
vs
Linker Reference

Release 7 Series

r

vs
Linker Ref ere nee
Release 7 Series

1st Edition - October 1988
Copyright © Wang Laboratories, Inc., 1988
715-1145

''i'14§8
WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 TEL. (508) 459-5000, TELEX 172108

Disclaimer of Warranties and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing this manual. However,
nothing contained herein modifies or alters in any way the standard terms and conditions of the
Wang purchase, lease, or license agreement by which the product was acquired, nor increases in
any way Wang's liability to the customer. In no event shall Wang or its subsidiaries be liable for
incidental or consequential damages in connection with or arising from the use of the product,
the accompanying manual, or any related materials.

Software Notice

All Wang Program Products (software) are licensed to customers in accordance with the terms
and conditions of the Wang Standard Software License. No title or ownership of Wang software
is transferred, and any use of the software beyond the terms of the aforesaid license, without the
written authorization of Wang, is prohibited.

Warning

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and
used in accordance with the instructions manual, may cause interference to radio communica­
tions. It has been tested and found to comply with the limits for a Class A computing device,
pursuant to Subpart J of Part 15 of FCC rules, which are designed to provide reasonable protec­
tion against such interference when operated in a commercial environment. Operation of this
equipment in a residential area is likely to cause interference, in which case the user, at his own
expense, will be required to take whatever measures may be required to correct the interference.

r

CONTENTS

HOW TO USE THIS MANUAL

CHAPTER 1 INTRODUCTION TO THE VS LINKER

1. 1 Introduction . . • • • . . • • . . • . • • . • . . • • • . • . • . . • . . . • • 1-1
1. 2 Linker Terms • . • . • • • . • • • . • . . • . . • • • • . • . • • • . . . 1-4

Program Fi 1 e • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • . • • • • • • • • • • 1-4
Object Code Format.................................... 1-4
Program Section, Module, or Subroutine ••.•......•.•••• 1-4
Entry Point • . • • • • • • . • • • • . • • • . • • • • • . . . • • • . • • • • • • 1-5
Syrnbo 1 ••
Symbolic Reference ••••••••••••••••••••••••••••••••••••
Static Subroutine Library •..•...••••••.••.•••••.•••..•

1-5
1-5
1-6

Shared Subroutine Library............................. 1-6
Alias • • • • . . • • • . • • • • • • • • • • . • • • • . . . • • • • • 1-6
Resolution • • • • . . . • . • • • • • . • . . • • • • • • • • • . . • • • • . • • • . • • • . • • 1-7

1. 3 Linker Features • • . . • • • . • • • • • . • . . . • • . • • . • • • • • . . • • • • • 1-7
1.4 Linker Functions•••••••..••••••.•.••••.•.•••.. 1-8
1.5 Linker Help Facilities •....•••.••..•••••••••.•.•.•••••.. 1-9

Using Help Text .•.••••.•••••••••••••••••••••••••.•••••
Using the Link Map ••••••••••••••••••••••••••••••••••••

1.6 The Linker User Interface ...•••••••.•••.•••..••••...••••
Linker Screen Organization •••••..•••.••••••••..•••••.•

1.7 Overview of the Linking Process ••..•••••••••..••.....•••
Initiating the Linker •••.•.•••.•.•••••..••••••..••••.•
Specifying Linker Options ..••••.••••..•••.....•.•••..•
Specifying Input Program Files •••••••...•••••..••••...
Specifying Static Subroutine Libraries •••....•...•.•••
Specifying More Input Files

or Shared Subroutine Libraries •••••..•••.•••.•••••.•
Specifying Additional Input Information •••.....•..•...
Specifying the Output Program File•.•.•....
Providing Additional Output Information ..•..••••.••..•
Building the Output File ••••.•...••••....••••.••••••.•

1. 8 Comparison to the Previous Linker •..••..•••••..••.•..•••
1. 9 Operating Environment•.••.•..•••.•.....•.••..•••••.•

iii

1-9
1-11
1-11
1-11
1-13
1-14
1-15
1-15
1-15

1-15
1-16
1-16
1-16
1-16
1-16
1-18

CONTENTS <continued> ·

CHAPTER 2 COMPONENTS OF THE LINK

2 .1 Introduction . 2-1
2.2 Input Files . 2-1
2.3 Subroutine Libraries ••.••••.••••••••••••..••••••..•••••• 2-2

Static Subroutine Libraries ••.••.••••.•.•••••••••••••• 2-2
Shared Subroutine Libraries •....••••••.•...........•.. 2-3
Programming Language Requirements for

Subroutine Libraries .••••••••••••.•••••••••.•••••••• 2-4
2.4 The Link Map .••...••.............•.........•......••••.. 2-5

Link Map Topics . 2-5
2. 5 Warning Messages • • . . • • • • • . • • • . • • • • • • • . • . • • . . • 2-9
2.6 The Output File •••••.....••.••.•.••.•..••.•••••••••••••• 2-10

CHAPTER 3 LINKER FUNCTIONS AND RUNNING MODES

3.1 Linker Functions •......••.•...•••••••••••••........•••.. 3-1
Linking Program Modules ••••••.......•••.••••••.••••.•• 3-1
Replacing Program Modules . • • • • • • • . • • • • . • . . . • • . • • • • • • • • 3-2
Creating and Maintaining Subroutine Libraries ••....•.• 3-3

3. 2 Running Modes . 3-3
Running the Linker Interactively •...•••••••••••••••••• 3-4
Using VS Procedures to Run the Linker .••••••••.•••••.• 3-4 ~

CHAPTER 4 THE LINKING PROCESS

4 .1 Introduction . 4-1
4.2 Specifying the Linker Options •.•..•••.•••••••••••••••••• 4-3

Managing the Symbolic Debugging Data .•••.••••••.•••••• 4-5
Specifying Additional Linker Options •••...•••....••••. 4-6

4.3 Specifying Input • . . • . • • • • • • • • • • . . • • • • • • • • • • • • • 4-8
Specifying a Library •••••••.•...••••••••.•••.•..••.... 4-10
Managing Unopened Files .••••..••••••••••••••.•..•••.•• 4-13
Managing Invalid Files •.••••••••.••.•••••••••••••••.•• 4-15
Excluding Sections from the Link •••.•....••••.....•••. 4-16
Resolving Duplicate Section Names •..•••••••••••••••••• 4-18
Resolution Process for Undefined Symbols •••••.••.•.••. 4-20
Resolving Undefined Symbols by the LIBRARY

Screen •.•• • • • • ••...•••. • • • •. • • • • • • . • • • . . • . . . • • • • 4-2 2
Resolving Undefined Symbols by the RESOLVE

Screen • • • • • • • • • • • • • • • • ..•. •. • • • • • • .• •. • • • • • • •• • • 4-24

iv

,_

4.4

CONTENTS C continued>

Naming and Describing the Output File .•••••.•.••••.••••. 4-28
Inspecting, Modifying, or Creating the

Access List ... 4-31
Specifying Link Map Print Options ••••••.•••..••••.•••• 4-33
Reordering Program Sections .•.•••••••••••.••••..••••.. 4-36
Assigning Aliases for Shared

Subroutine Library Symbols • • • • • • • • • • • • • . • . • • • • . . • • • . 4-40
Managing the Entry Point Reference (EPR) Table •••.••.• 4-42

4.5 Common Functions .. 4-45
Displaying the Link Map ••.•..••...•••.•..•••••••.••.•• 4-45
Restarting the Linker ••..••••••..•••••..•••••••••••.•• 4-46
Exiting the Linker • • • • • • . • . • • • • . . • • • • • . • • • • • • . • • • • • • . . 4-4 7

4.6 Building the Output File •••••••...•••••••••••.•••••••••• 4-47

CHAPTER 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

APPENDIX A

A.1
A. 2

LINKER GETPARM INFORMATION FOR VS PROCEDURES

Introduction
The ALIASES Screen•.............
The ENTRY Screen ...••••••••.•.•••••••••••••.•.•••.•••••.
The EXCLUDE Screen ••••••••.••••••••••••••..•••••••••••••
The FILELIST Screen ••••••••.•••••••••••..•••••..••••••••
The INPUT Screen ...•....••••••.•...••....••.........•••.
The LIBRARY Screen ..•••••••••••••••••••••••••.••••..•••.
The OPTIONS Screen ..•••••••••.••••••••••.••••.•••....••.

5-1
5-2
5-3
5-5
5-6
5-7
5-8
5-9

The OUTPUT Screen . . . • • • • • • . • • . • . • • • . . • . . • • • • . . . • • • . . • . • . 5-11
The OVERRIDE Screen •••••••.•.•••••.•.••••••.•.•••..•••.. 5-13
The PRINT Screen . • 5-15

The REORDER Screen············~························· 5-16
The RESOLVE Screen •••••••••••••••..••••••••••••.••.••••• 5-18
The SSLALIAS Screen••••••••••••••••••••••••············· 5-19

LINK MAPS

Introduction
Example of a Program Link •••••••.•.•••••••••••••••••••••

VS Procedure for Linking a Program •••••••••.•••.•.••.•
Program Link Map Input Log ••..••••.••••••••••••••.•
Program Link Map Input Files ••••••••••••••••••••••.
Program Link Map Linked Code Sections .•••.•••.••••.
Program Link Map Linked Static Sections ••••••••••••
Program Link Map Cross-Reference by Address ••••••••
Program Link Map Cross-Reference by Symbol •••.••••.

v

A-1
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8

CONTENTS (continued)

Program Link Map -- SSL Symbols and Assigned
Aliases . A-9

Program Link Map Undefined Symbols .•••.•...••••••.• A-10
Program Link Map -- Output Statistics •••.••••..••••••• A-10
Program Link Map -- Warning Messages •••••••••.•.•••••• A-10

A.3 Example of Creating a Shared Subroutine
Library (SSL) -. . • • • . • . . . A-11

VS Procedure for Linking a Shared Subroutine
Library (SSL) . A-11

SSL Link Map Input Log .••••.••••..•. • • • . . . • . • • • • • • . • A-12
SSL Link Map Input Files •••..•.•..•.••••....••••••. A-13
SSL Link Map Linked Code Sections •••...•••••.•••.•• A-13
SSL Link Map Linked Static Sections •••.•...•••••.•• A-13
SSL Link Map Cross-Reference by Address ••..•..••••• A-14
SSL Link Map Cross-Reference by Symbol .•••...•••••• A-14
SSL Link Map Base-Dependent Code Sections •...•••••• A-15
SSL Link Map Subroutine Library

Entry Point Names • • . • . • . • . • • . . • • • • • . . • • • • • • • • . . • A-15
SSL Link Map -- Output Statistics •••.....•.•...•••••.. A-15

APPENDIX B DUPLICATE SECTIONS

B. 1 Introduction . B-1
B.2
B.3
B.4

B.5
B.6

APPENDIX C

How Duplicate Sections Occur .•.•...•••.••.......••.••.•• B-1
How Duplicate Sections are Reported••......•••.••• B-2
Program Link Map -- Linked Static Section

With Duplicate Sec ti on Omitted • • • • • • • . . • • • • B-3
Program Link Map -- Duplicate Sections•.••....•••••. B-4
How the Linker Resolves Duplicate Section Names ••••••••• B-4

Complications Encountered With Duplicate
Section Names . B-6

Information Maintained by the Linker to
Resolve Duplicate Section Names ••..•..••....•••..•.. B-7

BASE-DEPENDENT CODE SECTIONS

C. 1 Introduction . C-1
C.2 What Base-Dependent Code Is •••...•••....••••...•••.•.... C-1
C.3 Why Base-Dependent Code Cannot be Included

in a Shared Subroutine Library • . • . . . • • • • • . . . • • . • C-2
C.4 What to do When Base-Dependent Code is Reported .•....••. C-2
C.5 SSL Link Map Base-Dependent Code Sections•.••••• C-4
C.6 SSL Link Map Warning Messages•••....•...••.... C-4
C.7 SSL Link Map Cross-Reference by Address •......••••... C-4

vi

'~ ,_

r--..
~

APPENDIX D

D.l
D.2
D. 3

APPENDIX E

INDEX

CONTENTS <continued)

ERROR MESSAGES

Introdu·ctlon •.•••••••......••••••...••••••..••••....•••..•
Linker Err-or Messages • • .••••••••••• • •••••• • •••...••••.••
Linker Error Codes

GLOSSARY

vii

D-1
D-1
D-7

Figure 1-1
Figure 1-2

Figure 1-3
Figure 1-4
Figure 1-5
Figure 3-1
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17
Figure 4-18
Figure 4-19
Figure 4-20
Figure 4-21
Figure 4-22

Table B-1

FIGURES

Creation of a Linked Program File •••••••••••••••••••••••••
Replacement of an Existing Module

in a Linked Program File ••••••••••••••••••••••••••••
Sample Linker Help Text Screen ••••••••••••••••••••••
Sample Linker Screens ••••••••••••••••••••••••••
Creation of a Linked Program •••••• • ••••••••••••••••
Using a Procedure to Replace a Program Module ••••••••••
Linker Screen Flow •.••••••••••••••••••••••••••••.•••••
The OPTIONS Screen •••••.•••••
The MOREOPT Screen
The INPUT Screen
The FILELIST Screen

...............
.......................................
..................................
...................................

The UNOPENED Screen
The INVALID Screen
The EXCLUDE Screen
The DUPSECT Screen
The LIBRARY Screen
The RESOLVE Screen
The ALIASES Screen
The OUTPUT Screen

.....................................

.....................................

The USERS Screen
The GROUPS Screen
The PRINT Screen
The REORDER Screen
The SSLALIAS Screen
The ENTRY Screen
The VIEWMAP Screen
The RESTART Screen
The TERMINATE Screen

....................
.......................

...................................
.................

TABLES

Selection Rules for Duplicate Sections ••••.•••••••••..••••

viii

1-2

1-3
1-10
1-12
1-14

3-2
4-2
4-3
4-6
4-9

4-11
4-13
4-15
4-17
4-19
4-22
4-24
4-26
4-28
4-31
4-32
4-34
4-37
4-41
4-43
4-45
4-46
4-47

B-5

HOW TO USE THIS MANUAL

INTENDED AUDIENCE

This manual is written for VS programmers who require the use of a
linker. Familiarity with the VS Operating System is assumed.

STRUCTURE

This manual consists of 5 chapters. In addition, there are five
appendixes, the last of which is a glossary. The material in each
chapter and appendix is organized in the following way:

• Chapter 1 provides an overview of the VS LINKER. It defines
Linker terms and describes the Linker user interface, Linker
features and functions, and the Linking process. It also compares
the Linker with the previous Linker and describes its operating
environment.

• Chapter 2 describes the components of the link. Included is a
full description of a new feature: shared subroutine libraries.

• Chapter 3 explains Linker functions and describes how the Linker
can be run interactively or by a VS Procedure.

• Chapter 4 describes the entire linking process in detail.

• Chapter 5 provides all the GETPARM information that is required
for writing VS Procedures for the Linker.

• Appendix A shows two link maps, one for a program link and one for
the linking of a shared subroutine library (SSL).

• Appendix B explains the default selection process that the Linker
uses if it finds sections with the same name.

ix

• Appendix C describes the significance of base-dependent code and
why it must be removed from a shared subroutine library (SSL).

• Appendix D lists and describes the Linker error messages.

• Appendix E provides a list of Linker terms and their definitions.

RELATED DOCUMENTATION

For further information on related topics, consult the following
documents:

• VS Operating System Services Reference (715-0423A)

• VS System Administrator's Reference (715-0420)

• VS Procedure Language Reference (800-1205-06)

• VS System User's Introduction (715-0417A)

x

r

CHAPTER 1
INTRODUCTION TO THE VS LINKER

1.1 INTRODUCTION

The Wang VS LINKER (or simply, Linker) assembles separately compiled
or assembled program modules into a single executable program. In
addition, the Linker creates and maintains subroutine libraries. The
Linker enables you to perform the following tasks:

• Link together specified program modules

• Replace linked program modules with other specified modules

• Create and maintain subroutine libraries of frequently used
program modules

• Link subroutines from subroutine libraries as needed by the output
program file being created

• Access program modules written by other programmers

• Access program modules written in various programming languages

Programs that call external subroutines must be linked, since the
subroutines are not a physical part of the program. When all
specified modules are linked, you have a single linked program file
that consists of the main program file, specified input files, and
called program modules. Figure 1-1 shows the creation of a linked
program file.

Introduction to the VS Linker 1-1

MODULE A

A

MODULEB LINKER
B

c

MODULEC X1

Y3

X1 Y1 PROGRAM D

X2 Y2

X3 Y3

SUBLIBX SUBLIB Y

Figure 1-1. Creation of a Linked Program File

When you recompile one or more object modules of a linked program
file, you can use the Linker to insert them into the file, replacing·
existing modules with the same name. You do not need to relink all the
modules individually. You can perform this task by selectively
choosing from the duplicate module names.

Figure 1-2 shows the replacement of an existing module in a linked
program file.

1-2 Introduction to the VS Linker

NEWMODB

A

LINKER NEWMODB

MODULE A c

MODULES NEW PROGRAM D

MODULEC

PROGRAMD

Figure 1-2. Replacement of an Existing Module in a Linked
Program File

Note: In cases where confusion might arise, the current version of
the VS LINKER is referred to as the new Linker, and the previous
version as the previous Linker. Otherwise, the current version is
referred to as the Linker.

The new Linker incorporates a more efficient method for organizing and
linking subroutines than the previous Linker. In the past, there was
one type of subroutine file that was added to the object file during
the link. The entire file had to be linked, even if the program
needed only certain subroutines contained in the file.

The new Linker links only the required subroutines of a subroutine
file at linktime. It also utilizes a new type of subroutine library
called a shared subroutine library, which is accessed at runtime
rather than linktime, and can be shared by other programs.

Introduction to the VS Linker 1-3

1.2 LINKER TERMS

To effectively use the functions available with the Linker, you must
be familiar with certain Linker terms. This section defines the key
terms that all users must understand to perform the operations
described in later chapters.

1.2.1 Program File

1.2.2

1.2.3

A program file is a consecutive file that contains 1024-byte records.
It is distinguished from other types of files by having the program
file flag set in its file descriptor record. The contents of a
program file are restricted to a single object code format (refer to
Section 1. 2. 2) •

Object Code Format

An object code format is a set of rules that apply to the collection
of blocks of information that make up a program file. Each block
represents data required by a VS system component to accomplish any of
the following tasks:

•
•
•

Load the program into memory
Perform symbolic debugging when the program is run
Combine the program file with other program files

There are currently two object code formats described for the VS;
Version 0 which applies to operating systems that precede
Release 7.10, and Version 1 which applies to Release 7.10 and all
subsequent operating systems. For more information on object code
formats, refer to the VS Operating System Services Reference.

Program Section, Module, or Subroutine

A program section (also referred to as a module or subroutine), is a
program unit that can be compiled or assembled independently of other
units. Examples of program sections include PL/I modules, FORTRAN 77
labelled common areas, and static and code sections in Assembly
language.

There are two types of program sections: static sections, which
contain the program variables, and code sections, which contain the
program statements that act on the variables.

1-4 Introduction to the VS Linker

~__.·

1.2.4

1.2.5

1.2.6

Entry Point

An entry point is the point that initiates the processing of the
linked program or module; that is, the point at which the execution of
the program or module begins. An entry point name is the name of a
symbol (refer to Section 1.2.5) that references an entry point.

Symbol

A symbol is either a program section name, an entry point name defined
in the section, or an external reference (a reference to an entity
located in a section outside of the current section). The value of a
symbol is the entry point address of the entity that the symbol refers
to. A symbol is defined (or resolved) if its value can be determined;
otherwise, it is undefined (or unresolved).

Symbols are classified as either shared subroutine library symbols, or
user-specified symbols. Shared subroutine library symbols are symbols
that are defined in subroutines that can be shared between tasks at
runtime. Examples of shared subroutine library symbols include
symbols that refer to the routines in a shared subroutine library
(refer to Section 1.2.8), DMS routines, and system services routines.
Any symbols that are not shared subroutine library symbols are
referred to as user-Sf 3Cified symbols.

Symbolic Reference

A symbolic reference is the use of a particular symbol at a location
other than at the exact location where it is defined. For example, if
Symbol A in Routine 1 is defined elsewhere in that routine, or in some
other routine, then Symbol A is classified as a symbolic reference.

An internal symbolic reference refers to a symbol defined in the same
section as the symbolic reference; an external symbolic reference
refers to a symbol defined in a section other than the one in which it
appears.

A code symbolic reference originates in a code section, while a static
symbolic reference originates in a static section.

Introduction to the VS Linker 1-5

1.2.7 Static Subroutine Library

A static subroutine library contains subroutines that are selectively
linked as needed at linktime, and cannot be shared by other programs
at runtime. A link at linktime is referred to as a static link. The
subroutines contained in a static subroutine library are called static
subroutines.

The Linker supports a new type of static subroutine library that is
contained in a single VS file. From this file, the Linker selects
subroutines needed to resolve undefined symbols.

The previous type of static subroutine library is also supported for
upward compatibility. This type consists of a single VS library, each
file containing one or more subroutines. The Linker links one of the
files only if its file name matches an undefined symbol.

1.2.8 Shared Subroutine Library

A shared subroutine library is a single VS file, which contains
subroutines that are selectively accessed at runtime as opposed to
linktime. Subroutines are loaded into memory as required, when
programs that reference them are loaded. A link at runtime is
referred to as a dynamic link.

For shared subroutines ref erred to in a program, the Linker inserts
pointers to the subroutines referred to instead of incorporating the
subroutines into the object code. Then, at runtime, the subroutines
are accessed through the pointers. Subroutines in a shared subroutine
library can be shared by multiple programs that are running
concurrently.

1.2.9 Alias

An alias is a name of up to 40 characters assigned to each shared
subroutine library by the system security administrator. This
assignment is made using the SSL utility, which is described in the
VS System Administrator's Reference.

The Linker uses aliases to refer to and verify shared subroutine
libraries at linktime. At loadtime, when a program section refers to
a module contained in a shared subroutine library, the Loader uses the
alias of the shared subroutine library to access the subroutine and
load it into memory prior to program execution.

1-6 Introduction to the VS Linker

r

1.2.10 Resolution

Resolution is the process of making an undefined (unresolved) symbol
defined (resolved). Static resolution is performed by the Linker at
linktime to resolve user-specified symbols only. Dynamic resolution
is performed at runtime by the Run processor to resolve shared
subroutine library symbols.

Individual program files, which are input to the Linker, generally
contain external symbolic references; that is, references to symbols
not defined in the input file. The Linker attempts to resolve these
references by first searching for the symbols in the specified input
files, then in static subroutine libraries, and finally in shared
subroutine libraries. Note that the Linker searches shared subroutine
libraries only if one or more aliases are supplied in the input file.

1.3 LINKER FEATURES

A summary of the significant Linker features follows:

Program File Linking -- You can select the program files to be
linked. The Linker statically resolves any undefined user-specified
symbols, or dynamically resolves any undefined shared subroutine
library symbols.

Three Operational Modes -- You can run the Linker interactively in
the foreground, by procedure in the foreground, or by procedure in
the background.

Improved Static Subroutine Library Mechanism -- The Linker
incorporates an improved static subroutine library mechanism that is
not dependent on file names, and uses only required subroutines of
subroutine library files.

Shared Subroutine Libraries -- The Linker enables you to create
shared subroutine libraries and to utilize them in user programs.

Debugging -- The Linker fully supports the Debugger.

Help Facilities -- The Linker provides interactive program
assistance in two forms: an on-line Help text facility and a
displayable link map in progress.

Link Map -- The Linker enables you to create and print a link map:
a comprehensive listing of the completed link.

Object Format Translation -- The Linker can be used to translate a
Version 0 object format program file to a program file in Version 1
object format.

Introduction to the VS Linker 1-7

Optional Output Format -- The Linker enables you to specify an
optional output format (Format 0) that is compatible with Release 6
of the operating system. The Release 7 operating system executes
both Format 0 and Format 1 object code, but Release 6 and earlier
operating systems recognize only Format 0: they cannot load and
execute Format 1 object code.

1.4 LINKER FUNCTIONS

The Linker executes the following functions in a typical linking
session:

• Accepts the input files, and selects from each file the code and
static sections that are to be linked

• Resolves any undefined symbols, using user-specified input files,
static subroutine libraries, and shared subroutine libraries

• Organizes the selected code and static sections into two separate
sections, each of which will occupy a contiguous virtual memory
location when loaded

• Optionally removes symbolic debug information, thereby reducing
the size of the program, but preventing the use of symbolic
debugging features

• Creates a list of symbols that were referenced in the link, and a
list of corresponding aliases for shared subroutine library symbols

• Organizes the output file in Format 1 object code format (or
optionally, Format O), including any optionally specified
information

• Optionally creates a link map print file

• Optionally reorders the linked sections in the output

• Optionally designates or modifies alias names for symbols
referenced in the linked output

• Optionally displays a list of subroutine library entry point names
for a static or shared subroutine library output file, and
provides the option to select entry point names to be included in
the output file

\

1-8 Introduction to the VS Linker

~
'-

1.5 LINKER HELP FACILITIES

1.5.1

The Linker incorporates the following Help facilities to provide users
with assistance if needed during the linking process. Since these
features require the use of the workstation screen, the Linker can
operate in Help mode only when it is executing in the foreground.

Help text -- You can invoke the VS INFO utility, an on-line
information and help facility, to display user instructional Help
text.

Link Map You can invoke the Display utility to examine portions
of the link map in various stages of its creation.

Using Help Text

Help text is available from all Linker screens. It displays on-line
information about the Linker screen from which it is referenced. Help
text also provides conceptual information on the Linker, a glossary of
terms, and error message definitions.

When you press PF13, the Linker accesses the VS INFO utility, which
displays the first page of Help text for that screen. This contains a
brief description of the purpose of the screen and several numeric
references for more specific information.

You access specific information for the referenced screen, or for
other portions of the Help text, by positioning the cursor on one of
the reference numbers and pressing ENTER. The VS INFO utility
automatically takes you to the portion of the Help text with that
reference number. You can continue searching through the Help text by
positioning the cursor on a reference number and pressing ENTER.
Figure 1-3 shows a sample Linker Help text screen.

Introduction to the VS Linker 1-9

Figure 1-3. Sample Linker Help Text Screen

You can scroll through the Help text by using the following PF keys:

PF Key Description

2 First -- Positions you at the beginning of the Help text for
the Linker, i.e., Help Text 1.0.

3 Last -- Positions you at the end of the Help text for the
Linker.

4 Prev -- Positions you at the previous screen of the Help
text.

5 Next Positions you at the next screen of the Help text.

6 Down Positions you one line lower in the Help text.

7 Up -- Positions you one line higher in the Help text.

When you finish using the Help text, press PF16 to return to the
Linker screen from which you invoked the Help text.

1-10 Introduction to the VS Linker

r.

1.5.2 Using the Link Map

The link map displays extensive information about various results of
the link, such as the input log, input files, linked code sections,
etc. You can examine the contents of this map from most Linker
screens, in various stages of its creation. This is done by pressing
PF14. For detailed information on the link map, refer to Section 2.4.

1.6 THE LINKER USER INTERFACE

The Linker is menu-driven and guides you with clear screen
explanations, prompts, and messages. You can create VS procedures
that access and operate on most Linker screens. For information on
creating VS procedures using Linker prnames and keywords, refer to
Section 3.2.2 and Chapter 5.

1.6.1 Linker Screen Organization

Each Linker screen consists of the following sections:

• Screen title
• Instruction text
• List or attribute display
• PF keys

Figure 1-4 shows the FILELIST screen and the OUTPUT screen as sample
Linker screens.

Introduction to the VS Linker 1-11

. iQeHN;QtitpUf Ptramet'!rs •
'f: . ~~ ~

,': •••• ~·;~:~; .~.•~._,, •< ;~~·:~·· u, • :· • • • '•,

!IO~U~E. :qB_ili\R,v:· ···>fJ~E .. . P.Mff4!4·· ~~~.~1"~· ,,,.,.,

{:-}'~~f~,J!'~~~gi;y·• ·16)' Inclu!lli~ ap
i(13~;J:t~lp ;Qp.:m:i~ .i~put. ~P~· ~,t~ :~~& Ji~e?. . \ REPLACE ... Nb,.

.~~r.:eate·A- 111!.~ ll1!.P~ •.. ' - . '~. ~EOP .. R"·o·.·E·R· .. Y£S·;
,~eo.~~r'!1!'~Pu~~.Af.q~t,a111 ~et;tl,'1ils1. . . •. . . . 11 • No.~:
Ravi~w,·i;~if ~S~t;9'1'ca1i~.~I!:~ ~9;~!;;,i}i~ol~? · At}~s.· ~ ~··•

.l\~)!i;M?f~~fcij1 ·e1~ft•J ~:t~~AS ... -~. . ,Aq4rsr ~ NCJ~
!le,~~n~'t,t!l!-\:P..11ff~!:l;k . :11&t. .. orr.d.ay{' - '

~~~i?~~~~~~;::;~t:! .. , '. ··~~ /.' .. ::. =-~-~;~~==~:::;::::~:;~~;~:~~t~~~~t '; 
Off~e~,'..f~!l)'Mtry· ~ai)lliJ .:: .. _ · ENOF.1'.S,Et,. OOObOl>UHg>c) . .. . . ... : ,. .. . . . 
Y.~J!~i,on,.)1:111\!(b&r-: '"0' '· -·~ • •o· · _ ~~111~,s~;J~.~~:- "8 .. '/'o3·l.' I 88 ll:IH/DD/:'&) 

Figure 1-4. Sample Linker Screens 

Most Linker screens have both an abbreviated screen title and a full 
screen title. The abbreviated screen title, which appears in the left 
hand corner of Line 1, is used in this manual to refer to the screen. 
It also serves as the prnarne for the screen if the screen can be used 
in a procedure. The full screen title, which appears centered on 
Line 1, indicates the service that the screen provides. 

The instruction text briefly explains how to use the screen options. 
For example, the FILELIST screen instruction text tells you how to 
choose files to be included in the link. The List or Attribute 
Display section of any Linker screen contains either of the following 
entities: 

• A list of items for selection 

• The attributes for a specific item that you may wish to specify or 
manage 

For example, the FILELIST screen lists files for you to select. The 
OUTPUT screen displays the attributes of the output file; some require 
entry of information; others require examination (those with supplied 
defaults). 

The PF keys enable you to select functions listed on the screen. 

1-12 Introduction to the VS Linker 



1.7 

r. 

OVERVIEW OF THE LINKING PROCESS 

This section provides a general overview of the linking process. Each 
part refers to one or more Linker screens that are described in detail 
in later chapters. 

The linking process consists of the following steps: 

• Initiating the Linker 

• Specifying the options to be used in the link 

• Specifying the input file(s) to be used·in the link 

• Specifying static subroutine libraries, if needed, to resolve 
symbols 

• Specifying more input files, or aliases for shared subroutine 
libraries, if needed, to resolve undefined symbols 

• Including additional input information requested by the Linker, as 
a result of the options you chose 

• Naming and describing the output file that will contain the linked 
program 

• Including additional output information requested by the Linker, 
as a result of the output options you chose 

• Building the output file 

Introduction to the VS Linker 1-13 



Figure 1-5 shows the process of creating a linked program. 

I I I I I 
~--D ~ 

L _J L _J L 
SPECIFY SPECIFY SPECIFY INCLUDE NAMEAND INCLUDE BUILD 

ADDITIONAL OUTPUT LINKER INPUT SUBROUTINE ADDITIONAL DESCRIBE 

OPTIONS FILES LIBRARIES INPUT OUTPUT OUTPUT FILE 
INFORMATION 

D 
r ..., 
L _J 

1.7.1 

INFORMATION FILE 

- REFERS TO A STtlGE THAT ALWAYS OCCURS IN THE INTERACTIVE LINKING PROCESS 

- REFERS TO A STAGE THAT CAN POSSIBLY OCCUR IN THE INTERACTIVE LINKING PROCESS DEPENDING ON THE OPTIONS 
CHOSEN AND EXISTENCE OF UNDEFINED SYMBOLS 

Figure 1-5. Creation of a Linked Program 

Initiating the Linker 

The Linker can be run by the Command Processor or a VS procedure. To 
access the Linker from the Command Processor menu, press PFl. The 
system displays the Run screen, which prompts you to enter the file, 
library, and volume names of the Linker. Since the Linker is stored 
in the system library on the system volume, you need only to enter its 
file name (LINKER) and press ENTER. The system then displays the 
initial Linker screen. 

You can run the Linker by a procedure in either the foreground or 
background by using the Linker prnames and keywords in VS Procedure 
language programs. For more information, refer to Section 3.2.2. For 
detailed information on the VS Procedure language, refer to the 
VS Procedure Language Reference. 

1-14 Introduction to the VS Linker 



r 

1.7.2 Specifying Linker Options 

To begin creating a linked program, you first specify the options to 
be incorporated in the link. When initiated, the Linker displays a 
list of the most common Linker options from which you choose those 
appropriate for the desired link. Additional Linker options can be 
specified by pressing the PFkey for more options. 

1.7.3 Specifying Input Program Files 

1.7.4 

1.7.5 

After you have selected the Linker options, you next specify the input 
program files (input files) to be included in the link. You can enter 
one file at a time or indicate an entire library of files. If you 
specify a library, the Linker displays the contents of the library on 
a subsequent screen, from which you can select files. 

To resolve external references in each input file, the Linker first 
searches all other input files. If undefined symbols exist following 
the input file search, the Linker enables you to specify static 
subroutine libraries, more input files, or shared subroutine libraries 
to resolve them. 

Specifying Static Subroutine Libraries 

If the Linker is unable to resolve undefined symbols, it allows you to 
specify one or more static subroutine libraries as part of the input. 
The Linker uses the appropriate subroutines from the static subroutine 
libraries that you specify to resolve undefined symbols. 

Specifying More Input Files or Shared Subroutine Libraries 

If the Linker is not able to resolve all undefined symbols by checking 
the static subroutine libraries specified, it notifies you that 
unresolved symbols still exist, and provides four options. You can 
build the output f.ile with the undefined symbols, add more input files 
to resolve the undefined symbols, add to the list of aliases for 
shared subroutine libraries to resolve the undefined symbols, or 
display a list of undefined symbols and corresponding SSL symbols (if 
any were previously assigned), and add to or modify this list. 

If you specify any option but the first, the Linker processes the 
information and informs you if any undefined symbols still exist. It 
then allows you to repeat any of the last three options until all the 
undefined symbols are resolved, or until you press ENTER to proceed to 
create the output file with undefined symbols. 

Introduction to the VS Linker 1-15 



1.7.6 Specifying Additional Input Information 

The Linker may require additional information depending on the chosen 
Linker options. For example, if you choose the option to resolve 
conflicting section names, the Linker displays a screen that prompts 
you to correct any existing section name conflicts. After you have 
satisfied the requests for additional input information, the Linker 
continues processing. 

1.7 .7 Specifying the Output Program File 

1.7.8 

The next step in the linking process is to name and describe the 
output program file (output file). The Linker requests information on 
the output file name, location, options, and attributes. 

Providing Additional Output Information 

The Linker may require additional output information depending on the 
input options chosen or output file options specified. For example, 
if you choose the link map option, the Linker displays a screen that 
prompts you to specify the link map file and to select the portions of 
the link map to be printed. After you have satisfied the requests for 
additional information, you can continue with the link. 

1.7.9 Building the Output File 

When the Linker has shown all screens according to the Linker input 
and output options chosen, it proceeds to build the output file. 
After the Linker finishes building the output file, it returns control 
to the calling program. 

1.8 COMPARISON TO THE PREVIOUS LINKER 

The new Linker expands on the capabilities of the previous Linker and 
provides new functions not available with the previous Linker. The 
following list summarizes the major differences: 

Note: The term "fully qualified" means that an entity's volume, 
library, and file names have been specified. The term "partially 
qualified" means that the entity's volume and library names have been 
specified, but not the file name. 

1-16 Introduction to the VS Linker 

.·~ 
, __ "---

·._ 



r 

• The new Linker accepts program files of both Version 0 and 
Version 1 object code; the previous Linker accepts only program 
files of Version 0 object code format. 

• The new Linker produces an output file in either Version 0 or 
Version 1 object code format; the previous Linker produces an 
output file in Version 0 object code format. 

• The new Linker accepts input files, informs you of unresolved 
external references, and then permits you to specify more input 
files, static subroutine libraries, or shared subroutine libraries 
to resolve them. With the previous Linker, you must specify 
static subroutine libraries before entering the input files. In 
addition, the previous Linker does not incorporate shared 
subroutine libraries. 

• The link map for the new Linker contains more extensive 
information. 

• The new Linker enables you to examine the sections of the link map 
during Linker execution. 

• For multiple occurrences of a section name, the new Linker 
provides default selection rules, plus an override mode for 
selecting the appropriate section; the previous Linker provides 
only the default selection rules. 

• The new Linker enables you to exclude any number of sections 
within an input file from the linking process. 

• The new Linker provides on-line Help text through the VS INFO 
. facility. 

• The new Linker accepts both fully and partially qualified input 
file names; the previous Linker accepts only fully qualified input 
file names. 

• The new Linker accepts both fully and partially qualified 
~ubroutine library names; the previous Linker accepts only fully 
qualified subroutine library names. 

• To resolve an undefined symbol through a static subroutine 
library, the new Linker uses the matching entry point name in the 
library, and does not depend on the file name of the library to do 
the matching. The previous Linker resolves an undefined symbol 
through a static subroutine library by finding a matching file 
name in the library. 

• The new Linker selects only those sections needed to satisfy 
references; the previous Linker must include all or none of a 
subroutine library file. 

Introduction to the VS Linker 1-17 



1.9 OPERATING ENVIRONMENT 

The Linker runs on.Operating System Release LlO and all subsequent 
releases of the vs· Op~rating Syste~. 

1-18 Introduction to the VS Linker 

~ .. l ..... _. 

,~! 
'-.~ 



CHAPTER 2 
COMPONENTS OF THE LINK 

2.1 INTRODUCTION 

A linked program can consist of the following components: 

• One or more input files (required) 

• Symbolic debugging information associated with individual input 
files (optional) 

• Static subroutines from one or more static subroutine libraries 
(optional) 

• References to shared subroutines from one or more shared 
subroutine libraries (optional) 

• A link map (optional) 

This chapter defines each component, and describes the purpose, 
function, and management of the sections or objects within it. This 
chapter also describes the output file: the storage area for all 
linked components. 

2.2 INPUT FILES 

An input file to the Linker is called a program or object file. A 
program file has the following characteristics: 

• It is the output of a compiler, assembler, or Linker. 

• It is a consecutive file with 1024-byte records consisting of 
executable code, data, and other information. 

• It is organized into one or more program sections. 

• It is distinguished from other types of files by having the 
program file flag set in its File Descriptor Record. 

Components of the Link 2-1 



A linked program consists of a collection of separately compiled or 
assembled program files combined together into one executable output 
file. 

In the process of linking a program, you first select the options for 
the link. Then, you specify the input files (program files) to be 
used. The Linker accepts input files of either Version 0 or Version 1 
object code format. Input files are specified to be included 
completely in the linking process, unless you exclude selected 
sections by using the EXCLUDE option (refer to Section 4.3.4). 

You can specify input files singly, or enter the name of a library. 
If you specify a library, the Linker displays the object files 
contained in that iibrary on a separate screen. From that screen, you 
can select any number of input files. 

The main program file (main module) is the input file that contains 
the instructions that are normally incorporated in the main routine of 
all programs. The actual processing to be performed by the linked 
program depends on what is coded in the main module. For detailed 
information on specifying input files, refer to Section 4.3. 

2.3 SUBROUTINE LIBRARIES 

2.3.1 

The Linker supports two types of subroutine libraries: static 
subroutine libraries, and shared subroutine libraries. Both types are 
described in this section. 

Static Subroutine Libraries 

A static subroutine is one that is statically linked into the program 
object file at linktime. Its code and data sections are included in 
the output file produced by the Linker. External references to the 
subroutine are resolved at linktime to point to the subroutine at the 
address where it will be in memory when the program is loaded and 
executed. These addresses are fixed in the program object file and do 
not change when the program is loaded for execution. Hence, a link at 
linktime is called a static link. 

Typically, static subroutines are collected into files called static 
subroutine libraries. The process for creating a static subroutine 
library using the Linker is described in Section 3.1.3. A static 
subroutine library file contains an entry point reference table which 
the Linker searches for names that match unresolved external 
references. Only the subroutines that satisfy external references are 
linked into the output file. 

2-2 Components of the Link 



~ 

' 

2.3.2 

A static subroutine library file can also be specified as a regular 
input file on the INPUT screen. When this is done, the Linker links 
the entire contents of the file into the output file unless you 
explicitly exclude sections manually or by procedure specifications. 

The Linker also supports the earlier type of static subroutine 
library, in which subroutines exist independently as separate files. 
When this type of library is specified, the Linker searches the 
library for file names that match undefined symbols. A file is linked 
if the file name matches an external reference. 

Shared Subroutine Libraries 

A shared subroutine is one that is dynamically linked to a program at 
runtime, and is shared by other programs running concurrently. A 
shared subroutine is not linked into a program's object file as static 
subroutines are. This helps reduce disk storage requirements for 
programs that use the same subroutines. 

Shared subroutines are collected into files called shared subroutine 
libraries. The Linker can be used directly to create a shared 
subroutine library, as described in Section 3.1.3, but usually the SSL 
utility program is used for this purpose. For information about how 
to use the SSL utility, refer to the VS System Administrator's 
Reference. 

A shared subroutine library file is identical in format to a static 
subroutine library file. They both contain an entry point reference 
table which the Linker searches to match external references to entry 
point names. The only difference between the two types of libraries 
is the way in which the subroutines are linked to a program. 

A shared subroutine library is given a name (SSL alias) by the system 
administrator when it is installed on a system. This name is 
cataloged in a system file that describes where each shared subroutine 
library is located. SSL aliases are used in the Linker to specify 
what libraries are to be accessed by the Loader for shared subroutines 
called in the program. 

When a shared subroutine library is specified for linking using its 
SSL alias, the Linker searches the entry point reference table for 
names that match undefined symbols. When a match is found, the Linker 
associates the SSL alias with the undefined symbol and places the 
symbol-alias pair in a special table included in the program output 
file. For each SSL symbol, the Linker also includes a list of all the 
locations in the program object file where references to the symbol 
are made. When the program is loaded for execution, the Loader uses 
this information to access the appropriate shared subroutines and to 
resolve all references to them in the program. 

Components of the Link 2-3 



The use of shared subroutines is not limited to system subroutines; 
any collection of user subroutines can be organized as a shared 
subroutine library. 

2.3.3 Programming Language Requirements for Subroutine Libraries 

When you are writing subroutines in Assembly language that are 
intended to be used in a shared subroutine library, you must be aware 
of the following condition: 

• Address constants that refer to shared subroutine library entry 
points must always be put in static sections, never code sactions. 

References to shared subroutine library entry points that are made in 
code sections cannot be resolved by the Linker or the Loader; they 
will cause address exceptions or other errors when programs make 
references through them. 

Subroutines in a shared subroutine library are dynamically linked by 
the Loader when a program that refers to them is being loaded for 
execution. Since the subroutines can reside anywhere in memory, the 
Linker cannot resolve address constants that refer to shared 
subroutine library entry points; the Loader performs that task. 
However, the Loader cannot resolve address constants in code sections 
because the code is not modifiable at load time. 

The compiled languages such as PL/I and FORTRAN adhere to the rule to 
always put address constants that refer to shared subroutine library 
entry point names in static sections. However, BASIC does not adhere 
to this rule for such references. Therefore, BASIC programs currently 
cannot reference subroutines in a shared subroutine library, nor can 
subroutines written in BASIC be placed in a shared subroutine library. 

If you are writing subroutines to be placed in a static subroutine 
library, you can put address constants in both static sections and 
code sections. This is possible since the Linker includes static 
subroutines in the object file for the program being linked, and can 
resolve the address constants based on the program's base-address. 
However, it is recommended that you place address constants in static 
sections for static subroutines also. In this way, you can 
subsequently include the subroutines in a shared subroutine library, 
if desired. 

2-4 Components oE the Link 



2.4 

2.4.1 

r 

THE LINK MAP 

The link map contains a detailed description of the Linker run. The 
Linker builds each portion of the link map separat~ly, as you provide 
information on the various screens that appear as a result of the 
options you chose. You can instruct the Linker to display a selected 
portion of the link map by pressing PF14 from any screen that provides 
that function. 

If you specify YES for the MAP option at the start of the link, the 
Linker will print the map at the end of the link. Note, however, that 
the Linker builds the link map when you press PF14 regardless of your 
choice of the link map option. This allows you to examine the 
progress of the Linker run without producing a printout at the end of 
the link. Each time you press PF14, the Linker regenerates the 
portion of the link map you choose to view. 

If a link map is to be printed, the Linker displays a screen that 
lists each portion of the link map for selection. You simply enter 
YES or NO for each portion, and the link map is printed accordingly. 
For detailed information on specifying the link map print options, 
refer to Section 4.4.2. 

Link Map Topics 

The link map contains the following information in the same order as 
it appears in this list: 

1. Input log 
2. Input files 
3. Linked code sections 
4. Linked static sections 
5. Duplicate sections 
6. A cross-reference list arranged in memory location order 
7. A cross-reference list arranged in symbol order 
8. Base-dependent code sections 
9. Shared subroutine library symbols and aliases 

10. Subroutine library entry point names and information 
11. Undefined symbols 
12. Output object file summary 
13. Warning messages 

Each of these topics is described in this section. Appendix A shows 
sample link maps. 

Components of the Link 2-5 



Input Log 

This section lists the linker options, input files, subroutine 
libraries, and output specifications. This information is printed at 
the beginning of the link map. It is also printed at the beginning of 
warning messages if a link map is not specified. 

Input Files 

This list is divided into two sublists: one contains the individual 
files input by the user, and the other contains the files retrieved 
from the user-specified subroutine libraries. 

Linked Code Sections 

The code sections are listed in the order in which they are linked. 
For each section, the following information is provided: 

• The name of the section 

• The base address where the section was relocated (its origin) 

• The length of the section 

• A list of entry point names including the offsets with respect to 
the section 

• The translator name that generated the section 

• The version number of the translator 

• The date and time the section was translated 

• The input file where the section was contained 

• A flag to indicate whether the section contains symbolic data 

• A flag to indicate whether there are duplicate section names 

Linked Static Sections 

The static sections are listed in the order in which they are linked. 
The information provided for each static section is the same as that 
described for the linked code sections, except that there is no 
symbolic flag. 

2-6 Components of the Link 



Duplicate Sect ions 

This list contains information about sections that have the same name 
occurring in more than one input file. For each duplicate section 
name, all the input files containing the section name are listed. The 
file containing the section that was selected for linking is 
indicated. The Linker provides the following information for each 
section: 

• The input file name 
• The section type (code or static) 
• The length of the section 
• The translator name that created the section 
• The version number of the translator 
• The date the section was created 
• The time the section was created 
• A flag to indicate whether the section contains symbolic data 

Cross-Reference List in Location Order 

This list contains symbolic references in the linked output that are 
arranged in memory location order. The following information is 
included for each memory location: 

• The location address 

• The section name that contains the location address constant 

• The section type (code or static) 

• A flag to indicate whether the address constant is R-Type (RCON) 
or A-Type (ACON) (Assembly language address constants) 

• A flag to indicate whether the address is defined in a relocation 
record in the static block 

• The length of the address constant (3 bytes or 4 bytes) 

• The direction of relocation (positive or negative) 

• The symbols referred to by the address constant. The following 
information is provided for each symbol: 

The address of the symbol 
The section where the symbol is defined 
The section type (code or static) 

Components of the Link 2-7 



Cross-Reference List in Symbol Order 

This list contains symbolic references in the linked output that are 
arranged alphabetically in symbol order. The following information is 
included for each symbol: 

• The name of the symbol 

• The address of the symbol 

• The name of the containing section and its type (code or static) 

• The locations of the references. In addition, the following 
information is provided for each reference: 

The address of the reference 

The section name that contains the address constant 

The section type (code or static) 

A flag to indicate whether the address is an RCON or an ACON 

A flag to indicate whether the address is defined in a 
relocation record in the static block 

The length of the address constant (3' bytes or 4 bytes) 

The direction of relocation (positive or negative) 

Base-Dependent Code Sections 

This list identifies all code sections in the output file that are 
base-dependent. Base-dependent code is code that must be executed at 
a certain location in the user's address space in order to run 
correctly. 

An output file that contains base-dependent code cannot be used as a 
shared subroutine library (SSL). For more information, refer to 
Appendix C. 

Shared Subroutine Library Symbols and Aliases 

This list contains all shared subroutine library symbols. For each 
symbol, the list provides the associated alias name and a count of the 
distinct alias names associated with the symbol. 

Subroutine Library Entry Point Names and Information 

This list contains all subroutine library entry point names for either 
a static or a shared subroutine library. 

2-8 Components of the Link 



Undefined Symbols 

This list contains all the undefined symbols that exist in the output 
file. 

Output Object Format Statistics 

This list contains the following statistics that pertain to the output 
object format: 

• Total length of the linked code sections 

• Total length of the linked static sections 

• The program base-address 

• The program entry-point name, address, and offset 

• The program name from the Prolog block 

• The program release date 

• The version number assigned to the program 

• The output file name and location 

• The number of output records 

• The object code format 

• A statement to indicate whether the linked code sections are 
base-dependent when loaded at runtime 

2.5 WARNING MESSAGES 

Warning messages that pertain to the output file are printed at the 
end of the link map, if you specify MAP = YES on the OPTIONS screen. 
If you specify MAP = NO, the warning messages are placed in a print 
file in your spool library with a system-generated file name, unless 
you are running the Linker by a procedure. In this case, you can 
specify the name of the print file with an ENTER PRINT clause. 

If the link map was not printed, the warning messages are preceded by 
an Input Log to identify the Linker run. Note that the WARNINGS 
option on the MOREOPT screen enables you to specify that no warning 
message print file be created. Refer to Section 4.2.2 for more 
information on the WARNINGS option. 

Components or the Link 2-9 



2.6 THE OUTPUT FILE 

When you have finished specifying all input according to the Linker 
options that you chose, you must name and describe the output file. 
The output file contains all specified components of the link. If 
Version 1 object code is selected as the output format, it contains 
the following sequence of blocks of information: 

• The Prolog block 

• The Code block containing the linked code sections 

• The Lengths block 

• The Static block containing the linked static sections 

• The Module block (if created) containing information required for 
dynamic linking and for static subroutine file entry points 

• The Symbolic block (if created) containing symbolic information 
for all sections 

• The Linkage block (if created) containing linkage information for 
all sections 

The output file provides all relevant linking information that 
collectively makes up the assembled program file, static subroutine 
library, or shared subroutine library. In order to name and describe 
the output file, the Linker displays a screen that lists a number of 
output file attributes. For detailed information on naming and 
describing the output file, refer to Section 4.4. 

2-10 Components of the Link 



CHAPTER 3 
LINKER FUNCTIONS AND RUNNING MODES 

3.1 LINKER FUNCTIONS 

3.1.1 

The Linker provides the following basic functions: 

• Links program modules 
• Replaces program modules 
• Creates and maintains static and shared subroutine libraries 

You can run the Linker in one of the following modes: 

• 
• 
• 

Interactive mode 
By procedure in the foreground 
By procedure in the background 

This chapter provides conceptual information on the basic Linker 
functions. In addition, it describes the Linker running modes and how 
to initiate each mode. 

Linking Program Modules 

In modular programming, a large program is divided into a number of 
small, self-contained modules (program files). Each module is 
designed to perform a single, well-defined task. The modules are 
written as small subprograms or subroutines and are compiled 
independently of the main program, which contains the main routine. 

The Linker is the vehicle for linking specified program modules into a 
single, assembled output file. Typically, you specify a main program 
file and a number of program modules as input for the link. Depending 
on the options specified, the Linker then creates one of the following 
entities: 

• An executable output program file 
• A static subroutine library to be used for subsequent links 
• A shared subroutine library to be used for subsequent links 

Linker Functions and Running Modes 3-1 



3.1.2 Replacing Program Modules 

The Linker can be used to selectively replace one or more object 
modules in a program file without having to relink the whole program. 
This can save time for large programs where, for instance, only one 
module has been recompiled. Another use for selective linking is to 
replace an object module that does not have symbolic information, with 
another object module that does. This is useful for debugging 
purposes. 

You can use a procedure to selectively replace program modules by 
specifying the object file(s} that contain the new section as the 
first input file, followed by the main program file. Note that the 
name of the entry point into the main program file must also be 
specified. Figure 3-1 illustrates how you can use a procedure to 
replace a program module. 

procedure replacep 
link: run linker 

enter options map=no, resolve=yes 
enter input file:OBJECT, library=vselobj, volurne=system 
enter input f ile=MAIN, library=vselrun, volume=systern 
enter input 
enter library 
enter output file=MAIN, library=vselrun, volume=pacman, 

replace=yes, entry=ENTMAIN 
return code=link 

Fiqure 3-1. Usinq a Procedure to Replace a Proqram Module 

In addition to using a procedµre to replace a program module, you can 
also selectively replace one or more object modules in a program file, 
by specifying YES for the DUPSECT option on the MOREOPT screen 
(Figure 4-3). This enables you to resolve duplicate s~ction names 
interactively. Then, you specify the main program file as the first 
input file, followed by one or more new object files. 

For each duplicate section encountered, the Linker will display a 
screen from which you can select the appropriate object file for the 
section to be included in the link. By choosing the new object file 
in ~ach case, you will replace the old sections in the program file 
with the new sections that have the same names. 

3-2 Linker Functions and Running Modes 

-~ ·-



r 3.1.3 Creating and Maintaining Subroutine Libraries 

The Linker creates a subroutine library file instead of a program file 
if you specified YES for the STATICSL option or the SHAREDSL option on 
the OPTIONS screen (Figure 4-2). A subroutine library (static or 
shared) is used in subsequent links to supply subroutines referred to 
by a program. The subroutines are either statically linked or 
dynamically linked in the program, depending on the type of subroutine 
library. 

The Linker is also used to replace, add, or delete subroutines in an 
existing subroutine library. This is done by specifying the 
subroutine library file as an input file along with any new subroutine 
object files, and managing the makeup of the new subroutine library 
through the various Linker options. 

There are two ways in which subroutines can be replaced in a 
subroutine library: automatic replacement or selective (manual) 
replacement. To replace subroutines by automatic replacement, you 
specify the new object files first, in order of input, followed by the 
subroutine library file last. The new object modules will replace the 
old ones in a subroutine library according to the Linker default 
selection rules for duplicate sections. For a detailed description of 
the default selection rules, refer to Appendix B. 

To replace subroutines by selective replacement, you must specify YES 
for the DUPSECT option on the MOREOPT screen to override the default 
selection rules. This enables you to choose which of .the duplicate 
sections are to be included in the link. 

You delete subroutines from a subroutine library by specifying YES for 
the EXCLUDE option on the INPUT screen (Figure 4-4). You can add or 
delete entry point names by specifying YES for the ENTNAMES option on 
the OPTIONS screen (Figure 4-2). 

After all the desired updates are completed, you replace the previous 
subroutine library file with the new file by giving the output file 
the same subroutine library name, and specifying YES for the REPLACE 
option on the OUTPUT screen (Figure 4-13). 

3.2 RUNNING MODES 

This section describes the Linker running modes and provides 
conceptual information on using VS procedures. 

Linker Functions and Running Modes 3-3 



3.2.1 

3.2.2 

Running the Linker Interactively 

In an interactive link, the Linker displays the screens according to 
the Linker options that you choose and the information that the Linker 
requires to perform the link. You interact with the linking process 
by selecting the options and entering required information on a 
screen-by-screen basis. The link is complete when you have selected 
all the options necessary for the link and provided any additional 
information that the Linker requires, and the Linker has built the 
output file. 

To initiate an interactive link, follow the instructions described in 
Section 1. 7 .1. 

Using VS Procedures to Run the Linker 

In many cases, you will find it convenient to use a VS procedure to 
run the Linker. Procedures are special routines that invoke system 
functions and supply required parameter information with little or no 
user interaction. The VS Procedure language provides the capability 
to create procedures. 

You can write procedures to perform a partial link or the entire 
link. If a procedure performs a partial link, the remainder of the 
link is done interactively by the user, and it must run in the 
foreground. If a procedure performs the entire link, it can run in 
the background from the Command Processor. These two methods are 
described in this section. 

Some procedures may require user interaction at certain stages. For 
example, if you specify in a procedure that you want to reorder 
sections of the output file, the procedure pauses at the appropriate 
point in the link and enables you to reorder the sections. When you 
indicate that you have reordered the sections, the procedure resumes 
control. 

Chapter 5 describes the Procedure language syntax for each Linker 
screen. For detailed information on the VS Procedure language, refer 
to the VS Procedure Language Reference. 

Running the Linker by Procedure in the Foreground 

To run a procedure in the foreground is to actively run the procedure 
as a workstation task rather than submitting it to a procedure queue 
to be run in the background. 

To run the Linker by procedure in the foreground, press PFl from the 
Command Processor menu. The system displays the Run screen, which 
enables you to identify the procedure. 

3-4 Li~ker Functions and Running Modes 



Enter the file, library, and volume names of the procedure on the Run 
screen and press ENTER. The system then transfers control to the 
procedure, which performs the tasks that it was coded to do. 

If the Linker detects an error while being run by a procedure in the 
foreground, it displays an error screen. The error screen states the 
problem and enables you to enter the correct information, and to 
continue the link. Since error screens have no additional 
capabilities other than obtaining corrected information, they are not 
shown in this manual. 

Running the Linker by Procedure in the Background 

To run a procedure in the background, run the procedure entirely 
without user interaction. The procedure is submitted as a background 
task. The system enters it on the procedure queue, and runs it when 
its turn comes up. 

All parameters required by the Linker in a background run must be 
supplied by the controlling procedure, since background jobs are 
prohibited from any interaction with the workstation. This 
information includes all instructions that would normally require user 
interaction. 

You supply parameters to a procedure by using multiple ENTER 
statements or default values (such as with a SET statement). You must 
use a SET statement within the background procedure to specify any 
defaults used within the background job; for example, to specify print 
mode defaults. 

To run the Linker by procedure in the background, press PF12 from the 
Command Processor menu. The system displays the Submit Procedure 
screen, which enables you to identify the procedure, and enter 
scheduling and execution options. For detailed descriptions of those 
options, refer to the VS System User's Introduction. 

Enter the file, library, and volume names of the procedure on the 
Submit Procedure screen and press ENTER. The system then enters the 
procedure in the next available location on the procedure queue. When 
its turn comes, the procedure is run in the background, transparent to 
the user. 

If the Linker detects an error, or requires any user interaction while 
running in the background, the Linker prints an error message and 
terminates execution of the background job. 

Linker Functions and Running Modes 3-5 



I~ 
·---~--~-! 

I 



r 

r 

CHAPTER 4 
THE LINKING PROCESS 

4.1 INTRODUCTION 

This chapter describes the linking process in detail and documents all 
Linker screens used for interactive linking. The following list 
summarizes the linking process. 

1. Initiate the Linker (refer to Section 1.7.1) 

2. Specify the Linker options to be used in the link 

3. Specify the input to be used in the link 

a. Specify individual input files or choose files from a library 
b. Resolve duplicate section names (if present) 
c. Optionally exclude sections from the link 
d. Manage unopened files (if present) 
e. Manage invalid files (if present) 
f. Resolve undefined symbols (if present) 

4. Name and describe the output file 

a. Specify the output file parameters 
b. Optionally assign aliases to resolve SSL symbols 
c. Optionally specify link map print options 
d. Optionally reorder program sections 
e. Optionally select subroutine library entry point names 

5. Build the output file 

Figure 4-1 shows the Linker screen flow. 

The Linking Process 4-1 



UNDEF 
SYMB 

PRINT 

MAIN 
OPTIONS 
SPECIFIED 

LIBRARY 

REORDER 

OPTIONS 

MOREOPT 

END 
OF 
INPUT 
AND 
NO 
UN DEF 
SYMB 

MORE 
OPTIONS 
SPECIFIED 

END OF OUTPUT 

LINKER BUILDS OUTPUT FILE 

DUPSECT 

SSLALIAS 

COMMON 
SCREENS 

TERMINATE 

EXCLUDE UNOPENED 

ENTRY 

Figure 4-1. Linker Screen Flow 

4-2 The Linking Process 

INVALID 



4.2 SPECIFYING THE LINKER OPTIONS 

The first screen that the Linker displays when you run the Linker 
interactively is the OPTIONS screen (Figure 4-2). The OPTIONS screen 
lists the main Linker options (the most commonly used options), and 
enables you to specify those that you want to include in the current 
link. 

tinker Options · VS .. LINKER 2. 04 .80 

:MAP-·. . =YES 
"5.YMBOLIC = YES 
LINKAGE = YES 

. - ;'S'l\4T1CS"L. = NO#· 
, . c :.SHAR~D.SJ- = NO~­

. JNTNAM'Es = NO*!· 

Figure 4-2. The OPTIONS Screen 

The Linker options that appear on the OPTIONS screen are summarized as 
follows: 

MAP = -- Enter YES if you want to create a link map file for the 
program; otherwise, enter NO. The default is YES. The contents of 
a link map are described in Section 2.4. 

SYMBOLIC = -- Enter YES if you want to retain all symbolic data in 
the output file for subsequent program debugging; otherwise, enter 
NO. The default is YES. IF you enter NO, all symbolic data is 
excluded from the output file, thereby disabling symbolic debugging 
for the program. This option is described in Section 4.2.1. 

The Linking Process 4-3 



The SYMBOLIC option can be overridden on a file-by-file basis from the 
INPUT screen (Figure 4-4) and the FILELIST screen (Figure 4-5). 

LINKAGE = -- Enter YES if you want to retain all linkage data 
throughout the program for subsequent program linking and 
debugging. Enter NO if you want to exclude the linkage data. The 
default is YES. Note that programs without linkage data cannot be 
relinked or used as input to another link. 

The last three options pertain only to creating a subroutine library: 

STATICSL = -- Enter YES if you want to make the output file a static 
subroutine library to be used in subsequent program links; 
otherwise, enter NO. The default is NO. This function is described 
in Section 3.1.3. 

SHAREDSL = -- Enter YES if you want to make the output file a shared 
subroutine library to be used in subsequent program links; 
otherwise, enter NO. The default is NO. This function is described 
in Section 3.1.3. Whenever you create a shared subroutine library, 
always check the link map for base-dependent code sections. 
Base-dependent code sections cannot be used in a shared subroutine 
library. For more information, refer to Appendix C. 

ENTNAMES = -- If you specified YES for either the STATICSL or 
SHAREDSL options, enter YES to display a list of all subroutine 
library entry point names; otherwise, enter NO. The default is NO. 
From that list, you can select the entry point names to be included 
in the entry point reference table to resolve external references. 
This function is described in Section 4.4.5. 

The functions available from the .OPTIONS screen are summarized as 
follows: 

PF Key 

ENTER 

l 

Description 

Continue -- When you have specified the Linker options, 
press ENTER to continue Linker processing. 

More options -- Accesses the MOREOPT screen (Figure 4-3), 
which lists additional Linker options for selection. 

13 Help -- Displays Help text for this screen. This function 
is described in Section 1.5.1. 

16 End processing -- Enables you to terminate processing 
and exit the Linker. This function is described in 
Section 4.5.3. 

4-4 The Linking Process 



4.2.1 

To specify the options that you want to include in the link, enter YES 
or NO in the field beside each Linker option. To manage an additional 
set of less commonly used options, press PFl to display the MOREOPT 
screen (Figure 4-3). The MOREOPT screen is described in Section 4.2.2. 
When you press ENTER from either the OPTIONS screen or the MOREOPT 
screen, the Linker accepts the selected options and displays the INPUT 
screen (Figure 4-4). 

Managing the Symbolic Debugging Data 

Symbolic ~ebugging information describes all symbolic code in the 
program, and enables the Debugger to accept references to data values 
by symbolic name. This information is contained within the input 
files produced by the assembler or compiler. 

The Linker provides the option to retain or exclude the symbolic 
debugging information on the INPUT screen (Figure 4-4) and on the 
FILELIST screen (Figure 4-5). If you specify YES for the SYMBOLIC 
option on either screen, the Linker retains the symbolic debugging 
data for the displayed file, thereby providing full symbolic debugging 
support for that file. If you specify NO for the SYMBOLIC option, the 
Linker removes symbolic debugging information from the displayed file, 
thereby disabling symbolic debugging for that file. Machine-level 
debugging is still available for files when NO is specified for the 
SYMBOLIC option. 

After a program is debugged, it is advantageous to remove symbolic 
information to reduce disk storage requirements for the program. 
Removing symbolic information also provides a level of security to 
prevent users from tampering with the internal workings of the program. 

The Linking Process 4-5 



4.2.2 Specifying Additional Linker Options 

If you press PFl from the OPTIONS screen (Figure 4-2) the Linker 
displays the MOREOPT screen (Figure 4-3). The MOREOPT screen lists 
additional, less commonly used Linker options for selection. 

Figure 4-3. The MOREOPT Screen 

The Linker options that appear on the MOREOPT screen are summarized as 
follows: 

ALIAS = -- Enter YES to designate or reassign SSL aliases for shared 
subroutine library symbols in the linked output; otherwise, enter 
NO. The default is NO. If you enter YES, the Linker displays the 
SSLALIAS screen (Figure 4-18), which lists all undefined symbols 
with the corresponding SSL alias (if present) of each symbol. The 
SSLALIAS screen enables you to modify current assignments and make 
additional assignments. This function is also available from the 
OUTPUT screen (Figure 4-13), and is described in Section 4.4.4. 

REORDER = -- Enter YES to change the order of code and static 
sections in the linked output; otherwise, enter NO. The default is 
NO. This function is also available from the OUTPUT screen 
(Figure 4-13), and is described in Section 4.4.3. 

4-6 The Linking Process 

~ ·- :.· 



RESOLVE = -- Enter YES if you want the RESOLVE screen (Figure 4-11) 
to be displayed when undefined symbols exist; otherwise, enter NO. 
The default is YES. The RESOLVE screen, described in Section 4.3.8, 
provides options that enable you to manage the undefined symbols. 

DUPSECT = -- Enter YES if you want to override the default selection 
rules and resolve duplicate section names interactively; otherwise, 
enter NO. The default is NO. The default selection rules apply 
when two or more sections from different program files have the same 
name. Since section names must be unique in the output file, the 
rules determine which section to use. The default selection rules 
are described in Appendix B. 

If you enter YES, the Linker displays, in sets of two, any duplicate 
sections that occur and enables you to choose which section to 
include. This function is described in Section 4.3.5. 

INPROGRS = -- Enter YES to display the Linker ."in progress" screens; 
otherwise, enter NO. The default is NO. These screens keep you 
informed of the processing that the Linker is currently performing. 

OBJFORM = -- This option specifies the object code format for the 
output file. The default is 1. If you specify Format 0, the output 
file is produced in a format that is recognized and used by 
Release 6 and earlier versions of the operating system. If you 
specify Format 1, the output file is produced in a format that was 
introduced with Release 7. 

The Release 7 operating system executes both Format O and Format 1 
object code. Release 6 and earlier operating systems recognize only 
Format 0: They cannot load and execute Format 1 object code. 

The executable file produced with object format O has the same 
format as executable files created with the 6 series Linker. When 
object format 0 is sele~ted, no options pertaining to SSLs or static 
libraries appear on the Linker screens. The Alias field on the 
Output screen is also disabled. The format of the link map will 
remain unchanged, except that the sections for SSLs are omitted. If 
you specify OBJFORM = 0 and SHARESL = YES, on the MOREOPT screen, 
the system displays the following message: 

"Shared Subroutine Library can not be created in object format O" 

DATESEL = -- The default value for this field is NO. If you enter a 
value of YES for this field, the linker will resolve duplicate 
sections by date of compilation. Refer to Appendix B for detailed 
information about how the linker resolves duplicate sections. 

The Linking Process 4-7 



WARNINGS = -- This field enables you to specify whether or not you 
want the system to generate a print file containing a list of 
warning messages. The default value for this field is YES. If you 
enter a value of NO for this field, the linker will not create the 
warning message print file. 

To specify the additional options that you want to include in the 
link, enter YES or NO in the field beside each Linker option and press 
ENTER. The Linker then accepts the selected options and displays the 
INPUT screen (Figure 4-4). 

The functions available from the MOREOPT screen are summarized as 
follows: 

PF Key 

ENTER 

1 

Description 

Continue After you have specified the additional Linker 
options, press ENTER to continue Linker processing. 

Respecify main options -- Returns to the OPTIONS screen and 
enables you to respecify the main Linker options. 

13 Help -- Displays Help text for this screen. This function 
is described in Section 1.5.1. 

16 End processing -- Enables you to terminate processing 
and exit the Linker. This function is described in 
Section 4.5.3. 

4.3 SPECIFYING INPUT 

When you press ENTER from the OPTIONS screen (Figure 4-2) or the 
MOREOPT screen (Figure 4-3), the Linker displays the INPUT screen 
(Figure 4-4). The INPUT screen enables you to specify one or more 
input files to link. It accepts one file or library specification at 
a time. If you specify a library, the FILELIST screen, which lists 
all the files in the library, is displayed. From this list you can 
select the files that you want linked. The Linker displays the INPUT 
screen repeatedly until you indicate that there is no more input. You 
do this by leaving both the Library and File fields blank and pressing 
ENTER. 

4-8 The Linking Process 



VS LINKER·· 
' ,··. ;~ 

'1 <' 

· ••. ~s.:~.··.e_ .. ·.·,,e.·.~ . .f .. •·.·.'.\·_·1, .. t_h. e.· .. ri.a. m.· .. ·.e ... -.'°.;.'ti_f ... ' ·,.·a .. fi.1._·e ..... a.·.·""··· 1 ...•. 1;0.b.··.·_.r:.a· .. ' .. r. v,_ To·· ..on'd' .. ··,·•n'p' . .-u: ·t" l. a e· f ....... ,.,. a d i · b · .. · · 11, .,,, . ,. J · ·.,. .. ·· .: · . . •, ~ e v· . 1 .. ci· n . , ra.cy,_._·.·.···.·: 
d~:if~;lids blank;; · · · · .- . • · 

, R~·~::ato syn1bo.l i~ ,g"~~a;1 

. £ .. ~c tude sec:tlons'.?. .; -~<~ 

.G;gNJ'.Elll C:9n~~t:nt•~: :. · 
:;\:':,:;(~U R~;tjr,~;i 

SYMBOLIC:~.YES 

· EXCLUDE.. == N.O\lt 

f d Cop:r. Wang 

Figure 4-4. The INPUT Screen 

The options that appear on the INPUT screen are summarized as follows: 

Input File or Input Library = -- Enter the volume, library, and file 
names of the input file(s) to be linked, or specify an input library 
by entering only the volume and library names. If you specify a 
library, the Linker displays all the files in the library from which 
you can select the ones to be linked. 

SYMBOLIC = -- Enter YES to retain the symbolic data for the 
displayed file in the output file; otherwise, enter NO. The value 
chosen for the SYMBOLIC option on the OPTIONS screen appears as the 
default. 

EXCLUDE = -- Enter YES to interactively exclude specified sections 
of the input file from the linking process; otherwise, enter NO. 
This function is described in Section 4.3.4. 

The Linking Process 4-9 



4.3.1 

The functions available from the INPUT screen are summarized as 
follows: 

PF Key 

ENTER 

1 

Description 

Continue -- Accepts the input options for the displayed 
file. When you have specified all input files, leave the 
Library and File fields blank and press ENTER. This signals 
the Linker that all input files have been specified and to 
continue Linker processing. 

Restart -- Enables you to erase all input thus far and start 
the link again. This function is described in Section 4.5.2. 

13 Help -- Displays Help text for the INPUT screen. This 
function is described in Section 1.5.1. 

14 Link Map Enables you to display portions of the current 
developmental state of the link map. This function is 
described in Section 4.5.1. 

16 End processing -- Enahles you to terminate processing 
and exit the Linker. This function is described in 
Section 4.5.3. 

When you have specified all input files, leave the Library and File 
fields on the INPUT screen blank and press ENTER. This signals the 
Linker that all input files have been specified and to continue Linker 
processing. The Linker proceeds to the next appropriate screen 
according to the chosen Linker options. 

Specifying a Library 

Whenever you specify a library of files (by entering only the volume 
and library names) on the INPUT screen (Figure 4-4), the Linker 
displays the FILELIST screen (Figure 4-5). The FILELIST screen lists 
all the program files in the specified library, and enables you to 
choose the files that you want to link. The SYMBOLIC and EXCLUDE 
options for files listed on the FILELIST screen contain the same 
values that appear for those options on the INPUT screen. You can 
accept or modify these values for each file you select. 

The FILELIST screen is displayed in the foreground only. Note that 
any files in a specified library that have already been input to the 
Linker will not be listed. 

4-10 The Linking Process 



r 
\ 

· 1:nput 
,' ; ' ~" ... 

-·J:i';.-: 

Pi:ac~ a, oop~T~.~l":¢b~r;~c:~.~f ~e~(>r~ J!ach f'i;l~1 :~~;i,.~~-:~ln:t.J,µ,9eg_.~jp.·Jh.'~. ttnk , . 
. \qr· .pre·S's ·PF6 ·t'.o·; :i·~ql 1,1de a.1.1 ·f:t1~9.-~-~ 

{'ENTER) C9~tirip~ . 
., · flJ ~esp~·~:i~~Si- ·. 

File 

Figure 4-5. 

. Re.~a:i,~ '< :.· 
Symboli.'.c<? 

The FILELIST Screen 

The options that appear on the FILELIST screen are summarized as 
follows: 

... , . -~ 

Input Specification -- The name of the volume and library entered on 
the INPUT screen. If you press PFl, the Linker returns to the INPUT 
screen, enabling you to respecify input. 

File -- The file names are listed in this section. Enter a nonblank 
character in the pseudoblank preceding each file that you want to 
link, or press PF6 to include all files. 

Retain Symbolic? -- Enter YES to retain, in the output file, the 
symbolic data for the corresponding input file; otherwise, enter NO. 

Exclude Sections? -- Enter YES to interactively exclude specified 
sections of the corresponding input file from the linking process; 
otherwise, enter NO. 

The functions available from the FILELIST screen are summarized in the 
following list. Note that First, Last, Prev, and Next appear on the 
FILELIST screen only when there are more than ten files in the 
specified library. 

The Linking Process 4-11 



PF Key 

ENTER 

l 

2 

3 

4 

Description 

Continue -- Accepts the files and options chosen from the 
FILELIST screen and continues Linker processing. 

Respecify -- Returns to the INPUT screen, enabling you to 
respecify input. 

First -- Displays the first ten file names and options. 

Last -- Displays the last ten or fewer file names and 
options. 

Prev Displays the previous ten file names and options. 

5 Next Displays the next ten or fewer file names and 
options. 

6 Include all -- Marks all program files in the library with 
an X and displays the first ten or fewer files. 

13 Help -- Displays Help text for the FILELIST screen. This 
function is described in Section 1.5.1. 

14 Link Map Enables you to display portions of the current 
developmental state of the link map. This function is 
described in Section 4.5.1. 

16 End processing -- Enables you to terminate processing 
and exit the Linker. This function is described in 
Section 4.5.3. 

To select files from the ipput files list, mark the pseudoblank 
preceding the file name with a nonblank character, or press PF6 to 
select all files. Then, respond with YES or NO to the Retain Symbolic 
and Exclude Sections options for each file selected. If you specify 
YES to the EXCLUDE option for a file, the Linker displays the EXCLUDE 
screen (Figure 4-8). 

When you have specified all files and options desired, press ENTER to 
continue Linker processing. If you specified YES for the DUPSECT 
option on the MOREOPT screen and duplicate sections exist within the 
files selected, the Linker displays the DUPSECT screen (Figure 4-9). 
Otherwise, the Linker continues processing according to the chosen 
Linker options. 

4-12 The Linking Process 



4.3.2 

r 

Managing Unopened Files 

The Linker displays the UNOPENED screen (Figure 4-6) if it is 
unable to open any of the files specified on the FILELIST screen 
(Figure 4-5). The UNOPENED screen displays those files that remain 
unopened, and the reason why they could not be opened, and enables you 
to specify how to manage them. The total number of unopened files is 
given below the list of file names. 

',·".',:·/ 

;vs j~~~~~r,: 
i···:,···;:"·I 

.. ') 

Th~:, '.foll ow.i_ng, f,i'l~.~ ... ~ould opt b.e' ,tiR.e:n~d. 
·Or\+cho·ose. a 'PF.:ke~ :below; 

Pba~;$?'4ENJ~~ ct;od?~~,\~i~.; '.:ti,h.~~~.~· fi ,-,;~~sff.~:~·'. 

.:vo~ume Li:bra'ry: .;,;..F·i~l=e__._.. 

eA'CMA~f eMMO~O . T3 

' ~ : 

T;pttM·:. h~ilib,er·. ~f J·1:1~:~ not QP~ti~q::ri J. 

·~EN;(:S,R,:) :Qypass ·~bes.e 'files 
, t1 ) Re$p~cf,~~~" · 

i'~ '; 

~' i:. ··~' 

Figure 4-6. The UNOPENED Screen 

1.' 1 . 
;<:. ~ 

,,. -e;·'.:··' -

The functions available from the UNOPENED screen are summarized in the 
following list. Note that First, Last, Prev, and Next appear on the 
UNOPENED screen only when there are more than ten unopened files. 

PF Key 

ENTER 

1 

2 

Description 

Bypass these files -- Instructs the Linker to ignore the 
unopened files and continue processing. 

Respecify -- Returns to the INPUT screen, enabling you to 
respecify input. All files that were opened for the 
currently displayed input specification are closed and all 
associated data is erased. 

First -- Displays the first ten unopened file names and 
options. 

The Linking Process 4-13 



PF Key 

3 

4 

5 

Description 

Last -- Displays the last ten or fewer unopened file names 
and options. 

Prev Displays the previous ten unopened file names. 

Next Displays the next ten or fewer unopened file names. 

6 Retry open -- Attempts again to open all unopened files. 

13 Help -- Displays Help text for the UNOPENED screen. This 
function is described in Section 1.5.1. 

14 Link Map Enables you to display portions of the current 
developmental state of the link map. This function is 
described in Section 4.5.1. 

16 End processing -- Enables you to terminate processing 
and exit the Linker. This function is described in 
Section 4.5.3. 

The Linker provides the following alternatives for managing unopened 
files: 

Bypass the unopened files -- If you press ENTER, the Linker ignores 
the unopened files and continues processing. 

Respecify the input specification -- If you press PFl, the Linker 
returns to the INPUT screen, enabling you to respecify input. All 
files that were opened for the currently displayed input string are 
closed and all associated data is erased. 

Enter the new input specification on the INPUT screen and press 
ENTER. The Linker continues processing as described for the INPUT 
screen. 

Retry the open -- If you press PF6, the Linker tries again to open 
the unopened files. 

When all program files in question have been either successfully 
opened or bypassed, the Linker continues processing according to the 
chosen Linker options. 

4-14 The Linking Process 



4.3.3 Managing Invalid Files 

The Linker checks each file selected from the FILELIST screen 
(Figure 4-5) to determine if linkage data is present. If the Linker 
finds a file that does not have linkage data, it displays the INVALID 
screen (Figure 4-7). This screen shows the volume, library, and file 
names of the invalid file and enables you to either bypass the file 
and continue processing the remaining selected files, or return to the 
INPUT screen to respecify the input library. 

The INVALID screen is also displayed if the Linker is being run by a 
procedure in the foreground and an error occurs when processing an 
input file. An error message describing the problem appears at the 
top of the screen. When this happens you can either bypass the file 
and continue Linker processing or return to the INPUT screen to 
respecify the input file. 

If the Linker encounters an invalid input file while being run by a 
procedure in the background, an error message is printed and the 
Linker is canceled. The INVALID screen is not displayed in this case. 

tiw.aTid Input· :FiTe VS' UNKER, 
~ : . l 

Vol6~~: · Library· · ,;F.fle 

. Cc) Coor~ .w:aflg, ·. 

Figure 4-7. The INVALID Screen 

The Linking Process 4-15 



4.3.4 

The functions available from the INVALID screen are summarized as 
follows: 

PF Key 

ENTER 

1 

Description 

Bypass this file -- Bypasses the displayed file and 
continues to process the remainder of the files. The Linker 
excludes the bypassed file when it builds the output file. 

Respecify -- If the file was selected from the FILELIST 
screen, the Linker cancels all file selections on that 
screen and returns to the INPUT screen. All input entered 
prior to the canceled selections remains in effect. 

If running from a procedure, this function returns to the 
INPUT screen and allows you to change the file 
specification. No other files are affected. 

16 End processing -- Enables you to terminate processing 
and exit the Linker. This function is described in 
Section 4.5.3. 

Excluding Sections from the Link 

For each specified input file, the Linker enables you to optionally 
exclude one or more sections from the linking process. Possible 
reasons for excluding sections are as follows: 

• A number of sections in a particular input file are not needed for 
the link. 

• Isolated cases of name conflicts may exist. 

• A section is part of a shared subroutine library and will be 
dynamically resolved when the program is loaded. 

• A section has been replaced by another section with a different 
name. 

The Linker immediately displays the EXCLUDE screen (Figure 4-8) if you 
specify YES for the EXCLUDE option for a specified source file on the 
INPUT screen (Figure 4-4) or FILELIST screen (Figure 4-5). The 
EXCLUDE screen shows all the sections of the displayed file, 20 at a 
time, and enables you to select sections to be excluded from the 
output file. The number of remaining sections is displayed below the 
list. 

4-16 The Linking Process 

.:i 



r 
I' ''.'. - **~:~~~it iii ~;, .;: : 

I~g4ct. filer *'**:*~-* .ic.w•.#~<1r11r , -,:, ·:r. "':-r' ' . . --

P~tkb~e· '::a:, rroob;lari k·. -:Eha\ra~~t:er b·e·.fo it~ :.~ieh- s·ect11~,k:;~~: ':~_e, ":~·x'!i:lµa:~~','~,1.
1 

,_ .•. 

pf ':P,f-~$.:~ ·P.F6 .. ~1::o::ej(~Ju~-~, -;all -se~i¥~nS-} · ·. -

. ,·. 

*· ·~:*·1f·•*:******·'**·*'~W:.-K*''-*1'~-*·~i*lli.**~-~'.*•· 
it '~~'.·~·*·*•••* **ff~'1c~:1'';,ihw.1'1•**·****·1'i+ilrili'\tf. 

·:-ff~::zz~r.;::;::=:.:~. 
-it: (~*:·~~~lft~*:it:~:'Jt~·#'.*:iff;*~~:*~~~-1'1*~~-*t(~*~~:. 

:·•··_:~:::::::::r:::~~~·;:·:::::::::;::~:,· 
-·~:: ·~:.~·ltt'.~llr~·~*~·*#.llt.*.'~~**·*~*'***'*'*:*'ili'Jlf:W.k - ' 
*:_ ~~~~~!t*•**·~~,,,w~,~~~:1'*1f,.1r-~1t~·~,'IJ*-~·*;;~·* . 
*' ;;~i~~**~-~~~-~*1(!t~~~)~;~,*,*1C*fl!.'lf*'l!:!.*.*-!f.if/:,*. 

~ .. ~.~ ...... 

i<tc;_'li\mbre · .L -

J"E~rE~J- Contt_:rnµ~ :'_ · 
....... ,, fl} :~~§~:a:tt\_ ,, 

,f'·, 

H-bi~;::~:~I~ 
-<.). 

'·':· ~':' \' ' 

Figure 4-8. The EXCLUDE Screen 

The functions available from the EXCLUDE screen are summarized in the 
following list. Note that First, Last, Prev, and Next appear on the 
EXCLUDE screen only when there are more than 20 sections in the 
displayed file. 

PF Key 

ENTER 

1 

2 

3 

4 

5 

Description 

Continue -- Accepts the chosen sections to be excluded from 
the displayed file and continues Linker processing. 

Restart -- Enables you to erase all input thus far and start 
the link again. This function is described in Section 4.5.2. 

First Displays the first 20 sections. 

Last Displays the last 20 or fewer sections. 

Prev Displays the previous 20 sections. 

Next Displays the next 20 or fewer sections. 

The Linking Process 4-17 



4.3.5 

PF Key 

6 

Description 

Exclude all -- Automatically marks, with an X, all sections 
in the displayed file to be excluded from the output file; 
then displays the first 20 or fewer section names. 

13 Help -- Displays Help text for the EXCLUDE screen. This 
function is described in Section 1.5.1. 

14 Link Map Enables you to display portions of the current 
developmental state of the link map. This function is 
described in Section 4.5.1. 

16 End processing -- Enables you to terminate processing and 
exit the Linker. This function is described in 
Section 4.5.3. 

To exclude sections in the displayed file from the output file, mark 
the pseudoblanks preceding the section names with a nonblank 
character, or press PF6 to exelude all sections. 

When you have selected all the sections to be excluded from the 
displayed file, press ENTER to continue Linker processing. The Linker 
excludes the indicated sections and returns to the INPUT screen 
(Figure 4-4). 

Resolving Duplicate Section Names 

Two or more sections from different input files are duplicate sections 
if they have the same name. Only one occurrence of a section can 
exist in the output file, regardless of the number of input 
occurrences of the section. The default selection rules (Appendix B) 
describe how the Linker selects a section to be included in the output 
file from sections with the same name. 

If you specified YES to the DUPSECT option on the MOREOPT screen 
(Figure 4-3), you have disabled the default selection rules. If 
duplicate sections occur, the Linker displays the DUPSECT screen 
(Figure 4-9), so that you can select which of the sections is to be 
included in the link. If you are running the Linker by procedure, the 
OVERRIDE screen (refer to Section 5.10) replaces the DUPSECT screen. 

4-18 The Linking Process 

·.~ 



r 

, . .,, ' 

. i~~~!~l~ ~=r:.~~i~~e 0~i~~~::~1~~;~i~·t~: :g~~~~~~;:·~~~~;gw tbJ> :~: .. 

<:. -\i.;C)Jume L 1-bra:f:w .. ,Fi N!-,_ _ __ $~C:ti~Sn:- tyoa 
*· ·••--**'* *'*·lt!*cw;~:w;.11 ;*•*-"'•·*""* • ~~'*~••,jf~*'fnil'w­
-~- :,k~;~!l'.'.Jlf* *-'.k~.1t_c~.~-l!!J~ .1\:~'lfC:)ll:~*'Y!'ilf li!~i1fi~~..fr.;*~-**'~-

'~t ,,;· / 

. ; . ~ ' . ~· 

· -,e: eN11e~1 el>-n:tt:ride .,,, -: · - -
- '.;(<1 ), R~s\t_~ft< \ 

Figure 4-9. The DUPSECT Screen 

The functions available from the DUPSECT screen are summarized as 
follows: 

PF Key 

ENTER 

Description 

Continue -- Accepts the section choice and continues Linker 
processing. 

1 Restart -- Enables you to erase all input entered thus far 
and start the link again. This function is described in 
Section 4.5.2. 

13 Help -- Displays Help text for the DUPSECT screen. This 
function is described in Section 1.5.1. 

14 Link Map -- Enables you to display portions of the current 
developmental state of the link map. This function is 
described i~ Section 4.5.1. 

The Linking Process 4-19 



4.3.6 

PF Key Description 

16 End processing -- Enables you to terminate processing 
and exit the Linker. This function is described in 
Section 4.5.3. 

For each duplicate section name the following information is displayed: 

• The section name 

• The file names and locations (library and volume) of two of the 
files that contain the section 

• The section type (code or static) of each of the two sections 

To select the section to be included in the link, position the 
cursor at the pseudoblank preceding the file name of the desired 
section and press ENTER. If there are still more sections with 
the same name, another file name and location and its section type 
is displayed along with the section that you just selected. 
Again, you must choose between the two. This process continues 
until one section has been chosen from all the duplicates. The 
Linker then continues processing. 

Resolution Process for Undefined Symbols 

Undefined symbols may exist after you have finished specifying input ·~ 
for the link. A symbol is termed undefined if it does not correspond 
to an included section name or an entry point name in an included 
section. A symbolic reference is termed unresolved if the symbol to 
which it refers is undefined. 

An undefined symbol can be one of the following types: 

• A user-specified symbol that must be resolved statically by the 
Linker at linktime 

• A shared subroutine library symbol that must be resolved 
dynamically at runtime 

The Linker performs the following steps to resolve undefined 
user-specified and shared subroutine library symbols. These steps are 
described in greater detail in the screen sections that follow: 

1. The Linker first searches all the input files for matching entry 
point names and resolves the symbolic references to the 
corresponding entry point locations. SSL symbols with aliases 
assigned in a previous Linker run are treated similarly: If 
matching entry point names are found, the references are resolved 
to the entry point addresses statically, and the information 
concerning that dynamic (SSL) reference is discarded. 

4-20 The Linking Process 



2. If undefined symbols (including shared subroutine library symbols) 
remain after searching all the input files, the Linker displays 
the LIBRARY screen (Figure 4-10). The LIBRARY screen enables you 
to specify static subroutine libraries for the Linker to search to 
resolve undefined symbols. The Linker searches the libraries in 
the order specified. If any matching entry point names are found, 
the corresponding sections are retrieved and the symbolic 
references are resolved to the entry point locations. Shared 
subroutine library symbols are resolved in the same manner; thus 
static subroutines can be substituted for shared subroutines. 

3. If you are running the Linker by a procedure and you specified SSL 
aliases in an ENTER ALIASES clause, and if undefined symbols 
remain after Step 2, the Linker next attempts to resolve the 
undefined symbols by searching through the shared subroutine 
libraries named in the ENTER.ALIASES clause. The Linker first 
verifies that the libraries exist on the system and then it scans 
the entry point reference tables, looking for names that match the 
undefined symbols. If any are found, the Linker assigns the 
corresponding SSL aliases to the symbols. The Linker then assumes 
that these symbols will be resolved at runtime and does not report 
them as undefined. 

4. If the RESOLVE option is YES and there are undefined symbols 
remaining that do not have SSL aliases assigned, the Linker 
displays the RESOLVE screen (Figure 4-11). The RESOLVE screen 
allows you to choose one of the following options for managing the 
undefined symbols: 

• Create the output file with undefined symbols 

• Add more input files 

• Verify the current list of shared subroutine library aliases 
and optionally add more 

• Display undefined symbols 

If you choose to verify SSL aliases when there are undefined symbols, 
the Linker displays the ALIASES screen (Figure 4-12). This screen 
lists all the SSL aliases that are currently assigned to SSL symbols, 
and also any SSL aliases that were entered by procedure 
specification. Up to ten aliases are displayed. You can add more SSL 
ali~ses to the list and have the Linker verify and search them for 
entry point names, repeating the process described in Step 3, and, in 
this way, resolve the remaining undefined symbols. 

The Linking Process 4-21 



4.3.7 

Another way in which you can assign SSL aliases to undefined symbols 
is thr?ugh the SSLALIAS screen (Figure 4-18). This screen is 
displayed when ALIAS = YES is specified on the OUTPUT screen 
(Figure 4-13). The SSLALIAS screen lists all undefined symbols and 
the currently assigned SSL alias, if any, for each symbol. You can 
accept or change the current assignments, and make additional SSL 
alias assignments. This differs from the ALIASES screen in that you, 
rather than the Linker, make the assignment for each symbol. 

Resolving Undefined Symbols by the LIBRARY Screen 

The first screen that the Linker displays when undefined symbols exist 
is the LIBRARY screen (Figure 4-10). The LIBRARY screen enables you 
to specify subroutine libraries for the Linker to search to resolve 
undefined symbols. The primary use is to specify static subroutine 
libraries, but shared subroutine libraries can also be specified. 

Subroutines found that match undefined symbols are statically linked 
into the program. You can specify an unlimited number of subroutine 
libraries, eight at a time. 

' .. ' . .. ., ... ,. .., 

(LIBRARY) . Spe~Jriy: st .. 1l,;?'':iubO~oit:.~ .1.s:S~i.~i~~ . . ,, '.' t·;~!:~:i!~~Ei¥:1j'': . 
. ···~ >< ~'.. ~ ., ... , , < .• :(j-~·L .. 

$pec,i·fxi. t~11r: n~_~:~· .. ~f::.;.sta;:ti"c·, .. :~.ybro;u;t::rq~~.· !l ilb;n~~Ji~:~ J~;,:j~~~;q~~~,~{'..~~,~~1;·~~dH~#·~)4i;~:i.{: .. :' refer~nces., tea.ye fl le name blank for o:l'd..,sty· le ·sub;rout'fn:e. li\l;t:rna:rr!f.es·~"· ·· rr·•K' ., >:.· ·· 
end input' hwe la:SJ entry: bla.nk: .. . ' . ·' ' ., '· . . . ' .. '. ' ' . " . ; ' ..... ,.;~ ' '1"'' ·. <,'.:.: ;; 

(ENTER) Cdrfti.h~e 
Cl> Re.s;;a r~'. 

. ··VOLUME L't'8'RAihl ·F.iL. E 
.(l_l .. }r_·*:·:*.*,'..~ ... :if· , '*~.idt*~~·*· 1i1till';iw1'0 
(~} *-**W~~ :'UU~~-~.~ 'i~*//i:_,,.,~~,i 
f3) **ct'*** ~!l".it-*::k,,w,~ ;'1t,~;rt:ifiJc}lt~1i· 
(4) llfirriir*,:*~ l'tw:~~:H,l".~ ·rc~w . .-!i,iri·~h ·.· .. 
(5) ~irc;~*l'C,r( if,~·*:~i~·**~. ·*·~**'•**" · . 
(6J .1!*~-~** jr .. **~w.h:** . ·•ittw1i!i;llt~~*i"':. en **·*·*~*'. liiw*:**'*·** ~~*jn•r~~w 
X:M -**-'*'*• . **.~*~·)l{·~?'r > 

Figure 4-10. The LIBRARY Screen 

_,, . ' : ~' .. , . 
:.(~/''',~-~· 

4-22 The Linking Process 



The functions available from the LIBRARY screen are summarized as 
follows: 

PF Key 

ENTER 

1 

Description 

Continue -- Accepts the list of subroutine libraries and 
continues Linker processing. 

Restart -- Enables you to erase all input entered thus far 
and start the link again. This function is described in 
Section 4.5.2. 

13 Help -- Displays Help text for the LIBRARY screen. This 
function is described in Section 1.5.1. 

14 Link Map Enables you to display portions of the current 
developmental state of the link map. This function is 
described in Section 4.5.1. 

16 End processing -- Enables you to terminate processing and 
exit the Linker. This function is described in 
Section 4.5.3. 

There are two types of static subroutine library specifications: 

1. A fully qualified name that identifies a file containing a 
collection of subroutines. The Linker searches the file for entry 
point names and links only those sections that resolve undefined 
symbols. {This is the new type of subroutine library 
organization.) To specify this type of subroutine library, enter 
the volume, library, and file names. 

2. A partially qualified name that identifies a VS library, in which 
subroutines exist independently as separate files. {This type of 
subroutine library was supported by the previous Linker.) With 
this type, the Linker searches the library and links the required 
portions of a file if the file name matches an undefined symbol. 
To specify this type of subroutine library, enter only the volume 
and library names and leave the file name blank. 

Although the LIBRARY screen is mainly used for specifying static 
subroutine libraries, a shared subroutine library can also be 
specified by entering its volume, library, and file names rather than 
its SSL alias. When this is done, shared subroutines that resolve 
undefined symbols are statically linked into the program. 

Any number of static subroutine libraries can be specified, up to 
eight at a time. The Linker redisplays the LIBRARY screen for more 
specifications if the eighth entry is not blank. When you have 
specified all static subroutine libraries, leave the eighth entry 
blank and press ENTER. The Linker accepts the libraries and proceeds 
to the next screen according to the chosen Linker options. 

The Linking Process 4-23 



Note: The symbolic option on the OPTIONS screen is effective for all 
sections that are linked from static subroutine libraries. 

4.3.8 Resolving Undefined Symbols by the RESOLVE Screen 

If undefined symbols remain after the Linker searches the static 
subroutine libraries entered on the LIBRARY screen (Figure 4-10), the 
Linker displays the RESOLVE screen (Figure 4-11). The RESOLVE screen 
provides options that enable you to manage the remaining undefined 
symbols. 

Note: The RESOLVE screen is controlled by the RESOLVE option on the 
MOREOPT screen. The default for this option is YES if you invoke the 
LINKER directly, and NO if you invoke the Linker through a procedure 
in the background. The RESOLVE screen is displayed if RESOLVE = YES 
and there are undefined symbols; otherwise, the screen is not 
displayed. The RESOLVE screen is also not displayed if the Linker is 
running in the background. 

·.··. 1(J~ES~EVE~)- :R~s;bl~.e:' Dnd~f+A~·ci E~:tijrha:t ·sFimb'o-1;s '.,:: . 

. · J:h.e.r~·~; a.#,~ r.~n.def~·r:t.~:~1 
•• ·e*:6e;r.n%1:: ~.~~~gl'~:·;~ . . . . . . . 

·~'r:~.sr.~l'ft~~~:t:q; 1~·~.9~~'.~#··· '.~,r:~~~!tn~··.tn.·~·oY.~pµ~tJ. ~il;~{,'.ar· ckops~'.: ~;:;~F! 

Figure 4-11. The RESOLVE Screen 

4-24 The Linking Process 



The functions available from the RESOLVE screen are summarized as 
follows: 

PF Key 

ENTER 

1 

8 

9 

Description 

Create output file -- Proceeds to the OUTPUT screen 
(Figure 4-13) and creates the output file including the 
remaining undefined symbols. 

Add more input files -- Returns to the INPUT screen, 
enabling you to add more input files to resolve the 
remaining undefined symbols. This function is described in 
this section. 

Verify and add SSL Aliases -- Displays a list of aliases 
currently specified for shared subroutine libraries. This 
function is described in this section. 

Display undefined symbols -- Displays the undefined symbols 
for examination only. 

13 Help -- Displays Help text for the RESOLVE screen. This 
function is described in Section 1.5.1. 

14 Link Map Enables you to display portions of the current 
developmental state of the link map. For more information, 
refer to Section 4.5.1. 

16 End processing -- Enables you to terminate processing 
and exit the Linker. This function is described in 
Section 4.5.3. 

Adding More Input Files 

To add more input files, press PFl from the RESOLVE screen. The 
Linker displays the INPUT screen (Figure 4-4), and you specify the 
input files as described for the INPUT screen. After you have added 
more files, press ENTER from the INPUT screen, leaving the file and 
library fields blank. 

If undefined symbols without SSL assignments still remain, the Linker 
again displays the RESOLVE screen. Otherwise, the Linker continues to 
process the input according to the chosen Linker options. 

Verifying and Adding SSL Aliases 

To verify the current list of aliases for shared subroutine libraries, 
and, optionally, add more aliases to resolve undefined symbols, press 
PFS from the RESOLVE screen. The Linker displays the ALIASES screen 
(Figure 4-12), which lists all SSL aliases currently assigned to SSL 
symbols, and SSL aliases entered by procedure, if any. 

The Linking Process 4-25 



You can add more SSL aliases to the list. Up to ten aliases can be 
specified (although there is no limit to the number of aliases that 
can actually be assigned to SSL symbols; see SSLALIAS specification, 
Section 4.4.4). 

.I 

.CJ\LIASES) . . , ·~~~·~~~~~~:(.~':I · .. :: 
'' ... 

. A1 ~ ases curr~ntl.y. s·peCifi ed f~H~ shar~d' s·~bro,ufai~E! ffl~r~~~ite.~'. ~M; Tr~·~te:9. ;~~}l~w;~. ' 
Add. addi·tional SSL ali~~es •. jf ri~eded:' ;/t<t ·res,o_'.lV~;Pti9.·~,f;~t;M<;t;:~~~'fttn.~l :~:W1ib9~'.S,-,• · 
Press ENTER. to search ·.for $SL .en~fS'·: poiri'.t.s 4~'di.~a.~~s';i:g·n .~1'.f~$.'.~s. :;t}Q{. t.1ri<:ie:ft~~nfii:l) ; , 
::symbol:s, or press P..Ft 'to return w1 ~hout, sear<?h1.ng '. " . · · . 

· .~L'FAS;1·· · = W.*;*:*~~·~·~,irc·~'i!~*-~·~::~~-~·~·~~~~,~~·~:~~~~·~:;~V<*;lli~~'..~. ·. 
AtiAS~' ~' *~*'*~***'~*~~.·~~~-*~~*·~~;llt;llt1'1·~*·*~·~~ .. *~~*:~~.llf~;1l5>11:1lf" 

;;11~; •..• ~ 1~l1!~~~l1~l~i~i;iif:· '..... •; ':: .... ··~ ,.·• ... · .. ·! 
Ai.iASlO 'c *'*iitu'wiW.~*'***~*~llt~.·ict!'!llt\f<'*·~~*~'W,lt·.~~--~~*:~,~~:~: < • i ' •• '•··. ;;. ' ' 

, . '. t6:~. °'~~rt. ~~n~t~~;·}; I 
: . ~ ' -

Figure 4-12. The ALIASES Screen 

The functions available from the ALIASES screen are summarized as 
follows: 

PF Key 

ENTER 

1 

13 

Description 

Search for SSL entry points -- Verifies that all shared 
subroutine libraries exist on the system, searches each 
library for entry point names that match undefined symbols, 
makes appropriate SSL assignments to the SSL symbols, and 
continues Linker processing. 

Return -- Returns to the RESOLVE screen without accepting 
any input. The libraries specified are not searched for 
entry point names. 

Help -- Displays Help text for the ALIASES screen. This 
function is described in Section 1.5.1. 

4-26 The Linking Process 



r PF Key Description 

14 Link Map -- Enables you to display portions of the current 
developmental state of the link map. This function is 
described in Section 4.5.1. 

16 End processing -- Enables you to terminate processing 
and exit the Linker. This function is described in 
Section 4.5.3. 

When you press ENTER on the ALIASES screen, the Linker first verifies 
that the specified shared subroutine libraries exist on the system. 
It then searches each library for entry point names that match 
undefined symbols. When a match is found, the Linker assigns the 
corresponding SSL alias to the symbol. 

If any undefined symbols without SSL assignments remain after 
searching the shared subroutine libraries, the Linker again displays 
the RESOLVE screen. If all undefined symbols have been resolved, the 
Linker proceeds to the next screen according to the chosen Linker 
options. 

If the Linker informs you that an SSL alias is not installed on the 
system, you must either erase the entry and press ENTER again to 
permit the Linker to process the remaining entries, or press PFl to 
return to the RESOLVE screen. If you press PFl, the Linker returns to 
the RESOLVE screen without processing any changes or additions to the 
list. 

Although all the entries on the ALIASES screen can be modified, 
erasing or changing an existing entry does not delete or change the 
entry in the set of aliases maintained by the Linker. If you enter 
another alias for an installed SSL in place of a previous entry, the 
new alias is simply added to the set without replacing the original 
entry. Changing the list simply changes the subset of aliases that 
the Linker verifies the next time you press ENTER. 

Aliases previously assigned to SSL symbols are not changed by the 
specification of libraries on this screen. In other words, a symbol 
that already has an alias assignment for one SSL will not be 
reassigned a different alias if that symbol is found in another SSL. 
To make changes to SSL assignments, you must reassign aliases for each 
symbol on the SSLALIAS screen (Figure 4-18) or by a procedure with an 
ENTER SSLALIAS clause (refer to Section 5.14). 

The Linking Process. 4-27 



4.4 NAMING AND DESCRIBING THE OUTPUT FILE 

The output file contains all specified components of the link and all 
relevant linking information. If Version 1 object code format is 
selected, it contains the following sequence of blocks of information: 

• The Prolog block 
• The Code block containing the linked code sections 
• The Lengths block 
• The Static block containing the linked static sections 
• The Module block (if created) 
• The Symbolic block (if created) 
• The Linkage block (if created) 

The Linker displays the OUTPUT screen (Figure 4-13) after it has shown 
all of the screens that pertain to input for the chosen Linker · 
options. The OUTPUT screen shows a list of output file attributes. 
From that list, you can specify the attributes of the output file. 

Figure 4-13. The OUTPUT Screen 

4-28 The Linking Process 



r The options that appear on the OUTPUT screen are summarized as follows: 

Output File = -- Enter the volume, library, and file names of the 
output file. 

REPLACE = -- Enter YES to use the input file name for the output 
file and delete the input file in the process; otherwise, enter NO. 
Program files that are currently serving as static subroutine 
libraries for the current Linker run are not permitted to be 
designated as the output file. 

MAP = -- Enter YES if you want to create a link map file for the 
program; otherwise, enter NO. The default is YES. The contents of 
a link map are described in Section 2.4. 

( 

REORDER = -- Enter YES to change the order of code and static 
sections in the linked output; otherwise, enter NO. The default is 
NO. This function is described in Section 4.4.3. 

ALIAS = -- Enter YES to designate or reassign SSL aliases for shared 
subroutine library symbols in the linked output; otherwise, enter 
NO. The default is NO. If you enter YES, the Linker displays the 
SSLALIAS screen (Figure 4-18), which lists all undefined symbols 
with the corresponding SSL alias (if present) of each symbol. The 
SSLALIAS screen enables you to modify current assignments and make 
additional assignments. This function is described in Section 4.4.4. 

FILECLAS = -- Enter the file protection class desired. Valid 
entries are: blank, #, $, @, A-Z. For detailed descriptions of each 
file class, refer to the VS System User's Introduction. 

ACLIST = -- Enter YES to inspect or modify your access list, or, if 
you do not have an access list, to create one for this file; 
otherwise, enter NO. The default is NO. The access list identifies 
the users who can access your file and the type of access granted to 
them. If you enter NO, your output file receives a default access 
list, provided you specified one previously by the Set Usage 
Constants option of the Command Processor menu (refer to the VS 
System User's Introduction). 

If you specified YES to the REPLACE option of this screen, your 
output file inherits the access list, if any, of the file it is 
replacing. That access list can also be modified by this option. 

RETAIN = -- Enter the number of days for which you want to protect 
the output file from deletion. Valid entries are 0 to 999 days. 

PROGBASE = Optionally enter a hexadecimal value for the program 
base address. The default is 100000. Valid entries are 000000 to 
FFFFFF. This is the address where the program file will be loaded 
at execution time. 

The Linking Process 4-29 



PROGNAME = -- Optionally enter a program name of up to 40 characters 
for the output file. This name is in addition to the file name and 
location. It appears in the output file for easier identification 
only. It has no effect on execution. 

ENTRY = -- Optionally enter the program entry point name where 
execution is to begin after the program is loaded. The default is 
the entry point name of the first input file. This field does not 
apply to subroutine library files. 

ENOFFSET = -- Optionally enter the off set in hexadecimal from the 
entry point name if execution is to begin before or after the 
specified program entry point. The default is zero. Valid entries 
are 000000 to FFFFFF. This field does not apply to subroutine 
library files. 

Version number = -- Optionally assign a version number to the 
program file. This number appears in the Prolog block of the output 
file for version identification. 

Release date = -- Optionally enter the numeric values for the 
release date, using the first field for the month, the second field 
for the day, and the third field for the year. Each field should 
contain two digits. The date appears in the Prolog block of the 
output file. 

The functions available from the OUTPUT screen are summarized as 
follows: 

PF Key 

ENTER 

1 

Description 

Continue -- Accepts the output file options and continues 
Linker processing. 

Restart -- Enables you to erase all input entered thus f_ar 
and start the link again. This function is described in 
Section 4.5.2. 

13 Help -- Displays Help text for the OUTPUT screen. This 
function is described in Section 1.5.1. 

14 Link Map Enables you to display portions of the current 
developmental state of the link map. This function is 
described in Section 4.5.1. 

16 End processing -- Enables you to terminate processing 
and exit the Linker. This function is described in 
Section 4.5.3. 

To specify the parameters for the output file, enter the required 
information and your choice of options on the OUTPUT screen, and press 
ENTER. The Linker accepts the output parameters and proceeds to the 
next screen according to the chosen Linker options. 

4-30 The Linking Process 

~ \._ . 



r- 4.4.1 Inspecting, Modifying, or Creating the Access List 

The Linker displays the USERS screen (Figure 4-14) followed by the 
GROUPS screen (Figure 4-15) if you specified YES to the ACLIST option 
on the OUTPUT screen. If a default access list exists, these screens 
contain the names and access levels of the individuals and groups who 
can access the file. Otherwise, they are blank. 

The USERS screen specifies individual users; the GROUPS screen 
specifies groups of users. An access list can contain individual 
users, or groups, or both. You can specify a maximum of 45 individual 
users and 30 groups. 

Group membership and group IDs are designated by the system 
administrator. For more information about groups, refer to the 
VS System Administrator's Reference. 

If a default access list exists, you can simply inspect or modify it 
by changing and adding entries. If a default access list does not 
exist, you can create one for the output file by using these screens. 

/ 
-, ~---,:-; •• + '~<•c ~· --•' 

! 

i .- -~,,\;'.::~ •• " 
I 
I_ 
I 

;pa·rameter Reference Name: USERS; .. 

lofqnna;~'fon R~qu~ ~ed .by._ ·PMMLOGON 

M~:~sage Id: 000:0" - · · 
'.Component·: G&:fA~k. 

. _;;7';---'~----,"--!-~~-----;~---;.._----;.._---~ 

1 ·· ... ;~i:::u::t2;::s::o::::s.~::: :::uired· fo· ·define •the Access Li ~t 
I .. _..,. .. --- ,--

\ •<J' 

;~'!;;;_ 
#'~~1(; 

- ~· ':"~~'.!". 
= .. ::vr:~:~-

2Ji~ 

··= * 
,:: # 

- :;1.' * 
=· 1" 

·= • 
::::;' * 
•;:I 'Ii-

USER2' = 
USER4 :=. 
OSER6 .-= 
·USERS. ~ 
USERJ'O -::i 

U$ER1l ~-­
·USER~)t .;=-

lt.~ir 

*ii!t'jrr 

#'Ii• 

*** 
Yf.'lit" 

·~* .. _.., 

t..E:VEL:2 :::; lit 

ttVEM = '"" LEVE:L6 = it 

LEV:ELS ;:: • 
tEVEtl'.O ;::: '• 
l-EVELi:2·· .,.. '!II 

'LEV£t:J4 . = ·1.f 

I .. -_ti·~~;~. .. · :~u~~:~ :<:~l'1':r~11x w.1w.1:.!f. ~.~tr:j~$. ~d Ji;QntXf~! · '" 'i'W" 
I ..: , •. -->>. - < ;cu Jo. :r,e;.S;t~tt da-t~ -~ri~t.r.~ < 
\~~}~1_~:;~~-dL:: _____ . --~- •''..!: ·____ _ _ _ {1$.) tQ· ._e,>(+1; :wttllout. c-r~.Oi~t·i:ncQ• ~ ·:new ACt 

Figure 4-14. The USERS Screen 

The Linking Process 4-31 



The options that appear on the USERS screen are summarized next: 

USER! = -- Enter the ID of the user to whom you want to grant 
access. You can list a maximum of 15 users on this screen. 

LEVEL! = -- Enter the access level for USER!. The valid access 
level options are W for Write, R for Read, and E for Execute. 

MORE = -- Enter YES if you want to specify more than 15 individual 
users; otherwise, enter NO. If you enter YES, the same screen is 
displayed again so that you can enter 15 more IDs and access 
levels. You can enter a maximum of 45 individual users in this 
way. If you enter NO, the GROUPS screen is displayed so that you 
can enter group IDs and access levels. 

The PF key function available from the USERS screen is summarized next: 

PF Key 

ENTER 

Description 

Validate entries and Continue -- Continues to another screen 
(USERS or GROUPS) for specifying the access list. The USERS 
screen is displayed again if you specified YES for the MORE 
option. Otherwise, the GROUPS screen is displayed. 

After you have entered as many individual user IDs as you want (for a 
maximum of 45), enter NO for the MORE option. The GROUPS screen 
(Figure 4-15) is then displayed. 

Figure 4-15. The GROUPS Screen 

4-32 The Linking Process 



4.4.2 

r 

The options that appear on the GROUPS screen are summarized next: 

GROUPl = -- Enter the ID of the group to whom you want to grant 
access. You can enter a maximum of 15 groups on this screen. 

LEVELl = -- Enter the access level for GROUP!. The valid access 
level options are W for Write, R for Read, and E for Execute. 

MORE = -- Enter YES if you want to specify more than 15 groups; 
otherwise, enter NO. If you enter YES, the same screen is displayed 
again so that you can enter 15 more IDs and access levels. You can 
enter a maximum of 30 groups. 

The PF key function available from the GROUPS screen is summarized 
next: 

PF Key 

ENTER 

Description 

Validate entries and Continue Processing -- If you specify 
YES to the MORE option, the GROUPS screen is displayed again 
so that you can specify more group IDs. If you specify NO 
to the MORE option, the access list is assumed to be 
complete, and Linker processing continues. 

After you have entered as many groups as you want (for a maximum of 
30), enter NO for the MORE option. Linker processing continues, based 
on the options you selected and the contents of your link. Other 
screens may be displayed. For example, if you requested a link map on 
the OUTPUT screen, the PRINT screen for the link map is displayed next. 

Specifying Link Map Print Options 

The Linker displays the PRINT screen (Figure 4-16) if you specified 
YES for the MAP option on the OPTIONS screen or the OUTPUT screen. 
The PRINT screen enables you to specify the volume, library, and file 
names of the print file for the link map, and provides options for 
printing specific portions of the map. To choose the options that 
correspond to the portions of the link map that you want to print, 
enter YES or NO. 

If you have specified a default access list for your print files (by 
the Set Usage Constants option of the Command Processor menu), it is 
assigned to the link map print file. Otherwise, no access list is 
assigned. The access list identifies the users who can access your 
file and the type of access granted to them. For information about 
creating default access lists, refer to the VS System User's 
Introduction. 

The Linking Process 4-33 



·,,, .. 

t:;,1''·•.~e!lt~,~s.e·'· P9v-1'ew,·'.ii~·~.';f~li<fwj,~tJ J·fok··m·ap-_i~~i:e:~-~:1:'00~::: · 

i · ;;flti,V !'i'r~i;;;. ~~~~~, i.Wi~~~•: ·. ~Eqo1~ REcott6s. "'$06• · 

Fiqure 4-16. The PRINT Screen 

VS.lJNRER. 

f'.I~§~Q\~·. = #. 

I~PCQG· . ::. Y.£$'.~ 
INPflLES ::: NO* 
LiNKSECT = YES 
DliPSECt . ::: NO*-' 
APOR>U"{E:F. :::·. N0111 

'N~MEXREf ·= N01" 
BASESE'Cl =.NO* 

' SSLSYMB ·.. = 'YE~S 
ENJNAMES: ·= NO~ 
IJNOEFlNE ='YES 
'St)MMARY = ~~ES 

CcLCop r. Wan9 

The options that appear on the PRINT screen are summarized as follows: 

Print file = -- Enter the volume, library, and file names of the 
print file for the link map. 

RECORDS = -- Enter the estimated size of the print file. The 
default is 500 records. 

FILECLAS = -- Enter the file protection class desired. Valid 
entries are: blank, #, $, @, A-Z. For detailed descriptions of each 
file class, refer to the VS System User's Introduction. 

INPLOG = -- Enter YES to print the input log; otherwise, enter NO. 
The input log contains all Linker options and input specifications. 

INPFILES = Enter YES to print a list of the input files; 
otherwise, enter NO. The list also includes the subroutine library 
files that were included, and, if sections with the same name were 
specified, the list also shows which sections were selected for the 
link and which sections were omitted. The input files and the 
included subroutine library files are listed in the order in which 
they were specified. 

4-34 The Linking Process 



LINKSECT = -- Enter YES to print a list of the linked code sections 
and static sections. Enter COD to print a list of the linked code 
sections only; enter NO to omit both listings. Each list organizes 
the sections in the order in which they were linked, and includes 
the base address, length, entry point name, translator name, version 
number, and symbolic flag. 

DUPSECT = -- Enter YES to print a list of duplicate section names; 
otherwise, enter NO. 

ADDRXREF = -- Enter YES to print a cross-reference listing arranged 
in memory location order; otherwise, enter NO. The cross-reference 
listing includes the location address, the section name and type, 
the length of the address constant, the direction of relocation, and 
the symbols referenced by the address constant. 

NAMEXREF = -- Enter YES to print a cross-reference listing arranged 
in symbol name order; otherwise, enter NO. The cross-reference 
listing includes the name and address of the symbol, the section 
name and type, and the location of the references. 

BASESECT = -- Enter YES to print a list of linked code sections that 
are base-dependent when they are loaded at runtime; otherwise, enter 
NO. If you are creating a shared subroutine library (SSL), the 
default is set to YES. It is important to determine whether any 
code sections in the output file are base-dependent if you are 
creating an SSL, because base-dependent code sections cannot be used 
in an SSL. 

SSLSYMB = -- Enter YES to print a list of shared subroutine library 
symbols with associated SSL aliases, and a count of the number of 
distinct SSL aliases associated with each symbol; otherwise, enter 
NO. 

ENTNAMES = -- Enter YES to print a list of subroutine library entry 
point names; otherwise, enter NO. 

UHDEFINE = -- Enter YES to print a list of undefined 
(user-specified) symbols; otherwise, enter NO. 

SUMMARY = -- Enter YES to print an output file summary; otherwise, 
enter NO. The output file summary includes the following 
information: 

Total lengths of the linked sections (static and code) 
The program entry point name and off set 
The program name 
The program release date 
The version number 
The output file volume, library, and file names 
The number of output records 

The Linking Process 4-35 



The functions available from the PRINT screen are summarized as 
follows: 

PF Key 

ENTER 

1 

Description 

Continue -- Accepts the link map print options and continues 
Linker processing. 

Respecify output -- Returns to the OUTPUT screen, enablin.g 
you to reenter output parameters. The previous output 
parameters appear on the OUTPUT screen until you change them. 

13 Help -- Displays Help text for the PRINT screen. This 
function is described in Section 1.5.1. 

14 Link Map Enables you to display portions of the current 
developmental state of the link map. This function is 
described in Section 4.5.1. 

16 End processing -- Enables you to terminate processing 
and exit the Linker. This function is described in 
Section 4.5.3. 

To specify the link map print options, enter YES or NO for each print 
option displayed on the PRINT screen, then press ENTER. The Linker 
accepts the print options and proceeds to the next screen according to 
the chosen Linker options. When the link is complete, the print file 
is entered on the print queue. 

4.4.3 Reordering Program Sections 

The Linker displays the REORDER screen (Figure 4-17) if you specified 
YES for the REORDER option on the OUTPUT screen (Figure 4-13), and if 
the output file contains more than one code section or static 
section. The REORDER screen enables you to change the sequence of the 
code and static sections in the output file. 

The REORDER screen lists the section names along with their ordinal 
positions in the output file. The code sections and static sections 
are in separate lists. First the code sections are displayed for 
reordering, then the static sections. 

4-36 The Linking Process 



i ,· '.'!" ~. 

fllEORDERl Reorder Static SiiCH.Ort« Vs 'Ei~k!€'',,, ,·· 
i~.: move a se9t ion·, po~ fti on c;µ f s;9 r to . the s-e:ct:J gn: n.llllle ~o<f pr~s.s·· Pfl z ! , /.t c: 

t>11ess PF8 when ~.ou :;are fini.s~ed:,reo.17derin~;r.,. · · :q 
=FJM~ :se~ti on n~lll~ .. or pr;eJi x: __ .. . . . _Mo.vin~ ~~c:Mon: 
~~~~;~!f~,1(~.~llt•W1C.~:*illci(X********1Clk***'*11tircirr· 

;Pb:s 'STATIC SecHons
· ..

l * $WLLJ:1AIN
. 2 * BUFFER#P

~ .';!

3 ·* BUFFER#R
4 * BUFFER#2

. =s "' auFFER#F
:6 -~ STARTING·.
i .it ENDtNGllR.
8 ·* BUFFER#W
;g * LAST#FIL '

'~;.··:;>;F

-~; . ~

TO * GLBUFSlZ':. ~, .-.. : ' : ·~ ~ : i ' : '

:(;.~~.:N .. .r.··E.R) .. F·i.nd section
.. ·~:iJ ·Res tart

(3=). Last CS:) .Ne~t ·

·=· • . le) co0r:. ,waH'if,>· ·
(:8) fin·i~S'oed

-tlZ), Mo~~f $ect'¥on

.,.. .. -·- ~ ~ - - _.

Figure 4-17. The REORDER Screen

The functions available from the REORDER screen are summarized in the
following list. Note that First, Last, Prev, and Next appear on the
REORDER screen only when there are more than ten sections.

PF Key

ENTER

Description

Find section -- Searches for the first instance of the
section name or pref ix that you enter in the Find section
name or pref ix field, and positions the cursor at that
location. Press ENTER again to find the next matching
section name or pref ix, if needed. This function is
described in further detail in this section.

1 Restart -- Enables you to erase all input entered thus far
and start the link again. This function is described in
Section 4.5.2.

Cancel -- While you are moving a section (after you have
pressed PF12, Move Section) Restart changes to Cancel. Then,
PFl cancels the reordering of the current section and
enables you to select another section to reorder.

2 First -- Displays the first ten positions and corresponding
sections.

,I

The Linking Process 4-37

PF Key

3

Description

Last -- Displays the last ten or fewer positions and
corresponding sections.

4 Prev -- Displays the previous ten positions and
corresponding sections.

5 Next -- Displays the next ten or fewer positions and
corresponding sections.

8 Finished -- Ends reordering of the displayed section type.
If the type was code sections, the Linker then displays the
static sections for reordering. If the type was static
sections, the Linker proceeds to the next screen according
to the chosen Linker options.

12 Move Section -- Enables you to reorder a section by
performing the following steps:

13

14

1. Position the cursor at the pseudoblank that precedes the
section to be reordered and press PF12. PFS (Finished)
and PF12 (Move section) disappear, PF12 (Move after) and
PFf12 (Move before) appear, and the name of the section
being moved appears in the Moving Section field.

2. Position the cursor at the location where you want to
move the specified section (the target section). You can
use the scrolling keys to scroll the list, or the Find
function (enter a name and press ENTER) to move to the
target section.

3. Press PF12 to move directly after the target section, or
PFf 12 to move directly before the target section. After
the Linker performs the task, PF12 (Move after) and PFll2
(Move before) disappear, and PFS (Finished) and PF12
(Move section) reappear.

You can repeat the above process as many times as
necessary, until the required order has been achieved.
Then, press PFS to end reordering of the displayed
section type. The reorder function is described in
further detail in this section.

Help -- Displays Help text for the REORDER screen. This
function is described in Section 1.5.1.

Link Map Enables you to display portions of the
current developmental state of the link map. This
function is described in Section 4.5.1.

4-38 The Linking Process

r

PF Key

16

Description

End processing -- Enables you to terminate processing
and exit the Linker. This function is described in
Section 4.5.3.

Finding a Program Section

Instead of scrolling through a lengthy list of sections, you can
instruct the Linker to find a specified pref ix of a section name or
the section itself. To do this, enter a prefix of the name or the
full name in the Find section name or prefix field, and press ENTER.
The Linker then searches the list for the pref ix or name entered, and
positions the cursor at the location where the first pref ix or section
name appears. If you press ENTER again from that location, the Linker
finds the next occurrence of the prefix or section name. This process
is repeated each time you press ENTER.

If you move the cursor to any location outside of the list and press
ENTER, the Linker searches for the entered section name or pref ix from
the beginning of the list.

Note that using a pref ix does not ensure that the Linker will find the
desired section the first time, since other sections may have a
similar name with the same prefix. However, using a prefix with
sufficient uniqueness can help you find the section that you want
quickly, without having to enter the full name. This is particularly
useful when you do not know the exact name of the section, or when the
section name is long.

How to Reorder a Program Section

The REORDER screen first displays the code sections of the output file
for reordering. To reorder a code section, position the cursor at the
pseudoblank that precedes the section name to be reordered, and press
PF12. The Linker then alters the PF key selection as follows:

• PFl, Restart, is set to Cancel.
• PF8 (Finished) and PF12 (Move section) are removed.
• PF12 (Move after) and PFT12 ((PF28) Move before) are entered.

In addition, the Linker inserts the name of the section being moved in
the Moving section field.

Position the cursor at the pseudoblank next to the section name (the
target section) that will either precede or follow the section being
reordered. You can use the scrolling keys to scroll the list, or the
Find function (enter a prefix or name and press ENTER) to move to the
target section.

The Linking Process 4-39

4.4.4

Then, press either PF12 or PFtl2 (PF28). If you press PF12, the
Linker moves the section being reordered to the location directly
after the target section that you indicated with the cursor. If you
press PFT12 (PF28), the Linker moves the section being reordered to
the location directly before the target section that you indicated
with the cursor. After the Linker performs the task, the original PF
key selection is restored. You can now proceed to reorder other
sections.

When you have reordered all the desired code sections, press PFB. The
Linker then displays the static sections, which you can reorder as
described for the code sections.

When you have reordered all the desired static sections, press PF8
again to indicate that all reordering is complete. The Linker
proceeds to the next screen according to the chosen Linker options.

Assigning Aliases for Shared Subroutine Library Symbols

The Linker displays the SSLALIAS screen (Figure 4-18), if you
specified YES for the ALIAS option on the OUTPUT screen
(Figure 4-13). You can also select this option on the MOREOPT screen
(Figure 4-3), but the setting on the OUTPUT screen overrides what you
selected on the MOREOPT screen. The SSLALIAS screen lists all
undefined symbols with the corresponding SSL alias (if present) of
each symbol. You can ac~ept or modify the existing SSL alias
assignments and make additional assignments.

The SSLALIAS screen differs from the ALIASES screen (Figure 4-12) in
that you make the assignments explicitly for each symbol. This makes
it possible to refer to specific subroutines from alternate
libraries. Another important difference is that the Linker does not
perform the verification and searching process that it does on the
ALIASES screen. This allows you to specify aliases for shared
subroutine libraries that exist on other systems.

4-40 The Linking Process

VS LINKER-
. ~ . -·· - } . - -- .

,· .'t~~~iew. -•'and. a~;$i~;~~:·:;~)-'.;_;as:&~ t~/:s~c ~-'sym_b<ff $ ~h:i ~~.<~;~_e; :to;. ~·e' ~es°:1 ~ed' th'rough
·S'l):a,nect subrnut?tf'ie~ ,1/i'b:rari es.. .
-1,.i •• ~ ~' • ' • :; - c• - . ~,A-! '.'·

.s*mb~o!f

. ~~
;!$·F:Rft.,.
·;GANQgt

-- _i~&tl~;t
·e&:n~CT
'#~bRSt1t
-fi!~~e

.•• p;.

-.:: i~'.,;N''Pp,R,f IGotft~H1,ue·;, -.· ·
> ;· ::· -,,(1} .:~:e:S\t~)t~,; .;·

SsL AH as . · -.

;~••*':it-"'**"'•*:i,t;-'******lrtit•-ir1c~*if1c1c:1fw**w*•11t11t*Yr
~-~-1tllt;~~~,~~oWit~~,~~1'*~****·*'*•*~*'*-*****••1C:ww

··· 2:szs~:~:=:::::~=~.:;:::::::::
"-**'***w-:Wit•:.,r•ir.-Jtw_11tu•.1!f,•-•*w*-*,..;#w)ic******"'w**

_ --~1'-"'•-~,1f'.lt'~.w~~*~~~1f,it:if:1t11til=.•;rrilt•1r:1r'iliw*w•~lltW~'illllt
, . ift-iJrl"f.'itjr~_*,.~jr~.~~-~?f'."'~*,1r.~~-'(t~11r ii--*•11t:1i*'!C* lltlrr-W'Jii_w·x 1l'W'.1r1r

:~.ww;w-W'ilt·ilt:~~~~~f':_:i.~:~-1't:~*!"c*:~~~-~~~ *ill *:'f'*•*Jll***
''fi-*~*tt*.~'ft;1fjti'if1f~,1t_i1!~'~-'IC'!f,1(1'~~-~~l'.l'~~'k;*~!'r~*1PlrJll*.,W*-
~-1rw-.d,11t•wcW~ it1'1¥~*~~r(l{.#'1"~•~1r-*-~•'"' ~•-•:iir.~"!~l'C~w
~* irt•***tt,-i~~,~~-*W'-•·*~'1t*-*"*tj-iii,~i**-* J11.*ilr1r-* 1tit·x;

Ct) Copr .•.. Wan·a·
,;···· :\'.

:c:#Y'·H~lp
l1;4;) •Uok Map 06) E'.nd prO.ceS,,·s.:i'f:)9 :., JS) Ne:x t

h ,'.,,~,\<...

Figure 4-18. The SSLALIAS Screen

The functions available from the SSLALIAS screen are summarized in the
following list. Note that First, Last, Prev, and Next appear on the
SSLALIAS screen only when there are more than 12 symbols.

PF Key

ENTER

1

2

3

Description

Continue -- Accepts changes in assignment of shared
subroutine library aliases to the corresponding symbols.

Restart -- Enables you to erase all input entered thus far
and start the link again. This function is described in
Section 4.5.2.

First -- Displays the first 12 symbols and corresponding
aliases.

Last -- Displays the last 12 or fewer symbols and
corresponding aliases.

The Linking Process 4-41

4.4.5

PF Key

4

Description

Prev -- Displays the previous 12 symbols and corresponding
aliases.

5 Next -- Displays the next 12 or fewer symbols and
corresponding aliases.

13 Help -- Displays Help text for the SSLALIAS screen. This
function is described in Section 1.5.1.

14 Link Map Enables you to display portions of the current
developmental state of the link map. This function is
described in Section 4.5.1.

16 ~End processing -- Enables you to terminate processing
and exit the Linker. This function is described in
Section 4.5.3.

To assign aliases for shared subroutine library symbols, examine the
list of symbols and aliases and make any desired changes. When you
have completed all changes, press ENTER. The Linker proceeds to the
next screen according to the chosen Linker options.

Managing the Entry Point Reference (EPR) Table

A subroutine library entry point name is either a section name, or a
name defined within a section. An entry point reference (EPR) table
contains all subroutine library entry point names that can be used to
resolve external references.

If you specified YES for either the STATICSL option or the SHAREDSL
option on the OPTIONS screen (Figure 4-2), the Linker automatically
builds an EPR table. The Linker collects the section and entry point
names for all included code and static sections. After removing
duplicate names, the Linker sorts the list in alphabetical order, and
places the information in the EPR table. The EPR table is located in
the Module block of the output file.

The entry point names in a shared subroutine library can be examined
using the SSL utility. For more information, refer to the VS System
Administrator's Reference.

4-42 The Linking Process

Selecting Entry Point Names for the EPR Table

The Linker includes all entry point names in the EPR table unless you
specify YES for the ENTNAMES option on the OPTIONS screen (Figure 4-2)
to select a subset. The Linker then displays the ENTRY screen
Figure 4-19) for you to review and select names. If you are creating
a static subroutine library, the ENTRY screen lists the entry point
names for all included code and static sections. If you are creating
a shared subroutine library, only the entry point names for the code
sections are listed.

•. . .•.• , i-, " • ' ' "": >: ·'.·•' ·<:·~ - -· -

VS LIN~ER': ·.
i ·~·: y·· ·
';: .

Hi.~· .. P.P~·~·i b).~ ~tt:£r¥, :poi n.~ nam_~~ {017· _th~ .$r.lbf Pl~-Y~'-~~,,l1:b;r,~~y· 9I!,.~.J)~~;t&.di°be1_~Q~\ /·/'.,:.
P1;a;~~ a, n:onbl'.ar'*'~h.a:r~cter- before:·.e'ach' .d:e:srrea. ~njt,ry. :or· ;Pr:e.:s?:,J?:ff'& ·to s~1.~ct.•;:.
all .errt.r'i:e$ ~ · · ·

· ::EO':try Point N~~~s·

:' · .ftW~Ll'fAIN
'!!.·_ •. _··.·.· •... ·:·,$. :'f:¢Wi# •;$FDCfl#

:· .f ~ff!S·tR
:,f~{~
~;; !$,W~t;MAlN ·* .;·aLANK#.NA

f~NT~R) Cont.in'ue
ti J. ~es t~_r-'t ...

''

f 6,} .. ~~l.f!c,t. ~'1 l
<·1~)·· +t.Mp

Figure 4-19. The ENTRY Screen

. -::~ .

The options that appear on the ENTRY screen are summarized in the
following list. First, Last, Prev, and Next appear on the ENTRY
screen only when there are more than ten entry point names.

Entry Point Names -- All entry point names are displayed, ten at a
time. To select one, place a nonblank character at the pseudoblank
preceding the name. To select them all, press PF6.

When the subroutine library file (static or SSL) is used in a
subsequent link, only the entry point names that you included in the
EPR table are reviewed by the Linker for resolving symbols.

The Linking Process 4-43

The functions available from the ENTRY screen follow:

PF Key

ENTER

1

2

3

4

5

Description

Continue -- Confirms the selection of subroutine library
entry points and proceeds to the next screen according to
the chosen Linker options.

Restart -- Enables you to erase all input entered thus far
and start the link again. This function is described in
Section 4.5.2.

First -- Displays the first 10 entry point names.

Last Displays the last 10 or fewer entry point names.

Prev Displays the previous 10 entry point names.

Next Displays the next 10 or fewer entry point names.

6 Select all -- Marks all entry point names with an X and
displays the beginning of the list.

13 Help -- Displays Help text for the ENTRY screen. This
function is described in Section 1.5.1.

14 Link Map Enables you to display portions of the current
developmental state of the link map. This function is
described in Section 4.5.1.

16 End processing -- Enables you to terminate processing
and exit the Linker. This function is described in
Section 4.5.3.

To select an entry point name to be included in the output file, mark
the pseudoblank preceding the name with a nonblank character.

To select all entry point names, press PF6. The Linker then marks all
entry point names with a nonblank character and displays the beginning
of the list.

When you have specified all the desired entry point names, press
ENTER. The Linker proceeds to the next screen according to the chosen
Linker options.

4-44 The Linking Process

r 4.5

4.5.1

COMMON FUNCTIONS

The following functions, described in this section, can be performed
from most Linker screens:

• Display the link map
• Restart the Linker
• Terminate the Linker

Displaying the Link Map

The Linker displays the VIEWMAP screen (Figure 4-20) if you press PF14
from any screen that provides this function. The VIEWMAP screen lists
functions for viewing specified portions of the link map. When you
make a selection, the Linker generates that portion of the link map
'for examination, and then automatically deletes it when you return to
tbe VIEWMAP screen. Note that the status of the MAP option on the
OPTIONS screen has no effect on this function.

VS LINl(ER ...

Pr~s:$ the· -~pprbpfi'a:f~, ·pp .key below· to view a speci.flc 1 ink map 1 fa~t:,
~r -~#r.~~s- Pf.1 ·to· :t~.$~01'e· i:lr'.ocess:fn'g~ •. · · · · -·

,,·»;

f1~1:1 ;~~~vm~- pt.Q~(!;S'.(s.#·?.~9,· ·

Figure 4-20. The VIEWMAP Screen

The Linking Process 4-45

The functions available from the VIEWMAP screen follow:

PF Key

1

2

3

4

5

Description

Resume processing -- Retu~ns to the previous screen.

Input Log -- Displays the Input Log portion of the link map.

Input Files -- Displays a current list of the input files
for the link.

Linked Sections -- Displays a current list of the linked
sections of the program file.

Undefined Symbols -- Displays a current list of the
undefined symbols for the link.

13 Help -- Displays Help text for the VIEWMAP screen. This
function is described in Section 1.5.1.

4.5.2 Restarting the Linker

The Linker displays the RESTART screen (Figure 4-21) whenever you
press PFl from any Linker screen that provides this function. The
RESTART screen prompts you to confirm that you want to cancel all
processing up to this point and start again.

Figure 4-21. The RESTART Screen

4-46 The Linking Process

The functions available from the RESTART screen follow:

PF Key

ENTER

1

Description

Restart -- Erases all input entered thus far and displays
the OPTIONS screen.

Continue -- Returns to the previous screen and enables you
to continue Linker processing.

4.5.3 Exiting the Linker

The Linker displays the TERMINATE screen (Figure 4-22) whenever you
press PF16 from any Linker screen that provides this function. The
TERMINATE screen prompts you to confirm that you want to end
processing and exit the Linker.

· .. :·;:·,.··,··;
: '·',''

Figure 4-22. The TERMINATE Screen

The functions available from the TERMINATE screen follow:

PF Key

ENTER

1

Description

Terminate -- Enables you to terminate processing and exit
the Linker.

Continue -- Returns to the previous screen and resumes
Linker processing.

4.6 BUILDING THE OUTPUT FILE

When the Linker has shown all screens according to the chosen Linker
options, it builds the output file. After the Linker finishes
building the output file, control is returned to the program that
invoked the Linker.

The Linking Process 4-47

~··

·~
'---·

~_I
'·.~-- I

I

CHAPTER 5
LINKER GETPARM INFORMATION FOR VS PROCEDURES

5.1 INTRODUCTION

The VS Procedure language enables you to create procedures to access
Linker screens and perform specified tasks. This chapter provides all
the Linker information required to write procedures for the new
Linker.

By using the VS Procedure language and appropriate GETPARMS, you can
automate screen access and task performance to eliminate the display
of most or all of the screens. For detailed information on the use of
VS Procedure language and GETPARM requests, refer to the VS Procedure
Language Reference.

The new Linker is procedurally compatible with the previous Linker.
In other words, procedures written for the previous Linker will
produce the same results with the new Linker, except for procedures
that rely upon the INLIB and INVOL usage constants as a default
subroutine library (refer to Section 5.7).

The screens that accept data through a VS procedure are presented in
alphabetical order. For each screen, the following information is
given:

• A brief description of the screen

• The Procedure language format, all prnames and keywords, and any
relevant PF keys other than ENTER

• General rules for managing the screen by procedure

Linker GETPARM Information for VS Procedures 5-1

5.2

Format

General

The ALIASES Screen Prname = ALIASES

The ALIASES screen enables you to resolve undefined symbols through
shared subroutine libraries by specifying SSL aliases.

[label] ENTER ALIASES
ALIAS! = ssl-alias

[, ALIAS2 = ssl-alias]
[, ALIAS3 = ssl-alias]
[, ALIAS4 = ssl-alias]
[, ALIASS = ssl-alias]
[, ALIAS6 = ssl-alias]
[, ALIAS7 = ssl-alias]
[, ALIAS8 = ssl-alias]
[, ALIAS9 = ssl-alias]
[, ALIASlO = ssl-alias]

Rules

1. The ENTER ALIASES clause is processed only if there are undefined
symbols remaining after all input files and static subroutine
libraries have been searched.

2. Only one ENTER ALIASES clause is accepted in a procedure.

3. An SSL alias is a name of 40 characters or less assigned to a
shared subroutine library.

4. A maximum of 10 aliases can be specified.

5-2 Linker GETPARM Information Eor VS Procedures

~

5.3 The ENTRY Screen Prname =ENTRY

The ENTRY screen displays the entry point names for all included code
and static sections. This screen enables you to choose the entry
point names to be included in the entry point reference table for a
subroutine library file.

Format l

[label] ENTER
NAMEl

ENTRY
= entry-point-name

[, NAME2 = entry-point-name]

[I NAMElO = entry-point-name]

Format 2

[label] ENTER ENTRY

General Rules

1. ENTER ENTRY clauses are processed only when ENTNAMES and STATICSL
or SHAREDSL = YES in the OPTIONS parameter list.

2. More than one ENTER ENTRY clause can be used to specify entry
point names.

3. A Format 2 ENTER ENTRY clause is used to terminate a sequence of
ENTRY parameter inputs.

4. The procedure is checked first for any ENTRY parameters. All
parameter lists are processed until a Format 2 ENTER clause is
encountered.

If a Format 2 ENTER ENTRY clause is not specified, the following
occurs:

a. When the procedure is running in the foreground, the ENTRY
screen is displayed at the workstation, with data extracted
from the procedure listed on the screen.

b. When the procedure is running in the background, the data
extracted from the procedure is assumed to be complete.

Linker GETPARM Information for VS Procedures 5-3

5 • The ENTRY S'Creen is displ~yed if the following conditions are true:

• The. procedure is running in the foreground.
• .ENTNAMES and STATICSL or SHAREDSL = YES on the OPTIONS screen.
• No Format 2 statement is included.

5-4 Linker GETPAR.M Information Eor VS ,Procedures

~ ·. y ... ___ ...

5.4

Format

The EXCLUDE Screen Prname = EXCLUDE

The EXCLUDE screen enables you to specify sections to be excluded from
the output file.

[label] ENTER EXCLUDE
VOLUME = VS-volume-name,
LIBRARY = VS-library-name,
FILE = VS-file-name,
SECTl = section-name

[, SECT2 = section-name]
[, SECT3 = section-name]
[, SECT4 = section-name]
(, SECTS = section-name]
(, SECT6 = section-name]
[, SECT? = section-name]
[, SECTS = section-name]
(, SECT9 = section-name]
[, SECTlO = section-name]
[, BLNKSECT = YES-or-NO]

General Rules

1. The SECT, VOLUME, LIBRARY, and FILE names are required.

2. All sections specified in an ENTER EXCLUDE clause must belong to
the same input file.

3. More than one ENTER EXCLUDE clause can be used to specify all
excluded sections for the same file.

4. For each input file, the following rules apply when specifying
excluded sections:

a. The procedure is checked first for any ENTER EXCLUDE clauses
with a matching file name specification (volume, library, and
file). When such a clause exists, the sections named in the
ENTER EXCLUDE clause are marked as excluded.

b. If the procedure is running in the foreground, and the EXCLUDE
option for the input file is YES, the EXCLUDE screen is
displayed. The EXCLUDE screen contains all the sections in the
input file except those already excluded through the
procedure. The value of the EXCLUDE option is derived from
either the INPUT parameter list or the INPUT screen.

c. If BLNKSECT = YES, the blank section is excluded. The default
is NO.

Linker GETPARM Information Eor VS Procedures 5-5

5.5

Format

The FILELIST Screen Prname = Fl LELIST

The FILELIST screen enables you to specify individual files to link
from the library that you identified on the INPUT screen. From a
procedure, you can only include all of the files; you cannot specify
individual files.

[label] ENTER FILELIST

PF key: 6 = Include all

General Rules

1. PF6 is required with the ENTER FILELIST clause.

2. Only one ENTER FILELIST clause can be specified for each INPUT
library specification.

5-6 Linker GETPARM Information for VS Procedures

5.6 The INPUT Screen Prname = INPUT

The INPUT screen enables you to specify one or more input files to
link. You can specify an unlimited number of input files: either
individual files, or a library of files from which you can select
files on the FILELIST screen.

Format l

[label] ENTER INPUT
[VOLUME = VS-volume-name,]
[LIBRARY = VS-library-name,]
[FILE = VS-file-name]
[, SYMBOLIC = YES-or-NO]
[, EXCLUDE = YES-or-NO]

Format 2

[label] ENTER INPUT

General Rules

1. If the procedure is run in the background, there must be at least
one input file or library specification.

2. The LIBRARY and FILE fields are required to specify a file. The
system uses the user input volume as the default for the VOLUME
field. To specify a library, omit the FILE field. If EXCLUDE is
not specified, a default value of NO is assigned. If SYMBOLIC is
not specified, the value that is consistent with the global
SYMBOLIC option is assigned.

3. If a library is specified when the procedure is running in the
background, there must be a corresponding ENTER FILELIST 6 clause
to select the files; otherwise, the Linker will be canceled when
it attempts to list the files on the workstation.

4. When the procedure is running in the foreground and EXCLUDE = YES,
the EXCLUDE screen for the input file is displayed. Otherwise,
the EXCLUDE field is ignored.

S. A Format 2 INPUT parameter is used to terminate a sequence of
INPUT parameters. If a Format 2 INPUT parameter is not specified,
the following results occur:

a. When the procedure is running in the foreground, an INPUT
screen is displayed at the workstation.

b. When the procedure is running in the background, the Linker
will be canceled in an attempt to access more data at the
workstation.

Linker GETPARM Information Eor VS Procedures 5-7

5.7 The LIBRARY Screen Prname = LIBRARY

The LIBRARY screen enables you to enter static subroutine libraries to
resolve undefined symbols.

Format 1

[label]

Format 2

[label]

General Rules

ENTER LIBRARY
VOLUMEl = sublib-volurne-name,
LIBRARYl = sublib-library-name

[, FILEl = sublib-file-name]

[, VOLUME2 = sublib-volume-name,
LIBRARY2 = sublib-library-name

[, FILE2 = sublib-file-name]]

[, VOLUMES = sublib-volume-name,
LIBRARY8 = sublib-library-name

[, FILES = sublib-file-name]]

ENTER LIBRARY

1. All static subroutine libraries must be specified using an ENTER
LIBRARY clause. A default subroutine library is not supplied from
the INLIB and INVOL usage constants as in the previous Linker.

2. Processing of ENTER LIBRARY clauses terminates when the eighth
subroutine library specification in an ENTER LIBRARY clause is
blank.

3. More than one ENTER LIBRARY clause can be used to specify static
subroutine libraries.

4. A Format 2 ENTER LIBRARY clause is required only if one of the
following conditions is true:

a. Undefined symbols exist, but there are no static subroutines to
be linked (all undefined symbols are to be resolved through
shared subroutine libraries).

b. The eighth subroutine library specification in the preceding
ENTER LIBRARY clause is not blank.

5-8 Linker GETPARM Information £or VS Procedures

5.8

Format

General

r

The OPTIONS Screen Prname = OPTIONS

Note: The GETPARM list for this screen includes the options that
appear on the MOREOPT screen.

The OPTIONS screen enables you to specify the most commonly used
Linker options. Note that you also specify keywords from the MOREOPT
screen using the ENTER OPTIONS clause.

[label] ENTER OPTIONS
[, MAP = YES-or-NO]
[, SYMBOLIC = YES-or-NO]
[, LINKAGE = YES-or-NO]
[, STAT I CSL = YES-or-NO]
[, SHAREDSL = YES-or-NO]
[, ENTNAMES = YES-or-NO]
[, ALIAS = YES-or-NO]
[, REORDER = YES-or-NO]
[, RESOLVE = YES-or-NO]
[, DUPSECT = YES-or-NO]
[, INPROGRS = Y~S-or-NO]
[, OBJ FORM = O-thru-1]
[, WARNINGS = YES-or-NO]
[, DATES EL = YES-or-NO]

Rules

1. Only one ENTER OPTIONS clause is accepted in a procedure.

2. The ENTER OPTIONS clause is typically placed after the RUN
statement.

3. The INLIB and INVOL usage constants are not supplied as a default
subroutine library as in the previous Linker. All required
subroutine libraries must be explicitly specified with an ENTER
LIBRARY clause (refer to Section 5.7).

4. Keywords of the previous Linker are supported as follows:

VOLUME, LIBRARY -- Becomes the first subroutine library on the
LIBRARY screen.

MORE -- If YES, the LIBRARY screen is displayed; if NO, the
LIBRARY screen is not displayed.

SYMB -- Equivalent to the SYMBOLIC option.

Linker GETPARM Information for VS Procedures 5-9

EXSEC -- _Equivalent to the INPFILES option on the -PRINT s·creen.

XREF -- Equivalent to the: ADDRXREF option on.· .the: PRINT screen.

5~10 Linker GETPARM. Information Eor VS Proc.edures

~

5.9

Format

The OUTPUT Screen Prname = OUTPUT

The OUTPUT screen shows a list of output file attributes.
list, you can specify the attributes of the output file.

[label] ENTER OUTPUT
[VOLUME = VS-volume-name,]
[LIBRARY = VS-library-name,]
[FILE = VS-file-name]
[I REPLACE = YES or NO]
[I REORDER = YES or NO]
[I ALIAS = YES or NO]
[I MAP = YES or NO]
[I FILECLAS = VS-file-class]
[I ACLIST = YES or NO]
[I RETAIN = #-of-days-in-integer]
[I PROGBASE = program-base-address-in-hex]
[I PROGNAME = program-name]
[I ENTRY = program-entry-name]
[I ENOFFSET = entry-point-name-offset-in-hex]
[I VERSION! = 2-digit-no]
[I VERSION2 = 2-digit-no]
[I VERSION3 = 2-digit-no]
[I RELMONTH = l-thru-12]
[I RELDAY = l-thru-31]
[I REL YEAR = 00-thru-99]

From that

General Rules

1. The output parameter list is required for background procedures.

2. The FILE field is required. Default values are used for the
output library and volume names if they are not specified.

3. A FILE specification of '##' is acceptable to create a temporary
file. The actual file, library, and volume names are returned to
the procedure.

4. The PROGBASE and ENOFFSET fields can have a maximum of six
hexadecimal digits.

5. The PROGNAME and ENTRY fields can have a maximum of 40
alphanumeric characters.

6. VERSION!, VERSION2, and VERSION3 field values are used to form the
following version number: VERSION1.VERSION2.VERSION3

7. RELMONTH, RELDAY, and RELYEAR field values are used to form the
following date: RELMONTH I RELDAY I RELYEAR

Linker GETPARM Information Eor VS Procedures 5-11

8. The version number and release date are placed in the Prolog
block. The release date is converted to a Julian date and stored
in packed decimal in the Prolog block.

9. Only one ENTER OUTPUT clause is accepted in a procedure.

5-12 Linker GETPARM Information for VS Procedures

5.10

Format

The OVERRIDE Screen Prname = OVERRIDE

Note: The OVERRIDE screen replaces the DUPSECT screen when you are
using a procedure to run the LINKER. The DUPSECT screen is designed
Eor interactive use only.

The OVERRIDE screen enables you to specify which sections to link when
there are duplicate section names.

[label] ENTER OVERRIDE
SECTl = section-name,
VOLUMEl = VS-volume-name,
LIBRARYl = VS-library-name,
FILEl = VS-file-name

[, SECT2 = section-name,
VOLUME2
LIBRARY2
FILE2

[, SECTS
VOLUMES
LIBRARY8
FILES

= VS-volume-name,
= VS-library-name,
= VS-file-name]

= section-name,
= VS-volume-name,
= VS-library-name,
= VS-file-name]

[, BLNKVOL
BLNKLIB
BLNKFILE

= VS-volume-name,
= VS-library-name,
= VS-file-name]

Linker GETPARM Information Ear VS Procedures 5-13

General Rules

1. The SECT, VOLUME, LIBRARY, and FILE fields are required in each set
of parameters.

2. More than one ENTER OVERRIDE clause can be used to speci~y all
overriding sections.

3. For each duplicate section, the following process is used to enable
you to specify an overriding section:

a. The procedure is checked first for a set of OVERRIDE parameters
(a set includes the SECT, VOLUME, LIBRARY, and FILE names) with
a matching section-name entered in the SECT field. If such a
set is found, the section from the file specified in the set is
selected as the overriding section. If none exist, and DUPSECT
= YES on the OPTIONS screen when running in the foreground, the
DUPSECT screen is displayed; otherwise, the default selection
rules are used.

b. By specifying BLNKVOL, BLNKLIB, and BLNKFILE, you can select the
blank section when multiple copies from multiple files are
supplied.

5-14 Linker GETPARM Information Eor VS Procedures

5.11

Format

f' General

The PR INT Screen Prname = PRINT

The PRINT screen enables you to enter the name and location of the
print file for the link map, and allows you to select which portions
of the link map are to be printed. In a procedure, if MAP = NO, the
ENTER PRINT clause enables you to specify the name and location of the
print file for warning messages.

[label] ENTER PRINT
[VOLUME = VS-volume-name,]
[LIBRARY = VS-library-name,]
[FILE = VS-file-name]
[, I NP LOG = YES-or-NO]
[, INPFILES = YES-or-NO]
[, LINKSECT = YES or COD or NO]
[, DUPSECT = YES-or-NO]
[, BASE SECT = YES-or-NO]
[, ADDRXREF = YES-or-NO]
[, NAMEXREF = YES-or-NO]
[, SSLSYMB = YES-or-NO]
[, ENT NAMES = YES-or-NO]
[, UNDEFINE = YES-or-NO]
[, SUMMARY = YES-or-NO]
[, FILE CLAS = blank, #, $, @, or A-Z]

Rules

1. If MAP= YES, the.file, library, and volume names specify the name
and location of the link map file. If MAP = NO, the file,
library, and volume names specify the name and location of the
file for printing only the warning messages; the remainder of the
parameter list is ignored.

2. If the VOLUME, LIBRARY, and FILE fields are not specified, the
print file is created with a system-generated file name, in the
user's default spool library and volwne.

3. A file specification of '##' is acceptable for creating a
temporary file. The actual file, library, and volume names of the
created file are returned to the procedure.

4. LINKSECT = YES specifies that both code and static sections are to
be listed in the link map. LINKSECT = COD specifies that only the
code sections are to be listed. LINKSECT = NO specifies that
neither the code nor the static sections are to be listed.

Linker GETPARM Information for VS Procedures 5-15

5.12 The REORDER Screen Prname = REORDER

The REORDER screen enables you to change the sequence of the code and
static sections in the output file.

Format 1

[label] ENTER
TYPE

REORDER

Format 2

[, SECTl
[, SECT2

[, SECTlS
[, OTHERS
[, BLKSCTAF
[, BLKSCTBF

= CODE-OR-STATIC
= section-name]
= section-name]

= section-name]
= section-name]
= section-name]
= section-name]

[label] ENTER REORDER

General Rules

1. The keyword TYPE is required, and specifies whether the list is to
be applied to code sections or static sections.

2. The keyword OTHERS can be used to place the remaining unspecified
sections after the section that OTHERS names. The sections are
entered in their input order.

3. ENTER REORDER clauses are processed only when REORDER =YES in
either the OPTIONS parameter list or the OUTPUT parameter list.

4. More than one ENTER REORDER clause can be used to specify all
sections for reordering for the same file.

5. A Format 2 ENTER REORDER clause that contains no parameters is
used to terminate a sequence of REORDER parameter inputs. If a
Format 2 ENTER REORDER clause is not specified, the following
results occur:

a. When the procedure is running in the foreground, the REORDER
screen is displayed at the workstation. The REORDER screen
lists the sections in the order indicated by the parameter
list. You can further manipulate the order of the sections.

b. When the procedure is running in the background, the end of the
REORDER list is assumed.

5-16 Linker GETPARM Information Eor VS Procedures

~.
~

6. The BLKSCTAF keyword is used to designate a section after which
the blank section will appear.

7. The BLKSCTBF keyword is used to designate a section before which
the blank section will appear.

Linker GETPARM Information for VS Procedures 5-17

5.13

Format

General

The RESOLVE Screen Prname = RESOLVE

The RESOLVE screen enables you to specify the action you want to take
if undefined symbols exist after all input has been processed. The
RESOLVE prname is ignored if the procedure is running in background
mode.

[label] ENTER RESOLVE [PFkey]

PF keys: 1 = Add more input files
8 = Verify and add aliases
9 = Display undefined symbols

13 = Help
14 = Link map
16 = End processing

Rule

1. The ENTER RESOLVE clause is processed only when RESOLVE = YES in
the OPTIONS parameter list and the procedure is running in
foreground mode.

2. If the PF key is omitted, the Linker bypasses the RESOLVE screen
and proceeds to create the output file. The same effect is
achieved when RESOLVE = NO in the OPTIONS parameter list.

3. PF13 and PF14 are not permitted if the procedure is running in the
background.

5-18 Linker GETPARM Information Eor VS Procedures

~ ' ,•

5.14

Format

The SSLALIAS Screen Prname = SSLALIAS

The SSLALIAS screen displays all undefined symbols with the
corresponding SSL alias (if present) of each symbol and allows you to
change the current SSL assignments and to make additional assignments.

[label] ENTER SSLALIAS

[, NAMEl = symbol-name,
ALIASl = ssl-alias]

[, NAME2 = symbol-name,
ALIAS2 = ssl-alias]

[, NAMElO = symbol-name,
ALIASlO = ssl-alias]

General Rules

1. The symbol name and alias fields are required. Up to 40
characters can be entered for a symbol name or an SSL alias.

2. An SSL alias is a name of 40 characters or less assigned to a
shared subroutine library.

3. To display alias assignments for shared subroutine library
symbols, the ALIAS option must be set to YES. The ALIAS option
can be specified in either the OPTIONS parameter list, or the
OUTPUT parameter list.

4. More than one ENTER SSALIAS clause can be used to assign SSL
aliases to symbols.

5. The SSLALIAS screen is displayed if all of the following
conditions are true:

The procedure is running in the foreground.
There are no SSLALIAS parameters in the procedure.
ALIAS = YES in the OUTPUT parameter list.

Linker GETPARM Information Eor VS Procedures 5-19

APPENDIX A
LINK MAPS

A.1 INTRODUCTION

This appendix gives examples of link maps from two types of links:
one from linking a program and the other from linking a shared
subroutine library (SSL). The objective is to illustrate the form and
content of the information provided in the link maps produced by the
Linker. Included with the link maps are the corresponding link
procedures.

Information in a link map is organized into sections, where each
section starts on a new page with a section heading. There are 11
sections that can be selected for printing on the PRINT screen, plus a
section for warning messages. The Linker provides default selections
according to the type of link you are performing. You can accept the
defaults or make other selections. For more information on link map
selections, refer to Section 2.4.1.

All the link map sections are represented in this appendix except for
Duplicate Sections and Base-Dependent Code Sections. These two
sections are not applicable in the examples given here and, therefore,
are discussed in other appendixes (see Appendix Band Appendix C).

A.2 EXAMPLE OF A PROGRAM LINK

This section gives an example of a typical program link. The program
being linked consists of three input modules and calls to several
subroutines, some of which are contained within a shared subroutine
library, and some of which are contained in other subroutine libraries.

The program calls four subroutines for doing workstation I/O:
CRTOPEN, CRTCLOSE, CRTREAD, and CRTWRITE. These subroutines are
contained in the SSL named @CRTIO. The ENTER ALIASES clause gives the
name of the SSL where the Linker will find the subroutine entry point
names. The Linker verifies that these entry points exist in the SSL
and then assigns the alias to the SSL symbols (refer to Section A.2.8).

Link Maps A-1

The program also calls a subroutine named BELL in the USERSUBS ~

library, and several runtime routines in the @PLIRTM@ library. These . y
subroutines are statically linked in the program. Two subroutines,
SETTIME and SETALARM, were intentionally omitted from the link to
illustrate the "Undefined Symbols" section of the link map.

A.2.1 VS Procedure for Linking a Program

PROCEDURE
RUN LINKER

ENTER OPTIONS
ENTER INPUT
ENTER INPUT
ENTER INPUT
ENTER INPUT
ENTER LIBRARY

ENTER ALIASES
ENTER OUTPUT
ENTER PRINT

I NP LOG
INPFILES
ADDRXREF
NAMEXREF
SSLSYMB

A-2 Link Maps

FILE=MAIN, LIBRARY:DRDOBJ,
FILE=TIME, LIBRARY=DRDOBJ,
FILE:RINGBELL, LIBRARY:DRDOBJ,

VOLUME=LANG
VOLUME=LANG
VOLUME=LANG

LIBRARYl=USERSUBS, VOLUMEl=SYSTEM,
LIB.RARY2 =@PL! RTM@, VOLUME2 :SYSTEM
ALIASl=@CRTIO
FILE=CLOCK,
FILE=CLOCK,
= YES,
= YES,
= YES,
= YES,
= YES

LIBRARY:DRDRUN,
LIBRARY=DRDPRT,

VOLUME=LANG
VOLUME=LANG,

A.2.2 Program Link Map -- Input Log

VS LINKER (2.05.00)

INPUT LOG:

OPTIONS:

12: 11 11 /01/88

MAP YES
SYMBOLIC YES
LINKAGE YES
DATES EL NO
DUPSECT NO
REORDER NO
RESOLVE NO
OBJ FORM l
STATIC SUBROUTINE LIBRARY NO
SHARED SUBROUTINE LIBRARY NO
REVIEW ENTRY POINT NAMES NO
REVIEW ALIAS ASSIGNMENTS NO

INPUT FILE STRINGS:
LANG .DRDOBJ .MAIN
LANG .DRDOBJ .TIME
LANG .DRDOBJ .RINGBELL

SUBROUTINE LIBRARY STRINGS:
SYSTEM.USERSUBS.
SYSTEM.@PLIRTM@.

OUTPUT PARAMETERS:
OUTPUT FILE
FILE CLASS
RETAIN
PROGRAM BASE ADDRESS
PROGRAM NAME
ENTRY POINT NAME
ENTRY POINT OFFSET
VERSION NUMBER
RELEASE DATE

PRINT LINK MAP:
LINK MAP FILE
INPUT LOG
INPUT FILES
LINKED SECTIONS
DUPLICATE SECTIONS
XREF BY ADDRESS
XREF BY SYMBOL
BASE-DEPENDENT SECTIONS
SSL SYMBOLS AND ALIASES
SUBROUTINE ENTRY NAMES
UNDEFINED SYMBOLS
OUTPUT FILE SUMMARY

LANG.DRDRUN.CLOCK
H

0 DAY(S)
100000

MAIN
000000
00.00.00
11/01/88

LANG.DRDPRT .CLOCK
YES
YES
YES
NO
YES
YES
NO
YES
NO
YES
YES

INPUT LOG - 1

Link Maps A-3

A.2.3 Program Link Map -- Input Files

VS LINKER (2.05.00)

INPUT FI LES:

12: 11

FILE = LANG .DRDOBJ .MAIN

SECTIONS INCLUDED:
#MAIN
$MAIN

FILE= LANG .DRDOBJ .TIME

SECTIONS INCLUDED:
TIME

11 /Ol /88 INPUT FI LES - l

SYMBOLIC = YES; INPUT TYPE = USER

SYMBOLIC = YES; INPUT TYPE = USER

FILE = LANG .DRDOBJ .RINGBELL SYMBOLIC = YES; INPUT TYPE = USER

SECTIONS INCLUDED:
#RINGBEL
$RINGBEL

FILE = SYSTEM.USERSUBS.BELL

SECTIONS INCLUDED:
BELL
BELLST

FILE = SYSTEM.USERSUBS.DATE

SECTIONS INCLUDED:
DATE

SYMBOLIC = YES; INPUT TYPE = SUBROUTINE LIBRARY

SYMBOLIC = YES; INPUT TYPE = SUBROUTINE LIBRARY

FILE = SYSTEM.@PLIRTM@.WLPALLOC SYMBOLIC = YES; INPUT TYPE = SUBROUTINE LIBRARY

·SECTIONS INCLUDED:
WLPALLOC

FILE = SYSTEM.@PLIRTM@.WLPFREE

SECTIONS INCLUDED:
WLPFREE

A-4 Link Maps

SYMBOLIC = YES; INPUT TYPE = SUBROUTINE LIBRARY

A.2.4 Program Link Map -- Linked Code Sections

VS LINKER (2.05.00) 12: 11 11/01/88 LINKED SECTIONS - l

LINKED CODE SECTIONS:

ORIGIN LENGTH SECTION NAME
INPUT FI LE TRANSLATOR VERSION DATE TIME

100040 000130 #MAIN
LANG .DRDOBJ .MAIN PL 02. 01. 00 11 /01 /88 00:00
*** ENTRY POINTS ***
OFFSET ADDRESS NAME
000000 <100040> #MAIN
000004 <100044> MAIN

100170 000018 TIME
LANG .DRDOBJ .TIME AS 01.09 .03 09/02/85 00:00
*** ENTRY POINTS •*•
OFFSET ADDRESS NAME
000000 <100170> TIME

100188 000090 #RINGBEL
LANG .DRDOBJ .RINGBELL PL 02.01.00 11/01 /88 00:00
*** ENTRY POINTS ***
OFFSET ADDRESS NAME
000000 <100188> #RINGBEL
000004 < 10018C> RINGBELL

100218 OOODlO DATE
SYSTEM.USERSUBS.DATE AS 01.07.00 09/17/80 00:00
*** ENTRY POINTS •••
OFFSET ADDRESS NAME

~ 000000 <100218> DATE

100F28 000088 WLPALLOC
SYSTEM.@PLIRTM@.WLPALLOC AS 01 .09 .03 07/19/85 00:00
• ENTRY POINTS *••
OFFSET ADDRESS NAME
000000 < 100F28> WLPALLOC

lOOFBO 000040 WLPFREE
SYSTEM.@PLIRTM@.WLPFREE AS 01 .09 .03 07/19/85 00:00
*** ENTRY POINTS •**
OFFSET ADDRESS NAME
000000 <lOOFBO> WLPFREE

l OOFFO 000220 BELL
SYSTEM.USERSUBS.BELL AS 01.07.00 05/16/79 00:00
*** ENTRY POINTS ***
OFFSET ADDRESS NAME
000000 < lOOFFO> BELL

Link Maps A-5

A.2.5 Program Link Map -- Linked Static Sections

VS LINKER (2.05.00)

LINKED STATIC SECTIONS:

12: 11 11 /01 /88 LINKED SECTIONS - 2

ORIGIN LENGTH SECTION NAME
INPUT FILE TRANSLATOR VERSION DATE TIME

000000 000048 $MAIN
LANG .DRDOBJ .MAIN PL
*** ENTRY POINTS ***
OFFSET ADDRESS NAME
000000 <000000> $MAIN

000048 000008 $RINGBEL
LANG .DRDOBJ .RINGBELL PL
*** ENTRY POINTS ***
OFFSET ADDRESS NAME
000000 <000048> $RINGBEL

000050 000090 BELLST

A-6 Link Maps

SYSTEM.USERSUBS.BELL AS
*** ENTRY POINTS ***
OFFSET ADDRESS NAME
000000 <000050> BELLST

02.01 .00 11/01/88 00:00

02.01 .00 11/01/88 00:00

01.07.00 05/16/79 00:00

r A.2.6 Program Link Map -- Cross Reference by Address

VS LINKER (2.05.00) 12: 11 11/01/88 XREF BY ADDRESS - l

CROSS REFERENCE BY ADDRESS:

ADDRESS TYPE LEN +/- REFERS TO SYMBOL DEFINED AT IN SECTION TYPE

CODE SECTION NAME = #MAIN
100118 RCON 4 + $MAIN 000000 $MAIN STATIC

CODE SECTION NAME = #RINGBEL
lOOlCC RCON 4 + $RINGBEL 000048 $RINGBEL STATIC

CODE SECTION NAME = DATE
lOOECO ACON 4 + <LOCAL REFERENCE>
100EC4 ACON 4 + <LOCAL REFERENCE>
100EC8 ACON 4 + <LOCAL REFERENCE>
lOOECC ACON 4 + <LOCAL REFERENCE>
lOOEDO ACON 4 + <LOCAL REFERENCE>
100ED4 ACON 4 + <LOCAL REFERENCE>
100ED8 ACON 4 + <LOCAL REFERENCE>
lOOEDC ACON 4 + <LOCAL REFERENCE>
lOOEEO ACON 4 + <LOCAL REFERENCE>
100F08 ACON 4 + <LOCAL REFERENCE>

CODE SECTION NAME = BELL
101208 RCON 4 + BELL ST 000050 BELL ST STATIC

STATIC SECTION NAME = $MAIN
000000 ACON 4 + MAIN 100044 #MAIN CODE
000004 ACON 4 + DATE 100218 DATE CODE

r 000008 ACON 4 + TIME 100170 TIME CODE
oooooc ACON 4 + CRTOPEN UNDEFINED
000010 ACON 4 + CRT READ UNDEFINED
000014 ACON 4 + CRTWRITE UNDEFINED
000018 ACON 4 + CRT CLOSE UNDEFINED
OOOOlC ACON 4 + SET ALARM UNDEFINED
000020 ACON 4 + SETT I ME UNDEFINED
000024 ACON 4 + RINGBELL 10018C #RINGBEL CODE
00003C ACON 4 + WLPALLOC 100F28 WLPALLOC CODE
000040 ACON 4 + WLPFREE lOOFBO WLPFREE CODE

STATIC SECTION NAME = $RINGBEL
000048 ACON 4 + RINGBELL 10018C #RINGBEL CODE
00004C ACON 4 + BELL lOOFFO BELL CODE

STATIC SECTION NAME = BELLST
00006C ACON 4 + <LOCAL REFERENCE>

Link Maps A-7

A.2.7 Program Link Map -- Cross-Reference by Symbol
~

VS LINKER (2.05.00) 12: 11 11 /01 /88 XREF BY SYMBOL - 1

CROSS REFERENCE BY SYMBOL:

SECTION SECTION
SYMBOL ADDRESS TYPE LEN +/- TYPE NAME

#MAIN
DEF: 100040 CODE #MAIN
REF: NO REFERENCES

#RINGBEL
DEF: 100188 CODE #RINGBEL
REF: NO REFERENCES

$MAIN
DEF: 000000 STATIC $MAIN
REF: 100118 RCON 4 + CODE #MAIN

000000 ACON 4 + STATIC $MAIN

$RINGBEL
DEF: 000048 STATIC $RINGBEL
REF: 1001CC RCON 4 + CODE #RINGBEL

000048 ACON 4 + STATIC $RINGBEL

BELL
DEF: lOOFFO CODE BELL
REF: 00004C ACON 4 + STATIC $RINGBEL

BELLST
DEF: 000050 STATIC BELLST
REF: 101208 RCON 4 + CODE BELL ~ 000050 ACON 4 + STATIC BELLST

00006C ACON 4 + STATIC BELLST

CRTCLOSE
DEF: UNDEFINED
REF: 000018 ACON 4 + STATIC $MAIN·

CRTOPEN
DEF: UNDEFINED
REF: oooooc ACON 4 + STATIC $MAIN

CRT READ
DEF: UNDEFINED
REF: 000010 ACON 4 + STATIC $MAIN

CRTWRITE
DEF: UNDEFINED
REF: 000014 ACON 4 + STATIC $MAIN

DATE
DEF: 100218 CODE DATE
REF: lOOECO ACON 4 + CODE DATE

100EC4 ACON 4 + CODE DATE
100EC8 ACON 4 + CODE DATE
lOOECC ACON 4 + CODE DATE
lOOEDO ACON 4 + CODE DATE

A-8 Link Maps

('

VS LINKER (2.05.00) 12: 11 11 /01 /88 XREF BY SYMBOL - 2

SECTION
SECTION
SYMBOL ADDRESS TYPE LEN +/- TYPE NAME

100E04 ACON 4 + CODE DATE
100E08 ACON 4 + CODE DATE
lOOEOC ACON 4 + CODE DATE
lOOEEO ACON 4 + CODE DATE
100F08 ACON 4 + CODE DATE
000004 ACON 4 + STATIC $MAIN

MAIN
DEF: 100044 CODE #MAIN
REF: 000000 ACON 4 + STATIC $MAIN

RINGBELL
DEF: 10018C CODE #RINGBEL
REF: 000024 ACON 4 + STATIC $MAIN

000048 ACON 4 + STATIC $RINGBEL

SET ALARM
DEF: UNDEFINED
REF: OOOOlC ACON 4 + STATIC $MAIN

SETT I ME
DEF: UNDEFINED
REF: 000020 ACON 4 + STATIC $MAIN

TIME
DEF: 100170 CODE TIME
REF: 000008 ACON 4 + STATIC $MAIN

WLPALLOC
DEF: 100F28 CODE WLPALLOC
REF: 00003C ACON 4 + STATIC $MAIN

WLPFREE
DEF: lOOFBO CODE WLPFREE
REF: 000040 ACON 4 + STATIC $MAIN

A.2.8 Program Link Map -- SSL Symbols and Assigned Aliases

VS LINKE~ (2.05.00) 12: 11 11/01/88

SSL SYMBOLS ANO ASSIGNED ALIASES:

SSL SYMBOL

CRTCLOSE
CRTOPEN
CRT READ
CRTWRITE

ASSIGNED ALIAS

@CRTIO
@CRTIO
@CRTIO
@CRTIO

SSL SYMBOLS ANO ALIASES - l

INPUT FILE ALIAS COUNT

Link Maps A-9

A.2.9 Program Link Map -- Undefined Symbols

12: 11 11/01/88 UNDEFINED SYMBOLS -VS LINKER (~.05.00)

UNDEFINEQ SYMBOLS: REFERENCING SECTIONS:

SET ALARM

SETT I ME
STATIC $MAIN

STATIC $MAIN

A.2.10 Program Link Map -- Output Statistics

VS LINKER (2.05.00) 12: 11

OUTPUT STATISTICS
CODE SECTIONS LENGTH
STATIC SECTIONS LENGTH
PROGRAM BASE ADDRESS
PROGRAM ENTRY POINT

ADDRESS
NAME
OFFSET

PROGRAM NAME
RELEASE DATE
VERSION NUMBER
OBJECT FORMAT
OUTPUT FILE
NUMBER OF RECORDS

11 /01 /88

OOllDO (
OOOOEO (
100000

100044
MAIN
000000

11/01/88
00.00.00

4560) BYTES
224) BYTES

l
LANG.DRDRUN.CLOCK

8 RECORD(S)

A.2.11 Program Link Map -- Warning Messages

VS LINKER (2.05.00) 12: 11 11 /01/88

WARNING: There are unresolved external references.

A-10 Link Maps

OUTPUT FILE SUMMARY - l

WARNING MESSAGES - l

r

A.3 EXAMPLE OF CREATING A SHARED SUBROUTINE LIBRARY (SSL)

This section gives an example of creating a shared subroutine library
(SSL) from linking a set of subroutines. The subroutines in this
example are assembled in a single object file called CRTSUBS, which is
used as input to the Linker. Typically, subroutines are linked from
multiple object files.

The entry point names selected for resolving external references are
CRTOPEN, CRTCLOSE, CRTREAD, and CRTWRITE. The output file is called
CRTSSL and is located in the system library @SYSLIB.

The system administrator uses the SSL utility to assign an alias when
installing the files as a shared subroutine library. The SSL alias is
the name that you use to specify the library containing shared
subroutines that are called by your program. The alias for the shared
subroutine library used in the previous example is @CRTIO. The
subroutines in this example are, in fact, the shared subroutines
called by the program in the previous example.

A.3.1 VS Procedure for Linking a Shared Subroutine Library (SSL)

PROCEDURE
RUN LINKER

ENTER OPTIONS SHAREDSL=YES, ENTNAMES:YES
ENTER INPUT FILE=CRTSUBS, LIBRARY=DRDOBJ, VOLUME=LANG
ENTER INPUT
ENTER ENTRY NAMEl=CRTOPEN,

NAME2=CRTCLOSE,
NAME3:CRTREAD,
NAME4=CRTWRITE

ENTER ENTRY
ENTER OUTPUT FILE=CRTSSL, LIBRARY=@SYSLIB, VOLUME=LANG
ENTER PRINT FILE=CRTSSL, LIBRARY=@PRTLIB, VOLUME=LANG,

INPLOG = YES,
INPFILES = YES,
LINKSECT = YES,
DUPSECT = NO,
ADDRXREF = YES,
NAMEXREF = YES,
BASE SECT = YES,
SSLSYMB = NO,
ENTNAMES = YES,
UNDEFINE = NO,
SUMMARY = YES

Link Maps A-11

A.3.2 SSL Link Map -- Input Log

VS LINKER (2.05.00)

INPUT LOG:

OPTIONS:

12: 11 11 /01 /88

MAP YES
SYMBOLIC YES
LINKAGE YES
DATES EL NO
DUPSECT NO
REORDER NO
RESOLVE NO
OBJ FORM l
STATIC SUBROUTINE LIBRARY NO
SHARED SUBROUTINE LIBRARY YES
REVIEW -ENTRY POINT NAMES YES
REVIEW ALIAS ASSIGNMENTS NO

INPUT FILE STRINGS:
LANG .DRDOBJ .CRTSUBS

SUBROUTINE· LIBRARY STRINGS:
NO SUBROUTINE LIBRARIES

OUTPUT PARAMETERS:
OUTPUT FILE
FILE CLASS
RETAIN
PROGRAM BASE ADDRESS
PROGRAM NAME
ENTRY POINT NAME
ENTRY POINT OFFSET
VERSION NUMBER
RELEASE DATE

PRINT LINK MAP:
LINK MAP FI LE
INPUT LOG
INPUT FILES
LINKED SECTIONS
DUPLICATE SECTIONS
XREF BY ADDRESS
XREF BY SYMBOL
BASE-DEPENDENT SECTIONS
SSL SYMBOLS AND ALIASES
SUBROUTINE ENTRY NAMES
UNDEFINED SYMBOLS
OUTPUT FILE SUMMARY

A-12 Link Maps

LANG.@SYSLIB.CRTSSL
H

0 DAY(S)
100000

CRTOPEN
000000
00.00.00
11 /01 /88

LANG.@PRTLIB.CRTSSL
YES
YES
YES
NO
YES
YES
YES
NO
YES
NO
YES

INPUT LOG - l

A.3.3 SSL Link Map -- Input Files

VS LINKER (2.05.00)

INPUT FILES:

12: 11 11 /01 /88 INPUT FILES - 1

FILE= LANG.DRDOBJ.CRTSUBS SYMBOLIC = YES; INPUT TYPE = USER

SECTIONS INCLUDED:
CRTIO
$CRTIO

A.3.4 SSL Link Map -- Linked Code Sections

VS LINKER (2.05.00)

LINKED CODE SECTIONS:

12: 11 11 /01 /88 LINKED SECTIONS - 1

ORIGIN LENGTH SECTION NAME
INPUT FILE TRANSLATOR VERSION DATE TIME

100040 000150 CRTIO
LANG.DRDOBJ.CRTSUBS AS
*** ENTRY POINTS ***
OFFSET ADDRESS NAME
000000 <100040> CRTIO
000000 <100040> CRTOPEN
000024 <100064> CRTCLOSE
00004C <10008C> CRTREAD
OOOOAC <lOOOEC> CRTWRITE
OOOOE4 <100124> CRTORDER
OOOllC <10015C> CRTSTART

A.3.5 SSL Link Map -- Linked Static Sections

VS LINKER (2.05.00)

LINKED STATIC SECTIONS:

12: 11 11 /01 /88

01.09.03 11/01/85 00:00

LINKED SECTIONS - 2

ORIGIN LENGTH SECTION NAME
INPUT FILE TRANSLATOR VERSION DATE TIME

000000 000090 $CRTIO
LANG .DRDOBJ .CRTSUBS AS
*** ENTRY POINTS ***
OFFSET ADDRESS NAME
000000 <000000> $CRTIO

01.09.03 11/01/85 00:00

Link Maps A-13

A.3.6 SSL Link Map -- Cross-Reference by Address
~

VS LINKER (2.05.00) 12: 11 11 /01 /88 XREF BY ADDRESS - l

CROSS REFERENCE BY ADDRESS:

ADDRESS TYPE LEN +/- REFERS TO SYMBOL DEFINED AT IN SECTION TYPE

CODE SECTION NAME = CRTIO
100060 RCON 4 + $CRTIO 000000 $CRTIO STATIC
100088 RCON 4 + $CRTIO 000000 $CRTIO STATIC
lOOOEO RCON 4 + $CRTIO 000000 $CRT IO STATIC
100120 RCON 4 + $CRTIO 000000 $CRTIO STATIC
100158 RCON 4 + $CRTIO 000000 $CRTIO STATIC
100188 RCON 4 + $CRTIO 000000 $CRTIO STATIC

STATIC SECTION NAME = $CRTIO
000000 ACON 4 + CRTIO 100040 CRTIO CODE

A.3.7 SSL Link Map -- Cross-Reference by Symbol

VS LINKER (2.05.00) 12: 11 11/01 /88 XREF BY SYMBOL - l

CROSS REFERENCE BY SYMBOL:

SECTION SECTION
SYMBOL ADDRESS TYPE LEN +/- TYPE NAME

$CRT IO
DEF: 000000 STATIC $CRTIO
REF: 100060 RCON 4 + CODE CRTIO

·~ 100088 RCON 4 + CODE CRTIO
lOOOEO RCON 4 + CODE CRTIO
100120 RCON 4 + CODE CRTIO
100158 RCON 4 + CODE CRTIO
100188 RCON 4 + CODE CRTIO
000000 ACON 4 + STATIC $CR TIO

CRTCLOSE
DEF: 100064 CODE CRT IO
REF: NO REFERENCES

CR TIO
DEF: 100040 CODE CRTIO
REF: 000000 ACON 4 + STATIC $CRTIO

CRTOPEN
DEF: 100040 CODE CRT IO
REF: NO REFERENCES

CRTORDER
DEF: 100124 CODE CRT IO
REF: NO REFERENCES

CRT READ
DEF: 10008C CODE CR TIO
REF: NO REFERENCES

CRT START
DEF: 10015C CODE CR TIO
REF: NO REFERENCES

CRTWRITE
DEF: lOOOEC CODE CR TIO
REF: NO REFERENCES

~

A-14 Link Maps

A.3.8 SSL Link Map -- Base-Dependent Code Sections

VS LINKER (2.05.00) 12: 11 11 /01 /88 BASE DEPENDENT SECTIONS - l

BASE DEPENDENT CODE SECTIONS:

THERE ARE NO BASE DEPENDENT CODE SECTIONS

A.3.9 SSL Link Map -- Subroutine Library Entry Point Names

VS LINKER { 2.02.00) 12: 11 11 /01 /88 SUBROUTINE ENTRY NAMES - l

SUBROUTINE LIBRARY ENTRY POINT NAMES:

ADDRESS ENTRY POINT NAME

100064
100040
10008C
lOOOEC

CRTCLOSE
CRTOPEN
CRT READ
CRTWRITE

SECT ION NAME

CRTIO
CRT IO
CRTIO
CRTIO

r'· A.3.10 SSL Link Map -- Output Statistics

VS LINKER { 2.05.00) 12: 11

OUTPUT STATISTICS:
CODE SECTIONS LENGTH:
STATIC SECTIONS LENGTH:
PROGRAM BASE ADDRESS
PROGRAM ENTRY POINT

ADDRESS
NAME
OFFSET

PROGRAM NAME
RELEASE DATE
VERSION NUMBER
OBJECT FORMAT
OUTPUT FILE
NUMBER OF RECORDS

11 /01 /88

000150 {
000090 (
100000

100040
CRTOPEN
000000

11 /01 /88
00.00.00

336) BYTES
144) BYTES

l
LANG.@SYSLIB.CRTSSL

2 RECORDS

TYPE

CODE
CODE
CODE
CODE

OUTPUT FILE SUMMARY - l

Link Maps A-15

~ ·-

:~
'--·· .'

APPENDIX B
DUPLICATE SECTIONS

8.1 INTRODUCTION

8.2

This appendix explains how duplicate sections occur and includes
examples of how the Linker reports them. It also describes the
default selection rules that the Linker uses to select a section when
duplicate section names are encountered.

Duplicate sections are sections that have the same name, not
necessarily the same content. When a duplicate code or static section
is encountered during the input phase of the link, a choice must be
made as to which one of the sections is to be included in the link.
Other sections with the same name must be omitted because the linking
process requires section names to be unique.

HOW DUPLICATE SECTIONS OCCUR

Duplicate code sections occur most frequently from linking modules
that have common runtime routines previously linked in, either from a
compilation phase or from an explicit link. Duplicate static sections
can occur for the same reason and also from compilers such as PL/I
that require external variables to be defined in every module that
references them. Duplicate sections can also result when merging
program modules that were developed independently.

Duplicate sections are usually not a concern unless there is a
potential problem with conflicting versions of the same program
modules or runtime routines, or if duplicate sections were entirely
unexpected. Normally the Linker uses a set of default selection rules
(see Table B-1) to automatically select which sections to include in
the link. However, you can override the selection rules and make the
choices yourself either through workstation interaction or through
procedure specifications.

Duplicate Sections 8-1

B.3 HOW DUPLICATE SECTIONS ARE REPORTED

When a duplicate section is omitted, the Linker flags the section name
in the Linked Sections portion of the link map with the message,
"Duplicate Section Was Omitted." This means that one or more other
input files had a section with the same name and that these sections
were excluded from the link. The name of the input file appearing
above the message is the one from which the included section was
selected. Section B.4 gives an example of this.

A detailed listing of duplicate sections can be obtained by specifying
DUPSECT =YES on the PRINT screen (refer to Section 4.4.2). This
portion of the link map lists all the duplicate section names
alphabetically, and, for each section name, all the files in which
they occurred. Other data for each section is also printed: the
section type and length, the translator and version number, the date
of translation, and whether or not symbolic data is included in the
section. This information can be helpful in diagnosing problems
resulting from duplicate sections and in resolving the conflicts. An
example of the listing is shown in Section B.4.

B-2 Duplicate Sections

8.4 PROGRAM LINK MAP -- LINKED STATIC SECTION WITH DUPLICATE
SECTION OMITTED

VS LINKER (2.05.00)

LINKED STATIC SECTIONS:

17:55 11/05/88 LINKED SECTIONS - 2

ORIGIN LENGTH SECTION NAME
INPUT FILE TRANSLATOR VERSION DATE TIME

000000 000010 $MAINPRO
LANG .DRDOBJ .MAINPROG PL
*** ENTRY POINTS ***
OFFSET ADDRESS NAME
000000 <000000> $MAINPRO

000010 000008 $MOD1
LANG .DRDOBJ .MODl PL
*** ENTRY POINTS ***
OFFSET ADDRESS NAME
000000 <000010> $MOD1

000018 000050 ACCOUNT
LANG .DRDOBJ .MODl PL
<<< DUPLICATE SECTION WAS OMITTED >>>

*** ENTRY POINTS ***
OFFSET ADDRESS NAME
000000 <000018> ACCOUNT

000068 000008 $MOD2
LANG .DRDOBJ .MOD2 PL
*** ENTRY POINTS ***
OFFSET ADDRESS NAME
000000 <000068> $MOD2

000070 000058 $MOD3
LANG .DRDOBJ .MOD3 PL
*** ENTRY POINTS ***
OFFSET ADDRESS NAME
000000 <000070> $MOD3

02.01.00 11/05/88 00:00

02.01.00 11/05/88 00:00

02.01.00 11/05/88 00:00
~------

02.01.00 11/05/88 00:00

02.01.00 11/05/88 00:00

Duplicate Sections B-3

8.5 PROGRAM LINK MAP -- DUPLICATE SECTIONS

VS LINKER (2.05.00) 17: 55 11 /05/88 WARNING MESSAGES - l

WARNING: Duplicate section names were encountered.

8.6 HOW THE LINKER RESOLVES DUPLICATE SECTION NAMES

This section describes how the Linker resolves duplicate section
names. The selection rules that are used to resolve duplicate section
names differ depending on whether you specified YES or NO in response
to the DATESEL option on the MOREOPT screen.

If you specify YES in response to the DATESEL option, the Linker will
resolve duplicate sections according to the date of compilation. To
do this the Linker inspects all sections in all of the specified input
files and libraries. If any duplicates are found, the Linker selects
the most recent version, based on the rules that are listed in
Table B-1.

8-4 Duplicate Sections

Table B-1. Selection Rules for Duplicate Sections

Condition

Sections are mixed types
(one code, one static)

All code sections

All static sections

All blank common
static sections with
initialization recordsa

All blank common static,
length not necessarily equala

All labeled common
static, length not equala

Applicable Rule

Linker generates an error
and prompts user to select
the correct section.

If DATESEL=YES, the Linker
selects the most recently
compiled section. If
DATESEL=NO, the Linker selects
the first section encountered.

If DATESEL=YES, the Linker
selects the most recently
compiled section. If
DATESEL=NO, the Linker selects
the first section
encountered. The length of
the selected section is
extended to the longest
instance.

Selects longest instance

If one is initialized,
the Linker selects the
initialized section. If both
are initialized, the Linker
selects the longest. If both
are the same length, the
Linker selects the most
recently compiled section (if
DATESEL=YES) or the first
section encountered (if
DATESEL= NO).

(continued)

Duplicate Sections B-5

B.6.1

Table B-1. Selection Rules for Duplicate Sections (continued)

Condition

All labeled common
static, length equala

None of the above conditions
apply or DATESEL=NO

Applicable Rule

Selects first initialized
section. The length of the
selected section is
preserved.

Selects first section
encountered.

a Applies to FORTRAN 66 and FORTRAN 77.

b If errors occur when executing in the foreground, the Linker
displays the duplicate section name and the file name containing
each section. You can then choose the desired section or cancel
processing.

If the Linker is executing in the background when an error
occurs, the error message is printed on the printer, and the
Linker terminates.

Complications Encountered With Duplicate Section Names

The occurrence of two or more sections with the same name can present
any of the following complications:

• The sections are not of the same type. For example, one is a code
section and the other is a static section.

• The sections are of different lengths. Languages have different
rules for how these sections should be treated.

• Any of the following specific semantic rules of FORTRAN, when
running FORTRAN 66 and FORTRAN 77 are not satisfied:

FORTRAN generates two types of static sections in addition to
the regular static section type generated by other translators:
common static sections and labeled common static sections.

B-6 Duplicate Sections

B.6.2

r

Blank common static sections that contain multiple definitions
can represent data areas of different lengths. However,
labeled common static sections that contain multiple
definitions should represent data areas of the same length.

A blank common static section cannot have any initial values.

For multiple occurrences of a blank common static section, the
longest section should be selected.

For multiple occurrences of a labeled common static section,
the first initialized section should be selected. The length
of the selected section is preserved.

The default selection rules do not apply for the following conditions:

• All blank common static sections with initialization records

• Different types of sections

If duplicate sections occur under one of these conditions, and you are
running the Linker in the foreground, the Linker displays the
duplicate section names and prompts you to make the selection. If you
are running the Linker as a background task, an error message is
printed on the printer, and the Linker terminates.

Information Maintained by the Linker to Resolve Duplicate Section Names

The Linker collects the following information so that the default
selection rules can resolve most of the possible complications:

• The Linker maintains a list of currently selected sections. When
a new file is processed, and any of its sections are duplicated,
the duplicates are compared for type and length against currently
selected sections.

• The Linker distinguishes between the following types of sections
as provided in the object code format:

Code section
Regular static section
Blank common static section
Labeled common static section

Duplicate Sections B-7

APPENDIX C
BASE-DEPENDENT CODE SECTIONS

C.1 INTRODUCTION

C.2

This appendix explains what base-dependent code is, why it cannot be
included in a shared subroutine library (SSL), and what can be done
when base-dependent code is reported.

WHAT BASE-DEPENDENT CODE IS

Base-dependent code is code that must be executed at a certain
location in the user's address space in order to run correctly. In
other words, it is code in which there are address references that
cannot be changed (relocated) by the Loader at runtime. Base
dependency results when address constants in code sections of a
program refer to symbols def ine4 in code sections of the same program
module or in other program modules. The values of these address
constants are computed by the Linker as it resolves references to the
code sections relative to a base address. If these constants are
located in unmodifiable code segments, the Loader cannot change their
values at runtime. Therefore the code must be loaded and executed at
the same base address.

Base-dependent code is encountered most frequently in modules that
have been written in Assembly language, because Assembly language
allows address constants anywhere in the program. While there is no
harm in this if the code is not intended to be relocated at execution
time, it is good coding practice to put address constants in static
sections only. In this way subroutines can be either statically or
dynamically linked in a program.

Some compilers do not support relocation at runtime; that is, they
generate address constants in code sections. Programs compiled with
these compilers cannot be used as shared subroutines.

Base-Dependent Code Sections C-1

C.3 WHY BASE-DEPENDENT CODE CANNOT BE INCLUDED IN A
SHARED SUBROUTINE LIBRARY

Shared subroutines are mapped into the user's address space by the
Loader when a program that calls them is brought into memory for
execution. The location at which the subroutines are mapped is
determined at runtime, not at linktime. Therefore, all external
references that the shared subroutines make to code sections within
the library have to be relocated according to the actual base address
at which the subroutines are mapped. The references are made through
address constants, and the values of these constants have to be
changed.

Because code sections in shared subroutines are shared by all the
programs that call them, the code cannot be modified in any way
without affecting other programs. This applies to address constants
in code sections as well. On the other hand, each program gets a
private copy of the static sections mapped into its modifiable data
area. This allows address constants in static sections to be changed
to relocate external references.

When a shared subroutine library is created, the Linker assigns values
to address constants based on static resolution of external references
within the library. These addresses are meaningless, however, when
the subroutines are dynamically linked to a program. If a program
calls a base-dependent subroutine from a shared subroutine library,
external references are not properly resolved and a program exception
or other abnormal program behavior results.

C.4 WHAT TO DO WHEN BASE-DEPENDENT CODE IS REPORTED

If a subroutine is found to be base-dependent when attempting to
include it in a shared subroutine library, there are two possible
courses of action. One is to remove the subroutine from the library
and place it in a static subroutine library instead. The other is to
recode the subroutine, if possible, to remove the base dependencies.

The second course of action is possible only if the subroutine is
written in Assembly language and the source code is available. If a
base-dependent subroutine is written in a compiled language, then the
compiler itself is responsible for the problem and nothing short of
changing the compiler can correct it. In such a case, it is necessary
to remove the subroutine from the SSL and put it in a static
subroutine library.

C-2 Base Dependent Code Sections

To correct base-dependent code written in Assembly language, you must
first locate the base dependencies. You can locate them in a source
listing by examining each code section reported as base-dependent and
finding all A-type and V-type address constants. These constants must
be moved to static sections. In addition, any R-type address constant
that references a symbol defined in a code section must also be moved
to a static section. (Note that this is not a legitimate use of
R-type address constants, but the Assembler does not prevent it.)
R-type constants in code sections that reference symbols defined in
static sections do not have to be moved.

If you have trouble locating all base-dependent address constants in
the source listing, an address cross-reference produced by the Linker
will aid you in finding them. To get the cross-reference, run the
Linker again and select the option to print a cross-reference listing
in address order (see Section 4.4.2). This listing shows all of the
address constants contained in each section. An example of the
cross-reference listing is shown in Section C.7.

In the cross-reference, address constants are identified as either
A-type (ACON) or R-type (RCON). V-type address constants are also
identified as ACON since they are actually A-type constants that
reference external symbols. The list of address constants must be
examined carefully for each code section reported as base-dependent.
Any A-type address constants that you find, and any R-type address
constants that reference symbols defined in code sections, must be
moved to static sections by making the appropriate changes in the
source code and reassembling the program.

An example of how the Linker reports base-dependent code is shown in
the following two sections. A section of the link map called
"Base-Dependent Code Sections" (Section C.5) lists the code sections
found to be base dependent. This list is printed by default if the
option to create a shared subroutine library is specified on the
OPTIONS screen. The last section of the link map called "Warning
Messages" (Section C.6) shows the warning message for base-dependent
code.

In the following link map section, the code section named FILREAD is
reported to be base-dependent. The cross-reference listing
(Section C.7) shows that FILREAD does indeed have an A-type address
constant (ACON). This constant must be moved to a static section to
correct the base dependency.

Base-Dependent Code Sections C-3

C.5 SSL LINK MAP -- BASE-DEPENDENT CODE SECTIONS

VS LINKER (2.05.00) 12: 19 10/21/88 BASE DEPENDENT SECTIONS - 1

BASE DEPENDENT CODE SECTIONS:

FILREAD

C.6 SSL LINK MAP -- WARNING MESSAGES

VS LINKER (2.05.00) 12: 19 10/21/88 WARNING MESSAGES - 1

WARNING: Code sections of this file are base dependent requiring execution at
the indicated base address. This file cannot be included in a shared
subroutine library (SSL).

C.7 SSL LINK MAP -- CROSS-REFERENCE BY ADDRESS

VS LINKER (2.05.00) 12:23 10/21/88 XREF BY ADDRESS -

CROSS REFERENCE BY ADDRESS:

ADDRESS TYPE LEN +/- REFERS TO SYMBOL DEFINED AT IN SECTION TYPE

CODE SECTION NAME = FILREAD
f-.100064 ACON 4 + <LOCAL REFERENCE>

1

100068 RCON 4 + $FILREAD 000000 $FILREAD STATIC

STATIC SECTION NAME = $FILREAD
000000 ACON 4 + <LOCAL REFERENCE>
oooooc ACON 4 + <LOCAL REFERENCE>
000010 ACON 4 + FILREAD 100040 FILREAD CODE
000014 ACON 4 + FI LREAD 100040 FILREAD CODE
000018 ACON 4 + FILREAD 100040 FILREAD CODE

C-4 Base Dependent Code Sections

~

APPENDIX D
ERROR MESSAGES

D.1 INTRODUCTION

This appendix lists the error messages for the Linker as well as the
error codes returned by the Linker to the calling program. Each
message includes a brief description.

D.2 LINKER ERROR MESSAGES

Cannot access named volume and library. Please respecify or try again.

1. Check the spelling of volume and library names.

2. Make sure that the volume and library exist.

3. Make sure that the volume is not mounted for exclusive use by
another user.

Cannot verify aliases - nonexistent or inaccessible system alias file.

The locations of the shared subroutine libraries installed on your
system are kept in a system file, managed by your system
administrator. Either this file does not exist or the system
administrator is updating the file while your program is trying to
access it. Try again or notify your system administrator.

Duplicate input string. Please respecify.

You have already specified this input file. If there are no more
input files, leave the input string blank, and press ENTER.

Error Messages D-1

Duplicate subroutine library string. Please respecify.

You have specified a subroutine library string more than once.
Specify another string. If there are no more subroutine libraries,
press ENTER, leaving the last line of the screen blank.

File cannot be opened. Please respecify or try again.

The input file or subroutine library file that you specified cannot be
opened. Check to be sure that you have the right file access, and
that the file is not in use, or enter another file name.

File is in use as an input file. Alter REPLACE option or respecify file.

Change REPLACE option to YES or enter a different output file
specification.

File is not a subroutine library file. Please respecify.

The specified file is not a qualified subroutine library file.
respecify.

File not found. Please respecify.

Recheck your specification.

Incomplete input string specification.

Make sure that you have specified either of the following input
specifications:

Please

• A volume name and a library name for a partially qualified name

• A volume name, a library name, and a file name for a fully
qualified name

Incomplete link map file specification.

The link map file specification must be a fully qualified name unless
you enter '##' for the file name to create a temporary file. For a
fully qualified name, enter a volume name in the first field, a
library name in the second, and a file name in the third.

D-2 Error Messages

Incomplete output file specification.

The output file specification must be a fully qualified name unless
you enter '##' for the file name to create a temporary file. For a
fully qualified name, enter a volume name in the first field, a
library name in the second, and a file name in the third.

Input file is invalid - no linkage data. Please respecify.

The specified file does not contain linkage data and cannot be used
for linking. Please choose another file.

Input file is not a valid program file. Please respecify.

1. Make sure that the information entered is specified in the correct
order, i.e., volume, library, file.

2. Check spelling.

3. Make sure that the file is a program file.

Invalid file class.

The valid file classes are blank, #, $, @, A-Z.

Invalid offset.

The of~set must be entered in hexadecimal digits (0-9, A-F), and the
range must be between 000000 and FFFFFF.

Invalid program entry name.

The program entry point name must be the name of an included section
name or an entry point name defined in an included section.

Invalid program file base address.

The base address must be entered in hexadecimal digits (0-9, A-F), and
the range must be between 000000 and FFFFFF.

Error Messages D-3

Invalid subroutine library string. Please respecify.

The specified subroutine library string is not a valid entry.

1. Make sure that you have specified the volume name in the first
field, and the library name in the second field for a partially
qualified name; or the volume name in the first field, library
name in the second field, and file name in the third field for a
fully qualified name.

2. Check the spelling of the subroutine library information.

3. Make sure that the file, library, and volume exist.

Library not found. Please respecify.

The library specified does not exist. The volume or library name may
be incorrect; enter the correct names.

Link map file already exists. Press PF3 to scratch the file, or respecify.

The print file you specified already exists. You can replace the
existing file with the link map file by pressing PF3. The existing
file will be destroyed.

If you want to retain the existing file, change the FILE information
on the PRINT screen.

Link map file cannot be scratched. Please respecify.

You pressed PF3 to replace an existing link map file with the print
file information entered on the PRINT screen. However, the file
cannot be scratched at this time. Please enter a different FILE
specification.

Linkage data must be retained in order to access symbolic data.

Symbolic data is useless without accompanying linkage data. Please
adjust options accordingly.

D-4 Error Messages

Linkage data must be retained when creating static subroutine libraries.

If.you are creating a static subroutine library, the linkage data must
be retained in order to use the file in future links. Either
respecify YES for the LINKAGE option or NO for the STATICSL option on
the OPTIONS screen.

Linker Help text is not available.

Either the INFO utility or the Linker Help text is not correctly
installed to display the Linker Help text. Notify your system
administrator.

No program files can be selected within specified library. Please respecify.

For an input file to be selected, it must be the correct file type,
and it cannot be included more than once.

Output file already exists. Press PF3 to scratch the file, or respecify.

The output file that you have named already exists. You can replace
the existing file with the output file by pressing PF3. The existing
file will be destroyed. If you want to retain the existing file,
respecify the FILE information on the OUTPUT screen.

Output file cannot be scratched. Please respecify.

You pressed PF3 to replace an existing file with the output file;
however, the existing file cannot be scratched at this time. Enter a
different file specification.

Output file is a subroutine library file currently in use. Please respecify.

A subroutine library file currently in use cannot be specified as the
output file. Please specify another name or location for the output
file.

Please position cursor.

The cursor is not positioned in a field. Position the cursor at the
start of a field.

Error Messages D-5

Please specify whether creating a STATIC or a SHARED subroutine library.

You have entered YES for both the STATICSL and SHAREDSL options.
Change one of the options to NO.

Section name or pref ix not found.

The section name that you are searching for does not exist. Check to
be sure it is correctly specified.

There is no SSL with the specified alias. Please respecify.

An alias was specified for which there is no corresponding shared
subroutine library installed on this system. To assign this alias to
undefined symbols, either the corresponding shared subroutine library
must be installed or you must explicitly designate alias assignments
through the SSLALIAS screen (Figure 4-18).

There must be at least one input file.

Control cannot pass the input stage until at least one valid input
file has been accepted. Specify an input string for Linker processing
to continue.

The SSL named by the specified alias exists but cannot be accessed.

The Linker was not able to access the SSL. Try again, or notify your
system administrator.

Unable to link to the DISPLAY utility.

The Linker was unable to transfer control to the DISPLAY utility to
display the link map. Check with your system administrator to make
sure that the DISPLAY uti.lity is installed.

Value not in list.

The value typed in the field is not valid. Check the spelling. If
the spelling is correct, press the Help PF key for information on
valid responses, or consult the reference manual.

D-6 Error Messages

D.3 LINKER ERROR CODES

One of the following error codes is returned to the calling program
upon completion of processing:

Code 0

Code 4

Code 8

Code 16

Successful completion of the link.

A warning message. The Linker issues a warning message if
it encountered and processed duplicate sections. If the
link map option was set to YES, the warning message is
printed at the end of the link map. If the link map option
was set to NO, the warning message is placed in a warning
message file.

A fatal error message. The Linker issues a fatal error
message if it detected unresolved symbols or if it
encountered multiple entry points. Fatal error messages are
also listed in the link map, or, if no link map is
specified, in the message file.

An abort operation error message. The Linker issues an
abort operation error message if the user stopped the
execution of the Linker.

Error Messages D-7

APPENDIX E
GLOSSARY

Address

A 6-digit hexadecimal value that describes a program code or data
location.

Alias

A logical name of 40 characters or less that corresponds to a shared
subroutine library. The Linker uses aliases to associate SSL symbols
with shared subroutine libraries at linktime. At runtime, when a
program section refers to a module contained in a shared subroutine
library, the Loader uses the alias of the shared subroutine library to
link modules into the program.

Background Link

The process of running the Linker entirely by procedure with no user
interaction. The procedure is submitted as a background task, and the
system enters it on the procedure queue.

Default Selection Rules

The procedure that the Linker follows to automatically resolve
duplicate section names.

Defined Symbol

A symbol that has been assigned to a particular address. This is due
to its association with a section name or entry point name within a
section, which is included in a linked program.

Designated Entry Point Name

An entry point name that can be referred to from outside the program
file in~which the symbol is defined. This entry point name is used
for determining if the program file contains pertinent code for either
shared or static subroutine library linking operations.

Glossary E-1

Duplicate Section Names

Two or more sections from different program files with the same
section name. The name of each section included in a VS program file
must be unique.

Dynamic Link

A link of shared subroutines from a shared subroutine library. A
dynamic link occurs at runtime.

Entry Point

The point that initiates the processing of the linked program or
module; that is, the point at which the execution of the program or
module begins.

Entry Point Name

A named location in a program module that can be ref erred to from
outside that module. The corresponding reference is an external
reference.

Entry Point Reference (EPR) Table

Contains all subroutine library entry point names. The Linker builds
an EPR table if STATICSL = YES or SHAREDSL = YES on the OPTIONS screen.

Exclude

The process of omitting one or more sections from the linking process.

Foreground Link

The process of running the Linker by procedure with possible user
interaction or as a workstation task.

Fully Qualified Name

An entity's volume, library, and file names, all specified together.

Help Text

On-line reference information about the Linker displayed through the
VS INFO utility. To access Help text for the Linker, press PF13.

Included Section

A section of either an input file or static subroutine library, which
becomes part of the resultant output file.

E-2 Glossary

Input Fi le Specification

The specification that determines one or more program files. For a
partially qualified input specification, the library and volume must
be entered. For a fully qualified input specification, the file,
library, and volume must be entered.

Input Files

Files specified by the user for input to the Linker, comprising code
and static sections that are to be part of the resultant output file.

Input Log

A link map section that contains all the data and control input
provided by the user.

Interactive Link

In an interactive link, the Linker displays each appropriate screen
according to the Linker options chosen. You interact with the linking
process by managing the options and entering required information on a
screen-by-screen basis. The link is complete after you have managed
all appropriate screens, provided the necessary data, and the Linker
has built the output file.

Link Map

The report of a Linker run.

Linked Sections

The set of sections that make up the output file.

Output Program File

The program file produced by a Linker run.

Partially Qualified Name

An entity's volume and library names specified together, but not the
file name.

Prname

The screen label needed in VS Procedure language to qualify references
to the fields or PF keys of a particular screen interaction.

Procedure

A VS Procedure language program.

Glossary E-3

Procedure Interpreter

A system program that processes each line of a Procedure language file
individually. The Procedure interpreter does not create a program
file from the procedure file.

Program Entry Point

The location in a program at which executipn begins.

Program File

A consecutive VS file of 1024-byte records which complies with a valid
object code format, and has the program file attribute.

Resolution

The process of associating external references with a defined symbol
or an alias.

Selection Rule

See Default Selection Rules.

Shared Subroutine Library

A program file that contains subroutines which are selectively linked
at runtime (dynamically) as opposed to linktime, and can be shared by
multiple programs that are running concurrently.

Shared Subroutine Library Symbol

A symbol referenced in a program that has an associated alias. Shared
subroutine library symbols are assumed resolved by a designated entry
point name within a shared subroutine library.

Static Link

A link at linktime.

Static Section

A section in the program file that contains information required by
the operating system to build and initialize memory for the data
portion of a program run. There are two special types of static
sections, blank common and labeled common static sections, which meet
special FORTRAN needs.

E-4 Glossary

Static Subroutine Library

A library similar to a collection of input files, whose sections are
only included if they resolve at least one undefined symbol. Program
elements derived from a static subroutine library become a part of the
resultant output file.

Subroutine Library

A collection of subroutines that can be selectively linked.

Symbol

The means to refer to a program location. In the Linker context, it
may represent a section or an entry point name defined within a
section. If a program section or entry point name exists for a symbol
used in an external reference, the symbol is defined; if not, it is
undefined.

Symbolic Reference

Use of a particular symbol in a place other than where it is defined.
An internal symbolic reference refers to a symbol defined in the same
section. An external symbolic reference refers to a symbol defined in
another section.

Glossary E-5

A

address constants, 2-4, 2-7
alias, 1-6, 1-8, 2-3, 2-8
ALIASES Screen, 4-21, 4-22, 4-25

to 4-27, 4-40, 5-2
automatic replacement, 3-3

B

base-dependent code, 2-8
BASIC programs, 2-4

c
code sections, 1-4, 1-11
code symbolic reference, 1-5
cro~s-reference list

D

in location order, 2-7
in symbol order, 2-8

default selection rules, B-1, B-7
defined (resolved), 1-7
duplicate section names

listing of, 2-7
printing a list of, 4-35, B-2
reporting of, B-2
resolving by default selection

rules, 4-7, B-4ff
resolving interactively, 3-2,

4-7, 4-18 to 4-20
duplicate sections, see duplicate

section names
DUPSECT Screen, 4-18, 4-19
dynamic link, 1-6
dynamic resolution, 1-7

INDEX

E

entry point, 1-5, 1-8, 1-17
entry point name, 1-5, 1-17
entry point reference (EPR) table,

2-2, 2-3, 4-42, 4-43
ENTRY Screen, 4-43, 4-44, 5-3,

5-4
EPR table, see entry point

reference table
example, A-lff, A-llff
EXCLUDE Screen, 4-16 to 4-18, 5-5
external reference, 1-5, 2-2, 2-3
external subroutines, 1-1
external symbolic reference, 1-5
external symbolic references, 1-7

F

FILELIST Screen, 4-4, 4-5, 4-8,
4-10 to 4-12, 4-15, 5-6, 5-7

format 0, 4-7
format 1, 4-7
fully qualified name, 4-23

G

GETPARM INFORMATION, 5-lff
GROUPS Screen, 4-31 to 4-33

H

Help text, 1-7, 1-9, 1-10, 1-17

lndex-1

INDEX (continued)

input file(s), 1-15, 2-1, 2-2, 2-6
input log, 1-11, 2-6, 2-9
INPUT Screen, 4-4, 4-5, 4-8 to

4-10, 5-5, 5-7
interactive link, 3-4
internal symbolic reference, 1-5
INVALID Screen, 4-15, 4-16

L

LIBRARY Screen, 4-21, 4-22 to 4-24
5-8

link map(s), 1-7, 1-9, 1-11, 2-5ff
displaying, 4-45, 4-46
examples of, A-lff
print options, specifying,

4-33ff
linked code sections, 1-11, 2-6,

2-9, 2-10
linked program components, 2-1
linked static sections, 2-6, 2-9,

2-10
linking process

M

detailed description of, 4-lff
overview, 1-13ff

main program file, 2-2
main module, see main program file
manual replacement, see selective

replacement
module or subroutine, 1-4
MOREOPT Screen, 4-5, 4-6 to 4-8,

4-40

0

object code format, 1-4, 1-8, 1-17
optional output format, 1-8
OPTIONS Screen, 4-3 to 4-6, 4-24,

5-4, 5-9, 5-10, 5-14
output file, 2-1, 2-2, 2-3, 2-8,

2-10
OUTPUT Screen, 4-28 to 4-30, 4-36,

5-11, 5-12
OVERRIDE Screen, 5-13

p

partially qualified name, 4-23
pointers, 1-6
PRINT Screen, 5-10, 5-15
procedures, 3-3, 3-4
program file, 1-4, 1-7, 1-16
program file flag, 1-4, 2-1
program module, 1-4 to 1-6
program module replacement, 3-2
program section, see program module
program section name, 1-5

R

REORDER Screen, 4-36 to 4-40
5-16, 5-17

replacing program modules, 3-2
resolution, 1-7
resolution of duplicate section

names, B-4
RESOLVE Screen, 4-21, 4-24, 4-25,

5-18
resolved, 1-5, 1-7, 1-15
RESTART Screen, 4-46, 4-47

s
section name conflicts, 1-16
selective replacement, 3-3
shared subroutine(s), 2-3, 2-4
shared subroutine library (SSL),

1-6, 2-3, 2-4, 3-1, A-llff
shared subroutine library (SSL)

alias(es), 1-6, 2-3, 4-6, 4-21,
4-22, 4-29, 4-40 4-41, 5-2, 5-19

adding, 4-25
printing a list of, 4-35
verifying, 4-25 to 4-27

shared subroutine library entry
points, 2-4

shared subroutine library (SSL)
symbol(s), 1-5, 1-7, 1-8, 2-3,
2-8

SSL, see shared subroutine library
SSL alias, see shared subroutine

library alias
SSL utility, 1-6

lndex-2

INDEX (continued)

SSLALIAS Screen, 4-6, 4-22, 4-40
to 4-42, 5-19

static link, 1-6, 2-2
static resolution, 1-7
static sections, 1-4, 1-8
static subroutine(s), 1-6

2-2, 2-3, 2-4
static subroutine library, 1-6,

1-15, 2-2, 2-3, 2-4, 3-1, 4-4,
4-23, 4-24

static symbolic reference, 1-5
subroutine libraries, 1-1, 1-6,

1-7, 1-13, 1-15,
symbol, 1-5 to 1-7, 1-17
symbolic reference, 1-5

T

TERMINATE Screen, 4-47

u
undefined symbol(s), 1-7, 1-15,

2-3, 2-9, 4-20, 4-23
UNOPENED Screen, 4-13, 4-14

unresolved symbols, see undefined
symbols

user-specified symbols, 1-5, 1-7
USERS Screen, 4-31, 4-32

v
version 0 object code, see version

0 object code format ,
version 0 object code format, 1-4,

1-7, 1-17,
version 1 object code, see version

1 object code format
version 1 object code format, 1-4,

1-7, 1-17, 2-2, 2-10
version 1 object format, see

version 1 object code format
VIEWMAP Screen, 4-45, 4-46

w

warning messages, 2-6, 2-9, 4-8

lndex-3

r'·

WANG Customer Comment Form Publication Number _____ 7_1_5-_1_145_

Title ____________ V_S_L_IN_K_E_R_R_E_F_E_R_EN_· C__.E_R_EL_E_A_S_E_7_S_E_R_IE_S

Help Us Help You ...

We've worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell usl
Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us
know how you feel.

How did you receive this publication? How did you use this Publication?

D Support or D Don't know D Introduction D Aid to advanced
Sales Rep to the subject knowledge

D Wang Supplies D Other D Classroom text D Guide to operating
Division (student) instructions

D From another D Classroom text D As a reference
user (teacher) manual

D Enclosed D Self-study D Other
with equipment text

Please rate the quality of this publication in each of the following areas.

EXCELLENT GOOD ~FAIR POOR

Technical Accuracy - Does the system work the way the manual says it does? D D D D

Readability - Is the manual easy to read and understand? D D D D

Clarity - Are the instructions easy to follow? D D D D

Examples - Were they helpful, realistic? Were there enough of them? D D D D

Organization - Was it logical? Was it easy to find what you needed to know? D D u D

Illustrations - Were they clear and useful? D D D D

Physical Attractiveness - What did you think of the printing, binding, etc? D D D D

VERY
POOR

D

D

D

D

D

D

D

Were there any, terms or concepts that were not defined properly? D Y D N If so, what were they?---------

After reading this document do you feel that you will be able to operate the equipment/software? D Yes D No
D Yes, with practice

What errors or faults did you find in the manual? (Please include page numbers)-----------------

Doyouhaveanyothercommentsorsuggestions? __________________________ _

Name _________________ _ Street ___________________ _

Title _________________ _ City ____________________ _

Dept/Mail Stop ____________ _ State/Country _______________ _

Company _______________ _ Zip Code _____ Telephone---------

Thank you for your help.

All comments and suggestions become the property of Wang Laboratories. Inc. Printed in U.S.A. 14-3140A 2-88

WANG

Fold

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 16 LOWELL, MA

POSTAGE WILL BE PAID BY ADDRESSEE

Wang Laboratories, Inc.
Technical Publications Dept.
M/9012-260
One Industrial Avenue
Lowell, Massachusetts 01851-9971

111 111 .. 1 •• 1.1 111.1 .. 1.1 •• 1 ... 1 ... 111.1 •• 1

Fold

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

WANG
To Order by Phone, Call:

1-(800)225-0234
Telex 172108

Order Form for Wang Manuals and Documentation

G) Customer Number (If Known)

@Bi'llTo: Ship To:

@ Customer Contact: ©Date Purchase Order Number
() ()
Phone Name

@Taxable @Tax Exempt Number ©Credit This Order to
.,

Yes D A Wang Salesperson
No 0 Please Complete Salesperson's Name Employee No. ROB No.

r@ Document Number Description Quantity @Unit Price Total Price

© Sub Total

Authorized Signature Date Less Any
Applicable

D Check this box if you would like a free copy of
Discount

WangDirect Software & Literature Catalog
Sub Total

(711-0888A)

Ordering Instructions
1. If you have purchased supplies from Wang before. and

know your Customer Number. please write it here.
2. Provide appropriate Billing Address and Shipping Address.
3. Please provide a phone number and name. should it be

necessary for WANG to contact you about your order.
4. Your purchase order number and date.
5. Show whether order is taxable or not.
6. If tax exempt, please provide your exemption number.

Wang Terms and Conditions
1. TAXES - Prices are exclusive of all sales, use, and like

taxes.
2. DELIVERY - Delivery will be F.O.B. Wang's plant.

Customer will be billed for freight charges; and unless
customer specifies otherwise, all shipments will go best
way surface as determined by Wang. Wang shall not
assume any liability in connection with the shipment nor
shall the carrier be construed to be an agent of Wang.
If the customer requests that Wang arrange for insurance
the customer will be billed for the insurance charges.

Local State Tax

Total Amount

7. If you wish credit for this order to be given to a WANG
salesperson, please complete.

8. Show part numbers, description and quantity for each
product ordered.

9. Pricing extensions and totaling can be completed at your
option: Wang will refigure these prices and add freight on
your invoice.

10. Signature of authorized buyer and date.

3. PAYMENT - Terms are net 30 days from date ot invoice.
Unless otherwise stated by customer. partial shipments will
generate partial invoices.

4. PRICES - The prices shown are subject to change without
notice. Individual document prices may be found in the
WangDirect Software & Literature Catalog (711-0888A)

5. LIMITATION OF LIABILITY - In no event shall Wang be liable
tor loss of data or tor special. incidental or consequential
damages in connection with or arising out of the use of or
information contained in any manuals or documentation
furnished hereunder.

Printed in U.S.A. 14-3141A 2-88

WANG

Fold

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 16 LOWELL, MA

POSTAGE WILL BE PAID BY ADDRESSEE

Wang Direct
Wang Laboratories, Inc.
M/S 017-110
800 Chelmsford Street
Lowell, Massachusetts 01851-9972

II I I II

111 111 •• 1 •• 1.1 111.1 .. 1.1 .. 1 ... 1 .. 1.11 .. 1.1

Fold

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

Q)

.§

i a
'O
Cl
c:
0
iii
:;
(.)

(

(

(

ONE INDUSTRIAL AVENUE, LOWELL, MA 01851
TEL. (508) 459-5000, TELEX 172108

Printed in U.S.A. 715-1145 10-88

