VOLITION SYSTEMS

P.O. Box 1236, Del Mar, CA 92014 USA « (619) 481.2286

Modula-2 Installation Notes - 0.3j for the IBM PC

This document presents useful system information which is not covered by the

" regular documentation. The following topics are discussed:

® Features not supported @ Basic key commands @ RAM disk
‘ configuration @ Serial and pagallel ports @ 8087 support @ p-
NIX shell @ ASE installation notes

Fea‘furesw Not Sﬁﬁpi‘:‘!ﬁ‘.ed In This Release

Thxs section descnbes system features that are not supported in the current
release: » ‘

‘Semal and parallel pom mterrupts (1.e. IOTRANSFER vectors 4 and
7) are not implemented.

- There are currently nc facilities for er eatmg your own device drivers
to link into the interpreter. Documentation will be available in the
- near future for this facility, but it will probably require that you
have the version IV p-System and its assembler.

Hard disks are not supported.
Ass2mbly g;i‘ocedure linkage is not shppo_rted.

Grephies are not supporied.

I§sie Fey Commands

There are sume basic key commands you should know about., Most of - these
commend ere d¢azscribed more fully in section 2.3 of the Modula Operatmg
Svstem Manual.

“yping the Del key while holding down the Ctrl and Alt keys reboots the
system.,

The Enter key is the <veturn> command.
The Backspace key erases the last character typed in to a prompt.

Typing coritrol-Backspace erases all characters typed in to a prompt.

The Esc key is tﬁe ‘<<?scape§ command.

Control-C serves as both the <eof> and <accept> commands.
Control-S is the-start/stap eommanﬁwhlehl SuspeAds ‘eonsdle ‘outbut,
Control.-'l?‘"‘.ié"i’ché“fl’ﬁs“ﬁ,"icb“minan‘ci‘,.WHi“c‘:‘ﬁi.ais?ééggs;jéu segnsple outputs

Control-Break is the program . break:'¢émmand which terfiinates the current
program with an execution error;.

NOTE- The ASE key definitions are described further- on .in, this
' document; -

WARNING-. The program’ Bréak' kéy: control-@mak -shauld:inotsbe;used
while a Modula program is starting up: it may crash*the system.
Once a Modula program is running, control-Break can be safely
used,

RAM Disk Configuration:

The RAM disk driver provided in the preconfxgured mterpreters has the ‘disk
length set to 0, thus preventing a RAM. .disk from being allocated. Tc ecreate
a RAM disk, you must run the IBMUtil program andgs¢t:; th@RKM’N:&mFéngth
(see the Implementatlon Guide for detalls)

Note that .if" you st thel'RAN TdiSk. length. to, JAll available’l; thes:SWitch
settings on your. memo éxpanslqn poq;ds ust, reflect,the; aetulsamount of
memory. oh boards o‘théi‘mse, {che;‘ ;Q‘,AM disk ¢ rivers mapcausenthersystén to
halt (while*starting) with & hardware - ~pexity: error; whilexit:: searchestfotl the
high limit of available memory. Thls problem can be avoided by setting- the
RAM disk length to a flxed number’ of blocks.

Serial:-and Parallel Ports

| -The! ‘'serial and’parallel ‘portdrivers supplied; in- I0COMS 5and HDLPTS <02 not
perform bufferm% of* fnﬁ’ut or olitput cheracters.

8087 Support

The 8087-nuieric - coprocessor is ‘required in order to perform floating pomt
arlthmetlc,L there is no software floatmg point support. Floating point is
accessed vias the data type REAL in both Pascal and Modula. The 64-bit

internal format results in 17 digits of precision. Math functions in both
Pascal and Modula-2 use the 8087's math support.

When an 8087 is instelled, the Pascal compiler supports 64-bit "long" integers
via the, date type. WIDEs.xWide integers. may cbe - freély ' mixed in expressions
with Teghlar integers and reals. Integer constants with a magnitude larger
~than 32767 are treated as wide constants., The standard, procedures TRUNC
‘and ROUN D “worleW¥ith! ‘widé “(fither’ than 'régular) integers. Wides may not
be used as count. variables or bound expressions in FOR statements.

p-NIX Shell

Thé*"'shéll "ecommand 'ed' cannot be used with nonsepardte c¢bde and data
interpreters because there is insufficient memory to run ASE on top of the
shell. On separate code and data interpreters. with 64K -bytes (or more) of
cdde:space, "ed'Forks’ Tine. .

ASF Installation Notes

ASE is p’recohfiguréd for the IBM PC and alresdifiinsialled on the $¥8 disk
as SYSTEM.EDITOR. The predefined ASE key definitions are desecribed
below.

- slectiASEL Commaids

Version 0.9 of ASE contains one, feature, that is nof, described in the ASE
Bsex's Manuaiivihe.comiriands TnsertCh 'and DéleteCh can be used from the
.main: eZitor proipt; - they “are “fiv™ ionfer restrictéd to being: used in the
:X(change *commend. Sée ‘the “description, of ‘the X(chenge command for more
information~on.Ing¢ertCh -aiid DeleteCh:*

ASE Key Definitions

The following table displays the ASE key definitions for the IBM PC. Note
that the "prefixed" keys are actually one-key.sequengess the <etrl> or: <alt>
koys varel resseddac the sam&itime &s the compgnion .key to perform the
command, ' T

If you're interested in knowing what character codes are generated by these
key definiticns, try ths S(et E(nvironment E(nter ¥n Key command., See the
manual for details.

Command’

1 < 4
1 <'
1 ?1
Accept
BackSpace
Copy
Delet oChr
Edit -
Escape
GetChEr
Home
Insertletir
Kolumrt
LmeEnd
Next
Page
Replat!e
Rxghtc

Begmifﬁié
Delete S
GetChir

Key

<

2,
ctrl-e
backsgace

.C. and ¢
‘Del

Edndew

“Es@

‘etrl-b

alt-d
etrl-g
alt-i

‘PgUp__

ctrl-u

the ‘arrow léeyss a;l to: ‘work: cbrrectly g
type Nuquck .again- and ‘tHe ‘problem sh uld “disappear.

. Command:

!>l

I>l

del .
Adjust..
BeginLine
Delete
Dewn

GetAg&ftx :
Insest -
Jﬁiﬁp
Left
Marg m

Opp Pagé

_GetAgam)
Ln}gEnd

Key
>

ctrlabackspaee.;

A and a

B and b
Dand d
dowzt arrow

'Fandf

G

X and i
Jandj
left arrow
M and m

O &nd o

Q and q
Etiter

~ S-and s

space bar
T and t
U and u
Wand w -

’Zandz

P2

: F4.

Fé:.
¥g -
Fi19 -

' etrl~o.

ctri=x
etr=n,
etril
Pgbn

fefﬁnfb—‘w

ccidentally ‘type ‘it,
.- If “this fhappens,

Moduis-2Z

User’s Msausl

8.3
%6 August 1983 .
Richerd Gleaves

Volition Systems and ASE
are trademarks of Volition Systems.
PO Box 1236, Del Mar, California 92014 USA
(619) 481-2286

Sprinter-2
is a trademark of
Sceniec Computer Systems Corporation.

UCSD Pascal
is a trademark of the
Regents of the University of California.

Although Volition Systems has attempted to compile the material contained in
this manual accurately, neither Volition Systems, its employees, nor its agents
can make any warranty or representation, expressed or implied, with respect
to the accuracy or completeness of such information, or assume any liability
with regard. to the use, or damages resulting from the use, of any informa-
. tion, method, or procedure described herein.

Copyright 1982, 1983 by Volition Systems.
All rights reserved.

Duplication of any part of this Work':by any means is forbidden without the
prior written consent of Volition Systems:

Distril?uted by Springer-Verlag
Berlin Heidelberg New York Tokyo
ISBN 3-540-14008-5

Acknowledgements

The Modula-2 language was designed by Niklaus Wirth and his colleagues at
the Institut fur Informatik, ETH Zurich.

The Modula-2 compiler and library for UCSD Pascal are the work of Roger
Sumner and Joel MeCormack.

The Modula-2 p-code interpreters were written by Mark Allen, Randy Bush,
Joel McCormack, and Roger Sumner (6502, 68000, Z80, and 8086 respectively).

Al Hoffman of Apple Computer, Bill Bonham of Sage Computer, and Erik
Smith of Seenic Computer contributed valuable assistance to the Modula-2
development effort. Special thanks are due Jim Merritt for his careful
review of the manual.

This document was produced with the ASE text editor and the Sprinter-2 text
formatter.

Modula-2 User's Manual
Table Of Contents

Table Of Contents

1 PrefaCe. o« o e e o s e oo s vsessosooesoscssossssssssel
2 Scope of This Manual. ¢ « « o « o o s e o 00 0 e o0 0o 00 aseasl
3 0rganization. . .. ococoo0eeeesocescoccsoscseas 3
4 How to Use This Manual. « « e o o o o o e o s s s s s s s s a ool
S Notation. « v ¢ v ¢ e e e e v evececetoscsascecscnees D

6Termin01°gy0......................0......6

Index..‘.................l...'...........7

Modula-2 User's Manual
Preface
page 1

1 Preface

Modula-2 is a general purpose programming language designed primarily for
systems implementation. Based on the language Pascal, Modula-2 is suitable
for programming entire computer systems, from high-level machine-independent
application programs down to low-level machine-specific software such as
device drivers. Modula-2 also provides facilities for constructing large
programs from separately compiled parts written by different programmers.

Modula-2 is the third in a series of languages designed by Niklaus Wirth over
the past decade. The first and most famous is Pascal. Originally intended
as a teaching language, Pascal elegantly embodied the then-new principles of
structured programming, and was embraced by both educators and computer
professionals as the language of choice in a wide range of computing
applications. Unfortunately, Pascal's rampant use in applications beyond its
intended scope resulted in the development of several incompatible dialects,
and — as its popularity increased — criticism of the language's "limitations".

Wirth's next language was named MODULA (an acronym for "modular
language"). MODULA was designed as a special purpose language for
programming small real-time control systems. It consisted of a minimal subset
of Pascal, to which was added the module structure, an improved syntax, and
facilities for multiprocessing and low-level machine access. Because of its
bare-bones nature and narrow scope of use, MODULA never received the
attention Pascal garnered; however, the module concept gained recognition as
a significant programming construct.

Wirth's latest language, Modula-2, has inherited the best features of its
predecessors, It combines the module concept, improved syntax, and low-level
programming facilities of MODULA with the general utility of Pascal. In
addition, the design of Modula-2 systematically addresses Pascal's problems.

' Modula-2 User's Manual
Scope of This Manual

page 2

2 Scope of This Manual

This manual describes Volition Systems' implementation of the Modula-2 lan-
guage for the version II UCSD Pascal system. It is written for the Pascal
programmer who wishes to learn the Modula-2 language and write Modula-2
programs for the UCSD Pascal system. Familiarity with UCSD Pascal will
prove useful, as Modula-2 runs under the UCSD Pascal operating system.

This manual is neither a reference manual for the Modula-2 language nor a

- user's manual for the UCSD Pascal system. It should be used with the book

Programming in Modula-2 and a UCSD Pascal system manual.

The language tutorial contained in this manual is designed for readers who
are already familiar with Pascal. This approach was chosen for its ability to
teach Pascal programmers Modula-2 with minimal effort. If you do not know
Pascal, the introductory chapters of Programming in Modula-2 provide a
basie introduction to the Modula-2 language.

Modula-2 User's Manual
Organization
page 3

3 Organization

This manual consists of six separate documents. Note that each document
has its own table of contents and index.

@ Modula-2 User's Manual: An introduction to the remaining
documents. In particular, it explains how to use the manual.

@ Introduction to Modula-2: An introduction to the Modula-2
language for Pascal programmers. It describes differences
between Modula-2 and Pascal: concepts unique to Modula-2 are
presented in tutorial fashion, while minor language differences
are organized for ease of reference.

@ Standard Library: Describes the standard library modules
provided with the Modula-2 system. The standard library
modules provide basic system facilities; they constitute a
portable operating system for all Modula-2 programs.

@ Utility Library: Describes additional library modules provided
with the system. These modules provide miscellaneous system
facilities. The utility library will grow as new library modules
are written and incorporated into subsequent releases.

® The Modula-2 System: Presents the Modula-2 language
implementation for the UCSD Pascal system. It describes the
library and Modula-2 compiler, and explains how to use the
system,

@ Implementation Guide: Presents information unique to the host
computer system. This section includes an installation guide,
machine-level representations of data types, and system-
dependent facilities.

Hodula-z User's Manual
How to Use This Manual
page 4

4 How to Use This Manual

The first step is to learn how to run Modula-2 programs on your system.
The Implementation Guide explains how to install the Modula-2 system.
Chapter 4 in The Modula-2 System document explains how to compile and
execute Modula-2 programs (the sections on library management may be
skipped initially, as they assume an understanding of Modula-2's separate
compilation facilities).

If you are not familiar with Modula-2, read Introduction To Modula-2 and
the book Programming in Modula-2. As your grasp of the language
improves, refer to The Modula-2 System for implementation and operation
details.

Before you design or write any serious programs, be sure to read all of The
Modula-2 System. In general, it presents information which contributes to
the efficiency of both programs and programmers. In particular, section 3.2
identifies implementation differences from the Modula-2 language definition.

Standard Library and Utility Library present a wide range of system
facilities available to Modula-2 programs. Skim through both of these
documents to familiarize yourself with the various library modules; later,
when you wish to use a specific module, go back and read the appropriate
section in detail. (After a while, using many of these modules becomes
second nature, and you will no longer need to consult the manual.)

If you have any trouble finding something in the manual, keep in mind that
each document has a separate table of contents and index; what you need to
know may be described in a different document than the one you are
currently reading. (This problem vanishes with time, as each document covers
a well-defined topie; once you understand the manual structure, you will be
able to immediately consult the proper document.)

Modula-2 User's Manual
Notation

page 5

5 Notation
This section describes the notation used in this manual.

Programming language manuals normally define a notation for specifying the
syntax of a language. Such a notation is not presented here, as this manual
provides only an informal description of the Modula-2 language; the book
Programming in Modula-2 contains a complete language definition. It uses
a notation known as "EBNF" (short for "Extended Backus-Naur Form") to
describe the syntax of Modula-2 programs.

This manual defines a number of terms for deseribing the Modula-2 language
and its implementation. @ When new terms are introduced, they appear in
boldface and are followed by either a definition or a reference to the
defining section.

NOTE- Paragraphs beginning with the word NOTE contain interesting
or useful information related to the current topic.

WARNING- Paragraphs beginning with the word WARNING point out
potential problems associated with the current topie.

Intra-document references have the form "x.y.z. ...", where x, y, and z
denote digits. The first digit indicates the chapter; subsequent digits
indicate sections within the chapter. For instance, the phrase "see 3.4"
refers to section 4 in chapter 3.

Inter-document references refer to the external document by (boldfaced)
name. For instance, the phrase "see 1.4 in The Modula-2 System" refers to
section 1.4 in the document named "The Modula-2 System".

Modula-2 User's Manual
Terminology
page 6

6 Terminology

This section defines terms used in The Modula-2 System and the
Implementation Guide. Most of this terminology is inherited from the UCSD
Pascal environment.

The following terms are used to describe file I/O in Modula-2: file name,
file bloek, block number, unit, and unit number.

A file name is a character string that conforms to the file naming
conventions of the UCSD Pascal file system.

A file title is the part of a disk file name that is not a file suffix. For
instance, the file name "LIB.TEXT" contains the file title "LIB" and the file
suffix ".TEXT".

A file block is the basic unit of disk file storage; a block contains 512
bytes. A bloek number is a number specifying a file block within a disk
file; the first block of a disk file is block 0.

A unit corresponds to a physical I/O device., Each unit is identified by a
unique unit number. For instance, unit 1 is the system console, unit 6 is the
printer, and units 4 and 5 are the disk drives.

NOTE- The UCSD Pascal system manual contains additional informa-
tion on the I/O system.

The following terms are used to describe the operation of the compiler and
library manager: <er>, <ese>, and <space>. These terms refer to keyboard
commands, <cr> denotes the RETURN key, <ese> the ESCAPE key, and
<{space> the space bar.

Modula-2 User's Manual
Index
page 7

Index

-B-
Block Number..'........Q....‘.....s

-E-
EBNF.........f'...l...l'..l.......5

-F-~-

File Block......'...QI..O..OI......G
Fﬂe Name....l..................'ls
File SuffiXeeeeeecoescssscccssscsass 6
File TitleO0.0..00.........'.....'.6

-I-

Implementation Guid€..eeeescesaceee 3
Introduction to Module=2...cc0c000es3

M-
MODULAQ'.......l.'..............1

Modula-z...........................2
MOdula"Z USGI"S Manu&]...........-..3

-N -

Notation".............O....‘......5
NOTE.....0...0"0.‘......0..0.0.. 5

-0-
Organization..'....‘.‘.'.....Q....'3
-P-

Pascal.-.ooooooocoooooooooooo-coooo1
Progl‘amming in Modula_20000000000002

—s_

Standard Library.ccececscsccecesces 3
-T—

’ The MOdul&-Z System...............3

-U-

UCSD PasCleceesccesscsccsccssses 2
Unit...l..".'..".'.'l........0...6
6
3

Unit Number.......................
Utility Library...l..!.ococ......lo.

-W-

WARNING.O..'.....'...0...‘.......5
Wirth, Niklalls,."..0.0...........l1

Introduction to

Moduls-2

Release: 0.3
Date: 26 .August 1983
Author: Richard Gleaves

Introduction To Modula-2

Table Of Contents

Table Of Contents

1mtroduction..l....Q....l...'........0....1

2NewConcepts.‘.I.'......O......O.CO.....3

20 ModuleS. o « o ¢ s e o0 e s e esesoossosecssesstd
2.2 Separately Compiled ModuleS.: « « « « « s e s e 0 s s o 16
2.3 The Module Library. « « « e o o o o e o o s 0o 06 000+ 22
2.4 Standard Utility ModuleS. « « « « o o e o o e« o s o 0 o o 24
2.5 Low-level Machine ACCESS e ¢« « « c o s ¢ o 0 oo o000 26
2.6 Coroutines and InterruptS. « « o+ « e s e s s e e s e o o 30

2.7 Procedure VariableS., « « « ¢ ¢ ¢ ¢ c o s 6 0606660000 37

3 Differences From Pascal......'.‘.'...000000039

3.1Voeabulary....oooo-.co..-a-o-....-o 40

3.1 .1 Identifiers ® ® & o ¢ & & & 0 © 6 ¢ 5 ¢ O O o ¢ © O 0 o o 40
3.1.2 Reserved Words & SymbolS. « o « ¢ ¢ oo 0o o« s 41
3.1 .3 Comments ® & & & ° 6 ¢ & & © & @ & & 6 & O &6 & o 0 o @ 42

3'2Constants.........'."0.....‘.'.'.'43

3,21 Integers. o o« e e e o oo s e oo oo eseecsesoe 43
3:2.2 RelS . o v e 0 s aa v e et oecececcneessa dd
323 Characters. « o « e« s s e s e s s s anosesosoes 44
3.244 StringS. e o o e e o v ecoceeaccceccsocsasedd
320 SetSe o s v e s v e et et sssescsocsoses 46

3.3Types...'............Il..lv.I..-l..47

331 ProcedureS. « « « o ¢ s ¢ o s 0 a0 00 cesoses 47
332 CardinalS. « « « e s e e o s e s e s o e s oseees 47
333 CheracterS. e o o e e ¢ o e s o e o aooeeooees 48
3.3.4 SUDPraNEZES e o o ¢ o o o s o s s 0 s e v o e oeses 48
330 AITAYS e o ¢ o ¢ e o v s s s s o oeseeeeesseoesdd
3.3.6 RECOTdS e o « o o o ¢ 0 o0 e o oeoeoeeoseses 49
337 SetS. v e e et e e v e v esrccsesseesas 90

3.3.8

. Introduetion To Modula-2
Table Of Contents

POinterS...l.I...l‘l..'.."‘.'..51

3.4Expressi°ns..oonc-ooooooocoaoooooooo52

34.1
3.4.2
3.4.3

Function Operands. « « « « « e o ¢ ¢ o ¢ 0o e 0o oo 92
OpEratorS. ¢« o « « s ¢ o s s s e o0 s o osesose 93
Mixed EXPressionS. « o o e« e s e o o 0 s s a0 oo 94

3.5Statements........'....'........... 56

3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7
3.5.8
3.5.9

Assignment StatementS. « « ¢ « ¢ o e 0o 0 e o0 o 97
Procedure CallS, « « « e s o s e o s 000 oseeas 98
WHILE StatementS. « « « e ¢« e o s o s s 00004209
IF StatementS. « « « « e s e ¢ s s e s eoeseee 99
FOR StatementsS. « « ¢« « s s e s s 6 e 060004 60
WITH StatementS. « « « o ¢ o o s ¢ 0 0o e 0 ¢ o o061
CASE StatementS. « e « e ¢ e e e e s s e ea oo 61
LOOP/EXIT StatementS. « « « o o « o ¢ ¢ o0 oo o 62
RETURN StatementS. ¢« « ¢ e e ¢ ¢ 0 s ¢ s o ¢ s+ 63

3.6 Procedures and FunctionS. « « « « « e 6 o s 6 0 ¢ o o« 065

3.6.1 Function ProcedureS. « « « « « o« o o « « «
3.6.2 Parameter Type Compatibility.
3.6.3 Open Array Parameters. « « « « « o « » «
3.6.4 Standard ProcedureS. « « « « « o ¢ o s s

e e ebd
e oo .66
1
ese. .68

.3.7BIOCks......."..Q‘..........C....71

Appendix 1 Reserved Words and SymbolS. « « « ¢« o o « &

.....74

Appendix 2 Standard Identifiers. . « e e s s s e s e e eseeees 75

Appendix 3 ASCH Character Set. . e e v e o ceeeoeoeese 116

mdex‘.ll..l................“.‘........77

Introduction To Modula-2
Introduction
page 1

1 Introduction

Modula-2 is a Pascal-based general purpose programming language. While it
includes most of Pasecal's features, Modula-2 differs from Pascal in three
ways:

@ It extends Pascal upwards to encompass system design. Modula-2
is capable of expressing large software systems without requiring
support from an underlying operating system. (In faet, it is an
excellent language for writing operating systems.)

@ It extends Pascal downwards to allow machine-level programming.
Modula-2 eliminates the need for assembly language in the
lowest levels of a computer system.

@ It introduces a number of minor changes to Pascal which simplify
programming and improve program readability and efficiency.

Modula-2 superficially resembles Ada and the growing crowd of Pascal
supersets., Wirth himself credits Xerox's Mesa language as a design influence:
many of Modula-2's features are borrowed directly from Mesa. Beyond these
similarities, however, Modula-2 departs from the "more is better" philosophy
of most of its cousins. Modula-2's design philosophy benefits more from a
close comparison with that of the older "C" programming language.

C has proven that a small, expressive language can be efficient' enough to
displace assembly language, yet simple enough to be preferable to many so-
called "powerful" high-level languages. However, its cryptic syntax and weak
type checking are serious deficiencies, especially in light of Pascal's proven
reputation for clarity, safety, and rigorous design.

Like C, Modula-2 provides facilities for relaxed type checking and direct
access to memory words and addresses, enabling it to replace assembly
language. Unlike C, Modula-2 does not freely provide these facilities;
instead, their use is tied to specific language construets, Modula-2 thus
provides language-level support for the separation of machine-independent
software from machine-specific software.

Like C, Modula-2 provides only primitive operations close to the level of the
machine; routines for I/O, storage allocation, and process scheduling are
programmed in Modula-2 and stored in a library. Unlike C, Modula-2 can
enforce type checking of parameters to library routines, Modula-2 thus
provides language-level support for ensuring error-free separate compilation.

In short, Modula-2 demonstrates that a highly structured, "protective"
language need not sacrifice power, simplicity, or ease of use; it is therefore
as much a successor to C as it is a successor to Pascal,

Introduction To Modula-2
Introduction
page 2

The module concept is of central importance in Modula-2. The purpose of a
module is to contain a group of related procedures and data. A module
allows some of its objects to be visible outside of the module, but hides the
existence of other objects from the rest of the program. Modules allow large
programs to be structured in a more readable fashion than is possible with
block-structured languages: small collections of modules (sharing relatively
few objects) replace the traditional army of procedures interconnected by
pages of global declarations.

The ability of modules to separate a program into semi-independent parts
provides the foundation for separate compilation. Modula-2 defines a special
type of module which is compiled separately from a main program. Large
programs can be constructed as collections of separately compiled modules;
alternatively, separately compiled modules can be installed in a library for
use by many programs, Standard utility modules are an integral part of
every Modula-2 implementation, as they are used in almost every program.

The ability of modules to contain and hide objects allows Modula-2 to
maintain - machine independence in the face of low-level machine access.
Machine-dependent items can be encapsulated in specific modules, and thus
isolated to small portions of a program. These modules reveal only a high-
level interface through which the machine-dependent items are accessed.
When programs are transported to different systems, the bulk of the software
remains unchanged; only the machine-specific modules need be rewritten,

Separately compiled modules can make a type identifier visible while hiding
the structure of the associated type; this permits the definition of "abstract
data types". (All operations on abstract data types are provided via
procedure calls; a familiar example is Pascal's file type.)

NOTE- Chapter 2 presents concepts unique to Modula-2, and thus new
to Pascal programmers. Read this chapter first, as it presents
some key language concepts. Chapter 3 is light reading — it
describes minor syntactic and semantic differences from Pascal,
Because it covers finer points. in the language, chapter 3 is
organized for ease of reference; you will find yourself thumbing
through it quite often while your programming habits shift from
Pascal to Modula-2.

Introduetion To Modula-2
New Concepts
page 3

2 New Concepts

This chapter introduces language features unique to Modula-2. It presents
enough information on these features for you to understand their rationale
and write programs using them, but does not provide complete descriptions.
Detailed information is provided in other parts of this manual and in the
Modula-2 language report; references are provided at the appropriate points
in this chapter. ‘

New concepts include modules, separate compilation, module libraries,
standard utility modules, low-level machine access, coroutines &
interrupts, and procedure variables. As noted before, modules are the key
concept in Modula-2. Separate compilation is accomplished with variants of
modules; the standard library is a collection of commonly used "standard"
modules; low-level machine access and process schedulers are provided by
standard modules. Of the new concepts, only procedure variables are
unrelated to modules; they follow from a new data type known as the
"procedure type".

NOTE- This chapter uses small Modula-2 programs to illustrate the
use of the new language features; in doing so, it reveals a
number of the syntactical differences deseribed in the next
chapter. Fortunately, the new syntax is only slightly different,
and quite easily understood; it will not hamper your
comprehension of the programs,

Introduction To Modula-2
Modules
page 4

2.1 Modules

Before explaining modules, it is worthwhile to review Pascal's concepts of
scope and bloek.

A fundamental aspect of Pascal (and most other modern programming
languages) is that it is a block-structured language. Block structure has
proved useful as a method of program organization; it allows things to be
declared locally to a procedure block so that they are unknown outside the
block. Well-designed programs exploit block strueture to improve their reada-
bility and understandability; when a variable or procedure is needed in only
one place, it is declared in the local block so as not to impose on the rest
of the program.

The range in which an object (e.g. a variable or procedure) is known is
called the object's scope. Blocks can be nested, and an object's scope is the
block in which it is declared; therefore, scopes can be nested. The general
scope rule is as follows: the scope of an object extends from the block in
which it is declared down through all nested blocks. Another way of looking
at scope is the visibility rule: for a given block, any objects declared in
nested blocks are invisible, but all objects declared in enclosing blocks are
visible.

Bloek structure controls not only an object's scope, but also its existence at
runtime. Objects local to a block exist only while the program executes
statements inside the block; they are created when the block is entered, and
destroyed when the block is exited. The existence rule implies that loecal
variables cannot maintain their values across calls; the only way for them to
do so is by declaring them in an outer block (where they become visible to
the rest of the program). Thus, block structure binds a variable's existence
to its visibility.

In the design of large programs, block structure proves inadequate for two
reasons:

® There is a need to separate visibility from existence. It should
be possible to declare variables that maintain their values, but
are visible only in a few parts of a program,

@ There is a need for closer control of visibility. A procedure
should not be able to access every object declared outside of it
when it only needs to access & few (if any) of them.

Introduction To Modula-2
Modules
page 5

Modula-2 introduces the module structure to address these problems.
Syntactically, modules closely resemble procedures, but they have different
rules about visibility and the existence of their locally declared objeets,
Consider the following declarations:

PROCEDURE Outside; PROCEDURE Outside;
VAR x,y,z: INTEGER; VAR x,y,z: INTEGER;
MODULE Mod; (* no module here *)

IMPORT x;
EXPORT a,Pl;
VAR a,b,c: INTEGER; a,b,c: INTEGER;
PROCEDURE P1; PROCEDURE P1;
BEGIN BEGIN
a::=a+1; a::=a-+1;
X = a; X = a;
END P1; END P1;
END. Mod;
END Outside; END Outside;

The only syntactic differences between the module Mod and a normal
procedure declaration are the reserved word beginning the declaration
(MODULE instead of PROCEDURE) and the presence of IMPORT and
EXPORT declarations following the module heading.

The semantic differences are more interesting. The objects declared within
Mod (a, b, ¢, and P1l) exist at the same level as the variables x, y, and z.
In terms of the variables, this means that a, b, and ¢ are created at the
same time as x, y, and z, and exist as long as procedure Outside is active,
The objects named in Mod's - import list (the list of identifiers following the
reserved word IMPORT) are the only externally declared objects visible within
Mod; thus, Mod is able to access the variable x, but y and z are invisible.
The objects named in Mod's export list (the list of identifiers following the
reserved word EXPORT) are the only locelly declared objects visible outside
Mod; thus, a and P1 are accessible from Outside, but b and e¢ remain hidden
inside Mod.

Introduction To Modula-2

Module
page 6

S

Note that from Outside's point of view, a and P1 appear to be regular
locally declared objects; they have the same visibility and existence as x, y,
and z. Note also that b and ¢ lead a similar, but merely hidden, existence,
A reasonable conclusion to reach from these observations is that (unlike
procedures) modules themselves do not really exist! This is more or less true
— modules affect visibility (a compile-time phenomenon), but not existence (a
run-time phenomenon). A module can be thought of as a syntactically opaque
wall protecting its enclosed objects. The export list names identifiers
defined inside the module that are also to be visible outside. The import list
names the identifiers defined outside the module that are visible inside.

Here is a summary of the rules for visibility and existence in modules:

@ Locally declared objects exist as long as the enclosing procedure
remains activated.

@ Locally declared objects are visible inside the module; if they
appear in the module's export list, they are also visible outside.
Objects declared outside of the module are visible inside only if
they appear in the module's import list.

Introduction To Modula-2

Modules

page 7
So far, all that has been presented are the mechanics of the module
structure, How are modules to be used? The following examples

demonstrate the essence of modularity:

MODULE MainProgram; MODULE MainProgram;

eee

MODULE RandomNumbers;
IMPORT TimeOfDay;
EXPORT Random;

CONST Modulus 2345;
Increment = 7227;
VAR Seed: INTEGER;

PROCEDURE Random(): INTEGER;
BEGIN
Seed := (Seed + Increment)
MOD Modulus;
RETURN Seed;
END Random;

VAR Seed: INTEGER;

PROCEDURE Random(): INTEGER;

CONST Modulus = 2345;
Increment = 7227;

BEGIN

Seed := (Seed + Increment)
MOD Modulus;

RETURN Seed;

END Random;

BEGIN
Seed := TimeOfDay; voe
END RandomNumbers;

BEGIN (* MainProgram *) BEGIN (* MainProgram *)
ooe Seed := TimeOfDay;
WriteInt(Random(), 7);

END MainProgram, END MainProgram,

WriteInt(Random(), 7);

The random number generator in these examples uses a seed variable to
generate the next random number; the seed must maintain its value across
function calls, The program on the right shows the classical block-structured
solution., Note how Seed's declaration floats to the top of the program (to
avoid the existence rule), forcing its initialization to sink to the bottom.
Two obvious disadvantages arise from the scattering of Seed across the face
of the program: its occurrences become hard to find (imagine that this
program is 10,000 lines long!), and it becomes accessible to every other
procedure in the program (when it should be safely buried in Random).

Introduction To Modula-2

Module
page 8

S

The example on the left demonstrates the usefulness of the module structure.
Everything having to do with the random number generator is contained in
one place; only the procedure Random is visible, Because the module is
declared at the outermost level, Seed is initialized only once, and exists for
the life of the program.,

The random number module introduces another feature of modules; unlike the
module in the first example, this module contains both declarations and a
statement part. Module bodies are the (optional) outermost statement parts
of module declarations; they serve to initialize a module's variables. As it
was mentioned before that modules are purely syntactic entities, the presence
of executable statements might seem questionable, The consistency of this
presentation is preserved by the fact that a module's body is analogous to a
module's variables; though subjected to the module's restrictive visibility
rules, module bodies conceptually belong to the enclosing procedure rather
than the modules themselves.,

Module bodies are automatically executed when the enclosing procedure is
called, (Recall that a module's variables come into existence at the same
time.) If a procedure contains several modules, the module bodies are
executed in the order in which they occur within the procedure (see the
following example). A procedure's statement part executes only after its
module bodies have been executed. Just as module variables should be
considered to exist at the same level as the enclosing procedure's variables,
module bodies should be considered as prefixes to the enclosing procedure's
body.

NOTE- Though module bodies are treated here as implieitly included
statements, they are implemented as procedures which are auto-
matically called at the start of the enclosing procedure's body.

Introduction To Modula-2
Modules
page 9

Example of module body execution:
PROCEDURE Enclosing;

MODULE M1;
EXPORT x, y;

VAR x: INTEGER;

MODULE M2;
EXPORT y;
VAR y: INTEGER;
BEGIN
y = 0;
END M2;

BEGIN
X = -1;
END M1;

MODULE M3;
EXPORT z;
VAR z: INTEGER;
BEGIN
oz =1
END M3;

VAR coordinate: INTEGER;

BEGIN (* Enclosing *)
(* M2's body automatically called here *)
(* M1's body automatically called here ¥*)
(* M3's body automatically called here *)
WriteInt(coordinate, 7);

END Enclosing;

The next example illustrates (in a high-level fashion) the organizational dif-
ferences between large programs written in Pascal and in Modula-2. The
program in question is a one-pass compiler (say, the Pascal P-compiler), It
would typically consist of about 5000 lines of source text.

One-pass compilers are notable for having a number of things going on at
once; prineipal activities include scanning (reading the source file), parsing
(checking the syntax), and code generation (producing a code file). Each of
these activities is reflected in the compiler by collections of constants,
types, variables, and procedures comprising the scanner, parser, and code
generator. The compiler also contains general purpose variables and
procedures used in all parts of the compiler. '

Introduction To Modula-2
Modules
page 10

The following examples demonstrate the effeets of block structure upon the
organization of such a compiler:

MODULE Compiler; program Compiler;
<{general consts, types, <consts for generals, scanner,
vars, and procedures > parser, and code generator >
<{scanner module> <types for generals, scanner, etc.>
<parser module > <vars for generals, scanner, ete, >
<code generator module> <proes for generals, scanner, ete.>

<main program> <main program>

END Compiler, end. (* Compiler ¥*)

The compiler written in Pascal is a jumble of declarations; the order reflects
the syntactical structure of Pascal rather than the logical structure of the
compiler, The compiler written in Modula-2 is organized logically; each
module can be expected to import some globally declared objects and export
some (but certainly not all) of its own objects. (Note that this results in
fewer global declarations.) The Modula-2 program is more readable, more
understandable, and less prone to erroneous side effects.

NOTE- The next section shows how separate compilation of modules
can also make the Modula-2 program much easier to maintain
than its Pascal counterpart.

The rest of this section is devoted to additional information on modules.

Like procedures, modules can be declared at any level; the visibility and
existence rules hold for nested module declarations.

Import and export lists immediately follow the module heading. Both lists are
optional: a module can have an import list but lack an export list, or vice-
versa (see the following example). Modules can contain several import lists
(i.e. several occurrences of the reserved word IMPORT followed by a list of
identifiers), but only one export list., Import lists must precede the export
list.

Introduction To Modula-2
Modules
page 11

Examples of import and export lists:

MODULE abe; MODULE trader;
IMPORT i,j,k; EXPORT commodities;
IMPORT x,y,z; voe
EXPORT AlphabetSoup; END trader;

EN.D abe;

Any kind of object can be imported or exported by naming its identifier in
an import or export list. Exporting a record type makes its fields visible.
Exporting an enumeration type makes its enumeration constants visible,
Exporting a module makes all of its exported identifiers visible. Procedures
retain the strueture of their parameter list, but do not transport parameter
type identifiers; thus, parameter types must be exported separately. These
rules apply to both imports and exports.

NOTE- Imported identifiers must be unique with respect to each other
and to locally declared/exported identifiers, as identifier clashes
are analogous to declaring an identifier twice (a syntax error).
Things get interesting when imported identifiers are records or
enumerations, Record field identifiers are local to their record
type, and thus cannot clash with other imported identifiers.
Importing an enumeration, however, may cause one of the
(implicitly imported) enumerated constant identifiers to eclash
with some other imported identifier.

Introduction To Modula-2
Modules
page 12

Example of exporting various types of objects:

MODULE stuff;

EXPORT
Rec, (* field names R1, R2, and Ch are visible in Rec ¥)
things, (* constants Some, No, and Any become visible *)
Dolt, (¥ calls must match Dolt's procedure heading *)
Bird; (* Eggs and Twigs become visible *)

PROCEDURE Dolt (RSKfactor: INTEGER);
BEGIN ... END Dolt;

TYPE Rec = RECORD
R1, R2: REAL;
Ch: CHAR;
END;

TYPE things = (Some, No, Any);

MODULE Bird;
EXPORT Eggs, Twigs;

END Bird;

END stuff;

NOTE- Modula-2's standard identifiers are automatically imported’into
every module. Thus, attempts to redefine them within a module
will cause a syntax error ("identifier declared twice"). Standard
identifiers can be redefined within procedures, however,

Identifiers obtained by importing or exporting are used like normally declared
identifiers; that is, as if they did not originate from a module. However,
they can also be referenced as qualified identifiers. An identifier is
qualified by preceding it with the name of its module; the syntax is identical
to record field access in Pascal. For example, an identifier named "Ident"
imported from the (visible) module "Mod" can be referenced either as "Ident"
or "Mod.dent" (see the following example).

NOTE- Qualified identifiers may not appear in import or export lists.

References to exported identifiers can be qualified or unqualified; however, if
the symbol EXPORT is followed by the symbol QUALIFIED, identifier
references outside of the module must be qualified. This is known as
qualified export. Qualified export allows a module to avoid identifier
clashes caused by other modules exporting the same identifier; it should be
used when the names declared outside a module are unknown (e.g. a
standard library module imported by many different programs).

Introduction To Modula-2
Modules
page 13

Example of qualification:
MODULE Latoo;

MODULE M1i;
EXPORT OverLoad, A; (* unqualified export *)
CONST A = ‘af
VAR OverLoad: INTEGER;

END Mi;

MODULE M2;
EXPORT QUALIFIED OverLoad, Canada; (* qualified export ¥)
VAR OverLoad: INTEGER; (* ...averts name clash with M1 *)

PROCEDURE Canada;
BEGIN

HALT;
END Canada;

END M2;

VAR i: INTEGER;
ch: CHAR;

BEGIN
ch := A; (* unqualified reference *)
ch := M1.A; (* optionally qualified reference *)
i := OverLoad; (* unqualified refers to Ml's var ¥)
i = Ml.OverLoad; (* optionally qualified reference . *)
i := M2.OverLoad; (* M2 qualification averts clash *)
M2.Canada; (* M2's objects must be qualified *)

END Latoo;

Introduction To Modula-2
Modules
page 14

Preceding an import list with the symbol FROM followed by a module
identifier has the effect of unqualifying identifiers exported by the named

module.

This is known as unqualifying import. Unqualifying import lists can

only contain identifiers exported by the named module. (This is why multiple

import lists are allowed in module declarations.) Unqualifying import lists are
useful for limiting the scope of unqualified identifiers to small portions of a

program,

Example of unqualification:
MODULE Aj;

MODULE M1;
EXPORT v1,v2; (*
VAR v1,v2: INTEGER;

END M1;

MODULE M2;
EXPORT QUALIFIED z1,z2; (*
VAR z1,z2: INTEGER;

END M2;

MODULE M3;
IMPORT M1;
EXPORT QUALIFIED t1,t2;
VAR t1,t2: INTEGER; -
BEGIN
tl = vl;
t2 = v2;
END M3;

MODULE HOST;
FROM M1 IMPORT vi1,v2; (*

FROM M2 IMPORT zl1; (*

IMPORT M3; (*
BEGIN '

zl = vl + v2; (*

vl = M3.t1 + M3.t2; (*
END HOST;

END A;

unqualified export *)

qualified export *)

(* qualified export ¥*)

FROM is optional here, but...
required from qualified export
qualified import of t1 & t2

qualification unnecessary here
qualification required here

Introduction To Modula-2
Modules
page 15

NOTE- The following is an extreme (and thus illustrative) example of
the potential interactions between nested modules and qualified
identifiers:

MODULE Nesting;
FROM InOut IMPORT Write;

MODULE Aj;
EXPORT B;
(* x or B.x or C.x or B.C.x visible here *)
MODULE B;
EXPORT C;
(* x or C.x visible here *)
MODULE C;
EXPORT x; (* x visible here *)
CONST x = "%
END C;

END B;
END A;

BEGIN
Write(x); (* these all refer to x *)
Write(A.x);
Write(B.x);
Write(C.x);
Write(A.B.x);
Write(A.C.x);
Write(B.C.x);
Write(A.B.C.x);
END Nesting; \

NOTE- See chapter 11 in the Modula-2 language report for more
information on modules.

Introduction To Modula-2
Separately Compiled Modules
page 16

2.2 Separately Compiled Modules

The basic textual unit accepted by the compiler is called a compilation
unit, Modula-2 programs are constructed from two kinds of compilation units:
program modules and library modules.

Program modules are single compilation units; their compiled forms constitute
executable programs, Because they are the outermost modules of a program,
program modules can have import lists, but no export list. A program
module's import lists name objects defined in the library; specifically, in
separately compiled library modules, The library is an integral part of
Modula-2, for it provides the system-level environment from which objects
(such as operating system routines) are imported into a program. (See The
Modula-2 System for more information on the library.)

Examples of program modules:

MODULE Foon;
FROM InOut IMPORT WriteString;
(* WriteString obtained from library module InOut *)
BEGIN
WriteString(*hi!');
END Foon. (* period marks this as a program module *)

MODULE Yeen;

IMPORT InOut; (* module InOut obtained from library ¥*)
BEGIN .

InOut.WriteString('hi!');
END Yeen.

A compilation unit can import entire library modules or individual objects
from library modules, A library module is imported by naming it in an import
list; all of its exported objeets become available, but they must be
referenced as qualified identifiers (e.g. "Yeen" in the example above).
Individual objects are obtained from a library module by unqualifying import;
they are then referenced as regular identifiers (e.g. "Foon" above).

Library modules are divided into two compilation units: definition modules
and implementation modules. Definition modules contain declarations of the
objects which a library module exports to other compilation units,
Implementation modules contain the code implementing the library module.
Definition and implementation modules always exist in pairs; they are related
by being declared with the same module identifier,

Introduction To Modula-2
Separately Compiled Modules
page 17

Definition modules are similar to program modules, but are prefixed with the
symbol DEFINITION, A definition module contains constant, type, and
variable declarations, and procedure headings. It does not contain module
declarations, procedure bodies, or a module body. The import lists name
objects imported from the library into the definition module. The export list
specifies objects declared in the definition module whiech can be imported by
other compilation units,

NOTE- Only qualified export may be used in definition modules,

Example of a definition module:

DEFINITION MODULE StringlO;
FROM StringOps IMPORT String; (* obtained from library *)
EXPORT QUALIFIED ReadStr, WriteStr; (* visible from StringlO *)

PROCEDURE WriteStr(S: String); (* like a forward declaration *)
PROCEDURE ReadStr(VAR S: String);
END StringlO.

Implementation modules have the same syntax as program modules, but are
prefixed with the symbol IMPLEMENTATION. Like program modules,
implementation modules may not contain an export list. The import lists
name objects imported from the library into the implementation module.

All objects declared in a definition module are automatically available in the
corresponding implementation module (implying that definition modules must be
compiled before implementation modules). Objects imported into a definition
module are not made available in the implementation module; if needed, they
must be imported again.

NOTE- The implementation module must contain complete declarations
of procedures declared in the definition module; unlike a forward
declared procedure in Pascal, a secondary declaration must
include its parameter list (which must be identical to the one in
the definition module declaration).

Introduction To Modula-2
Separately Compiled Modules
page 18

Example of an implementation module:

IMPLEMENTATION MODULE StringlO;
FROM CharlO IMPORT ReadCh, WriteCh; (* obtained from library *)
FROM StringOps IMPORT String, Length, MaxString;
FROM ASCH IMPORT nul;

PROCEDURE WriteStr(S: String); (* note repeated param list *)
VAR I: CARDINAL;
BEGIN
FOR I := 0 TO Length(S}1 DO
WriteCh(S[I]);
END WriteStr;

PROCEDURE ReadStr(VAR S: Strmg),
VAR I: CARDINAL;
ch: CHAR;
BEGIN
1= 0;
REPEAT ReadCh(ch);
S[I] := ch;
INC(I);
UNTIL (ch = nul) OR (I > MaxString);
END ReadStr;

END StringlO.

Within a given program, a library module may be imported by more than one
compilation unit; for example, a module A imports modules B and C, each of
which import D. When this situation arises, Modula-2 defines that only one
instance of a library module can exist at a time. In the example, modules B
and C thus share D's exported objects (in particular, D's variables).

Implementation modules may contain module bodies. The system arranges the
execution order of library module bodies so that imported library modules are
initialized before the importing modules are. If module A imports B, which
imports C, which imports D, then the initialization order is D, C, B, and
finally A. This ensures that a module's initialization code can rely on
variables imported from other library modules. (If imported library modules
are mutually independent, their execution order is undefined.)

NOTE- Library modules are often imported in more than one place.
A- simple case is when a program imports a library module by
name and also imports identifiers from the same module using
unqualifying import. @A more subtle case is when a program
imports two library modules which both import a third module.
In all such cases, a library module is initialized only once.

Introduction To Modula-2
Separately Compiled Modules
page 19

Why are library modules divided into separate definition and implementation
modules?

Consider the design and development of a large software system, possibly by
a group of programmers. The first step in designing such a system is to
identify major subsystems and design interfaces through which the subsystems
communicate, After this step is completed, development of the subsystems
can proceed, with each programmer responsible for developing one (or more)
of the subsystems,

Now consider the project requirements in terms of Modula-2's separate
compilation faecilities, Subsystems will most likely be composed of one or
more compilation units. Defining and maintaining consistent interfaces is of
critical importance in ensuring error-free communication between subsystems
(especially when they are developed by different people). During the design
stage, however, the subsystems themselves do not yet exist; they are known
only by their interfaces.

The concept of a subsystem interface corresponds to the definition module
construct; thus, interfaces can be defined as a set of definition modules
before subsystem development (i.e. design and coding of the implementation
modules) begins. These modules are distributed to all members of the
programming group; throughout the project, they define the interfaces which
all subsystems (and thus all programmers) must adhere to, Interface
consistency is automatically enforced by the compiler.

Another advantage provided by separate definition and implementation modules
is the ability of two library modules to import objects from each other. This
would be impossible if library modules were single compilation units, as each
would require previous compilation of the other in order to compile
successfully, With separate definition modules, the modules can be imported
in the implementation modules, allowing the definition modules to be compiled
beforehand (independently of the mutual importation).

NOTE- Mutually importing library modules dictate arbitrary module
initialization order. (Which is more nested?) In such cases, the
modules' initialization bodies cannot depend on objects imported
from the other module.

This section concludes with a description of Modulae-2's facilities for defining
data types whose only operations are provided by procedure calls,

Library modules can export two kinds of types: transparent types, and
opaque types. '

Normal type declarations are (by default) transparent types. The type
identifier of a transparent type is associated with a structure which

Introduction To BModula-2
Separately Compiled Modules
page 20

implicitly defines certain operations on objects of that type; in the case of
struetured types, the internal components are accessible., For example, array
types imply a known base type and define the subseript operation to access
individual array elements.

Opaque types are types whose internal structure is known only in the
implementation module, Modules importing an opaque type can declare and
assign objects of that type, but cannot perform any other operations (save
those provided by procedures exported along with the opaque type). In
particular, an opaque type's internal components are inaccessible.

Opaque types are declared in a definition module as identifiers lacking a type
definition; like exported procedures, the complete declarations of opaque
types are contained in the implementation module.

NOTE- Modula-2 limits opaque types to pointers and subranges of
standard types. The most common opaque type is a pointer to a
record (whose details remain hidden).

Introduction To Modula-2
Separately Compiled Modules
page 21

Example of opaque types:

DEFINITION MODULE Files;
EXPORT QUALIFIED File, Open, Close, Read, Write;

TYPE File; (* note lack of type definition ¥)
PROCEDURE Open(VAR f: File; name: ARRAY OF CHAR);

PROCEDURE Read(f: File; VAR ch: CHAR);

END Files.,

IMPLEMENTATION MODULE Files;
FROM Storage IMPORT ALLOCATE;

TYPE File = POINTER TO (* complete decl, *)
RECORD
DiskUnit: CARDINAL;
BlockNumber: CARDINAL;
NextByte: Buffindex;
END;

PROCEDURE Open(VAR f: File; name: ARRAY OF CHAR);
BEGIN ... END Open;

PROCEDURE Read(f: File; VAR ch: CHAR);
BEGIN .. END Read;

BEGIN ...
END Files.

MODULE UseFiles;
FROM Files IMPORT File, Open, Write, Close;
VAR f1, f2: File;

BEGIN
Open(f1, ™ew.data");

s0e

END UseFiles.

A classic use of opaque types is the definition of files. The type File and
its operations (Open, Read, and Write) can be expressed as a library module.
Another facility well suited to opaque types is the semaphore and its
operations (signal and wait) for process synchronization.

Introduction To Modula-2
The Module Library
page 22

2.3 The Module Library

The module library is a collection of separately compiled modules that forms
an essential part of every Modula-2 implementation., It typically contains the
following kinds of modules:

® Low-level system modules which provide access to local system
resources,

@ Standard utility modules which provide a consistent system
environment across all Modula-2 implementations.

@ General-purpose modules which provide useful operations to many
programs.,

@ Special-purpose modules which form part of a single program.

The library is stored in one or more disk files containing compiled forms of
the library modules's compilation units., The compiled form of a definition
module is called a symbol file. The compiled form of an implementation
module is called an object file.

The library is accessed by both the compiler and the program loader. The
compiler reads symbol files from the library when compiling programs that
import library modules. The loader loads object files from the library when
executing programs that import library modules.

Modules are compiled separately, but not independently. The division of
programs into separately compiled modules forms dependence relations
between library modules and their elients (i.e. the modules that import
them). These dependencies affect the ability to recompile a module
independently of the rest of the system.

The simplest example of such a dependence relation arises in the ecompilation
of a single library module. The compiler must reference the module's symbol
file in order to compile the implementation module; therefore, the definition
module must be compiled first. Once an implementation module has been
compiled, its object file is tied to the current symbol file, as the object code
is based on procedure and data offsets obtained from the symbol file.

Similarly, client modules are tied to symbol files; programs which import a
library .module have to assume that the symbol file offsets are accurate
reflections of the corresponding object file.

Introduction To Modula-2
The Module Library
page 23

What happens if a definition module is changed without recompiling its
implementation module? The procedure and variable offsets in the updated
symbol file may no longer match the objeect code, yet subsequently compiled
programs that import the module are assigned offsets defined in the new
symbol file. If the implementation module is not recompiled (thus bringing
the object file up to date with the new symbol file), the new programs may
crash when they attempt to reference the library module,

All such problems can be avoided by following these rules:
® A definition module must be compiled prior to its client modules.

@ An implementation module may be recompiled without recompiling
any other modules in the system.

® When a module's definition and implementation are recompiled,
all client modules are invalidated, and must be recompiled,

The Modula-2 system contains facilities for automatic enforcement of the last
rule. The compiler assigns a unique value to the symbol file of every
definition module it compiles; these values are called module keys. When a
compilation unit imports a module, the compiler records the module key in
the code file, When a program is executed, the loader checks that the
module keys stored in the program match the keys in the imported library
modules; if a mismatch is found, the loader issues an error message and
aborts the program. Thus, the system prevents programs crashes caused by
inconsistent module interfaces.

Module key checking is the system-level analogue to type checking within the
compiler; they are of equal importance in Modula-2,

NOTE- Recompiling only a definition module does not prevent client
programs from executing with the non-updated objeect (file.
Recompiling the matching implementation module produces an
object file with a new module key — after which the elient
programs must be recompiled.

Introduction To Modula-2
Standard Utility Modules
page 24

2.4 Standard Utility Modules

The Modula-2 language contains no standard procedures for I/O, memory
allocation, or process scheduling; instead, these facilities are provided by
standard utility modules stored in the library. Standard utility modules are
expected to be available in every Modula-2 implementation; thus, by using
only standard modules, Modula-2 programs become portable across all
implementations, (See Standard Library for more information on standard
utility modules.)

The advantages of expressing commonly-used routines as library modules
(rather than part of the language) include a smaller compiler, smaller run-
time system, and the ability to define alternative facilities when the standard
facilities prove insufficient, Disadvantages include the need to explicitly
import and bind library modules, and — occasionally — a less flexible syntax
imposed by expressing standard routines as. library modules (as opposed to
their being handled specially by the compiler).

NOTE- Module-2's ability to express general purpose routines is
greatly enhanced by its facilities for relaxing type checking.

The rest of this section is devoted to comparing Pascal's standard procedures
with the equivalent procedures provided by Modula-2's standard utility
modules.

Pascal's standard procedures Read and Write are replaced by read and write
routines obtained from the standard module InOut. Read and Write's
parameter list sequences and overloaded parameter types are not expressible
in Modula-2; instead, procedures are provided for handling single arguments of
each data type. Thus, what appears in Pascal as:

writeln('"Name = ',ID,' Value = ',Val:3);
«. becomes in Modula-2:

WriteString('"Name = 1');
WriteString(ID);
WriteString(' Value = ');
WriteInt(Val, 3);
WriteLn;

Introduction To Modula-2
Standard Utility Modules
page 25

NOTE- Though the Modula-2 version appears less efficient, the actual
code is no larger than the Pascal version; the difference merely

reflects a shift in the programming burden from the compiler to
the programmer. Modula-2 does not share Pascal's ability to
automatically translate Read and Write statements with multiple
arguments into the requisite number of system calls.

Modula-2 provides Pascal's text files with the standard module Texts. File
handling is performed by the standard module Files, which provides random
access in addition to Pascal's sequential data access.

Because the compiler must perform special parsing for record variants (e.g.
"NEW(Citizen, FALSE, widowed)"), NEW and DISPOSE remain as standard
procedures in Modula-2; however, the compiler translates NEW and DISPOSE
into equivalent calls to ALLOCATE and DEALLOCATE, which are procedures
provided either by the standard module Storage or by special purpose
procedures. This allows alternate storage implementations to take advantage
of the compiler's ability to minimize storage allocated for record variants,

Example of NEW and DISPOSE:

MODULE Memory;
(* obtain storage management facilities from the library *)
FROM Storage IMPORT ALLOCATE, DEALLOCATE;
VAR p: POINTER TO INTEGER;

BEGIN)
(* ALLOCATE and DEALLOCATE must be visible here *)
NEW(p);

DISPOSE(p);

END Memory.

Mathematical functions (e.g. sin and cos) are provided by the standard
module MathLib0. Modula-2 also includes standard modules for process
scheduling, console I/0, and calling programs as procedures.

Introduction To Modula-2
Low-level Machine Access
page 26

2.5 Low-level Machine Access

Modula-2 provides the following facilities for programming low-level, machine-
specific operations:

@ Type transfer functions allow programs to circumvent normal
type compatibility rules.

® Variables may be declared to reside at fixed memory addresses.

® The module SYSTEM provides data types for manipulating me-
chine-level data objects, and procedures for determining the
memory address of variables and the machine-level representation
of variables and types.

The use of these facilities should be confined to a few specific modules.
The practice of concealing low-level operations in modules results in safer
programming by preventing inadvertent access to machine-level objects; it
also improves the potential for program portability (as only the low-level
modules need be rewritten). In general, low-level modules are marked by the
presence of the module identifier SYSTEM in their import list. Note,
however, that the facilities for type transfer and fixed-address variables are
generally available; thus, their use should be marked by discretion.

Type identifiers can be used as type transfer funetions. Type transfer
functions are restricted to conversion between types whose machine-level
representations oceupy the same number of words. The type identifier is
used as a function identifier, and the variable to be converted is passed as
the funetion argument. The function result is compatible with the type
specified by the type identifier, Note that type transfer functions do not
involve any actual computation — they merely relax compile-time type
checking.

NOTE- Modula-2's standard procedures ORD, ODD, CHR, and VAL
provide more .respectable forms of type transfer. See 3.6.4 for
details.

Introduction To Modula-2
Low-level Machine Access
page 27

Example of type transfer functions:
MODULE LowLevel;

TYPE Arr = ARRAY [1..3] OF INTEGER;
Rec = RECORD (* occupies 3 words ¥)
X: CHAR;
Y,Z: INTEGER;
END;
VAR b: BOOLEAN;
ch: CHAR;
1: Arr;
j: Rec;

BEGIN
b := BOOLEAN(ch);
1 = Arr(j);

END LowLevel.

Variables can be declared to reside at fixed memory addresses. The address
is specified as a cardinal constant (enclosed by square brackets) following the
variable identifier, The variable itself may be of any type.

NOTE- Character variables declared at fixed addresses are usually
accessed as byte quantities. See the Implementation Guide for
details.

Example of a variable declared at a fixed address:

PROCEDURE Stuff;
TYPE FlagBits = BITSET;
VAR Flaggy[400H]: FlagBits;
(* 1 word set resides at byte address 400 hex *)
BEGIN

END Stuff;

All' Modula-2 implementations include a module named SYSTEM; not
surprisingly, it is called the system module. The system module provides the
data types WORD and ADDRESS for manipulating machine-level data objects,
the procedure ADR for obtaining the memory addresses of variables, and the
procedures SIZE and TSIZE for determining the machine-level representations
of variables and types.

NOTE- Because its exported objects have special properties, the
system module is contained entirely in the compiler. The system
module is called a pseudo-module because it is not part of the
library.

Introduction To Modula-2
Low-level Machine Access
page 28

The type WORD is used in general purpose routines which must operate on
arguments of any type. Formal parameters of type WORD are type
compatible with any actual parameter occupying one word of storage.
Outside of parameter lists, however, the only operation allowed on type
WORD is assignment; furthermore, WORD is incompatible with all other types.
These limitations are overcome by using type transfer funections to perform
the necessary operations.

"Open" array parameters of base type WORD are type compatible with all
variables; in particular, records and sets, Such parameters allow any variable
to be interpreted as a sequence of words. See 3.6.3 for more information.

Example of type WORD:

PROCEDURE OnesComplement(VAR arg: WORD);
(* uses 1-word set type to XOR with all 1's *)
BEGIN

arg := WORD(BITSET(arg) / {0..15});
END OnesComplement;

The type ADDRESS is compatible with all pointers and also with the type
CARDINAL (unsigned integer); thus, arithmetic operations can be performed
on operands of type ADDRESS. ADDRESS allows programs to perform
straightforward pointer and address arithmetic.

The formal definition of ADDRESS is:
TYPE ADDRESS = POINTER TO WORD;

Example of type ADDRESS:

PROCEDURE DumpMemory(memptr: ADDRESS; words: CARDINAL);
(* display contents of memory or dynamic variable ¥*)
VAR inx: CARDINAL; |
BEGIN
FOR inx := 1 TO words DO
WriteHex(CARDINAL(memptr”), 6);
INC(memptr, TSIZE(WORD)); (* next word in memory *)
END;
END DumpMemory;

Introduction To Modula-2
Low-level Machine Access
page 29

The function ADR(x) returns the memory address of the variable x; the result
type is ADDRESS.

SIZE(x) returns the number of storage units assigned to the variable x. x
can be a selected variable (e.g. "a[il.x"). SIZE returns the maximum possible
size of records containing variants. SIZE does not accept open array
parameters as arguments,

TSIZE(T) returns the number of storage units assigned to a variable of type
T. Note that TSIZE recognizes the variant tag lists accepted by NEW and
DISPOSE; thus, it can return the actual sizes of dynamically allocated
records. SIZE and TSIZE return values of type CARDINAL. Storage units
on most systems are bytes — see the Implementation Guide for details.

Example of ADR, SIZE, and TSIZE:

PROCEDURE Diddle;
TYPE BIG = ARRAY [1..5] OF INTEGER;
Rec = RECORD
Fl: CHAR;
CASE B: BOOLEAN OF
TRUE : big: BIG |
FALSE: little: INTEGER;
END;
END;
VAR a: ADDRESS;
z: CARDINAL;

BEGIN
a = ADR(z);
z := SIZE(a); (* 2 bytes *¥)
z := TSIZE(BIG); (* 10 bytes *)
z := TSIZE(Rec); (* 14 bytes *)
z := TSIZE(Ree, TRUE); (* 14 bytes *)
z := TSIZE(Ree, FALSE); (* 6 bytes ¥*)

END Diddle;

NOTE- This section has described machine-dependent facilities for a
typical 16-bit processor. Implementations on different processors
may provide different types and compatibility rules.,

Introduction To Modula-2
Coroutines and Interrupts
page 30

2.6 Coroutines and Interrupts

Many modern systems programming languages (such as MODULA, Concurrent
Pascal and Ada) define facilities for concurrent processes and process
scheduling. Implementing such languages on single-processor computers
requires an underlying "run-time system" to schedule processes for execution
and to simulate concurrent execution by switeching the processor between
processes, Modula-2 was designed to write, rather than require, run-time
systems; hence, it foregoes concurrent processes in favor of the simpler
coroutine concept (1),

In Modula-2, coroutines provide a foundation for programming the more
common forms of concurrency; thus, process schedulers are written in
Modula-2 and stored in the library instead of being written in assembly
language as part of a run-time system. Modula-2's approach has two
advantages, First, there is no run-time system occupying memory; a process
scheduler is loaded only if a program imports it, Second, Modula-2 is not
limited to a single process scheduling algorithm; when a different scheduling
algorithm is required, it can be programmed as a library module,

Coroutines are procedures which execute independently (but not concurrently).
A Modula-2 program itself executes as a coroutine; however, this is irrelevant
unless the program creates its own coroutines, Coroutines must be created
before they can be called; a coroutine is created by specifying a procedure
for the coroutine to execute and an area of memory for the coroutine to
execute in, Once created, a coroutine becomes executable, but does not
actually begin to execute; it remains inactive until it is called by another
coroutine,

Coroutines spend their time alternating between two states: inactive, and
executing, In a group of coroutines, only one coroutine executes at a time;
the rest are inactive. Coroutines schedule their execution by calling each
other; in a coroutine call, the calling coroutine becomes inactive and the
called coroutine resumes execution. :

NOTE- Coroutine calls are conceptually different from procedure
calls, Coroutine calls are not recursive; unlike procedure calls,
a coroutine call does not imply a subsequent return., Coroutine
calls are best thought of as a direct transfer of control between
two coroutines,

Generally, coroutines do not reach the end of their procedure, but continue
to execute (between inactive periods) for the life of the surrounding program.
To ensure this behavior, procedures executed by coroutines usually take the

(1) Knuth's The Art of Computer Programming, Vol. 1 contains an
excellent description of assembly language coroutines,

Introduetion To Modula-2
Coroutines and Interrupts
page 31

form of an unconditional loop containing one or more coroutine calls,

NOTE- A program is terminated if any coroutine reaches the end of
its procedure body. When a program terminates, all of its
coroutines are automatically terminated.

Example of a coroutine procedure:

PROCEDURE WriteHo;
BEGIN
LOOP Write("H'); Write('o');
INC(i);
IF i > maxHiHo THEN
WriteLn; i = 0;
END;
TRANSFER(Ho,Hi);
END;
END WriteHo;

NOTE- The terms coroutine and process are synonymous in this
section. Process is the preferred term in the context of
Modula-2. Coroutine is the preferred out-of-context term, as it
is technically more specific and cannot be confused with the
usual concept of concurrent processes,

Coroutine facilities are obtained from the module SYSTEM, which exports the
following identifiers: PROCESS, NEWPROCESS, TRANSFER, IOTRANSFER,
and LISTEN,

All references to processes (e.g. coroutine calls) are made through process
variables, Process variables are declared with type PROCESS; a process
variable must be declared for each created process in order to distinguish the
processes. A process variable can be thought of as a "pointer" to the actual
process,

New processes are created with the NEWPROCESS procedure. NEWPROCESS
has the following syntax:

PROCEDURE NEWPROCESS(P: PROC; A: ADDRESS;
N: CARDINAL; VAR P1: PROCESS);

P is the procedure that the new process will execute. P must be a
parameterless procedure declared at the global (outermost) level in a
compilation unit, (PROC is a standard type denoting a parameterless

Introduction To Modula-2
Coroutines and Interrupts
page 32

procedure.)

A and N specify the address and size of the area in which the process will
execute, This area is usually declared as an array variable; the SYSTEM-
supplied functions ADR and SIZE are used to obtain the array's size and
memory address,

P1 is a process variable which is assigned the new process.

Example of using an array as a process space:

VAR Ho: PROCESS;
B: ARRAY [1..200] OF WORD;

e

NEWPROCESS(WriteHo, ADR(B), SIZE(B), Ho);

The area in which a process executes can be thought of as a miniature
version of the system stack, A few words in each process space are used
for storing an inactive process's execution state; the remaining space is
available for the stack, which is used to store procedure call information and
local variables belonging to the process procedure (and any other procedures
called by it).

NOTE- Dynamic storage allocation is performed independently of
multiprocessing; in particular, dynamic variables allocated by a
process are allocated in the system storage area rather than in
the process' own stack space.

WARNING- A process space operates as a miniature version of the
system space; in particular, if a process stack fills up, a stack
overflow oeccurs, Process stack overflows are generally handled
poorly; the system is more likely to crash without warning than
print a stack overflow message. Be prepared!

Because they execute in relatively small spaces, processes are more
susceptible to stack overflow than main programs. It is a good idea to
determine beforehand the amount of storage used by a process, On some
systems, a process procedure consisting of nothing but a TRANSFER call
successfully executes in as little as 30 words of space; however, this is an
atypical case. The size of a process space is determined by adding together
the process prccedure's data size with the data sizes of procedures invoked
in (possibly nested) call sequences made from the process. Be sure to also
account for procedure call overhead; this amounts to about 10 words per
procedure call,

Introduction To Modula-2
Coroutines and Interrupts
page 33

In conclusion, be sure to allocate liberal amounts of storage to processes,
Unless carefully calculated, process spaces should generally contain at least
100 words of storage.

NOTE- If a process invokes & system library module (even indirectly),
determining its memory requirements may prove to be a difficult
job. This problem is best solved by running processes in
arbitrarily large process spaces (i.e. > 1000 words). Processes
are generally intended for simple, low-level tasks with minimal
resource requirements.,

Coroutine calls are performed with the TRANSFER procedure. TRANSFER
has the following syntax:

PROCEDURE TRANSFER(VAR OLD, NEW: PROCESS);

TRANSFER suspends the current process, assigns its execution state into the
process variable OLD, and then resumes execution of the process identified
by the variable NEW. Note that OLD should be passed the official process
variable for the current process, so that it too may be subsequently resumed.
Note also that NEW must already have been assigned a process.

WARNING- The system crashes if control is transferred to an
uninitialized process variable,

NOTE- OLD is assigned the saved execution state after the process
identified by NEW has been established as the currently
executing process; thus, OLD and NEW can safely be assigned
the same actual parameter, This implies that a single process
variable P can be shared by two processes; each calls the other
by calling TRANSFER(P,P).

Introduction To Modula-2
Coroutines and Interrupts
page 34

Example of coxjoutines:
MODULE HiHo;

FROM SYSTEM IMPORT
WORD, ADR, SIZE, PROCESS, NEWPROCESS, TRANSFER;

FROM Terminal IMPORT WriteLn, Write;
CONST maxHiHo = 17;

VAR i: CARDINAL;
Hi, Ho, Main: PROCESS;
A, B: ARRAY [1..200] OF WORD;

PROCEDURE WriteHi;
BEGIN
LOOP Write("H'); Write('i");
TRANSFER(Hi,Ho);
END;
END WriteHi;

PROCEDURE WriteHo;
BEGIN
LOOP Write("H'); Write('o");
INC();
IF i > maxHiHo THEN
WriteLn; i = 0;
END;
TRANSFER(Ho,Hi);
END;
END WriteHo;

BEGIN i := 0;
NEWPROCESS(WriteHi, ADR(A), SIZE(A), Hi);
NEWPROCESS(WriteHo, ADR(B), SIZE(B), Ho);
TRANSFER(Main, Hi);

END HiHo.

Processes gain real-time capabilities with the IOTRANSFER procedure,
IOTRANSFER combines the concept of a transfer with that of processor
interrupts. IOTRANSFER is similar to TRANSFER: the current process
becomes inactive, and the specified process resumes execution. However, the
next interrupt causes an unscheduled transfer back to the original process.

IOTRANSFER is wused primarily in processes that control a computer's
peripheral devices. (These are usually known as "interrupt handlers".)
Peripheral devices are programmed to perform a specific operation; the
devices then signal completion of the operation by interrupting the processor.

Introduction To Modula-2
Coroutines and Interrupts
page 35

Peripheral devices can be considered as truly concurrent processes, for they
operate in parallel with the execution of software processes.

NOTE- Because computers often have more than one peripheral
device, processors often have more than one kind of interrupt.
In order to distinguish interrupts caused by different devices,
interrupts are assigned interrupt vector addresses, An
interrupt is said to occur through its assigned interrupt vector
address, thus identifying its origin. Interrupt vector addresses
are system-dependent values,

IOTRANSFER has the following syntax:
PROCEDURE IOTRANSFER(VAR OLD, NEW: PROCESS; VA: CARDINAL);

IOTRANSFER suspends the current process, assigns its execution state into
the process variable OLD, and then resumes execution of the process
identified by NEW. The next processor interrupt occurring through vector
address VA causes an automatic TRANSFER(NEW, OLD): the -currently
executing process is suspended in NEW, and control is transfered to the
interrupt-driven process. Note in the following example that when the
interrupt-driven process completes its chore, the next IOTRANSFER call has
the effeet of resuming the process originally suspended by the interrupt.

Processors usually prioritize their interrupts according to the importance of
the associated device; low-priority devices are prevented from interrupting
the interrupt handlers of high-priority devices. Devices that operate at high
speed or require immediate attention are assigned the highest priorities,
ensuring them prompt servicing.

Modula-2 offers module priorities for controlling the occurrence of low-
priority interrupts. A module's priority is specified in the module declaration
just after the module identifier. The value associates a priority level with
the module; the module's procedures can only be interrupted by occurrences
of higher-priority interrupts. Thus, to create an interrupt handler for a
device with priority n, the handler process is placed in a module declared
with priority n. The procedure LISTEN temporarily lowers the current
priority, allowing lower-priority interrupts to ocecur, LISTEN is most
commonly used when a module must wait for one of its own interrupts (see
example below).

NOTE- Al but definition modules can be declared with module
priorities, Modules lacking a priority specification have ™null"
priority; when called, their procedures inherit the calling
module's priority. High-priority modules must not .call
procedures declared in lower priority modules; otherwise, the
module's operational assumptions (e.g. critical sections) cannot
be guaranteed. Module priority values are system-dependent,

Introduction To Modula-2
Coroutines and Interrupts
page 36

Example of IOTRANSFER and module priority:
MODULE KeyBoard[4]; (* priority = 4 *)

IMPORT ADR, SIZE, NEWPROCESS, LISTEN,
PROCESS, TRANSFER, IOTRANSFER;

EXPORT Read;
CONST Q = 20; enable = 6;

VAR KeyStatus[177560B): BITSET;
KeyPort [177562B]: CHAR;
main, h: PROCESS;
ps: ARRAY [1..100] OF WORD;
queue: ARRAY [0..Q-1] OF CHAR;
n, head, tail: CARDINAL;

PROCEDURE Read(VAR ch: CHAR);
BEGIN
WHILE n = 0 DO LISTEN END;
(* Assert: >= 1 characters queued ¥)
ch := queue[head]; head := (head+l) MOD Q;
DEC(n);
END Read;

PROCEDURE handler;
BEGIN
LOOP IOTRANSFER(h, main, 60B); (* va = 48 *)
IF n < Q@ THEN
queue[tail]l := KeyPort;
tail := (tail+1) MOD Q;
INC(n);
END; (* ignore queue overflow ¥)
END;
END handler;

BEGIN head := 0; tail := 0; n := 0;
NEWPROCESS(handler, ADR(ps), SIZE(ps), h);
INCL(KeyStatus, enable); TRANSFER(main, h);

END KeyBoard;

NOTE- The coroutine and interrupt facilities described in this section
are system-dependent. See the Implementation Guide for more
information on IOTRANSFER, interrupt vector addresses, and
module priorities,

Introduction To Modula-2
Procedure Variables
page 37

2.7 Procedure Variables

Modula-2 includes a new data type known as the procedure type. Variables
declared with this type are called procedure variables, and take on
procedures as values. Procedure variables are a generalization of Pascal's
concept of procedure parameters; they are analogous (but not equivalent) to
pointer variables, and can be thought of as "procedure pointers".

The only operations defined for procedure variables are assignment and
invocation ("calling"),

Calling a procedure variable invokes .the procedure assigned to it. Procedure
variable references are distinguished from procedure variable calls by the
‘presence of a (possibly empty) parameter list. Consider the following
declarations:

TYPE Cheese = (Jack, Cheddar, Swiss);
VAR G1, G2: PROCEDURE(Cheese,Cheese,Cheese);

PROCEDURE Grate(i,j,k: Cheese);
BEGIN

END Grate;

A "bare" occurrence of the procedure identifier Grate or the. procedure
variables G1 and G2 denotes the procedure as an object rather than a
procedure call. For instance:

Gl := Grate;
GZ v‘- Gl,

An occurrence of the procedure identifier Grate or the procedure variables
Gl and G2 with a parameter list denotes a procedure call:

Grate(Swiss, Jack, Cheddar);
G1(Swiss, Jack, Cheddar);
G2(Swiss, Jack, Cheddar);

Function procedures lacking a parameter list must be declared and called as
follows (in order to distinguish them from procedure references):

PROCEDURE bald(): INTEGER;

eee

I := bald();

Introduction To Modula-2
Procedure Variables
page 38

Modula-2 does not require empty parameter lists on normal procedure calls
(e.g. '"ProcCall;"), but it is good practice to use them anyways just to make
the procedure calls stand out in the program text (e.g. "ProcCall();"). Note
that Pascal does not allow empty parameter lists.

Procedure type checking is determined by the structure of the parameter
lists; in particular, the order and types of the parameters must be identical,

Example of procedure type compatibility:
TYPE FuncKind = PROCEDURE(CHAR, VAR CARDINAL): INTEGER;
VAR F: FuncKind;

PROCEDURE Stuff(termeh: CHAR; VAR val: CARDINAL): INTEGER;
BEGIN

'END Stuff;

F := Stuff; (* no parentheses on assignments *)

NOTE- Procedures are assignable only if they are declared at the
global (outermost) level of a compilation unit., (Note that this
includes procedures declared in global-level modules.) Standard
procedures are not assignable; however, they can be "packaged"
in a regular procedure declaration that is assignable,

Example of standard procedure "packaging™:

PROCEDURE Ftrunc(r: REAL): CARDINAL;
BEGIN

RETURN TRUNC(r);
END Ftrunc;

See 3.3.1, 3.4.1, and 3.5.2 for more information on procedure variables.

Introduction To Modula-2
Differences From Pascal
page 39

3 Differences From Pascal

This section describes differences between Pascal and Module-2. It is divided
into seven sections: Vocabulary, Constants, Types, Expressions,
Statements, Procedures, and Blocks., Most of the differences are syntax
changes; however, there is also a light -sprinkling of new data types,
operators, and statements.

NOTE- While this seetion is intended to be a complete deseription of
Modula-2's differences from Pascal, it does not contain complete.
descriptions (e.g. syntax) of the Modula-2 features themselves,
Such information can be found in the Modula-2 language report.

Introduction To Modula-2
Vocabulary
page 40

3.1 Vocabulary

Vocabulary includes identifiers, reserved words and symbols, and comments,

3.1.1 Identifiers

Identifiers are case-sensitive; for instance, the identifiers N and n are
distinet, as are the identifiers FreelList and freelist.

NOTE- Prepare to have some problems with this rule at first; the
longer you have been programming in Paseal, the more your mind
is used to subconsciously mapping lower case to upper case (and
vice versa), The problem manifests itself as an undeclared
identifier flagged by the Modula-2 compiler which "obviously
matches this deeclaration up here, see... whoops!",

Example of case-significant identifiers:

PROCEDURE Case;
CONST N = 10;
VAR n: CARDINAL;

n := 0;
WHILE n < N DO
LastSum := LastSum + (n*3);
INC(n,2);
END;
END Case;

Unlike Pascal, where only the first 8 characters can be assumed significant
across most implementations, Modula-2 does not specify a standard significant
identifier length; all characters in an identifier are considered significant.

The underscore character " " — a valid character in many Pasecal
implementations — is not allowed in Modula-2 identifiers. It is a common
practice in Modula-2 to capitalize the first letter of each word in multi-word
identifiers.

Examples of Modula-2 identifiers:

N

succinet
AVeryLongldentifier
LanguageTranslator

Introduction To Modula-2
’ Vocabulary
page 41

3.1.2 Reserved Words & Symbols

Reserved words must be written in capital letters, Though this "restriction"
greatly improves program readability, reactionary Pascal programmers usually
complain about it.

These Pascal reserved words are not present in Modula-2:

DOWNTO FILE GOTO FUNCTION PROGRAM LABEL PACKED

Modula-2's new reserved words include:

BY DEFINITION ELSIF EXIT EXPORT FROM IMPLEMENTATION
IMPORT LOOP MODULE POINTER QUALIFIED RETURN

NOTE- NIL, a reserved word in Paséal, is now a standard identifier,

All of Pascal's nonalphabetic symbols (':=f, '>=!, ete.) are included in
Modula-2, along with three new symbols, The vertical bar '|' serves as a
delimiter in record variants and CASE statements, The ampersand '&' is an
abbreviation for the reserved word AND. The pound sign '#' is an .
abbr)eviation for the reserved symbol '<>' (‘#' denotes a crossed-out equal
sign).

Examples of new symbols and reserved words:
IF i # 4 THEN WriteString("BigWhoop") END;
WHILE (n <= 10) & (a[n] # nul) DO INC(n) END;

CASE i OF
1: WriteString("one") |
2: WriteString("two") |
3: WriteString("many")
END;

Introduction To Modula-2
Vocabulary
page 42

3.1.3 Comments

Modula-2's comments are similar to those of Pascal, but with a couple of
differences., First, Modula-2 allows only this form of comment:

(* <your comment here> ¥)

Braces ("{" and "}") cannot be used as comment delimiters; Modula-2 uses
them to delimit set constants.

Unlike Pascal, comments may be nested.

Example of nested comments:

(*
WriteString("This is not a test");

(* The best defense is a good offense ¥)
WriteString("For the next 60 million years...");

*)

Introduction To Modula-2
Constants
page 43

3.2 Constants

Unlike Pascal, Modula-2 allows constant expressions everywhere that constants
can be used., Constant expressions are useful in declaring constants and
types that depend on other constant values, Constant expressions may not
contain variable references or function calls; otherwise, there are no
restrictions on their use.

Example of constant expressions:

CONST N = 4;
MaxLength = 2%N;
LastElement = MaxLength-1;
SetExpression = {0,1,2} * {2..4);

TYPE Elements = ARRAY [0..MaxLength-1] of INTEGER;

NOTE- The value ranges displayed in this section are for machines
with 16-bit words.

3.2.1 Integers

Integer constants specify constant values for types INTEGER and CARDINAL
(unsigned integer). Constant values range between -32768 and 65535. A
constant's value determines whether it is compatible with type INTEGER or
CARDINAL. Constants in the range -32768 to -1 are compatible only with
INTEGER. Constants in the range 0 to 32767 are compatible with both
INTEGER and CARDINAL. Constants in the range 32768 to 65535 are
compatible only with CARDINAL.

Integer constants can be specified in three radices: decimal, hexadecimal, and
octal.

Decimal constants are written as in Pascal.

Examples of decimal constants:

38 1982 29999 (*CARDINAL and INTEGER compatible*)
32768 40000 49999 (*CARDINAL compatible*)
-8 -2000 -32767 (*INTEGER compatible *)

Hexadecimal constants are constructed from hex digits ('0'..'9', 'A'..'F'), and
are terminated with the letter H. Hex values range from OH to OFFFFH.
Note that hex constants must begin with a decimal digit; thus, a leading '0'
digit must be added to hex constants beginning with an alphabetic hex digit.

Introduction To Modula-2
Constants
page 44

Examples of hex constants:

0H 3AH 247H 0BEACH

Octal constants are constructed from the octal digits (*0'..'7'), and are
terminated with the letter B, Octal values range from 0B to 177777B.

Examples of octal constants:

0B 37B 1777B 177560B

3.2.2 Reals

The format of real constants is similar to Pascal, but with a couple of minor
differences. Real numbers require a decimal point. The exponent character
is denoted by 'E' only ('e! is not valid in Modula-2). »

Invalid real constants:

1 1.03e24 1E10

Valid real constants:

1.0 1. 1.03E24 1.E10 6.023E-23

3.2.3 Characters

. Character constants are compatible with type CHAR. Character constants
can be specified in two forms: character values, and ordinal values,
Character values consist of a single character delimited either by single or
double quotes. Ordinal character constants consist of an octal value followed
by the letter C.

Examples of character constants:

YAI '!1 mnm ﬂ@" lsc

Introduction To Modula-2
Constants
page 45

3.2.4 Strings

String constants are similar to Pascal. The only syntactic difference is the
method used to handle embedded quotes. Modula-2 does not use Pascal's
method of denoting single quotes as quote pairs; instead, strings are delimited
either by single or double quotes. Thus, if a string contains single quotes, it
is delimited by double quotes. If a string contains double quotes, it is
delimited by single quotes. (Note that this implies a string cannot contain
both single and double quotes.)

Examples of string constants:
"We're strings, and you aren't!"
'Thanks, Al

'This sentence contains a "string constant".’

Strings must contain more than one character to qualify as string constants;
quoted single characters are compatible only with type CHAR.

Unlike set constants, string constants are not explicitly typed. The implicit
type of an N-character string constant is:

ARRAY [0..N-1] OF CHAR

NOTE-~ String constants cannot extend past the end of a source text
line,

NOTE- Modula-2 is less striect than Pascal on type compatibility of
character arrays and string constants; in particular, string
constants may be assigned to character arrays longer than the
string itself, See 3.5.1 for more information,

Introduction To Modula-2
Constants
page 46

3.2.5 Sets

Set constants differ from Pascal in a few ways. Constants are delimited by
braces ('{' and '}') rather than by square brackets, and set elements are now
limited to (subranges of) constant expressions. Modula-2 remedies this
restriection by providing the standard procedures INCL and EXCL (see 3.6.4
for details). Set constants can also be explicitly typed by preceding them
with a type identifier. :

Example of set constants:

PROCEDURE CheckChar;
TYPE CharSet = SET OF CHAR;
VAR ch: CHAR;
Valid: CharSet;
BEGIN
IF ch IN CharSet{'a'..'e'} THEN
INCL(Valid,ch);
END;
Valid := Valid + CharSet{'a','z'};

END CheckChar;

In the previous example, note how the set constants are preceded by the
type identifier CharSet. This practice is foreign to Pascal, where a set
constant's type is determined by its elements. Modula-2, on the other hand,
rigidly enforces type checking in set expressions; set constants must be
explicitly typed to match the other set operands.

Set constants lacking a preceding type identifier default to the standard type
BITSET (see 3.3.7 for details).

More examples of set constants:

{1,2,4,8} (* These are identically typed *)
BITSET {1,2,4,8}

Introduction To Modula-2
Types
page 47

3.3 Types

This section describes differences from Pascal types, and introduces two new
types: the type CARDINAL (unsigned integers), and procedure types. Note
that Pascal's file type is missing; files are now provided by standard modules
(see 2.4 for details).

3.3.1 Procedures

If you have not read it yet, see 2.7 for an introduction to procedure
variables.,

Variables declared with a procedure type are assigned procedures as values.
Procedure type declarations may include parameter lists;- in order to be type
compatible with a procedure variable, procedures must have the same
parameters as the procedure variable's type. In particular, the order and
types of the procedure's parameters must correspond to those of the
procedure type declaration.

Procedure variables cannot be assigned standard procedures or procedures
declared local to another procedure.

Modula-2 includes the standard type PROC which denotes a parameterless
procedure, The formal definition of PROC is:

TYPE PROC = PROCEDURE;

Examples of procedure types:

TYPE ProcType = PROCEDURE (CARDINAL, VAR INTEGER, CHAR);
FuneType = PROCEDURE(): CARDINAL;
Shortype = PROC;

3.3.2 Cardinals

Modula-2 provides the type CARDINAL for unsigned (i.e. "cardinal") integer
operations, Cardinal variables take on the range 0 to 65535. Cardinals are
used just like integers; all integer operations are also available for cardinals.

Cardinal variables are assignable to integer variables (and vice versa);
however, cardinal and integer variables cannot be mixed in expressions.

WARNING- Beware of cardinal underflow; i.e. cardinal variables
becoming "less than" 0. Most implementations do not perform

Introduction To Modula-2
Types
page 48

underflow checking; because ™"negative" results are treated as

large cardinal values, subsequent comparisons
correctly (e.g. i-j < k, where i < j).

Example of type CARDINAL:

PROCEDURE MixNumbers;

VAR a,b: INTEGER;

1,m: CARDINAL;

BEGIN

m := 60000;

1 := 30000;

a =1 (* this assignment is legal *)

b := 1+m-a; (* this expression is illegal *)
END MixNumbers;

3.3.3 Characters

Type CHAR is the same as in Pascal. Modula-2 defines the underlying
character set to be ASCII, eliminating the problems caused by trying to
accommodate different character sets, In particular, Modula-2 programs can

take advantage of the character set ordering.

3.3.4 Subranges

Subrange types have one syntactic difference from Pascal.

specifications are enclosed in square brackets.

Example of subrange declarations:
PROCEDURE SubrangeStuff;

TYPE GoodNums = [0..N-1];
Alphabet = ['A'..'Z'];
WeekDay = [Monday..Fridayl;

VAR Num: GoodNums;

Char: Alphabet;
Day: WeekDay;

BEGIN
Num = 4;
Char := 'G";

Day := Friday;
END SubrangeStuff;

will not work

Subrange

Introduetion To Modula-2

Types
page 49

NOTE- Tl:liss) syntax change affects array declarations (see below for
details).

3;3 .9 Arrays

Array declarations are similar to Pascal, with only one difference. When a
subrange identifier is used to specify the array index bounds, the square
brackets are left out of the array declaration. (Explicitly declared index
subranges are delimited by brackets, as in Pascal.)

Example of array declarations:
PROCEDURE Arrays;

TYPE GoodNums = [0..N-1];
Alphabet = ['A"..'Z'];
WeekDay = [Monday..Fridayl;

VAR Num: ARRAY GoodNums OF CARDINAL;
Alphabetic: ARRAY ['A'..'Z'] OF CHAR;
Matrix: ARRAY [1..10], [1..20] OF REAL;
Mixup: ARRAY Alphabet, WeekDay OF GoodNums;

BEGIN
Num[4] := 56;
Alphabetic['G'] := "1';
Matrix[5,5] := 3.14159;
Mixup['A',Monday] := 4;
END Arrays;

3.3.6 Records

The only differences in records involve record variants, Records can contain
several case variant parts; unlike Pascal, each variant part terminates with
an END symbol. A number of minor syntactic differences arise in variant
part declarations. Case label lists can contain constant expressions and
subranges. Variants can declare an ELSE field which catches unspecified
case values, (The CASE statement includes a corresponding ELSE part for
accessing this field.) Pascal's use of parentheses to delimit variants is
replaced by separating variant declarations with a vertical bar '|'. (Note
that *|' cannot appear before an ELSE field.)

NOTE- "Free" variants (such as the record KludgeRec in the
following example) need no longer serve as tools for type abuse.
Modula-2 provides better facilities for breaking type
compatibility rules (see 2.5 for details).

Introduction To Modula-2
Types
page 50

Example of record declarations:

TYPE BirthDate = RECORD
Day: [1..31];
Month: [Jan..Decl;
Year: [0..99];
END;

TrainRee = RECORD

CASE tagl: CARDINAL OF
0..9: x,y: Letters |
11: a,b: Letters

ELSE i,j; INTEGER

END;

Date: BirthDate;

Size: [8..15]);

CASE tag2: BOOLEAN OF
FALSE: r: INTEGER |
TRUE: s: REAL

END;

END;

KludgeRee = RECORD
CASE BOOLEAN OF
TRUE: I: INTEGER |
FALSE: C: CARDINAL
END;
END;

3.3.7 Sets

Sets are relatively unchanged in Modula-2. As mentioned before, set values
are delimited by braces (rather than brackets) and are explicitly typed (with
a type identifier prefix).

Modula-2 defines the steandard type BITSET as a set which fits in one
machine word., Set operations are more efficient with bitsets than with
larger sets.

The formal definition of BITSET is:

TYPE BITSET = SET OF [0..WordSize-1];

The following example uses BITSET to efficiently implement sets of arbitrary
length:

Introduction To Modula-2
Types
page 51

Example of BITSET:

MODULE PowerSets;
EXPORT PowerSet, Included,
Include, Exclude;

CONST WordSize = 16; SetSize = 100;
TYPE PowerSet = ARRAY [0..SetSize-1] OF BITSET;

PROCEDURE Included(S: PowerSet; Bit: CARDINAL): BOOLEAN;
BEGIN

RETURN (Bit MOD WordSize) IN S[Bit DIV WordSizel;
END Included;

PROCEDURE Include(VAR S: PowerSet; Bit: CARDINAL);
BEGIN

INCL(S[Bit DIV WordSize], Bit MOD WordSize);
END Include;

END PowerSets;

3.3.8 Pointers

Pointer type declarations have a new syntax. The "up arrow" Symbol "™,
though still used in pointer references, has been replaced in pointer
declarations with the reserved word sequence "POINTER TO". Pointer
declarations are no longer restricted to type identifiers; any type or type
structure can be named as the pointer's type.

Example of pointer declarations:

TYPE P = POINTER TO INTEGER;
P2 = POINTER TO
RECORD
a,b,ec: BOOLEAN;
END;

MSCWP= POINTER TO MSCW;
MSCW = RECORD
Stat: MSCWP;
Dyn: MSCWP;
IPC: CARDINAL;
END;

Introduction To Modula-2
Expressions
page 52

3.4 Expressions

This section describes things worth knowing about Modula-2 expressions — the
differences from Pascal are mostly minor.

3.4.1 Function Operands

Function procedures (i.e. procedures which return function results) can be
referenced two ways within an expression. Function procedure identifiers
accompanied by a (possibly empty) parameter list denote function procedure
calls; the expression value is the value returned by the function procedure.
Procedure identifiers lacking parameter lists refer to the procedure itself;
this type of reference is used for assigning values to procedure variables.

NOTE- Function procedure calls cannot be selected; e.g. the
expressions "func()™" and "func()[4l.name" are not legal.

Example of function procedures and procedure variables:
MODULE FuncDemo;
VAR it INTEGER;
pl: PROCEDURE(INTEGER): INTEGER;
p2: PROCEDURE(): INTEGER;

PROCEDURE Funcl(arg: INTEGER): INTEGER;
BEGIN RETURN arg DIV 2 END Funel;

PROCEDURE Func2(): INTEGER;
BEGIN RETURN 77 END Func2;

BEGIN
i = Funcl(7); (* call Funcl *)
pl := Funel; (* assign Funcl to pl *)
i =pL7) (* call Funel thru pl *)
i := Func2(); (* call Func2 *)
p2 := Func2; (* assign Func2 to p2 *)
i = p20); (* call Func2 thru p2 %)

END FuneDemo.

Introduction To Modula-2
Expressions
page 53

3.4.2 Operators

The operations '+, '-', '*' DIV, and MOD apply to cardinals in addition to
integers and subrange variables., Unary '-' does not apply to cardinals, '/*
denotes real division. Note that MOD is not defined for negative arguments.

The logical operators AND and OR are evaluated conditionally — they short-
circuit expression evaluation if the expression result can be determined by
the value of the left-hand argument.

p AND q is equivalent to "IF p THEN q
ELSE FALSE"

p OR q is equivalent to "IF p THEN TRUE
ELSE ¢"

These definitions of AND and OR allow shorter, more efficient solutions to
many programming problems. Beware of using functions with side effects as
expression operands, however; the functions might not be called if expression
evaluation is short ecircuited.

In the following example, conditional evaluation prevents a potential NIL
pointer reference:

WHILE (Event <> NIL) AND (Event”.Time < Now) DO
Event := Event”.Next;
END;

The relational operators AND and '<>' have alternate single-character names:
'&' for AND, and '#' for 'O

Example of abbreviated operator names:

WHILE (i <= ArrayLength) & (Ali] # nul) DO
INC(i);
END;

In addition to the standard set operators '+' (union), '-' (difference), '*!
(intersection), and IN (inclusion), Modula-2 defines the set operator '/*, which
is defined as symmetric set difference. Symmetrie set difference performs a
bitwise execlusive OR operation.

Introduction Tc Modula-2
Expressions
page 54

3.4.3 Mixed Expressions

Operands of the types INTEGER, CARDINAL, and REAL cannot be freely
mixed in expressions; unless type transfer functions are used, expressions must
consist entirely of integers (including integer subranges), cardinals (including
cardinal subranges), or reals,

Pascal allows integers and reals to be mixed in expressions; integer operands
in real expressions are implicitly converted to reals, Modula-2 does not allow
mixed integers and reals; instead, integer operands must be explicitly
converted to type REAL with the standard procedure FLOAT. FLOAT
accepts arguments of type CARDINAL and returns the equivalent real value.

For real-to-integer conversions, Modula-2 includes Pascal's standard funection
TRUNC(x). TRUNC accepts real arguments and returns a value of type
CARDINAL. (Note that Modula-2 does not include ROUND(x).)

NOTE- Many Modula-2 implementations define TRUNC and FLOAT to
work with type INTEGER.

Example of conversion between reals and integers:

PROCEDURE Numbers;
VAR i,j,k: CARDINAL;
X,y,2: REAL;

BEGIN
i:=j + TRUNC(z);
X = y + FLOAT(K);
- END Numbers;

Introduction To Modula-2
Expressions
page 55

Operands of type WORD are not compatible with other operand types in
expressions.

Operands of type ADDRESS are compatible with cardinals and pointers in
expressions; however, some interesting side effects can arise from the left-to-
right order of expression parsing.

Consider the following example:

PROCEDURE Miscible;
VAR Ptr: POINTER TO INTEGER;
Addr: ADDRESS;

BEGIN
Ptr := Ptr + Addr + 4;
Ptr := Addr + Ptr + 4;
END Miscible;

The two expressions in this example are legal because the presence of the
operand Addr converts the expression type to ADDRESS, which is compatible
with the integer/cardinal constant. (In fact, the constant 4 in this example
can be considered a pointer constant like NIL).

Now consider the following example:

PROCEDURE Immiscible;
VAR Ptr: POINTER TO INTEGER;
Addr: ADDRESS;

BEGIN
Ptr := Ptr + 4 + Addr;
END Immiscible;

The expression in this example will be flagged by the Modula-2 compiler as
erroneous, because pointer types are not compatible with integer/cardinal
constants. (The expression is not known to be of type ADDRESS, because
the operand Addr has not been parsed yet.) Thus, it can be seen that
ordering restrictions exist for mixed address/pointer expressions. See 2.5 for
more information on ADDRESS.

Finally, as mentioned before, set operands must possess the same type in
"order to be expression compatible (see 3.3.7 for details).

Introduction To Modula-2
Statements
page 56

3.5 Statements

The major difference involves the reorganization of structured statements
around statement sequences rather than compound statements,

In Modula-2, all structured statements end with an explicit closing symbol
(UNTIL for the REPEAT statement, END for the rest). Pascal's compound
statement — one or more statements delimited by the symbols BEGIN/END —
does not exist in Modula-2; it has been replaced -by the concept of
statement sequences. Statement sequences are series of statements
separated by semicolons; sequences are delimited by the enclosing structure
rather than by explicit delimiting symbols,

Examples of statement structures:

PROCEDURE Structures;
BEGIN
IF i > 0 THEN;
WriteString("Truth');

I:=-1;

END;

WHILE j > 3 DO
is= 4
DEC()

END;

REPEAT

333393335
UNTIL TRUE;
END Structures;

NOTE- Module-2's use of statement sequences allows semicolons to be
used more freely than in Pascal,

Pascal's GOTO statement is missing from Module-2; in its place are the
LOOP/EXIT and RETURN statements and the standard procedure HALT
(3.6.4). LOOP/EXIT statements are used to express repetitive statement
sequences which contain several exit points. RETURN is a limited form of
GOTO; it transfers control to the end of the current procedure. HALT
terminates execution of the current program. '

Introduction To Modula-2
Statements
page 57

3.5.1 Assignment Statements

This section presents the type compatibility rules for assignment. (3.6.2
describes parameter type compatibility.)

Operands are said to be assignment compatible if they are allowed to be
assigned to each other,

The primary rule for assignment compatibility is that operands must be
compatible, Operands are compatible if they are of the same type: a
variable's type is determined by the type identifier it is declared with, while
a constant's type is (usually) implicit. Operands are also compatible if one is
declared as a subrange of the other, or if both operands are declared as
subranges of the same type.

NOTE- Structured variables (e.g. records and arrays) are compatible
only if they share the same type definition; in particular,
variables declared with similarly structured types are not
compatible,

The types INTEGER and CARDINAL (and their subranges) are defined as
assignment compatible. (Note that they are not compatible in expressions.)

NOTE- Assignment compatibility of subranges and
INTEGER/CARDINAL types implies the possibility of assigning
illegal values to variables at run-time; thus, assignments of this
kind — though valid at compile-time — may cause an execution
error (i.e. "Range error") at run-time.

The type WORD is compatible only with itself. Operands of type ADDRESS
are compatible with pointer types and CARDINALs.

Unlike Pascal, string constants are assignment compatible with string
variables (i.e. 0-based character arrays) whose length exceeds that of the
string. If the string is shorter than the array, the assignment operation
places a null character (0C) into the array following the string constant,

Example of string assignment:

PROCEDURE Sass;
VAR S1, S2: ARRAY{0..10] OF CHAR;
BEGIN
S1 := "Short"; (* Si[5] contains 0C *)
S2 = '123456789AB"; (* string fits exactly *)
END Sass;

Introduction To Modula-2
Statements
page 58

Procedure types are compatible if the order and type of their formal
parameters are the same., Procedures are assignable only if they are globally
declared (i.e. not declared within another procedure), Standard procedures
are not assignable,

Example of procedure type compatibility:
MODULE Procedures;

PROCEDURE Demo(Ch: CHAR; 1,J: INTEGER);
BEGIN ... END Demo;

VAR P2: PROCEDURE(CHAR,
INTEGER,
INTEGER);

BEGIN
P2 := Demo;
END Procedures.

3.5.2 Procedure Calls

Procedure calls are similar to those in Pascal; they consist of an identifier
possibly followed by a list of parameters enclosed in parentheses. In
Modula-2, the identifier can be either a procedure identifier or a procedure
variable,

Unlike funetion procedure calls, regular procedure calls do not require a
parameter list if the procedure contains no parameters. However, it is good
practice to place empty parameter lists after the identifiers anyways (just to
mark them as procedure calls),

Example of procedure calls:
MODULE ProcCall;

PROCEDURE GlobalProec;
BEGIN ... END GlobalProc;

VAR P: PROG;

BEGIN
GlobalProc; (* call GlobalProe *)
GlobalProc(); (* call it again *)
P := GlobalProc; (* assign GlobalProc to P ¥)
P; (* call GlobalProc thru P *)
P(); (* call it again thru P *)

END ProcCall,

Introduction To Modula-2
Statements
page 59

3.5.3 WHILE Statements

The only difference with WHILE statements is the new syntax which requires
the closing symbol END,

Examples of WHILE statements:
WHILE i > 0 DO DEC(i) END;

WHILE A[J] <= 0 DO
A[Jd] = A[J] + A[J-1];
INC(J);

END;

3.5.4 IF Statements

The IF statement requires the closing symbol END, and also contains the new
symbol ELSIF which allows a single IF statement to express cascaded
conditions.

The basic forms of the IF statement are:

IF <condition> THEN
<statement sequence>
END;

IF <condition> THEN
<{statement sequence>
ELSE
<{statement sequence>
END;

Introduction To Modula-2
Statements
page 60

Cascaded conditionals are written as:

IF <conditionl> THEN
<{statement sequence>
ELSIF <condition2> THEN
<{statement sequence>
ELSIF <conditionN> THEN
<{statement sequence>

END;

IF <conditionl> THEN
<{statement sequence>
ELSIF <condition2> THEN
<{statement sequence>

ELSE
. <statement sequence>
END;

Examples of IF statements:
IFi> 0 THEN i := 0 END;

IF scanning THEN
GetNextSymbol
ELSIF skipping THEN
FlushBuff
ELSE
RETURN NoSymbol
END;

3.5.5 FOR Statements

The FOR statement requires the closing symbol END. As in Pascal, the
default step value is 1; unlike Pascal, step values other than 1 can be
specified. Step values are restricted to constants. Note that the symbol
DOWNTO is missing from Modula-2; it is equivalent to a step value of -1.

The control variable cannot be part of a structured variable, nor imported,
nor a parameter.

NOTE- As in Pascal, the FOR statement can step through any scalar
values; however, integer constants are still used as step values.

Introduction To Modula-2
Statements
page 61

Examples of FOR statements:
FOR i := 1 TO 10 DO A[i] := 4 END;

FOR j:=1TO 9 BY 2 DO
B[j] == Al[j-1];
WriteInt(j,3);

END;

FOR ch := 'z' TO 'a' BY -1 DO
Alfafch] = 27
END;

3.5.6 WITH Statements

The WITH statement requires the closing symbol END. Unlike Pascal, WITH
accepts only one variable reference; a separate WITH statement is needed to
unqualify each record variable.

Examples of WITH statements:

WITH t".Person DO
WriteString(Name);
BlackListed := TRUE;

END;

WITH CreditCheck DO
WITH DriversLicense DO
Debtor := Name;
License := Number;
END
END;

3.5.7 CASE Statements

Subranges and constant expressions are allowed in case label lists, If the
case value does not match any of the case labels, the statement sequence
following the symbol ELSE is selected (but if the ELSE part is left
unspecified, an execution error (value range error) occurs),

Statement sequences for each case are separated by the vertical bar "|",
(Note that a "|" cannot appear before an ELSE part.)

Introduction Tc RModula-2
Statements
page 62

Examples of CASE statements:
CONST N = 3;

CASE j OF
0..9: DEC(,10);
Stop := FALSE |
10,11: Stop := TRUE |
200: TuneBackEnd |
N+2: DecipherCase;
Stop := TRUE
ELSE HALT
END;

CASE B OF '
FALSE: Proceed(3,4,5) |
TRUE: XXX := 102

END;

3.5.8 LOOP/EXIT Statements

The LOOP statement specifies cyeclic execution of a statement sequence; in
particular, it addresses two distinet programming situations that are not
handled well by Pascal's repetitive statements. LOOPs without EXIT
statements serve as "ecyele" statements; they express the endless repetition of
a group of statements. LOOPs containing EXIT statements are used to
express repetitive statement sequences whiech have special exiting require-
ments; i.e. several exit points or a single exit point in the middle of the
statement sequence,

EXIT statements can appear anywhere in a LOOP statement. EXIT transfers
control to the statement following the LOOP statement.

NOTE- The LOOP statement represents a generalized form of
repetition. In theory, WHILE, REPEAT, and FOR statements all
can be expressed as LOOP statements containing a single EXIT.
In practice, the resulting program would be less understandable.
Use WHILE, REPEAT, and FOR whenever possible; use LOOP
only when necessary.

Examples of LOOP statements:

LOOP

GetAQuarter;

PlayGame;

WriteString("Sorry, you lose. Try again!™);
END;

LOOP
WITH Node”™ DO
IF Name = ID THEN
EXIT;
ELSIF Name < ID THEN
IF LLink = NIL THEN EXIT
ELSE Node := LLink END;
ELSE
IF RLink = NIL THEN EXIT
ELSE Node := RLink END;
END;
END;
END;

3.5.9 RETURN Statements

Introduction To Modula-2
Statements
page 63

The RETURN statement has two forms, and serves two purposes. In
procedures and modules, RETURN terminates the enclosing procedure or
module body. In function procedures, the RETURN symbol is always followed
by an expression; the resulting statement assigns the expression value to the
funection result and then terminates the funection procedure.

Non-function procedures and modules contain implicit RETURN statements at
the end of their bodies. Explicit RETURN statements are optional; they
indicate additional (possibly exceptional) termination points in the body.

NOTE- The Pascal equivalent of RETURN from a (non-function)
procedure is a GOTO which jumps to the end of the procedure.

Introduction To Modula-2
Statements
page 64

Example of RETURN in a procedure:

PROCEDURE ReadSequence(VAR Ch: CHAR);

BEGIN
IF SequenceError THEN
Ch =11

Propagate := TRUE;
RETURN; (* exit from procedure *)
END;
InChar(Ch);
CheckErrors;
END ReadSequence;

In funection procedures, RETURN performs the double duty of terminating the
procedure and assigning the function result. For this reason,
procedures must ‘terminate by executing a RETURN statement,

RETURNs must be accompanied by an expression.
type must match the function result type.)

(Note that the expression

NOTE- The Pascal equivalent of a function procedure RETURN is a
combination of assignment to the function variable and a GOTO

whieh jumps to the end of the function block.

Example of RETURN in a function procedure:

PROCEDURE Signum(Freud: INTEGER): INTEGER;

BEGIN
IF Freud > 0 THEN RETURN 1
ELSIF Freud < 0 THEN RETURN -1 |
ELSE RETURN 0;

END Signum;

Introduction To Modula-2
Procedures and Functions
page 65

3.6 Procedures and Functions

The only changes to procedures and functions are a new syntax for declaring
functions and the addition of open array parameters. Modula-2 includes most
of Pascal's standard procedures — a few are missing, and a few new ones
have appeared.

3.6.1 Function Procedures

Functions are called function procedures in Modula-2. Function procedures
are equivalent to Pascal's functions; the differences are mostly syntactie.
Function procedure headings are virtually identical to regular procedure
headings, the only difference being the presence of a function result type
following the parameter list. Note that a (possibly empty) parameter list
must precede the funection result type declaration, Within funection
procedures, function results are returned with the RETURN statement.
Function procedure calls consist of a procedure identifier followed by a
(possibly empty) parameter list.

NOTE- Function procedure calls cannot be selected; e.g. the
expressions "func()™" and "fune()[4]l.name" are not legal in
Modula-2.

Examples of function procedures:
PROCEDURE FunctionDemo;

PROCEDURE IOResult(): CARDINAL;
BEGIN

RETURN 0 (* no error *)
END IOResult;

VAR 10: CARDINAL;

BEGIN

10 := IOResult();
END FunctionDemo;

Introduction To Modula-2
Procedures and Functions
page 66

3.6.2 Parameter Type Compatibility

As in Pascal, there are two kinds of parameters: value parameters, and
variable parameters, With value parameters, the actual parameter must be
assignment compatible with the formeal parameter. With variable parameters,
the formal and actual parameters must have identical types.

NOTE- The types WORD and ADDRESS and open array parameters
are exceptions to these rules.

If a formal parameter specifies a procedure type, corresponding actual
parameters must be either global procedures, procedure variables, or
procedure parameters; in all cases, the procedure types must be compatible.
Standard procedures cannot be passed as procedure parameters.,

3.6.3 Open Array Parameters

Modula-2 allows formal parameter types of the form:
ARRAY OF T

where T is an arbitrary base type. Note that the array bounds are omitted
— this is known as an open array parameter and is compatible with all (one
dimensional) arrays having the base type T.

Array elements of actual parameters are mapped into the range 0..N-1, where
N is the number of elements in the actual parameter. The high bound of a
open array parameter is obtained with the standard procedure HIGH(A), which
returns the index of the high bound of array A. HIGH works on all arrays.

NOTE- Open arrays can only be accessed element-wise; they are not
assignable as entire objeets, Open arrays can be passed as
actual parameters to other procedures containing open array
parameters, If an empty string is passed to an ARRAY OF
CHAR, HIGH returns 0 (the position of the terminating null
character).

In the following example, B2 is an 1ll-element array whose indices range from
5 to 15. Inside the procedure Invert, B2 is viewed as A, an ll-element open
array parameter whose indices range from 0 to HIGH(A). (In this case,
HIGH(A) returns the value 10).

Introduction To Modula-2
Procedures and Functions
page 67
Example of open array parameters:

PROCEDURE DynArray;

PROCEDURE Invert(VAR A: ARRAY OF REAL);
VAR inx: CARDINAL;

BEGIN
FOR inx := 0 TO HIGH(A) DO
Alinx] := 1.0 / Alinx];
END;

END Invert;
VAR B2: ARRAY [5..15] OF REAL;
BEGIN

ir.lovert(Bz);

END DynArray;

Open arrays are useful for writing general-purpose numerical and string-
handling routines; for instance, the standard utility module Strings uses open
array parameters to handle string arguments of any length,

If a formal parameter has the form ARRAY OF WORD, its corresponding
actual parameter can be of any type; all parameter types (partlcularly
records and sets) are treated as multi-word arrays.

Introduction To Modula-2
Procedures and Functions
page 68

Example of ARRAY OF WORD:
PROCEDURE Generic;

PROCEDURE DisplayHex(A: ARRAY OF WORD);
VAR inx: CARDINAL;
BEGIN
FOR inx := 0 TO HIGH(A) DO
WriteHex(CARDINAL(A[inx]), 7);
WriteLn;
END:
WriteLn;
END DisplayHex;

VAR AR: ARRAY [1..5] OF REAL;
c¢: CARDINAL;
b: BOOLEAN;
R: RECORD
a,b,c: INTEGER;
Ch: CHAR;
END;

BEGIN
DisplayHex(AR);
DisplayHex(e);
DisplayHex(b);
DisplayHex(R);

END Generic;

3.6.4 Standard Procedures

Standard procedures are automatically imported into every module. (Note
that this implies standard procedures may be redefined within procedures, but
not within modules.)

Pascal's old favorites ABS, ODD, ORD, and CHR live on in Modula-2, but
with a twist; ORD now returns a cardinal result.

ABS(x) absolute value. x is an integer or real;
result type = argument type

ODD'x) return Boolean result TRUE if the
integer/cardinal expression x is odd.

ORD(x) ordinal value of x. x is an enumeration,
character, integer, or cardinal;
result type is ecardinal,

Introduction To Modula-2
Procedures and Funetions
page 69

CHR(x) return the character with ordinal value x.
x is a cardinal.

Modula-2 provides the standard procedure VAL, which performs the inverse
operation of ORD.

VAL(T,x) return the value with ordinal number x
' and type T. x is a cardinal. T is an
enumeration, character, integer, or cardinal,

For instance, given the type:
Day = (Monday, Tuesday, Wednesday)

VAL(Day,1) returns the scalar constant Tuesday. The relationship between
ORD and VAL is

VAL(T, ORD(x)) = x, if x is of type T.

TRUNC truncates a real value to its cardinal component. FLOAT performs
the opposite action; it converts cardinal arguments to real values., (ROUND
is not included in Modula-2.)

TRUNC(x) return the integral part of
the real number x.

FLOAT(x) return the real number representation
of the cardinal x.

Pascal's PRED and SUCC have been replaced with the more general
operations INC and DEC., INC and DEC have two forms, INC(x) and DEC(x)
replace x with its immediate suceessor or predecessor. INC(x,n) and DEC(x,n)
replace x with its n'th successor or predecessor.

" NOTE- INC and DEC accept characters, integers, and addresses along
with subranges and enumerations. Note that ™" can be any
expression compatible with "x",

INC(x) Xi=x+1
INC(x,n) X:=Xx+n
DEC(x) X =x-1

DEC(x,n) X:=X-n

Introduction To Modula-2
Procedures and Functions
page 70

Modula-2 provides the standard procedures INCL and EXCL for set
manipulation, INCL ("include") adds a single element to a set; EXCL
("exclude") removes a single element from a set. Note that "e" can be any
expression compatible with the base type of "s",

INCL(s,e) s =5 + {e}

EXCL(s,e) s = s -~ {e}

The procedures NEW(p) and DISPOSE(p) perform the usual actions; however,
they are translated into calls to the procedures ALLOCATE and
DEALLOCATE which are usually provided by the standard utility module
Storage (see 2.4 for details).

The procedure HALT terminates program execution, HALT is used to stop
programs which detect unrecoverable error conditions.

The function procedure HIGH(A) returns a cardinal indicating the high index
bound of the array A, HIGH is commonly used with open array parameters
(see 3.6.3); however, it also accepts regular array variables.

Last (and probably least), the function procedure CAP(ch) returns the upper-
case equivalent of lower-case character arguments.

Introduction To Modula-2

Blocks

page 71

3.7 Bloeks

Despite the emphasis on modules, bloeks still play an important part in
Modula-2: implementation modules, program modules, local modules, and
procedures share the same bloeck syntax. Differences from Pascal include
relaxed order of declarations, termination of all blocks by a procedure or
module identifier, and optional statement parts.

Pascal imposes a strict order on the declaration of objects; within any given
block, labels must be declared before constants, constants before types, types
before variables, and so on. Modula-2 eliminates this restriction —
declarations can appear in any order. Programs containing lots of
declarations are easier to read and understand when related declarations are
grouped together (regardless of their kind).

Example of relaxed declaration order:
MODULE Xlator;

CONST MaxSym = 1024;
TYPE SymBuffer = ARRAY[1..MaxSym] OF CHAR;
VAR SymBuffl, SymBuff2: SymBuffer;

CONST MaxCode = 512;
TYPE CodeBuffer = ARRAY[1..MaxCode] OF CHAR;
VAR CodeBuff: CodeBuffer;

oo

END Xlator,

Every module and procedure declaration is terminated by its identifier, This
improves the readability of large programs containing many levels of nested
blocks.

Introduction Teo Mecdula-2
Blocks ‘
page 72

Example of block identifiers:
MODULE Turboincabulator;
MODULE Widget;

PROCEDURE Stuff;

PROCEDURE Nested;
BEGIN

END Nested;
BEGIN

END Stuff;

END Widget;

END Turboincabulator,

Procedure and module bodies appear at the end of a block and are delimited
by the symbols BEGIN and END,

As mentioned before, module bodies are optional; if present, they serve to
initialize a module's variables.,

Example of optional module bodies:

MODULE NoBody;
EXPORT c,d;

VAR c,d: CARDINAL;
END NoBodyj;

MODULE Body;
EXPORT a,b;

VAR a,b: CARDINAL;
BEGIN

a:=1;b = 2
END Body;

Introduetion To Modula-2

Blocks

page 73

Note, however, that procedure bodies are optional, too! This seems
nonsensical, as the only operation defined for a procedure is invocation,
which causes the procedure body to be executed; thus, a bodyless procedure
would appear incapable of performing any useful actions.

Bodyless procedures are justified because they can ineclude local module
declarations. Recall that module bodies actually belong to the body of the
enclosing procedure; thus, a bodyless procedure has a de facto procedure
body consisting of the module bodies from locally declared modules.

Example of a bodyless procedure:
PROCEDURE NoBody;

MODULE Actionl;

BEGIN

END Actionl;

MODULE Action2;

BEGIN

END Action2;

END NoBody;

Introduction To Modula-2
Reserved Words and Symbols

page 74

Appendix 1 Reserved Words and Symbols

NOTE- All characters are significant in Modula-2 reserved words.

o~
b Yo - v o g.olol*l_},

-

AND
ARRAY
BEGIN
BY

CASE
CONST
DEFINITION
DIV

DO

ELSE
ELSIF
END
EXIT
EXPORT

FOR

FROM

IF
IMPLEMENTATION
IMPORT

IN

LOOP

MOD
MODULE
NOT

OF

OR

POINTER
PROCEDURE

QUALIFIED
RECORD
REPEAT
RETURN
SET

THEN

- TO

TYPE
UNTIL
VAR
WHILE
WITH

Appendix 2 Standard Identifiers

ABS
BITSET
BOOLEAN
CAP
CARDINAL
CHAR

CHR

DEC
DISPOSE

EXCL
FALSE
FLOAT
HALT
HIGH
INC
INCL
INTEGER
NEW

NIL
ODD
ORD
PROC
REAL
TRUE
TRUNC
VAL

Introduction To Modula-2
Standard Identifiers
page 75

Introduction To Modula-2
ASCII Character Set

page 76

Appendix 3 ASCII Character Set

WO N WNHO

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

dle
del
de2
del
de4
nak
syn
etb
can
em
sub
esc
fs
gs
rs

32

33

34
35
36
37
38
39

40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

59
60
61
62
63

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

20
21
22
23
24
25
26
27
28
29
2A

2B

2C
2D

2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E

3F

2 e

el T

-

NNV LAY OO0 IO U DN O

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
89
89
30
91
92
93
94
95

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56

87

58

59

S5A
5B
s5C
5D
SE
SF

N NN E<CHUHO VO ZER RS~ I ANMHY QW ®

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

71
72
73
74
75

76

(i
78
79
TA
B
7C
™
TE
TF

,

g X 2 < S0 3,00 0 53’-‘77'—'-“'3‘09 RO OO0 TP

del

Introduction To Modula-2
Index
page 77

Index
-A-

ABS.iieteccasescecasescsnsaccnses 68
Abstract Data TypP€.iescecssccosass?
Ada.iiieececcnceccncaseacasesel, 30
ADDRESS.cvcessesccascaseass 28, 55
ADR . ievesenseccosnsasnsesnsss28, 32
ALLOCATE. .. vvveeesceneasaass 25, T0
ANDQO.QQ..OO.I..l...t......l.... 53
ARRAY OF..vceecersescasccncnse 66
ARRAY OF WORD.iieseesoasasesssb?
Array TyPeSeeeseecsosscsssssecaas 49
Assignment Compatible......... 57, 66

-B-

BEGIN ieeecesasssscasssacacsacasesl
BITSET eeeeeeoccscssssceocsssaeadb, 50
BloCK.eeersaseoosaanosnnennaeas 4y T1
Block Structur€..cceeecececececsccccees 4
BY cvecencatessscccecsenaeaass 41, 60

-C-

C .0.0..0‘...00‘..llll.l‘oo....oo'1

CAP .iieeireoosscccccsaseacnnsnnssall
CARDINAL :cevessoaseaeaansases 28, 47
Cardinal ConstantS..ceccevecccceee 43
CASE ceeseeoncssscossssssssasanssdbl
CHAR . veeeeaesasorsasssessasssenss 48
Character ConstantS.ceeececesoessss 44
ClientSecececsscenscccssacsnsssenes 22
CommentSececessecascasnsssascncans 42
Compatible..cesesscsscasesacessaaedl
Compilation UnitS...ceeeeeecscasse 16
Compiler.eseesescsssscesccssnsseess?l
Concurrent Pascal...ceevccscsaceesdl
Constant EXpressionNS..eceescescses 43
CoroutineS.eeeeeevseosscccssccssseee 30

-D-

DEALLOCATE ieeeessesseasass 25, T0
DEC.cetecasssesscescsncscscsccanaceddd
Decimal ConstantS.eeeececscosecceeedd
DEFINITION.....-.......ooc-o 17, 41
Definition ModuleS.eeesescevececssalb
DISPOSE . ccecscnccsssaccansss 25, T0
DIV.ieeeoceeosocoassesosasssssannse 93
DO.veceeccconasnsennnass 9, 60, 61

DOWNTOI..‘...l.'...‘..'....41’ 60

-E-

ELSE. i cieceseccecesesaeses 49, 59, 61
ELSIF i eeeecscevooscaccocnsnsesdl, 359
EnumerationS.eeesssceccccccescasss 11
EXCLutttsooesossssacnncaeaess 46, 69
Exclusive OR.iceveveeccesesccceaee 93
Existence..... PP
EXIT e eeeeecacoeacasssesassanasdl, 62
EXPORT i eeeecsssceoscnnssnanes 3y, 41
Export LiStSeeeeeescccaccsscacesneed

-F-

FileSeieeeeeeeosrassnseanssaanannena 2D
Fixed Address VariableS..eeeeoeeeesl?
FLOAT .evevervsoceaenannasessdd, 69
FROM:'eveeooeoonannenasnsaasld, 41
FUNCTION teeceesacesssonscoansasssdl
Function ProcedureS......essse 52, 65

-G-
GOTO.....l‘.......'..;.'...041’ 56

-H-

HALT0.00'.....‘..0..‘...0..056, 70
Hexadecimal ConstantS..ceescecesesd3
HIGH...O‘.0..Ql'.....'...."...‘.'zo

-1~

IdentifierSeseecescscescavscsccseesadl
IMPLEMENTATION . eveeaeesees17, 41
Implementation Guide€...eeeesaceess 27
Implementation ModuleS...eeseseess 16
IMPORTO"..l.‘......'lh.l.'..5, 41
Import LiStS.ceeeesececsssccascaena D
INCL.viteaeoseaaoaosesoanseesdb, 69
INOUt. . iieeecesencncncesoscscoaeesld
Integer ConstantS...eeeecsccaceses 43
Interrupt HandlerS.eecieesecscsacss 34
InterruptSeceescseescesssscssecscaas 34
Interrupt VecCtorS..ececeecessccsseeadd

Introduction To Modula-2
Index
page 78

IOTRANSFER.Q.....O."..'....... 34

-K-
Knuth’ D. EO..O.O.O.Q...Q.Q..‘.0.30

-L-

LABELI.Q‘."'..O‘.'........'..0. 41
Library..l........Q....l.'...'.... 22
Library ModuleS..eeseececscscccass 16
LISTEN.......'......'.l..'...l.'035
Loader.ceccecsscessccascsacosenaaeel2
LOOP.......l..l...........l.41, 62

-M-
MathLibo-.ooooco-oocooo'oono.oon0025

Mesa....Q.....l........‘....'.'.IC 1
Mixed EXpressionNS..cecseecescesess 94
MOD....OI.‘Q..l....'...“ll.'.l. 53
MODULA .vccecescssassscasessnses 30
n{odula‘z..'...'...l.‘0.0.Q...ll....l
NIODULE...l.'..0.‘.0.'....'......41
MOdule BodieSUOOCQ.'C'...OOOQQ0.0‘. 8
Module Execution Order.eeesecs..8, 18
NIOdule KeyCQOQOOOQ..ll‘.l........23
Module Priority..scececcecsesscess 35
ModuleS.ceeeecsecccrscacascaces 2, 4

-N -

NEW‘...I...‘.O..!...c.ao...;.25, 70
NEWPROCESS........‘C.....'.'... 31

-0-

Object FileSeeeescesescacacacacsss 22
Octal ConstantS.ceeeesescscscccsssdd
ODDOOOOOIQ.".Q.OOQOOIOOOOOOOOOQ 58
Opaque TyPeSececesscesacsnscnsasall
Open Array Parameters........ 28, 66

OR..IO........I.........Q...I.O..ss

ORDD.'I‘I....I..I..‘..........C. 68

-pP-

PACKED.I..00000000000'000000000041
Parameter Type Compatibility...... 66
Pascalooooo'oooooo.oosonoococonlooo1
POINTER'...0......0....‘...0..‘. 41
POINTER To...‘....'....’......l 51
Pointer TyPESeesaescascccsscscesesdl
PRED....OCOOCCQODOIOIOQ..‘.QQ..Q 69

PROC....l............l..l....‘.. 47

Procedure Assignment...eeecceceeeed?
Procedure CallS.ceecccesccccsesess 38
ProcedureS.ceeeccecesscsccscsccsascas 65
Procedure TyP€Seseeasscesesss 37, 47
Procedure VariableS.ecececeeocscsess 37
PROCESSCQ.'.O.0..00.........0‘..31
ProCesSSeeeeccccscscsssoscssssancees 3l
PROGRAM.ooocooooooococoooo'oon¢,4l
Program ModuleS.sieseessessseasse 16
Pseudo-modul€sececesceasccccccanesd?

-Q-
QUALIFIED-ocoo.aonconlaaooo-12,.41

Qualified Export.‘....".'........ 12
Qualified Identifier............'.‘. 12

-R-~-

Reado......00..0..l.l.l..l‘l..... 24
Real ConstantS.eececessecessccasssdd
Record Types;.n.........“...ll, 49
REPEATOO..0..0.0.‘0....0.0.....056
Reserved WordS.eeeesceesesess 41, T4
RETURN . .ceevesaceenoonacanss 41, 63
ROUND.'..'.O..Q‘.‘..00..........69

-§-

ScopeQOOCOOIOOCOOOO"0..0.000....0.4
Separate CompilatioN.eeesecescecess 16
Set Constantsoiﬁtoﬁt.'.000.0...'.046
Set TypeSII..‘l..l..O....l..l.l.l 50
Short-cireuit Expression

Evaluation.'0.'0.'..0.‘..000'.0 53
SIZE seeeeeasessesscasosssseas 29, 32
Standard ProcedureS..ceeseseesssecss 68
Standard Utility ModuleS..eseaaeess 24
StatementS..cceeseccecccccscscsaes 96
Statement SequenC€..cecescceecses 36
storage...'.ll'.....'l0000010.25, 32
String Assignment..c.eecceccscecees 37
String ConstantS.eeevesescesceeses 45
Subrange TypPeS.eeccescesacscsaaas 48
SUCCO....QCI.‘!C0.0!..'...0.0..Q 69
Symbol FileSeesesessasescanscsanae22
SYSTEMOOOOQ....Q..I.O... 26’ 27’ 31
System Moduleeeeeacecscacesccseas 27

T
TeXlSeeeeerssenscccsacccasscansoasld
TRANSFER....Ql..l..'.....'..... 33
Transparent TypPeSecceeseeesseessseld
TRUNC....CO....O..'..Q.OO'I 54, 69
TOIZE ceeeeeecseesssasscssnscansss 29
Type Transfer Function.....cee.. .o 26

-U-

Unqualifying Import..eeeececessessssld
UNTILC..C0...'0."..'.0.'...'.l0'56

-V-

VAL..lc..c..c.coooco.ccol.'.coo.ﬁsg
VerSion controlctc.u.'l.o.c.o.o.o'23
Visibilityooooocc.c‘l.lo.lo'oolocul.l4

-W-

WHILE ..oeecececcecocosascacsvsaanneaedd
Wirth, Nuveveeeeeeseoneeeonnseansssl
L 5 P 2 X
WORD ¢evoeaeensaansacnnseanas28, 54
Writeeeeeeeeeencacnooscsconsnnsese 24

Introduction To Modula-2
Index
page 79

ModulsZ

Standard Library

Release: 0.3
Date: 26 August 1983
Author: 'Richa_rd Gleaves

Standard Library
Table Of Contents

Table Of Contents

1 Introduction. « e s e e oo ocesoscecsscosscssccasse 1°
2 0VerVieW.: ¢ ¢ ¢ e ¢ e s s s e s e oo sssccscaccssosssssc 2
3ModuleHierarchy.......................‘....3
4INOUt. e cceoceescocrsscescsscscscscssscces 4
SReallnOUt. ¢« ¢ ¢ e s e e e s e cosocceeesccseccssocscsed
6 TeXtSe ¢ e e s o s s esosssocccscccsscssssoasscas 9
T REAIS: e v o ossssensnocssstassasssscassssedls
B FileSe ¢ ¢ v e eoeoosososceccocoscsscssssccccscese 16
9Termina1........................'...’......22
10Stdrage...............,................23

11Program‘.'....'.;..O....C......‘..'..' 24

.12Processesiﬂ.'....Qv....'...........‘.....30
Appendix 1 Text & File ReSUltS e « o o e o e o 0o e 0 0 e 0eooea 34

Appendix 2 Program ResultS. ¢« « « ¢ e e e s e 0 e e o0 coeesese 35

mdex..........;.....Q......‘......'....37

Standard Library
Module Hierarchy
page 3

3 Module Hierarchy
This section describes relationships between the standard library modules.

Some library modules modules are entirely self-contained, but most import
facilities from other library modules. Such dependence relations form a
hierarchy of library modules, with self-contained modules appearing at the
bottom and highly dependent modules appearing at the top.

Intermodule dependencies are obscured by the fact that library modules are
more commonly imported in (hidden) implementation modules than in (visible)
definition modules. Module dependencies are documented not so much because
it is necessary to understand how a module works, but because indirectly
imported modules affect the amount of storage left for a program. Importing
a module at the top of the hierarchy offers high-level facilities at the
expense of the modules used to implement it; importing a module at the
bottom of the hierarchy provides cruder facilities, but saves memory by
reducing the number of resident modules.

The choice of where to enter the module hierarchy depends on the relative
importance of portability and efficiency. Higher level modules stress
portability and ease of use over efficiency and generality; lower level
modules, the reverse.- For instance, the module InOut is easier to use than
Texts, as it hides all details of the text streams it writes to. Texts in turn
offers generality (the ability to define new text streams) and efficiency
(InOut is implemented in terms of Texts). The complete module hierarchy is
described in the Implementation Guide.

Standard library module dependencies:
@ ReallnOut -> InOut, Reals
InOut -> Conversions, Texts
Reals -> Texts, Program
Texts -> Conversions, Files, Storage, Program
Files -> Storage, Program
Processes -> Storage, Program

Storage -> Program

Program -> Storage

Standard Library

InOut
page 4

4 InOut

The module InOut is implemented as defined in Programming in Modula-2.
InOut provides operations for reading and writing basic data types to the
standard input and output text streams. Note that details pertaining to the
actual streams are suppressed, allowing this module to be portable across all
Modula-2 systems. Standard input and output defaults to the console, but can
be redirected to other files.

The procedures Read, ReadString, ReadInt, and ReadCard read data from the
input stream. Read returns a single character; if the character equals EOL,
the end of a text line has been read.

NOTE- The value of EOL is system-dependent.

REPEAT
InOut.Read(ch);
line[inx] = ch;
INC(inx);

UNTIL ch = EOL;

ReadString reads a string of (non-blank) characters. ReadString skips leading
blanks and terminates on either a blank or control character; the terminating
character is returned in the variable termCH. ReadInt reads a string and
converts it to an integer. ReadCard reads a string and converts it to a
cardinal number. When reading from the console, backspace deletes the last
character typed in.

ReadInt(i);
ReadString(s);

ReadCard(c);
IF termCH = EOL THEN WriteLn END;

The end of an input stream is recognized by checking the variable Done.
Done is set after every read operation: TRUE indicates that the preceding
operation was successfully completed; FALSE indicates that the previous
operation failed (either because the end of the stream was reached or
because of an error). Read returns a null character (0C) if the end of the
stream has been reached.

LOOP
InOut.Read(ch);
IF InOut.Done THEN EXIT END;
process(ch);

END;

Standard Library

InOut

page 5

The procedures Write, WriteString, WriteInt, WriteCard, WriteOct, and
WriteHex write data to the output stream. WriteLn writes a line terminator.
WriteHex and WriteOet write out fixed numbers of digits: i.e. four
hexadecimal digits and six octal digits respectively. The argument "n" in
most of these routines is for output formatting, If fewer than n characters
are required to write out the data value, leading blank characters are

written to pad the result out to n characters.
NOTE- WriteLn is defined to be equivalent to Write(EOL).

Write(ch);
WriteString("Hi there! The answer is: ");
WriteCard(sum, 7);

Standard I/O is directed to the console, but can be redirected to disk files
(or other devices). OpenInput and OpenOutput both issue console prompts
requesting the name of the file to redirect 1I/O to. If a file name ends with
a period, the default extension "defext" is appended to the file name before
the file is opened. (Note that this convention is the exact opposite of some
other file systems.)

If the specified file is successfully opened, it becomes the source (sink) of
standard I/O. Openlnput and OpenOutput return status results in the variable
Done; Done is set to TRUE if the file was successfully opened.

OpenInput(*TEXT");
IF NOT Done THEN WriteString("File open error") END;

Redirected standard I/O is returned to the console by calling Closelnput or
CloseOutput. Redirected files are closed. Done is set to TRUE if the
redirected file was successfully elosed.

NOTE- InOut uses the predefined text variables Texts.input and
Texts.output as the (default) standard input and output streams.
If these variables are modified by a program importing Texts,
the operation of InOut is affected.

Standard Library
InOut
page 6

Example of InOut:

MODULE SumLines;
(* Sum each line in the input file *)

FROM InQut IMPORT
Openlnput, Closelnput,
EOL, termCH, Done, WriteLn,
ReadInt, WriteInt, WriteString;

VAR i, sum: INTEGER;

BEGIN

Openlnput("TEXT");

IF NOT Done THEN
WriteString("File not opened");
HALT;

END;

sum 3= 0;
ReadInt(i);
WHILE Done DO

INC(sum, i);

IF termCH = EOL THEN
WriteInt(sum, 7);
WriteLn;
sum := 0;

END;

ReadInt(i);

END;

Closelnput;
END SumlLines.

DEFINITION MODULE InOut;

EXPORT QUALIFIED
EOL, Done, termCH,
OpenInput, OpenOutput, Closelnput, CloseOutput,
Read, ReadString, ReadInt, ReadCard,
Write, WriteLn, WriteString, WriteInt, WriteCard, WriteOct, WriteHex;

CONST EOL = 15C;

(* system dependent *)

VAR Done: BOOLEAN;
VAR termCH: CHAR;

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE

. PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

END InOut,

Openlnput (defext: ARRAY OF CHAR);
OpenOutput (defext: ARRAY OF CHAR);
Closelnput;

CloseOutput;

Read (VAR ch: CHAR);
ReadString (VAR s: ARRAY OF CHAR);
ReadInt (VAR x: INTEGER);
ReadCard (VAR x: CARDINAL);

Write
WriteLn;
WriteString (s: ARRAY OF CHAR);
Writelnt (x: INTEGER; n: CARDINALY);
WriteCard (x,n: CARDINAL);

WriteOet (x,n: CARDINAL);

WriteHex (x,n: CARDINAL);

(ch: CHAR);

Standard Library
InOut
page 7

Standard Library
ReallnOut

page 8

5 ReallnOut

The module ReallnOut reads and writes real numbers to the standard input
and output streams, The parameter "n" in WriteReal is used for output
formatting (see InOut for details), WriteReal displays real numbers in
exponent notation, WriteRealOct displays real numbers in internal format;
the variable contents are written as multi-word octal values. The variable
Done is set after every call to ReadReal; it indicates whether the previous
read operation was successfully completed (Done = TRUE indicates a real
number was successfully read).

NOTE- ReallnOut accesses streams via InOut's procedures ReadString
and WriteString; therefore, redirecting I/O in InOut affects the
operation of ReallnOut., Note that InOut and ReallnOut export
separate Done variables.

DEFINITION MODULE ReallnOut;

EXPORT QUALIFIED
ReadReal, WriteReal, WriteRealOct, Done;

VAR Done: BOOLEAN;

PROCEDURE ReadReal(VAR x: REAL);
PROCEDURE WriteReal(x: REAL; n: CARDINAL);
PROCEDURE WriteRealOct (x: REAL);

END ReallnOut,

Standard Library

Texts

page 9

6 Texts

The module Texts provides operations for reading and writing basic data
types to text streams. The model for input text streams is a sequence of
characters struetured into lines; this model is implemented as a sequence of
character strings terminated by null characters (0C). Note that null
characters serve as both line and stream terminators; line separation and the
end of an input stream are indicated by the procedures EOL and EOT.

Control characters are nonprintable ASCI characters (other than nulls) that
are not interpreted by the underlying implementation. Interpreted control
characters do not themselves appear in a text stream. An example of an
interpreted control character is a carriage return read from the console; it is
translated into a (line-terminating) null character.

Text stream I/O is performed through variables declared with type TEXT.
VAR listing, errors: TEXT;

The exported text variables input and output are connected to the system
terminal and represent the standard input and output streams. Programs
performing only standard 1I/O do so through input and output. The text
variable console is connected to the console; it is used for writing console
messages (in case the standard text streams have been redirected).

MODULE ZZ;
FROM Texts IMPORT output, WriteString;
BEGIN
WriteString(output, "Hi there!");
END ZZ.

The procedures Connect and Disconnect are used to open and close text
variables for text I/O operations, Text streams do not directly access
external files; instead, they are "connected" to file ‘variables which in turn
have already been opened. Connect associates a text stream with an existing
(open) file variable, (Note that Connect does not affect the file state.)
Disconnect disassociates a text stream from its file variable. Connect and
Disconnect return a value (of type TextState) indicating the result of the
operation, Text I/O cannot be performed on an unconnected (or
disconnected) text stream.

IF Connect(listing, listfile) # TextOK THEN HALT END;

Standard Library

Texts

page 10

Read returns every character in a text stream (including nulls and control
characters). ReadInt and ReadCard skip leading blanks and control
characters and terminate after reading a non-digit character. ReadLn reads
the rest of a text line, EOL always returns TRUE after calls to ReadLn.
ReadAgain causes the last character read to be read again by the following
read operation. When reading a text stream from the console, typing a
backspace deletes the last character typed in.

ReadCard(input, c);

LOOP
ReadLn(t, s);
IF EOT(t) THEN EXIT END;
WriteString(listing, s);
WriteLn(listing);

END;

EOL and EOT are set after every read operation., EOL returns TRUE if the
line-terminating null character was read or if EOT is TRUE. EOT becomes
TRUE if the previous operation failed (either because of an error or because
the end of the text stream was reached). Note that EOT is set to TRUE if
any operation returns a result value other than TextOK.

NOTE- On calls to Readlnt and ReadCard, EOL is set to TRUE only
if the end-of-line marker is the terminating character. If a line
of numbers contains trailing blanks, EOL is not set to TRUE
after reading the last number on the line.]

Loop
LOOP Read(t, ch);
IF EOL(t) THEN EXIT END;
Process(ch);
END;
IF EOT(t) THEN EXIT END;
ProcessLine;
END;

TextStatus returns a value (of type TextState) indicating the status of the
specified text variable; in particular, the result of the last text stream
operation, TextStatus returns an undefined value for text streams which
have not been connected. (Note that EOL and EOT are both set to TRUE if
any operation returns a text result other than TextOK.)

Standard Library

Texts

page 11

Text results have the following meanings:

TextOK - The last operation was successful,
FileError - Error in underlying file operation,
FormatError - Invalid data format,

ConnectError -

Invalid operation on (un)connected text stream.

The parameter 'n' in the numerical write operations (WriteInt, WriteCard) is
used for output formatting., If a numerical string contains fewer characters
than are specified by n, it is preceded by enough blank characters to make
the resulting output n characters long. If n specifies fewer characters than
are in the numerical string, it is ignored.

NOTE-~- The file positioning operations defined in Files can be applied
to files connected to text streams, allowing random access of
text streams; however, file positions are restricted to line
boundaries (i.e. when EOL(t) = TRUE), The effect of
positioning the file within a text line is not defined.

SetTextHandler allows error handling procedures to be bound to specific text
variables; if a text operation sets TextStatus to a value other than TextOK,
the associated procedure is automatically invoked. Error handlers are useful
when large numbers of operations are performed on a text variable; they
eliminate the need for explicit error checking code after every text
operation. Note that the handling procedure's parameter list must be
compatible with type TextHandler; the text parameter informs the.handler of
the text result causing the error. Text handlers can only be set on open
text variables. Connect and Disconnect do not invoke text handlers.

NOTE- Texts automatically diseconnects any text streams left
connected by a program (on return from "unshared" subprogram
calls — see the module Program for details).

WARNING- Handler procedures should limit their operations to calling
Disconnect and/or writing error messages, as further operations
on the erroneous text stream may reinvoke the handler. Also,
subprograms should not install local handler procedures in text
variables declared outside the subprogram; the system may crash
if Texts attempts to invoke a handler procedure which is no
longer memory resident (because its host program has
terminated).

Standard Library
Texts
page 12

Examples of Texts:

MODULE AddingMachine;

FROM Texts IMPORT _
input, output, ReadInt, Writelnt, WriteString, WriteLn;

VAR il, i2: INTEGER;

BEGIN
LOOP
WriteString(output, "a: ");
ReadInt(input, il);

WriteString(output, "b: ");
ReadInt(input, i2);

WriteString(output, "a+b = ");
WriteInt(output, i1 + i2, 1);

WriteLn(output);
IF (i1 = 0) & (i2 = 0) THEN EXIT END;
END;

END AddingMachine.

Standard Library
Texts
page 13

MODULE AddResults; (* sum each line of integers in f *)

FROM Files IMPORT
FILE, Open, Create, Close, FileOK, SetFileHandler;

FROM Texts IMPORT
console, output, TEXT, Connect, Disconnect, EOT, EOL, TextState,
SetTextHandler, ReadInt, WriteInt, WriteLn, WriteString;

VAR f: FILE;
t: TEXT;
i, sum: INTEGER;

PROCEDURE handler (error: TextState);

BEGIN WriteString(console, "Text error");
HALT;

END handler;

PROCEDURE IOError;

BEGIN WriteString(console, "I/O error");
HALT;

END IOError;

BEGIN
IF Open(f,"ints,text") # FileOK THEN IOError END;
IF Connect(t, f) # TextOK THEN IOError END;
SetTextHandler(t, handler);

LOOP Readnt(t, i);
IF EOT(t) THEN EXIT END;

sum := 03

LOOP INC(sum, i);
IF EOL(t) THEN EXIT END;
ReadInt(t, i);

END;

WriteInt(output, sum, 0);
WriteLn(output);
END;

IF Disconnect(t) # TextOK THEN IOError END;
IF Close(f) # FileOK THEN IOError END;
END AddResults,

Standard Library
Texts
page 14

DEFINITION MODULE Texts;
FROM Files IMPORT FILE;

EXPORT QUALIFIED
TEXT, input, output, console, Connect, Disconnect,
EOT, EOL, TextStatus, TextState, SetTextHandler,
Read, ReadInt, ReadCard, ReadLn, ReadAgain,
Write, WriteString, WriteInt, WriteCard, WriteLn;

TYPE TEXT;
(* Predeclared

VAR input, output, console: TEXT; text files *)

PROCEDURE EOT (t:
PROCEDURE EOL (t:

TEXT):
TEXT):

BOOLEAN;
BOOLEAN;

(* End of text read *)
(* End of line read *)

TYPE TextState = (TextOK, FormatEfror, FileError, ConnectError);
PROCEDURE TextStatus (t: TEXT): TextState;

TYPE TextHandler = PROCEDURE (TextState);
PROCEDURE SetTextHandler (t: TEXT; handler: TextHandler);

PROCEDURE
PROCEDURE

Connect (VAR t: TEXT; f: FILE): TextState;
Disconnect (VAR t: TEXT): TextState;

Read

ReadInt
ReadCard (t:
ReadLn (t:

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

(ts
(t:

TEXT;
TEXT;
TEXT;
TEXT;

VAR ch: CHAR);

VAR i: INTEGER);

VAR c¢: CARDINAL);

VAR s: ARRAY OF CHAR);

PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

END Texts,

ReadAgain (t:

Write (ts
WriteString (t:
Writelnt (t:
WriteCard (t:
WriteLn (te

TEXT);

TEXT;
TEXT;
TEXT;
TEXT;
TEXT);

ch: CHAR);

s: ARRAY OF CHAR);

is INTEGER; n: CARDINAL);
¢, n: CARDINAL);

Standard Library

Reals

page 15

7 Reals

The module Reals provides I/O and conversion routines for floating point
numbers. The procedures RealToStr and StrToReal convert real numbers
between character and internal representations; they return TRUE after
successful conversions. Strings passed to StrToReal cannot have any leading
or trailing blanks.

The parameter 'n' in WriteReal is used for output formatting (see Texts for
details). The parameter 'digits' in WriteReal and RealToStr determines
whether the number is to be displayed in fixed point or exponent notation.

'digits' < 0 specifies exponent notation, with ABS(digits) fractional digits
displayed. A mantissa sign appears only if the mantissa is negative. The
number of fractional digits displayed is not constrained by the number of
significant digits in the underlying implementation. The exponent part always
appears as the letter 'E' followed by an exponent sign (either '+' or '-') and
the exponent digits. The number of exponent digits is fixed; therefore,
exponent values may contain leading zeroes,

'digits' >= 0 specifies fixed point notation, with 'digits' fractional digits
displayed. A sign character appears only if the number is negative.
Specifying zero fractional digits suppresses the display of the decimal point.
The number of fractional digits displayed is not constrained by the number of
significant digits in the underlying implementation,

DEFINITION MODULE Reals;
FROM Texts IMPORT TEXT;

EXPORT QUALIFIED RealToStr, StrToReal, ReadReal, WriteReal;

PROCEDURE ReadReal (t: TEXT; VAR r: REAL);

PROCEDURE WriteReal (t: TEXT; r: REAL;
n: CARDINAL; digits: INTEGER);

PROCEDURE RealToStr (r: REAL; digits: INTEGER;
VAR s: ARRAY OF CHAR): BOOLEAN;

PROCEDURE StrToReal (s: ARRAY OF CHAR;
VAR r: REAL): BOOLEAN;

END Reals,

Standard Library

Files
page 16
8 Files
The module Files implements data files. Both random and sequential

("stream") file access are supported.

The logical model of a file is a sequence of bytes with a current position
(the next byte in the sequence to be accessed) and an end position (the
position past the last byte in the sequence).

Files are accessible as byte streams or as sequences of word-oriented
records. Files also provides access to the underlying file system; operations
are provided for connecting files to external files and for renaming and
deleting external files.

File I/O is performed through variables declared with type FILE.
VAR source, code: FILE;

EOF is set after every read operation. EOF returns TRUE if the previous
operation failed (either because of an I/O error or because the file position
was at the end of the file). Note that EOF is set to TRUE if any operation
returns a result value other than FileOK.,

FileStatus returns a value (of type FileState) indicating the status of the
specified file; in particular, the result of the last file operation.,

The file results have the following meanings:

FileOK - The last operation was successful;
NameError - Specified external file was not available.
UseError - Invalid external file operation.

StatusError - Attempt to access a closed file.
DeviceError - Error in underlying I/O system.
EndError - File position exceeds end of file.

Open connects a file to an existing external file. Create creates a new
external file and connects it to the file. Close disconnects a file, preserving
the external file., Release disconnects a file and deletes the external file.
Open, Create, Close, and Release return a value (of type FileState)
irdicating the result of the operation., File I/O cannot be performed on
unopened (closed) files.

IF Open(f, 'accounting.data') # FileOK THEN
WriteString('File not opened'); HALT
END;

Standard Library
Files
page 17

Rename changes the name of an existing external file. Rename returns a
value indicating the result of the operation; 'FileOK' indicates that the file
was successfully renamed. If the file’s new name matches the name of
another file on the volume, that file is deleted, The specified external file
must not be open.

Delete removes an existing external file from the directory. Delete returns
a value indicating the result of the operation; 'FileOK' indicates that the file
was successfully deleted. The specified external file must not be open.

Read reads a character from the file, EOF returns TRUE after a read
operation is attempted at the end-of-file position,

ReadRec reads a word-oriented record from the file. EOF returns TRUE
when a read operation is attempted at the end-of-file position. If ReadRec
attempts to read more data than is available at the end of a file, the
contents of the input variable are undefined and FileStatus is set to
EndError,

ReadBytes reads a stream of bytes from the file and returns the number of
bytes actually read. EOF is set to true if the number of bytes read is less
than the number of bytes specified.

Write writes a character to the file. WriteRec writes a word-oriented record
to the file, WriteBytes writes a stream of bytes to the file and returns the
number of bytes written, If the amount of data actually written to a file is
less than the amount specified, FileStatus is set to DeviceError.

NOTE- All write operations may overwrite existing data in a file, A
file can be extended only by appending data to the immediate
end-of-file position (i.e. the file position returned by GetEOF).

LOOP
Read(infile, ch);
IF EOF(infile) THEN EXIT END;
Write(outfile, ch);

END;

SetPos sets the current file position to the specified value. The file position
cannot be set past the current end of the file; attempts to do so cause
FileStatus to return EndError. GetPos returns the current file position.

SetEOF sets the end file position to the specified value. The end f{ile
position indicates the file position of the byte following the last byte in a

Standard Library

Files

page 18

file. The end file position cannot be set in front of the current file position
or past the current end file position; attempts to do so cause FileStatus to
return EndError. GetEOF returns the end file position.

GetEOF(F, endpos);
SetPos(F, endpos);
WriteByte(F, 0C);

NOTE- FileStatus returns UseError if the file positioning operators
(GetEOF, SetEOF, GetPos, SetPos) are called on files connected
to serial (i.e. nondisk) files.

File position values are stored in variables of type FilePos.
VAR startpos, endpos: FilePos;

The procedure CalcPos computes absolute file positions; it translates a record
number and record size into an absolute file position. Record sizes are
defined in terms of the storage unit of the wunderlying machine; this
convention is compatible with the values returned by the system-defined
procedures SIZE and TSIZE. The first record in a file is defined as
record 0.

CalePos(blknum, TSIZE(block), startpos);

NOTE- Values stored in variables of type FilePos are implementation-
dependent. File positions are intended for use as abstract file
markers (i.e. where arguments to SetPos are obtained from
GetPos, GetEOF, or CalcPos).

SetFileHandler allows error-handling procedures to be bound to specific file
variables; if a file operation sets FileStatus to a value other than FileOK,
the associated procedure is automatically invoked. Error handlers are useful
when large numbers of operations are performed on a file variable; they
eliminate the need for explicit error-checking code after every file operation.
Note that the handling procedure's parameter list must be compatible with
type FileHandler; the file result parameter allows the handler to indicate the
file result causing the error. File handlers can only be set on open file
variables, File handlers are not invoked by Open, Close, Create, or Release.

Standard Library

Files
page 19
NOTE- Files automatically closes any files left open by a program (on
'unshared' subprogram calls — see the module Program for
details).

WARNING- Handler procedures should limit their operations to closing
the file or writing error messages, as further operations on the
erroneous file may reinvoke the handler. Also, subprograms
should not install local handler procedures in file variables
outside the subprogram; the system may crash if Files attempts
to invoke a handler procedure which is no longer memory
resident (because its host subprogram has terminated).

Standard Library

Files

page 20

MODULE FileCopy;

FROM Files IMPORT
FILE, Open, Create, Close, FileStatus, FileState,
SetFileHandler, Read, Write, EOF;

FROM Terminal IMPORT ReadLn, WriteString, WriteLn;

PROCEDURE handler(error: FileState);
BEGIN

WriteString('File 1/O error');

HALT;
END handler;

TYPE FProc = PROCEDURE(VAR FILE, ARRAY OF CHAR): FileState;

PROCEDURE FileOpen(VAR f: FILE; fcall: FProe; ss ARRAY OF CHAR);
VAR name: ARRAY [0..20] OF CHAR;
BEGIN
LOOP WriteString(s);
ReadLn(name);
IF feall(f, name) = FileOK THEN EXIT END;
WriteString("Can't open ");
WriteString(name); WriteLn;
END;
SetFileHandler(f, handler);
END FileOpen;

PROCEDURE FileClose(VAR f: FILE);
BEGIN
IF Close(f) # FileOK THEN
WriteString('Error closing file');
HALT;
END;
END FileClose;

VAR infile, outfile: FILE;
ch: CHAR;

BEGIN
FileOpen(infile, Open, 'Input file? ');
FileOpen(outfile, Create, 'Output file? ');
LOOP Read(infile, ch);
IF EOF(infile) THEN EXIT END;
Write(outfile, eh);
END;
FileClose(infile);
FileClose(outfile);
WriteString('file copy complete');
END FileCopy.

Standard Library
Files
page 21

DEFINITION MODULE Files;
FROM SYSTEM IMPORT WORD, ADDRESS;
EXPORT QUALIFIED

FILE, EOF, FileStatus, FileState, SetFileHandler,

Open, Create, Close, Release, Rename, Delete,

FilePos, SetPos, GetPos, SetEOF, GetEOF, CalcPos,

Read, Write, ReadRec, WriteRec, ReadBytes, WriteBytes;
TYPE FILE;
PROCEDURE EOF (f: FILE): BOOLEAN; (* End of file encountered *)
TYPE FileState = (FileOK, NameError, UseError, StatusError, DeviceError, EndError);
PROCEDURE FileStatus (f: FILE): FileState; (* file 1/O status ¥)
TYPE FileHandler = PROCEDURE (FileState);
PROCEDURE SetFileHandler (f: FILE; handler: FileHandler);

PROCEDURE Open (VAR f: FILE; name: ARRAY OF CHAR): FileState;
PROCEDURE Create (VAR f: FILE; name: ARRAY OF CHAR): FileState;

PROCEDURE Close (VAR f: FILE): FileState;
PROCEDURE Release (VAR f: FILE): FileState;

PROCEDURE Delete (name: ARRAY OF CHAR): FileState;
PROCEDURE Rename (old, new: ARRAY OF CHAR): FileState;

TYPE FilePos;

PROCEDURE GetPos (f: FILE; VAR pos: FilePos);
PROCEDURE GetEOF (f: FILE; VAR pos: FilePos);

PROCEDURE SetPos (f: FILE; pos: FilePos);
PROCEDURE SetEOF (f: FILE; pos: FilePos);

PROCEDURE CalcPos (recnum, recsize: CARDINAL; VAR pos: FilePos);
PROCEDURE Read (f: FILE; VAR ch: CHAR);

PROCEDURE ReadRec (f: FILE; VAR rec: ARRAY OF WORD);

PROCEDURE ReadBytes (f: FILE; buf: ADDRESS; nbytes: CARDINAL): CARDINAL;
PROCEDURE Write (f: FILE; ch: CHAR);

PROCEDURE WriteRec (f: FILE; VAR rec: ARRAY OF WORD);

PROCEDURE WriteBytes (f: FILE; buf: ADDRESS; nbytes: CARDINAL): CARDINAL;

END Files,

Standard Library
Terminal
page 22

9 Terminal

The standard module Terminal provides basic routines for readmg characters
from the keyboard and writing characters to the screen,

Read waits for a character to be typed; the character is echoed to the
console when it is read,

BusyRead immediately returns a null character (0C) if a character has not
been typed. Characters are not echoed when they are read.

ReadAgain places the last character read back into the buffer so it can be
subsequently re-read.

ReadLn reads characters until a carriage return is typed. Characters are
echoed to the screen as they are read. Typing backspace deletes the last
character typed in. The carriage return is read, but is not returned in the
string parameter.

DEFINITION MODULE Terminal;

EXPORT QUALIFIED Read, BusyRead, ReadAgain, ReadLn,
Write, WriteString, WriteLn;

PROCEDURE Read (VAR ch: CHAR);
PROCEDURE ReadLn (VAR s: ARRAY OF CHAR);
PROCEDURE BusyRead (VAR ch: CHAR);
PROCEDURE ReadAgain;

PROCEDURE Write (ech: CHAR);
PROCEDURE WriteString (s: ARRAY OF CHAR);
PROCEDURE WriteLn;

END Terminal,

Standard Library
Storage
page 23

10 Storage

The module Storage provides dynamic storage allocation and deallocation.

ALLOCATE allocates a storage area containing 'size' storage units (as
returned by SIZE and TSIZE) and returns the storage address in 'p'.
DEALLOCATE deallocates the storage area specified by p and size and sets
p to NIL. Available returns TRUE if a storage area of the indicated size
can be allocated.

NOTE- Calls to the standard procedures NEW and DISPOSE require
the identifiers ALLOCATE and DEALLOCATE to be visible,

NOTE- A program is terminated with StorageError if it attempts to
a) allocate too large of a storage area or b) deallocate a
storage area that has already been deallocated.

NOTE- On 'unshared' subprogram calls, all storage allocated by a
subprogram is automatically deallocated when the subprogram
terminates. (See the module Program for details.)

NOTE- Dynamic storage is always allocated in the system work space;
processes are unable to allocate dynamic storage within their
private work spaces.

DEFINITION MODULE Storage;

FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED ALLOCATE, DEALLOCATE, Available;
PROCEDURE ALLOCATE (VAR p: ADDRESS; size: CARDINAL);
PROCEDURE DEALLOCATE (VAR p: ADDRESS; size: CARDINAL);
PROCEDURE Available (size: CARDINAL): BOOLEAN;

END Storage.

Standard Library
Program
page 24

11 Program

The module Program is used to perform subprogram calls. It also provides
exception handling facilities and a mechanism allowing library modules to
specify initialization and termination procedures which are automatically
invoked on subprogram calls.

Call loads and executes the program module specified by the module
identifier passed in the parameter 'programName’, Any library modules
imported by the subprogram that are not already in memory are also loaded.,
When the subprogram terminates, the program module and all modules loaded
by it are released from memory, and control returns to the calling program.,

The Call parameter ‘calltype' specifies whether the subprogram sheres its
dynamic storage with the calling program. Setting calltype to 'Unshared'
causes all storage allocated by the subprogram to be automatically
deallocated when the subprogram terminates. Setting calltype to 'Shared'
retains any dynamiec storage left behind by the subprogram.

The Call parameter ‘errors' specifies whether execution errors generated by
the called subprogram are to be acted upon by the system or merely returned
as a result value to the calling program, Setting errors to 'SystemTrap'
causes execution errors to invoke a system-defined error handler (usually an
execution error message or debugger — see The Modula-2 System for
details), Setting errors to 'CallerTrap' returns control directly to the calling
program. Note that in either case control is defined to eventually return to
the calling program,

Call returns a value (of type CallResult) indicating the execution result of
the called subprogram; this value reflects either a program load error, an
execution error, or normal program termination.

NOTE- The Modula-2 System explains how the loader accesses the
library.

NOTE- Subprograms can be called only from the main process.

Standard Library
Program
page 25

The following example shows how Program can be used to write a simple
"shell" program which emulates the UCSD Pascal system:

MODULE Shell;

FROM Program IMPORT Call, CallResult, Unshared, SystemTrap;
FROM Terminal IMPORT ReadLn, WriteString, WriteLn, Read;
FROM Screen IMPORT ClearScreen, GotoXY;

VAR ch: CHAR;
rslt: CallResult;
name: ARRAY [0..40] OF CHAR;

BEGIN
ClearScreen;
LOOP
GotoXY(0, 0);
WriteString("Command: X(ecute, F(iler, E(ditor, H(alt [0.3] ™);
Read(ch);
ClearScreen;
ch := CAP(ch);
IF ch = "H" THEN RETURN
ELSIF ch = "F" THEN name := "SYSTEM.FILER."
ELSIF ch = "E" THEN name := "SYSTEM.EDITOR."
ELSIF ch = "X" THEN
WriteString("Execute what file? ");
ReadLn(name);
ELSE
name[0] := 0C;
END;
IF name[0] # 0C THEN
rslt := Call(name, Unshared, SystemTrap);
END;
END;
END Shell.

Standard Library
Program
page 26

Program results have the following meanings:

NormalReturn ~ Program terminated normally,
ProgramHalt - Program executed 'HALT'.
RangeError - Value range error.
SystemError - Invalid code structure,
FunectionError - Funetion did not execute 'RETURN’,
StackOverflow - System stack exceeded.
IntegerError - Integer overflow,
DivideByZero - Divide by zero.
AddressError - Invalid address reference.,
UserHalt - Program terminated by user.
CodelOError - System I/O error; code not loaded.
UserIOError - User I/O error raised by program,
InstructionError - Unimplemented instruetion.
FloatingError - Floating point arithmetic error.
StringError - String overflow or invalid index.
StorageError - Dynamice storage exhausted,
VersionError - Module version error.
MissingProgram - Subprogram not found.
MissingModule - Library module not found.
LibraryError - Incorrect library structure,
NotMainProcess - Attempted Program call by process.
DuplicateName - Duplicate library module names.
NOTE- Programs are responsible for monitoring the result values

returned by subprogram calls and acting accordingly in the event
of an error,

Execution errors are usually generated by the system; however, programs cean
terminate themselves with an error by calling Terminate with the appropriate
error value as an argument:

PROCEDURE StopProgram(cause: CallResult);

BEGIN '
WriteString("Fatal error #");
WriteCard(ORD(cause), 0);
Terminate(cause);

END StopProgram;

Standard Library
Program
page 27

SetEnvelope allows library modules to define initialization and termination
procedures which are automatically executed before and after subprogram
calls; these procedure pairs are called envelopes because of the way they
"surround" subprograms. Envelopes are used to manage system resources that
must be started up and shut down independently of their use by programs.,
For instance, the module Files uses envelopes to close files accidentally left
open by subprograms.,

A library module establishes an envelope by calling SetEnvelope in its outer
block, passing two of its own procedures as arguments. The parameter 'init’
indicates the initialization procedure, the parameter 'term' the termination
procedure,

The value passed to the parameter 'mode' specifies how often an envelope is
invoked. 'FirstCall' invokes the envelope only once - around the subprogram
that loads the library module. ‘'UnsharedCalls' invokes the envelope around
nested "unshared" subprogram calls, 'AliCalls' invokes the envelope around
all nested subprogram calls,

"unshared" envelopes are useful when the resource being managed requires
dynamic storage; they allow shared subprograms to establish resources for use
by the calling program., For instance, the module Files uses an "unshared"
envelope to allow shared subprograms to open files used by the calling
program,

On subprogram cells, initialization procedures are invoked after all new
library modules have been loaded but before their outer blocks are executed.
After a subprogram finishes, termination procedures are invoked before any
library modules are released from memory.

When called, SetEnvelope immediately calls the passed initialization procedure.
This ensures that library modules are initialized when they are first loaded
into memory.

NOTE- On subprogram calls, the execution order of initialization
~ procedures is determined by the order in which they are
installed with SetEnvelope; the first procedure established is the
first procedure executed. Termination procedures are executed

in the reverse order of the initialization procedures.

WARNING- SetEnvelope should be called only from the outer blocks
of library modules; calling it in arbitrary places in a program
may crash the system. Execution errors within
initialization/termination sections are returned as if they
originated in the called subprogram,

Standard Library
Program
page 28

In the following example, the library module MyTexts uses envelopes to keep
track of the text streams created by a subprogram, If the subprogram
neglects to disconnect a text variable, the termination procedure does so
automatically, Note that texts are left connected on 'shared' calls,

IMPLEMENTATION MODULE MyTexts;

TYPE TEXT = POINTER TO RECORD
open: BOOLEAN;
next : TEXT;

END;
TextMark = POINTER TO MarkRec;
MarkRec = RECORD

Texts: TEXT;
Prev : TextMark;
END;

VAR TopMark: TextMark;

PROCEDURE MarkText;
VAR p: TextMark;
BEGIN NEW(p);
p~.Prev := TopMark;
p~.Texts := NIL;
TopMark := p;
END MarkText;

PROCEDURE ReleaseText;
VAR p, q: TEXT;
t: TextMark;
r: TState;
BEGIN
t := TopMark;
p := t".Texts;
TopMark := t".Prev;
DISPOSE(t);
WHILE p # NIL DO
q = p;
IF p~.open THEN r := Disconnect(p) END;
p := q".next;
DISPOSE(q);
END;
END ReleaseText;

BEGIN
SetEnvelope(MarkText, ReleaseText, UnsharedCalls);
END MyTexts,

Standard Library
Program

page 29
DEFINITION MODULE Program;
EXPORT QUALIFIED
Call, CallMode, ErrorMode, CallResult,
Terminate, SetEnvelope, EnvMode;

TYPE CallResult

L}

(NormalReturn, ProgramHalt, RangeError, SystemError,
FunctionError, StackOverflow, IntegerError,
DivideByZero, AddressError, UserHalt, CodelOError,
UserlOError, InstructionError, FloatingError,
StringError, StorageError, VersionError,
MissingProgram, MissingModule, LibraryError,
NotMainProcess, DuplicateName);

TYPE CallMode = (Shared, Unshared);
TYPE ErrorMode = (SystemTrap, CallerTrap);

PROCEDURE Terminate (exception: CallResult);
PROCEDURE Call (programName: ARRAY OF CHAR;
calltype : CallMode;
errors : ErrorMode): CallResult;
TYPE EnvMode = (AllCalls, UnsharedCalls, FirstCall);
PROCEDURE SetEnvelope (init, term: PROC; mode: EnvMode);

END Program,

Standard Library
Processes
page 30

12 Processes

Modula-2's coroutines are a low-level facility provided by the system module;
most concurrent programs are expected to import process schedulers from the
library. The standard utility module Processes implements the concept of
sequential processes, Processes exports the identifiers SIGNAL,
StartProcess, SEND, WAIT, Awaited, and Init,

The only difference between coroutines and sequential processes is the
method used for scheduling the execution of individual processes. (Note that
the restrictions on the use of coroutines apply equally to sequential
processes,) Coroutine scheduling is performed explicitly; transfers occur only
between named coroutines. Sequential process scheduling is left to the
process scheduler; sequential processes synchronize their execution by
operating on shered variables known as signals. Signals are declared as
variables of type SIGNAL.

Signals serve the same purpose in sequential processes that process variables
do in coroutines; they point to suspended processes, and are referenced
whenever a process is suspended or resumed, The difference is that a
process variable points to a single coroutine process, while a signal points to
a first-in-first-out queue of sequential processes.

Sequential processes have three states: executing, ready, and suspended, As
with coroutines, only one process executes at a time. A process is ready if
it is stored in a special queue known as the ready queue, and suspended if
stored in a signal's queue.

Sequential processes are created with the procedure StartProcess.
StartProcess has the following syntax:

PROCEDURE StartProcess (P: PROC; n: CARDINAL);

P is the procedure which the new process will execute, P must be a
parameterless procedure declared at the global (outermost) level in a
compilation unit. n specifies the size of the work space in which the
process will execute. (Note that a process variable is not specified.) When
a sequential process is started, it is placed on the ready queue.

A process suspends itself on a signal's queue by calling WAIT. WAIT has the
following syntax:

PROCEDURE WAIT (VAR s: SIGNAL);
s is the signal on which the process is to be suspended. The process

scheduler adds the suspended process to the end of the signal queue, and
selects a process from the ready queue for execution.

Standard Library
Processes
page 31

NOTE- Processes are selected from the ready queue on a first-in-
first-out basis.

WARNING- If a process suspends itself on a signal and there are no
processes on the ready queue, the program is halted. (This
condition is called "deadlock".)

A process resumes the execution of a suspended process by calling SEND.
SEND has the following syntax:

PROCEDURE SEND (VAR s: SIGNAL);

s is the signal from which a process is resumed. The process scheduler stops
the calling process (placing it on the ready queue) and selects a process from
the head of the signal queue for execution. If the signal named in SEND has
an empty queue, the calling process continues to execute.

Before they are used, signals must be initialized with the procedure Init.
Init(S1);

The procedure Awaited indicates whether a signal queue is empty.
IF NOT Awaited(S1) THEN HALT END;

Unlike coroutines, sequential processes can be considered to execute in
parallel, In place of direct transfers, sequential processes synchronize their
execution by performing SEND and WAIT operations on shared signal
variables, The following example is the sequential process analog of the
coroutine program presented in Introduction to Modula-2; in this example,
the processes compete (not necessarily fairly) for access to the console.

Standard Library
Processes
page 32

MODULE HiHo;

FROM Processes IMPORT
StartProcess, SIGNAL, SEND, WAIT, Init;

IMPORT Terminal;

MODULE Console[1];
IMPORT Terminal, Init, SIGNAL, SEND, WAIT;
EXPORT Write;

CONST MaxHiHo = 17;

VAR n: CARDINAL;
busy: BOOLEAN;
free: SIGNAL;

PROCEDURE Write(s: ARRAY OF CHAR);
VAR i: CARDINAL;
BEGIN
IF busy THEN WAIT(free) END;
busy := TRUE;
FOR i := 0 TO HIGH(s) DO Terminal.Write(s[i]) END;
INC(n);
IF n > MaxHiHo THEN Terminal.WriteLn; n := 0 END;
busy := FALSE;
SEND(free);
END Write;

BEGIN n := 0; busy := FALSE;
Init(free);
END Console;

PROCEDURE WriteHi;
BEGIN LOOP Console. Write("Hi') END
END WriteHi;

PROCEDURE WriteHo;
BEGIN LOOP Console.Write('"Ho') END
END WriteHo;

VAR forever: SIGNAL;

BEGIN Init(forever);
StartProcess(WriteHi, 200);
StartProcess(WriteHo, 200);
WAIT(forever);

END HiHo.

Standard Library
Processes
page 33

DEFINITION MODULE Processes;
EXPORT QUALIFIED SIGNAL, StartProcess, SEND, WAIT, Awaited, Init;
TYPE SIGNAL;

PROCEDURE StartProcess (P: PROC; n: CARDINALY);
(*start a sequential process with program P
and workspace of size n¥)

PROCEDURE SEND (VAR s: SIGNAL);
(*one process waiting for s is resumed*)

PROCEDURE WAIT (VAR s: SIGNAL);
(*wait for some other process to send s¥*)

PROCEDURE Awaited (s: SIGNAL): BOOLEAN;
(*Awaited(s) = 'at least one process waiting for s'*)

PROCEDURE Init (VAR s: SIGNAL);
(*compulsory initialization*)

END Processes.

Standard Library
Text & File Results
page 34

Appendix 1 Text & File Results
Texts

Text results have the following meanings:

0 TextOK - The last operation was successful.

1 FileError - Error in underlying file operation.

2 FormatError - Invalid data format.

3 ConnectError - Invalid operation on (un)connected text stream.
Files

File results have the following meanings:

0 FileOK - The last operation was successful,

1 NameError - Specified external file was not available.
2 UseError - Invalid external file operation.

3 StatusError - Attempt to access a closed file,

4 DeviceError - Error in underlying I/O system,

5

EndError - File position exceeds end of file.

Standard Library
Program Results
page 35

Appendix 2 Program Results

Program results have the following meanings:

;(DW-QO)UIO&WNHO

I S gy S T
00 -3 U1 OB =

DO BN
= oW

NormalReturn
ProgramHalt
RangeError
SystemError
FunctionError
StackOverflow
IntegerError
DivideByZero
AddressError
UserHalt
CodelOError
UserlOError
InstructionError
FloatingError
StringError
StorageError
VersionError
MissingProgram
MissingModule
LibraryError
NotMainProcess
DuplicateName

Program terminated normally.
Program executed "HALT".

Value range error.

Invalid code structure,

Function did not execute "RETURN",
System stack exceeded.

Integer overflow.

Divide by zero.

Invalid address reference.

Program terminated by user,
System I/O error; code not loaded.
User I/O error raised by program.
Unimplemented instruction.
Floating point arithmetic error.
String overflow or invalid index.
Dynamic storage exhausted.,
Module version error.

Subprogram not found.

Library module not found.
Incorrect library structure,
Attempted Program call by process.
Duplicate library module names,

Standard Library
Index
page 36

Standard Library
Index
page 37

Index

-A-

AdAressErroreeecsceessscesseess 26, 29
Allcalls.....l...l.l'..l...l.!.ltﬁozg
ALLOCATEIQ..Q..'OOOOIOOOCOOI.QO 23
Available.iseseesscatesecasanssoces 23
Awaited....l.l.lll.‘.‘.l.....31’ 33

-B-

BusyRead‘.C‘..........'.ll...Q... 22

-C-

CaICPOSOO.C.....‘Q‘CO.O..QO.I.O.Q.Z]-
Can...C..0'l.....’..‘.'..o...t... 29
CallerTrap..........O..CCO'...‘.OO 29
CauMode.t..!0......‘...lll..'.icozg
CallReSUItCOGO."l..“.'..'..l.l.l 29
Closeooco.ooooo-noooocococooooo00021
CloseInput ceeesceesesosesccsscnsecae 7
CloseOutput seveeeasccosaseossscoansead
CodelOErroreeescececesscseeses 26, 29
ConnecCtesescearssocsessesssasanaes 14
ConnecCtError.ceeeeccesssseeessll, 14
CONSOl€ssacsoscsnssscscscssascenss 14
Create..'...0............OQQ......21

-D-

Deadlock...l......i...'.'O.Ql...l.31
DEALLOCATEOO....Q.O..t........'23
Delete."....Q....l'.'00000000000021
DevViCeErrorseeseesesecscceessealb, 21
DisconneCtO.........0...0..-0.‘IOO14
DivideByZerOOIOOOOQIll.'...ICOZG, 29
Doneolo...O...loil!.......'ll017, 8
DuplicateNameQDOO0.000'0.0.0.’26, 29

-E-

EndError..Il..'.".l..l..l... 16’ 21
EnvelopeS.ececeeccccsscecaccccacees d7
EnvMode.eeeeeccescsccscccsssasace 29
EOF.......O.C..Q.O...OI..l.l'louozl
EOL"'0.00...0...'.0...0.0'.l 7, 14
EOT.O...O'O'O.O'..Q‘....0.0.0..0014
ErrorMoG€.ecceccecccsccscscscsaesssld

-F-

FILEeieececoscessscossacssaansanses 21
FileErroreeececescecsccasscees 10, 14
FileOKeveeoeosoasoosaaonnnaes 16, 21
FilePoSQIOOOOCOOOOOO0.0‘0...0..0.. 21
File ReSU].tS.........o-....-.. 16, 34
Files....OlOOOOOOOO0.0.0.0.0.0.0!. 21
Filestate...OOOOO'O..'0“.‘..0.0...21
Filestatus.l‘COI....‘..IO.Q....O.lizl
Firstcall...l..'.....0.0...0..0.".29
FloatingError e eeeececcsessessslb, 29
FOormatErrOreeesecescscaceeeessll, 14
FunctionError.ececesscceseeess 26, 29

-G-
GetEOF...'.."..........'........21
GetPOS..............'.'IO'..O'... 21
-H-
Handlers.....'.......l......llll, 18»

-I-

Implementation Guid€...eeeeceesescesl
mit..0.0.......!l.....'.......31, 33
moutol...'.....IOIQ...‘IOIIQOO 1, 7
inpuUteeeeeesensaccsancasccccannanans 14
InstructionErrorecceecececesseee 26, 29
IntegerErrOr e eeeseccaceensaeesdby 29
Introduction to Modula=2..ccceesees 3l

-L-
LibraryError........l....'...l 26’ 29
-M-

MissingModule..eeeessvecaseses 26, 29
MiSSingPrograml'....I..'.COI..26, 29

-N-

NameEITOrcecesocesncosscaseess 16, 21
NormalReturNeceseeeesccsasees 26, 29
NotMainProcesS.ceeesecssessasss26, 29

Standard Library
Index
page 38

-0-

Open.......0..0.......'...'.....0 21
OpenInPUt.'.'....l....'...‘.....'..?
Openoutput..tii..l......'l..‘..." 7
Output'.l.".....‘.'...'..'...'..'14

-pP-

ProcesseS.OCCOCOICOOOO.Q.O....30, 33
Program..'.'O0.0Q.Q'.OIO' 19, 23’ 29
ProgramHath..'OO.'....QC‘QCO 26, 29
Programming in Modula=2..¢eeeee.1, 4
Program ResultS.c.ceeecesceseslb, 35

-R -~

RangeError.eeceececeseccceees 26, 29
Read....l-‘.....t..t..7, 14’ 21’ 22
ReadAgaiN..ecescsssoscesenses 14, 22
ReadByteS.cesseeescssrscccnscccnnes 21
ReadCard.ecececccecsccccsenceeasly, 14
Readmt..'.........'l....0'0.. 7, 14
ReadLn.....'...O....'.....Q..14’ 22
ReadReal‘.O.l..".'.!.."."‘.s,]—5
ReadRecoICOOQ.!.C'...'CC...O.O'..ZI
ReadStringeeececececesecsscsonccensl
Reallnout....'...l..'..l.‘.l... 1, 8
Rea]s..t...'li'......'........ll..ls
RealToStreeeeeseecoesssersssssssseasld
Releas€eeeeecscesocccessccossoacasnssll
Rename.o-ooccn-ooo-'o.ooooo.ooooozl

-S-

SENDQ".O.l.....'...l.l..... 31, 33
Sequential ProCesS..ccccececcscssss3l
SetEnvelopeeccececcesccsesccecccnas 29
SetEOF..'..'OO.....O....!!..C.'..21
SetFileHandler...'CIOCOOOCQQ.O'CCOOZI
SetPOS.cesceccscsssscscsasasecenasll
SetTextH&ndleI'......4,,‘............14
Shared...00'.'....l........'...l..Zg
SIGNAL.OO...0.....0.'0..0... 30’ 33
Signals....'l..l.l.......'.l.......so
UtackOverflow.ccesececesescese26, 29
StartProcessS.cececcecessccaess 30, 33
StatusError.cceesesccescescsesss 16, 21
storage’.'..'...ﬂcl....Q.'Q....."23
StorageErrorceeccccescesscceese 26, 29
StringError.....OQ....'........26’ 29
StrTORealti'.QOOC.CQ.O.'...‘OII..lls

System-dependent ModuleS.sseceeeesel
SyStemError".'.0...........0026, 29
System’I‘l‘ap.!.C‘..‘.‘...O.C..0000.029‘

-T-

termCHQQ.l.'!..‘III..'."..OI.....'I
Terminaleeececeesccceccosssascaces 22
Terminate.ceeeeececessessscccccesesdd
TEXT..!000"0'.‘00...'....‘.....014
TextOK..".....0..0‘...0.0‘. 10, 14
Text Results....’.Q...QC.C.Q'O]-O’ 34
TeXlSeeaeeoscesccsacscsssasascasseld
TextStateseeeesseccccossssscnscees 14
TeXtStatUS....o-.,o--.............. 14
The MOdUla-z System-.--ooo.oooo.ool

-U-

UnsharedI'00!0.....'...0.0'0..0'0.29
Unsharedcalls.tl..l...l...'...o.‘. 29
USeError.eeeeeceesscsossnases 16, 21
UserHaltieeeeeceeeosancceeaees 26, 29
UserIOEIrrOr.seeececcescscaeseees26, 29
Utility Library.ececcscescessscesssel
Utility MOduleSQOOQOOOCOQO'.OCOC'00 1

-V-
VerSionError.'.'Q.O....."..'.. 26, 29

-W-

wAIT..'..C....C......CIC..00030’ 33
Writ€eeeeeeeecesnnesese?, 14, 21, 22 .
WriteByteS..O'.l..I....C.'Q'll.." 21
writecard'..‘.......I.....l...‘7’ 14
WriteHex..00..'....l........'...l..7
Writemt......-................ 7, 14
WritelN.eceecescescsscnaes 7y, 14, 22
writeoct.........Ql.'.'.‘..........7
WriteReal.ceeveeeececvecccenaee8, 15
writeRealOct..........0...'..0.0...8
writeRec.OC.....'CO..........'.00021
Wl‘iteStI'il'lg..u..........-..7, 14, 22

Modula~2 ‘

Utility Library

Release: 0.3
Date: 26 August 1983
Author: Richard Gleaves

Utility Library
Table Of Contents

Table Of Contents

lmtrOdUCtion..C.'."..."...'.00"..."...

2OVePView.oot-00000000000010c.oco.o.coa.

3 Module Hierarchy. .
4 MathLib0.......
5 DecimalS. e s oo
6 StringS. « o oo e

7 ConversionS. . « « «

*

L]

*

1

11
13

8ASCII...‘..II......I...'.....'...'.....14

mdex....CQ.......‘0'l....'l....ll......15

Utility Library
Introduction
page 1
1 Introduction

This document describes the utility library. The utility library is a collection
of modules which serve as an adjunct to the standard library; it is expected
to grow in future releases of the Modula-2 system.

The utility library provides the following facilities:
@ Numerical functions
@ Decimal arithmetie
@ String manipulation
@ Format conversion

@ ASCI control characters

2 Overview

The utility library contains the following modules:

@ MathLib0: Mathematical funections — sqrt, exp, ln, sin, cos,
arctan, entier.

@ Decimals: Arithmetic operations for 19-digit decimal numbers.
COBOL-~style "picture" editing for formatting dollar quantities.

@ Strings: String manipulation — Assign, Compare, Insert, Delete,
Concat, Copy, Pos.

@ Conversions: Format conversion between strings and numbers.

@ ASCII: Symbolic character constants for ASCII control
characters.

Utility Library
Module Hierarchy
page 2

3 Module Hierarchy

This section describes dependencies between the utility library modules and
other library modules. See Standard Library for more information on
module dependencies.

Utility module dependencies:
® MathLib0-> Program
@ Decimals-> Strings

@ Strings-> Program

Utility Library
MathLib0
page 3

4 MathLib0

The module MathLib0 provides basic mathematical functions. Arguments to
trigonometriec functions are in units of radians. ‘'reel' converts its integer
argument to a real number. ‘entier' returns the largest integer that is less
than or equal to the real argument.

If passed invalid arguments (e.g. square root of -1), MathLib0 halts the
program with the program resuit FloatingError.

NOTE- The procedure 'real' may not be provided in some
implementations. See The Modula-2 System for details,

DEFINITION MODULE MathLib0;

EXPORT QUALIFIED
sqrt, exp, In, sin, cos, arctan, real, entier;

PROCEDURE sqrt (x: REAL): REAL;
PROCEDURE exp (x: REAL): REAL;

PROCEDURE In (x: REAL): REAL;
PROCEDURE sin (x: REAL): REAL;
PROCEDURE cos (x: REAL): REAL;

PROCEDURE arctan (x: REAL): REAL;
PROCEDURE real (x: INTEGER): REAL;
PROCEDURE entier (x: REAL): INTEGER;

END MathLib0,

Utility Library
Decimals

pege 4

5 Decimals

The module Decimals provides integer arithmetic and formatting routines
suitable for business-oriented computation.

Decimal integers may contain up to 19 digits. Decimal variables are declared
with type DECIMAL.

VAR Sales, Costs, Profit: DECIMAL;
The following procedures perform arithmetic operations:

AddDec (a,b) -> a + b
SubDec (a,b) -> a-b
MulDee (a,b) -> a *b
DivDec (a,b) -> a DIV b
NegDec (a) => =-a

These procedures accept decimal integers as arguments and return decimal
integers as function results,

Profit := SubDec(Sales, Costs);

The Boolean variable DecValid is set after every arithmetic and.conversion
operation; its value indicates the result of the last operation., DecValid is
set to FALSE if the previous operation failed.

FOR office := Bangor TO Bangkok DO
Profit := AddDec(Profit, Net[office]);

END;

IF DecValid THEN HomeFree

ELSE CallTheAuditors END;

When an operation fails, the procedure DecStatus can be called to determine
the actual arithmetic error. DeecStatus returns a value (of type DecState)
indicating the error status of the specified decimal variable: NegOvfl
indicates negative overflow, PosOvfl positive overflow, and Invalid an invalid
integer result.

DecStatus also indicates the sign of valid decimal integers. DecStatus
returns a value indicating an integer's sign: Minus indicates a negative value,
Plus a positive value, and Zero the value 0.

TYPE DecState = (NegOvfl, Minus, Zero, Plus, PosOvfl, Invalid);

Utility Library
Decimals

Once a decimal variable assumes an erroneous state (e.g. NegOvfl), the error
condition propagates through subsequent operations involving the variable.
The following tables show how errors propagate through the arithmetic
operations. For operations of the form "A <op> B", the leftmost column
denotes states of A and the topmost row states of B.

Error propagation in addition and subtraction:

A\B NegOvfl Minus Zero Plus PosOvfl Invalid
NegOvfl NegOvfl NegOvfl NegOvfl NegOvfl Invalid Invalid
Minus NegOvfl PosOvfl Invalid
Zero NegOvfl PosOvfl Invalid
Plus NegOvfl PosOvfl Invalid
PosOvfl Invalid PosOvfl PosOvfl PosOvfl PosOvfl Invalid
Invalid Invalid Invalid Invalid Invalid Invalid Invalid

Error propagation in multiplication:

A\B NegOvfl Minus Zero Plus PosOvfl Invalid
NegOvfl PosOvfl PosOvfl Zero NegOvfl NegOvfl Invalid
Minus PosOvfl Plus Zero Minus NegOvfl Invalid
Zero Zero Zero Zero Zero Zero Invalid
Plus NegOvfl Minus Zero Plus PosOvfl Invalid
PosOvfl NegOvfl NegOvfl Zero PosOvfl PosOvfl Invalid
Invalid Invalid Invalid Invalid Invalid Invalid Invalid

Error propagation in division:

A\B NegOvfl Minus Zero Plus PosOvil Invalid
NegOvf{l Invalid Invalid Invalid Invalid Invalid Invalid
Minus Invalid Plus Invalid Minus Invalid Invalid
Zero Zero Zero Invalid Zero Zero Invalid
Plus Invalid Minus Invalid Plus Invalid Invalid
PosOvfl Invalid Invalid Invalid Invalid Invalid Invalid
Invalid Invalid Invalid Invalid Invalid Invalid Invalid

Error propagation in negation:

A NegOvifl Minus Zero Plus PosOvfl Invalid
PosOvfl Plus Zero Minus NegOvfl Invalid

page 5

Utility Library
Decimals

page 6

After a division operation, the character variable Remainder contains a
remainder digit; i.e. the next lower digit of the quotient. For instance,
dividing 33 by 7 returns the decimal value 4 and a remainder (in Remainder)
of "5", If a division operation sets DecValid to FALSE, Remainder is
assigned the character "?",

MilesPerHr := DivDec(TotalMiles, TotalHours);
IF Remainder >= "5" THEN

MilesPerHr := AddDec(MilesPerHr, One);
END;

The procedure CompareDec compares two decimal integers and returns an
INTEGER value indicating the comparison result: -1 if A is less than B; 0 if
A equals B; 1 if A is greater than B.

IF CompareDec(Sales, Costs) < 0 THEN
Blame(Economy);
END;

The procedure SetDecHandler allows error handlers to be bound to the
decimal module. If any operation fails, the handler procedure is
automatically invoked. Error handlers are most useful for trapping errors
during series of arithmetic operations; handlers allow programs to perform
decimal arithmetic (and format conversion) without having to check the
variable DecValid after every operation.

PROCEDURE handler(error: DecState);
BEGIN
WriteString("Decimal arithmetic error #");
WriteCard(ORD(error), 3);
HALT;
END handler;

SetDecHandler (handler);

Utility Library
Pictures
page 7

5.1 Pictures

Decimal integers have two formats: internal and external., Arithmetic and
logical operations are performed on integers stored in internal format.
External format is used for reading and writing integers in human-readable
form to the console or printer. The procedures StrToDec and DecToStr
convert integers between internal and external format.

Decimal integers in external format are stored in character strings. In
external format, an integer may contain a dollar sign, ecommas to separate
thousands of dollars, and a decimal point separating dollars from cents.

Here is a decimal integer in external format:
$923,841,371.38

External format is controlled by string parameters known as pictures,
Pictures serve as masks indicating how decimal integers should appear in
external format; they control the ineclusion of suech things as leading zeros,
signs, and decimeal points,

For instance, the picture used to print the decimal integer shown above is:
$,555,$5%,$9%,$$9.99

Without the picture, it would have appeared as:
92384137138

When converting internal to external format, pictures add the appropriate
punctuation characters into the integer, Pictures may contain only the
characters '9', 'Zt, '$', 'S', ', or '.'; in particular, blanks may not appear in
a picture.

digit

nonzero digit or leading blank
nonzero digit, leading blank, or '$'
sign: '+' or '-!

decimal point

- comma or leading blank

« s nAN®
]

Dollar signs ('$') are used to denote the digits of integers displayed as dollar
amounts, Dollar amounts are displayed with a ecurrency character and no
leading zeros, The currency character floats across any leading blanks so
that it appears adjacent to the leftmost digit.

Utility Library
Pictures
page 8

NOTE- If a decimal value contains as many digits as its corresponding
picture, no currency character is displayed, as each dollar sign
character is replaced by a digit. (This is best avoided by
specifying big pictures!)

Integers displayed without leading zeros represent their digits with 'Z's, A
'Z' is replaced by a digit if there is one; otherwise, it is replaced by a
blank.

Integers that require leading zeros to be displayed represent their digits with
'9's, A '9' is replaced by a digit if there is one; otherwise, it is replaced
by a '0'.

The picture characters '$', 'Z', and '9' can be mixed together in a single
picture to obtain the desired integer format. In the following picture, the
'9's guarantee that small dollar amounts appear in standard form:

$$$,$$9099 !
Here are some integers produced by this picture:

$0.39
$369.00
$48,327.04

A period ',' is replaced by a decimal point, 'S' prints a sign character:
either '+' or '-'., Note that sign characters and decimal points do not float
across leading blanks; they appear in their specified position. Commas are
used to separate integers into the traditional groups of three digits; like 'Z'
and '$' digits, commas are transformed into leading blanks when they appear
to the left of an integer.

Pictures not only control integer formatting, but place range constraints on
integer values. If an integer value exceeds its pieture (i.e. the number of
digits exceeds the integer of digit characters in the picture), DecToStr sets
DecValid to FALSE, and returns an ‘invalid' format string (see below). Thus,
pictures can be used to control the maximum number of digits that can
appear in an integer.

DecToStr displays erroneous decimal values as distinetively formatted strings.
Error string length is determined by the length of the corresponding picture.

PosOvfl => M4
NegOvfl -> ™ n
Invalid => "7

Utility Library
Input Pictures
page 9

5.2 Input Pictures

The picture formatting described so far has been limited to converting
decimal integers to their external (string) format, Pictures can also be used
to control an integer's input format; the procedure StrToDeec uses pictures to
convert integers from external to internal format.

Pictures in StrToDec work almost identically to those in DecToStr. If the
input string is shorter than the pieture string, leading blanks are added until
it is the same length as the picture. A currency character can appear only
once in the input string, and it must be adjacent to the highest order digit.
Commas must be matched unless they appear to the left of an integer. The
sign character must be matched by either a '+', '-!, or blank. Decimals
points must be matched unconditionally.

In the following picture, the '9's specify that small dollar amounts must be
entered in standard form:

$$$,$$9,99

Here are some valid input strings for this picture:

$0.79
$121.11
$99.44
$48,000.00

Pictures enforce format and range constraints on integer values passed as
input strings. StrToDec sets DecValid to FALSE and the decimal result to
Invalid in the following conditions:

@ The input string does not match the picture specification.

@ The input string is longer than the picture string.

® The input string and picture specify more than 19 digits.

Utility Library
Input Pictures
page 10

DEFINITION MODULE Decimals;

EXPORT QUALIFIED
DECIMAL, DecDigits, DecPoint, DecSep, DeeCur, DecStatus,
DecState, DecValid, StrToDee, DecToStr, NegDec, CompareDec,
AddDec, SubDee, MulDec, DivDec, Remainder, SetDecHandler;

CONST DecDigits= 19;

DecCur = '$%;
DecPoint = '.%;
DecSep =1',%

TYPE DECIMAL;
DecState = (NegOvfl, Minus, Zero, Plus, PosOvfl, Invalid);

VAR DecValid: BOOLEAN; (* set after every operation *)
Remainder: CHAR; (* remainder digit - set after DivDec *)

PROCEDURE StrToDec (String : ARRAY OF CHAR;
Picture: ARRAY OF CHAR): DECIMAL;

PROCEDURE DecToStr (Dec : DECIMAL;
Picture : ARRAY OF CHAR;
VAR RsltStr: ARRAY OF CHAR);
TYPE DecHandler = PROCEDURE (DecState);
PROCEDURE SetDecHandler (handler: DecHandler);
PROCEDURE DecStatus (Dec: DECIMAL): DecState;
PROCEDURE CompareDec (Dec0, Decl: DECIMAL): INTEGER;
PROCEDURE AddDec (Dec0, Decl: DECIMAL): DECIMAL;
PROCEDURE SubDec (Dec0, Decl: DECIMAL): DECIMAL;
PROCEDURE MulDec (Dec0, Decl: DECIMAL): DECIMAL;
PROCEDURE DivDeec (Dec0, Decl: DECIMAL): DECIMAL;
PROCEDURE NegDec (Dec0, Decl: DECIMAL): DECIMAL;

END Decimals,

Utility Library
Strings
page 11

6 Strings

The module Strings provides routines for manipulating variable-length
character strings.

The predeclared type STRING is provided for convenience; additional string
types can also be used with the string operators, but they must be declared
with a lower bound of zero in order to work correctly.

Assign assigns the contents of string variable source into string variable dest.
Insert inserts the string substr into str, starting at str[inx].
Delete deletes len characters from str, starting at str[inx].

Pos returns the index into str of the first occurrence of the substring substr,
Pos returns the value HIGH(str)+1 if no occurrence of the substring is found.

Starting at str[inx], Copy copies len characters into result.
Concat returns the concatenation of sl and s2 in result,
Length returns the number of characters in str.

CompareStr compares two strings and returns an integer value indicating the
comparison result: -1 if sl is less than s2; 0 if sl equals s2; 1 if sl is
greater than s2,

NOTE- String operators terminate the program with program result
StringError if the operation causes either an invalid string index
or string overflow,

Utility Library

Strings
page 12

DEFINITION MODULE Strings;

EXPORT QUALIFIED STRING, Assign, Insert, Delete,

Pos, Copy, Concat, Length, CompareStr;

TYPE STRING = ARRAY [0..80] OF CHAR;

PROCEDURE
PROCEDURE

PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE

PROCEDURE
PROCEDURE

END Strings.

Assign (VAR source, dest: ARRAY OF CHAR);

Insert (substr: ARRAY OF CHAR;
VAR str: ARRAY OF CHAR;
inx : CARDINAL);

Delete (VAR str: ARRAY OF CHAR;

inx: CARDINAL;

len: CARDINAL);
Pos (substr, str: ARRAY OF CHAR): CARDINAL;
Copy (str: ARRAY OF CHAR;

inx: CARDINAL;

len: CARDINAL;

VAR result: ARRAY OF CHAR);

Concat (sl, s2: ARRAY OF CHAR;
VAR result: ARRAY OF CHAR);

Length (VAR str: ARRAY OF CHAR): CARDINAL;
CompareStr (s1, s2: ARRAY OF CHAR): INTEGER;

Utility Library
Conversions
page 13

7 Conversions

The module Conversions provides representation conversions for the basic
numeric types. A result value of TRUE is returned after successful
conversions. String arguments cannot have any leading or trailing blanks.

DEFINITION MODULE Conversions;
FROM SYSTEM IMPORT WORD:;

EXPORT QUALIFIED
IntToStr, StrTolnt, CardToStr, StrToCard, HexToStr, StrToHex;

PROCEDURE IntToStr (i: INTEGER;
VAR s: ARRAY OF CHAR): BOOLEAN;

PROCEDURE StrTolnt (s: ARRAY OF CHAR;
VAR i: INTEGER): BOOLEAN;

PROCEDURE CardToStr (c: CARDINAL;
VAR s: ARRAY OF CHAR): BOOLEAN;

PROCEDURE StrToCard (s: ARRAY OF CHAR;
VAR c: CARDINAL): BOOLEAN;

PROCEDURE HexToStr (w: WORD;
VAR s: ARRAY OF CHAR): BOOLEAN;

PROCEDURE StrToHex (s: ARRAY OF CHAR;
VAR w: WORD): BOOLEAN;

END Conversions.

Utility Library
ASCIH
page 14

8 ASCII
The module ASCII defines symbolic names for the ASCII control characters.

DEFINITION MODULE ASCII;

EXPORT QUALIFIED
nul, soh, stx, etx, eot, eng, ack, bel,
bs, ht, 1, wvt, ff, er, so, si,
dle, del, de2, de3, dc4, nak, syn, etb,
can, em, sub, ese, fs, gs, rs, us, del;

CONST

nul = 00C; soh = 01C; stx = 02C; etx = 03C;
eot = 04C; enq = 05C; ack = 06C; bel = 07C;
bs =10C; ht = 11C; If = 12C; vt = 13C;
ff =14C; cer =15C; so = 16C; si = 17C;
dle = 20C; del = 21C; de2 = 22C; de3d = 23C;
de4 = 24C; nak = 25C; syn = 26C; etb = 27C;
can = 30C; em = 31C; sub = 32C; esec = 33C;
fs =34C; gs =35C; rs = 36C; us = 37C;
del = 177C;

END ASCILI.

Utility Library
Index
page 15

Index
- A -

ack..........’......l..'.'...‘....14

AddDec.........0...0.....“...."10
arctan...'..........'0....'.."....3
ASSigIl..l....l..ll...........‘l...12

-B-

bel.'l........'........'......C... 14

bsl'..l."...l......ll...‘........14

-C-

canllI....‘.I....l'.....l‘........14

CardToStr.tQ.0.......'.......'..0.13
CompareDeC.cseseseccessssascenssesll
CompareStr.ecceeesccaccessscsasses 12
Concat.sececocecscssosancsnsccanee 12
ConversionS...Ol.'.ll....l..l..... 13
CopyOOOOQOOIOD0.00'.00.0.000..... 12
cos...'O"l...."..'l......‘....0"3

cr...l.l‘.‘.Q.......'l..‘....‘....l4

-D -

dcl.I.'.lO..................00000014
dcz...I..0...'......‘.......l‘....14
d03..C......'....'..'..........Ql.l4

dc4..'........0.‘...........l.l...14

Deccur..l..'.'.0.......0....‘..0.10
DecDigits......0........0...'.....10
DECIMAL.....‘........‘l...."...10
Decimals......0'.......‘...........9
DecPoint..........‘.......‘.‘.....10
Decsep..............l........'... 10
DeCState....C.'.'0..........'.....10
Decstatus..'.....'................10
DecToStr.lI..........'l.'..'..... 10
Decvalid.."l..‘.'....‘.l'l.'...'.lo
delﬂﬂ......'0...Q.OQ...O........Q.14
Delete....l........l..........'.'.12
DiVDec‘oocoootncocooooco.oooaoo.o10

dle...l.'....‘...........‘........ 14

-E-

em'......l.....l.I.I..'......C.Q. 14

enql‘..ll.'...l.....l.l....l...l..l4
entier.l...‘..'.....l....'.........3

eOt..OC.IC..Il'.l.............l...14
esc.‘..Cl...l'....................14
etb.CQ'.QOQ..Q..O......C...C.C.".14
etx.......Q..Q....I.Q...OC..O.....14

expo.ol‘...l0000000000000000000000.3

-F-~-

ff".......Cl.l...‘.l...‘......'.' 14

fs'.....'I'.OIQ..'O..........'.Q.. 14

-G-

gs'...O....0'....'.....!0.....0.0.14

-H-
Hex’I‘ostr.....‘.l.‘....‘.'.."...Q 13
ht.‘.'...OCO'........OQCl.....l.'.14

-1~

msert............'.........'......12
mtTostrooooiooootol...o’ic.o.olooou 13
mvalid.........'.....l.......l...llo

-L-
Length'..‘.Q.I..I‘Q...'..‘........lz

lf.Oﬂ...........‘.....‘0..‘.'..0.. 14

ml...l....'................'...'.'3

-M-

MathLibO..'.....'.......l....'.'...s
Minus'..l.'...l.l.....l..'....'.'.lo
MulDeCOOC..'.0.‘.0‘0.'...0....0.' 10

-N-

nak..l....0.0....00.'........'....14
NegDec.........I.I.l...e.........lo
NegOVﬂ.........‘...0‘0.‘........ 10

nul.0...C.O.Q........"l....‘...Ql 14

Utility Library
Index
page 16

-P-

Pictures......'....................7

7P1us....Q...I.......I....‘..'.....10

Pos...........-...'.'...l.........12

POSOVfl...'...".....“..'.'..'.'.10

-R-

real..l....l.'.'.l..ll....'......l. 3
Remainder.'...I..'I...OI..'..IQQ. 10

rs......0....'.‘.'..'..'..C..".CO14

..S_
SetDecHaIldler......IC'...'C.'.....IO

si..l.Q.l.ll'..l.".l'...l.....". 14
Sin...'..I.l.I..O..'.l‘!....'.l...‘ 3
so.c..Q.Q.OOO....Q010000000000000.14
SONeeecocecsescccccscocscocncacacesld

Sqrt.......I..".‘.l..'.‘.......... 3

STRING.....I..‘....‘..O...'......lz
Strings....I....'....CI'....'.I..Q.IZ
StrToCard..I.I...ll..‘..'l.'......13
StrToDec.'.l..'..C.Q'......‘...... 10
StrToHex.l0..............."..... 13
StrTomt...0‘.....0.......'.'..'.‘ 13
Stxl..............0.'..........'..14

Sub....'.......................'..14
SubDeCQ.C.0...0............".... 10

sy]l.l......‘.Ql'....'.'..'.'.....l14

-U-

us.'.....'..l..'.‘..‘..'.....“v‘..14

-V-

vt..'.'...'.........'..."......‘.14

-Z-

Zero‘.".'......‘...."'.....Ql...lo

Moduls-2

on the

UCSD Pascal System

Release: 0.3
Date: 26 August 1983
Author: Richard Gleaves

Modula-2 on UCSD Pascal

Table Of Contents

Table Of Contents

1Introduction..‘.............'...'..l.'...ll

2Library'.'....'......".................2

2.1 Library Organization. « « « « « e o s s 00 00 s e 0ees 3

2.1.1 Module Segment Assignment. « « « « ¢ ¢ ¢ o ¢ o o « 3
2.1.2 Compile~time ModuleS. « « « « « ¢« ¢ ¢ ¢ e e 06 s e O
2.1.3 Module Version Control. « « « ¢« e e s s e e s e s o B
204 Library FileS. « « ¢ e e o e s e e e s oo eosecesl
2.1.5 Library ACCeSS. ¢« « « o ¢ s s s s o s s s sseess 8
2.1.6 Library Us8g€. « « « « s e e s e s s s s s 0o 0o 10

2.2 System-dependent ModuleS. ¢« « « ¢ « ¢ o e 60 s o s o s 11

2.2,1 Screen Control. « o « o ¢ o o o 0o o0 00 0000 eqll
2.2.2 System Attributes. « ¢ « ¢ e e ¢ 0 e 0o s e oo 12
223 Block File I/Ou e ¢ ¢ ¢ 6 e e e s o e oeseoeas 12
224 Unit I/O. s e e ¢ et e e s s s esosoassseeasld
2.,2,5 UCSD Standard ProcedureS. « « « « o« o o o o o« » 17
2.2.6 Bit Field ACCESS4 ¢ « ¢« o ¢ ¢ s e s 0 s 000000019

2.3 Standard Library on UCSD Pascal. . « « ¢ ¢ ¢ o o ¢ o« 20

3compiler...'......"........O'.'.O....‘23

3.1EXtenSiOIIStOMOdula-Z..-...............24

3.1.1 Packed VariableS . « o ¢ o ¢« ¢« s s ¢ 0 s ¢ s s ¢ o « « 24
3.1.2 Forward DeclarationS. . « c « « s ¢ ¢ s s ¢ o ¢ o o 29
3.1.3COdeProcedures.ocooc.ooonoo00000026

3.2 Diffel‘ences and Restl’ictionS. ®© & 0 9 0 0 0 0 0 0 0 0 0 0 28

3.3 Compile OptiOnS. « « « o e ¢ s 6 00 e s sesoosses 29

3.3.1 Interactive Compile OptionsS. « ¢« « e ¢ ¢ ¢« o » ¢« « 30
3.3.2 Stacked OptionS. ¢« o « « e e e e 0 e s e 0o e oo 31
3.3.3 Standard Language « « « ¢ « s o « o o s 0 0 ¢ o0 o 032
334 Include FileS. ¢« o ¢ ¢ o e e e s e s s o0 oooeses 32
3.3.5 Compiled LiStiNgS. « « « ¢ e ¢ ¢ o ¢ 0 e 00000+ 33

Modula-2 on UCSD Pascal
Table Of Contents

3.3.6 Run-time CheCKS. « « « ¢ s e s e s 0 0 a0 veeoeadd
3.3.7 Quiet Compile. + « e e ¢ e s e s eseoesoees 3
3.3.8 Copyright NoticeS. ¢« « « ¢ v e ¢ s s 000 ee oo 3D
3.3.9 Half-ASCII Termin@lS. « « « o ¢ o0 s s s 0 oo s+ 36
3.3.10 Extra Compile SpacCe. « « « « « ¢« ¢ s e 6o o 0 o o +37
3.3.11 Byte FLIPPINZ « « ¢« ¢ o s o s e s s s o aeoeses 37
3.3.12 Conditional Compilation. « « « « e e ¢ s ¢ o o ¢ « 38
3.3.13 Symbolic Execution Error MessageS. 40

4HOWTOUSeTheSystemouooncoooct000000000041

4,1 Compiling Programs . « « « « « o « s o e s 0 s s 0 a s oo 42
4.1.1 Invoking the Compiler. « « « « ¢ o ¢ o e o s 0 o+ 042
4,1.2 Console DiSplay e « « s o e s 6 e s s 0000 eoa 43
4,13 Error Handling . « « « o e ¢ s e s e s s a0 a0 oo o 44

4.2Executingpl‘ograms.................... 46

4,3 Library Management. « « « o « o s e e s 00600000 o 47
4,3.1 Using the Library Manager. « « « « « o « o o o » « 47
4,3.2 Updating the System Library. « « ¢« « ¢ s o« o o » 93
4,3.3 Creating Stand-glone Programs. . « « « « « « o« « 93

4,4 Programming TechniqueS. « « « e s s ¢ e s 0 s s s 6 0o s 9D
4.4.1 Maximizing Compile-time Space. . .. e e ¢ o« « 96
4.4.2 Maximizing Run-time Spac€. « « « o « ¢ ¢ o ¢« o » 57
4,4.3 File Naming ConventionS.: « « « o c s s o ¢ o ¢ « « 39
4,4,4 Using the Library. ¢« « « e s o s s e o s 0o a0 s s« 60
4.4.,5 Accessing Low-level Machine Operations. ... 61
4.,4.6 Locating Execution EITOrS. « ¢ « e ¢ ¢ o o o o o« » 62

Appendix 1 Module Segment NUMDEIS .« ¢« ¢« ¢« ¢ ¢« c ¢ ¢ ¢ 0 s ¢ s « o 64
Appendix 2 Compiler DirectiveS. ¢« « « ¢ « e ¢ e e e e e e 0 0eoss 65
Appendix 3 Compiler Error MeSS8ZEeS .« « « « o ¢ s ¢ 0 o e 0 o o o o 67

mdex....'..‘......l....................71

Modula-2 on UCSD Pascal
Introduction
page 1

1 Introduction

This document describes Volition Systems' implementation of the Modula-2
language for the version II UCSD Pascal system. It covers the following
topies:

® The library system
@ The Modula-2 compiler

® How to use the system

Chapter 2 describes the library system, including the library organization and
system-dependent library modules. If you have not yet read it, see
Introduction to Modula-2 for an introduction to the library.

Chapter 3 describes the Modula-2 language implementation, including compile
options, language extensions, deviations and restrictions, and implementation
notes. For additional information see the Implementation Guide.

Chapter 4 explains how to use the system, including operation of the
compiler and library manager, and programming techniques.

Modula-2 on UCSD Pascal
Library

page 2

2 Library

This chapter describes the Modula-2 library implemented on the UCSD Pascal
operating system. It covers the following topics:

@ Library organization
@ System-dependent library modules

@ Standard library on UCSD Pascal

Section 2.1 describes the library organization, including module segment
assignment, module version control, library access by the compiler and loader,
and library usage during program development, Operation of the library
manager program is described in chapter 4.

Section 2.2 presents library modules specific to the UCSD Pascal system.
These modules do not themselves contain any code; they merely provide
access to facilities defined in the underlying UCSD Pascal operating system.,
System-independent library modules are described in Standard Library and
Utility Library.

Section 2.3 describes the implementation of the Modula-2 portable library on
the UCSD Pascal system, including library module segment assignment, file
naming conventions, and the mapping of Pascal system errors onto the
standard error results,

Modula-2 on UCSD Pascal
Library Organization
page 3

2.1 Library Organization

This section describes the Modula-2 library organization. It covers the
following topics:

@ Module segment assignment
@ Compile-time modules

@ Module version control

@ Library files

@ Library access

® Library usage

NOTE- This section makes references to the loader. The loader is a
standard library module named "Program"; it is used by Modula-2

programs to perform subprogram calls; i.e. to call other
programs as procedures. The loader is described in Standard
Library.

2.1.1 Module Segment Assignment

Separate compilation in Modula-2 is related to UCSD Pascal's intrinsic unit
concept. This scheme eliminates the need for linking, but requires units to
be assigned segment numbers at compile time. Disadvantages of intrinsic
units include the use of two segments per unit (one for code, another for
data), a limited number of segments per program, and the requirement that
intrinsie units be stored in the system library.

The Modula-2 system addresses each of these problems. Library modules in
Modula-2 use one segment number for both code and data. The segment
table has been increased to 64 segments and is saved on subprogram calls,
allowing development of programs that use arbitrarily many segments.
Library modules can be stored either in the (Modula-2) system library file, in
program code files, or as individual files.

Only definition modules are assigned segment numbers; program modules
always occupy segment 7, and implementation modules usz the segment
number assigned to their definition modules. Segment numbers are assigned
with the compiler directive $SEG (3.2.2). '

NOTE- The compiler issues an error when compiling definition modules
that fail to specify a segment number.

Modula-2 on UCSD Pascal
Library Organization
page 4

Example of segment number assignment:

DEFINITION MODULE SegDemos ‘
(* $SEG := 43; *) (* SegDemo is assigned segment 43 ¥)

FROM SYSTEM IMPORT WORD;

END SegDemo.

A basic step in designing a Modula-2 program is the allocation of segment
numbers for its separately compiled modules. Segment numbers must be
unique with respect to the program's compilation units and imported standard
library modules,

In a typical system configuration, the 64 segments are allocated as follows:

@ Segments 0 through 6 are reserved for use by the Modula-2
system. The system may crash if you assign these numbers to
your own library modules,

@ Program modules always reside in segment 7,

® Segments 48 through 63 are provisionally reserved for the library
- modules provided with the system; they can be used only if the
program does not import the corresponding standard library
module. (See 2.3 for details.) Note that additional segments
may be similarly reserved for user-defined system library
modules.,

® The remaining segments (8 through 47) are available for program-
specific library modules. Because the segment table is saved on
subprogram calls, these segments can be allocated without regard
to the segments used by called subprograms,

Thus, the segment allocation strategy is to first use up the segments
available for programs, To obtain additional segments, use the segment
numbers of standard modules not imported by the program. If you need even
more segments, it is time to divide your program .into a number of
subprograms, assigning segments to subprogram modules so they overlay the
main program's segments. (Because of limited run-time space, it is unlikely
that a single program will ever use all 64 segments; large programs are
‘usually designed at the ouiset as collections of subprograms.)

NOTE- Subprograms cannot overlap the segment numbers of library
modules that are imported by both the subprogram and the
calling program (so-called "shared" modules).

Modula-2 on UCSD Pascal
Library Organization
page 5

2.1.2 Compile-time Modules

Large software systems often contain collections of constant and type
declarations that are shared by a number of programs. In Modula-2, such
declarations can be neatly encapsulated within a definition module. This
offers a number of advantages over the common practice of using "ineclude"
files:

@ Modules allow better control over the visibility of common types
and constants.

® Modules are distributed in compiled form, so they cannot be
modified by anyone but the distributor. ‘

@ The system performs automatic version checking on modules.

The Modula-2 system provides a special form of definition module for encap-
sulating constant and type declarations; they are called compile-time
modules., Compile-time modules are syntactically identical to regular
definition modules — the only difference is that compile-time modules are
assigned segment number 1.

The compiler and loader treat compile-time modules specially. When a .
compile-time module is compiled, the compiler automatically produces an
empty object file, so a matching implementation module need not be written.
The loader performs the usual version checking, but does not allocate code or
data segments for the module (hence the name "compile-time module"). The
loader elso ignores multiple occurrences of segment 1, allowing programs to
import more than one compile-time module.

In short, compile-time modules offer the benefits of library modules without
consuming segment numbers and run-time memory space.

NOTE- The compiler issues an error when compiling compile-time
modules that contain procedure or variable declarations. It also
flags implementation modules whose definition modules are
assigned segment 1,

NOTE- Not all procedures are barred from compile-time modules. Seé
3.1.3 for details. ‘

Modula-2 on UCSD Pascal
Library Organization

page 6

Example of a compile~-time module:

DEFINITION MODULE Pcodes;
(* $SEG := 1; *) (* Segment 1 marks this as compile-time *)

EXPORT QUALIFIED LDB, STB, STO, NOT;

CONST LDB = 0BEH;
STB = (OBFH;
STO = 9AH;
NOT = 93H;

END Pecodes,

2.1.3 Module Version Control

When a definition module is compiled, the compiler stores a unique vealue into
the resulting symbol file; this value is known as a module key. When a
client module (i.e. one that imports library modules) is compiled, the
compiler stores the module key of each imported module into the resulting
objeet file., Version control consists of checking that module keys stored in
a client module matech the module keys stored in the imported library
modules, '

Version control is performed both at compile time and run time. Compile-
time checking detects the case of mismatched symbol files (i.e. . where an
imported definition module in turn imports another definition module, and the
module key in the first symbol file's reference information does not match
the module key in the second symbol file), When the compiler finds a version
error, it prints an error message (86: "Incompatible versions of symbolic
modules"), names the offending modules, and then terminates compilation.
Run-time checking detects mismatched object files. When the loader finds a
version error, it prints an error message (naming the offending modules) and
aborts execution,

To generate unique module keys, the compiler maintains a disk-resident
variable which — to extend the "key" metaphor — is called a key holder.
When compiling a definition module, the compiler fetches a new module key
from the key holder; to ensure continued uniqueness of module keys, the
compiler then increments the value stored in the Kkey holder. Thus,
consecutively compiled definition modules have consecutively larger (but more
importantly: unique) module key values.

The key holder is implemented as a 3-word record stored in the first block
of the system library file (2.1.4). A module key consists of a two-word
integer value (incremented by the compiler to generate unique keys) and a
one-word integer known as the library number. The library number is
assigned a value when a system library file is first created; its purpose is to

Modula-2 on UCSD Pascal
Library Organization
page 7

ensure the uniqueness of module keys when program development is
distributed across a number of systems (i.e. a group of programmers).

Library numbers prevent aliasing of identically named library modules
compiled on systems which happen to have identical values in their key
holders.

When a system library is copied onto another system, the library number in
its key holder should be assigned a new value; this task is accomplished with
the library manager utility (4.3.1). The filer command T(ransfer can also
copy system library files, but will not assign new library numbers to the
copies. Solo programmers need not worry about library numbers, as the
system's module key generation is sufficient to ensure version control.

2.1.4 Library Files

In this manual, the term "library" refers to the abstract notion of all
accessible separately compiled modules in the system. The library is
implemented as a collection of disk files which are called library files.

NOTE- The next three sections present a bottom-up description of
the library file organization. Read 2.1.6 first if you want an
overview of the structure and use of the library.

The library is composed of three parts: the system library, the user
library, and the program library. .

The system library is a disk file named "MODULA.LIBRARY". The system
library contains all standard library modules, utility modules, and system-
specific modules, Modules can be added to (or removed from) the system
library with the library manager (4.3.2). The system library file normally
resides on the system (boot) volume; however, the Modula-2 system first
checks the prefixed volume for a system library file., (This feature allows
you to test out new system library files without having to disturb the
existing one.) If not on the prefixed volume, a system library file must
appear on the system volume; otherwise, the Modula-2 system is inoperable.

The user library is a collection of disk files produced by compiling
definition, implementation, and program modules. A user library file name
consists of the module name followed by a file suffix indicating the module
type. The suffix ".SYM" identifies symbol files of definition modules.
"MOD" identifies object files of implementation modules. ",CODE" identifies
code files belonging to program modules. For instance, compiling a program
module named Foon produces a code file named "FOON.CODE",

The program library is a collection of disk files produced by the library
manager. Program files contain a program module and one or more of its

Modula-2 on UCSD Pascal
Library Organization
page 8

subsidiary modules; like code files, program library files are identified by the
file suffix ".CODE", Program and code files are called by file name, so
their file names can be changed with impunity. For instance, the program
file of a module named "Librarian" can be changed to (and called as)
"LIB.CODE".

WARNING- To convert library module identifiers into file names, the
compiler converts all letters to upper case; the resulting name is
truncated if it exceeds ten characters in length. This
conversion process leaves the library system vulnerable to
aliasing of similarly named modules; if modules are kept in the
user library, compilation of the second module deletes the first,
eventually resulting in a version error. Care in choosing library
module names avoids this problem altogether.

2.1.5 Library Access

This section describes the algorithms used by the compiler and loader to
locate modules in the library.

To locate an imported definition module, the compiler first searches the
system library, If the module is not in the system library, the loader looks
for a wuser library file named "<module name>.SYM", first on the prefix
volume, then on the system volume. If the module is still missing,
compilation terminates with an error message.

NOTE- The compiler is incapable of searching the program library.
Symbol files must be in either the system library or the user
library.

The loader is passed the name of a subprogram to call. This name is
interpreted either as a module name or file name.

To locate a called subprogram, the loader first searches the subsidiary
modules associated with the current program. If the module is not found, the
loader searches the system library, then looks for a library file named
"<subprogram name>,CODE" — first on the prefix volume, then on the system
volume. If the subprogram cannot be found, the loader immediately returns
with the result value MissingProgram.

Modula-2 on UCSD Pascal
Library Organization
page 9

NOTE- The loader recognizes file naming conventions of the Pascal
system's X(ecute command. If a subprogram name ends with a
period ("."), the loader does not append the code file suffix
when it searches for a library file, This allows for ecalling
arbitrarily named programs (e.g. "SYSTEM.FILER."). If a
subprogram name includes a volume name, the loader searches
only the specified volume., This allows for calling programs on
specific volumes (e.g. "#5:PATCH").

Once a called program module is installed, the loader must locate each of its
imported library modules. The loader first checks that an imported module is
not already resident and in use by the calling program. If it is, the module
need not be searched for; otherwise, the loader searches the library,

To locate an imported library module, the loader first searches the subsidiary
modules associated with the program, then the system library, and finally for
a file named "<module name>.MOD" (first on the prefix volume, then on the
system volume). If the library module is still not found, the loader returns
the result value MissingModule and writes an error message naming the
missing module.

NOTE- The loader retains library information in memory to make
subprogram calls more efficient. As a consequence, system
library modules and subsidiary modules of all called programs
must be uniquely named; otherwise, the loader returns the result
value DuplicateName and writes an error message naming the
duplicated modules.)

NOTE- Before searching a library file, the compiler and loader verify
that the internal file structure matches the library structure
implied by the library file name. The compiler responds to
improperly structured library files by terminating with an error
message; the loader returns the result value LibraryError and
writes an error message.

NOTE- Modules stored in a library file can be "hidden"™ from the
compiler and loader so they appear not to be in the library (see
4.3.1 for details).

Modula-2 on UCSD Pascal
Library Organization
page 10

2.1.6 Library Usage

The Modula-2 library provides different kinds of libraries in order to
efficiently support both program development and program execution. The
user library is intended for program development, while the program library is
intended for efficient execution of production programs. The system library
constitutes an (extensible) operating system used by all programs. These
libraries are characterized by the manner in whiech the compiler and loader
access them.,

The user library is suited to program development, where ease of recompiling
and reexecuting is most important. With the user library, a program can be
executed immediately after one of its modules is recompiled, as the user
library can be updated without executing the library manager. (In fact, re-
compiling a module is sufficient to update the user library.) Programs in the
user library load slowly, as the loader must search the disk volume for each
referenced user library file.

Program library files are designed solely for program execution, where the
time required to load a program becomes critical. The library manager must
be used in order to create or update a program library. Programs in the
program library load quickly, as the loader searches the disk volume only
once for the program library file. Production programs are usually wholly
contained in a single program library file.

The system library is designed for fast access during program development
and execution, as it contains modules imported by most programs. In systems
containing only a handful of system modules and relatively few program-
specific modules, the system library might efficiently serve as the sole library
file. In normal ecircumstances, however, the system library file is quite large
to begin with; adding all the program-specific modules would make it
unwieldy and inefficient to update. (Recall that the library manager utility
must be executed to update the system library.)) For this reason, modules
specific to production programs are best kept in program library files.

See 4.4.4 for more information on efficient use of the library.

Modula-2 on UCSD Pascal
System-dependent Modules
page 11

2.2 System-dependent Modules

This section describes the system-dependent library modules provided with the
Modula-2 system. Note that these are compile-time modules, and thus contain
no code; they merely serve as interfaces to facilities contained in the UCSD
Pascal system,

The syntax (i.e. names and parameter lists) for Modula-2's UCSD system
calls differs only slightly from the corresponding UCSD Pascal system calls;
the semanties are identical. This section primarily describes syntactic
differences; semantic details can be found in the UCSD Pascal system
manual,

The main source of syntax differences arises from the replacement of UCSD
Pascal's single-argument address parameters with dual-argument "byte-address
pairs" specifying a base address and a byte offset. For example, a parameter
passed as "ByteArray[3]' in UCSD Pascal is passed as the two parameters
"ADR(ByteArray), 3" in Modula-2. The procedure ADR must be imported
from SYSTEM in order to pass the address of statically declared variables.
Non-indexed actual parameters (such as record variables) pass a byte offset
of 0 along with the proper address.

2.2.1 Screen Control

The module Screen provides basic screen control funections. HomeCursor
moves the cursor to the upper left hand corner of the screen. ClearScreen
erases the entire screen and "homes" the cursor. EraseLine erases the secreen
from the cursor position to the end of the current line. GotoXY moves the
cursor to the specified X-Y screen coordinates.

DEFINITION MODULE Screen; (* $SEG := 1; *)

EXPORT QUALIFIED HomeCursor, ClearScreen, EraseLine, GotoXY;
PROCEDURE HomeCursor; (* move cursor to upper left *)
PROCEDURE ClearScreen; (* erase screen, home cursor *)
PROCEDURE EraseLine; (* erase from cursor to end of line *)
PROCEDURE GotoXY(x, y: CARDINAL); (* move to column X, row y ¥)

END Screen.

Modula-2 on UCSD Pascal
System-dependent Modules
page 12

2.2.2 System Attributes

The module SystemTypes provides system-dependent attributes of the basic
Modula-2 types. MinInt and MaxInt indicate the extreme values assumable by
variables of type INTEGER. MaxCard indicates the maximum value assumable
by variables of type CARDINAL (the minimum value is implieitly zero).
AdrsPerWord indicates the number of address increments that span a word (in
this case, the basic addressing unit is a byte, and two bytes constitute a
word). CharsPerWord indicates the number of characters that can fit in a
single word.

DEFINITION MODULE SystemTypes; (* $SEG := 1; *)

EXPORT QUALIFIED
MinInt, MaxInt, MaxCard, AdrsPerWord, CharsPerWord;

CONST MinIlnt = -32768;
MaxInt = 32767;
MaxCard = 655353

AdrsPerWord
CharsPerWord

23
23

END SystemTypes.

2.2.3 Block File 1/0

The low-level module BloekIO provides access to the bloek I/O facilities in
the UCSD file system., File variables are declared with type FILE (as in
UCSD Pascal). File variables must be initialized with the procedure InitFile
before they are used.

File names passed to the Reset and Rewrite routines must be converted to
the internal representation of a UCSD Pascal string variable; Modula-2 strings
will not work! The first character in a UCSD-format string is a length byte
indicating the number of characters in the string. The first letter is at
index 1.

Passing the value -1 to the startblock parameter in BlockRead (BlockWrite)
specifies that blocks are to be read from (written to) the next block in the
file. This feature allows disk files to be read sequenticlly without having to
specify a block number,

WARNING- If you do not close a file opened with Rewrite, the disk
directory is left in an erroneous state. (The system command
I(nit corrects it.)

Modula-2 on UCSD Pascal
System-dependent Modules
page 13

DEFINITION MODULE BlockIO; (* $SEG := 1; *)

FROM SYSTEM IMPORT ADDRESS, WORD;

EXPORT QUALIFIED FILE, BlockRead, BlockWrite, Reset, Rewrite,
Close, InitFile, FileName, CloseType;

TYPE .
FileName = ARRAY [0..39] OF CHAR; (*UCSD format string*)
CloseType = (Normal, Lock, Purge, Crunch);
FILE = ARRAY [0..30] OF WORD;

(* Note that INTEGER params are to be used as
CARDINAL. They are declared as INTEGER to
match UCSD op sys declarations exactly *)

PROCEDURE InitFile(VAR f: FILE);
(* Initialize FILE variable...must be done before any
other routines can be called. *)

PROCEDURE Reset(VAR f: FILE; VAR fn: FileName);
(* Open existing file *)

PROCEDURE Rewrite(VAR f: FILE; VAR fn: FileName);
(* Open new file *)

PROCEDURE Close(VAR f: FILE; ftype: CloseType);
(* Close file, and update dn'ectory...

Normal Leave if opened with Reset, remove 1f
opened with Rewrite.

Lock Save permanent entry in directory.

Purge Remove entry from directory.

Crunch Save permanent entry, but truncate

file at current file position. *)

PROCEDURE BlockRead(VAR f: FILE; buf: ADDRESS; byteindex: INTEGER;
nblocks, startblock- INTEGER) INTEGER;
(* Read nblocks of the file into memory *)

PROCEDURE BlockWrite(VAR f: FILE; buf: ADDRESS; byteindex: INTEGER;
nblocks, startblock: INTEGER): INTEGER;
(* Write nblocks of the file from memory *)

END BloekIO.

Modula-2 on UCSD Pascal
System-dependent Modules
page 14

Example of block file I/O:
MODULE BlockExample;
FROM SYSTEM IMPORT ADR;
FROM UnitIlO IMPORT IOResult, INoError;

FROM BlockIO IMPORT FILE, FileName, InitFile, BlockRead,
BlockWrite, Reset, Rewrite, Close, CloseType;

FROM Terminal IMPORT WriteString;

VAR input, output: FILE;
blks: INTEGER;
buff: ARRAY [0..9], [0..511] OF CHAR;
name: FileName;

BEGIN
name := " *MODULA.LIBRARY";(* note 1st blank for UCSD length byte *)
name[0] := 17C; (* length in octal as type CHAR *)
InitFile(input);

Reset(input, name);

IF IOResult() # INoError THEN
WriteString("Can't find input file");
HALT;

END;

name := " *DUPLIB";

name[0] := 7C;

InitFile(output);

Rewrite(output, name);

IF IOResult() # INoError THEN
WriteString("Can't open output file");
Close(input, Normal);

HALT;

END;

REPEAT
blks := BlockRead(input, ADR(buff), 0, HIGH(buff) + 1, -1);
IF BlockWrite(output, ADR(buff), 0, blks, ~1) # blks THEN
WriteString("Error writing output™);
Close(input, Normal);
Close(output, Purge);
HALT;
END;
UNTIL blks <= INTEGER(HIGH(buff));

Close(input, Normal);
Close(output, Lock);
END BlockExample.

Modula-2 on UCSD Pascal
System-dependent Modules
page 15

2.2.4 Unit I/0

The low-level module UnitIO provides access to UCSD Pascal's unit I/O

system. The scalar constants in type IOResultType are declared to match

the standard I/O error values returned by the system. The BlkNum parameter

is ignored when accessing a non-block-structured unit, The FlagWd parameter

is a one-word bit array instead of an integer (as in UCSD Pascal), thus
making explicit the manner in whieh this parameter is interpreted by the unit

I/0 system.

DEFINITION MODULE UnitlO; (* $SEG := 1; ¥)
FROM SYSTEM IMPORT WORD, ADDRESS;

EXPORT QUALIFIED UnitRead, UnitWrite, UnitStatus, UnitClear,
UnitBusy, IOResult, IOResultType;

TYPE IOResultType = (INoError, (* 0 ¥
IHardErr,
IBadUnit,
IBadMode,
ITimeout,
ILostUnit, (* 5 ¥)
ILostFile,
IBadTitle,
INoSpace,
INoUnit,
INoFile, (* 10 %)
IDupFile,
IFileOpen,
INotOpen,
IBadFormat,
IBufOflow); (* 15 ¥)

PROCEDURE IOResult(): IOResultType;
(* Return value indicating the result

of the previous I/O operation *)

PROCEDURE UnitStatus(UnitNo: CARDINAL;
Result: ADDRESS;
Option: CARDINAL);

(* Return status of the specified unit
- see UCSD Pascal manual for details *)

Modula-2 on UCSD Pascal
System-dependent Modules
page 16

PROCEDURE UnitBusy(UnitNo: CARDINAL): BOOLEAN;

(* Return TRUE if the specified unit is
waiting for an I/O operation to complete *)

PROCEDURE UnitClear(UnitNo: CARDINAL);

(* Set the specified unit back to its
initial operating state *)

PROCEDURE UnitRead(UnitNo: CARDINAL;
Buffer: ADDRESS;
Index: CARDINAL;
NBytes: CARDINAL;
BlkNum: CARDINAL;
FlagWd: BITSET);

(* Read bytes from I/O unit into Buffer *)

PROCEDURE UnitWrite(UnitNo: CARDINAL;
Buffer: ADDRESS;
Index: CARDINAL;
NBytes: CARDINAL;
BlkNum: CARDINAL;
FlagWd: BITSET);

(* Write bytes in Buffer out to I/O unit *)

END UnitIO.

Modula-2 on UCSD Pascal
System-dependent Modules
page 17

2.2.5 UCSD Standard Procedures

The low-level module Standards provides access to UCSD Pascal standard
procedures.

NOTE- The scalar constants in the enumeration type ScanType are
used to specify the scanning mode in the procedure Scan. The
constant ScanUntil specifies that scanning continues until a
scanned character matches the target character ("=" in UCSD
Pascal). The constant ScanWhile specifies that scanning
continues until a scanned character does not match the target
character ("<>" in UCSD Pascal).

WARNING- The procedures Alloec, Mark, and Release provide low-level
storage management, and cannot be used in conjunction with the
standard library module Storage. Because most standard library
modules import Storage (see Standard Library for details),
these routines should be used only when a program limits itself
to the system-dependent modules described in this section,

DEFINITION MODULE Standards; (* $SEG := 1; *)
FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED MoveLeft, MoveRight, FillCher, Scan, Time, ScanType,
PowerOfTen, Alloc, Mark, Release, MemAuvail;

TYPE ScanType = (ScanUntil, ScanWhile);

PROCEDURE MoveLeft(SrcAddr: ADDRESS;
Srelnx: CARDINAL;
DestAddr: ADDRESS;
Destnx: CARDINAL;
NBytes: CARDINAL);

(* Move bytes from Source to Destination, starting with
the first byte in Source ¥)

PROCEDURE MoveRight(SrcAddr: ADDRESS;
Srelnx: CARDINAL;
DestAddr: ADDRESS;
Destinx: CARDINAL;
NBytes: CARDINAL);

(* Move bytes from Source to Destination, starting with
the last byte in Source ¥)

Modula-2 on UCSD Paseal
System-dependent Modules
page 18

PROCEDURE FillChar(DestAddr: ADDRESS;
Destlnx: CARDINAL:
NBytes: CARDINAL;
Fillval: CHAR);

(* Initialize bytes in Dest with the byte value Fillval ¥)

PROCEDURE Scan(NumChars: INTEGER;
ForPast: ScanType;
Target: = CHAR;
Source: ADDRESS;
Srelnx: CARDINAL): INTEGER;

(* Starting at Source, scan for Numchars characters until
Target character is found. Return offset from Source

PROCEDURE Time(VAR Hi, Lo: CARDINAL);
(* Return 32-bit system clock value in Hi and Lo ¥*)

PROCEDURE Alloe(VAR p: ADDRESS; words: CARDINAL);
(* Allocate space on top of heap *)

PROCEDURE Mark(VAR p: ADDRESS);
(* Save current heap position in p *)

PROCEDURE Release(VAR p: ADDRESS);
(* Cut heap back to position specified by p *)

PROCEDURE MemAvail(): CARDINAL;
(* Return # words between stack and heap top *)

PROCEDURE PowerOfTen(e: CARDINAL): REAL;
(* Return 10 raised to e'th power ¥*)

END Standards.

*)

Modula-2 on UCSD Pascal
System-dependent Modules
page 19

2.2.6 Bit Field Access

The module Bits provides efficient access to bit fields and byte fields of
word quantities, Bits in a word are numbered 0 through 15. Bit 0 is the
low order bit, bit 15 the high order bit. A bit field is specified by its
rightmost (lowest order) bit and number of bits.

NOTE- In bit fields, bits 0 thru 7 always specify the least significant
byte of word quantities, Byte access, however, involves physical
byte addresses, and thus is independent of byte ordering in word
quantities.,

DEFINITION MODULE Bits; (* $SEG := 1; ¥)

FROM SYSTEM IMPORT WORD, ADDRESS;

EXPORT QUALIFIED LoadByte, StoreByte, LoadField, StoreField;

PROCEDURE LoadByte (base: ADDRESS; offset: CARDINAL): CARDINAL;
(* Load byte from byte address base[offset] *) |

PROCEDURE StoreByte (base: ADDRESS; offset, ValueToStore: CARDINAL);
(* Store byte at byte address base[offset] *)
PROCEDURE LoadField (VAR w: WORD;
NumberOfBits: CARDINAL;
RightMostBit: CARDINAL): CARDINAL;
(* Load specified bit field from word w *)
PROCEDURE StoreField (VAR w: WORD;
NumberOfBits: CARDINAL;
RightMostBit: CARDINAL;
ValueToStore: CARDINAL);
(* Store specified bit field into word w *)

END Bits,

Modula-2 on UCSD Pascal
Standard Library on UCSD Pascal
page 20

2.3 Standard Library on UCSD Pascal

This section describes system-dependent details of the standard library
modules on the UCSD Pascal system.

Module Segment Assignment

The following table indicates the segment numbers assigned to modules
contained in the standard and utility libraries. Segments are assigned so that
the most frequently used library modules reside in the highest numbered
segments.

Many of the standard library modules are interdependent; importing one of
these modules implies the importation of other modules, resulting in the use
of extra segments. The Implementation Guide describes the library module
hierarchy.

The utility module ASCII is a compile-time segment, and thus is assigned -
segment 1,

NOTE- Segments 59 through 63 are reserved for certain
implementations. See the Implementation Guide for details.

Library module segment assignment:

Program 2 Reals 52
SubProgram 3 Strings 53
Storage 4 InOut 54
Decimal 48 Conversions 55
Processes 49 Texts 56
MathLib0 50 Files 57
ReallnOut 51 Terminal 58
Program

The parameter programName is passed a string containing the name of the
subprogram to be called. The interpretation of this name is described in
2.1.5.

Pascal programs are callable from the Modula-2 system with one restriction.
If a Pascal program uses intrinsic units, their assigned segment numbers
cannot overlap segment numbers occupied by any library modules.

Modula-2 on UCSD Pascal
Standard Library on UCSD Pascal
page 21

The result value Duplicai:eName is returned if a subprogram attempts to
import different library modules with the same segment number.

If a subprogram call specifies system-controlled execution error handling, the
Modula-2 system displays an error message describing the execution error.
See 4.4.6 for details, :

The library module SubProgram is a subsidiary module of the loader.
SubProgram is called (and thus resident) only between subprogram calls,

InOut

Note that the rule for appending file suffixes is the opposite of the UCSD
Pascal convention — a period at the end of a file name causes a file suffix
(e.g. "TEXT") to be automatically appended.

Texts & Files

File names in Texts and Files follow the UCSD Pascal file naming
conventions, Files treats all disk files as pure data regardless of the file
type. Texts reads and writes UCSD text file format when connected to a
text file (e.g. file suffix ".TEXT").

Typing the <eof> key terminates a a console input file. The <eof> key is
defined by the Pascal system; it is usually control-C.

If a file I/0O error occurs in Files, the funection procedure UnitIO.IOResult
can be called to determine the system-specific I/O result,

Storage

Storage is implemented as a linear list of "free" areas sorted by address
(highest address first). ALLOCATE traverses the first 10 free areas
searching for perfect fit; if not found, it settles for first fit, DEALLOCATE
collapses all adjacent free areas.

ALLOCATE and DEALLOCATE raise StorageError if passed a storage area
size larger than 32766 storage units (bytes on most implementations).

Deallocating an invalid pointer variable usually causes a program to terminate
with result StorageError; however, Storage cannot detect all improper
deallocation of dynamie variables. - Deallocating a variable with a different
size than it was allocated with may crash the system. It is an error for

Modula-2 on UCSD Pascal
Standard Library on UCSD Pascal
page 22

'unshared' subprograms to deallocate storage allocated by the calling program,

MathLib0

The procedure 'real' is not implemented. The equivalent operation is
providled by the (implementation-dependent) definition of the standard
procedure FLOAT.

Modula-2 on UCSD Pascal
Compiler
page 23

3 Compiler

This chapter describes the Modula-2 language implementation on the UCSD
Pascal system, It covers the following topics:

@ Extensions
® Deviations and restrictions

@® Compile options

Section 3.1 describes language construets unique to this implementation of
Modula-2; these extensions should not be used in programs intended for use
on other Modula-2 implementations.

Section 3.2 describes the remaining differences; most are restrictions on the
use of legal Modula-2 constructs, but a couple are deviations from the
language definition. :

Section 3.3 describes compile options. Compile options are implemented as
directives placed within comments in a source program. Compiler directives
control the use of language extensions, affect the compiler's mode of
operation, and alter the code generated by the compiler.

Modula-2 on UCSD Pascal
Extensions to Modula-2
page 24

3.1 Extensions to Modula-2

This section describes nonstandard language constructs available in this
implementation of Modula-2. These constructs should not be used in programs
written for portability.

NOTE- The compiler directive $STANDARD (3.3.3) controls the use of
these extensions.

3.1.1 Packed Variables

The compiler attempts to compress the machine representations of records
and arrays when their type definitions are prefixed with the (implementation-
specific) reserved word PACKED. Packing significantly reduces the amount
of memory needed to store certain data types, but at the expense of slightly
increased execution time and code size required for packed field access.
Packing is syntactically allowed for all types, but affects only records and
arrays.

Examples of packed variable declaration:

TYPE manybits = PACKED ARRAY [0..31] OF BOOLEAN;
smallreec = PACKED RECORD '
a,b: CHAR;
i: INTEGER;
END;

Machine representations of the basic data types are as follows:

type unpacked packed
BOOLEAN 1 word 1 bit

CHAR 1 word 8 bits
INTEGER 1 word 1 word

REAL 2 words 2 words

SET OF 0..x : x<16 1 word (x+1) bits
subrange X..y : x>=0 1 word (log2(y+1)) bits

Subrange types with negative lower bounds are not packable. Array and
record subtypes are word aligned and thus unpackable., The compiler is
limited to packing fields into single words; fields cannot be packed across
word boundaries. Thus, records are packed only if they contain consecutively
declared fields that can be packed into a single word, and arrays are packed
only if their element types can be stored in 8 bits or less. Unpackable
fields are referenced as unpacked data. (In records, this includes fields
which cannot be packed because of adjacently declared unpackable fields.)

Modula-2 on UCSD Pascal
Extensions to Modula-2
page 25

NOTE- Packed fields cannot be passed as VAR parameters. The
Modula-2 compiler automatically packs character arrays;
specifying them as PACKED is therefore unnecessary.

3.1.2 Forward Declarations

A procedure can be called prior to its declaration only if there is a forward
declaration. A procedure is declared forward by following its heading with
the (implementation-specific) reserved word FORWARD to indicate that it
will be completely defined further down in the program, Forward
declarations are necessary for mutually recursive procedures,

NOTE- Unlike Pascal, the parameter list and result type must be
repeated exactly in the complete procedure declaration.

NOTE- The Modula-2 language definition says nothing about forward
references, as procedures can be called before they are
declared. This implementation requires forward declarations
because the "one-pass" restrictions do not allow use before
declaration (see 3.2 for details).

Example of forward declarations:
PROCEDURE Affine(a: T1); FORWARD;

PROCEDURE Infine(b: T1);
BEGIN

Affine(b)
END Infine;

PROCEDURE Affine(a: T1); (* parameter list repeated *)
BEGIN

Infine(a)
END Affine;

Module-2 on UCSD Pascal
Extensions to Modula-2
page 26

3.1.3 Code Procedures

A code procedure is a procedure declaration whose body consists of a
sequence of constants denoting P-code instructions and operands. This code
sequence is substituted inline for each code procedure call.

Code procedures are used to perform low-level operations and to access
routines defined in the UCSD Pascal system. As in regular procedure calls,
code procedure parameters are pushed onto the evaluation stack (in the order
they appear) before the (inline) procedure code is executed.

WARNING- Code procedures must be used with utmost care, as any
programming errors may cause the system to crash in mysterious
ways. Be prepared! (The UCSD Pascal system manual describes
the P-machine instruction set.)

Here is the extended syntax (in EBNF as used in the Report) for code
procedure declarations:

ProcedureDeclaration =

ProcedureHeading ";" (block | codeblock) ident.
codeblock = CODE CodeSequence END.,
CodeSequence = code {";" code}.
code = [ConstExpression].

Example of code procedure declaration:
CONST LDB = 0BEH;

PROCEDURE UpperByte(VAR w: WORD): CHAR;
(* word address pushed as parameter *)

CODE
1; (* load constant byte offset *)
LDB (* load byte as function result ¥*)

END UpperByte;

NOTE- Unlike regular procedure bodies, code procedure bodies can be
declared in definition modules. This feature allows code
procedures to be neatly encapsulated in library modules without
requiring any run-time code or data, as such modules can be
declared as compile-time modules (2.1.2).

Modula~2 on UCSD Pascal
Extensions to Modula-2
page 27

Example of code procedures in compile-time modules:

DEFINITION MODULE ByteDiddler; (* $SEG := 1; ¥)
EXPORT QUALIFIED UpperByte;

CONST LDB = 0BEH;

PROCEDURE UpperByte(VAR w: WORD): CHAR;
CODE 1; LDB

END UpperByte;

END ByteDiddler.

Modula-2 on UCSD Paseal
Differences and Restrictions
page 28

3.2 Differences and Restrictions

This seection describes differences from the Modula-2 language definition and
implementation restrictions in the current release.

@ One-pass restrictions: Constants, types (excepting pointers),
and variables must be declared before they can be referenced.
Procedures can be forward declared with the FORWARD
directive (3.1.2).

® Reserved words: The identifiers PACKED, CODE, and
FORWARD are reserved words.

® Real number conversion: The real number conversion
procedures FLOAT and TRUNC work with type INTEGER instead
of type CARDINAL.

® Cardinal division: Cardinal division (via the DIV and MOD
operators) does not work when either operand is greater than
32767, '

@® Case labels: Cardinal case label vealues cannot exceed MaxiInt
(32767) in case statements and record declarations.

@ Function results: Function procedures can return results of any
type. This differs from the current edition of Programming in
Modula-2, which restriets function results to unstructured types.
This restriction is expected to be removed from the language in
the future.

® VAR parameters: Character array elements cannot be passed to
variable parameters. (This includes the standard procedures INC
and DEC.)

® Compiler limits: The maximum procedure size is 1200 bytes of
object code. The maximum number of procedures per module is
100, The maximum level of lexical nesting is 32.

@ Run-time error checking: The Modula-2 system does not detect
integer/cardinal overflows, use of uninitialized variables, or NIL
pointer references.

Modula-2 on UCSD Pascal
Compile Options
page 29

3.3 Compile Options

Compile options control the operation of the compiler. Compile options are
controlled by directives embedded in comments in the source program.
Compiler directives can appear anywhere within non-nested comments;
directives in nested comments are ignored. Any number of directives can be
placed in a single comment, Here is the syntax (in EBNF as used in the
Report) for compiler directives:

Directive = "$"Identifier [Parameter].

Identifier = <option identifier>,

Parameter = Declare | String | Assign | Condition | Set.
Declare = mn,

String = <Modu1a string>,

Assign = M=" <{expression> ";",

Condition = <expression> "THEN",

Set = [String] Identifier.

The "$" character marks the beginning of a directive; blanks cannot appear
between the "$" and the subsequent identifier. Comment text not associated
with a directive is ignored, and thus may serve as comments describing the
directive.

Example of compiler directives:

(* $TO "LIST.TEXT" ... make a compiled listing *)

(* $STANDARD:=FALSE; $RECYCLE:=TRUE; $SEG:=45; *)
(* $SET "Debug output?" debug *)

(* $IF debug THEN *)

(* $PUSH RANGE save state of range checking *)

Option identifiers are either compiler commands or compile-time variables.
Compiler commands cause the compiler to perform a specific action.
Compile-time variables are variables whose values control the compiler's
operating mode. Directives are used to declare and assign values to compile-
time variables.

There are two types of compile-time variables: cardinal variables and
Boolean variables., Cardinal variables assume cardinal numbers as values,
Boolean variables assume the values TRUE or FALSE.

NOTE- Compile-time variables are distinet from prcgram variables and
can only be used within compiler directives.

WARNING- Invalid compiler directives cause compiler syntax errors.
If the error occurs in an expression, the compiler generates a
suitable error message (as if it were compiling a Modula-2

Modula-2 on UCSD Pascal
Compile Options
page 30

expression); otherwise, it generates syntax error 16 ("Compiler
directive error"),

3.3.1 Interactive Compile Options

Compile-time variables are usually set by directives embedded in the source
text; however, the compiler command SET requests directive values from the
keyboard each time a program is compiled.

SET accepts a string and & variable name as parameters; the string parameter
is optional. SET writes a console prompt and reads a value into the
variable, If a string parameter is included, it is written to the console as a
promptline; otherwise, the variable name is written to the console followed
by a question mark. Typing 'T'" or 'Y' sets the variable to TRUE. Typing
'F' or 'N' sets the variable to FALSE, Typing a cardinal number sets the
variable to the specified value (backspaces are allowed). Compilation resumes
after typing a valid response.

Example of SET:

(* $SET "Range checking? " RANGE ¥)

The compiler command TYPE accepts a string parameter and causes the
compiler to write the string to the console, The string is followed by a
carriage return. (Passing an empty string is equivalent to "WriteLn".) TYPE
is used to precede occurrences of the SET command with informative
messages.

Example of TYPE:

(* $TYPE "Set only one of these options:" ¥*)

(* $TYPE " empty string writes a blank line *)
(* $SET Apple2 ¥*)

(* $SET Apple3 *)

(* $SET IBMPC *)

Modula-2 on UCSD Pascal
Compile Options
page 31

3.3.2 Stacked Options

The velues assumed by Boolean variables can be stacked. Stacking is useful
for setting a Boolean variable in a small part of a program and then
restoring its previous value. The compiler command PUSH saves the current
value of a Boolean variable. The compiler command POP restores a Boolean
variable to its previous value., PUSH and POP accept Boolean variables as
arguments. Boolean values can be stacked to 15 levels deep,

Example of option stacking:

PROCEDURE RiskyIndex;
VAR IntArray: ARRAY [1..100] OF INTEGER;
1,X: INTEGER;

BEGIN
(*$PUSH RANGE $RANGE:=FALSE; range checking off *)
I := IntArray[X];
(*$POP RANGE ¥) (* restore range checking *)

END RiskyIndex;

Definition modules are assigned segment numbers with the predeclared
cardinal variable SEG. The identifier is assigned a cardinal value indicating
the desired segment number. The directive must appear immediately after
the compilation unit's module heading. ’

Example of module segment assignment:

DEFINITION MODULE SegDemo;
(*$SEG := 43;%) (*SegDemo is assigned segment 43%¥)
FROM SYSTEM IMPORT WORD;

END SegDemo.

Modula-Z2 on UCSD Pascal
Compile Options
page 32

3.3.3 Standard Language

The predeclared Boolean variable STANDARD controls the use of nonstandard
language constructs, The compiler accepts extensions only if STANDARD is
set to FALSE at the top of a compilation unit. The default setting is
TRUE.

Example of nonstandard language use:

(* $STANDARD := FALSE; *)
DEFINITION MODULE NonStandard;

TYPE BitString = PACKED ARRAY [1..77] OF BOOLEAN;

PROCEDURE ProcessorHalt;
CODE

O0FFH
END ProcessorHalt;

END NonStandard,

3.3.4 Include Files

Text files can be "included" into a compilation unit with the compiler
command IN. The string parameter contains the name of the text file to be
included. The file suffix ".TEXT" is optional. Compilation terminates (with
error 10) if an included text file cannot be opened. Include files cannot be
nested. '

Example of include files:

DEFINITION MODULE VeryLowLevel;

(* Compile declarations
contained in UCSDOPS.TEXT *)

(* $IN "UCSDOPS" — get IND from UCSDOPS.TEXT ¥*)
PROCEDURE Peek(a: ADDRESS): CARDINAL;
CODE
IND; 0
END Peek;

END VeryLowLevel.

Modula-2 on UCSD Pascal
Compile Options
page 33

3.3.5 Compiled Listings

Compiled listing are produced with the compiler ecommand TO. The string
parameter contains the name of the listing file, The directive must appear
at the top of the compilation unit.

The predeclared Boolean variable LIST controls the generation of a listing; it
is used to selectively include or exclude parts of a program from the listing.
Setting LIST to FALSE disables listing; setting LIST to TRUE enables listing.
The TO command automatically enables listing. The LIST command is ignored
if a TO command has not been specified.

Sample compiled listing:

1 7 1:D 0 (¥ $TO "stuff.text" ¥)

2 1 1:D 1 MODULE test;

3 7 1:D 1

4 7 22D 1 PROCEDURE testproc;

5 7 2:D 1 VAR i,j,k: INTEGER;

6 7 2:C 0 BEGIN

T 7 2:C 0 FOR i ;=1 TO 10 DO
8 7 2:C 3 FOR k := 1 TO 10 DO
9 7 2:C 6 FOR j :=1 TO 10 DO
10 7 2:C 9 END;

11 7 2:C 16 END;

12 7 2:C 23 END;

13 7 2:C 30 END testproc;

14 7 2:C 48

15 7 1:C 0 BEGIN

16 7 3:C 0 testproc;

17 7 1:C 2 END test.

The first column in the listing displays the line number in the listing. The
second column is the segment number. The third column is the procedure
number. If the character after the colon is a "C", the line is a statement,
and the value in the last column is the code offset of the beginning of the
statement. If the character is a "D", the line is a declaration, and the value
in the last column is the data offset of the first variable on the line.

Compiled listings are used to debug programs; in particular, for locating
execution errors. See 4.4.6 for details.

Modula-2 on UCSD Pascal
Compile Options
page 34

Example of listing directives:

(* $TO "PRINTER:" *)
IMPLEMENTATION MODULE Classified;

(* $PUSH LIST $LIST := FALSE; *)
TopSecret := Truth[Beautyl;
(* $POP LIST *)

et

END Classsified.

3.3.6 Run-time Checks

The generation of code for performing run-time checks is controlled by the
predeclared Boolean variable RANGE. Setting RANGE to TRUE enables run-
time checking; setting RANGE to FALSE disables run-time checking. The
default setting is TRUE.

Compiler—controued checks protect the following operations:
@ integer/cardinal assignment

assignment to subranges (including value parameters)

array indexes

FOR loop subranges

INCL, EXCL, set construction

reaching the end of a funection procedure without executlng a
RETURN statement

Modula-2 on UCSD Pascal
Compile Options
page 35

Example of range check suppression:

PROCEDURE RiskylIndex;
VAR IntArray: ARRAY [1..100] OF INTEGER;
1,X: INTEGER;

BEGIN

(*$PUSH RANGE $RANGE:=FALSE; range checking off ¥)
I := IntArray[XJ];
(*$POP RANGE ¥) (* restore range checking ¥)

e

END RiskylIndex;

3.3.7 Quiet Compile

The predeclared Boolean variable QUIET controls the compiler's console
display. The compiler ecan be operated in the so-called "quiet" mode by
setting QUIET to TRUE at the top of a compilation unit. In quiet mode, the
compiler suppresses its normal console display (4.1.2) and does not stop when
a syntax error is discovered. The default setting is FALSE.

Example of specifying quiet compilation:

(* $QUIET:=TRUE; *)
MODULE Silence;

END Silence.

3.3.8 Copyright Notices

Copyright notices are placed near the front of symbol, object, or code files
with the compiler command NOT. The string parameter contains the textual
message to be embedded in the output file. Copyright directives must appear
after the initial module heading, but before any procedure or module bodies,

Example of copyright notices:

MODULE Business;
(*$NOT "Copyright 1977, by Dee Ltd." ¥)

END Business.

Modula-2 on UCSD Pascal
Compile Options
page 36 -

3.3.9 Half-ASCII Terminals

Some popular microcomputers do not support the full ASCI character set; in
particular, lower-case alphabetic characters, braces ("{" and "}'), and the
vertical bar "|* are missing, Unfortunately, these characters are used as
symbols in Modula-2, To avoid this problem, the predeclared Boolean variable
UPCASE alters Modula-2's vocabulary to accommodate half-ASCII keyboards.
The predeclared Boolean variable SPECIAL is provided for upper/lower case
terminals lacking braces and bars.

Setting UPCASE to TRUE causes the following changes to the Modula-2
vocabulary, The exelamation point "!" can be substituted for the vertical
bar "|" in case statements and record variants. Square brackets "[" and "]
can be substituted for braces in set constants. (Note that this matches
Pascal's syntax.) Finally, lower and upper case alphabetic characters are
considered equivalent. (Note that this matches Pascal's case insensitivity.)

The UPCASE directive must appear at the top of a program. The default
setting is FALSE.

The variable SPECIAL is used identically to UPCASE. Setting SPECIAL to
TRUE provides the special character substitution, but retains case
significance of identifiers.

NOTE- Programs that make use of these options are nonportable, as
they are not standard Modula-2 programs.

Example of half-ASCII Modula-2:

(* $UPCASE := TRUE; *)
MODULE PrAgMaTiCs;

CONST SETK = bitset[0,1,4,9];

TYPE RECTYPE = RECORD
CASE INTEGER OF
0: i: INTEGER !
1: r: REAL !
2: c¢: char
END;
END;

end pRaGmAtleS.

Modula-2 on UCSD Pascal
Compile Options
page 37

3.3.10 Extra Compile Space

The compiler may run out of symbol table space when compiling large
modules; it does so by ungracefully expiring with a "stack overflow". The
predeclared Boolean variable RECYCLE is provided to gain extra symbol
table space at the expense of slower compilation. Setting RECYCLE to
TRUE causes the compiler to recyele all storage consumed by unimported
library module declarations; this often amounts to more than 2000 extra
words of compile-time space. The directive must appear at the top of a
program. The default setting is FALSE.

NOTE- If the compiler determines that it needs the storage, it may
automatically enable recyeling. (This only occurs when compiling
programs which import large numbers of library module
identifiers.) For more information on using the recycle option,
see 4.1.2 and 4.4.1.

Example of specifying extra space:

(* $RECYCLE:=TRUE; recycle symbol table *)
MODULE Big;

END Big.

3.3.11 Byte Flipping

The compiler generates byte-flipped code files by setting the predeclared
Boolean variable FLIP to TRUE at the top of a program. Byte-flipped code
files are executable only on processors of the opposite byte sex from the
host processor. The directive must appear at the top of the program. The
default setting is FALSE.

Example of byte-flipping option:

(* $FLIP:=TRUE; *)
MODULE A;

END A.

Modula-2 on UCSD Pascal
Compile Options
page 38

3.3.12 Conditional Compilation

The compiler commands IF, ELSIF, ELSE, and END allow selective ineclusion
or exclusion of sections of a source program. Selection is controlled by
expressions consisting of compile-time variables.

User-defined compile-time variables are declared when they first appear as an
option identifier in a compiler directive (or as an argument to the SET
command). An uninitialized variable can be declared with the directive
"$<identifier>;". Note that variable identifiers must be longer than one
character.

Example of compile~-time variable declaration:
(* $SNOBUGS; set it later with SET *)
(* $Stripped := FALSE; *)

-(* $SET "Include Screen Module?" UseLocalScreen ¥)

NOTE- User-defined variables must be declared at the top of a
program,

The type of a variable (either Boolean or cardinal) is determined by the type
of its initial value; after the initial assignment, variables cannot be assigned
values of another type. ’

Variables must be assigned vealues before they can be used in expressions.
The full expression syntax is allowed (e.g. complex expressions, logical and
arithmetic operators); however, only compile-time variables and integer or
Boolean constants may be used as operands.

The IF command conditionally causes all source text to be skipped up to the
subsequent ELSIF, ELSE, or END command. Expressions in IF and ELSIF
must be of type BOOLEAN and must be terminated by the symbol THEN,

NOTE- Skipped text is treated as a continuation of the original
comment containing the directive; thus, the compiler ignores all
compiler directives within the skipped source. Conditional
compilation directives cannot be nested. nComments containing
conditional compilation directives should be closed immediately
after the command.

WARNING- Conditional compilation directives render programs
nonportable, as their non-interpretation by different Modula-2
compilers may change the semanties of a program,

Example of conditional compilation:
(* $SET "Compile what version?" Version *)

(* $IF (Version = 2) AND Apple2 THEN *)

CONST BufSize = 8500;
GotPool = FALSE;
NumSegs = 64;

(* $ELSIF Version = 4 THEN *)

CONST BufSize = 3000;
GotPool = TRUE;
NumSegs = Infinity-1;

(*¥* $ELSE ¥*)

CONST BufSize = 10000;
GotPool = FALSE;
NumSegs = 16;

(* $END *)

Another example of conditional compilation:
(* $IF DEBUG AND InternalRelease THEN *)

IF Buffinx > MaxBuff THEN
WriteString("Call Roger immediately™);
WriteHex(CompilerVersion, 4);

HALT;

END;

(* $END *)

Modula-2 on UCSD Pascal
Compile Options
page 39

Modula-2 on UCSD Pascal
Compile Options
page 40

3.3.13 Symbolic Execution Error Messages

The compiler generates debugging information when the predeclared Boolean
variable DEBUG is set to TRUE. DEBUG controls the appearance of
symbolic procedure names in execution error messages (see 4.4.6 for details).
- Note that setting DEBUG to TRUE results in larger code files, as the
identifier of each procedure in the module is embedded in the code file
(along with two bytes of overhead per procedure). To minimize code file
expansion, DEBUG can be turned on and off within a program to select only
a few procedures for symbolic error displays. The default setting of DEBUG
is FALSE.

Example of debug option:

(* $DEBUG := TRUE; ¥)
MODULE Buggy;

END Buggy.

Modula-2 on UCSD Pascal
How To Use The System
page 41

4 How To Use The System

This chapter describes the operation of the Modula-2 system. It covers the
following topies:

@ Compiling programs
@ Executing programs
@ Library management .

@ Programming techniques

Section 4.1 explains how to compile programs: how to invoke the compiler,
what the compiler's console display means, and how to correet syntax errors,

Section 4.2 explains how to execute programs.

Section 4.3 explains library management: how to add modules to the system
library, and how to bind a program module and all its library and subprogram
modules into a single executable code file.

Section 4.4 describes some useful programming techniques: how to structure
large programs to complle and run in limited storage, how to locate execution
errors, and tips on using the library effectively.

Modula-2 on UCSD Pascal
Compiling Programs
page 42

4.1 Compiling Programs

The Modula-2 compiler is a one-pass recursive descent compiler for the
Modula-2 language. It is written in UCSD Pascal, and can be operated either
as the "system compiler" or as a user program.

Unlike most UCSD Pascal compilers, the Modula-2 compiler is non-swapping;
the compiler code remains resident in memory, allowing faster compilations.

Modula-2 source programs are translated into executable p-Code files. No
linking is necessary, as separately compiled modules are automatically bound
together at run time.

4.1.1 Invoking the Compiler

The Modula-2 compiler is a code file named SYSTEM.COMPILER. It is
invoked by typing "C" at the system prompt.

Input end output file prompts are similar to those of the UCSD Pascal
compiler. If a work text file exists, the compiler immediately begins
compiling it; otherwise, the following prompt appears on the screen:

Compile what file?

After the input file name is entered, the output file prompt appear;s:

To what file?

The proper response to this prompt depends on the type of module being
compiled. If the compilation unit is a program module, the output file
prompt works as in UCSD Pascal; <er> specifies the work file, "$" denotes
the same file title as the input file, and a file title creates an explicitly
named code file.

When compiling a definition module or implementation module, the compiler
ignores the output prompt response and names the output file according to
the module name and type; in these cases, responding with a carriage return
is sufficient. The output file is written to the prefixed volume.

Compiler-generated output file names consist of a module name (truncated to
a maximum of ten characters) followed by a file type suffix, The suffix
"SYM" is appended to the module name if the compilation unit is a definition
module. The suffix ".MOD"™ is appended if the compilation unit is an
implementation module. For example, compiling a definition module named
"Foon" produces a disk file named "FOON.SYM"., This naming convention is

Modula-2 on UCSD Pascal
Compiling Programs
page 43

required by both the compiler and loader (see 2.1.5 for details). The
Modula-2 compiler can also be executed as a user program. Its file name is

usually M2.CODE. When executed, the compiler's initial console display
appears first, followed by an input file prompt. The work file is ignored.
An output file prompt does not appear; the compiler automatically names the
output file as if '$*' had been typed to an output prompt.

4.1.2 Console Display

Here is an example of a console display:
Modula-2 Compiler by Volition Systems
Version p-Code II.2 0.3a 11 Sep 82
Copyright 1982, All rights reserved.

MODULE Test;

* 2 InOut [6221]
* 3 SystemTypes [5804]
* 3 Program [5722]
* 4 Files [5188]
skakkakk 2247
9 Procl [3267]
18 Mod1 3 [3132]
20 Proc2 5 [3175]
22 Proc3 4 [3233]
24 Test 6 [3296]

27 lines, 3132 words left
82 bytes generated

The first line indicates the name and type of the compilation unit,

(If Test were a definition module, the line would appear as "DEFINITION
MODULE Test"; if an implementation module, "IMPLEMENTATION MODULE
Test".)

The compiler prints a line whenever it finishes importing a libary module or
encounters the beginning of a procedure or module body. An asterisk in the
leftmost column indicates an imported library module. The second column
displays the current line in the source program. The third column displays
the name of the procedure or module; the indentation indicates the lexical
level of the procedure or module. (Note that nested procedures increase the
lexical level, but nested modules do not.) The fourth column displays the
procedure numbers assigned to procedures and module bodies; these are useful
for locating execution errors (see 4.4.6 for details). The rightmost column
[enclosed in brackets] displays the number of words left in memory.

Modula-2 on UCSD Pascal
Compiling Programs
page 44

At the end, the compiler prints the total number of source lines compiled,
the minimum number of memory words available during compilation, and the
number of bytes in the produced code segment.

NOTE- When the recyeling option is enabled (3.3.10), the compiler
prints a row of five asterisks on .the screen: each asterisk
indicates the completion of a recycling phase. Following the
last asterisk is an integer value indicating the number of words
reclaimed by reeyeling, The normal console display resumes
when reecyeling is completed.

4.1.3 Error Handling

The compiler handles two kinds of errors: syntax errors and library errors.
Syntax errors are handled as in UCSD Pascal; the user is prompted to either
abort the compiler, resume compilation, or invoke the editor. Library errors
are always fatal; the compiler prints a message and then terminates.

When the compiler disecovers a syntax error, a prompt appears on the console
display:

IMPORT a,b

EXPORT KK

Line 77, ';' expected

Type <escape>, E(dit, <sp>(continue)

The first two lines display the source text where the error occurred; the
arrows point at the last symbol compiled. The third line displays the current
line number and a textual error message describing what is wrong. The last
line is a prompt line indicating your available options.

Typing <space> resumes compilation; the compiler usually recovers from the
syntax error, and proceeds either to the next error or to the end of the
program,

Typing <escape> terminates compilation and returns control to the system
prompt line,

Typing "E" terminates compilation and automatically invokes the editor. When
the proper input file is specified, the editor positions the cursor at the
location of the error and again prints the message describing the syntax
error.

Textual error messages are displayed only when the file "SYSTEM.SYNTAX" is
on the system (boot) disk volume; otherwise, the compiler only displays the
error number. Appendix 3 contains a list of compiler syntax error messages

Modula-2 on UCSD Pascal
Compiling Programs
page 45

and their assigned numbers,

NOTE- The Advanced System Editor (ASE) works with both Modula-2
and UCSD Pascal "SYSTEM.SYNTAX" files; however, the
standard editor does not work correctly with the Modula-2 SYS-
TEM.SYNTAX. If you are still using the standard editor (or if
you regularly use both compilers), change the name of the
Modula-2 error file to "MODULA.SYNTAX". The Modula-2
compiler will still display textual error messages, but the editor
will display only error numbers.

NOTE- On fatal errors, the <space> option is not available; the only
options are to enter the editor or terminate compilation.

Library error messages are handled differently than syntax error messages and
are displayed in a variety of formats. Common library errors include:

@ Missing library files.

@ Invalid library files (usually an improperly updated system library
file).

@ Module version errors.
@ Failure to assign a segment number to a definition module.

@ Occurrences of variable or procedure declarations in
"eompile time" (segment 1) definition modules.

NOTE- All syntax errors become "fatal" errors if they occur while
compiling a symbol file. This will not happen under normal
circumstances.

NOTE-~ When the compiler is operated as a user program, the E(dit
option is not available. To locate a syntax error in this case,
note the line number and error; next, enter the editor with the
source file, move the cursor down by the right number of lines,
and you should end up right next to the syntax error.

Modula-2 on UCSD Pascal
Executing Programs
page 46

4.2 Executing Programs

Modula-2 programs are executed identically to UCSD Pascal programs. Type
"X" from the system prompt. The following prompt appears:

Execute what file?

Type the file title of the Module-2 program's code file, then a carriage
return, After a few disk accesses, the program is loaded and begins
executing. = Modula-2 programs generally take longer to load than Pascal
programs, as library modules must be located in the library and then loaded
into memory along with the program module code.

Modula-2 programs may fail to execute because of a load error; in this case,
the loader prints an error message explaining the problem and returns control
to the system prompt,

NOTE- Section 4.4.6 describes execution errors and how to locate
them,

NOTE- The execution of Modula-2 programs from the system prompt
is implemented as a three-step process. The compiler
automatically writes a 2-block header on the front of every
program module's code file; the header contains a small
bootstrap program which is executable from the system prompt.
When a Module-2 program is executed, the system loads’ and
executes the bootstrap program, whose primary task is to find
the loader module in the system library, load it, and call it,
The loader then goes back to the executed code file, loads the
program module (and all of its imported library modules), and
calls the program module.

Modula-2 on UCSD Pascal
Library Management
page 47

4.3 Library Management

This section describes how to manage the Modula-2 library. Topies covered
include operation of the library manager utility, how to use the library
manager to update the system library file and create program libraries.

4.3.1 Using the Library Manager

The library manager is a utility program which is used to manipulate library
files. Common operations on library files include inserting and deleting
library modules from the system library file, and combining user library files
into a single program library file,

The library manager also has the ability to "hide" modules stored in a library
file. Hiding a module is equivalent to deleting it from the library, but holds
a couple of advantages over outright deletion. The entire library file need
not be updated to hide a module; hiding is a faster operation than deletion.
Also, a hidden module is only temporarily deleted; the module can be
subsequently restored by "unhiding" it. Hiding unused system modules
improves system efficiency by reducing the amount of memory-resident library
information. Hiding is also a useful program development tool (see 4.4.4 for
details),

WARNING- The rest of this section is best read in front of the
terminal with the library manager program running; otherwise, it
is tedious!

The library manager is invoked by X(ecuting the code file named LIB., After
a few disk accesses, the following prompt appears:

Lib: U(pdate C(reate S(tatus Q(uit <esc> [8427]

This prompt marks the outer level of the library manager. Q(uit and <ese>
return you to the system prompt. S(tatus displays the modules in a library
file and is used to hide and unhide modules. C(reate makes a new library
file' by copying modules from existing library files. U(pdate inserts and
deletes modules in an existing library file.

The commands Q(uit and <ese> appear on most every prompt in the library
manager. Q(uit terminates the current command level and updates the library
file to reflect the changes made at that level. Typing <ese> terminates the
current command level without updating the file.

<esc> always issues a prompt when it is typed:

Are you sure?

Modula-2 on UCSD Pascal
Library Management
page 48

Typing "Y" escapes the current command level; typmg any other character
returns you to the current command level.

The integer value enclosed in brackets also appears on many library manager
prompts; it displays the number of available words left in memory.

NOTE- Whenever a file name prompt appears in the library manager,
you can type '*' to specify the system library file, The library
manager recognizes '*' as a shorthand form of the system library
file — the file name "MODULA.LIBRARY" is searched for on the
prefixed volume, then on the system volume.

S(tatus

Type "S", and the following prompt appears:

Name of file for Status?

Type the complete file name of the library file you wish to modify, then
type <return>,

A new prompt line appears across the top of the screen:

Status: H(ide U(nhide L(ib Q(uit <esc> P(rev N(ext [8244]

Output file: *MODULA.LIBRARY

Mod Name Seg DLen ILen
1 Program 2 D 1 674 1628
1 SubProgram 3 1 2304
1 Storage 4 D 1 234 854
2 SystemType 1 D 1 205 0
3 Unitlo 1 D 1 843 0
4 BlockIO 1 D 717

5 ASCII 1 I 0
6 MyProg 10 I 1066
7 InOut 54 DH IH 574 930
8 MathLib0 50 DH 282

The output file name is identical to the input file name you typed earlier, as
only the library file's attributes are being modified.

The table starting on the next line is known as the module display; it
displays all the modules contained in the library file., The numbers beneath
the pound sign "#" are used to select modules in various library manager
commands. The module names are truncated to ten characters,

Modula-2 on UCSD Pascal
Library Management
page 49

The "Seg" field displays the module segment number, Segment numbers
worthy of note here are 1 (indicating compile-time modules), 2 and 3
(assigned to the loader and its subprogram), 4 (storage manager), and 7
(assigned only to program modules, which are treated as implementation
modules by the module display).

The next two fields indicate whether the displayed library module includes a
definition module, implementation module, or both. The letter "D" appears if
the definition module is in the library, while "I'" denotes the presence of an
implementation module. If either of these letters is followed by "H", the
indicat)ed module is currently hidden (i.e. inaccessible by the compiler and
loader).

The last two fields indicate the module sizes (in bytes). An implementation
module size indicates the size of the module's code segment. A definition
module size indicates the number of bytes in the symbol file. Values are
displayed as (decimal) integers. Note that the implementation module size is
0 for "compile-time" modules.

Up to 40 module entries can be displayed on the screen at one time. If the
library contains more than 40 module entries, use the N(ext and P(rev
commands to move between module displays. N(ext displays the next 40
module entries in the library, while P(rev displays the previous 40 module
entries. Note that P(rev and N(ext have no effect unless the current library
file contains more than 40 modules.

NOTE- Be sure you understand the module display (and its associated
commands), as it appears throughout the library manager.

S(tatus commands

H(ide and U(nhide produce the following prompt:

Which module #, A(11, <esc>?

Typing a module entry number followed by <return> specifies a single module
entry. "A" specifies all module entries in the current module display.

Once one (or all) module entries have been specified, this prompt appears:

D(ef, I(mp, B(oth, <ese>?

D(ef (un)hides the module entry's definition module, I(mp (un)hides the
implementation module. B(oth (un)hides both modules. After you respond to
this prompt, the module display is updated to reflect the new status of the
specified module(s); the "H" character either appears or disappears from the

" Modula-2 on UCSD Paseal

Library Management
page 50

"D" or "I" indicating the specified module(s).

L(ib assigns new library numbers to system library files. The following
prompt appears:

Current Lib # = 1957
New Library # ?

The value displayed on the first line is the library number stored in the
current system library file. The new library number is entered and then
terminated by typing <return>.

Library numbers are used to uniquely identify system library files originating
from different systems; they can be used as "system identifiers" when
program development is distributed across a number of different systems.
The library number becomes a part of the module key assigned to every
definition module compiled on a given system.

NOTE- Any file created for use as the system library file
MODULA.LIBRARY must have the L(ib command performed on
it,” The compiler and loader will not open a system library file
if has not been assigned a library number.

C(reate

Type "C" from the library manager's outermost prompt line, and the following
prompt appears:

Name of file to Create?

Type the complete file name of the library file you wish to create, then type
<return>,

A new prompt line appears across the top of the screen, and the module
display (described above) is displayed below it:

Create: C(opy L(ib Q(uit <esc> P(rev N(ext [7777]

The output file name displayed on the screen is the name of the file you
wish to create. The module display is initially empty; the C(opy modules
command fills up the module display with modules copied from other library
files.

The C(opy modules command produces the following prompt:

Name of file to Copy from?

Modula-2 on UCSD Pascal
Library Management
page 51

Type the complete file name of the library file you wish to copy modules
from, then type <return>. A new prompt line appears across the top of the
sereen:

Copy: S(elect D(eselect H(ide Un(hide Q(uit <esc> P(rev N(ext

The current module display is replaced with the module display of the library
file just specified. Modules are selected from this module display for copying
into the new library file's module display.

Modules are selected for copying with the S(elect and D(eselect commands.
S(elect and D(eselect produce the following prompt:

Which module #, A(ll, <esc>?

Typing a module entry number followed by <return> specifies a single module
entry., "A" specifies all module entries in the current module display.

Once one (or all) module entries have been specified, this prompt appears:

D(ef, I(mp, B(oth, <ese>?

D(ef (de)selects the module entry's definition module, I(mp (de)selects the
implementation module. B(oth (de)selects both modules, After you respond to
this prompt, the module display is updated to reflect the modules that have
been selected for copying; the presence of an asterisk "*" preceding a "D" or
"" in the module display indicates that the corresponding module has been
selected for copying.

NOTE- The S(elect command automatically selects the library module
contained in a one-module library file; the additional prompts do
not appear.

Typing Q(uit from the Copy prompt copies the selected modules into the new
library file, The new library file's module display reappears on the screen; it
now includes the modules copied from the last library file., The Create
prompt line also reappears, allowing you to use the C(opy modules command
to copy additional modules from other library files.

Typing <ese> returns to the Create prompt without copying any modules.

Modula-2 on UCSD Pascal
Library Management
page 52 '

NOTE- The library manager performs some library integrity checks
normally performed by the compiler and loader; in particular, it.
prevents the following situations from ocecurring:

@ Inclusion of duplicate module names into a library file.

@ Inclusion of a definition or implementation module when its
companion module has an incompatible module key.

@ Inclusion of a module that references other modules in the
library file when the module keys do not match.

NOTE- The available memory (as displayed on the prompt lines)
shrinks as additional modules are copied into the new library
file. The library manager can build libraries containing arbitrary
numbers of modules, but limits the total size of a library file to
what can fit in memory at one time., The memory available
value indicates when this limit is approached; if it gets close to
0, do not copy any more modules into the library!

To leave the C(reate command, type Q(uit or <ese>., Q(uit finishes writing
the output file and saves it on disk. <ese> exits the C(reate command, but
purges the output file, After both commands, control is returned to the
library manager's outer prompt.

U(pdate

The U(pdate command is similar to C(reate, but is used to change the
contents of an existing library file. U(pdate first prompts for the input and
output file names; typing a "$" as the output file name causes the output file
to have the same name as the input file, After the output file is specified,
U(pdate automatically performs a C(opy and S(elect of all modules in the
input file, Modules are then removed with D(eselect or added by C(opying
modules from other library files. U(pdate also performs an automatic L(ib
operation on the output file, assigning it the library number from the input
file; thus, L(ib need not (and in fact should not) be invoked.

Modula-2 on UCSD Pascal
Library Management
page 53

4.3.2 Updating the System Library

The system library file is usually updated with the library manager commands
S(tatus and U(pdate. (C(reate is generally used only for building program
libraries.)

S(tatus is used to hide modules or change library numbers, Note that S(tatus
is a much faster operation than U(pdate. S(tatus does not copy the existing
library to a new file; it merely updates information in the current library
file.

U(pdate is used to insert or delete modules from the system library. The
output file is named "MODULA.LIBRARY"; the output file thus replaces the
old system library file when it is written out to disk.

A system library file must contain the modules Program, SubProgram, and
Storage — the L(ib command will not work without them, and a system
library file is unusable if not assigned a library number. Note that hiding
has no effeet on their implementation modules.

WARNING- Do not hide or delete library modules used by the library
manager: Terminal, BloecklO, Screen, ASCI, Conversions, UnitlO,
and Standards. If you do, the library manager cannot be
invoked again, making it impossible to subsequently update the
library (in particular, unhiding the unwisely hidden modules). If
this does happen, you will have to transfer a new copy of the
system library file from your backup disks.

4.3.3 Creating Stand-alone Programs

Program files (2.1.4) are code files that contain a program module and all of
its subsidiary library modules (possibly including subprogram modules).
Program files are not truly stand-alone programs; the system library file must
still reside separately on disk (in the file MODULA.LIBRARY).

C(reate is used to collect modules from several user library files into a
single program file, Program files are usually — but not necessarily — named
after the (main) program module contained within. Remember to add the
",CODE" suffix to the output file name,

In order for a program file to work correctly, the "main" program module
must be the first module copied into the output library file, The loader
assumes that the last program module in the file — i.e. the first module
copied into the library file — is the one to be called.

Modula-2 on UCSD Pascal
Librery Meanagement
page 54

NOTE- See 4.4.2 for details on structuring large programs into
program libraries.

Modula-2 on UCSD Pascal
Programming Techniques
page 55

4.4 Programming Techniques

This section describes techniques which improve the effectiveness of the
Modula-2 system. It covers the following topies:

® Maximizing compile-time space

@ Maximizing run-time space

@ File naming conventions

® Using the library

@ Accessing machine-level operations

® Locating execution errors

Sections 4.4.1 and 4.4.2 describe techniques for making programs compile and
execute as efficiently as possible.

Section 4.4.3 suggests some naming conventions for organizing the source files
of library modules,

Section 4.4.4 explains how to make efficient use of the library system.

Section 4.4.5 explains how to take advantage of set operators and type
transfer functions to obtain some useful low-level operations,

Finally, section 4.4.6 explains how to use execution error messages and
compiled listings to track down execution errors.

Modula-2 on UCSD Pascal
Programming Techniques
page 56

4.4.1 Maximizing Compile-time Space

Modula-2's separate compilation facilities play an important role in the
development of large programs on limited-resource machines. On such
systems, the compiler tends to occupy most of available memory, leaving
relatively little space for symbol table storage and thus limiting the size of a
compilation unit, Languages such as Pascal equate compilation units with
programs, thereby imposing striet limits on the size of a program. Modula-2's
ability to construct programs from separate compilation units allows the
development of much larger programs than can be written in Pascal,

NOTE- It is worth noting that the use of modules to restrict the
visibility of identifiers — presented earlier in this manual as a
technique for improving program understandability — proves to
be an implementation asset by reducing the demands on symbol
table storage.

The Modula-2 language offers the possibility of significantly increasing the
amount of available symbol table space. First, a compiler can recyecle symbol
table storage allocated for a local module's private variables once the module
has been compiled. Second (and more important), after compiling the symbol
file of an imported definition module, a compiler can recycle the storage
allocated for symbols not actually imported by the eclient module. The
Modula-2 compiler provided with this system is capable of performing the
latter space optimization,

Storage reclamation is controlled by the compile option $RECYCLE (3.3.10).
Recycling can create up to 2000 extra words of compile space at the
expense of slightly slower compilations (due to the extra time spent in the
recycling phase).

Definition module recyeling can significantly affect the design of large
compilation units which import identifiers from many different library
modules. A definition's modules symbols are recycled only if the module is
subjected to unqualifying import. In unqualifying import, the compiler retains
the symbol records of identifiers actually imported from the module; the
remaining definition module identifiers are disposed of, If a library module is
imported by name, then all of its (exported) identifiers are potentially
accessible and therefore cannot be reeyeled. In short, reecyeling is most
effective when unqualifying import is used on all library modules.

Another factor offecting compile-time symbol table space is the number of
modules in the system library. The compiler maintains information in memory
deseribing all modules in the system library (2.1.5); thus, very large system
libraries may consume nontrivial amounts of compile-time storage. The
recycle - option reclaims library information along with unused library
identifiers, so this is ultimately not a serious problem; however, the need for
recyeling can be minimized by limiting the system library to only the modules

Modula-2 on UCSD Pascal
Programming Techniques
page 57

needed for a particular system configuration; this not only saves compile
space on (nonrecyeling) compilations, but makes system library updating more
efficient (because of the smaller library file).

4.4.2 Maximizing Run-time Space

Large programs usually consist of a number of code "overlays" in order to
reduce the amount of memory occupied by program code. For instance,
UCSD Pascal provides "segment" procedures whose code remains disk-resident
until they are called. Code management in Modula-2 is performed by dividing
a large program into a collection of subprograms, and using the loader to
execute subprograms as procedures. Unlike segment procedures, Modula-2
subprograms are complete programs; they can in fact be executable programs
themselves., Note that subprograms may share the system's dynamie storage,
thus allowing a subprogram to build dynamie data structures that are
available to the main program after the subprogram terminates. Subprograms
communicate with calling programs by importing the same library modules and
sharing their variables. ’

The subprogram call concept has a number of advantages over the use of
segment procedures. Subprograms can be written and tested as executable
programs before being incorporated into their host program, thus making
possible a true "building block" approach to the design of large software
systems. Shell/menu programs can be written which prompt for the name of
a Modula-2 program module (or Pascal program), execute it, and then
redisplay the command prompt.

Because programs are independent with respeet to segment assignment, a
single program can call arbitrarily many subprograms (eliminating UCSD
Pascal’s "ran out of segments" syndrome). In very large programs, the
subprogram call concept can be more efficient than than having a single
program with many segments. A program containing large numbers of
segments requires segment information to be memory-resident for the life of
the program, whereas subprogram calls accumulate memory-resident segment
information only on nested subprogram calls (when existing segment entries
are temporarily displaced by a subprogram's segments),

The optimal structure for large Modula-2 systems is a base program which
serves as a global environment for its subprogrems (and as a "shell" or
"menu" to the user) and a large number of independent subprograms, each
representing a different function within the system,

The primary disadvantage of subprogram calls is that they usually require
more disk accesses than a corresponding segment procedure call, The library
system is designed to minimize this problem; in particular, it allows for
differing uses of subprograms. Subprograms are generally used in one of two
ways: either as segment programs (purposely similar to "segment

Module-2 on UCSD Pascal
Programming Techniques
page 58

procedures"), or as subsystems.

Subsystems have the following properties: they perform well-defined functions,
they are substantial programs with a number of subsidiary library modules,
and they are called relatively infrequently. A typical example would be the
role played by the library manager. From the system's point of view, the
extra disk accesses required to load a subsystem are acceptable losses in
system performance given the advantages of the subsystem concept.

The proper way to structure a subsystem is to bind the program module and
all of its subsidiary modules into a single program file. The structure of the
software system is reflected in the way it is stored in the library: a central
code file executed as a "shell", and a collection of program files each of
which represents a different subsystem, On subsystem calls, the loader
searches the disk only once for the subprogram file; since subsidiary modules
are contained in the same file, they load relatively quickly.

Segment programs have the following properties: they are localized to a
single program, and they are called relatively frequently., Segment programs
do not have any subsidiary library modules, as they usually serve subsidiary
roles themselves; e.g. initializing the global data structures of a host
program. From the system's point of view, it is desirable that they are
loaded and unloaded as quickly as possible to minimize the (inevitable)
degradation in system performance caused by loading a code file from disk,

The proper place for a segment program is in the program file of its host
subsystem; here it serves its role as a subsidiary module., Because the library
information describing subsidiary modules is memory-resident during the life of
the host subsystem, the subprogram call requires no disk accesses other than
reading in the code segment itself — it thus loads as quickly as a UCSD
Pascal segment procedure.

The Modula-2 system also provides a feature for simplifying the storage
management in large systems., Because the system provides true dynamic
storage management, it is necessary to explicitly deallocate all dynamically
allocated variables., This requirement can be a severe limitation when it is
necessary to reclaim storage allocated by subprograms that have to construet
complex dynamic structures. To address this problem, subprogram calls have
the option of controlling whether the called program shares dynamic storage
with the calling program., On shared subprogram calls, all structures created
by the subprogram are retained when the subprogram terminates. On
unshared calls, all storage allocated by the subprogram is automatically
deallocated upon subprogram termination. Sce Standard Library for details,

Another factor affecting run-time storage space is the presence of in-memory
library information maintained by the loader. The loader keeps information in
memory describing all modules in the system library; thus, very large system
libraries may consume nontrivial amounts of run-time storage. In most cases,

Modula-2 on UCSD Pascal
Programming Techniques
page 59

it is desirable to pare the system library down so it contains only the
modules used by a particular system configuration. Library information is
also minimized by maintaining the subprograms of a very large program in
separate program files rather than lumping them together into a single (and
possibly huge!) program file.

4.4.3 File Naming Conventions

A librery module X consists of up to four disk files: two text files
(containing definition and implementation module sources), a symbol file, and
an object file. The compiler automatically assigns the file names "X.SYM"
and "X,MOD" to the symbol and object files; however, the user is responsible
for naming the text files. A problem arises because there are two text files
meriting the file name "X,TEXT". A standard convention is to name the
definition module source file "XD.TEXT" and the implementation module
source file "X,TEXT". These names are distinet, but similar enough to relate
the files (and to manipulate them in the filer as the wildeard entity
"X=TEXT").

NOTE- Compiler-assigned output file names (i.e. files with the
suffixes ".SYM", ".MOD", and ".CODE") should not be changed,
as they are an essential part of the library access scheme.

NOTE- Given the proliferation of disk files resulting from library
modules, the system library file is seen to serve as a facility
for reducing the number of disk directory entries used up by
collections of library modules.

Modula-2 on UCSD Pascal
Programming Techniques
page 60

4.4.4 Using the Library

The system library provided with the Module-2 system contains all library
modules provided with the system. As a result, the library file is rather
large and unwieldy: it consumes a lot of disk space, slows down the compiler
and loader, and reduces the amount of compile-time and run-time space
available, Fortunately, you can make the whole system more efficient and
easier to use by removing unused library modules from the system library; the
smaller the library is, the better the system runs.,

Here is how to tailor the Modula-2 system to your needs:

@ Save a copy of the original system library file on an archive
disk (to ensure that you never accidentally delete the only copy
of some library module).

@ Learn how to use the library manager.

@ Determine which library modules you will be using for your next
programming project. (e.g. "Do I really need decimal arithmetic
in my real-time turboincabulating system?")

® Check the module hierarchy (in the Implementation Guide) to
see if the library modules you have chosen happen to import
some other library modules — you will need these, too.

@ Use the library manager to construct a new system library. file
containing only the library modules you need. Put the new
system library file on your system disks and start programming!

® When your program is done, remember that definition modules
can be deleted from the library without affecting program
execution; they are needed only for compilation.

The library manager allows modules stored in the system library file to be
"hidden" so they cannot be accessed by the compiler or loader. You can
take advantage of the fact that hiding a module in the system library is a
much faster operation than updating the system library with a new library
module, If a module stored in the system library is found to be incorrect
(and thus requires updating and testing), it is faster to hide the existing
module and perform all updates and testing with the user library. Only after
the module is performing correctly need it be inserted into the system library
to replace the old (hidden) version. Section 2.1.6 explains how to make
efficient use of the library during program development.

The compiler and loader check for a system library file on the prefixed
volume before checking the system volume. If your system is configured to
operate with the system library file on the system volume, you ean exploit
this property of the library search algorithm (2.1.5) to test new versions of

Modula-2 on UCSD Pascal
Programming Techniques
page 61

the system library without having to disturb the existing system library file.
When the system library file is updated, write it to the prefixed volume with
the standard name "MODULA.LIBRARY". When the next Modula program is
executed, it will access the system library file on the prefixed volume. If
the new system library is correct, delete the old system library file and
transfer the new file to the system volume., If the new system library is
nonfunctional, just delete it — the system is now back to its original state.

NOTE- Programs load slightly faster if the system library file resides
on the same disk as the user library and program library files;
thus, it is usually preferable to keep the system library file on
the prefixed disk along with the rest of the library.

4.4.5 Accessing Low-level Machine Operations

The type conversion functions allow access to a few useful machine-level
operations. The full-word logical operations AND, OR, XOR, and bit masks
are achieved with Modula-2's set operators. Operands must be converted to
type BITSET.

set operator machine operation
union "+" logical OR
intersection ™" logical AND
symmetric difference "/" logical XOR
difference "-" bit mask

Multi-word comparisons for equality and inequality are achieved by converting
the operands to sets (of corresponding length) and using the set operators "="
and "#",

Before using sets for multi-word operations, be aware that the maximum set
size varies across implementations. On 6502's, the maximum set size is 32
words; the remaining processors allow full 255 word sets, Multi-word
comparisons are not advisable on packed records and arrays, as most packed
structures contain unused (and thus uninitialized) bit fields which prevent
accurate comparisons,

Character variables declared at fixed addresses are accessed as byte
quantities. This allows access to individual bytes without disturbing adjacent
memory — a necessary attribute for accessing such objects as bank switches
and I/O registers. ' :

Modula-2 on UCSD Pascal
Programming Techniques
page 62

4.4.6 Locating Execution Errors

Execution errors are handled either by the calling program or (in the default
case) by the system. Since program-controlled execution error handling
indicates only the occurrence of an error and not its actual location,
execution errors are best handled by the system,

On a system-controlled execution error, the system terminates the program
and displays a multi-line error message describing the error. The first line
of the message indicates the location of execution error. Successive lines
display the procedure call chain; i.e. the series of procedure calls leading
from the error back to the outer block of the program. (Procedure call
chains are commonly known as "walkbacks".) Following the call chain is a
textual error message and a prompt line,

Example of an execution error message:

>M=MyModule, P=23, 1=432
“M=BasicMod, P=5, I=18

“M=MainProg, P=12, I=174
“M=MainProg, P=2, I=291
Range Error, type <space>

Typing the space bar terminates the current program and returns control to
the calling program,

Note that the messages describing the execution error location and call chain
have similar form, Each consists of a module (compilation unit) name,
procedure number within the module, and code offset within the procedure.
The character '>' marks the message describing the execution error location.
The character '"' marks messages describing the location of each procedure
call in the call chain.

To find the locations of error and procedure calls within your source
programs, you must match the procedure numbers and code offsets in the
error message with the values displayed in compiled listings (see 3.3.5 for
details).

Thus, the first thing to do is find (or create) up-to-date compiled listings of
the named modules, Procedures are located by matching the procedure
number with the procedure number on the listing; similarly for the code
offset. Note that in many cases the displayed code offset does not match
any value displayed in the listing; this is because each source statement
produces arbitrary numbers of bytes of code. To track down the erroneous
source line, find the largest code offset value which is smaller than the
displayed offset value.

Modula--2 on UCSD Pascal
Programming Techniques
page 63

To simplify the pursuit of execution errors, the compiler provides the compile
option $DEBUG (3.2.13). When a module is compiled with DEBUG set to
TRUE, the execution error message displays the procedure name in place of
the procedure number., With symbolic procedure names in the call chain, it
becomes possible to trace execution errors without using compiled listings.

Example of a symbolic execution error message:

>M=MyModule, P=BigProe, I=432
“M=BasicMod, P=StartSort, I=18
“M=MainProg, P=InitFiles, I=174
“M=MainProg, P=MainProg, 1=291
Range Error, type <space>

Note that an execution error message may include both procedure names and
procedure numbers. Because symbolic procedure information can be specified
on a per-module (or even per-procedure) basis, error messages display
procedure names only if they are available in the code file,

NOTE- The maximum call chain depth displayed is 10 calls,

NOTE- Sometimes an execution error may occur within a standard or
utility module; although compiled listings of these modules are
unavailable, the call chain should lead back to one of your own
modules. The most likely causes of such errors are invalid
parameters passed to system routines.

NOTE- Execution error messages do not appear (in system-controlled
mode) if a subprogram terminates with program results
NormalReturn or ProgramHalted. The standard procedure HALT
terminates a program with program result ProgramHalted.

NOTE- If an execution error occurs in a called Pascal program, the
error message displays segment numbers in place of module
names. Note that Pascal program outer blocks are not displayed
in the call chain.

Modula-2 on UCSD Pascal
Module Segment Numbers
page 64

Appendix 1 Module Segment Numbers

The following table indicates the segment numbers assigned to modules
contained in the system library. Segments are assigned so that the most
frequently used library modules reside in the highest numbered segments.

Segments 0 through 6 are reserved for the Modula-2 system. Program
modules always reside in segment 7. Segments 8 through 47 are available for
user-defined library modules. Segments 48 through 63 are provisionally
reserved for library modules provided with the system.

Many of the standard library modules are interdependent; importing one of
these modules implies the importation of other modules, resulting in the use
of extra segments. Standard Library describes library module dependencies.

The utility module ASCII and all system-dependent modules are compile-time
modules, and thus are assigned segment 1.

NOTE- Segments 59 through 63 are reserved for certain
implementations. See the Implementation Guide for details,

Library module segment assignment:

Program 2 Reals 52
SubProgram 3 Strings 53
Storage 4 InOut 54
Decimal 48 Conversions 55
Processes 49 Texts 56
MathLib0 50 Files 57

ReallnOut 51 Terminal 58

Modula-2 on UCSD Pascal
Compiler Directives
page 65

Appendix 2 Compiler Directives

$DEBUG Setting DEBUG to TRUE causes the compiler to
emit code file information which enables
execution error messages to display symbolie
procedure names, The default setting is FALSE,

$ELSIF "$ELSIF <expression> THEN" marks an alternate
choice of a conditionally compiled section of
program text. The following text is compiled
only if the previous section of text was not
selected and the expression evaluates to TRUE.

$ELSE Marks the default part of a conditionally
compiled section of program text. The following
text is compiled only if the previous section(s)
of text was not selected.

$END Marks the end of a conditionally ecompiled section
of program text,

$FLIP Setting FLIP to TRUE causes the compiler to generate
code files for processors of the opposite byte-sex.
The default setting is FALSE. Set at top of program.

$IF "$IF <expression> THEN" marks the start of a
conditionally compiled section of program text. The
following text is compiled only if the expression
evaluates to TRUE,

$IN The following string contains the name of a text
file to be included into the program text.

$LIST Setting LIST to TRUE generates a compiled listing.
FALSE suppresses listing. The default setting
is FALSE. The TO option must be used for LIST to
have any effect,

$NOT The following string is embedded in the object or
symbol file as a copyright notice. NOT must be
set after the initial module heading.

$POP Sets the specified Boolean variable to its previously
stacked value.

$PUSH Stacks the current value of the specified Boolean
variable. ~

Modula-2 on UCSD Pascal

Compiler Directives

page 66

$QUIET

$RANGE

$RECYCLE

$SEG

$SET

$SPECIAL

$STANDARD

$TO

$TYPE
$UPCASE

Setting QUIET to TRUE suppresses the compiler's
console display. The default setting is FALSE.

Setting RANGE to TRUE generates runtime range checks
on array and subrange references. FALSE suppresses
checks. The default setting is TRUE,

Setting RECYCLE to TRUE enables the symbol table
recyeling phase in the compiler. The default
setting is FALSE. Set at top of program,

Assign the module segment number to the definition
module. Set after module heading.

If a string parameter is provided, it is written

to the sereen as a prompt; otherwise, the
compile-time variable name is printed on the screen
followed by a '?'. Typing 'y' or 't' sets the
variable to TRUE; 'n' or 'f' sets it to FALSE.
Cardinal numbers may also be entered.

Setting SPECIAL to TRUE alters the Modula-2
vocabulary for systems with half ASCII character
sets. The default setting is FALSE. Set at top
of program.

Setting STANDARD to FALSE allows the use of Modula-2
language extensions. The default setting is. TRUE.
Set at top of program.

Writes a compiled listing to the file named by the string
parameter. Sets LIST to TRUE., Set at top of program.

The string parameter is written to the screen.
Setting UPCASE to TRUE sets SPECIAL to TRUE and

translates all lower case characters to upper case.
The default setting is FALSE, Set at top of program.

Modula-2 on UCSD Pasecal
Compiler Error Messages
page 67

Appendix 3 Compiler Error Messages

2:
3:
4;
5:

8:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
352
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:

Non-standard construct

Constant out of range

Open comment at end of file
String terminator not on this line
Too many errors

: String too long
: Copyright must appear after MODULE and before PROCEDUREs

10 error on output code file

: Unable to open include file

10 error opening output code file

Illegal character in text

Unexpected end of source file

IO error reading System Library

Ilegal System Library

IO error on listing file

Error in $ directive

$ options must be more than 1 letter long
$IF not closed with $END at end of file
$ELSIF, $ELSE, or $END without previous $IF
Identifier expected

Integer constant expected

'] expected

's? expected A
Block name at the END does not match
Illegal declaration or block terminator
':=' expected

Error in expression

'THEN' expected

Error in LOOP statement

Constant must not be CARDINAL

Error in REPEAT statement

'UNTIL' expected

Error in WHILE statement

'DO!' expected

Error in CASE statement

'OF' expected

3! expected

'BEGIN' expected

Error in WITH statement

'END' expected

')* expected

Illegal component in constant

'=! expected

Error in TYPE declaration

(' expected

'MODULE' expected

Modula-2 on UCSD Pascal
Compiler Error Messages

page 68

47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
70:
71:
72:
73:
74:
75:
78:
79:
80:
81:
82:
83:
84:
86:
88:
90:
91:
92:
93:
94:

'QUALIFIED' expected

Illegal expression component

Illegal simple type

',' expected

Illegal formal parameter type

Illegal statement starter or missing END

! expected

Export at global level not allowed

Body in definition module not allowed

'TO! expected

Nested module in definition module not allowed

1} expected

.. expected

Error in FOR statement

'IMPORT"' expected

'DEFINITION', 'IMPLEMENTATION', or 'MODULE' expected
Error reading source file

IMPLEMENTATION not allowed for Pascal ($CODE) modules
Identifier specified twice in importlist

Identifier not exported from qualifying module
Identifier declared twice

Identifier not declared or incorrect class

Type not declared

Identifier already declared in module environment
Value of absolute address must be of type CARDINAL
Scope table overflow in compiler

Illegal priority

Definition module not found

Structure not allowed for implementation of hidden type
Procedure implementation different from definition
Not all defined procedures or hidden types implemented
Incompatible versions of symbolic modules

Function type is not scalar or basic type
Pointer-referenced type not declared

Tagfieldtype expected

Incompatible type of variant-constant

Constant used twice

Arithmetic error in evaluation of constant expression
Range not correct

Range only with scalar types

: Type-incompatible construetor element

¢ Element value out of bounds
¢ Set-type identifier expected
: Exported items were never defined

Forward procedures were never defined

s Wrong class of identifier
¢ No such module name found
¢ Module name expected

: Scalar type expected
: Set too large ‘
¢ Type must not be INTEGER or CARDINAL

Modula-2 on UCSD Pascal
Compiler Error Messages
page 69

109: Scalar or subrange type expected

110: Veriant value out of bounds

111: Nlegal export from program module

120: Incompatible types in conversion

121: This type is not expected

122; Variable expected

123: Incorrect constant

124: No procedure found for substitution

125: Incorrect procedure call terminator

126: Set constant out of range

127: Error in standard procedure parameters
128: Type incompatibility

129: Type identifier expected

130: Type impossible to index

131: Field not belonging to a record variable
132: Too many parameters

134: Reference not to a variable

135: Illegal parameter substitution

136: Constant expected

137: Expected parameters

138: BOOLEAN type expected

139: Scalar types expected

140: Operation with incompatible type

141: Only global procedure or funetion

142: Incompatible element type

143: Type incompatible operands

144: No selectors allowed for procedures

145: Only function call allowed in expression
146: Arrow not belonging to a pointer variable
147: Standard function or procedure must not be assigned
148: Constant not allowed as variant

149: SET type expected

150: Ilegal substitution to WORD parameter
151: EXIT only in LOOP

152: Incorrect use of RETURN statement

153: Expression expected

154: Expression not allowed

155: Type of function expected

156: Integer constant expected

157: Procedure call expected

158: Identifier not exported from qualifying module
161: Call of procedure with lower priority not allowed
300: Index out of range

301: Division by zero

303: Case lebel defined twice

404: Too many globals, externals and calls
405: Procedure too long (codetable overflow)
990: IMPORT not allowed in Pascal ($CODE) modules
991: Cardinal divisor too large (> 100000B)
992: FOR control variable must not have byte size
993: Illegal use of byte variable

Modula-2 on UCSD Pascal
Compiler Error Messages
page 70

994: Too many nested procedures

995: FOR step too large (> 77777B)

996: CASE label too large (> 77777B)

997: Dllegal parameter substitution

999: Identifier referenced before this definition

Modula-2 on UCSD Pascal
Index
page 71

Index

-A-

Adrsperword.l.....c..l.‘.'....... 12
Auoc...‘....l...'Q.......'...'."17
AND......'..ll.'.............l.. 61

ASE.....'.I.........'...‘C.l...l.45

-B-
Bit Mask5noo-co-occooo.coooo-‘.oo 61

Bits.....'ll.l..0...00.0'.0'...... 19
BITSET..CO..'.l....'..l.l..'.'l.l 61
BlockI0.0....l.Q..........l..l....lz
BlockReadQ...'..........Q..'....Q 13
BloCKkWrit€.eeeeseeoecocsssocsansees 13
Boolean OptioBS.eceecececcscoceses2d
Byte Flipping OptioN.ceecescessaes 37

-C-

Can Cmin.......O.....‘O..Q...l. 62
Cardinal OptioNSeeececceccsccscses 29
Case Labels.......0..0.'.......0. 28
CharsPerword.........‘ll.."..... 12
ClearSCreenUOOC'0."0...'.."00..011
Client.‘O....Ol.".."..ll.....0...6
Closeooocolco-.000000000000000000013
CloSeTYPC e esacossccossssssessnessald
CODE..lOQI.'l'C.‘....I..I7, 26’ 28
Code File Headereeeeoessccessceses 46
Code ProcedureS.ceescescccesscesse 26
CompiIEd Listings.Q...OQOOQOOOOOOO 33
~Compile OptiONSesccococecccsacesssld
Compiler DirectiveS.ececececesse29, 65
Compiler Error Handling..e.eeeecee. 44
Compiler ErrorSeecccececscesccescss 67
Compiler Library AcCCeSS.ccsecesccsed
Compile Space OptiONieceececccesece 37
Compile-time ModuleS.ceeseeeseceaced
Compile-time sp&ceo-...........-..ss
Copyright NoticeS.eessecessssssese 39
C(reateQOOOOCQO0.-.........0..0.0.50

-D-

$DEBUG.'.'......'...Q....C..40, 65
DEC.....Cll.......l.'....‘..'.l..28
Differences and RestrictionS...e....28

DIV.'....."..‘.'.....‘.......... 28

DupﬁcateName..............'.l.‘.. 9

-E-

EBNFQ..Q.QO....C...O..OO...OCOOO.'ze
$ELSE..Q...Q....‘C.0.0...O0.038, 65
$ELSIF...I......'.".0..0....38’ 65
$END.veeseccssososacscansese 38, 65
EraseLin€.cceeesescscosssssoscnessll
Executing ProgramsS..sceccescesecsse46
Execution Errors.ecescesecesse. 40, 62
EXtensionS.ceeeessesecsasseacceees 24

-F-

FILE‘.-...0...l......'...."....' 13
FileName.eceesseosaeoscsssaassnes 13
File Naming ConventionS...cceeeee+39
chhar...l..l..........'..l'l". 17
$FLIP ceveeeccscacocnsncnaenas 37y 65
FLOAT..'I'.....l‘.....l......lll 28
FORWARD . .veesoeesscecssesessld, 28
Forward DeclaratioN..eeeeseess 25, 28
Function ResultSeieesecesceaceases 28

-G-
GotoxY..'IIC'..O.‘O.....".Ol.".ll

-H-

Half-ASCII Te!‘minals..-........... 36
Homecursor'ooaoototooo-.otooooo.o 11

-1-

IBadFormateeceesseccecscsscssoceeeld
IB&dMOde....V......-'.............. 15
IBadTitle.‘.COOC'..0............0..15
IBadUnit.'l'...l...’Ol00.'..0......15
IBufOflow...'.Oﬁl..C!..00.'.0.0...15
IDupFileOQOCOOOI.C..OCO0.0....OOD. 15
$IF'.“C....0.0...0...0...... 38’ 65
IFileopen......lI.C.O...l......... 15
IHardErr.....0..0.0.'...0.000..'..15
ILostFile...OCQ..‘l....'....'..‘l..ls
ILOStUnitml..'00....0.......0...'0 15
$IN.....I.....II...l.'.'.....32’ 65
mc........'0..0..'0.'..'.'0.."' 28
mclude Files.v..l.l..!.........00.32
mitFﬂe........‘I...l...‘...“.... 13
INOEITOP ¢eeeevcecescoasescesananae LD
INOFile..'.OODOOOOI...O..'l.....l. 15

Modula-2 on UCSD Pascal
Index
page 72

INospace...I'......'..C....Ol.l...ls
INOtOpeN.eeeeeeccecosccceosonnsas 15
INounitlQOC0'...lll.‘.'...'.."...ls
mtrinsic Unit.l'.'...‘l.......t..'.3
IOReSult....t.‘....l....l......l'.15
JIOReSUItTYPC ceeseececssecsensccenaeld
ITimeOut...'l.....l.'t.....“....'ls

-K-
Key Holder.l".."'...'....l......s

-L-

LIB.CODE.........'.0000000000001047
Library ACCesS.cecsesscscssscscscsed
LibraryError....l...."..........'..g
Library Fﬂes....'..'O.Q‘.Q......C. 7
Library Management..ceceeeeeceeces 47
Library Number.e.cececcesceccsscscsae b
Library OrganizatioN..eeseesceccsessd
Library Usage.....'......00..0.0. 10
$LIST.....C0.0'..Q..'O.'...O. 33’ 65
LoadByte.l......l.....Q.......... 19
IJoader...l..OOQQOO..'O..O.O.O'.QC"3
Loader Library AcCCeSS.eessescecesesd
LoadField.‘.0.0...0....'.'.....0..19

-M-

Mark.l.t...CQ.‘OO"I0.0I.OQ.QO... 17
Maxcard.....q...'.l.........l‘.'.12
MaXIIltOOO.C..O'...'0'.0...'0...0!012
MZ'OCODEOOOCO..O.'l.......'.'..'. 43
MemAvaiIODOCOOU..Q.Q.Q.OQ0.0'.Q.. 17
Mmmt..........'.........l..'.... 12
MissingModule.‘...'..l..'...‘...... 9
MissingProgram..cceeececsescacscssss 8
MOD.‘0.'0000.......0.0.0..0.07, 28
MOdula"Z Compiler..'.l.'.....l....42
MODULA.LIBRARYQQ.0...0‘.0'.“il7
MODULA.SYNTAX.....l...........45
MOdule Display.‘l...OOOQCOO000000048
MOdUIe HidingQOOOQQOIIOOQOCQ’ 47’ 60
MOdUIe Key..0.....'00.0..'...0‘...6
Module Segment Assignment......3, 31
Module Seginent Numbers.ceececeess64
MoveLeft...‘.0....0.!.'0......... 17
MoveRight seveeeeeccasacescnescene 17
Multi-word ComparisonSeeecsececessss 61

-N-
$NOT...'.'..l'.'....l....'..35, 65

-0-

OR"'.'.'........'0.'..'.'..‘.."61

-P-

PACKED...O'0.0.‘0'0....0.0' 24’ 28
Packed VariableS...ceeesccceccccees 24
Pascal.......-................‘....20
$P0P000'O00.00000.‘0'00..0.. 31, 65
PowerOfTeN.eececcesecooascscccceesl?
ProgramQ0.0000Q..00.0.....0'..!0.. 3
Program Library..ecceeeeees?, 10, 53
Programming TechniqueS.eeecececcesedd
$PUSH.Q'C!Q'.I..C0.00....0.0' 31, 65

..Q..
$QUIET.....l..l...l......... 35, 65
Quiet Compile OptioN.cecescesaccees 35

-R-

$RANGE.ccvcecerssccncseasss 34, 66
Range CheCkSo-oocnoooooooooouo.- 34
$RECYCLE.-00010000000'00‘000 37, 66
ReleaSe...........................17
Reset.o-ocotc--o-000000000-000000013
RewriteOO........ll...l".....000013
Run-time CheCKkSeeeoesscssacsscees 34
Ruﬂ-time Spaceouocoooooiooooooo.o 57

-S-

Scant.0..........C....'Ql........'17
SeanType.l.Ql....'l..l."......... 17
ScanUntil......."..I....Q.'...... 17
Scanwhilei..i....0....0..'........17
SCreen...'....C.C..O...'.C..'.!...11
$SEGl..'.l0.0000000000000000031’ 66
Segment AllocatioNeceececscccscecas 4
Segment Programs..cceccecescecceccece 97
$SET00....'QQ......Q......O.030, 66
$SPECIAL..lQO..O..CQlO....Q. 36, 66
Stacked optionsl0l0...O..l....l...31
Stack OverfloW...ceeeceescscecses 37
$STANDARD...Q..Ol....'.'.l.032’ 66
Standard Language OptioN...ecceoseee32
Standard Library..cececcecescsccss 17

Standards..eeeccccesccccccessccees 17
S(tatUSOCQQ...O'000010000.00000000.48
StoreByte.lOl..!.l.'........'.l'..19
StoreFieldQl."l....l..............lg
SUDPrOgramsSeceesscccsccccccscssnesdl
Subsidiary ModuleS.¢ee.ee. 7, 8, 9, 58
Subsystemsclcocotlcﬂtl.0...'......57
SYMQI'!.C..'.O.Q...l.........'.".?
Syntax ErrorSescecccecccscccccsces 67
System Library.c.ececeeseccsees?y 10
SYSTEM.SYNTAX cecescecsessoscaes 4D
SystemTyPeSeececesecccocccccccnasell

-T-

Time..‘....."........0.......... 17
$TO..‘.‘C.Q..ll....l..-....l 33’ 66
T(ransferceeecesscecsscscscesoscocead
TRUNC..'..C......'.'...0......0.28
$TYPEQ..C..0...'........0... 30, 66

-U-

UnitBusy.Q.O....O...l...ll....600015
Unitclear'..l“...‘..Ql.........l.15
UnitIO......l.....‘....l..........15
UnitRead...0.....!0‘0'.0..0.....0 15
UnitstatUSOO..0..‘..'........‘...! 15
Unitwritei.OQO‘....'...ll....‘..'. 15
SUPCASE. . ctetecascscscsseseedb, 66
U(pdatelccOOOOOIO..Cl.'...i....".52
User Libraryeccceeccseccscssecceseely 10
Using The Library.cceecccececcccess 60

-V-
Version Control..'...ll.....l"..'.6
-W-
walkbaCks‘.'....Q.Q.‘.......O.C...Sz
-X-
XOR............................. 61

Modula-2 on UCSD Pascal
Index
page 73

Moduls-Z

Implementation Guide

for the IBM PC

Release: , 0.3
Date: 26 August 1983
Author: Richard Gleaves

IBM is a trademark of International Business Machines Corp.

Modula-2 on the IBM PC
Table Of Contents

Table Of Contents

1 Introduction. « « ¢« ¢ ¢ e e 6 ¢ s e s s oo vocoosooocesses 1
2 Installation GUid€. « o o ¢ ¢ o s e o oo s oo s o ssssoasoes 2
3 System Configuration.ceeeeeeseeececeesss 11
4FormattingNewDisks....'..........v..........24
5 Machine-dependent MoOAUIES . ¢ « o ¢ « e o ¢ o ¢ o ¢ s s 0 00 s« +26
6 Interrupt SYSt€M. « « ¢ ¢ ¢ o e o ¢ o e s s s s s s coeaseseess 31
7 Machine-level Data Representation. . « ¢« « ¢ ¢ ¢ c ¢ ¢ o o o o « 34

8 Library Module Hierarchy. « o« « « « « s o s s s s s 0 00 s 044 +36

Index.ooool.tu‘ou.o.l'....ll..U.t...oo.‘.37

Modula-2 on the IBM PC
Introduction

page 1

1 Introduction

This document describes Volition Systems' implementation of Module-2 for the
IBM Personal Computer. It covers the following topies:

@ Installation guide

@ System configuration

® Formatting new disks

@ Machine-dependent modules

@ Interrupt system

@ Machine-level data representations

® Library module hierarchy

Section 2 explains how to install Modula-2 on youf PC. (The most important
step here is to back up your distribution disks.)

Section 3 explains how to configure the Modulae-2 system to take full
advantage of your PC, This step involves deciding how to use available
memory and which peripherals (joy sticks, printer, ete.) to support.

Section 4 explains how to initialize new disks for use with the Modula-2
system,

Section 5 deseribes modules which are specific to the PC implementation of
Modula-2. The library modules IBMStuff and SYSTEMS86 provide access to
low-level system facilities (interrupt system, peripherals, and extended memory
access), .

Section 6 describes the Modula-2 interrupt system on the PC, including
IOTRANSFER vector numbers, module priorities, and how to write interrupt
handlers.,

Section 7 describes the machine-level data representation of various data
types. This information is necessary for performing low-level operations
involving type conversion.

Section 8 describes the library module hierarchy. This information is
necessary for reconfiguring the library.

Modula-2 on the IBM PC
Installation Guide

page 2

2 Installation Guide

This section describes how to install Modula-2 on your PC. Along with this
you will need the IBM Installation Notes which provide additional
installation and configuration details.

Section 2.1 explains the installation procedure.

Section 2.2 presents miscellaneous system information.
Section 2.3 deseribes the Modula operating system files.
Section 2.4 describes the Modula-2 system files,
Section 2.5 describes the interpreter files.

Modula-2 on the PC is a complete software system based on Volition's Modula
operating system. The Modula operating system includes a file manager, text
editor, Pascal compiler, and many utility programs. The Modula-2 system
includes a Modula-2 compiler, module library, and a library manager.

NOTE- The Modula operating system is described in the Modula
Operating System Manual, The ASE text editor is deseribed in
the ASE User's Manual. The IBM Installation Notes contain
details on installing the system,

Modula-2 on the IBM PC
Installation Procedure
page 3

2.1 Installation Procedure

Modula-2 for the IBM PC is distributed on four single-sided floppy disks in
UCSD p-System format. The four disks are named SYS, LIB, UTIL, and
PROGS.

Here is an overview of the installation procedure:
@ To start you need five blank diskettes,
® Copy the distribution disks onto four of the blank disks.
@ Store the originals in a safe place.
@ Initialize the fifth blank disk and name it INTERP.
® Rearrange the files so they are stored on the proper disks.

@ The Modula-2 system is now ready for use. SYS and LIB serve
as your system and work disks.,

® Reconfigure the system to improve performance.

Copy the Distribution Disks

The first and most important thing to do is to copy the distribution disks
onto some blank disks. If your distribution disks do not contain write-protect
tabs, now is a good time to add them. Insert the SYS disk label side up into
the left hand disk drive, close the drive door, and type Ctrl-Alt-Del to start
the system, After a few moments and some disk action, the Modula-2 system
should display its startup message in the center of the screen and a command
promptline across the top.

You have to format the blank disks before you can copy the distribution
disks onto them. Execute the program named FORMAT; this is the disk
formatter utility program. The prompts it displays are generally self-
explanatory, but if you need more information, section 4 explains how to run
the disk formatter. Use the right hand disk drive to format the blank disks.
Note that the left hand disk drive is called "unit 4" and the right hand drive
"unit 5", Note also that you need to know whether your blank disks are
single or double sided. Be sure to format all five of the blank disks before
proceeding to the next step. The disk formatter assigns the name BLANK to
each newly formatted disk.

Modula-2 on the IBM PC
Installation Procedure
page 4

To copy the distribution disks, execute the program named BACKUP; this is
the disk copier utility program. Seection 10.1.2 in the Modula Operating
System Manual explains how to run the disk copier. Note that once the
disk copier program is running, you can take the SYS disk out of unit 4.
Copy all four of the distribution disks onto blank disks. Be sure to preserve
the original disk names; when the disk copier program asks if you want to
rename the disks as BACKUP, type 'n'. _

When you finish copying the distribution disks, store the originals in a safe
place. The disk copies will be used to build your system disk set.

Using Double Sided Disks

If you have double sided disk drives in your IBM PC, continue with these
steps,

After you have copied the distribution disks onto double sided disks, you
should execute the disk size utility program. This program is named
DISKSIZE; it is stored on the UTIL disk. The disk size changes information
stored in the disk directory to match the storage capacity of double sided
disks.) ‘

To execute DISKSIZE, place the UTIL disk in unit 5, The SYS disk is
assumed to be in unit 4. Execute the file #5:DISKSIZE — the "#5:" informs
the system that the program is stored on the disk in unit 5. When the disk
size program asks how many blocks are on the disk, type in 640 — this is the
proper size of double sided disks. Be sure to change the size of all the
Modula-2 system disks (including SYS itself).

Rearrange Files on the Disks

After creating the system disk set, you must rearrange the files so that
related disk files are stored on the same disk. This process converts the
system disk set from four to five disks, freeing up space on the SYS and LIB
disks for your own files,

With the SYS disk in unit 4, type "F" to start the filer program. When the
filer promptline appears across the top of the screen, you can take out the
SYS disk. '

Put the fifth (formatted) blank disk into unit 5 and use the filer command
Change to change its name to INTERP. <ret> denotes the return key:

Change what file? #5:, INTERP:<ret>

Modula-2 on the IBM PC
Installation Procedure
page 5

Next, put the UTIL disk in unit 4 and use the command Listdir to display the
disk file directory:

Dir of what volume? #4:<{ret>

The files that appear below the line of dashes are interpreter files. Use the
Transfer command to copy the interpreter files to the INTERP disk:

Transfer what file? UTIL:?, INTERP:$<ret>

The question mark causes the filer to ask for each file whether you want to
transfer it to INTERP. Type 'N' for all files above (and including) the
dashed line, but type 'Y' for the rest. This transfers all the interpreter files
to the INTERP disk.

Once you have transferred the interpreter files, you can remove them from
the UTIL disk. Use the Remove command to remove all files below (and
including) the line of dashes:

Remove what file? UTIL:?<ret>

Using this same procedure, move the utility program files first from the SYS
disk to UTIL, then from the LIB disk to UTIL, and finally from the PROGS
disk to UTIL.

NOTE- If you are using single sided disks, you will not be able to fit
all the utility files onto the UTIL disk. You can either keep
the leftover files on another disk (perhaps named UTIL2) or just
copy them from the distribution disks when you need them.

The system disks are now completed and ready for use, If you can spare the
blank disks, back up the reorganized system disk set; in case anything goes
wrong, this saves you the effort of having to reconstruect them from the
distribution disks.

Run the Installed System

The Module-2 system is now ready to use, The normal system configuration
is to run with the SYS disk in unit 4 and the LIB disk in unit 5; SYS
contains the system files, and LIB is used to store library and program files.
Note that with this configuration the prefixed volume must always be
set to unit 5 in order to compile or execute Modula-2 programs. The
filer command Prefix sets the prefixed volume:

Set prefix to ? #5:<ret>

Modula-2 on the IBM FC
Installation Procedure
page 6

The extra disk space on SYS and LIB can be used either to store program
files or frequently used utility programs.

The PROGS disk contains sample programs that demonstrate how to use the
Module-2 language and library modules,

The UTIL disk is used to store infrequently used utility programs.
The INTERP disk is used only when you are reconfiguring the system.

The system is preconfigured to operate within a single 64K byte space, with
any remaining memory automatically allocated as a RAM disk. See section 3
for details on how to reconfigure the system to work with larger code spaces
and/or different peripheral devices.

NOTE- Perhaps the most rewarding reconfiguration is to run the
system off the RAM disk. See 3.4 for details.

NOTE- Section 2.2 contains important operating information.

2.2 System Notes

The Modula-2 system library file MODULA.LIBRARY must reside on either
the prefixed disk volume or the system boot volume in order to compile or
execute Modula-2 programs.

When using @ RAM disk for development work, be sure to occasionally back
up your files onto a regular disk., If for some reason the system requires
rebooting, the contents of RAM are cleared and any files stored in the RAM
- disk are lost,

The system and utility programs differ slightly from their standard UCSD
Pascal counterparts in a few cases, The biggest difference is that the filer
allows you to have two wildecards in a file name — this can be very useful at
times. See the Modula Operating System Manual for details,

Segment numbers 59 through 62 are available for user-defined library modules
on the PC. Segment 63 is used by the library module IBMStuff which
controls the screen, joysticks, and calendar eclock. These segments are
formally reserved for implementation-dependent modules, but they are
generally available on all UCSD Pascal based Modula-2 implementations
except the Apple ///, which uses them to access the SOS operating system.

Modula-2 on the IBM PC
System Notes.

page 7

SYSTEM.BATCH and SYSTEM.SHELL are utility programs that are invoked by
the system commands Batch and Shell, If you aren't using them, you can

leave these files off the disk; if you are, they can be stored on any online
disk volume and still be invoked from the command promptline,

The shell implements program pipes as intermediate files written to disk.
Pipe files are opened with the name "*temp"; therefore, the system boot
volume must contain enough free disk space to contain whatever intermediate
file the shell generates. This should be accounted for if you plan to use the
shell extensively. (If so, running the system from the RAM disk is strongly
advised.)

The shell and and the utility program Teletalk are both Module-2 programs; in
order to run them, the Module-2 system library file must reside on the
prefixed or system disk volume.

Process work spaces often have to be larger than expected when the system
is configured for separate code and data spaces. The separate code and data
interpreter maintains on the stack a pool of all recently assigned string
constants, Process work spaces must be large enough to contain this
constant pool along with whatever local variables and procedure calls it
performs. (Note that the constant pool is cut back on a procedural basis.)

2.3 Modula Operating System Files

This section describes the files that make up the Modula operating system.
These files are contained on the release disk set.

SYSTEM.INTERP is the preconfigured p-code interpreter supplied with the
system. It must reside on the system boot disk.

SYSTEM.PASCAL is the operating system file, It must reside on the system.
boot disk. If you plan to operate your PC from an external terminal, the
.Binder utility BINDER.CODE is used to bind new gotoxy procedures into the
‘operating system.

SYSTEM.MISCINFO is the system information file., It must reside on the
system boot disk. This file is preconfigured to work with a graphies card or
monochrome display. If you plan to operate your PC from an external
terminal, the utility programs SETUP.CODE and CONFIG.CODE are used to
reconfigure the system information file for your terminal. Note that
SYSTEM.MISCINFO must be properly configured for ASE to work.

SYSTEM.FILER is similar to the standard UCSD Pascal file manager, but
offers a more powerful "wildeard" facility. See the Modula Operating
System Manual for details,

- o

Modula Operating System Files
page 8

SYSTEM.EDITOR is the ASE text editor,
YALOE.CODE is a line-oriented text editor.

SYSTEM.BATCH is the command interpreter program iavoked by the system
command Bateh, The command file B.DEMO.TEXT demonstrates the use of
the command file interpreter.

SYSTEM.SHELL is the "p-NIX" command shell which implements many of the
Unix operating system commands and features (ls, grep, cat, pipes, I/O
redirection, ete). Note that any program can be named SYSTEM.SHELL and
invoked by Shell. '

PC.CODE is the Pascal compiler. Note that this file can be changed to
SYSTEM.COMPILER if you wish to use the Pascal compiler as the "system"
compiler, PASCAL.SYNTAX is the syntax error file for the Pascal compiler.
This file should be changed to SYSTEM.SYNTAX (and the existing
SYSTEM.SYNTAX to MODULASYNTAX) if you plan to use both Pascal and
Modula-2 compilers.

BACKUP.CODE is a disk copier utility program., It provides a safe and
reliable way to create backup copies of a floppy disk. FCOPY.CODE
performs the same function for individual files.

SERTALK.CODE transfers disk files from machine to machine via an RS232
serial line,

TELETALK.CODE is used to send and record text files during electronic mail
sessions. The text files TELETALK, SYS.PARM, RAWCON, and REMOTE are
the source files for this program. Note that it is written in Modula-2.

PATCH.CODE is a byte-level disk file editor.

FLIPDIR.CODE flips the disk directories of disks created on byte-flipped
machines.

COMPARE.CODE compares two text files and reports on any differences.
COMPCODE.CODE compares disk files of any type.

COPYDUPDIR.CODE copies the duplicate disk directory onto the primary disk
directory (in case of disk crashes).

LIBRARY.CODE manipulates code segments in Pascal code and library files.

Modula-2 on the IBM PC
Modula Operating System Files
page 9

BOOTER.CODE copies bootstrap information from one disk to another.

GLOBALS.TEXT contains the Pascal declarations for the Modula operating
system globals, M2.GLOBALD.TEXT contains the Modula-2 equivalent. The
global declarations are used by experienced UCSD Pascal system programmers
to access system information.

FORMAT.CODE is the disk formatter utility program. FORMAT.INFO
contains primary bootstrap code which FORMAT writes to new disks.

DISKSIZE.CODE is the disk size utility program. It is used to change the
volume size stored in a disk directory.

INITDATE.CODE is a program which sets the current date on all online disk
volumes. (Its normal use is as a "startup" program.)

COPYBOOT.CODE is a program which copies disk files from the boot disk
onto another disk volume and specifies the volume as the system volume. (Its
normal use is as a "startup" program for running the system from a RAM
disk.)

CALC.CODE is a simple desktop calculator simulation. Note that it requires
floating point support.

2.4 Modula-2 System Files

This section describes the files that provide the Modula-2 system environment.
These files are contained on the release disk set.

SYSTEM.COMPILER is the Modula-2 compiler.

SYSTEM.SYNTAX is the Modula-2 syntax erfor file,
MODULA.LIBRARY is the system library for the Modula-2 system.
LIB.CODE is the library manager utility program.

The files on the PROGS disk contain sample Modula-2 programs which are
provided for your edification and enlightenment.

Modula-2 on the IBM PC
Interpreter Files
page 10

2.5 Interpreter Files

This section describes the files that are used to build new interpreters. The
separate interpreter "skeleton" file, bootstrap, and peripheral device driver
files are linked and configured to form new interpreters for different system
configurations. See section 3 for details.

128K.INTERP is a linked interpreter configured to run in 128K bytes of
memory.

86.SEP.CODE is the interpreter "skeleton" file that provides separate code
and data spaces. 86, NONSEP,CODE is the interpreter skeleton file that
allocates code and data within a single 64K space. 86 .NOFP.CODE is
equivalent to 86.NONSEP but does not contain floating point support software
(yielding about 500 words of system memory). 86 .BOOT.CODE is the
secondary bootstrap file which is linked to an interpreter file.

Files beginning with the letters "IO" contain peripheral device driver code.
IOSCREEN.CODE contains the screen driver. IODISKS.CODE the floppy disk
driver, IORAMDSK.CODE the RAM disk driver, IOCOMS.CODE the serial port
driver, IOLPTS.CODE the printer driver, and IOGAME.CODE the joystick
driver. IOQUDCLK.CODE contains a calendar clock driver for the Quadram
QuadBoard peripheral card.

LINKER.CODE is the interpreter linker program.

IBMUTIL.CODE is the interpreter configuration utility program.

Modula-2 on the IBM PC
System Configuration
page 11

3 System Configuration

This section explains how to configure the system for your IBM PC., System
configuration is necessary because a PC can be equipped in so many different
ways. The main factors influencing system configuration are the amount of
“memory available and the number of peripheral devices installed:

® The Modula-2 system can be used on PC's with anywhere from
64K to 640K bytes of memory. Memory is divided up into three
areas: code space, data space, and RAM disk. On a 64K PC,
available memory serves as a combined code and data space,
with no memory left over for a RAM disk. When more memory
is available, it can be used as a separate code space or RAM
disk (or both).

@ Software drivers are provided for the screen, disk drives, serial
port, printer, RAM disk, joysticks, and calendar clock; these are
linked with one of the interpreter "skeleton" files to create an
interpreter configured for your PC. Including a driver with the
interpreter provides you with access to the corresponding
peripheral device. Not including a driver provides you with
more system memory due to a smaller interpreter., Therefore,
you will want to make an interpreter that contains only the
drivers you need.

The system includes two preconfigured interpreters; with these, you can use
the system immediately without having to perform any configuration
procedures. One of these interpreters — named SYSTEM.JINTERP — is used
to boot the system the first time, The preconfigured interpreters are
described in 3.1.

The utility program IBMUtil is used to set various configuration parameters:
I/O unit number assignments, RAM disk and code space size, serial port baud
rates, and so on, IBMUtil modifies parameter values stored in an existing
interpreter file., IBMUtil is described in 3.2.

The utility program Linker is used to link together an interpreter "skeleton"
and the appropriate drivers into a complete interpreter file, (IBMUtil must
then' be used to configure the newly linked interpreter.) The linker is
deseribed in 3.3.

The utility programs CopyBoot and InitDate offer RAM disk and calendar
clock support. CopyBoot turns the RAM disk into the system disk. Benefits
of running the system from the RAM disk include improved performance and
freeing the system disk drive for your own use, InitDate uses the calendar
clock to set the system date so you don't have to set it manually., Both of
these programs are used as "startup" programs which are automatically
executed when the system starts up. They are described in- 3.4.

Modula-2 on the IBM PC
Preconfigured Interpreters
page 12

3.1 Preconfigured Interpreters

The file SYSTEM.INTERP supplied on the release disk is configured to
operate in 64K bytes of memory and contains drivers for the screen, disk
drives, serial port, printer, and RAM disk (allocated in all available memory
beyond 64K). With this interpreter, the system should boot on any PC
meeting the minimum hardware requirements,

The file 128K.JINTERP is identical to SYSTEM.INTERP except that it is
configured for separate 64K code and data spaces; it requires at least 128K
bytes of memory to successfully boot the system. To use 128K.INTERP as
the system interpreter, change the name of the existing SYSTEMJINTERP to
64K.INTERP, change 128K.INTERP to SYSTEM.INTERP, then reboot.

NOTE- The IBMUtil utility can be used to change the configuration
parameters in these interpreters.,

3.2 IBMUtil

The IBMUtil utility (IBMUTIL.CODE on the disk) is used to set configuration
parameters in the interpreter. Note that these changes alter the interpreter
file only and do not take effect until the system is rebooted.

After you X(ecute IBMUTIL, the following prompt appears:
Interp file?

Type in the name of the interpreter file you wish to modify. It is a good
idea to reconfigure a copy of the current system interpreter file so you can
fall back to the original if the reconfigured copy doesn't work properly.

The following prompt appears after you enter the file name:

INTERPUTIL: A(ttach drivers C(onfigure drivers Q(uit

A(ttach is used to assign unit numbers to the drivers. C(onfigure is used to
change the configuration parameters of each driver. Q(uit exits the program.

NOTE- A(ttach is deseribed later in this section.

After typing C(onfigure, the following prompt appears:
CONFIGURE: I(nterp D(isks R(amdisk S(erial P(rinter C(lock Q(uit

Modula-2 on the IBM PC
IBMUtil.
page 13

Note that the prompt may not display all of these commands; IBMUtil displays

a command only if the corresponding driver is linked into the interpreter file
being configured.

I(nterp

The I(nterp command is used to specify the code and data spaces. It displays
the following prompt:

INTERP: D(ata range C(ode range Q(uit

A message appears below the prompt indicating whether the interpreter code
and data spaces are separate or not:

Separate code and data
Or...
Code and data in same space

IBMUtil also displays the current setting of the code and data spaces:

Data space segment base = 0060H
Data space segment size = 1000H
Code space segment base = 1060H
Code space segment size = OFAOH

If the interpreter code space is nonseparate, IBMUtil prompts for and displays
the data space only,

There are a few things worth noting about these settings., First, the values
entered and displayed in this prompt are assumed to have an implicit trailing
0 digit. For instance, "1000H" denotes the hex value "10000", which is 65536
in decimal.

NOTE- The trailing zero digit is implicit because these values are
assigned to the 8086 segment registers, which constitute twenty
bit byte addresses with the low four bits implicitly set to zero.

The values shown above are suitable for a 128K PC with separate code and
data, The data space starts at hex address 600 and extends for a full 64K
to hex address 105FF. The code space starts at hex address 10600 and
extends to the end of memory; it is slightly less than 64K because of the
600 hex offset of the data space.

On a 64K PC with nonseparate code and data, the code and data spaces are
coineident, with a base address of 600 hex and size of 0FA00 hex.

Modula-2 on the IBM PC
IBMUtil
page 14

After typing C(ode or D(ata, the following prompt appears:
CODE/DATA: B(ase S(ize Q(uit

Typing B(ase displays this message:

Code/Data space segment base in hex?

Typing S(ize displays this message:

Code/Data space segment size in hex?

In both cases, enter the appropriate hex value. Remember to omit the
trailing 0 digit. (You do not have to type in a trailing 'H'.)

NOTE- The lowest address for a code or data space must be at least
600 hex. Memory between 0 and 400 hex are reserved for use
as 8086 interrupt vector addresses. Memory between 400 and
600 hex is reserved for use by the PC's ROM software.

NOTE- Thé interpreter always resides within the data space.

NOTE- With separate code and data, the maximum data space size is
10000 hex. This limitation is imposed by the interpreter's use
of 16-bit data pointers.

NOTE- Code and data spaces can cross 64K physical segment
boundaries without causing any problems.

WARNING- Code, data, and RAM disk spaces must not overlap each
other,

R(amdisk

The R(amdisk command is used to specify the RAM disk space; i.e.,, an area
of memory that is used as a virtual disk. It displays the following prompt:

RAMDISK: B(ase address S(ize Q(uit

Below this appear the current settings of the code and data spaces:

2000H
100 blocks

Base segment address
Size of disk

Modula-2 on the IBM PC
IBMUtil
page 15

Type B(ase to set the base address., Note that it must be entered as a hex
value with no trailing zero digit or 'H'.

Type S(ize to set the RAM disk size. The following prompt appears:

B(locks A(ll available Q(uit

Type A(ll to specify that all addressable memory above the the base address
will be allocated for the RAM disk. (This setting appears in the setting
display as "All available",) Type B(locks to assign a fixed amount of memory
for the RAM disk. Note that this value is expected in terms of bloeks
(where a block is 512 bytes).

D(isks

The D(isks command is used to set various parameters controlling the floppy
disk drives. It displays the following prompt:

DISKS: S(eek U(nload L(oad H(ead settle M(otor start O(ff motor B(uffer Q(uit

Below this appear the current drive settings:

Seek rate = 6ms
Unload time = 0ms
Load time = 8ms
Head settle time = Oms
Motor start time = 250ms
Motor off time = 1850ms
Buffer segment address = 0020H

Each of the disk commands issues a prompt indicating acceptable values,
(The individual prompts are straightforward and thus are not listed here.)

The B(uffer command is notable as it accepts yet another "segment address"
with implicit trailing zero hex digit. The disk buffer is 512 bytes (200 hex)
in length. It is used for partial sector reads: where the I/O system has
requested to read a few bytes from the disk, while the low-level disk
routines can only read a full sector (512 bytes) at a time.

NOTE- The standard disk buffer address of 200 hex takes advantage
of some normally unused memory at the high end of the
interrupt vector table (0-400 hex). The use of this memory as a
buffer assumes that no interrupt vector above 80 hex is in use;
otherwise, overlapping occurs.

Modula-2 on the IBM PC
IBMUtil
page 16

NOTE- The disk parameter values shown above differ in some
instances from IBM's recommended values. The standard seek
rate is 8ms, but 6ms works on most machines and is faster and
quieter. IBM suggests a head settle time of 25ms, but most
everyone uses Oms (which is twice as fast), Likewise, the
standard motor start time is 500ms, but 250ms works well and is
faster.

S(erial

The S(erial command is used to set various parameters controlling the semal
port. It displays the following prompt:

SERIAL[COM1]: 1..4(port B(aud S(top bits P(arity W(ord size I(nterrupts Q(uit

Each of the serial port commands issues a prompt indicating acceptable
values, (The individual prompts are straightforward and thus are not listed
here.)

Typing the digits 1 through 4 selects the serial port to be configured (mbst
PC's only have serial ports 1 and 2). The promptline displays the current
serial port; for instance, "COMI1" denotes serial port 1, "COM2" serial port 2,
and so on.

The I(nterrupts command is used to enable serial port interrupts. A serial
port can be configured to generate interrupts on input, output, error, or
modem. (See the IBM Technical Reference for details.) The current
interrupt status is indicated by the letters 'E', 'I', 'O', and 'M', which are
displayed if the corresponding interrupt is enabled. If none are enabled,
"None" is displayed.

Serial port interrupts are mapped to interrupt vector numbers in Modula-2's
IOTRANSFER facility. See section 6 for details.

P(rinter

The P(rinter command is used to set various parameters controlling the
printer port. It displays the following prompt:

PRINTER[LPT1): 1..3(port I(nterrupts A(uto line feed Q(uit

Typing the digits 1 through 3 selects the printer port to be configured (most
PC's only have printer port 1). The promptline displays the current printer
port; for instance, "LPT1" denotes printer port 1.

Modula-2 on the IBM PC
IBMUtil
page 17

The I(nterrupt command is used to control printer port interrupts: it toggles
the current interrupt status, which is displayed below the promptline. Printer
port interrupts are mapped to interrupt veetor numbers in Modula-2's
IOTRANSFER facility. See section 6 for details.

The A(uto line feed command controls a line connected to the standard IBM
printer which tells the printer whether to auto line feed.

C(lock

The C(lock command is used to set the time and date in the calendar clock.
It displays the following prompt:

CLOCK: D(ate T(ime Q(uit

The D(ate command is used to set the calendar date. It displays the
following prompt: :

DATE: M(onth D(ay Y(ear S(et A(bort

The month, day, and year are entered as integer values in the usual range.
S(et establishes the entered values as the new date; A(bort exits without
disturbing the current date.

The T(ime command is used to set the time. It displays the following
prompt:

TIME: H(our M(inute S(et A(bort

The hour and minute are entered as integer values (the hour value assumes a
24 hour clock). S(et and A(bort work as described in the D(ate command
above; however, using S(et here is like setting the time on a wateh. The
hour and minute values are set right when you type S(et; the seconds value
is simultaneously set to zero.

NOTE- The time and date prompts appear only if the calendar clock
card is installed and responding to the current calendar clock
driver,

Modula-2 on the IBM PC
IBMUtil
page 18

A(ttach

A(ttach is the companion command to C(onfigure. A(ttach is used to assign
1/0 unit numbers (and other attributes) to the drivers contained in an
interpreter file. It displays the following prompt:

ATTACH:0] U(nit D(river R(ead W(rite I(nit S(tat Q(uit

Two tables appear below the promptline; the table on the right displays the
drivers linked into the interpreter, while the table on the left displays the
I/0 unit numbers (and whatever drivers have been assigned to them). To
configure an interpreter, you must assign the drivers displayed in the right
hand table to the unit table displayed on the left.

The driver table looks like this:

A) IOSCREEN -C1 -BO
B) IODISKS -C0 -B4
C) I0COMS -C4 -BO
D) IOLPTS -C3 -BO
"E)IORAMDSK -C0 -B1

The letters on the left are used to select the drivers. Following the driver
name are the driver attributes: 'C' denotes a character-oriented driver (e.g.
console, printer, serial port), while 'B' denotes a block-oriented driver (e.g.
disks).

The numbers following the 'B' and 'C' characters indicate the number of
devices (of that type) that the driver supports. For instance, the IODISKS
driver displayed above can control up to four byte-oriented devices, but no
character-oriented devices.

The unit table looks like this:

#0 none

#1 IOSCREEN -C0 RWIS
£2 JOSCREEN -C0 RWIS
#3 none

#4 IO0DISKS -BO0 RWI

#5 IODISKS -B1 RWI

#6 IOLPTS -C60 WIS

The numbers on the left are the available I/O unit numbers. Next is the
name of the driver assigned to that unit. Following the name are the unit
attributes: the type and "local driver number" of the assigned device. Local
driver numbers are used to distinguish the devices supported by a single
‘driver; for instance, if the driver IODISKS supports four disk devices, then

Modula-2 on the IBM PC
IBMUtil.
page 19

the devices are identified by the local driver numbers zero through three.
Each loecal driver number is assigned to a different unit number,

Finally, the characters 'R', 'W', 'I', and 'S' indicate the I/O operations
aveilable on the device via its unit number. 'R' indicates that read
operations are allowed, 'W' write operations, 'I' initialization, and 'S' status.

NOTE- These I/O operations correspond to the UCSD Pascal intrinsics
UNITREAD, UNITWRITE, UNITCLEAR, and UNITSTATUS.

Here is the attach promptline again:

ATTACH:[0] U(nit D(river R(ead W(rite I(nit S(tat Q(uit

All commands operate on the current unit, which is displayed on the
promptline enclosed in square brackets. (Unit 0 is the current unit in the
above promptline,) To change the current unit number, type U(nit followed
by a unit number,

The D(river command is used to add, delete, or replace the driver assigned to
the current ‘unit, It displays the following prompt:

Driver letter ['A'..'F'], <SP> to remove, or <ESC>?

Type <sp> to delete the currently assigned driver or <ese> to exit the
D(river command. The letters enclosed in brackets are used to assign drivers
to a unit number; they correspond to the letters displayed in the driver
table, When you select a driver by typing its letter, this prompt appears:

Local driver number?
Type in the local driver number you wish to assign.

When you first assign a driver to a unit number, all I/0O operations allowable
on the device are enabled. To disable any of these operations, use the
R(ead, W(rite, I(nit, and S(tat commands; they toggle the current settings.

NOTE- The driver itself can control what operations can be enabled.
If you attempt to enable an operation that is not provided by
the driver, the response will be "Operation not allowed on this
device". '

There is one restriction and a number of conventions governing the
assignment of drivers to unit numbers. The restriction is that character
drivers must be assigned to units 1 and 2. The conventions are standard
unit number-device assignments that originate from the UCSD Pascal system

Modula-2 on the IBM PC
IBMUtil
page 20

environment; they are recommended because some higher-level software might
depend on them,

Standard unit number assignments and attributes:

Unit # Driver Lucal Driver # Status
1-2 IOSCREEN 0 RWIS
4-5 JODISKS 0-1 RWI
6 IOLPTS 0 WIS
7 IOCOMS 0 R IS
8 IOCOMS 0 RWIS
9-10 IODISKS 2-3 RWI
11 IORAMDSK 0 RWI
17-19 IOCOMS 1-3 RWIS
20-21 IOLPTS 1-2 WIS
30 IOGAME 0 R
31 IOCALCLK 0 RWI

3.3 Linker

The Linker utility (LINKER.CODE on the disk) is used to link together an
interpreter skeleton and drivers into a complete interpreter file.

After you X(ecute LINKER, the following prompt appears:
I(nterp L(ink A(11 code P(roc info Q(uit

Type 'I' to link together an interpreter. The following prompt appears:
Link file?

Type in the name of the appropriate interpreter skeleton file. (The ".CODE"
suffix is automatically appended if omitted.)

Three interpreter skeleton files are provided with the system:
86 . NONSEP.CODE, 86.NOFP.CODE, and 86.SEP.,CODE. 86.NONSEP is used
for interpreters where the code and data reside in the same 64K byte
memory space., 86.NOFP is equivalent to 86 NONSEP, but does not contain
support code for the 8087 math coprocessor; using this interpreter gains
about 500 words of system memory. 86.SEP is used for interpreters that
maintain code and data in separate memory spaces (64Kb max date, unlimited
code).

Modula-2 on the IBM PC
Linker
page 21

After you type in the interpreter skeleton file, the original prompt appears
again on the next line:

Link file?

Type in the name of a driver you wish to include. Each time you enter a
driver name, the original prompt reappears, allowing you to enter the name
of another driver.

Here are the names of the driver files:

IOSCREEN - display driver

IODISKS - floppy disk driver

IOCOMS - serial port driver

IOLPTS - printer driver

I0QUDCLK -~ Quadboard calendar clock driver
IORAMDSK - RAM disk driver

IOGAME - joy stiek driver

After you have entered all of the drivers you want, type in the name of the
secondary bootstrap file: 86.BOOT.CODE. When the next "Link file?"
prompt reappears, just type <return> — this indicates that all files have been
entered and that linking can proceed.

NOTE- The interpreter skeleton must always be the first file entered
for linking. The bootstrap must always be the last file entered.
Drivers may be entered in any order.

After pausing for a while to read all of the files into memory, the linker
then displays the following prompt:

Output file name?

Type in the name you want for the linked interpreter file. ("NEW.INTERP"
is a favorite,) The linker then proceeds to link the files together; it displays
the name, address range (in hex), and size (in decimal) of each file linked:

Proc INTERP86 Addr=0000-1EC1 Size=7874
Proe IODISKS Addr=1EC2-207D Size=444
Proc BOOTS86 Addr=207E-22A3 Size=550

When linking is finished, the linker writes the linked interpreter out to disk
and then terminates, returning control to the system prompt.

NOTE- The linked interpreter must be configured with the IBMutil
program before it can be used as a system interpreter.

Modula-2 on the IBM PC

Linker

page 22

NOTE- The commands L(ink, A(ll code, and P(roc info are not
documented here because they perform functions beyond the
scope of this manual,

2.4 RAM Disk and Calendar Clock Support

The utility programs CopyBoot and InitDate offer RAM disk and calendar
cloek support.

CopyBoot

CopyBoot (COPYBOOT.CODE on the disk) converts the RAM disk into the
system volume., It copies files from the system disk to the RAM disk and
then specifies the RAM disk as the new system volume. Running the system
from the RAM disk offers these benefits:

@ System performance is improved, as oft-used programs such as
the filer and editor are read from the RAM disk instead of the
floppy disk.

® An extra disk drive is freed for your own use, as the system
disk no longer needs to be online (because the system files
reside on the RAM disk).

Files are copied in the order in which they appear on the system disk;
CopyBoot displays the file names on the console as the files are copied.
Copying continues until all of the files are copied or the RAM disk runs out
of space.

CopyBoot has a feature which lets you limit the number of files copied onto
the RAM disk. Starting with the first file in the system disk directory,
CopyBoot copies files to the RAM disk until it finds a file named ENDBOOT.
ENDBOOT and all subsequent files are not copied across. You can use the
filer command Make to create a one-block data file named ENDBOOT.

Example of ENDBOOT in a system disk directory:

BOOT:

SYSTEM.MISCINFO — the following files are copied
SYSTEM.,PASCAL

SYSTEM.FILER

SYSTEM.EDITOR

SYSTEM.COMPILER

MODULA.LIBRARY

ENDBOOT — the following files are not
LIB.CODE

PATCH.CODE

Modula-2 on the IBM PC
RAM Disk and Calendar Clock Support
page 23

CopyBoot is intended for use as a "startup" program which is automatically
executed when the system is booted. It should be renamed
SYSTEM.STARTUP and stored on the system disk,

CopyBoot allows you to specify a "startup" program which is automatically
‘executed after CopyBoot finishes. If the system disk contains the file
SYSTEM.NEWSTART, CopyBoot copies it to the RAM disk and changes its
‘name to SYSTEM.STARTUP., When CopyBoot finishes, the SYSTEM.STARTUP
on the RAM disk is automatically executed.

NOTE- Both SYSTEM.STARTUP (CopyBoot in disguise) and
SYSTEM.JINTERP can be kept on the system disk ahead of
ENDBOOT without their being copied to the RAM disk. This is
because CopyBoot refuses to copy files named SYSTEM.STARTUP
or SYSTEMJINTERP.

NOTE- CopyBoot assumes that the RAM disk has been assigned to
unit 11. See 3.2 for details,

InitDate

InitDate (INITDATE.CODE on the disk) uses the calendar clock to set the
system date so you don't have to set it manually,

InitDate reads the current date from the calendar clock card and sets the
system date both in memory and on the system disk.

InitDate is intended for use as a "startup" program which is automatically
executed when the system is booted. It should be renamed
SYSTEM.STARTUP and stored on the system disk.

NOTE- InitDate assumes that the calendar clock has been assigned to
unit 31. See 3.2 for details,

Kodula-Z on the IBM PC
Formatting New Disks
page 24

4 Formatting New Disks

The Format utility (FORMAT.CODE on the disk) is used to initialize floppy
disks so they can be used with the system,

After you X(ecute FORMAT, the following prompt appears:
S(ingle sided D(ouble sided Q(uit

Type 's' if you are formatting a single-sided disk, or 'd' if a double-sided
disk. (Typing 'q' exits the program.) A single-sided disk stores 320 blocks
of data, while a double-sided disk stores double the amount: 640 blocks.

NOTE- Single-sided disks can be formatted as double-sided, but this is
a risky practice., Disks formatted this way store twice as much
data as normal, but tend to be unreliable.

Another prompt appears:

Format what unit? [4,5] (type return to exit)

Type in the unit number of the disk drive to be used for formatting the disk
followed by <return>. (Typing just <return> exits the program.)

This prompt appears next:

Insert disk to be formatted and press F(ormat or Q(uit

Put the disk in the proper disk drive and type 'f'. If the disk has already
been formatted, this prompt appears:

Destroy all information on BLANK?
Type 'y' to proceed with formatting; type 'n' to chicken out,

Format writes a period to the screen after formatting each track on the
disk. If the disk is double-sided, colons appear instead of periods.

The following message appears when Format finishes formatting:

320 block disk formatted successfully

This is displayed when you are formatting single-sided disks; for double-sided
disks, it will say "640 block disk".

Modula-2 on the IBM PC
Formatting New Disks
page 25

Next, if the file FORMAT.INFO is present, Format automatically writes its
contents onto blocks 0 and 1 of the newly formatted disk. FORMAT.INFO

contains bootstrap code which is necessary if the disk is to be used as a
system boot disk. (Blocks 0 and 1 of every disk are reserved for bootstrap
code.)

The original prompt then reappears, allowing you to format another disk:

Insert disk to be formatted and press F(ormat or Q(uit

NOTE- Format automatically writes an empty disk directory onto
disks it formats. Disks are named BLANK.

Modula-2 on the IBM PC
Machine~-dependent Modules
page 26

5 Machine-dependent Modules

This section describes machine-dependent modules provided with the Modula-2
system,

The library module IBMStuff (5.1) provides access to the display, calendar
clock, and joysticks.

The module SYSTEMS86 (5.2) provides access to low-level system facilities.

5.1 IBMStuff

The library module IBMstuff provides operations for controlling the joysticks,
calendar clock, and monitor display.

The procedure GamelO returns the current settings of an analog input device
attached to the PC. The most common analog input device is the joystick,
which is most commonly used to control computer games. The parameters
axis0 through axis3 are set to values in the range 0..99. The parameters
button0 through button3 are set to TRUE if the corresponding button is
depressed; otherwise, they are set to FALSE. The exact interpretation of
these values depends on the specific peripheral device; for details, see the
device documentation.

NOTE- If the period between successive calls to GamelO is too short,
the subsequent call may not return correct values. Programs
should generally allow 10 to 20 milliseconds to elapse between
GamelO calls,

NOTE- GamelO assumes that &an analog input device is properly
connected to the PC and that the IOGAME driver has been
assigned I/O unit 30 in the interpreter.

The procedures ReadTime and WriteTime are used to read and set the time
and date from the calendar clock card., Time/date values are passed and
returned as characters strings in variables of type TimeString. The character
string always has the following format:

mm/dd/yy hh:mm:ss

The alphabetic letters denote digits. Leading zero digits and the space in
the middle are significant. Hours are set according to 24-hour "military"
time, Strings used to set the time must mateh this syntax exactly, Note
that TimeString is declared so that the string always end with a null
character,

Modula-2 on the IBM PC
IBMStuff

page 27

NOTE- ReadTime and WriteTime assume that a calendar clock card is
properly connected to the PC and that the IOCALCLK driver
has been assigned 1/O unit 31 in the interpreter.

The procedures ScreenPage, ScreenMode, and SereenCharColor control the PC
display. '

The procedure ScreenMode sets the display to the specified mode: 40/80
columns, monochrome/eolor, or highres graphies as specified by the type
VideoMode,

The PC dedicates 16K bytes of memory for its screen display. In highres
graphies mode, the display uses all 16K, but in 40 or 80 column mode, the
display uses only part of the display memory. In modes requiring only
portions of the display memory, the remaining memory is available as screen
"pages" which can be alternately displayed on the screen. In 25x40 mode, 8
pages are available; in 24x80 mode, 4 pages are available,

The procedure ScreenPage is used to switech between screen pages. To
establish a new screen page, call SereenPage with the appropriate page
number; you can then write whatever you want onto the new page. When
you switech back to the original page, the new page disappears, but it still
contains whatever you wrote onto it. When you again switech to the new
page, its contents are automatically displayed on the screen.

The procedure ScreenCharColor is used to set the color and intensity of the
display. Setting the parameter blink to TRUE causes the display to blink.
Setting the parameter intensity to TRUE causes the display to appear in high
intensity. (Note that the high intensity option is not available on all
monitors,) The parameters foreground and background control the display
color; foreground indicates the the color of the characters. Foreground and
background colors are specified by the type CharColor.

Modula-Z on the IBM PC
IBMStuff
page 28
DEFINITION MODULE IBMStuff; (* $SEG := 63; *)

EXPORT QUALIFIED
GamelO, VideoMode, ScreenMode, PageRange, ScreenPage,
CharColor, SereenCharColor, TimeString, ReadTime, WriteTime;

PROCEDURE GamelO (VAR axis0,axisl,axis2,axis3: CARDINAL;
VAR button0,buttonl,button2,button3: BOOLEAN);

TYPE VideoMode = (Video40X25BW,
Video40X25Color,
Video80X25BW,
Video80X25Color,
Video320X200Color,
Video320X200BW,
Video640X200BW);

PROCEDURE ScreenMode (mode: VideoMode);

TYPE PageRange = [0..7];

PROCEDURE ScreenPage (pagenum: PageRange);

TYPE CharColor = SET OF (ColorR,ColorG,ColorB);

PROCEDURE ScreenCharColor(blink,intensity: BOOLEAN;
foreground,background: CharColor);

TYPE TimeString = ARRAY [0..17] OF CHAR;
(* digits: "mm/dd/yy hh:mm:ss" *)

PROCEDURE ReadTime (VAR time: TimeString);
PROCEDURE WriteTime (time: TimeString);
END IBMStuff.

Modula-2 on the IBM PC
SYSTEMS6
page 29

5.2 SYSTEMS86

The library module SYSTEM86 provides access to various low-level system
facilities.

- The procedures Peek and Poke provide access to arbitrary locations in 8086
memory. Because of the 8086's segmented memory architecture, a memory
address is specified by two parameters: seg and offset., The address mapping
is as follows:

logical address = seg¥16 + offset

The procedures InByte, OutByte, InWord, and OutWord correspond to the 8086
I/0 port instructions. On the byte I/O operations, the high order byte of the
word quantity is either ignored (OutByte) or zeroed (InByte).

XUnitRead and XUnitWrite are equivalent to the UCSD intrinsies UnitRead
and UnitWrite except that they use the 8086's segmented addresses to specify
the buffer area.

ClearVector, Raise, and SetPriority provide access to the interrupt system,
Section 6 deseribes the interrupt system,

ClearVector is always passed NILs as address parameters, It is used to
disassociate a process from an interrupt vector which it has performed
IOTRANSFERs to.

Raise generates an interrupt through the specified interrupt veector.

NOTE- SYSTEMS86 is a compile-time module and does not occupy any
memory at run time. All operations expand to "inline" code
sequences rather than actual Modula-2 procedure calls,

Modula-2 on the IBM PC
SYSTEM86
page 30

DEFINITION MODULE SYSTEM86; (* $SEG := 1; ¥)

FROM SYSTEM IMPORT WORD, ADDRESS;

EXPORT QUALIFIED
Peek, Poke, InByte, InWord, OutByte, OutWord,
Raise, ClearVector, SetPriority,
XUnitRead, XUnitWrite;

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE

END SYSTEMS86.

Peek (seg, offset: CARDINAL): CARDINAL;
Poke (w: WORD; seg,offset: CARDINAL);
InByte (portnum: CARDINAL): CARDINAL;
InWord (portnum: CARDINAL): CARDINAL;
OutByte (value: WORD; portnum: CARDINAL);
OutWora (value: WORD; portnum: CARDINAL);
Raise (vector: CARDINAL);

ClearVector (a,b: ADDRESS; vector: CARDINAL);
SetPriority (NewPriority: CARDINAL): CARDINAL;

XUnitRead (unit,seg,offset,bytes,block:
control: BITSET);

CARDINAL;

XUnitWrite (unit,seg,offset,bytes,block: CARDINAL;
control: BITSET);

Modula-2 on the IBM PC
Interrupt System.

page 31

6 Interrupt System

The interrupt system on the PC provides interrupt vectors for the keyboard,
serial and parallel ports, timer, vertical retrace, and program break.

Modula-2 programs are interruptable only between the execution of P-codes.
Thus, if an interrupt occurs in the middle of a P-code (this includes low-level
I/O operations), the corresponding IOTRANSFER cannot occur until the
interpreter fetches the next P-code.

A process is connected to an interrupt only while an IOTRANSFER call is
pending. If an interrupt occurs through a vector and there is no
IOTRANSFER pending, the interrupt is queued for the next IOTRANSFER
call; any subsequent interrupts through the vector are ignored. If
IOTRANSFER is called on a vector where an interrupt is pending, the
transfer takes place immediately.

One ramification of this scheme is that when a program calls IOTRANSFER
for the first time, and an interrupt is pending on the vector, an I/O transfer
occurs immediately. To clear any pending interrupts, a program must call
ClearVector. before its first IOTRANSFER call (see below for details).

Nine interrupt vectors are defined for the PC; they are numbered 0 through
8. Vector assignments are as follows:

vector device

timer (18.2/sec)

keyboard (press & release)
vertical retrace

unused

serial port

unused

unused

parallel port

program break

OO WO

Vector 0 is preprogrammed to interrupt 18.2 times per second. It is useful
for programming time-slicing into a process scheduler by using the vector as
a timer interrupt to switech processes.

Vector 1 interrupts whenever a key changes position. Note that this includes
both pressing and releasing a key; thus, every keystroke generates two

Modula-Z on the IBM PC
Interrupt System
page 32

interrupts. This feature can be useful for detecting when a key is being
held down. The procedure UnitlO.UnitBusy can be used to determine whether
an interrupt was caused by pressing or releasing a key: if UnitBusy(l) returns
FALSE, ';he interrupt was caused by pressing & key. (Unit 1 is the console
1/0 unit, '

NOTE- If a key is pressed and held down, the keyboard's auto-repeat
feature generates an interrupt for each "virtual" key press, but
not for the corresponding virtual release.

Vector 2 is known as the vertical retrace interrupt. "Vertical retrace" refers
to the period of time when the display monitor's electron scanning -gun
returns to the top left hand of the screen. This vector is less commonly
used than the others, being limited to programming high speed flicker-free
graphies.

Vector 4 is for serial port interrupts. Note that an interpreter can be
configured to generate serial port interrupts on input, output, error, or dial-
up; see 3.2 for details,

Veetor 7 is. for parallel port interrupts. Note that an interpreter can be
configured with parallel port interrupts either enabled or disabled; see 3.2 for
details.

Vector 8 interrupts when the program break key is typed. If a process is
waiting (via IOTRANSFER) on vector 8 when the break key is typed, the
IOTRANSFER occurs; otherwise, the usual execution error occurs.

Interrupt priorities are treated as mask values rather than ordinal values.
The lower eight bits of a module priority number specify which devices are
prevented from interrupting a module., Bits 0 through 7 in a module priority
number correspond to interrupt veetors 0 through 7; if a bit is set to 0, the
corresponding vector cannot interrupt the module. For instance: priority
value 0 would prevent all veectors from interrupting a module; 2 would
prevent the keyboard (vector 1) from interrupting; OFFH would allow all
vectors to interrupt a module. The default interrupt priority is 0.

NOTE- Interrupt vector 8 is nonmaskable; module priority numbers
have no effeet upon it.

The PC interrupt system provides the procedures Raise, SetPriority, and
ClearVector to support the use of IOTRANSFER. These are exported from
the module SYSTEM86 — see 5.2 for details.

Raise causes an interrupt through the specified vector.

Modula-2 on the IBM PC
Interrupt System
page 33

SetPriority sets the interrupt priority to the specified value and returns the
current priority as a function result. SetPriority should be used only when
necessary; module priority numbers should be used whenever possible.

ClearVector terminates any IOTRANSFERs pending on a vector. Before
terminating, programs using IOTRANSFER must call ClearVector(NIL,NIL,x)
for every interrupt vector that they use; otherwise, an interrupt occuring
after the program has terminated is likely to crash the system,

NOTE- Only one IOTRANSFER can be pending on an interrupt vector
at any one time; otherwise, execution error 17 occurs,

WARNING- The program break key can terminate a program without
allowing it to execute its ClearVector calls, resulting in
subsequent system crashes. Unless you can guarantee that they
will not be interrupted by program breaks, all programs using
IOTRANSFER should create special handler processes which wait
for program breaks and call ClearVector before terminating the
program,

Moduiae-2 on the IBM PC
Machine-level Data Representation

page 34

7 Machine-level Data Representation

This chapter describes machine-level data representation on the PC.
basic unit of storage is a 16-bit word. Bits in a word are numbered 0 to 15;

bit 0 is the least significant bit,
e

The procedures SIZE and TSIZE return results in units of bytes.

Words consist of two 8-bit bytes. The lower-addressed byte
always conteins the least significant byte of a word quantity.

Integers are stored in one word as 16-bit two's complement
values. The minimum integer value is -32768. The maximum
integer value is 32767,

Cardinals are stored in one word as unsigned 16-bit integers.
The minimum cardinal value is 0. The maximum cardinal value
is 65535,

Booleans are stored ih one word., The cardinal value of FALSE‘

is 0. The cardinal value of TRUE is 1.

Chardcters are stored in one word (except in character arrays
and fixed address variables)., The least significant byte contains
an ASCII character value. The most significant byte contains 0.

@ Reals are stored in four words in IEEE 64-bit format,

Enumerations are stored in one word. Enumerated constants are
assigned cardinal values 0, 1, 2, ... in the order they are
declared,

Subranges assume the data representation of their base type.

Arrays are stored in integral numbers of words. Character
arrays in Modula-2 are stored as byte arrays; the first character
is stored in the lowest-addressed byte, and remaining characters
are stored in consecutive bytes.

Records are stored in integral numbers of words. Record fields
are allocated in the order they are declared.

Sets are stored in integral numbers of words (unless they are
sub-word fields of packed records or arrays). The number of
words allocated for a set is 1 + ORD(high element) DIV 16.
Sets contain up to 4080 elements (255 words). Sets of negative
integers are not allowed.

The

All machine addresses are byte addresses,

Modula-2 on the IBM PC
Machine-level Data Representation
page 35

® Pointers are stored in one word and contain absolute byte ad-
dresses. The integer value of NIL is -1,

@ Procedure types are stored in one word., The lower-addressed
byte contains the segment number; the higher-addressed byte the
procedure number.

® Opaque types are stored in one word.

® The types Decimals, DECIMAL, Wides,WIDE, and Files FilePos are

actually multiword records — they are documented as opaque
types merely to discourage access to their internal
representations.

® Decimal numbers (of type DECIMAL) are stored in 5 words. The
five words are treated as an array of 20 4-bit "nibbles" — the
first nibble contains the decimal sign (of type DecState); the
remaining 19 nibbles contain decimal digits (0..9).

@ File positions (of type FilePos) are stored in 2 words. The first
word contains a bloeck number, The second word contains a byte
offset in the range 1..512.

e Chara{cter variables declared at fixed addresses are stored in a
single byte.

® Packed data representation is described in 3.1.1 of The
Modula-2 System.

The compiler assigns data offsets to variables and parameters in the order
they are declared., For example, given the declaration

VAR I1,J: INTEGER;
K: BOOLEAN;

The following is always true: ADR(I) < ADR (J) < ADR(K).

Modula-Z on the IBM PC
Library Module Hierarchy

page 36

8 Library Module Hierarchy

This section describes intermodule dependencies of &all library modules
provided with the system. For more information on module dependencies and
the module hierarchy, see section 3 in Standard Library.

ReallnOut -> InOut, Reals, Standards
InOut -> Texts, Files, Conversions, Standards
Reals -> Texts, Standards

Texts -> Conversions, Files, Storage, Program, Standards, Bits,
FileDef, UCSDGIlobals

Files -> Storage, Program, SystemTypes, UnitlO, Standards, Bits,
FileDef, BlockIO, UCSDGlobals

Terminal -> UCSDGlobals
Strings -> Program, Standards
Processes -> Storage

Storage -> Program, Standerds

Program -> Storage, SubProgram, LibDef, Standards, BlockIO,
UnitlO, Bits

Modula-2 on the IBM PC
Index.
page 37

Index
- A -

ASE..'.....I......O...O..0.0l.."ls
ASE User's Manu8l.ecececoecoesossse?
A(ttaChOOOOOC000.....0...0........ 18

-B-

B&Ckup............................
BACKUP.CODE.cccevssecscsvssnsnnas
BatChooo-ooooncoocoooooooc-oc-oooo-
B.DEMO.TEXT.-o.oooooooooo-ooo.ouo
BINDER.CODE.-....-nooc-oooooo.oc
86.BOOT.CODE.csccecscscosssscsesl
BOOTER-CODE sSecvecscescecscenccncoe

WOO-J00D W

-C-

CALC.CODE..O....O..O....'..O....9
CharColorceececsscccscoccscsscssaeedl
ClearVector seececcccccccccscssss 33
C(lockno'ooooooo-cooooo-.ao-oooon.17
COMPARE.CODE.cceeecccccoaccseaee 8
COMPCODE.CODE.ccetesssscscccessd
CONFIG.CODE.cceeescsavcnscsccncs 7
C(onfigure.‘.0.0.0..'0.'....0..." 12
CopyBOOtQ..Q....OOOOOOOO.‘...11’ 22
COPYBOOT.CODE.eeesesesceeeed, 22
COPYDUPDIR.CODE ¢cccecocscseee 8

-D-

Data Representation.c.scececcceececee 34
D(iSl<s'Q.0..........0.C.....I..... 15
DiSKSiZ€eeseesesseccossscsscssccscce 4
DISKSIZE.CODE.vcececscossosasesses 9
D(riversecesescecscecscscscavcoase 19

-F-

FCOPY.CODEO...O.Q.......O..O...O8
FLIPDIR.CODE.........0.'..'...l.l8
Format.'...'.'.'.......‘..'.O.3, 24
FORMAT.CODE.:vcveocccccsess 9, 24

-G-

Gamelo.‘......"...“'..".....'026
GLOBALS.TEXT......'.....'.C.'... 9

-I-

IBM Installation NoteS.ceccecoscscsscs 2
IBMStuff....Il'......‘l......l....26
IBMUti]—..........Q..O....Q....ll, 12
IBMUTIL.CODE..OO......l‘...O10’ 12
InByte.....0.‘...0.....0‘0.00..'0.29
I(nit..'00.0.0.0.0..0'..0000.0.0..019
mitDatetiottt.....toio..0...0 11, 23
INITDATE.CODE.ccvoeeeseaecees 9, 23
I(nterPQOHOOOO..C.0......‘....'....13
Interrupt VecCtorS..eeececescccssseedl
Inword0..l..'....l.....'.....’...lzg
IOCOMS.CODE.eececcsecesssaes 10, 21
IODISKS.CODE . ceeeeececnensass 10, 21
IOGAME.CODEIOCQOOO0.0..000. 10, 21
IOLPTS.CODE . ceteeceoasseneesll, 21
IOQUDCLK.CODE..ceeeeseeees 10, 21
IORAMDSK.CODE‘.O000000.000010’ 21
IOSCREEN.CODE.cececocnceesss 10, 21

-K-

128K.INTERP.I.'...........l‘ 10’ 12
64I{JNTERP.......Q...‘...........12

-L-

LIB.O..C.....0...........0.........3

LIB.CODE ".0.0.ll.l...'.'....‘lbl9
LIBRARY.CODE.....O............C.8
Linkerb'C....'..l....'.........ll’ 20
LINKER.CODE-.IO..I0.0...... 10, 20
Local Driver Number....ececeeeoees 18

-M-

M2,GLOBALD.TEXT.vveeesessesesessd
MODULA.LIBRARY .siceceoacccesseed
Modula Operating System Manual.....2
Module Hierarchy...seeeeceeseecsss36
Module Segment Assignment....e.cce. 6

-N-

86.N0FP.CODE.......'....'...10, 20
860N0NSEP.CODE...O...‘..'.. 10, 20

Modula-2 on the IBM PC
Index
page 38

-0-

OutBytecol....oooto....o.!..!..oo 29
Outword...‘.t.lo..oo...o.'o...o.. 29

-P-

PASCALSYNTAX . ¢eeeeocesescecsncaed
PATCH.CODEQOO...0.00000.0.....008
PC.CODE.icecevcccnsossensoscssnasd
Peeko.oooocaoc.oo.-ol-oooooco.c.o 29
Poke...........'00.0...0.0....0.. 29
P(rinter.QOOOOQOCOQCO...0'.........16
Process Work SpacC€.ceececececccaces T
PROGS.C.l.l.........'.l.l.O...l‘. 3

-Q_
QuadBoard.'.......l'...l.".‘.... 10

-R-

Raise...............C.......l.l.l.32
R(amdisk....’.'...l.l..'l.'..l..'..14
RAWCOND.TEXT.eeeeeeccsscscseces 8
RAWCON.TEXT".‘..O.'O....0.0..'.8
R(ead..l....'O..............'.....19
ReadTime.........C..I..'..‘.Q.'..26
REMOTEDITEXTI.l...............'.s
REMOTEQTEXT.QC.‘.‘.............. 8

-S-

ScereenCharColor e ceesesescscascses 27
ScreenMode.cececcccesscsscnsesses 27
ScreenPageccceecececcccsscsscnseesl?
Segment Registerseeececescasssssss 13
86.SEP.CODE..cccesseesesesss 10, 20
S(eri@leeecssecccsccsscecassccasseelb
SERIALTALK.CODE..vecesescncsaseed
SetPriorityeecececscesccscscssneses 33
SETUP.CODE....OOOQO‘..0..‘......07
Shellil.l.'Ql'..‘....‘..."........6
SIZEII"..'.........0......"...0034
S(tat.l....‘......0...0....'.'!.l. 19
SYS..'l.....l..'......‘..."ll.l..3
SYS. PARM.TEXT :eeeeseacecesosaneesd
SYSTEM86 cceeeseseaosccnassscnces 29
SYSTEMBATCH.:eeeoeeseacassacasss 8
SYSTEM.COMPILER ...ccceveccacaesd
System Configuration..secesesseass 11
SYSTEM.EDITOR ¢eevesescscnseacsesed

SYSTEM.FILER.ll.......'.........' 7
SYSTEMJNTERP..............0.7, 12

SYSTEMMISCINFO .ceceevccocecses 7
System NoteS..ceceesccscereccscces b
SYSTEM.PASCAL.OQCO..I.COC.000...7
SYSTEM.SHELL'.OOO.QQl.O‘...O'OOCOB
SYSTEMQSTARTUP...OOOOOQ...0.'.023
SYSTEM.SYNTAX....C.Q.."...C....9

-T-
TELETALK.CODE.'....‘...C‘.......8
TELETALK.TEXT.....O..oco.cooooco8
Timestring........0..........".... 26
TSIZE.‘I.'........'....I..'...l.. 34

-U-

U(nitl..'........'................ 19
UNITCLEAR.‘........C.C.l..'..‘. 19
UNITREAD......‘..0.........'..O'lg
UNITSTATUS ceeceececsccocscscesssld
UNITWRITE.QI...Q........l..'..‘. 19

UTIL‘....‘..'.‘.............'.'... 3
-V-
VideOMOde.........'..O.'.....'... 27
-W-
w(ritel.....lltﬁ.....'l...."...'. 19
writeTime..........'......'......’26
-X-
XUnitRead.....'l..‘l....."...... 29
XUnitwritel.l"'......l.....'.....zg
-Y-
YALOE.CODE.I.............C..‘...8

Moduls

Operating System

Release: | 0.3
Date: 26 August 1983
Author: Richard Gleaves

Modula Operating System
Table Of Contents

Table Of Contents

1 IntrOdHCtion ® © 0 © @ 0 ¢ & ¢ 9 O ¢ S 0 ¢ 0 O O O O 6 ¢ O O 8 O O 9 0 O 1
1 .1 Seope of This Manual e & . ¢ ¢ & ¢ ¢ 0 © &€ 0 & & ¢ O ¢ ¢ O ¢ O 1
1 I2 Notation ¢ €@ 06 &6 ¢ & 0 & ¢ O ¢ ¢ 0 & 0 O 0 O 0 O & & O ¢ o O O 2

1.3Terminology........'....'..........03

2 BaSie Concepts e & ¢ 6 0 & 0 &6 0 ¢ 0 ¢ &6 C & 0 ¢ 0 & 0 © & 0 6 0 O O @ 4
201 Promptlines ® @ & 06 ¢ & 0 ¢ 0 & & & &6 5 O O O O O & O © @ & O O 4
2.2 Prompts e & © 0 @ o @ o '. © ® ¢ o 9 0 & & 0 0 & ¢ O & O O O O e 5

2.3KeyCommands..;..’l....'..‘..’.’ﬂ."".6

30perating'System........,..........o..e...7
3.1 Starting the SysteM. o « « e e e 0600 sccceossscl
3.2 The Work File. « « ¢ e c e e s s e s s 00 cooccosesecd
3.3 Syntax Errors and the EQitor. « ¢« ¢ e ¢ c c 0 0 6 0 « » 10
3.4 Runtime EIPOrS. « ¢« « « e e e o0 o s s s s 0 00eeeecssll
3.5 Disk SWapping: « « « e« e s s s 6 s s o cescoesesee 12

3.6 System CommandS. « « e e o o o e s e cceeeeeoee 13
3.6.1 Clear SCreeN. « « « « ¢ e s e s o s 0 6 s 0 oeoaes 13
362 COMPile s ¢ ¢ ¢ ¢ ¢ e 0 6 s s s o ssescoceeoeasld
363 E(dite « « e e 6o eaeeeecscococsasceesld
364 FIlee « o ¢ e o oo e o e s e eseososaseocesese 13
365 H(Blt e ¢ « ¢« e e e e s o s seoececeaoceessld
36,6 INItIAliZE s « o o v oo v v e vonaoeceaness 14
36T R(UN' ¢ ¢ e ¢ s oo e eooosooosassseees 14
368 Bl@tChe ¢ e e s e v veeosscnnocceeees 14
369 S(hell.s ¢ o ¢ e ¢ e e e s eeosoeoscscacccseald
3.6.10 U(ser restart. « « e s o e o s e e s eceesoos 15
36,1 X(ecute. « o e v et veecceccreaoceasold

Modula Operating System
Table Of Contents

4Fi1esystem.......'...l.'.'......‘....'.16

4.1Fﬂes"...'...‘..l.."....I..'O.'.17
4.1 .1 File AttribUtes ® &6 @ ¢ 6 & 0 ¢ 0 0 & ¢ O 0 O 06 O & s 0 17
4.1 .2 File Lengttls @ © ¢ ¢ ¢ ¢ & 0 ¢ ¢ 0 ¢ 0 O 0 o & 0 ¢ O 0 17

4.2VO].umes.o'.oooooooooooocooooo.ocoo18
4.3DirectorieSocoooccooooocooooooococao 19

44 File NameS. ¢ ¢ c e s s s s s s s s 0o s s s s s ssoease 20
4.4.1 Volume Identifiers. « « « e e e e ¢ e e a0 e o oo« 21
4,4,2 File IdentifierS. « o « o o e s e e o s e 0o aooea 22
4.4,3 File Name SyntaX. « e « e e e e o o e a0 oo s e 23

5 File Manager ® @ @ & 0 & 0 0 0 0 0 0 0 & 0 9 00 s e ¢ e o 24
5'1 Filer Prompts ® & & & & 0 ¢ 0 & ¢ 0 & 0 ¢ ¢ 0 0 0 0 0 0 ¢ 9 0 25
5.2 File Names ¢ o o ' e 6 0 0 & & 0 0 0 0 0 6 0 0 0 0 O & 8 0 o 25

5.3 COMMANAS s ¢ ¢ o o s ¢ ¢ ¢ s s s o sososeceeeaesell
5.3.1 B(&d bloCKS e « ¢ ¢« ¢ o s e e ¢ 000 0ososeoces 28
5.3.2 C(hANZe e « « ¢ e« e e e s s s s e s s ssaoeeoeees 28
5.3.3 D(BtE .« ¢ ¢ ¢ o s s oo s s e o esasseceacee 29
534 E(X diPe e e s o s ecasoeccasccsascasesdl
5.3.5 GEte o o e e s o s s e cccasessssossocees 31
5.3.6 K(runch. o o e e e e e e e s e eeeacasssass 32
5.3.7 LIl e o oo v et veasonsaonaannnsss 33
538 M(BKE . ¢ v e e e s eeeesoosoccoscccss 34
539 N(EW. e et e e oo ceeecsosssscccosesdd
5.3.10 P(refiXe o « e e e e e e e o eoeescsonsssse 35
53.11 QUit. s o c e o e o e e s e secccsosccsccs 3D
5.3.12 R(EMOVE . ¢ o ¢ s e e s o s ossasssseccese 3D
5.3.13 S(AVE . « e ¢ e s e e e e s s essesssacecss 36
53,14 T(ransfele « ¢ « « c s c e s o ccooeoaoceseasdl
5.3.15 V(OIUMES e « o ¢ o ¢ e c o e s s s s e oeoeseoo 38
5316 W(hat. « e e e e e cocesveecssaccseeoes 38
53.17 X(amin€. « o « c o s s s s eeesoasssacss 39

Modula Operating System
Table Of Contents

5.3.18z(ero'...'...C........'......'40

6 Batch Command Interpreter. . . « « « ¢ s ¢ s e s s 0000041
6.1 Submitting Command FileS. ¢ « « « ¢ e s 06 0 0 a0 0 o o 42
6.2 Command File EXECUtiON® o« o v o o ¢ e e oo o o a0 oo 42
6.3 Automatic Command File Execution., « « « « ¢ o o o « 43

6.4 Command FileS. ¢ « ¢ e e e s e e e s e 0 oo esoaoees dd
641 CommANAdS. « « ¢ e o s e o s e s e cocecesesodd
6.4.2 Targets & Labels. « « « ¢ « c o c e eceeeece 46
6.4.3 Text LINES e ¢ ¢ ¢ ¢ e s e 0 s s acoeevcecso 47
6.4.4 String Parameters. « o « o e o o e s s s 0 0000 o 48

6.5 Example Command FileS. ¢« « « e « s ¢ e 6 0 e 0 0 6 o o 48

7 Shell Command Interpreter. . « « e c e e ¢ e c.6 s o6 s 00 o 90

7. Using the Shell. ¢« o ¢ « « ¢ e e s e c00ceeoocssaedl
7.1.1 Program ResultS. o « « c c e c 06 s 0 e o 000000 91
7.1.2 1/O Redirection, « e « ¢ s e s e s s 0 s s s o0 s s 91
7.1.3 Command ArgumentS. « « c e s o s c s c 0 s « ¢ » 02
714 Wildeards. « « e e e s c o e e oo oeoeseasses 92
TlD PipES. ¢« ¢ 6 ¢ e o e e s ececsoceccscscossdd

7.2 Shell CommandS . « ¢« c e s 0 s e e 0 e 0 c0aoecesee 93
T2l Catc o o et s e s s et tseccccacoceass s 93
B P 7
72,3 dat€ e v e e e 0o e s e oo cecvececccccoses 04
7244 €ChO .« « ¢ e e v oo eeneacnonoanoaees 54
725 €d. e o e e eovvasessecasscossscsse 94
B 2% 2 5 S -
727 gGrePe e o e o v e s s s e essosescssnscees 94
728 1St ¢ e e et e ceesesosscscssscssasasdd
729 MC. e eeeeecosscsecoscscssoscacsases 9D
7210 MEM. o o e o o0 eseoeseecocaccsasssdd
72,11 MOP€. e oo oo e s s v seceescscscssees 99
7212 MV, o o e e sseeseessssossossesese 95

Modula Operating System
Table Of Contents

7203 M. et covoosesoccsscssaasocsasedd
7214 She e vt e s veeetoscsossoscoccsssss 9B
7215 SOrte e e e oo s s s eosoosessscccnscesodb
7216 WCe oo seeeoseosscsccoscecsssanss 96

7.3 Addipg New Shell CommandS. « « « o e s s 6 ¢ s s o o 96

8PaSCalCompilerl'....l.....C.‘.....'...QO58

801Operation....................I....O59

8.2 Compile OptiOnS. « ¢ « ¢« e e s s e e s 0o aaeeoooas 60
8.2.1 1/O CheCkS e « e e e v e oo eosascassossae 60
8.2.2 Include FileSe ¢ o e e ¢ s s e s e asoeeesees 61
8.2.3 Compiled ListingS. ¢ « « « ¢ e e ¢ s 0 a0 0o e ees 61
8.2.4 Quiet Compile . ¢« « ¢ ¢ ¢« ¢ s e e e e eeeeeees 62
8.2.5 RANZE ChECKS.e « « o e e e e oo v oo vooasses 62
- 8.2.6 System-level Compilee « o « ¢ e e s 6 00 000as 62
8.2.7 Separate Code & DatB. « « « o s s s e v s s oo 63
8.2.8 Byte FLipping .« « « « ¢ e ¢ oo e s s 000 eseesob3

. 8,3 VS Pascal INtrinsiCS . « o « o e e ¢ s s e s e a0 a s oo« 64
8.3.1 Input and Output, « e ¢ c ¢ e e e e o6 06 oe s 6D
8.3.2 String Manipulatioh................. 70
8.3.3 Byte Array Manipulation. « ¢ « ¢ o e ¢ e ¢ a0 0 o 71
8.3.4 MiscellaneouS. « « « « c e s s 6 e 0 0 a0 e s oase (2

8.4 Differences From Standard Pascal. « « « « « o e s o o T3
8.4.1 Case StatementS. « « « e c e e e s s s 00 00ese (3
84,2 CommeNtSe o« ¢ o e s s a0 ssescocecoceselld
. 8.4.3 Dynamic Memory Allocation. « « « s ¢ o s o ¢ o o T4
844 EOF and EOLN . s ¢ ¢ s ¢ e e o s s e s soasess T4
84.5 FileS. ¢« ¢ ¢ o s et v essevosaacsaaoceslld
8.4.6 GOTO and EXIT StatementS. « « « o o ¢« ¢ o ¢ o « 76
8.4.7 Packed VariableS. « « « ¢« e o ¢ s e s s e 0aseeslb
8.4.8 Procedure Parameters. « « « « e ¢ e s s 000 oo o 77
8.4.9 Program HeadingS. ¢ « « ¢ e s e o e o e o eeees 17
8.4.10 READ and READLN . ¢ ¢« ¢ ¢ ¢ e e e s e e e oo o 17
8.4.11 RESET and REWRITE. ¢ ¢ « ¢ e s ¢ e e e s e s s T8

Modula Operating System

Table Of Contents

8.4.12 Segment ProcedureS. « « « « e e s e s 0o s e o oo 18
8.4,13 Code ProcedureS. « « « « s e s e s s s e 0 e s oo 19
84.14 SetSe « e c o s et s e v e e st et assceld
8,415 StringS. « « e e ¢ e e e s e scoocessoaces 80
8.4.16 WRITE and WRITELN., ¢ ¢ « ¢ e e c s s s o s s « 80
8.4,17 Array CompariSONe ¢« « « e « e ¢ e e s e o s s o o 81
8.4.18 Implementation LimitS. « « « ¢ ¢« e ¢ ¢ 6 0 ¢ e s+ 82

9 Yet Another Line Oriented EQitor. . « « ¢ e ¢ ¢ ¢ ¢ ¢ 0o ¢« » 83

9.1 Entering YALOE . ¢ ¢« ¢ ¢« s e c e s e csaseaseecse8d
9.2 Entering Commands and Text. « « e c c e c e 0 e s« « 84
9.3SpecialCbmmands............,......'..Q85
9.4Input&0}utp1_1tCommands................86
9.5 Cursor Moving Commands....l........c.....88
9.6 Text Changing CommandS. « « « c c0o s 0ececooe 90
9.7 Miscellaneous CommandS. « ¢« « ¢« c c e s s 0 s s s 00 s 92

9.8Commandsummaryl.l......ﬂ..'.ﬂIOGIO/°94

10Utﬂityprogramso.o;eocoooooooeoooo.oooeo95

10.1 Disk Management . . « « « ¢« s e c 0 c e e s a0 00asa 96
10.1.1 Bootstrap Copierc ¢« « c c e c c s s o e e o0 e0e o 96
10.1.2 DisSk COPi€ls « v o s 0 c o s s s asasoessas 97
10.1.3 Duplicate Directory Copiel's o« « ¢ « o o s o o « + 99
10.1.4 Disk Directory FLipper. « « « v s e e v e s oo 99

10.2 File Management. « « « e« s e s o e o s e e s o0 oo o 100
10.2.1 Disk File EQItOr e « « « « e o o o e e e e e o o o o 100
10.2.2 File COPIEF s « ¢ o ¢ ¢ o e o s e s e ooesoesal2
10.2.3 Text File COMPATE. « o o o ¢ o s o o e s o o« « 102
10.2.4 Binary File COMPAre. « « ¢« o o ¢« « s o s « o o « 104

10.3 Program Management . « « « « « s c o o o ¢ ¢ s o o o o 105
100301Librarianl'...'O‘..QO..C.Q.QO.Q105

Modula Operating System
Table Of Contents

10.4 Communication.iii..C'l.....0.......107
10.4.1 Remote File Transfere ¢« « « « ¢ ¢ ¢ ¢ « « o ¢« « 107
10.4.2 Electronic Mail Transfer. « « « « « o s o s « « « 109

10.5 System Configuration. .« « « o o o ¢ s e 0 0 0 ¢ o o« s 111

10.5.]- Terminal Setup. e & @ ® & & & o o & @ ¢ o ¢ ¢ & o 111

10.5.2 GOTOXY Procedure Binding. « « « « « « o « « 119
Appendix 1 Installation Guide. « « « « o ¢ s 0 ¢ o ¢ 0 o0 0o« o120
AppendixzI/oResultSOQ.....0.’00....'00.0'. 121
Appendix 3 Execution EI'I‘OPS. ® 9 6 ¢ 8 ¢ ¢ ¢ ¢ ¢ 0 ¢ ¢ 0 @ @ 2o 122
- Appendix 4 Compiler Error MeSSageS. « « ¢ o o o ¢ ¢ e o ¢« o o o 123

Appendix 5 ASCII Character Set. « o ¢ « e o « o o 0 o0 0000+ 126

mdeXoeoooeeaaoeoeoooaoooaeeoooa'aooeeoo 127

Modula Operating System
Introduction
page 1

1 Introduction

The Modula operating system is an interactive single-user system for
developing Modula-2 and Pascal programs, It is compatible with the
version II UCSD Pascal system.

The Modula operating system provides the following facilities:

@ Batch Command Interpreter — Reads a series of system
commands and data from a command file, It is used to
automate repetitive system tasks.

® Shell Command Interpreter — Creates a '"command shell"
programming environment where individual programs can be
linked together to perform complex tasks,

® File Manager — Manages disk files and volumes.

@ Line-oriented Editor — Offers basic text editing capabilities on
unconfigured systems.,

@ Pascal Compiler — A fast one-pass compiler which includes
many of the UCSD Pascal language extensions,

@ Utility Programs — A large collection of utilities which aid
system configuration and software development.

1.1 Scope of This Manual

This manual describes Volition Systems' Modula operating system. It provides
a complete description of the system commands and features.

This manual is not a tutorial — it assumes you are familiar with the UCSD
Pascal language and the UCSD Pascal system. If you have not used UCSD
Pascal, the following books are recommended as tutorials:

Introduction to the UCSD p-system
Charles W. Grant and Jon Butah
Sybex, Berkeley, California, 1982,

Introduction to Pascal (Including UCSD Pascal)
Rodnay Zaks
Sybex, Berkeley, California, 1981.

Modula Operating System
Introduction
page 2

1.2 Notation
This section deseribes the notation used in this manual.

A variant of Backus-Naur form (BNF) is used as a notation for describing the
form of promptlines, input data, and text file items. Meta-words are words
which represent a class of words; they are delimited by angular brackets ('<'
and). Thus, the words 'trout’, 'salmon', and 'tuna' are acceptable
substitutions for the meta-word '<fish>'; here is an expression describing the
substitution:

<fish> s::= trout | salmon | tuna

The symbol ':=' indicates that the meta-word on the left-hand side can be
substituted with the right-hand side. The vertical bar °|' separates possible
choices for substitution; the example above indicates that ftrout', 'salmon’, or
'tuna' can be substituted for '<fish>’,

An item enclosed in brackets ('[' and ']') can be optionally substituted into a
textual expression; for instance, ‘[microlcomputer’ can represent the text
strings 'computer' and 'microcomputer’,

An item enclosed in braces ({' and '}') can be substituted zero or more times
into a textual expression. The following expression represents responses to
jokes possessing varying degrees of humor:

<joke response> ::= {ha}

Literal occurrences of the characters used above are delimited by quotes to
avoid confusing them with notational definitions (e.g. <left-bracket> = '<' |

TRV o

BNF notation is often used informally to describe the appearance of a
promptline or the required form of some input data. Here are some typical
examples:

Typing <cr> completes the input ‘prompt.
President <surname> should be [<expletive>] impeached!

The syntax for Pascal's IF statement is:

IF <Boolean expression> THEN <statement)> [ELSE <statement>]

Modula Operating System
Introduction
page 3

NOTE- Paragraphs beginning with the word NOTE contain interesting
or useful information related to the current topic.

WARNING- Paragraphs beginning with the word WARNING point out
potential problems associated with the current topiec.

Section references have the form 'x.y.z. ...',. where x, y, and z denote digits.
The first digit indicates the chapter; subsequent digits indicate sections
within the chapter. For instance, the phrase 'see 3.4' refers to section 4 in
chapter 3.

This manual defines a number of terms for deseribing system features and
commands. When new terms are introduced, they appear in boldface and are
followed by either a definition or a reference to the defining section.

1.3 Terminology
This section describes the terminology used in this manual,

The folldwing terms are used to describe the file I/O system: file name,
file block, block number, unit, and unit number.

A file name is a character string that conforms to the file naming
conventions of the UCSD Pascal file system,

File names usually consist of a file title and a file suffix. For instance,
the file name 'LIB.TEXT' contains the file title 'LIB' and the file suffix
'.TEXT'.

A file block is the basic unit of disk file storage; a block contains 512
bytes., A block number is a number specifying a -file bloek within a disk
file; the first block of a disk file is bloeck 0.

A unit corresponds to a physical I/O device., Each unit is identified by a
unique unit number, For instance, unit 1 is the system console, unit 6 is the
printer, and units 4 and 5 are the disk drives.

This manual upholds the tradition in UCSD Pascal system documents of
describing key commands as metawords. <{er> and <return> denote the
carriage return key. <spacebar> and <{space> denote the space key. <etx>
and <ese> denote the keys defined as the accept and escape commands
respectively. Vector keys are denoted by <left>, <right>, <up>, and
<down>, Many of these commands are defined using the Setup utility (10.5.1).

Modula Operating System
Basic Concepts

page 4

2 Basic Concepts

This chapter describes some basic concepts used throughout the system:
@ Promptlines
@ Prompts

@ Key commands

Promptlines display the available commands across the top of the screen.
Promptlines are deseribed in section 2.1. ' '

Prompts ask you for specific information: a file name, a number, or
sometimes just a 'yes' or 'no'. Prompts are desecribed in section 2.2.

Key commands are certain terminal keys which are defined as system
commands. Key commands are deseribed in section 2.3. .

2.1 Promptlines

Promptlines are used to display the available commands in many parts of the
system, Promptlines appear across the top of the screen., Here is an
example:

Command: E(dit, R(un, F(ile, C(omp, B(atch, S(hell, X(ecute

- Commands are invoked by typing one of the command characters. The

command characters in a promptline are capitalized and (usually) separated
from the command abbreviation with a left parenthesis; for instance, typing
'e' to the above promptline invokes the editor. Note that command
characters can be typed in either as upper or lower case letters,

Some promptlines contain more commands than can be displayed across the
secreen, With these promptlines, typing '?' as a command character displays
a promptline containing a second set of commands.

Many system promptlines display a version number in their promptlines. This
indicates what release version of that program you are using.

Modula Operating System
Basic Concepts

page 5

2.2 Prompts

The system displays a prompt when it needs some information. Prompts
usually appear in the form of a question:

Compile what file?
Are you sure (y/n)?

Scan for how many blocks?
Prompts fall into two classes: the 'yes/no' prompt or the input prompt.

'Yes/no' prompts are the simplest to answer: merely type 'y' or 'n'. ('Y' and
'N' also work.)

Input prompts require a string of characters followed by <return>. Typing
<return> signals the end of the character string., You can use <backspace>
to erase any typing mistakes. You can also erase everything you've typed by
hitting <delete>.

Most input prompts offer a way to 'escape' from the prompt. For instance,
typing just <return> to the prompt

Compile what file?

«. returns you to the system promptline. Most (but not all) input prompts in
the system recognize <return> as an escape.

Modula Operating System
Basic Concepts

page 6

2.3 Key Commands
This section describes key commands recognized by the system.

The <accept> and <escape> keys are used throughout the system as command
terminators., <accept> is used mostly in ASE, where it indicates a command
is to be completed, <escape> is recognized as a way to escape from (undo)
a command., The actual keys that invoke <accept> and <escape> are 'soft’;
that is, they are defined when the terminal is configured for the system.

Cursor movement is important in a few parts of the system — mainly the
editor. <space> and <backspace> move the cursor in the expected direction.
The vector keys <left>, <right>, <up>, and <down> also work in the usual
sense, .

The <eof> key is used to terminate character streams when the console is
accessed as an input file, <eof> is usually defined (during system
configuration) as ctrl-C.

The stop/start keys are used to stop console output. This is useful for
stopping programs which are spewing out data faster than you can read it —
typing the stop key halts the program, freezing the console display. Console
output (and thus program execution) are resumed by typing the start key.
ctrl-S usually serves as the stop/start toggle, but some systems define ctrl-S
as the stop key and etrl-Q as the start key.

The flush key causes the system to discard all console output until the next
console read operation is completed. Console output can also be restored by
typing the flush key again. The flush key is useful for speeding up programs
which are bogged down because of their voluminous console output. The

_flush key is usually defined as ctrl-F.

Modula Operating System
Operating System
page 7

3 Operating System

The Modula operating system provides basic facilities for program execution,
error handling, and Pascal runtime support. It also offers a number of useful
features: '

® You can configure the system to automatically execute a user
program when it first starts up., This lets you create turnkey
applications.

@ Programs can be kept in the work file to reduce the number of
commands needed to compile and execute them. This speeds up
program development.

@ When a syntax error occurs during compilation, the system can
automatically invoke the editor to let you fix the error. This
simplifies debugging.

® The file system implements high level concepts such as
removable disk volumes and device-independent file 1/0.

® The batech command interpreter lets you automate repetitive
system tasks., System commands and data are read from a
command file instead of the keyboard. @ The system can be
configured to automatically execute a command file when it first
starts up.

Section 3.1 explains how to start the system.,

’fhe work file is deseribed in 3.2.

Syntax errors and editor invocation are described in 3.3.
Runtime error handling is deseribed in 3.4.

Disk volume swapping is deseribed in 3.5.

Operating system commands are described in 3.6.

NOTE- The file system is described in chapter 4.

Modula Operating System
Operating System
page 8

3.1 Starting the System

The operating system is started up by placing the system disk in the proper
disk drive and pressing the 'boot' button. (Details on this procedure may
vary across different machines.)

After a few moments and a few disk accesses, the welcome message appears
on the screen:

SYSTEM:

29 Mar 83

Volition Systems Module-2 0.3m

The welcome message displays the names of all online disk volumes and the
current system date. The system promptline then appears across the top of
the screen: '

Xecute, Batch, Shell, Run, File, Edit, Comp, UsrRst, Init

The system is now ready for you to type one of the system commands. See
3.6 for details on the system commands.

If a program named SYSTEM.STARTUP resides on the system disk, the
operating system immediately executes it instead of displaying the welcome
message and system prompt. This feature lets you create stand-alone
application systems where the operating system is never visible to the end
user.

Modula Operating System
Operating System
page 9

3.2 The Work File

The work file is a special file which is used as a 'work' area for developing
programs., The work file speeds up program development by reducing the
number of commands you have to type in order to edit, compile, and execute
your program, ’

Here is how the work file works:

® If you type E(dit and a work file exists, the editor selects it as
the input file,

@ If you type Clompile and a work file exists, the compiler
automatically begins compiling the work file,

@ If you type R(un and a compiled work file exists, the operating
system automatically executes the work file.

@ If you type R(un and an uncompiled work file exists, the system
automatically compiles and executes the work file,

The work file actually consists of two parts: the work text file, and the
work code file. The work code file is usually the compiled form of the work
text file.

To create a new work file, type <return> to the editor's input file prompt.
At the end of the edit session, the editor's U(pdate command writes the
- newly created work file to a disk file named SYSTEM.WRK.TEXT. Compiling
this file results in the file SYSTEM.WRK.CODE.

Because the work file SYSTEM.WRK is only a temporary 'scratch pad', you
will probably want to save the results as a regular disk file, The filer
command S(ave lets you permanently save the current work file as a regular
file.

Another way to create a work file is to select an 'existing disk file as the
new work file. The filer command G(et specifies an existing named disk file
as the work file,

Finally, to get rid of the current work file, the filer command N(ew removes
any SYSTEM.WRK files and disassociates any existing regular files from being
the work file,

Modula Operating System
Operating System
page 10

3.3 Syntax Errors and the Editor

When the compiler finds a syntax error in your program, you have the choice
of continuing compiling, stopping the compiler, or invoking the editor to fix
the error. If you choose to edit your program, the operating system
automatically starts the editor, which moves the cursor to the location of the
error and displays a message describing the error.

NOTE- If you are not compiling the work file, the editor has to ask
. for the name of the file being compiled before it can jump to
the syntax error location.

Modula Operating System
Operating System
page 11

3.4 Runtime Errors

The operating system is responsible for handling software and hardware errors
that occur during Pascal program execution. When an error occurs, the
system displays a message describing the error and then terminates the
program,

Note that programs may be terminated either by an execution error or by
explicit user interruption of the program (i.e. typing the <break> key).

Execution error messages consist of an error description and the location of
the error in the program code.

Example of an execution error message:

Divide by zero
S 1, P# 5, 1# 20
Type <space> to continue

The error description is usually-a textual message (e.g. ‘'Value Range Error'),
but sometimes only an execution error number is displayed. Execution error
numbers are described in Appendix 3.

When an execution error is caused by an I/O error, a message describing the
I/O error is printed next to the execution error message. As with execution
errors, sometimes only an I/O error number is displayed. I/O error numbers
are described in Appendix 2.

The execution error location is specified in terms of the code file structure;
the 'S', 'P', and 'I' fields indicate the segment, procedure, and code offset of
the instruction that caused the error. If you have a compiled listing of the
program, you can use these offsets to trace. the error to a single statement
within the source program.

After you type the space bar, the system terminates the program,
reinitializes itself, and redisplays the system prompt.

A stack overflow occurs when there is not enough memory for a program to
continue executing., The program is terminated, and the following message
appears on the screen:

STK OFLOW

The system then reinitializes itself and redisplays the system prompt.

Modula Operating System
Operating System
page 12

3.5 Disk Swapping

The Modula operating system allows you to mount and dismount different disk
volumes during normal system operation. For instance, to transfer files from
one disk to another, you can enter the filer, replace the system disk with
the disks you wish to transfer to, then transfer the files. By detecting disk
swapping, the system is able to keep track of what disk volumes are
cu;'rently online (without crashing like some other popular operating systems
do).

During program execution, however, disk swapping can be risky. if a system
or user program requires a code segment from a disk volume and the volume
is no longer online, the system will crash., The system addresses this problem
in two ways.

First, the file handler and most utility programs do not contain segment
procedures; their code remains resident throughout execution. (Your programs
will have to do the same in order to be immune to disk swapping.)

Second, the operating system tries to protect itself from crashes caused by
random disk swapping. If the operating system determines that the system
disk is not mounted, the following message appears after the program
terminates: ‘

Replace SYSTEM:

The system then waits until the system disk is remounted in the proper drive;
when it is, the system prompt is redisplayed.

WARNING- The operating system detects disk swapping by checking
the disk volume name whenever a disk is accessed by a
directory operation (e.g. Open or Close). If the system disk is
replaced by a disk volume that is never accessed, program
termination will halt the system with an unrecoverable execution
error,

Modula Operating System
Operating System
page 13

3.6 System Commands

This section describes the commands available from the system promptline.

3.6.1 Clear Screen

If you type a character which is not a system command, the screen is
cleared and the system promptline is redisplayed. :

3.6.2 C(ompile
C(ompile invokes the Pascal compiler.
The compiler is the code file SYSTEM.COMPILER.

The Pascal compiler is described in chapter 8.

3.6.3 E(dit

E(dit invokes the editor.

The editor is a code file named SYSTEM.EDITOR.

If a work text file exists, it is automaticélly entered as the input file x;ame.

The editor is described in the ASE User's Manual.

3.6.4 F(ile

F(ile invokes the filer.

The filer is the code file SYSTEM.FILER.
The filer is déscxfibed in chapter 5.

NOTE- The filer can be operated without having the disk containing
the filer code file online.

Modula Operating System
Operating System
page 14

3.6.5 H(alt
H(alt stops the system.

The only way to restart the system after H(alt is to reboot.

3.6.6 I(nitialize
I(nitialize causes the system to reinitialize its state information.

The operating system clears all online I/O devices, rebuilds the system data
structures, and searches all online disk volumes to locate the system
programs,

Most execution errors automatically invoke I(nitialize.

3.6.7 R(un
R(un_ executes the work file.

If the work code file does not exist, the compiler is automatically invoked.
If a work text file does not exist, the compiler input prompt appears.

3.6.8 B(atch
B(ateh invokes the batech command interpreter.

The batch command interpreter is the code file SYSTEM.BATCH on the
system volume,

The batch command interpreter is deseribed in chapter 6.

Modula Operating System
Operating System
page 15

3.6.9 S(hell

S(hell invokes the shell command interpreter.

The shell command interpreter is the code file SYSTEM.SHELL on the system
volume.,

The shell command interpreter is described in chapter 7.

3.6.10 U(ser restart

U(ser restart reexecutes the last program executed. U(ser restart does not
work if the system has been reinitialized.

3.6.11 X(ecute
X(ecute executes the specified code file.
The following prompt appears:

Execute what fileé

Type in the title of the code file to be executed. The file suffix '.CODE' is
automatically appended to the file name (unless it ends with a period).

4 File System

This chapter describes the Modula file system. Note that it is identical to
the UCSD Pascal file system.

There are two good reasons for learning the file system in detail:

® Much of the file name syntax involves simplifying the
specification of a file. Because most of your time in the
system is spent creating, modifying, or deleting files, you can
save a lot of time and effort by learning the file naming
conventions,

@ The Modula file system requires more a bit more user attention
than other file systems; in particular, it is susceptible to running
out of disk space if disk files and disk volumes are not properly
managed. This problem can be minimized if your programs are

designed with a firm understanding of how the file system
works.

Files and disk file attributes are deseribed in 4.1.
Disk volumes are described in 4.2.
Disk directories are described in 4.3.

File names and file name syntax are described in 4.4.

Modula Operating System
File System
page 17

4.1 Files

A file is a collection of information which is usually stored on a disk. A
disk file is referred to by its file name, Each disk has a directory which
conteins the file names and disk locations of each file on the disk., Files are
accessed by programs and by the filer,

4.1.1 File Attributes
Each file is assigned a number of file attributes.

One of the attributes of a file is the file date. The current system date
(5.3.3) is assigned to a file when it is created or modified.

Another file attribute is called the file type. The type of a file determines
the way it can be used; for instance, the system does not let you edit code
files or execute text files. File types are assigned based on part of the file
name known as the file suffix. Note that file types are assigned when the
file is first created; the file name can be changed later without affecting
the file type.

Here are the reserved file suffixes:

JEXT
BACK Human-readable text.,

.CODE Machine-executable code.
DATA Data, (The default file type)

BAD A worn-out area on the disk.

4.1.2 File Lengths

When a disk file is created, the file system allocates a fixed area on disk
where the file is to reside. When the newly created file is closed, the file
system releases any disk space that was not actually used by the file;
however, while the file is open, it reserves all of its allocated disk space for
growing room, A file's allocated disk space is . known as its length
attribute.

By default, newly created files are allocated the largest free space on the
volume; this minimize the chances of their running out of disk space as they

Modula Operating System
File System
page 18

are written to. However, this scheme causes problems when a program
attempts to create more than one file on a disk volume having only one free
space; though the free space might easily contain all of the finished files,
the first file created is allocated all available disk space, preventing the
other files from being created.

To avoid this problem, a file's length attribute can be explicitly specified by
appending a length specifier to the file name. The length specifier value
indicates the estimated maximum file size (in blocks). The file system then
allocates the disk file in the first free space large enough to contain it.
For instance, with the file name 'roger.file[77]', the file system allocates the
file 'roger.file' 77 blocks of disk space in the first free space large enough
to contain it.

The file length specifier '[*]' is useful when creating more than one file on a
volume; it allocates the file in either half the largest free space on the disk
or the second largest free space — whichever is largest.

NOTE- If a growing file reaches the end of its allocated disk space,
one of two things happens. If the disk space following the
file's allocated space is already occupied by an existing file, the

- file system reports the error 'No room on volume'. If the
following disk space is part of a free space, the file system
extends the file's length attribute into the adjacent free space.

NOTE- Over time, disk free spaces tend to increase in number and
decrease in size, making it more difficult to create new files (or
extend existing ones). Free spaces can be consolidated with the
file manager's K(runch command (5.3.6).

4.2 Volumes

A volume is any I/O device: the printer, the console, a serial port, or a
disk.

A serial device cannot store information — it can only produce or consume
a stream of data. The console, printer, and serial ports are serial devices.

A block-structured device is one that can store a directory and files —
most commonly a disk drive. Block-structured devices are divided into a
fixed number of 512 byte storage areas known as blocks. Blocks are
randomly accessible by block number. Disks are usually the only block-
structured devices.

Volumes are addressed either by their volume name or unit number. Each
I/O device is assigned a unit number. Each serial device is assigned a fixed

Modula Operating System
File System

page 19

volume name, The volume name of a bloeck-structured device is whatever
disk volume is mounted in the device.

Volume Name Unit Number Description

CONSOLE: 1 screen & keyboard with echo
SYSTERM: 2 screen & keyboard without echo
<vol name> 4 the system 'boot' disk

<vol name> 5 the alternate disk

PRINTER: 6 the line printer

REMIN: 7 serial input line

REMOUT: 8 serial output line

<vol names> 9 -12 additional disk drives

4.3 Directories

Directories are stored on a disk along with the disk files. The directory is 4
blocks longs and is kept on blocks 2 thru 5 of a disk.

Directories contain the volume name and up to 77 directory entries, Each
directory entry contains the name, disk location, and attributes of a disk file.
A directory cannot contain two permanent files with the same name; saving a
file on a disk volume already containing a file with the same name deletes
the existing file, Note that program-generated temporary disk files can
coexist with files having the same name — a temporary file only becomes
permanent when it is closed and locked (8.3.1).

The filer automatically initializes disk volumes to contain two disk
directories. = The second directory is called a duplicate directory — it
serves as a backup ecopy of the main directory.

The duplicate directory is 4 blocks longs and is kept on blocks 6 thru 9 of
the disk. If something happens to the main directory (e.g. a bad block), it
can be restored by using the information stored in the backup directory. The
utility program CopyDupDir copies the duplicate directory onto the space
occupied by the main directory.

Modula Operating System
File System
page 20

4.4 File Names

File names are used to address files and volumes. A file's attributes,
maximum size, and disk location are all controlled by its initial file name.
The system commands and the program I/O intrinsics both use the same file
name syntax, '

<file name> . ‘

L T <Lfile id> ;r
<volume id> i

D
7

Modula Operating System
File System
page 21

4.4.1 Volume Identifiers

Volume identifiers are used to specify volumes or files contained in volumes.

<volume id>

v

#<number>: —x

t—— <volume named: -

T

L

A volume name can include any characters except '#' or ':' and can be up
seven characters long.

Using '"*' as a volume identifier specifies the system volume. This is
provided as a handy abbreviation for addressing files stored on the system
disk. Note that unlike other volume identifiers, '*' does not require a colon
to appear after it. The entire system volume can be addressed with the file
name '¥',

The default volume name is called the prefixed volume. Disk file names
lacking a volume identifier are assumed to reside on the prefixed volume;
thus, you can save time by setting the most frequently used disk volume as
tlze prefixed volume. The prefixed volume is set with the filer command
P(refix. ' o

Examples of volume names:

#5:
XFRDISK:
* .

H
*.
e

WARNING- Beware of using disk volume names as normal files,
Treating a disk volume as a file exposes its directory to harm,
because if you write to this 'file', the data gets written over
the directory and all files on the disk get lost. The only place
volume names should be used as file names is in the filer when
it prompts for a volume name or when you C(hange a volume
name‘

Modula Operating System
File System
page 22

4.4.2 File Identifiers

File identifiers are used to specify disk files stored on volumes.

<{file id>

<title> ' T ‘ >
l— <suffix> [*]
[m]

A file identifier consists of a title followed by an optional suffix and
length specifier. The title and suffix may be up to fifteen characters long.

A file length specifier is delimited by square brackets. The symbol 'm'
denotes a positive integer.

Examples of file names:

FORZ.TEXT
SHELL.1.TEXT[*]
*SYSTEM.WRK.TEXT
SYSTEM.MODULA
MACRO:PEST.FOTO[27]
STUFF.DATA

Modula Operating System
File System
page 23

4.4.3 File Name Syntax

<{file name>

L /lv <Lfile id> T
<volume id> —4

<volume id>

4

#<number>: TH

<volume name>: -

*

\4

<title> T
l- <suffix> [*]

[m]

<file id>

N\

All spaces and control characters are ignored, and all lower case characters
are mapped to upper case. The following characters should not be used in a
file name: '$', '=', *?', [*, and ',). The filer uses them as wildcard
characters.

A volume name may contain any characters except '#' or 's' and can be up
seven characters long, A file identifier may contain any character (except
'[') and can be up to fifteen characters long.

Modula Operating System
File Manager
page 24

5 File Manager

-

The file manager ('filer' for short) is used to perform the following tasks:
@® Managing disk files.

Displaying the files stored on a disk volume.

Managing work files.

Managing disk volumes.

Detecting and fixing damaged disks.

Section 5.1 describes the filer promptline and explains how to respond to
certain filer commands.,

Section 5.2 describes file names in the filer. File names may contain
‘wildeard' characters which allow a single file name to specify several disk
files, Wildcards let you manipulate a number of disk files with a single filer
command, :

Section 5.3 describes the filer commands.

NOTE- Before you use the filer, you should understand how the
Modula file system works. The file system is deseribed in
chapter 4. |

Modula Operating System
File Manager
page 25

5.1 Filer Prompts

The filer promptline appears as:

L(dir, T(rans, R(em, C(hng, D(ate, P(refix, V(ols, Z(ero, Q(uit ?

This promptline does not display all the filer commands, The other commands
appear if you type '?%

K(rnch, M(ake, B(adBlk, E(xdir, G(et, S(ave, W(hat, N(ew, X(amin ?

Most filer commands accept one or two file names as arguments; however,
you can type in as many files names as you want, and the filer command will
operate on each file specified. Lists of file names are separated by commas.
Filer commands that accept a single file name read file names from the list
one at a time., Filer commands that accept file name pairs (e.g. T(ransfer)
read file names from the list two at a time.

5.2 File Names

File names are entered in the usual UCSD Pascal file name syntax. The
G(et and S(ave commands do not require file suffixes (e.g. 'MYFILE'); all
other commands expect complete file names (e.g. 'MYFILE.TEXT").

The character '=' is allowed to appear in file names. It is called a wildcard
because it allows a single file name to match a number of disk files. For
example, removing the file name 'F=,TEXT' causes the filer to remove all
text files whose names begin with 'F'., Removing the file name '=' removes
all the files on your disk! (But not without a warning prompt.)

NOTE- A file name may contain more than one wildeard (e.g.
'=STUFF="),

An occurrence of '=' matches any string of characters in a file name —
including the empty string. In commands that accept file name pairs, an '=!
in the second file name is replaced with the character string matched by the
wildeard in the first file name,

Example of '=' wildeard:
Transfer what file? BACKUP:=,CODE,BOOT:SYSTEM.=
All the code files on the BACKUP volume are transfered to the BOOT

volume. The code files on BACKUP become system files on BOOT; for
instance, MODULA.CODE is renamed SYSTEM.MODULA.

Modula Operating System
File Manager
page 26

The character '?' works like '=', but causes the filer to write a prompt for

each file that matches the file name., '?' allows you to skip some of the
files that match the wildeard file name.

Example of '?' wildeard:

Remove what file? ?,CODE

The R(emove command then writes a series of prompts:

'Remove <file name>.CODE?!

«. for every code file on the volume. Typing 'y’ or 'Y' removes the file and
generates the next 'Remove?' prompt; 'n' or 'N' preserves the named file.
<escape> terminates the entire R(emove command.

The '$*' character is used in commands that accept file name pairs. When
used as the second file name, '$' denotes the first file name (which can
contain wildeards).

Transfer what file? FILER.CODE,#5:$

5.3 Commands

Modula Operating System
File Manager
page 27

This section presents a command overview; commands are grouped according
to their function. Sections 5.3.1 through 5.3.18 describe each command in
detail; commands are ordered alphabetically for ease of reference,

Disk File Commands

C(hange
T(ransfer
R(emove
M(ake

Work File Commands

G(et

S(ave
N(ew
W(hat

Change file names.

Transfer files from one disk to another.
Remove files,

Create new files,

Establish a new work file.
Save the current work file.
Remove the current work file.
Display work file status,

Disk Volume Commands

L(dir

E(x dir
D(ate
K(runch
P(refix
V(olumes
Z(ero

List files on a disk volume.

Extended listing of files on a disk volume.
Change the system date on all disk volumes.
Merge all free spaces on a disk volume,
Change the prefixed volume name.

List online volumes,

Initialize a disk volume.

Disk ‘Repair Commands

B(ad blocks
X(amine

Check for damaged disk blocks.
Repair damaged disk blocks.

Modula Operating System
File Manager
page 28

5.3.1 B(ad blocks

The B(ad blocks command checks disk volumes for blocks that can no longer
store information reliably.

‘The following prompt appears:

Bad block scan of what volume?
Type in the name of the volume to to be scanned.

B(ad blocks check each block on the disk volume. If a block is bad, a
message appears identifying it. At the end of the scan, the number of bad
blocks is printed.

NOTE- The X(amine command is used to repair bad blocks (or to
mark them 'bad' if they cannot be repaired).

5.3.2 C(hange

The C(hange command changes the name of a disk file or volume,

C(hange requires a pair of file names: the name to be changed followed by
the new name.

If a wildeard is used in the first file name, then it also must appear in the
second; strings matched by the first wildcard are substituted in the second.

Examples of C(hange:

Change what file? =.BACK,=.TEXT

Changes. all backup files on the volume to text files.
Change what file? MYDISK:, ARCHIVE:
Renames the disk volume MYDISK to ARCHIVE.,

Modula Operating System
File Manager
page 29

5.3.3 D(ate

The D(ate command sets the system date.

DATE SET: <1..31>-<JAN..DEC>-<00..99>
Today is 5-Dec-82
New date?

To save the current date, type <return>. To set a new date, type it in the
indicated form. You do not have to type in all of the date fields; for
instance, typing '6-Dec' followed by <return> preserves the current year.

The system assigns the current date to newly created or modified disk files.
File dates can be viewed with the filer commands L(dir and E(x dir.

Modula Operating System
File Manager
page 30

5.3.4 E(x dir

The E(x dir command displays an extended directory listing of the specified
disk volume,

The following prompt appears:

Dir of what volume?
Type in the name of the disk volume to to be listed.

E(x dir displays all files and free spaces on a volume. The listing displays
the following information:

@ file name

® file size (in blocks)

@ file date

[startir_lg bloek number

@ # valid data bytes in last block
@ file type

NOTE- See the L(dir command for more information on E(x dir.

Sample of extended directory listing:

MANUAL:

STARTDOC.TEXT 12 29-Sep-82 716 512 Textfile
FILER.TEXT 4 3-Dec-82 728 512 Textfile
< UNUSED > 190 732

FILER.1.BACK 62 3-Dec-82 922 512 Textfile
FILER.1.TEXT - 58 3-Dec-82 984 512 Textfile
< UNUSED > 1238 1042

6/6 files<listed/in-dir>, 52 blocks used, 28 unused, 38 in largest

Modula Operating System
File Manager
page 31
5.3.5 G(et

The G(et command specifies an existing disk file as the work file.

If an unsaved work file exists, the following prompt appears first:
/

Throw away current workfile?
Type 'y' to discard the existing work file; type anything else to escape.

The following prompt appears:

Get what file?
The file name is entered without a file suffix.

NOTE- G(et does not actually create a new disk file; it merely
specifies an existing file as the source of the new work file.
See 3.2 for more information on work files,

Modula Operating System
File Manager
page 32

5.3.6 K(runch

The K(runch command merges the free spaces on a disk volume into one
contiguous area. :

The following prompt appears:

Crunch what volume?

Type in the name of the volume to be crunched. The next prompt appears:

From the end of disk, block 420? (Y/N)

Type something other than 'y' or 'n' to escape. Type 'y' to commence
normal crunching — all disk files will be moved forward on the disk volume,
leaving one large free space at the end of the disk.

If you want to crunch the files towards the end of the disk, type 'n'. The
following prompt appears:

Starting at block #?

Type a non-number to escape. Typing a block number causes all files beyond
the specified block number to be moved to the end of the disk. This so-
called 'backwards crunch' is used to open free spaces between existing files;
it is useful for inserting new files in front of the existing files on a volume.

NOTE- Be sure to do a B(ad blocks scan before crunching a disk
volume; files can be lost by writing them over (unmarked) bad
blocks. K(runch avoids overwriting disk blocks already marked
'bad’.

WARNING- K(runch is a eritical operation. if the disk volume is
removed (or the system fails) durmg crunching, disk files on the
volume may be ruined.

Modula Operating System
File Manager
page 33

5.3.7 L(dir

The L(dir command lists the disk files contained on the specified disk volume.
The directory listing can be written to the console or to a text file,

The following prompt appears:

Dir of what volume?
Type in the name of the volume to be listed.

Wildeards can be used to list subsets of the files on a volume; the wildeard
file name is appended to the volume name. For example, '=.TEXT' lists all
the text files on the prefixed volume, 'BOOT:SYSTEM.=' lists all the system
files on the volume named BOOT.

Directory listings display the following infofmation:
@ file name
@ file length (# blocks)
@ file date

Directory listings normally go to the console, but they can also be written to
text files by appending ',<text file name>' to the prompt response. For
example, 'SYSTEM.=,LISTING.TEXT' lists all system files on the prefix volume
and writes the listing to the text file LISTING.TEXT. '#5:printers' prints a
directory listing of the disk volume mounted in unit 5.

Modula Operating System
File Manager
page 34

5.3.8 M(ake
The M(ake command creates disk files.

The following prompt appears:

Make what file?
Type in the name of the file to be created.

File length specifiers are used to control the size and location of created
files. For instance, making 'JUNK[25]' creates a file named JUNK in the
first free space larger than 24 blocks.

NOTE- M(ake is useful for recovering accidentally removed files,
Just M(ake the proper size (and type) of file on top of the free
space where the file used to reside on the disk.

5.3.9 N(ew

The N(ew command removes the current work file.

If an unsaved work file exists, the following prompt appears:

Throw away current workfile?

Type 'y' to discard the current work file. Type any other character to
escape., ' ,

NOTE-~- N(ew removes the work file SYSTEM.WRK if it exists, See
3.2 for more information on work files,

Modula Operating System
File Manager
page 35

5.3.10 P(refix
The P(refix command sets the prefixed volume name.

The following prompt appears:

Prefix is MYDISK:
Set prefix to?

Type a volume name to set the prefixed volume. Type <return> to escape.
Note that the specified volume does not have to be online.

If you type a unit number, the disk volume in that unit becomes the prefixed
volume. If the unit does not contain a disk volume, the prefixed volume is
defined to be whatever disk volume is subsequently mounted in that unit.
5.3.11 Q(uit

The Q(uit command exits the filer.

NOTE- Be sure to replace the system disk before Q(uitting.

5.3.12 R(emove
The R(emove command removes files from a disk volume.

 The following prompt appears:

Remove what file?
Type in the name of the file(s) to be removed.

The following prompt then appears:

Update directory?

Type 'y' to permanently remove the files. Type anything else to preserve
them,

Modula Operating System
File Manager
page 36

5.3.13 S(ave
The S(ave command saves the current work file in a disk file.

If the work file was obtained from an existing disk file, the following prompt
appears:

Save as MYFILE?

Type 'y' to write the work file to the indicated disk file name (thus
removing the old version). Type 'n' to save it under a different name. Type
anything else to escape. :

If the work file is newly created (or if you typed 'm' to the last prompt), the
following prompt appears: '

Save as what file?

Type in the title that the work file should be saved as. Be sure to leave
off the file suffix,

. See 3.2 for more information on work files.

Modula Operating System
File Manager
page 37

5.3.14 T(ransfer

\

The T(ransfer command copies disk files from one disk to another.

T(ransfer accepts a file name pair: the first specifies the source file, the
second specifies the destination file name.

T(ransfer performs the following tasks:
@ Copying disk files onto different disk volumes.
@ Transferring files to the console or printer.
@ Moving files around on a disk volume.

@ Copying disk volumes onto different disks (though the Backup
utility is more reliable).

Examples of T(ransfer:

Transfer what file? junk.data,$[25]

Moves the file JUNK.DATA to the first free space larger than 24 blocks.

Transfer what file? *=.CODE,#5:$I

Copies all code files on the boot volume to the disk volume in unit 5.

Transfer what file? WORK:,#5:

Copies the contents of the disk volume WORK onto the disk in unit 5.

Modula Operating System

File Manager
page 38

5.3.15 V(olumes

The V(olumes command displays all online volumes and indicates the prefixed

and system volumes,

Example of V(olumes:

Vols on-line:
1 CONSOLE:
2 SYSTERM:
4 * BOOT:
5 p MANUAL:
6 PRINTER:
7 REMIN:
8 REMOUT:

System vol - BOOT
Prefix vol - MANUAL

Disk volumes display their size (in blocks).
volume. 'p' indicates the prefixed volume.

volumes,

5.3.16 W(hat

'*! indicates the system boot
'#' indicates other online disk

The W(hat command displays the name of the current work file.

Modula Operating System
File Manager
page 39

5.3.17 X(amine

The X(amine command examines and repairs damaged disk blocks.

The following prompt appears:

Examine blocks on what -vblume?

Type in the volume to examine. X(amine then lets you check a single block
or a range of blocks. The following prompt appears:

From block?

Type in the lower block number of the block range to be examined. The
next prompt is:

To block?

Type in the higher block number of the range to be examined. To check a
single block, the 'from' and the 'to' block numbers can be the same.

If you are scanning over an existing disk file, the following prompt appears:

File(s) endangered:
MYFILE.DATA
Do you want to fix them?

Type 'y' to repair the indicated blocks. Type anything else to escape. If a
block is succesfully repaired, the following message appears:

Block 253 may be ok

If a bloek cannot be repaired, the following message appears:

Block 253 is bad

If a disk block is unrepairable, X(amine asks if you want to mark it as a
'bad block'. Bad blocks appear in directory listings as files of type 'Bad’.
Note that the K(runch command moves files around bad blocks to prevent
them from being written over the damaged areas on a disk.

WARNING- X(amine cannot restore the data lost when a block goes
bad. Repairing a block ensures only that it works reliably the
next time it is written to.

Modula Operating System
File Manager
page 40

5.3.18 Z(ero
The Z(ero command initializes new disk volumes.

Z(ero works differently depending on whether you are initializing a brand new
disk or zapping an existing disk volume.

If you are zeroing a brand new disk, the following prompt appears:

Zero dir of what vol?

Type in the unit number containing the disk. The next prompt appears:

of blocks on this disk?

Type in the number of blocks on the disk. (This number depends on the size
and format of the disks you are using.) The next prompt is:

New volume name?

Type in the name of the new disk volume. Z(ero then asks you if the
volume name is correct. Type 'y' to zero the disk. Type anything else to
escape. '

NOTE- New disks may require formatting before they can be Z(ero'd.

If you are zeroing an existing disk volume, the following prompt appears:

Destroy ASEMAN?

Type 'y' to continue. Type anything else to escape. The next prompt is:

Are there 494 blocks on this disk?

This is the size of the disk volume about to be zapped. Type 'y' to use it
as the size of new volume. Typing anything else causes Z(ero to ask for a
block size. Z(ero then proceeds to ask for the new volume name (as
described above).

Modula Operating System
Bateh Command Interpreter
page 41
6 Batch Command Interpreter
Command files are sequences of system commmands and data stored in text
files. When a command file is submitted for execution, the system
automatically performs the operations specified by the command file,

Command files are wuseful for automating repetitious tasks (such as
recompiling a suite of related programs).

Section 6.1 explains how to submit command files for execution.
Section 6.2 describes how command files work.

Section 6.3 explains how command files can.be automat.ically invoked.
Section 6.4 describes the command file syntax.

Section 6.5 presents some example command files.

NOTE- The system disk ineludes the command file
'BATCH.DEMO.TEXT". When submitted for execution, it
demonstrates the use of command files. :

Modula Operating System
Batech Command Interpreter
page 42

6.1 Submitting Command Files

Command files are submitted for execution with the B(atch command. B(atch
invokes the command interpreter program SYSTEM.BATCH which resides on
the system boot volume. The following prompt appears:

Filename?

Type Vin the name of the command file to execute. (Be sure to leave off the
file suffix '.TEXT'.) Type <return> to escape.

The system normally begins executing the commands at the front of a
command file. You can specify command file execution to begin at other
locations in the file by typing a command file target. A target consists of a
command file name followed by the name of a label in the command file
where you want execution to start. See 6.4.2 for more information on
targets.

You can also pass string parameters to a command file. See 6.4.4 for
details,

- 6.2 Command File Execution

The command interpreter reads through the command file, translating it into
a series of system commands and input data. If the command file contains
an error, the command interpreter terminates without submitting it for
execution,

NOTE- If a command file goes into an endless loop, type the break
key to stop the command interpreter.

When the command interpreter finishes translating a command file, the
resulting commands and dedta are stored into the keyboard type-ahead buffer.
The command interpreter returns control to the system prompt, which
proceeds to read the queued characters as if they were typed in by hand.

NOTE- The keyboard type-ahead buffer holds up to 128 characters —
a command file thus cannot generate more than 128 characters
of commands and data at a time. (This is not a big problem —
see the b command for details.)

WARNING- Command files can run amuck if the queued commands
and data do not mateh the actual system prompts.

Modula Operating System
Bateh Command Interpreter
page 43

6.3 Automatic Command File Execution

Command files are normally executed by invoking the B(atch command and
typing in a command file name. You can also define command files which
are automatlcally executed when the system is booted or when the B(atch
command is invoked.

A command file named 'PROFILE.TEXT' is automatically executed when the
system is booted.

A command file named 'EXEC.TEXT' is automatically executed when B(atch is
invoked. Note that automatic execution does not oceur if any keyboard input
is queued.

NOTE- The command files '"PROFILE' and 'EXEC' must reside on the
prefixed volume in order to be automatically executed.

6.4 Command Files

A command file is a text file which contains a series of commands and
labels, Each text line contains a command or label (which must appear as
the first word on the line). Text lines that do not start with a command or
label are treated as comments. Commands are described in 6.4.1.

Commands accept targets or textlines as arguments. The flow-of-control
commands use targets as labels to jump to within the command file. Targets
are described in 6.4.2. Textlines contain text that is either written to the
console or queued as system input, Textlines are deseribed in 6.4.3.
Parameters may be passed to a command file when it is invoked. Parameters
are described in 6.4.4.

NOTE- The command interpreter ignores blanks except in parameter
lists (where they serve as parameter separators) and after the
commands read, write, writeln, and t. Also, blanks should not
appear in targets,

Modula Operating System
Batch Command Interpreter
page 44

6.4.1 Commands

stk <textline>

Example: stk fe#5|n

Saves the text for queuing in the type-ahead buffer.
b <target>

Example: b myfile/nextsub

Saves a B(atch command to the specified target for queueing in the type-
ahead buffer. This command allows command files to regain control of the
system after submitting a set of commands and data. If the target does not
contain a file name, control returns to the current command file.

run
Example: run

If a call command is outstanding, the command interpreter returns to the
command following the call, If no call is outstanding, all saved text is
written to the keyboard type-ahead buffer and the command interpreter
terminates.

write <textline>

Example: write Hi, there!

Writes a message (but no carriage return) to the console.
writeln <t;xtline}

Example: writeln I am a line of text;

Writes a message and carriage return to the console.

Modula Operating System
Batch Command Interpreter
page 45

t <textline>

Example: t Yet another line of text...

t is equivalent to writeln, but can print longer textlines.
read <textline>

Example: read Enter fﬁe name:

Writes a message to the console, then reads from the keyboard until <return>
is typed. The keyboard input is accessible with the '?' command (see 6.4.3
for details).

goto <iarget>

Example: goto loopstart

Causes the command interpreter to jump to the indicated label.
call <{target> pl..p9

.Example: call startsub

Causes the command interpreter to jump to the indicated label. When run is
executed, control returns to the command following the call command. Calls
can be nested up to 18 levels deep. The parameters pl thru p9 are
described in 6.4.4. Note that the symbol '|?' (6.4.3) can be used to return
values from calls, '

set <digit> <str>
Example: set 3 mystring

Assigns a value to one of the string parameters. Parameters are addréssed
by the digits 1 thru 9, Note that '?' can be used to assign values to the
symbol '|?* (6.4.3). ' :

Modula Operating System
Batch Command Interpreter
page 46

equ <a> <target>
Example: equ |3 mystring startsub

If the string in <a> equals the string in , the command interpreter jumps
to the specified target. The other comparison operations are also available:

neq, les, leq, geq, gtr.
verbose

Example: verbose

Verifies each command before executing it. The command name is written to
the console. Type <return> to execute the command. Type <escape><return>
to terminate the command interpreter. verbose is used for testing new
command files,

quiet
‘ Example: quiet

Dfsables the verbose command.

6.4.2 Targets & Labels

Targets are used as arguments to the goto and call commands and to the
S(ubmit prompt. Targets indicate the location in a command file where
command interpretation is to continue. Target locations are either labels or
line numbers.

Line numbers in a command file are zero-based; thus, the third line in a
command file is on line 2, Line numbers are specified in a target by a
backslash (*\'). For example, the command 'goto \12' jumps to the thirteenth
line in the command file, Note that line numbers are intended for use by
the command interpreter — people should use labels instead.

Labels are (non-command) names which appear at the front of a line, Labels
are specified in a target by a slash (*/'). For example, the command ‘'goto
[loopstart' jumps to the label 'loopstart' in the command file.

Targets can specify locations in other command files. For example, the
command 'goto profile/subroutine' causes the command interpreter to jump to
the label 'subroutine' in the command file 'PROFILE.TEXT'. The file suffix
'ZTEXT' must not appear in the file name. If only a file name is specified

Modula Operating System
Batch Command Interpreter
page 47

(e.g. 'goto profile'), the command interpreter jumps to the first line in the
indicated command file.

NOTE- The default command file name in a target is the name of the
host ecommand file.

6.4.3 Text Lines

Text line parameters are defined to extend from the commeand name to the
end of the line. ’

Text passed to the stk command is handled specially (because it is queued as
system input). Nonprinting characters are represented by two-character
sequences: the escape character '|' followed by a command character. Note
t;]at blanks are ignored — they can be specified with the character sequence
1|

Command characters are defined as follows:

' <{space> 'n' <return>

' | (single *|') bt <backspace>

u? <up> ‘ " <escape>

'd' <down> a <line-delete>

n : deft> 't <tab>

! <right> ror response to last read
0,19t <params> k! redirect to keyboard
te! {etx>

Thebommand characters '?'* and 'k' have special properties,

An occurrence of '|2' in a textline is replaced with the input from the last
read command.

The command character ‘k' should only be used in parameters to the stk
command. When the system encounters an occurrence of 'lk' while reading
from the type-ahead buffer, it proceeds to read directly from the keyboard
until etrl-E is typed. When ctrl-E is typed, the system resumes reading from
the type-ahead buffer.

Because '|k' allows intermixing of queued and direct keyboard input, command
files can define automated tasks which also interact with the user. (See 6.5
for an example of ‘[k'.)

Modula Operating System
Bateh Command Interpreter
page 48

6.4.4 String Parameters

String parameters can be passed to command files or to subroutines invoked
with the call command. Up to 9 parameters (numbered 1 thru 9) can be
passed. Parameters are listed after the target. The default parameter value
is the empty string, Parameters are referenced with the symbol '|x' (where
1l <= X <= 9). The number of parameters passed is contained in the symbol
T 01.

Example of parameter passing:

call foon/startsub do re mi fa so la te do

In the routine labelled by 'foon', occurrences of the symbol '|3' would be
substituted with the string 'mi',

6.5 Example Command Files

The first example is a listing of the command file 'BATCH.DEMOQ' provided
with the system:

writeln line 0 executing
b /target
run

target

writeln target executing
writeln calling /t2

call /t2

writeln /t2 returned
writeln going to /t3
goto /t3 ‘

t2
writeln /t2 running
run

t3

writeln /t3 gone to
writeln

read Enter Text :
writeln You Typed '|?*
writeln

writeln end of test
run

Modula Operating System
Batech Command Interpreter
page 49

Example of a directory lister:

t

t This command file runs forever...
t

loop

read List what volume?

stk f e |2,#1 |n q

b /loop ,

run

This command file repeatedly prompts for a volume and displays its directory
on the console. Note that the target in the b command implicitly specifies
the host command file.

Another example of a directory lister:

stk felk ,#1 In q
b \0
run - ,

In this example, the volume name is not specified until the filer's own
directory listing prompt appears; the '|k' then redirects system input to the
keyboard., Note however that the prompt response must be terminated by
typing etrl-E.

Modula Operating System
Shell Command Interpreter
page 50

7 Shell Command Interpreter

The shell command interpreter is a collection of Modula-2 programs which
provides a powerful "command shell® programming environment informally
named "p-NIX". The shell offers the following features:

@ Pipes

@® 1/0 redirection

@ Wildcards

@ Various predefined shell commands
Section 7.1 explains how t(.) use the shell,
Section 7.2 describes s",hell commands provided with the system,
Section 7.3 explains how to add new commands to the shell.

NOTE- 1/0 redirection is limited to the p-NIX commands and
Modula-2 programs that perform standard I/O via the modules
InOut or Texts, Other programs can be invoked from the shell,
but cannot have their I/O redirected. ‘

Modula Operating System
Shell Command Interpreter
page 51

7.1 Using the Shell

The shell is invoked by typing the S(hell command on the system promptline.
S(hell invokes the program SYSTEM.SHELL which resides on the system boot
volume. The following prompt appears:

1>

The right arrow '>' indicates the shell is ready for a command. The number
- (0 in this case) indicates how many shell commands have been executed.

The simplest thing to do in the shell is to invoke a program; for instance,
the utility program BACKUP.CODE can be executed by typing 'backup' and a
carriage return.

The shell becomes more useful when you learn how to use the shell
commands, Shell commands are actually programs which perform specific
tasks; for instance, the shell command ‘'Is* lists the contents of the disk
directory.

7.1.1 Program Results

If a program terminates abnormally, the shell displays a message on the
sereen explaining what happened. If you attempt to execute a program which
does not exist, the shell displays the message 'Missing program'. Programs
terminated by a HALT call display the message 'Program HALT'. Programs
terminated abnormally display the message 'Error return x', where x denotes
the ordinal value of the program result.

7.1.2 1/0 Redirection

All shell commands read from the standard input file and write to the
standard output file, Standard input and output defaults to the system
console, but can be redirected to disk files. For instance, the 'ls' command
mentioned above writes its output to the standard output file, so typing 'ls'
writes the directory listing to the sereen. However, if you type

1> 1s >myfile

«. the directory listing is written to a file named 'myfile'. The symbol *>'
after the Is command redirects the standard output to the named file,

Modula Operating System
Shell Command Interpreter
page 52

Similarly, the symbol '<' is used to redirect the standard input. For instance,
the shell command 'cat' copies the standard input to the standard output. If

you just type
2> cat

.. the system merely waits for some characters to be typed (remember that
the standard input is the keyboard), then echoes the characters to the screen
(the standard output). However, typing

3> cat <myfile >newfile
.. copies the contents of the file 'myfile' into the file 'newfile’.

NOTE-~- Standard input from the keyboax;d is terminated by typing the
<eof> key.

7.1.3 Command Arguments

Many shell commands accept a list of arguments after the command. For
instance, typing

4> cat a b ¢ >big

«. copies the contents of the files 'a', 'b', and 'e' to the file 'big'. Note
that arguments are usually treated as input file names; they are always
processed left to right. '

7.1.4 Wildcards

Wildcards let you type in a single file name argument that matches many
actual file names, For instance, typing

5> rm fé

.. removes all files starting with the letter 'f'. The wildeard character '='
can be used more than once in a file name; for instance, '=s=t=' matches all
files containing an 's' and a 't', :

Modula Operating System
Shell Command Interpreter
page 53

7.1.5 Pipes

Shell commands can be linked together so the output of one command
becomes the input of another. For instance, typing

6> 1s | sort | more

. Writes a directory listing sorted by file name to the screen. If the
bottom of the screen is reached, the prompt 'More?' appears; typing 'y’
continues the sorted directory listing at the top of the screen.

The symbol '|' is called a pipe; it is used to connect the shell commands
together. In this example, the lIs command writes a directory listing to the
standard output. The sort command reads the directory listing as input and
writes the sorted listing to its standard output. Finally, the more command
echoes the sorted listing to the console, but inserts the 'More?' prompt
every twenty-four lines and pages the screen.

NOTE- Pipes are implemented as anonymous intermediate files written
to the system boot volume., When each command finishes writing
to the intermediate file, the shell starts the next ecommand using
the intermediate file as the standard input. Pipe performance
can be greatly enhanced by using a RAM disk for the system
volume, Note that extremely large pipe files may exceed disk
capacity.

7.2 Shell Commands

This section describes the commands provided with the shell command
interpreter.

All commands except rm and ep work with text files only; rm and ep can be
used on all files, ‘

NOTE- All shell commands use the following naming convention: the
file suffix '.TEXT' is automatically appended to all file names
unless they end with a period (e.g. 'MYDATA.').

7.2.1 cat

The cat command copies the standard input to the standard output. The cat
command may be followed by a list of file names; in this case, it writes the
catenation of all the files to the standard output. For instance, "cat a b c"
writes the catenation of the files a, b, and ¢ to the standard output.

Modula Operating System
Shell Command Interpreter
page 54

1.2.2 cp
The ep command copies the file named by ‘the first 'argument to the file
named by the second argument. Note that cp works with all types of files.

- For 1nstanee, "ep myfile #5:myfile" copies the file "myflle" to the volume
’ mounted in unit 5.

' 7.2.3 date

The date command writes the curi'ent date to the standard output (e.g.
'Today is January 14, 1983').

7.2.4 echo

The echo command writes its 'command arguments to the standard output.

7.2.5 ed

The ed command invokes the editor. If an argument is listed, it is used as
the file name to edit; for instance, 'ed stuff' edits the file 'stuff.text’.

7.2.6 £

The £ command invokes the filer.

" T.2.7 grep

The grep command searches the standard input for occurrences of the
character - string passed as the first argument and writes all lines containing
the string to the standard output. The string argument may be followed by a
list of file names; in this case, grep searches through all of the listed files
and prefixes each output line with the name of the file from where it came.
For instance, "grep MODULE test= >matches" searches for occurrences of the
word "MODULE" in all files whose names begin with "test", Text lines
containing "MODULE" are written to the file "matches".

Modula Operating System
Shell Command Interpreter
page 55

7.2.8 1s

The 1s command lists the files on the prefixed disk volume. The 1s command
has three options. Is -1 lists file attributes along with the file names.
Is -e lists the disk free spaces along with the files. 1s -el does both. The
Is command may be followed by a list of file or volume names. If a file
name is listed, Is lists any files on the prefixed volume that match the name.
If a volume name is listed, ls lists all files on that volume.,

7.2.9 me

The me command invokes the compiler. If an argument is listed, it is used
as the input file name; for instance, 'mec textsd' compiles the file
'textsd.text’,

7.2.10 mem

The mem command writes the number of words of memory available and the
address of the heap top to the standard output (e.g. 'Memavail=58440,
NP=5728").

7.2.11 more

The more command echoes the standard input to the terminal, and displays
the prompt 'More?!’ when the output reaches the bottom of the screen.
Typing 'y' or <return> clears the screen and redisplays the next 24 lines of
output; typing 'n' terminates the more command, stopping the screen output.

7.2.12 mv

The mv command changes the name of a file., The file named by the first
argument is changed to the file name passed as the second argument. For
instance, "mv foon yeen" changes the name ‘of the file FOON.TEXT to
YEEN.TEXT.

7.2.13 rm

The rm command removes the specified files. Note that rm works with all
types of files, For instance, "rm *system=" removes all the system files from
the boot disk.

Modula Operating System
Shell Command Interpreter
page 56

7.2.14 sh

The sh command invokes the shell (recursively).

7.2.15 sort

The sort command sorts the lines read from the standard input and writes
them to the standard output. Lines are sorted lexicographically. The sort
command may be followed by a list of file names; in this case, it writes the
sorted catenation of all the files to the standard output. For instance, "sort
listl list2 >final™ sorts the lines contained in the files listl and list2, and
writes the sorted output to the file "final".

7.2.16 we

The we command counts the number of words, lines, and characters in the
standard output and writes the totals to the standard output (e.g. '2 lines, 4
words, 17 chars'). The we command may be followed by a list of file names;
in thls case, we prefixes the totals for .each file with the name of the f11e
they belong to and writes the totals out on separate lines. For instance,
"we chap= >lexdata" performs a word count on all files beginning with "chap
and writes the results to the file "lexdata".

7.3 Adding New Shell Commands

The shell commands provided with the system are individual Modula-2
programs bound into the program library file named SYSTEM.SHELL. The
contents of SYSTEM.SHELL may be examined by running the Modula-2 library
manager utility. Adding a new shell command merely requires writing the
appropriate Modula-2 program and adding it to the program library file., (In
fact, it does not have to be added to the library file to be called, but the
library file is a nice place to keep commands.)

All shell commands perform their I/0O through the text files Texts.nput and
Texts.output. The shell itself redirects these files.

Shell commands gain access to the command arguments by importing the
library module Args which appears in SYSTEM.SHELL. When the shell
processes a command, it stores the command arguments in individual string
variables pointed at by the array variable ArgV. The number of arguments
passed is stored in ArgC.

NOTE- Shell commands should conform to the file naming conventions
' deseribed in 7.2.

The library module Args:
DEFINITION MODULE Args; (* $SEG := 44; ¥)
FROM Strings IMPORT STRING;
EXPORT QUALIFIED StringPtr, ArgC, ArgV;

TYPE StringPtr = POINTER TO STRING;
- ArgRange = [0..255];

VAR ArgC: ArgRange;
ArgV: POINTER TO ARRAY ArgRange (*

END Args.

Modula Operating System
Shell Command Interpreter
page 57

0..ArgC *) OF StringPtr;

Modula Operating System
Pascal Compiler
page 58

8 Pascal Compiler

The Pascal compiler is a one-pass recursive descent cbmpiler for the language
VS Pascal. VS Pascal is a dialect of standard Pascal which provides many of
the UCSD Pascal extensions. '

NOTE- VS Pascal provides all version II UCSD Pascal features except
UNITs, external procedures, long integers, and record
comparison. Note also that it enforces standard Pascal's 'name!’
type equivalence rather than UCSD Pascal's weaker notion of
'structural' type equivalence.

Compiler operation is explained in 8.1.
Compile options are deseribed in 8.2.
The VS Pascal intrinsics are presented in 8.3.

Differences from standard Pascal are described in 8.4.

Modula Operating System
Pascal Compiler

page 59

8.1 Operation

The compiler is invoked by typing 'the C(omp command on the system
promptline. (It can also be run as a user program.)

If a workfile exists, the compiler automatically begins compiling it; otherwise,
the following prompt appears:

Compile what file?

Type in the name of the file to compile (don't type the .TEXT suffix). The
output file prompt appears next:

To what file?

Type in the name of the output file (again, the .CODE suffix is unnecessary).
If you type <return>, the output file is given the same name as the source
ile.

The compiler displays various information on the screen while it compiles a
program: the name of each procedure, the line number on whieh it occurs,
and the amount of memory left.

If a syntax error is detected, the compiler displays the source line where the
error occured; the symbol where the error was detected is pointed at by
'<<<K'. The error message also displays the line number in the source
program where the error occurred, and the syntax error number (syntax error
messages are listed in Appendix 4).

Three options are available at this point. Typing <space> causes the
compiler to continue compiling, Typing <ese> terminates the compiler.
Typing 'E' invokes the editor; when the file is read in, the editor
automatically positions the cursor at the error location and displays the
proper syntax error message.

NOTE- The editor displays textual syntax error messages only if the
file SYSTEM.SYNTAX resides on the system disk. If the syntax
file is missing, the editor displays only the syntax error number.

Modula Operating System
Pascal Compiler
page 60

8.2 Compile Options

Compile options control both the compiler's operation and the nature of the
produced code. Options appear as comments in the source program; they
have the following form:

(*$<options>*)

Compile options consist of a capital letter followed either by a switch
character ('+', '=!, or '"') or a string parameter. The compile option letter
must appear immediately after the dollar sign. :

When followed by a '+', an option is said to be enabled; when followed by
!, it is disabled. Some options can be followed by '*'; this restores ('pops')
the option to its previous setting.

More than one switeh option can appear in a single comment; when they do,
they are delimited by commas with no blanks in between (e.g. ‘'(*$F-,R+*)').
Only one string option can appear in a comment.

NOTE- All compile options have default settings. These are
described in the following sections.

8.2.1 I/0 Checks

The generation of code for performing runtime I/O checks is controlled by
the I compile option. Setting I- eliminates I/0 checks; setting I+ generates
I/O checks. Setting I restores the previous option setting. The default
setting is I+.

I/O checks ensure that all I/O operations are successfully completed. If an
1/0 error occurs, the I/O check terminates the program with an I/O error.
Programs compiled - are expected to perform their own I/O checking using
the IORESULT intrinsic.

Example of I/O check option:

(*$1-%)

Modula Operating System
Pascal Compiler
page 61

8.2.2 Include Files

Text files can be 'included' into a source program with the I compile option.
The string parameter contains the name of the text file to be included.
Compilation terminates if an included file cannot be opened. Include files
cannot be nested.

Example of ineclude file option:

(*$I myfile.text *)

8.2.3 Compiled Listings

Compiled listings are produced with the L compile option. The string
parameter contains the name of the listing file, The option must appear at
the top of a program.

Example of list file option:
(*$L listfile.text *)

The L option can also be used as a switeh option to selectively list parts of
a program, Setting L- disables listing; setting L+ enables listing. The L
switech option is ignored if an L string option has not been declared at the
top of the program. Note that the L string option automatically sets L+,

The first column in a compiled listing displays the source line number. The
second column is the segment number. The third column is the procedure
number. If the character after the procedure number is a 'C', the line is a
statement, and the value in the last column is the code offset of the
beginning of the statement. If the character is a 'D', the line is a
declaration, and the value in the last column is the data offset of the first
variable on the line. '

Compiled listings can be useful for debugging programs. See 3.4 for more
information.

Modula Operating System
Pascal Compiler
page 62

8.2.4 Quiet Compile

The Q compile option controls the compiler's console display. The compiler
can be operated in the so-called 'quiet mode' by setting Q+ at the top of
the program. In quiet mode, the compiler suppresses its normal console
display and does not stop when a syntax error is discovered. The default
setting is Q-.

Example of quiet compile option:
(*$Q-*)
8.2.5 Range Checks

The generation of code for performing range checks at runtime is controlled
by the R compile option. Setting R- eliminates range checks; setting R+
generates range checks. Setting R” restores the previous option setting.
The default setting is R+.

Compiler-controlled range checks proteet subrange assignment and array
indexing.

Example of .range check option:

(*$R-*)

8.2.6 System-level Compile

The U compile option controls whether a program is to be compiled at the
system program lexical level or the user program lexical level. The U option
is set at the top of a program. Setting U+ specifies the system level and
also sets I- and R-, The default setting is U+. -

NOTE- Programs compiled U- will execute properly only if they are
structured to execute at the system level; otherwise, they will
crash the system. A description of the system lexical level is
beyond the scope of this manual,

Example of system-level option:

(*$U-*)

Modula Operating System
Pascal Compiler

page 63

8.2.7 Separate Code & Data

The N compile option controls whether a program is to be run on a p-
machine which stores its code and data on separate stacks. The N option is
set at the top of a program. Setting N+ specifies separate code and data.
Setting N- specifies mixed code and data. The default setting is whatever is
appropriate for your machine,

WARNING- Programs compiled N- will erash the system if they are
executed on a separate code and data machine. A description
of the code file differences for separate code and data is
beyond the scope of this manual.

Example of separate code and data option:
(*$N-*)

8.2.8 Byte Flipping

The compiler generates byte-flipped code files by setting the F compile
option at the top of a program. Byte-flipped code files are executable only
on processors of the opposite byte sex. Setting F+ causes byte-flipping. The
default setting is F-.

NOTE- Programs compiled F+ on your system will crash if you try to
execute them. A desecription of byte sex is beyond the scope of
this manual,

Example of byte-flipping option:

(*$F+%)

- Modula Operating System
. Pascal Compiler
page 64

8.3 VS Pascal Intrinsics

This section describes procedures that are predefined in VS Pascal: these are
also known as intrinsies. VS Pascal intrinsics provide the following
operations: ‘

® Input and Output

@ String Manipulation

@ Byte Array Manipulation

@ Miscellaneous

The following notation is used to describe the intrinsic syntax. Required
parameters are listed along with the procedure identifier. Optional
parameters are enclosed in brackets; default parameter values appear in
braces on the line below.,

The following terms are used in the intrinsic definitions:

ARRAY PACKED ARRAY OF CHARacters
BLOCK disk block (512 bytes)
BLOCKS number of blocks (integer)

BLOCKNUMBER disk block address (integer)

BOOLEAN Boolean expression
CHARACTER character expression |
DESTINATION packed character array (may be indexed)
EXPRESSION part or all of an expression (specified below)
FILEID file variable of type:

FILE OF <type>;

TEXT;

INTERACTIVE;

FILE;
INDEX string index or packed character array index
NUMBER expression of type INTEGER or REAL.

RELBLOCK file-relative disk bloek address (O-baséd)

Modula Operating System
Pascal Compiler

page 65
SIZE number of bytes or characters (integer)
SOURCE packed character array (may be indexed)
STRING string expression (unless otherwise noted)
STRVAR string variable
TITLE file name (string)
UNITNUMBER physical device number (integer)
VOLID volume identifier (string)

8.3.1 Input and Output

PROCEDURE RESET (FILEID [,TITLEI);
PROCEDURE REWRITE (FILEID, TITLE);

REWRITE creates a new file for writing. RESET opens an existing file for
reading and writing. The string parameter TITLE can specify either a disk
file or serial volume for I/O.

RESET without the title parameter rewinds an (open) file. Calling RESET
(with title) or REWRITE on an open file causes an I/O error.

PROCEDURE CLOSE (FILEID [,OPTION]);

CLOSE closes an open disk file, Four close options are available: 'LOCK!',
'NORMAL', 'PURGE' and 'CRUNCH?’. '

CLOSE(F,NORMAL) closes the file. If F is a disk file opened with
REWRITE, it is removed. NORMAL is the default option.

CLOSE(F,LOCK) closes the file. If F is a disk file opened with REWRITE, it
is saved,

CLOSE(F,PURGE) closes the file. If F is a disk file, it is removed. If F is
a serial volume, the volume will go offline,

CLOSE(F,CRUNCH) closes the file. 'If F is a disk file, the current file
position becomes the end of the file; any file data beyond the current file
position is deleted.

Modula Operating System
Pascal Compiler
page 66

PROCEDURE READ[LN] ([FILEID,] STRVAR);
PROCEDURE WRITE[LN] ([FILEID,] STRING);

These procedures can be used only on files of type TEXT (FILE OF CHAR)
or INTERACTIVE. The default files are INPUT (for READs) and OUTPUT
(for WRITESs).

READ(F, STRVAR) reads all characters on a line except the carriage return
and sets EOLN to TRUE. Note that any subsequent readstrings return the
empty string until a READLN or READ (character) is called. y

FUNCTION EOF [(FILEID)] : BOOLEAN;
FUNCTION EOLN [(FILEID)] : BOOLEAN;

EOF and EOLN return FALSE when a file is initially opened. The default
file parameter is INPUT.

When writing to a file, EOF returns TRUE if there is no more room on the
disk. ‘

When a GET(F) or READ(F) call sets the file position to an EOLN or EOF
character, EOLN(F) is set to TRUE and the character will be read as a
blank. ' ’ '

When GET(F) or READ(F) sets the file position to an EOF character, EOF(F)
is set to TRUE. When EOF(F) is TRUE, the contents of the file buffer are
undefined.

EOF and EOLN work differently on files of type INTERACTIVE — see 8.4.10
for more information.

PROCEDURE GET (FILEID);
PROCEDURE PUT (FILEID);

GET and PUT are used only on files of type FILE OF <type>.

GET(F) reads the record from the current file position into the window
variable F~ and increments the file pointer, PUT(F) writes the contents of
the window variable F® to the current file position and increments the file
pointer.

Modula Operating System
Pascal Compiler
page 67

PROCEDURE SEEK (FILEID, INTEGER);

SEEK(F,I) changes the file position so that the subsequent GET(F) or PUT(F)
accesses the INTEGERth record of the file, File record numbers are 0-
based., The contents of the file window are undefined after a SEEK., Note
that a READ or WRITE must occur between successive SEEKs,

PROCEDURE PAGE (FILEID);

PAGE(F) writes a top-of-form character (ASCH ff) to the file F.

FUNCTION IORESULT : INTEGER;

IORESULT returns the I/O status result of the previous I/O operation.
Appendix 2 describes the I/O result values.

FUNCTION BLOCKREAD (FILEID,ARRAY,BLOCKS,[RELBLOCK]) : INTEGER;
FUNCTION BLOCKWRITE (FILEID,ARRAY,BLOCKS,[RELBLOCK]) : INTEGER;
{SEQUENTIAL}

BLOCKREAD and BLOCKWRITE transfer integral numbers of blocks of data
between a memory buffer and a file. The function result returns the number
of blocks actually transferred. The number of blocks transferred comes back
less than the number of blocks requested either when an I/O error occurs or
the end of the file was read. '

The file parameter must be of type FILE. The parameter ARRAY should be
a multiple of 512 bytes and no smaller than the number of blocks requested
for transfer, The parameter BLOCKS is the number of blocks to be
transferred.

The optional parameter RELBLOCK specifies the file-relative block number
where the transfer should start.” (The first block in a file is block 0.) If
the RELBLOCK parameter is omitted, block 1/O is performed sequentially
starting at the first block in the file. (Note that a random-access block I/O
operation changes the file position.)

NOTE- BLOCKREAD and BLOCKWRITE do not perform any error
checking, so IORESULT (or the number of blocks transfered)
should be checked after each call.,

Modula Operating System
Pascal Compiler
page 68

PROCEDURE UNITCLEAR (UNITNUMBER);

UNITCLEAR resets the specified peripheral device to its initial state.

PROCEDURE UNITREAD (UNITNUMBER, ARRAY, LENGTH [, BLOCKNUMBER [,FLAGS]));
PROCEDURE UNITWRITE (UNITNUMBER, ARRAY, LENGTH [, BLOCKNUMBER [,FLAGS]]);

UNITREAD and UNITWRITE perform low-level I/O to the online peripheral
devices, The UNITNUMBER perameter specifies the device unit number,
ARRAY can be any variable; it is used as the starting word address of the
memory buffer., LENGTH indicates the number of bytes to transfer. The
optional parameter BLOCKNUMBER is required only when accessing disk
units; it indicates the starting block number of the data transfer.

The optional parameter FLAGS controls the mode of the 1/O operation;
though of type integer, it is treated as a bit array. If bit 2 of FLAGS is
set, the I/0 system does not expand blank compression characters (DLEs). If
bit 3 of FLAGS is set, the I/O system does not append line feed characters
to carriage returns. The default value of FLAGS is 0.

If bit 1 of FLAGS is set, I/0 is performed in physical sector mode.
BLOCKNUMBER is interpreted as a physical disk sector number. LENGTH
must be set to zero — in physical sector mode, each I/O operation
automatically reads only one sector. Track numbers are 0-based, sector
numbers 1-based. The mapping between physical sector numbers and a disk's
track and sector numbers is as follows:

PhysSect# = (Track# *SectorsPerTrack) + Sector# - 1;

NOTE- UNITREAD and UNITWRITE do not perform any error
checking, so IORESULT should be checked after every operation.

Modula Operating System
Pascal Compiler

page 69
PROCEDURE UNITSTATUS (UNITNUMBER, ARRAY, CONTROL);

UNITSTATUS returns status information on the specified unit.

The UNITNUMBER parameter specifies the device unit number. ARRAY is
used to return status information. ARRAY can be any variable, but it should
be an array or record of at least 30 words to contain the status data and
any additional system-dependent information. CONTROL is an integer
parameter which specifies whether input or output information is desired. If
CONTROL = 1, UNITSTATUS returns input information; if CONTROL = 0,
output information, ;

On serial units, UNITSTATUS sets the first word in ARRAY to the number
of characters queued on the unit, UNITSTATUS returns 0 if there are no
characters queued or if the unit's state cannot be determined.

On 'block-structured units, UNITSTATUS sets the first four words in ARRAY
as follows: '

¢ # of queued characters
: # of bytes per sector
: # sectors per track
: # of tracks on disk

(|
=
o
L]
o
W 02 DO

Modula Operating System
Pascal Compiler
page 70

8.3.2 String Manipulation

Strings can be manipulated either with the string instrinsies or by accessing
them as character arrays. The zero'th character in a string variable is used
as the length byte (and is inaccessible when range checking is on except via
Length). The remaining characters in the array comprise the string. When
accessing a string as a character array, be sure to stay within the (dynamic)
bounds of the string and do not set the length byte inappropriately.

FUNCTION CONCAT (STRING,STRING,...) : STRING

CONCAT returns a string that is the concatenation of its string parameters, -
Note that any number of string parameters can be passed (separated by
commas).

FUNCTION COPY (STRING, INDEX, SIZE) : STRING

COPY returns a string containing SIZE characters copied from STRING,
starting at position INDEX in STRING.

FUNCTION LENGTH (STRING) : INTEGER

LENGTH returns the number of characters in the parameter STRING.

FUNCTION POS (STRING1, STRING2) : INTEGER;

POS returns the starting position of the first occurrence of the parameter
STRING1 in the parameter STRING2. If the string is not found, POS returns
Zero.

PROCEDURE DELETE (STRVAR, INDEX, SIZE);

DELETE deletes SIZE characters from the string variable STRVAR, starting
at the position INDEX.

PROCEDURE INSERT (STRING, STRVAR, INDEX)

INSERT .inserts the parameter STRING into the variable STRVAR, starting at
the position INDEX in STRVAR.

Modula Operating System
Pascal Compiler
page 71

8.3.3 Byte Array llanipulation

The byte array intrinsics are used for manipulating large amounts of byte-
oriented data in memory., They must be used with care, as no type or range
checking is performed. The SIZEOF intrinsic is often used with these
* intrinsiecs to accurately specify the number of bytes in an array parameter,

FUNCTION SCAN (LENGTH, PARTIAL EXPRESSION, ARRAY) : INTEGER;

SCAN starts at the byte address ARRAY and scans (up or down) through
memory until either it has checked LENGTH bytes or it finds a character
satisifying the expression PARTIAL EXPRESSION. SCAN returns the number
of characters checked before the expression was satisfied.

The ARRAY parameter should be a packed character array; it can be
subscripted to denote the starting address. If the LENGTH parameter is
negative, SCAN scans backwards and returns a negative result. If PARTIAL
EXPRESSION is satisfied by the character residing at the starting address,
SCAN returns 0. If PARTIAL EXPRESSION is not satisfied, SCAN returns
LENGTH.

The PARTIAL EXPRESSION is a distinetly nonstandard construet with the
following form:

<> or = followed by a character expression (e.g. "<> ch")

PROCEDURE FILLCHAR (DESTINATION, LENGTH, CHARACTER);

'FILLCHAR fills memory with the character passed in the CHARACTER
parameter, starting at the byte address DESTINATION and filling for
LENGTH bytes. Negative LENGTH values are treated as zero.

PROCEDURE MOVELEFT (SOURCE, DESTINATION, LENGTH);
PROCEDURE MOVERIGHT (SOURCE, DESTINATION, LENGTH);

MOVELEFT and MOVERIGHT move LENGTH bytes from the byte address
SOURCE to the byte address DESTINATION. MOVELEFT inecrements the
source and destination addresses after moving each byte; that is, it moves
data starting from the left end of the buffer. MOVERIGHT decrements the
source and destination addresses after moving each byte; that is, it moves
data starting from the right end of the buffer. Negative LENGTH values are
treated as zero.

Modula Operating System
Pascal Compiler
page 72

8.3.4 Miscellaneous
PROCEDURE GOTOXY (COLUMN, ROW);

GOTOXY moves the cursor to the specified integer coordinates. The upper
left corner is (0,0); the lower left corner (0,<{screenheight>-1),

PROCEDURE HALT;

HALT terminates the current program.

PROCEDURE EXIT (PROCEDURE);

EXIT terminates the current procedure. See 8.4.6 for details.

PROCEDURE MARK (VAR MARKPTR: “INTEGER);
PROCEDURE RELEASE (VAR RELPTR: "INTEGER);

MARK and RELEASE are used to manage the heap space. MARK stores the
current heap top in MARKPTR. - RELEASE cuts the heap top back to the
address stored in RELPTR. -

FUNCTION PWROFTEN (EXPONENT: INTEGER) : REAL;

PWROFTEN returns the ten raised to the EXPONENTth power. With 32-bit
reals, EXPONENT must be an integer between 0 and 37. With 64-bit reals,
it must be between 0 and 307.

FUNCTION SIZEOF (VARIABLE OR TYPE): INTEGER;

SIZEOF returns the number of bytes allocated for the specified variable (or a
variable of the specified type). SIZEOF is particularly useful with the byte
array intrinsies, Note that SIZEOF is evaluated at compile time,

PROCEDURE TIME (VAR HITIME, LOTIME: INTEGER);

TIME returns the current system time as defined by a 32-bit clock value
which is incremented at 1/60th second intervals. The values returned in
HITIME and LOTIME should be treated as unsigned values. TIME returns (0,0)
on systems without cloeks.

Modula Operating System
Pascal Compiler
page 73

8.4 Differences From Standard Paseal

This section describes differences between VS Pascal and standard Pascal.
(The standard referred to here is the PASCAL USER MANUAL AND REPORT
(2nd edition) by Jensen and Wirth,) Differences fall into two categories:

@ Extensions to standard Pascal

@ Deviations from standard Pascal

8.4.1 Case Statements

In VS Pascal, if no label matches the value of the case selector, the next
statement executed is the statement following the case statement. In
standard Pascal, this case is considered an error.

PROGRAM fallthru;
VAR ch: CHAR;

BEGIN
ch := 'a;
CASE ch OF

'b': WriteLn('hi there');
'e's WriteLn(‘the character is a c');
END;
WRITELN('that''s all, folks');
END.

NOTE- VS Pascal accepts the OTHERWISE clause in CASE statements
as a way to catch unspecified values,

8.4.2 Comments

VS Pascal considers the comments delimiters '(*' and '{! to be unique, thus
permitting one level of nested comments: :

{I:=1; (* nested comment *) }

Standard Pascal considers the two different forms of comment delimiters to
be equivalent, and thus does not permit nested comments.

Modula Operating System
Pascal Compiler
page 74

8.4.3 Dynamic Memory Allocation

VS Pascal does not implement the standard procedure DISPOSE; instead, it
provides the MARK and RELEASE intrinsies.

Dynamic storage is allocated in a stack-like structure called the ‘heap'.
NEW allocates variables on the top of the heap. To recover the storage
occupied by a dynamic variable, it is necessary to call MARK before
allocating it; MARK saves the current address of the top of the heap.
Subsequent calls to NEW allocate dynamic variables 'above' the heap mark.
RELEASE sets the top-of-heap pointer back to the heap mark established by
MARK, releasing all subsequently allocated variables.

NOTE- Careless use of MARK. and RELEASE can lead to 'dangling
pointers' which no longer point to dynamic variables,

PROGRAM heapchop;
VAR heap: "INTEGER;
i,j,k: "ARRAY[1..10] OF CHARACTER;
BEGIN
MARK(heap); (* save current heap position *)
NEW(i); ' ‘
NEW();
NEW(k);
RELEASE(heap); (* cut heap back to old position *)
END.

8.4.4 EOF and EOLN

When the console unit is used as an input text file, the end-of-file condition
is set by typing the <eof> key (etrl-C on most systems).

EOF(F) returns TRUE if F is closed. On text files, EOLN(F) is always TRUE
when EOF(F) is true.

EOLN(F) is defined only for files of type TEXT or whose window variable is
of type CHAR. EOLN becomes True after the end-of-line character <cr)> is
read.

Modula Operating System
Pascal Compiler

page 75
8.4.5 Files

The predeclared files INPUT and OUTPUT are interactive files, which are
declared with the predefined file type INTERACTIVE. Interactive files are
similar to files of type TEXT, but the procedures EOF(F), EOLN(F) and
RESET(F) are defined differently when reading from the console. See 8.4.10
for more information on interactive files,

The predeclared file KEYBOARD is an interactive file which can be used to
read characters directly from the keyboard (characters are not echoed to the
console screen as they are read.)

The VS Pascal intrinsics BLOCKREAD and BLOCKWRITE operate on block
files. Block files are declared with type 'FILE'. (Note that the usual 'OF
<type>' sequence is missing.) See 8.3.1 for more information on block files.

The VS Pascal intrinsic SEEK is used to randomly access record-oriented
(non-text) files, See 8.3.1 for more information on SEEK.

VS Pascal does not permit READ or WRITE to éccess files of type other
than TEXT or FILE OF CHAR. Only GET and PUT can be used to access
record-oriented files,

Modula Operating System
Pascal Compiler
page 76

8.4.6 GOTO and EXIT Statements

VS Pascal does not allow out-of-block GOTO statements; a GOTO can jump
only to labels declared in the same procedure as the GOTO.

As an alternative to the out-of-block GOTO, VS Pascal provides an EXIT
statement, EXIT accepts a procedure name as its parameter; what it does is
transfer program control to the end of the named procedure. If EXIT is
called in a recursive procedure, it exits the most recent procedure
invocation. If exit names a procedure which has not been called, execution
error 3 ('exit to uncalled procedure') occurs, EXIT(PROGRAM) terminates
the current program, ‘

PROGRAM ExitDemo;
PROCEDURE GlobalProc;

PROCEDURE Terminate;
" BEGIN
EXIT(GlobalProc); (* exits out end of GlobalProc *)
END; '

BEGIN

Terminate;

WriteLn('This never prints');
END;

BEGIN
GlobalProc;
END.

8.4.7 Packed Variables

The VS Pascal compiler attempts to compress the machine representations of
records and arrays when their type definitions are prefixed with the reserved
word PACKED. Packing significantly reduces the amount of memory needed
to store certain data types, but at the expense of slightly increased
execution time and code size required for packed field access. Packing is
syntactically allowed for all structured types, but affects only records and
arrays. '

Examples of packed variable declaration:

TYPE manybits = PACKED ARRAY [0..31] OF BOOLEAN;
smallrec = PACKED RECORD ‘
a,b: CHAR;
i: INTEGER;
END;

Modula Operating System
Pascal Compiler
page 77

Machine representations of the basic data types are as follows:

type unpacked packed
BOOLEAN 1 word 1 bit

CHAR 1 word 8 bits
INTEGER 1 word 1 word

REAL 2 words 2 words

SET OF x..y : y<16 1 word (y+1) bits
subrange X..y : x>=0 1 word (log2(y+1)) bits

Subrange types with negative lower bounds are not packable, Array and
record subtypes are word aligned and thus unpackable. The compiler is
limited to packing fields into single words; fields cannot be packed across
word boundaries. Thus, records are packed only if they contain consecutively
declared fields that can be packed into a single word, and arrays are packed
only if their element types can be stored in 8 bits or less. Unpackable
fields are referenced as unpacked data. (In records, this includes fields
which cannot be packed because of adjacently declared unpackable fields.)

NOTE- Packed fields cannot be passed as VAR parameters.. VS
Pascal does not support the standard procedures PACK and
UNPACK.

8.4.8 Procedure Parameters

VS Pascal does not support procedure (or function) parameters.

8.4.9 Program Headings

VS Pascal ignores parameters passed along with the program heading.
External files are accessed by calling the RESET and REWRITE intrinsics.
The standard files INPUT, OUTPUT, and KEYBOARD are predeclared and
automatically opened in every program.,

8.4.10 READ and READLN

Standard Pascal defines the statement READ(f,ch) as:

ch = %5
GET(f);

Because this definition is unsuitable for interactive programming, VS Pascal

Modula Operating System
Pascal Compiler
page 78

defines interactive file type. Given an interactive file i, the statement
READ(i,ch) is defined as:

GET(i);
ch = i%;

Note that the definition of READ for interactive files affects some other 1/0
intrinsies. When the interactive file i is first opened, the window variable i"
is not loaded with an initial value. EOLN and.EOF work differently when
reading from interactive files; they return true only AFTER the appropriate
line or file terminator is read. On interactive input files, the end-of-line
character <return> is returned as a blank character. '

8.4.11 RESET and REWRITE

Resetting an interactive file i does not automatically initialize the window
variable i”, : :

VS Pascal provides a second form of RESET for gaining access to external
files. See 8.3.1 for details,

The VS Pascal intrinsic REWRITE is used to create external files, See 8.3.1
for details,

8.4.12 Segment Procedures

A VS 'Pascal procedure can be specified as overlayable by preceding its
declaration with the reserved word SEGMENT. Segment procedures are used
to divide large Pascal programs into separate disk-resident sections so that
only part of the program is memory-resident at any one time.

A program can contain up to nine segment procedures. Segment procedures
must be declared as the first procedures iri a program. When a segment
procedure is called, its code segment is read into memory from the disk.
When a segment procedure returns, its code segment is released from memory.

WARNING- When a program calls a segment procedure, the disk
volume containing the program code file must be online and in
the same drive as when the program was executed. Otherwise,
a segment procedure call crashes the program when the system
tries to read the code segment from the missing disk.

PROGRAM SegDemo;
SEGMENT PROCEDURE Initialize;

Modula Operating System
Pascal Compiler
page 79

BEGIN

END;

BEGIN

Initialize; (* code read in for call *)

MainProg; (* code released after call returns ¥)
END.

8.4.13 Code Procedures

A code procedure is a procedure declaration whose body consists of a
sequence of constants denoting P-code instructions and operands. This code
sequence is substituted inline for each code procedure call, :

Code procedures are used to perform low-level operations and to access
routines defined in the Modula operating system. As in regular procedure
calls, code procedure parameters are pushed onto the evaluation stack (in the
order they appear) before the (inline) procedure code is executed.,

WARNING- Code procedures must be used with utmost care, as any
programming errors may cause the system to crash in mysterious
ways. Be prepared! : :

Example of code procedure declaration:

PROCEDURE UpperByte(VAR i: INTEGER): CHAR;
(* word address pushed as parameter *)

CODE
1; (* load constant byte offset *)
190 (* load byte as function result *)
END;

8.4.14 Sets

Sets of subrange types are restricted to positive values. Sets can be
declared to contain up to 4080 elements. Set comparison and other
operations are allowed only between sets that are either of the same base
type or subranges of the same underlying type.

Modula Operating System
Pascal Compiler
page 80

8.4.15 Strings

VS Pascal provides strings for manipulating variable-length character strings.
String variables are declared with type STRING. String variables are
implemented as packed character arrays with a length byte stored in the first
character index (s[0]). Note that the length of a string can be obtained by
calling the LENGTH intrinsie.

Every string variable has a maximum length. A string cannot grow longer
than its string variable without causing execution error 13 ('string too long!').
A string variable's maximum length is specified in its type declaration; the
desired maximum length (enclosed in brackets) follows the type identifier
STRING. For instance, STRING[20] declares a string type with a string
length of 20 characters, The maximum string length is 255 characters. The
default string length is 80 characters. String assignment is performed by the
assignment statement, a READ statement, or one of the string intrinsies.

s := 'string assignment';
READLN(s);
52 = CONCAT(s, '.TEXT');

Individual characters within a string variable are accessible by treating the
string as a character array with an index range of 1 to the current string
length., Indexing a string outside of this range causes execution error 1
(*invalid index').

All comparison operators accept strings. String comparison is lexiecographical;
that is, comparison is done left-to-right, and if strings are equal up to the
length of the shorter string, the shorter string is less.

When reading into a string variable, all characters up to the end-of-line
character are assigned to the string. Note that READLN(sl, s2) is
equivalent to:

READ(s1);
READLN(s2);

See 8.3.2 for details on the VS Pascal string intrinsies.

8.4.16 WRITE and WRITELN

The standard procedures WRITE and WRITELN do not accept Boolean
arguments.

When a string variable is written without a field width specification, the
number of characters written equals the current length of the string, If the

Modula Operating System
Pascal Compiler
page 81

specified field width exceeds the string length, the appropriate number of
leading blank characters are written. If the string length exceeds the field
width specification, excess characters are truncated from the right-hand side
of the string.

8.4.17 Array Comparison
The comparison operators = and <> accept arrays as arguments.

WARNING- Array comparison can be error prone with packed data
structures (which may contain uninitialized data areas between
packed fields).

Modula Operating System

Pascal Compiler

page 82

8.4.18 Implementation Limits

The

maximum number of bytes of object code in a procedure is

1200,

The
The
The
The
The

The
the

maximum number of words in a data segment is 16383.
maximum number of elements in a set is 4080,

maximum number of segment procedures in a program is 9.
maximum number of procedures in a segment is 127.
maximum level of lexical nesting is 14,

Modula operating system does not detect integer overflow or
use of uninitialized variables. NIL pointer checking is

available on some processors.

Modula Operating System
Yet Another Line Oriented Editor
page 83

9 Yet Another Line Oriented Editor
YALOE (acronymous with 'yet another line-oriented editor') is a line-oriented

text editor. It is designed to run on teletypewriters or — more commonly —
terminals on unconfigured systems.

Section 9.1 explains how to start YALOE.
Section 9.2 explains how to enter commands and text.

Sections 9.3 thru 9.7 describe the various YALOE commands, Section 9.8
contains a command summary.

NOTE- Most people use YALOE just long enough to create the proper
Gotoxy for their system, then drop it like a hot iron in favor of
ASE,

Modula Operating System
Yet Another Line Oriented Editor
page 84

9.1 Entering YALOE
YALOE is invoked by X(ecuting YALOE.CODE.

YALOE keeps the file being edited in its text buffer. Note that files must
fit in the text buffer in order to be successfully edited,

If a work file exists, it is automatically read into the text buffer, and the
following message appears:

Workfile GUMBY read in

If there is no workfile, this message appears instead:

| No workfile read in

In this case, use the R(ead command to read a file into the text buffer.

9.2 Entering Commands and Text

YALOE runs in one of two modes: command mode or text mode. It starts
off in command mode.

YALOE displays an asterisk (**') when it is ready for a command. Commands
are entered by typmg command characters; they appear on the screen as they
are typed.

In command mode, YALOE interprets all input as edit commands (spaces,
returns, and tabs are ignored; commands can be in upper or lower case).
You can enter commands one at a time, or you can type in a whole string of
commands to be executed in sequence; in either case, they are not executed
until you type <ese><ese>. Commands with text string parameters are
separated by the <ese> that terminates the text string. When YALOE
finishes executing the commands, it redisplays the command prompt ('*!),

YALOE goes into text mode when you type a command that accepts a text
string parameter. In text mode, all characters (including carriage returns)
are treated as text until you terminate the text string by typing <esc>;
YALOE then goes back to command mode.

NOTE-~- If an error occurs while YALOE is executing a comand string,
the remaining commands in the command string are ignored.

Modula Operating System
Yet Another Line Oriented Editor
page 85

NOTE- <esc> echoes a dollar sign ('$') when typed. The <ese>
terminates the text string and returns control to Command mode.
The examples in this chapter display <ese> as '$'.

Command Arguments

Some YALOE commands accept command arguments. Command arguments are
characters which precede the command character., Command arguments
specify repeat factors and/or the cursor direction.

The following definitions are used in the command descriptions:

n Denotes an integer. In YALOE commands that accept this argument, the
default value is 1. If only a minus sign is present, the default value is -1.
Negative argument values specify backwards cursor movement.

/ Denotes the integer value 32700, '-/' denotes -32700, '/' is used to
specify a large repeat factor.

m Denotes an integer between 0 and 9.
O Denotes the start of the current line,

= Denotes the integer value '-n', where n is the length of the last text
string parameter. '=' works only with the J(ump, D(elete, and C(hange
commands. h

9.3 Special Commands

YALOE defines certains keys as special commands,

-

{ese>

A single <ese> terminates a text string. A double <ese> executes the
command string. <ese> echoes as '$',

RUBOUT

RUBOUT (linedel) deletes the current line,

Modula Operating System
Yet Another Line Oriented Editor
page 86 -

CTRL H

CTRL H (chardel) deletes a character from the current command string.
Deletions are done right to left up to the beginning of the command string.
CTRL H may be used in both command and text modes.

CTRL X

CTRL X causes the editor to ignore the entire cdmmand string currently
being entered. YALOE responds by redisplaying the command prompt ('*!),
Note that CTRL X takes out even multi-line commeand strings.

9.4 Input & Output Commands

The following commands control input and output: L(ist, V(erify, R(ead,
W(rite, E(rase, and Q(uit.

L(ist

Syntax:

nL

Display the specified number of text lines.

Examples of L(ists
.*5L$$ Lists the five lines following the cursor.

*OL$$ Lists from the start of the current line
up to the cursor.

V(erify
Syntax:
\'

Redisplay the current text line,

Modula Operating System
Yet Another Line Oriented Editor
page 87

R(ead
Syntax:
R<file titled$

Read the specified file into the text buffer starting at the current cursor
position, <file title> is a text string containing a valid file title, If YALOE
cannot find the file, it appends a '.TEXT' suffix and tries again.

WARNING- If the file read in does not fit in the text buffer, the
buffer contents become undefined; i.e. the current edit session
is lost. :

W(rite
Syntax:
W<file title>$

Write the text buffer contents to the specified disk file. <file title> is a
text string containing a valid file title; the file suffix '/ TEXT' is
automatically appended if it is not specified.

If the disk volume does not have enough space to contain the new file, the
following error appears:

OUTPUT ERROR. HELP!

In this case, W(rite the file out to another disk volume.

Q(uit

The Q(uit command has the following forms:

QU Quit and write to the work file.
QE Quit and exit YALOE; do not save the text.
Q Issue a prompt requesting one of the

following options: U, E, or R. R returns
to the edit session,

Modula Operating System
Yet Another Line Oriented Editor
page 88

E(rase
Syntax:
E

Erase the secreen,

9.5 Cursor Moving Commands

The following commands move the cursor: J(ump, A(dvance, B(eginning, G(et,
and F(ind,

Cursor direction is specified by the command argument, For instance, the
command '10J' moves the cursor forward 10 characters, while '-10J' moves
the cursor backwards the 10 characters.

NOTE- Carriage returns and tabs are treated as single characters.

J(ump
 Syntax:
- nd

Move the cursor the specified number of characters.

A(dvanece
Syntax:
nA

Move the cursor the specified number of lines. The cursor is left at the
beginning of the line. 'OA' moves the cursor to the start of the current
line, .

- Modula Operating System
Yet Another Line Oriented Editor
page 89

B(eginning
Syntax:
B

Move the cursor to the front of the text buffer.

G(et & F(ind

Syntaxs

nG<target string>$
nF<target string>$

G(et and F(ind are synonymous. Starting at the current cursor position, the
text buffer is searched for the n'th occurrence of the target string. (The
argument sign determines the search direction.) If found, the cursor is left
at the end of the text string. If not found, an error message appears and
the cursor is left at the end of the buffer.

Examples of Cursor Moving Commands
The cursor position is indicated by boldface.

Here is the original text:

The time has come |
the walrus said
to talk of many things

*7J$$ moves the cursor forward 7 characters:
The time has come
the walrus said
to talk of many things
*A$$ moves the cursor up a line:
The time has come

the walrus said
to talk of many things

Modula Operating System

Yet Another Line Oriented Editor

page 90

*BGsaid$=J$$ moves the cursor to the front of the text
buffer and search for the string 'said'.
When the string is found, move the cursor
to the front of the string:
The time has come

the walrus said
to talk of many things

9.6 Text Changing Commands

The following commands change text: I(nsert, D(elete, K(ill, C(hange, and
X(change. - 4

I(nsert
Syntax:
I<text string>$

Insert the text string into the text starting at the current cursor position,
The cursor is left after the last inserted character.

NOTE- The message 'Please finish' may appear while you are
inserting a large text string. If this happens, type <ese><ese>
to finish the current I(nsert command, then type 'I' and
continue.

D(elete
Syntax:
nD

Delete the specified number of characters from the text buffer, starting at
the current cursor position. The cursor is left at the character following the
deleted text, : v

Modula Operating System
Yet Another Line Oriented Editor
‘ page 91

K(ill
Syntax:

nkK

¥

Delete the specified number of lines from the text buffer, starting at the
current cursor position, The cursor is left at the front of the line following
the deleted text.

C(hange
Syntax:
nC<text string>$

Replace the specified number of characters with the text string, starting at
the current cursor position., The cursor is left after the changed text.

X(change
Syntax:
nX<text string>$

Replace the specified number of lines with the text string, starting at the
current cursor position. The cursor is left after the changed text.

Examples of Text ‘Changing Commands

*/K$$ deletes all lines following the cursor,

*-4D$$ deletes the four characters preceding the cursor.
*B$Gpeace$=D$$ finds the firét occurrence of 'peace' and deletes it.
*BGP$=CV$$ replaces the first occurrence of 'P' with 'V',

*0OCxyz$$ replaces the characters from the front of the
‘ line to the cursor with 'xyz'.

*~5XPOW$$ replaces all characters from the front of the
fifth line back to the cursor with the string 'POW'.

Modula Operating System
Yet Another Line Oriented Editor
page 92

9.7 Miscellaneous Commands

Miscellaneous commands include: S(ave, U(nsave, M(acro, N (macro execution),
and '?',

S(ave
Syntax:
nS

Copy the specified number of lines into the save buffer, starting at the
current cursor position. YALOE prints a warning message and stops the
S(ave command if the specified text is larger than the save buffer.

U(nsave
Syntax:
U

Copy the save buffer contents into the text buffer, starting at the current
cursor position. YALOE prints a warning message and stops the U(nsave
command if there is not enough room in the buffer for the inserted text.

M(acro

A macro is a single command that executes a user-defined command string.
Macros are created with the M(acro command. A macro can invoke other
macros (including itself recursively).

Syntax:
mM%<command string>%

The command argument m (an integer between 0 and 9) identifies the macro
definition, The default macro number is 1. The command string delimiter
('%* above) is defined to be the character following the 'M'. It can be any
character that does not appear in the macro command string itself. The
second occurrence of the delimiter character terminates the macro definition.

Modula Operating System
Yet Another Line Oriented Editor
page 93

Any character may appear within a macro definition, including a single <ese>.

YALOE prints the following message if an error ocecurs during macro
definition: '

Error in macro definition,

Example of macro definition:

*4M%FLOOP$=CEND LOOP$V$%$$

This defines macro number 4. When the macro is executed (by typing !N4!),
YALOE searches for the string 'LOOP’', changes it to 'END LOOP!, and
displays the altered line.

NOTE- Up to 10 macros (0 through 9) can exist at any one time.

N (execute macro)
Syntax:
nNm$

Execute the specified macro. 'm' identifies the macro to execute (0 to 9).
The default macro number is 1. Because m actually represents a text string
of commands, the N command must be terminated by <esec> (echoed as $).

If you try to execute an undefined macro, this message appears:

Unhappy macnum,

If an error occurs during macro execution, this messageA appears:
Error in macro.

? (help)

Syntax:

?.

Display all YALOE commands, current size of the text and save buffers,
currently defined macro numbers, and memory left in the text buffer.

Modula Operating System
Yet Another Line Oriented Editor
page 94

9.8 Command Summary

n = integer argument m = macro number

? display ecommand list and file information.
nA advance the cursor to the beginning of the
n'th line from the current position,
B jump to beginning of file.
nC change by deleting n characters and inserting
the following text. Terminate text with <ese>.

nD delete n characters,
E erase the screen,
nF find the n'th occurrence from the current cursor.
nG position of the following string. Terminate
target string with <esc>. :
1 insert the following text. Terminate text
with <ese>,
nd jump cursor n characters,
nK delete n lines of text from the current cursor
position.
nL - list n lines of text.
mM define macro number m,
nNm perform maero m, n times,
Q quit this session, followed by:
Us(pdate Update SYSTEM.WRK.TEXT
E:(scape Escape from session
: Re(eturn Return to editor
R read file into buffer starting at cursor;
form is; R<file name><esc>.
nS put the next n lines of text from the cursor
position into the save buffer.
U insert (Unsave) the contents of the save buffer into the

text at the cursor; does not destroy the save buffer.

verify: display the current line.

write file (from start of buffer);

form is: W<file name><ese>.

nX delete n lines of text, and insert the following text;
terminate with <ese>. '

=<

Modula Operating System
Utility Programs

page 95
10 Utility Programs

This chapter deseribes the utility programs provided with the Modula
operating system, Utility programs assist the following tasks:

@ Disk management

® File management

@ Program management
@® Communication

@ System configuration
Section 10.1 describes the disk management utilities.
Section 10.2 describes the file management utilities.
Section 10.3 describes the program management utilities.
Section 10.4 describes the communication utilities,

Section 10.5 describes the system configuration utilities.

Modula Operating System
Utility Programs
page 96

10.1 Disk Management

This section describes the disk management utilities:
@ Bootstrap copier (10.1.1)
@ Disk copier (10.1.2)
@® Duplicate directory copier (10.1.3)
@ Disk directory flipper (10.1.4)

10.1.1 Bootstrap Copier

The Booter utility (BOOTER.CODE on the disk) copies the system bootstrap
code from one system boot disk to another. Bootstrap code is assumed to
reside on logical disk blocks 0 and 1.

After you X(ecute BOOTER, the following prompt appears:

Copy Boot From #4: to #5: ?
<er> to Copy, <ese> <cr> Exits

The disk already containing the bootstrap code must be placed in disk unit 4.
The disk that needs the bootstrap is placed in disk unit 5. To exit Booter,
type <ese> followed by <return>. To proceed with bootstrap copying, type
<return>,

Modula Operating System
Utility Programs
page 97

10.1.2 Disk Copier

The Backup utility (BACKUP.CODE on the disk) copies the contents of one
disk (called the master disk) onto a second disk (called the backup disk).
For disk copying, Backup has the following advantages over the filer's
T(ransfer command:

® It performs double read and read-after-write checking to ensure
that the backup disk is an exact copy of the master disk.

@ It copies across any bootstrap code stored in blocks 0 and 1,

After you X(ecute BACKUP, the following prompt appears:
Master in #4: Backup in #5: ?

Type 'y' to specify disk unit 4 as the master disk. If you want to transfer
from unit 5 to unit 4, type 'n' and the prompt reappears as:

Master in #5: Backup in #4: ?

Once you have chosen which way to transfer, Backup verifies your choice by
printing the volume name of the master disk:

Master on #5: Volume MYDISK:

If the backup disk contains an existing volume, Backup reminds you that it
will be destroyed:

Destroy #4: Volume OLDDISK: ?

If you have cold feet, type 'n* to halt Backup; otherwise, type 'y' to
continue, If the master disk contains a disk volume, Backup tells you how
many blocks are going to be copied — note that it copies only the files on
the disk volume and not any of the unused disk space past the end of the
last file. (This saves a lot of time if your master disk volume only contains
a few files.) If the master disk does not contain a disk volume, then Backup
asks you how many blocks to transfer. :

Backup then proceeds to copy the master disk; it writes dots to the screen
to indicate its progress. When copying is completed, the following prompt
appears:

May I rename MYDISK: to BACKUP: ?

What this prompt means is that the master and backup disks have the same
volume name at this point, so Backup will change the volume name on the

Modula Operating System
Utility Programs
page 98

backup disk to the volume name BACKUP:. Type 'y' to change the name to
'‘BACKUP:',

Before Backup terminates, one last prompt appears:

E(xit to Boot Diskette ?

Place the boot disk back in its drive, type 'y', and Backup is finished.
However, if you want to copy another disk, type 'n' and the original Backup
prompt reappears:

Master in #4: Backup in #5: ?

Modula Operating System
Utility Programs
page 99

10.1.3 Duplicate Directory Copier

The CopyDupDir utility (COPYDUPDIR.CODE on the disk) copies the
duplicate disk directory onto the main directory; it is used to attempt the
recovery of disk volumes whose main directory has been ruined. (Note that
‘CopyDupDir is of no help if the duplicate directory itself has also been
obliterated.)

After you X(ecute COPYDUPDIR, the following prompt appears:

Drive number with vietim disk already in it:

Put the wounded disk volume in a drive and type the disk unit number.
" CopyDupDir then reads the duplicate directory and displays the volume name
stored in it. One last prompt appears before the duplicate directory is
actually copied:

May I write over original directory {y/n} ?

Type 'y' to copy the directory. If you get cold feet, type 'n' and
CopyDupDir terminates without eopying.

10.1.4 Disk Directory Flipper

The FlipDir utility (FLIPDIR.CODE on the disk) byte-flips the word quantities
in a disk directory so the disk volume can be read on machines with the
opposite byte sex. (The 68000 and 9900 are the opposite byte sex from all
other popular microprocessors.)

After you X(ecute FLIPDIR, the following prompt appears:

Unit number to flip?

Put the disk volume in a drive and type the disk unit number. FlipDir then
reads the directory into memory, flips the appropriate words, and writes it
back to the disk. It also indicates the number of files on the volume. When
FlipDir is finished, the following prompt appears:

Directory Flipped, <Return> to Exit

Modula Operating System
Utility Programs
page 100

10.2 File Management

This section describes the file management utilities:
@ Disk file editor (10.2.1)
@ File copier (10.2.2)
® Text file compare (10.2.3)

® Binary file compare (10.2.4)

10.2.1 Disk File Editor

The Patch utility (PATCH.CODE on the disk) is used to examine and alter
data stored in a disk file.

Disk files consist of a series of 512-byte blocks; the first bloek in a file is
block 0. Patch lets you read individual blocks from the file and display them
in either pure hex or mixed hex and ASCI format. To alter disk file data,
move the cursor to the desired location in the bloek display, type in the new
data values, and write the block back to the file,

After you X(ecute PATCH, the following prompt appears:
F(ile, Q(uit

Type Q(uit to exit Patch. If you type F(ile, the following prompt appears:

Filename: <cr for unit i/o>

Type in the name of the file you want to edit. If you want to edit the
entire disk volume, type <return>, and the following prompt appears:

Unitnum [4,5,9..12]):

Type in the unit number containing the disk. Pateh treats disks like they
are big files — the first block on the disk is block 0.

Once you have specified a file to edit, the original Patch promptline
reappears containing a new command:

G(et, F(ile, Q(uit

Modula Operating System
Utility Programs
page 101

Typing G(et produces the following prompt:
BLOCK:

Type in the block number of a block you wish to examine; Patch then reads
the specified block into memory. The promptline reappears this time with
two new commands:

G(et, P(ut, H(ex, M(ixed, F(ile, Q(uit

H(ex displays the block in hex characters. M(ixed displays the block in ASCII
characters wherever possible; all non ASCII character values appear in hex.

H(ex and M(ixed produce the following prompt at the top of the bloek
display:

Alter: Arrows; L,R,U,Z; 0..F hex chars; S(tuff, Q(uit

The cursor appears at the first byte in the block; it ecan be moved around
either with the vector keys or the letters L,R,U, and Z. (Z means 'down' —
D cannot be used because it denotes a hex digit,) Once the cursor has been
positioned over the data you want to modify, type the new values in as hex
digits. . (This works just like the ASE's eX(change command.)

The S(tuff command is used to assign the same value to a number of adjacent.
bytes. After you type S(tuff, the following prompt appears:

Stuff for how many bytes:

Type in the number of bytes to be modified (starting from the current cursor
position). The next prompt appears:

Fill with what hex pair:

Type in the two hex characters which make up the desired byte value,
S(tuff then assigns the new value to the specified byte range.

The P(ut command is used to write the altered disk bloek back tb disk., P(ut
writes the current block back to the file bloek it was read from.

Modula Operating System
Utility Programs

page 102
10.2.2 File Copier

The FileCopy utility (FCOPY.CODE on the disk) works just like Backup, but
it is used to copy a single disk file from one disk volume to another,

After you X(ecute FCOPY, the following prompt appears:

Source FileName?

Put in the disk volumes you want to transfer the file between, then type in
the name of the file to transfer. The next prompt is:

Dest FileName?

Type in the name of the destination file, and FileCopy starts transferring the
disk file. It writes out the source and destination file names and then
displays a series of dots while transferring the files, When FileCopy is
finished, it displays the number of blocks transferred.

Before FileCopy terminates, one last prompt appears:

E(xit to Boot Diskette ?

Place the boot disk back in its drive, type 'y', and FileCopy is finished.
However, if you want to copy another file, type 'n' and the original FileCopy
prompt reappears:

Source FileName?

10.2.3 Text File Compare

The Compare utility (COMPARE.CODE on the disk) compares two text files
and reports any differences.

After you X(ecute COMPARE, the following prompt appears:

conipare file:

Type in the name of the first text file, (Note that the '.TEXT' suffix is
automatically appended.) The next prompt appears:

with file:

Modula Operating System
Utility Programs
page 103 -

After you type in the second file name, the next prompt appears:

WHERE DO YOU WANT TO OUTPUT [<esc-ret>, <filename>]
printer: ?

The file name you type here is where the differences description is written
to. After the file name is entered, another prompt appears:

MATCH CRITERION = 3 LINES.
DO YOU WANT TO CHANGE IT (Y/N) N ?

If you type 'y', Compare prompts for a new match criterion value. The
match criterion is defined as the number of lines of text which must match
in order to terminate a prior mismatch., Larger values tend to produce fewer
— but larger — mismatches than small values; values should be chosen
according to how much the two files differ. The default value of 3 yields
good results when comparing Pascal program text. -

The last prompt is:
IGNORE INDENTATION (Y/N) Y ?

If you type 'y', lines containing the same text but with differing indentation
are considered identical., '

Once past all these prompts, Compare proceeds to compare the two text
files, It displays a dot on the screen for every line compared. (Every tenth
dot is displayed as a '+' to improve the display format.)

When Compare finishes comparing the files, it writes out a report deseribing
differences between the two files. If there are no differences, it writes 'mo
differences'; otherwise, it lists each mismatch including the line numbers in
both files, and (if the difference is restricted to one line) both text lines
with pointers to the beginning of the difference.

When Compare finishes writing the difference report, it displays the following
prompt:

R(epeat or E(nd:

To terminate Compare, type 'e'. However, if you want to compare another
pair of files, type 'r' and the original prompt reappears:

compare file:

Modula Operating System
Utility Programs
page 104

NOTE- Compare stores its report data on the heap, so files that

generate very large difference reports may cause the system to
stack overflow.

10.2.4 Binary File Compare

The CompCode utility (COMPCODE.CODE on the disk) comperes two disk
files and reports any differences. Unlike Compare, CompCode performs a
binary comparison of all data in the two files. '

After you X(ecute COMPCODE, the following prompt appears:

Name of filel ?

Type in the name of the first file. (Note that you must type in the file
suffix.) The next prompt appears: ’

Name of file2 ?

After you type in the second file name, CompCode starts comparing the two
files, No message is displayed if the two files match exactly., If CompCode
discovers a difference, it displays the message:

Error at blk 2, offset 129

.. indicating the block number and byte offset where the two files differ,

Modula Operating System
Utility Programs
page 105

10.3 Program Management

This section describes the program management utilities:

@ Librarian (10.3.1)

10.3.1 Librarian

The Librarian utility (LIBRARY.CODE on the disk) is used to manipulate code
segments within a program's code file.

After you X(ecute LIBRARY, the following prompt appears:
Output Code FileName:

Type in the name of the output code. (Note that a file suffix is not
automatically appended — you must type it yourself.) The input file prompt
appears next:

Input Code FileName:

Type in the name of the input code file, (Note that the file suffix .CODE
is automatically appended.) Librarian then lists the name, segment number,
and size in bytes of each segment in the code file.

After the code segments are displéyed, a promptline appears:

P(rompt, #_of_seg, N(ew {<bl> or <er>}, Q(uit, or A(bort:

The P(rompt command steps through all segments in the input file, asking if
you want to copy the segment to the output file:

Link 1 PASCALCO {y/n} ?
Type 'y' to copy the segment across; type 'n' to skip the segment,

The '#_of_seg' command is used to copy individual segments to the output
file, Type in the segment number of the segment you wish to copy and the
following prompt appears:

Source segnum: 8

Modula Operating System

Utility Programs

page 106
Notice that the segment number you typed is already entered; you can
change it by backspacing and typmg in another segment number. After you
type <return>, the next prompt is:

Target segnum:

- Type in the segment slot where the segment is to reside in the output file.
The segment is then copied into the output file display.

The N(ew command selects a new code file as the input file. N(ew lets you
copy segments from a number of code files into one output file, The
following prompt appears:

New input file:

Type in the name of the new input file. The input file display is then
updated with the segments in the new file.

The Q(uit command displays this prompt below the promptlines

Notice:

Type in a copyright notice. (If you don't care about having a copyrlght
notice, just type <return>.) Librarian stores the copyright notice in the
segment dictionary (block 0 of the code file).

The A(bort command exits Librarian without saving the output file,

Modula Operating System
Utility Programs
page 107

10.4 Communication

This section describes the ecommunication utilities:
® Remote file transfer (10.4.1)
@ Electronic .mail transfer (10.4.2)

10.4.1 Remote File Transfer

The SerialTalk utility (SERIALTALK.CODE on the disk) is used to transfer
files from one machine to another via a serial communication line (RS232).
Both machines must have their serial ports online, set at the same baud rate,
and connected to each other by the appropriate cable. Both machines must
also have the SerialTalk program running.

To transmit data files, SerialTalk is executed on both machines. One
machine is specified as the 'slave' machine; the other becomes the 'master’.
File transfer commands are entered on the master machine, which then sends
the appropriate commands to the slave machine,

After you X(ecute SERIALTALK, the following prompt appears:

1) Let both machines reach this prompt
2) Press S(lave on one machine
3) Press M(aster on the other

M(aster S(lave Q(uit

The S(lave command does not display a prompt; it merely places the machine
in the hands of the master machine. Any further information displayed on
the screen is a result of commands from the master.

The 'M(aster command displays the following prompt:

S(end R(eceive C(onfigure F(ile Q(uit

The S(end and R(eceive commands prompt for the name of a file to send or
receive. Once a file name has been typed in, it is displayed on both the
master and slave machines, While transmitting file data, SerialTelk displays a
dot for each block transferred. If a parity error is detected, a question
mark is displayed and the erroneous bloek is retransmitted.

Modula Operating System
Utility Programs
page 108

The C(onfigure command changes the modes used by SerialTalk to transmit
data. C(onfigure displays the following prompt:

P(acket size D(ata size Q(uit

The P(acket size command controls the number of bytes sent between the
machines at one time. P(acket size displays the following prompt:

A)512 B)256 C)128 D)64 Q(uit

The default packet size is 512 bytes. Smaller packet sizes are used when
one of the machines isn't fast enough to keep up with the specified baud
rate: this in turn is often caused by using a packet size larger than the
machines' serial port data buffers.

The D(ata size command controls the mode in which individual characters are
transmitted. D(ata size displays the following prompt:

P(arity R(aw Q(uit

The default mode is P(arity., In Parity mode, SerialTalk translates all data
into ASCIH alphabetic character codes before transmitting it. This prevents
control character values from being interpreted as commands by the master
or slave machines' serial port I/O drivers. (This problem occurs most often
when sending data between foreign operating systems.) R(aw mode transmits
all data without converting it to alphabetic character codes. It can be used
only when the serial port drivers on both machines transmit all 8 bits in a
data byte and do not perform any special handling of control characters.
Note that R(aw mode transmits about three times faster than P(arity mode.

The F(ile command prompts for the name of a command file. Command files
are used to automate the transmission of a number of files. A command file
should contain exactly the characters that would have been typed in to
transmit the files manually. (Note in particular that they are 'pure’ text
files and not the command files desecribed in chapter 6.)

The Q(uit command terminates SerialTalk.

Modula Operating System
Utility Programs
page 109

10.4.2 Electronie Mail Transfer

The TeleTalk utility (TELETALK.CODE on the disk) is used for sending and
recording text files during electronic mail sessions. Sending text files lets
you compose your messages with the editor beforehand, then send them at
high speed to reduce your connect time. Recording mail sessions lets you
save your incoming messages in text files so you can read them afterwards,
again saving you connect time.

To start an electronic mail session, X(ecute TELETALK. The following
prompt appears:

BaudRate 1(200, 3(00 ?

Select the appropriate baud rate for your modem by typing '1' or '3,
TeleTalk then displays the follwing message: :

<Ctrl-A> for option menu

This indicates that typing ectrl-A at any time during an electronic mail
session halts the session and displays the TeleTalk prompt.

TeleTalk is then ready for you to sign on to the network. All subsequently
- typed characters are written to the network connection along with being
echoed to the screen. Characters received from the network are displayed
on the screen.

NOTE- The message "LOST CARRIER" appears if you haven't dialed
into the network yet. If this happens, dial into the network and
type <space> or <return> a few times to establish the
connection.

Whenever you reach a point where you want to send or record a text file,
type ctrl-A. The current session is suspended and the following prompt
appears:

FileOptions: S(end, R(ecord, G(o, E(xit -

The G(o command resumes the session. E(xit terminates the TeleTalk program
and returns you to the system prompt. Note that you can terminate
TeleTalk, run other programs in the system (such as the filer), then return to
TeleTalk without interrupting a mail session: reexecuting TeleTalk pops you
back into the current session.

Modula Operating System
Utility Programs
page 110

To send a text file, type S(end. The following prompt appears:
Send what textfile?

Type in the name of the text file you want to send (don't add ".TEXT").
Type G(o and TeleTalk returns to the session, transmitting the file while

~ echoing it to the screen. The following message appears on the screen when
TeleTalk is finished sending the file:

MYFILE.TEXT Finished

If you want to stop sending a file before it reaches the end, type etrl-A to
get the prompt and type S(end again. The following prompt appears:

Currently Sending MYFILE.TEXT C(lose it?

C(lose stops sending the file, Typing anything else causes TeleTalk to
resume sending the file, :

To record a session in a text file, type R(ecord. The following prompt
appears:

Record as what textfile?

Type in the name of the text file you want to record (don't add ".TEXT").
Type G(o and TeleTalk returns to the session, with all characters
subsequently written to the screen being recorded in the text file,

To finish recording a file, type ctrl-A to get the prompt and type R(ecord
again. This time the following prompt appears:

Currently Recording MYFILE.TEXT C(lose P(urge
C(lose saves the recorded file on disk. P(ﬁrge removes the file.

WARNING- Be sure there's enough space on your disk before you
start recording. If TeleTalk runs out of disk space while
recording, it discards all subsequent text without issuing a
warning.

Modula Opefating System
Utility Programs
page 111

10.5 System Configuration

This section describes the utility programs Setup and Binder. These utilities
are used to configure the system software to operate with -different
terminals,

The Setup utility (10.5.1) is used to create and modify the system information
file SYSTEM.MISCINFO.

The MISCINFO file is always stored on the boot disk. It contains three
types of system-dependent information:

@ Miscellaneous system data
@ Terminal-dependent control characters

@ Key aefinitions for ASE edit commands

When the system bootstraps, it reads the contents of MISCINFO into an
operating system data structure known as SYSCOM. The system programs
access SYSCOM to obtain system-dependent information, :

The Binder utility (10.5.2) binds a new Gotoxy procedure into the operating
system code file, The operating system procedure Gotoxy is used to move-
the cursor to arbitrary positions on the screen. Because most terminals use
different character sequences for cursor posxtlonmg, a different Gotoxy
procedure is usually needed for each terminal. :

10.5.1 Terminal Setup

The utility program Setup (SETUP.CODE on the utilities disk) is used to
create a new MISCINFO file or to modify an existing one.

After you X(ecute SETUP, the MISCINFO fields are displayed on the screen
with their current values. (If Setup cannot find the file SYSTEM.MISCINFO,
it displays the values already loaded into memory in SYSCOM.)

Each MISCINFO field is displayed in the following format:
Crt home 0 ["H" 172.]

The field name is followed by a menu number; this is used in the S(ingle
command to select individual fields for modification. The menu number in
the example above is 0.

Modula Operating System
Utility Programs
page 112

The values enclosed in the brackets indicate the current field value. Fields
contain either character values or Boolean values. Boolean values are
displayed either as 'True' or 'False'. Character values are displayed in both
symbolic and numerie form, If a field value denotes a printable character,
the character is displayed; otherwise, the ASCIH control character symbol is
displayed (e.g. ACK, LF).

The numeric value may be displayed in one of three radices: decimal, hex, or
octal. Decimal numbers end with a period ('72.'"). Hex numbers end with 'h'
("BEh'). Octal numbers end with ‘o' ('260!).

Some MISCINFO fields may be designated as 'prefixed'. This means that the
field value represents the second character of a two-character sequence.
The first character is known as the prefix character. The prefix character
is defined by two MISCINFO fields: 'Crt prefix character' and 'Keyboard
prefix char', Fields designated as prefixed are displayed with the letter 'p'
on the right-hand side of the field value:

Crt right 6 ["d" 4Ah] p

The following promptline appears below the field 'display:

P(rompt, S(ingle, N(ew, R(adix, M(em, D{isk, <Escape> ?

The S(ingle command produces the following prompt:

Current default Radix: Decimal
Single change: menu #, <return> to accept, <esc> to Escape?

If you type one of the menu numbers, Setup displays the corresponding field
and waits for you to type in the new value. If the field is Boolean, type 't'
for True or 'f' for False. If the field expects a character value, you can
either type the character directly or you can specify the numeric value of
the key by typing '#' followed by the numerie value. (Note that numerical
values assume the current default radix,) Numeric values are terminated by
typing <return>.

WARNING- Setup interprets entered menu numbers in terms of the
current radix.

For every character field, Setup also prompts for whether the field is
prefixed. Type 'y' to mark a field as prefixed; type 'n' to mark it as
unprefixed. Setup defines one input (‘key') prefix character and one output
('‘char') prefix character; fields marked as prefixed denote 2-character
sequences beginning with the appropriate prefix character. Prefix characters
are defined as separate fields in Setup.

Modula Operating System
Utility Programs
page 113

The 'Single change' prompt reappears after you have set each field, To
change another field, type its menu number. Note that after setting a series
of fields in S(ingle, the new field values are not actually established. To
install the new field values in the display, type <return>; this terminates the
S(ingle command and redisplays the fields with the new values. To escape
from S(ingle, type <ese>; this terminates S(ingle and redlsplays the fields
- without updating them,

The P(rompt command steps through every field asking for a new field value.
If you do not want to change a field, type <return> and Setup will sk1p to
the next field.

The N(ew command works the same way as P(rompt, but specifies 'empty’
field values as the default, N(ew is used for constructing new MISCINFO
files from scratch,

The R{adix command chimges the default radix. The following prompt |
appears:

Current default Radix: Decimal
Default Radix: O(ctal, D(ecimal, H(ex, <return>

Type the appropriate letter to set the new default radix. Type <return> to
preserve the current default radix. The default radix affeets both the field
display and how numeric responses are interpreted.

The D(isk command .wntes the current field values to the file
NEW.MISCINFO. . This file must be changed to SYSTEM.MISCINFO in order to
be used by the system,

The M(em command writes the current field values to the SYSCOM data
structure in memory. This lets you test the new field values immediately
after leaving Setup; however, they will be lost if the system is rebooted (or
I(nitialized) before you can go back into Setup and invoke the D(isk command.

The <Escape> command is the only way to terminate Setup. It produces the
following prompt:

Are you sure you want to Exit?

Type 'y' to exit Setup; type 'n' to return to Setup. Note that you must
invoke either the D(isk or M(em command to preserve the results of a Setup
session; <Escape> does not perform any automatic saving of the current field
settings.

Modula Operating System
Utility Programs
page 114

MISCINFO Fields

This seetion describes the MISCINFO fields in detail. The fields contain
three types of system information: keys, screen info, and parameters.

- Key fields define how character sequences received from the terminal are
interpreted as system commands, Key fields in Setup have the word 'Key' in
their field names. v

Screen info fields define how the system screen-control commands are mapped
into character sequences written to the terminal. Secreen info fields in Setup
have the word 'Crt' in their field names. -

Parameter fields contain various integer, character, and Boolean values which
control system operation, '

Key accept

Used as the editor <etx> command. Standard value: ASCII ETXA

Key escape

Used as the <ese> command in the editor and other programs. Suggested
value: ASCII ESC ‘

Crt clear lin

When written to the console, this character erases everything on the line
that the cursor is on, leaving the cursor at the line start.

Crt clear

When written to the console, this character erases the entire screen, leaving
the cursor at the top left of the screen.

Crt erase eol

When written to the console, this character erases all characters from the
current cursor position to the end of the line, leaving the cursor at its
current position.

Crt erase eos

Modula Operating System
Utility Programs
page 115

When written to the console, this character erases all characters from the
current cursor position to the end of the screen, leaving the cursor at its

current position,

System is. Terak 8510a

Set to FALSE (unless you are using a Terak).

System has clock

Set to TRUE if the VS Pasecal intrinsic TIME is implemented.

Crt has u/l case

Set to TRUE if the terminal supports both upper and lower case characters.

Crt has x,y control

Set to TRUE.

Crt is slow

Set to FALSE if terminal runs faster than 600 baud.

Key flush

When typed, this key cancels all console output.
Suggested value: ctrl-F

Key stop ert

When typed, this key suspends console output,

Suggested value: etrl-S

Key break

See 2.3 for dgtails.

See 2.3 for details.

Modula Operating System
Utility Programs:
page 116

When typed, this key causes execution error 8 ("user break").
Key del char

~-When typed, this key deletes the character under the cursor and moves the
cursor one space to the left, Suggested value: ASCII BS

Key del line

When typed, this key deletes the line under the cursor. Suggested value:
ASCII DEL

Key end file

When typed, this key sets EOF to true while reading from a console input
file. Suggested value: ASCII ETX

Key up
Key down
Key right
Key left

Used for cursor movement. These should be mapped to the terminal's arrow
keys.

Keyboard mask

Used to mask off high order bits of characters received from the Kkeyboard.
Standard value: 127

Editor bad ch

The editor displays this character whenever a non-printing character Iis
written to the console, Standard value: ASCII '?!

Keyboard prefix char

Prefix character for all prefixed key fields.

Modula Operating System
Utility Programs
page 117

Crt prefix char

Prefix character for all prefixed screen info fields.

Crt home

When written to the console, this character moves the cursor to the upper
left hand corner of the screen.

Crt right

When written to the console, this character moves the cursor one space to
the right without erasing any characters.

Crt backspace

When written to the console, this character moves the cursor one space to
the left., Suggested value: ASCII'BS

Crt rév 1f

When written to the console, this character moves the cursor vertically up
one line without erasing any characters. Not used by the system.,

Crt height (rows)

The number of text lines displayed on the console. Standard value: 24

Crt width (columns)

The number of characters per line displayed on the console. Standard value:
80

Nulls for move delay

Used to implement vertical move delays on slower terminals. The system will
write the specified number of bogus nulls after each cursor move. Values
greater than 11 are ignored. Standard value: 0

Modula Operating System
Utility Programs
page 118

Byte sex is 9900/68000

Set to TRUE if running on 9900 or 68000 processor.

Word-addressed (FLASH)

Set to TRUE if running on word-addressed machine.

Student user

Set to FALSE.

Modula Operating System
Utility Programs
page 119

10.5.2 GOTOXY Procedure Binding

The operating system is shipped with a terminal-independent version of the
‘cursor-moving procedure Gotoxy. While this version is portable, it is also
rather slow and especially irritating to wateh as the cursor jumps all over
the screen. To improve system performance and reduce eye strain, you
should create a Gotoxy procedure for your terminal and bind it into the
operating system code file with the Binder utility.

First, a Pascal program containing the Gotoxy procedure must be written and
compiled to a code file, A number of sample Gotoxy programs are provided
with the system; if none of them is suitable for your terminal, modify
whichever one is closest enough so it generates the character sequence
needed by your terminal,

The Binder utility (BINDER.CODE on the disk) is used to bind a .compiled
Gotoxy procedure into the operating system code file,

After you X(ecute BINDER, the following prompt appears:

CodeFile name of new GoToXY:

Type in the code file name of the Gotoxy program, The operating system
code file must be on the prefixed volume, Binder reads the operating system
code into memory, binds in the new procedure, and writes the modified
system code back to the disk with the name SYSTEM.PASCAL. Rebooting
the system loads the new operating system.,

NOTE- Binder removes the old operating system code file, so be sure
you have a backup copy of it laying around somewhere in case
something goes wrong.

Modula Operating System
Installation Guide
page 120

Appendix 1 Installation Guide

This section provides an overview of the basic steps necessary to install the
Modula operating system on your computer, Details and additional
information are provided in a separate document.

The Modula operating system is shipped on one or more floppy disks. One of
the disks is usually labelled 'SYSTEM' or 'BOOT' — this is the boot disk. To
start the system, place the boot disk in your computer's system disk drive
(your computer's owners manual should indicate which drive this is). Next,
press the 'reset' button (or whatever it's called on your system).

After a few disk accesses, a welcome message and the system promptline
should appear on the screen. (If not, reread the instructions provided with
the system and try again; if it still doesn't boot, ask your software dealer
for help.)

Your Modula system has booted for the first time. Congratulations! If your
computer system includes a standard monitor (like the IBM PC or Osborne),
your system disks have already been configured to work on your computer, so
you can start using the system immediately. However, if the system you
" purchased is designed to work with an arbitrary terminal (like the Sage), you
will have to run some configuration programs before you can make full use of
‘the system. The rest of this section explains how to configure your system.

The ASE text editor makes extensive use of your terminal's sereen control
capabilities to do things like moving the cursor around the screen and erasing
the screen after some commands. On an unconfigured system, the editor does
not work very well (if at all) because these screen control functions have not
been defined. So the first thing to do when you first boot the system is to
run the utility program named Setup. To run Setup, you have to know the
special characters used by your terminal to control the screen — this
information can be found in your terminal's owner manual. Section 10.5.1 of
this manual explains how to use Setup. :

Once you've successfully run Setup, you can make full use of the system.
However, you might notice a lot of transient cursor jumping-arounding while
you're in the editor. This can be eliminated by running the utility program
named Binder. Binder adds a new cursor-moving procedure to the operating
system, eliminating the screen flicker when the cursor is moved (and also
noticeably improving the screen response). Section 10.5.2 of this manual
explains how to use Binder.

Once you've successfully run Setup and Binder, your system is fully
configured and ready for full-time use, :

Modula Operating System

Appendix 2 I/0 Results

= =W -ITO UMW O
-

b
© b

= e
0 -1 O b

No error

Bad Block, Parity error (CRC)

Bad Unit Number :

Bad Mode, Illegal operation

Undefined hardware error

Lost unit, Unit is no longer on-line

Lost file, File is no longer in directory
Bad Title, Illegal file name

No room on disk or directory is full

No unit, No such volume on line

No file, No such file on volume

Duplicate file

Not closed, attempt to open an open file
Not open, attempt to access a closed file
Bad format, error in reading real or integer
Ring buffer overflow

Write Protect; attempted write to protected disk
Ilegal bloek number

Illegal buffer address

I/O Results
page 121

Modula Operating System

Execution Errors
page 122

Appendix 3 Execution Errors

XU WO

10

12
13.
14
15

System error

Invelid index, value out of range
No segment, bad code file

Exit from uncalled procedure .
Stack overflow

Integer overflow

Divide by zero

Invalid memory reference <bus timed out>
User Break
System I/O error

" User I/O error

Unimplemented instruction
Floating Point math error
String too long

Halt, breakpoint

Bad block

Modula Operating System
Compiler Error Messages
page 123

Appendix 4 Compiler Error Messages

1: Error in simple type
2: Identifier expected

3: 'PROGRAM' expected
4: ') expected

5: ' expected

6: Ilegal symbol (maybe missing ';' on the line above)
¢ Error in parameter list
¢ 'OF' expected
: ' expected

10: Error in type

11: '[' expected

12: ']' expected

13: 'END' expected

14: ';' expected

15: Integer expected

16: '=' expected

17: 'BEGIN' expected

18: Error in declaration part

19: Error in <field-list>

- 20: '.' expected
21: ™' expected

50: Error in constant

51: ':=' expected

92: 'THEN' expected

53: 'UNTIL' expected

54: 'DO' expected

55: 'TO! or 'DOWNTO!' expected in for statement
56: 'IF' expected

57: 'FILE' expected

58: Error in <factor> (bad expression)

59: Error in variable

101: Identifier declared twice

102: Low bound exceeds high bound

103: Identifier is not of the appropriate class
104: Undeclared identifier

105: Sign not allowed

106: Number expected

107: Incompatible subrange types

108: File not allowed here

109: Type must not be real

110: <tagfield> type must be scalar or subrange
111: Incompatible with <tagfield> part

112: Index type must not be real

113: Index type must be a scalar or a subrange

Modula Operating System
Compiler Error Messages

page 124

114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:;
146:
147:
148:
149:
150:
151:
152:
153:
154:

155:

156:

157:
158:
159:
160:
161:
162:
163:

164:

Base type must not be real

Base type must be a scalar or a subrange

Error in type of standard procedure parameter
Unsatisfied forward reference

Forward reference type identifier in variable declaration
Re-specified params not OK for a forward declared procedure
Funection result type must be scalar, subrange or pointer
File value parameter not allowed

Forward declared function result type can't be re-specified
Missing result type in function declaration
F-format for reals only

Error in type of standard function parameter
Number of parameters does not agree with declaration
Dlegal parameter substitution

Result type does not agree with declaration
Type conflict of operands

Expression is not of set type

Tests on equality allowed only

Striet inelusion not allowed

File comparison not allowed

Illegal type of operand(s)

Type of operand must be boolean

Set element type must be scalar or subrange

Set element types must be compatible

Type of variable is not array

Index type is not compatible with the declaration
Type of variable is not record

Type of variable must be file or pointer

Illegal parameter substitution

Dlegal type of loop control variable

Illegal type of expression

Type conflict

Assignment of files not allowed

Label type incompatible with selecting expression
Subrange bounds must be scalar

Index type must be integer

Assignment to standard function is not allowed
Assignment to formal funection is not allowed

No such field in this record

Type error in read

Actual parameter must be a variable

Control variable cannot be formal or non-local
Multidefined case label

Too many cases in case statement

No such variant in this record

Real or string tagfields not allowed

Previous declaration was not forward

Again forward declared

Parameter size must be constant

Missing variant in declaration

Substitution of standard proe/func not allowed

165:
166:
167:
168:
169:
170:
171:
172:
174:

193:
194:

201:
202:
203:
204:

250:
251:
252:
253:
254:
2562
257:
258:
259:

300:
301:
302:
303:
304:

398:
399:
400:
401:
402:
403:
404:
405:
406:

Modula Operating System
Compiler Error Messages
page 125

Multidefined label

Multideclared label

Undeclared label

Undefined label

Error in base set

Value parameter expected

Standard file was re-declared
Undeclared external file

Pascal funetion or procedure expected

Not enough room for this operation
Comment must appear at top of program

Error in real number - digit expected
String constant must not exceed source line
Integer constant exceeds range

8 or 9 in octal number

Too many scopes of nested identifiers

Too many nested procedures or functions

Too many forward references of procedure entries
Procedure too long

Too many long constants in this procedure

Too many external references

Too many externals

Too many loeal files

Expression too complicated

Division by zero

No case provided for this value
Index expression out of bounds

Value to be assigned is out of bounds
Element expression out of range

Implementation restriction

Implementation restriction

Illegal character in text

Unexpected end of input

Error in writing code file, not enough room
Error in reading include file

Error in writing list file, not enough room
Call not allowed in separate procedure
Include file not legal

Modula Operating System
ASCH Cheracter Set

page 126

Appendix 5 ASCII Character Set

OCO-IDDNWN-=O

000
001
002
003
004
005
006
007
010

011

012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

00 nul
01 soh
02 stx
03 etx
04 eot
05 enq
06 ack
07 bel
08 bs

09 ht

0A If

0C ff
0D cr
0E so
OF si
10 dle
11 del
12 de2
13 de3
14 de4
15 nak
16 syn
17 etb
18 can
19 em
1A sub
1B esc
1C fs
1D gs
1E rs
1F us

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073

- 074

075
076
077

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36

38
39
3A
3B
3C
3D
3E
3F

WOV AY 0 00T NN O

64
65
66
67
68
69
70
71
72
73
74
%

‘76

(K
78
79
80

82
83
84
85
86
87
89
89
90
91
92
93
94
95

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

MI—HITONHKME<dHNZPOYWOoOZErR~NT"HDOHEHDODQWE®

86

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

4

ryup—r__ YV K R ”-O'UOQBHWH."“‘J'GQ oK N =P Cl =+]

del

Modula Operating System
Index
page 127

Index

- -

accept................."..........6
backspaee.........'l............'..6
bs.O...l................‘........'.6
down..l..........‘....O.I......... 6
eOf.'.........l....."....l.l......ﬁ
eseape......'....................'.6
left........0..............0'...... 6
right.'...l‘l......‘.........."...6
space......C...........'I......'...s

up".....".......\...I..C..Q.ﬂ’.'..s

Accept Key..‘..l........'..l..... 6

ASE..............................13

-B-

B............C.............IC.'.. 44

.BACK.....CQ.........'....'..'..Ol'z
BaCkSpace Keyooo.ocooloto.c.ooo.'os
Ba(ﬂ(up.-.'........-.-¢-c.-o...37, 97
BACKUP.CODE..0................097
.BAD......OOOIIQOIUI.OO!Q.0.!0.0.17
Bad BIOCI(s..C'.‘..l....l‘l....... 39
B(ad BloCKSeeseeeeaeseeass2?, 28, 32
Batch Command Interpreter.cecee...14
BATCHGDEMOOTEXT..'..‘..OQ..C.. 41
BmderlCl..l...l..l.'.l.l'.‘.....119
BINDERQCODEOCIOCO'..C...l'.l." 119
BIOCk FileS..l.'....‘.'........... 75
Block NUMbEr:cecessssoscascosccsaneed

BLOCKREAD «v0sssssseassnses 67, 75

Blocl<s...........C...0."l.l......18
Block-structured DeviCE.icesssesooeesl8
BLOCKWRITE..-aooo--.ocooooo67, 75
Booter........O.Q.......‘000001'0096
BOOTER.CODEOUQOOOOO...QC.I.....QG
Byte FlipPiNg.ececccesccscccaccacs 63

-C-

CALLO!...Q.ll.l....‘.......l!... 45
CASE....'....C..I.......‘..'...Q.73
cat.‘O".Q...O'..C.C'..OO00000000.53
C(hange...‘......l......'..'.27’ 28
Clear SCre€€Neccecceccscccesassccss 13
CLOSE .l'.O..C...l...l.....l..'.ss
CODE..O...C..0‘...0............. 79

OCODE'|.0.000.0...'.Ql........'..l?
Code ProcedureS.ccececccscscccccces 19
Command ArgumentS...cecesses 92, 85
Command FileS.eececcoccecsacceseedl
Command Mode........t.....'....‘84
Comments....l'..l...l.....‘...l0073
Compare...l...O....l..!......l..102.
COMPARE.CODE.ccceceacccsccaeas 102
COmpCOdea...........n.......... 104
COMPCODE.CODE.cceeccscocccasall4
C(ompile....’..’..........0......0013
Compiled ListingSececeescsescesess 61
Compile OptionSc.eeceesccscecccassb60
Compiler........‘...'.;0. 10’ 13, 15
Compiler EITOrS.eccessccccscscsss 123
CONCAT O..Ql.l.l....'li.’......70
COPY‘l.‘.‘.‘.....l“.ll000'70
CopyDUpDirceseseccscessessceasesld, 99
COPYDUPDIR.CODE..;O‘00..0.0.0.99

cp..........'.l...'........‘......54

-D-

.DATA..Q.'l..l...l..........I.Ol.17
D(atel.C.;‘.‘...CI....C.CIl..o 27’ 29
date.........l...ll......'.000000054
DELETE ...l.!.........ll‘.I.l...70
DirectorieSeececesescscesassesesasasld
Directory Flipping.cccecseececeasces 99
DISPOSE..‘.............C.Ol...".?4
Duplicate Directory.eceeceecese.19, 99

-E-

echo..'.....l.....l...'.;‘.".'...54 .

ed..........‘........‘....‘...'...54

;E(dit.‘....'...................... 13

Editor......l....l..l....'....10, 13
End Of File Key.......t......".. 6
EOF...‘....,.‘...'l'l......l. 66, 74
EOLN.....‘.OCOCC.l.'........66’ 74
EQU.l'.....'..C.......l.......00045
Escape KeY.iceessososccccscscsscscsd
E(x dir........’l.l‘....‘l... 27, 30
EXEC.TEXT"..Q...0'..'.......'0.43
Execution Errors.ececececccccesecss 122
EXITC.......C.........'......72’ 76

Modula Operating System
Index
page 128

"-F‘-‘
f..l...I.l.....'O.’COO‘Q..IG.‘..0.00.54
FCOPY.CODE...'.....‘ll"ll..‘..’..ﬁﬂ102
FF(ﬂe..0.000..C..'0000'10000000000013
File Attributes....000000000000100017
File Blockoooeooocooccocooocoo.ooons
Filecopy...lti......0...‘.......4..102
File‘Dateoocoo-ocontuou'ocoooa'oo 17
File Identifiereecececcccceccsocces 22
File MANAZEreceseesscecsoscssssse 24
Flle Nameococl.d.lo...l......'....3
‘Fﬂer..'Qeo'.‘..'l....'...13 23’ 24
Fﬂes..."......Q....QI........'.‘ 17
Flle sufflx...Q.........l....o..l.. 3
Flle Tltle.oo.ooovo.oloooco'nooto.. 3
Flle TypeoQOOQOQ.'..!0...0...'0.0 17
FILLCHAR0.0'OOO...0000.00000000071
Flller.........Q.O...0.0........' 99
FLIPDIR.CODE.oe"oo'c;oeo'o.onooocoo99
FIUSh Keyo_o 'Q_C L] Q_QVO 010_0" 0‘0‘0 C.l ee 000000 6

-G_
GEQ-.oocc-aooooooaococeocoococo-o45
GET ciccoccencsenccsccsscccaccas 66
G(et..O.llooooo.o.d.o.q.o 25, 27, 31
GOTO--.ooo-o-c-cc-o--o-oco0045, 76
GOTOXY..oioo'obcoocdoo'o'bo"zz, 111
Gotoxy......IIOOO‘OQOI...'OO-CCQ.. 119

g'l'ep......'..o...'............o-....‘54

GRT....'........GI‘QCQQCC.C'.......45

. TH=

HALT;-G...'...C....72
",H(altﬂ......I'.............C‘..'.. 14

-1

‘IaI'IGIUde | Files.......'...Q..‘GQOO.'O‘."G‘]- -

.I(nitializeoooococcc-oooa_avcoooeo-ooo 14
‘V‘INP_UTOVO.O..‘...OIC...OO,CO-.OO0.0...75
INSERT 000 ecccccceseceeccccsceo 70
Instauatlon.....u........n......lzo
Llntel'actlve Fﬂes.oo-o¢oooocoooo-oo 75
‘I/O ChG‘CKS...o.........-.....n..60
I/O EX‘I’OI'..-.--.-...-....o........ll
.IORESULTQQOQQC.oo.‘..c.oo.ooo..o 67
I/O ReSUItS......o...............lzl

[

tuACK-ooonoocoonoooocotooo.ovo“oj".w.r

-K-

KEYBOARD.C.‘.............0".."."“.‘7‘5

Key Command...o....‘..'.....'.:."..’.%6
K(ruIICheot--ooeoceoo-oooo 18, 27,32

-L-

L(dlr..ﬁ..'00'.........00‘0‘...02-7 33 :
LENGTH oecoooooocoo.cno.o.'co'o 70
Length Attrlbute.............'0.00]7'
Length Specifier.ceeeeecs..18, 22, 34
LEQ....OOQO..O‘Cl.l....‘........l45
LES...OOQOOOOO0..0..0......'..... 45
lerarlan°0....0..........'...0...105
LIBRARY.CODE...I.I..O..l.l....105

180.00.'0.00.00..10.000.oo.oooo‘o.“o:ss
-M-

M(ake'......00..0.........;..27, 34
NARK.....O.O.."......'....l?z\ \4

mc......‘IOO..C............'.Q... '-’5
mem.....ﬂ.....@..Q'..l.......‘...ss

moreectoooeoecctcccoocctootoo.ooe 55

MOVELEFTC0000.9.'...0‘.0......‘.071
MOVERIGHTOOO0.0....GOQ...CQ.." 71

mv...oﬁ..ﬂ"‘ﬂ...ﬂ.'ﬁ..l....l"'.._55

-N-
NEQ‘.'...QI.IO.........Q"....;‘Q_.O‘Q45

‘N(ew‘.ﬂ.....'...ﬁ....0000.0.0027,“ 34

NOtatlon..Q..ﬂ.'.G..C........'.....2

’NOTE'...'......‘Q.O..l........'..»3

-0-

OTHERWISE...oo...oo.oo.ott.e'o.u73
OUTPUT..O0.0..loon.ouooo.l.'ﬂetv'zs

-pP-

PACKED.cc‘coco-ooo.o.oooouoo"‘a‘ 76
Packed VarlableS..........n... 76
PAGE...-....'ocoooouooocooocoo 0'167
Patchoccooooo.co...coooooo.ooo.-0100
PATCHCODEcoco-.oo-o.'ocooocoo100
PhySlc&l. Seetor MOde......-..-....ﬁs
PlpeS.o.......o.-.-o.oo.-.-..oooo.53 .
?NIX................-........... 50
POS Cececescssscs0cctsesctssnsee 70

Modula Operating System
Index
page 129

P(refiXO...0.00'....0..000 21, 27, 35
Prefix Character..ccecceccccesses 112
;Prefixed.VOlllme.......-...._'.......21
Procedure Parameters..ccccescececces?
PROFILE.TEXT ceececccccssosccceesdd
Program Headings.‘.........-.lii. 77
Program ResultS:eeccecceccacacsessdl
Promptllnes....l........l.......... 4
_Promptst.......0.0l.l....l'....l..os
\PUTOO..O.O..I.C'..l.l'.....'l0'1066
PWROFTEN oo.ooo‘cclooocoloooo¢o72

-Q.—
:QTJI_ET“.._..I......"....'..'.......46

:’,Qll_iet..,Compile.........-...-...... 62
;Q(l-,lit,..ota,ooooouoooo-oco-ooocoo.c-o 35

-R-

RandOm File ACCeSS..........-..u7~5
'Range,ChGCkS.................... 62
.:RE'AD_Q},.....0.0.0C‘..45’ 66, 75, 77
VREADLN..O...OO'.I..Q.O.O..O 66, i
"Redlrectlono-ooon-coccno.noc-coo.- 51
RELEASE ceecesccsccssncaneses?2, T4
R(EMOVE.cceeeeaccsnaarsceasss 27, 35
'4B'E'SETO0.0..00.00.00..00--.Oo 65, 78
REWRITE.-onoocoalooo.aoooc0.65, 78
I‘m...............o.-o-'..-._....... 55

f'RUN....'....,'C.......'.......... 44

..B'(un‘.‘.b‘.....O..l..Q.....0000.00‘011:4

-S-

S(avecoo-ooonooo.ocoooog, 25, 27, 36
SCAN e g |
.SEEK.ooocooo.cocoooo.--cc-oo 67, 75
.:SEGMENT.'....l...l.‘....0000000078
‘Segment ProcedureS...ceeceeceeses 78
Separate Code & Det8.sececcecees 63
Serial Device.eeeseecssacecasasses 18
Sel‘lalTalk.....................-..107
SERIALTALK CODE...............107
“»SET.'...‘.'.'.......'...I..‘..... 45
'getsococcooco-ooounooooooo-ooo.coo79
D:etupoucooooooﬁooc.ooooconoooo'.olll
.‘,"SETU_POCODEQQOQ'ocoﬁnooo»0000000111
;;‘Sh.-.......u-...........n.......56
iSheu.oooo.oc.c.oo-ccoooo-coc.o-oo 50
f_'.S(heuo'oo.oo.-oocooooccoc--oocoootSI
Shell Command Interpreter...esss.. 15

SIZEOF 00 80000000 C¢000000QCEOIOIISIPOSETOSTCOCTDS 72

Sortooo.o.ooooooc.ooooocoooooooooo 56

Space Ba_r‘..fi.:.i.l.g...‘.....l.'...6

Stack Ove‘rﬂo_wo-p,-oooooc-oo’opqo-_'o 11
STKocoocoocogoogoooooa-oo-c009003‘44
Stop/Star,t__K_ey_cpnoooooo-occooooog:g‘o»s
Stl‘ings...,_...,.‘....................80
Syntax Error.cccecccscececccsscecssd9
Syntax EITOrS..ecccessscessss 10, 123
SYSCOM.........'...‘.......'...111
SYSTEM.BATCH :uesseaesoeoess 14, 42
SYSTEMoCOMPILER seccceeseceisec s 13

SYSTEM.EDITOR ¢ eeeecssesscnnnsasald

SYSTEM.FILER ¢ccoevecccccsssnsces 13
System Level-..O.'Q....'Q....Ol... 62

ASYSTEMOMISCINFOOOOO........‘...111

SYSTEM.SHELL.esoscscscacosesld, 51
SYSTEM.SYNTAX sesssvece veseeeeedd

-T =

TQQ.0..0..'.0.0....'..0‘...O..CQ. 44
Target.....l..".‘l..‘....'.. 42 46
TeleTalk..l...l..;..'..‘.0..."0. 109
TELETALK CODE........'IC..C...IOQ
TermanIOgy.C....‘I'..C..l"‘......3
ITEXT.I'I."...l.“.....ll...!'ll 17
Textlines.’;...”,.l‘...‘OVOCC.I......43
Text Mode.eesesecscsssssecoscsaeesedd

TIME.. c;_o o‘nlorovc c)o"_oyo’. (E RN NER R NN N NN 72
T(ranSfel‘.,.. ®0e0scsesssscsrcone 27, 37

.._U.-.. . 4
UCSD Paseal SySteﬁl...‘.OOOCOUOOOOI

\Lnlt.......I.....'.........‘.......3

"‘UNITCLEAR....C....‘C.l..‘.l.".! 68

Unlt Number.........‘.".'00003, 18
UNITREAD...'O.Q.0...0.'...'.‘...68
UNITSTATUS...I'Q..'O.........0..69

'UNITWRITE....‘......'........... 68
.‘UNPACK.....C...........C.Q.'...
.U(Ser ReStart.....................15

7 :

-V -

Vectol‘ Keys-onooooooooocc\?oooooooze
"VERBOSE.....'.‘.........IQ(.‘Q..46
Vel‘Slon Numbel‘so.-.....--....W....._‘.‘l

Volume Name............‘ :
V°1umes.00000000000000000.0000000018
v(01umesC.C..I.......000000.0Q27, 38

Modula Operating System
Index
page 130

-W-
wARNING..'.O......‘.'.'......'.‘.3

wc..lC'.l........"'...‘.....'.IQ 56
w(hat..CI..'...0‘0......'!.0' 27, 38
Wildcard3000000000.23, 24’ 25, 28, 52
Work Code Filecececvecscocnscsecead
Work Fileeeeeeeeees 9, 14, 31, 34, 36
work Text Fﬂe...l...,'...........g
WRITE.C.'.OQC...‘O..‘44, 66’ 75, 80
wRITELN.....IOI.’...'...44’ 66’ 80

-X -

X(EMIN€.esseeeoseresonecs 27, 28, 39
X(ecute.'l0...'..“....0...0....'..15

-Y.s

YALOE.‘...lﬂi.....Oil9......'...83
YALOE'CODEO°00..0‘..0....'..0’. 84

-7 - |
Z(ero.I..‘;0.0.0000.00;000000.27’ 40

	0_001
	0_002
	0_003
	0_004
	1_001
	1_002
	1_003
	1_004
	1_01
	1_02
	1_03
	1_04
	1_05
	1_06
	1_07
	2_001
	2_002
	2_003
	2_004
	2_01
	2_02
	2_03
	2_04
	2_05
	2_06
	2_07
	2_08
	2_09
	2_10
	2_11
	2_12
	2_13
	2_14
	2_15
	2_16
	2_17
	2_18
	2_19
	2_20
	2_21
	2_22
	2_23
	2_24
	2_25
	2_26
	2_27
	2_28
	2_29
	2_30
	2_31
	2_32
	2_33
	2_34
	2_35
	2_36
	2_37
	2_38
	2_39
	2_40
	2_41
	2_42
	2_43
	2_44
	2_45
	2_46
	2_47
	2_48
	2_49
	2_50
	2_51
	2_52
	2_53
	2_54
	2_55
	2_56
	2_57
	2_58
	2_59
	2_60
	2_61
	2_62
	2_63
	2_64
	2_65
	2_66
	2_67
	2_68
	2_69
	2_70
	2_71
	2_72
	2_73
	2_74
	2_75
	2_76
	2_77
	2_78
	2_79
	3_01
	3_02
	3_03
	3_04
	3_05
	3_06
	3_07
	3_08
	3_09
	3_10
	3_11
	3_12
	3_13
	3_14
	3_15
	3_16
	3_17
	3_18
	3_19
	3_20
	3_21
	3_22
	3_23
	3_24
	3_25
	3_26
	3_27
	3_28
	3_29
	3_30
	3_31
	3_32
	3_33
	3_34
	3_35
	3_36
	3_37
	3_38
	4_001
	4_002
	4_01
	4_02
	4_03
	4_04
	4_05
	4_06
	4_07
	4_08
	4_09
	4_10
	4_11
	4_12
	4_13
	4_14
	4_15
	4_16
	5_001
	5_002
	5_003
	5_004
	5_01
	5_02
	5_03
	5_04
	5_05
	5_06
	5_07
	5_08
	5_09
	5_10
	5_11
	5_12
	5_13
	5_14
	5_15
	5_16
	5_17
	5_18
	5_19
	5_20
	5_21
	5_22
	5_23
	5_24
	5_25
	5_26
	5_27
	5_28
	5_29
	5_30
	5_31
	5_32
	5_33
	5_34
	5_35
	5_36
	5_37
	5_38
	5_39
	5_40
	5_41
	5_42
	5_43
	5_44
	5_45
	5_46
	5_47
	5_48
	5_49
	5_50
	5_51
	5_52
	5_53
	5_54
	5_55
	5_56
	5_57
	5_58
	5_59
	5_60
	5_61
	5_62
	5_63
	5_64
	5_65
	5_66
	5_67
	5_68
	5_69
	5_70
	5_71
	5_72
	5_73
	6_001
	6_002
	6_01
	6_02
	6_03
	6_04
	6_05
	6_06
	6_07
	6_08
	6_09
	6_10
	6_11
	6_12
	6_13
	6_14
	6_15
	6_16
	6_17
	6_18
	6_19
	6_20
	6_21
	6_22
	6_23
	6_24
	6_25
	6_26
	6_27
	6_28
	6_29
	6_30
	6_31
	6_32
	6_33
	6_34
	6_35
	6_36
	6_37
	6_38
	7_0001
	7_0002
	7_0003
	7_0004
	7_0005
	7_0006
	7_0007
	7_001
	7_002
	7_003
	7_004
	7_005
	7_006
	7_007
	7_008
	7_009
	7_010
	7_011
	7_012
	7_013
	7_014
	7_015
	7_016
	7_017
	7_018
	7_019
	7_020
	7_021
	7_022
	7_023
	7_024
	7_025
	7_026
	7_027
	7_028
	7_029
	7_030
	7_031
	7_032
	7_033
	7_034
	7_035
	7_036
	7_037
	7_038
	7_039
	7_040
	7_041
	7_042
	7_043
	7_044
	7_045
	7_046
	7_047
	7_048
	7_049
	7_050
	7_051
	7_052
	7_053
	7_054
	7_055
	7_056
	7_057
	7_058
	7_059
	7_060
	7_061
	7_062
	7_063
	7_064
	7_065
	7_066
	7_067
	7_068
	7_069
	7_070
	7_071
	7_072
	7_073
	7_074
	7_075
	7_076
	7_077
	7_078
	7_079
	7_080
	7_081
	7_082
	7_083
	7_084
	7_085
	7_086
	7_087
	7_088
	7_089
	7_090
	7_091
	7_092
	7_093
	7_094
	7_095
	7_096
	7_097
	7_098
	7_099
	7_100
	7_101
	7_102
	7_103
	7_104
	7_105
	7_106
	7_107
	7_108
	7_109
	7_110
	7_111
	7_112
	7_113
	7_114
	7_115
	7_116
	7_117
	7_118
	7_119
	7_120
	7_121
	7_122
	7_123
	7_124
	7_125
	7_126
	7_127
	7_128
	7_129
	7_130

