
WANG

Assembly Language Reference

vs
Assembly Language

Reference

3rd Edition - August, 1982
Copyright © Wang Laboratories, Inc., 1982
800-1200AS-03

WANG
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 •TEL. (617) 459-5000, TWX 710-343-6769, Telex 94-7421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care iri preparing
this manual; however, nothing contained herein modifies or alters in any
way the standard terms and conditions of the Wang purchase, lease, or
license agreement by which this software package was acquired, nor
increases in any way Wang's liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con­
sequential damages in connection with or arising from the use of the soft­
ware package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is trans­
ferred and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

This manual replaces and makes obsolete the second edition of the
VS Assembler Language Reference (800-1200AS-02). For a list of
changes made to this manual since the previous edition, refer to the
"Summary of Changes."

WANG
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA01851 •TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

PREFACE

This manual describes the VS Assembly language, and is
intended for programmers already experienced in Assembly language
programming. Readers should be familiar with the VS envirorunent, as
described in the VS Programmer's Introduction (800-llOlPI). In
addition, topics treated in the following manuals may be helpful to
further expand the reader's understanding of Assembly language on
the Wang VS.

VS Operating System Services (800-11070S)
Designed as a reference manual for the operating system, this
manual describes the system macroinstructions, Control Mode
commands, Data Management System, file I/O handling, and
system status words (i.e., Program Control, I/O, and status).

VS Principles of Operation (800-llOOPO)
Describes the VS machine architecture and data organization,
with special attention given to instruction execution,
interrupts, and I/O operation. This manual documents the
general machine instruction set and special operating system
assist instructions. It also discusses Control mode and
describes the characteristics of all I/O device types,
including workstations, printers, and disk and tape drives.

iii

Sununary of Changes
for the Third Edition of the VS Assembly Language Reference

Change Description/New Feature Affected Pages

Entire There are no technical changes made All
Manual in this revision of the VS Assembly

Language Reference. The only sub-
stantial changes are in format,
layout, and pagination. Chapter 9
has been reorganized, with no
changes to the text. In addition,
some very minor editorial changes
are made, but have no impact on the
meaning of the text. These changes
are pervasive, and occur throughout
the book.

v

CHAPTER 1

CHAPTER 2

CONTENTS

INTRODUCTION

1.1 Introduction to Assembly Language•..•. 1-1
1.2 The VS Assembly Language•.••• 1-1

Machine Operation Codes•.•.••• 1-2
Assembler Operation Codes•.•.••• 1-2
Macroinstructions • . . • • • . • . • • • 1-2

1. 3 The Assembler Program • • • . • . • • • 1-2
Basic Functions . • . • • • 1-3

1. 4 Programmer Aids • . • . • . • 1-3
Variety in Data Representation•.•..•• 1-3
Base Register Address Calculation•.••• 1-3
Re 1 oca tab i 1 it y . . • • • • . • • . 1-3
Sectioning and Linking•..........•.••• 1-4
Program Listings • • . • . • • • 1-4
Error Indications . • • . • . • • • 1-4

1.5 Operating System Relationships ...•........•.•.••• 1-4

2.1
2.2

2.3
2.4

2.5

GENERAL INFORMATION

Int reduct ion•.....••.•..•.•...•.•••
Assembly Language Coding Conventions ..•..••.•.•••

Continuation Lines ••....•....•....•.•...•.•••
Statement Boundaries .•..•..•.•....•...•.•.•••
Statement Format ..•...••.....•.•...••.•.•.••.
Identification-Sequence Field •.•..••....•.•••
Summary of Statement Format ..•....•..••.•.•••
Character Set .•.•.•.....•....•.••.•..••.•.•••

Assembly Language Structure .•....•....•...•.•.•••
Terms•.•.•.....•....•.••.•.•.•.•.••.

Symbols •......•.........•.........•...•.•.•••
Self-Defining Terms•....•.....•.•••
Location Counter Reference•..•..•.•••
Literals•..•..•.•.•.....••.
Symbol Length Attribute Reference .•.....•.•••
Terms in Parentheses •.....•..•..•.•.•....••••

Express ions •..................•.......•.....•.•••
Evaluation of Expressions•..•....••.••.
Absolute and Relocatable Expressions .•..•.••.

vii

2-1
2-1
2-1
2-2
2-2
2-4
2-5

·2-s
2-6
2-8
2-8

2-10
2-13
2-14
2-16
2-17
2-17
2-18
2-19

CHAPTER 3

CHAPTER 4

CHAPTER 5

3.1
3.2
3.3

3.4
3.5
3.6
3.7

4.1
4.2

4.3
4.4
4.5
4.6

4.7

5.1
5.2
5.3
5.4
5.5

5.6

CONTENTS (continued)

ADDRESSING - PROGRAM SECTIONING AND LINKING

Addressing
Addresses-Explicit and Implied•...........
Base Register Instructions•...........

USING - Use Base Address Register •...........
DROP - Drop Base Address Register •........•..

Progranuning with the USING Instruction
Re la ti ve Addressing•...........
Progranuning Sectioning and Linking
Control Sections •

Control Section Location Assignment
First Control Section
STATIC-Identify Modifiable Control Section .. .
DSECT - Identify Dununy Section ...•...........
Syinbolic Linkages•...........
Addressing External Control Sections

MACHINE INSTRUCTIONS

Introduction
Machine Instruction Statements•...........

Instruction Alignment and Checking
Operand Fields and Subfields•...........
Lengths - Explicit and Implied•...........
Machine - Instruction Mnemonic Codes .•...........
Machine - Instruction Examples•...........

RR Format•..
RX Format
RS Format
SI Format
SS Format

Extended Mnemonic Codes

ASSEMBLER INSTRUCTION STATEMENTS

Introduction•...........
Symbol Definition Instruction•...........
Operation Code Definition Instruction
Data Definition Instructions
DC - Define Constant

Literal
Operand
Operand
Operand
Operand

DS - Define
Special

Definitions
Subfield 1:
Subfield 2:
Subfield 3:
Subfield 4:

Duplication Factor
Type
Modifiers
Constant

Storage
Uses of the Duplication Factor

viii

3-1
3-1
3-2
3-2
3-4
3-5
3-6
3-7
3-7
3-8
3-8

3-11
3-14
3-17
3-21

4-1
4-2
4-2
4-2
4-4
4-5
4-6
4-6
4-6
4-7
4-7
4-8
4-8

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-8

5-13
5-28
5-31

CHAPTER 6

CHAPTER 7

CONTENTS (continued)

5.7 Listing Control Instructions 5-32
TITLE - Identify Assembly Output 5-33
EJECT - Start New Page•............. 5-34
SPACE - Space Listing .•...................... 5-35
PRINT - Print Optional Data 5-35

5.8 Program Control Instructions 5-38
ICTL - Input Format Control 5-38
ISEQ - Input Sequence Checking 5-39
ORG - Set Location Counter 5-40
LTORG - Begin Literal Pool 5-41
CNOP - Conditional No Operation 5-43
COPY - Copy Predefined Source Coding 5-45
END - End Assembly • 5-46

INTRODUCTION TO THE MACRO LANGUAGE

6 .1 Introduction . 6-1
6.2 The Macroinstruction Statement 6-1
6.3 The Macroinstruction Definition 6-2
6.4 The Macroinstruction Library 6-2
6.5 System and Progranuner Macroinstruction

Definitions . . • . 6-3
6.6 System Macroinstructions 6-3
6.7 Varying the Generated Statements 6-3
6. 8 Variable Symbols . 6-3

Types of Variable Symbols 6-4
Assigning Values to Variable Symbols 6-4
Global SET Symbols ~ . . . 6-4

HOW TO PREPARE MACROINSTRUCTION DEFINITIONS

7 .1 Introduction . 7-1
7.2 MACRO - Macroinstruction Definition Header 7-2
7.3 MEND - Macroinstruction Definition Trailer 7-2
7.4 Macroinstruction Prototype•............. 7-2

Statement Format . 7-3
7. 5 Model Statements . • . 7-4

Name Field . . . • • 7-5
Operation Field . . • • 7-5
Operand Field _.. 7-6
Conunent Field • . . . • 7-6

7. 6 Symbolic Parameters . 7-6
Concatenating Symbolic Parameters 7-8

7.7 Conunent Statements 7-10
7.8 Copy Statements ..•...•.•......................... 7-11

ix

CHAPTER 8 HOW TO WRITE MACROINSTRUCTIONS

CHAPTER 9

8 .1 Introduction . • • • . • . . 8-1
8.2 Macroinstruction Operands....................... 8-1

Pai red Apostrophes • 8-2
Pai red Parentheses • • . • • . 8-2
Equal Signs . • • . . 8-3
Ainpe rsands . • . 8-3
Conunas . . . • . • . • . 8-3
Blanks . . . • . • . . 8-3

8. 3 Statement Format . • • . 8-4
8. 4 Orni tted Operands . • . 8-4
8. 5 Operand Sublists . • • . 8-5
8.6 Inner Macroinstructions•...... .••• 8-7
8.8 Levels of Macroinstructions••. 8-8

HOW TO WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS

9 .1 Introduction . • • . 9-1
9. 2 SET Symbols . . • . • . 9-2

Defining SET Symbols........................ 9-2
Using Variable Symbols • • . 9-2
LCLA, LCLB, LCLC - Define Local Set Symbols . 9-4
SETA - Set Arithmetic . • . 9-4
SETC - Set Character • • • 9-9
SETB - Set Binary•........•• 9-16

9. 3 ATTRIBUTES . • 9-20
Type Attribute CT')•. 9-21
Length CL'), Scaling CS'), and Integer CI')

Attributes . • 9-22
Count Attribute CK') . 9-24
Number Attribute CN') 9-24
Assigning Attributes to Symbols•. 9-25

9. 4 Sequence Symbols . • • 9-26
9.5 AIF - Conditional Branch•. 9-28
9.6 AGO - Unconditional Branch••. 9-30
9.7 ACTR - Conditional Assembly Loop Counter 9-32
9.8 ANOP - Assembly No Operation•. 9-33
9.9 Conditional Assembly Elements 9-34

CHAPTER 10 EXTENDED FEATURES OF THE MACRO LANGUAGE

10 .1 Introduction•...
10.2 MEXIT - Macroinstruction Definition Exit•••.
10.3 MNOTE - Request for Error Message•...
10.4 Global and Local Variable Symbols

Defining Local and Global SET Symbols ...•••.
Using Global and Local SET Symbols••..
Subscripted SET Symbols••.•

10. 5 System Variable Symbols•••.
Global System Variable Symbols•.•.
Local System Variable Symbols••.•

x

10-1
10-1
10-3
10-4
10-5
10-6

10-11
10-13
10-13
10-14

10.6 Keyword Macroinstruction Definitions•....
Keyword Prototype•....
Keyword Macroinstruction
Operand Sublists
Keyword Inner Macroinstructions

10.7 Mixed-Mode Macroinstruction Definitions
Mixed-Mode Prototype
Mixed-Mode Macroinstruction

APPENDIX A Printer/Workstation Graphics Codes
APPENDIX B Assembler Instructions
APPENDIX C Swnmary of Constants
APPENDIX D Macro Language Summary
APPENDIX E Hexadecimal-Decimal Conversion Table

10-19
10-19
10-29
10-23
10-24
10-24
10-24
10-25

A-1
B-1
C-1
D-1
E-1

CHAPTER 1
INTRODUCTION

1.1 INTRODUCTION TO ASSEMBLY LANGUAGE

Computer programs may be expressed in machine language, i.e.,
language directly interpreted by the computer, or in a symbolic
language, which is much more meaningful to the programmer. The
symbolic language, however, must be translated into machine language
before the computer can execute the program. This function is
accomplished by a processing program.

Of the various symbolic programming languages, Assembly
languages are closest to machine language in form and content. The
Assembly language discussed in this manual is a symbolic programming
language for the Wang VS. It enables the programmer to use all Wang
VS machine functions, as if he were coding in VS machine language.

The assembler program that processes the language translates
symbolic instructions into machine-language instructions, assigns
storage locations, and performs auxiliary functions necessary to
produce an executable machine-language program.

1.2 THE VS ASSEMBLY LANGUAGE

The basis of the Assembly language is a collection of mnemonic
symbols which represent:

1. VS machine-language operation codes.

2. Operations (auxiliary functions) to be performed by the
assembler program.

The language is augmented by other symbols, supplied by the
programmer, and used to represent storage addresses or data. Symbols
are easier to remember and code than their machine-language
equivalents. Use of symbols greatly reduces programming effort and
error.

The programmer may also create a type of instruction called a
macroinstruction. A mnemonic symbol, supplied by the programmer,
serves as the operation code of the instruction.

1-1

1.2.1 Machine Operation Codes

The Assembly language provides mnemonic machine-instruction
codes for all machine instructions in the Wang VS Universal
Instruction Set and extended mnemonic operation codes for the
conditional branch, subroutine call, and return instructions.

1.2.2 Assembler Operation Codes

The Assembly language also contains mnemonic
assembler-instruction operation codes, used to specify auxiliary
functions to be performed by the assembler. These are instructions
to the assembler program itself and, with a few exceptions, result
in the generation of no machine-language code by the assembler
program.

1.2.3 Macroinstructions

The Assembly language enables the programmer to define and use
macroinstructions.

Macroinstructions are represented by an operation code which
represents a sequence of machine and/or assembler instructions.
Macroinstructions used in preparing an Assembly language source
program fall into two categories: system macroinstructions,
provided by Wang, which relate the object program to components of
the operating system; and macroinstructions created by the
programmer specifically for use in the program at hand, or for
incorporation in a library, available for future use.

Programmer-created macroinstructions are used to simplify the
writing of a program and to ensure that a standard sequence of
instructions is used to accomplish a desired function. For
instance, the logic of a program may require the same instruction
sequence to be executed again and again. Rather than code this
entire sequence each time it is needed, the programmer creates a
macroinstruction to represent the sequence and then, each time the
sequence is needed, the programmer simply codes the macro­
instruction statement. During assembly, the sequence of
instructions represented by the macroinstruction is inserted in the
object program.

Chapters 6 through 10 discuss the language and procedures for
defining and using macroinstructions.

1.3 THE ASSEMBLER PRcx;RAM

The assembler program, also referred to as the "assembler,"
processes the source statements written in the Assembly language.

1-2

1.3.1 Basic Functions

Processing involves the translation of source statements into
machine language, the assignment of storage locations to
instructions and other elements of the program, and the performance
of the auxiliary assembler functions designated by the programmer.
The output of the assembler program is the object program, a
machine-language translation of the source program. The assembler
furnishes a printed listing of the source statements and object
program statements and additional information useful to the
programmer in analyzing his program, such as error indications. The
object program is in the format required by the VS operating system.

The amount of main storage allocated to the assembler for use
during processing determines the maximum number of certain language
elements that may be present in the source program.

1.4 PRcx;RAMMER AIDS

The assembler provides auxiliary functions that assist the
programmer in checking and documenting programs, in controlling
address assignment, in segmenting a program, in data and symbol
definition, in generating macroinstructions, and in controlling the
assembler itself. Mnemonic operation codes for these functions are
provided in the language.

1.4.1 Variety in Data Representation

Decimal, binary, hexadecimal, or character representation of
machine-language binary values may be employed by the programmer in
writing source statements. The programmer selects the
representation best suited to his purpose.

1.4.2 Base Register Address Calculation

As discussed in the VS Principles of Operation, the VS
addressing scheme requires the designation of a base register
(containing a base address value) and a displacement value in
specifying a storage location. The assembler assumes the clerical
burden of calculating storage addresses in these terms for the
symbolic addresses used by the progranuner. The programmer retains
control of base register usage and the values entered therein.

1.4.3 Relocatability

The object programs produced by the assembler are in a format
enabling relocation from the originally assigned storage area to any
other suitable area.

1-3

1.4.4 Sectioning and Linking

The Assembly language and assembler provide facilities for
partitioning an assembly into one or more parts called control
sections. Different types of control sections are provided for
nonmodifiable code and modifiable data. These may be used to
separate code and data into different areas of storage at run time,
even though they are intermixed in the source program.

The assembler allows symbols to be defined in one assembly and
ref erred to in another, thus effecting a link between separately
assembled programs. This permits reference to data and transfer of
control between programs. A discussion of sectioning and linking is
contained in Section 3.6.

1.4.5 Program Listings

A listing of the source program statements and the resulting
object program statements may be produced by the assembler for each
source program it assembles. The programmer can partly control the
form and content of the listing.

1.4.6 Error Indications

As a source program is assembled, it is analyzed for actual or
potential errors in the use of the Assembly language. Detected
errors are indicated in the program listing.

1.5 OPERATING SYSTEM RELATIONSHIPS

The assembler is a Wang VS system utility and, as such,
functions under control of the operating system. The operating
system provides the assembler with input/output, library, and other
services needed in assembling a source program. In a like manner,
the object program produced by the assembler will normally operate
under control of the operating system and depend on it for
input/output and other services. In writing the source program, the
programmer must include statements requesting the desired functions
from the operating system. These statements are discussed in the VS
Qperating System Services. Input/output considerations are also
discussed in the VS Operating System Services.

1-4

CHAPTER 2
GENERAL INFORMATION

2.1 INTRODUCTION

This chapter
coding conventions
addressing.

presents information about Assembly
and assembly source statement

2.2 ASSEMBLY LANGUAGE CODING CONVENTIONS

language
structure

This section discusses the general
associated with use of the Assembly language.

coding conventions

2.2.1 Continuation Lines

When it is necessary to continue a statement on another line,
the following rules apply.

1. Write the statement up through column 71.

2. Enter a continuation character (not blank and not part of
the coding) in column 72 of the line.

3. Continue the statement in column 16 of the next line,
leaving columns· ·1 through 15 blank.

4. If the statement is not finished before collllllil 71 of
the second line, enter a continuation character in column
72, and continue in column 16 of the following line.

5. The statement has to be finished before column 71 of
the third line, because the maximum number of continuation
lines is two.

6. Macroinstructions can be coded on as many lines as are
needed.

These rules assume that normal source statement boundaries are
used (refer to Section 2.2.2).

2-1

2.2.2 Statement Boundaries

Source statements are normally contained in columns 1-71 of
statement lines and columns 16-71 of any continuation lines.
Therefore, columns 1, 71, and 16 are referred to as the "begin",
"end", and "continue" columns, respectively. This convention can be
altered by use of the Input Format Control CICTL) assembler
instruction discussed later in this publication. The continuation
character, if used, always immediately follows the "end" column.

2.2.3 Statement Format

Statements may consist of one to four entries in the statement
field. They are, from left to right: a name entry, an operation
entry, an operand entry, and a comment entry. These entries must be
separated by one or more blanks, and must be written in the order
stated.

The text editor tabs are set to provide an eight-character
name field, a five-character operation field, and a 56-character
operand and/or comment field.

If desired, the programmer can disregard these boundaries and
write the name, operation, operand, and comment entries in other
positions, subject to the following rules:

1. The entries must not extend beyond statement boundaries
within a line (either the conventional boundaries if no
ICTL statement is given, or as designated by the
programmer via the ICTL instruction).

2. The entries must be in proper sequence,
previously.

as stated

3. The entries must be separated by one or more blanks.

4. If used, a name entry must be written starting in the
begin column.

5. The name and operation entries must be completed in the
first line of the statement, including at least one blank
following the operation entry.

A description of the name, operation, operand, and comment
entries follows:

Name Entry The name entry is a symbol created by the
programmer to identify a statement. A name entry is usually
optional. The symbol must consist of sixteen characters or
less, and be entered with the first character appearing in the
begin column. The first character must be alphabetic. If the
begin column is blank, the assembler program assumes no name
has been entered. No blanks can appear in the symbol.

2-2

Operation Entry The operation entry is the mnemonic
operation code specifying the machine operation, assembler, or
macroinstruction operation desired. An operation entry is
mandatory and cannot appear in a continuation line. It must
start at least one position to the right of the begin column.
Valid mnemonic operation codes for machine and assembler
operations are contained in Appendices D and E. Valid
operation codes consist of eight characters or fewer for
machine or assembler-instruction operation codes, and eight
characters or fewer for macroinstruction operation codes. No
blanks can appear within the operation entry.

Operand Entries -- Operand entries identify and describe data
to be acted upon by the instruction, by indicating such things
as storage locations, masks, storage-area lengths, or types of
data.

Depending on the needs of the instruction, one or more or no
operands can be written. Operands are required for all
machine instructions, but many assembler instructions require
no operand.

Operands must be separated by commas, and no blanks can
intervene between operands and the commas that separate them.
The first blank normally indicates the end of the operand
field.

The operands cannot contain embedded blanks, except as follows:

If character representation is used to specify a constant,
a literal, or immediate data in an operand, the character
string can contain blanks, e.g., C'A D'.

Comment Entries Comments are descriptive i terns of
information about the program that are shown on the program
listing. All 256 valid characters (refer to Section 2.2.6),
including blanks can be used in writing a comment. The entry
can follow the operand entry and must be separated from it by
a blank; each line of comment entries cannot extend beyond the
end column (column 71).

An entire statement field can be used for a comment by placing
an asterisk in the begin column. Extensive comment entries
can be written by using a series of lines with an asterisk in
the begin column of each line or by using continuation lines.
Comment entries cannot fall between a statement and its
continuation line.

2-3

In statements where an optional operand entry is omitted but a
comment entry is desired, the absence of the operand entry
must be indicated by a conuna preceded and followed by one or
more blanks, as follows:

Name Operation Operand

END COMMENT

For instructions that cannot contain an operand entry, this
comma is not needed.

For information on rules for the operand field of different
assembler instructions, refer to the table in Appendix E.

The following example illustrates the use of name, operation,
operand, and comment entries. A compare instruction has been named
by the symbol COMP; the operation entry CCR) is the mnemonic
operation code for a register-to-register compare operation, and the
two operands (5,6) designate the two general registers whose
contents are to be compared. The conunent entry reminds the
progranuner that he is comparing "new stun" to "old" with this
instruction.

Name Operation Operand

COMP CR 5,6 NEW SUM TO OLD

2.2.4 Identification-Sequence Field

The identification-sequence field of the coding form (colwnns
73-80) is used to enter program identification and/or statement
sequence characters. The entry is optional. If the field, or a
portion of it, is used for program identification, the
identification is entered in the source text and reproduced in the
printed listing of the source program.

To aid in keeping source statements in order, the text editor
can number the text lines in this field. These characters are
entered into their respective text lines, and during assembly the
progranuner may request the assembler to verify this sequence by use
of the Input Sequence Checking (!SEQ) assembler instruction. This
instruction is discussed in Section 5.8.

2-4

2.2.5 Summary of Statement Format

The entries in a statement must always be separated by at
least one blank and must be in the following order: name,
operation, operand(s), comment(s).

Every statement requires an operation entry. Name and comment
entries are optional. Operand entries are required for all machine
instructions and most assembler instructions.

The name and operation entries must be completed in the first
statement line, including at least one blank following the operation
entry.

The name and operation entries must not contain blanks.
Operand entries must not have blanks preceding or following the
commas that separate them.

A name entry must always start in the begin column.

If the column after the end column is blank, the next line
must start a new statement. If the column after the end column is
not blank, the following line is treated as a continuation line.

All entries must be contained within the designated begin,
end, and continue column boundaries.

2.2.6 Character Set

Source statements are written using the following characters:

Letters A through Z, and $, #, @

Digits 0 through 9

Special
Characters + - , = . * C) ' I & blank

These characters are represented by the internal bit
configurations listed in Appendix A. In addition, any of the 256
bit combinations may be designated anywhere that characters may
appear between paired apostrophes, in comments, and in
macroinstruction operands.

2-5

2.3 ASSEMBLY LANGUAGE STRUCTURE

The basic structure of the language can be stated as follows.

A source statement is composed of:

• A name entry (usually optional).

• An operation entry (required).

• An operand entry (usually required).

• Conunents entry (optional).

A name entry is:

• A symbol.

An operation entry is:

• A mnemonic operation code representing a machine,
assembler, or macroinstruction.

An operand entry is:

• One or more operands composed of one or more
expressions, which, in turn, are composed of a term or
an arithmetic combination of terms.

Operands of machine instructions generally represent such
things as storage locations, general registers, immediate data, or
constant values. Operands of assembler instructions provide the
information needed by the assembler program to perform the
designated operation.

Figure 2-1 depicts this structure. Terms shown in Figure 2-1
are classed as absolute or relocatable. Terms are absolute or
relocatable, depending on the effect of program relocation upon
them. Program relocation is the loading of the object program into
storage locations other than those originally assigned by the
assembler. A term is absolute if its value does not change upon
relocation. A term is relocatable if its value changes upon
relocation.

Section 2.4 discusses these items as outlined in Figure 2-1.

2-6

Name Entry

Is a Symbol
which is an

Machine
Instruction

------.....]

Ordinary
1-- Symbol

(AT or RT)

or
2

1

or

CQ
Operation Entry

I
Is a Mnemonic
Operation Code

]
J 1

Assembler
Instruction or

cp
l

Operand Entry

I
One or more
Operands that
are composed
of an

T
l 1 l

Macro
Instruction

Exp or Exp(Exp) or Exp(Exp, Exp)

Exp = Expression

or l
Arithmetic

Variable
Term Combination

1-- Symbol
of Terms

or

.__

f
Decimal
e.g., 15

Sequence
Symbol

r
A Symbol
e.g., BETA
(AT or RT)

2

1

1
A Self­
defining
Term (AT)

l
which may be
any one of
the fol lowing

T
l

which may be
any one of
the following

l
A Location

A Literal Counter Refer-
ence i.e., * e.g.,=F '1259'

(RT) (RT)

l
Hexadecimal
e.g.,X'C4'

Binary
e.g.,B'lOl'

Character
e.g.,C'AB9'

I l
Symbol Length
Attribute Refer- Other Symbol.

Attribute
ence e.g.,
L 'Symbol (AT)

References (AT)

AT= Absolute Term

RT=Relocatable Term

1
May be generated by combination of variable symbols and assembler language characters. (Conditional assemb:y only)

2 Conditional assembly only.

Figure 2-1. Assembly Language Structure -- Machine
and Assembler Instructions

2-7

2

2.4 TERMS

Every term represents a value. This value may be assigned by
the assembler (symbols, symbol length attribute, location counter
reference) or may be inherent in the term itself (self-defining
term, literal).

An arithmetic combination of terms is reduced to a single
value by the assembler.

The following material discusses each type of term and the
rules for its use.

2.4.1 Symbols

A symbol is a character or combination of characters used to
represent locations or arbitrary values. Symbols, through their use
in name fields and in operands, provide the progranuner with an
efficient way to name and reference a program element. There are
three types of symbols:

1. Ordinary symbols.

2. Variable symbols.

3. Sequence symbols.

Ordinary symbols, created by the progranuner for use as a name
entry and/or an operand, must conform to these rules:

1. The symbol must not consist of more than sixteen
characters. The first character must be a letter. The
other characters may be letters, digits, or a combination
of the two.

2. No special characters may be included in a symbol.

3. No blanks are allowed in a symbol.

In the following sections, the term symbol refers to ordinary
symbols. The following are valid symbols:

READER
A23456
X4F2

LOOP2
N
S4

@B4
$Al
#56

The following symbols are invalid, for the reasons noted:

256B
THISSYMBOLISTOOLONG
BCD*34
IN AREA

(first character is not alphabetic)
(more than sixteen characters)
(contains a special character - *)
(contains a blank)

2-8

Variable Symbols

Variable symbols must begin with an ampersand C&> followed by
one to sixteen letters and/or numbers, the first of which must be a
letter. Variable symbols are used within the source program or
macroinstruction definition to allow different values to be assigned
to one symbol. A complete discussion of variable symbols appears in
Chapter 6.

Sequence Symbols

Sequence symbols consist of a period (.) followed by one to
sixteen letters and/or numbers, the first of which must be a
letter. Sequence symbols are used to indicate the position of
statements within the source program or macroinstruction
definition. Through their use the programmer can vary the sequence
in which statements are processed by the assembler program. (See
the complete discussion in Chapter 6.)

--------------NOTE-------------.

Sequence symbols and variable symbols are used
only for the Macro language and conditional
assembly. Programmers who do not use these
features need not be concerned with these symbols.

Defining Symbols

The assembler assigns a value to each symbol appearing as a
name entry in a source statement. The values assigned to symbols
naming storage areas, instructions, constants, and control sections
are the addresses of the leftmost bytes of the storage fields
containing the named items. Since the addresses of these items may
change upon program relocation, the symbols naming them are
considered relocatable terms.

A symbol used as a name entry in the Equate Symbol CEQU)
assembler instruction is assigned the value designated in the
operand entry of the instruction. Since the operand entry may
represent a relocatable value or an absolute (i.e., nonchanging)
value, the symbol is considered a relocatable term or an absolute
term, depending upon the value it is equated to.

The value of a symbol must lie in the range -2**31 to 2**31-1.

A symbol is said to be defined when it appears as the name of
a source statement. CA special case of symbol definition is
discussed in Section 3.6.

2-9

Symbol definition also involves the assignment of a length
attribute to the symbol. (The assembler maintains an internal table
- the symbol table - in which the values and attributes of symbols
are kept. When the assembler encounters a symbol in an operand, it
refers to the table for the values associated with the symbol.) The
length attribute of a symbol is the length, in bytes, of the storage
field whose address is represented by the symbol. For example, a
symbol naming an instruction that occupies four bytes of storage has
a length attribute of 4. Note that there are exceptions to this
rule; for example, in the case where a symbol has been defined by an
equate to location counter value CEQU *) or to a self-defining term,
the length attribute of the symbol is 1. These and other exceptions
are noted under the instructions involved. The length attribute is
never affected by a duplication factor.

Previously Defined Symbols

Some instructions require that a symbol appearing in the
operand entry be previously defined. This simply means that the
symbol, before its use in an operand, must have appeared as a name
entry in a prior statement.

General Restrictions on Symbols

A symbol may be defined only once in an assembly. That is,
each symbol used as the name of a statement must be unique within
that assembly. However, a symbol may be used in the name field more
than once as a control section name (i.e., defined in the CODE,
STATIC, or DSECT assembler statements described in Chapter 3)
because the coding of a control section may be suspended and then
resumed at any subsequent point. The CODE, STATIC, or DSECT
statement that resumes the section must be named by the same symbol
that initially named the section; thus, the symbol that names the
section must be repeated. Such usage is not considered to be
duplication of a symbol definition.

2.4.2 Self-Defining Terms

A self-defining term is one whose value is inherent in the
term. It is not assigned a value by the assembler. For example,
the decimal self-defining term - 15 - represents a value of 15. The
length attribute of a self-defining term is always 1.

There are four types of self-defining terms: decimal,
hexadecimal, binary, and character. Use of these terms is spoken of
as decimal, hexadecimal, binary, or character representation of the
machine-language binary value or bit configuration they represent.

Self-defining terms are classed as absolute terms, since the
values they represent do not change upon program relocation.

2-10

Using Self-Defining Terms

Self-defining terms are the means of specifying machine
values or bit configurations without equating the values to
symbols and using the symbols.

Self-defining terms may be used to specify such program
elements as immediate data, masks, registers, addresses, and
address increments. The type of term selected (decimal,
hexadecimal, binary, or character) will depend on what is being
specified.

The use of a self-defining term is quite distinct from the
use of data constants or literals. When a self-defining term is
used in a machine-instruction statement, its value is assembled
into the instruction. When a data constant is ref erred to or a
literal is specified in the operand of an instruction, its
address is assembled into the instruction. Self-defining terms
are always right-justified; truncation or padding with zeros if
necessary occurs on the left.

Decimal Self-Defining Term

A decimal self-defining term is simply an unsigned decimal
number written as a sequence of decimal digits. High-order zeros
may be used (e.g. , 007) . Limitations on the value of the term
depend on its use. For example, a decimal term that designates a
general register should have a value between 0 and 15; one that
represents an address should not exceed the size of storage. In
any case, a decimal term may not consist of more than ten digits,
or exceed 2,147 ,483,647 (2**31-1). A decimal self-defining term
is assembled as its binary equivalent. Some examples of decimal
self-defining terms are: 8, 147, 4092, and 00021.

Hexadecimal Self-Defining Term

A hexadecimal self-defining term consists of one to eight
hexadecimal digits enclosed by apostrophes and preceded by the
letter X: X'C49'.

Each hexadecimal digit is assembled as its four-bit binary
equivalent. Thus, a hexadecimal term used to represent an
eight-bit mask would consist of two hexadecimal digits. The
maximum value of a hexadecimal term is X'FFFFFFFF'. When used as
an absolute term in an expression, a hexadecimal self-defining
term has a negative value (in two's-complement form) if it is
greater than 2**31-1.

The hexadecimal digits and their bit patterns are as
follows:

0- 0000 4- 0100 8- 1000 c- 1100
1- 0001 5- 0101 9- 1001 D- 1101
2- 0010 6- 0110 A- 1010 E- 1110
3- 0011 7- 0111 B- 1011 F- 1111

A table for converting f ram hexadecimal representation to
decimal representation is provided in Appendix B.

2-11

Binary Self-Defining Term

A binary self-defining term is written as an unsigned
sequence of 1 's and 0 's enclosed in apostrophes and preceded by
the letter B, as follows: B'10001101'. This term would appear in
storage as shown, occupying one byte. A binary term may have up
to 32 bits represented. When used as an absolute term in
expressions, a binary self-defining term has a negative value (in
two's-complement form) if it is greater than 2**31-1.

Binary representation is used primarily in designating bit
patterns of masks or in logical operations.

The following example illustrates a binary term used as a
mask in a Test Under Mask (TM) instruction. The contents of
GAMMA are to be tested, bit by bit, against the pattern of bi ts
represented by the binary term.

Name Operation Operand

ALPHA TM GAMMA,B'10101101'

Character Self-Defining Term

A character self-defining term consists of one to four
characters enclosed by apostrophes. It must be preceded by the
letter C. All letters, decimal digits, and special characters
may be used in a character term. In addition, any of the
remainder of the 256 bit combinations may be designated in a
character self-defining term. Examples of character
self-defining terms are as follows:

C'I'
C'ABC'

C' ' (blank)
C'13'

Because of the use of apostrophes in the Assembly language
and ampersands in the Macro language as syntactic characters, the
following rule must be observed when using these characters in a
character term.

For each apostrophe or ampersand desired in a character
self-defining term, two apostrophes or ampersands must be
written. For example, the character value A'# would be written
as 'A''#:', while an apostrophe followed by a blank and another
single apostrophe would be written as ''' '' '.

Each character in the character sequence is assembled as
its eight-bit code equivalent (see Appendix A). The two
apostrophes or ampersands that must be used to represent an
apostrophe or ampersand within the character sequence are
assembled as an apostrophe or ampersand.

2-12

2.4.3 Location Counter Reference

A location counter is used to assign storage addresses to
program statements. It is the assembler's equivalent of the
instruction counter in the computer. As each machine instruction
or data area is assembled, the location counter is first adjusted
to the proper boundary for the item, if adjustment is necessary,
and then incremented by the length of the assembled item. Thus,
it always points to the next available location. If the
statement is named by a symbol, the value attribute of the symbol
is the value of the location counter after bouneary adjustment,
but before addition of the length.

The assembler maintains a location counter for each control
section of the program and manipulates each location counter as
previously described. Source statements for each section are
assigned addresses from the location counter for that section.
The location counter for each successively declared control
section assigns locations in consecutively higher areas of
storage. Thus, if a program has multiple control sections, all
statements identified as belonging to the first control section
will be assigned from the location counter for section l, the
statements for the second control section will be assigned from
the location counter for section 2, etc. This procedure is
followed whether the statements from different control sections
are interspersed or written in control section sequence.

The location counter setting can be controlled by using the
BEGIN and ORG assembler instructions, which are described in
Chapters 3 and 5. The counter affected by either of these
assembler instructions is the counter for the control section in
which they appear. The maximum value for the location counter is
2**24-1.

The progranuner may refer to the current value of the
location counter at any place in a program by using an asterisk
as a term in an operand. The asterisk represents the location of
the first byte of currently available storage (i.e., after any
required boundary adjustment). Using an asterisk as the operand
in a machine-instruction statement is the same as placing a
symbol in the name field of the statement and then using that
symbol as an operand of the statement. Because a location
counter is maintained for each control section, a location
counter reference designates the location counter for the section
in which the reference appears.

A reference to the location counter may be made in a
literal address constant (i.e. , the asterisk may be used in an
address constant specified in literal form). The address of the
instruction containing the literal is used for the value of the
location counter. A location counter reference may not be used
in a statement which requires the use of a predefined symbol,
with the exception of the EQU and ORG assembler instructions.

2-13

2.4.4 Literals

A literal term is one of three basic ways to introduce data
into a program. It is simply a constant preceded by an equal
sign <=>.

A literal represents data rather than a reference to data.
The appearance of a literal in a statement directs the assembler
program to assemble the data specified by the literal, store this
data in a "literal pool", and place the address of the storage
field containing the data in the operand field of the assembled
statement.

Literals provide a means of entering constants (such as
numbers for calculation, addresses, indexing factors, or words or
phrases for printing out a message) into a program by specifying
the constant in the operand of the instruction in which it is
used. This is in contrast to using the DC assembler instruction
to enter the data into the program and then using the name of the
DC instruction in the operand. Only one literal is allowed in a
machine-instruction statement.

A literal term cannot be combined with any other terms.

A literal cannot be used as the receiving field of an
instruction that modifies storage.

A literal cannot be specified in a shift instruction, a
stack or queue instruction, or in the Scan Page Frame Table
(SPFT) instruction.

When a literal is contained in an instruction, it cannot
specify an explicit base register or an explicit index register.

A literal cannot be specified in an address constant (see
Section 5.5).

The instruction coded below shows one use of a literal.

Name Operation Operand

GAMMA L 10,=F'274'

The statement GAMMA is a load instruction using a literal
as the second operand. When assembled, the second operand of the
instruction will be the address at which the value F' 274' is
stored.

2-14

If a literal operand is a self-defining term (X,
C, B, or decimal) and the equal sign (=) is
omitted, the statement may assemble without error
(see Section 2.4.2).

In general, literals can be used wherever a storage address is
permitted as an operand. They cannot, however, be used in any
assembler instruction that requires the use of a previously defined
symbol. Literals are considered relocatable, because the address of
the literal, rather than the literal itself, will be assembled in
the statement that employs a literal. The assembler generates the
literals, collects them, and places them in a specific area of
storage, as explained below in the section titled "The Literal
Pool". A literal is not to be confused with the immediate data in
an SI instruction. Immediate data is assembled into the instruction.

Literal Format

The assembler requires a description of the type of literal
being specified as well as the literal itself. This descriptive
information assists the assembler in assembling the literal
correctly. The descriptive portion of the literal must indicate the
format of the constant. It may also specify the length of the
constant.

The method of describing and specifying a constant as a
literal is nearly identical to the method of specifying it in the
operand of a DC assembler instruction. The major difference is that
the literal must start with an equal sign (=), which indicates to
the assembler that a literal follows. The reader is referred to the
discussion of the DC assembler instruction operand format (ref er to
Chapter 5) for the means of specifying a 1 i teral. The type of
literal designated in an instruction is not checked for
correspondence with the operation code of the instruction.

Some examples of literals are:

=A(BETA)
=F'l234'

=C'ABC'

The Literal Pool

address constant literal.
a fixed-point number with a length of four
bytes.
a character literal.

The literals processed by the assembler are collected and
placed in a special area called the literal pool, and the location
of the literal, rather than the literal itself, is assembled in the
statement employing a literal. The positioning of the literal pool
may be controlled by the programmer, if he so desires. Unless
otherwise specified, the literal pool is placed at the end of the
first control section.

2-15

The programmer may also specify that multiple literal pools be
created. However, the sequence in which literals are ordered
within the pool is controlled by the assembler. Further information
on positioning the literal pool(s) is provided in Section 5.8.4.

2.4.5 Symbol Length Attribute Reference

The length attribute of a symbol may be used as a term.
Reference to the attribute is made by coding L' followed by the
symbol, as in:

L'BETA

The length attribute of BETA will be substituted for the term.
The following example illustrates the use of the L'symbol in moving
a character constant into either the high-order or low-order end of
a storage field.

For ease in following the example, the length attributes of Al
and B2 are mentioned. However, keep in mind that the L'symbol term
makes coding such as this possible in situations where lengths are
unknown.

Name Operation Operand

Al DS CL8
B2 DC CL2'AB'
HI ORD MVC Al (L I B2) , B2
LOO RD MVC Al+L'Al-L'B2(L'B2),B2

Al names a storage field eight bytes in length and is assigned
a length attribute of 8. B2 names a character constant two bytes in
length and is assigned a length attribute of 2. The statement named
HIORD moves the contents of B2 into the leftmost two bytes of Al.
The term L'B2 in parentheses provides the length specification
r·equired by the instruction. When the instruction is assembled,· the
length is placed in the proper field of the machine instruction.

The statement named LOORD moves the contents of B2 into the
rightmost two bytes of Al. The combination of terms Al+L' Al-L' B2
results in the addition of the length of Al to the beginning address
of Al, and the subtraction of the length of B2 from this value. The
result is the address of the seventh byte in field Al. The constant
represented by B2 is moved into Al starting at this address. L'B2
in parentheses provides length specification as in HIORD.

2-16

As previously stated, the length attribute of *
is equal to the length of the instruction in
which it appears, except in an EQU to *, in which
case the length attribute is 1.

2.4.6 Terms in Parentheses

Terms in parentheses are reduced to a single value; thus, the
terms in parentheses, in effect, become a single term.

Arithmetically combined terms, enclosed in parentheses, may be
used in combination with terms outside the parentheses, as follows:

14+BETA-(GAMMA-LAMBDA)

When the assembler program encounters terms in parentheses in
combination with other terms, it first reduces the combination of
terms inside the parentheses to a single value which may be absolute
or relocatable, depending on the combination of terms. This value
then is used in reducing the rest of the combination to another
single value.

Terms in parentheses may be included within a set of terms in
parentheses:

A+B-(C+D-(E+F)+lO)

The innermost set of terms in parentheses is evaluated first.
Six levels of parentheses are allowed; a level of parentheses is a
left parenthesis and its corresponding right parenthesis.
Parentheses which occur as part of an operand format do not count in
this limit. An arithmetic combination of terms is evaluated as
described in Section 2.5.

2.5 EXPRESSIONS

This section discusses the expressions used in coding operand
entries for source statements. Two types of expressions, absolute
and relocatable, are presented along with the rules for determining
these attributes of an expression.

2-17

As shown in Figure 2-1, an expression is composed of a single
term or an arithmetic combination of terms. The following are
examples of valid expressions:

*
AREAl+X'2D'
*+32
N-25
FIELD+332
FIELD
(EXIT-ENTRY+l)+GO

BETA*lO
B'lOl'
C'ABC'
29
L'FIELD
LAMBDA+GAMMA
TEN/TWO

=F'l234'
ALPHA-BETA/(lO+AREA*L'FIELD)-100

The rules for coding expressions are:

1. An expression cannot start with a binary operator (*/).
However, it can have one or more unary operators (+-)
preceding any term in the expression, or at the beginning
of the expression.

2. An expression cannot contain two terms or two binary
operators in succession.

3. An expression cannot consist of more than 20 terms.

4. An expression cannot have more than six levels of
parentheses.

5. A multiterm expression cannot contain a literal.

2.5.1 Evaluation of Expressions

A single-term expression, e.g., 29, BETA, * L'SYMBOL, takes
on the value of the term involved.

A multiterm expression, e.g., BETA+lO, ENTRY-EXIT, 25*10+A/B,
is reduced to a single value, as follows:

1. Each term is evaluated.

2. Arithmetic operations are performed from left to right
except that unary operations are done before binary
operations, and multiplication and division are done
before addition and subtraction, e.g., A+B*C is evaluated
as A+(B*C), not (A+B)*C. The computed result is the value
of the expression.

3. Division always yields an integer result; any fractional
portion of the result is dropped. E.g., 1/2*10 yields a
zero result, whereas 10*1/2 yields 5.

4. Division by zero is permitted and yields a zero result.

2-18

Parenthesized multiterm subexpressions are processed before
the rest of the terms in the expression, e.g. , in the expression
A+BETA*CCON-10), the term CON-10 is evaluated first and the
resulting value is used in computing the final value of the
expression.

Negative values are carried in two's complement form. Final
values of expressions must lie in the range -2**31 to 2**31-1.

2.5.2 Absolute and Relocatable Expressions

An expression is called absolute if its value is unaffected by
program relocation.

An expression is called relocatable if its value depends upon
program relocation.

The two types of expressions, absolute and relocatable, take
on these characteristics from the term or terms composing them.

Absolute Expression

An absolute expression can be an absolute term or any
arithmetic combination of absolute terms. An absolute term can be a
nonrelocatable symbol, any of the self-defining terms, or the length
attribute reference. As indicated in Figure 2-1, all arithmetic
operations are permitted between absolute terms.

An expression is absolute, even though it may contain
relocatable terms CRT)--alone or in combination with absolute terms
(AT)--under the following conditions.

1. There must be an even number of relocatable terms in the
expression.

2. The relocatable terms must be paired. Each pair of terms
must have the same relocatability, i.e., they appear in
the same control section in this assembly (see Section
3.6). Each pair must consist of terms with opposite
signs. The paired terms do not have to be contiguous,
e.g., RT+AT-RT.

3. No relocatable term can enter into a multiply or divide
operation. Thus, RT-RT*lO is invalid. However,
(RT-RT)*lO is valid.

The pairing of relocatable terms (with opposite signs and the
same relocatability) cancels the effect of relocation since both
symbols would be relocated by the same amount. Therefore the value
represented by the paired terms remains constant, regardless of
program relocation. For example, in the absolute expression A-Y+X,
A is an absolute term, and X and Y are relocatable terms with the
same relocatability. If A equals 50, Y equals 25, and X equals 10,
the value of the expression would be 35. If X and Y are relocated
by a factor of 100 their values would then be 125 and 110. However,
the expression would still evaluate as 35 (50-125+110=35).

2-19

An absolute expression reduces to a single absolute value.

The following examples illustrate absolute expressions. A is
an absolute term; X and Y are relocatable terms with the same
relocatability.

A-Y+X
A
A*A
X-Y+A
*-Y (a reference to the location counter must be paired

with another relocatable term from the same control
section, i.e., with the same relocatability)

Relocatable Expression

A relocatable expression is one whose value changes by n if
the program in which it appears is relocated n bytes away from its
originally assigned area of storage. All relocatable expressions
must have a positive value.

A relocatable expression can be a relocatable term. A
relocatable expression can contain relocatable terms -- alone or in
combination with absolute terms -- under the following conditions:

1. There must be an odd number of relocatable terms.

2. All the relocatable terms but one must be paired. Pairing
is described in the section above entitled "Absolute
Expression".

3. The unpaired term must not be directly preceded by a minus
sign.

4. No relocatable term can enter into a multiply or divide
operation.

A relocatable expression reduces to a single relocatable
value. This value is the value of the odd relocatable term,
adjusted by the values represented by the absolute terms and/or
paired relocatable terms associated with it. The relocatability
attribute is that of the odd relocatable term.

For example, in the expression W-X+W-10, W and X are
relocatable terms with the same relocatability attribute. If
initially W equals 10 and X equals 5, the value of the expression is
5. However, upon relocation this value will change. If a
relocation factor of 100 is applied, the value of the expression is
105. Note that the value of the paired terms, W-X, remains constant
at 5 regardless of relocation. Thus, the new value of the
expression, 105, is the result of the value of the odd term (W)
adjusted by the values of W-X and 10.

2-20

The following examples illustrate relocatable expressions. A
is an absolute term, W and X are relocatable terms with the same
relocatability attribute, and Y is a relocatable term with a
different relocatability attribute.

Y-32*A W-X+* =F'1234'(literal)
W-X+Y A*A+W-W+Y
* (reference to w-x+w

location counter) Y

2-21

CHAPTER 3
ADDRESSING -- PROGRAM SECTIONING AND LINKING

3.1 ADDRESSING

The Wang VS addressing technique requires the use of a base
register, which contains the base address, and a displacement, which
is added to the contents of the base register. The programmer may
specify a symbolic address and request the assembler to determine
its storage address composed of a base register and a displacement.
The programmer may rely on the assembler to perform this service for
him by indicating which general registers are available for
assignment and what values the assembler may assume each contains.
The programmer may use as many or as few registers for this purpose
as he desires. The only requirement is that, at the point of
reference, a register containing an address from the same control
section is available, and that this address is less than or equal to
the address of the item to which the reference is being made. The
difference between the two addresses may not exceed 4095 bytes.

3.2 ADDRESSES -- EXPLICIT AND IMPLIED

An address is composed of a displacement plus the contents of
a base register. (In the case of RX instructions, the contents of
an index register are also used to derive the address in the
machine.)

The programmer writes an explicit address by specifying the
displacement and the base register number. In designating explicit
addresses a base register may not be combined with a relocatable
symbol.

He writes an implied address by specifying an absolute or
relocatable address. The assembler has the facility to select a
base register and compute a displacement, thereby generating an
explicit address from an implied address, provided that it has been
informed (1) what base registers are available to it and (2) what
each contains. The programmer conveys this information to the
assembler through the USING and DROP assembler instructions.

3-1

3.3 BASE REGISTER INSTRUCTIONS

The USING and DROP assembler instructions enable programmers
to use expressions representing implied addresses as operands of
machine-instruction statements, leaving the assignment of base
registers and the calculation of displacements to the assembler.

In order to use symbols in the operand field of
machine-instruction statements, the programmer must (1) indicate to
the assembler, by means of a USING statement, that one or more
general registers are available for use as base registers, (2)
specify, by means of the USING statement, what value each base
register contains, and (3) load each base register with the value he
has specified for it.

Having the assembler determine base registers and
displacements relieves the programmer of separating each address
into a displacement value and a base address value. This feature of
the assembler will eliminate a likely source of programming
errors, thus reducing the time required to check out programs. To
take advantage of this feature, the programmer uses the USING and
DROP instructions described in this section. The principal
discussion of this feature follows the description of both
instructions.

3.3.1 USING -- Use Base Address Register

The USING instruction indicates that one or more general
registers are available for use as base registers. This instruction
also states the base address values that the assembler may assume
will be in the registers at object time. Note that a USING
instruction does not load the registers specified. It is the
programmer's responsibility to see that the specified base address
values are placed into the registers. Suggested loading methods are
described in Section 3. 4. A reference to any name in a control
section cannot occur in a machine instruction or an S-type address
constant before the USING statement that makes that name
addressable. The format of the USING instruction statement is:

Name Operation

A se- USING
quence
symbol
or
blank

Operand

From 2-17 expressions
of the form v,rl,
r2,r3, ... ,r16

3-2

Operand v must be an absolute or relocatable expression. It
may be a negative number whose absolute value does not exceed 2**24.
No literals are permitted. Operand v specifies a value that the
assembler can use as a base address. The other operands must be
absolute expressions. The operand rl specifies the general register
that can be assumed to contain the base address represented by
operand v. Operands r2, r3, r4, . . . specify registers that can be
assumed to contain v+4096, v+8192, v+l2288, ... , respectively. The
values of the operands rl, r2, r3, ... , r16 must be between 0 and
15. For example, the statement:

Name Operation Operand

USING *, 12, 13

tells the assembler it may assume that the current value of the
location counter will be in general register 12 at object time, and
that the current value of the location counter, incremented by
4096, will be in general register 13 at object time.

If the programmer changes the value in a base register
currently being used, and wishes the assembler to compute
displacement from this value, the assembler must be told the new
value by means of another USING statement. In the following
sequence the assembler first assumes that the value of ALPHA is in
register 9. The second statement then causes the assembler to
assume that ALPHA+lOOO is the value in register 9.

Name Operation Operand

USING ALPHA,9

USING ALPHA+l000,9

If the programmer has to refer to the first 4096 bytes of
storage, he can use general register 0 as a base register subject to
the following conditions:

1. The value of operand v must be either absolute or
relocatable zero or simply relocatable, and

2. Register 0 must be specified as operand rl.

3-3

The assembler assumes that register 0 contains zero.
Therefore, regardless of the value of operand v, it calculates
displacements as if operand v were absolute or relocatable zero.
The assembler also assumes that subsequent registers specified in
the same USING statement contain 4096, 8192, etc.

If register 0 is used as a base register, the
program is not relocatable, despite the fact that
operand v may be relocatable. The program can be
made relocatable by:

1. Replacing register
statement.

0 in the USING

2 • Loading the new
relocatable value.

register

3. Reassembling the program.

3.3.2 DROP -- Drop Base Address Register

with a

The DROP instruction specifies a previously available register
that may no longer be used as a base register. The format of the
DROP instruction statement is as follows:

Name Operation

A se- DROP
quence
symbol
or
blank

Operand

Up to 16 absolute
expressions of the
form rl,r2,
r3, ... , r16

The expressions indicate general registers previously named in
a USING statement that are now unavailable for base addressing. The
following statement, for example, prevents the assembler from using
registers 7 and 11:

Name Operation Operand

DROP 7 ,11

3-4

It is not necessary to use a DROP statement when the base
address being used is changed by a .USING statement; nor are DROP
statements needed at the end of the source program.

A register made unavailable by a DROP instruction can be made
available again by a subsequent USING instruction.

A DROP instruction with a blank operand field drops all
currently active base registers.

3.4 PROGRAMMING WITH THE USING INSTRUCTION

The USING (and DROP) instructions may be used anywhere in a
program, as often as needed, to indicate the general registers that
are available for use as base registers and the base address values
the assembler may assume each contains at execution time. Whenever
an address is specified in a machine-instruction statement, the
assembler determines whether there is an available register
containing a suitable base address. A register is considered
available for a relocatable address if it was specified in a USING
instruction to have a relocatable value. A register with an
absolute value is available only for absolute addresses. In either
case, the base address is considered suitable only if it is less
than or equal to the address of the item to which the reference is
made. The difference between the two addresses may not exceed 4095
bytes. In calculating the base register to be used, the assembler
will always use the available register giving the smallest
displacement. If there are two registers with the same value, the
highest numbered register will be chosen.

Name Operation Operand

BEGIN BALR 2,0
USING *,2

FIRST

LAST
END BEGIN

In the preceding sequence, the BALR instruction loads
register 2 with the address of the first storage location
immediately following. In this case, it is the address of the
instruction named FIRST. The USING instruction indicates to the
assembler that register 2 contains this location. When employing
this method, the USING instruction must immediately follow the BALR
instruction. No other USING or load instructions are required if
the location named LAST is within 4095 bytes of FIRST.

3-5

In Figure 3-1, the BALR and LM instructions load registers
2-5. The USING instruction indicates to the assembler that these
registers are available as base registers for addressing a maximum
of 16,384 consecutive bytes of storage, beginning with the location
named HERE. The number of addressable bytes may be increased or
decreased by altering the number of registers designated by the
USING and LM instructions and the number of address constants
specified in the DC instruction.

Name Operation Operand

BEGIN BALR 2,0
USING HERE,2,3,4,5

HERE LM 3,5,BASEADDR
B FIRST

BASE.AD DR DC ACHERE+4096,HERE+8192,HERE+l2288)
FIRST

LAST
END BEGIN

Figure 3-1. Multiple Base Register Assigrunent

3.5 RELATIVE ADDRESSING

Relative addressing is the technique of addressing
instructions and data areas by designating their location in
relation to the location counter or to some symbolic location. This
type of addressing is always in bytes, never in bits, words, or
instructions. Thus, the expression *+4 specifies an address that is
four bytes greater than the current value of the location counter.
In the sequence of instructions shown in the following example, the
location of the CR machine instruction can be expressed in two ways,
ALPHA+2 or BETA-4, because all of the mnemonics in the example are
for two-byte instructions in the RR format.

Name Operation Operand

ALPHA LR 3,4
CR 4,6
BCR 1,14

BETA AR 2,3

3-6

3.6 PR(X;RAM SECTIONING AND LINKING

It is often convenient, or necessary, to write a large
program in sections. The sections may be assembled separately,
then combined into one object program. The assembler provides
facilities for creating multisectioned programs and symbolically
linking separately assembled programs or program sections.

Sectioning a program is optional, and many programs can
best be written without sectioning them. The programmer writing
an unsectioned program need not concern himself with the
subsequent discussion of program sections, which are called
control sections. He need not employ the CODE instruction, which
is used to identify the reentrant ("code") control sections of a
multi section program. Similarly, he need not concern himself
with the discussion of symbolic linkages if his program neither
requires a linkage to nor receives a linkage from another
program. He may, however, wish to identify the program and/or
specify a tentative starting location for it, both of which may
be done by using the BEGIN instruction. He may also want to
employ the modifiable ("static") control section feature obtained
by using the STATIC instruction, or the dummy section feature
obtained 'by using the DSECT instruction.

Program sectioning and linking is closely related
to the specification of base registers for each
control section. Sectioning and linking examples
are provided in Section 3.7.6.

3.7 CONTROL SECTIONS

The concept of program sectioning is a consideration at coding
time, assembly time, and linkage time. To the programmer, a program
is a logical unit. He may want to divide it into sections called
control sections; if so, he writes it in such a way that control
passes properly from one section to another regardless of the
relative physical position of the sections in storage. A control
section is a block of coding that can be relocated, independently of
other coding, at load time without altering or impairing the
operating logic of the program. It is normally identified by the
CODE instruction if it is reentrant, or by the STATIC instruction if
it is modifiable.

To the assembler, there is no such thing as a program;
instead, there is an assembly, which consists of one or more control
sections. (However, the terms assembly and program are often used
interchangeably.) An unsectioned program is treated as a single
control section. To the linker, there are no programs, only control
sections that must be fashioned into a load module.

3-7

The output from the assembler is called an object module. It
contains data required for linker processing. The linkage block,
which is part of the object module, contains information the linker
needs in order to complete cross-referencing between control
sections as it combines them into an object program. The linker
can take control sections from various assemblies and combine
them properly with the help of the corresponding control
dictionaries. Successful combination of separately assembled
control sections depends on the techniques used to provide symbolic
linkages between the control sections.

Whether the programmer writes an un~ectioned program, a
multi section program, or part of a multi section program, he still
knows what eventually will be entered into storage because he has
described storage symbolically. He may not know where each section
appears in storage, but he does know what storage contains. There
is no constant relationship between control sections. Thus, knowing
the location of one control section does not make another control
section addressable by relative addressing techniques.

The programmer must be aware that there is a limit to linkage
block entries. The total number of control sections, dummy
sections, unique symbols in ENTRY and EXTRN statements, and V-type
address constants must not exceed 400.

Only the first 8 characters of an external symbol
are used by the linker.

3.7.1 Control Section Location Assignment

Control sections can be intermixed because the assembler
provides a location counter for each control section. Locations are
assigned to code control sections as if the sections are placed in
storage consecutively, in the same order as they first occur in the
program. Each code control section after that first begins at the
next available double-word boundary. Each static or dummy control
section, however, begins at zero in the listing.

3.7.2 First Control Section

The first reentrant ("code") control section of a program has
the following special properties:

1. Its initial location counter value may be specified as an
absolute value, if the BEGIN instruction is used.

2. It contains the literals of the program, unless their
positioning has been altered by LTORG statements.

3-8

BEGIN -- Begin Assembly

The BEGIN instruction may be used to give a name to the first
(or only) control section of a program. It may also be used to
specify an initial location counter value for the first control
section of the program. The format of the BEGIN instruction
statement is as follows:

Name

Any
symbol

Operation

BEGIN

Operand

A self-defining
term, or blank

The symbol is established as the name of the control section.
All subsequent statements are assembled as part of that control
section. This continues until a CODE instruction identifying a
different control section or a STATIC or DSECT instruction is
encountered. A CODE instruction named by the same symbol that names
a BEGIN instruction is considered to identify the continuation of
the control section first identified by the BEGIN.

The symbol in the name field is a valid relocatable symbol
whose value represents the address of the first byte of the control
section. It has a length attribute of 1.

The assembler uses the self-defining term specified by the
operand as the initial location counter value of the program. This
value should be divisible by eight. For example, either of the
following statements could be used to assign the name PROG2 to the
first control section and to indicate an initial assembly location
counter value of 2040. If the operand is omitted, the assembler
sets the initial location counter value of the program at zero. The
location counter is set at the next double-word boundary when the
value of the BEGIN operand is not divisible by eight.

Only the location counter in the listing is affected; the
control section will be loaded into the same area of memory whether
or not a starting address has been specified.

Name

PROG2
PROG2

Operation

BEGIN
BEGIN

Operand

2040
X'7F8'

3-9

The BEGIN instruction must not be preceded by any
code that will cause an unnamed control section
to be assembled. (Refer to "Unnamed First
Control Section", below.)

CODE -- Identify Reentrant (Nonmodifiable) Control Section

The CODE instruction identifies the beginning or the
continuation of a reentrant ("code") control section. The format of
the CODE instruction statement is as follows:

Name Operation Operand

Any
symbol

CODE Not used; should
be blank

The symbol is established as the name of the control section.
All statements following the CODE are assembled as part of that
control section until a statement identifying a different control
section is encountered (i.e. , another CODE or a STATIC or DSECT
instruction).

The symbol in the name field is a valid relocatable symbol
whose value represents the address of the first byte of the control
section. It has a length attribute of 1.

Several CODE statements with the same name may appear within a
program. The first is considered to identify the beginning of the
control section; the rest identify the resumption of the section.
Thus, statements from different control sections may be
interspersed. They are properly assembled (assigned contiguous
storage locations) as long as the statements from the various
control sections are identified by the appropriate CODE instructions.

Unnamed First Control Section

All machine instructions and many assembler instructions have
to belong to a control section. If such an instruction precedes the
first CODE instruction, the assembler will consider it to belong to
an unnamed reentrant ("code") control section (also referred to as
private code), which will be the first (or only) control section in
the module.

3-10

The following instructions will not cause this to happen,
since they do not have to belong to a control section:

Static Sections
Dummy Sections
Macroinstruction Definitions
Conditional Assembly Instructions
Comments
COPY (depends on the copied code)
EJECT
ENTRY
EXTRN
ICTL
ISEQ
OP SYN
PRINT
SPACE
TITLE

No other assembler or machine instructions can precede a BEGIN
instruction, since BEGIN, if used, must initiate the first control
section in the program.

An involuntary unnamed control section at the beginning can
cause trouble if literals are used. Then the programmer must be
aware of the fact that unless he codes a LTORG statement in each
control section where he uses literals, literals will be assembled
in the first control section, which will in this case be the
involuntary section. If that control section does not establish
addressability (through USING), an addressability error will be the
result. Therefore statements like EQU should not be placed before
the first CODE or the BEGIN instruction.

Resumption of an unnamed control section at later points can
be accomplished through ·unnamed CODE statements. A program can
contain only one unnamed control section. Of course, it is possible
to write a program that does not contain CODE, STATIC or BEGIN
statements. It will then be assembled as one unnamed code control
section.

3·. 7. 3 STATIC - Identify Modifiable Control Section

The STATIC instruction identifies the beginning or the
continuation of a modifiable ("static") control section. The format
of the STATIC instruction is as follows:

Name Operation

Any symbol STATIC

3-11

Operand

Not used; should
be blank

The symbol is established as the name
("static") section. All statements following the
are assembled as part of that control section
identifying a different control section is
another STATIC or a CODE or DSECT instruction).

of the modifiable
STATIC instruction
until a statement
encountered (i.e.

The symbol in the name field is a valid relocatable symbol
whose value represents the address of the first byte of the control
section; it has a length of 1.

Several STATIC statements with the same name may appear within
a program. The first is considered to identify the beginning of the
control section; the rest identify the resumption of the section.
Thus, statements from different control sections may be
interspersed. They are properly assembled (assigned contiguous
storage locations) as long as. the statements from the various
control sections are identified by the appropriate STATIC
instructions.

Addressing STATIC Sections

The absolute location of a static section is not known until
the program is loaded at run time. Since the code sections are not
modifiable at run time, an A-type address constant can not be used
in a code section to point to a static section. When the program is
loaded and entered, register 14 contains the address of the
linked-together block of static sections. To address a location in
a static section, the program adds, to the contents of register 14,
an off set into the static section. The offset is held in an R-type
address constant.

3-12

Name Operation

MAI NP ROG CODE

BEGIN BALR
USING
LR
A
USING

ST

L
L
JSCI

RTC

RCON DC
ACON DC

EXTRN

MOD STATIC

ARGLIST DC

DATA DS

ARGS DS
Rl4SAVE DS

Operand

2,0
*,2
4, 14
4,RCON
DATA,4

14,Rl4SAVE

Rl,ARGLIST
14,Rl4SAVE
15,ACON

15

RCDATA)
AC SUB)
SUB

A(ARGS)

F

3A
F

begin reentrant ("code")
section
address code
with register 2
obtain base of static block
add off set to data location
address data location

save static block pointer

load address of arguments
reload static block pointer
call subroutine which uses
register 14 to address its
own static section

return to caller

off set to location "DATA"
address of subroutine

begin modifiable ("static")
section
address within static
section
modifiable data

arguments for subroutine

The distinction between A-type and R-type address constants is
explained more fully in Section 5.5.5.

3-13

3.7.4 DSECT -- Identify Dummy Section

A dummy section represents a control section that is assembled
but is not part of the object program. A dummy section is a
convenient means of describing the layout of an area of storage
without actually reserving the storage. (It is assumed that the
storage is reserved either by some other part of this assembly or
else by another assembly.) The DSECT instruction identifies the
beginning or resumption of a dummy section. More than one dummy
section may be defined per assembly, but each must be named. The
format of the DSECT instruction statement is as follows:

Name

A vari­
able symbol
or ordinary
symbol

Operation

DSECT

Operand

Not used; should
be blank

The symbol in the name field is a valid relocatable symbol
whose value represents the first byte of the section. It has a
length attribute of 1.

Program statements belonging to dummy sections may be
interspersed throughout the program or may be written as a unit. In
either case, the appropriate DSECT instruction should precede each
set of statements. When multiple DSECT instructions with the same
name are encountered, the first is considered to initiate the dummy
section and the rest to continue it. All Assembly language
instructions may occur within dummy sections.

Symbols that name statements in a dummy section may be used in
USING instructions. Therefore, they may be used in program elements
(e.g., machine-instructions and data definitions) that specify
storage addresses. An example illustrating the use of a dummy
section appears subsequently under "Addressing Dummy Sections".

------------------------~NOTE------------------------~

Symbols that name statements in a dummy section
may be used in A-type address constants only when
they are paired with another symbol from the same
dummy section in an absolute expression. (See
Section 2. 5. 2). For example, if X and B name
statements in the same dummy section, C DC A(B-X)
would be valid, but C DC ACX) would be
invalid--yielding a relocatability error.

3-14

Dummy Section Location Assigrunent

A location counter is used to determine the relative
locations of named program elements in a dummy section. The
location counter is always set to zero at the beginning of the
dummy section, and the location values assigned to symbols that
name statements in the dummy section are relative to the initial
statement in the section.

Addressing Dummy Sections

The progranuner may wish to describe the format of an area
whose storage location will not be determined until the program
is executed. He can describe the format of the area in a dununy
section, and he can use symbols defined in the dummy section as
the operands of machine instructions. To effect references to
the storage area, he does the following:

1. Provides a USING statement specifying both a general
register that the assembler can assign to the
machine-instructions as a base register and a value
from the dummy section that the assembler may assume
the register contains.

2. Ensures that the same register is loaded with the
actual address of the storage area.

The values assigned to symbols defined in a dununy section
are relative to the initial statement of the section. Thus, all
machine-instructions which refer to names defined in the dummy
section will, at execution time, refer to storage locations
relative to the address loaded into the register.

An example is shown in the following coding. Assume that
two independent assemblies (assembly 1 and assembly 2) have been
loaded and are to be executed as a single overall program.
Assembly 1 is an input routine that places a record in a
specified area of storage, places the address of the input area
containing the record in general register 3, and branches to
~ssembly 2. Assembly 2 processes the record. The coding shown
in the example is from assembly 2.

The input area is described in assembly 2 by the DSECT
control section named INAREA. Portions of the input area (i.e.,
record) that the programmer wishes to work with are named in the
DSECT control section as shown. The assembler instruction USING
INAREA,3 designates general register 3 as the base register to be
used in addressing the DSECT control section, and that general
register 3 is assumed to contain the address of INAREA.

3-15

Assembly l, during execution, loads the actual beginning
address of the input area in general register 3. Because the
symbols used in the DSECT section are defined relative to the
initial statement in the section, the address values they
represent, will, at the time of program execution, be the actual
storage locations of the input area.

Name Operation Operand

ASMBLY2 CODE
BEGIN BALR 2,0

USING *,2
LR 4,14
A 4,=R(WORKA)
USING WORKA,4

USING INAREA,3
CLI INCODE,C'A'
BE ATYPE

ATYPE MVC WORKA,INPUTA
MVC WORKB, INPUTB

WORK2 STATIC
WORKA DS CL20
WORKB DS CL18

IN.AREA DSECT
INCODE DS CLl
INPUTA DS CL20
INPUTB DS CL18

END

3-16

The programmer must ensure that a section of code in his
program is actually described by the dummy section which
references it. Consider the following example, which illustrates
how a dummy section should not be addressed:

Name Operation Operand

TEST STATIC
.
.

CNOP 2,4
HALF DS CL2
FULL DS F

.

.
END

AREA DSECT
HALF DS CL2
FULL DS F

Note that in the dummy section AREA, two bytes are skipped
between HALF and FULL in order to align FULL on a full-word
boundary. In the control section TEST, however, the CNOP
instruction causes two bytes to be skipped. Thus FULL is
properly aligned without skipping any bytes between HALF and FULL.

When the programmer addresses the dununy section, the
location of FULL (relative to the location of HALF) will not be
the same as the location of FULL in the control section.

To correct this example
instruction to CNOP 0,4.

3.7.5 Symbolic Linkages

change the CNOP

Symbols may be defined in one module and referred to in
another, thus effecting symbolic linkages between independently
assembled program sections. The linkages can be effected only if
the assembler is able to provide information about the linkage
symbols to the linker, which resolves these linkage references at
link time. The assembler places the necessary information in the
linkage block on the basis of the linkage symbols identified by,

3-17

for example, the ENTRY and EXTRN instructions. Note that these
symbolic linkages are described as linkages between independent
modules; more specifically, they are linkages between independently
assembled control sections.

In the module where the linkage symbol is defined (i.e., used
as a name), it must also be identified to the assembler by means of
the ENTRY assembler instruction unless the symbol is the name of a
BEGIN, CODE, or STATIC statement. It is identified as a symbol that
names an entry point, which means that another module may use that
symbol in order to effect a branch operation or a data reference.
The assembler places this information in the control dictionary.

Similarly, the module that uses a symbol defined in some other
module must identify it by the EXTRN assembler instruction. It is
identified as an externally defined symbol (i.e., defined in another
module) that is used to effect linkage to the point of definition.
The assembler places this information in the external symbol
dictionary.

Another way to obtain symbolic linkages is by using the
V-type address constant. Section 5.4 contains the details pertinent
to writing a V-type address constant. It is sufficient here to note
that this constant may be considered an indirect linkage point. It
is created from an externally defined symbol, but that symbol does
not have to be identified by an EXTRN statement.

ENTRY Identify Entry Point Symbol

The ENTRY instruction identifies linkage symbols that are
defined in one source module and referenced by other modules.

Name· Operation

A se- ENTRY
quence
symbol
or
blank

Operand

One or more reloca­
table symbols,
separated by
commas, that also
appear as state­
ment names

The symbols in the ENTRY operand field may be used as operands
by other programs. An ENTRY statement operand may not contain a
symbol defined in a dununy section. The following example identifies
the statements named SINE and COSINE as entry points to the program.

3-18

Name Operation Operand

ENTRY SINE,COSINE

Labels of BEGIN, CODE, and STATIC statements are
automatically treated as entry points to a
module. Thus they need not be identified by
ENTRY statements.

EXTRN -- Identify External Symbol

The EXTRN instruction identifies linkage symbols used by one
source module but identified in another module. Each external
symbol must be identified. This includes symbols that refer to
control section names. The format of the EXTRN statement is:

Name

A se­
quence
symbol
or
blank

Operation Operand

EXTRN One or more relocatable
symbols, separated by
commas

The symbols in the operand field may not appear as the name of
·statements in the module where the EXTRN statement is. The length
attribute of an external symbol is 1.

The following example identifies three external symbols. They
are used as operands in the module where they appear, but they are
defined in some other module.

Name Operation

EXTRN
EXTRN

Operand

RATEBL,PAYCALC
WITHCALC

3-19

An example that employs the EXTRN instruction appears in
Section 3.7.6.

1. A V-type address constant does not have to be
identified by an EXTRN statement.

2. When external symbols are used in an
expression they may not be paired. Each
external symbol must be considered as having
a unique relocatability attribute.

3-20

3.7.6 Addressing External Control Sections

A common way for a program to link to an external control
section is to:

1. Create a V-type address constant with the name of the
external symbol.

2. Execute a Jump to Subroutine on Condition Indirect
instruction via the V-type address constant.

For example, to link to the control section named SINE, the
following coding might be used:

Name Operation Operand

MAINPROG CODE
BEGIN BALR 2,0

USING *,2

JSCI 15,VCON

VCON DC VCSINE)
END BEGIN

An external symbol naming data may be ref erred to as
follows:

1. Identify the external symbol with the EXTRN
instruction, and create an address constant from the
symbol.

2. Load the constant into a general register, and use the
register for base addressing.

3-21

For example, to use an area named RATETBL, which is in
another control section, the following coding might be used:

Name Operation Operand

MAINPROG CODE
BEGIN BALR 2,0

USING *,2

EXT RN RATETBL

L 4,RATEADDR
USING RATETBL,4
A 3,RATETBL

RATEADDR DC ACRATETBL)
END BEGIN

The total number of control sections, dummy sections, entry
point names, and external symbols (including names defined in
V-type address constants) must not exceed 400.

3-22

CHAPTER 4
MACHINE-INSTRUCTIONS

4.1 INTRODUCTION

This chapter discusses the coding of the machine-instructions
represented in Assembly language. The reader is reminded that the
functions of each machine-instruction are discussed in the
VS Principles of ,Operation.

4.2 MACHINE-INSTRUCTION STATEMENTS

Machine-instructions may be represented symbolically as
Assembly language statements. The symbolic format of each varies
according to the actual machine-instruction format, of which there
are five: RR, RX, RS, SI, and SS. Within each basic format,
further variations are possible.

The symbolic· format of a machine-instruction is similar to,
but does not duplicate, its actual format. Appendix C illustrates
machine format for the five classes of instructions. A mnemonic
operation code is written in the operation field, and one or more
operands are written in the operand field. Conunents may be appended
to a machine-instruction statement as previously explained in
Chapter 1.

Any machine-instruction statement may be named by a symbol,
which other assembler statements can use as an operand. The value
attribute of the symbol is the address of the leftmost byte assigned
to the assembled instruction. The length attribute of the symbol
depends on the basic instruction format, as follows:

Basic Format

RR

RX
RS
SI
SS

Length Attribute

~
4
4
4
6 or 8

4-1

4.2.1 Instruction Alignment and Checking

All machine-instructions are aligned automatically by the
assembler on half-word boundaries. If any statement that causes
information to be assembled requires alignment, the bytes skipped
are filled with hexadecimal zeros. All expressions that specify
storage addresses are checked to ensure that they ref er to
appropriate boundaries for the instructions in which they are used.
Register numbers are also checked to make sure that they specify the
proper registers, as follows:

1. Floating-point instructions must specify floating-point
registers 0, 2, 4, or 6.

2. Double-shift, full-word multiply, and divide instructions
must specify an even-numbered general register in the
first operand.

4.3 OPERAND FIELDS AND SUBFIELDS

Some symbolic operands are written as a single field, and
other operands are written as a field followed by one or two
subfields. For example, addresses consist of the contents of a base
register and a displacement. An operand that specifies a base and
displacement is written as a displacement field followed by a base
register subfield, as follows: 40(5). In the RX format, both an
index register subfield and a base register subfield are written as
follows: 40(3,5). In the SS format, both a length subfield and a
base register subfield are written as follows: 40(21,5).

Appendix C shows two types of addressing formats for RX, RS,
SI, and SS instructions. In each case, the first type shows the
method of specifying an address explicitly, as a base register and
displacement. The second type indicates how to specify an implied
address as an expression.

For example, a load multiple instruction (RS format) may have
either of the following symbolic operands:

Rl,R3,D2(B2)
Rl,R3,S2

explicit address
implied address

Whereas D2 and B2 must be represented by absolute expressions,
S2 may be represented either by a relocatable or an absolute
expression.

In order to use implied addresses, the following rules must be
observed:

1. The base register assembler instructions (USING and DROP)
must be used.

2. An explicit base register designation must not accompany
the implied address.

4-2

For example, assume that FIELD is a relocatable symbol, which
has been assigned a value of 7400. Assume also that the assembler
has been notified (by a USING instruction) that general register 12
currently contains a relocatable value of 4096 and is available as a
base register. The following example shows a machine-instruction
statement as it would be written in Assembly language and as it
would be assembled. Note that the value of D2 is the difference
between 7400 and 4096 and that X2 is assembled as zero, since it
was omitted. The assembled instruction is presented in hexadecimal:

Assembler statement:

ST 4,FIELD

Assembled instruction:

Op.Code
50

Rl X2
4 0

B2
c

02
CE8

An address may be specified explicitly as a base register and
displacement (and index register for RX instructions) by the formats
shown in the first column of Table 4-1. The address may be
specified as an implied address by the formats shown in the second
column. Observe that the two storage addresses required by the SS
instructions are presented separately; an implied address may be
used for one, while an explicit address is used for the other.

Table 4-1. Address Specification Details

Type Explicit Address Implied Address

RX D2(X2,B2) S2 (X2)
D2 (,B2) S2

RS D2CB2) S2
SI Dl(Bl) Sl
SS Dl(Ll,Bl) SlCLl)

Dl(L,Bl) Sl(L)
D2(L2,B2) S2CL2)

A conuna must separate operands. Parentheses must enclose a
subfield or subfields, and a conuna must separate two subfields
within parentheses. When parentheses are used to enclose one
subfield, and the subfield is omitted, the parentheses must be
omitted. In the case of two subfields that are separated by a corruna
and enclosed by parentheses, the following rules apply:

1. If both subfields are omitted, the separating conuna and
the parentheses must also be omitted.

L
L

2,48(4,5)
2,FIELD (implied address)

4-3

2. If the first subfield in the sequence is omitted, the
comma that separates it from the second subfield is
written. The parentheses must also be written.

MVC 32(16,5),FIELD2
MVC 32(,5),FIELD2 (implied length)

3. If the second subfield in the sequence is omitted, the
comma that separates it from the first subfield must be
omitted. The parentheses must be written.

MVC 32(16,5),FIELD2
MVC FIELD1(16),FIELD2 (implied address)

Fields and subfields in a symbolic operand may be represented
either by absolute or by relocatable expressions, depending on what
the field requires. (An expression has been defined as consisting
of one term or a series of arithmetically combined terms.) Refer to
Appendix C for a detailed description of field requirements.

Blanks may not appear in an operand unless
provided by a character self-defining term or a
character literal. Thus, blanks may not
intervene between fields and the comma
separators, between parentheses and fields, etc.

4.4 LENGTHS -- EXPLICIT AND IMPLIED

The length field in SS instructions can be explicit or
implied. To imply a length, the programmer omits a length field
from the operand. The omission indicates that the length field is
either of the following:

1. The length attribute of the expression specifying the
displacement, if an explicit base and displacement have
been written.

2. The length attribute of the expression specifying the
effective address, if the base and displacement have been
implied.

In either case, the length attribute for an expression is the
length of the leftmost term in the expression. The value of L'* is
the length of the instruction in all nonliteral machine instruction
operands. In all other uses its value will be 1.

By contrast, an explicit length is written by the progranuner
in the operand as an absolute expression. The explicit length
overrides any implied length.

4-4

Whether the length is explicit or implied, it is always an
effective length. The value inserted into the length field of the
assembled instruction is one less than the effective length in the
machine-instruction statement.

If a length field of zero is desired, the length
may be stated as zero or one.

To sununarize, the length required in an SS instruction may be
specified explicitly by the formats shown in the first column of
Table 4-2 or may be implied by the formats shown in the second
column. Observe that the two lengths required in one of the SS
instruction formats are presented separately. An implied length may
be used for one, while an explicit length is used for the other.

Table 4-2. Details of Length Specification
in SS Instructions

Explicit Length

Dl(Ll,Bl)
Sl(Ll)
Dl(L,Bl)
Sl(L)
D2(L2,B2)
S2(L2)

Implied Length

Dl (,Bl)
Sl
Dl(,Bl)
Sl
D2 (,B2)
S2

4.5 MACHINE-INSTRUCTION MNEMONIC CODES

The mnemonic operation codes (shown in Appendix D) are
designed to be easily remembered codes that indicate the functions
of the instructions. The normal format of the code is shown below;
the items in brackets are not necessarily present in all codes:

Verb[Modif ier] [Data Type] [Machine Format]

The verb, which is usually one or two characters, specifies
the function. For example, A represents Add, and MV represents
Move. The function may be further defined by a modifier. For
example, the modifier L indicates a logical function, as in AL for
Add Log ica 1.

Mnemonic codes for functions involving data usually indicate
the data types by letters that correspond to those for the data
types in the DC assembler instruction (see Chapter 5). Where
applicable, full-word fixed-point data is implied if the data type
is omitted.

4-5

The letters R and I are added to the codes to indicate,
respectively, RR and SI machine instruction formats. Thus, ADR
indicates Add Normalized Long in the RR format. Functions involving
character and decimal data types imply the SS format.

4.6 MACHINE-INSTRUCTION EXAMPLES

The examples that follow are grouped according to
machine-instruction format. They illustrate the various symbolic
operand formats. All symbols employed in the examples must be
asstuned to be defined elsewhere in the same assembly. All symbols
that specify register numbers and lengths must be assumed to be
equated elsewhere to absolute values.

Implied addressing, control section addressing, and the
function of the USING assembler instruction are not considered
here. For discussion of these considerations and for examples of
coding sequences that illustrate them, refer to Sections 3.3 and 3.6.

4.6.1 RR Format

Name Operation Operand

ALPHA! LR 1,2
ALPHA2 LR REG1,REG2
BETA SPM 15
GAMMA! SVC 250
GAMMA2 SVC TEN

The operands of ALPHA!, BETA, and GAMMA! are decimal
self-defining values, which are categorized as absolute
expressions. The operands of ALPHA2 and GAMMA2 are symbols that are
equated elsewhere to absolute values.

4.6.2 RX Format

Name Operation Operand

ALPHA! L 1,39(4,10)
ALPHA2 L REGl,39(4,TEN)
BETAl L 2,ZETA(4)
BETA2 L REG2,ZETA(REG4)
GAMMA! L 2,ZETA
GAMMA2 L REG2,ZETA
GAMMA3 L 2,=F'lOOO'
LAMBDA! L 3, 20 (, 5)

4-6

Both ALPHA instructions specify explicit addresses; REGl and
TEN are absolute symbols. Both BETA instructions specify implied
addresses, and both use index registers. Indexing is omitted from
the GAMMA instructions. GAMM.Al and GAMMA2 specify implied
addresses. The second operand of GAMMA3 is a literal. Ll\MBDAl
specifies no indexing.

4.6.3 RS Format

Name Operation Operand

ALPHA! BXH l,2,20(14)
ALPHA2 BXH REG1,REG2,20(REGD)
ALPHA3 BXH REG1,REG2,ZETA
ALPHA4 SLL REG2,15
ALPHAS SLL REG2, 0 (15)

Whereas ALPHA! and ALPHA2 specify explicit addresses, ALPHA3
specifies an implied address. ALPHA4 is a shift instruction
shifting the contents of REG2 left 15 bit positions. ALPHAS is a
shift instruction shifting the contents of REG2 left by the value
contained in general register 15.

4.6.4 SI Format

Name Operation Operand

ALPHA! CLI 40 (9) ,x I 40 I

ALPHA2 CLI 40(REG9),TEN
BETA! CL! ZETA, TEN
BETA2 CLI ZETA,C'A'
GAMMA! LPCW 40(9)
GAMMA.2 LPCW 0(9)
GAMMA.3 LPCW 40(0)
GAMMA.4 LPCW ZETA

The ALPHA instructions and GAMM.Al-GAMMA.3 specify explicit
addresses, whereas the BETA instructions and GAMMA4 specify implied
addresses. GAMMA.2 specifies a displacement of zero. GAMMA.3 does not
specify a base register.

4-7

4.6.5 SS Format

Name Operation Operand

ALPHA! AP 40(9,8),30(6,7)
ALPHA2 AP 40(NINE,REG8),30(L6,7)
ALPHA3 AP FIELD2,FIELD1
ALPHA4 AP FIELD2(9),FIELD1(6)
BETA AP FIELD2(9),FIELD1
GAMMA! MVC 40(9,8),30(7)
GAMMA2 MVC 40(NINE,REG8),DEC(7)
GAMMA3 MVC FIELD2,FIELD1
GAMMA4 MVC FIELD2(9),FIELD1

ALPHA!, ALPHA2, GAMMA!, and GAMMA2 specify explicit lengths
and addresses. ALPHA3 and GAMMA3 specify both implied length and
implied addresses. ALPHA4 and GAMMA4 specify 'explicit length and
implied addresses. BETA specifies an explicit length for FIELD2 and
an implied length for FIELD!; both addresses are implied.

4.7 EXTENDED MNEMONIC CODES

For the convenience of the programmer, the assembler provides
extended mnemonic codes, which allow conditional branches to be
specified mnemonically as well as through the use of the BC and BCR
machine-instructions. These extended mnemonic codes specify both
the machine branch instruction and the condition on which the branch
is to occur. The codes are not part of the uni versa! set of
machine-instructions, but are translated by the assembler into the
corresponding operation and condition combinations.

The allowable extended mnemonic codes and their operand
formats are shown in Figure 4-1, together with their
machine-instruction equivalents. Unless otherwise noted, all
extended mnemonics shown are for instructions in the RX format.
Note that the only difference between the operand fields of the
extended mnemonics and those of their machine-instruction
equivalents is the absence of the Rl field and the comma that
separates it from the rest of the operand field. The extended
mnemonic list, like the machine-instruction list, shows explicit
address formats only. Each address can also be specified as an
implied address.

4-8

Extended Code

B 02(X2,B2)
BR R2
NOP 02(X2,B2)
NOPR R2

Meaning Machine-Instruction

Branch Unconditional BC 15,02(X2,B2)
Branch Unconditional (RR format) BCR 15,R2
No Operation BC 0,02(X2,B2)
No Operation (RR format) BCR O,R2

Used After Compare Instructions

BH 02(X2,B2)
BL 02(X2,B2)
BE 02(X2,B2)
BNH 02(X2,B2)
BNL 02(X2,B2)
BNE 02(X2,B2)

Used After

BO 02(X2,B2)
BP 02(X2,B2)
BM 02(X2,B2)
BZ 02(X2,B2)
BNP 02(X2,B2)
BNM 02(X2,B2)
BNZ 02(X2,B2)

Used After

BO 02(X2,B2)
BM 02(X2,B2)
BZ 02(X2,B2)
BNO 02(X2,B2)

Branch on High
Branch on Low
Branch on Equal
Branch on Not High
Branch on Not Low
Branch on Not Equal

Arithmetic Instructions

Branch on Overflow
Branch on Plus
Branch on Minus
Branch on Zero
Branch on Not Plus
Branch on Not Minus
Branch on Not Zero

Test Under Mask Instructions

Branch if Ones
Branch if Mixed
Branch if Zeros
Branch if Not Ones

BC 2,02(X2,B2)
BC 4,02(X2,B2)
BC 8,02(X2,B2)
BC 13 ,02 (X2 ,B2)
BC 11,02 (X2 ,B2)
BC 7,02(X2,B2)

BC l,02(X2,B2)
BC 2,02(X2,B2)
BC 4,02(X2,B2)
BC 8,02(X2,B2)
BC 13 ,02 (X2 ,B2)
BC 11,02 (X2 ,B2)
BC 7,02(X2,B2}

BC l,02(X2,B2}
BC 4,02(X2,B2)
BC 8,02(X2,B2}
BC 14,02(X2,B2}

Figure 4-1. Extended Mnemonic Codes

Adding an R to an extended form of the BC instruction gives
the corresponding form of the BCR instruction, e.g., BHR R2
Branch on High, Register is equivalent to BCR 2,R2

Similar extended mnemonics are also available for the
BALCI, JSCI, BSC and RTC instructions:

BALO! Rl ,02 (B2)
JSOI 02(X2,B2)
BOS S2
RTO

Branch and Link if Ones Indirect
Jump to Subroutine if Ones Indirect
Branch if Ones Stack
Return if Ones

4-9

BALCI l,Rl,02(B2)
JSCI l,02(X2,B2)
BCS l,Sl
RTC 1

In the following examples, which illustrate the use of extended
mnemonics, it is to be assumed that the symbol GO is defined elsewhere
in the program.

Name Operation Operand

B 40(3,6)
B 40(,6)
BL G0(3)

BL GO
BLR 4

The first two instructions specify an unconditional branch to an
explicit address. The address in the first case is the sum of the
contents of base register 6, the contents of index register 3, and the
displacement 40; the address in the second instruction is not indexed.
The third instruction specifies a branch on low to the address implied
by GO as indexed by the contents of index register 3; the fourth
instruction does not specify an index register. The last instruction is
a branch on low to the address contained in register 4.

4-10

CHAPTER 5
ASSEMBLER INSTRUCTION STATEMENTS

5.1 INTRODUCTION

Just as machine instructions are used to request the computer
to perform a sequence of operations during program execution time,
so assembler instructions are requests to the assembler to perform
certain operations during the assembly. Assembler-instruction
statements, in contrast to machine-instruction statements, do not
usually cause machine-instructions to be included in the assembled
program. Some, such as DS and DC, generate no instructions but do
cause storage areas to be set aside for constants and other data.
Others, such as EQU and SPACE, are effective only at assembly time;
they generate nothing in the assembled program and have no effect on
the location counter. The following is a list of assembler
instructions.

Symbol Definition Instruction
EQU - Equate Symbol

Operation Code Definition Instruction
OPSYN - Equate Operation Code

Data Definition Instructions
DC Define Constant
DS - Define Storage

* Program Sectioning and Linking Instructions
BEGIN - Start Assembly
CODE - Identify Reentrant ("code") Section
STATIC - Identify Modifiable ("static") Section
DSECT - Identify Dununy Section
ENTRY - Identify Entry -Point Symbol
EXTRN - Identify External Symbol

* Base Register Instructions
USING - Use Base Address Register
DROP - Drop Base Address Register

Listing Control Instructions
TITLE - Identify Assembly Output
EJECT - Start New Page
SPACE - Space Listing
PRINT - Print Optional Data

* Discussed in Chapter 3.
5-1

Program Control Instructions
ICTL - Input Format Control
ISEQ - Input Sequence Checking
ORG - Set Location Counter
LTORG - Begin Literal Pool
CNOP - Conditional No Operation
COPY - Copy Predefined Source Coding
END - End Assembly

5.2 SYMBOL DEFINITION INSTRUCTION

EQU -- Equate Symbol

The EQU instruction is used to define a symbol by assigning to
it the length, value, and relocatability attributes of an expression
in the operand field. The format of the EQU instruction statement
is as follows:

Name

A variable
symbol or
ordinary
symbol

Operation

EQU

Operand

Four options:
expression 1
expression !,expression 2
expression !,expression 2,

expression 3
expression !,,expression 3

Expression 1 can be absolute or relocatable. The assembler
assigns its value to the symbol in the name field.

If expression 2 is present, it must be absolute and have a
value in the range of 0 through 65, 535. It is assigned as the
length attribute of the symbol in the name field.

If expression 2 is not present, the symbol in the name
field is given the length attributes of the leftmost (or only)
term of expression 1. The length attribute of * or of a
self-defining term is 1.

If expression 3 is present, it must be absolute and have a
value between 0 and 255. Its ASCII character equivalent is
assigned as the type attribute of the symbol at preassembly time.

5-2

The EQU instruction is used to equate symbols to register
numbers, immediate data, or other arbitrary values. The
following examples illustrate how this can be done:

Name Operation Operand

REG2
TEST

EQU
EQU

2 (general register)
X'3F'(immediate data)

To reduce programming time, the programmer can equate
symbols to frequently used expressions and then use the symbols
as operands in place of the expressions. Thus, in the statement:

Name Operation Operand

FIELD EQU ALPHA-BETA+GAMMA

FIELD is defined as ALPHA-BETA+GAMMA and may be used in
place of it. Note, however, that ALPHA, BETA, and GAMMA must all
be previously defined.

The assembler assigns a length attribute of 1 in an EQU
to * statement.

5.3 OPERATION CODE DEFINITION INSTRUCTION

OPSYN -- Equate Operation Code

The OPSYN instruction is used to define a machine mnemonic
or extended mnemonic operation code as equivalent to another
operation code. It is also used to prevent the assembler from
recognizing an operation code. The OPSYN instruction has two
formats:

Name

Any
ordinary
symbol

Operation Operand

OPSYN An operation
code

5-3

In this format, the OPSYN instruction assigns all the
properties of the operation code in the operand field to the
symbol in the name field. The symbol in the name field can be a
previously defined machine or assembler operation code. In this
case, the latest definition takes precedence.

Name

An operation
code

Operation

OPSYN

Operand

Blank

In this format, the OPSYN instruction prevents the
assembler from recognizing the operation code in the name field.

The OPSYN instruction must be written after the ICTL
instruction and can be preceded only by the EJECT, ISEQ, PRINT,
SPACE, and TITLE instructions.

It must precede any source macroinstruction definitions.

5.4 DATA DEFINITION INSTRUCTIONS

There are two data definition instruction statements:
Define Constant (DC), and Define Storage CDS). These statements
are described in Sections 5.5 and 5.6.

These statements are used to enter data constants into
storage, and to define and reserve areas of storage. The
statements can be named by symbols so that other program
statements can ref e-r to the generated fields. The DC instruction
is presented first and discussed in more detail than the DS
instruction because the DS instruction is written in the same
format as the DC instruction and can specify some or all of the
information that the DC instruction provides. Only the function
and treatment of the statements vary.

5-4

5.6 DC -- DEFINE CONSTANT

The DC instruction is used to provide constant data in
storage. It can specify one constant or a series of constants.
A variety of constants can be specified: fixed-point,
floating-point, decimal, hexadecimal, character, and storage
addresses. (Data constants are generally called constants unless
they are created from storage addresses, in which case they are
called address constants.) The format of the DC instruction
statement is as follows:

Name

'Any sym­
bol or
blank

Operation

DC

Operand

One or more
operands in
the format
described
below, each
separated by
a comma

Each operand consists of four subfields: the first three
describe the constant, and the fourth subfield provides the
nominal value(s) for the constant(s). The first and third
subfields can be omitted, but the second and fourth must be
specified. Note that nominal value(s) for more than one constant
can be specified in the fourth subfield for most types of
constants. Each constant so specified must be of the same type;
the descriptive subfields that precede the nominal value apply to
all of them. No blanks can occur within any of the subfields
(unless provided as characters in a character constant or a
character self-defining term), nor can they occur between the
subfields of an operand. Similarly, blanks cannot occur between
operands and the commas that separate them when multiple operands
are being specified.

The subfields of each DC operand are written in the
following sequence:

1
Dupli­
cation
Factor

2
Type

3
Modifiers

4
Nominal Value(s)

'Although the constants specified within one operand must
have the same cha·racteristics, each operand can specify a
different type of constant. For example, in a DC instruction
with three operands, the first operand might specify four decimal
constants, the second a floating-point constant, and the third a
character constant.

5-5

The symbol that names the DC instruction is the name of the
constant (or first constant if the instruction specifies more
than one). Relative addressing (e.g., SYMBOL+2) can be used to
address the various constants if more than one has been
specified, because the number of bytes allocated to each constant
can be determined.

The value attribute of the symbol naming the DC instruction
is the address of the leftmost byte (after alignment) of the
first, or only, constant. The length attribute depends on two
things: the type of constant being defined and the presence of a
length specification. Implied lengths are asswned for the
various constant types in the absence of a length specification.
If more than one constant is defined, the length attribute is the
length in bytes (specified or implied) of the first constant.

Boundary alignment also varies according to the type of
constant being specified and the presence of a length
specification. Some constant types are only aligned to a byte
boundary, but the DS instruction can be used to force any type of
word boundary alignment for them. This is explained in Section
5. 6. Other constants are aligned at various word boundaries
(half, full, or double) in the absence of a length
specification. If length is specified, no boundary alignment
occurs for such constants.

Bytes that must be skipped in order to align the field at
the proper boundary are not considered to be part of the
constant. In other words, the location counter is incremented to
reflect the proper boundary (if any incrementing is necessary)
before the address value is established. Thus, the symbol naming
the constant will not receive a value attribute that is the
location of a skipped byte.

Any bytes skipped in aligning statements that do not cause
information to be assembled are not zeroed. Bytes skipped to
align a OC statement are zeroed; bytes skipped to align a DS
statement are not zeroed.

Appendix F summarizes, in chart form, the information
concerning constants that is presented in this section.

5.5.1 Literal Definitions

The reader is reminded that the discussion of literals as
machine-instruction operands C in Chapter 2) ref erred him to the
description of the DC operand for the method of writing a literal
operand. All subsequent operand specifications are applicable to
writing literals, the only differences being:

1. The literal is preceded by an equal sign.
2. Multiple operands may not be specified.
3. The duplication factor may not be zero.

Examples of literals appear throughout the balance of the
DC instruction discussion.

5-6

Code TyPe of Constant

C Character
X Hexadecimal
B Binary
F Fixed-point

H Fixed-point

E Floating-point

D Floating-point

L Floating-point

P Decimal
Z Decimal
A Address
Y Address
S Address

V Address

R Address

Machine Format

8-bit code for each character
4-bit code for each hexadecimal digit
binary format
Signed, fixed-point binary format;
normally a full-word
Signed, fixed-point binary format;
normally a half-word
Short floating-point format; normally
a full-word
Long floating-point format; normally
a double-word
Extended floating-point format;
normally two double-words
Packed decimal format
Zoned decimal format
Value of address; normally a full-word
Value of address; normally a half-word
Base register and displacement value;
a half-word
Space reserved for external symbol
addresses; each address normally a
full-word
Space reserved for STATIC section
offset; each offset normally a full
word

Figure 5-1. Type Codes For Constants

5.5.2 Operand Subfield 1: Duplication Factor

The duplication factor may be omitted. If specified, it
causes the constant(s) to be generated the number of times indicated
by the factor. The factor may be specified either by an unsigned
decimal self-defining term or by a positive absolute expression that
is enclosed by parentheses. The duplication factor is applied after
the constant is assembled. All symbols in the expression must be
previously defined.

Note that a duplication factor of zero is permitted except in
a literal and achieves the same result as it would in a DS
instruction. A DC instruction with a zero duplication factor will
not produce control dictionary entries. Re~er to Section 5.6.1.

5-7

If duplication is specified for an address
constant containing a location counter reference,
the value of the location counter used in each
duplication is incremented by the length of the
operand.

5.5.3 Operand Subfield 2: Type

The type subfield defines the type of constant being
specified. From the type specification, the assembler determines
how it is to interpret the constant and translate it into the
appropriate machine format. The type is specified by a
single-letter code as shown in Figure 5-1. ·

Further information about these constants is provided in the
discussion of the constants themselves in Section 5.5.5.

5.5.4 Operand Subfield 3: Modifiers

Modifiers describe the length in bytes desired for a constant
(in contrast to an implied length), and the scaling and exponent for
the constant. If multiple modifiers are written, they must appear
in this sequence: length, scale, exponent. Each is written and
used as described in the following text.

Length Modifier

This is written as Ln, where n is either an unsigned decimal
self-defining term or a positive absolute expression enclosed by
parentheses. Any symbols in the expression must be previously
defined. The value of n represents the number of bytes of storage
that are assembled for the constant. The maximum value permitted
for the length modifiers supplied for the various types of constants
is summarized in Appendix F. This table also indicates the implied
length for each type of constant; the implied length is used unless
a length modifier is present. A length modifier may be specified
for any type of constant. However, no boundary alignment will be
provided when a length modifier is given.

Use of a length modifier may cause truncation. For example,

DC C'ABCDXYZ'

will generate a 7-byte constant, whereas

OC CLG'ABCDXYZ'

will generate a 6-byte constant and cause Z to be lost. Truncation
of C, X, B, Z, P, A, and R constants is not flagged as an error.
However, F, H, E, D, L, and Y constants will be flagged if
significant bits are lost. Finally, each type of constant has an

5-8

imposed or natural length modifier range limit. Appendix F shows
which constants can be flagged for truncation of significant
digits. It also shows the allowable length modifier range for each
constant.

Bit-Length Specification

The length of a constant, in bits, is specified by L.n, where
n is specified as stated above and represents the number of bits in
storage into which the constant is to be assembled. The value of n
may exceed eight and is interpreted to mean an integral number of
bytes plus so many bi ts. For example, L. 20 is interpreted as a
length of two bytes plus four bits.

Assembly of the first or only constant with bit-length
specification starts on a byte boundary. The constant is placed in
the high or low order end of the field depending on the type of
constant being specified. The constant is padded or truncated to
fit the field. If the assembled length does not leave the location
counter set at a byte boundary, and another bit length constant does
not immediately follow in the same statement, the remainder of the
last byte used is filled with zeros. This leaves the location
counter set at the next byte boundary. Figure 5-2 shows a
fixed-point constant with a specified bit-length of 13, as coded,
and as it would appear in storage. Note that the constant has been
padded on the left to bring it to its designated 13-bit length.

As coded:

Name Operation Operand

BLCON DC FL.13'579'

In storage:

byte byte byte

padding

00010010 00011000

579 fill

Figure 5-2. Bit-Length Specification
(Single Constant)

The implied length of BLCON is two bytes. A reference to
BLCON would cause the entire two bytes to be referenced.

5-9

When bit-length specification is used in association with
multiple constants (refer to Section 5.5.5), each succeeding
constant in the list is assembled starting at the next available
bit. Figure 5-3 illustrates this.

As coded:

Name Operation Operand

BLMCON DC FL.10'161,21,57'

In storage:

byte byte byte byte byte

padding padding

00101000010000010101000011100100

161 21 57 fill

Figure 5-3. Bit-Length Specification
(Multiple Constants)

The symbol used as a name entry in a DC assembler instruction
takes on the length attribute of the first constant in the list;
therefore the implied length of BLMCON in Figure 5-3 is two bytes.

If duplication is specified, filling occurs once at the end of
the field occupied by the duplicated constant(s).

When bit-length specification is used in association with
multiple operands, assembly of the constant(s) in each succeeding
operand starts at the next available bit. Figure 5-4 illustrates
this.

As coded:

Name Operation Operand

BLMOCON DC FL.7'9' ,CL.lO'AB' ,XL.14'C4'

5-10

In storage:

byte byte byte byte byte

padding padding

00010010100000101000000110001000

9 A

A plus
first two
bits of B

C4 fill

Figure 5-4. Bit-Length Specification
(Multiple Operands)

In Figure 5-4, three different types of constants have been
specified, one to an operand. Note that the character constant 'AB'
which normally would occupy 16 bits is truncated on the right to fit
the 10-bit field designated. Note that filling occurs only at the
end of the field occupied by all the constants.

Scale Modifier

This modifier is written as Sn, where n is either a decimal
value or an absolute expression enclosed by parentheses. All
symbols in the expression must be previously defined~ The decimal
self-defining term or the parenthesized expression may be preceded
by a sign; if none is present, a plus sign is assumed. The maximum
values for scale modifiers are summarized in Appendix F.

A scale modifier may be used with fixed-point CF, H) and
floating-point (E,D,L) constants only. It is used to specify the
,amount of internal scaling that is desired, as follows:

Scale Modifier for Fixed-Point Constants

The scale modifier specifies the power of two by which the
constant must be multiplied after it has been converted to its
binary representation. Just as multiplication of a decimal number
by a power of 10 causes the decimal point to move, multiplication of
a binary number by a power of two causes the binary point to move.
This multiplication has the effect of moving the binary point away
from its assumed position in the binary field; the assumed position
being to the right of the rightmost position.

5-11

Thus, the scale modifier indicates either of the following:
(1) the number of binary positions to be occupied by the fractional
portion of the binary number, or (2) the number of binary positions
to be deleted from the integral portion of the binary number. A
positive scale of x shifts the integral portion of the number x
binary positions to the left, thereby reserving the rightmost x
binary positions for the fractional portion. A negative scale
shifts the integral portion of the number right, thereby deleting
rightmost integral positions. If a scale modifier does not
accompany a fixed-point constant containing a fractional part, the
fractional part is lost.

In all cases where positions are lost because of scaling (or
the lack of scaling), rounding occurs in the leftmost bit of the
lost portion. The rounding is reflected in the rightmost position
saved.

Scale Modifier for Floating-Point Constants

Only a positive scale modifier may be used with a
floating-point constant. It indicates the number of hexadecimal
positions that the fraction is to be shifted to the right. Note
that this shift amount is in terms of hexadecimal positions, each of
which is four binary positions. CA positive scaling actually
indicates that the point is to be moved to the left. However, a
floating-point constant is always converted to a fraction, which is
hexadecimally normalized. The point is assumed to be at the left of
the leftmost position in the field. Since the point cannot be moved
left, the fraction is shifted right.)

Thus, scaling that is specified for a floating-point constant
provides an assembled fraction that is unnormalized, i.e., contains
hexadecimal zeros in the leftmost positions of the fraction. When
the fraction is shifted, the exponent is adjusted accordingly to
retain the correct magnitude. When hexadecimal positions are lost,
rounding occurs in the leftmost hexadecimal position of the lost
portion. The rounding is reflected in the rightmost hexadecimal
position saved.

Exponent Modifier

This modifier is written as En, where n is either a decimal
self-defining term or an absolute expression enclosed by
parentheses. Any symbols in the expression must be previously
defined. The decimal value or the parenthesized expression may be
preceded by a sign; if none is present, a plus sign is asswned.

An exponent modifier may be used with fixed-point (F, H) and
floating-point (E,D,L) constants only. The modifier denotes the
power of 10 by which the constant is to be multiplied before its
conversion to the proper internal format.

5-12

This modifier is not to be confused with the exponent of the
constant itself, which is specified as part of the constant and is
explained in Section 5. 5. 5. The exponent modifier affects each
constant in the operand, whereas the exponent written as part of the
constant only pertains to that constant. Thus, a constant may be
specified with an exponent of effect, the constant has an exponent
of +7.

The range for the exponent modifier is -85 through +75.
However, if there is an exponent in the constant itself (see
"Floating-Point Constants -- E, D, and L" in Section 5.5.5) the sum
of that exponent and the exponent modifier must be within the range
-85 - +75. Thus, an exponent modifier of -40 together with an
exponent of -4 7 would not be permitted. One further limitation is
that the value specified must be contained in the implied length of
the constant. Refer to the VS Principles of Qperation.

5.5.5 Operand Subfield 4: Constant

This subfield supplies the constant (or constants) described
by the subfields that precede it. A data constant (any type except
A, Y, S, R and V) is enclosed by apostrophes. An address constant
(type A, Y, S, R, or V) is enclosed by parentheses. To specify two
or more constants in the subfield, the constants must be separated
by commas and the entire sequence of constants must be enclosed by
the appropriate delimiters (i.e., apostrophes or parentheses).
Thus, the format for specifying the constant(s) is one of the
following:

Single
Constant
'constant'
(constant)

Multiple
Constants*
'constant, ... ,constant'
(constant, ... ,constant)

* Not permitted for character constants.

All constant types except character CC), hexadecimal (X),
binary (B), packed decimal (P), and zoned decimal (Z) are aligned on
the proper boundary, as shown in Appendix F, unless a length
modifier is specified. In the presence of a length modifier, no
boundary alignment is performed. If an operand specifies more than
one constant, any necessary alignment applies to the first constant
only. Thus, for an operand that provides five full-word constants,
the first would be aligned on a full-word boundary, and the rest
would automatically fall on full-word boundaries.

The total storage requirement of an operand is the product of
the length times the number of constants in the operand times the
duplication factor (if present) plus any bytes skipped for boundary
alignment of the first constant. If more than one operand is
present, the storage requirement is derived by stunming the
requirements for each operand.

5-13

If an address constant contains a location counter reference,
the location counter value that is used is the storage address of
the first byte the constant will occupy. Thus, if several address
constants in the same instruction refer to the location counter, the
value of the location counter varies from constant to constant.
Similarly, if a single constant is specified (and it is a location
counter reference) with a duplication factor, the constant is
duplicated with a varying location counter value.

The following text describes each of the constant types and
provides examples.

Character Constant -- C

'Any of the valid 256 bit combinations can be designated in a
character constant. Only one character constant can be specified
per operand. Since multiple constants within an operand are
separated by commas, an attempt to specify two character constants
results in interpreting the comma separating them as a character.

Special consideration must be given to representing
apostrophes and ampersands as characters. Each single apostrophe or
ampersand desired as a character in the constant must be represented
by a pair of apostrophes or ampersands. Only one apostrophe or
ampersand appears in storage.

The maximum length of a character constant is 256 bytes. No
boundary alignment is performed. Each character is translated into
one byte. Double apostrophes or double ampersands count as one
character. If no length modifier is given, the size in bytes of the
character constant is equal to the nwnber of characters in the
constant. If a length modifier is provided, the result varies as
follows:

1. If the number of characters in the constant exceeds the
specified length, as many rightmost bytes and/or bits as
necessary are dropped.

2. If the number of characters is less than the specified
length, the excess rightmost bytes and/or bits are filled
with blanks.

In the following example, the length attribute of FIELD is 12:

Name Operation Operand

FIELD oc C'TOTAL IS 110'

5-14

However, in this next example, the length attribute is 15, and
three blanks appear in storage to the right of the zero:

Name Operation Operand

FIELD DC CL15'TOTAL IS 110'

In the next example, the length attribute of FIELD is 12,
although 13 characters appear in the operand. The two ampersands
count as only one byte.

Name Operation Operand

FIELD DC C'TOTAL IS &&10'

Note that in the next example, a length of four has been
specified, but there are five characters in the constant.

Name Operation Operand

FIELD oc 3CL4'ABCDE'

The generated constant would be:

ABCDABCDABCD

On the other hand, if the length had been specified as six
instead of four, the generated constant would have been:

ABCDE ABCDE ABCDE

Note that the same constant could be specified as a literal.

Name Operation Operand

MVC AREAC12),=3CL4'ABCDE'

5-15

Hexadecimal Constant -- X

A hexadecimal constant consists of
hexadecimal digits, which are 0-9 and A-F.
hexadecimal constant is 256 bytes.

one or more of the
The maximum length·of a

Constants that contain an even number of hexadecimal digits
are translated as one byte per pair of digits. If an odd number of
digits is specified, the leftmost byte has the leftmost four bi ts
filled with a hexadecimal zero, while the rightmost four bits
contain the odd (first) digit. No boundary alignment is performed.

If no length modifier is given, the implied length of the
constant is half the number of hexadecimal digits in the constant
(assuming that a hexadecimal zero is added to an odd number of
digits). If a length modifier is given, the constant is handled as
follows:

1. If the number of
specified length,
bytes) are dropped.

hexadecimal digit pairs
the necessary leftmost

exceeds the
bits (and/or

2. If the number of hexadecimal digit pairs is less than the
specified length, the necessary bits (and/or bytes) are
added to the left and filled with hexadecimal zeros.

An eight-digit hexadecimal constant provides a convenient way
to set the bit pattern of a full binary word. The constant in the
following example would set the first and third bytes of a word to
l's:

Name

TEST

Operation

OS
DC

Operand

OF
X'FFOOFFOO'

The OS instruction sets the location counter to a
full-word-boundary. (Refer to Section 5.6.)

The next example uses a hexadecimal constant as a literal and
inserts l's into bits 24 through 31 of register 5.

Name Operation Operand

IC 5,=X'FF'

5-16

In the following example, the digit A is dropped, because five
hexadecimal digits are specified for a length of two bytes:

Name Operation Operand

ALPHACON DC 3XL2'A6F4E'

The resulting constant is 6F4E, which occupies the specified
two bytes. It is duplicated three times, as requested by the
duplication factor. If it had merely been specified as X' A6F4E',
the resulting constant would have a hexadecimal zero in the leftmost
position:

OA6F4EOA6F4EOA6F4E

Binary Constant -- B

A binary constant is written using 1 's and 0' s
apostrophes. Duplication and length can be specified.
length of a binary constant is 256 bytes.

enclosed in
The maximum

The implied length of a binary constant is the number of bytes
occupied by the constant including any padding necessary. Padding
or truncation takes place on the left. The padding bit used is a 0.

The following example shows the coding used to designate a
binary constant. BCON would have a length attribute of 1.

Name

BCON
BTRUNC
BPAD

Operation

DC
DC
DC

Operand

BI 11011101'
BL1'100100011'
BLl I 101'

BTRUNC would assemble with the leftmost bit truncated, as follows:

00100011

BPAD would assemble with five zeros as padding, as follows:

00000101

5-17

Fixed-Point Constants -- F and H

A fixed-point constant is written as a decimal number, which
can be followed by a decimal exponent if desired. The number can be
an integer, a fraction, or a mixed number (i.e., one with integral
and fractional portions). The format of the constant is as follows:

1. The number is written as a signed or unsigned decimal
value. The decimal point can be placed before, within, or
after the number. If it is omitted, the number is assumed
to be an integer. A positive sign is assumed if an
unsigned number is specified. Unless a scale modifier
accompanies a mixed number or fraction, the fractional
portion is lost, as explained in Section 5.5.4.

2. The exponent is optional. If specified, it is written
immediately after the number as En, where n is an
optionally signed decimal self-defining term specifying
the exponent of the factor 10. The exponent may be in the
range -85 to +75. If an unsigned exponent is specified, a
plus sign is assumed. The exponent causes the value of
the constant to be adjusted by the power of 10 that it
specifies before the constant is converted to its binary
form. The exponent may exceed the permissible range for
exponents, provided that the sum of the exponent and the
exponent modifier does not exceed that range.

The number is converted to a binary number, and scaling is
performed if specified. The binary number is then rounded and
assembled into the proper field, according to the specified or
implied length. The resulting number will not differ from the exact
value by more than one in the last place. If the value of the
number exceeds the length specified or implied, the sign is lost,
the necessary leftmost bi ts are truncated to the length of the
field, and the value is then assembled into the whole field. "Any
duplication factor that is present is applied after the constant is
assembled. A negative number is carried in 2's complement form.

An implied length of four bytes is assumed for a full-word (F) and
two bytes for a half-word (H), and the constant is aligned to the
proper full-word or half-word if a length is not specified.
However, any length up to and including eight bytes can be specified
for either type of constant by a length modifier, in which case no
boundary alignment occurs.

Maximum and minimum values, exclusive of scaling, for
fixed-point constants are:

Length Max Min
8 2**63-1 -2**63
4 2**31-1 -2**31
2 2**15-1 -2**15
1 2**7-1 -2**7

.4 2**3-1 -2**3

.2 2**1-1 -2**1

.1 0 -1
5-18

A field of three full-words is generated from the statement
shown below. The location attribute of CONWRD is the address of
the leftmost byte of the first word, and the length attribute is 4,
the implied length for a full-word fixed-point constant. The
expression CONWRD+4 could be used to address the second constant
(second word) in the field.

Name Operation Operand

CONWRD DC 3F'658474'

The next statement causes the generation of a two-byte field
containing a negative constant. Notice that scaling has been
specified in order to reserve six bits for the fractional portion of
the constant.

Name Operation Operand

HALFCON DC HS6'-25.46'

The next constant (3.50) is multiplied by 10 to the power -2
before being converted to its binary format. The scale modifier
reserves 12 bits for the fractional portion.

Name Operation Operand

FULLCON DC HS12'3.50E-2'

The same constant could be specified as a literal:

Name Operation Operand

7,=HS12'3.50E-2'

5-19

The final example specifies three constants. Notice that the
scale modifier requests four bits for the fractional portion of each
constant. The four bits are provided whether or not the fraction
exists.

Name Operation Operand

THREECON DC FS4'10,25.3,100'

Floating-Point Constants E, D, and L

A floating-point constant is written as a decimal number. As
an option a decimal exponent may follow. The number may be an
integer, a fraction, or a mixed number (i.e., one with integral and
fractional portions). The format of the constant is as follows:

SHORT FLOATING POINT NUMBER (E)

7-BIT
S CHARAC­

TERISTIC
24-BIT FRACTION

0 7 8

LONG FLOATING POINT NUMBER CD)

7-BIT
S CHARAC­

TERISTIC

0 7 8

31

56-BIT FRACTION

EXTENDED FLOATING POINT NUMBER (L)

7-BIT
S CHARAC­

TERISTIC

0 7 8

0 7 8

HIGH-ORDER HALF OF
112-BIT FRACTION

LOW-ORDER HALF OF
112-BIT FRACTION

Figure 5-5. Floating-Point Internal Formats

5-20

63

63

63

1. The number is written as a signed or unsigned decimal
value. The decimal point can be placed before, within, or
after the number. If it is omitted, the number is assumed
to be an integer. A positive sign is assumed if an
unsigned number is specified.

2. The exponent is optional. If specified, it is written
inunediately after the number as En, where n is an
optionally signed decimal value specifying the exponent of
the factor 10. If an unsigned exponent is specified, a
plus sign is assumed. The range of the exponent is
explained in Section 5.5.4.

The external format for a floating-point number has two parts:
the portion containing the exponent, which is sometimes called the
characteristic, followed by the portion containing the fraction,
which is sometimes called the mantissa. Therefore, the number
specified as a floating-point constant must be converted to a
fraction before it can be translated into the proper format. Figure
5-5 shows the external format of the three types of floating-point
constants.

The type L constant resembles two contiguous type D
constants. In the type L constant the sign of the second
double-word is the same as the sign of the first. The
characteristic of the second double-word is equal to the
characteristic of the first minus 14, modulo 128.

For example, the constant 27.35E2 represents the number 27.35
times 10 to the 2nd. Represented as a fraction, it would be . 2 735
times 10 to the 4th, the exponent having been modified to reflect
the shifting of the decimal point. The exponent may also be
affected by the presence of an exponent modifier, as explained in
Section 5. 5. 4. Thus, the exponent is also altered before being
translated into machine format.

In machine format a floating-point number also has two parts,
the signed exponent and signed fraction. The quantity expressed by
this number is the product of the fraction and the number 16 raised
to the power of the exponent.

The exponent is translated into its binary equivalent in
excess 64 binary notation and the fraction is converted to a binary
number. Scaling is performed if specified; if not, the fraction is
normalized (leading hexadecimal zeros are removed). Rounding of the
fraction is then performed according to the specified or implied
length, and the number is stored in the proper field. The resulting
number will not differ from the exact value by more than one in the
last place. Within the portion of the floating-point field
allocated to the fraction, the hexadecimal point is assumed to be to
the left of the leftmost hexadecimal digit, and the fraction
occupies the leftmost- portion of the field. Negative fractions are
carried in true representation, not in the twos complement form.

5-21

An implied length of four bytes is assumed for a short CE)
constant and eight bytes for a long CD) constant. An implied length
of 16 bytes is assumed for an extended (L) constant. The constant
is aligned at the proper word CE) or double-word CD and L) boundary
if a length is not specified. However, any length up to and
including eight bytes CE and D) or 16 bytes (L) can be specified by
a length modifier. In this case, no boundary aligrunent occurs.

Any of the following statements could be used to specify
46.415 as a positive, double-word, floating-point constant; the last
is a machine-instruction statement with a literal operand. Note
that the last two constants contain an exponent modifier.

Name Operation Operand

oc D'46.415'
oc D'46415E-3'
oc D'+464.15E-1'
oc D'+.46415E+2'
oc DE2 I. 46415 I
AD 6,=DE2'.46415'

The following would
floating-point constants.

each be

Name Operation Operand

generated

FLOAT DC EE+4'+46,-3.729,+473'

Decimal Constants -- P and Z

as full-word

A decimal constant is written as a signed or unsigned decimal
value. If the sign is omitted, a plus sign is assumed. The decimal
point may be written wherever desired or may be omitted. Scaling
and exponent modifiers may not be specified for decimal constants.
The maximum length of a decimal constant is 16 bytes. No word
boundary alignment is performed.

The placement of a decimal point in the definition does not
affect the assembly of the constant in any way, because, unlike
fixed-point and floating-point constants, a decimal constant is not
converted to its binary equivalent. The fact that a decimal
constant is an integer, a fraction, or a mixed number is not
pertinent to its generation. Furthermore, the decimal point is not
assembled into the constant. The progranuner may determine proper

5-22

decimal point alignment either by defining his data so that the
point is aligned or by selecting machine-instructions that will
operate on the data properly (i.e., shift it for purposes of
alignment).

If zoned decimal format is specified CZ), each decimal digit
is translated into one byte. The translation is done according to
the character set shown in Appendix A. The rightmost byte contains
the sign as well as the rightmost digit. For packed decimal format
(P), each pair of decimal digits is translated into one byte. The
rightmost digit and the sign are translated into the rightmost
byte. The bit configuration for the digits is identical to the
configurations for the hexadecimal digits 0-9 as shown in Section
2.4. For both packed and zoned decimals, a plus sign is translated
into the hexadecimal digit F, and a minus sign into the digit D.

If an even number of packed decimal digits is specified, one
digit will be left unpaired because the rightmost digit is paired
with the sign. Therefore, in the leftmost byte, the leftmost four
bits will be set to zeros and the rightmost four bits will contain
the odd (first) digit.

If no length modifier is given, the implied length for either
constant is the number of bytes. the constant occupies (taking into
account the format, sign, and possible addition of zero bi ts for
packed decimals). If a length modifier is given, the constant is
handled as follows:

1. If the constant requires fewer bytes than the length
specifies, the necessary number of bytes is added to the
left. For zoned decimal format, the decimal digit zero is
placed in each added byte. For packed decimals, the bits
of each added byte are set to zero.

2. If the constant requires more bytes than the length
specifies, the necessary number of leftmost digits or
pairs of digits is dropped, depending on which format is
specified.

Examples of decimal constant definitions follow.

Name Operation Operand

DC P'+l.25'
DC Z'-543'
DC Z'79.68'
DC PL3'79.68'

5-23

The following statement specifies both packed and zoned
decimal constants. The length modifier applies to each constant in
the first operand (i.e., to each packed decimal constant). Note
that a literal could not specify both operands.

Name Operation

DECIMALS DC

Operand

PL8'+25.8,-3874,
+2.3' ,Z'+B0,-3.72'

The last example illustrates the use of a packed decimal
literal.

Name Operation Operand

UNPK OUTAREA,=PL2'+25'

Address Constants

An address constant is a storage address that is translated
into a constant. Address constants can be used for initializing
base registers to facilitate the addressing of storage.
Furthermore, they provide a means of communicating between control
sections of a multisection program. However, storage addressing and
control section communication are also dependent on the use of the
USING assembler instruction and the loading of registers. Coding
examples that illustrate these considerations are provided in
Section 3.4.

An address constant, unlike other types of constants, is
enclosed in parentheses. If two or more address constants are
specified in an operand, they are separated by commas, and the
entire sequence is enclosed by parentheses. There are five types of
address constants: A, Y, S, R and V. A relocatable address
constant may not be specified with bit lengths.

Complex Relocatable Expressions

A complex relocatable expression can only be used to specify
an A-type address constant. These expressions contain two or more
unpaired relocatable terms and/or negative relocatable terms in
addition to any absolute or paired relocatable terms that may be
present. A complex relocatable expression might consist of external
symbols and designate an address in an independent assembly that is
to be linked and loaded with the assembly containing the address
constant.

5-24

If a complex relocatable expression is used in an
A-type constant in a static section, at most one
term may refer to a symbol in a static section.

A-TyPe Address Constant

This constant is specified as an absolute, relocatable, or
complex relocatable expression. (Remember that an expression may be
single term or multiterm.) The value of the expression is calculated
to 32 bits as explained in Chapter 2 with one exception: the
maximum value of the expression may be 2**31-1. The value is then
truncated on the left, if necessary, to the specified or implied
length of the field and assembled into the rightmost bits of the
field. The implied length of an A-type constant is four bytes, and
alignment is to a full-word boundary unless a length is specified,
in which case no alignment will occur. The length that may be
specified depends on the type of expression used for the constant; a
length of 1 to 4 bytes may be used for an absolute expression, while
a length of only 3 or 4 may be used for a relocatable or complex
relocatable expression.

If a 4-byte relocatable A-type constant is used in a static
section, the high-order byte will be either all 0' s or all 1 's,
depending on the sign of the relocated expression.

A relocatable term in an A-type constant in a code section may
not ref er to a symbol in a static section.

In the following examples, the field generated from the
statement named ACON contains four constants, each of which occupies
four bytes. Note that there is a location counter reference in
one. The value of the location counter will be the address of the
first byte allocated to the fourth constant. The second statement
shows the same set of constants specified as literals (i.e., address
constant literals).

Name Operation Operand

ACON DC A(108,LOP,END-STRT,*+4096)

LM 4,7,=A(l08,LOP,END-STRT,*+4096)

5-25

When the location counter reference occurs in a
literal, as in the LM instruction above, the
value of the location counter is the address of
the first byte of the instruction.

Y-TyPe Address Constant

This constant is specified as an absolute expression. The
value of the expression is calculated to 32 bits as explained in
Chapter 2. It is then truncated on the left to the specified or
implied length of the field and assembled into the rightmost bits of
the field. The implied length of a Y-type constant is two bytes,
and alignment is to a half-word boundary unless a length is
supplied, in which case no alignment will occur. A length of from
.1 to 2 bytes can be specified.

S-TyPe Address Constant

The S-type address constant is used to store an address in
base-displacement form.

The constant may be specified in two ways:

1. As an absolute or relocatable expression, e.g., SCBETA).

2. As two absolute expressions, the first of which represents
the displacement value and the second, the base register,
e.g., SC400(13)).

The address value represented by the expression in (1) will be
converted by the assembler into the proper base register and
displacement value. An S-type constant is assembled as a half-word
and aligned on a half-word boundary. The leftmost four bits of the
assembled constant represents the base register designation, the
remaining 12 bits the displacement value.

If length specification is used, only two bytes may be
specified.

V-TyPe Address Constant

This constant is used to reserve storage for the address of an
external symbol that is used for effecting branches to other
programs. The constant is specified as one relocatable symbol,
which need not be identified by an EXTRN statement. Whatever symbol
is used is asstuned to be an external symbol by virtue of the fact
that it is supplied in a V-type address constant.

5-26

Note that specifying a symbol as the operand of a V-type
constant does not constitute a definition of the symbol for this
assembly. The implied length of a V-type address constant is four
bytes, and boundary alignment is to a full-word. A length modifier
may be used to specify a length of either three or four bytes, in
which case no such boundary alignment occurs. In the following
example, 12 bytes will be reserved, because there are three
symbols. The value of each assembled constant will be X'FOOOOO'
until the program is linked.

Name Operation Operand

VCONST DC VCSORT,MERGE,CALC)

R-TyPe Address Constant

This constant is used to hold the off set of a location in a
static section from the beginning of the linked together block of
static sections. The absolute address of the location is obtained
by adding this off set to the address of the beginning of the block
of static sections, as explained in Section 3.7.3.

This constant is specified as a relocatable expression; the
relocatable term refers to a location in a static section (internal
or external). The implied length of an R-type constant is four
bytes, and alignment is to a full-word. A length modifier may be
used to specify a length of three or four bytes, in which case no
boundary alignment occurs.

Use of A-,v-, and R-TyPe Address Constants

An A- or V-type constant may point to a location in a static
section only if it is in a static section; it may not address a
static section if it is in a code section. An R-type constant
should not address a code section.

5-27

Examples of valid references:

Name Operation

PROO CODE
DC

DC

B DC

DATA STATIC
DC

c DC

D DC

MOD DS
DC

5.6 DS -- DEFINE STORAGE

Operand

A(B)

VCEXTRN)

R(C)

A(B)

A(O)

RC MOD)

F
V(EXT2)

Value of Address Constant
at Run Time

address of location in a
code section
address of location in an
external code section
off set to location in a
static section

address of location in a
code section
address of location in a
static section
off set to location in a
static section

address of location in an
external section (code or
static)

The DS instruction is used to reserve areas of storage and to
assign names to those areas. The use of this instruction is the
preferred way of symbolically defining storage for work areas,
input/output areas, etc. The size of a storage area that can be
reserved by using the DS instruction is limited only by the maximum
value of the location counter.

Name

Any sym­
bol or
blank

Operation

DS

Operand

One or more op­
e rands, separated
by commas,writ­
ten in the for­
mat described in
the following
text

5-28

The format of the OS operand is identical to that of the OC
operand; exactly the same subfields are employed and are written in
exactly the same sequence as they are in the DC operand. Although
the formats are identical, there are two differences in the
specification of subfields. They are:

1. The specification of data (subfield 4) is optional in a DS
operand, but it is mandatory in a DC operand. If the
constant is specified, it must be valid.

2. The maximum length that may be specified for character (C)
and hexadecimal (X) field types is 65, 535 bytes rather
than 256 bytes.

If a OS operand specifies a constant in subfield 4, and no
length is specified in subfield 3, the assembler determines the
length of the data and reserves the appropriate amount of storage.
It does not assemble the ·constant. The ability to specify data and
have the assembler calculate the storage area that would be required
for such data is a convenience to the programmer. If he knows the
general format of the data that will be placed in the storage area
during program execution, all he needs to do is show it as the
fourth subfield in a OS operand. The assembler then determines the
correct amount of storage to be reserved, thus relieving the
progranuner of length considerations.

If the OS instruction is named by a symbol, its value
attribute is the location of the leftmost byte of the reserved
area. The length attribute of the symbol is the length (implied or
explicit) of the type of data specified. Should the OS have a
series of operands, the length attribute for the symbol is developed
from the first item in the first operand. Any positioning required
for aligning the storage area to the proper type of boundary is done
before the address value is determined. Bytes skipped for alignment
are not set to zero.

Each field type (e.g., hexadecimal, character, floating-point)
is associated with certain characteristics (these are summarized in
Appendix F). The associated characteristics will determine which
field-type code the programmer selects for the OS operand and what
other information he adds, notably a length specification or a
duplication factor. For example, the E floating-point field and the
F fixed-point field both have an implied length of four bytes. The
leftmost byte is aligned to a full-word boundary. Thus, either code
could be specified if it were desired to reserve four bytes of
storage aligned to a full-word boundary. To obtain a length of
eight bytes, one could specify either the E or F field type with a
length modifier of eight. However, a duplication factor would have
to be used to reserve a larger area, because the maximum length
specification for either type is eight bytes. Note also that
specifying length would cancel any special boundary alignment.

5-29

In contrast, packed and zoned decimal (P and Z), character
(C), hexadecimal (X), and binary (B) fields have an implied length
of one byte. Any of these codes, if used, would have to be
accompanied by a length modifier, unless just one byte is to be
reserved. Although no alignment occurs, the use of C and X field
types permits greater latitude in length specifications, the maximum
for either type being 65, 535 bytes. (Note that this differs from
the maximum for these types in a DC instruction.) Unless a field of
one byte is desired, either the length must be specified for the C,
X, P, Z, or B field types, or else the data must be specified (as
the fourth subfield), so that the assembler can calculate the length.

To define four 10-byte fields and one 100-byte field, the
respective DS statements might be as follows:

Name Operation

FIELD DS
AREA DS

Operand

4CL10
CLlOO

Although FIELD might have been specified as one 40-byte field,
the preceding definition has the advantage of providing FIELD with a
length attribute of 10. This would be pertinent when using FIELD as
an SS machine-instruction operand.

Additional examples of DS statements are shown below:

Name Operation Operand

ONE DS CL80(one 80-byte field,
length attribute of 80)

TWO DS 80C(80 one-byte fields,
length attribute of one)

THREE DS GF(six full-words, length
attribute of four)

FOUR DS D(one double-word, length
attribute of eight)

FIVE DS 4H(four half-words,
length attribute of
two)

5-30

A DS statement causes the storage area to be
reserved but not set to zeros. No assumption
should be made as to the contents of the reserved
area.

5.6.1 Special Uses of the Duplication Factor

. Forcing Alignment

The location counter can be forced to a double-word,
full-word, or half-word boundary by using the appropriate field type
(e.g., D, F, or H) with a duplication factor of zero. This method
may be used to obtain boundary alignment that otherwise would not be
provided. For example, the following statements would set the
location counter to the next double-word boundary and then reserve
storage space for a 128-byte field (whose leftmost byte would be on
a double-word boundary).

Name Operation

DS
AREA DS

Operand

OD
CL128

Defining Fields of an Area

A DS instruction with a duplication factor of zero can be used
to assign a name to an area of storage without actually reserving
the area. Additional DS and/or DC instructions may then be used to
reserve the area and assign names to fields within the area (and
generate constants if DC is used).

For example, assume that 80-character records are to be read
into an area for processing and that each record has the following
format:

Positions 5-10 Payroll Number
Positions 11-30 Employee Name
Positions 31-36 Date
Positions 47-54 Gross Wages
Positions 55-62 Withholding Tax

5-31

The following example illustrates how DS instructions might be
psed to assign a name to the record area, then define the fields of
the area and allocate the storage for them. Note that the first
statement names the entire area by defining the symbol RDAREA; the
statement gives RDAREA a length attribute of 80 bytes, but does not
reserve any storage. Similarly, the fifth statement names a
six-byte area by defining the symbol DATE; the three subsequent
statements actually define the fields of DATE and allocate storage
for them. The second, ninth, and last statements are used for
spacing purposes and, therefore, are not named.

Name Operation Operand

RD AREA DS OCL80
DS CL4

PAYNO DS CL6
NAME DS CL20
DATE DS OCL6
DAY DS CL2
MONTH DS CL2
YEAR DS CL2

DS CLIO
GROSS DS CL8
FEDTAX DS CL8

DS CL18

5.7 LISTING CONTROL INSTRUCTIONS

The listing control instructions are used to identify an
assembly listing and assembly output cards, to provide blank lines
in an assembly listing, and to designate how much detail is to be
included in an assembly listing. In no case are instructions or
constants generated in the object program. Listing control
statements with the exception of PRINT are not printed in the
listing.

TITLE, SPACE, and EJECT statements will not
appear in the source listing unless the statement
is continued onto another card. Then the first
card of the statement is printed. However, any
of these three types of statements, if generated
as macroinstruction expansion, will never be
listed regardless of continuation.

5-32

5.7.1 TITLE -- Identify Assembly Output

The TITLE instruction enables the programmer to identify the
assembly listing. The format of the TITLE instruction statement is
as follows:

Name

Special,
sequence
or variable
symbol or
blank

Operation

TITLE

Operand

A sequence of char­
acters, enclosed in
apostrophes

The name field may contain a special symbol of from one to
eight alphabetic or numeric characters in any combination.

The operand field may contain up to 100 characters enclosed in
apostrophes. Special consideration must be given to representing
apostrophes and ampersands as characters. Each single apostrophe or
ampersand desired as a character in the constant must be represented
by a pair of apostrophes or ampersands. Only one apostrophe or
ampersand appears in storage. The contents of the operand field are
printed at the top of each_ page of the assembly listing.

A program may contain more than one TITLE statement. Each
TITLE statement provides the heading for pages in the assembly
listing that follow it, until another TITLE statement is
encountered. Each TITLE statement causes the listing to be advanced
to a new page (before the heading is printed).

For example, if the following statement is the first TITLE
statement to appear in a program:

Name Operation Operand

PGMl TITLE 'FIRST HEADING'

then this heading appears at the top of each subsequent page:

PGMl FIRST HEADING.

5-33

If the following statement occurs later in the same program:

Name Operation Operand

TITLE 'A NEW HEADING'

then each following page begins with the heading: PGMl A NEW
HEADING.

5.7.2 EJECT -- Start New Page

The EJECT instruction causes the next line of the listing to
appear at the top of a new page. This instruction provides a
convenient way to separate routines in the program listing. The
format of the EJECT instruction statement is as follows:

Name Operation

A se- EJECT
quence
symbol
or blank

Operand

Not used; should be
blank

If the line before the EJECT statement appears at the bottom
of a page, the EJECT statement has no effect. Two EJECT statements
may be used in succession to obtain a blank page. A TITLE
instruction followed immediately by an EJECT instruction will
produce a page with nothing but the operand entry (if any) of the
TITLE instruction. Text following the EJECT instruction will begin
at the top of the next page .

.-----------NOTE------------.

The EJECT instruction itself is not listed.

5-34

5.7.2 SPACE -- Space Listing

The SPACE instruction is used to insert one or more blank
lines in the listing. The format of the SPACE instruction statement
is as follows:

Name

A se­
quence
symbol
or blank

Operation Operand

SPACE A decimal value
or blank

A decimal value is used to specify the number of blank lines
to be inserted in the assembly listing. A blank operand causes one
blank line to be inserted. If this value exceeds the number of
lines remaining on the listing page, the statement will have the
same effect as an EJECT statement.

--------------------~NOTE----------------------.

The SPACE instruction itself is not listed.

5.7.3 PRINT -- Print Optional Data

The PRINT instruction is used to control printing of the
assembly listing. The format of the PRINT instruction statement is:

Name

A se­
quence
symbol
or blank

Operation Operand

PRINT One to three
operands

5-35

The one to three operands may include an operand from each of
the following groups in any sequence:

1. ON

OFF

2. GEN

NOGEN

3. DATA

NODATA

A listing is printed.

No listing is printed.

All statements generated by macroinstructions
are printed.

Statements generated by macroinstructions are
not printed with the exception of MNOTE which
will print regardless of NOOEN. However, the
macroinstruction itself will appear in the
listing.

Constants are printed out in full in the
listing.

Only the leftmost eight bytes are printed on
the listing.

A program may contain any number of PRINT statements. A PRINT
statement controls the printing of the assembly listing until
another PRINT statement is encountered. Each option remains in
effect until the corresponding opposite option is specified.

Until the first PRINT statement C if any) is encountered, the
following is assumed:

Name Operation Operand

PRINT ON,NODATA,GEN

For example, if the statement:

Name Operation Operand

DC XL256'00'

appears in a program, 256 bytes of zeros are assembled.

5-36

If the statement:

Name Operation Operand

PRINT DATA

is the last PRINT statement to appear before the DC statement, al 1
256 bytes of zeros are printed in the assembly listing. However, if:

Name Operation Operand

PRINT NODATA

is the last PRINT statement to appear before the DC statement, only
eight bytes of zeros are printed in the assembly listing.

Whenever an operand is omitted, it is asswned to be unchanged
and continues according to its last specification.

The hierarchy of print control statements is:

1. ON and OFF

2. GEN and NOGEN

3. DATA and NODATA

Thus with the following statement nothing would be printed.

Name Operation Operand

PRINT OFF, DATA, GEN

5-37

5.8 PROGRAM CONTROL INSTRUCTIONS

The program control instructions are used to specify the end
of an assembly, to set the location counter to a value or word
boundary, to insert previously written coding in the program, to
specify the placement of literals in storage, to check the sequence
of input lines, and to indicate statement format. Except for the
CNOP and COPY instructions, none of these assembler instructions
generate instructions or constants in the object program.

5.8.1 ICTL -- Input Format Control

The ICTL instruction allows the programmer to alter the normal
format of his source program statements. The ICTL statement must
precede all other statements in the source program and may be used
only once. The format of the ICTL instruction statement is as
follows:

Name Operation

Blank ICTL

Operand

1-3 decimal self­
def ining values of
the form b,e,c

Operand b specifies the begin column of the source statement.
It must always be specified, and must be within 1-40, inclusive.
Operand e specifies the end column of the source statement. The end
column, when specified, must be within 41-80, inclusive; when not
specified, it is assumed to be 71. The end column must not be less
than the begin column +5. The column after the end column is used
to indicate whether the next card is a continuation card. Operand c
specifies the continue column of the source statement. The continue
column, when specified, must be within 2-40 and must be greater than
b. If the continue column is not specified, or if column 80 is
specified as the end column, the assembler assumes that there are no
continuation cards, and all statements are contained on a single
card. The operand forms b,,c and b, are invalid.

If no ICTL statement is
assembler assumes that l, 71,
continue columns, respectively.

used
and

in the
16 are

source program,
the begin, end,

the
and

The next example designates the begin column as column 25.
Since the end column is not specified, it is assumed to be column
71. No continuation cards are recognized because the continue
column is not specified.

5-38

Name Operation Operand

ICTL 25

5.8.2 !SEQ -- Input Sequence Checking

The !SEQ instruction is used to check the sequence of input
cards. (A sequence error is considered serious, but the assembly is
not terminated.) The format of the !SEQ instruction statement is as
follows:

Name Operation Operand

Blank !SEQ Two decimal self-
def ining values of the
form l,r; or blank

The operands 1 and r, respectively, specify the leftmost and
rightmost columns of the field in the input cards to be checked.
Operand r must be equal to or greater than operand 1. Columns to be
checked must not be between the begin and end columns.

Sequence checking begins with the first card following the
!SEQ statement. Comparison of adjacent cards makes use of the
eight-bit internal collating sequence. (See Appendix A.) Each card
checked must be higher than the preceding card.

An !SEQ statement with a blank operand terminates the
operation. (Note that this !SEQ statement is also sequence
checked.) Checking may be resumed with another !SEQ statement.

Sequence checking is only performed on statements contained in
the source program. Statements inserted by the COPY assembler
instruction or generated by a macroinstruction are not checked for
sequence. Also macroinstruction definitions in a macroinstruction
library are not checked.

5-39

5.8.3 ORG -- Set Location Counter

The ORG instruction is used to alter the setting of the
location counter for the current control section. The format of the
ORG instruction statement is:

Name Operation

Any ORG
symbol
or
blank

Operand

A relocatable
expression or blank

Any symbols in the expression must have been previously
defined. The unpaired relocatable symbol must be defined in the
same control section in which the ORG statement appears.

The location counter is set to the value of the expression in
the operand. If the operand is omitted, the location counter is set
to the next available (unused) location for that control section.

An ORG statement cannot be used to specify a location below
the beginning of the control section in which it appears. The
following is invalid if it appears less than 500 bytes from the
beginning of the current control section since it will give the
location counter a value larger than it can handle.

Name Operation Operand

ORG *-500

If it is desired to reset the location counter to the next
available byte in the current control section, the following
statement would be used:

Name Operation Operand

ORG

5-40

If previous ORG statements have reduced the location counter
for the purpose of redefining a portion of the current control
section, an ORG statement with an omitted operand can then be used
to terminate the effects of such statements and restore the location
counter to its highest setting.

Through use of the ORG statement two instructions
may be given the same location counter values.
In such a case the second instruction will not
always eliminate the effects of the first
instruction. Consider the following example:

ADDR

B

DC A(LOC)
ORG *-4
DC C'BETA'

In this example the value of B (BETA) will be
destroyed by the relocation of ADDR during
linkage editing.

5.8.4 LTORG -- Begin Literal Pool

The LTORG instruction causes all literals since the previous
LTORG (or start of the program) to be assembled at appropriate
boundaries starting at the first double-word boundary following the
LTORG statement. If no literals follow the LTORG statement,
alignment of the next instruction (which is not a LTORG instruction)
will occur. Bytes skipped are not zeroed. The format of the LTORG
instruction statement is:

Name

Symbol
or
blank

Operation

LTORG

Operand

Not used

The symbol represents the address of the first byte of the
literal pool. It has a length attribute of 1.

5-41

The literal pool is organized into four segments within which
the literals are stored in order of appearance, dependent on the
divisibility properties of their object lengths (duplication factor
times total explicit or implied length). The first segment contains
all literals whose object length is a multiple of eight. Those
remaining literals with lengths divisible by four are stored in the
second segment. The third segment holds the remaining even-length
literals. 'Any literals left over have odd lengths and are stored in
the fourth segment.

Since each literal pool begins at a double-word boundary, this
guarantees that all segment one literals are double-word, segment
two full-word, and segment three half-word aligned, with no space
wasted except, possibly, at the pool origin.

Literals from the following statement are in the pool, in the
segments indicated by the double parenthesized numbers, where ((8))
means multiple of eight, etc.,

MVC AC12) ,=3F' 1' ((4))

SH 3,=H'2' ((2))
SD 2,=2F'l,2' ((8))

IC 2,=XLl'l' ((1))

AD 2,=D'2' ((8))

Special Addressing Consideration

'Any literals used after the last LTORG statement in a program
are plac~d at the end of the first control section. If there are no
LTORG statements in a program, all literals used in the program are
placed at the end of the first control section. In these
circumstances the programmer must ensure that the first control
section is always addressable. This means that the base address
register for the first control section should not be changed through
usage in subsequent control sections. If the programmer does not
wish to reserve a register for this purpose, he may place a LTORG
statement at the end of each control section thereby ensuring that
all literals appearing in that section are addressable.

Duplicate Literals

If duplicate literals occur within the range controlled by one
LTORG statement, only one literal is stored. Literals are
considered duplicates only if their specifications are identical. A
literal will be stored, even if it appears to duplicate another
literal, if it is an A-type address constant containing any
reference to the location counter.

5-42

The following examples illustrate how the assembler stores
pairs of literals, if the placement of each pair is controlled by
the same LTORG statement.

X'30'
Both are stored

C'O'

XL3'0'
Both are stored

HL3'0'

AC*+4)
Both are stored

AC*+4)

X'FFFF'
Identical; the first is stored

X'FFFF'

5.8.5 CNOP -- Conditional No Operation

The CNOP instruction allows the progranuner to align an
instruction at a specific half-word boundary. If any bytes must be
skipped in order to align the instruction properly, the assembler
ensures an unbroken instruction flow by generating no-operation
instructions. This facility is useful in creating calling sequences
consisting of a linkage to a subroutine followed by parameters such
as full-word or double-word aligned data.

The CNOP instruction ensures the alignment of the location
counter setting to a half-word, word, or double-word boundary. If
the location counter is already properly aligned, the CNOP
instruction has no effect. If the specified aligrunent requires the
location counter to be incremented, one to three no-operation
instructions are generated, each of which uses two bytes.

The format of the CNOP instruction statement is as follows:

Name Operation

Any CNOP
symbol
or
blank

Operand

Two absolute
expressions of
the form b,w

5-43

Double Word

Word Word

Half Word Half Word Half Word Half Word

Byte

0,4
0,8

Byte Byte

2,4
2,8

Byte Byte

0,4
4,8

Figure 5-6. CNOP Alignment

Byte Byte

2,4
6,8

Any symbols used in the expressions in the operand field
must have been previously defined.

Operand b specifies at which byte in a word or double-word
the location counter is to be set; b can be 0, 2, 4, or 6.
Operand w specifies whether byte b is in a word (w=4) or
double-word (w=8). The following pairs of band ware valid:

b,w Specifies

0,4 Beginning of a word
2,4 Middle of a word
0,8 Beginning of a double-word
2,8 Second half-word of a double-word
4,8 Middle (third half-word) of a double-word
6,8 Fourth half-word of a double-word

Figure 5-6 shows the position in a double-word that each of
these pairs specifies. Note that both 0, 4 and 2, 4 specify two
locations in a double-word.

Assume that the location counter is currently aligned at a
double-word boundary. Then the CNOP instruction in this sequence:

Name Operation

CNOP
BALR

Operand

0,8
2,14

has no effect; it is merely printed in the assembly listing.

5-44

Byte

However, this sequence:

Name Operation

CNOP
BALR

Operand

6,8
2,14

causes three branch-on-conditions
generated, thus aligning the BALR
half-word in a double-word as follows:

Name Operation Operand

BCR 0,0
BCR 0,0
BCR 0,0
BALR 2,14

(no-operations)
instruction at

to be
the last

After the BALR instruction is generated, the location
counter is at a double-word boundary, thereby ensuring an
unbroken instruction flow.

5.8.6 COPY -- Copy Predefined Source Coding

The COPY instruction obtains source-language coding from a
library and includes it in the program currently being
assembled. The format of the COPY instruction statement is as
follows:

Name Operation Operand

Blank COPY One symbol

The operand is a symbol that identifies a file in the macro
library specified in the assembler options.

The assembler inserts the requested coding inunediately
after the copy statement is encountered. The copied code may not
contain any ICTL or !SEQ instructions. It may contain a COPY
instruction; up to 5 levels of nesting are allowed.

5-45

If a source rnacroinstruction definition is copied into the
beginning of a source module, both the MACRO and MEND statements
that delimit the definition must be contained in the same level
of copied code.

If identical COPY statements are encountered, the coding
they request is brought into the program each time. All
statements included in the program via COPY are processed using
the standard format regardless of any ICTL instructions in the
program. (For a further discussion of COPY refer to Chapter 7.)

5.8.7 END -- End Assembly

The END instruction terminates the assembly of a program.
It may also designate a point in the program to which control may
be transferred after the program is loaded. The END instruction
must always be the last statement in the source program. A
literal may not be used.

The format of the END instruction statement is as follows:

Name Operation Operand

A sequence END
symbol
or blank

A relocatable ex­
pression or blank

The operand specifies the point to which control may be
transferred when loading is complete. This point is usually the
first machine-instruction in the program, as shown in the
following sequence.

Name Operation Operand

NAME CODE
AREA OS 50F
BEGIN BALR 2,0

USING *,2

END BEGIN

5-46

Editing errors in system macroinstruction
definitions Cmacroinstruction definitions
included in a macroinstruction library) are
discovered when the macroinstruction definitions
are read from the macroinstruction library. This
occurs after the END statement has been read.
They will therefore be flagged after the END
statement. If the programmer does not know which
of his system macros caused an error, it is
necessary to copy all system macroinstruction
definitions used in the program, including inner
macroinstruction definitions, and insert them in
the source program as programmer macroinstruction
definitions, since programmer macroinstruction
definitions are flagged in-line. To aid in
debugging it is advisable to test all macro­
instruction definitions as programmer
macroinstruction definitions before incorporating
them in the library as system macroinstruction
definitions.

5-47

CHAPTER 6
INTRODUCTION TO THE MACRO LANGUAGE

6.1 INTRODUCTION

The Wang VS Macro language is an extension of VS Assembly
language. It provides a convenient way to generate a desired
sequence of Assembly language statements many times in one or more
programs. The macroinstruction definition is written only once, and
a single statement, a macroinstruction, is written each time a
programmer wants to generate the desired sequence of statements.

This facility simplifies the coding of programs, reduces the
chance of programming errors, and ensures that standard sequences of
statements are used to accomplish desired functions.

An additional facility, called conditional assembly, allows a
programmer to code statements which may or may not be assembled,
depending upon conditions evaluated at assembly time. These
conditions are usually tests of values, which may be defined, set,
changed, and tested during assembly. The conditional assembly
facility may be used without using macroinstruction statements.

6.2 THE MACROINSTRUCTION STATEMENT

A macroinstruction statement (hereafter called a
macroinstruction) is a source program statement. The assembler
generates a sequence of Assembly language statements for each
occurrence of the same macroinstruction. The generated statements
are then processed like any other Assembly language statement.

Macroinstructions can be tested by placing them before the
assembly statements of a test program.

Three types of macroinstructions may be written. They are
positional, keyword, and mixed-mode macroinstructions. Positional
macroinstructions permit the programmer to write the operands of a
macroinstruction in a fixed order. Keyword macroinstructions permit
the progranuner to write the operands of a macroinstruction in a
variable order. Mixed-mode macroinstructions permit the programmer
to use the features of both positional and keyword macroinstructions
in the same macroinstruction.

6-1

6.3 THE MACROINSTRUCTION DEFINITION

A macroinstruction definition is a set of statements that
provides the assembler with: (1) the mnemonic operation code and
the format of the macroinstruction, and (2) the sequence of
statements the assembler generates when the macroinstruction
appears in the source program.

Every macroinstruction definition consists of a
macroinstruction def ini ti on header statement, a macroinstruction
prototype statement, one or more model statements, COPY
statements, MEXIT, MNOTE, or conditional assembly instructions,
and a macroinstruction definition trailer statement.

The macroinstruction definition header and trailer
statements indicate to the assembler the beginning and end of a
macroinstruction definition.

The macroinstruction prototype statement specifies the
mnemonic operation code and the type of the macroinstruction.

The model statements are used by the assembler to generate
the Assembly language statements that replace each occurrence of
the macroinstruction.

The COPY statements may be used to copy model statements,
MEXIT, MNOTE or conditional assembly i11structions from a system
library into a macroinstruction definition.

The MEXIT instruction can be used to terminate processing
of a macroinstruction definition.

The MNOTE instruction can be used to generate an error
message when the rules for writing a particular macroinstruction
are violated.

The conditional assembly instructions may be used to vary
the sequence of statements generated for each occurrence of a
macroinstruction. Conditional assembly instructions may also be
used outside macroinstruction definitions, i.e., among the
Assembly language statements in the program.

6.4 THE MACROINSTRUCTION LIBRARY

The same macroinstruction definition may be made available
to more than one source program by placing the macroinstruction
definition in the macroinstruction library. The macroinstruction
library is a collection of macroinstruction definitions that can
be used by all the Assembly language programs in an
installation. Once a macroinstruction definition has been placed
in the macroinstruction library it may be used by writing its
corresponding macroinstruction in a source program.
Macroinstruction definitions must be in the system
macroinstruction library under the same name as the prototype.

6-2

6.5 SYSTEM AND PROGRAMMER MACROINSTRUCTION DEFINITIONS

A macroinstruction definition included in a source file is
called a programmer macroinstruction definition. One residing in
a macroinstruction library is called a system macroinstruction
definition. There is no difference in function. If a programmer
macroinstruction is included in a macroinstruction library it
becomes a system macroinstruction definition. If a system
macroinstruction definition is included in a source file it
becomes a programmer macroinstruction definition.

System and programmer macroinstructions will be expanded
the same, but syntax errors are handled differently. In
programmer macroinstructions, error messages are attached to the
statements in error. In system macroinstructions, however, error
messages cannot be associated with the statement in error because
these macroinstructions are located and edited after the entire
source file has been read. Therefore, the error messages are
associated with the END statement.

Because of the difficulty of finding syntax errors in
system macroinstructions, a macroinstruction definition should be
run and "debugged" as a programmer macroinstruction before it is
placed in a macroinstruction library.

6.6 SYSTEM MACROINSTRUCTIONS

The macroinstructions that correspond to macroinstruction
definitions prepared by Wang are called system macroinstruc­
tions. System macroinstructions are described in the VS
Operating System Services.

6.7 VARYING THE GENERATED STATEMENTS

Each time a macroinstruction appears in the source program
it is replaced by the same sequence of Assembly language
statements. Conditional assembly instructions, however, may be
used to vary the number and format of the generated statements.

6.8 VARIABLE SYMBOLS

A variable symbol is a type of symbol that is assigned
different values by either the programmer or the assembler. When
the assembler uses a macroinstruction definition to determine
what statements are to replace a macroinstruction, variable
symbols in the model statements are replaced with the values
assigned to them. By changing the values assigned to variable
symbols the programmer can vary parts of the generated statements.

A variable symbol is written as an ampersand followed by
from one through sixteen letters and/or digits, the first of
which must be a letter. Elsewhere, two ampe ~ands must be used
to represent an ampersand.

6-3

6.8.1 Types of Variable Symbols

There are three types of variable symbols: symbolic
parameters, system variable symbols, and SET symbols. The SET
symbols are further broken down into SETA symbols, SETB symbols,
and SETC symbols. The three types of variable symbols differ in
the way they are assigned values.

6.8.2 Assigning Values to Variable Symbols

Symbolic parameters are assigned values by the programmer
each time he writes a macroinstruction.

System variable symbols are assigned values by the
assembler each time it processes a macroinstruction.

SET symbols are assigned values by the prograrruner by means
of conditional assembly instructions.

6.8.3 Global SET Symbols

The values assigned to SET symbols in one macroinstruction
definition may be used to vary the statements that appear in
other macroinstruction definitions. All SET symbols used for
this purpose must be defined by the programmer as global SET
symbols. All other SET symbols (i.e., those which may be used to
vary statements that appear in the same macroinstruction
definition) must be defined by the programmer as local SET
symbols. Local SET symbols and the other variable symbols (that
is, symbolic parameters and system variable symbols) are local
variable symbols. Global SET symbols are global variable symbols.

6-4

CHAPTER 7
HOW TO PREPARE MACROINSTRUCTION DEFINITIONS

7.1 INTRODUCTION

A macroinstruction definition consists of:

1. A macroinstruction definition header statement.

2. A macroinstruction prototype statement.

3. Zero or more model statements, COPY statements, MEXIT,
MNOTE, or conditional assembly instructions.

4. A macroinstruction definition trailer statement.

Except for MEXIT, MNOTE, and conditional assembly
instructions, this section of the publication describes all of the
statements that may be used to prepare macroinstruction
definitions. Conditional assembly instructions are described in
Chapter 9. MEXIT and MNOTE instructions are described in Chapter 10.

Macroinstruction definitions appearing in a source program
must appear before all statements which pertain to the first control
section. Specifically, only the listing control instructions
(EJECT, PRINT, SPACE, and TITLE), OPSYN, ICTL, and !SEQ
instructions, and comments statements can occur before the
macroinstruction definitions. All but the ICTL and OPSYN
instruction can appear between macroinstruction definitions if there
is more than one definition in the source program. Conditional
assembly, substitution, and sequence symbols cannot be used in front
of or between macroinstruction definitions.

A macroinstruction definition cannot appear within a
macroinstruction definition and the maximum number of continuation
cards for a macroinstruction definition statement is two.

7-1

7.2 MACRO -- MACROINSTRUCTION DEFINITION HEADER

The macroinstruction definition header statement indicates the
beginning of a macroinstruction definition. It must be the first
statement in every macroinstruction definition. The format of this
statement is:

Name Operation Operand

Blank MACRO Blank

7.3 MEND -- MACROINSTRUCTION DEFINITION TRAILER

The macroinstruction definition trailer statement indicates
the end of a macroinstruction definition. It can appear only once
within a macroinstruction definition and must be the last statement
in every macroinstruction definition. The format of this statement
is:

Name Operation Operand

A se­
quence
symbol
or
blank

MEND Blank

7.4 MACROINSTRUCTION PROTOTYPE

The macroinstruction prototype statement (hereafter called the
prototype statement) specifies the mnemonic operation code and the
format of all macroinstructions that ref er to the macroinstruction
definition. It must be the second statement of every
macroinstruction definition. The format of this statement is:

Name

A symbolic
parameter
or blank

Operation Operand

A symbol One or more sym­
bolic parameters
separated by com­
mas, or blank

7-2

The symbolic parameters are used in the macroinstruction
definition to represent the name field and operands of the
corresponding macroinstruction. A description of symbolic
parameters appears in Section 7.6.

The name field of the prototype statement may be blank, or it
may contain a symbolic parameter.

The symbol in the operation field is the mnemonic operation
code that must appear in all macroinstructions that ref er to this
macroinstruction def ini ti on. The mnemonic operation code must not
be the same as the mnemonic operation code of another
macroinstruction definition in the source program or of a machine or
assembler instruction as listed in Appendix D.

If there are no symbolic parameters, conunents are allowed if
the absence of the operand entry is indicated by a conuna preceded
and followed by one or more blanks.

The following is an example of a prototype statement.

Name Operation Operand

&NAME MOVE &TO,&FROM

7.4.1 Statement Format

The prototype statement may be written in a format different
from that used for Assembly language statements. The normal format
is described in Chapters 1 through 5. The alternate format
described here allows the programmer to write an operand on each
line, and allows the interspersing of operands and conunents in the
statement.

In the alternate format, as in the normal format, the name and
operation fields must appear on the first line of the statement, and
at least one blank must follow the operation field on that line.
Both types of statement formats may be used in the same prototype
statement.

The rules for using the alternate statement format are:

1. If an operand is followed by a conuna and a blank, and the
column after the end column contains a nonblank character,
the operand field may be continued on the next line
starting in the continue column. More than one operand
may appear on the same line.

7-3

2. Comments may appear after the blank that indicates the end
of an operand, up to and including the end coltunn.

3. If the next line starts after the continue coltunn, the
information entered on the next line is considered
comments, and the operand field is considered terminated.
Any subsequent continuation lines are considered comments.

A prototype statement may be written on as many
continuation lines as necessary. When using
normal format, the operands of a prototype
statement must begin on the first statement line
or in the continue column of the second line.

The following examples illustrate: (1) the normal statement
format, (2) the alternate statement format, and (3) a combination of
both statement formats.

Name Oper- Operand Comments
at ion

NAMEl OPl OPERAND1,0PERAND2,0PERAN x
D3 THIS IS THE NORMAL x
STATEMENT FORMAT

NAME2 OP2 OPERAND!, THIS IS THE AL x
OPERAND2,bPERAND3, TERNA x

TE STATEMENT FORMAT

NAME3 OP3 OPERAND!, THIS IS A COMB x
OPERAND2,0PERAND3,0PERAN x
D4,0PERAND5 !NATION OF x
BOTH STATEMENT FORMATS

7.5 MODEL STATEMENTS

Model statements are the macroinstruction definition
statements from which the desired sequences of Assembly language
statements are generated. Zero or more model statements may follow
the prototype statement. A model statement consists of one to four
fields. They are, from left to right, the name, operation, operand,
and comment fields.

7-4

The fields in the model statement must correspond to the
fields in the generated statement. It is not possible to generate
blanks to separate statement fields, except to separate the operand
and corrunent field.

Model statement fields must follow the same rules for paired
apostrophes, ampersands, and blanks as macroinstruction operands
(refer to Section 8.2).

Though model statements must follow the normal continuation
card conventions, statements generated from model statements may
have more than two continuation lines. Substituted statements may
not have blanks in any field except between paired apostrophes.
They may not have leading blanks in the name or operand fields.

7.5.1 Name Field

The name field may be blank or it may contain an ordinary
symbol, a variable symbol, or a sequence symbol. It may also
contain any combination of variable symbols and other character
strings concatenated together.

Variable symbols may not appear in the name field of ACTR,
COPY, END, ICTL, !SEQ, or OPSYN statements. The characters * and .*
may not be substituted for a variable symbol.

7.5.2 Operation Field

The operation field may contain a machine instruction, an
assembler instruction listed in Chapter 5 (except ICTL or OPSYN), a
macroinstruction, or variable symbol. It may also contain any
combination of variable symbols and other character strings
concatenated together.

Variable symbols may not be used to generate

• Macroinstructions

• Macroinstruction prototypes

• The following instructions:

ACTR GBLC MEND
AGO ICTL MEXIT
AIF ISEO OPSYN
ANOP LCLA SETA
COPY LCLB SETB
GBLA LCLC SETC
GBLB MACRO

Variable symbols may also be used outside of macroinstruction
definitions to generate mnemonic operation codes with the preceding
restrictions.

The use of COPY instructions is described in Section 7.8.

7-5

7.5.3 Operand Field

The operand field may contain ordinary symbols or variable
symbols. However, variable symbols may not be used in the operand
field of COPY, ICTL, ISEQ, or OPSYN instructions.

7.5.4 Comment Field

The comment field may contain any combination of characters.
No substitution is performed for variable symbols appearing in the
conunent field. Only generated statements will be printed in the
listing.

7.6 SYMBOLIC PARAMETERS

A symbolic parameter is a type of variable symbol that is
assigned values by the programmer when he writes a
macroinstruction. The programmer may vary statements that are
generated for each occurrence of a macroinstruction by varying the
values assigned to symbolic parameters.

A symbolic parameter consists of an ampersand followed by from
one through sixteen letters and/or digits, the first of which must
be a letter. Elsewhere, two ampersands must be used to represent an
ampersand.

The programmer should not use &SYS as the first four
characters of a symbolic parameter.

The following are valid symbolic parameters:

&READER
&A23456
&X4F2

&LOOP2
&N
&$4

The following are invalid symbolic parameters:

CARD AREA
&256B

&THISSYMBOLISTOOLONG

&BCD%34

&IN AREA

(first character is not an ampersand)
Cf irst character after ampersand is not
a letter)
(more than sixteen characters after the
the ampersand)
(contains a special character other
than initial ampersand)
(contains a special character, i.e.,
blank, other than initial ampersand)

Any symbolic parameters in a model statement must appear in
the prototype statement of the macroinstruction definition.

7-6

The following is an example of a macroinstruction definition.
Note that the symbolic parameters in the model statements appear in
the prototype statement.

Name Operation Operand

Header MACRO
Prototype &NAME MOVE &TO,&FROM
Model &NAME ST 2,SAVE
Model L 2,&FROM
Model ST 2,&TO
Model L 2,SAVE
Trailer MEND

Symbolic parameters in model statements are replaced by the
characters of the macroinstruction that correspond to the symbolic
parameters.

In the following example the characters HERE, FIELDA, and
FIELDB of the MOVE macroinstruction correspond to the symbolic
parameters &NAME, &TO, and &FROM, respectively, of the MOVE
prototype statement.

Name Operation Operand

HERE MOVE FIELDA,FIELDB

Any occurrence of the symbolic parameters &NAME, &TO, and
&FROM in a model statement will be replaced by the characters HERE,
FIELDA, and FIELDB, respectively. If the preceding macroinstruction
was used in a source program, the following Assembly language
statements would be generated:

Name Operation Operand

HERE ST 2,SAVE
L 2,FIELDB
ST 2,FIELDA
L 2,SAVE

7-7

The example below illustrates another use
macroinstruction using operands different from
preceding example.

Macro

Generated
Generated
Generated
Generated

Name

LABEL

LABEL

Operation Operand

MOVE IN,OUT

ST 2,SAVE
L 2,0UT
ST 2,IN
L 2,SAVE

of the
those in

MOVE
the

If a symbolic parameter appears in the comments field of a
model statement, it is not replaced by the corresponding characters
of the macroinstruction.

7.6.1 Concatenating Symbolic Parameters

If a symbolic parameter in a model statement is immediately
preceded or followed by other characters or another symbolic
parameter, the characters that correspond to the symbolic parameter
are combined in the generated statement with the other characters or
the characters that correspond to the other symbolic parameter.
This process is called concatenation.

The macroinstruction definition, macroinstruction, and
generated statements in the following example illustrate these rules.

Header
Prototype
Model
Model
Model
Model
Trailer

Macro

Generated
Generated
Generated
Generated

Name

&NAME
&NAME

HERE

HERE

Operation

MACRO
MOVE
ST&TY
L&TY
ST&TY
L&TY
MEND

MOVE

STD
LD
STD
LD

Operand

&TY,&P,&TO,&FROM
2,SAVE.AREA
2,&P&FROM
2,&P&TO
2,SAVE.AREA

D,FIELD,A,B

2,SAVEAREA
2 ,FIELDB.
2,FIELDA
2,SAVE.AREA

7-8

The symbolic parameter &TY is used in each of the four model
statements to vary the mnemonic operation code of each of the
generated statements. The character D in the macroinstruction cor­
responds to symbolic parameter &TY. Since &TY is preceded by other
characters (i.e., ST and L) in the model statements, the character
that corresponds to &TY (i.e., D) is concatenated with the other
characters to form the operation fields of the generated statements.

The symbolic parameters &P, &TO, and &FROM are used in two of
the model statements to vary part of the operand fields of the
corresponding generated statements. The characters FIELD, A, and B
correspond to the symbolic parameters &P, &TO, and &FROM,
respectively. Since &P is followed by &FROM in the second model
statement, the characters that correspond to them (i.e., FIELD and
B) are concatenated to form part of the operand field of the second
generated statement. Similarly, FIELD and A are concatenated to
form part of the operand field of the third generated statement.

If the programmer wishes to concatenate a symbolic parameter
with a letter, digit, left parenthesis, or period following the
symbolic parameter he must immediately follow the symbolic parameter
with a period. A period is optional if the symbolic parameter is to
be concatenated with another symbolic parameter, or a special
character other than a left parenthesis or another period that
follows it.

If a symbolic parameter is immediately followed by a period,
then the symbolic parameter and the period are replaced by the
characters that correspond to the symbolic parameter. A period that
immediately follows a symbolic parameter does not appear in the
generated statement.

The following macroinstruction definition, macroinstruction,
and generated statements illustrate these rules.

Header
Prototype
Model
Model
Model
Model
Trailer

Macro

Generated
Generated
Generated
Generated

Name

&NAME
&NAME

HERE

HERE

Operation

MACRO
MOVE
ST
L
ST
L
MEND

MOVE

ST
L
ST
L

Operand

&P,&S,&Rl,&R2
&Rl,&S. (&R2)
&Rl,&P.B
&Rl,&P.A
&Rl,&S. C&R2)

FIELD,SAVE,2,4

2,SAVE(4)
2,FIELDB
2,FIELDA
2,SAVE(4)

7-9

The symbolic parameter &P is used in the second and third
model statements to vary part of the operand field of each of the
corresponding generated statements. The characters FIELD of the
macroinstruction correspond to &P. Since &P is to be concatenated
with a letter (i.e. , B and A) in each of the statements, a period
immediately follows &P in each of the model statements. The period
does not appear in the generated statements.

Similarly, symbolic parameter &S is used in the first and
fourth model statements to vary the operand fields of the
corresponding generated statements. &S is followed by a period in
each of the model statements, because it is to be concatenated with
a left parenthesis. The period does not appear in the generated
statements.

7.7 COMMENT STATEMENTS

A model statement may be a comments statement. A comment
statement consists of an asterisk in the begin column, followed by
comments. The cornment statement is used by the assembler to
generate an Assembly language comment statement, just as other model
statements are used by the assembler to generate Assembly language
statements. No variable symbol substitution is performed.

The programmer may also write comment statements in a
macroinstruction definition which are not to be generated. These
statements must have a period in the begin column, irnmediately
followed by an asterisk and the cornments.

The first statement in the following example will be used by
the assembler to generate a comment statement; the second statement
will not.

Name !Operation !Operand

* THIS STATEMENT WILL BE GENERATED
* THIS ONE WILL NOT BE GENERATED

To get a truly representative sampling of the
various language components used effectively in
writing macroinstructions the programmer may list
all or selected macroinstructions from the system
macroinstruction library.

7-10

7.8 COPY STATEMENTS

COPY statements may be used to copy model statements and
MEXIT, MNOTE, and conditional assembly instructions into a
macroinstruction definition, just as they may be used outside
macroinstruction definitions to copy source statements into an
Assembly language program.

The format of this statement is:

Name Operation Operand

Blank COPY A symbol

The operand is a symbol that identifies a file in the
macroinstruction library specified in the assembler options. The
symbol must not be the same as the operation mnemonic of a
definition in the macroinstruction library. Any statement that may
be used in a macroinstruction definition may be part of the copied
coding, except MACRO, MEND, COPY, and prototype statements.

When considering statement positions within a program the code
included by a COPY instruction statement should be considered rather
than the COPY itself. For example if a COPY statement in a
macroinstruction definition brings in global and local definition
statements, it may appear anywhere in the macroinstruction before
these global or local symbols are used.

7-11

CHAPTER 8
HOW TO WRITE MACROINSTRUCTIONS

8.1 INTRODUCTION

The format of a macroinstruction is:

Name

Any symbol
or blank

Operation

Mnemonic
operation
code

Operand

zero or more
operands, separa­
ted by commas.

The name field of the macroinstruction may contain a symbol.
The symbol will not be defined unless a symbolic parameter appears
in the name field of the prototype and the same parameter appears in
the name field of a generated model statement.

The operation field contains the mnemonic operation code of
the macroinstruction. The mnemonic operation code must be the same
as the mnemonic operation code of a macroinstruction definition in
the source program or in the macroinstruction library.

The macroinstruction definition with the same mnemonic
operation code is used by the assembler to process the
macroinstruction. If a macroinstruction definition in the source
program and one in the macroinstruction library have the same
mnemonic operation code, the macroinstruction definition in the
source program is used.

The placement and order of the operands in the macro­
instruction is determined by the placement and order of the symbolic
parameters in the operand field of the prototype statement.

8.2 MACROINSTRUCTION OPERANDS

Any combination of up to 255 characters may be used as a
macroinstruction operand provided that the following rules
concerning apostrophes, parentheses, equal signs, ampersands,
commas, and blanks are observed.

8-1

8.2.1 Paired Apostrophes

An operand may contain one or more quoted strings. A quoted
string is any sequence of characters that begins and ends with an
apostrophe and contains an even number of apostrophes.

The first quoted string starts with the first apostrophe in
the operand. Subsequent quoted strings start with the first
apostrophe after the apostrophe that ends the previous quoted string.

A quoted string ends with the first even-numbered apostrophe
that is not immediately followed by another apostrophe.

The first and last apostrophes of a quoted string are called
paired apostrophes. The following example contains two quoted
strings. The first and fourth and the fifth and sixth apostrophes
are each paired apostrophes.

'A' 'B'C'D'

An apostrophe not within a quoted string, immediately followed
by a letter, and immediately preceded by the letter L (when L is
preceded by any special character other than an ampersand) , is not
considered in determining paired apostrophes. For instance, in the
following example, the apostrophe is not considered.

L'SYMBOL
'AL'SYMBOL' is an invalid operand.

8.2.2 Paired Parentheses

There must be an equal m.unber of left and right parentheses.
The nth left parenthesis must appear to the left of the nth right
parenthesis.

Paired parentheses are a left parenthesis and a following
right parenthesis without any other parentheses intervening. If
there is more than one pair, each additional pair is determined by
removing any pairs already recognized and reapplying the above rule
for paired parentheses. For instance, in the following example the
first and fourth, the second and third, and the fifth and sixth
parentheses are each paired parentheses.

(A(B)C)D(E)

A parenthesis that appears between paired apostrophes is not
considered in determining paired parentheses. For instance, in the
following example the middle parenthesis is not considered.

(I) I)

8-2

8.2.3 Equal Signs

An equal sign can only occur as the first character in an
operand or between paired apostrophes or paired parentheses. The
following examples illustrate these rules.

=F' 32'
'C=D'
E(F=G)

8.2.4 Ampersands

Except as noted in Section 8. 6, each sequence of consecutive
ampersands must be an even number of ampersands. The fol lowing
example illustrates this rule.

&&123&&&&

8.2.5 Commas

A comma indicates the end of an operand, unless it is placed
between paired apostrophes or paired parentheses. The following
example illustrates this rule.

(A,B)C I , I

8.2.6 Blanks

Except as noted in Section 8.3, a blank indicates the end of
the operand· field, unless it is placed between paired apostrophes.
The following example illustrates this rule.

'ABC'

The following are valid macroinstruction operands:

SYMBOL A+2
123 (T0(8),FROM)
X' 189A I 0(2,3)

* =F'4096'
L'NAME AB&&9
'TEN = 10' 'PARENTHESIS IS) I

'QUOTE IS' I I 'COMMA IS

The following are invalid macroinstruction operands:

W'NAME
5A)B

(15 B)

'ONE' IS 'l'

(odd number of apostrophes)
(number of left parentheses does not equal
number of right parentheses)
(blank not placed between paired
apostrophes)
(blank not placed between paired
apostrophes)

8-3

8.3 STATEMENT FORMAT

Macroinstructions may be written using the same alternate
format that can be used to write prototype statements. If this
format is used, a blank does not always indicate the end of the
operand field. The alternate format is described in Section 7.4.

8.4 OMITTED OPERANDS

If an operand that appears in the prototype statement is
omitted from the macroinstruction, then the conuna that would have
separated it from the next operand must be present. If the last
operand(s) is omitted from a macroinstruction, then the conuna(s)
separating the last operand(s) from the next previous operand may be
omitted.

The following example shows a macroinstruction preceded by its
corresponding prototype statement. The macroinstruction operands
that correspond to the third and sixth operands of the prototype
statement are omitted in this example.

Name Operation

EXAMPLE
EXAMPLE

Operand

&A,&B,&C,&D,&E,&F
17,*+4,,AREA,FIELD(6)

If the symbolic parameter that corresponds to an omitted
operand is used in a model statement, a null character value
replaces the symbolic parameter in the generated statement, i.e., in
effect the symbolic parameter is removed. For example, the first
statement below is a model statement that contains the symbolic
parameter &C. If the operand that corresponds to &C was omitted
from the macroinstruction, the second statement below would be
generated from the model statement.

Name Operation

MVC
MVC

Operand

THERE&C.25,THIS
THERE25,THIS

8-4

8.5 OPERAND SUBLISTS

A sublist may occur as the operand of a macroinstruction.

Sublists provide the programmer with a convenient way to refer
to a collection of macroinstruction operands as a single operand, or
a single operand in a collection of operands.

A sublist consists of one or more operands separated by conunas
and enclosed in paired parentheses. The entire sublist, including
the parentheses, is considered to be one macroinstruction operand.

If a macroinstruction is written in the alternate statement
format, each operand of the sublist may be written on a separate
line; the macroinstruction may be written on as many lines as
necessary.

If &Pl is a symbolic parameter in a prototype statement, and
the corresponding operand of a macroinstruction is a sublist, then
&Pl(n) may be used in a model statement to refer to the nth operand
of the sublist, where n may have a value greater than or equal to 1.
n may be specified as a decimal integer or any arithmetic expression
allowed in a SETA instruction. (The SETA instruction is described
in Chapter 9.) If the nth operand is omitted, then &Pl(n) would
refer to a null character value.

If the sublist notation is used but the operand is not a
sublist, then &Pl(l) refers to the operand and &PlC2), &P1(3), ...
refer to a null character value. If an operand has the form (), it
is treated as a valid sublist, with the null character string as the
only entry.

For example, consider the following macroinstruction def ini­
tion, macroinstruction, and generated statements.

Header
Prototype
Model
Model
Model
Model
Trailer

Macro
Generated
Generated
Generated
Generated

Name Operation

MACRO
ADD
L
A
A
ST
MEND

ADD
L
A
A
ST

Operand

&NUM,®,&AREA
®, &NUM (1)

®,&NUM(2)
®,&NUM(3)
®,&AREA

(A,B,C),6,SUM
6,A
6,B
6,C
6,SUM

8-5

The operand of the macroinstruction that corresponds to
symbolic parameter &NUM is a sublist. One of the operands in the
sublist is referred to in the operand field of three of the model
statements. For example, &NUM(l) refers to the first operand in the
sublist corresponding to symbolic parameter &NUM. The first operand
of the sublist is A. Therefore, A replaces &NUM(l) to form part of
the generated statement.

When ref erring to an operand in a sublist, the
left parenthesis of the sublist notation must
immediately follow the last character of the
symbolic parameter, e.g., &NUM(l). A period
should not be placed between the left parenthesis
and the last character of the symbolic parameter.

A period may be used between these two characters only when
the programmer wants to concatenate the left parenthesis with the
characters that the symbolic parameter represents. The following
example shows what would be generated if a period appeared between
the left parenthesis and the last character of the symbolic
parameter in the first model statement of the above example.

Prototype
Model

Macro

Generated

Name Operation

ADD
L

ADD

L

Operand

&NUM,®,&AREA
®, &NUM. (1)

(A,B,C),6,SUM

6, (A,B,C) (1)

The symbolic parameter &NUM is used in the operand field of
the model statement. The characters (A,B,C) of the macroinstruction
correspond to &NUM. Since &NUM is immediately followed by a period,
&NUM and the period are replaced by (A,B,C). The period does not
appear in the generated statement. The resulting generated state­
ment is an invalid Assembly language statement.

8-6

8.6 INNER MACROINSTRUCTIONS

A macroinstruction may be used as a model statement
macroinstruction definition. Macroinstructions used as
statements are called inner macroinstructions.

in a
model

'A macroinstruction that is not used as a model statement is
ref erred to as an outer macroinstruction.

The rule for inner macroinstruction parameters is the same as
that for outer macroinstructions. 'Any symbolic parameters used in
an inner macroinstruction are replaced by the corresponding
characters of the outer macroinstruction. An operand of an outer
macroinstruction sublist cannot be passed as a sublist to an inner
macroinstruction.

The macroinstruction definition corresponding to an inner
macroinstruction is used to generate the statements that replace the
inner macroinstruction.

The ADD macroinstruction of the previous example is used as an
inner macroinstruction in the following example.

The inner macroinstruction contains two symbolic parameters,
&S and &T. The characters (X, Y ,Z) and J of the macroinstruction
correspond to &S and &T, respectively. Therefore, these characters
replace the symbolic parameters in the operand field of the inner
macroinstruction.

The assembler then uses the macroinstruction definition that
corresponds to the inner macroinstruction to generate statements to
replace the inner macroinstruction. The fourth through seventh
generated statements have been generated for the inner
macroinstruction.

8-7

Header
Prototype
Model
Model
Model
Inner
Model
Trailer

Macro

Generated
Generated
Generated
Generated
Generated
Generated
Generated
Generated

Name

&U

K

K

Operation

MACRO
COMPR
SR
c
BNE
ADD
A
MEND

COMPR

SR
c
BNE
L
A
A
ST
A

Operand

&Rl,&R2,&S,&T,&U
&Rl,&R2
&Rl,&T
&U
&S,12,&T
&Rl,&T

10,11,(X,Y,Z),J,K

10,11
10,J
K
12,X
12,Y
12,Z
12,J
10,J

Further relevant limitations and differences between inner and
outer macroinstructions will be covered under the pertinent sections
on sequence symbols, attributes, etc.

An ampersand that is part of a symbolic parameter
is not considered in determining whether a
macroinstruction operand contains an even number
of consecutive ampersands.

8.7 LEVELS OF MACROINSTRUCTIONS

A macroinstruction definition that corresponds to an outer
macroinstruction may contain any number of inner macroinstructions.
The outer macroinstruction is called a first level macro­
instruction. Each of the inner macroinstructions is called a second
level macroinstruction.

The macroinstruction definition that corresponds to a second
level macroinstruction may contain any number of inner macro­
instructions. These macroinstructions are called third level
rnacroinstructions, etc.

The number of levels of macroinstructions that may be used
depends upon the complexity of the macroinstruction definition and
the amount of storage available.

8-8

CHAPTER 9
HOW TO WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS

9.1 INTRODUCTION

The conditional assembly instructions allow the programmer
to: (1) define and assign values to SET symbols that can be used to
vary parts of generated statements, and (2) vary the sequence of
generated statements. Thus, the programmer can use these
instructions to generate many different sequences of statements from
the same macroinstruction definition.

There are 13 conditional assembly instructions, 10 of which
are described in this chapter. The other three conditional assembly
instructions GBLA, GBLB, and GBLC are described in
Chapter 10. The instructions described in this chapter are:

LCLA
LCLB
LCLC

SETA
SETB
SETC

AIF
AGO
ACTR

ANOP

The primary use of the conditional assembly instructions is in
macroinstruction definitions. However, all of them may be used in
an Assembly language source program.

Where the use of an instruction outside macroinstruction
definitions differs from its use within macroinstruction
definitions, the difference is described in the subsequent text.

The LCLA, LCLB, and LCLC instructions may be used to define
and assign initial values to SET symbols.

The SETA, SETB, and SETC instructions may be used to assign
arithmetic, binary, and character values, respectively, to SET
symbols. The SETB instruction is described after the SETA and SETC
instructions, because the operand field of the SETB instruction is a
combination of the operand fields of the SETA and SETC instructions.

The AIF, AGO, and ANOP instructions may be used in conjunction
with sequence symbols to vary the sequence in which statements are
processed by the assembler. The programmer can test attributes
assigned by the assembler to symbols or macroinstruction operands to
determine which statements are to be processed. The ACTR
instruction may be used to vary the maximum number of AIF and AGO
branches.

9-1

Examples illustrating the use
instruction are included throughout
sununarizing the elements that can be
appears at the end of this chapter.

9.2 SET SYMBOLS

of conditional assembly
this chapter. A chart
used in each instruction

SET symbols are one type of variable symbol. The symbolic
parameters discussed in Chapter 7 are another type of variable
symbol. SET symbols differ from symbolic parameters in three ways:
(1) where they can be used in an Assembly language source program,
(2) how they are assigned values, and (3) whether or not the values
assigned to them can be changed.

Symbolic parameters
definitions, whereas SET
macrodefinitions.

can only be used in macroinstruction
symbols can be used inside and outside

Symbolic parameters are assigned values when the programmer
writes a macroinstruction, whereas SET symbols are assigned values
when the programmer writes SETA, SETB, and SETC conditional assembly
instructions.

Each symbolic parameter is assigned a single value for one use
of a macroinstruction definition, whereas the values assigned to
each SETA, SETB, and SETC symbol can ·change during one use of a
macroinstruction definition.

9.2.1 Defining SET Symbols

SET symbols must be defined by the programmer before they are
used. When a SET symbol is defined, it is assigned an initial
value. SET symbols may be assigned new values by means of the SETA,
SETB, and SETC instructions. A SET symbol is defined when it
appears in the operand field of an LCLA, LCLB, or LCLC instruction.

9.2.2 Using Variable Symbols

The SETA, SETB, and SETC instructions may be used to change
the values assigned to SETA, SETB, and SETC symbols, respectively.
When a SET symbol appears in the name, operation, or operand field
of a model statement, the current value of the SET symbol (i.e., the
last value assigned to it) replaces the SET symbol in the statement.

For example, if &A is a symbolic parameter, and the
corresponding characters of the macroinstruction are the symbol
HERE, then HERE replaces each occurrence of &A in the
macroinstruction definition. However, if &A is a SET symbol, the
value assigned to &A can be changed, and a different value can
replace each occurrence of &A in the macroinstruction definition.

9-2

The same
parameter and
definition.

variable symbol may not be used
as a SET symbol in the same

The following illustrates this rule.

Name Operation Operand

&NAME MOVE &TO,&FROM

as a symbolic
macroinstruction

If the statement above is a prototype statement, then &NAME,
&TO, and &FROM may not be used as SET symbols in the
macroinstruction definition. The same variable symbol may not be
used as two different types of SET symbols in the same
macroinstruction definition. Similarly, the same variable symbol may
not be used as two different types of SET symbols outside
macroinstruction definitions.

For example, if &A is a SETA symbol in a macroinstruction
definition, it cannot be used as a SETC symbol in that definition.
Similarly, if &A is a SETA symbol outside macroinstruction
definitions, it cannot be used as a SETC symbol outside
macroinstruction definitions.

The same variable symbol may be used in two or more
macroinstruction definitions and outside macroinstruction
definitions. If such is the case, the variable symbol will be
considered a different variable symbol each time it is used.

For example, if &A is a variable symbol (either SET symbol or
symbolic parameter) in one macroinstruction definition, it can be
used as a variable symbol (either SET symbol or symbolic parameter)
in another definition. Similarly, if &A is a variable symbol (SET
symbol or symbolic parameter) in a macroinstruction definition, it
can be used as a SET symbol outside macroinstruction definitions.

All variable symbols may be concatenated with other characters
in the same way that symbolic parameters may be concatenated with
other characters. The rules for concatenating symbolic parameters
with other characters are described in Section 7.6.

Variable symbols in macroinstructions are replaced by the
values assigned to them, immediately prior to the start of
processing the definition. If a SET symbol is used in the operand
field of a macroinstruction, and the value assigned to the SET
symbol is equivalent to the sublist notation, the operand is not
considered a sublist.

9-3

9.2.3 LCLA, LCLB, LCLC -- Define Local Set Symbols

The format of these instructions is:

Name

Blank

Operation

LCLA,
LCLB, or
LCLC

Operand

One or more variable
symbols, that are
to be used as SET
symbols, separated
by commas

The LCLA, LCLB, and LCLC instructions are used to define and
assign initial values to SETA, SETB, and SETC symbols,
respectively. The SETA, SETB, and SETC symbols are assigned the
initial values of 0, 0, and null character value, respectively.

The progranuner should not define any SET symbol whose first
four characters are &SYS.

A LCLA, LCLB, or LCLC instruction may appear anywhere in
macroinstruction definitions or open code. It must appear before
any of the SET symbols it defines is used.

9.2.4 SETA -- Set Arithmetic

The SETA instruction may be used to assign an arithmetic value
to a SETA symbol. The format of this instruction is:

Name

A SETA
symbol

Operation

SETA

Operand

An arithmetic
expression

The expression in the operand field is evaluated as a signed
32-bit arithmetic value which is assigned to the SETA symbol in the
name field. The minimum and maximum allowable values of the
expression are -2**31 and +(2**31)-1, respectively.

9-4

The expression may consist of one term or an arithmetic
combination of terms. The terms that may be used alone or in
combination with each other are self-defining terms, symbolic
parameters whose values are self-defining terms, variable symbols,
and the length, scaling, integer, count, and number attributes.
Self-defining terms are described in Chapters 1 through 5.

A SETC variable symbol may appear in a SETA
expression only if the value of the SETC variable
is one to eight decimal digits. The decimal
digits will be converted to a positive arithmetic
value.

The arithmetic operators that may be used to combine the
terms of an expression are + (addition), (subtraction),
* (multiplication), and I (division).

An expression may not contain two terms or two binary
operators (*/), in succession, nor may it begin with a binary
operator. Unary operators C +-) may appear before any term in the
expression, or at the beginning of the expression.

The following are valid operand fields of SETA instructions:

&AREA+X'2D'
&BETA*lO
L'&HERE+32

I'&N/25
&EXIT-S'&ENTRY+l
29

The following are invalid operand fields of SETA instructions:

&AREAX'C'
&FIELD+­
/ &DELTA *2
NAME/15

(two terms in succession)
(two operators in succession)
(begins with a binary operator)
(NAME is not a valid term)

Evaluation of Arithmetic Expressions

The procedure used to evaluate the arithmetic expression in
the operand field of a SETA instruction is the same as that used to
evaluate arithmetic expressions in Assembly language statements.
The only difference between the two types of arithmetic expressions
is the terms that are allowed in each expression.

The following evaluation procedure is used:

1. Each term is given its numerical value.

2. The arithmetic operations are performed moving from left
to right. However, multiplication and/or di vision are
performed before addition and subtraction, and unary
operations are performed before binary operations.

9-5

3. The computed result is the value assigned to the SETA
symbol in the name field.

The arithmetic expression in the operand field of a SETA
instruction may contain one or more sequences of arithmetically
combined terms that are enclosed in parentheses. A sequence of
parenthesized terms may appear within another parenthesized
sequence. Only eleven levels of parentheses are allowed and an
expression may not consist of more than 25 terms. Parentheses
required for sublist notation, substring notation, and subscript
notation count toward this limit.

The following are examples of SETA instruction operand fields
that contain parenthesized sequences of terms.

(L'&HERE+32)*29
&AREA+X'2D'/(&EXIT-S'&ENTRY+l)
&BETA*lO*CI'&N/25/C&EXIT-S'&ENTRY+l))

The parenthesized portion or portions of an arithmetic
expression are evaluated before the rest of the terms in the
expression are evaluated. If a sequence of parenthesized terms
appears within another parenthesized sequence, the innermost
sequence is evaluated first.

Using SETA Symbols

The arithmetic value assigned to a SETA symbol is substituted
for the SETA symbol when it is used in an arithmetic expression. If
the SETA symbol is not used in an arithmetic expression, the
arithmetic value is converted to an unsigned integer, with leading
zeros removed. If the value is zero, it is converted to a single
zero.

9-6

The following example illustrates this rule:

1
2
3
4

5
6

Name

&NAME

&A
&B
&C
&D
&NAME

HERE

HERE

Operation

MACRO
MOVE
LCLA
SETA
SETA
SETA
SETA
ST
L
ST
L
MEND

MOVE

ST
L
ST
L

Operand

&TO,&FROM
&A,&B,&C,&D
10
12
&A-&B
&A+&C
2,SAVEAREA
2,&FROM&c
2,&TO&D
2,SAVEAREA

FIELDA,FIELDB

2,SAVEAREA
2,FIELDB2
2,FIELDA8
2,SAVEAREA

Statements 1 and 2 assign to the SETA symbols &A and &B the
arithmetic values +10 and +12, respectively. Therefore, statement 3
assigns the SETA symbol &C the arithmetic value -2. When &C is used
in statement 5, the arithmetic value -2 is converted to the unsigned
integer 2. When &C is used in statement 4, however, the arithmetic
value -2 is used. Therefore, &D is assigned the arithmetic value
+8. When &D is used in statement 6, the arithmetic value +8 is
converted to the unsigned integer 8.

9-7

The following example shows how the value assigned to a SETA
symbol may be changed in a rnacroinstruction definition.

1

2
3
4

Name

&NAME

&A
&NAME

&A

HERE

HERE

Operation

MACRO
MOVE
LCLA
SETA
ST
L
SETA
ST
L
MEND

MOVE

ST
L
ST
L

Operand

&TO,&FROM
&A
5
2,SAVEAREA
2,&FROM&A
8
2,&TO&A
2,SAVEAREA

FIELDA,FIELDB

2,SAVEAREA
2,FIELDB5
2,FIELDA8
2,SAVEAREA

Statement 1 assigns the arithmetic value +5 to SETA symbol
&A. In statement 2, &A is converted to the unsigned integer 5.
Statement 3 assigns the arithmetic value +8 to &A. In statement 4,
therefore, &A is converted to the unsigned integer 8, instead of 5.

A SETA symbol may be used with a symbolic parameter to refer
to an operand in an operand sublist. If a SETA symbol is used for
this purpose it must have been assigned a positive value.

Any expression that may be used in the operand field of a SETA
instruction may be used to refer to an operand in an operand sublist.

Sublists are described in Section 8.5.

The following macroinstruction definition may be used to add
the last operand in an -operand sublist to the first operand in an
operand sublist and store the result at the first operand. A sample
macroinstruction and generated statements follow the
macroinstruction definition.

9-8

Name Operation Operand

MACRO
1 ADD:X: &NUMBER,®

LCLA &LAST
2 &LAST SETA N'&NUMBER

L ®,&NUMBER(l)
3 A ®,&NUMBER(&LAST)

ST ®,&NUMBER(l)
MEND

4 ADD:X: (A,B,C,D,E),3

L 3,A
A 3,E
ST 3,A

&NUMBER is the first symbolic parameter in the operand field
of the prototype statement (statement 1). The corresponding
characters, (A,B,C,D,E), of the macroinstruction (statement 4) are a
sublist. Statement 2 assigns to &LAST the arithmetic value.
Therefore, in statement 3, &NUMBER(&LAST) is replaced by the fifth
operand of the sublist.

9.2.5 SETC -- Set Character

The SETC instruction is used to assign a character value to a
SETC symbol. The format of this instruction is:

Name

A SETC
symbol

Operation

SETC

Operand

One operand, of
the form described
below

The operand field may consist of the type attribute, a
character expression, a substring notation, or a concatenation of
substring notations and character expressions. A SETA symbol may
appear in the operand of a SETC statement. The result is the
character representation of the decimal value, unsigned, with
leading zeros removed. If the value is zero, one decimal zero is
used.

9-9

Type Attribute

The character value assigned to a SETC symbol may be a type
attribute. If the type attribute is used, it must appear alone in
the operand field. The following example assigns to the SETC symbol
&TYPE the letter that is the type attribute of the macroinstruction
operand that corresponds to the symbolic parameter &ABC.

Name Operation Operand

&TYPE SETC T'&ABC

Character Expression

A character expression consists of any combination of (up to
255) characters enclosed in apostrophes.

The characters in a character value enclosed in apostrophes in
the operand field are assigned to the SETC symbol in the name
field. The maximum size character value that can be assigned to a
SETC symbol is 255 characters.

Evaluation of Character Expressions

The following statement assigns the character value AB%4 to
the SETC symbol &ALPHA:

Name Operation Operand

&ALPHA SETC 'AB%4'

More than one character expression may be concatenated into a
single character expression by placing a period between the
terminating apostrophe of one character expression and the opening
apostrophe of the next character expression. For example, either of
the following statements may be used to assign the character value
ABCDEF to the SETC symbol &BETA.

Name

&BETA
&BETA

Operation

SETC
SETC

Operand

'ABCDEF'
'ABC'. 'DEF'

9-10

Two apostrophes must be used to represent an apostrophe that
is part of a character expression.

The following statement assigns the character value L' SYMBOL
to the SETC symbol &LENGTH.

Name Operation Operand

&LENGTH SETC 'L' 'SYMBOL'

Variable symbols may be concatenated with other characters in
the operand field of a SETC instruction according to the general
rules for concatenating symbolic parameters with other characters
(see Chapter 7).

If &ALPHA has been assigned the character
following statement may be used to assign the
AB%4RST to the variable symbol &GAMMA.

Name Operation Operand

SETC '&ALPHA.RST'

value AB%4, the
character value

Two ampersands must be used to represent an ampersand that is
not part of a variable symbol. Both ampersands become part of the
character value assigned to the SETC symbol. They are not replaced
by a single ampersand.

The following statement assigns the character value HALF&& to
the SETC symbol &AND.

Name Operation Operand

SETC 'HALF&&'

Substring Notation

The character value assigned to a SETC symbol may be a
substring character value. Substring character values permit the
programmer to assign part of a character value to a SETC symbol.

9-11

If the programmer wants to assign part of a character value to
a SETC symbol, he must indicate to the assembler in the operand
field of a SETC instruction: (1) the character value itself, and
(2) the part of the character value he wants to assign to the SETC
symbol. The combination of (1) and (2) in the operand field of a
SETC instruction is called a substring notation. The character
value that is assigned to the SETC symbol in the name field is
called a substring character value.

Substring notation consists of a character expression,
immediately followed by two arithmetic expressions that are
separated from each other by a corruna and are enclosed in
parentheses. Each arithmetic expression may be any expression that
is allowed in the operand field of a SETA instruction.

The first expression indicates the first character in the
character expression that is to be assigned to the SETC symbol in
the name field. The second expression indicates the nwnber of
consecutive characters in the character expression (starting with
the character indicated by the first expression) that are to be
assigned to the SETC symbol. If a substring asks for more
characters than are in the character string only the characters in
the string will be assigned.

The following are valid substring notations:

I &ALPHA I (2 , 5)

'AB(%)4'(&AREA+2,l)
'&ALPHA.RST'(6,&A)
'ABC&GAMMA' (&A,&AREA+2)

The following are invalid substring notations:

I &BETA I (4, 6)
(blanks between character value and arithmetic
expressions)

'L' 'SYMBOL'(142-&XYZ)
(only one arithmetic expression)

'AB(%)4&ALPHA'(8 &FIELD*2)
(arithmetic expressions not separated by a conuna)

'BETA'4,6
(arithmetic expressions not enclosed in parentheses)

Using SETC Symbols

The character value assigned to a SETC symbol
for the SETC symbol when it is used in the name,
operand field of a statement.

9-12

is substituted
operation, or

For example, consider the following macroinstruction
definition, macroinstruction, and generated statements.

1

2
3

Name

&NAME

&PREFIX
&NAME

HERE

HERE

Operation

MACRO
MOVE
LCLC
SETC
ST
L
ST
L
MEND

MOVE

ST
L
ST
L

Operand

&TO,&FROM
&PREFIX
'FIELD'
2,S.AVEAREA
2,&PREFIX&FROM
2,&PREFIX&TO
2,S.AVEAREA

.A,B

2,S.AVEAREA
2,FIELDB
2,FIELD.A
2,S.AVEAREA

Statement 1 assigns the character value FIELD to the SETC
symbol &PREFIX. In statements 2 and 3, &PREFIX is replaced by
FIELD. The following example shows how the value assigned to a SETC
symbol may be changed in a macroinstruction definition.

1

2
3
4

Name

&NAME

&PREFIX
&NAME

&PREFIX

HERE

HERE

Operation

MACRO
MOVE
LCLC
SETC
ST
L
SETC
ST
L
MEND

MOVE

ST
L
ST
L

Operand

&TO,&FROM
&PREFIX
'FIELD'
2,S.AVEAREA
2,&PREFIX&FROM
'AREA'
2,&PREFIX&TO
2,S.AVEAREA

.A,B

2,S.AVEAREA
2,FIELDB
2,AREAA
2,S.AVEAREA

9-13

Statement 1 assigns the character value FIELD to the SETC
symbol &PREFIX. Therefore, &PREFIX is replaced by FIELD in
statement 2. Statement 3 assigns the character value AREA to
&PREFIX. Therefore, &PREFIX is replaced by AREA, instead of FIELD,
in statement 4.

The following example illustrates the use of a substring
notation as the operand field of a SETC. instruction.

Name Operation Operand

MACRO
&NAME MOVE &TO,&FROM

LCLC &PREFIX
1 &PREFIX SETC '&TO' (1, 5)

&NAME ST 2,SAVEAREA
2 L 2,&PREFIX&FROM

ST 2,&TO
L 2,SAVEAREA
MEND

HERE MOVE FIELDA,B

HERE ST 2,SAVEAREA
L 2,FIELDB
ST 2,FIELDA
L 2,SAVEAREA

Statement 1 assigns the substring character value FIELD (the
first five characters corresponding to symbolic parameter &TO) to
the SETC symbol &PREFIX. Therefore, FIELD replaces &PREFIX in
statement 2.

Concatenating Substring Notations and Character Expressions

Substring notations may be concatenated with character
expressions in the operand field of a SETC instruction. If a
substring notation follows a character expression, the two may be
concatenated by placing a period between the terminating apostrophe
of the character expression and the opening apostrophe of the
substring notation.

9-14

For example, if &ALPHA has been assigned the character value
AB%4, and &BETA has been assigned the character value ABCDEF, then
the following statement assigns &GAMMA the character value AB%4BCD.

Name Operation Operand

SETC '&ALPHA'.'&BETA'(2,3)

If a substring notation precedes a character expression or
another substring notation, the two may be concatenated by writing
the opening apostrophe of the second i tern inunediately after the
closing parenthesis of the substring notation.

The progranuner may optionally place a period between the
closing parenthesis of a substring notation and the opening
apostrophe of the next item in the operand field.

If &ALPHA has been assigned the character value AB%4, and &ABC
has been assigned the character value 5RS, either of the following
statements may be used to assign &WORD the character value AB%45RS.

Name Operation Operand

&WORD
&WORD

SETC
SETC

'&ALPHA.'(l,4)'&ABC'
'&ALPHA.'(l,4)'&ABC'(l,3)

If a SETC symbol is used in the operand field of a SETA
instruction, the character value assigned to the SETC symbol must be
one to eight decimal digits.

If a SETA symbol is used in the operand field of a SETC
statement, the arithmetic value is converted to an unsigned integer
with leading zeros removed. If the value is zero, it is converted
to a single zero.

Duplication Factors

A duplication factor can precede an operand of a SETC
instruction, or any of the parts of a concatenated operand. The
duplication factor can be any arithmetic expression allowed in the
operand of a SETA instruction, enclosed in parentheses. The
expression must have a value between 1 and 32,767.

9-15

The following expression assigns the value 'ABCDEFDEFDEF' to
the SETC symbol &C:

Name Operation Operand

&C SETC 'ABC'.(3)'CDEFGH'(2,3)

9.2.6 SETB -- Set Binary

The SETB instruction may be used to assign the binary value 0
or 1 to a SETB symbol. The format of this instruction is:

Name

A SETB
symbol

Operation Operand

SETB A 0 or a 1 enclosed or
not enclosed in paren­
theses, or a logical
expression enclosed
in parentheses

The operand field may contain a 0 or a 1
expression enclosed in parentheses. A logical
evaluated to determine if it is true or false; the
the name field is then assigned the binary
corresponding to true or false, respectively.

or a logical
expression is

SETB symbol in
value 1 or 0

A logical expression consists of one term or a logical
combination of terms. The terms that may be used alone or in
combination with each other are arithmetic relations, character
relations, and SETB symbols. The logical operators used to combine
the terms of an expression are AND, OR, and NOT.

An expression may not contain two terms in succession. A
logical expression may contain two operators in succession only if
the first operator is either AND or OR and the second operator is
NOT. A logical expression may begin with the operator NOT. It may
not begin with the operators AND or OR.

An arithmetic relation consists of two arithmetic expressions
connected by a relational operator. A character relation consists
of two character values connected by a relational operator. The
relational operators are EQ (equal), NE (not equal), LT (less than),
GT (greater than), LE (less than or equal), and GE (greater than or
equal).

9-16

Any expression that may be used in the operand field of a SETA
instruction may be used as an arithmetic expression in the operand
field of a SETB instruction. Anything that may be used in the
operand field of a SETC instruction may be used as a character value
in the operand field of a SETB instruction. This includes substring
and type attribute notations. The maximum size of the character
values that can be compared is 255 characters. If the two character
values are of unequal size, then the smaller one will always compare
less than the larger one.

The relational and logical operators must be immediately
preceded and followed by at least one blank or other special
character. Each relation may or may not be enclosed in
parentheses. If a relation is not enclosed in parentheses, it must
be separated from the logical operators by at least one blank or
other special character.

The following are valid operand fields of SETB instructions:

1
(&AREA+2 GT 29)
('AB(%)4' EQ '&ALPHA')
(T'&ABC NE T'&xYZ)
(T'&Pl2 EQ 'F')
(&AREA+2 GT 29 OR &B)
(NOT &BAND &AREA+X'2D' GT 29)
(I &C I EQ I MB I)

(0)

The following are invalid operand fields of SETB instructions:

&B (not enclosed in parentheses)

(T'&Pl2 EQ 'F' &B)
(two terms in succession)

('AB(%)4' EQ 'ALPHA' NOT &B)
(the NOT operator must be preceded by AND or
OR)

(AND T'&P12 EQ 'F')
(expression begins with AND)

Evaluation of Logical Expressions

The following procedure is used to evaluate a logical
expression in the operand field of a SETB instruction:

1. Each term (i.e. , arithmetic relation, character relation,
or SETB symbol) is evaluated and given its logical value
(true or false).

2. The logical operations are performed moving from left to
right. However, NOTs are performed before ANDs, and ANDs
are performed before ORs.

3. The computed result is the value assigned to the SETB
symbol in the name field.

9-17

The logical expression in the operand field of a SETB
instruction may contain one or more sequences of logically combined
terms that are enclosed in parentheses. A sequence of parenthesized
terms may appear within another parenthesized sequence.

The following are examples of SETB instruction operand fields
that contain parenthesized sequences of terms.

(NOT C&B AND &AREA+X'2D' GT 29))
(&BAND (T'&P12 EQ 'F' OR &B))

The parenthesized portion or portions of a logical expression
are evaluated before the rest of the terms in the expression are
evaluated. If a sequence of parenthesized terms appears within
another parenthesized sequence, the innermost sequence is evaluated
first. Seventeen levels of parentheses are permissible.

Using SETB Symbols

The logical value assigned to a SETB symbol is used for the
SETB symbol appearing in the operand field of an AIF instruction or
another SETB instruction.

If a SETB symbol is used in the operand field of a SETA
instruction, or in arithmetic relations in the operand fields of AIF
and SETB instructions, the binary values 1 (true) and 0 (false) are
converted to the arithmetic values +l and +O, respectively.

If a SETB symbol is used in the operand field of a SETC
instruction, in character relations in the operand fields of AIF and
SETB instructions, or in any other statement, the binary values 1
(true) and 0 (false), are converted to the character values 1 and 0,
respectively.

9-18

The following example illustrates these rules. It is assumed
that L'&TO EQ 4 is true, and S'&TO EQ 0 is false.

1
2
3
4

Name

&NAME

&Bl
&B2
&Al
&cl

HERE

HERE

Operation

MACRO
MOVE
LCLA
LCLB
LCLC
SETB
SETB
SET.A
SETC
ST
L
ST
L
MEND

MOVE

ST
L
ST
L

Operand

&TO,&FROM
&Al
&Bl,&B2
&cl
(L'&TO EQ 4)
(S'&TO EQ 0)
&Bl
'&B2'
2 , SA VEAREA
2,&FROM&Al
2,&TO&cl
2,S.AVEAREA

FIELDA,FIELDB

2,SAVE.AREA
2,FIELDBl
2,FIELDAO
2,SAVEAREA

Because the operand field of statement 1 is true, &Bl is
assigned the binary value 1. Therefore, the arithmetic value +1 is
substituted for &Bl in statement 3. Because the operand field of
statement 2 is false, &B2 is assigned the binary value 0.
Therefore, the character value 0 is substituted for &B2 in
statement 4.

9-19

9.3 ATTRIBUTES

The assembler assigns attributes to macroinstruction operands,
to SET symbols, and to symbols in the program. These attributes may
be referred to only in conditional assembly instructions or
expressions.

There are six kinds of attributes. They are: type, length,
scaling, integer, count, and number. Each kind of attribute is
discussed in the paragraphs that follow.

If an outer macroinstruction operand is a symbol before
substitution, then the attributes of the operand are the same as the
corresponding attributes of the symbol. The symbol must appear in
the name field of an Assembly language statement or in the operand
field of an EXTRN statement in the program. The statement must be
outside macroinstruction definitions and must not contain any
variable symbols.

If an inner macroinstruction operand is a symbolic parameter,
then the attributes of the operand are the same as the attributes of
the corresponding outer macroinstruction operand. A symbol
appearing as an inner macroinstruction operand is not assigned the
same attributes as the same symbol appearing as an outer
macroinstruction operand.

If a macroinstruction operand is a sublist, the programmer may
refer to the attributes of either the sublist or each operand in the
sublist. The type, length, scaling, and integer attributes of a
sublist are the same as the corresponding attributes of the first
operand in the sublist.

All the attributes of macroinstruction operands may be
referred to in conditional assembly instructions within
macroinstruction definitions. However, only the type, length,
scaling, and integer attributes of symbols may be ref erred to in
conditional assembly instructions outside macroinstruction
definitions. Symbols appearing in the name field of generated
statements are not assigned attributes.

Each attribute has a notation associated with it. The
notations are:

Attribute Notation
Type T'
Length L'
Scaling S'
Integer I'
Count K'
Number N'

9-20

The programmer may refer to an attribute in the following ways:

1. In a statement that is outside macroinstruction
definitions, he may write the notation for the attribute
irrunediately followed by a symbol. (E.g., T'NAME refers to
the type attribute of the symbol NAME.)

2. In a statement that is in a macroinstruction definition,
he may write the notation for the attribute immediately
followed by a symbolic parameter. (E.g., L'&NAME refers
to the length attribute of the characters in the
macroinstruction that correspond to symbolic parameter
&NAME; L'&NAME(2) refers to the length attribute of the
second operand in the sublist that corresponds to symbolic
parameter &NAME.)

9.3.1 Type Attribute CT')

The type attribute of a macroinstruction operand, an ordinary
symbol, or a SET symbol is a letter.

The following letters are used for symbols that name DC and OS
statements and for outer macroinstruction operands that are symbols
that name DC or DS statements.

A A-type address constant, implied length, aligned.
B Binary constant.
C Character constant.
D Long floating-point constant, implied length, aligned.
E Short floating-point constant, implied length, aligned.
F Full-word fixed-point constant, implied length,

aligned.
G Fixed-point constant, explicit length.
H Half-word fixed-point constant, implied length,

aligned.
K Floating-point constant, explicit length.
L Extended floating-point constant, implied length,

aligned.
P Packed decimal constant.
R R-type address constant, implied length, aligned.
S S-type address constant, implied length, aligned.
V V-type address constant, implied length, aligned.
X Hexadecimal constant.
Y Y-type address constant, implied length, aligned.
Z Zoned decimal constant.
@ A-, S-, R-, V-, or Y-type address constant, explicit

length.

The following letters are used for symbols (and outer
macroinstruction operands that are symbols) that name statements
other than DC or DS statements, or that appear in the operand field
of an EXTRN statement.

I Machine instruction
J Control section name
M Macroinstruction
T EXTRN symbol

9-21

The following letters are used for inner and outer
macroinstruction operands only.

N Self-defining term, SETA or SETB variable
0 Omitted operand

The following letter is used for inner and outer
macroinstruction operands that cannot be assigned any of the above
letters. This includes inner macroinstruction operands that are
symbols.

This letter is also assigned to symbols that name EQU and
LTORG statements, to any symbols occurring more than once in the
name field of source statements, to all symbols naming statements
with expressions as modifiers, and to SETC variables and the system
variable symbols &SYSPARM, &SYSDATE, &SYSTIME.

U Undefined

The attributes of A, B, C and D are undefined in the following
example:

Name Operation Operand

A
B
c
D

DC 3FL(M-BB)'75'
DC (M-BB)F'l5'
DC &X'l'
DC FL(3-2)'1'

The third operand of an EQU instruction can be
used to explicitly assign a type attribute value
to the symbol in the name field.

The programmer may ref er to a type attribute in the operand
field of a SETC instruction, or in character relations in the
operand fields of SETB or AIF instructions.

9.3.2 Length (L'), Scaling (S'), and Integer CI') Attributes

The length, scaling, and integer attributes of
macroinstruction operands and symbols are numeric values.

9-22

The length attribute of a symbol (or of a macroinstruction
operand that is a symbol) is as described in Chapters 1 through 5.
The use of the length attribute of a symbol defined with a DC or DS
with explicit length given by an expression is invalid. Reference
to the length attribute of a variable symbol is illegal except for
symbolic parameters in SETA, SETB and AIF statements. If the basic
L' attribute is desired, it may be obtained as follows:

&A SETC
&B SETC

'Z'
'L' I I

MVC &A. C&B&A) ,X

After generation, this would result in

MVC Z(L'Z),X

Conditional assembly instructions must not refer to the length
attributes of symbols or macroinstruction operands whose type
attributes are the letters M, N, 0, T, U.

At preassembly time, an ordinary symbol used in the name field
of an EQU instruction has a length of l, unless the second operand
of the instruction has been used to assign a length value to the
symbol.

Scaling and integer attributes are provided for symbols that
name fixed-point, floating-point, and decimal fields.

Fixed and Floating Point

The scaling attribute of a fixed-point or floating-point
number is the value given by the scale modifier. The integer
attribute is the number of digits (for fixed-point numbers, binary
digits; for floating-point numbers, hexadecimal digits) to the left
of the binary or hexadecimal point after the number is assembled.

Decimal

The scaling attribute of a decimal number is the number of
decimal digits to the right of the decimal point. The integer
attribute of a decimal number is the number of decimal digits to the
left of the assumed decimal point after the number is assembled.

Scaling and integer attributes are available for symbols and
macroinstruction operands only if their type attributes are H,F, and
G (fixed point); D,E,L, and K (floating point); or P and Z (decimal).

The programmer may refer to the length, scaling, and integer
attributes in the operand field of a SETA instruction, or in
arithmetic relations in the operand fields of SETB or AIF
instructions.

9-23

9.3.3 Count Attribute CK')

The programmer may
macroinstruction operands,
symbols.

refer to the count attribute of
to SET symbols, and to system variable

The value of the count attribute is equal to the number of
characters in the macroinstruction operand, or that would be
required to represent the current value of the SET symbol as a
character string. It includes all characters in the operand, but
does not include the delimiting commas. The count attribute of an
omitted operand is zero. These rules are illustrated by the
following examples:

Operand

ALPHA
(JUNE,JULY,AUGUST)
2(10,12)
A(2)
'A' 'B'
I I

I I

Count Attribute

5
18

8
4
6
3
2

If a macroinstruction operand contains variable symbols, the
characters that replace the variable symbols, rather than the
variable symbols, are used to determine the count attribute.

The programmer may ref er to the count attribute in the operand
field of a SETA instruction, or in arithmetic relations in the
operand fields of SETB and AIF instructions that are part of a
macroinstruction definition.

9.3.4 Number Attribute (N')

The programmer may ref er to the number attribute of
macroinstruction operands only.

The number attribute is a value equal to the number of
operands in an operand sublist. The number of operands in an
operand sublist is equal to one plus the number of commas that
indicate the end of an operand in the sublist.

The following examples illustrate this rule.

(A,B,C,D,E)
(A, ,C,D,E)
(A,B,C,D)
(,B,C,D,E)
(A,B,C,D,)
(A,B,C,D,,)

5 operands
5 operands
4 operands
5 operands
5 operands
6 operands

9-24

If the macroinstruction operand is not a sublist, the number
attribute is one. If the macroinstruction operand is omitted, the
number attribute is zero.

The progranuner may ref er to the number attribute in the
operand field of a SETA instruction, or in arithmetic relations in
the operand fields of SETB and AIF instructions that are part of a
macroinstruction definition.

9.3.5 Assigning Attributes to Symbols

The integer attribute is computed from the length and scaling
attributes.

Fixed Point

The integer attribute of a fixed-point number is equal to
eight times the length attribute of the number minus the scaling
attribute minus one, i.e., I'=8*L'-S'-1.

Each of the following statements defines a fixed-point field.
The length attribute of HALFCON is 2, the scaling attribute is 6,
and the integer attribute is 9. The length attribute of ONECON is
4, the scaling attribute is 8, and the integer attribute is 23.

Name

HALFCON
ONECON

Floating Point

Operation

DC
DC

Operand

HS6'-25.93'
FS8'100.3E-2'

The integer attribute of a Type D or E floating-point number
is equal to two times the difference between the length attribute of
the number and one, minus the scaling attribute, i.e.,
I I =2 * (L I -1) -s I •

Because of its low order characteristic, the integer attribute
of a Type L constant with a length greater than 8 bytes is two less
than the value indicated in the formula above. The integer
attribute of a Type L constant with a length of 8 bytes or less is
the same as the value indicated in the formula above.

Each of the following statements defines a floating-point
field. The length attribute of SHORT is 4, the scaling attribute is
2, and the integer attribute is 4. The length attribute of LONG is
8, the scaling attribute is 5, and the integer attribute is 9.

9-25

Decimal

Name

SHORT
LONG

Operation

DC
DC

Operand

ES2'46.415'
DS5'-3.729'

The integer attribute of a packed decimal number is equal to
two times the length attribute of the number minus the scaling
attribute minus one, i.e., I'=2*L'-S'-1. The integer attribute of a
zoned decimal number is equal to the difference between the length
attribute and the scaling attribute, i.e., I'=L'-S'.

Each of the following statements defines a decimal field. The
length attribute of FIRST is 2, the scaling attribute is 2, and the
integer attribute is 1. The length attribute of SECOND is 3, the
scaling attribute is 0, and the integer attribute is 3. The length
attribute of THIRD is 4, the scaling attribute is 2, and the integer
attribute is 2. The length attribute of FOURTH is 3, the scaling
attribute is 2, and the integer attribute is 3.

Name Operation Operand

FIRST DC P'+l.25'
SECOND DC Z'-543'
THIRD DC Z'79.68'
FOURTH DC P'79.68'

For each type of constant, the integer attribute is the number
of digits (binary, decimal or hexadecimal) in the integer part of
the assembled constant; the scaling attribute is the number of
digits in the fractional part of the constant.

9.4 SEQUENCE SYMBOLS

The name field of a statement may contain a sequence symbol.
Sequence symbols provide the programmer with the ability to vary the
sequence in which statements are processed by the assembler.

A sequence symbol is used in the operand field of an AIF or
AGO statement to refer to the statement named by the sequence symbol.

A sequence symbol is considered to be
macroinstruction definition.

9-26

local to a

A sequence symbol may be used in the name field of any
statement that does not contain a symbol or SET symbol except a
prototype statement, a MACRO, LCLA, LCLB, LCLC, GBLA, GBLB, GBLC,
ACTR, ICTL, ISEQ, or COPY instruction.

A sequence symbol consists of a period followed by one through
sixteen letters and/or digits, the first of which must be a letter.

The following are valid sequence symbols:

.READER

.LOOP2

.N

.A23456

.X4F2

.S4

The following are invalid sequence symbols:

.246B

.THISSYMBOLISTOOLONG

.BCD%84

.IN AREA

(first character is not a period)

(first character after period is not a
letter)

(more than sixteen characters after
period)

(contains a special character other
than initial period)

(contains a special character, i.e.,
blank, other than initial period)

If a sequence symbol appears in the name field of a macro­
instruction, and the corresponding prototype statement contains a
symbolic parameter in the name field, the sequence symbol does not
replace the symbolic parameter wherever it is used in the
macroinstruction definition.

9-27

The following example illustrates this rule.

1
2

3

4

Name

&NAME
&NAME

.SYM

Operation

MACRO
MOVE
ST
L
ST
L
MEND

MOVE

ST
L
ST
L

Operand

&TO,&FROM
2,SAVEAREA
2,&FROM
2,&TO
2,SAVEAREA

FIELDA,FIELDB

2,SAVEAREA
2,FIELDB
2,FIELDA
2,SAVEAREA

The symbolic parameter &NAME is used in the name field of the
prototype statement (statement 1) and the first model statement
(statement 2). In the macroinstruction C statement 3) a sequence
symbol C.SYM) corresponds to the symbolic parameter &NAME. &NAME is
not replaced by .SYM, and, therefore, the generated statement
(statement 4) does not contain an entry in the name field.

9.5 AIF -- CONDITIONAL BRANCH

The AIF instruction is used to conditionally alter the
sequence in which source program statements or macroinstruction
definition statements are processed by the assembler. The assembler
assigns a maximum count of 4096 AIF and AGO branches that may be
executed in the source program or in a macroinstruction definition.
When a macroinstruction definition calls an inner macroinstruction
definition, the current value of the count is saved and a new count
of 4096 is set up for the inner macroinstruction definition. When
processing in the inner.definition is completed and a return is made
to the higher definition, the saved count is restored. The format
of this instruction is as follows.

9-28

Name Operation Operand

A se- AIF
quence
symbol or
blank

A logical expression
enclosed in paren­
theses, inunediately
followed by a
sequence symbol

Any logical expression that may be used in the operand field
of a SETB instruction may be used in the operand field of an AIF
instruction. The sequence symbol in the operand field must
inunediately follow the closing parenthesis of the logical expression.

The logical expression in the operand field is evaluated to
determine if it is true or false. If the expression is true, the
statement named by the sequence symbol in the operand field is the
next statement processed by the assembler. If the expression is
false, the next sequential statement is processed by the assembler.

The statement named by the sequence symbol may precede or
follow the AIF instruction.

If an AIF instruction is in a macroinstruction definition,
then the sequence symbol in the operand field must appear in the
name field of a statement in the definition. If an AIF instruction
appears outside macroinstruction definitions, then the sequence
symbol in the operand field must appear in the name field of a
statement outside macroinstruction definitions.

The following are valid operand fields of AIF instructions:

(&AREA+X'2D' GT 29).READER
CT'&Pl2 EQ 'F').THERE
C'&FIELD3' EQ' ').N03

The following are invalid operand fields of AIF instructions:

(T'&ABC NE T'&XYZ) (no sequence symbol)
.X4F2 (no logical expression)
CT'&ABC NE T'&XYZ) .X4F2

(blanks between logical expression and
sequence symbol)

9-29

The following macroinstruction definition may be used to
generate the statements needed to move a full-word fixed-point
number from one storage area to another. The statements will be
generated only if the type attribute of both storage areas is the
letter F.

Name Operation Operand

MACRO
&N MOVE &T,&F

1 AIF (T'&T NE TI &F) .END
2 AIF (T'&T NE 'F').END
3 &N ST 2,SAVEAREA

L 2,&F
ST 2,&T
L 2,SMTEAREA

4 .END MEND

The logical expression in the operand field of statement 1 has
the value true if the type attributes of the two macroinstruction
operands are not equal. If the type attributes are equal, the
expression has the logical value false.

Therefore, if the type attributes are not equal, statement 4
(the statement named by the sequence symbol .END) is the next
statement processed by the assembler. If the type attributes are
equal, statement 2 (the next sequential statement) is processed.

The logical expression in the operand field of statement 2 has
the value true if the type attribute of the first macroinstruction
operand is not the letter F. If the type attribute is the letter F,
the expression has the logical value false.

Therefore, if the type attribute is not the letter F,
statement 4 (the statement named by the sequence symbol .END) is the
next statement processed by the assembler. If the type attribute is
the letter F, statement 3 (the next sequential statement) is
processed.

9.6 AGO -- UNCONDITIONAL BRANCH

The AGO instruction is used to unconditionally alter the
sequence in which source program or macroinstruction definition
statements are processed by the assembler. The assembler assigns a
maximum count of 4096 AIF and AGO branches that may be executed in
the source program or in a macroinstruction definition. When a
macroinstruction definition calls an inner macroinstruction
definition, the current value of the count is saved and a new count
of 4096 is set up for the inner macroinstruction definition. When

9-30

processing in the inner definition is completed and a return is made
to the higher definition, the saved count is restored. The format
of this instruction is:

Name Operation Operand

A sequence AGO
symbol or
blank

A sequence symbol

The statement named by the sequence symbol in the operand
field is the next statement processed by the assembler.

The statement named by the sequence symbol may precede or
follow the AGO instruction.

If an AGO instruction is part of a macroinstruction
definition, then the sequence symbol in the operand field must
appear in the name field of a statement that is in that definition.
If an AGO instruction appears outside macroinstruction definitions,
then the sequence symbol in the operand field must appear in the
name field of a statement outside macroinstruction definitions.

The following example illustrates the use of the AGO
instruction.

Name Operation Operand

MACRO
&NAME MOVE &T,&F

1 A.IF (T'&T EQ 'F') .FIRST
2 AGO .END
3 .FIRST AIF (T'&T NE T'&F).END

&NAME ST 2,SAVEAREA
L 2,&F
ST 2,&T
L 2,SAVEAREA

4 .END MEND

Statement 1 is used to determine if the type attribute of the
first macroinstruction operand is the letter F. If the type
attribute is the letter F, statement 3 is the next statement
processed by the assembler. If the type attribute is not the letter
F, statement 2 is the next statement processed by the assembler.

9-31

Statement 2 is used to indicate to the assembler that the next
statement to be processed is statement 4 (the statement named by
sequence symbol .END).

9.7 ACTR -- CONDITIONAL ASSEMBLY LOOP COUNTER

The ACTR instruction is used to assign a maximum count
(different from the standard count of 4096) to the number of AGO and
AIF branches executed within a macroinstruction definition or within
the source program. The format of this instruction is as follows:

Name

Blank

Operation Operand

ACTR Any valid SETA
expression

This statement causes a counter to be set to the value in the
operand field. The counter is checked for zero or a negative value;
if it is not zero or negative, it is decremented by one each time an
AGO or AIF branch is executed. If the count is zero before
decrementing, the assembler will take one of two actions:

1. If processing is being performed inside a macroinstruction
definition, expansion of this macroinstruction definition
is terminated. Processing continues with the next
statement after the macroinstruction call, whether this is
in open code or in an outer macroinstruction definition.

2. If the source program is being processed, an END card will
be generated.

An ACTR instruction in a macroinstruction definition affects
only that definition; it has no effect on the number of AIF and AGO
branches that may be executed in macroinstruction definitions called.

The assembler halves the ACTR counter value when
it encounters serious errors in conditional
assembly instructions.

9-32

9.8 ANOP -- ASSEMBLY NO OPERATION

The ANOP instruction facilitates conditional and unconditional
branching to statements named by symbols or variable symbols.

The format of this instruction is:

Name

A se­
quence
symbol

Operation Operand

ANOP Blank

If the programmer wants to use an AIF or AGO instruction to
branch to another statement, he must place a sequence symbol in the
name field of the statement to which he wants to branch. However, if
the programmer has already entered a symbol or variable symbol in
the name field of that statement, he cannot place a sequence symbol
in the name field. Instead, the programmer must place an ANOP
instruction before the statement and then branch to the ANOP
instruction. This has the same effect as branching to the statement
immediately after the ANOP instruction.

The following example illustrates the use of the ANOP
instruction.

Name Operation Operand

MACRO
&NAME MOVE &T,&F

LCLC &TYPE
1 AIF (T'&T EQ 'F').FTYPE
2 &TYPE SETC 'E'
3 .FTYPE ANOP
4 &NAME ST&TYPE 2,SAVEAREA

L&TYPE 2,&F
ST&TYPE 2,&T
L&TYPE 2,SAVEAREA
MEND

Statement 1 is used to determine if the type attribute of the
first macroinstruction operand is the letter F. If the type
attribute is not the letter F, statement 2 is the next statement
processed by the assembler. If the type attribute is the letter F,
statement 4 should be processed next. However, since there is a
variable symbol (&NAME) in the name field of statement 4, the

9-33

required sequence symbol (.FTYPE) cannot be placed in the name
field. Therefore, an ANOP instruction (statement 3) must be placed
before statement 4.

Then, if the type attribute of the first operand is the letter
F, the next statement processed by the assembler is the statement
named by sequence symbol . FTYPE. The value of &TYPE retains its
initial null character value because the SETC instruction is not
processed. Since .FTYPE names an ANOP instruction, the next
statement processed by the assembler is statement 4, the statement
following the ANOP instruction.

9.9 CONDITIONAL ASSEMBLY ELEMENTS

The following chart sununarizes the elements that can be used
in each conditional assembly instruction. Each row in this chart
indicates which elements can be used in a single conditional
assembly instruction. Each column is used to indicate the
conditional assembly instructions in which a particular element can
be used.

The intersection of a column and a row indicates whether an
element can be used in an instruction, and if so, in what fields of
the instruction the element can be used. For example, the
intersection of the first row and the first column of the chart
indicates that symbolic parameters can be used in the operand field
of SETA instructions.

9-34

Variable Symbols

SET Symbols

S.P. SETA SETB SETC T'

SETA 0 N, 0

SETB 0 0

SETC 0 0

AIF 0 0

AGO

ANOP

ACTR 0 0

0

N,0

0

0

0

3
0

0

N,0

0

3
0

1 Only in character relations
2 Only in arithmetic relations

1
0

0

1
0

3 Only if one to eight decimal digits

Abbreviations

L'

0

2
0

2
0

0

N
0
S.P.

is Name
is Operand
is Symbolic

L' is Length Attribute
S' is Scaling Attribute
I' is Integer Attribute

Parameter

9-35

Attributes

S'

0

2
0

2
0

0

I'

0

2
0

2
0

0

K'

0

2
0

2
0

0

N'

0

2
0

2
0

0

S.S.

N,O

N,O

N

K' is Count Attribute
N' is Number Attribute
S.S. is Sequence Symbol

CHAPTER 10
EXTENDED FEATURES OF THE MACRO LANGUAGE

10.1 INTRODUCTION

The extended features of the Macro language allow the
programmer to:

1. Terminate processing of a macroinstruction definition.

2. Generate error messages.

J. Define global SET symbols.

4. Define subscripted SET symbols.

5. Use system variable symbols.

6. Prepare keyword and mixed-mode macroinstruction defini­
tions and write keyword and mixed-mode macroinstructions.

7. Use other Wang VS macroinstruction definitions.

10.2 MEXIT -- MACROINSTRUCTION DEFINITION EXIT

The MEXIT instruction is used to indicate to the assembler
that it should terminate processing of a macroinstruction
definition. The format of this instruction is:

Name

A sequence
symbol or
blank

Operation

MEXIT

Operand

Blank

The MEXIT instruction may only be used in a macroinstruction
definition.

10-1

If the assembler processes an MEXIT instruction that is in a
macroinstruction definition corresponding to an outer
macroinstruction, the next statement processed by the assembler is
the next statement outside macroinstruction definitions.

If the assembler processes an MEXIT instruction that is in a
macroinstruction definition corresponding to a second or third level
macroinstruction, the next statement processed by the assembler is
the next statement after the second or third level macroinstruction
in the macroinstruction definition, respectively.

MEXIT should not be confused with MEND. MEND indicates the
end of a macroinstruction definition. MEND must be the last
statement of every macroinstruction definition, including those that
contain one or more MEXIT instructions.

The following example illustrates the use of the MEXIT
instruction.

Name Operation Operand

MACRO
&NAME MOVE &T,&F

1 AIF (T'&T EQ 'F') .OK
2 MEXIT
3 .OK ANOP

&NAME ST 2,SAVEAREA
L 2,&F
ST 2,&T
L 2,SAVEAREA
MEND

Statement 1 is used to determine if the type attribute of the
first macroinstruction operand is the letter F. If the type
attribute is the letter F, the assembler processes the remainder of
the macroinstruction definition starting with statement 3. If the
type attribute is not the letter F, the next statement processed by
the assembler is statement 2. Statement 2 indicates to the
assembler that it is to terminate processing of the macroinstruction
definition.

10-2

10.3 MNOTE -- REQUEST FOR ERROR MESSAGE

The MNOTE instruction may be used to request the assembler to
generate an error message. The format of this instruction is:

Name Operation Operand

A sequence MNOTE
symbol or·
blank

A severity code,
followed by
a comma, followed
by any combination
of characters en­
closed in apostro­
phes

The operand of the MNOTE instruction may be written using one
of the following forms:

Operand

severity-code,'message'
*, 'message '
'message'

The MNOTE instruction may be used in a macroinstruction
definition or in open code. Variable symbols may be used to
generate the MNOTE mnemonic operation code, the severity code, and
the message.

The severity code may be any arithmetic expression allowed in
the operand field of a SETA instruction (with a value between 0 and
255), or an asterisk. If it is omitted, 1 is assumed. The severity
code indicates the severity of the error, a higher severity code
indicating a more serious error.

When MNOTE * occurs, the statement in the operand field will
be printed as a comment.

Two apostrophes must be used to represent an apostrophe
enclosed in apostrophes in the operand field of an MNOTE
instruction. One apostrophe will be listed for each pair of
apostrophes in the operand field. If any variable symbols are used
in the operand field of an MNOTE instruction, they will be
replaced by the values assigned to them. Two ampersands must be
used to represent an ampersand that is not part of a variable symbol
in the operand field of an MNOTE statement. One ampersand will be
listed for each pair of ampersands in the operand field.

10-3

The following example illustrates the use of the MNOTE
instruction.

Name Operation Operand

MACRO
&NAME MOVE &T,&F

MNOTE *,'MOVE MACRO GEN'
1 AIF (T'&T NE T'&F).Ml
2 AIF (TI &T NE I F I) . M2
3 &NAME ST 2,SAVEAREA

L 2,&F
ST 2,&T
L 2,SAVEAREA
MEXIT

4 .Ml MNOTE 6, 'TYPE NOT SAME'
MEXIT

5 .M2 MNOTE 9, 'TYPE NOT F'
MEND

Statement 1 is used to determine if the type attributes of
both macroinstruction operands are the same. If they are, statement
2 is the next statement processed by the assembler. If they are
not, statement 4 is the next statement processed by the assembler.
Statement 4 causes an error message indicating the type attributes
are not the same to be printed in the source program listing.

Statement 2 is used to determine if the type attribute of the
first macroinstruction operand is the letter F. If the type
attribute is the letter F, statement 3 is the next statement
processed by the assembler. If the attribute is not the letter F,
statement 5 is the next statement processed by the assembler.
Statement 5 causes an error message indicating the type attribute is
not F to be printed in the source program listing.

10.4 GLOBAL AND LOCAL VARIABLE SYMBOLS

The following are local variable symbols:

1. Symbolic parameters.

2. Local SET symbols.

3. System variable symbols.

Global SET symbols are the only global variable symbols.

10-4

The GBLA, GBLB, and GBLC instructions define global SET
symbols, just as the LCLA, LCLB, and LCLC instructions define the
SET symbols described in Chapter 9. Hereinafter, SET symbols
defined by LCLA, LCLB, and LCLC instructions will be called local
SET symbols.

Global SET symbols communicate values between statements in
one or more macroinstruction definitions and statements outside
macroinstruction definitions. However, local SET symbols
communicate values between statements in the same macroinstruction
definition, or
definitions.

between statements outside macroinstruction

If a local SET symbol is defined in two
macroinstruction definitions, or in a macroinstruction
and outside macroinstruction definitions, the SET
considered to be a different SET symbol in each case.
global SET symbol is the same SET symbol each place it is

or more
definition
symbol is
However, a

defined.

A SET symbol must be defined as a global SET symbol in each
macroinstruction definition in which it is to be used as a global
SET symbol. A SET symbol must be defined as a global SET symbol
outside macroinstruction definitions, if it is to be used as a
global SET symbol outside macroinstruction definitions.

If the same SET symbol is defined as a global SET symbol in
one or more places, and as a local SET symbol elsewhere, it is
considered the same symbol wherever it is defined as a global SET
symbol, and a different symbol wherever it is defined as a local SET
symbol.

10.4.1 Defining Local and Global SET Symbols

Local SET symbols are defined when they appear in the operand
field of an LCLA, LCLB, or LCLC instruction. These instructions are
discussed in Section 9.2.1.

Global SET symbols are defined when they appear in the operand
field of a GBLA, GBLB, or GBLC instruction. The format of these
instructions is:

Name Operation Operand

Blank GBLA,
GBLB, or
GBLC

One or more variable
symbols that are to be
used as SET symbols,
separated by commas

10-5

The GBLA, GBLB, and GBLC instructions define global SETA,
SETB, and SETC symbols, respectively, and assign the same initial
values as the corresponding types of local SET symbols. However, a
global SET symbol is assigned an initial value by only the first
GBLA, GBLB, or GBLC instruction processed in which the symbol
appears. Subsequent GBLA, GBLB, or GBLC instructions processed by
the assembler do not affect the value assigned to the SET symbol.

The programmer should not define any global SET symbols whose
first four characters are &SYS.

A GBLA, GBLB, or GBLC instruction may appear anywhere in
macroinstruction definitions or open code. It must appear before
any of the SET symbols it defines is used.

10.4.2 Using Global and Local SET Symbols

The following examples illustrate the use of global and local
SET symbols. Each example consists of two parts. The first part is
an Assembly language source program. The second part shows the
statements that would be generated by the assembler after it
processed the statements in the source program.

Example 1

This example illustrates how the same SET symbol can be used
to conununicate (1) values between statements in the same
macroinstruction definition, and (2) different values between
statements outside macroinstruction definitions.

1
2
3

4

5

6

Name

&NAME

&NAME
&A

FIRST

FIRST

Operation

MACRO
LOAD A
LCLA
LR
SETA
MEND

LCLA
LOAD A
LR
LOAD A
LR
END

LR
LR
LR
LR
END

Operand

&A
15,&A
&A+l

&A

15,&A

15,&A
FIRST

15,0
15,0
15,0
15,0
FIRST

10-6

&A is defined as a local SETA symbol in a macroinstruction
definition (statement 1) and outside macroinstruction definitions
(statement 4). &A is used twice within the macroinstruction
def ini ti on (statements 2 and 3) and twice outside macroinstruction
definitions (statements 5 and 6).

Since &A is a local SETA symbol in the macroinstruction
definition and outside macroinstruction definitions, it is one SETA
symbol in the macroinstruction definition, and another SETA symbol
outside macroinstruction definitions. Therefore, statement 3 (which
is in the macroinstruction definition) does not affect the value
used for &A in statements 5 and 6 (which are outside
macroinstruction definitions) . Moreover, the use of LO.ADA between
statements 5 and 6 will alter &A from its previous value as a local
symbol within that macroinstruction definition since the first act
of the macroinstruction definition is to set &A to zero.

Example 2

This example illustrates how a SET symbol can be used to
communicate values between statements that are part of a
macroinstruction definition and statements outside macroinstruction
definitions.

1
2
3

4

5

6

Name

&NAME

&NAME
&A

FIRST

FIRST

Operation

MACRO
LO.ADA
GBLA
LR
SETA
MEND

GBLA
LO.ADA
LR
LO.ADA
LR
END

LR
LR
LR
LR
END

Operand

&A
15,&A
&A+l

&A

15,&A

15,&A
FIRST

15,0
15,l
15,l
15,2
FIRST

&A is defined as a global SETA symbol in a macroinstruction
definition (statement 1) and outside macroinstruction definitions
(statement 4). &A is used twice within the macroinstruction
definition (statements 2 and 3) and twice outside macroinstruction
definitions (statements 5 and 6).

10-7

Since &A is a global SETA symbol in the macroinstruction
definition and outside macroinstruction definitions, it is the same
SETA symbol in both cases. Therefore, statement 3 (which is in the
macroinstruction definition) affects the value used for &A. in
statements 5 and 6 (which are outside macroinstruction definitions).

Example 3

This example illustrates how the same SET symbol can be used
to conununicate: (1) values between statements in one
macroinstruction definition, and (2) different values between
statements in a different macroinstruction definition.

&A is defined as a local SETA symbol in two different
macroinstruction definitions (statements 1 and 4). &A is used twice
within each macroinstruction definition (statements 2, 3, 5, and 6).

Since &A is a local SETA symbol in each macroinstruction
definition, it is one SETA symbol in one macroinstruction
definition, and another SETA symbol in the other macroinstruction
definition. Therefore, statement 3 (which is in one
macroinstruction definition) does not affect the value used for &A
in statement 5 (which is in the other macroinstruction definition).
Similarly, statement 6 does not affect the value used for &A in
statement 2.

1
2
3

4
5
6

Name

&NAME

&NAME
&A

&A

FIRST

FIRST

Operation

MACRO
LOAD A
LCLA
LR
SETA
MEND

MACRO
LOADB
LCLA
LR
SETA
MEND

LOAD A
LOADB
LOAD A
LOADB
END

LR
LR
LR
LR
END

Operand

&A
15,&A
&A+l

&A
15,&A
&A+l

FIRST

15,0
15,0
15,0
15,0
FIRST

10-8

Example 4

This example illustrates how a SET symbol can be used to
communicate values between statements that are part of two different
macroinstruction definitions.

1
2
3

4
5
6

Name

&NAME

&NAME
&A

&A

FIRST

FIRST

Operation

MACRO
LOAD A
GBLA
LR
SETA
MEND

MACRO
LOADB
GBLA
LR
SETA
MEND

LOAD A
LOADB
LOAD A
LOADB
END

LR
LR
LR
LR
END

Operand

&A
15,&A
&A+l

&A
15,&A
&A+l

FIRST

15,0
15,l
15,2
15,3
FIRST

&A is defined as a global SETA symbol in two different
macroinstruction definitions (statements 1 and 4). &A is used twice
within each macroinstruction definition (statements 2, 3, 5 and 6).

Since &A is a global SETA symbol in each macroinstruction
definition, it is the same SETA symbol in each macroinstruction
definition. Therefore, statement 3 (which is in one
rnacroinstruction definition) affects the value used for &A in
statement 5 (which is in the other macroinstruction definition).
Similarly, statement 6 affects the value used for &A in statement 2.

10-9

Example 5

This example illustrates how the same SET symbol can be used
to communicate: (1) values between statements in two different
macroinstruction definitions, and (2) different values between
statements outside macroinstruction definitions.

1
2
3

4
5
6

7

8

9

Name

&NAME

&NAME
&A

&A.

FIRST

FIRST

Operation

MACRO
LOAD A
GBLA
LR
SETA
MEND

MACRO
LOADB
GBLA
LR
SETA
MEND

LCLA
LOAD A
LOADB
LR
LOAD A
LOADB
LR
END

LR
LR
LR
LR
LR
LR
END

Operand

&A.
15,&A
&A+l

&A.
15,&A
&A.+l

&A

15,&A

15,&A
FIRST

15,0
15,1
15,0
15,2
15,3
15,0
FIRST

&A is defined as a global SETA symbol in two different
macroinstruction definitions (statements 1 and 4), but it is defined
as a local SETA symbol outside macroinstruction definitions
(statement 7). &A. is used twice within each macroinstruction
definition and twice outside macroinstruction definitions
(statements 2, 3, 5, 6, 8 and 9).

10-10

Since &A is a global SETA symbol in each macroinstruction
definition, it is the same SETA symbol in each macroinstruction
definition. However, since &A is a local SETA symbol outside
macroinstruction definitions, it is a different SETA symbol outside
macroinstruction definitions.

Therefore, statement 3 (which is in one macroinstruction
definition) affects the value used for &A in statement 5 (which is
in the other macroinstruction definition), but it does not affect
the value used for &A in statements 8 and 9 (which are outside
macroinstruction definitions). Similarly, statement 6 affects the
value used for &A in statement 2, but it does not affect the value
used for &A in statements 8 and 9.

10.4.3 Subscripted SET Symbols

Both global and local SET symbols may be defined as
subscripted SET symbols. The local SET symbols defined in Chapter 9
were all nonsubscripted SET symbols.

Subscripted SET symbols provide the programmer with a
convenient way to use one SET symbol plus a subscript to refer to
many arithmetic, binary, or character values.

A subscripted SET symbol consists of a SET symbol immediately
followed by a subscript that is enclosed in parentheses. The
subscript may be any arithmetic expression that is allowed in the
operand field of a SETA statement. The subscript may not be 0 or
negative.

The following are valid subscripted SET symbols.

&READERC17)
&A23456C&S4)
&x4F2C25+&A2)

The following are invalid subscripted SET symbols.

&x4F2
(25)
&x4F2 (25)

(no subscript)
(no SET symbol)
(subscript does not immediately follow SET

symbol)

Defining Subscripted SET Symbols

If the programmer wants to use a subscripted SET symbol, he
must write in a GBLA, GBLB, GBLC, LCLA, LCLB, or LCLC instruction, a
SET symbol immediately followed by a decimal integer enclosed in
parentheses. The decimal integer, called a dimension, indicates the
number of SET variables associated with the SET symbol. Every
variable associated with a SET symbol is assigned an initial value
that is the same as the initial value assigned to the corresponding
type of nonsubscripted SET symbol.

10-11

If a subscripted SET symbol is defined as global, the same
dimension must be used with the SET symbol each time it is defined
as global.

The maximum dimension that can be used with a SETA, SETB, or
SETC symbol is 32,767.

A subscripted SET symbol may be used only if the declaration
was subscripted; a nonsubscripted SET symbol may be used only if the
declaration had no subscript.

The following statements define the global SET symbols &SBOX,
&WBOX, and &PSW, and the local SET symbol &TSW. &SBOX has 50
arithmetic variables associated with it, &WBOX has 20 character
variables, &PSW and &TSW each have 230 binary variables.

Name Operation Operand

GBLA &SBOXC 50)
GBLC &WBOXC20)
GBLB &PSWC230)
LCLB &TSWC230)

Using Subscripted SET Symbols

After the programmer has associated a number of SET variables
with a SET symbol, he may assign values to each of the variables and
use them in other statements.

If the statements in the previous example were part of a
macroinstruction definition (and &A was defined as a SETA symbol in
the same definition), the following statements could be part of the
same macroinstruction definition.

Name Operation Operand

1 &A SETA 5
2 &PSWC&A.) SETB (6 LT 2)
3 &TSW(9) SETB C&PSWC&A))
4 A 2,=F'&SBOXC45)'
5 CLI AREA,C'&WBOX(l7)'

10-12

Statement 1 assigns the arithmetic value 5 to the
nonsubscripted ETA symbol &A. Statements 2 and 3 then assign the
binary value 0 to subscripted SETB symbols &PSW(5) and &TSW(9),
respectively. Statements 4 and 5 generate statements that add the
value assigned to &SBOX(45) to general register 2, and compare the
value assigned to &WBOX(l 7) to the value stored at AREA,
respectively.

10.5 SYSTEM VARIABLE SYMBOLS

System variable symbols are variable symbols that are assigned
values automatically by the assembler. There are seven system
variable symbols. &SYSDATE, &SYSTIME, and &SYSPARM can be used both
inside macroinstruction definitions and in open code. &SYSECT,
&SYSTYP, &SYSNDX, and &SYSLIST can only be used inside
macroinstruction definitions. They may not be defined as symbolic
parameters or SET symbols, nor may they be assigned values by SETA,
SETB, and SETC instructions.

10.5.1 Global System Variable Symbols

&SYSDATE: Assembly Date

The global system variable symbol &SYSDATE has a value of the
form MM/DD/YY, where MM is the month, DD is the date, and YY is the
last two digits of the year.

The type attribute of &SYSDATE is always U and the count
attribute is always 8.

&SYSTIME: Assembly Time

The global system variable symbol &SYSTIME has a value of the
form HH.MM, where HH is the hour and MM is the minute. The type
attribute of &SYSTIME is always U and the count attribute is
always 5.

&SYSDATE and &SYSTIME correspond to the date and time printed
in the assembly listings.

&SYSPARM: Run-Time Parameters

The global system variable &SYSPARM is assigned a value from
the SYSPARM field in the assembler options. Double ampersands and
double apostrophes count as one character. &SYSPARM may be used to
control conditional assembly each time the assembler is executed.

Example:

AIF ('&SYSPARM' NE 'DEBUG'). SKIP

*
*DEBUGGING CODE

.SKIP ANOP

10-13

10.5.2 Local System Variable Symbols

&SYSNDX -- Macroinstruction Index

The system variable symbol &SYSNDX may be concatenated with
other characters to create unique names for statements generated
from the same model statement.

&SYSNDX is assigned the four-digit number 0001 for the first
macroinstruction processed by the assembler, and it is incremented
by one for each subsequent inner and outer macroinstruction
processed.

If &SYSNDX is used in a model statement, SETC or MNOTE
instruction, or a character relation in a SETB or AIF instruction,
the value substituted for &SYSNDX is the four-digit number of the
macroinstruction being processed, including leading zeros.

If &SYSNDX appears in arithmetic expressions (e.g., in the
operand field of a SETA instruction), the value used for &SYSNDX is
an arithmetic value.

Throughout one use of a macroinstruction definition, the value
of &SYSNDX may be considered a constant, independent of any inner
macroinstruction in that definition.

The following example illustrates these rules.
that the first macroinstruction processed, OUTER!,
macroinstruction processed by the assembler.

It is assumed
is the 106th

Statement 7 is the 106th macroinstruction processed.
Therefore, &SYSNDX is assigned the number 0106 for that
macroinstruction. The number 0106 is substituted for &SYSNDX when
it is used in statements 4 and 6. Statement 4 is used to assign the
character value 0106 to the SETC symbol &NDXNUM. Statement 6 is
used to create the unique name B0106.

10-14

1

2
3

4

5
6

7
8

Name

A&SYSNDX

&NAME

&NDXNUM
&NAME

B&SYSNDX

ALPHA
BETA

ALPHA

A0107

B0106
BETA

A0109

B0108

Operation

MACRO
INNERl
GBLC
SR
CR
BE
B
MEND

MACRO
OUTER I
GBLC
SETC
SR
AR
INNERl
s
MEND

OUTER!
OUTERl

SR
AR
SR
CR
BE
B
s
SR
AR
SR
CR
BE
B
s

Operand

&NDXNUM
2,5
2,5
B&NDXNUM
A&SYSNDX

&NDXNUM
'&SYSNDX'
2,4
2,6

2,=F'lOOO'

2,4
2,6
2,5
2,5
B0106
A0107
2,=F'lOOO'
2,4
2,6
2,5
2,5
B0108
A0109
2,=F'lOOO'

Statement 5 is the 107th macroinstruction processed.
Therefore, &SYSNDX is assigned the nwnber 0107 for that
macroinstruction. The number 0107 is substituted for &SYSNDX when
it is used in statements 1 and 3. The nwnber 0106 is substituted for
the global SETC symbol &NDXNUM in statement 2.

Statement 8 is the 108th macroinstruction processed.
Therefore, each occurrence of &SYSNDX is replaced by the nwnber
0108. For example, statement 6 is used to create the unique name
B0108.

10-15

When statement 5 is used to process the 108th
macroinstruction, statement 5 becomes the 109th macroinstruction
processed. Therefore, each occurrence of &SYSNDX is replaced by the
nt.Unber 0109. For example, statement 1 is used to create the unique
name A0109.

&SYSECT Current Control Section

&SYSTYP Current Control Section Type

The system variable symbols &SYSECT and &SYSTYP may be used to
represent the name and type of the control section in which a
macroinstruction appears. For each inner and outer macroinstruction
processed by the assembler, &SYSECT is assigned a value that is the
name of the control section in which the macroinstruction appears;
&SYSTYP is assigned a value that is the type of the control section
named by &SYSECT.

When &SYSECT is used in a macroinstruction definition, the
value substituted for &SYSECT is the name of the last CODE, STATIC,
or DSECT statement that occurs before the macroinstruction; &SYSTYP
has the value of the opcode of that instruction. If no named CODE,
STATIC, or DSECT statements occur before a macroinstruction, &SYSECT
and &SYSTYP are assigned a null character value for that
macroinstruction.

CODE, STATIC, or DSECT statements processed in
macroinstruction definition affect the values for &SYSECT
&SYSTYP for any subsequent inner macroinstructions in
definition, and for any other outer and inner macroinstructions.

a
and

that

Throughout the use of a macroinstruction definition, the
values of &SYSECT and &SYSTYP may be considered a constant,
independent of any CODE, STATIC, or DSECT statements or inner
macroinstructions in that definition.

The next example illustrates these rules.

Statement 8 is the last CODE, STATIC, or DSECT statement
processed before statement 9 is processed. Therefore, &SYSECT is
assigned the value MAINPROO for macroinstruction OUTERl in statement
9; &SYSTYP is assigned the value CODE. MAINPROO is substituted for
&SYSECT when it appears in statement 6.

Statement 3 is the last CODE, STATIC, or DSECT statement
processed before statement 4 is processed. Therefore, &SYSECT is
assigned the value CSOUTl for macroinstruction INNER in statement
4. CSOUTl is substituted for &SYSECT when it appears in statement 2.

10-16

Statement 1 is used to generate a STATIC statement for
statement 4. This is the last CODE, STATIC, or DSECT statement that
appears before statement 5. Therefore, &SYSECT is assigned the
value INA for macroinstruction INNER in statement 5. INA is
substituted for &SYSECT when it appears in statement 2.

1
2

3

4
5
6

7

8

9
10

Name

&INCSECT

CSOUTl

&SYSECT

MAINPROG

MAINPROG

CSOUTl

INA

INB

MAINPROG

Operation Operand

MACRO
INNER &INCSECT
STATIC
DC AC&SYSECT)
MEND

MACRO
OUTERl
CODE
DS lOOC
INNER INA
INNER !NB
&SYSTYP
MEND

MACRO
OUTER2
DC AC&SYSECT)
MEND

CODE
OS 200C
OUTERl
OUTER2

CODE
OS 200C
CODE
DS lOOC
STATIC
DC ACCSOUTl)
STATIC
DC AC INA)
CODE
DC A(MAINPROG)

Statement 6 is used to generate a CODE statement for statement
9. This is the last CODE, STATIC, or DSECT statement that appears
before statement 10. Therefore, &SYSECT is assigned the value
MAINPROG for macroinstruction OUTER2 in statement 10. MAINPROG is
substituted for &SYSECT when it appears in statement 7.

10-17

&SYSLIST -- Macroinstruction Operand

The system variable symbol &SYSLIST provides the programmer
with an alternative to symbolic parameters for referring to
positional macroinstruction operands.

&SYSLIST and symbolic parameters may be used in the same
macroinstruction definition.

&SYSLIST(n) may be used to refer to the nth positional
macroinstruction operand. In addition, if the nth operand is a
sublist, then &SYSLIST (n,m) may be used to refer to the mth operand
in the sublist, where n and m may be any arithmetic expressions
allowed in the operand field of a SETA statement. m may be equal to
or greater than 1 and n may be greater than or equal to 0. &SYSLIST
CO) or &SYSLIST (0 ,m) refers to the value specified in the name
field of the macroinstruction, unless it is a sequence symbol. If n
refers to an omitted operand or past the end of the list of
positional operands, &SYSLIST(n) equals the null string.

The type, length, scaling, integer, and count attributes of
&SYSLIST(n) and &SYSLIST(n,m) and the number attributes of
&SYSLIST(n) and &SYSLIST may be used in conditional assembly
instructions. N' &SYSLIST may be used to refer to the total number
of positional operands in a macroinstruction statement.
N'&SYSLIST(n) may be used to refer to the number of operands in a
sublist. If the nth operand is omitted, N' is zero; if the nth
operand is not a sublist, N' is one.

The following procedure is used to evaluate N'&SYSLIST:

1. A sublist is considered to be one operand.

2. The count includes operands specifically omitted (by
means of commas).

Examples:

Macroinstruction

MAC Kl=DS
MAC ,Kl=DC
MAC FULL,,F,('1' ,'2'),Kl=DC
MAC ,
MAC

N'&SYSLIST

0
1
4
2
0

Attributes are discussed in Section 9.3.

10-18

10.6 KEYWORD MACROINSTRUCTION DEFINITIONS

Keyword macroinstruction definitions proviae ~ne programmer
with an alternate way of preparing macroinstruction definitions.

A keyword macroinstruction def ini ti on enables a programmer to
reduce the number of operands in each macroinstruction that
corresponds to the definition, and to write the operands in any
order.

The macroinstructions that correspond to the macroinstruction
definitions described in Chapter 7 (hereinafter called positional
macroinstructions and positional macroinstruction definitions,
respectively) require the operands to be written in the same order
as the corresponding symbolic parameters in the operand field of the
prototype statement.

In a keyword macroinstruction definition, the programmer can
assign standard values to any symbolic parameters that appear in the
operand field of the prototype statement. The standard value
assigned to a symbolic parameter is substituted for the symbolic
parameter, if the progranuner does not write anything in the operand
field of the macroinstruction to correspond to the symbolic
parameter.

When a keyword macroinstruction is written, the programmer
need only write one operand for each symbolic parameter whose value
he wants to change.

Keyword macroinstruction definitions are prepared the same way
as positional macroinstruction definitions, except that the
prototype statement is written differently. The rules for preparing
positional macroinstruction definitions are in Chapter 7.

10.6.1 Keyword Prototype

The format of this statement is:

Name

A symbolic
parameter
or blank

Operation

A symbol

Operand

One or more
operands of the
form described
below, separated
by commas

Each operand must consist of a symbolic parameter, immediately
followed by an equal sign and optionally followed by a standard
value. This value must not include a keyword.

10-19

'A standard value that is part of an operand must immediately
follow the equal sign.

'Anything that may be used as an operand in a macroinstruction,
except variable symbols, may be used as a standard value in a
keyword prototype statement. The rules for forming valid
macroinstruction operands are detailed in Chapter 8.

The following are valid keyword prototype operands.

&READER=
&LOOP2=SYMBOL
&S4==F'4096'

The following are invalid keyword prototype operands.

CARD'AREA
&TYPE
&TWO =123

&AREA= X'189A'

{no symbolic parameter)
{no equal sign)
{equal sign does not immediately follow
symbolic parameter)
{standard value does not immediately follow
equal sign)

The following keyword prototype statement contains a symbolic
parameter in the name field, and four operands in the operand
field. The first two operands contain standard values. The
mnemonic operation code is MOVE.

Name Operation Operand

&N MOVE &R=2,&A=S,&T=,&F=

10.6.2 Keyword Macroinstruction

'After a programmer has prepared a keyword macroinstruction
definition, he may use it by writing a keyword macroinstruction.

The format of a keyword macroinstruction is:

Name Operation Operand

A symbol, Mnemonic Zero or more operands
sequence operation of the form described
symbol, code below, separated by
or blank commas

10-20

Each operand consists of a keyword immediately followed by an
equal sign and an optional value which may not include a keyword.
Anything that may be used as an operand in a positional
macroinstruction may be used as a value in a keyword
macroinstruction. The rules for · forming valid positional
macroinstruction operands are detailed in Chapter 8.

A keyword consists of one through sixteen letters and digits,
the first of which must be a letter.

The keyword part of each keyword macroinstruction operand must
correspond to one of the symbolic parameters that appears in the
operand field of the keyword prototype statement. A keyword
corresponds to a symbolic parameter if the characters of the keyword
are identical to the characters of the symbolic parameter that
follow the ampersand.

The following are valid keyword macroinstruction operands.

LOOP2=SYMBOL
S4==F'4096'
TO=

The following are invalid keyword macroinstruction operands.

&X4F2=0(2,3) (keyword does not begin with a letter)
THISSYMBOLISTOOLONG=A+2 (keyword is more than sixteen

characters)
=CT0(8),(FROM)) (no keyword)

The operands in a keyword macroinstruction may be written in
any order. If an operand appeared in a keyword prototype statement,
a corresponding operand does not have to appear in the keyword
macroinstruction. If an operand is omitted, the comma that would
have separated it from the next operand need not be written.

The
parameters
definition.

following
in the

rules are
statements

used
of a

to replace the symbolic
keyword macroinstruction

1. If a symbolic parameter appears in the name field of the
prototype statement, and the name field of the
macroinstruction contains a symbol, the symbolic parameter
is replaced by the symbol. If the name field of the
macr·oinstruction is blank or contains a sequence symbol,
the symbolic parameter is replaced by a null character
value.

2. If a symbolic parameter appears in the operand field of
the prototype statement, and the macroinstruction contains
a keyword that corresponds to the symbolic parameter,
the value assigned to the keyword replaces the symbolic
parameter.

10-21

3. If a symbolic parameter was assigned a standard value by a
prototype statement, and the macroinstruction does not
contain a keyword that corresponds to the symbolic
parameter, the standard value assigned to the symbolic
parameter replaces the symbolic parameter. Otherwise, the
symbolic parameter is replaced by a null character value.

If a standard value is a self-defining term, the
type attribute assigned to the standard value is
the letter N. If a standard value is omitted,
the type attribute assigned to the standard value
is the letter 0. All other standard values are
assigned the type attribute U.

Positional parameters cannot be changed to
keywords by substitution. That is, in the
following example, the expression A=FB, statement
2, will be treated as a positional operand
consisting of a character string in the
generation of the MAC macro; it will not be
treated as a keyword A with the value FB.

1
2
3

Name

&VALUE

Operation

GBLC
SETC
MAC

10-22

Operand

&VALUE
'A=FB'

&VALUE

The following keyword macroinstruction definition, keyword
macroinstruction, and generated statements illustrate these rules.

Name Operation Operand

MACRO
1
2
3
4
5

&N MOVE &R=2,&A=S,&T=,&F=
&N ST &R,&A

L &R,&F
ST &R,&T
L &R,&A
MEND

6 HERE MOVE T=FA,F=FB,A=THERE

HERE ST 2,THERE
L 2,FB
ST 2,FA
L 2,THERE

Statement 1 assigns the
symbolic parameters &R and &A,
the values FA, FB, and THERE
respectively. The symbol HERE
statement 6.

standard values 2 and S to the
respectively. Statement 6 assigns
to the keywords T, F, and A,
is used in the name field of

Since a symbolic parameter (&N) appears in the name field of
the prototype statement (statement 1), and the corresponding
characters (HERE) of the macroinstruction (statement 6) are a
symbol, &N is replaced by HERE in statement 2.

Since &T appears in the operand field of statement l, and
statement 6 contains the keyword (T) that corresponds to &T, the
value assigned to T (FA) replaces &T in statement 4. Similarly, FB
and THERE replace &F and &A in statement 3 and in statements 2 and
5, respectively. Note that the value assigned to &A in statement 6
is used instead of the value assigned to &A in statement 1.

Since &R appears in the operand field of statement l, and
statement 6 does not contain a corresponding keyword, the value
assigned to &R, 2, replaces &R in statements 2, 3, 4, and 5.

10.6.3 Operand Sublists

The value assigned to a keyword and the standard value
assigned to a symbolic parameter may be an operand sublist.
Anything that may be used as an operand sublist in a positional
macroinstruction may be used as a value in a keyword
macroinstruction and as a standard value in a keyword prototype
statement. The rules for forming valid operand sublists are
detailed in Section 8.5.

10-23

10.6.4 Keyword Inner Macroinstructions

Keyword and positional inner macroinstructions may be used as
model statements in either keyword or positional macroinstruction
definitions.

10.7 MIXED-MODE MACROINSTRUCTION DEFINITIONS

Mixed-mode macroinstruction definitions allow the programmer
to use the features of keyword and positional macroinstruction
definitions in the same macroinstruction definition.

Mixed-mode macroinstruction definitions are prepared the same
way as positional macroinstruction definitions, except that the
prototype statement is written differently. If &SYSLIST is used, it
refers only to the positional operands in the macroinstruction.
Subscripting past the last positional parameter will yield an empty
string and a type attribute of "0". The rules for preparing
positional macroinstruction definitions are in Chapter 7.

10.7.1 Mixed-Mode Prototype

The format of this statement is:

Name Operation

A symbolic A symbol
parameter
or blank

Operand

One or more oper­
ands of the form
described below,
separated by
commas

The operands must be valid operands of positional and keyword
prototype statements. Positional and keyword operands may be freely
intermixed. The rules for forming positional operands are discussed
in Section 7.4. The rules for forming keyword operands are
discussed in Section 10.6.1.

The following sample mixed-mode prototype statement contains
three positional operands and two keyword operands.

Name Operation Operand

&N MOVE &TY,&TO=,&P,&R,&F=

10-24

10.7.2 Mixed-Mode Macroinstruction

The format of a mixed-mode macroinstruction is:

Name Operation Operand

A symbol, Mnemonic Zero or more operands
sequence operation of the form described
symbol, code below, separated by
or blank commas

The operand field can contain positional and keyword operands,
intermixed in any order. However, the order in which the positional
parameters appear in the macroinstruction prototype statement
determines the order in which the positional operands must appear.

The following mixed-mode
mixed-mode macroinstruction, and
these facilities.

Name Operation Operand

MACRO

macroinstruction
generated statements

1 &N MOVE &TY,&P,&R,&TO=,&F=
&N ST&TY &R,SAVE

L&TY &R,&P&F
ST&TY &R,&P&TO
L&TY &R,SAVE

2 HERE MOVE H, ,2,F=FB,TO=FA

HERE STH 2,SAVE
LH 2,FB
STH 2,FA
LH 2,SAVE

definition,
illustrate

The prototype statement (statement 1) contains three
positional operands C&TY,&P, and &R) and two keyword operands C&TO
and &F). In the macroinstruction (statement 2) the positional
operands are written in the same order as the positional operands in
the prototype statement (the second operand is omitted). The
keyword operands are written in an order that is different from the
order of keyword operands in the prototype statement.

10-25

Mixed-mode inner macroinstructions may be used as model
statements in mixed-mode, keyword, and positional macroinstruction
definitions. Keyword and positional inner macroinstructions may be
used as model statements in mixed-mode macroinstruction definitions.

10-26

APPENDIX A
PRINTER/WORKSTATION GRAPHICS CODES

A.l INTRODUCTION

The following tables list the binary, decimal, and hexadecimal
codes for all characters available on 2200VS printers and
workstation CRT's.

A-1

8-Bit Hexa- Printer Workstation
Code Decimal Decimal Graphics Graphics

00000000 0 00
00000001 1 01 •
00000010 2 02
00000011 3 03 ~

00000100 4 04
00000101 5 05 L-

00000110 6 06
00000111 7 07
00001000 8 08 /

00001001 9 09 '
00001010 10 QA A

00001011 11 OB •
00001100 12 QC ! !

00001101 13 OD l
00001110 14 OE {3
00001111 15 OF -n
00010000 16 10 A a
00010001 17 11 A e
00010010 18 12

0
1

00010011 19 13
/'..
0

00010100 20 14 u
00010101 21 15 a
00010110 22 16 e
00010111 23 17 i
00011000 24 18 0
00011001 25 19 u
00011010 26 lA a
00011011 27 lB ' e
00011100 28 lC ' u
00011101 29 lD A
00011110 30 lE 0
00011111 31 lF ti
00100000 32 20 space space
00100001 33 21 ! !
00100010 34 22 II II

00100011 35 23 # #
00100100 36 24 $ $
00100101 37 25 % %
00100110 38 26 & &
00100111 39 27
00101000 40 28
00101001 41 29
00101010 42 2A * *
00101011 43 2B + +
00101100 44 2C
00101101 45 2D
00101110 46 2E

A-2

8-Bit Hexa- Printer Workstation
Code Decimal Decimal Graphics Graphics

00101111 47 2F I I
00110000 48 30 0 0
00110001 49 31 1 1
00110010 50 32 2 2
00110011 51 33 3 3
00110100 52 34 4 4
00110101 53 35 5 5
00110110 54 36 6 6
00110111 55 37 7 7
00111000 56 38 8 8
00111001 57 39 9 9
00111010 58 3A
00111011 59 3B
00111100 60 3C < <
00111101 61 3D = =
00111110 62 3E > >
00111111 63 3F ? ?
01000000 64 40 @ @

01000001 65 41 A A
01000010 66 42 B B
01000011 67 43 c c
01000100 68 44 D D
01000101 69 45 E E
01000110 70 46 F F

01000111 71 47 G G
01001000 72 48 H H
01001001 73 49 I I
01001010 74 4A J J
01001011 75 4B K K
01001100 76 4C L L

01001101 77 40 M M
01001110 78 4E N N
01001111 79 4F 0 0
01010000 80 50 p p

01010001 81 51 Q Q
01010010 82 52 R R
01010011 83 53 s s
01010100 84 54 T T
01010101 85 55 u u
01010110 86 56 v v
01010111 87 57 w w
01011000 88 58 x x
01011001 89 59 y y

01011010 90 SA z z
01011011 91 SB [[

01011100 92 SC \. '\

01011101 93 SD]]

A-3

8-Bit Hexa- Printer Workstation
Code Decimal Decimal Graphics Graphics

01011110 94 5E
01011111 95 5F -
01100000 96 60 o(degree) 0

01100001 97 61 a a
01100010 98 62 b b
01100011 99 63 c c
01100100 100 64 d d
01100101 101 65 e e
01100110 102 66 f f
01100111 103 67 g g
01101000 104 68 h h
01101001 105 69 i i
01101010 106 6A j j
01101011 107 6B k k
01101100 108 6C 1 1
01101101 109 6D m m
01101110 110 6E n n
01101111 111 6F 0 0

01110000 112 70 p p
01110000 113 71 q q
01110010 114 72 r r
01110011 115 73 s s
01110100 116 74 t t
01110101 117 75 u u

01110110 118 76 v v

01110111 119 77 w w

01111000 120 78 x x
01111001 121 79 y y
01111010 122 TA. z z
01111011 123 7B §

01111100 124 7C £
01111101 125 7D e
01111110 126 7E f
01111111 127 7F $

10000000 128 80
10000001 129 Bl
10000010 130 B2
10000011 131 83
10000100 132 B4
10000101 133 85
10000110 134 86
10000111 135 B7
10001000 136 B8
10001001 137 B9
10001010 138 BA
10001011 139 BB
10001100 140 BC

A-4

8-Bit Hexa- Printer Workstation
Code Decimal Decimal Graphics Graphics

10001101 141 SD
10001110 142 BE
10001111 143 SF
10010000 144 90
10010001 145 91
10010010 146 92
10010011 147 93
10010100 148 94
10010101 149 95
10010110 150 96
10010111 151 97
10011000 152 98
10011001 153 99
10011010 154 9A
10011011 155 9B
10011100 156 9C
10011101 157 90
10011110 158 9E
10011111 159 9F
10100000 160 AO
10100001 161 Al
10100010 162 A2
10100011 163 A3
10100100 164 A4
10100101 165 A5
10100110 166 A6
10100111 167 A7
10101000 168 AS
10101001 169 A9
10101010 170 AA
10101011 171 AB
10101100 172 AC
10101101 173 AD
10101110 174 AE
10101111 175 AF
10110000 176 BO
10110001 177 Bl
10110010 178 B2
10110011 179 B3
10110100 180 B4
10110101 181 B5
10110110 182 BG
10110111 183 B7
10111000 184 B8
10111001 185 B9
10111010 186 BA
10111011 187 BB

A-5

8-Bit Hexa- Printer Workstation
Code Decimal Decimal Graphics Graphics

10111100 18B BC
10111101 189 BD
10111110 190 BE
10111111 191 BF
11000000 192 co
11000001 193 Cl
11000010 194 C2
11000011 195 C3
11000100 196 C4
11000101 197 C5
11000110 19B CG
11000111 199 C7
11001000 200 CB
11001001 201 C9
11001010 202 CA
11001011 203 CB
11001100 204 cc
11001101 205 CD
11001110 206 CE
11001111 207 CF
11010000 20B DO
11010001 209 Dl
11010010 210 D2
11010011 211 D3
11010100 212 D4
11010101 213 D5
11010110 214 DG
11010111 215 D7
11011000 216 DB
11011001 217 D9
11011010 21B DA
11011011 219 DB
11011100 220 DC
11011101 221 DD
11011110 222 DE
11011111 223 DF
11100000 224 EO
11100001 225 El
11100010 226 E2
11100011 227 E3
11100100 228 E4
11100101 229 E5
11100110 230 EG
11100111 231 E7
11101000 232 EB
11101001 233 E9
11101010 234 EA

A-6

8-Bit
Code Decimal

11101011 235
11101100 236
11101101 237
11101110 238
11101111 239
11110000 240
11110001 241
11110010 242
11110011 243
11110100 244
11110101 245
11110110 246
11110111 247
11111000 248
11111001 249
11111010 250
11111011 251
11111100 252
11111101 253
11111110 254
11111111 255

Special Graphic Characters
Period, Decimal Point

< Less-than Sign
(Left Parenthesis
+ Plus Sign
& Ampersand

Exclamation Point
$ Dollar Sign
> Greater-than Sign
? Question Mark

Colon
II Quotation Mark

Hexa- Printer
Decimal Graphics

EB
EC
ED
EE
EF
FO
Fl
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

* Asterisk
Right Parenthesis
Semicolon

- Minus Sign, Hyphen
I Slash

Comma
% Percent

Underscore -
I Prime, Apostrophe
= Equal Sign

A-7

Workstation
Graphics

APPENDIX B
ASSEMBLER INSTRUCTIONS

Operation Name Entry Operand Entry

ACTR Must not be _l)resent An arithmetic SETA ex_E_ression
AGO A sequence symbol or not A sequence symbol

present
AIF A sequence symbol or not A logical expression enclosed

present in parentheses, immediately
followed by a se_quence s~ol

ANOP A se_quence s_Y!!_\Qol Must not be _l)_resent
BEGIN Any symbol or not present A self-defining term or not

_E_resent
CNOP Any Symbol Two absolute expressions,

se_p_arated b_y_ a comma
COPY Must not be _p_resent A s..Y!!!Q_o 1
CODE An_y s~ol or not _p_resent Must not be _p_resent
DC Any symbol or not present One or more operands, sep-

arated by commas
DROP A sequence symbol or not One to sixteen absolute ex-

present pressions, separated by
commas

DS Any symbol or not present One or more operands, separ-
ated b_y_ commas

DSECT A variable symbol or an Must not be present
ordinary s~ol

EJECT A sequence symbol or not Must not be present
p_resent

END A sequence symbol or not A relocatable expression or
_E_resent not _Qresent

ENTRY A sequence symbol or not One or more relocatable
_E_resent s_Y!!'Qols, se_p~rated b_y commas

EQU A variable symbol or an An absolute or relocatable
ordinary sytnbol ex_E_ression

EXTRN A sequence symbol or not One or more relocatable
_p_resent s~bols, se_E_arated b_y commas

GBLA Must not be present One or more variable symbols
that are to be used as SET
s~ols, se_E_arated by commas

May only be used as part of a macroinstruction definition.
SE'!' symbols may be defined as subscripted SET symbols.
See Chapter 5 for the description of the name entry.

B-1

Operation Name Entry Operand Entry

GBLB Must not be present One or more variable symbols
that are to be used as SET
s~ols, se...12.arated b_y commas

GBLC Must not be present One or more variable symbols
that are to be used as SET
S _Y!!!_bO 1 S , se...12.arated b_y commas

ICTL Must not be present One to three decimal values,
se_E._arated b_y commas

!SEQ Must not be present Two decimal values, separated
b_y a comma

LCLA Must not be present One or more variable symbols
that are to be used as SET
s~ols, se...12.arated b_y_ commas

LCLB Must not be present One or more variable symbols
that are to be used as SET
S _.Y!!!_bO 1 S , s~arated b_y commas

LCLC Must not be present One or more variable symbols
se_E._arated b_y commas

LTORG An_y s~ol or not _E_resent Must not be _E._resent
MACRO Must not be _E_resent Must not be _E._resent
MEND A sequence symbol or not Must not be present

_.12_resent
MEXIT A sequence symbol or not Must not be present

Qresent
MNOTE A sequence symbol, a A severity code, followed by

variable symbol or not a comma, followed by any com-
present bination of characters en-

closed in a_E._ostro..E_hes
OP SYN An ordinary symbol A machine instruction

mnemonic code, an extended
mnemonic code, or an opera-
tion code defined by a
_i;>_revious OPSYN instruction

A machine or extended Blank
mnemonic o_E._eration code

ORG A sequence symbol or not A relocatable expression or
{>resent not _i;>_resent

PRINT A sequence symbol or not One to three operands
..12_resent

SETA A SETA s_Y!!!Q_ol An arithmetic exI>_ression
SETB A SETB symbol A 0 or a 1, or logical ex-

pression enclosed in paren-
theses

SETC A SETC symbol A type attribute, a character
expression, a substring nota-
tion, or a concatenation of
character expressions and
substrin__g_ notations

May only be used as part of a macroinstruction definition.
SET symbols may be defined as subscripted SET symbols.
See Chapter 5 for the description of the name entry.

B-2

Operation

SPACE

START
TITLE

Using

Model
State­
ments

Prototype
Statement

Macro­
Instruc­
tion
Statement

Assembler
Language
Statement

Name Entry

A sequence symbol or not
_E_resent
An_y s~ol or not ..l?..resent
A special symbol CO to 8
characters), a sequence
symbol, a variable symbol,
or not _£resent
A sequence symbol or not
present

An ordinary symbol, varia­
ble symbol, sequence
variable symbol, a combin­
ation of variable symbols
and other characters that
is equivalent to a symbol,
or not _E_res ent
A symbolic parameter or
not present

An ordinary symbol, a
variable symbol, a
sequence symbol, a combin­
ation of variable symbols
and other characters that
is equivalent to a symbol,
or not _£resent
An ordinary symbol, a var­
iable symbol, a sequence
symbol, a combination of
variable symbols and other
characters that is equiva­
lent to a symbol, or not
gresent

Operand Entry

A decimal self-defining term
or not ..I?..resent
Not _£resent
One to 100 characters,
enclosed in apostrophes

An absolute or relocatable
expression followed by 1 to
16 absolute expressions,
se_parated by commas

Any combination of characters
(including variable
symbols)

Zero or more operands that
are symbolic parameters,
separated by commas,
followed by zero or more
operands (separated by
commas) of the form symbolic
parameter, equal sign,
o_E_tional standard value
Zero or more positional
operands separated by
commas, followed by zero or
more keyword operands
(separated by commas) of
the form keyword, equal
si_g_n, value
Any combination of characters
(including variable symbols)

May only be used as part of a macroinstruction definition.
Variable symbols appearing in a macroinstruction are replaced by their
values before the macroinstruction is processed.
Variable symbols may be used to generate Assembly language mnemonic
operation codes as listed in Chapter 5, except ACTR, COPY, END, ICTL
and !SEQ. Variable symbols may not be used in the name and operand
entries of the following instructions: COPY, END, ICTL, and !SEQ.
Variable symbols may not be used in the name entry of the ACTR
instruction.

B-3

APPENDIX C
SUMMARY OF CONSTANTS

NUMBER
LENGTH OF CON- TRUN-

IMPLIED MODI- STANIS RANGE RANGE CATION/
LENGTH ALIGN- FIER SPECIFIED PER FOR EX- FOR PADDING

TYPE (BYTES) MENT RANGE BY OPERAND PONENTS SCALE SIDE
c

x

B

F

H

E

D

L

p

z

A

R

v

s

y

as byte .1 to characters one right
needed 256 (1)

as byte .1 to hexadecimal multiple left
needed 256 (1) di_g_its
as byte .1 to binary multiple left

needed 256 di_g_i ts
4 word .1 to decimal multiple -85 to -187 to left(3)

8 di_g_i ts +75 +346
2 half .1 to decimal multiple -85 to -187 to left(3)

word 8 digits +75 +346
4 word .1 to decimal multiple -85 to 0-14 right

8 di_g_i ts +75 (3)
8 double .1 to decimal multiple -85 to 0-14 right

word 8 di_g_i ts +75 (3)
16 double .1 to decimal multiple -85 to 0-28 right

word 16 d~its +75 (3)
as byte .1 to decimal multiple left

needed 16 di_g_i ts
as byte .1 to decimal multiple left

needed 16 di_g_its
4 word .1 to any ex- multiple left

4 (2) _Q_ression
4 word .1 to any ex- multiple left

4 (2) press ion
4 word 3 or relocatable multiple left

4 s~ol
2 half 2 1 absolute multiple

word only or reloca-
table
expression
or 2 abso-
lute ex-
pressions:
ex_Q_ (ex_12_)

2 half .1 to absolute multiple left(3)
word 2 ex_Q_ression

(1) In a DS assembler instruction C and X type constants may have
length specification to 65535.

(2) Bit length speqification permitted with absolute expressions only.
Relocatable A- or R-type constants, 3 or 4 bytes only.

(3) Errors will be flagged if significant bits are truncated or if the
value specified cannot be contained in the implied length of the
constant.

C-1

APPENDIX D
MACRO LANGUAGE SUMMARY

D.1 INTRODUCTION

The three charts in this appendix sununarize the Macro
language as described in Chapter 6 through 10 .

• Chart 1 is a summary of the expressions that may be
used in macroinstruction statements.

• Chart 2 is a summary of the attributes that may be
used in each expression.

• Chart 3 is a summary of the variable symbols that may
be used in each expression.

D-1

Ex_Eression
May
contain

Operators
are

Range of
values
May be
used in

Chart 1: Conditional Assembly Expressions

Arithmetic
Ex_Eressions

1. Self-defining terms
2. Length, scaling,

integer, count, and
number attributes

3. SETA and SETB symbols
4. SETC symbols whose

value is 1-8 decimal
digits

5. Symbolic parameters
if the corresponding
operand is a self­
def ining term

6. &SYSLIST(n) if the
corresponding operand
is a self-defining
term

8. &SYSNDX
+,-,*, and I
parentheses permitted

-2**31 to (+2**31)-1

1. SETA operands
2. Arithmetic relations
3. Subscripted SET

symbols
4. &SYSLIST
5. Substring notation
6. Sublist notation

Character
E~ressions

1. Any combination
of characters
enclosed in apos­
trophes

2. Any variable
symbol enclosed
in apostrophes

3. A concatenation
of variable sym­
bols and other
characters en­
closed in apos­
trophes

4. A request for a
type attribute

concatenation, with
a period (.)

0 through 255
characters

1. SETC operands
2. Character

relations

Logical
Expressions
1. SETB symbols
2. Arithmetic

relations
3. Character

relations

AND, OR, and
NOT(parentheses
fl_ermitted)
0 (false) or
1 (true)
1. SETB

operands
2 • AIF ope rands

An arithmetic relation consists of two arithmetic expressions related by
the operators GT, LT, EQ, NE, GE, or LE.
A character relation consists of two character expressions related by the
operator GT, LT, EQ, NE, GE, or LE. The type attribute notation and the
substring notation may also be used in character relations. The maximum
size of the character expressions that can be compared is 255 characters.
If the two character expressions are of unequal size, then the smaller
one will always compare less than the larger.

D-2

Attribute Notation

Type

Length

Scaling

Integer

Count

Number

T'

L'

S'

I'

K'

N'

There are
attributes.

Chart 2: Attributes

May be used with: May be used only if
t_.YE_e attribute is:

Symbols outside
macro definitions;
symbolic parameters,
&SYSLIST(n), and
&SYSLIST(n,m)
inside macro
definitions
Symbols outside
macro definitions;
symbolic parameters,
&SYSLIST(n), and
&SYSLIST(n,m)
inside macro
definitions
Symbols outside
macro definitions;
symbolic parameters,
&SYSLIST(n), and
&SYSLIST(n,m)
inside macro
definitions
Symbols outside
macro definitions;
symbolic parameters,
&SYSLIST(n), and
&SYSLIST(n,m)
inside macro
definitions
Symbolic parameters
corresponding to
macroinstruction
operands, &SYSLIST
(n), and &SYSLIST
(n,m) inside macro
definitions
Symbolic parameters,
&SYSLIST, and
&SYSLIST(n) inside
macro definitions

(May always be
used)

Any letter except
M,N,0,T, and U

H,F,G,D,E,L,K,P,
and Z

H,F,G,D,E,L,K,P
and Z

Any letter

Any letter

definite restrictions
Refer to Chapter 9.

in the use

D-3

of

May be used in

1. SETC operand
fields

2. Character
relations

Arithmetic
expressions

Arithmetic
Expressions

Arithmetic
expressions

Arithmetic
expressions

Arithmetic
expressions

these

Variable
s~ol
Symbolic
parameter

SETA

SETB

SETC

&SYSNDX

&SYSECT

&SYSLIST

&SYSLIST
(n)

&SYSLIST
(n,m)

Defined by:

Prototype
statement

LCLA or GBLA
instruction

LCLB or GBLB
instruction

LCLC or GBLC
instruction

The assembler

The assembler

The assembler

Prototype
statement

Chart 3: Variable Symbols

Initialized, or
set to:
Corresponding
macroinstruction
operand

0

0

Null character
value

Macroinstruction
index

Control section
in which macro­
inst ruction
appears

Not applicable

Corresponding
macroinstruction
operand

Value changed
by:
(Constant
throughout
definition)

SETA
instruction

SETB
instruction

SETC
instruction

(Constant
throughout
definition;
unique for each
macroinstruc­
tion)
(Constant
throughout
definition;
set by CODE,
STATIC, DSECT,
and BEGIN)
Not applicable

(Constant
throughout
definition)

May only be used in macroinstruction definitions.

D-4

May be used in:

1. Arithmetic
expressions if
operand is
self-defining
term

2. Character
exi;>ressions

1. Arithmetic
expressions

2. character
ex_E_ressions

1. Arithmetic
expressions

2. Character
expressions

3. Logical
ex.E_ressions

1. Arithmetic
expressions
if value is
self-defining
term

2. Character
ex_E_ressions

1. Arithmetic
expressions

2. Character
expressions

Character
expressions

N'&SYSLIST in
arithmetic
ex_E_ress ions
1. Arithmetic

expressions if
operand is
self-defining
term

2. Character
ex.E_ressions

Variable Defined by: Initialized, or Value changed May be used in:
symbol set to: by:
&SYSTYP The assembler Name field of in- Constant Character

struction def in- throughout expressions
ing control definition;
section in which set by CODE,
macroinstruction STATIC, DSECT,
a12.I.>_ears and BEGIN

&SYS DATE The assembler Date on listing None Character
ex_E_ressions

&SYSTIME The assembler Time on listing None Character
ex__E_res s ions

&SYS PARM The assembler SYS PARM field None Character
in OPTIONS exJ?ress ions

May only be used in macroinstruction definitions.

D-5

APPENDIX E
HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE

The table in this appendix provides for direct conversion of
decimal and hexadecimal numbers in these ranges:

Hexadecimal Decimal

000 to FFF 0000 to 4095

Decimal numbers (0000-4095) are given within the 5-part
table. The first two characters (high-order) of hexadecimal numbers
(000-FFF) are given in the lefthand column of the table; the third
character (x) is arranged across the top of each part of the table.

To find the decimal equivalent of the hexadecimal number
OC9, look for OC in the left column, and across that row under the
column for x = 9. The decimal number is 0201.

To convert from decimal to hexadecimal, look up the decimal
number within the table and read the hexadecimal number by a
combination of the hex characters in the left column, and the value
for x at the top of the coltunn containing the decimal number. For
example, the decimal number 123 has the hexadecimal equivalent of
07B; the decimal number 1478 has the hexadecimal equivalent of 5C6.

E-1

For numbers outside the range of the table, add the following
values to the table:

Hexadecimal Decimal

1000 4096
2000 8192
3000 12288
4000 16384
5000 20480
6000 24576
7000 28672
8000 32768
9000 36864
AOOO 40960
BODO 45056
cooo 49152
DODO 53248
EOOO 57344
FOOD 61440

E-2

x'"' 0 1 2 3 4 5 6 7 8 9 A B c D E r

OOx 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 001!1
01x 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
02x 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 001&7
03x 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 OOo~

04x 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 001'1
05x 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 009~
06x 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
07x 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0121

08x 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 01113
09x 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 015J
OAx 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 01711 0175
OBx 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

OCx 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
ODx 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEx 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFx 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

10x 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
11x 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 028'5 0286 0287
12x 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
13x 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

14x 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
15x 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 030 03119 0350 0351
16x 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
17x 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

18x 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
19x 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1Ax 0416 0417 0418 041!' 0420 0421 0422 0423 0424 0425 0426 0427 0428 0 .. 29 0430 OU1
1Bx 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 041t4 0 .. 45 0446 041t7

1Cx 0448 0449 0450 0451 0452 0453 Olt54 0455 0456 0457 0458 0459 0460 0461 0462 04~~
1Dx 0464 0465 0466 0467 0468 0469 0470 0471 '1472 0473 0474 0475 Olf76 0477 0478 047"
lEx 0480 0481 0482 0483 0484 ocass 0486 0487 0488 0489 0490 0491 0"92 0493 0494 011~5
1Fx 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

20x 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21x 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 05110 0541 0542 0543
22x 05Ctll 0545 0546 0547 05"8 0549 OSSO 0551 0552 0553 0554 0555 0556 0557 05!18 0559
23x 0560 0561 0562 0563 05611 0565 0566 0567 0568 0569 0570 0571 0572 0573 057• 0575

211x 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
2Sx 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 060• 0605 0606 06(}7
26x 0608 0609 0610 0611 061.2 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
27x 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 063CI 0635 0636 0637 0638 0639

28x 06"0 0641 0642 0643 06Cl4 0645 06Cl6 0647 06Cl8 06"9 0650 0651 0652 0653 065• Ot.55
29x 0656 0657 0658 0659 0660 0661 0662 0663 066CI 0665 0666 0667 0668 0669 0670 0671
2Ax 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 06811 0685 0686 0687
2Bx 0688 0689 0690 0691 0692 0693 0694 0695 0096 0697 0698 0699 0100 0701 0702 0703

2Cx 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 07111 0715 0716 0717 0718 0719
2Dx 0720 0721 0722 0723 0124 0725 0726 0727 0728 0729 0730 0731 0732 0733 073• 0735
2Ex 0736 0737 0738 0739 07CIO 07111 07Cl2 0743 07411 07"5 07'6 07"7 07'8 07"9 0750 0751
2Fx 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 076" 0765 0766 0767

30x 0768 0769 0770 0771 0772 0773 0771t 0775 0776 0777 0778 0779 0780 0181 0782 0783
31x 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 079CI 0795 0796 0797 0798 0799
32x 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 081.2 0813 0814 0815
33x 0816 0817 0818 0819 0820 0821 0822 0823 082CI 0825 0826 0827 0828 0829 0830 0831

311x 0832 0833 0834 0835 0836 0837 0838 0839 08CIO 0841 0842 0843 08U 0845 0846 0847
35x 08118 08119 0850 0851 0852 0853 08511 0855 0856 0857 0858 0859 0860 0861 on2 0863
36x 0864 086S 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37x 0880 0881 0882 0883 08811 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

38x 0896 0897 0898 0899 0900 0901 0902 0903 090CI 0905 0906 0907 0908 0909 Cl910 09.11
39x 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 092• 0925 0926 0927
3Ax 0928 0929 0930 0931 0932 0933 09311 0935 0936 0937 0938 0939 091t0 09111 0942 09'3
3Bx 09114 0945 0946 09117 09118 0949 0950 0951 0952 0953 095CI 0955 0956 0957 0958 0959

3Cx 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 097'6 0975
3Dx 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3!x 0992 0993 0994 0995 0996 099.7 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3Fx 1008 1009 1010 1011 1012 1013 101' 1015 1016 10.17 1018 1019 .1020 1021 1022 1023

E-3

x c 0 1 2 3 4 s 6 1 8 9 A B c D E F

II Ox 10211 1025 1026 1027 1028 1029 1030 1031 1032 1033 10311 1035 1036 1037 1038 1039
•'1x 10110 10111 10112 10113 10U 10115 1046 101t7 1048 1049 1050 1051 1052 1053 1054 1055
112x 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
113x 1072 1073 1071t 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 10fJS 10&6 1087

llltx 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
115x 11011 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
116x 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
117x 1136 1137 1138 1139 111JO 1141 1142 1143 1144 1145 1146 1147 1148 11119 11 so 1151

118x 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
ll9x 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
•Ax 11811 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
llBx 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

llCx 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
llDx 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
II Ex 12"8 12119 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
ltFx 1264 1265 1266 1267 1268 1269 1270 1271 1272 1213 1274 1275 1276 1277 1278 1279

50x 1280 1281 1282 1283 12811 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
51x 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
52x 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53x 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

51tx 131111 13115 1346 1347 1348 13119 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55x 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56x 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57x 1392 1393 13911 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

58x 11108 1409 11110 11111 11112 11113 11114 1415 1416 1417 1418 1419 11120 1421 1422 1423
59x 111211 11125 1426 11127 11128 1429 1430 11131 1432 1433 1434 1435 1436 11137 1438 1439
5Ax 100 11t1J 1 111112 14113 144" 14115 1446 11147 11148 14119 1450 1451 1452 1453 1454 1455
5Bx 11156 11157 11158 11159 11160 11161 1462 11163 11161l 1465 11l66 1467 1468 1469 1470 1471

sex 1472 11173 1"71l 11175 11176 1477 1"78 11179 11180 1481 1482 1483 11184 1485 1486 1487
5Dx 11t88 11189 11190 1"91 1492 11193 11194 11195 1496 1497 1498 1499 1500 1501 1502 1503
SBx 15011 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5Fx 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

60x 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1~~1

61x 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62x 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63x 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

611x 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65x 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66x 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
67x 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

68x 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69x 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6Ax 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6Bx 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6Cx 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6Dx 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6Ex 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6Fx 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

70x 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
71x 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1B23
72x 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73x 1840 1841 1842 1843 1844 1845 1846 184 7 1848 1849 1850 1851 1852 1853 1854 1t155

74x 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
75x 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 18ti6 1887
76x 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
77x 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

78x 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79x 1936 1937 1938 1939 1940 1941 194.2 1943 1944 1945 1946 1947 1948 1949 1950 1951
7Ax 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
78x 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7Cx 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7Dx 2000 2001 2002 2003 2004 2005 2006 2001 2008 2009 2010 2011 2012 2013 2014 2015
7Ex 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2-031
7Fx 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

E-4

x = J 1 2 3 4 5 6 7 8 9 A B c D E F

80x 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81x 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82x 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
83x 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

84x 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85x 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86x 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87x 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

88x 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89x 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8Ax 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8Bx 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8Cx 2240 2241 2242 2243 2244 2245 2246 224 7 2248 2249 2250 2251 2252 2253 2254 2255
8Dx 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8Ex 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8Fx 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

90x 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91x 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92x 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93x 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

94x 2368 2369 2370 23 71 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95x 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96x 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
97x 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

98x 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99x 2448 2449 2450 24 51 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9Ax 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9Bx 2480 2481 2482 24 83 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9Cx 2496 2497 2498 24 99 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9Dx 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9Ex 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9Fx 2544 2545 2546 2547 2548 2549 2:;i50 2551 2552 2553 2554 2555 2556 2557 2558 2559

A Ox 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Alx 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2x 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3x 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A4x 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A5x 2640 2641 2642 2643 2644 2645 2646 264 7 2648 2649 2650 2651 2652 2653 2654 2655
A6x 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2b71
A7x 2672 2673 2674 26 75 2676 2677 2678 2679 2680 2681 2682 2683 26A4 2685 2686 2687

A8x 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9x 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAx 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABX 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACx 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 276tt 2765 2766 2767
ADx 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 27&3
A Ex 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFx 2800 2801 2802 2803 2804 "2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOx 2816 2017 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
Blx 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2x 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3x 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2b79

B4x 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B5x 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6x 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B7x 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B8x 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9x 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 297LI 2975
BAx 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBx 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCx 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 302 •. 3023
BDx 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEX 3040 3041 3042 3043 3044 3045 3046 304 7 3048 3049 3050 3051 3052 3053 3054 3055
BFx 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

E-5

x = 0 1 2 3 4 5 6 7 8 9 A B c D E F

cox 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 .>VO:> 3086 3087
C1x 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2x 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3x 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C4x 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5x 1152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C6x 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7x 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C8x 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C9x 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAx 3232 3233 3234 32 35 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBx 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCX 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
cox 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEx 3296 3297 3298 3299 3300 3301 3302 3303 33-04 3305 3306 3307 3308 3309 3310 3311
CFx 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

DOx 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D1x 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2x 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3x 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

D4x 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5x 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6x 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D7x 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

D8x 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D9x 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAX 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBx 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DCx 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DDx 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEX 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFx 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 35112 3583

EOx 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E1x 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2x 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3x 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E4x 3648 3649 3650 3fi51 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 36b3
E5x 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6x 3680 3681 3682 36 83 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3b95
E7x 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 1710 3711

E8x 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 J72.b 3727
E9x 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAx 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBx 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

ECx 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDx 3792 3793 3794 3795 3796 3797 3798 3799 31WO 3801 3802 3803 3804 3&05 3806 3b07
EEx 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFx 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3b39

F0x 381i0 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3352 3853 3854 38S5
F1x 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3b71
F2x 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 31i&7
F3x 3888 3889 3890 38 91 3892 3893 3894 3895 3896 3697 3898 3899 3900 3901 3902 3903

F4x 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5x 3920 3921 3922 3923 3924 3925 3926 3~27 3928 3929 3930 3931 3932 3933 3934 3935
F6x 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F7x 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F8x 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 39b2 39&3
F9x 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAX 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBx 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FCx 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDx 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEx 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFx 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

E-6

WANG Customer Comment Form Publications Number 800-1200AS-03

Title ____ V_S_A_SS_E_M_B_LY_L_A_N_G_U_A_G_E_R_E_F_E_R_E_N_C_E_G_U_l_D_E

Help Us Help You ...

We've worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell us!
Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us
know how you feel.

How did you receive this publication? How did you use this Publication?

D Support or D Don't know D Introduction D Aid to advanced
Sales Rep to the subject knowledge

D Wang Supplies D Other D Classroom text D Guide to operating
Division (student) instructions

D From another D Classroom text D As a reference
user (teacher) manual

D Enclosed D Self-study D Other
with equipment text

Please rate the quality of this publication in each of the following areas.

EXCELLENT GOOD FAIR POOR

Technical Accuracy - Does the system work the way the manual says it does? D D D D

Readability - Is the manual easy to read and understand? D D D D

Clarity - Are the instructions easy to follow? D D D D

Examples - Were they helpful, realistic? Were there enough of them? D D D D

Organization - Was it logical? Was it easy to find what you needed to know? D D D D

Illustrations - Were they clear and useful? D D D D

Physical Attractiveness - What did you think of the printing, binding, etc? D D D D

VERY
POOR

D

D

D

D

D

D

D

Were there any terms or concepts that were not defined properly? D Y D N If so, what were they? ________ _

After reading this document do you feel that you will be able to operate the equipment/software? D Yes D No

D Yes, with practice

What errors or faults did you find in the manual? (Please include page numbers) ------------------

Doyouhaveanyothercommentsorsuggestions? _____________________________ _

Name __________________ _ Street __________________ _

Title __________________ _ City ____________________ _

Dept/Mail Stop ____________ _ State/Country _______________ _

Company ________________ _ Zip Code _____ Telephone ________ _

Thank you for your help.

All comments and suggestions become the property of Wang Laboratories, Inc. Printed in U.SA 14-3140 3-82-5C

WANG

Fold

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 16 NO. CHELSMFORD, MA.

POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.
Supplies Division
cl o Order Entry Dept.
M/S 1711
800 Chelmsford Street
Lowell, MA 01851

Fold

I II II I NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

WANG

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851
TEL. (617) 459-5000
TWX 710-343-6769, TELEX 94-7421

Printed in U.S.A.
800-1 200AS-03

12-82-5M

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	03-0
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	B-03
	C-01
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	replyA
	replyB
	xBack

