AUTO-ID INCOMPATIBILITY

Problem: The propagation delay through the Universe II from IACKIN* to
IACKOUT* will be five clocks instead of four when using the DY4
Auto-ID mechanism. This may cause failure of existing DY4
Auto-ID algorithms to correctly identify related Universe II board
positions.

Solution: The VMIC supplied software does not make use of the DY4
Auto-ID method of detection. Software written to perform the DY4
Auto-ID detection must account for the extra clock cycle.

5. SIMULTANEOUS, SINGLE LEVEL INTERRUPTS

Problem: The Universe II incorrectly qualifies the assertion of VSLAVE_DIR
(which enables DTACK* onto the backplane) on IACK* assertion
rather than a combination of IACK* and IACKIN*. The assertion of
VSLAVE_DIR will assert DTACK* high onto the VME backplane,
where it will remain high until the IACK cycle is complete. If a
number of Universe II boards simultaneously assert the same level
IRQ (as in the case of VME64 Auto ID) there is a chance that the
card attempting to properly respond to the IACK cycle with
DTACK* low will never be seen because all of the other Universe II
cards will be driving DTACK* high.

Solution: VMIC products contain hardware to correct this errata.
183

6 VMIVME-7697 Product Manual
Universe II Design Notes

Table Table 6-2 below shows a matrix of Universe II design notes and solutions.

The following are brief descriptions of all of the design notes associated with the
Universe II interface chip. For complete design note descriptions, please see the
Tundra resource listed in the Overview chapter.

1. DMA OPERATION DURING PCI READS

Problem: Universe II prefetches on DMA reads from the PCI bus up to the
aligned address boundary defined in the PABS field of the
MAST_CTL register. Therefore, Universe II may read beyond the
programmed transfer length. This extra data is not transferred to
the VMEbus.

Solution: Prefetching can be avoided by programming the DMA for transfers
that terminate at the PABS boundary. If further data is required
beyond the boundary, but before the next boundary, the DTBC
register may be programmed to eight byte transfers. Note however
that programming the DTBC to less than eight bytes will still result
in eight bytes fetched from PCI. In all cases, the correct amount of
data is transferred to the VMEbus.

2. POTENTIAL FOR DTACK*/AS* DEADLOCK WITH SOME SLAVE CARDS

Problem: When performing IACK cycles and coupled 8 or 16 bit cycles as a
VME master, the Universe II will wait for the VME slave to release
DTACK* before it removes AS*. If the slave card links release of
DTACK* to the release of AS*, a deadlock condition will result
where both master and slave wait for each other to end the cycle.
Slave cards should not assume any relationship between DTACK*
and AS* as the ANSI VME64 specification does not state any
relationship.

Table 6-2 Universe II Design Note Matrix

Design
Note #

Description
Hardware

Workaround
Software

Workaround
Not

Fixed

1 DMA Operation During PCI
Reads

Careful
Programming Of
DMA Transfer Size

2 Potential For DTACK*/AS*
Deadlock

Enable Coupled
Window Timer
When In Coupled
Mode

Not Fixed For
IACK Cycles
184

6

Solution: If a slave card is designed such that the deadlock condition might
occur, deadlock may be avoided during coupled cycles by enabling the
Coupled Window Timer in the LMISC register. The condition cannot
be disabled for IACK cycles.

3. NOISE ON VME DATA STROBES

Problem: The Universe II may, under some circumstances, be sensitive to
noise on the rising edge of the VME data strobes particularly in
large systems with heavily loaded backplanes.

Solution: None. This design note results from a single case reported to
Tundra where the Universe II operated on a heavily loaded
backplane. This is not expected to be a problem for most users.

4. 16-BIT PCI BUS BURST TRANSFERS SPLIT INTO 8-BIT BYTES

Problem: VMIC has observed that when performing a PCI bus 16-bit burst to
a Universe II PCI slave image with write posting enabled may, in
some cases, result in transfers on the VMEbus as 8-bit bytes. This
causes incorrect conversion by the endian conversion hardware.

Solution None. If PCI bus data is to be transferred as words (16-bits) and
endian conversion is required, do not enable write posting in the
Universe II.

Other Compatibility Issues

During testing of Universe II components, VMIC found the following issues
concerning compatibility of software between Universe I and Universe II.

1. UNALIGNED TRANSFERS

Problem: During unaligned transfers, the Universe II arranges the bytes of
the word or long word different from the Universe I.

Solution: Software must keep track of which device is being used and swap
the bytes appropriately. The device in use is indicated by the
revision ID (RID) field of the PCI_CLASS register. A value of 0
indicates the presence of a Universe I chip. A value of 1 indicates
the presence of a Universe II chip.

2. AM CODE ERROR LOG

Problem: The Universe I set the multiple error bit in the VMEbus AM code
error log (V_AMERR) for any amount of errors, even single errors. The
Universe II fixes this problem. However, software that expects this bit
to be set for single errors will not operate correctly with a Universe
II.
185

6 VMIVME-7697 Product Manual
3. USER DEFINED AM

Problem: The Universe I allows any address modifier to be programmed into
the User Defined AM Codes Register (USER_AM) regardless of
whether it is actually a VMEbus specification defined “User
Defined AM” ranging from 0x10 to 0x1F. The Universe II only
allows the User Defined AM Codes Register (USER_AM) to be
programmed to values from 0x10 to 0x1F.
186

6

Universe II Changes

This section provides information about the operational changes made in the
Universe II as they relate to compatibility between the Universe I and Universe II.

Register Reset Values

The Universe I interface chip contained many register bits that had undefined values
after reset. The Universe II’s register bits are always defined after reset, as indicated in
Appendix B. This should present no compatibility problem for software running on
systems using Universe I or Universe II.

Coupled Request Timer

The Universe II no longer uses the coupled request timer (CRT) value in the LMISC
register. The coupled request phase will expire if no coupled transfer occurs within 215
PCI clock cycles on the Universe II. Since the CRT can still be read and written, this
should not present a compatibility problem with existing software.

MFUNCT Field In PCI_MISC0

The Universe I set the MFUNCT field in the PCI_MISC0 field to 1. This required that
the Universe I examine the state of the AD[10:8] lines during Type 0 configuration
accesses. The MFUNCT field in the Universe II is now set to 0. This should not present
a compatibility problem with existing software.

Config Type 1 Accesses

Config Type 1 cycle mapping to the VMEbus is not available in the Universe II.
Accordingly, the upper “Type 1 Configuration Space” bit is removed from the LAS
fields in the Universe II’s PCI Slave Image Control registers (LSIxx_CTL). The
remaining LAS bit allows for the selection of either Memory or I/O space accesses.

PCI Base Address Registers

The Universe I did not decode the base address properly and thus took 64K of I/O or
memory space. The Universe II corrects this problem and also decodes for both I/O
and memory space simultaneously. However, the space allocated for each is
programmable with 4K bytes resolution through the use of the PCI_BS and PCI_BS1
registers.

The PCI_BS[15:12] bits of the PCI_BS register are no longer hardwired to logic zero.
However, these bits power-up in a logic low state such that existing Universe software
should not be affected.

DGCS VON[3]

Bit 23 of the DMA General Control/Status Register was not used in the Universe I.
The Universe II now reserves this bit.
187

6 VMIVME-7697 Product Manual
IACKIN* Monitoring

When configured as SYSCON, the Universe II will monitor IACK* rather than
IACKIN*. This permits it to operate as the SYSCON in places other than slot 1. The
slot with SYSCON in it becomes a virtual slot 1.

Rescinding DTACK

The Universe II ignores the state of the RESCIND bit in the MISC_CTL register and
always rescinds DTACK. This bit may still be read and written such that existing
software should not be affected.

Reset Operation

The Universe I only loads power-up options during power-up reset. The power-up
options are cleared on the Universe I during PCI reset (RST#) or VME reset
(SYSRESET*). The Universe II latches the power-up values during PWRRST# such
that subsequent SYSRESET* or RST# activity will restore power-up values. This
should present no compatibility problems.

Universe II Additions

The Universe II interface chip has many additional features and enhancements over
its predecessor, the Universe I. The following section provides information about the
features and enhancements as they relate to compatibility between the two chips and
is divided into two parts: General Feature Additions/Enhancements, and
Performance Enhancements.

General Feature Additions/Enhancements

Mailboxes

The Universe II now includes four 32bit mailbox registers. Writing control and status
data to these registers cause an interrupt to occur on either or both PCI and VMEbus
buses. Interrupt generation is controlled by the Universe II interrupt enable registers
and two new interrupt map registers. These mailbox registers are available for use by
software on the VMEbus interface. However, software that makes use of these
mailboxes will not operate properly on the Universe I chip. It is therefore
recommended that software use the PLX9060ES mailboxes for backward software
compatibility.
188

6

Location Monitor

The Universe II contains a location monitor that allows for broadcast events across the
VME backplane. Each Universe II that shares the same enabled location monitor
image will respond to a read or write within that range by generating one of four
internal Universe “interrupts”. Each interrupt can be individually enabled and
mapped to specific PCI interrupts. The action of the location monitor is controlled by
the Location Monitor Control register, the Location Monitor Base Address Register,
and the Local Interrupt Map 2 Register. The Universe I does not support the location
monitor and software written to use the location monitor will not function on a
Universe I.

Additional Slave Images

The Universe II provides four additional slave images for the PCI bus and the
VMEbus. Three of these images have 64K byte resolutions and one has a 4K byte
resolution. For backward compatibility, software should not make use of the
additional slave images.

VME Software Interrupts

The Universe II has expanded VME software interrupts such that each of the seven
IRQ levels can be generated directly by writing to the VME Interrupt Enable Register.
The status of the interrupts can be verified by reading the VME Interrupt Status
Register. Software that utilizes the new VME interrupt features will not function on a
Universe I chip.

Semaphores

The Universe II has eight semaphores, accessible by two new registers. Each register
has a status bit and a 7 bit tag field for each of the semaphores. The semaphores are
used to ensure exclusive access to system resources on either the VMEbus or the PCI
bus. Software that utilize semaphores will not function on a Universe I chip.

New SCYC_CTL LAS Field

The Universe II now supports both memory and I/O accesses to the special cycle
generator image. A new LAS bit has been added to the SCYC_CTL register to support
this new feature. Software written to utilize this feature will not function on the
Universe I chip.

Performance Enhancements

Early Release Of BBSY*

The Universe II will execute an early release of BBSY* when possible to optimize the
use of the VMEbus. This enhancement is transparent to software and should present
no compatibility problems.
189

6 VMIVME-7697 Product Manual
VOFF/VON

The Universe II adds three new settings, 2, 4, and 8µ seconds, to the VOFF timer
found in the DGCS to allow for “fine-tuning” of VMEbus usage. Software that makes
use of these new settings will not function on a Universe I.

Aligned Burst Size

The Universe II provides a new setting of 128bytes to the PCI aligned burst size
(PABS) field of the MAST_CTL register. Software that makes use of the new burst size
will not function on a Universe I.

PCI Bus Parking

The Universe II will only assert REQ# if it is not already the PCI bus master, possibly
saving one clock cycle delay before starting a PCI bus transaction. This enhancement
is transparent to software and should present no compatibility problems.

Universe I/Universe II Detection

Software may be written to support the enhanced features of the Universe II chip
while remaining compatible with Universe I devices. This can be accomplished by
detecting the type of device being used and enabling the Universe II enhanced
features only when a Universe II is detected. The device in use may be detected by
reading the revision ID (RID) field of the PCI_CLASS register. A value of 0 indicates
the presence of a Universe I chip. A value of 1 indicates the presence of a Universe II
chip. By detecting the presence of a Universe II chip, software may automatically
enable Universe II features that improve the performance of VMEbus transactions.
190

CHAPTER

7

Description of Signals
0%)
he

nes
Contents

VMEbus Signals . 191
PCI Signals . 195

Introduction

The following detailed description of the Universe II signals is organized according to
these functional groups:

Table 7-1 VMEbus Signals

CLK64 Input

Reference Clock – this 64MHz clock is used to generate fixed timing parameters. It requires a 50-50 duty cycle (±2
with a 5ns maximum rise time. CLK64 is required to synchronize the internal state machines of the VME side of t
Universe II.

VA [31:1] Bidirectional

VMEbus Address Lines 31 to 01 – during MBLT transfers, VA 31-01 serve as data bits D63-D33.

VA03-01 are used to indicate interrupt level on the VMEbus.

VA_DIR Output

VMEbus Address Transceiver Direction Control – the Universe II controls the direction of the address (VA31-01,
VLWORD#) transceivers as required for master, slave and bus isolation modes. When the Universe II is driving li
on the VMEbus, this signal is driven high; when the VMEbus is driving the Universe II, this signal is driven low.
191

7 VMIVME-7697 Product Manual

ve
e

S#,

or
igh;

low.

s is
VAM [5:0] Bidirectional

VMEbus Address Modifier Codes – these codes indicate the address space being accessed (A16, A24, A32), the
privilege level (user, supervisor), the cycle type (standard, BLT, MBLT) and the data type (program, data).

VAM_DIR Output

VMEbus AM Code Direction Control – controls the direction of the AM code transceivers as required for master, sla
and bus isolation modes. When the Universe II is driving lines on the VMEbus, this signal is driven high; when th
VMEbus is driving the Universe II, this signal is driven low.

VAS# Bidirectional

VMEbus Address Strobe – the falling edge of VAS# indicates a valid address on the bus. By continuing to assert VA
ownership of the bus is maintained during a RMW cycle.

VAS_DIR Output

VMEbus Address Strobe Direction Control – controls the direction of the address strobe transceiver as required f
master, slave and bus isolation modes. When the Universe II is driving lines on the VMEbus, this signal is driven h
when the VMEbus is driving the Universe II, this signal is driven low.

VBCLR# Output

VMEbus Bus Clear – requests that the current owner release the bus.

Asserted by the Universe II when configured as SYSCON and the arbiter detects a higher level pending request.

VBGI# [3:0] Input

VMEbus Bus Grant Inputs – The VME arbiter awards use of the data transfer bus by driving these bus grant lines
The signal propagates down the bus grant daisy chain and is either:

• accepted by a requester if it requesting at the appropriate level, or

• passed on as a VBGO [3:0]# to the next board in the bus grant daisy chain.

VBGO# [3:0] Output

VMEbus Bus Grant Outputs – Only one output is asserted at any time, according to the level at which the VMEbu
being granted.

VD [31:0] Bidirectional

VMEbus Data Lines 31 through 00

VD_DIR Output

VMEbus Data Transceiver Direction Control – the Universe II controls the direction of the data (VD [31:0])
transceivers as required for master, slave and bus isolation modes. When the Universe II is driving lines on the
VMEbus, this signal is driven high; when the VMEbus is driving the Universe II, this signal is driven low.

Table 7-1 VMEbus Signals (Continued)
192

7

ter,
en

 the

s
level

ing

e
VDS# [1:0] Bidirectional

VMEbus Data Strobes – the level of these signals are used to indicate active byte lanes:

• During write cycles, the falling edge indicates valid data on the bus.

• During read cycles, assertion indicates a request to a slave to provide data.

VDS_DIR Output

VMEbus Data Strobe Direction Control – controls the direction of the data strobe transceivers as required for mas
slave and bus isolation modes. When the Universe II is driving lines on the VMEbus, this signal is driven high; wh
the VMEbus is driving the Universe II, this signal is driven low.

VDTACK# Bidirectional

VMEbus Data Transfer Acknowledge – VDTACK# driven low indicates that the addressed slave has responded to
transfer. The Universe II always rescinds DTACK*. It is tristated once the initiating master negates AS*.

VIACK# Bidirectional

VMEbus Interrupt Acknowledge – indicates that the cycle just beginning is an interrupt acknowledge cycle.

VIACKI# Input

VMEbus Interrupt Acknowledge In – Input for IACK daisy chain driver. If interrupt acknowledge is at same level a
interrupt currently generated by the Universe II, then the cycle is accepted. If interrupt acknowledge is not at same
as current interrupt or Universe II is not generating an interrupt, then the Universe II propagates VIACKO#.

VIACKO# Output

VMEbus Interrupt Acknowledge Out– generated by the Universe II if it receives VIACKI# and is not currently
generating an interrupt at the level being acknowledged.

VLWORD# Bidirectional

VMEbus Longword Data Transfer Size Indicator – this signal is used in conjunction with the two data strobes
VDS [1:0]# and VA 01 to indicate the number of bytes (1 – 4) in the current transfer. During MBLT transfers
VLWORD# serves as data bit D32.

VOE# Output

VMEbus Transceiver Output Enable – used to control transceivers to isolate the Universe II from the VMEbus dur
a reset or BI-mode. On power-up, VOE# is high (to disable the buffers).

VRACFAIL# Input

VMEbus ACFAIL Input signal – warns the VMEbus system of imminent power failure. This gives the modules in th
system time to shut down in an orderly fashion before powerdown. ACFAIL is mapped to a PCI interrupt.

Table 7-1 VMEbus Signals (Continued)
193

7 VMIVME-7697 Product Manual

s

lling

d

t

ed

.

e

VRBBSY# Input

VMEbus Receive Bus Busy – allows the Universe II to monitor whether the VMEbus is owned by another VMEbu
master

VRBERR# Input

VMEbus Receive Bus Error – a low level signal indicates that the addressed slave has not responded, or is signa
an error.

VRBR# [3:0] Input

VMEbus Receive Bus Request Lines – if the Universe II is the Syscon, the Arbiter logic monitors these signals an
generates the appropriate Bus Grant signals. Also monitored by requester in ROR mode.

VRIRQ# [7:1] Input

VMEbus Receive Interrupts 7 through 1 – these interrupts can be mapped to any of the Universe II’s PCI interrup
outputs.

VRIRQ7-1# are individually maskable, but cannot be read.

VRSYSFAIL# Input

VMEbus Receive SYSFAIL – asserted by a VMEbus system to indicate some system failure. VRSYSFAIL# is mapp
to a PCI interrupt.

VRSYSRST# Input

VMEbus Receive System Reset – causes assertion of LRST# on the local bus and resets the Universe II.

VSLAVE_DIR Output

VMEbus Slave Direction Control – transceiver control that allow the Universe II to drive DTACK* on the VMEbus
When the Universe II is driving lines on the VMEbus, this signal is driven high; when the VMEbus is driving the
Universe II, this signal is driven low.

VSYSCLK Bidirectional

VMEbus System Clock – generated by the Universe II when it is the Syscon and monitored during DY4 Auto ID
sequence

VSCON_DIR Output

Syscon Direction Control – transceiver control that allows the Universe II to drive VBCLR# and SYSCLK. When th
Universe II is driving lines on the VMEbus, this signal is driven high; when the VMEbus is driving the Universe II,
this signal is driven low.

Table 7-1 VMEbus Signals (Continued)
194

7

pled

r.

fer.

bility.
VWRITE# Bidirectional

VMEbus Write signal – indicates the direction of data transfer.

VXBBSY Output

VMEbus Transmit Bus Busy Signal – generated by the Universe II when it is VMEbus master

VXBERR Output

VMEbus Transmit Bus Error Signal – generated by the Universe II when PCI target generates target abort on cou
PCI access from VMEbus.

VXBR [3:0] Output

VMEbus Transmit Bus Request – the Universe II requests the VMEbus when it needs to become VMEbus maste

VXIRQ [7:1] Output

VMEbus Transmit Interrupts – the VMEbus interrupt outputs are individually maskable.

VXSYSFAIL Output

VMEbus System Failure – asserted by the Universe II during reset and plays a role in VME64 Auto ID.

VXSYSRST Output

VMEbus System Reset – the Universe II output for SYSRST*.

Table 7-2 PCI Bus Signals

ACK64# Bidirectional

Acknowledge 64-bit Transfer – when driven by the PCI slave (target), it indicates slave can perform a 64-bit trans

AD [31:0] Bidirectional

PCI Address/Data Bus – address and data are multiplexed over these pins providing a 32-bit address/data bus.

AD [63:32] Bidirectional

PCI Address/Data Bus – address and data are multiplexed over these pins providing 64-bit address and data capa

Table 7-1 VMEbus Signals (Continued)
195

7 VMIVME-7697 Product Manual

/BE

CI

se.

K,

 II
C/BE# [7:0] Bidirectional

PCI Bus Command and Byte Enable Lines – command and byte enable information is multiplexed over all eight C
lines. C/BE [7:4]# are only used in a 64-bit PCI bus

DEVSEL# Bidirectional

PCI Device Select – is driven by the Universe II when it is accessed as PCI slave.

ENID Input

Enable IDD Tests – required for ASIC manufacturing test, tie to ground for normal operation.

FRAME# Bidirectional

Cycle Frame – is driven by the Universe II when it is PCI initiator, and is monitored by the Universe II when it is P
target

GNT# Input

PCI Grant – indicates to the Universe II that it has been granted ownership of the PCI bus.

IDSEL Input

PCI Initialization Device Select – is used as a chip select during configuration read and write transactions

LINT# [7:0] Bidirectional (Open Drain)

PCI Interrupt Inputs – these PCI interrupt inputs can be mapped to any PCI bus or VMEbus interrupt output.

IRDY# Bidirectional

Initiator Ready – is used by the Universe II as PCI master to indicate that is ready to complete a current data pha

LCLK Input

PCI Clock – provides timing for all transactions on the PCI bus. PCI signals are sampled on the rising edge of CL
and all timing parameters are defined relative to this signal. The PCI clock frequency of the Universe II must be
between 25 and 33MHz. Lower frequencies will result in invalid VME timing.

LOCK# Bidirectional

Lock – used by the Universe II to indicate an exclusive operation with a PCI device. While the Universe II drives
LOCK#, other PCI masters are excluded from accessing that particular PCI device. Likewise, when the Universe
samples LOCK#, it may be excluded from a particular PCI device.

LRST# Output

PCI Reset Output – used to reset PCI resources.

Table 7-2 PCI Bus Signals (Continued)
196

7

qual

ines

f

t

n. As
PAR Bidirectional

Parity – parity is even across AD [31:0] and C/BE [3:0] (the number of 1s summed across these lines and PAR e
an even number).

PAR64 Bidirectional

Parity Upper DWORD – parity is even across AD [63:32] and C/BE [7:4] (the number of 1s summed across these l
and PAR equal an even number).

PERR# Bidirectional

Parity Error – reports parity errors during all transactions. The Universe II drives PERR# high within two clocks o
receiving a parity error on incoming data, and holds PERR# for at least one clock for each errored data phase.

PLL_TESTOUT Output

Manufacturing Test Output—No connect

PLL_TESTSEL Input

Manufacturing Test Select—tie to ground for normal operation

PWRRST# Input

Power-up Reset – all Universe II circuitry is reset by this input.

REQ# Output

Bus Request – used by the Universe II to indicate that it requires the use of the PCI bus.

REQ64# Bidirectional

64-Bit Bus Request– used to request a 64-bit PCI transaction. If the target does not respond with ACK64#, 32-bi
operation is assumed.

RST# Input

PCI Reset Input—resets the Universe II from the PCI bus.

SERR# Bidirectional

System Error – reports address parity errors or any other system error.

STOP# Bidirectional

Stop – used by the Universe II as PCI slave when it wishes to signal the PCI master to stop the current transactio
PCI master, the Universe II will terminate the transaction if it receives STOP# from the PCI slave.

Table 7-2 PCI Bus Signals (Continued)
197

7 VMIVME-7697 Product Manual

vel

gic

e.
a is

G
TCK Input

JTAG Test Clock Input – used to clock the Universe II TAP controller. Tie to any logic level if JTAG is not used in
the system.

TDI Input

JTAG Test Data Input – used to serially shift test data and test instructions into the Universe II. Tie to any logic le
if JTAG is not used in the system.

TDO Output

JTAG Test Data Output – used to serially shift test data and test instructions out of the Universe II

TMODE [2:0] Input

Test Mode Enable – used for chip testing, tie to ground for normal operation.

TMS Input

JTAG Test Mode Select – controls the state of the Test Access Port (TAP) controller in the Universe II. Tie to any lo
level if JTAG is not used in the system.

TRDY# Bidirectional

Target Ready – used by the Universe II as PCI slave to indicate that it is ready to complete the current data phas
During a read with Universe II as PCI master, the slave asserts TRDY# to indicate to the Universe II that valid dat
present on the data bus.

TRST# Input

JTAG Test Reset – provides asynchronous initialization of the TAP controller in the Universe II. Tie to ground if JTA
is not used in the system.

VCOCTL Input

Manufacturing testing, tie to ground for normal operation

VME_RESET# Input

VMEbus Reset Input — generates a VME bus system reset.

Table 7-2 PCI Bus Signals (Continued)
198

CHAPTER

8

Signals and DC Characteristics
Contents

Terminology . 199
DC Characteristics and Pin Assignments. 200

Terminology

The I/O type abbreviations used in the pin list in Table 8-2 on page 201 are defined
below. A numbered suffix indicates the current rating of the output (in mA).

Analog Analog input signal
I Input only
I/O Input and output
O Output only
OD Open drain output
PD Pulled-down internally
PU Pulled-up internally
TP Totem pole output
TTL Input with TTL thresholds
TTL SCH Schmitt trigger input with TTL thresholds
3S Tri–state output
199

8 VMIVME-7697 Product Manual
DC Characteristics and Pin Assignments

Table 8-1 DC Electrical Characteristics (VDD = 5 V ± 10%)

Symbol Parameter
Signal
Type

Test Conditions

Tested at
0°C to 70°C

Min Max

VIH Min.
high–level
input

CTTL VOUT = 0.1V or VDD – 0.1V; [IOUT] = 20 µA 2.2 V VDD + 0.3V

CMOS VOUT = 0.1V or VDD – 0.1V; [IOUT] = 20 µA 0.7VDD VDD + 0.3V

VIL Max.
low–level
input

CTTL VOUT = 0.1V or VDD – 0.1V; [IOUT] = 20 µA –0.3 V 0.8V

CMOS VOUT = 0.1V or VDD – 0.1V; [IOUT] = 20 µA –0.3 V 0.3VDD

VT+ Positive
going
Schmitt
trigger
voltage

CTTL/S
CH

VOUT = 0.1V or VDD – 0.1V; [IOUT] = 20 µA – 2.4 V

CMOS/S
CH

VOUT = 0.1V or VDD – 0.1V; [IOUT] = 20 µA – 0.7VDD

VT– Negative
going
Schmitt
trigger
voltage

CTTL/S
CH

VOUT = 0.1V or VDD – 0.1V; [IOUT] = 20 µA 0.8 V –

CMOS/S
CH

VOUT = 0.1V or VDD – 0.1V; [IOUT] = 20 µA 0.25VDD –

VHysteresis Schmitt
trigger
hysteresis
voltage

CTTL/S
CH

VT+ to VT– 0.05VDD –

CMOS/S
CH

VT+ to VT– 0.12VDD –

IIN Maximum
input
leakage
current

CMOS
 and
CTTL

With no pull–up resistor (VIN = VSS or VDD) –5.0 µA 5.0 µA

IOZ Maximum
output
leakage
current

3S (VOUT = VSS or VDD) –10.0 µA 10.0 µA

OD (VOUT = VDD) –10.0 µA 10.0 µA
200

DC Characteristics and Pin Assignments 8
Table 8-2 Pin List and DC Characteristics for Universe II Signals

Pin Name
PBGA

Pin
Number

CBGA
Pin

Number
Type

Input
Type

Output
Type

IOL
(mA)

IOH
(mA) Signal Description1

ack64# W11 W8 I/O TTL 3S 6 –2 PCI Acknowledge 64 Bit
Transfer

AD [63:0] Table 8-3 I/O TTL 3S 6 –2 PCI Address/Data Pins

C/BE# [0] Y14 T11 I/O TTL 3S 6 –2 PCI Command and Byte
EnablesC/BE# [1] V14 Y11

C/BE# [2] T14 U11

C/BE# [3] W13 W10

C/BE# [4] AE15 Y12

C/BE# [5] AD14 V11

C/BE# [6] T12 V10

C/BE# [7] AD12 Y9

clk64 C23 D16 I TTL – – – VME Clock 64 MHz—60-40
duty, 5 ns rise time

devsel# AC7 V6 I/O – 3S 6 –2 PCI Device Select

enid AE21 Y16 I CMOS – – – Enable IDD Tests

frame# W17 T12 I/O TTL 3S 6 –2 PCI Cycle Frame

gnt# AE17 Y14 I TTL – – – PCI Grant

idsel AB16 Y15 I TTL – – – PCI Initialization Device
Select

lint# [0] K20 H15 I/O TTL OD 12 –12 PCI Interrupt

lint# [1] AA5 U3 I/O TTL OD 4 –4

lint# [2] L9 J3

lint# [3] V6 R4

lint# [4] M4 J4

lint# [5] L3 J6

lint# [6] M8 J5

lint# [7] L1 K4

irdy# AC15 V12 I/O TTL 3S 6 –2 PCI Initiator Ready

lclk AA3 W3 I TTL – – – PCI Clock Signal

lock# AA23 T18 I/O TTL 3S 6 –2 PCI Lock

lrst# R1 M1 O – 3S 6 –2 PCI Reset Output

par P8 L1 I/O TTL 3S 6 –2 PCI parity

par64 AE5 W4 I/O TTL 3S 6 –2 PCI Parity Upper DWORD
201

8 VMIVME-7697 Product Manual
perr# AB4 W5 I/O TTL 3S 6 –2 PCI Parity Error

pll_testout AB2 V1 For factory testing

pll_testsel AC1 T2 For factory testing

pwrrst# T4 R1 I TTL/Schm – – – Power–up Reset

req# K22 F20 O – 3S 6 –2 PCI Request

req64# AD18 T13 I/O TTL 3S 6 –2 PCI Request 64 Bit Transfer

rst# AA19 W17 I TTL – – – PCI Reset

serr# AA7 R7 O TTL OD 12 –12 PCI System Error

stop# AB18 W15 I/O TTL 3S 6 –2 PCI Stop

tck H12 A10 I TTL – – – JTAG Test Clock Input

tdi A13 F10 I TTL
(PU)

– – – JTAG Test Data Input

tdo C13 E11 O – 3S – – JTAG Test Data OUTput

tmode [0] AA13 W11 I TTL – – – Test Mode Enable

tmode [1] AA21 V17

tmode [2] W23 R18

tms C11 C9 I TTL
(PU)

– – – JTAG Test Mode Select

trdy# AD8 W7 I/O TTL 3S 6 –2 PCI Target Ready

trst# E13 B10 I TTL
(PU)

– – – JTAG Test Reset

VA [31:1] Table 8-4 I/O TTL
(PD)

3S 3 –3 VMEbus Address Pins

vam [0] E11 D8 I/O TTL 3S 3 –3 VMEbus Address Modifier
Signalsvam [1] D10 A6

vam [2] G9 E9

vam [3] B10 B8

vam [4] H10 D9

vam [5] A9 A7

vam_dir B8 E8 O – 3S 6 –6 VMEbus AM Signal
Direction Control

vas# B14 A12 I/O TTL/Schm
(PU)

3S 3 –3 VMEbus Address Strobe

vas_dir K12 D10 O – 3S 6 –6 VMEbus AS Direction
Control

Table 8-2 Pin List and DC Characteristics for Universe II Signals (Continued)

Pin Name
PBGA

Pin
Number

CBGA
Pin

Number
Type

Input
Type

Output
Type

IOL
(mA)

IOH
(mA) Signal Description1
202

DC Characteristics and Pin Assignments 8
va_dir G13 B11 O – 3S 12 –12 VMEbus Address Direction
Control

vbclr# N3 K5 O – 3S 3 –3 VMEbus BCLR* Signal

vbgi# [0] N21 K19 I TT – – – VMEbus Bus Grant In

vbgi# [1] M16 K17

vbgi# [2] N25 K15

vbgi# [3] N23 L16 TT (PD)

vbgo# [0] M20 K16 O – 3S 12 –12 VMEbus Bus Grant Out

vbgo# [1] L25 J20

vbgo# [2] M18 K20

vbgo# [3] M24 K18

vcoctl AE3 T5 I – – – – Factory testing

VD [31:0] Table 8-4 I/O TTL 3S 3 –3 VMEbus Data Pins

vd_dir F10 F8 O – 3S 12 –12 VMEbus Data Direction
Control

vds# [0] F12 E10 I/O TTL
(PU)

3S 3 –3 VMEbus Data Strobes

vds# [1] A11 A9

vds_dir J11 F9 O – 3S 6 –6 VMEbus Data Strobe
Direction Control

vdtack# G15 B13 I/O TTL/Schm
(PU)

3S 3 –3 VMEbus DTACK* Signal

viack# E7 E6 I/O TTL 3S 3 –3 VMEbus IACK* Signal

viacki# AE23 W16 I TTL – – – VMEbus IACKIN* Signal

viacko# L21 H17 O – 3S 12 –12 VMEbus IACKOUT* Signal

vlword# K14 C11 I/O TTL
(PD)

3S 3 –3 VMEbus LWORD* Signal

VME_RESET# V22 T19 I TTL VMEbus Reset Input

voe# B12 C10 O – 3S 24 –24 VMEbus Transceiver
Output Enable

vracfail# P18 M16 I TTL/Schm – – – VMEbus ACFAIL* Signal

vrbbsy# M6 J2 I TTL/Schm – – – VMEbus Received BBSY*
Signal

vrberr# A7 B7 I TTL/Schm – – – VMEbus Receive Bus Error

Table 8-2 Pin List and DC Characteristics for Universe II Signals (Continued)

Pin Name
PBGA

Pin
Number

CBGA
Pin

Number
Type

Input
Type

Output
Type

IOL
(mA)

IOH
(mA) Signal Description1
203

8 VMIVME-7697 Product Manual
vrbr# [0] W5 U2 I TTL/Schm – – – VMEbus Receive Bus
Requestvrbr# [1] U1 P1

vrbr# [2] R3 M3

vrbr# [3] L7 H2

vrirq# [1] H22 F19 I TTL/Schm – – – VMEbus Receive Interrupts

vrirq# [2] H20 F17

vrirq# [3] E25 E20

vrirq# [4] J21 G18

vrirq# [5] V16 U12

vrirq# [6] P20 M19

vrirq# [7] R17 M18

vrsysfail# AC13 T10 I TTL – – – VMEbus Receive SYSFAIL
Signal

vrsysrst# C21 C16 I TTL/Schm – – – VMEbus Receive
SYSRESET* Signal

vscon_dir M2 J1 O – 3S 6 –6 SYSCON signals direction
control

vslave_dir C15 F12 O – 3S 6 –6 DTACK/BERR direction
control

vsysclk N7 K2 I/O TTL 3S 3 –3 VMEbus SYSCLK Signal

vwrite# D8 B6 I/O TTL 3S 3 –3 VMEbus Write

vxbbsy P2 L3 O – 3S 3 –3 VMEbus Transmit BBSY*
Signal

vxberr D12 B9 O – 3S 3 –3 VMEbus Transmit Bus
Error (BERR*)

vxbr [0] G25 G19 O – 3S 3 –3 VMEbus Transmit Bus
Requestvxbr [1] H24 H16

vxbr [2] P24 M20

vxbr [3] G23 C19

vxirq [1] J19 J16 O – 3S 3 –3 VMEbus Transmit
Interruptsvxirq [2] K24 H19

vxirq [3] K18 J17

vxirq [4] J25 G20

vxirq [5] L23 J18

vxirq [6] M22 J19

vxirq [7] R25 L17

Table 8-2 Pin List and DC Characteristics for Universe II Signals (Continued)

Pin Name
PBGA

Pin
Number

CBGA
Pin

Number
Type

Input
Type

Output
Type

IOL
(mA)

IOH
(mA) Signal Description1
204

DC Characteristics and Pin Assignments 8
Note 1: All PCI pins meet PCI’s AC current specifications.

vxsysfail M10 K3 O – 3S 3 –3 VMEbus Transmit SYSFAIL
Signal

vxsysrst A23 E16 O – 3S 3 –3 VMEbus Transmit
SYSRESET* Signal

Table 8-3 PCI Bus Address/Data Pins

Signal PBGA CBGA Signal PBGA CBGA

AD [0] P16 L18 AD [32] L17 J15

AD [1] P22 M17 AD [33] N19 L19

AD [2] R19 N19 AD [34] R23 M15

AD [3] T18 U20 AD [35] U19 N18

AD [4] T22 N15 AD [36] U23 R20

AD [5] T20 T20 AD [37] W25 P16

AD [6] AA25 U19 AD [38] U21 P17

AD [7] AB24 R17 AD [39] V20 R19

AD [8] AB22 R16 AD [40] Y22 U18

AD [9] AE25 T17 AD [41] W21 P15

AD [10] AC21 V19 AD [42] AD22 Y18

AD [11] AB20 V15 AD [43] Y20 T15

AD [12] AC19 W18 AD [44] AD20 T14

AD [13] AA17 V14 AD [45] Y18 U15

AD [14] AA15 U13 AD [46] AE19 W14

AD [15] U15 R12 AD [47] AD16 W13

AD [16] AE11 U10 AD [48] V12 T9

AD [17] AB12 U9 AD [49] Y12 W9

AD [18] W9 V8 AD [50] AC11 R9

AD [19] AD10 U8 AD [51] V10 Y4

AD [20] AE7 T7 AD [52] AB10 R8

AD [21] Y8 W6 AD [53] AA9 U7

AD [22] AD4 U6 AD [54] AB8 T6

Table 8-2 Pin List and DC Characteristics for Universe II Signals (Continued)

Pin Name
PBGA

Pin
Number

CBGA
Pin

Number
Type

Input
Type

Output
Type

IOL
(mA)

IOH
(mA) Signal Description1
205

8 VMIVME-7697 Product Manual
AD [23] Y6 R5 AD [55] AB6 V4

AD [24] Y2 P5 AD [56] Y4 R3

AD [25] V4 R2 AD [57] W3 V2

AD [26] U5 P3 AD [58] AA1 T1

AD [27] W1 P2 AD [59] V2 N5

AD [28] U7 M5 AD [60] R5 N4

AD [29] T8 M4 AD [61] T2 N2

AD [30] P6 L5 AD [62] R9 M6

AD [31] P10 L4 AD [63] N5 L2

Table 8-4 VMEbus Address Pinsa

a.All VA pins have an internal pull-down.

Signal PBGA CBGA Signal PBGA CBGA

VA [1] H14 E12 VA [17] D18 B16

VA [2] A15 D11 VA [18] C19 C15

VA [3] F14 B12 VA [19] B20 D17

VA [4] J15 C12 VA [20] B22 D15

VA [5] D14 D12 VA [21] D20 C17

VA [6] G17 C13 VA [22] F20 E15

VA [7] H16 A17 VA [23] E19 F14

VA [8] B16 D13 VA [24] A25 C20

VA [9] C17 A15 VA [25] E23 B18

VA [10] D16 F13 VA [26] C25 E19

VA [11] A19 E14 VA [27] G21 F16

VA [12] B18 B14 VA [28] E21 D18

VA [13] F16 A16 VA [29] F22 F18

VA [14] E17 D14 VA [30] D24 D19

VA [15] A21 B17 VA [31] F24 G16

VA [16] F18 B15

Table 8-3 PCI Bus Address/Data Pins (Continued)

Signal PBGA CBGA Signal PBGA CBGA
206

DC Characteristics and Pin Assignments 8

Table 8-5 VMEbus Data Pinsa

a.VD[30:27] have internal pull-downs.

Signal PBGA CBGA Signal PBGA CBGA

VD [0] J7 H3 VD [16] F6 E2

VD [1] K8 D1 VD [17] G5 G6

VD [2] K2 H4 VD [18] B2 E5

VD [3] J3 F1 VD [19] C1 E3

VD [4] K4 H6 VD [20] E3 E4

VD [5] G1 G5 VD [21] C3 A3

VD [6] H2 G2 VD [22] A1 C2

VD [7] K6 E1 VD [23] A3 B5

VD [8] J5 G4 VD [24] C5 C4

VD [9] E1 D2 VD [25] D6 C6

VD [10] H6 F2 VD [26] B4 B4

VD [11] H4 F5 VD [27] B6 E7

VD [12] G3 F3 VD [28] C7 B3

VD [13] F2 D4 VD [29] F8 D6

VD [14] D2 F4 VD [30] A5 A5

VD [15] F4 D3 VD [31] E9 C7

Table 8-6 Pin Assignments for Power and Ground

VSS Pins VDD Pins

PBGA CBGA PBGA CBGA

AB14 N15 A14 R10 A17 H8 W15 A4 G17 U1

AC9 N17 A18 R11 AA11 H18 W19 A8 H1 U14

AC25 P4 B2 R13 AC3 J1 Y24 A11 H5 U16

AD6 P12 B19 R14 *AC5 J9 A13 H18 U17

*AE1 P14 C1 T16 AC17 J17 C3 H20 V3

AE13 R11 F7 U4 AC23 J23 C5 K1 *V5

J13 R13 F11 *U5 AD2 L5 C8 L20 V7

K10 R15 G1 V9 AD24 L19 C14 N1 V13

K16 T6 G15 V20 AE9 R7 C18 N3 V16
207

8 VMIVME-7697 Product Manual
*AVDD and AVSS are power pins specifically used for powering the analog circuitry in the Universe II. Extra care should be taken to avoid
noise and ground shifting on these pins through the use of decoupling capacitors or isolated ground and power planes.

L11 T16 K6 W2 B24 R21 D5 N16 V18

L13 T24 L6 W12 C9 T10 D7 N20 Y8

L15 U11 L15 W19 D4 U3 D20 P4 Y10

M12 U13 M2 Y3 D22 U9 E13 P18 Y13

M14 V24 N6 Y5 E5 U17 E17 R6 Y17

N1 Y10 N17 Y6 E15 U25 E18 R15

N9 Y16 P6 Y7 G7 V8 F6 T3

N11 P19 G11 V18 F15 T4

N13 P20 G19 W7 G3 T8

Table 8-6 Pin Assignments for Power and Ground (Continued)

VSS Pins VDD Pins

PBGA CBGA PBGA CBGA
208

209

D
C

 C
haracteristics and P

in A
ssignm

ents
8

AA AB AC AD AE

1 AD[58] PLL_
TESTSEL

AVSS

2 PLL_
TESTOUT

VDD

3 LCLK VDD VCOCTL

4 PERR# AD[22]

5 INT#[1] AVDD PAR64

6 AD[55] VSS

7 V SERR# DEVSEL# AD[20]

8 AD[54] TRDY#

9 AD[53] VSS VDD

10 AD[52] AD[19]

11 VDD AD[50] AD[16]

12 AD[17] CBE[7]

13 MODE[0] VRSYS-
FAIL#

VSS

14 VSS CBE[5]

15 AD[14] IRDY# CBE[4]

16 IDSEL AD[47]

17 AD[13] VDD GNT#

18 STOP# REQ64#

19 RST# AD[12] AD[46]

20 AD[11] AD[44]

21 MODE[1] AD[10] ENID

22 AD[8] AD[42]

23 V LOCK# VDD VIACKI#

24 AD[7] VDD

25 AD[6] VSS AD[9]
Table 8-7 Pinout for 313-pin Plastic BGA Package
A B C D E F G H J K L M N P R T U V W Y

VD[22] VD[19] VD[9] VD[5] VDD INT#[7] VSS LRST# VRBR#[1] AD[27]

VD[18] VD[14] VD[13] VD[6] VD[2] VSCON_
DIR

VXBBSY AD[61] AD[59] AD[24]

VD[23] VD[21] VD[20] VD[12] VD[3] INT#[5] VBCLR# VRBR#[2] VDD AD[57]

VD[26] VDD VD[15] VD[11] VD[4] INT#[4] VSS PWRRST# AD[25] AD[56]

VD[30] VD[24] VDD VD[17] VD[8] VDD AD[63] AD[60] AD[26] VRBR#[0]

VD[27] VD[25] VD[16] VD[10] VD[7] VRBBSY# AD[30] VSS INT#[3] AD[23]

RBERR# VD[28] VIACK# VDD VD[0] VRBR#[3] VSYSCLK VDD AD[28] VDD

VAM_DIR VWRITE# VD[29] VDD VD[1] INT#[6] PAR AD[29] VDD AD[21]

VAM[5] VDD VD[31] VAM[2] VDD INT#[2] VSS AD[62] VDD AD[18]

VAM[3] VAM[1] VD_DIR VAM[4] VSS VXSYSFAIL AD[31] VDD AD[51] VSS

VDS#[1] TMS VAM[0] VDD VDS_DIR VSS VSS VSS VSS ACK64#

VOE# VXBERR VDS#[0] TCK VAS_DIR VSS VSS CBE[6] AD[48] AD[49]

TDI TDO TRST# VA_DIR VSS VSS VSS VSS VSS CBE[3] T

VAS# VA[5] VA[3] VA[1] VLWORD# VSS VSS CBE[2] CBE[1] CBE[0]

VA[2] VSLAVE_DIR VDD VDTACK# VA[4] VSS VSS VSS AD[15] VDD

VA[8] VA[10] VA[13] VA[7] VSS VBGI#[1] AD[0] VSS VRIRQ#[5] VSS

VDD VA[9] VA[14] VA[6] VDD AD[32] VSS VRIRQ#[7] VDD FRAME#

VA[12] VA[17] VA[16] VDD VXIRQ[3] VBGO#[2] VRACFAIL# AD[3] VDD AD[45]

VA[11] VA[18] VA[23] VDD VXIRQ[1] VDD AD[33] AD[2] AD[35] VDD

VA[19] VA[21] VA[22] VRIRQ#[2] INT#[0] VBGO#[0] VRIRQ#[6] AD[5] AD[39] AD[43]

VA[15] VRSYSRST# VA[28] VA[27] VRIRQ#[4] VIACKO# VBGI#[0] VDD AD[38] AD[41] T

VA[20] VDD VA[29] VRIRQ#[1] REQ# VXIRQ[6] AD[1] AD[4] VME_RST# AD[40]

XSYSRST CLK64 VA[25] VXBR[3] VDD VXIRQ[5] VBGI#[3] AD[34] AD[36] TMODE[2]

VDD VA[30] VA[31] VXBR[1] VXIRQ[2] VBGO#[3] VXBR[2] VSS VSS VDD

VA[24] VA[26] VRIRQ#[3] VXBR[0] VXIRQ[4] VBGO#[1] VBGI#[2] VXIRQ[7] VDD AD[37]

8
V

M
IV

M
E

-7697 Prod
uct M

anual

210 Table 8-8 Pinout for 324–pin Ceramic BGA Package

 as figures. For layout purposes,

A B C D E F G H J K L M N P R T U V W Y

1 VSS VD[1] VD[7] VD[3] VSS VDD VSCON_DIR VDD PAR LRST# VDD VRBR#[1] PWRRST# AD[58] VDD PLL_TESTOUT

2 VSS VD[22] VD[9] VD[16] VD[10] VD[6] VRBR#[3] VRBBSY# VSYSCLK AD[63] VSS AD[61] AD[27] AD[25] PLL_TESTSEL VRBR#[0] AD[57] VSS

INT#[1] VDD LCLK VSS

VSS AD[55] PAR64 AD[51]

TL AVSS AVDD PERR# VSS

4] AD[22] DEVSEL# AD[21] VSS

0] AD[53] VDD TRDY# VSS

AD[19] AD[18] ACK64# VDD

8] AD[17] VSS AD[49] CBE[7]

AIL# AD[16] CBE[6] CBE[3] VDD

0] CBE[2] CBE[5] TMODE[0] CBE[1]

E# VRIRQ#[5] IRDY# VSS CBE[4]

4# AD[14] VDD AD[47] VDD

4] VDD AD[13] AD[46] GNT#

3] AD[45] AD[11] STOP# IDSEL

VDD VDD VIACKI# ENID

] VDD TMODE[1] RST# VDD

AD[40] VDD AD[12] AD[42]

SET# AD[6] AD[10] VSS

] AD[3] VSS
Table 8-7 and Table 8-8 map pin numbers to signal names. These tables should not be read
please see Appendix D Typical Applications.

3 VD[21] VD[28] VDD VD[15] VD[19] VD[12] VDD VD[0] INT#[2] VXSYSFAIL VXBBSY VRBR#[2] VDD AD[26] AD[56] VDD

4 VDD VD[26] VD[24] VD[13] VD[20] VD[14] VD[8] VD[2] INT#[4] INT#[7] AD[31] AD[29] AD[60] VDD INT#[3] VDD

5 VD[30] VD[23] VDD VDD VD[18] VD[11] VD[5] VDD INT#[6] VBCLR# AD[30] AD[28] AD[59] AD[24] AD[23] VCOC

6 VAM[1] VWRITE# VD[25] VD[29] VIACK# VDD VD[17] VD[4] INT#[5] VSS VSS AD[62] VSS VSS VDD AD[5

7 VAM[5] VRBERR# VD[31] VDD VD[27] VSS SERR# AD[2

8 VDD VAM[3] VDD VAM[0] VAM_DIR VD_DIR AD[52] VDD

9 VDS#[1] VXBERR TMS VAM[4] VAM[2] VDS_DIR AD[50] AD[4

10 TCK TRST# VOE# VAS_DIR VDS#[0] TDI VSS VRSYSF

11 VDD VA_DIR VLWORD# VA[2] TDO VSS VSS CBE[

12 VAS# VA[3] VA[4] VA[5] VA[1] VSLAVE_DIR AD[15] FRAM

13 VDD VDTACK# VA[6] VA[8] VDD VA[10] VSS REQ6

14 VSS VA[12] VDD VA[14] VA[11] VA[23] VSS AD[4

15 VA[9] VA[16] VA[18] VA[20] VA[22] VDD VSS INT#[0] AD[32] VBGI#[2] VSS AD[34] AD[4] AD[41] VDD AD[4

16 VA[13] VA[17] VRSYSRST# CLK64 VXSYSRST VA[27] VA[31] VXBR[1] VXIRQ[1] VBGO#[0] VBGI#[3] VRACFAIL# VDD AD[37] AD[8] VSS

17 VA[7] VA[15] VA[21] VA[19] VDD VRIRQ#[2] VDD VIACKO# VXIRQ[3] VBGI#[1] VXIRQ[7] AD[1] VSS AD[38] AD[7] AD[9

18 VSS VA[25] VDD VA[28] VDD VA[29] VRIRQ#[4] VDD VXIRQ[5] VBGO#[3] AD[0] VRIRQ#[7] AD[35] VDD TMODE[2] LOCK

19 VSS VXBR[3] VA[30] VA[26] VRIRQ#[1] VXBR[0] VXIRQ[2] VXIRQ[6] VBGI#[0] AD[33] VRIRQ#[6] AD[2] VSS AD[39] VME_RE

20 VA[24] VDD VRIRQ#[3] REQ# VXIRQ[4] VDD VBGO#[1] VBGO#[2] VDD VXBR[2] VDD VSS AD[36] AD[5

!

Appendix

A

System Registers
Introduction

The System Registers provide control/status not contained within the Universe II
chip such as master/slave endian conversion and non-slot 1 bus time-out timer.
Table A-1 on page 212 defines the System Register Map.

The Universe II Control and Status Registers (USCRs) facilitate host system
configuration and allow the user to control Universe II operational characteristics. The
UCSRs are divided into four groups:

* the DMA Channel

* PCI Configuration Space (PCICS)

* VMEbus Control and Status Registers (VCSR)

* Universe II Device Specific Status Registers (UDSR)

The Universe II registers are little-endian. The register map for the UCSR’s is included
in Appendix B.
211

A VMIVME-7697 Product Manual
Ta

b
le

 A
-1

 S
ys

te
m

 R
eg

is
te

r
M

ap

R
eg

is
te

r
N

am
e

M
ne

m
on

ic
A

cc
es

s
M

em
A

dd
re

ss

C
om

m
an

d
C

O
M

M
B

,W
: R

/W
0x

D
80

0E
D

15
D

14
D

13
D

12
D

11
D

10
D

9
D

8
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0

X
X

X
X

V
M

E
_E

N
B

Y
PA

S
S

W
T

D
S

Y
S

B
E

R
R

S
T

B
E

R
R

IB
T

O
V

1
B

T
O

V
0

B
T

O
A

B
L

E
S

E
C

M
E

C

V
M

E

B
E

R
R

A

dd
re

ss

R
eg

is
te

rs

V
B

A
R

B
,W

,L
: R

/W
C

0x
D

80
10

D
31

D
30

D
29

D
28

D
27

D
26

D
25

D
24

D
23

D
22

D
21

D
20

D
19

D
18

D
17

D
16

A
31

A
30

A
29

A
28

A
27

A
26

A
25

A
24

A
23

A
22

A
21

A
20

A
19

A
18

A
17

A
16

D
15

D
14

D
13

D
12

D
11

D
10

D
9

D
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

0

V
M

E

B
E

R
R

A

dd
re

ss

M
od

if
ie

r
R

eg
is

te
rs

V
B

A
M

R
W

, B
: R

/W
0x

D
80

14
D

15
D

14
D

13
D

12
D

11
D

10
D

9
D

8
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0

X
X

X
X

X
X

X
X

X
X

A
M

5
A

M
4

A
M

3
A

M
2

A
M

1
A

M
0

B
oa

rd
 I

D

R
eg

is
te

r
ID

B
,W

: R
0x

D
80

16
D

15
D

14
D

13
D

12
D

11
D

10
D

9
D

8
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0

0
1

1
1

0
1

0
1

1
0

0
1

0
0

0
1

212

A

The Table A-1 System Register Map Bit Definitions are defined as follows:

COMM (16-bit Read/Write register):

• MEC: Master Endian Conversion enable bit (1=enabled, 0=disabled)
• SEC: Slave Endian Conversion enable bit (1=enabled, 0=disabled)
• ABLE: Auxiliary BERR logic enable bit (1=enabled, 0=disabled

• BTO: Auxiliary Bus Time-out Timer enable bit (1=enabled, 0=disabled)
• BTOV(1:0): Auxiliary Bus Time-out Timer value: (00 = 16 µs, 01 = 64 µs,

10 = 256 µs, 11 = 1 ms)
• BERRI: BERR Interrupt enable bit (1=enabled, 0=disabled)
• BERRST: BERR Status Read/Clear
• WTDSYS: Watchdog Time-out to VME Sysfail (1=enabled, 0=disabled)
• BYPASS: VME Endian Conversion bypass Enable (1=enabled, 0=disabled)
• VME_EN: VMEbus enable (1=enabled, 0=disabled)

VBAR (32-bit Read register):

• A(31:1): Address of BERR cycle

VBAMR (16 bit Read register):

• AM(5:0): AM code of BERR cycle

BTR (16-bit Read-only register):

•BCD value representing the board number 7697
213

A VMIVME-7697 Product Manual
214

Appendix

B

Universe II Registers
Introduction

The Universe II Control and Status Registers facilitate host system configuration and
allow the user to control Universe II operational characteristics. The registers are
divided into three groups:

• PCI Configuration Space,
• VMEbus Configuration and Status Registers, and
• Universe II Device Specific Status Registers.

The Universe II registers have little-endian byte-ordering. Figure B-1 below
summarizes the supported register access mechanisms.

Figure B-1 UCSR Access Mechanisms

PCI CONFIGURATION
SPACE
(PCICS)

UNIVERSE DEVICE
SPECIFIC REGISTERS

(UDSR) 4 Kbytes

VMEbus Configuration
and Status Registers

(VCSR)
215

B VMIVME-7697 Product Manual
The bit combinations listed as “Reserved” must not be programmed. All bits listed as
“Reserved” must read back a value of zero.

Table B-1 below lists the Universe II registers by address offset. The tables following
the register map (Table to Table) provide detailed descriptions of each register.

Table B-1 Universe II Register Map

Offset Register Name

000 PCI Configuration Space ID Register PCI_ID

004 PCI Configuration Space Control and Status Register PCI_CSR

008 PCI Configuration Class Register PCI_CLASS

00C PCI Configuration Miscellaneous 0 Register PCI_MISC0

010 PCI Configuration Base Address Register PCI_BS0

014 PCI Configuration Base Address 1 Register PCI_BS1

018-024 PCI Unimplemented

028 PCI Reserved

02C PCI Reserved

030 PCI Unimplemented

034 PCI Reserved

038 PCI Reserved

03C PCI Configuration Miscellaneous 1 Register PCI_MISC1

040-0FF PCI Unimplemented

100 PCI Target Image 0 Control Register LSI0_CTL

104 PCI Target Image 0 Base Address Register LSI0_BS

108 PCI Target Image 0 Bound Address Register LSI0_BD

10C PCI Target Image 0 Translation Offset Register LSI0_TO

110 Reserved

114 PCI Target Image 1 Control Register LSI1_CTL

118 PCI Target Image 1 Base Address Register LSI1_BS

11C PCI Target Image 1 Bound Address Register LSI1_BD

120 PCI Target Image 1 Translation Offset Register LSI1_TO

124 Reserved
216

B

128 PCI Target Image 2 Control Register LSI2_CTL

12C PCI Target Image 2 Base Address Register LSI2_BS

130 PCI Target Image 2 Bound Address Register LSI2_BD

134 PCI Target Image 2 Translation Offset Register LSI2_TO

138 Reserved

13C PCI Target Image 3 Control Register LSI3_CTL

140 PCI Target Image 3 Base Address Register LSI3_BS

144 PCI Target Image 3 Bound Address Register LSI3_BD

148 PCI Target Image 3 Translation Offset Register LSI3_TO

14C-16C Reserved

170 Special Cycle Control Register SCYC_CTL

174 Special Cycle PCI Bus Address Register SCYC_ADDR

178 Special Cycle Swap/Compare Enable Register SCYC_EN

17C Special Cycle Compare Data Register SCYC_CMP

180 Special Cycle Swap Data Register SCYC_SWP

184 PCI Miscellaneous Register LMISC

188 Special PCI Target Image Register SLSI

18C PCI Command Error Log Register L_CMDERR

190 PCI Address Error Log Register LAERR

194-19C Reserved

1A0 PCI Target Image 4 Control Register LSI4_CTL

1A4 PCI Target Image 4 Base Address Register LSI4_BS

1A8 PCI Target Image 4 Bound Address Register LSI4_BD

1AC PCI Target Image 4 Translation Offset Register LSI4_TO

1B0 Reserved

1B4 PCI Target Image 5 Control Register LSI5_CTL

1B8 PCI Target Image 5 Base Address Register LSI5_BS

1BC PCI Target Image 5 Bound Address Register LSI5_BD

Table B-1 Universe II Register Map (Continued)

Offset Register Name
217

B VMIVME-7697 Product Manual
1C0 PCI Slave Image 5 Translation Offset Register LSI5_TO

1C4 Reserved

1C8 PCI Target Image 6 Control Register LSI6_CTL

1CC PCI Target Image 6 Base Address Register LSI6_BS

1D0 PCI Target Image 6 Bound Address Register LSI6_BD

1D4 PCI Target Image 6 Translation Offset Register LSI6_TO

1D8 Reserved

1DC PCI Target Image 7 Control Register LSI7_CTL

1E0 PCI Target Image 7 Base Address Register LSI7_BS

1E4 PCI Target Image 7 Bound Address Register LSI7_BD

1E8 PCI Target Image 7 Translation Offset Register LSI7_TO

1EC-1FC Reserved

200 DMA Transfer Control Register DCTL

204 DMA Transfer Byte Count Register DTBC

208 DMA PCI Bus Address Register DLA

20C Reserved

210 DMA VMEbus Address Register DVA

214 Reserved

218 DMA Command Packet Pointer Register DCPP

21C Reserved

220 DMA General Control and Status Register DGCS

224 DMA Linked List Update Enable Register D_LLUE

228-2FC Reserved

300 PCI Interrupt Enable Register LINT_EN

304 PCI Interrupt Status Register LINT_STAT

308 PCI Interrupt Map 0 Register LINT_MAP0

30C PCI Interrupt Map 1 Register LINT_MAP1

310 VMEbus Interrupt Enable Register VINT_EN

Table B-1 Universe II Register Map (Continued)

Offset Register Name
218

B

314 VMEbus Interrupt Status Register VINT_STAT

318 VMEbus Interrupt Map 0 Register VINT_MAP0

31C VMEbus Interrupt Map 1 Register VINT_MAP1

320 Interrupt Status/ID Out Register STATID

324 VIRQ1 STATUS/ID Register V1_STATID

328 VIRQ2 STATUS/ID Register V2_STATID

32C VIRQ3 STATUS/ID Register V3_STATID

330 VIRQ4 STATUS/ID Register V4_STATID

334 VIRQ5 STATUS/ID Register V5_STATID

338 VIRQ6 STATUS/ID Register V6_STATID

33C VIRQ7 STATUS/ID Register V7_STATID

340 PCI Interrupt Map 2 Register LINT_MAP2

344 VME Interrupt Map 1 Register VINT_MAP2

348 Mailbox 0 Register MBOX0

34C Mailbox 1 Register MBOX1

350 Mailbox 2 Register MBOX2

354 Mailbox 3 Register MBOX3

358 Semaphore 0 Register SEMA0

35C Semaphore 1 Register SEMA1

360-3FC Reserved

400 Master Control Register MAST_CTL

404 Miscellaneous Control Register MISC_CTL

408 Miscellaneous Status Register MISC_STAT

40C User AM Codes Register USER_AM

410-EFC Reserved

F00 VMEbus Slave Image 0 Control Register VSI0_CTL

F04 VMEbus Slave Image 0 Base Address Register VSI0_BS

F08 VMEbus Slave Image 0 Bound Address Register VSI0_BD

Table B-1 Universe II Register Map (Continued)

Offset Register Name
219

B VMIVME-7697 Product Manual
F0C VMEbus Slave Image 0 Translation Offset Register VSI0_TO

F10 Reserved

F14 VMEbus Slave Image 1 Control Register VSI1_CTL

F18 VMEbus Slave Image 1 Base Address Register VSI1_BS

F1C VMEbus Slave Image 1 Bound Address Register VSI1_BD

F20 VMEbus Slave Image 1 Translation Offset Register VSI1_TO

F24 Reserved

F28 VMEbus Slave Image 2 Control Register VSI2_CTL

F2C VMEbus Slave Image 2 Base Address Register VSI2_BS

F30 VMEbus Slave Image 2 Bound Address Register VSI2_BD

F34 VMEbus Slave Image 2 Translation Offset Register VSI2_TO

F38 Reserved

F3C VMEbus Slave Image 3 Control Register VSI3_CTL

F40 VMEbus Slave Image 3 Base Address Register VSI3_BS

F44 VMEbus Slave Image 3 Bound Address Register VSI3_BD

F48 VMEbus Slave Image 3 Translation Offset Register VSI3_TO

F4C-F60 Reserved

F64 Location Monitor Control Register LM_CTL

F68 Location Monitor Base Address Register LM_BS

F6C Reserved

F70 VMEbus Register Access Image Control Register VRAI_CTL

F74 VMEbus Register Access Image Base Address
Register

VRAI_BS

F78 Reserved

F7C Reserved

F80 VMEbus CSR Control Register VCSR_CTL

F84 VMEbus CSR Translation Offset Register VCSR_TO

F88 VMEbus AM Code Error Log Register V_AMERR

Table B-1 Universe II Register Map (Continued)

Offset Register Name
220

B

F8C VMEbus Address Error Log Register VAERR

F90 VMEbus Slave Image 4 Control Register VSI4_CTL

F94 VMEbus Slave Image 4 Base Address Register VSI4_BS

F98 VMEbus Slave Image 4 Bound Address Register VSI4_BD

F9C VMEbus Slave Image 4 Translation Offset Register VSI4_TO

FA0 Reserved

FA4 VMEbus Slave Image 5 Control Register VSI5_CTL

FA8 VMEbus Slave Image 5 Base Address Register VSI5_BS

FAC VMEbus Slave Image 5 Bound Address Register VSI5_BD

FB0 VMEbus Slave Image 5 Translation Offset Register VSI5_TO

FB4 Reserved

FB8 VMEbus Slave Image 6 Control Register VSI6_CTL

FBC VMEbus Slave Image 6 Base Address Register VSI6_BS

FC0 VMEbus Slave Image 6 Bound Address Register VSI6_BD

FC4 VMEbus Slave Image 6 Translation Offset Register VSI6_TO

FC8 Reserved

FCC VMEbus Slave Image 7 Control Register VSI7_CTL

FD0 VMEbus Slave Image 7 Base Address Register VSI7_BS

FD4 VMEbus Slave Image 7 Bound Address Register VSI7_BD

FD8 VMEbus Slave Image 7 Translation Offset Register VSI7_TO

FDC-FEC Reserved

FF0 VME CR/CSR Reserved

FF4 VMEbus CSR Bit Clear Register VCSR_CLR

FF8 VMEbus CSR Bit Set Register VCSR_SET

FFC VMEbus CSR Base Address Register VCSR_BS

Table B-1 Universe II Register Map (Continued)

Offset Register Name
221

B VMIVME-7697 Product Manual

Table B-2 PCI Configuration Space ID Register (PCI_ID)

Register Name: PCI_ID Offset:000

Bits Function

31-24 DID

23-16 DID

15-08 VID

07-00 VID

Table B-3 PCI_ID Description

Name Type Reset By
Reset
State

Function

DID[15:0] R All 0 Device ID - Tundra allocated device identifier

VID[15:0] R All 10E3 Vendor ID - PCI SIG allocated vendor identifier

Table B-4 PCI Configuration Space Control and Status Register (PCI_CSR)

Register Name: PCI_CSR Offset:004

Bits Function

31-24 D_PE S_SERR R_MA R_TA S_TA DEVSEL DP_D

23-16 TFBBC PCI Reserved

15-08 PCI Reserved MFBBC SERR_EN

07-00 WAIT PERESP VGAPS MWI_EN SC BM MS IOS
222

B

Table B-5 PCI_CSR Description

Name Type Reset By
Reset
State

Function

D_PE R/Write
1 to Clear

All 0 Detected Parity Error
0=No parity error, 1=Parity error
This bit is always set by the Universe II when the
PCI master interface detects a data parity error or
the PCI target interface detects address or data
parity errors.

S_SERR R/Write
1 to Clear

All 0 Signalled SERR#
0=SERR# not asserted, 1=SERR# asserted.
The Universe II PCI target interface sets this bit
when it asserts SERR# to signal an address parity
error. SERR_EN must be set before SERR# can be
asserted.

R_MA R/Write
1 to Clear

All 0 Received Master-Abort
0=Master did not generate Master-Abort, 1=Master
generated Master-Abort
The Universe II PCI master interface sets this bit
when a transaction it initiated had to be terminated
with a Master-Abort.

R_TA R/Write
1 to Clear

All 0 Received Target-Abort
0=Master did not detect Target-Abort, 1=Master
detected Target-Abort.
The Universe II PCI master interface sets this bit
when a transaction it initiated was terminated with
a Target-Abort.

S_TA R/Write
1 to Clear

All 0 Signalled Target-Abort
0=Target did not terminate transaction with
Target-Abort,1=Target terminated transaction with
Target-Abort.

DEVSEL R All 01 Device Select Timing
The Universe II is a medium speed device

DP_D R/Write
1 to Clear

All Data Parity Detected
0=Master did not detect/generate data parity error,
1=Master detected/generated data parity error.
The Universe II PCI master interface sets this bit if
the Parity Error Response bit is set, it is the master
of transaction in which it asserts PERR#, or the
addressed target asserts PERR#.
223

B VMIVME-7697 Product Manual
TFBBC R All 0 Target Fast Back to Back Capable
Universe II cannot accept Back to Back cycles from
a different agent.

MFBBC R All 0 Master Fast Back to Back Enable
0=no fast back-to-back transactions
The Universe II master never generates fast back to
back transactions.

SERR_EN R/W All 0 SERR# Enable
0=Disable SERR# driver, 1=Enable SERR# driver.
Setting this and PERESP allows the Universe II PCI
target interface to report address parity errors with
SERR#.

WAIT R All 0 Wait Cycle Control
0=No address/data stepping

PERESP R/W All 0 Parity Error Response
0=Disable, 1=Enable
Controls the Universe II response to data and
address parity errors. When enabled, it allows the
assertion of PERR# to report data parity errors.
When this bit and SERR_EN are asserted, the
Universe II can report address parity errors on
SERR#. Universe II parity generation is unaffected
by this bit.

VGAPS R All 0 VGA Palette Snoop
0=Disable
The Universe II treats palette accesses like all other
accesses.

MWI_EN R All 0 Memory Write and Invalidate Enable
0=Disable
The Universe II PCI master interface never
generates a Memory Write and Invalidate
command.

SC R All 0 Special Cycles
0=Disable
The Universe II PCI target interface never responds
to special cycles.

Table B-5 PCI_CSR Description (Continued)

Name Type Reset By
Reset
State

Function
224

B

If the VCSR or LSI0 power-up options are enabled, these bits are not disabled after
reset.

The Universe II only rejects PCI addresses with parity errors in the event that both the
PERESP and SERR_EN bits are programmed to a value of 1.

BM R/W PWR
VME

see note 1 Master Enable
0=Disable, 1=Enable
For a VMEbus slave image to respond to an
incoming cycle, this bit must be set. If this bit is
cleared while there is data in the VMEbus Slave
Posted Write FIFO, the data will be written to the
PCI bus but no further data will be accepted into
this FIFO until the bit is set.

MS R/W PWR
VME

see note 1 Target Memory Enable
0=Disable, 1=Enable

IOS R/W PWR
VME

see note 1 Target IO Enable
0=Disable, 1=Enable

Table B-6 PCI Configuration Class Register (PCI_CLASS)

Register Name: PCI_CLASS Offset:008

Bits Function

31-24 BASE

23-16 SUB

15-08 PROG

07-00 RID

Table B-5 PCI_CSR Description (Continued)

Name Type Reset By
Reset
State

Function
225

B VMIVME-7697 Product Manual
Table B-7 PCI_CLASS Description

Name Type Reset By
Reset
State

Function

BASE [7:0] R All 06 Base Class Code
The Universe II is defined as a PCI bridge device

SUB [7:0] R All 80 Sub Class Code
The Universe II sub-class is “other bridge device”

PROG [7:0] R All 00 Programming Interface
The Universe II does not have a standardized
register-level programming interface

RID [7:0] R All 01 Revision ID

Table B-8 PCI Configuration Miscellaneous 0 Register (PCI_MISC0)

Register Name: PCI_MISC0 Offset:00C

Bits Function

31-24 BISTC SBIST PCI Reserved CCODE

23-16 MFUNCT LAYOUT

15-08 LTIMER 0 0 0

07-00 PCI Unimplemented

Table B-9 PCI_MISC0 Description

Name Type Reset By
Reset
State

Function

BISTC R All 0 The Universe II is not BIST Capable

SBIST R All 0 Start BIST
The Universe II is not BIST capable

CCODE R All 0 Completion Code
The Universe II is not BIST capable

MFUNCT R All 0 Multifunction Device
0=No, 1=Yes
The Universe II is not a multi-function device.

LAYOUT R All 0 Configuration Space Layout

LTIMER [7:3] R/W All 0 Latency Timer: The latency timer has a resolution
of 8 clocks
226

B

et to
h

s set
1”,
The Universe II is not a multi-function device.

This register specifies the 4 Kbyte aligned base address of the 4 Kbyte Universe II
register space on PCI.

A power-up option determines if the registers are mapped into Memory or I/O space
in relation to this base address. (See Power-Up Options on page 160). If mapped into
Memory space, the user is free to locate the registers anywhere in the 32-bit address
space.

• When the VA[1] pin is sampled low at power-up, the PCI_BS0 register’s SPACE bit is s
“1”, which signifies I/O space, and the PCI_BS1 register’s SPACE bit is set to “0”, whic
signifies memory space.

• When VA[1] is sampled high at power-up, the PCI_BS0 register’s SPACE register’s bit i
to “0”, which signifies Memory space, and the PCI_BS1 register’s SPACE bit is set to “
which signifies I/O space.

A write must occur to this register before the Universe II Device Specific Registers can
be accessed. This write can be performed with a PCI configuration transaction or a
VMEbus register access.

Table B-10 PCI Configuration Base Address Register (PCI_BS0)

Register Name: PCI_BS0 Offset:010

Bits Function

31-24 BS

23-16 BS

15-08 BS 0 0 0 0

07-00 0 0 0 0 0 0 0 SPACE

Table B-11 PCI_BS0 Description

Name Type Reset By
Reset
State

Function

BS[31:12] R/W All 0 Base Address

SPACE R All Power-up
Option

PCI Bus Address Space
0=Memory, 1=I/O
227

B VMIVME-7697 Product Manual
This register specifies the 4 KByte aligned base address of the 4 KByte Universe II
register space in PCI.

A power-up option determines the value of the SPACE bit. This determines whether
the registers are mapped into Memory or I/O space in relation to this base address.
(See Power-Up Options on page 160). If mapped into Memory space, the user is free to
locate the Universe registers anywhere in the 32-bit address space. If PCI_BS0 is
mapped to Memory space, PCI_BS1 is mapped to I/O space; if PCI_BS0 is mapped to
I/O space, then PCI_BS1 is mapped to Memory space.

• When the VA[1] pin is sampled low at power-up, the PCI_BS0 register’s SPACE
bit is set to “1”, which signifies I/O space, and the PCI_BS1 register’s SPACE bit
is set to “0”, which signifies memory space.

• When VA[1] is sampled high at power-up, the PCI_BS0 register’s SPACE
register’s bit is set to “0”, which signifies Memory space, and the PCI_BS1
register’s SPACE bit is set to “1”, which signifies I/O space.

A write must occur to this register before the Universe II Device Specific Registers can
be accessed. This write can be performed with a PCI configuration transaction or a
VMEbus register access.

The SPACE bit in this register is an inversion of the SPACE field in PCI_BS0.

Table B-12 PCI Configuration Base Address 1 Register (PCI_BS1)

Register Name: PCI_BS1 Offset:014

Bits Function

31-24 BS

23-16 BS

15-08 BS 0 0 0 0

07-00 0 0 0 0 0 0 0 SPACE

Table B-13 PCI_BS1 Description

Name Type Reset By
Reset
State

Function

BS[31:12] R/W All 0 Base Address

SPACE R All Power-up
Option

PCI Bus Address Space
0=Memory, 1=I/O
228

B

The MIN_GNT parameter assumes the Universe II master is transferring an aligned
burst size of 64 bytes to a 32-bit target with no wait states. This would require roughly
20 clocks (at a clock frequency of 33 MHz, this is about 600 ns). MIN_GNT is set to
three, or 750 ns.

Table B-14 PCI Configuration Miscellaneous 1 Register (PCI_MISC1)

Register Name: PCI_MISC1 Offset:03C

Bits Function

31-24 MAX_LAT [7:0}

23-16 MIN_GNT [7:0}

15-08 INT_PIN [7:0}

07-00 INT_LINE [7:0}

Table B-15 PCI_MISC1 Description

Name Type Reset By
Reset
State

Function

MAX_LAT[7:0] R All 0 Maximum Latency: This device has no special
latency requirements

MIN_GNT[7:0} R All 00000011 Minimum Grant:.250 ns units

INT_PIN[7:0] R All 00000001 Interrupt Pin: Universe II pin INT# [0] has a PCI
compliant I/O buffer

INT_LINE[7:0] R/W All 0 Interrupt Line: used by some PCI systems to
record interrupt routing information

Table B-16 PCI Target Image 0 Control (LSI0_CTL)

Register Name: LSI0_CTL Offset:100

Bits Function

31-24 EN PWEN Reserved

23-16 VDW Reserved VAS

15-08 Reserved PGM Reserved SUPER Reserved VCT

07-00 Reserved LAS
229

B VMIVME-7697 Product Manual

In the PCI Target Image Control register, setting the VCT bit will only have effect if the
VAS bits are programmed for A24 or A32 space and the VDW bits are programmed
for 8-bit, 16-bit, or 32-bit.

If VAS bits are programmed to A24 or A32 and the VDW bits are programmed for
64-bit, the Universe II may perform MBLT transfers independent of the state of the
VCT bit.

The setting of the PWEN bit is ignored if the LAS bit is programmed for PCI Bus I/O
Space, forcing all transactions through this image to be coupled.

Table B-17 LSI0_CTL Description

Name Type Reset By
Reset
State

Function

EN R/W All Power-up
Option

Image Enable
0=Disable, 1=Enable

PWEN R/W All 0 Posted Write Enable
0=Disable, 1=Enable

VDW R/W All 10 VMEbus Maximum Datawidth
00=8-bit data width, 01=16 bit data width, 10=32-bit
data width, 11=64-bit data width

VAS R/W All Power-up
Option

VMEbus Address Space
000=A16, 001=A24, 010=A32, 011= Reserved,
100=Reserved 101=CR/CSR, 110=User1, 111=User2

PGM R/W All 0 Program/Data AM Code
0=Data, 1=Program

SUPER R/W All 0 Supervisor/User AM Code
0=Non-Privileged, 1=Supervisor

VCT R/W All 0 VMEbus Cycle Type
0=No BLTs on VMEbus, 1=Single BLTs on VMEbus

LAS R/W All Power-up
Option

PCI Bus Memory Space
0=PCI Bus Memory Space, 1=PCI Bus I/O Space
230

B

The base address specifies the lowest address in the address range that will be
decoded.

The base address for PCI Target Image 0 and PCI Target Image 4 have a 4Kbyte
resolution. PCI Target Images 1, 2, 3, 5, 6, and 7 have a 64Kbyte resolution.

Table B-18 PCI Target Image 0 Base Address Register (LSI0_BS)

Register Name: LSI0_BS Offset:104

Bits Function

31-24 BS

23-16 BS

15-08 BS Reserved

07-00 Reserved

Table B-19 LSI0_BS Description

Name Type Reset By
Reset
State

Function

BS[31:28] R/W All Power-up
Option

Base Address

BS[27:12] R/W All 0 Base Address

Table B-20 PCI Target Image 0 Bound Address Register (LSI0_BD)

Register Name: LSI0_BD Offset:108

Bits Function

31-24 BD

23-16 BD

15-08 BD Reserved

07-00 Reserved
231

B VMIVME-7697 Product Manual
The addresses decoded in a slave image are those which are greater than or equal to
the base address and less than the bound register. If the bound address is 0, then the
addresses decoded are those greater than or equal to the base address.

The bound address for PCI Target Image 0 and PCI Target Image 4 have a 4Kbyte
resolution. PCI Target Images 1, 2, 3, 5, 6, and 7 have a 64 Kbyte resolution.

The translation offset for PCI Target Image 0 and PCI Target Image 4 have a 4Kbyte
resolution. PCI Target Images 1, 2, 3, 5, 6, and 7 have a 64Kbyte resolution.

Address bits [31:12] generated on the VMEbus in response to an image decode are a
two’s complement addition of address bits [31:12] on the PCI Bus and bits [31:12] of
the image’s translation offset.

Table B-21 LSI0_BD Description

Name Type Reset By
Reset
State

Function

BD[31:28] R/W All Power-up
Option

Bound Address

BD[27:12] R/W All 0 Bound Address

Table B-22 PCI Target Image 0 Translation Offset (LSI0_TO)

Register Name: LSI0_TO Offset:10C

Bits Function

31-24 TO

23-16 TO

15-08 TO Reserved

07-00 Reserved

Table B-23 LSI0_TO Description

Name Type Reset By
Reset
State

Function

TO[31:12] R/W All 0 Translation Offset
232

B

In the PCI Target Image Control register, setting the VCT bit will only have effect if the
VAS bits are programmed for A24 or A32 space and the VDW bits are programmed
for 8-bit, 16-bit, or 32-bit.

Table B-24 PCI Target Image 1 Control (LSI1_CTL)

Register Name: LSI1_CTL Offset:114

Bits Function

31-24 EN PWEN Reserved

23-16 VDW Reserved VAS

15-08 Reserved PGM Reserved SUPER Reserved VCT

07-00 Reserved LAS

Table B-25 LSI1_CTL Description

Name Type Reset By
Reset
State

Function

EN R/W All 0 Image Enable
0=Disable, 1=Enable

PWEN R/W All 0 Posted Write Enable
0=Disable, 1=Enable

VDW R/W All 10 VMEbus Maximum Datawidth
00=8-bit data width, 01=16 bit data width, 10=32-bit
data width, 11=64-bit data width

VAS R/W All 0 VMEbus Address Space
000=A16, 001=A24, 010=A32, 011= Reserved,
100=Reserved, 101=CR/CSR, 110=User1,
111=User2

PGM R/W All 0 Program/Data AM Code
0=Data, 1=Program

SUPER R/W All 0 Supervisor/User AM Code
0=Non-Privileged, 1=Supervisor

VCT R/W All 0 VMEbus Cycle Type
0=no BLTs on VMEbus, 1=BLTs on VMEbus

LAS R/W All 0 PCI Bus Memory Space
0=PCI Bus Memory Space, 1=PCI Bus I/O Space
233

B VMIVME-7697 Product Manual
If VAS bits are programmed to A24 or A32 and the VDW bits are programmed for
64-bit, the Universe II may perform MBLT transfers independent of the state of the
VCT bit.

The setting of the PWEN bit is ignored if the LAS bit is programmed for PCI Bus I/O
Space, forcing all transactions through this image to be coupled.

The base address specifies the lowest address in the address range that will be
decoded.

Table B-26 PCI Target Image 1 Base Address Register (LSI1_BS)

Register Name: LSI1_BS Offset:118

Bits Function

31-24 BS

23-16 BS

15-08 Reserved

07-00 Reserved

Table B-27 LSI1_BS Description

Name Type Reset By
Reset
State

Function

BS[31:16] R/W All 0 Base Address

Table B-28 PCI Target Image 1 Bound Address Register (LSI1_BD)

Register Name: LSI1_BD Offset:11C

Bits Function

31-24 BD

23-16 BD

15-08 Reserved

07-00 Reserved
234

B

The addresses decoded in a slave image are those which are greater than or equal to
the base address and less than the bound register. If the bound address is 0, then the
addresses decoded are those greater than or equal to the base address.

The bound address for PCI Target Image 0 and PCI Target Image 4 have a 4Kbyte
resolution. PCI Target Images 1, 2, 3, 5, 6, and 7 have a 64Kbyte resolution.

Address bits [31:16] generated on the VMEbus in response to an image decode are a
two’s complement addition of address bits [31:16] on the PCI Bus and bits [31:16] of
the image’s translation offset.

Table B-29 LSI1_BD Description

Name Type Reset By
Reset
State

Function

BD[31:16] R/W All 0 Bound Address

Table B-30 PCI Target Image 1 Translation Offset (LSI1_TO)

Register Name: LSI1_TO Offset:120

Bits Function

31-24 TO

23-16 TO

15-08 Reserved

07-00 Reserved

Table B-31 LSI1_TO Description

Name Type Reset By
Reset
State

Function

TO[31:16] R/W All 0 Translation offset
235

B VMIVME-7697 Product Manual

In the PCI Target Image Control register, setting the VCT bit will only have effect if the
VAS bits are programmed for A24 or A32 space and the VDW bits are programmed
for 8-bit, 16-bit, or 32-bit.

Table B-32 PCI Target Image 2 Control (LSI2_CTL)

Register Name: LSI2_CTL Offset:128

Bits Function

31-24 EN PWEN Reserved

23-16 VDW Reserved VAS

15-08 Reserved PGM Reserved SUPER Reserved VCT

07-00 Reserved LAS

Table B-33 LSI2_CTL Description

Name Type Reset By
Reset
State

Function

EN R/W All 0 Image Enable
0=Disable, 1=Enable

PWEN R/W All 0 Posted Write Enable
0=Disable, 1=Enable

VDW R/W All 10 VMEbus Maximum Datawidth
00=8-bit data width, 01=16 bit data width, 10=32-bit
data width, 11=64-bit data width

VAS R/W All 0 VMEbus Address Space
000=A16, 001=A24, 010=A32, 011= Reserved,
100=Reserved, 101=CR/CSR, 110=User1,
111=User2

PGM R/W All 0 Program/Data AM Code
0=Data, 1=Program

SUPER R/W All 0 Supervisor/User AM Code
0=Non-Privileged, 1=Supervisor

VCT R/W All 0 VMEbus Cycle Type
0=no BLTson VMEbus, 1=BLTs on VMEbus

LAS R/W All 0 PCI Bus Memory Space
0=PCI Bus Memory Space, 1=PCI Bus I/O Space
236

B

If VAS bits are programmed to A24 or A32 and the VDW bits are programmed for
64-bit, the Universe II may perform MBLT transfers independent of the state of the
VCT bit.

The setting of the PWEN bit is ignored if the LAS bit is programmed for PCI Bus I/O
Space, forcing all transactions through this image to be coupled.

The base address specifies the lowest address in the address range that will be
decoded.

Table B-34 PCI Target Image 2 Base Address Register (LSI2_BS)

Register Name: LSI2_BS Offset:12C

Bits Function

31-24 BS

23-16 BS

15-08 Reserved

07-00 Reserved

Table B-35 LSI2_BS Description

Name Type Reset By
Reset
State

Function

BS[31:16] R/W All 0 Base Address

Table B-36 PCI Target Image 2 Bound Address Register (LSI2_BD)

Register Name: LSI2_BD Offset:130

Bits Function

31-24 BD

23-16 BD

15-08 Reserved

07-00 Reserved
237

B VMIVME-7697 Product Manual

The addresses decoded in a slave image are those which are greater than or equal to
the base address and less than the bound register. If the bound address is 0, then the
addresses decoded are those greater than or equal to the base address.

Address bits [31:16] generated on the VMEbus in response to an image decode are a
two’s complement addition of address bits [31:16] on the PCI Bus and bits [31:16] of
the image’s translation offset.

Table B-37 LSI2_BD Description

Name Type Reset By
Reset
State

Function

BD[31:16] R/W All 0 Bound Address

Table B-38 PCI Target Image 2 Translation Offset (LSI2_TO)

Register Name: LSI2_TO Offset:134

Bits Function

31-24 TO

23-16 TO

15-08 Reserved

07-00 Reserved

Table B-39 LSI2_TO Description

Name Type Reset By
Reset
State

Function

TO[31:16] R/W All 0 Translation offset
238

B

In the PCI Target Image Control register, setting the VCT bit will only have effect if the
VAS bits are programmed for A24 or A32 space and the VDW bits are programmed
for 8-bit, 16-bit, or 32-bit.

Table B-40 PCI Target Image 3 Control (LSI3_CTL)

Register Name: LSI3_CTL Offset:13C

Bits Function

31-24 EN PWEN Reserved

23-16 VDW Reserved VAS

15-08 Reserved PGM Reserved SUPER Reserved VCT

07-00 Reserved LAS

Table B-41 LSI3_CTL Description

Name Type Reset By
Reset
State

Function

EN R/W All 0 Image Enable
0=Disable, 1=Enable

PWEN R/W All 0 Posted Write Enable
0=Disable, 1=Enable

VDW R/W All 10 VMEbus Maximum Datawidth
00=8-bit data width, 01=16 bit data width, 10=32-bit
data width, 11=64-bit data width

VAS R/W All 0 VMEbus Address Space
000=A16, 001=A24, 010=A32, 011= Reserved,
100=Reserved, 101=CR/CSR, 110=User1,
111=User2

PGM R/W All 0 Program/Data AM Code
0=Data, 1=Program

SUPER R/W All 0 Supervisor/User AM Code
0=Non-Privileged, 1=Supervisor

VCT R/W All 0 VMEbus Cycle Type
0=no BLTs on VMEbus, 1=BLTs on VMEbus

LAS R/W All 0 PCI Bus Memory Space
0=PCI Bus Memory Space, 1=PCI Bus I/O Space
239

B VMIVME-7697 Product Manual
If VAS bits are programmed to A24 or A32 and the VDW bits are programmed for
64-bit, the Universe II may perform MBLT transfers independent of the state of the
VCT bit.

The setting of the PWEN bit is ignored if the LAS bit is programmed for PCI Bus I/O
Space, forcing all transactions through this image to be coupled.

The base address specifies the lowest address in the address range that will be
decoded.

Table B-42 PCI Target Image 3 Base Address Register (LSI3_BS)

Register Name: LSI3_BS Offset:140

Bits Function

31-24 BS

23-16 BS

15-08 Reserved

07-00 Reserved

Table B-43 LSI3_BS Description

Name Type Reset By
Reset
State

Function

BS[31:16] R/W All 0 Base Address

Table B-44 PCI Target Image 3 Bound Address Register (LSI3_BD)

Register Name: LSI3_BD Offset:144

Bits Function

31-24 BD

23-16 BD

15-08 Reserved

07-00 Reserved
240

B

The addresses decoded in a slave image are those which are greater than or equal to
the base address and less than the bound register. If the bound address is 0, then the
addresses decoded are those greater than or equal to the base address.

Address bits [31:16] generated on the VMEbus in response to an image decode are a
two’s complement addition of address bits [31:16] on the PCI Bus and bits [31:16] of
the image’s translation offset.

Table B-45 LSI3_BD Description

Name Type Reset By
Reset
State

Function

BD[31:16] R/W All 0 Bound Address

Table B-46 PCI Target Image 3 Translation Offset (LSI3_TO)

Register Name: LSI3_TO Offset:148

Bits Function

31-24 TO

23-16 TO

15-08 Reserved

07-00 Reserved

Table B-47 LSI3_TO Description

Name Type Reset By
Reset
State

Function

TO[31:16] R/W All 0 Translation Offset
241

B VMIVME-7697 Product Manual
The special cycle generator will generate an ADOH or RMW cycle for the 32-bit PCI
Bus address which matches the programmed address in SCYC_ADDR, in the address
space specified in the LAS field of the SCYC_CTL register. A Read-Modify-Write
command is initiated by a read to the specified address. Address-Only cycles are
initiated by either read or write cycles.

Table B-48 Special Cycle Control Register (SCYC_CTL)

Register Name: SCYC_CTL Offset: 170

Bits Function

31-24 Reserved

23-16 Reserved

15-08 Reserved

07-00 Reserved LAS SCYC

Table B-49 SCYC_CTL Description

Name Type Reset By
Reset
State

Function

LAS R/W All 0 PCI Bus Address Space
0=PCI Bus Memory Space, 1=PCI Bus I/O Space

SCYC R/W All 0 Special Cycle
00=Disable, 01=RMW, 10=ADOH, 11=Reserved

Table B-50 Special Cycle PCI Bus Address Register (SCYC_ADDR)

Register Name: SCYC_ADDR Offset: 174

Bits Function

31-24 ADDR

23-16 ADDR

15-08 ADDR

07-00 ADDR Reserved
242

B

This register designates the special cycle address. This address must appear on the
PCI Bus during the address phase of a transfer for the Special Cycle Generator to
perform its function. Whenever the addresses match, the Universe II does not respond
with ACK64#

The bits enabled in this register determine the bits that will be involved in the
compare and swap operations for VME RMW cycles.

Table B-51 SCYC_ADDR Description

Name Type Reset By
Reset
State

Function

ADDR[31:2] R/W All 0 Address

Table B-52 Special Cycle Swap/Compare Enable Register (SCYC_EN)

Register Name: SCYC_EN Offset: 178

Bits Function

31-24 EN

23-16 EN

15-08 EN

07-00 EN

Table B-53 SCYC_EN Description

Name Type Reset By
Reset
State

Function

EN[31:0] R/W All 0 Bit Enable
0=Disable, 1=Enable
243

B VMIVME-7697 Product Manual

The data returned from the read portion of a VMEbus RMW is compared with the
contents of this register. SCYC_EN is used to control which bits are compared.

Table B-54 Special Cycle Compare Data Register

Register Name: SCYC_CMP Offset: 17C

Bits Function

31-24 CMP

23-16 CMP

15-08 CMP

07-00 CMP

Table B-55 SCYC_CMP Description

Name Type Reset By
Reset
State

Function

CMP[31:0] R/W All 0 The data returned from the VMEbus is compared
with the contents of this register.

Table B-56 Special Cycle Swap Data Register (SCYC_SWP)

Register Name: SCYC_SWP Offset: 180

Bits Function

31-24 SWP

23-16 SWP

15-08 SWP

07-00 SWP
244

B

If enabled bits matched with the value in the compare register, then the contents of the
swap data register is written back to VME. SCYC_EN is used to control which bits are
written back to VME.

Table B-57 SCYC_SWP Description

Name Type Reset By Reset State Function

SWP[31:0] R/W All 0 Swap data

Table B-58 PCI Miscellaneous Register (LMISC)

Register Name: LMISC Offset:184

Bits Function

31-24 CRT[3:0] Reserved CWT

23-16 Reserved

15-08 Reserved

07-00 Reserved

Table B-59 SLSI Description

Name Type Reset By
Reset
State

Function

CRT[3:0] R/W All 0000 CRT
This field is provided for backward compatibility
with the Universe I. It has no effect on the operation
of the Universe II.

CWT [2:0] R/W All 000 Coupled Window Timer
000=Disable - release after first coupled transaction,
001=16 PCI Clocks, 010=32 PCI Clocks, 011=64 PCI
Clocks, 100=128 PCI Clocks, 101=246 PCI Clocks,
110=512 PCI Clocks, others=Reserved
245

B VMIVME-7697 Product Manual
The Universe II uses CWT to determine how long to hold ownership of the VMEbus
after processing a coupled transaction. The timer is restarted each time the Universe II
processes a coupled transaction. If this timer expires, the PCI Slave Channel releases
the VMEbus.

Device behaviour is unpredictable if CWT is changed during coupled cycle activity.
This register can only be set at configuration or after disabling all PCI Slave Images.

Table B-60 Special PCI Target Image (SLSI)

Register Name: SLSI Offset:188

Bits Function

31-24 EN PWEN Reserved

23-16 VDW Reserved

15-08 PGM SUPER

07-00 BS Reserved LAS

Table B-61 SLSI Description

Name Type Reset By
Reset
State

Function

EN R/W All 0 Image Enable
0=Disable, 1=Enable

PWEN R/W All 0 Posted Write Enable
0=Disable, 1=Enable

VDW [3:0] R/W All 0 VMEbus Maximum Datawidth
Each of the four bits specifies a data width for the
corresponding 16 MByte region. Low order bits
correspond to the lower address regions.
0=16-bit, 1=32-bit

PGM [3:0] R/W All 0 Program/Data AM Code
Each of the four bits specifies Program/Data AM
code for the corresponding 16 MByte region. Low
order bits correspond to the lower address regions.
0=Data, 1=Program
246

B

This register fully specifies an A32 capable special PCI Target Image. The base is
programmable to a 64 Mbyte alignment, and the size is fixed at 64 Mbytes. Incoming
address lines [31:26] (in Memory or I/O) must match this field for the Universe II to
decode the access. This special PCI Target Image has lower priority than any other
PCI Target Image.

The 64 Mbytes of the SLSI is partitioned into four 16 Mbyte regions, numbered 0 to 3
(0 is at the lowest address). PCI address bits [25:24] are used to select regions. The top
64 Kbyte of each region is mapped to VMEbus A16 space, and the rest of each 16
Mbyte region is mapped to A24 space.

The user can use the PGM, SUPER and VDW fields to specify the AM code and the
maximum port size for each region. The PGM field is ignored for the portion of each
region mapped to A16 space.

No block transfer AM codes are generated.

SUPER [3:0] R/W All 0 Supervisor/User AM Code
Each of the four bits specifies Supervisor/User AM
code for the corresponding 16 MByte region. Low
order bits correspond to the lower address regions.
0=Non-Privileged, 1=Supervisor

BS [5:0] R/W All 0 Base Address
Specifies a 64 MByte aligned base address for this
64 MByte image.

LAS R/W All 0 PCI Bus Address Space
0=PCI Bus Memory Space, 1=PCI Bus I/O Space

Table B-62 PCI Command Error Log Register (L_CMDERR)

Register Name: L_CMDERR Offset: 18C

Bits Function

31-24 CMDERR M_ERR Reserved

23-16 L_STAT Reserved

15-08 Reserved

07-00 Reserved

Table B-61 SLSI Description (Continued)
247

B VMIVME-7697 Product Manual

The Universe II PCI Master Interface is responsible for logging errors under the
following conditions:

• a posted write transaction results in a target abort
• a posted write transaction results in a master abort
• a maximum retry counter expires during retry of posted write transaction

This register logs the command information.

Table B-63 L_CMDERR Description

Name Type Reset By
Reset
State

Function

CMDERR
[3:0]

R All 0111 PCI Command Error Log

M_ERR R All 0 Multiple Error Occurred
0=Single error, 1=At least one error has
occurred since the logs were frozen.

L_STAT R/W All 0 PCI Error Log Status
Reads:
0=logs invalid, 1=logs are valid and error
logging halted
Writes:
0=no effect, 1=clears L_STAT and enables
error logging

Table B-64 PCI Address Error Log (LAERR)

Register Name: LAERR Offset: 190

Bits Function

31-24 LAERR

23-16 LAERR

15-08 LAERR

07-00 LAERR
248

B

The starting address of an errored PCI transaction is logged in this register under the
following conditions:

• a posted write transaction results in a target abort,
• a posted write transaction results in a master abort, or
• a maximum retry counter expires during retry of posted write transaction.

Contents are qualified by bit L_STAT of the L_CMDERR register.

Table B-65 LAERR Description

Name Type Reset By
Reset
State

Function

LAERR
[31:0]

R All 0 PCI address error log

Table B-66 PCI Target Image 4 Control Register (LSI4_CTL)

Register Name: LSI4_CTL Offset:1A0

Bits Function

31-24 EN PWEN Reserved

23-16 VDW Reserved VAS

15-08 Reserved PGM Reserved SUPER Reserved VCT

07-00 Reserved LAS

Table B-67 LSI4_CTL Description

Name Type Reset By Reset
State

Function

EN R/W All 0 Image Enable
0=Disable, 1=Enable

PWEN R/W All 0 Posted Write Enable
0=Disable, 1=Enable

VDW R/W All 10 VMEbus Maximum Datawidth
00=8-bit data width, 01=16 bit data width, 10=32-bit
data width, 11=64-bit data width
249

B VMIVME-7697 Product Manual
In the PCI Target Image Control register, setting the VCT bit will only have effect if the
VAS bits are programmed for A24 or A32 space and the VDW bits are programmed
for 8-bit, 16-bit, or 32-bit.

If VAS bits are programmed to A24 or A32 and the VDW bits are programmed for
64-bit, the Universe II may perform MBLT transfers independent of the state of the
VCT bit.

The setting of the PWEN bit is ignored if the LAS bit is programmed for PCI Bus I/O
Space, forcing all transactions through this image to be coupled.

VAS R/W All 0 VMEbus Address Space
000=A16, 001=A24, 010=A32, 011= Reserved,
100=Reserved, 101=CR/CSR, 110=User1,
111=User2

PGM R/W All 0 Program/Data AM Code
0=Data, 1=Program

SUPER R/W All 0 Supervisor/User AM Code
0=Non-Privileged, 1=Supervisor

VCT R/W All 0 VMEbus Cycle Type
0=no BLTs on VMEbus, 1=BLTs on VMEbus

LAS R/W All 0 PCI Bus Memory Space
0=PCI Bus Memory Space, 1=PCI Bus I/O Space

Table B-68 PCI Target Image 4 Base Address Register (LSI4_BS)

Register Name: LSI4_BS Offset:1A4

Bits Function

31-24 BS

23-16 BS

15-08 BS Reserved

07-00 Reserved

Table B-67 LSI4_CTL Description (Continued)

Name Type Reset By Reset
State

Function
250

B

The base address specifies the lowest address in the address range that will be
decoded.

The addresses decoded in a slave image are those which are greater than or equal to
the base address and less than the bound register. If the bound address is 0, then the
addresses decoded are those greater than or equal to the base address.

The bound address for PCI Target Image 0 and PCI Target Image 4 have a 4Kbyte
resolution. PCI Target Images 1, 2, 3, 5, 6, and 7 have a 64Kbyte resolution.

Table B-69 LSI4_BS Description

Name Type Reset By
Reset
State

Function

BS[31:12] R/W All 0 Base Address

Table B-70 PCI Target Image 4 Bound Address Register (LSI4_BD)

Register Name: LSI4_BD Offset:1A

Bits Function

31-24 BD

23-16 BD

15-08 BD Reserved

07-00 Reserved

Table B-71 LSI4_BD Description

Name Type Reset By
Reset
State

Function

BD[31:12] R/W All 0 Bound Address
251

B VMIVME-7697 Product Manual

Address bits [31:12] generated on the VMEbus in response to an image decode are a
two’s complement addition of address bits [31:12] on the PCI Bus and bits [31:12] of
the image’s translation offset.

Table B-72 PCI Target Image 4 Translation Offset (LSI4_TO)

Register Name: LSI4_TO Offset:1B0

Bits Function

31-24 TO

23-16 TO

15-08 TO Reserved

07-00 Reserved

Table B-73 LSI4_TO Description

Name Type Reset By
Reset
State

Function

TO[31:12] R/W All 0 Translation Offset

Table B-74 PCI Target Image 5 Control Register (LSI5_CTL)

Register Name: LSI5_CTL Offset:1B4

Bits Function

31-24 EN PWEN Reserved

23-16 VDW Reserved VAS

15-08 Reserved PGM Reserved SUPER Reserved VCT

07-00 Reserved LAS
252

B

In the PCI Target Image Control register, setting the VCT bit will only have effect if the
VAS bits are programmed for A24 or A32 space and the VDW bits are programmed
for 8-bit, 16-bit, or 32-bit.

If VAS bits are programmed to A24 or A32 and the VDW bits are programmed for
64-bit, the Universe II may perform MBLT transfers independent of the state of the
VCT bit.

The setting of the PWEN bit is ignored if the LAS bit is programmed for PCI Bus I/O
Space, forcing all transactions through this image to be coupled.

Table B-75 LSI5_CTL Description

Name Type Reset By Reset
State

Function

EN R/W All 0 Image Enable
0=Disable, 1=Enable

PWEN R/W All 0 Posted Write Enable
0=Disable, 1=Enable

VDW R/W All 10 VMEbus Maximum Datawidth
00=8-bit data width, 01=16 bit data width, 10=32-bit
data width, 11=64-bit data width

VAS R/W All 0 VMEbus Address Space
000=A16, 001=A24, 010=A32, 011= Reserved,
100=Reserved, 101=CR/CSR, 110=User1,
111=User2

PGM R/W All 0 Program/Data AM Code
0=Data, 1=Program

SUPER R/W All 0 Supervisor/User AM Code
0=Non-Privileged, 1=Supervisor

VCT R/W All 0 VMEbus Cycle Type
0=no BLTs on VMEbus, 1=BLTs on VMEbus

LAS R/W All 0 PCI Bus Memory Space
0=PCI Bus Memory Space, 1=PCI Bus I/O Space
253

B VMIVME-7697 Product Manual
The base address specifies the lowest address in the address range that will be
decoded.

Table B-76 PCI Target Image 5 Base Address Register (LSI5_BS)

Register Name: LSI5_BS Offset:1B8

Bits Function

31-24 BS

23-16 BS

15-08 Reserved

07-00 Reserved

Table B-77 LSI5_BS Description

Name Type Reset By
Reset
State

Function

BS[31:16] R/W All 0 Base Address

Table B-78 PCI Target Image 5 Bound Address Register (LSI5_BD)

Register Name: LSI5_BD Offset:1BC

Bits Function

31-24 BD

23-16 BD

15-08 Reserved

07-00 Reserved
254

B

The addresses decoded in a slave image are those which are greater than or equal to
the base address and less than the bound register. If the bound address is 0, then the
addresses decoded are those greater than or equal to the base address.

The bound address for PCI Target Image 0 and PCI Target Image 4 have a 4Kbyte
resolution. PCI Target Images 1, 2, 3, 5, 6, and 7 have a 64Kbyte resolution.

Address bits [31:16] generated on the VMEbus in response to an image decode are a
two’s complement addition of address bits [31:16] on the PCI Bus and bits [31:16] of
the image’s translation offset.

Table B-79 LSI5_BD Description

Name Type Reset By Reset
State

Function

BD[31:16] R/W All 0 Bound Address

Table B-80 PCI Target Image 5 Translation Offset (LSI5_TO)

Register Name: LSI5_TO Offset:1C0

Bits Function

31-24 TO

23-16 TO

15-08 Reserved

07-00 Reserved

Table B-81 LSI5_TO Description

Name Type Reset By
Reset
State

Function

TO[31:16] R/W All 0 Translation offset
255

B VMIVME-7697 Product Manual
In the PCI Target Image Control register, setting the VCT bit will only have effect if the
VAS bits are programmed for A24 or A32 space and the VDW bits are programmed
for 8-bit, 16-bit, or 32-bit.

Table B-82 PCI Target Image 6 Control Register (LSI6_CTL)

Register Name: LSI6_CTL Offset:1C8

Bits Function

31-24 EN PWEN Reserved

23-16 VDW Reserved VAS

15-08 Reserved PGM Reserved SUPER Reserved VCT

07-00 Reserved LAS

Table B-83 LSI6_CTL Description

Name Type Reset By
Reset
State

Function

EN R/W All 0 Image Enable
0=Disable, 1=Enable

PWEN R/W All 0 Posted Write Enable
0=Disable, 1=Enable

VDW R/W All 10 VMEbus Maximum Datawidth
00=8-bit data width, 01=16 bit data width, 10=32-bit
data width, 11=64-bit data width

VAS R/W All 0 VMEbus Address Space
000=A16, 001=A24, 010=A32, 011= Reserved,
100=Reserved, 101=CR/CSR, 110=User1,
111=User2

PGM R/W All 0 Program/Data AM Code
0=Data, 1=Program

SUPER R/W All 0 Supervisor/User AM Code
0=Non-Privileged, 1=Supervisor

VCT R/W All 0 VMEbus Cycle Type
0=no BLTs on VMEbus, 1=BLTs on VMEbus

LAS R/W All 0 PCI Bus Memory Space
0=PCI Bus Memory Space, 1=PCI Bus I/O Space
256

B

If VAS bits are programmed to A24 or A32 and the VDW bits are programmed for
64-bit, the Universe II may perform MBLT transfers independent of the state of the
VCT bit.

The setting of the PWEN bit is ignored if the LAS bit is programmed for PCI Bus I/O
Space, forcing all transactions through this image to be coupled.

The base address specifies the lowest address in the address range that will be
decoded.

Table B-84 PCI Target Image 6 Base Address Register (LSI6_BS)

Register Name: LSI6_BS Offset:1CC

Bits Function

31-24 BS

23-16 BS

15-08 Reserved

07-00 Reserved

Table B-85 LSI1_BS Description

Name Type Reset By
Reset
State

Function

BS[31:16] R/W All 0 Base Address

Table B-86 PCI Target Image 6 Translation Offset (LS16_TO)

Register Name: LSI6_BD Offset:1D0

Bits Function

31-24 BD

23-16 BD

15-08 Reserved

07-00 Reserved
257

B VMIVME-7697 Product Manual

The addresses decoded in a slave image are those which are greater than or equal to
the base address and less than the bound register. If the bound address is 0, then the
addresses decoded are those greater than or equal to the base address.

The bound address for PCI Target Image 0 and PCI Target Image 4 have a 4Kbyte
resolution. PCI Target Images 1, 2, 3, 5, 6, and 7 have a 64Kbyte resolution.

Address bits [31:16] generated on the VMEbus in response to an image decode are a
two’s complement addition of address bits [31:16] on the PCI Bus and bits [31:16] of
the image’s translation offset.

Table B-87 LSI6_BD Description

Name Type Reset By
Reset
State

Function

BD[31:16] R/W All 0 Bound Address

Table B-88 PCI Target Image 6 Translation Offset (LSI6_TO)

Register Name: LSI6_TO Offset:1D4

Bits Function

31-24 TO

23-16 TO

15-08 Reserved

07-00 Reserved

Table B-89 LSI6_TO Description

Name Type Reset By
Reset
State

Function

TO[31:16] R/W All 0 Translation Offset
258

B

In the PCI Target Image Control register, setting the VCT bit will only have effect if the
VAS bits are programmed for A24 or A32 space and the VDW bits are programmed
for 8-bit, 16-bit, or 32-bit.

Table B-90 PCI Target Image 7 Control Register (LSI7_CTL)

Register Name: LSI7_CTL Offset:1DC

Bits Function

31-24 EN PWEN Reserved

23-16 VDW Reserved VAS

15-08 Reserved PGM Reserved SUPER Reserved VCT

07-00 Reserved LAS

Table B-91 LSI7_CTL Description

Name Type Reset By
Reset
State

Function

EN R/W All 0 Image Enable
0=Disable, 1=Enable

PWEN R/W All 0 Posted Write Enable
0=Disable, 1=Enable

VDW R/W All 10 VMEbus Maximum Datawidth
00=8-bit data width, 01=16 bit data width, 10=32-bit
data width, 11=64-bit data width

VAS R/W All 0 VMEbus Address Space
000=A16, 001=A24, 010=A32, 011= Reserved,
100=Reserved, 101=CR/CSR, 110=User1,
111=User2

PGM R/W All 0 Program/Data AM Code
0=Data, 1=Program

SUPER R/W All 0 Supervisor/User AM Code
0=Non-Privileged, 1=Supervisor

VCT R/W All 0 VMEbus Cycle Type
0=no BLTs on VMEbus, 1=BLTs on VMEbus

LAS R/W All 0 PCI Bus Memory Space
0=PCI Bus Memory Space, 1=PCI Bus I/O Space
259

B VMIVME-7697 Product Manual
If VAS bits are programmed to A24 or A32 and the VDW bits are programmed for
64-bit, the Universe II may perform MBLT transfers independent of the state of the
VCT bit.

The setting of the PWEN bit is ignored if the LAS bit is programmed for PCI Bus I/O
Space, forcing all transactions through this image to be coupled.

The base address specifies the lowest address in the address range that will be
decoded.

Table B-92 PCI Target Image 7 Base Address Register (LSI7_BS)

Register Name: LSI7_BS Offset:1E0

Bits Function

31-24 BS

23-16 BS

15-08 Reserved

07-00 Reserved

Table B-93 LSI7_BS Description

Name Type Reset By
Reset
State

Function

BS[31:16] R/W All 0 Base Address

Table B-94 PCI Target Image 7 Bound Address Register (LSI7_BD)

Register Name: LSI7_BD Offset:1E4

Bite Me Function

31-24 BD

23-16 BD

15-08 Reserved

07-00 Reserved
260

B

The addresses decoded in a slave image are those which are greater than or equal to
the base address and less than the bound register. If the bound address is 0, then the
addresses decoded are those greater than or equal to the base address.

The bound address for PCI Target Image 0 and PCI Target Image 4 have a 4Kbyte
resolution. PCI Target Images 1, 2, 3, 5, 6, and 7 have a 64Kbyte resolution.

Address bits [31:16] generated on the VMEbus in response to an image decode are a
two’s complement addition of address bits [31:16] on the PCI Bus and bits [31:16] of
the image’s translation offset.

Table B-95 LSI7_BD Description

Name Type Reset By
Reset
State

Function

BD[31:16] R/W All 0 Bound Address

Table B-96 PCI Target Image 7 Translation Offset (LSI7_TO)

Register Name: LSI7_TO Offset:1E8

Bits Function

31-24 TO

23-16 TO

15-08 Reserved

07-00 Reserved

Table B-97 LSI7_TO Description

Name Type Reset By
Reset
State

Function

TO[31:16] R/W All 0 Translation offset
261

B VMIVME-7697 Product Manual
This register is programmed from either bus or is programmed by the DMAC when it
loads the command packet. The DMA only accesses PCI Bus Memory space.

Table B-98 DMA Transfer Control Register (DCTL)

Register Name: DCTL Offset:200

Bits Function

31-24 L2V Reserved

23-16 VDW Reserved VAS

15-08 PGM SUPER Reserved VCT

07-00 LD64EN Reserved

Table B-99 DCTL Description

Name Type Reset By
Reset
State

Function

L2V R/W All 0 Direction
0=Transfer from VMEbus to PCI Bus, 1=Transfer
from PCI Bus to VMEbus

VDW R/W All 0 VMEbus Maximum Datawidth
00=8-bit data width, 01=16 bit data width, 10=32-bit
data width, 11=64-bit data width

VAS R/W All 0 VMEbus Address Space
000=A16, 001=A24, 010=A32, 011= Reserved,
100=Reserved, 101=Reserved, 110=User1,
111=User2

PGM R/W All 0 Program/Data AM Code
00=Data, 01=Program, others=Reserved

SUPER R/W All 0 Supervisor/User AM Code
00=Non-Privileged, 01=Supervisor,
others=Reserved

VCT R/W All 0 VMEbus Cycle Type
0=no BLTs on VMEbus, 1=BLTs on VMEbus

LD64EN R/W All 1 Enable 64-bit PCI Bus Transactions
0=Disable, 1=Enable
262

B

The VCT bit determines whether or not the Universe II VME Master will generate BLT
transfers. The value of this bit only has meaning if the address space is A24 or A32
and the data width is not 64 bits. If the data width is 64 bits the Universe II may
perform MBLT transfers independent of the state of the VCT bit.

This register specifies the number of bytes to be moved by the DMA before the start of
the DMA transfer, or the number of remaining bytes in the transfer while the DMA is
active. This register is programmed from either bus or is programmed by the DMA
Controller when it loads a command packet from a linked-list.

In direct mode the user must reprogram the DTBC register before each transfer.

When using the DMA to perform linked-list transfers, it is essential that the DTBC
register contains a value of zero before setting the GO bit of the DGCS register or
undefined behaviors may occur.

Table B-100 DMA Transfer Byte Count Register (DTBC)

Register Name: DTBC Offset:204

Bits Function

31-24 Reserved

23-16 DTBC

15-08 DTBC

07-00 DTBC

Table B-101 DTBC Description

Name Type Reset By
Reset
State

Function

DTBC[23:0] R/W All 0 DMA Transfer Byte Count

Table B-102 DMA PCI Bus Address Register (DLA)

Register Name: DLA Offset:208

Bits Function

31-24 LA

23-16 LA

15-08 LA

07-00 LA
263

B VMIVME-7697 Product Manual
This register is programmed from either bus or by the DMA Controller when it loads
a command packet. In direct mode the user must reprogram the DLA register before
each transfer. In linked-list mode, this register is only updated when the DMA is
stopped, halted, or at the completion of processing a command packet.

After a Bus Error, a Target-Abort, or a Master-Abort, the value in the DLA register
must not be used to reprogram the DMA because it has no usable information. Some
offset from its original value must be used.

Address bits [2:0] must be programmed the same as those in the DVA.

This register is programmed from either bus or is programmed by the DMA
Controller when it loads a command packet. In direct mode the user must reprogram
the DVA register before each transfer. In linked-list operation, this register is only
updated when the DMA is stopped, halted, or at the completion of processing a
command packet.

Table B-103 DLA Description

Name Type Reset By Reset
State

Function

LA[31:3] R/W All 0 PCI Bus Address

LA[2:0] R/W All 0 PCI Bus Address

Table B-104 DMA VMEbus Address Register (DVA)

Register Name: DVA Offset:210

Bits Function

31-24 VA

23-16 VA

15-08 VA

07-00 VA

Table B-105 DVA Description

Name Type Reset By
Reset
State

Function

VA[31:0] R/W All 0 VMEbus Address
264

B

After a Bus Error, a Target-Abort, or a Master-Abort, the value in the DLA register
must not be used to reprogram the DMA because it has no usable information. Some
offset from its original value must be used.

Address bits [2:0] must be programmed the same as those in the DLA.

This register contains the pointer into the current command packet. Initially it is
programmed to the starting packet of the linked-list, and is updated with the address
to a new command packet at the completion of a packet. The packets must be aligned
to a 32-byte address.

Table B-106 DMA Command Packet Pointer (DCPP)

Register Name: DCPP Offset:218

Bits Function

31-24 DCPP

23-16 DCPP

15-08 DCPP

07-00 DCPP Reserved

Table B-107 DCPP Description

Name Type Reset By
Reset
State

Function

DCPP[31:5] R/W All 0 DMA Command Packet Pointer

Table B-108 DMA General Control/Status Register (DGCS)

Register Name: DGCS Offset: 220

Bits Function

31-24 GO STOP_R
EQ

HALT_R
EQ

0 CHAIN 0 0 0

23-16 Reserved VON VOFF

15-08 ACT STOP HALT 0 DONE LERR VERR P_ERR

07-00 0 INT_ST
OP

INT_HA
LT

0 INT_DO
NE

INT_LE
RR

INT_VE
RR

INT_P_E
RR
265

B VMIVME-7697 Product Manual
Table B-109 DGCS Description

Name Type Reset By
Reset
State

Function

GO W/Read 0
always

All 0 DMA Go Bit
0=No effect, 1=Enable DMA Transfers

STOP_REQ W/Read 0
always

All 0 DMA Stop Request
0=No effect, 1=Stop DMA transfer when all
buffered data has been written

HALT_REQ W/Read 0
always

All 0 DMA Halt Request
0=No effect, 1=Halt the DMA transfer at the
completion of the current command packet

CHAIN R/W All 0 DMA Chaining
0=DMA Direct Mode, 1=DMA Linked List mode

VON [2:0] R/W All 0 VMEbus “On” counter
000=Until done, 001=256 bytes, 010=512 bytes,
011=1024 bytes, 100=2048 bytes, 101=4096 bytes,
110=8192 bytes, 111=16384 bytes, others=Reserved

VOFF [3:0] R/W All 0 VMEbus “Off” Counter
0000=0µs, 0001=16µs, 0010=32µs, 0011=64µs,
0100=128µs, 0101=256µs, 0110=512µs, 0111=1024µs,
1000=2µs, 1001=4µs, 1010=8µs, others=Reserved
The DMA will not re-request the VME Master until
this timer expires.

ACT R All 0 DMA Active Status Bit
0=Not Active, 1=Active

STOP R/Write 1
to Clear

All 0 DMA Stopped Status Bit
0=Not Stopped, 1=Stopped

HALT R/Write 1
to Clear

All 0 DMA Halted Status Bit
0=Not Halted, 1=Halted

DONE R/Write 1
to Clear

All 0 DMA Done Status Bit
0=Not Complete, 1=Complete

LERR R/Write 1
to Clear

All 0 DMA PCI Bus Error Status Bit
0=No Error, 1=Error

VERR R/Write 1
to Clear

All 0 DMA VMEbus Error Status Bit
0=No Error, 1=Error

P_ERR R/Write 1
to Clear

All 0 DMA Programming Protocol Error Status Bit
Asserted if PCI master interface disabled or lower
three bits of PCI and VME addresses differ
0=No Error, 1=Error
266

B

STOP, HALT, DONE, LERR, VERR, and P_ERR must be cleared before the GO bit is
enabled.

INT_STOP R/W All 0 Interrupt when Stopped
0=Disable, 1=Enable

INT_HALT R/W All 0 Interrupt when Halted
0=Disable, 1=Enable

INT_DONE R/W All 0 Interrupt when Done
0=Disable, 1=Enable

INT_LERR R/W All 0 Interrupt on LERR
0=Disable, 1=Enable

INT_VERR R/W All 0 Interrupt on VERR
0=Disable, 1=Enable

INT_P_ERR R/W All 0 Interrupt on Master Enable Error
0=Disable, 1=Enable

Table B-110 DMA Linked List Update Enable Register (D_LLUE)

Register Name: D_LLUE Offset:224

Bits Function

31-24 UPDATE Reserved

23-16 Reserved

15-08 Reserved

07-00 Reserved

Table B-111 D_LLUE Description

Name Type Reset By
Reset
State

Function

UPDATE R/W All 0 DMA Linked List Update Enable
0=PCI Resource not Updating Linked List
1=PCI Resource Updating Linked List

Table B-109 DGCS Description (Continued)

Name Type Reset By
Reset
State

Function
267

B VMIVME-7697 Product Manual
The PCI Resource must read back a logic 1 in the UPDATE field before proceeding to
modify the linked list. After the Linked List has been modified the PCI Resource must
clear the UPDATE field by writing a logic 0. the Universe II does not prevent an
external master, from the PCI bus or the VMEbus, from writing to the other DMA
registers. See Linked List Updating on page 136.

Table B-112 PCI Interrupt Enable Register (LINT_EN)

Register Name: LINT_EN Offset:300

Bits Function

31-24 Reserved

23-16 LM3 LM2 LM1 LM0 MBOX3 MBOX2 MBOX1 MBOX0

15-08 ACFAIL SYSFAIL SW_INT SW_IACK Reserved VERR LERR DMA

07-00 VIRQ7 VIRQ6 VIRQ5 VIRQ4 VIRQ3 VIRQ2 VIRQ1 VOWN

Table B-113 LINT_EN Description

Name Type Reset By
Reset
State

Function

LM3 R/W All 0 Location Monitor 3 Mask
0=LM3 Interrupt Masked, 1=LM3 Interrupt
Enabled

LM2 R/W All 0 Location Monitor 2 Mask
0=LM2 Interrupt Masked, 1=LM2 Interrupt
Enabled

LM1 R/W All 0 Location Monitor 1 Mask
0=LM1 Interrupt Masked, 1=LM1 Interrupt
Enabled

LM0 R/W All 0 Location Monitor 0 Mask
0=LM0 Interrupt Masked, 1=LM0 Interrupt
Enabled

MBOX3 R/W All 0 Mailbox 3 Mask
0=MBOX3 Interrupt Masked, 1=MBOX3 Interrupt
Enabled

MBOX2 R/W All 0 Mailbox 2 Mask
0=MBOX2 Interrupt Masked, 1=MBOX2 Interrupt
Enabled
268

B

MBOX1 R/W All 0 Mailbox 1 Mask
0=MBOX1 Interrupt Masked, 1=MBOX1 Interrupt
Enabled

MBOX0 R/W All 0 Mailbox 0 Mask
0=MBOX0 Interrupt Masked, 1=MBOX0 Interrupt
Enabled

ACFAIL R/W All 0 ACFAIL Interrupt Mask
0=ACFAIL Interrupt masked
1=ACFAIL Interrupt enabled

SYSFAIL R/W All 0 SYSFAIL Interrupt Mask
0=SYSFAIL Interrupt masked
1=SYSFAIL Interrupt enabled

SW_INT R/W All 0 Local Software Interrupt Mask
0=PCI Software Interrupt masked
1=PCI Software Interrupt enabled
A zero-to-one transition will cause the PCI software
interrupt to be asserted. Subsequent zeroing of this
bit will cause the interrupt to be masked, but will
not clear the PCI Software Interrupt Status bit.

SW_IACK R/W All 0 “VME Software IACK” Mask
0 =“VME Software IACK” Interrupt masked
1 =“VME Software IACK” Interrupt enabled

VERR R/W All 0 PCI VERR Interrupt Mask
0 =PCI VERR Interrupt masked
1=PCI VERR Interrupt enabled

LERR R/W All 0 PCI LERR Interrupt Mask
0 =PCI LERR Interrupt masked
1 =PCI LERR Interrupt enabled

DMA R/W All 0 PCI DMA Interrupt Mask
0=PCI DMA Interrupt masked
1=PCI DMA Interrupt enabled

VIRQ7-VIR
Q1

R/W All 0 VIRQx Interrupt Mask
0=VIRQx Interrupt masked
1 =VIRQx Interrupt enabled

VOWN R/W All 0 VOWN Interrupt Mask
0=VOWN Interrupt masked
1=VOWN Interrupt Enabled

Table B-113 LINT_EN Description (Continued)
269

B VMIVME-7697 Product Manual
Bits VIRQ7-VIRQ1 enable the Universe II to respond as a VME Interrupt Handler to
interrupts on the VIRQ[x] lines. When a VIRQx interrupt is enabled, and the
corresponding VIRQ[x] pin is asserted, the Universe II requests the VMEbus and
performs a VME IACK cycle for that interrupt level. When the interrupt acknowledge
cycle completes, the STATUS/ID is stored in the corresponding VINT_ID register, the
VIRQx bit of the LINT_STAT register is set, and a PCI interrupt is generated. The
Universe II does not acquire further interrupt STATUS/ID vectors at the same
interrupt level until the VIRQx bit in the LINT_STAT register is cleared.

The other bits enable the respective internal or external sources to interrupt the PCI
side.

Table B-114 PCI Interrupt Status Register (LINT_STAT)

Register Name: LINT_STAT Offset: 304

Bits Function

31-24 Reserved

23-16 LM3 LM2 LM1 LM0 MBOX3 MBOX2 MBOX1 MBOX0

15-08 ACFAIL SYSFAIL SW_INT SW_IACK Reserved VERR LERR DMA

07-00 VIRQ7 VIRQ6 VIRQ5 VIRQ4 VIRQ3 VIRQ2 VIRQ1 VOWN

Table B-115 LINT_STAT Description

Name Type Reset By
Reset
State

Function

LM3 R/Write
1 to
Clear

All 0 Location Monitor 3 Status/Clear
0=no Location Monitor 3 Interrupt,
1=Location Monitor 3 Interrupt active

LM2 R/Write
1 to
Clear

All 0 Location Monitor 2 Status/Clear
0=no Location Monitor 2 Interrupt,
1=Location Monitor 2 Interrupt active

LM1 R/Write
1 to
Clear

All 0 Location Monitor 1 Status/Clear
0=no Location Monitor 1 Interrupt,
1=Location Monitor 1 Interrupt active

LM0 R/Write
1 to
Clear

All 0 Location Monitor 0 Status/Clear
0=no Location Monitor 0 Interrupt,
1=Location Monitor 0 Interrupt active
270

B

MBOX3 R/Write
1 to
Clear

All 0 Mailbox 3 Status/Clear
0=no Mailbox 3 Interrupt,
1=Mailbox 3 Interrupt active

MBOX2 R/Write
1 to
Clear

All 0 Mailbox 2 Status/Clear
0=no Mailbox 2 Interrupt,
1=Mailbox 2 Interrupt active

MBOX1 R/Write
1 to
Clear

All 0 Mailbox 1 Status/Clear
0=no Mailbox 1 Interrupt,
1=Mailbox 1 Interrupt active

MBOX0 R/Write
1 to
Clear

All 0 Mailbox 0 Status/Clear
0=no Mailbox 0 Interrupt,
1=Mailbox 0 Interrupt active

ACFAIL R/Write
1 to
Clear

All 0 ACFAIL Interrupt Status/Clear
0=no ACFAIL Interrupt,
1=ACFAIL Interrupt active

SYSFAIL R/Write
1 to
Clear

All 0 SYSFAIL Interrupt Status/Clear
0=no SYSFAIL Interrupt,
1=SYSFAIL Interrupt active

SW_INT R/Write
1 to
Clear

All 0 Local Software Interrupt Status/Clear
0=no PCI Software Interrupt,
1=PCI Software Interrupt active

SW_IACK R/Write
1 to
Clear

All 0 “VME Software IACK” Status/Clear
0=no “VME Software IACK” Interrupt,
1=“VME Software IACK” Interrupt active

VERR R/Write
1 to
Clear

All 0 Local VERR Interrupt Status/Clear
0=Local VERR Interrupt masked,
1=Local VERR Interrupt enabled

LERR R/Write
1 to
Clear

All 0 Local LERR Interrupt Status/Clear
0=Local LERR Interrupt masked,
1=Local LERR Interrupt enabled

DMA R/Write
1 to
Clear

All 0 Local DMA Interrupt Status/Clear
0=Local DMA Interrupt masked,
1=Local DMA Interrupt enabled

VIRQ7-VIR
Q1

R/Write
1 to
Clear

All 0 VIRQx Interrupt Status/Clear
0=VIRQx Interrupt masked,
1=VIRQx Interrupt enabled

VOWN R/Write
1 to
Clear

All 0 VOWN Interrupt Status/Clear
0=no VOWN Interrupt masked,
1=VOWN Interrupt enabled

Table B-115 LINT_STAT Description (Continued)
271

B VMIVME-7697 Product Manual
Status bits indicated as “R/Write 1 to Clear” are edge sensitive: the status is latched
when the interrupt event occurs. These status bits can be cleared independently of the
state of the interrupt source by writing a “1” to the status register. Clearing the status
bit does not imply the source of the interrupt is cleared.

However, ACFAIL and SYSFAIL are level-sensitive. Clearing ACFAIL or SYSFAIL
while their respective pins are sill asserted will have no effect.

Do not map any VMEbus interrupt to LINT#(2-7).

This register maps various interrupt sources to one of the eight PCI interrupt pins. A
value of 000 maps the corresponding interrupt source to LINT# [0], a value of 001
maps to LINT# [1], etc.

Table B-116 PCI Interrupt Map 0 Register (LINT_MAP0)

Register Name: LINT_MAP0 Offset: 308

Bits Function

31-24 Reserved VIRQ7 Reserved VIRQ6

23-16 Reserved VIRQ5 Reserved VIRQ4

15-08 Reserved VIRQ3 Reserved VIRQ2

07-00 Reserved VIRQ1 Reserved VOWN

Table B-117 LINT_MAP0 Description

Name Type Reset By
Reset
State

Function

VIRQ7-VIRQ1 R/W All 0 PCI interrupt destination (LINT[7:0]) for VIRQx

VOWN R/W All 0 VMEbus ownership bit interrupt map to PCI
interrupt
272

B

Do not map any VMEbus interrupt to LINT#(2-7).

This register maps various interrupt sources to one of the eight PCI interrupt pins. A
value of 000 maps the corresponding interrupt source to LINT# [0], a value of 001
maps to LINT# [1], etc.

Table B-118 PCI Interrupt Map 1 Register (LINT_MAP1)

Register Name: LINT_MAP1 Offset: 30C

Bits Function

31-24 Reserved ACFAIL Reserved SYSFAIL

23-16 Reserved SW_INT Reserved SW_IACK

15-08 Reserved VERR

07-00 Reserved LERR Reserved DMA

Table B-119 LINT_MAP1 Description

Name Type Reset By
Reset
State

Function

ACFAIL R/W All 0 ACFAIL interrupt destination

SYSFAIL R/W All 0 SYSFAIL interrupt destination

SW_INT R/W All 0 PCI software interrupt destination

SW_IACK R/W All 0 VMEbus Software IACK interrupt destination

VERR R/W All 0 VMEbus Error interrupt destination

LERR R/W All 0 PCI Bus Error interrupt destination

DMA R/W All 0 DMA interrupt destination
273

B VMIVME-7697 Product Manual

Table B-120 VMEbus Interrupt Enable Register (VINT_EN)

Register Name: VINT_EN Offset:310

Bits Function

31-24 SW_INT7 SW_INT6 SW_INT5 SW_INT4 SW_INT3 SW_INT2 SW_INT1 Reserved

23-16 Reserved MBOX3 MBOX2 MBOX1 MBOX0

15-08 Reserved SW_INT Reserved VERR LERR DMA

07-00 LINT7 LINT6 LINT5 LINT4 LINT3 LINT2 LINT1 LINT0

Table B-121 VINT_EN Description

Name Type Reset By
Reset
State

Function

SW_INT7 R/W All 0 VME Software 7 Interrupt Mask
0=VME Software 7 Interrupt masked,
1=VME Software 7 Interrupt enabled
A zero-to-one transition will cause a VME level 7
interrupt to be generated. Subsequent zeroing of
this bit will cause the interrupt to be masked, but
will not clear the VME Software 7 Interrupt Status
bit.

SW_INT6 R/W All 0 VME Software 6 Interrupt Mask
0=VME Software 6 Interrupt masked,
1=VME Software 6 Interrupt enabled
A zero-to-one transition will cause a VME level 6
interrupt to be generated. Subsequent zeroing of
this bit will cause the interrupt to be masked, but
will not clear the VME Software 6 Interrupt Status
bit.

SW_INT5 R/W All 0 VME Software 5 Interrupt Mask
0=VME Software 5 Interrupt masked,
1=VME Software 5 Interrupt enabled
A zero-to-one transition will cause a VME level 5
interrupt to be generated. Subsequent zeroing of
this bit will cause the interrupt to be masked, but
will not clear the VME Software 5 Interrupt Status
bit.
274

B

SW_INT4 R/W All 0 VME Software 4 Interrupt Mask
0=VME Software 4 Interrupt masked,
1=VME Software 4 Interrupt enabled
A zero-to-one transition will cause a VME level 4
interrupt to be generated. Subsequent zeroing of
this bit will cause the interrupt to be masked, but
will not clear the VME Software 4 Interrupt Status
bit.

SW_INT3 R/W All 0 VME Software 3 Interrupt Mask
0=VME Software 3 Interrupt masked,
1=VME Software 3 Interrupt enabled
A zero-to-one transition will cause a VME level 3
interrupt to be generated. Subsequent zeroing of
this bit will cause the interrupt to be masked, but
will not clear the VME Software 3 Interrupt Status
bit.

SW_INT2 R/W All 0 VME Software 2 Interrupt Mask
0=VME Software 2 Interrupt masked,
1=VME Software 2 Interrupt enabled
A zero-to-one transition will cause a VME level 2
interrupt to be generated. Subsequent zeroing of
this bit will cause the interrupt to be masked, but
will not clear the VME Software 2 Interrupt Status
bit.

SW_INT1 R/W All 0 VME Software 1 Interrupt Mask
0=VME Software 1 Interrupt masked,
1=VME Software 1 Interrupt enabled
A zero-to-one transition will cause a VME level 1
interrupt to be generated. Subsequent zeroing of
this bit will cause the interrupt to be masked, but
will not clear the VME Software 1 Interrupt Status
bit.

MBOX3 R/W All 0 Mailbox 3 Mask
0=MBOX3 Interrupt masked,
1=MBOX3 Interrupt enabled

MBOX2 R/W All 0 Mailbox 2 Mask
0=MBOX2 Interrupt masked,
1=MBOX2 Interrupt enabled

MBOX1 R/W All 0 Mailbox 1 Mask
0=MBOX1 Interrupt masked,
1=MBOX1 Interrupt enabled

MBOX0 R/W All 0 Mailbox 0 Mask
0=MBOX0 Interrupt masked,
1=MBOX0 Interrupt enabled

Table B-121 VINT_EN Description (Continued)
275

B VMIVME-7697 Product Manual
This register enables the various sources of VMEbus interrupts. SW_INT can be
enabled with the VME64AUTO power-up option.

SW_INT R/W All Power-up
Option

“VME Software Interrupt” Mask
0 = VME Software Interrupt masked
1 =VME Software Interrupt enabled
A zero-to-one transition causes the VME software
interrupt to be asserted. Subsequent zeroing of this
bit causes the interrupt to be masked and the
VMEbus interrupt negated, but does not clear the
VME software interrupt status bit.

VERR R/W All 0 VERR Interrupt Mask
0 =PCI VERR Interrupt masked
1=PCI VERR Interrupt enabled

LERR R/W All 0 LERR Interrupt Mask
0 =PCI LERR Interrupt masked
1 =PCI LERR Interrupt enabled

DMA R/W All 0 DMA Interrupt Mask
0=PCI DMA Interrupt masked
1=PCI DMA Interrupt enabled

LINT7-LINT0 R/W All 0 PCI Interrupt Mask
0=LINTx Interrupt masked
1 =LINTx Interrupt enabled

Table B-122 VMEbus Interrupt Status Register (VINT_STAT)

Register Name: VINT_STAT Offset:314

Bits Function

31-24 SW_INT7 SW_INT6 SW_INT5 SW_INT4 SW_INT3 SW_INT2 SW_INT1 Reserved

23-16 Reserved MBOX3 MBOX2 MBOX1 MBOX0

15-08 Reserved SW_INT Reserved VERR LERR DMA

07-00 LINT7 LINT6 LINT5 LINT4 LINT3 LINT2 LINT1 LINT0

Table B-121 VINT_EN Description (Continued)
276

B

Table B-123 VINT_STAT Description

Name Type Reset By Reset
State

Function

SW_INT7 R/Write
1 to clear

All 0 VME Software 7 Interrupt Status/Clear
0=no VME Software 7 Interrupt,
1=VME Software 7 Interrupt active

SW_INT6 R/Write
1 to clear

All 0 VME Software 6 Interrupt Status/Clear
0=no VME Software 6 Interrupt,
1=VME Software 6 Interrupt active

SW_INT5 R/Write
1 to clear

All 0 VME Software 5 Interrupt Status/Clear
0=no VME Software 5 Interrupt,
1=VME Software 5 Interrupt active

SW_INT4 R/Write
1 to clear

All 0 VME Software 4 Interrupt Status/Clear
0=no VME Software 4 Interrupt,
1=VME Software 4 Interrupt active

SW_INT3 R/Write
1 to clear

All 0 VME Software 3 Interrupt Status/Clear
0=no VME Software 3 Interrupt,
1=VME Software 3 Interrupt active

SW_INT2 R/Write
1 to clear

All 0 VME Software 2 Interrupt Status/Clear
0=no VME Software 2 Interrupt,
1=VME Software 2 Interrupt active

SW_INT1 R/Write
1 to clear

All 0 VME Software 1 Interrupt Status/Clear
0=no VME Software 1 Interrupt,
1=VME Software 1 Interrupt active

MBOX3 R/Write
1 to clear

All 0 Mailbox 3 Status/Clear
0=no Mailbox 3 Interrupt,
1=Mailbox 3 Interrupt active

MBOX2 R/Write
1 to clear

All 0 Mailbox 2 Status/Clear
0=no Mailbox 2 Interrupt,
1=Mailbox 2 Interrupt active

MBOX1 R/Write
1 to clear

All 0 Mailbox 1 Status/Clear
0=no Mailbox 1 Interrupt,
1=Mailbox 1 Interrupt active

MBOX0 R/Write
1 to clear

All 0 Mailbox 0 Status/Clear
0=no Mailbox 0 Interrupt,
1=Mailbox 0 Interrupt active

SW_INT R/Write
1 to Clear

All Power-up
Option

VME Software Interrupt Status/Clear
0=VME Software Interrupt inactive,
1=VME Software Interrupt active
277

B VMIVME-7697 Product Manual
SW_INT can be set with the VME64AUTO power-up option.

This register maps various interrupt sources to one of the seven VMEbus interrupt
pins. A value of 001 maps the corresponding interrupt source to VIRQ*[1], a value of
002 maps to VIRQ*[2], etc. A value of 000 effectively masks the interrupt since there is
no corresponding VIRQ*[0].

VERR R/Write
1 to Clear

All 0 VERR Interrupt Status/Clear
0=VME VERR Interrupt masked,
1=VME VERR Interrupt enabled

LERR R/Write
1 to Clear

All 0 LERR Interrupt Status/Clear
0=VME LERR Interrupt masked,
1=VME LERR Interrupt enabled

DMA R/Write
1 to Clear

All 0 DMA Interrupt Status/Clear
0=VME DMA Interrupt masked,
1=VME DMA Interrupt enabled

LINT7-LINT0 R/Write
1 to Clear

All 0 LINTx Interrupt Status/Clear
0=LINTx Interrupt masked,
1=LINTx Interrupt enabled

Table B-124 VME Interrupt Map 0 Register (VINT_MAP0)

Register Name: VINT_MAP0 Offset: 318

Bits Function

31-24 Reserved LINT7 Reserved LINT6

23-16 Reserved LINT5 Reserved LINT4

15-08 Reserved LINT3 Reserved LINT2

07-00 Reserved LINT1 Reserved LINT0

Table B-125 VINT_MAP0 Description

Name Type Reset By
Reset
State

Function

LINT7-LIN
T0

R/W All 0 VMEbus destination of PCI Bus interrupt source

Table B-123 VINT_STAT Description (Continued)

Name Type Reset By Reset
State

Function
278

B

This register maps various interrupt sources to one of the seven VMEbus interrupt
pins. A value of 001 maps the corresponding interrupt source to VIRQ*[1], a value of
002 maps to VIRQ*[2], etc. A value of 000 effectively masks the interrupt since there is
no corresponding VIRQ*[0].

SW_INT is set to 010 with the VME64AUTO power-up option.

Table B-126 VME Interrupt Map 1 Register (VINT_MAP1)

Register Name: VINT_MAP1 Offset: 31C

Bits Function

31-24 Reserved

23-16 Reserved SW_INT

15-08 Reserved VERR

07-00 Reserved LERR Reserved DMA

Table B-127 VINT_MAP1 Description

Name Type Reset By
Reset
State

Function

SW_INT R/W All Power-up
Option

VMEbus Software interrupt destination

VERR R/W All 0 VMEbus Error interrupt destination

LERR R/W All 0 PCI Bus Error interrupt destination

DMA R/W All 0 DMA interrupt destination

Table B-128 Interrupt STATUS/ID Out Register (STATID)

Register Name: STATID Offset: 320

Bits Function

31-24 STATID [7:0]

23-16 Reserved

15-08 Reserved

07-00 Reserved
279

B VMIVME-7697 Product Manual
When the Universe II responds to an interrupt acknowledge cycle on VMEbus it
returns an 8-bit STATUS/ID. STATID [7:1] can be written by software to uniquely
identify the VMEbus module within the system. STATID [0] is a value of 0 if the
Universe II is generating a software interrupt (SW_IACK) at the same level as the
interrupt acknowledge cycle, otherwise it is a value of 1.

The reset state is designed to support the VME64 Auto ID STATUS/ID value.

Table B-129 STATID Description

Name Type Reset By
Reset
State

Function

STATID
[7:1]

R/W All 1111111 Bits [7:1] of the STATUS/ID byte are returned when
the Universe II responds to a VMEbus IACK cycle.

STATID [0] R All See below 0 = the Universe II is generating a SW_IACK at the
same level as the interrupt acknowledge cycle.
1 = the Universe II is not generating a SW_IACK at
the same level as the interrupt acknowledge cycle.

Table B-130 VIRQ1 STATUS/ID Register (V1_STATID)

Register Name: V1_STATID Offset: 324

Bits Function

31-24 Reserved

23-16 Reserved

15-08 Reserved ERR

07-00 STATID [7:0]

Table B-131 V1_STATID Description

Name Type Reset By
Reset
State

Function

ERR R All 0 Error Status Bit
0=STATUS/ID was acquired without bus error
1=bus error occurred during acquisition of the
STATUS/ID

STATID
[7:0]

R All 0 STATUS/ID acquired during IACK cycle for level 1
VMEbus interrupt
280

B

The Vx_STATID registers are read-only registers that hold the 8-bit VMEbus
STATUS/ID that is acquired when the Universe II performs a IACK cycle for a given
interrupt level. The Universe II is enabled as the interrupt handler for a given
interrupt level via the VIRQx bits of the LINT_EN register. Once a vector for a given
level is acquired, the Universe II does not perform a subsequent interrupt
acknowledge cycle at that level until the corresponding VIRQx bit in the LINT_STAT
register is cleared.

The acquisition of a level x STATUS/ID by the Universe II updates the STATUS/ID
field of the corresponding Vx_STATID register and generation of a PCI interrupt. A
VMEbus error during the acquisition of the STATUS/ID vector sets the ERR bit,
which means the STATUS/ID field may not contain a valid vector.

The Vx_STATID registers are read-only registers that hold the 8-bit VMEbus
STATUS/ID that is acquired when the Universe II performs a IACK cycle for a given
interrupt level. The Universe II is enabled as the interrupt handler for a given
interrupt level via the VIRQx bits of the LINT_EN register. Once a vector for a given
level is acquired, the Universe II does not perform a subsequent interrupt
acknowledge cycle at that level until the corresponding VIRQx bit in the LINT_STAT
register is cleared.

Table B-132 VIRQ2 STATUS/ID Register (V2_STATID)

Register Name: V2_STATID Offset: 328

Bits Function

31-24 Reserved

23-16 Reserved

15-08 Reserved ERR

07-00 STATID [7:0]

Table B-133 V2_STATID Description

Name Type Reset By
Reset
State

Function

ERR R All 0 Error Status Bit
0=STATUS/ID was acquired without bus error
1=bus error occurred during acquisition of the
STATUS/ID

STATID
[7:0]

R All 0 STATUS/ID acquired during IACK cycle for level 1
VMEbus interrupt
281

B VMIVME-7697 Product Manual
The acquisition of a level x STATUS/ID by the Universe II updates the STATUS/ID
field of the corresponding Vx_STATID register and generation of a PCI interrupt. A
VMEbus error during the acquisition of the STATUS/ID vector sets the ERR bit,
which means the STATUS/ID field may not contain a valid vector.

The Vx_STATID registers are read-only registers that hold the 8-bit VMEbus
STATUS/ID that is acquired when the Universe II performs a IACK cycle for a given
interrupt level. The Universe II is enabled as the interrupt handler for a given
interrupt level via the VIRQx bits of the LINT_EN register. Once a vector for a given
level is acquired, the Universe II does not perform a subsequent interrupt
acknowledge cycle at that level until the corresponding VIRQx bit in the LINT_STAT
register is cleared.

The acquisition of a level x STATUS/ID by the Universe II updates the STATUS/ID
field of the corresponding Vx_STATID register and generation of a PCI interrupt. A
VMEbus error during the acquisition of the STATUS/ID vector sets the ERR bit,
which means the STATUS/ID field may not contain a valid vector.

Table B-134 VIRQ3 STATUS/ID Register (V3_STATID)

Register Name: V3_STATID Offset: 32C

Bits Function

31-24 Reserved

23-16 Reserved

15-08 Reserved ERR

07-00 STATID [7:0]

Table B-135 V3_STATID Description

Name Type Reset By
Reset
State

Function

ERR R All 0 Error Status Bit
0=STATUS/ID was acquired without bus error
1=bus error occurred during acquisition of the
STATUS/ID

STATID [7:0] R All 0 STATUS/ID acquired during IACK cycle for level
3VMEbus interrupt
282

B

The Vx_STATID registers are read-only registers that hold the 8-bit VMEbus
STATUS/ID that is acquired when the Universe II performs a IACK cycle for a given
interrupt level. The Universe II is enabled as the interrupt handler for a given
interrupt level via the VIRQx bits of the LINT_EN register. Once a vector for a given
level is acquired, the Universe II does not perform a subsequent interrupt
acknowledge cycle at that level until the corresponding VIRQx bit in the LINT_STAT
register is cleared.

The acquisition of a level x STATUS/ID by the Universe II updates the STATUS/ID
field of the corresponding Vx_STATID register and generation of a PCI interrupt. A
VMEbus error during the acquisition of the STATUS/ID vector sets the ERR bit,
which means the STATUS/ID field may not contain a valid vector.

Table B-136 VIRQ4 STATUS/ID Register (V4_STATID)

Register Name: V4_STATID Offset: 330

Bits Function

31-24 Reserved

23-16 Reserved

15-08 Reserved ERR

07-00 STATID [7:0]

Table B-137 V4_STATID Description

Name Type Reset By
Reset
State

Function

ERR R All 0 Error Status Bit
0=STATUS/ID was acquired without bus error
1=bus error occurred during acquisition of the
STATUS/ID

STATID [7:0] R All 0 STATUS/ID acquired during IACK cycle for level 4
VMEbus interrupt
283

B VMIVME-7697 Product Manual

The Vx_STATID registers are read-only registers that hold the 8-bit VMEbus
STATUS/ID that is acquired when the Universe II performs a IACK cycle for a given
interrupt level. The Universe II is enabled as the interrupt handler for a given
interrupt level via the VIRQx bits of the LINT_EN register. Once a vector for a given
level is acquired, the Universe II does not perform a subsequent interrupt
acknowledge cycle at that level until the corresponding VIRQx bit in the LINT_STAT
register is cleared.

The acquisition of a level x STATUS/ID by the Universe II updates the STATUS/ID
field of the corresponding Vx_STATID register and generation of a PCI interrupt. A
VMEbus error during the acquisition of the STATUS/ID vector sets the ERR bit,
which means the STATUS/ID field may not contain a valid vector.

Table B-138 VIRQ5 STATUS/ID Register(V5_STATID)

Register Name: V5_STATID Offset: 334

Bits Function

31-24 Reserved

23-16 Reserved

15-08 Reserved ERR

07-00 STATID [7:0]

Table B-139 V5_STATID Description

Name Type Reset By
Reset
State

Function

ERR R All 0 Error Status Bit
0=STATUS/ID was acquired without bus error
1=bus error occurred during acquisition of the
STATUS/ID

STATID [7:0] R All 0 STATUS/ID acquired during IACK cycle for level 5
VMEbus interrupt
284

B

The Vx_STATID registers are read-only registers that hold the 8-bit VMEbus
STATUS/ID that is acquired when the Universe II performs a IACK cycle for a given
interrupt level. The Universe II is enabled as the interrupt handler for a given
interrupt level via the VIRQx bits of the LINT_EN register. Once a vector for a given
level is acquired, the Universe II does not perform a subsequent interrupt
acknowledge cycle at that level until the corresponding VIRQx bit in the LINT_STAT
register is cleared.

The acquisition of a level x STATUS/ID by the Universe II updates the STATUS/ID
field of the corresponding Vx_STATID register and generation of a PCI interrupt. A
VMEbus error during the acquisition of the STATUS/ID vector sets the ERR bit,
which means the STATUS/ID field may not contain a valid vector.

Table B-140 VIRQ6 STATUS/ID Register (V6_STATID)

Register Name: V6_STATID Offset: 338

Bits Function

31-24 Reserved

23-16 Reserved

15-08 Reserved ERR

07-00 STATID [7:0]

Table B-141 V6_STATID Description

Name Type Reset By
Reset
State

Function

ERR R All 0 Error Status Bit
0=STATUS/ID was acquired without bus error
1=bus error occurred during acquisition of the
STATUS/ID

STATID [7:0] R All 0 STATUS/ID acquired during IACK cycle for level 6
VMEbus interrupt
285

B VMIVME-7697 Product Manual

The Vx_STATID registers are read-only registers that hold the 8-bit VMEbus
STATUS/ID that is acquired when the Universe II performs a IACK cycle for a given
interrupt level. The Universe II is enabled as the interrupt handler for a given
interrupt level via the VIRQx bits of the LINT_EN register. Once a vector for a given
level is acquired, the Universe II does not perform a subsequent interrupt
acknowledge cycle at that level until the corresponding VIRQx bit in the LINT_STAT
register is cleared.

The acquisition of a level x STATUS/ID by the Universe II updates the STATUS/ID
field of the corresponding Vx_STATID register and generation of a PCI interrupt. A
VMEbus error during the acquisition of the STATUS/ID vector sets the ERR bit,
which means the STATUS/ID field may not contain a valid vector.

Table B-142 VIRQ7 STATUS/ID Register (V7_STATID)

Register Name: V7_STATID Offset: 33C

Bits Function

31-24 Reserved

23-16 Reserved

15-08 Reserved ERR

07-00 STATID [7:0]

Table B-143 V7_STATID Description

Name Type Reset By
Reset
State

Function

ERR R All 0 Error Status Bit
0=STATUS/ID was acquired without bus error
1=bus error occurred during acquisition of the
STATUS/ID

STATID [7:0] R All 0 STATUS/ID acquired during IACK cycle for level 7
VMEbus interrupt
286

B

Do not map any VMEbus interrupt to LINT#(2-7).

This register maps various interrupt sources to one of the eight PCI interrupt pins. A
value of 000 maps the corresponding interrupt source to LINT# [0], a value of 001
maps to LINT# [1], etc.

Table B-144 PCI Interrupt Map 2 Register (LINT_MAP2)

Register Name: LINT_MAP2 Offset: 340

Bits Function

31-24 Reserved LM3 Reserved LM2

23-16 Reserved LM1 Reserved LM0

15-08 Reserved MBOX3 Reserved MBOX2

07-00 Reserved MBOX1 Reserved MBOX0

Table B-145 LINT_MAP2 Description

Name Type Reset By
Reset
State

Function

LM3 [2:0] R/W All 0 Location Monitor 3 Interrupt destination

LM2 [2:0] R/W All 0 Location Monitor 2 Interrupt destination

LM1 [2:0] R/W All 0 Location Monitor 1 Interrupt destination

LM0 [2:0] R/W All 0 Location Monitor 0 Interrupt destination

MBOX3
[2:0]

R/W All 0 Mailbox 3 Interrupt destination

MBOX2
[2:0]

R/W All 0 Mailbox 2 Interrupt destination

MBOX1
[2:0]

R/W All 0 Mailbox 1 Interrupt destination

MBOX0
[2:0]

R/W All 0 Mailbox 0 Interrupt destination
287

B VMIVME-7697 Product Manual

This register maps various interrupt sources to one of the seven VMEbus interrupt
pins. A value of 001 maps the corresponding interrupt source to VIRQ*[1], a value of
002 maps to VIRQ*[2], etc. A value of 000 effectively masks the interrupt since there is
no corresponding VIRQ*[0].

Table B-146 VME Interrupt Map 2 Register (VINT_MAP2)

Register Name: VINT_MAP2 Offset: 344

Bits Function

31-24 Reserved

23-16 Reserved

15-08 Reserved MBOX3 Reserved MBOX2

07-00 Reserved MBOX1 Reserved MBOX0

Table B-147 VINT_MAP2 Description

Name Type Reset By
Reset
State

Function

MBOX3
[2:0]

R/W All 0 Mailbox 3 Interrupt destination

MBOX2
[2:0]

R/W All 0 Mailbox 2 Interrupt destination

MBOX1
[2:0]

R/W All 0 Mailbox 1 Interrupt destination

MBOX0
[2:0]

R/W All 0 Mailbox 0 Interrupt destination
288

B

General purpose mailbox register. Writes to this register will cause interrupt
generation on PCI or VMEbus if enabled in LINT_EN register.

Table B-148 Mailbox 0 Register (MBOX0)

Register Name: MBOX0 Offset:348

Bits Function

31-24 MBOX0

23-16 MBOX0

15-08 MBOX0

07-00 MBOX0

Table B-149 DVA Description

Name Type Reset By
Reset
State

Function

MBOX0
[31:0]

R/W All 0 Mailbox

Table B-150 Mailbox 1 Register (MBOX1)

Register Name: MBOX1 Offset:34C

Bits Function

31-24 MBOX1

23-16 MBOX1

15-08 MBOX1

07-00 MBOX1

Table B-151 DVA Description

Name Type Reset By
Reset
State

Function

MBOX1
[31:0]

R/W All 0 Mailbox
289

B VMIVME-7697 Product Manual
General purpose mailbox register. Writes to this register will cause interrupt
generation on PCI or VMEbus if enabled in LINT_EN register.

General purpose mailbox register. Writes to this register will cause interrupt
generation on PCI or VMEbus if enabled in LINT_EN register.

Table B-152 Mailbox 2 Register (MBOX2)

Register Name: MBOX2 Offset:350

Bits Function

31-24 MBOX2

23-16 MBOX2

15-08 MBOX2

07-00 MBOX2

Table B-153 DVA Description

Name Type Reset By
Reset
State

Function

MBOX2
[31:0]

R/W All 0 Mailbox

Table B-154 Mailbox 3 Register (MBOX3)

Register Name: MBOX3 Offset:354

Bits Function

31-24 MBOX3

23-16 MBOX3

15-08 MBOX3

07-00 MBOX3
290

B

General purpose mailbox register. Writes to this register will cause interrupt
generation on PCI or VMEbus if enabled in LINT_EN register.

If a semaphore bit is a value of 0, the associated tag field can be written to. If a
semaphore bit is a value of 1, the associated tag field cannot be written to.

This register can only be accessed via byte-wide access. See Semaphores on page 153.

Table B-155 DVA Description

Name Type Reset By
Reset
State

Function

MBOX3
[31:0]

R/W All 0 Mailbox

Table B-156 Semaphore 0 Register (SEMA0)

Register Name: SEMA0 Offset: 358

Bits Function

31-24 SEM3 TAG3

23-16 SEM2 TAG2

15-08 SEM1 TAG1

07-00 SEM0 TAG0

Table B-157 SEMA0 Description

Name Type Reset By
Reset
State

Function

SEM3 R/W All 0 Semaphore 3

TAG3 [6:0] R/W All 0 Tag 3

SEM2 R/W All 0 Semaphore 2

TAG2 [6:0] R/W All 0 Tag2

SEM1 R/W All 0 Semaphore 1

TAG1 [6:0] R/W All 0 Tag 1

SEM0 R/W All 0 Semaphore 0

TAG0 [6:0] R/W All 0 Tag 0
291

B VMIVME-7697 Product Manual

If a semaphore bit is a value of 0, the associated tag field can be written to. If a
semaphore bit is a value of 1, the associated tag field cannot be written to.

This register can only be accessed via byte-wide access.

See Semaphores on page 153.

Table B-158 Semaphore 1 Register (SEMA1)

Register Name: SEMA1 Offset: 35C

Bits Function

31-24 SEM7 TAG6

23-16 SEM6 TAG6

15-08 SEM5 TAG5

07-00 SEM4 TAG4

Table B-159 SEMA1 Description

Name Type Reset By Reset
State

Function

SEM3 R/W All 0 Semaphore 7

TAG3 [6:0] R/W All 0 Tag 7

SEM2 R/W All 0 Semaphore 6

TAG2 [6:0] R/W All 0 Tag 6

SEM1 R/W All 0 Semaphore 5

TAG1 [6:0] R/W All 0 Tag 5

SEM0 R/W All 0 Semaphore 4

TAG0 [6:0] R/W All 0 Tag 4
292

B

Table B-160 Master Control Register (MAST_CTL)

Register Name: MAST_CTL Offset: 400

Bits Function

31-24 MAXRTRY PWON

23-16 VRL VRM VREL VOWN VOWN_
ACK

Reserved

15-08 Reserved PABS Reserved

07-00 BUS_NO

Table B-161 MAST_CTL Description

Name Type Reset By Reset
State

Function

MAXRTRY
[3:0]

R/W All 1000 Maximum Number of Retries
0000=Retry Forever, Multiples of 64 (0001 through
1111).
Maximum Number of retries before the PCI master
interface signals error condition

PWON [3:0] R/W All 0000 Posted Write Transfer Count
0000=128 bytes, 0001=256 bytes, 0010=512 bytes,
0011=1024 bytes, 0100=2048 bytes, 0101=4096 bytes,
0110 - 1110 = Reserved, 1111=Early release of BBSY*.
Transfer count at which the PCI Slave Channel Posted
Writes FIFO gives up the VME Master Interface.

VRL [1:0] R/W All 11 VMEbus Request Level
00=Level 0,01=Level 1,10=Level 2, 11=Level 3

VRM R/W All 0 VMEbus Request Mode
0=Demand,1=Fair

VREL R/W All 0 VMEbus Release Mode
0=Release When Done (RWD), 1=Release on Request
(ROR)

VOWN W All 0 VME Ownership Bit
0=Release VMEbus, 1=Acquire and Hold VMEbus

VOWN_ACK R All 0 VME Ownership Bit Acknowledge
0=VMEbus not owned, 1=VMEbus acquired and held
due to assertion of VOWN
293

B VMIVME-7697 Product Manual
Writing a 1 to the VOWN bit in the MAST_CTL register has the effect of asserting
BBSY* until a 0 is written to the VOWN bit. It does not affect the transactions in the
PCI Target Channel. The Universe II will not do an early release of BBSY* if the
VMEbus was owned during a transaction by means of VOWN, regardless of the value
of PWON.

It is important to wait until VOWN_ACK is a value of 0 before writing a value of 1 to
the VOWN bit.

In the event that BERR* is asserted on the VMEbus once the Universe II owns the
VMEbus, the user must release ownership by programming the VOWN bit to a value
of 0, if the VMEbus was gained by setting the VOWN bit. VMEbus masters must not
write a value of 1 to the VOWN bit since this will lock up the VMEbus.

Once the value programmed in the PWON field is reached during dequeuing of
posted writes, the Universe II will do an early release of BBSY*. If the PWON field is
programmed to a value of 1111, the Universe II will do an early release of BBSY* at the
completion of each transaction. Note that the VOWN setting described above
overrides the POWN setting.

BUS_NO is used by the VMEbus Slave Channel when mapping VME transactions
into PCI Configuration space. If the bus number of the VMEbus address (bits [23:16])
is equal to the BUS_NO field, then the Universe II generates a Type 0 configuration
cycle, otherwise Type 1 is generated.

PABS [1:0] R/W All 00 PCI Aligned Burst Size
00=32-byte, 01=64-byte, 10=128-byte, 11=Reserved
Controls the PCI address boundary at which the
Universe II breaks up a PCI transaction in the VME
Slave channel (see VME Slave Images on page 93)
and the DMA Channel (see FIFO Operation and Bus
Ownership on page 137).
This field also determines when the PCI Master
Module as part of the VME Slave Channel will
request the PCI bus (i.e., when 32, 64, or 128 bytes are
available). It does not have this effect on the DMA
Channel, which has a fixed watermark of 128 bytes
(see FIFO Operation and Bus Ownership on
page 137).

BUS_NO
[7:0]

R/W All 0000 0000 PCI Bus Number

Table B-161 MAST_CTL Description (Continued)

Name Type Reset By Reset
State

Function
294

B

The PABS[1:0] field also determines when the PCI Master Module as part of the VME
Slave Channel will request the PCI bus (i.e., when 32, 64, or 128 bytes are available). It
does not have this effect on the DMA Channel, which has a fixed watermark of 128
bytes (see FIFO Operation and Bus Ownership on page 137).

Table B-162 Miscellaneous Control Register (MISC_CTL)

Register Name: MISC_CTL Offset: 404

Bits Function

31-24 VBTO Reserved VARB VARBTO

23-16 SW_LRST SW_SRST Reserved BI ENGBI RESCIND SYSCON V64AUTO

15-08 Reserved

07-00 Reserved

Table B-163 MISC_CTL Description

Name Type Reset By Reset
State

Function

VBTO R/W All 0011 VME Bus Time-out
0000=Disable, 0001=16 µsec, 0010=32 µsec, 0011=64 µsec,
0100=128 µsec, 0101=256 µsec, 0110=512 µsec, 0111=1024
µsec, others=RESERVED

VARB R/W All 0 VMEbus Arbitration Mode
0=Round Robin, 1=Priority

VARBTO R/W All 01 VMEbus Arbitration Time-out
00=Disable Timer, 01=16 µs (minimum 8µs), 10=256 µs,
others=Reserved

SW_LRST W All 0 Software PCI Reset
0=No effect, 1=Initiate LRST#
A read always returns 0.

SW_SYSRST W All 0 Software VMEbus SYSRESET
0=No effect, 1=Initiate SYSRST*
A read always returns 0.

BI R/W All Power-up
Option

BI-Mode
0=Universe II is not in BI-Mode,
1=Universe II is in BI-Mode
Write to this bit to change the Universe II BI-Mode status.
This bit is also affected by the global BI-Mode initiator
VRIRQ1*, if this feature is enabled.
295

B VMIVME-7697 Product Manual
VMEbus masters must not write to SW_SYSRST, and PCI masters must not write to
SW_LRST.

The bits VBTO, VARB and VARBTO support SYSCON functionality.

Universe II participation in the VME64 Auto ID mechanism is controlled by the
VME64AUTO bit. When this bit is detected high, the Universe II uses the SW_IACK
mechanism to generate VXIRQ2 on the VMEbus, then releases VXSYSFAIL. Access to
the CR/CSR image is enabled when the level 2 interrupt acknowledge cycle
completes. This sequence can be initiated with a power-up option or by software
writing a 1 to this bit.

ENGBI R/W All 0 Enable Global BI-Mode Initiator
0=Assertion of VIRQ1 ignored, 1=Assertion of VIRQ1 puts
device in BI-Mode

RESCIND R/W All 1 RESCIND is unused in the Universe II.

SYSCON R/W All Power-up
Option

SYSCON
0=Universe II is not VMEbus System Controller,
1=Universe II is VMEbus System Controller

V64AUTO R/W All Power-up
Option

VME64 Auto ID
Write: 0=No effect, 1=Initiate sequence
This bit initiates Universe II VME64 Auto ID Slave
participation.

Table B-164 Miscellaneous Status Register (MISC_STAT)

Register Name: MISC_STAT Offset: 408

Bits Function

31-24 Reserved LCLSIZE Reserved DY4AUTO Reserved

23-16 Reserved MYBBSY Reserved DY4_DONE TXFE RXFE Reserved

15-08 DY4AUTOID

07-00 Reserved

Table B-163 MISC_CTL Description (Continued)

Name Type Reset By Reset
State

Function
296

B

Table B-165 MISC_STAT Description

Name Type Reset By
Reset
State

Function

LCLSIZE R All Power-up
Option

PCI Bus Size
At the trailing edge of RST#, the Universe II samples
REQ64# to determine the PCI Bus size. This bit reflects
the result.
0=32-bit, 1=64-bit

DY4AUTO R All Power-up
Option

DY4 Auto ID Enable
0=Disable, 1=Enable

MYBBSY R All 1 Universe II BBSY
0=Asserted,1=Negated

DY4DONE R All 0 DY4 Auto ID Done
0=Not done,1=Done

TXFE R All 1 PCI Target Channel Posted Writes FIFO
0=no data in the FIFO, 1=data in the FIFO

RXFE R All 1 VME Slave Channel Posted Writes FIFO
0=no data in the FIFO, 1=data in the FIFO

DY4AUTOID R None 0 DY4 Auto ID

Table B-166 User AM Codes Register (USER_AM)

Register Name: USER_AM Offset: 40C

Bits Function

31-24 0 1 USER1AM Reserved

23-16 0 1 USER2AM Reserved

15-08 Reserved

07-00 Reserved
297

B VMIVME-7697 Product Manual

The reset state is one of the VME64 user-defined AM codes.

The USER_AM register can only be used to generate and accept AM codes 0x10
through 0x1F. These AM codes are designated as USERAM codes in the VMEbus
specification.

Table B-167 USER_AM Description

Name Type Reset By
Reset
State

Function

USER1AM
[3:0]

R/W All 0000 User AM Code 1

USER2AM
[3:0]

R/W All 0000 User AM Code 2

Table B-168 VMEbus Slave Image 0 Control (VSI0_CTL)

Register Name: VSI0_CTL Offset: F00

Bits Function

31-24 EN PWEN PREN Reserved

23-16 PGM SUPER Reserved VAS

15-08 Reserved

07-00 LD64EN LLRMW Reserved LAS

Table B-169 VSI0_CTL Description

Name Type Reset By
Reset
State

Function

EN R/W PWR
VME

0 Image Enable
0=Disable, 1=Enable

PWEN R/W PWR
VME

0 Posted Write Enable
0=Disable, 1=Enable

PREN R/W PWR
VME

0 Prefetch Read Enable
0=Disable, 1=Enable

PGM R/W PWR
VME

11 Program/Data AM Code
00=Reserved, 01=Data, 10=Program, 11=Both
298

B

This register provides the general, VMEbus and PCI controls for this slave image.
Note that only transactions destined for PCI Memory space are decoupled (the posted
write RXFIFO generates on Memory space transactions on the PCI Bus). This image
has 4 Kbyte resolution.

In order for a VMEbus slave image to respond to an incoming cycle, the BM bit in the
PCI_CSR register must be enabled.

The state of PWEN and PREN are ignored if LAS is not programmed memory space.

SUPER R/W PWR
VME

11 Supervisor/User AM Code
00=Reserved, 01=Non-Privileged, 10=Supervisor,
11=Both

VAS R/W PWR
VME

0 VMEbus Address Space
000=A16, 001=A24, 010=A32, 011= Reserved,
100=Reserved, 101=Reserved, 110=User1,
111=User2

LD64EN R/W PWR
VME

0 Enable 64-bit PCI Bus Transactions
0=Disable, 1=Enable

LLRMW R/W PWR
VME

0 Enable PCI Bus Lock of VMEbus RMW
0=Disable, 1=Enable

LAS R/W PWR
VME

0 PCI Bus Address Space
00=PCI Bus Memory Space, 01=PCI Bus I/O Space,
10=PCI Bus Configuration Space, 11=Reserved

Table B-170 VMEbus Slave Image 0 Base Address Register (VSI0_BS)

Register Name: VSI0_BS Offset: F04

Bits Function

31-24 BS

23-16 BS

15-08 BS Reserved

07-00 Reserved

Table B-169 VSI0_CTL Description (Continued)
299

B VMIVME-7697 Product Manual
The base address specifies the lowest address in the address range that will be
decoded.

This image has 4 Kbyte resolution.

The addresses decoded in a slave image are those which are greater than or equal to
the base address and less than the bound register.

This image has 4 Kbyte resolution.

Table B-171 VSI0_BS Description

Name Type Reset By
Reset
State

Function

BS[31:12] R/W PWR
VME

0 Base Address

Table B-172 VMEbus Slave Image 0 Bound Address Register (VSI0_BD)

Register Name: VSI0_BD Offset: F08

Bits Function

31-24 BD

23-16 BD

15-08 BD Reserved

07-00 Reserved

Table B-173 VSI0_BD Description

Name Type Reset By
Reset
State

Function

BD[31:12] R/W PWR
VME

0 Bound Address
300

B

This image has 4 Kbyte resolution.

Table B-174 VMEbus Slave Image 0 Translation Offset (VSI0_TO)

Register Name: VSI0_TO Offset: F0C

Bits Function

31-24 TO

23-16 TO

15-08 TO Reserved

07-00 Reserved

Table B-175 VSI0_TO Description

Name Type Reset By
Reset
State

Function

TO[31:12] R/W PWR
VME

0 Translation Offset

Table B-176 VMEbus Slave Image 1 Control (VSI1_CTL)

Register Name: VSI1_CTL Offset: F14

Bits Function

31-24 EN PWEN PREN Reserved

23-16 PGM SUPER Reserved VAS

15-08 Reserved

07-00 LD64EN LLRMW Reserved LAS
301

B VMIVME-7697 Product Manual
This register provides the general, VMEbus and PCI controls for this slave image.
Note that only transactions destined for PCI Memory space are decoupled (the posted
write RXFIFO generates on Memory space transactions on the PCI Bus).

In order for a VMEbus slave image to respond to an incoming cycle, the BM bit in the
PCI_CSR register must be enabled.

The state of PWEN and PREN are ignored if LAS is not programmed memory space.

Table B-177 VSI1_CTL Description

Name Type Reset By Reset
State

Function

EN R/W PWR
VME

0 Image Enable
0=Disable, 1=Enable

PWEN R/W PWR
VME

0 Posted Write Enable
0=Disable, 1=Enable

PREN R/W PWR
VME

0 Prefetch Read Enable
0=Disable, 1=Enable

PGM R/W PWR
VME

11 Program/Data AM Code
00=Reserved, 01=Data, 10=Program, 11=Both

SUPER R/W PWR
VME

11 Supervisor/User AM Code
00=Reserved, 01=Non-Privileged, 10=Supervisor,
11=Both

VAS R/W PWR
VME

0 VMEbus Address Space
000=Reserved, 001=A24, 010=A32, 011= Reserved,
100=Reserved, 101=Reserved, 110=User1,
111=User2

LD64EN R/W PWR
VME

1 Enable 64-bit PCI Bus Transactions
0=Disable, 1=Enable

LLRMW R/W PWR
VME

1 Enable PCI Bus Lock of VMEbus RMW
0=Disable, 1=Enable

LAS R/W PWR
VME

0 PCI Bus Address Space
00=PCI Bus Memory Space, 01=PCI Bus I/O Space,
10=PCI Bus Configuration Space, 11=Reserved
302

B

The base address specifies the lowest address in the address range that will be
decoded.

Table B-178 VMEbus Slave Image 1 Base Address Register (VSI1_BS)

Register Name: VSI1_BS Offset: F18

Bits Function

31-24 BS

23-16 BS

15-08 Reserved

07-00 Reserved

Table B-179 VSI1_BS Description

Name Type Reset By
Reset
State

Function

BS[31:16] R/W PWR
VME

0 Base Address

Table B-180 VMEbus Slave Image 1 Bound Address Register (VSI1_BD)

Register Name: VSI1_BD Offset: F1C

Bits Function

31-24 BD

23-16 BD

15-08 Reserved

07-00 Reserved

Table B-181 VSI1_BD Description

Name Type Reset By
Reset
State

Function

BD[31:16] R/W PWR
VME

0 Bound Address
303

B VMIVME-7697 Product Manual
The addresses decoded in a slave image are those which are greater than or equal to
the base address and less than the bound register.

Table B-182 VMEbus Slave Image 1 Translation Offset (VSI1_TO)

Register Name: VSI1_TO Offset: F20

Bits Function

31-24 TO

23-16 TO

15-08 Reserved

07-00 Reserved

Table B-183 VSI1_TO Description

Name Type Reset By
Reset
State

Function

TO[31:16] R/W PWR
VME

0 Translation Offset

Table B-184 VMEbus Slave Image 2 Control (VSI2_CTL)

Register Name: VSI2_CTL Offset: F28

Bits Function

31-24 EN PWEN PREN Reserved

23-16 PGM SUPER Reserved VAS

15-08 Reserved

07-00 LD64EN LLRMW Reserved LAS
304

B

This register provides the general, VMEbus and PCI controls for this slave image.
Note that only transactions destined for PCI Memory space are decoupled (the posted
write RXFIFO generates on Memory space transactions on the PCI Bus).

In order for a VMEbus slave image to respond to an incoming cycle, the BM bit in the
PCI_CSR register must be enabled.

The state of PWEN and PREN are ignored if LAS is not programmed memory space.

Table B-185 VSI2_CTL Description

Name Type Reset By Reset
State

Function

EN R/W PWR
VME

0 Image Enable
0=Disable, 1=Enable

PWEN R/W PWR
VME

0 Posted Write Enable
0=Disable, 1=Enable

PREN R/W PWR
VME

0 Prefetch Read Enable
0=Disable, 1=Enable

PGM R/W PWR
VME

11 Program/Data AM Code
00=Reserved, 01=Data, 10=Program, 11=Both

SUPER R/W PWR
VME

11 Supervisor/User AM Code
00=Reserved, 01=Non-Privileged, 10=Supervisor,
11=Both

VAS R/W PWR
VME

0 VMEbus Address Space
000=Reserved, 001=A24, 010=A32, 011= Reserved,
100=Reserved, 101=Reserved, 110=User1,
111=User2

LD64EN R/W PWR
VME

0 Enable 64-bit PCI Bus Transactions
0=Disable, 1=Enable

LLRMW R/W PWR
VME

0 Enable PCI Bus Lock of VMEbus RMW
0=Disable, 1=Enable

LAS R/W PWR
VME

0 PCI Bus Address Space
00=PCI Bus Memory Space, 01=PCI Bus I/O Space,
10=PCI Bus Configuration Space, 11=Reserved
305

B VMIVME-7697 Product Manual

Table B-186 VMEbus Slave Image 2 Base Address Register (VSI2_BS)

Register Name: VSI2_BS Offset: F2C

Bits Function

31-24 BS

23-16 BS

15-08 Reserved

07-00 Reserved

Table B-187 VSI2_BS Description

Name Type Reset By
Reset
State

Function

BS[31:16] R/W PWR
VME

0 Base Address

Table B-188 VMEbus Slave Image 2 Bound Address Register (VSI2_BD)

Register Name: VSI2_BD Offset: F30

Bits Function

31-24 BD

23-16 BD

15-08 Reserved

07-00 Reserved

Table B-189 VSI2_BD Description

Name Type Reset By
Reset
State

Function

BD[31:16] R/W PWR
VME

0 Bound Address
306

B

Table B-190 VMEbus Slave Image 2 Translation Offset (VSI2_TO)

Register Name: VSI2_TO Offset: F34

Bits Function

31-24 TO

23-16 TO

15-08 Reserved

07-00 Reserved

Table B-191 VSI2_TO Description

Name Type Reset By Reset
State

Function

TO[31:16] R/W PWR
VME

0 Translation Offset

Table B-192 VMEbus Slave Image 3 Control (VSI3_CTL)

Register Name: VSI3_CTL Offset: F3C

Bits Function

31-24 EN PWEN PREN Reserved

23-16 PGM SUPER Reserved VAS

15-08 Reserved

07-00 LD64EN LLRMW Reserved LAS

Table B-193 VSI3_CTL Description

Name Type Reset By
Reset
State

Function

EN R/W PWR
VME

0 Image Enable
0=Disable, 1=Enable

PWEN R/W PWR
VME

0 Posted Write Enable
0=Disable, 1=Enable
307

B VMIVME-7697 Product Manual
This register provides the general, VMEbus and PCI controls for this slave image.
Note that only transactions destined for PCI Memory space are decoupled (the posted
write RXFIFO generates on Memory space transactions on the PCI Bus).

In order for a VMEbus slave image to respond to an incoming cycle, the BM bit in the
PCI_CSR register must be enabled.

The state of PWEN and PREN are ignored if LAS is not programmed memory space.

PREN R/W PWR
VME

0 Prefetch Read Enable
0=Disable, 1=Enable

PGM R/W PWR
VME

11 Program/Data AM Code
00=Reserved, 01=Data, 10=Program, 11=Both

SUPER R/W PWR
VME

11 Supervisor/User AM Code
00=Reserved, 01=Non-Privileged, 10=Supervisor,
11=Both

VAS R/W PWR
VME

0 VMEbus Address Space
000=Reserved, 001=A24, 010=A32, 011= Reserved,
100=Reserved, 101=Reserved, 110=User1,
111=User2

LD64EN R/W PWR
VME

0 Enable 64-bit PCI Bus Transactions
0=Disable, 1=Enable

LLRMW R/W PWR
VME

0 Enable PCI Bus Lock of VMEbus RMW
0=Disable, 1=Enable

LAS R/W PWR
VME

0 PCI Bus Address Space
00=PCI Bus Memory Space, 01=PCI Bus I/O Space,
10=PCI Bus Configuration Space, 11=Reserved

Table B-194 VMEbus Slave Image 3 Base Address Register (VSI3_BS)

Register Name: VSI3_BS Offset: F40

Bits Function

31-24 BS

23-16 BS

15-08 Reserved

07-00 Reserved

Table B-193 VSI3_CTL Description (Continued)
308

B

Table B-195 VSI3_BS Description

Name Type Reset By
Reset
State

Function

BS[31:16] R/W PWR
VME

0 Base Address

Table B-196 VMEbus Slave Image 3 Bound Address Register (VSI3_BD)

Register Name: VSI3_BD Offset: F44

Bits Function

31-24 BD

23-16 BD

15-08 Reserved

07-00 Reserved

Table B-197 VSI3_BD Description

Name Type Reset By
Reset
State

Function

BD[31:16] R/W PWR
VME

0 Bound Address

Table B-198 VMEbus Slave Image 3 Translation Offset (VSI3_TO)

Register Name: VSI3_TO Offset: F48

Bits Function

31-24 TO

23-16 TO

15-08 Reserved

07-00 Reserved
309

B VMIVME-7697 Product Manual

This register specifies the VMEbus controls for the location monitor image. This image
has a 4 Kbyte resolution and a 4 Kbyte size. The image responds to a VME read or
write within the 4 Kbyte space and matching one of the address modifier codes
specified. BLTs and MBLTs are not supported.

Table B-199 VSI3_TO Description

Name Type Reset By
Reset
State

Function

TO[31:16] R/W PWR
VME

0 Translation Offset

Table B-200 Location Monitor Control Register (LM_CTL)

Register Name: LM_CTL Offset: F64

Bits Function

31-24 EN Reserved

23-16 PGM SUPER Reserved VAS

15-08 Reserved

07-00 Reserved

Table B-201 LM_CTL Description

Name Type Reset By
Reset
State

Function

EN R/W PWR
VME

0 Image Enable
0=Disable, 1=Enable

PGM R/W PWR
VME

11 Program/Data AM Code
00=Reserved, 01=Data, 10=Program, 11=Both

SUPER R/W PWR
VME

11 Supervisor/User AM Code
00=Reserved, 01=Non-Privileged, 10=Supervisor,
11=Both

VAS R/W PWR
VME

0 VMEbus Address Space
000=A16, 001=A24, 010=A32, 011=Reserved,
100=Reserved, 101=Reserved, others=Reserved
310

B

VMEbus address bits [4:3] are used to set the status bit in LINT_STAT for one of the
four location monitor interrupts. If the Universe II VMEbus master is the owner of the
VMEbus, the Universe II VMEbus slave will generate DTACK* to terminate the
transaction.

The Location Monitor does not store write data and read data is undefined.

The base address specifies the lowest address in the 4 Kbyte range that will be
decoded as a location monitor access.

Table B-202 Location Monitor Base Address Register (LM_BS)

Register Name: LM_BS Offset: F68

Bits Function

31-24 BS

23-16 BS

15-08 Reserved

07-00 Reserved

Table B-203 LM_BS Description

Name Type Reset By
Reset
State

Function

BS [31:16] R/W PWR
VME

0 Base Address

Table B-204 VMEbus Register Access Image Control Register (VRAI_CTL)

Register Name: VRAI_CTL Offset: F70

Bits Function

31-24 EN Reserved

23-16 PGM SUPER Reserved VAS

15-08 Reserved

07-00 Reserved
311

B VMIVME-7697 Product Manual
The VME Register Access Image allows access to the Universe II registers with
standard VMEbus cycles. Only single cycle and lock AM codes are accepted. When a
register is accessed with a RMW, it is locked for the duration of the transaction.

Table B-205 VRAI_CTL Description

Name Type Reset By Reset
State

Function

EN R/W PWR
VME

Power-up
Option

Image Enable
0=Disable, 1=Enable

PGM R/W PWR
VME

11 Program/Data AM Code
00=Reserved, 01=Data, 10=Program, 11=Both

SUPER R/W PWR
VME

11 Supervisor/User AM Code
00=Reserved, 01=Non-Privileged, 10=Supervisor,
11=Both

VAS R/W PWR
VME

Power-up
Option

VMEbus Address Space
00=A16, 01=A24, 10=A32, all others are reserved

Table B-206 VMEbus Register Access Image Base Address Register (VRAI_BS)

Register Name: VRAI_BS Offset: F74

Bits Function

31-24 BS

23-16 BS

15-08 BS Reserved

07-00 Reserved
312

B

Table B-207 VRAI_BS Description

Name Type Reset By Reset State Function

BS[31:12] R/W PWR VME Power-up
Option

The base address specifies the lowest address in the
4 Kbyte VMEbus Register Access Image.

VRAI_CTL:
VAS

BS [31:24] BS [23:16] BS [15:12] The reset state is a function of the Power-up Option
behaviour of the VAS field in VRAI_CTL

A16 0 0 Power-up
Option VA
[28:25]

A24 0 Power-up
Option VA
[28:21]

0

A32 Power-up
Option VA
[28:21]

0 0

Table B-208 VMEbus CSR Control Register (VCSR_CTL)

Register Name: VCSR_CTL Offset: F80

Bits Function

31-24 EN Reserved

23-16 Reserved

15-08 Reserved

07-00 Reserved LAS

Table B-209 VCSR_CTL Description

Name Type Reset By
Reset
State

Function

EN R/W PWR,VM
E

0 Image Enable
0=Disable, 1=Enable

LAS R/W PWR
VME

Power-up
Option

PCI Bus Address Space
00=PCI Bus Memory Space, 01=PCI Bus I/O Space,
10=PCI Bus Configuration Space, 11=Reserved
313

B VMIVME-7697 Product Manual
The EN bit allows software to enable or disable the Universe II CR/CSR image. This
image can also be enabled by the VME64 Auto ID process.

For CSR’s not supported in the Universe II and for CR accesses, the LAS field
determines the PCI Bus command that will be generated when the cycle is mapped to
the PCI Bus.

For CSR’s not supported in the Universe II and for CR accesses, the translation offset
is added to the 24-bit VMEbus address to produce a 32-bit PCI Bus address. Negative
offsets are not supported.

Table B-210 VMEbus CSR Translation Offset (VCSR_TO)

Register Name: VCSR_TO Offset: F84

Bits Function

31-24 TO

23-16 TO Reserved

15-08 Reserved

07-00 Reserved

Table B-211 VCSR_TO Description

Name Type Reset By
Reset
State

Function

TO [31:24] R/W PWR
VME

0 Translation Offset

TO [23:19] R/W PWR
VME

Power-up
Option

Translation Offset
314

B

The Universe II VMEbus Master Interface is responsible for logging the parameters of
a posted write transaction that results in a bus error. This register holds the address
modifier code and the state of the IACK* signal. The register contents are qualified by
the V_STAT bit.

Table B-212 VMEbus AM Code Error Log (V_AMERR)

Register Name: V_AMERR Offset: F88

Bits Function

31-24 AMERR IACK M_ERR

23-16 V_STAT Reserved

15-08 Reserved

07-00 Reserved

Table B-213 V_AMERR Description

Name Type Reset By Reset
State

Function

AMERR
[5:0]

R PWR,
VME

0 VMEbus AM Code Error Log

IACK R PWR,
VME

0 VMEbus IACK Signal

M_ERR R PWR,
VME

0 Multiple Error Occurred
0=Single error, 1=At least one error has occurred
since the logs were frozen

V_STAT R/W PWR,
VME

0 VME Error Log Status
Reads:
0=logs invalid, 1=logs are valid and error logging
halted
Writes:
0=no effect, 1=clears V_STAT and enables error
logging
315

B VMIVME-7697 Product Manual

The Universe II PCI Master Interface is responsible for logging the parameters of a
posted write transaction that results in a bus error. This register holds the address. The
register contents are qualified by the V_STAT bit of the V_AMERR register.

Table B-214 VMEbus Address Error Log (VAERR)

Register Name: VAERR Offset: F8C

Bits Function

31-24 VAERR

23-16 VAERR

15-08 VAERR

07-00 VAERR

Table B-215 VAERR Description

Name Type Reset By
Reset
State

Function

VAERR
[31:0]

R PWR,
VME

0 VMEbus address error log

Table B-216 VMEbus Slave Image 4 Control (VSI4_CTL)

Register Name: VSI4_CTL Offset: F90

Bits Function

31-24 EN PWEN PREN Reserved

23-16 PGM SUPER Reserve
d

VAS

15-08 Reserved

07-00 LD64EN LLRMW Reserved LAS
316

B

This register provides the general, VMEbus and PCI controls for this slave image.
Note that only transactions destined for PCI Memory space are decoupled (the posted
write RXFIFO generates on Memory space transactions on the PCI Bus). This image
has 4 Kbyte resolution.

In order for a VMEbus slave image to respond to an incoming cycle, the BM bit in the
PCI_CSR register must be enabled.

The state of PWEN and PREN are ignored if LAS is not programmed memory space.

Table B-217 VSI4_CTL Description

Name Type Reset By
Reset
State

Function

EN R/W PWR, VME 0 Image Enable
0=Disable, 1=Enable

PWEN R/W PWR, VME 0 Posted Write Enable
0=Disable, 1=Enable

PREN R/W PWR, VME 0 Prefetch Read Enable
0=Disable, 1=Enable

PGM R/W PWR, VME 11 Program/Data AM Code
00=Reserved, 01=Data, 10=Program, 11=Both

SUPER R/W PWR, VME 11 Supervisor/User AM Code
00=Reserved, 01=Non-Privileged, 10=Supervisor,
11=Both

VAS R/W PWR, VME 0 VMEbus Address Space
000=A16, 001=A24, 010=A32, 011= Reserved,
100=Reserved, 101=Reserved, 110=User1,
111=User2

LD64EN R/W PWR, VME 0 Enable 64-bit PCI Bus Transactions
0=Disable, 1=Enable

LLRMW R/W PWR, VME 0 Enable PCI Bus Lock of VMEbus RMW
0=Disable, 1=Enable

LAS R/W PWR, VME 0 PCI Bus Address Space
00=PCI Bus Memory Space, 01=PCI Bus I/O Space,
10=PCI Bus Configuration Space, 11=Reserved
317

B VMIVME-7697 Product Manual
The base address specifies the lowest address in the address range that will be
decoded.

This image has 4 Kbyte resolution.

Table B-218 VMEbus Slave Image 4 Base Address Register (VSI4_BS)

Register Name: VSI4_BS Offset: F94

Bits Function

31-24 BS

23-16 BS

15-08 BS Reserved

07-00 Reserved

Table B-219 VSI4_BS Description

Name Type Reset By
Reset
State

Function

BS[31:12] R/W PWR
VME

0 Base Address

Table B-220 VMEbus Slave Image 4 Bound Address Register (VSI4_BD)

Register Name: VSI4_BD Offset: F98

Bits Function

31-24 BD

23-16 BD

15-08 BD Reserved

07-00 Reserved
318

B

The addresses decoded in a slave image are those which are greater than or equal to
the base address and less than the bound register. If the bound register is 0, then the
addresses decoded are those greater than or equal to the base address.

This image has 4 Kbyte resolution.

The translation offset is added to the source address that is decoded and this new
address becomes the destination address. If a negative offset is desired, the offset
must be expressed as a two’s complement.

This image has 4 Kbyte resolution.

Table B-221 VSI4_BD Description

Name Type Reset By
Reset
State

Function

BD[31:12] R/W PWR
VME

0 Bound Address

Table B-222 VMEbus Slave Image 4 Translation Offset (VSI4_TO)

Register Name: VSI4_TO Offset: F9C

Bits Function

31-24 TO

23-16 TO

15-08 TO Reserved

07-00 Reserved

Table B-223 VSI4_TO Description

Name Type Reset By
Reset
State

Function

TO[31:12] R/W PWR
VME

0 Translation Offset
319

B VMIVME-7697 Product Manual
Table B-224 VMEbus Slave Image 5 Control (VSI5_CTL)

Register Name: VSI5_CTL Offset: FA4

Bits Function

31-24 EN PWEN PREN Reserved

23-16 PGM SUPER Reserved VAS

15-08 Reserved

07-00 LD64EN LLRMW Reserved LAS

Table B-225 VSI5_CTL Description

Name Type Reset By
Reset
State

Function

EN R/W PWR
VME

0 Image Enable
0=Disable, 1=Enable

PWEN R/W PWR
VME

0 Posted Write Enable
0=Disable, 1=Enable

PREN R/W PWR
VME

0 Prefetch Read Enable
0=Disable, 1=Enable

PGM R/W PWR
VME

11 Program/Data AM Code
00=Reserved, 01=Data, 10=Program, 11=Both

SUPER R/W PWR
VME

11 Supervisor/User AM Code
00=Reserved, 01=Non-Privileged, 10=Supervisor,
11=Both

VAS R/W PWR
VME

0 VMEbus Address Space
000=Reserved, 001=A24, 010=A32, 011= Reserved,
100=Reserved, 101=Reserved, 110=User1,
111=User2

LD64EN R/W PWR
VME

0 Enable 64-bit PCI Bus Transactions
0=Disable, 1=Enable

LLRMW R/W PWR
VME

0 Enable PCI Bus Lock of VMEbus RMW
0=Disable, 1=Enable

LAS R/W PWR
VME

0 PCI Bus Address Space
00=PCI Bus Memory Space, 01=PCI Bus I/O Space,
10=PCI Bus Configuration Space, 11=Reserved
320

B

This register provides the general, VMEbus and PCI controls for this slave image.
Note that only transactions destined for PCI Memory space are decoupled (the posted
write RXFIFO generates on Memory space transactions on the PCI Bus).

In order for a VMEbus slave image to respond to an incoming cycle, the BM bit in the
PCI_CSR register must be enabled.

The state of PWEN and PREN are ignored if LAS is not programmed memory space.

The base address specifies the lowest address in the address range that will be
decoded.

Table B-226 VMEbus Slave Image 5 Base Address Register (VSI5_BS)

Register Name: VSI5_BS Offset: FA8

Bits Function

31-24 BS

23-16 BS

15-08 Reserved

07-00 Reserved

Table B-227 VSI5_BS Description

Name Type Reset By
Reset
State

Function

BS[31:16] R/W PWR
VME

0 Base Address

Table B-228 VMEbus Slave Image 5 Bound Address Register (VSI5_BD)

Register Name: VSI5_BD Offset: FAC

Bits Function

31-24 BD

23-16 BD

15-08 Reserved

07-00 Reserved
321

B VMIVME-7697 Product Manual
The addresses decoded in a slave image are those which are greater than or equal to
the base address and less than the bound register. If the bound register is 0, then the
addresses decoded are those greater than or equal to the base address,

The translation offset is added to the source address that is decoded and this new
address becomes the destination address. If a negative offset is desired, the offset
must be expressed as a two’s complement.

Table B-229 VSI5_BD Description

Name Type Reset By
Reset
State

Function

BD[31:16] R/W PWR
VME

0 Bound Address

Table B-230 VMEbus Slave Image 5 Translation Offset (VSI5_TO)

Register Name: VSI5_TO Offset: FB0

Bits Function

31-24 TO

23-16 TO

15-08 Reserved

07-00 Reserved

Table B-231 VSI5_TO Description

Name Type Reset By
Reset
State

Function

TO[31:16] R/W PWR
VME

0 Translation Offset
322

B

Table B-232 VMEbus Slave Image 6 Control (VS16_CTL)

Register Name: VSI6_CTL Offset: FB8

Bits Function

31-24 EN PWEN PREN Reserved

23-16 PGM SUPER Reserved VAS

15-08 Reserved

07-00 LD64EN LLRMW Reserved LAS

Table B-233 VSI6_CTL Description

Name Type Reset By
Reset
State

Function

EN R/W PWR
VME

0 Image Enable
0=Disable, 1=Enable

PWEN R/W PWR
VME

0 Posted Write Enable
0=Disable, 1=Enable

PREN R/W PWR
VME

0 Prefetch Read Enable
0=Disable, 1=Enable

PGM R/W PWR
VME

11 Program/Data AM Code
00=Reserved, 01=Data, 10=Program, 11=Both

SUPER R/W PWR
VME

11 Supervisor/User AM Code
00=Reserved, 01=Non-Privileged, 10=Supervisor,
11=Both

VAS R/W PWR
VME

0 VMEbus Address Space
000=Reserved, 001=A24, 010=A32, 011= Reserved,
100=Reserved, 101=Reserved, 110=User1,
111=User2

LD64EN R/W PWR
VME

0 Enable 64-bit PCI Bus Transactions
0=Disable, 1=Enable

LLRMW R/W PWR
VME

0 Enable PCI Bus Lock of VMEbus RMW
0=Disable, 1=Enable

LAS R/W PWR
VME

0 PCI Bus Address Space
00=PCI Bus Memory Space, 01=PCI Bus I/O Space,
10=PCI Bus Configuration Space, 11=Reserved
323

B VMIVME-7697 Product Manual
This register provides the general, VMEbus and PCI controls for this slave image.
Note that only transactions destined for PCI Memory space are decoupled (the posted
write RXFIFO generates on Memory space transactions on the PCI Bus).

In order for a VMEbus slave image to respond to an incoming cycle, the BM bit in the
PCI_CSR register must be enabled.

The state of PWEN and PREN are ignored if LAS is not programmed memory space.

The base address specifies the lowest address in the address range that will be
decoded.

Table B-234 VMEbus Slave Image 6 Base Address Register (VSI6_BS)

Register Name: VSI6_BS Offset: FBC

Bits Function

31-24 BS

23-16 BS

15-08 Reserved

07-00 Reserved

Table B-235 VSI6_BS Description

Name Type Reset By
Reset
State

Function

BS[31:16] R/W PWR
VME

0 Base Address

Table B-236 VMEbus Slave Image 6 Bound Address Register (VSI6_BD)

Register Name: VSI6_BD Offset: FC0

Bits Function

31-24 BD

23-16 BD

15-08 Reserved

07-00 Reserved
324

B

The addresses decoded in a slave image are those which are greater than or equal to
the base address and less than the bound register. If the bound register is 0, then the
addresses decoded are those greater than or equal to the base address,

The translation offset is added to the source address that is decoded and this new
address becomes the destination address. If a negative offset is desired, the offset
must be expressed as a two’s complement.

Table B-237 VSI6_BD Description

Name Type Reset By
Reset
State

Function

BD[31:16] R/W PWR
VME

0 Bound Address

Table B-238 VMEbus Slave Image 6 Translation Offset (VSI6_TO)

Register Name: VSI6_TO Offset: FC4

Bits Function

31-24 TO

23-16 TO

15-08 Reserved

07-00 Reserved

Table B-239 VSI6_TO Description

Name Type Reset By
Reset
State

Function

TO[31:16] R/W PWR
VME

0 Translation Offset
325

B VMIVME-7697 Product Manual

Table B-240 VMEbus Slave Image 7 Control (VSI7_CTL)

Register Name: VSI7_CTL Offset: FCC

Bits Function

31-24 EN PWEN PREN Reserved

23-16 PGM SUPER Reserved VAS

15-08 Reserved

07-00 LD64EN LLRMW Reserved LAS

Table B-241 VSI7_CTL Description

Name Type Reset By
Reset
State

Function

EN R/W PWR
VME

0 Image Enable
0=Disable, 1=Enable

PWEN R/W PWR
VME

0 Posted Write Enable
0=Disable, 1=Enable

PREN R/W PWR
VME

0 Prefetch Read Enable
0=Disable, 1=Enable

PGM R/W PWR
VME

11 Program/Data AM Code
00=Reserved, 01=Data, 10=Program, 11=Both

SUPER R/W PWR
VME

11 Supervisor/User AM Code
00=Reserved, 01=Non-Privileged, 10=Supervisor,
11=Both

VAS R/W PWR
VME

0 VMEbus Address Space
000=Reserved, 001=A24, 010=A32, 011= Reserved,
100=Reserved, 101=Reserved, 110=User1,
111=User2

LD64EN R/W PWR
VME

0 Enable 64-bit PCI Bus Transactions
0=Disable, 1=Enable

LLRMW R/W PWR
VME

0 Enable PCI Bus Lock of VMEbus RMW
0=Disable, 1=Enable

LAS R/W PWR
VME

0 PCI Bus Address Space
00=PCI Bus Memory Space, 01=PCI Bus I/O Space,
10=PCI Bus Configuration Space, 11=Reserved
326

B

This register provides the general, VMEbus and PCI controls for this slave image.
Note that only transactions destined for PCI Memory space are decoupled (the posted
write RXFIFO generates on Memory space transactions on the PCI Bus).

In order for a VMEbus slave image to respond to an incoming cycle, the BM bit in the
PCI_CSR register must be enabled.

The state of PWEN and PREN are ignored if LAS is not programmed memory space.

The base address specifies the lowest address in the address range that will be
decoded.

Table B-242 VMEbus Slave Image 7 Base Address Register (VSI7_BS)

Register Name: VSI7_BS Offset: FD0

Bits Function

31-24 BS

23-16 BS

15-08 Reserved

07-00 Reserved

Table B-243 VSI7_BS Description

Name Type Reset By
Reset
State

Function

BS[31:16] R/W PWR
VME

0 Base Address

Table B-244 VMEbus Slave Image 7 Bound Address Register (VSI7_BD)

Register Name: VSI7_BD Offset: FD4

Bits Function

31-24 BD

23-16 BD

15-08 Reserved

07-00 Reserved
327

B VMIVME-7697 Product Manual
The addresses decoded in a slave image are those which are greater than or equal to
the base address and less than the bound register. If the bound register is 0, then the
addresses decoded are those greater than or equal to the base address,

Table B-245 VSI7_BD Description

Name Type Reset By
Reset
State

Function

BD[31:16] R/W PWR
VME

0 Bound Address

Table B-246 VMEbus Slave Image 7 Translation Offset (VSI7_TO)

Register Name: VSI7_TO Offset: FD8

Bits Function

31-24 TO

23-16 TO

15-08 Reserved

07-00 Reserved

Table B-247 VSI7_TO Description

Name Type Reset By
Reset
State

Function

TO[31:16] R/W PWR
VME

0 Translation Offset
328

B

This register implements the Bit Clear Register as defined in the VME64 specification.
Note that the RESET bit can be written to only from the VMEbus.

Table B-248 VMEbus CSR Bit Clear Register (VCSR_CLR)

Register Name: VCSR_CLR Offset: FF4

Bits Function

31-24 RESET SYSFAIL FAIL Reserved

23-16 Reserved

15-08 Reserved

07-00 Reserved

Table B-249 VCSR_CLR Description

Name Type Reset By
Reset
State

Function

RESET R/W PWR
VME

0 Board Reset
Reads: 0=LRST# not asserted, 1=LRST# asserted
Writes: 0=no effect, 1=negate LRST#

SYSFAIL R/W All Power-up
Option

VMEbus SYSFAIL
Reads: 0=VXSYSFAIL not asserted, 1=VXSYSFAIL
asserted
Writes:0=no effect, 1=negate VXSYSFAIL

FAIL R PWR
VME

0 Board Fail
0=Board has not failed

Table B-250 VMEbus CSR Bit Set Register (VCSR_SET)

Register Name: VCSR_SET Offset: FF8

Bits Function

31-24 RESET SYSFAIL FAIL Reserved

23-16 Reserved

15-08 Reserved

07-00 Reserved
329

B VMIVME-7697 Product Manual
This register implements the Bit Set Register as defined in the VME64 specification.
Note that the RESET bit can be written to only from the VMEbus. Writing 1 to the
RESET bit asserts LRST#. The PCI reset remains asserted until a 1 is written to the
RESET bit of the VCSR_CLR register.

The base address specifies one of thirty-one available CR/CSR windows as defined in
the VME64 specification. Each window consumes 512 Kbytes of CR/CSR space.

Table B-251 VCSR_SET Description

Name Type Reset By
Reset
State

Function

RESET R/W PWR
VME

0 Board Reset
Reads: 0=LRST# not asserted, 1=LRST# asserted
Writes: 0=no effect, 1=assert LRST#

SYSFAIL R/W All Power-up
Option

VMEbus SYSFAIL
Reads: 0=VXSYSFAIL not asserted, 1=VXSYSFAIL
asserted
Writes:0=no effect, 1=assert VXSYSFAIL

FAIL R PWR
VME

0 Board Fail
0=Board has not failed

Table B-252 VMEbus CSR Base Address Register (VCSR_BS)

Register Name: VCSR_BS Offset: FFC

Bits Function

31-24 BS Reserved

23-16 Reserved

15-08 Reserved

07-00 Reserved

Table B-253 VCSR_BS Description

Name Type Reset By
Reset
State

Function

BS [23:19] R/W PWR
VME

0 Base Address
330

Appendix

C

Performance
Contents

PCI Slave Channel . 333
VME Slave Channel . 338
DMA Channel. 345
Summary . 348

Introduction

As a VMEbus bridge, the Universe II’s most important function is data transfer. This
function is performed by its three channels: the PCI Slave Channel, the VME Slave
Channel, and the DMA Channel. Since each channel operates independently of the
others and because each has its own unique characteristics, the following analysis
reviews the data transfer performance for each channel:

• “PCI Slave Channel” on page 333
• “VME Slave Channel” on page 338
• “DMA Channel” on page 345
• “Summary” on page 348

Where relevant, descriptions of factors affecting performance and how they might be
controlled in different environments are discussed.

The performance characteristics specified herein are provided by Tundra corporation
and were characterized under ideal conditions. These specifications do not take into
account performance lowering situations such as: the use of non-ideal slaves, the
implementation of endian-conversion, and the implementation of hardware designed
to fix Universe II errata. Performance will thus be lower in light of these real-world
conditions.
331

C VMIVME-7697 Product Manual
The decoupled nature of the Universe II can cause some confusion in discussing
performance parameters. This is because, in a fully decoupled bus bridge each of the
two opposing buses operates at its peak performance independently of the other. The
Universe II, however, because of the finite size of its FIFOs does not represent a 100%
decoupled bridge. As the FIFOs fill or empty (depending on the direction of data
movement) the two buses tend to migrate to matched performance where the higher
performing bus is forced to slow down to match the other bus. This limits the
sustained performance of the device. Some factors such as the PCI Aligned Burst Size
and VME request/release modes can limit the effect of FIFO size and enhance
performance.

Another aspect in considering the performance of a device is bandwidth
consumption. The greater bandwidth consumed to transfer a given amount of data,
the less is available for other bus masters. Decoupling significantly improves the
Universe II’s bandwidth consumption, and on the PCI bus allows it to use the
minimum permitted by the PCI specification.

To simplify the analysis and allow comparison with other devices, Universe II
performance has been calculated using the following assumptions:

As a PCI master:

• one clock bus grant latency
• zero wait state PCI target

As a VME master:

• ideal VME slave response (DS* to DTACK* = 30ns)

Assumed as part of any calculation on VME performance is the inclusion of VME
transceivers with propagation delay of 4 ns.

This appendix presents sustained performance values. In contrast, the Universe User
manual (9000000.MD303.01) provided peak performance numbers. This explains why
some of the performance numbers in this document appear to be lower than for the
original Universe.
332

PCI Slave Channel C
PCI Slave Channel

Coupled Cycles

Request of VMEbus

The Universe II has a “Coupled Window Timer” (CWT in the LMISC register) which
permits the coupled channel to maintain ownership of the VMEbus for an extended
period beyond the completion of a cycle. This permits subsequent coupled accesses to
the VMEbus to occur back-to-back without requirement for re-arbitration.

The CWT should be set for the expected latency between sequential coupled accesses
attempted by the CPU. In calculating the latency expected here, the designer needs to
account for latency across their host PCI bridge as well as latency encountered in
re-arbitration for the PCI bus between each coupled access. Care must be taken not to
set the CWT greater than necessary as the Universe II blocks all decoupled write
transactions with target-retry, while the coupled channel owns the VMEbus. It is only
when the CWT has expired that the PCI bus is permitted to enqueue transactions in
the TXFIFO.

When a coupled access to the VMEbus is attempted, the Universe II generates a
target-retry to the PCI initiator if the coupled path does not currently own the
VMEbus. This occurs if the Universe II is not currently VMEbus master, or if the DMA
is currently VMEbus master or if entries exist in the TXFIFO.

If the Universe II does not have ownership of the VMEbus when a coupled access is
attempted, the Universe II generates a target-retry with a single wait state (See
Figure C-2). The request for the VMEbus occurs shortly after the cycle is retried.

Read Cycles

Once the coupled channel owns the VMEbus, the Universe II propagates the cycle out
to the VMEbus. Figure C-2 shows such a coupled read cycle against an ideal VME
slave. There are 10 wait states inserted by the Universe II on the PCI bus before it
responds with TRDY#. Further wait states are inserted for each extra 30ns in slave
response.

Performing 32-bit PCI reads from VME gives a sustained performance of
approximately 8.5 MB/s. Figure C-2 shows several of these accesses occurring
consecutively.
333

C VMIVME-7697 Product Manual
Figure C-1 Coupled Read Cycle - Universe II as VME Master

Figure C-2 Several Coupled Read Cycles - Universe II as VME Master

A[31:1]

AS*

D[31:0]

WRITE*

DS0*

DS1*

DTACK*

PCI

VMEbus

CLK

FRAME#

AD[31:0]

C/BE[3:0]

IRDY#

TRDY#

STOP#

DEVSEL#

A[31:1]

AS*

D[31:0]

WRITE*

DS0*

DS1*

DTACK*

PCI

VMEbus

CLK

FRAME#

AD[31:0]

C/BE[3:0]

IRDY#

TRDY#

STOP#

DEVSEL#
334

PCI Slave Channel C
Write Cycles

The performance of coupled write cycles is similar to that of coupled read cycles
except that an extra wait state is inserted. Figure C-3 shows a coupled write cycle
against an ideal VME slave. Ten wait states are inserted on the PCI bus by the
Universe II before it responds with TRDY#. A slower VME slave response translates
directly to more wait states on the PCI bus.

The sustained performance, when generating write cycles from a 32-bit PCI bus
against an ideal VME slave is approximately 9.3 MB/s.

Figure C-3 Coupled Write Cycle - Universe II as VME Master

Decoupled Cycles

Only write transactions can be decoupled in the PCI Target Channel.

Effect of the PWON Counter

The Posted Write On Counter (PWON in the MAST_CTL register) controls the
maximum tenure that the PCI Slave Channel will have on the VMEbus. Once this
channel has gained ownership of the VMEbus for use by the TXFIFO, it only
relinquishes it if the FIFO becomes empty or if the number of bytes programmed in
the counter expires. In most situations, the FIFO empties before the counter expires.
However, if a great deal of data is being transferred by a PCI initiator to the VMEbus,
then this counter ensures that only a fixed amount of VME bandwidth is consumed.

A[31:1]

AM[5:0]

LWORD*

AS*

D[31:0]

WRITE*

DS0*

DS1*

DTACK*

PCI

VMEbus

CLK

FRAME#

AD[31:0]

C/BE[3:0]

IRDY#

TRDY#

STOP#

DEVSEL#
335

C VMIVME-7697 Product Manual
Limiting the size of the PWON counter imposes greater arbitration overhead on data
being transferred out from the FIFO. This is true even when programmed for ROR
mode since an internal arbitration cycle will still occur. The value for the PWON
counter must be weighed from the system perspective with the impact of imposing
greater latency on other channels (the DMA and Interrupt Channels) and other VME
masters in gaining ownership of the VMEbus. On a Universe II equipped card which
is only performing system control functions, the counter would be set to minimum.
On a card which is responsible for transferring considerable amounts of
performance-critical data the counter will be set much higher at the expense of system
latency.

PCI Target Response

As the PCI target during decoupled write operations to the VMEbus, the Universe II
responds in one of two manners:

1. It immediately issues a target retry because the FIFO does not have sufficient
room for a burst of one address phase and 128 bytes of data. (There are no
programmable watermarks in the PCI Target Channel. The PCI Aligned Burst
Size (PABS) does not affect the PCI Target Channel.)

2. It responds as a zero-wait state target receiving up to 256 bytes in a transaction.
When the FIFO is full or a 256-byte boundary has been reached, the Universe II
issues a Target-Disconnect.

In either case, the Universe II will consume the minimum possible PCI bandwidth,
never inserting wait states.

VME Master Performance

As a VME master, the Universe II waits until a full transaction has been enqueued in
the Tx-FIFO before requesting the VMEbus and generating a VME cycle. If the
VMEbus is already owned by the decoupled path (see “Effect of the PWON Counter”
on page 335), the Universe II still waits until a full transaction is enqueued in the FIFO
before processing it.

If configured to generate non-block transfers, the Universe II can generate
back-to-back VME transfers with cycle times of approximately 180ns (AS* to AS*)
against an ideal VME slave (30-45 ns). A greater cycle time is required between the
termination of one full enqueued transaction and the start of the next. This
inter-transaction time is approximately 210ns. As such, the longer the PCI transaction,
the greater the sustained performance on the VMEbus. With 64-byte PCI transactions,
the sustained rate is 43 MB/s. With 32-byte transactions, this drops to 23 MB/s. Each
of these numbers is calculated with no initial arbitration or re-arbitration for the bus.
Figure C-4 shows the Universe II dequeueing a transaction with multiple non-block
VME transfers.
336

PCI Slave Channel C
Block transfers significantly increase performance. The inter-transaction period
remains at approximately 210 ns for BLTs and MBLTs, but the data beat cycle time
(DS* to DS*) drops to about 120ns against the same ideal slave. Again the length of the
burst size affects the sustained performance because of the inter-transaction time. For
BLTs operating with a burst size of 64 bytes, the sustained performance is 37 MB/s,
dropping to 33 MB/s for a burst size of 32 bytes. MBLTs operating with 64-byte bursts
perform at a sustained rate of 66 MB/s, dropping to 50 MB/s for 32 bytes.

Figure C-4 Several Non-Block Decoupled Writes - Universe II as VME
Master

Figure C-5 BLT Decoupled Write - Universe II as VME Master

A[31:1]

AS*

D[31:0]

WRITE*

DS0*

DS1*

DTACK*

VMEbus

A[31:1]

AS*

D[31:0]

WRITE*

DS0*

DS1*

DTACK*

VMEbus
337

C VMIVME-7697 Product Manual
VME Slave Channel

Coupled Cycles

Block vs. non-Block Transfers

The Universe II VME Slave Channel handles both block and non-block coupled
accesses in similar manners. Each data beat is translated to a single PCI transaction.
Once the transaction has been acknowledged on the PCI bus, the Universe II asserts
DTACK* to terminate the VME data beat.

A non-block transfer and the first beat of a BLT transfer have identical timing. In each,
the Universe II decodes the access and then provides a response to the data beat.
Subsequent data beats in the BLT transfer are shorter than the first due to the fact that
no address decoding need be performed in these beats.

MBLT transfers behave somewhat differently. The first beat of an MBLT transfer is
address only, and so the response is relatively fast. Subsequent data beats require
acknowledgment from the PCI bus. With a 32-bit PCI bus, the MBLT data beat (64 bits
of data) requires a two data beat PCI transaction. Because of this extra data beat
required on the PCI bus, the slave response of the Universe II during coupled MBLT
cycles is at least one PCI clock greater (depending upon the response from the PCI
target) than that during BLT cycles.

Read Cycles

During coupled cycles, the Universe II does not acknowledge a VME transaction until
it has been acknowledged on the PCI bus. Because of this the VME slave response
during coupled reads is directly linked to the response time for the PCI target. Each
clock of latency in the PCI target response translates directly to an extra clock of
latency in the Universe II’s VME coupled slave response.

The address of an incoming VME transaction is decoded and translated to an
equivalent PCI transaction. Typically, four PCI clock periods elapse between the initial
assertion of AS* on the VMEbus and the assertion of REQ# on the PCI bus. During the
data only portion of subsequent beats in block transfers, the time from DS* assertion
to REQ# is about 4 clocks. If the PCI bus is parked at the Universe II, no REQ# is
asserted and FRAME# is asserted 4 clocks after AS*.

From assertion of REQ#, the Universe II does not insert any extra wait states in its
operations as an initiator on the PCI bus. Upon receiving GNT# asserted, the Universe
II asserts FRAME# in the next clock and after the required turn-around phase, asserts
IRDY# to begin data transfer.
338

VME Slave Channel C
Once TRDY# is sampled asserted, the Universe II responds back to the VMEbus by
asserting DTACK*. If the initiating VME transaction is 64-bit and the PCI bus or PCI
bus target are 32 bit, then two data transfers are required on PCI before the Universe II
can respond with DTACK*. No wait states are inserted by the Universe II between
these two data beats on PCI. The assertion of DTACK* from the assertion of TRDY#
has a latency of 1 clock. Figure C-6 shows a typical non-block coupled read cycle.

When accessing a PCI target with a zero wait state response, the Universe II VME
response becomes approximately 10 PCI clock periods (about 301ns in a 33MHz
system) during single cycles, and the first beat of a BLT. During pure data beats in
both BLT and MBLTs, the slave response becomes 8 clocks.

Figure C-6 Coupled Read Cycle - Universe II as VME Slave

Write Cycles

Coupled writes in the VME Slave Channel operate in a similar fashion to the coupled
reads. The VME slave response is directly linked to the response of the PCI target. In
generating the request to the PCI bus, coupled write cycles require one further clock
over reads. Hence, during single cycles, or the first beat of a BLT, the time from AS* to
REQ# asserted is 3-4 PCI clocks, while DS* to REQ# is 3 clocks for the data beat
portion of a block transfer. If the PCI bus is parked at the Universe II, REQ# is not
asserted and the transaction begins immediately with assertion of FRAME#.

As with reads, the response from the PCI target’s assertion of TRDY# to DTACK*
assertion by the Universe II adds one clock to the transfer. Figure C-7 shows a typical
non-block coupled write cycle.

A[31:1]

AS*

D[31:0]

WRITE*

DS0*

DS1*

DTACK*

PCI

VMEbus

CLK

FRAME#

AD[31:0]

C/BE[3:0]

IRDY#

TRDY#

STOP#

DEVSEL#
339

C VMIVME-7697 Product Manual
Because write cycles on the PCI bus require one less clock than reads, due to the
absence of the turn-around phase between address and data phases, the overall slave
response during coupled writes works out to the same as coupled reads against an
identical target. In accessing a zero-wait state PCI target, the Universe II’s coupled
write slave response then is approximately 10 PCI clocks. During subsequent data
beats of a block transfer (either BLT or MBLT), the slave response (DS* to DTACK*) is
8 clocks.

Figure C-7 Coupled Write Cycle - Universe II as VME Slave
(bus parked at Universe II)

Decoupled Cycles

Write Cycles

Effect of the PCI Aligned Burst Size

The PCI Aligned Burst Size (PABS in the MAST_CTL register) affects the maximum
burst size that the Universe II generates onto the PCI bus; either 32, 64, or 128 bytes.
Note that the VME Slave Channel only generates PCI bursts in response to incoming
block transfers.

The greater burst size means less arbitration and addressing overhead. However,
incumbent in this is the greater average latency for other devices in the PCI system.
Hence, in the VME Slave Channel, the burst size is a trade-off between performance
and latency.

A[31:1]

AS*

D[31:0]

WRITE*

DS0*

DS1*

DTACK*

PCI

VMEbus

CLK

FRAME#

AD[31:0]

C/BE[3:0]

IRDY#

TRDY#

STOP#

DEVSEL#
340

VME Slave Channel C
VME Slave Response

As a VME slave, the Universe II accepts data into its RXFIFO with minimum delay
provided there is room in the FIFO for a further data beat. Assertion of DTACK* is
delayed if there is insufficient room in the FIFO for the next data beat.

During non-block transfers, the Universe II must both decode the address and
enqueue the data before asserting DTACK* to acknowledge the transfer. Because of
this, the slave response during non-block transfers is considerably slower than block
transfers. This slave response time is 127ns.

During BLT transfers, the slave response in the first data beat being both address
decode and data transfer is the same as a non-block transfer, i.e., 127ns. Subsequent
data beats, however, are much faster. Response time for these is 50 to 56ns.

During MBLT transfers, the first phase is address only and the slave response is 127ns.
Subsequent phases are data only and so the slave response is the same as with BLTs
i.e., 50 to 56ns.

Note that the slave response is independent of the data size. D16 non-block transfers
have a slave response identical to D32. BLT data beats have slave responses identical
to MBLT data beats.

Figure C-8 Non-Block Decoupled Write Cycle - Universe II as VME Slave

A[31:1]

AM[5:0]

LWORD*

AS*

D[31:0]

WRITE*

DS0*

DS1*

DTACK*

PCI

VMEbus

CLK

FRAME#

AD[31:0]

C/BE[3:0]

IRDY#

TRDY#

STOP#

DEVSEL#
341

C VMIVME-7697 Product Manual
Figure C-9 BLT Decoupled Write Cycle - Universe II as VME Slave

Figure C-10 MBLT Decoupled Write Cycle - Universe II as VME Slave

A[31:1]

AM[5:0]

AS*
D[31:0]

WRITE*
DS0*

DS1*

DTACK*

PCI

VMEbus

CLK

FRAME#

AD[31:0]

C/BE[3:0]

IRDY#

TRDY#

STOP#

DEVSEL#

A[31:1]

AM[5:0]

AS*
D[31:0]

WRITE*
DS0*

DS1*

DTACK*

PCI

VMEbus

CLK

REQ#

GNT#
FRAME#

AD[31:0]

C/BE[3:0]

IRDY#

TRDY#

STOP#

DEVSEL#
342

VME Slave Channel C
PCI Master Performance

The Universe II supports bus parking. If the Universe II requires the PCI bus it will
assert REQ# only if its GNT# is not currently asserted. When the PCI Master Module
is ready to begin a transaction and its GNT# is asserted, the transfer begins
immediately. This eliminates a possible one clock cycle delay before beginning a
transaction on the PCI bus which would exist if the Universe II did not implement bus
parking. Bus parking is described in Section 3.4.3 of the PCI Specification (Rev. 2.1).

On the PCI bus, the Universe II dequeues data from the RXFIFO once a complete VME
transaction has been enqueued or once sufficient data has been enqueued to form a
PCI transaction of length defined by the PABS field.

Since the Universe II does not perform any address phase deletion, non-block
transfers are dequeued from the RXFIFO as single data beat transactions. Only block
transfers result in multi-data beat PCI transactions; typically 8, 16 or 32 data beats. In
either case, the Universe II does not insert any wait states as a PCI master. The clock,
after the bus has been granted to the Universe II, drives out FRAME# to generate the
address phase. The data phases begin immediately on the next clock. If there is more
than one data phase, each phase will immediately follow the acknowledgment of the
previous phase.

In each case, because of the lack of any wait states as a PCI master, the Universe II is
consuming the minimum possible bandwidth on the PCI bus, and data will be written
to the PCI bus at an average sustained rate equal to the rate at which the VME master
is capable of writing it.

The sustained performance on the PCI bus performing single data beat write
transactions to a 32-bit PCI bus is 15 MB/s; double this for a 64-bit bus. When
performing 32-byte transactions the sustained performance increases to 106 MB/s,
120 MB/s with 64-byte transactions. Again, these can be doubled for a 64-bit PCI bus.
Bear in mind that the PCI bus can only dequeue data as fast as it is being enqueued on
the VMEbus. Hence, as the RXFIFO empties, the sustained performance on the PCI
will drop down to match the lower performance on the VME side. However, even
with the decreased sustained performance, the consumed bandwidth will remain
constant (no extra wait states are inserted while the Universe II is master of the PCI
bus.)

These numbers assume the PCI bus is granted to the Universe II immediately and that
the writes are to a zero-wait state PCI target capable of accepting the full burst length.
Figure C-2 through Figure C-10 show the Universe II responding to non-block, BLT
and MBLT write transactions to a 32-bit PCI bus. Even better performance is obtained
with PCI bus parking.

Prefetched Read Cycles

To minimize its slave response, the Universe II generates prefetched reads to the PCI
bus in response to BLT and MBLT reads coming in from the VMEbus. This option
must first be enabled on a per image basis.
343

C VMIVME-7697 Product Manual
When enabled, the Universe II will respond to a block read by performing burst reads
on the PCI bus of length defined by the PCI Aligned Burst Size (PABS in the
MAST_CTL register). These burst reads continue while the block transfer is still active
on the VMEbus (AS* not negated) and there is room in the RDFIFO. If there is
insufficient room in the RDFIFO to continue (a common occurrence since the Universe
II is capable of fetching data from the PCI bus at a much faster rate than a VME master
is capable of receiving it), then pre-fetching stops and only continues once enough
room exists in the RDFIFO for another full burst size.

The first data beat of a block transfer must wait for the first data beat to be retrieved
from the PCI bus—this is essentially a coupled transfer. See the section on coupled
transfers for details on coupled performance. However, once the pre-fetching begins,
data is provided by the Universe II in subsequent data beats with a slave response of
57ns. This continues while there is data in the RDFIFO. If the RDFIFO empties
because data is being fetched from the PCI bus too slowly, wait states are inserted on
the VMEbus awaiting the enqueueing of more data.

On the PCI bus, the Universe II fetches data at 89 MB/s with PABS set to 32-byte
transactions, 106 MB/s when set to 64-byte transactions. Even better performance is
obtained if PABS is set for 128-byte transactions. Once the RDFIFO fills, pre-fetching
slows to match the rate at which it is being read by the external VMEbus master.
Bandwidth consumption, however, remains constant, only the idle time between
transactions increases.

Figure C-11 BLT Pre-fetched Read Cycle - Universe II as VME Slave

A[31:1]

AM[5:0]

LWORD*

AS*

D[31:0]

WRITE*

DS0*

DS1*

DTACK*

PCI

VMEbus

CLK

REQ#

GNT#

FRAME#

AD[31:0]

C/BE[3:0]

IRDY#

TRDY#

STOP#

DEVSEL#
344

DMA Channel C
DMA Channel

Relative FIFO sizes

Two fixed “watermarks” in the DMA Channel control the Universe’s II requisition of
the PCI bus and VMEbus. The DMAFIFO PCI Watermark is 128 bytes. This means
that during reads from the PCI bus, the Universe II will wait for 128 bytes to be free in
the DMAFIFO before requesting the PCI bus. For PCI writes, the Universe II waits for
128 bytes of data to be in the FIFO before requesting the PCI bus. The DMAFIFO
VMEbus watermark is 64 bytes. This means that during reads from the VMEbus, the
Universe II will wait for 64 bytes to be free in the DMAFIFO before requesting the
Vmebus. For VMEbus writes, the Universe II waits for 64 bytes of data to be in the
FIFO before requesting the VMEbus.

These watermarks have been tailored for the relative speeds of each bus, and provide
near optimal use of the DMA channel.

VMEbus Ownership Modes

The DMA has two counters that control its access to the VMEbus: the VON (VMEbus
On) counter and the VOFF (VMEbus Off) timer. The VON counter controls the
number of bytes that are transferred by the DMA during any VMEbus tenure, while
the VOFF timer controls the period before the next request after a VON time-out.

While the bus is more optimally shared between various masters in the system, and
average latency drops as the value programmed for the VON counter drops, the
sustained performance of the DMA also drops. The DMA is typically limited by its
performance on the VMEbus. As this drops off with greater re-arbitration cycles, the
average VMEbus throughput will drop. Even if the Universe II is programmed for
ROR mode, and no other channels or masters are requesting the bus, there will be a
period of time during which the DMA will pause its transfers on the bus, due to the
VON counter expiring.

An important point to consider when programming these timers is the more often the
DMA relinquishes its ownership of the bus, the more frequently the PCI Slave
Channel will have access to the VMEbus. If DMA tenure is too long, the TXFIFO may
fill up causing any further accesses to the bus to be retried. In the same fashion, all
coupled accesses will be retried while the DMA has tenure on the bus. This can
significantly affect transfer latency and should be considered when calculating the
overall system latency.

VME Transfers

On the VMEbus, the Universe II can perform D08 through D64 transactions in either
block or non-block mode. The time to perform a single beat, however, is independent
of the bus width being used. Hence, a D08 transaction will transfer data at 25% the
rate of a D32, which in turn is half that for D64.
345

C VMIVME-7697 Product Manual
There is a significant difference between the performance for block vs. non-block
operations. Because of the extra addressing required for each data transfer in
non-block operations, the DMA performance is about half that compared to operating
in block mode. Moreover, considering that most VME slaves respond less quickly in
non-block mode, the overall performance may drop to one-quarter of that achievable
in block mode.

When programmed for Release-When-Done operation, the Universe II will perform
an early release of BBSY* when the VON counter reaches its programmed limit. This
gives other masters a chance to use the VMEbus (and possibly access the VME Slave
Channel), but may decrease performance of the DMA Channel; this factor may also
play in favor of the DMA Channel, by pausing the PCI Target Channel’s use of the
VMEbus.

Read Transfers

When performing non-block reads on the VMEbus, the Universe II cycle time (AS* to
next AS*) is approximately 209ns, which translates to about 20 MB/s when
performing D32 transfers. For block transfers the cycle time (DS* to next DS*) falls to
about 156ns, or 25 MB/s for D32 transfers. For multiplexed block transfers (MBLTs)
the cycle time remains the same, but because the data width doubles, the transfer rate
increases to about 50MB/s.

Write Transfers

Non-block writes to the VMEbus occur at 180ns cycle time (AS* to next AS*), or
23MB/s during D32 transfers. Block writes, however, are significantly faster with a
116ns cycle time (DS* to next DS*), or 36 MB/s. Multiplexed block transfers have
slightly longer cycle times at about 112ns (DS* to next DS*), or 62 MB/s with D64
MBLTs.

PCI Transfers

As a master on the PCI bus, the Universe II DMA follows the same general set of rules
as the VME Slave channel does: it never inserts any wait states into the transfer (i.e., it
never negates IRDY# until the transaction is complete) and will whenever possible,
generate full aligned bursts as set in the PABS field of the MAST_CTL register.

Between transactions on the PCI bus, the Universe II DMA typically sits idle for 6
clocks. Hence, minimizing the number of idle periods and re-arbitration times by
setting PABS to its maximum value of 128 bytes may increase the performance of the
DMA on this bus. Higher PABS values imply that the Universe II will hold on to both
the PCI bus and the VMEbus for longer periods of time. The reason that PABS also
may impact on VMEbus tenure is that (in the case of PCI writes), the DMA FIFO is
less likely to fill, and (in the case of PCI reads) the DMA is less likely to go empty.
However, given the relative speeds of the buses, and the relative watermarks, the
effect of PABS on VMEbus utilization is not as significant as its effects on the PCI bus.
346

DMA Channel C
While higher values of PABS increase DMA throughput, they may increase system
latency. That is, there will be a longer latency for other PCI transactions, including
possible transactions coming through the VME Slave Channel (since the DMA
channel will own the PCI bus for longer periods of time). Also, accesses between other
PCI peripherals will, on average, have a longer wait before being allowed to perform
their transactions. PCI latency must be traded off against possible DMA performance.

Although both read and write transactions occur on the PCI bus with zero wait states,
there is a period of six PCI clocks during which the Universe II remains idle before
re-requesting the bus for the next transaction. PCI bus parking may be used to
eliminate the need for re-arbitration.

With PABS set for 32-byte transactions on a 32-bit PCI bus, this translates to a peak
transfer rate of 97 MB/s for reads (including pre-fetching), 98 MB/s for writes,
doubling to 194 and 196 for a 64-bit PCI bus. With PABS set for 64-byte transactions,
the peak transfer rate increases to 118 MB/s for reads, 125 MB/s for writes on a 32-bit
PCI bus—236 MB/s and 250 MB/s respectively for 64-bit PCI buses. The numbers for
writes to PCI assume that data are read from VME using BLTs.

Figure C-12 PCI Read Transactions During DMA Operation

Figure C-13 Multiple PCI Read Transactions During DMA Operation

PCI

CLK

REQ#

GNT#

FRAME#

AD[31:0]

C/BE[3:0]

IRDY#

TRDY#

STOP#

DEVSEL#

PCI

CLK

REQ#

GNT#

FRAME#

AD[31:0]

C/BE[3:0]

IRDY#

TRDY#

STOP#

DEVSEL#
347

C VMIVME-7697 Product Manual
Summary

Table C-1 PCI Slave Channel Performance

Cycle Type Performance

Coupled Read
 - PCI target response 8 PCI clocks

Coupled Write
 - PCI target response 9 PCI clocks

Decoupled Write
 - non-block D32
 - VME cycle time
 - sustained perf (32-byte PABS)
 - sustained perf (64-byte PABS)
 - D32 BLT
 - VME cycle time
 - sustained perf (32-byte PABS)
 - sustained perf (64-byte PABS)
 - D64 MBLT
 - VME cycle time
 - sustained perf (32-byte PABS)
 - sustained perf (64-byte PABS)

180 ns
23 MB/s
43 MB/s

119 ns
32 MB/s
35 MB/s

119 ns
53 MB/s
59 MB/s

Table C-2 VME Slave Channel Performance

Cycle Type Performance

VME Slave Response
(ns)

Coupled Read
 - non-block
 - D32 BLT

- D64 BLT

301
293
322

Coupled Write
- non-block

 - D32 BLT
- D64 BLT

278
264
292
348

Summary C
Pre-fetched Read
 - VME slave response (1st data beat)
 - VME slave response (other data beats)

293
57

Decoupled Write
 - non-block slave response
 - block slave response (1st data beat)

- block slave response (other data
beats)

127
127
50

Table C-3 DMA Channel Performance

Cycle Type Performance

MB/s

PCI Reads
 - 32-byte PABS
 - 64byte PABS

97 (194)a

118 (236)

a.64-bit PCI performance in brackets.

PCI Writes
 - 32-byte PABS
 - 64byte PABS

98 (196)
125 (250)

VME Reads
 - non-block D32
 - D32 BLT
 - D64 MBLT

18
22
45

VME Writes
 - non-block D32
 - D32 BLT
 - D64 MBLT

22
32
65

Table C-2 VME Slave Channel Performance (Continued)

Cycle Type Performance

VME Slave Response
(ns)
349

C VMIVME-7697 Product Manual
350

Appendix

D

Typical Applications
Contents

VME Interface. 351
PCI Bus Interface . 358
Manufacturing Test Pins . 361

VME Interface

Being a bridge between standard interfaces, the Universe II requires minimal external
logic to interface to either the VMEbus or to the PCI bus. In most applications, only
transceivers to buffer the Universe II from the VMEbus, plus some reset logic are all
that is required. The following information should be used only as a guide in
designing the Universe II into a PCI/VME application. Each application will have its
own set-up requirements.

Transceivers

The Universe II has been designed such that it requires full buffering from VMEbus
signals. Necessary drive current to the VMEbus is provided by the transceivers while
at the same time isolating the Universe II from potentially noisy VMEbus backplanes.
In particular, complete isolation of the Universe II from the VMEbus backplane allows
use of ETL transceivers which provide high noise immunity as well as use in live
insertion environments. The VME community has recently standardized “VME64
Extensions” (ANSI VITA 1.1) which among other new VME features, facilitates live
insertion environments.
351

D VMIVME-7697 Product Manual
If neither live insertion nor noise immunity are a concern, those buffers that provide
input only (U15 and U17 in Figure D-1, below) may be omitted. The daisy chain input
signals, BGIN[3:0] and IACKIN, have Schmitt trigger inputs, which should rectify any
minor noise on these signals. If considerable noise is expected, the designer may wish
to put external filters on these signals. Bear in mind that any filtering done on these
signals will detrimentally affect the propagation of bus grants down the daisy chain.
Only extremely noisy systems or poorly designed backplanes should require these
filters.

Figure D-1 shows one example of how to connect the Universe II to the VMEbus. The
transceivers in this example were chosen to meet the following criteria:

• provide sufficient drive strength as required by the VME specification (see
Table D-1 on page 352)

• meet Universe II skew requirements
• minimize part counts

U15 and U17 in Figure D-1 are optional devices. They will provide better noise
immunity.

The Universe II, with the addition of external transceivers, is designed to meet the
timing requirements of the VME specification. Refer to the VME64 specification
(ANSI VITA 1.0) for details on the VME timing. In order to meet the requirements
outlined in this specification, the external transceivers must meet certain
characteristics as outlined in Table D-2 on page 352.

Table D-1 VMEbus Signal Drive Strength Requirements

VME bus Signal
Required Drive

Strength

A[31:1], D[31:0], AM[5:0], IACK*, LWORD*, WRITE*,
DTACK*

IOL ≥ 48mA
IOH ≥ 3mA

AS*, DS[1:0]*, IOL ≥ 64mA
IOH ≥ 3mA

SYSCLK* IOL ≥ 64mA
IOH ≥ 3mA

BR[3:0]*, BSY*, IRQ[7:0]*, BERR*, SYSFAIL*, SYSRESET* IOL≥ 48mA

Table D-2 VMEbus Transceiver Requirements

Parameter From To Timing

(Input) (Output) Min Max

VA, VD, VAM, VIACK, VLWORD, VWRITE, VAS, VDSx, VDTACKa

skew (pkg to pkg) A B 8 ns
352

VME Interface D
Figure D-1 Universe II Connections to the VMEbus Through TTL Buffers

Vcc

VXBBSY

VRBBSY#

VXSYSFAIL

VRSYSFAIL#

VXSYSRST

VRSYSRST#

VXBERR

VRBERR#

VXBR[3:0]

VRBR[3:0]#

VXIRQ[7:1]

VRIRQ[7:1]#
7

7

4

4

U14:A

U15:A

VRACFAIL#

U15:C

U14:C

U14:D

U15:D

U14:E

U15:E

U14:F-H, U16:A-D

U15:F-H, U17:A-D

U16:E-H

U17:E-H

VIACKIN#

VIACKOUT#

VBGIN#[3:0]

VBGOUT#[3:0] 4

4

U15:B

BBSY*

ACFAIL*

SYSFAIL*

SYSRST*

BERR*

IRQ[7:1]*

BR[3:0]*

BG[3:0]IN*

BG[3:0]OUT*

IACKIN*

IACKOUT*

Universe VMEbus

U1-U9
U10, U12
U11, U13
U14, U16
U15, U17

'245
'126
'125
'642
'241

Note: U15 & U17 are optional
353

D VMIVME-7697 Product Manual
 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6
B7

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

 G

 DIR

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

 G

 DIR

 A0

 A1

 A2

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

B0

B1

B2

B3

B4

B5

B6

B7

U10:A

U11:

U10:B

U11:B

U11:C

U10:D

U11:D

U12:A

U12:B

U13:A

U11:A

Universe VMEbus
A[31:1],
LWORD*

D[31:0]

AM[5:0]

AS*

DS[1:0]*

DTACK*

SYSCLK

BCLR*

VSCON_DIR

VBCLR#

SYSCLK#

VSLAVE_DIR

VDTACK#

VDS_DIR

VDS1#

VDS0#

VAS_DIR

VAS#

VAM[5:0]
 VWRITE#

VIACK#

WRITE*
IACK*

VAM_DIR

VD[31:0]

VA[31:1],
LWORD*

VD_DIR

VA_DIR
VOE#

U1 U2 U3 U4

U5 U6 U7 U8

U9

U10:C
354

Figure D-1 Universe II Connections to the VMEbus Through TTL Buffers
(continued)

VME Interface D
F Series transceivers meet the requirements specified in Table D-1 on page 352 and
Table D-2 on page 352. A faster family such as ABT, may also be used. Care should be
taken in the choice of transceivers to avoid ground bounces and also to minimize
crosstalk incurred during switching. To limit the effects of crosstalk, the amount of
routing under these transceivers must be kept to a minimum. Daisy chain signals can
be especially susceptible to crosstalk.

Should the designer wish to put any further circuitry between the Universe II and the
VMEbus, that circuitry must meet the same timing requirements as the transceivers in
order for the combined circuit to remain compliant with the VME64 specification.

Pull-down resistors

The Universe II has internal pull-down resistors which are used for its default
power-up option state. The pins requiring pull-ups or pull-downs are indicated in
Table 8-2 on page 201. (Note that REQ64# has an internal pull-up.) These internal
pull-down resistors, ranging from 25kΩ-500kΩ, are designed to sink between
10µA-200µA. F-series buffers, however, can source up to 650 µA of current (worst
case). This sourced current has the ability to override the internal power up resistors
on the Universe II. This may cause the Universe II to incorrectly sample a logic “1” on
the pins. To counteract this potential problem, assuming a worst case scenario of a 650
µA current, Tundra recommends connecting a 1K resistor to ground, in parallel, with
the internal pull-down resistor.

Tundra recommends that any pins controlling the power-up options which are critical
to the application at powerup be connected to ground with a pull-down resistor as
described above. If these options are not critical and if it is possible to reprogram these
options after reset, additional resistors need not be added.

skew (pkg to pkg) B A 4 ns

tProp DIR A 1 ns 5ns

tProp DIR B 2 ns 10ns

Cin A 25 pf

 There are no limits on propagation delay or skew on the remaining buffered VME signals: VSY-
SCLK, VBCLR, VXBBSY, VRBBSY, VRACFAIL, VXSYSFAIL, VRSYSFAIL, VXSYSRST,
VRSYSRST, VXBERR, VRBERR, VXIRQ, VRIRQ, VXBR, VRBR.

Table D-2 VMEbus Transceiver Requirements
355

D VMIVME-7697 Product Manual
Direction Control

When the Universe II is driving VMEbus lines, it drives the direction control signals
high (i.e., VA_DIR, VAM_DIR, VAS_DIR, VD_DIR, VDS_DIR, VSLAVE_DIR, and
VSCON_DIR). When the VMEbus is driving the Universe II, these signals are driven
low. The control signals in the Universe II do not all have the same functionality. Since
the Universe II implements early bus release, VAS_DIR must be a separate control
signal.

Contention between the Universe II and the VME buffers is handled since the
Universe II tristates its outputs one 64MHz clock period before the buffer direction
control is faced inwards.

Power-up Options

Power-up options for the automatic configuration of slave images and other Universe
II features are provided through the state of the VME address and data pins, VA[31:1]
and VD[31:27]. All of these signals are provided with internal pull-downs to bias
these signals to their default conditions. Should values other than the defaults be
required here, either pull-ups or active circuitry may be applied to these signals to
provide alternate configurations.

Power-up options are described in Power-Up Options on page 160.

Since the power-up configurations lie on pins that may be driven by the Universe II or
by the VME transceivers, care must be taken to ensure that there is no conflict. During
any reset event, the Universe II does not drive the VA or VD signals. As well, during
any VMEbus reset (SYSRST*) and for several CLK64 periods after, the Universe II
negates VOE# to tri-state the transceivers. During the period that these signals are
tri-stated, the power-up options are loaded with their values latched on the rising
edge of PWRRST#.

Configuration of power-up options is most easily accomplished through passive 10k
pull-up resistors on the appropriate VA and VD pins. The configurations may be
made user-configurable through jumpers or switches as shown in Figure D-2.

Power-up Pins

Universe VDD

Figure D-2 Power-up Configuration Using Passive Pull-ups
356

VME Interface D
Alternatively, an active circuit may be designed which drives the VA and VD pins
with pre-set (or pre-programmed) values. This sort of circuit would be of value when
power-up configurations such as the register access slave image are stored in an
external programmable register. To implement this circuit, the VOE# output from the
Universe II must be monitored. When the Universe II negates this signal, the
appropriate VA and VD signals may be driven and upon re-assertion the drive must
be removed. To avoid conflict with the transceivers, logic must be designed such that
the enabling of the transceivers does not occur until some point after the
configuration options have been removed from the VD and VA signals. Figure D-3
shows one such implementation. The delay for enabling of the VMEbus transceivers
could be implemented though clocked latches.

Auto-Syscon and PCI Bus Width Power-up Options

The VME64 specification provides for automatic enabling of the system controller in a
VME system through monitoring of the BGIN3* signal. If at the end of SYSRST* this
pin is low, then the system controller is enabled; otherwise it is disabled. The Universe
II provides an internal pull-down resistor for this function. If it is in slot one, this pin
will be sampled low. If not in slot one, then it will be driven high by the previous
board in the system and system controller functions will be disabled. No external
logic is required to implement this feature.

Power-up Pins

Universe External
Register

OEVOE# Tranceivers V
M

E
bus

OEdelay

Figure D-3 Power-up Configuration Using Active Circuitry
357

D VMIVME-7697 Product Manual
PCI Bus Interface

The Universe II provides a fully standard PCI bus interface compliant for both 32-bit
and 64-bit designs. No external transceivers or glue logic is required in interfacing the
Universe II to any other PCI compliant devices. All signals may be routed directly to
those devices.

The Universe II’s PCI interface can be used as a 32-bit bus or 64-bit bus. If used as a
32-bit interface, the 64-bit pins, AD[32:63] and ACK64# are left unterminated. On a
32-bit PCI bus, the Universe II drives all its 64-bit extension bi-direct signals
(C/BE[7:4]#, AD[63:32], REQ64#, PAR64 and ACK64#) at all times to unknown
values. Independent of the setting of the LD64EN bit, the Universe II will never
attempt a 64-bit cycle on the PCI bus if it is powered up as 32-bit.

REQ64# must be pulled-down (with a 4.7kΩ resistor) at reset for 64-bit PCI (see PCI
Bus Width on page 164). There is an internal pull-up on this pin which causes the
Universe II to default to 32-bit PCI. This power-up option provides the necessary
information to the Universe II so that these unused pins may be left unterminated.

Resets

The Universe II provides several reset input and outputs which are asserted under
various conditions. These can be grouped into three types as shown in Table D-3 on
page 358.

VMEbus Resets

The VMEbus resets are connected to the VMEbus as indicated in Figure D-1 on page
354 through external buffers.

Table D-3 Reset Signals

Group Signal Name Direction

VMEbus VXSYSRST output

VRSYSRST# input

PCI bus LRST# output

RST# input

VME_RESET# input

Power-up PWRRST# input
358

PCI Bus Interface D
PCI bus Resets

Use of the PCI bus resets will be application dependent. The RST# input to the
Universe II should typically be tied in some fashion to the PCI bus reset signal of the
same name. This will ensure that all Universe II PCI related functions are reset
together with the PCI bus.

The LRST# pin is a totem-pole output which is asserted due to any of the following
initiators:

• PWRRST#,

• VRSYSRST#,
• local software reset (in the MISC_CTL register), or
• VME CSR reset (in the VCSR_SET register).

The designer may wish to disallow the Universe II from resetting the PCI bus in
which case this output may be left unconnected. Otherwise LRST# should be grouped
with other PCI reset generators to assert the RST# signal such that:

RST# = LRST# & reset_source1 & reset_source2 &...

If the Universe II is the only initiator of PCI reset, LRST# may be directly connected to
RST#.

Assertion of VME_RESET causes the Universe II to assert VXSYSRST.

This signal must not by tied to the PCI RST# signal unless the Universe II LRST#
output will not generate a PCI bus reset. Connecting both LRST# and VME_RESET#
to RST# will cause a feedback loop on the reset circuitry forcing the entire system into
a endless reset.

To reset the VMEbus through this signal it is recommended that it be asserted for
several clock cycles, until the Universe II asserts RST#, and then released. This ensures
a break is made in the feedback path.

Power-Up Reset

The PWRRST# input is used to provide reset to the Universe II until the power supply
has reached a stable level. It should be held asserted for 100 milliseconds after power
is stable. Typically this can be achieved through a resistor/capacitor combination
although more accurate solutions using under voltage sensing circuits (e.g. MC34064)
are often implemented. The power-up options are latched on the rising edge of
PWRRST#.

JTAG Reset

The JTAG reset, TRST#, should be tied into the master system JTAG controller. It resets
the Universe II internal JTAG controller. If JTAG is not being used, this pin should be
tied to ground.

!

359

D VMIVME-7697 Product Manual
Local Interrupts

The Universe II provides eight local bus interrupts, only one of which has drive
strength that is fully PCI compliant. If any of the other seven interrupts are to be used
as interrupt outputs to the local bus (all eight may be defined as either input or
output), an analysis must be done on the design to determine whether the 4 mA of
drive that the Universe II provides on these lines is sufficient for the design. If more
drive is required, the lines may simply be buffered.

All Universe II interrupts are initially defined as inputs. To prevent excess power
dissipation, any interrupts defined as inputs should always be driven to either high or
low. Pull-ups should be used for this purpose rather than direct drive since a
mis-programming of the interrupt registers may cause the local interrupts to be
configured as outputs and potentially damage the device.
360

Manufacturing Test Pins D
Manufacturing Test Pins

The Universe II has several signals used for manufacturing test purposes. They are
listed in Table 2-27 on page 167, along with the source to which they should be tied.

Decoupling VDD and VSS on the Universe II

This section is intended to be a guide for decoupling the power and ground pins on
the Universe II. A separate analog power and ground plane is not required to provide
power to the analog portion of the Universe II. However, to ensure a jitter free PLL
operation, the analog AVDD and AVSS pins must be noise free. The following are
recommended solutions for noise free PLL operation. The design could implement
one of these solutions, but not both.

The Analog Isolation Scheme consists of the following:

• a 0.1µF capacitor between the AVDD and AVSS pins, and
• corresponding inductors between the pins and the board power and ground

planes (See Figure D-4). These inductors are not necessary, but they are
recommended.

The Noise Filter Scheme filters out the noise using two capacitors to filter high and
low frequencies (See Figure D-5).

Board VDD

Board VSS

AVDD

AVSS

1.5 - 220 µH

1.5 - 220 µH

0.1 µF

Figure D-4 Analog Isolation Scheme
361

D VMIVME-7697 Product Manual

For both schemes, it is recommended that the components involved be tied as close as
possible to the associated analog pins.

In addition to the decoupling schemes shown above, it is recommended that 0.1µF
bypass capacitors should be tied between every three pairs of VDD pins and the board
ground plane. These bypass capacitors should also be tied as close as possible to the
package.

AVDD

AVSS

0.01 µF

Board VSS

Board VDD

10-38 †

(Low Freq. Bias)

22 µF
(High Freq. Bias)

Figure D-5 Noise Filter Scheme
362

Appendix

E

Reliability Prediction
Contents

Physical Characteristics . 363
Thermal Characteristics . 364
Universe II Ambient Operating Calculations . 364
Thermal Vias . 365

Introduction

This section is designed to help the user to estimate the inherent reliability of the
Universe II, as based on the requirements of MIL HDBK217F. This information is
recommended for personnel who are familiar with the methods and limitations
contained in MIL HDBK217F. The information serves as a guide only; meaningful
results will be obtained only through careful consideration of the device, its operating
environment, and its application.

The following discussion pertains to the reliability prediction of the Universe II
integrated circuit and not the VMIVME-7697 assembly. Please refer to the
VMIVME-7697 specification sheet for product reliability information.

Physical Characteristics

• CMOS gate array
• 120,000 two-input nand gate equivalence
• 0.65 µm feature size
• 476 mils x 476 mils scribed die size
363

E VMIVME-7697 Product Manual
Thermal Characteristics

Idle power consumption: 1.50 Watts
Typical power consumption* (32-bit PCI): 2.00 Watts
Maximum power consumption (32-bit PCI): 2.70 Watts
Typical power consumption (64-bit PCI): 2.20 Watts
Maximum power consumption* (64-bit PCI): 3.20 Watts

Maximum power consumption is worst case consumption when the Universe II is
performing DMA reads from the VME bus with alternating worst case data patterns
($FFFF_FFFF, $0000_0000 on consecutive cycles), and 100pF loading on the PCI bus.

In the majority of system applications, the Universe II will consume typical values or
less. Typical power consumption numbers are based on the Universe II remaining idle
30%-50% of the time, which is significantly less than what is considered likely in most
systems. For this reason, it is recommended that typical power consumption numbers
be used for power estimation and ambient temperature calculations, as described
below.

Reliability calculations of the Universe II design in Motorola’s H4EPlus Gate Array
family show that the Failure In Time (FIT) rate is 68 at a junction temperature of 125°C
(maximum junction temperature). (Failure in time is the basic reliability rate
expressed as failures per billion (1e-9) device hours. Mean Time Between Failures
(MTBF) is the reciprocal of FIT. MTBF is the predicted number of device hours before
a failure will occur.)

Universe II Ambient Operating Calculations

The maximum ambient temperature of the Universe II can be calculated as follows:

Ta ≤ Tj - θja * P

Where,

Ta = Ambient temperature (°C)
 Tj = Maximum Universe II Junction Temperature (°C)
θja = Ambient to Junction Thermal Impedance (°C / Watt)
P = Universe II power consumption (Watts)
364

Physical Characteristics E
The ambient to junction thermal impedance (θja) is dependent on the air flow in linear
feet per minute over the Universe II. The values for θja over different values of air
flow are as follows:

For example, the maximum ambient temperature of the 313 PBGA, 32-bit PCI
environment with 100 LFPM blowing past the Universe II is:

Ta ≤ Tj - θja * P
Ta ≤ 125 - 17.0 * 2.70
Ta ≤ 79.1 °C

Hence the maximum rated ambient temperature for the Universe II in this
environment is 79.1°C. The thermal impedance can be improved by approximately
10% by adding thermal conductive tape to the top of the packages and through
accounting for heat dissipation into the ground planes. This would improve the
maximum ambient temperature to 87°C in the above example. Further improvements
can be made by adding heat sinks to the PBGA package.

Tj values of Universe II are calculated as follows (Tj = θja * P + Ta)

Thermal Vias

The 313-pin plastic BGA package contains thermal vias which directly pipe heat from
the die to the solder balls on the underside of the package. The solder balls use the
capabilities of the power and ground planes of the printed circuit board to draw heat
out of the package.

Table E-1 Ambient to Junction Thermal Impedance

Air Flow (LFPM) 0 100 300

313 PBGA 20.10 17.0 15.1

324 CBGA 17.80 15.4 13.5

Table E-2 Maximum Universe II Junction Temperature

Extended (125 C Ambient) Industrial (85 C Ambient) Commercial: (70 C Ambient)

Tj = 17.0 * 2.70 + 125 C

= 170.9 C

Tj = 17.0 * 2.70 + 85 C

= 130.9 C

Tj = 17.0 *2.70 + 70 C

= 115.9 C
365

E VMIVME-7697 Product Manual
366

Appendix

F

Cycle Mapping
Introduction

The Universe II always performs Address Invariant translation between the PCI and
VMEbus ports. Address Invariant mapping preserves the byte ordering of a data
structure in a little-endian memory map and a big-endian memory map.

For more information on byte ordering and endian conversion, please refer to Chapter
4, Endian Conversion.

Little-endian Mode

Table F-1 below shows the byte lane swapping and address translation between a
32-bit little-endian PCI bus and the VMEbus for the address invariant translation
scheme.

Table F-1 Mapping of 32-bit Little-Endian PCI Bus to 32-bit VMEbus

PCI Bus

Byte Lane Mapping

VMEbus
Byte Enables Address

3 2 1 0 1 0
DS
1

DS
0

A1 LW

1 1 1 0 0 0 D0-D7 <-> D8-D15 0 1 0 1

1 1 0 1 0 1 D8-D15 <-> D0-D7 1 0 0 1

1 0 1 1 1 0 D16-D23 <-> D8-D15 0 1 1 1

0 1 1 1 1 1 D24-D31 <-> D0-D7 1 0 1 1
367

F VMIVME-7697 Product Manual
The unpacking of multiplexed 64-bit data from the VMEbus into two 32-bit quantities
on a little-endian PCI bus is outlined in Table F-2 below.

1 1 0 0 0 0
D0-D7 <-> D8-D15

0 0 0 1
D8-D15 <-> D0-D7

1 0 0 1 0 1
D8-D15 <-> D16-D23

0 0 1 0
D16-D23 <-> D8-D15

0 0 1 1 1 0
D16-D23 <-> D8-D15

0 0 1 1
D24-D31 <-> D0-D7

1 0 0 0 0 0

D0-D7 <-> D24-D31

1 0 0 0D8-D15 <-> D16-D23

D16-D23 <-> D8-D15

0 0 0 1 0 1

D8-D15 <-> D16-D23

0 1 0 0D16-D23 <-> D8-D15

D24-D31 <-> D0-D7

0 0 0 0 0 0

D0-D7 <-> D24-D31

0 0 0 0
D8-D15 <-> D16-D23

D16-D23 <-> D8-D15

D24-D31 <-> D0-D7

Table F-1 Mapping of 32-bit Little-Endian PCI Bus to 32-bit VMEbus (Continued)

PCI Bus

Byte Lane Mapping

VMEbus
Byte Enables Address

3 2 1 0 1 0
DS
1

DS
0

A1 LW
368

Little-endian Mode F
Table F-2 Mapping of 32-bit Little-Endian PCI Bus to 64-bit VMEbus

Byte Enables Address
PCI to VME Byte Lane Mapping

3 2 1 0 2 1 0

First Transfer (D32-D63)

0 0 0 0 0 0 0

D0-D7 <-> A24-A31 (D56-D63)

D8-D15 <-> A16-A23 (D48-D55)

D16-D23 <-> A8-A15 (D40-D47)

D24-D31 <-> LWORD, A1-A7 (D32-D39)

Second Transfer (D0-D31)

0 0 0 0 1 0 0

D0-D7 <-> D24-D31

D8-D15 <-> D16-D23

D16-D23 <-> D8-D15

D24-D31 <-> D0-D7
369

F VMIVME-7697 Product Manual
370

Appendix

G

Operating and Storage
Conditions
The following discussion pertains to the operating and storage of the Universe II
integrated circuit and not the VMIVME-7697 assembly. Please refer to the
VMIVME-7697 specification data sheet for product operating and storage
information.

Table G-1 Recommended Operating Conditions

DC Supply Voltage (VDD) 5 V

Ambient Operating Temperature (TA Commercial) 0°C to +70°C

Ambient Operating Temperature (TA Industrial) -40°C to +85°C

Ambient Operating Temperature (TA Extended) -55°C to +125°C

Table G-2 Absolute Maximum Ratings

DC Supply Voltage (VSS to VDD) -0.5 to 6.0 V

Input Voltage (VIN) -0.5 to VDD+0.5 V

DC Current Drain per Pin, Any Single Input or Output ±50 mA

DC Current Drain per Pin, Any Paralleled Outputs ±100 mA

DC Current Drain VDD and VSS Pins ±75 mA

Storage Temperature, (TSTG) 0°C to 70°C
371

G VMIVME-7697 Product Manual
WARNING: Stresses beyond those listed above may cause permanent damage to the
devices. These are stress ratings only, and functional operation of the devices at these
or any other conditions beyond those indicated in the operational sections of this
document is not implied. Exposure to maximum rating conditions for extended
periods may affect device reliability.

Table G-3 Power Dissipation

IDLE

Power Dissipation (32-bit PCI) 1.97W

Power Dissipation (64-bit PCI) 2.12W

Typical

Power Dissipation (32-bit PCI) 2.65W

Power Dissipation (64-bit PCI) 3.15W

!

372

Index
A
A40 45
Absolute Maximum Ratings 371
ACFAIL*

interrupt source 107
interrupts 105

ACK64# 61, 74, 76, 82, 96, 164, 195, 197, 201,

358
Special Cycle Generator 88

AD 195, 201, 205
and Configuration Cycles 64, 65
parity checking 77
Special PCI target image 99
Target-Disconnects 92

Address Invariant Mapping 176
Address Translation 367

PCI to VME 98
VME to PCI 95

Addressing Capabilities
PCI Master Interface 78
VMEbus Master Interface 53

ADOH Cycles 62, 88, 90
DMA Channel 141
generating 90
Target-Retry 148

Ambient Operating Temperature 371
Architectural Diagram 46
AS* 62
Auto Slot ID

proprietary method 68
VME64 specified 67

Auxiliary Bus Time-out Timer 169
B
BBSY* 51, 52

ADOH cycles 62
coupled-cycles 86
DMA VMEbus ownership 126

BCLR* 52
BERR 56
BERR* 56, 58, 79

coupled cycles 101
BG3IN* 160

and First Slot Detector 66
BGIN 352
BGIN3* 357
Big-Endian Processor 174
BI-Mode 71
Block Diagram 46
BR3-0* 51
BSDL 167
BTO 169
BTOV bits 169
Bus Errors

DMA controller 128, 141
IACK cycle 115
parity 77
RXFIFO posted writes 60
TXFIFO posted writes 92

Bus Ownership 137
Bus Parking 74
Byte Enables 367
Byte Lane Mapping 367
Byte Ordering 367
Byte Ordering Differences 171
Byte Swapping 177
Byte-Ordering 173
C
C/BE# 74, 77, 79, 103, 164, 196, 201
CLK64 70, 156, 168, 191, 201
Configuration Cycles 64, 75, 78, 123, 146, 147, 148
Coupled Request Phase 85
Coupled Request Timer 52
373

VMIVME-7697 Product Manual
Coupled Transactions
error handling 101
PCI Target Channel 85
VMEbus Slave Channel 58

Coupled Wait Phase 86
Coupled Window Timer 52, 86
Cycle Mapping 367
Cycle Terminations

PCI Master Interface 79
PCI Target Channel 91
VMEbus Master Interface 56
VMEbus Slave Channel 58, 60

D
D_LLUE Register 267

UPDATE bit 136
D32 59, 124
Data Packing/Unpacking

PCI Target Channel 84
VMEbus Master Interface 55

Data Transfer
PCI Master Interface 78
PCI Target Channel 82
VMEbus Master Interface 54
VMEbus Slave Channel 58, 60, 62

Data Width 124
DC Current Drain 371
DC Supply Voltage 371
DCPP Register 265

DCPP field 125
DCTL Register 262

L2V bit 123
LD64EN bit 125
PGM field 123
SUPER field 123
VAS field 123
VCT bit 125
VDW bit 125

Deadlock Scenario 179
DEVSEL# 75, 76, 81, 96, 104, 196, 201
DGCS Register 265

ACT bit 124, 126, 130, 135, 141
CHAIN bit 124
DONE bit 126, 128, 130, 131, 135, 136, 137, 141
GO bit 125, 126, 127, 128, 130, 134, 135, 136,

137, 141
HALT bit 127, 128, 135, 141
INT_DONE bit 120
INT_HALT bit 120
INT_LERR bit 120, 128, 130, 133, 140, 142
INT_M_ERR bit 120, 140
INT_STOP bit 120, 128, 130, 133, 140
INT_VERR bit 120, 128, 130, 133, 140, 142
LERR bit 126, 128, 130, 141
P_ERR bit 126, 128, 130, 141

STOP bit 124, 126, 127, 128, 130, 131, 135, 141
STOP_REQ bit 127, 130, 131, 135
VERR bit 130, 141
VOFF field 127, 130, 133, 139
VON field 126, 127, 130, 133, 138, 139

Direction Control 356
DLA Register 123, 263
DMA BLTs 177
DMA Channel

PCI requests 77
PCI to VME transfers 137
VME tot PCI transfers 139
VMEbus release 52
VMEbus requests 50

DMA Completion 127
DMA Controller

defined 49
direct mode operation 128
error handling 103, 141
FIFO operation and bus ownership 137
interrupts 140
linked-list operation 131

DMA Interrupts 140
DMAFIFO 49

packing 137, 138
PCI bus watermark 139
VMEbus watermark 139

DTACK 56
DTACK* 56, 61, 149, 203

Location Monitors 64
RXFIFO 59

DTB Cycle Type 172
DTBC Register 263

DTBC field 123
DVA Register 123, 264, 289
DY4 Systems 67
E
Endian Conversion 177
Endian Modes 367
ENID 196, 201
Error Handling

coupled transactions 101
DMA controller 103
parity 103
posted writes 101
prefetched reads 103

F
FIFOs

DMAFIFO 137
RDFIFO 61
RXFIFO 58
TXFIFO 87

First Slot Detector 66
374

Index
FIT rate 364
FRAME# 61, 74, 76, 81, 86, 92, 196, 201
G
GNT# 74, 196, 201, 343
H
hexadecimal 31
High Impedance Mode 167
I
IACK 101
IACK* 56, 66

error logging 101
IACKIN 352
IACKIN* 69

SYSCON 66
IACKOUT* 69
IDSEL 75, 147, 196, 201
Input Voltage 371
Intel programmers 31
Intel’s 80X86 microprocessor 173
Interrupt Acknowledge Cycles

auto-ID 68
bus errors 115
STATUS/ID 115

Interrupt Channel
VMEbus release 52
VMEbus requests 50

Interrupt Generation
PCI bus 107
VMEbus 109

Interrupt Handling
internal sources 116
PCI bus 113
VMEbus 114

Interrupter
defined 48

IOWorks Access 25, 27
IRDY# 76, 92, 196, 201
IRQ* 105, 109

interrupt source 107
IRQ2*

Auto Slot ID 67
J
JTAG 167, 359
Jumpers, Factory-Installed 43
L
L_CMDERR Register

CMDERR field 60, 79
L_STAT bit 60, 79
M_ERR bit 60, 79

LAERR Register

LAERR field 60
LCLK 76, 167, 196, 201
LERR 79, 102
Linked-List Operation of DMA 131
LINT# 108, 115, 119, 196, 201
LINT_EN Register 268

ACFAIL bit 108
DMA bit 108
interrupt sources 108
LERR bit 79, 108
LMn bit 108
MBOXn bit 108
SW_IACK bit 108, 118, 119
SW_INT bit 108, 118
SYSFAIL bit 108
VERR bit 56, 92, 108
VIR1x bits 108
VMEbus interrupt inputs 114
VOWN bit 108

LINT_MAP0 Register 272
interrupt sources 108
VERR field 108
VIRQ7-1 fields 108, 115
VMEbus interrupt handling 108, 115
VMEbus interrupt inputs 108
VMEbus ownership bit 108
VOWN field 108

LINT_MAP1 Register 273
ACFAIL field 108
DMA field 108
interrupt sources 108
LERR field 108
SW_IACK field 108, 119
SW_INT field 108
SYSFAIL field 108

LINT_MAP2 Register 108, 287
LM3-0 fields 121
MBOX3-0 fields 120

LINT_STAT Register 102, 270
ACFAIL bit 108
DMA bit 108
interrupt sources 108
LERR bit 108
LMx bit 121
MBOXn bit 108, 120
Software interrupts 118
SW_INT bit 118
SYSFAIL bit 108
VERR bit 108
VMEbus interrupt handling 115
VMEbus interrupt inputs 108
VOWN bit 108

Little-Endian Mode 367
Little-Endian Processors 173
LM_BS Register 63, 120, 311
375

VMIVME-7697 Product Manual
LM_CTL Register 310
EN bit 63
SUPER field 63
VAS field 63

LMISC Register 245
CWT field 86

Location Monitors 63—64
and interrupts 63
interrupts 63, 120, 121

LOCK# 62, 90, 95, 196, 201
Locks

VMEbus Slave Channel 62
LRST# 155, 156, 157, 158, 159, 196, 201, 358
LSI0_CTL Register 229
LSI0_TO Register 232
LSI1_BD Register 234
LSI1_TO Register 235
LSI2_BD Register 237
LSI2_BS Register 237
LSI2_TO Register 238
LSI3_BD Register 240
LSI4_BD Register 251
LSI4_BS Register 250
LSI4_CTL Register 249
LSI4_TO Register 252
LSI5_BD Register 254
LSI5_BS Register 254
LSI5_CTL Register 252
LSI5_TO Register 255
LSI6_BD Register 257
LSI6_BS Register 257
LSI6_CTL Register 256
LSI6_TO Register 258
LSI7_BD Register 260
LSI7_BS Register 260
LSI7_CTL Register 259
LSI7_TO Register 261
LSIn_BD Registers

BD field 96
Power-up options 161

LSIn_BS Registers
BS field 96
Power-up options 161

LSIn_CTL Registers
EN bit 97
LAS field 96
PGM field 96
Power-up options 161
PWEN bit 87, 97
SUPER field 96
VAS field 96

VCT field 96
VDW field 96, 97

LSIn_TO Registers
TO field 96

M
Mailbox Registers 153

Interrupts 110
MAST_CTL Register 180, 293

BUS_NO field 64, 66
MAXRTRY field 79
PABS field 59, 60, 61, 77, 78, 103
PWON field 52, 54
VOWN bit 51, 52, 90, 120
VOWN_ACK 91
VOWN_ACK bit 51
VREL bit 51, 91
VRL field 51
VRM field 51

Master-Abort
defined 76

MBOX0 Register 289
MBOX1 Register 289
MBOX2 Register 290
MBOX3 Register 290
MBOXn Registers 120, 153
MD32 45
MISC_CTL Register 295

AUTOID bit 68
BI bit 72, 161
ENGBI bit 72
SW_LRST bit 156, 157
SW_SYSRST bit 157
SYSCON bit 66, 69, 161
V64AUTO bit 161
VARB bit 70
VARBTO field 70
VBTO field 71

MISC_STAT Register 296
DY4AUTO bit 161
DY4AUTOID field 69
DY4DONE bit 69
LCLSIZE bit 161
MYBBSY bit 52
RXFE bit 78
TXFE bit 52

Monarch 67
Motorola 68040 Processor 174
Motorola programmers 31
MTBF 364
N
NAND Tree Simulation 167
Noise Filter 361
Non-Endian Conversion 176
376

Index
Normal Mode 167
O
offset address conversions 31
Operating Conditions 371
P
PAR 77, 79, 103, 197, 201
PAR64 77, 79, 103, 197, 201
Parity

error handling 103
PCI Master Interface 79

Parity Checking
Universe capability 77

PBGA 365
PCI Aligned Burst Size (PABS) 60, 61, 77, 78, 103,

137
PCI Cycle Types

Universe II capability 78
PCI Interface

32-bit versus 64-bit 73
cycle types 75
defined 48
Universe II as master 77
Universe II as slave 81

PCI Master Interface
cycle terminations 79
data transfer 78
parity 79

PCI Requests
DMA Channel 77
VME Slave Channel 77

PCI Slave Images
defined 96

PCI Target Channel
ADOH cycles 90
coupled transactions 85
cycle terminations 91
data packing/unpacking 84
data transfer 82
posted writes 87
read-modify-writes 89
TXFIFO 87
VMEbus release 52
VMEbus reqests 50

PCI Target Image
Power-up Option 161

PCI Terminations
defined 76

PCI_BS0 Register
SPACE bit 161

PCI_BS1 Register
SPACE bit 161

PCI_BSn Register

BS field 148
SPACE bit 148

PCI_BSn Registers
BS field 148
SPACE bit 148

PCI_CLASS Register 225
PCI_CSR Register 222

BM bit 58, 62, 94, 96, 126, 128
power-up option 161

D_PE bit 80, 103
DEVSEL field 81
DP_D bit 80
PERESP bit 80, 103
R_MA bit 58, 79
R_TA bit 58, 79
S_SERR bit 82
S_TA bit 92
SERR_EN bit 82, 103

performance 179
PERR# 80, 103, 104, 197, 202
PLL 361
PLL_TESTOUT 167, 197, 202
PLL_TESTSEL 167, 197, 202
Posted Writes

and coupled transfers 85
error handling 101
errors 60
PCI Target Channel 87
VMEbus Slave Channel 58

power consumption 364
Power Dissipation 372
Power-up

register access 67
Power-up Options 162, 356

auto-ID 163
BI-mode 163
PCI bus width 164
PCI CSR image space 164
PCI slave image 164
SYSFAIL assertion 163
VME CR/CSR slave image 162
VME register access slave image 162

Prefetched Reads
error handling 103
VMEbus Slave Channel 60

Pull-down resistors 355
PWON 335
PWRRST# 155, 156, 157, 158, 159, 160, 161, 165,

167, 197, 202, 356, 358, 359
R
RDFIFO 46, 60

size 60
Read-Modify-Writes
377

VMIVME-7697 Product Manual
PCI Target Channel 89
VMEbus Slave Channel 62

references 27
Register Access

at power-up 67
configuration space 147
CR/CSR access 151
from VMEbus 149
I/O space 148
memory space 148
VMEbus register access image 149

Register Map 216
Registers 146—154
Reliability 363, 364
REQ# 74, 76, 197, 202, 343
REQ64# 61, 74, 76, 82, 96, 160, 161, 164, 197,

202, 358
Request Modes 51
Resets 155
RETRY* 47, 56
RST# 155, 157, 197, 202, 358, 359

BI-MODE 72
RXFIFO 58
S
SCV64 39, 67
SCYC_ADDR Register

ADDR field 89
SCYC_CMP Register

CMP field 89
SCYC_CTL Register

SCYC field 89, 90
SCYC_EN Register

EN field 89
SCYC_SWP Register

SWP field 89
SDONE 73
SEMA0 Register 153, 291
SEMA1 Register 153, 292
SEMAn Register 153, 154
Semaphores 136, 153
SERR# 77, 80, 82, 103, 104, 197, 202
SLSI Register

BS field 99
EN bit 99
LAS field 99
PGM field 99
PWEN bit 100
SUPER field 99
VDW field 99

Special Cycle Generator 48, 88—91
semaphores 154

Special PCI Slave Image
defined 99
memory mapping 100

STATID Register 68, 110, 279
STATID field 111

STATUS/ID
provided by Universe II 111

STOP# 76, 92, 197, 202
Storage Conditions 371
Storage Temperature 371
SYSCON 168
SYSFAIL* 113, 121, 163

and auto ID cycle 68
Auto ID cycle 68
Auto Slot ID 67
interrupt source 107
interrupts 105

SYSRST* 68, 157, 160, 163, 356, 357
Auto ID cycle 68
BI-Mode 72

T
Target-Abort

defined 76
Target-Disconnect

defined 76
Target-Retry

defined 76
TCK 167, 198, 202
TDI 167, 198, 202
TDO 167, 198, 202
Thermal vias 365
Time-Outs

VMEbus 71
VMEbus arbiter 70

TMODE 166, 167, 198, 202
TMS 167, 198, 202
TRDY# 76, 92, 198, 202
TRST# 155, 167, 198, 202
TTL Buffers 354
TXFIFO 87
U
Unaligned Transfers (UAT) Philosophy 176
USER_AM Register 98, 297

USER1AM, USER2AM fields 53
V
V_AMERR Register 101, 315

AMERR field 56, 92
IACK bit 56, 115
M_ERR bit 56, 92
V_STAT bit 56, 92

V1_STATID Register 280
378

Index
V2_STATID Register 281
V3_STATID Register 282
V4_STATID Register 283
V5_STATID Register 284
V6_STATID Register 285
V7_STATID Register 286
VA 191, 202, 356

and Configuration Cycles 64
Configuration Cycles 64
Location Monitor 121
power-up options 161

VA_DIR 191, 203, 356
VAERR Register 316

VAERR field 56, 92
VAM 192, 202
VAM_DIR 192, 202, 356
VAS# 192, 202
VAS_DIR 192, 202, 356
VBCLR# 70, 192, 203
VBG0# 203
VBGI# 192, 203
VBGIN 161
VBGO# 70, 192
VCOCTL 166, 167, 198, 203
VCSR_BS Register 330

BS field 151
VCSR_CLR Register 159, 329

FAIL bit 159
RESET bit 156
SYSFAIL bit 68, 156, 159, 161

VCSR_CTL Register 313
EN bit 151
LAS field 151, 161

VCSR_SET Register 329
FAIL bit 159
SYSFAIL bit 68, 159, 161

VCSR_TO Register 314
TO field 151, 161

VD 192, 203
power-up options 161
pull-ups 165

VD_DIR 192, 203, 356
VDS# 193, 203
VDS_DIR 193, 203, 356
VDTACK# 193, 203
VERR 79, 102
VIACK# 193, 203
VIACKI# 203
VIACKO# 193, 203
VINT_EN Register 274

DMA bit 111

interrupt sources 110
LERR bit 60, 79, 111
MBOX3-0 bits 111
PCI interrupt inputs 113
SW_INT bit 111, 118
SW_INT7-1 bits 111, 118, 161
VERR bit 56, 92, 111

VINT_MAP0 Register 110, 278
VINT_MAP1 Register 110, 279

DMA field 111
interrupt sources 110
LERR field 111
SW_INT bit 161
SW_INT field 111, 118
VERR field 111

VINT_MAP2 Register 110, 288
MBOX3-0 fields 120

VINT_STAT Register 102, 110, 112, 113, 276
DMA bit 111, 140
IACK cycle error 116
interrupt sources 110
LERR bit 111, 116
LINT7-0 bitS 111
LINT7-0 bits 120
MBOX3-0 bitS 111
MBOX3-0 bits 120
PCI interrupt inputs 113
SW_INT bit 111, 118, 161
SW_INT7-1 bits 111
VERR bit 111, 116
VMEbus interrupt handling 115

VLWORD# 193, 203
VME Board 43
VME Slave Images

defined 93
VME_RESET 359
VME_RESET# 155, 157, 159, 198, 203, 358, 359
VMEbus Arbitration 70

arbiter time-out 70
priority mode 70
round robin 70
single level 70

VMEbus Interface
BI-mode 71
configuration 66
CR/CSR access 151
first slot detector 66
requester 50
system clock 70
system controller 69
Universe as master 53
Universe as slave 57
VMEbus release 51
VMEbus time-out 71

VMEbus Master Interface
379

VMIVME-7697 Product Manual
addressing capabilities 53
cycle terminations 56
data packing/unpacking 55
data transfer 54

VMEbus Register Access Image 149
VMEbus Requester

demand mode 51
DMA Channel 50
fair mode 51
Interrupt Channel 50
PCI Target Channel 50
request levels 51

VMEbus Slave Channel
coupled transactions 58
errors 60
locks 62
PCI requests 77
posted writes 58
prefetched reads 60
RDFIFO 61
read-modify-writes 62
RXFIFO 58

VMEbus System Controller
IACK daisy chain 71
VMEbus arbitration 70

Vn_STATID Registers 115
ERR bit 115
STATID field 115

VOE# 165, 193, 203, 357
VOFF timer 127, 138, 139
Voltage 371
VON 126
VOWN_ACK bit 180
VRACFAIL# 193, 203
VRAI_BS Register 312

BS field 67, 149, 161
VRAI_CTL Register 311

EN bit 149, 161
PGM field 149
SUPER field 149
VAS field 149

VRBBSY# 70, 194, 203
VRBERR# 194, 203
VRBR# 70, 194, 204
VRIRQ 72, 106
VRIRQ# 194, 204
VRSYSFAIL# 194, 204
VRSYSRST# 155, 157, 194, 204, 358, 359
VSCON_DIR 194, 204, 356
VSI0_BD Register 300
VSI0_BS Register 299
VSI0_CTL Register 298

VSI0_TO Register 301
VSI1_BD Register 303
VSI1_BS Register 303
VSI1_CTL Register 301
VSI1_TO Register 304
VSI2_BD Register 306
VSI2_BS Register 306
VSI2_CTL Register 304
VSI2_TO Register 307
VSI3_BD Register 309
VSI3_BS Register 308
VSI3_CTL Register 307
VSI3_TO Register 309
VSI4_BD Register 318
VSI4_BS Register 318
VSI4_CTL Register 316
VSI4_TO Register 319
VSI5_BD Register 321
VSI5_BS Register 321
VSI5_CTL Register 320
VSI5_TO Register 322
VSI6_BD Register 324
VSI6_BS Register 324
VSI6_CTL Register 323
VSI6_TO Register 325
VSI7_BD Register 327
VSI7_BS Register 327
VSI7_CTL Register 326
VSI7_TO Register 328
VSIn_BD Registers

BD field 93
VSIn_BS Registers

BS field 93
VSIn_CTL Registers

and Type 0 configuration cycles 65
EN bit 93
LAS field 93
LD64EN bit 61, 93
LLRMW bit 62, 93
PGM field 93
PREN bit 60, 93
PWEN bit 58, 93
SUPER field 93
Type 0 configuration cycles 64
VAS field 93

VSIn_TO Registers
TO field 93

VSLAVE_DIR 194, 204, 356
VSYSCLK 168, 194, 204
VWRITE# 195, 204
380

Index
VXBBSY 195, 204
VXBERR 195, 204
VXBERR# 71
VXBR 195, 204
VXIRQ 195, 204
VXSYSFAIL 195, 205
VXSYSRST 195, 205, 358, 359
W
write posting 179
381

VMIVME-7697 Product Manual
382

	VMIVME-7697 Tundra Universe IITM Based VMEbus Interface
	Product Manual
	500-007697-001 Rev. A
	27-May-99
	Table of Contents
	Chapter 1 - General Information 33
	Chapter 2 - Functional Description 41
	Chapter 3 - Auxiliary Functions 169
	Chapter 4 - Endian Conversion 171
	Chapter 5 - PCI/VMEbus Deadlock 179
	Chapter 6 - Universe II Errata And Notes 181
	Chapter 7 - Description of Signals 191
	Chapter 8 - Signals and DC Characteristics 199
	Appendix A - System Registers 211
	Appendix B - Universe II Registers 215
	Appendix C - Performance 331
	Appendix D - Typical Applications 351
	Appendix E - Reliability Prediction 363
	Appendix F - Cycle Mapping 367
	Appendix G - Operating and Storage Conditions 371
	List of Figures
	List of Tables

	Overview
	Introduction

	VMIC specification number 800-007697-000
	VMIVME-7697, Tundra Universe II™-Based VMEbus Interface Product Manual
	VMIC Doc. No. 500-007697-001

	VMEbus Interface Components Manual
	Tundra Semiconductor Corporation
	603 March Rd.
	Kanata, Ontario
	Canada, K2K 2M5
	(613) 592-0714 FAX (613) 592-1320
	www.tundra.com

	PCI Special Interest Group
	P.O. Box 14070
	Portland, OR 97214
	(800) 433-5177 (U.S.) (503) 797-4207 (International) FAX (503) 234-6762
	www.pcisig.com

	Award BIOS
	Award Software International, Inc.
	777 East Middle Field Road
	Mountain View, CA 94043-4023
	(650) 237-6800 FAX: (650) 968-0274 BBS: (650) 968-0249
	www.award.com

	VMISFT-9420 IOWorks Access User’s Guide
	Doc. No. 520-009420-910
	VMIC
	12090 South Memorial Parkway
	Huntsville, AL 35803-3308
	(800) 322-3616 FAX: (256) 882-0859
	www.vmic.com

	VMEbus Specification Rev. C. and The VMEbus Handbook
	VMEbus International Trade Association (VITA)
	7825 East Gelding Drive
	Suite No. 104
	Scottsdale, AZ 85260
	(602) 951-8866 FAX: (602) 951-0720
	www.vita.com

	VMEbus Specification Rev. C.1 and The VMEbus Handbook
	VITA
	VMEbus International trade Association
	7825 East Gelding Drie
	No. 104
	Scottsdale, AZ 85260
	(602) 951-8866 FAX: (602) 951-0720
	www.vita.com
	Suffixes for Active Low Signals
	General Information
	Contents

	Introduction
	Programming the VMIVME-7697 VMEbus Interface

	Document Overview
	Tundra Corporation Reprinted Information
	Benefits of the Universe II
	Features

	Past and Future of the Universe
	1
	2
	Functional Description
	Contents

	Architectural Overview of the VMIVME-7697 VMEbus Interface
	Figure 2-1 Universe II-Based PCI-to-VMEbus Interface

	PCI-to-VMEbus Interface Jumpers
	Figure 2-2 Edge View of the Jumper Locations
	Table 2-1 VMIVME-7697 Interface Jumper Functions and Factory Settings

	Universe II Architectural Overview
	Figure 2-3 Architectural Diagram for the Universe II
	VMEbus Interface
	Universe II as VMEbus Slave
	Universe II as VMEbus Master

	PCI Bus Interface
	Universe II as PCI Target
	Universe II as PCI Master
	Interrupter and Interrupt Handler
	Interrupter
	VMEbus Interrupt Handling

	DMA Controller
	VMEbus Interface
	VMEbus Requester
	Internal Arbitration for VMEbus Requests
	Request Modes
	Request Levels
	Fair and Demand
	VMEbus Release

	Universe II as VMEbus Master
	1. a PCI master accesses a Universe II PCI target image (leading to VMEbus access) or the DMA Cha...
	2. either the Universe II PCI Target Channel or the DMA Channel wins access to the VMEbus Master ...
	3. the Universe II Master Interface requests and obtains ownership of the VMEbus.
	Addressing Capabilities
	Data Transfer Capabilities
	Figure 2-4 Influence of Transaction Data Width and Target Image Data Width on Data Packing/Unpacking

	Cycle Terminations

	Universe as VMEbus Slave
	Figure 2-5 VMEbus Slave Channel Dataflow
	Coupled Transfers
	Posted Writes
	Prefetched Block Reads
	VMEbus Lock Commands (ADOH Cycles)
	VMEbus Read-Modify-Write Cycles (RMW Cycles)
	Register Accesses
	Location Monitors
	Generating PCI Configuration Cycles
	Generating Configuration Type 0 Cycles
	Table 2-2 PCI Address Line Asserted as a Function of VA[15:11]

	VMEbus Configuration
	First Slot Detector
	VMEbus Register Access at Power-up

	Automatic Slot Identification
	Auto Slot ID: VME64 Specified
	Universe II and the Auto-ID Monarch
	Auto-ID: A Proprietary Tundra Method
	Figure 2-6 Timing for Auto-ID Cycle

	System Controller Functions
	System Clock Driver
	VMEbus Arbiter
	Fixed Priority Arbitration Mode (PRI)
	Single Level Arbitration Mode (SGL)
	Round Robin Arbitration Mode (RRS)
	VMEbus Arbiter Time-out
	IACK Daisy-Chain Driver Module
	VMEbus Time-out

	BI-Mode
	1. if the BI-Mode power-up option is selected (See Power-up Option Descriptions on page�162 and T...
	2. when SYSRST* or RST# is asserted any time after the Universe II has been powered-up in BI-Mode,
	3. when VRIRQ# [1] is asserted, provided that the ENGBI bit in the MISC_CTL register has been set...
	4. when the BI bit in the MISC_CTL regis ter is set.
	1. power-up the Universe II with the BI-Mode option off (see BI-Mode on page�163), or
	2. clear the BI bit in the MISC_CTL register, which will be effective only if the source of the B...

	PCI Bus Interface
	PCI Cycles—Overview
	1. request,
	2. address phase,
	3. data transfer, and
	4. cycle termination.
	32-Bit Versus 64-Bit PCI
	PCI Bus Request and Parking
	Address Phase
	Table 2-3 Command Type Encoding for Transfer Type

	Data Transfer
	Termination Phase
	1. Master-Abort: the PCI bus master negates FRAME# when no target responds (DEVSEL# not asserted)...
	2. Target-Disconnect: a termination is requested by the target (STOP# is asserted) because it is ...
	3. Target-Retry: termination is requested (STOP# is asserted) by the target because it cannot cur...
	4. Target-Abort: is a modified version of target-disconnect where the target requests a terminati...

	Parity Checking

	Universe II as PCI Master
	PCI Burst Transfers
	Termination
	Parity

	Universe II as PCI Target
	Overview
	Data Transfer
	Figure 2-7 PCI Bus Target Channel Dataflow
	Figure 2-8 Influence of Transaction Data Width and Target Image Data Width on Data Packing/Unpacking

	Coupled Transfers
	Coupled Request Phase
	Coupled Data-Transfer Phase
	Coupled Wait Phase
	Posted Writes
	The Special Cycle Generator
	Table 2-4 Register Fields for the Special Cycle Generator

	Read-Modify-Write
	1. The Special Cycle Generator will only generate a RMW if it is accessed with an 8-bit, aligned ...
	2. The Special Cycle Generator will only generate a RMW if the size of the request is less than o...
	3. The destination VMEbus address space must be one of A16, A24 or A32.

	VME Lock Cycles—Exclusive Access to VMEbus Resources
	1. All byte lane information is ignored for VME Lock cycles,
	2. The Universe II will generate an VME Lock cycle on the VMEbus only if the PCI Target Image whi...
	3. The Universe II Special Cycle Generator will not generate VME Lock cycles if the address space...

	Using the VOWN bit
	Terminations
	1. Target-Disconnect
	2. Target-Retry
	3. Target-Abort

	Slave Image Programming
	VME Slave Images
	Table 2-5 VMEbus Fields for VMEbus Slave Image
	Table 2-6 PCI Bus Fields for VMEbus Slave Image
	Table 2-7 Control Fields for VMEbus Slave Image�
	VMEbus Fields
	PCI Bus Fields
	Figure 2-9 Address Translation Mechanism for VMEbus-to-PCI Bus Transfers

	Control Fields

	PCI Bus Target Images
	Table 2-8 PCI Bus Fields for the PCI Bus Target Image
	Table 2-9 VMEbus Fields for the PCI Bus Target Image
	Table 2-10 Control Fields for PCI Bus Target Image
	PCI Bus Fields
	VMEbus Fields
	Figure 2-10 Address Translation Mechanism for PCI Bus to VMEbus Transfers

	Control Fields

	Special PCI Target Image
	Table 2-11 PCI Bus Fields for the Special PCI Target Image
	Table 2-12 VMEbus Fields for the Special PCI Bus Target Image
	Table 2-13 Control Fields for the Special PCI Bus Target Image
	Figure 2-11 Memory Mapping in the Special PCI Target Image

	Bus Error Handling
	Coupled Cycles
	Decoupled Transactions
	Posted Writes
	Prefetched Reads
	DMA Errors
	Parity Errors

	Interrupter
	Interrupt Generation
	Figure 2-12 Universe Interrupt Circuitry

	PCI Interrupt Generation
	Table 2-14 Source, Enabling, Mapping, and Status of PCI Interrupt Output

	Auxiliary BERR Interrupt Generation
	VMEbus Interrupt Generation
	Table 2-15 Source, Enabling, Mapping, and Status of VMEbus Interrupt Outputs
	Figure 2-13 STATUS/ID Provided by Universe II

	Interrupt Handling
	PCI Interrupt Handling
	Table 2-16 PCI bus LINT_MAP Registers

	VMEbus Interrupt Handling
	Bus Error During VMEbus IACK Cycle

	Internal Interrupt Handling
	Table 2-17 Internal Interrupt Routing
	Figure 2-14 Sources of Internal Interrupts
	VMEbus and PCI Software Interrupts
	Interrupting the VMEbus through software
	1. The first method for interrupting the VMEbus through software involves writing “one” to one of...
	2. The second method for interrupting the VMEbus through software involves an extra step. Writing...

	Interrupting the PCI bus through software
	Termination of software interrupts
	Software IACK Interrupt
	VMEbus Ownership Interrupt
	DMA Interrupt
	Mailbox Register Access Interrupts
	Location Monitors
	PCI and VMEbus Error Interrupts

	VME64 Auto-ID

	DMA Controller
	DMA Registers Outline
	Source and Destination Addresses
	Transfer Size
	Transfer Data Width
	DMA Command Packet Pointer
	DMA Control and Status
	DMA Initiation
	DMA VMEbus Ownership
	DMA Completion and Termination

	Direct Mode Operation
	Figure 2-15 Direct Mode DMA transfers

	Linked-List Operation
	Figure 2-16 Command Packet Structure and Linked List Operation
	Figure 2-17 DMA Linked List Operation
	Linked List Updating
	1. Get UPDATE valid (write “1”, read back “1”),
	2. Program attributes for new transfer in next available packet in list.
	3. Change “null” pointer (on previous tail of linked list),
	4. Release update (clear the UPDATE bit).
	1. It may be active and working its way through the linked list. In this case, no further steps a...
	2. The DMA may be idle (done) because it reached the final command packet. If a full set of linke...
	3. The DMA has encountered an error. In this circumstance, see DMA Error Handling on page�141 for...

	FIFO Operation and Bus Ownership
	PCI-to-VMEbus Transfers
	VMEbus-to-PCI Transfers

	DMA Interrupts
	Table 2-18 DMA Interrupt Sources and Enable Bits

	Interactions with Other Channels
	DMA Error Handling
	DMA Software Response to Error
	DMA Hardware Response to Error
	Interrupt Generation During Bus Errors
	Resuming DMA Transfers
	1. Read the value contained in the DTBC register.
	2. Read the record of the DVA and DLA that is stored on the PCI bus or elsewhere (not the value s...
	3. If the difference between the value contained in the DTBC register and the original value is l...
	4. If the difference between the value contained in the DTBC register and the original value is g...
	5. Add the difference between the original value in the DTBC and the new value in the DTBC regist...
	6. Add the difference between the original value in the DTBC and the new value in the DTBC regist...
	7. Clear the status flags.
	8. Restart the DMA (see DMA Initiation on page�125).

	Registers
	Table 2-19 Interface Base Address Map
	System Registers
	Universe II Registers

	Universe II Registers
	Overview of Universe II Registers
	Figure 2-18 Universe II Control and Status Register Space

	Register Access from the PCI Bus
	PCI Configuration Access
	Figure 2-19 PCI Bus Access to UCSR as Memory or I/O Space

	Memory or I/O Access
	Eliciting Conditions of Target-Retry
	Locking the Register Block from the PCI bus

	Register Access from the VMEbus
	VMEbus Register Access Image (VRAI)
	Table 2-20 Programming the VMEbus Register Access Image
	Figure 2-20 UCSR Access from the VMEbus Register Access Image

	CR/CSR Accesses
	RMW and ADOH Register Access Cycles
	Figure 2-21 UCSR Access in VMEbus CR/CSR Space

	Mailbox Registers
	Semaphores

	Utility Functions
	Resets
	Overview of Reset Support
	Table 2-21 Hardware Reset Mechanism
	Table 2-22 Software Reset Mechanism

	Universe II Reset Circuitry
	Table 2-23 Functions Affected by Reset Initiators
	Figure 2-22 Reset Circuitry

	Reset Implementation Cautions
	Figure 2-23 Resistor-Capacitor Circuit Ensuring Power-Up Reset Duration

	Power-Up Options
	Table 2-24 Power-Up Options
	Power-up Option Descriptions
	VMEbus Register Access Image
	Table 2-25 VRAI Base Address Power-up Options

	VMEbus CR/CSR Slave Image
	Auto-ID
	BI-Mode
	Auto-Syscon Detect
	SYSFAIL* Assertion
	PCI Target Image
	PCI Register Access
	PCI Bus Width
	PCI CSR Image Space
	Power-Up Option Implementation
	Figure 2-24 Power-up Options Timing

	Hardware Initialization (Normal Operating Mode)
	Table 2-26 Manufacturing Pin Requirements for Normal Operating Mode

	Test Modes
	Auxiliary Test Modes
	Table 2-27 Test Mode Operation

	JTAG support

	Clocks
	Auxiliary Functions
	Contents

	Auxiliary Bus Timeout Timer
	Table 3-1 Auxiliary Bus Timeout Timer Settings

	Auxiliary BERR Interrupt
	3
	Endian Conversion
	Contents

	VMEbus Byte Lanes
	Table 4-1 VMEbus Byte Assignment to the Data Lines�

	Byte Ordering: Big Endian / Little Endian
	Figure 4-1 Byte Relationships Using the Little-Endian Pentium III Microprocessor
	Figure 4-2 Byte Relationships Using the Big-Endian 68040 Microprocessor

	Endian Conversion Hardware
	Unaligned Transfers with Endian Conversion Enabled

	PCI Bus Data Combining: Byte Swap
	4
	PCI/VMEbus Deadlock
	Contents

	Scenario Overview
	An Example
	Possible Solutions
	1. Set the VME ownership bit in the MAST_CTL register.
	2. Poll the VOWN_ACK bit which is asserted when the VMEbus has been acquired.
	3. Once the VOWN_ACK bit is asserted, perform VMEbus master write operations.
	4. Clear the VME ownership bit.
	5
	Universe II Errata And Notes
	Contents

	Introduction
	Table 6-1 Universe II Errata and Solutions�
	Universe II Errata
	1. PCI BASE REGISTERS
	2. SYSCLK GENERATION DURING SYSTEM RESET
	3. INVALID RELEASE OF PCI LOCK# DURING EXCLUSIVE ACCESSES
	4. DY4 AUTO-ID INCOMPATIBILITY
	5. SIMULTANEOUS, SINGLE LEVEL INTERRUPTS

	Universe II Design Notes
	Table 6-2 Universe II Design Note Matrix
	1. DMA OPERATION DURING PCI READS
	2. POTENTIAL FOR DTACK*/AS* DEADLOCK WITH SOME SLAVE CARDS
	3. NOISE ON VME DATA STROBES
	4. 16-BIT PCI BUS BURST TRANSFERS SPLIT INTO 8-BIT BYTES

	Other Compatibility Issues
	1. UNALIGNED TRANSFERS
	2. AM CODE ERROR LOG
	3. USER DEFINED AM

	Universe II Changes
	Register Reset Values
	Coupled Request Timer
	MFUNCT Field In PCI_MISC0
	Config Type 1 Accesses
	PCI Base Address Registers
	DGCS VON[3]
	IACKIN* Monitoring
	Rescinding DTACK
	Reset Operation
	Universe II Additions

	General Feature Additions/Enhancements
	Mailboxes
	Location Monitor
	Additional Slave Images
	VME Software Interrupts
	Semaphores
	New SCYC_CTL LAS Field

	Performance Enhancements
	Early Release Of BBSY*
	VOFF/VON
	Aligned Burst Size
	PCI Bus Parking

	Universe I/Universe II Detection
	6
	Description of Signals
	Contents

	Introduction
	Table 7-1 VMEbus Signals (Continued)
	Table 7-2 PCI Bus Signals (Continued)
	7
	Signals and DC Characteristics
	Contents

	Terminology
	DC Characteristics and Pin Assignments
	Table 8-1 DC Electrical Characteristics (VDD = 5 V ± 10%)�
	Table 8-2 Pin List and DC Characteristics for Universe II Signals (Continued)
	Table 8-3 PCI Bus Address/Data Pins (Continued)
	Table 8-4 VMEbus Address Pins
	Table 8-5 VMEbus Data Pins�
	Table 8-6 Pin Assignments for Power and Ground (Continued)
	Table 8-7 Pinout for 313-pin Plastic BGA Package
	A
	B
	C
	D
	E
	F
	G
	H
	J
	K
	L
	M
	N
	P
	R
	T
	U
	V
	W
	Y
	AA
	AB
	AC
	AD
	AE
	1
	vd[22]
	vd[19]
	vd[9]
	vd[5]
	VDD
	int#[7]
	VSS
	lrst#
	vrbr#[1]
	ad[27]
	ad[58]
	PLL_ testsel
	AVSS
	2
	vd[18]
	vd[14]
	vd[13]
	vd[6]
	vd[2]
	vscon_ DIR
	vxbbsy
	ad[61]
	ad[59]
	ad[24]
	PLL_ testout
	VDD
	3
	vd[23]
	vd[21]
	vd[20]
	vd[12]
	vd[3]
	int#[5]
	vbclr#
	vrbr#[2]
	VDD
	ad[57]
	lclk
	VDD
	vcoctl
	4
	vd[26]
	VDD
	vd[15]
	vd[11]
	vd[4]
	int#[4]
	VSS
	pwrrst#
	ad[25]
	ad[56]
	perr#
	ad[22]
	5
	vd[30]
	vd[24]
	VDD
	vd[17]
	vd[8]
	VDD
	ad[63]
	ad[60]
	ad[26]
	vrbr#[0]
	int#[1]
	AVDD
	par64
	6
	vd[27]
	vd[25]
	vd[16]
	vd[10]
	vd[7]
	vrbbsy#
	ad[30]
	VSS
	int#[3]
	ad[23]
	ad[55]
	VSS
	7
	vrberr#
	vd[28]
	viack#
	VDD
	vd[0]
	vrbr#[3]
	vsysclk
	VDD
	ad[28]
	VDD
	serr#
	devsel#
	ad[20]
	8
	vam_DIR
	vwrite#
	vd[29]
	VDD
	vd[1]
	int#[6]
	par
	ad[29]
	VDD
	ad[21]
	ad[54]
	trdy#
	9
	vam[5]
	VDD
	vd[31]
	vam[2]
	VDD
	int#[2]
	VSS
	ad[62]
	VDD
	ad[18]
	ad[53]
	VSS
	VDD
	10
	vam[3]
	vam[1]
	vd_DIR
	vam[4]
	VSS
	vxsysfail
	ad[31]
	VDD
	ad[51]
	VSS
	ad[52]
	ad[19]
	11
	vds#[1]
	tms
	vam[0]
	VDD
	vds_DIR
	VSS
	VSS
	VSS
	VSS
	ack64#
	VDD
	ad[50]
	ad[16]
	12
	voe#
	vxberr
	vds#[0]
	tck
	vas_DIR
	VSS
	VSS
	cbe[6]
	ad[48]
	ad[49]
	ad[17]
	cbe[7]
	13
	tdi
	tdo
	trst#
	va_DIR
	VSS
	VSS
	VSS
	VSS
	VSS
	cbe[3]
	tmode[0]
	vrsysfail#
	VSS
	14
	vas#
	va[5]
	va[3]
	va[1]
	vlword#
	VSS
	VSS
	cbe[2]
	cbe[1]
	cbe[0]
	VSS
	cbe[5]
	15
	va[2]
	vslave_DIR
	VDD
	vdtack#
	va[4]
	VSS
	VSS
	VSS
	ad[15]
	VDD
	ad[14]
	irdy#
	cbe[4]
	16
	va[8]
	va[10]
	va[13]
	va[7]
	VSS
	vbgi#[1]
	ad[0]
	VSS
	vrirq#[5]
	VSS
	idsel
	ad[47]
	17
	VDD
	va[9]
	va[14]
	va[6]
	VDD
	ad[32]
	VSS
	vrirq#[7]
	VDD
	frame#
	ad[13]
	VDD
	gnt#
	18
	va[12]
	va[17]
	va[16]
	VDD
	vxirq[3]
	vbgo#[2]
	vracfail#
	ad[3]
	VDD
	ad[45]
	stop#
	req64#
	19
	va[11]
	va[18]
	va[23]
	VDD
	vxirq[1]
	VDD
	ad[33]
	ad[2]
	ad[35]
	VDD
	rst#
	ad[12]
	ad[46]
	20
	va[19]
	va[21]
	va[22]
	vrirq#[2]
	int#[0]
	vbgo#[0]
	vrirq#[6]
	ad[5]
	ad[39]
	ad[43]
	ad[11]
	ad[44]
	21
	va[15]
	vrsysrst#
	va[28]
	va[27]
	vrirq#[4]
	viacko#
	vbgi#[0]
	VDD
	ad[38]
	ad[41]
	tmode[1]
	ad[10]
	enid
	22
	va[20]
	VDD
	va[29]
	vrirq#[1]
	req#
	vxirq[6]
	ad[1]
	ad[4]
	vme_rst#
	ad[40]
	ad[8]
	ad[42]
	23
	vxsysrst
	clk64
	va[25]
	vxbr[3]
	VDD
	vxirq[5]
	vbgi#[3]
	ad[34]
	ad[36]
	tmode[2]
	lock#
	VDD
	viacki#
	24
	VDD
	va[30]
	va[31]
	vxbr[1]
	vxirq[2]
	vbgo#[3]
	vxbr[2]
	VSS
	VSS
	VDD
	ad[7]
	VDD
	25
	va[24]
	va[26]
	vrirq#[3]
	vxbr[0]
	vxirq[4]
	vbgo#[1]
	vbgi#[2]
	vxirq[7]
	VDD
	ad[37]
	ad[6]
	VSS
	ad[9]
	Table 8-8 Pinout for 324–pin Ceramic BGA Package

	A
	B
	C
	D
	E
	F
	G
	H
	J
	K
	L
	M
	N
	P
	R
	T
	U
	V
	W
	Y
	1
	VSS
	vd[1]
	vd[7]
	vd[3]
	VSS
	VDD
	vscon_dir
	VDD
	par
	lrst#
	VDD
	vrbr#[1]
	pwrrst#
	ad[58]
	VDD
	pll_testout
	2
	VSS
	vd[22]
	vd[9]
	vd[16]
	vd[10]
	vd[6]
	vrbr#[3]
	vrbbsy#
	vsysclk
	ad[63]
	VSS
	ad[61]
	ad[27]
	ad[25]
	pll_testsel
	vrbr#[0]
	ad[57]
	VSS
	3
	vd[21]
	vd[28]
	VDD
	vd[15]
	vd[19]
	vd[12]
	VDD
	vd[0]
	int#[2]
	vxsysfail
	vxbbsy
	vrbr#[2]
	VDD
	ad[26]
	ad[56]
	VDD
	int#[1]
	VDD
	lclk
	VSS
	4
	VDD
	vd[26]
	vd[24]
	vd[13]
	vd[20]
	vd[14]
	vd[8]
	vd[2]
	int#[4]
	int#[7]
	ad[31]
	ad[29]
	ad[60]
	VDD
	int#[3]
	VDD
	VSS
	ad[55]
	par64
	ad[51]
	5
	vd[30]
	vd[23]
	VDD
	VDD
	vd[18]
	vd[11]
	vd[5]
	VDD
	int#[6]
	vbclr#
	ad[30]
	ad[28]
	ad[59]
	ad[24]
	ad[23]
	vcoctl
	AVSS
	AVDD
	perr#
	VSS
	6
	vam[1]
	vwrite#
	vd[25]
	vd[29]
	viack#
	VDD
	vd[17]
	vd[4]
	int#[5]
	VSS
	VSS
	ad[62]
	VSS
	VSS
	VDD
	ad[54]
	ad[22]
	devsel#
	ad[21]
	VSS
	7
	vam[5]
	vrberr#
	vd[31]
	VDD
	vd[27]
	VSS
	serr#
	ad[20]
	ad[53]
	VDD
	trdy#
	VSS
	8
	VDD
	vam[3]
	VDD
	vam[0]
	vam_dir
	vd_dir
	ad[52]
	VDD
	ad[19]
	ad[18]
	ack64#
	VDD
	9
	vds#[1]
	vxberr
	tms
	vam[4]
	vam[2]
	vds_dir
	ad[50]
	ad[48]
	ad[17]
	VSS
	ad[49]
	cbe[7]
	10
	tck
	trst#
	voe#
	vas_dir
	vds#[0]
	tdi
	VSS
	vrsysfail#
	ad[16]
	cbe[6]
	cbe[3]
	VDD
	11
	VDD
	va_dir
	vlword#
	va[2]
	tdo
	VSS
	VSS
	cbe[0]
	cbe[2]
	cbe[5]
	tmode[0]
	cbe[1]
	12
	vas#
	va[3]
	va[4]
	va[5]
	va[1]
	vslave_dir
	ad[15]
	frame#
	vrirq#[5]
	irdy#
	VSS
	cbe[4]
	13
	VDD
	vdtack#
	va[6]
	va[8]
	VDD
	va[10]
	VSS
	req64#
	ad[14]
	VDD
	ad[47]
	VDD
	14
	VSS
	va[12]
	VDD
	va[14]
	va[11]
	va[23]
	VSS
	ad[44]
	VDD
	ad[13]
	ad[46]
	gnt#
	15
	va[9]
	va[16]
	va[18]
	va[20]
	va[22]
	VDD
	VSS
	int#[0]
	ad[32]
	vbgi#[2]
	VSS
	ad[34]
	ad[4]
	ad[41]
	VDD
	ad[43]
	ad[45]
	ad[11]
	stop#
	idsel
	16
	va[13]
	va[17]
	vrsysrst#
	clk64
	vxsysrst
	va[27]
	va[31]
	vxbr[1]
	vxirq[1]
	vbgo#[0]
	vbgi#[3]
	vracfail#
	VDD
	ad[37]
	ad[8]
	VSS
	VDD
	VDD
	viacki#
	enid
	17
	va[7]
	va[15]
	va[21]
	va[19]
	VDD
	vrirq#[2]
	VDD
	viacko#
	vxirq[3]
	vbgi#[1]
	vxirq[7]
	ad[1]
	VSS
	ad[38]
	ad[7]
	ad[9]
	VDD
	tmode[1]
	rst#
	VDD
	18
	VSS
	va[25]
	VDD
	va[28]
	VDD
	va[29]
	vrirq#[4]
	VDD
	vxirq[5]
	vbgo#[3]
	ad[0]
	vrirq#[7]
	ad[35]
	VDD
	tmode[2]
	lock#
	ad[40]
	VDD
	ad[12]
	ad[42]
	19
	VSS
	vxbr[3]
	va[30]
	va[26]
	vrirq#[1]
	vxbr[0]
	vxirq[2]
	vxirq[6]
	vbgi#[0]
	ad[33]
	vrirq#[6]
	ad[2]
	VSS
	ad[39]
	vme_reset#
	ad[6]
	ad[10]
	VSS
	20
	va[24]
	VDD
	vrirq#[3]
	req#
	vxirq[4]
	VDD
	vbgo#[1]
	vbgo#[2]
	VDD
	vxbr[2]
	VDD
	VSS
	ad[36]
	ad[5]
	ad[3]
	VSS
	8
	System Registers

	Introduction
	Table A-1 System Register Map
	A
	B
	Universe II Registers

	Introduction
	Figure B-1 UCSR Access Mechanisms
	Table B-1 Universe II Register Map (Continued)
	Table B-2 PCI Configuration Space ID Register (PCI_ID)
	Table B-3 PCI_ID Description
	Table B-4 PCI Configuration Space Control and Status Register�(PCI_CSR)
	Table B-5 PCI_CSR Description (Continued)
	Table B-6 PCI Configuration Class Register (PCI_CLASS)
	Table B-7 PCI_CLASS Description
	Table B-8 PCI Configuration Miscellaneous 0 Register (PCI_MISC0)
	Table B-9 PCI_MISC0 Description
	Table B-10 PCI Configuration Base Address Register (PCI_BS0)
	Table B-11 PCI_BS0 Description
	 When the VA[1] pin is sampled low at power-up, the PCI_BS0 register’s SPACE bit is set to “1”, ...
	Table B-12 PCI Configuration Base Address 1 Register (PCI_BS1)
	Table B-13 PCI_BS1 Description
	Table B-14 PCI Configuration Miscellaneous 1 Register (PCI_MISC1)
	Table B-15 PCI_MISC1 Description
	Table B-16 PCI Target Image 0 Control (LSI0_CTL)
	Table B-17 LSI0_CTL Description
	Table B-18 PCI Target Image 0 Base Address Register (LSI0_BS)
	Table B-19 LSI0_BS Description
	Table B-20 PCI Target Image 0 Bound Address Register (LSI0_BD)
	Table B-21 LSI0_BD Description
	Table B-22 PCI Target Image 0 Translation Offset (LSI0_TO)
	Table B-23 LSI0_TO Description
	Table B-24 PCI Target Image 1 Control (LSI1_CTL)
	Table B-25 LSI1_CTL Description�
	Table B-26 PCI Target Image 1 Base Address Register (LSI1_BS)
	Table B-27 LSI1_BS Description
	Table B-28 PCI Target Image 1 Bound Address Register (LSI1_BD)
	Table B-29 LSI1_BD Description
	Table B-30 PCI Target Image 1 Translation Offset (LSI1_TO)
	Table B-31 LSI1_TO Description
	Table B-32 PCI Target Image 2 Control (LSI2_CTL)
	Table B-33 LSI2_CTL Description�
	Table B-34 PCI Target Image 2 Base Address Register (LSI2_BS)
	Table B-35 LSI2_BS Description
	Table B-36 PCI Target Image 2 Bound Address Register (LSI2_BD)
	Table B-37 LSI2_BD Description
	Table B-38 PCI Target Image 2 Translation Offset (LSI2_TO)
	Table B-39 LSI2_TO Description
	Table B-40 PCI Target Image 3 Control (LSI3_CTL)
	Table B-41 LSI3_CTL Description
	Table B-42 PCI Target Image 3 Base Address Register (LSI3_BS)
	Table B-43 LSI3_BS Description
	Table B-44 PCI Target Image 3 Bound Address Register (LSI3_BD)
	Table B-45 LSI3_BD Description
	Table B-46 PCI Target Image 3 Translation Offset (LSI3_TO)
	Table B-47 LSI3_TO Description
	Table B-48 Special Cycle Control Register (SCYC_CTL)
	Table B-49 SCYC_CTL Description
	Table B-50 Special Cycle PCI Bus Address Register (SCYC_ADDR)
	Table B-51 SCYC_ADDR Description
	Table B-52 Special Cycle Swap/Compare Enable Register (SCYC_EN)
	Table B-53 SCYC_EN Description
	Table B-54 Special Cycle Compare Data Register
	Table B-55 SCYC_CMP Description
	Table B-56 Special Cycle Swap Data Register (SCYC_SWP)
	Table B-57 SCYC_SWP Description
	Table B-58 PCI Miscellaneous Register (LMISC)
	Table B-59 SLSI Description
	Table B-60 Special PCI Target Image (SLSI)
	Table B-61 SLSI Description (Continued)
	Table B-62 PCI Command Error Log Register (L_CMDERR)
	Table B-63 L_CMDERR Description
	Table B-64 PCI Address Error Log (LAERR)
	Table B-65 LAERR Description
	Table B-66 PCI Target Image 4 Control Register (LSI4_CTL)
	Table B-67 LSI4_CTL Description (Continued)
	Table B-68 PCI Target Image 4 Base Address Register (LSI4_BS)
	Table B-69 LSI4_BS Description
	Table B-70 PCI Target Image 4 Bound Address Register (LSI4_BD)
	Table B-71 LSI4_BD Description
	Table B-72 PCI Target Image 4 Translation Offset (LSI4_TO)
	Table B-73 LSI4_TO Description
	Table B-74 PCI Target Image 5 Control Register (LSI5_CTL)
	Table B-75 LSI5_CTL Description�
	Table B-76 PCI Target Image 5 Base Address Register (LSI5_BS)
	Table B-77 LSI5_BS Description
	Table B-78 PCI Target Image 5 Bound Address Register (LSI5_BD)
	Table B-79 LSI5_BD Description
	Table B-80 PCI Target Image 5 Translation Offset (LSI5_TO)
	Table B-81 LSI5_TO Description
	Table B-82 PCI Target Image 6 Control Register (LSI6_CTL)
	Table B-83 LSI6_CTL Description�
	Table B-84 PCI Target Image 6 Base Address Register (LSI6_BS)
	Table B-85 LSI1_BS Description
	Table B-86 PCI Target Image 6 Translation Offset (LS16_TO)
	Table B-87 LSI6_BD Description
	Table B-88 PCI Target Image 6 Translation Offset (LSI6_TO)
	Table B-89 LSI6_TO Description
	Table B-90 PCI Target Image 7 Control Register (LSI7_CTL)
	Table B-91 LSI7_CTL Description �
	Table B-92 PCI Target Image 7 Base Address Register (LSI7_BS)
	Table B-93 LSI7_BS Description
	Table B-94 PCI Target Image 7 Bound Address Register (LSI7_BD)
	Table B-95 LSI7_BD Description
	Table B-96 PCI Target Image 7 Translation Offset (LSI7_TO)
	Table B-97 LSI7_TO Description
	Table B-98 DMA Transfer Control Register (DCTL)
	Table B-99 DCTL Description
	Table B-100 DMA Transfer Byte Count Register (DTBC)
	Table B-101 DTBC Description
	Table B-102 DMA PCI Bus Address Register (DLA)
	Table B-103 DLA Description
	Table B-104 DMA VMEbus Address Register (DVA)
	Table B-105 DVA Description
	Table B-106 DMA Command Packet Pointer (DCPP)
	Table B-107 DCPP Description
	Table B-108 DMA General Control/Status Register (DGCS)
	Table B-109 DGCS Description (Continued)
	Table B-110 DMA Linked List Update Enable Register (D_LLUE)
	Table B-111 D_LLUE Description
	Table B-112 PCI Interrupt Enable Register (LINT_EN)
	Table B-113 LINT_EN Description (Continued)
	Table B-114 PCI Interrupt Status Register (LINT_STAT)
	Table B-115 LINT_STAT Description (Continued)
	Table B-116 PCI Interrupt Map 0 Register (LINT_MAP0)
	Table B-117 LINT_MAP0 Description
	Table B-118 PCI Interrupt Map 1 Register (LINT_MAP1)
	Table B-119 LINT_MAP1 Description�
	Table B-120 VMEbus Interrupt Enable Register (VINT_EN)
	Table B-121 VINT_EN Description (Continued)
	Table B-122 VMEbus Interrupt Status Register (VINT_STAT)
	Table B-123 VINT_STAT Description (Continued)
	Table B-124 VME Interrupt Map 0 Register (VINT_MAP0)
	Table B-125 VINT_MAP0 Description
	Table B-126 VME Interrupt Map 1 Register (VINT_MAP1)
	Table B-127 VINT_MAP1 Description
	Table B-128 Interrupt STATUS/ID Out Register (STATID)
	Table B-129 STATID Description
	Table B-130 VIRQ1 STATUS/ID Register (V1_STATID)
	Table B-131 V1_STATID Description
	Table B-132 VIRQ2 STATUS/ID Register (V2_STATID)
	Table B-133 V2_STATID Description
	Table B-134 VIRQ3 STATUS/ID Register (V3_STATID)
	Table B-135 V3_STATID Description
	Table B-136 VIRQ4 STATUS/ID Register (V4_STATID)
	Table B-137 V4_STATID Description
	Table B-138 VIRQ5 STATUS/ID Register(V5_STATID)
	Table B-139 V5_STATID Description
	Table B-140 VIRQ6 STATUS/ID Register (V6_STATID)
	Table B-141 V6_STATID Description
	Table B-142 VIRQ7 STATUS/ID Register (V7_STATID)
	Table B-143 V7_STATID Description
	Table B-144 PCI Interrupt Map 2 Register (LINT_MAP2)
	Table B-145 LINT_MAP2 Description
	Table B-146 VME Interrupt Map 2 Register (VINT_MAP2)
	Table B-147 VINT_MAP2 Description
	Table B-148 Mailbox 0 Register (MBOX0)
	Table B-149 DVA Description
	Table B-150 Mailbox 1 Register (MBOX1)
	Table B-151 DVA Description
	Table B-152 Mailbox 2 Register (MBOX2)
	Table B-153 DVA Description
	Table B-154 Mailbox 3 Register (MBOX3)
	Table B-155 DVA Description
	Table B-156 Semaphore 0 Register (SEMA0)
	Table B-157 SEMA0 Description
	Table B-158 Semaphore 1 Register (SEMA1)
	Table B-159 SEMA1 Description�
	Table B-160 Master Control Register (MAST_CTL)
	Table B-161 MAST_CTL Description (Continued)
	Table B-162 Miscellaneous Control Register (MISC_CTL)
	Table B-163 MISC_CTL Description (Continued)
	Table B-164 Miscellaneous Status Register (MISC_STAT)
	Table B-165 MISC_STAT Description�
	Table B-166 User AM Codes Register (USER_AM)
	Table B-167 USER_AM Description
	Table B-168 VMEbus Slave Image 0 Control (VSI0_CTL)
	Table B-169 VSI0_CTL Description (Continued)
	Table B-170 VMEbus Slave Image 0 Base Address Register (VSI0_BS)
	Table B-171 VSI0_BS Description
	Table B-172 VMEbus Slave Image 0 Bound Address Register (VSI0_BD)
	Table B-173 VSI0_BD Description�
	Table B-174 VMEbus Slave Image 0 Translation Offset (VSI0_TO)
	Table B-175 VSI0_TO Description
	Table B-176 VMEbus Slave Image 1 Control (VSI1_CTL)
	Table B-177 VSI1_CTL Description
	Table B-178 VMEbus Slave Image 1 Base Address Register (VSI1_BS)
	Table B-179 VSI1_BS Description
	Table B-180 VMEbus Slave Image 1 Bound Address Register (VSI1_BD)
	Table B-181 VSI1_BD Description
	Table B-182 VMEbus Slave Image 1 Translation Offset (VSI1_TO)
	Table B-183 VSI1_TO Description
	Table B-184 VMEbus Slave Image 2 Control (VSI2_CTL)
	Table B-185 VSI2_CTL Description�
	Table B-186 VMEbus Slave Image 2 Base Address Register (VSI2_BS)
	Table B-187 VSI2_BS Description�
	Table B-188 VMEbus Slave Image 2 Bound Address Register (VSI2_BD)
	Table B-189 VSI2_BD Description
	Table B-190 VMEbus Slave Image 2 Translation Offset (VSI2_TO)
	Table B-191 VSI2_TO Description�
	Table B-192 VMEbus Slave Image 3 Control (VSI3_CTL)
	Table B-193 VSI3_CTL Description (Continued)
	Table B-194 VMEbus Slave Image 3 Base Address Register (VSI3_BS)
	Table B-195 VSI3_BS Description
	Table B-196 VMEbus Slave Image 3 Bound Address Register (VSI3_BD)
	Table B-197 VSI3_BD Description
	Table B-198 VMEbus Slave Image 3 Translation Offset (VSI3_TO)
	Table B-199 VSI3_TO Description
	Table B-200 Location Monitor Control Register (LM_CTL)
	Table B-201 LM_CTL Description�
	Table B-202 Location Monitor Base Address Register (LM_BS)
	Table B-203 LM_BS Description
	Table B-204 VMEbus Register Access Image Control Register (VRAI_CTL)
	Table B-205 VRAI_CTL Description�
	Table B-206 VMEbus Register Access Image Base Address Register (VRAI_BS)�
	Table B-207 VRAI_BS Description
	Table B-208 VMEbus CSR Control Register (VCSR_CTL)
	Table B-209 VCSR_CTL Description�
	Table B-210 VMEbus CSR Translation Offset (VCSR_TO)
	Table B-211 VCSR_TO Description
	Table B-212 VMEbus AM Code Error Log (V_AMERR)
	Table B-213 V_AMERR Description
	Table B-214 VMEbus Address Error Log (VAERR)
	Table B-215 VAERR Description
	Table B-216 VMEbus Slave Image 4 Control (VSI4_CTL)
	Table B-217 VSI4_CTL Description�
	Table B-218 VMEbus Slave Image 4 Base Address Register (VSI4_BS)
	Table B-219 VSI4_BS Description
	Table B-220 VMEbus Slave Image 4 Bound Address Register (VSI4_BD)
	Table B-221 VSI4_BD Description
	Table B-222 VMEbus Slave Image 4 Translation Offset (VSI4_TO)
	Table B-223 VSI4_TO Description
	Table B-224 VMEbus Slave Image 5 Control (VSI5_CTL)
	Table B-225 VSI5_CTL Description�
	Table B-226 VMEbus Slave Image 5 Base Address Register (VSI5_BS)
	Table B-227 VSI5_BS Description
	Table B-228 VMEbus Slave Image 5 Bound Address Register (VSI5_BD)
	Table B-229 VSI5_BD Description�
	Table B-230 VMEbus Slave Image 5 Translation Offset (VSI5_TO)
	Table B-231 VSI5_TO Description
	Table B-232 VMEbus Slave Image 6 Control (VS16_CTL)�
	Table B-233 VSI6_CTL Description�
	Table B-234 VMEbus Slave Image 6 Base Address Register (VSI6_BS)
	Table B-235 VSI6_BS Description
	Table B-236 VMEbus Slave Image 6 Bound Address Register (VSI6_BD)
	Table B-237 VSI6_BD Description�
	Table B-238 VMEbus Slave Image 6 Translation Offset (VSI6_TO)
	Table B-239 VSI6_TO Description
	Table B-240 VMEbus Slave Image 7 Control (VSI7_CTL)
	Table B-241 VSI7_CTL Description�
	Table B-242 VMEbus Slave Image 7 Base Address Register (VSI7_BS)
	Table B-243 VSI7_BS Description
	Table B-244 VMEbus Slave Image 7 Bound Address Register (VSI7_BD)
	Table B-245 VSI7_BD Description�
	Table B-246 VMEbus Slave Image 7 Translation Offset (VSI7_TO)
	Table B-247 VSI7_TO Description
	Table B-248 VMEbus CSR Bit Clear Register (VCSR_CLR)
	Table B-249 VCSR_CLR Description
	Table B-250 VMEbus CSR Bit Set Register (VCSR_SET)
	Table B-251 VCSR_SET Description
	Table B-252 VMEbus CSR Base Address Register (VCSR_BS)
	Table B-253 VCSR_BS Description

	C
	Performance
	Contents

	Introduction

	PCI Slave Channel
	Coupled Cycles
	Request of VMEbus
	Read Cycles
	Figure C-1 Coupled Read Cycle - Universe II as VME Master
	Figure C-2 Several Coupled Read Cycles - Universe II as VME Master

	Write Cycles
	Figure C-3 Coupled Write Cycle - Universe II as VME Master

	Decoupled Cycles
	Effect of the PWON Counter
	PCI Target Response
	1. It immediately issues a target retry because the FIFO does not have sufficient room for a burs...
	2. It responds as a zero-wait state target receiving up to 256 bytes in a transaction. When the F...

	VME Master Performance
	Figure C-4 Several Non-Block Decoupled Writes - Universe II as VME Master
	Figure C-5 BLT Decoupled Write - Universe II as VME Master

	VME Slave Channel
	Coupled Cycles
	Block vs. non-Block Transfers
	Read Cycles
	Figure C-6 Coupled Read Cycle - Universe II as VME Slave

	Write Cycles
	Figure C-7 Coupled Write Cycle - Universe II as VME Slave (bus parked at Universe II)

	Decoupled Cycles
	Write Cycles
	Effect of the PCI Aligned Burst Size
	VME Slave Response
	Figure C-8 Non-Block Decoupled Write Cycle - Universe II as VME Slave
	Figure C-9 BLT Decoupled Write Cycle - Universe II as VME Slave
	Figure C-10 MBLT Decoupled Write Cycle - Universe II as VME Slave

	PCI Master Performance
	Prefetched Read Cycles
	Figure C-11 BLT Pre-fetched Read Cycle - Universe II as VME Slave

	DMA Channel
	Relative FIFO sizes
	VMEbus Ownership Modes
	VME Transfers
	Read Transfers
	Write Transfers

	PCI Transfers
	Figure C-12 PCI Read Transactions During DMA Operation
	Figure C-13 Multiple PCI Read Transactions During DMA Operation

	Summary
	Table C-1 PCI Slave Channel Performance
	Table C-2 VME Slave Channel Performance (Continued)
	Table C-3 DMA Channel Performance
	Typical Applications
	Contents

	VME Interface
	Transceivers
	Figure D-1 Universe II Connections to the VMEbus Through TTL Buffers (continued)
	Figure D-1 Universe II Connections to the VMEbus Through TTL Buffers
	Table D-1 VMEbus Signal Drive Strength Requirements
	Table D-2 VMEbus Transceiver Requirements
	Pull-down resistors

	Direction Control
	Power-up Options
	Figure D-2 Power-up Configuration Using Passive Pull-ups
	Figure D-3 Power-up Configuration Using Active Circuitry
	Auto-Syscon and PCI Bus Width Power-up Options

	PCI Bus Interface
	Resets
	Table D-3 Reset Signals
	VMEbus Resets
	PCI bus Resets
	Power-Up Reset
	JTAG Reset

	Local Interrupts

	Manufacturing Test Pins
	Decoupling VDD and VSS on the Universe II
	Figure D-4 Analog Isolation Scheme
	Figure D-5 Noise Filter Scheme
	D
	Reliability Prediction
	Contents

	Introduction

	Physical Characteristics
	Thermal Characteristics
	Universe II Ambient Operating Calculations
	Table E-1 Ambient to Junction Thermal Impedance
	Table E-2 Maximum Universe II Junction Temperature

	Thermal Vias
	E
	Cycle Mapping

	Introduction

	Little-endian Mode
	Table F-1 Mapping of 32-bit Little-Endian PCI Bus to 32-bit VMEbus (Continued)
	Table F-2 Mapping of 32-bit Little-Endian PCI Bus to 64-bit VMEbus�
	F
	Operating and Storage Conditions
	Table G-1 Recommended Operating Conditions
	Table G-2 Absolute Maximum Ratings
	Table G-3 Power Dissipation

	G
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

