
""" '" #'

~
W

~
~
z o -I--,...J

~

P.O. Box 1236, Del Mar, CA 92014 USA • (619) 48l·2286

Modula-2 Installation Notes - O.3j for the IBM PC

This, document presents useful system information which is not covered by the
regular documentation. The following topics are discussed:

• ' Features not supported • Basic key commands • RAM disk
configuration • Serial and pa~allel ports • 8087 support • p­
NIX shell • ASE installation notes

Fe~tures·. Not Su~pC'~ted In 'This Release

This- section describes system features that are not supported in the current
release:

'Serial and parallel port interrupts (i.e. IOTRANSFER vectors 4 and
7) are not implemented.

~

There are currently no facilities fOi" creating your own device drivers
to iink into the interpreter. Documentation will be available in the
near future for this facility, but it will probably require that you
have the version IV p-System and its assemblerot

Hard disks are not supported.

Ass!3mbly p'~'ocedure linkage is not supported.

Graphics are not supported.

r..~a3i~ Eey C@mm!!nmr.

There are some basic key commands you should know about. Most of, these
c'ommand e.re (lescribed mor'.~ fully in section 2.3 of the Modula Operating
S;1Stem M~F-llu8.1~

r'~ping' the Del key while holding down the Ctrl and Alt keys reboots the
system ..

The Entef key is the <1"eturn) command.

The Backspace key erases the last character typed in to a prompt.

Typing control-Backspace erases all characters typed in to a promp.t.

The Esc key is the "<escape> command.
,

Control-C serves as both the <eof> and <accept> commands.
,' ..

Control-S is the ~~tartjstap ':~otrimafl~~ :Whi~j~~~,~~!~o~le ;9~t!t:·

Control-Break is the program, br~,ak'" c'6'mmand which teiirtiha tes the current
program with an execution error+>

NOTE,- The 'ASE key definiti(1)S;',:',are described _ f",rther" on ,jn, this
dJ)~um~n.:tt.' "J

WARmN G ~ ~ ~he program:: -Br~d'I< Fi<Ety'(,::~'Oiitroi~~~~k,~ :~~l(t~,:n.o~~}1:>e,~ ~used
while~; Modula program is starting up: it may crash':"~h~ system.
Once ,:a Modula program is rUming" ,control-Break- c'an be safely
used.' " -

.... - ~ -- .-

The RAM disk ,driver provided in the 'pr,e~pfigured interpreters 'has, the disk
length set to 0, thus preventing a RAl\f .. disk:<,from being allocated. Tc create
a RAM disk, .you must run _ the IBMUtil "p~ogram and?§,~ki~~·1,tA:..'i'~lht1iSl<9lingth
(see the Implementation Guide for detaJ1S). -

," ! . '1

Not~ ttlat'Jf" ·~<>.'U ~~~" ~,~r,:·~R~¥ ··~:~k:\:!~~~tJ1-~~·:to.-:~~t~~l!.d{vtdla'blary~ ~te;~liWitch
~ettIngs o~ y~:yr,:: '}pe~9~i·.;~xpan~~~,R-iA~O~~·~~~f~~flep~ .. rrth.eJ. actuitls\ an:o~t of
memory,; '.~~ bOar~.~~, ~,t':~~rw~~~:, }~~l~~rN.~M:·.E!~k sq~IV~:~ mBJ>f~~use;:)t~r:sY8t.e~ to
'h~lt (!Ih~le"start~pgllwlth a hardwa!;ij)Q~l~y:.~pr.~r: •. w:h-.ilel1:~t!>se~~~'S(l(~(jt(the
hIgh bmIt of avail~ble memory" '.rhl8..problem can be avoldedby>.s~ttlng. the
RAM disk length to a '. fiJf~,(t number::' of blocks.

Seri81x~and 'Parallel Ports

The 808'l,·,:nunle,ric .. coprocessor is're'qtilred in order to perform floating point
arithmetic;·,~~ther~ is no software floating point supportCi Floating point is
accessed vi~,r~'ihe 'data type REAL in both Pascal and Modula. The 54-bit

internal format results in 17 digits of preclSl0n~ Math functions in both
Pascal and Modula-2 use the 8087's math support.

When an 8087 is installed, the Pascal compiler supports 64-bit "long" integers
via thntQd,~~~. ~gp',~::,!W@~~~.l2tWi~1J:iltege~s':. may~,lje, freely! mixed in expressions
with 'regtuar integers and reals. Integer constants with a magnitude larger
than 32767 are treated.as .wi~e"con,~t~t~, .• ,.., ,:rb~~st.~,n~r,d.:pr:Qcedures: TRUNC
and ROlJl'rJ)'('wo~lfl1YJitW':w1dEr'.:(rither~ t'fian··regUliirt"integersc.·';' Wides may not
be used as count variables or bound expressions in FOR statements.

• , _Lf"'. .

p-NIX Shell

The"';'she1l "command 'ed' cannot be used with nonseparate cbde and data
interpreters be'cause there is insufficient memory to run ASE on top of the
shell. On separate code, and data ~n.terpr~,te.rs" with 64K,"bytes' .(qr more) of
CCfge.;~.,space "i"~e'~' tr;NdI~ksJ.ti~~;·.' '

ASE Installation Notes

ASE is preconfigur.ed for the IBM PC and alre~,dys .tim1talled on the "'SYS' disk
as SYSTEM.EDITOR. The predefined ASE key definitions are described
below.

Version Oe9 of ASEcontains one f~atur~ ... that J$ not; des~cribed in theASE
"USE:X-i~:<:3 JVianua.H~\.~"4~h6;.~ .. bbmrnarlds":mseftth 'ltiitl"'Dele1~Cn can be used from the

;, main:f' e;~it()r ' pro,frtptj"J =tn~y ~"i8.i·~ ~,!io.} .. 'ib!ilf~.~:1!t~s~r~4t~d:,'· to'being;:; used in the
-(K(c.~ange', comma;n(l'.ct~; See" :tne :"?esci"ip~~I~L.o"f,; 't!re',.!4(Change command for, more
inform:a:Uoly'on,;In~ert8h ;'an(t]jeleteCh;::,", '

ASE Key Definitions

The following table displays the ASE key definitions for the IBM PC. Note
that ~,~~ "l?refixe~',' ;.~~Y..S ar~ ~:~t1!~l~,¥ ;~n~~:k~y 1.~:e9urP.t~~~~,;;, the <ctrl> .olj;', ~alt>
kDys~:~ar,elt~ressedf,~a~"thesam~·,.\ltl!~~' ~~~ .. ~n~ ~J~o,mp~plqn,)<ey to perform the
command. ' "',

If you're interested in knowing what character codes are ge~nerated by these
key definiticns, try ths S(et E(nvironment E(nter Fn Key command. See the
manual for details"

_.. if"..

Command:

'<I
'('
I?'
Accept
BackSpace

g~fJtl3Chir
Edit
Escape'
Gefchflr
H()rli~
inS~t'tettaT'
KOlufflR'
LineEnd
Next
Page
Rep1B;~i!'
Right~,: ""

~~~~ 
;~,; 
···;.$rhaa~~ 

~t·,:, . 
'f3\/ 
f~l 

'f:7 
Recbr'd 

f ~ ')'l,: .'"~" 

BeginLil1e 
Delete . 
Getchiir' 
Insert 
OppPage; 
UpTop: .-

Key 

.< 
,,' 
'-1' 
ctrl-c . 
b~cksp~ce 

. ·C ... (iridcf"; 
Dei 
E ·and·:.e. ;':£56' .. ,\,; .... , 
g 
Home 
Iris 
.Kihd ·k 
L. in~' i 
N and n, 
P and p 
Rand r 
right arrow 
I .' 

:,iali 

',~~~~~i 
'#'3" 
'P5 

",,£7'; 
fEll 

, ctrl~b 
alt-d 
ctrl~ 
alt~i 

" p~YP:.;~;: 
ctrl~lf: .. -~ . . '.~:' : 

.. Commandi 

')' 
')' 
del.: 
Adjust.:.~ 

BeginLine~ 
f)'&lete 
D6wJ.lll; .. ' E_ 
Find· 
GetAgglfi . 
insert . 
Jump.:;': 
Lett.f.:: 
Mar' fti 
O'pp~~g~ 
Qtiif . . 
R~ttlrft 
s~t: ;:;:,~:~,,\ 
~p~~,~;:,. T1'!Dmk ':' 
!1.~Tit:;. , Word~tiV'e 
'·?~il'/<' ;.~ .. 
,12,;; 
dt:4~ 
f6, 
fe 

,.T~~jfi! 

";r_~ 
(Ge'ttgai~;· '" 
:tlneEnCi'· 
,psge::~:j',:.;;~. 

:WordlWoie .... :,,-.~\... ",. 

Key 

) 

• 
ctrlH)a:'Ckspac~' . 
A amda . 
Band b 
:0 an'd d 
down" arrow 
:If 

:F itid t a; . 
l·and··i 
J and j 
lett .arrow 
M and m 
o and 0" 

Q and q 
Enter 
;S··8.nd S 
splice bar 
if and t 
U" ~nd u 
Wiand.w 
Z·and ,2 
F2 
F4 c' 

Ptk.i 
Fa" 
P1(\)·· 

\ctrl""O ~ 
etr~x 
~trl"4n·.· 
·cttw.l..,'! 
'Pg.l:lll 
~}w.w 



M()~~18--2 
Ussp's Ma~l!al 

Release: .O~ 

Date:: . ~G\fA"··t;;·19:8·3 . 
" ....... ~."' .... ; ... ,. 

l"_~ Bie~,d .G!~!U 



Volition Systems and ASE 
are trademarks of Volition Systems. 

PO Box 1236, Del Mar, California 92014 USA 
(619) 481-2286 

Sprinter-2 
is a trademark of 

Scenic Computer Systems Corporation. 

UCSD Pascal 
is a trademark of the 

Regents of the University of California. 

Although Volition Systems has attempted to compile the material contained in 
this manual accurately, neither Volition Systems, its employees, nor its agents 
can make any warranty or representation, expressed or implied, with respect 
to, the accuracy or completeness of such information, or assume any liability 
with, regar~tto the use, or damages resulting from the use, of any informa-

" tion, method, pr PfQcedure described herein. 

Copyright 1982, 1983 by Volition Systems. 
All rights reserved. 

Duplication of any part of' this work ,by any means is forbidden without the 
prior written consent of Volition Systems~ 

Distributed by Springer-Verlag 
Berlin Heidelberg New York Tokyo 

ISBN 3-540-14008-5 



Acknowledgements 

The Modula-2 language was designed by Nildaus Wirth and his colleagues at 
the Institut fur Informatik, ETH Zurich. 

The Modula-2 compiler and library for UCSD Pascal are the work of Roger 
Sumner and Joel McCormack. 

The Modula-2 p-code interpreters were written by Mark Allen, Randy Bush, 
Joel McCormack, and Roger Sumner (6502, 68000, Z80, and 8086 respectively). 

Al Hoffman of Apple Computer, Bill Bonham of Sage Computer, and Erik 
Smith of Scenic Computer contributed valuable assistance to the Modula-2 
development effort. Special thanks are due Jim Merritt for his careful 
review of the manual. 

This document was produced with the ASE text editor and the Sprinter-2 text 
formatter. 



Modula-2 User's Manual 
Table Of Contents 

Table Of Contents 

1 Preface. • • • . . . . . . . . . . . . . . . . . . . . . . . . . . . . • 1 

2 Scope of This Manual. • • • • • • • • • • • • • • • • • • • • • • • • 2 

3 Organization. . . . . . . . . • • • • • • • • • • • • • • • • • • • • • 3 

4 How to Use This Manual ••••••••••••••••••••••• 4 

5 Notation ••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

6 Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

Index •••••••••••••••••••••••••••••••••••• 7 



1 Preface 

Modula-2 User's Manual 
Preface 
page 1 

Modula-2 is a general purpose programming language designed primarily for 
systems implementation. Based on the language Pascal, Modula-2 is suitable 
for programming entire computer systems, from high-level machine-independent 
application programs down to low-level machine-specific software such as 
device drivers. Modula-2 also provides facilities for constructing large 
programs from separately compiled parts written by different programmers. 

Modula-2 is the third in a series of languages designed by Nildaus Wirth over 
the past decade. The first and most famous is Pascal. Originally intended 
as a teaching language, Pascal elegantly embodied the then-new principles of 
structured programming, and was embraced by both educators and computer 
professionals as the language Qf choice in a wide range of computing 
applications. Unfortunately, Pascal's rampant use in applications beyond its 
intended scope resulted in the development of several incompatible dialects, 
and - as its popularity increased - criticism of the language's "limitations". 

Wirth's next language was named MODULA (an acronym for "modular 
language"). MODULA was designed as a special purpose language for 
programming small real-time control systems. It consisted of a minimal subset 
of Pascal, to which was added the module structure, an improved syntax, and 
facilities for multiprocessing and low-level machine access. Because of its 
bare-bones nature and narrow scope of use, MODULA never received the 
attention Pascal garnered; however, the module concept gained recognition as 
a significant programming construct. 

Wirth's latest language, Modula-2, has inherited the best features of its 
predecessors. It combines the module concept, improved syntax, and low-level 
programming facilities of MODULA with the general utility of Pascal. In 
addition, the design of Modula-2 systematically addresses Pascal's problems. 



Modula-2 User's Manual 
Scope of This Manual 
page 2 

2 Scope of This Manual 

This manual describes Volition Systems' implementation of the Modula-2 lan­
guage for the version IT U CSD Pascal system. It is written for the Pascal 
programmer who wishes to learn the Modula-2 language and write . Modula-2 
programs for the U CSD Pascal system. Familiarity with U CSD Pascal will 
prove useful, as Modula-2 runs under the U CSD Pascal operating system. 

This manual is neither a reference manual for the Modula-2 language nor a 
user's manual for the UCSD Pascal system. It should be used with the book 
Programming in Modula-2 and a U CSD Pascal system manual. 

The language tutorial contained in this manual is designed for readers who 
are already familiar with Pascal. This approach was chosen for its ability to 
teach Pascal programmers Modula-2 with minimal effort. If you do not know 
Pascal, the introductory chapters of Programming in Modula-2 provide a· 
basic introduction to the Modula-2 language. 



3 Organization 

Modula-2 User's Manual 
Organization 

page 3 

This manual consists of six separate documents. Note that each document 
has its own table of contents and index. 

• Modula-2 User's Manual: An introduction to the remaining 
documents. In particular, it explains how to use the manual. 

• Introduction to Modula-2: An introduction to the Modula-2 
language for Pascal programmers. It describes differences 
between Modula-2 and Pascal: concepts unique to Modula-2 are 
presented in tutorial fashion, while minor language differences 
are organized for ease of reference. 

• Standard Library: Describes the standard library modules 
provided with the Modula-2 system. The standard library 
modules provide basic system facilities; they constitute a 
portable operating system for all Modula-2 programs. 

• Utility Library: Describes additional library modules provided 
with the system. These modules provide miscellaneous system 
facilities. The utility library will grow as new library modules 
are written and incorporated into subsequent releases. 

• The Modula-2 System: Presents the Modula-2 language 
implementation for the UCSD Pascal system. It describes the 
library and Modula-2 compiler, and explains how to use the 
system. . 

• Implementation Guide: Presents information unique to the host 
computer system. This section includes an installation guide, 
machine-level representations of data types, and system­
depend~nt facilities. 



Modula-2 User's Manual 
How to Use This Manual 
page 4 

4: How to Use This Manual 

The first step is to learn how to run Modula-2 programs on your system. 
The Implementation Guide explains how to install the Modula-2 system. 
Chapter 4 in The Modula-2 System document explains how to compile and 
execute Modula-2 programs (the sections on library management may be 
skipped initially, as they assume an understanding of Modula-2's separate 
compilation facilities). 

If you are not familiar with Modula-2, read Introduction To Modula-2 and 
the book Programming in Modula-2.. As your grasp of the language 
improves, refer to The Modula-2 System for implementation and operation 
details. 

Before you design or write any serious programs, be sure to read all of The 
Modula-2 System. In general, it presents information which contributes to 
the efficiency of both programs and programmers. In particular, section 3.2 
identifies implementation differences from the Modula-2 language definition. 

Standard Library and Utility Library present a wide range of system 
facilities available to Modula-2 programs. Skim through both of these 
documents to familiarize yourself with the various library modules; later, 
when you wish to use a specific module, go back and read the appropriate 
section in detail. (After a while, using many of these modules becomes 
second nature, and you will no longer need to consult the manual.) 

If you have any trouble finding something iri the manual, keep in mind that 
each document has a separate table of contents and index; what you need to 
know may be described in a different document than the one you are 
currently reading. (This problem vanishes with time, as each document covers 
a well-defined topic; once you understand the manual structure, you will be 
able to immediately consult the proper document.) 



5 Notation 

This section describes the notation used in this manual. 

Modula-2 User's Manual 
Notation 

page 5 

Programming language manuals normally define a notation for specifying the 
syntax of a language. Such a notation is not presented here, as this manual 
provides only an informal description of the Modula-2 language; the book 
Programming in Modula-2 contains a complete language definition. It uses 
a notation known as "EBNF" (short for "Extended Backus-Naur Form") to 
describe the syntax of Modula-2 programs. 

This manual defines a number of terms for describing the Modula-2 language 
and its implementation. When new terms are introduced, they appear in 
boldface and are followed by either a definition or a reference to the 
defining section. 

NOTE- Paragraphs beginning with the word NOTE contain interesting 
or useful information related to the current topic. 

WARNING- Paragraphs beginning with the word WARNING point out 
potential problems associated with the current topic. 

Intra-document references have the form "x.y.z •••• ", where x, y, and z 
denote digits. The first digit indicates the chapter; subsequent digits 
indicate sections within the chapter. For instance, the phras~ "see 3.4" 
refers to section 4 in chapter 3. 

InteI-document references refer to the external document by (boldfaced) 
name. For instance, the phrase "see 1.4 in The Modula-2 System" refers to 
section 1.4 in the document named "The Modula-2 System". 



Modula-2 User's Manual 
Terminology 
page 6 

6 Terminology 

This section defines terms used in The Modula-2 System and the 
Implementation Guide. Most of this terminology is inherited from the UCSD 
Pascal environment. 

The following terms are used to describe file I/O in Modula-2: file name, 
file block, block number, unit, and unit number. 

A file name is a character string that conforms to the file naming 
conventions of the UCSD Pascal file system. 

A file title is the part of a disk file name that is not a file suffix. For 
instance, the file name "LIB.TEXT" contains the file title "LIB" and the file 
suffix ". TEXT". 

A file block is the basic unit of disk file storage; a block contains 512 
bytes. A block number is a number specifying a file block within a disk 
file; the first block of a disk file is block O. 

A unit corresponds to a physical I/O device. Each unit is identified by a 
unique unit number. For instance, unit 1 is the system console, unit 6 is the 
printer, and units 4 and 5 are the disk drives. 

NOTE - The U CSD Pascal system manual contains additional infOrma­
tion on the I/O system. 

The following terms are used to describe the operation' of the compiler and 
library manager: (cr>, (esc>, and <Space>. These terms refer to keyboard 
commands. <cr> denotes the RETURN key, <esc> the ESCAPE key, and 
<space> the space bar. 



Index 

-B-
Block Number •••••••••••••••••••••• 6 

-E-

EBNF •••••••••••••••••••••••••••••• 5 

File 
File 
File 
File 

-F-
Block ••••••••••••••••••••••••• 6 
Name ••••••••••••••••••••••••• 6 
Suffix •••••••••••••••••••••••• 6 
Title ••••••••••••••••••••••••• 6 

-1-

Implementation Guide ••••••••••••••• · 3 
Introduction to Modula-2 •••••••••••• 3 

-M-
MODULA •••••••••••••••••••••••••• 1 
Modula-2 ••••••••••••••••••••••••••• 2 
Modula-2 User's Manual ••••••••••••• 3 

-N-
Notation ••••••••••••••••••••••••••• 5 
NOTE ••••••••••••••••••••••••••••• 5 

-0-

Organiza tion • • • • • • • • • • • • • • • • • • • • • •• 3 

-P-

Pascal ••••••••••••••••••••••••••••• 1 
Programming in Modula-2 •••••••••••• 2 

-S-

Standard Library................... 3 

-T-

The Modula-2 System ••••••••••••••• 3 

Modula-2 User's Manual 
Index 

page 7 

-U-
U CSD Pascal...................... 2 
Untt ••••••••••••••••••••••••••••••• 6 
Unit Number ••••••••••••••••••••••• 6 
Utility Library ••••••••••••••••••••• 3 

-W-
WARNING •••••••••••••••••••••••••• 5 
Wirth, Nildaus ••••••••••••••••••••• 1 



·Release: 

Date: 

Author: 

Introduction to 

0.3 

26 August 1983 

Richard Gleaves 



Introduction To Modula-2 
Table Of Contents 

Table Of Contents 

1 Introduction. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 New Concepts •• 

2.1 Modules •• . . . . . . . . . . . . • • • • • • • • • • • • • • 4 

2.2 Separately Compiled Modules. . . . . . . . . . . . . . 
2.3 The Module Library. • • • 

2.4 Standard Utility Modules. 

. . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . 
2.5 Low-level Machine Access. . . . . . . . . . . . . . . . 
2.6 Coroutines and Interrupts. . . . . . . . . . . . . . . . 

16 

22 

24 

26· 

30 

2.7 Procedure Variables. • • • • • • • • • • • • • • • • • • • 37 

3 Differences From Pascal. . . . . . . . . . . . . . . . . . . . .39 

3.1 Vocabulary. • • • • • • • • • • • • • • • • • • • • • • • • 

3.1.1 Identifiers. • • • • • • • • • • • • • • • • • • • • 

40 

40 

3.1.2 Reserved Words & Symbols •••••• • • • 41 

3.1.3 Comments ••••••••••••••• • ••• 42 

3 .2 Constants. • • • • • • • • • • • • • • • • • • • • • • • • • 43 

3.2.1 Integers. • • • • • • • • • • • • • • • • • • • • • • • 43 
3 .2.2 Reals. • • • • • • • • • • • • • • • 44 
3.2.3 Characters. • • • • • • • • • • • • • • • • • • • •• 44 

3.2.4 Strings. • • • • • • • • • • • • • • • • • • • • • • • • 45 
3.2.5 Sets. . . . . . . . . . . . . . . . . . . . . . . . . . 

3.3 Types •••••••••••••••••••••• 
3.3.1 Procedures. • • • • • • • • • • • • • • • • 
3.3.2 Cardinals. • • • • • • • • • • • • • • • • • 

. . 
. .. 

• • • • • 
3.3.3 ChL~acters. • • • • • • • • • • • • • • • • • • • • • 

3.3.4 Sub ranges • • • • • • • • • • • • • • • • • • • • • • • 

3.3.5 Arrays. • • • • • • • • • ••••••••••••• 

3.3.6 Records. • • • • • • • • • • • • • • • • • • • • • • • 

3.3.7 Sets •••••••••••••••••••••••••• 

46 

47 

47 

47 

48 

48 

49 

49 

50 



3.3.8 Pointers ••• . . • • • • • • • • 

3.4 Expressions. • • • . . . . . . • • ... • 
3.4.1 Function Operands • • • . . • • • • 
3.4.2 Operators •• • • . . • • • • · . • • 
3.4.3 Mixed Expressions • · . · . · • 

· . 
• • 

• • 

• • 

• • 

Introduction To Modula-2 
Table Of Contents 

· . • • • • · 51 

• • • • . . • 52 

• • • • . . . 52 

· . • • · . · 53 

· • · . · . • 54 

3.5 Statements. • • • • • • • • • • • • • • • • • • • • • • •• 56 

3.5.1 Assignment Statements. . . . . • • • • • • • • • • 57 

58 3.5.2 Procedure Calls. • • • • • . . . . . . . . . . . 
3.5.3 WHILE Statements •••••••••••••••••• 59 

3.5.4 IF Statements. • • • • • • • • • • • • • • • • • •• 59 

3.5.5 FOR Statements. • • • • • • • • • • • • • • • • • • 60 

3.5.6 WITH Statements ••••••••••••••••••• 61 

3.5.7 CASE Statements. • • • • • • • • • • • • • • • •• 61 

3.5.8 LOOP/EXIT Statements ••••••••••••••• 62 
3.5.9 RETURN Statements. • • • • • • • • • • • • • •• 63 

3.6 Procedures and Functions. • • • • • • • • • . . 
3.6.1 Function Procedures. • • 
3.6.2 Parameter Type Compatibility •• . . 

. . . . 65 

• • 65 
• 66 . . . . 

3.6.3 Open Array Parameters. 

3.6.4 Standard Procedures. 
. . . . . ... • • . . • .• 66 

• • • • . . • •• 68 

3.7 Blocks •••••••••••••••••••••••••••• 71 

Appendix 1 Reserved Words and Symbols. • • • • • • • • • • • • • 74 

Appendix 2 Standard Identifiers. • • • • • • • • • • • • • • • • • • 75 

Appendix 3 ASCII Character Set. • • • • • • • • • • • • • • • •• 76 

Index. • • • • • • • • • • • • • • •.• • • • • • • • • • • • • • • • • • • 77 





1 Introduction 

Introduction To Modula-2 
Introduction 

page 1 

Modula-2 is a Pascal-based general purpose programming language. While it 
includes most of Pascal's features, Modula-2 differs from Pascal in three 
ways: 

• It extends Pascal upwards to encompass system design. Modula-2 
is capable of expressing large software systems without requiring 
support from an underlying operating system. (In fact, it is an 
excellent language for writing operating systems.) 

• It extends Pascal downwards to allow machine-level programming. 
Modula-2 eliminates the need for assembly language in the 
lowest levels of a computer system. 

• It introduces a number of minor changes to Pascal which simplify 
programming and improve program readability and efficiency. 

Modula-2 superficially resembles Ada and the growing crowd of Pascal 
supersets. Wirth himself credits Xerox's Mesa language as a design influence: 
many of Modula-2's features are borrowed directly from Mesa. Beyond these 
similarities, however, Modula-2 departs from the "more is better" philosophy 
of most of its cousins. Modula-2's design philosophy benefits more from a 
close comparison with that of the older "C" programming language. 

C has proven that a small, expressive language can be efficient· enough to 
displace assembly language, yet simple enough to be preferable to many so­
called "powerful" high-level languages. However, its cryptic syntax and weak 
type checking are serious deficiencies, especially in light of Pascal's proven 
reputation for clarity, safety, and rigorous design. 

Like C, Modula-2 provides facilities for relaxed type checking and direct 
access to memory words and addresses, enabling it to replace assembly 
language. Unlike C, Modula-2 does not freely provide these facilities; 
instead, their use is tied to specific language constructs. Modula-2 thus 
provides language-level support for the separation of machine-independent 
software from machine-specific software. 

Like C, Modula-2 provides only primitive operations close to the level of the 
machine; routines for I/O, storage allocation, and process scheduling are 
programmed in Modula-2 and stored in a library. Unlike C, Modula-2 can 
enforce type checking of parameters to library routines. Modula-2 thus 
provides language-level support for ensuring error-free separate compilation. 

In short, Modula-2 demonstrates that a highly structured, "protective" 
language need not sacrifice power, simplicity, or ease of use; it is therefore 
as much a successor to C as it is a successor to Pascal. 



Introduction To Modula-2 
Introduction 
page 2 

The module concept is of central importance in Modula-2. The purpose of a 
module is to contain a group of related procedures and data. A module 
allows some of its objects to be visible outside of the module, but hides the 
existence of other objects from the rest of the program. Modules allow large 
programs to be structured in a more readable fashion than is possible with 
block-structured languages: small collections of modules (sharing relatively 
few objects) replace the traditional army of procedures interconnected by 
pages of global declarations. 

The ability of modules to separate a program into semi-independent parts 
provides the foundation for separate compilation. Modula-2· defines a special 
type of module which is compiled separately from a main program. Large 
programs can be constructed as collections of separately compiled modules; 
alternatively, separately compiled modules can be installed in a library for 
use by many programs. Standard utility modules are an integral part of 
every Modula-2 implementation, as they are used in almost every program. 

The ability of modules to contain and hide objects allows Modula-2 to 
maintain machine independence in the face of low-level machine access. 
Machine-dependent items can be encapsulated in specific modules, and thus 
isolated to small portions of a program. These modules reveal only a high­
level interface through which the machine-dependent items are accessed. 
When programs are transported to different systems, the bulk of the software 
remains unchanged; only the machine-specific modules need be rewritten. 

Separately compiled modules can make a type identifier visible while hiding 
the structure of the associated type; this permits the definition of "abstract 
data types". (All operations on abstract data types are provided via 
procedure calls; a familiar example is Pascal's file type.) 

NOTE- Chapter 2 presents concepts unique to Modula-2, and thus new 
to Pascal programmers. Read this chapter first, as it presents 
some key language concepts. Chapter 3 is light reading - it 
describes minor syntactic and semantic differences from Pascal. 
Because it covers finer points in the language, chapter 3 is 
organized for ease of reference; you will find yourself thumbing 
through it quite often while your· programming habits shift from 
Pascal to Modula-2. 



2 New Concepts 

Introduction To Modula-2 
New Concepts 

page 3 

This chapter introduces language features unique to Modula-2. It presents 
enough information on these features for you to understand their rationale 
and write programs using them, but does not provide complete descriptions. 
Detailed information is provided in other parts of this manual and in the 
Modula-2 language report; references are provided at the appropriate points 
in this chapter. 

New concepts include modules, separate compilation, module libraries, 
standard utility modules, low-level machine access, coroutines a: 
interrupts, and procedure variables. As noted before, modules are the key 
concept in Modula-2. Separate compilation is accomplished with variants of 
modules; the standard library is a collection of commonly used "standard" 
modules; low-level machine access and process schedulers are provided by 
standard modules. Of the new concepts, only procedure variables are 
unrelated to modules; they follow from a new data type known as the 
"procedure type". 

NOTE- This chapter uses small Modula-2 programs to illustrate the 
use of the new language features; in doing so, it reveals a 
number of the syntactical differences described in the next 
chapter. Fortunately, the new syntax is only slightly different, 
and quite easily understood; it will not hamper your 
comprehension of the programs. 



Introduction To Modula-2 
Modules 
page 4 

2.1 Modules 

Before explaining modules, it is worthwhile to review Pascal's concepts of 
scope and block. 

A fundamental aspect of Pascal (and most other modern programming 
languages) is that it is a block-structured language. Block structure has 
proved useful as a method of program organization; it allows things to be 
declared locally to a procedure block so that they are unknown outside the 
block. Well-designed programs exploit block structure to improve their reada­
bility and understandability; when a variable or procedure is needed in only 
one place, it is declared in the local block so as not to impose on the rest 
of the program. 

The range in which an object (e.g. a variable or procedure) is known is 
called the object's scope. Blocks can be nested, and an object's scope is the 
block in which it is declared; therefore, scopes can be nested. The general 
scope rule is as follows: the scope of an object extends from the block in 
which it is declared down through all nested blocks. Another way of looking 
at scope is the visibility rule: for a given block, any objects declared in 
nested blocks are invisible, but all objects declared in enclosing blocks are 
visible. 

Block structure controls not only an object's scope, but also its existence at 
runtime. Objects local to a block exist only while the program executes 
statements inside the block; they are created when the block is entered, and 
destroyed when the block is exited. The existence rule implies that local 
variables cannot maintain their values across calls; _ the only way for them to 
do so is by declaring them in an outer block (where they become visible to 
the rest of the program). Thus, block structure binds a variable'S existence 
to its visibility. 

In the design of large programs, block structure proves inadequate for two 
reasons: 

• There is a need to separate visibility from existence. It should 
be possible to declare variables that maintain their values, but 
are visible only in a few parts of a program. 

• There is a need for closer control of visibility. A procedure 
should not be able to access every object declared outside of it 
when it only needs to access e .. few (if any) of them. 



Introduction To Modula-2 
Modules 
page 5 

Modula-2 introduces the module structure to address these problems. 
Syntactically, modules closely resemble procedures, but they have different 
rules about visibility and the existence of their locally declared objects. 
Consider the following declarations: 

PROCEDURE Outside; 
VAR x,y,z: INTEGER; 

MODULE Mod; 
IMPORT X; 
EXPORT a,Pl; 
VAR a,b,c: INTEGER; 

PROCEDURE PI; 
BEGIN 

a := a + 1; 
x := a; 

END PI; 

EN~ .. Mod; 
••• 

END Outside; 

PROCEDURE Outside; 
VAR x,y,z: INTEGER; 

(* no module here *) 

a,b,c: INTEGER; 

PROCEDURE PI; 
BEGIN 

a := a + 1; 
x := a; 

END PI; 

••• 
END Outside; 

The only syntactic differences between the module Mod and a normal 
procedure declaration are the reserved word beginning the declaration 
(MODULE instead of PROCEDURE) and the presence of IMPORT and 
EXPORT declarations following the module heading. 

The semantic differences are more interesting. The objects declared within 
Mod (a, b, c, and PI) exist at the same level as the variables x, y, and z. 
In terms of the variables, this means that a, b, and c are created at the 
same time as x, y, and z, and exist as long as procedure Outside is active. 
The objects named in Mod's· import list (the list of identifiers following the 
reserved word IMPORT) are the only externally declared objects visible within 
Mod; thus, Mod is able to access the variable x, but y and z are invisible. 
The objects named in Mod's export list (the list of· identifiers following the 
reserved word EXPORT) are the only locally declared objects visible outside 
Mod; thus, a and PI are accessible from Outside, but band c remain hidden 
inside Mod. 



Introduction To Modula-2 
Modules 
page 6 

Note that from Outside's point of view, a and PI appear to be regular 
locally declared objects; they have the same visibility and existence as x, y, 
and z. Note also that band c lead a similar, but merely hidden, existence. 
A reasonable conclusion to reach from these observations is that (unlike 
procedures) modules themselves do not really exist! This is more or less true 
- modules affect visibility (a compile-time phenomenon), but not existence (a 
run-time phenomenon). A module can be thought of as a syntactically opaque 
wall protecting its enclosed objects. The export list names identifiers 
defined inside the module that are also to be visible outside. The import list 
names the identifiers defined outside the module that are visible inside. 

Here is a summary of the rules for visibility and existence in modules: 

• Locally declared objects exist as long as the enclosing procedure 
remains activated • 

• Locally declared objects are visible inside the module; if they 
appear in the module's export list, they are also visible outside. 
Objects declared outside of the' module are visible inside only if 
they appear in the module's import list. 



Introduction To Modula-2 
Modules 
page 7 

So far, all that has been presented are the mechanics of the module 
structure. How are modules to be used? The following examples 
demonstrate the essence of modularity: 

MODULE MainProgram; 

... 
MODULE RandomNumbers; 

IMPORT TimeOfDay; 
EXPORT Random; 
CONST Modulus = 2345; 

Increment = 7227; 
VAR Seed: INTEGER; 

PROCEDURE Random(}: INTEGER; 
BEGIN 

Seed := (Seed + Increment) 
MOD Modulus; 

RETURN Seed; 
END Random; 

BEGIN 
Seed := TimeOfDay; 

END RandomNumbers; 

... 
BEGIN (* MainProgram *) ... 

WriteInt(Random(), 7); ... 
END MainProgram. 

MODULE MainProgram; 

VAR Seed: INTEGER; 

••• 

PROCEDURE RandomO: INTEGER; 
CONST Modulus = 2345; 

Increment = 7227; 
BEGIN 

Seed := (Seed + Increment) 
MOD Modulus; 

RETURN Seed; 
END Random; 

••• 

BEGIN (* MainProgram *) 
Seed :=. TimeOfDay; . .. 
WriteInt(Random(), 7); ... 

END MainProgram. 

The random number generator in these examples uses a seed variable to 
generate the next random number; the seed must maintain its value across 
function c.alls •. The program on the right shows the classical block-structured 
solution. Note how Seed's declaration floats to the top of the program (to 
avoid the existence rule), forcing its initialization to sink to the bottom. 
Two obvious disadvantages arise from the scattering of Seed across the face 
of the program: its occurrences become hard to find (imagine that this 
program is 10,000 lines long!), and it becomes accessible to every other 
procedure in the program (when it should be safely buried in Random). 



Introduction To Modula-2 
Modules 
page 8 

The example on the left demonstrates the usefulness of the module structure. 
Everything having to do with the random number generator is contained in 
one place; only the procedure Random is visible. Because the module is 
declared at the outermost level, Seed is initialized only once, and exists for 
the life of the program. 

The random number module introduces another feature of modules; unlike the 
module in the first example, this module contains both declarations and a 
statement part. Module bodies are the (optional) outermost statement parts 
of module declarations; they serve to initialize a module's variables. As it 
was mentioned before that modules are purely syntactic entities, the presence 
of executable statements might seem questionable. The consistency of this 
presentation is preserved by the fact that a module'S body is analogous to a 
module's variables; though subjected to the module's restrictive visibility 
rules, module bodies conceptually belong to the enclosing procedure rather 
than the modules themselves. 

Module bodies are automatically executed when the enclosing procedure is 
called. (Recall that a module's variables come into existence at the same 
time.) If a procedure contains several modules, the module bodies are 
executed in the order in which they occur within the procedure (see the 
following example). A procedure's statement part executes only after its 
module bodies have been executed. Just as module variables should be 
considered to exist at the same level as the enclosing procedure's variables, 
module bodies should be considered as prefixes to the enclosing procedure's 
body. 

NOTE- Though module bodies are treated here as implicitly included 
statements, they are implemented as procedures which are auto­
matically called at the start of the enclosing procedure's body. 



Example of module body execution: 

PROCEDURE Enclosing; 

MODULE M1; 
EXPORT x, y; 

VAR x: INTEGER; 

MODULE M2; 
EXPORT y; 
V AR y: INTEGER; 

BEGIN 
Y := 0; 

END M2; 

BEGIN 
x := -1; 

END M1; 

MODULE M3; 
EXPORT z; 
V AR z: INTEGER; 

BEGIN 
z := 1; 

END M3; 

VAR coordinate: INTEGER; 

BEGIN (* Enclosing *) 
(* M2's body automatically called here *) 
(* M1 's body automatically called here *) 
(* M3 's body automatically called here *) ... 
WriteInt(coordinate, 7); 

END Enclosing; 

Introduction To Modula-2 
Modules 
page 9 

The next example illustrates (in a high-level fashion) the organizational dif­
ferences between large programs written in Pascal and in Modula-2. The 
program in question is a one-pass compiler (say, the Pascal P-compiler). It 
would typically consist of about 5000 lines of source text. 

One-pass compilers are notable for having a number of things going on at 
once;, principal activities include scanning (reading the source file), parsing 
(checking the syntax), and code generation (producing a code file). Each of 
these activities is reflected in the compiler by collections of constants, 
types, variables, and procedures comprising the scanner, parser, and code 
generator. The compiler also contains general purpose variables and 
procedures used in all parts of the compiler. I . 



Introduction To ~fodula-2 
Modules 
page 10 

The following examples demonstrate the effects of block structure upon the 
organization of such a compiler: 

MODULE Compiler; 

<general consts, types, 
vars, and procedures > 

<scanner module> 

<parser module > 

<code generator module> 

<main program> 

END Compiler. 

program Compiler; 

<consts for generals, scanner, 
parser, and code generator > 

<types for generals, scanner, etc.> 

<vars for generals, scanner, etc. > 

(procs for generals, scanner, etc.> 

<main program> 

end. (* Compiler *) 

The compiler written in Pascal is a jumble of declarations; the order reflects 
the syntactical structure of Pascal rather than the logical structure of the 
compiler. The compiler written in Modula-2 is organized logically; each 
module can be expected to import some globally declared objects and export 
some (but certainly not all) of its own objects. (Note that this results in 
fewer global declarations.) The Modula-2 program is more readable, more 
understandable, and less prone to erroneous side effects. 

NOTE- The next section shows how separate compilation of modules 
can also make the Modula-2 program much easier to maintain 
than its Pascal counterpart. 

The rest of this section is devoted to additional information on modules. 

Like procedures, modules can be declared at any level; the visibility and 
existence rules hold for nested module declarations. 

Import and export lists immediately follow the module heading. Both lists are 
optional: a module can have an import list but lack an export list, or vice­
versa (see the following example). Modules can contain several import lists 
(i.e. several occurrences of the reserved word IMPORT followed by a list of 
identifiers), but only one export list. Import lists must precede the export 
list. 



Examples of import and export lists: 

MODULE abc; 
IMPORT i,j,k; 
IMPORT x,y,z; 
EXPORT AlphabetSoup; 
••• 

END abc; 

Introduction To Modula-2 
Modules 
page 11 

MODULE trader; 
EXPORT commodities; ... 

END trader; 

Any kind of object can be imported or exported by naming its identifier in 
an import or export list. Exporting a record type makes its fields visible. 
Exporting an enumeration type makes its enumeration constants visible. 
Exporting a module makes all of its exported identifiers visible. Procedures 
retain the structure of their parameter list, but do not transport parameter 
type identifiers; thus, parameter types must be exported separately. These 
rules apply to both imports and exports. 

NOTE - Imported identifiers must be unique with respect to each other 
and to locally declared/exported identifiers, as identifier clashes 
are analogous to declaring an identifier twice (a syntax error). 
Things get interesting when imported identifiers are records or 
enumerations. Record field identifiers are local to their record 
type, and thus cannot clash with other imported identifiers. 
Importing an enumeration, however, may cause one of the 
(implicitly imported) enumerated constant identifiers to clash 
with some other imported identifier. 



Introduction To Modula-2 
Modules 
page 12 

Example of exporting various types of objects: 

MODULE stuff; 
EXPORT 

Rec, 
things, 
Dolt, 
Bird; 

(* field names Rl, R2, and Ch are visible in Rec 
(* constants Some, No, and Any become visible 
(* calls must match Dolt's procedure heading 
(* Eggs and Twigs become visible 

PROCEDURE Dolt (RSKfactor: INTEGER); 
BEGIN ••• END Dolt; 

TYPE Rec = RECORD 
Rl, R2: REAL; 
Ch: CHAR; 

END; 

TYPE things = (Some, No, Any); 

MODULE Bird; 
EXPORT Eggs, Twigs; ... 

END Bird; 
••• 

END stuff; 

NOTE- Modula-2's standard identifiers are automatically imported' into 
every module. Thus, attempts to redefine them within a module 
will cause a syntax error ("identifier declared twice"). Standard 
identifiers can be redefined within procedures, however. 

*) 
*) 
*) 
*) 

Identifiers obtained by importing or exporting are used like normally declared 
identifiers; that is, as if they <;lid not originate from a module. However, 
they can also be referenced as qualified identifiers. An identifier is 
qualified by preceding it with the name of its module; the syntax is identical 
to record field access in Pascal. For example, an identifier named "Ident" 
imported from the (visible) module "Mod" can be referenced either as "Ident" 
or "ModJdent" (see the following example). 

NOTE- Qualified identifiers may not appear in import or export lists. 

References to exported identifiers can be qualified. or unqualified; however, if 
the symbol EXPORT is followed by the symbol QUALIFIED, identifier 
references outside of the module must be qualified. This is known as 
qualified export. Qualified export allows a module to avoid identifier 
clashes caused by other modules exporting the same identifier; it should be 
used when the names declared outside a module are unknown (e.g. a 
standard library module imported by many different programs). 



Example of qualification: 

MODULE Latoo; 

MODULE Ml; 

Introduction To Modula-2 
Modules 
page 13 

EXPORT OverLoad, A; 
CONST A = fa'; 

(* unqualified export *) 

VAR OverLoad: INTEGER; 
END Ml; 

MODULE M2; 
EXPORT QUALIFIED OverLoad, Canada; (* qualified export *) 
VAR OverLoad: INTEGER; (* ••• averts name clash with Ml *) 

PROCEDURE Canada; 
BEGIN 

HALT; 
END Canada; 

END M2; 

VAR i: INTEGER; 
ch: CHAR; 

BEGIN 
ch := A; 
ch := Ml.A; 
i := Over Load; 
i := Ml.0verLoad; 
i := M2.0verLoad; 
M2.Canada; 

END Latoo; 

(* unqualified reference *) 
(* optionally qualified reference *) 
(* unqualified refers to Ml 's var *) 
(* optionally qualified reference . *) 
(* M2 qualification averts clash *) 
(* M2's objects must be qualified *) 



Introduction To Modula-2 
Modules 
page 14 

Preceding an import list with the symbol FROM followed by a module 
identifier has the effect of unqualifying identifiers exported by the named 
module. This is known as unqualifying import. Unqualifying import lists can 
only contain identifiers exported by the named module. (This is why multiple 
import lists are allowed in module declarations.) Unqualifying import lists are 
useful for limiting the scope of unqualified identifiers to small portions of a 
program. 

Example of unqualificati~n: 

MODULE A; 

MODULE MI; 
EXPORT vl,v2; 
VAR vl,v2: INTEGER; ... 

END M1; 

MODULE M2; 

(* unqualified export *) 

EXPORT QUALIFIED z1,z2; (* qualified export *) 
VAR z1,z2: INTEGER; ... 

END M2; 

MODULE M3; 
IMPORT MI; 
EXPORT QUALIFIED tl,t2; (* qualified export *) 
VAR tl,t2: INTEGER; 

BEGIN 
tl := vI; 
t2 := v2; 

END M3; 

MODULE HOST; 
FROM MI IMPORT vl,v2; 
FROM M2 IMPORT z1; 
IMPORT M3; 

BEGIN 
z1 := vl + v2; 
vI := M3.tl + M3.t2; 

END HOST; 

END A; 

(* FROM is optional here, but ••• 
(* required from qualified export 
(* qualified import of tl & t2 

(* qualification unnecessary here 
(* qualification required here 

*) 
*) 
*) 

*) 
*) 



Introduction To Modula-2 
Modules 
page 15 

NOTE - The following is an extreme (and thus illustrative) example of 
the potential interactions between nested modules and qualified 
identifiers: 

MODULE Nesting; 
FROM InOut IMPORT Write; 

MODULE A; 
EXPORT B; 

MODULE B; 
EXPORT C; 

MODULE C; 
EXPORT X; 
CONST x = I!'; 

END C; 

END B; 

END A; 

BEGIN 
Write(x); 
Write(A.x); 
Write(B.x); 
Write(C.x); 
Write(A.B.x); 
Write(A.C.x); 
Write(B.C.x); 
Write(A.B.C.x); 

END Nesting; 

(* x or B.x or C.x or B.C.x visible here *) 

(* X or C.x visible here *) 

(* x visible here *) 

(* these all refer to x *) 

NOTE- See chapter 11 in the Modula-2 language report for more 
information on modules. 



Introduction To Modula-2 
Separately Compiled Modules 
page 16 

2.2 Separately Compiled Modules 

The basic textual unit accepted by the compiler is called a compilation 
unit. Modula-2 programs are constructed from two kinds of compilation units: 
program modules and library- modules. 

Program modules are single compilation units; their compiled forms constitute 
executable programs. Because they are the outermost modules of a program, 
program modules can have import lists, but no export list. A program 
module's import lists name objects defined in the library; specifically, in 
separately compiled library modules. The library is an integral part of 
Modula-2, for it provides the system-level environment from which objects 
(such as operating system routines) are impo~ted into a program. (See The 
Modula-2 System for more information on the library.) 

Examples of program modules: 

MODULE Foon; 
FROM InOut IMPORT WriteString; 
(* WriteString obtained from library module InOut *) 

BEGIN 
WriteString('hi!'}; 

END Foon. (* period marks this as a program module *) 

MODULE Yeen; 
IMPORT InOut; (* module InOut obtained from library *) 

BEGIN 
InOut.WriteString('hH'}; 

END Yeen. 

A compilation unit can import entire library modules or individual objects 
from library modules. A library module is imported by naming it in an import 
list; all of its exported objects become available, but they must be 
referenced as qualified identifiers (e.g. "Yeen" in the example above). 
Individual objects are obtained from a library module by unqualifying import; 
they are then referenced as regular identifiers (e.g. "Foon" above). 

Library modules are divided into two compilation units: definition modules 
and implementation modules. Definition modules contain declarations of the 
objects which a library module exports to other compilation units. 
Implementation modules contain the code implementing the library module. 
Definition and implementation modules always exist in pairs; they are related 
by being declared with the same module identifier. 



Introduction To Modula-2 
Separately Compiled Modules 

page 17 

Definition modules are similar to program modules, but are prefixed with the 
symbol DEFINITION. A definition module contains constant, type, and 
variable declarations, and procedure headings. It does not contain module 
declarations, procedure bodies, or a module body. The import lists name 
objects imported from the library into the definition module. The export list 
specifies objects declared in the definition module which can be imported by 
other compilation units. 

NOTE - Only qualified export may be used in definition modules. 

Example of a definition module: 

DEFINITION MODULE StringIO; 
FROM StringOps IMPORT String; 
EXPORT QUALIFIED ReadStr, WriteStr; 

PROCEDURE WriteStr(S: String); 

PROCEDURE ReadStr(VAR S: String); 

END StringIO. 

(* obtained from library *) 
(* visible from StringIO *) 

(* like a forward declaration *) 

Implementation modules have the same syntax as program modules, but are 
prefixed with the symbol IMPLEMENTATION. Like program modules, 
implementation modules may not contain an export list. The import lists 
name objects imported from the library into the implementation module. 

All objects declared in a definition module are automatically available in the 
corresponding implementation module (implying that definition modules must be 
compiled before implementation modules). Objects imported into a definition 
module are not made available in the implementation module; if needed, they 
must be imported again. 

NOTE- The implementation module must contain complete declarations 
of procedures declared in the definition module; unlike a forward 
declared procedure in Pascal, a secondary declaration must 
include its parameter list (which must be identical to the one in 
the definition module declaration). 



Introduction To ModuIa-2 
Separately Compiled Modules 
page 18 

Example of an implementation module: 

IMPLEMENTATION MODULE StringlO; 
FROM CharlO IMPORT ReadCh, WriteCh; (* obtained from library *) 
FROM StringOps IMPORT String, Length, MaxString; 
FROM ASCn IMPORT nul; 

PROCEDURE WriteStr(S: String); 
VAR I: CARDINAL; 

BEGIN 
FOR I := 0 TO Length(S)-l DO 

WriteCh(S[I]); 
END WriteStr; 

PROCEDURE ReadStr(VAR S: String); 
VAR I: CARDINAL; 

ch: CHAR; 
BEGIN . 

I := 0; 
REPEAT ReadCh(ch); 

S[I] := chi 
INC(I); 

UNTIL (ch = nul) OR (I > MaxString); 
END ReadStr; 

END StringIO. 

(* note repeated param list *) 

Within a given program, a library module may be imported by more than one 
compilation unit; for example, a module A imports modules Band C, each of 
which import D. When this situation arises, Modula-2 defines that only one 
instance of a library module can exist at a time. In the example, modules B 
and C thus share D's exported objects (in particular, D's variables). 

Implementation modules may contain module bodies. The system arranges the 
execution order of library module bodies so that imported library modules are 
initialized before the importing modules are. If module A imports B, which 
imports C, which imports D, then the initialization order is D, C, B, and 
finally A. This ensures that a module's initialization code can rely on 
variables imported from other library modules. (If imported library modules 
are mutually independent, their execution order is undefined.) 

N.OTE- Library modules are often imported in more than one place. 
A· simple case is when a program imports a library module by 
name and also imports identifiers from the same module using 
unqualifying import. A more subtle case is when a program 
imports two library modules which both import a third module. 
In all such cases, a library module is initialized only once. 



Introduction To Modula-2 
Separately Compiled Modules 

page 19 

Why are library modules divided into separate definition and implementation 
modules? 

Consider the design and development of a large software system, possibly by 
a group of programmers. The first step in designing such a system is to 
identify major subsystems and design interfaces through which the subsystems 
communicate. After this step is completed, development of the subsystems 
can proceed, with each programmer responsible for developing one (or more) 
of the sUbsystems. 

Now consider the project requirements in terms of Modula-2's separate 
compilation facilities. Subsystems will most likely be composed of one or 
more compilation units. Defining and maintaining consistent interfaces is of 
critical importance in ensuring error-free communication between subsystems 
(especially when they are developed by different people). During the design 
stage, however, the subsystems themselves do not yet exist; they are known 
only by their interfaces. 

The concept of a subsystem interface corresponds to the definition module 
construct; thus, interfaces can be defined as a set of definition modules 
before subsystem development (i.e. design and· coding of the implementation 
modules) begins. These modules are distributed to all members of the 
programming group; throughout the project, they define the interfaces which 
all subsystems (and thus all programmers) must adhere to. Interface 
consistency is automatically enforced by the compiler. 

Another advantage provided by separate definition and implementation modules 
is the ability of two library modules to import objects from each other. This 
would be impossible if library modules were single compilation units, as each 
would require previous compilation of the other in order to compile 
successfully. With separate definition modules, the modules can be imported 
in the implementation modules, allowing the definition modules to be compiled 
beforehand (independently of the mutual importation). 

NOTE- Mutually importing library modules dictate arbitrary module 
initialization order. (Which is more nested?) In such cases, the 
modules' initialization bodies cannot depend on objects imported 
fro m the other module. 

This section concludes with a description of Modula-2's facilities for defining 
data type~ whose only operations are provided by procedure calls. 

Library modules can export two kinds of types: transparent types, and 
opaque types. 

Normal type declarations are (by default) transparent types. The type 
identifier of a transparent type is associated with a structure which 



Introduction To Modula-2 
Separately Compiled Modules 
page 20 

implicitly defines certain operations on objects of that type; in the case of 
structured types, the internal components are accessible. For example, array 
types imply a known base type and define the subscript operation to access 
individual array elements. 

Opaque types are types whose internal structure is known only in the 
implementation module. Modules importing an opaque type can declare and 
assign objects of that type, but cannot perform any other operations (save 
those provided by procedures exported along with the opaque type). In 
particular, an opaque type's internal components are inaccessible. 

Opaque types are declared in a definition module as identifiers lacking a type 
definition; like exported procedures, the complete declarations of opaque 
types are contained in the implementation module. 

NOTE - Modula-2 limits opaque types to pointers and subranges of 
standard types. The most common opaque type is a pointer to a 
record (whose details remain hidden). 



Example of opaque types: 

DEFINITION MODULE Files; 

Introduction To Modula-2 
Separately Compiled Modules 

page 21 

EXPORT QUALIFIED File, Open, Close, Read, Write; 

TYPE File; (* note lack of type definition *) 

PROCEDURE Open(VAR f: File; name: ARRAY OF CHAR); 

PROCEDURE Read(f: File; VAR ch: CHAR); 

END Files. 

IMPLEMENTATION MODULE Files; 
FROM Storage IMPORT ALLOCATE; 

TYPE File =. POINTER TO (* complete decl. *) 
RECORD 

DiskUnit: CARDINAL; 
BlockNumber: CARDINAL; 
N extByte: Buff Index; 

END; 

PROCEDURE Open(VAR f: File; name: ARRAY OF CHAR); 
BEGIN ••• END Open; 

PROCEDURE Read(f: File; VAR ch: CHAR); 
BEGIN ... END Read; 

BEGIN ••• 
END Files. 

MODULE UseFiles; 
FROM Files IMPORT File, Open, Write, Close; 
VAR f1, f2: File; 

BEGIN 
Open(f1, "new.data"); ... 

END UseFiles. 

A classic use of opaque types is the definition of files. The type File and 
its operations (Open, Read, and Write) can be expressed as a library module. 
Another facility well suited to opaque types is the semaphore and its 
operations (signal and wait) for process synchronization. 



Introduction To Modula-2 
The Module Library 
page 22 

2.3 The Module Library 

The module library is a collection of separately compiled modules that forms 
an essential part of every Modula-2 implementation. It typically contains the 
following kinds of modules: 

• Low-level system modules which provide access to local system 
resources. 

• Standard utility modules which provide a consistent system 
environment across all Modula-2 implementations. 

• General-purpose modules which provide useful operations to many 
programs. 

• Special-purpose modules which form part of a single program. 

The library is stored in one or more disk files containing compiled forms of 
the library modules's compilation units. The compiled form of a definition 
module is called a symbol file. The compiled form of an implementation 
module is called an object file. 

The library is accessed by both the compiler and the program loader. The 
compiler reads symbol files from the library when compiling programs that 
import library modules. The loader loads object files from the library when 
executing programs that import library modules. 

Modules are compiled separately, but not independently. The division of 
programs into separately compiled modules forms dependence relations 
between library modules and their clients (i.e. the modules that import 
them). These dependencies affect the ability to recompile a module 
independently of the rest of the system. 

The simplest example of such a dependence relation arises in the compilation 
of a single library module. The compiler must reference the module's symbol 
file in order to compile the implementation module; therefore, the definition 
module must be compiled first. Once an implementation module has been 
compiled, its object file is tied to the current symbol file, as the object code 
is based on procedure and data offsets obtained from the symbol file. 

Similarly, client modules are tied to symbol files; programs which import a 
library .module have to assume that the symbol file offsets are accurate 
reflections of the corresponding object file. 



Introduction To Modula-2 
The Module Library 

page 23 

What happens if a definition module is changed without recompiling its 
implementation module? The procedure and variable offsets in the updated 
symbol file may no longer match the object code, yet subsequently compiled 
programs that import the module are . assigned offsets defined in the new 
symbol file. If the implementation module is not recompiled (thus bringing 
the object file up to date with the new symbol file), the new programs may 
crash when they attempt to reference the library module. 

All such problems can be avoided by following these rules: 

• A definition module must be compiled prior to its client modules. 

• An implementation module may be recompiled without recompiling 
any other modules in the system. 

• When a module's definition and implementation are recompiled, 
all client modules are invalidated, and must be recompiled. 

The Modula-2 system contains facilities for automatic enforcement of the last 
rule. The compiler assigns a unique value to the symbol file of every 
definition module it compiles; these values are called module keys. When a 
compilation unit imports a module, the compiler records the module key in 
the code file. When a program is executed, the loader checks that the 
module keys stored in the program match the keys in the imported library 
modules; if a mismatch is found, the loader issues an error message and 
aborts the program. Thus, the system prevents programs crashes caused by 
inconsistent module interfaces. 

Module key checking is the system-level analogue to type checking within the 
compiler; they are of equal importance in Modula-2. 

NOTE- Recompiling only a definition module does not prevent client 
programs from executing with the non-updated object file. 
Recompiling the matching implementation module produces an 
object file with a new module key - after which the client 
programs must be recompiled. 



Introduction To Module.-2 
Standard Utility Modules 
page 24 

2.4 Standard Utility Modules 

The Modula-2 language contains no standard procedures for I/O, memory 
allocation, or process scheduling; instead, these facilities are provided by 
standard utility modules stored in the library. Standard utility modules are 
expected to be available in every Modula-2 implementation; thus, by using 
only standard modules, Modula-2 programs become portable across all 
implementations. (See Standard Library for more information on standard 
utility modules.) 

The advantages of expressing commonly-used routines as library modules 
(rather than part of the language) include a smaller compiler, smaller run­
time system, and the ability to define alternative facilities when the standard 
facilities prove insufficient. Disadvantages include the need to explicitly 
import and bind library modules, and - occasionally - a less flexible syntax 
imposed by expressing standard routines as .. library modules (as opposed to 
their being handled specially by the compiler). 

NOTE- Modula-2's ability to express general purpose routines is 
greatly enhanced by its facilities for relaxing type checking. 

The rest of this section is devoted to comparing Pascal's standard procedures 
with the equivalent procedures provided by Modula-2's standard utility 
modules. 

Pascal's standard procedures Read and Write are replaced by read and write 
routines obtained from the standard module InOut. Read and Write's 
parameter list sequences and overloaded parameter types are not expressible 
in Modula-2; instead, procedures are provided for handling single arguments of 
each data type. Thus, what appears in Pascal as: 

writeln('Name = ',ID,' Value = ',Val:3); 

••• becomes in Modula-2: 

WriteString{'Name = f); 
WriteString(ID ); 
WriteString(' Value 
WriteInt{Val, 3); 
WriteLn; 

- f). - , 



Introduction To Modula-2 
Standard Utility Modules 

page 25 

NOTE- Though the Modula-2 version appears less efficient, the actual 
code is no larger than the Pascal version; the difference merely 
reflects a shift in the programming burden from the compiler to 
the programmer. Modula-2 does not share Pascal's ability to 
automatically translate Read and Write statements with multiple 
arguments into the requisite number of system calls. 

Modula-2 provides Pascal's text files with the standard module Texts. File 
handling is performed by the standard module Files, which provides random 
access in addition to Pascal's sequential data access. 

Because the compiler must perform special parsing for record variants (e.g. 
"NEW(Citizen, FALSE, widowed)"), NEW and DISPOSE remain as standard 
procedures in Modula-2; however, the compiler translates NEW and DISPOSE 
into equivalent calls to ALLOCATE and DEALLOCATE, which are procedures 
provided either by the standard module Storage or by special purpose 
procedures. This allows alternate storage implementations to take advantage 
of the compiler's ability to minimize storage allocated for record variants. 

Example of NEW and DISPOSE: 

MODULE Memory; 
(* obtain storage management facilities from the library *) 
FROM Storage IMPORT ALLOCATE, DEALLOCATE; 
V AR p: POINTER TO INTEGER; 

BEGIN 
(* ALLOCATE and DEALLOCATE must be visible here *) 
NEW(p); 
DISPOSE(p); 

END Memory. 

Mathematical functions (e.g. sin and cos) are provided by the standard 
module MathLibO. Modula-2 also includes standard modules for process 
scheduling, console I/O, and calling programs as procedures. 



Introduction To Modula-2 
Low-level Machine Access 
page 26 

2.5 Low-level Machine Access 

Modula-2 provides the following facilities for programming low-level, machine­
specific operations: 

• Type transfer functions allow programs to circumvent normal 
type compatibility rules. 

• Variables may be declared to reside at fixed memory addresses. 

• The module SYSTEM provides data types for manipulating ma­
chine-level data objects, and procedures for determining the 
memory address of variables and the machine-level representation 
of variables and types. 

The use of these facilities should be confined to a few specific modules. 
The practice of concealing low-level operations in modules results in safer 
programming by preventing inadvertent access to machine-level objects; it 
also improves the potential for program portability (as only the low-level 
modules need be rewritten). In general, low-level modules are marked by the 
presence of the module identifier SYSTEM in their import list. Note, 
however, that the facilities for type transfer and fixed-address variables are 
generally available; thus, their use should be marked by discretion. 

Type identifiers can be used as type transfer functions. Type transfer 
functions are restricted to conversion between types whose machine-level 
representations occupy the same number of words. The type identifier is 
used as a function identifier, and the variable to be converted is passed as 
the function argument. The function result is compatible with the type 
specified by the type identifier. Note that type transfer functions do not 
involve any actual computation - they merely relax compile-time type 
checking. 

NOTE- Modula-2's standard procedures ORD, ODD, CHR, and VAL 
provide more .respectable forms of type transfer. See 3.6.4 for 
details. 



Example of type transfer functions: 

MODULE LowLevel; 

TYPE Arr = ARRAY [1 •• 3] OF INTEGER; 

Introduction To Modula-2 
Low-level Machine Access 

page 27 

Rec = RECORD (* occupies 3 words *) 
X: CHAR; 
Y,Z: INTEGER; 

END; 
VAR b: BOOLEAN; 

ch: CHAR; 
1: Arr; 
j: Rec; 

BEGIN 
b := BOOLEAN(ch); 
1 := Arr(j); 

END LowLevel. 

Variables can be declared to reside at fixed memory addresses. The address 
is specified as a cardinal constant (enclosed by square brackets) following the 
variable identifier. The variable itself may be of any type. 

NOTE - Character variables declared at fixed addresses are usually 
accessed as byte quantities. See the Implementation Guide for 
details. 

Example of a variable declared at a fixed address: 

PROCEDURE Stuff; 
TYPE FlagBits = BITSET; 
VAR Flaggy[400H]: FlagBits; 

(* 1 word set resides at byte address 400 hex *) 
BEGIN 

••• 
END Stuff; 

All Modula-2 implementations include a module named SYSTEM; not 
surprisingly, it is called the system module. The system module provides the 
data types WORD and ADDRESS for manipulating machine-level data objects, 
the procedure ADR for obtaining the memory addresses of variables, and the 
procedures SIZE and TSIZE for determining the machine-level representations 
of variables and types. 

NOTE - Because its exported objects have special properties, the 
system module is contained entirely in the compiler. The system 
module is called a pseudo-module because it is not part of the 
library. 



Introduction To Modula-2 
Low-level Machine Access 
page 28 

The type WORD is used in general purpose routines which must operate on 
arguments of any type. Formal parameters of type WORD are type 
compatible with any actual parameter occupying one word of storage. 
Outside of parameter lists, however, the only operation allowed on type 
WORD is assignment; furthermore, WORD is incompatible with all other types. 
These limitations are overcome by using type transfer functions to perform 
the necessary operations. 

"Open" array parameters of base type WORD are type compatible with all 
variables; in particular, records and sets. Such parameters allow any variable 
to be interpreted as a sequence of words. See 3.6.3 for more information. 

Example of type WORD: 

PROCEDURE OnesComplement(VAR arg: WORD); 
(* uses 1-word set type to XOR with all 1 's *) 
BEGIN 

arg := WORD(BITSET(arg) / {O •• 15}); 
END OnesComplement; 

The type ADDRESS is compatible with all pointers and also with the type 
CARDINAL (unsigned integer); thus, arithmetic operations can be performed 
on operands of type ADDRESS. ADDRESS allows programs to perform 
straightforward pointer and address arithmetic. 

The formal definition of ADDRESS is: 

TYPE ADDRESS = POINTER TO WORD; 

Example of type ADDRESS: 

PROCEDURE DumpMemory(memptr: ADDRESS; words: CARDINAL); 
(* display contents of memory or dynamic variable *) 

VAR inx: CARDINAL; 
BEGIN 

FOR inx := 1 TO words DO 
WriteHex(CARDINAL(memptrA

), 6); 
INC(memptr, TSIZE(WORD»; (* next word in memory *) 

END; 
END DumpMemory; 



Introduction To Modula-2 
Low-level Machine Access 

page 29 

The function ADR(x) returns the memory address of the variable X; the result 
type is ADDRESS. 

SIZE(x) returns the number of storage units assigned to the variable x. x 
can be a selected variable (e.g. "a[i].xn). SIZE returns the maximum possible 
size of records containing variants. SIZE does not accept open array 
parameters as arguments. 

TSIZE(T) returns the number of storage units assigned to a variable of type 
T. Note that TSIZE recognizes the variant tag lists accepted by NEW and 
DISPOSE; thus, it can return the actual sizes of dynamically allocated 
records. SIZE and TSIZE return values of type CARDINAL. Storage units 
on most systems are bytes - see the Implementation Guide for details. 

Example of ADR, SIZE, and TSIZE: 

PROCEDURE Diddle; 
TYPE BIG = ARRAY [1 •• 5] OF INTEGER; 

Rec = RECORD 
F1: CHAR; 
CASE B: BOOLEAN OF 

TRUE: big: BIG I 
FALSE: little: INTEGER; 

END; 
END; 

V AR a: ADDRESS; 
z: CARDINAL; 

BEGIN 
a := ADR(z); 
z := SIZE(a); 
z := TSIZE(BIG); 
z := TSIZE(Rec); 
z := TSIZE(Rec, TRUE); 
z := TSIZE(Rec, FALSE); 

END Diddle; 

(* 2 bytes *) 
(* 10 bytes *) 
(* 14 bytes *) 
(* 14 bytes *) 
(* 6 bytes *) 

NOTE- This section has described machine-dependent facilities for a 
typical 16-bit processor. Implementations on different processors 
may provide different types and compatibility rules. 



Introduction To Modula-2 
Co routines and Interrupts 
page 30 

2.6 Coroutines and Interrupts 

Many modern systems programming languages (such as MODULA, Concurrent 
Pascal and Ada) define facilities for concurrent processes and process 
scheduling. Implementing such languages on single-processor computers 
requires an underlying "run-time system" to schedule processes for execution 
and to simulate . concurrent execution by switching the processor between 
processes. Modula-2 was designed to write, rather than require, run-time 
systems; hence, it foregoes concurrent processes" in favor of the simpler 
coroutine concept (1). 

In Modula-2, coroutines provide a foundation for programming the more 
common forms of concurrency; thus, process schedulers are written in 
Modula-2 and stored in the library instead of being written in assembly 
language as part of a run-time system. Modula-2's approach has two 
advantages. First, there is no run-time system occupying memory; a process 
scheduler is loaded only if a program imports it. Second, Modula-2 is not 
limited to a single process scheduling algorithm; when a different scheduling 
algorithm is required, it can be programmed as a library module. 

Coroutines are procedures which execute independently (but not concurrently). 
A Modula-2 program itself executes as a coroutine; however, this is irrelevant 
unless the program creates its own coroutines. Coroutines must be created 
before they can be called; a coroutine is created by specifying a procedure 
for the coroutine to execute and an area of memory for the coroutine to 
execute in. Once created, a coroutine becomes executable, but does not 
actually begin to execute; it remains inactive until it is called 'by another 
coroutine. 

Coroutines spend their time alternating between two states: inactive, and 
executing. In a group of coroutines, only one coroutine executes at a time; 
the rest are inactive. Coroutines schedule their execution by calling each 
other; in a coroutine call, the calling coroutine becomes inactive and the 
called coroutine resumes execution. 

NOTE- Coroutine calls are conceptually different from procedure 
calls. Coroutine calls are not recursive; unlike procedure calls, 
a coroutine call does not imply a subsequent return. Coroutine 
calls are best thought of as a direct transfer of control between 
two coroutines. 

Generally, coroutines do not reach the end of their procedure, but continue 
to execute (between inactive periods) for the life of the surrounding program. 
To ensure this behavior, procedures executed by coroutines usually take the 

(1) Knuth's The Art of Computer Programming, Vol. 1 contains an 
excellent description of assembly language coroutines. 



Introduction To Modula-2 
Coroutines and Interrupts 

page 31 

form of an unconditional loop containing one or more coroutine calls. 

NOTE- A program is terminated if any coroutine reaches the end of 
its procedure body. When a program terminates, all of its 
coroutines are automatically terminated. 

Example of a coroutine procedure: 

PROCEDURE WriteHo; 
BEGIN 

LOOP Write(fHf); Write(fof); 
INC(i); 
IF i > maxHiHo THEN 

WriteLn; i := 0; 
END; 
TRANSFER(Ho ,Hi); 

END; 
END WriteHo; 

NOTE - The terms coroutine and process are synonymous in this 
section. Process is the preferred term in the context of 
Modula-2. Coroutine is the preferred out-of-context term, as it 
is technically more specific and cannot be confused with the 
usual concept of concurrent processes. 

Coroutine facilities are obtained from the module SYSTEM, which exports the 
following identifiers: PROCESS, NEWPROCESS, TRANSFER, IOTRANSFER, 
and LISTEN. 

All references to processes (e.g. coroutine calls) are made through process 
variables. Process variables are declared with type PROCESS; a process 
variable must be declared for each created process in order to distinguish the 
processes. A process variable can be thought of as a "pointer" to the actual 
process. 

New processes are created with the NEWPROCESS procedure. NEWPROCESS 
has the following syntax: 

PROCEDURE NEWPROCESS( P: PROC; A: ADDRESS; 
N: CARDINAL; VAR PI: PROCESS); 

P is the procedure that the new process will execute. P must be a 
parameterless procedure declared at the global (outermost) level in a 
compilation unit. (PROC is a standard type denoting a parameterless 



Introduction To Modula-2 
Coroutines and Interrupts 
page 32 

procedure .) 

A and N specify the address and size of the area in which the process will 
execute. This area is usually declared as an array variable; the SYSTEM­
supplied functions ADR and SIZE are used to obtain the array's size and 
memory address. 

PI is a process variable which is assigned the new process. 

Example of using an array as a process space: 

V AR Ho: PROCESS; 
B: ARRAY [1 •• 200] OF WORD; 
••• 

NEWPROCESS(WriteHo, ,ADR(B), SIZE(B), Ho); 

The area in which a process executes can be thought of as a miniature 
version of the system stack. A few words in each process space are used 
for storing an inactive process's execution state; the remaining space is 
available for the stack, which is used to store procedure call information and 
local variables belonging to the process procedure (and any other procedures 
called by it). 

NOTE - Dynamic storage allocation is performed independently of 
multiprocessing; in particular, dynamic variables allocated by a 
process are allocated in the system storage area rather than in 
the process' own stack space. 

WARNING- A process space operates as a miniature version of the 
system space; in particular, if a process stack fills up, a stack 
overflow occurs. Process stack overflows are generally handled 
poorly; the system is more likely to crash without warning than 
print a stack overflow message. Be prepared! 

Because they execute in relatively small spaces, processes are more 
susceptible to stack overflow than main programs. It is a good idea to 
determine beforehand the amount of storage used by a process. On some 
systems, a process procedure consisting of nothing but a TRANSFER call 
successfully executes in as little as 30 words of space; however, this is an 
atypical case. The size of a process space is determined by adding together 
the process prccedure's data size with the data sizes of procedures invoked 
in (possibly nested) call sequences made from the process. Be sure to also 
account for procedure call overhead; this amounts to about 10 words per 
procedure call. 



Introduction To Modula-2 
Coroutines and Interrupts 

page 33 

In conclusion, be sure to allocate liberal amounts of storage to processes. 
Unless carefully calculated, process spaces should generally contain at least 
100 words of storage. 

NOTE - If a process invokes a system library module (even indirectly), 
determining its memory requirements may prove to be a difficult 
job. This problem is best solved by running processes in 
arbitrarily large process spaces (i.e. > 1000 words). Processes 
are generally intended for simple, low-level tasks with minimal 
resource requirements. 

Coroutine calls are performed with the TRANSFER procedure. TRANSFER 
has the following syntax: 

PROCEDURE TRANSFER(VAR OLD, NEW: PROCESS); 

TRANSFER suspends the current process, assigns its execution state into the 
process variable OLD, and then resumes execution of the process identified 
by the variable NEW. Note that OLD should be passed· the official process 
variable for the current process,· so that it too may be subsequently resumed. 
Note also that NEW must already have been assigned a process. 

WARNING- The system crashes if control is transferred to an 
uninitialized process variable. 

NOTE - OLD is assigned the saved execution state after the process 
identified by NEW has been established as the currently 
executing process; thus, OLD and NEW can safely be assigned 
the same actual parameter. This implies that a single process 
variable P can be shared by two processes; each calls the other 
by calling TRANSFER(P,P). 



Introduction To Modula-2 
Coroutines and Interrupts 
page 34 

Example of coroutines: 

MODULE HiHo; 

FROM SYSTEM IMPORT 
WORD, ADR, SIZE, PROCESS, NEWPROCESS, TRANSFER; 

FROM Terminal IMPORT WriteLn, Write; 

CONST maxHiHo = 17; 

VAR i: CARDINAL; 
Hi, Ho, Main: PROCESS; 
A, B: ARRAY [1 •• 200] OF WORD; 

PROCEDURE WriteHi; 
BEGIN 

LOOP Write('H'); Write('i'); 
TRANSFER(Hi,Ho); 

END; 
END WriteHi; 

PROCEDURE WriteHo; 
BEGIN 

LOOP Write('H'); Write('o I); 
INCO); 
IF i > maxRiHo THEN 

WriteLn; i := 0; 
END; 
TRANSFER(Ho,Hi); 

END; 
END WriteHo; 

BEGIN i:= 0; 
NEWPROCESS(WriteHi, ADR(A), SIZE(A), Hi); 
NEWPROCESS(WriteHo, ADR(B), SIZE(B), Ho); 
TRANSFER(Main, Hi); 

END HiRo. 

Processes gain real-time capabilities with the IOTRANSFER procedure. 
IOTRANSFER combines the concept of a transfer with that of processor 
interrupts. IOTRANSFER is similar to TRANSFER: the current process 
becomes inactive, and the specified process resumes execution. However, the 
next interrupt causes an unscheduled transf.er back to the original process. 

\ 
IOTRANSFER is used primarily in processes that control a computer's 
peripheral devices. (These are usually known as "interrupt handlers".) 
Peripheral devices are programmed to perform a specific operation; the 
devices then signal completion of the operation by interrupting the processor. 



Introduction To Modula-2 
Coroutines and Interrupts 

page 35 

Peripheral devices can be considered as truly concurrent processes, for they 
operate in parallel with the execution of software processes. 

NOTE- Because computers often have more than one peripheral 
device, processors often have more than one kind of interrupt. 
In order to distinguish interrupts caused by different devices, 
interrupts are assigned interrupt vector addresses. An 
interrupt is said to occur through its assigned interrupt vector 
address, thus identifying its origin. Interrupt vector addresses 
are system-dependent values. 

IOTRANSFER has the following syntax: 

PROCEDURE IOTRANSFER(VAR OLD, NEW: PROCESS; VA: CARDINAL); 

IOTRANSFER suspends the current process, assigns its execution state into 
the process variable OLD, and then resumes execution of the process 
identified by NEW. The next processor interrupt occurring through vector 
address VA causes an automatic TRANSFER(NEW, OLD): the currently. 
executing process is suspended in NEW, and control is transfered to the 
interrupt-driven process. Note in the following example that when the 
interrupt-driven process completes its chore, the next IOTRANSFER call has 
the effect of resuming the process originally suspended by the interrupt. 

Processors usually prioritize their interrupts according to the importance of 
the associated device; low-priority devices are prevented from interrupting 
the interrupt handlers of high-priority devices. Devices that operate at high 
speed or require immediate attention are assigned the highest priorities, 
ensuring them prompt servicing. 

Modula-2 offers module priorities for controlling the occurrence of low­
priority interrupts. A module's priority is specified in the module declaration 
just after the module identifier. The value associates a priority level with 
the module; the module's procedures can only be interrupted by occurrences 
of higher-priority interrupts. Thus, to create an interrupt handler for a 
device with priority n, the handler process is placed in a module declared 
with priority n. The procedure LISTEN temporarily lowers the current 
priority, allowing lower-priority interrupts to occur. LISTEN is most 
commonly used when a module must wait for one of its own interrupts (see 
example below). 

NOTE - All but definition modules, can be declared with module 
priorities. Modules lacking a priority specification have "null" 
priority; when called, their procedures inherit the calling 
module's priority. High-priority modules must not call 
procedures declared in lower priority modules; otherwise,. the 
module's operational assumptions (e.g. critical sections) cannot 
be guaranteed. Module priority values are system-dependent. 



Introduction To Modula-2 
Coroutines and Interrupts 
page 36 

Example of IOTRANSFER and module priority: 

MODULE KeyBoard[ 4]; (* priority = 4 *) 

IMPORT ADR, SIZE, NEWPROCESS, LISTEN, 
PROCESS, TRANSFER, IOTRANSFER; 

EXPORT Read; 

CONST Q = 20; enable = 6; 

VAR KeyStatus[177560B]: BITSET; 
KeyPort [177562B]: CHAR; 
main, h: PROCESS; 
ps: ARRAY [1 •• 100] OF WORD; 
queue: ARRAY [O •• Q-l] OF CHAR; 
n, head, tail: CARDINAL; 

PROCEDURE Read(V AR ch: CHAR); 
BEGIN 

WHILE n = 0 DO LISTEN END; 
(* Assert: >= 1 characters queued *) 
ch := queue[head]; head := (head+l) MOD Q; 
DEC(n); 

END Read; 

PROCEDURE handler; 
BEGIN 

LOOP IOTRANSFER(h, main, 60B); (* va = 48 *) 
IF n < Q THEN 

queue[tail] := KeyPort; 
tail := (tail+l) MOD Q; 
!NC(n); 

END; (* ignore queue overflow *) 
END; 

END handler; 

BEGIN head:= 0; tail := 0; n := 0; 
NEWPROCESS(handler, ADR(ps), SIZE(ps), h); 
INCL(KeyStatus, enable); TRANSFER(main, h); 

END KeyBoard; 

NOTE - The coroutine and interrupt facilities described in this section 
are system-dependent. See the Implementation Guide for more 
information on IOTRANSFER, interrupt vector addresses, an<1 
module priorities. 



2.7 Procedure Variables 

Introduction To Modula-2 
Procedure Variables 

page 37 

Modula-2 includes a new data type known as the procedure type. Variables 
declared with this type are called procedure variables, and take on 
procedures as values. Procedure variables are a generalization of Pascal's 
concept of procedure parameters; they are analogous (but not equivalent) to 
pointer variables, and can be thought of as "procedure pointers". 

The only operations defined for procedure variables are assignment and 
invocation ("calling"). 

Calling a procedure variable invokes the procedure assigned to it. Procedure 
variable references are distinguished from procedure variable calls by the 
presence of a (possibly empty) parameter list. Consider the following 
declara tions: 

TYPE Cheese = (Jack, Cheddar, Swiss); 

VAR Gl, 02: PROCEDURE(Cheese,Cheese,Cheese); 

PROCEDURE Grate(i,j,k: Cheese); 
BEGIN 

END Grate; 

A "bare" occurrence of the procedure identifier Grate or the. procedure 
variables Gl and 02 denotes the procedure as an object rather than a 
procedure call. For instance: 

Gl := Grate; 
G2 := Gl; 

An occurrence of the procedure identifier Grate or the procedure variables 
Gl and G2 with a parameter list denotes a procedure call: 

Grate(Swiss, Jack, Cheddar); 
Gl(Swiss, Jack, Cheddar); 
G2(Swiss, Jack, Cheddar); 

Function procedures lacking a parameter list must be declared and called as 
follows (in order to distinguish them from procedure references): 

PROCEDURE bald{): INTEGER; 
••• 

I := bald(); 



Introduction To fylJodula-2 
Procedure Variables 
page 38 

Modula-2 does not require empty parameter lists on normal procedure calls 
(e.g. "ProcCall;"), but it is good practice to use them anyways just to make 
the procedure calls stand out in the program text (e.g. "ProcCall();"). Note 
that Pascal does not allow empty parameter lists. 

Procedure type checking is determined by the structure of the parameter 
lists; in particular, the order and types of the parameters must be identical. 

Example of procedure type compatibility: 

TYPE FuncKind = PROCEDURE(CHAR, VAR CARDINAL): INTEGER; 

V AR F: FuncKind; 

PROCEDURE Stuff(termch: CHAR; VAR val: CARDINAL): INTEGER; 
BEGIN 

,., 
END Stuff; 

, .. 
F := Stuff; (* no parentheses on assignments *) 

NOTE- Procedures are assignable only if they are declared at the 
global (outermost) level of a compilation unit. (Note that this 
includes procedures declared in global-level modules,) Standard 
procedures are not assignable; however, they can be "packaged" 
in a regular procedure dec lara tion that is assignable. 

Example of standard procedure "packaging": 

PROCEDURE Ftrunc(r: REAL): CARDINAL; 
BEGIN 

RETURN TRUNC(r); 
END Ftrunc; 

See 3.3.1, 3.4.1, and 3.5.2 for more information on procedure variables. 



3 Differences From Pascal 

Introduction To Modula-2 
Differences From Pascal 

page 39 

This section describes differences between Pascal and Modula-2. It is divided 
into seven sections: Vocabulary, Constants, Types, Expressions, 
Statements, Procedures, and Blocks. Most of the differences are syntax 
changes; however, there is also a light· sprinkling of new data types, 
operators, and statements. 

NOTE- While this section is intended to be a complete description of 
Modula-2's differences from Pascal, it does not contain complete. 
descriptions (e.g. syntax) of the Modula-2 features themselves. 
Such information can be found in the Modula-2 language report. 



Introduction To Modula-2 
Vocabulary 
page 40 

3.1 Vocabulary 

Vocabulary includes identifiers, reserved words and symbols, and comments. 

3.1.1 Identifiers 

Identifiers are case-sensitive; for instance, the identifiers Nand n are 
distinct, as are the identifiers FreeList and freelist. 

NOTE - Prepare to have some problems with this rule at first; the 
longer you have been programming in Pascal, the more your mind 
is used to subconsciously mapping lower case to upper case (and 
vice versa). The problem manifests itself as an undeclared 
identifier flagged by the Modula-2 compiler which "obviously 
matches this declaration up here, see... whoops!". 

Example of case-significant identifiers: 

PROCEDURE Case; 
CONST N = 10; 
VAR n: CARDINAL; 

BEGIN 
n := 0; 
WHILE n < N DO 

LastSum := LastSum + (n*3); 
INC(n,2); 

END; 
END Case; 

Unlike Pascal, where only the first 8 characters can be assumed significant 
acrQss most implementations, Modula-2 does not specify a standard significant 
identifier length; all characters in an identifier are considered significant. 

The underscore character n n a valid character in '!lany Pascal 
implementations - is not allowed in Modula-2 identifiers. It IS a common 
practice in Modula-2 to capitalize the first letter of each word in multi-word 
identifiers. 

Examples of Modula-2 identifiers: 

N 
succinct 
A Very LongIdentifier 
LanguageTranslator 



3.1.2 Reserved Words &: Symbols 

Introduction To Modula-2 
Vocabulary 

page 41 

Reserved words must be written in capital letters. Though this "restriction" 
greatly improves program readability, reactionary Pascal programmers usually 
complain about it. 

These Pascal reserved words are not present in Modula-2: 

DOWNTO FILE GOTO FUNCTION PROGRAM LABEL PACKED 

Modula-2's new reserved words include: 

BY DEFINITION ELSIF EXIT EXPORT FROM IMPLEMENTATION 
IMPORT LOOP MODULE POINTER QUALIFIED RETURN 

NOTE- NIL, a reserved word in Pascal, is now a standard identifier. 

All of Pascal's nonalphabetic symbols ( ':=', '>=', etc.) are included in 
Modula-2, along with three new symbols. The vertical bar 'I' serves as a 
delimiter in record variants and CASE statements. The ampersand '&' is an 
abbreviation for the reserved word AND. The pound sign '#' is an 
abbreviation for the reserved symbol ,<>, ('#' denotes a crossed-out equal 
sign). 

Examples of new symbols and reserved words: 

IF i # 4 THEN WriteString("BigWhoop") END; 

WHILE (n <= 10) & (a[n] # nul) DO INC(n) END; 

CASE i OF 
1: WriteString("one") I 
2: WriteString(fTtwoft) I 
3: WriteString(ftmany") 

END; 



Introduction To Modula-2 
Vocabulary 
page 42 

3.1.3 Comments 

Modula-2's comments are similar to those of Pascal, but with a couple of 
differences. First, Modula-2 allows only this form of comment: 

(* <your comment here> *) 

Braces (n{n and tt}n) cannot be used as comment delimiters; Modula-2 uses 
them to delimit set constants. 

Unlike Pascal, comments may be nested. 

Example of nested comments: 

(* 

*) 

WriteString(ttThis is not a test"); 
(* The best defense is a good offense *) 
WriteString(nFor the next 60 million years ••• "); 



3.2 Constants 

Introduction To Modula-2 
Constants 

page 43 

Unlike Pascal, Modula-2 allows constant expressions everywhere that constants 
can be used. Constant expressions are useful in declaring constants and 
types that depend on other constant values. Constant expressions may not 
contain variable references or function calls; otherwise, there are no 
restrictions on their use. 

Example of constant expressions: 

CONST N = 4; 
MaxLength = 2*N; 
LastElement = MaxLength-l; 
SetExpression = {O,I,2} * {2 •• 4}; 

TYPE Elements = ARRAY [O •• MaxLength-l] of INTEGER; 

NOTE - The value ranges displayed in this section are for machines 
with 16-bit words. 

3.2.1 Integers 

Integer constants specify constant values for types INTEGER and CARDINAL 
(unsigned integer). Constant values range between -32768 and 65535. A 
constant's value determines whether it is compatible with type INTEGER or 
CARDINAL. Constants in the range -32768 to -1 are compatible only with 
INTEGER. Constants in the range 0 to 32767 are compatible with both 
INTEGER and CARDINAL. Constants in the range 32768 to 65535 are 
compatible only with CARDINAL. 

Integer constants can be specified in three radices: decimal, hexadecimal, and 
octal. 

Decimal constants are written as in Pascal. 

Examples of decimal constants: 

38 
32768 
-8 

1982 
40000 
-2000 

29999 
49999 
-32767 

(*CARDINAL and INTEGER compatible*) 
(*CARDINAL compatible*) 
(*INTEGER compatible *) 

Hexadecimal constants are constructed from hex digits ('0' •• '9', 'A' •• 'F'), and 
are terminated with the letter H. Hex values range from OH to OFFFFH. 
Note that hex constants must begin with a decimal digit; thus, a leading '0' 
digit must be added to hex constants beginning with an alphabetic hex digit. 



Introduction To Modula-2 
Constants 
page 44 

Examples of hex constants: 

OB 3AH 247B OBEACH 

Octal constants are constructed from the octal digits ('0' •• '7'), and are 
terminated with the letter B., Octal values range from OB to 177777B. 

Examples of octal constants: 

OB 37B 1777B 177560B 

3.2.2 Reals 

The format of real constants is similar to Pascal, but with a couple of minor 
differences. Real numbers require a decimal point. The exponent character 
is denoted by 'E' only ('e' is not valid in Modula-2). 

Invalid real constants: 

1 1.03e24 1E10 

Valid real constants: 

1.0 1. 1.03E24 1.E10 6.023E-23 

3.2.3 Characters 

Character constants are compatible with type CHAR. Character constants 
can be specified in two forms: character values, and ordinal values. 
Character values consist of a single character delimited either by single or 
double quotes. Ordinal character constants consist of an octal value followed 
by the letter C. 

Examples of character constants: 

'A' I!' "'" "@" 15C 



3.2.4 Strings 

Introduction To Modula-2 
Constants 

page 45 

String constants are similar to Pascal. The only syntactic difference is the 
method used to handle embedded quotes. Modula-2 does not use Pascal's 
method of denoting single quotes as quote pairs; instead, strings are delimited 
either by single or double quotes. ThUS, if a string contains single quotes, it 
is delimited by double quotes. If a string contains double quotes, it is 
delimited by single quotes. (Note that this implies a string cannot contain 
both single and double quotes.) 

Examples of string constants: 

"We're strings, and you aren't!" 

'Thanks, AI!' 

'This sentence contains a "string constant".' 

Strings must contain more than one character to qualify as string constants; 
quoted single characters are compatible only with type CHAR. 

Unlike set constants, string constants are not explicitly typed. The implicit 
type of an N-character string constant is: 

ARRAY [O •• N-l] OF CHAR 

NOTE - String constants cannot extend past the end of a source text 
line. 

NOTE - Modula-2 is less strict than Pascal on type compatibility of 
character arrays and string constants; in particular, string 
constants may be assigned to character arrays longer than the 
string itself. See 3.5.1 for more information. 



Introduction To l,iodula-2 
Constants 
page 46 

3.2.5 Sets 

Set constants differ from Pascal in a few ways. Constants are delimited by 
braces ('I' and I}') rather than by square brackets, and set elements are now 
limited to (subranges of) constant expressions. Modula-2 remedies this 
restriction by providing the standard procedures INCL and EXCL (see 3.6.4 
for details). Set constants can also be explicitly typed by preceding them 
with a type identifier. 

Example of set constants: 

PROCEDURE CheckChar; 
TYPE CharSet = SET OF CH;AR; 
VAR ch: CHAR; 

Valid: CharSet; 
BEGIN ... 

IF ch IN CharSet{,a' •• 'c'} THEN 
INCL(Valid,ch); 

END; 
Valid := Valid + CharSet{'a','z'}; ... 

END CheckChar; 

In the previous example, note how the set constants are preceded by the 
type identifier CharSet. This practice is foreign to Pascal, where a set 
constant's type is determined by its elements. Modula-2, on the other hand, 
rigidly enforces type checking in set expressions; set constants must be 
explicitly typed to match the other set operands. 

Set constants lacking a preceding type identifier default to the standard type 
BITSET (see 3.3.7 for details). 

More examples of set constants: 

{1,2,4,8} 
BITSET {1,2,4,8} 

(* These are identically typed *) 



3.3 Types 

Introduction To Modula-2 
Types 

page 47 

This section describes differences from Pascal types, and introduces two new 
types: the type CARDINAL (unsigned integers), and procedure types. Note 
that Pascal's file type is missing; files are now provided by standard modules 
(see 2.4 for details). 

3.3.1 Procedures 

If you have not read it yet, see 2.7 for an intrqduction to procedure 
variables. 

Variables declared with a procedure type are assigned procedures as values. 
Procedure type declarations may include parameter lists;- in order to be type 
compatible with a procedure variable, procedures must have the same 
parameters as the procedure variable's type. In particular, the order and 
types of the procedure's parameters must correspond to those of the 
procedure type declaration. 

Procedure variables cannot be assigned standard procedures or procedures 
declared local to another procedure. 

Modula-2 includes the standard type PROC which denotes a parameterless 
procedure. The formal definition of PROC is: 

TYPE PROC = PROCEDURE; 

Examples of procedure types: 

TYPE ProcType = PROCEDURE (CARDINAL, VAR INTEGER, CHAR); 
FuncType = PROCEDURE(): CARDINAL; 
Shortype = PROC; 

3.3.2 Cardinals 

Modula-2 provides the type CARDINAL for unsigned (i.e. "cardinal") integer 
operations. Cardinal variables take on the range 0 to 65535. Cardinals are 
used just like integers; all integer operations are also available for cardinals. 

Cardinal variables are assignable to integer variables (and vice versa); 
however, cardinal and integer variables cannot be mixed in expressions. 

WARNIN G - Beware of cardinal underflow; i.e. cardinal variables 
becoming "less than" O. Most implementations do not perform 



Introduction To Modula-2 
Types 
page 48 

underflow checking; because "negative" results are treated as 
large cardinal values, subsequent comparisons will not work 
correctly (e.g. i-j < k, where i < j). 

Example of type CARDINAL: 

PROCEDURE MixNumbers; 
V AR a ,b: INTE GER; 

I,m: CARDINAL; 
BEGIN 

m := 60000; 
I := 30000; 
a := 1; (* this assignment is legal *) 
b := l+m-a; (* this expression is illegal *) 

END MixNumbers; 

3.3.3 Characters 

Type CHAR is the same as in Pascal. Modula-2 defines the underlying 
character set to be ASCII, eliminating the problems caused by trying to 
accommodate different character sets. In particular, Modula-2 programs can 
take advantage of the character set ordering. 

3.3.4 Subranges 

Subrange types have one syntactic difference from Pascal. 
specifica tions are enclosed in square brackets. 

Example of subrange declarations: 

PROCEDURE SubrangeStuff; 

TYPE GoodNums = [O •• N-l]; 
Alphabet = [tA ' •• 'Z']; 
WeekDay = [Monday •• Friday]; 

V AR Num: GoodNums; 
Char: Alphabet; 
Day: WeekDay; 

BEGIN 
Num := 4; 
Char := 'G'; 
Day := Friday; 

END SubrangeStuff; 

Subrange 



Introduction To Modula-2 
Types 

page 49 

NOTE - This syntax change affects array declarations (see below for 
details). 

3.3.5 Arrays 

Array declarations are similar to Pascal, with only one difference. When a 
subrange identifier is used to specify the array index bounds, the square 
brackets are left out of the array declaration. (Explicitly declared index 
subranges are delimited by brackets, as in Pascal.) 

Example of array declarations: 

PROCEDURE Arrays; 

TYPE GoodNums = [O • .N-l]; 
Alphabet = ['A' •• 'Z']; 
WeekDay = [Monday • .Friday]; 

VAR Num: ARRAY GoodNums OF CARDINAL; 
Alphabetic: ARRAY ['A' •• 'Z'] OF CHAR; 
Matrix: ARRAY [1 •• 10], [1 •• 20] OF REAL; 
Mixup: ARRAY Alphabet, WeekDay OF GoodNums; 

BEGIN 
Num[4] := 56; 
AlphabeticPG'l := '1'; 
Matrix[5,5] := 3.14159; 
Mixup[' A ' ,Monday] := 4; 

END Arrays; 

3.3.6 Records 

The only differences in records involve record variants. Records can contain 
several case variant parts; unlike Pascal, each variant part terminat€s with 
an END symbol. A number of minor syntactic differences arise in variant 
part declarations. Case label lists can contain constant expressions and 
subranges. Variants can declare an ELSE field which catches unspecified 
case values. (The CASE statement includes a corresponding ELSE part for 
accessing this field.) Pascal's use of parentheses to delimit variants is 
replaced by separating variant declarations with a vertical bar 'I'. (Note 
that 'I' cannot appear before an ELSE field.) 

NOTE- "Free" variants (such as the record KludgeRec in the 
following example) need no longer serve as tools for type abuse. 
Modula-2 provides better facilities for breaking type 
compatibility rules (see 2.5 for details). 



Introduction To Modula-2 
Types 
page 50 

Example of record declarations: 

TYPE BirthDate = RECORD 

3.3.7 Sets 

Day: [1 •• 31]; 
Month: [Jan •• Dec]; 
Year: [0 •• 99]; 

END; 

TrainRec = RECORD 
CASE tagl: CARDINAL OF 

0 •• 9: x,y: Letters I 
11: a,b: Letters 

ELSE i,j: INTEGER 
END; 
pate: BirthDate; 
Size: [8 •• 15]; 
CASE tag2: BOOLEAN OF 

FALSE: r: INTEGER I 
TRUE: s: REAL 

END; 
END; 

KludgeRec = RECORD 
CASE BOOLEAN OF 

TRUE: I: INTEGER I 
FALSE: C: CARDINAL 

END; 
END; 

Sets are relatively unchanged in Modula-2. As mentioned before, set values 
are delimited by braces (rather than brackets) and are explicitly typed (with 
a type identifier prefix). 

Modula-2 defines the standard type BITSET as a set which fits in one 
machine word. Set operations are more efficient with bitsets than with 
larger sets. 

The formal definition of BITSET is: 

TYPE BITSET = SET OF [O •• WordSize-l]; 

The following example uses BITSET to efficiently implement sets of arbitrary 
length: 



Example of BITSET: 

MODULE PowerSets; 
EXPORT PowerSet, Included, 

Include, Exclude; 

CONST WordSize = 16; SetSize = 100; 

Introduction To Modula-2 
Types 

page 51 

TYPE PowerSet = ARRAY [0 •• SetSize-1] OF BITSET; 

PROCEDURE Included(S: PowerSet; Bit: CARDINAL): BOOLEAN; 
BEGIN 

RETURN (Bit MOD WordSize) IN S[Bit DIV WordSize]; 
END Included; 

PROCEDURE Include(VAR S: PowerSet; Bit: CARDINAL); 
BEGIN 

INCL(S[Bit DIV WordSize], Bit MOD WordSize); 
END Include; 

... 
END PowerSets; 

3.3.8 Pointers 

Pointer type declarations have a new syntax. The "up arrow" symbol ""''', 
though still used in pointer references, has been replaced in pointer 
declarations with the reserved word sequence "POINTER TO". Pointer 
declarations are no longer restricted to type identifiers; any type or type 
structure can be named as the pointer's type. 

Example of pointer declarations: 

TYPE P = POINTER TO INTEGER; 
P2 = POINTER TO 

RECORD 
a,b,c: BOOLEAN; 
END; 

MSCWP= POINTER TO MSCW; 
MSCW = RECORD 

Stat: MSCWP; 
Dyn: MSCWP; 
IPC: CARDINAL; 

END; 



Introduction To Modula-2 
Expressions 
page 52 

3.4 Expressions 

This section describes things worth kno wing about Modula-2 expressions - the 
differences from Pascal are mostly minor. 

3.4.1 Function Operands 

Function procedures (i.e. procedures which return function results) can be 
referenced two ways within an expression. Function procedure identifiers 
accompanied by a (possibly empty) parameter list denote function procedure 
calls; the expression value is the value returned by the function procedure. 
Procedure identifiers lacking parameter lists refer to the procedure itself; 
this type of reference is used for assigning values to procedure variables. 

NOTE- Function procedure calls cannot be selected; e.g. the 
expressions "funcO"''' and "func()[ 4].name" are not legal. 

Example of function procedures and procedure variables: 

MODULE FuncDemo; 

VAR i: INTEGER; 
pI: PROCEDURE(INTEGER): INTEGER; 
p2: PROCEDURE(): INTEGER; 

PROCEDURE FuncI(arg: INTEGER): INTEGER; 
BEGIN RETURN arg DIV 2 END FuncI; 

PROCEDURE Func2(): INTEGER; 
BEGIN RETURN 77 END Func2; 

BEGIN 
i := FuncI(7); 
pI := FuncI; 
i := pI(7); 
i := Func20; 
p2 := Func2; 
i := p20; 

END FuncDemo. 

(* call FuncI *) 
(* assign FuncI to pI *) 
(* call FuncI thru pI *) 
(* call Func2 *) 
(* assign Func2 to p2 *) 
(* call Func2 thru p2 *) 



3.4.2 Operators 

Introduction To Modula-2 
Expressions 

page 53 

The operations '+', '-', '*', DIV, and MOD apply to cardinals in addition to 
integers and subrange variables. Unary ,-, does not apply to cardinals. 'I' 
denotes real division. Note that MOD is not defined for negative arguments. 

The logical operators AND and OR are evaluated conditionally - they short­
circuit expression evaluation if the expression result can be determined by 
the value of the left-hand argument. 

P AND q is equivalent to "IF _ P THEN q 
ELSE FALSE" 

P OR q is equivalent to "IF p THEN TRUE 
ELSE q" 

These definitions of AND and OR allow shorter, more efficient solutions to 
many programming problems. Beware of using functions with side effects as 
expression operands, however; the functions might not be called if expression 
evaluation is short circuited. 

In the following example, conditional evaluation prevents a potential NIL 
pointer reference: 

WHILE (Event <> NIL) AND (Event A .Time < Now) DO 
Event := Event A .Next; 

END; 

The relational operators AND and ,<>, have alternate single-character names: 
'&' for AND, and '#' for '<>'. 

Example of abbreviated operator names: 

WHILE (i <= ArrayLength) & (A[i] # nul) DO 
INC(i); 

END; 

In addition to the standard set operators '+' (union), '_I (difference), '*' 
(intersection), and IN (inclusion), Modula-2 defines the set operator 'I', which 
is defined as symmetric set difference. Symmetric set difference performs a 
bitwise exclusive OR operation. 



Introduction To Modula-2 
Expressions 
page 54 

3.4.3 Mixed Expressions 

Operands of the types INTEGER, CARDINAL, and REAL cannot be freely 
mixed in expressions; unless type transfer functions are used, expressions must 
consist entirely of integers (including integer subranges), cardinals (including 
cardinal subranges), or reals. 

Pascal allows integers and reals to be mixed in expressions; integer operands 
in real expressions are implicitly converted to reals. Modula-2 does not allow 
mixed integers and reals; instead, integer operands must be explicitly 
converted to type REAL with the standard procedure FLOAT. FLOAT 
accepts arguments of type CARDINAL and returns the equivalent real value. 

For real-to-integer conversions, Modula-2 includes Pascal's standard function 
TRUNC(x). TRUNC accepts real arguments and returns a value of type 
CARDINAL. (Note that Modula-2 does not include ROUND(x).) 

NOTE- Many Modula-2 implementations define TRUNC and FLOAT to 
work with type INTEGER. 

Example of conversion between reals and integers: 

PROCEDURE Numbers; 
VAR i,j,k: CARDINAL; 

x,y,z: REAL; 

BEGIN 
i := j + TRUNC(z); 
x := y + FLOAT(k); 

. END Numbers; 



Introduction To Modula-2 
Expressions 

page 55 

Operands of type WORD are not compatible with other operand types in 
expressions. 

Operands of type ADDRESS are compatible with cardinals and pointers in 
expressions; however, some interesting side effects can arise from the left-to­
right order of expression parsing. 

Consider the following example: 

PROCEDURE Miscible; 
V AR Ptr: POINTER TO INTEGER; 

Addr: ADDRESS; 

BEGIN 
Ptr := Ptr + Addr + 4; 
Ptr := Addr + Ptr + 4; 

END Miscible; 

The two expressions in this example are legal because the presence of the 
operand Addr converts the expression type to ADDRESS, which is compatible 
with the integer/cardinal constant. (In fact, the constant 4 in this example 
can be considered a pointer constant like NIL). 

Now consider the following example: 

PROCEDURE Immiscible; 
VAR Ptr: POINTER TO INTEGER; 

Addr: ADDRESS; 

BEGIN 
Ptr := Ptr + 4 + Addr; 

END Immiscible; 

The expression in this example will be flagged by the Modula-2 compiler as 
erroneous, because pointer types are not compatible with integer/cardinal 
constants. (The expression is not known to be of type ADDRESS, because 
the operand Addr has not been parsed yet.) Thus, it can be seen that 
ordering restrictions exist for mixed address/pointer expressions. See 2.5 for 
more information on ADDRESS. 

Finally, as mentioned before, set operands must possess the same type in 
. ,order to be expression compatible (see 3.3.7 for details). 



Introduction To Modula-2 
Statements 
page 56 

3.5 Statements 

The major difference involves the reorganization of structured statements 
around statement sequences rather than compound statements. 

In Modula-2, all structured statements end with an explicit closing symbol 
(UNTIL for the REPEAT statement, END for the rest). Pascal's compound 
statement - one or more statements delimited by the symbols BEGIN/END -
does not exist in Modula-2; it has been replaced . by the concept of 
statement sequences. Statement sequences are series of statements 
separated by semicolons; sequences are delimited by the enclosing structure 
rather than by explicit delimiting symbols. 

Examples of statement structures: 

PROCEDURE Structures; 
BEGIN 

IF i > 0 THEN; 
WriteString(' Tru th '); 
i := -1; 

END; 

WHILE j > 3 DO 
i := 4; 
DEC(j) 

END; 

REPEAT 
;;;;;;;;; 

UNTIL TRUE; 
END Structures; 

NOTE- Modula-2's use of statement sequences allows semicolons to be 
used more freely than in Pascal. 

Pascal's GOTO statement is missing from Modula-2; in its place are the 
LOOP /EXIT and RETURN statements 'and the standard procedure HALT 
(3.6.4). LOOP /EXIT statements are used to express repetitive statement 
sequences which contain several exit points. RETURN is a limited form of 
GOTO; it transfers control to the end of the current procedure. HALT 
terminates execution of the current program. 



Introduction To Modula-2 
Statements 

page 57 

3.5.1 Assignment Statements 

This section presents the type compatibility rules for assignment. 
describes parameter type compatibility.) 

{3.6.2 

Operands are said to be assignment compatible if they are allowed to be 
assigned to each other. 

The primary rule for assignment compatibility is that operands must be 
compatible. Operands are compatible if they are of the same type: a 
variable's type is determined by the type identifier it is declared with, while 
a constant's type is (usually) implicit. Operands are also compatible if one is 
declared as a subrange of the other, or if both operands are declared as 
subranges of the same type. 

NOTE- Structured variables (e.g. records and arrays) are compatible 
only if they share the same type definition; in particular, 
variables declared with similarly structured types are not 
compatible. 

The types INTEGER and CARDINAL (and their subranges) are defined as 
assignment compatible. (Note that they are not compatible in expressions.) 

NOTE - Assignment compatibility of subranges and 
INTEGER/CARDIN AL types implies the possibility of assigning 
illegal values to variables at run-time; thus, assignments of this 
kind - though valid at compile-time - may cause an execution 
error (i.e. "Range error") at run-time. 

The type WORD is compatible only with itself. Operands of type ADDRESS 
are compatible with pointer types and CARDINALs. 

Unlike Pascal, string constants are assignment compatible with string 
variables (i.e. O-based character arrays) whose length exceeds that of the 
string. If the string is shorter than the array, the assignment operation 
places a null character (OC) into the array following the string constant. 

Example of string assignment: 

PROCEDURE Sass; 
VAR SI, S2: ARRAY[O •• 10] OF CHAR; 

BEGIN 
SI := "Short"; 
82 := '123456789AB'; 

END Sass; 

(* 81[5] contains OC *) 
(:t= string fits exactly *) 



Introduction To Modula-2 
Statements 
page 58 

Procedure types are compatible if the order and type of their formal 
parameters are the same. Procedures are assignable only if they are globally 
declared (i.e. not declared within another procedure). Standard procedures 
are not assignable. 

Example of procedure type compatibility: 

MODULE Procedures; 

PROCEDURE Demo(Ch: CHAR; I,J: INTEGER); 
BEGIN ••• END Demo; 

VAR P2: PROCEDURE(CHAR, 
INTEGER, 
INTEGER); 

BEGIN 
P2 := Demo; 

END Procedures. 

3.5.2 Procedure Calls 

Procedure calls are similar to those in Pascal; they consist of an identifier 
possibly followed by a list of parameters enclosed in parentheses. In 
Modula-2, the identifier can be either a procedure identifier or a procedure 
variable. 

Unlike function procedure calls, regular procedure calls do not require a 
parameter list if the procedure contains no parameters. However, it is good 
practice to place empty parameter lists after the identifiers anyways (just to 
mark them as procedure calls). 

Example of procedure calls: 

MODULE ProcCall; 

PROCEDURE GlobalProc; 
BEGIN ••• END GlobalProc; 

VAR P: PROC; 

BEGIN 
GlobalProc; 
GlobaIProc(); 
P := GlobalProc; 
P; 
pO; 

END ProcCall. 

(* call GlobalProc *) 
(* call it again *) 
(* assign GlobalProc to P *) 
(* call GlobalProc thru P *) 
(* call it again thru P *) 



3.5.3 WHILE Statements 

Introduction To Modula-2 
Statements 

page 59 

The only difference with WHILE statements is the new syntax which requires 
the closing symbol END. 

Examples of WHILE statements: 

WHILE i > 0 DO DEC(i) END; 

WHILE A[J] <= 0 DO 
A[J] := A[J] + A[J-l]; 
INC(J); 

END;, 

3.5.4 IF Statements 

The IF statement requires the closing symbol END, and also contains the new 
symbol ELSIF which allows a single IF statement to express cascaded 
conditions. 

The basic forms of the IF statement are: 

IF <condition> THEN 
<statement sequence> 

END; 

IF <condition> THEN 
<statement sequence> 

ELSE 
<statement sequence> 

END; 



Introduction To Modu!a.-2 
Statements 
page 60 

Cascaded conditionals are written as: 

IF <condition1> THEN 
<statement sequence> 

ELSIF <condition2> THEN 
<statement sequence> ... 

ELSIF <conditionN> THEN 
<statement sequence> 

END; 

IF <condition1> THEN 
<statement sequence> 

ELSIF <condition2> THEN 
<statement sequence> ... 

ELSE 
<statement sequence> 

END; 

Examples of IF statements: 

IF i > 0 THEN i := 0 END; 

IF scanning THEN 
GetN extSymbol 

ELSIF skipping THEN 
FlushBuff 

ELSE 
RETURN NoSymbol 

END; 

3.5.5 FOR Statements 

The FOR statement requires the closing symbol END. As in Pascal, the 
default step value is 1; unlike Pascal, step values other than 1 can be 
specified. Step values are restricted to constants. Note that the symbol 
DOWNTO is missing from Modula-2; it is equivalent to a step value of -1. 

The control variable cannot be part of a structured variable, nor imported, 
nor a parameter. 

NOTE - As in Pascal, the FOR statement can step through any scalar 
values; however, integer constants are still used as step values. 



Examples of FOR statements: 

FOR i := 1 TO 10 DO A[i] := 4 END; 

FOR j := 1 TO 9 BY 2 DO 
B[j] := A[j-l]; 
WriteInt(j,3); 

END; 

FOR ch := 'z' TO 'a' BY -1 DO 
Alfa[ch] := I?'; 

END; 

3.5.6 WITH Statements 

Introduction To Modula-2 
Statements 

page 61 

The WITH statement requires the closing symbol END. Unlike Pascal, WITH 
accepts only one variable reference; a separate WITH statement is needed to 
unqualify each record variable. 

Examples of WITH statements: 

WITH t'" .Person DO 
WriteString(N arne); 
BlackListed := TR VE; 

END; 

WITH CreditCheck DO 
WITH DriversLicense DO 

Debtor := N arne; 
License := Number; 

END 
END; 

3.5.7 CASE Statements 

Subranges and constant expressions are allowed in case label lists. If the 
case value does not match any of the case labels, the statement sequence 
following the symbol ELSE is selected {but if the ELSE part is left 
unspecified, an execution error (value range error) occurs). 

Statement sequences for each case are separated by the vertical bar "I". 
(Note that a "ITT cannot appear before an ELSE part.) 



Introduction To l\fodula-2 
Statements 
page 62 

Examples of CASE statements: 

CONST N = 3; 

CASE j OF 
0 •• 9: DEC(i,10); 

Stop := FALSE I 
10,11: Stop := TRUE I 
200: TuneBackEnd I 
N +2: DecipherCase; 

Stop := TRUE 
ELSE HALT 

END; 

CASE B OF 
FALSE: Proceed(3,4,5) 
TRUE: XXX:= 102 

END; 

3.5.8 LOOP/EXIT Statements 

The LOOP statement specifies cyclic execution of a statement sequence; in 
particular, it addresses two distinct programming situations that are not 
handled well by Pascal's repetitive statements. LOOPs without EXIT 
statements serve as "cycle" statements; they express the endless repetition of 
a group of statements. LOOPs containing EXIT statements are used to 
express repetitive statement sequences which have special exiting require­
ments; i.e. several exit· points or a single exit point in the middle of the 
statement sequence. 

EXIT statements can appear anywhere in a LOOP statement. EXIT transfers 
control to the statement following the LOOP statement. 

NOTE- The LOOP statement represents a generalized form of 
repetition. In theory, WHILE, REPEAT, and FOR statements all 
can be expressed as LOOP statements containing a single EXIT. 
In practice, the resulting program would be less understandable. 
Use WHILE, REPEAT, and FOR whenever possible; use LOOP 
only when necessary. 



Examples of LOOP statements: 

LOOP 
GetA Quarter; 
PlayGame; 
WriteString(nSorry, you lose. Try again!"); 

END; 

LOOP 
WITH Node A DO 

IF Name = ID THEN 
EXIT; 

ELSIF Name < ID THEN 
IF LLink = NIL THEN EXIT 
ELSE Node := LLink END; 

ELSE 
IF RLink = NIL THEN EXIT 
ELSE Node := RLink END; 

END; 
END; 

END; 

3.5.9 RETURN Statements 

Introduction To Modula-2 
Statements 

page 63 

The RETURN statement has two forms, and serves two purposes. In 
procedures and modules, RETURN terminates the enclosing procedure or 
module body. In function procedures, the RETURN symbol is always followed 
by an expression; the resulting statement assigns the expression value to the 
function result and then terminates the function procedure. 

Non-function procedures and modules contain implicit RETURN statements at 
the' end of their bodies. Explicit RETURN statements are optional; they 
indicate additional (possibly exceptional) termination points in the body. 

NOTE - The Pascal equivalent of RETURN from a (non-function) 
procedure is a GOTO which jumps to the end of the procedure. 



Introduction To Modula-2 
Statements 
page 64 

Example of RETURN in a procedure: 

PROCEDURE ReadSequence(VAR Ch: CHAR); 
BEGIN 

IF SequenceError THEN 
Ch := , '; 
Propagate := TRUE; 
RETURN; (* exit from procedure *) 

END; 
InChar(Ch); 
CheckErrors; 

END ReadSequence; 

In function procedures, RETURN performs the double duty of terminating the 
procedure and assigning the function result. For this reason, function 
procedures must· terminate by executing a RETURN statement, and all 
RETURNs must be accompanied by an expression. (Note that the expression 
type must match the function result type.) 

NOTE - The Pascal equivalent of a function procedure RETURN is a 
combina tion of assignment to the function variable and a GOTO 
which jumps to. the end of the function block. 

Example of RETURN in a function procedure: 

PROCEDURE Signum(Freud: INTEGER): INTEGER; 
BEGIN 

IF Freud > 0 THEN RETURN 1 
ELSIF Freud < 0 THEN RETURN -1 
ELSE RETURN 0; 

END Signum; 



3.6 Procedures and Functions 

Introduction To fwtodula-2 
Procedures and Functions 

page 65 

The only changes to procedures and functions are a new syntax for declaring 
functions and the addition of open array parameters. Modula-2 includes most 
of Pascal's standard procedures - a few are missing, and a few new ones 
have appeared. 

3.6.1 Function Procedures 

Functions are. called function procedures in Modula-2. Function procedures 
are equivalent to Pascal's functions; the differences are mostly syntactic. 
Function procedure headings are virtually identical to regular procedure 
headings, the only difference being the presence of a function result type 
following the parameter list. Note that a (possibly empty) parameter list 
must precede the function result type declaration. Within function 
procedures, function results are returned with the RETURN statement. 
Function procedure calls consist of a procedure identifier followed by a. 
(possibly empty) parameter list. 

NOTE - Function procedure calls cannot be selected; e.g. the 
expressions "funcO A

" and "func()[ 4].name" are not legal in 
Modula-2. 

Examples of function procedures: 

PROCEDURE FunctionDemo; 

PROCEDURE IOResult(): CARDINAL; 
BEGIN ... 

RETURN 0 (* no error *) 
END IOResult; 

VAR 10: CARDINAL; 

BEGIN 

10 := 10Result(); 
END FunctionDemo; 



Introduction To Modula-2 
Procedures and Functions 
page 66 

3.6.2 Parameter Type Compatibility 

As in Pascal, there are two kinds of parameters: value parameters, and 
variable parameters. With value parameters, the actual parameter must be 
assignment compatible with the formal parameter. With variable parameters, 
the formal and actual parameters must have identical types. 

NOTE - The types WORD and ADDRESS and open array parameters 
are exceptions to these rules. 

If a formal parameter specifies a procedure type, corresponding actual 
parameters must be either global procedures, procedure variables, or 
procedure parameters; in all cases, the procedure types must be compatible. 
Standard procedures cannot be passed as procedure parameters. 

3.6.3 Open Array Parameters 

Modula-2 allows formal parameter types of the form: 

ARRAY OF T 

where T is an arbitrary base type. Note that the array bounds are omitted 
- this is known as an open array parameter and is compatible with all (one 
dimensional) arrays having the base type T. 

Array elements of actual parameters are mapped into the range O • .N-l, where 
N is the number of elements in the actual parameter. The high bound of a 
open array parameter is obtained with the standard procedure HIGH(A), which 
returns the index of the high bound of array A. HIG H works on all arrays. 

NOTE- Open arrays can only be accessed element-wise; they are not 
assignable as entire objects. Open arrays can be passed as 
actual parameters to other procedures containing open array 
parameters. If an empty string is passed to an ARRAY OF 
CHAR, HIGH returns 0 (the position of the terminating null 
character). 

In the following example, B2 is an II-element array whose indices range from 
5 to 15. Inside the procedure Invert, B2 is viewed as A, an II-element open 
array parameter whose indices r:~nge from 0 to HIGH(A). (In this case, 
HIGH(A) returns the value 10). 



Example of open array parameters: 

PROCEDURE DynArray; 

PROCEDURE Invert(VAR A: ARRAY OF REAL); 
V AR inx: CARDINAL; 

BEGIN 
FOR inx := 0 TO HIGH(A) DO 

A[inx] := 1.0 / A[inx]; 
END; 

END Invert; 

VAR B2: ARRAY [5 •• 15] OF REAL; 

BEGIN 

Invert(B2); 

END DynArray; 

Introduction To Modula-2 
Procedures and Functions 

page 67 

Open arrays are useful for writing general-purpose numerical and string­
handling routines; for instance, the standard utility module Strings uses open 
array parameters to handle string arguments of any length. 

If a formal parameter has the form ARRAY OF WORD, its corresponding 
actual parameter can be of any type; all parameter types (particularly 
records and sets) are treated as multi-word arrays. 



Introduction To Modula-2 
Procedures and Functions 
page 68 

Example of ARRA Y OF WORD: 

PROCEDURE Generic; 

PROCEDURE DisplayHex(A: ARRA Y OF WORD); 
VAR inx: CARDINAL; 

BEGIN 
FOR inx := 0 TO HIGH(A) DO 

WriteHex( CARDIN AL(A[inx]), 7); 
WriteLn; 

END: 
WriteLn; 

END DisplayHex; 

VAR AR: ARRAY [1 •• 5] OF REAL; 
c: CARDINAL; 

BEGIN 

b: BOOLEAN; 
R: RECORD 

a,b,c: INTEGER; 
Ch: CHAR; 

END; 

DisplayHex(AR); 
DisplayHex(c); 
DisplayHex(b); 
DisplayHex(R); 

END Generic; 

3.6.4 Standard Procedures 

Standard procedures are automatically imported into every module. (Note 
that this implies standard procedures may be redefined within procedures, but 
not within modules.) 

Pascal's old favorites ABS, ODD, ORD, and CRR live on in Modula-2, but 
with a twist; ORD now returns a cardinal result. 

ABS(x) 

ODD(x) 

ORD(x) 

absolute value. x is an integer or real; 
result type = argument type 

return Boolean result TRUE if the 
integer/cardinal expression x is odd. 

ordinal value of x. x is an enumeration, 
character, integer, or cardinal; 
result type is cardinal. 



CHR(x) 

Introduction To Modula-2 
Procedures and Functions 

page 69 

return the character with ordinal value x. 
x is a cardinal. 

Modula-2 provides the standard procedure VAL, which performs the inverse 
operation of ORD. 

VAL(T,x) return the value with ordinal number x 
and type T. x is a cardinal. T is an 
enumera tion, character, integer, or cardinal. 

For instance, given the type: 

Day = (Monday, Tuesday, Wednesday) 

VAL(Day,l) returns the scalar constant Tuesday. The relationship between 
ORD and VAL is 

VAL(T, ORD(x» = x, if x is of type T. 

TRUNC truncates a real value to its cardinal component. FLOAT performs 
the opposite action; it converts cardinal arguments to real values. (ROUND 
is not included in Modula-2.) 

TRUNC(x) 

FLOAT(x) 

return the integral part of 
the real number x. 

return the real number representation 
of the cardinal x. 

Pascal's PRED and SU CC have been replaced· with the more general 
operations INC and DEC. INC and DEC have two forms. INC(x) and DEC(x) 
replace x with its immediate successor or predecessor. INC(x,n) and DEC(x,n) 
replace x with its n 'th· successor or predecessor • 

. NOTE - IN C and DEC accept characters, integers, and addresses along 
with subranges and enumerations. Note that "n" can be any 
expression compatible with "x". 

INC(x) 

INC(x,n) 

DEC(x) 

DEC(x,n) 

x := x + 1 

x := x + n 

x := x-I 

X := x - n 



Introduction To Modula-2 
Procedures and Functions 
page 70 

Modula-2 provides the standard procedures INCL and EXCL for set 
manipulation. INCL (ffinclude") adds a single element to a set; EXCL 
(ffexcludeff) removes a single element from a set. Note that "en can be any 
expression compatible with the base type of "s". 

INCL(s,e) 

EXCL(s,e) 

s := s + {e} 

s := s - {e} 

The procedures NEW(p) and DISPOSE(p) perform the usual actions; however, 
they are translated into calls to the procedures ALLOCA TE and 
DEALLOCATE which· are usually provided by the standard utility module 
Storage (see. 2.4 for details). 

The procedure HALT terminates program execution. HALT is used to stop 
programs which detect unrecoverable error conditions. 

The function procedure HIGH(A) returns a cardinal indicating the high index 
bound of the array A. HIGH is commonly used with open array parameters 
(see 3.6.3); however, it also accepts regular array variables. 

Last (and probably least), the function procedure CAP(ch) returns the upper­
case equivalent of lower-case character arguments. 



3.7 Blocks 

Introduction To Modula-2 
Blocks 

page 71 

Despite the emphasis on modules, blocks still play an important part in 
Modula-2: implementation modules, program modules, local modules, and 
procedures share the same block syntax. Differences from Pascal include 
relaxed order of declarations, termination of all blocks by a procedure or 
module identifier, and optional statement parts. 

Pascal imposes a strict order on the declaration of objects; within any given 
block, labels must be declared before constants, constants before types, types 
before variables, and so on. Modula-2 eliminates this restriction -
declarations can appear in any order. Programs containing lots of 
declarations are easier to read and understand when related declarations are 
grouped together (regardless of their kind). 

Example of relaxed declaration order: 

MODULE Xlator; 

CONST MaxSym = 1024; 
TYPE SymBuffer = ARRA Y[1 •• MaxSym] OF CHAR; 
VAR SymBuff1, SymBuff2: SymBuffer; 

CONST MaxCode = 512; 
TYPE CodeBuffer = ARRA Y[1 •• MaxCode] OF CHAR; 
VAR CodeBuff: CodeBuffer; 

END Xlator. 

Every module and procedure declaration is terminated by -its identifier. This 
improves the readability of large programs containing many levels of nested 
blocks. 



Introduction To Modula-2 
Blocks 
page 72 

Example of block identifiers: 

MODULE Turboincabulator; 

MODULE Widget; 

PROCEDURE Stuff; ... 
PROCEDURE Nested; ... 
BEGIN ... 
END Nested; 

BEGIN ... 
END Stuff; ... 

END Widget; ... 
END Turboincabula tor. 

Procedure and module bodies appear at the end of a block and are delimited 
by the symbols BEGIN and END. 

As mentioned before, module bodies are optional; if present, they serve to 
initialize a module's variables. 

Example of optional module bodies: 

MODULE NoBody; 
EXPORT c,d; 

VAR c,d: CARDINAL; 

END NoBody; 

MODULE Body; 
EXPORT a,b; 

VAR a,b:' CARDINAL; 

BEGIN 
a := 1; b := 2; 

END Body; 



Introduction To Modula-2 
Blocks 

page 73 

Note, however, that procedure bodies are optional, too! This seems 
nonsensical, as the only operation defined for a procedure is invocation, 
which causes the procedure body to be executed; thus, a bodyless procedure 
would appear incapable of performing any useful actions. 

Bodyless procedures are justified because they can include local module 
declarations. Recall that module bodies actually belong to the body of the 
enclosing procedure; thus, a bodyless procedure has a de facto procedure 
body consisting of the module bodies from locally declared modules. 

Example of a bodyless procedure: 

PROCEDURE NoBody; 

MODULE Action1; 

BEGIN 

END Action1; 

MODULE Action2; 

BEGIN 
... 

END Action2; 

END NoBody; 



Introduction To Modula-2 
Reserved Words and Symbols 
page 74 

Appendix 1 Reserved Words and Symbols 

N'OTE - All characters are significant in Modula-2 reserved words. 

+ = AND FOR QUALIFIED 
# ARRAY FROM RECORD 

* < BEGIN IF REPEAT 
/ > BY IMPLEMENT A TION RETURN .- <> CASE IMPORT SET .-
& <= CONST IN THEN 

• >= DEFINITION LOOP , TO .. DIV MOD TYPE 
; . DO MODULE UNTIL . 
( ) ELSE NOT VAR 
r ] ELSIF OF WHILE 
{ } END OR WITH 
A I EXIT POINTER 

" EXPORT PROCEDURE 



Appendix 2 Standard Identifiers 

ABS 
BITSET 
BOOLEAN 
CAP 
CARDINAL 
CHAR 
CHR 
DEC 
DISPOSE 

EXCL 
FALSE 
FLOAT 
HALT 
HIGH 
INC 
INCL 
INTEGER 
NEW 

NIL 
OnD 
ORD 
PROC 
REAL 
TRUE 
TRUNC 
VAL 

Introduction To Modula-2 
Standard Identifiers 

page 75 



Introduction To ModuIa-2 
ASCn Character Set 
page 76 

Appendix 3 ASCD Character Set 

o 000 00 nul 32 040 20 
1 001 01 soh ,33 041 21 
2 002 02 stx 34 042 22 n 

3 003 03 etx 35 043 23 # 
4 004 04 eot 36 044 24 $ 
5 005 05 enq 37 045 25 % 
6 006 06 ack 38 046 26 & 
7 007 07 bel 39 047 27 ' 
8 010 08 bs 40 050 28 ( 
9 011 09 ht 41 051 29 ) 

10 012 OA If 42 052 2A * 
11 013 OB vt 43 053 2B + 
12 014 OC ff 44 054 2C , 
13 015 OD cr 45 055 2D -
14 016 OE so 46 056 2E . 
15 017 OF si 47 057 2F / 
16 020 10 dIe 48 060 30 0 
17 021 11 dc1 49 061 31 1 
18 022 12 dc2 50 062 32 2 
19 023 13 dc3 51 063 33 3 
20 024 14 dc4 52 064 34 4 
21 025 15 nak 53 065 35 5 
22 026 16 syn 54 066 36 6 
23 027 17 etb 55 067 37 7 
24 030 18 can 56 070 38 8 
25 031 19 em 57 071 39 9 
26 032 1A sub 58 072 3A 
27 033 1B esc 59 073 3B ; 
28 034 1C fs 60 074 3C < 
29 035 1D gs 61 075 3D = 
30 036 IE rs 62 076 3E > 
31 037 IF us 63 077 .3F ? 

64 100 40 @ 96 140 60 " 
65 101 41 A 97 141 61 a 
66 102 42 B 98 142 62 b 
67 103 43 C 99 143 63 c 
68 104 44 D 100 144 64 d 
69 105 45 E 101 145 65 e 
70 106 46 F 102 146 66 f 
71 107 47 G 103 147 67 g 
72 110 48 H 104 150 68 h 
73 111 49 I 105 151 69 i 
74 112 4A J 106 152 6A j 
75 113 4B K 107 153 6B k 
76 114 4C L 108 154 6C I 
77 115 4D M 109 155 6D m 
78 116 4E N 110 156 6E n 
79 117 4F 0 111 157 6F 0 

80 120 50 P 112 160 70 P 
81 121 51 Q 113 161 71 q 
82 122 52 R 114 162 72 r 
83 123 53 S 115 163 73 s 
84 124 54 T 116 164 74 t 
85 125 55 U 117 165 75 u 
86 126 56 V 118 166 .76 v 
87 127 57 . W 119 167 77 w 
89 130 58 X 120 170 78 x 
89 131 59 Y 121 171 79 Y 
90 132 5A Z 122 172 7A z 
91 133 5B [ 123 173 7B { 
92 134 5C \ 124 174 7C I 
93 135 5D ] 125 175 7D } 
94 136 5E Ito 126 176 7E -
95 137 5F _ 127 177 7F del 



Index 

-A-

ABS ••••••••••••••••••••••••••••• • 68 
Abstract Data Type •••••••••••••••• 2 
Ada ••••••••••••••••••••••••••• l, 30 
ADDRESS •••••••••••••••••••• 28, 55 
ADR •••••••••••••••••••••••• • 28, 32 
ALLOCATE ••••••••••••••••••• 25, 70 
AND ••••••••••••••••••••••••••• •• 53 
ARRA Y OF...................... 66 
ARRA Y OF WORD •••••••••••••••• 67 
Array Types •••••••••••••••••••••• 49 
Assignment Compatible ••••••••• 57, 66 

-B-
BEGIN •••••••••••••••••••••••••••• 72 
BITSET ••••••••••••••••••••••• 46, 50 
Block ••••••••••••••••••••••••• 4, 71 
Block Structure •••••••••••••••••••• 4 
BY • • • • • • • • • • • • • • • • • • • • • • • • •• 41, 60 

-C-

C ••••••••••••••••••••••••••••••• ,I 
CAP ••••••••••••••••••••••••••••• • 70 
CARDINAL ••••••••••••••••••• 28, 47 
Cardinal Constan ts • • • • • • • • • • • • • • •• 43 
CASE •••••••••••••••••••••••••••• • 61 
CHAR •••••••••••••••••••••••••••• 48 
Character Constants ••••••••••••••• 44 
CHR ••••••••••••••••••••••••••• •• 68 
Clients ••••••••••••••••••••••••••• 22 
Comments ••••••••••••••••••••••••• 42 
Compatible •••••••••••••••••••••••• 57 
Compilation Units ••••••••••••••••• 16 
Compiler •••••••••••••••••••••••••• 22 
Concurrent Pascal ••••••••••••••••• 30 
Constant Expressions •••••••••••••• 43 
Coroutines • • • • • • • • • • • • • • • • • • • • • • •• 30 

-D-
DEALLOCATE •••••••••••••••• 25, 70 
DEC •••••••••••••••••••••••••••••• 69 
Decimal Constants ••••••••••••••••• 43 
DEFINITION •••••••••••••••••• 17, 41 
Definition Modules ••••••••••••••••• 16 
DISPOSE. • • • • • • • • • • • • • • • • • • •• 25, 70 
DIV. • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 53 
DO •••••••••••••••••••••• 59, 60, 61 

Introduction To Modula-2 
Index 

page 77 

DOWN TO ••••••••••••••••••••• 41, 60 

-E-
ELSE •••••••••••••••••••• 49, 59, 61 
ELSIF •••••••••••••••••••••••• 41, 59 
END ••••••••••••••••••••••••••••• • 72 
Enumerations •••••••••••••••••••••• 11 
EXCL •••••••••••••••••••••••• 46, 69 
Exclusive OR ••••••••••••••••••• •• 53 
Existence •••••••••••••••••••••••••• 4 
EXIT ••••••••••••••••••••••••• 41, 62 
EXPORT •••••••••••••••••••••• 5, 41 
Export Lists....................... 5 

-F-
FILE ••••••••••••• I. . . . . . . . . . . . . . .. 41 
Files •• '. • • • • • • • • • • • • • • • • • • • • • • • • •• 25 
Fixed Address Variables •••••••••••• 27 
FLOAT ••••••••••••••••••••••• 54, 69 
FO R •••••••••••••••••••••••••••••• 60 
FROM •••••••••••••••••••••••• 14, 41 
FUNCTION •••••••••••••••••••••••• 41 
Function Procedures ••••••••••• 52, 65 

-G-

GOTO ••••••••••••••••• ; •••••• 41, 56 

-H-

HALT •••••••••••••••••••••••• 56, 70 
Hexadecimal Constants ••••••••••••• 43 
HIGH •••••••••••••••••••••••••••• • 70 

-1-

Identifiers ••••••••••••••••••••••••• 40 
IF •••••••••••••••••••••••••••••••• 59 
IMPLEMENTATION ••••••••••••• 17, 
Implementation Guide •••••••••••••• 
Implementation Modules •••••••••••• 

41 
27 
16 

IMPORT ••••••••••••••••••••••• 5, 41 
Import Lists....................... 5 
INC •••••••••••.•••••••••.••••.•.• 69 
INCL ••••••••••••••••••••••••• 46, 69 
InOut ••••••••••••••••••••••••••••• 24 
Integer Constants................. 43 
Interrupt Handlers ••••••••••••••••• 34 
Interrupts ••••••••••••••••••••••••• 34 
Interrupt Vectors •••••••••••••••••• 35 



Introduction To Modula-2 
Index 
page 78 

IOTRANSFER. • • • • • • • • • • • • • • • • • • •• 34 

-K-
Knuth, D. E •••••••••••••••••••••• 30 

-L-
LABEL ••••••••••••••••••••••••••• 41 
IJbrary ••••••••••••••••••••••••••• 22 
Library Modules ••••••••••••••••••.• 16 
LISTEN ••••••••••••••••••••••••••• 35 
Loader •••••••••••••••••••••••••••• 22 
LOOP •••••••••••••••••••••••• 41, 62 

-M-
MathLibO •••••••••••••••••••••••••• 25 
Mesa •••••••••••••••••••••••••••••• 1 
Mixed Expressions................. 54 
MOD. • • • • • • • • • • • • • • • • • • • • • • • • • • •• 53 
MODULA ••••••••••••••••••••••••• 30 
l\1odula-2 ••••••••••••••••••••••••••• 1 
lVIODULE •••••••••••••••••••••••••• 41 
Module Bodies..................... 8 
Module Execution Order ••••••••• 8, 18 
l\lodule Key ••••••••••••••••••••••• 23 
Module Priority ••••••••••••••••••• 35 
Modules. • • • • • • • • • • • • • • • • • • • • • •• 2, 4 

-N-
NEW •••••••• -••••••••••••••• ~. 25, 70 
NEWPROCESS ••••••••••••••••••••• 31 

-0-

Object Files •••••••••••••••••••••• 22 
Octal Constants ••••••••••••.••••••• 44 
ODD. • • • • • • • • • • • • • • • • • • • • • • • • • • •• 68 
Opaque Types ••••••••••••••••••••• 19 
Open Array Parameters •••••••• 28, 66 
OR ••••••••••••••••••••••••••••••• 53 
ORD ••••••••••••••••••••••••••••• 68 

-P-
PACKED •••••••••••••••••••••••••• 4~ 
Parameter Type Compatibility...... 66 
Pascal ••••••••••••••••••••••••••••• l 
POINTER ••••••••••••••••••••••••• 41 
POINTER TO ••••••••••••••••••••• 51 
Pointer Types ••••••••••••••••••••• 51 
PRED •••••••••••••••••••••••••••• 69 

PROC •••••••••••••••••••••••••••• 47 
Procedure Assignment •••••••••••••• 57 
Procedure Calls ••••••••••••••••••• 58 
Procedures •••••••••••••••••••••••• 65 
Procedure Types •••••••••••••• 37, 47 
Procedure Variables............... 37 
PROCESS ••••••••••••••••••••••••• 31 
Process ••••••••••••••••••••••••••• 31 
PROGRAM •••••••••••••••••••••••• ,41 
Program Modules.................. 16 
Pseudo-module ••••••••••••••••••••• 27 

-Q-

QUALIFmD ••••••••••••••••••• 12, .41 
Qualified' Export •••••••••••••••••• 12 
Qualified Identifier •••••••••••••••• 12 

-R-
Read ••••••••••••••••••••••••••••• 24 
Real Constants •••••••••••••••••••• 44 
Record Types ••••••••••••••••• 11, 49 
REPEAT •••••••••••••••••••••••••• 56 
Reserved Words............... 41, 74 
RETURN • • • • • • • • • • • • • • • • • • • •• 41, 63 
ROUND ••••••••••••••••••••••••••• 69 

-S-
Scope •••••••••••••••••••••••••••••• 4 
Separate Compilation •••••••••••••• 16 
Set Constants ••••••••••••••••••••• 46 
Set Types........................ 50 
Short-circuit Expression 

E valua tion • • • • • • • • • • • • • • • • • • • •• 53 
SIZE ••••••••••••••••••••••••• 29, 32 
Standard Procedures ••••••••••••••• 68 
Standard Utility Modules ••••••••••• 24 
Statements •••••••••••••••••••••••• 
Statement Sequence ••••••••••••••• 
Storage ••••••••••••••••••••••• 25, 
String Assignment ••••••••••••••••• 
String Constants •••••••••••••••••• 
Subrange Types ••••••••••••••••••• 

56 
56 
32 
57 
45 
48 

SU CC •••••••••••••••••••••••••••• 69 
Symbol Files •••••••••••••••••••••• 22 
SYSTEM •••••••••••••••••• 26, 27, 31 
System Module •••••••••••••••••••• 27 



-T-

Texts ••••••••••••••••••••••••••••• 25 
TRANSFER ••••••••••••••••••••••• 33 
Transparent Types •••••••••••••••• 
TRUNC •••••••••••••••••••••• 54, 

-U-

Unqualifying Import •••••••••••••••• 14 
UNTIL ••••••••••••••••••••••••••• • 56 

-V-
VAL ••••••••••••••••••••••••••••• • 69 
Version Control ••••••••••••••••••• 23 
Visibility ••••••••••••••••••••••••••• 4 

-w-
WHILE ••••••••••••••••••••••••••• • 59 
Wirth, N ••••••••••••• eo ••••••••••• •• 1 
WITH •••••••••••••••••••••••••••• • 61 
WORn •••••••••••••••••••••••• 28, 
Ylrite ••••••••••••••••••••••••••••• 

54 
24 

Introduction To Modula-2 
Index 

page 79 



Release: 

Date: 

Author: 

Standard Library 

0.3 

26 August 1983 

·Richard Gleaves 



Standard Library 
Table Of Conten~ 

Table Of Contents 

1 Introduction. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 

2 Overview ••••••••••••••••••••••••••••••• 0 2 

3 Module Hierarchy. • • • • • • • • • • • • • • • • • • • • • • • • • • 3 

4 InOut. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 4 

5 RealInOut. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 8 

6 Texts. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 9 

7 Reals. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 15 

8 Files •••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 16 

9 Terminal. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 22 

10 Storage •••••••••••••••••••••••••••••••• 23 

11 Program. • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 24 

12 Processes. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 30 

Appendix 1 Text & File Results. • • • • • • • • • • • • • • • • • • 34 

Appendix 2 Program Results ••••••••••••••••••••• 35 

Index. • • • • • • • • 0 ~ • • • • • • • • • • • • • • • • • • • • • • • • 37 



3 Module Hierarchy 

Standard Library 
Module Hierarchy 

page 3 

This section describes relationships between the standard library modules. 

Some library modules modules are entirely self-contained, but most import 
facilities from other library modules. Such dependence relations form a 
hierarchy of library modules, with self-contained modules appearing at the 
bottom and highly dependent modules appearing at the top. 

Intermodule dependencies are obscured by the fact that library modules are 
more commonly imported in (hidden) implementation modules than in (visible) 
definition modules. Module dependencies are documented not so much because 
it is necessary to understand how a module works, but because indirectly 
imported modules affect the amount of storage left for a program. Importing 
a module at the top of the hierarchy offers high-level facilities at the 
expense of the modules used to implement it; importing a module at the 
bottom of the hierarchy provides cruder facilities, but saves memory by 
reducing the number of resident modules. 

The choice of where to enter the module hierarchy depends on the relative 
importance of portability and efficiency. Higher level modules stress 
portability and ease of use over efficiency and generality; lower level 
modules, the reverse.· For instance, the module InOut is easier to use than 
Texts, as it hides all details of the text streams it writes to. Texts in turn 
offers generality (the ability to define new text streams) and efficiency 
(InOut is implemented in terms of Texts). The complete module hierarchy is 
described in the Implementation Guide. 

Standard library module dependencies: 

• RealInOut -) InOut, Reals 

• InOut -) Conversions, Texts 

• Reals -) Texts, Program 

• Texts -) Conversions, Files, Storage, Program 

• Files -) Storage, Program 

• Processes -) Storage, Program 

• Storage -) Program 

• Program -) Storage 



Standard Library 
InOut 
page 4 

4 IDOut 

The module InOut is implemented as defined in Programming in Modula-2. 
InOut provides operations for reading and writing basic data types to the 
standard input and output text streams. Note that details pertaining to the 
actual streams are suppressed, allowing this module to be portable across all 
Modula-2 systems. Standard input and output defaults to the console, but can 
be redirected to other files. 

The procedures Read, ReadString, ReadInt, and ReadCard read data from the 
input stream. Read returns a single character; if the character equals EOL, 
the end of a text line has been read. 

NOTE - The value of EOL is system-dependent. 

REPEAT 
InOut.Read(ch); 
line[inx] := ch; 
INC(inx); 

UNTIL ch = EOL; 

ReadString reads a string of (non-blank) characters. ReadString skips leading 
blanks and terminates on either a blank or control character; the terminating 
character is returned in the variable termCH. ReadInt reads a string and 
converts it to an integer. ReadCard reads a string and converts it to a 
cardinal number. When reading from the console, backspace deletes the last 
character typed in. 

ReadInt(i); 
ReadString(s); 

ReadCard(c); 
IF termCH = EOL THEN WriteLn END; 

The end of an input stream is recognized by checking the variable Done. 
Done is set after every read operation: TRUE indicates that the preceding 
operation was successfully completed; FALSE indicates that the previous 
operation failed (either because the end of the stream was reached or 
because of an error). Read returns a null character (OC) if the end of the 
stream has been reached. 

LOOP 
InOut .Read( ch); 
IF InOut.Done THEN EXIT END; 
process( ch); 

END; 



Standard Library 
InOut 

page 5 

The procedures Write, WriteString, WriteInt, WriteCard, WriteOct, and 
WriteHex write data to the output stream. WriteLn writes a line terminator. 
WriteHex and WriteOct write out fixed numbers of digits: i.e. four 
hexadecimal digits and six octal digits respectively. The argument "n" in 
most of these routines is for output formatting. If fewer than n characters 
are required to write out the data value, leading blank characters are 
written to pad the result out to n characters. 

NOTE- WriteLn is defined to be equivalent to Write(EOL). 

Write(ch); 
WriteString("Hi there! The answer is: "); 
WriteCard(sum, 7); 

Standard I/O is directed to the console, but can be redirected to disk files 
(or other devices). OpenInput and OpenOutput both issue console prompts 
requesting the name of the file to redirect I/O to. If a file name ends with 
a period, the default extension "defext" is appended to the file name before 
the file is opened. (Note that this convention is the exact opposite of some 
other file systems.) 

If the specified file is successfully opened, it becomes the source (sink) of 
standard I/O. OpenInput and OpenOutput return status results in the variable 
Done; Done is set to TRUE if the file was successfully opened. 

OpenInput("TEXTft); 
IF NOT Done THEN WriteString(ftFile open errorft) END; 

Redirected standard I/O is returned to the console by calling CloseInput or 
CloseOutput. Redirected files are closed. Done is set to TRUE if the 
redirected file was successfully closed. 

NOTE - InOut uses the predefined text variables Texts.input and 
Texts.output as the (default) standard input and output streams. 
If these variables are modified by a program importing Texts, 
the operation of InOut is affected. 



Standard Library 
InOut 
page 6 

Example of InOut: 

MODULE SumLines; 

(* Sum each line in the input file *) 

FROM InOut IMPORT 
OpenInput, CloseInput, 
EOL, termCH, Done, WriteLn, 
ReadInt, WriteInt, WriteString; 

VAR i, sum: INTEGER; 

BEGIN 
OpenInput("TEXT"); 
IF NOT Done THEN 

WriteString("File not opened"); 
HALT; 

END; 

sum := 0; 
ReadInt(i); 
WHILE Done DO 

IN C(sum, i); 
IF termCH = EOL THEN 

WriteInt(sum, 7); 
WriteLn; 
sum := 0; 

END; 
ReadInt(i); 

END; 

CloseInput; 
END SumLines. 



DEFINITION MODULE InOut; 

EXPORT QUALIFIED 
EOL, Done, termCH, 
OpenInput, OpenOutput, CloseInput, CloseOutput, 
Read, ReadString, ReadInt, ReadCard, 

Standard Library 
InOut 

page 7 

Write, WriteLn, Write String, WriteInt, WriteCard, WriteOct, WriteHex; 

CONST EOL = 15C; (* system dependent *) 

VAR Done: BOOLEAN; 
V AR termCH: CHAR; 

PROCEDURE OpenInput (defext: ARRAY OF CHAR); 
PROCEDURE OpenOutput (defext: ARRAY OF CHAR); 
PROCEDURE CloseInput; 
PROCEDURE CloseOutput; 

PROCEDURE Read (VAR ch: CHAR); 
PROCEDURE ReadString (VAR s: ARRAY OF CHAR); 
PROCEDURE ReadInt (VAR x: INTEGER); 
PROCEDURE ReadCard (VAR x: CARDINAL); 

PROCEDURE Write 
'PROCEDURE WriteLn; 

(ch: CHAR); 

PROCEDURE WriteString (s: ARRAY OF CHAR); 
PROCEDURE WriteInt (x: INTEGER; n: CARDINAL); 
PROCEDURE Write Card (x,n: CARDINAL); 
PROCEDURE WriteOct (x,n: CARDINAL); 
PROCEDURE WriteHex (x,n: CARDINAL); 

END InOut. 



Standard Library 
RealInOut 
page 8 

5 RealInOut 

The module RealInOut reads and writes real numbers to the standard input 
and output streams. The parameter "n" in Write Real is used for output 
formatting (see InOut for details). WriteReal displays real numbers in 
exponent notation. WriteRealOct displays real numbers in internal format; 
the variable contents are written as multi-word octal values. The variable 
Done is set after every call to ReadReal; it indicates whether the previous 
reap operation was successfully completed (Done = TRUE indicates a real 
number was successfully read). 

NOTE- RealInOut accesses streams via InOut's procedures ReadString 
and WriteString; therefore, redirecting I/O in InOut affects the 
operation of RealInOut. Note that InOut and RealInOut export 
separa te Done variables. 

DEFINITION MODULE RealInOut; 

EXPORT QUALIFIED 
ReadReal, WriteReal, WriteRealOct, Done; 

VAR Done: BOOLEAN; 

PROCEDURE ReadReal(VAR x: REAL); 
PROCEDURE WriteReal(x: REAL; n: CARDINAL); 
PROCEDURE WriteRealOct (x: REAL); 

END RealInOut. 



6 Texts 

Standard Library 
Texts 

page 9 

The module Texts provides operations for reading and writing basic data 
types to text streams. The model for input text streams is a sequence of 
characters structured into lines; this model is implemented as a sequence of 
character strings terminated by null characters (OC). Note that null 
characters serve as both line and stream terminators; line separation and the 
end of an input stream are indicated by the procedures EOL and EOT. 

Control characters are nonprintable ASCII characters (other than nulls) that 
are not interpreted by the underlying implementation. Interpreted control 
characters do not themselves appear in a text stream. An example of an 
interpreted control character is a carriage return read from the console; it is 
translated into a (line-terminating) null character. 

Text stream I/O is performed through variables declared with type TEXT. 

VAR listing, errors: TEXT; 

The exported text variables input and output are connected to the system 
terminal and represent the standard input and output streams. Programs 
performing only standard I/O do so through input and output. The text 
variable console is connected to the console; it is used for writing console 
messages (in case the standard text streams have been redirected). 

MODULE ZZ; 
FROM Texts IMPORT output, Write String; 
BEGIN 

WriteString{output, "Hi there!"); 
END ZZ. 

The procedures Connect and Disconnect are used to open and close text 
variables for text I/O operations. Text streams do not directly access 
external files; instead, they are "connected" to file 'variables which in turn 
have already been opened. Connect associates a text stream with an existing 
(open) file variable. (Note that Connect does not affect the file state.) 
Disconnect disassociates a text stream from its file variable. Connect and 
Disconnect return a value (of type TextState) indicating the result of the 
operation. Text I/O cannot be performed on an' unconnected (or 
disconnected) text stream. 

IF Connect{listing, listfile) # TextOK THEN HALT END; 



Standard Library 
Texts 
page 10 

Read returns every character in a text stream (including nulls and control 
characters). ReadInt and ReadCard skip leading blanks and control 
characters and terminate after reading a non-digit character. ReadLn reads 
the rest of a text line. EOL always returns TRUE after calls to ReadLn. 
ReadAgain causes the last character read to be read again by the following 
read operation. When reading a text stream from the console, typing a 
backspace deletes the last character typed in. 

ReadCard(input, c); 

LOOP 
ReadLn(t, s); 
IF EOT(t) THEN EXIT END; 
Wri teString(listing, s); 
Write Ln(listing); 

END; 

EOL and EOT are set after every read operation. EOL returns TRUE if the 
line-terminating null character was read or if EOT is TRUE. EOT becomes 
TRUE if the previous operation failed (either because of an error or because 
the end of the text stream was reached). Note that EOT is set to TRUE if 
any operation returns a result value other than TextOK. 

NOTE - On calls to ReadInt and ReadCard, EOL is set to TRUE only 
if the end-of-line marker is the terminating character. If a line 
of numbers contains trailing blanks, EOL is not set to TRUE 
after reading the last number on the line. 

LOOP 
LOOP Read(t, ch); 

IF EOL(t) THEN EXIT END; 
Process(ch); 

END; 
IF EOT(t) THEN EXIT END; 
ProcessLinej 

END; 

TextStatus returns a value (of type TextState) indicating the status of the 
specified text variable; in particular, the result of the last text stream 
operation. TextStatus returns an undefined value for text streams which 
have not been connected. (Note that EOL and EOT are both set to TRUE if 
any operation returns a text result other than TextOK.) 



Text results have the following meanings: 

TextOK - The last operation was successful. 
FileError - Error in underlying file operation. 
FormatError - Invalid data format. 

Standard Library 
Texts 

page 11 

ConnectError - Invalid operation on (un)connected text stream. 

The parameter tn' in the numerical write operations (WriteInt, WriteCard) is 
used for output formatting. If a numerical string contains fewer characters 
than are specified by n, it is preceded by enough blank characters to make 
the resulting output n characters long. If n specifies fewer characters than 
are in the numerical string, it is ignored. 

NOTE - The file positioning operations defined in Files can be applied 
to files connected to text streams, allowing random access of 
text streams; however, file positions are restricted to line 
boundaries (i.e. when EOL(t) = TRUE). The effect of 
positioning the file within a text line is not defined. 

SetTextHandler allows error handling procedures to be bound to specific text 
variables; if a text operation sets TextStatus to a value other than TextOK, 
the associated procedure is automatically invoked. Error handlers are useful 
when large numbers of operations are performed on a text variable; they 
eliminate the need for explicit error checking code after every text 
operation. Note that the handling procedure's parameter list must be 
compatible with type TextHandler; the text parameter informs the. handler of 
the text result causing the error. Text handlers can only be set on open 
text variables. Connect and Disconnect do not invoke text handlers. 

NOTE - Texts automatically disconnects any text streams left 
connected by a program (on return from "unshared" subprogram 
calls - see the module Program for details). 

WARNING- Handler procedures should limit their operations to calling 
Disconnect and/or writing error messages, "as further operations 
on the erroneous text stream may reinvoke the handler. Also, 
subprograms should not install local handler procedures in text 
variables declared outside the subprogram; the system may crash 
if Texts attempts to invoke a handler procedure which is no 
longer memory resident (because its host program has 
terminated). 



Standard Library 
Texts 
page 12 

Examples of Texts: 

MODULE AddingMachine; 

FROM Texts IMPORT 
input, output, ReadInt, WriteInt, Write String, WriteLn; 

VAR iI, i2: INTEGER; 

BEGIN 
LOOP 

WriteString(output, "a: If); 
ReadInt(input, il); 

WriteString(output, fIb: n); 
ReadInt(input, i2); 

WriteString(output, "a+b = "); 
WriteInt(output, il + i2, 1); 
WriteLn(output); 
IF (il = 0) &: (i2 = 0) THEN EXIT END; 

END; 
END AddingMachine. 



MODULE AddResults; (* sum each line of integers in f *) 

FROM Files IMPORT 
FILE, Open, Create, Close, FileOK, SetFileHandler; 

FROM Texts IMPORT 

Standard Library 
Texts 

page 13 

console, output, TEXT, Connect, Disconnect, EOT, EOL, TextState, 
SetTextHandler, ReadInt, WriteInt, WriteLn, WriteString; 

VAR f: FILE; 
t: TEXT; 
i, sum: INTEGER; 

PROCEDURE handler (error: TextState); 
BEGIN WriteString(console, "Text error"); 

HALT; 
END handler; 

PROCEDURE IOError; 
BEGIN WriteString(console, "I/O error"); 

HALT; 
END IOError; 

BEGIN 
IF Open(f,"ints.text") # FileOK THEN IOError END; 
IF Connect{t, f) if TextOK THEN IOError END; 
SetTextHandler{t, handler); 

LOOP ReadInt(t, i); 
IF EOT{t) THEN EXIT END; 

sum := 0; 
LOOP INC{sum, i); 

IF EOL(t) THEN EXIT END; 
ReadInt(t, i); 

END; 

WriteInt(output, sum, 0); 
Write Ln(output); 

END; 

IF Disconnect(t) # TextOK THEN IOError END; 
IF Close(f) # FileOK THEN IOError END; 

END AddResults. 



Standard Library 
Texts 
page 14 

DEFINITION MODULE Texts; 

FROM Files IMPORT FILE; 

EXPORT QUALIFIED 
TEXT, input, output, console, Connect, Disconnect, 
EOT, EOL, TextStatus, TextState, SetTextHandler, 
Read, ReadInt, ReadCard, ReadLn, ReadAgain, 
Write, WriteString, WriteInt, Write Card , WriteLn; 

TYPE TEXT; 

VAR input, output, console: TEXT; (* Predeclared text files *) 

PROCEDURE EOT (t: TEXT): BOOLEAN; 
PROCEDURE EOL (t: TEXT): BOOLEAN; 

(* End of text read *) 
(* End of line read *) 

TYPE TextState = (TextOK, FormatError, File Error , Connect Error); 

PROCEDURE TextStatus (t: TEXT): TextState; 

TYPE TextHandler = PROCEDURE (TextState); 

PROCEDURE SetTextHandler (t: TEXT; handler: TextHandler); 

PROCEDURE Connect (VAR t: TEXT; f: FILE): TextState; 
PROCEDURE Disconnect (VAR t: TEXT): TextState; 

PROCEDURE Read 
PROCEDURE ReadInt 
PROCEDURE ReadCard 
PROCEDURE ReadLn 
PROCEDURE ReadAgain 

PROCEDURE Write 
PROCEDURE WriteString 
PROCEDURE WriteInt 
PROCEDURE WriteCard 
PROCEDURE WriteLn 

END Texts. 

(t: TEXT; VAR ch: CHAR); 
(t: TEXT; VAR i: INTEGER); 
(t: TEXT; V AR c: CARDINAL); 
(t: TEXT; VAR s: ARRAY OF CHAR); 
(t: TEXT); 

(t: TEXT; ch: CHAR); 
(t: TEXT; s: ARRAY OF CHAR); 
(t: TEXT; i: INTEGER; n: CARDINAL); 
(t: TEXT; c, n: CARDINAL); 
(t: TEXT); 



'1 Reals 

Standard Library 
Reals 

page 15 

The module Reals provides I/O and conversion routines for floating point 
numbers. The procedures RealToStr and StrToReal convert real numbers 
between character and internal representations; they return TRUE after 
successful conversions. Strings passed to StrToReal cannot have any leading 
or trailing blanks. 

The parameter tn' in WriteReal is used for output formatting (see Texts for 
details). The parameter 'digits' in WriteReal and RealToStr determines 
whether the number is to be displayed in fixed point or exponent notation. 

'digits' < 0 specifies exponent notation, with ABS(digits) fractional digits 
displayed. A mantissa sign appears only if the mantissa is negative. The 
number of fractional digits displayed is not constrained by the number of 
significant digits in the underlying implementation. The exponent part always 
appears as the letter 'E' followed by an exponent sign (either '+' or '-') and 
the exponent digits. The number of exponent digits is fixed; therefore, 
exponent values may contain leading zeroes. 

'digits' >= 0 specifies fixed point notation, with 'digits' fractional digits 
displayed. A sign character appears only if the number is negative. 
Specifying zero fractional digits suppresses the display of the decimal point. 
The number of fractional digits displayed is not constrained by the number of 
significant digits in the underlying implementation. 

DEFINITION MODULE Reals; 

FROM Texts IMPORT TEXT; 

EXPORT QUALIFIED RealToStr, StrToReal, ReadReal, Write Real; 

PROCEDURE ReadReal (t: TEXT; VAR r: REAL); 

PROCEDURE Write Real (t: TEXT; r: REAL; 
n: CARDINAL; digits: INTEGER); 

PROCEDURE RealToStr (r: REAL; digits: INTEGER; 
VAR s: ARRAY OF CHAR): BOOLEAN; 

PROCEDURE StrToReal (s: ARRAY OF CHAR; 
VAR r: REAL): BOOLEAN; 

END Reals. 



Standard Library 
Files 
page 16 

8 Files 

The module Files implements data files. 
("stream") file access are supported. 

Both random and sequential 

The logical model of a file is a sequence of bytes with a current position 
(the next byte in the sequence to be accessed) and an end position (the 
position past the last byte in the sequence). 

Files are accessible as byte streams or as sequences of word-oriented 
records. Files also provides access to the underlying file system; operations 
are provided for connecting files to external files and for renaming and 
deleting external files. 

File I/O is performed through variables declared with type FILE. 

V AR source, code: FILE; 

EOF is set after every read operation. EOF returns TRUE if the previous 
operation failed (either because of an I/O error or because the file position 
was at the end of the file). Note that KOF is set to TRUE if any operation 
returns a result value other than FileOK. 

FileStatus returns a value (of type FileState) indicating the status of the 
specified file; in particular, the result of the last file operation. . 

The file results have the following meanings: 

FileOK 
NameError 
UseError 
StatusError 
DeviceError 
EndError 

- The last operation was successful. 
- Specified external file was not available. 
- Invalid external file operation. 
- Attempt to access a closed file. 
- Error in underlying I/O system. 
- File position exceeds end of file. 

Open connects a file to an existing external file. Create creates a new 
external file and connects it to the file. Close disconnects a file, preserving 
the external file. Release disconnects a file and deletes the external file. 
Open, Create, Close, and Release return a value (of type FileState) 
indicating the result of the operation. File I/O cannot be performed on 
unopened (closed) files. 

IF o pen(f , 'accounting.data') # FileOK THEN 
WriteString('File not opened'}; HALT 

END; 



Standard Library 
Files 

page 17 

Rename changes the name of an existing external file. Rename returns a 
value indicating the result of the operation; 'FileO K' indicates that the file 
was successfully renamed. If the file's new name matches the name of 
another file on the volume, that file is deleted. The specified external file 
must not be open. 

Delete removes an existing external file from the directory. Delete returns 
a value indicating the result of the operation; 'FileOK' indicates that the file 
was successfully deleted. The specified external file must not be open. 

Read reads a character from the file. EOF returns TRUE after a read 
operation is attempted at the end-of-file position. 

ReadRec reads a word-oriented record from the file. EOF returns TRUE 
when a read operation is attempted at the end-of-file position. If ReadRec 
attempts to read more data than is available at the end of a file, the 
contents of the input variable are undefined and FileStatus is set to 
EndError. 

ReadBytes reads a stream of bytes from the file and returns the number of 
bytes actually read. EOF is set to true if the number of bytes read is less 
than the number of bytes specified. 

Write writes a character to the file. WriteRec writes a word-oriented record 
to the file. WriteBytes writes a stream of bytes to the file and returns the 
number of bytes written. If the amount of data actually written to a file is 
less than the amount specified, FileStatus is set to DeviceError. 

NOTE- All write operations may overwrite existing data in a file. A 
file can be extended only by appending data to the immediate 
end-of-file position (i.e. the file position returned by GetEOF). 

LOOP 
Read(infile, ch); 
IF EOF(infile) THEN EXIT END; 
Write(outfile, ch); 

END; 

SetPos sets the current file position to the specified value. The file position 
cannot be set past the current end of the file; attempts to do so cause 
FileStatus to return EndError. GetPos returns the current file position. 

SetEOF sets the end file position to the specified value. The end file 
position indicates the file position of the byte following the last byte in a 



Standard Library 
Files 
page 18 

file. The end file position cannot be set in front of the current file position 
or past the current end file position; attempts to do so cause FileStatus to 
return EndError. GetEOF returns the end file position. 

GetEOF(F, endpos); 
SetPos(F, endpos); 
WriteByte(F, OC); 

NOTE - FileStatus returns UseError if the file positioning operators 
(GetEOF, SetEOF, GetPos, SetPos) are called on files connected 
to serial (i.e. nondisk) files. 

File position values are stored in variables of type FilePos. 

V AR startpos, endpos: FilePos; 

The procedure CalcPos computes absolute file positions; it translates a record 
number and record size into an absolute file position. Record sizes are 
defined in terms of the storage unit of the underlying machine; this 
convention is compatible with the values returned by the system-defined 
procedures SIZE and TSIZE. The first record in a file is defined as 
record O. 

CalcPos(blknum, TSIZE(block), startpos); 

NOTE- Values stored in variables of type FilePos are implementation­
dependent. File positions are intended for use as abstract file 
markers (i.e. where arguments to SetPos are obtained from 
GetPos, GetEOF, or CalcPos). 

SetFileHandler allows error-handling procedures to be bound to specific file 
variables; if a file operation sets FileStatus to a value other than FileOK, 
the associated procedure is automatically invoked. Error handlers are useful 
when large numbers of operations are performed on a file variable; they 
eliminate the need for explicit error-checking code after every file operation. 
Note that the handling procedure's parameter list must be compatible with 
type File Handler; the file result parameter allows the handler to indicate the 
file result causing the error. File handlers can only be set on open file 
variables. File handlers are not invoked by Open, Close, Create, or Release. 



Standard Library 
Files 

page 19 

NOTE- Files automatically closes any files left open by a program (on 
'unshared' subprogram calls - see the module Program for 
details). 

WARNING - Handler procedures should limit their operations to closing 
the file or writing error messages, as further operations on the 
erroneous file may reinvoke the handler. Also, subprograms 
should not install local handler procedures in file variables 
outside the subprogram; the system may crash if Files attempts 
to invoke a handler procedure which is no longer memory 
resident (because its host subprogram has terminated). 



Standard Library 
Files 
page 20 

MODULE File Copy; 

FROM Files IMPORT 
FILE, Open, Create, Close, FileStatus, FileState, 
SetFileHandler, Read, Write, EOF; 

FROM' Terminal IMPORT ReadLn, Write String, WriteLn; 

PROCEDURE handler(error: FileState); 
BEGIN 

WriteString{'File I/O error'); 
HALT; 

END handler; 

TYPE FProc = PROCEDURE{VAR FILE, ARRAY OF CHAR): FileState; 

PROCEDURE FileOpen(VAR f: FILE; fcall: FProc; s: ARRAY OF CHAR); 
VAR name: ARRAY [0 •• 20] OF CHAR; 
BEGIN 

LOOP WriteString{s); 
ReadLn{name); 
IF fcall(f, name) = FileOK THEN EXIT END; 
WriteString(nCan't open Tf); 
WriteString(narne); WriteLn; 

END; 
SetFileHandler(f , handler); 

END FileOpen; 

PROCEDURE FileClose(VAR f: FILE); 
BEGIN 

IF Close(f) # FileO K THEN 
WriteString('Error closing file'); 
HALT; 

END; 
END FileClose; 

VAR infile, outfile: FILE; 
ch: CHAR; 

BEGIN 
FileOpen(infile, Open, 'Input file? f); 
FileOpen(outfile, Create, 'Output file? f); 
LOOP Read(infile, ch); 

IF EOF(infile) THEN EXIT END; 
Write(outfile, ch); 

END; 
File Close(infile); 
FileClose(outfile); 
WriteString('file copy complete'); 

END FileCopy. 



DEFINITION MODULE Files; 

FROM SYSTEM IMPORT WORD, ADDRESS; 

EXPORT QUALIFIED 
FILE, EOF, FileStatus, FileState, SetFileHandler, 
Open, Create, Close, Release, Rename, Delete, 
FilePos, SetPos, GetPos, SetEOF, GetEOF, CalcPos, 
Read, Write, ReadRec, WriteRec, ReadBytes, WriteBytes; 

TYPE FILE; 

Standard Library 
Files 

page 21 

PROCEDURE EOF (f: FILE): BOOLEAN; (* End of file encountered *) 

TYPE FileState = (FileOK, NameError, UseError, StatusError, DeviceError, EndError); 

PROCEDURE FileStatus (f: FILE): FileState; (* file 1/0 status *) 

TYPE FileHandler = PROCEDURE (FileState); 

PROCEDURE SetFileHandler (f: FILE; handler: File Handler); 

PROCEDURE Open (VAR f: FILE; name: ARRAY OF CHAR): FileState; 
PROCEDURE Create (V AR f: FILE; name: ARRAY OF CHAR): FileState; 

PROCEDURE Close (V AR f: FILE): FileState; 
PROCEDURE Release (V AR f: FILE): FileState; 

PROCEDURE Delete (name: ARRAY OF CHAR): FileState; 
PROCEDURE Rename (old, new: ARRAY OF CHAR): FileState; 

TYPE FilePos; 

PROCEDURE GetPos (f: FILE; VAR pos: FilePos); 
PROCEDURE GetEOF (f: FILE; VAR pos: FilePos); 

PROCEDURE SetPos (f: FILE; pos: FilePos); 
PROCEDURE SetEOF (f: FILE; pos: FilePos); 

PROCEDURE CalcPos (reenum, reesize: CARDINAL; VAR pos: FilePos); 

PROCEDURE Read (f: FILE; VAR ch: CHAR); 
PROCEDURE ReadRec (f: FILE; VAR ree: ARRAY OF WORD); 
PROCEDURE ReadBytes (f: FILE; buf: ADDRESS; nbytes: CARDINAL): CARDINAL; 

PROCEDURE Write (f: FILE; eh: CHAR); 
PROCEDURE WriteRee (f: FILE; VAR ree: ARRAY OF WORD); 
PROCEDURE Write Bytes (f: FILE; buf: ADDRESS; nbytes: CARDINAL): CARDINAL; 

END Files. 



Standard Library 
Terminal 
page 22 

9 Terminal 

The standard module Terminal provides basic routines for reading characters 
from the keyboard and writing characters to the screen. 

Read waits for a character to be typed; the character is echoed to the 
console when it is read. 

BusyRead immediately returns a null character (DC) if a character has not 
been typed. Characters are not echoed when they are read. 

ReadAgain places the last character read back into the buffer so it can be 
subsequently re-read. 

ReadLn reads characters until a carriage return is typed. Characters are 
echoed to the screen as they are read. Typing backspace deletes the last 
character typed in. The carriage return is read, but is not returned in the 
string parameter. 

DEFINITION MODULE Terminal; 

EXPORT QUALIFIED Read, BusyRead, ReadAgain, ReadLn, 
Write, WriteString, WriteLn; 

PROCEDURE Read (VAR ch: CHAR); 
PROCEDURE ReadLn (VAR s: ARRAY OF CHAR); 
PROCEDURE BusyRead (VAR ch: CHAR); 
PROCEDURE ReadAgain; 

PROCEDURE Write (ch: CHAR); 
PROCEDURE WriteString (s: ARRAY OF CHAR); 
PROCEDURE WriteLn; 

END Terminal. 



10 Storage 

Standard Library 
Storage 
page 23 

The module Storage provides dynamic storage allocation and deallocation. 

ALLOCATE allocates a storage area containing 'size' storage units (as 
returned by SIZE and TSIZE) and returns the storage address in 'p'. 
DEALLOCA TE deallocates the storage area specified by p and size and sets 
p to NIL. A vailable returns TRUE if a storage area of the indicated size 
can be allocated. 

NOTE- Calls to the standard procedures NEW and DISPOSE require 
the identifiers ALLOCATE and DEALLOCATE to be visible. 

NOTE- A program is terminated with Storage Error if it attempts to 
a) allocate too large of a storage area or b) deallocate a 
storage area that has a~eady been deallocated. 

NOTE- On 'unshared' subprogram calls, all storage allocated by a 
subprogram is automatically deallocated when the subprogram 
terminates. (See the module Program for details.) 

NOTE- Dynamic storage is always allocated in the system work space; 
processes are unable to allocate dynamic storage within their 
private work spaces. 

DEFINITION MODULE Storage; 

FROM SYSTEM IMPORT ADDRESS; 

EXPORT QUALIFIED ALLOCATE, DEALLOCATE, Available; 

PROCEDURE ALLOCATE (VAR p: ADDRESS; size: CARDINAL); 

PROCEDURE DEALLOCATE (VAR p: ADDRESS; size: CARDINAL); 

PROCEDURE Available (size: CARDINAL): BOOLEAN; 

END Storage. 



Standard Library 
Program 
page 24 

11 Program 

The module Program is used to perform subprogram calls. It also provides 
exception handling facilities and a mechanism allowing library modules to 
specify initialization and termination procedures which are automatically 
invoked on subprogram calls. 

Call loads and executes the program module specified by the module 
identifier passed in the parameter 'programN arne' • Any library modules 
imported by the subprogram that are not already in memory are also loaded. 
When the subprogram terminates, the program module and all modules loaded 
by it are released from memory, and control returns to the calling program. 

The Call parameter 'calltype' specifies whether the subprogram shares its 
dynamic storage with the calling program. Setting calltype to 'Unshared' 
causes all storage allocated by the subprogram to be automatically 
deallocated when the subprogram terminates. Setting calltype to 'Shared' 
retains any dynamic storage left behind by the subprogram. 

The Call parameter 'errors' specifies whether execution errors generated by 
the called subprogram are to be acted upon by the system or merely returned 
as a result value to the calling program. Setting errors to 'SystemTrap' 
causes execution errors to invoke a system-defined error handler (usually an 
execution error message or debugger - see The Modula-2 System for 
details). Setting errors to 'CalierTrap' returns control directly to the calling 
program. Note that in either case control is defined to eventually return to 
the calling program. 

Call returns a value (of type CallResult) indicating the execution result of 
the called subprogram; this value reflects either a program load error, an 
execution error, or normal program termination. 

NOTE- The Modula-2 System explains how the loader accesses the 
library. 

NOTE- Subprograms can be called only from the main process. 



Standard Library 
Program 
page 25 

The following example shows how Program can be used to write a simple 
"shell" program which emulates the UCSD Pascal system: 

MODULE Shell; 

FROM Program IMPORT Call, CallResult, Unshared, SystemTrap; 
FROM Terminal IMPORT ReadLn, WriteString, WriteLn, Read; 
FROM Screen IMPORT ClearScreen, GotoXY; 

V AR ch: CHAR; 
rslt: CallResult; 
name: ARRAY [0 •• 40] OF CHAR; 

BEGIN 
ClearScreen; 
LOOP 

GotoXY(O, 0); 
WriteString("Command: X(ecute, F(iler, E(ditor, H(alt [0.3] H); 
Read(ch); 
ClearScreen; 
ch := CAP(ch); 
IF ch = "H" THEN RETURN 
ELSIF ch = "F" THEN name := "SYSTEM.FILER." 
ELSIF ch = "Eff THEN name := "SYSTEM.EDITOR." 
ELSIF ch = "X" THEN 

WriteString("Execute what file? "); 
ReadLn(name ); 

ELSE 
name[O] := OC; 

END; 
IF name[O] # OC THEN 

rslt := Call(name, Unshared, SystemTrap); 
END; 

END; 
END Shell. 



Standard Library 
Program 
page 26 

Program results have the following meanings: 

N ormalReturn 
ProgramHalt 
RangeError 
SystemError 
FunctionError 
StackOverflow 
Integer Error 
DivideByZero 
AddressError 
UserHalt 
CodeIOError 
UserIOError 
InstructionError 
Floa tingError 
StringError 
Storage Error 
VersionError 
MissingProgram 
MissingModule 
Library Error 
N otMainProcess 
DuplicateN arne 

- Program terminated normally. 
- Program executed 'HALT'. 
- Value range error. 
- Invalid code structure. 
- Function did not execute 'RETURN'. 
- System stack exceeded. 
- Integer overflow. 
- Divide by zero. 
- Invalid address reference. 
- Program terminated by user. 
- System I/O error; code not loaded. 
- User I/O error raised by program. 
- Unimplemented instruction. 
- Floating point arithmetic error. 
- String overflow or invalid index. 
- Dynamic storage exhausted. 
- Module version error. 
- Subprogram not found. 
- Library module not found. 
- Incorrect library structure. 
- Attempted Program call by process. 
- Duplicate library module names. 

NOTE- Programs are responsible for monitoring the result values 
returned by subprogram calls and acting accordingly in the event 
of an error. 

Execution errors are usually generated by the system; however, programs can 
terminate themselves with an error by calling Terminate with the appropriate 
error value as an argument: 

PROCEDURE StopProgram(cause: CallResult); 
BEGIN 

WriteString("Fatal error I"); 
WriteCard(ORD(cause), 0); 
Termina te( cause); 

END StopProgram; 



Standard Library 
Program 
page 27 

SetEnvelope allows library modules to define initialization and termination 
procedures which are automatically executed before and after subprogram 
calls; these procedure pairs are called envelopes because of the way they 
"surround" subprograms. Envelopes are used to manage system resources that 
must be started up and shut down independently of their use by programs. 
For instance, the module Files uses envelopes to close files accidentally left 
open by subprograms. 

A library module establishes an envelope by calling SetEnvelope in its outer 
block, passing two of its own procedures as arguments. The parameter 'init' 
indicates the initialization procedure, the parameter 'term' the termination 
procedure. 

The value passed to the parameter 'mode' specifies how often an envelope is 
invoked. 'FirstCall' invokes the envelope only once - around the subprogram 
that loads the library module. 'UnsharedCalls' invokes the envelope around 
nested "unshared" subprogram calls. 'AllCalls' invokes the envelope around 
all nested subprogram calls. 

"unshared" envelopes are useful when the resource being managed requires 
dynamic storage; they allow shared subprograms to establish resources for use 
by the calling program. For instance, the module Files uses an "unshared" 
envelope to allow shared subprograms to open files used by the calling 
program. 

On subprogram calls, initialization procedures are invoked after all new 
library modules have been loaded but before their outer blocks are executed. 
After a subprogram finishes, termination procedures are invoked before any 
library modules are released from memory. 

When called, SetEnvelope immediately calls the passed initialization procedure. 
This ensures that library modules are initialized when they are first loaded 
into memory. 

NOTE - On subprogram calls, the execution order of initialization 
. procedures is determined by the order in which they are 

installed with SetEnvelope; the first procedure established is the 
first procedure executed. Termination procedures are executed 
in the reverse order of the initialization procedures. 

WARNIN G - SetEnvelope should be called only from the outer blocks 
of library modules; calling it in arbitrary places in a program 
may crash the system. Execution errors within 
initialization/termination sections are returned as if they 
originated in the called subprogram. 



standard Library 
Program 
page 28 

In the following example, the library module MyTexts uses envelopes to keep 
track of the text streams created by a subprogram. If the subprogram 
neglects to disconnect a text variable, the termination procedure does so 
automatically. Note that texts are left connected on 'shared' calls. 

IMPLEMENTATION MODULE MyTexts; ... 
TYPE TEXT = POINTER TO RECORD 

open: BOOLEAN; 
next: TEXT; 

END; 

TextMark = POINTER TO MarkRec; 
MarkRec = RECORD 

Texts: TEXT; 
Prev : Text Mark; 

END; 

V AR TopMark: TextMark; 

PROCEDURE MarkText; 
VAR p: TextMark; 
BEGIN NEW(p); 

pA .Prev := TopMark; 
pA .Texts := NIL; 
TopMark := p; 

END MarkText; 

PROCEDURE ReleaseText; 
V AR p, q: TEXT; 

t: Text Mark; 
r: TState; 

BEGIN 
t := TopMark; 
p := t

A 
.Texts; 

TopMark := t
A 

.Prev; 
DISPOSE(t); 
WHILE p # NIL DO 

q := p; 
IF pA .open THEN r := Disconnect(p) END; 
p := qA .next; 
DISPOSE(q); 

END; 
END ReleaseText; 

BEGIN 
SetEnvelope(MarkText, ReleaseText, UnsharedCalls); 

END MyTexts. 



DEFINITION MODULE Program; 

EXPORT QUALIFIED 
Call, CallMode, ErrorMode, CallResult, 
Terminate, SetEnvelope, EnvMode; 

Standard Library 
Program 
page 29 

TYPE CallResult = (NormalReturn, ProgramHalt, RangeError, SystemError, 
FunctionError, StackOverflow, IntegerError, 
DivideByZero, AddressError, UserHalt, CodeIOError, 
UserIOError, InstructionError, FloatingError, 
StringError, Storage Error , VersionError, 
MissingProgram, MissingModule, LibraryError, 
NotMainProcess, DuplicateName); 

TYPE CallMode = (Shared, Unshared); 
TYPE ErrorMode = (SystemTrap, CallerTrap); 

PROCEDURE Terminate (exception: CallResult); 

PROCEDURE Call (programName: ARRAY OF CHAR; 
call type : CallMode; 
errors : ErrorMode): CallResult; 

TYPE EnvMode = (AllCalls, UnsharedCails, FirstCall); 

PROCEDURE SetEnvelope (init, term: PROC; mode: EnvMode); 

END Program. 



Standard Library 
Processes 
page 30 

12 Processes 

Modula-2's coroutines are a low-level facility provided by the system module; 
most concurrent programs are expected to import process schedulers from the 
library. The standard utility module Processes implements the concept of 
sequential processes. Processes exports the identifiers SIGN AL, 
StartProcess, SEND, WAIT, Awaited, and !nit. 

The only difference between coroutines and sequential processes is the 
method used for scheduling the execution of individual processes. (Note that 
the restrictions on the use of coroutines apply equally to sequential 
processes.) Coroutine scheduling is performed explicitly; transfers occur only 
between named coroutines. Sequential process scheduling is left to the 
process scheduler; sequential processes synchronize their execution by 
operating on shared variables known as signals. Signals are declared as 
variables of type SIGNAL. 

Signals serve the same purpose in sequential processes that process variables 
do in coroutines; they point to suspended processes, and are referenced 
whenever a process is suspended or resumed. The difference is that a 
process variable points to a single coroutine process, while a signal points to 
a first-in-first-out queue of sequential processes. 

Sequential processes have three states: executing, ready, and suspended. As 
with coroutines, only one process executes at a time. A process is ready if 
it is stored in a special queue known as the ready queue, and suspended if 
stored in a signal's queue. 

Sequential processes are created with the procedure StartProcess. 
StartProcess has the following syntax: 

PROCEDURE Start Process (P: PROC; n: CARDINAL); 

P is the procedure which the new process will execute. P must be a 
parameterless procedure declared at the global (outermost) level in a 
compilation unit. n specifies the size of the work space in which the 
process will execute. (Note that a process variable is not specified.) When 
a sequential process is started, it is placed on the ready queue. 

A process suspends itself on a signal's queue by calling WAIT. WAIT has the 
foilol"ring syntax: 

PROCEDURE WAIT (VAR s: SIGNAL); 

s is the signal on which the process is to be suspended. The process 
scheduler adds the suspended process to the end of the signal queue, and 
selects a process from the ready queue for execution. 



Standard Library 
Processes 

page 31 

NOTE- Processes are selected from the ready queue on a first-in­
first-out basis. 

WARNIN G - If a process suspends itself on a signal and there are no 
processes on the ready queue, the program is halted. (This 
condition is called "deadlock".) 

A process resumes the execution of a suspended process by calling SEND. 
SEND has the following syntax: 

PROCEDURE SEND (YAR s: SIGNAL); 

s is the signal from which a process is resumed. The process scheduler stops 
the calling process (placing it on the ready queue) and selects a process from 
the head of the signal queue for execution. If the signal named in SEND has 
an empty queue, the calling process continues to execute. 

Before they are used, signals must be initialized with the procedure Init. 

Init(S1); 

The procedure A waited indicates whether a signal queue is empty. 

IF NOT Awaited(S1) THEN HALT END; 

Unlike coroutines, sequential processes can be considered to execute in 
parallel. In place of direct transfers, sequential processes synchronize their 
execution by performing SEND and WAIT operations on shared signal 
variables. The following example is the sequential process analog of the 
coroutine program presented in Introduction to Modula-2; in this example, 
the processes compete (not necessarily fairly) for access to the console. 



Standard Library 
Processes 
page 32 

MODULE HiRo; 

FROM Processes IMPORT 
StartProcess, SIGNAL, SEND, WAIT, Init; 

IMPORT Terminal; 

MODULE Console[l]; 
IMPORT Terminal, Init, SIGNAL, SEND, WAIT; 
EXPORT Write; 

CONST MaxHiHo = 17; 
VAR n: CARDINAL; 

busy: BOOLEAN; 
free: SIGNAL; 

PROCEDURE Write(s: ARRAY OF CHAR); 
VAR i: CARDINAL; 
BEGIN 

IF busy THEN WAIT(free) END; 
busy := TRUE; 
FOR i := 0 TO HIGH(s) DO Terminal.Write(s[i]) END; 
INC(n); 
IF n > MaxHiHo THEN Terminal. WriteLn; n := 0 END; 
busy := FALSE; 
SEND(free); 

END Write; 

BEGIN n := 0; busy := FALSE; 
Init(free); 

END Console; 

PROCEDURE WriteHi; 
BEGIN LOOP Console.Write('Hi') END 
END WriteHi; 

PROCEDURE WriteHo; 
BEGIN LOOP Console.Write('Ho') END 
END WriteHo; 

V AR forever: SIGNAL; 

BEGIN Init(forever); 
StartProcess(WriteHi, 200); 
StartP rocess(WriteHo, 200); 
WAIT(forever); 

END HiHo. 



DEFINITION MODULE Processes; 

Standard Library 
Processes 

page 33 

EXPORT QUALIFIED SIGNAL, StartProcess, SEND, WAIT, Awaited, !nit; 

TYPE SIGNAL; 

PROCEDURE StartProcess (P: PROC; n: CARDINAL); 
(*start a sequential process with program P 

and workspace of size n*) 

PROCEDURE SEND (VAR s: SIGNAL); 
(*one process waiting for s is resumed*) 

PROCEDURE WAIT (VAR s: SIGNAL); 
(*wait for some other process to send s*) 

PROCEDURE Awaited (s: SIGNAL): BOOLEAN; 
(*Awaited(s) = 'at least one process waiting for s'*) 

PROCEDURE !nit (VAR s: SIGNAL); 
(*compulsory initialization*) 

END Processes. 



Standard Library 
Text & File Results 
page 34 

Appendix 1 Text a: File Results 

Texts 

Text results have the following meanings: 

o TextOK - The last operation was successful. 
1 FileError - Error in underlying file operation. 
2 FormatError - Invalid data format. 
3 ConnectError - Invalid operation on (un)connected text stream. 

Files 

File results have the following meanings: 

o 
1 
2 
3 
4 
5 

FileOK 
NameError 
UseError 
StatusError 
DeviceError 
EndError 

- The last operation was successful. 
- Specified external file was not available. 
- Invalid external file operation. 
- Attempt to access a closed file. 
- Error in underlying I/O system. 
- File position exceeds end of file. 



Appendix 2 Program Results 

Program results have the following meanings: 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

NormalReturn 
Program Halt 
RangeError 
SystemError 
FunctionError 
StackOverflow 
Integer Error 
DivideByZero 
AddressError 
UserHalt 
CodeIOError 
UserIOError 
InstructionError 
FloatingError 
StringError 
Storage Error 
VersionError 
MissingProgram 
MissingModule 
LibraryError 
NotMainProcess 
Duplica teN arne 

- Program terminated normally. 
- Program executed "HALT". 
- Value range error. 
- Invalid code structure. 
- Function did not execute "RETURN". 
- System stack exceeded. 
- Integer overflow. 
- Divide by zero. 
- Invalid address reference. 
- Program terminated by user. 
- System I/O error; code not loaded. 
- User I/O error raised by program. 
- Unimplemented instruction. 
- Floating point arithmetic error. 
- String overflow or invalid index. 
- Dynamic storage exhausted. 
- Module version error. 
- Subprogram not found. 
- Library module not found. 
- Incorrect library structure. 
- Attempted Program call by process. 
- Duplicate library module names. 

Standard Library 
Program Results 

page 35 



Standard Library 
Index 
page 36 



Index 

-A-

AddressError •••••••••••••••••• 26, 29 
All Calls • • • • • • • • • • • • • • • • • • • • • • • • • • • 2 9 
ALLOCA TE ••••••••••••••••••••••• 23 
Available. • • • • • • • • • • • • • • • • • • • • • • •• 23 
Awaited •••••••••••••••••••••• 31, 33 

-B-
BusyRead ••••••••••••••••••••••••• 22 

-C-
CalcPos ••••••••••••••••••••••••••• 21 
Call •••••••••••••••••••••••••••••• 29 
CalierTrap •••••••••••••••••••••••• 29 
CallMode •••••••••••••••••••••••••• 29 
CallResult. • • • • • • • • • • • • • • • • • • • • • •• 29 
Close ••••••••••••••••••••••••••••• 21 
CloseInput ••••••••••••••••••••••••• 7 
CloseOutput •••••••••••••••••••••••• 7 
CodeIOError •••••••••••••••••• 26, 29 
Connect •••••••••••••••••••••••••• 
ConnectError •••••••••••••••••• l0, 
console ••••••••••••••••••••••••••• 

14 
14 
14 

Create •••••••••••••••••••••••••••• 21 

-D-
Deadlock •••••••••••••••••••••••••• 31 
DEALLOCATE ••••••••••••••••••••• 23 
Delete •••••••••••••••••••••••••••• 21 
DeviceError ••••••••••••••••••• 16, 21 
Disconnect •••••••••••••••••••••••• 14 
DivideByZero •••••••••••••••••• 26, 29 
Done ••••••••••••••••••••••••••• 7, 
DuplicateName ................. 26, 

-E-

8 
29 

EndError. • • • • • • • • • • • • • • • • • • •• 16, 21 
Envelopes ••••••••••••••••••••••••• 27 
EnvMode •••••••••••••••••••••••••• 29 
EOF •••••••••••••••••••••••••••••• 21 
EOL •••••••••••••••••••••••••• 7, 14 
EOT •••••••••••••••••••••••••••••• 14 
ErrorMode ••••••••••••••••••••••••• 29 

Standard Library 
Index 

page 37 

-F-
FILE ••••••••••••••••••••••••••••• 21 
FileError ••••••••••••••••••••• 10, 14 
FileOK ••••••••••••••••••••••• 16, 21 
FilePos ••••••••••••••••••••••••••• 21 
File Results •••••••••••••••••• 16, 34 
Files ••••••••••••••••••••••••••••• 21 
FileState •••••••••••••••••••••••••• 21 
FileStatus ••••••••••••••••••••••••• 21 
FirstCall •••••••••••••••••••••••••• 29 
Floa tingError •••••••••••••••••• 26, 29 
FormatError ••••••••••••••••••• 10, 14 
FunctionError ••••••••••••••••• 26, 29 

-G-

GetEOF ••••••••••••••••••••••••••• 21 
GetPos ••••••••••••••••••••••••••• 21 

-H-

Handlers •••••••••••••••••••••• 11, 18. 

-1-

Imple men ta tion Guide ••••••••••••••• 1 
Init ••••••••••••••••••••.•••••• 31, 
InOut •••••••••••••••••••••••••• 1, 
input ••••••••••••••••••••••••••••• 
InstructionError ••••••••••••••• 26, 
IntegerError ••••••••••••••••••• 26, 

33 
7 

14 
29 
29 

Introduction to Modula-2 ••••••••••• 31 

-L-

LibraryError •••••••••••••••••• 26, 29 

-M-
MissingModule ••••••••••••••••• 26, 29 
MissingProgram •••••••••••••••• 26, 29 

-N-
N ameError •••••••••••••••••••• 16, 21 
NormalReturn ••••••••••••••••• 26, 29 
N otMainProcess •••••••••••••••• 26, 29 



Standard Library 
Index 
page 38 

-0-

Open ••••••••••••••••••••••••••••• 21 
OpenInput •••••••••••••••••••••••••• 7 
OpenOutput •••••••••••••••••••••••• 7 
output •••••••••••••••••••••••••••• 14 

-P-

Processes ••••••••••••••••••••• 30, 
Program •••••••••••••••••• 19, 23, 

33 
29 

ProgramRalt. • • • • • • • • • • • • • • • •• 26, 29 
Programming in Modula-2 ••••••••• 1, 4 
Program Results ••••••••••••••• 26, 35 

-R-

RangeError ••••••••••••••••••• 26, 29 
Read •••••••••••••••••• 7, 14, 21, 22 
ReadAgain •••••••••••••••••••• 14, 22 
ReadBytes •••••••••••••••••••••••• 21 
ReadCard •••••••••••••••••••••• 7, 14 
ReadInt. • • • • • • • • • • • • • • • • • • • • •• 7, 14 
ReadLn ••••••••••••••••••••••• 14, 22 
ReadReal •••••••••••••••••••••• 8, 15 
ReadRec •••••••••••••••••••••••••• 21 
ReadString ••••••••••••••••••••••••• 7 
RealInOut •••••••••••••••••••••• 1, 8 
Rea~ ••••••••••••••••••••••••••••• 15 
RealToStr ••••••••••••••••••••••••• 15 
Release ••••••••••••••••••••••••••• 21 
Rename ••••••••••••••••••••••••••• 21 

-S-

SEND •••••••••••••••••••••••• 31, 33 
Sequential Process ••••••••••••••••• 30 
SetEnvelope ••••••••••••••••••••••• 29 
SetEOF ••••••••••••••••••••••••••• 21 
SetFileHandler ••••••••••••••••••••• 21 
SetPos •••••••••••••••••••••••••••• 21 
SetTextHandler ••••• _.-,_ •••••••••••• 14 
Shared •••••••••••••••••••••••••••• 29 
SIGNAL •••••••••••••••••••••• 30, 33 
Signa~ •••••••••••••••••••••••••••• 30 
UtackOverflow ••••••••••••••••• 26, 29 
Start Process •••••••••••••••••• 30, 33 
StatusError ••••••••••••••••••• 16, 21 
Storage ••••••••••••••••••••••••••• 23 
StorageError •••••••••••••••••• 26, 29 
StringError •••••••••••••••••••• 26, 29 
StrToReal ••••••••••••••••••••••••• 15 

System-dependent Modules ••••••••••• 1 
SystemError ••••••••••••••••••• 26, 29 
SystemTrap •••••••••••••••••••••••• 29 

-T-

termCR •••••••••••••••••••••••••••• 7 
Terminal •••••••••••••••••••••••••• 22 
Terminate ••••••••••••••••••••••••• 29 
TEXT ••••••••••••••••••••••••••••• 14 
TextOK •••••••••••••••••••••• 10, 14 
Text Results •••••••••••••••••• l 0, 34 
Texts ••••••••••••••••••••••••••••• 14 
TextSta te • • • • • • • • • • • • • • • • • • • • • • • • • 14 
TextStatus •••••••.••••••••••••••••• 14 
The Modula.-2 System ••••••••••••••• 1 

-u-
Unshared •••••••••••••••••••••••••• 29 
UnsharedC~ • • • • • • • • • • • • • • • • • • • •• 29 

21 
29 
29 

UseError ••••••••••••••••••••• 16, 
UserHalt ••••••••••••••••••••• 26, 
UserIOError ••••••••••••••••••• 26, 
Utility Library ••••••••••••••••••••• 1 
Utility Modules.................... 1 

-v-
VersionError ................... 26, 29 

-w-
WAIT ••••••••••••••••••••••••• 30, 33 
Write •••••••••••••••••• 7, 14, 21, 22 
WriteBytes •••••••••••••••••••••••• 21 
Write Card ••••••••••••••••••••• '7, 14 
WriteHex ••••••••••••••••••••••••••• 7 
WriteInt ••••••••••••••••••••••• 7, 14 
WriteLn ••••••••••••••••••• 7, 14, 22 
WriteOct ••••••••••••••••••••••••••• 7 
WriteReal •••••••••••••••••••••• 8, 15 
WriteRealOct ••••••••••••••••••••••• 8 
WriteRec •••••••••••••••••••••••••• 21 
WriteString ••••••••••••••••• 7, 14, 22 



Release: 

Date: 

Author: 

Utility Library 

0.3 

26 August 1983 

Richard Gleaves 



Utility Library 
Table Of Contents 

Table Of Contents 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2 Overview •••••• . . . . . . . . . . . . . . . . . . . . . . . . . . 
3 Module Hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . 
4 MathLibO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5 Decimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1 

1 

2 

3 

4 

6 Strings ••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • 11 

7 Con versions • . . . . . . . . . . . . . . . . . . . . . . . . . . . . • 13 

8 ASCII •••••••••••••••••••••••••••••••••• 14 

Index. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 15 



1 Introduction 

Utility Library 
Introduction 

page 1 

This document describes the utility library. The utility library is a collection 
of modules which serve as an adjunct to the standard library; it is expected 
to grow in future releases of the Modula-2 system. 

The utility library provides the following facilities: 

• Numerical functions 

• Decimal arithmetic 

• String manipulation 

• Format conversion 

• ASCII control characters 

2 Overview 

The utility library contains the following modules: 

• MathLibO: Mathematical functions - sqrt, exp, In, sin, cos, 
arctan, entier. 

• Decimals: Arithmetic operations for 19-digit decimal numbers. 
COBOL-style "picture" editing for formatting dollar quantities. 

• Strings: String manipulation - Assign, Compare, Insert, Delete, 
Concat, Copy, POSe 

• Conversions: Format conversion between strings and numbers. 

• ASCn: Symbolic character constants for ASCII control 
characters. 



Utility Library 
Module Hierarchy 
page 2 

3 Module Hierarchy 

This section describes dependencies between the utility library modules and 
other library modules. See Standard Library for more information on 
module dependencies. 

Utility module dependencies: 

• MathLibO-> Program 

• Decimals-> Strings 

• Strings-> Program 



4 MathLibO 

Utility Library 
MathLibO 

page 3 

The module MathLibO provides basic mathematical functions. Arguments to 
trigonometric functions are in units of radians. 'real' converts its integer 
argument to a real number. 'entier' returns the largest integer that is less 
than or equal to the real argument. 

If passed invalid arguments (e.g. square root of -1), MathLibO halts the 
program with the program result FloatingError. 

NOTE- The procedure 'real' may not be provided in some 
implementations. See The Modula-2 System for details. 

DEFINITION MODULE MathLibO; 

EXPORT QUALIFIED 
sqrt, exp, In, sin, cos, arctan, real, entier; 

PROCEDURE sqrt 
PROCEDURE exp 
PROCEDURE In 
PROCEDURE sin 
PROCEDURE cos 
PROCEDURE arctan 
PROCEDURE real 
PROCEDURE entier 

END MathLibO. 

(x: REAL): REAL; 
(x: REAL): REAL; 
(x: REAL): REAL; 
(x: REAL): REAL; 
(x: REAL): REAL; 
(x: REAL): REAL; 
(x: INTEGER): REAL; 
(x: REAL): INTEGER; 



Utility Library 
Decimals 
page 4 

5 Decimals 

The module Decimals provides integer arithmetic and formatting routines 
suitable for business-oriented computation. 

Decimal integers may contain up to 19 digits. Decimal variables are declared 
with type DECIMAL. 

VAR Sales, Costs, Profit: DECIMAL; 

The following procedures perform arithmetic operations: 

AddDec (a,b) -) a + b 
SubDec (a,b) -) a - b 
MulDec (a,b) -) a * b 
DivDec (a,b) -) a DIV b 
NegDec (a) -)-a 

These procedures accept decimal integers as arguments and return decimal 
integers as function results. 

Profit := SubDec(Sales, Costs); 

The Boolean variable DecValid is set after every arithmetic and. conversion 
operation; its value indicates the result of the last operation. DecValid is 
set to FALSE if the previous operation failed. 

FOR office := Bangor TO Bangkok DO 
Profit := AddDec(Profit, Net[office]); 

END; 
IF DecValid THEN HomeFree 
ELSE CallTheAuditors END; 

When an operation fails, the procedure DecStatus can be called to determine 
the actual arithmetic error. DecStatus returns a value (of type DecState) 
indicating the error status of the specified decimal variable: NegOvfl 
indicates negative overflow, PosOvfl positive overflow, and Invalid an invalid 
integer result. 

DecStatus also indicates the sign of valid decimal integers. DecStatus 
returns a value indicating an integer's sign: Minus indicates a negative value, 
Plus a positive value, and Zero the value O. 

TYPE DecState = (NegOvfl, Minus, Zero, Plus, PosOvfl, Invalid); 



Utility Library 
Decimals 

page 5 

Once a decimal variable assumes an erroneous state (e.g. NegOvfl), the error 
condition propagates through subsequent operations involving the variable. 
The following tables show how errors propagate through the arithmetic 
operations. For operations of the form itA <op> B", the leftmost column 
denotes states of A and the topmost row states of B. 

Error propagation in addition and subtraction: 

A\B 

NegOvfl 
Minus 
Zero 
Plus 
PosOvfl 
Invalid 

NegOvfl Minus 

N egOvfl N egOvfl 
NegOvfl 
NegOvfl 
NegOvfl 
Invalid PosOvfl 
Invalid Invalid 

Error propagation in multiplication: 

A\B 

NegOvfl 
Minus 
Zero 
Plus 
PosOvfl 
Invalid 

NegOvfl 

PosOvfl 
PosOvfl 
Zero 
NegOvfl 
NegOvfl 
Invalid 

Minus 

PosOvfl 
Plus 
Zero 
Minus 
NegOvfl 
Invalid 

Error propagation in division: 

A\B 

NegOvfl 
Minus 
Zero 
Plus 
PosOvfl 
Invalid 

NegOvfl 

Invalid 
Invalid 
Zero 
Invalid 
Invalid 
Invalid 

Minus 

Invalid 
Plus 
Zero 
Minus 
Invalid 
Invalid 

Error propagation in negation: 

A NegOvn Minus 

PosOvfl Plus 

Zero 

NegOvfl 

PosOvfl 
Invalid 

Zero 

Zero 
Zero 
Zero 
Zero 
Zero 
Invalid 

Zero 

Invalid 
Invalid 
Invalid 
Invalid 
Invalid 
Invalid 

Zero 

Zero 

Plus 

NegOvfl 

PosOvfl 
Invalid 

Plus 

NegOvfl 
Minus 
Zero 
Plus 
PosOvfl 
Invalid 

Plus 

Invalid 
Minus 
Zero 
Plus 
Invalid 
Invalid 

Plus 

Minus 

PosOvfl 

Invalid 
PosOvfl 
PosOvfl 
PosOvfl 
PosOvfl 
Invalid 

PosOvfl 

NegOvfl 
NegOvfl 
Zero 
PosOvfl 
PosOvfl 
Invalid 

PosOvfl 

Invalid 
Invalid 
Zero 
Invalid 
Invalid 
Invalid 

Invalid 

Invalid 
Invalid 
Invalid 
Invalid 
Invalid 
Invalid 

Invalid 

Invalid 
Invalid 
Invalid 
Invalid 
Invalid 
Invalid 

Invalid 

Invalid 
Invalid 
Invalid 
Invalid 
Invalid 
Invalid 

PosOvfl Invalid 

NegOvfl Invalid 



Utility Library 
Decimals 
page 6 

After a division operation, the character variable Remainder contains a 
remainder digit; i.e. the next lower digit of the quotient. For instance, 
dividing 33 by 7 returns the decimal value 4 and a remainder (in Remainder) 
of "5". If a division operation sets DecValid to FALSE, Remainder is 
assigned the character "?". 

MilesPerHr := DivDec(TotaIMiles, TotalHours); 
IF Remainder )= "5" THEN 

MilesPerHr := AddDec(MilesPerHr, One); 
END; 

The procedure CompareDec compares two decimal integers and returns an 
INTEGER value indicating the comparison result: -1 if A is less than B; 0 if 
A equals B; 1 if A is greater than B. 

IF CompareDec(Sales, Costs) < 0 THEN 
Blame(Economy); 

END; 

The procedure SetDecHandler allows error handlers to be bound to the 
decimal module. If any operation fails, the handler procedure is 
automatically invoked. Error handlers are most useful for trapping errors 
during series of arithmetic operations; handlers allow programs to perform 
decimal arithmetic (and format conversion) without having to check the 
variable DecValid after every operation. 

PROCEDURE handler(error: DecState); 
BEGIN 

WriteString("Decimal arithmetic error ilt); 
WriteCard(ORD(error), 3); 
HALT; 

END handler; 

••• 

SetDecHandler (handler); 



5.1 Pictures 

Utility Library 
Pictures 

page 7 

Decimal integers have two formats: internal and external. Arithmetic and 
logical operations are performed on integers stored in internal format. 
External format is used for reading and writing integers in human-readable 
form to the console or printer. The procedures StrToDec and DecToStr 
convert integers between internal and external format. 

Decimal integers in external format are stored in character strings. In 
external format, an integer may contain a dollar sign, commas to separate 
thousands of dollars, and a decimal point separating dollars from cents. 

Here is a decimal integer in external format: 

$923,841,371.38 

External format is controlled by string parameters known as pictures. 
Pictures serve as masks indicating how decimal integers should appear in 
external format; they control the inclusion of such things as leading zeros, 
signs, and decimal points. 

For instance, the picture used to print the decimal integer shown above is: 

$,$$$,$$$,$$$,$$9.99 

Without the picture, it would have appeared as: 

92384137138 

When converting internal to external format, pictures add the appropriate 
punctuation characters into the integer. Pictures may contain only the 
characters '9', 'Z', '$', 'Sf, ',', or '.'; in particular, blanks may not appear in 
a picture. 

9 - digit 
Z - nonzero digit or leading blank 
$ - nonzero digit, leading blank, or '$' 
S - sign: '+' or '_I 
• - decimal point 
, - comma or leading blank 

Dollar signs ('$') are used to denote the digits of integers displayed as dollar 
amounts. Dollar amounts are displayed with a currency character and no 
leading zeros. The currency character floats across any leading blanks so 
that it appears adjacent to the leftmost digit. 



Utility Library 
Pictures 
page 8 

NOTE - If a decimal value contains as many digits as its corresponding 
picture, no currency character is displayed, as each dollar sign 
character is replaced by a digit. (This is best avoided by 
specifying big pictures!) 

Integers displayed without leading zeros represent their digits with 'Z's. A 
'Z' is replaced by a digit if there is one; otherwise, it is replaced by a 
blank. 

Integers that require leading zeros to be displayed represent their digits with 
'9's. A '9' is replaced by a digit if there is one; otherwise, it is replaced 
by a '0'. 

The picture characters '$', 'Z', and '9' can be mixed together in a single 
picture to obtain the desired integer format. In the following picture, the 
'9's guarantee that small dollar amounts appear in standard form: 

$$$,$$9.99 

Here are some integers produced by this picture: 

$0.39 
$369.00 

$48,327.04 

A period '.' is replaced by a decimal point. 'Sf prints a sign character: 
either '+' or '-'. Note that sign characters and decimal points do not float 
across leading blanks; they appear in their specified position. Commas are 
used to separate integers into the traditional groups of three digits; like 'Z' 
and '$' digits, commas are transformed into leading blanks when they appear 
to the left of an integer. 

Pictures not only control integer formatting, but place range constraints on 
integer values. If an integer value exceeds its picture (i.e. the number of 
digits exceeds the integer of digit characters in the picture), DecToStr sets 
DecValid to FALSE, and returns an 'invalid' format string (see below). Thus, 
pictures can be used to control the maximum number of digits that can 
appear in an integer. 

DecToStr displays erroneous decimal values as distinctively formatted strings. 
Error string length is determined by the length of the corresponding picture. 

PosOvfl 
NegOvfl 
Invalid 

-) 
-) 
-) 

"+++++++" 
" " 
"???????" 



5.2 Input Pictures 

Utility Library 
Input Pictures 

page 9 

The picture formatting described so far has been limited to converting 
decimal integers to their external (string) format. Pictures can also be used 
to control an integer's input format; the procedure StrToDec uses pictures to 
convert integers from external to internal format. 

Pictures in StrToDec work almost identically to those in DecToStr. If the 
input string is shorter than the picture string, leading blanks are added until 
it is the same length as the picture. A currency character can appear only 
once in the input string, and it must be adjacent to the highest order digit. 
Commas must be matched unless they appear to the left of an integer. The 
sign character must be matched by either a '+', '_I, or blank. Decimals 
points must be matched unconditionally. 

In the following picture, the '9's specify that small dollar amounts must be 
entered in standard form: 

$$$,$$9.99 

Here are some valid input strings for this picture: 

$0.79 
$121.11 

$99.44 
$48,000.00 

Pictures enforce format and range constraints on integer values passed as 
input strings. StrToDec sets DecValid to FALSE and the decimal result to 
Invalid in the following conditions: 

• The illPut string does not match the picture specification. 

• The input string is longer than the picture string. 

• The input string and picture specify more than 19 digits. 



Utility Library 
Input Pictures 
page !O 

DEFINITION MODULE Decimals; 

EXPORT QUALIFIED 
DECIMAL, DecDigits, DecPoint, DecSep, DecCur, DecStatus, 
DecState, DecValid, StrToDec, DecToStr, NegDec, CompareDec, 
AddDec, SubDec, MulDec, DivDec, Remainder, SetDecHandler; 

CONST DecDigits = !9; 
DecCur = '$'; 
DecPoint = '.'; 
DecSep = ','; 

TYPE DECIMAL; 
DecState = (NegOvfl, Minus, Zero, Plus, PosOvfl, Invalid); 

VAR DecValid: BOOLEAN; (* set after every operation *) 
Remainder: CHAR; (* remainder digit - set after DivDec *) 

PROCEDURE StrToDec (String : ARRAY OF CHAR; 
Picture: ARRAY OF CHAR): DECIMAL; 

PROCEDURE DecToStr (Dec : DECIMAL; 
Picture : ARRA Y OF CHAR; 
VAR RsltStr: ARRAY OF CHAR); 

TYPE DecHandler = PROCEDURE (DecState); 

PROCEDURE SetDecHandler (handler: DecHandler); 

PROCEDURE DecStatus (Dec: DECIMAL): DecState; 

PROCEDURE CompareDec (DecO, Dec!: DECIMAL): INTEGER; 

PROCEDURE AddDec (DecO, Dec!: DECIMAL): DECIMAL; 

PROCEDURE SubDec (DecO, Dec!: DECIMAL): DECIMAL; 

PROCEDURE MulDec (DecO, Dec!: DECIMAL): DECIMAL; 

PROCEDURE DivDec (DecO, Dec!: DECIMAL): DECIMAL; 

PROCEDURE NegDec (DecO, Dec!: DECIMAL): DECIMAL; 

END Decimals. 



6 Strings 

Utility Library 
Strings 

page 11 

The module Strings provides routines for manipulating variable-length 
character strings. 

The predeclared type STRING is provided for convenience; additional string 
types can also be used with the string operators, but they must be declared 
with a lower bound of zero in order to work correctly. 

Assign assigns the contents of string variable source into string variable dest. 

Insert inserts the string substr into str, starting at str[inx]. 

Delete deletes len characters from str, starting at str[inx]. 

Pos returns the index into str of the first occurrence of the substring substr. 
Pos returns the value HIGH(str)+ 1 if no occurrence of the substring is found. 

Starting at str[inx], Copy copies len characters into result. 

Concat returns the concatenation of s1 and s2 in result. 

Length returns the number of characters in str. 

CompareStr compares two strings and returns an integer value indicating the 
comparison result: -1 if s1 is less than s2; 0 if s1 equals s2; 1 if s1 is 
greater than s2. 

NOTE- String operators terminate the program with program result 
StringError if the operation causes either an invalid string index 
or string overflow. 



Utility Library 
Strings 
page 12 

DEFINITION MODULE Strings; 

EXPORT QUALIFIED STRING, Assign, Insert, Delete, 
Pos, Copy, Concat, Length, CompareStr; 

TYPE STRING = ARRAY [0 •• 80] OF CHAR; 

PROCEDURE Assign (VAR source, dest: ARRAY OF CHAR); 

PROCEDURE Insert (substr: ARRAY OF CHAR; 
VAR str: ARRAY OF CHAR; 
inx : CARDINAL); 

PROCEDURE Delete (VAR str: ARRAY OF CHAR; 
inx: CARDINAL; 
len: CARDINAL); 

PROCEDURE Pos (substr, str: ARRAY OF CHAR): CARDINAL; 

PROCEDURE Copy (str: ARRAY OF CHAR; 
inx: CARDINAL; 
len: CARDINAL; 
VAR result: ARRAY OF CHAR); 

PROCEDURE Concat (sl, s2: ARRAY OF CHAR; 
VAR result: ARRAY OF CHAR); 

PROCEDURE Length (VAR str: ARRAY OF CHAR): CARDINAL; 

PROCEDURE ~ompareStr (sl, s2: ARRAY OF CHAR): INTEGER; 

END Strings. 



'1 Conversions 

Utility Library 
Conversions 

page 13 

The module Conversions provides representation conversions for the basic 
numeric types. A result value of TRUE is returned after successful 
conversions. String arguments cannot have any leading or trailing blanks. 

DEFINITION MODULE Conversions; 

FROM SYSTEM IMPORT WORD; 

EXPORT QUALIFIED 
IntToStr, StrToInt, CardToStr, StrToCard, HexToStr, StrToHex; 

PROCEDURE IntToStr (i: INTEGER; 
VAR s: ARRAY OF CHAR): BOOLEAN; 

PROCEDURE StrToInt (s: ARRAY OF CHAR; 
VAR i: INTEGER): BOOLEAN; 

PROCEDURE CardToStr (c: CARDINAL; 
VAR s: ARRAY OF CHAR): BOOLEAN; 

PROCEDURE StrToCard (s: ARRAY OF CHAR; 
VAR c: CARDINAL): BOOLEAN; 

PROCEDURE HexToStr' (w: WORD; 
VAR s: ARRAY OF CHAR): BOOLEAN; 

PROCEDURE StrToHex (s: ARRAY OF CHAR; 
VAR w: WORD): BOOLEAN; 

END Conversions. 



Utility Library 
ASCII 
page 14 

8 ASCII 

The module ASCII defines symbolic names for the ASCII control characters. 

DEFINITION MODULE ASCII; 

EXPORT QUALIFIED 
nul, soh, stx, etx, eot, enq, ack, bel, 
bs, ht, If, vt, ff, cr, so, si, 
dIe, dcl, dc2, dc3, dc4, nak, syn, etb, 
can, em, sub, esc, fs, gs, rs, us, del; 

CONST 
nul = OOC; soh = OIC; stx = 02C; etx = 03C; 
eot = 04C; enq = 05C; ack = 06C; bel = 07C; 
bs = lDC; ht = llC; If = l2C; vt = l3C; 
ff = l4C; cr = l5C; so = l6C; si = l7C; 
dIe = 20C; del = 2lC; de2 = 22C; dc3 = 23C; 
dc4 = 24C; nak = 25C; syn = 26C; etb = 27C; 
ean = 30C; em = 3lC; sub = 32C; esc = 33C; 
fs = 34C; gs = 35C; rs = 36C; us = 37C; 
del = l77C; 

END ASCII. 



Index 

-A-
ack ••••••••••••••••••••••••••••••• 14 
AddDec ••••••••••••••••••••••••••• 10 
arctan ••••••••••••••••••••••••••••• 3 
Assign •••••••••••••••••••••••••••• 12 

-B-
bel ••••••••••••••••••••••••••••••• 14 
bs •••••••••••••••••••••••••••••••• 14 

-C-

can ••••••••••••••••••••••••••••••• 14 
CardToStr ••••••••••••••••••••••••• 13 
CompareDec ••••••••••••••••••••••• 10 
CompareStr. • • • • • • • • • • • • • • • • • • • • •• 12 
Concat. • • • • • • • • • • • • • • • • • • • • • • • • •• 12 
Conversions ••••••••••••••••••••••• 13 
Copy ••••••••••••••••••••••••••••• 12 
cos •••••••••••••••••••••••••••••••• 3 
cr •••••••••••••••••••••••••••••••• 14 

-D-

dc1 ••••••••••••••••••••••••••••••• 14 
dc2 ••••••••••••••••••••••••••••••• 14 
dc3 ••••••••••••••••••••••••••••••• 14 
dc4 ••••••••••••••••••••••••••••••• 14 
DecCur ••••••••••••••••••••••••••• 10 
DecDigits ••••••••••••••••••••••••• 10 
DECIMAL ••••••••••••••••••••••••• 10 
Decimals ••••••••••••••••••••••••••• 9 
DecPo~t •••••••••••••••••••••••••• 10 
DecSep ••••••••••••••••••••••••••• 10 
DecState •••••••••••••••••••••••••• 10 
DecStatus ••••••••••••••••••••••••• 10 
DecToStr ••••••••••••••••••••••••• 10 
DecValid •••••••••••••••••••••••••• 10 
del ••••••••••••••••••••••••••••••• 14 
Delete •••••••••••••••••••••••••••• 12 
DivDec ••••••••••••••••••••••••••• 10 
die ••••••••••••••••••••••••••••••• 14 

-E-

Utility Library 
Index 

page 15 

em ••••••••••••••••••••••••••••••• 14 
enq ••••••••••••••••••••••••••••••• 14 
entier. • • • • • • • • • • • • • • • • • • • • • • • • • • •• 3 
eot ••••••••••••••••••••••••••••••• 14 
esc ••••••••••••••••••••••••••••••• 14 
etb ••••••••••••••••••••••••••••••• 14 
etx ••••••••••••••••••••••••••••••• 14 
exp •••••••••••••••••••••••••••••••• 3 

-F-
ff •••••••••••••••••••••••••••••••• 14 
fs •••••••••••••••••••••••••••••••• 14 

-G-

gs •••••••••••••••••••••••••••••••• 14 

-H-
HexToStr. • • • • • • • • • • • • • • • • • • • • • • •• 13 
ht •••••••••••••••••••••••••••••••• 14 

-1-

Insert ••••••••••••••••••••••••••••• 12 
IntToStr •••••••••••••••• ' • • • • • • • • •• 13 
Invalid ••••••••••••••••••••••• ~ •••• 10 

-L-
Length •••••••••••••••••••••••••••• 12 
If ••.•••••••••••••••••••••••••••••• 14 
In ••••••••••••••••••••••••••••••••• 3 

-M-
MathLibO ••••••••••••••••••••••••••• 3 
M~us ••••••••••••••••••••••••••••• 10 
MulDec ••••••••••••••••••••••••••• 10 

-N-
nak ••••••••••••••••••••••••••••••• 14 
NegDec ••••••••••••••••• ~ ••••••••• 10 
NegOvfl •••••••••••••••••••••••••• 10 
nul ••••••••••••••••••••••••••••••• 14 



Utility Library 
Index 
page 16 

-P-
Pictures ••••••••••••••••••••••••••• 7 
-Plus •••••••••••••••••••••••••••••• l0 
Pos ••••••••••••••••••••••••••••••• 12 
PosOvfl ••••••••••••••••••••••••••• 10 

-R-

real ••••••••••••••••••••••••••••••• 3 
Re mainder • • • • • • • • • • • • • • • • • • • • • • •• 10 
rs •••••••••••••••••••••••••••••••• 14 

-S-

SetDecHandler ••••••••••••••••••••• l0 
si •••••••••••••••••••••••••••••••• 14 
sin •••••••••••••••••••••••••••••••• 3 
so •••••••••••••••••••••••••••••••• 14 
soh ••••••••••••••••••••••••••••••• 14 
sqrt ••••••••••••••••••••••••••••••• 3 
STRING ••••••••••••••••••••••••••• 12 
Strings •••••••••••••••••••••••••••• 12 
StrToCard ••••••••••••••••••••••••• 13 
StrToDec • • • • • • • • • • • • • • • • • • • • • • • •• 10 
StrToHex. • • • • • • • • • • • • • • • • • • • • • • •• 13 
StrToint •••••••••••••••••••••••••• 13 
stx ••••••••••••••••••••••••••••••• 14 
sub ••••••••••••••••••••••••••••••• 14 
SubDec ••••••••••••••••••••••••••• 10 
syn ••••••••••••••••••••••••••••••• 14 

-u-
us •••••••••••••••••••••••••••• ' •••• 14 

-y-

vt •••••••••••••••••••••••••••••••• 14 

-Z-

Zero •••••••••••••••••••••••••••••• 10 



Release: 

Date: 

Author: 

on the 

UCSD Pascal System 

0.3 

26 August 1983 

Richard Gleaves 



Modula-2 on UCSD Pascal 
Table Of Contents 

Table Of Contents 

1 Introduction •••••••••••••••••••••••••••••• 1 

2 Library ••••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2 

2.1 Library Organization. • • • • • • • • • • • • • • • • • • • 3 
2.1.1 Module Segment Assignment ••••••••••••• 3 
2.1.2 Compile-time Modules •• •• 5 

2.1.3 Module Version Control. • • • • • • • • • • • • •• 6 

2.1.4 Library Files •••••••••••••••••••••• 7 
2.1.5 Library Access. • • • • • • • • • • • • • • • • • •• 8 
2.1.6 Library Usage. • • • • • • • • • • • • • • • • • •• 10 

2.2 System-dependent Modules. • • • • • • • • • • • • • • • 11 

2.2.1 Screen Control •••••••••••••••••••• 11 
2.2.2 System Attributes •••• 

2.2.3 Block File I/O •••••• 
• • • • • • • • • • 

• • • • • • • • • • 
• ••• 
• • • • 

12 

12 

2.2.4 Unit I/O •••••••••••••••••••••••• 15 
2.2.5 UCSD Standard Procedures. • • • • • • • • • •• 17 

2.2.6 Bit Field Access ••••••••••••••••••.• 19 

2.3 Standard Library on UCSD Pascal. • • • • • • • • •• 20 

3 Compiler. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 23 

3.1 Extensions to Modula-2. • • • • • • • • • • • • • • • • • 24 
3.1.1 Packed Variables ••••••••••••••••••• 24 
3.1.2 Forward Declarations •••••••••• 

3.1.3 Code Procedures ••••••••••••• 
• • • • • • 

• • • • • • 

25 

26 

3.2 Differences and Restrictions •••••••••••• Ii •• 28 

3.3 Compile Options. • • • • • • • • • • • • • • • • • • • • • 29 
3.3.1 Interactive Compile Options ••••••••• , •• 30 

3.3.2 Stacked Options. • • • • • • • • • • • • • • • • • • 31 
3.3.3 Standard Language •••••••••••••••••• 32 

• • 3.3.4 Include- Files ••••• 
3.3.5 Compiled Listings. • • • 

• • • • • 
• • • • • 

• • • • • 
• • • • • 

• • • • 

• • • • 

32 
33 



Modula-2 on UCSD Pascal 
Table Of Contents 

3.3.6 Run-time Checks ••••••••••••••••••• 34 
3.3.7 Quiet Compile. • • • • • • • • • • • • • • • • • •• 35 

3.3.8 Copyright Notices. • • • • • • • • • • • • • • • • • 35 

3.3.9 Half-ASCn Terminals. • • • • • • • • • • • • • • • 36 

3.3.10 Extra Compile Space •••••••••••••••• 37 

3.3.11 Byte Flipping. • • • • • • • • • • • • • • • • • • • 37 

3.3.12 Conditional Compilation •••••••••••••• 38 

3.3.13 Symbolic Execution Error Messages ••••••• 40 

4 Bow To Use The System ••••••••••••••••••••• 41 

4.1 Compiling Programs. • • • • • • • • • • • • • • • • • • • 42 

4.1.1 Invoking the Compiler •••••••••••••••• 42 

4.1.2 Console Display. • • • • • • • • • • • • • • • • •• 43 

4.1.3 Error Handling. • • • • • • • • • • • • • • • • • • • 44 

4.2 Executing Programs. • • • • • • • . . . . • • • • • • • • 46 

4.3 Library Management •••••••••••••••••••• 47 

4.3.1 Using the Library Manager ••••••••••••• 47 

4.3.2 Updating the System Library. • • • • • • • • •• 53 

4.3.3 Creating Stand-alone Programs •• • • • • • • • .. 53 

4.4 Programming Techniques. • • • • • • • • • • • • • • •• 55 

4.4.1 Maximizing Compile-time Space. • • • • • • • • • 56 

4.4.2 Maximizing Run-time Space. • • • • • • • • • •• 57 

4.4.3 File Naming Conventions •••••••••••••• 59 

4.4.4 Using the Library. • • • • • • • • • • • • • • • • • 60 

4.4.5 Accessing Low-level Machine Operations. • •• 61 

4.4.6 Locating Execution Errors ••••••••••••• 62 

Appendix 1 Module Segment Numbers •••••••••••••••• 64 

Appendix 2 Compiler Directives. • • • • • • • • • • • • • • • • • • 65 

Appendix 3 Compiler Error Messages •••••••••••••••• 67 

Index. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 71 





1 Introduction 

Modula-2 on UCSD Pascal 
Introduction 

page 1 

This document describes Volition Systems' implementation of the Modula-2 
language for the version II UCSD Pascal system. It covers the following 
topics: 

• The library system 

• The Modula-2 compiler 

• How to use the system 

Chapter 2 describes the library system, including the library organization and 
system-dependent library modules. If you have not yet read it, see 
Introduction to Modula-2 for an introduction to the library. 

Chapter 3' describes the Modula-2 language implementation, including compile 
options, language extensions, deviations and restrictions, and implementation 
notes. For additional information see the Implementation Guide. 

Chapter 4 explains how to use the system, including operation of the 
compiler and library manager, and programming techniques. 



Modula-2 on UCSD Pascal 
Library 
page 2 

2 Library 

This chapter describes the Modula-2 library implemented on the U CSD Pascal 
operating system. It covers the following topics: 

• Library organization 

• System-dependent library modules 

• Standard library on U CSD Pascal 

Section 2.1 describes the library organization, including module segment 
assignment, module version control, library access by the compiler and loader, 
and library usage during program development. Operation of the library 
manager program is described in chapter 4. 

Section 2.2 presents library modules specific to the UCSD Pascal system. 
These modules do not themselves contain any code; they merely provide 
access to facilities defined in the underlying UCSD Pascal operating system. 
System-independent library modules are described in Standard Library and 
Utility Library. 

Section 2.3 describes the implementation. of the Modula-2 portable library on 
the UCSD Pascal system, including library module segment assignment, file 
naming conventions, and the mapping of Pascal system errors onto the 
standard error results. 



2.1 Library Organization 

Modula-2 on UCSD Pascal 
Library Organiza tion 

page 3 

This section describes the Modula-2 library organization. 
following topics: 

It covers the 

• Module segment assignment 

• Compile-time modules 

• Module version control 

• Library files 

• Library access 

• Library usage 

NOTE- This section makes references to the loader. The loader is a 
standard library module named "Program"; it is used by Modula-2 
programs to perform subprogram calls; i.e. to call other 
programs as procedures. The loader is described in Standard 
Library. 

2.1.1 Module Segment Assignment 

Separate compilation in Modula-2 is related to UCSD Pascal's intrinsic unit 
concept. This scheme eliminates the need for linking, but requires units to 
be assigned segment numbers at compile time. Disadvantages of intrinsic 
units include the use of two segments per unit (one for code, another for 
data), a limited number of segments per program, and the requirement that 
intrinsic units be, stored in the system library. 

The Modula-2 system addresses each of these problems. Library modules in 
Modula-2 use one segment number for both code and data. The segment 
table has been increased to 64 segments and is saved on subprogram calis, 
allowing development of programs that use arbitrarily many segments. 
Library modules can be stored either in the (Modula-2) system library file, in 
program code files, or as individual files. 

Only definition modules are assigned segment numbers; program modules 
al ways occupy segment 7, and implementation modules usa the segment 
number assigned to their definition modules. Segment numbers are assigned 
with the compiler directive $SEG (3.2.2). 

NOTE- The compiler issues an error when compiling definition modules 
that fail to specify a segment number. 



Modula-2 on UCSD Pascal 
Library Organization 
page 4 

Example of segment number assignment: 

DEFINITION MODULE SegDemo; 
(* $SEG := 43; *) (* SegDemo is assigned segment 43 *) 

FROM SYSTEM IMPORT WORD; 
••• 

END SegDemo. 

A basic step in designing a Modula-2 program is the allocation of segment 
numbers for its separately compiled modules. Segment numbers must be 
unique with respect to the program's compilation units and imported standard 
library modules. 

In a typical system configuration, the 64 segments are allocated as follows: 

• Segments 0 through 6 are reserved for use by the Modula-2 
system. The system may crash if you assign these numbers to 
your own library modules. 

• Program modules always reside in segment 7. 

• Segments 48 through 63 are provisionally reserved for the library 
modules provided with the system; they can be used only if the 
program does not import the corresponding standard library 
module. (See 2.3 for details.) Note that additional segments 
may be similarly reserved for user-defined system library 
modules. 

• The remaining segments (8 through 47) are available for program­
specific library modules. Because the segment table is saved on 
subprogram calls, these segments can be allocated without regard 
to the segments used by called subprograms. 

Thus, the segment allocation strategy is to first use up the segments 
available for programs. To obtain additional segments, use the segment 
numbers of standard modules not imported by the program. If you need even 
more segments, it is time to divide your program. into a number of 
subprograms, assigning segments to subprogram modules so they overlay the 
main program's segments. (Because of limited run-time space, it is unlikely 
that a single program will ever use all 64 segments; large programs are 

. usually designed at the outset as collections of subprograms.) 

NOTE- Subprograms cannot overlap the segment numbers of library 
modules that are imported by both the subprogram and the 
calling program (so-called "shared" modules). 



2.1.2 Compile-time Modules 

Modula-2 on UCSD Pascal 
Library Organization 

page 5 

Large software systems often contain collections of constant and type 
declarations that are shared by a number of programs. In Modula-2, such 
declarations can be neatly encapsulated within a definition module. This 
offers a number of advantages over the common practice of using "include" 
files: 

• Modules allow better control over the visibility of common types 
and constants. 

• Modules are distributed in compiled form, so they cannot be 
modified by anyone but the distributor. 

• The system performs automatic version checking on modules. 

The Modula-2 system provides a special form of definition module for encap­
sulating constant and type declarations; they are called compile-time 
modules. Compile-time modules are syntactically identical to regular 
definition modules - the only difference is that compile-time modules are 
assigned segment number 1. 

The compiler and loader treat compile-time modules specially. When a 
compile-time module is compiled, the compiler automatically produces an 
empty object file, so a matching implementation module need not be written. 
The loader performs the usual version checking, but does not allocate code or 
data segments for the module (hence the name "compile-time module"). The 
loader also ignores multiple occurrences of segment 1, allowing programs to 
import more than one compile-time module. 

In short, compile-time modules offer the benefits of library modules without 
consuming segment numbers and run-time memory space. 

NOTE- The compiler issues an error· when compiling compile-time 
modules that contain procedure or variable declarations. It also 
flags implementation modules whose definition modules are 
assigned segment 1. 

NOTE - Not all procedures are barred from compile-time modules. See 
3.1.3 for details. 



Modula-2 on UCSD Pascal 
Library Organization 
page 6 

Example of a compile-time module: 

DEFINITION MODULE Pcodes; 
(* $SEG := 1; *) (* Segment 1 marks this as compile-time *) 

EXPORT QUALIFIED LDB, STB, STO, NOT; 

CONST LDB = OBEH; 
STB = OBFH; 
STO = 9AH; 
NOT = 93H; 

END Pcodes. 

2.1.3 Module Version Control 

When a definition module is compiled, the compiler stores a unique value into 
the resulting symbol file; this value is known as a module key. When a 
client module (i.e. one that imports library modules) is compiled, the 
compiler stores the module key of each imported module into the resulting 
object file. Version control consists of checking that module keys stored in 
a client module match the module keys stored in the imported library 
modules. 

Version control is performed both at compile time and run time. Compile­
time checking detects the case of mismatched symbol files (i.e •. where an 
imported definition module in turn imports another definition module, and the 
module key in the first symbol file's reference information does not match 
the module key in the second symbol file). When the compileI' finds a version 
error, it prints an error message (86: "Incompatible versions of symbolic 
modules"), names the offending modules, and then terminates compilation. 
Run-time checking detects mismatched object files. When the loader finds a 
version error, it prints an error message (naming the offending modules) and 
aborts execution. 

To generate unique module keys, the compiler maintains a disk-resident 
variable which - to extend the "key" metaphor - is called a key holder. 
When compiling a definition module, the compiler fetches a new module key 
from the key holder; to ensure continued uniqueness of module keys, the· 
compiler then increments the value stored in the key holder. Thus, 
consecutively compiled definition modules have consecutively larger (but more 
importantly: unique) module key values. 

The key holder is implemented as a 3-word record stored in the first block 
of the system library file (2.1.4). A module key consists of a two-word 
integer value (incremented by the compiler to generate unique keys) and a 
one-word integer known as the library number. The library number is 
assigned a value when a system library file is first created; its purpose is to 



Modula-2 on UCSD Pascal 
Library Organization 

page 7 

ensure the uniqueness of module keys when program development is 
distributed across a number of systems (i.e. a group of programmers). 
Library numbers prevent aliasing of identically named library modules 
compiled on systems which happen to have identical values in their key 
holders. 

When a system library is copied onto another system, the library number in 
its key holder should be assigned a new value; this task is accomplished with 
the library manager utility (4.3.1). The filer command T(ransfer can also 
copy system library files, but will not assign new library numbers to the 
copies. Solo programmers need not worry about library numbers, as the 
system's module key generation is sufficient to ensure version control. 

2.1.4 Library Files 

In this manual, the term "library" refers to the abstract notion of all 
accessible separately compiled modules in the system. The library is 
implemented as a collection of disk files which are called library files. 

NOTE- The next three sections present a bottom-up description of 
the library file organization. Read 2.1.6 first if you want an 
overview of the structure and use of the library. 

The library is composed of three parts: the system library, the user 
library, and the program library. 

The system library is a disk file named "MODULA.LIBRARY". The system 
library contains all standard library modules, utility modules, and system­
specific modules. Modules can be added to (or removed from) the system 
library with the library manager (4.3.2). The system library file normally 
resides on the system (boot) volume; however, the Modula-2 system first 
checks the prefixed volume for a system library file. (This feature allows 
you to test out new system library files without having to disturb the 
existing one.) If not on the prefixed volume, a system library file must 
appear on the system volume; otherwise, the Modula-2 system is inoperable. 

The user library is a collection of disk files produced by compiling 
definition, implementation, and program modules. A user library file name 
consists of the module name followed by a file suffix indicating the module 
type. The suffix ".sYM" identifies symbol files of definition modules. 
".MOD" identifies object files of implementation modules. ".CODE" identifies 
code files belonging to program modules. For instance, compiling a program 
module named Foon produces a code file named "FOON .CODE". 

The program library is a collection of disk files produced by the library 
manager. Program files contain a program module and one or more of its 



Modula-2 on UCSD Pascal 
Library Organization 
page 8 

subsidiary modules; like code files, program library files are identified by the 
file suffix ".CODE". Program and code files are called by file name, so 
their file names can be changed with impunity. For instance, the program 
file of a module named "Librarian" can be changed to (and called as) 
"LIB.CODE". . 

WARNING- To convert library module identifiers into file names, the 
compiler converts all letters to upper case; the resulting name is 
truncated if it exceeds ten characters in length. This 
conversion process leaves the library system vulnerable to 
aliasing of similarly named modules; if modules are kept in the 
user library, compilation of the second module deletes the first, 
eventually resulting in a version error. Care in choosing library 
module names avoids this problem altogether. 

2.1.5 Library Access 

This section describes the algorithms used by the compiler and loader to 
loca te modules in the library. 

To locate an imported definition module, the compiler first searches the 
system library. If the module is not in the system library, the loader looks 
for a user library file named "<module name>.sYM", first on the prefix 
volume, then on the system volume. If the module is still missing, 
compilation terminates with an error message. 

NOTE- The compiler is incapable of searching the program library. 
Symbol files must be in either the system library or the user 
library. 

The loader is passed the name of a subprogram to call. 
interpreted either as a module name or file name. 

This name is 

To locate a called subprogram, the loader first searches the subsidiary 
modules associated with the current program. If the module is not found, the 
loader searches the system library, then looks for a library file named 
"<subprogram name>.CODE" - first on the prefix volume, then on the system 
volume. If the subprogram cannot be found, the loader immediately returns 
with the result value MissingProgram. 



Modula-2 on UCSD Pascal 
Library Organization 

page 9 

NOTE- The loader recognizes file naming conventions of the Pascal 
system's X(ecute command. If a subprogram name ends with a 
period ("."), the loader does not append the code file suffix 
when it searches for a library file. This allows for calling 
arbitrarily named programs (e.g. "SYSTEM.FILER."). If a 
subprogram name includes a volume name, the loader searches 
only the specified volume. This allows for calling programs on 
specific volumes (e.g. "#5:PATCH"). 

Once a called program module is installed, the loader must locate each of its 
imported library modules. The loader first checks that an imported module is 
not already resident and in use by the calling program. If it is, the module 
need not be searched for; otherwise, the loader searches the library. 

To locate an imported library module, the loader first searches the subsidiary 
modules associated with the program, then the system library, and finally for 
a file named "<module name).MOn" (first on the prefix volume, then on the 
system volume). If the library module is still not found, the loader returns 
the result value MissingModule and writes an error message naming the 
missing module. 

NOTE- The loader retains library information in memory to make 
subprogram calls more efficient. As a consequence, system 
library modules and subsidiary modules of all called programs 
must be uniquely named; otherwise, the loader returns the result 
value DuplicateName and writes an error message naming the 
duplicated modules. . 

NOTE- Before searching a library file, the compiler and loader verify 
that the internal file structure matches the library structure 
implied by the library file name. The compiler responds to 
improperly structured library files by terminating with an error 
message; the loader returns the result value LibraryError and 
writes an error message. 

NOTE- Modules stored in a library file can be "hidden" from the 
compiler and loader so they appear not to be in the library (see 
4.3.1 for details). 



Modula-2 on UCSD Pascal 
Library Organization 
page 10 

2.1.6 Library Usage 

The Modula-2 library provides different kinds of libraries in order to 
efficiently support both program development and program execution. The 
user library is intended for program development, while the program library is 
intended for efficient execution of production programs. The system library 
constitutes an (extensible) operating system used by all programs. These 
libraries are characterized by the manner in which the compiler and loader 
access them. 

The user library is suited to program development, where ease of recompiling 
and reexecuting is most important. With the user library, a program can be 
executed immediately after one of its modules is recompiled, as the user 
library can be updated without executing the library manager. (In fact, re­
compiling a module is sufficient to update the user library.) Programs in the 
user library load slowly, as the loader must search the disk volume for each 
referenced user library file. 

Program library files are designed solely for program execution, where the 
time required to load a program becomes critical. The library manager must 
be used in order to create or update a program library. Programs in the 
program library load quickly, as the loader searches the disk volume only 
once for the program library file. Production programs are usually wholly 
contained in a single program library file. 

The system library is designed for fast access during program development 
and execution, as it contains modules imported by most programs. In systems 
containing only a handful of system modules and relatively few program­
specific modules, the system library might efficiently serve as the sole library 
file. In normal circumstances, however, the system library file is quite large 
to begin with; adding all the program-specific modules would make it 
unwieldy and inefficient to update. (Recall that the library manager utility 
must be executed to update the system library.) For this reason, modules 
specific to production programs are best kept in program library files. 

See 4.4.4 for more information on efficient use of the library. 



2.2 System-dependent Modules 

Modula-2 on UCSD Pascal 
System-dependent Modules 

page 11 

This section describes the system-dependent library modules provided with the 
Modula-2 system. Note that these are compile-time modules, and thus contain 
no code; they merely serve as interfaces to facilities contained in the U CSD 
Pascal system. 

The syntax (i.e. names and parameter lists) for l\1odula-2's UCSD system 
calls differs only slightly from the corresponding U CSD Pascal system calls; 
the semantics are identical. This section primarily describes syntactic 
differences; semantic details can be found in the U CSD Pascal system 
manual. 

The main source of syntax differences arises from the replacement of U CSD 
Pascal's single-argument address parameters with dual-argument "byte-address 
pairs" specifying a base address and a byte offset. For example, a parameter 
passed as "ByteArray[3]" in UCSD Pascal is passed as the two parameters 
"ADR(ByteArray), 3" in Modula-2. The procedure ADR must be imported 
from SYSTEM in order to pass the address of statically declared variables. 
Non-indexed actual parameters (such as record variables) pass a byte offset 
of 0 along with the proper address. 

2.2.1 Screen Control 

The module Screen provides basic screen control functions. HomeCursor 
moves the cursor to the upper left hand corner of the screen. ClearScreen 
erases the entire screen and "homes" the cursor. EraseLine erases the screen 
from the cursor position to the end of the current line. GotoXY moves the 
cursor to the specified X-Y screen coordinates. 

DEFINITION MODULE Screen; (* $SEG := 1; *) 

EXPORT QUALIFIED HomeCursor, ClearScreen, EraseLine, GotoXY; 

PROCEDURE HomeCursor; (* move cursor to upper left *) 

PROCEDURE ClearScreen; (* erase screen, home cursor *) 

PROCEDURE EraseLine; (* erase from cursor to end of line *) 

PROCEDURE GotoXY(x, y: CARDINAL); (* move to column x, row y *) 

END Screen. 



Modula-2 on UCSD Pascal 
System-dependent Modules 
page 12 

2.2.2 System Attributes 

The module SystemTypes provides system-dependent attributes of the basic 
Modula-2 types. MinInt and MaxInt indicate the extreme values assumable by 
variables of type INTEGER. MaxCard indicates the maximum value assumable 
by variables of type CARDINAL (the minimum value is implicitly zero). 
AdrsPerWord indicates the number of address increments that span a word (in 
this case, the basic addressing unit is a byte, and two bytes constitute a 
word). CharsPerWord indicates the number of characters that can fit in a 
single word. 

DEFINITION MODULE SystemTypes; (* $SEG := 1; *) 

EXPORT QUALIFIED 
MinInt, MaxInt, MaxCard, AdrsPerWord, CharsPerWord; 

CONST MinInt = -32768; 
MaxInt = 32767; 
MaxCard = 65535; 

AdrsPerWord = 2; 
CharsPerWord = 2; 

END SystemTypes. 

2.2.3 Block File I/O 

The low-level module BlockIO provides access to the block I/O facilities in 
the UCSD file system. File variables are declared with type FILE (as in 
UCSD Pascal). File variables must be initialized with the procedure InitFile 
before they are used. 

File names passed to the Reset and Rewrite routines must be converted to 
the internal representation of a U CSD Pascal string variable; Modula-2 strings 
will not work! The first character in a U CSD-format string is a length byte 
indicating the number of characters in the string. The first letter is at 
index 1. 

Passing the value -1 to the startblock parameter in BlockRead (BlockWrite) 
specifies that blocks. are to be read from (written to) the next block in the 
file. This feature allows disk files to be read sequentitlly without having to 
specifY' a block number. 

WARNING- If you do not close a file opened with Rewrite, the disk 
directory is left in an erroneous state. (The system command 
I(ni t corrects it.) 



Modula-2 on UCSD. Pascal 
System-dependent Modules 

page 13 

DEFINITION MODULE BlockIO; (* $SEG := 1; *) 

FROM SYSTEM IMPORT ADDRESS, WORD; 

EXPORT QUALIFIED FILE, BlockRead, BlockWrite, Reset, Rewrite, 
Close, InitFile, FileName, CloseType; 

TYPE 
FileName = ARRAY [0 •• 39] OF CHAR; (*UCSD format string*) 

CloseType = (Normal, Lock, Purge, Crunch); 

FILE = ARRAY [0 •• 30] OF WORD; 

(* Note that INTEGER params are to be used as 
CARDINAL. They are declared as INTEGER to 
match UCSD op sys declarations exactly *) 

PROCEDURE InitFile(VAR f: FILE); 
(* Initialize FILE variable ••• must be done before any 

other routines can be called. *) 

PROCEDURE Reset(VAR f: FILE; VAR fn: FileName); 
(* Open existing file *) 

PROCEDURE Rewrite(VAR f: FILE; VAR fn: FileName); 
(* Open new file *) . 

PROCEDURE Close(VAR f: FILE; ftype: CloseType); 
(* Close file, and update directory ... 

Normal 

Lock 
Purge 
CrWlch 

Leave if opened with Reset, remove if 
opened with Rewrite. 
Save permanent entry in directory. 
Remove entry from directory. 
Save permanent entry, but truncate 
file at current file position. *) 

PROCEDURE BlockRead(V AR f: FILE; bur: ADDRESS; byteindex: INTEGER; 
nblocks, startblock: INTEGER): INTEGER; 

(* Read nblocks of the file into memory *) 

PROCEDURE BlockWrite( VAR f: FILE; buf: ADDRESS; byteindex: INTEGER; 
. nblocks, startblock: INTEGER): INTEGER; 

(* Write nblocks of the file from memory.) . 

END BlocldO. 



Modula-2 on UCSD Pascal 
System-dependent Modules 
page 14 

Example of block file I/O: 

MODULE BlockExample; 

FROM SYSTEM IMPORT ADR; 

FROM UnitIO IMPORT IOResult, INoError; 

FROM BlocldO IMPORT FILE, FileName, InitFile, BlockRead, 
BlockWrite, Reset, Rewrite, Close, CloseType; 

FROM Terminal IMPORT WriteString; 

V AR input, output: FILE; 

BEGIN 

blks: INTEGER; 
buff: ARRAY [0 •• 9], [0 •• 511] OF CHAR; 
name: FileName; 

name := " *MODULA.LIBRARY"; (* note 1st blank for UCSD length byte *) 
name[O] := 17C; (* length in octal as type CHAR *) 
InitFile(input); 
Reset(input, name); 
IF IOResult() 41 INoError THEN 

WriteString("Can't find input file tt ); 

HALT; 
END; 
name := " *DUPLIB"; 
name[O] := 7C; 
In it File(output); 
Rewrite(output, name); 
IF IOResult() 41 INoError THEN 

WriteString("Cantt open output file"); 
Close(input, Norma!); 
HALT; 

END; 

REPEAT 
blks := BlockRead(input, ADR(buff), 0, HIGH(buff) + 1, -1); 
IF BlockWrite(output, ADR(buff), 0, blks, -1) 41 blks THEN 

WriteString("Error writing output"); 
Close(input, Normal); 
Close(output, Purge); 
HALT; 

END; 
UNTIL blks <= INTEGER(HIGH(buff»; 

Close(input, Normal); 
Close(output, Lock); 

END BlockExample. 



2.2.4 Unit 1/0 

Modula-2 on UCSD Pascal 
System-dependent Modules 

page 15 

The low-level module UnitlO provides access to UCSD Pascal's unit I/O 
system. The scalar constants in type 10ResultType are declared to match 
the standard I/O error values returned by the system. The BlkNum parameter 
is ignored when accessing a non-block-structured unit. The FlagWd parameter 
is a one-word bit array instead of an integer (as in U CSD Pascal), thus 
making explicit the manner in which this parameter is interpreted by the unit 
I/O system. 

DEFINITION MODULE UnitlO; (* $SEG := 1; *) 

FROM SYSTEM IMPORT WORD, ADDRESS; 

EXPORT QUALIFIED UnitRead, UnitWrite, UnitStatus, UnitClear, 
Unit Busy, 10 Result , IOResultType; 

TYPE IOResultType = (INoError, (* 0 *) 
IHardErr, 
IBadUnit, 
IBadMode, 
ITimeout, 
ILostUnit, (* 5 *) 
lLostFile, 
IBadTitle, 
INoSpace, 
INoUnit, 
INoFile, (* 10 *) 
IDupFile, 
IFileOpen, 
INotOpen, 
IBadFormat, 
IBufOflow); (* 15 *) 

PROCEDURE IOR~sult(): IOResultType; 

(* Return value indicating the result 
of the previous I/O operation *) 

PROCEDURE UnitStatus( UnitNo: CARDINAL; 
Result: ADDRESS; 
Option: CARDINAL); 

(* Return status of the specified unit 
- see U CSD Pascal manual for details *) 



Modula-2 on UCSD Pascal 
System-dependent Modules 
page 16 

PROCEDURE UnitBusy(UnitNo: CARDINAL): BOOLEAN; 

(* Return TRUE if the specified unit is 
waiting for an I/O operation to complete *) 

PROCEDURE UnitClear(UnitNo: CARDINAL); 

(* Set the specified unit back to its 
initial operating state *) 

PROCEDURE UnitRead( UnitNo: 
Buffer: 
Index: 
NBytes: 
BlkNum: 
FlagWd: 

CARDINAL; 
ADDRESS; 
CARDINAL; 
CARDINAL; 
CARDINAL; 
BITSET); 

(* Read bytes from I/O unit into Buffer *) 

PROCEDURE UnitWrite( UnitNo: 
Buffer: 
Index: 
NBytes: 
BlkNum: 
FlagWd: 

CARDINAL; 
ADDRESS; 
CARDINAL; 
CARDINAL; 
CARDINAL; 
BITSET); 

(* Write bytes in Buffer out to I/O unit *) 

END UnitlO. 



2.2.5 U CSD Standard Procedures 

Modula-2 on UCSD Pascal 
System-dependent Modules 

page 17 

The low-level module Standards provides access to U CSD Pascal standard 
procedures. 

NOTE- The scalar constants in the enumeration type ScanType are 
used to specify the scanning mode in the procedure Scan. The 
constant ScanUntil specifies that scanning continues until a 
scanned character matches the target character ("=" in UCSD 
Pascal). The constant Scan While specifies that scanning 
continues until a scanned character does not match the target 
character ("<>" in UCSD Pascal). 

WARNING- The procedures Alloc, Mark, and Release provide low-level 
storage management, and cannot be used in conjunction with the 
standard library module Storage. Because most standard library 
modules import Storage (see Standard Library for details), 
these routines should be used only when a program limits itself 
to the system-dependent modules described in this section. 

DEFINITION MODULE Standards; (* $SEG := 1; *) 

FROM SYSTEM IMPORT ADDRESS; 

EXPORT QUALIFIED MoveLeft, MoveRight, FillChar, Scan, Time, ScanType, 
PowerOfTen, Alloc, Mark, Release, MemAvail; 

TYPE ScanType = (ScanUntil, ScanWhile); 

PROCEDURE MoveLeft( SrcAddr: ADDRESS; 
SrcInx: CARDINAL; 
DestAddr: ADDRESS; 
DestInx: CARDINAL; 
NBytes: CARDIN AL); 

(* Move bytes from Source to Destination, starting with 
the first byte in Source *) 

PROCEDURE MoveRight( SrcAddr: ADDRESS; 
SrcInx: CARDIN AL; 
DestAddr: ADDRESS; 
DestInx: CARDIN AL; 
NBytes: CARDIN AL); 

(* Move bytes from Source to Destination, starting with 
the last byte in Source *) 



Modula-2 on UCSD Pascal 
System-dependent Modules 
page 18 

PROCEDURE FillChar( DestAddr: ADDRESS; 
DestInx: CARDIN AL: 
NBytes: CARDINAL; 
FillVal: CHAR); 

(* Initialize bytes in Dest with the byte value FillVal *) 

PROCEDURE Scan( NumChars: INTEGER; 
ForPast: ScanType; 
Target: CHAR; 
Source: ADDRESS; 
SrcInx: CARDIN AL): INTEGER; 

(* Starting at Source, scan for Numchars characters until 
Target character is found. Return offset from Source *) 

PROCEDURE Time(VAR Hi, Lo: CARDINAL); 
(* Return 32-bit system clock value in Hi and Lo *) 

PROCEDURE Alloc(VAR p: ADDRESS; words: CARDINAL); 
(* Allocate space on top of heap *) 

PROCEDURE Mark(VAR p: ADDRESS); 
(* Sa ve current heap position in p *) 

PROCEDURE Release(V AR p: ADDRESS); 
(* Cut heap back to position specified by p *) 

PROCEDURE MemAvail(): CARDINAL; 
(* Return It words between stack and heap top *) 

PROCEDURE PowerOfTen(e: CARDINAL): REAL; 
(* Return 10 raised to e'th power *) 

END Standards. 



2.2.6 Bit Field Access 

Modula-2 on UCSD Pascal 
System-dependent Modules 

page 19 

The module Bits provides efficient access to bit fields and byte fields of 
word quantities. Bits in a word are numbered 0 through 15. Bit 0 is the 
low order bit, bit 15 the high order bit. A bit field is specified by its 
rightmost (lowest order) bit and number of bits. 

NOTE- In bit fields, bits 0 thru 7 always specify the least significant 
byte of word quantities. Byte access, however, involves physical 
byte addresses, and thus is independent of byte ordering in word 
quantities. 

DEFINITION MODULE Bits; (* $SEG := 1; *) 

FROM SYSTEM IMPORT WORD, ADDRESS; 

EXPORT QUALIFIED LoadByte, StoreByte, LoadField, StoreField; 

PROCEDURE LoadByte (base: ADDRESS; offset: CARDINAL): CARDINAL; 

(* Load byte from byte address base[offset] *) 

PROCEDURE Store Byte (base: ADDRESS; offset, ValueToStore: CARDINAL); 

(* Store byte at byte address base[offset] *) 

PROCEDURE LoadField (VAR w: WORD; 
NumberOfBits: CARDINAL; 
RightMostBit: CARDINAL): CARDINAL; 

(* Load specified bit field from word w *) 

PROCEDURE StoreField (VAR w: WORD; 
NumberOfBits: CARDINAL; 
RightMostBit: CARDINAL; 
ValueToStore: CARDINAL); 

(* Store specified bit field into word w *) 

END Bits. 



Modula-2 on UCSD Pascal 
Standard Library on UCSD Pascal 
page 20 

2.3 Standard Library on UCSD Pascal 

This section describes system-dependent details of the standard library 
modules on the U CSD Pascal system. 

Module Segment Assignment 

The following table indicates the segment numbers assigned to modules 
contained in the standard and utility libraries. Segments are assigned so that 
the most frequently used library modules reside in the highest numbered 
segments. 

Many of the standard library modules are interdependent; importing one of 
these modules implies the importation of other modules, resulting in the use 
of extra segments. The Implementation Guide describes the library module 
hierarchy. 

The utility module ASCII is a compile-time segment, and thus is assigned 
segment 1. 

NOTE- Segments 59 through 63 are reserved for certain 
implementations. See the Implementation Guide for details. 

Library module segment assignment: 

Program 2 
SubProgram 3 
Storage 4 
Decimal 48 
Processes 49 
MathLibO 50 
RealInOut 51 

Program 

Reals 52 
Strings 53 
InOut 54 
Conversions 55 
Texts 56 
Files 5'1 
Terminal 58 

The parameter programN arne is passed a string containing the name of the 
subprogram to be called. The interpretation of this name is described in 
2.1.5. 

Pascal programs are callable from the Modula-2 system with one restriction. 
If a Pascal program uses intrinsic units, their assigned segment numbers 
cannot overlap segment numbers occupied by any library modules. 



Modula-2 on UCSD Pascal 
Standard Library on U CSD Pascal 

page 21 

The result value DuplicateName is returned if a subprogram attempts to 
import different library modules with the same segment number. 

If a subprogram call specifies system-controlled execution error handling, the 
Modula-2 system displays an error message describing the execution error. 
See 4.4.6 for details. 

The library module SubProgram is a subsidiary module of the loader. 
SubProgram is called (and thus resident) only between subprogram calls. 

InOut 

Note that the rule for appending file suffixes is the opposite of the UCSD 
Pascal convention - a period at the end of a file name causes a file suffix 
(e.g. "TEXT") to be automatically appended. 

Texts a Files 

File names in Texts and Files follow the UCSD Pascal file naming 
conventions. Files treats all disk files as pure data regardless of the file 
type. Texts reads and writes UCSD text file format when connected to a 
text file (e.g. file suffix It.TEXT"). 

Typing the <eof> key terminates a a console input file. The (eof> key is 
defined by the Pascal system; it is usually control-C. 

If a file I/O error occurs in Files, the function procedure UnitlO.IOResult 
can be called to determine the system-specific I/O result. 

Storage 

Storage is implemented as a linear list of "free" areas sorted by address 
(highest address first). ALLOCA TE traverses the first 10 free areas 
searching for perfect fit; if not found, it settles for first fit. DEALLOCATE 
collapses all adjacent free areas. 

ALLOCA TE and DEALLOCA TE raise Storage Error if passed a storage area 
size larger than 32766 storage units (bytes on most implementations). 

Deallocating an invalid pointer variable usually causes a program to terminate 
with result StorageError; however, Storage cannot detect all improper 
deallocation of dynamic variables. Deallocating a variable with a different 
size than it was allocated with may crash the system. It is an error for 



Modula-2 on UCSD Pascal 
Standard Library on U CSD Pascal 
page 22 

'unshared' subprograms to deallocate storage allocated by the calling program. 

MathLibO 

The procedure 'real' is not implemented. 
provided by the (implementation-dependent) 
procedure FLOAT. 

The equivalent operation is 
definition of the standard 



3 Compiler 

Modula-2 on UCSD Pascal 
Compiler 
page 23 

This chapter describes the Modula-2 language implementation on the UCSD 
Pascal system. It covers the following topics: 

• Extensions 

• Deviations and restrictions 

• Compile options 

Section 3.1 describes language constructs unique to this implementation of 
Modula-2; these extensions should not be used in programs intended for use 
on other Modula-2 implementations. 

Section 3.2 describes the remaining differences; most are restrictions on the 
use of legal Modula-2 constructs, but a couple are deviations from the 
language definition. 

Section 3.3 describes compile options. Compile options are implemented as 
directives placed within comments in a source program. Compiler directives 
control the use of language extensions, affect the compiler's mode of 
operation, and alter the code generated by the compiler. 



Modula-2 on UCSD Pascal 
Extensions to Modula-2 
page 24 

3.1 Extensions to Modula-2 

This section describes nonstandard language constructs available in this 
implementation of Modula-2. These constructs should not be used in programs 
written for portability. 

NOTE- The compiler directive $STANDARD (3.3.3) controls the use of 
these extensions. 

3.1.1 Packed Variables 

The compiler attempts to compress the machine representations of records 
and arrays when their type definitions are prefixed with the (implementation­
specific) reserved word PACKED. Packing significantly reduces the amount 
of memory needed to store certain data types, but at the expense of slightly 
increased execution time and code size required for packed field access. 
Packing is syntactically allowed for all types, but affects only records and 
arrays. 

Examples of packed variable declaration: 

TYPE manybits = PACKED ARRAY [0 •• 31] OF BOOLEAN; 
smallrec = PACKED RECORD 

a,b: CHAR; 
i: INTEGER; 

END; 

Machine representations of the basic data types are as follows: 

type 

BOOLEAN 
CHAR 
INTEGER 
REAL 
SET OF O •• x : x<16 
subrange x •• y: x>=O 

unpacked 

1 word 
1 word 
1 word 
2 words 
1 word 
1 word 

packed 

1 bit 
8 bits 
1 word 
2 words 
(x+1) bits 
(log2(y+ 1» "bits 

Subrange types with negative lower bounds are not packable. Array and 
record subtypes are word aligned and thus unpackable. The compiler is 
limited to packing fields into single words; fields cannot be packed across 
word boundaries. Thus, records are packed only if they contain consecutively 
declared fields that can be packed into a single word, and arrays are packed 
only if their element types can be stored in 8 bits or less. Unpackable 
fields are referenced as unpacked data. (In records, this includes fields 
which cannot be packed because of adjacently declared unpackable fields.) 



Modula-2 on UCSD Pascal 
Extensions to Modula-2 

page 25 

NOTE- Packed fields cannot be passed as VAR parameters. The 
Modula-2 compiler automatically packs character arrays; 
specifying them as P A eKED is therefore unnecessary. 

3.1.2 Forward Declarations 

A procedure can be called prior to its declaration only if there is a forward 
declaration. A procedure is declared forward by following its heading with 
the (implementation-specific) reserved word FORWARD to indicate that it 
will be completely defined further down in the program. Forward 
declarations are necessary for mutually recursive procedures. 

NOTE- Unlike Pascal, the parameter list and result type must be 
repeated exactly in the complete procedure declaration. 

NOTE- The Modula-2 language definition says nothing about forward 
references, as procedures can be called before they are 
declared. This implementation requires forward declarations 
because the "one-pass" restrictions do not allow use before 
declaration (see 3.2 for details). 

Example of forward declarations: 

PROCEDURE Affine{a: TI); FORWARD; 

PROCEDURE Infine{b: TI); 
BEGIN 

Affine (b) 
END Infine; 

PROCEDURE Affine{a: TI); (* parameter list repeated *) 
BEGIN 

Infine{a) 
END Affine; 



Modula-2 on UCSD Pascal 
Extensions to Modula-2 
page 26 

3.1.3 Code Procedures 

A code procedure is a procedure declaration whose body consists of a 
sequence of constants denoting P-code instructions and operands. This code 
sequence is substituted inline for each code procedure call. 

Code procedures are used to perform low-level operations and to access 
routines defined in the UCSD Pascal system. As in regular procedure calls, 
code procedure parameters are pushed onto the evaluation stack (in the order 
they appear) before the (inline) procedure code is executed. 

WARNIN G - Code procedures must be used with utmost care, as any 
programming errors may cause the system to crash in mysterious 
ways. Be prepared! (The U CSD Pascal system manual describes 
the P-machine instruction set.) 

Here is the extended syntax (in EBNF as used in the Report) for code 
procedure declarations: 

ProcedureDeclaration = 
ProcedureHeading n;n (block I codeblock) ident. 

codeblock = CODE CodeSequence END. 
CodeSequence = code {It;" code}. 
code = [ConstExpression]. 

Example of code procedure declaration: 

CONST LDB = OBEH; 

PROCEDURE UpperByte(VAR w: WORD): CHAR; 
(* word address pushed as parameter *) 
CODE 

1; (* load constant byte offset *) 
LDB (* load byte as function result *) 

END UpperByte; 

NOTE- Unlike regular procedure bodies, code procedure bodies can be 
declared in definition modules. This feature allows code 
procedures to be neatly encapsulated in library modules without 
requiring any run-time code or data, as such modules can be 
declared as compile-time modules (2.1.2). 



Example of code procedures in compile-time modules: 

Modula-2 on UCSD Pascal 
Extensions to Modula-2 

page 27 

DEFINITION MODULE ByteDiddler; (* $SEG := 1; *) 
EXPORT QUALIFIED UpperByte; 

CONST LDB = OBEH; 

PROCEDURE UpperByte(VAR w: WORD): CHAR; 
CODE 1; LDB 
END UpperByte; 

END ByteDiddler. 



Modula-2 on UCSD Pascal 
Differences and Restrictions 
page 28 

3.2 Differences and Restrictions 

This section describes differences from the Modula-2 language definition and 
implementation restrictions in the current release. 

• One-pass restrictions: Constants, types (excepting pointers), 
and variables must be declared before they can be referenced. 
Procedures can be forward declared with the FORWARD 
directive (3.1.2). 

• Reserved words: The identifiers PACKED, 
FORWARD are reserved words. 

CODE, and 

• Real number conversion: The real number conversion 
procedures FLOAT and TRUNC work with type INTEGER instead 
of type CARDINAL. 

• Cardinal division: Cardinal division (via the DIV and MOD 
operators) does not work when either operand is greater than 
32767. . 

• Case labels: Cardinal case label values cannot exceed MaxInt 
(32767) in case statements and record declarations. 

• Function results: Function procedures can return results of any 
type. This differs .. from the current edition of Programming in 
Modula-2, which restricts function results to unstructured types. 
This restriction is expected to be removed from the language in 
the future. 

• V AR parameters: Character array elements cannot be passed to 
variable parameters. (This includes the standard procedures IN C 
and DEC.) 

• Compiler limits: The maximum procedure size is 1200 bytes of 
object code. The maximum number of procedures per module is 
100. The maximum level of lexical nesting is 32. 

• Run-time error checking: The Modula-2 system does not detect 
integer/cardinal overflows, use of uninitialized variables, or NIL 
pointer references. 



3.3 Compile Options 

Modula-2 on UCSD Pascal 
Compile Options 

page 29 

Compile options control the operation of the compiler. Compile options are 
controlled by directives embedded in comments in the source program. 
Compiler directives can appear anywhere within non-nested comments; 
directives in nested comments are ignored. Any number of directives can be 
placed in a single comment. Here is the syntax (in EBNF as used in the 
Report) for compiler directives: 

Directive = "$"Identifier [Parameter]. 
Identifier = <option identifier>. 
Parameter = Declare I String I Assign I Condition I Set. 
Declare = "." , . 
String = <Modula string>. 
Assign = ":=" <expression> ";". 
Condition = <expression> "THEN". 
Set = [String] Identifier. 

The "$" character marks the beginning of a directive; blanks cannot appear 
between the "$" and the subsequent identifier. Comment text not associated 
with a directive is ignored, and thus may serve as comments describing the 
directive. 

Example of compiler directives: 

(* $TO "LIST .TEXT" ••• make a compiled listing *) 
(* $STANDARD:=FALSE; $RECYCLE:=TRUE; $SEG:=45; *) 
(* $SET "Debug output 111 debug *) 
(* $IF debug THEN *) 
(* $PUSH RANGE save state of range checking *) 

Option identifiers are either compiler commands or compile-time variables. 
Compiler commands cause the compiler to perform a specific action. 
Compile-time variables are variables whose values control the compiler's 
operating mode. Directives are used to declare and assign values to compile­
time variables. 

There are two types of compile-time variables: cardinal variables and 
Boolean variables. Cardinal variables assume cardinal numbers as values. 
Boolean variables assume the values TRUE or FALSE. 

NOTE- Compile-time variables are distinct from program variables and 
can only be used within compiler directives. 

WARNING- Invalid compiler directives cause compiler syntax errors. 
If the error occurs in an expression, the compiler generates a 
suitable error message (as if it were compiling a Modula-2 



Modu!a-2 on UCSD Pascal 
Compile Options 
page 30 

expression); otherwise, it generates syntax error 16 ("Compiler 
directive error"). 

3.3.1 Interactive Compile Options 

Compile-time variables are usually set by directives embedded in the source 
text; however, the compiler command SET requests directive values from the 
keyboard each time a program is compiled. 

SET accepts a string and a variable name as parameters; the string parameter 
is optional. SET writes a console prompt and reads a value into the 
variable. If a string parameter is included, it is written to the console as a 
promptline; otherwise, the variable name is written to the console followed 
by a question mark. Typing 'T' or 'Y' sets the variable to TRUE. Typing 
'FT or 'N' sets the variable to FALSE. Typing a cardinal number sets the 
variable to the specified value (backspaces are allowed). Compilation resumes 
after typing a valid response. 

Example of SET: 

(* $SET "Range checking? " RAN GE *) 

The compiler command TYPE accepts a string parameter and causes the 
compiler to write the string to the console. The string is followed by a 
carriage return. (Passing an empty string is equivalent to "WriteLnlT.) TYPE 
is used to precede occurrences of the SET command with informative 
messages. 

Example of TYPE: 

(* $TYPE "Set only one of these options:" *) 
(* $TYPE ITn empty string writes a blank line *) 
(* $SET Apple2 *) 
(* $SET Apple3 *) 
(* $SET IBMPC *) 



3.3.2 Stacked Options 

Modula-2 on UCSD Pascal 
Compile Options 

page 31 

The values assumed by Boolean variables can be stacked. Stacking is useful 
for setting a Boolean variable in a small part of a program and then 
restoring its previous value. The compiler command PUSH saves the current 
value of a Boolean variable. The compiler command POP restores a Boolean 
variable to its previous value. PUSH and POP accept Boolean variables as 
arguments. Boolean values can be stacked to 15 levels deep, 

Example of option stacking: 

PROCEDURE RiskyIndex; 
VAR IntArray: ARRAY [1 •• 100] OF INTEGER; 

I,X: INTEGER; 

BEGIN ... 
(*$PUSH RANGE $RANGE:=FALSE; range checking off *) 
I := IntArray[X]; 
(*$POP RANGE *) (* restore range checking *) ... 

END RiskyIndex; 

Definition modules are assigned segment numbers with the predeclared 
cardinal variable SEO. The identifier is assigned a cardinal value indicating 
the desired segment number. The directive must appear immediately after 
the compilation unit's module heading. 

Example of module segment assignment: 

DEFINITION MODULE SegDemo; 
(*$SEO := 43;*) (*SegDemo is assigned segment 43*) 

FROM SYSTEM IMPORT WORD; ... 
END SegDemo. 



Modula-2 on UCSD Pascal 
Compile Options 
page 32 

3.3.3 Standard Language 

The predeclared Boolean variable STANDARD controls the use of nonstandard 
language constructs. The compiler accepts extensions only if STANDARD is 
set to FALSE at the top of a compilation unit. The default setting is 
TRUE. 

Example of nonstandard language use: 

(* $ST ANDARD := FALSE; *) 
DEFINITION MODULE NonStandard; ... 

TYPE BitString = PACKED ARRAY [1 •• 77] OF BOOLEAN; 

PROCEDURE ProcessorHalt; 
CODE 

OFFH 
END ProcessorHalt; 

END NonStandard. 

3.3.4 Include Files 

Text files can be "included" into a compilation unit with the compiler 
command IN. The string parameter contains the name of the text file to be 
included. The file suffix ".TEXT" is optional. Compilation terminates (with 
error 10) if an included text file cannot be opened. Include files cannot be 
nested. 

Example of include files: 

DEFINITION MODULE VeryLowLevel; ... 
(* Compile declarations 

contained in UCSDOPS.TEXT *) 

(* $IN "UCSDOPS" - get IND from UCSDOPS.TEXT *) 

PROCEDURE Peek(a: ADDRESS): CARDINAL; 
CODE 

IND; 0 
END Peek; 

END VeryLowLevel. 



3.3.5 Compiled Listings 

Modula-2 on UCSD Pascal 
Compile Options 

page 33 

Compiled listing are produced with the compiler command TO. The string 
parameter contains the name of the listing file. The directive must appear 
at the top of the compilation unit. 

The predeclared Boolean variable LIST controls the generation of a listing; it 
is used to selectively include or exclude parts of a program from the listing. 
Setting LIST to FALSE disables listing; setting LIST to TRUE enables listing. 
The TO command automatically enables listing. The LIST command is ignored 
if a TO command has not been specified. 

Sample compiled listing: 

1 7 I:D 0 (* $TO "stuff.text" *) 
2 7 I:D 1 MODULE test; 
3 7 I:D 1 
4 7 2:D 1 PROCEDURE testproc; 
5 7 2:D 1 VAR i,j,k: INTEGER; 
6 7 2:C 0 BEGIN 
7 7 2:C 0 FOR i := 1 TO 10 DO 
8 7 2:C 3 FOR k := 1 TO 10 DO 
9 7 2:C 6 FOR j := 1 TO 10 DO 

10 7 2:C 9 END; 
11 7 2:C 16 END; 
12 7 2:C 23 END; 
13 7 2:C 30 END testproc; 
14 7 2:C 48 
15 7 I:C o BEGIN 
16 7 3:C 0 testproc; 
17 7 I:C 2 END test. 

The first column in the listing displays the line number in the listing. The 
second column is the segment number. The third column is the procedure 
number. If the character after the colon is a "C", the line is a statement, 
and the value in the last column is the code offset of the beginning of the 
statement. If the character is a "D", the line is a declaration, and the value 
in the last column is the data offset of the first variable on the line. 

Compiled listings are used to debug programs; in particular, for locating 
execution errors. See 4.4.6 for details. 



Modula-2 on UCSD Pascal 
Compile Options 
page 34 

Example of listing directives: 

(* $TO "PRINTER:" *) 
IMPLEMENTATION MODULE Classified; ... 

(* $PUSH LIST $LIST := FALSE; *) 
TopSecret := Truth[Beauty J; 
(* $POP LIST *) ... 

END Classified. 

3.3.6 Run-time Checks 

The generation of code for performing run-time checks is controlled by the 
predeclared Boolean variable RAN GE. Setting RANGE to TRUE enables run­
time checking; setting RANGE to FALSE disables run-time checking. The 
default setting is TRUE. 

Compiler-controlled checks protect the following operations: 

• integer/cardinal assignment 

• assignment to subranges (including value parameters) 

• array indexes 

• FOR loop subranges 

• INCL" EXCL, set construction 

• reaching the end of a function procedure without executing a 
RETURN statement 



Example of range check suppression: 

PROCEDURE RiskyIndex; 
VAR IntArray: ARRAY [1 •• 100] OF INTEGER; 

I,X: INTEGER; 

BEGIN 

Modula-2 on UCSD Pascal 
Compile Options 

page 35 

(*$PUSH RANGE $RANGE:=FALSE; range checking off *) 
I := IntArray[X]; 
(*$POP RANGE *) (* restore range checking *) 

END RiskyIndex; 

3.3.'1 Quiet Compile 

The predeclared Boolean variable QUIET controls the compiler's console 
display. The compiler can be operated in the so-called "quiet" mode by 
setting QUIET to TRUE at the top of a compilation unit. In quiet mode, the 
compiler suppresses its normal console display (4.1.2) and does not stop when 
a syntax error is discovered. The default setting is FALSE. 

Example of specifying quiet compilation: 

(* $QUIET:=TRUE; *) 
MODULE Silence; ... 
END Silence. 

3.3.8 Copyright Notices 

Copyright notices are placed near the front of symbol, object, or code files 
with the compiler command NOT. The string parameter contains the textual 
message to be embedded in the output file. Copyright directives must appear 
after the initial module heading, but before any procedure or module bodies. 

Example of copyright notices: 

MODULE Business; 
(*$NOT "Copyright 1977, by Dee Ltd." *) ... 
END Business. 



Modula-2 on UCSD Pascal 
Compile Options 
page 36 

3.3.9 Half-ASCII Terminals 

Some popular microcomputers do not support the full Ascn character set; in 
particular, lower-case alphabetic characters, braces ("{" and fir'), and the 
vertical bar "I" are missing. Unfortunately, these characters are used as 
symbols in Modula-2. To avoid this problem, the predeclared Boolean variable 
UPCASE alters Modula-2's vocabulary to accommodate half-ASCII keyboards. 
The predeclared Boolean variable SPECIAL is provided for upper/lower case 
terminals lacking braces and bars. 

Setting UPCASE to TRUE causes the following changes to the Modula-2 
vocabulary. The exclamation point "!" can be sUbstituted for the vertical 
bar "In in case statements and record variants. Square brackets 11[" and It]" 
can be sUbstituted for braces in set constants. (Note that this matches 
Pascal's syntax.) Finally, lower and upper case alphabetic characters are 
considered equivalent. (Note that this matches Pascal's case insensitivity.) 

The UPCASE directive must appear at the top of a program. The default 
setting is FALSE. 

The variable SPECIAL is used identically to UPCASE. 
TRUE provides the special character substitution, 
significance of identifiers. 

Setting SPECIAL to 
but retains case 

NOTE- Programs that make use of these options are nonportable, as 
they are not standard Modula-2 programs. 

Example of half-ASCII Modula-2: 

(* $UPCASE := TRUE; *) 
MODULE PrAgMaTiCs; 

••• 

CONST SETK = bitset[O,1,4,9]; 

TYPE RECTYPE = RECORD 

end pRaGmAtIcS. 

CASE INTEGER OF 
0: i: INTEGER ! 
1: r: REAL ! 
2: c: char 

END; 
END; 



3.3.10 Extra Compile Space 

Modula-2 on UCSD Pascal 
Compile Options 

page 37 

The compiler may run out of symbol table space when compiling large 
modules; it does so by ungracefully expiring with a "stack overflow". The 
predeclared Boolean variable RECYCLE is provided to gain extra symbol 
table space at the expense of slower compilation. Setting RECYCLE to 
TR UE causes the compiler to recycle all storage consumed by unimported 
library module declarations; this often amounts to more than 2000 extra 
words of compile-time space. The directive must appear at the top of a 
program. The default setting is FALSE. 

NOTE- If the compiler determines that it needs the storage, it may 
automatically enable recycling. (This only occurs when compiling 
programs which import large numbers of library module 
identifiers.) For more information on using the recycle option, 
see 4.1.2 and 4.4.1. 

Example of specifying extra space: 

(* $RECYCLE:=TRUE; recycle symbol table *) 
MODULE Big; ... 
END Big. 

3.3.11 Byte Flipping 

The compiler generates byte-flipped code files by setting the predeclared 
Boolean variable FLIP to TRUE at the top of a program. Byte-flipped code 
files are executable only on processors of the opposite byte sex from the 
host processor. The directive must appear at the top of the program. The 
default setting is FALSE. 

Example of byte-flipping option: 

(* $FLIP:=TR UE; *) 
MODULE A; 

••• 

END A. 



Modula-2 on UCSD Pascal 
Compile Options 
page 38 

3.3.12 Conditional Compilation 

The compiler commands IF, ELSIF, ELSE, and END allow selective inclusion 
or exclusion of sections of a source program. Selection is controlled by 
expressions consisting of compile-time variables. 

User-defined compile-time variables are declared when they first appear as an 
option identifier in a compiler directive (or as an argument to the SET 
command). An uninitialized variable can be declared with the directive 
"$(identifier>;". Note that variable identifiers must be longer than one 
character. 

Example of compile-time variable declaration: 

(* $NOBUGS; set it later with SET *) 

(* $Stripped := FALSE; *) 

(* $SET "Include Screen Module?" UseLocalScreen *) 

NOTE- User-defined variables must be declared at the top of a 
program. 

The type of a variable (either Boolean or cardinal) is determined by the type 
of its initial value; after the initial assignment, variables cannot be assigned 
values of another type. 

Variables must be assigned values before they can be used in expressions. 
The full expression syntax is allowed (e.g. complex expressions, logical and 
arithmetic operators); however, only compile-time variables and integer or 
Boolean constants may be used as operands. 

The IF command conditionally causes all source text to be skipped up to the 
subsequent ELSIF, ELSE, or END command. Expressions in IF and ELSIF 
must be of type BOOLEAN and must be terminated by the symbol THEN. 

NOTE - Skipped text is treated as a continuation of the original 
comment containing the directive; thus, the compiler ignores all 
compiler directives within the skipped source. Conditional 
compilation directives cannot be nested. Comments containing 
conditional compilation directives should be closed immediately 
after the command. 

WARNIHG- Conditional compilation directives render programs 
nonportable, as their non-interpretation by different Modula-2 
compilers may change the semantics of a program. 



Example of conditional compilation: 

(* $SET "Compile what version?" Version *) 

(* $IF (Version = 2) AND Apple2 THEN *) 

CONST BufSize = 8500; 
GotPool = FALSE; 
NumSegs = 64; ... 

(* $ELSIF Version = 4 THEN *) 

CONST BufSize = 3000; 
GotPool = TRUE; 
NumSegs = Infinity-I; ... 

(* $ELSE *) 

CONST BufSize = 10000; 
GotPool = . FALSE; 
NumSegs = 16; ... 

(* $END *) 

Another example of conditional compilation: 

(* $IF DEBUG AND InternalRelease THEN *) 

IF BuffInx > MaxBuff THEN 
WriteString("Call Roger immediately"); 
WriteHex(CompilerVersion, 4); 
HALT; 

END; 

(* $END *) 

Modula-2 on UCSD Pascal 
Compile Options 

page 39 



Modula-2 on U CSD Pascal 
Compile Options 
page 40 

3.3.13 Symbolic Execution Error Messages 

The compiler generates debugging information when the predeclared Boolean 
variable DEBUG is set to TRUE. DEBUG controls the appearance of 
symbolic procedure names in execution error messages (see 4.4.6 for details) • 

. Note that setting DEBUG to TRUE results in larger code files, as the 
identifier of each procedure in the module is embedded in the code file 
(along with two bytes of overhead per procedure). To minimize code file 
expansion, DEBUG can be turned on and off within a program to select only 
a few procedures for symbolic error displays. The default setting of DEBUG 
is FALSE. 

Example of debug option: 

(* $DEBUG := TRUE; *) 
MODULE Buggy; ... 
END Buggy. 



4 How To Use The System 

Modula-2 on UCSD Pascal 
How To Use The System 

page 41 

This chapter describes the operation of the Modula-2 system. It covers the 
following topics: 

• Compiling programs 

• Executing programs 

• Library management. 

• Programming techniques 

Section 4.1 explains how to compile programs: how to invoke the compiler, 
what the compiler's console display means, and how to correct syntax errors. 

Section 4.2 explains how to execute programs. 

Section 4.3 explains library management: how to add modules to the system 
library, and how to bind a program module and all its library and subprogram 
modules into a single executable code file. 

Section 4.4 describes some useful programming techniques: how to structure 
large programs to compile and run in limited storage, how to locate execution 
errors, and tips on using the library effectively. 



Modula-2 on UCSD Pascal 
Compiling Programs 
page 42 

4.1 Compiling Programs 

The Modula-2 compiler is a one-pass recursive descent compiler for the 
Modula-2 language. It is written in UCSD Pascal, and can be operated either 
as the "system compiler" or as a user program. 

Unlike most UCSD Pascal compilers, the Modula-2 compiler is non-swapping; 
the compiler code remains resident in memory, allowing faster compilations. 

Modula-2 source programs are translated into executable p-Code files. No 
linking is necessary, as separately compiled modules are automatically bound 
together at run time. 

4.1.1 Invoking the Compiler 

The Modula-2 compiler is a code file named SYSTEM.COMPILER. It is 
invoked by typing "C" at the system prompt. 

Input and output file prompts are similar to those of the U CSD Pascal 
compiler. If a work text file exists, the compiler immediately begins 
compiling it; otherwise, the following prompt appears on the screen: 

Compile what file? 

After the input file name is entered, the output file prompt appears: 

To what file? 

The proper response to this prompt depends on the type of module being 
compiled. If the compilation unit is a program module, the output file 
prompt works as in UCSD Pascal; <cr> specifies the work file, "$" denotes 
the same file title as the input file, and ,a file title creates an explicitly 
named code file. 

When compiling a definition module or implementation module, the compiler 
ignores the output prompt response and names the output file according to 
the module name and type; in these cases, responding with a carriage return 
is sufficient. The output file is written to the prefi~ed volume. 

Compiler-generated output file names consist of a module name (truncated to 
a maximum of ten characters) followed by a file type suffix. The suffix 
".8YM" is appended to the module name if the compilation unit is a definition 
module. The suffix ".MOD" is appended if the compilation unit is an 
implementation module. For example, compiling -a definition module named 
"Foon" produces a disk file named "FOON .SYM". This naming convention is 



Modula-2 on UCSD Pascal 
Compiling Programs 

page 43 

required by both the compiler and loader (see 2.1.5 for details). The 
Modula-2 compiler can also be executed as a user program. Its file name is 
usually M2.CODE. When executed, the compiler's initial console display 
appears first, followed by an input file prompt. The work file is ignored. 
An output file prompt does not appear; the compiler automatically names the 
output file as if '$' had been typed to an output prompt. 

4.1.2 Console Display 

Here is an example of a console display: 

Modula-2 Compiler by Volition Systems 
Version p-Code ll.2 0.3a 11 Sep 82 
Copyright 1982. All rights reserved. 

MODULE Test; 

* 2 InOut [6221] 

* 3 SystemTypes [5804] 
* 3 Program [5722] 

* 4 Files [5188] 

***** 2247 
9 Proc1 [3267] 

18 ModI 3 [3132] 
20 Proc2 5 [3175] 
22 Proc3 4 [3233] 
24 Test 6 [3296] 

27 lines, 3132 words left 
82 bytes generated 

The first line indicates the name and type of the compilation unit. 

(If Test were a definition module, the line would appear as "DEFINITION 
MODULE Test"; if an implementation module, "IMPLEMENTATION MODULE 
Test".) 

The compiler prints a line whenever it finishes importing a libary module or 
encounters the beginning of a procedure or module body. An asterisk in the 
leftmost column indicates an imported library module. The second column 
displays the current line in the source program. The third column displays 
the name of tqe procedure or module; the indentation indicates the lexical 
level of the pr~cedure or module. (Note that nested procedures increase the 
lexical level, but nested modules do not.) The fourth column displays the 
procedure numbers assigned to procedures and module bodies; these are useful 
for locating execution errors (see 4.4.6 for details). The rightmost column 
[enclosed in bracfets] displays the number of words left in memory. 

; 



Modula-2 on UCSD Pascal 
Compiling Programs 
page 44 

A t the end, the compiler prints the total number of source lines compiled, 
the minimum number of memory words available during compilation, and the 
number of bytes in the produced code segment. 

NOTE- When the recycling option is enabled (3.3.10), the compiler 
prints a row of five asterisks on . the screen: each asterisk 
indicates the completion of a recycling phase. Following the 
last asterisk is an integer value indicating the number of words 
reclaimed by recycling. The normal console display resumes 
when recycling is completed. 

4.1.3 Error Handling 

The compiler handles two kinds of errors: syntax errors and library errors. 
Syntax errors are handled as in UCSD Pascal; the user is prompted to either 
abort the compiler, resume compilation, or invoke the editor. Library errors 
are always fatal; the compiler prints a message and then terminates. 

When the compiler discovers a syntax error, a _prompt appears on the console 
display: 

IMPORT a,b 
EXPORT «« 
Line 77, I;' expected 
Type <escape>, E(dit, <Sp>(continue) 

The first two lines display the source text where the error occurred; the 
arrows point at the last symbol compiled. The third line displays the current 
line number and a textual error message describing what is wrong. The last 
line is a prompt line indicating your available options. 

Typing <space> resumes compilation; the compiler usually recovers from the 
syntax error, and proceeds either to the next error or to the end of the 
program. 

Typing <escape> terminates compilation and returns control to the system 
prompt line. 

Typing "En terminates compilation and automatically invokes the editor. When 
the proper input fHe is specified, the editor positions the cursor at the 
location of the error and again prints the message describing the syntax 
error. 

Textual error messages are displayed only when the file "SYSTEM.SYNTAX" is 
on the system (boot) disk volume; otherwise, the compiler only displays the 
error number. Appendix 3 contains a list of compiler syntax error messages 



and their assigned numbers. 

Modula-2 on UCSD Pascal 
Compiling Programs 

page 45 

NOTE- The Advanced System Editor (ASE) works with both Modula-2 
and U CSD Pascal "SYSTEM .SYNT AX" files; however, the 
standard editor does not work correctly with the Modula-2 SYS­
TEM.SYNTAX. If you are still using the standard editor (or if 
you regularly use both compilers), change the name of the 
Modula-2 error file to "MODULA.SYNTAX". The Modula-2 
compiler will still display textual error messages, but the editor 
will display only error numbers. 

NOTE- On fatal errors, the <space) option is not available; the only 
options are to enter the editor or terminate compilation. 

Library error messages are handled differently than syntax error messages and 
are displayed in a variety of formats. Common library errors include: 

• Missing library files. 

• Invalid library files (usually an improperly updated system library 
file). 

• Module version errors. 

• Failure to assign a segment number to a definition module. 

• Occurrences of variable or procedure declarations' in 
"compile time" (segment 1) definition modules. 

NOTE- All syntax errors become "fatal" errors if they occur while 
compiling a symbol file. This will not happen under normal 
circumstances. 

NOTE- When the compiler is operated as a user program, the E(dit 
option is not available. To locate a syntax error in this case, 
note the line number and error; next, enter the editor with the 
source file, move the cursor down by the right number of lines, 
and you should end up right next to the syntax error. 



Modula-2 on UCSD Pascal 
Executing Programs 
page 46 

4.2 Executing Programs 

Modula-2 programs are executed identically to UCSD Pascal programs. Type 
"X" from the system prompt. The following prompt appears: 

Execute what file? 

Type the file title of the Modula-2 program's code file, then a carriage 
return. After a few disk accesses, the program is loaded and begins 
executing. Modula-2 programs generally take longer to load than Pascal 
programs, as library modules must be located in the library and then loaded 
into memory along with the program module code. 

Modula-2 programs may fail to execute because of a load error; in this case, 
the loader prints an error message explaining the problem and returns control 
to the system prompt. 

NOTE- Section 4.4.6 describes execution errors and how to locate 
them. 

NOTE- The execution of Modula-2 programs from the system prompt 
is implemented as a three-step process. The compiler 
automatically writes a 2-block header on the front of every 
program module's code file; the header contains a small 
bootstrap program which is executable from the system prompt. 
When a Modula-2 program is executed, the system loads' and 
executes the bootstrap program, whose primary task is to find 
the loader module in the system library, load it, and call it. 
The loader then goes back to the executed code file, loads the 
program module (and all of its imported library modules), and 
calls the program module. 



4.3 Library Management 

Modula-2 on UCSD Pascal 
Library Management 

page 47 

This section describes how to manage the Modula-2 library. Topics covered 
include operation of the library manager utility, how to use the library 
manager to update the system library file and create program libraries. 

4.3.1 Using the Library Manager 

The library manager is a utility program which is used to manipulate library 
files. Common operations on library files include inserting and deleting 
library modules from the system library file, and combining user library files 
into a single program library file. 

The library manager also has the ability to "hide" modules stored in a library 
file. Hiding a module is equivalent to deleting it from the library, but holds 
a couple of advantages over outright deletion. The entire library file need 
not be updated to hide a module; hiding is a faster operation than deletion. 
Also, a hidden module is only temporarily deleted; the module can be 
subsequently restored by "unhiding" it. Hiding unused system modules 
improves system efficiency by reducing the amount of memory-resident library 
information. Hiding is also a useful program development tool (see 4.4.4 for 
details). 

WARNIN G - The rest of this section is best read in front of the 
terminal with the library manager program running; otherwise, it 
is tedious! 

The library manager is invoked by X(ecuting the code file named LIB. After 
a few disk accesses, the following prompt appears: 

Lib: U(pdate C(reate S(tatusQ(uit <esc> [842'1] 

This prompt marks the outer level of the library manager. Q(uit and <esc> 
return you to the system prompt. S(tatus displays the modules in a library 
'file and is used to hide and unhide modules. C(reate makes a new library 
file· by copying modules from existing library files. U(pdate inserts and 
deletes modules in an existing library file. 

The commands Q(uit and <esc> appear on most every prompt in the library 
manager. Q(uit terminates the current command level and updates the library 
file to reflect the changes made at that level. Typing <esc> terminates the 
current command level without updating the file. 

<esc> always issues a prompt when it is typed: 

Are you sure! 



Modula-2 on UCSD Pascal 
Library Management 
page 48 

Typing "Y" escapes the current command level; typing any other character 
returns you to the current command level. 

The integer value enclosed in brackets also appears on many library manager 
prompts; it displays the number of available words left in memory. 

NOTE- Whenever a file name prompt appears in the library manager, 
you can type '*' to specify the system library file. The library 
manager recognizes ,*, as a shorthand form of the system library 
file - the file name "MODULA.LIBRARY" is searched for on the 
prefixed volume, then on the system volume. 

S(tatus 

Type "S", and the following prompt appears: 

Name of file for Status! 

Type the complete file name of the library file you wish to modify, then 
type <return>. 

A new prompt line appears across the top of the screen: 

Status: B(ide U(nhide LOb Q(uit <esc> P(rev N(ext [8244] 

Output file: *MODULA.LIBRARY 
i Mod Name Seg DLen ILen 
1 Program 2 D I 6'14 1628 
1 SubProgram 3 I 2304 
1 Storage 4 D I 234 854 
2 SystemType 1 D I 205 0 
3 UnitlO 1 D I 843 0 
4 BlocklO 1 D 71'1 
5 ASeD 1 I 0 
6 MyProg 10 I 1066 
'I InOut 54 DB IB 5'14 930 
8 MathLibO 50 DB 282 

The output file name is identical to the input file name you typed earlier, as 
only the library file's attributes are being modified. 

The table starting on the next line is known as the module display; it 
displays all the modules contained in the library file. The numbers beneath 
the pound sign " 41" are used to select modules in various library manager 
commands. The module names are truncated to ten characters. 



Modula-2 on UCSD Pascal 
Library Management 

page 49 

The "Seg" field displays the module segment number. Segment numbers 
worthy of note here are 1 (indicating ,compile-time modules), 2 and 3 
(assigned to the loader and its subprogram), 4 (storage manager), and 7 
(assigned only to program modules, which are treated as implementation 
modules by the module display). 

The next two fields indicate whether the displayed library module includes a 
definition module, implementation module, or both. The letter "0" appears if 
the definition module is in the library, while "I" denotes the presence of an 
implementation module. If either of these letters is followed by "H", the 
indicated module is currently hidden (i.e. inaccessible by the compiler and 
loader). 

The last two fields indicate the module sizes (in bytes). An implementation 
module size indicates the size of the module's code segment. A definition 
module size indicates the number of bytes in the symbol file. Values are 
displayed as (decimal) integers. Note that the implementation module size is 
o for "compile-time" modules. 

Up to 40 module entries can be displayed on the screen at one time. If the 
library contains more than 40 module entries, use the N(ext and P(rev 
commands to move between module displays. N(ext displays the next 40 
module entries in the library, while P(rev displays the previous 40 module 
entries. Note that P(rev and N(ext have no effect unless the current library 
file contains more than 40 modules. 

NOTE- Be sure you understand the module display (and its associated 
commands), as it appears throughout the library manager. 

S(tatus commands 

H(ide and U(nhide produce the following prompt: 

Which module i, A(ll, <esc>! 

Typing a module entry number followed by <return> specifies a single module 
entry. " A" specifies all module entries in the current module display. 

Once one (or all) module entries have been specified, this prompt appears: 

D(ef, I(mp, B(oth, <esc>! 

D(ef (un}hides the module entry's definition module, I(mp (un}hides the 
implementation module. B(oth (un)hides both modules. After you respond to 
this prompt, the module display is updated to reflect the new status of the 
specified module (s); the "H" character either appears or disappears from the 



Modula-2 on UCSD Pascal 
Library Management 
page 50 

"D" or "I" indicating the specified module(s). 

L(ib assigns new library numbers to system library files. 
prompt appears: 

Current Lib I = 1957 
New Library' ? 

The following 

The value displayed on the first line is the library number stored in the 
current system library file. The new library number is entered and then 
terminated by typing <return>. 

Library numbers are used to uniquely identify system library files originating 
from different systems; they can be used as "system identifiers" when 
program development is distributed across a number of different systems. 
The library number becomes a part of the module key assigned to every 
definition module compiled on a given system. 

NOTE- Any file created for use as the system library file 
MODULA.LIBRARY must have the L{ib command performed on 
it.· The compiler and loader will not open a system . library file 
if has not been assigned a library number. 

C(reate 

Type "C" from the library manager's outermost prompt line, and the following 
prompt appears~ 

Name of file to Create! 

Type the complete file name of the library file you wish to create, then type 
<return>. 

A new prompt line appears across the top of the screen, and the module 
display (described above) is displayed below it: 

Create: C(opy LOb Q(uit <esc> P(rev N(ext [777'1] 

The output file name displayed on the screen is the name of the file you 
wish to create. The module display is initially empty; the C(opy modules 
command fills up the module display with modules (;opied from other library 
files. 

The C(opy modules command produces the following prompt: 

Kame of file to Copy from! 



Modula-2 on UCSD Pascal 
Library Management 

page 51 

Type the complete file name of the library file you wish to copy modules 
from, then type <return>. A new prompt line appears across the top of the 
screen: 

Copy: S(elect D(eselect BUde Un(hide Q(uit <esc> P(rev N(ext 

The current module display is replaced with the module display of the library 
file just specified. Modules are selected from this module display for copying 
into the new library file's module display. 

Modules are selected for copying with the S(elect and D(eselect commands. 
S(elect and D(eselect produce the following prompt: 

Which module I, A(ll, <esc>! 

Typing a module entry number followed by <return> specifies a single module 
entry. nAn specifies all module entries in the current module display. 

Once one (or all) module entries have been specified, this prompt appears: 

D(ef, I(mp, B(oth, <esc>! 

D(ef (de)selects the module entry's definition module, I(mp (de)selects the 
implementation module. B(oth (de)selects both modules. After you respond to 
this prompt, the module display is updated to reflect the modules that have 
been selected for copying; the presence of an asterisk n*n preceding a nDn or 
"P' in the module display indicates that the corresponding module has been 
selected for copying. 

NOTE - The S(elect command automatically selects the library module 
contained in a one-module library file; the additional prompts do 
not appear. 

Typing Q(uit from the Copy prompt copies the selected modules into the new 
library file. The new library file's module display reappears on the screen; it 
now includes the modules copied from the last library file. The Create 
prompt line also reappears, allowing you to use the C(opy modules command 
to copy additional modules from other library files. 

Typing <esc> returns to the Create prompt without copying any modules. 



Modula-2 on UCSD Pascal 
Library Management 
page 52 

NOTE - The library manager performs some library integrity checks 
normally performed by the compiler and loader; in particular, it. 
prevents the following situations from occurring: 

• Inclusion of duplicate module names into a library file. 

• Inclusion of a definition or implementation module when its 
companion module has an incompatible module key. 

• Inclusion of a module that references other modules in the 
library file when the module keys do not match. 

NOTE- The available memory (as displayed on the prompt lines) 
shrinks as additional modules are copied into the new library 
file. The library manager can build libraries containing arbitrary 
numbers of modules, but limits the total size of a library file to 
what can fit in memory at one time. The memory available 
value indicates when this limit is approached; if it gets close to 
0, do not copy any more modules into the library! 

To leave the C(reate command, type Q(uit or <esc>. Q(uit finishes writing 
the output file and saves it on disk. <esc> exits the C(reate command, but 
purges the output file. After both commands, control is returned to the 
library manager's outer prompt. 

U(pdate 

The U(pdate command is similar to C(reate, but is used to change the 
contents of- an existing library file. U(pdate first prompts for the input and 
output file ~ames; typing a "$" as the output file name causes the output file 
to have the same name as the input file. After the output file is specified, 
U(pdate automatically performs a C(opy and S(elect of all modules in the 
input file. Modules are then removed with D(eselect or added by C(opying 
modules from other library files. U(pdate also performs an automatic L(ib 
operation on the output file, assigning it the library number from the input 
file; thus, L{ib need not (and in fact should not) be invoked. 



4.3.2 Updating the System Library 

Modula-2 on UCSD Pascal 
Library Management 

page 53 

The system library file is usually updated with the library manager commands 
S(tatus and U(pdate. (C(reate is generally used only for building program 
libraries.) 

S(tatus is used to hide modules or change library numbers. Note that S(tatus 
is a much faster operation than U(pdate. S(tatus does not copy the existing 
library to a new file; it merely updates information in the current library 
file. 

U(pdate is used to insert or delete modules from the system library. The 
output file is named "MODULA.LIBRARY"; the output file thus replaces the 
old system library file when it is written out to disk. 

A system library file must contain the modules Program, SubProgram, and 
Storage - the L(ib command will not work without them, and a system 
library file is unusable if not assigned a library number. Note that hiding 
has no effect on their implementation modules. 

WARNIN G - Do not hide or delete library modules used by the library 
manager: Terminal, BlockIO, Screen, ASCII, Conversions, UnitIO, 
and Standards. If you do, the library manager cannot be 
invoked again, making it impossible to subsequently update the 
library (in particular, unhiding the unwisely hidden modules). If 
this does happen, you will have to transfer a new copy of the 
system library file from your backup disks. 

4.3.3 Creating Stand-alone Programs 

Program files (2.1.4) are code files that contain a program module and all of 
its subsidiary library modules (possibly including subprogram modules). 
Program files are not truly stand-alone programs; the system library file must 
still reside separately on disk (in the file MODULA.LIBRARY). 

C(reate is used to collect modules from several user library files into a 
single program file. Program files are usually - but not necessarily - named 
after the (main) program module contained within. Remember to add the 
".CODE" suffix to the output file name. 

In order for a program file to work correctly, the "main" program module 
must be the first module copied into the output library file. The loader 
assumes that the last program module in the file - i.e. the first module 
copied into the library file - is the one to be called. 



Modula-2 on UCSD Pascal 
Library Management 
page 54 

NOTE - See 4.4.2 for details on structuring large programs into 
program libraries. 



4.4 Programming Techniques 

Modula-2 on UCSD Pascal 
Programming Techniques 

page 55 

This section describes techniques which improve the effectiveness of the 
Modula-2 system. It covers the following topics: 

• Maximizing compile-time space 

• Maximizing run-time space 

• File naming conventions 

• Using the library 

• Accessing machine-level operations 

• Locating execution errors 

Sections 4.4.1 and 4.4.2 describe techniques for making programs compile and 
execute as efficiently as possible. 

Section 4.4.3 suggests some naming conventions for organizing the source files 
of library modules. 

Section 4.4.4 explains how to make efficient use of the library system. 

Section 4.4.5 explains how to take advantage of set operators' and type 
transfer functions to obtain some useful low-level operations. 

Finally, section 4.4.6 explains how to use execution error messages and 
compiled listings to track down execution errors. 



Modula-2 on UCSD Pascal 
Programming Techniques 
page 56 

4.4.1 Maximizing Compile-time Space 

Modula-2's separate compilation facilities play an important role in the 
development of large programs on limited-resource machines. On such 
systems, the compiler tends to occupy most of available memory, leaving 
relatively little space for symbol table storage and thus limiting the size of a 
compilation unit. Languages such as Pascal equate compilation units with 
programs, thereby imposing strict limits on the size of a program. Modula-2's 
ability to construct programs from separate compilation units allows the 
development of much larger programs than can be written in Pascal. 

NOTE - It is worth noting tha t the use of modules to restrict the 
visibility of identifiers - presented earlier in this manual as a 
technique for improving program understandability - proves to 
be an implementation asset by reducing the demands on symbol 
table storage. 

The Modula-2 language offers the possibility of significantly increasing the 
amount of available symbol table space. First, a compiler can recycle symbol 
table storage allocated for a local module's private variables once the module 
has been compiled. Second (and more important), after compiling the symbol 
file of an imported definition module, a compiler can recycle the storage 
allocated for symbols not actually imported by the client module. The 
Modula-2 compiler provided with this system is capable of performing the 
latter space optimization. 

Storage reclamation is controlled by the compile option $RECYCLE (3.3.10). 
Recycling can create up to 2000 extra words of compile space at the 
expense of slightly slower compilations (due to the extra time spent in the 
recycling phase). 

Definition module recycling can significantly affect the design of large 
compilation units which import identifiers from many different library 
modules. A definition's modules symbols are recycled only if the module is 
subjected to unqualifying import. In unqualifying import, the compiler retains 
the symbol records of identifiers actually imported from the module; the 
remaining definition module identifiers are disposed of. If a library module is 
imported by name, then all of its (exported) identifiers are potentially 
accessible and therefore cannot be recycled. In short, recycling is most 
effective when unqualifying import is used on all library modules. 

Another factor '.lffecting compile-time symbol table space is the number of 
modules in the system library. The compiler maintains information in memory 
describing all modules in the system library (2.1.5); thus, very large system 
libraries may consume nontrivial amounts of compile-time storage. The 
recycle· option reclaims library information along with unused library 
identifiers, so this is ultimately not a serious problem; however, the need for 
recycling can be minimized by limiting the system library to only the modules 



Modula-2 on UCSD Pascal 
Programming Techniques 

page 57 

needed for a particular system configuration; this not only saves compile 
space on (nonrecycling) compilations, but makes system library updating more 
efficient (because of the smaller library file). 

4.4.2 Maximizing Run-time Space 

Large programs usually consist of a number of code "overlays" in order to 
reduce the amount of memory occupied by program code. For instance, 
UCSD Pascal provides "segment" procedures whose code remains disk-resident 
until they are called. Code management in Modula-2 is performed by dividing 
a large program into a collection of subprograms, and using the loader to 
execute subprograms as procedures. Unlike segment procedures, Modula-2 
subprograms are complete programs; they can in fact be executable programs 
themselves. Note that subprograms may share the system's dynamic storage, 
thus allowing a subprogram to build dynamic data structures that are 
available to the main program after the subprogram terminates. Subprograms 
communicate with calling programs by importing the same library modules and 
sharing their variables. 

The subprogram call concept has a number of advantages over the use of 
segment procedures. Subprograms can be written and tested as executable 
programs before being incorporated into their host program, thus making 
possible a true "building block" approach to the design of large software 
systems. Shell/menu programs can be written which prompt for the name of 
a Modula-2 program module (or Pascal program), execute it, and then 
redisplay the command prompt. 

Because programs are independent with respect to segment assignment, a 
single program can call arbitrarily many subprograms (eliminating UCSD 
Pascal's "ran out of segments" syndrome). In very large programs, the 
subprogram call concept can be more efficient than than having a single 
program with many segments. A program containing large numbers of 
segments requires segment information to be memory-resident for the life of 
the program, whereas subprogram calls accumulate memory-resident segment 
information only on nested subprogram calls (when existing segment entries 
are temporarily displaced by a subprogram's segments). 

The optimal structure for large Modula-2 systems is a base program which 
serves as a global environment for its subprograms (and as a "shell" or 
"menu" to the user) and a large number of independent subprograms, each 
representing a different function within the system. 

The primary disadvantage of subprogram calls is that they usually require 
more disk accesses than a corresponding segment procedure call. The library 
system is designed to minimize this problem; in particular, it allows for 
differing uses of subprograms. Subprograms are generally used in one of two 
ways: either as segment programs (purposely similar to "segment 



Modula-2 on UCSD Pascal 
Programming Techniques 
page 58 

procedures"), or as subsystems. 

Subsystems have the following properties: they perform well-defined functions, 
they are sUbstantial programs with a number of subsidiary library modules, 
and they are called relatively infrequently. A typical example would be the 
role played by the library manager. From the system's point of view, the 
extra disk accesses required to load a subsystem are acceptable losses in 
system performance given the advantages of the SUbsystem concept. 

The proper way to structure a subsystem is to bind the program module and 
all of its subsidiary modules into a single program file. The structure of the 
software system is reflected in the way it is stored in the library: a central 
code file executed as a "shell", and a collection of program files each of 
which represents a different subsystem. On subsystem calls, the loader 
searches the disk only once for the subprogram file; since subsidiary modules 
are contained in the same file, they load relatively quickly. 

Segment programs have the following properties: they are localized to a 
single program, and they are called relatively frequently. Segment programs 
do not have any subsidiary library modules, as they usually serve subsidiary 
roles themselves; e.g. initializing the global data structures of a host 
program. From the system's point of view, it is desirable that they are 
loaded and unloaded as quickly as possible to minimize the (inevitable) 
degradation in system performance caused by loading a code file from disk. 

The proper place for a segment program is in the program file of its host 
subsystem; here it serves its role as a subsidiary module. Because the library 
information describing subsidiary modules is memory-resident during the life of 
the host subsystem, the subprogram call requires no disk accesses other than 
reading in the code segment itself - it thus loads as quickly as a U CSD 
Pascal segment procedure. 

The Modula-2 system also provides a feature for simplifying the storage 
management in large systems. Because the system provides true dynamic 
storage management, it is necessary to explicitly deallocate all dynamically 
allocated variables. This requirement can be a severe limitation when it is 
necessary to reclaim storage allocated by subprograms that have to construct 
complex dynamic structures. To address this problem, subprogram calls have 
the option of controlling whether the called program shares dynamic storage 
with the calling program. On shared subprogram calls, all structures created 
by the subprogram are retained when the subprogram terminates. On 
unshared calls, all storage allocated by the subprogram is automatically 
deallocated upon subprogram termination. See Standard Library for details. 

Another factor affecting run-time storage space is the presence of in-memory 
library information maintained' by the loader. The loader keeps information in 
memory describing all modules in the system library; thus, very large system 
libraries may consume nontrivial amounts of run-time storage. In most cases, 



Modula-2 on UCSD Pascal 
Programming Techniques 

page 59 

it is desirable to pare the system library down so it contains only the 
modules used by a particular system configuration. Library information is 
also minimized by maintaining the subprograms of a very large program in 
separate program files rather than lumping them together into a single (and 
possibly huge!) program file. 

4.4.3 File Naming Conventions 

A library module X consists of up to four disk files: two text files 
(containing definition and implementation module sources), a symbol file, and 
an object file. The compiler automatically assigns the file names "X.sYM" 
and "X.MOn" to the symbol and object files; however, the user is responsible 
for naming the text files. A problem arises because there are two text files 
meriting the file name "X. TEXT". A standard convention is to name the 
definition module source file "XD.TEXT" and the implementation module 
source file nX.TEXT". These names are distinct, but similar enough to relate 
the files (and to manipulate them in the filer as the wildcard entity 
"X=TEXT"). 

NOTE- Compiler-assigned output file names (i.e. files with the 
suffixes ".SYM", It.MOD", and ".CODE") should not be changed, 
as they are an essential part of the library access scheme. 

NOTE - Given the proliferation of disk files resulting from library 
modules, the system library file is seen to serve as a facility 
for reducing the number of disk directory entries used up by 
collections of library modules. 



Modula-2 on UCSD Pascal 
Programming Techniques 
page 60 

4.4.4 Using the Library 

The system library provided with the Modula-2 system contains all library 
modules provided with the system. As a result, the library file is rather 
large and unwieldy: it consumes a lot of disk space, slows down the compiler 
and loader, and reduces the amount of compile-time and run-time space 
available. Fortunately, you can make the whole system more efficient and 
easier to use by removing unused library modules from the system library; the 
smaller the library is, the better the system runs. 

Here is how to tailor the Modula-2 system to your needs: 

• Save a copy of the original system library file on an archive 
disk (to ensure that you never accidentally delete the only copy 
of some library module). 

• Learn how to use the library manager. 

• Determine which library modules you will be using for your next 
programming project. (e.g. "Do I really need decimal arithmetic 
in my r~al-time turboincabulating system?") 

• Check the module hierarchy (in the Implementation Guide) to 
see if the library modules you have chosen happen to import 
some other library modules - you will need these, too. 

• Use the library manager to construct a new system library. file 
containing only the library modules you need. Put the new 
system library file on your system disks and start programming! 

• When your program is done, remember that definition modules 
can be deleted from the library without affecting program 
execution; they are needed only for compilation. 

The library manager allows modules stored in the system library file to be 
"hidden" so they cannot be accessed by the compiler or loader. . You can 
take advantage of the fact that hiding a module in the system library is a 
much faster operation than updating the system library with a new library 
module. If a module stored in the system library is found to be incorrect 
(and thus requires updating and testing), it is faster to hide the existing 
module and perform all updates and testing with the user library. Only after 
the module is performing correctly need it be inserted into the· system library 
to replace the old (hidden) version. Section 2.1.6 explains how to make 
efficient use of the library during program development. 

The compiler and loader check for a system library file on the prefixed 
volume before checking the system volume. If your system is configured to 
operate with the system library file on the system volume, you can exploit 
this property of the library search algorithm (2.1.5) to test new versions of 



Modula-2 on UCSD Pascal 
Programming Techniques 

page 61 

the system library without having to disturb the existing system library file. 
When the system library file is updated, write it to the prefixed volume with 
the standard name "MODULA.LIBRARY". When the next Modula program is 
executed, it will access the system library file on. the prefixed volume. If 
the new system library is correct, delete the old system library file and 
transfer the new file to the system volume. If the new system library is 
nonfunctional, just delete it - the system is now back to its original state. 

NOTE- Programs load slightly faster if the system library file resides 
on the same disk as the user library and program library files; 
thus, it is usually preferable to keep the system library file on 
the prefixed disk along with the rest of the library. 

4.4.5 Accessing Low-level Machine Operations 

The type conversion functions allow access to a few useful machine-level 
operations. The full-word logical operations AND, OR, XOR, and bit masks 
are achieved with Modula-2's set operators. Operands must be converted to 
type BITSET. 

set operator 

union n+" 
intersection "*n 
symmetric difference "In 
difference n_n 

machine operation 

logical OR 
logical AND 
logical XOR 
bit mask 

Multi-word comparisons for equality and inequality are achieved by converting 
the operands to sets (of corresponding length) and using the set operators n=n 
and niH. 

Before using sets for multi-word operations, be aware that the maximum set 
size varies across implementations. On 6502's, the maximum set size is 32 
words; the remaining processors allow full 255 word sets. Multi-word 
comparisons are not advisable on packed records and arrays, as most packed 
structures contain unused (and thus uninitialized) bit fields which prevent 
accurate comparisons. 

Character variables declared at fixed addresses are accessed as byte 
quantities. This allows acc~ss to individual bytes without disturbing adjacent 
memory - a necessary attribute for accessing such objects as bank switches 
and I/O registers. 



Modula-2 on UCSD Pascal 
Programming Techniques 
page 62 

4.4.6 Locating Execution Errors 

Execution errors are handled either by the calling program or (in the default 
case) by the system. Since program-controlled execution error handling 
indicates only the occurrence of an error and not its actual location, 
execution errors are best handled by the system. 

On a system-controlled execution error, the system terminates the program 
and displays a multi-line error message describing the error. The first line 
of the message indicates the location of execution error. Successive lines 
display the procedure call chain; i.e. the series of procedure calls leading 
from the error back to the outer block of the program. (Procedure call 
chains are commonly known as "walkbacks".) Following the call chain is a 
textual error message and a prompt line. 

Example of an execution error message: 

>M=MyModule, P=23, 1=432 
AM=BasicMod, P=5, 1=18 
AM=MainProg, P=12, 1=174 
AM=MainProg, P=2, 1=291 
Range Error, type <space> 

Typing the space bar terminates the current program and returns control to 
the calling program. 

Note that the messages describing the execution error location and call chain 
have similar form. Each consists of a module (compilation unit) name, 
procedure number within the module, and code offset within the procedure. 
The character I>' marks the message describing the execution error location. 
The character ,A, marks messages describing the location of each procedure 
call in the call chain. 

To find the locations of error and procedure calls within your source 
programs, you must match the procedure numbers and code offsets in the 
error message with the values displayed in compiled listings (see 3.3.5 for 
details). 

Thus, the first thing to do is find (or create) up-to-date compiled listings of 
the named modules. Proc(:dures are located by matching the procedure 
number with the procedure number on the listing; similarly for the code 
offset. Note that in many cases the displayed code offset does not match 
any value displayed in the listing; this is because each source statement 
produces arbitrary numbers of bytes of code. To track down the erroneous 
source line, find the largest code offset value which is smaller than the 
displayed offset value. 



Modula··2 on UCSD Pascal 
Programming Tec hniques 

page 63 

To simplify the pursuit of execution errors, the compiler provides the compile 
option $DEBU G (3.2.13). When a module is compiled with DEBU G set to 
TRUE, the execution error message displays the procedure name in place of 
the procedure number. With symbolic procedure names in the call chain, it 
becomes possible to trace execution errors without using compiled listings. 

Example of a symbolic execution error message: 

>M=MyModule, P=BigProc, 1=432 
AM=BasicMod, P=StartSort, 1=18 
AM=MainProg, P=InitFiles, I=174 
AM=MainProg, P=MainProg, 1=291 
Range Error, type <space> 

Note that an execution error message may include both procedure names and 
procedure numbers. Because symbolic procedure information can be specified 
on a per-module (or even per-procedure) basis, error messages display 
procedure names only if they are available in the code file. 

NOTE- The maximum call chain depth displayed is 10 calls. 

NOTE - Sometimes an execution error may occur within a standard or 
utility module; although compiled listings of these modules. are 
unavailable, the call chain should lead back to one of your own 
modules. The most likely causes of such errors ara invalid 
parameters passed to system routines. 

NOTE- Execution error messages do not appear (in system-controlled 
mode) if a subprogram terminates with program results 
NormalReturn or ProgramHalted. The standard procedure HALT 
terminates a program with program result ProgramHalted. 

NOTE- If an execution error occurs in a called Pascal program, the 
error message displays segment numbers in place of module 
names. Note that Pascal program outer blocks are not displayed 
in the call chain. 



Modula-2 on UCSD Pascal 
Module Segment Numbers 
page 64 

Appendix 1 Module Segment Numbers 

The following table indicates the segment numbers assigned to modules 
contained in the system library. Segments are assigned so that the most 
frequently used library modules reside in the highest numbered segments. 

Segments 0 through 6 are reserved for the Modula-2 system. Program 
modules always reside in segment 7. Segments 8 through 47 are available for 
user-defined library modules. Segments 48 through 63 are provisionally 
reserved for library modules provided with the system. 

Many of the standard library modules are interdependent; importing one of 
these modules implies the importation of other modules, resulting in the use 
of extra segments. Standard Library describes library module dependencies. 

The utility module ASCn and all system-dependent modules are compile-time 
modules, and thus are assigned segment 1. 

NOTE- Segments 59 through 63 are reserved for certain 
implementations. See the Implementation Guide for details. 

Library module segment assignment: 

Program 2 
SubProgram 3 
Storage 4 
Decimal 48 
Processes 49 
MathLibO 50 
RealInOut 51 

Reals 52 
Strings 53 
InOut 54 
Conversions 55 
Texts 56 
Files 57 
Terminal 58 



Modula-2 on UCSD Pascal 
Compiler Directives 

page 65 

Appendix 2 Compiler Directives 

$DEBUG 

$ELSIF 

$ELSE 

$END 

$FLIP 

$IF 

$IN 

$LIST 

$NOT 

$POP 

$PUSH 

Setting DEBUG to TRUE causes the compiler to 
emit code file information which enables 
execution error messages to display symbolic 
procedure names. The default setting is FALSE. 

"$ELSIF <expression) THEN" marks an alternate 
choice of a conditionally compiled section of 
program text. The following text is compiled 
only if the previous section of text was not 
selected and the expression evaluates to TRUE. 

Marks the default part of a conditionally 
compiled section of program text. The following 
text is compiled only if the previous section(s) 
of text was not selected. 

Marks the end of a conditionally compiled section 
of program text. 

Setting FLIP to TRUE causes the compiler to generate 
code files for processors of the opposite byte-sex. 
The default setting is FALSE. Set at top of program. 

"$IF <expression) THEN" marks the start of a 
conditionally compiled section of program text. The 
following text is compiled only if the expression 
evaluates to TRUE. 

The following string contains the name of a text 
file to be included into the program text. 

Setting LIST to TRUE generates a compiled listing. 
FALSE suppresses listing. The default setting 
is FALSE. The TO option must be used for LIST to 
have any effect. 

The following string is embedded in the object or 
symbol file as a copyright notice. NOT must be 
set after the initial module heading. 

Sets the specified Boolean variable to its previous~y 
stacked value. 

Stacks the current value of the specified Boolean 
variable. . 



Modula-2 on UCSD Pascal 
Compiler Directives 
page 66 

$QUIET 

$RANGE 

$RECYCLE 

$SEG 

$SET 

$SPECIAL 

$STANDARD 

$TO 

$TYPE 

$UPCASE 

Setting QUIET to TRUE suppresses the compiler's 
console display. The default setting is FALSE. 

Setting RANGE to TRUE generates runtime range checks 
on array and subrange references. FALSE suppresses 
checks. The default setting is TRUE. 

Setting RECYCLE to TRUE enables the symbol table 
recycling phase in the compiler. The default 
setting is FALSE. Set at top of program. 

Assign the module segment number to the definition 
module. Set after module heading. 

If a string parameter is provided, it is written 
to the screen as a prompt; otherwise, the 
compile-time variable name is printed on the screen 
followed by a'?'. Typing 'y' or It' sets the 
variable to TRUE; 'nf or ff' sets it to FALSE. 
Cardinal numbers may also be entered. 

Setting SPECIAL to TRUE alters the Modula-2 
vocabulary for systems with half ASCn character 
sets. The default setting is FALSE. Set at top 
of program. 

Setting STANDARD to FALSE allows the use of Modula-2 
language extensions. The default setting is. TRUE. 
Set at top of program. 

Writes a compiled listing to the file named by the string 
parameter. Sets LIST to TRUE. Set at top of program. 

The string parameter is written to the screen. 

Setting UPCASE to TRUE sets SPECIAL to TRUE and 
translates all lower case characters to upper case. 
The default setting is FALSE. Set at top of program. 



Appendix 3 Compiler Error Messages 

1: N on-standard construct 
2: Constant out of range 
3: Open comment at end of file 
4: String terminator not on this line 
5: Too many errors 
6: String too long 

Modula-2 on UCSD Pascal 
Compiler Error Messages 

page 67 

7: Copyright must appear after MODULE and before PROCEDUREs 
8: 10 error on output code file 
9: Unable to open include file 

10: 10 error opening output code file 
11: illegal character in text 
12: Unexpected end of source file 
13: 10 error reading System Library 
14: illegal System Library 
15: 10 error on listing file 
16: Error in $ directive 
17: $ options must be more than 1 letter long 
18: $IF not closed with $END at end of file 
19: $ELSIF, $ELSE, or $END without previous $IF 
20: Identifier expected 
21: Integer constant expected 
22: 'l' expected 
23: ';' expected 
24: Block name at the END does not match 
25: lllegal declaration or block terminator 
26: ':=' expected 
27: Error in expression 
28: 'THEN' expected 
29: Error in LOOP statement 
30: Constant must not be CARDIN AL 
31: Error in REPEAT statement 
32: 'UNTIL' expected 
33: Error in WHILE statement 
34: 'DO t expected 
35: Error in CASE statement 
36: 'OF' expected 
37: ':' expected 
38: 'BEGIN' expected 
39: Error in WITH statement 
40: 'END' expected 
41: f)' expected 
42: megal component in constant 
43: '=' expected 
44: Error in TYPE declaration 
45: '(' expected 
46: 'MODULE' expected 



Modula-2 on UCSD Pascal 
Compiler Error Messages 
page 68 

47: 'QUALIFIED' expected 
48: illegal expression component 
49: illegal simple type 
50: I,' expected 
51: illegal formal parameter type 
52: illegal statement starter or missing END 
53: ' • ' expected 
54: Export at global level not allowed 
55: Body in definition module not allowed 
56: 'TO' expected 
57: Nested module in definition module not allowed 
58: 'I' expected 
59: ' •• ' expected 
60: Error in FOR statement 
61: 'IMPORT' expected 
62: 'DEFINITION', 'IMPLEMENTATION', or 'MODULE' expected 
63: Error reading source file 
64: IMPLEMENTATION not allowed for Pascal ($CODE) modules 
70: Identifier specified twice in importlist 
71: Identifier not exported from qualifying module 
72: Identifier declared twice 
73: Identifier not declared or incorrect class 
74: Type not declared 
75: Identifier already declared in module environment 
78: Value of absolute address must be of type CARDINAL 
79: Scope table overflow in compiler 
80: illegal priority 
81: Definition module not found 
82: structure not allowed for implementation of hidden type 
83: Procedure implementation different from definition 
84: Not all defined procedures or hidden types implemented 
86: Incompatible versions of symbolic modules 
88: Function type is not scalar or basic type 
90: Pointer-referenced type not declared 
91: Tagfieldtype expected 
92: Incompatible type of variant-constant 
93: Constant used twice 
94: Arithmetic error in evaluation of constant expression 
95: Range not correct 
96: Range only with scalar types 
97: Type-incompatible constructor element 
98: Element value out of bounds 
99: Set-type identifier expected 

101: Exported items were never defined 
102: Forward procedures were never defined 
103: Wrong class of identifier 
104: No such module name found 
105: Module name expected 
106: Scalar type expected 
107: Set too large 
108: Type must not be INTEGER or CARDINAL 



109: Scalar or subrange type expected 
110: Variant value out of bounds 
111: illegal export from program module 
120: Incompatible types in conversion 
121: This type is not expected 
122: Variable expected 
123: Incorrect constant 
124: No procedure found for substitution 
125: Incorrect procedure call terminator 
126: Set constant out of range 
127: Error in standard procedure parameters 
128: Type incompatibility 
129: Type identifier expected 
130: Type impossible to index 
131: Field not belonging to a record variable 
132: Too many parameters 
134: Reference not to a variable 
135: illegal parameter substitution 
136: Constant expected 
137: Expected parameters 
138: BOOLEAN type expected 
139: Scalar types expected 
140: Operation with incompatible type 
141: Only global procedure or function 
142: Incompatible element type 
143: Type incompatible operands 
144: No selectors allowed for procedures 
145: Only function call allowed in expression 
146: Arrow not belonging to a pointer variable 

Modula-2 on UCSD Pascal 
Compiler Error Messages 

page 69 

147: Standard function or procedure must not be assigned 
148: Constant not allowed as variant 
149: SET type expected 
150: illegal SUbstitution to WORD parameter 
151: EXIT only in LOOP 
152: Incorrect use of RETURN statement 
153: Expression expected 
154: Expression not allowed 
155: Type of function expected 
156: Integer constant expected 
157: Procedure call expected 
158: Identifier not exported from qualifying module 
161: Call of procedure with lower priority not allowed 
300: Index out of range 
301: Division by zero 
303: Case label defined twice 
404: Too many globals, externals and calls 
405: Procedure too long (codetable overflow) 
990: IMPORT not allowed in Pascal ($CODE) modules 
991: Cardinal divisor too large ( > 100000B ) 
992: FOR control variable must not have byte size 
993: illegal use of byte variable 



Modula-2 on UCSD Pascal 
Compiler Error Messages 
page 70 

994: Too many nested procedures 
995: FOR step too large ( > 77777B ) 
996: CASE label too large ( > 77777B ) 
997: liegal parameter sUbstitution 
999: Identifier referenced before this definition 



Index 

-A-
AdrsPerWord •••••••.•••••••••••••• 12 
Alloc ••••••••••••••••••••••••••••• 17 
AND ••••••••••••••••••••••••••••• 61 
ASE •••••••••••••••••••••••••••••• 45 

-B-

Bit Masks................. • • • • • •• 61 
Bits •••••••••••••••••••••••••••••• 19 
BITSET ••••••••••••••••••••••••••• 61 
BlockIO ••••••••••••••••••••••••••• 12 
BlockRead •••••••••••••••••••••••• 13 
BlockWrite •••••••••••••••••••••••• 13 
Boolean Options ••••••••••••••••••• 29 
Byte Flipping Option •••••••••••••• 37 

-C-
Call Cl1a.in....................... 62 
Cardinal Options.................. 29 
Case Labels •••••••••••••••••••••• 28 
CharsPerWord ••••••••••••••••••••• 12 
ClearScreen • ,. • ~ . • • • • • • • • • • • • • • • • •• 11 
Client ••••••••••••••••••••••••••••• 6 
Close ••••••••••••••••••••••••••••• 13 
CloseType •••••••••••••••••• ' ••••••• 13 
CODE ••••••••••••••••••••• 7, 26, 28 
Code File Header ••••••••••••••••• 46 
Code Procedures •••••••••••••••••• 26 
Compiled Listings................. 33 
Compile Options ••••••••••••••••••• 29 
Compiler Directives •••••••••••• 29, 65 
Compiler Error Handling........... 44 
Compiler Errors ••••••••••••••••••• 67 
Compiler Library Access •••••••••••• 8 
Compile Space Option ••••••••••••• 37 
Compile-time Modules ••••••••••••••• 5 
Compile-time Space •••••••••••••••• 56 
Copyright Notices................. 35 
C(reate ••••••••••••••••••••••••••• 50 

-D-
$DEBUG •••••••••••••••••••••• 40, 65 
DEC •••••••••••••••••••••••••••••• 28 
Differences and Restrictions •••••••• 28 
DIV. • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 28 
DuplicateName ••••••••••••••••••••• 9 

Modula-2 on UCSD Pascal 
Index 

page 71 

-E-
EBNF ••••••••••••••••••••••••••••• -26 
$ELSE •••••••••••••••••••••••• 38, 65 
$ELSIF ••••••••••••••••••••••• 38, 65 
$END •••••••••••••••••••••••• 38, 65 
EraseLine ••••••••••••••••••••••••• 11 
Executing Programs •••••••••••••••• 46 
Execution Errors •••••••••••••• 40, 62 
Extensions •••••••••••••••••••••••• 24 

-F-
FILE ••••••••••••••••••••••••••••• 
FileName ••••••••••••••••••••••••• 

13 
13 

File Naming Conventions ••••••••••• 59 
FillChar. • • • • • • • • • • • • • • • • • • • • • • • •• 17 
$FLIP •••••••••••••••••••••••• 37 , 65 
FLOAT ••••••••••••••••••••••••••• 28 
FORWARD •••••••••••••••••••• 25, 
Forward Declaration ••••••••••• 25, 

28 
28 

Function Results •••••••••••••••••• 28 

-G-
GotoXY ••••••••••••••••••••••••••• 11 

-H-
Half-ASCII Terminals.............. 36 
HomeCursor ••••••••••••••••••••••• 11 

-1-

IBadFormat •••••••••••••••••••••••• 15 
IBadMode • • • • • • • • • • .. • • • • • • • • • • • • •• 15 
IBadTitle •••••••••••••••••••••••••• 15 
IBadUnit •••••••••• ~ ••••••••••••••• 15 
IBufOflow ••••••••••••••••••••••••• 15 
IDupFile • • • • • • • • • • • • • • • • • • • • • • • • •• 15 
$IF •••••••••••••••••••••••••• 38, 65 
IFileOpen • • • • • • • • • • • • • • • • • • • • • • • •• 15 
IHardErr • • • • • • • • • • • • • • • • • • • • • • • • • • 15 
ILostFile •••••••••••••••••••••••••• 15 
ILostUnit" •••••••••••••••••••••••• 15 
$IN •••••••••••••••••••••••••• 32, 65 
IN C •••••••••••••••••••••••••••••• 28 
Include Files •••••••••••••••••••••• 32 
InitFile • • • • • • • • • • • • • • • • • • • • • • • • • •• 13 
~oError •••••••••••••••••••••••••• 15 
INoFile ••••••••••••••••••••••••••• 15 



Modula-2 on UCSD Pascal 
Index 
page 72 

~oSpace •••••••••••••••••••••••••• 15 
INotOpen ••••••••••••••••••••••••• 15 
INo Unit ••••••••••••••••••••••••••• 15 
Intrinsic Unit •••••••••••••••••••••• 3 
IOResult •••••••••••••••••••••••••• 15 
IOResultType •••••••••••••••••••••• 15 
!TimeOut •••••••••••••••••••••••••• 15 

-K-

Key Holder •••••••••••••••••••••••• 6 

-L-
LIB.CODE ••••••••••••••••••••••••• 47 
Library Access ••••••••••••••••••••• 8 
LibraryError •••••••••••••••••••••••• 9 
Library Files...................... 7 
Library Management............... 47 
Library Number •••••••••••••••••••• 6 
Library Organization •••••••••••••••• 3 
Library Usage •••••••••••••••••••• 10 
$LIST •••••••••••••••••••••••• 33, 65 
LoadByte ••••••••••••••••••••••••• 19 
Loader ••••••••••••••••••••••••••••• 3 
Loader Library Access •••••••••••••• 8 
LoadField ••••••••••••••••••••••••• 19 

-M-
Mark ••••••••••••••••••••••••••••• 17 
MaxCard •••••• , •••••••••••••••••••• 12 
MaxInt •••••••••••••••••••••••••••• 12 
M2".CODE ••••••••••••••••••••••••• 43 
MernA vail ••••••••••••••••••••••••• 17 
Minmt •••••••••••••••••••••••••••• 12 
MissingModule • • • • • • • • • • • • • • • • • • • • •• 9 
MissingProgram • • • • • • • • • • • • • • • • • • • •• 8 
MOD •••••••••••••••••••••••••• 7, 28 
Modula-2 Compiler ••••••••••••••••• 42 
MODULA .LIBRAR Y ••••••••••••••••• 7 
MODULA.SYNTAX ••••••••••••••••• 45 
Module Display •••••••••••••••••••• 48 
Module Hiding •••••••••••••• 9, 47, 60 
Module Key •••••••••••••••••••••••• 6 
Module Segment Assignment •••••• 3, 31 
Module Segment Numbers ••••••••••• 64 
MoveLeft ••••••••••••••••••••••••• 17 
MoveRight •••••••••••••••••••••••• 17 
Multi-word Comparisons •••••••••••• 61 

-N-

$NOT •••••••••••••••••••••••• 35, 65 

-0-

OR ••••••••••••••••••••••••••••••• 61 

-P-
PACKED ••••••••••••••••••••• 24, 28 
Packed Variables •••••••••••••••••• 24 
Pascal •••••••••••••••••••••••••••• 20 
$POP •••••••••••••••••••••••• 31, 65 
PowerOfTen ••••••••••••••••••••••• 17 
Program ••••••••••••••••••••••••••• 3 
Program Library •••••••••••• 7, 10, 53 
Programming Techniques •••••••••••• 55 
$PUSH •••••• ' ••••••••••••••••• 31, 65 

-Q-
$QUIET •••••••••••••••••••••• 35, 65 
Quiet Compile Option............. 35 

-R-

$RAN GE • • • • • • • • • • • • • • • • • • • •• 34, 66 
Range Checks •••••••••••••••••••• 34 
$RECYCLE ••••••••••••• ' •••••• 37, 66 
Release ••••••••••••••••••••••••••• 17 
Reset ••••••••••••••••••••••••••••• 13 
Rewrite ••••••••••••••••••••••••••• 13 
Run-time Checks •••••••••••••••••• 34' 
Run-time Space ••••••••••••••••••• 57 

-S-
Scan •••••••••••••••••••••••••••••• 17 
ScanType ••••••••••••••••••••••••• 17 
Scan Until ••••••••••••••••••••••••• 17 
Scan While ••••••••••••••••••••••••• 1 7 
Screen •••••••••••••••••••••••••••• 11 
$SEG ••••••••••••••••••••••••• 31, 66 
Segment Allocation ••••••••••••••••• 4 
Segment Programs ••••••••••••••••• 57 
$SET ••••••••••••••••••••••••• 30, 66 
$SPECIAL •••••••••••••••••••• 36, 66 
Stacked Options ••••••••••••••••••• 31 
Stack Overflow................... 37 
$ST ANDARD •••••••••••••••• ~ • 32, 66 
Standard Language Option •••••••••• 32 
Standard Library.................. 1 7 



Standards ••••••••••••••••••••••••• 1 7 
S{tatus •••••••••••••••••••••••••••• 48 
StoreByte ••••••••••••••••••••••••• 19 
StoreField ••••••••••••••••••••••••• 19 
Subprogra~ ••••••••••••••••••••••• 57 
Subsidiary Modules........ 7, 8, 9, 58 
Subsyste~ •••••••••••••••••••••••• 57 
SYM ••••••••••••••••••••••••••••••• 7 
Syntax Errors ••••••••••••••••••••• 67 
System Library ••••••••••••••••• 7, 10 
SYSTEM.SYNTAX •••••••••••••••••• 45 
SystemTypes ••••••••••••••••••••••• 12 

-T-
Time ••••••••••••••••••••••••••••• 17 
$TO ••••••••••••••••••••••••• 33, 66 
T{ransfer ••••••••••••••••••••••••••• 7 
TRUNC ••••••••••••••••••••••••••• 28 
$TYPE ••••••••••••••••••••••• 30, 66 

-U-

UnitBusy •••••••••••••••••••••••••• 15 
UnitClear ••••••••••••••••••••••••• 15 
UnitIO •••••••••••••••••••••••••••• 15 
UnitRead ••••••••••••••••••••••••• 15 
UnitStatus. • • • • • • • • • • • • • • • • • • • • • •• 15 
Unit Write ••••••••••••••••••••••••• 15 
$UPCASE ••••••••••••••••••••• 36, 66 
U{pdate ••••••••••••••••••••••••••• 52 
User Library ••••••••••••••••••• 7, 10 
Using The Library •••••••••••••••• 60 

-V-
Version Control •••••••••••••••••••• 6 

-w-
Walkbacks ••••••••••••••••••••••••• 62 

-X-
XOR. • • • • • • • • • • • • • • • • • • • • • • • • • • •• 61 

Modula-2 on UCSD Pascal 
Index 

page 73 



Implementation Guide 

Rulease: 

Date: 

Author: 

for the mM PC 

0.3 

26 August 1983 

Richard Glea ves 

mM is a trademark of International Business Machines Corp. 



Modula-2 on the IBM PC 
Table Of Contents 

Table Of Contents 

1 Introduction ••••• . . . . . . . . . . . . . . . . . . . . . . . . . 1 

2 Installa tion Guide. • • • • • • • • • • • • • • • • • • • • • • • • • • 2 

3 Syste m Configuration. • . . . . . . . . . . . . . . . . . . . . . . 11 

4 Formatting New Disks ••••• . . . . . . . . . . . . . . . ... .24 

5 Machine-dependent Modules. . . . . . . . . . . . . . . . . . . . • 26 

6 Interrupt System •• . . . . . . . . . . . . . . . . . . . . . . . . . 31 

7 Machine-level Data Representation. . . . . . . . . . . . . . . . 34 

8 Library Module Hierarchy. • • • • • • ~ • • • • • • • • • • • • • • 36 

Index. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 37 



1 Introduction 

Modula-2 on the IBM PC 
Introduction 

page 1 

This document describes Volition Systems' implementation of Modula-2 for the 
IBM Personal Computer. It covers the following topics: 

• Installation guide 

• System configuration 

• Formatting new disks 

• Machine-dependent modules 

• Interrupt system 

• Machine-level data representations 

• Library module hierarchy 

Section 2 explains how to install Modula-2 on your PC. (The most important 
step here is to back up your distribution disks.) 

Section 3 explains how to configure the Modula-2 system to take full 
advantage of your PC. This step involves deciding how to use available 
memory and which peripherals (joy sticks, printer, etc.) to support. 

Section 4 explains how to initialize new disks for use with the Modula-2 
system. 

Section 5 describes modules which are specific to the PC implementation of 
Modula-2. The library modules IBMStuff and SYSTEM86 provide access to 
low-level system facilities (interrupt system, peripherals, and extended memory 
access). 

Section 6 describes the Modula-2 interrupt system on the PC, including 
IOTRANSFER vector numbers, module priorities, and how to write interrupt 
handlers. 

Section 7 describes the machine-level data representation of various data 
types. This information is necessary for performing low-level operations 
involving type conversion. 

Section 8 describes the library module hierarchy. 
necessary for reconfiguring the library. 

This information is 



Modula-2 on the IBM PC 
Installation Guide 
page 2 

2 Installation Guide 

This section describes how to install Modula-2 on your PC. Along with this 
you will need the IBM Installation Notes which provide additional 
installation and configuration details. 

Section 2.1 explains the installa tion procedure. 

Section 2.2 presents miscellaneous system information. 

Section 2.3 describes the Modula operating system files. 

Section 2.4 describes the Modula-2 system files. 

Section 2.5 describes the interpreter files. 

Modula-2 on the PC is a complete software system based on Volition's Modula 
operating system. The Modula operating system includes a file manager, text 
editor, Pascal compiler, and many utility programs. The Modula-2 system 
includes a Modula-2 compiler, module library, and a library manager. 

NOTE- The Modula operating system is described in the Modula 
Operating System Manual. The ASE text editor is described in 
the ASE User's Manual. The IBM Installation Notes contain 
details on installing the system. 



2.1 Installation Procedure 

Modula-2 on the IBM PC 
Installation Procedure 

page 3 

Modula-2 for the IBM PC is distributed on four single-sided floppy disks in 
UCSD p-System format. The four disks are named SYS, LIB, UTIL, and 
PROGS. 

Here is an overview of the installation procedure: 

• To start you need five blank diskettes. 

• Copy the distribution disks onto four of the blank disks. 

• Store the originals in a safe place. 

• Initialize the fifth blank disk and name it INTERP. 

• Rearrange the files so they are stored on the proper disks. 

• The Modula-2 system is now ready for use. SYS and LIB serve 
as your system and work disks. 

• Reconfigure the system to improve performance. 

Copy tbe Distribution Disks 

The first and most important thing to do is to copy the distribution disks 
onto some blank disks. If your distribution disks do not contain write-protect 
tabs, now is a good time to add them. Insert the SYS disk label side up into 
the left hand disk drive, close the drive door, and type Ctrl-Alt-Del to start 
the system. After a few moments and some disk action, the Modula-2 system 
should display its startup message in the center of the screen and a command 
promptline across the top. 

You have to format the blank disks before you can copy the distribution 
disks onto them. Execute the program named FORMAT; this is the disk 
formatter utility program. The prompts it displays are generally self­
explanatory, but if you need more information, section 4 explains how to run 
the disk formatter. Use the right hand disk drive to format the blank disks. 
Note that the left hand disk drive is called "unit 4" and the right hand drive 
Ttunit 5". Note also that you need to know whether your blank disks are 
single or double sided. Be sure to format all five of the blank disks before 
proceeding to the next step. The disk formatter assigns the name BLAN K to 
each newly formatted disk. 



14odula-2 on the IBlrt PC 
Installation Procedure 
page 4 

To copy the distribution disks, execute the program named BACKUP; this is 
the disk copier utility program. Section 10.1.2 in the Modula Operating 
System Manual explains how to run the disk copier. Note that once the 
disk copier program is running, you can take the SYS disk o.ut of unit 4. 
Copy all four of the distribution disks onto blank disks. Be sure to preserve 
the original disk D:1mes; when the disk copier program asks if you want to 
rename the disks as BACKUP, type 'n'. 

When you finish copying the distribution disks, store the originals in a safe 
place. The disk copies will be used to build your system disk set. 

Using Double Sided Disks 

If you have double sided disk drives in your IBM PC, continue with these 
steps. 

After you have copied the distribution disks onto· double sided disks, you 
should execute the disk size utility program. This program is named 
DISKSIZE; it is stored on the UTIL disk. The disk size changes information 
stored in the disk directory to match the storage capacity of double sided 
disks. 

To execute DISKSIZE, place the UTIL disk in unit 5. The SYS disk is 
assumed to be in unit 4. Execute the file #5:DISKSIZE - the "#5:" informs 
the system that the program is stored on the disk in unit 5. When the disk 
size program asks how many blocks are on the disk, type in 640 - this is the 
proper size of double sided disks. Be sure to change the size of all the 
Modula-2 system disks (including SYS itself). 

Rearrange Files on the Disks 

After creating the system disk set, you must rearrange the files so that 
related disk files are stored on the same disk. This process converts the 
system disk set from four to five disks, freeing up space on the SYS and LIB 
disks for your own files. 

With the SYS disk in unit 4, type "Ftt to start the filer program. When the 
filer promptline appears across the top of the screen, you can take out the 
SYS disk. 

Put the fifth (formatted) blank disk into unit 5 and use the filer command 
Change to change its name to INTERP. <ret> denotes the return key: 

Change what file? #5:, INTERP:<ret> 



Modula-2 on the IBM PC 
Installation Procedure 

page 5 

Next, put the UTIL disk in unit 4 and use the command Listdir to display the 
disk file directory: 

Dir of what volume! #4:<ret> 

The files that appear below the line of dashes are interpreter files. Use the 
Transfer command to copy the interpreter files to the INTERP disk: 

Transfer what file? UTIL:?, INTERP:$<ret> 

The question mark causes the filer to ask for each file whether you want to 
transfer it to INTERP. Type 'N' for all files above (and including) the 
dashed line, but type 'Y' for the rest. This transfers all the interpreter files 
to the INTERP disk. 

Once you have transferred the interpreter files, you can remove them from 
the UTIL disk. Use the Remove command to remove all files below (and 
including) the line of daShes: . 

Remove what file? UTIL:?<ret> 

Using this same procedure, move the utility program files first from the SYS 
disk to UTIL, then from the LIB disk to UTIL, and finally from the PROGS 
disk to U TIL. 

NOTE - If you are using single sided disks, you will not be able to fit 
all the utility files onto the UTIL disk. You can either keep 
the leftover files on another disk (perhaps named UTIL2) or just 
copy them from the distribution disks when you need them. 

The system disks are now completed and ready for use. If you can spare the 
blank disks, back up the reorganized system disk set; in case anything goes 
wrong, this saves you the effort of having to reconstruct them from the 
distribution disks. 

Run the Installed System 

The Modula-2 system is now ready to use. The normal system configuration 
is to run with the SYS disk in unit 4 and the LIB disk in unit 5; SYS 
contains the system files, and LIB is used to store library and program files. 
Note that with this configuration the prefixed volume must always be 
set to unit 5 in order to compile or execute Modula-2 programs. The 
filer command Prefix sets the prefixed volume: 

Set prefix to ! #5:<ret> 



Modula-2 on the IBM PC 
Installation Procedure 
page 6 

The extra disk space on SYS and LIB can be used either to store program 
files or frequently used utility programs. 

The PROGS disk contains sample programs that demonstrate how to use the 
Modula-2 language and library modules. 

The UTIL disk is used to store infrequently used utility programs. 

The INTERP disk is used only when you are reconfiguring the system. 

The system is preconfigured to operate within a single 64K byte space, with 
any remaining memory automatically allocated as a RAM disk. See section 3 
for details on how to reconfigure the system to work with larger code spaces 
and/or different peripheral devices. 

NOTE - Perhaps the . most rewarding reconfiguration is to run the 
system off the RAM disk. See 3.4 for details. 

NOTE- Section 2.2 contains important operating information. 

2.2 System Notes 

The Modula-2 system library file MODULA.LIBRARY must reside on either 
the prefixed disk volume or the system boot volume in order to compile or 
execute Modula-2 programs. 

When using a RAM disk for development work, be sure to occasionally back 
up your files onto a regular disk. If for some reason the system requires 
rebooting, the contents of RAM are cleared and any files stored in the RAM 
disk are lost. 

The system and utility programs differ slightly from their standard UCSD 
Pascal counterparts in a few cases. The biggest difference is that the filer 
allows you to have two wildcards in a file name - this can be very useful at 
times. See the Modula Operating System Manual for details. 

Segment numbers 59 through 62 are available for user-defined library modules 
on the PC. Segment 63 is used by the library module IBMStuff which 
controls the screen, joysticks, and calendar clock. These segments are 
formally reserved for implementation-dependent modules, but they are 
generally available on all UCSD Pascal based Modula-2 implementations 
except the Apple / / /, which uses them to access the SOS operating system. 

\ 



Modula-2 on the IBM PC 
System Notes· 

page 7 

SYSTEM.BATCH and SYSTEM.SHELL are utility programs that are invoked by 
the system commands Batch and Shell. If you aren't using them, you can 
leave these files off the disk; if you are, they can be stored on any online 
disk volume and still be invoked from the command promptline. 

The shell implements program pipes as intermediate files written to disk. 
Pipe files are opened with the name "*temp"; therefore, the system boot 
volume must contain enough free disk space to contain whatever intermediate 
file the shell generates. This should be accounted for if you plan to use the 
shell extensively. (If so, running the system from the RAM disk is strongly 
advised.) 

The shell and and the utility program Teletalk are both Modula-2 programs; in 
order to run them, the Modula-2 system library file must reside on the 
prefixed or system disk volume. 

Process work spaces often have to be larger than expected when the system 
is configured for separate code and data spaces. The separate code and data 
interpreter maintains on the stack a pool of all recently assigned string 
constants. Process work spaces must be large enough to contain this 
constant pool along with whatever local variables and procedure calls it 
performs. (Note that the constant pool is cut back on a procedural basis.) 

2.3 Modula Operating System Files 

This section describes the files that make up the Modula operating system. 
These files are contained on the release disk set. 

SYSTEMJNTERP is the pre configured p-code interpreter supplied with the 
system. It must reside on the system boot disk. 

SYSTEM.P ASCAL is the operating system file. It must reside on the system 
boot disk. If you plan to operate your PC from an external terminal, the 

. Binder utility BINDER.CODE is used to bind new gotoxy procedures into the 
operating system. 

SYSTEM.MISCINFO is the system information file. It must reside on the 
system boot disk. This file is pre configured to work with a graphics card or 
monochrome display. If you plan to operate your PC from an external 
terminal, the utility programs SETUP .CODE and CONFIG.CODE are used to 
reconfigure the system information file for your terminal. Note that 
SYSTEM.MISCINFO must be properly configured for ASE to work. 

SYSTEM.FILER is similar to the standard U CSD Pascal file manager, but 
offers a more powerful "wildcard" facility. See the Modula Operating 
System Manual for details. 



Moduia-2 on the IBm PC 
Modula Operating System Files 
page 8 

SYSTEM .EDITO R is the ASE text editor. 

YALOE.CODE is a line-oriented text editor. 

SYSTEM.BATCH is the command interpreter program 1Qvoked by the system 
command Batch. The command file B.DEMO.TEXT demonstrates the use of 
the command file interpreter. 

SYSTEM.sHELL is the "p-NIX" command shell which implements many of the 
Unix operating system commands and features (Is, grep, cat, pipes, I/O 
redirection, etc). Note that any program can be named SYSTEM.sHELL and 
invoked by Shell. . 

PC.CODE is the Pascal compiler. Note that this file can be changed to 
SYSTEM.COMPILER if you wish to use the Pascal compiler as the "system" 
compiler. P ASCAL.SYNTAX is the syntax error file for the Pascal compiler. 
This file should be changed to SYSTEM.SYNTAX (and the existing 
SYSTEM.sYNTAX to MODULA.sYNTAX) if you plan to use both Pascal and 
Modula-2 compilers. 

BACKUP .CODE is a disk copier utility program. It provides a safe and 
reliable way to create backup copies of a floppy disk. FCOPY.CODE 
performs the same function for individual files. 

SERTALK.CODE transfers disk files from machine to machine via an RS232 
serial line. 

TELETALK.CODE is used to send and record text files during electronic mail 
sessions. The text files TELETALK, SYS.PARM, RAWCON, and REMOTE are 
the source files for this program. Note that it is written in Modula-2. 

PATCH.CODE is a byte-level disk file editor. 

FLIPDIR.CODE flips the disk directories of disks created on byte-flipped 
machines. 

COMPARE.CODE compares two text files and reports on any differences. 
COMPCODE.CODE compares disk files of any type. 

COPYDUPDIR.CODE copies the duplicate disk directory onto the primary disk 
directory (in case of disk crashes). 

LIBRAR Y .CODE manipulates code segments in Pascal code and library files. 



Modula-2 on the IBM PC 
Modula Operating System Files 

page 9 

BOOTER.CODE copies bootstrap information from one disk to another. 

GLOBALS.TEXT contains the Pascal declarations for the Modula operating 
system globals. M2.GLOBALD.TEXT contains the Modula-2 equivalent. The 
global declarations are used by experienced U CSD Pascal system programmers 
to access system information. 

FORMAT .CODE is the disk formatter utility program. FORMAT JNFO 
contains primary bootstrap code which FORMAT writes to new disks. 

DISKSIZE.CODE is the disk size utility program. It is used to change the 
volume size stored in a disk directory. 

INITDATE.CODE is a program which sets the current date on all online disk 
volumes. (Its normal use is as a "startup" program.) 

COPYBOOT .CODE is a program which copies disk files from the boot disk 
onto another disk volume and specifies the volume as the system volume. (Its 
normal use is as a "startup" program for running the system from a RAM 
disk.) 

CALC.CODE is a simple desktop calculator simulation. Note that it requires 
floating point support. 

2.4 Modula-2 System Files 

This section describes the files that provide the Modula-2 system environment. 
These files are contained on the release disk set. 

SYSTEM.COMPILER is the Modula-2 compiler. 

SYSTEM.SYNT AX is the Modula-2 syntax error file. 

MODULA.LIBRARY is the system library for the Modula-2 system. 

LIB.CODE is the library manager utility program. 

The files on the PROGS disk contain sample Modula-2 programs which are 
provided for your edification and enlightenment. 



Modula-2 on the mM PC 
Interpreter Files 
page 10 

2.5 Interpreter Files 

This section describes the files that are used to build new interpreters. The· 
separate interpreter "skeleton" file, bootstrap, and peripheral device driver 
files are linked and configured to form new interpreters for different system 
configurations. See section 3 for details. 

128K.INTERP is a linked interpreter configured to run in 128K bytes of 
memory. 

86.SEP .CODE is the interpreter "skeleton" file that provides separate code 
and data spaces. 86.NONSEP .CODE is the interpreter skeleton file that 
allocates code and data within a single 64K space. 86.NOFP .CODE is 
equivalent to 86.NONSEP but does not contain floating point support software 
(yielding about 500 words of system memory). 86.BOOT .CODE is the 
secondary bootstrap file which is linked to an interpreter file. 

Files beginning with the letters "10" contain peripheral device driver code. 
IOSCREEN.CODE contains the screen driver. 10DISKS.CODE the floppy disk 
driver, 10RAMDSK.CODE the RAM disk driver, 10COMS.CODE the serial port 
driver, 10LPTS.CODE the printer driver, and 10GAME.CODE the joystick 
driver. IOQUDCLK.CODE contains a calendar clock driver for the Quadram 
QuadBoard peripheral card. 

LIN KER.CODE is the interpreter linker program. 

IBMUTIL.CODE is the interpreter configuration utility program. 



3 System Configuration 

Modula-2 on the IBM PC 
System Configuration 

page 11 

This section explains how to configure the system for your IBM PC. System 
configuration is necessary because a PC can be equipped in so many different 
ways. The main factors influencing system configuration are the amount of 

. memory available alld the number of peripheral devices installed: 

• The Modula-2 system can be used on PC's with anywhere from 
64K to 640K bytes of memory. Memory is divided up into three 
areas: code space, data space, and RAM disk. On a 64K PC, 
available memory serves as a combined code and data space, 
with no memory left over for a RAM disk. When more memory 
is available, it can be used as a separate code space or RAM 
disk (or both) • 

• Software drivers are provided for the screen, disk drives, serial 
port, printer, RAM disk, joysticks, and calendar clock; these are 
linked with one of the interpreter "skeleton" files to create an 
interpreter configured for your PC. Including a driver with the 
interpreter provides you with access to the correspOnding 
peripheral device. Not including a driver provides you with 
more system memory due to a smaller interpreter. Therefore, 
you will want to make an interpreter that contains only the 
drivers you need. 

The system includes two pre configured interpreters; with these, you can use 
the system immediately without having to perform any configuration 
procedures. One of these interpreters - named SYSTEMJNTERP - is used 
to boot the system the first time. The preconfigured interpreters are 
described in 3.1. 

The utility program IBMUtil is used to set various configuration parameters: 
I/O unit number assignments, RAM disk and code space size, serial port baud 
rates, and so on. IBMUtil modifies parameter values stored in an existing 
interpreter file. IBMUtil is described in 3.2. 

The utility program Linker is used to link together an interpreter "skeleton" 
and the appropriate drivers into a complete interpreter file. (IBMUtil must 
then be used to configure the newly linked interpreter.) The linker is 
described in 3.3. 

The utility programs CopyBoot and InitDate offer RAM disk and calendar 
clock support. CopyBoot turns the RAM disk into the system disk. Benefits 
of running the system from the RAM disk include improved performance and 
freeing the system disk drive for your own use. InitDate uses the calendar 
clock to set the system date so you don't have to set it manually. Both of 
these programs are used as "startup" programs which are automatically 
executed when the system starts up. They are described in· 3.4. 



iioduia-2 on the IBM PC 
Preconfigured Interpreters 
page 12 

3.1 Pre configured Interpreters 

The file SYSTEMJNTERP supplied on the release disk is configured to 
operate in 64K bytes of memory and contains drivers for the screen, disk 
drives, serial port, printer, and RAM disk (allocated in all available memory 
beyond 64K). With this interpreter, the system should boot on any PC 
meeting the minimum hardware requirements. 

The file 128K.INTERP is identical to SYSTEM.INTERP except that it is 
configured for separate 64K code and data spaces; it requires at least 128K 
bytes of memory to successfully boot the system. To use 128K.INTERP as 
the system interpreter, change the name of the existing SYSTEMJNTERP to 
64K.INTERP, change 128K.INTERP to SYSTEM.INTERP, then reboot. 

NOTE - The IBMUtil utility can be used to change the configuration 
parameters in these interpreters. 

3.2 IBMUtil 

The IBMUtil utility (IBMUTIL.CODE on the disk) is used to set configuration 
parameters in the interpreter. Note that these changes alter the interpreter 
file only and do not take effect until the system is rebooted. 

After you X(ecute IBMUTIL, the following prompt appears: 

Interp file! 

Type in the name of the interpreter file' you wish to modify. It is a good 
idea to reconfigure a copy of the current system interpreter file so you can 
fall back to the original if the reconfigured copy doesn't work properly. 

The following prompt appears after you enter the file name: 

INTERPUTIL: A(ttach drivers C(onfigure drivers Q(uit 

A(ttach is used to assign unit numbers to the drivers. C(onfigure is used to 
change the configuration parameters of each driver. Q(uit exits the program. 

NOTE- A(ttach is described later in this section. 

After typing C(onfigure, the following prompt appears: 

CONFIGURE: I(nterp DUsks R(amdisk S(erial P(rinter C(Iock Q(uit 



Modula-2 on the IBM PC 
IBMUtil. 
page 13 

Note that the prompt may not display all of these commands; IBMUtil displays 
a command only if the corresponding driver is linked into the interpreter file 
being configured. 

I(nterp 

The I(nterp command is used to specify the code and data spaces. It displays 
the following prompt: 

INTERP: D(ata range C(ode range Q(uit 

A message appears below the prompt indicating whether the interpreter code 
and data spaces are separate or not: 

Separate code and data 

or ••• 

Code and data in same space 

IBMUtil also displays the current setting of the code and data spaces: 

Data space segment base = 0060B 
Data space segment size = 1000B 
Code space segment base = 10GOB 
Code space segment size = OFAOH 

If the interpreter code space is nonseparate, mMUtil prompts for and displays 
the data space only. 

There are a few things worth noting about these settings. First, the values 
entered and displayed in this prompt are assumed to have an implicit trailing 
o digit. For instance, "1000H" denotes the hex value "10000", which is 65536 
in decimal. 

NOTE - The trailing zero digit is implicit because these values are 
assigned to the 8086 segment registers, which constitute twenty 
bit byte addresses with the low four bits implicitly set to zero. 

The values shown above are suitable for a 128K PC with separate code and 
data. The data space starts at hex address 600 and extends for a full 64K 
to hex address 105FF. The code space starts at hex address 10600 and 
extends to the end of memory; it is slightly less than 64K because of the 
600 hex offset of the data space. 

On a 64K PC with nonseparate code and data, the code and data spaces are 
coincident, with a base address of 600 hex and size of OFAOO hex. 



modula-2 on the iBM PC 
IBMUtil 
page 14 

After typing C(ode or n(ata, the following prompt appears: 

CODE/DATA: B(ase S(ize Q(uit 

Typing B(ase displays this message: 

Code/Data space segment base in hex! 

Typing Seize displays this message: 

Code/Data space segment size in hex! 

In both cases, enter the appropriate hex value. Remember to omit the 
trailing 0 digit. (You do not have to type in a trailing 'H'.) 

NOTE- The lowest address for a code or data space must be at least 
600 hex. Memory between 0 and 400 hex are reserved for use 
as 8086 interrupt vector addresses. Memory between 400 and 
600 hex is reserved for use by the PC's ROM software. 

NOTE - The interpreter always resides within the data space. 

NOTE- With separate code and data, the maximum data space size is 
10000 hex. This limitation is imposed by the interpreter's use 
of 16-bit data pointers. 

NOTE- Code and data spaces can cross 64K physical segment 
boundaries without causing any problems. 

WARNIN G - Code, data, and RAM disk spaces must not overlap each 
other. 

R(amdisk 

The R(amdisk command is used to specify the RAM disk space; i.e., an area 
of memory that is used as a virtual disk. It displays the following prompt: 

RAMDISK: B(ase address S{ize Q(uit 

Below this appear the current settings of the code and data spaces: 

Base segment address = 2000H 
Size of disk = 100 blocks 



Modula-2 on the IBM PC 
IBMUtil 
page 15 

Type B(ase to set the base address. Note that it must be entered as a hex 
value with no trailing zero digit or 'H'. 

Type S(ize to set the RAM disk size. The following prompt appears: 

B(Iocks A(ll available Q(uit 

Type A(ll to specify that all addressable memory above the the base address 
will be ailoca ted for the RAM disk. (This setting appears in the setting 
display as "All available".) Type B(locks to assign a fixed amount of memory 
for the RAM disk. Note that this value is expected in terms of blocks 
(where a block is 512 bytes). 

DUsks 

The D(isks command is used to set various parameters controlling the floppy 
disk drives. It displays the following prompt: 

DISKS: S(eek U(nload L(oad H(ead settle M(otor start O(ff motor B(uffer Q(uit 

Below this appear the current drive settings: 

Seek rate = 6ms 
Unload time = Oms 
Load time = 8ms 
Head settle time = Oms 
Motor start time = 250ms 
Motor off time = 1850ms 
Buffer segment address = 0020H 

Each of the disk commands issues a prompt indicating acceptable values. 
(The individual prompts are straightforward and thus are not listed here.) 

The B(uffer command is notable as it accepts yet another "segment address" 
with implicit trailing zero hex digit. The disk buffer is 512 bytes (200 hex) 
in length. It is used for partial sector reads: where the I/O system has 
requested to read a few bytes from the disk, while the low-level disk 
routines can only read a full sector -(512 bytes) at a time. 

NOTE- The standard disk buffer address of 200 hex takes advantage 
of some normally unused memory at the high end of the 
interrupt vector table (0-400 hex). The use of this memory as a 
buffer assumes that no interrupt vector above 80 hex is in use; 
otherwise, overlapping occurs. 



Modula-2 on the IBM PC 
IBMUtil 
page 16 

NOTE- The disk parameter values shown above differ in some 
instances from IBM's recommended values. The standard seek 
rate is Bms, but 6ms works on most machines and is faster and 
quieter. IBM suggests a head settle time of 25ms, but most 
everyone uses Oms (which is twice as fast). Likewise, the 
standard motor start time is 500ms, but 250ms works well and is 
faster. 

S(erial 

The S(erial command is used to set various parameters controlling the serial 
port. It displays the following prompt: 

SERIAL[COMl]: 1 •• 4(port B(aud S(top bits P(arity W(ord size I(nterrupts Q(uit 

Each of the serial port commands issues a prompt indicating acceptable 
values. (The individual prompts are straightforward and thus are not listed 
here.) 

Typing the digits 1 through 4 selects the serial port to be configured (most 
PC's only have serial ports 1 and 2). The promptline displays the current 
serial port; for instance, "COMl" denotes serial port 1, "COM2" serial port 2, 
and so on. 

The I(nterrupts command is used to enable serial port interrupts. A serial 
port can be configured to generate interrupts on input, output, error, or 
modem. (See the IBM Technical Reference for details.) The current 
interrupt status is indicated by the letters 'E', '1', '0', and 'M', which are 
displayed if the corresponding interrupt is enabled. If none are enabled, 
"None" is displayed. 

Serial port interrupts are mapped to interrupt vector numbers in MOdula-2 's 
IOTRANSFER facility. See section 6 for details. 

P(rinter 

The P(rinter command is used to set various parameters controlling the 
printer port. It displays the following prompt: 

PRINTER[LPTl]: 1 •• 3(port I(nterrupts A(uto line feed Q(uit 

Typing the digits 1 through 3 selects the printer port to be configured (most 
PC's only have printer port 1). The promptline displays the current printer 
port; for instance, "LPTl" denotes printer port 1. 



Modula-2 on the IBM PC 
IBMUtil 
page 17 

The I(nterrupt command is used to control printer port interrupts: it toggles 
the current interrupt status, which is displayed below the promptline. Printer 
port interrupts are mapped to interrupt vector numbers in Modula-2 's 
IOTRANSFER facility. See section 6 for details. 

The A(uto line feed command controls a line connected to the standard IBM 
printer which tells the printer whether to auto line feed. 

C(lock 

The C(lock command is used to set the time and date in the calendar clock. 
It displays the following prompt: 

CLOCK: D(ate T(ime Q(uit 

The D(ate command is used to set the calendar date. 
following prompt: 

DATE: M(onth D(ay Y(ear S(et A(bort 

It displays the 

The month,' day, and year are entered as integer values in the usual range. 
S(et establishes the entered values as the new date; A(bort exits without 
disturbing the current date. 

The T(ime command is used to set the time. 
prompt: 

It displays the following 

TIME: H(our M(inute S(et A(bort 

The hour and minute are entered as integer values (the hour value assumes a 
24 hour clock). S(et and A(bort work as described in the D(ate command 
above; however, using S(et here is like setting the time on a watch. The 
hour and minute values are set right when you type S(et; the seconds value 
is simultaneously set to zero. 

NOTE - The time and date prompts appear only if the calendar clock 
card is installed and responding to the current calendar clock 
driver. 



Modula-2 on the IBM PC 
IBMUtil 
page 18 

A(ttach 

A(ttach is the companion command to C(onfigure. A(ttach is used to assign 
I/O unit numbers (and other attributes) to the drivers contained in an 
interpreter file. It displays the following prompt: 

ATTACH:[O] U(nit D(river R(ead W(rite I(nit S(tat Q(uit 

Two tables appear below the promptline; the table on the right displays the 
drivers linked into the interpreter, while the table on the left displays the 
I/O unit numbers (and whatever drivers have been assigned to them). To 
configure an interpreter, you must assign the drivers displayed in the right 
hand table to the unit table displayed on the left. 

The driver table looks like this: 

A) IOSCREEN - C 1 - B 0 
B) IODISKS - C 0 - B 4 
C) IOCOMS - C 4 - B 0 
D) IOLPTS - C 3 - B 0 
E) IORAMDSK - C 0 - B 1 

The letters on the left are used to select the drivers. Following the driver 
name are the driver attributes: 'C' denotes a character-oriented driver (e.g. 
console, printer, serial port), while 'B' denotes a block-oriented driver (e.g. 
disks). 

The numbers following the 'B' and 'C' characters indicate the number of 
devices (of that type) that the driver supports. For instance, the IODISKS 
driver displayed above can control up to four byte-oriented devices, but no 
character-oriented devices. 

The unit table looks like this: 

'0 none 
11 IOSCREEN '2 IOSCREEN '3 none 
'4IODISKS 
15 IODISKS 
16 IOLPTS 

- C 0 
- C 0 

- B 0 
- B 1 
- C 0 

RWIS 
RWIS 

RWI 
RWI 
WIS 

The numbers on the left are the available I/O unit numbers. Next is the 
name of the driver assigned to that unit. Following the name are the unit 
attributes: the type and "local driver number" of the assigned device. Local 
driver numbers are used to distinguish the devices supported by a single 
driver; for instance, if the driver IODISKS supports four disk devices, then 



Modula-2 on the IBM PC 
IBMUtil. 
page 19 

the devices are identified by the local driver numbers zero through three. 
Each local driver number is assigned to a different unit number. 

Finally, the characters 'R', 'W', 'I', and'S' indicate the I/O operations 
available on the device via its unit number. 'R' indicates that read 
operations are allowed, 'W' write operations, '1' initialization, and'S' status. 

NOTE- These I/O operations correspond to the UCSD Pascal intrinsics 
UNITREAD, UNITWRITE, UNITCLEAR, and UNITSTATUS. 

Here is the attach promptline again: 

ATTACH:[O] U(nit D(river R(ead W(rite I(nit S(tat Q(uit 

All commands operate on the current unit, which is displayed on the 
promptline enclosed in square brackets. (Unit 0 is the current unit in the 
above promptline.) To change the current unit number, type U{nit followed 
by a unit number. 

The D{river command is used to add, delete, or replace the driver assigned to 
the current "unit. It displays the following prompt: 

Driver letter [tAI •• IFI], <SP) to remove, or <ESC)! 

Type <sp> to delete the currently assigned driver or <esc> to exit the 
D{river command. The letters enclosed in brackets are used to assign drivers 
to a unit number; they correspond to the letters displayed in the driver 
table. When you select a driver by typing its letter, this prompt appears: 

Local driver number! 

Type in the local driver number you wish to assign. 

When you first assign a driver to a unit number, all I/O operations allowable 
on the device are enabled. To disable any of these operations, use the 
R{ead, W{rite, I{nit, and S{tat commands; they toggle the current settings. 

NOTE - The driver itself can control what operations can be enabled. 
If you attempt to enable an operation that is not provided by 
the driver, the response will be "Operation not allowed on this 
device". 

There is one restriction and a number of conventions governing the 
assignment of drivers to unit numbers. The restriction is that character 
drivers must be assigned to units 1 and 2. The conventions are standard 
unit number-device assignments that originate from the UCSD Pascal system 



Modula-2 on the mM PC 
IBMUtil 
page 20 

environment; they are recommended because some higher-level software might 
depend on them. 

standard unit number assignments and attributes: 

Unit I Driver Local Driver I Status 

1-2 IOSCREEN 0 RWIS 
4-5 IODISKS 0-1 RWI 
6 IOLPTS 0 WIS 
7 IOCOMS 0 R IS 
8 IOCOMS 0 RWIS 
9-10 IODISKS 2-3 RWI 
11 IORAMDSK 0 RWI 
17-19 IOCOMS 1-3 RWIS 
20-21 IOLPTS 1-2 WIS 
30 IOGAME 0 R 
31 IOCALCLK 0 RWI 

3.3 Linker 

The Linker' utility (LINKER.CODE on the disk) is used to link together an 
interpreter skeleton and drivers into a complete interpreter file. 

After you X(ecute LINKER, the following prompt appears: 

I(nterp LOok A(ll code P(roc info Q(uit 

Type 'I' to link together an interpreter. The following prompt appears: 

Link file! 

Type in the name of the appropriate interpreter skeleton file. (The" .CODE" 
suffix is automatically appended if omitted.) 

Three interpreter skeleton files are provided with the system: 
86.NONSEP.CODE, 86.NOFP.CODE, and 86.SEP.CODE. 86.NONSEP is used 
for interpreters where the code and data reside in the same 64K byte 
memory space. 86.NOFP is equivalent to 86.NONSEP, but does not contain 
support code for the 8087 math coprocessor; using this interpreter gains 
about 500 words of system memory. 86.SEP is used for interpreters that 
maintain code and data in separate memory spaces (64Kb max data, unlimited 
code). 



Modula-2 on the IBM PC 
Linker 

page 21 

After you type in the interpreter skeleton file, the original prompt appears 
again on the next line: 

Link file! 

Type in the name of a driver you wish to include. Each time you enter a 
dri ver name, the original prompt reappears, allowing you to enter the name 
of another driver. 

Here are the names of the driver files: 

IOSCREEN 
IODISKS 
IOCOMS 
IOLPTS 
IOQUDCLK 
IORAMDSK 
IOGAME 

- display driver 
- floppy disk driver 
- serial port driver 
- printer driver 
- Quadboard calendar clock driver 
- RAM disk driver 
- joy stick driver 

After you have entered all of the drivers you want, type in the name of the 
secondary bootstrap file: 86.BOOT .CODE. When the next "Link file?" 
prompt reappears, just type <return> - this indicates that all files have been 
entered and that linking can proceed. 

NOTE- The interpreter skeleton must always be the first file entered 
for linking. The bootstrap must always be the last file entered. 
Drivers may be entered in any order. 

After pausing for a while to read all of the files into memory, the linker 
then displays the following prompt: 

Output file name! 

Type in the name you want for the linked interpreter file. ("NEW JNTERP" 
is a favorite.) The linker then proceeds to link the files together; it displays 
the name, address range (in hex), and size (in decimal) of each file linked: 

Proc INTERP86 
Proc IODISKS 
Proc BOOT86 

Addr=OOOO-lECl Size='1814 
Addr=lEC2-20'lD Size=444 
Addr=20'lE-22A3 Size=550 

When linking is finished, the linker writes the linked interpreter out to disk 
and then terminates, returning control to the system prompt. 

NOTE- The linked interpreter must be configured with the IBMutil 
program before it can be used as a system interpreter. 



Modula-2 on the IBM PC 
Linker 
page 22 

NOTE- The commands L(ink, A(ll code, and P(roc info are not 
documented here because they perform functions beyond the 
scope of this manual. 

3 c:4 RAM Disk and Calendar Clock Support 

The utility programs CopyBoot and InitDate offer RAM disk and calendar 
clock support. 

CopyBoot 

CopyBoot (COPYBOOT .CODE on the disk) converts the RAM disk into the 
system volume. It copies files from the system disk to the RAM disk and 
then specifies the RAM disk as the new system volume. Running the system 
from the RAM disk offers these benefits: 

• System performance is improved, as oft-used programs such as 
the filer and editor are read from the RAM disk instead of the 
floppy disk • 

• An extra disk drive is freed for your own use, as the system 
disk no longer needs to be online (because the system files 
reside on the RAM disk). 

Files are copied in the order in which they appear on the system disk; 
CopyBoot displays the file names on the console as the files are copied. 
Copying continues until all of the files are copied or the RAM disk runs out 
of space. 

CopyBoot has a feature which lets you limit the number of files copied onto 
the RAM disk. Starting with the first file in the system disk directory, 
CopyBoot copies files to the RAM disk until it finds a file named ENDBOOT. 
ENDBOOT and all subsequent files are not copied across. You can use the 
filer command Make to create a one-block data file named ENDBOOT. 

Example of ENDBOOT in a system disk directory: 

BOOT: 
SYSTEM.MISCINFO 
SYSTEM.P ASCAL 
SYSTEM.FILER 
SYSTEM.EDITOR 
SYSTEM.COMPILER 
MODULA.LIBRARY 
ENDBOOT 
LIB.CODE 
PATCH.CODE 

- the following files are copied 

- the following files are not 



Modula-2 on the IBM PC 
RAM Disk and Calendar Clock Support 

page 23 

CopyBoot is intended for use as a "startup" program which is automatically 
executed when the system is booted. It should be renamed 
SYSTEM.STARTUP and stored on the system disk. 

CopyBoot allows you to specify a "startup" program which is automatically 
executed after CopyBoot finishes. If the system disk contains the file 
SYSTEM.NEWSTART, CopyBoot copies it to the RAM disk and changes its 
'name to SYSTEM.STARTUP. When CopyBoot finishes, the SYSTEM.STARTUP 
on the RAM disk is automatically executed. 

NOTE- Both SYSTEM.STARTUP (CopyBoot in disguise) and 
SYSTEMJNTERP can be kept on the system disk ahead of 
ENDBOOT without their being copied to the RAM disk. This is 
because CopyBoot refuses to copy files named SYSTEM.sTARTUP 
or SYSTEMJNTERP. 

NOTE- CopyBoot assumes that the RAM disk has been assigned .to 
unit 11. See 3.2 for details. 

InitDate 

InitDate (INITDATE.CODE on the disk) uses the calendar clock to set the 
system date so you don't have to set it manually. 

InitDate reads the current date from the calendar clock card and sets the 
system date both in memory and on the system disk. 

InitDate is intended for use as a "startup" program which is automatically 
executed when the system is booted. It should be renamed 
SYSTEM.sT ARTUP and stored on the system disk. 

NOTE- InitDate assumes that the calendar clock has been assigned to 
unit 31. See 3.2 for details. 



liiociula-2 on the IBM PC 
Formatting New Disks 
page 24 

4 Formatting New Disks 

The Format utility (FORMAT .CODE on the disk) is used to initialize floppy 
disks so they can be used with the system. 

After you X(ecute FORMAT, the following prompt appears: 

S(ingle sided D(ouble sided Q(uit 

Type's' if you are formatting a single-sided disk, or 'd' if a double-sided 
disk. (Typing 'q' exits the program.) A single-sided disk stores 320 blocks 
of data, while a double-sided disk stores double the amount: 640 blocks. 

NOTE- Single-sided disks can be formatted as double-sided, but this is 
a risky practice. Disks formatted this way store twice as much 
data as normal, but tend to be unreliable. 

Another prompt appears: 

Format wbat unit? [4,5] (type return to exit) 

Type in the unit number of the disk drive to be used for formatting the disk 
followed by <return>. (Typing just <return> exits the program.) 

This prompt appears next: 

Insert disk to be formatted and press F(ormat or Q(uit 

Put the disk in the proper disk drive and type 'f'. If the disk has already 
been formatted, this prompt appears: 

Destroy all information on BLANK! 

Type 'y' to proceed with formatting; type 'n' to chicken out. 

Format writes a period to the screen after formatting each track on the 
disk. If the disk is double-sided, colons appear instead of periods. 

The following message appears when Format finishes formatting: 

320 block disk formatted successfully 

This is displayed when you are formatting single-sided disks; for double-sided 
disks, it will s.ay "640 block disk". 



Modula-2 on the IBM PC 
Formatting New Disks· 

page 25 

Next, if the file FORMAT JNFO is present, Format automatically writes its 
contents onto blocks 0 and 1 of the newly formatted disk. FORMAT JNFO 
contains bootstrap code which is necessary if the disk is to be used as a 
system boot disk. (Blocks 0 and 1 of every disk are reserved for bootstrap 
code.) 

The original prompt then reappears, allowing you to format another disk: 

Insert disk to be formatted and press F(ormat or Q(uit 

NOTE- Format automatically writes an empty disk directory onto 
disks it formats. Disks are named BLANK. 



Modula-2 on the IBM PC 
Machine-dependent Modules 
page 26 

5 Machine-dependent Modules 

This section describes machine-dependent modules provided with the Modula-2 
system. 

The library module IBMStuff (5.1) provides access to the display, calendar 
clock, and joysticks. 

The module SYSTEM86 (5.2) provides access to low-level system facilities. 

5.1 IBMStuff 

The library module IBMstuff. provides operations for controlling the joysticks, 
calendar clock, and monitor display. 

The procedure GameIO returns the current settings of an analog input device 
attached to the PC. The most common analog input device is the joystick, 
which is most commonly used to control computer games. The parameters 
axisO through axis3 are set to values in the range 0 •• 99. The parameters 
buttonO through button3 are set to TRUE if the corresponding button is 
depressed; otherwise, they are set to FALSE. The exact interpretation of 
these values depends on the specific peripheral device; for details, see the 
device documentation. 

NOTE- If the period between successive calls to GameIO is too short, 
the subsequent call may not return correct values. Programs 
should generally allow 10 to 20 milliseconds to elapse between 
GameIO calls. 

NOTE - GameIO assumes that an analog input device is properly 
connected to the PC and that the 10GAME driver has been 
assigned I/O unit 30 in the interpreter. 

The procedures ReadTime and WriteTime are used to read and set the time 
and date from the calendar clock card. Time/date values are passed and 
returned as characters strings in variables of type TimeString. The character 
string always has the following format: 

mm/dd/yy hh:mm:ss 

The alphabetic letters denote digits. Leading zero digits and the space in 
the middle are significant. Hours are set according to 24-hour "military" 
time. Strings used to set the time must match this syntax exactly. Note 
that TimeString is declared so that the string always end with a null 
character. 



Modula-2 on tbe IBM PC 
IBMStuff 
page 27 

NOTE- ReadTime and WriteTime assume that a calendar clock card is 
properly connected to the PC and that the IOCALCLK driver 
has been assigned I/O unit 31 in the interpreter. 

The procedures ScreenPage, ScreenMode, and ScreenCharColor control the PC 
display. 

The procedure ScreenMode sets the display to the specified mode: 40/80 
columns, monochrome/color, or highres graphics as specified by the type 
VideoMode. 

The PC dedicates 16K bytes of memory for its screen display. In higbres 
graphics mode, the display uses all 16K, but in 40 or 80 column mode, the 
display uses only part of the display memory. In modes requiring only 
portions of the display memory, the remaining memory is available as screen 
"pages" which can be alternately displayed on the screen. In 25x40 mode, 8 
pages are available; in 24x80 mode, 4 pages are available. 

The procedure Screen Page is used to switch between screen pages. To 
establish a new screen page, call ScreenPage with the appropriate page 
number; you can then write whatever you want onto the new page. When 
you switch back to the original page, the new page disappears, but it still 
contains whatever you wrote onto it. When you again switch to the new 
page, its contents are automatically displayed on the screen. 

The procedure Screen Char Color is used to set the color and intensity of the 
display. Setting the parameter blink to TR UE causes the display to blink. 
Setting the parameter intensity to TRUE causes the display to appear in high 
intensity. (Note that the high intensity option is not available on all 
monitors.) The parameters foreground and background control the display 
color; foreground indicates the the color of the characters. Foreground and 
background colors are specified by the type Char Color • 



Modula-2 on the IBm PC 
IBMStuff 
page 28 

DEFINITION MODULE IBMStuff; (* $SEG := 63; *) 

EXPORT QUALIFIED 
GameIO, VideoMode, ScreenMode, Page Range , ScreenPage, 
Char Color , ScreenCharColor, TimeString, ReadTime, WriteTime; 

PROCEDURE GameIO (VAR axisO,axis1,axis2,axis3: CARDINAL; 
VAR buttonO,button1,button2,button3: BOOLEAN); 

TYPE Video Mode = (Video40X25BW, 
Video40X25Color, 
Video80X25BW, 
Video80X25Color, 
Video320X200Color, 
Video320X200BW, 
Video640X200BW); 

PROCEDURE ScreenMode (mode: Video Mode); 

TYPE PageRange = [0 •• 7]; 

PROCEDURE ScreenPage (pagenum: PageRange); 

TYPE CharColor = SET OF (ColorR,ColorG,ColorB); 

PROCEDURE ScreenCharColor(blink,intensity: BOOLEAN; 
foreground,background: Char Color); 

TYPE TimeString = ARRAY [0 •• 17] OF CHAR; 
(* digits: "mm/dd/yy hh:mm:ss" *) 

PROCEDURE ReadTime (V AR time: TimeString); 

PROCEDURE WriteTime (time: TimeString); 

END IBMStuff. 



5.2 SYSTEM86 

Modula-2 on the IBM PC 
SYSTEM86 

page 29 

The library module SYSTEM86 provides access to various low-level system 
facilities • 

. The procedures Peek and Poke provide access to arbitrary locations in 8086 
memory. Because of the 8086's segmented memory architecture, a memory 
address is specified by two parameters: seg and offset. The address mapping 
is as follows: 

logical address = seg*16 + offset 

The procedures InByte, OutByte, InWord, and Out Word correspond to the 8086 
I/O port instructions. On the byte I/O operations, the high order byte of the 
word quantity is either ignored (OutByte) or zeroed (InByte). 

XUnitRead and XUnitWrite are equivalent to the UCSD intrinsics .UnitRead 
and UnitWrite except that they use the 8086's segmented addresses to specify 
the buffer area. 

ClearVector; Raise, and SetPriority provide access to the interrupt system. 
Section 6 describes the interrupt system. 

ClearVector is always passed NILs as address parameters. It is used to 
disassociate a process from an interrupt vector which it has performed 
IOTRANSFERs to. 

Raise generates an interrupt through the specified interrupt vector. 

NOTE- SYSTEM86 is a compile-time module and does not occupy any 
memory at run time. All operations expand to "inline" code 
sequences rather than actual Modula-2 procedure calls. 



Modula-2 on the IBM PC 
SYSTEM86 
page 30 

DEFINITION MODULE SYSTEM86; (* $SEG := 1; *) 

FROM SYSTEM IMPORT WORD, ADDRESS; 

EXPORT QUALIFIED 
Peek, Poke, InByte, In Word , Out Byte , OutWord, 
Raise, ClearVector, SetPriority, 
XUnitRead, XUnitWrite; 

PROCEDURE Peek (seg, offset: CARDINAL): CARDINAL; 

PROCEDURE Poke (w: WORD; seg,offset: CARDINAL); 

PROCEDURE InByte (portnum: CARDINAL): CARDINAL; 

PROCEDURE InWord (portnum: CARDINAL): CARDINAL; 

PROCEDURE OutByte (value: WORD; portnum: CARDINAL); 

PROCEDURE OutWord (value: WORD; portnum: CARDINAL); 

PROCEDURE Raise (vector: CARDINAL); 

PROCEDURE ClearVector (a,b: ADDRESS; vector: CARDINAL); 

PROCEDURE Set Priority (NewPriority: CARDINAL): CARDINAL; 

PROCEDURE XUnitRead (unit,seg ,offset ,bytes ,block: CARDINAL; 
control: BITSET); 

PROCEDURE XUnitWrite (unit,seg,offset ,bytes ,block: CARDINAL; 
control: BITSET); 

END SYSTEM86. 



6 Interrupt System 

Modula-2 on the IBM PC 
Interrupt System. 

page 31 

The interrupt system on the PC provides interrupt vectors for the keyboard, 
serial and parallel ports, timer, vertical retrace, and program break. 

Modula-2 programs are interruptable only between the execution of P-codes. 
Thus, if an interrupt occurs in the middle of a P-code (this includes low-level 
I/O operations), the corresponding IOTRANSFER cannot occur until the 
interpreter fetches the next P-code. 

A process is connected to an interrupt only while an IOTRANSFER call is 
pending. If an interrupt occurs through a vector and there is no 
IOTRANSFER pending, the interrupt is queued for the next 10TRANSFER 
call; any subsequent interrupts through the vector are ignored. If 
IOTRANSFER is called on a vector where an interrupt is pending, the 
transfer takes place immediately. 

One ramification of this scheme is that when a program calls IOTRANSFER 
for the first time, and an interrupt is pending on the vector, an I/O transfer 
occurs immediately. To clear any pending interrupts, a program must call 
ClearVector. before its first IOTRANSFER call (see below for details). 

Nine interrupt vectors are defined for the PC; they are numbered 0 through 
8. Vector assignments are as follows: 

vector 

o 
1 
2 
3 
4 
5 
6 
7 
8 

device 

timer (18.2/sec) 
keyboard (press & release) 
vertical retrace 
unused 
serial port 
unused 
unused 
parallel port 
program break 

Vector 0 is preprogrammed to interrupt 18.2 times per second. It is useful 
for programming time-slicing into a process scheduler by using the vector as 
a timer interrupt to switch processes. 

Vector 1 interrupts whenever a key changes position. Note that this includes 
both pressing and releasing a key; thus, every keystroke generates two 



Modula-2 on the iBM PC 
Interrupt System 
page 32 

interrupts. This feature can be useful for detecting when a key is being 
held down. The procedure UnitIO .UnitBusy can be used to determine whether 
an interrupt was caused by pressing or releasing a key: if UnitBusy(l) returns 
FALSE, the interrupt was caused by pressing a key. (Unit 1 is the console 
I/O unit.) 

NOTE- If a key is pressed and held down, the keyboard's auto-repeat 
feature generates an interrupt for each "virtual" key press, but 
not for the corresponding virtual release. 

Vector 2 is known as the vertical retrace interrupt. "Vertical retrace" refers 
to the period of time when the display monitor's electron scanning .gun 
returns to the top left hand of the screen. This vector is less commonly 
used than the others, being limited to programming high speed flicker-free 
graphics. 

Vector 4 is for serial port interrupts. Note that an interpreter can be 
configured to generate serial port interrupts on input, output, error, or dial­
up; see 3.2 for details. 

Vector 7 is. for parallel port interrupts. Note that an interpreter can be 
configured with parallel port interrupts either enabled or disabled; see 3.2 for 
details. 

Vector 8 interrupts when the program break key is typed. If a process is 
waiting (via IOTRANSFER) on vector 8 when the break key is typed, the 
IOTRANSFER occurs; otherwise, the usual execution error occurs. 

Interrupt priorities are treated as mask values rather than ordinal values. 
The lower eight bits of a module priority number specify which devices are 
prevented from interrupting a module. Bits 0 through 7 in a module priority 
number correspond to interrupt vectors 0 through 7; if a bit is set to 0, the 
corresponding vector cannot interrupt the module. For instance: priority 
value 0 would prevent all vectors from interrupting a module; 2 would 
prevent the keyboard (vector 1) from interrupting; OFFH would allow all 
vectors to interrupt a module. The default interrupt priority is O. 

NOTE- Interrupt vector 8 is nonmaskable; module priority numbers 
have no effect upon it. 

The PC interrupt system provides the procedures Raise, SetPriority, and 
ClearVector to support the use of 10TRANSFER. These are exported from 
the module SYSTEM86 - see 5.2 for details. 

Raise causes an interrupt through the specified vector. 



Modula-2 on the IBM PC 
Interrupt System 

page 33 

SetPriority sets the interrupt priority to the specified value and returns the 
current priority as a function result. SetPriority should be used only when 
necessary; module priority numbers should be used whenever possible. 

ClearVector terminates any IOTRANSFERs pending on a vector. Before 
terminating, programs using IOTRANSFER must call ClearVector(NIL,NIL,x) 
for every interrupt vector that they use; otherwise, an interrupt occuring 
after the program has terminated is likely to crash the system. 

NOTE- Only one IOTRANSFER can be pending on an interrupt vector 
at anyone time; otherwise, execution error 17 occurs. 

WARNING- The program break key can terminate a program without 
allowing it to execute its ClearVector calls, resulting in 
subsequent system crashes. Unless you can guarantee that they 
will not be interrupted by program breaks, all programs using 
IOTRANSFER should create special handler processes which wait 
for program breaks and call ClearVector before terminating the 
program. 



Moduia-2 on the iBM PC 
Machine-level Data Representation 
page 34 

1 Machine-level Data Representation 

This chapter describes machine-level data representation on the PC. The 
basic unit of storage is a 16-bit word. Bits in a word are numbered 0 to 15; 
bit 0 is the least significant bit. All machine addresses are byte addresses. 

• The procedures SIZE and TSIZE return results in units of bytes. 

• Words consist of two 8-bit bytes. The lower-addressed byte 
al ways contains the least significant byte of a word quantity. 

• Integers are stored in one word as 16-bit two's complement 
values. The minimum integer value is -32768. The maximum 
integer value is 32767. 

• Cardinals are stored in one word as unsigned I6-bit integers. 
The minimum cardinal value is O. The maximum cardinal value 
is 65535. 

• Booleans are stored in one word. The cardinal value of FALSE 
is O. The cardinal value of TRUE is 1. 

• Characters are stored in one word (except in character arrays 
and fixed address variables). The least significant byte contains 
an ASCn character value. The most significant byte contains O. 

• Reals are stored in four words in IEEE 64-bit format. 

• Enumerations are stored in one word. Enumerated constants are 
assigned cardinal values 0, 1, 2, ••• in the order they are 
declared. 

• Subranges assume the data representation of their base type. 

• Arrays are stored in integral numbers of words. Character 
arrays in Modula-2 are stored as byte arrays; the first character 
is stored in the lowest-addressed byte, and remaining characters 
are stored in consecutive bytes. 

• Records are stored in integral numbers of words. Record fields 
are allocated in the order they are declared. 

• Sets are stored in integral numbers of words (unless they are 
sub-word fields of packed records or arrays). The number of 
words allocated for a set is 1 + ORD(high element) DIV 16. 
Sets contain up to 4080 elements (255 words). Sets of negative 
integers are not allowed. 



Modula-2 on the IBM PC 
Machine-level Data Representation 

page 35 

• Pointers are stored in one word and contain absolute byte ad­
dresses. The integer value of NIL is -1. 

• Procedure types are stored in one word. The lower-addressed 
byte contains the segment number; the higher-addressed byte the 
procedure number. 

• Opaque types are stored in one word. 

• The types Decimals.DECIMAL, Wides.WIDE, and Files.FilePos are 
actually multiword records - they are documented as opaque 
types merely to discourage access to their internal 
representations. 

• Decimal numbers (of type DECIMAL) are stored in 5 words. The 
five words are treated as an array of 20 4-bit "nibbles" - the 
first nibble contains the decimal sign (of type DecState); the 
remaining 19 nibbles contain decimal digits (0 •• 9). 

• File positions (of type FilePos) are stored in 2 words. The first 
word contains a block number. The second word contains a byte 
offset in the range 1 •• 512. 

• Character variables declared at fixed addresses are stored in a 
single byte. 

• Packed data representation is described in 3.1.1 of The 
Modula-2 System. 

The compiler assigns data offsets to variables and parameters in the order 
they are declared. For example, given the declaration 

VAR I,J: INTEGER; 
K: BOOLEAN; 

The following is always true: ADR(I) < ADR (J) < ADR(K). 



Modula-2 on the IBm PC 
Library Module Hierarchy 
page 36 

8 Library Module Hierarchy 

This section describes intermodule dependencies of all library modules 
provided with the system. For more information on module dependencies and 
the module hierarchy, see section 3 in Standard Library. 

• RealInOut -) In Out , Reals, Standards 

• InOut -) Texts, Files, Conversions, Standards 

• Reals -) Te xts, Standards 

• Texts -) Conversions, Files, Storage, Program, Standards, Bits, 
FileDef, U CSDGlobals 

• Files -) Storage~ Program, SystemTypes, UnitIO, Standards, Bits, 
FileDef, BlockIO, U CSDGlobals 

• Terminal -) UCSDGlobals 

• Strings -) Program, Standards 

• Processes -) Storage 

• Storage -) Program, Standards 

• Program -) Storage, SubProgram, LibDef, Standards, BIocldO, 
UnitIO, Bits 



Index 

-A-
ASE ••••••••••••••••••••••••••••••• 8 
ASE User's Manual ••••••••••••••••• 2 
A(ttach ••••••••••••••••••••••••••• 18 

-B-
Backup. • • • • • • • • • • • • • • • • • • • • • • • • • •• 3 
BACKUP .CODE ••••••••••••••••••••• 8 
Batch •••••••••••••••••••••••••••••• 6 
B.DEMO.TEXT •••••••••••••••••••••• 8 
BINDER.CODE ••••••••••••••••••••• 7 
86.BOOT .CODE •••••••••••••••••••• 10 
BOOTER.CODE ••••••••••••••••••• 9 

-C-

CALC.CODE ••••••••••••••••••••••• 9 
CharColor ••••••••••••••••••••••••• 27 
ClearVector • • • • • • • • • • • • • • • • • • • •• 33 
C(lock •••••••••••••••••••••••••••• 17 
COMPARE.CODE ••••••••••••••••••• 8 
COMPCODE.CODE •••••••••••••••••• 8 
CONFIG.CODE ••••••••••••••••••••• 7 
C(onfigure. • • • • • • • • • • • • • • • • • • • • • •• 12 
CopyBoot ••••••••••••••••••••• 11, 22 
COPYBOOT.CODE •••••••••••••• 9, 22 
COPYDUPDIR.CODE •••••••••••••• 8 

-D-
Data Representation ••••••••••••••• 34 
D(isks •••••••••••••••••••••••••••• 15 
DiskSize •••••••••••••••••••••••••• -. 4 
DISKSIZE.CODE •••••••••••••••••••• 9 
D(river ••••••••••••••••••••••••••• 19 

-F-
FCOPY .CODE •••••••••••••••••••••• 8 
FLIPDIR.CODE ••••••••••••••••••••• 8 
Format •••••••••••••••••••••••• 3, 
FORMAT .CODE •••••••••••••••• 9, 

-G-

24 
24 

GameIO ••••••••••••••••••••••••••• 26 
GLOBALS.TEXT •••••••••••••••••••• 9 

Modula-2 on the IBM PC 
Index· 

page 37 

-1-

IBM Installation Notes •••••••••••••• 2 
IBMStuff •••••••••••••••••••••••••• 26 
IBMUtil ••••••••••••••••••••••• 11, 
IBMUTIL.CODE •••••••••••••••• 10, 

12 
12 

InByte •••••••••••••••••••••••••••• 29 
l(nit •••••••••••••••••••••••••••••• 19 
InitDate •••••••••••••••••••••• 11, 23 
INITDA TE.CODE • • • • • • • • • • • • • •• 9, 23 
Unterp •••••••••••••••••••••••••••• 13 
Interrupt Vectors •••••••••••••••••• 31 
InWord •••••••••••••••••••••••••••• 29 
IOCOMS.CODE •••••••••••••••• 10, 21 
IODISKS.CODE •••••••••••••••• 10, 21 
IOGAME.CODE •••••••••••••••• 10, 21 
IOLPTS.CODE ••••••••••••••••• 10, 21 
IOQUDCLK.CODE ••••••••••••• 10, 21 
IORAMDSK.CODE •••••••••••••• 10, 21 
IOSCREEN .CODE •••••••••••••• 10, 21 

- K-

128K.INTERP ••••••••••••••••• 10, 12 
64KJNTERP ••••••••••••••••••••••• 12 

-L-

LIB •••••••••••••••••••••••••••••••• 3 
LIB.CODE •••••••••••••• -•••••••••• 9 
LIBRAR Y .CODE •••••••••••••••••••• 8 
Linker-•••••••••••••••••••••••• 11, 20 
LINKER.CODE •••••••••••••••• 10, 20 
Local Driver Number •••••••••••••• 18 

-M-
M2.GLOBALD.TEXT ••••••••••••••••• 9 
MODULA.LIBRAR Y •••••••••••••••• 9 
Modula Operating System Manual ••••• 2 
Module Hierarchy •••••••••••••••••• 36 
Module Segment Assignment......... 6 

-N-

86.NOFP.CODE •••••••••••••••• 10, 20 
86.NONSEP .CODE ••••••••••••• 10, 20 



Modula-2 on the IBM PC 
Index 
page 38 

-0-

Out Byte •••••••••••••••••••••••••• 29 
OutWord •••••••••••••••••••••••••• 29 

-P-
P ASCAL.SYNTAX ••••••••••••••••••• 8 
PA TCH.CODE •••••••••••••••••••••• 8 
PC.CODE •••••••••••••••••••••••••• 8 
Peek ••••••••••••••••••••••••••••• 29 
Poke. • • • • • • • • • • • • • • • • • • • • • • • • • • •• 29 
P(rinter ••••••••••••••••••••••••••• 16 
Process Work Space •••••••••••••••• 7 
PROGS •••••••••••••••••••••••••••• 3 

-Q-
QuadBoard •••••••••••••••••••••••• 10 

-R-
Raise ••••••••••••••••••••••••••••• 32 
R(amdisk •••••• ' •••••••••••••••••••• 14 
RAWCOND.TEXT ••••••••••••••••••• 8 
RA weON .TEXT ••••••••••••••••••••• 8 
R(ead ••••••••••••••••••••••••••••• 19 
ReadTime ••••••••••••••••••••••••• 26 
REMOTED.TEXT •••••••••••••••••••• 8 
REMOTE.TEXT ••••••••••••••••••••• 8 

-S-

Screen Char Color ••••••••••••••••••• 27 
ScreenMode ••••••••••••••••••••••• 27 
ScreenPage •••••••••••••••••••••••• 27 
Segment Registers ••••••••••••••••• 13 
86.SEP.CODE ••••••••••••••••• 10, 20 
S(erial •••••••••••••••••••••••••••• 16 
SERIALTALK.CODE ••••••••••••••••• 8 
Set Priority •••••••••••••••••••••••• 33 
SETUP .CODE ••••••••••••••••••••••• 7 
Shell. • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 6 
SIZE •••••••••••••••••••••••••••••• 34 
S~at ••••••••••••••••••••••••••••• 19 
SYS ••••••••••••••••••••••••••••••• 3 
SYS.PARM.TEXT •••••••••••••••••••• 8 
SYSTEM86 • • • • • • • • • • • • • • • • • • • • • • •• 29 
SYSTEM.BATCH •••••••••••••••••••• 8 
SYSTEM.COMPILER •••••••••••••••• 9 
System Configuration •••••••••••••• 11 
SYSTEM.EDITOR •••••••••••••••••••• 8 

SYSTEM.FILER ••••••••••••••••••••• 7 
SYSTEMJNTERP •••••••••••••••• 7, 12 
SYSTEM.MISCINFO •••••••••••••••• 7 
System Notes •••••••••••••••••••••• 6 
SYSTEM.P ASCAL ••••••••••••••••••• 7 
SYSTEM .SHELL ••••••••••••••••••••• 8 
SYSTEM.8TARTUP ••••••••••••••••• 23 
SYSTEM.SYNT AX ••••••••••••••••••• 9 

-T-
TELETALK.CODE ••••••••••••••••••• 8 
TELETALK.TEXT ••••••••••••••••••• 8 
TimeString ••••••••••••••••••• ; •••• 26 
TSIZE. • • • • • • • • • • • • • • • • • • • • • • • • • •• 34 

-u-
U(nit ••••••••••••••••••••••••••••• 19 
UNITCLEAR •••••••••••••••••••••• 19 
UNITREAD •••••••••••••••••••••••• 19 
U NITST A TU S •••••••••••••••••••••• 19 
UNITWRITE ••••••••••••••••••••••• 19 
UTIL •••••••••••••••••••••••••••••• 3 

-v-
VideoMode •••••••••••••••••••••••• 27 

-W-
W(rite •••••••••••••••••••••••••••• 19 
WriteTime ••••••••••••••••••••••••• 26 

-x-
XUnitRead •••••••••••••••••••••••• 29 
XUnitWrite •••••••••••••••••••••••• 29 

-Y-
YALOE.CODE •••••••••••••••••••••• 8 



Release: 

Date: 

Author: 

Operating System 

0.3 

26 August 1983 

Richard Gleaves 



lIodula Operating System 
Table Of Contents 

Table Of Contents 

1 Introduction ••••••••••• • • • • • • • • • • • • • • • • • • 

1.1 Scope of This Manual. • • • • • • 0 • • • • • • • • • • • 

1.2 Notation ••• • • • • • • • • • • • • • • • • 0 • • • • • • • 

1.3 Terminology. • • • • • • • • • • • • • • • • • • • • • • • 0 

2 Basic Concepts. • • .0. • • • • • • • • • • • • • • • • 0 • 0 0 • 

o 1 

01 

2 

3 

.4 

2.1 Promptiines •••••••••••••••••••••••••• 4 

2.2 Prompts. • • • • • • • • • • • • • • • • • • • • • • 0 • • • • 5 

2.3 Key Commands •• ~ ••••••••••••••••• 0 ••• 6 

3 Operating System. • • • • • • • • • • • • • • • • • 0 0 • • 0 • • • 7 

3.1 Starting the System. 0 ••••• 0 •••• 0 0 0 •• 0 0 • 0 8 

3 0 2 The Work File ••••• • • • • 0 • • • 0 • 0 0 0 • 0 0 • • .9 

3.3 Syntax Errors and the Editor. • • 0 • 0 0 0 • 0 • 0 • • 10 

3.4 Runtime Errors. • • • • • • • 0 • 0 0 0 • • • 0 • • • 0 • • 11 

3.5 Disk Swapping 0 •• • • • • • • 0 • • • • • .00 • • • • • 12 

3.6 System Commands. • • • • • • • • • • • • • • • • • 0 • • 13 

3.6.1 . Clear Screen ••••••• 0 •••• 0 • • • • • • • • 13 

3.6.2 C(ompile ••••••• 0 ••••••••• 0 ••••••• 13 

3.6.3 E(dit ••••••••••••• 

3.6.4 F(ile. • • • • • • • • • • • 
• • • • • • • • • • • • • . . . . . . . . . . 

13 

13 

3.6.5 H(alt. • • • • • • • • • • • • • • • • • • • • • • • • • 14 

3.6.6 I(nitialize •••• • • • • • • • • • • • • 
3.6.7 R(un ••••••• • • • • • • • • • • • • 

• • 
• • 

• • • • • 

• • ••• 

14 

14 

3.6.8 B(atch. • • • • • • • • • • • • • • • • • • • • • • • • 14 

3.6.9 SChell •••••••••••••••••••••• 0 ••• 15 

3.6.10 U (ser restart. • • • • • • • • • • • • • • • • • •• 15 

3.6.11 X(ecute •••••••••••••••••••••••• 15 



Modula Operating System 
Table Of Contents 

4 Pile System. • • • • • • • • • • • • • • • • • • • • • • • • • • • • 16 

4.1 Files. • • • • • • • • • • • • • • • • • • • • • • • • 0 • • • 1 7 

4.1.1 File Attributes •••••••••••••••••••• 17 

4.1.2 File Lengths. • • • • • • • • • • • • • • • • • • •• 1 7 

4.2 Volumes ••• • • • • • • • • • • • • • • • • • • • • • • • • 18 

4.3 Directories. • • • • • • • • • • • • • • • • • • • • • • • • 19 

4.4 File Names •••••••••••••••••• • • • • • •• 20 

~.4.1 Volume Identifiers ••••••••••• • • • • • 0 • 21 

4.4.2 . File Identifiers. • • • • • • • • • • • • • • • •• 22 

4.4.3 File Name Syntax. • • • • • • • • • • • • • • • • • 23 

5 File Manager. • • • • • 

5.1 Filer Prompts. 

. . . ~ . . . . . . . . . . . . . . . . . . 
• • • • • • • • • • • • • • • • • • • • • • • 

5.2 File Names. • • • • • • • • • • • • • • • • • • • • • • • • 

24 

25 

25 

5.3 Commands" ••••••••••••••••••••••••• 27 

5.3.1 B(ad blocks •••••••••••••••••••••• 28 

5.3.2 C(h~nge. • • • • • • • • • • • • • • • • • • • • • • • 28 

5.3.3 D(ate ••••••••••••••••••• 0 •••••• 29 

5.3.4 E(x dir ••••••••••••••••••••••••• 30 

5.3.5 G(et •••••••••• 0 •••••••••••• • •• 
5.3.6 K(runch. • • • • • • • • • • • • • • • • • • • • • •• 
5.3.7 L(dir. • • • • • • • • • • • • • • • • • • • • • • • • • 

5.3.8 M(ake. • • • • • • • • • • • • • • • • • • • • • • • • 

31 

32 

33 

34 

5.3.9 N(ew. • • • • • • • • • • • • • • • • • • • • • • • • • 34 

5.3.10 P(refix ••••••••••••• 

5.3.11 Q(uit. • • • • • • • • • • ••• 

5.3.12 R(ernove. 

5.3.13 S(ave ••• 
• • • • • • • • • • • 

• • • • • • • • • • • 

• • • • • • • • • • • 

• • • • • • • • • •• 

• • • • • • • • • • • . . . . . . . . . . . 
• • • • • • • • • 

• • • • • • • • • 

35 

35 

35 

36 

37 

38 

5.3.14 T(ransfer •••••••••••••• 

5.3.15 V(olumes •••••••••••••• 

5.3.16 W(hat •••••••••••••••• • • • • • • • • 
5.3.17 X(amine ••••••••••••••••••••••• 

• 38 

39 



Modula Operating System 
Table Of Contents 

5.3.18 Z(ero. • • • • • • • • • • • • • • • • •• II • • • • • 40 

6 Batch Command Interpreter. • • • • • • • • • • • • • • • • • • 41 

6.1 Submitting Command Files. 0 • • • • • • • • • • • • • • 42 

6.2 Command File Execution. • • • • • • • • • • • • • • • • 42 

6.3 Automatic Command File Execution. • • • II • • • • • 43 

6.4 Command Files ••••••••••••••••••••••• 43 

6.4.1 Commands ••••••••••••• CI ••••••••• 44 

6.4.2 Targets & Labels. • • • • • • • • • • • • • • • •• 46 

6.4.3 Text Lines ••••••••••••••••••• 0 •• 4'1 

6.404 String Parameters •••••••••••••• 0 • 0 • 48 

6 ~5 Example Command Files. • • • • ~ • • • II • • • 0 0 •• 48 

. '1 Shell Command Interpreter. • • • • • • • • • • 0 • • II • O. • 50 

1.1 Using the Shell 0 •••••••••• 0 fI 0 ••• 0 0 e •• 0 51 

'1.1.1 Program Results. 0 • • CI 0 • 0 0 0 0 • • 0 • • • • • 51 

'1.1.2 I/O Redirection •• 0 •••••••• 0 • • • • • •• 51 

'1.1.3 Command Arguments. 
'1 .1.4 Wildcards. • • • • • • • 
'1.1 ~5 Pipes. • • • • • • • • • 

• • • • • • • CI • CI 0 • • • • 

• • • • • • • • • • • • • • • 
• • • • II • • • II • • • • • • • 

'1.2 Shell Commands •• 0 0 • 0 CI e •• II ••• 0 ••• 0 ••• 

'1.2.1 cat. 41 •••••••••••••• II 0 ••••••••• 

'1 .2.2 cp. • • • • • •. • • • • • • • • • • • • • • • • • • • • 
'1.2.3 date. 
'1 .2.4 echo. 

• • 

• • 

• • • • • • • • 

• • • • • • • • 

• • • • • • • • • • • • II • • 

• • • • • • • • • • • • • • • 
'1.2.5 

'1.2.6 

ed ••••••••• 0 ••••••••••••••••• 

f ••••• • • • • • • • • • • • • • • • • • • • • • •• 
'1.2.'1 grep •••••••••••••••••••••••••• 
'1.2.8 Is. • • • • • • • • • • • • • • • • • • • • • • • • • • • 

'1.2.9 me ••••••••••••••••••••••••••• 

52 

52 

53 

53 

53 

54 

54· 

54 

54 

54 

54 

55 

55 

'1.2.10 mem •••••••••••••••••••••••••• 55 

'1.2.11 more. • • • • • • • • • • • • • • • • • • • • • • •• 55 

'1.2.12 mv. • • • • • • • • • • • • • • • • • • • • • • • •• 55 



Modula Operating System 
Table Of .Contents 

7.2.13 rm. • • • • • • • • • • • • • • • • • • • • • • • • • • 55 

• • • • • • • • • ••• • • • • • • •• • • • • 56 7.2.14 sh ••• 

7.2.15 sort. • • • • • • • • • • • • 
7.2.16 wc ••••••••••••• 

• • • • • • • • • • . . 
• • • • 0 • • • • • • • • 

• 56 
56 

7.3 Adding New Shell Commands. • • • • • • • • • • • • 0 

8 Pascal Compiler •• • • • • • • • • • • • • • • • • • • • • • • • • 

8.1 Operation. • • • • 

8.2 Compile Options. 

8.2.1 I/O Checks. 

• • • • • • • • • • • • • • • • • • • • 0 

• • • • • • • • • • • • o • • • • 0 0 • • 

• • • • • • • • • • • • • • • • • 0 • • • 

56 

58 

59 

60 

60 

8.2.2 Include Files. • • • • • • • • • • • • • • • • •.• • • 61 
8.2.3 Compiled Listings. • • • • • • • • • • • • • • • • • 61 

8.2.4 Quiet Compile. • • • • • • • • • • • • • • • • • •• 62 
8.2.5 Range Checks. • • • • • • • • • • • • • • • • • •• 62 

8.2.6 System-level Compile ••••••••• 

8.2.7 Separate Code &. Data •••••••• 
• 0 ••••• 

. . . . . . . 
62 

63 

8.2.8 Byte Flipping ••••.••••••••••••••••• 63 

, 8.3 VS Pascal Intrinsics •••••••••••••••••••• 64 

8.3.1 Input and Output ••• ' ••••• 0 •••• 0 •••• 

8.3.2 String Manipulation ••••••••••••••••• 

8.3.3 Byte Array Manipulation •••••••••••••• 

8.3.4 Miscellaneous ••••••• 0 ••• • • • • • • • • • • 

8.4 Differences From Standard Pascal ••••••••••• 

8.4.1 Case Statements. • • • • • • • • • • • • • • • • • • 

65 
70 

71 

72 

73 

73 

8.4.2 Comments ••• 0 ••••••••••••••••••• 73 
8.4.3 Dynamic Memory Allocation. • • • • • • • • • • • 74 

8.4.4 EOF and EOLN ••••••••••••••••••• 74 

8.4.5 Files. • • • • • • • • • • • • • • 
8.4.6 GOTO and EXIT Statements. 

• • • • • • 
• • • • • • 

• •••• 75 

••••• 76 
8.4.7 Packed Variables ••••••••••••••••••• 76 
8.4.8 Procedure Parameters •••••••••••••••• 77 
8.4.9 Program Headings. • • • • • • • • • • • • • • • • • 77 
8.4.10 READ and READLN •••••••••••••••• 77 

8.4.11 RESET and REWRITE. • • • • • • • • • • • • • • 78 



Modula Operating System 
Table Qf Contents 

8.4.12 Segment Procedures •• • • • • • • • • • • • • • • 78 
8.4.13 Code Procedures. • • • • • • • • • • • • • • • • • 79 

8.4.14 Sets. • • • • • • • • • • • • • • • • • • • • • • • •• 79 
8.4.15 Strings. • • • • • • • • • • • • • • • • • • • • • • • 80 
8.4.16 WRITE and WRITELN • • • • • • • • • • • • • •• 80 ' 
8.4.17 Array Comparison. • • • • • • • • • • • • • • •• 81 
8.4.18 Implementation Limits. • • • • • • • • • • • • • • 82 

9 Yet Another Line Oriented Editor. • • • • • • • • • • • • • 83 

9.1 Entering Y ALOE. • • • • • • • • • • • • • • • • • • • • • 84 

9.2 Entering Commands and Text. • • • • • • • • • • • • • 84 

9.3 Special Commands. • • • • • • • • • • 0 • • • • • • • • C) 85 

9.4 Input & OutP1:lt Commands. • • • • • • • • • • II • 0 • • 86 

9.5 Cursor Moving Commands. • • • • • • • • • • • • • • • .88 

9.6 Text Changing Commands. • • • • • • • e • • • e 00. 90 

9.7 Miscellaneous Commands. • • • • • 0 • • • 0 • • 0 0 • • 92 

9.8 Command Summary. • • • • 0 • • • • • • • • • • • 0 lit ~ 0 94 

10 Utility Programs. • • • • • • • • • • • 0 • • 0 lit • 0 • 0 • .0. 95 

10.1 Disk Management. 0 • • • • 0 • o 0 o • • • o • o 0 • 0 o 96 
10.1.1 Bootstrap Copier 0 • • o 0 o • • 0 • • • • • o • • • 96 
10.1.2 Disk Copier. • • • • o • • • • • • • • • • • • ••• 97 
10.1.3 Duplicate Directory Copier •••••••••••• 99 

10.1.4 Disk Directory Flipper. • • • • • • • • • • • •• 99 

10.2 File Management. • • • • • • • • • • • • • • • • • •• 100 
10.2.1 Disk File Editor. • • • • • • • • • • • • • • • • • 100 
10.2.2 File Copier •••• • • • • • • • • • • • • • • • • .102 
10.2.3 Text Fi~e Compare •• • • • 
10.2.4 Binary File Compare •• • • 

10.3 Program Management. 

10.3.1 Librarian. • • • • 
• • 

• • 

• • • • 

• • • • 

• • 

• • 

• • 

• • 

• • • • • •••• 
• • • • • • • • • 

• • • • • • • •• 

• • • • ••••• 

102 
104 

105 
105 



Modula Operating System 
Table Of Contents 

10.4 Communication •••••••••••••••••••••• 107 
10.4.1 Remote File Transfer. • • • • • • • • • • • •• 107 
10.4.2 Electronic Mail Transfer. • • • • • • • • • • • • 109 

10.5 System Configuration ••••••• • • • • • • • • • • • 111 

10.5.1 Terminal Setup. • • • • • • • • • • • • • • ••• 111 

10.5.2 GOTOXY Procedure Binding. • • • • • • ••• 119 

Appendix 1 Installation Guide •••••••• • • • •••• 0 II II • • 120 

Appendix 2 I/O Results. • • • • • • • • • .. • • • • •• 41 41 41 ••• 121 

Appendix 3 Execution Errors. • • • • • • • • • • • • • • • • • • • 122 

. Appendix 4 Compiler Error Messages. • • • • • • • • • • • • • • 123 

Appendix 5 ASCn Character Set 41 0· ••••••••••••• 0 •• 126 

Index II II II II II II II II 0 II II CI II 0 II II II II II II II II II <I II I 0 ·0 0000110 127 



1 Introduction 

Modula Operating System 
Introduction 

page 1 

The Modula operating system is an interactive single-user system for 
developing Modula-2 and Pascal programs. It is compatible with the 
version n U CSD Pascal system. 

The Modula operating system provides the following facilities: 

• Batch Command Interpreter - Reads a series of system 
commands and data from a command file. It is used to 
automate repetitive system tasks. 

• Shell Command Interpreter - Creates a "command shell" 
programming environment where individual programs can be 
linked together to perform complex tasks. 

• File Manager -Manages disk files and volumes. 

• Line-oriented Editor - Offers basic text editing capabilities on 
unconfigured systems. 

• Pascal Compiler - A fast one-pass compiler which includes' 
many of the UCSD Pascal language extensions. 

• Utility Programs - A large collection of utilities which aid 
system configuration and software development. 

1.1 Scope of This Manual 

This manual describes Volition Systems' Modula operating system. It provides 
a complete description of the system commands and features. 

This manual is not a tutorial - it assumes you are familiar with the U CSD 
Pascal language and the UCSD Pascal system. If you have not used UCSD 
Pascal, the following books are recommended as tutorials: 

Introduction to the U CSD p-system 
Charles W. Grant and Jon Butah 
Sybex, Berkeley, California, 1982. 

Introduction to Pascal (Including U CSD Pascal) 
Rodnay Zaks 
Sybex, Berkeley, California, 1981. 



Modula Operating System 
Introduction 
page 2 

1.2 Notation 

This section describes the notation used in this manual. 

A variant of Backus-Naur form (BNF) is used as a notation for describing the 
form of promptlines, input data, and text file items. Meta-words are words 
which represent a class of words; they are delimited by angular brackets (' <, 
and I>'). Thus, the words 'trout', 'salmon', and 'tuna' are acceptable 
sUbstitutions for the meta-word '<fish>'; here is an expression describing the 
sUbstitution: 

<fish> ::= trout I salmon I tuna 

The symbol '::=' indicates that the meta-word on the left-hand side can be 
sUbstituted with the right-hand side. The vertical bar 'I' separates possible 
choices for substitution; the example above indicates that itrout', 'salmon', or 
'tuna' can be sUbstituted for '<fish>'. 

An item enclosed in brackets ('[' and 'l') can be optionally substituted into a 
textual expression; for instance, '[micro]computer' can represent the text 
strings 'computer' and 'microcomputer'. 

An item enclosed in braces ('l' and 'I') can be substituted zero or more times 
into a textual expression~ The following expression represents responses to 
jokes possessing varying degrees of humor: 

<joke response> ::= {hal 

Literal occurrences of the characters used above are delimited by quotes to 
avoid confusing them with notational definitions (e.g. <left-bracket> ::= '<I I 
'I' I 'Pl. 

BNF notation is often used informally to describe the appearance of a 
promptiine or the required form of some input data. Here are some typical 
examples: 

Typing <cr> completes the input prompt. 
President <surname>. should be [<expletive>] impeached! 

The syntax for .Pascal's IF statement is: 

IF <Boolean expression> THEN <statement> [ELSE <Statement>] 



Modula Operating System 
Introduction 

page.3 

NOTE- Paragraphs beginning with the word NOTE contain interesting 
or useful,.information related to the current topic. 

WARNIN G - . Paragraphs beginning with the word WARNIN G point out 
potential problems associated with the current topic. 

Section references have the form 'x.y.z •••• ',. where x, y, and z denote digits. 
The first digit indicates the chapter; subsequent digits indicate sections 
within the chapter. For instance, the phrase 'see 3.4' refers to section 4 in 
chapter 3. 

This manual defines a number of terms for describing system features and 
commands. When new terms are introduced, they appear in boldface and are 
followed by either a definition or a reference to the defining section. 

1.3 Terminology 

This section describes the terminology used in this manual. 

The following terms are used to describe the file I/O system: file name, 
file block, block number, unit, and unit number. 

A file name is a character string that conforms to the file naming 
conventions of the UeSD Pascal file system. 

File names usually consist of a file title and a file suffix. For instance, 
the file name 'LIB.TEXT' contains the file title 'LIB' and the file suffix 
'.TEXT'. 

A file block is the basic unit of disk file storage; a block contains 512 
bytes. A block number is a number specifying a ·file block within a disk 
file; the first block of a .disk file is block O. 

A unit corresponds to a physical I/O device. Each unit is identified by a 
unique unit number. For instance, unit 1 is the system console, unit 6 is the 
printer, and units 4 and 5 are the disk drives. 

This manual upholds the tradition in U eSD Pascal system documents of 
describing key commands as metawords. <cr> and <return> denote the 
carriage return key. <Spacebar> and <space> denote the space key. <etx> 
and <esc> denote the keys defined as the accept and escape commands 
respectively. Vector keys are denoted by <left>, <right>, <up>, and 
<down>. Many of these commands are defined using the Setup utility (10.5.1). 



Modula Operating System 
Basic Concepts 
page 4 

2 Basic Concepts 

This chapter describes some basic concepts used throughout the system: 

• Promptlines 

• Prompts 

• Key commands 

Promptlines display the available commands across the top of the screen. 
Promptlines are described in section 2.1. 

Prompts ask you for specific information: a file name, a number, or 
sometimes just a 'yes' or 'no'. Prompts are described in section 2.2. 

Key eommands are certain terminal keys which are defined as system 
commands. Key commands are described in section 2.3. 

2,,1 Promptlines 

Promptlines are used to display the available commands in many parts of the 
system." Promptlines appear across the top of the screeno Here is an 
example: 

Command: E(dit, R(un, POle, C(omp, B(ateh, S(hell, X(ecute 

. Commands are invoked by typing one of the command characters. The 
command characters in a promptline are capitalized and (usually) separated 
from the command abbreviation with a left parenthesis; for instance, typing 
'e' to the above promptline invokes the editor. Note that command 
characters can be typed in either as upper or lower case letters. 

Some promptlines contain more commands than can be displayed across the 
screen. With these promptiines, typing '1' as a command character displays 
a promptline containing a second set of commands. 

Many system promptlines display a version number in their promptiines. This 
indicates what release version of that program you are using. 



2.2 Prompts 

Modula Operating System 
Basic Concepts 

page 5 

The system displays a prompt when it needs some information. Prompts 
usually appear in the form of a question: 

Compile wbat file! 

Are you sure (yIn)? 

Scan for bow many blocks? 

Prompts fall into two classes: the 'yes/no' prompt or the input prompt. 

'Yes/no' prompts are the simplest to answer: merely type 'y' or tnt. ('Y' and 
'N' also work.) 

Input prompts require a string of characters followed by <return>. Typing 
<return> signals the end of the character string. You can use <backspace> 
to erase any typing mistakes. You can also erase everything you've typed by 
hitting <delete>. 

Most input prompts offer a way to 'escape' from the prompt. For instance, 
typing just <return> to the prompt 

Compile what file! 

••• returns you to the system promptline. Most (but not all) input prompts in 
the system recognize <return> as an escape. 



Modula Operating System 
Basic Concepts 
page 6 

2.3 Key Commands 

This section Qescribes key commands recognized by the system. 

The <accept> and <escape> keys are used throughout the system as command 
terminators. <accept> is used mostly in ASE, where it indicates a command 
is to be completed. <escape> is recognized as a way to escape from (undo) 
a command. The actual keys that invoke <accept> and <escape> are 'soft'; 
that is, they are defined when the terminal is configured for the system. 

Cursor movement is important in a few parts of the system - mainly the 
editor. <space> and <backspace> move the cursor in the expected direction. 
The vector keys <left>, <right>, <up>, and <down> also work in the usual 
sense. 

The <eof> key is used to terminate character streams when the console is 
accessed as an input file. <eof> is usually defined (during system 
configuration) as ctrl-C. 

The stop/start keys are used to stop console output. This is useful for 
stopping programs which are spewing out data faster than you can read it -
typing the stop key halts the program, freezing the console display. Console 
output (and thus program execution) are resumed by typing the start key. 
ctrl-S usually serves as the stop/start toggle, but some systems define ctrl-S 
as the stop key and ctrl-Q as the start key. . 

The flush key causes the system to discard all console output until the next 
console read operation is completed. Console output can also be restored by 
typing the flush key again. The flush key is useful for speeding up programs 
which are bogged down because of their voluminous console output. The 

. flush key is usually defined as ctrl-F. . 



3 Operating System 

Modula Operating System 
Operating System 

page 7 

The Modula operating system provides basic facilities for program execution, 
error handling, and Pascal runtime support. It also offers a number of useful 
features: 

• You can configure the system to automatically execute a user 
program when it first starts up. This lets you create turnkey 
applications. 

• Programs can be kept in the work file to reduce the number of 
commands needed to compile and execute them. This speeds up 
program development. 

• When a syntax error occurs during compilation, the system can 
automatically invoke the editor to let you fix the error. This 
simplifies debugging. 

• The file system implements high level concepts such as 
removable disk volumes and device-independent file I/O. 

• The batch command interpreter lets you automate repetitive 
system tasks. System commands and data are read from a 
command file instead of the keyboard. The system can be 
configured to automatically execute a command file when it first 
starts up. 

Section 3.1 explains how to start the system. 

The work file is described in 3.2. 

Syntax errors and editor invocation are described in 3.3. 

Runtime error handling is described in 3.4. 

Disk volume swapping is described in 3.5. 

Operating system commands are described in 3.6. 

NOTB- The file system is described in chapter 4. 



Modula Operating System 
Operating System 
page 8 

3.1 Starting the System 

The operating system is started up by placing the system disk in the proper 
disk drive and pressing the 'boot' button. (Details on this procedure may 
vary across different machines.) 

After a few moments and a few disk accesses, the welcome message appears 
on the screen: 

SYSTEM: 

29 Mar 83 

Volition Systems Modula-2 O.3m 

The welcome message displays the names of all online disk volumes and the 
current system date. The system promptline then appears across the top of 
the screen: 

Xecute, Batch, Shell, Run, File, Edit, Comp, UsrRst, Init 

The system is now ready for you to type one of the system commands. See 
3.6 for details on the system commands. 

If a program named SYSTEM.STARTUP resides on the system disk, the 
operating system immediately executes it instead of displaying the welcome 
message and system prompt. This feature lets you create stand-alone 
application systems where the operating system is never visible to the end 
user. 



3.2 The Work Pile 

Modula Operating System 
Operating System 

page 9 

The work file is a special file which is used as a 'work' area for developing 
programs. The work file speeds up program development by reducing the 
number of commands you have to type in order to edit, compile, and execute 
your program. 

Here is how the work file works: 

• If you type E(dit and a work file exists, the editor selects it as 
the input file. 

• If you type C(ompile and a work file exists, the compiler 
automatically begins compiling the work file. 

• If you type R(un and a compiled work file exists, the operating 
system automatically executes the work file. 

• If you type R(un and an uncompiled work file exists, the system 
automatically compiles and executes the work file. 

The work file actually consists of two parts: the work text file, and the 
work code file. The work code file is usually the compiled form of the work 
text file. 

To create a new work file, type <return> to the editor's input file prompt. 
At the end of the edit session, the editor's U(pdate command writes the 
newly created work file to a disk file named SYSTEM.WRK.TEXT. Compiling 
this file results· in the file SYSTEM.WRK.CODE. 

Because the work file SYSTEM.WRK is only a temporary 'scratch pad', you 
will probably want to save the results as a regular disk file. The filer 
command S(a ve lets you permanently save the current work file as a regular 
file. 

Another way to create a work file is to select an existing disk file as the 
new work file. The filer command G(et specifies an existing named disk file 
as the work file. 

Finally, to get rid of the current work file, the filer command N(ew removes 
any SYSTEM.WRK files and disassociates any existing regular files from being 
the work file. 



Modula Operating System 
Operating System 
page 10 

3.3 Syntax Errors and the Editor 

When the compiler finds a syntax error in your program, you have the choice 
of continuing compiling, stopping the compiler, or invoking the editor to fix 
the error. If you choose to edit your program, the operating system 
automatically starts the editor, which moves the cursor to the location of the 
error and displays a message describing the error. 

NOTE- If you are not compiling the work file, the editor has to ask 
. for the name of the file being compiled before it can jump to 

the syntax error location. 



3.4 Runtime Errors 

Modula Operating System 
Operating System 

page 11 

The operating system is responsible for handling software and hardware errors 
that occur during Pascal program execution. When an error occurs, the 
system displays a message describing the error and then terminates the 
program. 

Note that programs may be terminated either by an execution error or by 
explicit user interruption of the program (i.e. typing the <break> key). 

Execution error messages consist of an error description and the location of 
the error in the program code. 

Example of an execution error message: 

Divide by zero 
SI 1, PI 5, II 20 
Type <space> to continue 

The error description is usually' a textual message (e.g. 'Value Range Error'), 
but sometimes only an execution error number is displayed. Execution error 
numbers are described in Appendix 3. 

When an execution error is caused by an I/O error, a message describing the 
I/O error is printed next to the execution error message. As with execution 
errors, sometimes only an I/O error number is displayed. I/O error numbers 
are described in Appendix 2. 

The execution error location is specified in terms of the code file structure; 
the'S', 'P', and 'I' fields indicate the segment, procedure, and code offset of 
the instruction that caused the error. If you have a compiled listing of the 
program, you can use these offsets to trace. the error to a single statement 
within the source program. 

After you type the space bar, the system terminates the program, 
reinitializes itself, and redisplays the system prompt. 

A stack overfiow occurs when there is not enough memory for a program to 
continue executing. The program is terminated, and the following message 
appears on the screen: 

·STK OFLOW· 

The system then reinitializes itself and redisplays the system prompt. 



Modula Operating System 
Operating System 
page 12 

3.5 Disk Swapping 

The Modula operating system allows you to mount and dismount different disk 
volumes during normal system operation. For instance, to transfer files from 
one disk to another, you can enter the filer, replace the system disk with 
the disks you wish to transfer to, then transfer the files. By detecting disk 
swapping, the system is able to keep track of what disk volumes are 
currently online (without crashing like some other popular operating systems 
do). 

During program execution, however, disk swapping can be risky. if a system 
or user program requires a code segment from a disk volume and the volume 
is no longer online, the system will crash. The system addresses this problem 
in two ways. 

First, the file handler and most utility programs do not contain segment 
procedures; their code remains resident throughout executionQ (Your programs 
will have to do the same in order to be immune to ~isk swapping.) 

Second, the operating system tries to protect itself from crashes caused by 
random disk swapping. If the operating system determines that the system 
disk is not mounted, the following message appears after the program 
term ina tes: 

Replace SYSTEM: 

The system then waits until the system disk is remounted in the proper drive; 
when it is, the system prompt is redisplayed. 

WARNING- The operating system detects disk swapping by checking 
the disk volume name whenever a disk is accessed by a 
directory operation (e.g. Open or Close). If the system disk is 
replaced by a disk volume that is never accessed, program 
termination will halt the system with an unrecoverable execution 
error. 



3.6 System Commands 

Modula Operating System 
Operating System 

page 13 

This section describes the commands available from the system promptline. 

3.6.1 Clear Screen 

If you type a character which is not a system command, the screen is 
cleared and the system promptline is redisplayed. 

3.6.2 C(ompile 

C(ompile invokes the Pascal compiler. 

The compiler is the code file SYSTEM.COMPILER. 

The Pascal compiler is described in chapter 8. 

3.6.3 E(dit 

E(dit invokes' the editor. 

The editor is a code file named SYSTEM.EDITOR. 

If a' work text file exists, it is automatically entered as the input file name. 

The editor is described in the ASE User's Manual. 

3.6.4 PUle 

F(ile invokes the filer. 

The filer is the code file SYSTEM.FILER. 

The filer is described in chapter 5. 

HOTE- The filer can be operated without having the disk containing 
the filer code file oriline. 



Modula Operating System 
Operating System 
page 14 

3.6.5 B(alt 

H(alt stops the system. 

The only way to restart the system after H(alt is to reboot. 

3.6.6 I(nitialize 

I(nitialize causes the system to reinitialize its state information. 

The operating system clears all online I/O devices, rebuilds the system data 
structures, and searches all online disk volumes to locate the system 
programs. 

Most execution errors automatically invoke I(nitializee 

3.6.'1 R(un 

R(un executes the work file 0 

If the work code file does not exist, the compiler is automatically invoked", 
If a work text file does not exist, the compiler input prompt appears., 

3.6.8 B(atch 

B(atch invokes the batch command interpreter. 

The batch command interpreter is the code file SYSTEM .BA TeH on the 
system volume. 

The batch command interpreter is described in chapter 6. 



3.6.9 S(hell 

S(hell invokes the shell command interpreter. 

Modula Operating System 
Opera ting System 

page 15 

The shell command interpreter is the code file SYSTEM.SHELL on the system 
volume. 

The shell command interpreter is described in chapter 7. 

3.6.10 U(ser restart 

U(ser restart reexecutes the last program executed. U(ser restart does not 
work if the system has been reinitialized. 

3.6.11 X(eeute 

X(ecute executes the specified code file. 

The following prompt appears: 

Execute 'what fileY 

Type in the title of the code file to be executed. The file suffix '.CODE' is 
automatically appended to the file name (unless it ends with a period). 



4 Pile System 

This chapter describes the Modula file system. Note that it is identical to 
the UCSD Pascal file system. 

There are two good reasons for learning the file system in detail: 

• Much of the file name syntax involves simplifying the 
specification of a file. Because mO$t of your time in the 
system is spent creating, modifying, or deleting files, you can 
save a lot of time and effort by learning the file naming 
conventions. 

• The Modula file system requires more a bit more user attention 
than other file systems; in particular, it is susceptible to running 
out of disk space if disk files and disk volumes are not properly 
managed. This problem can be minimized if your programs are 
designed with a firm understanding of how the file ~ system 
works. 

Files and disk file attributes are described in 4.1. 

Disk volumes are described in 4.2. 

Disk directories are described in 4.3. 

File names and file name syntax are described in 4.4. 



4.1 Files 

Modula Operating System 
File System 

page 17 

A file is a collection of information which is usually stored on a disk. A 
disk file is referred to by its file name. Each disk has a directory which 
contains the file names and disk locations of each file on the disk. Files are 
accessed by programs and by the filer. 

4.1.1 File Attributes 

Each file is assigned a number of file attributes. 

One of the attributes of a file is the file date. The current system date 
(5.3.3) is assigned to a file when it is created or modified. 

Another file attribute is called the file type. The type of a file determines 
the way it can be used; for instance, the system does not let you edit code 
files or execute text files. File types are assigned based on part of the file 
name known as the file suffix. Note that file types are assigned when the 
file is first created; the file name can be changed later without affecting 
the file type. 

Here are the reserved file suffixes: 

.TEXT 

.BACK 

• CODE 

.DATA 

.BAD 

4.1.2 File Lengths 

Human-readable text • 

Machine-executable code • 

Datao (The default file type) 

A worn-out area on the disk • 

When a disk file is created, the file system allocates a fixed area on disk 
where the file is to reside. When the newly created file is closed, the file 
system releases any disk space that was not actually used by the file; 
however, while the file is open, it reserves all of its allocated disk space for 
growing room. A file's allocated disk space is. known as its length 
attribute. 

By default, newly created files are allocated the largest free space on the 
volume; this minimize the chances of their running out of disk space as they 



Modula Operating System 
File System 
page 18 

are written to. However, this scheme causes problems when a program 
attempts to create more than one file on a disk volume having only one free 
space; though the free space might easily contain all of the finished files, 
the first file created is allocated all available disk space, preventing the 
other files from being created. 

To avoid this problem, a file's length attribute can be explicitly specified by 
appending a length specifier to the file name. The length specifier value 
indicates the estimated maximum file size (in blocks). The file system then 
allocates the disk file in the first free space large enough to contain it. 
For instance, with the file name 'roger.file[77]', the file system allocates the 
file 'roger.file' 77 blocks of disk space in the first free space large enough 
to contain it. 

The file length specifier '[*]' is useful when creating more than one file on a 
volume; it allocates the file in either half the largest free space on the disk 
or the second largest free space - whichever is largest. 

NOTE- If a growing file reaches the end of its allocat~d disk space, 
one of two things happens. If the disk space following the 
file's allocated space is already occupied by an existing file, the 

. file system reports the error 'No room on volume'. If the 
following disk space is part of a free space, the file system 
extends the file's len~th attribute into the adjacent free space .. 

NOTE- Over time, disk free spaces tend to increase in number and 
decrease in size, making it more difficult to create new files (or 
extend existing ones). Free spaces can be consolidated with the 
file manager's K(runch command (5.3.6). 

4.2 Volumes 

A volume is any I/O device: the printer, the console, a serial port, or a 
disko 

A serial device cannot store information - it can only produce or consume 
a stream of data. The console, printer, and serial ports are serial devices. 

A block-structured device is one that can store a directory and files -
most commonly a disk drive. Block-structured devices are divided into a 
fixed number of 512 byte storage areas known as blocks. Blocks are 
randomly accessible by block number. Disks are usually the only block­
structured devices. 

Volumes are addressed either by their volume Dame or unit number. Each 
I/O device is assigned a unit number. Each serial device is assigned a fixed 



Modula Operating System 
File System 

page 19 

volume name. The volume name of a block-structured device is whatever 
disk volume is mounted in the device. 

, 
Volume Name 

CONSOLE: 
SYSTERM: 
<vol name> 
<vol name> 
PRINTER: 
REMIN: 
REMOUT: 
<vol names> 

4.3 Directories 

Unit Humber 

1 
2 
4 
5 
6 
7 
8 
9 - 12 

Description 

screen &. keyboard with echo 
screen &. keyboard without echo 
the system 'boot' disk 
the alternate disk 
the line printer 
serial input line 
serial output line 
additional disk drives 

Directories are stored on a disk along with the disk files. The directory is 4 
blocks longs and is kept on blocks 2 thru 5 of a disk. 

Directories contain the volume name and up to 77 directory entries. Each 
directory entry contains the name, disk location, and attributes of a disk file. 
A directory cannot contain two permanent files with the same name; saving a 
file on a disk volume already containing a file with the same name deletes 
the existing file. Note that program-generated temporary disk files can 
coexist with files having the same name - a temporary file 'only becomes 
permanent when it is closed and locked (8.3.1). 

The filer automatically initializes disk volumes to contain two disk 
directories. The second directory is called a duplicate directory - it 
serves as a backup copy of the main directory. 

The duplicate directory is 4 blocks longs and is kept on blocks 6 thru 9 of 
the disk. If something happens to the main directory (e.g. a bad block), it 
can be restored by using the information stored in the backup directory. . The 
utility program CopyDupDir copies the duplicate directory onto the space 
occupied by the main directory. 



Modula Operating System 
File System 
page 20 

4.4 File Names 

File names are used to address files and volumes. A file's attributes, 
maximum size, and disk location are all controlled by its initial file name. 
The system commands and the program I/O intrinsics both use the same file 
name syntax. 

<file name> 
<file id> -------~) 

L <volume id> _1 ___________ 1...& 



4.4.1 Volume Identifiers 

Modula Operating System 
File System 

page 21 

Volume identifiers are used to specify volumes or files contained in volumes. 

<volume id> 
,<number>: --~--------~ 

<volume name>: -

• 
. . 

A volume name can include any characters except 'I' or 'I' and can be up 
seven characters long. 

Using '*' as a volume identifier· specifies the system volume. This is 
provided as a handy abbreviation for addressing files stored on the system 
disk. Note that unlike other volume identifiers, '*' does not require a colon 
to appear after it. The entire system volume can be addressed with the file 
name '*'. 

The default volume name is called the prefixed volume. Disk file names 
lacking a volume identifier are assumed to reside on the prefixed volume; 
thus, you can save time by setting the most frequently used disk volume as 
the prefixed volume. The prefixed volume is set with the filer command 
P(refix. . 

Examples of volume names: 

#5: 
XFRDISK: 
* . • 
* . . 

WARNIN G - Beware of using disk volume names as normal files. 
Treating a disk volume as a file exposes its directory to harm, 
because if you write to this 'file', the data gets written over 
the directory and all files on the disk get lost. The only place 
volume names should be used as file names is in the filer when 
it prompts for a volume name or when you C(hange a volume 
name. 



Modula Operating System 
File System 
page 22 

4.4.2 Pile Identifiers 

File identifiers are used to specify disk files stored on volumes. 

<file id> 
---- (title) --....-----'!----.----------) .. 

L <suffiX> T L [.] .J' 
L [m]J-

A file identifier consists of a title followed by an optional suffix and 
length specifier. The title and suffix may be up to fifteen characters long. 

A file length specifier is delimited by square brackets. The symbol 'm' 
denotes 'a positive integer. 

Examples of file names: 

FORZ.TEXT 
SHELL.l.TEXT[*] 
*SYSTEM.WRK.TEXT 
SYSTEM.MODULA 
MACRO:PEST .FOTO[27] 
STUFF.DATA 



4.4.3 File Name Syntax 

<file name> 

Modula Operating System 
File System 

page 23 

<file id> --~---)~, 

L <volume id> _1' ..... _______ ---'1 
<volume id> 

<file id> 

'<number>: --~--------~ 

<volume name>: 

• 
. . 

-- <title> --[r--"<s-U-ff-ix-> ..... Tr--"'I"'[-[-.]-l:a-----9? 

l [m]J 

All spaces and control characters are ignored, and all lower case characters 
are mapped to upper case. The following characters should not be used in a 
file name: '$', '=', '?', '[t, and ','., The filer uses them as wildcard 
characters. 

A volume name may contain any characters except '#' or ':' and can be up 
seven characters long. A file identifier may contain any character (except 
'P) and can be up to fifteen characters long. 



Modula Operating System 
File Manager 
page 24 

5 Pile Manager 

The file manager ('filer' for short) is used to perform the following tasks: 

• Managing disk files. 

• Displaying the files stored on a disk volume. 

• Managing work files. 

• Managing disk volumes. 

• Detecting and fixing damaged disks. 

Section 5.1 describes the filer promptline and explains how to respond to 
certain filer commands. 

Section 5.2 describes file names in the filer. File names may contain 
'wildcard' characters which allow a single file name to specify several disk 
files. Wildcards let you manipulate a number of disk files with a single filer 
command. 

Section 5.3 describes the filer commands" 

NOTE - Before you use the filer, you should understand how the 
Modula file system works. The file system is described in 
chapter 4. 



5.1 Filer Prompts 

The filer promptline appears as: 

Modula Operating System 
File Manager 

page 25 

L(dir, T(rans, R(em, C(hng, D(ate, P(refix, V(ols, Z(ero, Q(uit ! 

This promptline does not display all the filer commands. The other commands 
appear if you type '1': 

K(rncb, M(ake, B(adBlk, E(xdir, G(et, S(ave, W(hat, H(ew, X(amin ! 

Most filer commands accept one or two file names as arguments; however, 
you can type in as many files names as you want, and the filer command will 
operate on each file specified. Lists of file names are separated by commas. 
Filer commands that accept a single file name read file names from the list 
one at a time. Filer commands that accept file name pairs (e.g. T<ransfer) 
read file names from the list two at a time. 

5.2 File Names 

File names are entered in the usual U CSD Pascal file name syntax. The 
G(et and S(ave commands do not require file suffixes (e.g. 'MYFILE'); all 
other commands expect complete file names (e.g. 'MYFILE.TEXT'). 

The character '=' is allowed to appear in file names. It is called a wildcard 
because it allows a single file name to match a number of disk files. For 
example, removing the file name 'F=.TEXT' causes the filer to remove all 
text files whose names begin with 'F'. Removing the file name '=' removes 
all the files on your disk! (But not· without a warning prompt.) 

NOTE- A file name may contain more than one wildcard (e.g. 
'=STUFF='). 

An occurrence of '=' matches any string of characters in a file name -
including the empty string. In commands that accept file name pairs, an '=' 
in the second file name is replaced with the character string matched by the 
wildcard in the first file name. 

Example of '=' wildcard: 

Transfer what file! BACKUP:=.CODE,BOOT:SYSTEM.= 

All the code files on the BACKUP volume are transfered to the BOOT 
volume. The code files on BACKUP become system files on BOOT; for 
instance, MODULA.CODE is renamed SYSTEM.MODULA. 



Modula Operating System 
File Manager 
page 26 

The character '?' works like '=', but causes the filer to write a prompt for 
each file that matches the file name. '1' allows you to skip some of the 
files that match the wildcard file name. 

Example of I?' wildcard: 

Remove wbat file! ? .CODE 

The R(emove command then writes a series of prompts: 

'Remove <file name).CODE!' 

.0. for every code file on the volume. Typing 'y' or 'Y' removes the file and 
generates the next 'Remove?' prompt; 'n' or 'N' preserves the named file. 
<escape) terminates the entire R(emove command. 

The '$' character is used in commands that accept file name pairs. When 
used as the second file name, '$' denotes the first file name (which can 
contain wildcards). 

Transfer wbat file! FILER.CODE,#5:$ 



5.3 Commands 

Modula Operating System 
File' Manager 

page 27 

This section presents a command overview; commands are grouped according 
to their function. Sections 5.3.1 through 5.3.18 describe each command in 
detail; commands are ordered alphabetically for ease of reference. 

Disk File Commands 

C(hange 
T(ransfer 
R(emove 
M(ake 

Work File Commands 

G(et 
S(ave 
N(ew 
W(hat 

Change file names. 
Transfer files from one disk to another. 
Remove files. 
Create new files. 

Establish a new work file. 
Save the current work file. 
Remove the current work file. 
Display work file status. 

Disk Volume Commands 

L(dir 
E(x dir 
D(ate 
K(runch 
P(refix 
V(olumes 
Z(ero 

List files on a disk volume. 
Extended listing of files on a disk volume. 
Change the system date on all disk volumes. 
Merge all free spaces on a disk volume. 
Change the prefixed volume name. 
List online volumes. 
Initialize a disk volume. 

Disk -Repair Commands 

B(ad blocks 
X(amine 

Check for damaged disk blocks. 
Repair damaged disk blocks. 



Modula Operating System 
File Manager 
page 28 

5.3.1 B(ad blocks 

The B(ad blocks command checks disk volumes for blocks that can no longer 
store information reliably. 

The following prompt appears: 

Bad block scan of what volume! 

Type in the name of the volume to to be scanned. 

B(ad blocks check each block on the disk volume. If a block is bad, a 
message appears identifying it. At the end of the scan, the number of bad 
blocks is printed. 

NOTE - The X(amine command is used to repair bad blocks (or to 
mark them 'bad' if they cannot be repaired). 

5.3.2 C(hange 

The C(hange command changes the name of a disk file or volume. 

C(hange requires a pair of file names: the name to be changed followed by 
the new name. 

If a wildcard is used in the first file name, then it also must appear in the 
second; strings matched by the first wildcard are substituted in the second. 

Examples of C(hange: 

Change what file! =.BACK,=.TEXT 

Changes all backup files on the volume to text files. 

Change what file! MYDISK:,ARCmVE: 

Renames the disk volume MYDISK to ARCHIVE. 



5.3.3 D(ate 

The D(ate command sets the system date. 

DATE SET: <1 •• 31>-<JAN •• DEC>-<OO •• 99) 
Today ~ 5-Dec-82 
Hew date! 

Modula Operating System 
File Manager 

page 29 

To save the current date, type <return>. To set a new date, type it in the 
indicated form. You do not have to type in all of the date fields; for 
instance, typing 'S-Dec' followed by <return> preserves the current year. 

The system assigns the current date to newly created or modified disk files. 
File dates can be viewed with the filer commands L(dir and E(x dire 



Modula Operating System 
File Manager 
page 30 

5.3.4 E(x dir 

The E(x dir command displays an extended directory listing of the specified 
disk volume. 

The following prompt appears: 

Dir of wbat volume! 

Type in the name of the disk volume to to be listed. 

E(x dir displays all files and free spaces on a volume. The listing displays 
the following information: 

• file name 

• file size (in blocks) 

• file date 

• starting block number 

• II valid data bytes in last block 

• file type 

NOTE - See the L(dir command for more information on E(x dir. 

Sample of extended directory listing: 

MANUAL: 
STARTDOC.TEXT 12 29-Sep-82 '116 512 Textfile 
FILER.TEXT 4 3-Dee-82 128 512 Textfile 
< UNUSED > 190 132 
FILER.l.BACK 62 3-Dee-82 922 512 Textfile 
FILER.l.TEXT 58 3-Dec-82 984 512 Textfile 
< UNUSED > 1238 1042 
6/& files<Iisted/in-dir>, 52 blocks used, 28 unused, 38 in largest 



5.3.5 G(et 

Modula Operating System 
File Manager 

page 31 

The G(et command specifies an existing disk file as the work file. 

If an unsaved work file exists, the following prompt appears first: 
/ 

Throwaway current workflle! 

Type 'y' to discard the existing work file; type anything else to escape. 

The following prompt appears: 

Get what file! 

The file name is entered without a file suffix. 

NOTE- G(et does not actually create a new disk file; it merely 
specifies an existing file as the source of the new work file. 
See 3.2 for more information on work files. 



Modula Operating System 
File Manager 
page 32 

5.3.6 K(runch 

The K(runch command merges the free spaces on a disk volume into one 
contiguous area. 

The following prompt appears: 

Crunch what volume! 

Type in the name of the volume to be crunched. The next prompt appears: 

Prom the end of disk, block 420! (YIN) 

Type something other than 'y' or 'n' to escape. Type 'y' to commence 
normal crunching - all disk files will be moved forward on the disk volume, 
leaving one large free space at the end of the disk. 

If you want to crunch the files towards the end of the disk, type 'n'. The 
following prompt appears: 

Starting at block i! 

Type a non-number to escape. Typing a block number causes all files beyond 
the specified block number to be moved to the end of the disk. This so­
called 'backwards crunch' is used to open free spaces between existing files; 
it is useful for inserting new files in front of the existing files on a volume. 

NOTE- Be sure to do a B(ad blocks scan before crunching a disk 
volume; files can be lost by writing them over' (unmarked) bad 
blocks. K(runch avoids overwriting disk blocks already marked 
'bad'. 

WARNING- K(runch is a critical operation. if the disk volume is 
removed (or the system fails) during crunching, disk files on the 
volume may be ruined. 



5.3.7 L(dir 

Modula Operating System 
File Manager 

page 33 

The L(dir command lists the disk files contained on the specified disk volume. 
The directory listing can be written to the console or to a text file. 

The following prompt appears: 

Dir of what volume? 

Type in the name of the volume to be listed. 

Wildcards can be used to list subsets of the files on a volume; the wildcard 
file name is appended to the volume name. For example, '=.TEXT' lists all 
the text files on the prefixed volume. 'BOOT:SYSTEM.=' lists all the system 
files on the volume named BOOT. 

Directory listings display the following information: 

• file name 

• file length (# blocks) 

• file date 

Directory listings normally go to the console, but they can also be written to 
text files by appending ',<text file name>' to the prompt response. For 
example, 'SYSTEM.=,LISTING.TEXT' lists all system files on the prefix volume 
and writes the listing to the text file LISTING.TEXT. '#5:,printer:' prints a 
directory listing of the disk volume mounted in unit 5. 



Modula Operating System 
File Manager 
page 34 

5.3.8 M(ake 

The M(ake command creates disk files. 

The following prompt appears: 

Make what file! 

Type in the name of the file to be created. 

File length specifiers are used to control the size and location of created 
files. For instance, making 'JUNK[25]' creates a file named c7UNK in the 
first free space larger than 24 blocks. 

NOTE - M(ake is useful for recovering accidentally removed files. 
Just M(ake the proper size (and type) of file on top of -the free 
space where the file used to reside on the disk. 

5.3.9 N(ew 

The N(ew command removes the current work file. 

If an unsaved work file exists, the following pro~pt appears: 

Throwaway current workfile! 

Type 'y' to discard the current work file. Type any. other character to 
escape. 

NOTE- N(ew removes the work file SYSTEM.WRK if it exists. See 
3.2 for more information on work files. 



5.3.10 P(refix 

The P(refix command sets the prefixed volume name. 

The following prompt appears: 

Prefix is MYDISK: 
Set prefix to! 

Modula Operating System 
File Manager 

page 35 

Type a volume name to set the prefixed volume. Type <return> to escape. 
Note that the specified volume does not have to be online. 

If you type a unit number, the disk volume in that unit becomes the prefixed 
volume. If the unit does not contain a disk volume, the prefixed volume is 
defined to be whatever disk volume is subsequently mounted in that unit. 

5.3.11 Q(uit 

The Q(uit command exits the filer. 

NOTEO- Be sure to replace the system disk before Q(uitting. 

5.3.12 R(emove 

The R(emove command removes files from a disk volume. 

The following prompt appears: 

Remove what file! 

Type in the name of the file(s) to be removed. 

The following prompt then appears: 

Update directory! 

Type 'y' to permanently remove the files. Type anything else to preserve 
them. 



Modula Operating System 
File Manager 
page 36 

5.3.13 Slave 

The S(ave command saves the current work file in a disk file. 

If the work file was obtained from an existing disk file, the following prompt 
appears: 

Save .as MYFILE! 

Type 'y' to write the work file to the indicated disk file name (thus 
removing the old version). Type tn' to save it under a different name. Type 
anything else to escape. 

If the work file is newly created (or if you typed tn' to the last prompt), the 
following prompt appears: 

Save as what file! 

Type in the title that the work file should be saved as. Be sure to leave 
off the· file suffix. 

See 3.2 for more information on work files. 



5.3.14 T(ransf er 

Modula Operating System 
File Manager 

page 37 

The T(ransfer command copies disk files from one disk to another. 

T(ransfer accepts a file name pair: the first specifies the source file, the 
second specifies the destination file name. 

T(ransfer performs the following tasks: 

• Copying disk files onto different disk volumes. 

• Transferring files to the console or printer. 

• Moving files around on a disk volume. 

• Copying disk· volumes onto different disks (though the Backup 
utility is more reliable). 

Examples of T(ransfer: 

Transfer what file! junk.data,$[25] 

Moves the file JUNK.DATA to the first free 'space larger than 24 blocks. 

Transfer what file! *=.CODE,#5:$ 

Copies all code files on the boot volume to the disk volume in unit 5. 

Transfer what file! WORK:,#5: 

Copies the contents ~f the disk, volume WORK onto the disk in unit 5. 



Modula Operating System 
File Manager 
page 38 

5.3.15 V(olumes 

The V(olumes command displays all online volumes and indicates the prefixed 
and system volumes. . 

Example of V(olumes: 

Vols on-line: 
1 CONSOLE: 
2 SYSTERM: 
4 • BOOT: [2280] 
5 P MANUAL: [494] 
6 PRINTER: 
'1 REMIN: 
8 REMOUT: 

System vol - BOOT 
Prefix yol - MANUAL 

Disk volumes display their size (in blocks). '.f indicates the system boot 
volume. 'p' indicates the prefixed volume. 'I' indicates other online disk 
volumes. 

5.3.16 W(hat 

The W(hat command displays the name of the current work file. 



5.3.11 X(amine 

Modula Operating System 
File Manager 

page 39 

The X(amine command examines and repairs damaged disk blocks. 

The following prompt appears: 

Examine blocks on what ·yolume! 

Type in the volume to examine. X(amine then lets you check a single block 
or a range of blocks. The following prompt appears: 

From block! 

Type in the lower block number of the block range to be examined. The 
next prompt is: 

To block! 

Type in the higher block number of the range to be examined. To check a 
single block, the 'from'· and the 'to' block numbers can be the same. 

If you are scanning over an existit:lg disk file, the following. prompt appears: 

File(s) endangered: 
MYFILE.DATA 
Do you want to fix them? 

Type 'y' to repair the indicated blocks. Type anything else to escape. If a 
block is succesfully repaired, the following message appears: 

Block 253 may be ok 

If a block cannot be repaired, the following message appears: 

Block 253 is bad 

If a disk block is unrepairable, X(amine asks if you want to mark it as a 
'bad block'. Bad blocks appear in directory listings as files of type 'Bad'. 
Note that the K(runch command moves files around bad blocks to prevent 
them from being written over the damaged area~ on a disk. 

WARNIHG- X(amine cannot restore the data lost when a block goes 
bad. Repairing a block ensures only that it works reliably the 
next time it is written to. 



Modula Operating System 
File Manager 
page 40 

5.3.18 Z(ero 

The Z(ero command initializes new disk volumes" 

Z(ero works differently depending on whether you are initializing a brand new 
disk or zapping an existing disk volume. 

If you are zeroing a brand new disk, the following prompt appears: 

Zero dir of what vol! 

Type in the unit number containing the disk. The next prompt appears: 

I of blocks on this disk! 

Type in the number of blocks on the disk. (This number depends on the size 
and format of the disks you are using.) The next prompt is: 

New .volume name? 

Type in the name of the new disk volume. Z(ero then asks you if the 
volume name is correct. Type 'y' to zero the disk. Type anything else to 
escape. 

NOTE- New disks may require formatting before they can be Z(ero'd. 

If you are zeroing an existing disk volume, the following prompt appears: 

Destroy ASEMAN! 

Type 'y' to continue. Type anything else to escape. The next prompt is: 

Are there 494 blocks on this disk! 

This is the size of the disk volume about to be zapped. Type _ 'y' to use it 
as the size of new' volume. Typing anything else causes Z(ero to ask for a 
block size. Z(ero then proceeds to ask for the new volume name (as 
described above). 



6 Batch Command Interpreter 

Modula Operating System 
Batch Command Interpreter 

page 41 

Command files are sequences of system commmands and data stored in text 
files. When a command file is submitted for execution, the system 
automatically performs the operations specified by the command file. 
Command files are useful for automating repetitious tasks (such as 
recompiling a suite of related programs). 

Section 6.1 explains how to submit command files for execution. 

Section 6.2 describes how command files work. 

Section 6.3 explains how command files can. be automatically invoked. 

Section 6.4 describes the command file syntax. 

Section 6.5 presents some example command files. 

NOTE - The system disk includes the command file 
'BATCH.DEMO.TEXT'. When submitted for execution, it 
demonstrates the use of command files. 



Modula Operating System 
Batch Command Interpreter 
page 42 

6.1 Submitting Command Files 

Command files are submitted for execution with the B(atch command. B(atch 
invokes the command interpreter program SYSTE~ .BATCH which resides on 
the system boot volume. The following prompt appears: 

Filename! 

Type in the name of the command file to execute. (Be sure to leave off the 
file suffix '.TEXT'.) Type <return> to escape. 

The system normally begins executing the commands at the front of a 
command file. You can specify command file execution to begin at other 
locations in the file by typing a command file target. A target consists of a 
command file name followed by the name of a label in the command file 
where you want execution to start. See 6.4.2 for more information on 
targets. 

You can also pass string parameters to a command file. 
details. 

, 6.2 Command File Execution 

See 6.4'.4 for 

The command interpreter reads through the command file, translating it into 
a series of system commands and input data. If the command file contains 
an error, the command interpreter terminates without submitting it for 
execution. 

NOTE- If a command file goes into an endless loop, type the break 
key to stop the command interpreter. 

When the command interpreter finishes translating a command file, the 
resulting commands and data are stored into the keyboard type-ahead buffer. 
The command interpreter returns control to the system prompt, which 
proceeds to read the queued characters 'as if they were typed in by hand. 

NOTE- The keyboard type-ahead buffer holds up to 128 characters -
a command file thus cannot generate more than 128 characters 
of commands and data at a time. (This is not a big problem -
see the b command for details.) 

WARNING- Command files can run amuck if the queued commands 
and data do not match the actual system prompts. 



6.3 Automatie Command File Execution 

Modula Operating System 
Batch Command Interpreter 

page 43 

Command files are normally executed by invoking the B(atch command and 
typing in a command file name. You can also define command files which 
are automatically executed when the system is booted or when the B(atch 
command is invoked. 

A command file named 'PROFILE.TEXT' is automatically executed when the 
system is booted. 

A command file named 'EXEC.TEXT' is automatically executed when B(atch is 
invoked. Note that automatic execution does not occur if any keyboard input 
is queued. 

NOTE- The command files 'PROFILE' and 'EXEC' must reside on the 
prefixed volume in order to be automatically executed. 

6.4 Command Files 

A command file is a text file which contains a series of commands and 
labels. Each text line contains a command or label (which must appear as 
the first word on the line). Text lines that· do not start with a command or 
label are treated as comments. Commands are described in 6.4.1. 

Commands accept targets or textlines as arguments. The flow-of-control 
commands use targets as labels to jump to within the command file. Targets 
are described in 6.4.2. Textlines contain text that is either written to the 
console or queued as system input. Textlines are described in 6.4.3. 
Parameters may be passed to a command file when it is invoked. Parameters 
are described in 6.4.4. 

NOTE - The command interpreter ignores blanks- except in parameter 
lists (where they serve as parameter _ separators) and after the 
commands read, write, writeln, and t. Also, blanks should not 
appear in targets. 



Modula Operating System 
Batch Command Interpreter 
page 44 

6.4.1 Commands 

stk <textline> 

Example: stk fe#5ln 

Saves the text for queuing in the type-ahead buffer. 

b <target> 

Example: b myfile/nextsub 

Saves a B(atch command to the specified target for queueing in the type­
ahead buffer. This command allows command files to regain control of the 
system after submitting a set of commands and data. If the target does not 
contain a file name, control returns to the current command file. 

run 

Example: run 

If a call command is outstanding, the command interpreter returns to the 
command 'following the call. If no call is outstanding, all saved text is 
written to the keyboard type-ahead buffer and the command interpreter 
terminates. 

write <textline> 

Example: write Hi, there! 

Writes a message (but no carriage return) to 'the console. 

/ 
writeln <textline> 

Example: writeln I am a line of text. 

Writes a message and carriage return to the console. 



t <textline> 

Example: t Yet another line of text ... 

Modula Operating System 
Batch Command Interpreter 

page 45 

t is equivalent to writeln, but can print longer textiines. 

read <textline> 

Example: read Enter file name; 

Writes a message to the console, then reads from the keyboard until <return> 
, is typed. The keyboard input is accessible with the '?' command (see 6.4.3 

for details). 

goto <target> 

Example: goto loopstart 

Causes the command i11-terpreter to jump to the indicated label. 

cal! <target> p! oop9 

Example: call startsub 

Causes the command interpreter to jump to the indicated label. When run is 
executed, control returns to the command following the call command. Calls 
can be nested up to 18 levels deep. The parameters pI thru p9 are 
described in 6.4.4. Note that the symbol 'I?' (6.4.3) can be used to return 
values from calls. 

set <digit> <str> 

Example: set 3 mystring 

Assigns a value to one of the string parameters. Parameters are addressed 
by the digits 1 thru 9. Note that '?' can be used to assign values to the 
symbol 'I?' (6.4.3). 



lIodula Operating System 
Batch Command Interpreter 
page 46 

egu <a> <b) <target> 

Example: equ 13 mystring startsub 

If the string in <a> equals the string in <b>, the command interpreter jumps 
to the specified target. The other comparison operations are also available: 
neq, les, leq, geg, gtr. 

verbose 

Example: verbose 

Verifies each command before executing itc The command name is written to 
the console. Type <return> to execute the command. Type <escape><return> 
to terminate the command interpreter. verbose is used for testing new 
command files. 

quiet 

Example: quiet 

Disables the verbose commando 

6.4.2 Targets a: Labels 

Targets are used as arguments to the goto and call commands and to the 
S(ubmit prompt. Targets indicate the location in a command file where 
command interpretation is to continue. Target locations are either labels or 
line numbers. 

Line numbers in a command file are zero-based; thus, the third line in a 
command file is on line 2. Line numbers are specified in a target by a 
backslash ('\'). For example, the command 'goto \12' jumps to the thirteenth 
line in the command file. Note that line numbers are intended for use by 
the command interpreter - people should use labels instead. 

Labels are (non-command) names which appear at the front of a line. Labels 
are specified in a target by a slash (' I'). For example, the command 'goto 
/loopstart' jumps to the label 'loopstart' in the command file. 

Targets can specify locations in other command files. For example, the 
command 'goto profile/subroutine' causes the command interpreter to jump to 
the label 'subroutine' in the command file 'PROFILE.TEXT'. The file suffix 
'.TEXT' must not· appear in the file name. If only a file name is specified 



Modula Operating System 
Batch Command Interpreter 

page 47 

(e.g. 'goto profile'), the command interpreter jumps to the first line in the 
indicated command file. 

NOTE - The default command file name in a target is the name of the 
host command file. 

6.4.3 Text Lines 

Text line parameters are defined to extend from the command name to the 
end of the line. 

Text passed to the stk command is handled specially (because it is queued as 
system input). Nonprinting characters are represented by two-character 
sequences: the escape character 'I' followed by a command character. Note 
that blanks are ignored - they can be specified with the character sequence 
'I '. 

Command characters are defined as follows: 

, , <space> In' <return> 
, I' I (single 'I') Ib' <backspace> 
'u' <up> 'I' <escape> 
'd' <down> '@' <line-delete> 
'I' <left> It' <tab> 
'r' <right> I?' response to last read 
'0' .• '9' <params> 'k' redirect to keyboard 
Ie' <etx> 

The command characters I?' and 'k' have special properties. 

An occurrence of 'I?' in a textline is replaced with the input from the last 
read command. 

The command character 'k' should only be used in parameters to the stk 
command. When the system encounters an occurrence of 'Ik' while reading 
from the type-ahead buffer, it proceeds to read directly from the keyboard 
until ctrl-E is typed. When ctrl-E is typed, the system resumes reading from 
the type-ahead buffer. 

Because 'Ik' allows intermixing of queued and direct keyboard input, command 
files' can define automated tasks which also interact with the user. (See 6.5 
for an example of 'Ik'.) 



Modula Operating System 
Batch Command Interpreter 
page 48 

6.4.4 String Parameters 

String parameters can be passed to command files or to subroutines invoked 
with the call command. Up to 9 parameters (numbered 1 thru 9) can be 
passed. Parameters are listed after the target. The default parameter value 
is the empty string. Parameters are referenced with the symbol 'Ix' (where 
1 <= x <= 9). The number of parameters passed is contained in the symbol 
'10' • 

Example of parameter passing: 

call foon/startsub do re mi fa so la te do 

In the routine labelled by 'foon', occurrences of the symbol '13' would be 
substituted with the string 'mi'. 

6.5 Example Command Piles 

The first example is a listing of the command file 'BATCH.DEMO' provided 
with the system: 

writeln line 0 executing 
b /target 
run 

target 
writeln target executing 
writeln calling /t2 
call /t2 
writeln It2 returned 
writeln going to It3 . 
goto It3 

t2 
write In It2 running 
run 

t3 
writeln It3 gone to 
writeln 
read Enter Text : 
writeln You Typed 'I!' 
writeln 
writeln end of test 
run 



Example of a directory lister: 

t 
t This command file runs forever ••• 
t 
loop 
read List what volume! 
stk ·f e 1!,11 In q 
b /loop 
run 

Modula Operating System 
Batch Command Interpreter 

page 49 

This command file repeatedly prompts for a volume and displays its directory 
on the console. Note that the target in the b ·command implicitly specifies 
the host command file. 

Another example of a directory lister: 

stk f e Ik ,11 In q 
b \0 
run 

In this example, the volume name is not specified until the filer's own 
directory listing prompt appears; the 'Ik' then redirects system input to the 
keyboard. Note however that the prompt response must be terminated by 
typing ctrl-E. 



Modula Operating System 
Shell Command Interpreter 
page 50 

1 Shell Command Interpreter 

The shell command interpreter is a collection of Modula-2 programs which 
provides a powerful "command shell" programming environment informally 
named "p-NIX". The shell offers the following features: 

• Pipes 

• I/O redirection 

• Wildcards 

• Various predefined shell commands 

Section 7.1 explains how to use the shell. 

Section 7.2 describes shell commands provided with the system. 

Section 7.3 explains how to add new commands to the shell. 

NOTE- I/O redirection is limited to the p-NIX .commands and 
Modula-2programs that· perform standard I/O via the modules 
!nOut or Texts. Other programs can be invoked from the shell, 
but cannot have their I/O redirected. . 



7.1 Using the Shell 

Modula Operating System 
Shell Command Interpreter 

page 51 

The shell is invoked by typing the S(hell command on th~ system promptline. 
S(hell invokes the program SYSTEM.SHELL which resides on the system boot 
volume. The following prompt appears: 

I) 

The right arrow')' indicates the shell is ready for a command. The number 
(0 in this case) indicates how many shell commands have been executed. 

The simplest thing to do in the shell is to invoke a program; for instance, 
the utility program BACKUP .CODE can be executed by typing 'backup' and a 
carriage return. 

The shell becomes more useful when you learn how to use the shell 
commands. Shell commands are actually programs which perform specific 
tasks; for instance, the shell command 'Is' lists the contents of the disk 
directory. 

7.1.1 Program Results 

If a program terminates abnormally, the shell displays a message on the 
screen explaining what happened. If you attempt to execute a program which 
does not exist, the shell displays the message 'Missing program'. Programs 
terminated by a HALT call display the message 'Program HALT'. Programs 
terminated abnormally display the message 'Error return x', where x denotes 
the ordinal value of the program· result. 

7.1.2 I/O Redirection 

All shell commands read from the standard input file and write to the 
standard output file. Standard input and output defaults to the system 
console, but can be redirected to disk files. For instance, the 'Is' command 
mentioned above writes its output to the standard output file, so typing 'Is' 
writes the directory listing to the screen. However, if you type 

I) Is >myfile 

••• the directory listing is written to a file named 'myfile'. The symbol ')' 
after the Is command redirects the standard output to the named file. 



Modula Operating System 
Shell Command Interpreter 
page 52 

Similarly, the symbol ,<, is used to redirect the standard input. For instance, 
the shell command 'cat' copies the standard input to the standard output. If 
you just type 

2) cat 

••• the system merely waits for some characters to be typed (remember that 
the standard input is the keyboard), then echoes the characters to the screen 
(the standard output). However, typing 

3) cat <myfile >newfile 

••• copies the contents of the file 'myfile' into the ~ile 'newfile'. 

NOTE- Standard input from the keyboard is terminated by typing the 
<eof> key. 

7.1.3 Command Arguments 

Many shell commands accept a list of arguments after the command. For 
instance, typing 

4> cat abc >big 

••• copies the contents of the files 'a', 'b', and 'c' to the file 'big'. Note 
that arguments are usually treated as input file names; they are always 
processed left to right. 

'1.1.4 Wildcards 

Wildcards let you type in a single file name argument that matches many 
actual file names. For instance, typing 

5) rm f= 

••• removes all files starting with the letter 'f'. The wildcard character '=' 
can be used more than once in a file name; for instance, '=s=t=' matches all 
files containing an. 's' and a 't'. 



'1.1.5 Pipes 

Modula Operating System 
Shell Command Interpreter 

page 53 

Shell commands can be linked together so the output of one command 
becomes the input of another. For instance, typing 

6) Is I sort I more 

••• writes a directory listing sorted by file name to the screen. If the 
bottom of the screen is reached, the prompt 'More?' appears; typing 'y' 
continues the sorted directory listing at the top of the screen. 

The symbol 'I' is called a pipe; it is used to connect the shell commands 
together. In this example, the Is command writes a directory listing to the 
standard output. The sort command reads the directory listing as input and 
writes the sorted listing to its standard output. Finally, the more command 
echoes the sorted listing to the console, but inserts the 'More?' prompt 
'every twenty-four lines and pages the screen. 

NOTE - Pipes are implemented as anonymous intermediate files written 
to the system boot volume. When each" command finishes writing 
to the intermediate file, the shell starts the next command using 
the intermediate file as the standard input. Pipe performance 
can be greatly enhanced by using a RAM disk for the system 
volum"e. Note that extremely large pipe files may exceed disk 
capacity. 

'1.2 Shell Commands 

This section describes the commands provided with the shell command 
interpreter. 

All commands except rm and cp work with text files only; rm and cp can be 
used on all files. 

NOTE- All shell commands use the following naming convention: the 
file suffix '.TEXT' is automatically appended to all file names 
unless they end with a period (e.g. 'MYDATA.'). 

'1.2.1 cat 

The cat command copies the standard input to the standard output. The cat 
command may be followed by a list of file names; in this case, it writes the 
catenation of all the files to the standard output. For instance, "cat abc" 
writes the catenation of the files a, b, and c to the standard output. 



·Modula· Operating System 
Shell Command Interpreter 
page 54 

1.2.2 ep 

The cp command copies the file named by the first argument to the file 
named by the second argument. Note that cp works with all types of files. 
For instance, "cp myfile #5:myfile" copies the file "myfile" to the volume 

, mounted in unit 5. 

1.2.3 date 

The date command writes the current date to the standard output (e.g. 
'Today is January 14, 1983'). 

1.2.4 echo 

The echo command writes its command arguments to the standard o·utput. 

1.2.5 ed 

The ed command invokes the editor. If an argument is listed, it is used as 
the file name to edit; for instance, led stuff' edits the file 'stuff .text'. 

The f command invokes the filer. 

'1 .2.'1 grep 

The grep command searches the standard input for occurrences of the 
character· string passed as the first argument and writes all lines containing 
the string to the standard output. The string argument may be followed by a 
list of file names; in this case, grep searches through all of the listed files 
and prefixes each output line with the name of the file from where it came. 
For instance, "grep MODULE test= >matches" searches for occurrences of the 
word "MODULE" in all files whose names begin with "test". Text lines 
containing "MODULE" are written to the file "matches". 



7.2.8 Is 

Modula Operating System 
Shell Command Interpreter 

page 55 

The Is command lists the files on the prefixed disk volume. The Is command 
has three options. Is -I lists file attributes along with the file names. 
Is -e lists the disk free spaces along with the files. Is -el does both. The 
Is command may be followed by a' list of file or volume names. If a file 
name is listed, Is lists any files on the prefixed volume that match the name. 
If a volume name is listed, Is lists all files on that volume. 

7.2.9 me 

The me command invokes the compiler. If an argument is listed, it is used 
as the input file name; for instance, fmc textsd' compiles the file 
'textsd.text' • 

7.2.10 mem 

The mem command writes the number of words of memory available and the 
address of the heap top to the standard output (e.g. 'Memavail=5844.0, 
NP=5728'). 

'1.2.11 more 

The more command echoes the standard input to the terminal, and displays 
the prompt 'More?' when the output reaches the bottom of the screen. 
Typing 'y' or <return> clears the screen and redisplays the next 24 lines of 
output; typing In' terminates the more command, stopping the screen output. 

7.2.12 my 

The my command changes the name of a file. The file named by the first 
argument is changed to the file name passed as the second argument. For 
instance, "mv foon yeen" changes the name . of the file FOON .TEXT to 
YEEN.TEXT. 

7.2.13 rm 

The rm command removes the specified files. Note that rm works with all 
types of files. For instance, fIrm .system=" removes all the system files from 
the boot disk. 



Modula Operating System 
Shell Command Interpreter 
page 56 

7.2.14 sh 

The sh command invokes the shell (recursively). 

7.2.15 sort 

The sort command sorts the lines read from the standard input and writes 
them to the standard output. Lines are sorted lexicographically. The sort 
command may be followed by a list of file names; in this case, it writes the 
sorted catenation of all the files to the standard output. For instance, "sort 
list1 list2 >final" sorts the lines contained in the files list1 and list 2 , and 
writes the sorted output to the file "final" 0 

7.2.16 we 

The wc command counts the number of words, lines, and characters in the 
standard output and writes the totals to the standard output (e.g. '2 lines, 4 
words, 17 chars'). The wc command may be followed .by a list of file names; 
i~ this case, wc prefixes the totals for ·each file with the name of the file 
they belong to and writes the totals out on separate lines. For instance, 
"wc chap= >lexdata" performs a word count on all files beginning with "chap" 
and writes the results to the file "lexdata". 

7.3 Adding New Shell Commands 

The shell commands provided with the system are individual Modula-2 
programs bound into the program library file named SYSTEM .SHELL. The 
contents of SYSTEM.SHELL may be examined by running the Modula-2 library 
manager utility. Adding a new shell command merely requires writing the 
appropriate Modula-2 program and adding it to the program library file. (In 
fact, it does not have to be added to the library file to be called, but the 
library file is a nice place to keep commands.) 

All shell commands perform their I/O through the text files TextsJnput and 
Texts.output. The shell itself redirects these files. 

Shell commands gain access to the command arguments by importing the 
library module Args which appears in SYSTEM.SHELL. When the shell 
processes a command, it stores the command arguments in individual string 
variables pointed at by the array variable ArgV.· The number of arguments 
passed is stored in ArgC. 

NOTE- Shell commands should conform to the file naming conventions 
described in 7.2. 



The library module Args: 

DEFINITION MODULE Args; (* $SEG := 44; *) 

FROM Strings IMPORT STRING; 

EXPORT QUALIFIED StringPtr, ArgC, Ar.gV; 

TYPE StringPtr = POINTER TO STRING; 
ArgRange = [0 •• 255]; 

V AR ArgC: ArgRange; 

Modula Operating System 
Shell Command Interpreter 

page 57 

ArgV: POINTER TO ARRAY ArgRange (* O •• ArgC *) OF StringPtr; 

END Args. 



Modula Operating System 
Pascal Compiler 
page 58 

8 Pascal Compiler 

The Pascal compiler is a one-pass recursive descent compiler for the language 
VS Pascal. VS Pascal is a dialect of standard Pascal which provides many of 
the UCSD Pascal extensions. 

NOTE- VS Pascal provides all version IT UCSD Pascal features except 
UNITs, external procedures, long integers, and record 
comparison. Note also that it enforces standard Pascal's 'name' 
type equivalence rather than UCSD Pascal's weaker notion of 
'structural' type equivalence. 

Compiler operation is explained in 8.1. 

Compile options are described in 8.2. 

The VS Pascal intrinsics are presented in 8.3. 

Differences from standard Pascal are described in 8.4. 



8.1 Operation 

Modula Operating System 
Pascal Compiler 

page 59 

The compiler is invoked by typing ·the C(omp command on the system 
promptline. (It can also be run as a user program.) 

If a workfile exists, the compiler automatically begins compiling it; otherwise, 
the following prompt appears: 

Compile what file! 

TYpe in the name of the file to compile (don't type the .TEXT suffix). The 
output file prompt appears next: 

To what file! 

Type in the name of the output file (again, the .CODE suffix is unnecessary). 
If you type <return>, the output file is given the same name as the source 
file. 

The compiler displays various information on the screen while it compiles a 
p~ogram: the name of each procedure, the line number on which it occurs, 
and the amount of memory left. 

If a syntax error is detected, the compiler displays the source line where the 
error occured; the symbol where the error was detected is pointed at by 
'««'. The error message also displays the line number in the source 
progra~ where the error occurred, and the syntax error number (syntax error 
messages are listed in Appendix 4). 

Three options are available at this point. Typing <space> causes the 
compiler to continue compiling. Typing <esc> terminates the compiler. 
Typing 'E' invokes the editor; when the file is read in, the editor 
automatically positions the cursor at the error location and displays the 
proper syntax error· message. 

NOTE- The editor displays textual syntax error messages only if the 
file SYSTEM .sYNTAX resides on the system disk. If the syntax 
file is missing, the editor displays only the syntax error number. 



Modula Operating System 
Pascal Compiler 
page 60 

8.2 Compile Options 

Compile options control both . the compiler's operation and the nature of the 
produced code. Options appear as comments in the source program; they 
have the following form: 

Compile options consist of a capital letter followed either by a switch 
character ('+', '-', or r

A,) or a string parameter. The compile option letter 
must appear immediately after the dollar sign. 

When followed by a '+', an option is said to be enabled; when followed by 
'-', it is disabled. Some options can be followed by ,A,; this restores ('pops') 
the option to its previous setting. 

More than one switch option can appear in a single comment; when they do, 
they are delimited by commas with no blanks in between (e.g. '(*$F-,R+*)'). 
Only one string option can appear in a comment. 

NOTE- All compile options have default settings. 
described in the following sections. 

8.2.1 I/O Checks 

These are 

The generation of code for performing runtime I/O checks is controlled by 
the I compile option. Setting 1- eliminates I/O checks; setting 1+ generates 
I/O checks. Setting IA restores the previous option setting. The default 
setting is 1+. 

I/O checks ensure that all I/O operations are successfully completed. If an 
I/O error occurs, the I/O check terminates the program with an I/O error. 
Programs compiled 1- are expected to· perform their own I/O checking using 
the 10RESULT intrinsic. 

Example of I/O ch,eck option: 

(*$1-*) 



8.2.2 Include Piles 

Modula Operating System 
Pascal Compiler 

page 61 

Text files can be 'included' into a source program with the I compile option. 
The string parameter contains the name of the text file to be included. 
Compilation terminates if an included file cannot be opened. Include files 
cannot be nested. 

Example of include file option: 

(*$1 myfile.text *) 

8.2.3 Compiled Listings 

Compiled listings are produced with the L compile option. The string 
parameter contains the name of the listing file. The option must appear at 
the top of a program. 

Example of list file option: 

(*$L listfile.text *) 

The L option can also be used as a switch option to selectively list parts of 
a program. Setting L- disables listing; setting L+ enables listing. The L 
switch option is ignored if an L string option has not been declared at the 
top of the program. Note that the L string option automatically sets L+ • 

. 
The first column in a compiled listing displays the source line number. The 
second column is the segment number. The third column is the procedure 
number. If the character after the procedure number is a t C', the line is a 
statement, and the value in the last column is the code offset of the 
beginning of the statement. If the character is a '0', the line is a 
declaration, and the value in the last column is the data offset of the first 
variable pn the line. 

Compiled listings can be useful for debugging programs. See 3.4 for more 
information. 



Modula Operating System 
Pascal Compiler 
page 62 

8.2.4 Quiet Compile 

The Q compile option controls the compiler.'s console display. The compiler 
can be operated in the so-called 'quiet mode' by setting Q+ at the top of 
the program. In quiet mode, the compiler suppresses its normal console 
display and does not stop when a syntax error is discovered. The default 
setting is Q-. 

Example of quiet compile option: 

(*$Q-*) 

8.2.5 Range Checks 

The generation of code for performing range checks at runtime is controlled 
by the R compile option. Setting R- eliminates range checks; setting R+ 
generates range checks. Setting R'" restores the previous option setting. 
The default setting is R+. 

Compiler-controlled range checks protect subrange assignment and array 
indexing. 

Example of range check option: 

(*$R-*) 

8.2.6 System-level Compile 

The U compile option controls whether a program is to be compiled at the 
system program lexical level or the user program lexical level. The U option 
is set at the top of a program. Setting U + specifies the system level and 
also sets 1- and R-. The default setting is U+. 

NOTE- Programs compiled U- will execute properly only if they are 
structured to execute at the system level; otherwise, they will 
crash the system. A description of the system lexical level is 
beyond the scope of this manual. 

Example of system-level option: 

(*$U-*) 



8.2.'1 Separate Code a: Data 

Modula Operating System 
Pascal Compiler 

page 63 

The N compile option controls whether a program is to be run on a p­
machine which stores its code and data on separate stacks. The N option is 
set at the top of a program. Setting N+ specifies separate code and data. 
Setting N- specifies mixed code and data. The default setting is whatever is 
appropriate for your machine. 

WARNIN G - Programs compiled N- will crash the system if they are 
executed on a separate code and data machine. A description 
of the code file differences for separate code and data is 
beyond the scope of this manual. 

Example of separate code and data option: 

(*$N-*) 

8.2.8 Byte Flipping 

The compiler generates byte-flipped code files by setting the F compile 
option at the top of a program •. Byte-flipped code files are executable only 
on processors of the opposite byte sex. Setting F+ causes byte-flipping. The 
default setting is F-. 

NOTE - Programs compiled F + on your system will crash if you try to 
execute them. A description of byte sex is beyond the scope of 
this manual. 

Example of byte-flipping option: 

(*$P+*) 



Modula Operating System 
Pascal Compiler 
page 64 

8.3 VS Pascal Intrinsics 

This section describes procedures that are predefined in VS Pascal: these are 
also known as intrinsicso VS Pascal intrinsics provide the following 
operations: 

• Input and Output 

• String Manipulation 

• Byte Array Manipulation 

• Miscellaneous 

The following notation is used to describe the intrinsic syntax. Required 
parameters are listed along with the procedure identifier. Optional 
parameters are enclosed in brackets; default parameter values appear in 
braces on the line below. 

The following ~e~ms are used in the intrinsic definitions: 

ARRAY 

BLOCK 

BLOCKS 

BLOCKNUMBER 

BOOLEAN 

CHARACTER 

DESTINATION 

EXPRESSION 

FILEID 

INDEX 

NUMBER 

RELBLOCK 

PACKED ARRAY OF CHARacters 

disk block (512 bytes) 

number of blocks (integer) 

disk block address (integer) 

Boolean expression 

character expression 

packed character array (may be indexed) 

part or all of an expression (specified below) 

file variable of type: 
FILE OF <type>; 
TEXT; 
INTERACTIVE; 
FILE; 

string index or packed character array index 

expression of type INTEGER or REAL. 

file-relative disk block address (o-based) 



Modula Operating System 
Pascal Compiler 

page 65 

SIZE 

SOURCE 

STRING 

STRVAR 

TITLE 

UNITNUMBER 

VOLID 

number of bytes or characters (integer) 

packed character array (may be indexed) 

string expression (unless otherwise noted) 

string variable 

file name (string) 

physical device number (integer) 

volume identifier (string) 

8.3.1 Input and Output 

PROCEDURE RESET (FILEID [,TITLE]); 
PROCEDURE REWRITE (FILEID, TITLE); 

REWRITE creates a new file for writing. RESET opens an existing file for 
reading and writing. The string parameter TITLE can specify either a disk 
file or serial volume for I/O. 

RESET without the title parameter rewinds an (open) file. Calling RESET 
(with title) or REWRITE on an open file causes an I/O error. 

PROCEDURE CLOSE (FILEID [,OPTION]); 

CLOSE closes an open disk file. Four close options are available: 'LOCK', 
'NORMAL', 'PURGE' and 'CRUNCH'. 

CLOSE(F ,NORMAL) closes the file. If F is a disk file opened with 
REWRITE, it is removed. NORMAL is the default option. 

CLOSE(F ,LOCK) closes the file. If F is a disk file opened with REWRITE, it 
is saved. 

CLOSE(F ,PURGE) closes the file. If F is a disk file, it is removed. If F is 
a serial volume, the volume will go offline. 

CLOSE(F ,CRUNCH) closes the file. . If F is a disk file, the current file 
position becomes the end of the file; any file data beyond the current file 
position is deleted. 



Modula Operating System 
Pascal Compiler 
page 66 

PROCEDURE READ[LN] ([FILEID,] STRVAR); 
PROCEDURE WRITE[LN] ([FILEID,] STRING); 

These procedures can be used only on files of type TEXT (FILE OF CHAR) 
or INTERACTIVE. The default files are INPUT (for READs) and OUTPUT 
(for WRITEs). 

READ(F, STRV AR) reads all characters on a line except the carriage return 
and sets EOLN to TRUE. Note that any subsequent readstrings return the 
empty string until a READLN or READ (character) is called. 

FUNCTION EOF [(FILEID)] : BOOLEAN; 
FUNCTION EOLN [(FILEID)] : BOOLEAN; 

EOF and EOLN return FALSE when a file is initially opened. The default 
file parameter is INPUT. 

When writing to a file, EOF returns TRUE if there is no more room on the 
disk. 

When a GET(Fj or READ(F) call sets the file position to an EOLN or EOF 
character, EOLN(F) is set to TRUE and the character will be read as a 
blank" 

When GET(F) or READ(F) sets the file position to an EOF character, EOF(F) 
is set to TRUE. When EOF(F) is TRUE, the contents of the file buffer are 
undefined. 

EOF and EOLN work differently on files of type INTERACTIVE - see 8.4.10 
for more information. 

PROCEDURE GET (FILEID); 
PROCEDURE PUT (FILEID); 

GET and PUT are used only on files of type FILE OF <type>. 

GET(F) reads the record from the current file position into the window 
variable FA and increments the file pointer. PUT(F) writes the. contents of 
the window variable FA to the current file position and increments the file 
pointer. 



PROCEDURE SEEK (FILEID, INTEGER); 

Modula Operating System 
Pascal Compiler 

page 67 

SEEK(F ,I) changes the file position so that the subsequent GET(F) or PUT(F) 
accesses the INTEGERth record of the file. File record numbers are 0-
based. The contents of the file window are undefined after a SEEK. Note 
that a READ or WRITE must occur between successive SEEKs. 

PROCEDURE PAGE (FILEID); 

PAGE(F) writes a top-of-form character (ASCn ff) to the file F. 

FUNCTION 10RESULT : INTEGER; 

10RESULT returns the I/O status result of the previous I/O operation. 
Appendix 2 describes the I/O result values. 

FUNCTIO~ BLOCKREAD (FILEID,ARRA Y ,BLOCKS,[RELBLOCK]) : INTEGER; 
FUNCTION BLOCKWRITE (FILEID,ARRAY,BLOCKS,[RELBLOCKD : INTEGER; 

{SEQUENTIAL} 

BLOCKREAD and BLOCK WRITE transfer integral numbers of blocks of data 
between a memory buffer and a file. The function result returns the number 
of blocks actually transferred. The number of blocks transferred comes back 
less than the number of blocks requested either when an I/O error occurs or 
the end of the file was read. 

The file parameter must be of type FILE. The parameter ARRAY should be 
a multiple of 512 bytes and no smaller than the number of blocks requested 
for transfer. The parameter BLOCKS is the number of blocks to be 
transferred. 

The optional parameter RELBLOCK specifies the file-relative block number 
where the transfer should start.· (The first block in a file is block 0.) If 
the RELBLOCK parameter is omitted, block I/O is performed sequentially 
starting at the first block in the file. (Note that a random-access block I/O 
operation changes the file position.) 

NOTB- BLOCKREAD and BLOCKWRITE do not perform any error 
checking, so 10RESULT (or the number of blocks transfered) 
should be checked after each c~. 



Modula Operating System 
Pascal Compiler 
page 68 

PROCEDURE UNITCLEAR (UNITNUMBER); 

UNITCLEAR resets the specified peripheral device to its initial state. 

PROCEDURE UNITREAD (UNITNUMBER,· ARRAY, LENGTH [,BLOCKNUMBER [,FLAGS]D; 
PROCEDURE UNITWRITE (UNITNUMBER, ARRAY, LENGTH [,BLOCKNUMBER [,FLAGS]]); 

UNITREAD and UNITWRITE perform low-level I/O to the online peripheral 
devices. The UNITNUMBER parameter specifies the device unit number. 
ARRA Y can be any variable; it is used as the starting word address of the 
memory buffer. LENGTH indicates the number of bytes to transfer. The 
optional parameter BLOCKNUMBER is required only when accessing disk 
units; it indicates the starting block number of the data transfer. 

The optional parameter FLA GS controls the mode of the I/O operation; 
though of type integer, it is treated as a bit array. If bit 2 of FLAGS is 
set, the I/O system does not expand blank compression characters (DLEs). 'If 
bit 3 of FLAGS is set, the I/O system does not append line feed characters 
to carriage returns. The default value of FLAGS is O. 

If bit 1 of FLAGS is set, I/O is performed in physical sector mode. 
BLOCKNUMBER is interpreted as a physical disk sector number. LEN GTH 
must be set to zero - in physical sector mode, each I/O operation 
automatically reads only one sector. Track numbers are O-based, sector 
numbers 1-based. The mapping between physical sector numbers and a disk's 
track and sector numbers is as follows: 

PhysSect# = (Track# *SectorsPerTrack) + Sector# - 1; 

NOTB- UNITREAD and UNITWRITE do not perform any error 
checking, so IORESULT should be checked after every operationo 



Modula Operating System 
Pascal Compiler 

page 69 

PROCEDURE UNITSTATUS (UNITNUMBER, ARRAY, CONTROL); 

UNITSTATUS returns status information on the specified unit. 

The UNITNUMBER parameter specifies the device unit number. ARRA Y is 
used to return status information. ARRA Y can be any variable, but it should 
be an array or record of at least 30 words to contain the status data' and 
any additional system-dependent information. CONTROL is an integer 
parameter which specifies whether input or output information is desired. If 
CONTROL = 1, UNITSTATUS returns input information; if CONTROL = 0, 
output information. 

On serial units, UNITSTATUS sets the first word in ARRAY to the number 
of characters queued on the unit. UNITSTA TUS returns 0 if there are no 
characters queued or if the unit's state cannot be determined. 

On block-structured units, UNITSTATUS sets the first four words in ARRAY 
as follows: 

~ word 1: # of' queued characters 
- word 2: # of bytes per sector 
- word 3: # sectors per track 
- word 4: # of tracks on disk 



Modula Operating System 
Pascal Compiler 
page 70 

8.3.2 String Manipulation 

strings can be manipula ted either wi th the string instrinsics or by accessing 
them as character arrays. The zero'th character in a string variable is used 
as the length byte (and is inaccessible when range checking is on except via 
Length). The remaining characters in the array comprise the string. When 
accessing a string as a character array, be sure to stay within the (dynamic) 
bounds of the string and do not set the length byte inappropriately. 

FUNCTION CONCAT (STRING,STRING, ••• ) : STRING 

CON CAT returns a string that is the concatenation of its string parameters. ~ 
Note that any number of string parameters can be passed (separated by 
commas). 

FUNCTION COpy (STRING, INDEX, SIZE) : STRING 

COpy returns a string containing SIZE characters copied from STRING, 
starting at position INDEX in STRING. 

FUNCTION LENGTH (STRING) : INTEGER 

LENGTH returns the number of characters iIi the parameter STRING. 

FUNCTION POS (STRING!, STRING2) : INTEGER; 

POS returns the starting position of the first occurrence of the parameter 
STRING! in the parameter STRING2. If the string is not found, POS returns 
zero. 

PROCEDURE DELETE (STRVAR, INDEX, SIZE); 

DELETE deletes SIZE characters from the string variable STRVAR, starting 
at the position INDEX. 

PROCEDURE INSERT (STRING, STRVAR, INDEX) 

INSERT inserts the parameter STRING into the variable STRVAR, starting at 
the position INDEX in STRVAR. 



8.3.3 Byte Array Manipulation 

Modula Operating System 
Pascal Compiler 

page 71 

The byte array intrinsics are used for manipulating large amounts of byte­
oriented data in memory. They must be used with care, as no type or range 
checking is performed. The SIZEOF intrinsic is often used with these 
intrinsics to accura tely specify the number of bytes in an array parameter. 

FUNCTION SCAN (LENGTH, PARTIAL EXPRESSION, ARRAY) : INTEGER; 

SCAN starts at the byte address ARRAY and scans (up or down) through 
memory until either it has checked LENGTH bytes or it finds a character 
satisifying the expression PARTIAL EXPRESSION. SCAN returns the number 
of characters checked before the expression was satisfied. 

The ARRAY parameter should be a packed character array; it can be 
subscripted to denote the starting address. If the LENGTH parameter is 
negative, SCAN scans backwards and returns a negative result. If pARTIAL 
EXPRESSION is satisfied by the character residing at the starting address, 
SCAN returns O. If- PARTIAL EXPRESSION is not satisfied, SCAN returns 
LENGTH. 

The PARTIAL EXPRESSION is a distinctly nonstandard construct with the 
following form: 

<> or = followed by a character expression (e.g. ,,<> chit) 

PROCEDURE FILLCHA~ (DESTINATION, LENGTH, CHARACTER); 

. FILL CHAR fills memory with the character passed in the CHARACTER 
parameter, starting at the byte address DESTINATION and filling for 
LENGTH bytes. Negative LENGTH values are treated as zero. 

PROCEDURE MOVELEFT (SOURCE, DESTINATION, LENGTH); 
PROCEDURE MOVERIGHT (SOURCE, DESTINATION, LENGTH); 

MOVE LEFT and MOVERIGHT move LENGTH bytes from the byte address 
SOURCE to the byte address DESTINATION. MOVELEFT increments the 
source and destination addresses after moving each byte; that is, it moves 
data starting from the left end of the buffer. MOVERIGHT decrements the 
source and destination addresses after moving each byte; that is, it moves 
data starting from the right end of the buffer. Negative LENGTH values are 
treated as zero. 



Modula Operating System 
Pascal Compiler 
page 72 

8.3.4 Miscellaneous 

PROCEDURE GOTOXY (COLUMN, ROW); 

GOTOXY moves the cursor to the specified integer coordinates. The upper 
left corner is (0,0); the lower left corner (O,<Screenheight)-l). 

PROCEDURE HALT; 

HALT terminates the current program. 

PROCEDURE EXIT (PROCEDURE); 

EXIT terminates the current procedure. See 8.4.6 for details. 

PROCEDURE MARK (VAR MARKPTR: AINTEGER); 
PROCEDURE RELEASE (V AR RELPTR: AINTEGER); 

MARK and RELEASE are used to manage the heap space o MARK stores the 
current heap top in MARKPTR. RELEASE cuts the heap top back to the 
address stored in RELPTR.· 

FUNCTION PWROFTEN (EXPONENT: INTEGER) : REAL; 

PWROFTEN returns the ten raised to the EXPONENTth power. With 32-bit 
reals, EXPONENT must be an integer between ° and 37. With 64-bit reals, 
it must be between ° and 307. 

FUNCTION SIZEOF (VARIABLE OR TYPE): INTEGER; 

SIZEOF returns the number of bytes allocated for the specified variable (or a 
variable of the specified type). SIZEOF is particularly useful with the byte 
array intrinsics. Note that SIZEOF is evaluated at compile time. 

PROCEDURE TIME (VAR HITIME, LOTIME: INTEGER); 

TIME returns the current system time as defined by a 32-bit clock value 
which is incremented at 1/60th second intervals. The values returned in 
HITIME and LOTIME should be treated as unsigned values. TIME returns (0,0) 
on systems without clocks. 



8.4 Differences From Standard Pascal 

Modula Operating System 
Pascal Compiler 

page 73 

This section describes differences between VS Pascal and standard Pascal. 
(The standard referred to here is the PASCAL USER MANUAL AND REPORT 
(2nd edition) by Jensen and Wirth.) Differences fall into two categories: 

• Extensions to standard Pascal 

• Deviations from standard Pascal 

8.4.1 Case Statements 

In VS Pascal, if no label matches the value of the case selector, the next 
statement executed is the statement following the case statement. In 
standard Pascal, this case is considered an error. 

PROGRAM fallthru; 
VAR ch: CHAR; 
BEGIN 

ch := 'a'; 
CASE ch OF 
'b': WriteLn('hi there'); 
'c': WriteLn('the character is a c'); 

END; 
WRITELN('that"s all, folks'); 

END. 

NOTE- VS Pascal accepts the OTHERWISE clause in CASE statements 
as a way to catch unspecified values. 

8.4.2 Comments 

VS Pascal considers the comments delimiters '(.' and 'i' to be unique, thus 
permitting one level of nested comments: 

{ I := 1; (* nested comment *) } 

Standard Pascal considers the two different forms of comment delimiters to 
be equivalent, and thus does not permit nested comments. 



Modula Operating System 
Pascal Compiler 
page 74 

8.4.3 Dynamic Memory Allocation 

VS Pascal does not implement the standard procedure DISPOSE; instead, it 
provides the MARK and RELEASE intrinsics. 

Dynamic storage is allocated in a stack-like structure called the 'heap'. 
NEW allocates variables on the top of the heap. To recover the storage 
occupied by a dynamic variable, it is necessary to call MARK before 
allocating it; MARK saves the current address of the top of the heap. 
Subsequent calls to NEW allocate dynamic variables 'above' the heap mark. 
RELEASE sets the top-of-heap pointer back to the heap mark established. by 
MARK, releasing all subsequently allocated variables. 

NOTE - Careless use of MARK and RELEASE can lead to 'dangling 
pointers' which no longer point to dynamic variables. 

PROGRAM heapchop; 
V AR: heap: AINTEGER; 

i,j,k: A ARRA Y[l •• lO] OF CHARACTER; 
BEGIN 

MARK(heap); (* save current heap position *) 
NEW(i); 
NEW(j); 
NEW(k); 
RELEASE(heap); (* cut heap back to old position *) 

END. 

8.4.4 EOF and EOLN 

When the console unit is used as an input text file, the end-of-file condition 
is set by typing the <eof> key (ctrl-C on most systems). 

EOF(F) returns TRUE if F is closedo On text files, EOLN(F) is always TRUE 
when EOF(F) is .true. 

EOLN(F) is defined only for files of type TEXT or whose window variable is 
of type CHAR. EOLN becomes True after the end-of-line character <cr> is 
read. 



8.4.5 Files 

Modula Operating System 
Pascal Compiler 

page 75 

The predeclared files INPUT and OUTPUT are interactive files, which are 
declared with the predefined file type INTERACTIVE. Interactive files are 
similar to files of type TEXT, but the procedures EOF(F), EOLN(F) and 
RESET(F) are defined differently when reading from the console. See 8.4.10 
for more information on interactive files. 

The predeclared file KEYBOARD is an interactive file which can be used to 
read characters directly from the keyboard (characters are not echoed to the 
console screen as they are read.) 

The VS Pascal intrinsics BLOCKREAD and BLOCKWRITE operate on block 
files. Block files are declared with type 'FILE'. (Note that the usual 'OF 
<type)' sequence is missing.) See 8.3.1 for more information on block files. 

The VS Pascal intrinsic SEEK is used to randomly access record-oriented 
(non-text) files. See 8.3.1 for more information on SEEK. 

VS Pascal does not permit READ or WRITE to access files of type other 
than TEXT or FILE OF CHAR. Only GET and PUT can be used to access 
record-oriented files. 



Modula Operating System 
Pascal Compiler 
page 76 

8.4.6 GOTO and EXIT Statements 

VS Pascal does not allow out-of-block GOTO statements; a GOTO can jump 
only to labels declared in the same procedure as the GOTO. 

As an alternative to the out-of-block GOTO, VS Pascal provides an EXIT 
statement. EXIT accepts a procedure name as its parameter; what it does is 
transfer program control to the end of the named procedure. If EXIT is 
called in a recursive procedure, it exits the most recent procedure 
invocation. If exit names a procedure which has not been called, execution 
error 3 ('exit to uncalled procedure') occurs. EXIT(PROGRAM) terminates 
the current program. 

PROGRAM ExitDemo; 

PROCEDURE GlobalProc; 

PROCEDURE Terminate; 
BEGIN 

EXIT(GlobaIProc); (* exits out end of GlobalProc *) 
END; 

BEGIN 
Terminate; 
WriteLn('This never prints'); 

END; 

BEGIN 
GlobalProc; 

END. 

8.4.'1 Packed Variables 

The VS Pascal compiler attempts to compress the machine representations of 
records and arrays when their .type definitions are prefixed with the· reserved 
word PACKED •. Packing significantly reduces the amount of memory needed 
to store certain data types, but at the expense of slightly increased 
execution time and code size required for packed field access. Packing is 
syntactically allowed for all structured types, but affects only records and 
arrays. 

Examples of packed variable declaration: 

TYPE manybits = J;»ACKED ARRAY [0 •• 31] OF BOOLEAN; 
smaIlrec = PACKED RECORD 

a,b: CHAR; 
i: INTEGER; 

END; 



Modula Operating System 
Pascal Compiler 

page 77 

Machine representations of the basic data types are as follows: 

type 

BOOLEAN 
CHAR 
INTEGER 
REAL 
SET OF x •• y : y<16 
subrange x •• y: x>=O 

unpacked 

1 word 
1 word 
1 word 
2 words 
1 word 
1 word 

packed 

1 bit 
8 bits 
1 word 
2 words 
(y+l) bits 
(log2(y+l» bits 

Subrange types with negative lower bounds are not packable. Array and 
record subtypes are word aligned and thus unpackable. The compiler is 
limited to packing fields into single words; fields cannot be packed across 
word boundaries. Thus, records are packed only if they contain consecutively 
declared fields that can be packed into a single word, and arrays are packed 
only if their element types can be stored in 8 bits or less. Unpackable 
fields are referenced as unpacked data. (In records, this includes fields 
which cannot be packed because of adjacently declared unpackable fields.) 

NOTE - Packed fields cannot be passed as V AR parameters.. VS 
Pascal does not support the standard procedures PACK and 
UNPACK. 

804 0 8 Procedure Parameters 

VS Pascal does not support procedure (or function) parameters. 

8.4.9 Program Headings 

VS Pascal ignores parameters passed along with the program heading. 
External files are accessed by calling the RESET and REWRITE intrinsics. 
The standard files INPUT , OUTPUT, and KEYBOARD are predeclared and 
automatically opened in every program. 

8.4.10 READ and READLN 

Standard Pascal defines the statement READ(f ,ch) as: 

ch := fA; 
GET(f); 

Because this definition is unsuitable for interactive programming, VS Pascal 



Modula Operating System 
Pascal Compiler 
page 78 

defines interactive file type. 
READ(i,ch) is defined as: 

GET(i); 
ch := i A

; 

Given an interactive file i, the statement 

Note that the definition of READ for interactive files affects some other I/O 
intrinsics. When the interactive file i is first opened, the window variable iA 

is not loaded with an initial value. EOLN and, EOF work differently when 
reading from interactive files; they return true only AFTER the appropriate 
line or file terminator is read. On interactive input files, the end-of-line 
character <return> is returned as a blank character. 

8.4.11 RESET and REWRITE 

Resetting an interactive file i does not automatically initialize the window 
variable iA

• 

VS Pascal provides a second form of RESET for gaining access to external 
files. See 8.3.1 for details. 

The VS Pascal intrinsic REWRITE is used to create external files. See 8.3.1 
for details. 

8.4.12 Segment Procedures 

A VS . Pascal procedure can be specified as overlayable by preceding its 
declaration with the reserved word SEGMENT. Segment procedures are used 
to divide large Pascal programs into separate disk-resident sections so that 
only part of the program is memory-resident at anyone time. 

A program can contain up to nine segment procedures. Segment procedures 
must be declared as the first procedures iIi a program. When a segment 
procedure is called, its code 'segment is read into memory from the disk. 
When a segment procedure returns, its code segment is released from memory. 

WARNING- When a program calls a segment procedure, the disk 
volume containing the program code file must be online and in 
the same drive as when the program was executed. Otherwise, 
a segment procedure call crashes the program when the system 
tries to read the code segment from the missing disk. 

PROGRAM SegDemo; 

SEGMENT PROCEDURE Initialize; 



BEGIN 
••• 

END; 

(* code read in for call *) 

Modula Operating System 
Pascal Compiler 

page 79 

BEGIN 
Initialize; 
MainProg; 

END. 
(* code released after call returns *) 

8.4.13 Code Procedures 

A code procedure is a procedure declaration whose body consists of a 
sequence of constants denoting P-code instructions and operands. This code 
sequence is subs~ituted inline for each code procedure call. 

Code procedures are used to perform low-level operations and to access 
routines defined in the Modula operating system. As in regular procedure 
calls, code procedure parameters are pushed onto the evaluation stack (in the 
o~der they appear) before the (inline) procedure code is executed. 

WARNIN G - Code procedures must be used with utmost care, as any 
programming errors may cause the system to crash in mysterious 
ways. Be prepared! 

Example of code procedure declaration: 

PROCEDURE UpperByte(VAR i: INTEGER): CHAR; 
(* word address pushed as parameter *) 
CODE 

1· , 
190 

END; 

8.4.14 Sets 

(* load constant byte offset *) 
(* load byte as function result *) 

Sets of subrange types are restricted to positive valUes. Sets can be 
declared to contain up to 4080 elements. Set comparison and other 
operations are allowed only between sets that are either of the same base 
type or subranges of the same ~derlying type. 



Modula Operating System 
Pascal Compiler 
page 80 

8.4.15 Strings 

VS Pascal provides strings for manipulating variable-length character strings. 
string variables are declared with type STRING. String variables are 
implemented as packed character arrays with a length byte stored in the first 
character index (s[O]). Note that the length of a string can be obtained by 
calling the LENGTH intrinsic. 

Every string variable has a maximum length. A string cannot grow longer 
than its string variable without causing execution error 13 ('string too long'). 
A string variable'S maximum length is specified in its type declarationr the 
desired maximum length (enclosed in brackets) follows the type identifier 
STRING. For instance, STRING[20] declares a string type with a string 
length of 20 characters. The maximum string length is 255 characters. The 
default string length is 80 characters. String assignment is performed by the 
assig~ment statement, a READ statement, or one of the string intrinsics. 

s := 'string assignment'; 
READLN(s); 
s2 := CONCAT(s, '.TEXT'); 

Individual characters within a string variable are accessible by treating . the 
string as a character array with an index range of 1 to the current string 
length. Indexing a string outside of this range causes execution error 1 
('invalid index'). 

All comparison operators accept strings. String comparison is lexicographical; 
that is, comparison is done left-te-right, and if strings are equal up to the 
length o~ the shorter string, the shorter string is less. 

When reading into a string variable, all characters up to the end-of-line 
character are assigned to the string. Note that READLN(sl, s2) is 
equivalent to: 

READ(sl); 
READLN(s2); 

See 8.3.2 for details on the VS Pascal string intrinsics. 

8.4.16 WRITE and WRITHLN 

The standard procedures WRITE and WRITELN do not accept Boolean 
arguments. 

When a string variable is written without a field width specification, the 
number of characters written equals the current length of the string. If the 



Modula Operating System 
Pascal Compiler 

page 81 

specified field width exceeds the string length, the appropriate number of 
leading blank characters are written. If the string length exceeds the field 
width specification, excess characters are truncated from the right-hand side' 
of the string. 

8.4.17 Array Comparison 

The comparison operators = and <> accept arrays as arguments. 

WARNING- Array comparison can be error prone with packed data 
structures (which may contain uninitialized data areas between 
packed fields). 



Modula Operating System 
Pascal Compiler. 
page 82 

8.4.18 Implementation Limits 

• The maximum number of bytes of object code in a procedure is 
1200. 

• The maximum number of words in a data segment is 16383. 

• The maximum number of elements in a set is 4080. 

• The maximum number of segment procedures in a program is 9. 

• The maximum number of procedures in a segment is 127. 

• The maximum level of lexical nesting is 14. 

• The Modula operating system does not detect integer overflow or 
the use of uninitialized variables. NIL pointer checking is 
available on some processors. 



9 Yet Another Line Oriented Editor 

Modula Operating System 
Yet Another Line Oriented Editor 

page 83 

YALOE (acronymous with 'yet another line-oriented editor') is a line-oriented 
text editor. It is designed to run on teletypewriters or - more commonly -
terminals on unconfigured systems. 

Section 9.1 explains how to start YALOE. 

Section 9.2 explains how to enter commands and text. 

Sections 9.3 thru 9.7 describe the various YALOE commands. Section 9.8 
contains a command summary. 

NOTE- Most people use YALOE just long enough to create the proper 
Gotoxy for their system, then drop it like a hot iron in favor of 
ASE. 



Modula Operating System 
Yet Another Line Oriented Editor 
page 84 

9.1 Entering YALOE 

YALOE is invoked by X(ecuting YALOE.CODE. 

YALOE keeps the file, being edited in its text buffer. Note that files must 
fit in the text buffer in order to be successfully edited. 

If a work file exists, it is automatically read into the text buffer, and the 
following message appears: 

Workfile GUMBY read in 

If there is no workfile, this message appears instead: 

No workfile read in 

In this case, use the R(ead command to read a file into the text buffer. 

9.2 Entering Commands and Text 

YALOE runs in one of two modes: command mode or text mode. It starts 
off in command mode. 

YALOE displays an asterisk ('.') when it is ready for a command. Commands 
are entered by typing command characters; they appear on the screen as they 
are typed. 

In command mode, Y ALOE interprets all input as edit commands (spaces, 
returns, and tabs are ignored; commands can be in upper or lower case). 
You can enter commands one at a time, or you can type in a whole string of 
commands to be executed in. sequence; iIi either case, they are not executed 
until you type <esc><esc>. Commands with text string parameters are 
separated by the <esc> that terminates the text string. When YALOE 
finishes executing the commands, it redisplays the command prompt ('.'). 

Y ALOE goes into text mode when you type a command that accepts a text 
string parameter. In text mode, all characters (including carriage returns) 
are treated as text until you. terminate the text string by typing <esc>; 
YALOE then goes back to command mode. 

NOTE- If an error occurs while YALOE is executing a comand string, 
the remaining commands in the command string are ignored. 



Modula Operating System 
Yet Another Line Oriented Editor 

page 85 

NOTE - <esc> echoes a dollar sign ('$') when typed. The <esc> 
terminates the text string and returns control to Command mode. 
The examples in this chapter display <esc> as '$'. 

Command Arguments 

Some Y ALOE commands accept command arguments. Command arguments are 
characters which precede the command character.. Command arguments 
specify repeat factors andlor the cursor direction. 

The following definitions are used in the command descriptions: 

n Denotes an integer. In YALOE commands that accept this argument, the 
default value is 1. If only a minus sign is present, the default value is -1. 
Negative argument values specify backwards cursor movement. 

I Denotes the integer value 32700. '-I' denotes ~32700. 'I' is used to 
specify a large repeat factor. 

m Denotes an integer between 0 and 9. 

o Denotes the start of the current line. 

= Denotes the integer value '-n', where n is the length of the last text 
string parameter. '=' works only with the J(ump, D(elete, and C(hange 
commands. 

9.3 Special Commands 

YALOE defines certains keys as special commands. 

<ese> 

A single <esc> termina tes a text string. 
command string. <esc> echoes as '$'. 

RUBOUT 

RUBOUT (linedel) deletes the current line. 

A double <esc> executes the 



Modula Operating System 
Yet Another Line Oriented Editor 
page 86 

CTRL H 

CTRL H (chardel) deletes a character from the current command string. 
Deletions are done right to left up to the beginning of the command string. 
CTRL H may be used in both command and text modes. 

CTRL X 

CTRL X causes the editor to ignore the entire command string currently 
being entered. Y ALOE responds by redisplaying the command prompt ('*'). 
Note that CTRL X takes out even multi-line command strings. 

9.4 Input a: Output Commands 

The following commands control input and output: L(ist, V(erify, R(ead, 
W(rite, E(rase, and Q(uit. 

LUst 

Syntax: 

nL 

DisplEiy the specified number of te~t lines. 

Examples of L(ist: 

*5L$$ 

*OL$$ 

V(erify 

Syntax: 

v 

Lists the five lines following the cursor 0 

Lists from the start of the current line 
up to the cursor. 

Redisplay the current text line 0 



R(ead 

Syntax: 

R<file title>$ 

Modula Operating System 
Yet Another Line Oriented Editor 

page 87 

Read the specified file into the text buffer starting at the current cursor 
position. <file title> is a text string containing a valid file title. If YALOE 
cannot find the file, it appends a '.TEXT' suffix and tries again. 

WARNING- If the file read in does not fit in the text buffer, the 
buffer contents become undefined; i.e. the current edit session 
is lost. 

W(rite 

Syntax: 

W<file title>$ 

Write the text buffer contents to the specified disk file. <file title> is a 
text string containing a valid file title; the file suffix '.TEXT'· is 
automatically appended if it is not specified. 

If the disk volume does not have enough space to contain the n~w file·, the 
following error appears: 

OUTPUT ERROR. HELP! 

In this case, W(rite the file out to another disk volume. 

Q(uit 

The Q(uit command has the following forms: 

QU 
QE 
Q 

Quit and write to the work file. 
Quit and exit YALOE; do not sB,ve the text. 
Issue a prompt requesting one of the 
following options: U, E, or R. R returns 
to the edit session. 



Modula Operating System 
Yet Another Line Oriented Editor 
page 88 

E(rase 

Syntax: 

E 

Erase the screen. 

9.5 Cursor Moving Commands 

The following commands move the cursor: J(ump, A(dvance, B(eginning, G(et, 
and F(ind. 

Cursor direction is specified by the command argument. For instance, the 
command '10J' moves the cursor forward 10 characters, while '-10J' moves 
the cursor backwards the 10 characters. 

NOTE - Carriage returns and tabs are treated as single characters. 

J(ump 

Syntax: 

nJ 

Move the cursor the specified number of characters. 

A(dvanee 

Syntax: 

nA 

Move the cursor the specified number of lines. The cursor is left at the 
beginning of the line. lOA' moves the cursor to the start of the current 
line. 



B(eginning 

Syntax: 

B 

Move the cursor to the front of the text buffer. 

G(et a: F(ind 

Syntax: 

nG<target string>$ 
nF<target string>$ 

Modula Operating System 
Yet Another Line Oriented Editor 

page 89 

G(et and FOnd are synonymous. Starting at the current cursor position, the 
text buffer is searched for the nlth occurrence of the target string. (The 
argument sign determines the search direction.) If found, the cursor is left 
at the end of the text string. If not found, an error message appears and 
the cursor is left at the end of the buffer. 

Examples of Cursor Moving Commands 

The cursor position is indicated by boldface. 

Here is the original text: 

*7J$$ 

*-A$$ 

The time has come 
the walrus said 
to talk of many things 

moves the cursor forward 7 characters: 

The time has come 
the walrus said 
to talk of· . many things 

moves the cursor up a line: 

The time has come 
the walrus said 
to talk of many things 



Modula Operating System 
Yet Another Line Oriented Editor 
page 90 

*BGsaid$=J$$ moves the cursor to the front of the text 
buffer and search for the string 'said'. 
When the string is found, move the cursor 
to the front of the string: 

The time has come 
the walrus said 
to talk of many things 

9.6 Text Changing Commands 

The following commands change text: I(nsert, D(elete, K(ill, C(hange, and 
X(change. 

I(nsert 

Syntax: 

I<text string>$ 

Insert the text string into the text starting at the current cursor position. 
The cursor is left after the last inserted character. 

NOTE - The message 'Please finish' may appear while you are 
inserting a large text string. If this happens, type <esc><esc> 
to finish the current I(nsert command, then type'!' and 
continue. 

n(elete 

Syntax: 

nD 

Delete the specified number of characters from the text buffer, starting at 
the current cursor position. The cursor is left at the character following the 
deleted text. 



K(ill 

Syntax: 

nK 

Modula Operating System 
Yet Another Line Oriented Editor 

page 91 

Delete the specified number of lines from the text buffer, starting at the 
current cursor position. . The cursor is left at the front of the line following 
the deleted text. 

C(hange 

Syntax: 

nC<text string>$ 

Replace the specified number of characters with the text string, starting at . 
the current cursor position. The cursor is left after the changed text. 

X(change 

Syntax: 

nX <text string>$ 

Replace the specified number of lines with the text string, starting at the 
current cursor position. The cursor is left after the changed text. 

Examples of Text Changing Commands 

* /K$$ deletes all lines following the cursor. 

*-4D$$ deletes the four characters preceding the cursor. 

*B$Gpeace$=D$$ finds the first occurrence of 'peace' and deletes it. 

*BGP$=CV$$ replaces the first occurrence of 'PI with 'V'. 

*OCxyz$$ replaces the characters from the front of the 
line to the cursor with 'xyz'. 

*-5XPOW$$ replaces all characters from the front of the 
fifth line back to the cursor with the string 'POW'. 



Modula Operating System 
Yet Another Line Oriented Editor 
page 92 

9.7 Miscellaneous Commands 

Miscellaneous commands include: S(ave, U(nsave, M(acro, N (macro execution), 
and '1'. 

S(ave 

Syntax: 

nS 

Copy the specified number of lines into the save buffer, starting at the 
current cursor position. Y ALOE prints a warning message and stops the 
S(ave command if the specified text is larger than the save buffer. 

U(nsave 

Syntax: 

U 

Copy the save buffer contents into the text buffer, starting at the current 
cursor position. YALOE prints a warning message and stops the U(nsave 
command if there is not eno.ugh room in the buffer for the inserted text. 

M(aero 

A maero is a single command that executes a user-defined command string. 
Macros are created with the M(acro command. A macro can invoke other 
macros (including itself recursively). 

Syntax: 

mM%<command string>% 

The command argument m (an integer between 0 and 9) identifies the macro 
definition. The default macro number is 1. The command string delimiter 
('%' above) is defined to be the character following the 'M'. It can be any 
character that does not appear in the macro command string itself. The 
second occurrence of the delimiter character terminates the macro definition. 



Modula Operating System 
Yet Another Line Oriented Editor 

page 93 

Any character may appear within a macro definition, including a single <esc>. 

Y ALOE prints the following message if an error occurs during macro 
definition: 

Error in macro definition. 

Example of macro definition: 

*4M%FLO,OP$=CEND LOOP$V$%$$ 

This defines macro number 4. When the macro is executed (by typing 'N4'), 
YALOE searches for the string 'LOOP', changes it to 'END LOOP', and 
displays the altered line. 

NOTE- Up to 10 macros (0 through 9) can exist at anyone time. 

N (execute macro) 

Syntax: 

nNm$ 

Execute the specified macro. 'mY identifies the macro to execute (0 to 9). 
The default macro number is 1. Because m actually represents a text string 
of commands, the N command must be terminated by <esc> (echoed as $). 

If you try to execute an undefined macro, this message appears: 

Unhappy macnum. 

If an error occurs during macro execution, this message appears: 

Error in macro. 

T (help) 

Syntax: 

? 

Display all YALOE commands, current size of the text and save buffers, 
currently defined macro numbers, and memory left in the text buffer. 



Modula Operating System 
Yet Another Line Oriented Editor 
page 94 

9.8 Command Summary 

? 
nA 

B 
nC 

nD 
E 

nF 
nG 

I 

nJ 
nK 

nL 
mM 
nNm 
Q 

R 

nS 

U 

v 
W 

nX 

n = integer argument m = macro number 

display command list and file information. 
advance the cursor to the beginning of the 
n fth line from the current position. 
jump to beginning of file. 
change by deleting n characters and inserting 
the following text. Terminate text with <esc>. 
delete n characters. 
erase the screen. 
find the n'th occurrence from the current cursor. 
position of the following string. Terminate 
target string with <esc>. 
insert the following text. Terminate text 
with <esc>. 
jump cursor n characters. 
delete n lines of text from the current cursor 
position. 
list n lines of text. 
define macro number mo 
perform macro m, n times. 
quit this session, followed by: 

U :(pdate Update SYSTEM.WRK.TEXr 
E:(scape Escape from session 
R:(eturn Return to editor 

read file into buffer starting at cursor; 
form is~ R<file name><esc>. 
put the next n lines of text from the cursor 
position into the save buffer. 
insert (Unsave) the contents of the ·save buffer into the 
text at the cursor; does not destroy the save buffer. 
verify: display the current line. 
write file (from start of buffer); 
form is: W<file name><esc>. 
delete n lines of text, and insert the following .~ext; 
terminate with <esc>. 



10 Utility Programs 

Modula Operating System 
Utility Programs 

page 95 

This chapter describes the utility programs provided with the Modula 
operating system. Utility programs assist the following tasks: 

• Disk management 

• File management 

• Program management 

• Communication 

• System configuration 

Section 10.1 describes the disk management utilities. 

Section 10.2 describes the file management utilities. 

Section 10.3 describes the program management utilities. 

Section 10.4 describes the communication utilities. 

Section 10.5 describes the system configuration utilities. 



Modula Operating System 
Utility Programs 
page 96 

10.1 Disk Management 

This section describes the disk management utilities: 

• Bootstrap copier (10.1.1) 

• Disk copier (10.1.2) 

• Duplicate directory copier (10.1.3) 

• Disk directory flipper (10.1.4) 

10.1.1 Bootstrap Copier 

The Booter utility (BOOTER.CODE on the disk) copies the system bootstrap 
code from one system boot disk to another. Bootstrap code is assumed to 
reside on logical disk blocks 0 and 1. 

After you X(ecute BOOTER, the following prompt appears: 

Copy Boot From '4: to '5: ! 
<cr> to .Copy, <esc> <cr> Exits 

The disk already containing the bootstrap code must be placed in disk unit 4. 
The disk that needs the bootstrap is placed in disk unit 5. To exit Booter, 
type <esc> followed by <return>. To proceed with bootstrap copying, type 
<return>. 



10.1.2 Disk Copier 

Modula Operating System 
Utility Programs 

page 97 

The Backup utility (BACKUP .CODE on the disk) copies the contents of one 
disk (called the master disk) onto a second disk (called the backup disk). 
For disk copying, Backup has the following advantages over the filer's 
T(ransfer command: 

• It performs double read and read-after-write checking to ensure 
that the backup disk is an exact copy of .the master disk • 

• It copies across any bootstrap code stored in blocks 0 and 1. 

After you X(ecute BACKUP, the following prompt appears: 

Master in 14: Backup in 15: ! 

Type 'y' to specify disk unit 4 as the master disk. If you want to transfer 
from unit 5 to unit 4, type In' and the prompt reappears as: 

Master in 15: Backup in 14: ! 

Once you have chosen which way to transfer, Backup verifies your choice by 
printing the volume name of the master disk: 

Master on 15: Volume MYDISK: 

If the backup disk contains an existing volu~e, Backup reminds you that it 
will be destroyed: 

Destroy 14: Volume OLDDISK: ! 

If you have cold feet, type 'n' to halt Backup; otherwise, type 'y' to 
continu~. If the master disk contains a disk volume, Backup tells you how 
many blocks are going to be copied - note that it copies only the files on 
the disk volume and not any of the unused disk space past the end of the 
last file. (This saves a lot of time if your master disk volume only contains 
a few files.) If the master disk does not contain a disk volume, then Backup 
asks you how many blocks to transfer. 

Backup then proceeds to copy the master disk; it writes dots to the screen 
to indicate its progress. When copying is completed, the following prompt 
appears: 

May I rename MYDISK: to BACKUP: ! 

What this prompt means is that the master and' backup disks have the same 
volume name at this point, so Backup will change the volume name on the 



Modula Operating System 
Utility Programs 
page 98 

backup disk to the volume name BACKUP:. Type 'y' to change the name to 
'BACKUP:'. 

Before Backup terminates, one last prompt appears: 

E(xit to Boot Diskette ! 

Place the boot disk back in its drive, type 'y', and Backup is finished. 
However, if· you want to copy another disk, type 'n' and the original Backup 
prompt reappears: 

Master in 14: Backup in 15: ! 



10.1.3 Duplicate Directory Copier 

Modula Operating System 
Utility Programs 

page 99 

The CopyDupDir utility (COPYDUPDIR.CODE on the disk) copies the 
duplicate disk directory onto the main directory; it is used to attempt the 
recovery of disk volumes whose main directory has been ruined. (Note that 
'CopyDupDir is of no help if the duplicate directory itself has also been 
obliterated.) 

After you X(ecute COPYDUPDIR, the following prompt appears: 

Drive number with victim disk already in it: 

Put the wounded disk volume in a drive and type the disk unit number • 
. CopyDupDir then reads the duplicate directory and displays the volume name 

stored in it. One last prompt appears before the duplicate directory is 
actually copied: 

May I write over original directory {yIn} ! 

Type 'y' to copy the directory. If you get cold -feet, type 'n' and 
CopyDupDir terminates without copying. 

10.1.4 Disk Directory Flipper 

The FlipDir utility (FLIPDIR.CODE on the disk) byte-flips the word quantities 
in a disk directory so the disk volume can be read on machines with the 
opposite byte sex. (The 68000 and 9900 are the opposite byte -sex from all 
other popular microprocessors.) 

After you X(ecute FLIPDIR, the following prompt appears: 

Unit number to flip! 

Put the disk volume in a drive and type the disk unit number. FlipDir then 
reads the directory into memory, flips the appropriate words, and writes it 
back to the disk. It also indicates the number of files on the volume. When 
FlipDir is finished, the following prompt appears: 

Directory Flipped, <Return> to Exit 



Modula Operating System 
Utility Programs 
page 100 

10.2 File Management 

This section describes the file management utilities: 

• Disk file editor (10.2.1) 

• File copier (10.2.2) 

• Text file compare (10.2.3) 

• . Binary file compare (10.2.4) 

10.2.1 Disk File Editor 

The Patch utility (p A TCH.CODE on the disk) is used to examine and alter 
da ta stored in a disk file. 

Disk files consist of a series of 512-byte blocks; the first block in a file is 
block O. Patch lets you read individual blocks from the file and display them 
in either pure hex or mixed hex and ASCn format. To alter disk file data, 
move the cursor to the desired location in the block display, type in the new 
data values, and write the block back to the file. 

After you X(ecute PATCH, the following prompt appears: 

F(ile, Q(uit 

Type Q(uit to exit Patch. If you type F(ile, the following prompt appears: 

Filename: <cr for u~it i/o> 

Type in the name of the file you want to edit. If you want to edit the 
entire disk volume, type <return>, and the following prompt appears: 

Unitnum [4,5,9 •• 12]: 

Type in the unit number containing the disk. Patch treats disks like they 
are big files - the first block on the disk is block O. 

Once you have specified a file to edit, the original Patch promptline 
reappears containing a new command: 

G(et, F(ile, Q(uit 



Typing G(et produces the following prompt: 

BLOCK: 

Modula Operating System 
Utility Programs 

page 101 

Type in the block number of a block you wish to examine; Patch then reads 
the specified block into memory. The promptiine reappears this time with 
two new commands: 

G(et, P(ut, H(ex, M(ixed, F(Ue, Q(uit 

H(ex displays the block in hex characters. M(ixed displays the block in ASCII 
characters wherever possible; all non ASCII character values appear in hex. 

H(ex and M(ixed produce the following prompt at the top of the block 
display: 

Alter: Arrows; L,R,U ,Z; O • .P hex chars; S(tuff, Q(uit 

The cursor appears at the first byte in the block; it can be moved around 
either with the vector keys or the letters L,R, U, and Z. (Z means 'down' -
D cannot be used because it denotes a hex digit.) Once the cursor has been 
positioned over the data you want to modify, type the new values in as hex 
digits. _ (This works just like the ASE's eX(change command.) 

The S(tuff command is used to assign the same value to a number of adjacent. 
bytes. After you type S(tuff, the following prompt appears: 

Stuff for how many bytes: 

Type in the number of bytes to be modified (starting from the current cursor 
position). The next prompt appears: 

Fill with what hex pair: 

Type in the two hex characters which make up the desired byte value. 
S(tuff then assigns the new value to the specified byte range. 

The P(ut command is used to write the altered disk block back to disk. P(ut 
writes the current block back to the file block it was read from. 



Modula Operating System 
Utility Programs 
page 102 

-10.2.2 File Copier 

The FileCopy utility (FCOPY.CODE on the disk) works just like Backup, but 
it is used to copy a single disk file from one disk volume to another. 

After you X(ecute FCOPY, the following prompt appears: 

Source FileName? 

Put in the disk volumes you want to transfer the file between, then type in 
the name of the file to transfer. The next prompt is: 

Dest FileName! 

Type in the name of the destination file, and FileCopy starts transferring the 
disk file. It writes out the source and destination file names and then 
displays a series of dots while transferring the files. When FileCopy is 
finished, it displays the number of blocks transferred. 

Before FileCopy terminates, one last prompt appears: 

E(xit to Boot Diskette ! 

Place the boot disk back in its drive, type 'y', and FileCopy is finished. 
However, if you want to copy another file~ type tn' and the original FileCopy 
prompt reappears: 

Source FileName? 

10.2.3 Text File Compare 

The Compare utility (COMPARE.CODE on the disk) compares two text files 
and reports any differences. 

After you X(ecute COMPARE, the following prompt appears: 

compare file: 

Type in the name of the first text file. (Note that the '.TEXT' suffix is 
automatically.appended.) The next prompt appears: 

with file: 



Modula Operating System 
Utility Programs 

page 103 . 

After you type in the second file ,name, the next prompt appears: 

WHERE DO YOU WANT TO OUTPUT [<esc-ret>, <filename>] 
printer: ! 

The file name you type here is where the differences description is written 
to. After the file name is entered, another prompt appears: 

MATCH CRITERION = 3 LINES. 
DO YOU WANT TO CHANGE IT (YIN) N ? 

. If you type 'y', Compare prompts for a new match criterion value. The 
match criterion is defined as the number of lines of text which must match 
in order to terminate a prior mismatch. Larger values tend to produce fewer 
- but larger - mismatches than small values; values should be chosen 
according to how much the two files differ. The default value of 3 yields 
good results when comparing Pascal program text. 

The last prompt is: 

IGNORE INDENTATION (YIN) Y ? 

If you type 'y', lines containing the same text but with differing indentation 
are considered identical. 

Once past all these prompts, Compare proceeds to compare the two text 
files. It displays a dot on the screen for every line compared. (Every tenth 
dot is displayed as a '+' to improve the display format.) 

When Compare finishes comparing the files, it writes out a report describing 
differences between the two files. If there are no differences, ·it writes 'no 
differences'; otherwise, it lists each mismatch including the line numbers in 
both files, and (if the difference is restricted to one line) both text lines 
with pointers to the beginning ·of the difference. 

When Compare finishes writing the difference report, it displays the following 
prompt: 

R(epeat or E(nd: 

To terminate Compare, type Ie'. However, if you want to compare another 
pair of files, type 'r' and the original prompt reappears: 

compare file: 



Modula Operating System 
Utility Programs 
page 104 

NOTE- Compare stores its report data on the heap, so files that 
generate very large difference reports may cause the system to 
stack overflow. 

10.2.4 Binary File Compare 

The CompCode utility (COMPCODE.CODE on the disk) compares two disk 
files and reports any differences. Unlike Compare, CompCode performs a 
binary comparison of all data in the two files. 

After you X(ecute COMPCODE, the following prompt appears: 

Name of filel ? 

Type in the name Qf the first file. (Note that you must type in the file 
suffix.) The next prompt appears: 

Name of file2 ? 

After you type in the second file name, CompCode starts comparing the. two 
files. No message is displayed if the two files match exactly. If CompCode 
discovers a difference, it displays the message: 

Error at blk 2, offset 129 

••• indicating the block number and byte offset where the two files differ. 



10.3 Program Management 

This section describes the program management utilities: 

• Librarian (10.3.1) 

10.3.1 Librarian 

Modula Operating System 
Utility Programs 

page 105 

The Librarian utility (LffiRAR Y .CODE on the disk) is used to manipulate code 
segments within a program's code file. 

After you X(ecute LIBRARY, the following prompt appears: 

Output Code FileName: 

Type in the name of the output code. (Note that a file suffix is not 
automatically appended - you must type it yourself.) The input file prompt 
appears next: 

Input Code FileName: 

Type in the name of the input code file. (Note that the file suffix .CODE 
is automatically appended.) Librarian then lists the name, segment number, 
and size in bytes of each segment in the code file. 

After the code segments are displayed, a promptiine appears: 

P(rompt, '_ofJeg, N(ew {<bl> or <cr>J, Q(uit, or A(bort: 

The P(rompt command steps through all segments in the input file, asking if 
you want to copy the segment to the output file: 

Link 1 PASCALCO {yIn} ! 

Type 'y' to copy the segment across; type tn' to skip the segment. 

The '# _ofJeg' command is used to copy individual segments to the output 
file. Type in the segment number of the segment you wish to copy and the 
following prompt appears: 

Source segnum: 8 



Modula Operating System 
Utility Programs 
page 106 

Notice that the segment number you typed is already entered; you can 
change it by backspacing and typing in another segment number. After you 
type <return>, the next prompt is: 

Target segnum: 

Type in the segment slot where the segment is to reside in the output file. 
The segment is then' copied into the output file display. 

The N(ew command selects a new code file as the input file. N(ew lets you 
copy segments from a number of code files into one output file. The 
following prompt appears: 

New input file: 

Type in the name of the new input file. The input file display is then 
updated with the segments in the new file. 

The Q(uit command displays this prompt below the promptline: 

Notice: 

Type in a copyright notice. (If you don't care about having a copyright 
notice, just type <return>.) Librarian stores the copyright notice in the 
segment dictionary (block 0 of the code file). 

The A(bort command exits Librarian without saving the output file. 



10.4 Communication 

This section describes the communication utilities: 

• Remote file transfer (10.4.1) 

• Electronic mail transfer (10.4.2) 

10.4.1 Remote File Transfer 

Modula Operating System 
Utility Programs 

page 107 

The SerialTalk utility (SERIALTALK.CODE on the disk) is used to transfer 
files from one machine to another via a serial communication line (RS232). 
Both machines must have their serial ports online, set at the same baud rate, 
and connected to each other by the appropriate cable.. Both machines must 
also have the SerialTalk program running. 

To transmit data files, SerialTalk is executed on both machines. One 
machine is specified as the 'slave' machine; the other becomes the 'master'. 
File transfer commands are entered on the master machine, which then sends 
the appropriate commands to the sla ve ma~hine. 

After you X(ecute SERIALTALK, the following prompt appears: 

1) Let both machines reach this prompt 
2) Press SUave on one machine 
3) Press M(aster on the other 

M(aster SUave Q(uit 

The SOave command does not display a prompt; it merely places the machine 
in the hands of the master machine. Any further information displayed on 
the screen is a result of commands from the master. 

The M(aster command displays the following prompt: 

S(end R(eceive C(onfigure F(ile Q(uit 

The S(end and R(eceive commands prompt for the name of a file to send or 
receive. Once a file name has been typed in, it is displayed on both the 
master and slave machines. While transmitting file data, SerialTalk displays a 
dot for each block transferred. If a parity error is detected, a question 
mark is displayed and the erroneous block is retransmitted. 



Modula Operating System 
Utility Programs 
page 108 

The C(onfigure command changes the modes used by SerialTalk to transmit 
data. C(onfigure displays the following prompt: 

P(acket size D(ata size Q(uit 

The P(acket size command controls the number of bytes sent between the 
machines at one time. P(acket size displays the following prompt: 

A)512 B)256 C)128 D)64 Q(uit 

The default packet size is 512 bytes. Smaller packet sizes are used when 
one of the machines isn't fast enough to keep up with the specified baud 
rate: this in turn is often caused by using a packet size larger than the 
machines' serial port data buffers. 

The n(ata size command controls the mode in which individual characters are 
transmitted. n(ata size displays the following prompt: 

P(arity R(a w Q(uit 

The default mode is ·P(arity. In Parity mode, SerialTalk translates all data 
into ASCII alphabetic character codes before transmitting it. This prevents 
control character values from being interpreted as commands by the master 
or slave machines' serial port I/O drivers. (This problem occurs most often 
when sending data between foreign operating systems.) R(aw mode transmits 
all data without converting it to alphabetic character codes. It can be used 
only when the serial port drivers on both machines transmit all 8 bits in a 
data byte and do not perform any special handling of control characters. 
Note that R(aw mode transmits about three times faster than P(arity mode. 

The F(ile command prompts for the name of a command file. Command files 
are used to automate the transmission of a number of files. A command file 
should contain exactly the characters that would have been typed in to 
transmit the files manually. (Note in particular that they are 'pure' text 
files and not the command files described in chapter 6.) 

The Q(uit command terminates SerialTalk. 



10.4.2 Electronic Mail Transfer 

Modula Operating System 
Utility Programs 

page 109 

The TeleTalk utility (TE;LETALK.CODE on the disk) is used for sending and 
recording text files during electronic mail sessions. Sending text files lets 
you compose your messages with the editor beforehand, then send them at 
high speed to reduce your connect time. Recording mail sessions lets you 
save your incoming messages in text files so you can read them afterwards, 
again saving you connect time. 

To start an electronic mail session, X(ecute TELETALK. 
prompt appears: 

BaudRate 1(200, 3(00 ! 

The following 

Select the appropriate baud rate for your modem by typing '1' or '3'. 
TeleTalk then displays the follwing message: 

<Ctrl-A) for option menu 

This indicates that typing ctrl-A at any. time during an electronic mail 
session halts the session and displays the TeleTalk prompt. 

TeleTalk is then ready for you to sign on to the network. All subsequently 
. typed characters are written to the network connection along with being 
echoed to the screen. Characters received from the network are displayed 
on the screen. 

NOTE- The message "LOST CARRIER" appears if you haven't dialed 
into the network yet. If this happens, dial into the network and 
type <space> or <return> a few times to establish the 
connection. 

Whenever you reach a point where you want to send or record a text file, 
type ctrl-A. The current session is suspended and the following prompt 
appears: 

FileOptions: S(end, R(eeord, G(o, E(xit -

The 0(0 command resumes the session. E(xit terminates the TeleTalk program 
and returns you to the system prompt. Note that you can terminate 
TeleTalk, run other programs in the system (such as the filer), then return to 
TeleTalk without interrupting a mail session: reexecuting TeleTalk pops you 
back into the current session. 



ModuIa Operating System 
Utility Programs 
page 110 

To send a text file, type S(end. The following prompt appears: 

Send what textfile! 

Type in the name of the text file you want to send (don't add ".TEXT"). 
Type 0(0 and TeleTalk returns to the session, transmitting the file while 
echoing it to the· screen. The following message appears on the screen when 
TeleTalk is finished sending the file: 

MYFILB.TEXT Finished 

If you want to stop sending a file before it reaches the end, type ctrl-A to 
get the prompt and type S(end again. The following prompt appears: 

Currently Sending MYFILE.TEXT C(Iose it! 

C(lose stops sending the file. 
resume sending the file. 

Typing anything else causes TeleTalk to 

To record a session in a text file, type R(ecord. The following prompt 
appears: 

Record as what textfne! 

Type in the name of the text file you want to record (don't add ".TEXT")o 
Type 0(0 and Tele·Talk returns to the session, with all characters 
subsequently written to the screen being. recorded in the text file. 

To finish recording a file, type ctrl-A to get the prompt and type R(ecord 
again. This time the following prompt appears: 

Currently Recording MYFILB.TEXT C(Iose P(urge 

C(lose saves the recorded file on disk. P(urge removes the file. 

WARNING- Be sure there's enough space on your disk before you 
start recording. If TeleTalk runs out of disk space while 
recording, it discards all subsequent text without issuing a 
warning. 



10.5 System Configuration 

Modula Operating System 
Utility Programs 

page 111 

This section describes the utility programs Setup and Binder. These utilities 
are used to configure the system software to operate with' different 
terminals. 

The Setup utility (10.5.1) is used to create and modify the system information 
file SYSTEM.MISCINFO. 

The MISCINFO file is always stored on the boot disk. It contains three 
types of system-dependent information: 

• Miscellaneous system data 

• Terminal-dependent control characters 

• Key definitions for ASE edit commands 

When the system bootstraps, it reads the contents of MISCINFO into an 
operating system data structure known as SYSCOM. The system programs 
access SYSCOM. to obtain system-dependent information. 

The Binder utility (10.5.2) binds a new Gotoxy procedure into the operating 
system code file. The operating system procedure Gotoxy is used to move 
the cursor to arbitrary positions on the screen. Because most terminals use 
different character sequences for cursor positioning, a different Gotoxy 
procedure is usually needed for each terminal. 

10.5.1 Terminal Setup 

The utility program Setup (SETUP .CODE on the utilities disk) is used to 
create a new MISCINFO file or to modify an existing one. 

After you X(ecute SETUP, the MISCINFO fields are displayed on the screen 
with their current values. (If Setup cannot find the file SYSTEM.MISCINFO, 
it displays the values already loaded into memory in SYSCOM.) 

Each MISCINFO field is displayed in the following format: 

Crt home o [nH" 72.] 

The field name is followed by a menu number; this is used in the S(ingle 
command to select individual fields for modification. The menu number in 
the example above is O. 



Modula Operating System 
Utility Programs 
page 112 

The values enclosed in the brackets indicate the current field value. Fields 
contain either character values or Boolean values. Boolean values are 
displayed either as 'True' or 'False'. Character values are displayed in both 
symbolic and numeric form. If a field value denotes a printable character, 
the character is displayed; otherwise, the ASCn control character symbol is 
displayed (e.g. ACK, LF). 

The numeric value may be displayed in one of three radices: decimal, hex, or 
octal. Decimal numbers end with a period ('72.'). Hex numbers end with 'hI 
('BEh'). Octal numbers end with '0' ('260'). 

Some MISCINFO fields m~y be designated as 'prefixed'. This means that the 
field value represents the second character of a two-character sequence. 
The first character is known as the prefix character. The prefix character 
is defined by two MISCINFO fields: 'Crt prefix character' and 'Keyboard 
prefix char'. Fields designated as prefixed are displayed with the letter 'p' 
on the right-hand side of the field value: 

Crt right 6 [oJ". 4Ab] P 

The following promptline appears below the field display: 

P(rompt, SOngle, N(ew, R(adix, M(em, D(isk, <Escape) ! 

The S(ingle command produces the following prompt: 

Current default Radix: Decimal 
Single change: menu I, (return) to accept, <esc> to Escape? 

If you type one of the menu numbers, Setup displays the corresponding field 
and waits for you to type in the new value. If the field is Boolean, type 't' 
for True or 'f' for False. If the field expects a character value, you can 
either type the character directly or you can specify the numeric value of 
the key by typing 'I' followed by the numeric value. (Note that numerical 
values assume the current default radix.) Numeric values are terminated by 
typing <return>. 

WARNIN G - Setup interprets entered menu numbers in terms of the 
current radix. 

For every character field, Setup also prompts for whether the field is 
prefixed. Type 'y' to mark a field as prefixed; type In' to mark it as 
unprefixed. Setup defines one input ('key') prefix character and one output 
('char') prefix character; fields marked as prefixed denote 2-character 
sequences beginning with ·the appropriate prefix character. Prefix characters 
are defined as separate fields in Setup. 



Modula Operating System 
Utility Programs 

page 113 

The 'Single change' prompt reappears after you have set each field. To 
change another field, type its menu number. Note that after setting a series 
of fields in S(ingle, the new field values are not actually established. To 
install the new field values in the display, type <return>; this terminates the 
S(ingle command and redisplays the fields with the new values. To escape 
from S(ingle, type <esc>; this terminates S(ingle and redisplays the fields 
without updating them. . 

The P(rompt command steps through every field asking for a new field value. 
If you do not want to change a field, type <return> and Setup will skip to 
the next field. 

The N(ew command works the same way as P(rompt, but specifies 'empty' 
field values as the default. N(ew is used for constructing new MISCINFO 
files from scratch. 

The R(adix command changes the default radix. 
appears: 

Current default Radix: Decimal 

The following prompt 

Default Radix: O(ctal, D(ecimal, H(ex, <return> 

Type the appropriate letter to set the new default radix. Type <return> to 
preserve the current default radix. The default radix affects both the field 
display and how numeric responses are interpreted. 

The D(isk' command writes the current field values to . the file 
NEW.MISCINFO. This file must be changed to SYSTEM.MISCINFO in order to 
be used by the system. 

The M(em command writes the current field values to the SYSCOM data 
structure in memory. This lets you test the new field values immediately 
after leaving Setup; however, they will be lost if the system is rebooted (or 
I(nitialized) before you can go back into Setup and invoke the DUsk command. 

The <Escape) command is the only way to terminate Setup. It produces the 
following prompt: 

Are you sure you want to Exit? 

Type 'y' to exit Setup; type tn' to return to Setup. Note that you must 
invoke either the D(isk or M(em command to preserve the results of a Setup 
session; <Escape> does not perform any automatic saving of the current field 
settings. 



Modula Operating System 
Utility Programs 
page 114 

MISCIHFO Fields 

This section describes the MISCINFO fields in detail. The fields contain 
three types of system information: keys, screen info, and parameters. 

Key fields define how character sequences received from the terminal are 
interpreted as system commands. Key fields in Setup have the word 'Key' in 
their field names. 

Screen info fields define how the system screen-control commands are mapped 
into character sequences written to the terminal. Screen info fields in Setup 
have the word 'Crt' in their field names~ 

Parameter fields contain various integer, character, and Boolean values which 
control system operation. 

Key accept 

Used as th~ editor <etx> command. Standard value: ASCII ETX 

Key escape 

Used as the <esc> command in the editor and other programs. Suggested 
value: ASCII ESQ 

Crt clear lin 

When written to the console, this character erases everything on the line 
that the cursor is on, leaving the cursor at the line start. 

Crt clear 

When written to the console, this character erases the entire screen, leaving 
the cursor at the top left of the screen. 

Crt erase eol· 

When written to the console, this character erases all characters from the 
current cursor position to the end of the line, leaving the cursor at its 
current position. 



Crt erase eos 

Modula Operating System 
Utility Programs 

page 115 

When written to the console, this character erases all characters from the 
current cursor position to the end of the screen, leaving the cursor at its 
current position. 

System is· Terak 8510a 

Set to FALSE (unless you are using a Terak). 

System bas clock 

Set to TRUE if the VS Pascal intrinsic TIME is implemented. 

Crt has ull case 

Set to TRUE if the terminal supports both upper and lower case characters. 

Crt has x,y control 

Set to TRUE. 

Crt is slow 

Set to FALSE if terminal runs faster than 600 baud. 

Key flush 

When typed, this key cancels all console output. 
Suggested value: ctrl-F 

Key stop crt 

When typed, this key suspends console output. 
Suggested value: ctrl-S 

Key break 

See 2.3 for details. 

See 2.3 for details. 



Modula Operating System 
Utility Programs 
page 116 

When typed, this key causes execution error 8 ("user break"). 

Key del char 

. When typed, this key deletes the character under the cursor and moves the 
cursor one space to the left. Suggested value: ASCn BS 

Key del line 

When typed, this key deletes the line under the cursor. Suggested value: 
ASCII DEL 

Key end file 

When typed, this key sets EOF to true while reading from a console input 
file. Suggested value: ASCII ETX 

Key up 
Key' down 
Key right 
Key left 

Used for cursor movement.' Tl1ese should be mapped to the terminal's arrow 
keys. 

Keyboard mask 

Used to mask off high order bits of characters received from the keyboard. 
Standard value: 127 

Bditor bad ch 

The editor displays this character whenever a non-printing character is 
written to the console. Standard value: ASCII '1' 

Keyboard prefix char 

Prefix character for all prefixed key fields. 



Crt prefix char 

Prefix character for all prefixed screen info fields. 

Crt home 

Modula Operating System 
Utility Programs 

page 117 

When written to the console, this character moves the cursor to the upper 
left hand corner of the screen. 

Crt right 

When written to the console, this character moves the cursor one space to 
the right without erasing any characters. 

Crt backspace 

When written to the console, this character moves the cursor one space to 
the left. Suggested value: ASCII· BS 

Crt rev If 

When written to the console, this character moves the cursor vertically up 
one line without erasing any characters. Not used by the system. 

Crt height (rows) 

The number of text lines displayed on the console. Standard value: 24 

Crt width (columns) 

The number of characters per line displayed on the console. Standard value: 
80 

Nulls for move delay 

Used to implement vertical move delays on slower terminals. The system will 
write the specified number of bogus nulls after each cursor move. Values 
greater than 11 are ignored. Standard value: 0 



Modula Operating System 
Utility Program~ 
page 118 

Byte sex is 9900/68000 

Set to TRUE if running on 9900 or 68000 processor. 

Word-addressed (PLASH) 

Set to TRUE if running on word-addressed machine. 

Student user 

Set to FALSE. 



10.5.2 GOTOXY Procedure Binding 

Modula Operating System 
Utility Programs 

page 119 

The operating system is shipped with a terminal-independent version of the 
"cursor-moving procedure Gotoxy. While this version is portable, it is also 
rather slow and especially irritating to watch as the cursor jumps all over 
the screen. To improve system performance and reduce eye strain, you 
should create a Gotoxy procedure for your terminal and bind it into the 
operating system code file with the Binder utility. 

First, a Pascal program containing the Gotoxy procedure must be written and 
compiled to a code file. A number of sample Gotoxy programs are provided 
with the system; if none of them is suitable for your terminal, modify 
whichever one is closest enough so it generates the character sequence 
needed by your terminal. 

The Binder utility (BINDER.CODE on the disk) is used to bind a .compiled 
Gotoxy procedure into the operating system code file.· 

After you X(ecute BINDER, the following prompt appears: 

CodePile name of new GoToXY: 

Type in the· code file name of the· Gotoxy program. The operating system 
code file must be on the prefixed volume. Binder reads the operating system 
code into memory, binds in the new procedure, and writes the modified 
system code back to the disk with the name" SYSTEM.P ASCAL. Rebooting 
the system loads the new operating system. 

NOTE- Binder removes the olq operating system code file, so be sure 
you have a backup copy of it laying around somewhere in case 
something goes wrong. 



Modula Operating System 
Installa tion Guide 
page 120 

Appendix 1 Installation Guide 

This section provides an overview of the basic steps necessary to install the 
Modula operating system on your computer. Details and additional 
information are provided in a separate document. 

The Modula operating system is shipped on one or more floppy disks. One of 
the disks is usually labelled 'SYSTEM' or 'BOOT' - this is the boot disk. To 
start the system, place the boot disk in your computer's system disk drive 
(your computer's owners manual should indicate which drive this is). Next, 
press the 'reset' button (or whatever it's called on your system). 

After a few disk accesses, a welcome message and the system promptline 
should appear on the screen. (If not, reread the instructions provided with 
the system and try again; if it still doesn't boot, ask your software dealer 
for help.) 

Your Modula system has booted for the first time. Congratulations! If your 
computer system includes a standard monitor (like the IBM PC or Osborne), 
your system disks have already been configured to work on your computer, so 
you can start using the system immediately. However, if the system you 
purchased is designed to work with an arbitrary terminal (like the Sage), you 
will have to run some configuration programs before you can make full use of 
.the system. The rest of this section explains how to configure your system. 

The ASE text editor makes extensive use of your terminal's screen control 
capabilities to do things like moving the cursor around the screen and erasing 
the screen after some commands. On an unconfigured system, the editor does 
not work very well (if at all) because these screen control functions have not 
been defined. So the first thing to do when you first boot the system is to 
run the utility program named Setup. To run Setup, you have to know the 
special characters used by your terminal to control the screen - this 
information can be found in your terminal's owner manual. Section 10.5.1 of 
this manual explains how to use Setup. 

Once you've successfully run Setup, you can make full use of the system. 
However, you might notice a lot of transient cursor jumping-arounding while 
you're in the editor. This can be eliminated by running the utility program 
named Binder. Binder adds a new cursor-moving procedure to the operating 
system, eliminating the screen flicker when the cursor is moved (and also 
noticeably improving the screen response). Section 10.5.2 of this manual 
explains how to use Binder. 

Once you've successfully run Setup and Binder, your system is fully 
configured and ready for full-time use. 



Appendix 2 1/0 ~esults 

o No error 
1 Bad Block, Parity error (eRe) 
2 Bad Unit Number 
3 Bad Mode, illegal operation 
4 Undefined hardware error 
5 Lost unit, Unit is no longer on-line 
6 Lost file, File is no longer in directory 
7 Bad Title, illega! file name 
8 No room on disk or directory is full 
9 No unit, No such volume on line 
10 No file, No such file on volume 
11 Duplicate file 
12 Not closed, attempt to open an open file 
13 Not open, attempt to access a closed file 
14 Bad format, error in reading real or integer 
15 Ring buffer overflow 

Modula Operating System 
I/O Results 

page 121 

16 Write Protect; attempted write to protected disk 
17 illegal block number 
18 illegal buffer address 



Modula Operating System 
Execution Errors 
page 122 

Appendix 3 Execution Errors 

o System error 
1 Invalid index, value out of range 
2 No segment, bad code file 
3 Exit from uncalled procedure 
4 Stack overflow . 
5 Integer overflow 
6 Divide by zero 

7 Invalid memory reference <bus timed out> 
8 User Break 
9 System I/O error 
10 User I/O error 
11 Unimplemented instruction 
12 Floating Point math error 
13 . String too long 
14 Halt, breakpoint 
15 Bad block 



Appendix 4 Compiler Error Me~sages 

1: Error in simple type 
2: Identifier expected 
3: 'PROGRAM' expected 
4: I)' expected 
5: ':' expected 

Modula Operating System 
Compiler Error Messages 

page 123 

6: illegal symbol (maybe missing ';' on the line above) 
7: Error in parameter list 
8: 'OF' expected 
9: '(' expected 

10: Error in type 
11: '[' expected 
12: '1' expected 
13: 'END' expected 
14: ';' expected 
15: Integer expected 
16: '=' expected 
17: 'BEGIN' expected 
18: Error in declaration part 
19: Error in <field-list) 
20: '.' expected 
21: '*' expected 

50: Error in constant 
51: ':=' expected 
52: 'THEN' expected 
53: 'UNTIL' expected 
54: 'DO' expected 
55: 'TO' or 'DOWNTO' expected in for statement 
56: 'IF' expected 
57: 'FILE' expected 
58: Error in <factor) (bad expression) 
59: Error in variable 

101: Identifier declared twice 
102: Low bound exceeds high bound 
103: Identifier is not of the appropriate class 
104: Undeclared identifier 
105: Sign not allowed 
106: Number expected 
107: Incompatible subrange types 
108: File not allowed here 
109: Type must not be real 
110: <tagfield) type must be scalar or subrange 
111: Incompatible with <tagfield) part 
112: Index type must not be real 
113: Index type must be a scalar or a subrange 



Modula Operating System 
Compiler Error Messages 
page 124 

114: Base type must not be real 
115: Base type must be a scalar or a subrange 
116: Error in type of standard procedure parameter 
117: Unsatisfied forward reference 
118: Forward reference type identifier in variable declaration 
119: Re-specified params not OK for a forward declared procedure 
120: Function result type must be scalar, subrange" or pointer 
121: File value parameter not allowed 
122: Forward declared function result type can't be re-specified 
123: Missing result type in function declaration 
124: F-format for reals only 
125: Error in type of standard function parameter 
126: Number of parameters does not agree with declaration 
127: megal parameter SUbstitution 
128: Result type does not agree with declaration 
129: Type conflict of operands 
130: Expression is not of set type 
131: Tests on equality allowed only 
132: Strict inclusion not allowed 
133: File comparison not allowed 
134: illegal type of operand(s) 
135: Type of operand must be boolean 
136: Set element type must be scalar or subrange 
137: Set element types must be compatible 
138: Type of variable is not array 
139: Index type is not compatible with the declaration 
140: Type of variable is not record 
141: Type of variable must be file or pointer 
142: illegal parameter SUbstitution 
143: illegal type of loop control variable 
144: illegal type of expression 
145: Type conflict 
146: Assignment of files not allowed 
147: Label type incompatible with selecting expression 
148: Subrange bounds must be scalar 
149: Index type must be integer 
150: Assignment to standard function is not allowed 
151: Assignment to formal function is not allowed 
152: No such field in this record 
153: Type error in read 
154: Actual pairameter must be a variable 
155: Control variable cannot be formal or non-local 
.156: Multidefined case label 
157: Too many cases in case statement 
158: No such variant in this record 
159: Real or string tagfields not allowed 
160: Previous declaration was not forward 
161: Again forward declared 
162: Parameter size must be constant 
163: Missing variant in declaration 
164: Substitution of standard proc/func not allowed 



165: Multidefined label 
166: Multideclared label 
167: Undeclared label 
168: Undefined label 
169: Error in base set 
170: Value parameter expected 
171: Standard file was re-declared 
172: Undeclared external file 
174: Pascal function or procedure expected 

193: Not enough room for this operation 
194: Comment must appear at top of program 

201: Error in real number - digit expected 
202: String constant must not exceed source line 
203: Integer constant exceeds range 
204: . 8 or 9 in octal number 

250: Too many scopes of nested identifiers 
251: Too many nested procedures or functions 

Modula Operating System 
Compiler Error Messages 

page 125 

252: Too many forward references of procedure entries 
253: Procedure too long 
254: Too many long constants in this procedure 
256: Too many external references 
257: Too many externals 
258: Too many local files 
259: Expression too complicated 

300: Division by zero 
301: No case provided for this value 
302: Index expression out of bounds 
303: Value to be assigned is out of bounds 
304: Element expression out of range 

398: Implementation restriction 
399: Implementation restriction 
400: illegal character in text 
401: Unexpected end of input 
402: Error in writing code file, not enough room 
403: Error in reading include file 
404: Error in writing list file, not enough room 
405: Call not allowed in separate procedure 
406: Include file not legal 



Modula Operating System 
ASCn Character Set 
page 126 

Appendix 5 ASCD Character Set 

o 000 00 nul 32 040 20 
1 001 01 soh 33 041 21 ! 
2 002 02 stx 34 042 22 n 

3 003 03 etx 35 043 23 # 
4 004 04 eot 36 044 24 $ 
5 005 05 enq . 37 045 25 % 
6 006 06 ack 38 046 26 &: 
7 007 07 bel 39 047 27 , 
8 010 08 bs 40 050 28 (" 
9 011 09 ht 41 051 29 ) 

10 012 OA If 42 052 2A * 
11 013 OB vt 43 053 2B + 
12 014 OC' ff 44 054 2C , 
13 015 OD cr 45 055 2D -
14 016 OE so 46 056 2E • 
15 017 OF si 47 057 2F / 
16 020 10 dIe 48 060 30 0 
17 021 11 dc1 49 061 31 1 
18 022 12 dc2 50 062 32 2 
19 023 13 dc3 51 063 33 3 
20 024 14 dc4 52 064 34 4 
21 025 15 nak 53 065 35 5 
22 026 16 syn 54 066 36 6 
23 027 17 etb 55 06'7 37 7 
24 030 18 can 56 070 38 8 
25 031 19 em 57 071 39 9 
26 032 1A sub 58 072 3A : 
27 033 1B esc 59 073 3B ; 
28 034 1C fs 60' 074 3C < 
29 035 ID gs 61 075 3D = 
30 036 IE rs 62 076 3E > 
31 037 IF us 63 077 3F ? 

64 100 40 @ 96 140 60 
, 

65 101 41 A 97 141 61 a 
66 102 42 B 98 142 62 b 
67 103 43 C 99 143 63 c 
68 104 44 D 100 144 64 d 
69 105 45 E 101 145 65 e 
70 106 46 F 102 146 66 f 
71 107 47 G 103 147 67 g 
72 110 48 H 104 150 68 h 
73 111 49 I 105 151 69 i 
74 112 4A J 106 152 6A j 
75 113 4B K 107 153 6B k 

-76 114 4C L 108 154 6C I 
77 115 4D M 109 155 6D m 
78 116 4E N 110 156 6E n 
79 117 4F 0 111 157 6F 0 

80 120 50 P 112 160 70 P 
81 121 51 Q 113 161 71 q 
82 122 52 R 114 162 72 r 
83 123 53 S 115 163 73 s 
84 124 54 T 116 164 74 t 
85 125 55 U 117 165 75 u 
86 126 56 V 118 166 76 v 
87 127 57 W 119 167 77 w 
89 130 58 X 120 170 78 x 
89 131 59 Y 121 171 79 Y 
90 132 5A Z 122 172 7A z 
91 133 5B [ 123 173 7B { 
92 134 5C \ 124 174 7C I 
93 135 5D ] 125 175 7D } 
94 136 5E A 126 176 7E -
95 137 5F _ 127 177 7F del 



Index 

-<-
accept ••••••••••••••••••••••••••••• 6 
backspace •••••••••••••••••••••••••• 6 
bs ••••••••••••••••••••••••••••••••• 6 
down •••••••••••••••••••••••••••••• 6 
eof •••••••••••••••••••••••••••••••• 6 
escape ••••••••••••••••••••••••••••• 6 
left. • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 6 
right •••••••••••••••••••••••••••••• 6 
space •••••••••••••••••••••••••••••• 6 
up ••••••••••••••• ~ ••••••••••••••••• 6 

-A-

Accept Key ••••••••••••••••••••••• 6 
ASE •••••••••••••••••••••••••••••• 13 

--B-

B •••••••••••••••••••••••••••••••• 44 
.BACK •••••••••••••••••••••••••••• 17 
Backspace Key ••••••••••••••••••••• 6 
Backup ••• ' •••••••••••••••••••• 37, 97 
BACKUP .CODE •••••••••••••••••••• 97 
.BAD ••••••••••••••••••••••••••••• 17 
Bad Blocks ••••••••••••••••••••••• 39 
B(ad Blocks ••••••••••••••• 27, 28, 32 
Batch Command Interpreter ••••••••• 14 
BATCH.DEMO.TEXT ••••••••••••••• 41 
Binder ••••••••••••••••••••••••••• 119 
BINDER.CODE. ... • • • • • • • • • • • • • • •• 119 
Block 
Block 

Files ••••••••••••••••••••••• 75 
Number ••••• ~ •••••••••••••••• 3 

BLOCKREAD ••••••••••••••••• 67, 75 
Blocks •••••••••••••••••••••••••••• 18 
Block-structured Device •••••••••••• 18 
BLOCKWRITE ••••••••••••••••• 67, 75 
Booter •••••••••••••••••••••••••••• 96 
BOOTER.CODE •••••••••••••••••••• 96 
Byte Flipping ••••••••••••••••••••• 63 

-C-

CALL •••••••••••••••••••••••••••• 45 
CASE ••••••••••••••••••••••••••••• 73 
cat ••••••••••••••••••••••••••••••• 53 
C(hange •••••••••••••••••••••• 27, 28 
Clear Screen ••••••••••••••••••••• 13 
CLOSE •••••••••••••••••••••••••• 65 
CODE •••••••••••••••••••••••••••• 79 

Modula Operating System 
Index 

page 127 

.CODE •••••••••••••••••••••••••••• 17 
Code Procedures •••••••••••••••••• 79 
Command Argum.ents ••••••••••• 52, 85 
Command Files •••••••••••••••••••• 41 
Command Mode •••••••••••••••••••• 84 
Comments ••••••••••••••••••••••••• 73 
Compare ••••••••••••••••••••••••• 102 
COMP ARE.CODE ••••••••••••••••• 102 
CompCode • • • • • • • • • • • • • • • • •.• • • • •• 104 
COMPCODE.CODE •••••••••••••••• 104 
C(ompile •••••• ~ ••••••••••••••••••• 13 
Compiled Listings ••••••••••••••••• 61 
Compile Options ••••••••••••••••••• 60 
Compiler •••••••••••••• ~ •• 10, 13, 15 
Compiler Errors •••••••••••••••••• 123 
CONCAT •••••••••••••••••••••••• 70 
COpy ............................ 70 
CopyDupDir ••••••••••••••••••• 19, 99 
COPYDUPDIR.CODE •• ~ •••••••••••• 99 
cp ••••••••••••••••••• ~ •••••••••••• 54 

-D-
.DATA •••••••••••••••••••••••••••• 17 
D(ate ••••••••••••••••••••••• 0 27, 29 
date •••••••••••••••••••••••••••••• 54 
DELETE ••••••••••••••••••••••••• 70 
Directories •••••••••••••••••••••••• 19 
Directory Flipping ••••••••••••••••• 99 
DISPOSE •••••••••••••••••••••••••• 74 
Duplicate Directory •••••• , ....... 19, 99 

-E-
echo •••••••••••••••••••• ~ ••••••••• 54 
ed ••••••••••••••••••• ~ •••••••••••• 54 
E(dit ••••••••••••••••••••••••••••• 13 
Editor •••••••••••••••••••••••• 10, 13 
End of File Key.... • • • • • • • • • • • • •• 6 
EOF •••••••••• , ••••••••••••••• 66, 74 
EOLN •••••••••••••••••••••••• 66, 74 
EQU •••••••••••••••••••••••••••••• 45 
EScape Key.~ •••••••••••••••••••••• 6 
E(x dir...................... 27, 30 
EXEC.TEXT ••••••••••••••••••••••• 43 
Execution Errors................. 122 
EXIT ••••••••••••••••••••••••• 72, 76 

, 



Modula Operating System 
Index 
page 128 

~'F-' 

f •••••••••••••• ;. • II •• ti •••••• ' ••••••• 54 
FCOPY.CODE ••••••••• ~ ~ ••• ' •••• " • 102 
F(ile •••••••••••••••••• ~ ••••••••••• 13 
File Attributes •••••••• (J •••• 0 II ••• II • 1 7 
File Block ••• e II II ••••••••••••••• ~ ••• 3 
FileCopy •••••••••••••••••••••• ~ •• 102 
File Date •••••••••••••••••••••••• 17 
File Identifier.................... 22 
'}'ile 
File 

Manager ••••••••••• ~ ••••••••• 24 
. Name ••••••••• e" ••.•.•••••••••••• 3 

Filer • .; •• ci II .;. •• (, •••• ;. •• " ••• 13, 23, 24 
·Files ••• ~~ •• ~~ •••• ~.~ ••••••••••••• 17 
File Suffix •• II • ~ •• " " • • • • • • • • • • • • • •• 3 
File Title ......... ;.~ ••••••••••••••• 3 
File Type.e ........................ 17 
FILLCHAR ••.• : ••.• : •••••••••••••••••• 71 
FlipDir. • • • • • • • • • • • • • • • • • • • • • • • • •• 99 
FLIPDIR.CODE •• o'~ 0'0 ~ • II •.•••••••••• 99 
Flush Key ....... 0 •.• e .•.•.• , .... ,0 •.••••••••• 6 

-G-
GEQ •••••••••••••••••••••••••••••• 45 
GET o •••• " " ••••••••••••••••••• II II 

G(et •••••••••••• II ••••••• II 25, 27, 
GOTO ••••••••••••••• II •••• II II 11.45, 
GOTOXY ••••• ;. •••••••••••• ';. .72, 

-H-: 

HALT '. , .••.•• :.' ... ' .'.- ........ '0' ••••• ' ••••• ~ 72 
.~(al~'·I/' •••.•.•• ' •• ' ................... ~' ••••••• 1"4 

" . 
- I·· 

(. .. ' 
" . 

. : Include Files ••••••••••••• ,II • II II ••• ~ .61 
~I(nitialize ••••••••••• ' •••••••• II •• (I Q II 14 
:IN~.UT •.••••••••••••••••.• 1/ .••• e ••••• 75 
INSERT •••••••••••••••••••••••• II 70 
nmtallation ••••••••••••••• " ••••••• 120 
Interacti ve Files. Q II ••••••• (I • • • • • •• 75 
:.l/O"Checks~ ~;. ~.;.;.; ••• ~ ~ •••••••••• 60 

" 

I/O' Error.·· ••• " •• '.- ••• : .................. 11 
IORESULT .'.' ••••.••.••• :~:~~ •••••••••• 67 
.1/0' "Results;. ~ • ~ .. eo •••• ;. • " ~' ••••••• 121 

,,',: 

-K-
KEYBOARD ••••••••••••••••••••• ·.·~·'l5 
Key Command ••• ., •••••••••••••• : ••• ·s 
K(runch II •••••••• 0" ••••• II. 18, 27'~'32 

-L-

L(dir ••••••••••••••••••••••••• 27 s.··,·,33 
LENGTH • e •••••••••••••••••••• '~:~ ·7,0 
Length Attribute •••••••••••••••• : '. ~'lJ 
Length Specifier ••••••••••• 18, 22~' 34 
LEQ •••••• II ••••••••••••••••••••••• 45 
LES •••• oo •••••••••••••••••••••••• 45 
Librarian 0 • ., ••••••••• ~ ••••••••• '::~ ::'105 
LIBRARY.CODE •••••••••••• ~ ••• ~:.lr15 
Is •••••••••• " ••••••••••••••••••.• ~. (I 55 

-M-
M(ake •••••••• II ••••••• ' ••••••• ;;'2'1i::,:~3'4 
MARK." II •• "." ••••••••••••• ~ ~ .'12:~ ,':114 
mc •••• II •• ~ " ••• II •••••••••••••• ' .'.! • ~~, 55 
mem II • 41 II II CD ••••••••••••••••••••••• '. 55 
more" ••• II • II • II " • ., ••••••••••••••• ' •• 5S 
MOVELEFT ••• e ••••••• " e' ••••••••• II II 71 
MOVERIGHT. " II •••••• II e • e ••••••••• 71 
mv •••• " II • II " ••••••••• II •••••••••••• 55 

-N-
NEQ II •••••••• II •••••••••••••••• ~ ~·o .• 45 

. N(ew·. " ••••••••••••••••••••••• 27," 34 
Notation ••••••••••••••••••••••••••• 2 
NOTE ••••• ~ ••••••••••••••••••••••• 3 

"\,:' 

-0-

OTHERWISE ••••••••• II • ••••••• • :.',~'·~'t3 
OUTPUT ........................ ~ ' •. ~ 'i5 

-P-

'·PACK ••••••••••••••••••••••••• '. '~' '~"'77 
PACKED ••• , ••••••••••••••••• .; ... }~:.~ '~:''i6 
Packed Variables ••••••••••••• Ii • i ~:)t6 
PAGE •••••••••••••••••••••••••• ~.:' ~67 
Patch •••• ' ••••••••••••••••••••• ~·.··;l(jO 
PATCH.CODE ••••••••••••••••• '. ~,'~ 100 
Physical Sector Mode ••••••••••• ' ~' •• 68 
Pipes ••••••••••••••••••••••••••• 0". :'5'3 
p-NIX ........................... ~:. 50 
POS ••••.•••••••••••••••• ".- ........ 70 



P(refix ••••••••••••••••••• 21, 27, 35 
Prefix Character ••••••••••••••••• 112 
:Pr~fixed . Volume •••••••••••• ~ •••••• 21 
·Procedure Parameters ••••••••• : ••••• 77 
·P.ROFILE'.TEXT •••••••••••••••••••• 43 
Program Headings ••••••••••••••••• 77 
Program Results ••••••••••••••••••• 51 
.Promptlines. • • • • • • • • • • • • • • • • • • • • • •• 4 
.~rompts. ~ .•••••••••••••••••••••••••• 5 
,.PUT ~ • ~ •••••••••••• ' ••••••••••••••• 66 
PWROFTEN •••••••••••••••••••••• 72 

-Q-

:QTJ~T ... '.' ••••••••••••••••••••••••• 46 
:Quiet .. "Compile. • • • • • • • • • • • • • • • • • •• 62 
:.Q(l,Jit,. , •• '.' •••••••••••••••••••••••• 35 

-R-
llanq~m . File Access ••••••••••••••• 15 
'Range, Checks •••••••••••••••••••• 
J~.E.~D ••.•••••••••••••• 45, 66, 75, 
'R~A,DLN ••••••••••• -•••••••••• 66, 
"~edirection ••••••••••••••••••••••• 
RELEASE •••••••••• : •••••••••• 72, 
R(emove •••••••••••••••••••••• 27 , 
·.I:t~SET ••••••••••••••••••••••• 65, 
REWRITE ••••••••••••••••••••• 65, 

62 
77 
77 
51 
74 
35 
78 
78 

rm ••••••••••••••••••• i ••••••••••• 55 
.. RUN •••••••• '.' ••••••••••••••••••• 44 
:··~(un. ~ •••••••••••••••••••••••••••• 14 

, '/-

-S-
:>~ 

'S(a:~e •• ' •••••••••••••••• 9, 25, 27, 36 
SCAN ••••••••••••••••••••••••••• 71 

.. SEE K • • • • • • • • • • • • • • • • • • • • • • •• 67, . 75 
·:SEGMENT ••••••••••••••••••••••••• '78 
'Segment Procedures............... 78 
Separate Code &. Data •••••••••••• 63 
Serial Device ••••••••••••••••••••• 18 
Serial Talk •••••••••••••••••••••••• 107 

,sEliiALTALK.CODE •••• ~ •••••••••• IQ7 
. SET' •..••••••••••••••••• ~ ••••••••••.• "45 
'Se'ts ~ • ' •••••••••••••••••••••••••••• '7'9 
·S~tup ••••••••••••••••.•••••••••••• I'll 

; SETUP .CODE ••••••••••••••••••••• 111 
~'.'sli •.•..•.••••••••••••••••••••• 11 ••••••• 56 
.~ Shell ~ • • ~ • • • • • • • • • • • • • • • • '. • • • • • • •• 50 
:~.S(heif ••••••••••••••••••••••••••••• 5'1 
l~ !sh~h Command Interpreter......... 15 

Modula Operating System 
Index 

page 129 

SIZEOF ••••••••••••••••••••••••• 72 
sort ............................... 56 
Space B~ •••• ~ ••••• ~ ~ •••••••••• ; •• 6 
Stack Overflow •••••••••••••••••• '. 11 
ST K •••••• ' ••• ' ••• ~ ~ ............. ' •• ~ e' 4'4 
Stop/Start. Key. ~ ' •••••••••••••••• ~.~ .6 
Strings •••. ' ••• " •••••••••••••••••••• 80 
Syntax Erro~ •• " •••••••••••••••••.•• ,59 
Syntax E~r.or~ .••••••• !" " •••••• 10, : 12~ 
SYSCOM •••••••• '.' ................ 111 
SYSTEM.BAT9H ••• ~ " ••••••••••• ' ~4,· " .42 
S.YSTEM.COMPILER ••••• ~ ••••.• :: •.•••• 13 
.SYSTEM.EDITOR.'. ,. '-41'. ,,' .' ••• ~., ~ .:.' ~13 
SYSTEM.FIL:E~ .• ' •• !, .••. ~ .• '., co.·~ '. ~'. ~ • ,. 13 
Syste~ Level •• " •• ~ ••••• ~ ••.•.• 0" ••.•. 62 
SYSTEM.MISCINFO •••• 0 •••••••• : ••• 111 . "',' "..~ I.,.... :":'" • ~ 

SYSTE.M.~HEL~ •.•• ','.' '.',' •.••• :.:.~.15, 51 
SYSTEM.SY~T A~ .•••• , •• o •• ' .... ' •••••• 59 

-T-
T •••• ' •• ' ••••••••••••.••.•••.••••••••• 44 
Target ••••••••••• '" • • • • • • • • •• 42, 46 
TeleTalk •••••••• ~ ; ~: .. ~ •••••••••••• 109 
TELETALK.CODE •••••••• ~ •••••••• 109 
Terminology •••••••••••••••• 0 ••••••• 3 
.TEXT •••••••••••••••••••••••••••• 17 
Textlines •••••••••••••••••••••••••• 43 
Text Mode· ••• ·• ~ .~ •••••• '0 ••••••••••• 84 
. ·T~ME ••• '. '.' •• ' •• ' •.• ,.~.~.~ ••••.•.•••••••••• 72 
.T(ransf~r .• , •.•••••.•. ','.' •• '.' •••••• 27 ~ 37 

UCSD Pascal System ••••••••••••••• 1 
,Unit ••••••••• ',':' •• ' .•• '.' •••• '.' • '/' ••.. ~.3 

.'. UNITCLEAR •• ~' ~ ~ ••• ' • ~ ~ ~. ~ .• ~ ~ ~ •••. : •. ~ t' :,6,8 
Unit" Number ~ ~ : : ~ • : • ~ •• : : ~ : : : ~ :3~"'18 
UNITREAD •••••••••••••••• , •••••••• 68 
UNITST A TUS •••••••••••••••••••••• 69 
·UNITWRITE ................... ' •••• ' .:.:6'8 
. UNPACK ...... ' ................. ~. ~ ~ •• i~; :'1:7 
',U(ser Restart ••••••••••• '.' ••• ,.;.,-~ .;'~·:'~:·1/5 

·-·V-

'Vector . KeYs' ••••••••••••• '. ~;. ,.,'·i· •••. :.<;s 
··VERBOSE ~ • : •• ~ : : ~ : : ~ ~ ; ~ :~'''~~';:: •• :~4.6 
Version' Numbers.: ~ : : ~ : : ' •• ::~ '~.~.;.'.-.:~ .'4 
VoluI#~ .' ~fi~~ ~ ~ ;. ; • ; ~. ;' ~ ; ~. ;.~.fj.:'.'~,'~;:. ~~. 1:8 
Volumes ••••••••••••••••••••••••••• 18 
V(olumes •••••••••••••••••••••• 27, 38 



Modula Operating System 
Index 
page 130 

-w-
WARNING •••••••••••••••••••••••••• 3 
wc ••••••••••••••••••••••••••••••• 56 
W(hat. • • • • • • • • • • • • • • • • • • • • • •• 27, 38 
Wildcards •••••••••• 23, 24,' 25, 28, 52 
Work Code File ..................... 9 
Work File •••••••••• 9, 141 31, 34, 36 
Work Text File •••••••••••••••••••• 9 
WRITE •••••••••••••••• 44, 66, 75, 80 
WRITELN •••••• C) •••••••••• 44, 66, 80 

-x-
X(amine ••••••• 0 Q •••• 0 •• (l. 27, 28, 39 
X(ecute ••• c ••••••••••••••• o ••••••• 15 

Y ALOE •••••• 0 •••••• 0 •• CI •••••••••• 83 
YALOE.CODE () c C) ••• 0 •••••••••••••• 84 

-z-
Z(ero ••••• ~ ••••••••••• ~ ••••••• 27, 40 


	0_001
	0_002
	0_003
	0_004
	1_001
	1_002
	1_003
	1_004
	1_01
	1_02
	1_03
	1_04
	1_05
	1_06
	1_07
	2_001
	2_002
	2_003
	2_004
	2_01
	2_02
	2_03
	2_04
	2_05
	2_06
	2_07
	2_08
	2_09
	2_10
	2_11
	2_12
	2_13
	2_14
	2_15
	2_16
	2_17
	2_18
	2_19
	2_20
	2_21
	2_22
	2_23
	2_24
	2_25
	2_26
	2_27
	2_28
	2_29
	2_30
	2_31
	2_32
	2_33
	2_34
	2_35
	2_36
	2_37
	2_38
	2_39
	2_40
	2_41
	2_42
	2_43
	2_44
	2_45
	2_46
	2_47
	2_48
	2_49
	2_50
	2_51
	2_52
	2_53
	2_54
	2_55
	2_56
	2_57
	2_58
	2_59
	2_60
	2_61
	2_62
	2_63
	2_64
	2_65
	2_66
	2_67
	2_68
	2_69
	2_70
	2_71
	2_72
	2_73
	2_74
	2_75
	2_76
	2_77
	2_78
	2_79
	3_01
	3_02
	3_03
	3_04
	3_05
	3_06
	3_07
	3_08
	3_09
	3_10
	3_11
	3_12
	3_13
	3_14
	3_15
	3_16
	3_17
	3_18
	3_19
	3_20
	3_21
	3_22
	3_23
	3_24
	3_25
	3_26
	3_27
	3_28
	3_29
	3_30
	3_31
	3_32
	3_33
	3_34
	3_35
	3_36
	3_37
	3_38
	4_001
	4_002
	4_01
	4_02
	4_03
	4_04
	4_05
	4_06
	4_07
	4_08
	4_09
	4_10
	4_11
	4_12
	4_13
	4_14
	4_15
	4_16
	5_001
	5_002
	5_003
	5_004
	5_01
	5_02
	5_03
	5_04
	5_05
	5_06
	5_07
	5_08
	5_09
	5_10
	5_11
	5_12
	5_13
	5_14
	5_15
	5_16
	5_17
	5_18
	5_19
	5_20
	5_21
	5_22
	5_23
	5_24
	5_25
	5_26
	5_27
	5_28
	5_29
	5_30
	5_31
	5_32
	5_33
	5_34
	5_35
	5_36
	5_37
	5_38
	5_39
	5_40
	5_41
	5_42
	5_43
	5_44
	5_45
	5_46
	5_47
	5_48
	5_49
	5_50
	5_51
	5_52
	5_53
	5_54
	5_55
	5_56
	5_57
	5_58
	5_59
	5_60
	5_61
	5_62
	5_63
	5_64
	5_65
	5_66
	5_67
	5_68
	5_69
	5_70
	5_71
	5_72
	5_73
	6_001
	6_002
	6_01
	6_02
	6_03
	6_04
	6_05
	6_06
	6_07
	6_08
	6_09
	6_10
	6_11
	6_12
	6_13
	6_14
	6_15
	6_16
	6_17
	6_18
	6_19
	6_20
	6_21
	6_22
	6_23
	6_24
	6_25
	6_26
	6_27
	6_28
	6_29
	6_30
	6_31
	6_32
	6_33
	6_34
	6_35
	6_36
	6_37
	6_38
	7_0001
	7_0002
	7_0003
	7_0004
	7_0005
	7_0006
	7_0007
	7_001
	7_002
	7_003
	7_004
	7_005
	7_006
	7_007
	7_008
	7_009
	7_010
	7_011
	7_012
	7_013
	7_014
	7_015
	7_016
	7_017
	7_018
	7_019
	7_020
	7_021
	7_022
	7_023
	7_024
	7_025
	7_026
	7_027
	7_028
	7_029
	7_030
	7_031
	7_032
	7_033
	7_034
	7_035
	7_036
	7_037
	7_038
	7_039
	7_040
	7_041
	7_042
	7_043
	7_044
	7_045
	7_046
	7_047
	7_048
	7_049
	7_050
	7_051
	7_052
	7_053
	7_054
	7_055
	7_056
	7_057
	7_058
	7_059
	7_060
	7_061
	7_062
	7_063
	7_064
	7_065
	7_066
	7_067
	7_068
	7_069
	7_070
	7_071
	7_072
	7_073
	7_074
	7_075
	7_076
	7_077
	7_078
	7_079
	7_080
	7_081
	7_082
	7_083
	7_084
	7_085
	7_086
	7_087
	7_088
	7_089
	7_090
	7_091
	7_092
	7_093
	7_094
	7_095
	7_096
	7_097
	7_098
	7_099
	7_100
	7_101
	7_102
	7_103
	7_104
	7_105
	7_106
	7_107
	7_108
	7_109
	7_110
	7_111
	7_112
	7_113
	7_114
	7_115
	7_116
	7_117
	7_118
	7_119
	7_120
	7_121
	7_122
	7_123
	7_124
	7_125
	7_126
	7_127
	7_128
	7_129
	7_130

