
WANG

Program Development Tools
Reference

vs
Program Development Tools

Reference

3rd Edition - August 1983
Copyright© Wang Laboratories, Inc., 1981
800-1307-03

WANG
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 •TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any
way the standard terms and conditions of the Wang purchase, lease, or
license agreement by which this software package was acquired, nor
increases in any way Wang's liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con­
sequential damages in connection with or arising from the use of the soft­
ware package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is trans­
ferred and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

This manual replaces and obsoletes the second edition of the VS Program
Development Tools (800-1307PT-02). For a list of changes made to this
manual since the previous edition, see the "Summary of Changes".

WANG
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE. LOWELL, MA 01851•TEL:617/459-5000, TWX 710-343-6769, TELEX 94-7421

PREFACE

This manual introduces the programmer to the VS program development
tools. It is written for programmers familiar with basic data processing
and programming concepts.

After reading this manual and the VS Prograrcuner' s Introduction, a
user can work with the VS menus and Command Processor, and create,
compile (or assemble), and run a program on the VS.

Chapter 1 provides an overview of the program development process
and a brief introduction to the EDITOR, LINKER, and Symbolic Debugger.

Chapter 2 discusses the EDITOR. This chapter explains program
development through the EDITOR and describes all EDITOR functions.

Chapter 3 describes the LINKER. This chapter discusses the primary
functions of this program and provides detailed information about all
LINKER screens. A description of the Link and External Reference maps
and a table of LINKER return codes are also included.

Chapter 4 includes a brief discussion of program compilation and
describes the sections of the program file that apply to program linking
and debugging.

Chapter 5 discusses the VS Symbolic Debugger. After a general
introduction to debugging, this chapter describes how to use the Symbolic
Debugger and provides information about each Debugger option.

Appendix A provides a sample EDITOR session. Appendix B provides
an example for each LINKER function. Appendix C describes the use of the
Symbolic Debugger through a programming example. Appendix D provides a
sample Link map; Appendix E provides a sample External Reference map.
Appendix F lists compiler, Assembler, LINKER, and EDITOR GETPARM
information. A glossary appears after Appendix F.

For a detailed discussion of VS system features and progranuning
languages, consult the following manuals:

VS Assembler Language Reference Manual
VS BASIC Language Reference Manual
VS COBOL Language Reference Manual
VS FORTRAN Reference
VS Operating System Services
VS PL/I Language Reference Manual
VS Principles of Operation
VS Procedure Language Reference
VS Programmer's Introduction
VS RPG II Language Reference Manual

iii

800-1200AS
800-1202BA
800-1201CB
800-1208FR
8Q0.;..11070S
800-1209PL
800-llOOPO
800-1205PR
800-llOlPI
800-1203RP

SUMMARY OF CHANGES
FOR THE VS PROGRAM DEVELOPMENT TOOLS REFERENCE (800-1307PT-03)

Type Affected Features Affected Pages

Technical Changes EDITOR Chapter 2

Line numbers for Procedure Language 2-2
Language parameters 2-4
DLIBRARY and DVOLUME 2-4
PF8 (FIND) 2-7
PF9 (MOD) 2-8
PFlO CCHNG) 2-8
PF13 (MOVE) 2-10
PF14 (COPY) 2-10
Special Menu:
Modification Code for

Procedure Language
PFlO (COMPILE)
PFll (ERRORS)
PF14 (LINK MAP)
Program Linking
Linker Options

Editorial Changes Person changed throughout text
Miscellaneous editorial changes

iv

2-12
2-15
2-15
2-16
2-16
2-17, 3-5, F-4,
F-7, F-9, F-13

2-5, 2-6, 2-10
2-16, 3-7, 5-9

CONTENTS

CIIAPTER 1 INTRODUCTION . • • 1- 1

CIIAPTER 2 EDITOR

2 .1 Introduction . • 2- 1
2. 2 EDITOR Concepts . 2- 1

Work Fi 1 e . • 2- 1
Modification Codes . • . . . 2- 2
EDITOR Line Numbers • 2- 2
Files Created by the EDITOR.................... 2- 2
Definitions: Mode and Function.................. 2- 3

2 . 3 Running the EDITOR . . • • . • • 2- 3
2. 4 EDITOR Main Menu . • 2- 4

Display Functions • • • 2- 5
Edit Functions • . • • 2- 5
Range Specification • . • . . • . • 2- 6
EDITOR Main Menu Functions..................... 2- 7

2. 5 EDITOR Special Menu • • 2-11
2. 6 Program Linking • • • . . • . • . . • • 2-18

Link Screen • • • • • • 2-18
Linkfile Screen................................ 2-19
Llibrary Screen................................ 2-19

CIIAPTER 3 LINKER

3 .1 Introduction . . . • • • • . . • • • . • . . . 3- 1
3. 2 LINKER Concepts • . • • . • • • 3- 2

Creating a Linked Program...................... 3- 2
Replacing a Program Module in a Linked Program . 3- 3
Removing Symbolic Debug Information

from a Program File • 3- 4
3. 3 Initiating the LINKER • 3- 4
3. 4 LINKER Screens . . . • • • • 3- 5

Specifying LINKER Options...................... 3- 5
Specifying Additional Subroutine Libraries 3- 6
Specifying Program Modules to be Linked........ 3- 6
Specifying the Linked Output Program........... 3- 6

3.5 Maps Produced by the LINKER......................... 3- 7
Link Map . . • . • • • 3- 7
External References Map........................ 3-10

3.6 Suppression of Print Output......................... 3-12
3. 7 LINKER Return Codes • • • 3-12

v

CHAPTER 4 VS COMPILERS AND THE PROGRAM FILE

4.1 Program File . 4- 1
4.2 Program Compilation . 4- 1

Contents of Code and Static Sections 4- 2
Naming Conventions for Code and Static Sections 4- 2

4. 3 Program Linking . 4- 3
4. 4 Symbolic Debugging . 4- 3

CHAPTER 5 SYMBOLIC DEBUGGER

5 .1 Introduction . • 5- 1
5.2 How the Symbolic Debugger Works..................... 5- 1
5.3 Using the Symbolic Debugger......................... 5- 1
5. 4 Debug Processor Screen • 5- 2
5. 5 Debug Menu Options • • . . 5- 3
5. 6 Trap Function . 5- 4

Statement Breakpoint Trap 5- 4
Single-Step Trap • . • . . 5- 5
Modification Trap . • • . . 5- 6

5. 7 Inspect/Modify Function • . 5- 6
Inspect Symbolic Data/Character String......... 5- 6
Inspect and Modify Memory...................... 5- 7
Inspect and Modify Program Registers

and the Program Control Word................ 5- 9
CALL/LINK/SVC Trace • • 5- 9
Modify Registers • . . • . • 5-10
Modify Program Control Word.................... 5-10

GLOSSARY . . • . . • • . • • • • G- 1

APPENDICES

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F

EDITOR Example•.•...•.•..........•.•
LINKER Examples••.•.....•...•..•
Symbolic Debugger Example•...•.•.....•......•
Link Map•....... •
External References Map•.••..
VS Compilers, Assembler, LINKER, and EDITOR

GETPARM Information•.........•...........

vi

A- 1
B- 1
c- 1
D- 1
E- 1

F- 1

FIGURES

Figure 3-1 Creation of a Linked Program •.....•..•..•.•..•..•....•. 3-3
Figure 3-2 Replacement of a Module in a Linked Program•..•... 3-4

vii

CHAPTER 1
INTRODUCTION

The Wang VS offers an easy-to-use integrated programming envirorunent.
Wang provides a set of system programs to make programming on the VS easier.
This manual provides a detailed discussion of those programs: EDITOR, LINKER,
and Symbolic Debugger.

The program development cycle involves six steps:

1. Entering and editing source text

2. Using a language compiler or assembler to translate a source program
into a program file,

3. Linking program files, if necessary

4. Running the linked program file

5. Testing

6. Debugging

The EDITOR maintains an integrated programming envirorunent in which you
can interactively create, edit, compile or assemble, link, and run programs.
Thus, using the EDITOR frees you from invoking each of the system programs
that accomplish these functions.

You can use the EDITOR to enter and modify source code in any of the
available programming languages. Once you have entered the source code,
program development functions are available to display errors, modify
incorrect lines, and rerun the program. You can repeat each process as often
as necessary within the EDITOR.

The LINKER enables you to combine any number of separately compiled
programs to form a single executable program file.

On the Wang VS, you can perform linking through the EDITOR or through
the LINKER. By running the LINKER, you can combine any number of program
files into one executable program. Thus, the LINKER makes it possible to
construct a large and complex program by simply 1 inking a number of smaller
modules. Also, if you modify one of the linked modules, you can replace that
module without repeating the entire linking process.

1-l.

The Symbolic Debugger helps you interactively locate errors in an
executing program. You can use the Symbolic Debugger to examine a
running program during each step of execution, thereby simplifying the
debugging process.

In addition, the Symbolic Debugger enables you to gather
information about the operation of a program and to make changes to data
during program execution. It is useful because data names and program
control structures can be referenced with the same names and formats used
in the program. For example, to find the value of a particular variable,
you reference the variable by using the name the progranuner assigned; you
do not have to search memory by using data addresses.

1-2

CHAPTER 2
EDITOR

2.1 INTRODUCTION

The EDITOR is an integral part of the program development process.
You can perform the following program development functions from within
the EDITOR:

• Enter a source program or procedure
• Display and correct errors in a source program
• Compile, link, and run a program; or run a procedure
• Debug a program
• Run System Utilities or other programs

You can perform the following editing functions within the EDITOR:

• Delete, insert, and replace text within the file
• Search for text within the file
• Insert lines into the file
• Delet lines from the file
• Move lines from one location to another within the file
• Copy lines from one location to another within the file
• Copy lines into the file from another file

2.2 EDITOR CONCEPTS

This section explains the work file, modification codes, line
numbers, EDITOR files and distinguishes between mode and function.

2.2.1 Work File

Whenever you invoke the EDITOR, it creates a temporary work file
into which the edited text is copied. When you edit an existing file,
the EDITOR copies the contents of that file into a work file. All
actions modify the edited text, leaving the permanent file unchanged.
You can save the edited text as a new, permanent file, or you can replace
an existing, permanent file.

Since the work file is automatically deleted when the EDITOR
terminates processing, you must save the file before you exit the
EDITOR. If you attempt to exit without saving the file, a message
displays to warn you. You then have the option to save it before exiting.

2-1

2.2.2 Modification Codes

The modification code is an optional, user defined and supplied,
sequence of characters which the EDITOR adds to each source line that you
insert or change during an EDITOR session. These codes allow you to keep
a record of changes made to your programs. Modification codes do not
affect program compilation or assembly. You can view the modification
code through the display functions of the EDITOR.

You can define a modification code during any EDITOR session. The
EDITOR includes that modification code in any source lines subsequently
inserted or changed. You can use different codes to identify programming
changes made at different times. For example, the initial modification
code could be VERSION!, and codes for lines that you added or changed in
later versions could be VERSION2, VERSION3, etc. This clearly shows
which lines were changed at each stage of program development.

Modification codes apply only to lines that are added or changed
during the current EDITOR session. The modification codes for lines that
are deleted from the file are lost. If no modification code is in use
during the current editing session, modification codes already in the
file are left unchanged.

The special menu Set function (PF2),
enables you to define a modification code.
examine the modification codes.

2.2.3 EDITOR Line Numbers

described in Section 2.5,
Section 2.4 explains how to

When the EDITOR generates a source listing, line numbers occur in
the following columns on each source line:

Language

Assembler
BASIC
COBOL
FORTRAN
PL/I
PROCEDURE
RPG II

Columns

75 through 80
1 through 6
1 through 6
75 through 80
75 through 80
73 through 80
1 through 5

2.2.4 Files Created by the EDITOR

The EDITOR creates and uses a number of files during program
development. When creating a file, the EDITOR assigns the name ##TEST to
the edited text. This name remains until you save or compile the file.
When you save the file, you assign a name to it. If you compile the file
without assigning a name, the EDITOR assigns a temporary file name. Once
the edited file compiles successfully, the object file name is the same
as the name assigned to the source file.

2-2

2.2.5 Definitions: Mode and Function

There is a subtle difference between the terms "mode" and
"function" within this chapter. There are nine modes within the EDITOR
program: Display, Find, Modify, Change, Insert, Delete, Move, Copy, and
Error. Within each mode, you can perform various functions. For
example, within Display mode, you can move the display back 15 lines.
Within each editing mode, the name of the current mode, and a list of the
available functions within that mode always appears at the top of the
screen. The system always returns to Display mode when you exit from any
other mode.

2.3 RUNNING THE EDITOR

To run the EDITOR, press PFl (RUN) from the Command Processor. The
system accepts the program, library, and volume names of the program to
be run. Enter EDITOR as the PROGRAM name, and press ENTER. It is not
necessary to enter a library or volume name because the EDITOR resides in
the System Library on the System Volume.

The EDITOR first displays the Input screen. This screen accepts
the programming language and the name, library, and volume of the file
which you will edit. Definitions for each Input screen parameter follow:

Parameter

LANGUAGE

FILE

LIBRARY and
VOLUME

Description

The programming language you selected. You can
use any unique abbreviation. The EDITOR
automatically sets default tab settings and
line numbers for the selected language.

The name of the file you want to edit. When
creating a new file, leave this field blank.
When editing an existing file, enter the name
of that file.

The library and volume names for the source
file. The EDITOR uses this library and volume
location when creating and saving the source
file during this editing session. When you
edit an existing source file, specify its
library and volume names. By default, LIBRARY
and VOLUME correspond to INLIB and INVOL,
respectively, as defined by the SET command
(PF2) of the Command Processor.

2-3

PLIBRARY and
PVOLUME

LLIBRARY and
LVOLUME

DLIBRARY and
DVOLUME

SCRATCH

The library and volume names for object files
created during this session. The default
values for PLIBRARY and PVOLUME correspond to
OUTLIB and OUTVOL, respectively, as defined by
the SET command CPF2) of the Command Processor.

The library and volume names for print files
generated by a compiler, the assembler, and/or
the LINKER. This program listing contains the
source file, error messages, and compiler or
assembler options, and LINKER options. Default
values for LLIBRARY and LVOLUME correspond to
SPOOLIB and SPOOLVOL, respectively, as defined
by the SET conunand (PF2) of the Command
Processor.

The library and volume names for assembler
symbolic debug information files. The EDITOR
determines the default value for DLIBRARY by
combining the user ID with DEBUG, i.e.,
KDKDEBUG. The default for DVOLUME corresponds
to OUTVOL, as defined by the SET conunand CPF2)
of the Command Processor. These names are
ignored for languages other than assembler
language.

This parameter determines whether to delete or
save a file having the same name and location
as a second file created by the EDITOR during
compilation or assembly. If SCRATCH=YES, any
object, listing, or debug files replace any
existing files of the same name. If
SCRATCH=NO, the EDITOR al ways requests
permission to delete the existing file.

You can examine and change values of Input screen parameters
after the values are set. Refer to Section 2.5 for more details.

Once you have supplied all parameters, press ENTER to access
the EDITOR main menu.

2.4 EDITOR MAIN MENU

After you specify parameters for the Input screen, the EDITOR
displays the main menu, which offers 16 functions, associated with
PF keys 1 through 16. These options fall into three functional
groups:

• Display functions (PFl through PF8) enable you
to examine the edited text

2-4

•

•

2.4.1

Edit functions CPF9 through PF14) enable you to
enter and alter the contents of the edited text

Special functions CPF15 and PF16) indicate the
position of the cursor and provide access to
the EDITOR special menu

DISPLAY Functions

Display functions permit you to examine portions of the edited
text. You can select a display function by pressing any one of PF
keys 1 through 8. The available main menu functions appear at the
top of the screen when the edited text is being displayed. Display
functions include the following:

PF Key Function Description

PFl DISP Displays source text on the screen
PF2 FIRST Displays the first 20 lines of the file
PF3 LAST Displays the last five lines of the file
PF4 PREV Displays the previous 15 lines of the file
PF5 NEXT Displays the next 15 lines of the file
PF6 DOWN Moves the display back one line
PF7 UP Moves the display forward one line
PFB FIND Locates specified text within the file

2.4.2 EDIT Functions

Edit functions al low you to make changes to the contents of
the file. Within a particular edit function, all PF keys are
disabled except PFl (Display), PF2 (Set), PFlO (Change RPG II form
type), and PF15 (Show Column).

If you make a mistake within an edit function, press PFl to
return to Display mode without making the indicated changes.

To simplify changing the tabs and search settings, the SET
function CPF2 on the special menu) is also available in FIND,
MODIFY, CHANGE and INSERT modes (refer to section 2.5).

Within edit functions that accept RANGE parameters, the START
of the range always defaults to the line number of the line where
the cursor is currently located.

Edit functions include the following:

2-5

PF Key Function Description

PF9 MOD Modifies contents of the current screen
PFlO CHNG Replaces text within the file
PFll INS Inserts lines within the file
PF12 DEL Deletes lines from the file
PF13 MOVE Moves lines within the file
PF14 COPY Copies lines within the file

If a modification code is in effect for the editing session, it is
stored in the modification code field of all lines that are changed,
inserted, or copied by the External Copy (PF8 of the special menu),
Modify (PF9), Change (PFlO), Insert (PFll), and Copy (PF14) functions.
Refer to section 2.2.2.

2.4.3 Range Specification

Several EDITOR functions accept a range of lines within which the
function is to operate. The range parameters are START of range, END of
range, and TARGET line. The START and END specifications are inclusive.
You can specify the range parameters in one of the following ways:

• A line number of one to six digits. Leading zeros are not
required. Strings of digits can be differentiated from line
numbers by enclosing them in quotes.

• A text string, optionally enclosed within matching single or
double quotes, may be used for any or all of the START, END,
or TARGET values.

• Depending on the value of the CASE field on the DEFAULTS
screen, all text string searches are either case-sensitive
(CASE = EXACT), or case-insensitive (CASE = ANY). This means
that text strings may be compared for equality regardless of
their case (upper or lower). Enclosing text within quotes
forces case-sensitivity for that particular operation.

• The special word FIRST (without quotes). This is equivalent
to the first line number in the edited text.

• The special word LAST (without quotes). This is equivalent to
the last line number in the edited text.

• The special word ALL (without quotes), specified in the START
parameter. This indicates the entire edited text.

If you do not specify a value for END, the range is the single line
indicated by START (unless the special word ALL is used).

2-6

2.4.3 EDITOR Main Menu Functions

The following are the EDITOR main menu functions:

PFl CDISP)

PF2 (FIRST)

PF3 (LAST)

PF4 (PREV)

PF5 (NEXT)

PFG (DOWN)

PF7 (UP)

PF8 (FIND)

Returns to Display mode. This function displays the
current screen of the edited text.

Displays the first screen of the edited text.

Displays the last five lines of the edited text.

Moves the display back 15 lines. This function
displays the previous 15 lines of the edited text,
followed by the first five lines of the current
screen.

Advances
displays
preceded
screen.

the display
the next 15
by the last

15
lines
five

lines. This function
of the edited text,
lines of the current

Moves the display back one line.

Moves the display forward one line.

Finds specified text within the edited text. You
can supply either a line number or a text string.
Find searches both forward and backward from the
cursor's current position. You can enter text with
or without quotes, but when searching for a
character string that is all digits, it must be
enclosed in matching quotes.

Press PFS to enter Find mode. Type the line number
or text string to be located into the highlighted
entry line and press ENTER. The EDITOR locates the
next occurrence and positions the cursor at the text
string found during a text Find, and in column one
after a line number Find. Press ENTER repeatedly to
find subsequent matching lines.

To find a previous specification, press PF8 after
entering the line number or text string. The EDITOR
locates the previous occurrence and positions the
cursor at the text string found during a text Find,
and in column one after a line number Find. Press
PFS repeatedly to find each preceding occurrence of
your text.

Find will accept FIRST and LAST to
display the first and last lines of
text. Upon completion of the conunand,
returns to Display mode.

2-7

locate and
the edited
the EDITOR

PF9 (MOD)

PFlO (CHNG)

You can interrupt a Find function at any time by
pressing PFl. The search is interrupted, and you
remain in Find mode. Press PFl again to exit Find
and return to Display mode.

Modifies displayed lines or adds lines to the end of
the edited text. In the latter case, the word "ADD"
is displayed on the left side of the screen.

Press PF9 to enter Modify mode. The EDITOR
high! ights the current screen of text. Move the
cursor to the characters you want to modify. You
can modify in the following ways:

Character

DELETE key

INSERT key

ERASE key

Replace the character at the cursor
with your keyed character.

Deletes the character at the cursor.

Inserts a blank before the character
at the cursor.

Deletes the rest of the line,
including the character at the cursor.

When you complete the modifications, press ENTER to
save the changes in the edited text and to return to
Display mode. Press PFl to return to Display mode
without making the changes.

If you press ENTER after adding new 1 ines to the end
of the text on the screen, the new lines are added
to the edited text, the text scrolls up, and you can
continue adding lines to the file. Modify mode
cannot be used to insert lines between existing
lines of the edited text. Use the Insert function
(PFll) to perform this operation.

RPG II programmers can change the form type by
pressing PFlO. The new form type remains in effect
for all lines that are subsequently added.

Changes all occurrences of a text string within a
specified range.

2-8

PFll (INS)

Press PFlO to enter Change mode.
parameters are as follows:

OLD The text to be replaced.

The Change

NEW The new text. You can enter a null
string as a completely blank line or
as two consecutive, matching quotes.

START and
END The range of lines to be changed.

Press ENTER to perform ,the Change. If the specified
RANGE contains exactly one line, all occurrences of
the OLD text are changed to the NEW text in the
specified line, and the EDITOR returns to Display
mode. If the specified RANGE contains more than one
line, the cursor is positioned at the first
occurrence of the OLD text string. Press ENTER to
change that text and find the next occurrence, PF8
to skip that particular change and find the next
occurrence, PFlO to change all remaining occurrences
without further intervention, or PFl to terminate
the Change command.

If the change causes the line to exceed the maximum
line length, the EDITOR displays a warning message.
Press ENTER to proceed with the change, PF8 to skip
that particular change, or PFl to terminate the
Change command.

You can interrupt the Change function at any point
by pressing PFl. If changes have al ready occurred,
the cursor is positioned at the last line changed.
You can also press PFl to exit from the Change mode
without making any changes.

Inserts one or more new lines at the position of the
cursor. Press PFll to enter Insert mode. The
EDITOR displays column numbers at the top of the
screen, and a new line number is displayed at the
cursor position. Type the new line and press ENTER
to add the line to the edited text.

To insert lines before the first line on the screen,
position the cursor above the first line and press
PFll.

You can change the line number by backspacing and
retyping the number; subsequent line numbers are
then computed from the new line number.

2-9

PF12 (DEL)

PF13 (MOVE)

PF14 (COPY)

RPG II progranuners can change the default form type
by pressing PFlO while in Insert mode. The new form
type remains in effect for inserted lines until the
form type is changed again.

Deletes a specified range of lines. Press PF12 to
enter Delete mode. Specify the START and END range
of the lines you wish to delete, and press ENTER.

Moves a specified line or range of lines from one
location in the file to another. Press PF13 to
enter Move mode. Type in the START and END of the
range of lines you wish to move. To move a single
line, enter only the START parameter. The target
line can be changed, if desired. Press ENTER to
perform the Move. The moved lines will be inserted
immediately following the target line.

The moved lines are automatically assigned line
numbers in proportion to the line numbers of the
target line and the following line. If there are
not enough line m.unbers between these lines, the
EDITOR displays a warning to renumber your program
before the specified lines can be moved. Refer to
section 2.5 for details about renumbering.

To move lines above the first line on the screen,
position the cursor above the first line before
pressing PF13, or specify a target line of 0 (zero).

To move lines to the end of the file, specify LAST
as the target line number.

Copies a specified line or range of lines from one
location within the edited text to another. Press
PF14 to enter Copy mode. Type in the START and
END of the range of lines you wish to copy. To copy
a single line, enter only the START parameter. The
target line can be changed, if desired. Press ENTER
to perform the Copy. The copied lines will be
inserted immediately following the target line, but
are not deleted from their original position.

To copy lines above the first line of the file,
position the cursor above the first line before
pressing PF14, or specify a target line of 0 (zero).

To copy lines to the end of the file, specify LAST
as the target line number.

2-10

PF15 (COL)

PF16 (MENU)

Shows the cursor column position in the upper right
corner of the screen. This function is available
from within Display, Modify and Insert mode.

Displays the special menu. Refer to Section 2.5 for
a description of al 1 special menu functions. This
function is available from Display mode only.

2.5 EDITOR SPECIAL MENU

The EDITOR special menu provides file management and compilation
functions. To select the special menu, press PF16 from the EDITOR main
menu.

PFl (DISPLAY)

PF2 (SET)

Resumes displaying the edited text in Display mode.

Sets the tabs, upper/lower case and search modes,
and EDITOR/compiler options. The SET command is
used to set the following options:

PF2 Sets the following Editor defaults:

TABS

MODE

CASE

COLUMN

The EDITOR automatically sets tabs for the
placement of source lines for each
programming language. To set new tabs,
enter the column number of each desired
tab; to remove an existing tab setting,
delete the column number of the tab.

MODE enables you to restrict all input to
uppercase (UPPER) or to accept uppercase
and lowercase CUPLOW) mode. The default
is UPPER.

Allows case-insensitive searching for text
(ANY), or requires exact case matching
(EXACT).

Specifies the search columns within which
all searching operations are performed
(FIND, and all textual RANGE
specifications).
Entering MC in either COLUMN field sets
the search columns and the Display to the
modification code columns (refer to
section 2. 2. 2) . When displaying the
modification codes, the Change conunand
(PFlO) is disabled.

2-11

FORMTYPE For RPG II programmers, FORMTYPE sets the
default forms type and tab settings. The
default initial forms type is F.

PF3 Sets automatic Scratch, Renumber, and Replace modes,
and defines the modification code. When you press
PF3, the EDITOR displays the Options screen. This
screen accepts values for the following parameters:

SCRATCH lmtomatic Scratch mode causes the EDITOR
to delete existing program and listing
files that have the same name as those
files created during the current
operation. The acceptable values are YES
and NO. The default is YES.

REPLACE Automatic Replace mode replaces the input
file with the edited text before every
compilation or assembly. For Procedure
language files, it replaces the input file
before every run. The acceptable values
are YES and NO. The default is NO.

RENUMBER Automatic Renumber mode recomputes line
numbers in the input file before the file
is saved or replaced. The acceptable
values are YES and NO. The default is NO.

NUMBER NUMBER is the starting line number for the
RENUMBER option. This is the new line
number for the first line in the
resequenced file. The default starting
line number is not the same for all
programming languages.

!NCR !NCR is the increment between line numbers
for the RENUMBER option. The default
increment is not the same for all
programming languages.

MODCODE MODCODE is the modification code
associated with each line that is added or
changed during the current editing
session. Modification codes are described
in detail in section 2. 2. 2. The default
modification code is blank. The field
locations and lengths are as follows:

2-12

Starting Ending
Language Column Column Length

Assembler 73 74 2
BASIC 73 80 8
COBOL 73 80 8
FORTRAN 73 74 2
PL/I 73 74 2
Procedure 72 74 3
RPG II

Source 75 80 6
Table/Array 70 75 6

PF4 Sets compiler or assembler and LINKER options. The
Options screen provides the current compiler or
assembler and LINKER options. The parameters for
the Options screen are described in detail in
Appendix F.

PF5 Changes default file, library, and volume names for
program, print, and other files that are created
during the EDITOR session.

PF3 (MENU)

PF4 (RESTART)

The Names screen provides current default file,
library, and volume names (defined on the EDITOR
Input screen) for the following files: compiled
program (OBJECT), source listing (LISTING), error
listing (ERRORS), linked program (LINKOBJ), and
LINKER listing (LINKLIST).

Once you have set these parameters, they remain set
until you change them, or terminate EDITOR
processing.

Selects the EDITOR main menu, described in section
2.4.3.

Allows you to terminate editing the current file and
begin editing another file. If you select this
option before you save (PF5) or replace CPF6) the
edited file, the EDITOR displays a warning message
and permits you to return to the special menu.

2-13

PF5 (CREATE)

Saves the edited text as a permanent file. The Output screen
accepts values for the following parameters:

FILE The file name for the edited text.

LIBRARY The library in which the file resides. The
default is INLIB, as defined by the SET command
(PF2) of the Command Processor.

VOLUME The volume on which the file resides. The
default is INVOL, as defined by the SET command
(PF2) of the Command Processor.

RETAIN The retention period for the new file. Only a
file's owner or a security administrator can
delete or rename the file during this period.

FILECLAS The file protection class associated with the

START

END

file. Refer to the VS Programmer's
Introduction for more information.

The first line of the edited text you want to
copy into the new permanent file. The default
(ALL) saves the entire file.

The last 1 ine of the edited text you want to
copy into the new permanent file.

COMPRESS Creates compressed records when the file is
saved. Compression can reduce the number of
bytes required for storage of repetitive
characters. The acceptable values are YES and
NO. The default value is YES.

NUMBER Includes line numbers with the saved file. The
acceptable values are YES and NO. The default
value is YES.

PFG (REPLACE)

Replaces the input file with the edited text. This function
replaces the permanent copy of the edited text (the input
file) with the current edited text. The file, library, and
volume names are the same as those of the input file. You can
perform this function only when you are editing an existing
file.

2-14

When you press PF6, the EDITOR displays the Replace
screen and accepts values for the following parameters:

COMPRESS Creates compressed records to save disk space.

NUMBER

PF7 (RENUMBER)

The default value is YES.

Includes the line numbers in the saved file.
The default is YES.

Generates new line numbers for all or part of the edited
text. The Renumber screen accepts values for the
following parameters:

NUMBER

!NCR

START

END

PF8 (EXTERNAL COPY)

The new starting line number for the file. The
default starting line number depends on the
programming language.

The increment between
default starting line
programming language.

1 ine numbers •
number depends on

The
the

The first line to be renumbered. The default
(ALL) renumbers the entire file.

The last line to be renumbered. If the START
parameter is ALL, leave this parameter blank.

Copies a range of lines to the edited text from another
file or from the file currently being edited. Move the
cursor to the line immediately before the position where
you want the copied lines to appear (the target line) and
press PF8. The EDITOR displays the Xcopy screen, which
accepts values for the following parameters:

FILE,
LIBRARY and
VOLUME The file, library, and volume names of the

external file from which you want to copy the
lines. If the file refers to the current file
being edited, the RANGE specifications refer to
the original contents of the input file. This
is helpful for recovering lines that were
accidentally deleted from the edited text.

START The first line or text string you want to copy
into the edited text. The default (ALL) copies
the entire external file into the edited text.

2-15

PF9 (RUN)

END The last line or text string you want to copy
to the edited text. If the START parameter is
ALL, leave this parameter blank.

TARGET

MOOCODE

The line in the edited text after which the
lines are to be copied. The default target
line is the current cursor position. To copy
lines before the first line in the edited text,
enter a target line of 0 (zero).

Indicates whether to retain the modification
codes of the copied lines or to insert the
current modification code into the copied
lines. The default (NO) causes the EDITOR to
use the current modification code.

Compiles/assembles and runs the program, or runs the
procedure.

After the compilation, the Editor runs the compiled
program if there were no errors. If there are
compilation errors, the EDITOR displays a highlighted
message at the top of the screen, and PFll (ERRORS) is
made available to examine the diagnostic messages.

PFlO (COMPILE or ASSEMBLE)

Compiles or assembles the program.

After the compilation or assembly has been completed, if
there are compilation errors, the EDITOR displays a
highlighted message at the top of the special menu screen
and PFll (ERRORS) is made available to examine the
diagnostic messages. If there are no compilation errors,
an object file is created, which you can run by pressing
PF9.

PFll (ERRORS)

Displays compilation or assembly diagnostic errors, if
any. The EDITOR displays and highlights the incorrect
line, followed by the diagnostic message for that line.

The functions available in the Errors display enable you
to display the error listing, to locate erroneous lines
in the edited text, or to return to the EDITOR special
menu. The FIRST, LAST, PREVIOUS, NEXT, UP, DOWN, and
FIND functions in the Error display apply to the error
listing, not to the edited text.

2-16

To edit an erroneous text line, press PFll from the
special menu to display the errors. Move the cursor to a
source line in the listing and press PFl. The EDITOR
then displays the edited text, with the cursor positioned
at the line in error. The line may then be corrected.
This process may be repeated if there are more errors.

PF12 (LISTING>

Displays the source listing. This function appears after
the edited text is compiled or assembled. The listing
contains the source program statements, the diagnostic
error messages, and other language-dependent information.

PF13 (UTILITIES)

Runs a VS utility or other program. When you press PF13,
the EDITOR displays the Utility Processing menu. This
option enables you to run any of the following utility
programs by pressing the appropriate PF key: COPY,
DISKINIT, DISPLAY, EZFORMAT, LISTVTOC, SORT, TAPECOPY,
TAPEINIT, VERIFY, and WP. In addition, you can run any
other program by specifying the program file, library,
and volume names and pressing ENTER.

PF14 (Link Map)

Displays the Link Map following a compile and link
operation. This operation is available following a
Compile and Link operation. If there were any linkage
errors, PF14 is highlighted.

PF15 (PRINT)

Prints the edited text. Press PF15 to display the Print
Command screen. Enter the line number range to be
printed. The default (ALL) causes the entire file to be
printed. You can set the number of lines per page
(default is 60) and can specify whether line numbers are
to be included in the listing (the default is YES). You
can interrupt this function at any time by pressing PFl.

PRINT generates a print file. Your default print mode
determines whether the print file is immediately printed,
stored, or placed in the print queue.

2-17

PF16 (EXIT)

Terminates EDITOR processing and returns to the Conunand
Processor or controlling program. If the file has been
modified since it was last saved, the EDITOR issues a
warning message and al lows you to return to the EDITOR
special menu to create (PF5) or replace (PF6) the file.
You can also exit without saving the edited text.

2.6 PR(X;RAM LINKING

Linking resolves references to programs that are external to the
program being compiled or assembled. You can perform linking from within
the EDITOR or by running the LINKER directly. Chapter 3 discusses
running the LINKER directly. This section describes the process of
compiling and linking a program within the EDITOR.

If the current object file refers to other object files, the EDITOR
will use the Linker to resolve these references (External References).
You can compile a main program and link subroutines, or you can compile a
subroutine and link the main program with other subroutines.

The LINKER resolves external references in this order: first, from
specific files named on the Linkfile screen, in the order named; and
second, from files located in libraries named on the Llibrary screen, in
the order in which the libraries are named. If two files have the same
file name, unless a specific file is identified on the Linkfile screen,
the LINKER uses the first file found in a library named on the Llibrary
screen.

2.6.1 Link Screen

When you select PF9 (RUN) or PFlO (COMPILE) from the special menu,
the EDITOR displays the Link screen after the compilation options. The
Link screen accepts the following information:

Field

LINK

Description

Indicates whether subroutine linkage will occur.
default is NO.

The

FILES Indicates whether specific files will be named. Use this
field when you compile or assemble a subroutine and must
link the main program. Also, use this field when the order
in which files are normally linked is not the order you
require. If the FILES parameter is YES, the EDITOR displays
the Linkfile screen, described in section 2.6.2.

LIBRARY
VOLUME

Identifies one library and volume location for a program
module you want to link. The default library and volume are
INLIB and INVOL, as set by the SET command (PF2) of the
Conunand Processor. You can link program modules stored in
up to eight separate libraries (refer to the MORE field).

2-18

MORE

MAP

XREF

EX SEC

LINES

SYMB

Indicates whether or not program modules to be linked are
stored in more than one library. The default is NO. If the
MORE parameter is YES, the EDITOR displays the Llibrary
screen, discussed in section 2.6.3.

Indicates whether or not a Link map will be printed. A Link
map identifies all external symbols and indicates the length
of each code section. If the MAP parameter is YES, the
EDITOR prints a Link map. The Link map is described in
section 3.6.1. A sample map appears in Appendix D.

Indicates whether a cross-reference listing will be
printed. This listing cross-indexes all references to
external symbols. The default (NO) does not generate a
cross-reference listing. The cross-reference listing is
described in section 3.6.2. A sample listing appears in
Appendix E.

Allows you to include a listing of those sections that were
excluded because of duplicate names. The default is NO.
EXSEC lists the excluded sections and the names of the files
in which they occur.
found.

The names are listed in the order

Indicates the number of lines per page for the Link map and
the External Reference map. The default is 55.

Indicates whether or not to retain symbolic debug
information in an input file. If the SYMB parameter is
YES, the EDITOR retains symbolic debug information in
the linked output file.

2.6.2 Linkfile Screen

The Linkfile screen appears when you enter FILES=YES on the Link
screen. The Linkfile screen enables you to provide names and locations
of specific files to link or to define the sequence in which those files
will be linked.

On this screen, each FILE, LIBRARY, and VOLUME set defines a
specific file that will be linked to the current object file.

The ENTRY field defines the entry point for the linked program.
The value for the field should be the name of the main program (the
program that executes first).

2.6.3 Llibrary Screen

The EDITOR displays the Llibrary screen when you enter MORE=YES on
the Link screen. The Llibrary screen enables you to link subroutines
located in more than one subroutine library. You can define up to eight
subroutine libraries. Each LIBRARY and VOLUME pair indicates the name
and location of a library containing subroutine files that you wish to

2-19

link. The order in which you specify the libraries determines the order
in which the LINKER searches for external references.

2-20

CHAPTER 3
LINKER

3.1 INTRODUCTION

Linking combines separately compiled or assembled object program
modules into a single executable program. You must link programs that
call subroutines since the subroutines are not a physical part of the
program. Linking enables you to:

• Develop program modules independently, then link them together

• Maintain libraries of frequently used subprograms, then link
individual subprograms with programs when necessary

• Access subprograms written by other programmers

• Use program modules written in different programming languages

On the VS, the LINKER performs the linking process by enabling you
to do the following:

• Construct a single executable linked program, usually
consisting of a main program and subprograms

• Replace a program module within a linked program. Therefore,
you can modify a particular program module without relinking
or recompiling the entire program.

• Remove symbolic debug information from a program, thereby
reducing the size of the program. [However, removal of this
information precludes the use of symbolic debugger features in
debugging the program.]

NOTE

You can only link compiled or assembled program modules.

3-1

3.2 LINKER CONCEPTS

This section discusses the principal LINKER functions.
discussion references LINKER screens, which section 3.4 explains.

3.2.1 Creating a Linked Program

Each

A linked program consists of separately compiled program modules.
To create a linked program, you must provide the names of the program
modules you will link, and the starting point for execution of the linked
program. You must also provide the name and location for the linked
program.

First, specify the libraries and volumes for the program modules
you want to link. You can name eight separate subroutine libraries. You
identify the first library on the Options screen and any others on the
Library screen.

Once you specify the subroutine libraries containing the program
modules, specify the files you want to link by using the Input screens.
Each Input screen requests the name and location of one program module.
Specify the main program name and location. It is not necessary to
specify more than one file if all linked modules reside in subroutine
libraries which the Options and Library screens identify.

The LINKER attempts to resolve external references first from files
named on Input screens. If there are unresolved external references, the
LINKER searches named subroutine libraries in the order you specify.

Finally, the LINKER requests a name for the output file and the
entry point name from the main program module. The result of this
procedure is an executable linked program that consists of all linked and
referenced program modules.

NOTE

For the linked program to load correctly, the size of the
output program (in number of 1024-byte records) cannot
exceed 512K records.

3-2

The following figure illustrates the creation of a linked program:

A

A

B LINKER B

MODULE B c
PROGRAM D

c
MODULE C

Figure 3-1. Creation of a Linked Program

3.2.2 Replacing a Program Module in a Linked Program

When you recompile one or more object modules of a linked program,
you can use the LINKER to replace those modules in the linked program.
Once you have linked the modules that make up the linked program, you do
not need to link them again.

On each Input screen, you identify a program
replace a linked module. After you identify all
provide the name and location of the linked program.
the replaced modules individually before providing the
of the linked program.

module that will
replaced modules,
You must specify

name and location

On the Output screen, enter the name and location of the linked
program. Specify the entry point of the linked program in the ENTRY
field, then indicate whether or not the file named on the Output screen
should be replaced. To replace the linked program, specify REPLACE=YES.

3-3

The following figure illustrates the replacement of a module in a
linked program.

BB

LINKER A

c
NEW PROGRAM D

c
PROGRAM D

Figure 3-2. Replacement of a Module in a Linked Program

3.2.3 Removing Symbolic Debug Information from a Program File

When a program has been fully debugged, you can remove symbolic
debug information to reduce the disk storage associated with the program
and, possibly, to accommodate the linked program in Segment 1 address
space.

This feature allows you to remove symbolic debug information from
the file named on the Output screen. Few fields on other screens need to
have values provided. From the Options screen, indicate that the debug
information is not to be retained by specifying SYMB=NO.

From the Output screen, provide the name and location of the file
whose symbolic debug information you want to remove. If you specify
REPLACE=YES, the LINKER replaces the file named on the Output screen with
the file whose symbolic debug information is removed. The LINKER creates
an output file that contains no symbolic debug information.

3.3 INITIATING THE LINKER

You can run the LINKER through the Conunand Processor or through the
EDITOR. There are minor differences between these two methods. The
formats of the screens di ff er slightly, but all options are provided in
both.

From the Command Processor, access the LINKER by pressing PFl
(RUN). From the Run screen, enter LINKER in the PROORAM field. You do
not need to enter the 1 ibrary and vol wne names because the LINKER is
stored in the System Program Library on the System Program Volwne.

3-4

From the EDITOR, the LINKER Options screen appears when you compile
the work file with the special menu PF9 (RUN) or PFlO (COMPILE)
function. If the compilation is successful, the EDITOR then calls the
LINKER. For details on how to run the LINKER from the EDITOR, ref er to
Section 2.6.

3.4 LINKER SCREENS

The LINKER displays several screens during its execution. This
section describes each parameter of the Options screen, the optional
Library screen, the Input screen, and the Output screen.

3.4.1 Specifying LINKER Options

The LINKER first displays the Options screen. This screen requests
one library and volume where program modules to be linked may reside, and
offers other linking options. Descriptions of the fields on the Options
screen follow:

Field

LIBRARY
VOLUME

MORE

SYMB

MAP

XREF

Description

The location of a subroutine library that contains one
or more program modules to be linked. The default
library and volwne are INLIB and INVOL as defined with
the SET conunand CPF2) of the Command Processor.

Indicates whether or not program modules to be linked
are stored in more than one subroutine 1 ibrary. By
specifying MORE=YES, you can identify up to eight
subroutine libraries. These libraries are specified on
the Library screen, discussed in section 3.4.2. The
default is NO.

Indicates whether or not symbolic debug information
will remain in the output file. The default (YES)
retains symbolic debug information in the output file.

Indicates whether or not to print a Link map. A Link
map identifies the names of all code and static
sections in the linked program, identifies entry points
in each, and also identifies the length of each
section. The default (YES) prints a Link map. The
Link map is described in section 3. 5 .1. A sample map
is provided in Appendix D.

Indicates whether to print an External Reference map.
This map indicates all references to external symbols.
The default (NO) does not print an External Reference
map. The External Reference map is described in
section 3.5.2. A sample map is provided in Appendix E.

3-5

EXSEC

LINES

Allows you to include a listing if those sections that
were excluded because of duplicate names when you enter
YES. The default is NO. The excluded sections and the
names of the files in which they occur are listed in
the order they are found.

The number of lines per page for the Link map and the
External Reference map. The default is 55.

3.4.2 Specifying Additional Subroutine Libraries

If you link program modules from more than one subroutine library
C indicated by specifying MORE=YES on the Options screen), the LINKER
displays the Library screen after the Options screen.

This screen provides eight pairs of LIBRARY and VOLUME fields. Use
these fields to enter the appropriate subroutine library and volume
names. The first library and volume are the same as those specified on
the Options screen. These values can be overridden.

The LINKER attempts to satisfy external references from files
located in libraries specified on this screen in the order named.

3.4.3 Specifying Program Modules to be Linked

After you complete the Options screen and, if appropriate, the
Library screen, the LINKER displays an Input screen.

Each Input screen requests the file, library, and volume names of a
program module to be linked. The LINKER continues to display Input
screens until you press only the ENTER key when a new Input screen
appears.

The LINKER satisfies external references from input files first,
then searches subroutine libraries for any unsatisfied external
references. Therefore, Input screens should provide file names and
locations of the main program, of files that are not in named subroutine
libraries, and of files that would not be linked because of the order of
subroutine libraries specified. It is not necessary to name every file
you want to link.

3.4.4 Specifying the Linked Output Program

The Output screen requests the name of the output 1 inked program
and the entry point that initiates processing of the linked program or
module. A description of each field on the Output screen follows:

3-6

Field

FILE
LIBRARY
VOLUME

RETAIN

FILECLAS

ENTRY

REPLACE

Description

The file, library, and volume names for the output
Clinked) program, which is the executable program that
contains all the linked program modules. The default
library and volume are OUTLIB and OUTVOL, as defined by
the SET conunand CPF2) of the Command Processor.

The retention period for the linked program. Only the
file owner or a security administrator can delete or
rename a file during this period.

The file protection class for the linked program file.
Ref er to the VS Programmer's Introduction for further
information about file classes.

The name or address of the point at which execution of
the output file begins.

Indicates whether or not a file specified on an Input
screen with the same name as the output file is to be
replaced by the output file. The default is NO.

3.5 MAPS PRODUCED BY THE LINKER

The LINKER Options screen allows you to print the Link map and the
External Reference map. Each map is described in detail in the following
sections. Additionaly, the following discussions refer to the four
sections of a program file (code, static, symbolic, and linkage). Refer
to Chapter 4 for a complete discussion of these topics.

Regardless of the map options you select, the LINKER provides the
name, location, and size of each input file; all link error messages; and
the name, location, and size of the output file on a print file whose
disposition depends on your default print mode.

3.5.1 Link Map

Specify MAP=YES on the Options screen to produce a copy of the Link
map. The copy is stored on a print file with the prefix LINK in your
print library. (If the LINKER is run from the EDITOR, the print file
name starts with EDIT.) Its disposition depends on your print option. A
sample Link map is included in Appendix D.

Code Section Information

The LINKER provides the following information about each code
section:

3-7

Field

NAME

ORIGIN

LENGTH

ENTRY POINTS

Description

The name of the code section.
constructed as follows:

Names are

Assembler

BASIC

COBOL

FORTRAN

PL/I

RPG II

CODE statement label

Main program - MAIN
Subroutine - the subroutine name

PROGRAM-ID

Main program - MAIN
Subroutine - the subroutine name

#xxx where xxx
first external
program

is the name of the
procedure in the

Columns 75 - 80 of the Header (H)

spec, or RPGOBJ, if no value is
specified in columns 75 - 80, or if
no Header spec is included

The virtual address in hexadecimal at the beginning
of the code section

The hexadecimal length, in bytes, of the code
section

NAME/LOCATION The names and locations of the entry points in the
code section

MADE BY

VERSION

DATE

The compiler or Assembler that produced the code
section. Abbreviations are as follows:

AS Assembler
BS BASIC
CB COBOL
FT FORTRAN
PL PL/I
RP RPG II

The version of the compiler or Assembler that produced
the code section

The date of compilation or assembly of the code section

3-8

Static Section Information

The LINKER provides the following information about each static section:

Field

NAME

ORIGIN

LENGTH

ENTRY POINTS
NAME/LOCATION

MADE BY

VERSION

DATE

Undefined Symbols

Description

The name of the static section is constructed as follows:

ASSEMBLER

BASIC

COBOL

FORTRAN

PL/I

RPG II

STATIC statement label

'Main program - $MAIN
Subroutine - $ + first 7 characters of name

$ + first 7 characters of PROGRAM-ID

$ + first 6 characters of module name

$xxx where xxx is the name of the first
external procedure in the program

$ + first 7 characters of module name

The displacement of the static section in hexadecimal
bytes, from the beginning of the static area of the
program

The hexadecimal length of the static section

The names and locations of the entry points in the
static section

The compiler or Assembler that produced the static
section. The abbreviations are as follows:

AS Assembler
BS BASIC
CB COBOL
FT FORTRAN
PL PL/I
RP RPG II

The version of the compiler or Assembler that produced
the static section

The date of compilation or assembly of the static section

The map provides a list of all program modules that were referenced but
not linked. This section might indicate misspelled names or missing code.

3-9

Link Statistics

The following link statistics are provided:

• The total length (hexadecimal) of the code and static sections

• The amount (in kilo bytes) of Segment 1 and Segment 2 address space
used by the code and static sections

• The virtual address (hexadecimal> of the entry point to the linked
program

• The name and location of the linked program, the output of the LINKER

• The size (decimal) of the linked program in records (1 record = 1024
bytes)

3.5.2 External Reference Map

The External Reference map also provides link information. A sample
External Reference map is included in Appendix E. The map contains the
following information:

Linked Program Modules

The LINKER lists the file, library, and volume names for each input file
that is linked. This section is generated even if a Link map is not printed.

External References

The External References table provides the following information for the
code and static sections of the linked program:

Field

LOCATION

SYMBOL

SECTION

FLAGS

Description

The virtual address of the external reference. An
address prefixed with an asterisk (*) indicates an
address in the static area relative to the start of
the static area.

The name of the externally referenced entry point.
A name followed by the =ti= character indicates a
system routine.

The section name in which the SYMBOL is an entry
point. An asterisk before the name indicates a
symbol in the static section.

The flag associated with each relocation i tern in
the relocation reference block. Each flag consists
of two digits. Together, they describe the
relocation reference item. The two flag bytes are
described as follows:

3-10

Link Statistics

First Byte

Value RCON Flag Relocation Record Flag ---

0 F F
1 F T
2 T F
3 T T

RCON Flag: F (false) signifies that the object of
relocation in the RUN block is an absolute address
constant; T (true) indicates that it is an RCON
(relative address constant).

Relocation Record Flag: F (false) indicates that
the object of relocation in the RUN block is not a
relocation record; T (true) indicates that it is a
relocation record.

Second Byte

Value Length Direction Resolved

0 3 p T
2 3 p F
4 3 N T
6 3 N F
8 4 p T
A 4 p F
c 4 N T
E 4 N F

Length: Indicates the length in bytes of the object
of relocation.

Direction: Indicates the direction of relocation: P
indicates positive, N indicates negative.

Resolved: Indicates whether the referenced name is
resolved. (T) indicates that it is resolved; (F)
indicates that it is not.

The link statistics are the same as those provided by the Link
map. Refer to section 3.5.1.

3-11

3.6 SUPPRESSION OF PRINT OUTPUT

You can suppress the print output (including the Link map and the
External Reference map) only if you run the LINKER with a procedure.
Include the following statement in the procedure that is running the
LINKER: ENTER PRNTFILE PRINT=NO. This statement follows the output
specification.

For example, the following steps link programs X and Y into program
Z and suppress the print output:

PROCEDURE SUPPRESS
RUN LINKER
ENTER INPUT FILE=X
ENTER INPUT FILE=Y
ENTER INPUT
ENTER OUTPUT FILE=Z
ENTER PRNTFILE PRINT=NO
RETURN

3.7 LINKER RETURN CODES

The following are the error return codes associated with the LINKER:

Return
Code

0

4

8

Meaning

Successful link

Warning message:

a. Unsatisfied External Reference(s).

b. Labeled COMMON sections of unequal lengths
encountered (FORTRAN only).

Error message:

a. Multiple entry points with the same name
encountered.

b. Static section in Segment 0 address space
encountered.

c. Initialized blank COMMON static section
encountered (FORTRAN only).

d. Illegal replacement attempted (possible
only in program files generated in
FORTRAN). This error occurs when the
compiler encounters a code or static
section with the same name as a labeled or
blank COMMON section.

3-12

The print output of the LINKER contains warning messages or error
messages indicating the section name(s) and the file(s) in which the
section(s) were encountered.

3-13

CHAPTER 4
VS COMPILERS AND THE PROGRAM FILE

An essential step in program development is compilation or assembly.
This chapter provides you with information about translating a source file
into a program file and constructing the program file.

4.1 PROGRAM FILE

The programmer writes a source program, which the system stores as a
source file. The system cannot execute a source program directly. First, it
must translate that program into "machine code," or object code. The object
code is stored as a program file. This process is called compilation when the
program is written in a higher-level language (such as COBOL or BASIC). It is
called assembly when the program is written in Assembly language.

The program file contains four sections that are important to the
program development tools: the code section, the static section, the symbolic
section, and the linkage section. These sections are important to the
programmer during program execution, debugging, and linking. They are
discussed later in this chapter.

On the VS, the code section occupies Segment l, and the static section
occupies Segment 2. The operating system occupies Segment 0, which you cannot
access.

4.2 PROGRAM COMPILATION

You can compile or assemble a source program from within the EDITOR or
by running the compiler or Assembler directly from the Command Processor.
Compilation from within the EDITOR is discussed in Chapter 2. You can run the
compiler or the Assembler from the Command Processor by selecting PFl (RUN)

and entering the name (ASSEMBLE, BASIC, COBOL, FORTRAN4, PLI, or RPG II) in
the PROGRAM field of the Run screen. The compiler or Assembler then displays
the Options screen (refer to the appropriate progranuning language reference
manual). The Input screen identifies the source program you want to compile
or assemble. The Output screen identifies the name of the program file, which
contains the object code.

4-1

Compiler output (source listing
programming language reference manuals.
compilation or assembly return codes.

and maps) is discussed in the
These manuals also contain the

Compilation or assembly of an individual source program module
creates a program file that may contain all four sections mentioned in
Section 4.1. The code section is the object code for the module; the
static section contains the data.

4.2.1 Contents of Code and Static Sections

For COBOL programs, the code section is the Procedure Division, and
the static section is the Working Storage Area. For BASIC, FORTRAN, and
PL/I, the code section contains program statements, and the static
section contains the program variables. For RPG II the code section
contains the calculation statements CC and W specs), and the static
section contains the data items.

4.2.2 Naming Conventions for Code and Static Sections

Each code section and static section is assigned a name that is
derived from the program module name. The rules for forming names are as
follows:

Language

Assembler

BASIC

COBOL

FORTRAN

PL/I

RPG II

Section

Code section
Static section

Code section

Static section

Code section
Static section

Code section

Static section

Code section

Static section

Code section

Static section

Naming Rule

CODE statement label
STATIC statement label

MAIN for main program
subroutine name for subroutines
$MAIN for main program
$ plus first 7 characters of subroutine

name for subroutines

PROORAM-ID
$ plus first 7 characters of PROGRAM-ID

MAIN for main program
subroutine name for subroutines
$ plus first 6 characters of module name

plus the name of the first external
procedure in the program

$ plus the name of the first external
procedure in the program

Columns 75 - 80 of the Header (H) spec or,
RPGOBJ, if no value is specified in those
columns, or if no Header spec is included

$ plus first 7 characters of module name

4-2

You may encounter unpredictable problems if you attempt to link modules
with similar section names. For example, the static section names for two
BASIC subroutines are named MODULE15 and MODULE16 are not unique because the
system uses only the first seven characters (MODULE!) to determine the name.
In this case, both are named $MODULE!.

If two programs have the same static section name when linked, the
LINKER retains the contents of the section it encounters first, and the length
of the longer of the two sections. For code sections, the LINKER retains
contents of the section encountered first, and the length of that section,
even if it is shorter.

4.3 PROGRAM LINKING

The LINKER combines two or more program modules to form a linked
program. The LINKER produces a code section for the linked program that
consists of code sections for all linked modules that are arranged in the
linked order. The static section for the linked program consists of static
sections for all linked modules, also arranged in the order linked. The code
section for the linked program precedes its static section.

The linked program file also contains a linkage section, which is used
when the LINKER replaces a module in a linked program. The linkage section
contains the following information:

•
•

•

•

Names of all entry points in the program file

Off sets into the code section of the program file for each
individual module's code section

Offsets into the static section of the program file for each
code section

Names of all external references in the file

4.4 SYMBOLIC DEBUGGING

You can cause a compiler to create a symbolic section for a program
module by specifying SYMB=YES on the compiler Options screen. Including
Symbolic Debug information does not affect the program's execution; instead it
enables you to use the Symbolic Debugger to debug the program. The symbolic
section contains a pointer to the program listing and a description of
attributes for program variables.

When you remove this section from the program file, you cannot view the
program listing while debugging. Also, you cannot refer to variables by
name. You must reference them by memory location (if they can be found).

4-3

CHAPTER 5
SYMBOLIC DEBUGGER

5.1 INTRODUCTION

Debugging is the process of locating and correcting errors in a
program. The VS Symbolic Debugger provides a means of referencing elements of
a program using the actual data names and control structures of the language
in which the program is written. The Symbolic Debugger allows you to
reference variables by the names used in the program instead of using data
addresses to search through memory.

The Symbolic Debugger permits you to monitor the behavior of a program
while it is executing. Also, you can inspect and modify values of variables,
set break points (known as traps), and alter the flow of execution of the
program.

5.2 HOW THE SYMBOLIC DEBUGGER WORKS

The VS programming languages place symbolic information into the
symbolic block of the program file during compilation or assembly. The
symbolic block contains information relating to the static section and the
code section of the program. In the static section, the block contains the
data item names and their offsets into the static section. The code section
of the symbolic block contains the verb you want to execute, the line number
of the statement that is executing, and the offset of the instruction into the
code section.

When you run the Symbolic Debugger, the source code appears as the
program executes. Four possible conditions could prevent the source code from
being displayed. First, you might not have selected the SYMB option at
compilation or assembly Con the compiler/assembler Options screen). Second,
execution of the program might have been interrupted during the processing of
a routine for which the source code is not available (such as a system or
external subroutine). Third, the Symbolic Debugger might not be· able to
access the program source code. Fourth, the LINKER might have removed the
symbolic debug information from the program file.

5.3 USING THE SYMBOLIC DEBUGGER

Both you and the system can execute the Symbolic Debugger. If you run
the program from the Command Processor, you can access the Symbolic Debugger
at the beginning of program execution. First, select the RUN command CPFl)

5-1

from the Command Processor. Then, specify the program name, and press PFl
(instead of ENTER). You can also access the Symbolic Debugger after you have
interrupted execution with the HELP key. To do so, press PFlO from the
Modified Command Processor screen.

When a program error is encountered, the system displays the Cancel
Processing screen and allows you to run the Symbolic Debugger.

To use all the features of the Symbolic Debugger, you must compile the
program with SYMB=YES specified on the compiler or Assembler Options screen.
The symbolic debug information must not be removed from the program file by
the LINKER. In addition, the source listing must be available. A source
listing is available if it (1) is in a file class that is available to you,
(2) is on a volume that is currently mounted, (3) is a print file (COBOL,
PL/I, and RPG II) and has a status of HOLD or KEEP, (4) is a source file
(BASIC and FORTRAN) that is not currently in use, or (5) is a debug file
(Assembler) that is accessible.

5.4 DEBUG PROCESSOR SCREEN

When you execute the Symbolic Debugger, the Wang VS Debug Processor
screen appears. This screen is the Debug menu, and consists of the following
parts:

Window

Header

Message

Trap Area

The window displays seven lines of the program currently
being executed and debugged. The center line in the window
is the line to be executed next unless the window shows the
first or last seven lines in the program. If the source
code is not available, a message appears.

The header is the screen label; Wang VS Debug Processor is
the header for the Debug menu.

The message describes the last debug operation. When the
Symbolic Debugger is run, the message indicates that the
user program is loaded. When the Symbolic Debugger returns
to the Debug menu because it encounters a trap, the message
field identifies the trap type. If an error is encountered,
the message field provides the error message and an error
description.

The traps area lists the trap types, their locations
within the program, and the values of any set counters.
This area is blank until you set traps.

Status Area The status area indicates the current program status by
displaying four parameters with their current values. These
parameters include the code section currently executing, the
Statement # (sequence number) of the source program
statement you will execute next, the statement verb, and the
current Program Control Word (PCW).

5-2

Options Area The options area lists the PF keys and Symbolic
Debugger functions available from the screen.

If you attempt to debug a program that is execute-only, the message
"Sorry, Current User does not have access to Debug facilities for this
program" appears, and PF2 through PF6 are disabled.

5.5 DEBUG MENU OPTIONS

A description of the Debug menu options follows:

PFl (CONTINUE)

PF2 (PREVIOUS)

PF3 (NEXT)

PF4 (TRAP)

PFS (INSPECT/MODIFY)

PF6 (SELECT SECTION)

PF13 (DUMP)

Causes program execution to continue.

Causes the previous seven source lines to be
displayed in the window. The contents of the
window do not affect program execution; the
next program step is identified in the status
area.

Causes the next seven source lines to be
displayed in the window. The contents of the
window do not affect program execution; the
next program step is identified in the status
area.

Selects a trap or allows you to modify or clear
a previously set trap. The Symbolic Debugger
provides a Statement Breakpoint trap, a
Single-Step trap, and a Modification trap.
Each trap is discussed in detail in section 5.6.

Enables you to inspect and modify memory,
program registers, or the PCW. You can use the
Inspect/Modify screen to reference data i terns
by the symbol used in the program. The
Inspect/Modify function is described in section
5.7.

Enables you to display the source code of a
different code section. This function also
enables you to change the default section name
for Inspect/Modify functions.

Enables you to obtain a ful 1 Segment 2 memory
dump. This function creates a print file of a
program's variables, buffers, and control
blocks.

5-3

PF14 (PRINT PROGRAM SCREEN)
Enables you to create a print file that
consists of the program screen displayed
immediately before the interruption of program
execution.

PF15 (PRINT DEBUG SCREEN)
Prints the debug screen currently displayed.
This option is available for printing any of
the debug screens, even when PFlS is not
displayed in the current menu.

PF16 (CANCEL PROCESSING)

5.6 TRAP FUNCTION

Cancels the interrupted program and returns
control to the Command Processor or the program
from which the interrupted program was run.

When you select the Trap function (PF4) from the Debug menu, the
Symbolic Debugger displays the Trap screen. Select one or more traps by
specifying values for the parameters in the appropriate sections of the
screen. When you set a trap, a message identifying the trap type and
parameters appears on the Debug menu screen in the traps area. When the
Symbolic Debugger encounters a trap during program execution, the
debugger interrupts program execution and displays a message identifying
the trap. You can then use other Symbolic Debugger features.

You can clear a trap by erasing the values that are displayed for
its parameters.

Three different trap types are available. You can use these trap
types alone or in combination with others.

5.6.1 Statement Breakpoint Trap

This trap interrupts execution at the specified program statement
(or machine instruction in Assembler). When you encounter this trap,
execution stops immediately before the statement at which the trap is
set. The parameters that apply to this trap are described as follows:

Field

LINE
NUMBER

Description

Identifies the program statement at which execution
will stop. You cannot use this field if symbolic
debug information is not available. You can specify
either LINE NUMBER or OFFSET, but not both.

5-4

CODE
SECTION

OFFSET

COUNTER!

Identifies the program module in which the line
number or offset is located. The default is the
section currently executing. If you interrupt
execution during a run-time subroutine, the section
name is the system-supplied subroutine.

Instead of specifying a line number at which to
interrupt execution, you can specify a hexadecimal
address in memory (if CODE SECTION is blank) or a
hexadecimal offset in the specified code section.
Program execution is interrupted inunediately before
the machine instruction located at the specified
offset. You can specify either LINE NUMBER or
OFFSET, but not both.

The number of times that the program statement (or
instruction) at which the trap is set will be
encountered before the trap is taken. The default
(COUNTERl=l) interrupts execution the first time the
specified line or instruction is encountered.

5.6.2 Single-Step Trap

The Single-Step trap interrupts execution after you have executed a
specified number of statements or instructions. The parameters for this
trap are described as follows:

Field ---

COUNTER2

TYPE

Description

Number of statements or instructions to be
executed before interrupting execution.

Set to S for program source statements, or A for
machine instructions.

5.6.3 Modification Trap

The Modification trap halts execution when a specified byte in
memory is changed. The parameters applicable to this trap are described
as follows:

STATIC
SECTION3

OFFSET3

Static section of a program. The naming convention for
static section names is included in section 4. 2. 2. This
parameter can be blank if you use OFFSET3 to specify an
address.

Offset (in hexadecimal) from the start of the named section
that indicates the byte you want to monitor.

You can only modify variable data in the program static section. Also,
the trap is taken only if the specified byte is actually changed. For
example, if the hexadecimal value of a variable is "104F" and it is changed to
"1000", the trap is not taken because the first byte CX' 10') has not been

5-5

modified.

5.7 INSPECT/MODIFY FUNCTION

The following describes the options available when you select the
Inspect/Modify function CPF5) from the Debug menu:

PF Key

ENTER

1

2

3

10

11

12

14

5.7.1 Ins:eect

Option and Description

Inspects the data item whose name and code section have
been specified. This option is discussed in detail in
section 5 ~ 7 . 1.

Returns to the Debug menu.

Displays the previous seven source lines in the window.

Displays the next seven source lines in the window.

Selects the Inspect and Modify Memory option, which
enables you to inspect memory and modify unprotected
memory. The option is described in detail in section
5.7.2.

Selects the Inspect and Modify Registers and the
Program Control Word option. This enables you to
inspect machine registers and the PCW, and then modify
them. The option is discussed in detail in section
5.7.3.

Selects the CALL/LINK/SVC Trace option, which enables
you to trace through all previous calls to subroutines,
other programs, and supervisor calls. The option is
discussed in detail in section 5.7.4.

Displays the most recent screen of the executing
program. Press PF15 to print the screen; any other
response returns you to the Inspect and Modify screen.

Symbolic Data/Character String

You can examine the value of any program variable by entering the
variable name and section in the appropriate fields of the Inspect and
Modify screen and pressing ENTER. The Symbolic Debugger displays the
Inspect Symbolic Data screen if the data is nwneric type or the Inspect
Character String screen if the data is character type. The screens have
the following fields:

Field Description

DATANAME Name of the variable as it is referenced in the program.

5-6

SECTION Name of the program module containing the variable. The
default value of this field is the name of the module whose
execution was interrupted.

The value of the variable appears below the variable name in a form
appropriate for the type of the variable. Bit string data appears in
hexadecimal form.

The options available from this screen are described as follows:

PF Key Option

ENTER

1

2

3

4

5

6

7

Inspect

I/M Menu

Prev Source

Next Source

Prev

Next

HEX/Char
Notation

Modify

Description

Enables you to display the value of
variable by entering the variable name
section and pressing ENTER.

a data
and code

Returns to the Inspect and Modify menu.

Displays the previous seven lines of source in the
window.

Displays the next seven lines of source in the
window.

Displays the previous screen of data if the amount
of data is greater than the capacity of the screen.

Displays the next screen of data if the amount of
data is greater than the capacity of the screen.

Displays the value of the named variable in
either hexadecimal or character form. Selection
of this option allows you to display the value in
the other form.

Displays the Modify Symbolic Data screen or the
Modify Character String screen and permits you to
modify the value of the variable. If you attempt
to display nondisplayable characters, the
fol lowing message appears: "Warning
Nondisplayable characters (and Blanks) are
displayed as *. To retain their current values,
Modify only in 'hex' mode."

5.7.2 Inspect and Modify Memory

The Inspect Memory screen enables you to examine memory and modify
unprotected memory. The fields available on this screen are described as
follows:

5-7

Field

OFFSET

SECTION

LENGTH

BASEADR

Description

Memory location at which the display of memory begins. The
off set is added to the base address to produce a starting
location for the memory display. Entering a blank is the
same as entering a zero.

Code section in which the OFFSET field operates. You can
display memory contents by entering the name of the code
section, or by entering the base address of a block of
memory in the BASEADR field. This field may be left blank.

Number of bytes of memory to be displayed on the screen.
LENGTH is used to specify how many bytes will be displayed
each time you press the ENTER key. The default is
hexadecimal 100 (256 bytes). Each time you press the ENTER
key, the next block of bytes whose size is specified by
LENGTH is displayed, the OFFSET field is incremented by this
amount.

Base address. The offset is added to this address. You can
specify the base address in hexadecimal. You can also
specify the base address as a register (R) followed by a
hexadecimal digit (e.g., RO, R2, RF) to indicate that the
contents of that register will be used as the base address.
When you press ENTER, the debugger replaces the register by
the value contained in that register.

The options available on this screen are described as follows:

PF Key Option

ENTER Display
Memory

1 I/M Menu

2 Inspect
Regs/PCW

3 Change
Displayed
Data

Description

Displays memory defined by the above fields in
both hexadecimal and character notation.

Returns to the Inspect and Modify menu.

Selects the Inspect Registers and Program Control
Word screen, discussed in Subsection 5.7.3.

Allows you to modify the displayed memory. When
you select this function, you modify the
highlighted memory values. You can only modify
data in Segment 2 (addresses 200000 and higher).
From this screen, ENTER changes the modified
memory and returns to the Inspect Memory screen.
PFl returns to the Inspect and Modify screen
(section 5.7.2); PF2 returns to the Inspect Memory
screen (section 5.7); PF3 selects the Inspect
Registers and Program Control Word screen (section
5.7.3).

5-8

5.7.3 Inspect and Modify Program Registers and the Program Control Word

The Inspect Registers and Program Control Word screen enables you to
examine and modify both the program registers and the PCW. The screen
displays the PCW, the General Registers, and the Floating Point Registers, and
offers the following options:

PF Key

1

2

3

4

Option

I/M Menu

Inspect
Memory

Modify Regs

Modify PCW

Description

Returns to the Inspect and Modify menu.

Displays the Inspect Memory screen and enables you
to examine and modify memory. This screen is
described in section 5.7.2.

Displays the Modify Registers screen and enables
you to modify highlighted values for program
registers. This screen is described in section
5.7.5.

Displays the Modify PCW screen and enables you to
modify values in the PCW. This screen is
described in section 5.7.6.

5.7.4 CALL/LINK/SVC Trace

The Inspect Program, Subroutine, and SVC Linkage screen enables you
to display a list of calling programs, subroutines, or SVCs prior to the
current program. The last call issued before the program was interrupted
appears first. When you press ENTER, the system steps backwards through
the previous calls and displays the following:

• Subroutine calls (all high-level language and Assembler calls
made through the JSCI instruction)

• Program 1 inkages (through the LINK. SVC or Procedure language
RUN statement)

• SVCs (Supervisor Calls)

In addition, the address of the call and the calling program's
registers at the time of the call are displayed. By convention, the
registers in the Save area contain the following information:

Register

0
1

2 - 13
14

15

Description

General usage
Argument list pointer for use with CALL (JSCI) and
LINK SVC
General usage
Pointer to the beginning of the first static area
(not enforced)
Stack pointer (not displayed by TRACE)

5-9

5.7.5 Modify Registers

The Modify Registers screen allows you to examine the PCW, and
examine and modify the General Register~ and the Floating Point
Registers. This screen provides the following options:

PF Key Option

ENTER Chng Values
in Regs

1 I/M Menu

2 Inspect
Memory

3 Inspect
Regs/PCW

4 Modify PCW

Description

Changes the register values as you specify.

Returns to the Inspect and Modify menu.

Returns to the Inspect Memory menu.

Returns to the Inspect Registers and
Program Control Word menu.

Displays the Modify PCW screen and enables
you to modify the PCW. This screen is
discussed in section 5.7.6.

5.7.6 Modify Program Control Word

The Modify PCW screen displays, and enables you to modify, values
of the PCW. This screen provides the following options:

PF Key

ENTER

1

2

3

Option

Chng Values
in PCW

I/M Menu

Inspect
without Memory

Description

Modifies the PCW which you specify.

Returns to the Inspect and Modify menu
without changing the PCW.

Returns to the Inspect Memory menu
changing the PCW.

Inspect Returns to the Inspect Registers and
Program Regs/PCW Control Word menu without changing the

PCW.

5-10

APPENDIX A
EDITOR EXAMPLE

The COBOL program example in this appendix contains a number of errors
and uses several EDITOR functions to correct them. After you read and follow
the example on your workstation, you can use these EDITOR functions: entering
a new program, editing, compiling, and executing a program, and saving or
replacing a file on disk. Chapter 2 discusses all of the EDITOR functions in
detail.

000100
000200
000300
000400
000500
000600
000700
000800
000900
001000
001100
001200
001300
001400
001500
001600
001700
001800
001900
002000
002100
002200
002300
002400
002500
002600
002700
002800
002900
003000
003100
003200
003300
003400
003500
003600
003700

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. WANG-VS.
OBJECT-COMPUTER. WANG-VS.
!!PUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT LISTING
ASSIGN TO "OUTPUT", "PRINTER",
ORGANIZATION IS SEQUENTIAL,
ACCESS MODE IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD LISTING
FD LISTING

LABEL RECORDS ARE OMITTED.
01 PRINT-RECORD PIC X(132).
WORKING-STORAGE SECTION.
77 PRINT-LINE PIC X(132) VALUE SPACES.
PROCEDURE DIVISION.
START-PROGRAM.
PERFORM INITIALIZATION.

PERFORM WRITE-A-PRINT-LINE.
PERFORM TERMINATION.

EXIT-PROORAM.
STOP RUN.

INITIALIZATION.
OPEN OUTPUT LISTING.
MOVE SPACES TO PRINT-LINE.

WRITE-A-PRINT-LINE.
MOVE "YOUR PROORAM PRINTED THIS LINE. CONGRATULATIONS!"

TO PRINT-LINE.
WRITE PRINT-RECORD FROM PRINT-LINE

AFTER ADVANCING 1 LINE.
TERMINATION.

CLOSE LISTING.
A-1

Invoking the EDITOR

From the Command Processor, select the RUN conunand CPFl). The next
screen requests a program name, and the library and volume locations. In
the PROGRAM field, type EDITOR and press ENTER. It is not necessary to
enter library and volume names since the EDITOR resides in the System
Library on the System Volume.

The Input screen is the first screen to appear. On this screen,
you specify the programming language and the name of the input file. In
the LANGUAGE field, type COBOL. Since you are creating a new file, leave
the FILE field blank. Press ENTER.

EDITOR Main Menu

The EDITOR now displays the Main menu. This menu offers 16 editing
commands, and displays a highlighted message that the editing work file
is being created. Examine the menu to become familiar with the functions
offered at this level of the EDITOR.

The functions on the Main menu are divided into three types:

Functions PFkeys

display 1 - 8

edit 9 -14

special 15-16

The most commonly used functions include the DISP function CPFl),
the PREV and NEXT functions CPF4 and PFS), the MOD function (PF9), the
INS function (PFll), the DEL function C PF12), and the MENU function
CPF16).

Entering the Program

Wait a few seconds until the highlighted message leaves the
screen. Press PFll (INS) to enter the program in Insert mode. Examine
the screen that appears. Several of the display functions are listed at
the top of this screen. Column headings appear above the program area.
The EDITOR produces line or sequence numbers to the left of each new line
and positions the cursor at the first usable column in the first line.

The EDITOR automatically sets tabs for each language; the TAB key
can be used to align statements as required by the language you are
programming. While in Insert mode, type the first line of the program
and then press ENTER. As you type, the newly entered characters are
highlighted. You can backspace to any incorrect character and retype
it. After you enter the line, press ENTER. The EDITOR produces a new
line number and moves the cursor to the next line. In Insert mode, the
EDITOR continues to produce a new line each time you press ENTER. Enter
the remainder of the program. Remember to type the lines as they appear
on the previous page, including the incorrect lines, since you will

A-2

correct these lines later. Once you enter the last line of the program
and the cursor is at the start of the next line, press PFl to exit Insert
mode and return to Display mode.

Compiling the Program

You have entered the program. Now you will compile it and discover
any diagnostic errors. From the main menu, press PF16 to select the
EDITOR special menu. The special menu offers numerous functions.
Examine this menu and the functions it offers.

Select the COMPILE conunand (PF 10) to compile your COBOL program.
The EDITOR displays the compiler Options screen, which contains a number
of options! For this sample program, the default options are
sufficient. When you are ready to compile the program, press ENTER.

The LINKER Options screen appears next. This screen presents a
number of options for the LINKER. The LINKER links a number of compiled
program modules into a larger executable program. Since this program
does not 1 ink with any external subprograms, it is not necessary to
modify this screen, so press ENTER. (Ref er to Chapter 3 of this manual
for more information about the LINKER.)

The compiler now attempts to compile the program. During
compilation, the COBOL compiler displays the message COBOL Compilation of
##TEST in Progress. The EDITOR assigns new files a name of ##TEST before
they are compiled. Files whose names begin with # are temporary files
and are scratched when you terminate EDITOR processing. A message
appears: Program EDITOR in progress when compilation is complete.

When the EDITOR returns to the special menu, it highlights a new PF
key, PFll (ERRORS). A message at the top of the screen indicates that
the program has compilation errors. (If the program compiles
successfully, this PF key and message do not appear.) To examine the
error listing, press PFll. Review the contents of this listing. Press
PFS (NEXT) to examine the next screen; PF4 (PREV) to examine the previous
screen; or PF2 (FIRST) to return to the first listing screen.

The source listing contains three errors. The compiler may report
other errors which have resulted because of the first three. The sample
program contains the following three errors. You may have made other
errors made while entering the program.

Line 700 INPUT misspelled
Line 1600 Line 1500 duplicated
Line 2300 Line should begin at B margin

Modifying the Program

While the error listing is on the workstation screen, move the
cursor to Line 700 and press PFl. The EDITOR displays the work file
beginning with that line.

Use Modify mode to correct the error in Line 700. Press PF9

A-3

(MOD). Notice that only PF keys 1 and 15 are available and that the
current screen of the work file is highlighted on the workstation. You
can correct errors in Modify mode by moving the cursor to the appropriate
character and making the modification. Correct Line 700 and press ENTER.

Now edit Line 1600. You will delete this line. Return to the
special menu by pressing PF16. Next, press PFll to return to the error
listing. Move the cursor to Line 1600 and press PFl. The program
appears on the screen with Line 1600 at the top. Press PF12 to enter
Delete mode. Read the top of the screen and note that you must enter the
range of lines to delete. Since the cursor is at Line 1600, this is the
default start line. Because Line 1600 is the only line you want to
delete, it is not necessary to define the end line. Press ENTER.

To correct Line 2300, enter Modify mode again. Move to Line 2300
and position the cursor to the first character in the line (P). Press
INSERT four times to insert four blanks before that character. When that
character lines up with the following line, press ENTER to make the
change and to return to Display. Now, recompile the program.

Recompiling the Program

Return to the special menu (PF16 from the main menu) and select the
COMPILE function (PFlO). The compiler does not request the compiler
options since you defined them on the last run.

Your program has compiled successfully when the message
"Compilation of ##TEST completed" appears. Select the RUN conunand (PF9)
to execute the program. Press ENTER to execute your test program. Once
the program executes, you return to the special menu and the message
"Program ##TEST completed" appears. You should have a print file
consisting of the program output stored in ydur print library (if your
print mode is set to Hold or Keep).

Saving the File

Select the CREATE function CPF5) from the special menu to create a
permanent disk copy of your corrected source file. Name your file,
specify library and volume names if no defaults are displayed, then press
ENTER. The special menu displays a message about your new permanent file
and displays the REPLACE function CPF6) in the list.

A-4

APPENDIX B
LINKER EXAMPLES

The LINKER performs three functions:

1) It links two or more separate program modules into a single
executable linked program;

2) It replaces a linked module in a linked program;

3) It removes symbolic debug information from a program module.

A separate example demonstrates each of the LINKER functions.

Linking Separate Program Modules into a Single Executable Linked Program

In this example, the LINKER links four program modules, which are stored
in different subroutine libraries, into a linked program. The file names and
their libraries and volumes are as follows:

File Library Volume Comments

MYPROG ABC OBJ SYS VOL The main program
FINSUB FINLIB SUB VOL A financial subroutine
LEDGER FINLIB SUBVOL A ledger subroutine
RE PT SUB FORMLIB OUT PAK A report generating

subroutine

The output linked program, produced by the LINKER will be named
LINKPROG, and will be stored in library ABCOBJ on volume SYSVOL.

Select the RUN command (PFl) from the Command Processor to invoke
the LINKER. Enter LINKER in the PROGRAM field then press ENTER. It is
not necessary to specify a library or volume because the LINKER resides
in the System Library on the System Volume.

First, the LINKER displays the Options screen. In the LIBRARY and
VOLUME fields enter ABCOBJ and SYSVOL, the library and volume of the main
program. Specify that MORE equals YES because you will be linking
program modules from more than one library. You can leave the remaining
fields as they are. Press ENTER.

Next, the LINKER displays the Library screen. Here, you specify

B-1

the locations of other subroutines that will be linked. In the LIBRARY2
and VOLUME2 fields, enter FINLIB and SUBVOL. In the LIBRARY3 and VOLUME3
fields, enter FO:RMLIB and OUTPAK; then press ENTER.

The LINKER then displays an Input screen. Specify the file and
library names of the main program, then press ENTER. The LINKER displays
another Input screen. Since it is only necessary to specify one input
file name, press ENTER without specifying any additional file information.

The Output screen appears next. Specify the name and location of
the linked program on this screen. In this example, FILE equals
LINKPROG, LIBRARY equals ABCOBJ, and VOLUME equals SYSVOL. Make certain
that ENTRY=MAIN so that the starting point of the linked program is
correctly identified. You can leave the remaining fields as they are.
If you specify that REPLACE equals YES, the LINKER replaces an existing
file named LINKPROG on ABCOBJ in SYSVOL (if this file exists).

The LINKER constructs the output linked program from the entered
data and signals its completion. The result is a new file (LINKPROG,
stored in ABCOBJ on SYSVOL), which can be run directly from the Command
Processor.

Replacing a Program Module in a Linked Program

In this example, the linked program created in the above example is
modified because one of the subroutines has been recompiled. The
recompiled subroutine is FINSUB, stored in library FINLIB on volume
SUBVOL.

On the Options screen, the LIBRARY and VOLUME fields identify the
location of the linked program. For this example, LIBRARY equals ABCOBJ
and VOLUME equals SYSVOL.

The first Input screen identifies the new version of the linked
subroutine. For this example, define the parameters as follows: FILE
equals FINSUB, LIBRARY equals FINLIB, and VOLUME equals SUBVOL. The
second Input screen identifies the linked program. On this second Input
screen, define the parameters as follows: FILE equals LINKPROG, LIBRARY
equals ABCOBJ, and VOLUME equals SYSVOL. Since there are no other files
to name, press the ENTER key when the third Input screen appears.

The Output screen identifies the linked program. For this example,
FILE equals LINKPROG. The screen correctly names the program entry point
so that field need not be changed. Finally, because the new linked
program will replace LINKPROG, specify REPLACE equals YES.

The result of this procedure is a new linked program with the same
name and location as the original LINKPROG, but with the replaced
subroutine module.

Removing Symbolic Debug Information From a Program File

Once you are satisfied that LINKPROG has been fully debugged (or if
you are certain that a backup copy exists), you can remove the symbolic

B-2

debug information.

On the Options screen, specify that SYMB equals NO. You do not
have to provide any other information.

On the first Input screen, specify that FILE equals LINKPROG and
provide its library and volume names. On the second Input screen, press
ENTER without providing any information.

On the Output screen, specify the location for LINKPROG. Also,
specify that REPLACE equals YES to replace the previous version of
LINKPROG with the version without symbolic debug information. All
symbolic debug information for this program is removed.

B-3

APPENDIX C
SYMBOLIC DEBUGGER EXAMPLE

A simple BASIC program demonstrates several features of the VS Symbolic
Debugger. The program contains a logic error that causes an infinite loop.
This problem is quite easy to find with the Symbolic Debugger. The program
listing follows:

10 PRINT 'THIS IS THE PROORAM START'
20 SUMTOTAL = 0
30 COUNTER = 0
40 SUMTOTAL = SUMTOTAL + COUNTER
50 COUNTER = COUNTER - 1
60 IF COUNTER=lO THEN 80
70 GO TO 40
80 PRINT 'SUMTOTAL = ', SUMTOTAL
90 END

The program logic is incorrect because statement 50 should increment
rather than decrement COUNTER. Because of this error, the program continues
to add increasingly negative values of COUNTER to SUMTOTAL. Control never
passes to statement 80, which displays the value of SUMTOTAL.

First, you must enter the program into the system with the EDITOR.
After you enter the program, select the special menu. Select the CREATE
function (PF5) to assign a file name and save the file. Then, select the
COMPILE function (PFlO) from the special menu to compile the program. On the
compiler Options screen, ensure that a source listing is printed (although the
print file must remain in your print library) and that symbolic debug
information is retained. If there are no diagnostic errors, terminate EDITOR
processing.

From the Command Processor, press PFl (RUN) and run the program. The
program displays the message "this is the program start" on the workstation,
then goes into the loop. Terminate processing by pressing HELP, then PF16 and
ENTER. From the Conunand Processor, press PFl to run the program again. After
you enter the program name, press PFl to initiate Symbolic Debugger processing.

The Debugger displays the Main Debug screen and awaits a command.
Notice that the first seven program statements appear in the Debugger window.
Also, a message indicates that statement 10 is the next statement that will be
executed (that statement number appears in the "Statement #" field on the
right center area of the screen).

C-1

Set a stopping point in the program after 10 iterations to check
the values of COUNTER and SUMTOTAL. From the Debug menu, press PF4
(TRAP) to display the Trap screen. Set a Statement Breakpoint trap at
Line 60 and set COUNTERl=lO. This causes execution to proceed until
Statement 60 is about to execute for the tenth time. Press ENTER to
return to the Debug menu, then press PFl (CONTINUE) to initiate
processing.

When statement 60 is reached for the tenth time, the Symbolic
Debugger interrupts processing and issues a message indicating that the
trap is taken (which means that the trap condition is met).

Check the values of SUMTOTAL and COUNTER to verify that an infinite
loop exists and to discover the cause. Select PF5 (Inspect/Modify) from
the Debug menu. The Symbolic Debugger displays the Inspect Symbolic Data
screen and is ready to display the value of any variable whose name is
entered. Enter SUMTOTAL in the DATANAME field and press ENTER. The
value -45.0 appears on the screen. The fact that this value is negative
indicates a logic error in the program. Now, enter COUNTER in the
DATANAME field and press ENTER to display its value. The Symbolic
Debugger displays the value -10. 0 and indicates that COUNTER is not
incrementing in the program.

If you suspect that Statement 50 is incorrect, you can change the
value of COUNTER to 11 and see how the program runs. Press PF7 (MODIFY)
from the Inspect Symbolic Data screen. Enter 11. 0 in the value field,
and press ENTER.

Now, return to the Debug menu by pressing PFl twice, then press PF4
to set a new trap. On the Trap screen, select the Single Step trap and
set COUNTER2 to equal 1 and TYPE to equal S. This procedure causes the
program to interrupt execution after each statement executes. Return to
the Debug menu and press PFl to continue processing. Notice how the
program handles the new data. The program statements in the window
change each time the Symbolic Debugger interrupts program execution and
that the Statement # field also changes. Press PFl to continue
processing each time the Debugger interrupts execution after you have
examined the screen that appears. The program should step through
Statements 70, 40, 50, and 60, then transfer to Statements 80 and 90.
Finally, end execution.

Correct Statement 50, then compile and run the program to verify
that the problem is solved.

C-2

APPENDIX D
LINK MAP

Thi$ sample Link map illustrates LINKER output that describes the sample
link performed in Appendix B. The main program is MYPROG, stored in library
ABCOBJ on volume SYSVOL. The subroutines include FINSUB, in FINLIB on SUBVOL;
LEDGER, in FINLIB on SUBVOL; and REPTSUB, in FORMLIB on OUTPAK. The Link map
is described in detail in section 3.5.1.

WANG VS LINKER PAGE 1

INPUT FILE MYPROG IN LIBRARY ABCOBJ ON VOLUME SYSVOL

INPUT FILE FINSUB IN LIBRARY FINLIB ON VOLUME SUBVOL

INPUT FILE LEDGER IN LIBRARY FINLIB ON VOLUME SUBVOL

INPUT FILE REPTSUB IN LIBRARY FORMLIB ON VOLUME OUTPAK

D-1

WANG VS LINKER PAGE 2

CODE SECTION ENTRY POINTS
NAME ORIGIN LENGTH NAME LOCATION MADE BY VERSION DATE

MAIN 100008 OOOOEO CB 03.01.01 10/26/81

FEXIT 100198 000008 CB 03.01.01 7/28/81

FRDWFi 1002BO OOOAOO CB 03.01.01 7/28/81
FWRWFi 1002BA
FIOLFi 1002C4

FCVZii 1031B8 OOOlCO CB 03.01.01 7/28/81
FCVZOi 1032EA

FINSUB 103378 000090 CB 03.01.01 7128/81

LEOOER 103408 000125 CB 03.01.01 7/28/81

FIXPii 10352D OOOOF8 CB 03.01.01 7/28/81

D-2

WANG VS LINKER PAGE 3

STATIC SECTION ENTRY POINTS
NAME ORIGIN LENGTH NAME LOCATION MADE BY VERSION DATE

$MAIN *000000 000068 CB 03.01.01 7/28/81

$FCVF *002110 OOOOFO CB 03.01.01 7/28/81

$FINSUB 002200 000040 CB 03.01.01 7/28/81

$LEDGER 002310 000050 CB 03. 01. 01 7/28/81

$REPTSUB 002360 000110 CB 03.01.01 7/28/81

$FIXPI:tt 002470 000000 CB 03.01.01 7/28/81

D-3

WANG VS LINKER PAGE 4

TOTAL LENGTH: CODE SECTIONS STATIC SECTIONS
013590 007360

THIS PROGRAM OCCUPIES 54K BYTES OF SEGMENT 1 ADDRESS SPACE
AND lGK BYTES OF SEGMENT 2 ADDRESS SPACE

ENTRY POINT: NAME LOCATION
MAIN 100008

PROGRAM STORED IN
FILE MYPROG IN LIBRARY ABCOBJ ON VOLUME SYSVOL

LENGTH = 78 RECORDS

D-4

APPENDIX E
EXTERNAL REFERENCE MAP

This sample External Reference map illustrates LINKER output that
describes the sample link performed in Appendix B. The main program is
MYPROG, which is stored in library ABCOBJ on volume SYSVOL. The subroutines
include FINSUB, in FINLIB on SUBVOL; LEDGER, in FINLIB on SUBVOL; and REPTSUB,
in FORMLIB on OUTPAK. The External Reference map is described in detail in
section 3.5.2.

WANG VS LINKER PAGE 1

INPUT FILE MYPROG IN LIBRARY ABCOBJ ON VOLUME SYSVOL

INPUT FILE FINSUB IN LIBRARY FINLIB ON VOLUME SUBVOL

INPUT FILE LEDGER IN LIBRARY FINLIB ON VOLUME SUBVOL

INPUT FILE REPTSUB IN LIBRARY FORMLIB ON VOLUME OUTP~

E-1

WMIG VS LINKER PAGE 2

LOCATION REFERS TO SYMBOL IN SECTION FLAGS
100028 $MAIN *$MAIN 28
100060 $MAIN *$MAIN 28
10018C FIOCS# FIOCS# 08
1002A8 $FSTOP# *$FSTOP# 28
103398 $FINSUB *$FINSUB 28
*OOOOOC MAIN MAIN 18
*000010 LEDGER LEDGER 18
*OOOOlC FENDF# FRDWF# 18
*000020 RE PT SUB REPTSUB 18
*002324 IBEX!# IBEX!# 18

E-2

WANG VS LINKER

TOTAL LENGTH: CODE SECTIONS STATIC SECTIONS
013590 007360

PAGE 3

THIS PROGRAM OCCUPIES 54K BYTES OF SEGMENT 1 ADDRESS SPACE
AND 16K BYTES OF SEGMENT 2 ADDRESS SPACE

ENTRY POINT: N~ LOCATION
MAIN 100008

PROGRAM STORED IN
FILE MYPROG IN LIBRARY ABCOBJ

LENGTH = 78 RECORDS

E-3

ON VOLUME SYSVOL

APPENDIX F
VS COMPILERS, ASSEMBLER, LINKER, AND EDITOR GETPARM REQUESTS

The following tables contain the prnames, keywords, and options used by
GETPARM requests for the VS system programs documented in this manual. Please
note the following conventions when using these tables:

PF Keys

ENTER

Denotes a blank.
statement is a
quotation marks.

Whenever the last option given in an ENTER
blank, the blank must be enclosed by

Do not use a keyword when entering options listed under "PF
Keys" in the KEYWORD column. The PF key number alone is
specified in the ENTER statement.

When the ENTER key is specified, no keyword is written in
the ENTER statement.

F-1

ASSEMBLER

PRN.AME KEYWORD LENGTH OPTION CS) DEFAULT

INPUT FILE 8
LIBRARY 8 (INLIB value)
VOLUME 6 CINVOL value)
DEVICE DISK, NONE DISK

OPTIONS LIBRARY I 8 (INLIB value)
VOLUMEl 6 (INVOL value)
LIBRARY2 8
VOLUME2 6
MORE YES, NO NO
PROGRAM YES, NO, SYS, IPL YES
LIST YES, NO YES
LINES 2 2-99 55
RENT YES, NO YES
XREF 5 FULL, SHORT, NONE SHORT
ERRLIST YES, NO NO
SYMB YES, NO YES
ESD YES, NO YES
RLD YES, NO NO
LIBMAC YES, NO NO
ALOGIC YES, NO YES
MLOGIC YES, NO NO
MCALLS YES, NO NO
WKSIZE 5 (determined by

Assembler)
BUFSIZE 3 STD, MIN STD
FLAG 3 0-20 00
BUFCT 2 12
STOP 2 1-20 05
SYS PARM 68

LIBRARY LIBRARY! 8
VOLUME! 6
LIBRARY2 8
VOLUME2 6
LIBRARY3 8
VOLUME3 6
LIBRARY4 8
VOLUME4 6
LIBRARYS 8
VOLUMES 6
LIBRARY6 8
VOLUMES 6
LIBRARY7 8
VOLUME7 6
LIBRARY8 8
VOLUMES 6

F-2

PRNAME

SPECIAL

OUTPUT

ERRORS*

PRINT*

WORKl*
WORK2*
WORK3*

DEBUG

KEYWORD LENGTH OPTION(S)

CHARS ET 6 NATIVE, UPPER,
EBCDIC

TEXT OUT YES, NO
TRANSL ID 2

FILE 8
LIBRARY 8
VOLUME 6
RECORDS 7

RETAIN 3 0-999
RELEASE YES, NO
FILECLAS 1 A-Z, i, ;, @, $
DEVICE DISK

(Refer to PRINT under DEFAULT GETPARMS.)

(Refer to WORK under DEFAULT GETPARMS.)

(Same as OUTPUT.)

* Default GETPARM

F-3

DEFAULT

NATIVE
NO
AS

(OUTLIB value)
(OUTVOL value)
(determined by
Assembler)

~s
(user default)
DISK

BASIC

PRNAME KEYWORD LENGTH OPTION CS) DEFAULT

OPTIONS SOURCE YES, NO YES
PMAP YES, NO NO
XREF YES, NO NO
LOAD YES, NO YES
SUBCHK YES, NO NO
DFLOAT YES, NO NO
ERRLIST YES, NO YES
SYMB YES, NO YES
FLAG 2 00-20 00
STOP 2 01-20 05
LINES 2 05-99 55

INPUT FILE 8
LIBRARY 8 CINLIB value)
VOLUME 6 CINVOL value)
DEVICE DISK, NONE DISK

OUTPUT FILE 8
LIBRARY 8 (OUTLIB value)
VOLUME 6 (OUTVOL value)
RECORDS 7 (determined by

compiler)
RETAIN 3 0-999 >{
RELEASE YES, NO YES
FILECLAS 1 A-Z, #, ,, @, $ (user default)
DEVICE DISK DISK

PRINT* (Ref er to PRINT under DEFAULT GETPARMS.)

WORK* (Refer to WORK under DEFAULT GETPARMS.)

ERRORS* (Refer to PRINT under DEFAULT GETPARMS.)

XREF* (Refer to PRINT under DEFAULT GETPARMS.)

* Default GETPARM

F-4

COBOL

PRNAME KEYWORD LENGTH OPTION(S) DEFAULT

OPTIONS SOURCE YES, NO YES
LOAD YES, NO YES
PMAP YES, NO NO
SEQ YES, NO YES
TRUNC YES, NO NO
SEPSGN YES, NO YES
XREF YES, NO NO
SYMB YES, NO YES
DMAP YES, NO NO
SUBCHK YES, NO NO
BIGPGT YES, NO NO
LOWER YES, NO NO
FLAG 2 00-20 00
STOP 2 01-20 05
LINES 2 2-99 55
SPACE 1 1, 2 l
FIPS NO, LOW NO

INPUT FILE 8
LIBRARY 8 (INLIB value)
VOLUME 6 CINVOL value)
DEVICE DISK, NONE DISK

OUTPUT FILE 8
LIBRARY 8 (OUTLIB value)
VOLUME 6 (OUTVOL value)
RETAIN 3 0-999 ~s RELEASE YES, NO
FILECLAS 1 A-Z, #, ;, @, $ (user default)
DEVICE DISK DISK
RECORDS 7 (determined by

compiler)

PRINT* (Refer to PRINT under DEFAULT GETPARMS.)

WORKTOK*
WORK* (Refer to WORK under DEFAULT GETPARMS.)
ERRORWRK*

* Default GETPARM
F-5

PRNAME

INPUT

OUTPUT

KEYWORD

LANGUAGE

FILE
LIBRARY
VOLUME
PLIBRARY
PVOLUME
LLIBRARY
LVOLUME

DLIBRARY
DVOLUME
SCRATCH

PF Keys*

FILE
LIBRARY
VOLUME
RETAIN
FILECLAS
START
END
COMPRESS

NUMBER

ID

REPLACE PF Keys*

COMPRESS
NUMBER

RENUMBER PF Keys*

ent)

ent)

NUMBER

!NCR

START
END

LENGTH

9

8
8
6
8
6
8
6

8
6

8
8
6
3
1

16
16

EDITOR

OPTION(S)

COBOL, ASSEMBLER,
BASIC, FORTRAN4, PLI,
PROCEDURE, RPGII

YES, NO

1 = Don't create
ENTER = Create

0-999
A-Z, #, f, @, $

YES, NO

YES, NO

8 (COBOL, BASIC)
6 (RPG II)
None for others

6

6

16
16

1 ·= Don't replace
ENTER = Replace
YES, NO
YES, NO

1 = Don't renumber
ENTER = Renumber

F-6

DEFAULT

COBOL

(INLIB value)
(INVOL value)
(OUTLIB value)
(OUTVOL value)
(SPOOLIB value)
(SPOOLVOL
value)
CWORKLIB value)
(WORKVOL value)
YES

(INLIB value)
(INVOL value)

I
(user default)
ALL
;I
YES (or same
as file being
replaced)
YES (or same
as file being
replaced)

YES
YES

(language-depend

(language-depend

ALL

PRNAME KEYWORD LENGTH OPTION CS) DEFAULT

DEFAULTS TABS 20 1-71 Procedure
7-72 BASIC, COBOL Language dependent
1-72 ASSEMBLER,

PLI, FORTRAN
None RPG II

MODE 5 UPPER, UPLOW Language dependent

CASE 5 ANY, EXACT Language dependent

COLUMN 5 1-71 Procedure
7-72 BASIC, COBOL Language dependent
1-72 ASSEMBLER,

PLI, FORTRAN
None RPG II

PF Keys* 1 = Return to SET menu
ENTER = Make changes

* Description only. No keyword is used. Refer to note on page F-1.

F-7

PRNAME KEYWORD LENGTH OPTION(S) DEFAULT

DEFAULTS FORMTYPE 1 A, C, E, F, H, I, F
(for RPG II)

COMPILE

LINK

COUTPUT

LOUT PUT

CPRINT

LP RI NT

PRINT*

WORK*

CDEBUG
(for
Assemble
only)

L, 0, W, b
MODE
TABS
ATABS
CTABS
ETABS
FTABS
HTABS
I TABS
LT ABS
OTABS
WTABS

UPPER, UPLOW UPPER
29
29
29
29
29
29
29
29
29
29

6-74
6-74
6-74
6-74
6-74
6-74
6-74
6-74
6-74
6-74

(Refer to compiler Options screens.
Note that defaults may differ.)

(Refer to OPTIONS under LINKER program.)

FILE
LIBRARY
VOLUME
RETAIN
FILECLAS

8
8
6
3
1

0-999
A-Z, #, f, $, @

(Refer to OUTPUT under LINKER program.)

(Refer to PRINT under DEFAULT GETPARMS.)

(Refer to PRINT under DEFAULT GETPARMS.)

(Refer to PRINT under DEFAULT GETPARMS.)

(Refer to WORK under DEFAULT GETPARMS.)

FILE
LIBRARY
VOLUME
RETAIN
FILECLAS

8
8
6
3
1

0-999
A-Z, #, ;, $, @

/ (user default)

}(
(user default)

* Default GETPARM

F-8

FORTRAN4

PRNAME KEYWORD LENGTH OPTION(S) DEFAULT

OPTIONS LIBRARY 8
VOLUME 6
NAME 6 MAIN
LOAD YES, NO YES
LIST YES, NO YES
DMAP YES, NO NO
SYMB YES, NO YES
PM.AP YES, NO NO
ERRLIST YES, NO YES
LINES 2 10-99 55
STOP** 2 01-20 05
LINKLIB YES, NO YES
RUNLIB 8 @F4LIB@
RUNVOL 6 (user default)
LMAP YES, NO NO

INPUT FILE 8
LIBRARY 8 (INLIB value)
VOLUME 6 (INVOL value)
DEVICE DISK, NONE DISK

OUTPUT FILE 8
LIBRARY 8 (OUTLIB value)
VOLUME 6 (OUTVOL value)
RECORDS 7 (determined by

compiler)
RETAIN 3 0-999 ~s RELEASE YES, NO
FILECLAS 1 A-Z, #, ;, $, @ (user default)
DEVICE DISK DISK

PRINT* (Ref er to PRINT under DEFAULT GETPARMS.)

ERRORS* (Ref er to PRINT under DEFAULT GETPARMS.)

LINK* (Ref er to OPTIONS* under LINKER.)
(Footnote** also applies.)

* Default GETPARM
** Available with compilation from the EDITOR

F-9

LINKER

PRNAME KEYWORD LENGTH OPTION(S) DEF.AULT

OPTIONS PF Keys* 16=End LINKER processing
LIBRARY 8 (INLIB value)
VOLUME 6 (INVOL value)
MORE YES, NO NO
SYMB YES, NO YES
MAP YES, NO YES
XREF YES, NO NO
EXSEC YES, NO NO
LINES 2 55

LIBRARY** PF Keys* !=Return to Options screen
LIBRARY I 8
VOLUMEl 6
LIBRARY2 8
VOLUME2 6
LIBRARY3 8
VOLUME3 6
LIBRARY4 8
VOLUME4 6
LIBRARYS 8
VOLUMES 6
LIBRARY6 8
VOLUME6 6
LIBRARY7 8
VOLUME7 6
LIBRARYS 8
VOLUMES 6

INPUT FILE 8
LIBRARY 8 (INLIB value)
VOLUME 6 (INVOL value)

OUTPUT FILE 8
LIBRARY 8 (OUTLIB value)
VOLUME 6 (OUTVOL value)
RETAIN 3 0-999 I
FILECLAS 1 .A-Z, #, j, $, @ (user default)
ENTRY 8
REPLACE YES, NO NO

* Description only. No keyword is used. Refer to note on page F-1.
** Activated if MORE=YES specified on Options screen.

F-10

PRNAME KEYWORD LENGTH OPTION CS) DEFAULT

PRNTFILE PRINT YES, NO YES
(Screen does not appear when LINKER is run interactively.)

PRINT* (Refer to PRINT under DEFAULT GETPARMS.)

WORK* (Refer to WORK under DEFAULT GETPARMS.)

OPTIONS** LINK YES, NO NO
MAP YES, NO NO
XREF YES, NO NO
SYMB YES, NO YES
LINES 2 20-99 55
LIBRARY 8 CINLIB value)
VOLUME 6 (INVOL value)
MORE YES, NO NO
FILES YES, NO NO

* Default GETPARM
** Available when LINKER is run from the EDITOR

F-11

PL/I

PRNAME KEYWORD LENGTH OPTION CS) DEFAULT

OPTIONS SOURCE YES, NO YES
DMAP YES, NO YES
PMAP YES, NO NO
SYMB YES, NO NO
FLAG 2 00-99 00
,STOP 2 01-99 05
OPT YES, NO, 1-4 NO
CHECK YES, NO, 1-4 NO
SFLBIN YES, NO *
FLDEC YES, NO *
PREP 8 blank=none
LINKLIB 8 blank=none @PLIRTM@
LINKVOL 6 (system volume)

INPUT FILE 8
LIBRARY 8 CINLIB value)
VOLUME 6 CINVOL value)
DEVICE 8 DISK, NONE DISK
FILESEQ 4 1

(for tape only)

LIBRARY LIBRARY! 8 blank=none
LIBRARY2 8
LIBRARY3 8
LIBRARY4 8
LIBRARY5 8
LIBRARY6 8
LIBRARY? 8
LIBRARY8 8

VOLUME! 6
VOLUME2 6
VOLUME3 6
VOLUME4 6
VOLUMES 6
VOLUME6 6
VOLUME7 6
VOLUMES 6

* Default depends on the features supported by the Wang computer
compiling

the program
F-12

PRNAME KEYWORD LENGTH OPTION(S) DEFAULT

ERRORS FILE 8
LIBRARY 8 *
VOLUME 6 CSPOOLVOL

value)
RECORDS 8 500
FILECLAS 1 (user default)
DEVICE 8 DISK, TA.PE, DISK

PRINTER, WS
FILESEQ 4 1

(for tape only)

PRINT FILE 8
LIBRARY 8 (SPOOLIB value)
VOLUME 6 (SPOOLVOL

value)
RECORDS 8
FILECLAS 1 (user default)
DEVICE 8 DISK, TA.PE, DISK

PRINTER, WS
FILESEQ 4 1

(for tape only)

OUTPUT FILE 8
LIBRARY 8 (OUTLIB value)
VOLUME 6 (OuTVOL value)
RETA.IN 3 0-999 j
FILECLAS 1 A-Z, #, ,, $, @ (user default)

* Library name is xxxERR, where xxx is the user's ID.
F-13

RPG II

PRNAME KEYWORD LENGTH OPTION(S) DEFAULT

OPTIONS LIST YES, NO YES
LOAD YES, NO YES
DEBUG YES, NO NO
SYMB YES, NO YES
XREF YES, NO NO
NATIVE YES, NO YES
LINES 2 5-99 55
LENGTH 2 1-99 66

INPUT FILE 8
LIBRARY 8 (INLIB value)
VOLUME 6 (INVOL value)
DEVICE DISK, NONE DISK

OUTPUT FILE 8
LIBRARY 8 COUTLIB value)
VOLUME 6 (OUTVOL value)
RECORDS 7 (determined by

compiler)
RETAIN 3 0-999 JI
RELEASE YES, NO YES
DEVICE DISK DISK
FILECLAS 1 A-Z, #, ,, $, @ (user default)

PRINT* (Refer to PRINT under DEFAULT GETPARMS.)

* Default GETPARM

F-14

DEFAULT GETPARMS

A default GETPARM is not normally displayed when a program is run
because the needed information is already available. The following is a
list of default GETPARMs for the user who wishes to change these values.

PRNAME KEYWORD LENGTH OPTION(S) DEFAULT

PRINT FILE 8
LIBRARY 8 (SPOOLIB value)
VOLUME 6 (SPOOLVOL value)
RECORDS 7
RETAIN 3 0-999 's RELEASE YES, NO
FILECLAS 1 A-Z, #, f, $, @ (user default)
PRTCLASS 1 A-Z (user default)
FORM# 3 0-254 (user default)
COPIES 5 1-32767 1
DEVICE DISK, PRINTER DISK (unless

PRNTMODE=Online)
PRINTER (if

PRNTMODE=Online)

WORK FILE 8
LIBRARY 8
VOLUME 6
RETAIN # (temporary files)
RELEASE YES, NO YES
FILECLAS 1 A-Z, #, ,, $, @ (user default)
RECORDS 7 (determined by compiler)

F-15

GLOSSARY

Assembler

Base Address

Code Section

Compiler

Entry Point

External
Reference

Input File

Interpreter

Main Program

A system program that translates an Assembly language
program into machine code.

A starting address in memory.

The section in the program file that contains the linked
object code for the program.

A system program that translates a source program into
machine code, which the computer can execute directly.

A named location in a program module referenced outside
the module. Also, the location in a main program at
which execution begins.

A reference within one program module to an entry point
outside that module. An external reference is a
reference to a subprogram.

A program file that is being linked. Input files include
the main program and the subprograms.

A system program that processes each line of a Procedure
language file individually. The Procedure Interpreter
does not create a program file from the procedure file.

The program unit that begins execution of the linked
program.

Object Program The file created by a compiler or the Assembler that can
be executed or linked. On the Wang VS, this file is
called the program file.

Offset A value which, when added to a base address, indicates
another address.

Output File The executable linked program. The output file consists
of all linked object program modules.

G-1

Program
Control Word

CPCW)

Program File

Program Module

Screen

Source Line

A doubleword in memory that contains the address of the
next instruction that will be executed and various status
bits. The PCW is described more fully in the VS
Principles of Operation.

The compiled or assembled source program. This file can
be executed or linked.

A separate
form. The
modules.

program unit,
main program

in
and

either source or object
subprograms are program

That portion of the work file that fits on the
workstation screen.

An individual line of program code written in a
programming language.

Source Listing An output file created by each compiler and the Assembler
that consists of the source program, errors detected
during compilation or assembly, and compilation or
Assembler options.

Source Program A collection of source lines.

Static Section The section in the program file that contains the data
that the program will use.

Subprogram A separate program unit that is called by a main program
or another subprogram.

Symbolic Block The block in the object file that contains symbolic debug
information.

Trap

Verb

A location within a program module at which execution is
directed to be interrupted.

Identifies the action part of a source statement (e.g.,
MOVE, LET).

G-2

A

Adding lines to edit file
(PF9), 2-8

Assembler
files, Changing default names

(PF2/PF5), 2-13
options, Setting (PF2/PF4),

2-13
Assembly

definition, 4-1
errors, Displaying (PFll), 2-16
of work file (PF9, PFlO), 2-16

CALL/LINK/SVC Trace function of
Symbolic Debugger, 5-8

Canceling Debug processing, 5-4
Changing data in Symbolic

Debugger, 5-5
Changing form type for RPG II

(PF9 and PFlO), 2-9
Changing memory in Symbolic

Debugger, 5-6
Changing text in edit file

(PFlO), 2-8
Changing values in registers

from Symbolic Debugger, 5-8
Clearing a trap, 5-3
Code section

contents of, 4-2
for linked programs, 4-3
information in Link map, 3-7
naming conventions for, 4-2

Column position of cursor
(PF15), 2-11

Compilation
errors, Displaying (PFll), 2-16
definition, 4-1
of work file (PF9, PF10), 2-16
process of, 4-1

Compiler
files, Changing default names

CPF2/PF5), 2-13
options, Setting CPF2/PF4),

2-13

INDEX

Copying lines from external file
(PF8), 2-15

Copying lines in the edit file
(PF14), 2-10

Creating linked program, 3-2
Creating new permanent file from

work file CPF5), 2-14
Cursor column position (PF15),

2-11

D

Debug menu options, 5-3
Debug processor screen (Symbolic

Debugger), 5-2
Debugging, Definition, 5-1
Deleting lines in edit file

CPF12), 2-10
Deleting text in edit file (PF9,

PF10), 2-8
Disabling EDITOR special menu

functions, 2-15
Display functions of EDITOR, 2-5
Displaying

compilation/assembly errors
(PFll), 2-16

memory in Symbolic Debugger,
5-8

numeric or character data in
Symbolic Debugger, 5-6

program Control Word in
Symbolic Debugger, 5-9

registers in Symbolic
Debugger, 5-9

source listing (PF12), 2-17
work file (PFl), 2-7

Dump function of Symbolic
Debugger, 5-3

E

Edit functions of EDITOR, 2-5
Editing another file (PF4), 2-10
EDITOR

Index-1

example, A-1
line numbers, 2-2
main menu, 2-4

INDEX (continued)

main menu functions, 2-7
parameters ... 2-3
special menu, 2-11
termination, 2-18

Ending EDITOR processing
(PF16), 2-13

Entry Point
in code sections, Link map, 3-8
in static sections, Link map,

3-9
Errors screen (EDITOR) (PFll),

2-16
Examining memory from Symbolic

Debugger, 5-6
Executing the Symbolic

Debugger, 5-1
External file, Copying lines

from (PF8), 2-15
External reference

F

how the LINKER resolves, 2-18,
3-2

information, External
Reference map, 3-10

map, Contents of, 3-10, E-1

Files that can be linked, 3-1
Finding text in work file,

(PF8), 2-7
Forms type for RPG II, Setting

default CPF2/PF2), 2-9
Functions of LINKER, 3-2

GETPARM requests, F-1
Glossary, G-1

I

Initiating EDITOR processing, 2-3
Input file

replacing (PF6), 2-14
naming linked, 3-6

Input mode
default (PF2/PF2), 2-11
setting (PF2/PF2), 2-11

Input screen
EDITOR, 2-3
LINKER, 3-6

Inserting characters in edit
file (PF9), 2-8

Inserting lines in edit file
(PFll), 2-9

Inspect and Modify Memory, 5-8
Inspect and Modify Program

Registers and PCW function, 5-9
Inspect Character String screen

and function, 5-6
Inspect Program, Subroutine, SVC

Linkage screen (Symbolic
Debugger), 5-9

Inspect Registers and Program
Control Word screen
(Symbolic Debugger), 5-9

Inspect Symbolic Data screen and
function (Symbolic
Debugger), 5-6

Invoking the EDITOR, A-2

L

Library screen (LINKER), 3-6
Line numbers

locations of, 2-2
replacing CPF7), 2-15

Link map
contents of, 3-7, D-1
display(PF14), 2-17

Link screen (EDITOR), 2-18
Link statistics, 3-10
Linkage section of linked

program, 4-3
Linked program, Specifying, 3-6
LINKER

Index-2

capabilities, 3-1
examples, B-1
functions, 3-2
options, Setting from EDITOR

(PF2/PF4), 2-10

INDEX (continued)

output, Suppression of, 3-12
return codes, 3-12
running, 3-1
screens, 3-5

Linkfile screen (EDITOR), 2-18
Linking

benefits of, 3-1
definition, 3-1
from EDITOR, 2-14
individual files from EDITOR,

2-18
recompiled program modules, 3-3
several subroutine libraries,

2-18, 3-6
when necessary, 3-1

Llibrary screen (EDITOR), 2-19

M

Main menu of EDITOR
accessing from special menu

(PF3), 2-13
options, 2-5

Maps produced by LINKER, 3-7
Maximum size of linked program,

3-2
Modification code

columns occupying (PF2/PF3),
2-12

definition, 2-2
function of, 2-2
retaining from external file

(PFB), 2-16
setting (PF2/PF3), 2-12

Modification trap type, 5-5
Modify PCW screen (Symbolic,

Debugger), 5-10
Modify Registers screen

(Symbolic Debugger), 5-10
Modifying data in Symbolic

Debugger, 5-6
Modifying memory in Symbolic,

. Debugger, 5-8
Modifying Program Control Word

in Symbolic Debugger, 5-9
Modifying Registers in Symbolic,

Debugger, 5-9

Modifying text in edit file
(PF9, PFlO), 2-8

Moving lines within edit file
CPF13), 2-10

N

Name
of compiled file, 2-2
of work file, 2-2

Names
changing default file,

library, volume
(PF2/PF5) , 2-13

Options screen CLINKER), 3-5
Output screen

EDITOR (PF5), 2-14
LINKER, 3-5

Output, Suppression of LINKER,
3-10

p

Print file, Changing default
name (PF2/PF5), 2-13

Printing
Debug Screen function of

Symbolic Debugger, 5-3
EDITOR work file (PF15), 2-17
Program Screen function of

Symbolic Debugger, 5-3
Procedure language file, Running

(PF9), 2-16
Program

compilation, 4-1
development functions

performed by EDITOR, 2-1
development process, 1-1
linking, 4-3
linking from EDITOR, 2-18

Program file

Index-3

changing default name
C PF2/PF5), 2-13

definition, 4-1
sections of, 4-1

INDEX (continued)

R

Range of lines specification, 2-6
Registers , contents of, 5-9
Relocation reference block, in

External Reference map,
3-11

Removing symbolic debug
information, 3-4

Renumber mode, Setting
(PF2/PF3), 2-12

Renumbering work file (PF7), 2-15
Replace mode, Setting

(PF2/PF3), 2-12
Replace screen (EDITOR) CPF6),

2-15
Replacing characters in edit

file (PF9, PFlO), 2-8
Replacing input file (PF6), 2-14
Replacing program module in

linked program, 3-3
Requirements for using the

Symbolic Debugger, 5-2
Return codes, LINKER, 3-12
Running

another program from EDITOR
(PF13) , 2-1 7

EDITOR, 2-3
LINKER, 3-1
Symbolic Debugger, 5-1
VS Utility program from EDITOR

(PF13), 2-17
work file (PF9), 2-16

Saving work file CPF5), 2-14
Scratch mode, Setting

(PF2/PF3), 2-12
Select Section function of

Symbolic Debugger, 5-3
Set Command menu (PF2), 2-11
Single-St~p trap type, 5-5
Si'.e of linked program,

Maximwn, 3-2
Source listing display (PF12),

2-17

Special menu, Accessing from
main menu (PF16), 2-11

Specifying additional subroutine
libraries to link, 3-6

Specifying linked output
program, 3-6

Specifying pr.ogram modules to
link, 3-6

Specifying range of lines, 2-5
Statement Breakpoint trap type,

5-4
Static section

contents of, 4-2
information in Link map, 3-9
naming conventions for, 4-2

Subroutine libraries, Linking
several, 2-18, 3-6

Suppression of LINKER output,
3-12

Symbolic block
contents of, 5-1

Symbolic debug information
including, 4-3
removing from file, 3-4
result of removing, 4-3

Symbolic Debugger
example, C-1
how it works, 5-1
running, 5-1

Symbolic section of program
file, 4-3

T

Tabs
defaults (PF2/PF2), 2-11
setting (PF2/PF2), 2-11

Temporary file, 2-2
Terminating EDITOR processing

(PF16), 2-18
Trap

Index-4

clearing, 5-3
function of Symbolic

Debugger, 5-4
modification type, 5-4
Single-Step type, 5-4
Statement Breakpoint type, 5-4

INDEX (continued)

Undefined symbols, Link map, 3-9
Using the Symbolic Debugger,

Requirements for, 5-2
Utility program, Running from

EDITOR CPF13), 2-17

w

Work file
assembling CPF9, PFlO), 2-16
compiling CPF9, PF10), 2-16
definition, 2-1
initial name of, 2-2
printing (PF15), 2-17
renumbering (PF7), 2-15
replacing (PF6), 2-14
running (PF9), 2-16
saving (PF5), 2-14

Workstation defaults, Setting
(PF2), 2-11

x

Xcopy screen (EDITOR) (PF8), 2-15

Index-5

WANG Customer Comment Form Publication Number ____ s_o_o_-1_3_0_7_-_0_3

Title _____ v_s_P_R_O_G_R_A_M_D_E_V_E_L_O_P_M_E_N_T_T_O_O_LS_R_EF_E_R_E_N_C_E

Help Us Help You ...

We've worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell us!
Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us
know how you feel.

How did you receive this publication? How did you use this Publication?

0 Support or 0 Don't know 0 Introduction 0 Aid to advanced
Sales Rep to the subject knowledge

0 Wang Supplies 0 Other 0 Classroom text 0 Guide to operating
Division (student) instructions

0 From another 0 Classroom text 0 As a reference
user (teacher) manual

0 Enclosed 0 Self-study 0 Other
with equipment text

Please rate the quality of this publication in each of the following areas.

EXCELLENT GOOD FAIR POOR

Technical Accuracy - Does the system work the way the manual says it does? 0 0 D 0

Readability - Is the manual easy to read and understand? 0 0 D 0

Clarity - Are the instructions easy to follow? 0 0 D 0

Examples - Were they helpful, realistic? Were there enough of them? 0 0 D 0

Organization - Was it logical? Was it easy to find what you needed to know? 0 0 D 0

Illustrations - Were they clear and useful? 0 0 D 0

Physical Attractiveness - What did you think of the printing, binding, etc? 0 0 D 0

VERY
POOR

0

0

0

0

0

0

0

Were there any terms or concepts that were not defined properly? 0 Y 0 N If so. what were they? ________ _

After reading this document do you feel that you will be able to operate the equipment/software? 0 Yes 0 No

0 Yes, with practice

What errors or faults did you find in the manual? (Please include page numbers) ------------------

Doyouhaveanyothercommentsorsuggestions? _____________________________ _

Name __________________ _ Street ____________________ _

Title ___________________ _
CitY--------------------~

Dept/Mail Stop ____________ _ State/Country ________________ _

Company _________________ _ Zip Code _____ Telephone ________ _

Thank you for your help.

All comments and suggestions become the property of Wang Laboratories. Inc. Printed in U.S.A. 14-31 40 10-82-5C

WANG

Fold

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 16 LOWELL. MA

POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.
CHARLES T. PEERS, JR., MAIL STOP 1226A
ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01861

Fold

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

WANG

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

TEL. (617) 459-5000
TWX 710-343-6769, TELEX 94-7421

Printed in U.S.A.
800-1307-03

10-83

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	4-01
	4-02
	4-03
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	G-01
	G-02
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	replyA
	replyB
	xBack

