Data Management
System Reference

VS

Data Management
System Reference

1st Edition — January 1984
Copyright ©® Wang Laboratories, Inc., 1984
800-1124-01

WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL. MA 01851 @ TEL. (617) 459-5000. TWX 710-343-6769. Telex 94-7421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any
way the standard terms and conditions of the Wang purchase, lease, or
license agreement by which this software package was acquired, nor
increases in any way Wang's liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con-
sequential damages in connection with or arising from the use of the
software package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is trans-
ferred and any use beyond the terms of the aforesaid License, without
the written authorization of Wang Laboratories., is prohibited.

PREFACE

This manual describes the functions of the Wang VS Data Management
System (DMS). The Data Management System enables application programmers
to create, read, update, and copy data files on a variety of storage
media. DMS is system software, supplied to all VS users with each
version of the VS operating system, and is used identically on all VS
models.

This manual is divided into four parts:

¢ The first part, Chapters 1 through 3, describes DMS data
representation concepts and the structure of DMS records and
files. These chapters require no knowledge of a particular
programming language.

¢ The second part, consisting of Chapters 4 through 10, describes
how a wuser program uses DMS to access data in disk files.
Chapter 4 provides a general, language-independent overview of
data access functions. Chapter 5 provides language-specific
overviews of the DMS functions in each of the high-level
languages. Chapters 6 through 10 cover these DMS functions in
greater detail, using terms and examples from Assembly language.

¢ The third section of the manual, Chapters 11 through 13,
describes the file types and DMS functions for non-disk files.
Chapter 11 discusses the use of the workstation screen as a DMS
file, Chapter 12 describes DMS processing of files on magnetic
tape, and Chapter 13 covers printer files, program files, and
word processing files.

¢ The final section of the manual, Chapters 14 and 15, deals with
error processing and special circumstances.

No in-depth knowledge of Assembly language is required to use any
part of this manual. However, the latter sections of this manual are
directed toward the Assembly language programmer. High-level 1language
programmers should read Chapters 1 through 4 and the section of Chapter 5
describing the DMS features available in their chosen high-level
language. From that point, the high-level language user can turn to the
specific language reference manual.

Users interested in more in-depth information can refer to the latter
chapters of the manual. The high-level language sections of Chapter S
should provide the necessary background for understanding the details of
DMS specified in subsequent chapters.

iii

Chapter 1 provides a general overview of the features available
through DMS. Chapters 2 and 3 supply a more detailed view of the
structures of records and files. These chapters enable a user to select
the most appropriate file and record types for a particular application
and to analyze an existing file using the Display utility.

Chapter 4 provides a conceptual introduction to the way that data in
files is stored and referenced. The material in these chapters is
language-independent.

Chapter 5 provides an overview of DMS functions in all VS-supported
languages. Using this chapter, the reader can determine which DMS
functions can be performed in a particular high-level language and which
must be performed in Assembly language. This chapter describes how to
call an Assembly language subroutine to pass DMS parameters from a
high-level language. The general syntax for DMS coding in the various
high-level languages is included; for additional coding details, the user
should consult a specific language reference manual.

Chapters 6 and 7 provide specific information and examples to enable
an Assembly language programmer to use file definition parameters and
function requests to create and access data files. The scope of these
chapters is limited to record access of disk data files; however, many of
the features detailed in these chapters are used to access all types of
DMS files. Examples are presented in Assembly language.

Chapter 8 explores the Shared File mode. Shared mode is critical
when implementing a system in which multiple users must be able to read a
file while the file is undergoing modification, or in which two or more
users concurrently update a file. This chapter describes DMS file
sharing; sharing of DMS/TX files is described in the VS DMS/TX Reference.

Chapter 9 discusses buffering and packing density, which are two ways
of improving and maintaining data file performance. These options are
especially important when creating large indexed disk files.

Chapter 10 provides Assembly language coding information for the
Block Access Method (BAM) and the Physical Access Method (PAM). These
access methods are used for processing data by physical wunits. The
Record Access Method (RAM) is described in Chapters 5 through 9.

Chapters 11, 12, and 13 supply the user with the information needed
to create and access data files on storage media other than disk.
Chapter 11 describes interactive DMS, which uses the workstation screen
display as a data file. Chapter 12 deals with access of data files on
magnetic tape. Chapter 13 describes specialized files for printers and
files that store program information and word processing documents.

Chapter 14 describes DMS error processing and explains how the user
can set error addressing options. General classes of error messages are
described; for specific error messages, the wuser should consult
Appendix C.

iv

Chapter 15 describes advanced functions, DMS technical features that
are only used wunder certain application-specific conditions. This
chapter also describes in detail several advanced programming topics
mentioned in other chapters of this manual.

The appendices supply reference material for programming and the
analysis of errors. The appendices provide the User File Block (UFB) and
Alternate Index Descriptor (AXDl) DSECTs, quick-reference charts to
function requests and error codes, the available system-generated GETPARM
screens for runtime file assignment and associated Procedure Language
statements for assigning values to these screen fields. The program
examples within the text demonstrate a particular coding technique, and
are not complete programs. Appendix E provides several complete Assembly
language program examples.

A detailed index provides assistance in locating material about a
specific term or application.

Users of this manual should be familiar with the material contained
in the VS Programmers Introduction (800-1101) and the VS Program
Development Tools (800-1307) manuals. Familiarity with the COPY,
DISPLAY, and SORT utilities is recommended; these are explained in the VS
System Utilities Reference (800-1303).

This manual does not describe the DMS file management utilities,
which enable users to perform many of the most common DMS operations
without writing DMS access programs. These utilities are described in
the VS File Management Utilities Reference (800-1308).

DMS data files can be read and updated using the EZQUERY interactive
relational query language. This product is described in the VS EZQUERY
Concepts and Facilities (800-1337) and the VS EZQUERY Reference
(800-1129) manuals.

DMS files can be converted to DMS/TX files by attaching them to a
DMS/TX database. Information on DMS/TX file conversion, transaction
recovery, and multiple-resource sharing is found in the VS DMS/TX
Reference (800-1128).

If additional background or reference material is required, consult
the VS Operating System Services manual (800-1107), the VS Principles of
Operation (800-1100), or the VS language manual for the appropriate
high-level programming language.

CHAPTER

PART I

CHAPTER

CHAPTER

|

[\
w N

w w
N

3.

H B e
o« e e e e e e
NG U W WN

DATA

CONTENTS

DMS INTRODUCTION AND OVERVIEW

Introduction N cheeasenssenee . 1-1
Data Management OvVervViewcccceeecencncacnnnn cees 1-2
Record Structure Ceseenane Cetseseceansae cees 1-4
File Structurei.ieieeeneeenncecnoannns ceeenees 1-5
File Storage Devices vees 17
Access Methodsciiiiiinieninnennns seeesensae 1-7
Runtime Assignmentccceveeveann ceeerseniae cees 1-8
DMS and DMS/TXiiiiiievenecenrnnnnnanssnonssananes 1-9
REPRESENTATION
DATA RECORD STRUCTURE
Introduction -- Selecting a Record Structure 2-1
Fixed Length Recordscvvvvieeeceens Ceeeeseseas . 2=2
Variable Length Recordscvvevetneecsocnnsasce 2-4
Record Length Indicatorcovueve.e ceeeeas .. 2-4
Block Length Indicator Ceeessenenaone 2-5
Processing Variable Length Record Files 2-6
Longest Anticipated Record e caenesssennas 2-17
Primary Disk Space Allocation cesenees 2-17
Compressed Recordsceeevenccns Ceteraneesens oo 2-8
Compressed File ProcessSingoeeeeeess teecsanens 2-8
Block Structure of Compressed Records ees 279
The Compression Codeccieeveveenssncnccsonnns 2-9
Character Strings not Requiring Compression 2-10
Locating and Interpreting Compression Codes 2-10

Compression Recommendations ceenens .. 2-12

FILE STRUCTURE

Overview Ceeseatiasesntastesasenoacrsrabaan e 3-1
Consecutive Filesc000. testecesenesanns ceeeees 3-2
Space Allocation for Consecutive Disk Files 3-3
Buffering for Consecutive Files cesseecnssees 3-3
Relative Filesco0iveneenn ceesasennsnns ceesanans 3-3

vii

PART II

CHAPTER

CHAPTER

3.4

3.5

DATA

4

© D b
N W N

e
~N o

(5,2}

U,
N =

CONTENTS (continued)

Indexed FileS ...cceceeeecnosncsccnnosnes .

Data Block Structure for Indexed Files

Sequential Access of Indexed Files ...

Primary Key

* 0 000

Primary Key Tree Structure
The Initial Placement of Blocks in an

Indexed File ...iiviiecnosnoesssoannans ceeene
Adding Records to an Indexed File

Block Splitting

Deleting a Record from an Indexed File ...

Alternate Indexed Files

Alternate Keys .

oooooo

Alternate Key Tree Structure
The AXD1 Blockccnvt cereesians
Records on an Alternate Key -

Selective Indlces

FILE ACCESS

AN OVERVIEW OF ACCESS FUNCTIONS

Introduction to File Access
Access Methods

Opening and Closing Data Flles cesteseanes

Access Modes and Sharing

Function Requests Provided by DMS

The Read Function Request
The Write Function Request

oooooooooooooooooooooooo

The Rewrite Function Request ces

The Start Function Request

The Delete Function Request

Buffering and Packing Methods
File Access Summary

s e 00000000

s 00 s e v 0

e s 000

ACCESSING DMS THROUGH HIGH-LEVEL LANGUAGES

OVervieweeevecenecans
DMS Functions Accessible only in Assembly

Language
High-level Language Support for DMS Features

Access Modes ...

Y

Function Requests ..

viii

ooooooo

s e s 000000

L A]

ooooo LR R N A A A]

e s 00000

s s s 000

P s e 00 se s e 0000000000000

5-1

5-1
5-2
5-2
5-3

CONTENTS (continued)

5.4 Supplying File Definition Parameters in BASIC 5-3
BASIC File Definition Parameters¢.cc000.. 5-4
5-4

BASIC File Allocation Parameters ceseeses -
BASIC Primary and Alternate Index Key
Parametersccc00000ne Ceceesesssesesens . 5-5
BASIC File Efficiency Parameters cesessses 5=6
The BASIC Call Statement and the UFB'........c.... 5-7
5.5 DMS Record Access from BASICccviveeececencnsnens 5-17
5.6 Supplying File Definition Parameters in COBOL 5-8
COBOL File Definition Parametersccvecee.. 5-8
COBOL File Allocation Parametersccccceeee . 5-9
COBOL Primary and Alternate Index Key
Parameterscciveitretetiatrentertonanannens 5-10
COBOL File Efficiency Parameterseeee.. 5-13
The COBOL Call Statement and the UFB cees. 5-14
5.7 DMS Record Access from COBOLconvveerene ceesnen . 5-14
5.8 Supplying File Definition Parameters in FORTRAN 5-16
FORTRAN File Definition Parameterse... 5-17
FORTRAN File Allocation Parameterscccesaes 5-17
Limitations on Fortran Processing of
DMS Files N fheetieteaaens eeess 5=17
5.9 DMS Record Access from Fortrancoceivvvenncnens 5-18
5.10 Supplying File Definition Parameters in PL/I 5-18
PL/I File Definition Parameterseeeeeee0 .. 5-18
PL/I File Allocation Parameters¢ee000e0000.. 95-19
PL/I Primary and Alternate Index Key
ParametersScieiererreecosssscnscasanscanes ... 5-19
PL/I File Efficiency Parameters ceseasssssess 920
5.11 DMS Record Access from PL/Icieivverescenneacnnns 5-20
5.12 Supplying File Definition Parameters in RPG II 5-21
RPG II File Definition Parameters ceseasseans 5-21
RPG II File Allocation Parameters ceeosees 9=22
RPG II Primary and Alternate Index Key
Parametersccecetevcancassscasscnsnnas ceseres 5-22
RPG II File Eff1c1ency Parameters 5-23
5.13 DMS Record Access from RPG II ceteaeeea ceesseess 9=23
RPG II Special Record Processing Options 5-24
6 DEFINING DMS DISK FILES / THE USER FILE BLOCK
6.1 Overview —- The Scope and Focus of this Chapter 6-1
6.2 The User File Blockc.00ees Ceeersetecnanen ceeene 6-2
Creating the User File BloCkicvevrecnnnncsnas 6-2
Addressing the User Record Area with
UFBRECAREA ceseessesssennn teecesrsssssss 6b=3
Creating the File Descriptor Record from
the UFB ..vcveeeeennen esessessssasessana cescssses b6-4

ix

CONTENTS (continued)

6.3 UFBGENcccvtvvaveecenasssscsccassocna Ceteaeeeenns 6-5
Establishing References tothe UFB ...c.vvvvenenns 6-6
UFBGEN Formatcc.vs ceeeersense cieetecat e 6-8
6.4 UFBGEN Parameters Cececeresssaresccanenens ee.. b-8

UFBGEN Parameters Requlred for All Data F11es eees b6b=9
UFBGEN Parameters Required for Creation of

New FileS .vveieeeruseesosaoesossossssanesossanes 6-11
UFBGEN Parameters Required for Indexed Files 6-13
UFBGEN Parameters for Record and File Types 6-14
UFBGEN Special-purpose or Informational
Parameters Ceeseessestsastessee o0 6-14
UFBGEN Parameters for SpélelC I/O Devices 6-15
UFBGEN Parameters Used for DMS Error
ProCesSSing ..ueieeeeeeeienenneotosessssossscnsnsas 6-16
UFBGEN Parameters Required for
Packing Density ...ccevevnevreocoeansssncsannanns 6-16
UFBGEN Parameters Required for Bufferlng ceseseess 6-17
UFBGEN Parameters Used Only for BAM and PAM 6-17
6.5 AXDGENc0000us C e esesesacsatetenett e nnans 6-18
UFB Pointers to the aXD1 ceeesiaen ceeseeens 6-18
Establishing References to the AXD1 6-19
Coding the AXDGENcciiiiirenvennrconnnsnans 6-21
Accessing the AXDl of an Existing File 6-22
Accessing the Record Mask Bytescovevevnennn. 6-23
6.6 The OPEN Macroinstruction Certeettsranas 6-24
Open Macroinstruction Syntax ettt 6-25
File Access ModesScvivirrniirnnrensncesoocnnnnsns 6-25
Other OPEN Macroinstruction Operands eee.. 6-28
6.7 The CLOSE Macroinstruction Ceteeriees e 6-31
CHAPTER 7 ACCESSING DMS DISK RECORDS USING FUNCTION REQUESTS
7.1 Introduction to Function Requestsceceeeeveness 7-1
7.2 The Use of Function Requests cecsenaan ceeees 12
7.3 The READ Function Requesteiteeeereccccnneesn 7-3
READ Function Request Syntax Ceeeseseannns 7-4
READ Function Request Modifiers cereenaas 7-4
READ Function Request Operandscceveevenenns 7-9
7.4 The WRITE Function Request S, 7-9
WRITE Function Request Syntaxoevveeeeennns 7-11
WRITE Function Request Modifiersc.vcv... 7-12
WRITE Function Request Operandsc.cccceveeees 7-12
7.5 The REWRITE Function Requestccitevennenennnene 7-12
REWRITE Function Request Syntax ceeesacssnnan 7-13
REWRITE Function Request Modifiers cecrneess 1-14
REWRITE Function Request Operandsc00... 7-14
7.6 The START Function Requestc.c.en cesenenan 7-14
START Function Request Syntaxccvevvnnnnenn 7-17
START Function Request Modifierscovevenee 7-17
START Function Request Operands ceees 1-22

CHAPTER

CHAPTER

CHAPTER

7.7

[0

o0
> w

o o O
. .
0 ~Nowm

8.9

O v
[y

9.3

CONTENTS (continued)

The DELETE Function RequesStcccveveececcnceeses 7-23
DELETE Function Request Syntaxccc00ce0eees 7-23
DELETE Function Request Modifierscccccce.. 7-24
DELETE Function Request Operandsco00000 . 1-24

SHARING DATA FILES

Introduction Seessteseseseseecsscnsrsencsssssass B=l
Resource Holding Overview cesecnesnes teseesess B8-2
File Sharing Terms and Concepts ceescennes 8-3
Implicit Holds - The Read Hold Operation 8-4
Explicit Holdscccvvvennns -
Holding a Shared File ceeensenans ceessesss B8-5
Holding Multiple Records by Generic Keycccv.. 8-5

Holding a Single Recordceeevvesecocnccscsess 8=7
Interaction Between File Holdsccvo0eveveeeeeeese. 8-8

Holding a List of Resources sereeseases eeesss 8-10
The Hold for Retrieval Option casenen Cesreeenn 8-12
The Timeout OptiONiiieevveronsccoooscsnnncsssnsss 8-13
Task Waiting Without the Timeout Option 8-13
Task Waiting Using the Timeout Option 8-14
Log FileS ...cvveerirnnrenennnnn et ereenennaan eeese. 8-16

EFFICIENCY CONSIDERATIONS

Performance Improvement Methodscccveeeeveeeas 9-1
Packing Density tedesccsasstenscnnosnssanss s 9-1
User Interface ...covveveeennn et ecesesreseaseanns 9-1
The Default (100%) Optionccevceeescccesncaes 9=2
The DPACK Fieldccivevevtrncncnnnssnnns ceeeas 9-2
The IPACK Fieldccveeeesssecosssssseassssssss 9-3
Bufferingcceeevreenceccecesccsoscnsnnans cesesssee 94
Large Buffer Strategy B
Buffer Pooling Strategy ...ccciveecessssencanseses 9=5
DATA ACCESS METHODS
The Three Access Methods tecsssernrvesee . 10-1
Record Access Method (RAM) eessscsssess 10-1
Block Access Method (BAM)cccveeveecercnnnssees 10=2
UFBGEN Coding for BAM cetesescssnnaas evessees 10-2
BAM Function Requests sesssasesaes 10-5

xi

CONTENTS (continued)

10.4 Physical Access Method (PAM) e ececessanns . 10-8

UFBGEN Coding for PAM et ececesosrsanae 10-8

PAM Function Requests cesessenssennase eee. 10-10

Establishing Buffers for PAM ceesesnennas 10-12
Establishing the PAM Record Area on a

2K Boundary ...eoceeeeececesocesnes Ceessetesanenns 10-13

Specifying the Block Size in PAMccevvevnnss 10-13

Closing a File in PAMc.... Cecereseenennn 10-14

PART III OTHER DEVICE AND FILE TYPES

CHAPTER 11 INTERACTIVE WORKSTATION DMS
11.1 The Workstation Screen as a Data File ceeess 11-1
Reading and Writing to the Workstation Screen ... 11-1
Alternatives to Interactive DMScviven 11-2
11.2 Formatting the Workstation Screen 11-3
Order Areaceceuees teeesseesacssnearenenns . 11-3
Mapping Areac.iciiiieiinnnnnnann Ceteacanan 11-4
A Workstation Screen Format Example 11-7
11.3 Accessing the Workstation Screen ceeeesens ee. 11-9
The User File BIOCKviviiinecnooenecenns ceses 11-9
The Open and Close Macroinstructions 11-11
11.4 The REWRITE Function Requestcciiivnnnennns 11-12
The REWRITE Order Areaeceeeecenes ceeeans . 11-12
REWRITE Function Request Modlflers ceeersesisanne 11-16
11.5 The READ Function Request ceeen BN .o 11-17
The READ Order Areacceveeeseonosenccnsanss 11-17
Field Attribute Characters ceresescesesannonnanns 11-18
READ Function Request Modifiersc.cceveeee. 11-19
11.6 The START ATTNT Function Request cesenens ceeses 11-21
The AID Character Ghesteseoreanreaseensrenense 11-22

11.7 Workstation Error Completion Codescce000eevse. 11-22

CHAPTER 12 TAPE FILES

12.1 Introduction Gt esesesaacennsssenessssarsenaanas 12-1
12.2 DMS-Supported Tape Formats Gesveesesaseans 12-1
12.3 Tape Blocks, Records, and Bufferscccevveee. 12-3
Tape ReCOrdScetvveroccscssossosssssassasonns 12-4
Tape Buffering Ceeressecscanacncaanena 12-5
12.4 Tape File Modes and Function Requests 12-5
Tape File Modes ...cvueveteerenennrennenscsecannns 12-6
Tape Function Requestscccveveesscncnoncas 12-6
The CLOSE Instructioncceeeeee I V.2
12.5 Multiple Files on a Tape Volumee0000s0s cesess 12-8
12.6 Tape Files Spanning Multiple Volumes 12-9

xii

CHAPTER

PART IV

CHAPTER

CHAPTER

12.7

CONTENTS (continued)

Optional Use of Tape Storage cressens ceeesess 12-9
Programming the Allow Tape Option evessecane 12-9
Running a Program with the Allow Tape Option 12-10

PRINTER, PROGRAM, AND WP FILES

Introductionc0000.0. esraeenanas ceseseteasnons 13-1
Printer Filesccvevennecenns ceteeeenasne ceeeess 13-1
Defining a Printer Fileccccvevescscnssssess 13-1
Defining Printer File Recordsceeeuvuvne 13-2
Writing Records to a Printer File cesecess 13-5
Program Files et eesectvesessssssssecsssssnssss 13-5
Word Processing Files Creseseseans Ceeeeseesenaes 13-5

ERROR ROUTINES AND SPECIAL CASE APPLICATIONS

14

14.1

14.2

15.4

15.5

DMS ERROR ROUTINES

UFB Error Monitoringcecuvees Cersesiesesaaens 14-1
File Currently Open —— UFBFl ceseocess 14-1
Last Function Request -- UFBLF and UFBLFMOD 14-1

File Status Errors —-- UFBFSl1 and UFBFS2 cesess 1l4=2
Open Exit ProceSSingccveeesecsansconsacncans 14-2
Error Exit Routine Addressing --— UFBERRAD

and UFBEODAD Ceensesaann Cereesaaseeeaan ees 14-3
Error Messages —- UFBF4NOMSG teresreasenen 14-4
Fatal Errors ..ccoeeeeceeseoes cevenas ceseccassseans 14-4

ADVANCED CONCEPTS

Introductionceveteveeens cesecsasseanna cesreanes 15-1
For Consecutive Filescceevenvese e
Anticipatory Buffer Primingcccceeecesssseeses 15-1
Using START END with Shared Consecutive Files ... 15-2

For Indexed Filescccveeecenccnnns ceseevsessases 15=2
Calculating the Number of Blocks in an
Indexed Filecvvevene cheesrssessenass ceveses 15-2
Embedded Unused Blocks cecssenns eeeses 15-3
Extension Rightsccciieevnssssscccnassseeses 15-4
For Alternate Indexed Filesccceeeevscesse seees 15-4
Overlapping Primary and Alternate Keys 15-4
Extremely Long Alternate Keys ceesesanan 15-5
How an Alternate Index Tree is Built 15-5
Creating an AXD1 in Segment 2ccccveese ceee 15=7
Multiple Record TypeS ..c..ceceerescesosocccnsessssssses 195=8
File Design AspectsSccooeeveeececssscssseasss 15-8
Records Larger than One Blockccocvveevvcsnns 15-9

xiii

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

CONTENTS (continued)

A DMS CONTROL BLOCKS
A.1 The UFB DSECT tecesesetaannanns Cesesassasaaaas A-1
A.2 The AXD1 DSECTccvevvenecennns Crcecseeaanan cieesn A-17
B DMS FUNCTION REQUESTS AND MODIFIERS
B.1 RAM Function Requests and their Modifiers cee. B-1
B.2 BAM Function Requests and their Modifiers B-5
B.3 PAM Function Requests and their Modifiers B-5
c DMS ERROR MESSAGES
C.1 Introductioneiiiiiieeriiiieeensoeesnonannsnss C-1
C.2 SVC OPEN Cancel MesSSagesSoeceeesanonss Cecsecsane c-2
C.3 SVC OPEN Respecify MeSSagesScieeeevesooroccncanss C-5
C.4 DMS Function Request Cancel Messagesecveeeeen Cc-9
C.5 SVC CLOSE Cancel Messages Ceecssecccasecananns C-12
C.6 File Status (FS) Codes for DMSc0ettvvnnvenncnnn C-13
D DMS GETPARM SCREENS AND PROCEDURE LANGUAGE
D.1 Introduction to GETPARMScccttieevnnncnnrrnns D-1
D.2 The Structure of a GETPARM ettt etit et D-1
D.3 Associating a Procedure with a GETPARM0000.. D-2
D.4 DMS File Definition GETPARM Screens and
Proceduresceeeeioansesoeanncsssescsassasannas D-2
E SAMPLE ASSEMBLY LANGUAGE PROGRAMS
E.1 RAM Alternate Indexed File Update Program E-1
E.2 RAM Workstation File Data Entry Program EBE-5
E.3 BAM File Copy Programcccceeeesvceansnosccsns .. E-9
oooooooooooooooooooooo e s s s e s 0 v s s e . e v e 00 s Index-l

Xiv

Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure

N
N

v
w

I
W OO U N

3-10
3-11
3-12
3-13
3-14
3-15

3-16

FIGURES

DMS Conceptual OVErViewceeeveeeerecsononneas . 1-2
Two Data Blocks Containing Fixed Length Records 2-3
Two Data Blocks Containing Variable Length

Recordsciiiiiiiieiiniiiiieennnsaceensonancnnns 2-6
Hexadecimal Representation of a Compressed

Character String00.. ceerenn Ceesasesresnsnn 2-11
Relative File Structureciiviviveenennnnnnas . 3-4
Indexed File Showing DLP and KLP Values 3-6
Indexed File Data BlOCKS .iiiivvevererannansesassnna 3-7
Indexed File Record Showing Primary Key Field 3-9
Primary Key Index Block Formatccceeveuuenss 3-11
Primary Key Index Table Entriescoeevvuvssnns 3-12
Indexed File Tree Structure - L K
Block Locations in Indexed Filesci0eveeuenn . 3-15
Indexed File Data Blocks Prior to

Block Splittingeeevveceeiiernrrsccocensnennans 3-17
Indexed File Data Blocks After Block Splitting 3-18
Index Tree Structure Before Block Splitting 3-19
Index Tree Structure After Block Splitting 3-19
Relations Between Key Fields in a Data Record 3-22
Alternate Index Pseudo-record Block Types 3-24
Tree Structure for an Alternate Key Path with

Unique ValuesSiviiiineeesscenoonnsassscanssnnna 3-26
Tree Structure for an Alternate Key Path with

Duplicate Valuesccieevuenenannn Ceereserreas 3-28
Mask Fields Within the AXD1 Blockco00ne ceenes 3-30
Schematic of AXDl1l and Alternate Index

Root BloCKkS ...iciiieernecennoannnanans cererseeaans 3-30

Alternate Indexed Record Showing Bit Mask Suffix ... 3-31
Valid and Invalid Record Mask Suffixes for an

AXD1 PMASK ceeeestesesssssesasnsene cerecensane 3-32
HELP Processor SCreen ceseecasenens N 8~-14
Schematic oF Workstation Recordc.cveiveeecenes 11-1
A Printer File Recordcccceceeececcanes ceeeacses 13-3

Alternate Indexed File at WRITE Completion 15-6
Alternate Indexed File during BUILDALT Processing .. 15-7
Alternate Indexed File at BUILDALT Completion 15-7

Multiple Record Types in a Data File ee.. 15-8
A Block of Records Showing Multiple Record
Code CharacCters ...veeeeeecoossvonscesssossssssannss 15-9

A Block of Records Showing Multiple Record Types ... 15-10
GETPARM Screen for Input File Definition D-3
GETPARM Screen for Output File Definition D-3
GETPARM Screen for Update File Definition D-5

xv

Table
Table
Table

Table

Table
Table
Table
Table
Table
Table
Table
Table
Table

Table
Table
Table
Table
Table
Table

Table

Example
Example
Example
Example
Example
Example
Example
Example
Example

Example
Example
Example
Example

Ul?lN
N

7
w

TeTeT LTy
HN RN RN

[

[
|
N

11-3
11-4
11-5
11-6
12-1

13-1

UlU'lU'lU'I({IU"U'lU'ILﬂ
WOONAOUV W -

TABLES

Maximum Record Sizes for File and Record Types 2-1
High-level Language Support for File Types 5-2
High-level Language Support for File

Access MOdesS ..vevveenieersonenns ceceesreanes teeene 5-3
High-level Language Support for

Function Requests Ceeesee e esenann .o 5-3
READ Statements in COBOLc000. creseseesesnas 5-15
Open Exit Bit Mask Valuesccoeteeverccacnanns 6-30
Valid READ Modifiers for RAM Disk File Types 7-3
Uses of the START Modifiers for Disk Files 7-16
Hierarchy of Resources -- Non-disjunctive Holds 8-9
Disjunctive HOldScvivevreenenescnosaccnsansoanss . 8-10

BAM Function Requests and their Modifiers 10-5
PAM Function Requests and their Modifiers 10-10
Field Attribute Character (FAC) Values in

Hexadecimal and Binarycceeveeevsen cessesseanns 11-6
Order Area Byte Schemaiiveveeneenn ceeesnas . 11-12
Write Control Character Values creesenenss eess 11-13
Write Control Character Sequence of Execution 11-15
Workstation READ Function Requestscco0evune ees 11-19
Workstation Error Completion Codeseevvevvcecas 11-22
Minimum and Maximum Record Sizes for

Magnetic Tape ...ceeveveeens cieeens Ceseeceanassens .o 12-5
Printer Control Field Optionse0e.. ceesasnses 13-3

EXAMPLES

BASIC File Defining Parametersceeeceeocccses 5-4
Selecting an Alternate Indexed File in BASIC 5-5
5-6
5-9

BASIC Coding for Buffer Pooling Seessresseeneas -
COBOL Environment Division Coding Ceeeeennne -
COBOL Assignment of Permanent File NamesSc.... 5-9
COBOL Space Allocation Parameters seeessssesss 5-10
COBOL Definition of Primary Keyscc.c. O T B §

COBOL Coding for a File with Alternate Keys 5-12
COBOL Coding for Records on Different

Alternate Keys ...coiveeeenanen Ceetsressesssnseesss 5-13
PL/I ENVIRONMENT Attribute cesesans - T
Generating a User File BloCKk ...ccievcvececocossnsas 6-5
Establishing UFB Addressingcccoceoceescccccnss 6-6
Establishing a UFB Suffix Character sesasaes 6-7

xvi

Example 6-4
Example 6-5
Example 6-6
Example 6-7
Example 6-8
Example 6-9
Example 6-10
Example 6-11
Example 6-12
Example 6-13
Example 6-14
Example 6-15

Example 6-16
Example 6-17
Example 6-18
Example 6-19
Example 6-20
Example 6-21
Example 7-1

Example 7-2
Example 7-3
Example 7-4

Example 7-5

Example 7-6
Example 7-7
Example 8-1
Example 8-2
Example 8-3
Example 8-4
Example 8-5
Example 8-6
Example 8-7
Example 9-1
Example 9-2

Example 10-1
Example 10-2
Example 10-3
Example 10-4
Example 10-5
Example 10-6
Example 10-7
Example 10-8
Example 10-9
Example 10-10
Example 10-11

EXAMPLES (continued)

Use Of RECAREA 4 06000 0e0 0 e0e0 00000 se000 0000 esese0e 6-9
KEYAREA Parameter Coding for an Indexed File 6-13
ALTAREA Coding for an Alternate Indexed File 6-14

ERRAD COQInNgcevveveensonenserseenssssensessnnns 6-16
BCT (Buffer Control Table) Parameter 6-17
The AXDGEN Macroinstructioneveeveese cesseess b6-19
Establishing AXD1 Addressingceoeeveeccencens 6-19
Establishing an AXD1l Suffix Character 6-20
AXDGEN Parameters and Subparameter Groups 6-21
Use of AXDGEN Subparametersceeceeesaccccocscos 6-21

Defining Space for the AXDl of an Existing File 6-22
Establishing the AXD1 Address of an

Existing Fileciiiviiiinenransonns et ecenaas 6-23
Coding the Alternate Indexed Record Mask Bits 6-24
The OPEN Macroinstructionccccveenese Ceeeees 6-24
Use of the Output Modec.cevtiiennnncses ceees 6-26
Releasing Unused BlocKkSccivveeeeceencnsnonancas 6-27
Use of the OPEN EXITccv0uees tesssoacencenas ... 6-29
The CLOSE Macroinstruction Ceeereaaanenn 6-31
Use of Function Requests in Assembly Language 7-2
The READ HOLD Function Requestcceceuuen e 7-6
The READ REL Function Requestccceviiennnnn 7-7
The READ KEYED Function Request for a

Primary KeY .vcveveeveasecosssncacnnasen ceesesenens 7-7
The READ KEYED Function Request for an

Alternate Key ...cevvieeiiveeneannnnnnns Ceversanenn 7-8
The START SKIP Function Requestcccevuvenn 7-19
The START GT Function Request ceeeans 7-21
Holding and Releasing a Fileccc000.e cerenea 8-5
Holding and Releasing a Generic Key Group 8-7
Holding and Releasing a List of Three Items 8-12
Holding a File for Retrieval creetecsenane 8§-13
Establishing Timeout Valuesivevveeveccccssns . 8-16
Creating a Log File in Shared Mode ceeene 8-17
Creating a Log File in Output Modec00.. 8-17
Creating a Buffer POOlcoveveevnsacsorscascanesne 9-6
Two Files Sharing a Buffer Pool ctserecesnansan 9-7
BAM File Definition Parameters cesersenees 10-3
Use of the READ REL Function Request in BAM 10-6
Use of the READ NODATA Function Request in BAM 10-6
Use of the REWRITE Function Request in BAM 10-7
Use of the START IO Function Request in BAM 10-7
PAM File Definition Parameterscc... cessees 10-9
Use of the START WAIT Function Request in PAM 10-11

Use of the START EXTEND Function Request in PAM 10-12
Establishing and Releasing Buffers in PAM 10-12
Record Area Alignment in PAMcc000eveeee.. 10-13
Establishing Block Size in PAM reretevennsne 10-13

xvii

Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example

11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
12-1
12-2
D-1
D-2
D-3

EXAMPLES (continued)

A Sample Screen Record Area et ecareensans .. 11-8
Workstation File UFBGEN Codingceeevveeeens ceees 11-10
Workstation RECAREA COding ...ccevessecesccsaacenns . 11-10
Workstation RECSIZE Coding Cetesstresecnsanans 11-10
Workstation RECAREA Structureeeeeeeeecaenes 11-11
Workstation KEYAREA Codingccceeveveccnvecacssnns 11-11
Workstation OPEN and CLOSE Cetieeeesaeaes 11-11
Workstation REWRITE Codingicevveecennnnannns ve. 11-16
Workstation REWRITE SELECTED Codlng 11-16
Workstation REWRITE TABS Codingeoeeeeesoceens 11-17
Workstation READ Codingcevvvvennnn cereseaanns . 11-20
Workstation READ MOD Codingcveeesnveccacanannns 11-20
Workstation READ ALTERED COdingceeeeveesnnonoan 11-20
Workstation READ TABS Codingceeevevenveocnnes 11-21
Workstation START ATTNT Codingceevevvesneasons 11-22
A Sample UFBGEN Statement for Seven-Track Tape 12-3
A Sample UFBGEN Statement for Nine-Track Tape 12-3
Procedure for Figures D-1 and D-2 (Non-display) D-4
Procedure for Figures D-1 and D-2 (Display) D-4
Procedure for Figure D-3 Ceteereasaecanne D-5

xviii

CHAPTER 1
DMS INTRODUCTION AND OVERVIEW

1.1 INTRODUCTION

The VS Data Management System (DMS) handles the creation, I/0, and
maintenance of all data files on the Wang VS. DMS is used by user
programs and system software to access VS data files of all types. You
can specify DMS file access on the basis of either physical blocks or
logical records.

A working knowledge of the design and functions of DMS allows you to
choose the most appropriate file access methods, file storage devices,
file and record types. and file I/0 functions for an application. You
can manipulate data files using the file management utilities (CONTROL,
DATENTRY, INQUIRY, REPORT) or the EZQUERY relational query facility
without a detailed understanding of the DMS functions supporting these
utilities. However, an understanding of DMS allows you to write programs
to access data files directly, providing dgreater control, flexibility,
and efficiency in accessing data files. Since all DMS facilities are not
available through every VS language, a working knowledge of DMS can help
you select the programming language best suited to your data access
requirements.

This chapter provides an overview of the major features of DMS, and
refers you to chapters that describe each feature in detail. Terms used
throughout this manual are introduced in this chapter; they are defined
in greater depth in subsequent chapters.

1.2 DATA MANAGEMENT OVERVIEW

Figure 1-1 shows schematically how DMS relates to the other parts of
the VS system. This illustration is a logical depiction of how programs
access data files:; it does not represent the system architecture of any
particular VS computer.

A user program issues an instruction to access a file in a
programming language. The example shown in PFigure 1-1 is a Write
instruction, but all file access instructions operate in a similar
fashion. The VS treats programs running either interactively or in
background, dedicated system tasks, print tasks, and system utilities as
equivalent. Each of these supplies file definition parameters and
function request modifiers for later use by the DMS.

1-1

Interactive

User Program System
User . s EZQUERY
Program in Background Utilities
Program
Instructions

Data Management System Interface \

Function

Requests

\i
_ DMS
DMS/TX o Nucleus
X0 SvC
v
Operating System Services Interface)
\
VS
Operating
System
‘L Machine Instructions

1/0 Processor Interface)
Printer Workstation

Figure 1-1.

1-2

Screen

DMS Conceptual Overview

Sharer

DMS Interface

When the program is compiled (or assembled), the system builds file
control structures, using either supplied parameter values or system
defaults. The file definition parameters that you supply in the program
are placed in a control structure called the User File Block (UFB).
Other control structures, such as the AXDl, the user record area, and
buffer areas are also generated. These control structures act as a DMS
interface, translating program I/0 instructions into system
macroinstructions known as function requests. The DMS interface supplies
file definition parameters and function requests to the Data Management
System itself. You can interface with this 1level of functionality
directly using Assembly language.

DMS

DMS is system software, included as part of each release of the
operating system. It consists of a nucleus of routines that issue
supervisor calls (SVCs) to the CPU. The DMS nucleus performs the
following seven basic operations:

e The Open routine creates new files and locates existing files.
It requires certain file definition parameters to open a file;
you supply these to the DMS interface in various ways, including
workstation screen interaction or coding them into the user
program.

e The Close routine closes a file and releases file resources held
by the |user. It performs file housekeeping routines and
establishes values in certain control blocks for the file.

e The Read function request reads either a logical record or a
physical block of data. You can dictate how a read is to be
performed by supplying a Read modifier.

e The Write function request writes a record or a physical data
block.

e The Rewrite function request modifies a previously written record.

e The Delete function request deletes an existing relative or
indexed file record.

e The Start function request performs various pointer positioning

functions. You must supply a modifier to all Start function
requests to define the specific Start operation.

1-3

The Sharer

User programs, EZQUERY, and some utilities can indicate that a file
they are accessing should be shared, that the file should remain
accessible to other concurrent users. A user program specifies shared
processing of a file when it opens the file. If the instruction to open
the file indicates that the file is to be shared, DMS issues a message to
the Sharer. The Sharer is a dedicated system task that acts an an

intermediary for concurrent access to files. When DMS receives a
function request for access to a shared file, it issues control
instructions to the Sharer. The Sharer coordinating multiple users'

access to the file, and issues function requests back to DMS to perform
the users' file access requests. Thus, the Sharer is an ordinary task on
the system that acts as a proxy, issuing function requests for several
user programs.

DMS/TX

Instructions to access a data file are processed through the DMS/TX
transaction recovery system if the file requested is attached to a DMS/TX
database. DMS/TX maintains before image journals of updated records for
the purpose of crash recovery. It also supports multiple resource
sharing. User programs access DMS/TX files using standard DMS function
request routines. Further information on DMS/TX can be found in the VS
DMS/TX Reference.

VS Operating System and Peripherals

To perform function request operations, DMS issues internal
supervisor calls (such as the XIO SVC), and reads and writes control
block and register values within the VS Operating System. The operating
system creates buffers and initiates I/0 operations automatically to
maximize data file processing efficiency. These internal operations are
not described in this manual.

The VS operating system issues I/0O requests as machine instructions
to peripheral devices (disk and tape drives, workstation screens, and
printers) through an IOP or a similar peripherals processor. This
peripherals processor controls device specific operations and direct
memory access, thus freeing the CPU to perform other tasks.

1.3 RECORD STRUCTURE

DMS supports three record structures: fixed length, variable length,
and compressed variable length. All records in a file must be of the
same record structure. In most cases, you can select a record structure
independent of the file type. With one exception, all file types support
all record structures; the relative file type does not support compressed
records.

If a file contains fixed length records, all records in the file are
of a uniform length. Because the lengths of the file records are the
same, the number of records in each block of a consecutive or relative
file is the same, with the possible exception of the last block. The
location of a particular data record can be calculated from the record
length and the record's sequence number (the relative record number).

Variable length records are not of uniform length. Variable length
records can range in size from a single byte to an entire block. A
maximum record length is specified when the file is created; no record
written to the file can exceed this maximum record length.

DMS can compress records in variable length files. The resulting
compressed records are always of variable length. DMS performs
compression by replacing repetitive characters in a record with a
compression code that specifiés the repeating character and indicates how
many times it 1is repeated. If you select compression for a file,
compression codes are written into all records in the file, whether or
not they contain repeating characters. If a character string contains no
repeating characters, DMS inserts a code indicating that no compression
was possible for that character string. Compression is transparent to
the user program. DMS automatically compresses a record when it is
written to a file, and automatically decompresses a record when it is
read from a file.

For any record structure, the maximum size for a single record is
equal to, or slightly less than, one block (2048 bytes). Maximum record
sizes vary slightly, depending on file and record type. The longest
possible variable length record in a file is 2024 bytes. The longest
uncompressed length of a compressed record 1is also 2024 Dbytes.
Compression saves storage space; it does not allow you to store larger
records than would otherwise be allowed in a file.

1.4 FILE STRUCTURE

DMS supports three types of file structures for records: consecutive,
relative, and indexed. A consecutive file consists of consecutively
written records; the physical sequence of the records in a consecutive
file is the same as the chronological order in which those records were
written to the file. A relative file consists of consecutive records; a
relative file differs from a consecutive file in that records within a
relative file can be empty (either never written or deleted). Therefore,
you can write records in a relative file either sequentially or by
inserting a record in an empty record location ("slot") within the file.
The placement of records in an indexed file does not depend on the order
in which the records were written to the file, or upon the physical
layout of the file. Indexed records are sequenced according to the value
of a user-specified key field within each record. DMS automatically
maintains pointers to enable the logical sequence of indexed file records
to be independent of their physical locations within the file.

Consecutive files are supported on all storage devices. Relative
files and indexed files can only be created or accessed on disk storage
devices. Relative files are not supported on the VS-50 or VS-80
computers.

Consecutive files can be extended by adding additional records to the
end of the file; new records cannot be inserted within a consecutive
file. Records cannot be deleted from consecutive files. Records can be
read in a consecutive disk file either sequentially or randomly by
Relative Record Number. Consecutive files are supported for all types of
I/0 devices and are used for specialized purposes, such as printer files
and system-maintained journals. See Chapter 6 for details on accessing
records in consecutive files.

Relative files contain sequential, fixed length record slots. A slot
may either contain a record, or it may be empty. You can insert a record
within a relative file if there is an empty slot at the desired insertion
location. You can also extend a relative file by adding additional
records to the end of the file. Records can be deleted from relative
files, but the deletion of a record does not reduce the size of the file;
it creates an empty slot. You can access records in a relative disk file
either sequentially or by relative record number. Relative files are
supported on disk only for Operating System Release 6.20 and all
subsequent releases. See Chapter 6 for details on accessing records in
relative files.

Indexed files contain two distinct types of blocks: blocks containing
the actual data records, and index blocks. Index blocks contain entries
that are used to locate data records randomly by a user-specified field
value. This access field within the data record is known as a key.

All records in an indexed file contain a key field known as the
primary key. DMS places data records into indexed file data blocks in
ascending order by primary key value. DMS links indexed file data blocks
together in ascending order by the primary key values contained within
each block, so the logical sequence of records is not dependent upon the
physical sequence of data blocks. When you add a record to an indexed
file, DMS places the record in a block in primary key sequence and, if
necessary, modifies pointer values to sequence the new record in the file
according to its primary key value. Records in an indexed file can be
updated and deleted. Indexed file records can be read either randomly by
key value or sequentially by ascending primary key value.

DMS provides two types of indexed files: primary indexed files, and
alternate indexed files. An alternate indexed file is a primary indexed
file with additional indices. Unless otherwise specified in this manual,
any feature of a primary indexed file is also a feature of an alternate
indexed file. Records in both types of files can be read randomly by a
unique primary key value. Records in alternate indexed files can also be
located by up to 16 additional key fields, called alternate keys. Unlike
primary key values, alternate key values do not have to be unique.

1-6

Refer to Chapter 3 for the structure of primary and alternate key
files. Chapters 5 and 6 describe how the wuser defines key fields.
Chapter 7 describes how a program can be coded for accessing records
randomly by key value.

1.5 FILE STORAGE DEVICES

The most powerful and flexible DMS support is available for data
files stored on disk. DMS supports sequential file access, random file
access by relative record or block number, and random file access by
record key values for files stored on disk. DMS provides facilities for
multiple users to share data files on disk. Disk is the preferred DMS
storage medium and is the device class default. Disks are not, however,
the only device class DMS supports. Others include:

WORKSTATIONS DMS provides interactive access of workstation files.
DMS views a workstation screen display as a consecutive
data file containing a single 1924-byte record. Special
purpose functions are provided for screen definition, and
for reading and writing to the workstation screen. See
Chapter 11.

MAGNETIC TAPE DMS supports data file access to data stored on 7- or
9-track magnetic tape reels, or Wang magnetic tape
cartridges. Tape is a consecutive storage medium; all
tape access 1is performed sequentially. Tape can be
accessed under Record Access Method (RAM), Block Access
Method (BAM), or Physical Access Method (PAM) in data
transfer units of up to 32K bytes -- far larger than the
2K bytes maximum record and block sizes for disk files.
See Chapter 12.

PRINTERS DMS can write data directly to a printer. Printer files
can be output directly to a printer or stored on disk.
These consecutive files require special coding for their
target device. The special coding requirements for print
files, program files, and word processing files are
described in Chapter 13.

1.6 ACCESS METHODS

DMS supports three data file access methods: Record Access Method
(RAM), Block Access Method (BAM) and Physical Access Method (PAM). RAM
is the most commonly used of these, and is the default. RAM accesses
data by a file's logical records; that is, records whose length and other
characteristics you defined when you created the file. Most of the
functions described in this manual are used for accessing logical records
within data files using RAM,

1-7

BAM and PAM provide faster and more flexible methods of transferring
physical units of data. BAM is used to access 2K blocks of data, one
block at a time; PAM allows a more flexible access of 2K data blocks,
permitting multiple-block transfers, wuser-designed buffering, and
asynchronous processing. Further information on access methods is
covered in Chapter 10.

1.7 RUNTIME ASSIGNMENT

To create or access a data file, the user program must first open the
file. Files are opened by invoking the Open routine; a file cannot be
opened unless you supply certain file definition parameters to the Open
routine. How the file definition parameters are coded and what their
values should be are described in Chapter 4 and subsequent chapters.
This section describes how to supply file definition parameters to the
Open routine and what operations the Open routine performs.

Prior to performing an Open operation, you must supply the Open
routine with certain items of information necessary to either create a
new file or locate an existing file. You can supply these file
definition parameters to the Open routine in the following ways:

¢ Compiled as program statements
e Stored as the user's default parameters
¢ Provided by PUTPARMs as each file is opened

File definition parameters include the file, 1library, and volume
names, the record and file size, and other parameters. When you create a
file, you supply certain file definition parameter values to the compiler
(or assembler), which stores these values in an area addressed by the
Open routine. If you do not specify a value, some file definition
parameters take a system default; others take a default value established
for the user :unning the program. When you access an existing file, DMS
retrieves most of the file definition parameter values from the file
directory and places them in an area addressed by the Open routine. A
few file definition parameters must be specified for both new and
existing files. When the information necessary to open a file is not
found either in the program, the directory, the system defaults or the
user defaults, the Open routine issues a GETPARM.

An Open GETPARM is a request by the system for information; a GETPARM
searches for a corresponding PUTPARM. If the appropriate parameter value
is found, the GETPARM supplies it to the Open routine. First the GETPARM
checks the program's Procedure language instructions. If the appropriate
PUTPARM has not been stored as a procedure statement, the GETPARM routine
displays a GETPARM screen, requesting the user to supply parameters by
typing them at the workstation.

When an Open routine creates a disk file, it uses file definition
parameters to calculate the amount of space to be allocated to the new
file. This primary allocation is usually composed of a single extent
(i.e., a group of physically contiguous blocks of disk space). As file
updates add more data to an existing file, the system automatically
enlarges the file as needed by adding additional extents to the file.

Under normal conditions, a program terminates processing of a data
file by closing the file. When a program issues a command to close a
file, DMS releases all system resources associated with that file, thus
making them available to other programs. In closing a file, DMS also
updates system information about the file. 1In this way, DMS preserves
system integrity and the future accessibility to that file.

1.8 DMS AND DMS/TX

DMS/TX 1is available to users of Operating System Release 6.10 and
subsequent releases. It is an optional feature for DMS indexed disk
files that is invoked by the DMS nucleus as part of the Open operation,
as shown in Figure 1-1. If you specify DMS/TX support for an indexed
file, the system will provide all programs accessing that £file with
DMS/TX functionality.

DMS/TX allows you to group updates to several records into a
transaction. A transaction 1is either fully applied or not applied at
all. If a transaction cannot be fully applied, DMS/TX reverses any
updates performed during that transaction. This '"rollback recovery"
preserves data consistency between files in the event of a system or
program crash.

DMS/TX also enables each user to incrementally claim multiple records
as needed by the user program, and to hold these records for the duration
of a transaction. The multiple resource sharing provided by DMS/TX is
superior to that provided by DMS extension rights. While the VS will
continue to support DMS extension rights, you are encouraged to code all
programs that hold multiple resources in DMS/TX format. You should also
convert DMS programs that use extension rights to DMS/TX format at your
earliest convenience.

You use the same function requests to access DMS and DMS/TX files.
The internal execution of these function requests differs somewhat due to
the grouping of file updates into transactions by DMS/TX. For example, a
Rewrite function request does not release the rewritten record under
DMS/TX. DMS/TX provides additional instructions to define transactions.
For efficient processing, the user should include transaction definition
instructions in all programs that update DMS/TX files.

Unless otherwise specified, all information in this manual applies to
both DMS files and DMS/TX files. For further details on DMS/TX, refer to
the VS DMS/TX Reference.

1-9

PART I

Data Representation

CHAPTER 2
DATA RECORD STRUCTURE

2.1 INTRODUCTION -- SELECTING A RECORD STRUCTURE

The DMS Record Access Method (RAM) enables you to define logical
records within a data file. This chapter describes the available record
types, the internal structure of logical records, and their size and
placement within physical blocks. The structuring of records into files
is described in Chapter 3. Program access to records in disk files is
described in Chapters 4 through 7. Workstation, magnetic tape, and
printer records are described in Chapters 11, 12, and 13 respectively.
Multiple record types are discussed in Chapter 15.

VS DMS supports three types of record structure: fixed length,
variable length, and variable 1length compressed. All fixed length
records are allotted the same amount of space in a block. Variable
length records can vary in size, based on the record's contents, from one
byte up to 2024 bytes. You assign a maximum record length for a variable
record file when the file is created. Compressed records are variable
length records in which space is conserved by representing repeating
characters with a compression code.

For any record structure, the maximum size for a single record is
equal to or less than one block (2048 bytes). Maximum record sizes vary
slightly, depending on file and record type, as shown below:

Table 2-1. Maximum Record Sizes for File and Record Types
Record Type File Type Max. Record Size Total of All Records
Fixed length Consecutive 2048 bytes 2048 bytes
Variable length Consecutive 2024 bytes 2024 bytes
Fixed length Relative 2040 bytes 2044 bytes
Variable length Relative 2040 bytes 2040 bytes
Fixed length Indexed 2040 bytes 2043 bytes
Variable length Indexed 2024 bytes 2024 bytes

2-1

As shown in Table 2-1, the total of the record lengths in a single
block can, in some cases, be greater than the size of the largest single
record. For example, the largest permitted indexed file record is 2040
bytes. However, if you write multiple indexed records, DMS will block
these records to allow the combined length of several fixed length
records to be as large as 2043 bytes.

All three record structures are supported in consecutive and indexed
files. Relative files support fixed length and variable length records;
compressed records are not supported for relative files. Fixed length
record structure is the default for all file types. Variable length
record structure is most advantageous when a data file is to contain
several different record formats with widely differing record sizes. For
example, you should establish a variable record structure for a file
containing 100-character records and 200-character records. Record
compression is recommended when records are expected to contain frequent
strings of blanks or other filler characters, or when the nature of the
data makes frequent repetitions of a single character common.

You should decide which structure is most appropriate for the length
and contents of the records when you first create the file. When you add
records to an existing file, DMS stores the added records with the same
record structure as the records already in the file. DMS permits records
of only one structure in a given data file. You define a file's record
structure with file definition parameters, which DMS supplies to the Open
operation when DMS initially creates the file. The record type is
preserved as a permanent attribute of the file, and DMS automatically
formats all records written to the file into the proper record type
format. Records that cannot be formatted into the file's record type
(e.g., records of the wrong length) are not written to the file. To
modify the record structure of an existing file, use the COPY utility to
make a copy of the file with the record structure specified by the LENGTH
and COMPRESS fields of the utility.

2.2 FIXED LENGTH RECORDS

All fixed length records in a file have the same length, which cannot
exceed 2048 characters in a consecutive file, 2040 characters in a
relative file or an indexed file. You define the record length when you
create the file. This record length is permanently stored in the Volume
Table of Contents (VTOC). All subsequent Write operations to the file
assume that record length.

DMS enlarges fixed length records in relative files by a two-byte
record length indicator. These bytes are located at the beginning of
each record; their function is described in Chapter 3.

DMS does not support records spanning a block; if an entire record
does not fit into a block, DMS places the record into the next block.
DMS places as many complete records as possible in the block, and the
remaining disk space in that block is left unused. This results in the
same amount of unused space at the end of each block of the file that
contains fixed length data records.

As an example, consider a file created by a zookeeper to keep track
of the animals in the local Zoological Park. The zookeeper creates one
record for each species of animal, giving its name, diet, habitat, etc.
Because the same data items must be maintained for every animal in the
z00, the zookeeper stores the data as fixed length records. Each record
is 80 bytes in length, and there are 26 records to be placed in the
file. The records are stored in 2048-byte (2K) physical blocks. If 2048
is divided by the record length of 80, a quotient of 25 results, with a
remainder of 48. Therefore, DMS can store the first 25 records of the
file in the first block. When the 26th record is stored, since it cannot
fit in the first block (only 48 bytes are left), DMS allocates a second
block. The 26th record is stored in the first 80 bytes of the second
block. The last 48 bytes of the first block are unusable. The remaining
space in the second block can only be used for additional 80-byte records
belonging to this file.

File blocks in a consecutive file or a relative file are shown in
Figure 2-1. Records in indexed file data blocks are identical, except
for the presence of a block length prefix at the beginning of each block
and a data link pointer at the end of each block.

Block 0
Record Record Rec Record unused
1 2 3 25 48 bytes
80 bytes 80 bytes 80 by 80 bytes
Block 1
Record
26 unused unused
80 bytes

Figure 2-1, Two Data Blocks Containing Fixed Length Records

To minimize unused space in a file, it 1is important, especially with
large records, to establish a record length equal to, or slightly less
than a factor of 2048 for consecutive files, 2044 for relative files, or
2043 for indexed files. For example, records of 1024 bytes are stored
two per block in a consecutive file with no wasted space. Adding a
single byte to the record 1length, making it 1025 bytes, doubles the
number of blocks required for the file. Records of lengths that result
in substantial wasted space per block should be restructured or created
as variable length compressed records.

NOTE

DMS assigns all alternate indexed records two additional
mask bytes per record. This should be considered when you
attempt to optimize record lengths. See Chapter 3 for the
function of these mask bytes.

The uniform length of fixed length records makes random access of
consecutive and relative files efficient. However, it limits the file to
a single record length format, and can result in a significant waste of
space if the data records contain many repeating characters or trailing
blanks. It 1is difficult to enlarge fixed length records, because to
enlarge a single record, you must enlarge every record in the file. 1In
many cases, the user may prefer to use variable length records.

2.3 VARIABLE LENGTH RECORDS

When the difference between a file's shortest and longest record
lengths is significant, you should create a file of variable length
records. You can conserve considerable storage space in consecutive or
indexed files by specifying variable length records. You can specify
variable 1length records for relative files as well, but because these
records are written into fixed length slots, no storage space is saved.

Variable length records both save space and simplify data entry. For
example, our 2zookeeper wishes to a maintain a medical history of each
animal, in which specific additional fields are added to an animal's
record each time the animal is treated by a veterinarian. The zookeeper
initially creates the file as a relative or indexed file with variable
length records. Making the length of the records variable eliminates the
need to add trailing blanks to records to make them all equal in length.

Due to the nature of consecutive files, you cannot rewrite a variable
length record with a record longer than the original record. In relative
and indexed files, you can rewrite a variable length record with a longer
record, if the new record is not longer than the maximum record size you
selected when you created the file.

2.3.1 Record Length Indicator

Variable length records can be up to 2024 bytes in length. The user
must specify a maximum record length less than or equal to 2024 when
creating a file with variable length records. DMS prefixes each record
written to a data block with a 2-byte record length indicator (RL), the
value of which is equal to the length of the record plus the two bytes of

2-4

the indicator. For example, an 80-byte record would have a record length
indicator with a wvalue of 82. When DMS accesses a record, it first
examines the record length indicator then moves the record without the
record length indicator to a work area, known as the user record area,
provided by the user program.

Relative file records expand the function of this record 1length
indicator by requiring record length indicators for both fixed length and
variable length records, and by allowing two indicator wvalues not
permitted for other file structures. A record length indicator with a
value of 2 1indicates the presence of a record with a length of zero.
That is, a reserved record slot containing no data. A record length
indicator with a value of 0 denotes an empty record slot that is
available for use.

2.3.2 Block Length Indicator

Several file and record types begin each block with a 2-byte block
length indicator (BL) that indicates the current length in bytes of the
contents of the block. Indexed file blocks that contain fixed length
records begin with a block length indicator. Consecutive and indexed
file blocks that contain variable length records begin with a block
length indicator. The value of a block length indicator is the total
length of all the records in the block, plus two bytes for the block
length indicator itself. For variable length records, the total length
of all the records in the block is the sum of all the record 1length
indicators. As in the case of fixed length records, unused space may
exist at the end of a block of variable length records. If the next
record cannot fit into the remaining space in the block, that space is
left unused and another data block is allocated.

Relative file blocks do not contain a block length indicator. The
data block format for variable length records in consecutive files and
indexed files is illustrated in Figure 2-2. This figure does not show
the Data Link Pointer (DLP) field found at the end of indexed data
blocks, and the 2-byte mask field appended to all alternate indexed
records. See Chapter 3 for an explanation of these fields.

L5 | 2= v o

g2 [82 Record 1 g2 Record 2 82 Record 3 unused
- Q [T D Q [

<5 | ®s g

92 § o Record 4 § o Record 5 unused
8 |3 3

Figure 2-2. Two Data Blocks Containing Variable Length Records

2.3.3 Processing Variable Length Record Files

Sequential processing of variable length records is not as rapid as
the processing of fixed length records because DMS must locate and read
each record length indicator. Because all relative records contain a
record length indicator, there should be no difference in relative file
performance in processing records with these two structures.

You can update variable 1length records in consecutive files by
rewriting an existing record if the original record was not compressed
and the new record is the same length as the original record. These
restrictions do not apply to relative files or indexed files.

You can expand variable length records in indexed files after
creating them by adding new fields or enlarging existing ones. If future
file expansion is likely for an indexed file, you should initially block
the file to allow for expansion, by using a data packing density of less
than 100%. For example, if the packing density is set at 50%, DMS uses
only half of each block for the initial writing of records; it retains
the other half of the block to provide room for expansion of the block's
records or for additional records. Packing density 1is described in
greater detail in Chapter 9.

2.3.4 Longest Anticipated Record

Variable length record processing requires specifying two record
lengths: the longest anticipated record length for all file records, and
the actual length for each record in the file. The longest anticipated
record length serves as a maximum length for records written to the
file. The user program specifies the longest anticipated record length
as the record length parameter when the file is created. DMS saves this
parameter value as a permanent attribute of the file.

The program must also indicate the length of each individual record.
Before a program that creates variable record writes each record, it must
place the length of that record in the record length parameter field.
DMS then compares the longest anticipated record length with the length
of the current record. Records longer than the 1longest anticipated
record length are not written to the file.

When a record exceeding the longest anticipated record length is
input, DMS returns a file status code indicating this condition (File
Status '97' or '84'), and checks for the presence of an error routine in
the user program. This user-supplied error routine specifies what
happens to the input record and the data file. If the program does not
provide an error routine, a fatal error cancels the program and closes
all open files. Error routines are described in greater detail in
Chapter 14.

2.3.5 Primary Disk Space Allocation for Variable Length Record Files

DMS assigns disk space based on the number of records to be written,
and the record length specified when the file is created. This disk
space assignment is known as the primary allocation. To assign disk
space for fixed length records, or for variable records in relative files
(which are stored in fixed length record slots) DMS performs a simple
calculation based on the record length and the number of records.

However, because DMS cannot know the actual record lengths of
variable records in consecutive or indexed files until the records are
written to the file, it computes the length of the primary allocation
based on the 1longest anticipated record length. If the difference
between the longest record and the average record is significant, DMS may
allocate more disk space than is needed for the file. This extra space
can be released when the file is created by specifying RELEASE=YES on the
GETPARM screen used to define that file (see Chapter 6). If enlargement
of the file is anticipated, it may be desirable to retain these extra
blocks, rather than releasing them.

2-17

2.4 COMPRESSED RECORDS

You have the option of selecting record compression when creating a
consecutive or indexed file containing variable length records. Records
in relative files cannot be compressed. Selecting record compression
causes DMS to compress the contents of all records placed in the data
file by representing strings of repeating characters with a compression
code. This option c¢an result 1in greatly reduced file storage
requirements; the actual space saved is dependent on the contents of the
records. If the variable length records contain numerous repeating
blanks or characters, you should select compression.

Compression can speed data transfer. A compressed file can often
contain more records per block than an uncompressed file containing the
same data. Because fewer blocks means that fewer I/0 operations are
required to read a file, compression can significantly speed throughput
when records are processed consecutively. Transmission time for VS to VS
telecommunications can in many cases be significantly reduced by the use
of compressed records. Telecommunication emulation (2780, 3780, TTY) is
not affected by file compression because files are uncompressed prior to
emulation conversion.

NOTE

Compression does not invariably result in shorter records.
If a file's records contain few repeating characters,
compressed records can actually be 1longer than the
corresponding fixed length records. Use the COPY utility to
create a compressed version of a file for comparison.

Generally, the records most amenable to compression contain fields
with many blanks or zeros. A workstation screen image, for example, is
usually a 1924-byte fixed length record, and most of those bytes are
blanks. In order to facilitate displaying of workstation screens, DMS
does not compress screen images. However, a user program that copies
screen images to a disk or tape file would function more efficiently as a
compressed file than as a file with 1924-byte fixed length records. When
DMS stores print records on disk, they are always compressed.

2.4.1 Compressed File Processing

You specify compression as a file definition parameter when you
initially create the file. Any file you designate as compressed must
also be specified as containing variable length records. All records in
a compressed data file undergo compression processing, even if no
repeating characters appear in the record.

2-8

DMS performs compression when data is written into a data file buffer
block, and expansion as a record is read from a buffer block to the
record area defined by the program. The actual compression processing is
performed by the COMP and XPAND machine instructions. (Refer to the
VS Principles of Operation, Chapter 7, for further details.)

The largest uncompressed size of a record to be compressed is 2024
bytes. DMS imposes this limit on the size of the uncompressed record to
avoid overflowing a file block. In a worst case situation, compression
of a 2024-byte record could result in the actual enlargement of the
record to greater than 2024 bytes, due to the inclusion of compression
codes. Although compression generally reduces the space requirements of
a record by 25% to 50%, this reduction cannot be assumed for every record
in a data file. Compression cannot be used to create records larger than
the size of a block. Compression generally results in more records
stored in each block than in the corresponding uncompressed file.

2.4.2 Block Structure of Compressed Records

Compressed records have the same block format as variable length
records. The record length prefix to each record contains the compressed
length of the record: that is, the actual space it occupies in the
block. DMS determines the uncompressed length of a record as it performs
a Read operation on the record. DMS places the uncompressed length of
the current record in the file's RECSIZE parameter field.

DMS only compresses data; the Record Length (RL) and Block Length
(BL) indicator bytes are never compressed; nor are alternate index masks,
data link pointers, and index blocks. Primary and alternate index keys
are compressed in data records but not in index blocks.

2.4.3 The Compression Code

Compression causes any string of 3 to 128 repeating characters to be

stored as a compression code. DMS automatically inserts these
compression codes into the contents of the data record, replacing
repeating characters. DMS performs this operation on data records

individually, before the data records are written to a data file block.
As a consequence, record length and block length indicators are never
compressed; the first character of a compressed record after the record
length indicator is the first compression code byte.

The compression code consists of a compression byte followed by a
character byte. The compression byte specifies whether or not, and for
how many bytes, compression is to occur. The high order bit of the
compression byte contains either a Binary 1 for compression or a Binary O
for no compression. This bit effectively turns compression on or off for
the number of bytes (up to 128) specified by the other seven bits of the
compression byte. In hexadecimal, a wvalue of 80 or more indicates
compression.

The seven low order bits of the compression byte contain the number
of character repetitions. This number is equal to one less than the
number of instances of the repeating character in the uncompressed
string. Seven bits can contain an integer up to 127; therefore, a
compression byte can indicate the compression (or non-compression) of up
to 128 characters. Any string longer than 128 characters requires
additional compression codes.

The character byte appears immediately after the compression byte.
The character byte value is the repeating character. This byte can take
any value, including a blank or an undisplayable character. Compression
is not limited to the ASCII character set; any repeating byte wvalue can
be compressed.

The character byte is not included in the repetition count of the
compression byte. For example, a string of six "R"s is represented as a
compression byte with a repetition count of five followed by the repeated
character byte. This is represented in hexadecimal as follows:

hex '52 52 52 52 52 52' compresses to hex '85 52'

2.4.4 Character Strings not Requiring Compression

All character strings in a compressed record are delineated by
compression codes. When a character string in a compressed record does
not contain three consecutive repeating characters no compression is
performed on the string. However, the string must still have a
compression byte indicating the beginning and 1length of the
non-compressed string. The first bit of the compression byte is set to
zero, indicating no compression. The seven compression count bits
indicate the number of characters (minus 1) that do not require
compression. The uncompressed character string follows the compression
byte.

WXYZ = hex '57 58 59 5A' compresses to hex '03 57 58 59 5A!

If the system encounters a string of more than 128 non-compressible
characters, it must insert a second compression code after 128 characters
indicating further non-compression. The number of repetitions specified
by the compression count is one less than the number of uncompressed
characters in the string. If an entire record contains no compressible
character strings, it must still contain a compression code every 128
characters. Thus, a compressed record can be longer than the same record
in fixed length format.

2.4.5 Locating and Interpreting Compression Codes

If it is necessary to inspect a block of compressed data, compression
codes within a record can be located by sequentially interpreting each
compression code from the start of the record, and counting the number of
characters represented in the compression count. The location of

2-10

compression codes
reliably be located by its value.

should be calculated; a compression code cannot

As an example of reading compression

codes, a record containing the character string "GRRRRRREAT" is
represented in compressed hexadecimal format as shown in Figure 2-3.
00 47 85 52 02 45 41 54
no compression “G" compress “R" no compression “E" “A" T
Figure 2-3. Hexadecimal Representation of

The compressed string shown in Figure 2-3 can be

a Compressed Character String

interpreted as

follows:

Byte

Value Explanation

00 The 0 in this character's high-order bit denotes that the string

that follows is uncompressed. The zeros in the remaining seven
bits denote the length of the uncompressed string as 1 character
(the repetition count of 0, plus 1). Therefore, the next
compression code should be the third character of the string.

The l-character uncompressed string has a value of "G".

This byte indicates compression, because the high-order half byte
has a value of eight or greater (the high-order bit is set). The
seven low-order bits of the byte give the repetition count: 000
0101, or 5 in decimal. Therefore, the character in the following
byte is repeated 5 times.

In uncompressed format this character ("R") would appear six
times -- an initial appearance and five repetitions as specified
in the preceding byte.

This byte indicates non-compression, since the high-order bit is
a zero. The seven low-order bits indicate one less than the
total non-compressed characters that follow in this case a
value of 2, indicating that three uncompressed characters follow.

This byte contains the character "E".
This byte contains the character "A".

This byte contains the character "T".

2-11

2.4.6 Compression Recommendations

The compression option is clearly useful for files in which there are
many repeating data characters. However, in files in which there are no
or very few repeating characters, compression may not significantly
reduce storage requirements, due to the presence of the compression
bytes. In fact, the compression option may cause a file to be larger
than it would be without record compression, because in a compressed
record each uncompressible string adds a byte to the length of the
record. It is therefore a good idea to compare the compressed and
uncompressed lengths of sample file data before selecting compression.
This can be done using the COPY utility.

2-12

CHAPTER 3
FILE STRUCTURE

3.1 OQOVERVIEW

DMS stores records on disk in data files with consecutive, relative,
or indexed file structure. Indexed data files are further divided into
two types: primary indexed files and alternate indexed files. You can
store records of any structure in any type of file, with the exception
that compressed records cannot be stored in a relative file. You should
select the file structure best suited for your particular application.
You can choose any of the following DMS file structures:

Consecutive Allows you to access records sequentially, and read fixed
length records on disk directly by record sequence
number. Records can only be added at the end of the
file, and <cannot be deleted. This structure is
appropriate for most data entry and batch update
applications, and is the only file organization that is
supported for all device types.

Relative Allows you to access records either sequentially or
directly by record sequence number. You can add or
delete records within a relative file. However, you must
preallocate space for adding records; deleting records
does not reduce the size of the file. You should choose
a relative file structure if speed of access and the
ability to modify and delete existing records is a major
consideration. Relative files are only supported on
disk. Relative files are not supported on the VS-50 or
VS-80 computers.

Primary Allows you to access records through a key field that

Indexed contains unique data values. This structure supports
sequential record retrieval, and rapid non-sequential
retrieval of single records from disk files by key
value. You can add, update, or delete records by
specifying the primary key value of the desired record.

3-1

Alternate Offers all of the features of primary indexed files, as
Indexed well as allowing non-sequential record access by up to 16
alternate key fields. Thus, you can establish several
fields within each record for record retrieval by the
value of the data in those fields. Unlike the primary
key field, these alternate key fields can contain
duplicate data values. Alternate indexed files are well
suited to interactive data retrieval from disk data files.

This chapter describes consecutive, relative, indexed, and alternate
indexed file structures in detail. Using this chapter and the DISPLAY
utility, you should be able to identify the file structure of a data
file, and 1locate the different types of blocks, pointers, length
indicators and keys in a data file. This chapter does not describe how
to create and access a data file of a particular structure. Material on
RAM disk file creation and access is found in Chapters 4 through 7.
Magnetic tape file access is described in Chapter 12.

3.2 CONSECUTIVE FILES

Consecutive disk files consist of sequential data records:; that is,
records stored in the order in which they are created. DMS supports both
sequential and random access (also known as direct access) for sequential
record retrieval. When reading sequentially, a program reads records in
the file in the order written. Random access allows the program to read
(using a read relative statement) a particular record in a consecutive
file by specifying that record's sequence number (record sequence numbers
start with 1),

Consecutive file structure is the default when creating a file. It
is the only file type that can be accessed from magnetic tape. Log
files, workstation screen files, and printer files use the consecutive
file structure. DMS supports sequential access for all device types:; DMS
only supports random access for consecutive files on disk.

Updating records in a consecutive file is limited in several
respects. You can modify fixed length records in consecutive disk files
by locating and overwriting individual records within the file.
Modification of variable length records on disk is supported if the
record length is not changed by the modification; modification of
compressed records is not supported. Record modification is not
supported for magnetic tape files. Records cannot be deleted from
consecutive files.

You can process consecutive files wusing all three file access
methods: RAM, BAM, and PAM (see Chapter 10). Each of these access
methods supports several processing modes and function requests (see
Chapters 6 and 7). These features make consecutive files particularly
well suited to such applications as transaction recording, in which
records are stored sequentially in the transaction file and then sorted
into the master file.

3.2.1 Space Allocation for Consecutive Disk Files

When you create a consecutive file on disk, DMS uses the record
length and the estimated number of records to calculate the file's
initial space requirement. This space requirement is called the primary
allocation. The primary allocation can be as large as three extents. an
extent is a group of physically contiguous 2K-byte blocks on disk. If
you extend a file so that it exceeds the primary allocation, DMS
automatically assigns additional extents as needed up to a maximum of
thirteen. Each additional extent is approximately half the size of the
primary allocation. Because the number of extents in the primary
allocation depends on the sizes of available extents on a disk, the same
consecutive file may require a different number of extents when copied
onto another disk pack. If DMS has allocated thirteen extents to a data
file, and further file space is required, DMS terminates the operation
requesting additional space with a file status code 34 (boundary
violation condition).

You can extend a consecutive file by opening the file in Extend

mode. Extension can enlarge a consecutive file up to a maximum of
thirteen extents. This is approximately six times the length of the
original file, if the primary allocation was a single extent. (See

Chapter 6 for an explanation of Extend mode.)

3.2.2 Buffering for Consecutive Files

DMS writes records into consecutive files by moving the records into
a main memory buffer, then copying the buffer block to the file. DMS
moves each record individually from the user record area to the user
buffer. When a block of records has accumulated in the buffer, DMS
copies the buffer block to the file as a single unit.

You can set the size of this buffer to any multiple of 2K bytes up to
18K bytes. Because using a larger buffer block reduces the number of
physical I/0 (XIO) operations, the use of a large buffer can speed record
retrieval for consecutive files. Refer to Chapter 9, Efficiency
Considerations.

3.3 RELATIVE FILES

A relative file is in many respects similar to a consecutive file. A
relative file consists of sequential records for which DMS supports both
sequential and direct access. When reading sequentially, a program reads
the data records in the file in the order of their physical seqguence in
the file. Direct access allows the program to access a particular record
in a relative file by specifying that record's sequence number (record
sequence numbers start with 1).

3-3

The principal difference between consecutive files and relative files
is that in a relative file the space for a record can be created without
actually placing any data in that record space. You can, subsequently,
use these empty record slots as places to insert records within a
relative file.

Because access of records in a relative file is direct, any record in
the file can be accessed in a single I/0 operation. This makes relative
files an extremely efficient file structure for random retrieval of data
records. You can process relative files using all three file access
methods: RAM, BAM, and PAM (see Chapter 10).

All record slots in a relative file are of fixed length. The length
of the data within the record slot can be variable, from zero bytes up to
the maximum record size. The first two bytes of every record slot are a
system—-generated record 1length field which DMS uses to determine if a
slot is empty or if it contains a record. Figure 3-1 shows a relative
file containing variable length records.

00 28 ABCDEFGH 02 00 05 ABC
IJKLMNOPQR
STUVWXYZ

Figure 3-1. Relative File Structure

In the relative file shown in Figure 3-1, relative records number 1
and 4 are empty record slots (record length = 00). Relative record
numbers 2 and 5 contain variable length records. The record 1length
indicates the 1length of the data plus the two-byte record 1length
indicator. Relative record number 3 is a zero-length record. The record
length indicator shows that a record is present, but that record consists
of only the two-byte record length indicator.

When reading a relative file sequentially, DMS skips over empty
record slots, and only reads actual data records. When accessing a
relative file directly, you can read, rewrite, and delete records in
record slots that already contain data. You can write a record to a
relative file by placing it in an empty record slot, or write the record
to the end of the file.

If the relative file contains variable length records, you can modify
a record by locating and overwriting the record with a record of equal,
greater, or lesser length, as long as the record length is not greater
than the maximum record length for the file. Compressed records are not
supported. Records can be deleted from relative files; deleting a record
leaves an empty record slot available for the addition of a new record.

3-4

3.4 INDEXED FILES

Indexed disk files are of particular importance to the programmer,
because records in an indexed file can be accessed either sequentially or
randomly by a key field. These methods provide you with the flexibility
to tailor record retrieval to the application. DMS performs random
access to an indexed file by using a key field within each record; it
locates a particular key value by means of a tree of index blocks. The
use of a keyed structure enables you to rapidly retrieve individual data
records without knowing their physical locations within the file.

You can update indexed files on disk by inserting new records between
existing records without regard for the physical layout of the file. 1In
addition, you can delete records from indexed files. These features make
indexed file structure especially appropriate for frequently updated disk
data files.

Indexed files require greater disk space than consecutive files, and
offer no advantage in speed of access when read sequentially. Therefore,
you should establish files as consecutive or relative, unless there is a
specific reason for making them indexed.

3.4.1 Data Block Structure for Indexed Files

There are two types of indexed files, primary indexed and alternate
indexed. Alternate indexed files have all the structural features of
primary indexed files, along with some additional features. This section
describes the structure of a primary indexed file, illustrating those
features common to all indexed files.

Indexed disk files consist of two types of 2K blocks: data blocks and
index blocks. The majority of the blocks in an indexed file are data
blocks that contain the actual data records. DMS maintains a pointer to
the first data block of an indexed file. The first data block in a
primary indexed file is usually, although not always, Relative Block zero.

One or more index blocks are found in every indexed file. DMS
initially places these index blocks in the center of the first extent.
DMS uses these blocks for keyed access to records in data blocks. Index
blocks are only used for random access of individual records: they are
not used for sequential file access.

NOTE

If a file has been formatted for DMS/TX processing, the
first two blocks of the file are File Recovery Blocks. File
Recovery Blocks are user-transparent, and are ignored by
user programs and utilities such as DISPLAY. These blocks
are described in the VS DMS/TX Reference.

3-5

All blocks

indicator.

well as variable length record data blocks,

in

indexed files

begin with a 2-byte

block 1length

DMS creates this block length indicator for fixed length as

and for all

index blocks.

The value of this indicator contains the number of bytes of information

within the
indicator.

block,

including the 2 bytes occupied by the block length

The last three bytes of every block (bytes 2046-2048, counting from

1

logically consecutive block.

the next record in ascending primary key sequence.
relative block number field is called the Data Link Pointer (DLP).
index blocks, the logically sequential block is the next index block in

ascending primary key sequence that
The index block pointer at the end of each index block
The final block in each sequence

structure.

called the Key Link Pointer

contains high values (hex

(KLP) .

For data blocks,

FFFFFF) in its last three bytes.
file tree structure, showing link pointer values is shown in Figure 3-2.

in an indexed file contain the relative block number of the next
A logically consecutive data block contains

this
For

is on the same level of the tree

is

An indexed

Index block structure and function are described in greater detail in
later sections of this chapter.
Block 6
Index Blocks: Root
Index Block
FFF
Block 3 Block 4 Block 5
Index Index Index
Block Block Block
004 005 FFF
Data Blocks:
Block 0 Block 1 Block 2 Block 7 Block 8 Block 9
Data Data Data Data Data Data
Block Block Block Block Block Block
001 002 007 008 009 FFF
Figure 3-2. Indexed File Showing DLP and KLP Values

3.4.2 Sequential Access of Indexed Files

You can access

indexed files sequentially by opening the file and
The address of the first data block is located

issuing read statements.

in the FDR1 record of the disk's Volume Table Of Contents (VTQOC), and all

subsequent data blocks are

linked together by three-byte data

pointers (DLP) at the end of each data block, as shown in Figure 3-2.

3-6

link

You can initiate sequential access at any record within the file by
specifying a key value with which to begin sequential access. DMS
locates the first record by key value; subsequent Read operations locate
records sequentially from that point using the data link pointers. For
more information on the Read function request consult Chapters 5 and 7.

DMS carries out sequential access of an indexed file by wusing the
data link pointer at the end of each data block to locate the next
logically sequential data block. It does not necessarily store logically
sequential data blocks as physically sequential blocks, because index
blocks are also present in the file, and because updates to the file can
move logically consecutive records into blocks far removed from one
another (see Section 3.4.7, Block Splitting). For these reasons, DMS
uses pointers to chain data blocks together. A 3-byte data link pointer
in bytes 2046 to 2048 (counting from one) of each block contains the
relatize block number of the next data block.

The following example illustrates the use of an indexed file. A
zookeeper wishing to maintain rapidly accessible records for each type of
animal might store information in an indexed file that uses animal names
as a key field. Because DMS stores records in ascending order by primary
key, the animal records are stored in alphabetical order by name.
Typical data blocks would appear as shown in Figure 3-3.

Block 0.
L

§ 2 Record 1 Record 2 Record 3 Record 4 Unused | DLP
09 Ape Bear Camel Dog 3"
Block 3:

x £

O Record 5 Record 6 Record 7 DLP
u% § Elephant Fox Giraffe Unused “FFF"

Figure 3-3. Indexed File Data Blocks

3-7

The Data Link Pointer (DLP) allows the sequential seeking and reading
of records from block to block, even (as in the case above) when the data
blocks themselves are not consecutive. The final data block contains
high wvalues (represented in hexadecimal as FFFFFF) in the data link
pointer, to indicate the end of the file.

Due to the space requirements of the data link pointer and block
length indicator, the maximum record size for fixed length records in an
indexed file is 2040 bytes.

3.4.3 Primary Key

Every indexed file data record contains a primary key. This key is a
fixed 1length field containing a wunique value used for storing and
retrieving records. DMS stores records in ascending primary key
sequence, using the ASCII collating sequence. A primary key can be up to
255 bytes long in any combination of character types. The following are
some guidelines for selecting a primary key field:

1, All primary key values must be unique. You should select a key
field value that will always be unique (such as social security
numbers), rather than one that is only unique for all current
data (such as first and last names).

2. You cannot change the primary key value after assigning it,
except by deleting the record and creating a new record.
Therefore, you should select a key field value that is invariable
as well as unique. For example, a person's telephone extension
would not make a good primary key field.

3. You cannot enlarge the primary key, except by copying the entire
file. Therefore, you should avoid a primary key that can be
exhausted (such as a three-digit employee number).

4. The primary key should be universal. All possible additions to
the file should have a value for the primary key. For example, a
company with offices only in the United States can assume that
all of its employees have Social Security numbers. However, if
the company expands internationally, it can no longer make this
assumption, Therefore, Social Security number would not be a
good primary key for the employee files of an international
organization.

5. Records are sequenced in the file by primary key. Therefore, you
can use the first character(s) of a primary key to group records
together that are often accessed as a group. You can use this
technique to maximize the use of sequential access, to improve
buffer efficiency in random access, and to allow you to hold
related records by a generic key.

3-8

6. Primary key access is more efficient than alternate key access.
Therefore, you should establish the wunique identifier most
commonly used for record retrieval as the primary key.

7. You should make the primary key as short as possible to conserve
space and improve performance.

A key field can include more than one contiguous data record field.
For example, if our zookeeper wanted to maintain separate records on
males and females, the primary key might include the animal name field
and the sex field of each record, as shown in Figure 3-4.

Primary Key
—_—
4 Y
Species Sex Average Average Country
Name Weight Longevity of Origin

Figure 3-4. Indexed File Record Showing Primary Key Field

The primary key may be any field in the data record. Because DMS
must retrieve the entire record to access the primary key, the primary
key access time for fixed and variable length records is the same
regardless of the placement of the key in the record. For compressed
records, DMS uncompresses as much of the record as is necessary to read
the primary key: therefore, there is a slight advantage in placing the
primary key near the beginning of compressed records.

3.4.4 Primary Key Tree Structure

The principal feature of indexed data files is that you can access
individual records by the values of key data fields. DMS performs this
access using the file's index blocks. Index blocks can reside anywhere
in the file and in any sequence; DMS attempts to place index blocks in
optimal locations within the file. Index blocks are logically
interconnected by pointers to form logical tree structures, with a single
index block at the top and one or more levels beneath. Each index block
addresses several blocks on the next lower level. The index blocks at
the bottom of the tree point to the file's data blocks.

A key path is a subset of an index tree. It consists of the one

index block on each level of the index tree that is used to access a
particular record.

3-9

Primary Index Block Structure

Primary key index blocks are 2K blocks, some or all of which are
initially located in the middle of the first extent of the data file.
All primary key index blocks begin with a 2-byte block length prefix
(BL), which indicates the current length of the block's contents (i.e.,
the total space occupied by the table entries and the block length
indicator). Every primary key index block terminates with a 3-byte key
link pointer (KLP), which points to the next primary key index block on
the same index tree level.

An index block is a table of entries. Each entry is a pair of items:
a primary key value and a block number. Each entry in an index block
contains the highest primary key value (PK) stored in a particular data
block. Since records are stored in ascending primary key sequence, the
highest primary key value in a data block is also the primary key of the
last record in the data block. By having available the highest primary
key for each block, DMS can derive the range of primary keys within each
block.

The PK is paired with the relative block number of its data block.
The length of each table entry is the length of PK plus 3 bytes for the
block number. Entries are sorted in ascending primary key sequence, not
in data block sequence. The structure of primary key index blocks is
shown in Figure 3-5.

3-10

Block 1:

BL PK+3 PK+3 PK+3 PK+3
PK+3 PK+3 PK+3 PK+3 PK+3
PK+3 PK +3 PK+3 PK +3 PK +3
PK+3 PK+3 PK+3 unused KLP

Block 2:

BL PK+3 PK+3 PK+3 PK+3
PK+3 PK+3 PK+3 PK+3 PK+3
PK+3 PK +3

unused
FFFFFF

Figure 3-5. Primary Key Index Block Format

Primary Key Index Block Function

In order to read a specific record from an indexed file, DMS searches
the index block, using a binary search method, until it locates an entry
with a primary key value equal to or greater than the record sought.
This entry contains a 3-byte pointer wvalue. DMS follows the pointer to
the indicated data block and locates the record sequentially within that
block.

For example, to find the data record "Pig" using the index block in
Figure 3-6, DMS uses a binary search to locate the index table entry
"Rabbit", which is the first entry higher in the ASCII collating sequence
than "Pig". DMS then locates block 9, the block pointed to by that
entry, and reads the data records in that block until it finds "Pig".

3-11

Highest Primary Key Value In Block Block Number

Camel
Fox
Iguana
Lion
Opossum
Rabbit
Skunk

S©hwNO

Length of uncompressed primary key + 3 bytes

Figure 3-6. Primary Key Index Table Entries

Root Index Block

In relatively small data files, a single index block is large enough
to hold the primary key entry for every data block. 1In such a case, the
primary key index block is also the root index block. However, one index
block may not be large enough to store all of the primary key entries.
In this case, DMS creates multiple index blocks to store the primary key
entries. These multiple blocks are called low-level index blocks. DMS
constructs an index tree structure of one or more additional levels to
access these low-level index blocks. Additional data records may require
further levels of index blocks. The highest level block is called the
root index block; it is addressed by the FDRl record in the VTOC. All
other blocks are located from the root index block.

The format of the root index block is the same as the format of other
index blocks. The root index entry values consist of the highest value
from each of the index blocks on the next lower level, paired with the
number of that index block. The 1low-level index block entry values
consist of the highest value from each of the data blocks. A file with
two levels of index blocks is shown in Figure 3-7.

3-12

/4‘\

Root Iguana 5
Index Rabbit 6
Block: | zebra 7
Block 8
| _
Index Camel 0 Lion 3 Skunk 10
Blocks: Fox 1 Opossum 4 Walrus 1
Iguana 2 Rabbit 9 Zebra 12
Block 5 Block 6 Block 7
|]
Data Dog Jaguar Pig Tern
Blocks: Elephant Kangaroo Quahog Tortoise
Fox Lion Rabbit Walrus
Block 1 Block 3 Block 9 Block 11
Ape Giraffe Monkey Raccoon Warthog
Bear Hedgehog Newt Skink Yak
Camel Iguana Opossum Skunk Zebra
Block 0 Block 2 Biock 4 Block 10 Block 12
Figure 3-7. Indexed File Tree Structure

The Right-Hand Edge

In an actual file each index block would hold many more than the

three entries shown in Figure 3-7.
3-7 1is also simplified in that each

Zebra.

FF).

The reason for this convention is as follows.

actual right-hand index field wvalue,

The index block tree shown in Figure
index 1level contains the value

On each level, Zebra is the highest-value entry in the last block
of that level: the '"right-hand edge" of each level of the tree.
actual index tree (primary or alternate), the field that takes the value
Zebra here would instead take high values (represented in hexadecimal as

In an

The number of bytes of hexadecimal FFs corresponds to the length of
the primary key field.

If Zebra were the

then adding a higher-value data

record, Zebu for example, would require rewriting fields on all of the

levels of the index tree.

values,

file update is simplified.

record access by means of the index tree
With a right-hand edge of high values, the

is unaffected,

With the right-hand edge field set to high

while

upper index blocks do not have to be rewritten every time a high-order
data record is added or deleted.

3-13

3.4.5 The Initial Placement of Blocks in an Indexed File

When you create a file, you estimate the number of data records to be
initially put into the file. DMS uses the uncompressed maximum record
length and this estimated number of records to calculate the length of
the primary allocation. If during indexed file creation DMS finds the
estimate to be too small, it closes the file with a file status '24°'.
DMS does not allocate additional extents for data records to an indexed
file in Output mode: however, DMS can allocate additional extents in
Output mode to an alternate indexed file for the storage of alternate key
index blocks.

DMS establishes a pointer to the last block used in the file, known
as the E-Block. The E-Block number is counted from zero. The total
number of blocks in the file is represented by the N-Block number.
Because this number is counted from one, the E-Block number is always at
least one less than the N-Block number. You can display the file length
and the number of available blocks at the end of the file using the
Manage Files and Libraries option of the Command Processor screen.

The numbering of the blocks in Figure 3-7 demonstrates how DMS builds
an indexed file. The index blocks are initially located in the middle of
the primary allocation, with the low-level index blocks presented first,
followed by each higher level of index blocks in ascending order. The
root index block is the last index block built during file creation. If,
as in Figure 3-7, data blocks require more than half of the primary
allocation, DMS places the remaining data blocks in the file after the
index blocks.

If you overestimate the number of records to be written to the file,
blank blocks may appear embedded in the file or at the end of the file,
as shown in Figure 3-8. If you severely overestimate the number of
records, there may not be enough data records to fill the blocks before
the first index block, resulting in embedded blocks. You can release
unused space at the end of an indexed file at the conclusion of output
processing, if the file is not an alternate indexed file. DMS chains
together embedded unused blocks, which it uses for subsequent updates to
the file.

Underestimating the number of records to be placed in an indexed file
results in an error message (File Status '24') indicating that the
primary allocation has been exceeded and that DMS has prematurely closed
the file before all the records were written to the output file. You
must reopen a prematurely closed file in I/0 mode to continue writing
records to the file. An accurate estimation of the number of records
results in the smallest and most efficient data file.

3-14

An accurately estimated file:

Primary Allocation

Data Index I':gg; Data
Blocks Blocks Blocks Blocks
Two kinds of overestimated files:
Primary Allocation
Root
Data Index
Blocks unused Blocks Index unused
Block
Primary Allocation
Root
Data Index Data
Index | unused unused
BI
ocks Blocks Block Blocks
An underestimated file:
Primary Allocation
Root
Data Index Index Dat
Blocks Blocks Block Bloc

File Status 24 Primary Extent Exceeded — file creation cancelled

Figure 3-8. Block Locations in Indexed Files

When DMS creates an indexed file, it chains together all embedded
empty blocks, so that DMS can locate these blocks when they are needed to
enlarge the file. Both empty blocks at the end of the file and embedded
empty blocks are available to the file for future assignment as data or
index blocks. DMS uses embedded empty blocks in preference to empty
blocks located after the E-Block at the end of the file. During file
creation, you can either retain or release empty blocks located after the
E-Block. However, you must reorganize the file (using the COPY utility)
to release embedded empty blocks.

3.4.6 Adding Records to an Indexed File

You can modify the data in indexed files by modifying existing
records, adding records, or deléting records.

DMS adds records to a file in the sequence dictated by each record's
primary key value. Therefore, you cannot change the value of a record's
primary key. To change a primary key value, you must delete the original
record and create a new record.

3-15

When you add a record to an indexed file, DMS locates space for the
additional record by performing the following sequence of steps:

1. It uses available space within the appropriate data block. This
free space in the block may have been created when you deleted a
record from the file, or may have been set aside when you
established a packing density of less than 100%.

2. If insufficient space 1is available in the block, DMS uses a
technique called block splitting. Block splitting places records
in an empty block and establishes pointers to enable random and
consecutive access of those records. To locate an empty block,
DMS first checks the pointer to the chain of embedded blank
blocks in the file. 1If a chain exists, DMS uses the head . block
of the chain and rewrites the head-of-chain pointer.

3. If no chain of embedded blocks exists, DMS uses an available
block at the end of the file, located between the E-Block and the
N-Block.

4. If no blocks are available at the end of the file, DMS
automatically allocates an additional extent and changes the
N-Block number, thus adding the additional extent's blocks to the
end of the file as available blocks.

DMS locates space for record storage automatically:; all parts of this
process are transparent to the user. You may add records anywhere in the
file, including records with primary key values less than or greater than
those of all of the existing records in the file. To add records to an
indexed file, you open the file in I/0O mode or Shared mode. Records
written in these modes do not need to be in primary key sequence. DMS
automatically places each record in ascending ASCII collating sequence by
primary key as the program writes it to the file. DMS updates index
blocks as each record is written, and readdresses pointers, and adds new
index levels as needed.

Once DMS has created an indexed file, it can allocate additional
extents until the file reaches a total of thirteen extents. The length
of each secondary extent is half the length of the primary extent or
smaller. If no free extent as large as half the length of the primary
extent is available, DMS allocates the largest available extent.

3.4.7 Block Splitting

A block split divides the contents of a block into two separate
blocks. When you attempt to add a record to a file, DMS automatically
performs a block split when the block does not have room for the
insertion of the additional' record. After splitting a block, DMS
rewrites pointers to permit records to be accessed in sequence by primary
key value.

3-16

DMS splits both data blocks and primary and alternate index blocks as
needed. DMS performs all block splits in the same fashion, but for the
sake of clarity, this manual describes data block splitting and index
block splitting separately.

Data Block Splitting

DMS can insert records into the data blocks of an indexed file. This
is one of the principal advantages of indexed files over consecutive
files. DMS uses one of two methods for updating files by inserting new
records:

1. DMS can insert a record into available space in its intended data
block. You can establish these spaces at the time of file
creation by setting the packing density to less than 100% (see
Chapter 9).

2. If a data block contains insufficient empty space for a simple
insertion, DMS creates space for the insertion of a record. DMS
does this by block splitting, that is, dividing the contents of a
block between two blocks.

For example, the zookeeper wants to add the record "Koala" to the
data file. As shown in Figure 3-9, the data block containing that
portion of the alphabet, Block 3, is already filled (in this example, no
block can contain more than three records). To add the new record, DMS
must allocate more space than currently exists in Block 3.

Data Blocks: Block 0 Block 1 Block 2
Ape Dog Giraffe
Bear Elephant Hedgehog
Camel Fox Iguana

Block 3 Block 4 Block 9
Jaguar Monkey Pig
Kangaroo Newt Quahog
Lion Opossum Rabbit

Block 10 Block 11 Block 12
Raccoon Tern Warthog
Skink Tortoise Yak
Skunk Walrus Zebra

Figure 3-9. 1Indexed File Data Blocks Prior to Block Splitting

To add the new record, DMS must split Block 3. DMS divides the
records in Block 3 into two equal halves; half of the records are
retained in the original block, and the other half are placed in an empty
block, usually located at the end of the file. The two data blocks

3-17

created by the block split, Blocks 3 and 13, are shown in Figure 3-10.
DMS rewrites the data link pointer (DLP) fields at the ends of Blocks 3
and 13, so that a sequential read of the file reads the blocks in primary
key sequence: ...2, 3, 13, 4, 9, 10...

Data Blocks: Block 0 Block 1 Block 2
Ape Dog Giraffe
Bear Elephant Hedgehog
Camel Fox Iguana
Biock 3 Block 4 Block 9
Jaguar Monkey Pig
Kangaroo Newt Quahog

Opossum Rabbit

Block 10 Block 11 Block 12 Block 13
Raccoon Tern Warthog Koala
Skink Tortoise Yak Lion
Skunk Walrus Zebra

Figure 3-10. Indexed File Data Blocks after Block Splitting

After the block is split, the new record is added to either the
original block or the new block, depending on its place in the sequence
of primary keys.

Index Block Splitting

Changes made to the data blocks often result in changes to the index
blocks. Since the low-level index blocks contain a table entry for each
data block, the splitting of a data block necessitates updating one or
more index blocks by adding a table entry. Splitting a data block may
require the splitting of an index block. Figure 3-10 shows the
zookeeper's data blocks after a data block split; this data block split
necessitates a block split to the file's index blocks, shown in Figure
3-11. DMS must now represent Data Blocks 3 and 13 with entries in Index
Block 6.

3-18

™

Block 8

Root Iguana 5
Index Rabbit 6
Block: Zebra 7
Block 5 Block 6 Block 7
Index Camel 0 Lion 3 Skunk 10
Blocks: | Fox 1 Opossum 4 Walrus 1"
Iguana 2 Rabbit 9 Zebra 12
Figure 3-11. Index Tree Structure before Block Splitting

In the case shown in Figure 3-11, there is no room to include
additional entries in any of the index blocks, so a data block split
necessitates an index block split on each level of the index tree, and
the creation of a new root index block level. Figure 3-12 shows the
file's index trees following index block splitting.

Block 16
Root .
Index Lion 8
Block: Zebra 15
Block 8 Block 15
Index Iguana 5 Rabbit 14
Blocks: Lion 6 Zebra 7
Block 5 Block 6 Block 7 Block 14
Camel 0 Kangaroo 3 Skunk 10 Opossum 4
Fox ! Lion 13 Walrus - 11 Rabbit 9
Iguana 2 ! Zebra 12
Figure 3-12. Index Tree Structure after Block Splitting

In Figure 3-12, the contents of Block 6 have been split between 6 and

14;

root index block, Block 16, has been created.

the contents of Block 8 have been split between 8 and 15, and a new

The key link pointer (KLP) at the end of an index block chaining it
to the next block on the same index tree level must be rewritten if the
DMS rewrites the KLP of Block 6 to point

index block has been modified.

to Block 14,

and the KLP of Block 14 to point to Block 7.

It then

rewrites the KLP of Block 8 to point to Block 15, and the KLP fields of
Blocks 15 and 16 to take high values (hexadecimal FFFF).

3-19

Requiring the creation of four new blocks (as in the above example)
when adding the first new record, and rewriting several address fields is

time-consuming. You can minimize this overhead by setting packing
densities to 1less than 100%. Packing densities are described in
Chapter 9.

You cannot access a file that has undergone numerous block splits as
rapidly as a new file, because DMS must skip to the end of the file to
read split blocks. You can, however, reorganize a file to minimize
skipping by running COPY with REORG. This utility rebuilds the index
tree structure, and reassigns records to blocks based on their primary
key values.

3.4.8 Deleting a Record from an Indexed File

When you delete a record from an indexed file, DMS automatically
shifts the records in the block in order to occupy the space left between
records by the deletion. DMS decreases the value of the block length
indicator to reflect this shift. If the deleted record contains the
highest primary key value in the block, DMS modifies the index block
entry for that block by copying the next-highest primary key value from
the data block.

DMS does not automatically reorganize index blocks to balance index
trees. If you have performed extensive deletion on a file, the index
tree can contain more blocks and levels than are required, decreasing
performance efficiency. Running COPY with REORG restructures the tree to
reflect the actual number of record blocks.

3.5 ALTERNATE INDEXED FILES

In addition to data access by means of a primary key, DMS supports
file access using up to 16 alternate keys. Alternate index keys provide
alternate paths for rapid access to individual records. For example, our
zookeeper uses the name of each species of animal as a unique primary
key. However, cases frequently arise that require access of animals'
records by country of origin. Making the country of origin an alternate
key would improve file usability.

An alternate indexed file contains all of the primary key index
blocks that a regular indexed file contains. All sequential and indexed
functions available for indexed files are also available for alternate
indexed files. In addition, DMS builds a separate index tree for each
alternate key defined for the file.

3-20

You should exercise restraint in creating additional alternate keys,
because the creation of each alternate key results in the creation of a
separate index block tree structure. You should only use alternate keys
for accessing single records in a file. If batch reporting of multiple
records is required, such as a report of all employees alphabetized by
last name, it is much more efficient to sort the file by last name (using
the SORT wutility) than to access a large number of records by an
alternate key.

3.5.1 Alternate Keys

An alternate key can be any field or contiguous group of fields in a
record. An alternate key can be up to 254 characters in length: however,
the use of short alternate keys is strongly recommended, as it greatly
facilitates efficient file processing. The length of the primary key
limits the maximum length of an alternate key: the total of the primary
key length and the 1longest alternate key length cannot exceed 255
characters.

Minimizing the 1length of alternate keys is an important way to
conserve storage space in an alternate indexed file. When you establish
access keys, avoid making the alternate key any longer than is necessary
to provide unique and easily used values. For example, the first five or
six letters are probably sufficient for a last name field alternate key.

You can establish more than one alternate key for a data file.
However, although 16 alternate keys are available, you should not create
a file with any more alternate key paths than are absolutely necessary.

Unlike a primary key, an alternate key can be assigned non-unique
values. For example, the last name field of an employee file would in
most cases not be a good choice for a primary key field; last names are
not sufficiently unique to ensure there would never be more than one
person with the same last name. However, the last name field can be used
as an alternate key. You must simply specify whether or not duplicate
alternate key values are to be allowed for each alternate key when the
file is created.

Every record in an indexed file (primary or alternate) must contain a
primary key value. However, every record need not contain a value for
each alternate key field; only those records to be accessed by a
particular alternate key must contain a wvalue for that alternate key
field. Records with an alternate key field can be established as
accessible by that key field, or as not accessible by that field. For
each record, you decide which alternate key fields are to be used as keys
when you write or rewrite the record.

Primary and alternate keys are usually separated fields in a data
record, but they need not be. Figure 3-13 illustrates the possible
relations between primary and alternate key, or between two alternate
keys.

3-21

Detached:

Primary Key Alternate Key 1 Alternate Key 2
A\ A\ A

"Elephant, Indian Mammals of India Domesticated Mammals

Overlapped:

Primary Key
AL

ld N\

Elephant ,India Mammai Domesticated

Alternate Key
A

Alternate Key 1
A

Alternate Key 2
A

I'd N\

Elephant India ﬁMammal Domesticated

Embedded:
Primary Key

7 A SN

Elephant India Mammal Domesticated

W—-/
Alternate Key
Alternate Key 1
. ~ A ~
Elephant India Mammal Domesticated
Al
Alternate Key 2

Figure 3-13. Relations between Key Fields in a Data Record

Overlapping or embedded an alternate key and a primary key can affect
the space requirements for the alternate index tree structures. The
overlap of the two keys reduces the total block space required for each
alternate index key entry. See Chapter 15 for details. The overlapping
or embedding of two alternate keys has no performance impact on DMS.

3.5.2 Alternate Key Tree Structure

DMS uses two different sets of index blocks in forming alternate key
index tree structures: one set for alternate keys that take only unique
values, and another for alternate keys that can take duplicate values.

3-22

7

NOTE

Data files created prior to Operating System Release 5.3 use
the tree structure for unique wvalues for all alternate
indexed files. These files will continue to be supported.
However, you can improve efficiency by converting old files
that contain duplicate values to the new tree structure.
You can convert a file by copying it using the COPY utility
with REORG=YES.

Pseudo-record Index Blocks
for Alternate Indexed Files

To access a file by an alternate key, DMS uses a tree of alternate
index blocks. An alternate index tree always contains a single alternate
index root block at the top of the tree. Each entry in the root block

points to an alternate index block at the next lower level. The
lowest-level alternate index blocks are pseudo-record blocks. Their
entries point directly to the primary index tree. Given a record's

primary key, DMS can use the primary index tree to locate the individual
data record by primary key value.

Pseudo-record index blocks are organized as conversion tables from
alternate to primary keys. Each pseudo-record block contains paired
entries for each data record, matching the alternate key value to that
record's primary key value. Each pair of key values constitutes a single
pseudo-record. Pseudo-record blocks can be of two types, those that
contain duplicate alternate key values, and those that contain unique
alternate key values.

The example of the zookeeper's data file shows how an alternate
indexed file is structured. Two alternate keys have been established for
the zookeeper's data file. The scientific name of each species
constitutes a unique alternate key:; the country of origin of the species
is an alternate key that permits duplicates. The structures of these two
types of pseudo-record index blocks are the same, as shown in Figure 3-14.

3-23

Alternate Key/Primary Key

Pseudo-record Index Block
with Unique Alternate Key Values: Elephas/Elephant
Ericius/Hedgehog
Leo/Lion
Testudo/Tortoise
Ursus/Bear
Vulpes/Fox

Alternate Key/Primary Key

Pseudo-record Index Block
with Duplicate Alternate Key Values: Africa/Elephant
Africa/Lion
Alaska/Bear
England/Fox
England/Hedgehog
Galapagos/Tortoise

Figure 3-14. Alternate Index Pseudo-record Block Types

DMS sorts pseudo-records by their alternate key values. If duplicate
alternate key values exist, DMS sorts the pseudo-records by primary key
value within that alternate key value, as shown in Figure 3-14.

Since DMS creates one pseudo-record for each data record on an
alternate key path, in most cases there are more pseudo-records for an
alternate key path than can be fit in a single block. If any record are
placed on an alternate key path, DMS builds a tree of alternate index
blocks, surmounted by a single root index block for that alternate key
path. The minimum tree size is two blocks: a root index block and a
pseudo-record block.

The upper levels of the alternate index tree can have two different
block structures, one for alternate keys that take only unique values and
another for alternate keys that allow duplicate values. You must
specify, when you create a file, whether or not duplicate alternate key
values are permitted for a particular index path. Multiple alternate key
paths are independent of each other:; you can create unique and non-unique
alternate keys fields on the same data record.

Regardless of type. all alternate index tree blocks, like all primary
index tree blocks, begin with a 2-byte block length indicator, and end
with a 3-byte key link chain containing the address of the next index
block on that level of the tree.

3-24

Alternate Index Tree Structure
for Unique Alternate Key Values

FPor unique alternate key values, the alternate index tree levels
above the low-level, pseudo-record blocks are in the same format as the
upper levels of a primary index tree. That is, for each entry, DMS pairs
the highest key value in a lower-level block with the relative block
number of that lower-level block. DMS can create up to fifteen levels of
these kinds of blocks. The entries at the lowest of those levels point
to pseudo-record blocks. DMS searches the tree until it 1locates a
pseudo-record index block. Each pseudo-record block contains pairs of
alternate and primary key values, providing the primary key value for
searching the primary index tree. (See Figure 3-15.)

3-25

Alternate Key
Index Blocks:

Ericius 26
Vulpes 27
Block 28

1
Camelus 20 Mus 23
Cuniculus 21 Simius 24
Ericius 22 Vulpes 25
Block 26 Block 27
I 1 1 1
Alternate Key Alauda/Lark Cervus/Deer Elephas/Elephant Lacerta/Lizard Owvis/Sheep Testudo/Tortoise
Pseudo-record Alces/Elk Coturnix/Quail Equus/Horse Leo/Lion Pantera/Panther Ursus/Bear
Blocks: Camelus/Camel Cuniculus/Rabbit Eicius/Hedgehog Mus/Mouse Simius/Ape Vulpes/Fox
Block 20 Block 21 Block 22 Block 23 Block 24 Block 25
Primary Key Horse 6
Index Blocks: Rabbit 7
Zebra 8
Block 9
] 1
Camel 1 Lion 4 Skunk 4
Elk 2 Opossum 5 Walrus 12
Horse 3 Rabbit 10 Zebra 13
Block 6 Biock 7 Block 8
| 1
Data Deer Kangaroo Panther Tern
Blocks: Elephant Lark Quait Tonoise
Elk Lion Rabbit Walrus
Block 2 Block 4 Block 10 Block 12
Ape Fox Lizard Raccoon Warthog
Bear Hedgehog Mouse Sheep Yak
Camel Horse Opossum Skunk Zebra
Block 1 Block 3 Block 5 Block 11 Biock 13

Figure 3-15.

Tree Structure for an Alternate Key

3-26

Path with Unique Values

~

Alternate Index Tree Structure
for Duplicate Alternate Key Values

When you initially create an alternate key, you can specify whether
two or more records using that key field can have the same alternate key
value. If you permit duplicate alternate key values, DMS creates a
different block structure for all of that key's higher-level alternate
index blocks. These upper-level alternate index blocks are similar to
the lower-level alternate index pseudo-record blocks shown in Figure
3-15. Alternate index blocks for keys with duplicate values contain
paired alternate and primary key values on all levels. In addition, the
higher-level alternate index block pseudo-records contain the block
number of the block on the next lower level. An alternate index tree for
a key permitting duplicate values is shown in Figure 3-16.

DMS facilitates access to the appropriate duplicate alternate key by
pairing the wunique primary key value with the alternate key value at
every level of the tree structure. 1In this way, DMS accelerates access
to a record whose alternate key has many duplicates values, such as the
value "Africa" in Figure 3-16. Sequential reading through alternate
index blocks is minimized by the concatenation of alternate and primary
key values, giving each record, in effect, a unique alternate key value.

3-27

Alternate Key
Index Blocks:

England/Fox 26|
Russia/Sturgeon 27|

Block 28

Africa/Giraffe 20 India/Tiger 23
Africa/Zebra 21 Peru/Llama 24
England/Fox 22 Russia/Sturgeon 25
Block 26 Biock 27
[1 [1
Alternate Key | Africa/Antetope Africa/Lion Brazil/Jaguar England/Hedgehog Mexico/Iguana
Pseudo-record | Africa/Elephant Africa/Warthog Egypt/Camel Galapagos/Tortoise N.Zealand/Kiwi Russia/Sturgeon
Blocks: Africa/Giratfe Africa/Zebra England/Fox India/Tiger Peru/Llama
Block 20 Block 21 Block 22 \ Block 23 Block 24 Block 25
Primary Key Iguana 6
index Blocks: Rabbit 7
Zebra 8
Block 9
L . 1
Camel 1 Lion 4 Sturgeon 11
Fox 2 Opossum 5 Walrus 12
Iguana 3 Rabbit 10 Zebra 13
Block 6 Block 7 Block 8
{ 1
Data Deer Jaguar Panther Tortoise
Blocks: Elephant Kiwi Quail Tiger
Fox Lion Rabbit Walrus
Block 2 Block 4 Block 10 Block 12
Antelope Giraffe Llama Raccoon Warthog
Bear Hedgehog Mouse Sheep Yak
Camel Iguana Opossum Sturgeon Zebra
Block 1 Block 3 Block 5 Biock 11 Block 13

Figure 3-16.

3-28

Tree Structure for an Alternate Key Path
with Duplicate Values

Because the entries for the higher index blocks are longer for
duplicate alternate keys than for unique alternate keys, you can minimize
both space and access time by using unique alternate key values wherever
possible., For example, an alternate key could be established on our
zoological file to separate aquatic from land animals. But such an
alternate key would contain mostly duplicate values. A more efficient
method of access would either be to include an aquatic/land indicator as
part of the primary key field, or to use the SORT utility to generate
species list files for the two habitats.

3.5.3 The AXD1 Block

Every alternate indexed data £file contains an Alternate Index
Descriptor (AXD1l) block, which is always stored in logical block number
zero of the alternate indexed file. This block contains control
information for all the alternate key paths in the file. This
information includes a bit mask (the PMASK) indicating the alternate
index paths that are defined for the file, the ALTINX byte indicating the
alternate index path currently in use, pointers to the the root index
block of each of the alternate key trees, and information specific to
individual alternate key paths. You can establish up to sixteen
alternate keys, each with its own alternate index tree, in the AXDl. An
indicator for each alternate key path specifies whether records
containing only unique alternate key values, or those containing
duplicate alternate key values can be written to the file.

Each record in an alternate indexed file contains a sixteen-bit field
called the bit mask suffix. Prior to writing a record to an alternate
indexed file, you write this suffix field value to the sixteen-bit
AXDIMASK parameter in the AXDl. It is only necessary to write this
AXDIMASK parameter when you create a record or change the alternate key
access of an existing record.

Two sixteen-bit mask fields are located in the AXDl, the PMASK and
MASK fields. The PMASK, or primary mask field, contains an ON bit for
every alternate key established for the file. PMASK is a read-only
field, established and maintained by the system: do not modify the PMASK
value. During record processing the PMASK does not change. The MASK
field holds the current record's 16-bit suffix mask. Each ON bit of the
MASK represents an alternate key available to that record. When you read
a record, DMS places the record's suffix mask value in the AXD1 MASK
field. When you write or rewrite a record, you supply a suffix mask
value to the MASK field. DMS then checks the MASK field value against
the PMASK field. The MASK field value must be a logical subset of the
PMASK field; that is, each bit that is set ON in the MASK field must also
be turned ON in the PMASK field. See Figure 3-17. After checking your
MASK field value against the PMASK field value, DMS writes the record to
the file, copying the value of the MASK field into the record's 1l6-bit
suffix mask.

3-29

PMASK field:

1110 0000 0000 0000

2-byte alt. key bit mask

A file with three alternate key paths.

MASK field:

1010 0000 0000 0000

2-byte aft. key path bit mask

A record accessible by two alternate key paths: alternate keys 1 and 3.

Figure 3-17. Mask Fields within the AXD1 Block

In addition to specifying how many alternate keys are in the file,
the AXD1l specifies the alternate index path currently in use, the length
and location of each alternate key field, the type of values acceptable
(unique or duplicate), and the relative block number of the root block of
the alternate index tree. See Figure 3-18.

AXD1: Block 0
Path# Altkeypos Altksize Dups? Block#
1 10 7 N
2 22 7 Y 30
3 34 10 Y 40
16
Alternate Index Trees:
8lock 20 Block 30
Ericius 21 England/Fox 31
Vulpes 22 Russia/Sturgeon 32
Block 40
Endangered/Bald Eagle 41
Endangered/Rhinoceros 42
Protected/Zebra 43

Figure 3-18. Schematic of AXDl1 and Alternate Index Root Blocks

3-30

a

See Chapter 6 for details on generating an AXDl. Refer to the READ
KEYED and START EQ function requests in Chapter 7 for information on
retrieval by alternate keys using Assembly language. For higher-level
language access, see Chapter 5 and the individual language reference
manuals.

3.5.4 Records on an Alternate Key —— Selective Indices

Rationale

Not all records have to be accessible by each alternate key path. In
fact, DMS 1initially assigns space to alternate indexed files on the
assumption that only one half of the records in the file will be on each
alternate key path. For example, the third alternate key shown in the
Figure 3-18, the Endangered Status key, is a field placed in the records
of all species that are endangered, protected, or extinct. Records of
species that do not fall into any of these categories need never be
accessed using this alternate key. The Records-on-Key feature prevents
DMS from building pseudo-records for these never accessed records. Never
accessed records do not need to occupy space in the alternate index tree
for that key path.

Mechanism

DMS supplies each record in an alternate indexed file with a two-byte
suffix denoting which keys apply to which alternate index key path.
These two bytes function as a bit mask, with a bit set ON or OFF for each
of the sixteen possible alternate index key paths. These two bytes are
included in the record length prefix, but not in the RECSIZE. The bit
mask is never compressed.

The alternate indexed record shown in Figure 3-19 is accessible by
alternate index keys 1 and 3. It is not accessible by alternate key 2,
or by alternate keys 4 through 16, if indeed these alternate keys exist.
The actual number of alternate index keys available to a file cannot be
deduced from a record bit mask.

Record
Data Record
Le=neg4th 80 bytes 1010 00CO 0000 0000
2 bytes 2-byte alternate key path bit mask

Figure 3-19. Alternate Indexed Record Showing Bit Mask Suffix

In Assembly language you must create the appropriate bit mask for
each record in an alternate indexed file. In high level languages the
system creates the record bit masks, as described in Chapter 5.

3-31

When DMS adds a record to an alternate indexed file, it first matches
the record bit mask to the permanent mask (PMASK) field in the AXD1l. If
the bits in the record mask correspond to the PMASK bits, a DMS creates a
pseudo-record for each ON bit in the record mask. If the record mask
bits do not correspond to the PMASK bits, the record is not added to the
file. See Figure 3-20.

AXD1 PMASK FIELD

11111000 00000000

VALID RECORD MASKS INVALID RECORD MASKS
01011C00 GOGC0000 01011001 00000000
11111000 00000000 00000000 00011111
00000000 00000000 ARRRRRRRRRRRRRRRR

Figure 3-20. Valid and Invalid Record Mask Suffixes for an AXD1 PMASK

3.5.5 Overhead of Multiple Alternate Keys

When a file is created with alternate keys, DMS assumes that 50% of
all the records in that file are on each of the alternate key paths. It
allocates space in the file based on the assumption that the length of
all the alternate keys fields are equal to the maximum uncompressed
length of the longest alternate key on any path. Therefore, DMS
calculates the size of the primary allocation to be larger than needed if
you place fewer than 50% of the records on each key path, or if alternate
keys vary widely in size. The primary allocation is smaller than needed
if you place more than 50% of the records on each key path. You should
bear this in mind when estimating the number of records in the file, and
deliberately overestimate or underestimate the number of records in the
file slightly to compensate for the number of records on alternate key
paths. See Chapter 15 for further details on the creation of alternate
index trees.

To add an additional alternate key to an existing alternate indexed
file you must use the CREATE user aid or a user-written program to
process every record in the file. This can be very time—consuming for
large files. See the VS User Aids Reference for the CREATE user aid. If
you anticipate that a field may be useful as an alternate key, you should

3-32

create that alternate key in the AXDl at file creation time, and put no
records on the alternate index key path. Initially, DMS reserves the
requisite number of pseudo-record blocks for the unused path, but since
these blocks are wunused, they are available to be used for block
splitting or other operations during normal processing. The AXDl logic
for the alternate key remains, and when that key becomes necessary, you
can assign records to it without changing the file structure.

3-33

PART II

Data File Access

CHAPTER 4
AN OVERVIEW OF ACCESS FUNCTIONS

4.1 INTRODUCTION TO FILE ACCESS

To access a DMS file from a program, you must specify file definition
parameters. When you compile (or assemble) the program, the compiler (or
assembler) uses these parameter values to fill in the fields of a User
File Block (UFB). DMS then uses the parameter field values in the UFB to
locate a pre-existing file or create a new file.

When you compile a high-level language program, the complier builds a
separate UFB in user Segment 2 for each file opened by the program. When
you assemble an Assembly language program, you specify a UFBGEN for each
UFB you wish to build in user Segment 2. UFBs are maintained for the
duration of the program run. The first time you open a file, DMS copies
the permanent attributes of the file from the UFB into the disk Volume
Table of Contents (VIOC). Dynamic attributes of the file, such as the
number of records in the file and various pointer values, are copied from
the UFB into the VIOC each time you close the file.

How you supply parameter values to the UFB differs from language to
language. The system can write parameter values to the UFB when the
program is compiled, or write parameter values dynamically at runtime as
part of the Open operation. In either case it writes the parameters to
the same fields in the UFB, overwriting any previously established or
default value.

4.2 ACCESS METHODS

When opening a file you select an access method, specifying whether
data processing will be performed in physical units (blocks) or logical
units (records). DMS supports three access methods: Record Access Method
(RAM), Block Access Method (BAM), and Physical Access Method (PAM). You
can use all three access methods on any type of disk or tape file. The
access method you select determines the amount of DMS file support:; the
program must supply file support not provided by the access method.

RAM is the only access method that processes logical units of data

(i.e., user-defined data records). It also provides the most complete
DMS support. RAM is the default in access method selection; it is the
only access method accessible from higher-level languages — BAM and PAM

are accessible only in Assembly language. Many DMS functions, such as

index tree creation and data access by key values, location of data
records within a block, file sharing, buffer pooling, and compression are
only supported in the Record Access Method. Unless otherwise noted, this
manual assumes use of the Record Access Method.

BAM reads and writes disk data in 2K byte block units only. Data
transfer and copying in block units is considerably faster than in single
record units. DMS maintains system buffering in BAM; it reduces overhead
by not performing record blocking and deblocking.

PAM offers the greatest flexibility and least DMS support of the
three access methods. It allows you to transfer data in multiples of 2K
from 2K to 18K. It also allows you to establish specialized buffering
strategies for the application. PAM is recommended primarily when data
movement is to be minimized or when a flexible user-supported buffering
scheme is desired.

For further information on access methods, refer to Chapter 10.

4.3 OPENING AND CLOSING DATA FILES

In order to create a file or access data in an existing file you must
first open that file. In some high-level languages (e.g., RPG II) files
are opened automatically, but in most cases you open a file by coding an
Open statement. An Open statement makes wuse of file definition
parameters to locate an existing file, or to establish tape header
information or allocate disk space to create a new file. Following
processing of the file data, you should close all opened files. Closing
a file releases all resources, making them available to other users, and
updates various control blocks.

Prior to opening a file, you must supply to DMS the parameters that
describe the file. These parameters provide information such as the
following:

File Identification Parameters

¢ The names used within the program to refer to the file and
its record area.

¢ The permanent external file, library, and volume names used
to locate the file.

File and Record Organization Parameters

¢ The type of records in the file (fixed 1length, variable
length, or compressed.)

¢ The type of file (data storage, workstation, program, log,
printer, or WP)

. The structure of the file (consecutive, relative, indexed, or
alternate indexed.)

Space Allocation Parameters

e Information used to allocate sufficient space for a new disk
file (maximum record size and estimated number of records.)

Key Identification Parameters

¢ The length and starting location of each primary and
alternate key.

e How many alternate key paths are to be created, and which
alternate keys allow duplicate key values.

Efficiency Option Parameters

. The size and nature of a buffer area, if desired.
e The packing density of data and index blocks, if desired.

You supply other parameters to the Open statement that do not
describe the file to be processed, but describe how the processing is to
be performed. You can specify whether or not file definition parameter
respecification is to be performed from the workstation at runtime. You
can also specify the address of error routines in the event of DMS file
status errors.

These parameters are stored in a UFB, which is compiled along with
the program data areas into the user's Segment 2 area. You need not
assign a UFB to a specific data file when it is compiled; you can assign
a UFB to a data file interactively when running the program. You can
reassign the same UFB to several files, provided that the UFB is assigned
to only one open file at a time.

When DMS receives an Open statement, it locates the UFB and reads the
needed file definition parameters. Depending on the values you establish
for the file definition parameters, Open establishes user access to
different function request subroutines for processing that file. Open
also restricts other users' access to the file, based upon the mode
specified.

4.4 ACCESS MODES AND SHARING

Records in a file are accessed in a particular access mode. The mode
limits record access to read only, write only, or update (both reading
and writing). You specify the mode either prior to opening the file, or
as part of the Open statement. In order to change the mode, you can
close the file and reopen it in another mode. In some cases, you can use
the Start function request to switch modes without closing and reopening
the file. The access mode indicates the kind of I/0 access a program may
perform on that file, and establishes certain restrictions on file
processing. The five DMS access modes are:

Output Used to create a new file and write data to it. All files
are initially created in Output mode. A file is only opened
once in Output mode. If you attempt to open an existing
consecutive or relative file in Output mode, DMS displays a
warning screen. If you continue, it deletes the existing
file and creates a new file with the same £f£ile name.

Input Used for read-only access to the data within an existing
file. Records read in Input mode cannot be rewritten to the
same data file. Many users can have the same disk file open
in Input mode simultaneously.

I/0 Used to read, add, delete, or update records in an existing
file. Records modified in I/0 mode can be rewritten to the
file from which they were read.

Extend Used to write additional records to the end of an existing
relative or consecutive file.

Shared Used to read, add, delete or update records in an existing
file, while allowing other users to simultaneously update the
same data file. A record read in Shared mode may be held to
prevent another user from modifying the same record. Records
modified in Shared mode can be rewritten to the file from
which they were read. All consecutive files on disk can be
opened for shared I/0 processing; some consecutive files can
also be opened for for shared output processing.

Shared mode is not supported by the Block Access Method (BAaM).
Neither Shared nor Extend modes are supported by the Physical Access
Method (PAM).

Which access mode you select affects simultaneous access to the file
by other users. If you open a file in Input mode, other users can
concurrently open the file in Input mode for read-only processing. If
you open a file in Output, I/0, or Extend mode, no other user can access
the file until you close it. These modes give you exclusive rights to
read or update the file. The Shared mode gives multiple users concurrent
read and update access to the same file.

In DMS Sharing, each user can exclusively hold one resource at a time
(a file, a record, or a group of records or files). In order to hold a
new resource, you must release the resource currently held. No
incremental resource holding is permitted. Further details on file
sharing are found in Chapter 8.

With DMS/TX, each user can hold more than one resource, acquiring
resources incrementally as needed by the program. DMS/TX allows each
user to claim multiple resources as needed and to hold these resources
for the duration of a transaction, DMS/TX automatically resolves
conflicts between two users both claiming the same resource. For further
details on DMS/TX sharing, refer to the VS DMS/TX Reference.

Vam

4.5 FUNCTION REQUESTS PROVIDED BY DMS

Once you have opened a file, you access individual records by issuing
instructions known as function requests. Each function request specifies
the file on which the operation is to be performed. You must open the
file in the appropriate mode for successful execution of a function
request. Each function request operation manipulates the requested data
and performs maintenance operations to insure that control blocks, index
trees, pointers and indicators correctly reflect any change to the data.

The successful execution of a function request can modify your
currency pointer location in the file. The currency pointer value is
recorded in the file's UFB; it specifies the relative record location of
the record requested by the last successful function request. DMS uses
this information to perform sequential operations within the file. The
currency rules for relative files differ from the currency rules for
other file types: in relative files only Read and Start function requests
reset the currency pointer.

DMS provides five function requests: Read, Write, Rewrite, Delete,
and Start. Some function requests take a modifier that further defines
how the function request is to be performed. The five function requests
are described in the following sections.

4.5.1 The Read Function Request

A Read function request reads one logical record in RAM. The Read
function request can locate a record sequentially, by relative record
number, or by primary or alternate key wvalue. The Read function request
can be used to hold an individual record, preventing other users from
accessing that record. In BAM or PAM, a Read function request reads a
block or group of blocks of data.

A Read operation is a multi-step process. During a Read operation,
DMS searches the buffer for the appropriate record. If it does not find
the record in the buffer, it copies a block of data into the buffer from
the file. DMS then locates the specified record in the buffer and copies
it into the user record area. DMS uncompresses a compressed record while
copying it from the buffer to the user record area. The actual
processing of data occurs in the wuser record area. All of these
operations are user—-transparent, handled automatically by DMS.

An unmodified Read, such as the one described in the previous
paragraph, simply copies data from the data file, and thus does not limit
access to that data by another user. If you issue a Read function
request with a Hold modifier, a hold is placed on the data item and no
other user can access that item of data until the hold is released.

4.,5.2 The Write Function Request

The Write function request writes a record from the user record area
to the data file. DMS usually performs Write operations using the
Segment 2 buffer, but in some special cases DMS writes records directly
to the data file. You can code Write function requests to write the
initial data to a new file, to write additional records to the end of a
relative or consecutive file, or to insert records into a relative or
indexed file. In BAM and PAM the Write operation 1is wused to
consecutively write 2K byte blocks of data to a data file.

For relative files, you can use the Write operation to either write
records sequentially, or write a record according to its relative record
number. The type of Write performed is determined by the mode in which
you have the file open. A successful Write operation writes a record
into an empty slot of a relative file; a Write operation fails if a
record is already located in the slot. To overwrite existing records in
a relative file, use the Rewrite function request.

For indexed files, the Write operation automatically performs block
splits where needed and updates primary index and alternate index key
trees. Alternate index key trees are updated as part of the Write
operation for all modes except Output mode. 1In Output mode a file's
alternate index key trees are built when the file is closed.

The Write function request is the only permitted record access
operation for a file opened in Output mode. Only one user can write
records to a file in Output mode. However, if the file is a log file
multiple users can open the file in Shared mode for output processing,
performing concurrent Write operations on the file.

4.5.3 The Rewrite Function Request

A Rewrite function request writes records that were previously read
from the file. A Rewrite follows a Read Hold function request; it
rewrites the file record and releases the record hold. You can only use
Rewrite in I/0 and Shared modes.

In consecutive files, you can only rewrite a record if it is the same
length as the original record. For this reason, you cannot rewrite
records to a compressed consecutive file.

In relative files, a Rewrite is used to overwrite a record already
residing in a record slot. A relative file Rewrite normally follows a
Read Hold function request. However, unlike all other file types, you
can perform a relative file Rewrite without issuing a previous Read Hold
function request.

4-6

4,5.4 The Start Function Request

You can use the Start function request in several modes and all
access methods. Start function requests perform a variety of pointer
positioning routines. You use Start function requests to establish
conditions for other function requests rather than to directly access a
data record. You can use Start function requests to perform the
following operations:

e To position the currency pointer within the file.

e To change the file access mode.

¢ To hold or release resources.

e To wait for the completion of an I/0 operation.

The exact function of each Start operation is defined by its
user-supplied modifier. The allowed modifiers differ according to file

type, mode, access method, and programming language.

4.5.5 The Delete Function Request

The Delete function request deletes a record from a relative or
indexed file. Normally, a record to be deleted must be first read from
the file with a Read Hold function request. The deletion of the record
releases the record hold. DMS can only perform a Delete on relative or
indexed files in I/0 or Shared modes.

In indexed files, the Delete operation updates primary index and
alternate index key trees as needed to reflect the deletion of the
record. DMS closes up space left between the remaining records in a data
block following a deletion, and modifies the block length indicator to
reflect the block's new length.

In relative files, you normally perform a Delete operation after
holding the record with a Read Hold function request. However, unlike
indexed files, you can perform a record deletion without performing a
Read Hold operation. A relative file deletion resets the slot's record
length indicator to zero, making the slot immediately available to a
Write operation. A relative file record deletion does not zero-fill the
space occupied by the deleted record.

4.6 BUFFERING AND PACKING METHODS

DMS provides two strategies that can improve the efficiency of data
file processing: buffering and packing density. These strategies are
optional methods of maximizing performance in specific record processing
situations.

4-7

Buffering strategies allow you to reduce I/O overhead in file
processing by establishing temporary data storage buffers. The use of
buffers can speed data file processing considerably. DMS provides
default buffering in RAM and BAM. In RAM the number of main memory
buffer blocks depends on the type of file being processed: one buffer for
a consecutive or relative file, two for an indexed file, and three buffer
blocks for an alternate indexed file.

You can allocate additional buffer blocks by using one of the two DMS
buffering strategies:

e The large buffer strategy for consecutive or relative files in
RAM, or for any file type in BAM.

e The buffer pooling strategy for RAM access to indexed files.

You can establish a main memory buffer of up to nine buffer blocks
using the large buffer strategy. A large buffer speeds sequential
processing of records on a consecutive file or a relative file by
reducing the number of I/0 operations to storage devices.

For indexed file processing, you can set up a pool of up to sixty
buffer blocks in Segment 2. The buffers in this buffer pool retain the
upper level index blocks of key trees, speeding record location by
primary or alternate key value.

A indexed file's packing density refers to the percentage of space in
each file block occupied by data when the file was created. A packing
density of less than 100% can improve long-term processing efficiency for
indexed files that will have many records added to them after they are
created.

When you set a packing density to less than 100%, DMS leaves
unwritten a portion of the space in each block during the initial
creation of the file. DMS uses this reserved space within the blocks for
subsequent addition of records to the file in I/0O or Shared modes.
Placing additional records within existing blocks minimizes block
splitting and the establishment of pointers to distant parts of the data
file. This results in rapid writing of records to enlarge the file, and
minimizes degradation of file processing performance after many new
records have been added to a file.

4.7 FILE ACCESS SUMMARY

In order to access data in a DMS file, you must establish a User File
Block (UFB) for that file and write file definition parameter values into
the fields of the UFB. 1In high-level languages the compiler creates UFBs
automatically; you simply supply the parameter values. Parameter values
can be supplied when the program is compiled, or at runtime, but must be
made available to the Open operation.

4-8

The Open statement allocates space for the creation of new files and
buffer areas for file processing. It defines and limits the types of
operations DMS can perform on the file, based on the file access method
(RAM, BAM or PAM), the mode (Input, Output, I/O, Extend, Shared), and the
file and record structure.

You can access records or blocks in open files by means of function
requests. The five function requests (Read, Write, Rewrite, Delete, and
Start) perform the actual I/O operations on data files. The way in which
these function requests are performed is often determined by a function
request modifier.

At the conclusion of file access, you should close all open files.

You may open and close the same file repeatedly within the same program
in most programming languages.

4-9

CHAPTER 5
ACCESSING DMS THROUGH HIGH-LEVEL LANGUAGES

5.1 OVERVIEW

The features of DMS disk access are outlined briefly in this chapter
for each of the high-level languages: BASIC, COBOL, Fortran 66, PL/I, and
RPG II. These features are described in detail in Chapters 6 through 15,
using terms and examples from Assembly language. While Assembly language
is the most powerful language for DMS access, it is not always a language
with which a programmer is completely comfortable. This chapter provides
a bridge from the language-independent aspects of DMS to specific
programming reference information. It is intended to orient the reader,
rather than to supplant the file I/0 information found in the language
manuals. No attempt is made to describe all of the data management
features available from each high-level language: for specific coding
details, consult the individual language manuals.

5.2 DMS FUNCTIONS ACCESSIBLE ONLY IN ASSEMBLY LANGUAGE

Although the most frequently used features of DMS are supported by
all VS 1languages, some operations can only be performed using Assembly
language. Among these are:

. The BAM and PAM access methods.

e Using the Start function request to change the mode of an open
file.

e Directly modifying the bit mask suffix of an alternate indexed
file record.

¢ Reading the currency pointer field in the UFB.
e Reading certain UFB error status fields.

To carry out these operations, you must call an Assembly language
subroutine from a high-level language program, and pass the address of
the file's UFB to the subroutine. This type of subroutine call can be
performed in COBOL and BASIC; the address of the UFB is not accessible in
the other high-level languages. This type of UFB '"doctoring" should be
done with care, as the effects of modifying a UFB field are not always
predictable.

5-1

In order to discuss high-level language access to the User File Block
you should first understand how Assembly language writes to the UFB,
Assembly language programs can supply parameters to a file's UFB for use
by the Open operation in either of two ways.

The more common method of supplying these parameters is by means of
the UFBGEN macroinstruction, which is coded in the STATIC Section of the
Assembly program. When the program is assembled, the UFBGEN parameters
are written into a User File Block. Use of the UFBGEN macroinstruction
and the available parameters for opening disk files 1is described in
Chapter 6. UFBGEN parameters for non-disk files are described in the
chapter corresponding to the device accessed.

A second method of supplying parameters to the UFB is to locate the
field within the User File Block directly. A UFB field is located either
by unique field name established by use of a suffix, or by using base
register addressing. A value written to the UFB at runtime overwrites
any previously created UFBGEN value. In this way, both fields
initialized by UFBGEN, and UFB fields that are not supplied with a UFBGEN
parameter can be modified. This direct access to the fields of the User
File Block is only available from Assembly language. Further details on
addressing the UFB are provided in Chapter 6.

5.3 HIGH-LEVEL LANGUAGE SUPPORT FOR DMS FEATURES

The degree of support for DMS features varies for the different
high-level languages. Table 5-1 provides a comparison of the features
available in the different languages.

Table 5-1. High-level Language Support for File Types

BASIC COBOL Fortran 66 PL/I RPG II
Consecutive X X X X X
Shared Consec. X
Relative X X
Primary Indexed X X X X
Alt. Indexed X X X

5.3.1 Access Modes

DMS provides five access modes: Input, Output, I/0, Extend, and
Shared. The Input mode is used for reading a file, the Output and Extend
modes are used for writing a file, and the I/0O and Shared modes are used
for updating (reading and writing) a file.

The equivalents of these modes in the high-level languages are listed
in Table 5-2.

Table 5-2. High-level Language Support for File Access Modes

BASIC COBOL Fortran PL/I RPG II

Input Input Input Réad Input Input
Output Output Output Write Output Output
I1/0 I0 I-0 Update Update

Extend Extend Extend Output + Add
Shared Shared Shared Shared

For more details on the different types of modes, refer to Chapters 4

and 6.

The Shared mode is described in greater detail in Chapter 8.

5.3.2 Function Requests

DMS supplies five function requests: Read, Write, Rewrite, Delete,

and Start. Language support for these function requests is outlined in
Table 5-3.

Table 5-3. High-level Language Support for Function Requests

BASIC COBOL Fortran PL/I RPG II

Read READ READ READ READ READ
Write WRITE WRITE WRITE WRITE EXCPT
Rewrite REWRITE REWRITE REWRITE EXCPT
Delete DELETE DELETE DELETE DELET
Start SKIP START SETLL/SETGT

An overview of the use of function requests
language is provided in this chapter.
requests, refer to Chapters 4 and 7.

5.4 SUPPLYING FILE DEFINITION PARAMETERS IN BASIC

To access a DMS file,

in each high-level
For additional details on function

the program must supply file definition

parameters to the User File Block (UFB), where they are made available to

the OPEN instruction.

contain a SELECT statement for each file opened;

In BASIC these parameters are coded in two places:
the SELECT statement and the OPEN statement.

The BASIC program must

the SELECT statement

must occur in the program prior to the first OPEN statement for that
file. You can open a file several times during a program run, but you
can select it only once.

5-3

5.4.1 BASIC File Definition Parameters

A DMS file has three names in VS BASIC: an internal identifier used
within the program to name the file:; an external parameter reference name
used for linking and error processing; and a permanent file name which is
recorded in the Volume Table of Contents (VIOC) and is the same for all
programs accessing the file. The first two file names are coded in the
SELECT statement in VS BASIC; you supply the third when the file is
opened.

In VS BASIC the internal file identifier is a file number for 1 to 64
preceded by a number symbol (#). You give each file used by the program
a unique number. Files can be numbered and accessed in any order. The
name in quotes following the file number is the parameter reference name
(or PRNAME). See Example 5-1,

The device type and the file organization are both specified with a
single term in the SELECT statement. The four choices are:

INDEXED An indexed or alternate indexed disk file, since
only disk files can be indexed.

CONSEC A consecutive disk file. Consecutive files for
other devices are specified by the device type.

TAPE A consecutive magnetic tape file.
PRINTER A consecutive print file.
You specify the file's permanent file, library, and volume names in
the OPEN statement. DMS matches the SELECT and OPEN statement by means

of the file number. You specify these names only the first time the file
is opened.

Example 5-1. BASIC File Defining Parameters

SELECT #4, ''‘ZOOPRNAME’'’', CONSEC.

OPEN #4, FILE=ZOOFILE, LIBRARY=ZOOLIB, VOLUME=ZOOVOL.

5.4.2 BASIC File Allocation Parameters

In order to allocate space for a data file, you must provide DMS with
the size of the records in the file and the estimated number of records
to be initially written to the file. 1In VS BASIC, place the record size
(or RECSIZE) in the SELECT statement, and the number of records (SPACE)
in the OPEN statement, as follows:

5-4

SELECT #4, RECSIZE=80.

OPEN #4, SPACE=100.

If a file contains variable length records, the RECSIZE indicates the
maximum record size. Variable length record files precede the RECSIZE
clause with VAR; compressed record files precede RECSIZE with VARC, as
follows:

SELECT #4, VARC, RECSIZE=80.

5.4.3 BASIC Primary and Alternate Index Key Parameters

VS BASIC provides full support for indexed and alternate indexed
files. You provide all the necessary information for creating these
indexed disk files in the SELECT statement. An indexed file with a
primary key is logically defined as follows:

SELECT #7, INDEXED, KEYPOS=1, KEYLEN=10.

This SELECT statement establishes a primary key 10 bytes in length
beginning at the first byte of each record. KEYPOS and KEYLEN are
equivalent to the UFBGEN parameters KPOS and KSIZE used in Assembly
language.

To access alternate indexed keys, you must supply four items of
information: which of the sixteen possible alternate key paths is being
defined, the starting position of the alternate key, the length of the
alternate key, and whether the key path should allow duplicate alternate
key values. The SELECT statement in Example 5-2 shows the coding for a
primary key and three alternate keys:

Example 5-2. Selecting an Alternate Indexed File in BASIC

SELECT #7, INDEXED, KEYPOS=1, KEYLEN=10,
ALT KEY 1, KEYPOS=11, KEYLEN=5,
ALT KEY 2, KEYP0S=25, KEYLEN=1, DUPS,
ALT KEY 9, KEYP0S=40, KEYLEN=10, DUPS.

In order to place individual records on alternate index key paths,
the BASIC programmer uses a MASK function statement prior to writing a
record to the file.

5.4.4 BASIC File Efficiency Parameters

DMS uses two methods for improving the efficiency of file processing:
buffering, and packing density. File efficiency parameters take a
default value. To set wvalues other than the defaults, the BASIC
programmer codes parameters in the OPEN statement. These parameters only
need to be specified the first time the program opens the file.

I/0 efficiency of a consecutive file can often be improved by
specifying a buffer of larger than one block. A Segment 2 buffer of up
to 9 blocks can be created by specifying:

OPEN #7, BLOCKS=n

where n can take a numeric value from 1 to 9.

The BLOCKS parameter is only used for consecutive files. For indexed
files, you can establish a buffer pool by means of the SELECT POOL
statement. This is not the same statement as the SELECT statement used
to define the file. Code both the SELECT file and SELECT PCOL statements
to create an indexed file with a buffer pool. The two SELECT statements
are shown in Example 5-3.

Example 5-3. BASIC Coding for Buffer Pooling
SELECT #4, ‘‘ZOOFILE’’, INDEXED,

SELECT POOL#4, BLOCKS=16

where #4 is the file number of the file(s) using the buffer pool, and
BLOCKS takes a value from 3 to 60 buffer pool blocks.

Packing densities of 1less than 100% should be established for an
indexed file if the file is expected to increase significantly in size.
Index and data block packing densities are set in the OPEN statement in
BASIC, as follows:

OPEN #4, DPACK=80, IPACK=95

where DPACK corresponds to the data block packing density, and IPACK to
the index block packing densities. Densities are expressed -in percentage
of the block available for record writing during file creation.

For further details on buffering and packing density, refer to
Chapter 9. More comprehensive information on BASIC is found in the VS
BASIC Language Reference.

5.4.5 The BASIC CALL Statement and the UFB

The User File Block is not directly accessible in BASIC, limiting the
user's abilities to set file parameters. These 1limits can be
circumvented by using the CALL statement to call a subroutine written in
Assembly language and pass to it the address of the file's UFB. The
Assembly language subroutine sets the desired UFB field dynamically, then
issues a RETURN to the BASIC program. The CALL statement appears as
follows:

CALL ‘‘zoosub’’ ADDR(#4)

where zoosub is the name of the Assembly subroutine and ADDR(#4) locates
the address of the UFB for BASIC file #4.

5.5 DMS RECORD ACCESS FROM BASIC

You must supply one of the five following file access modes in BASIC
as part of the OPEN statement: Input, Output, I/0, Extend, and Shared.
You must specify a file access mode every time you open a file:; to change
the mode you must close the file and then reopen it.

BASIC uses five statements, or function requests, to locate and
access records: READ, WRITE, REWRITE, DELETE, and SKIP. The first four
are similar in function to their Assembly language counterparts described
in greater depth in Chapter 7. SKIP is analogous to the START BEGIN and
START SKIP Assembly language function requests.

Use the SKIP statement to locate records on a consecutive file by
position relative to the current location pointer. DMS uses the RECORD
clause of the READ statement to locate a consecutive file record by
relative record number.

The KEY clause of the READ statement provides flexible indexed file
record access. Both primary and alternate keys can be located by exact
or approximate values. You can locate records using two types of
approximate key values: you can supply only the first character(s) of the
key value to retrieve the first record with that partial key, or specify
a key value and request the first key value larger than the one you
specified. By setting the KEY field to zeros, DMS searches for the first
record in the file.

A WRITE statement is used to place a record in a file. A WRITE can
be used in Output mode to create a new file, or in Extend mode to add
records to the end of a consecutive file.

If you want to update a record already in a file, open the file in
I/0 or Shared mode, issue a READ HOLD to read the record, update the
fields of the record, and return the updated record to the file using a
REWRITE statement.

The DELETE statement is used to delete a record from an indexed
file. The DELETE statement must be preceded by a READ HOLD.

5.6 SUPPLYING FILE DEFINITION PARAMETERS IN COBOL

VS COBOL provides a very powerful set of data management functions.
The programmer using VS COBOL has access to some I/0 features (such as
advanced sharing) unavailable in most other high-level languages, and
that require considerable knowledge to perform in Assembly language.

COBOL supports relative files; it is the only VS high-level language
that currently supports relative files. COBOL also supports the DMS/TX
transaction recovery and multiple record holding functions, as described
in the VS DMS/TX Reference.

Disk file processing parameters can be divided into four functional
groups: file definition parameters specifying file names and types, file
allocation parameters used to compute the space requirements of a file,
parameters used to establish index and alternate index keys, and optional
parameters for file efficiency.

5.6.1 COBOL File Definition Parameters

The parameters used to define a file are coded in the Environment
Division of a COBOL program in the File-Control Section. Within the
File-Control section is a file-control entry (SELECT) for each file
accessed by the program. A file-control entry specifies the internal
name of the file, the logical file name by which the file is referred
within the program.

Once you have selected a file, you can specify its parameters in any
order. The first line of the file-control entry shown in Example 5-4 is
an ASSIGN clause containing the parameter reference name (or PRNAME) and
the type of I/O device for the file. The parameter reference name is the
program's external name for the file, and is used in error processing.
The PRNAME is followed by a device type keyword. Device type options are
"DISK", "DISPLAY" (for workstation files), "PRINTER" and "TAPE". The
PRNAME and the device type keyword are always in quotes.

The next phrase in the example, an ORGANIZATION clause, stipulates
the structure of the file. Specify ORGANIZATION IS SEQUENTIAL for
consecutive files on disk and files for any non-disk device. The keyword
"SEQUENTIAL" in COBOL refers to consecutive files. Specify ORGANIZATION
IS RELATIVE for relative files. Specify ORGANIZATION IS INDEXED for
indexed and alternate indexed files on disk.

You can specify the ACCESS MODE as being either SEQUENTIAL, RANDOM,
or DYNAMIC. You can also specify the key field name by including a
RELATIVE KEY clause for consecutive or relative files, or a RECORD KEY
clause for indexed files.

5-8

Example 5-4. COBOL Environment Division Coding

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FIRST-ZOO-FILE
ASSIGN TO **Z001'', *‘DISK'’,
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS DYNAMIC
RELATIVE KEY IS ZOO-KEY-FIELD.

SELECT SECOND-ZOO-FILE

Not all file identification parameters are specified in the
Environment Division. The permanent file, library, and volume names of
the file are recorded in the file description entry in the File Section
of the Data Division, and are referenced by the internal name specified
in the file-control entry:

Example 5-5. COBOL Assignment of Permanent File Names

DATA DIVISION.
FILE SECTION.
FD FIRST-FILE
VALUE OF FILENAME IS ‘‘ZOOFILE"’
LIBRARY IS ‘‘ZOOLIB'’
VOLUME IS ‘‘ZOODISK'’

5.6.2 COBOL File Allocation Parameters

In order to create a new file, DMS must allocate sufficient space for
that file. This requires supplying two numeric parameters to the UFB --
the record size (RECSIZE) and the anticipated number of records to be
initially placed in the file (NRECS). For relative files, the NRECS
field is the number of record slots to be placed in the file's first
allocation. In COBOL these parameters are coded in the DATA DIVISION
file descriptor (FD) as shown in Example 5-6.

5-9

Example 5-6. COBOL Space Allocation Parameters

DATA DIVISION.

FILE SECTION.

FD ZOO-FILE
RECORD CONTAINS 80 CHARACTERS
VALUE OF SPACE IS ZOO-N-REC

WORKING-STORAGE.
01 ZO0O-N-REC BINARY VALUE 100.

Example 5-6 allocates the space for 100 fixed length records, each
record 80 bytes in length. The record size (RECORD CONTAINS) clause has
two variants:

RECORD CONTAINS n TO m CHARACTERS
lused for variable length records]

RECORD CONTAINS nn COMPRESSED CHARACTERS
[for compressed variable length records]

Remember that relative files cannot contain compressed characters.

5.6.3 COBOL Primary and Alternate Index Key Parameters

If the file-control entry specifies ORGANIZATION IS INDEXED, you must
specify the names of the primary key field and any alternate index key
fields in the RECORD KEY and ALTERNATE RECORD KEY clauses. THE RECORD
KEY field is a mandatory field that supplies the internal name of the
primary index key field. The name of this key field reappears in the
Data Division file description entry (FD), where the size and location of
the primary key are listed along with the picture clauses for the other
fields in the record.

5-10

Example 5-7. COBOL Definition of Primary Keys

ENVIRONMENT DIVISION.
SELECT Z0O-FILE
ORGANIZATION IS INDEXED
RECORD KEY IS ANIMAL-NAME

DATA DIVISION.

FILE SECTION.

FD ZOO-FILE
LABEL RECORDS ARE STANDARD
DATA RECORD IS ZOO-RECORD.

01 ZOO-RECORD.
05 ENCLOSURE PIC X(10).
05 ANIMAL-NAME PIC X(12).
05 FILLER PIC X(58).

COBOL provides full support for alternate indexed files. In order to
create or access alternate indexed files the system must create an AXD1
block in Block 0 of the data file, and set the key path bits on the
two-byte suffix mask at the end of each data record. You invoke these
operations by defining the key paths in the ENVIRONMENT DIVISION, and
stipulating the key size and location 1in the DATA DIVISION file
descriptor.

Establishing a primary record key and three alternate record keys is

shown in Example 5-8. Note that the second and third alternate index key
paths allow duplicate key values.

5-11

Example 5-8. COBOL Coding for a File with Alternate Keys

ENVIRONMENT DIVISION.
FILE-CONTROL.
SELECT ZOO-ALT-FILE.
ASSIGN TO ‘*Z0OO0-PRNAME'’ *‘DISK™’

RECORD KEY IS ANIMAL-NAME

ALTERNATE RECORD KEY
01 IS SCIENTIFIC-NAME
02 IS SEX WITH DUPLICATES
03 CARNIVORE-FLAG WITH DUPLICATES.

DATA DIVISION.
FILE SECTION.
FD ZOO-ALT-FILE

01 ZOO-REC.
05 ANIMAL-NAME PIC X(10).
05 PET-NAME PIC X(10).

05 SCIENTIFIC-NAME PIC X(20).
05 CARNIVORE-FLAG PIC X.
05 SEX PIC X.

A COBOL programmer cannot set the alternate index record mask bits
directly. To place a record on a subset of the available keys you must
establish that parallel set of alternate index keys in the file-control
entry, and provide an alternate record description as shown in Example
5-9. Records written with the first file descriptor are placed on three
alternate key paths. Records written with the second file descriptor are
placed on two alternate key paths.

5-12

Example 5-9. COBOL Coding for Records on Different Alternate Keys
ENVIRONMENT DIVISION.

ALTERNATE RECORD KEY

01 IS SCIENTIFIC-NAME

01 IS SCIENTIFIC-NAME-1

02 IS SEX WITH DUPLICATES
02 IS SEX-1 WITH DUPLICATES
03 CARNIVORE-FLAG WITH DUPLICATES

DATA DIVISION.
FILE SECTION.

FD ZOO-ALT-FILE
01 ZO0O-REC-3-ALT.

05 ANIMAL-NAME PIC X(10).
05 PET-NAME PIC X(10).
05 SCIENTIFIC-NAME PIC X(20).
05 CARNIVORE-FLAG PIC X.
05 SEX PIC X.
01 ZOO-REC-2-ALT.
05 ANIMAL-NAME-1 PIC X(10).
05 PET-NAME-1 PIC X(10).

05 SCIENTIFIC-NAME-1 PIC X(20).
05 CARNIVORE-FLAG-1 PIC X.
05 SEX-1 PIC X.

5.6.4 COBOL File Efficiency Parameters

COBOL supports the full range of performance enhancement methods.
You can establish large buffers for consecutive file or relative file
processing in the file-control entry by using a BUFFER SIZE IS n clause
with a multiple of 2048 bytes. You can establish a buffer pool for
indexed files by specifying a RESERVE n AREAS clause in the file-control
entry, in conjunction with the SAME AREA clause. In these clauses, n is
a number of blocks between 3 and 60. Several files can share a buffer
pool.

Packing densities are used with indexed files to leave blank space in
the file blocks for subsequent updates. You establish these density
percentages in the DATA DIVISION file descriptor by specifying:

FD ZO0O-REC.
VALUE OF DATA AREA IS n
INDEX AREA IS m

where n and m correspond to packing density percentages with a default of
100.

5-13

5.6.5 The COBOL CALL Statement and the UFB

The UFB is not directly accessible in COBOL, limiting your control
over file parameters. You can circumvent these limits by using the CALL
statement to call a subroutine written in Assembly language and pass to
it the address of the file's UFB. The Assembly language subroutine sets
the desired UFB field dynamically, then issues a RETURN to the COBOL
program. The CALL statement appears as follows:

CALL ‘‘ZOOSUB’' USING ZOO-FILE

where zoosub is the name of the Assembly program and zoo-file is the °
COBOL internal file name used in the SELECT clause.

For further details on establishing file parameters in COBOL, see
Chapter 9 of the VS COBOL Reference Manual.

5.7 DMS RECORD ACCESS FROM COBOL

Record access statements in VS COBOL bear many similarities to access
statements in Assembly language. COBOL specifies the mode as part of the
OPEN statement, and uses the five standard Open modes: Input, Output, I-O
(note hyphen), Extend, and Shared. You must specify an Open mode every
time you open a file; to change the mode you must close the file and then
re-open it.

COBOL uses five PROCEDURE DIVISION statements to locate and access
records: READ, WRITE, REWRITE, START, and DELETE. These five statements
are referred to as function requests in Chapter 7 where their use is
described in depth.

COBOL does not use a READ REL or READ KEYED statement. Instead, it
uses the ACCESS MODE clause of the SELECT statement in combination with
the READ function request to locate records within a file. This
ENVIRONMENT DIVISION statement determines the method for locating records
in a file for the entire program. The ACCESS MODE can be SEQUENTIAL,
RANDOM, or DYNAMIC. SEQUENTIAL access limits record access to reading
record-by-record from the beginning of the file. This is the only access
method permitted for magnetic tape. If you specify RANDOM for a
sequential or relative file, the READ statement accesses the record
specified by a relative key value (relative record number). If you
specify RANDOM for an indexed file, the READ statement accesses the
record specified by the primary or alternate record key value. DYNAMIC
access mode allows records in a file to be read either sequentially or
randomly.

The various access methods and types of READ statements are shown in
Table 5-4.

5-14

Table 5-4. READ Statements in COBOL

Environment Division Locate and Read Locate and Read by
File-Control Entry Sequentially Relative Record Number
ORGANIZATION IS SEQUENTIAL READ
ACCESS MODE IS SEQUENTIAL
ORGANIZATION IS SEQUENTIAL READ
ACCESS MODE IS RANDOM
ORGANIZATION IS SEQUENTIAL READ NEXT READ
ACCESS MODE IS DYNAMIC

Environment Division Locate and Read Locate and Read by
Select Statement Sequentially Relative Record Number
ORGANIZATION IS RELATIVE READ
ACCESS MODE IS SEQUENTIAL
ORGANIZATION IS RELATIVE READ
ACCESS MODE IS RANDOM
ORGANIZATION IS RELATIVE READ NEXT READ
ACCESS MODE IS DYNAMIC

Environment Division Locate and Read Locate and Read by
Select Statement Sequentially Primary Key Value
ORGANIZATION IS INDEXED READ
ACCESS MODE IS SEQUENTIAL
ORGANIZATION IS INDEXED READ
ACCESS MODE IS RANDOM
ORGANIZATION IS INDEXED READ NEXT READ
ACCESS MODE IS DYNAMIC

To access a record by alternate key value, you issue a READ statement
with a KEY IS clause, establishing the key of reference. The key of
reference is the primary or alternate index key path on which DMS
performs the read. The default key of reference is the primary key.
Once you establish a key of reference, DMS performs all READ function
requests along that path until: [l1] you issue a KEY IS clause to
establish another key of reference [2] the file is closed., causing the
key of reference to default to the primary key, or [3] you issue a START
function request, resetting the key of reference to another key.

5-15

In COBOL the START statement is used to locate records in indexed
files by primary or alternate key value. You can specify an approximate
key value; you can use the START function request to select the first
record with a higher key value, or to match a partial key (consisting of
the first character(s) of the key) against the file records' keys. A
similar use of the START function request permits you to access relative
file records by Relative Record Number.

In COBOL the HOLD statement is used to hold an entire file or a group
of records within a file that have a common generic key. You can
simultaneously hold multiple resources by using a HOLD LIST statement.
Held resources cannot be accessed by other users in Shared mode.

A WRITE statement is used to place a record in a file. You can use a
WRITE in Output, I-O and Shared mode for indexed files, and in Output,
Shared or Extend mode for relative or consecutive files.

If you want to update an existing record in a consecutive or indexed
disk file, open the file in I-O or Shared mode, issue a READ WITH HOLD to
read the record, update the data and return the updated record to the
file using a REWRITE statement. In a relative file opened in sequential
access mode, you first read a record, then issue a REWRITE to overwrite
the record. 1In a relative file opened in the random or dynamic access
mode, you specify the relative record number of the record to be
overwritten in the RELATIVE KEY field, then issue a REWRITE to overwrite
the record.

The DELETE statement is used to delete a record from a relative or
indexed file. 1In a relative file opened in sequential access mode, you
first locate a record using a READ or START function request, then issue
a DELETE to scratch the record. 1In a relative file opened in the random
or dynamic access mode, you specify the relative record number of the
record to be deleted in the RELATIVE KEY field, then issue a DELETE to
scratch the record. In an indexed file opened in sequential or dynamic
access mode, the DELETE statement must be preceded by a READ WITH HOLD.

5.8 SUPPLYING FILE DEFINITION PARAMETERS IN FORTRAN

File processing in Fortran 66 differs considerably from the other
languages supported by the VS in that Fortran does not use an OPEN
statement. Files are neither opened nor closed, nor are their parameters
set forth in a SELECT statement. These differences are more apparent
than real. When the first READ or WRITE statement for a file occurs in a
program, the program performs the functional equivalent of an OPEN
statement. DMS displays a series of screens that request many of the
same parameters supplied to an OPEN statement in other programming
languages. DMS records the parameter values you input to these screens
in the UFB, where they are available the next time the program accesses
the file.

5-16

5.8.1 Fortran File Definition Parameters

You define a file by supplying a logical unit number to the file.
This logical unit number is the file's internal name, used whenever your
program refers to that file. Each READ, WRITE, BACKSPACE or REWIND
statement must contain a logical unit number. This number can range from
0 to 64, although certain unit numbers (e.g., 0, 5, 6) are reserved for
specific device types.

The first appearance of a particular logical unit number causes the
system to display a series of screens requesting additional information
about the file. These screens are described in Appendix D of the VS
FORTRAN Reference manual. A request for the permanent file name, library
and volume is displayed for each file defined by a logical unit number.
The type of storage device (DISK, WS, or TAPE) is also requested.

5.8.2 Fortran File Allocation Parameters

The data entry screen for the permanent file, library, and volume
names also requests an estimated number of records to be written to the
file. A second screen requests the number of bytes in each record
(RECSIZE). DMS uses these two numbers to calculate the primary extent
allocation for the file.

Fortran processing supports variable length records. Again, the
parameters are presented to you via a screen display. You supply
VAR=YES, and a MAXSIZE equal to the 1length of the largest record. The
primary extent allocation is calculated based on the MAXSIZE. VS Fortran
does not support record compression.

5.8.3 Limitations on Fortran Processing of DMS Files

Fortran is primarily a language for scientific calculations, rather
than for the storage and retrieval of data records. As such, there are
several DMS file support features that are not available directly from
Fortran, and are accessible only by calling a subroutine in Assembly or
some other VS language.

Fortran 66 does not support indexed or alternate indexed files. 1In
order to read records from an indexed file, you must first copy the
records into consecutive file format or use a subroutine in another
high-level language.

Other common DMS features, such as packing densities and buffer

pooling, are wused only with indexed files, and are therefore not
supported by Fortran 66.

5-17

5.9 DMS RECORD ACCESS FROM FORTRAN

Fortran 66 does not use OPEN or CLOSE statements. The first READ or
WRITE operation performed on a file initiates a file opening routine.

Only consecutive files are accessible using Fortran 66. Two file
positioning statements are available: BACKSPACE and REWIND. The
BACKSPACE statement moves the file pointer to the previous record. The
REWIND statement closes the file and repositions the file pointer to the
first record in the file.

All file access is performed using the READ and WRITE statements.
The READ statement reads the next record from the consecutive file, or
the record pointed to by the BACKSPACE or REWIND statements. The WRITE
statement writes new records to a file; if the file is pre-existing,
records are written to the end of the file. Fortran 66 cannot update
records.

5.10 SUPPLYING FILE DEFINITION PARAMETERS IN PL/I

The PL/I programmer has the choice of coding most file parameters in
either the DECLARE statement or the OPEN statement. File parameters
placed in the DECLARE statement remain unchanged throughout the program.
Parameters not declared, but coded only in the OPEN statement govern file
access until that file is closed. You can then reopen a file with
different parameter values. If you code a parameter in both a DECLARE
and an OPEN statement, the two values must match. A conflict between
DECLARE and OPEN parameter values results in a runtime error.

Code an ENVIRONMENT attribute for each file accessed by the PL/I
program. You can code this attribute as part of either the file's
DECLARE statement or as part of each OPEN statement, or in both places.
The keyword ENVIRONMENT is followed by parentheses, containing a series
of parameters (items) separated by commas. Each item is in the form:

Keyword = value
which 1is the same form as the UFBGEN parameters in Assembly language.
The value portion of the item should be in quotes unless the value is

stipulated as an integer.

5.10.1 PL/I File Definition Parameters

Since the DECLARE and OPEN statements are used for many other things
than DMS file access, it is necessary to specify the words FILE and
RECORD to indicate that the named entity is a DMS file, accessed by data
records. You can do this using either of the following statements:

DECLARE filename FILE RECORD ENVIRONMENT...

or
OPEN FILE(filename) RECORD ENVIRONMENT. ..

5-18

The definition of the file is completed by coding an ENVIRONMENT
attribute for either the DECLARE or OPEN statement. The first item in
the ENVIRONMENT attribute, shown in Example 5-10, is the TITLE name, also
known as the parameter reference name or PRNAME. This is an external
file name used for calling subroutines and error processing. The next
item, DEVICE=DISK, makes clear that this is a disk file, rather than a
TAPE, PRINTER, or WS (workstation) file.

The system records the name of a disk file in the disk's VIOC as a
permanent name used by all programs that access that file. 1In PL/I the
permanent file, library, and volume names are items in the ENVIRONMENT
attribute, as shown in Example 5-10.

An ORGANIZATION item allows you to choose either CONSECUTIVE or
INDEXED file structure. CONSECUTIVE is the default, and the only file
structure permitted for non-disk files. The FILETYPE item identifies
special use files, such as PRINT, PROGRAM or workstation (WS) files. In
Example 5-10, this item is supplied with the default value ANY.

5.10.2 PL/I File Allocation Parameters

In order to allocate space for a data file, it is necessary to
provide DMS with the size of the records in the file, whether the records
are fixed or variable length, and the estimated number of records to be
initially written to the file. In VS PL/I these parameters are supplied
as items in the ENVIRONMENT attribute. The record length (RECLEN) and
the number of records (NRECS) are numeric values. If the record length
varies, the RECLEN designates the maximum record size. The items showing
that the records are variable length or compressed are in Boolean
notation, where a value of 'l'B indicates a Yes or True statement. If a
file is compressed, it is not necessary to indicate that its records are
variable length.

Example 5-10. PL/I ENVIRONMENT Attribute

ENVIRONMENT(TITLE="ZOOPRNAME', DEVICE=‘DISK', FILENAME='ZOOFILE’,
LIBRARY='Z0OOLIB', VOLUME='Z00ODISK’,
ORGANIZATION=‘INDEXED', FILETYPE=‘ANY’,

RECLEN=80, NRECS=100, COMPRESSED='1'B)

5.10.3 PL/I Primary and Alternate Index Key Parameters

If a data file resides on a disk and ORGANIZATION='INDEXED', the file
must also have two other ENVIRONMENT items: the location of the primary
key (KEYPOS) and the length of the primary key (KEYLEN). Specify KEYPOS
as a byte position counting from zero, KEYLEN as the byte length of the
longest primary key.

5-19

Alternate indexed files are not fully supported by VS PL/I. It is
possible, however, for a PL/I program to read an alternate indexed file
sequentially or by primary index key. Updating alternate indexed files
is not recommended, because updates to the alternate index trees are not
performed from PL/I.

5.10.4 PL/I File Efficiency Parameters

The user program can often improve the processing of consecutive
files by increasing the size of the Segment 2 buffer. The BUFSIZE item
in the ENVIRONMENT attribute specifies the size of this buffer. The
default value of this item is 2048, which is the number of bytes in one
block. BUFSIZEs larger than 2048 must be multiples of 2048 up to 18,432,
the number of bytes in nine blocks.

VS file efficiency methods used for indexed and alternate indexed
files are not supported from VS PL/I.

5.11 DMS RECORD ACCESS FROM PL/I

PL/I uses an OPEN statement to establish file access attributes for
record processing. If you do not code an OPEN statement, the first READ,
WRITE, or REWRITE statement automatically opens the file with default
access attributes. The OPEN statement attributes include the file access
mode and the file access method. You can specify the ENVIRONMENT
attribute in either the DECLARE or OPEN statements.

The ENVIRONMENT statement includes a DISPOSITION item that can take
the values OLD, NEW, or ANY, A pre-existing file is an OLD file; a file
created during the program run is a NEW file. ANY allows a file to be
both created and modified during the same program run. DISPOSITION=OLD,
when combined with the Output file access mode, extends a consecutive
file by adding records.

The three file access modes, INPUT, OUTPUT, and UPDATE govern the
type of record access performed while the file is open. The UPDATE mode
corresponds to the DMS I/0 mode; 1if UPDATE mode is specified with an
ENVIRONMENT attribute that contains a SHARED='l1'B item, file access is in
the DMS Shared mode.

The three file access methods -- SEQUENTIAL, DIRECT, and KEYED --
establish the location method for accessing records. The possible
combinations are as follows:

SEQUENTIAL Sequential access to records in consecutive or
indexed files

SEQUENTIAL KEYED Access to records in consecutive files by
relative record numbers

DIRECT KEYED Access to records in indexed files by primary
key value

5-20

The relative record number or primary key value sought is coded in
the KEY option of the READ statement. If you do not specify a KEY, DMS
performs a sequential READ.

PL/I provides WRITE, DELETE, and REWRITE statements. The WRITE
statement writes a record to a file. The DELETE statement deletes a
record from an indexed file; you can use the KEY option of the DELETE
statement to locate the record to be deleted. To rewrite a record in an
UPDATE file, read the record from the file, update the record data, then
use the REWRITE statement to update the record in the file. For a PL/I
REWRITE operation, the READ statement does not require a HOLD clause.

There is no START statement or its equivalent in PL/I. Records must
be located by primary key value or by relative record number. Files
cannot be accessed by alternate key values.

The PL/I programmer can also perform file update using the PUT and

GET statements. These statements can only be used for sequential
processing of records.

5.12 SUPPLYING FILE DEFINITION PARAMETERS IN RPG II

An RPG II program is divided into functional sections known as
specifications. Each of these specifications is written using its own
coding form, with numbered columns assigned to particular items. RPG II
programming requires you to place the appropriate letter code, number, or
word into the correct column.

RPG II is unique among the high-level languages in that it permits
you to share consecutive disk files. File sharing is described in detail
in Chapter 8. RPG II also provides support for the file sharing and
recovery features of DMS/TX. DMS/TX is described in the VS DMS/TX
Reference.

You supply file definition parameters to the file's UFB by coding
them in the File Description Specification (or F Spec), the first section
of an RPG II program. Each file is described in a single line, using the
column positions to stipulate the file parameters. Since RPG II is a
powerful file-handling language, there are more file and record
parameters required for a file than are used by DMS. This chapter passes
over these RPG II-specific parameters and focuses on the file definition
parameters supplied to DMS for disk file processing.

5.12.1 RPG II File Definition Parameters

An internal file name identifies all references to a data file within
a RPG II program. Code this file name in Columns 7 to 14 of the File
Description Specification. The parameter reference name (PRNAME)
defaults to the internal file name.

5-21

The permanent file, library, and volume names recorded in the volume
table of contents (VIOC) are not compiled in an RPG II program itself;
instead, you specify these parameters at execution time by means of a
GETPARM screen or procedure language statements.

You denote the type of device used for file I/0O in columns 40 to 46
of the File Description Specification. If the file device is a disk
(DISK in columns 40 - 43), the file can be structured as an indexed,
alternate indexed, or consecutive file; if the file is on a device other
than a disk, only consecutive structure is possible. The file structure
is recorded in column 32 of the F Spec. Consecutive files use column 32
for other purposes as well, as described later in this section.

5.12.2 RPG II File Allocation Parameters

In order to allocate space for a data file, you must specify the size
of the records in the file, whether that record size 1is fixed or
variable, and the estimated number of records to be initially written to
the file. 1In RPG II the record size and its variability are included in
the F Spec. Column 24 accepts the record size (RECSIZE), column 19
indicates whether the record size is fixed (F) or wvariable (V), and
column 74 specifies compression. If you specify compression for a file,
you must also specify variable length records and provide the maximum
uncompressed record size in the RECSIZE field.

5.12.3 RPG II Primary and Alternate Index Key Parameters

You must stipulate the primary index key length and position for all
indexed or alternate indexed files. Columns 29 and 30 of the File
Description Specification are reserved for the primary key length,
Columns 35 through 38 for the starting position of the primary key in
each record.

RPG II provides full support for alternate indexed files by means of
a separate specification, the Alternate Index Specification, or A Spec.
Alternate Index Specifications appear in the program immediately after
the File Description Specifications. Each file that stipulates an
alternate indexed file structure (an "A") in Column 32 of the File
Description Specification requires an Alternate Index Specification.

The alternate indexed file is identified by the internal filename in
Columns 7 - 14. Four parameters define an alternate key path: the key
path number (values from 1 to 16), the alternate key 1length, the
alternate key starting position, and a flag allowing or disallowing
duplicate alternate key values.

Each Alternate Index Specification line has room for the parameters
of four alternate key paths. Space for defining more alternate key paths
is reserved by repeating the internal file name in Columns 7 - 14 of
additional Alternate Index Specification lines. Thus you can establish
the maximum of 16 alternate key paths in four successive lines. You need
specify only those alternate key paths accessed by the program.

5-22

In order to place new records on an alternate key path you must list
the alternate path numbers in Columns 45 to 70 of the Output
Specification sheet.

5.12.4 RPG II File Efficiency Parameters

The user program can often improve the processing of consecutive
files by increasing the size of the Segment 2 buffer. In RPG II this is
carried out by specifying a number in File Description Specification
Column 32, the file structure code column. Since the default file
structure 1is consecutive, this field does double duty for consecutive
files as the Segment 2 buffer size column. The size can range from one
(the default) to nine buffer blocks, each 2048 bytes long.

VS file efficiency methods used for indexed and alternate indexed
files are not supported from VS RPG II.

5.13 DMS RECORD ACCESS FROM RPG II

The RPG II programming language 1is unique in that it does not
normally use OPEN, CLOSE, READ, or WRITE statements for file access. 1In
RPG II, access to the records in a file is performed as part of the
program cycle. The first step of the cycle is to open an input file and
read a record. Records are read in either sequential order or in the
sequence specified by ADDROUT or KEYOUT (see below). If you specified a
file as an output file, the record is written to that file. RPG II then
begins the cycle over, reading the next input record. At end-of-file,
the system closes the input and output files.

The file mode specified in Column 15 of the File Description
Specification controls this cyclic reading, updating, and writing of
records. Since each DMS file has only one File Description Specification
line, and a file cannot be opened and closed by the programmer, an RPG II
program can only access a file in a single mode.

The three available disk file modes are Input, Output, and Update (I,
0, and U). Any of these modes can be used for extending a file by
specifying an ADD. An Update mode indexed file can be shared by placing
an S in Column 73 of the File Description Specification. In RPG II,
multiple users can also share consecutive disk files in Input or Update
modes. You specify a shared consecutive file by placing an S in Column
73 of the File Description Specification. HOLD and HOLDL statements
allow multiple users to hold single or multiple records when updating
shared files. You can also specify consecutive disk files in Output mode
as shared log files.

Column 28 of the File Description Specification determines whether
DMS is to access records sequentially, or by a relative record number or
indexed record key value. You can use the CHAIN operation to locate
records by relative record number or key value.

5-23

In addition to the automatic read and write processing, there are
operations that force operations outside of their normal cycle. The READ
and CHAIN operations force the reading of a record; the EXCPT operation
forces the execution of the output portion of the cycle, which performs
write and rewrite operations.

The DELET [note spelling] operation deletes the last record read from
an index or alternate indexed file.

RPG II has two equivalents to the DMS START function request for
indexed files. The SETLL and SEIGT operations position the location
pointer to a record by primary key value. Either instruction can be
followed by an explicit READ or a cycle-generated read, initiating
sequential processing of the file from that point.

The SETLL operation sets the lower limit for sequential processing of
indexed records. The file location pointer is positioned by SETLL to the
specified primary key value, and sequential processing begins at that
point. The SETIGT operation positions the location pointer to the first
record with a primary key greater than the SETGT-specified value. The
user can locate the first file record by setting the SETGT value to zeros.

5.13.1 RPG II Special Record Processing Options

ADDROUT and KEYOUT allow you to access a data file by any field
within the records. In DMS this function would be performed by
establishing an alternate index path for the field, then performing READ
KEYED access along that key path. RPG II provides an option to the use
of alternate indices for this purpose.

RPG II uses ADDROUT (address output) and KEYOUT (key output) files to
process all the records in a data file in a sequence other than
consecutive. It does not use them to locate individual records. It can
process records in ascending ASCII sequence by any field within the
records. An ADDROUT or KEYOUT sequence file governs the sequence of
record processing.

Use the ADDROUT file type for processing consecutive files with fixed
length records. Run the SORT utility with the ADDROUT option, and
specify one of the fields of the records as a sort field. The output of
the SORT wutility is an ADDROUT file consisting of a 1list of the
consecutive file's relative record numbers in the sequence dictated by
the sort. You then input this ADDROUT file to your RPG II program to
prescribe the sequence for reading the records in the original data
file. The system performs read operations randomly by the relative
record numbers in the ADDROUT file.

Use the KEYOUT file type with indexed files. It performs a sort by a
user-specified field and builds a KEYOUT file. Run the SORT utility with
the KEYOUT option, and specify a field other than the primary key as a
sort field. The output of the SORT utility is a KEYOUT file of the
primary key values of each record in the file. The KEYOUT file is a
consecutive file; its records are in the sequence established by the SORT

5-24

/‘\

utility. You then input this KEYOUT file to your RPG II program. When
the system processes the original data file, it reads the records in the
order dictated by the KEYOUT file. Records are accessed randomly by
primary key value, using the table of primary keys in the KEYOUT file to
determine the reading sequence.

5-25

CHAPTER 6
DEFINING DMS DISK FILES / THE USER FILE BLOCK

6.1 OVERVIEW -- THE SCOPE AND FOCUS OF THIS CHAPTER

Prior to accessing a data file, the accessing program must create a
User File Block (UFB) for each file accessed, and supply the UFB with
parameters that define the file. This chapter describes the UFB and its
parameters, and presents an overview of the runtime operations involved
in opening a disk file. . It describes how you supply file definition
parameters to the UFB, both at compile time and at runtime, and how these
parameters are used by the OPEN statement. This chapter describes all
user-defined file definition parameters used for disk files in RAM.
Included in this chapter are details on:

UFB parameters for RAM disk files

The AXD1 for defining alternate indexed files using AXDGEN
The OPEN macroinstruction

The five file access modes used for opening disk files

The CLOSE macroinstruction

® 6 o o o

While the descriptions of these file definition parameters are
largely consistent for all VS languages, the syntax is different in the
various high-level languages. Chapter 5 of this manual provides an
overview of the DMS syntax of each of the VS high-level languages.
High-level language programmers should use this chapter in conjunction
with Chapter 5 and the reference manual for the specific high-level
language.

You can supply some file definition parameters at runtime by
workstation interaction or Procedure Language. These runtime file
definition parameter assignments are the same for all languages. In
Assembly language, you can supply file definition parameters directly to
the UFB, or by using the UFBGEN and AXDGEN macroinstructions.

After you open a file, you access records in the file by issuing
function requests. The five function requests (READ, WRITE, START,
REWRITE, DELETE) are described in Chapter 7.

Information in this chapter is important for any type of DMS file
definition, but the scope of this chapter is limited to the most common
type of DMS file access: RAM access of disk files. Once familiar with
the material in this chapter, users accessing files on devices other than
disk should consult Chapter 11 for Workstation files, Chapter 12 for
Magnetic Tape files, or Chapter 13 for Printer, Program and WP files.

6-1

6.2 THE USER FILE BLOCK

Every file accessed by a program must have a UFB to store the
parameters that describe the file. There must be a separate UFB for
every file that the program has open simultaneously. Two or more files
may share a UFB if the program never has them open simultaneously. For
files to share a UFB, you must supply different values to the permanent
file name field at runtime, either through GETPARM interaction, or
through a routine in the program that rewrites this field.

The UFB stores both file definition parameters for the OPEN
statement, and function request modifier wvalues. File definition
parameters include the file organization and record type, the device
type, the file, library, and volume names, buffering options, the block
and the record lengths, and the primary key position and length. Many
file definition parameters take default values if you do not specify a
parameter value. The default value of a UFB parameter is always
expressed as zeros. You must supply all necessary file definition
parameters to the UFB before issuing an OPEN statement for the file.

In addition to the file description parameters, the UFB contains an
internal flag that indicates that the file is open, and a second flag
indicating in what mode the file has been opened. The UFB contains the
addresses of the function request routines, and stores the name of the
last function request executed and its modifier in UFBLF and UFBLFMOD.
The execution of a function request returns a File Status code (FS),
which indicates successful completion or the kind of error encountered.
The file status fields UFBFS1 and UFBFS2 receive these numeric codes.
Depending on the file status, the UFBERRAD or UFBEODAD error routine
addresses may be taken. Further details on error routines may be found
in Chapter 14.

When you open a file, DMS allocates an Open File Block (OFB) in
Segment 0 (the system segment), and connects it to the UFB. DMS writes
the UFB address in the OFB, and the OFB address in the UFB. It is
through this 1linkage that the currently executing task is connected to
the UFB. When the file is closed, DMS deletes the OFB address from the
UFB.

Other control block addresses are also recorded in the UFB. The UFB
does not contain parameters defining alternate key fields. It does,
however, contain the address of the AXDl block, which contains alternate
indexed file information. Similarly, the UFB does not control buffer
pooling directly but contains the Segment 2 address of the Buffer Control
Table.

6.2.1 Creating the User File Block

When you assemble an Assembly language program, the assembler
generates a UFB for each UFBGEN specified. The compiler automatically
generates a UFB for a file defined in a high-level language. The UFB for
each file is built as part of the object code module, and is

automatically placed in the user's Segment 2 (program data) area when the
program is loaded. The system retains these UFBs in Segment 2 for the
e duration of the program run.

The UFB is usually created in the Static portion of the user's
Segment 2 by means of UFBGEN in Assembly language, or a similar data
section paragraph (e.g., SELECT) in a high-level language. However, you
can build the UFB directly in any portion of the user Segment 2,
including the Stack area. See Chapter 15 for details concerning building
the UFB directly. This chapter assumes the use of UFBGEN or one of its
high-level language equivalents.

6.2.2 Addressing the User Record Area with UFBRECAREA

The user record area is a portion of the user Segment 2 of special
concern for DMS RAM processing. It is a contiguous area of data storage
the size of the largest permitted single record in a file. Program
compilation (or assembly) creates at least one user record area for each
file the program has open in RAM. You place the address of the user
record area in UFB field UFBRECAREA.

A file can have more than one user record area in the user's
Segment 2. If you wish to establish multiple record types (as described
in Chapter 15), you should create several record areas in your Segment
2. In COBOL, you must use different record areas to set different
alternate index bit map field values. You can modify the UFBRECAREA
field while the file is open to change record areas.

N You can only code program routines to change UFB parameter values in
Assembly language. To change the value of a UFB parameter, you must
first establish addressability to the file's UFB, as described later in
this chapter. You should not attempt to change the values of most UFB
fields while the file is open. Changing most UFB parameter values while
the file is open produces unpredictable results. Those fields that are
user-modifiable include:

°® UFBRECAREA, the address label of the user record area.

e UFBKEYAREA, the address label of a field holding a relative
record number (for relative or consecutive files),
or a primary or alternate key value (for indexed
files).

°® UFBEODAD and UFBERRAD, user-defined error routine addresses.
These fields are described further in Chapter 14.

e UFBGKSIZE, the generic key size used with START HOLD,RANGE or
START EQ for locating or holding indexed records
based on the initial characters of a key field.

When a file is closed, DMS restores the UFB parameter values so that
a subsequent OPEN statement will access the same file. Therefore it is
not necessary to respecify UFB parameters to reopen a file. To reuse a
o~ UFB for another file, you should reinitialize the UFB.

6-3

6.2.3 Creating the File Descriptor Record from the UFB

The Volume Table of Contents (VIOC) for a disk contains a File
Descriptor Record (FDR) for each data file on that volume. An FDR
consists of an FDR1 block, and an optional FDR2 block used to store data
about additional file extents. When you create a file (by opening it in
Output mode), DMS creates an FDR1 by copying parameter values from the
UFB. The FDR1 permanently retains certain parameter values from the UFB,
including file type, maximum record size (RECSIZE), flags for variable
length and compression, the primary key position (KPOS) and length
(KSIZE), and the packing densities (DPACK and IPACK) established for an
indexed file, and the file name. The file, library, and volume names are
retained on other VTOC blocks. These are permanent attributes of the
file, and cannot be subsequently modified, except by a rename operation.

File state information, which is modified by the processing of a
file, is also recorded in the FDRl. When you close a file, DMS
automatically wupdates file state fields in the FDRl. These fields
include the number of records in the file (NRECS), the relative block
number of the last block in the file containing data (EBLK), and (for
consecutive and relative files) the number of records in that end block
(EREC). When a file is closed, DMS updates the NRECS, EBLK, and EREC
fields of the FDRL1.

To access an existing file, you must supply certain file
identification parameters, including the permanent £file, 1library, and
volume names. These parameters allow DMS to locate the FDR record for
the file. When you open the file, DMS copies parameter values from the
FDR1 to the UFB. You can supply other parameters either through the
program or through a workstation interaction (see Appendix D for details
on supplying parameter values at runtime). If you do not supply a value
for the library or volume parameters, DMS defaults to the usage constants
of the person executing the program. You can set usage constants by
pressing PF2 from the workstation Master Menu and typing in parameter
values,

If you open an existing file without supplying a parameter value for
one of the file's permanent attributes, DMS supplies the parameter value
to the UFB from the FDR1. If you supply an incorrect value for one of
the file's permanent attributes, the parameter value taken from the FDR1
usually overrides your parameter value.

This override feature insures that file formats remain consistent.
However, because you may not be aware that a substitution has occurred,
you may be performing DMS functions based on incorrect assumptions about
the nature of the file being accessed. Prior to coding UFB parameters,
or the user record area and key area fields for an existing file, you can
use any of the following informational resources:

6-4

e The File Attributes screen for the data file. This screen is
accessible from the Command Processor by using PFS5. It supplies
the record length (RECSIZE), the file and record structure (FORG,
VLEN, and COMP), and the primary key length (KSIZE) and location
(KPOS). This information should be wused in coding the UFB
parameters and in describing the user record area.

¢ The DISPLAY utility (optional). The Indices (PF3) option of
DISPLAY supplies the number, position and length of alternate
keys, and informs you whether duplicate alternate index key
values are permitted.

¢ READFDR macroinstruction (optional), used to retrieve all file
parameter values recorded in the FDR. Use READFDR to read UFB
parameters values that are not available through the File
Attributes screen or the Display utility.

6.3 UFBGEN

In Assembly language, you invoke the construction of a UFB in your
static section by coding the file parameters in a UFBGEN
macroinstruction. The UFBGEN shown in Example 6-1 creates a file with
the UFB name "ZOOFILE", and supplies parameters describing the file
organization, the record length, and the number of records.

Example 6-1. Generating a User File Block

STATIC
ZOOFLE UFBGEN PRNAME=Z001,FILENAME=ZOOFILE,LIBRARY=Z0OLIB,
VOLSER=Z00V0L, FORG=CONSEC,DEVCLASS=DISK,
NRECS=100,RECSIZE=80,RECAREA=ZOOREC

UFB
END

You should code a separate UFBGEN in the program's static section for
every data file the program has open simultaneously. The UFBGEN
macroinstruction does not produce executable code. Instead, during
program assembly, the system uses the UFBGEN parameters to fill in a User
File Block (UFB) with the specified fields initialized in Segment 2.
BEach UFBGEN creates a separate UFB. At the end of the STATIC section you
should code a UFB statement, unless you have specified UFB NODSECT.

The names of the fields in the UFB begin with the three letters
"UFB"”. VYou can instruct the assembler (or compiler) to insert a suffix
letter as the fourth character of each field name; the rest of the field
name generally corresponds to the name of the UFBGEN parameter.

6-5

6.3.1 Establishing References to the UFB

Some DMS operations require you to directly read or modify fields in
the file's UFB. You can only perform operations of this type in Assembly
language. If you wish to address fields in the UFB, you must first
establish the addressability of the UFB. There are two methods of
establishing UFB addressability.

Base Register Addressing

You can establish the UFB address by specifying a register to hold
the address of the file's UFB. If you use a USING statement to equate
this register with the base address of the UFB, you can access the fields
of the UFB directly by name. However, you must change the base address
whenever you change UFB addressing from one file to another. Therefore,
this method is recommended when you are not frequently switching between
multiple UFBs.

Example 6-2. Establishing UFB Addressing

CODE
LA R6,Z00UFB
USING UFB,R6

STATIC
ZOOUFB UFBGEN

UFB
END

In Example 6-2, you load the address of the UFBGEN into a register
(R6 in the example), then establish that register as the base register.
In the STATIC section you specify the UFBGEN and its parameters, and also
specify UFB to provide the UFB DSECT.

To access a specific field in the UFB, you simply specify the name of
that UFB field:

MUC UFBGKSIZE,=X'02’

If you load the UFB address in a register, but do not specify a USING
statement, you can access a specific field in the UFB as follows:

MUC UFBGKSIZE-UFBBEGIN(1l,r),=X‘'02"’

You locate the UFB field by its offset from the beginning of the UFB. 1In
this example, 1 is the length of the desired field; r is the register
containing the address of the UFB.

Suffix Addressing

You can establish the address of a particular UFB by supplying a
unique suffix character. When the assembler creates the UFB, it uses
this suffix to uniquely identify each UFB field. It uniquely identifies
UFB fields by placing the suffix character between the control block
designator (UFB), and the name of the individual UFB field.

You supply two lines of code in the STATIC section that allow program
references to the parameters established by UFBGEN. Once you have
established these reference points, you can access UFB field values in
the code section of the program.

Example 6-3. Establishing a UFB Suffix Character

UFB NODSECT,SUFFIX=Z
ORG UFBZBEGIN
ZOOUFB UFBGEN

The first line indicates that the UFB DSECT is not specified, but is
generated from UFBGEN. The optional suffix field allows you to specify a
suffix character to be included in all UFB field names for that file.
The second line returns the offset pointer to the beginning of the UFB to
allow the system to insert the parameter values supplied in UFBGEN. When
specifying the beginning point (UFBBEGIN), you should include the suffix
character in the field name, if you established a suffix in the UFB
NODSECT line.

A suffix character uniquely identifies a field as belonging to a
particular UFB. All references to UFB fields must include the suffix
character:

MVC UFBZGKSIZE,=X'02"’

Because the suffix character uniquely identifies a particular UFB,
you can use the UFBBEGIN field as a synonym for the UFBGEN label:

READ UFB=UFBZBEGIN

6.3.2 UFBGEN Format

The UFBGEN is coded in the STATIC section of an Assembly language
program, and consists of three parts: the label, opcode, and operands.
The UFB label is a user-selected internal file name of eight characters
or less, specified in the program for each OPEN, CLOSE, and function
request operation on a file. It can be the same as the permanent file
name, but does not have to be. The UFB label is specific to a particular
accessing program; another program can access the same file using a
different UFB label.

The opcode is UFBGEN, located in Column 7. The operands are the
parameters described in greater detail in the following section. They
are of the form:

parameter=value

separated from each other by a comma and containing no blanks.
Parameters may be listed in any order, and the list may be extended to a
second line by ending the first line with a comma, placing a non-blank
character in Column 71, and continuing in Column 13 of the next line.

6.4 UFBGEN PARAMETERS

DMS requires several items of information to open a file in RAM (File
definition parameter requirements for BAM and PAM are described in
Chapter 10). You can provide these file description parameters in
several different ways:

® You supply parameter values through UFBGEN within the static
section of the program.

e You can supply parameter values by addressing the UFB directly,
using an instruction in the code section of the Assembly language
program or subroutine.

® You can accept the default values that DMS automatically supplies
for some of the UFB file definition parameters at runtime.

e You can supply parameter values through GETPARM screens when the
program is run interactively, or you can supply parameter values
to GETPARMs through Procedure Language statements.

e DMS supplies some parameter values for existing files from data
stored in the VTOC.

You must supply a set of file definition parameters to create a new

file; it 1is not necessary to supply all of these file definition
parameters to open an existing file.

6-8

a

When creating a file, DMS requires the record size (RECSIZE) and
number of records (NREC) to assign space for the file; the file
organization parameter (FORG) to determine how to construct the data
file; and the file, library and volume names to determine where to store
the file. You can supply the number of records, and the file, library
and volume names through either UFBGEN as part of the program, or at
runtime through GETPARM screen interaction or Procedure Language
statements. The UFBGEN values, if specified, act as program defaults,
enabling operator-free execution. These values can be overridden by
values supplied to GETPARM at runtime through Procedure Language
statements or workstation screen interaction.

It is not necessary to specify RECSIZE or FORG for existing data
files. If you supply values for these parameters that disagree with the
actual file values, DMS issues a respecification screen at runtime to
respecify the file name.

The following section describes the UFB fields that you can define
through UFBGEN parameters. UFBGEN parameters do not have to be defined
in any particular order.

UFBGEN Parameters Required for All Data Files

RECAREA The address of the user record area, the area used to receive
individual records for processing. You can supply this
address as either an address expression of up to sixteen
alphanumeric characters (the first character must be a letter
and no blanks or special characters may be included), or a
register number. The name you use to address RECAREA may be
the same as the filename, but cannot be the same as the UFB
address. You can modify the value of the RECAREA field while
the file is open.

Example 6-4. Use of RECAREA

READ UFB=INFILE
MOVEREC MVC OUTREC, INREC
WRITE UFB=0UTFLE

STATIC
INFILE UFBGEN RECAREA=INREC,FILENAME=OLDFILE
OUTFLE UFBGEN RECAREA=QOUTREC,FILENAME=NEWFILE

6-9

FILENAME

LIBRARY

VOLSER

The permanent name recorded in the VTOC and used in the
system libraries to represent the file. This user-selected
name is up to eight alphanumeric and/or national characters
in length, with the first character representing the type of
file. If it is a permanent file, you should begin the file
name with a letter or number.

If you do not include the FILENAME parameter in UFBGEN, the
system issues a GETPARM at runtime requesting a wvalid file
name. You can satisfy this GETPARM by either supplying a
file name value in Procedure language, or typing the file
name at the workstation screen. Refer to Appendix D.

If you specify an @ character as the first character of the
file name, and you have defined the file as a consecutive log
file, DMS processes the file using automatic write-through.
Write-through bypasses record buffering and writes each
record directly to disk storage. Log files are described in
Chapter 8.

If you specify a file name of #, DMS creates a work file. If
you specify a file name of ##, DMS creates a temporary file.
When you specify # characters in place of a permanent file
name (e.g., FILENAME=# or FILENAME=##), DMS automatically
creates a file name for the file by taking the first four
letters of name of the program creating the work or temporary
file, followed by a four-digit number (e.g., EDIT0001). This
number is incremented for every work or temporary file
created during the period that the user is logged on.

Work files are automatically scratched when they are closed.
Temporary files are automatically scratched when an unlink
operation exits the task, returning you to the Command
Processor.

The user-selected name of the VTOC library in which to place
the data file. The same naming conventions apply as for file
names. If you omit it, the system supplies the library name
established as the usage constant for the current user of the
program. You can set this parameter at runtime through a
GETPARM screen interaction or through Procedure Language
assignment. If the file is a work or temporary file, it is
stored in library #xxxWORK, where xxx is the logon ID of the
user. If a temporary file was created, this library is
scratched when the user returns to the Command Processor.

The disk volume on which a data file is located, or the
volume to which it should be written. VOLSER is a
six—character name supplied either in UFBGEN or at runtime
through GETPARM screen interaction or Procedure language
assignment. If you do not code a value for this parameter,
DMS supplies the usage constant volume for the current user
of the program.

6-10

PRNAME

The parameter reference name is an internal file name of up
to eight characters in length. You can specify any
displayable characters for the PRNAME. Parameter reference
names are used to identify the GETPARM screens used for
runtime definition of file parameters and for writing
procedures for these screens (see Appendix D). Specifying a
parameter reference name rather than a permanent file name in
UFBGEN allows you to assign file names at runtime, and to use
the same UFB for access to several different files.

UFBGEN Parameters Required for Creation of New Files

FORG

RECSIZE

The file organization. Specifies the structure of the file,
either the structure to be created for a new file, or the
structure for an existing file.

FORG=CONSEC consecutive file organization.
FORG=REL relative file organization.
FORG=INDEXED indexed or alternate indexed file organization.

FORG=ANY any organization acceptable. Used only for
accessing existing files. The system supplies
the correct file organization parameter value
at runtime from the FDR block of the VTOC.

The record size in bytes of the largest data record to be
placed in the file. Maximum sizes for disk files range from
2024 to 2048 bytes, depending on the type of file (refer to
Chapter 2). DMS uses this parameter wvalue for allocating
extents during file creation. For fixed length records,
RECSIZE is the actual record length; for variable length and
compressed files, set RECSIZE to the maximum uncompressed
record length for the file. For relative files, RECSIZE
represents the logical record size, not the record slot
size. RECSIZE does not include the record length indicator
or alternate index bit map suffix fields.

You supply the initial wvalue for RECSIZE. If the file
contains variable length records, DMS resets RECSIZE to the
uncompressed record length of the current record as each
record is processed. However, DMS preserves the initial
maximum record length value (in UFBLRECSAVE) , and
reestablishes this RECSIZE value when you close the file.

6-11

NRECS

KEYAREA

You do not have to specify a RECSIZE value when you open an
existing file. If you supply a RECSIZE larger than the
actual maximum record size for an existing file containing
variable 1length records, DMS opens the file wusing the
original maximum record size. If you supply a RECSIZE
smaller than the actual maximum record size for an existing
file containing variable length records, DMS does not open
the file, but displays a file respecification screen.

The number of records you expect to write to the file in
Qutput mode. DMS uses this number for allocating extents
during file creation. You can specify NRECS at runtime
through a GETPARM screen interaction or Procedure Language
statement.

When creating a relative file, you specify the desired number
of record slots in the NRECS parameter. This number may be
considerably larger than the actual number of records to be
written to the relative file.

If you specify an insufficient number of records in NRECS,
the number of records you write to the file may exceed both
the space initially allocated to the file, and the number of
additional extents that can be allocated in Output mode. In
most cases, the total amount of allocatable space is
approximately twice the number of records specified in
NRECS. If your program exceeds the allocatable space, the
file is automatically closed, and must be reopened in another
mode to continue inputting records. For the effects of
inaccurate approximation, see Chapter 3.

This optional parameter is used for random access to records
in consecutive, relative, and indexed files. It takes an
eight-character name (address expression) that addresses a
data field. DMS uses the key values you place in the named
data field to locate a particular record within a file.

In consecutive files, the KEYAREA addresses a four-byte area
containing either a signed number indicating how many records
to skip using START SKIP, or an unsigned relative record
number used by READ REL.

Relative files use the four-byte area addressed by KEYAREA to
hold the relative record number used for a WRITE, READ REL,
REWRITE REL, or DELETE REL operation. You also use KEYAREA
to address a relative record number area to locate a record
in a relative file using a START EQ, GT, GE, LT, or LE
operation.

6-12

When used for indexed and alternate indexed files, KEYAREA
addresses a data field containing a primary or alternate key
value that is used for READ KEYED, START EQ, START GT, or
START GE. For files opened in Shared mode, KEYAREA must
address a field within the record area.

In Example 6-5, the primary key (PRIKEY) is eight characters
in length. The KEYAREA field, SEARCH, specifies a particular
eight character primary key value.

Example 6~5. KEYAREA Parameter Coding for an Indexed File

STATIC
ZOOFILE UFBGEN FORG=INDEXED,RECAREA=ZOOREC,KEYAREA=SEARCH,
KP0S=10,KSIZE=8

ZOOREC DS 0CL80
FIELD1I DS CL10

PRIKEY DS CL8

FIELD2 DS CL6S
SEARCH DC C‘Aardvark’

UFBGEN Parameters Required for Indexed Files

KPOS This parameter specifies the position of the primary key
within the record. It is used only for indexed and alternate
indexed files. You supply a primary key position as the
number of bytes from the start of the data record, counting
from zero. Do not count the record length indicator bytes.

KSIZE This parameter specifies the length of the primary key within
the record. It is used only for indexed and alternate
indexed files. You supply the primary key length as the
number of bytes in the key, counting the first byte of the
key as one.

ALTCNT The alternate index count parameter is wused only for
alternate indexed files. It specifies the number of
alternate indices for the file (UFBALTCNT). Valid values are
0 to 16. The default value is =zero. Specify ALTCNT in
conjunction with ALTAREA. (See Section 6.4, AXDGEN.)

ALTAREA Used only for alternate indexed files, the ALTAREA parameter
specifies the address of the AXD1 block as generated by the
AXDGEN macroinstruction. The AXDl block's address is stored
in User File Block field UFBALTPTR. Specify ALTAREA in
conjunction with ALTCNT. (See Section 6.5, AXDGEN.)

6-13

Example 6-6. ALTAREA Coding for an Alternate Indexed File

ZOOREC UFBGEN FORG=INDEXED,ALTCNT=2,ALTAREA=Z00AXD

Z00OAXD AXDGEN

UFBGEN Parameters for Record and File Types

VLEN

COMP

PROG

PRINT

The variable length record parameter specifies whether the
records in the file are to be formatted as variable length
records. You must set VLEN equal to YES to create variable
length or compressed records. For fixed length records, you
can set this parameter equal to NO, or omit it; the default
is fixed length records. Log files always contain variable
length records.

The record compression parameter specifies whether all
records in the file are to be compressed. You can set this
parameter equal to YES to indicate that the £file being
created contains compressed records. If COMP is YES, VLEN
should also be set equal to YES. If you set COMP=YES, but
VLEN 1is not specified, DMS turns compression off. Print
files always contain compressed records. Relative files
cannot contain compressed records.

ZOOFILE UFBGEN VLEN=YES,COMP=YES

The program file parameter specifies whether the file
contains object code. The possible values are YES and NO,
with NO as the default. Program files are described in
Chapter 13.

The print file parameter specifies whether the file is a
print file. The possible values are YES and NO, with NO as
the default. If you specify PRINT=YES, you must also specify
VLEN=YES and COMP=YES. Print files are described in Chapter
13.

UFBGEN Special-Purpose or Informational Parameters

MODE

The mode parameter specifies the types of operations that you
can perform on a file. You must specify a mode each time you
open a file, either in the UFBGEN or in the OPEN statement.
A mode specified in UFBGEN is the initial value for the file,
which is overwritten by a mode specified in the first OPEN
statement.

6-14

FILECLAS

NODISPLAY

VERIFY

Possible values for MODE are: IN, OUT, IO, EXTEND, and
SHARED. For a description of these values see the
description of the OPEN statement MODE operand in this
chapter. Input and Output should be abbreviated (IN and OUT)
when coded in the UFBGEN.

Specifies the file class of the file being operated upon
(UFBFPCLASS). Valid values are A-Z, #, $, @, and blank. The
default is ‘'blank'. You can specify the file class at
runtime through GETPARM screen interaction or a Procedure
Language statement.

Specifies that if you supply valid file definition parameter
values before opening a file, DMS will neither display
GETPARM screens to respecify these parameter values at
runtime, nor accept parameter values from Procedure language
routines. The NODISPLAY parameter is stored in the UFB as
UFBFINODISP. Valid NODISPLAY parameter values are YES and
NO, with NO as the default. Refer to Appendix D for further
details on runtime respecification via GETPARMS.

Requests read-after-write verification of a file
(UFBF4VERIFY). Values are YES and NO. This option can
significantly degrade performance, and its use is discouraged.

UFBGEN Parameters for Specific I1I/0 Devices

DEVCLASS

DEVNO

PRTCLASS

Specifies the type of I/0 device used for file access. The
available values are: PRT (Printer), WS (Workstation), MTAPE
(Magnetic Tape), and DISK. DISK is the default option. You
can specify the device class at runtime through GETPARM
screen interaction or a Procedure Language statement.

Identifies the device to be used by the program. Values must
be integers. The system administrator establishes the device
numbers for a VS configuration by running the GENEDIT
utility. Device numbers differ among VS systems, with the
exception of Device Number 0, which is always the operator's
console workstation. You may have to respecify this field if
the system is reconfigured, or if the program is run on
another machine. This parameter is rarely specified.

Specifies the validation class to be used for a print file

(UFBFORGPRINT) to specify on which device the file may be
printed. Values can be A-Z. The default is A,

6-15

UFBGEN Parameters Used for DMS Error Processing

ERRAD

EODAD

Specifies the address of the instruction to be branched to in
the event of a file status code value of 30 or greater
(UFBERRAD). ERRAD may be either a register specification or
an expression. If ERRAD is left at its default value of
zero, a fatal error occurs when the system returns a file
status code of 30 or greater. See Chapter 14.

Example 6-7. ERRAD Coding

CODE

MSG [error recovery subroutine]

STATIC
FILEA UFBGEN ERRAD=MSG

Specifies the address of the instruction to be branched to in
the event of any file status code from 10 through 29
(UFBEODAD). See Chapter 14.

UFBGEN Parameters Required for Packing Densit

DPACK

IPACK

Specifies the packing density for records in data blocks.
You can only specify a packing density when creating an
indexed or alternate indexed file. A packing density is
expressed as the percentage of each data block that you can
write to in Output mode. For example, a DPACK value of 60
would indicate that you can use 60% of the space in each data
block to initially write records, with 40% of the block space
reserved for the subsequent enlargement of the file. See
Chapter 9 for further details.

Specifies the packing density for entries in index blocks.
This field only applies to primary index tree blocks:
alternate index tree blocks are always packed at 100%. An
IPACK value of 60 would indicate that when you create an
indexed file, DMS initially uses 60% of each primary index
block to store index entries and reserves 40% of the index
block space for 1later enlargement. (See Chapter 9 for
further details.)

6-16

UFBGEN Parameters Required for Buffering

BUFSIZE

POOL

BCT

Specifies the size in bytes of the Segment 2 buffer to be
used for DMS processing of consecutive or relative files.
Integer value must be a multiple of 2K bytes up to a maximum
of 18K, or else the default (2K bytes) is used.

Accepted values: 2048, 4096, 6144, 8192, 10240,
12288, 14336, 16384, 18432

Specifies that buffer pooling is to be used (UFBF1POOL).
POOL must be specified in conjunction with BCT. Valid values
for POOL are YES and NO. Use buffer pooling only when
accessing existing indexed or alternate indexed files.

Addresses a Buffer Control Table in the user’'s Segment 2, as
created by the BCTGEN macroinstruction (UFBBUFSTART).
Specify an address expression of up to eight characters for
the BCT parameter, as shown in Figure 6-8. BCT must be used
in conjunction with POOL. It can only be used for indexed or
alternate indexed files.

Example 6-8. BCT (Buffer Control Table) Parameter

FILEA UFBGEN FORG=INDEXED,POOL=YES,BCT=Z00POOL

Z00POOL BCTGEN

UFBGEN Parameters Used Only for BAM and PAM File Access

BAM
PAaM

BLKSIZE

BLKAL

When set equal to YES, these two parameters specify that you
are accessing the file in either the Block Access Method
(BAM) or the Physical Access Method (PaM). These two
parameters are mutually exclusive. If neither is specified,
DMS defaults to Record Access Method (RAM). See Chapter 10
for further details on BAM and PAM.

Specifies the block size (UFBBLKSIZE). The block size should
always be 2048 bytes for disk files except when using PAM,
(See Chapter 10 for PAM processing details.)

Valid only for BAM and PAM. Allocates space for a new disk
file (UFBF4BLKAL) using the number of blocks specified in
NBLKS. Valid values are YES and NO. You can allocate space
in BAM or PAM either using BLKAL, or by specifying the number
of logical records in NRECS. If you specify BLKAL=YES, you
must also specify a value for NBLKS.

6-17

NBLKS Valid only for BAM and PAM. Specifies the number of blocks
to be allocated for a new disk file (UFBNBLKS). This
parameter is required in conjunction with BLKAL.

NOVTOC For diskette volumes only; 1identifies the volume as
non-labelled, causing DMS to access the entire diskette as
one file in BAM or PAM., DMS stores the NOVIOC parameter
value in the UFB field UFBF4NOVTOC. Values are YES and NO,
with NO as the default. When you specify NOVTOC=YES, DMS
processing ignores RAM file definition parameters and the
FILENAME, LIBRARY, and VOLSER parameters. NOVTOC diskettes
do not support indexed files, or access to files in Shared or
Extend mode.

6.5 AXDGEN

DMS generates an Alternate Index Descriptor block (AXD1l) as Block 0
of every file accessible by alternate keys. The AXDl block provides
referencing material to the alternate key paths defined for the file. An
indexed file can be defined with up to 16 alternate indices. To create
an alternate indexed file, an Assembly language program should contain an
AXDGEN for that data file. You should not use AXDGEN to access an
existing alternate indexed file. Methods for accessing existing
alternate indexed files are described later in this section. A complete
Assembly language program example is provided in Appendix E.

NOTE

Files formatted for DMS/TX begin with two file recovery
blocks. For these files, the AXD1 is in fact the third
block of the file. However, these DMS/TX blocks are
invisible to the Display utility and other user-accessible
software. The AXD1l block is displayed as Block 0 for these
files.

6.5.1 UFB Pointers to the AXD1

Every Assembly language program creating an alternate indexed file
must have both an UFBGEN and an AXDGEN (or their equivalents). The
UFBGEN should contain all the parameters required for an indexed file.
These include FORG, KEYAREA, KPOS, and KSIZE. 1In addition, the file's
UFBGEN should contain two special parameters, ALTAREA and ALTCNT, that
are specific for alternate indexed files.

The ALTAREA parameter of UFBGEN supplies the location of the AXD1
block. The ALTCNT specifies the number of alternate index key paths
specified for that data file. This number must be the same as the
ENTRIES number in the AXDGEN, as shown in Example 6-9.

6-18

Example 6-9. The AXDGEN Macroinstruction

ZOOFILE UFBGEN FORG=INDEXED,KEYAREA=PRIKEY,ALTAREA=Z00AXD,
ALTCNT=3

ZOOAXD AXDGEN ENTRIES=3

6.5.2 Establishing References to the AXD1

Although a file's AXD1 is stored in block zero of the file, you
cannot address the AXD1l directly in the file. Alternate indexed file
processing copies the AXDl into a buffer in the user's Segment 2. To
perform an operation that requires you to directly read or modify fields
in the file's AXD1l, you must establish the address of the copy of the
AXDl in Segment 2. You can only perform operations of this type in
Assembly language. There are two methods of establishing AXD1
addressability.

Base Register Addressing

You can establish the AXDl address by specifying a register to hold
the address of the file's AXDl. If you use a USING statement to equate
this register with the base address of the AXDl, you can access the
fields of the AXD1 directly by name. However, you must change the base
address whenever you change AXD]1 addressing from one alternate indexed
file to another. Therefore, this method is recommended when you are not
concurrently accessing multiple alternate indexed files.

Example 6-10. Establishing AXD1 Addressing

CODE

USING AXD1,R6

OPEN UFB=ZOOUFB,MODE=I0
L R6,UFBALTPTR

LA R6,0(,R6)

STATIC
ZOOUFB UFBGEN FORG=INDEXED,FILENAME=ZOOFILE,LIBRARY=Z00LIB, X
VOLSER=Z00VOL,DEVCLASS=DISK

AXD1
END

6-19

In Example 6-10, you establish a register as the base register for
the aXDl. You then open the alternate indexed file, and establish the
addressability of the AXD1l from the UFB. The load address (LA)
instruction is used to clear the high-order byte of the register.

In the STATIC section you specify the UFBGEN; because you have
already provided the UFB with the AXD1 address, you do not need to
specify the ALTAREA or ALTCNT parameters in the UFBGEN for an existing
file. You do have to specify an AXD1l statement in the STATIC section to
provide the ADX1 DSECT.

To access a specific field in the AXD1l, you simply specify the name
of that AXD1 field:

MVUC AXD1MASK,=X'02’

If you load the AXDl address in a register, but do not specify a
USING statement, you can access a specific field in the AXD1l as follows:

MUC AXDIMASK-AXD1BEGIN(1,r),=X'02'
You locate the AXD1 field by its offset from the beginning of the AXD1.
In this example, 1 is the length of the desired field:; r is the register
containing the address of the AXD1.

Suffix Addressing

You can address AXDl1l fields by supplying each file's AXD1 with a
suffix character that uniquely identifies the each AXD1 field. You
supply two lines of code in the STATIC section that allow program
references to the parameters established by AXDGEN. Once you have
established these reference points, you can access AXD1l field values in
the code section of the program.

Example 6-11. Establishing an AXD1l Suffix Character

AXD1 NODSECT,SUFFIX=Z
ORG AXD1ZBEGIN
Z00AXD AXDGEN ENTRIES=2

The first line indicates that the AXD1 DSECT is not specified, but is
generated from AXDGEN. The optional suffix field allows you to specify a
suffix character that DMS will include in all AXD1 field names for that
file. The second line returns the offset pointer to the beginning of the
AXD1 to allow the system to insert the parameter values supplied in
AXDGEN. When specifying the beginning point (AXD1BEGIN), you should
include the suffix character in the field name, if you established a
suffix in the AXD1 NODSECT line.

A suffix character uniquely identifies a field as belonging to a

particular AXDl. All references to AXDl1l fields must include the suffix
character:

6-20

MVC AXD1ZGKSIZE,=X‘02"

6.5.3 Coding the AXDGEN

The label name for AXDGEN is the same as the value specified in the
UFBGEN parameter ALTAREA. AXDGEN requires one parameter, ENTRIES=, and
as many sets of subparameters as the value specified in ENTRIES=. You
must code a set of three subparameters for each of the ENTRIES specified
in the AXDGEN. Each set of subparameters specifies the options for one
of the alternate key paths. The three subparameters are: ORD, which
specifies which alternate key path is being referred to; KEYPOS, which
specifies the beginning location of the alternate index key value in the
records; and KEYSIZE, which specifies the 1length in bytes of the
alternate index key value. These three subparameters are grouped
together in parentheses, and separated by commas from the ENTRIES
parameter and from other subparameter groups.

Example 6-12. AXDGEN Parameters and Subparameter Groups.

Z00OAXD AXDGEN ENTRIES=3, (ORD=1,KEYP0S=5,KEYSIZE=5), (ORD=2, X
KEYPOS=10,KEYSIZE=5), (ORD=3,KEYPO0S=40,KEYSIZE=2)

AXDGEN Parameters

ENTRIES The number, counting from one, of alternate index key paths
established on the data file. This wvalue must correspond to
the number specified in the ALTCNT parameter of UFBGEN, and
with the number of subparameter groups specified in AXDGEN.
The highest possible value is 16. Keeping the number of
alternate index key paths as low as possible enhances
efficient addition and deletion of records. ENTRIES is a
required AXDGEN parameter.

MASKAREA The size in bytes of the PMASK area of the AXDl block (see

Chapter 3). At present, the only acceptable value for this
parameter is 2. This parameter is optional.

AXDGEN Subparameters

Example 6-13. Use of AXDGEN Subparameters

ZOOFILE AXDGEN MASKSIZE=2,ENTRIES=2.(0RD=1,KEYP0S=12, X
KEYSIZE=4 ,NODUPS), (ORD=2,KEYP0S=25,KEYSIZE=2)

ORD The number of the alternate index path for a subparameter
group. You should assign ORD values in ascending sequence
from 1 to 16. ORD is a required subparameter.

6-21

KEYPOS The position in the record of the beginning of the alternate
index key value. This is the number of bytes £from the
beginning of the uncompressed record, counting from zero.
This count excludes the record length and block length
indicator bytes. KEYPOS is a required subparameter.

KEYSIZE The length in bytes of the alternate index key for that key
path., Make alternate index keys as short as possible to save
space and improve performance. KEYSIZE is a required
subparameter.

NODUPS Specifies whether duplicate alternate key values are to be
allowed for a specified alternate key field. Whether or not
you permit duplicate alternate key values when you create the
file determines the size and structure of the alternate index
key tree (see Chapter 3.4). Specify NODUPS without a value
to prohibit use of duplicate alternate key values for the
alternate key field. If you specify NODUPS, DMS will reject
the writing or rewriting of a record that contains a
duplicate value for that alternate key field. NODUPS is an
optional subparameter.

COMPRESS Not currently operational. COMPRESS is an optional
subparameter.

6.5.4 Accessing the AXDl of an Existing File

If you know how many alternate key entries are in an AXD1, and you
are not opening the AXD1 in Shared mode, you can allocate space for the
AXD1l in your Segment 2 space, as shown in Example 6-14.

Example 6-14. Defining Space for the AXDl of an Existing File

STATIC
AXD1
ZOOFILE UFBGEN FORG=INDEXED,KEYAREA=PRIKEY,ALTAREA=Z00AXD,
ALTCNT=3
Z00AXD DS OF
DS (AXD1ENTRY-AXD1BEGIN+3*AXD1ENTRYLENGTH) X

This program defines AXD1l space by determining the length of the AXD1
header, then adding the length of each existing alternate index path
entry, multiplied by the number of entries as specified in the UFBGEN
ALTCNT field. When you open the file, DMS establishes the parameter
values for this Segment 2 AXD1 from the parameter values in the file's
AXD1 block.

6-22

You can open an existing alternate indexed file, and then establish
addressing to the open file's AXDl1 block. You must use this method to
access the AXD1l if you are opening the alternate indexed file in Shared
mode. You establish the address of the file's AXD1l as shown in
Example 6-15.

Example 6-15. Establishing the AXD1 Address of an Existing File

CODE
OPEN UFB=ZOOFILE
L R6 ,UFBALTCNT

LA R6,0(,R6)
USING AXD1,R6

MVC AXD1MASK(2,Ré6),Z00MASK

You must first open the alternate indexed file. You then load the
number of entries specified in the UFB into a register. Given the number
of entries, DMS can establish addressability to the AXDl. Once you have
established addressability to the AXDl, you can modify its parameter
values using move operations. The above example moves the value of
ZOOMASK into the two-byte AXDIMASK field in the file's AXD1.

6.5.5 Accessing the Record Mask Bytes

When DMS places a record in an alternate indexed file, it adds to the
end of each record a blank two-byte bit mask suffix. You must set these
sixteen bits to indicate which of the sixteen possible alternate key
paths can reference the record (see Chapter 3.4).

When creating a file, the appropriate value of the mask for each
record should be moved to the AXDl mask area. A simple move statement
will perform this task. You should remember what suffix character (if
any) you specified in the AXD1 NODSECT statement when specifying the AXDl
mask area.

6-23

Example 6-16. Coding the Alternate Indexed Record Mask Bits

. CODE
OPEN
READ
MUC AXD1MASK, ZOOMASK
WRITE
CLOSE

STATIC
UFBGEN
AXD1GEN

ZOOMASK DC X*8000°

You can set mask values in hexadecimal or in binary, but in either
case, you should establish the paths in sequence from left to right (hex
values '8000', 'C000', 'C200', etc.). The value you establish in the
record's bit mask suffix must be a subset of the number of paths
specified in the ENTRIES parameter of the AXDGEN.

6.6 THE OPEN MACROINSTRUCTION

In order to create or access a data file, you must first open that
file. This is done by coding an OPEN statement in the code section of
the program. Every file to be opened must have a UFB. In Assembly
language, you usually establish a UFBGEN in the static section of the
program. An OPEN statement identifies the file to be opened by giving
the address of the UFB (the UFBGEN label) as shown in Example 6-17.

Example 6-17. The OPEN Macroinstruction

CODE
OPEN UFB=ZOOFILE,MODE=INPUT

STATIC
ZOOFILE UFBGEN

The OPEN statement sets the AXDIALTINX field to =zero so that
subsequent record access is by primary key. It also resets the current
record pointer to the first record in the file.

6-24

6.6.1 Open Macroinstruction Syntax:

OPEN UFB={(register)]} [,MODE= {OUTPUT}] [,{NOGETPARM}] [,EXIT={(register)}]
{expression) {INPUT} {NODISPLAY} {expression]
{10}
{EXTEND)}
{SHARED}

6.6.2 File Access Modes

Every file is opened in a particular access mode. Generally, you
state the open mode as part of the OPEN statement, as shown in Example
6-17. If you do not specify a mode in the OPEN statement, the mode
specified in the UFB is used. This can be a mode you established using
UFBGEN, or the mode you specified in the previous OPEN statement for that
file. The mode specified in the current OPEN statement takes precedence
over the mode specified in the UFB. The mode specified in the OPEN
statement may, in turn, be overridden by a mode specified in a START
OUTPUT, START EXTEND, or START I0 function request. See Chapter 7 for
additional information on the START function request.

DMS provides five file access modes for RAM disk files. Each of them
has a specialized function, and allows a different subset of the user
function requests. The five modes are as follows:

OUTPUT Output mode for file creation

INPUT Input mode for reading records from a file

I0 Input/Output mode for updating a file

EXTEND Extend mode for expansion of a consecutive or relative file
SHARED Shared mode for sharing a file

Qutput Mode

The Qutput mode is used for the initial creation of a file. The only
function request processing that DMS supports in Output mode is the
sequential writing of records into a file using the WRITE function
request. Output mode can be used for consecutive, relative, or indexed
files. You must supply indexed records to Output mode in ascending
primary key sequence.

6-25

CAUTION

You can open an existing consecutive or relative file in
Output mode. When you open an existing file in Output mode,
DMS displays a screen warning you that to create a file with
the specified file name and library, DMS must scratch a
preexisting file. If you press PF3 from the warning screen,
DMS scratches the old file, deletes the VIOC entry for the
file, and deallocates file extents. The Open in Output mode
uses the old file's UFB to create a new FDR1l entry in the
VIOC, and to assign space to the new file. After opening
this file, you can perform write function requests by
writing records sequentially, beginning with Relative Record
1.

If a program crashes while an alternate indexed file is open in
Output mode, the file will not be accessible by alternate index keys.
DMS does not construct alternate index trees in Output mode until the
file is closed. If the system crashes while a file is open in Output
mode, records written to the output file are not preserved.

You can create a file by opening it in Output mode and then write
zero records to it. This use of Output mode to establish file space is
useful when, for example, indexed records used to create a file cannot be
put in primary key order. Once you have established the file space in
Qutput mode, you can write the records to the file in I/0 mode.

Example 6-18. Use of the Output Mode

L 4,COUNT

OPEN UFB=OLDFILE,MODE=INPUT

OPEN UFB=NEWFILE,MODE=OUTPUT
RETURN READ UFB=0OLDFILE

MVC NEWREC,OLDREC
WRITE UFB=NEWFILE
BCT 4 ,RETURN

CLOSE UFB=NEWFILE
CLOSE UFB=OLDFILE

As part of the Open operation in Output mode, DMS establishes a
release option for the file. A release deallocates all unused blocks at
the end of a file, making them available as a free extent to other
files. Unused space is released as part of the Close operation. The
release option default is to release unused space for consecutive files,
and to not release unused space for indexed files. DMS cannot release
unused space from indexed files containing alternate indices, nor can it
release empty blocks embedded within the file data.

6-26

You can override the release option defaults by means of the GETPARM
Screen for Qutput File Definition, shown in Appendix D. The displayed
RELEASE option on this screen is the default for the file type. If you
change the RELEASE option default, either through workstation interaction
or Procedure language commands, DMS wuses the option you specify.
However, if you specify NODISPLAY=YES in the UFB, DMS automatically uses
the default value for the release option.

After opening a file in Output mode, you can change the release
option by modifying a field in the UFB. You can specify release by
setting the UFBF4RLSE bit in the file's User File Block, as shown in
Example 6-19.

Example 6-19. Releasing Unused Blocks

OPEN UFB=NEWFILE,MODE=0UTPUT
0I UFBF4 ,UFBF4RLSE

WRITE UFB=NEWFILE

CLOSE UFB=NEWFILE

To perform a release, you must set the UFBF4RLSE after opening the
file, since the Open operation resets UFBF4ARLSE to the system default.
You can only release space from files in Qutput mode. You cannot release
space from alternate indexed files.

Input Mode

The Input mode is used for reading records from a data file. You
cannot modify a file that you have open in Input mode. You cannot write
records to a file you have open in Input mode.

Because you cannot modify a file opened in Input mode, multiple users
can concurrently read the same record in a file without waiting for
another user to relinquish it. Records in DMS files are available for
Input mode access regardless of concurrent Input mode access to those
files by other users. You cannot, however, open a file in Input mode if
that file 1is already open in another mode. You should open files
accessed by many users in Input mode whenever possible.

I/0 Mode

The Input/Output mode allows you to update a file by reading,
modifying, and rewriting records in a data file. You can read and
rewrite records in consecutive disk files, providing the record 1length
remains constant. You can read, rewrite, delete, and add records to
relative or indexed files in I/0 mode.

6-27

Unlike Input mode, I/O mode restricts other users' access to the
file. If multiple users need to simultaneously update records in a file,
the file should be opened in Shared mode. The I/0 and Shared modes
provide the same functionality, except that Shared mode allows several
users to simultaneously update the same file.

You can read records in I/0O mode by using the READ HOLD function
request, and return updated records to the file by 1issuing a REWRITE
function request. (See Chapter 7 for further details on these function
requests.)

Extend Mode

Use the Extend mode to enlarge an existing consecutive or relative
file by adding records to.- the end of the file. When you open a file in
Extend mode, DMS automatically locates the end of the data file, so that
a WRITE function request places a record at the end of the file. Extend
mode is used for consecutive and relative files; you cannot open an
indexed file in Extend mode.

Shared Mode

Shared mode provides you with all of the functions of I/0 mode. 1In
addition, it allows more than one user to concurrently update a file.
When you wish to update a file in a multiprogramming environment, you can
open the file in Shared mode to avoid "locking out" other users. A
time-out feature prevents contention for the same resource.

You can open indexed files in Shared mode for I/0 update (adding,
deleting, and modifying records). A consecutive file can be shared in
either of two ways. You can open a consecutive disk file for I/0O update
in Shared mode. You can also designate a consecutive file as a log
file. Several users can concurrently extend a log file by opening it as
a shared file. Log file users add records to the end of the consecutive
file in the order that the system processes the added records. This
function is valuable for keeping an audit trail of activity in strictly
chronological order. See Chapter 8 for further details on log files and
I/0 processing in Shared mode.

6.6.3 Other OPEN Macroinstruction Operands

NOGETPARM Suppresses runtime user interaction and causes
procedure-supplied parameters to be ignored. NOGETPARM
causes a GETPARM Type RD to be issued rather than a Type I.
A Type RD GETPARM solicits no information from the
workstation or from the procedure. You should only use this
option if your program supplies all of the required runtime
parameters. Along with NOGETPARM, you should also code Open
Exits in your program to enable it to handle error
conditions. NOGETPARM and NODISPLAY are mutually exclusive.

6-28

NODISPLAY

Suppresses user interaction if the values supplied in the UFB
or through Procedure Language statements are valid parameter
values. NODISPLAY causes a GETPARM Type ID to be issued
rather than a Type I. A Type ID GETPARM only solicits
information from a procedure. NOGETPARM and NODISPLAY are
mutually exclusive.

User interaction will occur even if NOGETPARM or NODISPLAY
is specified if a field contains a semantic error (e.g., if
you specified an invalid device type).

NOTE

EXIT

You can specify the optibnal EXIT operand to indicate which
file assignment problems should cause the system to return
control to the issuing program rather than to display a
respecification screen. If the Open operation fails, DMS
checks the bit mask of the EXIT operand. If a bit is set in
the EXIT operand that corresponds to -the condition that
caused Open to fail, DMS returns control to the program at
the next instruction. You can specify an EXIT bit mask value
as a register or as an absolute expression.

DMS indicates the failure of an Open operation by writing a
file status character of '9' to UFBFSl. If you specified an
EXIT operand, it indicates the type of Open failure in
UFBFS2. If no EXIT operand is specified, or if the the EXIT
operand bit is not set for a particular Open failure, DMS
attempts to display a file respecification screen. A
respecification screen is not displayed if you specified the
NOGETPARM operand.

Example 6-20 shows one method of using the EXIT operand:

Example 6-20. Use of the OPEN EXIT

OPEN UFB=ZOOFILE,EXIT=X‘FF’
CLI UFBFS1,UFBFS1SUCCESS
BNE (error routine]

The above example sets all of the bits in the EXIT operand
bit map by specifying a wvalue of 'FF' to the mask.
Therefore, any Open failure will change the value of the file
status field UFBFSI1. Following an Open Exit, the next
program instruction is performed, in this case a test for the
value of UFBFS1l. If UFBFS1 contains a file status other than
the status for successful completion, the program branches to
a user-written Open failure routine.

6-29

You can specify any combination of the EXIT mask bits listed

in Table 6-1.

Table 6-1. Open Exit Bit Mask Values

EXIT Mask Corresponding UFBFS2 Open Failure Type
Bit Set Equate Statement

1000 0000 UFBFS2XFILE Return if the file 1is not found
(non—-Output mode) or if a duplicate
file name is found (Output mode).

0100 0000 UFBFS2XLIB Return if the 1library 1is not £found
(non-Output mode).

0010 0000 UFBFS2XVOL Return if the volume is not mounted.

0001 0000 UFBFS2XSPACE Return if there is insufficient space
on the volume for a new file (Output
mode) .

0000 1000 UFBFS2XVTOC Return if there is no VTOC space on the
volume (Output mode).

UFBS2XTAPELD Return if the tape label type or tape
density is not acceptable to the
program.

0000 0100 UFBFS2XPOS Return for possession conflict.
Possession conflict includes file
already open by current program, file
opened by other program and open modes
conflict and volume possession is
exclusive for another |wuser. Error
further described in UFBXCODE.

0000 0010 UFBFS2XPROT Return if the user does not have access
rights required to open the file.

0000 0001 UFBFS2XFORMAT Return if there is an error in

specification of file format. Error
class is described in UFBXCODE.

Further information on interpreting file status values for Open
Exits is provided in Chapter 14, DMS Error Routine Processing.

6-30

a

6.7 THE CLOSE MACROINSTRUCTION

You should close every file that you open. You perform this task by
issuing a CLOSE macroinstruction after you finish record processing. You
can open and close a file several times in a single program. When
closing disk files, the CLOSE macroinstruction requires only one operand,
the UFB address operand that specifies which file is being closed. Other
parameters are available for closing tape files. Use of CLOSE for disk
files is shown in Example 6-21.

Example 6-21. The CLOSE Macroinstruction

CODE
OPEN UFB=ZOOFILE,MODE=INPUT

CLOSE UFB=ZOOFILE
STATIC :
ZOOFILE UFBGEN FILENAME=MYZO0O

The CLOSE macroinstruction frees system resources. Closing a file
deallocates the OFB allocated to the file, allowing another task to use
this OFB., Closing a file frees buffer blocks allocated in the user's
Segment 2 area. You should close all files as soon as you have completed
all processing for those files. However, if the file is attached to a
DMS/TX database, issuing a Close statement performs a FREE ALL, affecting
the processing of other files. Proper placement of CLOSE statements is
critical for DMS/TX file processing; you should never close a file within
a routine that performs processing of records in other files.

If the release option has been specified, either as the system
default, through GETPARM interaction, or through user modification of the
UFB, DMS releases all unused blocks of space following the last block of
data in the file. The description of Output mode in this chapter
provides more details on the release option.

The CLOSE instruction updates the FDR entry for the file, modifying
the NRECS, EBLK, and EREC values. The CLOSE instruction also resets the
UFBRECSIZE parameter value, using the value stored in UFBLRECSAVE.

In Output mode, DMS does not construct alternate index trees until a
file is closed. During Output mode processing, DMS stores the key values
used to construct the alternate key trees as temporary work records in
the file. CLOSE initiates the construction of alternate index trees by
linking to the BUILDALT system utility. BUILDALT sorts the temporary
work records and formats them as alternate index tree records.

6-31

When creating a file, DMS can only identify illegal duplicate
alternate key values after the file has been closed. If you input
records with duplicate alternate key values for an alternate key path
that disallows duplicate values, DMS only writes one record with that
alternate key value to the file. It writes the record with the lowest
primary key value; all other records with that duplicate alternate key
value are written to an error log.

The system automatically closes all files left open when your program
exits the 1link level in which the file was opened. All files left open
are automatically closed at program completion. Any error that prevents
an Output file from being properly closed results in a file with no
usable alternate index trees.

6-32

CHAPTER 7
ACCESSING DMS DISK RECORDS USING FUNCTION REQUESTS

7.1 INTRODUCTION TO FUNCTION REQUESTS

You access DMS files using function requests. A function request is
a runtime operation you issue to an open file. DMS supports five
function requests: READ, WRITE, REWRITE, DELETE, and START. Using these
function requests, you can locate individual records by means of a
pointer, and read, write, or delete records. This chapter describes the
function requests you use for RAM access of disk (or diskette) files,
with terms and examples from Assembly language. However, most of the
material in this chapter is applicable to all forms of DMS file access.

The function requests described in this chapter are as follows:
READ Read a record from a data file.
WRITE Write a new record to a data file.

REWRITE Update an existing record in a data file.

START Locate a record in a file, hold or release a record
or group of records, or change the file processing
mode.

DELETE Delete a record from a relative or indexed file.

RAM function requests can read, write, and delete data records only;
the AXDl, index blocks, DMS/TX file recovery blocks, and other non-data
file blocks are transparent to RAM function request processing.

Assembly language provides a macroinstruction for each function
request, with multiple modifiers for READ and START operations.
High-level languages provide similar support, except for certain START
operations that can only be performed in Assembly language. Each
function request must include an operand specifying the address of the
User File Block (UFB). You can specify as a value for this operand the
name of the UFBGEN label (as shown throughout this chapter), or as the
UFBBEGIN field of a UFB that you defined with a suffix value:

READ UFB=UFBZBEGIN

Assembly language supports conditional execution of function requests.

7.2 THE USE QOF FUNCTION REQUESTS

You must open a file before you can perform a function request to
access the data in the file. The mode that you specify when you open the
file limits the available function requests to those that are appropriate
for that mode of access. The Open operation and mode selection are
described in Chapter 6. The data access method (e.g., RAM, BAM, PAaM),
the type of storage media, and the type of file also determine which
function requests are available and how those requests are interpreted by
the system.

Function requests are calls to DMS modules. You code them in the
non-modifiable code section of a program according to the conventions of
the programming language. Function requests can be (and usually are)
mixed with the ordinary program instructions for the language. They must
specify, using a UFB address, which file they are operating on. The
corresponding file must be represented by a UFB in storage. Usually, you
place this UFB in the static section of the program (e.g., via UFBGEN),
but it is possible to place the UFB in heap storage or on the stack.

Example 7-1. Use of Function Requests in Assembly Language

CODE

OPEN UFB=0OLDFILE,MODE=0UTPUT
OPEN UFB=NEWFILE ,MODE=INPUT
READ UFB=OLDFILE

MvC NEWREC,OLDREC

WRITE UFB=NEWFILE

CLOSE UFB=OLDFILE

CLOSE UFB=NEWFILE

The operation a function request performs is often dependent on
runtime parameters established after the file is opened. For example,
the READ NEXT, READ KEYED, and START EQ, GT or GR function requests
normally locate records by primary key values. If, however, you set the
AXD1ALTINX field before issuing the function request, these function
requests locate records by alternate key values along the specified
alternate key path.

When you perform a function request, DMS updates a pointer to your
current record position in the file. If you perform an operation that
reads the next record, for example, DMS determines what record to access
based on this pointer. For consecutive files, DMS maintains the current
record pointer value in the User File Block UFBLOGRECCNT field. For
relative files, DMS maintains the current record pointer value in
UFBRELPOS. These fields are read-only indicator fields; you cannot
change file currency by <changing these UFB parameter values.
Unpredictable results and file damage may occur if you change the current
record pointer value.

When you open a file, DMS establishes the current record pointer at
the first record in the file. When you open a file in Extend mode, DMS
establishes the current record pointer at the last record in the file
that contains actual data. In consecutive and indexed files, every
successful function request updates the current record pointer. In

relative files, only successful READ and START function requests update
the current record pointer.

7.3 THE READ FUNCTION REQUEST

In RAM, the READ function request retrieves a record from a file
currently open in Input, I/0, or Shared mode. The result obtained from a
READ depends on the value of its modifier. For instance, you must use a
READ function request with a HOLD modifier to read records that are to be
subsequently rewritten or deleted. READ function request modifiers are
not always applicable to all types of files. The wvalid modifiers for
various file types are shown in Table 7-1.

Table 7-1. Valid READ Modifiers for RAM Disk File Types

Fixed Length Variable Length Relative Indexed
Consecutive Files Consecutive Files Files Files
no modifier no modifier no modifier no modifier
NEXT NEXT NEXT NEXT
HOLD HOLD HOLD HOLD
(HOLD,NODATA) (HOLD, NODATA) (HOLD, NODATA) (HOLD, NODATA)
REL NODATA REL KEYED
(REL,HOLD) (REL,HOLD) (KEYED,HOLD)
(REL,NODATA) (REL,NODATA) (KEYED,NODATA)
(REL,HOLD,NODATA) (REL ,HOLD, (KEYED,HOLD,
NODATA NODATA) NODATA)
NODATA NODATA

You must open a file in Input, I/0, or Shared mode, or place the file
in temporary I/0 mode using the START IO function, before invoking a READ
operation., When DMS reads a record from a file, it copies the record
data into the user record area (addressed by UFBRECAREA), unless you
specify the NODATA modifier. DMS expands a compressed record as it
copies it into the user record area. Other program instructions can
subsequently process a record once it is in the user record area.

When you read a file containing variable 1length records, DMS
indicates the length of the record currently being read in the RECSIZE
field of the file's UFB. If the record belongs to an alternate indexed

file, DMS copies the record's bit map suffix into the AXDIMASK field of
the file's AXDI1.

7-3

READ with no modifier and READ NEXT are functionally identical. You
use these function requests to invoke a sequential read of records in the
file. READ REL (Read Relative) and READ KEYED are used to locate and
read specific records randomly within a file. Use READ REL for relative
and consecutive files, READ KEYED for indexed files. To use either of
these function requests, you must first establish a KEYAREA field to
supply either the relative record number or the record key value.

You can use READ NEXT or READ KEYED to read records in indexed files
by either primary or alternate index key. READ NEXT reads records either
sequentially by ascending primary key value, or sequentially along the
specified alternate key path. A plain READ KEYED locates records
randomly by primary key value in either indexed or alternate indexed
files. If a statement defining the value of the AXDIALTINX field
precedes the READ KEYED statement, it reads records randomly by alternate
key value. A complete Assembly language program that accesses records by
alternate key value is provided in Appendix E.

Multiple READ modifiers are necessary for certain access modes. For
example, to randomly read a indexed file record that you plan to update
you issue a READ (KEYED,HOLD). You may use the KEYED, REL, HOLD, and
NODATA modifiers to construct multiple modifiers. The elements of a
multiple modifier appear in parentheses, separated by commas, with no
blanks. Modifiers in a multiple modifier may be in any sequence. The
user program must fulfill all the conditions and restrictions for each
element of a multiple modifier.

7.3.1 READ Function Request Syntax:
RAM Disk Files

(labell READ [.1 UFB={(register)} [,COND=number]
NEXT {expression}
HOLD*
REL®
KEYED®
NODATA*

(* May be used as an element of a multiple modifier. See Table 7-1.)

7.3.2 READ Function Request Modifiers

The following is a list of the READ function request modifiers.

Modifier
NEXT

or
no modifier

HOLD

Comments

READ with no modifier and READ NEXT are functionally
identical. They place the next data record in the file
into the user record area (addressed by UFBRECAREA). DMS
identifies the next record using the value of the current
record pointer. READ NEXT can be used on consecutive,
relative, indexed, or alternate indexed files. In a
relative file, a READ NEXT always returns the next
logical record (record containing data). Empty record
slots are passed over,

When following OPEN, READ NEXT yields the first record in
the file. When following a READ REL or a READ KEYED for
a primary key, READ NEXT yields the next sequential data
record in the file. When following a READ KEYED for an
alternate key, a READ NEXT yields the next record on that
alternate key path. When following a START statement
that sets the current record pointer, a READ NEXT
statement reads the record specified by the START
function request.

If you perform a READ KEYED or START that begins
accessing records by an alternate key. a subsequent READ
NEXT function request reads the next sequential record
along that alternate index path. Subsequent READ NEXT
function requests read along that key path in ascending
sequence by alternate key value.

Issuing a READ NEXT instruction can generate a File
Status '10', indicating an end of file condition. File
Status '10' indicates that either the physical end of the
file has been encountered, or the last record has been
read along that alternate key path. When reading along
an alternate key path, DMS returns a File Status '02' if
the file contains at least one more duplicate wvalue for
that alternate key; DMS returns a File Status '00' if all
duplicate values for that alternate key have been read.

Use READ HOLD to update a record in I/O or Shared modes.
HOLD indicates that DMS retains the record read from the
file in a user buffer until it is either rewritten,
deleted, or released by another READ HOLD operation. You
must specify a READ HOLD as a precondition for a REWRITE
or DELETE of a consecutive or indexed file record. You
must specify READ HOLD if you wish to read, and then
rewrite or delete a record in a relative file; however,
it is possible to rewrite or delete a relative file
record without previously reading the record.

7-5

REL

You can sgpecify HOLD as an element of a multiple
modifier. For a file opened in Shared mode, READ HOLD
indicates that the record read will not be made available
to any other user until you either rewrite the record,
delete it, or issue a READ HOLD for another record in any
shared file. Note that this means that a program may
only HOLD one record at a time, no matter how many files
are being shared. However, you can simultaneously hold
multiple records in files attached to a DMS/TX database.
See the VS DMS/TX Reference for further details.

Example 7-2. The READ HOLD Function Request

OPEN UFB=ZOOFILE,MODE=IO
READ HOLD,UFB=ZOOFILE
REWRITE UFB=ZOOFILE

Used for relative files and fixed length consecutive
files, READ REL locates and reads a record by its
relative record number (from 1). You specify the record
to be read in the four-byte data area in unsigned binary
format addressed by the UFB field KEYAREA. See START
SKIP for variable length consecutive files.

In a relative file, the Relative Record Number addressed
by UFBKEYAREA must refer to a slot containing actual
record data (zero-length records included). If you
specify a Relative Record Number that refers to an empty
record slot, DMS returns a File Status '23'.

If the KEYAREA value is zero, a negative number, or a
value greater than the number of records in the file, DMS
returns a File Status '23°'.

You can code REL as an element of a multiple modifier
with HOLD and/or NODATA.

7-6

KEYED
{by primary
key]

Example 7-3. The READ REL Function Request

CODE

OPEN UFB=ZOOFILE,MODE=INPUT
MVC ZOOKEY,=F‘10°’

READ REL,UFB=ZOOFILE

STATSEC STATIC
ZOOFILE UFBGEN FORG=CONSEC,KEYAREA=ZOOKEY

ZOOKEY DS F

Use READ KEYED to retrieve records by primary key value
in indexed and alternate indexed files. Specify the
primary key value beginning at the address in the UFB
field KEYAREA, and extending for the number of bytes
specified as the primary key size (UFBKEYSIZE). The area
addressed by KEYAREA should be in the proper location
within the file's record area.

If the READ KEYED value does not correspond to an
existing key value, DMS returns a File Status '23'.

You can code a READ KEYED as an element of a multiple
modifier with HOLD and/or NODATA.

If you specify a READ with no modifiers after a READ
KEYED, DMS reads the next record in primary key sequence
after the keyed record.

Example 7-4. The READ KEYED Function Request for a Primary Key

CODE

OPEN UFB=ZOOFILE,MODE=INPUT
MVC PKAREA, PKVALUE

READ KEYED,UFB=ZOOFILE

STATSEC STATIC
ZOOFILE UFBGEN FORG=INDEXED,RECAREA=ZOOREC,
KEYAREA=PKAREA,KSIZE=5,KP0S=0
ZOOREC DS oCL80
PKAREA DS CLS
DS CL75
PKVALUE DC C‘00017°

7-7

KEYED
[by alternate
key]

Example 7-5.

READ KEYED can also be used to read alternate index
records randomly by alternate index key wvalue. After
opening the file, you must pass the alternate index
ordinal parameter to the AXD1l, establishing the alternate
path for record access. This alternate index ordinal
field, AXDIALTINX, holds a single binary byte, with
possible values of 0 to 16. Access by primary key is the
0 (default) value: values from 1 to 16 specify alternate
paths. When you open a file, DMS initializes AXDIALTINX
to 0. Performing a WRITE operation resets AXD1ALTINX to
0.

After setting AXDIALTINX, move an alternate key value to
the field addressed by KEYAREA, and issue a READ KEYED
function request. The area addressed by KEYAREA should
be in the proper location within the file's record area.
If duplicate alternate key values exist, DMS retrieves
the first record (lowest primary key) with that alternate
key value. Other records with the same alternate key
value can be read by successive READ NEXT operations. If
no alternate key exists with the specified wvalue, DMS
returns a File Status '23'.

The following partial program performs an indexed read by
alternate key value for a file with three alternate key
paths. It searches Alternate Key Path 2 for a record
with an alternate key value of 0057.

The READ KEYED Function Request for an Alternate Key
CODE
OPEN UFB=ALTFILE
Mve KEYA,ALTVAL
MvC AXD1ALTINX, PATHNO

READ KEYED,UFB=ALTFILE

STATIC

ALTFILE UFBGEN FORG=INDEXED,KEYAREA=KEYA,

ALTAREA=Z00ALT ,ALTCNT=3

AXD1 NODSECT
ORG AXD1BEGIN

ZOOALT AXDGEN ENTRIES=3,

ALTVAL DC c‘0057’

PATHNO DC X2

7-8

NODATA A READ NODATA places the requested file data in the
buffer area, but does not copy the specified record into
the user record area. Instead, the record is retained in
the DMS buffer, and the address of the record in the
buffer 1is placed in Register 1. If the file is
compressed, the record stored in the buffer is in
compressed format. A READ NODATA does not update
UFBRECSIZE.

READ NODATA can be used with consecutive, relative, or
indexed files. You cannot use READ NODATA in Shared
mode, or for processing compressed records.

NODATA can be used by itself, or as part of a multiple
modifier with KEYED, REL, or HOLD.

7.3.3 READ Function Request Operands

Operands Comments

UFB This operand is required for all READ statements. It
specifies the address of a User File Block. You can
supply it either as a register specification (where the
register contains the UFB address), or as an address
expression (e.g., the UFBGEN label). The format for this
operand is: UFB=filename. The UFB operand is placed
after all READ modifiers (except the COND operand), and
is separated from them by a comma.

COND By specifying a value for COND you can make the execution
of a READ function request conditional. The number or
absolute expression that you specify becomes the first
operand of the JSCI instruction by which the READ
function is entered. The JSCI instruction is described
in the VS Principles of Operation. DMS loads Register 1
with the UFB address even when the condition is not
satisfied. The default value is 15.

7.4 THE WRITE FUNCTION REQUEST

The WRITE function request writes the record in the user record area
(addressed by the UFB field UFBRECAREA) to the specified file. The
record written can be either created in the user record area, or read
into the user record area from another data file. You cannot use WRITE
to update an existing record. You must use a REWRITE function request to
write an existing record back to the data file from which it was read.

You can issue WRITE function requests in Output, Extend, I/0, and
Shared modes. The WRITE function request is supported for all file types
and access methods. You can issue a WRITE function request to files on
disk or tape; you can not issue a WRITE function request on a workstation
file (refer to Chapter 11 for details on workstation files).

Consecutive Files

Consecutive file creation and extension is performed using the WRITE
function request. In Qutput mode, DMS writes records sequentially,
beginning with the first record in the file. In Extend mode, DMS locates
the end of the file data and begins sequentially writing records
following the last record in the file.

If a consecutive file is open in I/0 or Shared mode, when you issue a
WRITE function request DMS automatically writes the record to the end of
the file. DMS adds records to the end of the file in the sequence that
the records are received. DMS 1issues a File Status '34' if you exceed
the available file space. Multiple users can concurrently write records
to a consecutive file opened for I/0O update. Multiple users can also use
WRITE function requests to output records to a consecutive log file open
in Shared mode. Log files and file sharing are described in Chapter 8.

Relative Files

If you write records to a relative file in Output or Extend mode, DMS
writes them into sequentially numbered record slots. If a relative file
is in I/0 mode, the WRITE function request writes records randomly, based
on the Relative Record Number (RRN) stored in the field addressed by
UFBKEYAREA. If the RRN refers to an existing record, DMS rejects the
WRITE operation with a File Status '22'. A WRITE function request does
not affect the file's current record pointer value.

If the RRN you specify is greater than the RRN of the last allocated
record slot, DMS allocates as many additional extents as necessary (up to
13 extents) to be able to write the record in the appropriately numbered

slot. When DMS allocates an additional relative file extent, it
sequentially initializes each record slot from the beginning of the
extent to the record slot 1location of the new record. If after

allocating all 13 extents the relative record number you specified is
still greater than the RRN of the last allocated record slot, DMS rejects
the WRITE operation with a File Status '34'.

You can successfully perform a relative file WRITE operation without
writing any data. If you issue a WRITE for a record with a RECSIZE of
zero, DMS creates a zero-length record. Although a zero-length record
contains no data, it does occupy a record slot and prevents subsequent
writes to that slot.

You can write a record at the end of a relative file in I/O mode by
issuing a WRITE function request with -an EOF modifier. A WRITE EOF
locates the 1last record slot containing data (including =zero-length
records), and writes the record in the next record slot. Following a

7-10

~

™

WRITE EOF, DMS returns to writing records randomly by relative record
number. To write a series of records to the end of the file, you must
specify a WRITE EOF for each record written. A WRITE EOF does not affect
the currency of subsequent operations.

Indexed Files

You can sequentially write records into an indexed file in Output
mode. Records written to an indexed file in Output mode must be in
ascending order by primary key value. If you attempt to write an indexed
record out of primary key sequence, DMS returns a File Status '21'.

If an indexed file is in I/0 or Shared mode, the WRITE function
request writes records randomly based on primary key value. DMS locates
the primary key within the record, and uses its value to determine where
to place the record in the file. Records written to an indexed file must
contain a unique primary key value. If you attempt to write a record
with a duplicate primary key value, DMS returns a File Status '22'.

When you write an alternate indexed record to a file, DMS also writes
the 2-byte bit mask suffix for that record by copying the mask value
placed in the AXDIMASK field. If the bits set in this mask are not a
subset of the AXD1 PMASK, DMS rejects the WRITE function request with a
File Status '98'. See Chapter 3 for details on the record mask and PMASK.

The WRITE function request clears the AXDIALTINX field. Unless you
reset this field, subsequent record access to an alternate indexed file
is by primary key value.

In I/0 and Shared modes the system detects all write errors at once.
In Output mode, DMS does not detect write errors involving duplicate
alternate index keys until the file is closed. See Chapter 14, DMS Error
Routines, for details.

7.4.1 WRITE Function Request Syntax

The WRITE function request takes only one modifier, the optional EOF
modifier for relative files. You must supply a UFB operand to each WRITE
function request. You can also supply a COND operand that allows
conditional writes.

[label] WRITE [EOF,] UFB={(register)} {,COND=number]
lexpression]

The following is a list and explanation of WRITE function request
modifiers and operands.

7-11

7.4.2 WRITE Function Request Modifiers

Modifier Comments

EOF You can only use the EOF modifier for relative files open
in I/0 mode. A WRITE EOF writes the record in the user
record area into the record slot after the last data
record in the file. Use an EOF modifier for every
successive WRITE operation that writes a record to the
end of the file. A WRITE EOF does not change the current
record pointer value.

7.4.3 WRITE Function Request Operands

Operand Comments
UFB This operand is required for all WRITE statements. It

specifies the address of a User File Block. You can
supply it either as a register specification (where the
register contains the UFB address), or as an expression
(e.g., the UFBGEN label). The format for this operand
is: UFB=address.

COND By specifying a wvalue for COND you can make the execution
of a WRITE function request conditional. The number or
absolute expression that you specify becomes the first
operand of the JSCI 1instruction by which the WRITE
function is entered. The JSCI instruction is described
in the VS Principles of Operation. DMS loads Register 1
with the UFB address even when the condition is not
satisfied. The default value is 15.

7.5 THE REWRITE FUNCTION REQUEST

You can use the REWRITE function request to wupdate disk file
records. DMS supports REWRITE processing in I/O and Shared modes. To
update a record, you first perform a READ HOLD operation to read the
record that you wish to update. Modify the data fields of the record in
the user record area. You then issue a REWRITE function request to
update the record. REWRITE obtains the record from the user record area
(addressed by the UFBRECAREA field) and writes it to the file,
overwriting the previous data and updating all indicators and pointers.

For consecutive file update, the file must be open in I/O or Shared

mode. Variable length records cannot change in length during update
processing. You cannot rewrite compressed records to a consecutive file.

7-12

N

You can use REWRITE to update records in a relative file. One method
of updating a relative file record is to perform a READ HOLD operation in
I/0 mode, modify the data, then perform a REWRITE operation. Unlike
consecutive files, the record rewritten to the relative file record slot
does not have to be the same length as the record read in the READ HOLD
operation, unless you originally defined the file as having fixed length
records.

A second method to update records in a relative file is the REWRITE
REL operation. You can only use REWRITE REL to update relative files. A
REWRITE REL operation locates a relative file record by the relative
record number that you supply in the field addressed by UFBKEYAREA, and
overwrites the old record with the updated record. You do not have to
precede a REWRITE REL with a READ HOLD operation.

When updating an indexed file, you must hold the record to be updated
by issuing a READ HOLD operation in I/0 or Shared mode, update the data
in the wuser record area, and then perform a REWRITE operation. The
REWRITE operation uses the primary key value to locate the record to be
rewritten. For this reason you cannot modify the record's primary key
value. You can rewrite fixed length, variable length, and compressed
records in a indexed file. If you have changed the length of a variable
length record, you must specify the new length in UFBRECSIZE before
rewriting the record. You can change the length of an indexed variable
length or compressed record within the limit established by the maximum
record size.

DMS rewrites the alternate index bit mask suffix along with each
alternate indexed record. If you wish to change the record's alternate
key path assignment, your program must supply a new bit mask value to
AXDIMASK before issuing the REWRITE. When you rewrite the record, the
system modifies the alternate index trees to reflect changes to this
indicator. You can rewrite a record to add it to or remove it from an
existing alternate key path. However, if you set bits on the bit mask
that are not set in the AXD1 PMASK, DMS rejects the REWRITE operation
with a File Status '98'.

The REWRITE function request takes only one modifier, the REL
modifier for relative files. You can supply UFB and COND operands to the
REWRITE function request. The UFB operand is mandatory for all REWRITE
statements; the COND operand allows conditional rewrites.

7.5.1 REWRITE Function Request Syntax:

The REWRITE function request syntax is as follows:

[(label] REWRITE [REL,] UFB={(register)} [,COND=number]
{expression}

7-13

7.5.2 REWRITE Function Request Modifiers

Modifier

REL

Comments

You can only use the REL modifier for relative files open
in I/0 mode. A REWRITE REL locates a record by relative
record number (RRN) and overwrites that record with the
contents of the user record area. To locate a record,
you place the four-byte RRN in the area addressed by the
UFB KEYAREA field, and then issue the REWRITE REL. If
the RRN addresses an empty or nonexistent record slot,
DMS rejects the REWRITE REL operation with a File Status
'23'. You can update a variable length record with a
record longer or shorter than the original record, as
long as the record is not larger than the maximum record

size. You can rewrite a record containing data with a
zero-length record, and you can also rewrite a zero
length record with a data record. A relative file

REWRITE does not change the file's current record pointer
value.

7.5.3 REWRITE Function Request Operands

Operand
UFB

COND

Comments

This operand is required for all REWRITE statements. It
specifies the address of a User File Block. You can
supply it either as a register specification (where the
register contains the UFB address), or as an expression
(e.g., the UFBGEN label). The format for this operand
is: UFB=address.

By specifying a value for COND you can make the execution
of a REWRITE function request conditional. The number or
absolute expression that you specify becomes the first
operand of the JSCI instruction by which the REWRITE
function is entered. The JSCI instruction is described
in the VS Principles of Operation. DMS loads Register 1
with the UVB address even when the condition is not
satisfied. The default value is 15.

7.6 THE START FUNCTION REQUEST

The operation performed by the START function request depends on the
access method and the modifier that you select. A START function request
must always have a modifier. Depending on the modifier you request, a
START can be used to:

7-14

¢ Change the processing mode for a file during program execution
e Position the DMS current record pointer

¢ Hold or release a record, group of records, or file in Shared
mode. (Described in Chapter 8).

. Truncate a file

¢ Await completion of an I/0 operation initiated while wusing the
Physical Access Method (PAM).

The START operations available for RAM disk files, other than holding
and releasing resources for Shared mode processing, are discussed in this
section. The use of START for Shared mode processing is described in
Chapter 8. The use of START in BAM and PAM is described in Chapter 10.

START function requests that change the access mode are only
supported in Assembly language. Support of other START features varies
among the different high-level languages. Refer to ‘Chapter 5 for details
of language support and syntax.

Table 7-2 summarizes the different modifiers that can be used with
the START function request.

7-15

Table 7-2. Uses of the START Modifiers for Disk Files
Currently Currently Currently Currently
in in in in
Input Output I/0 Extend
Mode Mode Mode Mode
RAM BEGIN EXTEND BEGIN EXTEND
Consecutive SKIP OUTPUT SKIP OUTPUT
Files I0 END I0
EXTEND
OUTPUT
I0
RAM EQ EXTEND EQ GE EXTEND
Relative Files GT OUTPUT GT LE OUTPUT
GE I0 LT I0
LE EXTEND
LT QUTPUT
I0
RAM EQ EQ
Indexed Files GT GT
GE GE
BEGIN EXTEND EXTEND EXTEND
BAM QUTPUT QUTPUT OUTPUT
10 10 I0
WAIT WAIT WAIT
PAM EXTEND
OUTPUT
I0

The START WAIT

are described in Chapter 8.

is used only

7-16

in PAM files, and is described
Chapter 10. START HOLD (and associated multiple modifiers elements)
START RELEASE are used for controlling resources in file sharing.

and
They

7.6.1 START Function Request Syntax

[1abel]l START {IO,) UFB={(register)} [,COND=number]

{ouTPUT,} lexpression)
{EXTEND, }
{BEGIN,}
{SKIP,}
(EQ,}

{GE,}

{GT,}

{LE,}

{LT,}
{END,}

*{ HOLD,}

*{ RELEASE,]
*{ WAIT,}

* not described in this chapter

7.6.2 START Function Request Modifiers

Modifiers

OUTPUT
I0
EXTEND

Comments

You can use these three START modifiers to change the
access mode without <closing and reopening a file.
These modifiers can be used for relative files or
consecutive disk files. These START function requests
are not supported for consecutive log files opened in
Shared mode, or consecutive files opened in I/0 mode for
shared processing.

DMS permits you to open a file in any of these three
modes then issue a START to specify another of these
modes. Mode switching is only supported in Assembly
language.

START OUTPUT sets the DMS current record pointer to the
beginning of the file. WRITE function requests issued
after a START OUTPUT overwrite existing records at the
beginning of the file. All existing records are
logically deleted.

If you invoke a START OUTPUT, DMS reinitializes the

CAUTION

scratching all existing data. Therefore you

should use this function request with extreme caution.
START OUTPUT cannot be used for updating files.

BEGIN
SKIP

START EXTEND positions the UFB current record pointer to
the end of the file. Subsequent WRITE operations
sequentially add records to the end of the file. Only
WRITE and START functions are permitted while you are in
this mode. Issuing a START EXTEND while already in
Extend mode has no effect.

START IO changes the mode from Output or Extend to I/O,
permitting READ, REWRITE, and DELETE operations for
updating the file. It sets a temporary end of file
marker and sets the current record pointer to the first
record in the file, facilitating sequential READ
processing. At the conclusion of START IO processing,
you can return to writing records to the end of the file
by specifying START EXTEND. If you issue a START IO
while already in I/0O mode, DMS resets the current record
pointer to the beginning of the file.

Used only for consecutive files in Input mode, I/0 mode,
or Shared mode for file update. These modifiers specify
the positioning of the DMS current record pointer,
usually prior to the next READ operation.

NOTE

The START BEGIN and START SKIP function request can be
used on both variable and fixed length records when used
with Operating System Release 6.10 or later. On earlier
operating system releases, START BEGIN and START SKIP
can only be used on files containing variable length
records.

START BEGIN positions the current record pointer to the
first record in the file. START SKIP instructs DMS to
skip the number of records specified in the word
addressed by UFBKEYAREA.

If you specify a START SKIP with a wvalue beyond the end
of the file, DMS positions the current record pointer to
the end of the file. If you specify a START SKIP with a
value before the beginning of the file, DMS positions
the current record pointer to the beginning of the file.

A READ issued after a START SKIP (with a signed binary
number '"n" specified for the KEYAREA) will:

1. skip over "n" records and read the record after them
(n greater than 0)

2. merely read the next record (n = 0)

7-18

EQ
GT
GE
LT
LE

3. reread the current record (n = -1)
4. read a preceding record (n less than -1).

Example 7-6 demonstrates the use of the START SKIP
function request.

Example 7-6. The START SKIP Function Request

OPEN UFB=ZOOFILE
START SKIP,UFB=ZOOFILE
READ UFB=ZOOFILE

STATIC
ZOOFILE UFBGEN FORG=CONSEC,VLEN=YES,KEYAREA=NUMSKIP
NUMSKIP DC F'+2’

You can use these START modifiers for positioning the
current record pointer within the file. The modifiers
listed are: Equal to, Greater Than, Greater than or
Equal to, Less Than, and Less than or Equal to. START LT
and START LE can only be used with relative files. The
other modifiers can be used for both relative and indexed
files.

You use these START modifiers with relative files to
locate a record within the file by Relative Record Number
(RRN) . To perform one of these START requests, the
relative file must be open in Input or I/0 mode, and you
must place the RRN in the area addressed by UFBKEYAREA
before issuing the START request.

You use these START requests to locate records containing
data in a relative file; empty record slots are ignored.
If a START EQ equates to an empty record slot or a RRN
that does not exist, DMS rejects the request with a File
Status '23'. If you specify a START GT, GE, LT, or LE,
DMS locates the first record that fulfills the condition
specified in the START modifier. If no such record
exists, DMS rejects the operation with a File Status
'23'. Using one of these file position START function
requests changes the file's current record pointer value.

7-19

You use these START modifiers with indexed files to
locate a record by primary or alternate key value,
especially when the exact value of the key sought is not
known. The START function request positions a pointer to
the record with a key value equal to or greater than the
key value in the field addressed by KEYAREA. You cannot
use the Less Than (LT) or Less than or Equal (LE)
modifiers with indexed files.

You can use the START EQ, START GT, and START GE function
requests for locating records by primary key value.
Record location by primary key value is performed in the
same way for primary indexed and alternate indexed
files. Access by primary key value is the default option
when an indexed file is opened.

You can also use these START function requests to locate
records by alternate key value. Prior to issuing a START
request, the program should modify the AXDI1ALTINX field
to specify the key path to be used for START access.
Subsequent function requests access records along that
alternate key path until an Open or Write operation
resets the AXDIALTINX field. If duplicate alternate key
values are present on the key path selected, the START EQ
locates the first record (record with lowest primary key)
with that alternate key value.

If you issue a START EQ and DMS cannot find a record with
the key value you specified, it returns a File Status
'23'. If you issue a START GT or GE with a key location
value greater than any existing key in the file, DMS
returns a File Status '24'.

A READ (with no modifiers), or a READ HOLD can follow one
of these START function requests to read the record
indicated by the current record pointer. The example
below locates and reads the first record with a primary
key greater than '00100' in I/0 mode. The current record
pointer is positioned for sequential reads from that
record.

7-20

Example 7-7. The START GT Function Request

CODE
OPEN UFB=ZOOFILE,MODE=I0
Mve PRIKEY,PRIVAL

START GT,UFB=ZOOFILE
READ HOLD,UFB=ZOOFILE

STATIC

ZOOFILE UFBGEN FORG=INDEXED,RECAREA=ZOOREC, X
KEYAREA=PRIKEY, KSIZE=5

ZOOREC DS 0CL80

PRIKEY DS CLS
DS CL75

PRIVAL DC c‘00100°

You can also use START GE to locate the first record in
an indexed file. You accomplish this by specifying the
primary key value as hexadecimal zeros.

If a comparison with the entire key field value is not
desired, you can set UFBGKSIZE before issuing the START
function request. The UFBGKSIZE (generic key size)
specifies the number of characters to be considered in a
comparison. After the START has been performed,
UFBGKSIZE reverts to its default, which compares the
entire key.

The START END truncates a data file at the location
specified by the current record pointer value. You can
only use this function request with consecutive files in
I/0 or Shared mode. Before issuing a START END to a
consecutive file opened in Shared mode for update, you
must hold the entire file for update. Unique situations
may occur when performing a START END in Shared mode,
refer to Chapter 15 for details.

CAUTION

START END deletes parts of data files or entire data
files. Therefore you should use this function request
with extreme caution. Programs using START END should
check to insure that the current record pointer is on
the proper record prior to issuing a START END.

7-21

You position the record location pointer with READ REL or
START SKIP, then issue a START END to delete all records
with higher relative record numbers than the current
pointer location. A START END following a READ REL
truncates all records following the record read. A START
END following a START SKIP truncates all records
following and including the record skipped to. A START
END at the first record of the £file (for example,
following a START BEGIN) deletes all the records in the
file creating a null file,

A START END eliminates all record data following the
current record pointer; it does not release the space
allocated for those records. All file extents remain
allocated following a START END. A null file retains its
User File Block and can be written to in Extend mode.

NOTE

6.10 and all subsequent releases.

START END 1is available with operating system Release

Users with prior

operating system releases cannot use START END.

7.6.3 START Function Request Operands

Operand Comments

UFB This operand is required for all START statements. It
specifies the address of a User File Block. You can
supply it either as a register specification (where the
register contains the UFB address), or as an address
expression (e.g., the UFBGEN label). The format for this
operand is: UFB=address.

COND By specifying a value for COND you can make the execution

of a START function request conditional. The number or
absolute expression that you specify becomes the first
operand of the JSCI instruction by which the START
function is entered. The JSCI instruction is described
in the VS Principles of Operation. DMS loads Register 1
with the UFB address even when the condition is not
satisfied. The default value is 15.

7-22

7.7 THE DELETE FUNCTION REQUEST

The DELETE function request deletes the last record read from a
relative or indexed file on disk. The file you specify must be open for
I/0 or Shared mode processing. The last function request you issue
before a DELETE must be a successful READ HOLD operation for an indexed
file. You can delete records from a relative file without first
performing a READ HOLD. You cannot delete records from a consecutive
file.

You can delete records from a relative file using three methods. You
can delete an individual record by issuing a READ HOLD for that record,
and then issuing a DELETE function request with no modifier. You can
also issue a DELETE REL to locate a record by relative record number and
delete the located record. You can also delete multiple records by
issuing a DELETE EOF, which deletes all records following the current
record in the file.

You can only delete records containing data (including zero-length
records) from relative files. A delete resets the record 1length
indicator to zero, making the record slot available as an empty record
slot. A relative file delete does not clear or zero-fill the record data
area. You can delete zero-length records; you cannot delete empty record
slots.

You delete a record from an indexed file by issuing a READ HOLD on
the record, then issuing a DELETE with no modifier. When you delete a
record, DMS shifts the remaining records within the block to close up
space between records. DMS then resets the block length indicator to
reflect the delete. DMS does not shift records between blocks following
a DELETE. It makes a data block available as an empty block if you
delete the last remaining record in the block.

If you delete the last record in an indexed file block, DMS updates
the primary index block(s) to reflect this change. The alternate index
paths specified for the deleted record are also modified as part of the
DELETE function request.

A DELETE function request requires a UFB address operand to identify

which file is being accessed. A COND operand allows conditional
execution of the DELETE function request.

7.7.1 DELETE Function Request Syntax:

{label) DELETE [REL,] UFB={(register)} [,COND={integer)]

[EOF,] {expression) {absolute expression}

7-23

7.7.2 DELETE Function Request Modifiers

Modifier

REL

EOF

Comments

You can only use DELETE REL with relative files open in
I/0 mode. A DELETE REL locates a record by relative
record number (RRN) and deletes that record (resets its
record length indicator to zero). To locate a record for
deletion, you place thé four-byte RRN in the area
addressed by the UFB KEYAREA field, and then issue the
DELETE REL. If the RRN addresses an empty or nonexistent
record slot, DMS rejects the DELETE REL operation with a
File Status '23'. You can delete zero-length records. A
relative file DELETE does not change the file's currency
pointer value.

The DELETE EOF truncates a data file at the current
location pointer. You can only use this function request
in I/0 mode with relative files. You position the record
location pointer with READ REL or START, then issue a
DELETE EOF to delete all records with higher relative
record numbers than the current pointer location.

A DELETE EOF following a START deletes all records that
follow the record located by the START.

A DELETE EOF following a READ REL deletes all records
following the record after the record read.

A DELETE EOF at the beginning of the file does not delete
the record in the first slot of the file. To delete all
records in a file, use START OUTPUT.

A DELETE EOF resets the file's E-Block and EREC
indicators so that DMS treats deleted records as beyond
the last data record in the file. If you then issue a
WRITE function request for a record slot beyond EREC, DMS
sets to zero all of the record length indicators between
EREC and the record written. A DELETE EOF does not
zero—-fill deleted records or deallocate file extents.

7.7.3 DELETE Function Request Operands

Operand
UFB

Comments

This operand is required for all DELETE statements. It
specifies the address of a User File Block. You can
supply it either as a register specification (where the
register contains the UFB address), or as an address
expression (e.g., the UFBGEN label). The format for this
operand is: UFB=address.

7-24

COND

By specifying a value for COND you can make the execution
of a DELETE function request conditional. The number or
absolute expression that you specify becomes the first
operand of the JSCI instruction by which the DELETE
function is entered. The JSCI instruction is described
in the VS Principles of Operation. DMS loads Register 1
with the UFB address even when the condition 1is not
satisfied. The default value is 15.

7-25

CHAPTER 8
SHARING DATA FILES

8.1 INTRODUCTION

DMS enables file sharing of consecutive and indexed disk files
accessed using the Record Access Method (RAM). File sharing enables
multiple users to perform concurrent updates to different records in the
same file. The system controls file sharing to automatically maintain
file consistency and to prevent deadlock situations.

DMS monitors and controls file sharing on a task basis. Each user
can run one interactive task at a time and submit one or more task for
background execution. A task can consist of one or more programs and
linked subroutines.

A task initiates shared update processing by opening a file in Shared
mode. Other tasks can also open this file in Shared mode. A task can
claim exclusive (non-shared) update access to a file by opening a file in
I/0 mode. A file opened by a task in I/O mode cannot be opened by other
tasks.

You can open a consecutive file in Shared mode in two ways. You open
an existing consecutive disk file as a shared consecutive file by setting
both the Shared mode (UFBF2SHARED) and the I/0 mode (UFBF2I0) bits in the
file's UFB. A consecutive file thus opened in I/0 mode as a shared file
can be concurrently updated by multiple users. Note that simply opening
an existing consecutive file in Shared mode does not provide this I/O
support; you must specify both I/0 mode and file sharing. Shared I/O
processing of consecutive files is supported in Operating System Release
6.20 and subsequent releases.

Multiple users can open a new consecutive disk file in Shared mode
and sequentially write output records to the file. When you open a new
consecutive file in Shared mode, DMS defines that file as a log file.
When you open a log file in Shared mode, the Sharer opens the file in
Qutput mode (if it is a new file) or Extend mode (if the file is an
existing file that was created as a log file). This permits multiple
users to write records to the end of the log file in chronological
order. You cannot read or update records in a log file while it is open
as a log file in Shared mode. A log file can be closed and then reopened
as a shared consecutive file in I/0 mode. Log files are described
separately in Section 8.9 of this chapter.

You can open an indexed file for shared wupdate processing by
specifying MODE=SHARED. A shared indexed file has all of the functions
of an indexed file opened in I/O mode, along with the additional Shared
mode functions.

File sharing is not available in Block Access Method (BAM) or
Physical Access Method (PAM). You cannot share relative files, files on
NOVTICOC diskettes, or files on storage media other than disk.

DMS file sharing allows each task to hold one data resource at a
time. A resource can be a record, a file, or a group of records or
files, but you must hold the entire resource as a single operation.
Under normal DMS sharing, you cannot incrementally claim new resources
during a program while continuing to hold previously claimed ones.

Each task can hold or free a resource at any point during file
processing. For example, you can hold a record for update as part of the
Read operation, and free that record as part of the Rewrite operation.
This claim-as-needed sharing feature minimizes the impact of a record
update on other tasks by minimizing the period of time during which the
resource is unavailable to other tasks.

Under normal DMS sharing, a task holds one resource exclusively.
This hold prevents other tasks from updating that resource (deleting or
modifying a record) until the first task frees the resource. A task can
add records to a shared file if the records are not being added to a
resource held by another task.

To incrementally claim multiple records for update, you can use
DMS/TX file sharing. When a task accesses a DMS/TX file in Shared mode
it automatically invokes DMS/TX file sharing. The holding of resources
in DMS/TX is identical to DMS record holding. However, DMS/TX does not
require you to free a held resource before claiming another resource.
DMS/TX maintains holds on multiple records for the duration of the task's
transaction, rather than releasing each held record as it is updated.
DMS/TX features are described in the VS DMS/TX Reference.

Ordinary DMS permits you to hold only one record or group of records
at a time. To hold more than one record, you must claim all members of
the group of records at the same time. However, some existing user
programs use the extension rights feature of DMS to incrementally claim
multiple resources on an as-needed basis. This extension rights feature
is described in Chapter 15 of this manual. DMS/TX sharing provides
multiple record sharing superior to the use of extension rights. Use
DMS/TX, rather than extension rights for the coding of new applications
that incrementally claim multiple resources.

8.2 RESOURCE HOLDING OVERVIEW

This chapter describes the three types of DMS data resource holds you
can use DMS (without extension rights) to perform:

e Implicitly holding a single record, using a Read Hold statement.

8-2

~

e Explicitly holding a generic key group of records or a single
record by primary key value.

® Explicitly holding an entire file.

’ In addition, DMS provides three optional features that you can use
when holding resources:

e The list option, which allows a task to simultaneously hold
several resources. Each task can simultaneously hold a list of
resources in one or more files. ’

® The hold for retrieval option, that allows multiple tasks to hold
the same record for read access, but allows no task to change or
delete the held record.

e The timeout exit option that allows the program to continue
processing if a desired resource is unobtainable.

The Timeout option is available to both implicitly and explicitly held
resources. The Hold List and Hold for Retrieval options are only
available to explicit resource holds.

All resource holds are supported for indexed files. Unless otherwise
noted, DMS supports these resource holds for shared consecutive files as
well.

8.2.1 File Sharing Terms and Concepts

A task holds and frees resources within a shared file. A resource is
either a single record, a group of logically contiguous records within a
file that are related by their generic key value, or the entire file.

DMS provides two types of record holds: implicit and explicit. The
system automatically applies an implicit hold when you invoke a Read
Hold. An implicit hold is automatically released if you attempt to
implicitly hold another record by issuing a Read Hold, or if you update
or delete the record held.

An explicit hold consists of a statement that explicitly holds a
resource and a second statement that explicitly frees the held resource.
An explicit hold pre-claims a resource by naming it explicitly, prior to
any statement to read or modify the data values of the held resource.

All holds are issued to the Sharer. The Sharer runs as a dedicated
system task in background, with its own Segment 2 space allocation.
Because all tasks request holds of the Sharer, it is able to prevent
tasks from holding the same resource. The Sharer keeps track of which
tasks are holding which resources in its Segment 2 area. Applying a
hold does not read or modify the data file itself. Therefore, a hold
issued for a non-existent resource is a legitimate hold, and must be
released before you can apply another hold.

8-3

8.3 IMPLICIT HOLDS -- THE READ HOLD OPERATION

You can hold individual records implicitly. During an implicit
record hold, you issue the hold as part of the Read statement, rather
than as a separate statement. In this way you can claim records as
needed; you do not hold the record until you actually need it. The Read
statement may locate the record to be held sequentially, by Relative
Record Number (consecutive files), or by primary or alternate key value
(indexed files). Files and generic key groups can only be held
explicitly; you cannot hold them implicitly.

The task does not have to issue an instruction to release an implicit
record hold. The system releases a implicitly held record when any of
the following occurs:

e The task successfully rewrites the held record.

¢ The task successfully deletes the held record.

e The task initiates a write operation on any shared file.

¢ The task invokes a Read Hold operation for another record in any
file.

e The task invokes an explicit hold on any resource.

¢ The task issues a release command for an explicit hold.

e The file which contains the held resource is closed.

DMS supports implicit record holds in all VS languages that support
the Shared mode. In Assembly language, you can code an implicit record
hold by issuing a READ HOLD instruction. You can combine the HOLD

modifier with other READ modifiers in parentheses as elements of a
multiple modifier. See Chapter 6, section 3 for details.

8.4 EXPLICIT HOLDS

You can use an explicit hold operation to hold an entire file or a
generic key group. You can hold a single record as a special case of
holding by generic key. Even if a record is explicitly held, you must
also implicitly hold it if it is to be rewritten or deleted. An explicit
hold must be explicitly released by 1issuing a Release statement
specifying the file in which a resource is held.

The system releases a explicitly held resource when either of the
following occurs:

. The task issues a Release command for the file.

] The file which contains the held resource is closed.

8-4

8.4.1 Holding a Shared File

A task can open a file in Shared mode, and then issue a hold for the
entire file. Holding a file in Shared mode provides exclusive update
rights to all of the records in the file (unless you specify hold for
retrieval). The advantage of holding a file in Shared mode, rather than
simply opening it in I/O mode, is that in Shared mode you can release the
file to other users without the overhead of closing the file. Other
users can open the file in Shared mode while you are holding it, but they
must wait for you to release the file before they can claim any resources
in that file. You can release an explicitly held file by issuing a
release statement for the file or a general release statement that
releases all resources, depending on which language you are using.

An explicit hold for shared files is available in COBOL and Assembly
language. File holding is supported in RPG II for consecutive files
only. In COBOL, you can issue a file hold for indexed files by coding a
HOLD statement (Format 2) without the INITIAL clause. You release a held
file by issuing a FREE ALL statement.

In Assembly language, you invoke a hold on a Shared file by issuing a
START HOLD command, as shown in Example 8-1.
Example 8-1. Holding and Releasing a File

START HOLD,UFB=ZOOFILE

START RELEASE,UFB=ZO0OFILE

A held file is released by issuing a START RELEASE command for that
file. The UFB address of the file can be specified as either an address
or a register. Holding and releasing a file does not change the file's
current record pointer value.

8.4.2 Holding Multiple Records by Generic Key

You can explicitly hold a logically consecutive group of records that
share a common range of values. In consecutive files, these values are
Relative Record Numbers; in indexed files, these values are primary key
values.

Consecutive Files

To hold a range of records in a consecutive file, you specify a
Relative Record Number (RRN), and then issue a hold on all records in the
file with a RRN greater than or equal to the one you specified. DMS
performs an explicit hold on this range of records that prevents other
tasks from updating or deleting any of the held records.

When you hold a range of records, all actual or potential records
with RRNs higher than the one specified are held. Other tasks cannot add
new records to the end of the file. You can hold a range of records
beginning with a RRN greater than any existing RRN. This prevents other
tasks from extending the file to include records with that range of
Relative Record Numbers.

An explicitly held range of records must be explicitly released. You
must issue a general release statement to release all resources held by
your task in a particular file.

Holding a range of consecutive file records is supported in RPG II
and Assembly language. In RPG II you hold a range of records using the
HOLD statement, supplying the RRN to the factorl field.

In Assembly language, you hold a range of consecutive file records by
first supplying a four-byte RRN to the area addressed by UFBKEYAREA.
Then you issue a START HOLD,RANGE. A START HOLD,RANGE performs the
actual holding of the records with Relative Record Numbers greater than
or equal to the one specified.

To release a range of consecutive file records in Assembly language
use a START RELEASE statement. START RELEASE simultaneously releases all
records held by your task within the specified file. The only required
operand for the START RELEASE is the UFB address of the file. The UFB
can be specified as an address or a register.

Indexed Files

You can hold a range of records in an indexed file by generic key
value. Records related by generic key all have the same value for the
initial character or characters of their primary key fields. For
example, if a file uses employees' names as a primary key field, all last
names that begin with "Mc" share a common generic key. A generic key can
be the full length of the primary key:; such a generic key would hold a
single record.

It is possible to hold a generic key group that contains no records.
One use of this hold would be to prevent other tasks from writing new
records within a particular generic key.

An explicitly held generic key group must be explicitly released.
You issue a general release statement to release all resources held by
your task in a particular file.

VS COBOL, RPG II, and Assembly language support the holding of
records by generic key. In COBOL you can hold a generic key group by
specifying the key field in the INITIAL and CHARACTERS OF phrases of the
HOLD statement (Format 2). You release a generic key group by issuing a
FREE ALL statement. In RPG II you issue a HOLD statement and supply the
generic key value to the factorl field to hold records by generic key.

8-6

~

In Assembly language, you hold a generic key group by performing
three operations. First you establish the value of UFBGKSIZE, which
determines how many characters of the primary key will comprise the
generic key. Then you supply a partial or complete primary key value to
establish a target key for the generic key group. Finally, you issué a
START HOLD,RANGE. A START HOLD,RANGE performs the actual holding of the
generic key group.

For example, in a file of employees that uses last name and employee
number as a primary key, you can hold the generic group of records of
people whose names begin with "Mc" as shown in Example 8-2.

Example 8-2. Holding and Releasing a Generic Key Group

MVI UFBGKSIZE,X‘02"’
Mve PRIKEY,=C‘McDuffy12345"’
START HOLD,RANGE,UFB=EMPLOY

START RELEASE,UFB=EMPLOY

In Example 8-2, you first establish the generic key search field as
two characters wide in the User File Block field UFBGKSIZE for the
specified file. (The method used to modify UFBGKSIZE depends on how you
established UFB addressing, as described in Chapter 6.) You then specify
that these two characters will be 'Mc' by providing a valid primary key
value (a full key value or a left-justified partial key value) that
begins with those characters in the field addressed by UFBKEYAREA,
Finally, you issue the command to hold the generic key for the specified
file.

If you specify a generic key size of zero, or a generic key size
equal to or larger than the length of the key field, DMS interprets the
generic key size as the full key length. It holds the record with that
primary key value, holds that primary key value for a non-existent record
and prevents other users from writing a record with that key value.

To release a generic key in Assembly language, you can use a START
RELEASE statement. This START RELEASE simultaneously releases all
generic key groups held by the task within the specified file. The only
required operand for the START RELEASE is the UFB address of the file
containing the generic key.

8.4.3 Holding A Single Record

To explicitly hold a single record, you must specify a Relative
Record Number (RRN) or a primary key value that uniquely identifies a
single record.

In consecutive files, you first supply the desired record's four-byte
RRN to the area addressed by UFBKEYAREA. You then issue a START
HOLD,EQUAL function request. You can hold an RRN even if no record
exists with that RRN. Holding a non-existent record prevents other tasks
from creating a record with that RRN; thus you can establish a temporary
maximum file size. A START HOLD,EQUAL is normally a Hold for Update: you
can specify RETRIEVAL as an additional modifier element to make it a Hold
for Retrieval. Issuing a START HOLD,EQUAL does not change the value of
the file's current record pointer. START HOLD,EQUAL is an explicit hold;
you must explicitly release the record held by issuing a START RELEASE.

To explicitly hold a single record in an indexed file, specify a
generic key size equal to the full size of the primary key field, then
issue a hold by generic key and supply a primary key value to the area
addressed by the UFBKEYAREA field. This operation holds a generic key
that contains a single record identified by its primary key value. You
can also hold a non-existent record in the fashion. This prevents
another task from writing a new record with that primary key value. You
must explicitly release an explicitly held generic key group.

8.5 INTERACTION BETWEEN FILE HOLDS

In most cases, you can hold only one DMS resource at a time.
Generally, in order to hold a resource you must first release any
previously held resource. However, this rule has several exceptions. If
the second resource you wish to hold is a non-disjunctive subset of the
first resource (i.e., it is completely contained within the first held
resource) both holds are allowed. For example, if you are holding a
generic key group, you can issue a hold request for one of the records
within that generic key group without releasing the generic key hold.
The possible combinations of non-disjunctive holds are shown in Table 8-1.

8-8

7

Table 8-1.

Hierarchy of Resources
Non-disjunctive Holds

Current Resource Hold Issued
Previously Hold Hold Hold Hold
Held File Generic Record Record
Resource Key READ HOLD START HOLD
Hold maintain maintain maintain maintain
File previous previous previous previous
hold hold hold hold
Hold release maintain maintain
Generic ERROR previous previous previous
Key hold * hold hold
Hold release release release release
Record previous previous previous previous
READ HOLD hold hold hold hold
Hold maintain
Record ERROR ERROR ERROR previous
START HOLD hold

* for subsets only.

The Hold Record START HOLD shown in Tables 8-1 and 8-2 is the special
case of the hold by generic key in which the entire primary key is
supplied as the generic key.

As shown in Table 8-1, the Sharer automatically releases all implicit
record holds when you issue another hold request, either explicit or
implicit. The Sharer issues a File Status '86' if you request an
explicitly held resource higher in the hierarchy (a superset); the Sharer
maintains explicit holds if you request a resource lower in the hierarchy
(a subset).

An explicit hold cannot be released by issuing an implicit hold. You
must release an explicit hold by issuing either another explicit hold or
an explicit release.

A hold on a generic key group is an explicit hold. If a hold on a

generic key group is followed by another generic key group hold, the
situation falls into one of the following four categories:
e The first and second generic key groups are identical. In this

case the Sharer releases and immediately reapplies the hold.

o The second generic key group is a subset of the first generic key
group. Since the task already holds all records in the second
generic key group, the Sharer maintains the first hold and
ignores the second hold.

8-9

e The second generic key group is a superset of the first generic
key group (e.g., names beginning with M are a superset of names
beginning with Mc.) This type of hold is an error. You must
release the first explicit generic key hold before issuing a
superset hold.

¢ The first and second generic key are disjunctive, holding
different sets of records. You must release an explicit hold
before any disjunctive hold (explicit or implicit) can be
applied. You <can, however, simultaneously hold several
disjunctive generic key groups by specifying them is a list, as
described in Section 8.6.

If there are no records common to two hold operations, the operations
are disjunctive. The results of issuing two disjunctive record holds are
shown in Table 8-2.

Table 8-2. Disjunctive Holds
Current Resource Hold Issued
Previously Hold Hold Hold Hold
Held File Generic Record Record
Resource Key READ HOLD START HOLD
Hold
File ERROR ERROR ERRCR ERROR
Hold
Generic ERROR ERROR ERROR ERROR
Key
Hold release release release release
Record previous previous previous previous
READ HOLD hold hold hold hold
Hold
Record ERROR ERROR ERROR ERROR
START HOLD

8.6 HOLDING A LIST OF RESOURCES

You can hold multiple shared consecutive or
groups of records by requesting these holds as
operation. A Hold List operation simultaneously holds the files and
generic key groups that are specified as items on a list. You can
separately release these listed resources on an individual file basis.

indexed files and/or
part of a Hold List

You can only hold explicitly held resources as members of a list.
You initiate a list by specifying a List option on the explicit hold
statement for a resource. Specifying the List option sets a User File
Block flag that indicates a hold list operation in progress. Additional

8-10

resources are added to the list by issuing an explicit hold with the List
option for each resource. The Sharer does not hold any of the 1listed
resources until the list is completed. You complete a list by explicitly
holding a resource without specifying the List option. When the 1list 1is
completed, the Sharer simultaneously holds all of the resources listed
(including the one without the 1list option) and it resets UFBVLIST to
zZero.

Since all items in a list are held simultaneously, the sequence of
items in a list is unimportant. DMS automatically handles duplicate
items and non-disjoint subsets. Mixing Hold for Update and Hold for
Retrieval items as non-disjoint sets results in an error (these features
are further described in Section 8.7). All items in a list must be held
at the same time. If the Sharer cannot hold all items in the list, it
holds none of the items in the list.

Statements other than explicit holds are invalid if you issue them
while an incomplete 1list 1is pending. Issuing an explicit release
statement releases all held items for the specified file and deletes a
pending list.

You can use the timeout option when holding a list of resources. You
specify the timeout when holding the last item on the 1list. If the
Sharer cannot hold all items on the list within the number of seconds
specified as the timeout, the list 1s not held and DMS takes the timeout
exit specified for the last listed item.

Under DMS/TX, the items in a list are individually held as they are
specified, rather than simultaneously. The use of the List option is not
recommended under DMS/TX. Refer to the VS DMS/TX Reference for details.

The List option 1is supported in COBOL, RPG II, and Assembly
language. In COBOL it is provided as an option of the HOLD statement
(Format 2). You release a held list using a FREE ALL statement. In RPG
II you perform a hold list by using the HOLDL instruction. The FREE
instruction releases all held resources.

In Assembly language the List option is included as part of the Start
Hold statement, as shown in Example 8-3.

8-11

Example 8-3. Holding and Releasing a List of Three Items

START HOLD,LIST,UFB=ONEFILE
START HOLD, (RANGE, LIST) ,UFB=TWOFILE
START HOLD,UFB=THREEFILE

START RELEASE,UFB=ONEFILE
START RELEASE,UFB=THREEFILE

START RELEASE,UFB=TWOFILE

In Example 8-3, the first START HOLD initiates the list operation,
specifying a file to be held. The second START HOLD continues the 1list
by specifying a hold on a generic key group in a second file. A multiple
modifier in parenthesis is used for generic key holds in a 1list. The
third START HOLD does not contain the LIST option. DMS reads this as the
final item on the list. Upon reading this instruction, DMS performs the
actual holds, simultaneously holding the ONEFILE and THREEFILE files, and
the generic key group in file TWOFILE. A START RELEASE statement
releases the resources held by the task for a particular file. You can
release items held as a list individually on a per-file basis.

8.7 THE HOLD FOR RETRIEVAL OPTION

A normal DMS hold is a Hold for Update. This means that when a task
holds a resource, no other task may hold, rewrite, or delete any record
within that held resource.

DMS also provides a Hold for Retrieval option. If you explicitly
hold a resource with a hold for retrieval, other tasks can also perform
Read Holds on the records held by your task. However, neither you nor
the other tasks can rewrite or delete the records that you are holding
for retrieval. For the duration of the hold, all tasks can only use the
resource for data retrieval.

Hold for Retrieval allows you to prevent modification of file records
and maintains data consistency without restricting access to the file by
other tasks. When you specify a resource as held for retrieval, Read
Hold operations for other tasks on that resource are processed as
ordinary Read operations.

Explicit Holds for Update and Holds for Retrieval are incompatible

when performing non-disjunctive holds in DMS. For example, an error
occurs if you hold a file for retrieval, then attempt to hold for update

8-12

a generic key group in that file. You can perform disjunctive Holds for
Retrieval and Holds for Update on the same file. The explicit release
statement releases both retrieval and update holds.

Hold for Retrieval is supported in COBOL, RPG II, and Assembly
language. In COBOL it is an option of the Hold statement (format 2). In
RPG II you must follow the filename specified in every HOLD instruction
by a U or R, indicating respectively Hold for Update or Hold for
Retrieval.

In Assembly language a hold for retrieval is performed using the

START instruction with a multiple modifier.

Example 8-4. Holding a File for Retrieval

START HOLD,RETRIEVAL,UFB=Z00FILE

START RELEASE,UFB=Z0OFILE

A START HOLD,RETRIEVAL holds an entire file. You can also issue a
START HOLD, (RANGE,RETRIEVAL) to hold a range of consecutive file records
or an indexed file generic key group. You can also issue a START
HOLD, (EQUAL,RETRIEVAL) to hold an individual consecutive file record, or
a START HOLD, (LIST,RETRIEVAL) to hold a list of resources for retrieval.

8.8 THE TIMEOUT OPTION

DMS provides a timeout option for both consecutive and indexed
files. When you issue a hold, DMS attempts to apply the hold within the
time specified in the timeout option.

8.8.1 Task Waiting Without the Timeout Option

An attempt to hold a resource may not be successful because another
task 1is holding the desired resource, or a subset of it. 1In this
situation, the DMS default is to place the task in a wait state while
awaiting the release of the held resource. DMS suspends a list operation
until all items on the list are simultaneously free. A task remains in a
wait state until it can hold the specified resource(s) or it is cancelled
by the operator.

You can determine what resource an interactive task is waiting for by
pressing the HELP key. Pressing the HELP key suspends processing and
returns you to the Command Processor. If the task was awaiting a shared
resource when it was suspended, the Command Processor screen displays a
message, as shown in Figure 8-1.

8-13

5 éc’nin‘ann ?prncessgi-fl ank

‘gé FILE
Manage - DEVI

Figure 8-1. HELP Processor Screen

8.8.2 Task Waiting Using the Timeout Option

DMS provides an optional timeout feature to avoid indefinite waits
for resources held by other tasks. The timeout feature provides a
timeout duration, and a timeout exit in each file's User File Block.

The timeout duration is stored in the User File Block field UFBTIME.
You can set the duration field to any value from 0 to 255 seconds. If
you specify a value of zero, DMS will wait indefinitely. Once set, the
timeout value remains in effect for resources in that file until the file
is closed or UFBTIME is reset.

DMS automatically applies the specified timeout wvalue to the
following operations:

e Read Hold (implicit record holds)

e Hold File or Hold Generic Key (explicit holds)
¢ Write operations

e Holding extension rights (refer to Chapter 15)

DMS/TX processing supports timeout processing for rewrite and delete
operations as well. Refer to the VS DMS/TX Reference for details.

8-14

When you invoke one of the above operations, DMS checks the timeout
exit field of the UFB. This UFBTIMEEXIT field has a default value of
zero. If DMS finds a zero value in UFBTIMEEXIT, no timeout support is
provided, and a task waiting for a resource will wait indefinitely.

If you supply a non-zero value to the UFB timeout exit field, a
timeout exit is taken. DMS inspects the UFBTIME field for the number of
seconds to maintain an item on the wait queue before taking the timeout
exit. If the UFBTIMEEXIT value is non-zero, and if UFBTIME is set to
zero seconds, DMS immediately takes the timeout exit if it cannot
immediately hold the requested resource. If the UFBTIMEEXIT value is
non-zero and the UFBTIME value is non-zero, DMS waits the hold request on
a queue for the number of seconds specified in UFBTIME, then takes the
timeout exit.

A timeout exit is a user-supplied program address that you specify in
the User File Block's UFBTIMEEXIT field. If you provide a timeout exit,
program execution branches to the address specified in the timeout exit
and continues. DMS sets a File Status value of '70' to indicate that a
timeout exit was taken.

When a list of resources is held, you specify the timeout value with
the last item on the list. The system applies this timeout value to all
of the resources on the list. If it cannot hold the complete list within
the specified number of seconds, no holds are applied and the timeout
exit is taken. The use of the timeout for Hold List processing of DMS/TX
files is somewhat different; refer to the VS DMS/TX Reference for details.

File positional currency is not reliable after a timeout exit has
been taken. You must reposition the file pointer before performing
sequential operations.

After a timeout exit, you can access the log-on ID of the current
holder of the resource that was unavailable. The name of the resource
requested, and the user ID of the current holder of that resource can be
extracted from the UFB. The current user's ID is located in the User
File Block field UFBHOLDID. This field is maintained by the system, and
should never be written to by the user.

Timeout processing is supported in COBOL, RPG II, and Assembly
language. COBOL provides the timeout option with the HOLD, READ, and
WRITE statements for indexed files.

In RPG II the number of seconds to wait before a timeout is specified
by the global operator *SECS. If you have established a timeout, the
timeout exit is provided via the Resulting Indicator status field of the
HOLD statement.

In Assembly language, you establish the timeout duration and timeout
exit options by supplying values directly to the UFBTIME and UFBTIMEEXIT
fields. The same timeout wvalues will be used by all of the file's
operations that support timeout until the file is closed or you modify
the UFB values.

8-15

Example 8-5. Establishing Timeout Values

MVI UFBTIME, X'06°’
LA R6, TIMEROUT

ST R6,UFBTIMEEXIT
READ HOLD,UFB=ZOOFILE

The method you use for modifying the UFBTIME and UFBTIMEEXIT fields
depends upon the method you used to establish the address of the UFB, as
described in Chapter 6.

8.9 LOG FILES

A log file is a consecutive data file on disk that functions as an
Output mode file that can be concurrently written to by multiple tasks.
Log files are opened in Shared mode by multiple tasks:; a task cannot open
a log file in any other mode until all tasks close the log file. DMS
adds records to the end of a log file in chronological order. The Write
operation is the only operation that can be performed on a log file while
it is open in as a shared log file; a task cannot read a log file while
it is open as a shared log file.

A log file is a special type of consecutive file, containing variable
length records. The record format for log files is the same as for
normal consecutive files. The block structure of a log file differs
slightly from the block structure of a normal consecutive file. You can
process an existing log file as an ordinary consecutive file in Input,
Extend, and I/0O modes. You can also open an existing log file as a
shared consecutive file for I/0 processing. A log file cannot be
simultaneously open as both a shared log file (output processing) and a
shared consecutive file (update processing).

You create a log file by opening a new consecutive file in Shared
mode, rather than Output mode. Writing the initial records to the file
in Shared mode flags the file as a log file in the UFB. To add records
to a log file you open an existing log file in Shared mode. DMS
automatically locates the end of the file and writes new records to
extend the file.

Log file support is provided for all VS languages that support the

Shared mode. In Assembly language, you can create a log file as part of
the OPEN statement, as shown in Example 8-6.

8-16

Example 8-6. Creating a Log File in Shared Mode

OPEN UFB=NEWZ00,MODE=SHARED

STATIC
NEWZOO UFBGEN FILENAME=@ ZOOFILE,FORG=CONSEC,VLEN=YES

You can also create a log file for your exclusive use by setting the
UFBFLAGSLOG bit, and then opening a new consecutive file in Output mode,
as shown in Example 8-7.

Example 8-7. Creating a Log File in Output Mode

CODE
0I UFBFLAGS,UFBFLAGSLOG
OPEN UFB=ZOOFILE,MODE=0UTPUT

This provides you with all of the features of ordinary 1log file
processing except file sharing. You can, however, close the file and
reopen it in Shared mode to enable multiple users to extend the file.

A log file created in Output mode by setting the UFBFLAGSLOG bit can
contain compressed or non-compressed records. A log file created by
opening a consecutive file in Shared mode cannot contain compressed
records.

DMS provides two special features to prevent loss of log file data
due to a system crash. These two features are log file recovery and
record write-through.

When a system crashes, the system may not have updated the VIOC of an
open file to reflect changes made to the file data. Log file recovery
allows you to successfully reopen a log file following a system crash.
DMS performs log file recovery automatically when an Open in any mode is
attempted on a crashed log file. DMS inspects log file flags in the data
file to determine the end-of-file location. DMS recovers both the record
count and the EOF indicator; no message is issued.

Record write-through writes individual records to the disk file
directly, rather than accumulating records in a buffer. This prevents
the loss of the most recently written record(s) when a system crash
occurs. Performing a disk I/0 operation for each record written enhances
security against loss of records, but deprives you of the performance

8-17

advantages of I/0 buffering. Record write-through is optional; you can
create a log file with or without the write-through feature. You can
invoke write-through by specifying an @ as the first character of the log
file's name. Write-through is a feature of the log file that is in
effect for all write operations in Output, Extend, or Shared mode.

After opening a log file, you use standard DMS WRITE and CLOSE
statements to add records to the file.

8-18

f‘.\

CHAPTER 9
DMS EFFICIENCY CONSIDERATIONS

9.1 PERFORMANCE IMPROVEMENT METHODS

DMS provides two methods for improving performance of data files.
The first method, packing density., should be employed when you plan to
add a substantial number of records to an indexed or alternate indexed
file after creating the file. You can use the second method, buffering,
to reduce I/0 overhead on any file. Two buffering strategies are
available: the large buffer strategy for consecutive or relative files,
and the buffer pooling strategy for keyed access to an indexed file.

Other considerations that have an effect on performance are described
elsewhere in this manual. The selection of appropriate record and file
types is described in Chapters 2 and 3. The desirability of minimizing
the number of alternate keys and the lengths of all keys is explained in
Chapters 3 and 15. Running COPY and other utilities to reorganize a file
is described where applicable.

9.2 PACKING DENSITY

The packing density is the percentage of a block initially used for
writing records. When you set a packing density of less than 100%, DMS
leaves some space within each block for future records added to that
block.

9.2.1 User Interface

When creating or copying data files, you must set two packing density
fields, IPACK and DPACK. IPACK is the packing density for primary index
tree blocks; DPACK is the packing density for data blocks.

The IPACK and DPACK field are options for UFBGEN (used to create the
file), and three file copying utilities: COPY, TAPECOPY, and IBMCOPY
(IBM-format diskettes). The COPY utility uses Record Access Method (RAM)
to reblock records for a different packing density. This results in a
slower copy operation than an unmodified COPY, which executes in Block
Access Method (BAM).

9.2.2 The Default (100%) Option

The packing density defaults are 100% in all cases. A packing
density of 100% packs as many records or index table entries as possible
into a 2K block. (Do not confuse packing density with packed decimal
format; the packing density does not change the data representation from
standard ASCII bytes). While a 100% packing density provides the most
compact file (fewest blocks allocated)., and thus the smallest index trees
and fastest access, updates to a 100% file tend to be costly and
inefficient.

For example, to add one record to the middle of a file with 100%
packing density for data and index blocks would require DMS to perform
the following steps:

1. Locate the block to be updated by primary key, determine that
there is insufficient room to put the record in the data block.

2, Perform a block split on the data block, moving one-half of the
data to an available block at the end of the file. If no blocks
are available, DMS must allocate a new extent.

3. Change the block addressing for both blocks created by the block
split in the low-order index block. Since the index block is
packed 100%, there 1is no room in the index block for the
additional data block table entry. DMS must also split the index
block.

4. Split the low-order index block, placing half of it in an
available block at the end of the file. Change the index block
addressing for the next higher index block 1level. Because the
packing density is 100%, this requires a block split on this
level as well, which necessitates readdressing and block
splitting successively on every higher level of the index tree.

5. The same process is repeated for each alternate key path.

Obviously, you should not use a 100% packing density for any indexed
or alternate indexed file that you expect to update by adding numerous
records. The initial rapid access time for a 100% file degrades rapidly
as you add more records to the block, causing block splits to distant
locations on the disk. VYou should establish an indexed file with a
packing density of 100% if you plan to update it only by replacing one
fixed length record with another, or by adding records with primary key
values greater than the records already in the file.

9.2.3 The DPACK Field

The DPACK, or data packing field, determines how much of a data block
DMS should initially allocate for writing data, and how much it should
retain for subsequent updates to the block. For instance, if you set the

packing density to 70%, DMS initially writes records in Output mode using
70% of the block (1428 bytes), reserving the remaining 30% of the block
(612 bytes) for subsequent records written in I/0 or Shared mode.

Regardless of how low you set the DPACK percentage, DMS places at
least one record in each data block. Therefore, in a case where user
records are 1099 characters, a DPACK field of 10% or of 100% have the
same result: one record per block.

You should set the DPACK field with regard to the maximum length of
the records in the file. For example, 25 80-byte records can be placed
in a block. Therefore each record occupies 4% of the block. If you set
the DPACK field to 96%, it will provide enough space for a one-record
enlargement of each data block without block splitting.

Given the DPACK percentage, DMS calculates the number of records per
block for wvariable length records by assuming all records to be the
maximum record length. For compressed records, DMS estimates a 25%
compression from the maximum record length, and assigns that many records
to the file.

The DPACK field is an optional parameter of UFBGEN. If you do not
specify this parameter, DMS assumes that the DPACK is 100%. When
specifying the DPACK, you should express the percentage as a whole number
without the percentage sign, as follows:

ZOOFILE UFBGEN FORG=INDEXED,DPACK=70,RECAREA=ZOOREC

If you expect the growth of the file to be slow but extensive, avoid
setting the DPACK to a low percentage, because this results in degraded
performance. For example, if you expect a file to slowly enlarge by 90%
(which would normally require a DPACK of 10%), it is preferable to set
the DPACK to a moderate percentage (say 80%), and schedule the file to be
copied each time it grows 20%, using the COPY utility with REORG=YES,
DPACK=80, IPACK=95. This strategy minimizes wasted space because at any
one time the system reserves a maximum of only 20% for file expansion.
Running the COPY utility with the REORG=YES option fixes block splits,
balances block allocations, and re-establishes the 20% growth space.

9.2.4 The IPACK Field

The IPACK, or index packing density field provides the initial
allocation percentage for all primary index blocks on all levels. The
minimum number of table entries per index block is two; regardless of how
low you set the IPACK percentage, two table entries are placed in each
index block.

The IPACK field does not affect the alternate index trees, which
always maintain a packing density of 100%. Lacking a packing density
field, the early updates of an alternate indexed file result in block
splits of the pseudo-record index blocks. After the pseudo-record blocks
have been split, considerable space remains in each split block, and the

9-3

situation stabilizes. The degradation in performance caused by these
block splits is not serious, because the alternate index tree blocks are
usually at the end of the file where the available blocks for block
splits usually reside.

Setting the IPACK Field

If you have set the DPACK field to 50%, and the actual growth of the
file never exceeds 50%, then the number of data blocks should never
increase. The data blocks become fuller, but (assuming even growth),
they never reach capacity and require a block split. In this
hypothetical case, you could set the IPACK field to 100%.

In reality, however, you should not set the IPACK field to 100% in
the above example. Some data block splits are inevitable, because some
blocks will become filled to capacity, while others will still have space
for more records. Furthermore, in the above example, as the percentage
of actual file growth reaches and exceeds 50%, performance on the file
would begin to degrade fairly rapidly, due to index block splitting.

Therefore, you should set the IPACK field to accommodate some data
block splitting. The IPACK percentage can be calculated as follows:

[PK + 3] x 100
100 - 2043 rounded up x BS

where PK is the length of the primary key, and BS is the number of data
block splits the index block is to accommodate. In most cases, the IPACK
percentage is substantially higher than the DPACK percentage.

Like the DPACK, the IPACK is set as an optional parameter to UFBGEN.
You should only define an IPACK field if FORG=INDEXED.

ZOOFILE UFBGEN FORG=INDEXED,IPACK=90,DPACK=60

9.3 BUFFERING

A buffer is a pre-established area for receiving and temporarily
holding data. Buffers are established to minimize the number of I/O
operations that the system needs to perform to retrieve data from a
file. Through the use of buffers, the system can transfer 2K blocks, or
even larger units of data in one operation between your Segment 2 space
and the data storage device. DMS performs all disk I/0 operations in 2K
byte block units. Tape blocks and buffers can be larger than 2K bytes.

RAM and BAM automatically provide buffering. The number of 2K buffer
blocks provided depends on the type of file being accessed: a consecutive
file, or a file of any type opened in BAM, is assigned one buffer; a
relative file or an indexed file 1is assigned two buffers; and an
alternate indexed file is assigned three buffers. One indexed file
buffer holds the root index block and the other indexed file buffer holds
the block of data currently being accessed.

9-4

™

If you read an indexed file sequentially, DMS uses the data buffer
block for anticipatory buffer priming. WHen you issue a READ NEXT on the
last record in a block of records, DMS assumes that the next function
request against that file will also be a READ NEXT, and moves the next
sequential block into the buffer before a record in that block 1is
actually requested. Anticipatory buffer priming speeds performance by
reducing the I/0 wait time. A READ HOLD statement curtails anticipatory
buffer priming.

9.3.1 Large Buffer Strategy

You can use the large buffer strategy for consecutive files and
relative files to increase the size of the buffer. Ordinarily, DMS uses
a 2K byte buffer to copy a block of data from the file into your Segment
2 space (see Chapter 6). You can increase the size of this file buffer
to 18K (nine blocks), in increments of 2K. This is known as the large
buffer strategy.

Larger buffers limit the number of I/O operations to the data file by
copying several blocks in a single I/0 operation. I/0 operations tend to
be time-consuming; reducing their number speeds file processing. The
large buffer strategy copies up to nine adjacent file blocks, making this
strategy useful in the sequential processing of files.

You establish a large buffer in UFBGEN by setting BUFSIZE equal to
some multiple of 2048.

ZOOFILE UFBGEN FORG=CONSEC,BUFSIZE=4096

Indexed files wuse multiple buffers, rather than a single large
buffer. DMS provides a buffer pooling strategy for the multiple 2K
buffers of indexed files. You cannot specify a BUFSIZE of greater than
2048 bytes for indexed file in I/0 or Shared mode. You can, however,
specify a large buffer for an indexed file opened for sequential reading
in Input mode.

9.3.2 Buffer Pooling Strategy

You can establish a pool of buffer blocks in Segment 2 for indexed or
alternate indexed files. This buffer pool functions as a rapid access
storage area for data file blocks that are frequently read (such as the
high-level blocks of index trees). When your program requests a block of
data, DMS checks a Buffer Control Table (BCT) to determine if the
requested block is in the buffer pool. If the block is in the pool, DMS
accesses the copy of the block in the pool. If the block is not in the
pool, DMS locates the data block in the data file and copies it into the
buffer pool. Accessing a block from a buffer pool is more efficient than
accessing a block from a data file.

9-5

You can provide buffer pooling for indexed files opened in Input and
I/0 modes. DMS automatically provides buffer pooling for all files
opened in Shared mode. Shared files use the Sharer's buffer pool. You
establish the size of the Sharer's buffer pool when defining the system
parameters wusing the GENEDIT utility. GENEDIT is described in the
VS System Administrator's Reference.

Establishing a Buffer Pool

You establish a buffer pool in UFBGEN by setting parameters POOL=YES
and BCT=name. The BCT (Buffer Control Table) name references a BCTGEN
statement, which takes a single parameter, NBUF. NBUF specifies the
number of buffer blocks that the system assigns to the table; it can be
any value from 3 to 60. See Chapter 4 of the VS Operating System
Services.

Example 9-1. Creating a Buffer Pool

ZOOFILE UFBGEN FORG=INDEXED,POOL=YES,BCT=Z00POOL

ZO0OPOOL BCTGEN NBUF=60

How Buffer Pooling Works

When you open an indexed file for which you have specified buffer
pooling, DMS established a buffer pool for that file in your Segment 2
area. DMS also establishes a Buffer Control Table (BCT) that facilitates
rapid location of a block within the buffer pool.

When you access an indexed file, all of the blocks used to perform
that access are copied into the buffer pool. For example, if you perform
a READ KEYED, the root index block, one or more lower-level index blocks,
and the data block are all copied into the buffer pool. The buffer pool
retains these blocks following the access operation, so that another
access request requiring the same file blocks can access them from the
buffer pool, rather than having to locate these blocks in the file.

DMS initially places data blocks in the buffer pool in the order
received, and lists their locations and types (root block, index block,
data block) in the BCT. The BCT requires 56 bytes per buffer to list
this information. Once the buffer pool is full, DMS uses a
least-recently-used algorithm to replace data blocks in the buffer. This
algorithm preferentially retains blocks in the buffer in the following
order: alternate and primary root blocks, alternate and primary index
blocks, data blocks read with HOLD, data blocks read no-hold, and
alternate index pseudo-record blocks. DMS removes a block that has not
been recently accessed by overwriting it or by copying it out to the
file, thus creating space for a new block in the pool.

9-6

You can check the efficiency of a buffer pool by inspecting the
Program Completion Report (PF3) from the Command Processor, after running
the program. A Buffer Pool Statistics (PF2) option indicates the
efficiency of a buffer in terms of hits and misses. DMS records a hit
when it searches for a block and locates it in the buffer pool. A miss
is recorded when DMS must perform an I/0O operation on the data file to
find a data or index block. Initially, DMS records many successive
misses until the buffer pool has been filled; subtract the number of
buffer blocks from the misses total before comparing the two figures.
You can use the ratio of hits to misses to optimize buffer pool
performance. For example, if the number of hits is less than the number
of misses, you should enlarge the buffer pool in most cases.

You can, and in many cases should, use a single buffer pool for
several indexed files. Example 9-2 demonstrates multiple files sharing a
buffer pool.

Example 9-2. Two Files Sharing a Buffer Pool

FILEONE UFBGEN FORG=INDEXED,POOL=YES,BCT=0URPOOL

FILETWO UFBGEN FORG=INDEXED,POOL=YES,BCT=0URPOOL

OURPOOL BCTGEN NBUF=60

CHAPTER 10
DATA ACCESS METHODS

10.1 THE THREE ACCESS METHODS

DMS supports three access methods: Record Access Method (RAM), Block
Access Method (BAM), and Physical Access Method (PAM). You select the
method of access by means of an UFBGEN parameter that the system checks
before opening a file. All three access methods can be used on any file.
The access method you select determines the amount of DMS file support:;
file support not provided by the access method must be supplied by the
user's program.

Both disk and tape devices support all three access methods. BAM and
PAM are described in this chapter in terms of the 2K fixed block size
required for disk files. Tape files can use these 2K units, or other
block size units. Refer to Chapter 12 for further information on tape
block sizes.

Selection of an access method generally depends upon the intended
unit of data transfer and the level of DMS support desired. RAM 1is the
most commonly used access method, because it provides the most complete
DMS support. Only RAM supports access to logical records, and the

creation or use of index trees. BAM reads and writes disk data in 2K
block units only. Data transfer and copying in block units is
considerably faster than in single record units. BAM reduces DMS

overhead by not performing record blocking and deblocking. In addition,
BAM offers the large buffer option for performing I/0 to up to nine 2K
buffer blocks. PAM offers the greatest flexibility and least DMS support
of the three access methods. It allows you to transfer data in multiples
of 2K up to 18K, and to establish asynchronous processing and specialized
buffering strategies for the application. Use PAM when you want to
minimize data movement or when you need a flexible user-supported
buffering scheme.

10.2 RECORD_ACCESS METHOD (RAM)

RAM provides the highest degree of file support. RAM is the default
in access method selection; if no access method parameter is coded in
UFBGEN, the file will be accessed in RAM. Unless there is a specific
reason to use another access method, you should open all files in RAM.
Many DMS functions, such as creation and accessing of data by index
trees, location of data records within a block, compression, and file

10-1

sharing are only supported in RAM. RAM is the only access method
accessible from a high-level language —-- you must access BAM and PAM in
Assembly language. Unless otherwise noted, discussion elsewhere in this
book assumes use of the Record Access Method.

Appendix B contains tables of RAM function requests available in

Assembly language. For further details on RAM function request support,
refer to Chapter 7.

10.3 BLOCK ACCESS METHOD (BAM)

BAM allows for block-level processing of disk files, permitting you
to access, manipulate, and create files in an organization independent
manner. Processing a file in block units is much faster than processing
record-by-record, but possible applications of BAM are limited by its
inability to access records within a block. BAM is used primarily for
copying files; VS system utilities, such as COPY (with REORG=NO) and
BACKUP, use BAM for fast file copy operations.

Select this access method by setting UFBF1BAM before opening the file
(the BAM=YES parameter in UFBGEN). The unit of data transfer under BAM
is a 2K-byte physical disk block; you can access files by relative block
number (from 1) using either random or sequential methods. Data must be
aligned on page boundaries. Under BAM, user programs can block or
deblock the records in a file, and specify the size of the buffer to be
allocated (UFBBUFSIZE). DMS automatically performs anticipatory buffer
priming for BAM. See Chapter 15 for further details on anticipatory
buffer priming.

The processing modes available under BAM are similar to those
available under RAM: Input mode, Output mode, I/0 mode, and Extend mode.
Shared mode and record deletion are not supported. Before issuing a
function request, the user program must specify the relative block number
to be processed.

10.3.1 UFBGEN Coding for BAM

The User File Block (UFB) must be established in the STATIC (data
storage) section of the program prior to opening a data file. The
easiest method of establishing UFB values is by coding a UFBGEN
macroinstruction. Further details on the UFB, UFBGEN and its parameters
are found in Chapter 6.

Every file opened in BAM must contain the BAM=YES parameter in its
UFBGEN, All files opened in BAM must also specify the following
parameters that allow DMS to identify the file: FILENAME, LIBRARY, and
VOLUME. You can supply these values either through UFBGEN, or at runtime
by typing values to a workstation GETPARM screen. In addition, a file to
be created in BAM must contain the following additional parameters: FORG
(file organization), RECSIZE (record size), and either NRECS (number of
records), or BLKAL and NBLKS (number of blocks). Each file definition
should also include a RECAREA parameter, unless you perform Read
operations without using the user record area (e.g., READ NODATA).

10-2

Typical UFBGENs for an input file and an output file (to be created
with a length of ten blocks) are shown in Example 10-1.

Example 10-1. BAM File Definition Parameters

Input File:

STATIC
UFB NODSECT
ORG UFBBEGIN
INFILE UFBGEN BAM=YES,FORG=ANY,FILENAME=OLDFILE, X
LIBRARY=Z00LIB,VOLSER=Z00VOL,RECAREA=INREC

INREC DS CL2048

Output File:

STATIC
UFB NODSECT
ORG UFBBEGIN
OUTFILE UFBGEN BAM=YES,FORG=CONSEC,FILENAME=NEWFILE, X
LIBRARY=Z00LIB,VOLSER=Z00VOL,RECAREA=OUTREC, X
RECSIZE=2048 ,NRECS=10,BLKAL=YES ,NBLKS=10

OUTREC DS CL2048

In Example 10-1, record areas are defined for the Input and Output
files. In the sample BAM program shown in Appendix E, record areas are
not defined, because Read operations are performed NODATA. The sample
BAM program in Appendix E uses the file buffer, rather than a user record
area, for storing the current record.

BAM UFBGEN Parameters:

FORG The file organization. When you create a file, you must
specify whether the file is indexed (FORG=INDEXED) ,
consecutive (FORG=CONSEC), or relative (FORG=REL). When you
open an existing file of any file structure, you can specify
FORG=ANY. The Open operation automatically supplies the
correct file organization to the file's UFB.

10-3

RECAREA

PRNAME

FILENAME

LIBRARY

VOLSER

KEYAREA

BLKSIZE

VLEN

coMp

RECSIZE

NRECS

Same as RECAREA under RAM, except that the size of the field
referenced by RECAREA must be one data block (2048 bytes),
and the area addressed by RECAREA must be aligned on a page
boundary. When using the READ NODATA function request, you
can set the RECAREA equal to the file's buffer area,
UFBBUFADR.

Same as PRNAME under RAM. A recommended optional parameter
for all files.

Same as FILENAME under RAM. Required parameter for all files.
Same as LIBRARY under RAM. Required parameter for all files.
Same as VOLSER under RAM. Required parameter for all files.

Used for 1locating blocks within files. The KEYAREA=name
field references a four-byte field containing the block
number of the block to be read (from 1l). An optional
parameter.

An optional parameter used to specify the block size for both
input and output files. You specify the block size for a
disk in UFBGEN as BLKSIZE=2048. See Chapter 12 for the use
of this field in magnetic tape access.

The wvariable length record parameter is a required parameter
when creating a file containing variable length records.
Values are YES and NO.

The record compression parameter is a required parameter when
creating a file containing compressed records. Values are
YES and NO. If COMP=YES, you must also set VLEN=YES.

The record size field is a required UFBGEN parameter for BAM
disk file creation. The value for this field must be the
actual logical record size. Although BAM writes only in
physical block units, DMS can use the record size to estimate
the space requirements for a new disk file created in BAM.
As part of the Open operation, DMS sets UFBRECSIZE to 2048,
and places the maximum record size in UFBLRECSAVE.

You must specify either the number of records parameter or
the BLKAL (block allocation) and NBLKS (number of blocks)
parameters for files created using BAM. You set RECSIZE to
the logical record size and NRECS to the number of logical
records to be written to the file. The values of these two
parameters determine the space allocation for file creation.
You must change the value of the NRECS field before closing a
file if you have added or deleted records to the file.

10-4

BLKAL

NBLKS

If you do not specify a value for the NRECS parameter, you
must specify a value for the block allocation parameter in
UFBGEN for files created using BaM. You should specify
BLKAL=YES.

If you specified BLKAL=YES, you must specify the number of
blocks to be allocated for files created using BAM. The
NBLKS value enables DMS to allocate the primary allocation.
The value of NBLKS should be the actual number of blocks to
be placed in the file.

10.3.2 BaAM Function Requests

BAM supports the same function requests supported under RAM, except

DELETE.

A READ function request copies an entire 2K block into the user

record area; a WRITE or REWRITE copies a 2K block out to a data file.
BAM function requests are shown in Table 10-1.

Table 10-1. BAM Function Requests and Their Modifiers

Input Output I/0 Extend Shared
Mode Mode Mode Mode Mode
READ no mod no mod
REL HOLD
NODATA REL
NODATA
WRITE no mod no mod no mod
REWRITE no mod
START EXTEND EXTEND
OUTPUT OUTPUT
I0 I0
DELETE

READ Function Request Modifiers for BAM

no mod

REL

Causes DMS to read the next block in the file into the user
record area. When you issue a READ after opening a file, DMS
reads the first block in the file (relative Block 1).

When you issue a READ REL, DMS calculates the location of the
block with the specified relative block number and reads that
block into the user record area. The first block in the file
is relative block number 1. You specify the relative block
number in the four-byte area addressed by the KEYAREA field
of the User File Block as shown in Example 10-2.

10-5

Example 10-2. Use of the READ REL Function Request in BAM

CODE
MVC BLOCKNO,=F'5’
READ REL,UFB=ZOOFILE

STATIC

ZOOFILE UFBGEN BAM=YES,KEYAREA=BLOCKNO
BLOCKNO DS F

HOLD READ HOLD must be used in I/0 mode to hold a data block in the
user record area. You can write the block back to the data file
using a REWRITE function request (see Chapter 7).

NODATA A READ NODATA places the requested file data in the buffer area,
but does not copy the specified block into the user record area.
Instead, the block is retained in the DMS buffer, and the address
of the block in the buffer is placed in Register 1. If the file
is compressed, the data stored in the buffer is in compressed
format. A READ NODATA does not update UFBRECSIZE.

You can use READ NODATA with any file or record structure.
NODATA can be used by itself, or as part of a multiple modifier
with REL or HOLD.

Example 10-3 shows one use of READ NODATA in BAM. The example
equates the input file's buffer area with the output file's user
record area. This eliminates a data transfer operation and
speeds the copying of the block in BAM. A complete program using
the READ NODATA function request is shown in Appendix E.

Example 10-3. Use of the READ NODATA Function Request in BAM

Mve UFBORECAREA,UFBIBUFADR
READ NODATA,UFB=INFILE
WRITE UFB=OUTFILE

STATIC
INFILE UFBGEN MODE=IN,BAM=YES,DEVCLASS=DISK,
OUTFILE UFBGEN MODE=0UT,BAM=YES,DEVCLASS=DISK

WRITE Function Request for BAM

You use the WRITE function request in BAM to write a 2K block of data
from the user record area to an output file. WRITE takes no modifiers.
It requires the UFB operand, and supports the optional COND operand for
constructing a write on condition. DMS does not take the UFBEODAD error
return for WRITE function requests under BAM.

10-6

REWRITE Function Request for BAM

Use the REWRITE function request in BAM to write a block of data from
the user record back to the original input file in I/0 mode. You use
REWRITE when you have opened a file in I/0 mode, and read the block using
a READ HOLD. REWRITE takes no modifiers, except the UFB operand

designating the file, and an optional COND operand for rewrite on
condition.

Example 10-4. Use of the REWRITE Function Request in BAM
OPEN UFB=IOFILE,MODE=IO0

READ HOLD,UFB=IOFILE
REWRITE UFB=IOFILE

START Function Request for BAM

Use the START function request to switch processing modes in BAM.
This function is available in OQutput or Extend modes. The modifiers
allowed are OUTPUT, EXTEND and IO. DMS cannot take an UFBEODAD error
return when switching modes using START. In the following example, you
open ZOOFILE in Output mode, but then switch the mode using the START
function request to I/0 mode and process the file in I/0 mode:

Example 10-5. Use of the START IO Function Request in BAM

OPEN UFB=ZOOFILE,MODE=0UTPUT
WRITE UFB=ZOOFILE

START I0,UFB=ZOOFILE

READ HOLD,UFB=Z0OFILE
REWRITE UFB=ZOOFILE

10.3.3 Closing a File in BAM

Before closing a BAM file opened in Output, Extend, or I/0 modes, you
must update the fields in the UFB that specify the current size of the
file. You must update:

10-7

UFBNRECS the number of records in the file.

UFBEREC For relative files and consecutive files containing
fixed length records, EREC is the relative number
of the final record within the E-Block. For
example, if the last data record in a relative file
is in the fifth record slot in E-Block, the value
of EREC is 5. For variable length consecutive
records, the value of EREC is 1, unless the file is
a null file. For indexed files, the value of EREC
is the number of levels of index blocks in the file.

UFBEBLK the relative block number (from 0) of the
highest—numbered block that contains data.

These UFB fields are automatically updated as part of the Close operation
in RAM, In BAM you must manually update these fields before invoking a
Close operation. When copying an entire file in BAM, you can update
these fields of the output file by copying the values of the
corresponding input file parameters, as shown in the BAM program example
in Appendix E.

10.4 PHYSICAL ACCESS METHOD (PAM)

Physical Access Method (PAM) is the lowest level DMS support. It
gives you the most control of physical I/0 and buffering. However,
neither the buffering capabilities of BAM, nor the logical record
processing of RAM are supported under Physical Access Method.

Under PAM, your program must handle blocking and deblocking, and
establish all buffer areas. You can use PAM to implement a user-defined
buffering strategy. PAM itself does no buffering; all buffers must be
defined in the user program. You can use PAM for devices other than
disk, that require block sizes larger than 2K.

You can use PAM for initiating asynchronous I/0 requests and waiting
for their completion. You issue a physical I/0 operation request in PAM
and then issue a START WAIT function request to wait for that operation's
completion. Your program can carry on asynchronous processing while
awaiting the completion of an I/0 operation.

10.4.1 UFBGEN Coding for PAM

When you open a file in PAM, you must specify the parameter PAM=YES
in the file's UFBGEN. You must also specify the FORG, PRNAME, FILENAME,
LIBRARY and VOLSER for files accessed using PAM. 1In addition, when you
create a file using PAM, you must specify the RECSIZE, and either NRECS
(the number of records to allocate space for), or BLKAL=YES (block
allocation) and NBLKS (the number of blocks to allocate).

10-8

Example 10-6 shows a typical input file read using PAM, and a typical
output file created using PAM,

Example 10-6. PAM File Definition Parameters

INFILE UFBGEN FORG=ANY,PAM=YES,PRNAME=IN,KEYAREA=BLOCKNO, X
FILENAME=Z00IN,LIBRARY=Z00LIB,VOLSER=SYSTEM, X
BLKSIZE=2048

BLOCKNO DC F'7°

OUTFILE UFBGEN FORG=CONSEC,PAM=YES,PRNAME=0UT, X
FILENAME=Z000UT,LIBRARY=Z00LIB,VOLSER=SYSTEM, X

RECSIZE=80,BLKAL=YES,NBLKS=10,BLKSIZE=2048

PAM UFBGEN Parameters

FORG

PRNAME

FILENAME

LIBRARY

VOLSER

KEYAREA

BLKSIZE

RECSIZE

PAM reads and writes consecutive parts of a file, independent
of the internal structure of the file. For this reason, you
should always set PFORG=CONSEC for an output file created
using PAM. You can specify an input file as FORG=ANY. FORG
is a mandatory parameter.

Same as RAM files. A recommended optional parameter.

Same as RAM files. A required parameter for input files.
Same as RAM files. A required parameter for input files.
Same as RAM files. A required parameter for input files.

Used for locating a block within an input data file. The
KEYAREA=name field addresses an area that contains the
relative block number of the block to be read (from 0). An
optional parameter.

You must specify the block size for both input and output
files. This is usually done by storing the block size in the
UFBBLKSIZE field in the CODE section of the program. You can
specify block size in UFBGEN as well: BLKSIZE=2048. For use
of this field in magnetic tape access, see Chapter 12.
BLKSIZE is an optional parameter.

The record size field is a required UFBGEN parameter for PAM

file creation. The value for this field must be a multiple
of 2048, because PAM only writes in block or multiblock units.

10-9

NRECS

BLKAL

NBLKS

You must specify either the number of records parameter or
the BLKAL (block allocation) and NBLKS (number of blocks)
parameters for files created using PAM. You set RECSIZE to
the logical record size and NRECS to the number of logical
records to be written to the file. These two parameters
values determine the space allocation for file creation.

If you do not specify a value for the NRECS parameter, you
must specify a value for the block allocation parameter in
UFBGEN for files created using PAM. You should specify
BLKAL=YES.

If you specified BLKAL=YES, you must specify the number of
blocks to be allocated for files created using PAM. The
NBLKS value enables DMS to allocate the primary allocation.
The wvalue of NBLKS should be the actual number of blocks to
be placed in the file.

10.4.2 PAM Function Requests

PAM supports three access modes (Input mode, Output mode, and I/0
mode), and four function requests (READ, WRITE, REWRITE, and START). The
Extend and Shared modes are not supported in PAM. Use of the START WAIT
function request is mandatory in PAM file access.

Table 10-2. PAM Function Requests and Their Modifiers

Input Output I/0 Extend Shared
Mode Mode Mode Mode Mode
READ no mod no mod
WRITE no mod no mod
REWRITE no mod
START WAIT WAIT WAIT
EXTEND
OUTPUT
I0
DELETE

The READ, WRITE and REWRITE function requests take no modifiers.
Each function request requires a UFB name operand to identify the file.
You can also code a COND operand to specify conditional execution of a
function request.

10-10

The READ Function Request Under PAM

The READ function request takes no modifiers. However, an unmodified
READ under PAM is different from a READ under RAM or BAM. A READ
function request in PAM always requests a random read operation.
Therefore, it is necessary to supply a relative block number (from 0) to
the area addressed by KEYAREA before issuing each READ function request.
When accessing a file in I/O mode, you issue a READ with no modifier,
rather than a READ HOLD. Use REWRITE in I/0 mode to copy the block(s)
back to the file.

The START Function Request Under PAM

The START function request, with the WAIT modifier, is used to
synchronize the I/0 processing of READ, WRITE, or REWRITE function
requests used in PAM. You must place a START WAIT function request
between any two function requests that require I/0 processing on the same
file. A START WAIT suspends program execution to allow the previous
input or output operation to complete bhefore executing the next
instruction. START WAIT function requests are required to prevent an
operation from overwriting the data placed in a buffer by the previous
operation. You can minimize the effect of these START WAIT function
requests by establishing separate buffers for each file being accessed.

You can use the START WAIT statement to perform simultaneous I/0
transfers to several devices. A START WAIT function request waits for
the completion of the I/0 operation on the file specified in the UFB
operand of the START WAIT.

Example 10-7. Use of the START WAIT Function Request in PAM

OPEN UFB=INFILE,MODE=INPUT
OPEN UFB=OUTFILE,MODE=0UTPUT
READ UFB=INFILE

TOP START WAIT,UFB=INFILE
WRITE UFB=OUTFILE
READ UFB=INFILE
START WAIT,UFB=0QUTFILE

Loop B TOP

In Example 10-7, the program uses two buffers to speed processing of
records. Within the processing loop, the program issues a WRITE on the
block already in the buffer of one file and a READ to place the next
block in the buffer belonging to the other file, so that two I/0

10-11

operations are occurring concurrently. A START WAIT causes program
execution to wait until the first of these two operations completes.
After the first I/0 operation completes, the loop is taken and the
program waits for the second I/0 operation to complete.

You can also use the START command to change the processing mode. A
file opened in Output mode can be changed to I/0 or Extend mode by
issuing a START command with the appropriate modifier, as shown in
Example 10-8.

Example 10-8. Use of the START EXTEND Function Request in PAM

OPEN UFB=INFILE,MODE=INPUT
OPEN UFB=OUTFILE,MODE=0UTPUT
START EXTEND,UFB=0UTFILE

READ UFB=INFILE

Note that use of START for mode switching differs from mode switching
in RAM. In PAM, you are only able to switch modes if the file was
originally opened in Output mode. DMS checks the mode the file was
opened in, not the current mode of the file.

10.4.3 Establishing Buffers for PAM

Every program that performs I/0 operations using PAM must acquire at
least one 2K byte buffer. In Assembly language, you code a GETBUF
command prior to opening the data files to acquire a buffer block. After
closing all files using the buffer block, you should code a FREEBUF
command to release each buffer. See the VS Operating System Services
manual, Chapter 4 for further details.

Example 10-9. Establishing and Releasing Buffers in PAM

CODE

GETBUF

POPM 0,R5,R6

LTR R5,R5

BNZ EXIT

OPEN UFB=ZOOFILE
CLOSE UFB=ZOOFILE

FREEBUF BUFLOC=(Ré6)
EXIT RETURN

File I/0 processing under PAM can be speeded greatly by creating more
than one buffer, and using these multiple buffers alternately for I/0
operations.

10-12

10.4.4 Establishing the PAM Record Area on a 2K Boundary

In order to input or output a record from a file using PAM, you must
align the beginning of the record with a 2K block boundary. This is
because in PAM the record area is the same as the buffer. Using the
register containing the buffer address, you should perform the alignment
for all files prior to attempting to read or write those files. For the
file buffer shown in Example 10-9, you perform record area alignment as
shown in Example 10-10.

Example 10-10. Record Area Alignment in PAM

OPEN UFB=ZOOFILE
ST R6,UFBRECAREA
READ UFB=ZOOFILE

You should align the record area for each file accessed. If you have
assigned a SUFFIX to a file's UFB, specify the suffix in UFBRECAREA and
UFBBEGIN.

10.4.5 Specifying the Block Size in PaM

When DMS reads or writes a block in PAM, it resets the UFBBLKSIZE
value to the amount of data actually transferred. Physical media
considerations may result in an occasional transfer of less than the
amount of data originally specified in UFBBLKSIZE. In order to maintain
a block size of 2048 bytes (or a multiple of 2048), you must re-establish
the block size in the file's UFB prior to performing a READ, WRITE or
REWRITE operation on that file. You first load the block size into a
register, then store the register value in each file's UFBBLKSIZE field,
as shown in Example 10-11. Note the use of suffixes ("A" and "2") to
distinguish fields belonging to different UFBs.

Example 10-11. Establishing Block Size in PAM

LA R7,2048
TOP STH R7,UFBABLKSIZE
READ UFB=AZOOFILE
STH R7,UFBZBLKSIZE
WRITE UFB=ZOONEWFILE
LoopP B TOP

10-13

Every input or output function request should be preceded by a block
size store operation. Make sure to include the store halfword (STH)
operation in the processing loop so that the block size in reinitialized
before each READ operation, as shown is Example 10-11. If you use a
suffix field to identify a file's UFB, the file's UFBBLKSIZE field name
should include the suffix.

10.4.6 Closing a File in PAM

Before closing a PAM file opened in Output or I/O modes, you must
update the fields in the UFB that specify the current size of the file.
You must update:

UFBNRECS the number of records in the file.

UFBEREC For relative files and consecutive files containing
fixed length records, EREC is the relative number
of the final record within the E-Block. For
example, if the last data record in a relative file
is in the fifth record slot in E-Block, the value
of EREC 1is 5. For variable 1length consecutive
records, the value of EREC is 1, unless the file is
a null file. For indexed files, the value of EREC
is the number of levels of index blocks in the file.

UFBEBLK the relative block number (from 0) of the
highest-numbered block that contains data. EBLK is
only required when the file was opened in I/0 mode.

These UFB fields are automatically updated as part of the Close operation
in RAM. In PAM you must manually update these fields before invoking a
Close operation. When copying an entire file in PAM, you can update
these fields of the output file by copying the values of the
corresponding input file parameters.

10-14

PART III

Other Device
and File Types

CHAPTER 11
INTERACTIVE WORKSTATION DMS

11.1 THE WORKSTATION SCREEN AS A DATA FILE

The VS Data Management System treats the workstation screen display
as a data file. Interactive DMS provides you with several methods of
formatting and dynamically modifying the contents of this workstation
screen data file. The workstation screen is a modifiable consecutive
file that consists of a single record containing a maximum of 1924
bytes. Of these 1924 bytes, 1920 bytes represent the visible screen
positions known as the mapping area: 24 rows and 80 columns. The mapping
area is preceded by a mandatory 4-byte order area field, which governs
screen control for data transfer. The order area bytes are not displayed
on the screen. The structure of the workstation file is as shown in
Figure 11-1.

Order Area : Mapping Area 24 x 80

Figure 11-1. Schematic of Workstation Record

Formatting of the order area and the mapping area are described in
Section 11.2.

11.1.1 Reading and Writing to the Workstation Screen

DMS workstation screen interaction is supported in BASIC, COBOL,
PL/I, and RPG II. Refer to the individual language manuals for details
on support in these high-level languages.

The Assembly language programmer has a choice of several different
ways of transferring data to and from the workstation. The method
described in this chapter is Interactive DMS, in which you access the
workstation data file wusing the REWRITE, READ, and START function
requests. This method is similar to the DMS access to disk files
described in Chapters 6 and 7 of this manual. A complete sample Assembly
language program for workstation interaction is provided in Appendix E.

11-1

You must establish a User File Block (UFB) in your program for each
file accessed by DMS. Section 11.3 of this chapter describes the User
File Block and OPEN macroinstruction coding for a workstation screen.

Interactive DMS uses three types of function requests: REWRITE, READ,
and START. The use of workstation function requests differs somewhat
from the use of function requests for disk file access. Because the
workstation file is only one record in length, you use function requests
to establish the record and to wupdate it with another record or a
modified version of the original record. The READ and REWRITE modifiers
determine what part of the screen record DMS should read or write, and
whether DMS should flag or modify certain fields in the process.

The REWRITE function request, which writes data from the record area
to the workstation screen and issues Write Control Characters (WCC) in
the order area, is described in Section 11.4. Order area coding and the
WCC are also described in Section 11.4. The READ function request, which
reads from the workstation screen to the record area is described in
Section 11.5., The START ATTNT function request is used to record the AID
completion code for the previous READ operation. The START ATTNT and AID
characters are described in Section 11.6.

11.1.2 Alternatives to Interactive DMS

Other methods of writing to the workstation screen that are not
described in detail in this manual include:

1. GETPARM processing, in which workstation file handling is
controlled automatically by the operating system. This method
allows you to format the workstation screen without generating,
opening, or closing the workstation file. However, the GETPARM
macroinstruction can write, at most, 18 lines of the screen and
does not support all of the workstation features. The GETPARM,
PUTPARM and LINKPARM macroinstructions are described 1in the
Operating System Services manual.

2. DMS file management utilities can be used to handle many of the
most common data entry and display interactions. Where
applicable, the wuse of the CONTROL, EZFORMAT, REPORT, and
DATENTRY utilities is preferable to writing a separate program
for workstation I/O. These utilities are described in the VS
File Management Utilities Reference.

3. You can transfer data to and from the workstation by means of the
WSXIO subroutine. See the VS USERSUBS Reference for details.

11-2

N

11.2 FORMATTING THE WORKSTATION SCREEN

The workstation record area (RECAREA) is defined in the data section
of a program. The record area begins with a 4-byte order area that is
written (using the REWRITE function request) to the undisplayed screen
order area. The remainder of the workstation record area is the mapping
area, which the REWRITE function request maps onto the 24 rows and 80
columns of the workstation screen display.

Although the workstation record area can vary in length, its length
may never be less than 4 bytes (the length of the order area) or greater
than 1924 bytes. You can set the workstation record area length using
the RECSIZE parameter of the UFB.

The workstation record area contains four types of information: the
order area, the tabs field, field attribute characters, and field
characters. You must format these items in the user record area prior to
issuing a function request to display them on the screen. You can modify
these values by using move commands during program execution.

11.2.1 Order Area

The order area consists of four non-displayed code bytes that govern
READ and REWRITE function requests to the displayed portion of the
screen. They are usually specified in hexadecimal. The four order area
bytes are as follows:

Byte 0 Specifies the row of the screen that begins the mapping
area. Rows are counted in hexadecimal from '01'. For
example, setting this byte to hex '0C' before issuing a
REWRITE function request would write from screen row 12
to the bottom of the screen.

Byte 1 Contains the Write Control Character (WCC). The WCC
controls how the workstation processes a REWRITE function
request. For a READ operation, set this byte to hex

'00'. Write Control Characters are described in Section
11.5.
Byte 2 Specifies the column position of the cursor. The cursor

only appears on the screen if you have unlocked the
keyboard using the WCC (Byte 1). By setting this byte in
conjunction with order area Byte 3, you can position the
cursor to the first modifiable field of the screen
display or to any other screen position. Columns are
counted in hexadecimal from '0l'.

Byte 3 Specifies the row position of the cursor. Rows are
counted in hexadecimal from '01'.

11-3

11.2.2 Mapping Area

DMS writes tabs, field attribute characters, and field character
designators to the displayed portion of the screen record, known as the
mapping area. The up to 1920 bytes that make up the mapping area are
specified as 24 rows with 80 characters per row.

Tabs Field

You can use the first ten bytes of the mapping area to specify up to
ten tab positions. Each tab position specifies a column location for a
tab on every 1line displayed on the screen. You must set tabs in
ascending order in hexadecimal (hex values 'Ol' through 'S0'). Following
the list of tab stops., you specify the remaining bytes in the tabs field
as hexadecimal zeros. Do not specify a Field Attribute Character (FAC)
before the first tab position designator. If you do not want tabs, you
can use the first ten characters of the mapping area as a normal
workstation screen field. You cannot, however, mix tabs and data in the
same workstation field.

In order to set the tabs, you must issue a REWRITE TABS function
request that writes the tab stops to the workstation screen. An ordinary
screen REWRITE does not set tabs. After setting the tabs, you should
clear the hexadecimal characters you used to set the tabs from the
mapping area. If you do not clear the mapping area, the tabs will appear
as ASCII display graphic characters in the upper left corner of the
workstation screen.

The tab key is only functional for a particular line if the specified
tab pesition is within a modifiable field. Tabbing to non-modifiable
positions is not supported. DMS automatically establishes the first
character of all modifiable fields as a tab stop.

You can read or modify the tabs field using the READ TABS and REWRITE
TABS function requests. See Sections 11.4 and 11.5 for details.

Field Attribute Characters

The Field Attribute Character (FAC) defines the screen display
properties of the string of field character(s) that follow it. A FAC
defines the properties of all of the field characters that follow it
until either another FAC or the end of a row is encountered. You can
specify any location in the mapping area, including the first ten bytes,
as a FaC.

A FAC specifies the attributes of a field of up to ene row in
length. A field cannot extend beyond a single row of the screen; fields
do not wrap around. A field may be as short as a single character. A
one-character field requires two positions on the workstation screen: the
Field Attribute Character and the field character.

11-4

N

A FAC specifies what the field's displayed characters are to look
like (bright, dim, blinking, underlined, or blank (e.g., an undisplayed
password field)), whether a wuser can modify the field, and what
characters are allowed for modification (all alphanumerics, uppercase
alphanumerics only, numeric only). Refer to Table 11-1 for a complete
listing of FAC combinations.

By convention, bright characters are used for modifiable data, dim
chardcters are used for protected data fields. A blinking character is
alternately high-intensity (bright) and low-intensity (dim). Blinking
characters are conventionally used to indicate an error, or to issue a
warning. The RESET key resets all displayed blinking characters to
bright characters. See Section 11.4 for further details on blinking
characters.

If you do not specify a FAC in a particular row, DMS considers the
row to have the default FAC specifying a low-intensity, protected field.
Default field attribute characters, unlike programmer-supplied £field
attribute characters, do not occupy a position of the screen.

You can set a FAC in hexadecimal or binary. You can specify a FAC as
a separate data field, or as part of a character string. You can quickly
recognize a FAC in hexadecimal by a value of '80' or greater, and in
binary by a 'l' in bit location 0. FACs with values of hex 'CO' or
greater, or with binary bit locations 0 and 1 set to 'll', mark selected
data fields for the REWRITE SELECTED and READ ALTERED function requests.

11-5

Table 11-1. Field Attribute Character (FAC) Values in Hexadecimal and Binary
non-selected selected
Bright | Modify All No line 80 | 10000000 | CO 11000000
Bright | Modify Uppercase | No line 81 10000001 | Cl 11000001
Bright | Modify Numeric No line 82 10000010 | C2 11000010
Bright | Protect | All No line 84 10000100 | C4 11000100
Bright Protect | Uppercase | No line 85 10000101 | CS 11000101
Bright | Protect | Numeric No line 86 10000110 | C6 11000110
Dim Modify all No line 88 | 10001000 | Cs8 11001000
Dim Modify Uppercase | No line 89 10001001 | C9 11001001
Dim Modify Numeric No line 8A | 10001010 | CA | 11001010
Dim Protect | All No line 8C 10001100 cC 11001100
Dim Protect | Uppercase | No line 8D | 10001101 { CD 11001101
Dim Protect | Numeric No line 8E | 10001110 | CE | 11001110
Blink Modify all No line 90 | 10010000 | DO 11010000
Blink Modify Uppercase | No line 91 | 10010001 | D1 | 11010001
Blink Modify Numeric No line 92 10010010 | D2 11010010
Blink Protect | All No line 94 10010100 | D4 11010100
Blink Protect | Uppercase | No line 95 10010101 | DS 11010101
Blink Protect | Numeric No line 96 10010110 | D6 11010110
Blank Modify all No line 98 | 10011000 | D8 11011000
Blank Modify Uppercase | No line 99 | 10011001 | D9 11011001
Blank Modify Numeric No line %A | 10011010 | DA 11011010
Blank Protect | All No line 9C | 10011100 | DC | 11011100
Blank Protect | Uppercase | No line 9D | 10011101 | DD | 11011101
Blank Protect | Numeric No line 9E | 10011110 | DE 11011110
Bright | Modify All Underline A0 | 10100000 | EO 11100000
Bright | Modify Uppercase | Underline Al 10100001 | El1 11100001
Bright | Modify Numeric Underline A2 10100010 | E2 11100010
Bright | Protect | All Underline Ad 10100100 E4 11100100
Bright | Protect | Uppercase | Underline AS 10100101 | ES 11100101
Bright | Protect | Numeric Underline A6 10100110 | E6 11100110
Dim Modify all Underline A8 | 10101000 | ES8 11101000
Dim Modify Uppercase | Underline A9 10101001 | E9 11101001
Dim Modify Numeric Underline AA | 10101010 | EA | 11101010
Dim Protect | All Underline AC |} 10101100 | EC | 11101100
Dim Protect | Uppercase | Underline AD | 10101101 | ED | 11101101
Dim Protect | Numeric Underline AE | 10101110 | EE | 11101110
Blink Modify All Underline BO 10110000 | FO 11110000
Blink Modify Uppercase | Underline Bl 10110001 Fl 11110001
Blink Modify Numeric Underline B2 10110010 | F2 11110010
Blink Protect | All Underline B4 | 10110100 | F4 11110100
Blink Protect | Uppercase | Underline B5 | 10110101 | F5 | 11110101
Blink Protect | Numeric Underline B6 10110110 | F6 11110110
Blank Modify All Underline B8 | 10111000 | F8 11111000
Blank Modify Uppercase Underline B9 10111001 F9 11111001
Blank Modify Numeric Underline BA | 10111010 | FA | 11111010
Blank Protect | All Underline BC | 10111100 | FC | 11111100
Blank Protect | Uppercase | Underline BD | 10111101 | FD | 11111101
Blank Protect | Numeric Underline BE | 10111110 | FE | 11111110

11-6

FACs occupy a space on the workstation screen but are not displayable
as they do not correspond to any ASCII character. All FACs appear on the
screen as blank non-modifiable spaces. Therefore, you can use a FAC to
establish a mandatory space between two data fields; for example, between
an area code and a telephone number.

DMS automatically establishes FACs that precede modifiable fields as
tab stops to allow you to tab immediately to the beginning of each
modifiable field. You can use the tabs field to establish additional
tabs within the modifiable fields (see preceding description).

Field Characters

Any character in the ASCII character set can be written from the
mapping area to the screen display. You can define ASCII characters that
do not correspond to keys on the workstation keyboard in the mapping area
in hexadecimal. The complete ASCII character set is listed in the Quick
Reference documents for BASIC or COBOL.

The pseudoblank is a field character that is used specifically for
screen display. You write this character as a hex 'OB'; it appears on
the screen as a solid box. When used with FACs denoting modifiable
fields, pseudoblanks indicate at a glance the location and length of all
modifiable fields. You can copy a pseudoblank to the user record area as
either a pseudoblank or a normal blank, depending on the type of READ
function request you invoke.

11.2.3 A Workstation Screen Format Example

Example 11-1 defines an entire workstation screen, both the
non-displayed order area and the displayed mapping area. The order area
is coded on line "ORD". Row 1 contains tabs information, and Rows 2, 3,
4, and 5 contain FACs and field characters. Row 2 is a data entry area
for a last name; Row 5 is a data entry area for a telephone number.

11-7

Example 11-1. A Sample Screen Record Area

DS OF
ZOOREC DS 0CL1924
ORDAREA DS 0XL4
MAPSTART DC X‘01’
WCC DC X‘A2’
CURCOL DC X‘'Co’
CURROW DC X'02'

MAPAREA DS 0CL1920

°**** ROW 1 SET TABS *°*°*°*°

TABS DC X‘0A141E28323C46000000°
DC C70° '

***** ROW 2 MODIFIABLE NAME AREA °****
DC CL10* °
DC X80’

NAME DS CL12
DC X‘'8D’
DC CL56*

°*°*** ROW 3 LABEL FOR NAME AREA °*°*°**
DC X*8D’
DC CL14* °

LABEL DC C'NAME’
DC CLé61*

“°°*°* ROW 4 BLANK LINE °*°**°**
DC cCL80* °’

“**** ROW 5 MODIFIABLE PHONE NUMBER FIELD *°**°*°
DC CLi0* °
DC X‘'82’

AREAC DC C'617'
DC X‘82’

PHONE1 DS CL3
DC X'82’

PHONE?2 DS CL4
DC X‘8C’
DC CLS&3* '

*®*** REST OF SCREEN °**°***
DC 19CL80' '
END

The following is a description of the screen display generated in
Example 11-1:

Order Area The four order area bytes are not displayed on the
workstation screen. Bytes two and three of the order area
automatically position the cursor to the first character of
the name field in Row 2.

11-8

Row 1 Example 11-1 establishes seven tabs in Row 1. Their column
locations are written in the mapping area in hexadecimal.
After setting these tabs, you should clear the mapping area.
Only one of the tab positions, hex 'l4', points to a column
containing modifiable screen characters (in Rows 2 and 5).
This is the only functional tab stop for this screen
display. The other tabs are set, but are not usable on this
particular screen.

Row 2 Writes a field of twelve modifiable bright pseudoblanks to
the screen display. This modifiable area begins in Column 11
of Row 2.

Row 3 Displays the word '"name" in a 4-byte, non-modifiable,

low-intensity field in Row 3. This label is offset to Column
15 to be centered under the pseudoblanks in Row 2.

Row 4 Is a blank line.

Row 5 Contains three modifiable fields that make up a telephone
number. The first field consists of a modifiable area code
with a default value of 617. This is followed by seven
modifiable pseudoblanks divided into a field of three and a

field of four. These two fields are separated by a
non-modifiable space created by means of a redundant FAC
character.

11.3 ACCESSING THE WORKSTATION SCREEN

Interactive DMS access is similar in many ways to record access of
data files on disk. In interactive DMS, the VS workstation acts as a
consecutive DMS file, containing one non-compressed 1924-byte record.
You must open this workstation file in I/0 mode using the Record Access
Method (RAM). You must place parameter values in the file's User File
Block (UFB) before issuing an OPEN statement to access the data file.
You use the REWRITE, READ, and START function requests to perform I/0
operations. After record processing is completed, you use the CLOSE
macroinstruction to relinquish the data file.

11.3.1 The User File Block

Before opening the file, your program must generate a User File Block
(UFB) for the workstation file. In Assembly language, you can create a
UFB by coding a UFBGEN and its appropriate parameters.

The mandatory parameters for a workstation UFBGEN are PRNAME and
DEVCLASS: once you have identified the device as a workstation
(DEVCLASS=WS), the system takes the appropriate UFB default values; you
do not have to provide values for parameters such as FORG and MODE. You
code a workstation UFBGEN as shown in Example 11-2.

11-9

Example 11-2. Workstation File UFBGEN Coding

STAT STATIC
UFB NODSECT
ORG UFBBEGIN
ZOOFILE UFBGEN PRNAME=WSFILE,DEVCLASS=NWS

You can either specify other UFB parameters, such as RECSIZE,
RECAREA, and KEYAREA, in the UFBGEN, or set them in your program before
accessing the file. Thus, a typical creation of a workstation UFB would

be as shown

in Example 11-3.

Example 11-3. Workstation RECAREA Coding

STAT STATIC

UFB NODSECT
ORG UFBBEGIN
DS OF
SCREEN UFBGEN PRNAME=WSFILE,DEVCLASS=WS,RECSIZE=1924, X
’ RECAREA=Z00REC,KEYAREA=ZOOKEY
ZOOREC DS OF FULL WORD ALIGNMENT
DC X*'01A00101° ORDER AREA
DC 24CL80'EXAMPLE'’ MAPPING AREA
ZOOKEY DS F

UFBGEN Operands

RECSIZE

RECAREA

You can read or write either the entire workstation record
area or a portion of it as one record. You can set the
record length in the RECSIZE field of the UFB. The record
length can be dynamically changed during program execution.
The record length in RECSIZE includes both order and mapping
areas. The maximum RECSIZE is 1924, the minimum is 4. A
record size of 84 is recommended for reading by rows.

Example 11-4. Workstation RECSIZE Coding

SCREEN UFBGEN DEVCLASS=WS,RECSIZE=1924

The RECAREA field of the UFB contains the address of the user
record area; the user record area in workstation processing
is the 4-byte order area followed by the (RECSIZE minus
4)-byte mapping area. The address given in RECAREA can point
to a fullword aligned location in the STATIC section, as
shown in Example 11-5, or to a RECAREA stored in the user's
stack or heap areas.

11-10

Example 11-5. Workstation RECAREA Structure

SCREEN UFBGEN DEVCLASS=WS,RECAREA=AREA,RECSIZE=84

AREA DS OF FULL WORD ALIGNMENT
DC X‘01A00101° ORDER AREA
DC CL80‘'EXAMPLE’ MAPPING AREA
KEYAREA If the KEYAREA field has a non-zero value, DMS will move the

value from the rightmost byte of the 4-byte KEYAREA field to
the leftmost byte (byte 0) of the order area. Byte 0 of the
order area specifies the beginning row for a READ or REWRITE
operation. Currently, KEYAREA 1is only used in COBOL to
dynamically modify the order area Byte 0.

Example 11-6. Workstation KEYAREA Coding

SCREEN UFBGEN DEVCLASS=WS,RECAREA=REC,KEYAREA=KEY

DS OF ,
KEY DC F‘19° “‘Begin reads at row 19.°
REC DC 0X1924
ORDER DC X'01000000° *‘Begin reads at row 1. °

11.3.2 The OPEN and CLOSE Macroinstructions

The VS workstation, like all DMS data files, must be opened using the
OPEN macroinstruction prior to reading or writing to the file, and
relinquished using the CLOSE macroinstruction after file processing is
completed. The VS workstation is a consecutive file that must be opened
in I/0 mode. I/0 mode must be specified either during UFB parameter
definition (UFBGEN) or in the OPEN statement, or both. A typical
workstation file is opened and closed as shown in Example 11-7.

Example 11-7. Workstation OPEN and CLOSE

CODE
OPEN UFB=SCREEN,MODE=IO0
REWRITE UFB=SCREEN
READ UFB=SCREEN

REWRITE UFB=SCREEN
CLOSE UFB=SCREEN

11-11

A READ statement is often the last function request you issue before
closing a file. DMS reads the screen display into the record area; from
there you can write the data to a disk or tape file.

11.4 THE REWRITE FUNCTION REQUEST

The REWRITE function request allows you to write data from the
workstation record (order area and mapping area) to all or part of the
workstation screen. Usually, you issue a REWRITE before you issue a
screen READ. This writes the fields established in the mapping area to
the screen display and sets the order area. You can use the Write
Control Character (WCC), located in the order area, for a variety of
workstation controls. The most common of these is unlocking the keyboard,
which allows responses from the workstation operator.

Three REWRITE commands -- REWRITE, REWRITE SELECTED, and REWRITE
TABS —- control what type of data is written to the workstation screen.
REWRITE [no modifier] writes all types of data from the mapping area to
the screen; REWRITE SELECTED writes only selected fields to the screen;
and REWRITE TABS writes only the 10-byte tabs field from the mapping area
to the workstation screen.

All REWRITE function requests write the four order area bytes to the
workstation. The order area bytes control the cursor, lock or unlock the
keyboard, and control other aspects of the workstation.

11.4.1 The REWRITE Order Area

The order area consists of four bytes, numbered left to right from
zero. Each byte has an established function, as shown in Table 11-2.

Table 11-2. Order Area Byte Schema

Byte Function
0 Row number of first line to be written or read.
1 Write Control Character (WCC)
2 Cursor column address (used only if the
position cursor bit has been set in the WCC)
3 Cursor row address (used only if the position

cursor bit has been set in the WCC)

11-12

Byte 0 Begin REWRITE Row Address

The row number (Byte 0) is the number of the row at which reading
from or writing to the workstation begins; if the KEYAREA field of the
UFB is set to zero (the usual case), you specify the row as a hexadecimal
value between X'0l' and X'18' (decimal 1-24). A user-—specified row value
of 0 or 25 or greater terminates the command with an indication of order
check (File Status 34). You can also set the row number by specifying a
fullword value between 1 and 24 in the KEYAREA field of the UFB. If the
KEYAREA field has a non-zero value, DMS will move the value from the
KEYAREA to Byte 0 of the order area. The function of Byte 0 depends on
the options selected in Byte 1, the Write Control Character.

Byte 1 The Write Control Character (WCC)

The second byte of the order area is the Write Control Character
(WCC). The WCC allows you to set parameters for the REWRITE function
request. Table 11-3 relates each bit in the WCC to a write option; a
description of each option follows the table. Bytes 2 and 3 of the order
area have no meaning independent of the WCC.

Table 11-3. Write Control Character Values

Bit Write Option (if the bit is set to 1, the
specified action will occur)

Unlock keyboard

Sound alarm

Position cursor

Roll down

Roll up

Erase rest of modifiable fields
Erase and protect rest of screen
Reserved (must be 0)

~SNOAUiEe WD = O

Unlock keyboard If this bit is 1, the system unlocks the keyboard
after displaying the mapping area on the screen.
When the keyboard is unlocked, all keys are
operational for data entry.

11-13

Sound alarm

Position the cursor

Roll down

Roll up

Erase rest of
modifiable fields

If this bit is 0, the system will lock the keyboard
before any data transmission to the workstation,
locking an unlocked keyboard. If the keyboard is
already locked, an attempt by the REWRITE to lock
the keyboard will have no effect. 1If the bit is
set to 0 and the keyboard is initially unlocked,
the keyboard is locked upon reception of one of the
communication keys (ENTER, HELP or a PF key), and
the AID character (desctibed in Section 6.11) is
set to a hexadecimal 21. If the bit is zero and
the keyboard 1is already locked, the AID character
will not change.

If this bit is 1, the alarm will sound before data
is transmitted to the screen.

If this bit 1is 1, and if the keyboard is unlocked.
following data transfer to the screen DMS positions
the cursor to the column specified in Byte 2 of the
order area and row specified in Byte 3 of the order
area.

If this bit is 0, the cursor will remain in its
position prior to the REWRITE, regardless of the
values set in Bytes 2 and 3 of the order area.

If you set Bit 3 of the WCC to 1, the bottom line
of the screen will be lost and each line above it,
up to and including the row specified in Byte 0 of
the order area, will be copied into the next lower
line. DMS then sets the specified row to blanks
and continues the REWRITE function request. An
attempt to write a record larger than the amount of
room cleared on the screen with the "roll down"
option will result in an order check error.

If you set Bit 4 of the WCC to 1, the row specified
in Byte 0 of the order area will be lost and each
line below it, up to and including the last line of
the screen, will be copied into the next higher
line (e.g., Line 1 will be replaced by the contents
of Line 2, etc.). DMS will then set the last line
to blanks and proceed with the REWRITE on the last
line of the screen. An attempt to write more than
one line with the "roll up" option in a single
command will result in an order check.

If you set Bit 5 to a value of 1, DMS writes
pseudoblanks to all modifiable locations between
the beginning of the row specified in Byte 0 of the
order area and the end of the screen before
transferring data to the screen.

11-14

Erase and protect If you set Bit 6 to a value of 1, DMS sets all

rest of screen locations of the screen from the row address
specified in Byte 0 of the order area to the end of
the screen to the Field Attribute Character '8C'
(dim, protected) before it transfers data to the
screen. You cannot subsequently modify any of the
data appearing on the screen.

WCC Sequence of Execution

The execution order of the WCC options on a REWRITE on a parallel
workstation is shown in Table 11-4. The order of Steps 3 and 4 is
reversed for serial and combined workstations.

Table 11-4. Write Control Character Sequence of Execution

lock keyboard (optional)

sound alarm if specified

. roll up or down if specified

erase modifiable or protect if specified
WRITE data

unlock keyboard (optional)

QY U W W N
o e e .« .

Bytes 2 and 3 -- Cursor Positioning Bytes

The Bytes 2 and 3 of the order area specify the row and column
location at which to initially position the cursor. Usually, you should
set these bytes to the row and column number of the first modifiable byte
of the first screen field. Cursor positioning only takes place if you
have set the cursor positioning bit in the Write Control Character (order
area Byte 1).

If the value of the row specified in Byte 3 1is zero, DMS will
consider the value to be 1. If the value of the column specified in Byte
2 is zero, the cursor will be positioned as if a tab key had been pressed
from an initial cursor position one location before the beginning of the
row just written. However, if there are no modifiable fields on the rest
of the screen, the cursor will be positioned to the first location in the
row specified in Byte 3 and an alarm will sound.

If Byte 2 contains a column address other than 00-50 hexadecimal
(0-80 decimal) or Byte 3 contains a cursor row address other than 0-18
hexadecimal (0-24 decimal), the REWRITE command will be terminated with
an indication of order check (File Status '34').

11-15

11.4.2 REWRITE Function Request Modifiers

There are only three legal forms of the REWRITE function request:
REWRITE, REWRITE SELECTED, and REWRITE TABS. The REWRITE function
request transfers all data from the mapping area to the corresponding
screen positions; REWRITE SELECTED transfers only the contents of fields
with the selected field tags set in the mapping area to corresponding
screen locations; and REWRITE TABS unsets all tabs and changes them to
the tabs specified in the first ten bytes of the mapping area. All forms
of the REWRITE instruction reset UFBFS1 to indicate either successful
completion of the instruction or an order check, and place the AID
character in the UFBFS2 field. The functional differences of the three
forms of the command are detailed below.

REWRITE: The unmodified REWRITE function request transfers
all data, wunchanged, to the workstation screen,
including the four order area bytes. The command
functions whether or not the keyboard is 1locked:
however, it 1is normally undesirable to issue a
REWRITE to an unlocked keyboard, because operator
keystrokes could be lost. Use of this function
request is shown in Example 11-8.

Example 11-8. Workstation REWRITE Coding

OPEN UFB=SCREEN,MODE=I0
REWRITE UFB=SCREEN

REWRITE SELECTED: This modified form of the REWRITE function request
transfers to the screen all fields in the mapping
area that have the selected field bit set in their
Field Attribute Characters (see Table 11-1). DMS
does not reset the selected field bits in the
mapping area; it turns off the selected field bits
at the workstation for those FACs that identify the
fields that were written.

Example 11-9. Workstation REWRITE SELECTED Coding

REWRITE SELECTED,UFB=SCREEN

11-16

REWRITE TABS: This modified REWRITE function request unsets all
current tabs, and writes to the workstation up to
ten new tabs that are stored in the first ten bytes
of the mapping area. The REWRITE function request
does not write the other areas of the screen. You
must specify each new tab stop in the mapping area
by column number in ascending order (hexadecimal 00
through 50). A column number of 00 signals the end
of the list of tab settings; DMS does not examine
the contents of any subsequent bytes.

If you specify a screen file for setting tabs, its
RECSIZE must be at least 14 bytes, or DMS will
reject the command with an indication of a length
error (File Status '97').

Example 11-10. Workstation REWRITE TABS Coding

OPEN UFB=SCREEN,MODE=I0
MVC TABS,=X‘01050A10151A"
REWRITE TABS,UFB=SCREEN

11.5 THE READ FUNCTION REQUEST

The READ function request retrieves data from either part or all of
the workstation display (both the displayed screen characters, and the
non-displayed order area bytes), and places the data in the user record
area. From there, you can rewrite the screen record back to the screen,
or write it to a disk or tape file.

When specifying a READ operation, you should establish four field
values: the order area byte wvalues, if different from the values
specified for REWRITES; the RECSIZE; the Field Attribute Character
values, and the READ function request modifier.

You can specify a READ function request that reads only a portion of
the 1924-byte screen display. The portion of the workstation record read
depends upon the value of Byte 0 of the order area and the value of
RECSIZE coded in the UFB.

11.5.1 The READ Order Area

The leftmost of the four order area bytes, known as Byte 0, provides
you with one method of reading only a portion of the screen display.
This byte specifies the row at which the READ should start. If you want
a full-screen READ, set this byte to 1, and set the record 1length to
1924. Specifying a higher value than 1 for Byte 0 indicates that only
that row and rows with higher numbers (rows displayed 1lower on the
screen) are to be read. You must specify the row number as a hexadecimal

11-17

value between X'0l1' and X'l8' (decimal 1-24); a value out of range
results in an order check error (File Status '34'). You must adjust the
RECSIZE to reflect the value you set in order area Byte 0. Each
increment of Byte 0 above '0l' should be reflected in a reduction of the
maximum RECSIZE by 80 characters, as follows:

Byte O: Maximum RECSIZE
‘o1 1924
'02' 1844
'03" 1764

If you want full-screen READs and REWRITEs, you must establish the
order area byte values for the REWRITE function request. In most cases
it is not necessary to code a separate order area for READ processing.

The order area Byte 1 is not used for READ processing, and should be
set to zeros.

The initial values of order area Bytes 2 and 3 are not important,
because the values read for these bytes are the values established by the
position of the cursor when you invoke the READ function request. Order
Area Byte 2 takes the column position number of the cursor. Byte 3 of
the order area takes the row position number of the cursor when you
invoke the READ operation.

11.5.2 Field Attribute Characters

You specify Field Attribute Characters (FAC) in the data section of
your program, immediately prior to the data field for which they supply
attributes. FACs occupy a space on the workstation screen but are not
displayable, as they do not correspond to any displayable ASCII
character. They are coded using either hexadecimal or binary values.

A READ function request’ copies the FACs along with the other
characters from the screen to the mapping area. If you do not supply a
FAC for a screen field, DMS supplies a default FAC. These default FACs
are not read to the mapping area.

You can inspect FAC characters in the mapping area using the DISPLAY
utility. DISPLAY in decimal mode represents all FACs by a dot in the
user record: you can identify FACs in DISPLAY hexadecimal mode by their
hexadecimal values.

The execution of READ function requests depends on the FAC values of
the fields read. READ function requests with certain modifiers read only
those data records specified in their FACs as modified or as modifiable.

You should take note of the BLINK field attribute. Following READ
function requests with certain modifiers, the fields you established as
blinking either continue to blink, or are reset by DMS as bright
nonblinking characters.

11-18

11.5.3 READ Function Request Modifiers

You can use three of the four workstation READ modifiers to read the
entire workstation display (order and mapping areas).

TABS,
information.

The

differ in

The fourth, READ
is used to read the workstation tab positions, not screen display

screen display READs how they handle

non-modified screen fields, pseudoblanks, and blinking characters.

A non-modified screen field is a modifiable data entry field to which

you have written no data.
pseudoblanks,
entry field is read from the screen,
or converted to normal blanks.

as 1is,

which are represented as hexadecimal
the pseudoblanks are either copied
The three workstation display

READs are summarized in Table 11-5.

Data entry fields are usually displayed as
'0B'.

When a data

Table 11-5. Workstation READ Function Requests
Non-modified Modified Blinking Transferred
Screen Field | Screen Field | Characters Record
Pseudoblanks Trailing Pseudoblanks
READ unchanged by | pseudoblanks Blink read for all
[no modifier] READ unchanged screen fields
Pseudoblanks | Trailing Blink Pseudoblanks
READ MOD changed to pseudoblanks reset to read as
spaces = spaces bright spaces
Pseudoblanks Trailing Non-mod. Pseudoblanks
READ ALTERED unchanged by | pseudoblanks fields read for non-
READ = spaces blink mod. fields

In interactive DMS,
for manipulating a workstation file:
The functional differences between the four forms of the

READ TABS.

Interactive DMS READ function request are detailed below.

READ

READ ALTERED,

the READ function request has four valid forms
READ, READ MOD,

and

The unmodified READ function request causes the contents
of the screen locations corresponding to the mapping area
to be copied into the mapping area without change. Thus,
all characters and field attribute characters within the
defined record are read. Pseudoblank characters,
blinking fields, and modified data tags are transferred
to the mapping area unchanged.

11-19

READ MOD

READ ALTERED

Example 11-11. Workstation READ Coding

OPEN UFB=SCREEN,MODE=I0
REWRITE UFB=SCREEN
READ UFB=SCREEN

The READ function request with the MOD modifier reads the
modifiable fields from the workstation screen display to
corresponding locations in the mapping area. It skips
over protected fields within the record, leaving the
corresponding mapping area locations unchanged. It
converts modifiable pseudoblank characters on the screen
into blanks before transmitting them to the mapping area,
and changes blinking characters to high intensity
non-blinking characters.

Example 11-12. Workstation READ MOD Coding

OPEN UFB=SCREEN,MODE=I0
REWRITE UFB=SCREEN
READ MOD,UFB=SCREEN

The READ function request with the ALTERED modifier
causes the contents of those fields that have the
modified data tag (the second bit) set in their FAC to be
copied into corresponding positions of the mapping area.
The modified data tags in the portion of the screen read
are turned off at the workstation, but remain set in the
corresponding FACs in the mapping area. Pseudoblanks are
converted to blanks for modified fields, but pseudoblanks
and blinking characters are preserved unchanged for
non-modified fields.

Example 11-13. Workstation READ ALTERED Coding

OPEN UFB=SCREEN,MODE=I0
REWRITE UFB=SCREEN
READ ALTERED,UFB=SCREEN

11-20

READ TABS The READ function request with the TABS modifier reads
the column numbers of up to ten set tabs into the first
ten bytes of the mapping area. It does not read any
modifications made to workstation screen fields. The
record size specified in the UFB must be at least 14
(even if you are setting fewer than 10 tabs) or DMS will
terminate the operation with an order check (File Status
'34").

Example 11-14. Workstation READ TABS Coding

OPEN UFB=SCREEN,MODE=I0
REWRITE TABS,UFB=SCREEN
READ TABS,UFB=SCREEN

11.6 THE START ATTNT FUNCTION REQUEST

There is only one legal form of the START instruction for workstation
files: START ATTNT. The START ATTNT function request retrieves the most
recent AID character. An AID character specifies either which PF key was
pressed in the previous workstation interaction or the status of the
workstation (keyboard locked or unlocked). START ATTINT places the AID
character in the UFB File Status 2 field (UFBFS2) and places a 0 in the
UFBFS1 field of the UFB.

A READ function request also places the most recent AID character in
UFBFS2. Use START ATTINT when you wish to retrieve the AID character
without issuing a READ when you wish to see if the keyboard needs to be
unlocked. You can examine the contents of UFBFS2 to determine the last
AID character issued. Establishing addressability to examine UFB field
values is described in Chapter 6.

The most common use of the START ATINT is to interrupt a running
program from the workstation, as shown in Example 11-15. If the keyboard
is unlocked, pressing the ENTER key or any of the PF keys generates an
AID character. The START ATTNT replaces the "Keyboard Unlocked" AID
character (a blank) with the AID character for the key pressed. A
running program can repeatedly issue a START ATTNT, and then check the
contents of UFBFS2. 1If an interrupt key is pressed, START ATTINT places
the AID character for that key in UFBFS2. Example 11-15 checks for the
presence of an AID character 'P' (PF 16) each time the program loop is
performed. It then uses this AID character value to branch to an
interrupt subroutine.

11-21

Example 11-15. Workstation START ATTNT Coding

MVI UFBFS2,C'0’

TOP START ATTNT,UFB=ZOOFILE
CLI UFBFS2,C'P’
BE INTRUPT

BOTTOM B TOP
INTRUPT

11.6.1 The AID Character

The current status of the workstation, i.e., whether or not the
keyboard is locked, or which of the PF or ENTER keys has been pressed, is
indicated in the AID character. The UFB contains two fields reflecting
file status: UFBFS1, which indicates the completion status of the DMS
I/0 function; and UFBFS2, which always c¢ontains the most recent AID
character after a successful READ or REWRITE and can be updated at any
time with the START ATTNT function request. On abnormal I/O completion,
the UFBFS2 contains an error c¢ode indicating the reason for I/O
termination.

The AID characters are one-character codes for the ENTER key and PF
keys, as well as for certain error status conditions. ENTER is
represented by an '@' sign, the lowercase PF keys (PFl through PF16) are
represented by the capital letters 'A' through 'P', and the uppercase PF
keys (17 through 32) are represented by the small letters 'a' through
'p'. For a chart of AID characters, see Chapter 9 of the VS Principles
of Operation.

11.7 WORKSTATION ERROR COMPLETION CODES

The file status fields, UFBFS1 and UFBFS2, are used to store
two-character codes that indicate abnormal completion of workstation READ
and REWRITE operations.

File Status Meaning
c'10' No data read during a READ ALTERED (end-of-data).
Cc'30' I/0 error.
c'3¢’ Order check.
C'95" Invalid function or function sequence.
C'96' Invalid data area location or alignment.
c'97! Invalid length for device.

11-22

DMS uses the first character of the file status field, UFBFS1, to
hold workstation error codes. This field is reset to ASCII zero (hex
'30') by the successful completion of a READ, REWRITE or START ATTNT
function request. The UFBFS1 codes and meanings are shown in Table 11-6.

Table 11-6. Workstation Error Completion Codes

UFBFS1 value Meaning

! Successful completion.

' At end.

! Invalid key or record number.
! Permanent I/0 error.

' Cancel .code stored.

! Other conditions.

DMS uses the UFBFS2 field to hold the AID character following the
successful completion of a function request. For further information on
file status codes, refer to Chapter 14.

11-23

CHAPTER 12
DMS MAGNETIC TAPE SUPPORT

12.1 INTRODUCTION

The VS Data Management System supports the reading and writing of
seven- and nine-track magnetic tapes., accessed either by physical units
(BAM and PAM) or by logical records (RAM). This chapter describes DMS
magnetic tape processing, wusing terms and examples from Assembly
language. All VS high-level languages provide magnetic tape support:
refer to the individual language manuals for details.

Because magnetic tape is a consecutive storage medium, a file stored
on magnetic tape can only be processed as a consecutive file. A
consecutive tape file can be created (written in Output mode), read (read
in Input mode), or extended (additional records written to the end the
file). You cannot update records within tape files. The physical
limitations of magnetic tape prevent either the random locating of
specific records within files, or the updating of records.

A reel of magnetic tape can contain more than one file.
Alternatively, a single file can span several tape volumes. This allows
for the creation of quite large files. Blocks within tape files can be
up to 32K bytes, considerably larger than the 2K maximum block size for
disk files.

This chapter does not attempt to completely describe tape processing
on the VS. The physical mounting of tape volumes and other hardware
aspects of tape and tape drives are described in the VS Systems Operation
Guide, Chapter 15:; logically mounting and dismounting tapes is described
in the VS Programmer's Introduction, Chapter 3. A blank magnetic tape
can be formatted using the TAPEINIT utility; a tape can be copied from
another tape volume or to a disk volume by means of the TAPECOPY
utility. These utilities are described in the VS System Utilities
Reference, Chapters 7 and 17. Tape track formats, the physical I/0 of
tape, and resulting IOP error codes are the topics of Chapter 12 of the
VS Principles of Operation.

12.2 DMS-SUPPORTED TAPE FORMATS

DMS supports a variety of tape formats, facilitating the transfer of
data between the VS and other computers. Both seven- and nine-track tape
are supported; however, DMS support is not provided for the 2529V
one-track cartridge tape drive. An Assembly language program accessing a

12-1

seven-track tape must specify TRACK7=YES as a UFBGEN parameter. Similar
track operands are available for high-level languages (with the exception
of Fortran 66, which does not currently support seven-track tape).

DMS uses parity checking to prevent errors in reading magnetic tape.
DMS automatically generates parity bit wvalues when writing to tape, and
performs parity checks on all data read from tape. Wang nine-track tape
drives support even parity. You can establish odd or even parity for
seven-track tapes by using the PARITY parameter of UFBGEN. Odd parity is
desirable if explicit blank information (hex '00') is to be encoded on
seven-track tape. When reading a tape, the parity option specified in
the UFBGEN must agree with the parity of the tape volume.

DMS supports two densities of seven-track tape: 556 and 800 bits per
inch (BPI). It supports three densities of nine-track tape: 800, 1600,
and 6250 BPI. Use the DEN parameter of UFBGEN to set the tape density.

NOTE

The tape density selected in the user program must be a
density supported by the tape drive.

A tape can be labeled or unlabelled. A 1labeled tape contains a
volume label at the beginning of the tape volume and file labels at the
beginning of each file on the tape. Wang supports three UFBGEN tape
label options: Wang ANSI-standard labels (AL), IBM-standard labels (IL),
and non-labelled tapes (NL). Seven-track tapes are always non-labelled.
ANSI and IBM labels are similar in content and organization; the
principal difference is that ANSI labels are written in ASCII, whereas
IBM standard labels are recorded in EBCDIC. When reading a tape, the
LABEL parameter can take a fourth option, ANY; in this case DMS sets the
label field of the UFB after reading the beginning of the tape.

A non-labelled (NL) tape may be a tape containing no labels, such as
one created by the BACKUP utility, or a tape containing labels that
correspond to neither the ANSI or IBM standards. When such a tape is
read, DMS treats the labels as if they were the first data block(s) of
the files.

NOTE

The ALLOWNL parameter is no longer needed to insure that DMS
can process a non-labelled tape. Existing programs that use
this UFBGEN parameter do not need to be changed.

12-2

You can access a labelled tape file by its file name or its file
sequence number. You access a file on an unlabelled tape volume by its
file sequence number. The first file on a magnetic tape volume is file
sequence number one (FSEQ=1).

The tape file label, containing the name of the file, its block and
record length, and other particulars, is divided into as many as three
parts called headers. Both Wang ANSI and IBM file labels contain the
same information. The first file label header (HDR1l) contains the file
and volume names and sequence numbers, the user ID, system, and date on
which the tape was created. The second header (HDR2) includes the type
of file, the block length, and the length and type of records. You can
use the TAPEDUMP useraid to print the exact contents of tape volume and
file labels.

When writing a file to tape, you must select either partial or full
tape file labels. The UFBGEN parameter HEADER=FULL is the default,
formatting file labels with both HDR1 and HDR2. If HEADER=PARTIAL, DMS
formats only the HDR1 as a file label. The third header, HDR3, is used
in Wang OIS systems. A VS system can read a file containing a HDR3, but
it can neither read nor write the HDR3.

UFBGEN statements for seven~ and nine-track magnetic tape files are
shown in Examples 12-1 and 12-2.

Example 12-1. A Sample UFBGEN Statement for Seven-Track Tape

ZOOTWO UFBGEN PRNAME=TW0Z00, FORG=CONSEC,DEVCLASS=MTAPE,
DEN=1600, LABEL=AL,HEADER=FULL,VLEN=YES,
BLKSIZE=8192,RECSIZE=2048,FSEQ=1,VSEQ=2,
EOD=EOV.

Example 12-2. A Sample UFBGEN Statement for Nine-Track Tape

ZOOFILE UFBGEN PRNAME=MYZ00, FORG=CONSEC, DEVCLASS=MTAPE,
TRACK7=YES ,DEN=800, LABEL=NL,PARITY=0DD,
BLKSIZE=8192 ,RECSIZE=2048,FSEQ=1,VSEQ=2,
EOD=EOV.

12.3 TAPE BLOCKS, RECORDS, AND BUFFERS

DMS can process magnetic tape in RAM, BAM, or PAM access method.
This means that data can be transferred by logical record (RAM), tape
block units (BAM), or by an arbitrary sized physical unit (PAM). The
latter two (BAM and PAM) are only accessible through Assembly language
(see Chapter 10).

12-3

The unit most frequently used for BAM or PAM access is the tape
block. A tape block is not necessarily 2K bytes in size; it can vary
from 12 bytes to 32K (32,768) bytes. There is no Wang standard tape
block size, although an even multiple of 2K is recommended for processing
efficiency. Tape blocks are the only type of blocks in DMS that are not
restricted to 2K bytes. You must specify the block size in bytes as the
BLKSIZE parameter of UFBGEN.

12.3.1 Tape Records

Each tape block contains one or more records. In no case can a
record be larger than a block or span tape blocks. The relationship
between the size of a record and a tape block depends on the type of
record.

Tape records can be fixed length, variable length using Wang's DMS
record header data, variable 1length wusing the IBM variable length
conventions, compressed according to Wang compression conventions, or
undefined. An undefined record is one in which the record size defaults
to the block size. Only one undefined record per block is permitted.
DMS can compress data recorded in ASCII or EBCDIC using the Wang
compression algorithm; DMS cannot uncompress data recorded using a
non-Wang compression algorithm. Record size, variable record length, and
compression are coded using the same UFBGEN parameters used for disk file
definition: RECSIZE=n, VLEN=YES, COMP=YES.

For fixed length records, the tape block size should be an even
multiple of the size of the records. For Wang variable length records,
the block should be a multiple of the record size plus 4 bytes. For
IBM-format variable length records, the block size should be a multiple
of the record size plus 8. Block sizes can be computed using the
following equations, in which n is the number of records per tape block:

Fixed Length Blocksize = (recsize) x n
Wang Variable Length Blocksize = (recsize + 4) x n
IBM Variable Length Blocksize = (recsize + 8) x n

Thus, the maximum tape record size is 32,768 for fixed length records,
32,764 or 32,760 for variable length records. DMS can process blocks
containing records larger than 2048 bytes using BAM or PAM. DMS cannot
process records larger than 2048 bytes in RAM. When a record larger than
2048 is read from tape, DMS divides it into 2048-byte sections. These
2048-byte sections are recorded on disk as 2048-byte, fixed 1length
records.

Unlike disk processing, tape records have a minimum record size. An
extremely short record cannot be distinguished from noise by tape error
checking routines. PFor this reason, minimum tape record sizes are
established, as shown in Table 12-1.

Table 12-1. Minimum and Maximum Record Sizes for Magnetic Tape

Minimum Recsize Maximum Recsize
Fixed Length Records 12 bytes 32,768 bytes
Input to DMS
Fixed Length Records 18 bytes 32,768 bytes
Output by DMS
Variable Length Records
Wang Format (input) 8 bytes 32,764 bytes
IBM Format (input) 4 bytes 32,760 bytes
Variable Length Records
Wang Format (output) 14 bytes 32,764 bytes
IBM Format (output) 10 bytes 32,760 bytes

12.3.2 Tape Buffering

DMS tape support provides main memory buffering to allow the
processing of up to 32K bytes of data at a time. This buffering is
available in all three access methods: BAM, PAM, and RAM. DMS buffers
tape data by allocating two buffers, each the size of a tape block. This
automatic double-buffering can reserve up to 64K bytes of main memory for
the processing of each tape file. Thus, processing a magnetic tape with
a large block size can adversely affect the response time of other
operations on the VS, especially if the VS has a small main memory size.

Double buffering speeds tape I/0 processing by allowing one of the
buffers to handle the physical I/O to the tape drive, while record
blocking or wunblocking 1is performed in the other buffer. At the
conclusion of a block I/0 the two buffer blocks alternate functions.

12.4 TAPE FILE MODES AND FUNCTION REQUESTS

Like other DMS files, you must open a tape file in a particular mode
before accessing its records or blocks. After you issue the OPEN
statement, you can use READ, WRITE, and START function requests to
process the file. When file processing is completed, your program must
issue a CLOSE instruction. Features unique to magnetic tape processing
are available for the CLOSE instruction.

12-5

12.4.1 Tape File Modes

You can open a magnetic tape file in three modes: Input, Output, or
Extend. Input mode allows you to sequentially read a tape file into main
memory using the READ function request. Output mode is the mode of tape
file creation, in which WRITE function requests sequentially create a new
tape file. When you add a new file to tape volume, use the Output mode
and provide the file sequence number. It is not necessary to specify
NRECS (the estimated rumber of records to be written) when creating a
tape file.

If an ASCII tape file already exists, you can add more records (or
blocks) to the end of the file using Extend mode. Extend mode is not
supported for IBM-format tape. Specifying the Extend mode moves the
record pointer to the end of the file; the first WRITE function request
begins writing at that point. If any other data is stored on the tape,
Extend mode erases and overwrites it. Thus, you should make sure that a
file to be extended is the last (highest file sequence number) file on
the tape volume.

Only one file at a time can be open on a tape volume. This 1is an
important consideration when placing multiple files on a tape volume.

Users cannot share tape files. Unlike disk files, only one user can
read a tape file at a time. A second user cannot access a tape volume
until the first closes the tape file and relinquishes the volume. When
you logically mount a tape volume, you have the choice of '"Shared" or
"Exclusive" modes. The '"Shared" option on the Mount Tape screen allows a
user other than the person who mounted the tape to claim the tape volume
for exclusive access by issuing an OPEN statement. When you open a file
on the tape volume, all other users are barred from accessing that tape
volume. When you close the tape file, another user may issue an OPEN
statement, thus claiming exclusive access to the tape volume. Do not
confuse this type of device sharing with the DMS Shared mode used for
disk files.

12.4.2 Tape Function Requests

Magnetic tapes can be read and written sequentially. Existing
records cannot be updated or deleted. Files cannot be accessed
randomly. For example, in order to read the fifth record in a file, you
must sequentially read the previous four records. The only mode offering
file positioning is Extend mode, which provides file positioning for
writing at the end of the file. To return to the beginning of the file,
issue a CLOSE instruction and reopen the tape file.

Three function requests are supported for magnetic tape processing:
READ, WRITE, and START. In Assembly language, a function request must
include a UFB=ufbname clause, and may include a COND= (conditional
execution) clause. These function requests and their modifiers are
described as follows:

12-6

READ The READ function request sequentially reads logical
records (in RAM) or physical units (in BAM or PAM) from a
magnetic tape into the tape buffer block and places the
record in the user record area. The first READ issued
reads the first record on the file; each successive READ
reads the next record. READ NEXT is synonymous with
READ.

READ NODATA A READ NODATA function request 1is similar to a READ
statement, except that the record read is not placed in
the user record area. Instead, the record is retained in
the tape buffer block, and the address of the record
within that buffer is placed in Register 1.

WRITE The WRITE function request sequentially writes logical
records (in RAM) or physical units (in BAM or PaM) from
the user record area to the magnetic tape. A WRITE

function request erases and overwrites any previous
material on the portion of tape written to. In Output
mode a new file is written to tape by issuing successive

WRITE function requests. In Extend mode, successive
WRITE function requests add new records to the end of the
tape file.

START WAIT The START WAIT function request causes the system to wait

for the completion of the previous I/0 operation. You
should issue a START WAIT after each READ or WRITE
instruction in PAM. - This waiting function is performed
automatically in BAM and RAM. START WAIT is only
available in Assembly language.

12.4.3 The CLOSE Instruction

After all processing has been performed on a tape file, the user
program must issue a CLOSE instruction. Each file opened must be closed:
a file can be opened and closed several times in different modes during a
program run. In programming languages that do not contain an OPEN or
CLOSE statement (Fortran 66 and RPG II), the Open is caused by the first
access of the file, and the Close is effected by either the end of file,
or the end of the program run. If your program omits a CLOSE statement,
DMS closes the file at the termination of the program run.

A CLOSE statement must contain a UFB=filename clause. Unlike CLOSE
instructions for disk and other types of files, the tape CLOSE statement
can be modified. CLOSE modifiers govern the automatic rewinding and
logical dismounting of a tape volume. The allowed CLOSE statements are
as follows:

CLOSE [no modifier] Closes a tape file, deletes the Open File Block
(OFB) control block, and deallocates main memory
buffers. If you opened the file in Output or
Extend mode, CLOSE writes end-of-file trailers
(EOF1 and EOF2) and a tape mark. In addition, the
CLOSE instruction rewinds the tape volume. The
rewind stops at the tape mark indicating beginning
of the tape data.

CLOSE UNLOAD Performs all of the functions of the unmodified
CLOSE instruction, including rewind. When you
specify a CLOSE UNLOAD, the rewind continues past
the first tape mark and unloads the tape leader
from the takeup reel. CLOSE UNLOAD also logically
dismounts the tape volume.

CLOSE NOREWIND Performs all the functions of the unmodified CLOSE
statement, except that DMS does not rewind the
tape. The tape remains positioned at the point of
the last operation. This instruction 1is most
commonly used for reading or writing multiple files
on a tape volume.

CLOSE REEL This instruction does not in fact close a tape
file. Instead, you use this instruction with
multivolume files to close a reel of tape and
continue file processing on a second tape volume.
See Section 12-6.

12.5 MULTIPLE FILES ON A TAPE VOLUME

A magnetic tape volume, or reel, can contain more than one file.
Multiple files are identified by their file seqguence number (FSEQ)
specified in UFBGEN; the first file on the volume is FSEQ=1. FSEQ values
can range from 1 to 9999. If the tape is labelled (AL or IL), you can
also identify a file by its file and 1library name. If a discrepancy
exists between the FSEQ and the file name, DMS displays a screen that
requires you to change one or the other value before proceeding.

Processing of multiple files on a volume does not depend on the
relative positions of those files. For example, if you close FSEQ=7 with
a CLOSE NOREWIND, then issue an OPEN on FSEQ=5, DMS automatically causes
the tape drive to back up two files. You can read a tape file repeatedly
without rewinding the tape volume.

12-8

CAUTION

The Extend mode should be used with extreme caution on
multiple file volumes. Extend overwrites whatever data
follows the file being extended. Consequently, only the
last file on a volume should be extended.

12.6 TAPE FILES SPANNING MULTIPLE VOLUMES

A unique feature of tape files is that they can span volumes. Each
volume is assigned a volume sequence number (VSEQ), so that at the
conclusion of processing of a volume the system prompts the operator to
mount the next volume in the sequence. You must read multiple tape
volumes in sequence, beginning with Volume Number 1.

If you have opened a tape file in OQOutput or Extend modes, a CLOSE
REEL instruction writes an end-of-volume label and rewinds, unloads. and
logically dismounts the tape volume. The system then prompts the
operator to mount a new tape (formatted using TAPEINIT), assigns to it
the next VSEQ number, and continues writing records on the new volume.

If you have opened a tape file in Input mode, an end-of-volume
trailer calls a CLOSE REEL subroutine that rewinds, unloads, and
logically dismounts the current tape and prompts the operator to mount
the next tape in the sequence.

When creating a multivolume file, you should normally include an
EOD=EQV parameter in the UFBGEN for the file. If specified, this
parameter instructs DMS to write an end-of-volume trailer to the output
file when it reaches the end of the input file data, and then to close
and rewind the newly created output file.

12.7 OPTIONAL USE OF TAPE STORAGE

You can decide to use tape or disk as the storage medium for a file
when you run the program that accesses the file. Using the allow tape
option, you can decide to place a file on either disk or tape without
changing the program.

12.7.1 Programming the Allow Tape Option

To provide for optional use of tape storage, the Assembly language
programmer writes a ALLOWTAPE=YES parameter in UFBGEN. The DEVCLASS
parameter value should be DISK; disk storage is the default for the allow
tape option. The UFBGEN should include all parameters necessary for both
disk and tape. DMS ignores parameters unique to one type of device when

12-9

processing the file using the other device type. The wvalues of
parameters used by both tape and disk must be acceptable values for both
device types: the file organization must be consecutive, the blocksize
must be 2048, and the record size must be within the maximum record size
for consecutive disk files of that record type.

The file access mode and the function requests used for processing
the file are limited to those supported for tape: READ and READ NODATA in
Input mode, and WRITE in Output or Extend mode. The CLOSE statement can
include the modifiers provided for tape files: these have no effect when
running the file on disk.

You can use the allow tape option for several files opened by a
program. However, remember that only one file can be open on a tape
volume at a time.

12.7.2 Running a Program with the Allow Tape Option

Prior to running a program with the allow tape option, the storage
device must be attached. 1If tape is to be used, you must physically
mount the tape reel on the tape drive, and logically mount the tape from
the operator's console. The parity and density set on the drive should
agree with the values specified in the program.

If you have specified ALLOWTAPE=YES, you must select the device type
each time you run the program. When the program 1is run, the system
displays a screen that requests the file, library, and volume name, and
the device type. Specify the appropriate volume name (and, if necessary,
change the file and library names) and specify a device type of either
DISK or TAPE. Type this information on the screen, then press the ENTER
key. DMS reads or writes the file on the specified device.

12-10

CHAPTER 13
PRINTER, PROGRAM AND WP FILES

13.1 INTRODUCTION

Printer, program, and word processing (WP) files are DMS consecutive
files that contain specially formatted information.

13.2 PRINTER FILES

A printer file 1is a consecutive file containing variable length
records. You can write data to a printer using either the Record Access
Method (RAM) or the Physical Access Method (PAM). PAM enables you to
write a block of records to a printer.

13.2.1 Defining a Printer File

To establish a printer file, you specify PRINT=YES in UFBGEN; this
sets the UFBFORGPRINT bit in the UFB. You can define the file name,
library, and volume for a print file, or you can omit these parameters
and accept the system defaults. If you use the system defaults, DMS
assigns the print file to the default 1library and volume for the print
files of the person running the program. If the system cannot place the
print file in the default volume, it selects another volume that both
contains sufficient space and permits print file spooling.

The default name of a print file is the first four characters of the
name of the program that creates the file, followed by a system-generated
four-digit number. This number is initialized when a user logs on, and
is incremented each time that user creates a work file, temporary file,
or print file.

You can output a printer file directly to a printer, or you can
output it to a disk or tape drive. You specify the destination of a
printer file by specifying a value for the DEVCLASS parameter of the
UFB. DEVCLASS=PRT writes the file directly to a printer, if. possible;
DEVCLASS=DISK stores the printer file on disk.

13-1

Print Files Written Directly to a Printer

If you are writing a printer file directly to a printer, you specify
DEVCLASS=PRT, and specify the device number of the desired printer by
coding the DEVNO parameter in UFBGEN. The printer must be detached and
thus available to be reserved by your task. Your print mode default must
be O (Online) for direct printing: otherwise, the print file is spooled
to disk.

A printer file written directly to the printer is an output-only
file; the only valid file access mode is MODE=OUTPUT. You cannot use DMS
function requests to read or update a file that has been sent to a
printer.

If you specify DEVCLASS=PRT, DMS always generates a print file name,
and ignores any user-supplied file name. The file name respecification
screen is not displayed.

You can specify the FORM number for a printer file in UFBGEN. You
specify a user-defined FORM number of 1 through 255 (with zero as a
default) to inhibit the printing of a printer file if the wrong kind of
paper is mounted on the printer. The system will not print a file unless
the form number the operator specifies for the printer is the same as the
form number coded in the file's UFB.

You can also specify a PRICLASS with a value of A through Z for each
printer file in UFBGEN. If you do not specify the FORM or PRTCLASS in
the UFB, you can assign these values at runtime by means of a GETPARM
screen.

Print Files Stored on Disk

If you specify DEVCLASS=DISK (the default), DMS always writes printer
files to disk, regardless of the print mode default value. If you
specify DEVCLASS=PRT, and your print mode default is set to H (Hold), K
(Keep), or S (Spool), DMS writes your printer files to disk. You should
specify the UFBGEN parameters PRINT=YES, VLEN=YES, and COMP=YES for
printer files written to disk. Printer files on disk are always
compressed.

You write printer files to disk in Output mode. You can open an
existing print file on disk in Input mode, Extend mode, or I/0 mode for
shared processing.

13.2.2 Defining Printer File Records

A printer file can contain an unlimited number of variable 1length
records. Each record represents one line of text. You establish the
length of a line of text (the maximum record size) by specifying a value
for the RECSIZE parameter of the User File Block before opening the

13-2

-~

file. The maximum record size is 134 bytes. If you attempt to write a
record to a printer file that exceeds the RECSIZE value you specified,
DMS rejects the record with a File Status '97' (invalid length).

Printer file records appear as shown in Figure 13-1.

Record Length Printer Control Printer File Data
Indicator Field (2 bytes) (0 to 132 bytes)
(2 bytes)

Figure 13-1. A Printer File Record

Each printer record contains a 2-byte printer control field. This
field appears before the record data and is used to control the printer
carriage. You can set the value of this field to establish the number of
lines to advance the paper, or to specify the vertical tabbing channel to
select from the printer's form tape. The first byte of the printer
control field dictates the type of carriage control operation to
perform. The available carriage control options are listed in Table 13-1.

13-3

Table 13-1. Printer Control Field Options

Byte 0, Carriage Control Operations

Type of Carriage Control Character Printer Hex
Control Occurs Width Alarm Code
skip lines before printing regular no alarm 00
skip lines before printing regular alarm 10
skip lines before printing expanded no alarm 20
skip lines before printing expanded alarm 30
skip lines after printing regular no alarm 40
skip lines after printing regular alarm 50
skip lines after printing expanded no alarm 60
skip lines after printing expanded alarm 70
tabbing before printing regular no alarm 80
tabbing before printing regular alarm 90
tabbing before printing expanded no alarm A0
tabbing before printing expanded alarm BO
tabbing after printing reqgular no alarm Co
tabbing after printing regular alarm DO
tabbing after printing expanded no alarm EO
tabbing after printing expanded alarm FO

Byte 1, Carriage Skip Count

If the value of Byte 0 is 70 or less,

place the number of lines to skip in this field. 01 to 7F
If the value of Byte 0 is greater than 70

place the number of the channel to skip to for 01 to OC
tabbing in this field.

If .you set the first byte of the printer control field (as shown in
Table 13-1) to a hexadecimal value from 00 to 70, the printer will skip
lines when printing the record. You can specify the number of lines
skipped by coding the number of lines in the second byte of the printer
control field. You can specify any wvalue from hexadecimal 00
(strikeover) to hexadecimal 7F (skip 127 lines).

If you set the first byte of the printer control field (as shown in
Table 13-1) to a hexadecimal value from 80 to FO, the printer will change
the channel it is using on the printer's forms tape. This forms tape
channel governs the vertical tabbing used by the printer. You can
specify the forms tape channel by coding the channel number in the second
byte of the printer control field. You can specify any value from
hexadecimal 01 (Channel 1) to hexadecimal OC (Channel 12). Channel 1 is
the top-of-form channel on most printers.

13-4

Expanded characters can only be specified for matrix printers. If
you specify that a printer file record is to be printed in expanded
format, as specified in the printer control field, a maximum of 68
characters can be printed on each line. If a printer file record
contains more than 68 characters, the printer will truncate the line
after 68 characters. DMS does not report an error message for truncated
printer records.

13.2.3 Writing Records to a Printer File

You use the WRITE function request to write records into a printer
file. DMS writes print file records sequentially. You cannot use any
other function requests on printer files.

The buffering default for printer files is one 2K buffer block. You
can use the large buffer strategy to improve printer file performance.
The large buffer strategy is described in Chapter 9. Using the 1large
buffer strategy does not improve file output to a printer, but it does
speed the output of a printer file to a disk storage device.

For further information on printer files, refer to the VS Principles
of Operation manual.

13.3 PROGRAM FILES

A program file is a consecutive file of 1024-byte fixed length
records. It contains the object code produced as output from a compile,
assemble, or link operation,

Generally, you create program files by compiling source code produced
using the EDITOR, which automatically specifies the file parameter
values. You can specify program library and volume defaults using the
Set Usage Constants option of the Command Processor.

When reading a program file in Input mode, you should specify
PROG=YES in UFBGEN. This checks the input file to make sure that it is a
program file. If the file is not a program file, DMS rejects the Open
with a file status error.

13.4 WORD PROCESSING FILES

A word processing file is known as a document. A document is a
consecutive file containing fixed length 256-character records. WP file
names consist of a four-digit number. WP documents are stored in
system-defined libraries on the WP volume. WP libraries are named
DOCMNTxx. The xx portion of the library name can contain one or two
letters. A single letter indicates an uppercase WP library (e.g..
DOCMNTG contains WP library 'G'); a double letter indicates a lowercase

13-5

WP library (e.g., DOCMNTGG contains WP library 'g'). WP glossaries are
stored in library DOCMNTO. Defective WP documents are stored in library
BADDOCxx. The xx portion of the library name contains one or two
letters, representing the WP document library.

All word processing files contain a file preface that records the
number of keystrokes in the document, the date of creation, date of last
update, etc. To open a WP file in OQutput mode, you should specify
PLOG=YES in UFBGEN to inform DMS that a file prologue will be present.
DMS ignores PLOG in all other modes.

13-6

PART IV

Error Routines and
Special Case Applications

CHAPTER 14
DMS ERROR PROCESSING ROUTINES

14,1 UFB_ERROR MONITORING

DMS preserves a record of the most recently performed operation in
the User File Block (UFB). It records the last function request
performed, the error status returned by that function request, and the
user-specified error routine address.

14.1.1 File Currently Open —— UFBF1l

The UFBFl1 field contains various indicator flags set by the Open
operation. One of these flags indicates.whether you currently have the
file open. When you open a file, DMS sets the low-order bit of UFBF1
(i.e.: 0000 0001). When you close the file, DMS resets this bit to zero,
and sets the X'08' bit (i.e.: 0000 1000) to indicate that the file is
closed, but has previously been opened and is hence ineligible for
opening in Output mode. UFBFl is a read-only field; you cannot open or
close a file by setting bits in UFBF1,

14.1.2 Last Function Request -- UFBLF and UFBLFMOD

DMS uses the one~byte UFBLF field to record the last function request
attempted on the file. DMS supplies one of the following hexadecimal
values to UFBLF:

00 OPEN statement

04 READ function request

08 WRITE function request
oC REWRITE function request
10 DELETE function request
14 START function request
18 CLOSE statement

DMS uses the one-byte UFBLFMOD field to record the function request
modifier for the last function request successfully performed.

14-1

14.2 FILE STATUS ERRORS -- UFBFS1 AND UFBFS2

The UFB contains two file status fields UFBFS1 and UFBFS2. DMS uses
UFBFS1 to indicate the general type of file status, and UFBFS2 to
indicate the specific type of error within each file status. Each of
these fields is one byte in length; in this manual the values for these
fields are expressed as character values. The two-character file status
code specifies the value for both UFBFS1 and UFBFS2: the first character
of the file status code contains the UFBFS1 value, the second character
contains the UFBFS2 value. For example, a file status of '95' consists
of a UFBFS1 value of '9' and a UFBFS2 value of '5'. A value of 'Q' in
UFBFS1 indicates successful completion.

For interactive DMS processing, UFBFS2 stores the AID character. If
UFBFS2 is blank the keyboard is unlocked:; otherwise DMS has received a
workstation response and locked the keyboard.

When you open a file, DMS sets UFBFS2 to 'O'. When an error exit is
taken, DMS sets UFBFS2 to record which Open Exit condition is taken.

14.2.1 Open Exit Processing

If you specify an EXIT as part of an OPEN statement, the system
stores the EXIT's bit mask value in the high-order byte of the Open
parameter word on the stack. The Open parameter word also contains the
UFB address. If a failure occurs on that Open, DMS set UFBFS1 to '9’',
indicates the type of failure UFBFS2, and sets UFBPREVO.

If an Open Exit occurs, DMS treats the UFBFS2 byte as a bit mask, and
sets the bit in UFBFS2 that corresponds to the type of failure. The bit
values are listed in the description of the Open Exit in Chapter 6.

If the UFBFS2 field contains the value X'04', a possession conflict
occurred during Open processing. If the UFBFS2 field contains the value
X'01l', a format error occurred during Open processing. In either case,
DMS places further information on the specific type of error in
UFBXCODE. UFBXCODE can take the following values:

Possession Conflicts

X'00' = No further explanation
X'0l' = Device in use.

X'02' = Device detached.

X'03' = Volume exclusion.

X'04' = File possession conflict
X'05' = Paging file - system only.
X'06' = Image file

X'07' = Already open - this user.
X'08' = Already open - this user.

14-2

Format Errors

X'10' = Program requires 7 track tape while drive is 9 track or
vice versa.

X'1ll' = UFB FORG = print while FDR FORG not equal to print.

X'12' = UFB FORG = PROG while FDR FORG not equal to PROG.

X'13' = UFB FORG = CONSEC while FDR FORG not equal to CONSEC.

X'14' = UFB FORG = WP while FDR FORG not equal to WP.

X'15' = UFB FORG = INDEXED while FDR FORG not equal to INDEXED.

X'16' = UFB FORG neither CONSEC nor INDEXED - error.

14.2.2 Error Exit Routine Addressing —— UFBERRAD and UFBEODAD

When a fatal error status occurs, DMS checks the UFBERRAD (error
routine address) and UFBEODAD (UFB end of data address) fields for a user
specified error address value. You can supply an error routine address
to these fields either before opening the file, or before issuing a
function request during file processing.

DMS takes the UFBEODAD address for a file status with a character
value greater than '09' but less than '30'. It uses the UFBEODAD error
exit address for conditions in which the program reaches the end of the
data, attempts to write an indexed record with an invalid key, or
requests a record that cannot be found.

DMS takes the UFBERRAD address for a file status with a character
value greater than '30'.

e If UFBERRAD contains an error routine address, DMS takes that
address for a file status of '30' or greater. The normal return
address is stored in Register RO.

e If UFBEODAD contains an error routine address, DMS will take that
address for end-of-data and invalid key conditions (file status
'10' through '29'). The normal return address is stored in
Register RO.

. IF UFBEODAD is zero, but UFBERRAD contains an error routine
address, DMS will take the UFBERRAD address for all error status
codes. The normal return address is stored in Register RO.

e If both UFBEODAD and UFBERRAD are zero, the system abnormally
terminates your program on any file status of 'l0' or greater.
DMS issues a cancel message, indicating the condition that caused
DMS to cancel your program. Cancel messages are identified by a
three-character error number. DMS stores the number identifying
the most recent cancel message in UFBDMSGID.

14-3

14.2.3 Error Messages —— UFBF4NOMSG

You can select whether DMS should display an error message when
taking an error exit. If you set UFBF4NOMSG to 1, DMS does not display
error messages when the program takes the error exit address stored in
UFBERRAD. If you did not provide an UFBERRAD address, DMS ignores
UFBF4NOMSG, and displays all errors.

14.2.4 Fatal Errors

A File Status of '60' or greater indicates a fatal error. A fatal
error causes DMS to issue a CANCEL SVC and to store the cancel message
number in UFBDMSGID. The cancel message describes the situation and
gives the UFB address, the address of the function request, and the
parameter reference name (prname) of the file. You can specify an ERRAD
address, or allow DMS to cancel your program following a fatal error.

DMS issues a fatal error for certain file status error conditions.
If UFBERRAD 1is zero (for file status greater than or equal to '30') or if
both UFBEODAD and UFBERRAD are zero (for file status less than '30'),
then you have not supplied a return address for file status error
conditions. In this case, DMS cancels your program. The CANCEL message
includes the file status value and a description of the condition that
caused the file status.

Each time that DMS uses certain UFB parameters, it checks the values
of those parameters. If any of these UFB fields are inconsistent or
invalid, DMS cancels your program. The CANCEL message indicates which
field of the UFB had the invalid wvalue. Errors of this type are
generally caused by improperly modifying DMS fields in the UFB. Many of
the UFB fields are not user-modifiable.

If a program check occurs during the execution of a function request,
the system cancels your program. The most likely reason for a program
check during DMS processing is an invalid address in UFBRECAREA or
UFBKEYAREA. You can identify a program check in DMS by inspecting the
Program Check Word (PCW). If the current operation was a function
request, and the PCW indicates that the program check was in Segment 0
(the system segment), this indicates a DMS program check. Register Rl in
the JSCI save area contains the UFB address. The PCW is described in the
VS Principles of Operation manual.

14-4

™

CHAPTER 15
ADVANCED CONCEPTS

15.1 INTRODUCTION

Advanced concepts are DMS functions that you may seldom use, if ever,
either because they are only used in wunusual applications, or because
they operate unobtrusively without you being aware of them. This chapter
is divided into sections by the type of file: consecutive files, indexed
files, and alternate indexed files. It also includes a description of
multiple record types.

15.2 FOR CONSECUTIVE FILES

15.2.1 Anticipatory Buffer Priming

A program performing a sequential read of a file reads records from
the buffer to the user record area by issuing successive READ NEXT
function requests. When it reads the last record in the buffer, DMS must
perform an I/0 operation to bring in the next block(s) from the data file
to reload the buffer. When a program reads the last record in the buffer
using a READ NEXT (or READ with no modifier) function request, DMS
assumes that the next command will also be a READ NEXT. Operating on
this assumption, DMS reloads the buffer with the next data block(s)
before the program issues a request for the first record in that block.
This is called anticipatory buffer priming. Processing proceeds more
rapidly using this technique because DMS can perform an I/0 operation
concurrently with the processing of the next program instruction cycle.

If the next program instruction is not a READ NEXT, DMS must load the
buffer again with the requested data before processing the next
instruction. This is a time-consuming operation. You should keep
anticipatory buffer priming in mind when coding DMS function requests,
and try to avoid mixing frequent READ NEXT commands with other function
requests.

Anticipatory buffer priming occurs when the end of a main memory

buffer is reached. You can set the size of this buffer to any multiple
of 2K from 2K to 18K bytes.

15-1

15.2.2 Using START END with Shared Consecutive Files

START END truncates a file at the current record pointer. Normally,
you should use START END in I/0 mode, in which your program has exclusive
access to the file. However, there may be circumstances when you would
want to use START END while performing I/0O in Shared mode. To do so, you
must issue an explicit hold on the entire file (using the START HOLD
function request), then position the current record pointer and issue the
START END function request. Issuing a START END on a shared consecutive
file affects other users sharing the file as described below.

If you perform a START END while another user is performing a START
SKIP, the START SKIP may fail. If you use a START END to truncate the
file at record n and another user does a START SKIP to a record with a
higher relative record number than n, that person's START SKIP operation
will fail with a File Status.'l10' (end of file). DMS does not issue an
end of file status if a user's current record pointer is higher than n,
nor does a START SKIP fail if it skips in the negative direction to a
record that was not deleted by the START END operation.

If you perform a START END and then write new records to the file,
other users' READ operations succeed, even if the START END has made
their current record pointer out of sync with the file's current physical
state. For example, if a user 1is positioned at Record 10, then a
sequential READ succeeds if a Record 11 exists in the file, even if it
has moved since the user's last operation.

15.3 FOR INDEXED FILES

15.3.1 Calculating the Number of Blocks in an Indexed File

The number of blocks in an indexed file is equal to the number of
data blocks plus the number of primary key index blocks. An alternate
indexed file also contains an AXD1l block and at least one alternate key
index block per alternate key path. A DMS/TX file contains two
additional file recovery blocks.

Data blocks:
You can calculate the number of data blocks as follows:

Fixed Length Records:

DB = NREC X RL
2043

15-2

Variable Length Records:

DB = NREC X [RL + 2]
2043

where NREC is the number of records in the file and RL is the length of
the longest record.

Primary index blocks:

The number of primary index blocks can be calculated as follows:

LPXB = DB X [PK + 3]
2043
HPXB = LPXB X [PK + 3]

2043

where DB is the number of data blocks and PK is the length of the primary
key field. LPXB is the number of primary index blocks on lowest level of
the index block tree and HPXB is the number of primary index blocks at
each successively higher level of the tree. Repeat the HPXB equation
until HPXB=1, substituting the PXB results from the previous HPXB
equation. Add LPXB and the HPXBs to get the total number of primary
index blocks.

15.3.2 Embedded Unused Blocks

When creating an indexed file, DMS attempts to place the index blocks
in the exact middle of the assigned extent. This can result in unusable
blocks embedded in the file if you greatly overestimate the number of
records to be processed in Output mode. For example, if the estimated
number of records is 1000, and the actual number of records written is
100, the index blocks will begin where DMS expected the 500th record to
be, and the blocks between record 100 and the first index block are
unused. These embedded unused blocks are chained together, and are used
in preference to unused blocks at the end of the file for block splits.
However, these blocks cannot be made available to other files by
performing a release operation.

Even if you estimate the number of records accurately, embedded
blocks between the last data block and the first index block can occur if
the file records are highly compressed. DMS estimates the location of
the center of the file based on uncompressed record lengths.

If a significant number of unused blocks are embedded in a file, you
can remove them by running the COPY utility with REORG, and lowering the
estimated number of records in the file. In the case of highly
compressed files, it may be necessary to significantly underestimate the
number of file records.

15-3

15.3.3 Extension Rights

Extension rights are a feature of DMS that enables one user at a time
to incrementally claim and hold multiple resources in indexed files. The
file sharing provided by extension rights is less comprehensive than that
provided by the VS DMS/TX facility. You should write new application
programs using DMS/TX multiple resource sharing, rather than extension
rights. The use of extension rights does not affect DMS/TX sharing.
DMS/TX is described in the VS DMS/TX Reference

When you claim extension rights, you are granted the ability to hold
an unlimited number of indexed files, records, or generic key groups on a
claim-as-needed basis. Only one user on the system can claim extension
rights. You must release extension rights to enable another user to
claim them.

Extension rights are supported 1in COBOL, RPG II, and Assembly
language. In Assembly language, you issue a GETXRTS macroinstruction to
claim extension rights. You must not be explicitly holding any resources
when you request extension rights; if you are implicitly holding a
record, it is automatically released when you claim extension rights. If
another user has already claimed extension rights, your program waits for
the period specified in the timeout option, then, if extension right
remain unavailable, GETXRTS fails with a File Status '95'.

The interactions between extension rights and DMS/TX files and users
are described in the VS DMS/TX Reference. You cannot perform a Hold List
operation while holding extension rights. If you issue a Hold List while
holding extension rights, DMS claims each item in the list as requested,
rather than holding all the items on the list at once.

You issue a FREEXRTS macroinstruction to release extension rights.
You do not have to release held resources before releasing extension
rights. However, once you have released extension rights you cannot
claim a new resource until you release all previously held resources.
The START RELEASE function request does not release extension rights.
However, the system does release extension rights at program completion.

15.4 FOR ALTERNATE INDEXED FILES

15.4.1 Overlapping Primary and Alternate Keys

It is possible to overlap the key fields of the primary and alternate
keys, or even to completely embed one key within the other. An example
of this is using a full name for a unique primary key, and using just the
last name for an alternate key that allows duplication.

Key fields in data records are never compressed, so key overlap
should have no significant effect on data record length. Alternate index
pseudo-records (paired alternate and primary key fields) are not
compressed, but they are concatenated so that character strings that

15-4

appear in the primary key are not duplicated in the corresponding
alternate key pseudo-record field. This can result in substantial space
savings (up to 50%) in alternate index tree space allocation.

15.4.2 Extremely Long Alternate Keys

Avoid long alternate keys. When designating the alternate key field,
keep in mind the following:

¢ The alternate key does not have to include an entire data field.
For example, the alternate key does not have to include a
person's entire last name, although the data record does.

¢ You can create code characters in the file to distinguish
otherwise duplicate alternate key values. For example, a user
program might print out "Johnson, Albert P.", from a record that
says: "AJohnson Albert P.", in which "AJohn" is the alternate key.

e Alternate key values do not have to be unique. Unique alternate
keys are preferable, as they do not require duplication of the
primary key at the upper levels of the alternate key tree.
However, if the alternate key can be reduced by several bytes,
and the primary key is short, allowing duplication is often
preferable to creating long unique alternate key values.

A long alternate key has a disproportionate effect on extent
allocation, because DMS allocates the work area for alternate keys based
on the file's longest alternate key field. This may result in a primary
allocation larger than the actual needs of the file. The COPY utility
also uses the longest alternate key to estimate space requirements when
reorganizing the file. It is possible for a reorganized file of this
sort to be longer than the original file. It is even possible to build
(by adding records in I/O mode) an extremely large file that you cannot
reorganize on that volume.

15.4.3 How an Alternate Index Tree is Built

When creating an alternate indexed file, you estimate the number of
records to be put initially into the file, and supply the number, length,
and location of alternate keys. DMS calculates a primary extent length
by determining the number of data blocks, based on the maximum
uncompressed length of the estimated number of records, plus 2 bytes per
record for the alternate index mask. DMS then adds the estimated number
of primary index blocks, based on the length of the primary key, and the
number of low-level alternate index blocks based on the primary and
alternate key lengths and on the assumption that one-half of the records
will be on each alternate index path.

If an extent of that length is unobtainable, DMS assigns the largest
available free extent of less than the calculated length. If initial
file creation requires more than one extent, DMS automatically allocates
up to two additional extents (each one-half the length of the primary
extent) when the last block of the primary extent is filled. Because DMS
calculates the block allocation for only the low-level blocks of

15-5

alternate index trees, and estimates 50% of the records on each path, it
often uses more than one extent in alternate indexed file creation. The
additional extent generally contains alternate index tree records. If
file creation fills all three extents, the Output mode WRITE cancels with
a boundary violation. You must then estimate a larger number of records
and restart the program.

DMS sets aside relative block 0 of the file for the AXD1l and begins
placing data records in blocks, starting with block 1. You must present
the records to DMS in ascending ASCII primary key sequence.

As each block of records is written, DMS copies the primary key of
the final record in the block to a low-order index block that it
established in the middle of the file. DMS creates the low-order primary
index blocks at the same time as the data blocks, in primary key
sequence. DMS creates the high-order index blocks upon completion of
record writing in Output mode, and it places high-value FFFs along the
right-hand edge of each level of the index block tree.

While DMS formats low-order primary index blocks, it also collects
primary and alternate key record pairs (pseudo-records) in a work area at

the high end of the first extent.
primary key sequence.

The record pairs are at this point in

The layout of an alternate indexed file at this
point is shown in Figure 15-1.

Low-order | High-order Alternate
AXD1 Data Primary Primary Index
(Block 0) Records Index Index Work
Blocks Blocks Area
OR:
Low-order High-order Alternate
AXD1 Data Primary Primary Data Index
(Block 0) Records Index Index Records Work
Blocks Blocks Area
Figure 15-1. Alternate Indexed File at WRITE Completion
When your program closes the file, DMS calls the BUILDALT routine,
which constructs alternate 1index trees. BUILDALT the

pseudo-records in the work area to a temporary work file, sorts them into
ascending ASCII sequence by alternate key, and then rewrites them into
the work area, overwriting the original pseudo-record pairs. How
BUILDALT uses file space for this operation is shown in Figure 15-2.

15-6

/A\

Alternate Index Work Area

Low-order High-order -
AXD1 Data Primary grimafv sfgfgg ?n'ﬁfa?n'i’fy
(Block 0) Records Index ’ Index Key Sequence
Blocks Blocks
Figure 15-2. Alternate Indexed File during BUILDALT Processing

After BUILDALT creates the low-order pseudo-record blocks, it
generates the high-order blocks of the alternate trees, and stores the
relative block address of the root block of each tree in the AXDl. This
completes alternate indexed file creation. The final file layout is
shown in Figure 15-3.

Alternate Index Work Area

Low-order High-order Low-order High-order
AXD1 Data Primary Primary Psuedo-record | Psuedo-record Junk
{Block 0) Records Index Index Alternate Index | Alternate Index
Blocks Blocks Blocks Blocks
Figure 15-3. Alternate Indexed File at BUILDALT Completion

Usually, sorting the alternate index pseudo-records requires more
work area space than the final alternate tree structure and occasionally
DMS must allocate an additional extent. At the completion of BUILDALT
processing, this extra space appears as garbage at the end of the file.
You may decide to ignore these blocks, assuming that they will
eventually be used for block splitting and file extension. Or you may
free these blocks by running the COPY utility on the file with REORG=NO
and RELEASE=YES. This process is considerably faster than running COPY
with REORG=YES.

15.4.4 Creating an AXDl in Segment 2

‘You can create an AXD1l area in the buffer (heap) storage area, by
assigning buffer space. However, make sure that the space allocated is
sufficient for the number of alternate key fields on the AXDl. Failure
to provide a space large enough results in DMS assigning another area in
the buffer for the AXDl; this area is functional, being addressable by
the DMS, and is locatable via UFBALTPTR. Attempting to address a
too-large AXD1l in the buffer can result in your processing alternate
indexed records against non-existent (garbage) AXDl1l fields. This
usually causes the rejection of valid alternate indexed records, due to
the failure of their MASK area to match the garbage data in the AXD1
PMASK area.

15-7

15.5 MULTIPLE RECORD TYPES

15.5.1 File Design Aspects

The VS supports COBOL coding for multiple record types. Multiple
record type support is a programming method; it is not a structural
feature of DMS. The usc of wmultiple record types allows a program to
define the fields differently for different records in a file. It does
not affect the formatting of records performed by DMS.

For example, in a zookeeper's medical history file, records for male
and female animals will contain different fields. A record for a female
animal will contain a 10-byte maternity field in addition to the
100-bytes of medical history common to both males and females. The
zookeeper can create this file with two different types of records by
making all records in the file variable-length, with a maximum record
length of 110-bytes. To access the two record types, the zookeeper
codes two separate file descriptors in the Data Division of the program
accessing the file, as shown in Figure 15-4.

Variable-length records:

male female male female
100 bytes 110 bytes 100 bytes 110 bytes

Figure 15-4. Multiple Record Types in a Data File

While the use of multiple record types is primarily a COBOL coding
problem, you should decide on the method of locating the desired subset
of the file at the time the file is created. There are three methods of
arranging a file's records to facilitate multiple record type
processing: sequencing, flagging, and alternate keying.

You can sequence the records in a file, so that the program can
determine which file descriptor to apply based on a counter written into
the program. For instance, in Figure 15-4, all even-numbered records
are matched to one file descriptor, and all odd-numbered records to
another. This method is restricted to consecutive files, preferably
stable files, because the addition or deletion of a single record can
throw off the counter.

15-8

Flagged records contain a field that indicates which record type
they belong to. The program checks this flag and applies the
appropriate file descriptor. In a consecutive file, this flag can be
any byte(s). 1In an indexed file, you can establish the flag byte as
part of the primary key. DMS sorts records added to a file in I/0 mode
according to their primary key values. If the first byte of the primary
key is the flag byte, DMS will process all records of the first file
type before any records of the second file type.

FAntelope FDeer FElk FGazelle FGemsbock
110 bytes 110 bytes 110 bytes 110 bytes 110 bytes
FReindeer FZebra MAntelope MDeer MHorse MMoose
110 bytes 110 bytes 100 bytes 100 bytes 100 bytes 100 bytes

MSpringbok MZebra
100 bytes 100 bytes

Figure 15-5. A Block of Records Showing Multiple Record Code Characters

A third method of creating files for multiple record access is by
creating an alternate index key for each type of record. Only records
of the same type would be placed on that type's alternate key path.
This method 1is especially wuseful if only a few records are of a
particular record type.

For example, you could establish an alternate index for all zoo

animals that are currently on loan from other zoos. These longer
records include the name and address of the owner, the date of loan,
reason for 1loan, and anticipated date of return. Only a small

percentage of zoo animal records are on this alternate key path.
Therefore, all records on this alternate key path can be located more
rapidly by using an alternate key than by sequentially reading every
record in the file to check a flag field.

15.5.2 Records Larger than One Block

One use of multiple record types is to permit records larger than
one block in length. If you use the multiple record flag as the last
byte(s) of the primary key, DMS always sequentially processes this group
of records in the same order. You can hold the entire group by issuing
a hold by generic key value. Since your program uses the flag byte to
select the file descriptor, the fields in the first record and the
fields in the record following it can be completely different. In
effect the two records are Part 1 and Part 2 that together make up a
larger record. An example of multiple record pairs is shown in Figure
15-6.

15-9

Variable Length Records

PK: Antelopel PK: Antelope2
500 bytes 150 bytes
PK: Buffalo1 PK: Buffalo2
500 bytes 150 bytes
PK: Caribou1 PK: Caribou2
500 bytes 150 bytes

Figure 15-6. A Block of Records Showing Multiple Record Pairs

15-10

PART V

Appendices

APPENDIX A
DMS CONTROL BLCCKS

A.l1 THE UFB DSECT

khkhkhhhhhkhhdhhhkhhhhhhhhhhhhdhhhhhkhkhhhhhhhhhhkhkhhhhhhkhhhkhhkhhdhhhihkhkk

THE USER FILE BLOCK (UFB) IS SUPPLIED IN THE USER'S
MODIFIABLE AREA BY THE USER'S PROGRAM BEFORE OPENING
A FILE, AND IS ADDRESSED TO REQUEST EACH OPERATION
ON THAT FILE. THE ADDRESS OF THIS BLOCK IS PLACED
IN THE OPEN FILE BLOCK BY 'OPEN', AND THE ADDRESS OF
THE OPEN FILE BLOCK IS PLACED IN THIS BLOCK.

DATE 03-18-83

VERSION 6.00.23
L T T T e T T T T T

* ¥ ¥ X ¥ ¥ X * ¥

UFBBEGIN DS oF (FULLWORD ALIGNMENT REQUIRED

hhkhhhhkhhhhhhhhkhhhhhhhhhhhhhhhkhhhhhhkhhhhkhhdhhkhhhkhkhhhkhkhhhkhkkhkkkk

ACCESS METHOD SECTION

NO FIELDS NEED BE SUPPLIED BEFORE 'OPEN', BUT UFBERRAD
UFBEODAD, UFBRECAREA, AND UFBKEYAREA MAY BE PRESET

IF DESIRED. AFTER 'OPEN', THE USER'S PROGRAM NORMALLY

HAS OCCASION TO MODIFY ONLY THIS SECTION OF THE UFB.

THE FIRST BYTES OF EACH OF UFBVREAD, UFBVWRITE, UFBVREWRITE,
UFBVDELETE AND UFBVSTART ARE ZEROCED BY 'OPEN' AND SET
THEREAFTER TO FUNCTION MODIFIER VALUES BY THE USER'S PROGRAM.
THE SUCCEEDING BYTES OF THESE FIELDS CONTAIN ADDRESSES
SUPPLIED BY 'OPEN' WHICH SHOULD NOT BE ALTERED BY THE
USER'S PROGRAM WHILE THE FILE IS OPEN.

UFBFS1 AND UFBFS2 ARE SET TO X'30' BY 'OPEN' AND MODIFIED

THEREAFTER BY DATA MANAGEMENT FUNCTIONS.
T L L T T e T T T

* ¥ X X X F ¥ X ¥ ¥ ¥ ¥ ¥

UFBVECT DS 53 BRANCH POINTS TO ACCESS

* METHOD ROUTINES
L L L T T T T L 2

* THE FOLLOWING FUNCTION MODIFIER VALUES ARE PLACED IN THE FIRST
* BYTE OF THE WORD CONTAINING THE ADDRESS OF THE FUNCTION TO BE
* PERFORMED FOR A USER PROGRAM BEFORE BRANCHING TO THE ROUTINE

* ADDRESS.

ORG UFBVECT
UFBV DS OF (PREFIX TO EQUATE LABELS)
* MODIFIERS FOR READ:
UFBVHOLD EQU X'01' (HOLD BLOCK EXCLUSIVELY)
UFBVREL . EQU X'04’ (RELATIVE READ)
UFBVKEYED EQU X'04' (KEYED READ)
UFBVNODATA EQU X'08' (DO NOT MOVE DATA TO WORK
* AREA ON READ)
* MODIFIER FOR WRITE/DELETE (RELATIVE DISK ONLY) 25
UFBVEOF EQU X'02' (WRITE OR DELETE EOF)
25
* MODIFIERS FOR READ OR REWRITE (WORKSTATION ONLY):
UFBVTABS EQU X'10' (READ OR REWRITE TABS - WS)
MODIFIERS FOR READ (WORKSTATION ONLY):
UFBVMOD EQU X'02' (READ MODIFIABLE - WS)
UFBVALTR EQU X'40' (READ ALTERED - WS)
* MODIFIERS FOR REWRITE (WORDSTATION ONLY):
UFBVSELW EQU X'40' (REWRITE SELECTED - WS)
* MODIFIERS FOR START (INPUT, IO, SHARED MODES; INDEXED DISK ONLY):
UFBVEQ EQU X'01' (EQUAL TO)
UFBVGT EQU X'02' (GREATER THAN)
UFBVGE EQU X'03' (GREATER THAN OR EQUAL TO)
* MODIFIERS FOR START (INPUT, IO, SHARED MODES; RELATIVE DISK ONLY):25
UFBVLT EQU X'10' (LESS THAN) 25
UFBVLE EQU X'll' (LESS THAN OR EQUAL TO)
25
* MODIFIER FOR START (SHARED MODE; IGNORED FOR INPUT & IO MODES):
UFBVHFILE EQU X'80' (HOLD FILE)
UFBVRLS EQU X'20' (RELEASE HELD FILE)
UFBVRANGE EQU X'04' (HOLD REQUEST FOR A RANGE)
UFBVRETRIEVAL EQU X'40' (HOLD CLASS IS RETRIEVAL)
UFBVLIST EQU X'10" (LIST OPTION)
* MODIFIERS FOR START (CONSECUTIVE OUTPUT & EXTEND MODES ONLY):
UFBVINPUT EQU X'04' (CHANGE TO TEMPORARY IO MODE
UFBVOUTPUT EQU X'08' (CHANGE TO OUTPUT MODE)
UFBVEXTEND EQU X'20' (CHANGE TO EXTEND MODE)
* MODIFIERS FOR START (CONSECUTIVE FILES, INPUT AND I/O MODES ONLY):
UFBVBEGIN EQU X'10' (BEGINNING OF FILE)
UFBVSKIP EQU X'40' (FROM CURRENT RECORD
* USING SIGNED WORD
* ADDRESSED BY KEYAREA)
* MODIFIER FOR START (CONSEC FILES IN RAM I/O MODE):
UFBVEND EQU X'02' RESET END OF FILE
* MODIFIERS FOR START (PHYSICAL ACCESS METHOD ONLY):
UFBVCMD EQU X'80’ (***VAGUE NOTE#***)
UFBVWAIT EQU X'40' (WAIT FOR I/0 COMPLETION)

A-2

UFBVWAITS EQU X'4l' WAIT FOR TC I/0 COMPLETION

* ON THIS DEVICE ONLY
UFBVWAITM EQU X'42' WAIT FOR TC I/0 COMPLETION
* ON ALL DEVICES OPENED BY
* THIS PROGRAM
UFBVWAITA EQU X'43' WAIT FOR TC I/O COMPLETIONS
* AND TC UNSOLICIT INTERRUPTS
UFBVHALTIO EQU X'20' HALT TC IO OPERATION
* MODIFIERS FOR START (WORKSTATION ONLY):
UFBVATTNT EQU X'10' (TEST FOR ATTENTIONS RECEIVE
* KAk hhkk kkhkk kkk hhkh dkh hhk Rkhkk Kkhkk hhkh hhhk hkhkk hkk kkhk kkk
EJECT ‘

ORG UFBVECT
UFBVREAD DS A . .FOR READ
UFBVWRITE DS a . .FOR WRITE
UFBVREWRITE DS A . .FOR REWRITE
UFBVDELETE DS a . .FOR DELETE
UFBVSTART DS A . .FOR START

SPACE

ORG UFBVWRITE

UFBFLAGSD DS BL1 RUNTIME FLAGS FOR DISK PROCESSING
UFBFLAGSDNEWAXD EQU X'80° ALT-INX FILE IS NEW FORMAT
UFBFLAGSDCONVPR EQU X'40' AK/PK CONVERTED TO PSEUDO-REC
UFBFLAGSDMULTIO EQU X'20' PSB WRITTEN WITH MULTIO FLAG ON
UFBFLAGSDXCASE EQU X'l0' 3-WAY BLOCK SPLIT INDICATOR
UFBFLAGSDIODONE EQU X'08' LAST ALTERNATE INDEX PROCESSED
* (USED ONLY IF DFLAGSMULTIO ON)

DS AL3 RESET ASSEMBLY COUNTER

DS 3A

SPACE

* THE FOLLOWING FOUR FIELDS MAY BE SET BEFORE 'OPEN' OR
* BEFORE THE FIRST FUNCTION AFTER 'OPEN'. THEY MAY BE CHANGED
* BY THE USER'S PROGRAM BEFORE ANY FUNCTION. IF UFBEODAD IS 0,
* UFBERRAD WILL BE USED FOR END OF DATA AND INVALID-KEY CONDITIONS.
* IF UFBERRAD IS 0, ABNORMAL TERMINATION WILL OCCUR ON ANY
* ERROR (AND ON THE ABOVE CONDITIONS IF UFBEODAD IS 0 ALSO).
UFBERRAD DS a I/0 UNUSUAL CONDITION USER
* ROUTINEENTRY POINT, OR ZERO
UFBEODAD DS a END OF DATA AND INVALID KEY
* USER ROUTINE
* ENTRY POINT, OR ZERO.
UFBRECAREA DS a ADDRESS IN USER-MODIFIABLE S
* OF RECORD WORK AREA
UFBKEYAREA DS A ADDRESS OF AREA CONTAINING
* SUPPLIED KEY OR RECORD NUMBER
* FOR START OR READ FUNCTIONS
* (IF ZERO FOR WORKSTATION FILES,
%* LINE NUMBER (ROW) TAKEN FROM ORDER
* AREA)
UFBFS1 DS CL1 FILE STATUS BYTE 1 FOR DMS
UFBFS1SUCCESS EQU X'30' SUCCESSFUL. COMPLETION
UFBFS1ATEND EQU X'31' AT END
UFBFS1INVKEY EQU X'32' INVALID KEY OR RECORD NO.
UFBFS1I0ERR EQU X'33' PERMANENT I/0 ERROR

.*% UFBFS1ADMSERR equ x'34'

ADMS FUNCTION ERROR

UFBFS1CANCEL EQU X'36' CANCEL CODE STORED

* FOR UFBF1NOMSG (OPEN,DMS,CLOSE); UFBFS2=C'0Q’
* MSGID AT UFBVREAD FOR O/C; NO MSGID IF DMS
UFBFS1TIME EQU X'37" TIME-OUT CONDITION ON

* SHARED MODE RESOURCE WAIT
UFBFS1SHARE EQU X'38' FS FOR SHARER CONDITION

* RESOURCE WAIT

UFBFS10THER EQU X'39' OTHER CONDITIONS

*k

UFBFS2 DS CL1 FILE STATUS BYTE 2 FOR DMS
*

UFBFS2NOINFO EQU X'30' NO FURTHER INFO

%%

* THE FOLLOWING UFBFS2 VALUES ARE SET WITH UFBFS1INVKEY (X'32')

k%

UFBFS2SEQERR EQU X'31'
UFBFS2DUPKEY EQU X'32'
UFBFS2NOREC EQU X'33'
UFBFS2BYVIOL EQU X'34'

%k

SEQUENCE ERROR
DUPLICATE KEY

NO RECORD FOUND
BOUNDARY VIOLATION

* UFBFS2BDYVIOL IS ALSO USED WITH UFBFS1IOERR (FS = C'34')

*k

.*%% UFBFS2 values corresponding to FBFS1ADMSERR were defined here
* THE FOLLOWING UFBFS2 VALUES ARE SET WITH UFBSISHARE (X'38')

*k
UFBFS2ACC EQU X'35'
*
*

UFBFS2RESERR EQU X'36'
UFBFS2DEADLOCK EQU X'37

k&

UPDATE ACCESS DENIED FOR
USER WITH READ-ONLY RIGHTS
IN SHARED MODE

RESOURCE CONTROL ERROR
DEADLOCK

* THE FOLLOWING UFBFS2 VALUES ARE SET WITH UFBFS1OTHER (X'39')

%%

UFBFS2ROLLBK EQU X'33!
*
UFBFS2INVFUN EQU X'35'
*
UFBFS2INVCMD EQU X'36'
*
UFBFS2INVLTH EQU X'37'
UFBFS2MASK EQU X'38"'
*
UFBFS2TRLERR EQU X'38'
*
*
UFBFS2FMTERR EQU X'39’

*
*
L3]

CURRENCY LOST DURING

ROLLBACK

INVALID FUNCTION OR

FUNCTION SEQUENCE

INVALID COMMAND (ALIGNMENT

OR ADDRESS ERROR FOR DIRECT 1/0)
INVALID LENGTH

INVALID ACCESS MASK

(ALTERNATE INDEXED FILES)
TRAILER CCUNT NOT EQUAL

TO BLOCKS READ (SET BY SVC
CLOSE ONLY)

FORMAT ERROR (BLOCK PREFIX,
RECORD PREFIX,EXPANSION ERROR OR
INVALID CHAIN FIELD)

* NOTE: UFBFS2 CONTAINS THE TERMINATING ATTENTION CHARACTER (AID BYTE)
* ON WORKSTATION READ SUCCESSFUL COMPLETION.

¥k
* NOTE: THE FOLLOWING UFBFS2 VALUES ARE SET ONLY IF AN SVC OPEN

* EXIT IS TAKEN. THESE VALUES ARE ALSO USED WHEN CREATING
* THE OPEN EXIT MASK TO BE SUPPLIED TO THE OPEN SVC.
UFBFS2XFILE EQU X'80' DUPLICATE FILE OR
* FILE NOT FOUND
UFBFS2XLIB EQU X'40' LIBRARY NOT FOUND
UFBFS2XVOL EQU X'20' VOLUME NOT MOUNTED
UFBFS2XSPACE EQU X'10' NO SPACE ON VOLUME
UFBFS2XVTOC EQU X'08' NO VTOC SPACE ON VOLUME
UFBFS2XTAPELD EQU X'08' WRONG TAPE LABEL/DENSITY
UFBFS2XPOS EQU X'04' POSSESSION CONFLICT
UFBFS2XPROT EQU X'02' PROTECTION CLASS VIOLATION
UFBFS2XFORMAT EQU X'01' OPEN FORMAT ERROR - ERROR
* CLASS DESCRIBED IN UFBXCODE
UFBAMEND EQU *
UFBAMLENGTH EQU (UFBAMEND-UFBBEGIN)

EJECT
* hkkkkhkkkhkkhkkhkhhkhhkhhhhkhhhhkhkhkkhhhkhkhhkhkhhhhhkhkhhkkhkhkhhhhhkkkhhkhhhhhkkik
* FILE LOCATION AND ATTRIBUTE SECTION
* ALL FIELDS IN THIS SECTION MUST BE SET (SOME OF THEM POSSIBLY
* TO 'NULL' VALUES) BY THE USER'S PROGRAM BEFORE INITIALLY
* ADDRESSING AN 'OPEN' TO THE UFB.
* ALL RELEVANT FIELDS AND FLAGS SET NULL BEFORE 'OPEN' ARE SUPPLIED
* HERE BY 'OPEN' PROCESSING AND MAY BE EXAMINED BY THE USER'S
* DROGRAM. THE PROGRAM SHOULD NOT MODIFY THESE FIELDS BETWEEN
* 'CLOSE' AND A SUCCESSIVE 'OPEN' IF THE SAME FILE IS REQUIRED
* (WITHOUT REPROMPTING).
L2221 2222222222 222222222222 2222322 2222323223323 222222 2 2.2 2.2
UFBBLKSIZE DS H MAGNETIC TAPE - MUST CONTAIN
* PHYSICAL BLOCK SIZE BEFORE OPEN
* IF OUTPUT MODE OR UNLABELLED
* TAPE.
* DISK OR DISKETTE - ALWAYS 2048
* AFTER OPEN EXCEPT WHEN USING
* PHYSICAL ACCESS METHOD (PAM)
UFBRECSIZE DS H LOGICAL RECORD SIZE
* (MUST BE SUPPLIED BEFORE OPEN FOR
* OUTPUT OPEN MODE)
*
UFBFORG DS BLl1 FILE ORGANIZATION
UFBFORGCONSEC EQU X'01' CONSECUTIVE
UFBFORGINDEXED EQU X'02' INDEXED
UFBFORGWP EQU X'04' WORD PROCESSING FILE
UFBFORGVIBM EQU X'08' IBM VARIABLE-LENGTH RECORDS
UFBFORGREL EQU X'08' RELATIVE
UFBFORGU EQU X'10' UNDEFINED RECORD FORMAT
UFBFORGVLEN EQU X'20' VARIABLE-LENGTH RECORDS
UFBFORGPRINT EQU X'40' PRINT FILE
UFBFORGPROG EQU X'80' PROGRAM FILE

*

BL1
X'80'
X'40'

OPTION FLAGS
USE GETPARM = TYPE RD
USE GETPARM = TYPE ID

* UFBF1INOGET AMD UFBF1INODISP USED BY SVC OPEN ONLY; NOT RESET BY DMS

UFBF1 DS
UFBF1NOGET EQU
UFBF1NODISP EQU
UFBF1PAM EQU
UFBF1BAM EQU
UFBF1PREVO EQU
UFBF1WORK EQU
*

*

UFBF1POOL EQU
*

*

UFBF10PEN EQU
UFBF2 DS
. %% UFBF2ADMS
UFBF20UT EQU
UFBF2IN EQU
UFBF2I0 EQU
UFBF2EXTEND EQU
UFBF2SHARED EQU
UFBF2DALT EQU
*

UFBF2PLOG EQU
*

EJECT
UFBDEVCLASS DS
*

UFBDEVCLASSWS EQU
UFBDEVCLASSTAPE EQU
UFBDEVCLASSDISK EQU
UFBDEVCLASSPRT EQU
UFBDEVCLASSTC EQU
UFBDEVCLASSDUMM EQU
UFBFLAGS DS

UFBFLAGSUPDAT EQU
UFBFLAGSCOMP EQU

*

* kkkikkik* JFBFLAGSRECOV

UFBFLAGSRECOV EQU
*

UFBFLAGSALTX EQU
UFBFLAGSLOG EQU
UFBFLAGSALTP EQU
UFBFLAGSPART EQU
*

*

*

%*

*

UFBFLAGSXLCLS EQU
*

.*%% note: UFBFLAGSADMS

X'20'
X'10'
X'08'
X'04'

X'02'

X'01!'
BL1
equ x'80'

X'40'
X'20'
X'10'
X'08'
X'04'
X'02'

X'01!'

BL1

X'01'
X'02'
X'03!
X'04'
X'05'
X'FF!
BL1

X'80'
X'40'

— RECOVERY=YES
X'20'
X'10'
X'08'
X'08'
X'04'

X'02'

A-b6

PHYSICAL ACCESS METHOD
BLOCK ACCESS METHOD

THIS UFB PREVIOUSLY OPENED
SCRATCH THIS WORK FILE ON
CLOSE IF SET & FILE HAS A
TEMPORARY NAME

BUFFER POOLING FOR RAM
(UFBBUFSTART MUST CONTAIN
BCT ADDRESS AT OPEN TIME)
THIS UFB OPEN IF SET

OPEN MODE FLAGS

open in ADMS mode

TO OPEN FOR OUTPUT MODE
TO OPEN FOR INPUT MODE

TO OPEN FOR IO MODE

TO OPEN FOR EXTEND MODE
TO OPEN FOR SHARED MODE
DELETIONS IN PROGRESS

ON ALT-INDEXED FILE

FILE PROLOGUE PRESENT

DEVICE CLASS (REQUIRED

BY 'OPEN')

WORKSTATION

MAGNETIC TAPE

DISK

PRINTER

TC DEVICE

DUMMY FILE

FILE ATTRIBUTE FLAGS

FILE HAS BEEN CLOSED

DATA RECORDS IN COMPRESSED

FORMAT

FOR BIT = ZERQ **k&¥kikkkk

USE PREFORMAT AND RECOVERY
PROCEDURES IF ZERO (INDEXED ONLY)
ALTERNATE INDICES IN FILE

CONSEC LOG FILE FLAG
ALTERNATE-TREE PROCESS FLAG

PARTIAL BACKUP FILE

PROGRAM SETS BIT BEFORE OPEN OUTPUT
(BAM OR PAM) TO SET BIT IN FILE
LABEL, OR SETS BIT BEFORE NON-OUTPUT
OPEN (BAM OR PAM) IF ABLE TO PROCESS
PARTIAL FILES. INVALID FOR RAM.
SHARED FILE EXCLUSIVE

LOCK ON CLOSE FLAG

equ x'02' ADMS DISK FILE INDICATIOR

UFBFLAGSPRIV

*
UFBDEVADDR

*

* ¥ ¥ ¥

UFBF3
UFBSLOTSIZE

UFBPRTCLASS
*
UFBFORMNO

UFBPRNAME
*

*
UFBVOLSER

BDIRNAME

*&***&*%********

EJECT
BFILENAME

5

%****!’*&%*

BFPCLASS

*
*
*
*
UFBCREATOR
*

EQU

DS

DS
DS
DS
DS
DS

DS

DS

DS

DS

X'o1'

HL1

OBL1 (*

H

NAME

ORG UFBF3

CLl

HL1
CL8

CL6

CL8

CL8

CL1

CL3

PROGRAM FILE CARRIES
ADDITIONAL ACCESS PRIVILIGES
DEVICE ADDRESS (FOR PRINTERS
AND WORKSTATIONS ONLY.

USED IF SUPPLIED

AND PLACED HERE BY 'OPEN' IF
NOT SUPPLIED. HEX FF IF

NOT SUPPLIED.)

KEPT FOR COMPATIBILITY *)

RELATIVE FILE SLOT SIZE
PRINT CLASS (A-Z)

PRINTER FORM NUMBER (BINARY)
PARAMETER REFERENCE NAME
(MUST ALWAYS BE SUPPLIED HERE
FOR 'OPEN')

VOLUME SERIAL NUMBER FOR
VOLUME-ORIENTED FILES (TAPE
OR DISK)

(IF 6 ASCII BLANKS, TAKEN FROM
PROCEDURE SPECIFICATION OR
'OPEN'-TIME PROMPT. IF SPECIFIED
IN NEITHER OF THESE WAYS,
TAKEN FROM DEFAULT IN

ETCB)

DIRECTORY NAME (IF 8 ASCII
BLANKS, DIRECTORY NAME TAKEN
FROM PROCEDURE SPECIFICATION
OR 'OPEN'-TIME PROMPT.

IF SPECIFIED IN NEITHER PLACE
AND VOLUME SERIAL ALSO
OMITTED, DEFAULT IN ETCB
USED)

FILE NAME (UNDER DIRECTORY)

(IF 8 BLANKS, FILE NAME TAKEN
FROM PROCEDURE SPECIFICATION

OR 'OPEN'-TIME PROMPT.

WORK FILE SPECIFICATION IF

ASCII '#' OR '$' FOLLOWED BY
FOUR ALPHAMERICS - LAST

3 CHARACTERS THEN MUST BE

BLANKS - SEE WORK FILE
DOCUMENTATION)

FILE PROTECTION CLASS

VALUE TO LABEL IF OUT-MODE;

TAKEN FROM USER 'SET' DEFAULTS IF
X'00' IS SUPPLIED;

VALUE FROM LABEL IF EXISTING FILE
FILE CREATOR FOR NEW OR

EXISTING DISK FILES

UFBALTCNT
*

UFBALTPTR
*
*
*

DS

DS

0BL1

A

COUNT OF ALTERNATE INDICES
IN FILE AFTER SVC OPEN
POINTER TO AXD1-AREA FOR DMS

PROCESSING (ALL REFERENCE TO THE

AXD1-AREA MUST USE UFBALTPTR)

* FOR CONSEC FILES, THE ALTPTR FIELD HOLDS LOGICAL RECORD COUNT
ORG UFBALTPTR

UFBLOGRECCNT

DS

F

LOGICAL RECORD COUNT FOR START END

* FOR RELATIVE FILES, THE ALTPTR FIELD HOLDS CURRENCY INFORMATION
ORG UFBALTPTIR ‘

UFBRELPOS

DS

F

RELATIVE FILE LOGICAL CURRENCY PTR

* FOR DEVICES OTHER THAN DISK, THE ALTCNT FIELD IS FOR MICROCODE TYPE
ORG UFBALTCNT

UFBMCTYPE

UFBMCTYPE2780
UFBMCTYPE3780

UFBMCTYPETCD
*

* FOR TC2780, TC3780 FILES, THE ALIPTR
* BATCH STREAM OPTIONS

UFBTICDATAOPT

UFBTCXMITOPT
*

UFBTCMAXRECSZ

%*

DS
EQU
EQU
EQU

DS
DS

DS

XLl

X'oLr’
X'02'
X'03"

BL1
BL1

XL1

DEVICE TYPE

2780 BATCH TC
3780 BAICH TC
TC DIAGNOSTICS

FIELD IS USED FOR THE TC

TC STREAM DATA OPTICN

TC STREAM TRANSMIT/RECEIVE
OPTION

TC STREAM MAXIMUM RECSIZE
MINUS 1

* FOR WORD PROCESSING WORKSTATIONS, THE ALTPTR FIELD IS USED FOR
* EXTENDED WS-ATTENTION INFORMATION
ORG UFBALTPTR+1

UFBWPAID
ke

UFBF4

*
UFBF4NOVTOC
UFBF4RLSE

*
UFBF4BLKAL
*

*

UFBF4VERIFY
*

UFBF4NOMSG
%*

*

*
UFBF4NOACK
*

*
UFBF4PMSG
*

*

DS
DS

EQU

EQU

EQU

EQU

EQU

EQU

EQU

XL3

BL1

X'80'

X'40'

X'20'

X'10'

X'08'

X'04'

X'o02'

EXTEND WS-ATTN INFORMATION

ADDITIONAL DEVICE-DEPENDENT
FLAGS

UNSTRUCTURED DISKETTE
RELEASE UNUSED SPACE

ON CLOSE

ALLOCATE SPACE FOR NEW
DISK FILE IN BLOCKS,

FROM UFBNBLKS

VERIFY OPTION ON ALL

DISK WRITES

NO RESPECIFY OR CANCEL
MESSAGE FOR SVC OPEN

ALSO NO CANCEL ON CLOSE; NO
ACK/CANCEL FOR DMS.

NO EXCEPTIONAL CONDITION
ACKNOWLEDGMENT MESSAGES

FOR DMS FUNCTIONS

FOR INTERNAL USE BY DMS -
CLOSE SENDS MESSAGE TO
UNSPOOLER IF SET

UFBF4ALLOWT
*

*

*

UFBNRECS

*

*

*
UFBNRECSUPDAT
*

*

UFBLRECSAVE
*

UFBRETPD

*

UFBLOCEND
UFBLOCLENGTH

USED BY SVC OPEN., PROGRAM
SUPPLIES BIT=1 TO ALLOW DEV=TAPE.
(OPEN SETS=1 IF UFBDEV=TAPE ALSO)
OTHERWISE, DEV=TAPE NOT ACCEPTED.
NUMBER OF DATA RECORDS IN
FILE (EXAMINED BY 'OPEN'
OUTPUT OPEN MODE ONLY.
EXCLUDES INDEX RECORDS, ETC)
HI BIT SET IN NRECS HI

BYTE (RETURNED BY- LOCK)

IF ON IN OFB AT LOCK TIME
RECSIZE SAVED HERE

BY OPEN (BAM)

RETENTION PERIOD IN DAYS
(MAXIMUM 999)

FOR

EQU X'Ol'

DS FL3

EQU X'80’

DS H

DS H

EQU *

EQU (UFBLOCEND-UFBBEGIN)
EJECT

doe dededededo ok dok ok de e deok e od ke dode Je de de o de de dedo ke g ke de ok de he de e ke de e ke de i Ao ke K de e g de ke e de de ke okok ke ok

* DATA MANAGEMENT SYSTEM SECTION
* Rekdekdehdkddhhhddokdddohdohdohddodiohoddedededodedodedededde e deokok de ok dok e deh ko dokek

UFBECB1
*

*

UFBXIOFLAGS
UFBXIOFLAGSRLS
UFBOFB
UFBBUFCMD

UFBBUFADR
*

*
*

UFBBUFDATAL
*

UFBBUFOFFSET
*

UFBBUFBLOCK

*

UFBBCBFLAGS
UFBBCBFLAGSLOD
UFBBCBFLAGSTOR
UFBBCBFLAGSIO
UFBBCBFLAGSPROT
UFBBCBFLAGSEOB

UFBBCBFLAGSEOF
*k

DS BL16
ORG UFBBCB1

DS OBL1

EQU X'80'

DS a

DS 0BL1

DS a

DS H

DS H

DS FL3

DS BL1

EQU X'Ol'

EQU X'02'

EQU X'04'

EQU X'10'

EQU X'20'

EQU X'40'

BUFFER CONTROL BLOCK
(CORRESPONDS TQO SVC XIO PARAMETER
LIST)

FLAG BYTE FOR SVC XIO
RELEASE BUFFER AFTER WRITE
OFB ADDRESS

CCMMAND BYTE FOR OPERATION
BUFFER MEMORY ADDRESS
(BLOCK ADDRESS WITHIN
BUFFER IF BUFFER LARGER
THAN 2K)

LENGTH IN BYTES FOR
OPERATION

OFFSET OF NEXT RECORD

IN BUFFER

(STARTING) BLOCK WITHIN
FILE OF BUFFERED DATA
FLAGS

BUFFER CONTENTS VALID
BUFFER TO BE REWRITTEN
BUFFER I/0 IN PROGRESS
BUFFER IN PROTECTED MEMORY
END OF BLOCK REACHED

EOF BLOCK IN BUFFER

* THE FOLLOWING FIELDS ARE USED FOR THE TIME-OUT OPTION IN SHARED

* MODE ONLY.

UFBTIMEEXIT
*

ORG UFBBUFDATAL

DS A

EXIT ADDRESS FOR TIME-OUT
RETURN (0 = NO TIME-OUT)

UFBHOLDID DS CL3
*

UFBTIME DS XL1
*
ok

INITIALS OF HOLDER OF
RESOURCE

WAIT TIME IN SECONDS
(0 = NO WAIT)

* THE FOLLOWING FIELDS ARE USED TO RETURN STATUS INFORMATION FROM THE
* SHARER WHEN USER'S OPEN OF A SHARED FILE FAILS WITH FILE STATUS '60'

* AND AN OPEN ERROR CODE OF 'E029'.

ORG UFBBUFDATAL

UFBSHROPNCODE DS CL4
UFBSHROPNRCSZ DS XL2
UFBSHROPNFORG DS X

*
UFBSHROPNSPARE DS X

*k
UFBBUFSIZE DS H

UFBCHKSIZE DS H
*

SHARER'S OPEN ERROR MSG #

TRUE FILE RECORD SIZE

TRUE FILE ORGANIZATION BYTE
(AS PER UFBFORG)

UNUSED

BUFFER SIZE
RESIDUAL COUNT FROM XIO
(DMS USE ONLY)

* UFBXDATE OR UFBOUTRECS IS AVAILBLE AFTER SVC OPEN AND BEFORE THE
* FIRST DMS REQUEST; UFBRES3 IS AN INTERNAL DMS FIELD AFTERWARDS.

UFBRES3 DS BL3

ORG UFBRES3
UFBXDATE DS BL3

ORG UFBRES3
UFBOUTRECS DS FL3
*

EJECT
UFBNBLKS DS FL3
*

ORG UFBNBLKS
UFBDMSGID DS BL3
UFBMAXTFR DS H
*

ORG UFBMAXTFR
UFBRES1 DS BL1
UFBOPFLAGS DS BL1
UFBOPFLAGSPFA EQU X'80'
UFBOPFLAGSPFS EQU X'40'
UFBOPFLAGSWKA EQU X'20'
UFBOPFLAGSPVS EQU X'10'
UFBOPFLAGSSCAN EQU X'08'
*%k
UFBLF DS BL1
UFBLFOPEN EQU X'00'
UFBLFREAD EQU X'04'
UFBLFWRITE EQU X'08'
UFBLFREWRITE EQU X'0C'
UFBLFDELETE EQU X'10'
UFBLFSTART EQU X'l4'
UFBLFCLOSE EQU X'18"
UFBLFMOD DS BL1

*
*

RESERVED FOR INTERNAL DMS
EXPIRATION DATE (EXIST FILE)

NUMBER OF RECORDS REQUESTED
FOR OUTPUT MODE

NUMBER OF 2048-BYTE BLOCKS
IN THE FILE

STORED MSG-ID(DMS NOMSG EXIT)
MAXIMUM DATA TRANSFER IN
BYTES FOR DISK (SET BY OPEN)

FUTURE SPARE BYTE

INTERNAL OPEN FLAGS
PRINT-FILE ASSIGNMENT TO DISK
PF - USER SUPPLIED FILE NAME
WORK-FILE ASSIGNMENT BY OPEN
PF - USER SUPPLIED VOLUME

IN SCAN BIT (WORK/SPOOL)

LAST FUNCTION PERFORMED
OPEN

READ

WRITE

REWRITE

DELETE

START

CLOSE

LAST FUNCTION MODIFIER
(DOESN'T CHANGE ON 'REWRITE')
(SEE UFBV ABOVE)

A-10

ORG UFBLFMOD

UFBXCODE
* UFBXCODE VALUES
UFBXCODENOINFO
UFBXCODEUSE
UFBXCODEDET
UFBXCODEVOLX
UFBXCODEPOSS
UFBXCODEPAGE
UFBXCODEIMAG
UFBXCODEAOPEN
UFBXCODEAUSE

*

* UFBXCODE VALUES

UFBXCODETRACK
*

*

_UFBXCODEDNPRT
*
UFBXCODEDNPRG
*

UFBXCODEDNCSC
*

UFBXCODEDNWP
*

UFBXCODEDNINX
*

UFBXCODEDFGR
*

UFBXCODENREL
*

UFBEREC

*
UFBVERSION
UFBEBLK

*
UFBBUFSTART
*

*

*

*

UFBRDLTH
*

UFBPRTCOPIES
*

UFBWPBLKSIZE

UFBWPBLS
*

UFBPTRB
*

*

EXTENDED OPEN EXIT CODE

1-8 SET FOR POSSESSION CONFLICT

DS BL1
EQU X'00'
EQU X'01'
EQU X'02'
EQU X'03'
EQU X'04'
EQU X'05'
EQU X'06'
EQU X'07'
EQU X'08'
X'10' - X'1F'
EQU X'10'
EQU X'11'
EQU X'12"
EQU X'13"
EQU X'14"
EQU X'15'
EQU X'16'
EQU X'17"
DS H

DS HLL
DS FL3
DS A

DS H

DS H

DS X

DS X

DS FL4

NO FURTHER INFORMATION
DEVICE IN USE

DEVICE DETACHED

VOLUME EXCLUSIVE

FILE POSSESSION CONFLICT
PAGING FILE - SYSTEM ONLY
IMAGE FILE (INPUT MODE ONLY)
ALREADY OPEN - THIS USER
ALREADY IN USE - THIS USER

SET FOR OPEN FORMAT ERRCR

PROGRAM REQUIRES 7 TRACK

TAPE WHILE DRIVE IS 9 TRACK

OR VICE VERSA

UFB FORG=PRINT, WHILE

FDR FORG NOT= PRINT

UFB FORG=PROG, WHILE

FDR FORG NOT= PROG

UFB FORG=CONSEC, WHILE

FDR FORG NOT= CONSEC

UFB FORG=WP, WHILE

FDR FORG NOT= WP

UFB FORG=INDEXED, WHILE

FDR FORG NOT= INDEXED

UFB FORG NEITHER CONSEC

NOR INDEXED---ERROR

UFB FORG=REL, WHILE

FDR FORG NOT= REL

LAST RECORD NUMBER WITHIN
LAST BLOCK

UFB VERSION NUMBER *#*#%%&%

LAST BLOCK NO. WITHIN FILE

FROM O

BUFFER MEMORY ADDRESS:

BUFFER CONTROL TABLE

ADDRESS BEFORE 'OPEN'

IF BUFFER POOLING

SPECIFIED (UFBF1POOL SET)

LENGTH IN BYTES OF

DATA IN BUFFER

NUMBER OF PRINT COPIES

(FOR PRINTER FILES ONLY)

ORG UFBPRTCOPIES

WORD PROCESSING FILE CONTROL
FIELDS, WP FILES BLKSIZE
AND BYTES IN LAST SECTOR

ORG UFBBUFSTART

FIRST BLOCK IN INDEX
AREA OF PRIMARY EXTENT
(INDEXED FILES)

UFBPTRC DS FL4 LAST BLOCK IN INDEX AREA

* OF PRIMARY EXTENT
* (INDEXED FILES)
UFBDMSEND EQU *

UFBDMSLENGTH EQU (UFBDMSEND-UFBBEGIN)

s dedododo e Jodo de ded ke de K do & Kk de e de e d de K de de K K dede KK e e g o ke K ke do he K ek ke K ke deok e ke ek ke de ke ke ok

* END OF UFB FOR ALL FILES/DEVICES EXCEPT TAPE FILES, INDEXED DISK
* FILES, and DMS/TX disk files.
EJECT

b hhkkhkhkhhhkhhhhhkhkhhkkhhkhhhhhhhhhkkhhhkhkhhhhhhhkhhhhhhkhkhkkkikk
* INDEXED DISK FILE EXTENSION SECTION:
* UFBKEYPOS AND UFBKEYSIZE SHOULD BE FILLED IN BY THE PROGRAM BEFORE
* 'OPEN' FOR A NEW INDEXED FILE (UFBF20UT AND UFBFORGINDEXED SET).
* THEY ARE SET BY 'OPEN' FOR AN EXISTING INDEXED FILE. 'OPEN'
* WILL SET UFBGKSIZE TO ZERO. THE USER'S PROGRAM MAY SET IT NON-ZERO
* BEFORE A 'START' FUNCTION. 'START' WILL ZERO IT AGAIN. THE
* USER'S PROGRAM MUST NOT MODIFY ANY OTHER FIELDS THAN
* UFBGKSIZE IN THIS SECTION WHILE THE FILE IS OPEN.
* Khkhkhkkhkhkkkhhhkkhkhkkhkhhkhkhhkkhhkhhkhkhkhhkhkhkhhkhkhhhkhhhkkhkhhkhhkhhhkhkhkkk
UFBKEYPOS DS H KEY POSITION IN LOGICAL RECORD
UFBKEYSIZE DS HL1 KEY SIZE IN BYTES
UFBGKSIZE DS HL1 GENERIC KEY LENGTH OVERRIDE
* MAY BE SET BEFORE 'START':
* USED ONLY BY 'START' FUNCTION;
* RESET TO BINARY O BY 'OPEN' AND
* EVERY 'START' FUNCTION
UFBHXBLK DS FL3 HIGHEST-LEVEL INDEX BLOCK
* ADDRESS FOR KEYED ACCESS
UFBDABLK DS FL3 FIRST DATA BLOCK ADDRESS
UFBPKI DS H INDEX ITEMS PER BLOCK
* FOR OUTPUT MODE
UFBPTRD DS FL4 FIRST BLOCK BEYOND
* PRIMARY EXTENT
* (INDEXED FILES)
UFBPTRI DS F NEXT AVAILABLE INDEX
* BLOCK WITHIN PRIMARY EXTENT
* INDEX AREA
UFBPTRN DS P NEXT AVAILABLE INDEX
* OR DATA BLOCK IN A SECONDARY
* EXTENT (INITIALLY ZERO)
*
ORG UFBHXBLK
UFBSHRAXD1 DS XL20 partial AXD1 area for shared
* alternate indexed files
*
UFBBCBIOUT DS BL16 BCB FOR INDEX CREATION,
* OUTPUT MODE
*
* DMS/TX Before Image control area for shared indexed files
*

(internal system use only)

ORG UFBBCBIOUT
UFBBIRECAREA DS A Before Image Recarea Address
UFBBIRECSIZE DS H Before Image Record Size

A-12

Before Image Record AXDl1l Mask

RESET ASSEMBLY COUNTER
RECORDS PER BLOCK FOR
OUTPUT MODE

(RESERVED)

khkkhkRhkhhhkkhhkhhkhhkhkhhkhkhkhhhhkkhkhkhhkhhkhhkhkhhkkkhkhhhhkhhhhkkhkhkhkk®

UFBDXRECBLCK - controls Recovery Block allocation in Output

All other fields are returned by a successful Open; input values

dkkhkdkhhkhkhkkhkhhhhhkhhhkhkhhhkhhkhhkkhhkhhhhkhhkhhkikhhkhhhkhhkhkhkhkkkih

UFBBIAXD1IMASK DS BL2
*
DS 8X
UFBPKD DS H
*
UFBSPAREINX DS XL2
UFBINXDISKEND EQU *
UFBINXDISKLGTH EQU (UFBINXDISKEND-UFBBEGIN)
EJECT
*
* DMS/TX DISK FILE EXTENSION SECTION:
*
* Existence of this extension section is determined by
* UFBVERSION = 2 or greater and UFBDEVCLASSDISK set.
*
* TInput fields to the Open SVC are:
* UFBDXOM - Open Modifiers
*
* mode only
* UFBDXSPARE - must be zero
*
%
* are ignored.
*
*
UFBDXOM DS X

*
*
*
*

DMS/TX Open Modifier Flags

Modifiers for general use on ANY disk file. (Their use is NOT
restricted to files under DMS/TX).

UFBDXOMNOMODVOL ~ EQU

*

UFBDXOMNOMODLIB EQU

*
*
*

UFBDXOMNOMODFIL EQU

*
*
*

UFBDXOMCKACCESS EQU

*
*
%*

UFBDXOMNOACK EQU

*
*

X'80'

X'40'

X'20'

X'10'

X'08'

A-13

No modification of Volume
in Open getparms.
No modification of Library
in Open getparms.
Open exit for xlib must be set
(except output mode).
No modification of Filename
in Open getparms.
Open exit for xfile must be set.

Restrict user access rights
to logon privileges (ignore
special program privileges)

suppress acknowledge
getparms in OPEN

* Modifiers for system use only for DMS/TX files opened in non-
* shared modes.
* Warning: Improper use can compromise the integrity of a file.

.* users: DMSTX utility, TXPATCH utility, @SHARER@, BUILDALT, Wv82
*

UFBDXOMREORGKEY EQU X'04' If file requires reorg, set
* UFBDXREORGLF, UFBKEYAREA to
* incomplete function values
UFBDXOMNOREC EQU X'02' No Recovery

UFBDXOMNOCHK EQU X'01' No Check for file softcrash
* or reorganization required
*

UFBDXRECBLK DS c Recovery Blocks flag

* Output mode: set to RECBLKALLO to allocate Recovery Blocks

* set to RECBLKNO to not allocate Recovery Blocks

* Value is returned for all other modes.

UFBDXRECBLKNO EQu C'N’ No Recovery Blocks
UFBDXRECBLKALLO EQU C'A' Recovery Blocks Allocated

* but not used
UFBDXRECBLKUSED EQU C'U’ Recovery Blocks allocated &
* used (file is under DMS/TX)
*

UFBDXDBNAME DS CL6 Database Name

*

UFBDXFVi# DS 0XL12 File version #

UFBDXFV#SEQ# DS F sequence #

UFBDXFV#DT DS PL8 date/time stamp

*

UFBDXRECO DS C Recovery option after Open

(usually the Database option)
Not an input parameter.
UFBDXRECONO EQU C'N' No Recovery

UFBDXRECOSOFT EQU C'S!' Softcrash Recovery
*

de e do e dedede ko dode ke de ke e de de de g e i de e de e g e e e ke de de e ke Ko e de de de K o de K K de de de e e K K ke gk ke ok ok ke K

* The following fields are for internal system use only:
*

UFBDXLSBREC DS X LSB File Recovery Option

*

UFBDXREORGLF DS X UFBLF value from incomplete
* function (if UFBDXOMREORGKEY
* set and file requires reorg)
*

UFBDXCS DS X Crash Status of DMS/TX files
* (input mode or DXOMNOCHK set)
UFBDXCSSOFT EQU X'01l' Softcrash Recovery required
UFBDXCSREORG EQU X'02' Reorganization required

*

UFBDX#BIJS DS H # BIJS accessing crashed file
* (if DXOMNOCHK set)

*

UFBDXFLAGS DS X Extra flag bits
UFBDXFLAGSTXON EQU X's0’' Turn on dmstx locking

* protocol on file OPEN

A-14

UFBDXFLAGSRDNLY EQU

*

UFBDXSPARE DS XL9

*

X'20' Open for shared read-only

*(reserved - must be zero)

UFBDXEND EQU *

UFBDXLGTH

* * ¥ ¥ X ¥ ¥ X X

EQU (UFBDXEND-UFBBEGIN)

EJECT

do e K e de o Je & e K K K Je K K K de Je de Je Je de de K K K ok K de Je Je Je de T de I Je Je K K Je de de e e de de de Je e K e e de de do e de e
MAGNETIC TAPE FILE EXTENSION SECTION:
FIELDS UFBTLABELS, UFBTDEN, UFBTSEQ AND UFBTFLAGS MAY BE SET
BEFORE 'OPEN' TO REQUEST OUTPUT LABELING OPTIONS, DENSITY
AND FILE POSITIONING.
ALL RELEVANT FIELDS AND FLAGS NOT SET BEFORE 'OPEN' ARE SUPPLIED
HERE BY 'OPEN' PROCESSING AND MAY BE EXAMINED BY THE USER'S
PROGRAM.

% Je B Je de Je de Fe Je e K e e e K K I K K e de de de Jo e K e K e de K e de e de de e & K K e e I ek de de de T Je ek K ke e de ke ke &

ORG UFBDMSEND

UFBTSPAREL DS BL4 (RESERVED)

UFBTBCB DS BL16 ADDITIONAL BUFFER CONTROL
* BLOCK FOR TAPE DOUBLE

* BUFFERING

UFBTLABELS DS BL1 REQUESTED LABELING (OUTPUT)
* OR LABEL TYPE ON TAPE

* (INPUT)

UFBTLABELSNL EQu X'ol' UNLABELLED

UFBTLABELSANY EQU X'02' ANY TYPE OF LABEL
UFBTLABELSAL EQU X'04' ASCII LABELS

UFBTLABELSIL EQU X'08' IBM LABELS

UFBTDEN DS BL1 TAPE DENSITY

UFBTDENS00 EQU X'01' 800 BPI

UFBTDEN1600 EQU X'02' 1600 BPI

UFBTDENS556 EQU X'03"' 556 BPI

UFBTDEN6250 EQU X'08' 6250 BPI

UFBTDEN6400 EQU X'1l0' 6400 BPI

*

UFBTSEQ DS H TAPE FILE SEQUENCE NUMBER
* (SET BEFORE OR DURING

* OPEN TO REQUEST POSITIONING
* AND AVAILABLE AFTER OPEN)
UFBTFLG DS BL1 TAPE-RELATED FLAGS
UFBTFLGALLOWNL EQU X'80' *k% OBSOLETE ***
UFBTFLGSWITCH EQU X'40' TAPE VOLUME SWITCH REOPEN
* IN PROGRESS

UFBTFLGEODEQV EQU X'20' TAKE EOV1 TRAILER LABEL AS
* EOF1 LABEL

UFBTFLG7TRACK EQU X'l0' USE 7 TRACK TAPE DRIVE FOR
* THIS FILE

UFBTFLGNOHDR2 EQU X'08' NO HDR2 FILE LABEL
UFBTVOLSEQ DS BL1 TAPE VOLUME SEQUENCE NUMBER
* (ORDER OF VOLUME IN A

* MULTIPLE VOLUME FILE)
UFBTSAVEVOL DS CL6 VOLUME NAME OF FIRST

*
*

VOLUME OF A MULTI-VOLUME
FILE SAVED HERE

UFBTPARITY DS
*

UFBTPARITYODD EQU
UFBTPARITYEVEN EQU
UFBTSPARE2 DS
UFBTAPEEND EQU
UFBTAPELGTH EQU
SPACE 2

.*

.*

.*

.*

.*

_*

UFBEND EQU
UFBLGTH EQU

BL1 TAPE PARITY (7 TRACK TAPE
ONLY)

X'ol' ODD PARITY

X'o2' EVEN PARITY

BL11l (RESERVED - MUST BE 0)

*
(UFBTAPEEND-UFBBEGIN)

¥ e Jo de K de J¢ de Jo o de e e de de o Ko de Je e de ke de de K do K e de do e K do K K de e e do de de de de e de Fe K de Je de K de he e de Je A de Je K de Fe de

ADMS DISK FILE EXTENSION SECTION was here
Rdkdddhhhhhhhhdhdhdeddddddddedhdddioddddeddodddddddddddeddohdokdokk ik

(ADMS) RESTART DISK FILE EXTENSION SECTION was here
Fe e de o e de e e e e e de e dede de e dede e e e e e e e e e e e e e e ok ek o e e ok ok ek ke e ke

ORG UFBDXEND
*

(UFBEND-UFBBEGIN)

A-16

A.2 THE AXDl1 DSECT

% Jo I Jo & do K Je K e e de de e Kt e de e de e de e K de e K e K de e B de I do e Je K de K de e de e Ko de e Js e de de de de de e do ek ke g e de e de de I K e e Kk

THE ALTERNATE INDEX DESCRIPTOR BLOCK (AXD1l) DESCRIBES THE
ALTERNATE INDEX STRUCTURES OF AN INDEXED FILE. AN INDEXED
FILE HAS AN AXD1 BLOCK IF AND ONLY IF FLAG FDR1FLAGSALTX

IS SET IN ITS LABEL (FDR1). THE AXD1 BLOCK CONTAINS

UP TO 16 (64) ALTERNATE INDEX DESCRIPTIONS (AXD1ENTRY). THE
NUMBER OF DESCRIPTIONS IS CONTAINED IN FDRI1ALTXCNT OF THE
FDR1 RECORD.

THE AXD1 IS LOCATED IN BLOCK NUMBER ZERO OF THE FILE.
THE AXD1 IS DIVIDED INTO 4 AREAS:
1. BLOCK DESIGNATOR AREA (AXD1BL)
2. DMS PRCCESSING AREA (AXDIMASK TO AXD1ENTRY)
3. AXD ENTRIES (ONE AXD ENTRY PER ALT-INDEX)
4. SPARE AREA (UP TO END OF 2K BLOCK)
AREAS 1-3 ARE HELD IN THE AXD1-AREA (POINTED TO BY UFBALTPTR)
DURING FILE PROCESSING.

DATE 07/16/82
VERSION 5.04.02

% % X X F X X ¥ X X ¥ X X X F ¥ X ¥ X *

KhkkhhkhhhdhhhhhhhkhhhhhhhhhhkhhhkhhkkhkhrhkRhkhhhhhhkhhhhhkkhkhkhhkikhhhkhk
* BLOCK DESIGNATOR AREA:

AXD1BEGIN DS OF

AXD1BL DS BL4 BLOCK TYPE DESIGNATION

* AXD1BL MUST EQUAL XL4'2’

* OR XL4'4'

* DMS PROCESSING AREA:

AXD1MASK DS BLS8 BITS ON INDICATE ALTERNATE

bl INDEX STRUCTURES (NUMBERED

* 1 TO 16) PRESENT

* (INITIAL IMPLEMENTATION OF

* 2~-BYTE MASK ONLY)

AXD1UFB DS A POINTER TO UFB FOR THIS FILE

* AFTER THE FILE HAS BEEN OPENED
AXD1ALTINX DS BL1 ORDINAL INDEX NUMBER FOR READ
AXD1FLAGS] BL1 DMS FLAG BYTE

AXD1FLAGSCK EQU X'80' ALTERNATE INDEX STRUCTURES HAVE
* BEEN CREATED WHEN FLAG SET

* THE FOLLOWING FLAGS ARE USED FOR DMS PROCESSING (0 IN LABEL)
AXD1FLAGSOPENA EQU X'08' OPEN ALLOCATED THIS AXD1 BLOCK
* (ONLY IF NOT OUTPUT MODE)
AXD1FLAGSQ EQU X'04' START QUALIFIED OPTION
AXD1FLAGSTYPER EQU X'02' TYPE R SAVEAREA IN USE
AXD1FLAGSTYPEV EQU X'Ol’ TYPE V SAVEAREA IN USE

*k

A-17

AXDIMSIZE DS BL1 SIZE OF MASK PER FILE

* VALUE FROM 2-8 BYTES (MUST BE 2
* FOR FIRST IMPLEMENTATION)
AXD1DUPINX DS BL1 ORDINAL INDEX NUMBER OF THE

* ALT-TREE HAVING DUPLICATED KEY

* MINIMUM AXD1-AREA FOR SHARED MODE ENDS HERE.

* AXDIMASK, AXDIMSIZE, AND AXD1ALTINX ARE REQUIRED.
*

AXD1BCB DS BL16 BCB FOR DMS PROCESSING (SEE UFB)
AXD1PMASK DS BLS8 MASK OF VALID ALTERNATE ACCESS
* PATHS (SET AT FILE CREATION ONLY)

*

* THE POLLOWING FIELDS ARE INTERMEDIATE OUTPUT MODE FIELDS
*

AXD1ORECSIZE DS H WORK RECORD - MAX LENGTH

AXD1OFLAGS DS BL1 OUTPUT FLAGS (RESERVED)

AXD1OSTART DS BL3 FIRST BLOCK CONTAINING WORK RECORDS
AXD1ONRECS DS BL3 TOTAL COUNT OF WORK RECORDS
AXD1OEBLK DS BL3 LAST USED BLOCK NUMBER IN PRIMARY

* TREE (ALT-TREE TO AXD1EBLK+1)
AXD10OSPAREX DS H ¥kk%x (unused) ***%

AXD1OSPARE DS BL2 RESERVED IN OUTPUT MODE

k%

ORG AXD10RECSIZE
* THE FOLLOWING FIELDS ARE USED FOR DMS PROCESSING (EXISTING FILES)
**
AXD1SAVEADR DS A SAVE AREA ADDRESS (TYPE V)
AXD1SAVELTH DS H SAVE AREA LENGTH (TYPE V)

ORG AXD1ORECSIZE
* THE FOLLOWING 3 FIELDS ARE USED FOR SAVE AREA TYPE S

AXD1SKEYSIZE DS BL1 SAVED PRIMARY KEYSIZE

AXD1SHXBLK DS BL3 SAVED PRIMARY ROOT BLOCK NUMBER
AXD1SEREC DS H SAVED PRIMARY LEVEL COUNT

*

AXD1ENTOFF DS H OFFSET OF ACTIVE AXD1ENTRY(IN AXD1)
AXD1PTRN DS BL3 NEXT SEQUENTIAL BLOCK (ALT-TREE)

AXD1CURINX DS BL1 ORDINAL NUMBER ASSOCIATED WITH

* BLOCK IN AXD1BCB

AXD1SPAREX DS H **k* (unused) ***%

AXD1EXSPARE DS BL2 SPARE - ALL FILES

ok
*
Jo e Jo de o & K de do de K ke de e e de ek g do de de e ke e de de de de de K e de e de de e Ko e de g de ke de de ke g de K e de de de de g de ek de K de e K de e de ke Kok

AXDIMASK AND AXD1ALTINX ARE THE ONLY FIELDS IN THE AXD1-AREA WHICH
MAY BE MODIFIED BY THE USER-PROGRAM WHILE THE FILE IS OPEN.

FOR EXISTING FILES, NO FIELDS IN THE AXD1-AREA ARE USER-SUPPLIED
PRIOR TO ISSUING SVC OPEN.

FOR OUTPUT MODE, USER-PROGRAM FILLS IN THE REQUIRED AXD1-AREA WITH:
AXDIMSIZE (THE ACCESS MASK PREFIX SIZE):
AXDI1KEYPOS, AXD1KEYSIZE, AXD1EFLAGS, AND AXD1XORD

FOR EACH AXD1ENTRY (COUNT IN UFBALTCNT).
L T e T T T T T T T 2™

* ¥ ¥ ¥ X ¥ ¥ ¥ X ¥

A-18

*
* AXD ENTRIES:

AXD1ENTRY DS
*

*

*

AXD1XORD DS
*

*

*

AXD1EFLAGS DS
AXD1EFLAGSDUPS EQU
AXD1EFLAGSKCOM EQU
*

* THE FOLLOWING FLAGS
AXD1EFLAGSACT EQU
*

AXD1EFLAGSUP EQU
*

*

AXD1XLEVELS DS
*

%*

AXD1KEYPOS DS
AXDIKEYSIZE DS
AXD1HXBLK DS
*

AXD1NRECS DS
AXD1PTRD DS
*

*

AXD1PRLEN DS
AXD1PRAKPOS DS
AXD1PRPKPOS DS
AXD1ESPARE DS
AXD1ENTRYEND EQU
AXD1ENTRYLENGTH EQU
*

AXD1SPARE3 DS
*

AXD1END EQU
AXD1LENGTH EQU

0XL.28

BL1
X'80'
X'40'

UP TO 64 ENTRIES
(EACH A DESCRIPTION OF ONE
ALTERNATE INDEX STRUCTURE:
UNUSED ENTRIES ZERO-FILLED)
ORDINAL NUMBER (STARTING FROM 1)
IDENTIFYING THIS INDEX STRUCTURE
(CORRESPONDS TO BIT IN
AXD1MASK)
OPTION FLAGS
DUPLICATE KEYS ALLOWED
KEY COMPRESSION IN INDEX

(NOT IN FIRST VERSION)

ARE USED FOR DMS PROCESSING (0 IN LABEL)

X'02'

X'01'

H
HL1
FL3

BL3
FL3

BL1
BL1
BL1

BL9
*

INDICATES THIS ALT-TREE IS THE

ACTIVE ALT-TREE DURING PROCESSING
INDICATES AXD1PTRD, AXD1XLEVELS
OR AXD1HXBLK HAS BEEN MODIFIED
DURING ALT-TREE PROCESSING

NUMBER OF LEVELS OF THIS

ALTERNATE INDEX STRUCTURE

EXCLUDING LOWEST LEVEL

KEY POSITION IN RECORD

KEY LENGTH

BLOCK-IN-FILE OF ROOT BLOCK

OF THIS ALTERNATE INDEX

ITEM COUNT - LOW LEVEL OF TREE
FIRST BLOCK OF LOW LEVEL

OF THIS ALTERNATE INDEX
(ALTERNATE KEY SEQUENCE)

LENGTH OF ALT TREE PSEUDO-REC

POS OF ALT KEY IN PSEUDO-REC

POS OF PRI KEY IN PSEUDO-REC
(RESERVED IN EACH ENTRY)

AXD1ENTRYEND-AXD1ENTRY

ORG AXD1ENTRY+64*L ' AXD1ENTRY

XL196

*

(RESERVED)

AXD1END-AXD1BEGIN

A-19

APPENDIX B
DMS FUNCTION REQUESTS AND MODIFIERS

B.1 RAM Function Requests and Their Modifiers

Fixed Length Records in Consecutive Files on Disk:

Input Output I0 Extend Shared
Mode Mode Mode Mode Mode
READ no mod no mod no mod
REL REL REL
NODATA HOLD HOLD
NODATA
WRITE no mod no mod no mod no mod
REWRITE no mod no mod
START BEGIN EXTEND EXTEND EXTEND HOLD
SKIP OUTPUT OUTPUT OUTPUT HOLD, EQUAL
I0 IO I0 HOLD, RANGE
END HOLD,LIST
BEGIN HOLD, RETRIEVAL
SKIP RELEASE
END
BEGIN
SKIP
DELETE

Variable Length Records in Consecutive Files on Disk:

Input Output IO Extend Shared
Mode Mode Mode Mode Mode
READ no mod no mod no mod
NODATA HOLD HOLD
NODATA
WRITE no mod no mod no mod no mod
REWRITE no mod no mod
START BEGIN EXTEND EXTEND EXTEND HOLD
SKIP OUTPUT OUTPUT OUTPUT HOLD, EQUAL
I0 I0 IO HOLD, RANGE
END HOLD,LIST
BEGIN HOLD,RETRIEVAL
SKIP RELEASE
END
BEGIN
SKIP
DELETE

B-2

Records in Relative Files on Disk:

Input Output IO Extend Shared
Mode Mode Mode Mode Mode
READ no mod no mod
REL REL
NODATA HOLD
NODATA
WRITE no mod no mod no mod
EQOF
REWRITE no mod
REL
START EQ OUTPUT OUTPUT OUTPUT
GT EXTEND EXTEND EXTEND
GE I0 I0 I0
LE EQ
LT GT
GE
LT
LE
DELETE no mod
REL
EOF
Records in Indexed Files on Disk:
Input Output IO Extend Shared
Mode Mode Mode Mode Mode
READ no mod no mod no mod
KEYED HOLD HOLD
NODATA (KEYED,HOLD) (KEYED,HOLD)
NODATA
WRITE no mod no mod no mod no mod
REWRITE no mod no mod
START EQ EQ EQ
GT GT GT
GE GE GE
HOLD
HOLD, RANGE
HOLD,LIST
HOLD, RETRIEVAL
RELEASE
DELETE no mod no mod

Records in Consecutive Workstation Files:

I/0
Mode
READ no mod
MOD
ALTERED
TABS
WRITE
REWRITE no mod
SELECTED
TABS
| START ATTNT
DELETE

Records in Consecutive Tape Files:

Input Output Extend
Mode Mode Mode
READ no mod
NEXT
NODATA
WRITE no mod no mod
REWRITE
START WAIT WAIT WAIT
DELETE
OPEN MODE
CLOSE no modifier
UNLOAD
NOREWIND
REEL

B-4

B.2 BAM Function Requests and Their Modifiers

Input Output I/0 Extend Shared
Mode Mode Mode Mode Mode
READ no mod no mod
REL HOLD
NODATA REL
NODATA
WRITE no mod no mod no mod
REWRITE no mod
START EXTEND EXTEND
OUTPUT OUTPUT
IO I0
DELETE
B.3 PAM Function Requests and Their Modifiers
Input Output IO Extend Shared
Mode Mode Mode Mode Mode
READ no mod no mod
WRITE no mod no mod
REWRITE no mod
START WAIT WAIT WAIT
EXTEND
OUTPUT
I0
DELETE

B-5

APPENDIX C
DMS ERROR MESSAGES

C.1 INTRODUCTION

Appendix C contains the following types of messages, listed in the
order they appear in the appendix:

o SVC OPEN Cancel Messages
e SVC OPEN Respecify Messages
¢ DMS Function Request Cancel Messages
e SVC CLOSE Cancel Messages
¢ File Status (FS) Codes for DMS
The following types of messages are not included in this appendix:

1. Messages issued by program 'BUILDALT' for OUTPUT mode creation of
alternate indexed files (acknowledge and cancel messages).

2. Miscellaneous acknowledge messages from SVC OPEN and DMS function
requests.

The DMS No-Message Option

The No-Message Option is available in SVC OPEN, SVC CLOSE, and DMS.
This option causes the suppression of messages normally appearing on the
workstation screen.

If you specify the No Message option (UFBF4NOMSG = 1), DMS sets the
file status for the operation equal to C'60'. For SVC OPEN and SVC
CLOSE, the message ID is stored in the first four bytes of the UFB.
Return is made using the address in UFBERRAD:; if this address is zero,
DMS ignores the value of UFBF4NOMSG, and always displays a message.

C-1

C.2 SVC OPEN CANCEL MESSAGES

These messages deal primarily with invalid information supplied in

the UFB.

Some also refer to unusual conditions that rarely arise during

normal SVC OPEN usage; for example, UPDATFDR SVC errors, I1/0 errors when
reading AXD1 blocks, etc.

There is no continuation|possible when these messages are issued.

NOTE

ERROR

NUMBER MESSAGE)

E000 INVALID UFB ADDREYS PRESENTED TO SVCOPEN.

E001 DEVICE CLASS (XX} = INVALID OPEN MODE (XX) = INVALID FILE
ORGANIZATION (XX)= INVALID RECORD SIZE = INVALID RECORDS ARE
FIXED LENGTH. KEY SIZE = XXX KEY POSITION = INVALID

E002 FILE ALREADY OPEN (UFBF1OPEN SET)

E006 TASK WORKSTATION NOT AVAILABLE.

E007 MAXIMUM NUMBER OF FILES ALREADY OPEN

EO11 REQUIRED BUFFER(S) NOT AVAILABLE FOR FILE PROCESSING

E014 UNEXPECTED DEALLOCATION ERROR FOR MAGTAPE DEVICE,

E016 BACKGROUND TASK ATTEMPTED TO OPEN WORKSTATION. THE
WORKSTATION MAY BE OPENED IN FOREGROUND ONLY.

E017 INVALID OPEN MODE FOR PHYSICAL ACCESS METHOD. (EXTEND AND
SHARED MODES ARE INVALID.)

E018 THE PROGRAM IS REQUESTING AN INVALID OPEN MODE (SHARED,
EXTEND) FOR A FILE RESIDING ON AN UNSTRUCTURED DISKETTE VOLUME.

E019 THE PROGRAM IS REQUESTING AN INVALID MODE (EXTEND MODE) FOR
INDEXED FILE PROCESSING.

E021 THE PROGRAM IS REQUESTING AN INVALID FILE ORGANIZATION
(INDEXED) FOR A FILE RESIDING ON AN UNSTRUCTURED DISK VOLUME.

E023 INVALID ACCESS METHOD SPECIFICATION IN UFB (UFBF1).

E024 BLOCK ALLOCATION ERROR. SPACE NOT AVAILABLE ON VOLUME AND
EXIT-OPTION NOT IN USE.

E025 THE PROGRAM IS REQUESTING AN INVALID MODE (SHARED MODE) FOR
FILE PROCESSING UNDER THE BLOCK ACCESS METHOD (BAM).

E027 SHARING TASK NOT ACTIVE.

E028 UNABLE TO GET UNIQUE PORT NAME.

E029 SHARER RESPONSE CODE = XX-YYYY. UNEXPECTED ERROR HAS OCCURRED
WHILE OPENING A FILE FOR SHARED ACCESS.

E030 INVALID BUFFER POOL SPECIFICATION. (ACCESS METHOD SUPPLIED IS
INVALID.) BUFFER POOLING CAN ONLY BE USED WITH INDEXED FILES
IN INPUT OR IO MODE.

E031 THE BUFFER POOL TABLE ADDRESS SUPPLIED (IN UFBBUFSTART) IS
INVALID.

E032 THE BUFFER POOL TABLE HAS NOT BEEN CORRECTLY INITIALIZED.

E033 THE BUFFER COUNT SUPPLIED BY THE PROGRAM IS TOO SMALL. THE
MINIMUM BUFFER COUNT IS 3.

E034 AN UNEXPECTED ERROR HAS OCCURRED WHILE UPDATING THE FILE

LABEL. THE FILE CANNOT BE SUCCESSFULLY OPENED FOR UPDATE.

C-2

N

ERRCOR

NUMBER MESSAGE

EQ35 THE ALTERNATE INDEX BLOCK (AXD1) ADDRESS SUPPLIED IS INVALID.

E036 THE ALTERNATE INDEX COUNT IN UFBALTCNT IS INCORRECT.

EQ37 ALTERNATE INDEX INFORMATION FOR FILE CREATION IS INCORRECT.

EQ38 UNABLE TO READ AXD1 BLOCK FROM FILE BLOCK O.

EQ39 FAIL TO FREE THE BUFFER AFTER READING AXD1 FROM FILE BLOCK Q.

EQ40 ALTERNATE INDEX KEYSIZE PLUS PRIMARY KEYSIZE TOO LARGE.

EQ50 UNABLE TO ALLOCATE SYSTEM MEMORY--GETMEM FAILURE.

E084 BEFORE IMAGE JCURNAL READ OPERATION HAS FAILED

E085 SYSTEM LIMIT ON THE NUMBER OF DATABASE FILES OPEN BY ONE TASK
EXCEEDED.

EQ86 BEFORE IMAGE JOURNAL WRITE OPERATION HAS FAILED.

EQ87 SYSTEM ERROR - HEAP ALLOCATION HAS FAILED.

E088 TOO MANY BEFORE IMAGE JOURNALS ALREADY EXIST FOR THIS
USER/DATABASE. PLEASE RECOVER THE DATABASE.

E089 THE BEFORE IMAGE JOURNAL VOLUME IS NOT MOUNTED.

E090 THE BEFORE IMAGE JOURNAL VOLUME IS OUT OF SPACE.

E091 THE BEFORE IMAGE JOURNAL VOLUME IS BEING USED EXCLUSIVELY.

E092 UNEXPECTED BEFORE IMAGE JOURNAL OPEN ERROR.

EQ93 BEFORE IMAGE JOURNAL RECOVERY BLOCKS INITIALIZATION ERROR.

E094 RECOVERY OPTICON FILE NOT FOUND FOR THIS DATABASE. PLEASE
CONTACT A RESPONSIBLE PARTY OR RUN DMS/TX UTILITY (DATABASE
CREATION).

E095 RECOVERY OPTION FILE NOT FOUND. IT IS LIKELY THAT YOUR IPL
VOLUME HAS BEEN CHANGED OR THAT THE DMS/TX UTILITY (DATABASE
CREATION) HAS NEVER BEEN RUN.

EQ096 RECOVERY OPTION FILE OPEN ERROR.

EQ97 RECOVERY OPTION FILE READ ERROR.

EQ98 RECOVERY OPTION FILE CLOSE ERROR.

E099 ROLLBACK BY THIS TASK HAS FAILED ON THIS DATABASE. NO FURTHER
FILES IN THIS DATABASE MAY BE OPENED BY THE PROGRAM.

E100 I0 ERROR WHILE READING RECOVERY BLOCKS.

E101 UNEXPECTED RETURN CODE FROM XI0 WHILE READING RECOVERY BLOCKS.

E102 SYSTEM ERROR - UNABLE TO FIND DBTB FOR COMMUNICATION TO SHARER.

E103 SYSTEM ERROR - UNABLE TO COMMUNICATE WITH THE SHARER - XMIT
FAILED.

E104 UPDATFDR ERROR WHILE ATTACHING BEFORE IMAGE JOURNAL TO
DATABASE.

E105 FILE MAY CONTAIN INCOMPLETE TRANSACTIONS. SOFTCRASH RECOVERY
IS REQUIRED BEFORE FURTHER UPDATE ACCESS.

E106 FILE INDEX STRUCTURE IS DAMAGED. COPY/REORG IS REQUIRED PRIOR
TO FURTHER UPDATE ACCESS.

E107 HEAP AREA OVERWRITTEN.

E108 UNEXPECTED ERROR WHILE UPDATING RECOVERY BLOCK.

E110 BEFORE IMAGE JOURNAL REWRITE ERRCR.

El1l SPARE BYTES IN DMS/TX UFB EXTENSION MUST BE SET TQ ZEROS.

El12 ILLEGAL DMS/TX OPEN MODIFIER VALUE (UFBDXOM).

E113 UFB VERSION NUMBER TOO HIGH.

ERROR
NUMBER MESSAGE

El14 RECOVERY BLOCK ALLOCATION SPECIFIED FOR UNSUPPORTED FILE
ORGANIZATION.

E1l15 ATTEMPT TO OPEN A DMS/TX FILE BUT DMS/TX IS NOT SUPPORTED ON’
THIS SYSTEM. PLEASE DETACH FILE FROM DATABASE.

E1l16 XLIB EXIT MUST BE SET WHEN UFBDXOMNOMODLIB IS SET.

E117 XFILE EXIT MUST BE SET WHEN UFBDXOMNOMODFILE IS SET.

Ell8 USE OF NO-CHECK AND NO-RECOVERY OPTIONS ILLEGAL IN SHARED MODE.

El19 ILLEGAL RECOVERY BLOCK ALLOCATION VALUE SPECIFIED FOR OUTPUT
MODE.

E120 SYSTEM ERRCR - SHARER BUFFER SPACE EXHAUSTED.

C.3 SVC OPEN RESPECIFY MESSAGES

These messages deal with situations where the user may successfully
continue either by supplying additional information or by correcting
information already supplied. Situations involving possession conflicts
or volume mounting are also handled by these respecification messages.
The user may always continue after a respecify message.

ERROR

NUMBER MESSAGE

ROO1 FILE IDENTIFICATION INFORMATION IS INCOMPLETE. PLEASE SUPPLY
THE MISSING INFORMATION BELOW.

RO02 PLEASE SUPPLY THE APPROXIMATE NUMBER OF RECORDS IN THE DISK
FILE TO BE CREATED. THIS VALUE WILL BE USED FOR INITIAL
DISK-SPACE ALLOCATION.

R0OO3 DEVICE SPECIFIED IS UNKNOWN OR NOT SUPPORTED. PLEASE
RESPECIFY.

R0O0O4 DEVICE SPECIFIED IS INVALID FOR THIS PROCESSING MODE. PLEASE
RESPECIFY.

ROOS THE PROGRAM IS NOT REQUESTING A CONSECUTIVE-PRINT FILE.
THEREFORE, THE FILE CANNOT BE ASSIGNED TO A PRINTER. PLEASE
SPECIFY ANOTHER DEVICE TYPE.

ROO6 DEVICE NUMBER INCORRECTLY SPECIFIED. PLEASE RESPECIFY DEVICE
(E.G. PRINTER 3). (NOTE--DEVICE NUMBER IS OPTIONAL AND MAY BE
OMITTED).

ROO7 DEVICE NUMBER DOES NOT CORRESPOND TO DEVICE CLASS. PLEASE
RESPECIFY DEVICE.

ROO8 NO PRINTER CURRENTLY AVAILABLE. ASSIGN OUTPUT TO DISK OR FREE
PRINTER FOR ALLOCATION.

RO13 THE FILE BELOW IS ALREADY OPENED BY THIS PROGRAM. PLEASE
SPECIFY ANOTHER FILE,

RO14 UNEXPECTED READFDR SVC ERROR.

RO14 FILE SPECIFIED NOT FOUND IN LIBRARY. PLEASE RESPECIFY
FILENAME.

RO14 LIBRARY NOT FOUND IN VOLUME TABLE OF CONTENTS. PLEASE
RESPECIFY LIBRARY.

RO16 THE FILE SPECIFIED IS IN USE AS A SYSTEM-ONLY PAGING FILE.

PLEASE RESPECIFY.

RO18 THIS FILE IS CURRENTLY IN USE AS A PROGRAM FILE. THEREFORE,
IT CAN ONLY BE OPENED IN INPUT MODE. PLEASE RESPECIFY THE
FILE.

RO20 UNEXPECTED CREATFDR SVC ERROR.

R0O20 FILE SPECIFIED ALREADY EXISTS. PLEASE RESPECIFY FILE.

RO20 VIOC FULL, NO ROOM FOR FILE LABEL. PLEASE SPECIFY ANOTHER
VOLUME.

R020 VOLUME FULL, NO ROOM FOR FILE. PLEASE SPECIFY ANOTHER VOLUME
OR USE A SMALLER FILE SIZE.

RO21 INVALID INFORMATION IN FILE LABEL. PLEASE RESPECIFY FILE.

R022 THE TAPE SPECIFIED BELOW IS AN NL-TAPE, BUT PROGRAM REQUIRES A

TAPE WITH A DIFFERENT LABEL TYPE. PLEASE RESPECIFY,

ERROR
NUMBER

MESSAGE

R024

THE FILE AT POSITION XXX WITHIN THE TAPE VOLUME IS
LOCCOKKKKKKXK . THIS DOES NOT AGREE WITH THE FILE SPECIFIED
BELOW. PLEASE RESPECIFY.

RO25

THE DEVICE SPECIFIED IS ALREADY IN USE BY THIS PROGRAM. PLEASE
RESPECIFY.

RO26

THE DEVICE SPECIFIED HAS BEEN LOGICALLY DETACHED AND IS
THEREFORE NOT AVAILABLE. PLEASE RESPECIFY.

RO27

THE PROGRAM REQUIRES XXXXXXXXXX. THE FILE SPECIFIED BELOW IS
XKKKKKX. PLEASE RESPECIFY.

RO28

THE PROGRAM REQUIRES A FILE CONTAINING XXXXX-CHARACTER
RECORDS. THE FILE SPECIFIED BELOW CONTAINS XXXXX-CHARACTER
RECORDS. PLEASE RESPECIFY.

RO29

A FILE SEQUENCE NUMBER OF ZERO IS INVALID. PLEASE RESPECIFY.

RO30

TAPE IO ERROR OCCURRED DURING TAPE POSITIONING OR LABEL
PROCESSING. IOSW = XXXXXXXX XXXXXXXX. PLEASE RE-MOUNT THE
TAPE VOLUME IN ORDER TO TRY AGAIN.

RO31

THE TAPE VOLUME IS WRITE-PROTECTED, AND THEREFORE CANNOT BE
PROCESSED IN OUTPUT OR EXTEND MODE. PLEASE PUT A WRITE-ENABLE
RING ON THE TAPE, AND RE-MOUNT THE VOLUME, OR USE (ENTER) TO
RESPECIFY.

RO32

THE UNSTRUCTURED DISKEITE VOLUME SPECIFIED FOR OUTPUT IS
CURRENTLY IN USE. PLEASE RESPECIFY.

RO33

THE PROGRAM IS REQUESTING A FILE THAT RESIDES ON AN
UNSTRUCTURED DISK VOLUME. THE FILE SPECIFIED BELOW RESIDES ON
A DISK VOLUME WITH A VTOC. PLEASE RESPECIFY,

RO34

THE INDEXED FILE SPECIFIED BELOW CAN NOT BE PROCESSED IN
EXTEND MODE. PLEASE RESPECIFY. (EXTEND MODE IS ONLY
SUPPORTED FOR CONSECUTIVE FILES.)

RO35

THE INDEXED FILE SPECIFIED BELOW WAS NOT CLOSED AT FILE
CREATION. THE FILE IS CURRENTLY NOT USEABLE AND SHOULD BE
RE-CREATED. PLEASE SPECIFY ANOTHER FILE.

RO36

THE FILE SPECIFIED BELOW WAS NOT CLOSED AT FILE CREATION.
THEREFORE, THE FILE LABEL INDICATES THAT THE FILE CONTAINS NO
RECORDS. IF YOU WISH TO ACCESS THE WHOLE FILE SPACE (MAXIMUM
NUMBER OF RECORDS), USE PF2 AND THE END-OF-FILE INDICATOR WILL

BE SET ACCORDINGLY. OTHERWISE, PLEASE SPECIFY ANOTHER FILE.

RO37

CODE = XX; UNEXPECTED OUTPUT-FILE SCRATCH ERROR. PLEASE
SPECIFY ANOTHER OUTPUT FILE NAME IN ORDER TO CONTINUE.

RO38

UNABLE TO FIND FILE SPACE ON ANY ELIGIBLE VOLUME. PLEASE
SPECIFY A SMALLER FILE, USE A PRIVATE VOLUME, OR RELEASE
(THROUGH SCRATCH) THE REQUIRED DISK SPACE.

RO39

THE DISKETTE VOLUME SPECIFIED BELOW IS WRITE-PROTECTED. PLEASE
RE-MOUNT THIS DISKETTE WITH WRITE-ENABLED, OR SPECIFY ANOTHER
FILE.

R040

THE FILE SPECIFIED BELOW ALREADY EXISTS. USE PF3 IF YOU WISH
TO SCRATCH THE EXISTING FILE AND CONTINUE. OTHERWISE, PLEASE
SPECIFY ANOTHER FILE NAME.

RO41

THE FILE SPECIFIED BELOW IS CURRENTLY IN USE AND CANNOT BE
SCRATCHED. PLEASE SPECIFY ANOTHER OUTPUT FILE NAME.

ERROR
NUMBER

MESSAGE

RO45

ENTER KEY USED WITH INVALID DEVICE SPECIFICATION BELOW. USE
PF4 KEY FOR MOUNT OPERATION. IF A MOUNT OPERATION IS NOT
REQUIRED, PLEASE USE THE ENTER KEY WITH DEVICE = DISK.

R047

SHARER RESPONSE CODE = XX-YYYY. CONSULT SHARER ERROR LIST FOR
EXPLANATION. PLEASE SPECIFY ANOTHER FILE IN ORDER TO CONTINUE.

RO48

INVALID VALUE ENTERED FOR PRINTER OPTION. FORM # MUST BE LESS
THAN 256. PRTCLASS MUST BE A LETTER (A-Z). COPIES MUST BE A
NUMBER BETWEEN 1 AND 32,767. PLEASE RESPECIFY.

RO49

THE FILE SPECIFIED BELOW IS A PROGRAM FILE WITH SPECIAL ACCESS
RIGHTS. ONLY A SECURITY ADMINISTRATOR MAY MODIFY THIS FILE.
PLEASE RESPECIFY.

R049

THE CURRENT USER DOES NOT HAVE THE REQUIRED ACCESS RIGHTS FOR
THE FILE SPECIFIED BELOW. PLEASE RESPECIFY.

ROS0

THIS FILE IS A PARTIAL FILE CREATED BY BACKUP FOR USE BY
RESTORE. IT MAY BE OPENED ONLY IN BAM OR PAM, WITH THE
PARTIAL FILE FLAG SET. PLEASE RESPECIFY.

RO51

THE SHARER HAS RUN OUT OF MEMORY FOR ITS CONTROL BLOCKS. THIS
FILE MAY BE OPENED SUCCESSFULLY AFTER ENOUGH MEMORY HAS BEEN
RELEASED (BY OTHER SHARED USERS).

RO52

THE FILE BELOW IS ALREADY OPENED IN SHARED MODE BY THIS
PROGRAM. PLEASE SPECIFY ANOTHER FILE.

RO53

FILE SPECIFIED NOT FOUND IN LIBRARY. PLEASE RESPECIFY
FILENAME.

RO54

LIBRARY NOT FOUND IN VOLUME TABLE OF CONTENTS. PLEASE
RESPECIFY LIBRARY.

RO59

THE VOLUME SPECIFIED IS MOUNTED FOR EXCLUSIVE USE. A FILE ON
AN EXCLUSIVE VOLUME MAY NOT BE SHARED. PLEASE SPECIFY ANOTHER
FILE (OR RE-MOUNT THIS VOLUME).

R060

THE PROGRAM REQUIRES A FILE WITH A DIFFERENT FILE-ORGANIZATION
FROM THE FILE SPECIFIED BELOW. PLEASE RESPECIFY.

RO61

THE PROGRAM REQUIRES A FILE WITH A DIFFERENT RECORD SIZE FROM
THE FILE SPECIFIED BELOW. PLEASE RESPECIFY.

RO62

THE DISK VOLUME SPECIFIED IS NOT MOUNTED. PLEASE MOUNT THE
DISK VOLUME OR RESPECIFY.

RO63

THE FILE SPECIFIED BELOW IS CURRENTLY IN NON-SHARED USE.
PLEASE RESOLVE THIS POSSESSION CONFLICT OR RESPECIFY.

RO64

THE CURRENT USER DOES NOT HAVE THE REQUIRED ACCESS RIGHTS TO
SCRATCH THE FILE SPECIFIED BELOW. PLEASE SPECIFY ANOTHER FILE.

RO65

THE RETENTION PERIOD FOR THE FILE SPECIFIED BELOW HAS NOT
EXPIRED. THE FILE CANNOT BE SCRATCHED UNLESS THE EXPIRATION
DATE IS MODIFIED. PLEASE SPECIFY ANOTHER FILE OR USE THE
COMMAND PROCESSOR TO MODIFY THE EXPIRATION DATE AND SCRATCH
THIS FILE.

RO66

THE CONSECUTIVE FILE SPECIFIED BELOW CAN NOT BE OPENED IN
SHARED MODE. PLEASE RESPECIFY.

RO67

THE FIRST CHARACTER OF A LOG-FILE BEING OPENED IN SHARED MODE
MAY NOT BE "#". PLEASE RESPECIFY

RO68

THE PROGRAM WILL NOT ACCEPT THIS FILE FROM TAPE. PLEASE
RESPECIFY.

ERROR

NUMBER MESSAGE

RO69 END OF TAPE REACHED WHILE POSITIONING TAPE BY FILE SEQUENCE
NUMBER.

RO70 VOLUME FULL, UNABLE TO ADD ANOTHER FILE ON THE TAPE. PLEASE
RESPECIFY.

RO71 THE TAPE FILE SPECIFIED BELOW IS NOT ON THE TAPE VOLUME.
PLEASE RESPECIFY.

RO72 THE DEVICE SPECIFIED IS NOT A TELECOMMUNICATION DEVICE. PLEASE
RESPECIFY.

RO73 CONTROL BLOCKS (PPB, LCB) FOR THIS TC DEVICE ARE NOT PROPERLY
SET UP. PLEASE RESPECIFY.

RO74 UNABLE TO LOAD THE MICROCODE FOR THIS TC DEVICE. PLEASE
RESPECIFY.

RO75 UNABLE TO CONNECT THE TC LINE, OR INCORRECT CONNECT PARAMETERS
SUPPLIED. PLEASE RESPECIFY.

RO76 THE PROGRAM HAS SUPPLIED AN INVALID ADDRESS FOR THE CONNECT
PARAMETER. PLEASE RESPECIFY.

RO77 THE TAPE VOLUME IS NOT THE CORRECT SEQUENTIAL VOLUME FOR THIS
TAPE FILE. PLEASE RESPECIFY.

RO78 EXTEND MODE PROCESSING FOR IBM LABELED TAPE IS NOT SUPPORTED.
PLEASE RESPECIFY.

R0O80 THE PROGRAM HAS ATTEMPTED TO OPEN A RE-RESTART FILE, BUT THE

FILE SPECIFIED IS NOT A RESTART FILE. PLEASE RESPECIFY.

C.4 DMS FUNCTION REQUEST CANCEL MESSAGES

The file status message (ID = 000) covers all file status values
including cases where the significance of the FS value is determined by
additional factors such as current function request and file
organization. The file status message appears as a cancel message if
UFBERRAD = 0. Otherwise, an acknowledge message is issued before taking
the error exit. (The acknowledge message may be masked out by using
UFBF4NOACK.)

Other DMS cancel messages reflect unusual conditions caused mainly by
incorrect user modification of UFB fields, unexpected errors, or invalid
block contents for indexed file processing.

These messages may be issued as a result of any one of the five DMS
function requests or by the DMS CLOSE statement (for the last I/O
operation on the file).

01-d

ERROR

_NUMBER MESSAGE

POSSIBLE CAUSE

000 ERROR DETECTED AND USER ERROR EXIT NOT IN USE. Check meaning of File Status code for cause of
FILE STATUS = XX. error message. (Refer to page 354.3.)
001 INVALID FIELD FOUND WHILE PROCESSING FILE X Invalid buffer status flags in the UFB.
(UFBBCBFLAGS) .
002 INVALID BLOCK NUMBER DETECTED BY SVC XIO UFBBUFBLOCK contains invalid data. Can be
(UFBBUFBLOCK) WHEN ATTEMPTING DISK 1/0. caused by invalid data in Data Link Chain of the
prior block.
003 INVALID FIELD FOUND WHILE PROCESSING FILE X Cannot have files with record lengths of zero.
(UFBRECSIZE=0).
004 INVALID BUFFER POOL INFORMATION DETECTED AT There is an error in the Buffer Control Entry.
F_FUNCTION REQUEST.
005 INVALID OFB POINTER FOUND (UFBOFB). OFB Pointer in the UFB contains an address which
is not an QFB.
006 UNEXPECTED ERROR FOUND WHILE ATTEMPTING TO SVC return code is incorrect. This is an indi-
ALLOCATE ADDITIONAL DISK SPACE. cation of a serious DMS problem.
007 VTOC I/0 ERROR OCCURED DURING SVC ALEX. A VTOC 10 error occurred while trying to obtain
an additional extent. ALEX is an acronym for
: Allocate Extent.
008 UNABLE TO ALLOCATE DISK EXTENT SINCE ALL ALEX return code = 20. No work space available
BUFFERS OR GETMEM POOL IN USE. for UPDATFDR.
009 MAG TAPE READ OPERATION FAILED; NO DATA WAS Residual count greater than or equal to block
TRANSFERRED . size--probable IQP firmware error.
010 FUNCTION-REQUEST ISSUED ON NON-OPENED FILE. Before performing a task within a file, the file
must first be opened.
on SECOND PHYSICAL I/0 OPERATION ISSUED ON FILE Occurs when two XIO's in a row were performed
WITHOUT WAITING FOR PREVIOUS I/0 COMPLETIQN. with no CHECK operation between them.
012 UNUSED
013 ERROR FOUND WHILE READING FILE INDEX. THIS Invalid condition exists in the index block

FILE SHOULD BE REORGANIZED IN ORDER TO GENERATE

THE INDEX CORRECTLY.

currently being read.

I1-0

ERROR
_NUMBER MESSAGE POSSIBLE CAUSE

014 INVALID RECORD FORMAT DETECTED. ERROR OCCURRED A record within a block contains garbage.
WHEN EXPANDING COMPRESSED DATA RECORD.

015 INVALID BLOCK NUMBER FOUND WHILE BUILDING OR Occurs when contents of a Data Link Chain in a
UPDATING THE FILE INDEX. data block contains incorrect data. This error
FILE INDEX. generated when data lenath _in block exceeds 7FC.

016 RESIDUAL COUNT NOT ZERO AFTER REWRITE OPERATION On a rewrite all bytes are subtracted from the
(LARGE BUFFER). block length, the difference must equal zero.

This error occurs when it is not.

017 INVALID UFB FIELD FOUND FOR REWRITE OPERATION User damaged segment 2 (UFB) data.
(OFFSET=0).

018 BUFFER POOL ERROR DETECTED. LOCKED BUFFER User damaged segment 2 (UFB or BCT) data.
(BCE) IN CONTROL TABLE DOES NOT AGREE WITH
CURRENT BUFFER (BCB).

019 BLOCK TYPE (BCE) IN BUFFER POOL DOES NOT AGREE Buffer Control Entry in the buffer pool is
WITH CURRENT READ REQUEST. invalid.

020 BUFFER POOL ERROR DETECTED. BLOCK TYPE (BCE) Block Type in the buffer pool is invalid.
IS INVALID FOR JO INITIATION.

021 BUFFER POOL ERROR DETECTED. BUFFER (BCE) WITH User damaged UFB or BCT.
10 IN PROGRESS NOT ON BCTBL CHAIN OR INTERNAL
LOCK QTHER BCE OPERATION FATILED.

022 ERROR DETECTED IN THE ALTERNATE INDEX DATA Alternate index block contains a primary key
STRUCTURE, UNABLE TQ LOCATE THE RECORD. value which is not in any data block.

023 TRACE ROUTINE FOR DUPLICATE KEY VALUES FAILED. The offset into the alternate index block is
ALTERNATE TREE NOT MODIFIED. invalid for a user.

024 UNEXPECTED ERROR OCCURRED DURING FILE RESTORE On a WRITE or REWRITE to an alternate-indexed

OPERATION. WRITE OR REWRITE FUNCTION FOR
ALTERNATE INDEX FILE FAILED DUE TO DUPLICATE
KEY ERROR, AND ATTEMPT TO RESTORE FILE WAS
UNSUCCESSFUL .

file, if a duplicate key is encountered on a
path with no duplicates allowed, the system
attempts to delete the record from the primary
tree and all alternate trees on which it has
been written. This error occurs if the attempt
fails unexpectedly. User should attempt
COPY/REORG.

C.5 SVC CLOSE CANCEL MESSAGES

These messages refer to unexpected error conditions that rarely occur.

ERROR

NUMBER MESSAGE

EQ01 SVC CLOSE ISSUED FOR NON-OPENED FILE.

EQ02 DEALLOCATION ERR; OFB NOT FOUND.

E003 DEALLOCATION ERR; IORE QUEUED.

E004 CODE = ; UPDATFDR SVC ERR. NO DEALLOCATION.

E005 UNABLE TO DEALLOCATE BUFFER DUE TO INVALID BUFFER ADDRESS OR
BUFFER LENGTH IN UFB.

EQ006 INVALID UFB POINTER RETURNED AFTER LAST DMS OPERATION.

E007 CODE = XX; SCRATCH SVC ERROR. FILE CLOSED OK, BUT NOT
SCRATCHED.

EQO8 INVALID UFB ADDRESS PRESENTED TO SVC CLOSE.

E009 UNEXPECTED ERROR OCCURRED WHILE ATTEMPTING TO CLOSE FILE
(SHARED MODE).

EO10 UNABLE TO DEALLOCATE BUFFER WITHIN BUFFER POOL DUE TO INVALID
ADDRESS OR LENGTH IN BUFFER CONTROL TABLE ENTRY.

EO12 FAIL TO LOCATE PROGRAM BUILDALT. UNABLE TO BUILD ALTERNATE
INDEXES.

EO013 FILE LABEL NOT UPDATED (). USER PROGRAM HAS INCORRECTLY
MODIFIED THE UFB.

EQO14 FILE LABEL NOT UPDATED (). VTOC ERROR DETECTED.

EQ015 SYSTEM ERROR - FREEHEAP FAILED.

E016 I/0 ERROR WHILE UPDATING RECOVERY BLOCKS.

EQl17 BEFORE IMAGE JOURNAL READ OPERATION HAS FAILED,

EQ18 BEFORE IMAGE JOURNAL REWRITE OPERATION HAS FAILED.

EO19 BEFORE IMAGE JOURNAL CLOSE FAILED.

EQ20 BEFORE IMAGE JOURNAL SCRATCH FAILED.

E021 UNEXPECTED ERROR WHILE UPDATING RECOVERY BLOCK.

E022 FREE ALL FAILURE WHILE CLOSING RECOVERED DMS/TX FILE

E023 SYSTEM ERROR - TASK DATABASE BLOCK (TDB) DEALLOCATION FAILED.

EQ25 NO BUFFER SPACE AVAILABLE TO UPDATE RECOVERY BLOCKS.

C-12

C.6 FILE STATUS (FS) CODES FOR DMS

DMS returns to the user program by means of the RETURN
macroinstruction. Registers 2 through 15 are always restored. Register
0 (RO) is also restored unless UFBEODAD or UFBERRAD is used--RO then
contains the normal return address. Register 1 (Rl) is also restored
unless the Read-No-Data option has been used—-R1l then contains the record
address.

DMS indicates the result of the function request through file status
bytes UFBFS1 and UFBFS2. These bytes generally contain a value of X'30'
- X'39', corresponding to the ASCII characters 0 through 9, called the
File Status (FS) Code. Within this manual file status codes are
represented as character values. File Status Byte 1 (UFBFS1l) indicates
the general type of file status and File Status Byte 2 (UFBFS2) indicates
a specific item within the group. The various UFBFS1 groups are defined
as follows:

0 - Successful Completion

1 - End of File

2 - Record Not Found (Disk File)

3 - I/0 Error or Boundary Violation

4 — ADMS Codes

6 - Cancel

7 - Time-Out

8 - Special Shared Mode Errors

9 - Miscellaneous -- This Group includes errors caused by

incorrect user-supplied information; e.g., Invalid Function,
Invalid Mask, Invalid Length, or Invalid Format.

Following is a list of File Status codes with a description of each
code and the conditions under which it can occur.

C-13

v1i-D

TJATUS FOR NORMAL RETUR

FS FUNCTION FILE
MEANIN vl ANIZATION MODE CAUSE
00 Successful N/A Disk, N/A N/A N/A
Completion. Tape,
Printer
0X Successful N/A Workstation N/A N/A UFBFS2 ('X' in code field)
Completion. contains the AID byte.
02 Successful Read Disk Alternate N/A After successfully complet-
Completion. Indexed ing a READ KEYED or READ
NEXT on an alternate key
path, the return code is 02
indicating at least one more
record exists with the same
alternate key value.
EILE STATUS FOR UFBEQDAD RETURN
FS FUNCTION FILE
CODE MEANING REQUEST DEVICE ORGANIZATION MOOE CAUSE
10 End of File READ NEXT Disk or N/A Input, End of file was reached.
Reached. Tape I/0, or
Shared

ST1-0

F DAD RET '
FS FUNCTION FILE
T ANIZATION MODE CAUSE
n End of Volume. READ NEXT Tape N/A N/A This code is returned if the
user program indicates (by
UFBTFLGEODEOV) that no auto-
matic volume switch is
desired.

21 Record Key Out of WRITE Disk Indexed Output The current record key is
Sequence or Dupli- not greater than the pre-
cate Key Found ceding record key.

During Indexed
File Creation,

22 Duplicate Key WRITE Disk Indexed 1/0 or The record to be added to

Value. Shared the file has the same key as
an existing record in the
file.

23 Record Not Found READ Disk Consecutive Input or The supplied record number
in File. RELATIVE I/0 is equal to zero or greater

- than the highest record num-
ber in the file.

23 Record Not Found READ KEY Disk Indexed Input, There is no record in the
in file. or START I/0*, or file containing a key equal

(Equal) Shared to the supplied key.

23 Record Fot Found READ or Disk N/A 1/0 The supplied block number is
in File, REWRITE bevond the end of the file.

24 Primary Extent WRITE Disk Indexed Output Primary extent exceeded.
Exceeded (Indexed The record cannot be added
File Creation). to the file. The file may be

closed successfully and then
opened in I/0 Mode to add
more_records.

24 Record Not Found. START Disk Indexed Input, The supplied key is greater
Key Supplied (Greater I1/0, or than the highest key value
Greater Than Key Than) or Shared in the file.

Value in File. (Greater
Than or

Equal)

E STAT BERRAD RETURN

FS FUNCTION FILE
CODE MEANING REQUEST DEVICE ORGANIZATION _ MQDE CAUSE

30 Permanent I0 Error N/A N/A N/A N/A A physical I/0 operation was
IOSW = XXXXXXXX attempted and a hardware
XXXXXXXX. error occurred. The error

is logged separately by SVC
CHECK. This file status is
returned for hardware errors
only; it is not returned for
Dbrogram related errors.

34 Workstation Order READ or Workstation N/A 1/0 Invalid information supplied
Check. REWRITE in the workstation order

area; i.e., Invalid Cursor

Position: Row 25 Column 10.

34 Boundary Violation WRITE Disk Consecutive Output There is no more space in
(Extent Cannot Be or the file for additional re-
Obtained). Extend cords. An additional extent

is unavailable because
either the maximum number of
extents are already allo-
cated or the extent size is
not available on volume.

91-0

34 Boundary Violation WRITE Disk Indexed I/0 or There is no more space in
(Extent Limit of Shared the file for additional re-
13 Has Been cords (as above) due to ex-
Reached). tent 1imit (13) exceeded or

no available extent on vol-
ume. For Shared mode, an
additional extent may also
be unavailable due to maxi-
mum number of additional ex-
tents per run already
allocated.

60 DMS Cancel Condi- N/A Disk or N/A Shared User requested suppression

tion Occurred; Tape of all DMS-Cancel messages.

Cancel Message Process the file in non-

Suppressed. Shared mode to set the error
message flag. If a DMS
error condition code with
FS=60-019 occurs, refer to
DMS error code 019 in
Appendix C.

70 Shared Time-0Out N/A N/A N/A N/A This feature will be avail-
Condition. able with the Advanced
Sharer.

LT-0

)

BERRA !
FS FUNCTION FILE
CODE MEANING REQUEST DEVICE ORGANIZATION MODE CAUSE

80 Invalid Key Area READ KEYED N/A Indexed Shared UFBKEYAREA does not point to
Found for Read Key or START the key embedded in the rec-
or Start Key. KEYED ord; i.e., specifies the key

has a value of one for a
length of five but it actu-
ally has a value of two for
a length of five.

81 Invalid Read No- READ NO- Disk Indexed or Shared Attempting to do a Read No-
Data Issued. DATA Consecutive Data in Shared mode which is

an invalid function request.

82 Label Update Oper- N/A N/A N/A Shared Internal error by DMS. The
ation after Last file label (FDR1) is updated
Function Was un- whenever any of the follow-
successful. ing fields are modified by

DMS: Root Block Number;
First Data Block Number; or
Count of Levels in the (Pri-
mary) Index. If UPDATFDR is
unsuccessful, FS equals 82
is_returned.

83 The Sharing Task N/A N/A N/A Shared Sharing task is functioning
Has Terminated and incorrectly. Must IPL the
Must be Restarted. System to restart Sharer.

84 Invalid Record N/A N/A N/A Shared User Attempted to rewrite a
Size or Area Sup- variable length record whose
plied for Shared length is greater than the
Request. maximum record size speci-

fied in the VTOC.

85 Update Access WRITE, N/A N/A Shared User Attempted to update a
Denied. REWRITE, file in Shared mode but has

or DELETE Read-Only access.

86 Resource Control N/A N/A N/A Shared Incorrect sequence of Shared
Error. function requests; e.g., At-

tempting to do a Start Hold
on a file while another file
is already held.

87 Deadlock error READ HOLD Disk Indexed Shared Your task attempted to hold

for DMS/TX files

or
START HOLD

a requested resource and
deadlocked with another
task, preventing both tasks
from proceeding. Upon
expiration of the TIMEOUT,
oMS performs transaction
rollback, then issues this
file status to each file in
which resources were rolled
back.

81-D

B ETURI '

FS FUNCTION FILE
CODE MEANING REQUEST DEVICE ORGANIZATION MODE CAUSE
95 Invalid Function REWRITE, Disk Indexed 10 or Invalid function sequence
Sequence. DELETE, or Shared similar to consecutive file
READ NEXT case above occurred. Also
HOLD returned if Read Next Hold
issued without a file block
HELD (invalid sequence).

95 READ RELATIVE In- READ RELA- Disk Consecutive Input, Read Relative is only valid
valid for Variable TIVE or ID for fixed-length consecutive
Length Records. files.

95 Invalid Function N/A N/A N/A N/A valid function requests are
Request. described for the given com-

binations of device class,
open mode and file organiza-
tion supported by DMS.
After a file has been
opened, an invalid function
request is flagged with FS
equals 95. Example:
attempting to write a record
while the file is opened in
Input mode.

95 Invalid Function REWRITE Disk N/A Shared Record was not read with the

Sequence. HOLD option. For Shared
Mode, an intervening READ
with HOLD on another file
may have released the HOLD.

A function sequence error
exists since the record can-
not be rewritten unless it
is_'HELD'.

95 REWRITE Function REWRITE Disk Consecutive 10 Consecutive files can be re-
Invalid for Con- written only for fixed-
secutive File with length records.

Compressed Records.

Invalid Function N/A N/A N/A N/A N/A

Issued on Alter-

nate Indexed File.

95 READ NEXT Issued N/A N/A N/A N/A N/A
on Indexed File)
when Current Posi-
tion Was Undefined.

95 Invalid Function N/A N/A N/A N/A N/A
Issued in Shared
Mode.

95 Invalid START START Disk Consecutive Input, START function modifier byte
Function (Modifier or Indexed 10, or does not correspond to a
Byte Error) Shared valid START option.

85 Primary Key Value REWRITE Disk Indexed or 10 or Attempted to change the val-
Was Changed when Alternate Shared ue of the Primary Key while
Rewriting an Indexed rewriting a record.

Indexed Record.

)

61-0

RRAD RETURN !
FS FUNCTION FILE
(o(1]3] 3 MEANING REQUEST DEVICE ORGANIZATION MODE CAUSE

96 Invalid Disk Add- N/A N/A N/A N/A Error usually not caused by

ress Detected. user program. Error can
occur for invalid disk ad-
dress in the extent 1ist
(possibly caused by incor-
rect device arrangement at
SYSGEN). This file status
is returned only if the IOSW
indicates invalid command or
data address. Under RAM,
DMS supplies the buffer area
and command; thus, FS = 96
iS_3 rare error under RAM.

96 Write Operation N/A N/A N/A N/A An attempt was made to write
Attempted on Write- to an open write-protected
Protected Disk. diskette (this can occur if

a user remounts a diskette
changing it to write-pro-
tected but not using the
MOUNT command).

96 Invalid Data Area READ, N/A N/A Input, Data area location is inval-
Location or Align- REWRITE, 10, or id or alignment is not on a
ment (I0 Command or WRITE Output page boundary. Data area
error). (Block location is checked with

Level) data area length to ensure
that only the stack, static
area, or buffer area is
being used.

96 Same as 96 above. READ or Workstation N/A 10 Invalid data area location

REWRITE or alignment (word align-
ment required.

97 Invalid Length REWRITE Disk Indexed N/7A Invalid length is indicated
when Rewriting when attempting to rewrite a
Variable Length variable-length record whose
Record. Tength is 1longer than the

value established in
UFBRECSIZE.

97 Same as 97 above. REWRITE Disk Consecutive I0 Invalid, cannot change re-
cord length of a consecutive
file.

97 Invalid Length WRITE N/A Output, Invalid length is indicated
Supplied when Shared, when attempting to write a
Writing Variable- 10, or variable-length record whose
Length Record. Extend length is greater than the

value established in
UFBRECSIZE .

0Z-20

FS
97

R ERRAD RETURN nt'

FUNCTION FILE
_REQUEST BEVICE

ORGANIZATIQN

MODE

CAUSE

Invalid Record- N/A N/A N/A
Prefix Found in

Variable-Length

Record.

N/A

Error encountered while DMS
is attempting to extract a
variable-length record from
its buffer. Error should
not normally be encountered
by the user.

97

Invalid Length N/A
Specified for 10
Operation.

Printer, N/A
Tape, or
Workstation

N/A

Length specified is not val-
id for the device. For the
printer, length 1is invalid
if it equals zero or is lar-
ger than the length speci-
fied at SVC OPEN. For the
workstation, Tength is
invalid if data length and
starting row cause screen
overflow. For tape, length
is invalid if a long block
or a short block (with non-
integral number of records)
is read.

98

Invalid Alternate WRITE or Disk Alternate
Tree Mask Supplied REWRITE Indexed
on Write or Re-

write Function.

Output,
I0, or
Shared

Alternate key mask refer-
ences a nonexistent alter-
nate key. For Write or Re-
write, the user-supplied
mask must indicate valid
ALT-trees and the alternate
key fields must fall within
the record; otherwise, FS=98
is returned. NOTE: A mask
of zero is always valid.

99

Invalid Format N/A N/A N/A
Found for Current
File Block.

N/A

A block within a variable-
length record file has an
invalid prefix, a VLEN
record has an invalid
prefix, or a compressed
record has an invalid format
when expanded.

APPENDIX D
DMS GETPARM SCREENS AND PROCEDURE LANGUAGE

D.1 INTRODUCTION TO GETPARMS

The VS Operating System supports a supervisor call, known as the
GETPARM SVC, which solicits and accepts runtime parameter information,
displays runtime messages and awaits their acknowledgement.
GETPARM-generated prompts appear on the workstation screen during normal
execution. These prompts solicit parameter information from a user or
from a controlling procedure. The GETPARM SVC verifies values entered
from either source for wvalidity. If the wvalues entered are not
acceptable, the GETPARM SVC responds with an error message.

GETPARM processing differs from other methods of obtaining runtime
information primarily because it can interface with a procedure (refer to
the VS Procedure Language Reference for further information on coding
Procedure Language). A procedure is the preferred source of information
for a GETPARM request. Thus, GETPARM prompts never appear on the
workstation screen when they are satisfied by a Procedure Language ENTER
statement. When you use a Procedure Language DISPLAY statement, values
supplied in the procedure are displayed on the workstation screen as
modifiable defaults, overriding any defaults supplied in the program.
The ENTER and DISPLAY Procedure Language instructions facilitate runtime
specification of file definition parameters.

D.2 THE STRUCTURE OF A GETPARM

A parameter reference name (prname) identifies the program's GETPARM
request for each file. The prname for each request 1is, in general,
unique within that program.

Many GETPARM requests contain one or more modifiable fields into
which a user or a procedure can enter information. A keyword identifies
each of these fields. When a GETPARM request appears, the keyword
displayed on the screen for each field provides a description of the
information to be supplied for that field. Also, many GETPARM requests
solicit a PF key response (such as 16 = Exit Program). No keyword is
associated with a PF key choice; you specify only the PF key number
itself.

D.3 ASSOCIATING A PROCEDURE WITH A GETPARM

Within a procedure, each ENTER or DISPLAY statement supplies
parameters for a single GETPARM request. The prname of a specific
GETPARM request associates the request with a particular ENTER or DISPLAY
statement. You can assign any prname to a GETPARM request. You specify
the modifiable fields and their keywords for user-defined GETPARM
requests.

When a procedure supplies parameters, keywords in the ENTER or
DISPLAY statement associate the specified values with the fields to which
they are to be assigned in the GETPARM request. In this case, the
procedure passes the values associated with keywords to the corresponding
keyword-identified fields in the GETPARM request. If the procedure does
not assign new values to fields, they retain the default values supplied
in the program or from the user defaults.

Refer to the VS Procedure Lanquage Reference for more information on
the Procedure Language and the use of GETPARM requests.

D.4 DMS FILE DEFINITION GETPARM SCREENS

DMS issues the following GETPARM screens to enable you to define DMS
file parameters at runtime. Associated with each screen is a simple
Procedure Language program to supply values to the modifiable fields of
the screen.

D-2

Figure D-1. GETPARM Screen for Input File Definition

Figure D-2. GETPARM Screen for Output File Definition

D-3

The procedure shown in Example D-1 supplies GETPARM file definition
parameters to the screens shown in Figures D-1 and D-2 without displaying
those screens on the workstation.

Example D-1. Procedure for Figures D-1 and D-2 (Non-display)

PROCEDURE

RUN ZOOPRG in ZOOLIB on ZOOVOL

ENTER ZOOOUT FILE = NEWZOO, LIBRARY = ZOODATA, VOLUME = ZOOVOL,
RECORDS = 20

ENTER ZOOIN FILE = INZOO, LIBRARY = ZOODATA, VOLUME = ZOOVOL

RETURN

The procedure shown in Example D-2 supplies GETPARM file definition
parameters to the screens shown in Figures D-1 and D-2. The keyword
values are displayed on the screens as modifiable defaults.

Example D-2. Procedure for Figures D-1 and D-2 (Display)

PROCEDURE

RUN ZOOPRG in ZOOLIB on ZOOVOL
DISPLAY ZOOOUT FILE = NEWZOO, LIBRARY = ZOODATA, VOLUME = ZOOVOL,
RECORDS = 20

DISPLAY ZOOIN FILE = INZOO, LIBRARY = ZOODATA, VOLUME = ZOOVOL
RETURN

D-4

,INFORMATION REOUIRED BY PROGRAM EDITOR
70 DEFINE 20010 ‘
G ACTIVE SUBPROGRAM IS 200PGM

e PLEASE ASSIGN " 20010 (TO BE UPDATED BY THE PROGRAM)
T0 Assrsn THIS FILE TO A DISK FILE, PLEASE SPECIFY: : B
o FILE = uvnzno** IN LIBRARY ZOODATA' ON VOLUME = ZOOVOL

. DEVICE = DISK**#mx=x

Figure D-3. GETPARM Screen for Update File Definition

The procedure shown in Example D-3 supplies GETPARM file definition
parameters to the screen shown in Figure D-3, The keyword values are
displayed on the screens as modifiable defaults. You can write this
procedure with either a DISPLAY or ENTER statement.

Example D-3. Procedure for Figure D-3
PROCEDURE
RUN ZOOPRG in ZOOLIB on ZOOVOL

DISPLAY ZOOIO FILE = UPDZOO, LIBRARY = ZOODATA, VOLUME = ZOOVOL
RETURN

APPENDIX E
SAMPLE ASSEMBLY LANGUAGE PROGRAMS

E.1 RAM ALTERNATE INDEXED FILE UPDATE

PROGRAM

Je J¢ e Je e Je Je e e g de de e K K de de o K do e K de e KK de ke Kk e de e e K de e de de K e de ke K de e K e & de de e dde e de de ke ke ke ke ke ok ke ke ko ok ke ok ok

Demonstration program - Alterna
The places in the program where
re-opened are convenient points
order to cancel the program and

Programmer: G. Morrow
Date: 10/83

* ¥ * ¥ ¥ ¥ ¥ ¥ ¥

te—-indexed file manipulations
the file is closed and then
to set breakpoint traps in
inspect the file via DISPLAY.

* F ¥ X ¥ ¥ ¥ X *

e Je e e Je e Je Je Je e Je Je de Jo Je Je e de e Je K de K K e Je de Fe do e ke de ke do K he K K K e de e de e de e Fe g e dede de do ke do ke de Ko ke ke ke de e ke de ke ek ke ok ke

PRINT NOGEN
*

* Program equates
*
REGS

RUFB EQU R11
RAXD1 EQU R10
RWORK EQU R9
RALTKEY EQU RS
RPKEY EQU R7
*

* Set up basic addressability.
* N
ALTDEMO CODE
BALR EP,O0
USING *,EP
LR R12,R14
AL R12,=R(ALTSTAT)
USING ALTSTAT,R12
LA RUFB,ALTFILE
USING UFB,RUFB
USING AXD1,RAXD1

OPEN UFB=ALTFILE,MODE=0OUTPUT
OPEN UFB=WSFILE,MODE=IO
LA RAXD1,AXD

System register equate macro
R11 will address ZUFB

R10 will address AXDl1

R9 is work register

R8 holds alternate key

R7 holds primary key

Address this code

Tell the assembler

(R12) = static base pointer
Add offset of program static
Tell assembler where static is
Address the data file UFB

UFB references use R11l

AXD1 references use R10

Open the data file for output
Open the workstation
Address the AXD1 block

000100
000200
000300
000400
000500
000600
000700
000800
000900
001000
001100
001200
001300
001400
001500
001600
001700
001800
001900
002000
002100
002200
002300
002400
002500
002600
002700
002800
002900
003000
003100
003200
003300
003400
003500
003600
003700
003800

* ¥ ¥ ¥

AK2: 2100 thru 2001 by -1. Enable both alternate paths.
WRTLCOP CVD RPKEY, PACKED Convert primary key to decimal
UNPU PKEY(4),PACKED(8) Then to display format in record
MVC ALTKEY1,PKEY Alternate key #l = primary key
MVI ALTKEY1l,C'l' Add 1000 to alt key #1

*
*
*

*
*
*

*
*
*

LA RPKEY, 1 Initialize primary key reg
LA RALTKEY, 2100 Ditto alternate key reg
LA RWORK, 100 Use work reg as loop counter

MVC SCRNMSG(9),=C' Writing ' Header to screen

Write 100 records - PK: 1 thru 100; AKl: 1001 thru 1100;

CVD RALTKEY,PACKED Convert alt key #2 to decimal

UNPU ALTKEY2(4),PACKED(8) Then to display format in record

MVC AXDIMASK(2),BOTH Set mask for both alt paths
JSI =A(DISP) Display the record as set up
WRITE UFB=ALTFILE Write record to disk

LA RPKEY, 1(,RPKEY) Increment primary key reg

BCTR RALTKEY,O0 Decrement alternate key reg
BCT RWORK,WRTLOOP Loop until 100 records written

Close the file and re-open it in IO mode.

CLOSE UFB=ALTFILE Close the data file
OPEN UFB=ALTFILE,MODE=IO Re-open the data file

Address the AXD1 block.

L RAXD1,UFBALTPTR Load AXD1 pointer from UFB
LA RAXD1,0(,RAXD1) Clear the high byte

Set up to read the file sequentially along alternate path #l1.

MVC ALTKEY1(4),=XL4'0Q' Set alt key #l1 to binary zeroes
MVI AXDI1ALTINX,1 Set key of reference to path #1
LA RWORK , ALTKEY1 Get address of alternate key #l
ST RWORK , UFBKEYAREA Set UFB key pointer to it
START GE,UFB=ALTFILE Start at 1st rec on alt path #1
LA RWORK , RWRTEND Get end-of-data address
ST RWORK , UFBEODAD Store in UFB
MVC SCRNMSG(9),=C'Rewriting' Header to screen
*
* Read file sequentially along Alternate Path #1 in pairs of records.
* For the first record of each pair, remove the record from the second
* alternate path. For the second record of each pair, remove the
* record from the first alternate path. When done, the records with
* odd primary keys are enabled on Alternate Path #1 and the records
* with even primary keys are enabled on Alternate Path #2.
*
RWRTLOOP READ HOLD,UFB=ALTFILE Read first record of pair
MVC AXDIMASK(2),PATH1 Enable only lst alt path
JSI =A(DISP) Display the record
REWRITE UFB=ALTFILE Rewrite the record

E-2

003900
004000
004100
004200
004300
004400
004500
004600
004700
004800
004900
005000
005100
005200
005300
005400
005500
005600
005700
005800
005900
006000
006100
006200
006300
006400
006500
006600
006700
006800
006900
007000
007100
007200
007300
007400
007500
007600
007700
007800
007900
008000
008100
008200
008300
008400
008500
008600
008700
008800
008900
009000
009100

~

READ HOLD,UFB=ALTFILE
MVC AXDIMASK(2),PATH2
JSI =A(DISP)

REWRITE UFB=ALTFILE

B RWRTLOOP
*

Read second record of pair
Enable only 2nd alt path
Display the record
Rewrite the record

Loop until EOD exit taken

* Close the file and re-open it in IO mode.

*

RWRTEND CLOSE UFB=ALTFILE
OPEN UFB=ALTFILE,MODE=IO
*

* Address the AXD1l block.
%*

Close the data file
Re-open the data file

Load AXD1l pointer reg from UFB
Clear the high byte

Set up to read the file sequentially along Alternate Path #2. (This
means we will be reading in reverse primary key order because of the

Set alt key #2 to binary zeroes
Set key of reference to path 2
Get address of alt key #2

Set UFB key pointer to it

Position to first record on path

Get addr of end-of-data routine
Set it down in UFB

L RAXD1,UFBALTPTIR

La RAXD]1,0(,RAXD1)
*
*
*
* way the records were originally set up.)
*

MVC ALTKEY2(4),=XL4'0"'

MVI AXD1ALTINX, 2

LA RWORK ,ALTKEY2

ST RWORK , UFBKEYAREA

START GE,UFB=ALTFILE

LA RWORK , DELETEND

ST RWORK, UFBEODAD

MVC SCRNMSG(9),=C'Deleting ' Header to screen
*
* Read file sequentially along Alternate Path #2 and delete every
* other record encountered from the file. We should wind up with
* 75 records in the file, with 50 of them enabled on the first
* alternate path and 25 enabled on the second alternate path.
*

DELTLOOP READ HOLD,UFB=ALTFILE
JSI =A(DISP)
DELETE UFB=ALTFILE
READ HOLD,UFB=ALTFILE
JSI =A(DISP)

B DELTLOOP
*

Read a record

Display the record

Delete the record

Read a record

Display the record (no delete)
Loop until EOD exit taken

* Close the data file and the workstation and end the program.

*

DELETEND CLOSE UFB=ALTFILE
CLOSE UFB=WSFILE
RETURN UNLINK

*

* Record display subroutine.

*

DISP MVC L10+4(18),PKEY-14
MVC L10+27(23),ALTKEY1-19
MVC L10+55(23),ALTKEY2-19
MVC ORDAREA,=XL4'01000000°'

Close the data file
Close the workstation
Exit the program

Primary key + text to screen
Alt key #l1 + text to screen
Alt key #2 + text to screen
Set up order area

E-3

009200
009300
009400
009500
009600
009700
009800
009900
010000
010100
010200
010300
010400
010500
010600
010700
010800
010900
011000
011100
011200
011300
011400
011500
011600
011700
011800
011900
012000
012100
012200
012300
012400
012500
012600
012700
012800
012900
013000
013100
013200
013300
013400
013500
013600
013700
013800
013900
014000
014100
014200
014300
014400
014500

*

ALTSTAT
RECORD

PKEY

ALTKEY1

ALTKEY2

*
ALTFILE

*
AXD

*

BOTH
PATH1
PATH2
NEITHER
PACKED
*

WSFILE
*
SCREEN
ORDAREA
L1#6

L7

SCRNMSG
L8#9
L10
L11#24

*

REWRITE UFB=WSFILE Rewrite the screen
RT Return to caller
LTORG

STATIC

DS ()3

DC C'Primary key = '

DS CL4

DC CL14'

DC C'Alternate key #1
DC CL4'0000’

DC CcL9' !

DC C'Alternate key #2 = '

DS CL4

DC CLg'

UFBGEN PRNAME=ALTINX,FILENAME=ALTDEMO, LIBRARY=RWLDATA, X
VOLSER=WORK , DEVCLASS=DISK, FORG=INDEXED, RECSIZE=96, X
NRECS=100,KP0OS=14,KSIZE=4,ALTCNT=2,ALTAREA=AXD, X
RECAREA=RECORD ,KEYAREA=PKEY , NODISPLAY=YES

AXDGEN ENTRIES=2, X
(ORD=1,KEYP0OS=51,KEYSIZE=4), X
(ORD=2 ,KEYP0OS=83,KEYSIZE=4,NODUPS)

DC X'C000" Path mask (paths 1 & 2)

DC ¥X'8000' Path mask (path 1 only)

DC X'4000' Path mask (path 2 only)

DC X'0000"' Path mask (neither path)

DS D Work area for external format conversion

UFBGEN PRNAME=CRT, DEVCLASS=WS,RECSIZE=1924, RECAREA=SCREEN

DS oF Workstation screen definition

DS XL4 Workstation order area

DC 6CL80"' ' Lines 1 - 6 are blank

DC CL35"' ' Header msg leading Blanks

DC X'84' FAC (bright protect all noline)

DC CL44' Header msg goes here

DC 2CLgo"' Lines 8 & 9 are blank

DC cLso' ! Key display line

DC 14CL80O" Lines 11 - 24 are blank

UFB Declare UFB to assembler

AXD1 Declare AXD1l to assembler

END

014600
014700
014800
014900
015000
015100
015200
015300
015400
015500
015600
015700
015800
015800
016000
016100
016200
016300
016400
016500
016600
016700
016800
016900
017000
017100
017200
017300
017400
017500
017600
017700
017800
017900
018000
018100
018200
018300
018400
018500
018600
018700
018800
018900
019000
019100
019200

E.2 RAM WORKSTATION FILE DATA ENTRY PROGRAM

dehkkhkhkhhkhhhhhkhhkhkhhkhhhhhhhhkhhkhhkhkhhkhhkhhkhhhkhkhhhkhkhkhkhkhkkkhhhhhkhhkhkkhhhkkhhkhkkkk

Simple data entry program which demonstrates reading
data from the workstation and writing it to a
consecutive disk file.

Programmer: G. Morrow
Date: 10/83

* ¥ ¥ X * ¥ ¥ *
* W X ¥ ¥ F % *

hkhkhkhhkhhhhhkhhkkhhkhkhhhhhhhkhhhhkhhhkhhkhhhhhhhhhhhhhkhhhkkhkhhhhkhkhhhhhhhkkk
PRINT NOGEN

*

Program equates

REGS Register equate macro
RUFB EQU R4 R4 used to address UFBs
HIDE EQu X'9C' "Blank protect all noline" FAC
BLINK EQU X'94' "Blink protect all noline" FAC
BEEP EQU X'EQ' "Unlock, beep & position cursor" WCC
NOBEEP EQU X'A0' "Unlock & position cursor" WCC

*

DEMOCODE CODE
*

* Set up program and data addressability.
*

BALR EP,O0 Address this code section
USING *,EP Tell the assembler
LR R12,R14 (R12) = Static section base ptr
* for this link level
AL R12,=R(DEMOSTAT) Add offset of program static section
USING DEMOSTAT,R12 Static section now addressed
USING UFB,RUFB Tell assembler that R4 will be the

base reg for UFB addressing

Open disk and workstation files, do some initialization.

* X * ¥

OPEN UFB=WSUFB,MODE=I0O Open the workstation
OPEN UFB=DISKUFB,MODE=OUTPUT Open the disk file

LA RUFB,DISKUFB Temporarily address disk UFB

o1 UFBF4,UFBF4RLSE Turn on "release excess space" bit
LA RUFB, WSUFB Permanently address workstation. UFB
MVI MSGFAC,HIDE Turn off error message line

MVI WCC,NOBEEP Turn off workstation beep

*

* Get the input from the workstation.
*

DISPLAY JSI =A(INITSCRN) Initialize screen fields
REWRITE UFB=WSUFB Display data entry screen
READ MOD,UFB=WSUFB Read the workstation

E-5

000100
000200
000300
000400
000500
000600
000700
000800
000900
001000
001100
001200
001300
001400
001500
001600
001700
001800
001900
002000
002100
002200
002300
002400
002500
002600
002700
002800
002900
003000
003100
003200
003300
003400
003500
003600
003700
003800
003900
004000
004100
004200
004300
004400
004500
004600
004700
004800
004900

* X X ¥ ¥ ¥ ¥

CLI UFBFS2,C'P'
BE EXIT

CLI UFBFS2,C'@"
BE TRANSFER

*

An invalid key was struck.
MVI WCC, BEEP

MVI MSGFAC,BLINK
B DISPLAY

The ENTER key was struck.

* * ¥ »

TRANSFER MVC DATANAME, SCRNNAME
MVC DATAADDR, SCRNADDR
MVC DATAAREA, SCRNAREA
MVC DATAPRFX, SCRNPRFX
MVC DATASUFX, SCRNSUFX
WRITE UFB=DISKUFB
MVI MSGFAC,HIDE
MVI WCC,NOBEEP
B DISPLAY

*

* PF 16 was struck.

*

EXIT CLOSE UFB=DISKUFB
CLOSE UFB=WSUFB

RETURN UNLINK
*

Process the input: If PF 16 was struck, then quit.
If ENTER was struck, then write data to the disk

file and re-initialize the screen

Otherwise re-initialize the screen and display

the error message

PF 16 struck ?

Yes, quit

ENTER key struck ?

Yes, transfer data to disk file

Turn on workstation beep bit
"Unhide" the error message
Return to re-display screen

Move name field to disk record

Move address field to disk record
Move area code field to disk record
Move phone # prefix to disk record
Move phone # suffix to disk record
Write the data record to disk
Blank out error msg via it's FAC
Turn off workstation beep

Return to re-display screen

Close the data file
Close the workstation
Exit the program

* Mapping area re-initialization subroutine.

*

INITSCRN MVPC SCRNNAME(20),*+2(1),X'0B' Pseudo-blanks to name
MVPC SCRNADDR(25),*+2(1),X'0B' Pseudo-blanks to address
MVPC SCRNAREA(3),*+2(1),X'0B' Pseudo-blanks to area code
MVPC SCRNPRFX(3),*+2(1),X'0B' Pseudo-blanks to phone prefix
MVPC SCRNSUFX(4),*+2(1),X'0B' Pseudo-blanks to phone suffix

MVI CURCOL,29
MVI CURROW, 8
RT

LTORG
*

DEMOSTAT STATIC

Set cursor column
Set cursor row
Done!

DISKUFB UFBGEN PRNAME=DATA, DEVCLASS=DISK, FORG=CONSEC,RECSIZE=59,

NRECS=50, RECAREA=DISKREC, NODISPLAY=YES , FILENAME=PHONES, &

LIBRARY=RWLDATA, VOLSER=WORK

E-6

005000
005100
005200
005300
005400
005500
005600
005700
005800
005900
006000
006100
006200
006300
006400
006500
006600
006700
006800
006900
007000
007100
007200
007300
007400
007500
007600
007700
007800
007900
008000
008100
008200
008300
008400
008500
008600
008700
008800
008900
009000
009100
009200
009300
009400
009500
009600
009700
009800
009900
010000
010100
010200
010300

™

*

DISKREC

DATANAME
DATAADDR
DATAPHON
DATAAREA

DATAPRFX

DATASUFX
*

WSUFB
*

SCREEN
ORDAREA
MAPSTART
WCC
CURCOL
CURROW

*
MAPAREA
LINES1#3
*

LINE4
HDRFAC
HDR

%*

LINESS#7
*

LINES

SCRNNAME

*
LINE9Y

SCRNADDR

*
LINE1lO

SCRNAREA

DS
DS
DS
DC
DS
DC
DS
bC
DS

UFBGEN PRNAME=CRT ,DEVCLASS=WS,RECSIZE=1924, RECAREA=SCREEN

DS
DS
DS
DC
DS
DS
DS

A38a888 8883388 B3B8 & &3

0CL59
CL20
CL25
cr(
CL3
ch !
CL3
Cl_l
CL4

OF
0CL1924
0XL4
X'01"'

X

X
X
0CL1920
3CcLso' !

CL31' °

X'ac!

C'Data Entry Demo'
X'8C'

cL3z2' '

3CL80"' '

CL22' '
C'Name:'
X'80'
CL20
X'8C'
CL31' '

cLig' '
C'Address:'
X'80'

CL25

X'8C'

CL26' '

cL21'
C'Phone: ('
X'80"

CL3

X'8C'

C')!

X'80'

Disk file record defined here
Name

Address

Constant (left paren)

Area code ‘

Constant (right paren)

Phone prefix

Constant (dash)

Phone suffix

Force word alignment
Worstation screen defined here
Order area defined here

Start screen rewrite from line 1

Write Control Character
Cursor column position
Cursor row position

Mapping area defined here
3 Blank lines at top of screen

Leading spaces

"Dim protect all underline" FAC
Header message

"Dim protect all noline" FAC
Trailing spaces

Lines 5 thru 7 are blank

Leading spaces

Name field prompt

"Bright modify all noline" FAC
Modifiable name field

"Dim protect all noline" FAC
Trailing spaces

Leading spaces

Address prompt

"Bright modify all noline" FAC
Modifiable address field

"Dim protect all noline'" FAC
Trailing spaces

Leading spaces

Phone # prompt

"Bright modify all noline" FAC
Modifiable area code field
"Dim protect all noline" FAC
Area code right paren

"Bright modify all noline" FAC

010400
010500
010600
010700
010800
010900
011000
011100
011200
011300
011400
011500
011600
011700
011800
011900
012000
012100
012200
012300
012400
012500
012600
012700
012800
012900
013000
013100
013200
013300
013400
013500
013600
013700
013800
013900
014000
014100
014200
014300
014400
014500
014600
014700
014800
014900
015000
015100
015200
015300
015400
015500
015600

T~

~

SCRNPRFX DS
DC

SCRNSUFX DS
DC
DC

*

LINES11#14 DC

*

LINE1S DC
DC
DC

*

LINES16#19 DC

*

LINE20 DC

MSGFAC DS
DC
DC

*

LINES21#24 DC

*
UFB
END

CL3 Modifiable phone # prefix

X'80"' "Bright modify all noline"” FAC
CL4 Modifiable phone # suffix
X'sC' "Dim protect all noline" FAC
CL35' ! Trailing spaces

4CL80"' ' Lines 11 - 14 are blank

CL14"' Leading spaces

C'Press <ENTER> to add data to disk file, PF1l6 to exit'
CL14"' Trailing spaces

4CL80"' ' Lines 16 - 19 are blank

cL21' Leading spaces

X Error message FAC

C'Invalid PFKEY - Data not transferred'

cL22' ' Trailing spaces

4CL80" Lines 21 - 24 are blank

Make UFB DSECT known to assembler

015700
015800
015900
016000
016100
016200
016300
016400
016500
016600
016700
016800
016900
017000
017100
017200
017300
017400
017500
017600
017700
017800
017900

=

E.3 BAM FILE COPY PROGRAM

hhkkdhhkhbhkhkkhhhkhhhhhhhhhhkhhhkhhhkkkhhkhhhhhhhhkhhhhhhhhhkkhhhkhkhhhkhhkhhkhhkk

Demonstration program — BAM file copy

¥ X F ¥ ¥ ¥®

Y I Je e I de J de de e e e e e e Ao o ok Fe e e e e o K e de de e e ke o e e e e e de e oK e e e e e de e de e e e ek e de e de de e ke de e ke ko e

*
*
*
* Programmer: G. Morrow
* Date: 10/83
*
PRINT NOGEN
REGS

*

* Set up basic adressability.
*
BAMCOPY CODE
BALR EP,0
USING *,EP
LR R12,R14
AL R12,=R(BAMSTAT)
USING BAMSTAT,R12

*

Address this code

Tell
(R12)

the assembler
= static base pointer

Add offset of program static section

Tell

the assembler

Use GETPARM to get the input and output file names.

GETPARM KEYLIST=BAMKEYL, MSG=BAMMSG, FORM=REQUEST

*

Open the input file.

MVC UFBIFILENAME,BINFILE+12 File name to UFB

MVC UFBIDIRNAME,BINLIB+12
MVC UFBIVOLSER,BINVOL+12
OPEN UFB=INUFB,MODE=INPUT

* ¥ * »

Library name to UFB
Volume name to UFB
Open the input file

Copy file definition parameters from input file UFB to output file
UFB and also move in the file, library, and volume from the GETPARM.

MVC UFBOFILENAME, BOUTFILE+12 File name to UFB

MvC

UFBODIRNAME, BOUTLIB+12

MVC UFBOVOLSER,BOUTVOL+12

MVC UFBOFORG,UFBIFORG

XR R4,R4

ICM R4,B'01l1ll',UFBIEBLK

LA R4,1(,R4)
STCM

R4,B'0l11',UFBONBLKS

MVC UFBORECSIZE,UFBILRECSAVE

MVC UFBOFLAGS,UFBIFLAGS

Library name to UFB

Volume name to UFB

File organization to UFB
Clear R4 to zeroes

(R4) = input file EBLK
Add 1 for blocks used
Store in output file NBLKS
Logical record size to UFB
Flags byte to UFB

000100
000200
000300
000400
000500
000600
000700
000800
000900
001000
001100
001200
001300
001400
001500
001600
001700
001800
001900
002000
002100
002200
002300
002400
002500
002600
002700
002800
002900
003000
003100
003200
003300
003400
003500
003600
003700
003800
003900
004000
004100
004200
004300
004400

* 004500
* Move alternate index count and indexed file state fields from input 004600
* UFB to output UFB in case the file is indexed. Then, open the 004700
* output file. Set the output file record area to be the input file's 004800
* DMS buffer. This way, we can use NODATA on reads from the input 004900
* file, thus saving the overhead of data movement to 2 separate 005000
* record areas. 005100
* 005200
MVC UFBOALTCNT,UFBIALTCNT Alternate index count to UFB 005300

MVC UFBOKEYPOS (UFBINXDISKEND-UFBDMSEND) ,UFBIKEYPOS 005400

* Indexed state fields to UFB 005500
OPEN UFB=OUTUFB,MODE=0UTPUT Open the output file 005600

MVC UFBORECAREA,UFBIBUFADR Set output file record area 005700

* 005800
* This is the main read/write loop. The EOD address is set in the 005900
* input file UFB so that control will transfer to ENDCOPY when the 006000
* input file has been completely .read. 006100
* 006200
COPYLOOP READ NODATA,UFB=INUFB Read a block from the input file 006300
WRITE UFB=OUTUFB Write the block to the output file 006400

B COPYLOQOP Branch back to copy next block 006500

* 006600
* All blocks copied. Set the final file state fields in the output 006700
* file's UFB to be written to the VIOC and close both files. 006800
* 006900
ENDCOPY MVC UFBONRECS , UFBINRECS # of records to UFB 007000
MVC UFBOEBLK, UFBIEBLK Last block used to UFB 007100

MVC UFBOEREC, UFBIEREC EREC to UFB 007200

CLOSE UFB=UFBIBEGIN Close input file 007300

CLOSE UFB=UFBOBEGIN Close output file 007400

RETURN UNLINK Exit the program 007500

* 007600
LTORG 007700

* 007800
BAMSTAT STATIC 007900
* 008000
* Input file UFB definition. Supply the bare minimum so that any 008100
* disk file can be opened. 008200
* 008300
UFB NODSECT,SUFFIX=I 008400

ORG UFBIBEGIN 008500

INUFB UFBGEN PRNAME=IN,DEVCLASS=DISK,BAM=YES,NODISPLAY=YES, & 008600
EODAD=ENDCOPY 008700

* 008800
* Output file UFB definition. Same as above, except that the block 008900
* allocation bit is set and no end-of-data address is needed. 009000
* 009100
UFB NODSECT, SUFFIX=0 009200

ORG UFBOBEGIN 009300

OUTUFB UFBGEN PRNAME=QUT, DEVCLASS=DISK,BAM=YES,NODISPLAY=YES, & 009400
BLKAL=YES 009500

E-10

*

* GETPARM keylist and message list definitions,
*

BAMKEYL KEYLIST PRNAME='FILES',f LABELPFX='B',

"INFILE', (' ' ,UCHAR, 2),
"INLIB',(' ' ,UCHAR) ,
"INVOL', (' ' ,UCHAR),
'"OUTFILE', (' ' ,UCHAR, 2),
'OUTLIB', (' ' ,UCHAR) ,
'OUTVOL', (' ' ,UCHAR)

BAMMSG MSGLIST '000','DEMO',
'Please identify the input and output files'

UFB Make the UFB DSECT known to the assembler
END

E-11

PR

009600
009700
009800
009900
010000
010100
010200
010300
010400
010500
010600
010700
010800
010900
011000
011100

~

A

Access methods, 1-7, 4-1, 4-2,
10-1, see also BAM, PAM,
RAM
AID characters, 11-21, 11-22
ALLOWNL parameter, 12-2
ALLOWTAPE parameter, 12-9, 12-10
ALTAREA parameter, 6-13, 6-18,
6-21
ALTCNT parameter, 6-13, 6-18
Alternate indexed file, 3-20 to
3-33
creation of index trees, 6-31,
15-5 to 15-7
damaged, 6-26
defining parameters, see AXDGEN
display key definitions, 6-5
errors, 6-32, 7-11
index tree structure, 3-22 to
3-29
language support, 5-2
number of alternate keys, see
ALTCNT, ENTRIES
program example, E-1 to E-4
pseudo-records, 3-23, 3-24,
15-6, 15-7
selective indices, 3-31, 3-32
writing records, 7-11
Alternate key, 3-21, 3-22
activation, see Bit mask suffix
add key to existing file, 3-32
duplicate values, 6-22, 6-32,
7-5
overlapping and embedded, 15-4
position and size, 6-22, 15-5
records on a key, 3-31, 3-32
Anticipatory buffer priming,
9-5, 10-2, 15-1
Assembly language, 1-1, 1-3
sample programs, E-1 to E-11
support, 5-1
AXDGEN macroinstruction, 6-18,
6-21
parameters, 6-21
subparameters, 6-21, 6-22
suffix character, 6-20

Index-1

AXD1 block, 3-29 to 3-31, 6-18
address, 6-13, 6-19 to 6-21
create in heap storage, 15-7
DSECT, A-17 to A-19

AXDI1ALTINX, 3-29
cleared, 6-24, 7-11
for positioning by alt. key

value, 7-20
for reading by alt. key value,
7-8

AXD1BEGIN, 6-20
AXDIMASK, 3-29, see also Bit
mask suffix
read operation, 7-3
rewrite operation, 7-13
write operation, 7-11
AXD1PMASK, 3-29, 7-11, 7-13

B

BaM, 10-2 to 10-8
function request table, B-5
program example, E-9 to E-11
space allocation, 6-17, 6-18
BAM parameter, 6-17, 10-2
BASIC, 5-3 to 5-8
BCT parameter, 6-17, 9-6
BCTGEN macroinstruction, 6-17,
9-6
Bit mask suffix, 3-31, 3-32,
6-23, 6-24
valid values, 3-32
write operation, 7-11
Blinking screen fields, 11-18,
11-19
BLKAL parameter, 6-17, 10-2,
10-5, 10-10
BLKSIZE parameter, 6-17
tape files, 12-4
Block, 2-1
number of blocks, 6-18
size of a block, 6-17
tape blocks, 12-4
Block Access Method, see BAM
Block length indicator, 2-5
Blocking of records, 2-2, 2-3

INDEX (continued)

Bright screen fields, see FAC
Buffer area for read operation,
see READ NODATA
Buffer Control Table,
9-6
Buffer pooling, see POOL
Buffer pool statistics, 9-7
Buffering, 4-7, 4-8, 9-4 to 9-7
consecutive files, see Large
buffer strategy
indexed files, see Buffer
pooling
PaM, 10-12
printer files, 13-5
relative files, see Large
buffer strategy
tape files, 12-5
write-through, 8-17, 8-18
BUFSIZE parameter, 6-17, 9-5,
10-2
BUILDALT, 6-31, 15-6, 15-7

6-17, 9-5,

c

Cancel messages, 14-4, C-2 to
C-4, C-9 to C-12
Claim resources, see Hold
CLOSE macroinstruction, 6-31,
6-32
cancel messages, C-12
CLOSE NOREWIND (tape), 12-8
CLOSE REEL (tape), 12-8
CLOSE UNLOAD (tape), 12-8
Closing a file, 6-31, 6-32
automatically, 6-32
BAM, 10-7, 10-8
DMS/TX files, 6-31
PAM, 10-14
tape files, 12-7
UFB update, 6-3
COBOL, 5-8 to 5-16
hold for retrieval option, 8-13
hold list option, 8-11
timeout option, 8-15
COMP parameter, 6-14
Compression, 1-5, 2-8 to 2-12
code, 2-9 to 2-11
defining, see COMP
input buffer, 7-9
log file restrictions, 8-17
relative files, 2-2
rewrite restriction, 7-12

Index-~-2

Consecutive file, 1-5, 1-6, 3-2,
3-3
Consecutive file operations
creating, see Output mode
defining, 6-11
function request table, B-1,
B-2
holding a record (explicitly),
8-8
holding multiple records, 8-5
language support, 5-2
mode switching operations, 7-17
read operations, 7-3
rewrite operations, 7-12
sharing a file, 8-1
space allocation, 3-3
truncate a file, 7-21
write operations, 7-10
COPY utility, 3-20
alternate indices, 15-5
embedded unused blocks, 15-3
packing density, 9-1, 9-3
rebuild index blocks, 3-20
unused blocks at EOF, 15-7
Crash effects
on log files, 8-17
on output files, 6-26
Current record pointer, 7-2, 7-3
relative file operations 7-10
setting by key value, 7-19,

7-20
setting by offset from current
value, 7-18, 7-19

setting by RRN, 7-19
setting to beginning of file,
7-17, 7-18, 7-21
setting to end of file, 7-18
timeout exit, 8-15
Cursor positioning, 11-14, 11-15

D

DELETE function request, 4-7,
7-23 to 7-25
modifiers, 7-24
operands, 7-24
syntax, 7-23
DELETE EOF, 7-24
Delete multiple records, 7-21,
7-24
DELETE REL, 7-24

Delete single record, see
DELETE function request
DEVCLASS parameter, 6-15
for printer file, 13-2
for workstation, 11-9
DEVNO parameter, 6-15, 13-2
Disk storage, 1-7
Diskettes, 6-18
DMS, 1-1, 1-3
machine restrictions,
release restrictions,
1-9, 3-23, 7-18,
DMS/TX, 1-4, 1-9, 4-4
blocks, 3-5
closing files, 6-31
extension rights, 15-4
hold list option, 8-11, 8-15
sharing, 8-2
timeout, 8-14
DPACK parameter, 6-16, 9-2, 9-3

1-6
1-6,

7-22, 8-

E

INDEX (continued)

1

E-block, 3-14

EBLK parameter, 6-4, 6-31, 10-8
10-14

Enter key, see AID character

ENTRIES parameter, 6-18

EODAD parameter, 6-16

EREC, 6-4, 6-31, 10-8,

ERRAD parameter, 6-16

Error log, 6-32

Errors, see File Status

Exclusive tape mode, 12-6

EXIT operand, 6-29, 6-30, 14-2,
14-3

10-14

r

Extend mode, 6-28, see also START

EXTEND
tape files, 12-6, 12-9
Extension rights, 15-4

F

FAC (workstation), 11-4 to 11-7
11-18
coding, 11-5
default value, 11-5
displaying, 11-18
read operation effects, 11-18
table of FACs, 11-6

’

Index-3

Fatal errors, 14-3, 14-4
FDR, 6-4
creation, 6-4
READFDR macro,
update, 6-4
Field Attribute Character, see
FaC
File, 1-5 to 1-7
attributes, 6-5
currently open, 14-1
end-of-file, see EBLK, EREC,
N-block
name, 6-10, 6-11
number of records, see NRECS
protection class, 6-15
type, see FORG
workstation screen, 11-1
FILECLAS parameter, 6-15
File Descriptor Record, see FDR
File management utilities, 11-2
FILENAME parameter, 6-10
File operations, 1-3
see also Function
requests, Open, Close
creating a file, see Output
mode
defining a file, 6-9, see also
UFB, UFBGEN
extending a file, 7-10, 7-18,
see also Extend mode
holding shared resources, 8-5
to 8-16
opening a file, 6-24 to 6-30
positioning by key value, 7-19
positioning by relative value,
7-18
reinitializing a file, 7-17
truncating a file, 7-22
updating a file, see I/0 mode,
Shared mode
File Status, 14-2 to 1l4-4
table, C-13 to C-20

6-5

File Status '02', 7-5

File Status '10', 7-5, 11-22,
15-2

File Status '21', 7-11

File Status '22', 7-10, 7-11

File Status '23', 7-6, 7-7,
7-14, 7-19, 7-20, 7-24

File Status '24', 3-14, 7-20

INDEX (continued)

File Status '30', 11-22

File Status '34', 7-10, 11-15,
11-21, 11-22

File Status '60', C-1

File Status '70', 8-15

File Status '9x', 6-29

File Status '95', 11-22, 15-4

File Status '96', 11-22

File Status '97', 11-17, 11-22

File Status '98', 7-11, 7-13

Fixed length record, 1-5, 2-2 to
2-4
PORG parameter, 6-9, 6-11
FORM parameter (printer file),
13-2
Portran, 5-16 to 5~18
FREEXRTS macroinstruction,
FSEQ parameter (tape), 12-8
Function requests, 1-3, 4-5, 7-1
see also DELETE, READ,
REWRITE, START, WRITE
Assembly language coding, 7-2
BAM, 10-5 to 10-7
cancel messages, C-9 to C-11
conditional execution, 7-1
errors, see File Status
language support, 5-3
last attempted, 14-1
limitations on use, 7-1
PAaM, 10-10 to 10-12
runtime modification, 7-2
tables, B-1 to B-5
UFB address operand, 7-1
workstation, 11-2

15-4

G __

GENEDIT utility
configuring I/0 devices,
sharer buffer pool size,

Generic key, 8-5 to 8-7
file positioning, 7-21

GETPARM, 1-8, D-1 to D-5
file definition screens,

to D-5
no getparm option, 6-28
no display option, 6-15,
release option, 6-27
workstation files, 11-2
GETXRTS macroinstruction, 15-4

D-2

6-29

Index—-4

H

Holding a resource, 8-3 to 8-13
explicitly hold a file, 8-5
explicitly hold a generic key

group, 8-5 to 8-7
explicitly hold a list of
resources, 8-10 to 8-12
explicitly hold a record, 8-7
implicitly hold a record, 8-3,
8-4, see also READ HOLD
interaction between holds,
8-9, 8-10, 8-12, 8-13

Hold options
hold a list, 8-10 to 8-12
hold for retrieval, 8-12, 8-13
hold for update, 8-12
timeout, 8-13

I

Index blocks, 3-10 to 3-13
location in file, 3-14
modified by a delete, 7-23
number in a file, 15-3
packing density, see IPACK
splitting, 3-18 to 3-20

Indexed file, 1-6, 3-5 to 3-20
block splitting, 3-16 to 3-20
block structure, 3-5, 3-6
calculate number of blocks,

15-2, 15-3
pointers (sequential), 3-6
pointers (index tree), 3-10
right-hand edge, 3-13

Indexed file operations

adding records to (effects
of), 3-15 to 3-20, 9-2
creating, see Output mode
defining, 6-11
deleting records from, 3-20
function request table, B-3
holding a record (explicitly),
8-8
holding multiple records, 8-6
language support, 5-2
positioning by key value, 7-20
read operations, 7-3
record delete operation, 7-23
rewrite operations, 7-13
sequential access, 3-6 to 3-8
write operations, 7-11

)

INDEX (continued)

Input mode, 6-27
Input/Output device, see Disk,
Tape, Printer, Workstation
defining device, 6-15
selecting at runtime, 12-9,
12-10
Interrupt program, see START
ATTNT
I/0 mode, 6-27, 6-28
IPACK parameter, 6-16, 9-3, 9-4

K

Key, see Primary key, Alternate -
key
KEYAREA parameter, 6-12, see
also UFBKEYAREA
addressed field, see KEYAREA
field
workstation, 11-11
KEYAREA field, 6-12
key values, 6-13, 7-6 to 7-8,
8-7
RRN values, 7-19, 7-24, 8-6
signed offset values, 7-18,
7-19
workstation line numbers,
Key path, 3-9
KPOS primary key parameter, 6-13
KPOS alternate key subparameter,
6-22
KSIZE primary key parameter, 6-13
KSIZE alternate key subparameter,
6-22

11-11

L

Large buffer strategy, 9-5
LIBRARY parameter, 6-10
Link levels, 6-32
Lock/unlock keyboard, 11-13,
11-14
Locking of resources, see Hold
Log files, 8-16 to 8-18
naming conventions, 6-10
START restrictions, 7-17
Logon ID
of user holding resource, 8-15

Index-5

M

Magnetic tape, see Tape
Mapping area (workstation),
11-1, 11-4 to 11-7
displayed data, 11-7
FACs, 11-4 to 11-7
tabs, 11-4
MASKAREA AXDGEN parameter, 6-21
MODE parameter, 6-14, 6-15
Modes, 4-3, 6-25 to 6-28
defining in UFBGEN, 6-14
defining in Open statement,

6-25
changing modes after Open,

language support, 5-2, 5-3
Modifiable screen fields, see FAC
Multiple record types, 15-8 to

15-10

N

NODISPLAY Open operand, 6-29
NODISPLAY parameter, 6-15
NODUPS AXDGEN subparameter, 6-22
NOGETPARM Open operand, 6-28

No message option, C-1

NOVTOC parameter, 6-18

N-block, 3-14

NBLKS parameter, 6-18, 10-2,

10-5, 10-10
NRECS parameter, 6-4, 6-9, 6-12,
6-31, 10-8, 10-14

0

Open File Block (OFB), 6-2, 6-31
Opening a file, 1-8, 4-2, 4-3
OPEN macroinstruction, 6-24
access modes, 6-25 to 6-28
cancel messages, C-2 to C-4
error exits, 6-29, 6-30, 14-2,
14-3
format error, 14-2, 14-3
operands, 6-28, 6-29
possession conflict, 14-2
respecify messages, C-5 to C-8
syntax, 6-25
workstation files, 11-11

INDEX (continued)

Order area (workstation), 11-1,
11-3
read operation, 11-17, 11-18
rewrite operation, 11-12 to
11-15
Output mode, 6-25 to 6-27
crash during, 6-26
existing files, 6-26
tape files, 12-6

P

Packing density, 4-8, 6-16, 9-1
to 9-4
PAM, 10-8 to 10-14
function request table, B-5
space allocation, 6-17
PAM parameter, 6-17, 10-8
Parameter reference name, see
PRNAME
Performance, 9-1 to 9-7
PF key, see AID character
Physical Access Method, see PAM
PL/I, 5-18 to 5-21
PLOG parameter (WP files), 13-6
POOL parameter, 6-17, 9-6
Possession conflict, 6-30
Primary key, 3-8, 3-9
overlapping and embedded, 15-4
position in record, see KPOS
size, see KSIZE
unique values, 7-11
writing records by, 7-11
PRINT parameter, 6-14, 13-1
Printer files, 1-7, 13-1 to 13-5
control field, 13-3 to 13-5
record structure, 13-2, 13-3
spooling, 13-2
validation class, 6-15
PRNAME parameter, 6-11
Procedure language, D-1 to D-5
disabled, see NODISPLAY
PROG parameter, 6-14, 13-5
Program check, 14-4
Program file, 13-5
PRTCLASS parameter, 6-15, 13-2
Pseudoblank character, 11-7,
11-19, 11-20

Index-6

R

RAM, 10-1, 10-2
Random access, see READ KEYED
Read access to a file, see Input

mode
READ function request, 4-5, 7-3
to 7-9
BAM, 10-5, 10-6
modes, 7-3

multiple modifiers, 7-4
operands, 7-9
paM, 10-11
positioning for Read, 7-20
syntax, 7-4
tape file, 12-7
workstation file,
11-21
READ ALTERED (workstation),
READ HOLD, 7-5, 7-6
READ KEYED, 7-4
alternate key, 7-8
primary key, 7-7
READ MOD (workstation),
READ NEXT, 7-4, 7-5, 9-5
READ NODATA, 7-9, 10-2, 10-3,
10-6, 12-7
READ REL, 7-6, 7-7
READ TABS (workstation), 11-21
Record, 1-4, 1-5, 2-1 to 2-12
larger than a block, 15-9
maximum size, 2-1, 2-7
printer, 13-2, 13-3
processing area, see User
record area
size, see RECSIZE
tape, 12-4
Record Access Method, see RAM
Record length indicator, 2-4, 2-5
Record slots, 3-4
empty slots processing, 7-19
initialization, 7-10
RECAREA parameter, 6-9
for workstation file, 11-10
RECSIZE parameter, 6-9, 6-11
for printer file, 13-2, 13-3
for tape file, 12-4, 12-5
for workstation file, 11-3,
11-10, 11-18

11-17 to

11-20

11-20

INDEX (continued)

/ﬂ\

Registers S
exit return address, 14-3
input buffer address, 7-9 Sequential processing, see READ
UFB address, 6-6 NEXT
Relative files, 1-6, 3-3, 3-4 Shared mode, 6-28, 8-1 to 8-18
see also Record slots, see also Hold, Log files
RRN, zero-length record buffering, 9-6
machine restrictions, 1-6 for consecutive files, 8-1
Relative file operations for indexed files, 8-2
creating, see Output mode restrictions, 8-2
defining, 6-11 Shared tape mode, 12-6
function request table, B-3 Sharer, 1-4, 8-3
language support, 5-2 Space allocation, 1-9
positioning by RRN, 7-19 alternate indexed files, 15-5
read operations, 7-3, 7-6 anticipated number of records,
record delete operations, see NRECS
7-23, 7-24 blocks in an indexed file, 15-2
record types supported, 2-2 defining in block units, 6-17,
rewrite operations, 7-13, 7-14 6-18
truncating a file, 7-24 embedded unused blocks, 3-14,
write operations, 7-10 to 7-12 3-15, 6-26, 15-3
Relative Record Number, see RRN exceeding space for file
Release held data resources, 8-5 creation, 3-14, 6-12
Release unused space, 6-26, 6-27 insufficient space on volume,
- REWRITE function request, 4-6, 6-30
7-12 to 7-14, see also packing density, 6-16
READ HOLD record size, see RECSIZE
BAM, 10-7 relative files (dynamic), 7-10
modifiers, 7-14 release unused, 6-26, 6-27
operands, 7-14 variable length records, 2-7
syntax, 7-13 START function request, 4-7,
workstation files, 11-12, 7-14 to 7-22
11-16, 11-17 BAM, 10-7
REWRITE REL, 7-13, 7-14 changing access mode, 7-17,
REWRITE SELECTED (workstation), 10-12
11-16 modifiers (table), 7-16
REWRITE TABS (workstation), 11-17 operands, 7-22
Root index block, 3-12 PAM, 10-11, 10-12
Row address (workstation), positioning current record
11-13, 11-15 pointer, 7-18 to 7-21
RPG II, 5-21 to 5-25 reinitializing a file, 7-17
hold for retrieval option, 8-13 syntax, 7-17
hold 1list option, 8-11 truncating a file, 7-21
timeout option, 8-15 workstation, 11-21
RRN, 7-6, 7-10, 7-13 START ATINT (workstation), 11-21
Runtime file definition, 1-8, START BEGIN, 7-18
1-9, D-1 to D-5, see also START END, 7-21, 7-22, 15-2
GETPARM, NODISPLAY, START EQ, 7-19, 7-20
NOGETPARM START EXTEND, 7-18

Index~7

INDEX (continued)

START GE, 7-19, 7-20

START GT, 7-19, 7-20

START HOLD, 8-5

START HOLD,EQUAL, 8-8

START HOLD,LIST, 8-10 to 8-12
START HOLD,RANGE, 8-6, 8-7
START HOLD,RETRIEVAL, 8-13
START IO, 7-18

START LE, 7-19, 7-20

START LT, 7-19, 7-20

START OUTPUT, 7-17

START RELEASE, 8-5

START SKIP, 7-18, 7-19, 15-2
START WAIT, 10-10 to 10-12, 12-7

T

Tabs (workstation), 11-4, 11-17
Tape, 1-7, 12-1 to 12-10
density, 12-2
function request table, B-4
labels, 12-2, 12-3
multiple files on volume,
12-6, 12-8
parity, 12-2
rewind, 12-8
tape marks, 12-8
Task, 1-1, 8-1
waiting for a shared resource,
8-13
Temporary files, 6-10
Timeout option, 8-14 to 8-16

U

UFB, 1-3, 4-1, 6-2 to 6-5
addresgsability, 6-6, 6-7
closing a file, 6-3
creating, 6-2, 6-5, 6-9
defining parameters, 6-8
DSECT, A-1 to A-16
incorrect parameter values, 6-4
modifying parameter values,

6-3, 6-9
suffix character, 6-5, 6-7

UFB statement, 6-5, 6-7

UFBALTPTR, 6-13, 15-7

UFBBEGIN, 6-7

UFBBLKSIZE, 6-17, 10-13

UFBBUFSIZE, 10-2

Index-8

UFBBUFSTART, 6-17

UFBDMSGID, 14-3, 14-4
UFBEBLK, 10-8, 10-14

UFBEREC, 10-8, 10-14
UFBEODAD, 14-3, 14-4, C-13 to

C-15

UFBERRAD, 14-3, 14-4, C-1, C-13,
C-16 to C-20

UFBF1, 14-1

UFBFLAGSLOG, 8-17
UFBFPCLASS, 6-15
UFBFS1, 11-16, 11-23,
14-4, C-13
UFBFS2, 11-16, 11-21, 11-22,
14-2 to 14-4, C-13
UFBF1BAM, 10-2
UFBF1POOL, 6-17
UFBF2I0, 8-1
UFBF2SHARED, 8-1
UFBF4BLKAL, 6-17
UFBF4NOACK, C-9
UFBF4NOMSG, 14-4, C-1
UFBF4NOVTOC, 6-18
UFBF4RLSE, 6-27
UFBF4VERIFY, 6-15
UFBGEN macroinstruction,
6-9
format, 6-8
parameters, 6-9 to 6-18
parameters (BaM), 10-3 to 10-5
parameters (PAM), 10-9, 10-10
parameters (workstation) 11-9
to 11-11
UFBGKSIZE, 6-3, 7-21, 8-7
UFBHOLDID, 8-15
UFBKEYAREA, 6-3
addressed field, see KEYAREA
field
use 7-6, 7-7, 7-10
UFBKEYSIZE, 6-13, 7-7
UFBLF, 14-1
UFBLFMOD, 14-1
UFBLOGRECCNT, 7-2
UFBLRECSAVE, 6-11, 6-31
UFBNBLKS, 6-18, 10-8, 10-14
UFBPREVO, 14-2
UFBRECAREA, 6-3, 6-9, 7-3
UFBRECSIZE, 6-11, 6-31
read operation, 7-3, 7-9
rewrite operation, 7-13

14-2 to

6-5 to

INDEX (continued)

UFBRELPOS, 7-2
UFBTIME, 8-14
UFBTIMEEXIT, 8-15
UFBVLIST, 8-11
UFBXCODE, 6-30, 14-2, 14-3
Underlined screen fields, see FAC
Undisplayed screen fields, see
FAC
Update a record, see REWRITE
User default values, 6-4, 6-10
User File Block, see UFB
User record area, 6-3, 7-3
addressing, 6-3, 6-9
input buffer as record area,
7-9
multiple record types., 6-3
PAM boundary alignment, 10-13
workstation, 11-3
write operation, 7-9

v

Variable length records, 1-5,
2-4 to 2-7
defining, see VLEN
updating consecutive file, 7-12
updating indexed file, 7-13
updating relative file, 7-13
VERIFY parameter, 6-15
VLEN parameter, 6-14
Volume
file assignment, 6-10
tape, 12-8, 12-9
Volume Table of Contents (VTOC),
see FDR
non-labelled diskettes,
VOLSER parameter, 6-10
VSEQ parameter (tape), 12-9

6-18

W

Waiting for a shared resource,
8-13 to 8-16

WCC, 11-13 to 11-15

Work files, 6-10

Workstation screen fields
attributes, see FAC
pseudoblanks, 11-7
spaces between, 11-7

Index-9

Workstation screen files, 1-7,
11-1 to 11-23
defining a file, 11-9
displayed data, see Mapping
area
function request table, B-4
non-displayed control bytes,
see Order area
program example, E-5 to E-8
Write Control Character, see WCC
WRITE function request, 4-6, 7-9
to 7-12
modes, 7-10
modifiers, 7-12
operands, 7-12
printer files, 13-5
syntax, 7-11
tape files, 12-7
verification, 6-15
WRITE EOF, 7-11, 7-12
Write-through, 8-17, 8-18
Writing to a workstation, see
REWRITE
Word processing files, 13-5, 13-6
WSXIO, 11-2

b4

XI0 supervisor call, 1-4

Z

Zero-length record, 7-10
deleting, 7-24

——————— ——— — —— — — —— — — —— — — ——— — —— —— — — ———— — — — — — — — — — — —— —— — — —— — — — — — — — —— — — — — q—

Customer Comment Fo Publicati 1124.
WANG rm ublication Number _ 800-1124-01

Title VS DATA MANAGEMENT SYSTEM REFERENCE
Help Us Help You.. ..

We've worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell us!
Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us
know how you feel.

How did you receive this publication? How did you use this Publication?
0O Support or 0O Don't know O Introduction O Aid to advanced

Sales Rep to the subject knowledge
O wang Supplies 0O oOther O Classroom text O Guide to operating

Division (student) instructions
O From another O Classroom text O Asareference

user {teacher) manual
O Enclosed O Self-study O Other

with equipment text
Please rate the quality of this publication in each of the following areas. VERY

EXCELLENT GOOD FAIR POOR POOR

Technical Accuracy — Does the system work the way the manual saysitdoes? O (] (m] O a
Readability — Is the manual easy to read and understand? O a O [} O
Clarity — Are the instructions easy to follow? O (m] m} a 0O
Examples — Were they helpful, realistic? Were there enough of them? o a O (] a
Organization — Was it logical? Was it easy to find what you needed to know? O D a O a
Hlustrations — Were they clear and useful? a 0 a m] ()
Physical Attractiveness — What did you think of the printing, binding, etc? 0 0 a O O

Were there any terms or concepts that were not defined properly? O Y O N If so, what were they?

After reading this document do you feel that you will be able to operate the equipment/software?d Yes 0O No
O Yes, with practice

What errors or faults did you find in the manual? (Please include page numbers}

Do you have any other comments or suggestions?

Name Street

Title City

Dept/Mail Stop State/Country

Company ZipCode_________Telephone
Thank you for your help.

All comments and suggestions become the property of Wang Laboratories, Inc. Printedin US.A. 14-3140 7-83.5

Fold

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 16 LOWELL. MA

POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.
TECHNICAL PUBLICATIONS

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Fold

Cut along dotted line.

)

To Order by Phone, Call:

(800)225-0234
Order Form for Wang Manuals and Documentation
@ Customer Number (If Known)
@ Bill To: Ship To:
(® Customer Contact: @ Date Purchase Order Number
())
Phone Name
(® Taxable @ Tax ExemptNumber (@) Credit This Order to
Yes O A Wang Salesperson
No O Please Complete Salesperson's Name Employee No. RDB No.
Document Number Description Quantity Unit Price Total Price
® Sub Total
Authorized Signature Date Less Any
Applicable
' . . . Discount
O Check this box if you would like a free copy of the Sub Total
Corporate Publications Literature Catalog (700-5294)
LocalState Tax
Total Amount

Ordering Instructions

1. it you have purchased supplies from Wang before. and
know your Customer Number. please write it here

2. Provide appropriate Billing Address and Shipping Address.

3. Please provide a phone number and name, should it be
necessary for WANG to contact you about your order.

4. Your purchase order number and date.

5. Show whether order is taxable or not.

6. it tax exempl. please provide your exemption number

7. W youwish credit for this order to be given to a WANG
salesperson, please complete

8. Show partnumbers, description and quantity for each
product ordered.

9 Pricing extensions and totaling can be completed at your

option: Wang will refigure these prices and add Ireight on
your invoice.

10. Signature of authorized buyer and date.

Wang Supplies Division Terms and Conditions

1. TAXES — Prices are exclusive of all sales, use, and like
taxes.

m 2. DELIVERY — Delivery will be F.O B. Wang's plant.
! Customer will be billed for freight charges: and unless
customer specilies otherwise, all shipments will go best
way surface as determined by Wang. Wang shall not
assume any liability in connection with the shipment nor
shall the carrier be construed to be an agent of Wang.
If the customer requests that Wang arrange for insurance
the cusiomer will be billed for the insurance charges.

3. PAYMENT — Terms are net 30 days from date of invoice.
Unless otherwise stated by customer, partial shipments will
generate partial invoices.

4. PRICES - The prices shown are subject to change without
notice. Individual document prices may be found in the
Corporate Publications Literature Catalog (700-5294)

S. LIMITATION OF LIABILITY — In no event shall Wang be liable
for loss of data or for special, incidental or consequential
damages in connection with or arising out of the use of or
information contained in any manuals or documentation
furnished hereunder.

PrintedinUS.A.14.3141 7-83-5C

Fold

BUSINESS REPLY CARD

FIRSTCLASS PERMITNO.16 NO. CHELSMFORD, MA.

POSTAGE WILL BE PAID BY ADDRESSEE

WangDirect

Attention: Order Entry Dept.
800 Chelmsford Street
Lowell, MA 01851

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Fold

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851
TEL. (617) 459-5000

TWX 710-343-6769, TELEX 94-7421

~

Printed in U.S.A.
800-1124-01
1-84-5M

