. - '
VS Cobol

Quick Reference Guide

VS Cobol
Quick Reference
Guide

5th Edition — May 1984
Copyright © Wang Laboratories, Inc., 1979, 1984
800-6200-05

WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL. MA Q1851 @ TEL (617) 459-5000. TWX 710-343-6769. Telex 94-7421

DISCLAIMER OF WARRANTIES
AND LIMITATION OF LIABILITIES

The staff of Wang Laboratories, Inc., has taken due care in preparing this manual.
However, nothing contained herein modifies or alters in any way the standard
terms and conditions of the Wang purchase, lease, or license agreement by which
the product was acquired, nor increases in any way Wang’s liability to the customer.
In no event shall Wang or its subsidiaries be liable for incidental or consequential
damages in connection with or arising from the use of the product, the accompany-
ing manual, or any related materials.

SOFTWARE NOTICE

All Wang Program Products (software) are licensed to customers in accordance
with the terms and conditions of the Wang Standard Software License. No title or
ownership of Wang software is transferred, and any use of the software beyond the
terms of the aforesaid license, without the written authorization of Wang, is
prohibited.

WARNING

This equipment generates, uses, and can radiate radio frequency energy and, if not
installed and used in accordance with the instructions manual, may cause interfer-
ence to radio communications. It has been tested and found to comply with the
limits for a Class A computing device, pursuant to Subpart J of Part 15 of FCC
rules, which are designed to provide reasonable protection against such interference
when operated in a commercial environment. Operation of this equipment in a resi-
dential area is likely to cause interference, in which case the user, at his own
expense, will be required to take whatever measures may be required to correct the
interference.

INTRODUCTION

The VS COBOL Quick Reference is a guide intended for experienced COBOL program-
mers. It provides the syntax and program information you need to use the Wang VS COBOL
compiler 3.8.4 or greater.

VS COBOL Language Syntax contains the general formats for the four program divisions.
It also gives the formats for specific paragraphs and entries.

VS COBOL Statement Formats give the statement syntax used by the VS COBOL compiler.
General formats for identifier, qualification, and conditions are also given. A glossary of
terms is appended.

The guide also includes a list of VS COBOL Reserved Words, Hexadecimal To Decimal
Conversion, Powers of 2 and 16, Field Attribute Characters (FACs), and Translation Table.

You need DMS/TX software and VS operating system 6.10 or greater to use DMS/TX state-
ments. You aiso need VS operating system 6.20 or greater and any VS system, except
VS 50 or VS 80, to use Relative Files.

For more information regarding syntax and general rules, consult the VS COBOL Reference
Manual (800-1201).

TABLE OF CONTENTS

VS COBOL Language Syntax

Language Conventions e 1
Identification Division 2
Environment DivisSion 2
FileControl Entry 3
Consecutive File Organization et 3

Indexed File Organizationo .. 3

Relative File Organization 4
Sort-Merge File Organization 4

Data DiviSIoNn . ..o 4
FileDescription Entry 4
Data and 77-Level Description Entry 6
Record Description Entry for Workstation Screen 6
Procedure Division 7
Declarative SENtENCE oot 8

VS COBOL Statement Formats

APt . 8
Add .. 8
AT e 9
Call .. 9
CloSE . . o 9
COMPULE . .. 9
CODY v e 10
Delete . .. 10
Display . . e 10
Displayand Read 10
DiVIde . .. 10
ENer .o 11
EXIt .. 11
EXit Program 11
FrEe . e 11
GO 0 . e 12
Hold . . .o 12
O 13
INSPECt . . 14
Merge . 15
MOV . oo 15
MURIDlY . 16
PN . . 16
Perform . . e 17
Read 18
Ready TraCe 19
Release 19
Reset Traceo 19
Return .. e 19

ReWrite . . . 19

Rollback 20
SearCh . . . 20
St . 21
SOt 21
Start .. 21
oD . o o 22
NG . . o 22
SUDIaCt 23
UNString . oo 23
W . 23
General Formats for Conditions 24
Miscellaneous Formats 25
GIOSSANY 27
VS COBOL ReservedWords 32
Hexadecimal to Decimal Conversion 35
Powersof 2and 16 36
Field Attribute Characters. i, 37
Translation Table 38

vi

VS COBOL Language Syntax

VS COBOL LANGUAGE SYNTAX

Language Conventions
The following conventions are used in this section:

Capitalized or uppercase words are reserved words and have preassigned meanings in
COBOL. This does not apply to words in quotation marks.

Underlined reserved words are key words and must be used when that portion of the format
is used. Optional reserved words are not underlined.

LI YRR T AT LT

The characters '+, L > =" or equivalent reserved words, although not
underlined, are required within the chosen formats.

Words printed in lowercase letters represent information to be supplied by the programmer.

Brackets “[] indicate an optional portion of the format.
Braces “[] " indicate that one of the options within the braces must be selected.
When choice indicators, [| |], enclose a portion of a general format, one or more of the

unique options contained within the choice indicators must be specified, but a single option
may be specified only once.

Options are stacked vertically within the brackets or braces. If one option within the brackets
or braces contains only reserved words that are not underlined, that option is the default
option.

An ellipsis . . " indicates a unit may be repeated. A unit is either a single lowercase word or
a group of lowercase and reserved words enclosed in brackets or braces.

Entries shaded in light gray are treated as comments by the VS COBOL compiler and serve
documentation purposes only.

Entries shaded in dark gray are VS extensions to ANSI COBOL.

The COBOL source-program reference format, which defines the permissible locations of
COBOL code on a line of text, is:

Margin Margin Margin Margin Margin
L C A B R
| I | I
1 2 3 4 5 6 7 8 9 10 | 11 12 | 13 EEE 72
a's ~N Y '
Sequence Number Area Indicator Area Area A Area B

VS COBOL Language Syntax

General Format for the Identification Division
IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] . . .]
[INSTALLATION. [comment-entry] . . .]
[DATE-WRITTEN. [comment-entry] .. .]
[DATE-COMPILED. [commgnt-entry]...]
[SECURITY. [comment-entry]. . .]

General Format for the Environment Division

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. WANG-VS [WITH DEBUGGING viODE].

WORDS
OBJECT-COMPUTER. WANG-VS | MEMORY SIZE integer CHARACTERS
MODULES

[PROGRAM COLLATING SEQUENCE IS alphabet-name |.

SPECIAL-NAMES.
SWITCH-n [IS mnemonic-name]

ON STATUS IS condition-name-1 [OFF STATUS IS condition-name-2 |
QOFF STATUS IS condition-name-3 [ON STATUS IS condition-name-4 |

NATIVE

alphabet-name IS {MRD_}]

L

[CURRENCY SIGN IS literal-1]
[DECIMAL-POINT IS COMMA |.

INPUT-OUTPUT SECTION.
FILE-CONTROL. [file-control-entry]
I-O CONTROL.

[RERUN [ON file-name-1] EVERY integer-1 RECORDS OF file-name-2 |

B]

VS COBOL Language Syntax

RECORD
SAME |SORT AREA FOR file-name-3 { file-name-4]
SORT-MERGE

File Control Entry:

Consecutive File Organization

SELECT file-name
“DISK”

ASSIGN TO “parameter-reference-name” DlSP_LAY _
“PRINTER”

“TAPE”
[ORGANIZATION IS SEQUENTIAL |

SEQUENTIAL

ACCESS MODE IS - -

[FILE STATUS IS data-name-2 |

Indexed File Organization
SELECT file-name

ASSIGN TO “parameter-reference-name” [“DISK” | [HEBISEIAN
ORGANIZATION IS INDEXED

SEQUENTIAL
ACCESS MODE IS RANDOM RECORD KEY IS data-name-1
DYNAMIC

[ALTERNATE RECORD KEY [HiB88I 'S data-name-2
[WITH DUPLICATES |

[[IIEEERE 1S | data-name-3

[WITH DUPLICATES]] .. .]

[FILE STATUS IS data-name-4 |

RESERVE integer-3 ARER
AREAS

VS COBOL Language Syntax

Relative File Organization
SELECT file-name

ASSIGN TO “parameter-reference-name” [“DISK" | [NODISPLAY]

AREA
AREAS

RESERVE integer-1 [

'ORGANIZATION IS RELATIVE

SEQUENTIAL [RELATIVE KEY IS data-name-1]

ACCESSMODE (3 {—RANDOM} RELATIVE KEY IS data-name-1

DYNAMIC

[FILE STATUS IS data-name-2]

e -

Sort—Merge File Organization
SELECT file-name
“DISK”

ASSIGN TO “parameter-reference-name”] [NODISPLAY |
“TAPE”

General Format for Data Division

DATA DIVISION.

[FILE SECTION.

[file-description-entry |

[record-description-entry } ...]. ..
[WORKING-STORAGE SECTION.
[77-level-description-entry] . . .

[record-description-entry] .. .]

[LINKAGE SECTION.

[77-level-description-entry] . . .

[record-description-entry | . . .]

File Description Entry:

Format 1
ED file-name

D
BLOCK CONTAINS [integer-1 TO] integer-2 BECORDS
CHARACTERS

VS COBOL Language Syntax

[RECORD CONTAINS [integer-3 TO | integer-4 [[EOMBRESSER] CHARACTERS |

/
LABEL RECORD IS
RECORDS ARE

4

FILENAME IS

LIBRARY IS

VOLUME IS

VALUE OF <{ |SPACEIS
POSITION IS
INDEX AREA IS

DATA AREA IS

5 \
DATA RECORD IS
i RECORDS ARE

[CODE-SET IS alphabet-name | .

Format 2

SD file name

[RECORD CONTAINS [integer-2 TO] integer-3{[IEOMPRESSED] CHARACTERS |

STANDARD
OMITTED

data-name-1 T
literal-1

data-name-2
literal-2

data-name-3
literal-3

data-name-4 $
data-name-5
data-name-6
data-name-7

P

/ -

} data-name-11 [data-name-12]. .]

[m {MIS } data-name-3 [data-name-4]...

RECORDS ARE

VS COBOL Language Syntax

Data and 77-Level Description Entries:

Format 1
level-number J GA8MAMETL 1 e DEFINES data-name-2]
FILLER
_ o

BINARY
COMPUTATIONAL

PICTURE IS character-string [USAGEIS] < COMP >

PIC DISPLAYVS
DISPLAY

i \INDEX)
[SIGNIS] LEADING [SEPARATE CHARACTER]
TRAILING

SYNCHHONIZED LEFT

SYNC RIGHT

JUSTIFIED RIGHT

JUST

[BLANK WHEN ZERO |

[VAL“E ° {M—}]
[OCCURS integer-1 TIMES ASGENDING KEY IS { data-name-3] . ..
DESCENDING

[INDEXED BY [index-name-1]...].

Format 2

88 condition-name YALUE IS literal-1 JIRELIGE Iiteral-z-I R
VALUES ARE THRU J

VS COBOL Language Syntax

General Format for Procedure Division
PROCEDURE DIVISION [USING data-name-1 [data-name-2]...1].

procedure division body.

Procedure Division Body:

Format 1

| DECLARATIVES.

{ section-name SECTION [segment-number]. declarative sentence.
[paragraph-name. [sentence]...]...]...

END DECLARATIVES.]

[section-name SECTION [segment-number].
[paragraph-name. [sentence]...]...]...

Format 2
{ paragraph-name. [sentence]...]...

VS COBOL Language Syntax

Declarztive Sentence:

USE STATEMENT

Format 1
EXCEPTION
ERROR

USE AFTER STANDARD { } PROCEDURE ON
file-name-1 [file-name-2]. ..
INPUT

OQUTPUT -
1-0

kEXTEND

AL

Format 2

USE FOR DEBUGGING ON {procedure-name-1 [procedure-name-2]. .. } .

ALL PROCEDURES

VS COBOL STATEMENT FORMATS

ACCEPT STATEMENT

Format 1
ACCEPT identifier-1 [identifier-21]. ..

Format 2
DATE
ACCEPT identifier FROM DAY
TIME

ADD STATEMENT

Format 1
app Jdentifier1L jidentifler2] g4 0 tifier-m [ROUNDED]
literal-1 literal-2
[ON SIZE ERROR imperative-statement |

VS COBOL Statement Formats

Format 2

|dent|f|er 1 identifier-Z} [identifier-s]
ihteral 1 literal-2 literal-3 o
GIVING identifier-m [ROUNDED]
[ON SIZE ERROR imperative-statement |

Format 3

(CORRESPONDING
CORR

[ON LZE ERROR imperative-statement |

ADD < } identifier-1 TO identifier-2 [ROUNDED]

ALTER STATEMENT
ALTER [procedure-name-1 TO [PROCEED TO] procedure-name-2] . . .

CALL STATEMENT
CALL literal-1 [USING identifier-1 [identifier-2] . . .]

CLOSE STATEMENT

Consecutive File Organization

REEL WITH NO REWIND
UNIT FOR REMOVAL
CLOSE file-name-1

WITH NO REWIND}

LOCK

WITH NO REWIND]]
file-name-2 FOR REMOVAL
WITH

LOCK

NO REWIND}

L
Indexed and Relative File Organlza!lon
CLOSE {file-name-1 [WITHLOCK]}. ..

COMPUTE STATEMENT

COMPUTE identifier-1 [ROUNDED] = arithmetic-expression
[ON SIZE ERROR imperative-statement |

“w

VS COBOL Statement Formats

COPY STATEMENT
, : OF
COPY file-name IN library-name N volume-name
- literal-1 OF literal-2 — literal-3
ON
SELETE STATEMENT

DELETE file-name RECORD [INVALID KEY imperative-statement]

DISPLAY STATEMENT

DISPLAY 1.dentlf|er-1 !fjentlfler-2
literal-1 literal-2

DIVIDE STATEMENT

“ormat 1

literal-1
[ON SIZE ERROR imperative-statement |

DIVIDE {'dem'f’er'} INTO identifier-2 [ROUNDED]

Format 2

DIVIDE |.dent|fler-1 INTO |ldent|f|er-2}
literal-1 literal-2

GIVING identifier-3 [ROUNDED]

[ON SIZE ERROR imperative-statement |

10

VS COBOL Statement Formats

Format 3
DIVIDE {lfientlfler 1 BY I.dentlfler 2 \
(hteral-1 literal-2 j

GIVING identifier-3 [ROUNDED]

[ON SIZE ERROR imperative-statement |

Format 4

DIVIDE |fjenttf|er-1 INTO lfientmer-z
literal-1 — literal-2

GIVING identifier-3 [ROUNDED]
REMAINDER identifier-4 [ON SIZE ERROR imperative-statement]
Format 5
OVIDE {igentiﬁer-1} By {igentifier-z}
literal-1 literal-2

GIVING identifier-3 [ROUNDED]

REMAINDER identifier-4 [ON SIZE ERROR imperative-statement |

ENTER STATEMENT
ENTER language-name [routine-name J.

EXIT STATEMENT
EXIT

EXIT PROGRAM STATEMENT
EXIT PROGRAM.

VS COBOL Statement Formats

GO TO STATEMENT

Format 1
GO TO [procedure-name-1]

Format 2

GO TO procedure-name-1 | procedure-name-2 | . . . procedure-name-n
DEPENDING ON identifier

OPTION:

12

VS COBOL Statement Formats

IF STATEMENT
Format 1

IF condition THEN

Format 2

|F condition THEN

ELSE

statement-1
NEXT SENTENCE

statement-1
NEXT SENTENCE
statement-2
NEXT SENTENCE

13

VS COBOL Statement Formats

INSPECT STATEMENT
Format 1
INSPECT identifier-1 TALLYING
ALL identifier-3
identifier-2 FOR LEADING literal-1

CHARACTERS
BEFORE INITIAL |fjent|f|er-4
AFTER literal-2
Format 2

INSPECT identifier-1 REPLACING

CHARACTERs By < dentifier-6 BEFOREL |\ imiAL Ifjentlﬂer-7
literal-4 AFTER literal-5

ALL identifier-5 identifier-6
LEADING . BY .
- literal-3 literal-4

FIRST

BEFORE INITIAL |fjent|f|er-7
AFTER literal-5

Format 3
INSPECT identifier-1 TALLYING
ALL identifier-3
identifier-2 FOR LEADING literal-1 }
CHARACTERS

BEFORE INITIAL |F!ent|f|er-4
AFTER literal-2

VS COBOL Statement Formats

REPLACING

CHARACTERS BY |Fient|f1er-6 [BEFORE INITIAL |fient|f|er-7
literal-4 |_ AFTER literal-5

ALL {identifier-5 identifier-6
LEADING . BY <.

literal-3 literal-4
FIRST
BEFORE INITIAL 1dent|f|er 7
AFTER Iteral 5
MERGE STATEMENT
MERGE file-name-1 ON ASCENDING KEY data-name-1 [data-name-2] ...
DESCENDING
ON ASCENDING KEY data-name-3 [data-name-4] ...|...

DESCENDING

[COLLATING SEQUENCE IS alphabet-name]

USING file-name-2 [file-name-3] ...
OUTPUT PROCEDURE IS section-name-1 [{‘T—HMH} section-name-2l }

THRU
GIVING file-name-4

MOVE STATEMENT

Format 1

literal

MOVE {',de“t'f'e”} TO identifier-2 [identifier-31 . ..

15

VS COBOL Statement Formats

Format 7
MOVE CORRESPONDING identifier-1 TO identifier-2
CORR
MULTIPLY STATEMENT
Format 1
identifier-1) .
MULTIPLY {I't » } BY identifier-2 [ROUNDED]
iteral-

[ON SIZE ERROR imperative-statement |

Format 2

MULTIPLY 1fjentmer-1 BY lgentlfler-2
literal-1 literal-2

GIVING identifier-3 [ROUNDED]
[ON SIZE ERROR imperative-statement |

OPEN STATEMENT

Consecutive File Organization

(INPUT {file-name-1] ...
OUTPUT [file-name-2} ...
OPEN < |-O [file-name-3} ...

\EXTEND {file-name-5] ...

Indexed File Organization

rM [file-name-1] ...
OUTPUT (file-name-2} ...
-0 {file-name-3] ...

OPEN <

16

VS COBOL Statement Formats

Relative File Organization

INPUT { file-name-1} ...
OPEN OUTPUT [f!Ie-name-2}
-0 {file-name-3]) ...
EXTEND {file-name-4] ...
PERFORM STATEMENT
Format 1
PERFORM procedure-name-1 THRU procedure-name-2
L THROUGH

Format 2

PERFORM procedure-name-1

!dent|f|er-1 TIMES
integer-1
Format 3

PERFORM procedure-name-1

UNTIL condition-1
Format 4

PERFORM procedure-name-1

identifier-2
VARYING {

literal-2

THRU
THROUGH
[{THROUGH}

index-name- 1 EHOM

THRU
procedure-name-2
LTHROUGH

-

procedure-name-2]

procedure-name-2]

identifier-3
index-name-2
literal-1

{ldennfler-4} UNTIL condition-1

17

‘VS COBOL Statement Formats

READ STATEMENT
Consecutive File Organization

Format 1

READ file-name [NEXT] RECORD [[MMlITEIEOEDY | INTO identifier]
[AT END imperative-statement]

Format 2

READ file-name [NEXT] RECORD - [INTO identifier |

INVALID KEY) .
E—— imperative-statement
AT END

Indexed File Organization

Format 1
READ file-name [NEXT] RECORD [WVITHEOEDY [INTO identifier |

[AT END imperative-statement |

Format 2
READ file-name RECORD [MlEIEOED] [INTO identifier]

[KEY IS data-name-3]

VS COBOL Statement Formats

Relative File Organization
Format 1

READ file-name [NEXT] RECORD [WMIFEIEBED] | INTO identifier |
[AT END imperative-statement |

Format 2

READ file-name RECORD [NUIFFIBBER [INTO identifier |

[INVALID KEY imperative-statement |

RELEASE STATEMENT
RELEASE record-name [FROM identifier]

RETURN STATEMENT
RETURN file-name RECORD [INTO identifier] AT END imperative-statement

REWRITE STATEMENT

Consecutive File Organization

Format 1
REWRITE record-name [FROM identifier]

19

VS COBOL Statement Formats

Indexed and Relative File Organization
REWRITE record-name [FROM identifier]

[INVALID KEY imperative-statement]

SEARCH STATEMENT
Format 1
identifier-2
SEARCH identifier-1 VARYING
index-name-1
[AT END imperative-statement-1]

imperative-statement-2

NEXT SENTENCE
imperative-statement-3

NEXT SENTENCE o

WHEN condition-1

[WHEN condition-2

Format 2
SEARCH ALL identifier-1 [AT END imperative-statement-1]

IS EQUAL TO} identifier-3

data-name-1 {'S literal-1
i =
WHEN arithmetic-expression-1
condition-name-1

IS EQUAL TO
data-name-2 IS =
AND a

condition-name-2

(identifier-4
literal-2
arithmetic-expression-2

imperative-statement-2
NEXT SENTENCE

20

VS COBOL Statement Formats

SET STATEMENT
Format 1
identifier-3
identifier-1 [identifier-2] ... aentit
SET) . TO index-name-3
I index-name-1 [index-name-2]
integer-1
Format 2
P BY identifier-4
SET index-name-4 [index-name-5]... {B_OV—VT\J ﬂ} {:n?engle‘re-; }
SORT STATEMENT
SORT file-name-1 ON SCENDING KEY { data-name-1] ...
DESCENDINGw
ASCENDING KEY {data-name-2] ... | ...
DESCENDING

[COLLATING SEQUENCE IS alphabet-name]

INPUT PROCEDURE IS section-name-1 l w} section-name-2]

THRU
USING file-name-2 [file-name-3]
OUTPUT PROCEDURE IS section-name-3 [i:SSUGH section-name—4]

GIVING file-name-4

START STATEMENT

VS COBOL Statement Formats

Indexed File Organization

ISEQUAL TO
IS =
| EATER THAN
START file-name KEY [data-name-1] < é %B—‘A—R H > data-name-2
IS NOT LESS THAN
| \IS NOT <
[INVALID KEY imperative-statement |
Relative File Organization
(ISEQUAL TO
IS =
IS GREATER THAN
IS >
START file-name KEY r data-name
[INVALID KEY i-mperative-statement])
STOP STATEMENT
STOP —BUN
literal
STRING STATEMENT
g - identifier-2
. identifier-1 B)
STRING { } ... DELIMITED BY literal-2
— literal-1) .
SIZE
INTO identifier-3

[WITH POINTER identifier-4]
[ON OVERFLOW imperative-statement |

22

VS COBOL Statement Formats

SUBTRACT STATEMENT
Format 1
SUBTRACT J dentifier identifier-2| ErOM identifier-m [ROUNDED |
literal-1 literal-2

[ON SIZE ERROR imperative-statement
Format 2

SUBTRACT IQentlfler-1 xgentnfler-2 . FROM |.dent|f|er-m
literal-1 literal-2 literal-m

GIVING identifier-n [ROUNDED]
[ON SIZE ERROR imperative-statement |

Format 3

CORR

SUBTRACT {CORRESPONDlNG} identifier-1 FROM identifier-2 | ROUNDED]

[ON SIZE ERROR imperative-statement |

UNSTRING STATEMENT

UNSTRING identifier-1

identifier- identifier-3
DELIMITED BY [ALL] i.dentmer 2 OR [ALL] |. entifier
literal-1 literal-2

INTO [identifier-4 [DELIMITER IN identifier-5] [COUNT IN identifier-6]} .. .

[WITH POINTER identifier-7 |
[TALLYING IN identifier-8]
[ON OVERFLOW imperative-statement]

WRITE STATEMENT

Consecutive File Organization
WRITE record-name [FROM identifier-1]

identifier-2 LINE
BEFORE integer LINES
ADVANCING

AFTER

PAGE

23

VS COBOL Statement Formats

indexed File Organization
WRITE record-name [FROM identifier |

[INVALID KEY imperative-statement]

Relative File Organization

WRITE record-name [FROM identifier]
[INVALID KEY imperative-statement |

GENERAL FORMATS FOR CONDITIONS
Condition:

Simple condition

NOT Simple condition

Combined condition

NOT Combined condition

Simple conditions:

Class, Condition-name, Figurative-constant, Modified-data-tag, Relation, Sign, and
Switch-status.

Combined condition:

condition-1 AND condition-2
OR

Relational operator:
IS [NOT] GREATER THAN
IS[NOT] LESS THAN
IS[NOT] EQUAL TO
IS[NOT] <
IS[NOT] >
IS[NOT] =

Class condition:

identifier IS [NOT] {

NUMERIC
ALPHABETIC

24

General Formats

Condition-name and Switch-status condition:

condition-name
Figurative-constant condition:
figurative-constant N l identifier) . IS[NOT] O
OF FAC OF display-item OFF
Modified-data-tag condition:
FAC OF display-item ALTERED

Relation condition:

identifier-1 identifier-2
literal-1 [relational-operator] literal-2
arithmetic-expression-1 arithmetic-expression-2

Sign condition:
POSITIVE
arithmetic-expression IS [NOT | NEGATIVE
ZERO

Abbreviated combined relation condition:

relation-condition {%} [NOT] [relational-operator] object

MISCELLANEOUS FORMATS

QUALIFICATION

Format 1 i
data-n.ame-1 OF data-name-2 |...
condition-name L IN

Format 2

—

paragraph-name {{%} section-name

Format 3

OF
text-name {IN—} library-name volume-name

B

N
(8]

Miscellaneous Formats

SUBSCRIPTING
{data-ln.ame } (subscript-1 [subscript-2 [subscript-3]])
condition-name

INDEXING

data-name index-name-1 [= literal-Z]L
condition-name literal-1)
index-name-2 [= literal-4]

literal-3

| index-name-3 [literal-6)
literal-5

IDENTIFIER
Format 1
data-name-1 [{ } data-name—Z] -+ [(subscript-1 [sUbscript-Z
[subscript-3]])]

Format 2

OF
IN
OF
data-name-1 | data-name-2

(index-name-1 [= literal-2]

literal-1

E
N

F
N

index-name-3 [= literal-6]
literal-5

index-name-2 [=+ literal-4]
literal-3

26

Glossary

GLOSSARY
Alphabet-Name

Area A

Area B

Arithmetic Expression

Character-String

COBOL Word

Comment-Entry

Comment Line

Condition

A user-defined word, in the SPECIAL-NAMES paragraph of
the Environment Division, that assigns a name to a specific
character set and/or collating sequence.

This area occupies character positions 8 through 11 on a line
of a COBOL source program. It is reserved for the beginning
of division headers, section names, paragraph names, level
indicators, and certain level numbers.

This area occupies character positions 12 through 72. It con-
tains all remaining source code in a COBOL source program.

An identifier of a numeric elementary item, a numeric literal,
such identifiers and literals separated by arithmetic operators,
two arithmetic expressions separated by an arithmetic opera-
tor, or an arithmetic expression enclosed in parentheses.

A sequence of contiguous characters which form a
COBOL word, a literal, a PICTURE character-string, or a
comment-entry.

A character-string of not more than 30 characters which
forms a user-defined word, a system-name, or a reserved
word.

An entry in the Identification Division that may be any combi-
nation of characters from the computer's character set.

A source program line represented by an asterisk (*) in the
indicator area of the line and any characters from the com-
puter's character set in area A and area B of the line. The
comment line serves only for documentation in a program.
A special form of comment line represented by a slant (/) in
the indicator area of the line and any characters from the
computer’s character set in area A and area B of that line
causes page ejection prior to printing the comment.

When the term ‘condition’ (condition-1, condition-2, . . .)
appears in these language specifications in or in reference to
‘condition’ (condition-1, condition-2, . . .) of a general format,
it is a conditional expression consisting of either a simple
condition optionally parenthesized, or a combined condition
consisting of the syntactically correct combination of simple
conditions, logical operators, and parentheses, for which a
truth value can be determined.

27

Glossary

Condition-Name

Data Item

Data-Name

Declarative Sentence

Display-Item

Figurative Constant

File-Name

Hexadecimal Value

Identifier

Imperative Statement

Implementor-Name

A user-defined word that assigns a name to a subset of
values that a conditional variable may assume; or a user-
defined word assigned to a status of an implementor-defined
switch or device. When ‘condition-name’ is used in the gen-
eral formats, it represents a unique cata item reference
consisting of a syntactically correct combination of a
condition-name, together with qualifiers and subscripts, as
required for uniqueness of reference.

A unit of data (excluding literals) defined by the COBOL
program.

A user-defined word that names a data item described in a
data description entry. When used in the general formats,
‘data-name’ represents a word which must not be sub-
scripted or qualified unless specifically permitted by the
rules of the format.

A compiler directing sentence consisting of a single USE
statement terminated by the separator period.

A data-name that is defined within a Record Description
Entry for a Workstation Screen.

Reserved words that are used to name and reference specific
constant values. Specifically, they are zero(s or es), space(s),
high-value(s), low-value(s), and quote(s).

A user-defined word that names a file described in a file
description entry or a sort-merge file description entry within
the File Section of the Data Division.

A hexadecimal value can be either two or four hexadecimal
characters. The hexadecimal value must be enclosed in
quotation marks A hexadecimal character is any of the
characters, ‘0’, L9 or AL L LR

A syntactically correct combination of a data-name, with its
qualifiers or subscripts, as required for uniqueness of refer-
ence, that names a data item. The rules for ‘identifier’ associ-
ated with the general formats may, however, specifically
prohibit qualification or subscripting.

A statement that begins with an imperative verb and specifies
an unconditional action to be taken. An imperative statement
may consist of a sequence of imperative statements.

A system-name that refers to a particular feature available on
that implementor’s computing system.

28

Glossary

Index

Index-Name

Indicator Area

Integer

Language-Name

Level-Number

Library-Name

Literal

Mnemonic-Name

Nonnumeric Literal

Numeric Literal

A computer storage area or register, the content of which rep-
resents the identification of a particular element in a table.

A user-defined word that names an index associated with a
specific table.

This area occupies column seven on a line in a COBOL
source program. It is used to indicate continuation lines and
comment lines.

A numeric literal or a numeric data item that does not include
any digit position to the right of the decimal point. When the
term ‘integer’ appears in general formats, integer must not be
a numeric data item, and must not be signed, nor zero unless
explicitly allowed by the rules of that format.

A system-name that specifies a particular programming
language.

A user-defined word, expressed as a one or two digit number,
which indicates the hierarchical position of a data item or the
special properties of a data description entry. Level-numbers
in the range 1 through 49 indicate the position of a data

item in the hierarchical structure of a logical record. Level-
numbers in the range 1 through 9 may be written either as a
single digit or as a zero followed by a significant digit. Level-
numbers 77 and 88 identify special properties of a data
description entry.

A user-defined word that names a VS COBOL library that is
to be used by the compiler for a given source program
compilation.

A character-string whose value is implied by the ordered set
of characters comprising the string. A literal can be numeric
or nonnumeric.

A user-defined word that is associated in the Environment
Division with a specific implementor-name.

A literal bounded by quotation marks. The string of characters
may include any character in the computer’s character set.

A literal composed of one or more numeric characters that
may contain either a decimal point, or an algebraic sign, or
both. The decimal point must not be the rightmost character.
The algebraic sign, if present, must be the leftmost character.

29

Glossary

Paragraph-Name

Parameter-Reference-Name

Procedure-Name

Program-Name

Record Description Entry

Record-Name

Routine-Name

Section-Name

Segment-Number

Sentence

Sequence Number Area

Statement

Subscript

System-Name

A user-defined word that identifies and begins a paragraph in
the Procedure Division.

A name that identifies a specific GETPARM request.

A user-defined word which is used to name a paragraph or
section in the Procedure Division. It consists of a paragraph-
name that may be qualified or a section-name.

In the Identification Division, a user-defined word that identi-
fies a COBOL source program.

The total set of data description entries associated with a
particular record.

A user-defined word that names a record described in a
record description entry in the Data Division of a COBOL
program.

A user-defined word that defines a procedure written in a
language other than COBOL.

A user-defined word which names a section in the Procedure
Division.

A user-defined word which classifies sections in the Pro-

cedure Division for purposes of segmentation. Segment-
numbers may contain only the characters ‘0’, ‘1, ..., ‘9’
A segment-number may be expressed either as a one or

two digit number.

A sequence of one or more statements, the last of which is
terminated by a period.

This area occupies the character positions 1 through 6 on a
line in a COBOL source program. It consists of six digits in
the sequence area and labels each source program line. The
EDITOR assigns these numbers automatically when the
COBOL source text is entered.

A syntactically valid combination of words and symbols,
beginning with a verb written in a COBOL source program.

An integer whose value identifies a particular item in a table.

A COBOL word which is used to communicate with the oper-
ating environment.

30

Glossary

Table-Name

User-Figurative Constant

Volume-Name

A user-defined word that references a numeric or alpha-
numeric data item whose data description contains an
OCCURS clause.

A user-defined word that is used to name and reference a
hexadecimal character.

A user-defined word that names a VS volume.

31

VS COBOL Reserved Words

VS COBOL RESERVED WORDS

ACCEPT COMPRESSED

ACCESS COMPUTATIONAL

ADD COMPUTE

ADVANCING CONFIGURATION

AFTER CONTAINS
CONTROL

ALL CONTROLS

ALPHABETIC [CONVERSION|

ALSO COPY

ALTER CORR
CORRESPONDING

ALTERNATE COUNT

AND CURRENCY

ARE

AREA

AREAS DATA

ASCENDING

ASSIGN DATE

AT DATE-COMPILED

AUTHOR DATE-WRITTEN
DAY

BEFORE DE

BLANK DEBUG-CONTENTS

BLOCK DEBUG-ITEM
DEBUG-LINE

BOTTOM DEBUG-NAME
DEBUG-SUB-1

BY DEBUG-SUB-2
DEBUG-SUB-3

CALL DEBUGGING

CANCEL DECIMAL-POINT

CD DECLARATIVES

CF DELETE

CH

CHARACTER DELIMITED

CHARACTERS DELIMITER

CLOCK-UNITS DEPENDING

CLOSE DESCENDING

COBOL DESTINATION

CODE DETAIL

CODE-SET DISABLE

COLLATING DISPLAY

COLUMN

COMMA DIVIDE

COMMUNICATION DIVISION

COMP DOWN

DUPLICATES
DYNAMIC

EGI

ELSE

EMI

ENABLE

END
END-OF-PAGE
ENTER
ENVIRONMENT
EOP

EQUAL

ERROR

ESI

EVERY
EXCEPTION

EXIT
EXTEND

FD

FILLE
FILE-CONTROL

FILLER
FINAL
FIRST
FOOTING
FOR

FROM

GENERATE
GIVING

GO
GREATER
GROUP

HEADING
HIGH-VALUE
HIGH-VALUES

VS COBOL Reserved Words

VS COBOL RESERVED WORDS (Continued)

IDENTIFICATION
IF

IN

INDEX
INDEXED
INDICATE
INITIAL
INITIATE

INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INTO

INVALID

-0
[-O-CONTROL
IS

JUST
JUSTIFIED

KEY

LABEL
LAST
LEADING
LEFT
LENGTH
LESS

LIMIT

LIMITS

LINAGE
LINAGE-COUNTER
LINE
LINE-COUNTER
LINES

LINKAGE

LOCK
LOW-VALUE
LOW-VALUES

MEMORY
MERGE
MESSAGE
MODE

MODULES
MOVE
MULTIPLE
MULTIPLY

NATIVE
NEGATIVE
NEXT

NO

NOT
NUMBER
NUMERIC

(OBJECT
OBJECT-COMPUTER

OPTIONAL
OR

/ORDER!
/ORDER-AREA|
ORGANIZATION

OUTPUT
OVERFLOW

PAGE
PAGE-COUNTER
PERFORM

PF

PH
PIC
PICTURE

33

PLUS
POINTER
POSITION
POSITIVE
PRINTING

PROCEDURE
PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID

QUEUE
QUOTE
QUOTES

RANDOM

RD
READ

RECEIVE
RECORD
RECORDS
REDEFINES
REEL
REFERENCES
RELATIVE
RELEASE
REMAINDER
REMOVAL
RENAMES
REPLACING
REPORT
REPORTING
REPORTS
RERUN
RESERVE
RESET

RETURN
REVERSED

REWIND
REWRITE

VS COBOL Reserved Words

VS COBOL RESERVED WORDS (Continued)

RUN

SAME
SD
SEARCH

SECTION
SECURITY
SEGMENT
SEGMENT-LIMIT
SELECT

SEND
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL

SORT-MERGE
SOURCE
SOURCE-COMPUTER
SPACE

SPACES
SPECIAL-NAMES
STANDARD
STANDARD-1
START

STATUS

STOP

STRING
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3
SUBTRACT

SUM

SUPPRESS

SYMBOLIC
SYNC
SYNCHRONIZED

TABLE
TALLYING
TAPE
TERMINAL
TERMINATE
TEXT

THAN

THROUGH
THRU
TIME

TIMES
TO
TOP

TRAILING
TYPE

UNIT
UNSTRING
UNTIL

UP

UPON
USAGE
USE
USING

VALUE
VALUES
VARYING

WHEN

WITH

WORDS
WORKING-STORAGE

34

WRITE

ZERO
ZIEROES
ZIEROS

~ x| +

*
*

InVvA

Hexadecimal to Decimal Conversion

HEXADECIMAL TO DECIMAL CONVERSION

Use this table to convert a hexadecimal number to a decimal number. The place value of
each digit in a hexadecimal number is given in columns one to six. Determine each place
value and then add the decimal values. For example, to determine the decimal equivalent of
hex ABC, find the decimal value of A in the third hexadecimal column (2,560), of B in the
second column (176), of C in the first column (12), and take their sum (2748).

HEXADECIMAL COLUMNS

Sixth Fifth Fourth Third Second First
Hex Dec Dec Dec Dec Dec Dec Hex
0] 0 0 0 0 0 0 0
1 1,048,576 65,536 4,096 256 16 1 1
2 2,097,152 131,072 8,192 512 32 B 2
3 3,145,728 196,608 12,288 768 48 3 3
4 4,194,304 262,144 16,384 1,024 64 4 4
5 5,242,880 327,680 20,480 1,280 80 B 5
6 6,291,456 393,216 24,576 1,536 96 6 6
7 7,340,032 458,752 28,672 1,792 112 7 7
8 8,388,608 524,288 32,768 2,048 128 8 8
9 9,437,184 589,824 36,864 2,304 144 9 9
A- 10,485,760 655,360 40,960 2,560 160 10 A
B 11,534,336 720,896 45,056 2,816 176 11 B
C 12,582,912 786,432 49,152 3,072 192 12 C
D 13,631,488 851,968 53,248 3,328 208 13 D
E 14,680,064 917,504 57,344 3.584 224 14 E
F 15,728,640 983,040 61,440 3,840 240 15 F

35

Powers of 2 and 16

POWERS OF 2 AND 16
POWERS OF 2 POWERS OF 16
Value Exponent Value Exponent
1 0 1 0
2 1 16 1
4 2 256 2
8 3 4,096 3
16 4 65,536 4
32 5 1,048,576 5
64 6 16,777,216 6
128 7 268,435,456 7
256 8 4,294,967,296 8
512 9 68,719,476,736 9
1,024 10 1,099,511,627,776 A
2,048 11 17,592,186,044,416 B
4,096 12 281,474,976,710,656 C
8,192 13 4,503,599,627,370,496 D
16,384 14 72,057,594,037,927,936 E
32,768 15 1,1562,921,504,606,846,976 F
65,536 16
131,072 17
262,144 18
524,288 19
1,048,576 20
2,097,152 21
4,194,304 22
8,388,608 23

36

Field Attribute Characters

FIELD ATTRIBUTE CHARACTERS

DISPLAY HEXADECIMAL
ATTRIBUTES CHARACTERS
BRIGHT MODIFY ALL NOLINE 80
BRIGHT MODIFY UPPERCASE NOLINE 81
BRIGHT MODIFY NUMERIC NOLINE 82
BRIGHT PROTECT ALL NOLINE 84
BRIGHT PROTECT UPPERCASE NOLINE 85
BRIGHT PROTECT NUMERIC NOLINE 86
DIM MODIFY ALL NOLINE 88
DIM MODIFY UPPERCASE NOLINE 89
DiM MODIFY NUMERIC NOLINE 8A
DIM PROTECT ALL NOLINE 8C
DIM PROTECT UPPERCASE NOLINE 8D
DIM PROTECT NUMERIC NOLINE 8E
’7BLINK MODIFY ALL NOLINE 90
BLINK MODIFY UPPERCASE NOLINE 91
BLINK MODIFY NUMERIC NOLINE 92
BLINK PROTECT ALL NOLINE 94
BLINK PROTECT UPPERCASE NOLINE 95
BLINK PROTECT NUMERIC NOLINE 96
BLANK MODIFY ALL NOLINE 98
BLANK MODIFY UPPERCASE NOLINE 99
BLANK MODIFY NUMERIC NOLINE 9A
BLANK PROTECT ALL NOLINE 9C
BLANK PROTECT UPPERCASE NOLINE 0]
BLANK PROTECT NUMERIC NOLINE 9E
BRIGHT MODIFY ALL LINE A0
BRIGHT MODIFY UPPERCASE LINE Al
BRIGHT MODIFY NUMERIC LINE A2
BRIGHT PROTECT ALL LINE A4
BRIGHT PROTECT UPPERCASE LINE A5
BRIGHT PROTECT NUMERIC LINE A6
DIM MODIFY ALL LINE A8
DIM MODIFY UPPERCASE LINE A9
DIM MODIFY NUMERIC LINE AA
DIM PROTECT ALL LINE AC
DIM PROTECT UPPERCASE LINE AD
DIM PROTECT NUMERIC LINE AE
BLINK MODIFY ALL LINE BO
BLINK MODIFY UPPERCASE LINE B1
BLINK MODIFY NUMERIC LINE 82
BLINK PROTECT ALL LINE B4
BLINK PROTECT UPPERCASE LINE B5
BLINK PROTECT NUMERIC LINE B6
BLANK MODIFY ALL LINE 88
BLANK MODIFY UPPERCASE LINE B89
BLANK MODIFY NUMERIC LINE BA
BLANK PROTECT ALL LINE BC
BLANK PROTECT UPPERCASE LINE BD
BLANK PROTECT NUMERIC LINE BE

37

Translation Table

TRANSLATION TABLE

ASCII Printer ASCII Display
Dec Hex Binary Graphics Graphics EBCDIC

5 05 00000101
6 06 00000110
7 07 00000111
8 08 00001000
9 09 00001001

15 oF 00001111

16 10 00010000 a
17 1" 00010001 e
18 12 00010010 i

19 13 00010011 [¢]
25 19 00011001 u
26 1A 00011010 a
27 1B 00011011 e
28 1C 00011100 u
29 1D 00011101 A
35 23 00100011 # #
36 24 00100100 $ $
37 25 00100101 % %
38 26 00100110 & &
39 27 00100111 ’ !

Translation Table

TRANSLATION TABLE (continued)

Dec

76
77
78
79

Hex

2D

2F
30
31

48

4D
4E
4F

Binary

00101101
00101110
00101111
00110001
00110000

00110111
00111000
00111001
00111010
00111011

01000001
01000010
01000011
01000100
01000101

01001011
01001100
01001101
01001110
01001111

ASCI Printer
Graphics

-

mooOm>

ozZr X

ASCII Display
Graphics

mooOw>»

OoOzZzZrx

EBCDIC

—_t ~A -

Translation Table

TRANSLATION TABLE (continued)

ASCII Printer ASCIl Display
Dec Hex Binary Graphics Graphics EBCDIC

85 55 01010101 u u

86 56 01010110 \ Y

87 57 01010111 w %

88 58 01011000 X X

89 59 01011001 Y Y

95 5F 01011111 -

96 60 01100000 —
97 61 01100001 a a /
98 62 01100010 b b

99 63 01100011 c c

105 69 01101001 i i
106 BA 01101010 j i
107 6B 01101011 k k ;
108 6C 01101100 | | %
109 6D 01101101 m m -

115 73 01110011 S s
116 74 01110100 t t
117 75 01110101 u u
118 76 01110110 v v
119 77 01110111 w w

Translation Table

TRANSLATION TABLE (continued)

Dec

Hex

Binary

ASCII Printer
Graphics

ASCII Display
Graphics

EBCDIC

125
126
127
128
129

155
156

158
159

9B
9C
9D
9E

01111101
01111110
01111111
10000000
10000001

10000111
10001000
10001001
10001010
10001011

10010001
10010010
10010011
10010100
10010101

10011011
10011100
10011101
10011110
10011111

33 —x—

Translation Table

TRANSLATION TABLE (continued)

ASCII Printer ASCI| Display
Dec Hex Binary Graphics Graphics EBCDIC

165 A5 10100101 v
166 AB 10100110 w
167 A7 10100111 X
168 A8 10101000 y
169 A9 10101001 z

175 AF 10101111
176 BO 10110000
177 B1 10110001
178 B2 10110010
179 83 10110011

185 B9 10111001
186 BA 10111010
187 BB 10111011
188 BC 10111100
189 BD 10111101

195 c3 11000011 C
196 C4 11000100 D
197 C5 11000101 E
198 Cé6 11000110 F
199 c7 11000111 G

Translation Table

TRANSLATION TABLE (continued)

ASCII Printer ASCII Display
Dec Hex Binary Graphics Graphics EBCDIC

205 CD 11001101
206 CE 11001110
207 CF 11001111
208 DO 11010000)
209 D1 11010001 J

215 D7 11010111 P
216 D8 11011000 Q
217 D9 11011001 R
218 DA 11011010
219 DB 11011011

225 E1 11100001

226 E2 11100010 S
227 E3 11100011 T
228 E4 11100100 U
229 E5 11100101 \

!
|
|
|
|
|
|
|
|
[
I
|
|
|
|
|
|
|
|
|
|
|
!
|
|
I
I
|
!
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|

Title VS COBOL QUICK REFERENCE GUIDE
WANG

Publications Number 800-6200-05

Customer Comment Form
Help Us Help You

We've worked hard to make this document useful, readable, and technically accurate. Did we
succeed? Only you can tell us! Your comments and suggestions will help us improve our
technical communications. Please take a few minutes to let us know how you feel.

Please rate the quality of this publication in each of the following areas.

VERY VERY
GOOD GOOD FAIR POOR POOR
Technical Accuracy — Does the system work the way O O O O |
the manual says it does?
Readability — Is the manual easy to read and O O O O O
understand?
Clarity — Are the instructions easy to follow? O O O O O
Examples — Were they helpful, realistic? Were there O
enough of them?
Organization — Was it logical? Was it easy to find O O a O O
what you needed to know?
Illustrations — Were they clear and useful?
Physical Attractiveness — What did you think of the O O O

printing, binding, etc?

What errors or faults did you find in the manual? (Please inciude page numbers)

Do you have any other comments or suggestions?

Name

Company

Street

City

State/Country

ZipCode_ _ Telephone

Thank you for your help.
Printed in U.S.A. 14-3151 8-83-5C

All comments and suggestions become the property of Wang Laboratories, Inc.

Fold

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 16 LOWELL, MA

POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.
TECHNICAL PUBLICATIONS

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

Attention: Technical Writing Department

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATE=S

Cut along dotted line.

|
|
|
!
[
|
|
|
|
|
I
I
I
|
I
I
I
|
I
|
|
|
!
|
|
I
I
I
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
I
[
|
|
I
|
|
|
|
|
|
|
|
I
[
[
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|

WANG WANG LABORATORIES, INC. To Order by Phone Call

51 Middlesex St. (800) 225-0234

No. Chelmsford, MA 01863 From Mass., Hawaii, and Alaska Call
(617) 256-1400
TELEX 951-743

ORDER FORM FOR WANG MANUALS AND DOCUMENTATION

Customer Number

Bill To
Ship To
Customer Contact Phone
Date Purchase Order Number
Taxable Yes 03 No (1 Tax Exempt Number
Salesperson’s Name EmployeeNo. ___ RDBNo.
Document Number Description QTY Unit Price Total Price
Subtotal
Less Applicable Discount
Authorized Signature
g Date Subtotal
O Check this box if you would like a free copy of the Local Sales Tax
WANG CUSTOMER RESOURCE CATALOG (700-7647) Total Amount

Wang Terms and Conditions

1.
2.

TAXES — Prices are exclusive of all sales, use, and like taxes.

DELIVERY — Delivery will be F.O.B. Wang's plant. Customer will be billed for freight charges; and unless
customer specifies otherwise, all shipments will go best way surface as determined by Wang. Wang shall
not assume any liability in connection with the shipment nor shall the carrier be construed to be an agent of
Wang. If the customer requests that Wang arrange for insurance the cusiomer will be billed for the insur-
ance charges.

PAYMENT — Terms are net 30 days from date of invoice. Unless otherwise stated by customer, partial ship-
ments will generate partial invoices.

PRICES — The prices shown are subject to change without notice. Individual document prices may be
found in the Wang Customer Resource Catalog (700-7647).

LIMITATION OF LIABILITY — In no event shall Wang be liable for loss of data or for special, incidental or
conseguential damages in connection with or arising out the of use of orinformation contained in any
manuals or documentation furnished hereunder.

Printedin U.S.A. 14-3165 12-82-2C

|
|
|
|
|
WANG Ra
|
.
!
-
|
-
|
|-
|
-
|
|
l i
|
| -
|
|
| ———
|
| -
| @
| £
| 8"
Fold I £
| ©
| D~
| 2
s
| " || | NO POSTAGE :3"'
NECESSARY |
IF MAILED .
IN THE |
| UNITED STATES |
L | A
T T AR) |
| eumnecenaea g i | |
P T | oo
| B o s ot] I
BUSINESS REPLY CARD e m— !
e I -~
FIRST CLASS PERMIT NO. 16 LOWELL, MA e e Sousaist O e | |
|
e e ———
POSTAGE WILL BE PAID BY ADDRESSEE | S e e o : _—
T —r—
|
| S e e]
WANG LABORATORIES, INC. I — : -~
Supplies Division S — e =—]
c/o Order Entry Dept. e : o)
M/S 1711 e EEr—— I
TR
800 Chelmsford Street E——————— | —
Lowell, MA 01851 }
! -
|
|
|
|
|

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851
TEL. (617) 459-5000

TWX 710-343-6769, TELEX 94-7421

Printed in U.S A.
800-6200-05
5-84-10M

F -~

