Principles
of
Operation

This manual is updated by: Addendum 800-1 100P0O-04.01

Principles
of
Operation

4th Edition — July, 1981
Copyright ®Wang Laboratories, Inc., 1977
800-1100P0-04

WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 e TEL. (617) 459-5000, TWX 710-343-6769, Telex 94-7421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any
way the standard terms and conditions of the Wang purchase, lease, or
license agreement by which this software package was acquired, nor
increases in any way Wang’s liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con-
sequential damages in connection with or arising from the use of the soft-
ware package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is trans-
ferred and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

This manual has been updated by Addendum 800-1100P0-04.01. For a list of
these changes see the Summary of Changes.

WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL,MA 01851 e TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

PREFACE

This manual is intended as a reference tool for the VS programmer.
Chapters 1 through 6 describe machine organization, general instruction and
data formats, interrupts, and the functioning of the Central Processor (CP).
Chapter 7 describes the format and operation of each instruction. Chapters 8
through 12 detail the interface with each type of Input/Output (I/0) device.

This document should be available at all VS sites for general
reference. Additional information on the VS assembler language may be found

in the VS Assembler Language Reference Manual (800-1200AS) and the VS
Assembler Language Pocket Guide (800-6203AP).

This manual is updated by: Addendum 800-1100P0-04.01

SUMMARY OF CHANGES

1ST ADDENDUM TO THE 4TH EDITION OF VS PRINCIPLES OF OPERATION

Type Description Pages
New Features Document History DH-1
New Tables and Figures:
. Diagrams of VS processors 1-2
. Decimal floating-point number format 3-13
. Physical address format 4-7
. Virtual address format 4-8
. Main memory page table entry format 4-9
. SCR entry format 4-11
. Address translation diagram 4-12
. Operand M2 format for RRCB instruction 7-129
. IODA for VS25 and VS100 8-2
. V525 and VS100 Fixed memory assignments 8-3
. DA, I0P Status Tables for VS25 and VS100 8-4
. I/0 Command Table for VS25, VS100 8-4.1
. Status Qualifier Byte for VS25, VS100 8-4.1
. S10, CI0O, and HIO Instruction Format 8-4.3
. Rl Format for SIO, CIO, and HIO 8-4.3
. I/0 Command Word (IOCW) Format 8-4.5
Documentation Manual now focuses on VS25, VS100
Additions architecture:
Segment control registers (SCRs) added 2-1
for address translation
Translation RAM (T-RAM) structure 2-2
of VS25, VS100
New clock and comparator 2-3
Decimal floating-point data 3~5
representations
Decimal floating-point instruction format 3-12.1
Address translation for VS25, VS100 4-7
Addressing exceptions for VS25, VS100 5-11
VS100 machine check interruptions 5-14

This manual is updated by: Addendum 800-1100P0-04.01

Type Description Pages

Documentation 1/0 Subsystem for VS25, VS100 8-1
Additions

(cont'd.) V825, VS100 device addresses 8-2

V825, VS100 internal communications areas 8-3

Status Qualifier Byte (SQB) 8-4.1

I1/0 Command Table (IOCT) 8-4.1

I0P, DA status tables (IOPST, DAST) 8-4

SIO Instruction 8-4.4

I/0 Status Word (IOSW) 8-9

Decimal floating-point instructions (new):

. AQ, AQR ADD DECIMAL (FLOATING-POINT) 7-4.1
. Cvp CONVERT DECIMAL (FLOATING—POINT)

TO PACKED DECIMAL 7-40.1
. CVQ CONVERT PACKED DECIMAL

TO DECIMAL (FLOATING-POINT) 7-40.2

. DQ, DQR DIVIDE DECIMAL (FLOATING-POINT) 7-52.1
. LSCTL LOAD SEGMENT CONTROL REGISTER 7-96.1
. MQ, MQR MULTIPLY DECIMAL (FLOATING-POINT)| 7-110.1
. SQ, SQR SUBTRACT DECIMAL (FLOATING-POINT)| 7-162.1

. STSCTL STORE SEGMENT CONTROL REGISTER 7-159.1

Instructions modified:
. LPA LOAD PHYSICAL ADDRESS 7-93

. RRCB RESET REFERENCE AND CHANGE BITS 7-129

vi

This manual is updated by: Addendum 800-1100P0-04.01

CONTENTS

CHAPTER 1 INTRODUCTION TO THE WANG VS

0 VS Family CharacteriStiCS ...ceevevesvecsceccscssasscssassses 11
1 VS25 CharacteristiCS .vecevesvesssccessssasassaccesssssasasss 1-2
2 VS80 Characteristics .ciceceecee e &]
3 VS100 CharacteriStiCs .eeeveececocoessessssscsccsosssscsncsss 1-4

CHAPTER 2 MACHINE ORGANIZATION

2.1 Central ProCEeSSOY sevsesscsecsssascasecscssssnsssssssccsssnssns 2-1
General REgiSterS ..viievecenersceccsscssscessasssasasscss 2-1
Floating-Point Registersceeceeesrorcaccncnssoccscees 21
Control RegiSterS ceiecesesesctcasssossascscscasssssssases 2-1
Translation RAM (T-RAM) ...ccvecenesocsconcrcanssssnannas 2-2
Local Page TableS .cecveevsonescncasscncassssssssoseassss 2-2
Local Page Frame Table ..ccceccecescssccscsssscsssossasecnss 2-3
Arithmetic and Logical Unit ..iieveccreccecctasssosenssns 22

2.2 ClOCK ccecsavecnscasoncssssssesssoasasssnsssossccassssssssscss 23

Time—0f—Day CLOCK cicsvsssscssssssasnsscassssssssssanasas 273

Clock Comparator .cceeescscsecssssoscsssssasscssvcsssssascce 2-4

3 I/0 Processors (IOPS) .uiceiceccesaccoscascessasccancosanncscns 2-4
o4 Main MeMOYY .eeeeacencaccsscsesassscesssscssssscsssscsacsccnne 2-4
Information FOrmats ..cesvesssnsnssssescnssssscnscssnssces 274
AdAresSing cceeeescscaresssasssssncsssasassssncasasssacss 25

CHAPTER 3 DATA ORGANIZATION

3.1 Instructions-—-Conventions of Descriptionc.ceeececeeasss 3
Operation Code ...ceoeeveasensssccasosennssososcssssssesos 3
Operands ...ceicececasioacsccacssscesccenacnscsccnnnnnnes R
Instruction Format - |

3.2 Fixed-Point INStructionNsceeeeeecenccessscccensssscases s 3
Data FOormat .c..cicesecccnsnscscs esessessseseacansssacesns 3~
Fixed—-Point Arithmeticc.cvetetecececocsssncosaansaa 3=

3.3 Decimal INStructionsceeeeveccssecaccssncns sesessacssases 3-7
Decimal Arithmeticc000cnne cecans sescsccscasanares e 37
Data FOrmatsS ..cciceveececcesseasssesessccsacsasssssnsnsse 3=7

3.4 Floating-Point INStructionsceecveveessscesacscessasessess 3-10
Floating-Point ArithmetiC ...ceeececresncrccscosscocsssses 3-10
Data FOIMAt .eeeeeeecososccessososancsacscscsscsassssssseasss 310
Normalization .eeeeeeeecsesececascessscososcssssassssanses 312
Floating-Point Instruction Formatceceveeeeceecess 3-12.1
Decimal Floating-Point Instructionseeeeeesceeceses 3-12.1

vii

This manual is updated by: Addendum 800-1100P0-04.01

3.5

CHAPTER 4

4.1

4.2

4.3

5.3
5.4
5.5

CONTENTS (continued)

Logical INStrucCtions ...ieecsesesceccsocnsssoescossssssnnnns
Fixed~Length Logical Dataeceetvecsenosesscscescanae
Variable—Length Logical Data .eecoesccssscsscssscvannons

Linked List INStructionseicecesevescsscoasscessocosasons
Structure Of LIFO LiStS .civiieesacccacssonsccsssnssansss
Structure of FIFO LiStS .c.veeeescocnooccasssssossssnsas

Semaphore Manipulation INStructionsc.eeeececcsssscscsans

Stack-Oriented INStructionseceeceeecescceccncnosannes

INSTRUCTION EXECUTION

Program Control Wordceeeseececssscesssonssssssccsnsenes
Condition COdEeS teeeeecreeossanscsssosssscancasesonssnsance
AdAresSSing .o..eveeesssaceessoscsessccssaccsosnsscesacosascnns
Base—-Displacement Address Generation ..c..cesesccscccacass
Relative Address Generationccceeeececcscncoccnnea
Direct Address Generationcccceeeecncscsccaccascnss
Address Translationcceeeesceneccscencsansaassssassssacnnsns
Physical/Virtual Address Spacecceceeeccccccscsccscne
Overview of Address Translationceeecceccceccanccas
Details of Address Translationccceeeeeenccccancns
T~RAM MONIitoOr Ar@a@ .c.cecescecocscsacssscscsscsccsasonnocs
Reference and Change Table .c..cceeevecccccsssescsssnsans
Sequential Instruction EXecutionecevvcecvcccosasenans
Branchingcoveeeeecccensosesscsassenscsnaaassssncnsnnans
Instruction FOrmatsicveeeeececcscccsacsssccsssnnnsns

INTERRUPTIONS

Introductioncceevecccsserencacssssasssanssssssssssacscns
Point of INterruption i...eeeeeecesccesessscsscssssssocsoncos
Instruction Executionccciiseacncsanscosnenccscanaa
Classes of Interruptionsccceeveccscsacccassacscsssns
Location Determinationcciiiieeineeneccecncccnenns
Input/Output INterruption «..e.ceeeceessescnssccsssssacscases
Clock Interruption ...ciceeeeccecccsscscacancsacsssssnanasnsas
Program INterruption ..eecececeescsocosascsssscsssassssassssascen
Program Interruption Codes in the PCWccvenveannccse
Access EXCepLiONS cevsecescvsecssssvessssscosesscssnsasnnes
Programming Errors and Miscellaneous Exceptionscceceess
Operation EXceptioncicecenscscoscacccccoansccanes
Privileged—Operation Exception ..ececeescaccecessosscanse
Execute Exception ...ceiieeerescssscsscssossonssosnssansos
Protection EXceptionceevecetceseccccscccscnnscases
Addressing ExXceptionc.cieeeeecsccsssasecossscansannes
Specification EXCEPtion .c.ceceercescssssonscsossssssannes

3-13
3-13
3-14
3~14
3-15
3-15
3-16
3-16

4-1
4=4
44
4-4
4-6
4-7
4-7
4-7
4-8
4-9
4-12
4-12
4-13
4-13
4-13

WMWW\J‘IU’IU\M\{IU\WU‘IWWU\U’!M
NNV ERTWWNONMMH

CHAPTER

CHAPTER

5.7

W

This manual is updated by: Addendum 800-1100P0-04.01

CONTENTS (continued)

Data Exceptioncccuvue.. tteseccecessecaseneenseans
Fixed~Point Overflow Exceptioncccieveveucennsnen
Fixed—-Point Divide Exceptioncccceveveceancrsccsnssnsne
Decimal Overflow EXception .eeceeecececssscscccecsncsnnsns
Decimal Divide Exceptioncceeevececscasssccscacssssss
Supervisor Call Range EXcCeption ...cescecccesssscsccscses
Load or Trap ExXceptioncccececassscscassscsssacacascs
Debugging AidsS ..ciieeeeeisecesescacesonnsasecscssasssansans
Modification Trap FEaturecesesccescesccaccscccccncsos
PCW Trap FEAtUreceoesesvsscasecosasnsssassasssassasses
Branch—Taken Trap Featurecceecesacscossssscscacssssss
Single—Step FEatuUre ...ccecsscanssscccsessccsceassscenssos D
Previous Instruction Address FeatuUressesceccassscses
Addressing EXceptions ...cccecceccecscssccsassssssssccsscssas 5—11
Address Translation Exceptionscicceeececccosasssesss 5-11
Page Table Address Exceptionsccceeceeecescscsocansses 5-12
Stack Overflow Exceptioncceceeeeeccscasscscsssascasseses 5-12
Floating—Point EXceptions ...c.ecesevcasosesasscsscascassnses 3-12
Floating—Point OVErfloW s.ceccecesescecccscassocscasassas =12
Floating-Point Underflowcioteeceesacccnssancanseas 5-13
Floating-Point Significance ...ccecveeceececcncncncnsseaes 5-13
Floating~Point Divide ..ceceeeeeressssssrsccssssssaasseas 513
Supervisor Call Interruption ...cceeecccccscscssosscansassss 5-13
Machine Check Interruption ...ssceesesceccesececsassssssssss 5-13
VS100 Machine CheCkS ...ceveveestccacssnsonssacacanasesas 9-14
Priority of Interruptionseeececescscccescassssscsssssas 3-15

O 0 00 0O C 0NN~

wu W
|
P
[l = =]

CONTROL MODE

Introduction ...seeeecoscecsscessocscsscosssacsocncccscsnsssss 6-1
Methods Of ENtry ..ccceccececcceccceecssecosacososnonaassssas 6-1
Entry during Program Executionc.cccceeesseccccsces 6-1
Entry from an Initialization Procedurecsec00000000s 6-2
Initialization Procedures ...cccescessosesncssasssaccssserees 6=2
Control Mode Commands and RESPONSES .cecoececesssssssscssnsos H-2
Load Group CommandsS ..cececeeescecscncscsssncsssasssscses 6~3
Debug Group CommandsSeceeccescccssccsssassccaasncnsss b6-4
Screen Manipulation KeYS eecescescsssacccecccsncssscsssess 63

INSTRUCTIONS

General Instruction Set ...cecceccccssrsensascsccnscasccssanees 71
ADD (AR, A) 4iccesncencnosscacscsccacsscasasasssssccsaseas 1—2
ADD DECIMAL (AP} .vccceeeeccccccsocncsccassosnscnscssasesss T1=3
ADD DECIMAL (FLOATING-POINT) (AQR, AQ) .cevevccceaseees 7-4.1
ADD HALFWORD (AH) ...cccceeeeccaccassscacssosasssancsssas T=5

This manual is updated by: Addendum 800-1100P0-04.01
CONTENTS (continued)

ADD LOGICAL (ALR, AL) tvveerroenecccccncsossaasnss ceeeeees 7176
ADD NORMALIZED (FLOATING-POINT? (ADR AER AD AE) 7-7
ADD UNNORMALIZED (FLOATING-POINT) (AW, AU) Ceseessesnenes 779
AND (NR, N, NI, NC) ..ivceeeecensene Ceecseessaanne cereees 7-10
BIT RESET (BRESET) C et seesisenceescerensenscneenes .. 7712
BIT SET (BSET) cvveveveeececcanccoacsnasssccsosascncsnsns 7—13
BIT TEST (BTEST) ecveeeccsccccscssscssosscssoscsascsnacas 714
BRANCH AND LINK (BALR, BAL)cevecansosoananssaansan .. 7-15
BRANCH AND LINK (RELATIVE) (RBAL) +..vevecececcacesceesss 7-15
BRANCH AND LINK ON CONDITION INDIRECT (BALCI)ccce... 7-16
BRANCH AND LINK STACK (BALS) ...ceeveecccvecrcasnacananns 7-17
BRANCH AND LINK STACK (RELATIVE) (RBALS)ccc.. ceeees. 7-18
BRANCH ON CONDITION (BCR, BC) ..cccecsesovocccnsscncsases 7—19
BRANCH ON CONDITION (RELATIVE)(RBC) Ceetececsaseascennans 7-19
BRANCH ON CONDITION INDEXED (RELATIVE) (Rch) teeeecseees 7721
BRANCH ON CONDITION STACK (BCS) .eveescoscecancaasasnases 722

BRANCH ON COUNT (BCTR, BCT) .oieeeeesecccascnnncascnnns e 7723
BRANCH ON COUNT (RELATIVE)(RBCT) S e s s 0000000000000 7-24
BRANCH ON INDEX HIGH (BXH) ...cceeecveccronccecnannnnnnns 7-25

BRANCH ON INDEX HIGH (RELATIVE) (RBXH) ..:ecoescescscasss 725
BRANCH ON INDEX LOW OR EQUAL (BXLE) ...eveececcecsccoaess 726
BRANCH ON INDEX LOW OR EQUAL (RELATIVE) (RBXLE) ...ceeo.. 7-27
COMPARE (CR, C) +eeeceeocscssencosonssscssvscosssscscncss 7—28
COMPARE (FLOATING-POINT) (CDR, CER, CD, CE) ...ccceveeeas 7-29
COMPARE DECIMAL (CP) .cecveececcsscnccccssosonanscssesess 7—31
COMPARE HALFWORD (CH) .veveeevevescocsnescesccccccsasnaese 7-32
COMPARE LOGICAL (CLR, CL, CLI, CLC) .c.ceveeeenen Ceveeene 7-33
COMPARE LOGICAL CHARACTERS UNDER MASK (CLM)c..... .. 7-35
COMPARE LOGICAL LONG (CLCL) +vieeeeeveenccncoccocncseaces 7-36
COMPARE LOGICAL WITH PAD (CLPC) .ceeceevccscsccsscancaseas 7—38
COMPRESS STRING (COMP) ..veecececsenscccccocsacsssonaasns 7=39

CONTROL I/0 (CIO) cevveeenenn Ceteceecenscesesctsasaans .. 7-40
CONVERT DECIMAL (FLOATING—POINT)

TO PACKED DECIMAL (CUP) ..ecevevecencans Ceeeeeraacenn 7-40.1
CONVERT PACKED DECIMAL

TO DECIMAL (FLOATING-POINT) (CVQ) ...vivecevsncnconas 7-40.2

CONVERT TO BINARY (CUB) ..cevevseecccnecanccnncscsnnannes 1-41
CONVERT TO DECIMAL (CVD) ...veeeecevscnsccncsasscscananes 71—42

CONVERT FLOATING-POINT TO INTEGER (CDI) +vvvecececccnane . 7-43
CONVERT INTEGER TO FLOATING-POINT (CID) .vveveveccccans .. 744
DECREMENT AND INSPECT SEMAPHORE (DSEM) ¢.ceevevecccescees 7—45
DEQUEUE (DEQ)cev.. Ceeeeeceaneans Ceeeeneeecentaaaanns 7-46
DESTACK (DESK) eveeeccconcoccas ceeeecenean Cecesccencenees 147
DIVIDE (DR, D) vvveveeeonocnsecacennanssnccsansscassaccas 7—48
DIVIDE (FLOATING-POINT) (DDR, DER, DD, DE) ..c.ceeeeeenn 7-49
DIVIDE DECIMAL (DP) ..oeevo.. Ceeeetectenceacane teeevaneees 751
| DIVIDE DECIMAL (FLOATING-POINT) (DQR, DQ) .cececevcenes 7-52.1

EDIT (ED) S 0 00 0SSO 00 LSS OETESOLNNN NS BCSRBReSNGRIOERNODS 7_53

_This manual is updated by: Addendum 800-1100P0-04.01

CONTENTS (continued)

EDIT AND MARK (EDMK) Ceeeeeanne Ceertececcannees eee 7760
ENQUEUE (ENQ) .cveeeeececncecaccsceaccnacsacnccssassenaes 761
ENSTACK (ENSK) ceeecsvesscscesscseossssasesccesassssssannns 7762
EXCLUSIVE OR (XR, X, XI, XC) Ceeecevaseccanecscons 7-63
EXECUTE (EX) +cevececcccncecccssccossasscsccncsscacsscnces 7—65
EXPAND STRING (XPAND) ...cccececsccssccccsccsasnscssnnnee 71—67
HALT I/0 (HIO) +vecececccccssccsscccsasssssscessaccsccaas 71—68
HALVE (FLOATING-POINT) (HDR, HER)c.... ceeteecreeacess 769
INCREMENT AND INSPECT SEMAPHORE (ISEM)ccecveecvecess 7-71
INSERT CHARACTER (IC) .eeeveccccccccoccccacoscscscasncnne 7—72
INSERT CHARACTERS UNDER MASK (ICM) ...ccicvevcscccccneeee 773
JUMP TO SUBROUTINE ON CONDITION INDIRECT (JSCI) «.eevvee. 7-74
LOAD (LR, L) 00000060000 0000000000000000000000cc0sbtbssnsos 7—76
LOAD (FLOATING-POINT) (LDR, LER, LD, LE) .cceevcrcecocnses 7-77
LOAD ADDRESS (LA) .vvevecrecccccncsasocnnsencsscasscscsees 1—78
LOAD ADDRESS (RELATIVE) (RLA) .cvavecsccccscascasascsnsaes 1—78
LOAD AND TEST (LTR, LT) .vevveevccccoccacsccscssascscseeas 779
LOAD AND TEST (FLOATING-POINT) (LTDR, LTER) ...cecceceee.. 7—80
LOAD CHARACTER (LC) tevveceocecssrnscnsccscnsasssssananns 7-81
LOAD COMPLEMENT (LCR) +ececescccasoccccasenssssosssncsceans 7—82
LOAD COMPLEMENT (FLOATING-POINT) (LCDR, LCER)v02.0.. 7-83
LOAD CONTROL (LCTL) +evvceccccctsconseasaccsoscscsccsssnss 7184
LOAD HALFWORD (LH) ..cceeecossssoscascccssceasscsscsssssns 7—85
LOAD MULTIPLE (IM)cceececcscccccoanosscnscsssscsscess 1—86
LOAD NEGATIVE (LNR) .ccoeececsscccossscosscencsonsscnsaas 1—87
LOAD NEGATIVE (FLOATING-POINT) (LNDR, LNER)cccccce.. 7—88
LOAD OR TRAP (LOT) ..cceeecocscnccccsecocaccscossoacssecee 7—89
LOAD PAGE TABLE (LPTO, LPTl, LPT2) ...ccceccececscansses 7-90
LOAD PARTIAL PAGE TABLE (IPPT) .vvveececcacasananannnces 7-91
LOAD PCW (LPCW) .evvceceeccccccccsasoccssncnsscssacenses 7—92
LOAD PHYSICAL ADDRESS (LPA) .vececcecccsccsncssscsacsses 7-93
LOAD POSITIVE (LPR) .cvvceerecccccononncccccs teeenearenne © 7-94
LOAD POSITIVE (FLOATING-POINT) (LPDR, LPER) veses 7-95
LOAD ROUNDED (FLOATING-POINT) (LRER) ..cccccecoceccseseas 7796
LOAD SEGMENT CONTROL REGISTER (LSCTL) .veeeescecccesss 7-96.1
LOAD SHORT TO LONG (FLOATING-POINT) (ILDER) ecveveceeeeces 797
LOAD SPECIAL REGISTER (LSREG) cvceececccccsscscnsannsssaes 798
MOVE (MVI, MUC) .tv.eeeeecscossnnncnooncssossasoscacsasae 7—99
MOVE CHARACTERS LONG (MVCL) .veeeccccaccossasscnscacasas 7100
MOVE NUMERICS (MVN) ...ccoccesssasoccsccccsssosscacesasee 7-103
MOVE WITH OFFSET (MVO) .c.cceiveescccacnse ceeereanne cee. 7-104
MOVE WITH PAD (MUPC) ©vvveeercccccnconcccocsonssannansas 7-105
MOVE ZONES (MVZ) .c.veveeecsccccccncesscsacsssscassacsesas 7—106
MULTIPLY (MR, M) cuutevececccnacccoosccacoacoasnnaonns .. 7-107
MULTIPLY (FLOATING-POINT) (MDR, MER, MD, ME) 7-108
MULTIPLY DECIMAL (MP) ..vcceveecccccccccsaccsssscasenses 7—110
MULTIPLY DECIMAL (FLOATING-POINT) (MQR, MQ)c...... 7-110.1
MULTIPLY HALFWORD (MH) c.ccccvccccenscnccacsnansnascanss 7111

This manual is updated by: Addendum 800-1100P0-04.01

CONTENTS (continued)

OR (OR, O, OI, OC) .vveevrecosccsoconccnsoosocscssocnsees 7—112
PACK (PACK) Cereeenen Ceeecessesacecessneanancsannne 7-114
PACK AND ALIGN (PAL) .cvvvvevcescancnnenncacnne ceeresess 7-115
POP (POP) ...cevevnvavenanannnes ceveen Ceeeceeneceaeanns . 7-118
POP CHARACTERS (POPC) «vvveeccceccnacconcnccascsccasnsss 7119
POP HALFWORD (POPH) ..cccveecacescocancconccncnsncacnses 71—120
POP MULTIPLE (POPM) Ceeeaseecacenann ceseeeees 77121
POP NOTHING (POPN) .vvevevecccoococnocoscnacsscsasaaneeas 7122
PUSH (PUSH) teveeeveecosocnccncnsansassoncssssasscsensee 71—123
PUSH ADDRESS (PUSHA) ...cicececccccacccccnsanne cecseeses 77124
PUSH ADDRESS (RELATIVE) (RPUSHA) ... veeneeeceennneanens 7-125
PUSH CHARACTERS (PUSHC) .uceveeeceececocnsccscacennsnses 1126
PUSH MULTIPLE (PUSHM)cecececscancosacssnccscscsanes 7=127
PUSH NOTHING (PUSHN) ..cceecccvosvoscesccccssansasasccss 7128
RESET REFERENCE AND CHANGE BITS (RRCB) ..cccececsseccses 7129
RETURN AND POP ON CONDITION (RPC) ceeeececcccecccscacess 7-130
RETURN ON CONDITION (RTC) .v.veeeececccsesconcaannessess 7-131
SAVE THEN 'AND' SYSTEM MASK (STNSM) .ceecescocceccescscse 7—132
SAVE THEN 'OR' SYSTEM MASK (STOSM) ...cecvecececcceesess 7-133
SCAN FOR BYTE (SCAN) .cveeeececscscnocoscccosncscsnesaes 7-134
SET PROGRAM MASK (SPM) .e.veeeecccccecancensscncasansees 7-136
SHIFT AND ROUND DECIMAL (SRP) ...c.cvecececconcnscsassess 7137
SHIFT LEFT DOUBLE (SLDA) .cceeveccscccccsscscancacsesese 7m139
SHIFT LEFT DOUBLE LOGICAL (SLDL) .veceeececcececacsseeess 7-141
SHIFT LEFT SINGLE (SLA) ..ceeevcecccescscaconcocacaocsces 7—142
SHIFT LEFT SINGLE LOGICAL (SLL) .cveevecevccccocacsesees 7-143
SHIFT RIGHT DOUBLE (SRDA) .eveevecsccccosecsconsscannese 7-144
SHIFT RIGHT DOUBLE LOGICAL (SRDL) ¢eveevecccsoasacensess 7—145
SHIFT RIGHT SINGLE (SRA) .cvveveccscccnvnccssacssacssens 7—146
SHIFT RIGHT SINGLE LOGICAL (SRL) .eveceeesecneacacansees 7-147
START I/0 (SIO) ..eeeveceecccecenas Ceeececetrrensanenanns 7-148
STORE (ST) veeeececccancecccosssssessscsncssessecseseses 7—150
STORE CHARACTER (STC) .veveeeevececeossneesasnacasasanss 7=151
STORE CHARACTERS UNDER MASK (STCM)cvececencancases 7152
STORE CONTROL (STCTL) v veeeeereesnaconanonnansannanens 7-153
STORE CP TYPE AND MICROCODE VERSION (STCPID) 7-154
STORE DIAGNOSTIC DATA (STDD) «eeeevevccceccocencscscasss 7—155
STORE (FLOATING-POINT) (STD, STE) .veeeeeecsccecncnnn ee. 7-157
STORE HALFWORD (STH) ..cceecscccess ceeeccacerscsssensees T-158
STORE MULTIPLE (STM) .cceveeveccccncecccnncoscncscsnness 7—159
| STORE .SEGMENT CONTROL REGISTER (STSCTL) ..ecoeeueee... 7-159.1
STORE SPECIAL REGISTER (STSREG) +ecceesvsvessccsscesesss 7160
SUBTRACT (SR, S) toeeeeceensseoocennanconnnncosensesanns 7-161
SUBTRACT DECIMAL (SP) .vvuieveececescncncsnoscansansannss 7-162
| SUBTRACT DECIMAL (FLOATING-POINT) (SQR, SQ) .eeoeee... 7-162.1
SUBTRACT HALFWORD (SH) cvecevvccccesssoscvscansecsnanss 7—163
SUBTRACT LOGICAL (SLR, SL) tteeeececccscennsnoanssacans . 7-164
SUBTRACT NORMALIZED (FLOATING-POINT)
(SDR, SER, SD, SE) .citeeetcacecesscasscccsnanseanscsnes 1—165

xii

CHAPTER

co

o Co
N

8.3

8.4

8.5

8.7

This manual is updated by: Addendum 800-1100P0-04.01

CONTENTS (continued)

SUPERVISOR CALL (SVC) .ucieesccssccassssssscssnscsesnses 1—167
SUPERVISOR CALL EXIT (SVCX) .ecceccscecscsccscsseccacnses 7—168
TEST UNDER MASK (IM) ...ccoceveccsscscescscsccsscsessnss 1—169
TRANSLATE (TR) «vevivevecsenocosnesasoasesnsasnsnnnnnnas 7-170
TRANSLATE AND TEST (TRT) ..vcecvoscccsscescasssscsccssaes 71-171
UNPACK (UNPK) t.cesescececesssaceasssscosssoasaseasascesees 1=173
UNPACK UNSIGNED (UNPU) ..cvcesoccscsccscscscscanssnances 1—174
UNPACK TO EXTERNAL DECIMAL FORMAT (UNPAL)coccecesee. 7-175
ZERO AND ADD (ZAP) ..vciesescesccscssessssnssssssssssnes 1~176
Operating System Assist Instructionsccceceeecsccecces 7177
MODIFY TIMER QUEUE (MTQ)ccecvcenceccancaccccnsasses 7178
SCAN PAGE FRAME TABLE (SPFT) ..ccevecesccscsacscccansess 71—180

INPUT/OUTPUT OPERATION

INtroduction ..ceveceesnecssessosccccassascssssscsanasscasa 8-1
I/0 SUDSYStem .viveessecsesasosscaassssssasscosscssasacsnas 81
IOPS teceecrevaceosconsossocnsosnsssonosasssssassssssncscse 8-1
I/0 DevicesS ..vveeeecccscsassesssssassasssssosssncacsnse 871
VS25 and VS100 I/0 Device Address (IODA) ..ciececescsees 82
VS80 1/0 Device Identification ...cceeceesveascsccasasss 8-2
Memory Assignments for Inter-Processor Communications 8-3
VS25 and VS100 ASSignmentsS ...cceceescsceessossscaccsacs 8-3
VS25 DA Status Table (DAST) ...cccssccsccscsssscassesceas 84
VS100 IOP Status Table (IOPST) .escecevccssacccscaaascas 8-4
VS25 and VS100 I/0 Command Table (IOCT) ...cecceececee.. 8-4.1
VS25 and VS100 Status Qualifier Byte (SQB) .e.cceceesoss 84,1
VS80 Communications Areas ..ceeceecsscsccccsnssccrecsees 84,2
Resetting of I/0O Devices——All SystemS ...ccoeesesescsces 8=4.2
Execution of I/0 Operationsccecesseeecsscsccsscnseces 8-4.3
I/0 INStructionsS ..cceeececesassscsssssacasssccssccsssee 8-4.3
Transmission of SIO cecescscessscccssveses 874.3
I/0 Command Word (IOCW) for SIO Instruction 8-4.5
Termination of I/0 Operationscoeesececccecscssescsccess 8=7
Types of Terminationccicvecscccccacccnssccsacsscncse 8-7
I/0 Interruptions ..ciecesscccesecaccsacsscsnsssnscsanes 88
Priority of Interruptscceceeeenccaccscnscsancssnans 8-9
Interrupt ACLiON .seeeeccesrncsecencesossssasasscscsssonss 8-9
I/0 Status Word (IOSW) ..cevcescescsancsoacsassosncsncscsess 879
General Status Byte .cecececcescccccssecrsscsscncscncncs 8-10
Error Status Byte .ec.ccea.veesccccsscesscsscccncesncnncs 8-10
Device-Dependent Status Bytescecesveecscccccsscs. 8-10.1
Residual Byte COUNt ..ccceeesccescsccsasesosscssascnnsancs 8-11
General Status Byte ..ceceeereccssacsosacssssassaascsncscsans 8-11
IRQ—-Intervention Requiredccceceeeesseccsccscccnncs 8-11

This manual is updated by: Addendum 800-1100P0-04.01

CHAPTER

8.8

8.9

9.3

9.4

9.5

CONTENTS (continued)

NC—-Normal Completioncccceceeencescoccscncccacconnss
EC—Error Completion ..cccecvsecececsscecssscesscocossscses
U-—Unsolicited (Attention/Device Now Ready) ..cccsvvecss
PC~—JIOP NoW REAAY ..vcccescesaccosccsessscsccscnvnsccnses
Error Status BYte ...ccecceseesecccncosacccasssscnsascccces
IC—Invalid Commandcceecceeeccccsancscsosccccacnnnss
MPE--Memory Parity Error ..c.cceceecesccersccsscacannscssns
MAE--Memory Address Errorc.ccccecececececccsccscescsnsse
DM~-Device Malfunction ...eceeceecacsacsssccecccesccnnas
DAM—-Memory oOr Device Damage .c.ccccececcacocsoscsccnnssss
IL-—Incorrect Lengthccccceecrecccncscccecscosncssnns
PP and DP-—IOP or Device Code Not Loadedccccevueen
The CIO INStructioncececeeecscecsscccscasssscasnsscas
CIO Microcode-Loading, Microcode—Reading,
and Processor Control Commandscccceeesecccccnnces
CIO Memory Diagnostic Commands for I/0 Processors

WANG WORKSTATION CHARACTERISTICS

INtroQUCEtion ..civeeesvencsasscccasscossscsacsassanssssssnsa
The CRT ..cceieecsasceanscorsonsssosnnsossnssscssssssosscsasssscase
Screen and CUrSOTrccevsvccaancssnsaccacssssssasssannns
Workstation MemOrycceeeeescececacsssascsssssncsssans
Screen FOrmatting c..cveeseececnsccsssccccassasssncssccne
Field AttribUteS .cc.cececerseccnsessososssscassosasascsans
TADS ceeccecescscoessnsscssssesssesssssscsassssosssasncssoss
Audio INdicatOrS ...eccecsecccasocscsnscsscccssccsasnssossns
The KeYbDOArd ..e.eeeeeeeeceescoescceascescssescanncassancasns
Cursor Positioning KeyS ..cceecescecocccsscncccccsccacses
Data ENtry KeYS cuceeeerececeesessosoncennencosocesnanane
Special KeYS .cceeervieceoscersossecssssssssoscsosssassscssanses
Keys Communicating with the Computercoeeevenaees
Workstation IOCW and I/0 Commandscccececcrccoscssasanas
Command and Modifier BitSceceeerccaccccssccncccanses
Data AdAreSS ceeecossescesoscossosscscrsesscssssssssasancss
Data COUNt sevevsecvsecesssoscscasassscsasnnssoscascscccscas
Data Area ...vsececereccacacrsosoncscasccsocassosncnoccsssacses
Order A3 ecvivececsosesscesssescsasosoncsssssssccscssesas
Interpretation of the Order Area on a READ ..ceceeececses
Interpretation of the Order Area on a WRITEc00.
WCC ATeA .vvveesssessesossocsssancsosssossascsnssscssssosssas
Unlock the Keyboardccceeieeeceecsaccssccccsssscccnne
Sound the Alarm ..cccececesscacsecsosscosscssscsscscsssssssae
Position the CUrSOYr ..cccievecccsssncccsscocsasosssccnnns
RO1]1 DOWIl oevvvvencncscososscossiocscsossssnsssnscssasanssas

ROIL UP tvveeecseuccscassncsossecccssasscacsoscsasescsssanses

Erase Modifiable Fields to Pseudoblankscciceeveveses

8-11
8-11
8-11
8-12
3-12
3-12
8-12
8-12
8-12
8-12
8-13
8-13
8-13

8-14
8-15

RSN B AR
O OO NVUVUVUVLEWWR

9-9

CHAPTER

CHAPTER

CHAPTER

9.6

9.7

10.3

11.3

11.4

This manual is updated by: Addendum 800-1100P0-04.01

CONTENTS (continued)

Erase and Protect Rest Of SCreenceeesseescscccess 9-14
Mapping ATea .s.ciccececesccscaccnscsnccscssossssacsscsans 914
Workstation I/0 Commandscceceeescecassssncccscscess 9-15
Workstation I/0 Status WOrdececesessesssssscssnscanase 9-19
General Status Byte ..sccccececccscacsascsccesscsacsesss 9I—19
Error Status Byteccciceecccesccaccensoccssceanansass 9-19
Device-Dependent BitS ...iieccecnsccscsnssccasccccsassss 9720
Example of Computer Conversation with a Workstation 9-21

WANG PRINTER CHARACTERISTICS

Introduction ..ceececseccccacesssscsosscsascscccossseasssaness 10-1
Printer IOCW and I/0 CommandsS e.ceeaeccecccncessancsssssasaas 10-2
Write Commandccccveveetccsacccsnscscsassssnasasees 10-2
Data Count and Data Area ..ceeseesscesccsacsccscsasssass 10-2
Print Control BytesScccececcenscccnccccccsansancssaees 104
Printer I/0 Status Wordcceeceevescccsccanscssssecaas 10-5
General Status Byte .ceceeecsesccscscsessssacccssssasass 10-6
Error Status Byteccccnvceccecccacscnsaccaccsacasass 10-6
Device-Dependent and Residual
Count Byt@S .ceceecectcccersccssascassaccsacnssssacsene 107
HALT I/0 tOo Printer .ccceeececececccccascsncsscssnannsase 10-7

WANG DISK FACILITY CHARACTERISTICS

INtroduction s.ceeveecescassecssassassaccscsassoanssncesssses 11-1
Disk IOCW and I/0 CommandS .e.cescesccacssccacsassanssasssss 11-3
READ CommAand ..ceecceasscessscccsssccsssscsssassssascscee 11=4
WRITE and WRITE (VERIFY) CommandS ...cceeseceseccsccsses 11-5
Disk Control CommandsS ...c.ceeeeeensscessscsasssssacasssses 11-5
SEEK ,..ceucesaseasscaasenssssssassasssscsssnasssssassses 115
FORMAT ...coececenocacsoanasacsssseosasscssssssssnscassass 11-6
Disk I/O Status Wordcccvseeevecececsacscsanssscnsncas 11-6
General Status Bytecieeeecscscacscsasasassssaseass 116
Error Status Byte ...cececieccasssccssonscssscssansasesss 11-6
Device-Dependent BitS ...ccveveececscccccssssccsscsnanss 117
Disk Unsolicited Interruptionsceeesseeccecnscesss 11-11

WANG MAGNETIC TAPE CHARACTERISTICS

Introductionceeveencencasesesesccssccncnscocassesanss 12-1
Magnetic Tape General Descriptionceeeeeceereencsesss 12-1
Track Allocation ...cseececesssoscessoscscassecssssassees 12-1
Tape Markers ...veeeeececccccsossconcrsassssnasasssssssaes 122

v

This manual is updated by: Addendum 800-1100P0-04.01

CONTENTS (continued)

Load Point Marker ...cccecseecescsccssancessscocnacsssssss 12-2
End-of-Tape Markerccceesesceeceancacancses ceeesen . 12-2
File Protectioncccevencccacans cetscccssasssssassnne 12-2
Tape BlOCKS ticevevacccacsccencsncssscsccscnccvssssnosasans 122
Tape Mark .cecececceeccacscsesoncsosscnsssassssnsasssassse 123
Checking Tape Validity ..veceeeccecssssscscceacssasccnsans 12-3
12,3 Tape IOCW and I/0 CommandS ...ceececesssecscosnscsccsasasess 123
READ ..vcccecacosososseesovessentasssnsscoannnssssaas ceees 124
WRITE oocccecececcccvccncsccascosssnsnccscacasssoassassses 1274
12.4 Tape Control CommaNdS ...ceccsvcecvsccsccssscssssssassssssee 12-5
ERASE TAPE ..cvecvoceccscccsoscsccasssossnsssscsesscssnsssssss 1L2=5
REWINDc000. P 12-5
REWIND AND UNLOAD ..c.cesacsasasscccesssssnssssesnscsensse 12=5
WRITE TAPE MARK ¢.ccesececcssoococcscancscsnssssssssscssess 12—6
FORWARD SPACE BLOCK sesssescesecscsasssesssssesse .. 12-6
FORWARD SPACE FILE ..vcvteecocsssccsovccoccscccsassenassss 126
BACKSPACE BLOCK .c.ecececcccssccocasscacsscssseassaascaasse 1276
BACKSPACE FILE .t.cicccescncvacanansoasascanssosscsacssocsce 1276
SENSE. .uccevesscocseoncsesssoscssssccssosassssssasssscsece 12-6
SET DENSITY ..cveveocsaccccsesasscssscncnns esesssssssssss 12-6
SET PARITY cveeccccccccassessasccssscansnsocssassssnsnsane 126
Effect of Tape Markers on IOSW BitS ...cceveessosaccacsss 12=7
12.5 Tape I/0 Status WOordcceeeeneceecrccnncecnncccsncscanass 12=7
General Status Byte ...cccececcscecccccocssassccssssssnss 12=7
Error Status Byte .c.ceeccccacessosassscccsoccsacscssassssssss 12-8
Device-Dependent BitSceceecececcccccans cessanns eeees 12-9

APPENDICES
Appendix A Operation Code and ASCII Character Listcccevecencans A-1
Appendix B GlOSSAYY ceeevesescscscscsassocescsssosnsascsssssssassasscssass B—1l

IDOCUMENT HISTORY -------- L I O I I I I R R A I I I O I NI I A AP AP AP A A S B AP DH_].

INDEX L I) ® ® 9 8% 50 00 0800008 s 000 ® 8 6 0608 00 B0 e e e ® & 00000000 INDEX‘l

xvi

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1-1
1-1
1-1
2-1
3-1
3-2
3-3
3-4
3-5
3-5.1
3-6
3-7
3-8
3-9
3-10
41
4=2
4-3
44
4~5
4—6
5-1
7-1
7-2
8-1
8-2
8-3
84
8-5
8-6
8-7
8—-8
8-9
8-19
8-11
8-6
9-1
9-2
9-3
10-1
12-1
12-2
12-3

This manual is updated by: Addendum 800-1100P0-04.01

FIGURES

Diagram of the VS25cc000000 secesesesnssssssnssnnssnes
Diagram of the VS80 ...ccccevccsccescsoccnanns cececsrencnca
Diagram Of the V100 ...ccceeescssscsesscscscccacssssssoonsans
Sample Information FOrmatscccciceeccceccesscnccacsnans
Fixed-Point Fullword Data Format ccesecsssassancsses
Packed Decimal Number FOIrmat ...cccsecoecvesccscocscsosassocns
Zoned Decimal Number FOrmatcccceeeeccscccssssosccncsoas
External Decimal Number FOrmat .c.ecececeecccccccascsssacsans
Long and Short Floating-Point Numberscccceeeescccss
Decimal Floating—Point Number Format cesessccenans
Fixed-Length Logical Operandccooececccsccsscccscacnce
Variable-Length Logical Operandceccececececscsccscsccs
LIFO LISt tiuiveeesccecncescscacacsassssssanesasssassosasscs
FIFO LISt c.ccececcescoascccansnas sesecssscraseancnccassssss
Semaphorecccceeeencncnccncccnncases sessessscsacsacss
The PCW FOImAL .cceceecssecsscsccsosssaccasssasssnssscssoans
Physical Address FOrmatcccceeccecascscscescsassscaascs
Virtual Address FOXmat ...cccceescssccccscososssosasosscssssss
Main Memory Page Table Entry Formatccccecocececcccscscs
Segment Control Register (SCR) Entry Formatceceeee
Virtual-to—-Physical Address Translationccovceceencecs
Page Fault Reporting Area ...cccccseesncsssacasssssscnssnne
Format of Operand M2 for Reference and Change Table

1-2
1-3
1-4
2-5
3-6
3-8
3-9
3-9
3-11
3-13
3-14
3-14
3-15
3-15
3-16
42
4=7
4-8
4-9
4-11
4-12
5-12
7-129

Format of Operand M2 for Monitor Area ...c.ccesceeeseaessse 7-129.1

I/0 Device Address (IODA) ...ceeevccccaccssssssasassscsnnsa
DA Status Table (DAST) for the VS25ceceasscsscsacssses
IOP Status Table (IOPST) for the VS100 .cecececovscssossona
I/0 Command Table (TOCT) .ucveveeececcescsccccscasoncssassnne
Status Qualifier Byte (SQB) ceeecnea cececessssssaes
S10, CIO, and HIO Instruction Formatccececececccocse
Rl Format for SIO, CIO, and HIQ Instructionsccecccees
I/0 Command Word (IOCW) FOrmatceecceccescccocssannsans
JOSW FOXrmat ..cccecesnccssceccscscsssacsscssassascssssnsassansocss
IOCW Format for Microcode CommandS .cc.cccesccesccacscnccsns
IOCW Format for Diagnostic Commandscccececscoceccccccse
I0OSW Format for CIO CommANAS coeescvcssccccsscascsscansccces
The Keyboard ...cccceeccccccsesssscssscscsssccsscascssessss
Workstation IOCW .c.cececccescesscscsnosssscnsscssnsssssasnse
Data Area Specified by Workstation IOCW ...c.ccccaccancoses
Printer IOCW FOXmat ..cccccecescsscsccescssacsnscsosacaaasss
Tape Bit POSitioNS ticeeececeasccscsoscsrssscssanonsscsssnns
Tape BlOCKS cccvecesccencsccssncsscscsssoscscscsscsosccscsssccss
Tape IOCW ..eceesccncscsoccnsasccarcssessasascasssssosesstsess

8-2
8-4
8-4
8-4.1
8-4.1
8-4.3
8-4.3
8-4.5
8-10
8-14
8-15
8-16
9-6
9-10
9-15
10-3
12-1
12-3
12-3

This manual is updated by: Addendum 800-1100P0-04.01

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

10-1
10-2
11-1
11-2
12-1

TABLES

Data Representation and Boundary Alignmentc.cccesceeee 3-5
Bit Codes for Digits and SigNS ...veeeececerccacasrenasnnse 3-8
Permanent Storage Assignmentscceerecscccrccnccssanens 5-3
Pattern Character Coding ...cceeeecevvecscccacssassancacses 154
Summary of Editing Operation ...cc.cccoeeeccccsscascccesces 7-58
PACK AND ALIGN Scan Order «...eessesscescssscccscssassssass /115
VS25 and VS100 Permanent Memory ASSignmentsceeceesseee 8-3
IOCWs and IOSWs (from the I/0 Error and IPL Log) 8-10
The Character Set ...ceeieccecccccascoccscssncssocsassences 9-2
Field Attribute Character ValuesS ...ccceevcssscsssccccsscas 9-3
Significance of Bytes in the Workstation Order Area 9-11
Workstation Write Control Character (WCC) Codes 9-13
Workstation CommandsScceececesncsscoscsscssscscacsesess 9-15
Attention ID (AID) ConfigurationsS ..c.eeeeccescssccsscsssas 9-18
Characteristics of Printer Modelscececracessscensssces 10-1
Printer Control CodeS seccecsscsacssrscsssssosnsasassssassanss 10-4

Characteristics of Disk Drive Modelsceeecececcnnans ce. 111
Valid I/o commds S © B 8 5 5 9 0 O ¢ O PP O O OB P OO N 0GOSO ENSE NS SN 11—3
Tape Control Modifier BitS ..ic.cceeicrcnccccccsacsasencass 12-5

Table 9-6
Table 10-1
Table 10-2
Table 11-1
Table 11-2
Table 12-1

TABLES (continued)

Attention ID (AID) ConfigurationSeceeecessscccccccccnccs
Characteristics of Printer ModelS ..ccececeecvccccasssscccnss
Printer Control COdeS ..cceveeeccssocssocsscsassancsssnssossasca

Characteristics of Disk Drive Modelsc.ccceveansaces

Valid I/O Commds 060 0000000008000 000080000600c6060c6000080800s000e

Tape Control Modifier BitS ..ccvievvascccsecsccossacnass

xix

9-18
10-1
10-4
11-1
11-3
12-5

This manual is updated by: Addendum 800-1100P0-04.01

INTRODUCTION TO VS SYSTEMS

1.0 VS FAMILY CHARACTERISTICS

The Wang VS computer family consists of medium—scale, general-purpose
computers designed to provide sophisticated hardware at a low cost. A
poverful instruction set has been microprogrammed into the machines,
consisting of 1logical functions, arithmetic instructions (including decimal,
floating-point, and decimal floating-point instructions), and queue and
push—-down stack instructions. This variety of instructions makes for easier
programming and faster, more compact code.

Main memory is semiconductor random access memory (RAM) with automatic
error correction circuitry. The largest main memory for a VS system is
currently 8M bytes (M = 1,048,576); the addressing scheme allows a maximum
memory size of 16M bytes. To help make full use of available memory for any
VS system there is virtual memory support in the form of address translation
hardware and several privileged instructions.

Input/output processors (I0Ps) optimize central processor (CP)
function by governing I/0 operations independently of CP activity. The CP and
all peripheral processors have direct memory access through main memory
controllers. Memory requests are handled according to a priority system and
are satisfied on a cycle-stealing basis.

Refer to the following sections for diagrams of particular VS
machines, and to Chapter 2 of this manual for a discussion of machine
organization.

This manual is updated by: Addendum 800-1100P0-04.01

1.1 VS25 Characteristics

Basic Configuration

The VS25 is an entry-level VS system. The basic configuration of the
VS25 consists of the CP and included 1.2M-byte diskette drive, main memory, an
included fixed—disk drive, and an operator's console workstation. Additional
I1/0 devices may be added as options. Other VS systems having the same

architecture, including the VS45, may substitute removable-disk drives for the
fixed-disk drive.

Figure 1-1 is a diagram of the VS25.

Main Memory

Fixed-Disk Drive
(34M bytes)

Serial Device
(up to 32)

Memory Controller

Diskette Drive [][*°
(1.2M bytes) N

bootstrap) O .
>

Disk Drives

Additional /C
DA1 DA2 DAs

Control Memory

(0

I,

-

us

o»0

F

o= o o o

Central
Processor

|-

DMA for DAs

Legend

16-bit data path

Tape Drives

Figure 1-1. VS25 Architecture

This manual is updated by: Addendum 800-1100P0-04.01

1.2 VS80 Characteristics

Basic Configuration

The VS80 is the original VS system. The basic configuration of the VS80
consists of the CP and included 308K-byte diskette drive, main memory, one or
more removable—disk drives, and an operator's console workstation. Additional
1/0 devices may be added as options.

Figure 1-2 is a diagram of the VS80.

Main
Memory

i -—‘
Memory

Controller Workstations
Disk Drives

Control Memory \
Central toP 0P 0P
Processor J

Legend

Printers

16-bit data path

Tape Drives

Figure 1-2. VS80 Architecture

This manual is updated by: Addendum 800-1100P0-04.01

1.3 VS100 Characteristics

Basic Configuration

The VS100 is the largest and fastest member of the VS family. The basic

configuration of the VS100 consists of the CP, main memory,

one oOor more

removable-disk drives, and an operator's console workstation with attached
1.2M-byte diskette drive. Additional I1/0 devices may be added as options.
Other VS systems having the same architecture, including the VSS90, may exclude

the cache memory feature.

Figure 1-3 is a diagram of the VS100.

Main
Memory
[Jk S(\:/stem Bus
ontrolier
- o N
Mini-Diskette
Control Memory [
Bus
Central System Bus Adapter

Processor

#1

Legend:
16-bit path

s2-bitpath ZZ 777

64-bitpath

Workstations

Figure 1-3. VS100 Architecture

Bus
Adapter

This manual is updated by: Addendum 800-1100P0-04.01

CHAPTER 2
MACHINE ORGANIZATION

2.1 CENTRAL PROCESSOR

The Central Processor (CP) contains facilities for addressing main
memory, for fetching and storing information, for arithmetic and logical
processing of data, for sequencing instructions in the desired order, and for
initiating communication between memory and external devices.

2.1.1 General Registers

The processor can address information in 16 general registers. The
general registers may be used as index registers in address arithmetic and
indexing, and as accumulators in fixed-point arithmetic and logical
operations. The registers have a capacity of one word (32 bits). The general
registers are identified by numbers 0-15 and are specified by a 4-bit R field
in an instruction format. Some instructions provide for addressing multiple
general registers by having several R fields.

2.1.2 Floating-Point Registers

Four floating-point registers, specified as registers 0, 2, 4, and 6,
are provided. Each such register is 64 bits in 1length and can contain one
floating-point number. These registers are addressed by the floating-point
and decimal floating-point instructions only.

2.1.3 Control Registers

The control registers provide a means of maintaining and manipulating
control information that resides outside the Program Control Word (PCW).

Sixteen 32-bit registers (for the VS80: eight 32-bit registers) are
provided for control purposes. These registers are not part of addressable
storage. The instruction LOAD CONTROL (LCTL) provides a means of loading
control information from main memory into control registers, while STORE
CONTROL (STCTL) permits information to be transferred from control registers
to main memory. These instructions operate in a manner similar to LOAD
MULTIPLE and STORE MULTIPLE. Also, the JUMP TO SUBROUTINE ON CONDITION
INDIRECT (JSCI), RETURN ON CONDITION (RTC), SUPERVISOR CALL (SVC), and
SUPERVISOR CALL EXIT (SVCX) instructions modify control register 1. LCTL and
SVCX are privileged instructions.

This manual is updated by: Addendum 800-1100P0-04.01

At the time the registers are loaded, the information is not checked for
exceptions, such as addresses designating unavailable locations. The validity
of the information is checked, and the exceptions, if any, are indicated, at
the time the information is used. Control register allocations for the VS
systems are as follows:

VSs25,

vS100 vSs80 Allocation

CRO CRO High Range

CRI CRI Save Area Back Chain

CR2 CR2 System Stack Limit Word
CR3 CR3 Low Range

CR4 CR4 Modification Trap Address
CR5 CR5 Previous—Instruction Trap Address
CR6-11 Reserved

CR12-13 CR6 Time-of-Day Clock
CR14-15 CR7 Clock Comparator

Only the general structure of control registers is described here; a
definition of the meaning of the register positions appears with the
description of the facility with which the registers are associated.

Control register 1 is wupdated by the JSCI, RTC, SVC, and SVCX
instructions to maintain a protected back chain of program calls and
supervisor service entries (supervisor calls). Control register 2 is
associated with the stack handling facility and is referred to as the system
stack limit word. Control registers 0 and 3-5 are associated with the
debugging aids, and control registers 12-15 (for the VS80: control registers
6-7) are associated with the clock.

2.1.4 Translation RAM (T-RAM) -- VS25, VS100

A translation RAM (T-RAM) takes the place of LPTs for the VS25 and
VS100, permitting the use of longer virtual and physical address spaces and
enabling a more complex system of read and write protection. The T-RAM is a
section of local CP memory (RAM) up to 8K bytes in size consisting of a
halfword entry for each of the up to 4K pages of a potential 8M-byte virtual
address space. A definition of the meaning of the entries appears with the
description of address translation for the VS25 and VS100 in Subsection 4.3.3.

2.1.5 Local Page Tables (LPTs) —— VS80

There are three 1local page tables (LPTs) of one-byte entries, each
associated with a valid memory segment. All memory references involve the
translation of virtual memory addresses through use of one of these tables.
The LPT for segment O is 128 entries long. The LPTs for segments 1 and 2 are
each 256 entries 1long. A definition of the meaning of the entries appears
with the description of address translation for the VS80 in Subsection 4.3.3.

2-2

This manual is updated by: Addendum 800-1100P0-04.01

2.1.6 Local Page Frame Table

There is one local page frame table, which contains two bits per page
frame (2048 bytes on a 2048-byte boundary) of physical memory. Whenever some
location in a page frame is referenced by a machine instruction, the reference
bit of the corresponding local page frame table entry is set to 1. When this
reference involves modification of the memory location, the change bit in the
local page frame table entry is also set to 1. These entries are tested and
reset by an Operating System Assist instruction.

2.1.7 Arithmetic and Logical Unit —-- (ALU)

The arithmetic and logical unit (ALU) can process binary integers of
fixed length, decimal integers of variable length, and logical information of
either fixed or variable length. The ALU has a width of 16 bits for the VS25
and VS80, and a width of 32 bits for the VS100.

Arithmetic and 1logical operations performed by the CP fall into five
classes: fixed-point arithmetic, floating-point arithmetic, decimal
arithmetic, decimal floating-point arithmetic, and logical operations. These
classes differ in the data formats used, the registers involved, the
operations provided, and the way the field length is stated.

2.2 CLOCK

2.2.1 Time—of-Day Clock

The time-of-day clock provides a consistent measure of elapsed time
suitable for the indication of date and time. For the VS80, the cycle of the
clock is approximately 994 days at 50 Hz and 828 days at 60 Hz. For the VS25
and VS100, which use a pair of registers for a counter, the cycle of the clock
is meaninglessly large, in human terms.

The time-of-day clock for the VS25 and VS100 is a 64-bit binary counter
(for the VS80: a 32-bit binary counter). Time is measured by incrementing
the value of the clock, following the rules for unsigned fixed-point
arithmetic. The clock is incremented by adding 1 to the low-order bit
position at line frequency (1/50 or 1/60 second) for the VS80, split 1line
frequency (1/100 or 1/120 second) for the VS25, or 2.5M Hz for the VS100.

When the incrementing of the clock causes a carry to be propagated out
of bit position 0, the carry is ignored and counting continues from zero. The
program is not alerted, and no interruption condition is generated as a result
of the overflow. The clock runs while the machine is powered on, even when
the machine is in Control mode or wait state.

For the VS25 and VS100, the clock value resides in control registers 12
and 13 (for the VS80: in control register 6) and is set to =zero during a
power-—on. This value can be manipulated under program control by means of the
LOAD CONTROL and STORE CONTROL instructions.

This manual is updated by: Addendum 800-1100P0-04.01

2.2.2 Clock Comparator

The clock comparator provides a means of causing an interruption when
the time-of-day clock has passed a value specified by the program. The clock
comparator has the same format as the time-of-day clock.

The clock comparator value is compared with the value of the time-of-day
clock, each being regarded for the VS25 and VS100 as a 64-bit unsigned
number. Whenever the time—of-day clock value is greater than or equal to the
value of the clock comparator, a clock interruption is pending. The value of
the clock comparator resides in control registers 14 and 15 and is set to all
1s during power-on. An interruption request disappears if the value in
control registers 12 and 13 or control registers 14 and 15 1is changed such
that the value in control registers 12 and 13 is less than that in control
registers 14 and 15. (For the VS80: control register 6 holds the clock
value, and control register 7 holds the comparator value.) These values can
be manipulated under program control by means of the LOAD CONTROL and STORE
CONTROL instructions.

2.3 1/0 PROCESSORS (IOPs)

Input/output processors (IOPs) connect the CP and main memory with the
input/output (1/0) devices. IOPs relieve the CP of the burdem of
communicating directly with I/0 devices and permit data processing to proceed
concurrently with I/0 operations. I0Ps provide the 1logical capabilities
necessary to operate and control I/0 devices. IOPs decode the commands
fetched from main memory and interpret them for particular devices.

For the VS25, a single bus processor (BP) controlling several device
adapters (DAs) does the work of VS80 and VS100 IOPs. For the VS100,
intelligent bus adapters (BAs) provide an interface between the CP and IOPs.

2.4 MAIN MEMORY

Main memory for all VS systems consists of semiconductor random access
memory (RAM) with automatic with error correction circuitry. Memory is
automatically refreshed by hardware at intervals of 10 msec and therefore
cannot be maintained past system power-off. Requests for memory access by the
CP and other processors are handled on a priority system (whereby the CP has
lowest priority) and are satisfied on a cycle-stealing basis. Therefore,
instructions that fetch and subsequently store data do mnot necessarily use
consecutive memory cycles, because one or more intervening cycles may be
devoted to I/0 operations.

2.4.1 Information Formats

‘ VS systems transmit information between main memory and the CP in
logical units of eight bits or a multiple thereof. Each 8-bit unit of
information is called a byte, the basic building block of all formats. All
storage capacities are expressed in terms of the number of bytes provided.

2-4

This manual is updated by: Addendum 800-1100P0O-04.01

Bytes may be handled separately or grouped together in fields. The
address of any field or group of bytes is the address of its leftmost byte. A
word is a field of 4 consecutive bytes whose address is a multiple of 4. A
doubleword is a field of two consecutive words whose address is a multiple of

8, and a halfword is a field of two consecutive bytes whose address is a
multiple of 2.

In any instruction format or any fixed-length operand format, the bits
or bytes making up the format are consecutively numbered from left to right
starting with 0, and are indicated in the line under the format description.
Figure 2-1 is a diagram of these units of information.

Bytes O 1 2 3 4 5 6 7

halfword halfword halfword halfword

word word

doublevord

Figure 2-1. Sample Information Formats

2.4.2 Addressing

Byte locations in memory are numbered consecutively, starting with O3
each number is considered the address of the corresponding byte. A group of
bytes in memory is addressed by the leftmost byte of the group. The number of
bytes in the group is either implied or explicitly defined by the operation.
The VS addressing arrangement uses a 24-bit binary address to accommodate a
maximum of 16,777,216 byte addresses.

When only a part of the maximum storage capacity is available in a given
installation, the available storage is normally a contiguous range of physical
addresses starting at address 0. An addressing exception is recognized when
any part of an operand is located beyond the maximum available capacity of an
installation. The addressing exception is recognized when the data is used
and causes a program interruption.

Refer to Sections 4.2 and 4.3 of this manual for details of addressing
and address translation.

CHAPTER 3
DATA ORGANIZATION

3.1 INSTRUCTIONS-—CONVENTIONS OF DESCRIPTION

To indicate the 1left or right end of any field or word definition, the
following terminology and abbreviations are used throughout this manual:

Leftmost Portion Rightmost Portion

Most Significant Byte (MSB) Least Significant Byte (LSB)
High Order Low Order
Most Significant bit (MSb) Least Significant bit (LSb)

Each instruction consists of two major parts: an operation code, which
specifies the operation to be performed, and the designation of the operands
that participate.

3.1.1 Operation Code

In each format, the first instruction halfword consists of two parts.
The first byte contains the operation code (op code). The length and format
of an instruction are specified by the first two bits of the operation code.

Bit Positions Instruction Instruction

0 and 1 Length Format

00 Halfword RR

01 Two halfwords RX

10 Two halfwords RS, SI, S, RL, or RRL
11 Three or four halfwords SS or SSI

The second byte is used either as two 4-bit fields or as a single 8-bit
field. This byte can contain the following information:

4-bit operand register specification (R1, R2, or R3)
4~bit index register specification (X2)

4-bit mask (M1)

3-1

4-bit operand length specification (L1 or L2)
8-bit operand length specification (L)

8-bit byte of immediate data (I2)

4-bit stack vector specification (S).

In some instructions a 4-bit field or the whole second byte of the first
halfword is ignored.

The second, third, and fourth halfwords may vary in format.

3.1.2 Operands

The VS allows up to three operands, depending on the instruction
format. Operands can be grouped in three classes: operands located in
registers, immediate operands, and operands in main memory. Operands may be
either explicitly or implicitly designated.

Register operands can be located in general, floating-point, or control
registers, and are specified by identifying the register in a 4-bit field,
called the R field, in the instruction. For some instructions an operand is
located in an implicitly designated register.

Immediate operands are contained within the instruction, and the 8-bit
field containing the immediate operand is called the I field.

The length of operands in main memory may be either implied, specified
by a bit mask, or specified by a 4-bit or 8-bit length parameter, called the L
field, in the instruction. The addresses of operands in main memory are
specified by a format that uses the contents of a general or base register as
part of the address. The address in the general register is called the B
field and the additional displacement address (which may be 0) is the D
field. The X field denotes an address in an index register, which is added to
the base register address. A detailed explanation of the B, D, and X fields
is given in Subsection 4.2.1.

For purposes of describing the execution of instructions, operands are
designated as first, second, and third operands. In general, two operands
participate in an instruction execution, and the result replaces the first
operand. An exception is instructions with STORE in the name, where the
result replaces the second operand. Except for storing the final result, the
contents of all registers and memory locations participating in the addressing
or execution part of an operation remain unchanged.

3.1.3 Instruction Format

An instruction is one, two, three, or four halfwords in length and must
be located in main memory on an integral halfword boundary.

3-2

The nine basic instruction formats are denoted by the format codes RL,
RR, RRL, RX, RS, SI, S, S8, and SSI. The format codes express, in general
terms, the operation to be performed.

. RR - Register-to-register operation
. RL - Register-to-register (relative) operation
. RX - Register-and-indexed-storage operation

. RS - Register-and-storage operation

. RRL - Register-to-storage (relative) operation
. SI -~ Storage-and-immediate-operand operation
. S - Implied-operand-and-storage operation

. SS -~ Storage-to-storage operation

. S5I -~ Storage—and-immediate-operand operation

The following diagrams illustrate the representation of the
nine instruction formats in VS memory.

RR Format--One Halfword

0 78 1112 1516 19 20 31

(Programming Note: If D and B are omitted in RX format, R 1is used for D .)
2 2 1 2

RS Format--Two Halfwords

0 78 1112 1516 19 20 31

3-3

RRL Format——Two Halfwords

| | R M | R X | L |
| Op code |l 1or 1 | 3o0or 2| 2 |
| I | | I
0 7 8 11 12 15 16 31
SI Format—--Two Halfwords
| | I | B | D |
| Op code | 2 R 1 |
I | | | |
0 78 15 16 19 20 31
S Format--Two Halfwords
		B	D
Op code	=—=—————eew- I 1	1	
0 78 15 16 19 20 31			
SS Format——Three Halfwords			
	I B8 1 //pl B I/ / D		
Op code	LorLl/L2	1	- -1
			/ /
0 78 15 16 19 20 31 32 35 36 47

SS1 Format——Four Halfwords

I | L | L |
l Opcode | 1 | 1 | 2 |
I | l | |
0 78 1516 23 24 31 3

D | /B | /
1l - - 2] -

I /17
47 48 51 52

2

~ |~
(o]

|
1l
|

~ | ~
~ | ~
I~ | \

D |
I
l
63

o~ 1~

/
/
2 353

Table 3-1 shows how the data formats for the following instructions are
represented in VS memory. The relative addresses for a series of numbers are

given in order to illustrate boundary alignments of fixed-point and
floating-point data.

This manual is updated by: Addendum 800-1100P0-04.01

Table 3-1. Data Representation and Boundary Alignment

Data Decimal Hexadecimal Relative
Type Value Representation Address
Floating-Point +4.3 4144CCCCCCCCCCCD 000000
" -4,3 C144CcCCccceceeen 000008
" 4 .56E+5 456F540000000000 000010
" 4,56E~5 3C4C810DO5CCF38E 000018
Decimal Floating-Point +4.3 4143000000000000 000020
" " 4.3 C143000000000000 000028
" " 4.56E+5 4645600000000000 000030
" " 4.56E-5 3C45600000000000 000038
Fixed—-Point
Binary fullword +123 0000007B 000040
. -123 FFFFFF85 000044
Binary halfword 123 007B 000048
Decimal
Packed +123 123F 00004A
' =123 123D 00004C
Zoned +123 3132F3 00004E
" -123 3132Dp3 000051
External 123 313233 000054
" +123 2B313233 000057
" -123 2D313233 00005B
" 123+ 3132332B 00005F
" 123~ 3132332D 000063
Logical 'DATA' 44415441 000067

3.2 FIXED-POINT INSTRUCTIONS

The Dbinary fixed-point instructions perform binary arithmetic on
operands serving as addresses, index quantities, and counts, as well as on
fixed-point data. In general, both operands are to be considered unsigned and
24 bits long for address computations, or signed and 31 or 15 bits 1long for
arithmetic computations. One operand is always in one of the 16 general
registers; the other operand may be in main memory or in a general register.

The binary fixed-point instructions provide for loading, adding,
subtracting, comparing, multiplying, dividing, and storing, as well as for the
radix conversion and shifting of fixed-point operands.

The condition code is set as a result of all ADD, SUBTRACT, COMPARE, and
SHIFT operations.

3.2.1 Data Format

Binary fixed-point data in main membry occupies a 16-bit halfword or a
32-bit word. This data must be located on integral boundaries for these units

3-5

This manual is updated by: Addendum 800-1100P0-04.01

of information; that is, halfword or fullword operands must be addressed with
one or two low-order address bits set to 0, respectively.

Fixed-point numbers occupy a fixed-length format consisting of an
integer field. This format is shown in Figure 3-1. When held in one of the
general registers, a fixed-point quantity occupies all 32 bits of the
register. In register-to-register operations the same register may Dbe
specified for both operand locations.

MSb LSb

I
| integer
|
bits O 3

b | ——

Figure 3-1. Fixed-Point Fullword Data Format

3.2.2 Fixed—-Point Arithmetic

The basic arithmetic operands are the 32-bit fixed-point binary word and
the 16-bit fixed-point binary halfword.

Fixed-point arithmetic can be used both for integer operand arithmetic
and for address arithmetic. This combined usage provides economy and permits
the entire fixed-point instruction set and several logical operations to be
used in address computation. Thus, multiplication, shifting, calculation, and
logical manipulation of address components are possible.

Additions, subtractions, multiplications, and comparisons are performed
upon one operand in a register and another operand either in a register or in
memory. A word in a register may be shifted left or right. A pair of
conversion instructions—-—-CONVERT TO BINARY (CVB) and CONVERT TO DECIMAL
(CVD) ——provide for translation between decimal and binary number bases without
the use of tables. Multiple-register load and store instructions facilitate
subroutine switching.

In an unsigned fixed-point number, all bits may be considered to express
the absolute value of the number. Only the AL, SL, and CL instructions take
signed binary operands; all three require fullword operands.

A fixed-point number may also be considered a signed quantity, where the
leftmost bit represents the sign, followed by the 31-bit or 15-bit integer
field. Positive numbers are then represented in true binary notation with the
sign bit set to 0, and negative numbers in 2's—complement notation with a 1 in
the sign-bit position.

The 2's-complement representation of a negative number may be considered
the sum of the integer part of the field, taken as a positive number, and the
maximum negative number. The 2's complement of a number is obtained by
inverting each bit of the number and adding a 1 in the low-order bit
position. 2's-complement notation does not include a mnegative zero, so the
set of negative numbers is 1 larger than the set of positive numbers.

3-6

3.3 DECIMAL INSTRUCTIONS

Decimal instructions provide arithmetic, shifting, and editing
operations on decimal data.

3.3.1 Decimal Arithmetic

Decimal arithmetic lends itself to procedures that require few
computational steps between the source input and the output. This type of
processing is frequently found in commercial applications, particularly those
using problem—-oriented languages. Because of the limited number of arithmetic
operations performed on each item of data, radix conversion from decimal to
binary and back to decimal is not justified, and the use of registers for
intermediate results yields no advantage over storage—-to—storage processing.
Hence, decimal arithmetic is provided, and both operands and results are
located in memory. Decimal arithmetic includes addition, subtraction,
multiplication, division, and comparison.

Decimal arithmetic operates on data in the packed format. In this
format, two decimal digits are placed in each 8-bit byte. Each digit 1is
interpreted as an integer and is right-aligned in its 4-bit field. A decimal
number is kept in true notation with a sign in the 1least significant 4-bit
field of the string of bytes composing the number.

Processing takes place from right to 1left between main-memory
locations. All decimal arithmetic instructions use a two—address format.
Each address specifies the leftmost byte of an operand. Associated with this
address is a length field, indicating the number of additional bytes that the
operand extends beyond the first byte.

The decimal arithmetic instructions provide for adding, subtracting,
comparing, multiplying, and dividing, as well as for format conversion of
variable-length operands.

The condition code is set as a result of all decimal instructions except
MP and DP.

The sign of the result is determined by the rules of algebra. When an
operation (other than PACK AND ALIGN (PAL)) is completed without an overflow,
a zero sum result has a positive sign, but when high-order digits are 1lost
because of an overflow, a zero result may be either positive or negative, as
determined by what the sign of the correct result would have been. A decimal
instruction will set the condition code even if a decimal overflow exception
occurs.

3.3.2 Data Formats

Decimal operands reside in main memory only. They occupy fields that
may start at any byte address and are composed of from one to sixteen 8-bit
bytes.

Lengths of the two operands specified in an instruction need not be the
same. If necessary they are considered to be extended with Os to the left of
the most significant digits. Results never exceed the limits set by address
and length specification. Lost carries or lost digits from arithmetic
operations are signaled as decimal overflow exceptions.

3-7

Packed Decimal Number

In the packed format, numbers are represented as right—aligned true
integers, with a plus or minus sign in the rightmost four bit positions.

The decimal digits 0-9 are represented in the 4-bit binary-coded-decimal
form by 0000-1001. The codes 1010-1111 represent signs rather than digits, as
shown in Table 3-2. The preferred sign codes are generated by all decimal
arithmetic instructions.

Table 3-2. Bit Codes for Digits and Signs

Digit Code Preferred Sign Code Allowed Sign Code
0 0000 - 1101 - 1011

1 0001 + 1111 + all other codes
2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

All decimal arithmetic is performed on data in the packed format. In
the packed format, two decimal digits are adjacent in a byte, except for the
rightmost byte of the field. In the rightmost byte a sign 1is placed to the
right of the decimal digit. Both digits and a sign are encoded and occupy
four bits each.

Decimal operands and results are represented by 4-bit
binary-coded-decimal digits packed two to a byte. They appear in fields of
variable length and are accompanied by a sign in the rightmost four bits of
the least significant byte, as shown in Figure 3-2. Operand fields may be
located on any byte boundary, and may have a length of up to 31 digits and a
sign. Operands participating in an operation may have different lengths.
Packing of digits within a byte and of variable-length fields within memory
results in efficient use of memory, increased arithmetic performance, and an
improved rate of data transmission between memory and files.

e |
| | | | [| | |
ldigit ldigit |digit | digit |digit |digit ldigit
I l I

LSB
|
|

| | | | |

&

Figure 3-2. Packed Decimal Number Format

3-8

Zoned Decimal Number

A zoned decimal number is a right-—aligned integer with one digit code
per byte and the sign code in the four high-order bits of the 1low-order byte,
as shown in Figure 3-3. Zoned decimal numbers are converted to packed format
by the PACK instruction. The four high-order bits (zonme bits) of bytes other
than the low-order byte do not affect the resulting packed decimal number.

| ===v MSB-—-| - I
| I I I | I | I
I
I

|zone |digit| zone |digit | lzone ldigit

Figure 3-3. Zoned Decimal Number Format

External Decimal Number

Decimal numbers may also appear in an external format as a subset of the
8~-bit alphameric character set. External decimal format is diagrammed in
Figure 3-4. This representation is required for character—set-sensitive I/0
devices. An external format number carries its sign as an 8-bit ASCII
character that precedes or follows the ASCII number. The external format is
not used in decimal arithmetic operations. The PAL and PACK instructions are
provided to transform external data into packed data, and the ED, EDMK,
UNPACK, UNPAL, and UNPU instructions may be used to change data from packed to
external format.

====M§B—-~--		LSB		
ASCII	ASCII		ASCII I ASCII	
digit	digit	—————	digit	digit
I I				

Figure 3-4. External Decimal Number Format

The sign character may appear as the first or the last character in the
external format character string. The external format string for any field
that is to be converted to a packed format field cannot exceed 16 ASCII
characters.

The fields specified in decimal instructions either should not overlap
at all or should have coincident rightmost bytes. In ZERO AND ADD, the
destination field may also overlap to the right of the source field. Because
the code configurations for digits and sign are verified during arithmetic,
improperly overlapping fields are recognized as data exceptions.

The rules for overlapped fields are established for the case where
operands are fetched right to left from memory, eight bits at a time, just
before they are processed. Similarly, the results are placed in memory eight
bits at a time, as soon as they are generated.

3-9

3.4 FLOATING-POINT INSTRUCTIONS

The floating-point instruction set is used to perform calculations on
operands with a wide range of magnitudes. Floating-point operations yield
results scaled to preserve precision.

3.4.1 Floating-Point Arithmetic

A floating-point number consists of a signed exponent and a signed
fraction. The quantity expressed by this number is the product of the
fraction and the number 16 raised to the power of the exponent. The exponent
is expressed in excess—64 binary notation; the fraction is expressed as a
hexadecimal number having a radix point to the left of the high-order digit.

To avoid unnecessary storing and loading operations for results and
operands, four floating-point registers are provided. The floating-point
instruction set provides for loading, adding, subtracting, comparing,
multiplying, dividing, storing, and sign control, of both 1long and short
operands. Operations may be either register-to-~register or storage—to-
register.

Maximum precision is preserved in addition, subtraction, multiplication,
and division by producing normalized results. For addition, instructions are
also provided that generate unnormalized results. Normalized and unnormalized
operands may be used in any floating-point operation. Normalization is
discussed in Subsection 3.4.3.

The condition code is set as a result of all floating-point sign
control, add, subtract, and compare operations. Multiplication, division,
loading, and storing leave the code unchanged. The condition code can be used
for decision-making by subsequent branch-on-condition instructions. The
condition code can be set to reflect two types of results for floating-point
arithmetic. For most operations, the codes 0, 1, and 2 indicate,
respectively, that the result is 0, less than 0, or greater than O. A zero
result 1is indicated whenever the result fraction is 0, including a forced O.
Code 3 is never set by floating-point operations.

In comparisons, the states 0, 1, and 2 indicate, respectively, that the
first operand is equal, low, or high.

3.4.2 Data Format
Floating-point data appears in a fixed-length format that may be either
8-byte (long) or 4-byte (short), as pictured in Figure 3-5. Operands in

either format may be specified either in main storage or in floating-point
registers. The floating-point registers are numbered 0, 2, 4, and 6.

3-10

I I !/ I

| S | Characteristic | 14-digit Fraction |
1 I / / I
0 8 63
I | !/ |

| 8 | Characteristic | 6-digit Fraction |

L1 I /! / |

0 8 31

Figure 3-5. Long and Short Floating-Point Numbers

The first bit is the sign bit (S). The subsequent seven bit positions
are occupied by the characteristic. The fraction field has either 14 or 6
hexadecimal digits, for long or short floating-point numbers, respectively.

Short floating-point numbers occupy only the leftmost 32 bit positions
of a floating-point register. When a floating-point register is used as the
source of a short floating-point number, the rightmost 32 bit positions of the
register are ignored. When a floating-point register is wused as the
destination of a short floating-point number, the rightmost 32 bit positions
of the register remain unchanged.

The entire set of floating-point functions is available for both short
and long operands. These instructions generate a result that has the same
format as the sources, except that in the case of MULTIPLY, a long product is
produced from a short multiplier and short multiplicand. The LOAD ROUNDED
instruction provides for rounding from long to short format, while the LOAD
SHORT TO LONG instruction provides for expansion from short to long format.

Although final results have either 14 or 6 fraction digits, intermediate
results in ADD NORMALIZED, SUBTRACT, ADD UNNORMALIZED, COMPARE, HALVE, and
MULTIPLY may have one additional low-order digit. This low—-order digit, the
guard digit, increases the precision of the final result.

The fraction of a floating-point number 1is expressed in hexadecimal
digits. The radix point of the fraction is assumed to be immediately to the
left of the high-order fraction digit. To provide the proper magnitude for
the floating-point number, the fraction is considered to be multiplied by a
power of 1e. The characteristic, bits 1-7 of both 1long and short
floating-point formats, indicates this power. The bits within the
characteristic field can represent numbers from O through 127. To accommodate
large and small magnitudes, the characteristic is formed by adding 64 to the
actual exponent. The range of the exponent is thus -64 through +63. This
technique produces a characteristic in excess—64 notation.

Both positive and negative quantities have a true fraction, the

difference in sign being indicated by the sign bit. The number is positive or
negative accordingly as the sign bit is 0 or 1.

3-11

The allowed range of Magnitude (M) is 16%%-65 < M < (1-16%%-14) * 1663
for a long floating-point number, and 16%%-65 < M < (1-16%%—-6) * 16%%63 for a
short floating-point number; or approximately 5.4 * 10%%-79 < M < 7.2 * 10%%75
in both formats.

A number with a characteristic of 0, a fraction of 0, and a plus sign is
called a true 0. A true 0 may result from an arithmetic operation because of
the particular magnitude of the operands. A result is forced to be true O
when (1) an exponent underflow occurs and the exponent-underflow mask (PSW bit
38) is 0, (2) a result fraction of an addition or subtraction operation is O
and the significance mask (PSW bit 39) is 0, or (3) the operand of HALVE, one
or both operands of MULTIPLY, or the dividend in DIVIDE has a fraction of O.
When a program interruption due to exponent underflow occurs, a true O
fraction is not forced; instead, the fraction and sign remain correct and the
characteristic is too large by 128. When a program interruption due to lost
significance occurs, the fraction remains 0 and the sign and characteristic
remain correct. Whenever a result has a fraction of 0, the exponent overflow
and underflow exceptions do not cause a program interruption. When a divisor
has a fraction of 0, division is suppressed, a floating-point divide exception
exists, and a program interruption occurs. In addition and subtraction, an
operand with a fraction or characteristic of Q0 participates as a normal number.

The sign of a sum, difference, product, or quotient with a fraction of O
is positive.

3.4.3 Normalization

A quantity can be represented with the greatest precision by a
floating-point number when that number is normalized, that is, when the
nonzero fraction digits are shifted left as far as possible so that the
exponent is of the minimum possible magnitude. A normalized floating-point
number has a nonzero high-order hexadecimal fraction digit. If one or more
high-order fraction digits are 0, the number is said to be unnormalized. The
process of normalization consists of shifting the fraction 1left wuntil the
high-order hexadecimal digit is non-0 and reducing the characteristic by the
number of hexadecimal digits shifted. A fraction of 0 cannot be normalized
and its associated characteristic therefore remains unchanged when
normalization is called for.

Normalization usually takes place when the intermediate arithmetic
result is changed to the final result. This function 1is called
postnormalization. For multiplication and division, the operands are
normalized prior to the arithmetic process. This function 1is called
prenormalization.

Most floating-point operations are performed only with normalization; a
few are performed only without normalization. Addition may be specified
either way.

When an operation is performed without normalization, high-order Os in

the result fraction are not eliminated. The result may or may not be
normalized, depending upon the original operands.

3-12

This manual is updated by: Addendum 800-1100P0-04.01

In both normalized and wunnormalized operations, the initial operands
need not be in normalized form. Also, intermediate fraction results are
shifted right when an overflow occurs, and the intermediate fraction result is
truncated to the final result length after the shifting, if any.

Programming Note: Since normalization applies to hexadecimal digits, up to
three high-order bits of a normalized fraction may be Os.

3.4.4 Floating-Point Instruction Formats

Floating—point instructions use the RR and RX formats, as described in
Subsection 3.1.3. In these formats, Rl designates a floating-point register.
The contents of this register are called the first operand. The second
operand location is defined differently for the two formats.,

In the RR format, the R2 field specifies a floating-point register
containing the second operand. The same register may be specified for the
first and second operands. The register specified by the Rl and R2 fields
should be 0, 2, 4, or 6. Otherwise, a specification exception 1is recognized,
and a program interruption occurs.

In the RX format, the contents of the general register specified by X2
and B2 are added to the contents of the D2 field to form an address
designating the 1location of the second operand. A value of zero in an X2 or
B2 field indicates the absence of the corresponding address component.

The storage address of the second operand should be on a fullword
boundary. Otherwise a specification exception 1is recognized, causing a
program interruption.

Results replace the first operand, except for storing operations, where
they replace the second operand. The contents of all other floating-point or
general registers and storage locations participating in the addressing or
execution part of an operation remain unchanged.

The floating-point instructions are the only instructions that use the
floating-point registers.

3.4.5 Decimal Floating-Point Instructions

Decimal floating-point instructions perform calculations on decimal data
with a wide range of magnitudes.

Decimal Floating-Point Arithmetic

Decimal floating—-point arithmetic combines certain features of packed
decimal arithmetic and true (hexadecimal) floating-point arithmetic. Like
packed decimal numbers, decimal floating-point numbers appear in BCD format
rather than the hexadecimal format of true floating-point numbers. Like
hexadecimal floating-point numbers, decimal floating-point numbers are
represented by sign, characteristic, and mantissa values, and undergo
arithmetic manipulations analogous to those for hexadecimal floating-point

3-12.1

This manual is updated by: Addendum 800-1100P0-04.01

numbers. Therefore, decimal floating—point arithmetic can operate on numbers
with a wide range of magnitudes and yield vresults scaled to preserve
precision, without requiring conversion between decimal and hexadecimal
representations.

The format of decimal floating-point numbers is as follows:

(. I !/ |
ISl Characteristic | 14-digit decimal Fraction |
L | /1 |
bits 01 8 63

Figure 3-5.1. Decimal Floating-Point Number Format

A decimal floating-point number consists of a sign bit (S), a binary
exponent (characteristic), and a decimal mantissa (fraction). The fraction
consists of decimal digits (0-9) packed two to a byte, with the radix point of
the fraction assumed to fall immediately to the left of the high—-order
fraction digit. The quantity expressed by this number is the signed product
of the fraction and the number 10 raised to the power of the characteristic.
The characteristic 1is expressed in excess—64 binary notation and ranges from
-64 to +63.

Decimal floating-point arthmetic may use the four 8-byte floating—point
registers for data manipulations. Decimal floating-point instructions provide
both normalized RR and normalized RX formats for arithmetic operations——i.e.,
for addition (AQR and AQ), subtraction (SQR and SQ), multiplication (MQR and
MQ), and division (DQR and DQ). Instructions in RX format for conversion
between packed decimal and decimal floating-point numbers are CVP and CVQ.
Load, store, and compare operations for decimal floating-point numbers employ
the same instructions used for hexadecimal floating-point numbers.

Invalid digits cause data exceptions in all arithmetic and conversion
instructions; data exceptions cause the instruction to be suppressed and leave
the result unchanged. Invalid digits are not detected in load, store, and
compare instructions.

3.5 LOGICAL INSTRUCTIONS

Logical information is handled as fixed- or variable-length data. It is
subject to such operations as comparison, translation, editing, bit testing,
and bit setting.

3.5.1 Fixed-Length Logical Data

When used as a fixed-length operand, logical information can consist of
from one to four bytes and is processed in the general registers. Figure 3-6
shows the structure of fixed-length logical operands.

3-13

This manual is updated by: Addendum 800-1100P0-04.01

| | A [[
| logical | logical | | logical |
| I |7/ | I
bits 0 8 31

Figure 3-6. Fixed-Length Logical Operand (one to four bytes)

3.5.2 Variable-Length Logical Data

A large portion of logical information consists of alphabetic or numeric
character codes, called alphanumeric data, and is used for communication with
character-set—sensitive I/0 devices. This information is in variable—field-
length format and can be up to 256 bytes long. It is processed on a storage-—
to-storage basis, left to right, one byte at a time. Figure 3-7 shows the
structure of variable-length logical operands.

| I Y I !

|character|character| | characterl|
| | | 7/ | |
Bytes O 1 256

Figure 3-7. Variable-Length Logical Operand (up to 256 bytes)

The system can handle any 8-bit character set, although certain
restrictions are assumed in decimal arithmetic and editing operations.
However, all character—set-sensitive 1I/0 equipment will assume the USA
Standard Code for Information Interchange (USASCII) extended to eight bits,
with the parity bit always set to O internally. In this manual the character
set 1is referred to as USASCII-8 or simply ASCII. The numbering convention for
bit positions within a character or byte is as follows:

Bit positions 01 2 3 45 6 7
USASCII-8 87654321

Graphics are not defined for all 256 8-bit codes. When it is desirable
to represent all possible bit patterns, a hexadecimal representation may be
used instead of the 8-bit code. Hexadecimal representation uses one graphic
for a 4-bit code, and therefore, two graphics for an 8-bit byte. The graphics
0-9 are used for codes 0000-1001; the graphics A-F are used for codes

1010-1111.

3.6 LINKED LIST INSTRUCTIONS

The instructions ENQ, ENSK, DEQ, and DESK are provided to handle lists
of blocks connected by pointers. Two kinds of 1linked 1lists are supported:
first-in first-out (FIF0) 1lists, and last-in first-out (LIFQ) lists. The
instructions provide the means to add to and delete from the lists, and to
determine whether the lists are empty or not.

3-14

3.6.1 Structure of LIFQ Lists

The LIFO header consists of an aligned word containing either a null
pointer (0s) or the address of the first block in the list. This address, or
pointer, is in the low-order three bytes of the word. Each block in the list
also contains either a null pointer or the address of the start of the next
block in the list. Figure 3-8 is a diagram of such a list. The pointers in
the blocks are all at a displacement into the block determined by the ENSK or
DESK instruction's displacement field.

First Block Second Block Last Block
|Head | ===-| | | | | | -
|Ptr | | | /| | | 7 |
/ /1 | | |
Next Ptr|--- Next Ptr|-—— | | | O |
I e o o | |
| | | | | | | |

Figure 3-8. LIFO List

3.6.2 Structure of FIFQ Lists

The FIFO list, pictured in Figure 3-9, consists of head and tail
pointers 1in consecutive words, doubleword aligned, and the chain of blocks
addressed by the head and tail pointers. If the list is empty, the head and
tail pointers are null (0). If the 1list is not empty, the head pointer
addresses the start of the first block in the 1list, and the tail pointer
addresses the start of the last block. If there is only one block, the head
and tail pointers are the same. In the blocks the pointers will be exactly
the same as for the LIFO list.

First Block Second Block Last Block

[I
|Head | ——-| | -] | I e | I
{Ptr | | | / | | | 17 /71 |
|Taill | I/ /1 | | |
|[Ptr |-— |Next Ptr|--- Next Ptr|--- | I | 0 |
I | | |
| | |

Figure 3-9. FIFO List

3-15

3.7 SEMAPHORE MANIPULATION INSTRUCTIONS

The Decrement and Inspect Semaphore (DSEM) and Increment and Inspect
Semaphore (ISEM) instructions operate on a unique doubleword data type, the
semaphore, consisting of linked list head and tail pointers and a 1l-byte count
field. The semaphore data type is illustrated in Figure 3-10. The semaphore
must be aligned on a doubleword boundary. These pointers contain addresses of
a FIFO list, and are manipulated exactly as for the FIFO list instructions.

These instructions may be used to control sharing of a system resource
(e.g., processor, memory, or I/O devices). The DSEM instruction is issued
when a unit of the resource is to be requested, and the ISEM instruction is
issued when a unit of the resource is to be released. The conditional
branching effected contingent on the contents of the count field allows the
program to prevent the allocation of more units of the resource than are
specified by the initial positive value of this field. For details of
instruction execution, refer to the particular instruction descriptions.

| | !/ |
| Semaphore| |
| count | Head pointer | unused
| I /1 |
0 8 32 40 63

Figure 3-10. Semaphore

3.8 STACK-ORIENTED INSTRUCTIONS

The stack-oriented feature consists of the BALS, BCS, SVC, SVCX, JSCI,
RTC, PUSH, PUSHM, PUSHC, PUSHN, POP, POPH, POPM, POPC, and POPN instructions,
which operate on a pushdown list in descending memory locations. This list is
addressed through two address words (stack pointer and stack limit word, in
that order) that may be either in general register 15 and control register 2
(which constitute the system stack vector) or in two consecutive general
registers (the user stack vector). If the S1 (or S2 for BCS) field of one of
these instructions is 0, the system stack vector is used. Otherwise the S1
(or S2 for BCS) field addresses the general register containing the stack
limit. The previous register will be the stack pointer.

The stack 1limit word addresses the lowest byte location into which the
stack may extend as it grows into successively lower addressed locations. The
stack pointer addresses the current stack top, i.e., the lowest byte location
that contains stacked information. Note that the stack pointer of the system
stack vector is in general register 15. The value in the stack pointer
decreases as items are placed on a stack.

Items, including character strings, are placed on stacks in word-aligned
locations. The stack pointer must address a fullword boundary (i.e., have two
low-order zero bits) before any stack-oriented instruction is processed, or a
specification error will result and the instruction will be suppressed. Thus,
registers may dependably be loaded from stacks by L, LH, and LM instructions.
They may also be loaded by POP, POPM, and ICM instructions.

3-16

When bytes are placed on a stack by the PUSHN or PUSHC instructions,
sufficient bytes are skipped (unmodified) before pushing any bytes so that the
stack pointer addresses a fullword boundary when the instruction is
completed. Thus zero, one, two, or three bytes may be skipped. When bytes
are removed from the stack by the POPN or POPC instructions, sufficient
additional bytes are popped and discarded (as for POPN) so that the stack
pointer addresses a fullword boundary when the instruction is completed.

The previous contents of the high-order byte of words in the stack
vector are irrelevant to all stack-oriented instructions. The high-order byte
of the stack pointer will be set to 0 whenever this word is modified by one of
these instructions. The stack limit word is unchanged by these instructions.

3-17

This manual is updated by: Addendum 800-1100P0-04.01

CHAPTER 4
INSTRUCTION EXECUTION

4.1 PROGRAM CONTROL WORD

The Program Control Word (PCW), eight bytes long, contains the
information required for proper program execution. It includes status and
control information, interruption codes, and the instruction address. Uses of
the PCW are detailed in Chapter 5. 1In general, the PCW is used to control
instruction sequencing and to indicate the status of the system in relation to
the program currently being executed.

To execute a sequence of instructions, the CP takes the address of an
instruction from the PCW. It executes that instruction and increments the
PCW's instruction address by the length of the instruction. It then takes the
new instruction address from the PCW. The process continues until an
interruption or a HALT I/0 command is received.

The active or controlling PCW is called the current PCW. Through
storage of the current PCW, the status of the CP can be preserved for
subsequent inspection. Through loading of a new PCW or part of a PCW, the
state of the CP can be changed. The PCW is made up of a l-byte interruption
code (discussed in Chapter 5), a 3-byte instruction address, a 2-byte status
field, and a 1-byte program mask field, with one byte reserved for later
options. The PCW for a program can be inspected through Debug mode or by
doing a program dump. Figure 4-1 shows the PCW format.

This manual is updated by: Addendum 800-1100P0-04.01

| Interruption | Current instruction address
| code I
0 8 31
l VAV 2 U L R R R R B N VO
wic ip |//1//1T IT IM IB |ID |E IS |EMIBTI////
I WAV YA T T N N e 27
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Status Field
\F U U U W2 7277077717711071711071171117171171
cc |p IDOIRUISGI/////1/11111111111111110107111111
o | V |\ \//0/ 0 riiiriiiiiiiririlididl
48 49 50 51 52 53 54 55 56 63
Program Mask Field
Figure 4-1, PCW Format
Following is a more detailed explanation of the function of each bit in
the PCW.
PCW Bits Mnemonic Function
0-7 Interruption code
8-31 Current instruction address

Status Field
(system mask)

32

33

34

W Wait state
Operating state

o
nH

1 = Wait state
C Control mode
0 = Normal operating mode
1 = Control mode
P Memory protection violation and

privileged instruction trap

0 = Do not trap on memory protection
violation or privileged
instruction

1 = Trap on memory protection violation
or privileged Instruction

4-2

PCW Bits

37

38

39

Status Field

40

41

42

43

44
45
46-47

48-49

Mnemonic

Function

I

EM

BT

cC

I1/0 interruption mask
I/0 interruptions disabled
1/0 interruptions enabled

-
[/

Clock interruption mask
0 = Clock interruptions disabled
1 = Clock interruptions enabled

Machine check interruption mask
0 = Machine check interruptions
disabled
1 = Machine check interruptions
enabled

PCW single address compare trap
0 = No PCW single address compare
trap in effect
1 = Trap on PCW single address
compare equal

Single byte modification trap
0 = No single byte modification
trap in effect
1 = Trap on unequal compare with byte
at specified byte

PCW range trap
0 = No PCW range trap in effect
1 = Trap on unequal compare with
byte at specified PCW range

Single step trap

No step exception

Trap after execution of next
instruction

= O
W

Extended modification trap
Branch-Taken trap
Reserved

Condition code

4-3

PCW Bits Mnemonic Function

Program Mask Field

50 FPO Fixed-Point overflow mask
0 = Do not interrupt on overflow
1 = Overflow will cause
interruption

51 DO Decimal overflow mask

Do not interrupt on overflow

Overflow will cause
interruption

- O

52 EU Exponent underflow mask
(floating-point instructions)

Do not interrupt on underflow

Underflow will cause
interruption

-
nn

53 SG Significance mask (floating-
point instructions)
0= Do not interrupt on overflow
1= Overflow will cause

interruption
54-55 Reserved
Reserved Byte
56-63 Reserved

4.1.1 Condition Codes

The condition code is a 2-bit field in the PCW that can be tested by
many of the instructions. Once the code is set, it is changed only by certain
instructions, such as ADD, COMPARE, SET PROGRAM MASK, arid LOAD PCW. The
meanings of the condition codes for each instruction are 1listed under that
instruction in Chapter 7.

4.2 ADDRESSING

4.2.1 Base-Displacement Address Generation

Base—-displacement, relative, and direct address generation are all
available, as described below.

For addressing purposes, operands can be grouped in three classes:
explicitly addressed operands in main memory, immediate operands placed as
part of the instruction stream in main memory, and operands located in
registers.

This manual is updated by: Addendum 800-1100P0-04.01

To permit the ready relocation of program segments and to provide for
the flexible specification of input, output, and working areas, all
instructions referring to main memory can employ a full address.

The address used to refer to main memory is generated from the
following three binary numbers:

. Base Address (B) is a 24-bit number contained in a general
register specified by the program in the B field of the
instruction. The B field is 1included in every address
specification. The base address can be used as a means of static
relocation of programs and data. In array calculations it can
specify the location of an array, and in record processing it can
identify the record. The base address provides for addressing
all of main memory. The base address may also be used for
indexing purposes.

. Index (X) is a 24-bit number contained in a general register
specified by the program in the X field of the instruction. It
is included only in the address specified in the RX instruction
format. The RX format instructions permit double indexing, i.e.,
the index can be used to provide the address of an element within
an array.

. Displacement (D) or offset is a 12-bit number contained in the
instruction format. It is included in every address computation.
The displacement provides for relative addressing of up to 4095
bytes beyond the element or base address. In array calculations
the displacement can be used to specify one of many items
associated with an element. In processing records, the
displacement can be used to identify items within a record.

In forming the address, the base address and index are treated as
unsigned 24-bit binary integers. The displacement is similarly treated as
an unsigned 12-bit binary integer. The three are added as 24-bit binary
numbers, ignoring overflow. Since every address includes a base, the sum
is always 24 bits long.

The program may show a value of zero in the base address, index, or
displacement field. A zero indicates the absence of the corresponding
address component. A base or index of zero implies that a value of zero is
to be used in forming the address, and does not refer to the contents of
general register 0. Thus, the use of register 0 as a base register
necessarily makes a program unrelocatable. A displacement of =zero has no
special significance. Initialization, modification, and testing of base
addresses and indexes can be carried out by fixed-point instructions, or by
BRANCH AND LINK, BRANCH ON COUNT, BRANCH ON INDEX HIGH, and BRANCH ON INDEX
LOW OR EQUAL instructions.

This manual is updated by: Addendum 800-1100P0-04.01

As an aid in describing the logic of the instruction format, examples of
two instructions and their related instruction formats follow.

RR Format: IR 7,9

LoAD (18)	7
0 8 1

9

l
l
I
2 15

Execution of the LOAD instruction copies the contents of general register 9 to
general register 7.

RX Format: ST 3,TOTAL

I I !
| STORE (50) | 3 |
l | l
0 8 1

10 14 300

b Jomm e -

I I
| |
| I ,
2 16 20 3
Execution of the STORE instruction stores the contents of general register 3
at a main memory 1location addressed by the sum of 300 and the contents of

general registers 14 and 10, with the data name TOTAL.

4,2,.2 Relative Address Generation

For relative addressing instruction formats (RL and RRL), a base
register is unnecessary. The current instruction address is an implied base
address, and a relative offset is added to it to form the effective address.
Use of this format is limited to five branch instructions, RLA, and RPUSHA.

The address used to refer to main memory is generated from the following
three binary numbers:

. Current instruction address is the implied base address. So if, for
example, both X and L values (see below) are =zero, then the
instruction branches to itself.

. Index (X), if specified in the instruction, is a 24-bit number
contained in a general register specified by the program in the X
field of the instruction.

. Relative Offset (L) is extended from the number of bits in the
instruction to a 24-bit number.

In forming the address, these three numbers are added as unsigned 24-bit
binary integers, ignoring overflow.

Otherwise, the rules for relative address generation are the same as the
rules for base-displacement address generation.

This manual is updated by: Addendum 800-1100P0-04.01

4.2.3 Direct Address Generation

Addresses 0—4095 can be generated without a base address or index. This
property is important when the PCW and general register contents must be
preserved and restored during program switching. These addresses further
include all reserved addresses used by the system for fixed purposes, such as
old PCWs, new PCWs, and IOSW and IOCA locations.

4.3 ADDRESS TRANSLATION

Address translation is the process of converting virtual addresses,
referring to a user's virtual address space, into physical addresses,
referring to main memory locations. This conversion is accomplished without
the user's knowledge, by a combination of hardware and operating system action.

4.3.1 Physical/Virtual Address Space

Main memory for all VS machines consists of byte—addressable random
access memory (RAM). It is spanned by a 24-bit address, allowing for up to
16M bytes of addressable storage (i.e., 2%%24 = 16M). Main memory addresses
consist of a 13-bit page frame number and an 11-bit byte index to locations
within the page, as illustrated in Figure 4-2, below. The range of main
memory addresses depends upon the amount of physical memory configured into
the installation, and currently varies from 256K bytes to 8M bytes with
different processors of the VS family. (Some VS80 configurations use 128K
bytes of memory.) For the VS25 and VS80, byte—aligned write operations of 1
or 2 bytes and halfword—aligned read operations of 2 bytes are supported. For
the V8100, byte—aligned write operations of 1, 2, 4, or 8 bytes are supported,
along with doubleword—aligned read operations of 8 bytes only.

Main memory, located on semiconductor chips in the CP cabinet, is
divided logically into page frames of 2K bytes, each aligned on a 2K-byte
boundary and containing exactly one page of information.

I
| Page frame number |
| |

bits O 1

Byte index

W [=

3 2

Figure 4-2. Physical Address Format

4-7

This manual is updated by: Addendum 800-1100P0-04.01

Virtual memory, located in disk storage, is divided logically into pages
and segments. Virtual memory addresses consist of a 13-bit virtual page index
and an 11-bit byte index to locations within the page, as illustrated in
Figure 4-3, below. Virtual pages also are 2K bytes in size, beginning on a
2K-byte boundary; physically, each page occupies one sector of a disk
platter. Segments are blocks of pages beginning on a 1M-byte boundary.
Segment 0O 1is 256K bytes in size for the VS80, and 1M bytes for VS25 and VS100
systems; segments 1 and 2 are each up to 512K bytes for the VS80, and up to 1M
bytes for the VS25 and VS100. Pages of virtual memory are copied as needed
into available page frames of main memory, as discussed in Subsection 4.3.2.

I |
rtual page number | Byte index !
| I
bits O 13 23

<
=

Figure 4-3., Virtual Address Format

Bits 0-3 of Figure 4-3 are the segment index of the virtual address.

4,3.2 Overview of Address Translation

All VS systems provide many users simultaneously with a virtual address
space for instructions and data that is larger than the amount of memory
physically available to the system; in fact, the initials "VS" stand for
"Wirtual Storage.' Most of this virtual address space is located on disk.

Because instructions and data must be present in main memory (i.e.,
physical memory) while being processed, they are copied from disk into main
memory as needed. The process of copying information from virtual memory into
main memory is called paging. Paging is accomplished in units of 2K bytes, or
one page, by a dedicated operating system task called the pager.

Before a program instruction can be executed, a conversion must be
performed on the virtual addresses specified within it. The process of
converting virtual addresses into physical main memory addresses is called
address translation. A combination of hardware and operating system action
translates each virtual address as it is encountered during program execution.

Because the programs of many users exist in physical memory
simultaneously although only one of these can be processed at a time, a means
of working for short "time slices" successively on different programs is
implemented in the operating system. Time slices give the effect of
simultaneous action on a number of programs.

This manual is updated by: Addendum 800-1100P0-04.01

The process of preparing conditions for the CP to work first on one
program, then another, is called context switching. Context switching also is
accomplished by a combination of hardware and operating system action. As a
part of context switching, the translation of one user's virtual address space
is discontinued and that of another user's is begun.

4.3.3 Details of Address Translation

Main Memory Page Tables

An essential part of the address translation mechanism is a task's page
table, a section of main memory that defines the mapping of each task's
virtual address space to main memory page frames. The format of page table
entries is illustrated in Figure 4-4, below.

I I |
IFIRIW| Page frame number |
|_Ipipt |
bits 0123 15

Figure 4-4. Main Memory Page Table Entry Format

Each halfword entry of the page table corresponds to a virtual page
address. If the page exists in main memory, the fault bit (F) is equal to O
and bits 3-15 are its page frame number. If not, F=1 and the rest of the
entry is not examined.

Bits 1 and 2 (RP and WP) indicate whether read and write protection,
respectively, are in effect for the page. Together, these two bits define
four protection classes and two protection states, as follows:

RP WP Meanin

0 0 Unprotected

0 1 No write allowed in user state

1 0 No read, write, or execute allowed in user
state

1 1 No write allowed in system state or user
state

Although this scheme allows protection to vary from one page to another,
pages are currently given the same protection for an entire segment.

This manual is updated by: Addendum 800-1100P0-04.01

The first step of address translation is to find out whether the main
memory page table contains a page frame number for the virtual address. If
so, the CP concatenates this 13-bit number with the 11-bit virtual byte index
(offset) to form a 24-bit physical address, as illustrated in Figure 4-6,
below; it then uses this physical address to access the data in memory. If
not, the CP signals the operating system (i.e., the pager) that a page fault
has occurred: the pager copies the virtual page from disk into an available
page frame and records the number of the selected page frame in the task's
page table. The task can then be dispatched again.

Local Page Table (T-RAM)

To speed up address translation, a subset of the currently executing
task's main memory page table is held in local CP memory and is checked first
during translations. Most instances of address traanslation are accomplished
by this translation RAM (T-RAM), a CP 1local page table of 4K entries
representing 4K*2K or 8M bytes of virtual address space.

At the start of each user's time slice, the fault bit of each T-RAM
entry is set to 1, indicating that they do not hold page frame numbers. Then,
as pages are referenced by the task, page frame numbers found in the main
memory page table are also recorded in the T-RAM, and subsequent references to
these pages during the same time slice are satisfied from the T-RAM in 720
nanoseconds rather than the 20 microseconds (times estimated for the VS25)
required for a main memory page table access. (For the VS80, a local page
table for each segment of a user's address space contains a one-byte page
frame number for each page currently residing in main memory. VS80 local page
tables are loaded at the start of each user's time slice by privileged
assembler instructions LPTO, LPT1, and LPT2.)

Segment Control Registers (SCRs)

The address of a task's main memory page table for a segment is loaded
into the privileged segment control register (SCR) for the segment at the
beginning of the task's time slice. SCR format is illustrated in Figure 4-5,
below. Address translation requires a prior look-up of the page table address
held in the SCR indicated by the segment portion of the faulting virtual
address, i.e., by bits 0-3 of Figure 4-3, above.

NOTE

SCRs 0-7 each control a segment having a maximum size of 1M
bytes of virtual address space (i.e., having 512 entries in
its page table). Therefore, the 8 SCRs support a maximum
contiguous address space of 8M bytes.

4-10

This manual is updated by: Addendum 800-1100P0-04.01

The appropriate SCRs for each task contain several ©pieces of
information, arranged in the following format:

M| Length-1| Page table address/8(V
) P
bits 01 10 30 31

Figure 4-5. Segment Control Register (SCR) Entry Format

Bit 0, the M bit, indicates whether monitoring is in effect for the
segment. When it is in effect (i.e., when M=1), each page table entry 1loaded
into the T-RAM from the main memory page table pointed to by the SCR is also
listed in the monitor area to facilitate the eventual clearing of the T-RAM.
Refer to Subsection 4.3.4, below, for a discussion of the monitor area.

Bits 1-9 represent the length, minus 1, of the page table. Therefore, a
full page table of 512 halfword entries, corresponding to a fully utilized
segment or vregion of 512 2K-byte pages, would have bits 1-9 all set to 1 in
its SCR.

Bits 10-30 of Figure 4-5 represent the page table address divided by 8,
i.e., lacking three low—order Os (because each page table begins on at least a
doubleword boundary). Restoring these 0s gives a full 24-bit address, which
may be either a virtual or a physical address accordingly as bit 31, the VP
bit, is 0 or 1. If it is 1, the address of the appropriate page table entry
is just the page table address reported in bits 10-30, plus twice the virtual
page index (reported in bits 4-12 of Figure 4-3, above). That is, the page
table contains a halfword entry for each page represented.

If the VP bit of the SCR is 0, then the page table address reported in
bits 10-30 of the SCR is itself a virtual address and must be translated using
a second SCR. This second SCR must contain a physical address for the page
table. (If it does not, an SCR recursion exception is noted; refer to
Subsection 5.8.2, below, for details.) Whether the physical address ¢f the

page table is obtained using one or two SCRs, the result is the same: the
address of the appropriate page table entry is calculated, and the entry is
forwarded to the CP so it can continue executing the user program. The entry

is also written into the T-RAM, so that subsequent references to the page can
be satisfied more quickly.

SCRs are 1loaded and stored using the privileged LSCTL and STSCTL
instructions. Refer also to the descriptions of these instructions in Chapter
7 of this manual.

Figure 4-6, below, is an illustration of the address translation process.

4-11

This manual is updated by: Addendum 800-1100P0-04.01

Virtual Address

| Segment | Page index | Byte index |
I number | o |
I
|
|
\'4 SCR
| Page table | |
| physical | Page table |
| address | length I

I
I
I
|
I
I
I
| |
| + (page index)*2 |
I I
V_Page Table Entry |
|
I
|
|
|
I
A

| | |
| | Page frame number |
I I I
I
I
|
v Physical Address
I | |
| Page frame number I Byte index I

Figure 4-6. Virtual-to-Physical Address Translation

4.3.4 T-RAM Monitor Area

The monitor area makes possible the efficient clearing of T-RAM
entries. The monitor is an area of local CP memory recording the virtual page
numbers of pages loaded into main memory during the current time slice; only
the corresponding T-RAM entries need be cleared for the start of a new time
slice. For further discussion of the T-RAM monitor area and its use during
address translation, refer to the description of the RRCB instruction in
Chapter 7 of this manual.

4.3.5 Reference and Change Table

The reference and change table (RCT) makes possible the efficient
replacement of old memory pages with new pages read in from disk. The RCT is
an area of local CP memory containing 8K entries of 2 bits each. These are a
reference bit and a change bit for each of the up to 8K addressable pages of
main memory. When some location in a page frame is referenced by a user
program, the reference bit for the page frame is set to 1; when the location
is also modified, the change bit is also set to 1. The system paging task
uses the reference and change bits along with an aging count in deciding which
virtual pages to overwrite with new ones during paging operations. For
details of RCT use, refer to the description of the RRCB instruction in
Chapter 7 of this manual.

4-12

This manual is updated by: Addendum 800-1100P0-04.01

4.4 SEQUENTTAL INSTRUCTION EXECUTION

Normally, the operation of the CP is controlled by instructions taken in
sequence. An instruction is fetched from a location specified by the
instruction address in the current PCW. The instruction address is then
increased by the number of bytes in the fetched instruction to address the
next instruction in sequence. The instruction is then executed and the same
steps are repeated using the new value of the instruction address. A change
from sequential operation may be caused by branching, status switching,
interruptions, or manual intervention.

4.5 BRANCHING

The normal sequential execution of instructions is changed when
reference 1is made to a subroutine, when a 2-way choice is encountered, or when
a section of coding, such as a loop, is to be repeated. All these tasks can
be accomplished with branching instructions. Provision is made for subroutine
linkage, permitting not only the introduction of a new instruction address but
also the preservation of the return address.

Decision—making is generally and symmetrically provided by the BRANCH ON
CONDITION instruction. This instruction inspects a 2-bit condition code that
reflects the result of a majority of the arithmetic, 1logical, and I/O
operations. Each of these operations can set the code to any one of four
states, and the conditional branch can specify any selection of these four
states as the criterion for branching. For example, the condition code
reflects such conditions as nonzero; first operand high, equal, or low;
overflow; I/O device busy; zero; etc. Once set, the condition code remains
unchanged until modified by an instruction that sets it differently.

Loop control can be performed by the conditional branch when it tests
the outcome of address arithmetic and counting operations. For some especially
frequent combinations of arithmetic and tests, the instructions BRANCH ON
COUNT, BRANCH ON INDEX HIGH, and BRANCH ON INDEX LOW OR EQUAL are provided.
These branches are specialized to increase performance for these tasks.

4.5.1 Instruction Formats

Branching instructions use the RR, RX, RS, RL, and RRL formats. In
these formats Rl specifies the address of a general register. In BRANCH ON
CONDITION a mask field (M1) identifies the bit values of the condition code.
The branch address is defined differently for the three formats.

In the RR format, the R2 field specifies the address of a general
register containing the branch address, except when R2 is 0, which indicates
no branching. The same register may be specified by R1 and R2.

In the RX format, the contents of the general registers specified by the
X2 and B2 fields are added to the D2 field to form the branch address.

4-13

This manual is updated by: Addendum 800-1100P0-04.01

In the RS format, the contents of the general register specified by the
B2 field are added to the contents of the D2 field to form the branch
address. The R3 field in this format specifies the 1location of the second
operand and implies the location of the third operand. The first operand is
specified by the R1 field.

Programming Note: The third operand location is always odd. Thus, in
instructions such as BXLE and BXH, if the R3 field specifies an even register,
the third operand is obtained from the next higher addressed register. If the
R3 field specifies an odd register, the third operand location coincides with
the second operand location.

In the RL format, the current instruction address is added to the L2
field to form the branch address.

In the RRL format, the current instruction address is added to the X2
and L2 fields to form the branch address.

A zero in a B2 or X2 field indicates the absence of the corresponding
address component.

A branching instruction can specify the same general register for both
address modification and operand location. The order in which the contents of
the general registers are used for the different parts of an operation is as
follows:

1. Address computation
2. Arithmetic or link information storage.

Results are placed in the general register specified by Rl. Except for
the storing of the final results, the contents of all general registers and
memory locations participating in the addressing or execution part of an
operation remain unchanged.

Programming Note: In several instructions the branch address may be specified
in two ways: In the RX format, the branch address is the address specified by
X1, B2, and D2; in the RR format, the branch address is in the register
specified by R2. Note that the relation of the two formats in branch-address
specification is not the same as in operand-address specification. For
operands, the address specified by X1, B2, and D2 is the operand address, but
the register specified by R2 contains the operand itself.

4-14

CHAPTER 5
INTERRUPTIONS

5.1 INTRODUCTION

The interruption system permits the CP to change state as a result of
conditions external to the system, in input/output (I/0) devices, or in the CP
itself. Five classes of interruption conditions are possible: I/0, clock,
program, supervisor call, and machine check.

Each class of interruption except supervisor call has two related PCWs
called '"old" and "new" in permanently assigned main memory locations. An
interruption involves storing information, identifying the cause of the
interruption, storing the current PCW in its old position, and making the PCW
at the new position the current PCW. The supervisor call class of
interruption has only a new PCW in a permanently assigned main memory
location. The supervisor call old PCW is stored on the top of the system
stack, as addressed by general register 15. (See stack-oriented instruction
descriptions in Chapter 7.)

The old PCW holds necessary CP status information at the time of
interruption. I1f, at the conclusion of the program invoked by the
interruption, an instruction is executed making the old PCW the current PCW,
the CP is restored to the state prior to the interruption, and the interrupted
program continues.

5.2 POINT OF INTERRUPTION

An interruption is permitted between units of instructions, that is,
after the performance of one instruction and before the start of a subsequent
instruction. This is true for all instructions except interruptible
instructions (MVCL, CLCL). Interruptible instructions can be interrupted
during instruction performance. They resume from the point of instruction
interruption after the higher priority interruption has been serviced.

5.2.1 Instruction Execution

An interruption occurs between instructions, except for interruptible
instructions, as explained in the preceding paragraph. The manner in which
the preceding instruction is finished may be influenced by the cause of the
interruption. The instruction is said to have been completed, terminated,
aborted, suppressed, or resumed.

In the case of instruction completion, results are stored and the
condition code is set as for normal instruction operation, although the result
may be influenced by the exception that has occurred.

In the case of instruction termination, all, part, or none of the result
may be stored. Therefore, the result data is unpredictable. The setting of
the condition code, if called for, may also be unpredictable. In general, the
results should not be used for further computation. The PCW is not updated on
termination.

When an instruction is aborted, all results including the condition code
and the PCW are unpredictable. An instruction can be aborted only by a

machine check interruption.

In the case of instruction suppression, results are not stored, the
condition code is not changed, and the PCW is not updated.

In the case of instruction resumption, the instruction resumes after a
higher priority interruption has been serviced.

5.2.2 Classes of Interruptions

The five classes of interruptions are distinguished by the memory
locations in which the old PCW is stored and from which the new PCW is
fetched. The detailed causes are further identified by the interruption code
of the old PCW and in some cases by additional information placed in main
memory during the interruption. The bits of the interruption code are
numbered 0-7, according to their position in the PCW.

For I/0 interruptions, additional information is provided by the
contents of the I/0 Status Word stored as part of the 1/0 interruption. (The
I/0 Status Word is discussed in Section 8.6.) For program interruptions,
additional information may be provided in the form of a segment index and a
page index stored in the page fault reporting area on an address translation
exception. For machine check interruptions, additional information may be
stored in the machine check reporting area.

Table 5-1 lists the permanently allocated main memory locations.

Table 5-1. Permanent Storage Assignments

Address Length

(decimal) (decimal) Function
0 8 Input/Output Status Word (IOSW)
8 24 reserved for control mode

32 8 01d PCW for machine check

40 8 New PCW for machine check

48 8 014 PCW for program check

56 8 New PCW for program check

64 8 01d PCW for clock interrupt

72 8 New PCW for clock interrupt

80 8 0l1d PCW for I/0 interrupt

88 8 New PCW for I/O interrupt

96 8 New PCW for SVC

104 10 Unused-—available for software use

114 2 Page fault reporting area

116 12 Machine check reporting area

128 Variable I/0 Command Address area (IOCAs)

NOTE

The SVC 01d PCW is placed on the system stack as part of
the SVC interruption. It is reloaded (made current) from
there by means of the SVCX instruction.

5.2.3 Location Determination

In general, the instruction causing the interruption is given by the
address in the PCW. When an instruction is completed before the interruption

occurs, the instruction address in the old PCW designates the next instruction
to be executed.

5.3 INPUT/OUTPUT INTERRUPTION

The I/0 interruption provides a means by which the processor responds to
signals from I/0 devices.

A request for an I/0 interruption may occur at any time, and more than
one request may occur at the same time. The requests are preserved in the I/0
device until accepted by the processor. While I/0 interruptions are masked by
setting the I/0 interruption mask bit (bit 37 of the Current PCW) to 0O, more
than one event which establishes a pending interruption may occur at a
device. Each such event is recorded at the device, and when the I/O
interruption mask bit is then set to 1, the I/0 interruption for the device is
taken. The stored I/0 Status Word (I0OSW) may reflect the occurrence of all
such events by the ORing of status bits in the IOSW. Priority is established
among devices so that only one interruption request is processed at a time.

5-3

An I/0 interruption can occur only after the current unit of operation
is finished and while the processor is interruptible. Interruptions not
serviced remain pending.

The I/0 interruption causes the old PCW to be stored in the I/0 01d
PCW. The IOSW associated with the interruption will have been stored in the
IOSW slot at the time of the interruption. Subsequently, a new PCW is loaded
from the I/0 New PCW.

5.4 CLOCK INTERRUPTION

The clock interruption provides a means by which the CP responds to
timing conditions set within the system. Clock interruptions are maskable by
zeroing the clock interruption mask bit (bit 38 of the current PCW). Any
clock interruption that becomes pending while the clock interruption mask bit
is 0 remains pending. A pending clock interruption is taken immediately upon
completion of any instruction turning off the clock interruption mask bit in
the PCW. The clock interruption causes the old PCW to be stored in the Clock
Old PCW and a new PCW to be loaded from the Clock New PCW. The interruption
code in the old PCW is set to all 0Os on a clock interruption.

A clock interruption becomes pending whenever the time-of-day clock
value 1is greater than or equal to the clock comparator value, both comparands
being considered unsigned 32-bit binary quantities.

The loading of a clock comparator value that 1is already 1less than or
equal to the time-of-day clock value causes an immediate interruption; loading
control register 7 with a value greater than that in control register 6 resets
any pending clock interrupt.

5.5 PROGRAM INTERRUPTION

Exceptions resulting from improper use of instructions and data cause a
program interruption. Only one program interruption occurs for a given
instruction and is identified in the 01d Program—Check PCW. The occurrence of
a program interruption does not preclude the simultaneous occurrence of other
causes of program interruption. The program interruption causes the current
PCW to be stored at the 0ld Program-Check PCW location and a New Program—Check
PCW to be fetched. The cause of the interruption is identified by the
interruption code in PCW bits 0-7. The operation is completed, suppressed, or
terminated by a program interruption, but this is determined on an individual
interruption basis.

If the new PCW for a program interruption has an unacceptable
instruction address, another program interruption occurs. Since this second
program interruption introduces the same unacceptable instruction address, a
string of program interruptions is established that may be broken only by an
I/0 interruption. If these interruptions also have an unacceptable new PCW,
nev supervisor information must be introduced by initial program loading or by
manual intervention.

A description of the individual program exceptions follows. Some of the
exceptions listed may also occur in operations resulting from 1/0
instructions. In such cases, the exception is indicated in the 1I0SW stored
with the I/0 interruption (as explained in Subsection 8.6.2).

5.5.1 Program Interruption Codes in the PCW

Programming Errors and Miscellaneous Exceptions Hex Code

General
Operation 01
Privileged operation 02
Execute 03
Protection 04
Addressing 05
Specification 06
Data 07
Fixed-Point overflow 08
Fixed-Point divide 09
Decimal overflow 0A
Decimal divide OB
Supervisor call range oC
Load-or-trap oD

Debugging Aids

PCW trap 10
Virtual destination trap 11
Branch-Taken trap 12
Single-Step trap 13
Address Translation Exception 20
Paging File I/0 Error (software-defined error code) 28
Unresolved External Reference (software-defined error code) 29

Stack Facility
Stack overflow 30

Floating-Point Exceptions

Floating-Point overflow 40
Floating-Point underflow 41
Significance 42
Floating-Point divide 43

5.5.2 Access Exceptions

The protection, addressing, PCW trap, virtual destination trap, segment
fault, page translation, and page fault exceptions are collectively referred
to as access exceptions. An access exception may be indicated when a
reference to a partially inaccessible operand is recognized even if the
correct result could be arrived at without the use of the inaccessible part of
the operand. The access exception is indicated as part of the execution of
the instruction making the reference.

Whenever an access to an operand location can cause an access exception
to be recognized, the word '"access" is included in the list of program
exceptions in the description of the instruction. This entry also indicates
which operand can cause the exception to be recognized and whether the
exception is recognized on a fetch or store access to that operand 1location.
Additionally, each instruction can cause an access exception to be recognized
due to instruction fetch.

Programming Note: An access exception is indicated only if the instruction
with which the exception is associated is executed. In particular, the
exception is not recognized when the CP has not attempted a fetch from the
inaccessible location or otherwise detected the access exception before a
branch instruction or an interruption changes the instruction sequence such
that the inaccessible data is not required.

5.6 PROGRAMMING ERRORS AND MISCELLANEQUS EXCEPTIONS

5.6.1 Operation Exception

When an operation code is not assigned, an operation exception is
recognized. For the purpose of recognizing an operation exception, the first
eight bits of an instruction form the operation code.

5.6.2 Privileged-Operation Exception

A privileged instruction or operation is defined to be omne that
generates an exception if the user mode bit (bit 34) of the PCW is on. Some
VS privileged instructions are CIO, HIO, LCTL, LPTO, LPT1, LPT2, LPCW, RRCB,
STNSM, STOSM, SI0, STDD, and SVCX. When a privileged instruction is
encountered while this bit (also known as the memory protection violation bit,
or the privileged-instruction trap bit) is on in the PCW, a privileged-
operation exception is recognized, and the instruction is suppressed.

5.6.3 Execute Exception

The execute exception is recognized when the subject instruction of
EXECUTE is another EXECUTE, and the instruction is suppressed.

5.6.4 Protection Exception

When the address of a receiver operand in memory is in a protected
segment of memory (segment O or 1), a protection exception is recognized 1if
the memory protection violation and privileged instruction trap bit is on in
the PCW.

5-6

5.6.5 Addressing Exception

When an address specifies any part of a datum, an instruction, or a
control word outside the available memory for the particular installation, an
addressing exception is recognized. On a branch instruction or any
instruction that introduces a new PCW, the address to which control is to be
passed is not checked for validity; thus, the addressing exception will occur
on the instruction that was branched to and not on the branch instruction
itself. An addressing exception always causes instruction termination.

5.6.6 Specification Exception

A specification exception is recognized when any of the following holds
true:

1. An operand address does not designate a location on a doubleword,
word, or halfword boundary, depending on the instruction type.

2. The first operand field is shorter than or equal to the second
operand field in decimal division.

3. An invalid head/tail queue word has been specified in
enqueue/dequeue operations.

4. Other special cases exist.

5.6.7 Data Exception

A data exception is recognized when either of the following occurs:

1. The digit codes of operands in decimal arithmetic or editing
operations or in CONVERT TO BINARY are incorrect

2. Fields in decimal arithmetic overlap incorrectly.

5.6.8 Fixed-Point Overflow Exception

When a high-order carry occurs or high-order significant bits are lost
in fixed-point add, subtract, arithmetic shift, or sign-control operations, a
fixed-point overflow 1is recognized. When an overflow occurs and the
corresponding mask bit is set to 1, the exception is recognized.

5.6.9 Fixed-Point Divide Exception

A fixed-point divide exception is recognized when either of the
following situations occur:

1. The quotient exceeds the register size in fixed-point division,
including division by 0

2. The result of CONVERT TO BINARY exceeds 31 bits.

5.6.10 Decimal Overflow Exception

When the receiving field is too small in a decimal arithmetic operation,
a decimal overflow is recognized. When an overflow occurs and the
corresponding mask bit is set to 1, the exception is recognized.

5.6.11 Decimal Divide Exception

A decimal divide exception is recognized when the quotient in decimal
division exceeds the specified data size.

5.6.12 Supervisor Call Range Exception

Issuance of a SUPERVISOR CALL (SVC) instruction with a value in the I
operand field greater than the value in the first byte of the Supervisor Call
New PCW results in a supervisor call range exception, and the instruction is
suppressed.

5.6.13 Load or Trap Exception

A load or trap exception is recognized when the LOAD OR TRAP (LOT)
instruction has loaded a fullword field from memory into a general register
and the high-order bit of the loaded word is equal to 1.

5.7 DEBUGGING AIDS

5.7.1 Modification Trap Feature

The modification trap, when enabled, causes a target, i.e., a general or
floating-point register or a field of up to 64 bytes in memory, to be compared
with a comparand at the beginning of every machine instruction; if they are
not equal, a program interruption (code X'1l1l') occurs and the instruction is
suppressed., For interruptible instructions, the comparison occurs before each
execution unit of the instruction.

There are two forms of this trap, both of which wuse the modification
trap control register (control register 4). These forms, therefore, should

not be enabled at the same time.

Single-Byte Modification Trap

This trap is enabled by setting PCW bit 41. The target 1is always a
1-byte field in memory. The target and comparand are specified by loading the
trap control register with the comparand (high-order byte) and the address of
the target (low-order three bytes).

Extended Modification Trap

This trap 1is enabled by setting PCW bit 44. The target and comparand
are specified by loading the trap control register with the virtual address of
a Trap Descriptor Area, which must be fullword aligned.

5-8

The Trap Descriptor Area has the following format:
Byte O Flag and length
Bits 0-1 Target select:

00 Memory

01 (Invalid)

10 General register

11 Floating-Point register

Bits 2-7 Comparand and length minus 1
(ignored if the target is a register)

Bytes 1-3 If the target is a register:
register number (low bits of byte 3)

If the target is in memory:
virtual address of the target

Bytes 4-nn Comparand value
(The comparand is the same
length as the target)

The trap control register can be altered and the trap enabled or
disabled only by privileged instructions.

If the target is a memory operand, an access (fetch) interruption will
be taken on any part of the operand that is invalid when the trap is checked.
For the extended modification trap, an access interruption will also be taken
on any part of the Trap Descriptor Area that is invalid. If the address of
the Trap Descriptor Area is not fullword aligned, or an invalid target type is
specified, or (for the floating-point register trap) an invalid floating-point
register number is specified, a specification interrupt is taken.

If both modification traps are enabled, the single-byte trap will be
checked before the extended trap.

5.7.2 PCW Trap Feature

When the PCW trap is enabled, before each instruction 1is executed a
check is made to determine if the address of the instruction's first byte is
in the specified range. If it is, the instruction is suppressed, the PCW
address is not updated, and a program interruption (code X'10') is taken.

There are two forms of this trap; since they both use the low-range

control register (control register 3) they should not both be enabled at the
same time.

5-9

Single—-Address PCW Trap

This trap is enabled by setting PCW bit 40. The range for which to
check is always a single address contained in the low—-range control register.

PCW Range Trap

This trap is enabled by setting PCW bit 42, If the high-order byte of
the high-range control register (control register 0) is O, the range is from
the address in the low-range control register to the address in the high-range
control register. If the high-order byte of the high-range control register
is nonzero, the range is from address 0 to 1 less than the address in the
low-range control register, and from 1 more than the address in the high-range
control register to the highest possible address. The address in the
low-range control register should not be greater than the address in the
high-range control register.

The trap control registers can be altered, and the trap can be enabled
or disabled, only by privileged instructions.

If both PCW traps are enabled, the single—address trap 1is checked
before the range trap.

The PCW trap is checked after the modification trap.

5.7.3 Branch-Taken Trap Feature

When the branch-taken trap feature is enabled (by setting PCW bit 45), a
program interruption (code X'12') will occur after the execution of any
instruction that has successfully loaded the PCW address field. The current
PCW address is the ©branch address set by the instruction; the
previous—instruction-address control register (control register 5) will
contain the address of the branch instruction. The branch-taken trap 1is not
taken on instructions which modify the entire PCW (LPCW, SVC, or SVCX).

This trap may be enabled or disabled only by privileged instructions.

The branch-taken trap is checked before the single—-step trap and the
timer and I/0 interrupt condition.

5.7.4 Single-Step Feature

: A single-step trap can be enabled by turning on the trap bit in the PCW
(PCW bit 43). This guarantees an interruption (code X'13') after execution of
the next instruction has been completed. (For an interruptible instruction,
this interrupt will occur only following the final execution unit of the
instruction.) If any other program interrupt condition occurs during the
execution of the instruction, it will take precedence over the single-step
trap condition (since this trap can be inferred from presentation of any
program interrupt). If this trap is taken, the PCW address field will contain
the address of the next instruction.

5-10

This manual is updated by: Addendum 800-1100P0-04.01

For instructions that modify the system status or debug status bytes of
the PCW (LPCW, STOSM, STNSM, SVC, or SVCX), the trap will be taken if the trap
bit is set in the PCW before the instruction is executed. It will also be
taken by SVCX if the trap bit is set in the new PCW loaded by that instruction.

The single—step trap is checked after the branch-taken trap, and before
the timer and I/O interrupt conditions. It also takes precedence over a wait
state PCW, which would have been introduced by the stepped instruction.

5.7.5 Previous Instruction Address Feature

If any of the PCW debug trap bits (bits 40-45) are set at the start of
an instruction, the current instruction address is stored in the
previous—-instruction-address control register (control register 5) after all
of the debugging traps are checked. If any of the debugging traps are taken
after execution of this instruction and before execution of the next
instruction, the previous—instruction-address control register will hold the
address of the last instruction executed; the PCW address is the address of
the instruction about to be executed.

Programming Notes

After a branch-taken trap, control register 5 holds the address of the
branch instruction.

After a modification trap, control register 5 holds the address of the
instruction that modified memory or registers. If that was an interruptible
instruction and was not the last unit of execution, the PCW address and the
address in control register 5 both point to the start of the interruptible
instruction.

5.8 ADDRESSING EXCEPTIONS

5.8.1 Address Translation Exceptions

Three address translation exceptions, all having an interruption code of
X'20', can occur in the course of address translation. All three cause the
segment and page index of the virtual address to be written to the page fault
reporting area, i.e., to location X'72' of main memory. A segment fault
exception is the first, and occurs when the segment index of a virtual address
is not valid. Currently, only segment indexes of 0, 1, and 2 are valid.

A page translation exception is the second, and occurs when twice the
page index of a virtual address is greater than or equal to the page table
length indicated in the SCR for the segment. In this case there is no page
table entry corresponding to the virtual page.

A page fault exception is the third, and occurs when the page table
entry corresponding to the virtual address is faulted, i.e., when its high
order bit (fault bit) is 1. This is an ordinary page fault, and causes the
virtual page to be read in from disk storage.

5-11

This manual is updated by: Addendum 800-1100P0-04.01

5.8.2 Page Table Address Exceptions

Two additional classes of exception exist in association with the
address translation mechanism. The page table address fault exception, with
an interruption code of X'21', is the first of these, and occurs when the page
table address reported in the appropriate SCR is virtual and is faulted.

The SCR recursion exception, with an interruption code of X'22', is the
second, and occurs when the page table address reported in the appropriate SCR
is virtual and points to a second SCR, but the second SCR also contains a
virtual address rather than a physical address. In this case the second
virtual address is not translated and an exception is noted immediately.

5.9 STACK OVERFLOW EXCEPTION

This exception is unique to the stack-oriented instructions and may
occur during any of these instructions. A stack overflow interruption occurs
under either of the following conditions:

1. The address value in the stack top word is 1less than the address
value in the stack limit word before the instruction is executed, or

2. The address value in the stack top word would be less than the
address value in the stack 1limit word after the instruction was
executed.

The instruction is suppressed on all stack overflow program interrupts.

This implies that the values in the stack vector are unchanged.

5.10 FLOATING-POINT EXCEPTIONS

Four kinds of floating-point exceptions are recognized; they are
described in the following paragraphs.

5.10.1 Floating—-Point Overflow

When the final exponent of a floating-point number becomes greater than
127 as a result of an ADD, SUBTRACT, MULTIPLY, or DIVIDE operation, the
instruction is completed and a floating-point overflow exception is
recognized. The fraction is correct and normalized if normalization was
specified by the instruction, the sign is correct, and the characteristic is
smaller by 128 than the correct characteristic.

5-12

This manual is updated by: Addendum 800-1100P0-04.01

5.10.2 Floating-Point Underflow

When the final exponent of a floating-point number becomes less than
zero as a result of an ADD, SUBTRACT, MULTIPLY, DIVIDE, or HALVE operation,
and the exponent underflow program mask bit is 1, the instruction is completed
and a floating-point underflow exception is recognized. The fraction is
correct and normalized, the sign is correct, and the characteristic is larger
by 128 than the correct characteristic.

5.10.3 Floating-Point Significance

When the intermediate sum of a floating-point ADD or SUBTRACT operation
is zero, and the significance program mask bit is 1, a significance exception
is recognized. No normalization occurs; the intermediate sum characteristic
remains unchanged. When the intermediate sum is zero and the significance
program mask bit is 0, the significance exception does not occur; rather, the
characteristic is made zero, yielding a true zero result.

5.10.4 Floating-Point Divide

A floating-point divide exception is recognized when floating—point
division by a divisor with a fraction of zero is attempted. The instruction
is suppressed and the dividend remains unchanged.

5.11 SUPERVISOR CALL INTERRUPTION

Refer to the SVC instruction description in Section 7.1 for the detailed
effects of a supervisor call interruption. The supervisor call interruption
occurs as a result of the execution of the SUPERVISOR CALL instruction. It
causes the current PCW and other information to be stored on the system stack
and a new SVC PCW to be constructed. The contents of bit positions 8-15 of
the SUPERVISOR CALL instruction become the interruption code of the old PCW on
the system stack.

Programming Note: The name ‘'supervisor call" indicates that one of the major
purposes of the interruption is the switching from problem to supervisor
state. This major purpose does not preclude the use of this interruption for
other types of status switching. The interruption code may be used to convey
a message.

5.12 MACHINE CHECK INTERRUPTION

The machine check interruption provides a means for reporting to the
program the occurrence of machine malfunctions. Information is provided to
assist the program in determining the location of the fault.

A machine check interruption causes the old PCW to be stored in the
Machine Check 0ld PCW and a new PCW to be fetched from the Machine Check New
PCW. The cause of the malfunction is identified by the interruption code. An
interruption code of 1 indicates a main memory parity error. An interruption
code of 2 indicates one of two conditions: either an IOP requested permission

5-13

This manual is updated by: Addendum 800-1100P0-04.01

from the CP to present an I/0 interruption, permission was granted, and then
the IOP responded with a request to do something other than present an
interruption; or an IOP requested permission to present an 1/0 interruption,
permission was granted, and then the IOP did not respond within a reasonable
period of time (time—out failure).

A machine check interruption may be masked off by turning off the
machine check interruption mask bit in the PCW. A machine check interruptiocn
that is masked off causes entry into Control mode.

The machine check reporting area is filled in as follows, depending on
the interruption code:

Code = 1 Bytes 0—3 contain the approximate physical address where the
parity error occurred. Bytes 4-5 contain the data as read
from memory.

[}
N

Code Byte 0 contains the device address passed back during an
invalid response to the granting of permission to present an
interruption, or contains X'FF' if the IOP did not respond

within a reasonable period of time.
Any program or supervisor call interruptions that would have occurred as
a result of the current operation are eliminated. Any instruction in progress
when a machine check occurs is aborted.

5.12.1 VS100 Machine Checks

Machine checks on the VS100 cause workstation 0 to display the message,
"MACHINE CHECK xxx", where "xxx'" is one of the following:

001 ECC error on main memory read by CP. The 0ld Machine Check PCW
points to the instruction after the one causing the error. For
instructions of RX type only, 1location X'74' of main memory
contains the erroneous data and location X'78' contains its main
memory address.

003 Error on main memory write by CP. The 0ld Machine Check PCW
points to the instruction after the one causing the error.

017 Bus transaction 1log overflow (more than 128 entries). 0ld
Machine Check PCW points to the instruction after the one
causing the error.

018 Destination IOP has rejected CP or BA communication. 01d
Machine Check PCW points to the instruction whose execution
followed the error. (Note that the previous instruction may not
have caused the error.)

019 Both errors 017 and 018 have occurred.

5-14

This manual is updated by: Addendum 800-1100P0-04.01

020 Destination processor has rejected CP communication. Machine
Check 01d PCW points to the instruction whose execution followed
the error. (Note that the previous instruction may not have
caused the error.)

021 Both errors 017 and 020 have occurred.
022 Both errors 018 and 020 have occurred.
023 Errors 017, 018, and 020 have occurred.

5.13 PRIORITY OF INTERRUPTIONS

During execution of an instruction, several interruption-causing events
may occur simultaneously. The instruction may give rise to a program
interruption or a clock interrupt, a machine check may occur, and an I/0
interruption request may be made, all at the same time. Instead of the
program interruption, a supervisor call interruption might occur; however,
both cannot occur since these two interruptions are mutually exclusive.
Simultaneous interruption requests are honored in a predetermined order.

Requests for interruption existing concurrently at the end of an
instruction are honored in descending order of priority, as follows:

Machine check
Supervisor call
Program

Clock
Input/Output.

The action consists of storing the current PCW in the old PCW and
fetching the new PCW belonging to the interruption first taken. This new PCW
is subsequently stored without any instruction execution, and the next
interruption PCW is fetched. This storing and fetching continues until no
more interruptions are to be serviced. Further interrupts are honored if and
only if the new PCW has them enabled. The I/0 or clock interruptions are
taken only if the immediately preceding PCW indicates that the system is
interruptible for 1/0 or clock interruptions. The interruption code of a new
PCW is not loaded since it provides no useful information.

Instruction execution is resumed using the last—fetched PCW. The order
of executing interruption subroutines is therefore the reverse of the order in
which the PCWs are fetched.

Programming Note: The order in which simultaneous interruption requests are
honored can be changed to some extent by masking. The priority rule applies
to simultaneous interruption requests; an interruption request made after some
interruptions have already been taken is honored according to the priority
prevailing at the moment of the request.

5-15

CHAPTER 6
CONTROL MODE

6.1 INTRODUCTION

Control mode is a CP state in which normal program execution is halted
and certain other facilities are made available. These facilities are divided
into two groups of commands.

1. Load group--Contains commands for initializing the operating system,
loading a stand-alone program, loading a diagnostic program, or
restarting a program (from an initialized state).

2. Debug group——-Contains commands for displaying and/or modifying main
memory, general registers, control registers, and the PCW. Also
included in this group are commands for single-step program
execution, hard copy dump of memory and registers, and virtual
address translation.

Control mode uses the lowest—addressed workstation on the first I/O0
processor (workstation 0) for communication with the machine operator. If
this workstation is not powered on, the computer will wait until it is turmed
on. Control mode uses only the top line (line 1) of the CRT display. The
previous contents of the line are saved on entry into Control mode and are
restored on exit; therefore, Control mode is transparent to the program that
is using this workstation.

6.2 METHODS OF ENTRY

6.2.1 Entry during Program Execution

In this case, the following message is displayed at row 1:
CONTROL MODE [UID'6.0.0.6.0.0:0.05 ¢/6.0.0.0.0:0'4

The PCW displayed (Xs above) is the current PCW and can be examined to
determine why Control mode was entered.

If PCW bit 33 (Control mode bit) equals 1, then the program has entered
Control mode by loading this PCW (with instruction LPCW, STNSM, STOSM, etc.).

If PCW bit 33 is set to 0, then Control mode was entered by the
operator's pressing the Control mode button on the CPU. However, if the words
CONTROL MODE are blinking, a machine check has occurred. In the case of a
machine check, the interruption code (first byte) of the PCW will indicate
which type of machine check has occurred.

6-1

When Control mode is entered during program execution, the Debug group
of Control mode commands is available.

6.2.2 Entry from an Initialization Procedure

In this case, the following message is displayed at row 1:

CONTROL MODE F 04

When Control mode is entered in this manner, both the Load group and the
Debug group of Control mode commands are available. Pressing the ENTER key
causes a Load command to be issued to the fixed or only volume of an assumed
disk device at address 04. If this is not desired, the NEW LINE key will
clear the command to allow other commands to be entered.

6.3 INITIALIZATION PROCEDURES

The actions taken when the LOAD button is pressed are a subset of those
taken when the processor is powered on. The actions which each of them
initiates are as follows:

1. All IOPs are initialized and leave no I/0 outstanding.

2, The instruction address field of the current PCW is set to 256 and
the other PCW bits are set to O.

3. Main memory locations 32-41 are set to X'40 000100 0800 000000 O00'
(default IOCW for Load group commands) .

4, Local page table 0 1is set for virtual address equal to physical
address. The local page frame table is reset (i.e., all PFT entries
are set for no reference, no change). Local page tables 1 and 2 are
reset (page fault state).

5. Control mode is entered.

Additional results of power—on are that memory is zeroed, the clock is

set to 0, and the comparator is set to all 1ls.

6.4 CONTROL MODE COMMANDS AND RESPONSES

The ENTER key must be pressed after the bracketed information in
Subsections 6.4.1 and 6.4.2 has been supplied. In the following discussion, n
represents one hexadecimal digit.

6.4.1 Load Group Commands

[F nnl] and [R nn] are Load group commands. These commands allow the
Control mode user to perform a complete I/0 operation using device nn. They
are accepted only when all I/0 devices are inactive (through use of the LOAD
or INITIALIZE button). The I/0 operation to be performed is indicated by the
I0CW. The IOCW is located through the IOCA. F and R denote fixed and
removable disk volumes, respectively. (This distinction 1is ignored if a
device has only a fixed or only a removable volume.)

Default IOCA, Default IOCW - When a Load command is entered, main memory
1ocation 32 and the IOCA for the device are modified as follows:

Location 32 = X'40' or X'41' (READ command in IOCW)
IOCA for device = X'0020' (Load 10CA)

The IOCW set during initialization causes a 2048-byte READ to memory
location 256 for a fixed-volume disk drive. For a removable-volume device,
the first byte of the IOCW is set to X'4l' by the [R nn] command.

A Load group command causes the the CP to do the following:

1. Write the device number (nn) at location 80 (IO old PCW). Create
the IOCA and IOCW command byte.

2. Clear all I/0 interrupts and issue an SIO instruction to device nn.
If the condition code returned is 0, proceed; otherwise, terminate
the Load command with a message.

3. Accept all outstanding interruptions and ignore them until an
interruption from device nn is received. (In general, there will
not be any other interruptions outstanding; however, if present,
interruptions from devices other than device nn are ignored and
lost.)

4. Inspect the IOSW returned by device nn and return the appropriate
message.

The CP then makes one of the following responses to the Load group

1. If the Load SIO 1is completed successfully, Control mode will exit
immediately and instruction execution proceeds under control of the
current PCW.

2. A message, INV DEV, is returned by a Load command for rejected SIO
operations (condition code other than 0). The message indicates
that the address (nn) referenced a nonexistent IOP (nonexistent
device, condition code 3).

3. The following two messages may be returned after I/0 completion
(i.e., storing of an IOSW by device nn). Bits 0-1 of the IOSW are
examined.

a. INT REQ--Bit 0

b. I/0 ERR--Bit 1

1--Intervention required indicated.

0--Abnormal I/O completion (hard error).

6.4.2 Debug Group Commands

The following commands are useful in debugging a program.

[G n]

[C n]

[P nnnnnn]

{V nnonnnl

wl

(M nonnnnnn nnnnnnnn]

TAB (key)

x]1

Displays general registers n and n+l, with n ranging
from 0 to E. (A value of n=F results in display of
general register F followed by general register 0.)

Displays control registers n and n+l, with n ranging
from 0 to 6.

For n = 8, floating-point register 0 is displayed.
For n = A, floating-point register 2 is displayed.
For n = C, floating-point register 4 is displayed.
For n = E, floating-point register 6 is displayed.

0dd values of n (such as 9, B, D) cause the low half
(i.e., low-order 32 bits) of one register and the high
half of the next register to be displayed. (A value of
n = 7 results in display of control register 7 followed
by the high half of floating—point register 0. A value
of n = F results in display of the 1low half of
floating-point register 6 followed by control register
0.)

Displays eight bytes of physical memory from the
physical address given. Non-display indicates an
invalid address.

Displays the condition code (high-order byte of R1l) and
remaining contents of Rl resulting from an LPA
instruction. If the translation is successful, eight
bytes of memory are also displayed from the given
virtual address.

Displays the PCW.

Modifies eight bytes displayed as a result of one of the
five preceding commands.

Causes execution of a single program step and displays
the wupdated PCW. All I/0 operations will proceed
normally.

Causes Control mode exit; instruction execution proceeds
under control of the current PCW.

64

[D nnonnn] [nnonnn] Causes a dump of the PCW, the registers, and main memory
to a printer (device 03). The first physical address
entered is rounded down to the nearest 32-byte
boundary. Each line has a 3-byte address followed by 32
bytes of memory. Memory contents are printed, beginning
at the rounded first address, until the line containing
the byte location below the second address 1is reached,
the end of memory is reached, or the operator terminates
the dump by striking any workstation key. If the
printer is off line, the Dump command remains pending.
(The printer may be turned on and the Dump command will
continue in this case.) Any pending printer interruption
for device 03 is lost when a dump to that printer is
requested. If device 03 is not a printer, this command
is ineffective.

NOTE

When main memory is modified, the change bit is set in the
local page frame table (CP local memory).

In control mode no device other than workstation 0 will be
serviced by the Control mode I/0 processor (i.e.,
keystrokes for other workstations on the IOP are ignored).

For the P and V commands, a failure to display data may
indicate that a page break (2048-byte boundary) has been
found; otherwise, non-display (or a partial display)
indicates that a main memory parity error was detected by
the IOP at the particular memory location.

The Dump command will be executed even if an I/0 command or
I/0 interruption was active for the printer (device 03).
In this case, the previous printer status is discarded.

6.4.3 Screen Manipulation Keys

The following workstation keys are useful for entering and modifying
data.

NEW LINE -~ This key cancels (and clears) the partially-entered line.

SPACE BAR - During a Modify command, this key retains the previous
data at the current cursor position.

ENTER - The key must be pressed after the command letter and
numbers (if any). After a Modify command, this key may be
pressed before all data has been entered, allowing
unmodified data to remain unchanged.

This manual is updated by: Addendum 800-1100P0-04.01

CHAPTER 7
INSTRUCTIONS

7.1 GENERAL INSTRUCTION SET

The following instructions represent the basic instruction set for the
VS. In addition to these universal machine instructions, some extended
mnemonic codes, such as JSI, are discussed in the chapter on machine
instructions in the VS Assembler Language Reference Manual. A 1list of
operation codes and formats for the basic instruction set is provided in
Appendix A of this manual. '

P
The superscript 'p" (e.g., (CIO)) in the first line of an instruction
description means that the instruction 1is privileged. The short
floating-point instructions (available as an option to VS80 systems running at
least Version 3.04 microcode, and as a standard item to all VS25 and VS100
systems) are denoted by the word " (optional)' next to their format diagrams.

Note that instructions are ordered alphabetically by name in this
chapter, and alphabetically by mnemonic in the index.

This manual is updated by: Addendum 800-1 100P0-04.01

ADD (AR, A)

AR R1,R2 (RR)

] | R | R |

| 1A I 11 2 |

| | | |

0 8 12 15

A R1,D2 (X2,B2) (RX)

| | R I X | B | D |
I 5A I o1 2 | 2 | 2]
| I | | | i
0 8 12 16 20 31

The second operand is added to the first operand, and the sum is placed
in the first operand location.

Addition 1is performed by adding all 32 bits of both operands. If the
carry from the sign-bit position and the carry from the high-order numeric bit
position agree, the sum is satisfactory; if they disagree, an overflow
occurs. The sign bit is not changed after the overflow. A positive overflow
yields a negative final sum, and a negative overflow results in a positive
sum. The overflow causes a program interruption when the fixed-point overflow
mask bit in the PCW is 1. ‘

Operand 2 of the A instruction must be fullword aligned.

Resulting Condition Code

0 Sum is 0

1 Sum is less than O

2 Sum is greater than 0
3 Overflow

Program Exceptions

Access (fetch, operand 2 of A only)
Fixed-point overflow
Specification (A only)

Programming Note

In 2's-complement notation a zero result is always positive.

7-2

ADD DECIMAL (AP)

AP D1(L1,Bl),D2(L2,B2) (85)

| A
| FA I 1 |
| I I

0 8 1

2

The second operand is added to the first operand, and the sum is placed
in the first operand location.

L1l and L2 are the field lengths in bytes, minus 1.

Addition 1is algebraic, taking into account sign and all digits of both
operands. All digits are checked for validity. If necessary, 0Os are supplied
for either operand on the most significant end. When the first operand field
is too short to contain all significant digits of the sum, an overflow
condition is recognized.

Overflow has two possible causes. The first is the loss of a carry from
the most significant digit position of the result field. The second cause is
an oversized result, which occurs when the second operand field is larger than
the first operand field and significant result digits are lost. The field
sizes alone are not an indication of overflow. An overflow causes a program
interruption when the decimal overflow mask bit is 1.

The first and second operand fields may overlap when their least
significant bytes coincide; therefore, it is possible to add a number to
itself.

The sign of the result is determined by the rules of algebra. When the
operation is completed without an overflow, a zero sum result has a positive
sign, but when high-order digits are lost because of an overflow, a zero
result may be either positive or negative, as determined by what the sign of
the correct result would have been. This instruction will set the condition
code even if the decimal overflow exception is taken.

7-3

Resulting Condition Code

Sum is 0

Sum is less than 0
Sum is greater than 0
Overflow

WNH+-O

Program Exceptions

Access (fetch, operand 2; fetch and store, operand 1)
Data

Decimal overflow

This manual is updated by: Addendum 800-1100P0-04.01

ADD DECIMAL (FLOATING-POINT) (AQR, AQ)

AQR R1,R2 (RR)

| | R | R |

| 3A I 1 2 |

| I | I

0 8 12 15

AQ R1,D2(X2,B2) R

| I R I x | B | D |
| 7A | 1| 2 2] 2 |
| | | | | I
0 8 12 16 20 31

The second operand is added to the first operand, and the normalized sum
is placed in the first operand location. Fullword alignment is required.

Addition of two decimal floating-point numbers consists of a
characteristic comparison and a fraction addition. The characteristics of the
two operands are compared, and the fraction with the smaller characteristic is
right-shifted; its characteristic is increased by one for each decimal digit
of shift wuntil the two characteristics agree. The fractions are then added
algebraically to form an intermediate sum. If an overflow carry occurs, the
intermediate sum is right-shifted one digit and the characteristic is
increased by one. If the increase causes a characteristic overflow, a program
interruption occurs. The fraction and the sign are correct, but the
characteristic is 128 smaller than the correct characteristic.

The intermediate sum consists of 15 decimal digits and a possible
carry. The low-order digit is a guard digit obtained from the fraction that
is shifted right. The guard digit is 0 if no shift occurs.

After the addition, the intermediate sum is normalized as necessary by
shifting 1left the fraction; vacated low-order digit positions are filled with
0Os; the characteristic is reduced by the amount of shift.

If normalization causes the characteristic to underflow and if the
corresponding mask bit is 1, a program interruption occurs. The fraction is
correct, but the characteristic is 128 larger tham the correct one. If the
corresponding mask bit is 0, the result is made a true zero.

When the intermediate sum is zero and the significance mask bit is 1, a
significance exception exists and a program interruption takes place. No
normalization occurs; the intermediate sum characteristic remains unchanged.
When the intermediate sum is zero and the significance mask bit is 0, the
program interruption for significance exception does not occur; rather, the
result is forced to be true zero. Exponent underflow cannot occur for a =zero
fraction.

7-4.1

This manual is updated by: Addendum 800-1100P0-04.01

The sign of the sum is derived by the rules of algebra. A zero sum
fraction is regarded as positive.

Resulting Condition Code

Result fraction is O
Result fraction is less than O
Result fraction is greater than 0

WN O

Program Exceptions

Specification
Data

Significance
Exponent overflow
Exponent underflow
Access (AQ only)

7-4.2

ADD HALFWORD (AH)

AH R1,D2(X2,B2) (RX)

[| R |
| 44 1 |
| | |

0 8 1

B
2

| |
| |
I | |
16 20 31
The second operand is added to the first operand, and the sum is placed
in the first operand 1location. The second operand is two bytes in length,

must be halfword aligned, and is considered to be a 16-bit signed integer.

The second operand is expanded to 32 bits before the addition by
propagating the sign-bit value through the 16 high-order bit positions. The
contents of the second operand in main memory remain unchanged. Addition is
performed by adding all 32 bits of both operands. If the carry from the
sign-bit position and the carry from the high-order numeric bit position
agree, the sum is satisfactory; if they disagree, an overflow occurs. The
sign bit is not changed after the overflow. A positive overflow yields a
negative final sum, and a negative overflow results in a positive sum. The
overflow causes a program interruption when the fixed-point overflow mask bit
in the PCW is 1.

Resulting Condition Code

Sum is 0

Sum is less than 0
Sum is greater than 0
Overflow

wNo=HO

Program Exceptions

Access (fetch, operand 2)
Fixed-point overflow
Specification

7-5

ADD LOGICAL (ALR, AL)

ALR R1,R2 (RR)
I I R | R |
| 1E b1 1 2 |
I | I I
0 8 12 15
AL R1,D2(x2,B2) RX)
I I R | x | B | D |
| SE 1 1 2 1 2 | 2 |
| | | | I |
0 8 12 16 20 31

The second operand is added to the first operand, and the sum is placed
in the first operand 1location. The occurrence of a carry from the sign
position is recorded in the condition code.

The second operand of the AL instruction must be fullword aligned.

Logical addition is performed by adding all 32 bits of both operands.
If a carry from the leftmost position occurs, the 1leftmost bit of the
condition code is made 1. In the absence of a carry, the leftmost bit is made
0. When the sum is 0, the rightmost bit of the condition code is made 0. A
nonzero sum is indicated by a 1 in the rightmost bit.

Resulting Condition Code

Sum is 0 (no carry)

Sum is not 0 (no carry)
Sum is 0 (carry)

Sum is not 0 (carry)

WNH-=O

Program Exceptions

Access (fetch, operand 2 of AL only)
Specification (AL only)

ADD NORMALIZED (FLOATING-POINT) (ADR, AER, AD, AE)

ADR R1,R2 (RR, Long)

| TR | R |

| 24 fol 11 2 |

I |1 | |

0 8,9 12 15

AER RI1,R2 (RR, Short)

| Il TR | R |

I 2A i1l 11 2 | (optional)

I |1 | |

0 8,9 12 15

AD R1,D2(X2,B2) (RX, Long)

TR I ¥	B	D	
6A jol 11 2	2	2	
	I		
0 8,9 12 16 20 31
AE R1,D2,(X2,B2) (RX, Short)

| TR | X | B | D |
| 6A i 11 2 1 2 | 2 | (optional)
I |1 | | | |
0 8,9 12 16 20 31

The second operand is added to the first operand, and the normalized sum
is placed in the first operand location.

Operand 2 of the AD instruction must be fullword aligned.

Addition of two floating-point numbers consists of comparing
characteristics and adding fractions. The characteristics of the two operands
are compared, and the fraction with the smaller characteristic is
right-shifted; its characteristic is increased by 1 for each hexadecimal digit
of shift until the two characteristics agree. The fractions are then added
algebraically to form an intermediate sum. If an overflow carry occurs, the
intermediate sum is right-shifted one digit and the characteristic is
increased by 1. If this increase causes a characteristic overflow, an
exponent-overflow exception is signaled and a program interruption occurs.
The fraction is normalized and correct, the sign is correct, and the
characteristic is smaller by 128 than the correct characteristic.

The intermediate sum consists of 15 hexadecimal digits (for AER and AE,
7 hexadecimal digits) and a possible carry. The low—order digit is a guard
digit obtained from the fraction that is shifted right. Only one guard digit
position participates in the fraction addition. The guard digit is 0 if no
shift occurs.

7-7

After the addition, the intermediate sum is left-shifted as necessary to
form a normalized fraction, vacated low-order digit positions are filled with
Os, and the characteristic is reduced by the amount of shift.

If normalization causes the characteristic to wunderflow and if the
corresponding mask bit is 1, a program interruption occurs. The fraction is
correct and normalized, the sign is correct, and the characteristic is larger
by 128 than the correct one. If the corresponding mask bit is 0, the result
is made a true O. If no 1left shift takes place, the intermediate sum is
truncated to the proper fraction length.

When the intermediate sum is 0 and the significance mask bit is 1, a
significance exception exists, and a program interruption takes place. 1In
this case, no normalization occurs; the intermediate sum characteristic
remains unchanged. When the intermediate sum is 0 and the significance mask
bit is 0, the program interruption for the significance exception does not
occur; rather, the characteristic is made 0, yielding a true zero result.
Exponent underflow does not occur for a fraction of O.

The sign of the sum is derived according to the rules of algebra; a
result of 0 is regarded as positive.

Resulting Condition Code

Result fraction is 0O
Result is less than 0
Result is greater than 0

WNOHO

Program Exceptions

Specification
Significance
Exponent overflow
Exponent underflow
Access

Programming Note

Interchanging the two operands in a floating—-point addition does not
affect the value of the sum.

ADD UNNORMALIZED (FLOATING-POINT) (AW, AU)

AW R1,D2(X2,B2) (RX, Long)

| TR I X | B | D I

| 6E fol 11 2 | 2 | 2 |

| | | | | | |

0 8,9 12 16 20 31

AU R1,D2(X2,B2) (RX, Short)

| TR I X | B | D I

| 6E i 11 2 1 2 | 2 | (optional)
I || | | | I

0 8,9 12 16 20 31

The second operand is added to the first operand, and the unnormalized
sum is placed in the first operand location. Operand 2 requires fullword
alignment.

After the addition the intermediate sum is truncated to the proper
fraction length,

When the resulting fraction is 0 and the significance mask bit in the
PCW is 1, a significance exception exists and a program interruption takes
place. When the resulting fraction is 0 and the significance mask bit is O,
the program interruption for the significance exception does not occur;
rather, the characteristic is made 0, yielding a true zero result. (See ADD
NORMALIZED.)

Leading Os in the result are not eliminated by normalization, and an
exponent underflow cannot occur.

The sign of the sum is derived by the rules of algebra. The sign of a
sum with a result fraction of 0 is always positive.

Resulting Condition Code

Result fraction is 0
Result is less than O
Result is greater than 0

W N = O

Program Exceptions

Specification
Significance
Exponent overflow
Access

7-9

AND (NR, N, NI, NC)

NR R1,R2 (RR)

I I R | R |

| 14 1 1 2 |

| I I I

0 8 12 15

N R1,D2(X2,B2) , (RX)

I I R | X | B | D |
| 54 11 2 1 2 | 2 |
| | I I | |
0 8 12 15 31
NI D1(Bl),I2 (s1)

| | I | B | D |
| 94 | 2 I 1 | 1 |
| | | | I
0 8 16 20 31
NC D1(L,B1),D2(B2) (s8)

| | | B |/ /DIl B I/ / D |
| D4 | L I 1 | -=-1] 2 |-- 2]
| | | L 7/ | L/ / |
0 8 16 20 32 36 47

The logical product (AND) of the bits of the first and second operand is
placed in the first operand location. Operands are treated as unstructured
logical quantities, and the connective AND is applied bit by bit. A Dbit
position in the result is set to 1 if the corresponding bit positions in both
operands contain a 1; otherwise, the result bit is set to 0. All operands and
results are valid.

Operand 2 of the N instruction must be fullword aligned. For the NC
instruction, L is the length of each operand minus 1.

Resulting Condition Code

Result is 0
Result not 0

W =O

7-10

Program Exceptions

Access (fetch, operand 2, N and NC; fetch and store, operand 1, NI, NC)
Specification (N only)

Programming Note

The AND instruction may be used to set a bit to 0. For this purpose,
the second operand should have Os in all positions corresponding to the
first—operand bits to be set to 0.

7-11

BIT RESET (BRESET)

BRESET D1(Bl) ,M2 (S1)

	M
9D	2

0 8 1

The bit at bit displacement M2 from the high-order bit (bit 0) of the
first operand is set to 0. Bit numbering begins with the high~order bit of
each byte and proceeds through ascending byte locations. The condition code
reflects the value of the specified bit before modification.

Resulting Condition Code

Bit was 0 before operation
Bit was 1 before operation

W N =O

Program Exceptions

Access (store, operand 1)

7-12

BIT SET (BSET)

BSET D1 (B1),M2 (sI)

| | M
| aC [2

I I
| I
| | l |

0 8 16 20 31

The bit at bit displacement M2 from the high-order bit (bit 0) of the
first operand is set to 1. Bit numbering begins with the high-order bit of
each byte and proceeds through ascending byte locations. The condition code
reflects the value of the specified bit before modification.

Resulting Condition Code

Bit was 0 before operation
Bit was 1 before operation

W N =Oo

Program Exceptions

Access (store, operand 1)

BIT TEST (BTEST)

BTEST D1(Bl1),M2 (81)

| | M I
| 9E | 2 |
| | |

0 8 1

[-))
N f— — —
o
w.——_
=

The bit at bit displacement M2 from the high-order bit (bit 0) of the
first operand is tested, and the result is reflected in the condition code.
Bit numbering begins with the high-order bit of each byte and proceeds through
ascending byte locations.

Resulting Condition Code

0 Bit is 0
1 Bit is 1

Program Exceptions

Access (fetch, operand 1)

7-14

This manual is updated by: Addendum 800-1100P0-04.01

BRANCH AND LINK (BALR, BAL)

BALR R1,R2 (RR)

| I R | R |

| 05 | 11 21

| | | |

0 8 12 15

BAL R1,D2(X2,B2) (RX)

| Il R | ¥ | B | D |

I 45 | 1l 21 21 2 |

| | | | | |

0 8 12 16 20 31
BRANCH AND LINK (RELATIVE) (RBAL)

RBAL R1,L2 (RL)

| I R | L |

| 75 I 1 2 |

| | |]

0 8 12 31

The program mask byte of the PCW and the updated instruction address are
stored as 1link information in the general register specified by Rl.
Subsequently, the instruction address is replaced by the branch address. For
BALR, the branch address is the contents of R2; for BAL, it is X2+B2+D2. For
RBAL, the branch address is the sum of the current instruction address and the |
L2 field.

The branch address is determined before the link information is stored.
The link information contains the updated instruction address.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

Programming Note

The link information is stored without branching in the RR format when
the R2 field contains zero.

7-15

This manual is updated by: Addendum 800-1100P0-04.01

BRANCH AND LINK ON CONDITION INDIRECT (BALCI)

BALCI M1,R3,D2(B2) (RS)

| | M |
| 99 | 1]
| |]
0 8 1

R
3

B

| | I

| l I

| | [

2 16 20 31
The updated instruction address is replaced by the branch address if the
state of the condition code 1is as specified by Ml; otherwise, normal
instruction sequencing proceeds with the updated instruction address. If the
branch is taken, the program mask byte of the PCW and the updated instruction

address are stored as link information in the general register specified by R3.

The branch address is determined before the link information is stored.
The three low-order bytes of the word at the location designated by the second
operand address are used as the branch address.

The M1 field is used as a 4-bit mask. The four bits of the mask
correspond, left to right, with the four condition codes are as follows:

Instruction Mask Position Condition
Bit Value Code
8 8 0
9 4 1
10 2 2
11 1 3

The branch is successful whenever the condition code has a corresponding
mask bit of 1.

Operand 2 requires fullword alignment.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2 if the branch is taken)
Specification

Programming Note

This instruction combines a conditional branch and link with an
indirectly specified branch address.

7-16

This manual is updated by: Addendum 800-1100P0-04.01

BRANCH AND LINK STACK (BALS)

BALS S1,D2(X2,B2) (RX)

I b s |

I 81 1|

| l |
0 8 12

-t |— —_—

The relevant stack vector is determined from the S1 field of the
instruction. A branch address is calculated from the second operand field
according to the rules for base—displacement or relative address formation.
The stack pointer is decremented by 4, and the same information BAL would put
in a register, including the updated instruction address, is placed in the
four byte locations starting with the location addressed by the updated stack
pointer. A branch is made to the previously calculated branch address.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow
Access (store, bytes pushed onto stack)
Specification

7-17

This manual is updated by: Addendum 800-1100P0-04.01

BRANCH AND LINK STACK (RELATIVE) (RBALS)

RBALS R1,L2 (RL)

l I R |
| 73 I 1
| I |

0 8 1

|
I
|
2 31

The relevant stack vector is determined from the Rl field of the
instruction. A branch address is calculated as the sum of the current
instruction address and the L2 field. The stack pointer is decremented by 4,
and the same information EAL would put in a register, including the updated
instruction address, is placed in the four byte locations starting with the

location addressed by the updated stack pointer. A branch is made to the
previously calculated branch address.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow
Access (store, bytes pushed onto stack)

7-18

This manual is updated by: Addendum 800-1100P0-04.01

BRANCH ON CONDITION (BCR, BC)

BCR M1,R2 (RR)

| I M | R |

| 07 | 1| 2 |

i | | |

0 8 12 15

BC M1,D2(X2,B2) (RX)

| | M | X | B | D |

| 47 | 1| 2 | 2 | 2 |

| | | | I |

0 8 12 16 20 31
BRANCH ON CONDITION (RELATIVE) (RBC)

RBC M1,L2 (RL)

| I M | |

| 77 | 1| |

| | | |

0 8 12 31

The updated instruction address is replaced by the branch address if the

state of the condition code is as specified by Ml;

otherwise, normal

instruction sequencing proceeds with the updated instruction address. For

BCR, the branch address is contained in R2; for BC, it is X2+B2+D2.

it is the sum of the current instruction address and the L2 field.

The M1l field is used as a 4-bit mask.

The four bits of

correspond, left to right, with the four condition codes as follows:

Instruction Mask Position
Bit Value
8 8
9 4
10 2
11 1

Condition
Code

WN+=O

For RBC,

the mask

The branch is successful whenever the condition code has a corresponding mask

bit of 1.

Resulting Condition Code

The condition code remains unchanged.

7-19

This manual is updated by: Addendum 800-1100P0-04.01

Program Exceptions

None

Programming Notes

When a branch is to be made on more than one condition code, the
pertinent condition codes are specified in the mask as the sum of their mask

position values. A mask of 12, for example, specifies that a branch is to be
made on condition codes 0 or 1.

When all four mask bits are 1ls, that is, when the mask position value is
15, the branch is unconditional. When all four mask bits are Os or when the
R2 field in the RR format contains 0, the branch instruction is equivalent to
a no-operation. For a no-operation BCR the branch address (R2) is ignored.

7-20

This manual is updated by: Addendum 800-1100P0-04.01

BRANCH ON CONDITION INDEXED (RELATIVE) (RBCX)

RBCX M1,L2(X2) (RRL)

| I M |
| 65 I 1
I I |
0 8 1

| |
I |
| |
2 16 31
The updated instruction address is replaced by the branch address if the

state of the condition code is as specified by Ml; otherwise, normal
instruction sequencing proceeds with the updated instruction address.

The branch address is formed by adding the halfword L2 field, the
contents of the general register designated by the X2 field, and the current
instruction address.

The M1 field is used as a 4-bit mask as in the BRANCH ON CONDITION (BC)
instruction.

When the instruction is executed, the current instruction address used
in the effective—address calculation is the address of the EXECUTE instruction.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

7-21

This manual is updated by: Addendum 800-1100P0-04.01

BRANCH ON CONDITION STACK (BCS)

BCS M1,S2 (RS)

| I M |
| o1 I 1|
| I |

0 8 1

The updated instruction address is replaced by the branch address if the
state of the condition code is as specified by Ml; otherwise, normal
instruction sequencing proceeds with the updated instruction address.

The M1l field is wused as a 4-bit mask. The four bits of the mask
correspond, left to right, with the four condition codes as follows:

Instruction Mask Position Condition
Bit Value Code
8 8 4]
9 4 1
10 2 2
11 1 3

The branch is successful whenever the condition code has a corresponding
mask bit of 1.

If the branch is to be taken, the stack 1is referenced and the branch
address 1is obtained from the stack. If the branch is not taken, the stack is
not referenced and no stack violations are detected.

The relevant stack vector is determined from the S2 field of the
instruction, The 24-bit address in the low-order three bytes of the
word—-aligned 4-byte memory area addressed by the contents of the stack pointer
is placed in the current instruction address field in the PCW (i.e., a branch
is made to that location). The stack pointer is then incremented by 4.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, bytes popped from stack)
Specification

Programming Note

This instruction is a BCR that uses the stack.

7-22

BRANCH ON COUNT (BCTR, BCT)

BCTR R1,R2 (RR)
| | R | R |
| 06 1 1 2 |
| | | I
0 8 12 15
BCT R1,D2(X2,B2) RX)
| |l R I X | B | D [
| 46 b1 1 2 1 2 | 2 !
| | I |] |
0 8 12 16 20 31

The contents of the general register specified by Rl are algebraically
reduced by 1. When the result is 0, normal instruction sequencing proceeds
with the wupdated instruction address. When the result is not 0, the

instruction address is replaced by the branch address. The branch address for
BCTR is R2; for BCT it is X2 + B2 + D2.

The branch address is determined prior to the counting operation.
Counting does not change the condition code. The subtraction proceeds as in

fixed-point arithmetic, and all 32 bits of the general register participate in
the operation.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

Programming Notes

An initial count of 1 results in 0, and no branching takes place. An
initial count of 0 results in all 1s and causes branching to be executed.

Counting is performed without branching when the R2 field in the RR
format contains 0.

BRANCH ON COUNT (RELATIVE) (RBCT)

RBCT R1,R2 (RL)

| I R | L |

| 76 | 1 | 2 |

| | I |
0 8 12 31

The sign of the L2 field 1is extended 12 bits to the left, to form a
32-bit signed 2's-complement displacement. The displacement is added to the
current instruction address to form the branch address.

Instruction execution is then identical to the corresponding RX
instruction.

When the instruction is executed, the current instruction address used
in the effective-address calculation is the address of the EXECUTE instruction.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

71-24

This manual is updated by: Addendum 800-1100P0-04.01

BRANCH ON INDEX HIGH (BXH)

BXH R1,R3,D2(B2) (RS)

| Il R I R | B | D]

| 86 | 1] 31 21 2 |

[| | | i |

0 8 12 16 20 31
BRANCH ON INDEX HIGH (RELATIVE) (RBXH)

RBXH R1,R3,L2 (RRL)

| I R | R | L |

| 66 | 11 3] 2 |

| | | | |

0 8 12 16 31

An increment is added to the first operand, and the sum is compared
algebraically with a comparand. Subsequently, the sum is placed in the first
operand location, regardless of whether the branch is taken. When the sum is
high, the instruction address is replaced by the branch address. When the sum
is low or equal, instruction sequencing proceeds with the updated instruction
address. For BXH, the branch address is B2+D2. For RBXH, it is the sum of
the current instruction address (bits 8-31 of the PCW) and the L2 field.

The first operand and the increment are in the registers specified by R1
and R3. The comparand register address is odd and is either greater by 1 than
R3 or equal to R3. The branch address is determined prior to the addition and
comparison.

Overflow caused by the addition is ignored and does not affect the
comparison. Otherwise, the addition and comparison proceed as in fixed-point
arithmetic. All 32 bits of the general registers participate in the
operations, and negative quantities are expressed in 2's-complement notation.
When the first operand and comparand locations coincide, the original register
contents are used as the comparand.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

Programming Note

The name ''branch on index high" indicates that one of the major purposes
of this instruction is the incrementing and testing of an index value. The
increment is algebraic and may be of any magnitude.

7-25

This manual is updated by: Addendum 800-1100P0-04.01

BRANCH ON INDEX LOW OR EQUAL (BXLE)

BXLE R1,R3,D2(B2) (RS)

l I R |
I 87 [
| | |
0 8 1

pood o

An increment is added to the first operand, and the sum is compared
algebraically with a comparand. Subsequently, the sum is placed in the first
operand location, regardless of whether the branch is taken. When the sum is
low or equal, the instruction address is replaced by the branch address. When
the sum is high, normal instruction sequencing proceeds with the updated
instruction address. The branch address is B2+D2.

The first operand and the increment are in the registers specified by Rl
and R3. The comparand register address is odd and is either greater by 1 than
R3 or equal to R3. The branch address is determined prior to the addition and
comparison.

This instruction 1is similar to BRANCH ON INDEX HIGH, except that the
branch is taken when the sum is low or equal compared to the comparand.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

7-26

BRANCH ON INDEX LOW OR EQUAL (RELATIVE) (RBXLE)

RBXLE R1,R3,L2 (RRL)
I I
| 67 I 1
| |

l L |
l 2 I
l |
16 31

0 8

The branch address is formed by adding the signed halfword L2 field and
the current instruction address. Instruction execution is then identical to
the corresponding RS instruction.

When the instruction is executed, the current instruction address used
in the effective-address calculation is the address of the EXECUTE instruction.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

COMPARE (CR, C)

CR R1,R2 (RR)
I Il R | R |
| 19 I 11 2 |
I | | |
0 8 12 15
C R1,D2(X2,B2) (RX)
| I R | X | B | D |
| 59 11 2 1 21 2 |
I | | | | |
0 8 12 16 20 31

The first operand is compared with the second operand, and the result
determines the setting of the condition code. The second operand of the C
instruction must be fullword aligned.

Comparison is algebraic, treating both comparands as 32-bit signed
integers. Operands in registers or storage are not changed.

Resulting Condition Code

Operands are equal
First operand is low
First operand is high

wWwN = O

Program Exceptions

Access (fetch, Operand 2 of C only)
Specification (C only)

7-28

COMPARE (FLOATING-POINT) (CDR, CER, CD, CE)

CDR R1,R2 (RR, Long)

| TR | R |

| 29 fol 11 2 |

| [1 I |

0 8,9 12 15

CER R1,R2 (RR, Short)

] TR | R |

| 29 11} 11 2 | (optional)

| | | I |

0 8,9 12 15

CD R1,D2(X2,B2) (RX, Long)

TR I ¥	B	D			
69 lol 11 2	2	2			
0 8,9 12 16 20 31
CE R1,D2(xX2,B2) (RX, Short)

| TR I X | B | D |
| 69 i 14 2 1 2 | 2 | (optional)
| |1 |] |]
0 8,9 12 16 20 31

The first operand is compared with the second operand, and the condition
code indicates the result.

Comparison is algebraic, taking into account the sign, fraction, and
exponent of each number. An exponent inequality is not decisive for magnitude
determination, since the fractions may have different numbers of 1leading Os.
An equality is established by following the rules for normalized
floating-point subtraction. When the intermediate sum, including the guard
digit, is 0, the operands are equal. Neither operand is changed as a result
of the operation.

An exponent-overflow, exponent—underflow, or lost significance exception
cannot occur.

Operand 2 of the CD instruction must be fullword aligned.

Resulting Condition Code

Operands are equal
First operand is low
First operand is high

wWN =O

7-29

Program Exceptions

Specification
Access

Programming Note

Condition code 0 (equal comparison)

is

set when numbers with

fractions are compared, even when they differ in sign or characteristic.

z2ero

This manual is updated by: Addendum 800-1100P0-04.01

COMPARE DECIMAL (CP)

cP D1(L1,Bl1),D2(L2,B2) (sS)

| i L |
| F9 I 1 |
| | |
0 8 1

The first operand is compared with the second, and the condition code
indicates the comparison result.

Comparison proceeds right to left, taking into account the sign and all
digits of both operands. All digits are checked for validity. If the fields
are unequal in length, the shorter is extended with Os on the most significant
end. A field with a zero value and positive sign is considered equal to a
field with a zero value but negative sign. Neither operand is changed as a
result of the operation. Overflow camnot occur in this operation.

The first and second fields may overlap when their least significant
bytes coincide. It is possible, therefore, to compare a number to itself.

L1l and L2 are the field lengths in bytes, minus 1,

Resulting Condition Code

Operands equal
First operand is low
First operand is high

WNHO

Program Exceptions

Access (fetch, operands 1 and 2)
Data

Programming Note

The COMPARE DECIMAL instruction is the only COMPARE instruction that
processes from right to left, taking signs, Os, and invalid characters into
account, and extending variable~length fields when they are unequal in length.

7-31

This manual is updated by: Addendum 800-1100P0-04.01

COMPARE HALFWORD (CH)

CH R1,D2(X2,B2) (RX)

| I R |
] 49 I 1 |
| | |

0 8 1

b | —

The first operand is compared with the second operand, and the result
determines the setting of the condition code. The second operand is two bytes
in length, must be halfword aligned, and is considered to be a 16-bit signed
integer.

The second operand is expanded to 32 bits before the comparison by
propagating the sign-bit value through the 16 high-order bit positions.

Comparison is algebraic, treating both comparands as 32-bit signed
integers. Operands in registers or storage are not changed.

Resulting Condition Code

Operands are equal
First operand is low
First operand is high

WO

Program Exceptions

Access (fetch, operand 2)
Specification

7-32

COMPARE LOGICAL (CLR, CL, CLI, CLC)

CLR R1,R2 (RR)

| | R | R |
| 15 I 1 1 2 |
| | | |
0 8 12 15
CL R1,D2(X2,B2) (RX)
Il R	X	B	D	
55 1 1 2 1 2	2			
0 8 12 16 20 31				
CLI D1(Bl),I2 (81)				
]		B	D	
95	I	1	1	
0 8 16 20 31				
CLCc D1(L,B1),D2(B2) (sS8)				
[[I B	//pl	l B I/ /7 D		
I D5 I L I 1	--1	2	-=- 2]	
I I L 7/	I/ /			
0 8 16 20 32 36 47

The first operand is compared with the second operand, and the result is
indicated in the condition code. For the CL instruction, the second operand
requires fullword alignment.

The instructions allow comparisons that are register—to-register,
storage-to-register, instruction-to-storage, and storage-to—storage. The

length of the CLC instruction is stored as the actual length minus 1 in the L1
field.

Comparison 1is unsigned binary, and all codes are valid. The operation
proceeds left to right and ends as soon as an inequality is found or the end
of the fields is reached. However, when part of an operand in the CLC
instruction is specified in an unavailable location, the operation may be
terminated by an addressing exception.

Resulting Condition Code

0 Operands are equal
1 First operand is low
2 First operand is high
3

7-33

Program Exceptions

Specification (CL only)
Access (fetch, operand 2, CL and CLC; fetch, operand 1, CLI, CLC)

Programming Note

The COMPARE LOGICAL instructions treat all bits alike as part of an
unsigned binary quantity. In variable-length operation, comparison is left to
right and may extend to the full specified field length. The operation may be
used to compare unsigned packed decimal fields or alphanumeric information in
any code that has a collating sequence based on ascending or descending binary
values. For example, ASCII has a collating sequence based on ascending binary
values.

COMPARE LOGICAL CHARACTERS UNDER MASK (CLM)

CLM R1,M3,D2(B2) (RS)

| I R |
I BD 1|
| l I

0 8 1

The second operand is compared with the first operand under control of a
mask, and the result is indicated in the condition code.

The contents of the M3 field (bit positions 12-15) are used as a mask.
The four bits of the mask, left to right, correspond with the four bytes, left
to right, of the general register designated by the Rl field. The byte
positions corresponding to ls in the mask are considered a contiguous field
and are compared with the second operand. The second operand is a contiguous
field in memory, starting at the second operand address and equal in length to
the number of 1ls in the mask. The bytes in the general register corresponding
to 0Os in the mask do not participate in the operation. The comparison is
performed with the operands regarded as binary unsigned quantities, with all
codes valid. The operation proceeds left to right.

When the mask is not 0, exceptions associated with storage-operand
access are recognized only for the number of bytes specified by the mask.
However, when part of the designated storage operand is in an 1inaccessible
location but the operation can be completed by using the accessible operand
parts, whether or not the exception for the inaccessible part is indicated 1is
unpredictable. When the mask is 0, access exceptions are recognized for one
byte.

Resulting Condition Code

Selected bytes are equal, or mask is O
Selected field of first operand is low
Selected field of first operand is high

wWwN+=O

Program Exceptions

Access (fetch, operand 2)

COMPARE LOGICAL LONG (CLCL)

CLCL R1,R2 (RR)
| | R
| OF | 1
| I

IR |
I 2 |
| |
12 15

0 8

The first operand is compared with the second operand, and the result is
indicated in the condition code.

The Rl and R2 fields each designate an even-odd pair of general
registers and must each specify an even-numbered register; otherwise, a
specification exception is recognized.

The addresses of the leftmost bytes of the first and second operands,
respectively, are specified by bits 8-31 of general registers Rl and R2.
Numbers of bytes in the first and second operands, respectively, are given by
bits 8-31 of general registers R141 and R2+1. Bits O0-7 of register R2+1
contain the padding character. Bits 0-7 of registers R1l, R1+l, and R2 are
ignored.

The comparison is performed with the operands regarded as binary
unsigned quantities, with all codes valid. The comparison starts at the
high-order end of both fields and proceeds to the right. The operation ends
as soon as an inequality is detected or the end of the longer operand is
reached. If the operands are not of the same length, the shorter operand is
extended with the padding character for purposes of comparison.

If both operands are of zero length, the operands are considered equal.

The execution of the instruction is interruptible. When an interruption
occurs after a unit of operation other than the 1last one, the contents of
registers R1+l and R2+1 are decremented by the number of bytes compared, and
the contents of registers Rl and R? are incremented by the same number, so
that the instruction, when re-executed, resumes at the point of interruption.
The high—order bytes of registers R1 and R2 are set to 0; the contents of the
high-order byte of registers R1+l and R2+1 remain unchanged. If the operation
is interrupted after the shorter operand has been exhausted, the count field
pertaining to the shorter operand is 0 and its address is updated accordingly.

7-36

The instruction may be refetched from main storage even in the absence
of an interruption during execution.

If the operation ends because of a mismatch, the count and address
fields at completion identify the byte of mismatch. The contents of bit
positions 8-31 of registers R1l+l and R2+1 are decremented by the number of
bytes that matched, unless the mismatch occurred with the padding character,
in which case the count field for the shorter operand is set to 0. The
contents of bit positions 8-31 of registers R1 and R2 are incremented by the
amounts by which the corresponding count fields were reduced. If the count
fields of both operands are made 0 at completion and the addresses are
incremented by the corresponding count values, the contents of bit positions
0-7 of registers Rl and R2 are set to 0, even in the case when one or both of
the original count values are 0. The contents of bit positions 0-7 of
registers R1+1 and R2+1 remain unchanged.

When part of an operand is designated in an inaccessible location but
the operation can be completed by using the available operand parts, it is
unpredictable whether an access exception for the inaccessible part is
recognized.

When the count field for an operand has the value 0, no access
exceptions are recognized for that operand.

Resulting Condition Code:

0 Operands are equal, or both fields have zero length
1 First operand is low

2 First operand is high
3

Program Exceptions

Access (fetch, operands 1 and 2)
Specification

Programming Notes

When the contents of the Rl and R2 fields are the same, the condition
code 1is set to 0, but protection and addressing exceptions do not necessarily
occur as called for by the operand designation.

Special precautions should be taken when COMPARE LOGICAL LONG is made
the subject of EXECUTE. See the programming notes under EXECUTE.

See also the programming notes under MOVE LONG.

7-37

COMPARE LOGICAL WITH PAD (CLPC)

CLPC D1(L1,B1),D2(L2,B2),I3 (SSI)

| | L I 11 L |IB I//D | B | / /D |
I ES | 11 3| 2 | 1] 1l 2 | 2 |
| | | I | i/ /1 |l 7/ I
0 8 16 24 32 36 48 52 63

The first operand is compared with the second operand, and the result is
indicated in the condition code. Comparison is binary, and all codes are
valid. All bits are treated alike as part of an unsigned binary quantity.
The operation proceeds left to right and ends as soon as an inequality is
found. L1 and L2 are the operand lengths, minus 1. If operand lengths L1 and
L2 are unequal, the shorter operand is extended on the right for purposes of

comparison by replication of the character specified in the I3 field of the
instruction.

The bytes compared are not modified.

Resulting Condition Code

Operands are equal
First operand is low
First operand is high

wWN =0

Program Exceptions

Access (fetch, operands 1 and 2)

7-38

COMPRESS STRING (COMP)

COMP D1 (R1,Bl),D2(R2,B2) (sS)
] | R

| F6 | 1
| |

// D
1

| B

|
/1 |

3

2

|
I |
| !/ / I
0 8 2 36 47
The second operand is placed in the first operand location in a

compressed format.

The 1lengths of operands 1 and 2 are taken from registers Rl and R2,
respectively. If the value in either register is 0 or greater than 2048, the
instruction terminates immediately with condition code 2, and operand 1 is not
changed.

The resulting string in the first operand location contains one or more
substrings, each consisting of a length byte followed by one or more data
bytes. The length byte format is as follows:

Bit 0 = 0 Uncompressed substring follows
=1 Compressed substring follows
Bits 1-7 Length of original substring minus 1

A compressed substring is always two bytes in length, and consists of
the length byte followed by a byte to be replicated when recreating the
original string. All bytes repeated three or more times are compressed; pairs
of identical bytes are not compressed.

Resulting Condition Code

0 String successfully compressed; length of compressed string placed
in register R1.

1 Compressed string too 1long for operahd 1; register R1 unchanged;
data in operand 1 unreliable.

2 Length in Rl or R2 is 0 or greater than 2048; instruction
suppressed; register Rl unchanged.

3 ——

Program Exceptions

Access (fetch, operand 2; store, operand 1)

Programming Note

Pairs are not compressed. Thus hexadecimal 'AABBCCCCDD' becomes
'O4AABBCCCCDD' rather than '01AABB81CCOODD'.

P
CONTROL I/0 (CIO)

CI0O Rl (RR)
] I R 1//71117]
| oc |1 0/771171
| | 17411171
0 8 12 15

CONTROL I/0 causes the addressed device or I/0 processor to perform
device-dependent or processor—-dependent actions. Not all devices and I/O
processors accept CIO as a valid request. When issued for a device for which
it is not supported, CIO will return condition code 0, and program execution
will continue.

Bits 24 to 31 of Rl identify the device. Bits 0 to 23 are ignored.
The CIO instruction is discussed in greater detail in Chapter 8.

Resulting Condition Code

0 I/0 operation accepted or device for which CI0O not supported,
execution proceeding

1 Device busy with previous operation, or interruption other than IOP
NOW READY is pending

2 IOP busy
3 IOP not operational

Program Exceptions

Privileged operation

Programming Note

Telecommunications (TC) IOPs use the SIO instruction instead of CIO for
memory diagnostic operations.

7-40

This manual is updated by: Addendum 800-1100P0-04.01

CONVERT DECIMAL (FLOATING-POINT) TO PACKED DECIMAL (CVP)

CvP R1,D2(X2,B2) (RX)

	R
TF	1

0 8 1

X
2

B
2

! | |

I I |

I | |
2 16 20 31

The decimal floating-point number in the floating-point register
designated by Rl is converted to packed decimal format, and the result is
stored in the location specified by the second operand. If the second operand

address is not word aligned, a specification exrception will occur.

Absolute values greater than 9 99 99 99 99 99 99 99 result in a decimal
overflow, and cause a program interruption if the decimal overflow mask bit is
1. In the event of an overflow, the low—order 15 digits plus the sign digit
are stored in the second operand.

Resulting Condition Code

Result is 0

Result is less than 0
Result is greater than 0
Overflow

WN-HO

Program Exceptiong

Specification
Data

Decimal overflow
Access

7-40.1

This manual is updated by: Addendum 800-1100P0-04.01

CONVERT PACKED DECIMAL TO DECIMAL (FLOATING-POINT) (CVQ)

cvQ R1,D2 (X2,B2) (RX)

| I R |
| 7E | 1 |
| I |

0 8 1

il PR

The 8~byte packed decimal value in the second operand is converted to a
normalized decimal floating-point number and placed in the floating-point
register designated by R1.

The second operand address must be word aligned, or else a specification
exception occurs.

Exponent overflow and exponent underflow cannot occur.
No significance exception will be taken for a zero fraction.

Resulting Condition Code

Result is 0
Result is less than 0
Result is greater than 0

WN=O

Program Exceptions

Specification
Data
Access

7-40.2

This manual is updated by: Addendum 800-1100P0-04.01

CONVERT TO BINARY (CVB)

CVB R1,D2(X2,B2) (RX)

	R
4F	1
0 8 1

b | — —

The radix of the second operand is changed from decimal to binary. The
number is treated as a right-aligned signed integer both before and after
conversion. The second operand has the packed decimal data format and is
checked for valid digit codes. Improper codes cause a program interruption
with interruption code 07 (data exception). The decimal operand occupies
eight bytes in memory and must be fullword aligned. If the decimal operand is
not properly aligned, the instruction will be suppressed and will cause a
specification exception. The 1low-order four bits of the field represent the
sign. The remaining 60 bits contain 15 binary-coded-decimal digits in true
notation. The result of the conversion is placed in the general register
specified by R1. The maximum number that can be converted and still be
contained in a 32-bit register is 2,147,483,647; the minimum number is
-2,147,483,648. For any decimal number outside this range, the operation is
completed by placing the 32 low-order binary bits in the register; a
fixed-point divide exception exists, and a program interruption follows. In

the case of a negative second operand, the low-order part is in 2's-complement
notation.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2)
Data

Fixed-point divide
Specification

7-41

This manual is updated by: Addendum 800-1 100P0-04.01

CONVERT TO DECIMAL (CVD)

CVD R1,D2(X2,B2) (RX)

| I R |
i 4E | 1}
| | |
0 8 1

b | — e

The radix of the first operand is changed from binary to decimal, and
the result is stored in the second operand location. The number is treated as
a right-aligned signed integer both before and after conversion.

The result is placed in the memory location designated by the second
operand and has the packed decimal format. The second operand must occupy
eight bytes and must be fullword aligned. If the second operand 1is not
properly aligned, the instruction will be suppressed and will cause a
specification exception. A positive sign is encoded as 1111; a negative sign
is encoded as 1101. The remaining 60 bits contain 15 binary coded decimal
digits in true notation.

Since 15 decimal digits are available for the decimal equivalent of 31
bits, an overflow cannot occur.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)
Specification

7-42

CONVERT FLOATING-POINT TO INTEGER (CDI)

CDI Rl, R2 (RR)

| | R |

| 2F b1 |

| | | |
0 8 1

The integer portion of the floating-point number in the floating-point
register designated by the second operand is converted to a binary integer in
2's-complement form, and placed in the general register designated by the
first operand. Any binary fraction digits are discarded (right-truncated) in
the fixed-point integer result. Values greater than (2**31)-1 or less than
~(2%*31) result in overflow, and cause a program interruption when the
fixed-point overflow mask bit is 1. In the event of overflow, the low-order
32 bits of the correct result are placed in the result register.

Resulting Condition Code

Result is 0

Result is less than 0
Result is greater than O
Overflow

wNn - O

Program Exceptions

Fixed-point overflow
Specification

Programming Note

To save the fraction before conversion, multiply the floating-point
number by that power of 10 corresponding to the degree of precision desired.

CONVERT INTEGER TO FLOATING-POINT (CID)

CID R1l, R2 - (RR)

I | R |
| 2E I 1 |
| | I
0 8 12 15

The binary integer in the general register designated by the second
operand is converted to a normalized floating-point number and placed in the
floating~point register designated by the first operand. Exponent overflow
and exponent underflow cannot occur. Binary 0 is converted to true
floating-point 0.

Resulting Condition Code

Result is 0
Result is less than 0
Result is greater than 0

WO

Program Exceptions

Specification

Programming Note

A significance interrupt will never occur.

DECREMENT AND INSPECT SEMAPHORE (DSEM)

DSEM R1,D2(X3,B3) ®x)

| | R |
| 51 I 1 |
| I |

0 8 1

The byte addressed by contents of register Rl is treated as a
2's-complement binary number, and 1 is subtracted from it. If the result is O
or greater, the next instruction is taken. If the result is less than 0, a
binary 1 is added to the high-order byte of the word addressed by the combined
second and third operands (D2(X3,B3)), without regard for possible overflow.
An enqueuing operation occurs exactly as if the instruction were an ENQ
instruction with the same Rl, B3, X3, and D2 fields.

If a result of =129 is developed by the subtraction, a fixed-point
overflow 1is indicated. When the fixed-point overflow flag is 1, the exception

will be taken.

If there is a fixed-point overflow, the count is updated and the rest of
the effects of the instruction are suppressed.

Data fields referenced by this instruction must be aligned as is
required for the ENQ instruction.

Resulting Condition Code

Result of subtraction is 0

Result of subtraction is less than 0
Result of subtraction is greater than 0
Overflow

W +=O

Program Exceptions

Specification
Fixed-point overflow

Access (fetch and store, operand 1; fetch and store, combined operands 2
and 3 as for ENQ instruction)

7-45

DEQUEUE (DEQ)

DEQ R1,D2(B3) (RS)

I R /111711 B	D
A0 b 1717171 3	2
	1//1111]]
0 8 12 16 20 31

The first operand addresses a doubleword First—In First-Out (FIFO) queue
which consists of a head word and a tail word. When the queue is empty, both
the head and the tail words are null (the last 24 bits of each of these words
are binary O0s). The dequeuing operation checks for an empty queue first, and
if the queue is empty, the third operand is made null and a condition code of
0 is set. If the queue is not empty, the address of the storage block
indicated by the head word is placed in the third operand and the chain word
at displacement (D2) in the storage block being dequeued is placed in the head
word and zeroed in the storage block. If the new head word is null, the queue
is empty, and the tail word is also made null. A condition code of 1 is set
to indicate that a storage block has been dequeued. The DEQ instruction does
not modify or test the first byte of the head or tail pointers or of the chain .
word.

An addressing exception is recognized and the operation is terminated 1if
the first operand (queue) address is invalid. Both the queue addresses and
the chain word 1location in the dequeued storage block are checked for
protection exceptions: the instruction is suppressed if a violation is
recognized. A specification exception is recognized and the operation is
terminated if one but not both of the head/tail words is null, or if both
head/tail words point to the same block but the chain word in the block is not
null.

A specification exception is recognized if the head/tail area is not
doubleword aligned or if any chain word referenced is not fullword aligned.

Resulting Condition Code

No storage blocks queued
Storage block dequeued and queue updated

W= O

Program Exceptions

Access (fetch and store, operand 1 and combined operands 2 and 3)
Specification

7-46

DESTACK (DESK)

DESK R1,D2(B3) (RS)

I R 1///771/1 B	D	
Al I 1 17777171 3	2	
	17717111	
0 8 12 16 20 31

The first operand addresses a LIFO stack pointer to the most recently
entered storage block in the stack. When the stack is empty, the stack
pointer word is null (the last 24 bits of this word are binary Os). The third
operand defines a register which is to receive the pointer to the destacked
storage block, and the second operand defines the displacement of the chain
word in the storage blocks in the stack.

The unstacking operation checks for a null stack first, and if the stack
is empty, the third operand is made 0 and a condition code of 0 1is set. If
the stack 1is not empty, the address of the storage block indicated by the
stack pointer word is placed in the third operand, the high-order byte of the
third operand is zeroed, the value found in the low—order three bytes of the
chain word of the destacked storage block is placed in the low-order three
bytes of the stack pointer word, and the chain word is made null. The
condition code is set to 1 to indicate that a storage block has been
destacked. The DESK instruction does not modify or test the first byte of the
stack pointer or chain word.

If the first operand (stack) address is invalid, an addressing exception
is recognized, and the operation is terminated. The stack address and the
chain word address in the destacked storage block are checked for protection
exceptions: the instruction is suppressed if a violation is recognized.

If the stack address is not in a fullword-aligned location, or if any
chain word that the instruction references is mnot fullword aligned, a

specification exception is recognized.

Resulting Condition Code

No storage blocks stacked
Storage block destacked and stack updated

WN O

Program Exceptions

Access (fetch and store, operand 1 and combined operands 2 and 3)
Specification

7-47

DIVIDE (DR, D)

DR R1,R2 (RR)
I I R | R |
| 1D b1 1 2 |
| | | |
0 8 12 15
D R1,D2(X2,B2) (RX)
I I R | x | B | D]
] 5D I 11 2 1 2 | 2 |
| I | I | |
0 8 12 16 20 31

The dividend (first operand) is divided by the divisor (second operand)
and replaced by the quotient and remainder.

The dividend is a 64-bit signed integer and occupies the pair of
registers beginning with the register specified by the R1 field of the
instruction. A 32-bit signed remainder and a 32-bit signed quotient replace
the dividend in register Rl and the register following R1l, respectively. The
divisor is a 32-bit signed integer.

The Rl field of the instruction specifies an even/odd pair of registers
and must contain an even register address. A specification exception occurs
when Rl is odd. Operand 2 of the D instruction requires fullword alignment.

The sign of the quotient is determined by the rules of algebra. The
remainder has the same sign as the dividend, except that a zero quotient or a
zero remainder is always positive. All operands and results are treated as
signed integers. When the relative magnitudes of dividend and divisor are
such that the quotient cannot be expressed as a 32-bit signed integer, a
fixed-point divide exception is recognized (a program interruption occurs, no
division takes place, and the dividend remains unchanged in the general
registers).

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2 of D only)
Fixed-point divide
Specification

DIVIDE (FLOATING-POINT) (DDR, DER, DD, DE)

DDR R1,R2 (RR, Long)

| I1T R | R |

| 2D ol 11 2 |

| | 1 I I

0 8,9 12 15

DER R1,R2 (RR, Short)

| IfYR | R |

| 2D 11l 11 2 1| (optional)

| | | | |

0 8,9 12 15

DD R1,D2(X2,B2) (RX, Long)

TR I X	B	D		
6D lol 11 2	2	2		
				[
0 8,9 12 16 20 31
DE R1,D2(X2,B2) (RX, Short)

| TR I X | B | D |
| 6D a1 2 1 2 | 2 | (optional)
| | | | | | |
0 8,9 12 16 20 31

The dividend (the first operand) is divided by the divisor (the second
operand) and replaced by the quotient. No remainder is preserved. Operand 2
of the DD and DE instructions must be fullword aligned. -

A floating-point division consists of a characteristic subtraction and a
fraction division. The difference between the dividend and divisor
characteristics plus 64 is used as an intermediate quotient characteristic.
The sign of the quotient is determined by the rules of algebra.

The quotient fraction is normalized by prenormalizing the operands.
Postnormalizing the intermediate quotient is never necessary, but a right-
shift may be called for. The intermediate—quotient characteristic is adjusted
for the shifts. All dividend fraction digits participate in forming the
quotient, even if the normalized dividend fraction is larger than the

normalized divisor fraction. The quotient fraction 1is truncated to the
desired number of digits.

A program interruption for exponent overflow occurs when the
final-quotient characteristic exceeds 127. The operation is completed, the
fraction 1is correct and normalized, the sign is correct, and the
characteristic is smaller by 128 than the correct characteristic.

7-49

I1f the final quotient characteristic is less than 0 and the exponent
underflow mask bit in the PCW is 1, a program interruption for exponent
underflow occurs. The fraction is correct and normalized, the sign is
correct, and the characteristic is larger by 128 than the correct
characteristic. If the corresponding mask bit is not 1, the result is made a
true 0. VUnderflow is not signaled for the intermediate quotient or for the
operand characteristics during prenormalization.

When division by a divisor with zero fraction 1is attempted, the
operation 1is suppressed. The dividend remains unchanged, and a program
interruption for floating-point divide occurs. When the dividend fraction is
0, the quotient fraction will be 0. The quotient sign and characteristic are
made 0, yielding a true zero result without taking the program interruption
for exponent underflow and exponent overflow. The program interruption for
significance is never taken for division.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Exponent overflow
Exponent underflow
Floating-point divide
Access

7-50

DIVIDE DECIMAL (DP)

DP D1(L1,B1),D2(L2,B2) (88)

| I L |
| FD [
| I |

0 8 1

L
2

[
I
I
2 16

The dividend (the first operand) is divided by the divisor (the second
operand) and replaced by the quotient and remainder.

The quotient field is placed leftmost in the first operand field. The
remainder field is placed rightmost in the first operand field and has a size
equal to the divisor size. Together, the quotient and remainder occupy the
entire dividend field; therefore, the address of the quotient field 1is the
address of the first operand. L1 and L2 are the field lengths in bytes, minus
1. The size of the quotient field in bytes is L1 - L2, When the divisor
length code (L2) is larger than 7 (15 digits and sign) or is greater than or
equal to the dividend length code (L1), a specification e=xception |is
recognized. The operation is suppressed, and a program interruption occurs.

If division by 0 is attempted, a decimal divide exception is recognized
and the operation is terminated.

The dividend, divisor, quotient, and remainder are all signed integers,
right-aligned in their fields. The sign of the quotient is determined by the
rules of algebra from dividend and divisor signs. The sign of the remainder
has the same value as the dividend sign.

Division is algebraic, taking into account the sign and all digits of
both operands. All digits are checked for validity. If necessary, Os are
supplied for either operand on the most significant end. When the first
operand field (L1) is too short to contain all significant digits of the
quotient, the operation is terminated and the overflow condition is set.

A quotient larger than the number of digits allowed is recognized as a
decimal divide exception. The operation is terminated.

The divisor and dividend fields may overlap if their 1least significant
bytes coincide.

7-51

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store operand 1, fetch operand 2)
Data

Decimal divide

Specification

Programming Notes

The maximum dividend size is 31 digits plus sign. Since the smallest
remainder size is 1 digit and sign, the maximum quotient size is 29 digits and
sign.

The condition for an overflow exception can be determined by a trial
subtraction. The 1leftmost digit of the divisor field is aligned with the
second-to-leftmost digit of the dividend field. When the divisor, so aligned,
is less than or equal to the dividend, an overflow exception is indicated.

7-52

This manual is updated by: Addendum 800-1100P0O-04.01

DIVIDE DECIMAL (FLOATING-POINT) (DQR, DQ)

DQR R1,R2 (RR)
| | R | R |
| 3D 1 1 2 |
| | |]
0 8 12 15
DQ R1,D2 (X2,B2) ®X)
| | R 1 X | B] D |
| 7D | 1 | 2 | 2 | 2 i
| | | | | |
0 8 12 16 20 31

The dividend (the first operand) is divided by the divisor (the second
operand), and the quotient replaces the first operand. Any remainder is
discarded. Fullword alignment is required.

A decimal floating-point division <consists of a characteristic
subtraction and a fraction division. The difference between the dividend and
divisor characteristics plus 64 is used as an intermediate quotient
characteristic, The sign of the quotient is determined by the rules of
algebra.

The quotient fraction is normalized by prenormalizing the operands.
Postnormalizing the intermediate quotient 1is never necessary, but a
right-shift may be called for. The intermediate—quotient characteristic is
adjusted for the shifts. The quotient fraction is truncated to 14 digits.

A program interruption for exponent overflow occurs when the
final—-quotient characteristic exceeds 127. The operation is completed, the
fraction is correct and normalized, the sign is correct, and the
characteristic is 128 smaller than the correct characteristic.

If the final quotient characteristic is less than zero and the exponent
underflow mask bit is 1, a program interruption for exponent underflow
occurs. The fraction is correct and normalized, the sign is correct, and the
characteristic is 128 1larger than the correct characteristic. If the
corresponding mask bit is 0, the result is made a true zero. Underflow cannot
occur during prenormalization.

When division by a divisor with =zero fraction is attempted, the
operation is suppressed. The dividend remains unchanged, and a program
interruption for floating-point divide occurs. When the dividend fraction is
zero, the quotient result is made a true zero without taking a program
interruption (for exponent underflow or overflow). The program interruption
for significance is never taken for division.

7-52.1

This manual is updated by: Addendum 800-1100P0-04.01

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification

Data

Exponent overflow
Exponent underflow
Access (DQ only)
Floating-point divide

7-52.2

EDIT (ED)

ED D1(L,Bl1),D2(B2) (ss)

| | I B |/ /Dl B I/ /D |
| DE | L I 1 | =-=-11 2 |-- 2
| I | P 7/ | i/ / |
0 8 16 20 32 36 47

The format of the source (the second operand) is changed from packed to
zoned, and is modified under control of the pattern (the first operand). The
edited result replaces the pattern.

Editing includes sign and punctuation control, and the suppressing and
protecting of leading Os. It also facilitates programmed blanking of all-zero
fields. Numeric information in the source may be interspersed with text from
the pattern.

The length field applies to the pattern (the first operand). L is equal
to the pattern length minus 1. The pattern has the zoned format and may
contain any character. The source (the second operand) has the packed
format. The leftmost four bits of a source byte must specify a decimal digit
code (0000-1001); a code of 1010-1111 is recognized as a data exception and
causes a program interruption. The rightmost four bits may specify either a
sign or a decimal digit. Overlapping pattern and source fields give
unpredictable results.

During the editing process, each character of the patterm is affected in
one of three ways:

1. It is left unchanged.
2. It is replaced by a source digit expanded to zoned format.

3. It is replaced by the first character in the pattern, called the
fill character.

Which of the three actions takes place is determined by one or more of

the following: the state of the significance indicator, the type of the
pattern character, and whether the source digit examined is 0.

7-53

Significance Indicator

The significance indicator is a bit that by its state (on or off)
indicates the significance or nonsignificance, respectively, of subsequent
source digits or message characters. Significant source digits replace their
corresponding digit selectors or significance starters in the result.
Significant message characters remain unchanged in the result.

The significance indicator indicates also the negative (on) or positive
(off) value of the source, and is used as one factor in the setting of the
condition code.

The indicator is set to the off state if it is not already so set,
either at the start of the editing operation or when a source digit in the
high-order part of a byte exhausts the digit selectors and significance
starters of the pattern and the low~-order part of the same byte does not
contain 1101.

The indicator is set to the on state, if it is not already so set, when
a significance starter or immediate significance starter is encountered whose
source digit is a valid decimal digit, or when a digit selector is encountered
whose source digit is a nonzero decimal digit, provided in either instance
that the source byte does not have a plus code in the four low-order bit
positions,

In all other situations, the indicator is not changed. A minus sign
code has no effect on the significance indicator.

Pattern Characters

There are five types of pattern characters: fill characters, digit
selectors, significance starters, immediate significance starters, and message
characters. Their coding is presented in Table 7-1.

Table 7-1. Pattern Character Coding

Binary Hexadecimal
Pattern Character Code Code
Fill character Any Any
Digit selector 0001 0000 10
Significance starter 0001 0001 11
Immediate significance starter 0001 0010 12
Message character Any other Any other

7-54

The £fill character is the first character of the patterm. It may have
any code and may concurrently specify a control function. 1If this character
is a digit selector, significance starter, or immediate significance starter,
the indicated editing action is taken after the code has been assigned to the
£ill character.

The digit selector makes source digits appear as in the source field,
unless the significance indicator is off.

The significance starter functions as a digit selector, except that it
turns on the significance indicator after processing its corresponding source
digit.

An immediate significance starter functions as a significance starter,
except that it turns on the significance indicator before processing its
source digit.

Message characters in the pattern are replaced by the fill character, or
they remain unchanged in the result, depending on the state of the
significance indicator. They may thus be used for padding, punctuation, or
text in the significant portion of a field or for the insertion of
sign—-dependent symbols.

The Edit Operation

The detection of a digit selector, significance starter, or immediate
significance starter in the pattern causes an examination to be made of the
significance indicator and of a source digit. As a result, either the
expanded source digit or the fill character, as appropriate, is selected to
replace the pattern character. Additionally, encountering a digit selector,
significance starter, or immediate significance starter may cause the
significance indicator to be changed.

Each time a digit selector, significance starter, or immediate
significance starter is encountered in the pattern, a new source digit is
examined for placement in the pattern field. The source digit either is zoned
and replaces the pattern character or is disregarded. When a code not between
0000 and 1001 is detected in the four high-order bit positions, the operation
is terminated with a data exception.

7-55

The source digits are selected one byte at a time, and a source byte is
fetched for inspection only once during an editing operation. Each source
digit is examined once and only once for a zero value. The leftmost four bits
of each byte are examined first, and the rightmost four bits, when they
represent a decimal-digit code, remain available for the next patterm
character that calls for a digit examination. Source digits are examined
until the digit selectors, significance starters, and immediate significance
starters of the pattern are exhausted. If more than 32 digits must be
examined, or if a source digit with codes 1010 through 1111 is examined in
response to a digit selector, significance starter, or immediate significance
starter, the operation is terminated with a data exception.

When the source digit is stored in the result, its code is expanded from
the packed to the zoned format by attaching the zone code 0011.

The field resulting from an editing operation replaces and is equal in
length to the pattern. It is composed of pattern characters, fill characters,
and zoned source digits.

If the pattern character is a message character and the significance
indicator is on, the message character remains unchanged in the result. If
the significance indicator is off when a message character is encountered in
the pattern, the fill character replaces the pattern character in the result.

If a digit selector or significance starter is encountered in the
pattern when the significance indicator is off and the source digit is 0, the
source digit is considered nonsignificant, and the fill character replaces the
pattern character. If an immediate significance starter is encountered in the
pattern with the significance indicator off and the source digit 0, the source
digit is considered significant, is zoned, and replaces the pattern character
in the result. If a digit selector, significance starter, or immediate
significance starter is encountered either with the significance indicator on
or with a nonzero decimal source digit, the source digit is considered
significant, is zoned, and replaces the pattern character in the result.

Result Conditions. All digits examined are tested for the code 0000. The
sign of the field edited and whether all source digits in the field contain Os
are recorded in the condition code at the completion of the editing operation.

The condition code is made 0 when the field is 0, that 1is, when all
source digits examined are 0s. When the pattern has no digit selectors or
significance starters, the source is not examined, and the condition code is
made O.

When the field edited is nonzero and the significance indicator is on,
the condition code is made 1 to indicate a result field less than O.

When the field edited is nonzero and the significance indicator is off,
the condition code is made 2 to indicate a result field is greater than 0.

S ry. Table 7-2 summarizes the functions of the editing operation. The
leftmost four columns 1list all the significant combinations of the four
conditions that can be encountered in the execution of an editing operation.
The two rightmost columns list the action taken for each case—-—the type of
character placed in the result field and the new setting of the significance
indicator.

7-57

86-L

Table 7-2.

Summary of Editing Operation

Conditions Results
Previous State Low-Order State of Significance
Pattern of Significance | Source | Source Digit Result Indicator at End of
Character Indicator Digit | Is a Plus Sign Character Digit Examination
Digit Off 0 ® Fill character Off
selector 1-9 No Source digit On
1-9 Yes Source digit Off
On 0-9 No Source digit On
0-9 Yes Source digit Off
Significance Off 0 No Fill character On
starter 0 Yes Fill character Off
1-9 No Source digit On
1-9 Yes Source digit Off
On 0-9 No Source digit On
0-9 Yes Source digit Off
Immediate Off 0-9 No
significance 0-9 Yes
starter On 0-9 No
0-9 Yes
Message Off ¥ ¥k Fill character Off
character On ok ok Message character On

* No effect on result character.
%% Not applicable because source digit not examined.

Resulting Condition Code

Field is 0
Field is less than 0
Field is greater than 0

WO

Program Exceptions

Access (fetch, operand 2; fetch and store, operand 1)
Data

Programming Notes

As a rule, the source is shorter than the pattern because for each
source digit a zone and numeric are inserted in the result.

The total number of digit selectors, significance starters, and
immediate significance starters in the pattern must equal the number of source
digits to be edited.

If the f£fill character is a blank, if no significance starter or
immediate significance starter appears in the pattern, and if the source is
all Os, the editing operation blanks the result field.

The resultant condition code indicates whether or not the field is all
Os, and, if the code is not 0, reflects the state of the significance
indicator. The significance indicator reflects the sign of the source field
only if the last source digit examined is in a high-order digit position.

Address translation demands that operands be 1located in main memory
before instruction exrecution may begin, so the length of operand 2 must be
determined before execution. This is accomplished by scanning operand 1 for
significance starters and digit selectors; the total number divided by 2 (and
rounded up if total number was odd) yields the number of bytes in operand 2.
However, an I/0 operation could overlay operand 1 during instruction execution
and invalidate the results of the ''scanning operation' just described. If the
I/0 operation increases the length of operand 2 (by adding digit selectors or
significance starters) and causes operand 2 to span a page where previously it
did not, then the next higher physical page frame will be accessed. This will
cause incorrect (random) data to be used and could also cause an addressing

exception if the next higher physical page frame is beyond the limit of main
memory.

7-59

EDIT AND MARK (EDMK)

EDMK D1(L,B1),D2(B2) (ss)

| [I
| DF | L |
| | |

0 8 1

DIl B I/
il 2 |-
| L/
0 32 36

~ | ~
~ | ~

(=)}
N j— — —

The format of the source (the second operand) is changed from packed to
zoned and is modified under control of the pattern (the first operand).

The address of the first significant result character is recorded in
general register 1, The edited result replaces the pattern.

The instruction EDIT AND MARK is identical to EDIT, but it has the
additional function of inserting the address of the result character in bits
8-31 of general register 1 whenever the result character is a zoned source
digit and the significance indicator was off before the examination. The use
of general register 1 is implied. The contents of bits 0-7 of the register
are not changed.

Resulting Condition Code

Last field is 0
Last field is less than 0
Last field is greater than 0

——

WO

Program Exceptions

Access (fetch, operand 2; fetch and store, operand 1)
Data

Programming Notes

The instruction EDIT AND MARK facilitates the programming of floating
currency-symbol insertion. The character address inserted in general register
1 is 1 more than the address where a floating currency sign would be
inserted. The instruction BRANCH ON COUNT (BCTR), with O in the R2 field,
may be used to reduce the inserted address by 1.

The character address is not stored when significance is forced. To
ensure that general register 1 contains a valid address when significance is
forced, it is necessary to place in the register beforehand the address of the
pattern character that immediately follows the significance starter.

7-60

ENQUEUE (ENQ)

ENQ R1,D2(X3,B3) (RX)

| | R |
| 52 [
| | |

0 8 1

A storage block beginning at the location specified by the third operand
(the sum of the contents of registers B3 and X3) is enqueued on the First-In
First-Out (FIFO) queue specified by the first operand. The queue head
addressed by register Rl is composed of two successive words of storage of
which the first word, or head word, is a pointer to the first storage block in
the queue, and the second word, or tail word, is a pointer to the last storage
block in the queue. When the FIFO queue is empty, both the head and the tail
pointers are null (the last 24 bits of each of these words are binary O0s).
The head pointer must be doubleword aligned.

When a storage block is queued, the head and tail pointers are checked,
and if they are null, the third operand address is placed in both the head and
tail queue positions. If the queue pointers are both not null, then the third
operand address is placed in the block pointed to by the tail pointer at the
displacement position specified by the second operand. The third operand is
then placed in the tail queue position, and in all cases, the chain word in
the queued storage block is made null. Thus, blocks are enqueued so that the
word at the chain word displacement in each block points to the first location
of the next block in the queue, and the last block in the queue has a null
chain word. ENQ does not test or change the first byte of either the head or
tail pointer or the chain words.

An addressing exception is recognized, and the operation terminated, if
either the first-operand (queue) address or the third-operand (storage block)
address is invalid. Both the queue addresses and the chain word locations in
any storage blocks that are modified in the queue are checked for protection
boundary violations and for modification trap exceptions. The instruction is
suppressed if a violation occurs. A specification exception is recognized and
the operation is terminated if one but not both of the head/tail words is
null. The head/tail pointer must be doubleword aligned and the chain words
must be fullword aligned or a specification exception will be recognized.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch and store, operand 1 and combined operands 2 and 3)
Specification

7-61

ENSTACK (ENSK)

ENSK R1,D2(X3,B3) (RX)

| I R |

| 53 [

I | I
0 8 12

A storage block beginning at the location specified by the third operand
(the sum of the contents of registers B3 and X3) is stacked in the Last-In
First-Out (LIF0) stack specified by the first operand. The stack head
addressed by register Rl consists of one aligned word of storage that is a
stack pointer to the last (or most recent) storage block placed into the
stack. When the stack is empty, the stack pointer is null (the 1last 24 bits
of this word are binary Os). The second operand is a displacement from the
start of the storage block to the chain word in the storage block.

When a storage block is stacked, the stack pointer word is placed in the
chain word of the storage block being stacked, and the pointer to the start of
the storage block (third operand value) is placed in the stack pointer word.
Storage blocks are intended for removal from a LIFO stack in the reverse order
from the sequence in which they were added to the stack, since the only
pointer kept for a LIFO stack is to the last stacked storage block. ENSK does
not change or test the first byte of the stack pointer or the chain word.

An addressing exception is recognized and the operation terminated if
either the first operand (stack) address or the third operand (storage block)
address is invalid. Both the stack address and the chain word location in the
storage block are checked for protection violations and for modification trap
exceptions; the instruction is suppressed if a violatiom occurs. Both the
stack pointer and the chain word must be fullword aligned.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch and store, operand 1 and combined operands 2 and 3)
Specification

EXCLUSIVE OR (XR, X, XI, XC)

¥R R1,R2 (RR)

| Il R | R |

| 17 1 1 2 |

| | | |

0 8 12 15

X R1,D2(X2,B2) (RX)

I R	x	B	D
57 I 11 2 1 2	2		
			I
0 8 12 16 20 31
XI D1(B1),I2 (s1)

| | | B | D |
I 97 | I | 1 | 1 |
| | I I I
0 8 16 20 31
XC D1(L,Bl1) ,D2(B2) (8S)

| | I B |/ /Dl B |/ / D |
! D7 | L I 1 | -=-11 2 |-- 2/
| I | L 7/ | 17 / I
0 8 16 20 32 36 47

The modulo-two sum ("exclusive OR') of the bits of the first and second
operand is placed in the first operand location.

Operands are treated as unstructured logical quantities, and the
connective EXCLUSIVE OR is applied bit by bit. A bit position in the result
is set to 1 if the corresponding bit positions in the two operands are unlikej;
otherwise, the result bit is set to 0.

The instruction differs from AND and OR only in the connective applied.

Operand 2 of the X instruction requires fullword alignment. For the XC
instruction, L is the length of each operand, minus 1.

Resulting Condition Code

Result is 0O
Result not O

WN = O

Program Exceptions

Access (fetch, operand 2, X and XC; fetch and store, operand 1, XI and XC)
Specification

Programming Notes

The EXCLUSIVE OR instruction may be used to invert a bit, an operation
particularly useful in testing and setting programmed binary bit switches.

Any field EXCLUSIVE ORed with itself becomes all Os.

7-64

EXECUTE (EX)

EX R1,D2(X2,B2) (RX)

| 44 | 1

Bits 8-15 of the instruction designated by the second—operand address
are ORed with bits 24-31 of the register specified by R1l, except when register
0 1is specified, which indicates that no modification takes place. The
resulting subject instruction is then executed. The subject instruction may
be two, four, six, or eight bytes in length.

The ORing does not change either the contents of the register specified
by Rl or the instruction in memory, and it is effective only for the
interpretation of the instruction to be executed. The execution and exception
handling of the subject instruction are exactly as if the subject instruction
were obtained in normal sequential operation, except for the instruction
address. The instruction address of the current PCW is 1increased by the
length of EXECUTE. This updated address of EXECUTE is used as part of the
link information when the subject instruction is BRANCH AND LINK. When the
subject instruction is a successful branching instruction, the updated
instruction address of the current PCW is replaced by the branch address
specified by the subject instruction.

When the subject instruction is in turn an EXECUTE, an execute exception
is recognized, and the operation is suppressed. The subject instruction must
be halfword aligned; otherwise, a specification exception is recognized.

Resulting Condition Code

The condition code may be set by the subject instruction.

Program Exceptions

Execute
Access (fetch, operand 2)
Specification

Programming Notes

The ORing of eight bits from the general register with the designated
instruction permits indirect length, index, mask, immediate data, and
arithmetic-register specification. An addressing or specification exception
may be caused by EXECUTE or by the subject instruction.

When an interruptible instruction is made a target of EXECUTE, the
program usually should not specify any register updated by the interruptible
instruction as the Rl, X2, or B2 register of the EXECUTE, since if the
instruction is refetched, the updated values of these registers will be used
in execution of the EXECUTE. Similarly, the program should not 1let the
destination field of an MVCL instruction include the location of the EXECUTE.

When a relative branch instruction is the target of EXECUTE, the branch
address is relative to the EXECUTE and not to the target instruction.

EXPAND STRING (XPAND)

XPAND D1(R1,B1),D2(R2,B2) (ss)

B
2

/ /D |
2 |
!/ / |

|
| F7 I 2 1 l 1 I
|
36 47

| IR IR | B | /7 /D
| 1 |
| | | I | 7/
1

I
|
I
0 8 12 6 24 32

The second operand, assumed to be a character string compressed by the
COMP instruction, is placed in the first operand location in expanded form.

The lengths of operands 1 and 2 are taken from registers Rl and R2,
respectively. If the value in either register is 0 or greater than 2048, the

instruction terminates immediately with condition code 2, and operand 1 is
unchanged.

The source string is interpreted as a concatenation of subfields, each
beginning with a length byte in the following form:

Bit 0 = 0 Uncompressed substring follows

Bit 0 =1 Following byte to be replicated as many
times as specified
Bits 1-7 Length of expanded substring minus 1

Resulting Condition Code

0 String successfully expanded; length of expanded string placed in
register Rl

1 Expanded string too long for operand 1; register Rl unchanged; data
in operand 1 valid

2 Length in Rl or R2 equal to O or greater than 2048; instruction
suppressed; register Rl unchanged

3 Length byte in operand 2 indicates that a source subfield extends
beyond the source area defined by the R2 lengthj the instruction
terminates; operand 1 data and register Rl contents are unreliable.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

7-67

P
HALT I/0 (HIO)

HIO Rl (RR)
| I R /111111
| 03 1 1/71111]
i] 11711171
0 8 12 15

HALT I/0 causes the addressed device to terminate the current operation,
if any. HALT I/0 is executed only when the system is in the supervisor
state. I/0 interrupts should be disabled.

Bits 24 to 31 of Rl identify the device address. Bits 0 to 23 are
ignored.

When the HALT I/0 instruction is issued to an active I/0 device, the 1I/0
operation may be terminated before all data specified in the operation has
been transferred, or before the operation at the device has reached its normal
ending point. A completion interruption becomes pending when the I/0
operation has been terminated and/or all outstanding interruption conditions
pertaining to the device have been cleared. The error completion (EC) and
incorrect length (IL) bits may or may not be set in the stored I/0 Status
Word. HIO clears all interruption conditions that existed at the time the HIO
was issued, including IOP NOW READY (and sets condition code 1 in this case).

If the HIO instruction receives an IOP BUSY indication, the HIO was not
accepted. This also indicates that an IOP NOW READY interrupt will be made
pending.

Resulting Condition Code

Device available or HIO not supported
Device busy or interruption pending
IOP BUSY

IOP not operational

LWN=O

Program Exceptions

Privileged operation

Programming Notes

The instruction HALT I/0 provides the program with a means of
terminating an I/0 operation before all data specified in the operation has
been transferred or before the operation at the device has reached its normal
ending point.

Not all devices support HALT I/0. When it is issued for a device for
which it is not supported, the HIO instruction will return condition code O or
1 as appropriate, and program execution will continue.

HALVE (FLOATING-POINT) (HDR, HER)

HDR R1,R2 (RR, Long)

| IR | R |

| 24 ol 11 2 |

I || I I

0 8,9 12 15

HER R1,R2 (RR, Short)

I IR | R |

| 24 11 11 2 | (optional)
| | I |

0 8,9 12 15

‘The second operand is divided by 2, and the normalized quotient is
placed in the first operand location. The second operand remains unchanged.

The fraction of the second operand is shifted right one bit position,
placing the contents of the low-order bit position in the high-order bit
position of the guard digit and introducing a O into the high-order bit
position of the fraction. The intermediate result is subsequently
normalized, and the normalized quotient is placed in the first operand
location. The guard digit participates in the normalization.

When normalization causes the characteristic to become 1less than zero,
exponent underflow occurs. If the exponent underflow mask in the PCW is O,
the sign, characteristic, and fraction are set to 0, thus making the result a
true O. If the exponent underflow mask is 1, a program interruption occurs.
The result is normalized, its sign and fraction remain correct, and the
characteristic is made 128 larger than the correct characteristic.

When the fraction of the second operand is 0, the sign, characteristic,
and fraction of the result are made 0. No normalization is attempted, and a
significance exception is not recognized.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Exponent underflow

Programming Notes

The HALVE operation is identical to a divide operation with the number 2
as divisor, or to a multiply operation with 1/2 as a multiplier.

The result of HALVE is replaced by a true 0 only when the second operand
fraction is 0, or when exponent underflow occurs with the exponent-underflow
mask set to 0. When the fraction of the second operand is 0 except for the
low-order bit position, the low-order 1 is shifted into the guard digit
position and participates in the postnormalization.

7-70

INCREMENT AND INSPECT SEMAPHORE (ISEM)

ISEM R1,D2(B3) (RS)

	R 1//17/7V B	D
A2 b1 V27771171 3	2	
I \///1111		
0 8 12 16 20 31

The byte addressed by contents of register Rl 1is treated as a
2's-complement binary number, and 1 is added to it. If the result is greater
than 0, the next instruction is taken. If the result is less than or equal to
0, a dequeuing operation occurs exactly as if the instruction were a DEQ
instruction with the same R1, B3, and D2 fields, and a binary 1 1is subtracted
from the byte at displacement D2 in the dequeued block, without regard for
possible overflow. If a result of 128 is developed, a fixed-point overflow is
indicated. When the fixed-point overflow flag is 1, the exception will be
taken. If there is a fixed-point overflow, the count is updated and the other
effects of the instruction are suppressed. Overflows in the chain field will
not cause an overflow indication or a program check.

Data fields referenced by this instruction must be aligned as required
for the DEQ instruction.

Resulting Condition Code

Result of addition not greater than 0, no block dequeued
Result of addition not greater than 0, block dequeued
Result of addition greater than 0

Overflow

WN = O

Program Exceptions

Specification
Fixed-point overflow

Access (fetch and store, operand 1; fetch and store, operands 2 and 3 as
for DEQ instruction)

INSERT CHARACTER (IC)

IC R1,D2(X2,B2) (RX)

| I R |
| 43 I 1 |
| | I

0 8 1

The 8-bit character at the second operand address is inserted into the
low-order byte of the register specified as the first operand location. The
remaining bits of the register remain unchanged.

IC is a storage-to-general-register instruction. The byte to be
inserted is not changed or inspected.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2)

7-72

INSERT CHARACTERS UNDER MASK (ICM)

ICM R1,M3,D2(B2) (RS)

| | R |
| BF | 1 |
I | |

0 8 1

M
3

B

|

|

|
2 16

Bytes from contiguous locations beginning at the second operand address
are inserted into the first operand location under control of a mask.

The contents of the M3 field, bits 12-15, are used as a mask. The four
bits of the mask, left to right, correspond with the four bytes, left to
right, of the general register designated by the Rl field. The byte positions
corresponding to 1s in the mask are filled, in the order of ascending byte
numbers, with bytes from the storage operand. Bytes are fetched from
contiguous memory locations beginning at the second operand address. The
length of the second operand is equal to the number of 1s in the mask. The
bytes in the general register corresponding to 0s in the mask remain unchanged.

The resulting condition code 1is based on the mask and on the value of
the bits inserted. When the mask is 0 or when all inserted bits are 0, the
condition code is made 0. When not all inserted bits are 0, the code is set
according to the leftmost bit of the storage operand: if this bit is 1, the
code is made 1 to indicate a negative algebraic value; if this bit is 0, the
code is set to 2, reflecting a positive algebraic value. When the mask is not
0, exceptions associated with storage operand access are recognized only for
the number of bytes specified by the mask. When the mask is 0, access
exceptions are recognized for one byte.

Resulting Condition Code

0 All inserted bits are 0s, or mask is 0

1 First bit of the inserted field is 1

2 First bit of the inserted field is 0 and not
all inserted bits are 0s

3 -

Program Exceptions

Access (fetch, operand 2)

Programming Note

The condition code for INSERT CHARACTERS UNDER MASK is defined such that
when the mask is 1111, the instruction causes the same condition code to be
set as for LOAD AND TEST.

7-73

JUMP TO SUBROUTINE ON CONDITION INDIRECT (JSCI)

JSCI M1,D2(X2,B2) (RX)

I I M
| 61 1 |
| I I

0 8 1

The updated instruction address is replaced by the branch address if the
state of the condition code is as specified by M1l; otherwise, normal
instruction sequencing proceeds with the updated instruction address. If the
branch is taken, the program mask byte of the PCW and the updated instruction
address are pushed onto the system stack, the contents of the three low-order
bytes of control register 1 are then pushed onto the stack, preceded by a byte
containing binary O0s, and then the contents of general registers 14 to O are
pushed onto the stack. After these items have been pushed onto the stack and
the stack pointer (register 15) has been updated, the value in control
register 1 is set to the current value of the stack pointer, with a high-order
byte of binary Os.

The three low-order bytes of the word at the location designated by the
second operand are used as the branch address. The second operand must be
fullword aligned.

The Ml field is used as a 4-bit mask. The four bits of the mask
correspond, left to right, with the four condition codes as follows:

Instruction Mask Position Condition
Bit Value Code

8 8 0

9 4 1

10 2 2

11 1 3

The branch is successful whenever the condition code has a corresponding mask
bit of 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow

Access (fetch, operand 2 if the branch is taken; store, the bytes pushed
onto the stack if the branch is taken)

Specification

7-74

Programming Note

This instruction is a conditional indirect branch. If the branch is
taken, status will be saved on the stack that will allow the RTC instruction
to return control to the location after the JSCI instruction. Control

register 1 is wused to point to the status information saved by a previously
executed JSCI instruction.

7-75

LR R1,R2 (RR)
| I R | R |
| 18 I 1 1 2 |
| | | |
0 8 12 15
L R1,D2(X2,B2) (RX)
I R	X	B	D
58 I 11 2 1 2	2		
I		I	
0 8 12 16 20 31

The second operand is placed in the first operand location, and the
second operand is not changed. For the L instruction, the second operand must
be fullword aligned.

Resulting Condition Code

The condition code remains unchanged.
4

Program Exceptions

Access (fetch, operand 2 of L only)
Specification (L only)

LOAD (FLOATING-POINT) (LDR, LER, LD, LE)

LDR R1,R2 (RR, Long)

| TR | R |

I 28 fol 11 2 |

| P I |

0 8,9 12 15

LER R1,R2 (RR, Short)

| f{R | R |

| 28 Il2f 1t 2 | (optional)

| |1 I |

0 8,9 12 15

LD R1,D2(X2,B2) (RX, Long)

| TR I x | B | I
| 68 fol 11 2 | 2 | I
| | | | | | |
0 8,9 12 16 20 31
LE R1,D2(X2,B2) (RX, Short)

I ~ TR I X | B | |
| 68 i 11 2 1 2 | | (optional)
| |1 | | I |
0 8,9 12 16 20 31

The second operand is placed in the first operand location and is not

changed. Exponent overflow, exponent underflow, or

significance cannot

occur. For the LD instruction, the second operand must be fullword aligned.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Addressing (LD, LE only)
Specification (LD, LE only)
Access (LD, LE only)

LOAD ADDRESS (LA)

LA R1,D2(X2,B2) (RX)

| I R | x | B | D |
| 41 I 1 1 2 | 2 | 2 |
i | I | | |
0 8 12 16 20 31

LOAD ADDRESS (RELATIVE) (RLA)

RLA R1,L2 (RL)

| | R I L |

| 71 I 1 | 2 |

| I | |
0 8 12 31

For LA, the address specified by the X2, B2, and D2 fields is inserted
in bit positions 8-31 of the general register specified by the R1 field. For
RLA, the address inserted is the sum of the current instruction address (bits
8-31 of the PCW) and the L2 field. Bits 0-7 of the register are set to Os.
The address computation follows the rules for base-displacement address
formation. No memory references for operands take place, and the address is
not inspected for access exceptions.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

Programming Note

The same general register may be specified by the R1l, X2, and B2
instruction field, except that general register O can be specified only by the
Rl field. 1In this manner it is possible to increment the low—order 24 bits of
a general register other than general register 0 by the contents of the D2
field of the instruction. The register to be incremented should be specified
by Rl and by either X2 (with B2 set to 0) or B2 (with X2 set to 0).

7-78

LOAD AND TEST (LTR, LT)

LTR R1,R2 (RR)

| | R | R |

| 12 1 1 2 |

| | | |

0 8 12 15

LT R1,D2(X2,B2) (RX)

	R	x	B	D
4D I 11 2 1 2	2			
0 8 12 16 20 31

The second operand is placed in the first operand register, and its
value determines the condition code. When the LT instruction 1is wused, a
fullword field from memory as specified by the second operand is loaded into
the first operand register. The second operand is not changed.

The condition code of this instruction indicates whether the result is
zero, or, if at least one bit of the result is on, whether the leftmost bit is
on (called less than 0) or off (called greater than 0).

Operand 2 of the LT instruction requires fullword alignment.

Resulting Condition Code

Result is 0
Result is less than 0
Result is more than 0

W =O

Program Exceptions

Access (fetch, operand 2, LT)
Specification (LT only)

Programming Note

When the same register is specified as first and second operand
location, the operation is equivalent to a test without data movement.

7-79

LOAD AND TEST (FLOATING-POINT) (LTDR, LTER)

LTDR R1,R2 (RR, Long)

| IR | R |

| 22 fol 11 2 |

| | | I

0 8,9 12 15

LTER R1,R2 (RR, Short)

I 'R I R |

| 22 i1l 11 2 | (optional)
| || I |

0 8,9 12 15

The second operand is placed in the first operand location, and its
and magnitude determine the condition code.

Resulting Condition Code

Result fraction is 0
Result is less than O
Result is greater than 0

WO

Program Exceptions

Specification

Programming Note

When the same register is

specified as

first and

sign

The second operand is not changed.

second operand

location, the operation is equivalent to a test without data movement.

7-80

LOAD CHARACTER (LC)

LC R1,D2(X2,B2) (RX)

| | R |
| 62 1 |
I I |
0 8 1

The second operand is placed in the first operand location. The second
operand is one byte in length and is placed in the low-order byte of the first

operand register. The three high-order bytes of the first operand register
are set to binary Os.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2)

LOAD COMPLEMENT (LCR)

LCR Rl1,R2 (RR)

| | R |

| 13 I 1 |

| | | |
0 8 1

The 2's complement of the second operand is placed in the first operand
location.

The condition code of this instruction indicates whether the result is
zero, or, if at least one bit of the result is on, whether the leftmost bit is
on (called less than 0) or off (called greater than 0).

An overflow condition occurs when the maximum negative number is
complemented. The number remains unchanged. The overflow causes a program
interruption when the fixed-point overflow mask bit is 1.

Resulting Condition Code

Result is 0

Result is less than 0
Result is greater than 0
Overflow

W =O

Program Exceptions

Fixed-point overflow

Programming Note

Zero and the maximum negative number do not have a 2's complement.

7-82

This manual is updated by: Addendum 800-1100P0-04.01

LOAD COMPLEMENT (FLOATING-POINT) (LCDR, LCER)

LCDR R1,R2 (RR, Long)

| IR | R |

| 23 ol 11 21

i i | |

0 89 12 15

LCER R1,R2 (RR, Short)
| ' T R | R |

| 23 1l 11 21| <(optional)
| 11 | |

0 89 12 15

The second operand is placed in the first operand location with the sign
changed to the opposite value.

The sign bit of the second operand is inverted, while characteristic and
fraction are not changed.

Resulting Condition Code

Result fraction is 0
Result is less than O
Result is greater than O

WN-=O

Program Exceptions

Specification

7-83

This manual is updated by: Addendum 800-1100P0-04.01

P
LOAD CONTROL (LCTL)

LCTL R1,R3,D2(B2) (RS)

| | R |
| B7 | 1
| | |
0 8 1

The set of control registers starting with the control register
designated by the Rl field and ending with the control register designated by
the R3 field is 1loaded from the locations designated by the second operand
address.

The memory area from which the contents of the control registers are
obtained starts at the location designated by the second operand address and
continues through as many memory words as the number of control registers
specified. The control registers are loaded in ascending order of their
addresses, starting with the control register designated by the Rl field and
continuing up to and including the control register designated by the R3
field. The second operand remains unchanged.

An attempt is made to fetch the operand from main memory for each of the
designated control registers. Whenever the storage reference causes an
access exception, the exception is indicated. The second operand must be
designated on a word boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. A specification exception will
also be recognized if Rl is numbered higher than R3 (wraparound).

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Privileged operation
Access (fetch, operand 2)
Specification

7-84

This manual is updated by: Addendum 800-1100P0-04.01

LOAD HALFWORD (LH)

1H R1,D2(X2,B2) (RX)

48 1 2 2 2

0 8 12 16 20 31

The second operand is placed in the first operand location, is two bytes
in length, and is considered to be a 16-bit signed integer. It requires
halfword alignment.

The second operand is expanded to 32 bits by propagating the sign-bit
value to the 16 high—order bit positions. Expansion occurs after the operand
is obtained from memory and before insertion in the register.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Access (fetch, operand 2)

7-85

This manual is updated by: Addendum 800-1100P0O-04.01

LOAD MULTIPLE (LM)

IM R1,R3,D2(B2) (RS)

I ' R |
| 28 .
I ! I
o 8 12

bt | —

The set of general registers starting with the register specified by Rl
and ending with the register specified by R3 is 1loaded from the 1locations
designated by the second operand address.

The memory area from which the contents of the general registers are
obtained starts at the location designated by the second operand address and
continues through as many words as needed. The general registers are loaded
in ascending order of their addresses, starting with the register specified by
Rl and continuing up to and including the register specified by R3, with
register 0 following register 15.

The second operand, which must be fullword aligned, remains unchanged.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2)
Specification

7-86

LOAD NEGATIVE (LNR)

LNR R1,R2 (RR)

I | R |

| 11 | 1 |

| I | |
0 8 1

The 2's complement of the absolute value of the second operand is placed
in the first operand location. The operation complements positive numbers;
negative numbers remain unchanged. The number 0 remains unchanged with
positive sign.

Resulting Condition Code

Result is 0
Result is less than 0

W N = O

Program Exceptions

None

LOAD NEGATIVE (FLOATING-POINT) (LNDR, LNER)

LNDR R1,R2 (RR, Long)

I TR | R |

| 21 ol 1| 2 |

| | I |

0 8,9 12 15

LNER R1,R2 (RR, Short)

I l[tR | R |

I 21 1l 11 2 | (optional)
| || I I

0 8,9 12 15

The second operand is placed in the first operand location with the sign
made minus.

The sign bit of the second operand is made 1, even if the fraction is
0. Characteristic and fraction are not changed.

Resulting Condition Code

Result fraction is 0
Result is less than 0

WNH-=O

Program Exceptions

Specification

This manual is updated by: Addendum 800-1100P0-04.01

LOAD OR TRAP (LOT)

LOT R1,D2(X2,B2) RX)

| | R |
| A8 o1
I | |

0 8 1

X
2

B
2

[| I
! | |
| | |
2 1 2 1

6 0 3

The fullword field from memory as specified by the second operand is
loaded into the first operand register.

The high~order bit of the word loaded is inspected. If this bit is 1,
then a 'LOT' program interrupt is taken.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Access (fetch, operand 2)
'LOT' exception

7-89

This manual is updated by: Addendum 800-1100P0-04.01

p

LOAD PAGE TABLE (LPTO, LPT1, LPT2)
LPTO R1,D2(B2) (RS)
] I R 1//7///1 B | D i
| A3 I 10777771 2| 2]
| | 1///1/1 | |
0 8 12 16 20 31
LPT1 R1,D2(B2) (RS)
| | R 1777771 B | D]
| A4 b1 1777770 21 2 |
| | 1777771 | |
0 8 12 16 20 31
LPT2 R1,D2(B2) (RS)
| I R {/////71 B | D |
| A5 I 1 12//770 21 2 I
I | 1/////1 i |
[4) 8 12 16 20 31

The first operand register contains the address of a page table in main
memory in its three low-order bytes, and the length of the page table (in
bytes) minus 1 in its high-order byte. The second operand is the address of a
byte in main memory that is expected to contain the length minus 1 of the page
table currently loaded into local storage for the specified segment. This
byte is replaced by the high-order byte of the operand 1 register.

The page table specified by the first operand is copied into the local
page table specified by the operation code. LPT0 loads the segment 0 page
table, LPT1 the segment 1 page table, and LPT2 the segment 2 table. Bytes of
the local page table beyond the length specified in the first operand register
but not beyond the length specified by the second operand are set to 0. The
first operand page table address must be doubleword aligned, and the new and
previous lengths must be within the allowed length for the segment and must be
even (length byte in high-order part of register Rl odd), or a specification
exception occurs and the instruction is suppressed.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Privileged operation

Access (fetch, page table addressed by operand 1 register; fetch and
store, operand 2)

7-90

LOAD PARTIAL PAGE TABLE (LPPT)

LPPT R1,13,D2(B2) (RS)
| [
| A7 | 1
| I

[D I
I 2 I
I I
20 31

0 8

The first operand register contains the address of a page table in main
memory in bits 8-31, and the length of the page table (in bytes) minus 1 in
bits 0-7. The third operand (I3) indicates the segment number. The second
operand indicates the displacement into the local page table in page units.

The partial page table specified by the first operand is copied into the
local page table specified by 13. The length and starting displacement are
used as described for the previous instruction

A specification exception occurs, and the instruction is suppressed, if
any of the following occurs:

. The first operand is not doubleword aligned.
. A segment other than 0, 1, or 2 is indicated by I3.

. The offset and length of the partial page table exceeds the 1local
page table length.

. The offset (operand 2) is odd.
. The length (bits 0-7 of register R1) is odd.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Privileged operation
Access (fetch, operand 1)

7-91

]
LOAD PCW (LPCW)

LPCW D1 (B1) (s

] W/71117111111711 B | D |
| 82 1711111017171 1 1 |
| Yy |]
0 8 16 20 31

The two words at the location designated by the operand address replace
the PCW. The operand must be word aligned or the instruction will be
suppressed with a specification exception.

The doubleword that is loaded becomes the PCW for the next sequence of
instructions. This loads a new instruction address.

The interruption code of the new PCW is not retained as the PCW is
loaded. When the PCW is subsequently stored because of an interruption,
these bit positions contain a new code.

Resulting Condition Code

The condition code is set according to the condition code bits of the
new PCW.

Program Exceptions

Specification
Privileged operation
Access (fetch, operand 1)

7-92

This manual is updated by: Addendum 800-1100P0-04.01

P
LOAD PHYSICAL ADDRESS (LPA)
LPA R1,D2(X2,B2) (RX)
| I R | x | B | D |
| Bl | 11 2 1 2 1 2 i
i] i | i |
0 8 12 16 20 31

The physical address corresponding to the second operand address is
inserted in the general register designated by the Rl field. The remaining
high-order bits of the register are set to 0.

The logical address specified by the X2, B2, and D2 fields is translated
by means of the address translation facility. The translation is performed
using the contents of the main memory page tables, located through the SCRs.*
The resultant 24-bit physical address is inserted in bit positions 8-31 of the
general register designated by the Rl field, and bits 0-7 are set to O. The
translated address is not inspected for protection or validity.

The condition code is set to O when translation can be completed. When
the page table entry lies within the specified table 1length, the segment is
valid and the page is not marked with a page fault indication, i.e., its T-RAM
entry is not X'8000'. The corresponding reference bit in the local page frame
table entry for a successfully translated address is set.

When there would be a segment fault, condition code 1 is set. When the
page table entry is X'8000', condition code 2 is set. Whenever the resulting |
condition code is mnot 0, the general register designated by the Rl field is
zeroed.

Resulting Condition Code

Translation available

Segment index invalid (segment fault)

Page table entry invalid (page fault)

Page table length violation (past the end of the page table)

WN O

Program Exceptions

Privileged operation

* The VS80 uses local page tables, a 19-bit physical address, and bit
positions 13-31 of the general register specified by R1.

7-93

This manual is updated by: Addendum 800-1100P0-04.01

LOAD POSITIVE (LPR)

LPR R1,R2 (RR)

10 1 2

0 8 12 15

The absolute value of the second operand is placed in the first operand
location. The operation includes complementing of negative numbers; positive
numbers remain unchanged.

An overflow condition occurs when the maximum negative number is
complemented; the number remains unchanged. The overflow causes a program
interruption when the fixed-pcint overflow mask bit is 1.

Resulting Condition Code

Result is 0
Result is greater than 0O
Overflow

WO

Program Exceptions

Fixed-point overflow

7-94

LOAD POSITIVE (FLOATING-POINT) (LPDR, LPER)

LPDR R1,R2 (RR, Long)

| |l TR | R |

I 20 ol 11 2 |

| || | |

0 8,9 12 15

LPER R1,R2 (RR, Short)

| l'T R | R |

| 20 i1t 11 2 | (optional)
| |l | |

0 8,9 12 15

The second operand is placed in the first operand location with the sign
made positive.

The sign bit of the second operand is made 0, while the characteristic
and fraction are not changed.

Resulting Condition Code

Result fraction is 0

Result is greater than 0

WN K=o

Program Exceptions

Specification

LOAD ROUNDED (FLOATING-POINT) (LRER)

LRER R1,R2 (RR, Short)

| TR | R |
| 25 i1t 11 2 | <(optional)
| || | |
0 8,9 12 15

The second operand is rounded to short format, and the result is placed
in the first operand location.

Rounding consists of adding 1 to bit position 32 of the long second
operand, and propagating the carry, if any, to the left. The sign of the
fraction 1is ignored, and addition is performed as if the fraction were
positive.

If rounding causes a carry out of the high-order digit position of the
fraction, the fraction is shifted right by one digit position, and the
characteristic is increased by 1.

The sign of the result is the same as the sign of the second operand.
No normalization takes place.

An exponent overflow exception is recognized when shifting the fraction
right causes the characteristic to exceed 127. The operation is completed by
loading a number whose characteristic is 128 less than the correct value, and
a program interruption for exponent overflow occurs. The result is
normalized, and the sign and fraction remain correct.

Exponent underflow and significance exceptions cannot occur.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Exponent overflow

7-96

This manual is updated by: Addendum 800-1100P0-04.01

P
LOAD SEGMENT CONTROL REGISTER (LSCTL)

LSCTL R1,R3,D2(X2,B2) (RS)

| i R
| A3 | 1
I |

| R

|

I
0 8 12

3

B
2

b | o e

[l
[l
I l
16 20 3

The set of segment control registers (SCRs) starting with the register
specified by R1 and ending with the register specified by R3 is loaded from
locations designated by the second operand address.

The memory area from which the contents of the SCRs are obtained starts
at the location designated by the second operand address and continues through
as many words as needed.

The SCRs are loaded in ascending order of their addresses, starting with
the register specified by Rl and continuing up to and including the register
specified by R3. Rl and R3 must fall in the range 0-7, and R3 must be greater
than or equal to Rl. The contents of the memory area remain unchanged.

Operand 2 requires fullword alignment.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)
Privileged operation
Specification

7-96.1

LOAD SHORT TO LONG (FLOATING-POINT) (LDER)

LDER R1,R2 (RR, Long)

] ' I R |
| 25 ol 1|
| | | |
0 8,9 1

R |
2 | (optional)
|

2 15

The second operand is extended with low-order Os to long format, and the
result is placed in the first operand location.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

7-97

P
LOAD SPECIAL REGISTER (LSREG)

LSREG D1(Bl) (8)

| I |
| 9B | 01 |
| | |

0 8 1

B
1

| D I
l 1 [
I |
20 - 31

6

Data is moved from memory to a special 32-bit register, which may be
accessed only by the LSREG and STSREG instructions (and by STDD).

The fullword at the address specified by the Bl and D1 fields is moved
to the special register. The address must be fullword aligned.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Privileged operation
Access (fetch, operand 1)
Specification

7-98

MOVE (MVI, MVC)

MVI Di1(Bl),I2 (SI1)

	I I B	D	
92	2 1	1	
0 8 16 20 31
MVC D1(L,B1),D2(B2) (8s)

| | | 8 |/ /Dl B I/ /D |
| D2 | L I 1 | =-=-11 2 |-- 21
| | I F 7/ | 1/ / |
0 8 16 20 32 36 47

The second operand is placed in the first operand location.

The SS format is used for a storage-to-storage move. In the MVC
instruction, the 1length field in the instruction format is the operand length
minus 1. The SI format introduces one 8-bit byte from the instruction stream.

In storage-to-storage movement the fields may overlap in any desired
way. Movement is left to right through each field a byte at a time.

The bytes to be moved are not changed or inspected.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2 of MVC; store operand 1, MVI and MVC)

Programming Note

It is possible to propagate one character through an entire field by
having the first operand field start one character to the right of the second
operand field.

7-99

MOVE CHARACTERS LONG (MVCL)

MVCL R1,R2 (RR)
|]
| OE | 1
| |

0 8

The second operand is placed in the first operand 1location, provided
overlapping of operand locations does not affect the final contents of the
first operand location.

The R1 and R2 fields each designate an even-odd pair of general
registers and must each specify an even—numbered register; otherwise, a
specification exception is recognized.

The leftmost bytes of the first operand and second operand locations are
designated by the contents of bit positions 8-31 of the general registers
specified by the Rl and R2 fields, respectively. The numbers of bytes in the
first operand and second operand locations are specified by the contents of
bit positions 8-31 of general registers having addresses R1+l1 and R2+1,
respectively. Bit positions 0-7 of register R2+1 contain the padding
character. The contents of bit positions 0-7 of registers Rl, Rl+l, and R2
are ignored.

The movement starts at the high-order end of both fields and proceeds to
the right. The bytes to be moved are not changed or inspected. The operation
is ended when the number of bytes specified by bit positions 8-31 of register
R1+1 have been moved into the first operand location. If the second operand
is shorter than the first operand, the remaining low-order bytes of the first
operand are filled with the padding character.

As part of the execution of the instruction, the values of the two count
fields are compared for the setting of the condition code, and a check is made
for destructive overlap of the operands. Operands are said to overlap
destructively when the first operand location is used as a source after data
has been moved into it, assuming movement to be performed one byte at a time.
The inspection for overlap is performed by use of logical operand addresses.
When the operands overlap destructively, no movement takes place and condition
code 3 1is set. Movement is performed when the high—order byte of the first
operand coincides with or is to the left of the high-order byte of the second
operand, or if the high-order byte of the first operand is to the right of the
rightmost second operand byte participating in the operation. The rightmost
second operand byte is determined by using the smaller of the first operand
and second operand counts.

7-100

When the count specified by bit positions 8-31 of register R1+1 is 0, no
movement takes place, and the condition code is set to 0 or 1 to indicate the
relative values of the counts.

The execution of the instruction is interruptible. When an interruption
occurs after a unit of operation other than the 1last one, the contents of
registers R1+1 and R2+1 are decremented by the number of bytes moved and the
contents of registers Rl and R2 are incremented by the same number, so that
the instruction, when re-executed, resumes at the point of interruption. The
high~order bytes of registers Rl and R2 are set to 03 the contents of the
high-order byte of registers R1+l and R2+1 remain unchanged. If the operation
is interrupted during padding, the count field in register R2+1 is 0, the
address in register R2 is incremented by the original contents of register
R2+1, and the contents of registers Rl and R1l+l reflect the extent of the
padding operation.

The instruction may be refetched from main storage even in the absence
of an interruption during execution.

At the completion of the operation, the count in register R1+1] is 0 and
the address in register Rl is incremented by the original value of the count
in register R1+1. The count in register R2+1 is decremented by the number of
bytes moved out of the second operand location, and the address in register R2
is incremented by the same amount. The contents of bit positions 0~7 of
registers Rl and R2 are set to 0, even in the case when one or both of the
original count values are 0 or when condition code 3 is set. The contents of
bit positions 0-7 of registers R1+l and R2+1 remain unchanged.

When the count specified by bit positions 8-31 of register R1+1 is 0, or
condition code 3 is set, no exceptions associated with operand access are
recognized. When the count specified by bit positions 8-31 of register R2+1
for the second operand is larger than that for the first operand, access
exceptions are not recognized for the part of the second operand field that is
in excess of the first operand field.

Resulting Condition Code

First operand and second operand counts are equal
First operand count is low

First operand count is high

No movement performed because of destructive overlap

W N O

Program Interruptions

Access (fetch, operand 2; store, operand 1)
Specification

7-101

Programming Notes

When the first operand count is 0, the operation consists of setting the
condition code and setting the high-order bytes of registers R1 and R2 to O.

When the contents of the R1 and R2 fields are identical, the condition
code is set to 0, but protection and addressing exceptions are not indicated
when called for by the operand designation.

Since the execution of MOVE LONG is interruptible, the instruction
cannot be used for situations where the program must rely on uninterrupted
execution of the instruction or on the clock's not being updated during the
execution of the instruction. Similarly, the program should normally not let
the first operand of MOVE LONG include the location of the instruction. This
is because the new contents of the location may be interpreted as the
instruction if execution is resumed after an interruption or if the
instruction is refetched without an interruption.

Special precautions should be taken when MOVE LONG is made the subject
of an EXECUTE instruction. See the programming notes in the description of
the EXECUTE instruction.

When the CONTROL MODE button 1is pressed during the execution of MOVE
LONG or COMPARE LOGICAL LONG, the CP enters Control mode at the completion of
the execution of the next unit of operation. If the modification trap
condition occurs during the current unit of operation, the trap will be taken
at the completion of execution of the current unit, However, the single-step
trap will only be taken at the completion of the instructionj it will not be
taken at the completion of any other unit of execution. The amount of data
processed in a unit of operation may depend on the particular condition that
caused the execution of the instruction to be interrupted.

7-102

MOVE NUMERICS (MVUN)

MVN D1(L,Bl),D2(B2) (Ss)

D1	L
0 8 1

~N S
N

o~ |~

|
I
l
2 3 47

The 1low-order four bits of each byte in the second operand field, the
numerics, are placed in the low-order bit positions of the corresponding bytes
in the first operand field.

L is the length of each operand, minus 1.

The instruction is storage-to-storage. Movement is from left to right

through each field, one byte at a time, and the fields may overlap in any
desired way.

The numerics are not changed or checked for validity. The high-order
four bits of each byte, the zones, remain unchanged in both operand fields.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

7-103

MOVE WITH OFFSET (MVO)

MVO D1 (L1,B1),D2(L2,B2) (58)

| [
| F1 1 |
| | I
0 8 1

2

The second operand is placed to the left of and adjacent to the
low-order four bits of the first operand.

The 1low-order four bits of the first operand are attached as low-order
bits to the second operand; the second operand bits are offset by four bit
positions, and the result is placed in the first operand location. The first
operand and second operand bytes are not checked for valid codes.

The fields are processed right to left. If necessary, the second
operand 1is extended with high-order 0Os. If the first operand field is too
short to contain all bytes of the second operand, the remaining information is
ignored. Overlapping fields may occur and are processed by storing a result
byte as soon as the necessary operand bytes are fetched.

L1 and L2 are the operand lengths, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; fetch and store, operand 1)

7-104

MOVE WITH PAD (MVPC)

MVPC D1(L1,B1),D2(L2,B2),I3 (SSI)

I
3

L
2

B
1

D
1

B

|
| E2 | 1 2
I

~ | ~
~N PSS
~N 1~

I I | I I
I [| [I
I I I ! I
16 24 32 36 4

|

|

I
8 52 63
The second operand is placed in the first operand location. If the
first operand length (L1) is less than the second operand length (L2), only
the number of bytes specified by L1 is moved. If the first operand length is
greater than the second operand length, the additional bytes of the first

operand are filled with the character specified in the I3 field of the
instruction,

The bytes to be moved are not changed or inspected.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

Programming Note

At least one byte of the first operand is always moved by a successful

MOVE WITH PAD. (The L1 and L2 fields of the instruction are 1 less than the
lengths they specify.)

7-105

MOVE ZONES (MVZ)

Mvz D1(L,Bl),D2(B2) (ss)

| | |
| D3 | L |
| I |
0 8 1

The high-order four bits of each byte in the second operand field (the
zones) are placed in the high-order four bit positions of the corresponding
bytes in the first operand field.

The instruction is storage-to-storage. Movement is from 1left to right

through each field one byte at a time, and the fields may overlap in any
desired way.

The zones are not changed or checked for validity. The low~-order four
bits of each byte (the numerics) remain unchanged in both operand fields.

L is the length of each operand, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; fetch and store, operand 1)

7-106

MULTIPLY (MR, M)

MR R1,R2 (RR)
| I R | R |
| 1C Il 1 1 2 |
| | | |
0 8 12 15
M R1,D2(X2,B2) (RX)
[|l R | X | B | D |
| 5C 1 0 2 1 2 1 2 |
| I | | | |
0 8 12 16 20 31

The product of the multiplier (the second operand) and the multiplicand
(the first operand) replaces the multiplicand. For the M instruction, operand
2 requires fullword alignment.

Both multiplier and multiplicand are 32-bit signed integers. The
product is always a 64-bit signed integer and occupies register Rl and the
register following R1. The multiplicand is taken from the register following
Rl. The contents of register Rl (replaced by the high-order part of the
product) are ignored. An overflow cannot occur.

The Rl field of the instruction specifies an even/odd pair of registers

and must contain an even register address. A specification exception occurs
when Rl is odd.

The sign of the product is determined by the rules of algebra, except
that a result of 0 is always positive.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Access (fetch, operand 2 of M only)

Programming Note

The significant part of the product usually occupies 62 or fewer Dbits.
Only when two maximum negative numbers are multiplied are 63 significant
product bits formed. Since 2's-complement notation is used, the sign bit is
extended right until the first significant product digit is encountered.

7-107

MULTIPLY (FLOATING-POINT) (MDR, MER, MD, ME)

MDR R1,R2 (RR, Long)

| TR I R |

| 2C lol 11 2 |

| | | I I

0 8,9 12 15

MER R1,R2 (RR, Short)

| R I R |

I 2C i1 11 2 | (optional)

| | | | |

0 8,9 12 15

MD R1,D2(X2,B2) (RX, Long)

| IR | ¥ | B | D |
| 6C fol 11 2 | 2 | 2 |
| | | I | | I
0 8,9 12 16 20 31
ME R1,D2(X2,B2) (RX, Short)

| TR | X | B | D |
| 6C it 11 2 | 2 | 2 | (optional)
| || | | | |
0 8,9 12 16 20 31

The normalized product of the multiplier (the second operand) and the
multiplicand (the first operand) replaces the multiplicand.

The multiplication of two floating-point numbers consists of adding the
characteristics and multiplying the fractions. The sum of the characteristics
less 64 1is wused as the characteristic of an intermediate product. The sign
of the product is determined by the rules of algebra.

The product fraction is normalized by prenormalizing the operands and
postnormalizing the intermediate product when necessary. The intermediate sum
of the characteristics is reduced by the number of 1left-shifts. The
intermediate product of the fractions is truncated to 15 digits (for MER and
ME, 7 digits) before the left-shifting.

Exponent overflow occurs if the final sum of the characteristics exceeds
127. The operation is completed and a program interruption occurs. The
fraction is normalized and correct, the sign is correct, and the
characteristic is smaller by 128 than the correct characteristic. The
overflow exception does not occur for an intermediate sum of characteristics

exceeding 127 when the final characteristic is brought within range because of
normalization.

7-108

Exponent underflow occurs if the final sum of the characteristics is
less than 0. If the corresponding mask bit is 1, a program interruption
occurs. The fraction is normalized and correct, the sign is correct, and the
characteristic is larger by 128 than the correct characteristic. If the
corresponding mask bit is not 1, the result is made a true 0. Underflow is
not signaled when an operand's characteristic becomes 1less than O during
prenormalization, and the correct characteristic and fraction value are used
in the multiplication.

When all 15 digits (for MER and ME, all 7 digits) of the intermediate
fraction are 0, the product, sign, and characteristic are all made 0, yielding
a true zero result. No interruption for exponent underflow or exponent
overflow can occur when the result fraction is 0. The program interruption
for lost significance is never taken for multiplication.

The second operand of the MD and ME instructions requires fullword
alignment.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification (MD and ME only)
Exponent overflow

Exponent underflow

Access (MD and ME only)

Programming Note

Interchanging the two operands in a floating-point multiplication does
not affect the value of the product.

7-109

This manual is updated by: Addendum 800-1100P0-04.01

MULTIPLY DECIMAL (FLOATING-POINT) (MQR, MQ)

MQR R1,R2 (RR)

[| R | R |

| 3C | 1 | 2 |

| | | |

0 8 12 15

MQ R1,D2 (X2,B2) ®RX)

| | R I X | B | D |
I 7C Fo1r 0 2 1 2 | 2 !
| | | |] |
4] 8 12 16 20 31

The normalized product of the multiplier (the second operand) and the
multiplicand (the first operand) replaces the multiplicand. Fullword
alignment is required.

The multiplication of two decimal floating-point numbers consists of a
characteristic addition and a fraction multiplication. The sum of the
characteristics minus 64 is used as the characteristic of an intermediate
product. The sign of the product is determined by the rules of algebra.

The product fraction is normalized by prenormalizing the operands and
postnormalizing the intermediate product, if necessary. Postnormalizing is
performed after the fraction is truncated to 15 digits.

Exponent overflow occurs if the final product characteristic exceeds
127. The operation 1is completed and a program interruption occurs. The
fraction is normalized and correct, the sign is correct, and the
characteristic is 128 smaller than the correct characteristic. The overflow
exception does not occur for an intermediate product characteristic exceeding
127 when the final characteristic is brought within range because of
postnormalization.

Exponent underflow occurs if the final product characteristic is less
than =zero. If the corresponding mask bit is 1, a program interruption
occurs. The fraction is normalized and correct, the sign is correct, and the
characteristic is 128 larger than the correct characteristic. If the
corresponding mask bit is 0, the result is made a true zero. Underflow is not
signaled when an operand's characteristic becomes less than zero during
prenormalization, and the correct characteristic and fraction value are used
in the multiplication.

7-110.1

This manual is updated by: Addendum 800-1100P0-04.01

When all 15 digits of the intermediate product fraction are Os, the
product is made a true =zero. No interruption for exponent underflow or
exponent overflow can occur when the result fraction is zero. The program
interruption for lost significance is never taken for multiplication.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification

Data

Exponent overflow
Exponent underflow
Access (MQ only)

7-110.2

This manual is updated by: Addendum 800-1100P0-04.01

MULTIPLY HALFWORD (MH)

MH R1,D2(X2,B2) R

| i R |
| 4C ! 1|
I | |
0 8 1

= | ———

The product of the second operand (multiplier) and first operand
(multiplicand) replaces the multiplicand. The second operand is two bytes in
length, must be halfword aligned, and is considered to be a 16-bit signed
integer.

Both multiplicand and product are 32-bit signed integers and may be
located in any general register. The 16-bit multiplier is expanded to 32 bits
before multiplication by propagating the sign-bit value through the 16
high~order bit positions. The multiplicand is replaced by the low-order part
of the product. The bits to the left of the 32 low-order bits are not tested
for significance; no overflow indication is given.

The sign of the product is determined by the rules of algebra from the
multiplier and multiplicand signs, except that a result of 0 is always
positive.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2)
Specification

Programming Note

The significant part of the product usually occupies 46 or fewer bits,
the exception of 47 bits being when both operands have the maximum negative
value. Since the 1low-order 32 bits of the product are stored unchanged,
ignoring all bits to the left, the sign bit of the result may differ from the
true sign of the product if there is overflow.

7-111

This manual is updated by: Addendum 800-1100P0-04.01

OR (OR, O, OI, OC)

OR R1,R2 (RR)

| | R | R |

| 16 I 1 1 2 |

| | | |

0 8 12 15

0 R1,D2(X2,B2) ®RX)

[' R | x 1 B 1 D [
| 56 1 1 2 | 2 | 2 |
| | | | | |
0 8 12 16 20 31
0I D1(B1),I2 (S1)

| | I | B | D |
| 96 | 2] 1 | 1 I
| | | | [
0 8 16 20 31
oc Dp1(L,Bl1) ,D2(B2) (sS)

|] ! 8 | //p1 B 1/ /D |
| D6 | L | 1 | 1l 2 | 2 |
| | | L7/ | L /77 1
0 8 16 20 32 36 47

The 1logical sum (OR) of the bits of the first and second operands is
placed in the first operand location. Operands are treated as unstructured
logical quantities, and the connective inclusive OR is applied bit by bit. A
bit position in the result is set to 1 if the corresponding bit position in
one or both operands contains a 1; otherwise, the result bit is set to 0. All
operands and results are valid. Operand 2 of the O instruction requires
fullword alignment.

Resulting Condition Code

Result is O
Result not 0

WN=O

Program Exceptions

Specification (0 only)

Access (fetch, operand 2, 0 and OC; fetch and store, operand 1, OI and
0C) :

7-112

Programming Note

The OR may be used to set a bit to 1. For this purpose, the second
operand should have Os in all positions corresponding to the first operand
bits to be set to 0.

7-113

PACK (PACK)

PACK D1(L1,B1),D2(L2,B2) (ss)

| | L |
| F2 |1 |
| I |

0 8 1

L
2

B | I/
1| 2 |-
I I 1/

6 20 32 36

~ | ~

/D B
- 1|
/

|
|
I
2 1

The format of the second operand is changed from zoned to packed, and
the result is placed in the first operand location.

The second operand is assumed to have the zoned format. All zones are
ignored except the =zone over the low-order digit, which is assumed to
represent a sign. The sign is placed in the rightmost four bits of the
low-order byte, and the digits are placed adjacent to the sign and to each
other in the remainder of the result field. The sign and digits are moved
unchanged to the first operand field, and are not checked for valid codes.

The fields are processed right to 1left. If necessary, the second
operand is extended with high-order Os. If the first operand field 1is too
short to contain all significant digits of the second operand field, the
remaining high-order digits are ignored. Overlapping fields may occur and are
processed by storing one result byte immediately after the necessary second
operand bytes are fetched. Except for the rightmost byte of the result field,
which is stored immediately upon fetching the rightmost byte of the second
operand, two operand bytes are needed for each result byte.

L1l and L2 are the operand lengths, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

Programming Notes

The PACK instruction may be used to interchange the two digits in one
byte by specifying a 0 in the L1 and L2 fields and the same address for both
operands.

To remove the zones of all bytes of a field, including the low—-order

byte, both operands must be extended with a dummy byte in the low-order
position, which subsequently is ignored in the result field.

7-114

PACK AND ALIGN (PAL)

PAL D1(L1,B1),D2(L2,B2) (83)

| | L
I C4 [|
| I

| L

I

|
0 8 12

2

| | I
| | I
| | I
16 20 32

The format of the second operand is changed from external format to
packed, and the result is placed in the first operand location.

The second operand is assumed to have the external format. The source
field may contain (moving right to left) blanks (ASCII space code), followed
by a sign (ASCII plus or minus), followed by data. Or it may contain data
followed by a sign followed by blanks. It may also contain a single ASCII
decimal point character. L1 and L2 are the operand lengths, minus 1.

The source field is scanned right to left until the first nonblank
character is encountered. If the first nonblank character is a valid sign
character (hexadecimal 2B for plus or hexadecimal 2D for minus) its packed
equivalent (1111 for plus or 1101 for minus) will be stored in the rightmost
four bits of the least significant byte of the first operand (receiver
field). If a decimal point has not previously been encountered, a check for
decimal point is made. If the character is a decimal point, its existence and
position will be reflected in the contents of register 1, and the recognition
of another decimal point will be treated as an invalid character. A final
test is made to determine whether or not the character is a valid decimal
character. The scan continues until the leftmost source byte is reached. If
the first nonblank character was not a valid sign, the 1leftmost character is
checked for a valid sign, and the first operand is set accordingly. If no
sign is specified in the source field, a plus sign (1111) is stored in the
first operand.

Table 7-3 summarizes the scan order, disregarding any leading or
trailing blanks. "

Table 7-3. PACK AND ALIGN Scan Order

Order Test When Applied

1 Sign To rightmost nonblank character

2 Sign To 1leftmost character (if the
rightmost nonblank character was not
a sign)

3 Decimal point Until a decimal point is encountered

4 Valid decimal Always

character

7-115

The code coversions from external ASCII to packed format are as follows:
« ASCII codes 0 through 9 are converted to 4-bit binary equivalents.

. The sign character, if present, is converted to 1111 for plus and
1101 for minus, and is stored in the rightmost four bits of the
packed field. The presence of the sign character in the source
field is indicated in register 1. If no sign was found, a plus code
is stored in the sign position of the packed field.

. The decimal point presence and position is indicated in register 1
and it is skipped.

+ The destination field is padded with leading packed Os.

. The number of source digits converted is indicated in register 1.
Leading 0s preceding the decimal point in the source field are
counted as digits.

The target field is filled in from right to left. If necessary, the
second operand is padded with most significant Os. If the first operand is
too short to contain all significant digits of the second operand field, the
remaining digits are ignored and the condition code 1is set to indicate
truncation. In all cases of truncation, the operation is completed ignoring
truncated digits. If an invalid character is encountered during conversion,
the condition code is set to indicate a data validity error and the
instruction is terminated.

If the instruction is completed, register 1 is set to reflect the result
of the operation. Bit 24 of register 1 is set if a sign character was
present, and bit 25 is set if a decimal point was present. Bits 0 through 15
of register 1 are unchanged. Bits 16 through 23 are set to the number of
digits (including 0s) to the left of the decimal point in the source field.
Bits 26-31 are set to the 2's complement of the count of digits (including Os)
to the right of the decimal point in the source field. Register 1 appears as
follows after the PAL instruction is completed without encountering an invalid
character:

17777171 Left | | | 2's complement |
1//1/1/! count | S | D | of right I
V1777171 | count I

16 23 24 25 26 31

7-116

Rl Bits Function

16-23 Left count: count of source digits (including 0Os) to left of
decimal point

24 S, Sign presence

0 = no sign present

1 = sign present
25 D, Decimal point presence
0 = no source field decimal point encountered
1 = decimal point encountered
26-31 2's complement of right count: 2's complement of count of
digits to right of the effective decimal point in the source

field
Overlapping operand fields will yield unpredictable results.

Resulting Condition Code

Conversion completed successfully
Invalid character encountered

WN=O

Left truncation occurred

Programming Exceptions

Access (fetch, operand 2; store, operand 1)

Programming Notes

The initial contents of register 1 are overwritten by the action of PAL.

If all digits in the source field are 0, the sign of the result will
reflect the sign of the source. If truncation of a nonzero field occurs, the
sign will reflect the value before truncation.

The '"right count" in register 1 after execution of PAL is in
2's-complement form for use in the second operand of the SHIFT AND ROUND
DECIMAL (SRP) instruction.

7-117

PQP (POP)

POP S1,R2 (RR)

The relevant stack vector is determined from the S1 field of the
instruction, The stack pointer is incremented by 4. Register R2 is then
loaded with the contents of the four bytes which were addressed by the stack
pointer before updating.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Access (fetch, bytes popped from stack)

7-118

POP CHARACTERS (POPC)

POPC D1(L,B1),0(52) (8S)

l I [
I pg | L |
| | l

0 8 1

Wi— ——
SN

47

The relevant stack vector is determined from the S2 field of the
instruction. The D2 field is ignored. Bytes are taken from the location
addressed by the stack pointer and ascending locations, and stored in
ascending locations beginning at the location specified by the Bl and D1
fields. The number of bytes specified is stored. The stack pointer is then
incremented by this number. The stack pointer is then incremented again (by
0, 1, 2, or 3) so that it addresses a fullword boundary.

L is the operand length in bytes, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification :
Access (fetch, bytes popped from stack; store, operand 2)

Programming Note

This is a move from a word-aligned location to a location with no
alignment restriction.

7-119

POP HALFWORD (POPH)

POPH S1,R2 (RR)

| s |

f 09 .

| I I |
0 8 1

The relevant stack vector is determined from the S1 field of the
instruction. The stack pointer 1is incremented by 4. Then the low-order
halfword of register R2 is loaded with the contents of the two bytes that were
addressed by the stack pointer before updating. Bit 16 of register R2 is then
propagated through the high-order half (bits O through 15) of the register.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Access (fetch, bytes popped from stack)

7-120

POP MULTIPLE (POPM)

pPOPM S1,R3,R2 RS)

I s | R VR N/IIITI11777711177717)
I A6 by L3 b2 W 1N11071777717)
| I | I VA100001010041117771
0 8 12 16 20 31

The relevant stack vector is determined from the S1 field of the
instruction. The stack pointer is incremented by the number of bytes implied
by the range of registers R3 to R2. Register R3 and succeeding registers
(with register 0 following register 15) are then 1loaded, starting from the
location that was addressed by the stack pointer before updating, until
register R2 has been loaded.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Access (fetch, bytes popped from stack)

7-121

POP NOTHING (POPN)

POPN S1,D2(X2,B2) (RX)

D |
2 I
|

! |l s |
| 84 [
| I I

0 8 1

I
|
I
6 20 3

The relevant stack vector is determined from the S1 field of the
instruction. The D2(X2,B2) value is added to the address in the stack pointer
and the result stored in the stack pointer. The stack pointer is then
incremented (by 0, 1, 2, or 3) so that it addresses a fullword boundary.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification

7-122

PUSH (PUSH)

PUSH S1,R2 (RR)

| [s |

| OB 1 |

| | | I
0 8 1

The relevant stack vector is determined from the S1 field of the
instruction. The contents of the register specified by the R2 field are
stored at the location addressed by the stack pointer, minus 4. The stack
pointer of the stack vector is then decremented by 4.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow
Specification
Access (store, bytes pushed onto stack)

Programming Note

If the value in the stack pointer is pushed onto a stack by PUSH or
PUSHM, the value pushed will be that in the register before the instruction
was executed.

7-123

PUSH ADDRESS (PUSHA)

PUSHA S1,D2(X2,B2) (RX)

I s |
I BO 1
| | |

0 8 1

0 31

The relevant stack vector is determined from the S1 field of the
instruction. The address in the stack pointer is decremented by 4. The
second operand address is then placed in the three low—order bytes of the word
addressed by the stack pointer. The high-order byte of this word is set to
binary Os. Address computation follows the rules for base-displacement
address formation.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow
Specification
Access (store, bytes pushed onto stack)

Programming Note

The second operand address is determined before the stack pointer is
decremented, and therefore reflects the contents of registers before the
instruction is executed.

7-124

PUSH ADDRESS (RELATIVE) (RPUSHA)

RPUSHA R1,L2 (RL)
| | R
| 72 |1
| |

I L |
I 2 I
l I
12 31

0 8

The sign of the L2 field is extended 12 bits to the left, to form a
32-bit signed 2's-complement displacement. The displacement is added to the
current instruction address to form the effective address.

Instruction execution is then identical to the corresponding RX
instruction.

When the instruction is executed, the current instruction address used
in the effective—address calculation is the address of the EXECUTE instruction.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow
Specification
Access (store, bytes pushed onto stack)

7-125

PUSH CHARACTERS (PUSHC)

PUSHC 0(L,S1),D2(B2) (8S)

)		s /77 /17t B 1/ /7D
D9	L I /77 2 1-- 2	
		1/ /171 1/ /
0 8 16 20 32 36 47

The relevant stack vector is determined from the S1 field of the
instruction. The length specified is subtracted from the stack pointer in the
stack .vector. The stack pointer is then decremented again (by 0, 1, 2, or 3)
until it addresses a fullword boundary. Bytes are then taken from the
location specified by the B2 and D2 fields and ascending locations; they are
stored in ascending locations beginning at the location addressed by the
updated stack pointer. The number of bytes specified is stored.

L is the operand length, minys 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow
Specification
Access (store, bytes pushed onto stack; fetch, operand 2)

Programming Note

This is a move from a location with no alignment restriction to a
word-aligned location.

7-126

PUSH MULTIPLE (PUSHM)

PUSHM S1,R3,R2 (RS)

| s | R | R U//1711711111111117111)
! A9 Ly L 3 L2 NI
| I l | \/11141111401010711711711]
0 8 12 16 20 31

The relevant stack vector 1is determined from the S1 field of the
instruction. The values in register R2 and preceding registers (with
register 15 preceding register 0) are stored in descending words starting four
bytes below the location addressed by the stack pointer, until the register
specified by the R3 field has been stored. The stack pointer 1is then
decremented by the number of bytes stored.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow
Specification
Access (store, bytes pushed onto stack)

7-127

PUSH NOTHING (PUSHN)

PUSHN S1,D2(xX2,B2) RX)

| I s |
| 85 .
I I |

0 8 1

The relevant stack vector is determined from the S1 field of the
instruction. The D2(X2,B2) value is subtracted from the address in the stack
pointer and the result is stored in the stack top word. The stack pointer is
then decremented again (by 0, 1, 2, or 3) until it addresses a fullword
boundary.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow
Specification

7-128

This manual is updated by: Addendum 800-1100P0-04.01

p
RESET REFERENCE AND CHANGE BITS (RRCB)

RRCB D1(B1) ,M2 (s1)

| | M |
| 9F I 2 |
| I I

0 8 1

b |— o —

The reference and change table (RCT) (for all VS processors) or the
T-RAM monitor area (for the VS25 and VS100) is examined or modified with this
instruction, according to the value of M2. When used with the RCT, operand 1
must be a physical address; when used with the T-RAM monitor area, it must be
a virtual address. The operation of the instruction is explained below.

REFERENCE AND CHANGE TABLE

The reference and change table (RCT) makes possible the efficient
replacement of old memory pages with new pages read in from disk. (Refer also
to the discussion of paging in Chapter 4 of this manual.) The RCT is an area
of local CP memory containing 8K entries of 2 bits each. These are a
reference bit and a change bit for each of the up to 8K addressable pages of
main memory. When some location in a page frame is referenced by a user
program, the reference bit for the page frame is set to 1; when the location
is also modified, the change bit is also set to 1. The system paging task
uses the reference and change bits along with an aging count in deciding which
virtual pages to overwrite with new ones during paging operations.

RRCB Reference and Change Table Function

The privileged RRCB instruction allows inspection and modification of
the RCT through use of a physical address. The immediate mask (M2) of the
instruction, illustrated below, specifies this action.

I AVIAVIAVIAVIAVIAYY S
N ANAVIAVIAVIAVIAVIAYIE
AR SVIAVIAVIAVIAVIAVIA
bits 8 15

Figure 1. Format of Operand M2 in RRCB Instruction
for Reference and Change Table

The SEL bit selects reference and change bit control (SEL=0) or monitor
area control (SEL=1). When SEL=0, RCT=1 causes resetting of the reference and
change bits; RCT=0 only reports the current setting of the bits.

7-129

This manual is updated by: Addendum 800-1100P0-04.01

The condition code is set to reflect the state of the reference and
change bits before they are conditionally reset.

Resulting Condition Code

0 Reference bit 0, change bit 0

1 Reference bit 0, change bit 1

2 Reference bit 1, change bit 0

3 Reference bit 1, change bit 1
MONITOR AREA

The monitor area is a section of local CP memory that is typically
used to record loaded T-RAM entries and thereby control user address space.
For example, the VS25 and VS100 use it for efficient clearing of a task's
T-RAM at the end of each time slice. (Refer also to the description of
address translation in Chapter 4 of this manual.) For the VS25 the monitor
area comprises 64 entries; for the VS100 it comprises 128 entries.

Monitoring is enabled for a segment of a user's virtual memory if the M
bit is set in the SCR for the segment; refer to Figure 4-5 for an illustration
of SCR format. During the successful servicing of a T-RAM fault for a virtual
page in a segment for which monitoring is enabled, the virtual page address is
recorded in the next available monitor area location. At the end of a user's
time slice, only those T-RAM locations identified by monitor entries are
cleared (i.e., their high order bit is set to 1), rather than the entire
T-RAM. Because only a fraction of each segment's possible T-RAM entries are
likely to be 1loaded during a given time slice, clearing the T-RAM using the
monitor is much more efficient than clearing the entire T-RAM, which would
require individually accessing each of 512 entries per segment.

RRCB Monitor Area Function

The privileged RRCB instruction allows clearing of all or part of the
VS25 or VS100 T-RAM monitor area through use of a virtual address. The
immediate mask (M2) of the instruction is interpreted differently for the VS25
and VS100, and specifies monitor action as follows:

| s! RI//1 Al sl ol Ml DI
| El ¢l//1 LI E|l NI ol Ml
| LI T1//1 LI ¢l E| NI P|
bits 8 15

Figure 2. Format of Operand M2 in RRCB Instruction
for VS25 and VS100 T-RAM Monitor Area

7-129.1

This manual is updated by: Addendum 800-1100P0-04.01

The SEL bit selects reference and change bit control (SEL=0) or monitor
control (SEL=1). For SEL=1, the remaining bits have the following meaning
when set to 1:

RCT - ignored

ALL - Clears all T-RAM entries and monitor entries; used
for diagnostics and initialization.

SEG - Clears T-RAM entries for the segment indicated in
virtual address operand (operand 1) of the RRCB
instruction. PFor the VS25, if monitoring is
enabled, all T-RAM entries recorded by the monitor
for any segment are cleared, along with the
monitor entries themselves; i.e., SEG=MON. For the
VS100, if monitoring is enabled for the segment,
only those T-RAM entries recorded for the segment
by the monitor are cleared, along with the monitor
entries themselves.

ONE - Clears the one T~-RAM entry specified by the
virtual address operand of the RRCB instruction.
(For the VS100 only: also clears the
corresponding monitor entry if monitoring is in
effect for the segment.)

MON - Clears T-RAM entries recorded in the monitor area,
along with the monitor entries themselves.

DMP - Copies (dumps) the entire monitor area to the
word—aligned main memory location specified by the
virtual address operand of the RRCB instruction;
the T-RAM and monitor are left unchanged. (Not
currently supported on the VS25.)

For VS100 only: ALL, SEG, and MON functions place a <count value of
cleared T-RAM entries in general register 0.

Program Exceptions

Access (addressing only, operand 1)
Privileged operation

7-129.2

This manual is updated by: Addendum 800-1100P0-04.01

RETURN AND POP ON CONDITION (RPC)

RPC M1,R2 {RR)

l I M
l 26 I 1
| I

R
2

| i
! [
I |
12 15

0 8
This instruction is identical to the RTC instruction, except that after
all other processing is completed, the stack pointer (general register 15)
will be loaded with the value that was contained in the R2 register before

execution of this instruction began. The high—order byte of general register
15 is set to 0 by this instruction.

Resulting Condition Code

Set with value from stack

Program Exceptions

Access (fetch, bytes popped from the system stack)

Specification (if the current control register 1 value is not a multiple
of 4)

7-130

RETURN ON CONDITION (RTC)

RTC M1 (RR)
| M U/17177)
| 04 b1 17171771
| | 1/11117)
0 8 12 15

If the state of the condition code is as specified by M1, this
instruction will set general register 15 (the stack pointer) equal to the
current value in control register 1, plus 4 (thus skipping over the register O
save—-area contents stored by a JSCI instruction); the instruction will then
pop off the system stack general registers 1 to 14. The high byte of control
register 1 is set to 0. The next word will then be popped off the stack and
its value will replace the current contents of control register 1. One more
word will then be popped off the stack and will be used as the program mask
byte and address portion of the current PCW. Control will then pass to the
address specified in the address portion of the PCW.

If the state of the condition code is not as specified by M1, none of
the above occurs, and normal instruction sequencing proceeds with the updated
instruction address.

Resulting Condition Code

Set with value from stack

Program Exceptions

Access (fetch, bytes popped from the system stack)

Specification (if the current control register 1 value is not a multiple
of 4)

7-131

SAVE THEN ‘'AND' SYSTEM MASK (STNSM)

STNSM R1,R3,I2 (RS)

[I R |
I AC [
I I !

0 8 1

I I [
| 2 |
I l
16 31

This instruction tests whether to save the current PCW status field. If
the R1 field of the instruction is 0, the saving is bypassed. If Rl is not O,
the current PCW status field is saved in bits 16-31 of register R1. Bits 0-15
of Rl are unchanged.

After the saving 1is performed or bypassed, the R3 field of the
instruction is tested. If it is 0, I2 is ANDed with the current PCW status
field. 1If R3 is not 0, I2 is ANDed with bits 16-31 of register R3, and this
replaces the current PCW status field.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Privileged operation

Programming Note

This instruction is normally used for one of three functions:
1. Turning off specified bits in the PCW

2. Turning off specified bits in the PCW while saving the previous
status

3. Re-establishing the previous status.

7-132

P
SAVE THEN 'OR' SYSTEM MASK (STOSM)

STOSM R1,R3,I2 [RS)

| | R |
| AD I 1 |
| | I

0 8 1

6 31

This instruction first tests whether to save the current PCW status
field. If the Rl field of the instruction is 0, the saving is bypassed. If R1
is not 0, the current PCW status field is saved in bits 16-31 of register R1.
Bits 0-15 are unchanged.

After the saving is performed or bypassed, the R3 field of the
instruction is tested. If it is 0, I2 is ORed with the current PCW status
field. If R3 is not 0, I2 is ORed with bits 16-31 of register R3 and this
replaces the current PCW status field.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Privileged operation

Programming Note

This instruction is normally used for one of three functions:
1. Turning on specified bits in the PCW
2. Turning on specified bits in the PCW while saving the previous status

3. Re-establishing the previous status.

7-133

SCAN FOR BYTE (SCAN)

SCAN R1,M3,D2(B2) (RS)
| | R
| B8 | 1
| |

M
3

B
2

[D [
! 2 |
I |
20 31

I |
| I
I I
0 8 12 16
The first operand designates an address—length register pair (general
registers R1 and R1+l, with Rl even-numbered). Second operand base and
displacement calculations are performed according to the rules for address
arithmetic, and the low-order byte of the result is used. The byte string
specified by the first operand address-length register pair is scanned in
order of ascending or descending memory addresses, comparing each byte with

the second operand byte value, until an equal or unequal value is found.
Options are selected by the M3 field as follows:
Bit 0 Ascending scan if 0; descending scan if 1
Bit 1 Stop on equal compare if 0; stop on unequal compare if 1
Bits 2, 3 Must be 0 (specification exception if not)

For an ascending scan, the address—length register pair is updated as
follows: Register Rl contains the address of the byte that satisfied the
specified condition, or of the first byte beyond the string if the condition
is not satisfied. Bits 8-31 of register Rl1+l contain either the 1length of
that part of the string including and above the byte on which the condition
was satisfied, or 0 if the condition was not satisfied.

For a descending scan, the address-length register pair is updated as
follows: Bits 8-31 of register Rl are unchanged. Bits 8-31 of register R1+1
contain either the length of that part of the string including and below the
byte on which the condition was satisfied, or O if the condition was not
satisfied.

The high-order byte (bits 0-7) of register R1 is set to 0O by the
instruction.

7-134

The execution of the instructon is interruptible. When an interruption
occurs after a unit of operation other than the last one, the contents of
registers Rl and Rl+l are incremented and/or decremented so that the
instruction, when re-executed, resumes at the point of interruption. The
instruction may be refetched from main storage even in the absence of an
interruption during execution.

Resulting Condition Code

0 Condition not satisfied
1 Condition satisfied, other than at end of operand 1

2 Condition satisfied at end of operand 1 (highest—addressed byte
ascending; lowest-addressed byte descending)

3 —

Program Exceptions

Specification
Access (fetch, operand 1)

Programming Notes

The second operand of SCAN FOR BYIE must not be a literal expression.

For general notes on interruptible instructions, refer to MOVE
CHARACTERS LONG.

7-135

SET PROGRAM MASK (SPM)

SPM Rl (RR)
| bR /111171
| oD I 1 17711171
| | 171111171
0 8 12 15

Bits 0-7 of the general register specified by the Rl field replace the
condition code and the rest of the program mask bits of the current PCW. Bits
8-31 of the register specified by the Rl field are ignored. The contents of
the register specified by the Rl field remain unchanged.

The instruction permits setting of the condition code and the rest of
the program mask bits in either the problem program or the supervisor state.

Resulting Condition Code

The code is set according to bits 0-1 of the register specified by R1.

Program Exception

None

Programming Note

Bits 0-7 of the general register may have been loaded from the PCW by
BRANCH AND LINK (BAL).

7-136

SHIFT AND ROUND DECIMAL (SRP)

SRP D1(L1,B1),D2(B2),I3 (ss)

Il t1	B	//	I B 1/ /D
FO I 11 3 1 1	1l 2	2	
	I	L7/ 1 i/ /	
0 8 12 16 20 32 36 47

The first operand is shifted in the direction and for the number of
digit positions specified by the second operand address. When shifting to the
right 1is specified, the first operand is rounded by the rounding factor, I3.
L1 is the operand length, minus 1.

The second operand address is not used to designate data; instead, the
contents of bit positions 26-31 of the address are considered a signed
fixed-point quantity, indicating the direction of the shift and the number of
digit positions to be shifted. The remainder of the address is ignored. When
bit 26 of the second operand address is 0, a left-shift is specified, and bits
27-31 of the address are considered a true binary number specifying the number
of digit positions of shift. When bit 26 is 1, a right-shift 1is specified,
and bits 27-31, considered as a binary number in 2's-complement notation,
specify the amount of the shift.

The first operand is considered to be in the packed decimal format and
is checked for the validity of decimal digit codes. Only its digit portion is
shifted; the sign position does not participate in the shifting. Zeros are
supplied for the vacated digit positions. The validity of the first operand
is checked and the condition code is set even if a shift amount of O is
specified. A result of 0 is made positive.

If a significant digit is shifted out of the high-order digit position
during left-shift, a decimal overflow condition is recognized. The operation
is completed by ignoring the overflow.

During right-shift, bit positions 12-15, the contents of the I3 field,
are used as a rounding factor. The shifted operand is rounded by decimally
adding the rounding factor to the last digit shifted out and propagating the
carry, if any, to the left. Both the first operand and the rounding factor
are considered positive quantities for the purpose of this addition. Except
for validity checking and the participation in rounding, the digits shifted
out of the low-order digit position are ignored and lost. The validity of the

rounding-factor code is checked regardless of the direction and amount of
shift specified.

7-137

Resulting Condition Code

Result is 0

Result is less than O
Result is greater than 0
Result overflows

WO

Program Exceptions

Access (fetch and store, operand 1)
Data
Decimal overflow

Programming Note

Because the 2's-complement notation is employed, SHIFT AND ROUND DECIMAL
can be used for shifting up to 31 digit positions left and up to 32 digit
positions right. This is sufficient to clear all digits of any decimal field
even vhen rounding in right-shift is specified.

Please refer to the Programming Note for SLDA.

7-138

SHIFT LEFT DOUBLE (SLDA)

SLDA R1,D2(B2) (RS)

I R /171771 B	D	
8F byt 2	2	
	1///11/71	
0 8 12 16 20 31

The double-length integer part of the first operand is shifted left the
number of bits specified by the second operand address. Bits 12-15 of the
instruction are ignored.

The second operand address is not used to address data; its 1low-order

six bits indicate the number of bit positions to be shifted. The remainder of
the address is ignored.

The Rl field of the instruction specifies an even/odd pair of registers

and must contain an even register address. A specification exception occurs
when R1 is odd.

The first operand is treated as a number with 63 integer bits and a sign
in the sign position of the high-order register. The sign remains unchanged.
The high—-order bit position of the R1+1l register contains an integer bit, and
the contents of the Rl+l register participate in the shift in the same manner

as the other integer bits. Zeros are supplied to the vacated positions of the
registers.

If a bit unlike the sign bit is shifted out of bit position 1 of the Rl
register, an overflow occurs. The overflow causes a program interruption when
the fixed-point overflow mask bit is set to 1.

Resulting Condition Code

Result is 0

Result is less than 0
Result is greater than O
Overflow

WO

Program Exceptions

Fixed-point overflow
Specification

7-139

Programming Notes

The eight shift instructions provide the following three pairs of
alternatives: left or right, single or double, and algebraic or logical.
Algebraic shifts differ from the 1logical shifts in that overflow is
recognized, the condition code is set, and the high—-order bit participates as
a sign in algebraic shifts.

The maximum shift amount that can be specified is 63. For algebraic
shifts this is sufficient to shift out the entire integer field. Since 64
bits participate in the double-logical shifts, the entire register contents
cannot be shifted out.

A shift amount of 0 in the two algebraic double-shift operations
provides a double-length sign and magnitude test.

The base register participating in the generation of the second operand

address permits indirect specification of the shift amount. A O in the B2
field indicates the absence of indirect shift specification.

7-140

SHIFT LEFT DOUBLE LOGICAL (SLDL)

SLDL R1,D2(B2) (RS)

| | R /771771 B | D I
| 8D 1 21770 2 | 2 I
I | 1//117111 | |
0 8 12 16 20 31

The double-length first operand is shifted 1left the number of bits
specified by the second operand address. The second operand address is not
used to address data; its rightmost six bits indicate the number of bit
positions to be shifted. The remainder of the address is ignored.

The R1 field of the instruction specifies an even/odd pair of registers

and must contain an even register address. A specification exception occurs
when Rl is odd.

All 64 bits of the register pair specified by Rl participate in the
shift. Most significant bits are shifted out of the first register and are
lost. Zeros are supplied to the vacated positions of the registers.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification

Programming Note

Please refer to the Programming Notes for SLDA.

7-141

SHIFT LEFT SINGLE (SLA)

SLA R1,D2(B2) (RS)

| | R I////1f1 B | D |
| 8B I SR V77 A - 2 |
| | /77717y |
0 8 12 16 20 31

The integer part of the first operand is shifted left the number of bits
specified by the second operand address. Bits 12-15 of the instruction are
ignored.

The second operand address is not used to address data; its low-order
six bits indicate the number of bit positions to be shifted. The remainder of
the address is ignored.

The sign of the first operand remains unchanged. All 31 integer bits of
the operand participate in the left-shift. Zeros are supplied to the vacated
low—-order register positions.

If a bit unlike the sign bit is shifted out of position 1, an overflow
occurs. The overflow causes a program interruption when the fixed-point
overflow mask bit is set to 1.

Resulting Condition Code

Result is 0

Result is less than 0
Result is greater than 0
Overflow

W -HO

Program Exceptions

Fixed-point overflow

Programming Notes

For numbers with an absolute value of less than 2%%30, a left shift of
one bit position is equivalent to multiplying the number by 2.

Please refer to the Programming Notes for SLDA,

7-142

SHIFT LEFT SINGLE LOGICAL (SLL)

SLL R1,D2(B2) (RS)

| LR /17771 B D I
| 89 by 2| 2 I
I | 1//171/] | I
0 8 12 16 20 31

The first operand is shifted left the number of bits specified by the
second operand address.

The second operand address is not used to address dataj; its least
significant six bits indicate the number of bit positions to be shifted. The
remainder of the address is ignored.

All 32 bits of the general register specified by Rl participate in the
shift. Most significant bits are shifted out and are lost. Zeros are
supplied to the vacated least-significant register positions.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

Programming Note

Please refer to the Programming Notes for SLDA.

7-143

SHIFT RIGHT DOUBLE (SRDA)

SRDA R1,D2(B2) (RS)

[bR /777771 B | D |
! 8E by e 2| 2 l
I l | /111111 I l
0 8 12 16 20 31

The double-length integer part of the first operand is shifted right the
number of places specified by the second operand address. Bits 12-15 of the
instruction are ignored.

The Rl field of the instruction specifies an even/odd pair of registers
and must contain an even register address. A specification exception occurs
when Rl is odd.

The second operand address is not used to address data; its low-order
sizx bits indicate the number of bit positions to be shifted. The remainder of
the address is ignored.

The first operand is treated as a number with 63 integer bits and a sign
in the sign position of the high—order register. The sign remains unchanged.
The high-order bit position of the low-order register contains an integer bit,
and the contents of the low-order register participate in the shift in the
same manner as the other integer bits. The low-order bits are shifted out
without inspection and are lost. Bits equal to the sign are supplied to the
vacated positions of the registers.

Resulting Condition Code

Result is 0
Result is less than 0
Result is greater than 0

wN =O

Program Exceptions

Specification

Programming Note

Please refer to the Programming Notes for SLDA.

7-144

SHIFT RIGHT DOUBLE LOGICAL (SRDL)

SRDL R1,D2(B2) (RS)

| IR /111770 B | D |
| 8C 1 e 2 2 |
| | 17711111 | |
0 8 12 16 20 31

The double-length first operand is shifted right the number of bits
specified by the second operand address.

The R1 field of the instruction specifies an even/odd pair of registers
and must contain an even register address. A specification exception occurs
when Rl is odd.

The second operand address is not used to address data; its rightmost
six bits indicate the number of bit positions to be shifted. The remainder of
the address is ignored.

All 64 bits of the register pair specified by R1l participate in the
shift. Least significant bits are shifted out of the second register and are
lost. Zeros are supplied to the vacated positions of the registers.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification

Programming Note

Please refer to the Programming Notes for SLDA.

7-145

SHIFT RIGHT SINGLE (SRA)

SRA R1,D2(B2) (RS)

| I R 1//7///1/1 B | D |
| 8A L1 1/ 2 | 2. |
| | \//4117] |]
0 8 12 16 20 31

The integer part of the first operand is shifted right the number of
bits specified by the second operand address. Bits 12-15 of the instruction
are ignored.

The second operand address is not used to address dataj; its low—-order
six bits indicate the number of bit positions to be shifted. The remainder of
the address is ignored.

The sign of the first operand remains unchanged. All 31 integer bits of
the operand participate in the right-shift. Bits equal to the sign are
supplied to the vacated high-order bit positions. Low—order bits are shifted
out without inspection and are lost.

Resulting Condition Code

Result is 0
Result is less than 0
Result is greater than 0

wWwNo=O

Program Exceptions

None

Programming Notes

A right-shift of one bit position is equivalent to division by 2 with
rounding downward. When an even number is shifted right one position, the
value of the field is that obtained by dividing the value by 2. When an odd
number is shifted right one position, the value of the field is that obtained
by dividing the next lower number by 2.

Shifts of from 31 to 63 bit positions cause the entire integer to be
shifted out of the register. When the entire integer field of a positive
number has been shifted out, the register contains a value of 0. For a
negative number, the register contains a value of -1.

Please refer to the Programming Notes for SLDA.

7-146

SHIFT RIGHT SINGLE LOGICAL (SRL)

SRL R1,D2(B2) (RS)

| | R 1//711/11 B | D |
! 88 by iy 2 | 2 |
| | 1//41111 I |
0 8 12 16 20 31

The first operand is shifted right the number of bits specified by the
second operand address.

The second operand address is not used to address data; its least
significant six bits indicate the number of bit positions to be shifted. The
remainder of the address is ignored.

All 32 bits of the general register specified by R1l participate in the
shift. Least significant bits are shifted out and are lost. Zeros are
supplied to the vacated most-significant register positions.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

Programming Note

Please refer to the Programming Notes for SLDA.

7-147

START 1/0 (SIO0)

SI0 Rl (RR)
[LR 11771771
! 02 N
! l \//1/7/1
0 8 12 15

An I/0 command is initiated at the addressed I1/0 device. The
instruction START I/0 is executed only when the system is in the supervisor
state.

The register specified by Rl contains the I/0 device address to which
the instruction applies. The IOCA must be stored in the appropriate IOCA area
before the SI0 is issued, and must not be changed until the completion
interrupt is accepted.

In the register specified by Rl, bit positions 24-31 contain the device
address. Bits 0 to 23 are ignored.

VI7777111117111111) I
VI1111717171111111) device |
V/17171117171111171 address |
VLT I
0 23 24 31

The I/0 operation specified by START I1/0 is initiated if the addressed
I/0 device and its I/0 processor (IOP) are available. The I/0 operation is
not initiated in the following cases: when the addressed IOP is not connected
or is otherwise not operational, when the IOP is unable to service the request
(IOP BUSY), or when the device is busy with a previous SIO or CIO or has an
interruption pending other than IOP NOW READY. In these cases the instruction
is completed and a condition code of 3, 2, or 1, respectively, is returned.

Whenever an SIO instruction is completed with a condition code of 0, the
I/0 operation has been accepted and a pending I/0 interruption will be
established on completion of the operation. Until the completion interrupt
has been received, the IOCW and IOCA must not be changed. The IOCA and IOCW
are not changed by the IOP.

If the addressed I0P is not connected or is otherwise not operational,
the I/0 operation is not initiated and a condition code of 3 is returned. It
is not recommended that this feature be used in a time-critical program; it
may take the CP some time for the '"time out" to determine that the IOP is not
present. If the IOP address is valid but the addressed device is not
attached, the SIO is accepted and the IOSW stored on the completion interrupt
indicates DEVICE NOT READY.

7-148

If the IOP cannot respond to the SIO request, the SIO will complete with
a condition code of 2 and the I/0 operation will not be started. This
condition indicates that an IOP NOW READY interrupt bit will be set in the
next IOSW from that IOP. Note that this interrupt may or may not occur on the
device on which the IOP BUSY indication was received.

Resulting Condition Code

0 I/0 operation accepted, execution proceeding

1 Device busy with previous operation or interruption other than IOP
NOW READY pending

2 IOP BUSY
3 IOP not operational

Program Exceptions

Privileged operation

Programming Notes

The completion of the I/0 operation initiated by the SIO is indicated by
an I/0 interruption. Looping on an SIO instruction should be avoided since it
may interfere with the operation of the IOP.

Telecommunications (TC) IOPs use the SIO instruction rather than CIO for
memory diagnostic operations.

7-149

STORE (ST)

ST R1,D2(X2,B2) (RX)

[I R |
l 50 [
| ! |
0 8 1

The first operand is stored at the second operand location. The second
operand must be four bytes long, and it requires fullword alignment.

The 32 bits in the general register are placed unchanged at the second
operand location.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)
Specification

7-150

STORE CHARACTER (STC)

STC R1,D2(X2,B2) (RX)

| | R |

| 42 I 1 |

| | |
0 8 12

Bit positions 24-31 of the general register designated as the first

operand are placed at the second operand address. The byte to be stored is
not changed or inspected.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)

7-151

STORE CHARACTERS UNDER MASK (STCM)

STCM R1,M3,D2(B2) (RS)

] | R
| BE I 1
| |

| M

|

I
0 8 12

3

B
2

| I

I |

I I I

16 20 31

Bytes selected from the first operand under control of a mask are placed

in contiguous byte locations beginning at the second operand address.

The contents of the M3 field, bit positions 12-15, are used as a mask.
The four bits of the mask, left to right, correspond one for one with the four
bytes, left to right, of the general register designated by the Rl field. The
-bytes corresponding to 1s in the mask are placed in the same order in
successive and contiguous memory locations beginning with the location
designated by the second operand address. The number of bytes stored is equal
to the number of 1ls in the mask. The contents of the general register remain
unchanged.

When the mask is not 0, exceptions associated with storage-operand
access are recognized only for the number of bytes specified by the mask.
When the mask is 0, access exceptions are recognized for one byte.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)

7-152

This manual is updated by: Addendum 800-1100P0-04.01

STORE CONTROL (STCTL)

STCTL R1,R3,D2(B2) (RS)

l I R |
I B6 .
I I I
0 8 1

o [e —

The set of control registers starting with the control register
designated by the Rl field and ending with the one designated by the R3 field
is stored at the locations designated by the second operand address.

The memory area where the contents of the control registers are placed
starts at the location designated by the second operand address and continues
through as many memory words as the number of control registers specified.
The contents of the control registers are stored in ascending order of their
addresses, starting with the control register designated by the Rl field and
continuing up to and including the control register designated by the R3
field. The contents of the control registers remain unchanged.

Whenever the memory reference causes an access exception, the exception
is indicated. The second operand must be designated on a word boundary;
otherwise, a specification exception is recognized, and the operation is
suppressed. A specification exception will also be recognized if Rl is
numbered higher than R3.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)
Specification

7-153

This manual is updated by: Addendum 800-1100P0-04.01

STORE CP TYPE AND MICROCODE VERSION (STCPID)

STCPID R1 s

I | R 1/777171111111117111117771
I 9B I 80 Y U/000000000171711711117)
I I \//114111000000001077717]

l
|
l
0 8 16 20 31

A 2-byte code, representing the current CP type and current microcode
version, is stored in a general register.

Bits 0-15 of general register Rl are set to O. The CP type code 1is
stored in bits 16-23 of register R1; the current microcode version number is
stored in bits 24-31 of register Rl.

Current CP type codes are: for the VS80, 3; for the VS100, 4; and for
the VS25, 5.

Resulting Condition Code

For the current VS processor, the condition code is always set to O.

Program Exceptions

None

Programming Note

Bits O0-15 of general register Rl, bits 20-31 of this instruction, and
condition code values other than 0 are reserved. They may eventually be used
to indicate any optional features present in a particular processor, or for
other purposes. ‘

7-154

STORE DIAGNOSTIC DATA (STDD)

STDD D1(B1) (s)

[| [
! 9B | 00 I
| I l

0 8 1

Diagnostic information, including the contents of the local page tables
and local page frame table, is stored starting at the location specified by
the operand 1 address. This address is not translated. (It is a physical
main memory address.) Operand 1 must be fullword aligned, or a specification
exception will occur and the instruction will be suppressed.

Diagnostic data is stored in the order shown below. Floating-point
registers, control registers, and general registers are stored with high-order
and low—-order halfwords reversed. The 1local page frame table is stored in
4-bit entries. The low-order bit (bit 3) is the change bit (0 = set, 1 =
clear); bit 2 is the reference bit (0 = set, 1 = clear). The other two bits
of each entry are unused.

Data Item (and Decimal Size) Offset, in Hexadecimal,
from Operand 1 Address

: File registers (64) : X'o'

: Floating-point registers (32) : X'40'
: Control registers (32) : X'60'
: Auxiliary registers (64) : X'80'
: General registers (64) : X'co’
: Page table 0 (128) : X'100'
: Page frame table (128) : X'180'
: Page table 1 (256) : X'200'
: Page table 2 (256) : X'300'

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 1)
Specification
Privileged operation

7-155

Extended Operation Codes

Opcode X'9B' has been designated a 2-byte opcode.
through X'9B7F' are privileged opcodes; X'9B80'
privileged. Executing an instruction with an undefined opcode in the range
from X'9BO0' through X'9B7F' while the privileged-instruction trap bit in the

PCW is set may result in a privileged-instruction interrupt rather than an
invalid-operation interrupt.

Opcodes X'9B00'
through X'9BFF' are not

7-156

This manual is updated by: Addendum 800-1100P0-04.01

STORE (FLOATING-POINT) (STD, STE)

STD R1,D2(X2,B2) (RX, Long)

| 1T R | X i B | D |

| 60 lol 11 2 | 2 | 2 !

| | 1 | | | |

0 89 12 16 20 31

STE R1,D2(X2,B2) (RX, Short)

| ' T R | X | B | D |

| 60 il 14 2 1 2 | 2 | (optional)
| | 1] | | |

0 89 12 16 20 31

The first operand is stored at the second operand location. The first
operand, a floating-point register, remains unchanged. The second operand
must be eight bytes in length and requires fullword alignment.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Addressing
Protection (store violation)
Specification

7-157

This manual is updated by: Addendum 800-1100P0-04.01

STORE HALFWORD (STH)

STH R1,D2(X2,B2) ®x)

I I R |
| 40 1]
| I I

0 8 1

B
2

I | !
| | I
| I l
16 20 31
The contents of bit positions 1631 of the general register designated
by the Rl field are placed unchanged at the second operand location. The

I second operand is two bytes in length and requires halfword alignment.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)
Specification

7-158

This manual is updated by: Addendum 800-1100P0-04.01

STORE MULTIPLE (STM)

ST R1,R3,D2(B2) (RS)

I I R |
I 20 .
l | |
0 8 1

b | —

The set of general registers starting with the register specified by R1
and ending with the register specified by R3 is stored at the locations
designated by the second operand address.

The memory area where the contents of the general registers are placed
starts at the 1location designated by the second operand address and
continues through as many words as needed.

The general registers are stored in the ascending order of their
addresses, starting with the register specified by Rl and continuing up to and
including the register specified by R3, with register 0 following register
15. The contents of the general registers remain unchanged.

Operand 2 requires fullword alignment.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)
Specification

7-159

This manual is updated by: Addendum 800-1100P0-04.01

p
STORE SEGMENT CONTROL REGISTER (STSCTL)

STSCTL R1,R3,D2(X2,B2) (RS)

	R
A4	1

o 8 1

R
3

B
2

P |

| I
I |
I |
2 16 20 3
The set of segment control registers (SCRs) starting with the register

specified by Rl and ending with the register specified by R3 is stored at the
location designated by the second operand address.

The memory area where the contents of the SCRs are placed starts at the
location designated by the second operand address and continues through as
many words as needed.

The contents of the SCRs are stored in ascending order of their
addresses, starting with the register specified by Rl and continuing up to and
including the register specified by R3. Rl and R3 must fall in the range 0-7,
and R3 must be greater than or equal to Rl. The contents of the SCRs remain
unchanged.

Operand 2 requires fullword alignment.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)
Privileged operation
Specification

7-159.1

STORE MULTIPLE (STM)

STM R1,R3,D2(B2) (RS)

I ~ I R |
| 90 (T S
I | l

0 8 1

The set of general registers starting with the register specified by R1
and ending with the register specified by R3 is stored at the locations
designated by the second operand address.

The memory area where the contents of the general registers are placed
starts at the location designated by the second operand address and
continues through as many words as needed.

The general registers are stored in the ascending order of their
addresses, starting with the register specified by Rl and continuing up to and
including the register specified by R3, with register O following register
15. The contents of the general registers remain unchanged.

Operand 2 requires fullword alignment.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)
Specification

7-159

This manual is updated by: Addendum 800-1100P0-04.01

P
STORE SPECIAL REGISTER (STSREG)
STSREG D2 (B1) (s)
!] | B | D |
| 9B | 02 I 1 1 |
| | | | |
0 8 16 20 31

Data is moved to memory from a 32-bit special register, which may be
accessed only by the LSREG andé STSREG instructions (and by STDD).

The contents of the special register are moved to the fullword at the

address specified by the Bl and D1 fields. The address must be fullword
aligned.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Privileged operation
Access (store, operand 1)
Specification

7-160

SUBTRACT (SR, S)

SR R1,R2 (RR)
I Il R | R |
I 1B I 1 1 2 |
I | | |
0 8 12 15
S R1,D2(X2,B2) RX)
	R	X	B	D
5B 11 2 1 2	2			
0 8 12 16 20 31

The second operand, which must be fullword aligned, is subtracted from
the first operand, and the difference is placed in the first operand location.

Subtraction is considered to be performed by adding the 1's complement
of the second operand and a low-order 1 to the first operand. All 32 bits of
both operands participate, as in ADD. If the carry from the sign-bit position
and the carry from the high-order numeric bit position agree, the difference
is satisfactory; if they disagree, an overflow occurs. The overflow causes a
program interruption when the fixed-point overflow mask bit is set to 1.

Resulting Condition Code

Difference is 0

Difference is less than 0
Difference is greater than 0
Overflow

wWwNo=O

Program Exceptions

Specification
Access (fetch, operand 2 of S only)
Fixed~point overflow

Programming Notes

The use of the 1's complement and the low-order 1 instead of the 2's
complement of the second operand is necessary for proper recognition of
overflow when the maximum negative number is subtracted.

When in the RR format the R1 and R2 fields designate the same register,
subtracting is equivalent to clearing the register.

Subtracting a maximum negative number from another maximum negative
number gives a result of 0 and no overflow.

7-161

This manual is updated by: Addendum 800-1100P0-04.01

SUBTRACT DECIMAL (FLOATING-POINT) (SQR, SQ)

SQR R1,R2 (RR)
	R I R	
3B	1	2
0 8 12 15		
SQ R1,D2(X2,B2) (RX)		
	R I X	B
7B	1	2
		I I
0 8 12 16 20 31

The second operand is subtracted from the first operand, and the
normalized difference is placed in the first operand location. Fullword
alignment is required.

The SUBTRACT DECIMAL (FLOATING-POINT) instruction is similar to ADD
DECIMAL (FLOATING-POINT), except that the sign of the second operand is
inverted before addition.

The sign of the difference is derived by the rules of algebra. The sign
of a difference with zero result fraction is always positive.

Resulting Condition Code

0 'Result fraction is O
1 Result fraction is less than O
2 Result fraction is greater than 0

Program Exceptions

Specification
Data

Significance
Exponent overflow
Exponent underflow
Access (SQ only)

7-162.1

SUBTRACT DECIMAL (SP)

SP D1(L1,Bl),D2(L2,B2) (8S)

| [
| FB |1 |
| | |
0 8 1

[
[
l
16

The second operand is subtracted from the first operand, and the
difference is placed in the first operand location.

Subtraction is algebraic, taking into account the signs and all digits
of both operands. SUBTRACT DECIMAL is similar to ADD DECIMAL, except that the
sign of the second operand is changed from positive to negative or from
negative to positive after the operand is obtained from memory and before the

arithmetic is performed.
The sign of the difference is determined by the rules of algebra.

L1 and L2 are the operand lengths in bytes, minus 1.

Resulting Condition Code

Difference is 0

Difference is less than 0
Difference is geater than 0O
Overflow

W N O

Program Exceptions

Access (fetch, operand 2; store, operand 1)
Data
Decimal overflow

Programming Note

The operands of SUBTRACT DECIMAL may overlap when their least
significant bytes coincide, even when their 1lengths are unequal. This

property may be used to set to 0 an entire field or the least significant part
of a field.

7-162

This manual is updated by: Addendum 800-1100P0-04.01

SUBTRACT HALFWORD (SH)

SH R1,D2,(X2,B2) (RX)

] | R |

| 4B | 1|

| | |
0 8 12

The second operand is subtracted from the first operand, and the
difference is placed in the first operand location. The second operand is two
bytes in length, must be halfword aligned, and is considered to be a 16-bit
signed integer.

The second operand is expanded to 32 bits before the subtraction by
propagating the sign-bit value through the 16 high-order bit positions.

Subtraction is considered to be performed by adding the 1's complement
of the expanded second operand and a low-order 1 to the first operand. All 32
bits of both operands participate, as in ADD. If the carry from the sign-bit
position and the carry from the high-order numeric bit position agree, the
difference 1is satisfactory; if they disagree, an overflow occurs. The
overflow causes a program interruption when the fixed-point overflow mask bit
is 1.

Resulting Condition Code

Difference is 0

Difference is less than 0
Difference is greater than 0
Overflow

LN O

Program Exceptions

Access (fetch, operand 2)
Firxed—-point overflow
Specification

7-163

This manual is updated by: Addendum 800-1100P0-04.01

SUBTRACT LOGICAL (SLR, SL)

SLR R1,R2 (RR)
| | R i R |
| 1F | 1 i 2 |
|] I |
0 8 12 15
SL R1,D2(X2,B2) (RX)
| I R | x | B | D I
| SF | 11 2 | 2 i 2 |
I | | ! | l
0 8 12 16 20 31

The second operand is subtracted from the first operand, and the
difference is placed in the first operand location. The occurrence of a carry
from the sign position is recorded in the condition code.

Logical subtraction is considered to be performed by adding the 1's
complement of the second operand and a low—order 1 to the first operand. All
32 bits of both operands participate, without further change to the resulting
leftmost bit position.

If a carry from the sign position occurs, the leftmost bit of the
condition code is made 1. 1In the absence of a carry, the left bit is made O.
When the sum is O, the rightmost bit of the condition code is made 0. A
nonzero sum is indicated by a 1 in the rightmost bit.

The second operand of the SL instruction requires fullword alignment.

Resulting Condition Code

Difference is not 0 (no carry)
Difference is 0 (carry)
Difference is not 0 (carry)

WN =0

Program Exceptions

Specification
Access (fetch, operand 2 for SL)

7-164

SUBTRACT NORMALIZED (FLOATING-POINT) (SDR, SER, SD, SE)
SDR R1,R2 (RR, Long)
| TR | R |
| 2B lol 11 2 |
| | | | |
0 8,9 12 15
SER R1,R2 (RR, Short)
| TR | R |
| 2B 1l 11 2 | (optional)
| [] | |
0 8,9 12 15
SD R1,D2(X2,B2 (RX, Long))
| TR I X | B | |
I 6B lol 21 2 | 2 | 2 |
| || | I | |
0 8,9 12 16 20 31
SE R1,D2(X2,B2 (RX, Short)
| TR I X | B | |
| 6B i 1 2 1 2 | 2 | (optional)
| | 1 | | | |
0 8,9 12 16 20 31

The second operand is subtracted from the
normalized difference is placed in the first operand location.

SUBTRACT is similar to ADD NORMALIZED,

second operand is inverted before

addition.

except that

first operand, and the

the sign of the

The sign of the difference is derived according to the rules of algebra.
The sign of a difference with a zero result fraction is always positive.

The second operand of the SD instruction requires fullword alignment and

is eight bytes long.

Resulting Condition Code

Result fraction is 0
Result is less than 0
Result is greater than O

W N =O

7-165

Program Exceptions

Specification
Significance
Exponent overflow
Exponent underflow
Access

7-166

SUPERVISOR CALL (SVC)

| 0A I I |

If the high-order byte of the Supervisor Call New PCW is less than the
value in bits 8-15 of the instruction, the instruction is suppressed with a
supervisor call range program exception. Otherwise the system stack vector is
retrieved from general register 15 and control register 2. The stack pointer
- (register 15) 1is decremented by 8. The currently active PCW is stored in the
eight bytes addressed by the decremented stack pointer. The contents of bit
positions 8 to 15 of the instruction are placed in the interruption code
portion of this stored PCW. The contents of the three 1low-order bytes of
control register 1 are pushed onto the stack, preceded by a byte containing
X'01'. The contents of general registers 14 through 0, in descending order,
are then pushed onto the stack. The three low-order bytes of control register
1 are then set to the value of the updated stack pointer, with a high-order
byte of binary Os. The high-order word of the Supervisor Call New PCW is then
added to four times the contents of bit positions 8 to 15 of the instruction,
and the word at the resulting address (which must be the address of a fullword
present in main memory, not page faulted) becomes the current PCW address
portion. The second word of the Supervisor Call New PCW becomes the current
PCW status portion.

Resulting Condition Code

The condition code is replaced by the condition code in the new PCW.

Program Exceptions

Stack overflow

Access (store, bytes pushed on to stack; fetch, address word to become
current PCW address portion)

Specification

Supervisor call range

7-167

P
SUPERVISOR CALL EXIT (SVCX)

SVCX ‘ (RR)
| I R 1/11717]
l 27 b1 1171171
| | W11
0 8 12 15

General registers 0 through 14 are loaded from the words addressed by
control register 1. Control register 1 is loaded from the word above these
(beginning 60 bytes above the word addressed by control register 1). The
high-order byte of control register 1 is set to binary 0. General register 15
is loaded with the value in the general register specified by the Rl field of
the instruction. The active PCW is replaced by the two words on the system
stack starting 64 bytes above the word that had been addressed by control
register 1 before it was updated.

If the new active PCW has the single-step trap bit on, a single-step
trap exception will occur immediately on completion of the instruction, even
if the previously active PCW did not have the single-step trap bit on.

Resulting Condition Code

The condition code is replaced by that in the new PCW.

Program Exceptions

Access (fetch, bytes on stack)
Privileged operation
Specification

7-168

TEST UNDER MASK (IM)

T™ D1(Bl),I2 (SI1)

| | 1 | |
| 91 I 2 | I
| | | I
0 8 16 20 31

The state of the first operand bits selected by a mask is wused to set
the condition code.

The byte of immediate data, I2, is used as an 8-bit mask. The bits of
the mask are made to correspond one for one with the bits of the character in
memory specified by the first operand address.

A mask bit of 1 indicates that the memory bit is to be tested. When the
mask bit is 0, the memory bit is ignored. When all memory bits thus selected
are 0, the condition code is made 0. The condition code is also made 0 when
the mask is all Os. When the selected bits are all 1ls, the code is made 3;
otherwise, the code is made 1. The character or characters in memory or the
registers are not changed.

Resulting Condition Code

Selected bits all 0; mask is all Os
Selected bits mixed 0s and 1s

Selected bits all 1

W =O

Program Exceptions

Access (fetch, operand 1)

7-169

TRANSLATE (TR)

TR D1(L,B1),D2(B2) (SS)

] | I B {//D1l B |/ /D |
| DC | L | 1 | — 1i 2 I-—- 21
| | | L7/ | 1/ / |
0 8 16 20 32 36 47

The 8-bit bytes of the first operand are used as arguments to reference
the list designated by the second operand address. Each function byte
selected from the list replaces the corresponding argument in the first
operand.

The bytes of the first operand are selected one by one for translation,
proceeding left to right. Each argument byte is added to the entire initial
address, the second operand address, in the least significant bit positions.
The sum is used as the address of the function byte, which then replaces the
original argument byte.

All result data is valid., The operation proceeds until the first
operand field is exhausted. The list is not altered unless an overlap occurs.

L is the length of operand 1, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operands 1 and 2; store, operand 1)

Programming Note

If operand 2 can span a page (using the maximum table displacement,
i.e., X'FF'), then operand 1 is scanned to determine the exact range of table
locations to be referenced. The referenced virtual page or pages (two pages,
at most) are checked to see if they reside in physical page frames. If an I/0
operation should overlay operand 1 and invalidate this scan, then a page fault
can be generated in the middle of the instruction, assuming the I/0 operation
caused a second (nonresident) virtual page to be referenced. This in turn
will cause retranslation of part of operand 1 after the page fault has been
serviced, and the instruction is re-executed.

7-170

TRANSLATE AND TEST (TRT)

TRT D1(L,B1),D2(B2) (8S)

| I | B |/ /DI| B i/ /D |
| DD | L | 1 | --1] 2 I-- 21
i | I L 7/ | I/ /]
0 8 16 20 32 36 47

The 8-bit bytes of the first operand are used as arguments to reference
the list designated by the second operand address.

The L field is the length of the first operand, minus 1.

Each function byte thus selected from the list is used to determine the
continuation of the operation. When the function byte is a 0, the operation
proceeds by fetching and translating the next argument byte. When the
function byte is nonzero, the operation is completed by inserting the related
argument address in general register 1 and by inserting the function byte in
general register 2.

The bytes of the first operand are selected one by one for translation,
proceeding from left to right. The first operand remains unchanged in
memory. Fetching of the function byte from the 1list is performed as in
TRANSLATE, The function byte retrieved from the list is inspected for the
all-zero combination.

When the first operand field is exhausted before a nonzero function byte
is encountered, the operation is completed by setting condition code 0. The
contents of general registers 1 and 2 remain unchanged.

When a function byte is nonzero, the related argument address is
inserted in the low-order 24 bits of general register 1. This address points
to the argument last translated. The high-order eight bits of register 1
remain unchanged. The function byte is inserted in the low-order eight bits
of general register 2. Bits 0-23 of register 2 remain unchanged. Condition
code 1 is set when one or more argument bytes have not been translated.
Condition code 2 is set if the last function byte is nonzero.

7-171

Resulting Condition Code

0 All function bytes that have been translated are 0O

1 Nonzero function byte found before the first operand field is
exhausted; one or more argument bytes have not been translated

2 The last function byte is nonzero
3 J——

Program Exceptions

Access (fetch, operands 1 and 2)

Programming Note

The instruction TRANSLATE AND TEST may be used to scan the first operand
for characters with special meaning. The second operand, or list, is set up
with all-zero function bytes for those characters to be skipped over and with
nonzero function bytes for the characters to be detected.

7-172

UNPACK (UNPK)

UNPK D1(L1,B1),D2(L2,B2) (8S)

| I L |
| F3] 1 |
| | |

0 8 1

l
[
I
16

The format of the second operand is changed from packed to zoned form,
and the result is placed in the first operand location.

The digits and sign of the packed operand are placed unchanged in the
first operand location, using the external format. Zones with coding 001l are
supplied for all bytes except the low-order byte, which receives the sign of
the packed operand. The operand digits are not checked for valid codes.

The fields are processed right to left. The second operand is extended
with high-order Os before unpacking, if necessary. If the first operand field
is too short to contain all significant digits of the second operand, the
remaining high-order digits are ignored. The first and second operand fields
may overlap; if so, they are processed by storing the first result byte
immediately after the rightmost operand byte is fetched; for the remaining

operand bytes, two result bytes are stored immediately after one byte is
fetched.

L1 and L2 are the operand lengths, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

7-173

UNPACK UNSIGNED (UNPU)

UNPU D1(L1,B1),D2(L2,B2) (ss)

| I L |
| F4 (R
I | |
0 8 1

2

The format of the second operand is changed from packed to external, and
the result is placed in the first operand location.

The digits of the packed operand are converted to ASCII form and are
placed in the first operand location. Zones with coding 0011 are supplied for
all bytes. The sign of the second operand is ignored. No sign character is
supplied in the result.

The fields are processed right to left. The second operand 1is extended
with high-order Os before unpacking, if necessary. If the first operand field
is too short to contain all significant digits of the second operand, the
remaining high-order digits are ignored. The first and second operand fields
may overlap and are processed by storing the first result byte immediately
after the rightmost operand byte is fetched; for the remaining operand bytes,
two result bytes are stored immediately after one byte is fetched.

L1l and L2 are the operand lengths, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

71-174

This manual is updated by: Addendum 800-1100P0-04.01

UNPACK TO EXTERNAL DECIMAL FORMAT (UNPAL)

UNPAL D1(L1,B1),D2(L2,B2) (SS)

| | L |
| DB | 1]
| I |

0 8 1

L
2

[[
l i
l l
16 20 32

2
The format of the second operand is changed from packed to character
format with a separate trailing sign character, and the result is placed in

the first operand location.

The second operand is processed from right to left. First the low-order

byte of operand 1 will be filled with either the '+' or '-' character. If the
low-order digit position of the last byte of operand 2 is 1101, the character
will be '—'; otherwise the character will be '+'. The digits are then moved

from operand 2 to operand 1. The digits are copied unchanged from the second
operand to the first with a zone of 0011 supplied for each digit.

The digits in the source field are mnot inspected for valid packed
characters and the sign is not inspected for validity.

The fields are processed right to left. The second operand is extended
with high-order =zero digits before unpacking, if necessary. If the first
operand field is too short to contain all significant digits of the second
operand, the remaining high-order digits are ignored. The first and second
operand fields may overlap, and are processed by storing two result bytes
immediately after one byte is fetched.

If the receiving field is one byte, only the sign character will be
placed there.

L1 and L2 are the operand lengths, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

7-175

This manual is updated by: Addendum 800-1100P0-04.01

ZERO AND ADD (ZAP)

ZAP D1(L1,B1),D2(L2,B2) (SS)

B
1

/ /D
2

| | L
| F8 | 1
I |

N A
| |
| %
0 8 12 16

2

/ /DI B
1| 2
/ /|

| i
! !
I A
20 32 36

|
I
|
47
The second operand is placed in the first operand location.

The operation is equivalent to an addition to 0. A zero result is
positive. When the most significant digits are lost because of overflow, an
overflow 1is recognized. If the decimal overflow mask bit is on when an
overflow is recognized, the exception is taken.

Only the second operand is checked for valid sign and digit codes.
Extra Os are supplied if needed on the most significant end. When the first
operand field is too short to contain all significant digits of the second
operand, the most significant digits are lost and the overflow condition is
set. The first and second operand fields may overlap when the rightmost byte
of the first operand field is coincident with or to the right of the rightmost
byte of the second operand.

L1l and L2 are the operand lengths, minus 1.

Resulting Condition Code

Result is O

Result is less than 0
Result is greater than 0
Overflow

WN=O

Program Exceptions

Access (fetch, operand 2; store, operand 1)
Data
Decimal overflow

7-176

7.2 OPERATING SYSTEM ASSIST INSTRUCTIONS

The following instructions, some of which are described in terms of
equivalent pseudo-assembler-language instruction sequences, are intended for
use by operating system routines only. They are reserved for use by software
provided by Wang Laboratories, and their specification and function may change
in the future. Use of these instructions other than by Wang Laboratories
software development groups is discouraged.

All instructions in this section are privileged.

7-177

P
MODIFY TIMER QUEUE (MTQ)

MIQ M1,D2(B2) ,D3(B3),R4 (SS)

| | R | M |
| c7 I & | 1 |
| | | I
0 8 12 1

|
|
|
6 36 47
This privileged instruction is used to set a clock comparator expiration
value.

Register R4 contains a time interval value (in binary, in units of one
clock tick). Operand 2 (D2(B2)) addresses a word-aligned, 1linked-list head,
identical to the stack head word of the ENSK instruction. Operand 3 addresses
a doubleword-aligned timer queue element. The first byte of this element is
unchanged by the instruction. Bit 0 of this byte is tested; if it is 1, this
element is to be removed from the list, The second through fourth bytes
contain elements on the 1list in ascending order of expiration times. The
fifth through eighth bytes contain the expiration time, in clock ticks, of the
interval represented by this timer queue element.

The instruction operates as follows:

1. If bit O of the timer queue element (operand 3) is set, the list is
searched for an element at the operand 3 address, and this element
is removed from the queue. Queue elements examined must not be page
faulted, lest the instruction give erroneous results.

A specification exception will occur if any of the following are
true: the addressed element is not on the queue, or removing this
element empties the queue completely, or more than 256 elements are
found on the queue before this element is encountered.

2. If bit 0 of the instruction's M1 field is set, the instruction is
now terminated.

3. The time interval value in register R4 is added to the current clock
value, and the result stored in the fifth through eighth bytes of
operand 3.

4., The operand 3 timer queue element is placed on the queue in order of
its expiration time (the value just placed in its fifth through
eighth bytes). The second through fourth bytes of operand 3 are
used as the list chain word.

A specification exception occurs if the chain is empty, or if more

than 256 elements are encountered before the operand 3 timer queue
element is inserted.

7-178

5. The contents of the fifth through eighth bytes of the first element

of the timer 1list are placed in the clock comparator (control
register 7).

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch and store, operands 1 and 2)
Specification
Privileged Operation

Programming Note

The specification exception taken if more than 256 elements are on the

timer queue is intended to prevent the instruction from 'hanging up' the CP if
the list elements are chained in a loop.

7-179

SCAN PAGE FRAME TABLE (SPFT)

SPFT R1,R3,D2(B2) (RS)

| Il R | R | B | D

I AE I 11 3 1 2 | 2

I | | | |

0 8 12 16 20 31
R1 format:

] | I |

| | LRURG | scC | RGL

| | | I

0 8 16 2 31

LRURG - Least recently used reference group

SCC - Scan class comparand
RCGL - Reference group limit
R3 format:
I I
I PFTL I SDISP
I I
0 8 31

PFTL. - Page frame table length
SDISP - Starting PFT displacement

Page Frame Table format:

I | ICl !/ /
| RGN | SC IBI for software use

| I || /1

0 8 16 17

RGN - Reference group number
SC - Scan class
CB - 'Change' bit

7-180

63

The page frame table physical address (operand address D2(B2)), which
must be doubleword aligned, is added to the SDISP field of the register
addressed by R3. If the page frame table address is not doubleword aligned or
if the contents of the SDISP field are not a multiple of 8, a specification
exception occurs and the instruction is suppressed. Each page frame table
entry beginning at the resulting address is examined, where the total number
of entries assumed to be in the table is given by the PFTL field of the
register addressed by R3. The SC field of each entry is compared with the SCC
field of the register addressed by R1. If the SCC field of this register is
nonzero and the two fields compared are unequal, the SDISP field of register
R3 is increased by 8 and the next page frame table entry is processed. If the
SCC field is O or the two fields compared contain equal values, the reference
bit for this page frame is examined in the local page frame table. If it is O
it is set to 1, binary Os are placed in field RGN of this page frame table
entry, and the change bit for this page frame is inclusive ORed with bit CB of
the page frame table entry. The SDISP field of register R3 is then increased
by 8 and the next page frame table entry is processed.

If the reference bit for the page frame is 1 when examined, then field
RGN of the page frame table entry is compared with field RGL of register R1.
If they contain equal values, then the SDISP field of register R3 is increased
by 8 and the next page frame table entry is processed. If they contain
unequal values, the following processing occurs:

. If field RGN plus 1 is equal to field RGL, then field RGN is

incremented by 1 and the instruction completes with condition code 2
set.

. Otherwise, if field RGN (unincremented) is greater than or equal to
field LRURG of register Rl, then field RGN is incremented by 1 and
the resulting value in field RGN is placed in field LRURG. The
instruction is then completed with condition code 1 set.

. Otherwise (field RGN is not equal to field RGL minus 1 and is not
greater than field LRURG), field RGN is incremented by 1, the SDISP
field of register R3 is increased by 8 and the next page frame table
entry is processed.

If the end of the page frame table (last entry is at address D2(B2) plus
8 times PFTL, minus 8) is reached without another completion for the
instruction (including the cases of PFTL being 0 and of PFTL times 8 being
less than or equal to SDISP when the instruction is initiated), then the
instruction is completed with condition code 0 set.

7-181

Resulting Condition Code

0 End of table reached.

1 RGN-1 greater than LRURG for table entry at second operand address

plus SDISP.

2 RGN equal to RGL for table entry at
- SDISP.

Program Exceptions

Privileged operation
Access (fetch and store, operand 2)
Specification

7-182

second operand address plus

This manual is updated by: Addendum 800-1100P0-04.01

CHAPTER 8
INPUT/OUTPUT OPERATION

8.1 INTRODUCTION

Transfer of information between main memory and input/output (I/0)
devices is referred to as an I/0 operation. These operations use I/0
processors (IOPs), which contain the logic circuitry controlling the transfer
of data between devices and main memory. An I/0 Command Word (IOCW),
containing a command to be performed, is sent from the CP to the device when
the I/0 operation is initiated. An I/O Status Word (I0OSW), reporting on the
execution of this command, is sent back later from the device to the CP.

Chapters 8 through 12 of the manual describe the programmed control of
I/0 devices by the system. Formats are defined for the various types of I/0
control information. The formats apply to all I/0 operations and are
independent of the types of I/0 devices, their speed, or mode of operation.

The formats described include provision for functions unique to

particular devices. The way in which a device makes use of each format is
defined in the chapter for that device.

8.2 1/0 SUBSYSTEM

8.2.1 10Ps

At the beginning of an I/0 operation, the CP issues a privileged START
I/0 (SI0) instruction to the IOP (for the VS25, to the BP) controlling the I/0
device that is to perform the operation. If both the IOP and the indicated
device can service the request they begin to do so, and there is no further
communication between the CP and IOP until the IOP issues an I/0 completion
interrupt request. Upon receiving the SIO, the I0P accesses the indicated
IOCW for further information (e.g., the command, the type of operation (READ,
WRITE, etc.), and the location of the data to be transferred. The IOP
interprets the command for the device, routes the data to or from main memory,
and performs I/0 error checking and correction. Finally, the IOP makes an I/0
completion interrupt request to the CP and stores information regarding the
completed operation in the IOSW.

8.2.2 1/0 Devices

I/0 devices enable communication between data processing systems and
their environment, and also provide for storage of information outside main
memory. Such devices include workstations (terminals), magnetic tape drives,
disk drives, printers, and teleprocessing equipment.

8-1

This manual is updated by: Addendum 800-1100P0-04.01

NOTE

The 1I/0 subsystem operates independently of virtual memory;
therefore, all addresses relating to I/0 functions must be
physical addresses.

8.2.3 VS25 and VS100 Device Address (I0DA)

VS25 and VS100 systems use the low-order 16 bits of the general register
specified in an SIO, CIO, or HIO instruction to give the address (IODA) of the
1/0 device involved. The interpretation of these bits is as follows:

| |]
| BA# | 10P| Port #
| | # |
bits 0 3 6 1

I
|
I
5
Figure 8-1. I/0 Device Address (IODA)

Bits 0-2 specify the BP (for the VS25) or BA (for the VS5100). For the
VS25, designations other than '001' cause a specification exception; for the
VS100, designations other than '001' (BAl) or '010' (BA2) cause a
specification exception.

Bits 3—-5 for the VS25 specify one of 3 DAs: '000' for the diskette DA,
'001' for the fixed disk DA, or '010' for the serial devices DA. For the
VS100, bits 3-5 specify the IOP, in the range '000' (IOPO) to '111' (IOP7);
the BA interprets bits 3-5 as indicative of IOP position on the outboard bus.

Bits 6-15 specify the port number on the VS25 DA or VS100 IOP. The port
number is an index into the device configuration table (DCT) for DAs and IOPs
using a DCT. Current DAs and IOPs do not support the potential 10-bit range
of port numbers, and reject instructions containing invalid port numbers.

8.2.4 VS80 I/0 Device Identification

Each VS80 device has a 1-byte device address, for which all values from
X'00' to X'FE' are legitimate. (Note that the priority of interrupt service
for the VS80 is determined by the physical position of the device's IOP in the
hardware configuration and not by the device address.) A VS80 device address
consists of an IOP portion and a device portion; because current IOPs support
either 4, 16, or 32 devices apiece, the high—order 6, 4, or 3 bits are the IOP
portion, and the low-order 2, 4, or 5 bits are the device portion.

This manual is updated by: Addendum 800-1100P0-04.01

8.3 MEMORY ASSIGNMENTS FOR INTER-PROCESSOR COMMUNICATIONS

8.3.1 VS25 and VS100 Assignments

Table 8-1 summarizes permanent memory assignments for the VS25 and VS100:

Table 8-1. V525, VS100 Permanent Memory Assignments

Location Data Item Written By System

X'00-07"' I0Sw CP VS25, VS100

X'50' SQB CP VS25, VS100

X'80-81" IODA (on I/0) CP VS25, vS100
interrupt)

X'82~8F' (for VS100, area reserved for system use;

for VS25, CP-BP communications area)

X'90' (start of DAST) I10SW, SQB BP VS25
X'90' (start of IOPST) | I0SW I0P VS100
per CTA (start of IOCT?'IOCW CcP VS25, VS100

Communications Areas Common to VS25 and VS100

Physical Addresses X'00-07': here the CP microprogram writes the IOSW
associated with the I/0 interrupt just granted.

Physical Address X'50': here the CP microprogram writes the SQB
associated with the I/0 interrupt just granted. (Refer to Subsection 8.3.5,
below, for details on the SQB.)

Physical Address X'80': here the CP microprogram writes the IODA
associated with the I/0 interrupt just granted.

VS25-Specific Communications Area

In addresses X'82-8F' the CP writes (for the BP) IOCWs, IODAs, and other
information associated with upcoming I/0 commands, and the BP writes IODAs
associated with upcoming I/0 completion interrupt requests.

8-3

This manual is updated by: Addendum 800-1100P0-04.01

8.3.2 VS25 DA Status Table (DAST)

The VS25's DA Status Table (DAST) begins at location X'90', and consists
of one 1l6-byte entry for each DA attached to the system. The entries are
arranged in ascending order by DA number. The format of each entry is as
follows:

! Isi | |
| I0SW 1Ql Res.|CTA|
| 1Bl] I
Bytes O 89 13 15

Figure 8-2. DA Status Table (DAST) for the VS25

The 1leftmost half of each DAST entry consists of an I0OSW. It is in this
location that the BP pre-stores the I0SW upon completion (successful or
otherwise) of an I/0 operation, i.e., when an I/0 completion interrupt is
requested. Immediately following the IOSW it pre-stores the status qualifier
byte (SQB--see also Subsection 8.3.5, below). When the I/0 interrupt is
granted, the CP microprogram copies the IOSW to location X'00', and the SQB to
location X'050'.

Immediately following the SQB is a four-byte area reserved for VS25 use.
The rightmost 3 bytes of each DAST entry are the command table address
(CTA) of the I/0 Command Table (IOCT) for the particular DA. Refer to

Subsection 8.3.4, below, for information about the IOCT.

8.3.3 V5100 IOP Status Table (IOPST)

The VS100's IOP Status Table (IOPST) begins at location X'90' and
consists of one 16-byte entry for each IOP attached to the system. The
entries are arranged from IOPO-IOP7 on BAl, then from IOPO-IOP7 on BA2. The
format of each entry is as follows:

| | | |
| I0SW | Res'd. |CTAl
| | | |
Bytes 0 8 13 15

Figure 8-3. IOP Status Table (IOPST) for the VS100

The leftmost half of each IOPST entry consists of an IOSW. It is to
this location that an IOP writes the IOSW upon completion (successful or
otherwise) of an I/0 operation, i.e., when an I/0 completion interrupt is
requested. When the I/0 interrupt is granted, the CP microprogram copies the
IOSW from its location in the IOPST to location X'00'.

This manual is updated by: Addendum 800-1100P0-04.01

The rightmost 3 bytes of each IOPST entry are the command table address
(CTA) of the I/0 Command Table (IOCT) for the IOP.

8.3.4 VS25 and VS100 1/0 Command Table (IOCT)

The IOCT for each VS25 DA or VS100 IOP may begin at any
doubleword—-aligned address in main memory, and consists of one 16-byte entry
for each device attached to the DA or IOP. The entries are arranged from port
0 to port n, where port n is the highest-numbered port through which a device
is attached to the particular DA or IOP,.

Each IOCT entry begins with a 9-byte IOCW for the particular device.
The remaining 7 bytes are reserved for use by the outer program. The VS100
operating system uses bytes 13-15 for the Unit Control Block Address (UCBA)
for the device, thereby establishing a direct link between the device address
and the device's UCB.

The format of each IOCT entry is as follows:

| I | |
] I0CW | Res.|UCBA]
|] i |
Bytes O 9 13 15

Figure 8-4. 1I/0 Command Table (IOCT)

8.3.5 VS25 and VS100 Status Qualifier Byte (SQB)

During certain critical operations required to control its I/0 devices,
an IOP (for the VS25, the BP) may be unable to accept a CIO, SIO, or HIO.
This condition is of limited duration; its frequency depends on the device.
VS25 and VS100 systems alert the CP to such a condition by writing a one-byte
extension of the upcoming IOSW for the IOP. At location X'50' (the interrupt
code byte of the 0ld 1/0 Interrupt PCW), this Status Qualifier Byte (SQB) is
written in the following format:

o IRIR]
[00IRes'd. | 1!D]
[| |PIBI
bits 0 2 567

Figure 8-5. Status Qualifier Byte (SQB)

The SQB is used by both the VS25 and VS100 to further describe an I/0
command rejected by a particular device:

8-4.1

This manual is updated by: Addendum 800-1100P0-04.01

the RIP bit is set to indicate "Rejected——interrupt pending" if the new
CI0 or SIO command is rejected because the particular device has an
unsolicited interrupt to report but the IOP (for the VS25, the BP) has
not yet raised its request line, i.e., has not yet stored the IOSW in
its IOPST (for the VS25, its DAST). An HIO instruction is ignored in
this case.

the RDB bit is set to indicate '"Rejected-—device busy' if the new CIO or
SI0 command is rejected because the particular device is executing a
previous command and so has not yet requested -a completion interrupt.
The RDB bit is not set for a new HIO instruction.

for the VS25 only: both bits are set (i.e., SQB=3) to indicate that the
DA is not physically present.

8.3.6 VS80 Communications Areas

VS80 I0CA

The VS80 I/0 Command Area (IOCA) area starts at main storage location
128 and contains a halfword entry for every value from 0 to 255, which is the
highest possible device address. The IOP uses the device address received on
an SI0O or CIO instruction as an index into the IOCA area. Each IOCA entry
contains a halfword physical address for the IOCW to be executed; thus, these
addresses cannot be greater than X'FFFF', and must specify locations within
the first 64K bytes of main memory.

VS80 Handling of ''IOP Busy" and ''Device Busy"

When a VS80 IOP is unable to accept an SIO or HIO, a condition code
indicating "IOP Busy" is returned. The circumstances causing this response
are device dependent. Once an IOP has responded to an instruction with an IOP
Busy interrupt, it will present an '"IOP Now Ready' interrupt after the busy
condition clears. Only one IOP Now Ready will be presented no matter how many
SI0s, CIOs, or HIOs are rejected.. The IOP Now Ready may be presented to the
CP with the next IOSW for any of the devices attached to that IOP, or as a
separate interrupt with the device portion of the indicated device address set
to zero (whether or not this device is attached to the system).

If the device either is busy with a previous I/0 command or has a
pending request for an I/0 completion or unsolicited interrupt, the SIO will
be terminated with a '"Device Busy" indication.

If the device is not attached or is unable to complete the I1/0
operation, the SIO is accepted and "Device Not Ready-—Intervention Required"
is reported on an I/0 interrupt.

8.3.7 Resetting of I/0 Devices——All Systems

All I/0 devices are reset when the LOAD button is pushed or when a
system power-on sequence 1is completed. Resetting causes I/0 devices to
terminate all I/0 operations. Status information and interrupt conditions in
the devices are lost. Data transfer operations and control operations are
immediately terminated, and the results are unpredictable.

8-4.2

This manual is updated by: Addendum 800-1100P0-04.01

8.4 EXECUTION OF I/O OPERATIONS

I/0 devices can execute three commands: WRITE, READ, and CONTROL (no
data transfer); each command initiates a corresponding I/0 operation or
activity in the device. The next I/0 command to be executed by each device is
contained in the IOCW for the device, which in turn is written in the
appropriate entry of the IOCT. Refer to Subsection 8.3.4 for a discussion of
the IOCT. (For the VS80, the address of the IOCW is found in the IOCA,
described in Subsection 8.3.6.)

8.4.1 I/0 Instructions

S10, CIO, and HIO are the privileged assembler instructions that control
I/0 operations. The SIO instruction starts a transfer of data between main
memory and an 1/0 device via an IOP (for the VS25, via the BP and a DA). The
CIO instruction starts control operations for the IOP, or begins memory
diagnostics or microcode loading or reading. The HIO instruction halts action
started by a previous SIO or CIO. The format of all three instructions is as
follows:

]] s
| Opcode | R 1////7]
|

| 1////1
bits O 8 12 15

Figure 8-6. SIO, CIO, and HIO Instruction Format

The opcode is X'02' for SIO, X'OC' for CIO, and X'03' for HIO. The
general register designated by Rl contains the device address of the I/0
device involved in the operation, in the following format:

RNV e I
1/7777111/177111/71Ba#|10P| Port # |
V2 77770400200000070 | I
bits O 16 19 22 31

Figure 8-7. Rl Format for SIO, CIO, and HIO Instructions

Note that this address is simply the IODA, written into the rightmost
half of the register. This address is used directly by the IOP as an index
into its IOCT, where the IOCW for the device is written, giving further
information about the 1/0 operation (e.g., data address and data length).

8.4.2 Transmission of SIO

The SIO instruction is sent from the CP to devices through an
intermediate processor.

8—4. 3

This manual is updated by: Addendum 800-1100P0-04.01

VS25 Receipt of SIO

For the VS25, the CP sends the SIO instruction not directly to the DA
but to the BP, and sets a condition. code according to the result as follows:

Condition Code Meaning
0 Command received by the BP
1 not used
2 not used
3 BP busy

A setting of 0 means typically that the device has accepted the I/0
command; in some cases where a setting of 0 is returned, the BP may still
reject the command, setting the RIP or RDB bit in the SQB extension of the
upcoming IOSW. A setting of 3 means that a previous I/0 instruction has not
yet been read by the BP.

VS100 Receipt of SIO

For the VS100, the CP sends the SIO instruction not directly to the IOP
but to the BA for that IOP, and sets a condition code according to the result
as follows:

Condition Code Meaning
0 Command received by the IOP
1 not used
2 I0P busy
3 IPC-IN register busy

A setting of O means typically that the device has accepted the I/0
command; in some cases where a setting of 0 is returned, the IOP may still
reject the command, setting the RIP or RDB bit in the SQB extension of the
upcoming IOSW. A setting of 2 means that an I/0 operation is already in
progress for some device on the IOP. This condition has ended when a
subsequent I0OSW from the IOP, with its IOP Now Ready bit set, is processed by
the CP. A setting of 3 means that a previous I/0 instruction has not yet been
read by the IOP.

8-4.4

This manual is updated by: Addendum 800-1100P0-04.01

VS80 Receipt of SIO

The VS80 CP sends an SIO instruction to the IOP for the involved device;
the IOP uses the included device address as an index into the I0CA area, to
find the address of the associated IOCW.

8.4.3 1/0 Command Word (IOCW) for SIO Instruction

The IOCW specifies the command to be executed. For commands initiating
data transfer, it designates the storage area associated with the operation.
The IOCW 1is contained in the IOCT entry for the device specified in the SIO

instruction. (For the VS80, the location of the IOCW is specified by the IOCA
at SIO time.)

NOTE

From the time an SIO is accepted until the clearing of the
resulting I/0 completion interrupt, the IOCW must not be
changed. Neither the device nor the IOP will change the
IOCW or IOQCA.

The IOCW consists of a 6-byte general section and a variable-length
device-dependent section, as shown in Figure 8-8. The device-dependent
section can be of any length, but is fixed for each device. The IOCW must be
fullword aligned. Examples of the IOCW are given in Table 8-2.

| Command | Data address
| code |
bits 0 8 31
I /! I
Data count | device-dependent section |
I !/ / |
32 48 end

Figure 8-8. I1/0 Command Word (IOCW) Format

The fields in the IOCW are allocated as follows:

. Command code——Bits 0-7 specify the operation to be performed.

. Data address-—Bits 8-31 specify a fullword-aligned physical memory
address. This address 1is the beginning of the data area for the

specified operation, or is the beginning of an indirect data address
list, which in turn specifies the data areas for the operation.

8-4.5

| |

I I0CW address |

I I
0 15

Figure 8-1. IOCA Format

The IOCA is a 16-bit address of the IOCW. All IOCWs must start within
the first 64K bytes of physical memory.

8.4.2 I/0 Command Word (IOCW) for SIO Instruction

The IOCW specifies the command to be executed. For commands initiating
data transfer, it designates the storage area associated with the operation.
The location of the IOCW is specified by the IOCA at SIO time. From the time
an SIO is accepted until the clearing of the I/0 completion interrupt, the
IOCW must not be changed. The device and IOP will not change the IOCW or IOCA.

The IOCW consists of a 6-byte general section and a variable-length
device—dependent section, as shown in Figure 8-2. The device—dependent
section can be of any length, but is fixed for each device. The IOCW must be
fullword aligned. Examples of the IOCW are given in Table 8-1.

|] |
| Command codel Data address I
| | |
0 8 31

I | |
I Data count I device-dependent section |
| | |
32 ‘ 47 48 end

Figure 8-2. 1I/0 Command Word Format

The fields in the IOCW are allocated for the following purposes:
. Command code—-Bits 0-7 specify the operation to be performed.

. Data address (DA)--Bits 8-31 specify the physical address of an
8-bit byte in main memory, which must be fullword aligned. This
byte location is the beginning of the data area for the specified
operation, or is the beginning of an Indirect Data Address list,
which in turn addresses the data area(s) for the operation.

8-4

. Data count field (DC)--Bits 32-47 specify the number of 8-bit byte
locations in memory to be transmitted either to or from the device.
The data length may be up to 64K, minus 1.

Command Code

The command code, bit positions 0-7 of the IOCW, specifies to the I/0
device the operation to be performed.

Bits 0 and 1 of the command code are the command type, and bits 2-7 are
the command modifier bits. The following four command types are defined:

. Reserved - '00'
. READ -'m’
. WRITE - '10'
. CONTROL - '11°'.

"Reserved" means reserved for system use.

A READ operation is initiated at the I/0 device, and data is transferred
from the device to main memory. Data in memory is placed in ascending order
of addresses, starting with the address specified in the IOCW.

A WRITE operation is initiated at the I/0 device, and data is
transferred from main memory to the I/0O device. Data in memory is fetched in
ascending order of addresses, starting with the address specified in the IOCW.

A CONTROL operation is initiated at the I/O device. A CONTROL command
is used to initiate an operation not involving transfer of data. For most
control functions, the entire operation is specified by the modifier bits in
the command code. If the command code does not specify the entire control
function, the device-dependent field of the IOCW can be used. The data
address field is always ignored for a control command.

Command Modifier Bits

The use of the modifier bits is device dependent. The modifier bits of
the command specify to the device how the command is to be executed. The
fifth modifier bit (bit 6 of the command code) is set to indicate Indirect
Data Addressing for those devices which support that option.

When the IOCW designated contains an invalid field, an I/O interrupt is
generated with the invalid condition indicated in the IOSW.

Programming Note

The IOCW must not be changed between the SI0 and the I/0 interruption.

8-5

Definition of Storage Area

The IOCW defines a main memory area associated with an I/0 operation by
specifying the fullword-aligned address of the first 8-bit byte to be
transferred and the number of consecutive 8-bit bytes contained in the area.
The address of the first byte appears in the data—address field of the 1IOCW,
unless Indirect Data Addressing is specified. For Indirect Data Addressing,
the data address field of the IOCW addresses the beginning of the first entry
of an Indirect Data Address list. The number of bytes contained in the memory
area is the data count (DC).

In the event the IOCW refers to a location not provided in the system,
an I/O interrupt is generated with the '"memory address error' condition
indicated in the IOSW.

Programming Note

A malfunction that affects the validity of data transferred in an 1I/0
operation is signaled at the end of the operation by means of the stored
I0OSW. In order to make use of the checking facilities provided in the system,
data read in an input operation should not be used until the end of the
operation has been reached and the validity of the data has been checked.
Similarly, on writing, the copy of data in main memory should not be destroyed
until the program has verified that no malfunction affecting the transfer and
recording of data was detected.

Indirect Address Lists

Certain devices expedite the transfer of more than one page of data to
or from memory by means of an Indirect Address 1list, as indicated by a
modifier bit of the command byte of the IOCW. The Indirect Address list is
composed of 4-byte entries, each consisting of a fullword physical memory
address, The IOCW data address field addresses the start of the Indirect
Address list; the list in turn addresses the data areas for the operation.
Data transfer begins into or from the first address specified and continues
until a page (2K-byte) boundary is reached. Data transfer then continues into
or from the address specified in the second and succeeding list entries and
continues for the length specified in the IOCW or wuntil end-of-data at the
device occurs.

Certain devices (especially disk devices) may require that the memory
addresses specified in Indirect Address list entries have up to 11 low-order
Os (i.e., be aligned on a boundary as large as 2K bytes). Refer to specific
device descriptions for the restrictions applicable to particular devices.

Device-Dependent Section

This section of the IOCW is not required by all devices. The 1length is
specified with the device description. One use for this area is the sector
address for a disk drive.

8-6

8.5 TERMINATION OF I1/0 OPERATIONS

The following sequence of events occurs when I/0 operations are
performed.

1. Pending interruption is established.

2, Interruption remains pending until it is either accepted by the CP
as an I/0 interruption or cleared by an HIO.

3. IOSW is stored in fixed low storage when the pending interrupt is
accepted. (The IOSW is explained in Section 8.6.)

I1/0 completion is caused either by the operation's being normally
completed, with or without errors, or as a result of an HIO. When the pending
interrupt is cleared, the I/0 completion status is available in the IOSW.

An IOSW will not be stored a second time., It will be available until
overlaid when another pending interrupt is cleared. To guarantee the validity
of an IOSW, it should be moved from the IOSW area in code disabled for I/0
interruption. This code must have been disabled by the loading of the I/0 New
PCW or must have been disabled when the SIO was issued.

8.5.1 Types of Termination

Normally an I/0 operation lasts until the device completes the
operation. When a system load or power—on is performed, all I/0 operations
are terminated immediately. The system can force an I/0 operation to
terminate prematurely by issuing an HIO.

Termination of Data Transfer

When the device accepts a data transfer command, the operation will be
terminated by one of the following five conditions:

1. A HALT 1/0 instruction was issued to the device.
2. The count field in the IOCW has gone to 0 (IOCW exhaustion).

3. As many bytes have been transferred as are indicated by the sum of
the lengths specified in an Indirect Address List (list exhaustion).

4, The device has indicated that there 1is no more data to be
transferred (data exhaustion).

5. Hardware malfunction.

The end condition causes the operation to be terminated and an
interruption condition to be generated. The status bits in the associated
IOSW indicate the reasons for termination. The device can signal termination
at any time after initiation of the operation, and the signal may occur before
any data has been transferred. The duration of data transfer operations is
variable and is controlled by the device and its IOP.

Termination by HALT 1/0

If accepted by the IOP, the instruction HALT I/0 causes the current
operation at the addressed device to be terminated immediately. If an
interruption for the addressed device was pending, that interruption remains
pending. If an I/0 operation was active, the operation is terminated and a
completion interruption becomes pending.

Termination Due to Equipment Malfunction

When equipment malfunctioning is detected, the recovery procedure and
the subsequent states of the devices depend on the type of error. Normally,
the device attempts all appropriate error recovery procedures. If the
recovery 1is successful, the I/0 operation is completed and the IOSW indicates
a soft error. If the recovery is unsuccessful, the operation 1is terminated
and a hard error is indicated in the IOSW.

8.5.2 I/0 Interruptions

I/0 interruptions provide a means for the system to change its state in
response to conditions that occur in I/0 devices and IOPs. These conditions
are caused by termination of an I/0 operation or by operator intervention at
the I/0 device.

These conditions cause three types of I/0 interruptions: solicited,
unsolicited, and IOP NOW READY. A solicited interruption is caused by the
completion of an I/0 operation initiated by an accepted SIO or CIO. An
unsolicited interruption is caused by operator action at the I/0 device such
as mounting a disk pack or striking a workstation attention key. An IOP NOW
READY interruption is caused by an IOP's becoming available for acceptance of
SI10s, CIOs, and HIOs after having reported IOP BUSY in response to one of
these instructions.

When multiple I/0 interruption requests are pending, the hardvare
establishes a priority sequence for them before initiating an I/0 interruption
request. While the processor 1is servicing one interrupt, the others remain
pending.

Interruption Conditions

The conditions causing requests for I/0 interruptions to be initiated
are called 1I/0 interruption conditions. An I/0 interruption condition can be
brought to the attention of the system program only once and is cleared when
it causes an interruption. The device or IOP attempts to initiate a request
to the processor for an interruption when any of the following conditions (not
all of which are defined for every device and IOP) occur:

1. Attention or device now ready
2. IOP now ready
3. I/0 completion

~ 4. Intervention required.

This manual is updated by: Addendum 800-1100P0-04.01

8.5.3 Priority of Interrupts

All I/0 interrupt requests are asynchronous with system activity;
interrupt conditions associated with more than one I/0 device may exist at the
same time. Priority among I/0 interrupt requests is determined by the
physical position of the associated IOP in the hardware configuration, which
is determined at installation time.

8.5.4 Interrupt Action

I/0 interrupts are handled as described below for the various VS CPs.

V525 Interrupt Processing

BPs report the completion of any I/0 operation (whether successful or
not) at one of their devices by a solicited I/0 interrupt. At the time of a
request for an I/0 interrupt, the BP has already pre-stored the IOSW, SQB, and
IODA in the appropriate locations (refer to Section 8.3, above) in main memory.

The CP grants an interrupt after ascertaining the DA and device number
of its origin from the pre-stored IODA. It then copies the IOSW into location
X'00' of main memory, the SQB into location X'S50', and the IODA into location
X'80'. Finally, an I/O interrupt is formally granted, by replacing the
current PCW with the New I/0 Interrupt PCW and storing the replaced PCW in the
01d I/0 Interrupt PCW location.

VS100 Interrupt Processing

I0Ps report the completion of any I/0 operation (whether successful or
not) at one of their devices by a solicited I/O interrupt. At the time of a
request for an I/0 interrupt, the IOP has already pre—stored the IOSW in the
appropriate slot of the IOPST in main memory (refer to Subsection 8.3.3,
above) and has pre—stored the port number of the device, along with the SQB,
in the IPC-OUT register of the BA.

The CP grants an interrupt after ascertaining the BA number and IOP
number of its origin from the Interrupt Request Mask (IRM) of the BA, an
internal register that displays the pending 1I/0 interrupt requests of the
associated IOPs. It then copies the IOSW into location X'00' of main memory,
the SQB into location X'50', and the IODA (formed by combining the BA number,
IOP number, and port number of the involved device) into location X'80°'.
Finally, an I/O interrupt is formally granted, by replacing the current PCW
with the New I/0 Interrupt PCW and storing the replaced PCW in the 01ld I/O
Interrupt PCW location.

8.6 I/0 STATUS WORD (IOSW)

All communication from I/0 devices to the system occurs through IOSWs.
An IOSW is stored at main memory location X'00' when the associated I/0
interrupt is granted. It is from one to eight bytes in length. The format of
the IOSW is summarized in Figure 8-9:

This manual is updated by: Addendum 800-1100P0-04.01

] I i |] device- |

| General| Error | device- | Residual | dependent |

| status | status | dependent | byte count | (extended)
bits O 8 16 32 48 63

Figure 8-9. 1I0SW Format
Examples of the IOSW are given in Table 8-2.

Table 8-2. 10CWs and IOSWs (from the I/O Error and IPL Log)

1/0 Error

Command | Description | IOCW I0SwW

READ soft error 43 O000F44 0800 000000 | 60101008 00000000
WRITE hard erxrror 82 O0F75C 0054 000047 | 20103F00 00000000

Subsections 8.6.1 through 8.6.4 provide an overview of the fields in the
I0SW, which are discussed in more detail in Sections 8.7 and 8.8. One byte of
the I0SW, the general status byte, will always be stored. Additional bytes
are stored as required by particular devices. A given type of device always
stores an I0OSW of the same length.

8.6.1 General Status Byte

The general status byte is always stored.

Bits Mnemonic Meaning

0 IRQ Intervention required

1 NC Normal completion

2 EC Error completion

3 U Unsolicited

4 PC IOP now ready

5-6 Reserved—-—always 0

7 Reserved for software use

8.6.2 Error Status Byte

This byte is always stored if the error completion bit is set in the
general status byte. This byte may or may not have any error indications in
it 1if the error completion bit is set. If any of the conditions listed in the
error status bits occur, the corresponding flag is set and the error
completion bit is set.

8-10

This manual is updated by: Addendum 800-1100P0-04.01

Invalid command

Memory parity error

Memory address error

Device malfunction

Memory or device damage (error after data transmission)
Incorrect length

A device configuration table is required by the IOP
before any normal I/0 operation can be
performed on programmable devices.

A peripheral processor microprogram is required by the
IOP before any normal I/0 operation can be
performed on programmable devices.

Bits Mnemonic Meaning

8 IC

9 MPE

10 MAE

11 DM

12 DAM

13 IL

14-15 PP,DP
=11 (DCT)
=10 (PP)
=01 (DP)

A device processor microprogram is required by the IOP
before any normal I/0 operation can be
performed on programmable devices.

8.6.3 Device-Dependent Status Bytes

These two bytes (bits 16-31) are different for each type of I/0 device.
The use of these bytes is described along with device interfaces in Chapters

9-12 of this manual.

8-10.1

Subsections 8.6.1 through 8.6.4 provide an overview of the fields in the
I0OSW, which are discussed in more detail in Sections 8.7 and 8.8. One byte of
the 1I0SW, the general status byte, will always be stored. Additional bytes
are stored as required by particular devices. A given type of device always
stores an IOSW of the same length.

8.6.1 General Status Byte

The general status byte is always stored.

Bits Mnemonic Meaning

0 IRQ Intervention required

1 NC Normal completion

2 EC Error completion

3 U Unsolicited

4 PC I0P now ready

5-6 Reserved-—always 0

7 Reserved for software use

8.6.2 Error Status Byte

This byte is always stored if the error completion bit is set in the
general status byte. This byte may or may not have any error indications in
it if the error completion bit is set. If any of the conditions listed in the
error status bits occur, the corresponding flag 1is set and the error
completion bit is set.

Bits Mnemonic Meaning

8 IC Invalid command

9 MPE Memory parity error

10 MAE Memory address error

11 DM Device malfunction

12 DAM Memory or device damage (error after data transmission)
13 IL Incorrect length

14-15 PP,DP

=11 (DCT) A device configuration table is required by the I/O
processor before any normal I/0 operation can be
performed on programmable devices.

=10 (PP) A peripheral processor microprogram is required by the
I1/0 processor before any normal I/0 operation can be
performed on programmable devices.

=01 (DP) A device processor microprogram is required by the I/0
processor before any normal I/0 operation can be
performed on programmable devices.

8.6.3 Device-Dependent Status Bytes

These two bytes (bits 16-31) are different for different devices. The
exact description of the use of these bytes can be found under the specific
device description in Chapters 9-12 of this manual.

8-10

8.6.4 Residual Byte Count

The residual byte count indicates the byte count remaining at the time
of I/0 completion. Not all devices support storing of the data count. If the
device does support it, this field will always be stored if IL is set. If the
device does not support storing of the residual byte count, it may still set
the IL bit,

Bits Meaning
32-47 Byte count

8.7 GENERAL STATUS BYTE

8.7.1 IRQ——Intervention Required

This bit is set with Error Completion (EC) and without normal completion
(NC) to indicate that the device was in a not-ready state when an SIO or CIO
instruction was accepted, or that no device with the specified device number
was attached to the specified I/0 processor. This condition requires operator
intervention to return the device to the ready state. IRQ is also indicated
when the device becomes not ready during an I/0 operation. In this case it
always appears by itself (no other general status bit set), and completion is
indicated later, when the "intervention required" condition has been cleared
and the operation has been completed.

8.7.2 NC--Normal Completion

This bit is set to indicate completion of an I/0 operation without
permanent error. An interruption with NC or EC set will occur exactly once
for each SIO accepted.

8.7.3 EC—Error Completion

This bit is set to indicate completion with error of an 1I/0 operation.
If NC is also set, the operation was successful after at least one retry by
the device or I0P. If the EC bit is set, the errors detected will be
indicated in the error status byte or device-dependent status bytes, whether
or not NC is also set. Possible combinations are listed below.

NC EC Meaning

0 0 Completion not indicated

1 0 Normal completion

0 1 Completion with permanent error
1 1 Completion with corrected error

8.7.4 U--Unsolicited (Attention/Device Now Ready)

This bit is set when the device signals an unsolicited interrupt. An
unsolicited interrupt is one not caused by I/0 completion. This indicates
that either the device has become available for I/0 operations or that someone
is signaling the CP for attention. This bit is independent of, but may be set
with, the NC, EC, and/or PC bits on.

8-11

8.7.5 PC-—I0OP Now Ready

This is an indication that an IOP may now accept an SIO. This bit can
be set in conjunction with NC or EC (I/0 completion) or U (unsolicited).
Whenever an SIO is rejected with condition code 2 (IOP BUSY), an interruption
with PC set will eventually be presented. If more than one SIO to devices on
the same IOP is rejected with condition code 2 without an intervening
interruption with PC set, then only one interruption with PC set will be
presented.

8.8 ERROR STATUS BYTE

8.8.1 IC-—-Invalid Command

This indicates that part of the IOCW or the device-dependent control
information was invalid (e.g., invalid command code or invalid data address
alignment) . This condition also causes a hard error to be indicated.

8.8.2 MPE--Memory Parity Error

A memory parity error is indicated whenever there is a parity error
while the IOP associated with the I/0 device is accessing memory. This is the
method by which a machine check is indicated during an I/0 operation.

8.8.3 MAE~-Memory Address Error

A memory address error is indicated whenever an attempt is made to an
address outside the available memory on the machine during an I/0 operation.
This 1is the method by which an addressing exception is indicated during an I/O
operation.

8.8.4 DM--Device Malfunction

A device malfunction indicates that an equipment error has occurred
during an I/0 operation or that the I/0 operation cannot be completed
normally. A device malfunction is not indicated in the case where operator
intervention will correct the problem. Therefore, device malfunction is not
indicated when Intervention Required (IRQ) is set.

8.8.5 DAM--Memory or Device Damage

This bit indicates that the data transfer was interrupted while in
process and that data either at the device or in memory has been changed. The
receiver of the data transmission has unpredictable data, and the data must be
retransmitted (if possible) to correct the problem. The device's status may
also have changed (e.g., for a magnetic tape, the tape may have been
repositioned). DAM will be set only if the hard error indication is set.

8-12

8.8.6 IL--Incorrect Length

This bit is set if the length of the data specified in the data count of
the IOCW and the length of the corresponding item of data at the device are
different. If this bit is set, the error completion bit (EC) will be set. 1f
the IL bit is set and the device supports storing of the residual data count,
a valid residual data count will be stored.

8.8.7 PP and DP-~IQP or Device Code Not Loaded

For programmable IOPs (22V06, 22V07, and 22V17) and programmable devices
(all models whose model numbers include the letter 'S," "C,'" or '"R'"), these
two bits are encoded to indicate that the required microprogram or table for
the I1/0 operation is missing or is damaged.

(PP) (DP)
Bit 14 15 Meaning

1 1 A device configuration table is required by the 22V06
IOP in order to process an I/0 operation.

1 0 Microprogram reloading is required for the peripheral
processors of the 22vV06, 22V07, and 22V17 IOPs.

0 1 Microprogram reloading for the programmable device

(e.g., 2246S, 2221V-S) is required in order to process
an I/0 operation.

8.9 THE CIO INSTRUCTION

The CIO instruction directs I/0O processors to perform diagnostic,
microcode~loading, microcode-reading, and processor control functions.
Completion interruptions are presented as for SIO-initiated operations.

8-13

8.9.1 CIO Microcode-Loading, Microcode-Reading, and Processor
Control Commands

Figure 8-4 shows the format for microcode commands.

Command		
code	Memory address	Data count
	I	
0 1 4 5

Figure 8-4. IOCW Format for Microcode Commands

Byte 0--Command code: 10xxxxxx (WRITE), Olxxxxxx (READ), or 1lXXXXXX
(CONTROL) , where xxxxxx is interpreted by the I/O processor to
designate specific functions. These commands are not accepted by
all I/0 processors.

The following CIO commands are supported by the 22V06-1, 22V06-2, and
22V06-3 programmable telecommunication I/0 processors:

Command Meanin

1000 0000 Load device control table

1000 0010 Load device control table, with Indirect
Data Addressing (IDA)

1001 0000 Load data link processor

1001 0010 Load data link processor, with IDA

1101 0000 Start data link processor

1100 0000 Restart bus control processor

0101 0000 Read data link processor's memory

0101 0010 Read data link processor's memory, with IDA

0100 0000 Read device control table

0100 0010 Read device control table, with IDA passed
to data link processor

1010 1001 Activate or deactivate a remote device

. 1010 1011 Activate or deactivate a remote device, with

IDA

All other By convention, 1010 0000 is used to specify loading

of device processor microcode, and 1110 0000 is
used to specify starting of a device processor.

(For commands 1010 1001 and 1010 1011, a 4-byte data count field of the
following form is used:

| l | | |
| Cluster | Port | Device | Type |
| | I

4 5 6 7

If Cluster = X'FF', then "deactivate" is indicated.)

8-14

The following

serial-device IOPs:

Command

1010 0000
1110 0000

This manual is updated by: Addendum 800-1100P0-04.01
CI0O commands are supported by 22V07-1 and 22V07-2
Meaning

Load device processor microcode
Start device processor

8.9.2 CI0 Memory Diagnostic Commands for IOPs

Figure 8-11 illustrates the format of the IOCW for diagnostic commands.

| | I

I |
| Command | Memory | Data | Pattern | Index (I)|
| __code | address (M) | count (R) | | l
Bytes 1 4 6 8
Figure 8-11. 1I0CW Format for Diagnostic Commands
Byte O - Command code: 00 cca000, where

cc = 10 - ° Reference memory (REF)
cc = 01 - Modify memory (MOD)

a = 0- Access 2 bytes

a = 1 - Access 1 byte

REF means that the specified memory area will be read as determined by
the increment or index field, and this data will be compared with the given
data pattern in the IOCW. ‘An error is detected if the comparison is unequal.

MOD means that the specified memory area will be modified with the given
data pattern in the IOCW. Immediately after each memory location is modified
(a 1- or 2-byte write to memory), it will be read and compared with the given
pattern. An error is detected if the comparison is unequal.

ByEes 1-3

Bytes 4-5

Bytes 6~7

Byte 8

Memory address field (M): specifies the starting
address of the memory area to be accessed.

Data count field (R): specifies the number of memory
accesses (of 1 or 2 bytes) to be performed. Note that
this is not a byte count.

Data pattern field: specifies the data value to be used
for comparison.

Index field (I): the increment for the memory address
update (e.g., I = 0 indicates same main memory location
to be accessed R times, and I = 4 indicates 1 or 2 bytes
to be accessed for every word, starting from location M
and finishing at location M+I*(R-1) if physical memory
size permits).

8~-15

This manual is updated by: Addendum 800-1100P0-04.01

NOTE

Telecommunications (TC) IOPs use the SIO instruction rather
than CIO for memory diagnostic operations.

The IOP that receives such a CI0 command will initiate the specified
memory access starting from the given memory address and continuing until the
specified data count is exhausted. A normal completion will then be reported
in the 1IOSW.
and report an error condition. The IOSW format for CIO commands is
illustrated in Figure 8-12.

In case of any data error, the IOP will terminate immediately

| Status| Error | Data I Residual |

| obtained | count |

Bytes

0

1

2 4

Figure 8-12. IOSW Format for CIO Commands

IOSW byte 0 and byte 1 are the usual general and error status bytes.

Byte
Byte

Bytes

Bytes

0

1

2-3

4-5

General status byte.

Error status byte.

Contain the data value 1last obtained. For normal

completion, this value should be equal to,the data
pattern specified in the IOCW. For error completion,
the bits in error are those in this field that differ
from their corresponding bits in the given pattern.
Note that for a l-byte memory access, only the first
byte is used.

Contain the residual data count (in number of memory
accesses of 1 or 2 bytes each). For normal
completion, the count is 0. For error completion, the
residual data count can be used to compute the offset
from the starting memory address of the memory
location at which the error is detected.

8-16

CHAPTER 9
WANG WORKSTATION CHARACTERISTICS

9.1 INTRODUCTION
The VS workstation is designed both to simplify the operator's job and

to reduce the processing time required by the central processor to handle its
I/0. This device has two main parts, the CRT and the keyboard.

9.2 THE CRT

9.2.1 Screen and Cursor

The CRT screen is capable of displaying 24 rows of 80 characters each.
Every position of the screen is capable of displaying any character. A
special symbol (resembling an underscore) called a cursor is displayed beneath
a character position to indicate where the next character entered from the
keyboard will be stored. The cursor is displayed on the screen when data can
be keyed by the operator. If it is not displayed, the keyboard 1is locked.
This has no effect on the display or the computer interface with the
workstation, but prevents data entry from the keyboard. Each position of the
screen 1is referenced by its row and column numbers. The first position of the
screen (upper left corner) is called row 1, column 1. The columns are
numbered from left to right and the rows from top to bottom. Position 2 is
the second character from the left on the first line. Table 9-1 gives the set
of displayable characters and the associated representations in bits.

Table 9-1. The Character Set

NOTE: bf——| O (O[O JO [T |1 |11
bg always

equals zero*. bg—=| O(Oj 1|1 O] O] 1|1
bz~ O| 1| O} 1 O] 1 Of 1
High-Order Digit—=} O |1 |2 |3 |4 |5 |6 | 7

bg| bg| bg| b7 Low-Order Digit

A

oOjojojo 0] a |sPjOo|@P |°|p
oOlo]|O |1 1 ¢ |é|! [1T|A]Qa]qg
ojoft1]{o 2 »|i ["[2|B|[R|[b}r
040 |1 |1 3 4|6 |# |3 |C|S|c|s
oOj1]0]0 4 —|a|$|4|D|T|[d]t
oOf1]0 |1 5 — |&8 (% |[B)E |U|e|u
ol|1}11}0 6 6§ |& {6 |F |V [f |V
of(1 (1|1 7 i |, |7 |G |Wig|w
1]1]0]0 |0 8 /6 0 |8 {H X]|h|Xx
1100 |1 9 \oja [y [9fr [Y iy
1]1o0}j11l0 A ~ o la [* J|Z|j |z
1101 |1 B Bm(e [+]; |KI[[] [k]§
111]0]0 C Wja |* <L |\ |1] E
111 (0|1 D TLIA]l-|=IM]] |m]é¢
Tt 11 11]0 E B |0 >IN |t [n]g
101 (1 |1 F O/ |2]|0|—|o|c¢

*Bit combinations 10000000 through 11111111 are field attribute characters.

9.2.2 Workstation Memory

The internal memory of the workstation uses eight bits per character.

9.2.3 Screen Formatting

An important feature of the workstation screen is its division iato
fields. The beginnings of fields on the screen cannot generally be determined
by inspection, except for high intensity fields, which are easily
distinguished by their bright or blinking display. Although not visible,
fields are very important, because they affect the operation of the
workstation under both keyboard control and computer control. A field 1is
defined as all characters from one field attribute character to the next.

A field can be from 0 to 80 characters in length. All the characters
within a given field have the same attributes, which are defined by the field
attribute character preceding the field. The possible attributes are defined
in Table 9-2.

Table 9-2. Field Attribute Character Values

Bit Field Description
0 Must be 1
1 Selected-field tag
for READ ALTERED and WRITE SELECTED
2 =1 Underscore
3-4 Display control

00 Intensified display

= 01 Low intensity display
10 Blinking display

11 Nondisplay

5 Protect bit

It

0 Modifiable field
1 Protected field

6-7 Valid keyable data specification

00 Alphanumeric upper- and lowercase
01 Alphanumeric uppercase shift

10 Numeric only

11 reserved

Field attribute characters are never displayed regardless of their
value. Each row is considered to have a field attribute character just before
the first character in the row and just after the last character in the row.
These non~displayed field attribute characters do not take up space on the
screen. They have a default value of 1low intensity, protected, and
alphanumeric upper- and lowercase. (See the description of the field
attribute character, below.) These default field attribute characters allow
the use of 80-character lines. In addition, any location on the screen can
contain a field attribute character.

9.2.4 Field Attributes

The meaning of each field attribute bit is given below.

Selected field tag: This field has been modified by user data entry at
the workstation, or (when set in the mapping area) is to be written by
WRITE SELECTED,

Underscore: The characters in this field are to be underscored when
displayed on the screen.

Intensified display: The characters in this field will be displayed in
higher intensity than those in a low-intensity display field.

Low intensity display: The characters in this field will be displayed
on the screen.

Blinking display: The characters in this field will be displayed
alternately in intensified display and display mode. The display will
change modes at a fixed rate of about three times a second.

Nondisplay: The characters in this field will not be displayed on the
screen. The field will be displayed as all blanks.

Unprotected (also called modifiable): Any or all of the positions of
this field can be changed by the operator.

Protected: No position of this field can be modified by the operator.

Alphanumeric: This field allows keying of any character on the keyboard.
Uppercase shift: Letters will be displayed and stored as uppercase
only. This is without regard to whether the shift or lock key is

pressed. All other keys will respond to the shift and lock keys as they
normally would.

Numeric only: Only the characters 0-9, decimal point (.), and minus (=)
may be entered into this field. If other keys are pressed, the
keystroke is ignored and the alarm sounds.

Reserved: This is not a valid combination at this time. It is intended
for addition of later options. 1Its use produces umpredictable results.

9-4

9.2.5 Tabs

Ten tabs can be set by programs; they can be set to any column of the
workstation's screen (1-80) with the instruction WRITE TABS. They do not take
up a screen location, are not displayed, and allow forward tabbing operations
to stop at locations within modifiable fields. A tab position is specified by
column number and affects the column of every row in which the specified
column is modifiable. Tabs have no effect within protected fields or during
back—-tab operations. When the workstation is powered on, all tabs are cleared.

9.2.6 Audio Indicators

The audible alarm sounds a short tone whenever an illegal keying
operation is attempted. This operation can be the user's attempting to enter
data into a protected field, trying to move the cursor past the end of the
screen with a field-sensitive key, or trying to enter data when the keyboard
is 1locked. The alarm is also sounded when a WRITE is issued while the proper
bit is on in the WCC.

The keystroke indicator is a small device attached to the keyboard that
makes a clicking sound. It sounds each time a key is pressed.

9.3 THE KEYBOARD
The VS workstation keyboard is illustrated in Figure 9-1.

9.3.1 Cursor Positioning Keys

Non-Field-Sensitive Keys

These keys position the cursor but are not affected in any way by fields
and field attribute characters. They can position the cursor to any location
of the screen. There are four keys in this group:

(Up arrow) -~ Positions the cursor in the same column but up one
row. If the cursor started in the first row, it is
positioned in the same column but in the last row.

(Down arrow) Positions the cursor in the same column but in the next
rowv. If the cursor started in the bottom row of the
screen, it is positioned in the same column but on the

first row of the screen.

(Left arrow) Moves the cursor one position left in a row. If the
cursor was at the start of a row, it moves the cursor
to the last position in the preceding line. If the
cursor is in the first location of the screen, it 1is

positioned in the last position of the screen.

(Right arrow) - Moves the cursor one position right in a row. If the
cursor is at the end of a row, it is moved to the first
position of the mnext row. If it is at the last

position of the screen, it is positioned in the first
position of the screen.

9-~5

Yy | e | —— | N———— — 4 f Y . 4 4 4
HELP PF18 PF20 PF22 PF23 PF24 PF25 PF26 PF27 PF28 PF29 PF30 PF31
PF2 PF4 PF6 PF7 PF8 PF9 PF10 PF11 PF12 g [| PF13 || PF14 PF15
_ " 4

HHHHHRHHARNEBEES

H

MUMEMBMMMME%;I
JQMMMMMMIMMDM EEEEE
/IS [[[[[[e

CEc B
I

L= L=

-

Field-Sensitive Cursor Positioning Keys

The following keys normally move the cursor two or more positions after
the key is pressed only once. These keys are used to move the cursor to the
start of a field or a new line and can be used to simplify data entry. They
position the cursor to a modifiable position.

These four keys are sensitive to modifiable positions, although none of
them modify any position. The four keys of this set are as follows:

TAB - Moves the cursor to the next position within a
modifiable field or to a protected numeric-only field.
If there are no more modifiable positions, the alarm
sounds and the cursor does not move.

BACK TAB Positions the cursor at the first byte of the nearest

modifiable field preceding the current cursor location.
If the cursor is in a modifiable field and in other than
the first location, the cursor is positioned to the
start of that field. If there is no preceding
modifiable location, the alarm sounds and the cursor
does not move.

NEW LINE Advances the cursor to the first position of the next
line, and then moves the cursor to the first modifiable
position following the start of the line. This key may
cause the cursor to be moved several lines from the
original position. If there is no modifiable 1location
following the start of the next line, the alarm sounds

and the cursor does not move.

HOME - Positions the cursor at the first modifiable location on
the screen. If there is no modifiable location on the
screen, the alarm sounds and the cursor does not move.

9.3.2 Data Entry Keys

None of the keys talked about so far change data in any positions of the
screen display. The sole function of the data entry keys is to enter data
into positions of the screen. For all these keys the cursor must be in a
modifiable field. If the cursor is not in a modifiable field, the keystroke
is not honored and the alarm sounds.

Character - These include letters, numbers, and special characters.

keys These keys enter characters just as a typewriter does
(with the use of LOCK and SHIFT). If any characters
other than numerals (0-9), hyphen (-), or period (.) are
pressed in a numeric attribute field, the same action as
for a protected field is taken. If the field is an
uppercase character attribute field, 1lowercase letters
are interpreted as uppercase letters.

9-7

9.3.3

ERASE -

INS -
(insert)

DEL -
(delete)

When the cursor is in the last position of a field and one
of these keys is pressed, the character is entered into the
location and the cursor is positioned at the next modifiable
location. This may involve skipping the field attribute
character or skipping several 1lines. If the cursor |is
currently at the last modifiable location on the screen, the
keystroke is honored, the alarm sounds, and the cursor is
not moved.

Sets the cursor location and all subsequent locations of the
current field to blank characters. Any locations preceding
the cursor are not changed. The cursor does not move.

Places a blank at the cursor 1location and shifts to the
right by one position all the characters in the current
field, starting with the one at the cursor location up to
but not including the last character in the field. The last
character in the field, if a blank or a pseudoblank, is
lost. If the last character in the field is not a blank or
a pseudoblank, no screen location is changed, the alarm
sounds, and the cursor does not move. Pseudoblanks are the
characters X'OB' and X'05' in a modifiable field.

Deletes the character at the cursor location and moves the
subsequent characters in the field 1left by omne position.
The last character moved is the rightmost character in the
field, and it is followed by a newly inserted blank. If the
cursor is not in a modifiable field, the key is not honored
and the alarm sounds. This key is reciprocal 1in action to
the INS key.

Special Keys

SHIFT -

LOCK -

RESET -

Has the same effect as SHIFT on a typewriter. For keys with
an upper and lower character on the key face, the SHIFT key
is used to select which character is to be entered.
However, it has no effect on letters to be entered in an
uppercase attribute field. These are entered as uppercase
whether the SHIFT key is pressed or not. Pressing this key
when the SHIFT 1light is 1lit causes the SHIFT light to be
turned off and unSHIFTs the keyboard.

Lights the SHIFT light. The workstation then behaves as if
the SHIFT key were continuously pressed. Pressing this key
again does not change the device status. Pressing the SHIFT
key turns off the SHIFT light, returning the keyboard to an
unSHIFTed state. When the workstation is powered on, the
device is in an unLOCKed state.

Causes all field attribute characters on the screen with a
blinking display to be set to (unblinking) high intensity.
This key 1is still effective when the keyboard is locked for
data entry.

9.3.4 Keys Communicating with the Computer

This set of keys causes an interruption to be presented to the
computer. If the key can be honored, the AID byte in the IOSW will be set to
the character for the struck key and an interruption will be presented to the
computer. After these keys are pressed, all keys except the HELP key and the
RESET Kkey are locked, and the alarm will sound if they are struck. The cursor
is removed from the screen.

HELP ~ This key is intended for operating system use. The SHIFT
key does not affect its action. The only time the key
cannot be honored is when an unsolicited interruption 1is
pending for the same device. At any other time the key is
honored. This includes both when the keyboard is 1locked for
any of the data entry keys, and during a READ or WRITE to
the workstation. A HELP key struck while a READ or WRITE is
in progress results in a separate attention interruption
occurring after the READ or WRITE completion interruption.

PF1- - (Program Function keys)--There are 16 PF keys; the lowercase

PF32 values for these keys represent PF1-PF16, and the shifted
(uppercase) values PF17-PF32. These keys work the same as
ENTER, the only difference being in the AID byte generated.

ENTER - This key is the normal means of terminating data entry and
requesting the program to process the data. The SHIFT key
does not affect the action of the ENTER key. The ENTER key
is not honored when the keyboard is 1locked for data entry
keys.

9.4 WORKSTATION IOCW AND I/0 COMMANDS

The computer communicates with the workstation by using commands and
orders. Commands are VS 1/0 requests specified by an SIO instruction and are
part of the IOCW. Orders are requests for actions sent to the workstation as
part of the data area. Workstation orders are discussed in Subsection 9.5.1;
computer commands are discussed at the end of that subsection.

The following is a description of the specific interpretations of the
IOCW fields for the workstation, For a general explanation, refer to the
general I/0 description in Chapter 8. The workstation does not have a
device-dependent extension to the IOCW.

9.4.1 Command and Modifier Bits

For the valid commands and modifier bits, refer to Subsection 9.5.13.

9.4.2 Data Address

The data address points to the first byte of the order area, or to an
Indirect Address list whose first entry points to the first byte of the order
area. The data to be read or written is to immediately follow the order area
and is called the mapping area. The data area specified by the IOCW data
address is discussed in Section 9.5 and is outlined in Table 9-3.

9.4.3 Data Count

The minimum data count permitted for this device is the 1length of the
order area (four bytes). If a 1length shorter than the order area is
specified, the command will be terminated with an indication in the IOSW of
incorrect length. The length of the mapping area is the data count minus the
length of the order area. The length of the mapping area must not extend past
the end of the workstation screen, so the maximum length of the mapping area
is 1920 bytes. If the length does extend past the end of the screen, the
command will be terminated with an indication of incorrect length stored in
the IOSW.

9.5 DATA AREA

The data area specified in the data address for a workstation will
consist of two adjacent areas: the order area and the mapping area. The
order area contains the starting row number and specifications of actions to
be performed (on a WRITE), or is set by the device to the cursor address (on a
READ) . The mapping area is the data transmitted to or from the screen and
contains field attribute characters and display characters. The length of the
entire data area is given by the data count field, shown in Figure 9-2.

Field | Command code Data address Data count field |
Bit | 0 718 31| 32 47|
Digit | 1 2 3456738 | 9 10 11 12 |

Figure 9-2. Workstation IOCW

9-10

9.5.1 Order Area

The order area is always four bytes long. Table 9-3 shows the layout of
this area.

Table 9-3, Significance of Bytes in the Workstation Order Area

Byte On READ On WRITE

0 Row number Row number

1 Reserved (must be O, WCC (write control charac-
except for remote ter; discussed below)

workstations, where this
is the AID character.
Refer to Table 9-6.)

2 Cursor column address Cursor column address (if
cursor bit set in WCC)

3 Cursor row address Cursor row address (if
cursor bit set in WCC)

The contents of the order area and the interpretation of the fields in
the area are different for a READ and a WRITE.

9.5.2 Interpretation of the Order Area on a READ

The first byte of the order area is inspected before the data transfer
and is wused to specify the starting row number for the READ. If this row
number is not in the range 1-24, the command will be terminated with an
indication of Order Check (OR) in the IOSW. This byte is not changed by the
READ.

The third and fourth bytes of the order area are set by the READ to the
address of the cursor at the time of the read. The first byte of the two will
contain the column number (1-80), and the second will contain the row number
(1-24) of the current cursor location. These two bytes are not inspected
before the READ.

The second byte of the order area for a READ 1is not inspected or
modified, but is to be supplied as binary Os for compatibility with future
options.

9.5.3 Interpretation of the Order Area on a WRITE

Neither the order area nor the mapping area is changed on a WRITE. The
first byte of the order area on a WRITE is interpreted as the row number where
the WRITE is to start. If this row number is not in the range 1-24, the
command will be terminated with an indication of order check (OR) in the IOSW.

The second byte of the order area is interpreted as the Write Control
Character (WCC). If the "set cursor address'" bit is set in the WCC, the next
byte of the order area is interpreted as a cursor column address, and the
fourth byte as the cursor row address. If the ''set cursor address' bit is not
set in the WCC, the third and fourth bytes of the order area are ignored.

If the "set cursor address" bit is set in the WCC, the cursor row
address byte must be set to a value between 1 and 24 inclusive, and the cursor
column address byte must be set to a value between 1 and 80 inclusive. After
the WRITE completes, the cursor will be positioned to that row and column. If
the cursor row address byte is 0, it is treated as if it were 1. If the
cursor column address byte is 0, this will act as if the cursor were
positioned one location before the first location in the specified row and the
TAB key were pressed. If there are no modifiable positions on the screen
after the WRITE command, the cursor will be positioned to the first location
in the specified row.

If the '"set cursor address'" bit is set in the WCC and the cursor row
address byte has a value other than 0-24 or the cursor column address byte has
a value other than 0-80, the command will be terminated with an indication of
Order Check (OR) stored in the IOSW.

9.5.4 WCC Area

The computer controls the workstation by use of orders. An order is a
request for workstation action that is coded in the order area. The order
area is the first 4 bytes of the data area pointed to by the IOCW. The second
byte of this area is a Write Control Character (WCC). The area also contains
the starting screen location for data transfer. The positions immediately
following the order area are the mapping area. Data is transferred between
the mapping area and the screen as specified by the IOCW command code. The
length of the mapping area is defined by the length specified in the data
count in the IQCW minus 4.

WCC (write control character) - This is the second byte of every
WRITE. No other byte will be interpreted as a WCC. For the interpretation of
the bits of the WCC, refer to Table 9-4.

9-12

This manual is updated by: Addendum 800-1100P0-04.01

Table 9~4. Workstation Write Control Character (WCC) Codes

Bit Explanation (if set to 1)

0 Unlock keyboard (Lock if 0)

1 Sound alarm

2 Position cursor

3 Roll down

4 Roll up

5 Erase modifiable fields to pseudoblanks
6 Erase and protect rest of screen

7 Reserved (must be 0)

9.5.5 Unlock the Keyboard

After the record is written to the screen and after sounding of the
alarm, if specified, the AID character will be set to blank and the keyboard
will then be unlocked.

If bit 0 is O, the keyboard will be 1locked before any data is
transmitted to the workstation. This can lock an unlocked keyboard. If the
keyboard is locked, this bit will not change the status of the keyboard. The
normal method for locking the keyboard is to wait for the operator to strike
one of the computer communication keys. If the bit is 0 and the keyboard is
locked, the AID character in the IOSW will not change. However, if the
command locks the keyboard, the AID character will be set to " ' ".

9.5.6 Sound the Alarm

If this bit is set to 1, the alarm will sound before the data is
transmitted to the screen.

9.5.7 Position the Cursor

If this bit is set to 1, after data is transferred to the screen the
cursor wWill be positioned as described in Subsection 9.5.3.

9.5.8 Roll Down

Setting this bit to 1 causes the bottom line of the screen to be lost
and each 1line above it to be copied into the next lower line. This copying
proceeds until the row specified in the order area has been copied. The
specified row is then set to blanks and the WRITE continues,

9-13

This manual is updated by: Addendum 800-1100P0-04.01

9.5.9 Roll Up

If this bit is set to 1, the row specified in the order area will be
lost and each line below it will be copied into the next higher line (e.g.,
line 1 will be replaced by the contents of line 2, etc.). This copying will
proceed until the last row of the screen has been copied. The 1last row will
then be set to blanks, and the WRITE will proceed on the last line of the
screen. An attempt to write more than one line in a single command with '"roll
up" specified will result in Order Check (OR) being reported.

9.5.10 Erase Modifiable Fields to Pseudoblanks

All wmodifiable 1locations at and after the row address specified in the
order area are set to pseudoblank characters (bit pattern 00001011) before the
data is transferred to the screen.

9.5.11 Erase and Protect Rest of Screen

All locations of the screen at and after the row address specified in
the order area are set to X'8C' before the data is transferred to the screen.
Therefore, there are no modifiable locations after the data that is written.

The options of the WCC on a WRITE will take place in the following order
if they are chosen:

1. The keyboard . is locked.

2, The alarm is sounded.

3. The roll down is performed.

4. The roll up is performed.

5. The "erase modifiable" or "erase and protect rest'" is performed.
6. The data is transferred to the screen.

7. The keyboard is unlocked.

8. The cursor is positioned.

9. If the keyboard is unlocked, the cursor is displayed.

9.5.12 Mapping Area

The mapping area contains the data transmitted either to or from the
screen. Its maximum length is 1920 bytes. The first location of the mapping
area corresponds to the first character of the row specified in the first
byte on the order area. Byte number 81 of the mapping area would correspond
to the first byte of the next row. If the starting row number and the length
of the mapping area are such that locations in the mapping area would extend
past the end of the screen, the command will be terminated with an indication
of incorrect 1length stored in the- IOSW. Note that, although the mapping
area's first position will always correspond to the start of a row, the only
restriction on the end of the mapping area is that it not extend past screen
end. This means that the mapping area camn include more than one row. No
mapping area need be supplied for a 4-byte READ or WRITE (order area only).

- Figure 9-3 is a summary of the order area and mapping area.

9-14

This manual is updated by: Addendum 800-1100P0-04.01

Offset Description
| |
o] Starting row number | I
1 WCC (0 for READ) | | Order area
2 Cursor column | |
3 | |
| |

4

. Mapping area

|
|
|
|
| Cursor row
I
| |
| . |
| |
| I

Figure 9-3. Data Area Specified by Workstation IOCW

9.5.13 Workstation I/0 Commands

Commands are 1I/0 requests issued by the computer. The SIO instruction
starts the command in the IOCW. This causes a transfer of data either from or
to the workstation. The data sent either from or to the workstation will
contain one or more orders and (optionally) screen characters. Data sent to
the workstation with any of the WRITE commands can be used to format the
screen into fields, display characters, or control workstation functions 1like
unlocking the keyboard. Data read from the workstation includes field
attribute characters that are within the range of the READ, as specified in
the order area. Commands should normally be issued only when the keyboard is
known to be locked, unless the screen display is to remain until ENTER is
pressed. If the keyboard is not locked and a command is issued, keystrokes
may be lost. The valid commands are listed in Table 9-5.

Table 9-5. Workstation Commands

Command and

Command Modifier Bits

WRITE 10 0000NO
WRITE SELECTED 10 0100NO
WRITE TABS 10 0001NO
READ 01 0000NO
READ ALTERED 01 0100N0
READ DIAG 01 0010NO
READ TABS 01 0001NO

9-15

This manual is updated by: Addendum 800-1100P0-04.01

The bits marked 'N' in Table 9-5 are set to indicate indirect data
addressing. When they are set, the data address portion of the IOCW addresses
an Indirect Address list as described in Chapter 8. For the workstation, the
address contained in the first entry of an Indirect Address list must have two
low-order Os (specifying word alignment), and the Indirect Address list itself
must be word aligned.

The READ command causes the contents of the screen 1locations
corresponding to the mapping area to be copied into the mapping area. This
includes all characters and field attribute characters in the range to be
read. Selected-field tags of the field attribute characters in the portion of
the screen read are turned off, both in the workstation and in main memory.
The cursor row and column addresses are stored in the order area. This
command is valid both when the keyboard is locked and when it is unlocked.
Issuing it is not recommended, however, while the keyboard is unlocked, as
this may cause some operator keystrokes to be lost.

If any of the characters in the range of the READ are pseudoblanks
(i.e., in a modifiable field, characters with bit patterns 00001011 (the
half-solid character) or 00000101) , these will be converted to blanks on the
screen before the data is read. When these characters are in protected
fields, they are not considered to be pseudoblanks, and they will not be
changed to blanks either on the screen or in memory.

If any characters in the range of the READ are field attribute
characters with blink indicated, the blink indication will be converted to
high intensity both on the screen and in memory. This is true for field
attribute characters that have either ©protected or modifiable field
indications set.

The READ ALTERED command causes the contents of fields within the
specified range that have selected—field tags set to be copied into
corresponding positions of the mapping area. The selected-field tags in the
portion of the screen read are turned off at the workstation, but they are set
in the corresponding field attribute characters of the mapping area.
Pseudoblanks and blinking fields within the range of the READ ALTERED are
affected as for the READ command.

The READ DIAG (diagnostic read) command is identical to the READ
command, except that it does not change pseudoblanks to blanks, reset blinking
fields, or turn off selected-field tags either on the screen or in the data
that is read.

The READ TABS command reads into memory the column numbers of all set
tabs. The command transmits up to 10 characters. Each location has a value
of 0 or 1-80. The first 0 encountered indicates that there are no more set
tabs and that subsequent locations have undefined values. The tabs are listed
in the mapping area in order of increasing column numbers. The IOCW must have
a data count greater than or equal to 14 or the command is rejected with an
indication of OR (order check).

9~16

The WRITE command causes a transfer to the screen of the data in the
mapping area. Field attribute characters, including selected-field tags, are
transferred unchanged. This command can be issued when the keyboard is locked
or unlocked. It is, however, normally undesirable to issue a WRITE when the
keyboard is unlocked, because doing so could cause loss of operator keystrokes.

The WRITE SELECTED command causes a transfer to the screen of those
fields in the mapping area that have selected-field tags set in their field
attribute characters. The selected-field tags in main memory are not reset.
Selected—-field tags at the workstation (indicating altered fields) are turned
off only in those field attribute characters identifying the fields that are
written.

The WRITE TABS command causes all tabs to be cleared, and then sets up
to 10 tabs specified in the first 10 bytes of the mapping area. Each column
that is to be set as a tab stop has its column number specified in the mapping
area. Column numbers are to be specified in increasing order (1-80). The
first zero byte encountered within the 10-byte mapping area terminates the
list of tab settings; the contents of any subsequent bytes are not examined.
Incorrect specification of tab settings will result in unpredictable and
erroneous tab operation. The IOCW must have a data count greater than or
equal to 14, or the command is rejected with an indication of OR (order check).

Table 9-6 lists the AID configurations for workstations, along with the

associated hexadecimal characters and graphic characters. AID characters are
discussed in Subsection 9.6.3.

9-17

Table 9-6. Attention ID (AID) Configurations
Hex Hex
Character Graphic Character Graphic
AID (asCI1I) Character AID (ASCII) Character

Keyboard 20 ' ' (blank) Locked by 21 '
Unlocked ' Write

ENTER key 40 @

PF 1 key 41 A PF 17 key 61 a

PF 2 Kkey 42 B PF 18 key 62 b

PF 3 key 43 c PF 19 key 63 c

PF 4 key 44 D PF 20 key 64 d

PF 5 Kkey 45 E PF 21 key 65 e

PF 6 key 46 F PF 22 key 66 £

PF 7 Kkey 41 G PF 23 key 67 g

PF 8 key 48 H PF 24 key 68 h

PF 9 key 49 I PF 25 key 69 i

PF 10 key 44 J PF 26 Kkey 6A J

PF 11 key 4B K PF 27 key 6B k

PF 12 key 4C L PF 28 key 6C 1

PF 13 key 4D M PF 29 key 6D m

PF 14 key 4E N PF 30 key 6E n

PF 15 key 4F 0 PF 31 key 6F o

PF 16 key 50 P PF 32 key 70)

Screen
HELP key 30 0 damage 3F ?
alert
Note: for remote workstations, X'00' = Power on (for workstation types

2246R, 2246S, and 2246C), X'01' = Disconnect (2246R only) ,

(2246R only), (2246P only), and X'3F' = I/0 error (all

others).

X'3F' =

Power on

9-18

X'02'

= Connect

9.6 WORKSTATION I/O STATUS WORD

For a general discussion of the IOSW, refer to Chapter 8. The general
status bits and error status bits of the IOSW are set on an interruption as
described in the following subsections.

9.6.1 General Status Byte

I0SW
Bit Mnemonic Meaning

0 IRQ Never set.

1 NC Set on normal completion.

2 EC Set on completion with error.

3 U Set on power-on or on pressing of ENTER, PROGRAM
FUNCTION, or HELP key. NC and EC never set along
with this bit.

4 PC Set only in conjunction with NC, EC, or U.

5-6 Reserved (always 0).

7 Reserved for software use.

9.6.2 Error Status Byte

I0SW

Bit Mnemonic Meaning

8 IC Set to indicate invalid command byte in IOCW, IOCW
not fullword aligned, Indirect Address 1list not
fullword aligned, or data area not fullword
aligned. EC always set when IC is set.

9 MPE Set on occurrence of main memory parity error during
reading of IOCA, Indirect Address 1list, IOCW or
data. EC always set when MPE is set.

10 MAE Set on occurrence of main memory addressing error
during reading of IOCW, Indirect Address list, or
data. EC always set when MAE is set.

11 DM Set on timeout during reading or writing of screen
buffer in response to an I/0 command. EC always set
when DM is set.

12 DAM Set when device RAM parity error or power-off occurs

on a serial workstation during an I/0 operation.
Never set for parallel workstations.

9-19

I0SW
Bit

13

14

15

Mnemonic

Meaning

IL

PP

DP

Set if IOCW specifies a data length less than 4, or
if an operation attempts to read or write beyond the
end of the screen. (In the latter case, the
operation is terminated rather than suppressed.) EC
always set when IL is set.

Set when microprogram loading for a programmable IOP
(data link processor) is required.

Set when a serial programmable workstation (type
2246R, 2246S, or 2246C) is powered off, or when an
internal RAM parity error occurs. This error
condition indicates that device processor
microprogram reloading is required.

If both PP and DP are set, loading of a device
configuration table for a programmable I/0 processor
is required.

9.6.3 Device—Dependent Bits

The workstation uses both additional status bytes of the I0SW. They are
always stored on an interrupt.

10SW
Bit

16-23

24

25

Mnemonic

Meaning

OR

The current AID character. This byte indicates
whether the keyboard was locked by the last
completed I/0 operation, or it indicates what PF key
was last struck. Refer to Table 9-6.

The AID character is X'20' if the operation is a
WRITE which has wunlocked a previously locked
keyboard, X'21' if the operation is a WRITE which
has locked a previously unlocked keyboard. If the
operation did not change the locked/unlocked status,
the AID character is the last AID character set by
workstation interaction (computer communication key,
power-on, Or error).

Order check. This indicates that the row or column
addresses specified in the order area are invalid or
that the IOCW data count was less than 14 for WRITE
TABS. The row specified in the order area is not
between 1 and 24, or the column is not from 0 to 80,
or more than 10 tabs were requested. The screen or
tab settings may have been modified.

Set if any data was transferred to memory by this
command, This bit is set on normal completion of a
READ ALTERED command only.

9-20

Workstation Powered-on Indication and Screen Damage Alert

When the parallel workstation (2246P) is powered on, an unsolicited
interruption becomes pending with X'3F' ('?') in the first additional status
byte of the I0SW (AID character position). This indicates that the screen
contents, tab positions, and other previous workstation status have been lost
and that the workstation screen has been filled with X'8C' bytes (default
field attribute characters). In addition, the keyboard is locked and tab
positions are cleared.

In the event of an I/0 error resulting in completion with bits MPE or DM
set (in conjunction with bit EC), X'3F' ('?') is stored in the first
additional status byte (AID byte) of the IOSW.

When the serial programmable workstation (2246S) is powered on, an
unsolicited interruption becomes pending with the programmable device status
stored in the second extended status byte of the IOSW. The corresponding
microprogram should be loaded by the CPU and restarted before normal I/0
operations can be attempted.

9.7 EXAMPLE OF COMPUTER CONVERSATION WITH A WORKSTATION

When the operator powers on the workstation, an attention interrupt is
generated. The system then issues a WRITE. The data transmitted to the
workstation formats the screen into fields and displays the information
telling the operator what data to insert into the fields. This WRITE has the
WCC set to unlock the keyboard after the WRITE. After this WRITE is finished,
the computer does not need to communicate with the workstation until the
operator has signaled that data entry is finished and the system may read the
data. When the operator has finished entering data, he presses the ENTER key
(or one of the other communication keys). This causes an interrupt and locks
the data entry keys, program function keys, and ENTER key. At any time after
this interrupt the program can issue a READ to the workstation. After the
READ has finished, the program processes the data read and prepares new
messages and a new screen format, which are sent to the workstation with a
WRITE. The WCC has the bit set to unlock the keyboard. The above sequence of
operations can be repeated until all needed data has been supplied to both the
operator and the computer.

9-21

CHAPTER 10
WANG PRINTER CHARACTERISTICS

10.1 INTRODUCTION

A number of line printers are available as optional peripherals on the
Wang VS system. More than one printer may be attached to a system, the only
restriction being on the total number of attached devices. Characteristics of
the various printer models are shown in Table 10-1.

Table 10-1. Characteristics of Printer Models

Char. Lines Chars.

Set ; per per
Model Speed Type 0 Channels | Expand | Inch Line
2221V 200 cps | Matrix | 96 1,5 Yes 6 132
2231V-2 | 120 cps | Matrix | 96 1,5 Yes 6 132
2273v-1 | 250 1lpm | Band 64/96 1,5 No 6/8 132/158
5521 200 cps | Matrix | 96 1.5 Yes 6 132
5531-2 120 cps | Matrix | 112 1,5 Yes 6/8 132
5570 600 1pm | Line 64 1-12 No 6/8 132
5571 430 1pm | Line 96 1-12 No 6/8 132
5573 250 1lpm | Band 64/96 1,5 No 6/8 132/158
5574 600 1pm | Band 64/96 1-12 No 6/8 132
6581w 30 cps | Daisy 86 1,5 No 3,4,6,8 132/158
6581UWC 30 cps | Daisy 86 1,5 No 3,4,6,8 | 180/216

10-1

10.2 PRINTER IOCW AND I/0 COMMANDS

Program control of the printer is always by means of an I/0 Command Word
(IOCW) specifying the functions to be performed. The printer IOCW is
diagrammed in Figure 10-1. For a general discussion of the IOCW, refer to
Chapter 8. The first byte of the IOCW contains the I/0 command and the
command modifier bits. These are as follows:

ccMM MMMM
where CC 1is the command, and MM MMMM are the command modifier bits. Figure
10-1 summarizes the IOCW as discussed in the following subsections of section

10.2.

10.2.1 WRITE Command

The command for the printer is a WRITE command, with command code of
binary 10. Bit 7 (last modifier bit) of the command byte 1is set to 0 to
request uppercase printing, and to 1 to print lowercase letters. The other
modifier bits are ignored.

10.2.2 Data Count and Data Area

The data count field in the IOCW can have values between 6 and 2048,
inclusive. A data count of less than 6 or greater than 2048 results in the
command's being suppressed with error and incorrect 1length indications. The
data area as addressed by the IOCW is as follows:

| | P77 | |
| BL | Data record | var | Data record |
!/

0 2

where BL is the total area (block) length in binary, including the BL bytes.
The 2-byte field BL must contain the same value as the I0CW data count field,
or the command is suppressed with error and incorrect length indications.
Each data record is as follows:

| | |
| RL | Compressed record |
I | |

0 2 var

where RL is the compressed record length in binary, including the RL bytes.

10-2

Field

Command code

Data address

Data count field

Bit

0

718

31

32

47

Digit

1

2 3456738

9 10 11 12

Command code

| Data address

Data count field

80 = WRITE

Physical address

in main memory

Number of bytes

to be transferred

Data Area (in main memory) Pointed to by Printer IOCW Code

BL Data record Data record | Data Record
RL | Compressed
record
CL | data | CL | data | CL | data | CL | data |
0 = Compress Length Print Actual
1 = No compress of string control data
bytes string
Print Control Bytes
(First two data bytes)
Byte Bit Meaning
0 0 Line or channel spacing select
0 = Space lines as specified
in the second byte
1 = Skip to the channel specified
in the second byte
1 0 = Space before printing
1 = Space after printing
2 0 = Normal width characters
1 Double width characters
3 1 = Activate hardware alarm
4-7 Reserved
1 0 Reserved
11-17 Binary number of lines to

space (0-127), or Channel

for skip (1-12)

Figure 10-1.

10-3

Printer IOCW Format

The compressed record, which includes print control bytes, is in the
format produced by the COMP instruction. When expanded, it must be not 1less
than two bytes in length or the command is terminated with error and incorrect
length indications. (Lengths greater than the form width result in
right-truncation on some printer models.) A compressed record is as follows:

where CL indicates a compression 1length byte as for the COMPRESS STRING
instruction, and is followed by one: or more data bytes. If a data area
extends beyond the end of the record as determined by length RL, the command
is terminated with error and incorrect length indications.

10.2.3 Print Control Bytes

The bits of the control bytes are set to specify all control operations
for each printer WRITE. The first two (expanded) data bytes of a record are
print control bytes, defined as indicated in Table 10-2.

Table 10-2. Printer Control Codes

Control
Byte Bit Function
0 0 Line or channel spacing select:
0 = Space number of lines specified in
second control byte
1 = Skip to the channel specified in the
second byte
1 0 = Space before printing
1 = Space after printing
2 0 = Normal width characters
1 = Double width characters
3 1 = Activate hardware alarm
4-7 Reserved
1 0 Reserved
1-7 Binary number of lines to space (0-127), or
channel for skip (1-12)

10-4

The control bytes are designed for all printers. The following
restrictions apply to the currently available printers:

. Suppress spacing (space 0) is valid.

. Only skips to channel 1 (top of form) and channel 5 (vertical tab)
are valid for the current matrix and daisy printers.

. Intermixed pre-spacing and post-spacing produce correct results.

. Invalid control bytes cause an automatic single space after print.

A valid WRITE command causes preprint controls, as well as character
width setting and hardware alarm status, to be interpreted and executed by the

printer.

Nonprintable characters print as backslashes (\) or blanks, depending
upon the printers,

Successive bytes from the character area are sent to the printer buffer
and the IOCW count is decremented until it reaches 0, at which time the
operation normally is completed.

10.3 PRINTER I1/0 STATUS WORD

When applicable, an "out-of-paper,'" 'ribbon-out,'" ‘''cover-open,' or
"deselect" condition is reported as an interruption if an operation is
attempted on a printer that has only the intervention required (IRQ) bit set.
The operation is halted at the beginning of the next line of printing or
spacing. When the printer is again successfully selected, the operation
continues normally. Parallel printers also report a 'power—off' condition as
an Intervention Required (IRQ) interrupt. But for serial printers (denoted by
a final 1letter S in their model numbers), a "power—off'" condition is reported
as an error completion, with power-off status stored in the extended status
byte 2. The microprogram must then be reloaded before normal I/0 operation
can be resumed.

For both parallel and serial printers, part or all of a line or block of
lines may be lost if a power—off condition occurs during an I/0 operation.

10-5

The general status bits and error status bits of the IOSW are set on an
interrupt as described in the following subsections.

10.3.1 General Status Byte

10SW
Bit

0

6-7

10.3.2 Error Status Byte

Mnemonic

Meaning

IRQ

EC

PC

DAR

I0SwW
Bit

8

10

11-12

13

Mnemonic

Set on device-deselect, ribbon-out, cover-open, or
out-of-paper condition only; thus, only while a
WRITE is outstanding. NC or EC never set with IRQ
(see preceding discussion). PC may be set with IRQ.

Set on normal completion (see next section).

Set on completion with error. NC and EC never set
together.

Set when a serial printer is powered on.
Set only in conjunction with IRQ, NC, or EC.

Set for some printers on programmable I/0 processors
in advance of the completion interruption for a
WRITE operation. Indicates that the main memory
data area containing the block of records to be
printed will not be re-accessed and may be reused or
erased by the central processor program. No other
status bits are set with DAR.

Reserved (always 0)

Meaning

IC

MPE

DM,DAM

IL

Set to indicate invalid command byte in IOCW, IOCW
not fullword aligned, or data area not fullword
aligned. EC always set when IC is set.

Set on occurrence of main memory parity error during
reading of IOCA, IOCW, or data. EC always set when
MPE is set.

Set on occurrence of main memory addressing error
during reading of IOCW or data. EC always set when
MAE is set.
Never set.
Set if IOCW specifies an invalid data count, if the

IOCW data count is exhausted before end of block is
reached, or if a record length byte is invalid.

10-6

105w
Bit Mnemonic Meaning

14 PP Set when microprogram loading for a programmable IOP
(data link processor) is required.

15 DP Set when the serial programmable workstation is
powered off or an internal RAM parity error occurs.
This error condition indicates that device processor
microprogram reloading is required.

If both PP and DP are set, loading of a device
configuration table for a programmable I/O processor
is required.

10.3.3 Device-Dependent and Residual Count Bytes

The IOSW device-dependent status field (third and fourth bytes of the
I0SW) contains a count of the number of lines printed on any completion
(including completion after HIO). The fifth and sixth bytes contain the
residual count for the operation, in bytes.

10.3.4 HALT I/0 to Printer

The printers accept HALT I/0 (HIO) instructions as defined in Chapter
7. If condition code 1 results from an HIO instruction, a completion
interruption (bit NC of the IOSW set) will become pending when the printer has
been cleared of any outstanding operation and of any pending interruptions.

10-7

CHAPTER 11
WANG DISK FACILITY CHARACTERISTICS

11.1 INTRODUCTION

The VS provides several different disk IOPs to support the various disk
drives available. The 22V02 IOP supports a 2270V diskette drive and up to
three 2260V 10-megabyte disk drives, or three 2260V 10-megabyte disk drives.
The 22V08 I0P supports up to four 2265V-1, 2265V-2, 2280V-1, 2280V-2, or
2280V-3 disk drives.

The 2260V has a fixed and a removable platter, while the 2265V-1 and
2265V-2 both have a removable-only multiplatter disk pack. The 2270V has only
a removable platter. The 2280V-1, 2280V-2, and 2280V-3 each have a 15M-byte
removable platter, with the remaining storage area fixed. Disk drive
specifications are summarized in Table 11-1.

Table 11-1. Characteristics of Disk Drive Models

Disk 2260V 2265v-1 2265v-2 2270V 2280v-1 2280v-2 2280v-3
Removable platter/pack Platter Pack Pack Platter Platter Platter Platter
Tracks per cylinder 4 5 19 1 1+1 143 145
Cylinders 408 823 823 77 823 823 823
Sector size (in bytes) 256 2048 2048 256 2048 2048 20438
Sectors per track 24 9 9 16 9 9 9
Total storage (in millions

of bytes) 10.03 75.85 288.22 .3154 30.34 60.68 91.02
Seek average (in ms) 38 30 30 424 30 30 30
Seek max (in ms) 130 §S SS 847 SS 55 S5
Seek min (in ms) 9 [6 1 6 6 6
Full rotation time (in ms) 25 16.66 16.66 167 16.66 16.66 16.66
Data transfer rate

(in bytes/sec) 312K 1.2M 1.2M 31K 1.2m 1.2M 1.2M

11-1

The 2260V disk drive consists of two disk platters, one permanently
fixed and the other removable,. Each platter has two disk surfaces. The
capacity of each platter is approximately 5.01 million bytes of data,
formatted into two surfaces of 408 tracks each. A cylinder consists of all
tracks that have a common access—arm position and that can be addressed
without moving the access arm.

The 2265V-1 and V-2 facilities consist of one removable disk pack
containing 5 usable recording surfaces (for the V-1) or 19 usable recording
surfaces (for the V-2). One access arm controls the positioning on all
surfaces. Each recording surface is formatted into 823 tracks, with each
track divided into 9 sectors containing 2048 bytes of data apiece.

The 2270V diskette drive consists of one diskette and one access arm.
Only one surface of the diskette contains data. In order to minimize wear on
the diskette, the IOP unloads the access arm after a period of inactivity
lasting longer than 0.6 second. There is a 30~ to 50-ms delay associated
with the 1loading of the head. The total capacity of the diskette is 315,392
bytes, formatted into 77 tracks of 16 sectors each. Each sector contains 256
bytes of data.

The 2280V-1, V-2, and V-3 disk units consist of one removable platter
and one (V-1), two (V-2), or three (V-3) fixed platters. The removable
platter contains one usable recording surface. The fixed platters have one
(V-1) , three (V-2), or five (V-3) usable recording surfaces. One access arm
controls the positioning on all surfaces. Each surface is formatted into 823
tracks of 9 sectors apiece, each sector containing 2048 bytes of data.

The addressing scheme for the 2260V provides relative sector addressing
of 256-byte sectors for these units. The last three bytes of the IOCW contain
the sector address. The first of these three bytes must be 0 or the command
will be rejected with an indication of invalid command and invalid disk
address. Both surfaces of a platter are used for recording. On track O, the
lower surface contains sectors 0 through 23; the upper surface contains
sectors 24 through 47. The lower surface of Track 1 contains sectors 48
through 71; the upper surface contains sectors 72 through 95, etc.

The 2270V provides the same addressing scheme except that only one
surface is used for recording and each track contains 16 sectors. Sectors O
through 15 are in track 0; sectors 16 through 31 are in track 1, etc.

The addressing scheme for the 2265V-1, 2265vV-2, 2280V-1, 2280V-2, and
2280V-3 provides relative sector addressing of 2048-byte sectors for these
units. The 1last three bytes of the IOCW contain the sector address times 8.
(Thus the lowest three bits must be 0s.) Each surface contains nine 2048-byte
sectors. On the 2265V-1, 45 consecutive sectors can be addressed without
access—arm movement. On the 2265V-2, 171 sectors can be addressed without
access—arm movement.

The platter to be used is specified in the modifier bits of the command

code of the IOCW. These bits are ignored for the 2265V-1, 2265V-2, and 2270V
facilities.

11-2

The number of sectors to be transferred should not be greater than the
number of sectors in a cylinder. Head select change is accomplished during
the intersector time. This permits a full track of data to be transferred in
one rotation, and a full cylinder of data in a minimum number of rotations. A
multisector transfer need not start or end on a track boundary and may span
more than one track of a cylinder. If the starting sector and data count
imply a cylinder change, the command will be rejected with an indication of
invalid command and invalid data count.

11.2 DISK IOCW AND I/0 COMMANDS

1/0 commands to the disk consist of a command, command modifier bits, a
memory address, a data count, and a disk address (device—-dependent section).

The I/0 Command Word (IOCW) is discussed in Chapter 8. The first byte
of the IOCW contains the I/0 command and the command modifier bits. These
are as follows:

cccMMMMM

where CCC is the command and MMMMM are the command modifier bits. Valid
commands are listed in Table 11-2,

Table 11-2. Valid I/0 Commands

Command Code Command Function
010X XXXX READ disk sector(s)
100% OXX WRITE disk sector(s)
101X XX WRITE VERIFY

110X XXX SEEK

111X XXX FORMAT

If the command byte is not as defined, the command will be rejected with an
indication of invalid command.

The command modifier bits are presented in the following listing.

Command Modifier Bit Modifier Function

0X000 Read/Write diagnostics for 2265V-1, 2265V-2,
2280v-1, 2280V-2, and 2280V-3. When this bit is
set, the data transfer 1is 1limited to one sector
only. Indirect data addressing is not allowed.
When this bit is set on a READ command, the eight
bytes of ECC code associated with the specified
sector are transferred into memory immediately
following the data. The total data transferred is
(2048 + 8) bytes. ECC error recovery is suppressed.

11-3

Command Modifier Bit Modifier Function

0X000 When this bit is set with a WRITE command, 2048

(continued) bytes of memory, starting from the address specified
in the IOCW, are transferred to the disk sector as
data, as in a normal READ command. However, instead
of generating an ECC code for the sector, the disk
hardware uses the next 8 bytes of memory as its ECC
code and writes these into the sector. ECC error
recovery is suppressed.

00X00 Suppress retry. When this bit is set, any automatic
retry procedures normally initiated by the device
are bypassed. All error conditions are reported

immediately as irrecoverable errors (IOSW bit EC
set, bit NC not set).

000X0 Indirect data addressing. When this bit is set, the
data address portion of the IOCW addresses an
Indirect Address list as described in Chapter 8.
For disk devices, the address contained in the first
entry of the Indirect Address 1list is required to
have 11 low-order Os (2048-byte alignment).

0000X Removable platter operation. When this bit is on,
the I/0 command disk address refers to the removable
platter. Otherwise the command 1is for the fixed
platter. (Ignored for the 2265V-1, 2265V-2, and
2270V facilities.)

For data transfer operations, the data count field of the IOCW specifies
the number of bytes to be transferred between the disk and memory. This
number must be divisible by the sector size (256 or 2048), or the command will
be rejected with an indication of "invalid data count.'" The sector address
field of the IOCW specifies the starting sector on the disk to which the
command pertains. As for all I/0, the memory address must be fullword
aligned. If indirect data addressing is specified, the memory data area (as
addressed by the first word of the Indirect Address 1list) must be 256-byte
aligned for the 2260V and 2270V, and 2048-byte aligned for the 2265V-1,
2265V-2, 2280V-1, 2280V-2, and 2280V-3. 1If these conditions are not met, the
command will be rejected with an indication of "invalid command."

11.2.1 READ Command

Execution of a READ command results in the positioning of the access
mechanism and the transfer of information from the disk into memory. On all
READ commands, the access mechanism is positioned at the specified sector
within the specified cylinder. On all READ commands, the disk verifies (using
the cyclic redundancy checks attached to each sector) that the data as read is
valid. Also, it verifies that the sector(s) read are those requested, by
comparing the sector address identification with the specified sector of the
READ command.

11-4

If any error is detected, the I/0 device will initiate the appropriate
retry procedures. If retry is successful, normal processing is continued. In
this case, the error is reported at the end of the I/0 sequence by means of an
I0SW (status word) with both NC and EC bits set. The appropriate status bits
are set in the IOSW to describe the error. :

If an irrecoverable error occurs (i.e., if all retry attempts have
failed) , then as much data as possible is transferred to memory and the error
is reported as irrecoverable by means of the IOSW.

The READ command allows any number of sectors on a cylinder to be read
by one command.

11.2.2 WRITE and WRITE (VERIFY) Commands

Execution of a WRITE command results in transfer of information from
memory to the disk., On all WRITE commands, the access mechanism is positioned
to the specified cylinder and sector within the cylinder. As the WRITE
operation is performed, a Cyclic Redundancy Check (CRC) for parity is computed
by the disk controller and appended to the sector record. For the WRITE
(VERIFY) command on the 2260V or 2270V, the contents of the sectors as written
on the disk are validated by a reading of all the data written and a
comparison of that data with the data as it is found in memory. The sector
addresses and the CRC are also verified. On the 2265V-1, 2265V-2, 2280V-1,
2280V-2, and 2280V-3, the ECC is recalculated and checked; comparison of data
with memory does not occur., This form of the WRITE command requires a second
revolution of the disk mechanism. If an error is found during data
verification and retry attempts fail, the residual data count in the stored
IOSW indicates the sector in error. This residual count is decremented each
time a sector is successfully verified. Thus an error on the first sector
written would result in a residual count equal to the original data count; an
error on the second sector written would result in a residual count equal to
the original count minus 256 or 2048, and so forth.

If any error occurs during a WRITE command, retry procedures are
automatically instituted as for READ. If retry is successful, the operation
is reported back through the IOSW with both Normal Completion (NC) and Error
Completion (EC) bits set. As with READ, in cases of hard (irrecoverable)
errors the disk operation is terminated and must be restarted by another SIO
operation, if desired.

The WRITE command allows any number of sectors on a cylinder to be
written.

11.3 DISK CONTROL COMMANDS

11.3.1 SEEK

Execution of a SEEK disk address command results in a positioning of the
disk access mechanism. The block count field and the memory address field of
the IOCW are ignored. No validity checking of the actual disk mechanism
position occurs during this command. The SEEK operation is automatic on READ,
WRITE, and FORMAT commands.

11-5

11.3.2 FORMAT

The FORMAT command will cause the addressed sectors to be formatted with
sector preambles. The data in the sectors after successful execution of the
command is unpredictable.

The FORMAT command allows any number of sectors on a cylinder to be
formatted.

11.4 DISK I/0 STATUS WORD

The IOSW is presented in Chapter 8. The general status bits and error
status bits of the IOSW are set on an interruption as described in the
following subsections.

11.4.1 General Status Byte

IOSW
Bit Mnemonic Meaning

0 IRQ Set only when an "intervention required' condition
is detected at the start of an operation. Not set
when '"Not Ready During Operation' device status is
set. EC is always set when IRQ is set.

1 NC Set on successful completion, with or without
retries.

2 EC Set when any error status bit is set, even if
condition corrected by retry. NC and EC both set if
a retry is successful,

3 U Set whenever device becomes ready after the RUN
button at the device is pressed. NC, EC, or PC may
also be set.

4 PC Set only with NC, EC, or U.

5-6 Reserved (always 0).

7 Reserved for software use.

11.4.2 Error Status Byte

IOSW
Bit Mnemonic Meaning
8 IC Set to indicate invalid command byte in IOCW, IOCW

not fullword aligned, Indirect Address 1list not
fullword aligned, or data not properly aligned
(fullword for non-indirect—-addressing operation, and
256-byte for indirect-addressing operation). EC
always set if IC is set.

11-6

10SW
Bit

10

11

12

13

14~-15

Mnemonic

Meaning

MPE

DAM

IL

Set on occurrence of main memory parity error during
reading of IOCA, IOCW, Indirect Address 1list, or
data. EC always set if MPE is set.

Set on occurrence of main memory addressing error
during reading of IOCW, Indirect Address 1list, or
data, or writing data. EC always set if MAE is set.

Set if and only if one or more of the following
conditions 1is indicated in the device—-dependent
status bytes:

. Sector overrun

. SEEK incomplete

. Not ready during operation
. Timeout on sector

. Data compare error

. Invalid sector ID

. Invalid CRC or ECC check

. Overrun

. Short sector.

Set whenever command terminated with error (EC set;
NC not set) after main memory or data on disk has
been modified.

Never set.

Reserved (always 0).

11.4.3 Device-Dependent Bits

In addition to the general device status bits, the following extended
status bits or device-dependent section in the IOSW refers to specific disk

and/or controller states.

I0SW
Bit

16

17

18
19
20

21

Mnemonic

These bits are discussed in detail below.

Meaning

IDA

IDC

Sector reformatted on WRITE retry

Sector leader skipped on READ retry (except 2260V
and 2270V)

ECC transferred (except 2260V and 2270V)
Reserved

1 = Invalid disk address

1 Invalid data count

11-7

I0SW Mnemonic Meaning

Bit

22 S0 1 = Sector overrun

23 SI 1 = SEEK incomplete

24 WP 1 = Write protect

25 NRO 1 = Not ready during operation
26 ST 1 = Timeout on sector
27 DC 1 = Data compare error
28 I1ID 1 = Invalid sector ID
29 CRC 1 = Invalid CRC or ECC
30 0 1 = Overrun

31 ISP 1 = Short sector

32-47 Residual data count

Invalid Disk Address

This bit is set to 1 when the starting sector address points to a
nonexistent cylinder, a condition that also causes the error completion bit
and the invalid command bit to be set to 1.

Invalid Data Count

This bit is set to 1 for the following conditioms:

Data count is not a multiple of the sector size.
Data count is greater than the number of data bytes in a cylinder.
Data count implies a cylinder change.

Data count is not equal to the number of data bytes in a track
surface for the FORMAT command.

Data count is 0.

These conditions cause the error completion bit and the invalid command bit to

be set to

1'

11-8

Sector Overrun

This bit is set to 1 when a sector in a multiple sector operation
requires an additional rotation for transfer to or from main memory. The
operation is retried starting at the "missed" sector. The condition may be
caused by insufficient intersector gap time due to a defective disk pack or
incorrect disk drive alignment.

SEEK Incomplete

This bit is set to 1 if the disk was unable to complete a SEEK due to a
malfunction. Whenever this situation arises, the access arms are placed at
cylinder 0 and the SEEK is retried. This bit is not set by the 2270V.

Write Protect

This bit is set to 1 only for the 2270V on all commands when the
diskette is write protected. The setting of this bit on a WRITE command
causes the error completion bit and the invalid command bit to be set to 1.

Not Ready During Operation

This bit is set to 1 whenever a disk becomes not ready during an

operation. The setting of this bit causes DEVICE MALFUNCTION to be set and a
later DEVICE NOW READY to be reported.

Timeout on Sector

This bit is set to 1 whenever a sector operation takes longer to
complete than a sector's time. Device malfunction 1is indicated and the
command is not retried.

Data Compare Error

This bit is set to 1 whenever the controller detects a data mismatch
during the verify part of a WRITE VERIFY command.

Invalid Sector ID

This bit is set to 1 if at the start of an operation the controller
finds that the sector identifier bytes are not as expected. When this
situation arises, the access arms are placed at cylinder 0 and the command is
retried.

Invalid CRC or ECC Check

This bit is set during a read operation if the CRC or ECC calculated
during the operation is not the same as the CRC or ECC written on the disk.

Qverrun

This bit is set if memory service is not provided fast enough to keep up
with the disk data transfer (rotation) speed during a vread or write
operation. Data transfer stops as soon as this condition is detected.

11-9

Short Sector

This bit is set to 1 when the controller detects the end of a sector
before the operation for that sector has come to an end. The most likely
cause of this error is lack of formatting.

Retry Indicator Byte

I0oSw
Bit Value Meanin
48-51 =0 No special adjustment
=1 Data strobe early adjustment applied during retry
=2 Data strobe late adjustment applied during retry
=3 Servo offset minus adjustment applied during retry
=4 Servo offset plus adjustment applied during retry
=5 Data strobe early and servo offset minus adjustments
applied during retry
=6 Data strobe late and servo offset minus adjustments
applied during retry
=17 Data strobe early and servo offset plus adjustments
applied during retry
=8 Data strobe late and servo offset plus adjustments
applied during retry
=9 ECC applied on READ retry
52-55 =n Number of retries (n) for the above adjustments

before terminating

For all disks except 2260V and 2270V, whenever an error is detected that
is reflected in the device-dependent status and that is not a specification
error (invalid disk address or invalid data count), the retry count (bits
52-55) 1is updated. After four retries of a particular type, the retry
indicators (bits 48-51) are updated, the retry count is zeroed, and the next
type of retry is attempted.

For the 2260V and 2270V, the retry indicators (bits 48-55) will be

updated after up to 16 retries, with no special adjustment for both READ and
WRITE operations.

11-10

Diskette Drive Indicator Bits

I0SW
Bit Value Meanin

56 =1 Diskette write protected

60 =1 Soft-sectored medium

6l =1 Double-sided medium (valid only for soft—sectored

diskettes)

11.4.4 Disk Unsolicited Interruptions

When a disk drive first becomes ready (i.e., after a disk platter is

mounted), an unsolicited "device now readied" interruption request is
generated.

NOTE

The disk IOPs do not support Halt I/0, If this command is
received, a condition code of 0 is returned if the
specified device is 1idle. If an operation is in progress
or an interruption is pending, a condition code of 1 is

returned and disk processing continues until the operation
completes.

11-11

CHAPTER 12
WANG MAGNETIC TAPE CHARACTERISTICS

12.1 INTRODUCTION

The Wang 2209V-1, 2209V~2, and 2209V-3 magnetic tape drives are optional
features of the Wang VS, More than one tape drive may be attached to a
system, restricted only by the total number of attached devices. The 2209V-1
is a 9-track 1/2-inch (13-mm) tape transport and controller that records at
1600 bits per inch (bpi) (phase encoded). The 2209V-2 is a 9-track 1/2-inch
tape transport and controller that records at 1600 bpi (phase encoded) and 800
bpi (NRZI). The 2209V-3 is a 7-track 1/2-inch tape transport which records at
800 bpi (NRZI). The tape drives and controllers are compatible with industry
standards.

The magnetic tape 1is designed to facilitate information interchange
between the Wang VS and other computer systems.

12.2 MAGNETIC TAPE GENERAL DESCRIPTION

12.2.1 Track Allocation

Information is written on tape by magnetizing small discrete positions
across the width of the tape. The result is a column of bits representing a
byte of information plus parity. Bit positions do not correspond sequentially
to track numbers across the tape. Bit positions are allocated as shown in
Figure 12-1, numbering the tracks from the near edge with the oxide side down
and with the take-up reel on the right.

9-Track 7-Track

Track number 12
4 6

3456789 1234567
Bit position 012P375 P0O12345
Figure 12-1. Tape Bit Positions

The 7-track tape bit positions 0-5 correspond to main memory locations 2-7.

12.2.2 Tape Markers

Magnetic tape must have some blank space at the beginning and end of the
reel to allow threading it through the feed mechanism of the tape unit.
Markers called reflective strips are placed on the tape by the operator to
enable the tape unit to sense the beginning and the end of the usable portion
of the tape. The tape unit senses a marker either as the load point marker,
where reading or writing is to begin, or as the end-of-tape marker,
approximately where writing is to stop.

12.2.3 Load Point Marker

At least 10 feet (3 meters) of tape must be allowed between the
beginning of the reel and the load point marker as a leader for threading the
tape on the tape unit. To indicate the load point, the marker must be
parallel to and not more than 1/32 inch (0.75 mm) from the edge of the tape
nearest the tape unit.

12.2.4 End-of-Tape Marker

About 14 feet (4 meters) of tape are usually reserved between the
end-of-tape marker and the end of the tape. This space includes at 1least 10
feet (3 meters) of leader and 4 feet (1 meter) for the recording of data after
the end-of-tape marker is sensed. When the tape is mounted, the marker is
placed parallel to and not more than 1/32 inch (0.75 mm) from the edge of the
tape nearest the tape unit. The end-of-tape reflective marker indicates the
beginning of the end-of-tape area. A WRITE or WRITE TAPE MARK operation into
this area sets the EOT indicator (bit 29 of the IOSW).

12.2.5 File Protection

Because the writing operation automatically erases any previous
information on the tape, a file protection device is provided to prevent
accidental erasure. A plastic write-enable ring fits in a circular groove
molded in the back (machine side) of the tape reel. This ring must be in
place to enable the machine to write on the tape in the reel. When the ring
is removed, only reading can take place; the file is thus protected from
accidental writing, which could erase valuable information.

12.2.6 Tape Blocks

Information on tape is arranged in blocks, as shown in Figure 12-2. A
tape block consists of one or more records, which are logical units of data.
Blocks are separated on tape by an interblock gap——a length of blank tape of
approximately 0.6 inch (15 mm). During writing, the gap is always produced at
the end of a block. A tape block is therefore defined or marked by an
interblock gap before and after the block.

12-2

Forward Tape Motion —————- >

7 77i | | | | 17711171

1//7//11B |L | ClLogical |Logical |Logical |Logical |IB |/////|

1/////1gapIR | Ridata |data |data |data lgapl/////1

1///771 IC | Clrecord Irecord |record |record | 1777171
| one block |

IB Gap - Interblock gap
LRC - Longitudinal redundancy check
CRC - Cyclic redundancy check

Figure 12-2. Tape Blocks

12.2.7 Tape Mark

The end of a file of information is indicated by a tape mark--a special
block written only by a WRITE TAPE MARK command. The tape mark is a special
single-byte block with X'13' (X'OF' for 7-track tape). One or more files may
be written on a reel of tape.

12.2.8 Checking Tape Validity

The validity of information written on or read from tape is insured
through the use of longitudinal, vertical, and skew checks; there is also a
cyclic redundancy check for 9-track tape. The checking of tape information is
accomplished during a READ operation or during a read check of a WRITE
operation.

12.3 TAPE IOCW AND 1/0 COMMANDS

The IOCW is discussed in Chapter 8. I/0 commands to the magnetic tape
consist of a command, a memory address, and a data count, as shown in Figure
12-3. There is no device-dependent section.

| Command | Memory address | Data count |
| (1 byte) | (3 bytes) |_(2 bytes) |

Figure 12-3. Tape IOCW

The first byte of the IOCW contains the I/0 command, the command
modifier bits, the indirect data addressing flag, and the suppress length
indication flags. These are as follows:

CCMMMMIR

12-3

where CC is the command, MMMM are the command modifier bits, I is the indirect
data addressing flag, and R is the reduced retry flag. There are three valid
commands.

Command Code Command Function
01 READ

10 WRITE

11 CONTROL

If the reduced retry flag is set for a READ command, the number of
attempts to read a tape block before reporting a hard error will be reduced
from 100 to 5.

1f the indirect data addressing (IDA) bit is set, the address of the
memory storage from which or into which data is to be transferred will be
fetched from the IDA list addressed by the memory address portion of the IOCW.

If the IDA bit is not set, the memory address portion of the IOCW
directly addresses a memory area from which or into which data is to be
transferred. This area of memory must be word aligned. The data count
portion of the IOCW contains the number of bytes to be transferred.

12.3.1 READ

A valid READ command causes the selected tape unit to move forward to
the next interblock gap. Information recorded on the tape is read and placed
in contiguous ascending locations in main memory, starting with the address
specified in the IOCW. If no data is detected on the tape within
approximately 7 seconds after the command is issued, the operation is
terminated and the incorrect length bit is set in the IOSW.

Reading a tape mark sets the TM indicator (bit 28 of the IOSW). The
tape mark is not sent to storage. Sensing the EOT reflective marker during
the read operation does not cause any status to be indicated.

12.3.2 WRITE

A valid WRITE command causes the tape unit to move the tape forward,
writing data fetched from main memory, starting with the address specified in
the IOCW. The number of bytes to be transferred is specified in the data
count field. These bytes are written in the form of a single physical record
(a block) with vertical, longitudinal, and cyclic redundancy checks for parity
applied where appropriate. Sensing the EOT reflective marker during a WRITE
operation sets the EOT indicator in the IOSW.

12-4

12.4 TAPE CONTROL COMMANDS

The control operations, specified by the modifier bits of the command
code, involve no data transfer. With the exceptions of SENSE, SET DENSITY,
and SET PARITY, they are tape motion commands. A control command ignores the
memory address and the data count fields of the IOCW. The command modifier
bits correspond to the functions listed in Table 12-1.

Table 12-1. Tape Control Modifier Bits

Command

Modifier Bits Command Control Function

0000 SENSE

0100 ERASE TAPE

0101 WRITE TAPE MARK

0110 FORWARD SPACE BLOCK

0111 FORWARD SPACE FILE

1000 REWIND

1001 REWIND/UNLOAD

1010 BACKSPACE BLOCK

1011 BACKSPACE FILE

1100 SET DENSITY to 1600 bpi (phase encoded)
1101 SET DENSITY to 800 bpi (NRZI)
1110 SET PARITY to odd (7-track only)
1111 SET PARITY to even (7-track only)

A valid control command causes the specified control function to be
executed. At the end of the control function, a normal completion
interruption is issued.

12.4.1 ERASE TAPE

Execution of an ERASE TAPE command causes the tape drive to erase
approximately 3.75 inches (9.5 cm) of tape. Performing this operation in the
EOT area sets the EOT indicator in the IOSW.

12.4.2 REWIND

Execution of a REWIND control command causes the tape drive to enter
rewind mode and reposition the tape at the LP reflective marker. This causes
the LP indicator to be set in the IOSW.

12.4.3 REWIND AND UNLOAD

Execution of a REWIND/UNLOAD control command causes the tape drive to
enter rewind mode, reposition the tape at the LP reflective marker, and reset
the tape status to off line.

12-5

12.4.4 WRITE TAPE MARK

Execution of the WRITE TAPE MARK command causes the tape drive to write
a tape mark (a special block) on tape. Performing this operation in the EOT
area sets the EOT indicator in the I10SW.

12.4.5 FORWARD SPACE BLOCK

Execution of the FORWARD SPACE BLOCK command causes the tape drive to
move the tape forward to the next interblock gap. Sensing a tape mark sets
the TM indicator in the IOSW.

12.4.6 FORWARD SPACE FILE

Execution of the FORWARD SPACE FILE command causes the tape drive to
move the tape forward to the interblock gap beyond the next tape mark.
Sensing the tape mark does not cause the TM indicator to be set in the IOSW.

12.4.7 BACKSPACE BLOCK

Execution of the BACKSPACE BLOCK command causes the tape drive to move
the tape backward to the nearest interblock gap or to the 1load point,
whichever comes first. Sensing a tape mark sets the TM indicator in the
IOSW. Sensing the load point before the backspace operation sets the LP
indicator in the IOSW with Error Completion (EC).

12.4.8 BACKSPACE FILE

Execution of the BACKSPACE FILE command causes the tape drive to move
the tape backward to the interblock gap beyond the next tape mark or to the
load point, whichever comes first. Sensing the 1load point sets the LP
indicator in the I0SW. Sensing the tape mark does not cause the TM indicator
in the IOSW to be set.

12.4.9 SENSE

Execution of the SENSE command causes the current status of the tape
drive to be stored in the IOSW.

12.4.10 SET DENSITY

Execution of the SET DENSITY command causes the tape drive to be
logically switched to the indicated density. The I0OSW indicates the change in
the density status bits. The change does not become effective until an 1I/0
operation 1is initiated, at which point the wrong density status bit appears in
the IOSW if the selected density is unavailable. This command is valid for
9-track drives only, and effective only for dual-density drives. ‘

12.4.11 SET PARITY

Execution of the SET PARITY command causes the tape drive to be
logically switched to the selected parity. The IOSW indicates the change in
the parity status bit. This command is valid for 7-track drives only.

12-6

12.4.12 Effect of Tape Markers on I0SW Bits

The following tape markers, when encountered by the specified operation,
set the LP, TM, EC, and EOT bits if those bits are listed in the corresponding
row and column.

Load Point Tape Mark End-of-Tape

Tape Operation Mark (LP) (™) Mark (EQT)
WRITE - - EOT

READ - ™ -

REWIND LP - -
REWIND/UNLOAD - - -

WRITE TAPE MARK - - EOT
FORWARD SPACE BLOCK - ™ -

FORWARD SPACE FILE - - -
BACKSPACE BLOCK LP (EC) ™ -
BACKSPACE FILE LP - -

Programming Note: Tape drives have no interlocking to prevent the execution

of improper sequences of WRITE and READ operations that may result in writing

partial blocks on tape. Avoiding these improper sequences is a program
responsibility.

12.5 TAPE I/0 STATUS WORD

The I/0 Status Word (IOSW) is discussed in Chapter 8. A full IOSW is
always stored on tape 1/0 completion. The error status byte is stored even if
the completion is not an error completion (bit EC of general status not set).

When a tape is manually loaded and reaches load point, an unsolicited
interruption occurs with general status bit U (unsolicited interruption) set.
IOSW bits LP (load point) and/or FP (file protected) may be set.

12.5.1 General Status Byte

IOSwW

Bit Mnemonic Meaning

0 IRQ Never set.

1 NC Set on successful completion with or without retries.

2 EC Set when any error status bit is set, even 1if the
condition has been corrected by retry. NC and EC
are both set when a retry is successful.

3 U Set whenever the device becomes ready after the
ONLINE button at the device is pressed. NC, EC, or
PC may also be set.

4 PC I0OP now ready; may be set alone or with NC, EC, or U.

5-7 Reserved (always 0).

12-7

12.5.2 Error Status Byte

IOSW

Bit Mnemonic Meaning

8 IC Set, with EC, to indicate an invalid command byte in
IOCW for any of the following reasons: IOCW not
fullword aligned, Indirect Address list not fullword
aligned or at an invalid address, or data not
properly aligned (i.e., not fullword aligned for
non—indirect-addressing operation or for first entry
in Indirect Address 1list, or not 2048-byte aligned
for subsequent entries in Indirect Address 1list);
attempt made to select parity on a 9-track drivej;
attempt made to issue diagnostic commands except on
a 9-track NRZI drive, or to use data length over
32,768; attempt made to backspace when tape is at
load point, or to write, write tape mark, or erase
tape when tape is write protected; attempt made to
specify a maximum size READ operation of less than 8
bytes, or a maximum size WRITE operation of less
than 12 bytes.

9 MPE Set in conjunction with EC on occurrence of main
memory parity error reading 1I0CA, IOCW, Indirect
Address List, or data.

10 MAE Set in conjunction with EC on occurrence of main
memory addressing error reading I0CW, Indirect
Address List or data, or writing data.

11 DM Set if one or more of the following conditions exist:
Memory addressing error
Memory parity error
Memory overrun
CRC or ECC error
LRC error
VRC error
Parity error
Tape drive not ready during operation
Tape drive off line during operation
Given density not available at tape drive

12 DAM Set whenever command terminated with error (EC set;
NC not set) after main memory or data on disk has
been modified.

13 IL Set if the size of a block read from tape is not the
same as the data count in the IOCW. If the IOCW
residual count is 0, the block was 1longer than
expected; if not, it reflects the difference between
the data count and the block length.

14-15 Reserved (always 0).

12-8

12.5.3 Device-Dependent Bits

The extended status portion of the IOSW provides a number of bits to
reflect the status of each I/0 operation. This extended status consists of
both the unusual conditions detected in the I/0 operation and the status of
the device.

I0SW
Bit Mnemonic Meaning

16 VRC 1 = Invalid vertical redundancy check

17 LRC 1 = Invalid longitudinal redundancy check
18 CRC 1 = Invalid cyclic redundancy check

19 SC 1 = Skew check on WRITE

20 WD 1 = Wrong density (density not available)
21 PE 1 = Phase-encoded ID burst detected

22 TR7 1 = 7-track tape drive

23 PAR 0 = 0dd parity; 1 = Even parity

24 FP 1 = File protected

25-26 Density 00 = 1600 bpi (phase encoded)

10 800 bpi (NRZI)
27 LP 1 = Load point encountered
28 ™ 1 = Tape mark encountered
29 EOT 1 = End-of-Tape marker encountered
30 0 1 = Overrun
31 OFF 1 = Tape off line
32-47 Residual data count bytes
48-55 Error count bits

These bits are discussed in detail in the following subsections.

Invalid Vertical Redundancy Check (VRC)

This bit is set during a READ operation if the VRC stored for a byte
does not give that byte odd parity on the tape.

12-9

Invalid Longitudinal Redundancy Check (LRC)

This bit is set during a READ operation if the number of 1 bits in a
track for the tape block including the LRC bit is not even.

Invalid Cyclic Redundancy Check (CRC)

This bit is set during a READ operation if the CRC character calculated
during the operation is not the same as the CRC character written after the
block on the tape.

Skew Check

This bit is set during a WRITE operation if excessive skew is detected.

Wrong Density

This bit indicates that an I/0 operation has been attempted at a density
not supported by the tape formatter.

Phase—-Encoded ID Burst Detected

This bit indicates that a phase—encoded ID burst has been detected
during the reading of the tape from load point.

7-Track Tape Drive

This bit indicates that the tape drive is a 7-track drive.
Parity
This bit is set when even parity has been selected.

File Protected

This bit is set whenever there is no 'write—enable'" ring on the tape.
Absence of this ring prevents accidental writing on the tape.

Density
These bits indicate the density at which the tape drive has been set.
Load Point

This bit is set whenever the tape is at load point when the operation is
completed.

Tape Mark Indicator

This bit is set whenever a tape mark has been read during a READ,
forward space block, or backspace block operation.

12-10

End-of-Tape Indicator

This bit is set whenever the EOT reflective strip has been detected
during a WRITE or WRITE TAPE MARK operation.

Overrun

This bit is set if memory service is not provided fast enough to keep up
with the magnetic tape data transfer speed during a READ or WRITE operation.
Data transfer stops as soon as this condition is detected.

Qff Line

This bit is set when the tape is sensed to be off line during an
operation.

Error Count

When an error is detected (as indicated in the following extended status
bits), the error count is incremented by 1 and the operation is retried. For
a WRITE operation, a maximum of 50 retries of the following sequence will be
attempted wupon the detection of an error: the tape will be backspaced over
the block just written, then an ERASE operation will be initiated to erase
over 3,75 inches (9.5 cm) of tape, and the WRITE operation retried. For a
READ operation, a maximum of 100 retries (5 retries if bit R is set in IOCW)
of the following sequence is attempted: the tape is backspaced over the block
just read, and the READ operation is retried.

12-11

This manual is updated by: Addendum 800-1100P0-04.01

APPENDIX A
OPERATION CODE AND ASCII CHARACTER LIST

Op Code Mnemonic Format Character Op Code Mnemonic Format Character
00 —-— RR 2B SDR, SER RR +
01 BCS RR 2C MDR, MER RR '
02 SIO RR 2D DDR, DER RR -
03 HIO RR 2E CID RR .
04 RTC RR 2F CDI RR /
05 BALR RR 30 0
06 BCTIR RR 31 1
07 BCR RR 32 2
08 POP RR 33 3
09 POPH RR 34 4
0A SvC RR 35 5
0B PUSH RR 36 6
oC CI0 RR 37 7
oD SPM RR 38 8
OE MVCL RR 39 9
OF CLCL RR 3A AQR RR :
10 LPR RR 3B SQR RR H
11 LNR RR 3C MQR RR <
12 LTR RR 3D DQR RR =
13 LCR RR 3E >
14 NR RR 3F ?
15 CLR RR 40 STH RX @
16 CR RR 41 LA RX A
17 XR RR 42 STC RX B
18 LR RR 43 IC RX C
19 CR RR 44 EX RX D
1A AR RR 45 BAL RX E
1B SR RR 46 BCT RX F
1C MR RR 47 BC RX G
iD DR RR 48 LH RX H
1E ALR RR 49 CH RX I
1F SLR RR 4A AH RX J
20 LPDR, LPER RR (Space) 4B SH RX K
21 LNDR, LNER RR ! 4C MH RX L
22 LTDR, LTER RR " 4D LT RX M
23 LCDR, LCER RR # 4E CvD RX N
24 HDR, HER RR $ 4F CVB RX 0
25 LDER, LRER RR % 50 ST RX P
26 RPC RR & 51 DSEM RX Q
27 SvVCX RR ! 52 ENQ RX R
28 LDR, LER RR (53 ENSK RX S
29 CDR, CER RR) 54 N RX T
2A ADR, AER RR ¥ 55 CL RX U

This manual is updated by: Addendum 800-1100P0-04.01

Op Code Mnemonic Format Character Op Code Mnemonic Format Character
56 0 RX v 86 BHX RS
57 X RX W 87 BXLE RS
58 L RX X 88 SRL RS
59 C RX Y 89 SRL RS
5A A RX Z 8A SRA RS
5B S RX [8B SLA RS
5C M RX (Backslash) 8C SRDL RS
5D D RX] 8D SRDL RS
5E AL RX (Up—-Arrow) 8E SRDA RS
5F SL RX (Back-Arrow 8F SLDA RS

or underscore)
60 STD, STE RX ' 90 ST™ RS
61 JSCI RX a 91 ™ SI
62 1C RX b 92 MVI SI
63 ' c 93
64 d 924 NI SI
65 RBCX RRL e 95 CLI SI
66 RBXH RRL f %6 01 SI
67 RBXLE RRL g 97 XI SI
68 LD, LE RX h 98 LM RS
69 CDh, CE RX i 929 BALCI RS
6A AD, AE RX 3 2a
6B sb, SE RX k 9B Extended opcodes
(see list below)
6C MD, ME RX 1 92C BSET SI
6D DD, DE RX m 9D BRESET SI
6E AW, AU RX n 9E BTEST SI
6F o 9F RRCB SI
70 P A0 DEQ RS
71 RLA RL q Al DESK RS
72 RPUSHA RL r A2 I1SEM RS
73 RBALS RL s A3 LPTO, LSCTL RS
74 t A4 LPT1, STSCTL RS
75 RBAL RL u A5 LPT2 RS
76 RBCT RL v A6 POPM RS
77 RBC RL w A7 LPPT RS
78 b4 A8 LOT RX
79 y A9 PUSHM RS
7A AQ RX z AA
7B SQ RX AB Reserved for
diagnostic use
7C MQ RX AC STNSM RS
7D DQ RX AD STOSM RS
7E CcvQ RX AE SPFT RS
7F cvp RX AF
80 BO PUSHA RX
81 BALS RX Bl LPA RX
82 LPCW S B2
83 B3
84 POPN RX B4
85 PUSHN RX B5

Op Code Mnemonic Format Character Op Code Mnemonic Format Character
B6 STCTL RS Eé6
B7 LCTL RS E7
B8 SCAN RS E8
B9 E9
BA EA
BB EB
BC EC
BD CLM RS ED
BE STCM RS EE
BF ICM RS EF
co FO SRP SS
Cl Fl MVO SS
Cc2 F2 PACK SS
C3 . F3 UNPK SS
C4 PAL SS F4 UNPU SS
C5 F5
Ceé Fé6 COMP SS
C7 MTQ SS F7 XPAND SS
C8 F8 ZAP SS
C9 F9 CP SS
CA FA AP SS
CB FB Sp Ss
CcC FC MP SS
CD FD DP SS
CE FE
CF FF
DO
D1 MVN SS Extended Opcodes
D2 MVC SS 9B00 STDD S
D3 MVZ SS 9B01 LSREG S
D4 NC SS 9B02 STSREG S
D5 CLC S5 9B03-9B7F Unused
Db 0oC SS 9B80 STCPID
D7 XC SS 9B81-9BFF Unused
D8 POPC SS
D9 PUSHC SS
DA
DB UNPAL SS
DC TR 55
DD TRT SS
DE ED SS
DF EDMK S8
EO
El
E2 MVPC SSI
E3
E4
ES CLPC SS1

APPENDIX B
GLOSSARY

Address

The location of a byte in main memory. See also Base Address and
Displacement (Offset).

Address Translation
Translation of virtual addresses supplied by a program to addresses in

main memory. Address translation is done by reference to the local page
table.

ASCII

American National Standard Code for Information Interchange. The VS
uses ASCII for its intermal character code.

Base Address
An absolute address in storage, contained in a general register. If
general register 0 is used, a base address of 0 is assumed.

Bit
A binary digit; the smallest unit of computer information, presented in

binary form to correspond to the on or off state of a computer memory
element.

Boundary Alignment
The positioning of a field on an integral boundary (such that the
address of the first byte of the field, as expressed in binary, has one
or more low-order 0Os). Boundary alignment is required for halfwords,
words, and doublewords on the VS, Instructions must be on halfword

boundaries.
Byte
On the VS, a sequence of eight bits that constitutes the smallest
addressable or transferable unit of information. ‘
Change Bit

The change bit is turned on by hardware whenever the associated page in
real storage is modified.

Condition Code
A 2-bit field in the PCW that is set by certain arithmetic and logical
instructions and tested by conditional branching instructions. The
condition code remains unchanged in the PCW until an instruction changes

it. The meaning of the code is described for each instruction in
Chapter 7 of this manual.

Control Mode
A state of the computer system in which normal program execution is

halted and special facilities for diagnostics, restart, and debugging
are made available.

Control Register
Eight registers, holding 32 bits each, that contain a stack 1limit word,

a stack limit address, the system clock, and various controls for trap
handling.

Data Count Field
Bits 32-47 of the IOCW for a READ or WRITE command, specifying the
number of bytes to be transmitted between an 10 device and storage.

Device-Dependent Status Area
Bits 16-31 of the I0 Status Word.

Displacement (Offset)
The relative address of a byte beyond the base register address.

Doubleword
On the VS, a sequence of eight bytes aligned on an 8-byte boundary.

Error Status Byte
The second byte of the IOSW, where relatively device-independent error
indications may be stored.

Extended Status Bits
Bits 48-63 (bytes 6 and 7, counting from byte 0) of the IO Status Word.

Floating-Point Register
Used to contain data that is to be manipulated in floating-point format.
The VS has four floating-point registers, each 64 bits in length, and
numbered 0, 2, 4, and 6.

General Register
On the VS, holds 32 bits or one word and is used for arithmetic and
logical manipulations and addressing. The VS has 16 general registers.

High-Order

The leftmost bit or digit; in reference to bytes, the byte at the lowest
main memory address.

Index Register
The general register containing a 24-bit number used as the index in
base-index-displacement address calculations. The index can be used to
provide the address of an element within a list or an array.

Indirect Address List
A 1list of words containing addresses which designate the main memory
location of data areas for an 1/0 operation. An Indirect Address 1list
is used to expedite the transfer of more than one page of data at a time.

Interrupt or Interruption
A transfer of control effected by switching PCWs.

B-2

This manual is updated by: Addendum 800-1100P0-04.01

I1/0 Command Address (IOCA)
The address of the I/0 Command Word (IOCW) to be executed for a device.
The I/0 Command Area reserves two bytes for the IOCA for each device.

1/0 Command Word (IOCW)
A variable-length area (1 to 8 bytes) that specifies the next command to
be executed for a device. Byte 0 holds the command code. Bytes 1-3
hold a data address or beginning address of an indirect address 1listj;
bytes 4-5 hold the data count (number of bytes to be operated on or
transferred); bytes 6 to end may hold additional device-dependent
information.

Input/Output Processor (IOP)
On the VS, a small computing unit that handles the transfer of data
between main storage and peripheral units, relieving the central
processing unit of this slower function.

I/0 Status Word (IOSW)

Eight bytes of data, stored at main memory location O, that pass
information concerning the status of an I/0 device to the central
processing unit. Byte O is the general status byte. Byte 1 is the
error status byte, stored if the error completion bit is set to 1 in the
general status byte. Bytes 2-3 are the device-dependent bytes; bytes
4-5 hold the residual byte count. Bytes 2-6 (bits 16-55) are sometimes
referred to as the extended status bits for disk and tape.

Least Significant
The rightmost bit or digit.

Local Page Frame Table
In local memory, a table with two bits for each page frame of main
memory.

Local Page Table
In local memory, a table consisting of one byte for each page in a
segment, containing the physical page number of that page when it is in
main memory. There is one local page table for each of the three
segments of virtual memory. These tables are used by the central
processor in translating virtual memory addresses to main memory
addresses.

Low-Order :
The rightmost bit or digit; the byte at the lowest main memory address.

Main Memory
Real or physical memory in the CPU.

Masking

1. Use of the program mask field in the PCW to suppress or delay
processing of interruptions so that only one at a time is processed and
the 1link back to the current instruction address is saved. 2. Use of
instructions to turn off a mask bit in the PCW's status field or program
mask field corresponding to a program interruption for a specific state.
Masking an interruption can allow other interrupt messages with Ilower
priority to be handled first.

B-3

This manual is updated by: Addendum 800-1100P0O-04.01

Monitor Area
An area of local CP memory that maintains a list of recently referenced
T-RAM entries.

Most Significant
The leftmost bit or digit.

Operand
A field of an instruction that defines an address or element of data on
which the instruction operates.

Operation Code (Op Code)
The field of an instruction that specifies the operation to be performed.

Page
On the VS, a 2048-byte block of virtual memory located in main or
auxiliary storage, which can be transferred between the two
automatically by the computer.

Page Frame
An area of main memory that has a 2048-byte boundary alignment.

Parity _
The number of 1s in a unit of data, whether odd or even. Parity checks
ensure that a bit has not been changed accidentally while being read.

Program Control Word (PCW)
A data item of 8 bytes maintained by the central processor to control
the order in which instructions are executed and to maintain the status
of the central processor. Byte 0 holds the interruption code, bytes 1-3
hold the address of the current instruction, bytes 4-5 are the status
field for some causes of interruption, and bytes 6 and 7 are the program
mask field.

Privileged Instruction
One that will cause a program interruption unless the user mode bit (bit
34) in the PCW has been set to 0. Some VS privileged instructions are
c10, HIO, LCTL, LPTO, LPT1, LPT2, LPCW, LSREG, STNSM, STOSM, RRCB, SIO,
STDD, STSREG, and SVCX.

Reference Bit
The reference bit is turned on by hardware whenever the associated page
in real storage is referred to.

Register .
A storage device in the central processor. See also General Register,
Control Register, and Floating Point Register.

Residual Byte Count
Bits 32-47 of the IOSW, the data count in an IOCW minus the number of
bytes transferred by an I0 operation.

Sector
That part of a track on a disk that can fit into a page (2K bytes).

B-4

This manual is updated by: Addendum 800-1100P0-04.01

Segment
An area of contiguous virtual addresses beginning on a 1,048,576-byte
boundary, whose address translation is effected through a single 1local
page table. A segment may consist of more than one page, with only
portions of a segment being within main memory at any time.

Segment Control Register (SCR)

A privileged 32-bit register holding the address of a task's main memory
page table for a segment.

Semaphore

On the VS, a doubleword data type consisting of a 1-byte count field and
head and tail pointers to elements of a first—in first-out list.

Stack
A line or 1list of elements in a pushdown storage device that handles
data so that the next item to be retrieved is the one that has been most
recently stored. The system stack on the VS is addressed by register 15.

Stack Limit Word
The address of the lowest byte location into which the stack may extend.

Stack Pointer
Contains the address of the current stack top. See also Stack Vector.

Stack Vector
Holds a stack pointer and a stack limit word. On the VS, the system
stack vector consists of general register 15 and control register 2. A
program may use any two consecutive general registers (except the pair
15 and 0) as an additional stack vector.

Trap
An unprogrammed conditional transfer of control to a specified address.

Translation RAM (T-RAM)
A 1local page table, i.e., an area of local CP memory holding page frame
numbers for the loaded portion of a task's virtual address space.

Virtual Memory or Virtual Storage
An address space that does not correspond to the physical main memory
addressing of the computer (and may be larger than the main memory
available), a portion of which is mapped onto main memory in page size
blocks (2K). This storage space may be used as addressable main memory
by the user, as the computer handles all paging in and out of main
memory automatically.

WCC
Write Control Character for the VS workstation, the second byte of every
WRITE command to the workstation. It controls locking, the alarm, the
cursor, scrolling of the screen, and erasing.

Word

On the VS, a sequence of 4 bytes, aligned on a 4-byte boundary.

This manual is updated by: Addendum 800-1100P0-04.01

DOCUMENT HISTORY

4TH EDITION OF VS PRINCIPLES OF OPERATION

Type Description Pages
New Features Index INDEX-1
Glossary B-1

New tables and figures:

. Data representation and

boundary alignment 3~5

. Sample PCW 4-2

. Sample IOCW 8-4.5

. Sample IOSW 8-10

. Workstation IOCW 9-6

. Printer IOCW 10-3
SSI instructions format 3-4
More on the CIO instruction 8-13

Tape general status byte
and error status byte 12-7

Documentation Chapters 6 and 8 reversed
Changes
Chapters 9-12 reorganized to follow
format of the new Chapter 8

The section on debugging aids 5-8
moved from Chapter 3 to Chapter 5.
The debugging aids have been
completely redesigned.

Section 3.1 on instruction formats 3-1
reorganized
The pages on the EDIT instruction 7-53
reorganized
"“Stack pointer' substituted for 3-16

"stack top word"

Changes in instruction formats for:

. CLPC 7-38
. POPC 7-119
. PUSHC 7-126

DH-1

This manual is updated by: Addendum 800-1100P0-04.01

Type Description Pages
Documentation The Physical Destination Trap has been
Changes removed.
(continued)
A special 32-bit internal register, 7-98
accessible only by the (privileged)
instructions LSREG, STSREG, and STDD,
has been created.
Instructions deleted:
. BFBV
. FIX
. STS
. UNFIX
Instructions modified:
. CID 7-44
. STDD 7-155
New instructions:
. CLCL COMPARE LOGICAL LONG 7-36
. LSREG LOAD SPECIAL REGISTER 7-98
. LOT LOAD OR TRAP 7-89
. LPPT LOAD PARTIAL PAGE TABLE 7-91
. MTQ MODIFY TIMER QUEUE 7-178
. MVCL MOVE CHARACTERS LONG 7-100
. RPC RETURN AND POP ON CONDITION 7-130
. SCAN SCAN FOR BYTE 7-134
. STSREG STORE SPECIAL REGISTER 7-160
. STCPID STORE CP AND MICROCODE ID 7-154
Short floating-point instructions (new):
. AE, AER ADD NORMALIZED 7-7
. AU ADD UNNORMALIZED 7-9
. CE, CER COMPARE 7-29
. DE, DER DIVIDE 7-49
. HER HALVE 7-69
. LCER LOAD COMPLEMENT 7-83
. LDER LOAD SHORT TO LONG 7-97
. LE, LER LOAD 7-87
. LNER LOAD NEGATIVE 7-88
. LPER LOAD POSITIVE 7-95
. LRER LOAD ROUNDED 7-96
. LTER LOAD AND TEST 7-80

DH-2

This manual is updated by: Addendum 800-1100P0-04.01

Type Description Pages
Documentation . ME, MER MULTIPLY 7-108
Changes . SE, SER SUBTRACT NORMALIZED 7-165
(continued) . STE STORE 7-157

Relative addressing version
of existing instructions:

. RBAL BRANCH AND LINK 7-15
. RBALS BRANCH AND LINK STACK 7-18
. RBC BRANCH CONDITIONAL 7-19
. RBCT BRANCH ON COUNT 7-24
. RBCX BRANCH CONDITIONAL INDEXED 7-21
. RBXH BRANCH INDEX HIGH 7-25
. RBXLE BRANCH INDEX LOW OR EQUAL 7-27
. RLA LOAD ADDRESS 7-78
. RPUSHA PUSH ADDRESS 7-125

This manual is updated by: Addendum 800-1100P0-04.01

INDEX

A (ADD) INSEYUCLION tiiieevrteceseccrnecsacnseseosascsasossssssscsscsssssasse 12
Absolute Address, see Direct Addressing

AccesSS EXCEPLIONS tieiereserestoassssccscssscssocsssssscassscsscssasesssascs D=5
AD (ADD NORMALIZED (FLOATING-POINT)) Instructionc..cececesccscnaceseas 71-7
Address Modification ...iceeeesscetscesceenscsosescsccncssessssssasncasasss 413
Address Translation ..ececeececscs ctecscescssccncccassssncsnsavssesss 4=7, 5-11
AdAYeSSing tiieeriiieeseseseecsscacasansossssscancsoccsssssosascssacse 275, 44
Addressing EXCeption ..iseeececececcssccecssassscssosasassasccsnssass 25, 5-11
ADR (ADD NORMALIZED REGISTER (FLOATING-POINT)) Instructioncceceeeecace 7—7
AE (ADD NORMALIZED (FLOATING-POINT)) Instruction ...cccceececescccsecancaes 77
AER (ADD NORMALIZED REGISTER (FLOATING-POINT)) Instructioncccceeceee 7=7
AH (ADD HALFWORD) INStruction .e..cceecececescesocccasssccssasssscscsascsces 15
AID CharacCterS ..cecesesvsscecscssnsossrsssssssscsnssnsssssasscsnssnassses 3-18, 9-21
AL (ADD LOGICAL) INStruCtion siceeeecececesecetecccososcsssocsssssocccssane 1—6
Alarm for Workstationcieececsestscccescnscsnsssnssasssancansosssssscsncsss 9=5
Alignment, see Boundary Alignment

ALR (ADD LOGICAL REGISTER) INStruction .eeceecececcccscsccccacscccssssocscas 7—6
AP (ADD DECIMAL) INStructioncieeececcccecsesascscscscsascssssssncasace 13
AQ (ADD DECIMAL (FLOATING-POINT)) INStruCtion ..cececcececsccssacsassacss 14,1
AQR (ADD DECIMAL REGISTER (FLOATING-POINT)) Instructioncceeeeveee. 74,1
AR (ADD REGISTER) INStrucCtion ...eeeecesscseeescacceccscccsnccacosassassene 1—2
Arithmetic and Logical Unit ...ceceeeessccecccsscscnsssanssccssccsasseassses 273
ASCIT tevevcvoenoasncassacscaassssssscssscasasscasonssosnasssssescsnccsase 39, 3-14
AU (ADD UNNORMALIZED (FLOATING-POINT)) INnStruction ..c.cecececescesscssccsses 779
AW (ADD UNNORMALIZED (FLOATING-POINT)) INStruction ...cececeeeceeccessacsses 79

BA (BUS AQAPLET) et tvreeeeeeceaaceoaoassasaoseseaososoansscanssaccnsee 14, 82
BAL (BRANCH AND LINK) INStructioneoceeecssccccesssccacscssacscscscass 7—15
BALCI (BRANCH AND LINK ON CONDITION INDIRECT) Instructionccce.... 7-16
BALR (BRANCH AND LINK REGISTER) INStrucCtion ..ccceceeecescesccssccsassensse 7—15
BALS (BRANCH AND LINK STACK) INStructionc.ccceececececnccscaccansceance 1—17
Base AdAIreSS .c.eeeecvssccsosscasncsssssasnsassessosscsensscassasasossasosssnsas 4=5
BC (BRANCH ON CONDITION) INStrucCtion ...ccceeeceececceccaccaccccsacseccessss 7—19
BCR (BRANCH ON CONDITION REGISTER) INStruction ..cceeeeeececececcoscasaccceas 7—19
BCS (BRANCH ON CONDITION STACK) Instructioncccecececcacescenssaceancs 7—22
BCT (BRANCH ON COUNT) INStructioncccceeeccecescscacssasssnsccascsess 7—23
BCTR (BRANCH ON COUNT REGISTER) INStructionceeeecceccececsvecessseess 7—23
Binary Arithmetic ...cceceeerecsescscetscsacscssscscsssscscscsssosssncsnssannncss 375
Binary NOtation ..ceeeeescesesesstsccasssccscacasescscsccsascsonassssacanses 375
Boundary AligNMENt ..ceeeecercceceseescsssssassasssssssassssccass 2-3, 32, 3-14

Of JOCW .veceevesocscsnccnccccaasssasaosscasssascasavsscasasssasasscncsace O 4.0
BP (BUS PrOCESSOY) etevececcoccscsccssoasecsasssscassscscsssnsssassenes 12, 82
BranCching ..veeeecceserenescesesssscesscccssesssasscsncsansassscscansaessase 4-13
Breakpoint Mask ...eeceeecescassacessasccansassacsessasscasssasssnscassssecs 43

INDEX-1

This manual is updated by: Addendum 800-1100P0-04.01

BRESET (BIT RESET) InStructionc.eiiuecrueecnnencnecnacanasssncnes ces 7712
BSET (BIT SET) INStruction ...cc.ceceeeececcsoascsasssasassecsnssssssssssena 7713
BTEST (BIT TEST) INStrucCtion .e.ececescscecscsccssvssascscsscannscsascnscsse 7—14
Bus Adapter, see BA

Bus Processor, see BP

BXH (BRANCH ON INDEX HIGH) Instruction tecescsscsscesssesersssees 1725
BXLE (BRANCH ON INDEX LOW OR EQUAL) INStructionceceeeecscoscnscnses 7-26
Byte, Defined@cccceeescennsescncscosssssncssrescsassscssscsscsssasasssces 274

C (COMPARE) Instruction ctesescesenssecncaaranea Y A1
CD (COMPARE (FLOATING-POINT)) Instructionceiceceeccevscsscccoceoae 729
CDI (CONVERT FLOATING-POINT TO INTEGER) Instructionccceccesesscscsess. 7-43
CDR (COMPARE REGISTER (FLOATING-POINT)) Instructionceceeescecssseas 7729
CE (COMPARE (FLOATING-POINT)) Instructionc.evieeeececcecctccccncssas 7-29
Central ProCeSSOr ...ccccecnctccreosscsscsasasssnsassnasnsasans ceeenees 171, 2-1
CER (COMPARE REGISTER (FLOATING—POINT)) Instructlon R A1)
CH (COMPARE HALFWORD) INStruCtion ...cceecececcecsecsescsccesesassscansns .. 732
Change Bit in Local Page Frame Tableccceecevecssccccnsansas 2-3, 4-12, 6-5
Channel Selection fOr Printer ...cccececscsssssssenscccsssvsscasscssscasnss 10=4
Character Setcieeceecsccseosssccosossstsossassasssscssssscasasscsse 3-14, 9-2
Characteristic of a Floating~Point Numbercceeccceeccecccsscsasesaces 3-11
CID (CONVERT INTEGER TO FLOATING-POINT) Instruction cecesessanss 7-44
CIO (CONTROL I/0) Instructioneeeeeececoceces seecesesssescssss 1-40, 8-13
CL (COMPARE LOGICAL) INStructioneceeeeiscecesscsas erecessascecacssss 733
CLC (COMPARE LOGICAL CHARACTERS) Instructionccciceceeccccascsccncesss 733
CLCL (COMPARE LOGICAL LONG) INStruction ceeccecesescssecccccccccssacsansee 7—36
CLI (COMPARE LOGICAL IMMEDIATE) Instruction cecsccsssessascenvses 7-33
CLM (COMPARE LOGICAL CHARACTERS UNDER MASK) Instructionc.ccceceseesss 7=35
Clock Comparator ValuUe ...ececssccesccascoscssscsccassncnsaces 22, 2=3, 5-4, 6-2
Clock INterruption ...ceieescceecvosccscoscnessssassacsscsccssesssasacnseannnese I=h
Clock Interruption Mask in PCWcceceesacacsscscscasascsccnscsscns 4=3, 5-4
Clock Value, see Clock Comparator Value

Clock Word ...cvcieeecncacancaes cececessessestsasseseserecssssssseanane eeee 22
CLPC (COMPARE LOGICAL WITH PAD) INStruction .c.veseesccsccessacssncescaces 7-38
CLR (COMPARE LOGICAL REGISTER) INStruction .c.ceeeececsesscocevassoscnscess 7—33
Command Modifier Bits Of IOCW ...ceeseccrseccccsoscasreascscassnsssasssacacs 3=5
for disk .c.ieveeciencanenns cesssacscne csesns teetevecssesasssesessssacannes 11-3
for printer000000.n cececcsascssescencessessescscasssosassscannnees 102
for tape criecccncns cetsccrserenacs cecenne secscsccccncns cecscccnces 12-3
COMP (COMPRESS STRING) INStructionceeeeccscececsccscesocnsssasonsans 7-39
Comparator, see Clock
Compressed ReCOrdc.eteeecersccensassassascnsscasasssssncasscnsncnas ee. 10-2
Condition Codes ..eoevo. ceesee cecescsesesseescesassnsanens . 3-5, 3-7, 3-10, 4-4
Control Bytes, see Print Control Bytes
Control MOAE ...uverecereccasscssansrsossnsoscsasassenansessanans « 4-2, 6~-1 to 6-5
Control Registers ..ceeeeses Ceeseccasenesenentessesecaane ceececscsesssasaans 2-1
CP (Central ProCeSSOY) .v.cecesncccecnccccans ceceenes ceeens cerececancs 1-1, 2-1
CP (COMPARE DECIMAL) Instructioneceee.. Ceeeececacees teeeencsseesnss 731
CR (COMPARE REGISTER) Instructioncecce.. cecessvssecsaas cecevesssssven 7-28

CRC, see Cyclic Redundancy Check
CRT (Cathode Ray Tube), see Workstation
Cursor, Definedceeeveeeeces reescaresses cecenans caneas ceeesssesss 971, 9-5

INDEX-2

This manual is updated by: Addendum 800-1100P0-04.01

Cursor Positioning Keys for Workstationcceeeesecesscecscsscsssscsss 9=5
CVB (CONVERT TO BINARY) INStructioncceceeeacecssccccccsccscscscanes 71—41
CVD (CONVERT TO DECIMAL) INStrucCtionceeeeeecececcnscvccsccscansces 1—42
CVP (CONVERT DECIMAL (FLOATING-POINT) TO PACKED DECIMAL) Instruction ... 7-40.1
CVQ (CONVERT PACKED DECIMAL TO DECIMAL (FLOATING-POINT)) Instruction ... 7-40.2
Cyclic Redundancy Checks fOr DiSK c..cecereeccoccacsosscccccssasecscacasssse 11-5

FOTr £APE sceveenncecessscencssnossceascscssassoscesncsossassssssssssssssesss 12=9

Cylinder ® 8 6 0 50 00 0B C0L0 L LECEC0T0ENLEN000E0L0000000000St0EeNAEEcsssEsROEOICEEIEOETSN 11—1

D (DIVIDE) INSEIrUCLION ceveeecessencooccasacccsacccssosasssassscncsssscsse 7—48
DA (Device Adapter) ..eceecescesccccessscsssssscssccscssascssncsssssses 172, 82
DAM (Memory or Device Damage) Bit in IOSW ...ccesesscscscascscesss 8-10.1, 8-12
DAR (Data Area Early Release) Bit in IOSW c...veeevencnccacancccesaceessss 8-10
DAST (Device Adapter Status Table) .oceeeeeerereseccscoascaccscascosossesse 84
Data Area for Workstation I/0 ...eveeieceersasccociassacsssanssscnsasassass 9-10
Data Count Field Of JOCW ...cieeecececoscscccocscsssssscncssasessee 8—4.5, 8-14
FOr AiSK suveeneneesecocsesesasosacsscscaessstsoaccsassnscscsnsnscsasnnssss 113
fOr Printer ...ciieeeecceecsoescaccssosncassscsscccsasesascsnssasscnsesss 10-2
fOr £APEe tveeeeensrascecacscuconennoassssacessonosssascsnssnsssaccssssases 12-3
fOor WOrKStation ...ieieeneeieceeceeaasecncessocccsassacassassncsssscenss 9-10
Data Entry Keys for Workstation ...cccecescccesncscccsccsnssssssscncacsssss 9=7
Data EXCEPLIiON tuvienatosaceesssnsecasscesasscnsassssssscssasassasscsnsssass =7
Data Formats, see Fixed-Point, Floating-Point, Decimal, Logical
Data LiInkK PrOCESSOT sececeseascsccssssnscsssssssassessanncsscsassssasssasssss 8-14
Data Strobe AdJuStmentccceceecececescssoscacscseasncssccsssssnsesssns 11=7
DC (Data Compare Error) Bit in Disk IOSWciceevsacecaccscssccsasasesse 11-8
DC (DAata COUNL) cuvvereccnceessocsascoscassosasasessaasccsscnsssasoscaasssca 875
DCT (Device Configuration Table)ceceeeececnnccececscccanccsaaness 82, 8-13
DD (DIVIDE (FLOATING-POINT)) INStructioncceceeeeccceccesccssccessesnss 7—49
DDR (DIVIDE REGISTER (FLOATING—POINT)) INStructionceeesscescescscess 7749
DE (DIVIDE (FLOATING—POINT)) INStructionc.ccceccecccccccsnsssscsnsenee 7—49
DebUBEINE .ivieveeeseeecsascessossassessscassssascssssssscsccansanases 3-8, 64
Decimal DAtA teseeesecoseasaecsoaccasoacssossssosssasasessassssssasssssssssanscs 3=7
Decimal Divide EXCeptioniceecsvcescscncsessassscraccscsccnssonsassscssss 3-8
Decimal Floating—Point NumbersScccceceecacesasscssssccasssssssnscacse 3—12.1
Decimal Overflow EXCEPLIiON ...ceveccessesecoscasacnssssacsasosssscaasasaasse D7
Decimal OVerflow MasK ...seeeccecessocasoscacesassnossnssssasccasssassnsccsssce 44
DEL (Delete KeY) +.veeeccersscnvecnceseosscasssssssscssncasassssnncarsssssss I—8
Density for Tape, see Recording Density
DEQ (DEQUEUE) INStrucCtionceeeeeececceeecoccccsososccscccscascesscssssss 1—46
DER (DIVIDE REGISTER (FLOATING-POINT)) Instructioncceceevececeesss 7-49
DESK (DESTACK) INStrUCtionceeecececacecescansnssosocncsssssascssscans 1-47
Device AQAreSS ..v.veceeieeecettasereocsnncssssasoasossacccsssssasasssasece 8=2
Device CONLtrOl Table .cceeeeessescccsstasasscsascsesansssnnssssssssesencees 8714
Device-Dependent Status Bytes Of IOCWccceeacsccecccccencceses 8~4.5, 86
fOr diSK .ueinseennnenneecnonessesnseacacseasensososcasossasssscssnssosssscsscscas 117
fOr Printer ti.iceeceeesecnasenssssssnsonsansasasssssassssaccsnscnssscasss 10-7
03 ol oF - 1 o - .
for WOrksStation ...cuiveveesecsasasesnscccasasssesnssanasssssssasaas 3-9, 9-21
OFf JOSW i ieerenceoencassonasocssssasenasasscsassasasacsasssasssssnces 8-10.1
Device Malfunction Bit in IOSWceeececcencrccnsccsssoncansssss 8-10.1, 8-12
DeVice PrOCESSOY .veeccetcescasscoasasssoesosascssancassscsesssass 3-10.1, 8-14

INDEX-3

This manual is updated by: Addendum 800-1100P0-04.01

Diagnostics, see Memory Diagnostic Commands

Direct AQAresSingiciceevreeeacecscsensscsccccssesassasnassasesscnonnsees 47
Disk Characteristicsciveeeececscesscesnsacssssosncasasanessss 11-1 to 11-11
DiSKELLE t.cevsesvessscssscacsssasasccnsaserssosascsscsscssssssssssssssee 1110
Displacementccccececcccssnascccsnscscascsosssssasansasssscsacescsasssse 4=
DM, see Device Malfunction bit

Doubleword, Definedcccccceacecccccrennsccccsscssscasssscsncnsssssanse 2=
DP, see Device Processor

DP (DIVIDE DECIMAL) INStrucCtioneceeececcevescesssccsccssssssascasnnns =51
DQ (DIVIDE DECIMAL (FLOATING-POINT)) Instructionc.cceecceecacascss 7-52.1
DQR (DIVIDE DECIMAL REGISTER (FLOATING-POINT)) Instructionceeee... 7-52.1
DR (DIVIDE REGISTER) INStruCtiOn ...c.ceeeeeccccovcscccccasscssansscccsasse 1-48
DSEM (DECREMENT AND INSPECT SEMAPHORE) Instructionceveseevecessas 7-45

DUBPS +cvieueansnoanesrsesocsnssasosccsnsscsssnsasassssssssscacssassasssass 6-1, 6=5

EC, see Error Completion Bit
ECC Code fOr DiSK .evevecceveosccaveossonsssesccscsstsassassssasssssssssccses 116
ED (EDIT) INsStructioneeceeeeecseccocasososcccsnosscocansssasnsenanses 753
EDMK (EDIT AND MARK) INStruCLion ...cecececesescccscssosascssascnccassasssns 7—60
End-Of-Tape MArKer ..ceccecevseceosccscossscansncnansssssasnsacsasssssssces 12=2
bit in tape JOSW ..iieeeeereceesccnossocsssssncacssssssasssassranses 12=7, 12-9
ENQ (ENQUEUE) INnStruction ...c.eceeeeevcececseccesacesocscessanssssssoseas 7—61
ENSK (ENSTACK) INStructioncceescescescscccccsssnssscsssasscrssssssaaas 1—62
ENTER K@Y 4cvesencacoscsconsoscecsssssscssasssssanansssoassvsssscssssnscsssnss 99
EOT, see End of Tape
ERASE K@Y tveeseronssnssresaascscssasnssscsssssssonssasnscsasssssascnssssnsess 3-8
Error Completion (EC) Bit in IOSW ..iceceeeserccsacecnscassssensesss 8-10.1, 8-11
FOr AisSK (uieveveceonsnacanncsoevncssossossosssscscnasnsesnssssssssacasnsasse 116
fOor Printer ...c.veeecectrestsancessssoasscasssssccssassacacssssnsacccsssse 106
fOr LAPE tveeeecrcensocsnsoansecoeonsssessasscancasscsasasssacsnssscsosses 127
fOor WOrkStation ...iceceeeseconcecensnsscossscsscsssesasvesvessscnsssoss 9—19
Error Count fOr TAP@ sceesccsesosssesssccscsssssssosscscssnssocssossscacnssss 1279
Error Retry, see Retry
Error Status Byte Of IOSWceeeciesacesccsasscsasascnsasssssesseas 8-10, 8-12
fOr diSK tiiceeeenesncanssaracososnsosnssosssonssncssncsassssscscassssasesess 1176
for Printerieeceenesscssesoncasesscsssasasasssssssasssscsancsasssess 10-6
fOr LAPE 1ot veeeenaneeasansessencsssonssescsasscsssassasasesssssscsasnneass 128
for WOorkstation ...cieeeeessecscessoccssosssesssssnssssassssosnssaccassssa 9-19
EX (EXECUTE) INStrucCtion ..veeeieeececceecceveascnccosccsasacescasssnanssas 763
Exceptions
ACCESS ceeesvsoasocsocsssosssasescsssssasasossosessssessassssssassssscsssss D=5
address translation cc.eeeeesescececsocesssccseccssnssscssacanassssseses 9—11
AddreSSINg ...vceececcnncsacesctsccasocsnncsacacsensscscccccsss 25, 57, 5-11
data S 0 08 000 P8P 00NN BEEINEN L0 EOEEN0000 000000000000 000000OC0O0OCC0RICRENIEEETS 5_7
decimal AivVideveecerescssscosscecscsssssssesotsnsnsncssasceccsccnscs I8
decimal overflow ...ceeeeceescccccncanses crceresecssacana ceessscsscccnnas

EXECULE .cctericeccecesensseccsseaccccosccscsasssacosvossssstassncsssncssssses I

fetCh L I A I R I R N N I A A I R A R A A L I A B A BRI B A BT I BB I I U B R BRI Y I e

fixed—pOint diVide ®© 56 €5 6560608208 EO0 000000 0c0e000CB000C0O0CIRISIBERIRBSIOEROSETOEES -
fixed-point OVEerfloWeiceeseccacssssccacccacsscssnsssaancascnnnssase D=7
floating—point ...iveeeessvsccesoserncosssssscssssasossssnsscsssscnsssnss 3713

OPETrALION +iviesecesecncesacaseassscsnsssssnasssscssssnsssscsssesscsacasse D6

vutunuun
~N W»n oy O

INDEX-4

This manual is updated by: Addendum 800-1100P0-04.01

page fault ...iciieeeintessscsacensnnecsoscsscsssasescssssacsssscesassaasess D11
page table address fault ...ccieececassociocassssrcsssscscassosasssssses D12
page translationcciceeeevcccccassssacsoacosssscasncasassscancsansases 511
privileged Operation ..iiveeiececenctsecseccacesectcsssasasasssscssssassases 26
PrOteCtioN .. iceecnaseactosccsscasssacossssccossssacnacacsasssascsonas D=6
SCR reCUrSion c.siceecesssesscacscsoanssccascsnassssscssasssssensas 4—11, 5-12
segment faultciiiieeiicinecaasaccacecensosscsnssscccacsasassssnsseas D11
SIgNifiCanCe tiiiieeiicieeceracceencesconsesccsassnscsannscasssscasssssas 3-13
SPECIifiCation tcceceeeroccascenancnacsccasossssossccsacnnccsassss 3-12.1, 5-7
StACK OVerflOW scieveccacevacsosscscsccasesssscsassscnssssascssasssssscsssnsse D12
supervisor call range ceeceretssacsecannns ceccecsesenanes sese.. 58
EXpONeNnt .ceceeecctecccascssceacconscaascsssccassscsassesssanssnscncensse 3—10, 3-13
Exponent Underflow Mask ...ceceececcencccacnsnsanncnans cseecsassccscssssscses U=l
External Decimal FOIMAL ..cceeeenecsccncocnscsossssasccsssnssssssnnssassscanas 379

FAC, see Field Attribute Characters
Fetch EXCepPLIiONS ccvesecssosensscsscesossccsscssossscscsscscssnsssnssassansans 36
Field Attribute Charactersccceeesccrsccecsscssnssssnscescacscnses 9-3, 9-4
FIFO, see First—In First-QOut List
File Protected Bit in Tape IOSWccvececessascccacsccccnsasscanasesssas 1279
First—In First—0ut LiSt ..c.ceieccccecsscasaccccsacscssssaccccovssscasasess 3715
FiXed=PoOInt DAata@ ..c.eeeesessecesscecaccancsassssssnsasssoecnsacsnsassscssaas 375
Fixed-Point Divide EXCePLION ..veieceeescecassesscssacscssscanssssscsnssoses 3=7
Fixed-Point INStruCtionNS .c.ieveeececerscscaccessscseassssnossccascsaasacssns 373
Fixed—=Point NUMDEIS ...cccveceressccecsssassscsasncassscsssaccsssasssscssas 373
Fixed-Point Overflow EXceptioncceecececsceccscsssescosssascncssccanseass 57
Floating-Point Arithmeticccveeececensececccsacessssanscasacsssanssses 3-10
Floating=Point DAta@ .eceeeecevecesscsscscosssasesnsssosssconsscsssssscsscsse 3-10
Floating-Point Divide EXCeption .c.cceccesceccccsccssnsscassssnsssse 3-13, 5-13
Floating~Point INStructionscccecesessccescscsacaccsscssssssassasssass 3-10
SROTt ciceeceecesoenanssecnsocssasonsnsasscssasasssasassossssnassnsssassssssse 3—11
Floating~Point Overflow EXcCeptionccceceveccccecccesscncanccsscassscnes 9—12
Floating—Point Registersccectcececcctosccccsassssscenseases 271, 3-11, 64
Floating-Point Significance EXcCeptioncceevecerescsssccassscsscascasss 5-13
Floating-Point Underflow EXCeptioncceceececsssecscasscsessscsnsseas 5-13
FORMAT Command for DiSK ..ecviecesecscenscsesescsacccansssncssassssaes 11-3, 11-6
FP, see File Protected Bit
Fraction of a Floating-Point Numbercccccecsesccccsscssascsacssseasse 3-11

General RegiStersS t..icicescecctcascocsossccnssccsoscsasscsssacsanasesss 2-1, 64
General Status Byte Of IOSW .c.cvieesesccvecscasssessssscscsccnansenssanses 8-10
fOr diSK cuceeceenscnsssossnsansscassssncasosossesnsassassscsnassasssccsas 11-6
fOr Printer ...iienieceeccrascenscscnccsasscasasessssscsscccsannesscsances 10—6
fOY LAPE teceesoecncasassssecascnansescssaassssssssssssscsssnsssscssssas 127
fOr WOrkStationiicicecerarcecetesssreccccsoscacsnssccvscnsasasaasesss 219
GraphiCS scevesenssssessststeesssosessscsssssascscsssossssasccsssnsssssacsss S—14
displayable graphicCS ..cceceicscecesccasssensscasasssssssecssnsasasscnssas 92
GUArd Digit ..ieiieeveeoesenscsassseacasasccssssscsassssssacsancanssssssese 3-11

Halfword, Defined T 0 0 0000 05500 N0LLELELE00ENS00L00900080000000008080000000ss000s 2—4

Hard Error, see Error
HDR (HALVE (FLOATING-POINT)) Instructionc..ececeecceecccccssccsasssce 7-69

INDEX-5

This manual is updated by: Addendum 800-1100P0-04.01

Head POINEer ticveieecrtosrcoscrcsassresoccossveascssssacossncsssccasness 3-15, 5-7
HELP K@Y +eccevvcersenoscssncscsssessseososasssassascsosoasssssesscsascssssaca 9-9
HER (HALVE (FLOATING-POINT)) INStructionccecesceveccessesssccscnss 7—69
High-Order, Definedcieceecieeeasascssesassssanscassssncsssnssssssssssecss 3—1
HIO (HALT I/0) InStructionc.eeceeeecenceeeeccsceceeeeeess 1—68, 8-8, 10-7

HOME Key ® 5 9 05 5000008 G P00 00NN TN NSNS NE IS0 PENELEIELLILLENLNSOOEIEOIOIEIOLICEBETOLEES 9_7

IAL, see Indirect Address List

IB, see Interblock Gap

IC (INSERT CHARACTER) INStrUCLIiON ceeesscsevesccsssesscasascsnsnssasscsses 1=72

IC, see Invalid Command Bit

ICM (INSERT CHARACTERS UNDER MASK) INStruction ...ceeececeeccececssnsscses 7-73

IDA, see Invalid Disk Address and Indirect Data Addressing

IDC, see Invalid Data Count Bit

IID, see Invalid Sector ID Bit

IL, see Incorrect Length Bit

Immediate Operandc.eeceersvsesasasosvsossassesssssassssnossssssasasenssonsas 372

Incorrect Length Bit in TOSWcccevveseensacnsoncncassssecsssss 8-10.1, 8-13

Index RegiSter ...iciieteiiraireeasessasesasacecnscoscsnsascecesnssosanssene 45

Indirect Address LiSt ...ceeesesencscccsssscsssssassanannsssanansseaes -6, 11-4

Indirect Data AdAresSsing .eceeeeceencetesceseessosssssnasasssccsssenssscssss 8—6
FOr QiSK suticieursorescasaaioscsasasoosoancsacesoassosansscncsssassesana 11=4

Indirect Data Addressing Flag in IOCW for Tapececeesecesscssassscess 12-3

Initialization ..eiveieeecervevesseesssoessscenoocsscosssscssssassscascssnses 6-3

Input/Output Command Address (IOCA)eicicecccscoasssssnssanscossnssesesas 6-3
defined tiiiericiriotancesacesoescssssocaacesacsnsasssssscenssssnsonses 84,2
default TOCA ..iivvesnteeeeaasusnensnsasssncancscasssosnsscsscnsncsssscssases 6-3

Input/Output Command Table (IOCT) +ivvveseescscossncescnssasssncsssnscsses 8=4.1

Input/Output Command Word (IOCW) 8-1, 8-4.5, 9-9, 10-2, 11-3, 12-3
FOr MICTOCOGE tvivivronanacasscosssasssssssssssossnncnstssoncssanssenses 814

Input/Output INterruptionsieesecescsesscescosssesssarsssnssesasss 5-3, 8-8

Input/Output Processor, see IOP

Input/Output Status WOrdceeeeeeenccescssoveceancanansss 372, 63, 81, 8-9
FOr QiSK tutiniennianneeceecosenesoensosenosonnsacasecossasansssnrensaee 11-4
for microcode 10ading ..cieeceeearcssceraasassesscsscsncssnssasssscrasces 8-16
fOr Printericceeceecescacenonsasoencoasannsennans cvctssesescsenssesss 10-5
FOXr BaPE covieeereosenvsnsstesessstsanossoasesosssssasstossssnssnscsassss 12-7
fOor WOrkstationceceeiiiieeneerocoesosssssossasasesonsossassnns creseees 9-19

INS, see Insert Key

Insert KEY .ceceiieeecncocacesionssonsssesssosessnssssscsssascassssncncssssas I8

Instruction FOrMAtS ..uieiceecsceecescasassnnaccccnnans cesesssessesssescasses 3-1
for branching ...eeevesreascecsossceseaescssssasscsesssnssccsasesssecnssss 4=13

INterbDloCK GAP cicveeresesesoscenessosrssscssasasossasesrssccssacsasesasceassss 1273

Interruption COAES .iueivineeinseessesssssnessesasvssssoasonsscscasacsaases 4—2
o S 1 - il 4
see also program interruption codes

Interruption Condition ...ceeeeeececcesacrsonanosesosscsasssssssssssssssscass 88

Interruption MAasK ...eeeieeeeecescastcsacsssscnscsssscssssssssssssnssssssss 93

Interruptions ...ceererssseccescsassasssssssscscnsssssnssassssssssss 51 to 5-15

Interruptions
ClOCK tiieiionneesescasssesssnanssassossasssssnsnsasosarsscasassoasonneass Ok

input/output L A I I R R I I R R R R N R I I I R I N R R I B S A B I R A A R R R A A A 5—3

INDEX-6

This manual is updated by: Addendum 800-1100P0-04.01

JOP BUSY cevevvvesccccanenensnassscosansnssnssssasssnssscnssaces 3-4.2, 8-4.4
see also SIO and HIO instructions
IOP NOW REAAY ccocvaceosanssacasssasssnsssonsasecnsssansassssascess 8~4.2, 88
machine check 1
Page faultiiiierreccrcccncccecssavecsasanssescssccsessassasss 4-10, 5-11
Priority Of teceeseeeecssrenosssscssoscsssassssssssssssssssssasnssssansee I—L5
SUPEIVISOr CALLl tnvieeeesnceseccccnasaanssacsasossuncecsessssasssosssanse D13
INT REQ (Intervention Required Bit of IOSW) .ceciivenccocncannanssssesb=t, 8-10
INV DEV (Nonexistent Device MeSSage)coececevsasnscascssssecsssssancsss 6-3
Invalid Command Bit in IOSWccieeesacesvococcssascsasossasaassscnscass 8-12
Invalid Data Count Bit in Disk IOSWcvceceuceccccsanocssscnonssssnses 117
Invalid Disk Address Bit in Disk IOSW ...eeceveccccscscanccessscasssssnseas 11-7
Invalid Sector ID Bit in DisK JIOSW siceceacencccnccscccascassssnssssasases 11—8
Invalid Sector Preamble Bit in Disk IOSW ...cccvececccncscncssecnsssaseses 11-8
I/O DEVIiCOS teversvocsosarsoasnsssascasasssssssscscncsacasssnssanssasscnsses 81
I/0 Interruption Mask (in PCW)cviieivccscsncoacsoscassssosnscsanascnans 4-3
I/0 Interruptions, see Input/Output Interruptions
I/0 Operation, Defined eececeeesscecscsoacsscensscsnsscnsassssassccssessses 81
I0CA, see Input/Output Command Address
I0CT, see Input/Output Command Table
I0OCW, see Input/Output Command Word
JOPS ceieeecensecscctacssaassscvanasesnsscsasasesascassassasascssnssss 171, 2-4
IOP Busy Interruptioneccevececcccsasscssosescoccsnncsssscosssnnannsss 84,2
see also SIO and HIO instructions
IOP Now Ready (PC Bit in IOSW) .ieeececerasrcancesosoncassosscanassncsees 8=4.2
IOP Now Ready Interruption ..cccevecescccssscesacncssosssssacnsccesssnsee 8-4.2
IOPST (IOP Status Table) ...ueeveicerecoecosenssccsocacscsnssnsscssacnscanes 8=4
I0OSW, see Input/Output Status Word
IRQ, see INT REQ
ISEM (INCREMENT AND INSPECT SEMAPHORE) INStruction ..cceciecscecescccassass 7-71
ISP, see Invalid Sector Preamble and Short Sector

JSCI (JUMP TO SUBROUTINE ON CONDITION INDIRECT) Instruction ...c..ececese.. 7-74

Keyboard © 5 0066006008006 0 ¢ 000 08 C0LISO05 &0 806000000600 E000006000080600s0000a00s0000s0 9—6

Keys, Screen Manipulationcecieeescecscseesecssacensonasasassscsasases 6=5

L (LOAD) INStruCLiOoN .veeeeeeeereesencccsanssoscccccasnnnscscsccsanascsces 176
LA (LOAD ADDRESS) INStrUCLioncceeeeeeccenececaccsaccascsasccsancease 7178
LC (LOAD CHARACTER) INStruCtion ...ceeciecssseccccescesscsascscsnsscansess 781
LCDR (LOAD COMPLEMENT (FLOATING-POINT)) Instructioncecveeceeccccesees 7-83
LCER (LOAD COMPLEMENT (FLOATING-POINT)) Instructioncceveceececcccccececs. 7—83
LCR (LOAD COMPLEMENT) INStrUCLIiON c.vieesececcnceccnconsncccccsssnscasasess /—82
LCTL (LOAD CONTROL) INStruCtion ..c.eeeceseceenecscosascscscnscnssancsscss /-84
LD (LOAD (FLOATING—POINT)) INStruUCtiOn ..eeeeesecececscsascsncncscccccnsassee 1—77
LDER (LOAD SHORT TO LONG (FLOATING~POINT)) INStruction ...ccececeececceeess 7-97
LDR (LOAD REGISTER (FLOATING-POINT)) INStrucCtion ..eeeeeecccecececccccesees =77
LE (LOAD (FLOATING-POINT)) INStruction ..c.ceececececccocccsscscsascsceneaes I=77
LER (LOAD REGISTER (FLOATING-POINT)) InsStruction ...eeicesescssscescennses 7=77
LH (LOAD HALFWORD) INStructionceceveveeecccacsscccacasssassscnaasa 1—85
LIFO (Last-In First—0Ut) ..ceeeececceccecscccocsscccssnsasoscssasssnsescns 315

INDEX-7

This manual is updated by: Addendum 800-1100P0-04.01

Linked List InStructionscccececcecescssasscaasscannsanssassosasssnss 3—15
IM (LOAD MULTIPLE) INStruCtion c..eceeeeeecesecescecanaacacccaccssssssanss 7—86
LNDR (LOAD NEGATIVE {(FLOATING-POINT)) Instructioncececeeecescccsesss 788
LNER (LOAD NEGATIVE (FLOATING-POINT)) Instructioncccecoeeenceesass 788
LNR (LOAD NEGATIVE) INStructionc.ceeeesececsnssscesacsosccssasosanss 7—87
LOAD CommAand .uoeceveveseasssoscsoscsasacsccssssvacacsscsssssansnscssscacs 062, 8-4.2
Load Point Marker ON TAPE ..ccceececnsscstcsssscsasnccssasscsssssasasassese 1272
LoCal MEMOTY ceecvescesncansasossnsocnsasoassocansosccsosscscassssasvseaccnsesscasse 4-10
Local Page Frame Table ...cceeicececssesccsscnansosascsssssncssssncncasaces 4—12

in Control MOAE .eceeevesenssssvesssacosssnssasesassasscssssessscsasascoses 0—3
Local Page TablesS .eieieeeecscacsnacsacasacscsasoscsssssaccssnsssssscnsssss 410
LOCK Key on WOrksStation .eieeeceeesecsseccatssscecoanssasscsscsosssssasesscces I-8
LOgical DAt8 ceeeeecessncesnsscssssscassasccscassonsncsssanaassssscsassssssse 3-13
Logical INStructionsc...cieescensccesecocasssecccasscnnncas sencssessnes 3=13
LOT (LOAD OR TRAP) InsStructionc.eeeeecaeeeenn feeeeceaceneaaaasanan 7-89
Low Order, Definedc.ccceeeesccorostocaseosvoosascccsccnnsnsanssssscnssssas 3=1
LP (Load Point) Bit in Tape IOSW .ececeseesrcsscscosossasssssssccsascssesss 12=5
LPA (LOAD PHYSICAL ADDRESS) INStructioneceeeeececcecccssssccsssscocsse 7793
LPCW (LOAD PCW) INSETUCLION ceveeveeeeeeneeeneennaasesesanccosscscacncsene 7792
LPDR (LOAD POSITIVE (FLOATING-POINT)) Instructioncceevceevcecccccaes 7-95
LPER (LOAD POSITIVE (FLOATING-POGINT)) Instructionecesevscecssccanss 7-95
LPPT (LOAD PARTIAL PAGE TABLE) INStructioncccoeeecceccecescecsasacccassse 7-91
LPR (LOAD POSITIVE) INStrucCtion .viceceececececsccccsnssvesscsaosasasasases 7794
LPTO, LPT1, LPT2 (LOAD PAGE TABLE) Instructionsc.cccvececcccccsearesss 7-90
LR (LOAD REGISTER) INStruction ...cceceeececccccasccccscsncsccccsscsssscee I=76
LRC (Longitudinal Redundancy Check Bit for Tape) .c.ecceccescessssssasasss 12-3
LRER (LOAD ROUNDED (FLOATING-POINT)) InsStruction .e.ceeeccsccecscescscssces 7—96
LSCTL (LOAD SEGMENT CONTROL REGISTER) Instruction ..ccceeececcsccsccesss 7-96.1
LSREG (LOAD SPECIAL REGISTER) INStruction ...eeeceseccecececcsccaccsccceans 7—98
LT (LOAD AND TEST) INStrucCtion ...ceeceeeeeecsseoconsccsescocssssccssasesee 7=79
LTDR (LOAD AND TEST REGISTER (FLOATING-POINT)) Instructionccc...... 7-80
LTER (LOAD AND TEST REGISTER (FLOATING-POINT)) Instructioncc...... 7-80
LTR (LOAD AND TEST REGISTER) INStruction c..eeeeeceecvececcsccsccccsscncsass 7=79

M (MULTIPLY) INStrucCtion ..ueesecsecescesssscossssssscscssscescsssasssses 7107
Machine Check Interruptionccceeeeeeeencsoccccassscsssssssasssnsssssea 3—13
Machine Check Interruption Mask (in PCW) ...cececessscsacsccssesesess 4-3, 5-14
Machine Check RepOrting Aread :.cccecececisccccccsccssosssssasccnsssssacsees 3~14
MAE (Memory Address Error) Bit in IOSWcceeececesscccsanancsceaseasss 8-10.1
Magnitude, of a Floating—Point Numbericcceeceeennccssncnccscesssaas 3712
Main MemOXY ...cevecsceassceasvenssosnasssssssanssssssscasssassnnasssssasssee 270
Mapping Area for Workstation I/0ceececeessccacsscnncssannasaas 910, 9-15
Mask, for OperandsSicececeenaccescassonssccassnscsssssssssscasssasssssses 32

see also breakpoint mask, clock interruption mask,

exponent underflow mask, interruption mask, machine check

interruption mask, overflow mask, program mask field, and

significance program mask bit;

for interrupts, see program mask field
Masking of Interruptions ..eeeeesececscccscccceessccnosssssscncssssse =3, 5-14
MD (MULTIPLY (FLOATING-POINT)) INStruction .c.ccecesescsceccscscsssocssss 7—108
MDR (MULTIPLY REGISTER (FLOATING-POINT)) Instructionceeeeeeee.. 7-108

INDEX-8

This manual is updated by: Addendum 800-1100P0-04.01

ME (MULTIPLY (FLOATING-POINT)) Instruction cecsnae cesessiesssess 7—108

Memory Address Errorcceeeess csenensens cseersaaan sccsunna cetssessssense 8-6
Memory Cycles ...cceceees cesesessscssnans cecesescsssareeeansesanscacssssnns 2-4
Memory Diagnostic CommandSccceescetcsscasasssnsnsanasnss sessssccnns eee 8-12

MER (MULTIPLY REGISTER (FLOATING-POINT)) Instructioncceveeeee.. 7108
MH (MULTIPLY HALFWORD) INStructionceoceceece. cireessssecsssenensses 7—111
Microcode Loadingveiieciesnsesccecssoacscasesssssscaccnaocccsssacasnnos 8-13
Modification Trap FEatUre cceeesceecscesossassosssasssssscnnsssassnssscsasces D8
Modifier Bits, see Command Modifier Bits

MONitor Areaceeeescsceccacsancanccns creesoas tecsanscans cecssasscsseas 4-12
Most Significant Bitcieceeeennnenccee teeseseceseceseesescarassasennns 3-1
Most Significant BYLE eceeecececsoccceasosescososasessassosnnnscossssansasses 31
MP (MULTIPLY DECIMAL) INStrucCtioncceecececosescsvsaasacancsasacncasesss 7-110
MPE (Memory Parity Error) Bit in IOSW ...ccceececcaccnsoscasssssss 8-10.1, 8-12
MQ (MULTIPLY DECIMAL (FLOATING-POINT)) Instructioncccecececececcesrs 7-110.1
MQR (MULTIPLY DECIMAL REGISTER (FLOATING-POINT)) Instruction7-110.1
MR (MULTIPLY REGISTER) INStructioncccceecsacsssccscasssssscanssscs 7107
MSB, see Most Significant Byte

MSb, see Most Significant Bit

MTQ (MODIFY TIMER QUEUE) InStructionc.eeeeececescesccsaccsscsasssoes /—178
MVC (MOVE CHARACTER) INStrucCtion ..cccciccecesscsscececscscscssccssassssaoee 1799
MVCL (MOVE CHARACTERS LONG) Instructioneccecececccscecces ceesens «e. 71100
MVI (MOVE IMMEDIATE) INStruction cececcecescscecsccsscssnscasasanrscensaces 7799
MUN (MOVE NUMERIC) Instructioncceeeeececcscss cereenans cececennacann 7-103
MVO (MOVE WITH OFFSET) INStructionceceeeececccccccscsocnsscsnns 7-104
MUPC (MOVE WITH PAD) INStruction ...cecceeececoccccsscsccasscnssssssanses 7—105
MVZ (MOVE ZONES) INStrucCtioneccececescescesscssacsccasccssassascsses 1106

N (AND) INStruction ...cciceeesscscececscsasscoccsccsssscassacssassanissass 7-10
NC (AND CHARACTER) Instruction cececcccnoaas ceccscsecsercssasesass 1710
NC (Normal Completion) Bit in IOSW cetcastcssncanas ceeesss 8710, 8-11

fOr Aisk JOSW ...cceeeecccascneacsocancanssanascssasscsccsssssasassssssss 115
NI (AND IMMEDIATE) INStrucCtion ..ccecececcecescccceacccscssacesssnscssnsccas 7-10
NOormalization ...cecieeceeesecsesescssecascsscnnsccssassoscsanasssnsasss ceees 312
Not Ready During Operation Bit in IOSW for Diskcceeveeonnssccaseess 11=7
NR (AND REGISTER) INStructioncceececececacessessssaccassssscsssssccss 71—10
NRO, see Not Ready During Operation

0, See Overrun Bit in IOSW

O (OR) INStruCtion ..iiceeeesececsenecasocsasasassosasanosssosssassssns ce. 77112
OC (OR CHARACTER) INStrucCtion .ee.cececececscsccassssnsosscasscnsssescass 1—112
OFF (Tape Offline) Bit in IOSW ceccacccas ceecsesscesssesccnananans ee. 12-7
Offset, see Displacement

OI (OR IMMEDIATE) INStruCtion .e.ceeececescesacsccasaccnssscsssscsossssoess 7—112
Op Code, see Operation Code

operarlds ® 5 00 0 0050 00 00000000008 000G EE0E0ELLINE00600000008080000N0DsANNEEIEISISESIOEOLODLES 3—2

Operating System Assist INStructionsSeceececerescasssascocccanse ceees 17177
Operation Code ...cceeveecccaces et eseesecsactscssesceascassoassssssssaescaes 3-1
Operation Exceptionsccccce.. ceessssasancas ceersesans Cesesesssane ceeess 5—6

OR (OR REGISTER) INStructioncceceeeieccecscesccsccsssssosascsaseasse I—112
OR, see Order Check

INDEX-9

This manual is updated by: Addendum 800-1100P0-04.01

Order Check fOor WOrKStatiOn ..ceseeecesesocascsssssccsossscssnsssssses 9717, 9-20
Order Area for Workstation I/0ciieeeenesseconceascsonssnanes eee. 9-11, 9-20
OVErflOW ccivveaueaoaseesasseasassscaossessasasossnssanssosasssscsssssssneee 3—12
Overflow Mask (in PCW) ...ceeeeeeescsscecscsonsocssasssscacsasscasassnsenes 4—0
Overlapped FieldS ...cceevecesasossscasssssasessssscssencssnssccsccsscossnes 3—9
Overrun Bit in JOSW ...ceveavecocseccescoscssccnsssscsosssnssnssscsensascses 117

FOr LAPE tiineeeersnoccsccancoscsssssasscoscsssnsasssscsassasesnsnsessonses 129

PACK INSETUCLION .tveeveeeoovecvosecssssassccsasnssssisssasssccsssosecssasses 7—114
Packed Decimal FOXMAL ..ceeeeecsosanscsassccsssccsssssescssascassssssassonss 3-8
Page Fault Exceptioncceeeeeecacenccccsascscssssasscancccacsss 4=7, 5-11
Page Fault Program INterruption ...evesecscsesesoceccscssssssssacsccscasonss 42
Page Fault RepOrting AYEaccecissccncsocessessscssssssosssscssesnonssnaes D3
Page FraMe ...cecececescossesscscsssscsancsosssasssassssessasessssasasssccsas 42
Page Frame Tablecccceeeescceoccscasccccccnccssssssssnscssnsssosccsssss 49
see also Local Page Frame Table
Page INAER .uveeeeocosossesnssosssssosassssesssossensasssoscssssssnnsscnss csee 5=2
Page Table .t.uiceenreetocrsaassssscsasscsasanossasvssossssacssvssscsssssasssssssnes 48
Page Table Address Fault EXCeptionceececesecescncsnoscscssscesenassses D12
Page Translation ExXCeptioncccceeececccccsecsssassnssssnssssaseseaas 4=7, 5-11
PaEeS ceveiesenesenccncsansstossssssesssassnsnsssssessesssssssssccsssanssses 4=7
PAL (PACK AND ALIGN) INStrucCtionc.ceceeecoecsscscocesssnssacscassenss 7115
PAR, see Parity for Tape
PArity ErrOr .civesievccecsscncsoasssosscssncssscsnsssonesssnsacsasseas =13, 6-4
Parity for Printer ...c.iceceecsceonesscassasesscsccsescsssassssassanecnsess 1076
bit in TOSW ...civennrscecnsosssscocssssacssasassasassssasscsancassssess 12-6
FOr tAPE eevececensrsasvssonsssoossessscnscscsnanssssssosscassssscsssasces 1274
PC Bit, see IOP NOW READY
PCW (Program Control Word), Definmedc.ceeeeeevvenccensaennsass 4-1, 5-1, 6-2
PCW Address Compare TIrAp ceceeccocceressssssascascsssessasosscsnscscsssscoss 4=3
PCW Trap FeatuUreivieeeececarsececasessssssssncsssccscasasssssssscsscsses D=9
PE (Phase-Encoded ID Burst) Bit in Tape IOSW .ceceecccescccsesasasassnssss 1275
Peripheral ProCeSSOTr ...ccescesecscccscsvsssscsscsosssnesssssnsoscnsssscassasnss 37
PF Keys, see Program Function Keys
PFT, PFTL, see Page Frame Table
Physical AdAreSS ..cceieeerteecesecnssanaaccccccsasscscacsesccossscanss 8=7, 412
Physical Address Modification Trap ceceeeveccssscsssccsccsssssessacsasssnns 43
Pointers for SemaphOrecccssescescesssscccscccassoscssssscssseassacsess 3716
see also Head Pointer, Tail Pointer
POP INStrucCtion ...ieiceeseeecoscaseasssssscccsccssssassassssasssossenses 7—118
POPC (POP CHARACTERS) INStrucCtion ..e.c.eeeecesecsccsnsosaceoscssensssacases 7-119
POPH (POP HALFWORD) INStrucCtioneceeseececccsessooscsscsssscssasaanseas 7120
POPM (POP MULTIPLE) InStrucCtioneceeceeeccesssccccscsscsssssnsesss 7-121
POPN (POP NOTHING) INStruCtion .eeeeeceececccesscscssassscnscossanasascsas 77122
PP, see Peripheral Processor
Print Control BYLeS s.eesecessssscasarsocsssssssssssssssosascscsnssssssacnsss 1074
Printer ..cceuieecececnceosncecocosseasencssssssassccsansasnsnsssasssss 10-1 to 10-7
Priority of Interruptionsceeceeeceerecassncassssascassccnsssssnsssss 3—15
Privileged Instruction or Operation, Definedccccevevceccevecscancenes 3-6
Privileged Instruction SYMDOLl ..ceeeeecessssassccassosccansassassossnseoanss /-1
Privileged Operation EXCeptionNS ..ieesericecsccscssssasascccsscnssssscscnnens 36

INDEX-10

This manual is updated by: Addendum 800-1100P0-04.01

Program FUnction KeysSceceeeecncscscsccscasssscsscanssssassccscnssssene 9-9
Program Interruption ..cicecesecssesceasscsesessssssssccsssasccnsrasassasssasess 34
Program Interruption CodeSccieeeevescsssaccasesasssocasscsssssncssssa D5
Program Mask Field (in PCW) teeseeceesenececasensreeneervrearereasanaas 42
Protection EXCeptionS .eieeeeecscasecescsscesoassccssscscssesssscsssscsosnsaes =6
PUSH INStruction ...cesesceecscecacsacesoccsosasassscssscscnssssasscsnsseaecs 7—123
PUSHA (PUSH ADDRESS) INStrucCtionc.eeeevececcecencccsnncsccccsnncesees 71124
PUSHC (PUSH CHARACTERS) INStruCtion ..cecceessecescsssscssssscsncascaness 7—126
PUSHM (PUSH MULTIPLE) INStrUCLiONcecceeeccsonsacsconsccccsascasssas 1—127
PUSHN (PUSH NOTHING) INStrUCLion e..c.ceeeeeeececconccconccooesssasecassss 7—128

Radix POINL teeiieennseesatasassasssssssssscscscascosssssasesssscnsscssees 311
RAM (Random ACCESS MEMOTY) .eececeeccntaccencactacncccscsanccccssanssas =1, 4-7
RBAL (BRANCH AND LINK (RELATIVE)) InStruction ...cceeecesccccsssccsssseess 7-15
RBALS (BRANCH AND LINK STACK (RELATIVE)) Instructionc.eeceseecescess 7-18
RBC (BRANCH ON CONDITION (RELATIVE)) Instructionceeeeececcccacccsaess 7-19
RBCT (BRANCH ON COUNT (RELATIVE)) INStrucCtion ..cceeececececcascanssccsass 7—24
RBCX (BRANCH ON CONDITION INDEXED (RELATIVE)) Instructioncceceee.. 7-21
RBXH (BRANCH ON INDEX HIGH (RELATIVE)) INsStructioncceeeeesescscsncess 7-25
RBXLE (BRANCH ON INDEX LOW OR EQUAL (RELATIVE)) Instructionc.ceee.. 7-27
RCT, see Reference and Change Table
RDB Bit OFf JOSW ..uiuiiiiieeeesoccenncaeecasceonccoseessanascacccanannns .. 8-4.4
READ ALTERED 4tevcvcrnceeoscnonsaasasosasscasoseesnsscssscasasscasacasscassss I=16
READ DIAG cecoverccesscsasasasasasssesssasscsssssassasasacssasassancsssnssss 9716
READ TABS .icvevscecsncnanssnsssesossessascsassassosasasssncssssassscssanssaes 9-16
READ Command for DiSK ..iiieeeecasscensrasssocsnsessssacosasssoscassncnssess 114
READ from Workstation ...iisseissevacssasceaccssscsassscscocsassasccnscasass 916
Recording Density fOr TEPE .eeeesseeeccccacceesossassassssssssssssssnsneass 125
Recursion Exception, see SCR Recursion Exception
Reduced Retry Flag for TaAp@ .u.eecieceesseescccsnacascscocssosscnsosssannss 124
Reference and Change Table (RCT) ...vceieacecesnnsnasonsansosassasenceasasss 412
Reference Bit in Local Page Frame Tableccccecesscccsssccccansnnacass 4-12
Reflective Strips, see Tape Markers
Registers
CONEYOLl .ot eieesneeoosuasessnssesvasesascasnsssscsasossssscsssasncsee 21, 2-3
floating Point ..iiiieeceienesesssesssaccssassasssassssssasssssaseanas 2-1, 3-10
BeNEraAl ... iitestcracensessacesscssscssenssrescscsssestssnsssssscsnasssnes 21
Relative 3ector AdAresSSing ...ceceeeecectosecsssosessosesssessssssecssasess 112
RESET Key on WOrksStationeiecesecssscecnsecsossessanassssssscsassssassss 98
Residual Byte Count Of IOSW ...vevevessvtecacsassosssoscscennsncssscanssas 8710
fOr Printeriiieeeeceeeerccaosesassasacasscsnssssessscssssccsssssasenes 10-2
Retry for DisSK ti.iieiciieeriacatacossnesaconcocsanasssssasssassssassnaassss 11-4
FOr LAPE tiitvticeeescesnoccescesessococascasascassssssscsssscssssssscnase 124
Retry Indicator Bytes for DiSKceecececcessesssssnsscsnssassasacsscess 1175
RIP Bit Of JOSW tovuieenneceeasenonesssasasessscssssanssacsassanasncassasss 8-4.4
RLA (LOAD ADDRESS (RELATIVE)) INStrucCtioncce.cececececescsoscscsnanses 1—78
RP Bif tveeeerseecesncaosonssasasssannsssesssnsssosssossssassssaanassssacssoas 49
RPC (RETURN AND POP ON CONDITION) InsStructioncccceeescescccanasass 7130
RPUSHA (PUSH ADDRESS (RELATIVE)) Instructioncceviceesaconcesessss 77125
RR Instruction FOrmatcceeeecseccscencsssasnscscsassssassssasassanas 3=3
RRCB (RESET REFERENCE AND CHANGE BITS) Instruction ..ececececescessseases 7129

INDEX-11

This manual is updated by: Addendum 800-1100P0-04.01

RS INStruction FOrMAL .c.i.eeeeceencoccoeccceonaseasasosansansscecassncssscnse 373
RTC (RETURN ON CONDITION) Instruction ® 0 0 & 5 5 8 8 &5 O P S 0PSB O AL e S B0Ne e e 7_131
RX INStruction FOIXMAL eeceeececocecsaccccocnansnscccssososssesnscancssassasses 3—3

S Instruction FOrmatceeeeeecccssccoossscasssccsssnscsanssssssessssess 374
S (SUBTRACT) INSErUCLioN ceeeceeeccssssessssaacncscssonassssssscssnssnnss 7—161
SC, see Skew Check Bit in Tape IOSW

SCAN (SCAN FOR BYTE) INStruction ...c.cieeeeeeeeenccsccccascnccansnceceess 1—134
SCR Recursion Exceptioneceeeeeceeesasscessssssssscnssasnssnsss =11, 5-12
Screen Damage Alert c.cccecececscecesosescocasccacsassssscscsssscssssossssee 9721
SCRS ciecesenenccsoecsasvasassoasasassscnnsse tesssesssansncssenacsesseasas 4-10
SD (SUBTRACT (FLOATING-POINT)) INStruction ..e.c.ceecececcsccscccsnscsaes 7—165
SDR (SUBTRACT REGISTER (FLOATING~POINT)) Instruction .c.ecceeececececeees 7-165
SE (SUBTRACT NORMALIZED (FLOATING-POINT)) Instructioncc.eeecen.. 7-165
Sector Addressing for DiSKevececcsscecseccsosscocsnsonsascosssasccasas 1172
Sector Overrun Bit in Disk JOSW c.eececessvsoscrcccoccsascscccesscssscnsss L1=7
Sector PreamblesS ..ciceoceeccsccscscrcsnsssoscossescossasscasasosasasosssssssnses 116
SEEK Command fOr DiSK .vieiececsccacecsacasscoseoscoesossssccsesssscssasases 1175
Segment ...ccceesercccatssccsosrssccctostssstocsssscsoscscsssssanassccocnsnes 4=7
Segment Control Register, see SCRs

Segment FAulteeeecscesesscssassseascsoncscsssssosssssssassassssnssnaee 411
Segment Fault Exceptionvceeeccscecrssceoscocccanssesasasssosnasoansas 511
Segment INAEX ...icerieseocrscoscsosvsossneancnrvsenssnsssscsvosascnascss 48, 5-2
Selected-Field TagS .cceacecscssacccsssassssssssscscsocsssssseasnsesscasses 94
Semaphore Manipulationeceeeecesecenseccncssasasssssnccocsassscasas 3716
SER (SUBTRACT NORMALIZED REGISTER (FLOATING-POINT)) Instructione..... 7-165
SH (SUBTRACT HALFWORD) INStrucCtion cic.eeeceeeeceeccoscreonccoessecassase 7=163
SHIFT Key on WOrKkStation .eieiecessecscescseacsersscssscascassnsssccssacsess 9-8
Short Floating-Point INStructionsceceesecessccocccsssacscsssassnssass 3—1
ShOort SEeCtOr ..vieeresecenanaconcansasascaarsescsssssssasasansasassssssasse 11-7
SI (SEEK Incomplete) Bit in Disk IOSWceceevesccsoscasecsoossassansas 11-7
SI Instruction Formatcceceeececens creans cteteresesescssrscnsscsscass 374
Sign COdeS tivivriesreesostenoacecncoacsoccseasnennscassnsaaseascsasnssecsasees 3-8
Significance EXCEPLiON teeseeeecenscsnosccsoacssnosasssssnsscsssssesssssns 913
Significance Program MasKcccevececnceccencccncccnnane ceseesessss -4, 5-13
Single~Step Trap FeatUreeeeececcecsccsscosencsceansssncessss 4-3, 5710, 6-1
SIO (START I/0) INStruCtion ...eeeeeieeeeenceneencscoscaanssananss 7148, 8-4.3
Skew Check Bit in Tape IOSW ..ivceeerreeseccnssosasinnsasassncsscscnssases 12-9
SL (SUBTRACT LOGICAL) INStrucCtion ceueeeceereeeeseesosscrocensssscsscsaee 7=163
SLA (SHIFT LEFT SINGLE) INStructionc..ccieeeeecececncncacenccaccsoees 7142
SLDA (SHIFT LEFT DOUBLE) INStruction ...ecieeseeescscsscscecssconccannsss 7—139
SLDL (SHIFT LEFT DOUBLE LOGICAL) INStrucCtioncceceeeeeecececsssscees 7-141
SLL (SHIFT LEFT SINGLE LOGICAL) INStruction e..eieeeescececevecesacaceeass 7=143
SLR (SUBTRACT LOGICAL REGISTER) INStruCtionceocesscececccccecsasanses 7-164
50, see Sector Overrun

Soft Error, see Error

SP (SUBTRACT DECIMAL) INStruCtion .c.eeeeeeeieeeceseccccasanssscancenaesee 7-162
Spacing on Printerc.icieieieeececacassscenseassasnssseacacss cessecsss 10-4
Specification EXCepLionc.veeeescancasesssssnsenccsssssnsscssss 3-12.1, 5-7
SPFT (SCAN PAGE FRAME TABLE) INsStructionc.eceeececenscccsccaccscass 7-180
SPM (SET PROGRAM MASK) INSErUCLION cievveececcocsescnrsacoasassscnsnsscsss 7-136

INDEX-12

This manual is updated by: Addendum 800-1100P0-04.01

SQ (SUBTRACT DECIMAL (FLOATING-POINT)) Instructlon eesessescssecsasccse 1-162.1
SQB (Status Qualifier Byte) ..c.ceeececcecccescenas cecesescseesresecencanan 8-4.1
SQR (SUBTRACT DECIMAL REGISTER (FLOATING-POINT)) Instruction 7-162.1
SR (SUBTRACT REGISTER) INStrucCtion .uecceieececerseseccecessanacssacassse .. 77161
SRA (SHIFT RIGHT SINGLE) Instruction Ceeetencaneas Ceeeanan ve.. 7-146
SRDA (SHIFT RIGHT DOUBLE) INStrUCLIiON coeeeeceeceececacecaccceceannsasann 7-144
SRDL (SHIFT RIGHT DOUBLE LOGICAL) INStructioneeeececececoscsscscses . 7-145
SRL (SHIFT RIGHT SINGLE LOGICAL) INstruction ..cc.ceeccaccccccascecensees 7-147
SRP (SHIFT AND ROUND DECIMAL) INStruCLion .c.eeeeceeecscacecscacsncsssees 1=137
SS Instruction FOXmat c.ecececesescescsccncasce e
SSI Instruction FOrmatcecieeeeeeeeeeeenrocasaascsaceccancassacsesacnns 3-4
ST (STORE) INSEYUCLION cuceeeececosecnaseosccssosancssacssavescssnssssses 1—150
ST (Timeout on Sector) Bit in Disk IOSW ...eveeevacnns Cecetscasescensaresas 11-8
Stack Facility .uuiecececenneceaaanne cecescanan cesecescessesesasscsssssannn 3-16
Stack Limit WOrd ...ccieeececerasccancessssoscssacsanancsscsnnsscssceacnnsnnans 2-2
defined ...eeveeeececacersessocsssssseasssssastocnesnsssosascsssnssasnsae 316
Stack Overflow ExXception ...eeceececaccscas esesccnnn seessccassscenesasennn 5-12
Stack Pointer, Definedceceeeecececececorscsasacscccnasncanecsssasccsases 3-16
SLACK VeCLOT seveiecvencsceeacccsosessscssnscsasososossssosansansssans 3-16, 5-12
Status Bits Of JOSW ..ececeevecnccncnne eescsssaas ceessasee ceesassssseresas 8-10
Status Field in PCW ..ceieeccesivneacssenssocsecnsocsssasccsscnsssssensssssss 43
STC (STORE CHARACTER) INStIUCLION «vvveeecccsesoseasscacccsnassssascnasens 7-151
STCM (STORE CHARACTERS UNDER MASK) INStructioneceecececcescesccscesssess 71152
STCPID (STORE CP TYPE AND MICROCODE VERSION) Instruction cesssssssss 1154
STCTL (STORE CONTROL) INStruction ..ceeeececeecesoseccsnccccsccaosncass .. 7-153
STD (STORE (FLOATING~POINT)) INStructionccecececessscccscssscassss 7=157
STDD (STORE DIAGNOSTIC DATA) Instruction cessanss eseassscsnns 7-155
STE (STORE (FLOATING-POINT)) INStructionceeccecessesccscsnsscsscansses 7—157
STH (STORE HALFWORD) INStructionceeecscecccsosccscaccesssassossssses 7158
STM (STORE MULTIPLE) INStrucCtion cccecececsccecscsccccossccssccsssnseansas 7—159
STNSM (SAVE THEN 'AND' SYSTEM MASK) INsStruction .i.eececceoccasessscessess 7—132
STOSM (SAVE THEN 'OR' SYSTEM MASK) InStructioneeveececececccccsseses 7—133
STSCTL (STORE SEGMENT CONTROL REGISTER) Instruction e..eeeecscesccecesss 7-159.1
STSREG (STORE SPECIAL REGISTER) Instruction cevecssessvcnsssssess 1—160
Supervisor Call INterruption ...ceeeceeececsvssorsccscassssassssssesss D=1, 5-13
Supervisor Call Range Exceptioncccceeceesns teseasascesssssancnncaces . 5-8
SUPErvVisor CAllS ..cseescescsccsessassccsssssossossoesssseacssasssssacecncce 272
SUPErVisOor Stateceeescesrsccccacsesscasssaasasasasansases tesesersscsens 5-13
SVC (SUPERVISOR CALL) INStrucCtioncceeececececcccsccesascscnssossnans 7-167
SUVCX (SUPERVISOR CALL EXIT) INSLYUCTIiON cv.eeecccevcocecosssscosssnacnsas 7168
System Stack Limit Word, see Stack Limit Word
System Stack Vector, see Stack Vector

Ta-bs 9 @ 9 UGS ST SO LS LD 000 OGS0 0DS G000t 006N 0SC0E 00 000C00000E00000s0LsENELNGSDS 9—5

Tall POINLEY cvvevavcesessncroossnseanssossssssscssssasssssassassssasssssss 3—15
Tape CharacteristicCs .eceeeicerssecrcnccesesoscncna cesessecssssssess 1271 to 12-11
Tape Markccveencetnnnccaanns ceesecacesssesassssascsssssasesssssessss 12=3
Tape Mark Indicator Bit in IOSWcievecceccnscscccsascssnssnnsenss 12-4, 12-6
Tape MarkerS cevescecesesesossssensesnssscassancscsscssoasassssssssnsssssssee 122
Termination, by HALT I/0 ...icietcnrecacacensnnnnns Ceseeccecesccsacesecens . 8-8

due to equipment malfunctioncceceeeeeccescsssssssoccssssesssasecas 3-8

Of data transSfer ...cveeceiseercsccsescecscssscsscavasosscsasncsssssasscsscsne =7

INDEX-13

This manual is updated by: Addendum 800-1100P0-04.01

Time—oUt FRLIlUre ..iciveetesesecssoonnscssssssoaassssssssoesasscnssensacses D14
Timer, see Clock

TM (TEST UNDER MASK) Instruction ...ceeceececscccoscssssssasesassosssssss 77169
TM Indicator Bit, see Tape Mark Indicator

TR (TRANSLATE) INStrucCtioneessceceecssccaasccsacsssssasssssnsessnss 1—170
Track Numbers On TAPE ..ceceocssossoccassesscscsssscsasoscssssssssnssssecee 1271
T-RAM (Translation RAM) P - S 10
Translation, see Address Translation

TrAPS teeveeenesseasensssssaasvssonssasesssscsassnsessssascnsasssssccsee 272, 5=8
TRT (TRANSLATE AND TEST) INStruCtioniieececeececccrsacssesseasaases /7171
TR7 Bit in Tape I0SW . ..vceerrecorerssosoossacssoscsssancssssnccassnsnsaosss 1279
Two's—Complement NOtAtIiOoN ...cccecertecescaccssonassssaasssssssssascsssccnee 376

U (Unsolicited Interruption) Bit in IOSWccevteveccccosccccasescensss 8710
UNAerfloW .oeeeaceceesossocencecaanconcsassnnssasssasscssssssssnsssnssnsses 312
UNPAL (UNPACK TO EXTERNAL DECIMAL FORMAT) Instructionccecesesnees. 7-175
UNPK (UNPACK) INStruCtion .cuceeeeeecceesesccssosocssscsasssescssssasasnsss 1—173
UNPU (UNPACK UNSIGNED) INStruCtion ..veeececesvecesoscescsscesscnnssecsasss /=174
User Stack Vector, see Stack Vector

Validity CheCk fOr TAPE «veeevreececrecencensacoanacasassccassssasasassess 123
Verify on Disk WRITE ...eeeevessocenscaocanssessassasssosssassscassnansacsee 1175
Vertical Redundancy Check for Tapeccscissssesosssecccsnscassscssossss 12=9
Virtual AdAreSScieeeecessscsccsssonssssscanssssssssnassssacannncnncane 47
Virtual Address Modification Trapveeecececscsccssecocnsssssacacsseasceas 58
Virtual Destination Trap AQAressSceceeceescscsccscacssscasasesccssses =8
Virtual MEMOKXY «.eucecevecoccoceanccsssasosossasssasossccassnsnossnancasassassess 4=7

VP Bit $ 8 5 0 0 2660 09 EE L0 0L B0 eI CE0 LGSR ELIEEGGEVOESQIEESEOEOBIOEEOOIOLIENOIBIEOINTSLOITSSE 4-11

VRC, see Vertical Redundancy Check for Tape

Wait State (AN PCW) .. vvveceecrennceconscoonsccccsosasosnnnssosnsasnsccssaee 42
WCC, see Write Control Character
WD, see Wrong Density
Word, Definedeeieeeeeescessecssoecsooveanncsosscescasasassssnsssassnscese 24
WOrKStAtion t.vieeceeroeaoceassseasescsononasansscnasnssssnssassssnass 9-1 to 9-21
WP (Write Protect) Bit ...civercceeeneeecesacoccasssssasessansacasses 4-9, 11-7
WRITE Commands for WOrksStation ...c.cieseccecescncssscasososssnssasssssnee 9—17
for disk ..ceeerersencerencnossecacancsnana P I 1
for printerccieecececccccncncnas cescesssanes eesesstessssecacesseasses 10-2
fOr LAPE teeeeececerecannaessssscsosocacsessssnssesssscsascssossassssescss 1274
Write Control Character for Workstationceceecececcnanass ceecens ceees 9-12
Write Protect Bit in Tape JOSW ...cecierececcecsnsossoasscosesassccsecnves 1177
WRITE SELECTED .4cceeeococencacescsoscsssscsoanscsessonosnsssncsnssensscsncssssacss 9-17
WRITE TABS .o veteucocsasnsosenscccnsasssnosnsnnssnsssnscasansnssnss teseessse 9-17
Write-Enable RiNg ...ieieiecoeneieenscscecasnensnsenoscssansaasssososssases 1272
Wrong Density Bit in Tape I0SW c..veeiceeecccesansessassasscssssssascnnass 1276
X (EXCLUSIVE OR) INStrucCtion ..ceveeeeecercesoecescasaccnncassscassscsssee 7—63
XC (EXCLUSIVE OR CHARACTERS) INstructionceeececcscscesscccnssssces 7—63
XI (EXCLUSIVE OR IMMEDIATE) INStruction ..c.eeeeeececceccoceccnncnsnsnces .. 7763
XPAND (EXPAND STRING) INStrucCtion .e.euieececesececccsccscsscssnncssanans oo 167
XR (EXCLUSIVE OR REGISTER) INStructionc.ceeeeeeececensescscaccncsseas 1763
ZAP (ZERO AND ADD) INStruCtion ..eeeeecceeeeccesececannssanasascasacsssee 1—176
Zoned Decimal FOrmatceeeececssenccsocscscasoncssassssssasssasscsssacss 3=9

INDEX-14

WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 ® TELEPHONE (617) 459-5000, TWX 710-343-6769, TELEX 94-7421

TO:. VS System Users
FROM: Corporate Publications Department

SUBJ: Addendum to the VS Principles of Operation Manual (800~1100P0-04.01)

DATE: September 1982

This addendum chiefly describes VS architecture for systems based on the
VS25 and VS100 CPs. Changes have been made to physical and virtual address
format, page tables and address translation, the I/0 subsystem, and low memory
and register assignments. Diagrams of system architecture are included. The
addendum also describes the decimal floating-point instructions, and makes
some minor corrections to other sections of the manual.

To update your manual, replace existing pages with like-numbered new

pages and appropriate point pages; pages DH-1 through DH-3 come Just before
the index.

Thank you,

Corporate Publications Department

Printed in U.S.A.
800-1100P0-04.01
9-82- 5M

WANG Customer Comment Form Title_VS PRINCIPLES OF OPERATION

Publications Number _800-1100P0-04.01

Help Us Help You.. . .

We’ve worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell us!
Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us
know how you feel.

How did you receive this publication? How did you use this Publication?
O Supportor O Don't know O Introduction O Aidto advanced

Sales Rep to the subject knowledge
0O Wang Supplies O Other O Classroom text O Guide to operating

Division (student) instructions
O From another O Classroom text O Asareference

user (teacher) manual
O Enclosed O Self-study 0O Other

with equipment text
Please rate the quality of this publication in each of the following areas. VERY

EXCELLENT GOOD FAIR POOR POOR

Technical Accuracy — Does the system work the way the manual saysitdoes? [0 O O a
Readability — Is the manual easy to read and understand? O O O a O
Clarity — Are the instructions easy to follow? O O O O O
Examples — Were they helpful, realistic? Were there enough of them? 0 a 0 a O
Organization — Was it logical? Was it easy to find what you needed to know? | O O O]
Illustrations — Were they clear and useful? a O O (| 0
Physical Attractiveness — What did you think of the printing, binding, etc? O a O 0 g

Were there any terms or concepts that were not defined properly? 01 Y [0 N If so, what were they?

After reading this document do you feel that you will be able to operate the equipment/software?] Yes [1 No
[Yes, with practice

What errors or faults did you find in the manual? (Please include page numbers)

Do you have any other comments or suggestions?

Name Street

Title City

Dept/Mail Stop State/Country

Company Z2ipCode_______ Telephone
Thank you for your help.

All comments and suggestions become the property of Wang Laboratories, Inc. Printedin US.A. 14-3140 3-82-5C

Fold

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 16 LOWELL, MA

POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.

CHARLES T. PEERS, JR., MAIL STOP 1363
ONE INDUSTRIAL AVENUE

LOWELL, MASSACHUSETTS 01851

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Fold

Cut along dotted line.

WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 @ TEL. (617) 459-5000, TWX 710-343-6769, Telex 94-7421 Printedin U.S.A.
800-1100P0-04
8-82-8M

	000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12.0
	03-12.1
	03-13
	03-14
	03-15
	03-16
	03-17
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	06-01
	06-02
	06-03
	06-04
	06-05
	07-001
	07-002
	07-003
	07-004.0
	07-004.1
	07-004.2
	07-005
	07-006
	07-007
	07-008
	07-009
	07-010
	07-011
	07-012
	07-013
	07-014
	07-015
	07-016
	07-017
	07-018
	07-019
	07-020
	07-021
	07-022
	07-023
	07-024
	07-025
	07-026
	07-027
	07-028
	07-029
	07-030
	07-031
	07-032
	07-033
	07-034
	07-035
	07-036
	07-037
	07-038
	07-039
	07-040.0
	07-040.1
	07-040.2
	07-041
	07-042
	07-043
	07-044
	07-045
	07-046
	07-047
	07-048
	07-049
	07-050
	07-051
	07-052.0
	07-052.1
	07-052.2
	07-053
	07-054
	07-055
	07-056
	07-057
	07-058
	07-059
	07-060
	07-061
	07-062
	07-063
	07-064
	07-065
	07-066
	07-067
	07-068
	07-069
	07-070
	07-071
	07-072
	07-073
	07-074
	07-075
	07-076
	07-077
	07-078
	07-079
	07-080
	07-081
	07-082
	07-083
	07-084
	07-085
	07-086
	07-087
	07-088
	07-089
	07-090
	07-091
	07-092
	07-093
	07-094
	07-095
	07-096.0
	07-096.1
	07-097
	07-098
	07-099
	07-100
	07-101
	07-102
	07-103
	07-104
	07-105
	07-106
	07-107
	07-108
	07-109
	07-110.1
	07-110.2
	07-111
	07-112
	07-113
	07-114
	07-115
	07-116
	07-117
	07-118
	07-119
	07-120
	07-121
	07-122
	07-123
	07-124
	07-125
	07-126
	07-127
	07-128
	07-129.0
	07-129.1
	07-129.2
	07-130
	07-131
	07-132
	07-133
	07-134
	07-135
	07-136
	07-137
	07-138
	07-139
	07-140
	07-141
	07-142
	07-143
	07-144
	07-145
	07-146
	07-147
	07-148
	07-149
	07-150
	07-151
	07-152
	07-153
	07-154
	07-155
	07-156
	07-157
	07-158
	07-159.0
	07-159.1
	07-159
	07-160
	07-161.0
	07-162.1
	07-162
	07-163
	07-164
	07-165
	07-166
	07-167
	07-168
	07-169
	07-170
	07-171
	07-172
	07-173
	07-174
	07-175
	07-176
	07-177
	07-178
	07-179
	07-180
	07-181
	07-182
	08-01
	08-02
	08-03
	08-04.0
	08-04.1
	08-04.2
	08-04.3
	08-04.4
	08-04.5
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10.0
	08-10.1
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	DH-1
	DH-2
	DH-3
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	_01
	replyA
	replyB
	xBack

