
•

Customer
Eng~n~~ring

D1v1s1on

WANG COMPUTER
SYSTEMS 60 & 80

Volumel

System Introduction

©Wang Laboratories, Inc., 1977

2ND Edition (Reprint) MAY,1982

NOTICE:

This document is the property of Wang Laboratories, Inc.
Information contained herein is considered company
proprietary information and its use is restricted solely to the
purpose of assisting you in servicing Wang products.
Reproduction of all or any part of this document is prohibited
without the consent of Wang Laboratories .

03-0086

WANG : • ., "'"""'" '"'"'· """"· """''"""" m"' "' ~"' "'·'"'· "" "' ..,.,.,. '"'' M· "''

()LABOAATOAIES, INC.

•

November, 1977

PREFACE

The WCS 60 and 80 systems represent a significant departure from

Wang's pre-1977 product lines. At the heart of a WCS 60/80 system,

the 2200VS Central Processor operates on a completely differert set of

concepts. New terminology introduced in this text during the

development of each concept must be understood before details of

2200VS hardware are studied.

Publications for WCS 60/80 Service training/support are grouped

into four categories: l)Pretraining, 2)In-class handouts, 3)a

Post-training package, and 4), Miscellaneous 2200VS documentation.

Pretraining documentation is primarily intended for individuals

scheduled for formal WCS 60/80 training at the Home Office. Each of

the publications in the 'Pre-training package' must be read thoroughly

before the prospective trainee attends class.

Pre-Training Publications:

1. 2200VS, Volume I - System Introductory Manual (CE)

2. 2200VS Progrannners's Introduction (WI..#800-llOlPI)

3. CDC Microcircuits Manual (OEM)

In-class handouts will be used as training aids for daily

classroom and laboratory sessions. The following publications

comprise the 'in-class handouts' package, and must be kept in class.

In-Class Handouts:

1) CP Hardware Manual (CE)

2)

3)

4)

IOP Maeter Processor Manual (CE)

Parallel Workstation IOP Manual (CE)

IOP Teater Manual (CE)

i

5) Hard/Floppy Disk I/O Manual (CE)

6) 2200VS, Volume II - System Installations, Diagnostics, and

Troubl~shooting (CE)*

7) 2200VS, Volume III-P:::-eventive Maintenance (CE)*

R) 2200VS Pre-Installation Guide (Site preparation)*

9) 2200VS Principles of Operation (WL#800-1100PO)

IO) 2200VS Assembly Language Manual (WL#800-1200AS)

11) 2200VS System Progi.·armne:::-' s Guide (WL41800-1103SP)

12) IBM Assembly Language: Student Teltl (IBM #SC20-1646-6)

13) Chaintrain - ·Logic & Troubleshooting Manual (OEM)

14) Chaintrain - Mainten&nce Instructions r1anual (OEM)

15) Chaintrain - Operation instructions Manual (OEM)

16) Chaint=ain - Principles of Ope=~tion Manual (OEM)

17) CDC 75 Meg Disk Manuals (0RM):

a) CDC Sto!'age Module Dr~ve BKl.i.XX-BKSXX

h) CDC BK.4XX-BK5XX Installation & Checkout

c) enc UK4XX-BKSXX Diagrams & Wire Lists

18) CDC 288 Meg Disk Manuals (OEM)

a) CDC Sto=a.gc Modu1.e Drive BK6XX-BK7XX

b) CDC BK6XX-BK7XX Installation & Checkout

19) CDC ~ield Test Unit Manual (OEM)

20) Kannedy Hod. 91CO Vacuum Colur.m Tape Transport Manual (OEM)

21) Kennedy 1-iod. 9219 Formatter tte:m&l (OEM)

22) Schema~:cs for all Wang circuit boa~ds

The Post-training package can be used by those who have already

attended a WCS 60/80 se~inar. These publications are as follows:

Post-Training P&ckage:

1) Model 61V Printer Manual (CE)*

2) Zilog Z-80 Manual (CEiOEM)

3) 2200VS Cobol Language Ref. Manual (WL#800-1201CD)

4) 2200VS Executive Introduction Ms.nual (WL~~800-1105EI)

5) 2200VS BASIC Language Ref. Manual (WL4fo800-XXXX)*

*Not published as of November, 1977.

ii

•

•

6) 2200VS Fil~ M~m.1p,P.mP.nt- Utilities M11n11Rl {WI.f!R00-1300 FM)

7) 2200VS RPG II ~~fol"1~nc~ M.1n11al (Wl.ff.800-XXXX)*

R) C:DC 11'1,,·1k' Tr.,in1.ng M0 m1n1. (r.E/ORM)

9) CDC 'Ho.wk 1 Trainin~ Ml'l1m11l (CF.:/OEM)

The find category is r:-lthF.?r inform.al., and consists of certain

user manuals, dRtR sheetG, product bulletins, competetive profiles,

etc. The prPsent list of trnch publ i.clltinns is aR follows:

Mi.see llaneous Docum1?.nt11ti.on:

1) 2200VS Brochure (Wl,/F700-4507)

2) 2200VS Product ~ulletin - No. 155

3) 2200VS/WCS 60/WCS 80 De.ta Sheet (WJ,/!800-2101, 2201)

4) 2200VS Pedpherals Data Sheet (WL/!800-2102)

5) 2200VS Lnnguages Data Sheet (WL#800-2201)

6) 2260V Ten-Meg11hyte ni.slt Data Sheet (WL#800-XXXX)*

7) 2265V-1 (75-Meg Disk) Data Sheet (Wl.#800-XXXX)*

8) 2265V-2 (2R8-Meg Disk) Data Sheet (WL#800-XXXX)*

9) 2231W-1 (120 cps Matrix Printer) Data Sheet (WL#ROO-XXXX)*

10) 2231W-2 (120 cps Matrix Printer) Data Sheet (WLl800-XXXX)*

11) 2221W (200 cps Matrix Printer) Data Sheet (WL#SOO-XXXX)*

12) 2261W (240 lpm Hatri.x Printer) Data Sheet (WL#800-XXX-X)*

13) 2263V-l (400 lpm Train Printer) Data Sheet (WL#BOO-XXXX)*

14) 2263V-2 (600 lpm Train Printer) Data Sheet (WL#800-XXX:X)*

15) 1209V (1600V)I 9-Track Tape) Data Sheet (WL#800-XXXX)*

16) 220V06 Telecomm1mications Data Sheet (WLf/800-XXX:X)*

Presently, requests for 2200VS documentation 'packages' can only

be honored for prospective WCS 60/80 students.

The remaining 11 items of this memorandum generally describe the

contents of existing and p~oposed 2200VS user manuals •

*Not published as of November, 1977.

iii

1. 2200VS PROGRAMMER'S INTRODUCTION (WL #800-llOlPI)

This manual was previously known as the "8300 System Introduc­

tion". It preserves all of tht! material from the original System

Introduction with the exception of Chapter 1 (general discussion

of system features), which moves to the nP.w "EXF.CIJTIVE JNTRO­

DUCTION TO THE 2200VS" (see next pa~e). New material "'as added

on Data Management functions (file types and access methods,

shared files, P.tc.). Specifically, the manuRl covers the

following topics:

Introductory Concepts

Workstation Characteristics

COl!lllland Processor

System Utilities

Procedure Language

Data Management Functions

2. 2200VS COBOL REFERENCE MANUAL (WL #800-1201CB)

Reference manual for 2200VS COBOL, with material on multiple in­

dexing, additional workstation support features, shared files,

etc.

3. 2200VS PRINCIPLES OF OPERATION (WL #800-llOOPO)

General descriptions of machine architecture, machlne instruction

set, and I/O devices.

4. 2200VS ASSEMBLER LANGUAGE REFERENCE MANUAL (WL #800-1200AS)

Reference text for 2200VS macroassembler.

*Not published as of November, 1977.

iv •

•

5. 2200VS SYSTEM PROGRAMMER'S GUIDE (WL #800-1103SP)

A collection of "all the things you w11nted to know about the

system but were afraid to ask". Included are descriptions of all

super- visor calls (SVC's), system macros, And control blocks.

6. EXECUTIVE INTRODUCTION TO THE 2200VS (WL #800-1105)

A brief, general introduction to major system featur(!S intended

for the edification of management. This manua 1 will incorporate

material from Chapter 1 of the present "8300 Syst~m Intr-oduc­

tion", as well as the 2200VS Product Bulletin, to provide cl':>ar,

simplified discussions of concepts such AS virtual memory, pr.int

spooling, background processing, etc.

7. 2200VS BASIC LANGUAGE REFERENCE MANUAL (WL /fo800-XXXX)*

Reference manual documenting the elusive 2200VS version of BASIC.

8. 2200VS FILE MANAGEMENT UTILITIES (WL #800-1300FM)

Documentation of the CONTROL, DATENTRY, and REPORT utilities.

Oriented towards non-progra111ners who wish to use these utilities

for data entry and report generation.

9. 2200VS SYSTEM MANAGEMENT GUIDE (wt #800-XXXX)*

A manual intended for use by system administrators. l'his manual

covers topics of interest to those responsible for sy~tem admin­

istrative functions, including:

Security (transplanted from "Console Operator's Guide")

File Backup Procedures

Error Reporting and Generating Formatted Dumps

System I/O Error Log

System Performance Evaluation (when is more memory needed,
or another disk, etc.)

v

10. 2200VS SYSTEM OPERATION GUIDE (WL #800-1102SO)

Previously titled "8300 Console Operator's Guide", thh 11anual

covers vArious topics of interest to the system operator, in­

cluding:

Print Spooling

Background Processing

Operational Characteristics of all peripherals

11. 2200VS RPG II REFERENCE MANUAL (WL #800-XXXX)*

Reference Manual for RPG II.

DIRECT ALL COMMENTS ON THIS MANUAL TO THE TECHNICAL WlllTlllG ITAn

OF WANG LABS' CUSTOMER ENGINEERING DTVISION.

*Not published as of November, 1977.

vi

e.

•

•

TAJ31.~; Or CON'i 8NTS

SF.CTION 1 SYSTF.M OVER JlEW

l . l TNTROnTJCHnt!
L. 2 IN'mRACTTVl·: fl!'F.HATION
1 • 3 TIIE 'r.mt'1AN"L> PRocEssorr •
l .4 MULTIPLE USE'll.~i
1. 5 }'lJLTILINGUAL f.V~l.'r.M

1.6 LARr.E ON-l..INt.'. 'li'JLES !'li'lJ.~ MANl\GEMENT FAr.JT.CTIES
1. 7 VIRTU.AL !fEMOHY

1 • 7 • l G£'MERAL

l . 7. 2 ..\DV~NT.i'.GES ANJ) DISADVAtlT.AC.ES OF "VrnTITAL MRttOllY"
1.8 ~:XPA.NDAR ~LT.TY
l. 9 MAJOH PERF.OFHA~O: t,F:4'fURE~

1. lO

l.U
l. 12
l.13
~.14

1. ') .1 :\UTOMt\TTC P~~~RAM ~-i"HARINii
1. u. 2 H!nF.PF.NDENT l/i.' PROCESSORS
l.9.3 AUTOMATT~ DATA COMPA~TlON
1 • ~ .4 Al!T(l'1ATT.C \·11 INT Sl'CiOI.TNG
1. '). 5 13At:KGP.OUND 'PROCESS ING ·
USER CONVENJ.F:'-l<;E F·EATll'llES
1.10 .1 DAit.. E:NT~~;· /FILE M'\lNTEN.4NCE
l. 10. 2 TN'i'P.R.ACTIVE TEX'-:' EnITOR
1 .10. \ INTF.RAr.nrn r.rnur.; FAr.n.ITV
ADDl TIONAi. S'if, i'F.~~ u·,·n.r~~u:s

FIJ.E PFor~·~1']1)N Mm SF.CURIT\'
RELI AB JT.. l 'T'Y
HAiIDW>\lU: -· •::FNflU:.
J .14. l 'l'HF. CENTRAL PROCF.SSINr. n~n (<.:PIT)
1.14.2 I/O PROChSSOffS !lOr'S)
1. v.. 1
1.1/L4
1. t4.)
I . 14. 6
1. 14. 7

WOP.l(~3'i'.AT ION
DISK.S
PR!N-;"ERS
TAVi: Dllt:Vf.
coui.:!JNlCATT.ONS

SECTION 7. SYSTF.M CONCEPTS

1 -· l
1-1
1-2
1-·6
l-7
1-8
1-9
1-· 9
1-ll
1-J.S
) - J .5
1-15
1-16
1-16
1--17
1-17
1-18
1-18
1-19
l-19
1·-19
1-2'2
1-23
1-23
1-24
1-?.5
1-26
1-27
1-30
1-34
l·-35

2. I 2200VS ·- VIRTUAL MF.MORY 2-1
2. t .1 A COMPARISON TO F.XISTING 2200's 2-1
2.1.2 RELATION OF VIRTUAL MEMORY TO PHYSICAL MEMORY 2-2

2. 2 COMPILERS, INTF.RPRETF.RS, A~D ASSEMBLERS 2-1.4
2. 2. 1 COMPILRRS 2·-14
2.2.2 INTERPRETERS 7.-15
2.2.3 ASSEMBLERS 2-16

2. 3 THE I OPERATING SYSTF.H I 2-] 8

vii

SECTION 3 JNTRODUCTION TO 2200VS HARDWARE

'3 . l

3.2

SYSTF.M f\l .. OCI(OVF.RVTF.W
3. 1 . 1 GENERl\L
3.1.2 DATA ORG"NIZATION IN THE 2200VS
THE CENTRAJ, PROCESSOR
3.2.l C.FNFP.AL
3.2.2
3.2.3

Cf<:NTf!A.L PHOC:ESSOR HARDWi\HE DETATLS
INS'l'lHJC.TION SET:J
3. 2. 3. 1 MIC'IWlNSTRUCTION F0l1HA'i TN CONTROL

MEHORY
3. 2. 3. ! MAC~JNE INSTRUCTION FORMAT

3. 2. b. J.NTI•:QRUPTS
3.2.4.l GEN.RR.Al.
3 • 'l. . l• • '} TYPES OF INTERRUPTS

3. 3 Tttr: lNPUT/Oll'l'i.'UT PROCl'~~SOR (iHO PC)
3.3.1 TirG MTC.RO'PROC'RSSO~ (MP)

.1. :·;. l. 1 Rf:Caf.TRT! srRUCTlffi'F.
3. 1.1. 2 ARITHMETIC T,OGTCf\L UNIT (.AUJ)
3.3.1.3 CONTROL MF.MO'R.Y (C:M)

3. 1.?. MAIN MF.MORY RUS/LOGIC
3. 3. j !'1{0CF.!l80R COHMJJNlCATI0N '!tHf; I.liGlG (pen)

3. 3. 3. 1 INPUT /OUTPU'l' TNTn.~RTTP.TWNS
3. 3. ~. 2 I/O TAGK TF.RMINATION/Cm~PI.E'!.'IOt?

3. 3 .4 ffF.VIC:F. .ADAPTER (DI.I Cl~ DA)
3. 3. 5 T~E TOP M'P MICPOT.N:1TRUCT.1JiN 8~T

3 .4 Ml\TN l1m-tO::lY
3. 5 U1~1C STOl1.A.GJ<~ PHYSICAL DF.SCRIPTTON

VOT..l~·W. LARF.L 3. 5. 1

3 • .l. 2
3.).3

VOJ .l~F. TABLE OF COtl'TF.NTS
EXTENTS

SF.CTION 4 WORKS'l'A'l'ION C:H/IRACTERigTICS

4. 1 INTRODTTCTION
4. 2 THE CR'l'

1+. 2. 1 TllE SCREEN AND CUR SO~
4.2.2 SCREEN FORMATTING
4 • 2 • 3 FIELDS
4.2.4 FIELD ATTRI'RUTE CHARACTERS
4. 2.5 TABS
I~. 2. 6 AlID1:0 INDICATORS

4 • 3 TUE KEY BOA JU>
4.3.1 CURSOR POSITIONING KEYS
4.3.2 DATA ENTRY KEYS
4.3.3 SPECIAL KEYS
4.3.4 KEYS COMMUNICATING WITH THE COMPUTER

viii

3-1
J·- l

'.'{ .. (.
1-12
3-20
3-?.P:.

3-·3'.1
3-ld
J ·~1
3··'13
3-46
3-Lin
3--/1 q

3--5'•
3 '.>4
:l ...)5
~- .">5
:i -60
3-·6R
3 .. (,(j

3 . i'.l
3-711
:l·-78
3-78
3-79

h·-l
[~ -]

4·1
4-1
4-2
4-3
l~-5

4-."i
4-6
4-6
4-9
4-lfl
4-11

•

APPENDIX A GLOSSARY A-1

APPENDIX B 2200VS COMMON re's A-33

APPENDIX C UPGR~DING THE WCS/60 A-57

APPENDIX n UPGRADING THE WCS/80 A-58

APPENDIX E CONFIGURATIONS A-59

APPF.NDIX F SPECIFICATIONS A-61

APPENDiiC G 1.260V FIXED/REMOVABLE nISK A-63

APPENnIX H 2265V···l REMOVABLE DISK PACK A-64

APPENDIX I WORK STATTON A-65

APPENDIX J 2261V PRINTER A-66

•
ix

-

1 . l INTRODUCTION

SECTION 1

SYSTEM OVERVIEW

The Wang 2200VS, also known as the 8300, 1s an interactive,

multiuser, general-purpose computer.

Initially, the 2200VS will be offered in t~u packaged systems:

the WCS/60 and the WCS/80. A standard WCS/60 System will include the

2200VS computer with 64K of memory, a 30RK <li8kette drive, a 10 mega­

byte disk drive, one workstation, and a 240 l.pm printer. A standard

WCS/RO will include a 22UOVS comp11i:er with 256K of memory, a 308K

diskette drive, two 75 megabyte disk driveR, a workstation, and a

240-line-per-minute printer. Both sjscems can be expanded with

additional memory, more disks, and mo~e workstations. Both are de­

signed to serve, ev@n in their minimal configurations, as complete

cormnercial data processing systems.

1.2 INTERACTIVE OPERATION

The 2200VS, like al1 previous 2200 systems, is "interactive",

allowing users to connnunicate directly with the system from work­

stations. The system requests user-specified date and provides useful

information in a series of clear, nontechnical prompts displayed on

the workstation screen. Such prompts may ask the user to "fill in the

blanks" with requested data, or select ~ desired item from a number of

displayed options.

Many other systems require the uRe of a complex special language

for issuing instructions to the system and controlling system func­

tions. On the 2200VS, no special language ia required. All system

functions are invoked through a special program called the 'command

processor'. The user simply chooses the desired function from a dis­

played menu, then responds to any subseque~t prompts asking informa­

tion for that function. If the user response is erroneous or insuffi­

cient, the system returns an error message which identifies the

problem, and, in many cases, suggests a possible solution.

1-1

Running a program on any existing 2200 processor is a trivial

tas!.:: The user simply loads the program, then keys RUN and EXECUTE.

On the 2200VS, it is scarcely more complicated. The user simply

chooses the RUN PROGRAM function from the Command Pro~essor Menu, then

typer. in the program name, disk library, and volume in which it is

located (this is the equivalent of performing a LOAD DC operation on

the 2200). When this information is entered, the user keys ENTER to

hegin program execution.

At any point during the execution of a program, a user can in­

terruµt the program by keying HELP. The HELP key is somewhat analo­

~ouu to the HALT/STEP key on the 2200: it temporarily halts program

execution, without destroying any critical information or closing any

files. The program can he resumed from the point of interruption with

a CONTINUE conunand. While a program is interrupted, the user has

access to all system functions. He can, for example, examine the

status of open files cir I/O devices, scratch or rename files, or begin

debug processing. Once these functions are completed, normal execu­

tion of the interrupted progran1 cai:1 be continued.

1.3 THE 'COMMAND PROCESSOR'

All user communication with the 2200VS is carried out by issuing

inte<active 'commands' which direct the Operating System* to perform a

variety of tasks. Commands, selected from a 'Command Processor Menu',

are used to perform such operations as running programs, setting

default parameters, scratching and renaming files, initiating debug

processing, and examining and mod~fying various aspects of the system

status.

In general, if any program parameter is inadvertently omitted or

specified incorrectly, thE! Command Processor simply repeats the appro­

priate screen prompt so that the user may enter the correct value.

The Command Processor has two slightly diff~rent versions of its

menu. The "normal" Cormnand Processor menu is displayed whenever no

program is running at a given work station. The user is therefore

1-2

•
---~--~-------------------

provided inun~diate access to the system upon completion of any pro­

gram, so that a new program or command can be initiated at once. If a

running program is interrupted prior to completion, ~s the result of a

fatal execution error, etc., the Cotrulland Processor displays a modified

Cormnand Processor Menu, which permitB the user to either continue

program execution or cancel the program.

A program cannot be contint1<>d while a selected 'command' from the

modified menu is executing. Nor, can a oecond program be run at the

same work station while the first program is interrupted. In order to

run a new progrum, the current program must be terminated, either

through normal completion or cancellation by the user. For this

reason, the RUN command does not appear in the modified Command

Processor Menu. RUN is replaced by CONTINUE.

The diagram on the following page is a map of the 2200VS/8300

Command Processor. Each circle on the map indicates that some key­

board function takes place; each rectangle on the map represents a

screen that is presented to the user by the Command Processor. The

map takes the workstation operator from LOGON, through all primary

functions of the Command Processor, including the Debug Processor.

Note that certain screens may be invoked by either the Conunand Pro­

cessor or the Modified Command Processor. When the HELP key is used

during a program run, the Modified Command Processor is invoked,

rather than the Command Processor. The Commanrl Processor map should

be used in conjunction with the Programmer's Introduction Manual (WL#

800-llOlPI-01) when familiarizing oneself with the 8300 workstation.

*See Section 2; Introductory Concepts.

1-3

'u1ow
o ... cs.•

'1wow
TAPtl'

1'----.llllLfl

.,,_ ___ HE.LP'

'--r---fll&Lfl

'-.... ~-tt•Lfl 'ATTAC~
IKYlt.E•

START

~ ~

I ,..,,,

l P,...I

,.,.f.' ..

.....

HlLfl

'r.MOW
P.ILI!.• A"D
Dl!.VIC.U
'"UI&.•

'•wow
..._~~~~HILfl IUFFCft

I

POOL.l"G
STATISTICS

u 't.A"C.LL •

'OUM' I •
'AnCLL

SYMBOLS:

WA!'\G 8300 C0:\1'.\'IAND. PROCESSOR

FIGURE 1-1

1-:~

•'

~ @

• @~--~.,~------------------··--------------.J

®

•

• FIGURE 1-1

(Continued)

1-5

'w~"c. uoo
01.•uG 1

'"oc.1.• •O" ,,. , .. " ,.

t p{I,,

..
"' "' :J

1"1

It is important to understand that, although the system can pro­

cess two or more tasks concurrently from several work stations, a

single work station cannot perform two or r:iore tasks concurrently.

Only ~ program or procedure may be run from eRch work station at any

time.

1.4 MULTIPLE USERS

The 2200VS supports multiple workstations; in a WCS/60 configur­

Rtion, a maximum of 16 workstations can be s1.1pported; in R WCS/80, the

maximum is 2lL Each ~·mrkstation can be running its own job concur­

rently with the others. Since eacl1 "job11 is actue.lly a separate

program, such a system is often ref~rred to as e. :multiprograUllling'

system. Of course, since the·L·e is only cine centrRl processor and one

memory, it is not possible for t\·10 or more programs actually to be

executing at P.>:actly the same instllnt. On the 2200VS, all proRrams

share a conunon set of resources. ER.ch program (or some portion of it)

is kept in its own location(s) in memory. The central processor per­

mits each program to run for a short p~riod of time, then interrupts

and permits another program to run for a similar brief period; this

process continues indefinitely, or until all programs terminate.

Because the central proce~scr is fast and is managed efficiently, the

illusion is created that each user'o progr.am is running without in­

terruption, simult1mecusly with ell other programs.

The key to the success of such s scheu..~ is the Operating System

sof t~·1are, which must monEagc the use of connnon resources such as the

central processor, memory, and I/O d~vices, with maximum efficiency.

The 2200VS oper~ting system is designed for such efficiency; it is

designed to guarantee that each user ~·lill have reasonR.ble response

time for his program, and elso en3ure thai: each program runs without

interference from others. The process of sharing R single computer

among many users is called 'distributed processing'. Each user can

proceed exactly as if he had access to his own private system.

1-6

J

•

The 2200VS Operating System imposes no special restrictions on

the types of jobs which can be run concurrently from each work­

station. It is not unlikely, for example, that an installation might

have two or more w~rkstations running a large data entry application,

while other workstations are running an order-entry program, and still

other workstations are being used by programmers for program develop­

ment. Such a system obviously provide~ gr~at flexibility for the

user, who is not forced to purchase sever~l different systems to

perform different jobs.

Typically, in a multi-workstation configuration, one workstation

is designated as the 'system console'. In addition to running normal

programs, the system console provides a second mode of operation in

which it can control a number of special system features not access­

ible from regular workstations, including 'print spooling' and

'background processing', explained in paragraphs 1.8.4 and 1.8.5.

1.5 MULTILINGUAL SYSTEM

Unlike previous 2200 Systems, the 2200VS supports multiple

languages. ANSI COBOL and BASIC, as well as Assembler Language is

currently available. Also unlike previous systems, 2200VS languages

are 'compiled' rather than 'interpreted'.

COBOL, (Common !usiness ~riented ~anguage), is one f the most

popular progranuning languages in use today for connnercial data

processing applications. COBOL programs read like ordinary business

English, yet the language provides· an array of powerful record

formatting, data manipulation, and file handling capabilities which

are particularly important for data processing applications. In part,

also, COBOL's popularity derives from the fact that it is the only

major language subject to an industry-wide standard, administered by

the American National Standards Institute (ANSI).

For the progrannner who wishes to obtain a greater degree of

control over the system and write more efficient programs, the 2200VS

also provides an Assembler language. Since the instruction set of a

1-7

machine defines the complete set of elementary capabilities provided

by the machine, Assembler language provides the prograrnmer with access

to the machine's total repertoire of functions.

The 2200VS Assembler also allows a programmer to define a routine

consisting of ~ serle~ of instructions, and assign a name to the rou­

tine. The name can then be specified (instead of the entire routine)

as a single instruction in a program. Such named routines are called

"macros," and the names assigned to them are called "macroinstruc­

tions .11 Because the 2200VS Assembler permits the definition of

macros, it is also referred to as a 'macroassembler'.

It is important to note that the machine instruction set of the

2200VS contains all instructions available on the IBM 360, along with

most available on the 370. Prograrnmers familiar with IBM 360/370

Assember Language should therefore find 2200VS Assembler easy to learn.

The 2200VS Procedure Language allows users to create special text

files which perfonn many of the operations normally executed inter­

actively by the user at a workstation. Some typical procedures would

be: running two or more programs sequentially, supplying run-time

parameters to a program, and scratching or renaming programs. Proce­

dures can reduce the number of keystrokes and interactions required of

a user who is running a program.

'Compilers', 'Interpreters', and 1 Assembler3' are discussed more

thoroughly in Section 2.

1.6 LARGE ON-LINE FILES/FILE MANAGEMENT FACILITIES

To support applications with large on-line data base require­

ments, the 2200VS supports extensive on-line data storage capacity.

Both the IO-megabyte and 75-megabyte disk units are supported. In a

WCS/60 configuration, the maximum disk storage capacity is 150

megabytes; in a WCS/80, the maximum is 600 megabytes.

1-8

•

•

The 2200VS 'Data Management System' provides a comprehensive disk

file access and maintenance capability. Two types of 'files' are

supported on the system: 'sequential files', in which records are

stored in the order in whi·ch they are written; and 'indexed files', in

which records are stored in order of their key values. In both types

of files, records may be accessed either sequentially or randomly. A

third access mode, dynamic access mode, permits a program to switch

back and forth between sequential and random access on the same data

file.

The indexed file system permits multiple indexes for a single

file. This feature enables a record to be accessed on different keys

for different purposes. An employee record, for example, may be

accessed by employee name for personnel purposes and by employee

number for payroll purposes.

A single file can be shared among several different users.

Several users may therefore perform updates and/or inquiry operations

on a conanon file concurrently. In data entry applications, for ex­

ample, all operators can directly update a single master file. The

additional steps of creating temporary files for all operators, and

then merging them together are therefore eliminated.

The 'Data Management System' is discussed in more detail in

Section 2.

1.7 VIRTUAL MEMORY

1.7.1 GENERAL

To understand the need for virtual storage, one must first

understand the characteristics and shortcomings of conventional real

storage management .

1-9

When a program is entered into a computer, it must be tailored by

the progranuner to fit within the confines of that computer's physical

(real) memory. Secondly, the memory space taken up by that program

must be allocated in one piece. Other data or programs cannot be

allocated to the same section of real memory. If a program requires

(for example) 50,000 bytes of real storage, but during execution uses

only 12,000 bytes actively, the remaining 38,000 bytes of real storage

are effectively wasted. If a program is too large to fit into the

available memory, it must be broken up into a series of modules, or

overlays, each of which is small enough to fit in memory. Similarly,

if there is not enough memory to hold all of the data used by a pro­

gram, special pr~cedures must be written into the program to handle

the data in smaller chunks.

To further complicate problems, Operating System routines also

take real memory space. Real storage tends to become 'fragmented';

that is, a condition occurs where there are many unused storage loca­

tions, but these are spread out all through real memory, and there is

no single piece of contiguous storage large enough to meet a current

demand for real memory space.

Finally, if a memory upgrade is purchased, programs must be re­

vised, sometimes extensively, to take advantage of the added memory.

The net effect of these considerations is that programs must be de­

signed to meet the restrictions imposed by a particular machine,

rather than to most efficiently deal with the problems these machines

are intended to solve.

To provide efficient management of real storage space, memory

allocation responsibilities must be taken away from the user. In the

2200VS, this management function is performed by the Operating System.

The process by which blocks of program address space are placed

in ('bound' to) a computer's real storage space for execution is

called 'relocation'. The 2200VS uses a 'dynamic relocation' process

1-10

•

as the foundation for its virtual memory system. Indeed, one of the

most important features of the 2200VS is its 'virtual memory' system.

Tha term 'virtual memory' more specifically refers to a technique of

memory management fr which the Operating System uses disk storage as

an extension of physical memory, automatically ensuring that only

those sections of a program and its associated data which are

frequently referred to or 'referenced' during program execution are

kept in physical memory; less frequently referenced sections are kept

on disk until needed.

1.7.2 ADVANTAGES AND DISADVANTAGES OF "VIRTUAL MEMORY"

Virtual memory can best be explained by comparison with many

larger computer systems (i.1 the 2200VS's price range) that do not have

virtual memory capability. On previous 2200 models, if a programmer

wrote a program that exceeded the total available real memory space,

he would have had to carefully break the program into a series of

modules, or overlays, each of which would have been small enough to

~ fit in real memory. As previously stated, this procedure involves the

addition of special software (a 'procedure') to control the overlay

•

process.

On a multiprogramming system, where several users share the same

physical memory, this problem becomes even more complex. Each user

muAt know how much of the total memory is available to him. One

solution is to divide the total memory into a number of 'partitions'

of fixed size, and give each user his own partition. Such systems are

called fixed partition systems. They are simple but inefficient,

since when a user is not using his entire partition, the unused

portion remains vacant, even if a user in another partition requires

more memory for his application. A refinement of this technique,

called dynamic partitioning makes more efficient use of memory by

expanding or contracting the size of each user's partition as his

memory requirements increase or decrease (subject, of course, to the

requirements of other users). Partitioning systems have commonly been

1-11

used on minicomputers (such as certain DEC systems). An alternA ive

to partitioning uaed on some systems is swapping. In n system that

employB swapp·;ng. each user has access to all of ::he available real

memory. The system man~ges this by swapping entire programs in and

out of memory from the disk. Each program is brought into memory,

permitted to run for a brief interval ('time slice'), and then is

swapped out while another progrn111 tcikes its place in r.•.:.nory. One

example of a competitive system which 'J!.:Uizc::; swappillg is the IBM

System 34.

These systems sd 11 share ti.10 ser1ous inefficiencies:

1. !hey i'o1·ce the prog•ammer to tailo:- programs to fit the

available memory.

2. TI1ey :-equ1;:-e i:he user to modify his softwe;:-e in order to

tak~ advantage of additional memory.

These dra~backa are eliminated with a virtual memory system.

In a vi::-tua] memory s:1ster.1, the Operating System (rather than the

prograunner) auto'l'.atical 1.y pei'.'forms ::he fun:..:tion of fitting a program

to the available rea:!. .-nemory space. The Opr:!i'.'atir.g System accomplishes

this task b:,1 fi'r8i: ciividing the a\:ailab1e ph;;sicE:l memory into a

number of fi}~ed··i>iz2 'page frames'. Or. the 2200VS, each page frame is

2K bytes in size; th~E ci 64K system would he divided into 32 page

frames. 'i'he pr~ adciress sp_~ is co•·responcl:i.ngly divided into a

number of pages, also 2K bytes in size. When progra:.--i t:'xecution

begins, the Op~:-ating System loads th!'? fj_r:;t page of the i-:rogram into

an availabl~ PtiE~ frame (2K block) in physical memory. Other page

frames may he loacled with the 'first pages' from other programs. If

additional p.:ig~ fnimes o9re .waiiahle, the system loads in as many

pages of the prograr.ia as there are available page frames in memory.

1-)2

As program execution proceeds, reference may be made (either

through the normal sequence of execution or as the result of a branch)

to a section of the program not currently located in physical memory.

When such a reference occurs, the system automatically interrupts

program execution. It then locates the referenced page in virtual

memory (on disk), loads that page into an available page frame in

physical memory, and resumes execution of the program. This entire

process takes place automatically without the user's intervention or

knowledge.

Because the Operating System automatically handles the job of

overlaying each program and transferring pages in and out of memory as

necessary, the amount of physical memory available does not impose any

constraint on the program size. The programmer can write his program

to meet the needs of the application most efficiently, without regard

for the size of that program or the physical characteristics of the

system.

The total amount of virtual memory accessible to each user on the

2200VS is one megabyte. Each user has, in effect, his own

one-megabyte computer. So long as his program and its associated

variable data do not exceed one million bytes in size, there is no

need to break it into overlays. Note that the one megabyte figure for

each user's accessible virtual memory space is constant, and is ~

dependent upon the amount of physical memory available, nor upon the

number of users on the system. A 64K system with 16 users provides

each user with one megabyte, as does a 512K system with only four

users.

Although the amount of memory accessible to each user does not

vary with the physical memory size or number of users, the system's

response time is affected by these factors. The system guarantees

each user one megabyte of virtual memory by keeping all unreferenced

program pages on a disk, and storing only as many of these pages in

physical memory as there are available pRge frames. If there are many

1-13

users on the system and relatively little physical memory, the total

number of pages from each program which can be kept in memory at any

time will be smRll. In this case, the 3y~tem must spend a good deal

of time transferring pages in and out of memory as program execution

proceeds. (Bat even in this situation, a virtual memory system would

still offer better performance than either a partitioning or a

swapping system.) Since the disk I/O operations involved in page

transfers are relatively slow compared to actual execution time once a

page is in memory, inadequate memory with too many users can degrade

syntem performance.

Conve:.:r.e ly, whenever a memory upgrade is purchased in a virtual

memory system, all programs expP.rience an immediate improvement in

response time with~ changes in the software itself. In other types

of systems, such performance improvement may be innnediate, or may

require software modification. Virtual memory is the only system

which guarantees automatic performance improvement without software

modification when more memory is added.

In summary, 2200VS ~,.rtual memory offers the following advantages:

1. Allocs.tion of memory is managed among several users more

efficiently than other, less sophisticated memory management

techniques.

2. Each user is provided with access to a one-million-byte

virtual memory (~ Meg program address space, ~ Meg

modifiable data space) ..

3. Program size is made independent of memory size. Programs

can be designed to meet the needs of the application, not

the restrictions of a pnrticular machine. The same programs

will run on other 2200VS systems with different memory

configurations.

4. Memory upgrades will automatically improve performance,

without requiring modifications to existing software.

1-14

'I

•

1.8 EXPANDABILITY

The modular design of the 2200VS permits it to be readily

expanded with additional physical memory, more disks, and additional

workstations and printers. (Expansion can be carried out with no

impact on existing software.)

A WCS/60 configuration can be expanded from the minimum 64K of

memory to a maximum of 256K, in 64K increments. Disk capacity can be

increased from the minimum 10 megabytes to a maximum of 150 mega­

bytes. Up to 16 additional workstations can be added (for a total of

17). High-performance printers are also available.

A WCS/80 configuration can be expanded from the minimum 256K of

memory to a maximum of 512K, with rlisk storage expandable from 150

megabyt~s up to 600 megabytes. The WCS/80 can support up to 23

workstations.

The user with distributed data processing requirements can

therefore, purchase several system configurations of differing size

and complexity, and utilize a connnon set of application software on

all systems.

1.9 MAJOR PERFORMANCE FEATURES

In addition to those already mentioned, the 2200VS provides a

diversity of features designed to increase total throughput and

improve system performance. Among these are: automatic program

sharing, independent I/O processors, automatic data compaction,

automatic print spooling, and background processing.

1.9.1 AUTOMATIC PROGRAM SHARING

When two or more users are running the same program at the same

time, it would be wasteful to keep a separate copy of the program in

memory for each uaer. To avoid such duplication, the system auto-

1-15

matically causes several users to share the same copy of a program in

memory whenever possible. The amount of memory saved by this feature

can be sl\bstantial when, for example, a number of users are running a

large data entry program, or several programmers are compiling COBOL

programs. ?1ogram sharing also improves performance for all users by

reducing the total number of pages which must be transferred in and

out of memory.

1.9.?. INDEPENDENT I/O PROCESSORS

Most commercial application programs spend R good deal of their

time perfo:.wing I/O operations, such as readin3 and writing disk

files, or sending output to a printer. On the 2200VS, I/O operationn

are handled b~· independent I/O processor-s, which control the t;..·ansfer

of data between memory and the various I/O deviceij. When a program

requests an I/O operation, the central processor notifies the nppro­

priate I/O processor, supplies it with any necessary info:-mation, then

ti>r-ns its attention to other processing while the I/O operation is

carried out. Because each I/O processor can transfer information

directly ~o or from memory without central processo~ involvement

(i.e., 'Di7ect Memory Access -DMA'), the central processfJr is able to

perfor.n inte;:-nai p.:ocessing concurrently with I/0 op2rations. This

overlap of I/O processing and internal procest-ii-:ig guarantees that

maximum une is made of the central proce3sor, and increases overall

system throughput.

1. 9. '.1 AD'i'OMA'i'IC DATA COMPACTION

To conserve disk storage and hasten da~a transfer, the system

provides au o~tion to compress data records automatically before

storing them on disk. In the compaction p'i.'or..ess, cha;:acterc which are

repeated three or more times in sequence are a~ored as a single

character and a repetition count. Data compaction is performed

automatically on all print files, and is performed on a data file if

the :•compTessed records" option is specified 1·;he11 the file is

1-16

•
.,

•

created. Compressed records are automatically expanded to their

original format by the system when they are read back into memory,

making the entire comr-~ction process completely transparent to the

user's software. Data compaction can reduce the disk storage

requirements of many files up to 50% and contributes to improved

performance by reducing the total number of characters which must be

transferred between disk and memory for each record access.

1.9.4 AUTOMATIC PRINT SPOOLING

Print spooling is a technique by which a job scheduled for

printing is temporarily stored in a disk file rather than being sent

directly to the printer. The 'Print files' thus created on disk are

placed in a print queue under the control of the system console. When

a printer becomes available, each job is then printed in the order

determined by the print queue. Print spooling has the dual benefit of

freeing individual workstations from dependence upon printer avail­

ability, and enabling the printers to be efficiently scheduled.

In most installations, printers are a common resource shared by

all users. If printers are not used efficiently, system performance

can be seriously degraded. For example, a user at one workstation who

wishes to print only a few pages could be held up for hours while

another user is printing a lengthy report. To avoid this situation,

the 2200VS system provides this automatic 'print spooling' feature.

Print spooling is one function of the 'Data Management System', which

in turn is a subset of the Operating System software.

1.9.5 BACKGROUND PROCESSING

Background processing is the automatic execution of batched

lower-priority programs whenever there are no higher-priority programs

being handled by the Operating System.

Although the 2200VS is designed primarily for interactive

operation, it is possible to run jobs which require large amounts of

1-17

processor or I/O time, with a minimum amount of operator interaction,

on a 'background' basis. Background jobs are run in a batch from the

system console, rather than from the individual workstations. All

workstations therefore remain available for interactive use even while

a background job is running.

1.10 USER CONVENIENCE FEATURES

While they may serve as useful first criteria for evaluating a

system, performance and throughput do not tell the whole story. A

system must also be designed so ttat its users can make the most

effective use of its facilities, without being forced to undergo a

long and arduous learning process. The 2200VS is a user-oriented

system which offers a multitude of convenience features that make it

easier to use by programners and non-progranmers alike. Among these

features are: a versatile data entry, file maintenance, and report

generation facility; an interactive text editor for entering and

editing source programs; an easy-to-use symbolic debug facility for

program debugging; and an assortment of system utility programs,

including sort, copy and link routines.

1.10.1 DATA EWTRY/FILE MAINTENANCE

Included in the 2200VS system software is a package of three

programs designed to facilitate the creation and maintenance of data

file, and the creation of reports based on such files. A setup

utility permits the user to define a data file by specifying the types

of data in each record of the file., and to design the screen display

used to prompt an operator for information to be entered for each

record. A data entry program can then be used to solicit operator

input by displaying the defined prompts and accepting and validating

entered data. A report utility, intended for use by management as

well as programmers, provides great flexibility in the design of

custom reports which present information from a data file in a useful

and coherent format.

1-18

•

•

•

1.10.2 INTERACTIVE TEXT EDITOR

Program development is greatly facilitated on the 2200VS by an

interactive text editor. With the editor, a programmer can create and

modify program files interactively using any one of the supported

languages. Entering program text is as easy as typing it into the

display·, and editing an existing program is equally simple with the

many editing functions provided. Interactive program development

permits programmers to work with maximum productivity in the

development and maintenance of programs.

1.10.3 INTERACTIVE DEBUG FACILITY

In many cases, the process of identifying and correcting bugs in

a program is more time-consuming than the writing process itself. To

assist the progra11111er in this task, the 2200VS supports an easy-to-use

interactive debug facility.

The 2200VS Debug Processor permits inspection of •1rogram code,

and permits inspection and modification of data by memory address. In

addition, an easy-to-use 'symbolic' debug feature is ~rovided that

displays sectic 1 of source code in a program 'window' on the work­

station screen, and permits data values to be examined and modified by

symbolic data ~ rather than by address. The 2200VS Debug Processor

also includes facilities for examining and modifying internal regis­

ters and the Program Control Word. Breakpoints can be set in a pro­

gram, and another feature allows the user to manually step through

program execution.

1.11 ADDITIONAL SYSTEM UTILITIES

A variety of additional ayatem utility programs are provided to

1upport the general programming ta1k. The1e include, among others,

copy, 1ort and linker utilities. The versatile copy utility permit•

the uaer to copy a 1ingle program or data file, an entire library of

1-19

such files, or a complete disk volume. For data files, the copy

utility provides an option to change the file organization from

sequential to indexed or vice-versa. The sort utility provides

high-speed sort and merge capabilities for both indexed and sequential

files, with either fixed or variable-length records. The linker,

finally, is used to link together two or more program modules into a

single large program, and optionally to remove the symbolic debug

information previously inserted in a program for debugging purposes.

Other utilities include a translation utility which translates from

EBCDIC to ASCII and vice-versa; a special copy utility which copies

and automatically translates 2200 program and data files to 2200VS

format (and vice-versa); and a display utility, which can be used to

display and/or print printer files.

The following list contains the names and descriptions of all

2200VS system utility programs. A detailed description of each system

utility is documented in the 2200VS File Management Utilities Manual,

WL# 800-1300FM.

ASSEMBLE

BASIC

COBOL

CONTROL

COPY

COPY 2200

DATENTRY

Assembles a source program written in 2200VS

macroassembler language.

Compiles a program written in 2200VS BASIC.

Compiles a program written in 2200VS COBOL.

Used to define attributes and validation criteria

for a data file.

Copies files, libraries, or entire volumes from

one location to another.

Copies and automatically converts files from 2200

standard format to 2200VS format, and vice versa.

Used to create and update data files.

1-20

DISKINIT

DISPLAY

DUMP

EDITOR

!ZFORMAT

LINKER

LISTVTOC

PRINT

REPORT

RPG II

SORT

TRANSL

•

Initializes a new diak volume in 2200VS format,

with a volume label and Volume Table of Contents.

Displays the contents of a file on the work

station screen.

Produces a printed copy of a task dump previously

written to diskette with the DUMP AND CANCEL

function of the Debug Processor.

Used to enter and edit source program text.

Used to create display files for formatting the

work station screen.

Combines two or more program modules into a single

executable program.

Produces complete or selective listings of a

specified volume's Table of Contents, and examines

the VTOC for errors.

Prints the contents ot a print file.

Used to produce customized reports from a data

file.

Compiles source programs written in 2200VS RPG II.

Sorts a data file, with an optional capability to

merge two or more sorted files.

Automatically translates the contents of a

specified file from EBCDIC to ASCII (the code used

internally by the 2200VS), or vice versa •

1-21

1.12 FILE PROTECTION AND SECURITY

All disk and tape files on the 8300 are classified according to a

flexible file protection and security system, tailored at each

installation to suit the requirements of the specific applications in

use. At each installation, the file protection and security system is

under the direct control of the Security System Administrators. The

Security System Administrators are specially recognized users who

determine the meaning and use of the file protection classes. They

are able to access all files on the system, including the System User

List and the Special Privilege Program List.

Every program, procedure, and data file on the system can b~

placed in one of twenty-eight file protection classes. Classes A

through Z are used to represent protection classes whose meanings are

determined by the Security System Administrators. For example:

Class w - The Workorder File

Class p - The Product File

Class c - The Customer File

Class Q - The Sales Quota File

Class R - The Pension Administration File

Class M - The Payroll File

Class x - Proprietary Programs and Procedures

Class D - Confidential Project Documentation Files

Classes "fJ:" and " " (blank) are reserved for specific uses:

Class " " - Unprotect~d Files

Class "fJ:" - Private and Security System Administration Files

The class of ~nprotected files is specified by setting the file

protection class to blank. An unprotected file can be accessed by any

user of the system. Class "fJ:", unlike the other file protection

classes, is used to define one protection class for each user. When

specified, Class "fJ:" identifies those files which can be accessed only •

by the user who created them (and by the Security System Adminis-

trators).

1-22

•

Before any user of the system can access a protected file, he

must identify himself using the Logon conunand. At Logon Time, by

lookup in th System User List, the user's Logon-ID and Password are

validated, and his "access rights", relative to the defined file

protection classes, are determined. The access rights are listed in

the System User List (for each file protection class) to specify three

different levels of privilege in order of increasing responsibility:

1) Execute Only Access (EXEC)

2) Execute and Input Access (READ)

3) Execute, Input, Update, Rename, Scratch and Debug Access

(WRITE)

These access rights are checked whenever a user attempts to

execute a program or procedure, whenever he attempts to open an

existing file, and whenever he attempts to renamEi or scratch a file.

1.13 RELIABILITY

To ensure the integrity of information stored in memory and on

external storage devices (disk or tape), the system provides automatic

error detection and correction facilities. In physical memory, all

single-bit errors are corrected automatically, while multi-bit errors

cause an error indication. Similar checks also are performed on

information stored on disk or tape.

1.14 HARDWARE - GENERAL

This section describes the Central Processing Unit, I/O Pro­

cessors, available options, and peripheral devices for the WCS/60 and

WCS/80 .

1-23

1.14.l THE CENTRAL PROCESSING UNIT (CPU)

The CPU ts the central component of the WCS/60 and WCS/80 sys­

tems. It is a compact cabinet which houses the 2200VS computer

(including main memory and I/O Processors) and tl1e system diskette

drive.

FIGURE 1-2 CENTRAL PROCESSING UNIT (CPU)

THE WCS/60 CPU

The WCS/60 CPU contains the 2200VS computer, the 2270V

308,000-byte diskette drive, and two IOP's:

1) A 22V01 Printer/Workstation IOP, which supports one printer

and up to three workstations.

2) A 22V02 Diskette/10 Megabyte Disk IOP, which supports the

2270V system diskette drive and up to three 2260V 10

Megabyte Fixed/Removable Disk Drives.

Up to four additional IOP's support other peripherals and cotmnun­

ications options.

1-24

•

•

Minimum memory for the WCS/60 is 64K bytes. Memory upgrades are

available in increments of 64K, to a maximum of 256K bytes.

THE WCS/80 CPU

The WCS/80 CPU contains the 2200VS computer, a 2270V 308,000-byte

diskette drive, and three IOP's:

1) A 22V01 Printer/Workstation IOP, which supports one printer

and up to three 2246P workstations.

2) A 22V02 Diskette/10 Megabyte Disk IOP, which supports the

2270V system diskette drive and up to three 2260V 10

megabyte fixed/removable disk drives.

3) A 22V04 Removable Disk Pack Disk IOP, which supports a

combined total of four 2265V-l 75 megabyte disk drives,

and/or 2265V-2 288 megabyte disk drives .

Up to five additional IOP's support other peripherals and cormnun­

ications options.

1.14.2 I/O PROCESSORS (IOP'S)

I/O Processors control the operations of peripheral devices. The

following IOP's are available:

22V01

22V02

22V04

Printer/Workstation IOP.

Supports one priryter up to three workstations.

Diskette/IO Megabyte Disk IOP.

Supports one 2270V 308,000 Byte Diskette Drive and up to

three 2260V 10 Megabyte Disk Drives.

75 Megabyte Removable Disk Drive IOP.

Supports two 2265-1 75 Megabyte Removable Disk Drives .

(Used only for WCS/60; only one 22V04 IOP per system is

allowed.)

1-25

22VOS

22V06

9 Track Tape Drive IOP.

Supports up to four 2209V 9 Track Magnetic Tape Drives.

Conununications IOP.

Available in two models to support bisynchronous tele­

conununications in the following combinations.

22V06-l - Supports one bisynchronous line.

22V06-2 - Supports two bisynchronous lines.

1.14.3 WORKSTATION

The 2246P workstation is the means by which users conununicate

with the system.

FIGURE 1-3 2246P PARALLEL WORK STATION

1-26

•

•

The workstation ·consists of a display screen and keyboard. The

12-inch diagonal CRT display screen has a total display capacity of

1920 .characters (24 rows, with 80 characters per row). Characters can

be displayed in bright or dim intensity, and the screen can be

formatted into 'fields'. The keyboard contains the familiar

typewriter-like arrangement of alphabetic, numeric, and special

character kP.ys. A strip of 16 Program Function keys is placed along

the top of the keyboard.

Workstations can be attached locally or remotely. A local

workstation may be a maximum distance of 250 ft. from the CPU. A

remote workstation may be located anywhere adjacent to a telephone

line; it conununicates with the CPU via the 22V06 cormnunications IOP.

(See the discussion of the cormnunication IOP at the end of this

chapter.)

1.14.4 DISKS

In addition to the system diskette drive, three hard~disk models

are available, ranging in storage capacity from 10 megabytes to 288

megabytes.

2270V SYSTEM DISKETTE DRIVE

The 2270V diskette drive, mounted in the Central Processing Unit,

holds a single removable diskette.

Each diskette has a storage capacity of 308,000 bytes. Diskettes

can be used to store programs or small, transient data files; they

also serve as a convenient means of transferring information between

two WCS systems, or between a WCS system and a foreign computer

system. In addition, all updates to the WCS/60 and WCS/80 system

software made by Wang Laboratories will be provided on a diskette .

1-27

FIGURE 1-4 2270V SYSTEM DISKETTE DRIVE

I

2260V TEN-MEGABYTE FIXED/REMOVABLE DISK DRIVE

The 2260V provides an approximate storage capacity of 10 million

bytes, equally divided between a fixed and removable platter.

Because the disk unit contains both a fixed platter and a

removable cartridge, backup operations can be performed easily.

Cartridges containing backup file copies or information which is not

currently needed can be stored "off-line" and remounted in the disk

unit as required.

1-28

•

FIGURE 1-5 2260V FIXED/REMOVABLE DISK DRIVE
10 megabytes

2265V REMOVABLE DISK PACK DISK DRIVE

The 2265V is a high-performance, high-capacity disk unit which

provides fast access to large volumes of information.

FIGURE 1-6 2265V-l, -2 REMOVABLE DISK DRIVE
75 megabytes (2265V-l)
288 megabytes (2265V-2)

1-29

The 2265V is available in two models:

1) The 2265V-l, with a storage capacity of 75 million byteg.

2) The 2265V-2, with a storage ~apacity of 288 million bytes.

Each model holds a single, removable disk pack.In addition to its

high speed and large storage capacity, each model of the 2265V also

provides extensive automatic error checking and correction facilities

to ensure greater reliability.

On the WCS/60, a maximum of two 2265V-l 75 megabyte drives are

allowed. The 2265V-2 288 megabyte drive is not supported on the

WCS/60.

On the WCS/80, a combined maximum of eight 2265V disk drives are

allowed (2265V-l and/or 2265V-2).

1.14.5 PRINTERS

A variety of different printers are available for the WCS/60 and

WCS/80, offering different speeds and print types. There is no re­

striction on the printer models which may be attached to a particular

system.

2221V MATRIX PRINTER

The 2221V is a versatile matrix character printer. Characters

are formed using a 9 x 7 dot matrix (for some characters, a larger 9 x

9 matrix is used for better detail).

FIGURE 1-7 2221V MATRIX CHARACTER PRINTER
200 charActers pe1· second

1-30

•

•

•

The 2221V provides a character set of 96 characters, including

upper and lowercase and special characters. Multipart forms with up

to four carbons plus an original can be handled. Paper in widths from

3 1/2 inches (8.9 cm) to 14.9 inches (37.2 cm) can be mounted. The

printer provides automatic vertical formatting, programmable audio

alarm, and an expanded-print capability.

The 2221 V prints s•.:rially at 200 characters per second, The

number of lines per minute actually printed varies, according to the

line length, from 65 to about 300 lines per minute.

2231V MATRIX PRINTER

The 2231V is an economical matrix printer which offers many of

the features of the 2221V, but with a somewhat slower printing speed.

FIGURE 1-8 2231V-l, -2 MATRIX CHARACTER PRINTER
120 characters per second

The 2231V provides a full 96-character set, including upper and

lowercase and special characters, using a 7 x 9 dot matrix to form

each character. The 2231V is available in two models: the 2231V-l

prints a 112-cha?acter line (10 pitch); the 2231V-2 prints a

132-character line (12 pitch). Multipart forms and variable paper

widths can be handled, and an audio alarm and expanded print

capability are provided (see the 2221V).

1-31
L._ _______________________________ _

The 2231V prints serially at a rate of 120 characters per

second. The actual printing speed varies, according to the line

length, from 45 to about 250 lines per minute.

2261V MATRIX LINE PRINTER

The 2261V printer is a high-performance matrix line printer which

produces quality output at much higher speed than serial printers.

FIGURE 1-9 2261V MATRIX LINE PRINTER
240 lines per minute

The 226lV produces high-quality output using a 9 x 8 dot matrix

to form each character. (An 11 x 8 matrix is used for some characters

to obtain better detail.) A complete set of 96 characters, including

upper and lowercase and special characters, can be printed.

A switch-selectable pitch features enables you to switch from 10

pitch (132-character line) to 12 pitch (160-character line). Line

density is also switch-selectable at either 6 line per inch or 8 lines

per inch.

An original and up to four carbon copies can be printed, with

paper width varying from 3 1/2 inches (8.9 cm) to 14.9 inches (37.8

cm).

1-32

•

•

The printer offers a number of other useful features, including

automatic formatting, expanded print, and a progranunable audio alarm.

The 2261V prints bidirectionally, using four matrix impacter

printing heads to achieve a print speed of 240 lines per minute,

independent of line length.

2263V LINE PRINTER

The 2263V is a solid-character line printer which produces

quality printed output at high speed. The 2263V is available in two

models: the 2263V-l, with a printing speed of 400 lines per minute;

and the 2263V-2, with a printing speed of 600 lines per minute.

FIGURE 1-10 2263V-l, -2 LINE PRINTER
400 lines per minute (2263V-l)
600 lines per minute (2263V-2)

The 2263V prints one entire line (up to 132 characters) at a

time. It can print one original and up to five carbon copies. Paper

widths from 3.5 inches (8.9 cm) to 19.5 inches (48.8 cm) can be

handled. The printer provides a number of useful features, including

an automatic paper.puller, static eliminator, and progranunable audio

alarm. Different typefaces and special character sets (including

foreign language character sets) are optionally available.

1-33
---------------- ---- -----

2281V WHEEL PRINTER

The 2281V produces typewriter-quality output at 30 characters per

second.

FIGURE 1-11 2281V WHEEL PRINTER
30 characters per second

The 2281V is a bidirectional output writer which utilizes a daisy

character wheel with an 86-character set (upper/lowercase and special

characters). Character wheels are removeable/replaceable for changing

character sets.

The 2281V prints either a 132 or 158-character line at 30 char­

acters per second. Among its features are progrannnable character

underscoring, format tabbing, and color print selection.

1.14.6 TAPE DRIVE

2209V NINE-TRACK TAPE DRIVE

The 2209V Nine-Track Magnetic Tape drive is particularly useful

for transferring information between a WCS/60 or WCS/80 and other

computer systems.

1-34

•

•

FIGURE 1-12 2209V NINE-TRACK MAGNETIC TAPE DRIVE

The 2209V can read from or write to any 1600 bytes-per-inch (bpi)

Phase Encoded magnetic tape. It supports both ASCII and EBCDIC char­

acter codes.

The Model 2209V operates in the Phase Encoded mode at a density

of 1600 bpi. The drive transports tape at a velocity of 75 inches per

second during read and write operations, and up to 200 inches per

second during rewind. The unit contains a dual-gap read/write head,

full width erase head, tape cleaner, and photo electric sensors to

detect reflective tape markers and tape breakage. The Model 2209V

provides read-after write verification and automatic correction for

single track errors, and for multiple track errors which can be

reduced to a single track.

1.14.7 COMMUNICATIONS

22V06 COMMUNICATIONS IOP

The 22V06 Communications IOP is an I/O Processor which supports

bisynchronoud conununication with a variety of line speeds and industry

standard protocols. It is available in two models:

1)

2)

The 22V06-l supports a single bisynchronous line.

The 22V06-2 supports two bisynchronous lines.

A number of different line speeds are available including 1200,

2400, 4800, and 9600 baud. At least one line can support an automatic

calling unit.

A number of industry standard protocols are supported for bisyn­

chronous transmission:

1) 2780/3780 emulation.

2) 3270 emulation.

3) HASP.

On the 22V06-2, each line is independently programmed; thus it is

possible to run different protocols on separate lines concurrently

from the same IOP.

Remote 2246P workstations can be attached to the system via the

22V06 IOP. Such workstations functipn as local workstations, enabling

users_in remote locations to communicate directly with the system and

interactively access all system facilities, just as if they were

logged on locally.

1-36

•

•

Wang
Computer
Systems

DEVICE

Modtl 2249P
l'arolltl Worknt11on

Ma<111 22eov
Flud/Rtmoveblt Dl1k

Modtl 2288V·1
7&·M901bvt1 R1monbl1

Oi1k Pick Duk Drlu

Madel 2298V·2
2BB·Meg1by1t Rtmoublt
Ouk Peck 01tk Drive

2209V Mtgnttlc
Tape Drive

GENERAL
SPECIFICATIONS

CRT

• 12 inch d11gon1I d1•pl1y 1crHn

• 24 llnu. BO ch1r1ch•11 per line

• Scr11n c1n be form1n1d into
d1scr1t1 f111ld1

• M1nu1I controls for contr11t
and brightnau

• Bright 1nd dim intensity for

msunt ncogn1t1on of field

mod1ti1bil1tv

• U11r·progr1mm1bl1 blinking

cur'°r for nuct·th1r1cttr
po11t1on

a Ant1·gl1re fllttr

Ktybcltrd

• 1'yp1wr11u·l1k1 k1ybo1rd

• CurMJr po11t1oning ktyl

• Chu1c11J in1trtion 1nd

dtl1t1on k1v1

• Numeric k1vp1d

• 16 Program Funcuon ktVI

• Progr1mmabl1 Audio Alarm

IOP - 22V01

• 10 m1g1bytu/dr1-vr

• On• liKtd 5·m1g1bv1t pl11t1r
1nd ont rtmovtblt 6·m1g1byt1

plltttr per do-vt for r:on-v1ni1n1

backup and off.lint 11ort01

• 408 tr1ck1 Ptr pl11111

• IOP - 22V02

• 75 m1g1bvt11/driv1

• 5 u11bl1 1urftc11/p1ck

• 823 cvl1ndu1/p1ck

• IOP 22V03 for WCS/80
22V04 for WCS/80

• R11trlctlon: M111:1mum of t~IJ

dmu on WCS/80

• 288 meg1bvt111dr111f'

• 19 u\lble 1urfac111p1ck

• 823 cyl1ndtr\IPICk

• IOP. 221/04

• Rutrlcuon: Only for WC5'80

• 2!> m11glb\ltl CIPIC1ty (With
6>k tliock.11

• C1n hold up to 2400 t1

1731 !>ml of UPI ln1nd1rd

th1ckne11I

• Rteo•dt ti 1800 bP' phut
encoc1•d

• Hold• 1111ntl1rd 10 6 tn

126 7 cml ml
• Ou1l·g1p r11d·1l111r·wnte

nud

IOP· 2'V05

PERFORMANCE
SPECIFICATIONS

• 2K Random Acc1u M1mo1 y

• Rot111on1I Spttd 2400 RPM

• A•trlQI Acc111 Timi 35 m1

• AvtrlQI L1t1ncv Time

12.5 m1

• Tr1ck·tD·Tr1ck H11d Po11·

11oning T1m1; rn1

• Dau T11n1l1r Rate
312 k11obylt!1/1tc

• Rottt<an Si>ttd 3900 RPM

• Aver1g1 Accm T1m1 30 m1
• Av1r1g1 L1ttncv Timi

8m1

• Trick to·Tr1ck Hut Po11
tion1ng T1m1 8 m1

• 01t1 Tr1n1ftr R111

l .2 mtQlbVtOl/HC

• Ao11t1on1l Sp11d

3600 RPM

• A-v1r1g1 Acc111 T1m1 30 m1

• A-v1r1g1 L11encv T1mt 8 m1

• Tr1ck·to·Tr1ck Hut Po11
t1on1ng T1m11 6 ms

• 0111 Tr1n1l1r Ritt

1.2 m1g1bvt111uc

• RudNl"tt Sund
76 1nch11 p1r 11cond

• R1w1rnJ Sp11d

200 inch11 per ucond

• Dau Tr1n1f1r R111

120 k1lobvt11per11cond

1-37

PHYSICAL
SPECIFICATIONS

• Physical 01mens1ons
He1gh1 - \3 '" 133cml
Width - HP;1n 149 5 cml
Depth - 19.6 1n 149 5 cml

• W11gh1

40 Iii I tB.2 <gl
• Heat 01u1pa11011

427 BTU'h•
e Cabtl'

600 It mo1mum

• Phy11c1I Oim1n1lon1

H1lght - 3U 1n. (82.6 cml
Width - 17.5 1n. 144 5 cml
Depth - 29 in 173 cml

• Weight
• Hut Omip1t1on

2043 BTU/hr

• Phy11c1I D1m1n1lon1

Height - 41 in. (104 cm1
Width - 24 In. 181 cml
Depth - 38 In, 1g1 cml

• Weight
500lb1227 kgl

• Hut Ol11lpttlon
2580 BTU/hr

• Ph\11ic1I Oim1n11on•

Hight - 4\ in.1104 cml

W'dth - 24 in 16\ cml
Depth 36'" 191 cml

• W11gh1

550 lb 1260 <gl
• Hut 01nio111nn

3960 BTU/h•

• Phy11c1I 01mtn1ion1

H11gh1 - 1v11\1bl1 with
1n11gr1I 1tor1g1

c1bint\ 1n h11ght1

from 34 in to 64 1n.
183 cm to 162.2 cml

Width - 24 on, 161 cml
01p1h - 26 on 168 cml

• W11ght
170 lb 177 4 kgl

• Hut Dl111p1t1on

1623 BTU/hr

Technical
Information

ENVIRONMENTAL
REQUIREMENTS

• Powr1 Requ11emenu
\15 o• 230 VAC ltlO'l!.I
50 o• 60 Hr I' l Hrl
125 w11u

• Oper111ng Environment

50°F to 900F
I tO"C 10 32oc1
30'in to 6S'lti "11t1vc t1um1d1l'f

• Power Requ1r1m1nu

l 15 or 230 VAC It 10%1
50 or 80 Hr ltl Hzl
BOO w1111 111rt up
426 wattl running

• Op1r1ting Environmtr'lt

50"F lo geoF
11 o0c to 35oc1
20% to 80% rolttivt humidity

• Powu R1qulr1m1nt1

l 10 VAC 1t10%1
eo or 80 Hz 111 Hrl
40 1mp mn up
8.2 tmp op11111ng
1.51mp mndby

• Ope11tlng En•lronm1nt
80"F 10 Q()OF
11a0 c to 32°c1
35% to 85% 11ltllvt humidity

• Pow1r A1ou1rem1n11

208 VACI' 10'\J
o0or60Hrt1l/2Htl
40 0 amp \Ur tuP

e_o '"'l'l op11ra11ng

1 0 1mp t11ridb\I

• Qper1t1ny Env11onmt1n1

80°F to QOOF

116°c to 32°c1
35"b to 66% 11l1\1ve hurn1r11tv

• Power AeQuir1m1nt1

\ 16 VAC It 10%1
60 Hz t t Hr
4.1 omp

• Op1r1t1ng Env1ronmen1

60°F to 90°F
115oc tn 32oc1
36% to 8&% r1l1t1vr hum1d11\I.

non·cond1n11nu

Wang
Computer
Systems

DEVICE

Model 2221V
M.trill Ch1r1cter Printer

Mod1l12231V·11nd

2231V·2
Mitri• Character Printers

Modol Z211V
Mitri• Uno Prin10r

Modlls 2283V·1
ll'ld 2213V·2
LlntPrlnton

I

GENERA~

SPECIFICATIONS

• High qu111ll1y 9 11. 9 and 9 11. 1 dot

ma111x impact ,1nntt1

• E.w.panded p11nt c1p1h1ll1v

• Up 10 t.v1H1a1t lurmt.

• Up lo 132 charactert./11,

• Full ASCII t.et of 96 characten
• Full !me butlering
• P1ogrammable Audio Alarm

• 14 9 m 137 8 cml mu1mym
formt. width

• 3 channel vertical format um1

• Bottom load paper feed

e IOP: 22V01

• High quality 7 lit 9 dot m1tr111.

impact prmte•

• E 11.panded print capabil1tv
• Moclel 2231V·1pronu112

ch11r act er line
• Model 2231V·2 prints 132

charac1er lme

• full ASCII set of 96 characten

• Up to 5 part form\

• Full line butter

• Programmable Audio Alarm

• Manu.al hne teed

• ' channel -vertical format unit

IOP: 22V01

• High Ou•htv 11 x 8 1nd 9 x 8
dot matrix 1mpac1 printer

• E•o•nded print cap1bilitv
• Up to 5·part forms

• 132 character line
I 10pitch formatl or 160
character hne t 12 pitch form1t)

• full ASCII ,.t of 96 choroctm

• Line density switch s.el1ctable
at 6 lines/inch or 8 tines/inch

• Full line buffering for foster
throughput

• 14.9 inch 137.Bcml maximum
farms width

• Autom11ic formalting
• PrOQrsnmable Audio Alarm
• 4 matrix impacler heeds,

bidirectional printing
• J channel nrtical format unit

• IOP: 22V01

• Chain Prinler
• Removable print charecter links
• Optional character wts and

foreign l1nguoge type

• Gothic prini sew
• 132 characters per line
• 64 ASCII chorocter set

(upper c:a1el

• Up lo &·port form1
• full·line buffering
• 3.5 inch to 19.5 inch

poper width

• B·chonnel ve"ic1I lormlt
unit

• Smit elimi~ltor
• Automltlt piper puller
• Pr1111rln'lm1ble Audio Alorm

• Precise form posirioning
• Dlf·line IHI c1p1bility
e Oiognostic Ponti

• !OP: 22V01

PERFORMANCE
SPECIFICATIONS

• Pr int Spcl'd

•

200 characters per srcond

65 to JOO lmH per mmute.
depending upon length

Pont speed

t 20 ch1r1cten per second
45 to 250 Imes per minute,
depending upon length

• Prinl Speed
240 lines ~r minute,

inde~ndenl of characters·
per-line and pitch

• Prinl Speed

- 400 llnH per minute for
Moclel 2263V-1

- 600 lines per minute for
Model 2263V·2

• Single Line Advance SJ)ffd

20m1

• Slew Speed
20 in./second

1-38

PHYSICAL
SPECIFICAllONS

• Phy11c1I 01men1ions
Height - 12 m (31 cm)
Width - 29 m. (74 cml

Death - 25 m. (64 tml

• Weigh1
85 lb (38.6 kgl

• H111 D1n1p111on

1025 BTU/hr

• Physical D1m~n11ons

Heigh I - 10 in. 125 cml
Width - 24 in. 161 cml
Depth - l81n. (46cml

e W11ght
68 lb (31 kgl

• Hut D1111pat1on
478 BlU/hr

• Phvsical Dimensions

Height - 36 in. 191cml
Width - 27 m. (6B.6tml
Depth - 26 m. (66tml

e Weigh!
210 lb l94.5kgl

• Heat 0111ip1tion
1572 BTU/hr

• Physical Dimensions
Heigh! - 42 1n. l106.7cml

Wodth - 36.5 1n. 192.lcml
Depth - 32 in. (81.Jcml

e Weight
570 lb l258.5kgl

• Heat Oiss1pat1on
2700 BTU/hr

I

Technical
Information

ENVIRONMENTAL
REQUIREMENTS

• Power Requirements

115 VAC (t 1Cl"I
50 or 60 Hz (ti Hzl

110°c 10 32°c1
35% to 65% relative humid11v.
non·condeming

• Power Requ1remenu
115 or 230 VAC 1•10'11.I
50or 60 Hz (11 Hzl

140watll

• Oper11ing Environment
5D°F to !ID°F
l1D°C to 32oc1
35% to 65% relauve humid11V,

0 Power Requuemenu
115 or 230 VAC ! Hl'lb
50 or 60 Hz(! t Hzl

460watts
0 Operating Envuonmenl

500f to 9D°f
110°c to 32°Ci
35% to 65% relative hum1d1tv,

non-condens1ng

• Power Requuemenu
115 or 230 VAC (! 10%1
50or60Hz(!l lhl

690watts
ct Opera1ing Envtronment

400f lo 950f

(4.4°F to 35°CJ
35'1(, to 65'1b rela11ve

hum1d1 IV, non<:ondenimg

•

Wang
Computer
Systems

DEVICE

Mod1I 2281V
Wh11I Prin111

Model 22VOI
Communle1tlon1
IDP

GENERAL
SPECIFICATIONS

• Oaisv ch1rac1er wheel
1mpac1 printer

• Removable cha,acter wheel
and 1ntr.rch1nguble
character se1s

• Typewriter·llke print
reg1str1t1on

• 86 ASCII ch111c11r 111. both
upper and lower c11e

• 132 chuacters per hne
110 p11ch lorm1t1. 158
chu1Cter1 per line
(12 p11ch lorm1tl

• Bl1ek/red ribbon c111ridge
• Full·lino bullering
• Programmable character

under.caring

• Form11 11bbing
• Top of form 1wilch
• Pi,, feed forms uactor

mech1ni1m loptionaO
• Adju111blt pl111n

• IOP: 22V01

• 22V06 1 support\ 1
l11\uyr.tlron:>u\ 111\fl

e 27V06·2 n1pporh 2
lMynchronolll lin1:'

• Protocols supparttd:
II 278013780 emulllion
21 3270 1mul1tlon
31 remot1 22DDVS work·

llltlon
41 HASP

• At 11111 one bi1ynchronou1
line IUPPOll11Utom1tlc
calling unit

PERFORMANCE
SPECIFICATIONS

• Pron I Speed
30 ch1111:1t11 per second

PHYSICAL
IPECIFICATIONS

• Physical Dimensions
Heighl - 14 in 135.Bcml
Widlh - 24 on. 161cml
Depth - 22 in. 155.9cml

e Weight
37 lb 116.8kgl

• H111 Dmip111on
850BTU/hr

• 1200, 2400, 4800 or 9CIOO band • Requim one IOP 1lot on CPU

1-39

._ _________________________ ,__,., ____________________ _

Technical
Information

ENVIRONMENTAL
REQUIREMENTS

• Power R1Quirem1nt1
115 or 230 VAC (UO'l61
60or60Hz lt1 Hz)
250 Wlttl

• Oper1t1ng Environment
45°F lo 950f
11°c 10 35oc1
35% to 65% reletive
humidity, non-condensing

• Duty Cycle
Medium·average
1Ctu11 printing time - up to

4 hoo" per div

•

2.1 2200VS - VIRTUAL MEMORY

SECTION 2

SYSTEM CONCEPTS

In small computers with, for instance, 4K of RAM, a progranuner

often overcomes the physical RAM size limitations with program

overlays and small disk records. The smaller the physical memory, the

more frequently the disk must be used. Software required to support

disk operations adds to program overhead and increases the chance of

programming errors. Changing physical memory size causes further

problems by necessitating changes ir software.

In a virtual memory system, the larger the physical memory, the

faster programs can be run. Fewer disk operations are required.

We can explain the above points by example:

2.1.1 A COMPARISON TO EXISTING 2200's

DIM A$(20,20)32, sets up a four hundred (20 x 20) element array

(each element 32 characters, max.), using 12.SK bytes of memory (in a

2200 with more than 12K of RAM). On a 4K Model 2200, to accomplish

the same, DIM A$(20)32 would be used, adding at least twenty disk

operations to keep the array loaded with currently needed data. These

extra disk operations must be written into the existing software.

A virtual memory computer does all the disk overlay work for the

progranuner. If the 4K Model 2200 referenced here had virtual memory,

the 12.8K array dimension would work; the excess being put on a disk

scratchpad. Whenever an array reference was made beyond the physical

memory limits, the 2200 CPU would exchange a portion of current

physical memory with a portion of disk data, and then proceed. The

user would not be aware of the true memory size, or the number of

overlays. The same would be true for long program text •

2-1

--------------------- ---------

Although the user is 'not aware' of the specific functions

involved in providing him with a virtual memory, larger than the

physical memory, an understanding of the paging mechanism is useful.

Also, a general awareness of how paging is implemented may help any

programmer write more efficient code for the machine.

2.l.2 RELATION OF VIRTUAL MEMORY TO PHYSICAL MEMORY

Physical memory of the 2200VS is limited to a maximum of 512K

bytes. However, at the present stage of 2200VS developement, machine

instructions can reference any of 1,310,720 one-byte virtual address

locations.

'Translation' of virtual addresses to physical ('absolute')

addresses is performed by routines of the Operating System. Three key

information units recognized by the Operating System during transla··

tions are: 'segments', 'pages', and 'page frames'.

A segment is a block of contiguous one-byte virtual memory

locations that begin on a decimal virtual address of ze~o, 1,048,576,

or some multiple of 1,048,576. This start-point for each segment is

connnonly referred to as a '1 Meg Boundary'. Segments 1 and 2 are

allocated to each user at LOGON time by the Oi:·erating System. Segment

zero is shared by every user. Segment 0 begins at virtual address 0,

ends at virtual address 262,143, and comprises 128 pages. Supervisory

routines and data of the Operating System are in aegment zero. Seg­

ment 1 for each user starts at virtual address 1,048,576, ends at

virtual address 1,572,863, and comprises 256 pages. User programs are

in segment one. Segment 2 for each user starts at virtual address

2,097,152, ends at virtual address 2,621,439, and also comprises 256

pages. User~ is in segment two. References to segments 3 through

15, presently invalid, are treated as program errors. Note that there

are gaps of nonaddressable virtual locations between segments. These

gaps are defined as follows:

2-2

•

•

VIRTUAL ADDRESSES

VIRTUAL ADDRESSES

262,144 - 1,048,575 (inclusive) constitute

the gap between segment 0 and segment 1

This gap is somtimes called the 'segment 0

Non-addressable' area.

1,572,864 - 2,097,151 (~nclusive) constitute

the gap between segment 1 and segment 2.

This gap is sometimes called the 'segment 1

Non-addressable' area.

Each user's 1 Meg virtual address space (segments 1&2) is

assigned to a unique disk space, even though the virtual addresses for

every user are identical. Some additional element such as workstation

number or task number is provided by the Operating System to identify

each user's unique disk space (files).

A 2200VS machine instruction~ reference any of 16,777,216

one-byte virtual memory locations; however, at the present stage of

2200VS development, only segments 0, 1, and 2 are allocated to each

user at LOGON time, thus accounting for the addressability of only

1,310,720 locations.

The following diagram illustrates the present segment struc­

ture of 2200VS virtu~l memory. Note that this diagram bears

no resemblance to physical memory; all blocks represent disk

files:

2-3

FIGURE 2-1

r---·~--~--~~~~~~--~----~~~~----~-------
(OPERATING SYSTEM ROUTINES AND DATA (protected from user modification

I
SEGMENT 0 (SYSTEM SEGMENT)

SHARED BY ALL USERS

STARTING VIRTUAL ADDRESS: 0 (HEX 0)

END VIRTUAL ADDRESS: 262,i41 (HEX 3FFFF)

USER PROGRAMS (Non-modifiable)
I I

~DE IN THIS AR~ CAN BE SHARrD BY .2 OR MORE USERS

I I STARTING VIRTU/U. ADDRESS: 1,048,576 (HEX 100000)

SEGMENT SEGMENT l SEGMENT SEGMENT etc .

.l 1 I 1 1 Per LOG l (USER #1) (USEH #2) I I (USF.R ~13) (USER #4) ON J
END VIRTuAL ADDRESS: 1,572,863 (HEk 17FFFF)

--1------+- -- ----1- ------; ,- ------
- - - - - ·- . -- ;l;R-;-S-,~~D~F~t ~A;A- - - - - - - - - - -

I ! I ..---~STARTING VIRTUAL ADDRESS: 2,097,152 (HEX

SEGMENT j SEGMENT I SEGMENT SEGMENT

2 2 . . I ! ?. 2

(USER #1) (USER !31_l i (USER 4/:3) (USER #4)

20~000~~
r LOG

N

END VIRTUAL ADDRESS: 2,621,4~' (HEX 27FFFF)

NOTE:

In the above diagram, it can be seen trst ei> ._n user is allocated

approximately 1 Meg of virtual memory ~~ace, once logged onto the

sys tern, Thus, with fom: us erR 1 ogged on (for example) , the tot a 1

requirements for virtual storage space is ~Meg.The four-user

system described in this exampie would probably require a 10 Meg

hard disk to support minimal configural:ion demands.

2-4

•

A~ is a block of 2,048 contiguous one-byte virtual memory

~ locations that begin at an address of zero, 2,048, or some multiple of

2,048. This start-point for each page is connnonly called a '2K

boundary'. A page of virtual memory currently residing in physical

memory is said to be 1 framed', or can be called a page frame. Page

frames, therefore, are 2K blocks of contiguous one-byte physical

memory locations that begin at a physical (main) memory address of

zero, 2,048, or some multiple of 2,048.

A 128K system would, for example, have sixty-four 2K page frames

1n physical memory. Certain page frames must be occupied by

top-priority routines of the Operating System (i.e., the 'paging

routines' and other Operating System 'control blocks'); such routines

cannot be 'paged-out' of physical memory, and are said to be 'perman­

ently resident', or 'permanently fixed'. Certain other page frames

are considered 'temporarily resident' or 'temporarily fixed' if

allocated for an I/O DMA*. As soon as the I/O DMA is complete, any

page or pages allocated for that I/O DMA become 'replaceable'.

~ Remaining page frames (also replaceable) can be occupied by any

other User/Operating System routines and data, as required.

•

Pages of a program or data may be framed at any position in

Physical Memory, and still be executed as if each page were adjacent.

Pages need not be contiguous, since each one is linked, or 'threaded'

to the next by an address pointer (a 3-byte entry in the Program

Control Word**). This concept of initiating a program that begins at

any page frame and randomly occupies any number of additional page

frames is called 'relocatability'.

Programs which repetitively jump from one page to another will

require more frequent dis~ access. The same is true for data refer­

ences. A progranuner who wants maximum ex~cution speed will try to

remain within one page frame as long as possible before branching

elsewhere. This desirable quality in structuring programs is called

'locality of reference' .

* - I/O DMA: .!_nput/£utput Direct !!emory Access

** - PCW: !rogram _£ontrol Word

2-5

Three 'local page tables' (0, 1, and 2), located in stack (CP

LOCAL STORAGE), are also required in the virtual-to physical address

translation process. There is one local page tabl~ (LPT) allocated

for each segment in virtual memory. Each local page table contains

one entry for every virtual page in its corresponding segment. Local

page table entries are one byte long, and contain either the eight

high order address bits of a physical page frame start boundary, or

zero. If the entry is ~· the corresponding page is ~ currently

framed; such an entry would thus be called 'invalid'.

At this point, to further understand how virtual addresses are

translated into physical addresses, the 2200VS virtual address format

must be e:cplained. 2200VS virtual memory addresses are always in the

following 24 bit form:

VIRTUAL
SEGMENT
FI~LD

(Segment Index)

4 bits

VIRTUAL
PAGE
FIELD

(Page Index)

9 bits

BYTE
DISPLACEMENT

FIELD

(Byte Index)

11 bits

The hardware uses the segment index portion of the virtual

address to select'one of the three local page tables in the CP stack:

SEGMENT
NO.:

0

1

2

SEGMENT INDEX
(IN BINARY):

0000

0001

0010

The page index is used as a CP stack address, in order to select

an entry from the local page table. Bit four indicates whether the

virtual address is valid or illegal. Bits 5 - 12 select the 8-bit

stack element:

PAGE TABLE LPT ADDRESSES NUMBER OF
NO.: (IN HEX): TABLE ENTRIES

0 00-7F 128

1 00-FF 256

2 00-FF 256

2-6

••

•

•

•

In the translation diagram that follows (next page), one may note

that when bit 12 of the virtual address ia O, the high order table

element ia selected; when bit 12 • 1, the low order table element ia

selected.

The byte index or 'displacement' is carried over to the physical

address unchanged. ('Displacement' is discussed in greater detail in

subsequent text of this section.)

When no error conditions ('exceptions') are encountered in the

translation process, the page table entry and the byte index are

'concatenated', or joined, thus producing the full 19-bit physical

memory add re SB.

There are, of course, many combinations of the 13 page and

segment bits from the virtual address that cannot be translated into

an 8-bit physical page address. In general, when translation is

impossible, one of the following errors will occur:

PAGE FAULT- An error condition indicating that a valid,

referenced virtual page does not currently

occupy any page frame.

PROTECTION VIOLATION- An error condition indicating that a write

ADDRESS EXCEPTION-

operation wa~ attempted in either segment 0 or

segment 1, or that a segment 0 access was

attempted by a user.

An error condition indicating that the virtual

address referenced is invalid.

The above error conditions will, in turn, cause one or both of

the following actions:

PROGRAM INTERRUPT- The Operating System seizes control and halts

processing of that task.

SUPPRESSED OPERATION- The Operating System inhibits a particular

operation, such as a write into a protected

area.

2-7

An illustration of virtual-to-physical translation follows:

VIRTUAL ADDRESS (24 BITS)
-------~--A---~-~---.. r \ LOCAL

PAGE TABLE SEG. PAGE BYTE ··----· SELECTION INDEX INDEX l INDEX

~

~

I ro
MSB

3 4 L-....--E n!.3 "V'" 2; I

<vALrnLroN \ ~ ~tsn
BIT) (ST/I.CK (DISPLACEMENT)

(STACK ADDR.) ELEMENT LOCAL

PAGE TABLE 0

(FOR SEGMENf O) I I
·-

PAGE ADDRESS PAGE ADDRESS

Bit 12•0 Bit 12=1

(SELECT (SELECT

HIGH ORD.EL) LO ORDER EL)

LOCAL

PAGE TA.BJ.El
I

(FOR SEGMENT 1) I

SELECTOR)

PHYSICALAADDRESS
(,.,

PAGE

ADDRESS

,
BYTE

DISPLACEMENT I 0 7 8 18

LOCAL

PAGE TABLE'2
I

(FOR SEGMENT 2)

\ I
MSB LSB

FIGURE 2-?.

2-8

•

Note that LPT 0 is permanently resident, and is updated whenever

a 'paging task'* is executed for the Operating System itself. Since

each user has his own segments 1 and 2 1 each user also has a unique

LPTl and LPT2. At the end of a user's time slice, that user's LPTl

and LPT2 are swapped~ of local storage ('stack') and the next

user's LPTl and LPT2 are brought in to the stack for the duration of

his time slice. Thia swapping of LPTa allows a completely new set of

page frames to be addressed from the same set of virtual addresse9.

DISPLACEMENT:

Each address within a page frame must be specified relative to

the starting, or 'base' address of that page frame. Each new address

is 'displaced' a specified number of byte locations beyond the base

address. Look at the following example.

BYTE ~I 0 B c D E F G H I J K L N

RelatTve
Displacement 0 1 2 3 4 5 6 7 8 9 10 11 12 13

... DISPLACEMENT -
l

Start of page frame

(Base Address)

In this example, byte A resides at the base address; byte M is

displaced by 12 locations. Byte M's 'displacement' therefore equals

12.

0

14

The displacement is added to the base address, and the resulting

sum corresponds to an 'absolute' or 'true' physical address in main

memory. The displacement number, indicated by a field of 11 bits, has

211 • 2,048 possible combinations, corresponding to the 2,048 byte

locations per page frame. Displacement, therefore, actually indicates

byte address within a page frame •

*Explained in subsequent text.

2-9

PAGE REPLACEMENTS:

No\>', one must ask: "What happens if the next item referenced in

a program is located on a p&ge ~ r.l!n·ently framed"? Keeping track

of which pages are framed is another function of the Operating System.

Pages &re brought into physical memory :'..n a manner that can best be

descrioed as 'demand paging'.

When, during translst:i.cn, e referenced page of memory is found to

be missing from physicai memory, a 'page fault exception' is reported

to the Operating Sysi:em, which in :'.l'i."n calis for a 'paging task'. The

Program Inter"l'."npt Service first 8tl:empts to locate a page frame, the

r.ontent1; of which may be replacecl wi·i.:h thP. required page from virtual

memory (currently on disk). To .:aid in this determination of which

page will he replaced, the 2200VS Operating System uses .a 'Least

Recently Usecl" (LRU) algorithm. If -P. page has not been referenced

recently, that page will probably not be needed in the immediate

future~ and is therefore 'replaceable' according to the LRU. The LRU

makes this determination based on an 'Age Count', which is maintained

for each page frame.

Age count, and other page frame·,related infoLlllation is held

permanently Hxeci fo. an area of main memo;.·y called the 'main memory

Page FrAme 'i'&bie: (?F'".i'; do not confuse with ~ Page Tables). The

main memo:i:-y "!?age Frame Table is maintained as a 'control block' of the

Operating System. Each page frame's age CQU.t'.t is zt:::..·oed by a corres­

ponding ';~eferoeric<: bi;; 1 , ever~' time that page frame i3 r.efe·renced.

This refeL'ence bit ia m.Qintafoeci in a ·~Page Frame Table 1

(LPFT). The LPFT occuppies another portion of the CP stack. One four

bit LPFT er:. try e::{bts for each page frame. The paging routine uses

the pagP. address obi·9foed from a Local Page Table to index into the

Local Page F~ame Table .

2-10

e·

•

•

LPFT entries have the following page frame status information:

I
I

Undefined Ref. Change
I

Bits Bit Bit
I

I

0 1 2 3

If a page frame has been modified by a write instruction to main

memory (WTRAN), the 'change bit' (in the LPFT entry belonging to that

page frame) is set. That page no longer matches its original form,

still on disk. Thus, during a paging task, before replacing the

contents of that page frame, the modified frame must first be

rewritten on disk (paged out). This will update the contents of

virtual memory. If a currently framed page has ~been modified,

that frame may be directly overwritten with a new page from disk.

Scanning of the Main Memory PP'T and the LPFT for 'age count' and

'change bit' status during the LRU routine is ferformed by the Scan

Page Frame Table(s) (SPFT) instruction, which is used exclusively by

the Operating System.

There are four 4-bit page frame table entries in each of the

sixty-four 16-bit LPFT stack elements.

To sut1111arize LPFT entries:

R-Reference bit

1 • page frame was not referenced by translation

microinstruction

0 • page frame was referenced by translation microinstruction

(not innnediately replaceable)

C-Change bit

1 • contents of page frame was not changed

0 • contents of page frame waa changed

(page muat be recopied to diak)

2-11

Once the LRU algorithm determines which page will be replaced,

the page being se~rched by the current t.:l.sk (program) must be located

and brought in from disk. To loccte that page, the main memory PFT

entry for the cut;,·ent: ('i>·•aiting) page frame supplies a three-byte

pointer. This pointer is a virtual address, which, when translated,

yields the loo.1i:ion of a 'File ·i.ength anci Use1 :Slack' (FLUB), also in

rn~d.n meraor:~·. 'l'h('.:re :;.s or.-:! TI.UR h~l.-J in main memory for each active

file in ~be system. Fo~ c~ampie, if e 2200VS syAtem has nine users

logged on, and each usE ;: ~ ::l e:cecu ting A tC1.;k, nine FLUB' s are

established in m.un @einory, c.ne for e.sc.h user; s task; other FLUBs are

establ ishe:i for pagin~ of acl::i.·1e Ope::-si:ing System files. Each FLUB

contains ail p~imaT7 information necessary to locate the active file

on disk. 1he virtlial ?age ~clJreoR (for the required page) is then

used .gs sn in<le~-c o;,· disµia:eme01t into that file, thus enabling the

missing pag,, i:•) be ;:-f.<id and a;.iosequeritly 'paged in' via I/O DMA to the

page fr1:1u;e tha:: ll~s 'b~en ;.·2served by the LRU algorithm. This

accompl i.~heJ, the p!·opei· L.PT is updated, and the cu:a.·:rent task resumes

execution,

Any ;;aer c·1: Oµe;:-aci;ig S~rstem i:&sk thai: nP.eds a page from disk is

fo-;:-ced to ~,w;_i: u71:_ii ;J-.1:.• pP.ging task ha::; b'::!en compieted, and the local

and ;n.:1}_11 1r.erno::')' ~ac;~ c;r;c; pu.ge frame tab 1. es have been upd.<.1 ted. Keeping

track of wiiic'i1 ::c:sks &;f:. held up f.:i;· 1page-ir. wnits' io a function

th&t i.s per ::,y::-meJ b;r another of i:ht- Operating System: s control blocks,

. - A ' •,'"'-''S,\). the ·Page ?~arne Semuphore rea rr •l The PFSA is permanently fixed

in u:aL~ ":11".!ii:J:..-y :1i:C: held::: i) ::~e virtu.'.11 µage number required for

page·-· i.·.-,, 2) ~:112 .-:-..1,01h~1· ot the µagt. fc-e.;-nr~ ::hat ha6 been oeleci:ed by the

LRU, &nd J) Lh~ FLUB add~css ~e4ui~~<l for page-in. Note that item 3

is not u3cd ao ~he actual pointe;:- ~o the FLUB.

The fo i: C'"Ji.i.'lg f J.ow diagrn1,1 U 1 ustrntes d typical paging operation:

/.-12

•

FIGURE 2-3

TYPICAL PAGING OPERATION

2-13

-.UY q&ll&ll
1 •K-PAllnl

'OrtPl.1.TID

2.2 COMPILERS, INTERPRETERS, AND ASSEMBLERS

Any r.iaehin-=; using high-level proeramining languages (BASIC, COBOL,

RPGII, FORTRAN, ei:c.) cannot directly execute any statement written in

that languag~. Each statement must firRt be transformed, by some

means, into a aeries of executable machine language inst~uctions.

2. 2 .1 COiViPILERS

Z~Ol)VS Lang1~ag:·•s ar~ 1 compiled'. In .a corai>iler eyste::rn, s. progl.·arn

is first 2n~ered in one of ~he Rvailable high-level languages (COBOL

or BASIC in th0 22oovsj by interac~ing with a 'text editor' program.

Entedng ;:e'.'{i.: -.,-ia 'i:2x'.: edito~' is very similar to typing text into a

word procesr;ing r.mchine. The prograimilet· may enter anything he wants.

The text ~cli to1· pr.ogram causes the machine tc blindly accepl: the

use;..·' a prog;:-ara t:.:?:.;:~, ri!.lm·ring him to eel it his text on eni:i'.'y, and

giving no :i.~cli=•::::ion of p-::-ogrannning errors. This initial ent;:-y of

high-level uae;:- progni.m i:sr.:t is calied the :source program' (also

'source tei~t' Di.' : soi.::rc-=:; modul"!'), and is not machine execut~b le.

After tz~:i·. h[:js been e1.1.tered and edited, another function of the

text editm~ p;og:cam st.orl."R this sou"l'.'ce program on disk. Once on disk,

the sou:-ce !';.·og;:-flr,1 nec0mc;;o t\ 1 source file~, ctill not machine

exect•.tal>J.e.

Once thP. :::cur.ce i:ile '.las been created, the p;.·ogranr.ne:::r loads a

'comµiler 1 pi~o~J:".:1;,;, ,.:o-ftten in machine lP.;:·guage. The COTIOL or BASIC

compiler wil.J. ua0 i.:!1e eource file ~s inpl1.t to p:r&Jduce a 'compiled'

version of the use1·:s 1Eug1·am in machine language, cailecl the 'ohject

program' or 'object code'. The compiler program then creates an

'object file' or ip:::ogi:am file: on disk, an.d lhen generates a printol:1t

of source code, object code, syntax errors~ and other relevant infor­

mation for the prograunner: s ''Se. "Ct j s only this 'object' m.

'program' file that can be e~ecuted on the system; source code cannot

be executed.

2-14

e·

•

In a compiler system such as the 2200VS, therefore, two versions

of each program are produced: the source program, written in a

high-level language; and t.he object program, consisting of machine

language statements and produced by a compiler.

To run the object program, the object file is loaded and run.

Errors of execution will show up at this time. On the 2200VS, error

messages are in plain English, not number codes. When an error is

encountered, the user program goes into a debug mode. Machine code,

memQry, and registers may be examined and changed. The program can be

stepped, rerun, or cancelled.

On the 2200VS, because all progranming languages ultimately com­

pile to the same machine code, a program may have different portions

written in different languages. It is not unu,ual to write a machine

code routine for something that is not convenient in a high-level

language. The various pieces are put together by a system program

called a 'linkage editor' which works with the object files.

In.a compiler system, a progranmer will be more efficient if he

makes flow charts and 'desk checks' his code in advance. Since a pro­

gram is usually run many times after it is written, it is better to

slow down the coding process and speed up run time.

2.2.2 INTERPRETERS

An Interpreter is a program that will translate high-level lang­

uage program statements (source code), as encountered, directly into

individual sets of executable machine instructions. An interpreter

does not generate the object code for each source statement, and save

that object code for later execution. The major disadvantage of an

interpretive system is speed. An interpreter may generate results 10

to 20 times slower than the equivalent compiled code. For example, in

an interpretive system, a statement describing a 1,000-pass loop must·

be retranslated and executed for each of the 1,000 passes in that

loop. The interpreter is, however, superior to the compiler in that

the executing program can easily be interrupted, changed, or resumed.

2-15

Most commercially available BASIC language systems, such as

Wang's 2200C, S, or T use an interpreter program for execution of

source code. A 2200 program would run much faster if all source code

were compiled instead of being interpreted. In the loop example

above, the lpop would be translated to machine code just once, not

1000 times. However, the resulting machine code {object code) would

produce the same end result, but much faster.

2.2.3 ASSEMBLERS

An 'assembler', also known as an 'as8cmbly routine' or 'assembly

program', is a program designed to ~onvert a set of non-executable

symbolic (mnemonic) instructions directly into executable machine

language instructions. Assembler language thereforP. permits a

programmer to write machine-level instructions. Each assembler

symbolic instruction has a one-to-one correspondence to a machine

language instruction. For example, a typical assembly language source

program for a Wang Model 700 calculator might look like this:·

Step ~~ Mnemonic Instruction

l

2 UP

3 WR AL

4 CR/LF

5 END AL

After 'assembly', the object cotle wouid be:

Step /I 700 Machine Code

1 0701

2 060l}

3 0412

4 0108

5 0413

2-16

•

Notice the one-to-one relationship between assembly language

steps and machine code. This is what distinguishes an assembler from

a compiler.

Since the instruction set of a machine defines the complete set

of elementary capabilities provided by the machine, Assembler language

provides the programmer with access to the machine's total repertoire

of functions.

Again, it is important to note that the machine instruction set

of the 2200VS contains all instructions available on the IBM 360,

along with most available on the 370.

The 2200VS Assembler also allows a programmer to define a routine

consisting of a series of instructions, and assign a name to the

routine. The name can then be specified (instead of the entire

routine) as a single instruction in a program. Such named routines

are called "macros", and the names assigned to them are called e "macroinstructions". Because the 2200VS Assembler permits the

definition of macros, it is also referred to as a "macroassembler".

•

Macroin11tructions used in preparing and assembler language source

program fall into two categories: 'system macroinstructions', pro­

vi~ed by Wang, which relate the object program to components of the

operating system; and 'programmer-created macroinstructions', speci­

fically for use in the user program •t hand, or for incorporation in a

library for future use. All current system macros belong to the

library named '@ MACLIB @'; the following is a list of system macros:

AIR
ALEX
AXDl
AXDGEN
BCE
BCTBL
BCTGEN
CALL
CANCEL
CHECK
CLOSE

FREEMEM
GETBUF
GETMEM
GET PARM
IORE
KEYLIST
LINK
LNKB
LOW
MCB
MSGLIST

2-17

REWRITE
RMSG
SCRATCH
SEND
SETIME
START
STMB
SVCE
SVCT
SYSCODE
TCB

CMSG
CREATE
DBTB
DEL.ETE
DESTF.O''l
DPT
!TC'S
EXTRACT
FDAV
FDRl
FDR2
FDXl
FJlX2
FLUB
FMSG
FMILIS'i'
FREEBUF

OFB
OPEN
PATCH
PCEXIT
PF:S
PFSA
PFT
PFTX
Pl'
PiJTPARM
PltE
READ
REGS
RENf.ME
RESETIME
RETURN

TIME
TPLAB
'I'.PLB2
TQEL
TS
UCB
UFB
UFB2
UFBGEN
VCB
VOLl
WAIT
WRITE
XIO
XMBUF
XMIT

'Prog;:-ammer-c:reated macroinstz·uctions' are used to simplify the

writing of a prr.gram and to eraaure that a standard sequence of in­

structions is used to accomplish a desired function. For instance,

the logic of a p~cg~am may require the same instruction sequence to be
executed again and .agsin. Rather than code this entire sequence .a1tch
time it is needJ!d 1 the pt·~gl"ammer creates a macroinstruction to rep-

resent the eeql'.ence and then, each time the sequence is n.e;eded, the

programmer sifilply codea the macroinstruction statement. During

assembl}', the sequence of instructions represE:nted by the macro­

insta:uctiou is :!.'.!El'=':r.ted in the object: program.

NOTE:
MORE DETAILED INFORMATION ON SYSTE1.f
MA.CROINSTRUCTIONS CAN BE FOUND IN THE

?.200VS ASSEM!LER LANGUAGE REFERENCE MANUAL
(WL1~ 800-1200AS)

The aq&er.;bigr ls~~uage also contains mnemonic assembler-instruc­

tion operation codes to specify auxiliary funr.tions performed by the

assembler. Thene are ins~ructions to the assembler program itself,

and with a iew e~r.eptions, r.P.sult in the generation of no

machine-l&ngus.ge object code b~, the ascembler program.

2.3 THE 'OPERATING OIS'l"l!.M 1

To introduce ~hia Gubject, ~ typical single-user system (the

2200VP) will be discu~sed.

2-18

•

•

User 'A', at the console of a 2200, runs a job; other ~qers must

wait to use the system. User A's job is typical, consisting of Input,

Computation, and Output phases.

During the Input phase, the CPU prompts the operator with ques­

tions, waits for responses, and stores these responses in memory to

await the Computation phase. Assuming that user 'A' is an efficient

typist, and reads prompts quickly, the CPU might receive one data item

per second. At that rate, the CPU is idle about 99.99 percent of the

time. User 'A' has also pre-punched a card deck for input. At 300

cards per minute, the CPU still remains idle approximately 99.54

percent of the time.

1he Computation phase is 100 percent efficient, but brief;

however, if any disk access is required, the CPU waits an average of

77 percent of the access time.

A 600 LPM printer leaves the CPU idle 98.5 percent of the time.

With a 2201, the Output phase leaves the CPU idle 99.98 percent of the

time, not counting carriage returns.

Obviously, no customer would buy a single-user machine for a

situation where several users are always waiting to access the

system. The above example shows that there is adequate CPU time for

all jobs (tasks), without having to delay one task for another.

Another inefficiency in a single user system is memory utiliza­

tion. The entire 64K memory of a 2200VP is available to only one

task, whether the task requires 100 bytes or 60 thousand bytes. Fur­

thermore, even in a large task, only one phase is being executed at a

time. The in111ediate memory requirements of any program are usually

small.

Peripheral devices in a single-user system are not utilized

efficiently. In the example, the card reader was used only during

2-19

user A's Input phase; the printer was used only during user A's Output

phase; and the disk was used mainly during user A'e Computation

phase. Each peripheral was actually idle during mo~t of user A's task.

Another weak area in single-user systems is the management of

disk and tape storage facilities. Considerable storage space is

wasted if each user decides to have a personal disk or tape. Software

overhead devoted to file management in a user's program is also a

conunon weakness.

Afll-Y COMPUTER SYSTEM HAS FOUR MAJOR RESOURCES:

1. Processor time

2. Resident memory space

3. I/O devices

4. External data storage spac~

If a second task could be run using the idle CPU time and wasted

storage space of the first task, the second task would run as 'if it

were the only task being executed. In fact, the~e is so much waste in

s.lmost any single user system task; that the opti111um number of tasks

that could run efficiently, concurrently, could be much higher. This

technique is called 'concurrent processing: or ~interleaving'.

As the number of users on a system increases from zero, the

system becomes mc..re and more efficient. All sys tell devices decrease

their waste time percentages with :nore uaers. Even though the

operHting syBtem overhead is significant> a ?200VS is far better off

than a single user system.

However, as users are added, a breaking point can be r~ached. In

a virtual memory system, the breaking point can be defined as having

page faulto repeatedly occur during paging operations. When a system

reaches this condition, the disk drives become extremely active. So

much time is tied up in the operating system paging routine and disk

I/O, that little or nothiilg is getting done on any user task. A

system in this condition is said to be 'thrashing'. Thrashing can

also be defined as a system condition where the use:i'.'s would be better

off on a similar single-user machine.

2-20

•

The fundmental cause of thrashing i1 running too many tasks for e the physical memory size. A system on the edge of thrashing can be

pushed into that condition by a number of tasks all competing heavily

for disk I/O or a bad disk that is consuming time in retrie9.

•

DEFINITION:

The Operating System is a software package which interfaces user

tasks to the hardware system in such a way as to make optimum use of

system resources.

GOALS OF THE OPERATING SYSTEM:

1. Processor Time

a) Keep the processor computing some user task 100% of the

time, switching from task to task to maintain 100% utili­

zation.

b) Not to delay any task due to unavailability of processor

time.

2. Memory Space

To allocate space for user tasks in such a way as to use all of

memory most efficiently.

3. I/O Devices

4.

a) To keep I/O devices from h11•.dng any idle time.

b) To minimize task execution delays caused by busy devices.

c) To prevent user task conflicts (e.g.: two tasks writing the

same file).

Data Storage Space

a) Prevent wasting disk or tape space with unused areas or

repetitions of a single character.

b) Maintain a Volume Table Of Contents (VTOC) for each disk for

quick access .

2--21

A CONCEPTUALIZATION OF WCS 60/80 OPERATION

FIGURE 2-4

All of these goals are, of course, ideals. In the real world,

compromises must be made. The following section examines resource

management in more practical terms.

PROCESSOR MANAGEMENT

A user task is submitted to the operating system by the user.

The task innnediately enters a hold state, waiting for time on the

processor. When the task is allowed to begin processing, it is

allocated an amount of time called a 'Timeslice'. During this

timeslice, the job continues in a RUN state until:

2-22

•

1. The task needs an I/O function or a virtual memory paging

operation.

2. A progranuning error occurs.

3. A higher priority task takes over.

4. The timeslice expires.

5. The task is finished.

If conditions 1 1 2, or 3 occur, the task goes into a wait state

until the condition is corrected.

Once the condition (1, 2, or 3) is corrected or a task's time­

slice has expired, it goes into a READY state and is queued (sche­

duled) for further processing.

When a task is complete, it is removed from the queueing

(scheduling) process and any system resources allocated to it become

available for other scheduled tasks.

Only one task is in a run state at any time. All other active

tasks are either in the WAIT or the READY state. As soon as any task

leaves the RUN state, another READY state task is brought to the RUN

state. In this manner, the processor is alway~ doing something useful.

The operating system itself needs processor time to do its

functions. However, there are operations it must do that a user task

MUST NOT do (such as I/O Control and Memory Paging). To implement

such operations, the CPU has two states:

1. Problem State

User task running; no 'privileged' operations allowed. A

'privileged' operation is any task that is executed only by the

Operating Syst.em (such as initiating an I/O operation); the user

has no access to privileged operations.

2, Supervisor State

~ All operations allowed.

2-23

When a user task requires a privileged operation, sur.h as I/O,

the task must issue a 'supervisor call' and enter the 'wait' state.

The Operating System does the privileged operation when expedient and

puts the user task back in the RF.ADY state.

MEMORY MANAGEMENT:

In a virtual memory system, there are two important considera­

tions in memory management:

1. As many tasks as possible should be in hardware memory ready to

process. This is accomplished by loading only those portions of

a task which are active at the moment. For example, a program's

final print routine would not be loaded until near the end of a

task.

2. An algorithm must be used to implement page replacement deci­

sions. The 2200VS uses a Least Recently Used 'CLRU) algorithm.

The operating system occupies certain pages that must not be

paged out (e.g., the paging routines). These pages are

permanently resident.

I/O DEVICE MANAGEMENT

WORK STATIONS:

The 2200VS is an interactive system, not a batch processor.

Because of that, there is no practical way to share a work station

among several tasks. Therefore, the idle time of a work station

simply has to be tolerated. However, an idle workstation does not

slow down the system. Each user work station has 1.25 Meg of virtual

memory space allocated to it.

One work station (address 0) is designated as the System Con­

sole. Limited control of overall system operation is possible from

only this work station. When the Operating System is running, the

2-24

•

•

'system console' cannot run any user task, nor can its running of the

'System Console Program' be interrupted. The Conunand Processor cannot

be invoked by the system console. The System Console Program consists

basically of maintaining a print queue and an I/O error log. The

operator of the 'system console' is called the 'system operator'.

Other work station operators are usually called users or system users.

The operating system may optionally require that users 'log on'

with a prearranged designation and, optionally, a password. This

arrangement can be used to control disk file access and/or generate

billing for user time.

To be more specific, the Security System consists of:

1) A sy~tem user list, with log on I.D., password, special log

on procedure, and a three-tiered access classification for

all the files on the system.

2) A flexible system of file protection classes, which ·can be

tailored to suit the specific requirements of each installa­

tion.

The security system is under the direct control of the security

system administrators. These are specially recognized users who are

responsible for the meaning and use of file protection classes, and

who are able to access all files on the system, including the system

user list which identifies all users who have access rights to the

system and the special privilege program list.

When a user sits down at a work station, the first display

encountered is the LOGON display. LOGON requires the user to enter a

USER ID a~d a PASSWORD; the entered values are then checked against

the System-User List, and, if they are located in the list, the user

is immediately logged on to the system. Otherwise, LOGON returns a

message indicating that an invalid USER ID or PASSWORD has been

specified, and the LOGON prompt remains displayed .

2-25

NOTE:

To provide an additional measure of security for

system users, the PASSWORD is not displayed as it

is typed in.

The process of logging a new user on to the system from a

particular work statiou involves automatically resetting all default

parameters to the system defaults (in effect wiping out any defaults

set by the previous user at that work station), and passing control to

the Conunand Processor. The C01mnand Processor Menu is then displayed

on the work station screen.

DISKS

The Operating System relies heavily on di=~ operations, since

disk I/O is faster than any other 2200VS system I/O. The primary

considerations for disk I/O operations are 'r:.\.IORITY OF ACCESS' and

'DATA INTEGRITY'.

Virtual Memor.y Paging is the highest priority disk operation. If

this were not so, system performance would be degraded. Also, the

operating systet1i will not allow the system disk, containing virtual

memory and the Operating System, to be removed from the drive.

The system also makes it impossible to remove or exchange a disk

pack that another task is using.

Data integrity is protected by header and Cyclic Redundancy

checks. The 75 Meg disks are also written with an ECC (Error

Correction Code) that will correct up to 12 bad bits per page. All

I/O errors, whether hard of soft, are logged and available for

printout via the system console.

PRINTERS

The printer is usually a bottleneck in the system. Direct time

sharing of a printer is not possible, due to certain obvious physical

2-26

e·

•

•

impracticalities. The other extreme is to assign a printer to tasks

on a first-come, first-served priority basis. That mode of operation

would bring back most of the printer problems associated with a

single-user system.

With the 2200VS system, printed output is not obtained directly.

The Data Management System intercepts output sent to the printer,

temporarily stores it in a disk file for subsequent printing, and

informs the System Console Program of its presence. The System

Console Program records the names and types of files to be printed in

the 'Print Queue', and schedules each job for printout later.

Whenever a print file is created, the Data Management System does

two things:

1) It places this file in the 'User's Print File Library'.

2) It passes the name, location, and status (spool or hold) of

the print file to the System Console Program. The System

Console Program can retrieve any of these files for sub­

sequent printing.

This process is called 'print spooling'. As far as a user pro­

gram is concerned, if a print task is generated, once that task has

been 'spooled', the printing portion of the user task is considered to

be already done. Thus, the Operating System is using disk as a

'Virtual Printer'. All user tasks therefore run much faster because

of the speed difference between disk and printer.

The printer can be utilized almost continuously, printing files

in the order queued. The system operator may adjust the queue

sequence manually at the system console to allow for changing job

priorities, job length, etc.

The system operator may also release printers to specific tasks

for high-priority. on-line use. Anything queued to a released printer

will be held until the syatem reacquires the printer. Releasing and

acquiring printera ia atrictly a aoftware function, requiring no cable

changing or awitch aetting.

2-27

DATA STORAGE MANAGEMENT HIERARCHY: FILES, LIBRARIES, AND VOLUMES

The creation and maintenance of files is co".trolled by the 2200VS

Data Management Subsystem. A "file" is a logical unit consisting of

one or more records. A file may contain source program text (a

"source file") or object program code (a "program file"), or it may

contain data records. Files can be opened and named by the user; Data

Management automatically handles the complex "housekeeping" chores

associated with creating and maintaining an external file. Each file

is located within a hierarchical structure consisting of two higher

levels: libraries and volumes.

The most comprehensive unit in the file management hierarchy is

the volume. A volume is an independent physical storage medium, such

as a disk<:!tce or a disk pack. The volume name provides a device-inde­

pendent me&ns of identifying physi~al storage units. Once a diskette

or disk peck has been assigned a volume name, it ca11 be mounted at any

available driva unit and accessed by name, without reference to the

address or physical characteristics of the disk unit itself.

Immediately below the volume in the hierarchy is the library. A

volume may contain one or more user libraries, but a single library

may not continue onto a second volume. Each library contains one or

more files. Every file must be assigned ~o a library. Files are not

always in one contiguous area on a volume. Sections of each file are

put wherever they will fit, in order to gain full utilization of the

disk. The 2200VS placei:. nc porticula1· restrictions on the types of

files placed in a library; a single library may be used for source,

program, and data files, or special libraries may be designated for

each file type. The conventions governing library usage are com­

pletely determined at each individual installGtion, based on its

particular needs and standards.

Duplicate file names cannot be used within the same library, but

they may be used in different librariP.s. Similarly, duplicate library

names are not permitted on the same volume, but may he used on

separate volumes. Finally, duplicate volume names nre allowed but not

recouunended.

2-28

•
----- --- ------------------------

•

To avoid possible ambiguity, each file name must be qualified

with the names of its associated library and volume when the file is

opened. Such qualification is not required, however, when running

programs from the System Program Library, because the System Library

and Volume are used automatically whenever the named program is not

located in the user program library, or no user library is supplied.

Because all system utilities are stored in the System Program Library,

it is never necessary to specify a library or volume name when

invoking a system utility program.

SYSTEM PROGRAM LIBRARY

In the special case of program files, an additional level of

default is provided by the system. The system program library is used

as a default library by the RUN cotmnand whenever the named program

cannot be found in the specified user program library or whenever no

user library is supplied. (Note that the names of the system program

library and its associated volume are not displayed in the RUN prompt;

the library and volume name fields remain blank.) This feature

permits the user to run system utility programs without specifying a

library or volume name; without, indeed, ever needing to know those

names.

If the user has specified his own default names for Program

Library and Volume, he need not change or erase these names when

running a system utility. The RUN command first checks the user

program library for the specified program. If the program is not

found there, RUN then automatically checks the system program

library. A system utility program may therefore be run without

entering a program library or volume name, whether or not

user-specified defaults for these names appear in the RUN prompt .

2-29

•

SECTION 3

INTRODUCTION TO 2200VS HARDWARE

3. 1 SYSTEM BLOCK OVERVIEW

3.1.l GENERAL

The WCS-60/80 (2200VS) is a multiple-processor system. At the

heart of this system are four major functional elements.

1. Central Processor (CP).

2. Processor Communication Bus (PCB).

3. Main Memory (MM).

4. Main Memory Bus (MMB).

Tile Central Processor contains facilities for addressing Main

(physical) Memory, for fetching or storing information, for arithmetic

and logical processing of data, for sequencing instructions in the

desired order, and for initiating conununication between Main Memory

and external devices. In general, the primary task of the Central

Processor is to e~ecute the machine instruction set and monitor the

results of executi<",. (There are actually two instruction sets in the

Central Processor, the machine instruction set and the micro instruc­

tion set. Each machine instruction is actually a microcoded routine,

stored in the Central Processor.) Included in the Central Processor

are multipurpose registers, Control Memory, and a binary clock. Con­

trol Memory provides a storage area for the 2200VS microcode. Tilis

memory is also referred to as PROM (!rogra11D11able !ead-£nly ~emory), or

simply, ROM (!ead-£nly ~emory). The binary clock runs at power line

frequency and provides the CP with a date and time of day as a refer­

ence for such functions as allocating CP usage.

The Processor Communication Bus controls all operations between

the Input/Output processors and the Central Processor. It is the

Processor Communication Bus logic which maintains 'hand shake'

protocol between IOP's and the CP.

3-1

'-" I
N

,---·,
10 o ~I
IP E D ··--1 r VAi

r 1 I I I Pie-ii- -I OPTIOAAL t-__ _->Io C I
1 WORK I"""""" I E 0

I STATiONS 1 IN RI
I ' I ~s · I ---- Ll--~

•

I I ro-- - P', I
I I P ~ I I
LX>(r ~: I

1 ~1;0E;.,\---' ·--J:>I~ Si

1 A ~ !
; I

--.J

KlllN (PHY'illAl)
M(M(JRY
(RI!/'!)

•

I
I

ro---pi I ro_o_Aj r-----1
P E 01 I

I P R ~ J I r v A 1 : pr 1 oN\L 1
I I Tl ~I I I I f -i-- ->IPl~IPH!.olAl SI I

- -I>· 0 c 11 - l 0 l/OE1c.:1-- U •
L_-.i N s1- INI I L-----

"'"l l A RI I A s I I l ' l 01 ._ __ _.
I RI L ___ s.J

Main Memory is a dynamic random-access memory with automatic

error-correction circuitry. All processors in the system have the

ability to access Main Memory using the Main Memory Bus. The Main

Memory Bus controls all data transfers between IOPs and Main Memory,

and between the CP and Main Memory. Direct Memory Access (OMA) is

available to each Input/Output Processor and the Central ProcesPor on

a priority basis. Processor requests for Main Memory access are

sequenced at the start of each Main Memory cycle. The CP is given

lowest priority for memory access, due to its ability to use memory

cycles that occur between IOP memory accesses. A Main Memory

operation consists of a transfer of one or two bytes between Main

Memory and a processor. The maximum Main Memory size in 512K

(WCS-80). Address translation hardware supports a virtual memory

configuration using a 'system disk' which effectively provides each

user with one megabyte of memory space.

On the periphery of the Central Processor, one or more subor­

dinate processors (Input/Output Processors-IOPs) receive connnands from

~ the CP and control their respective peripherals. Starting and

stopping of any IOP is controlled by the CP; however, once initiated,

an IOP processes independently of the CP. This allows concurrent I/O

processing.

•

After completion or rejection of any command from the CP, the IOP

'interrupts' the CP to report status. This interrupt capability

allows the Central Processor to perform other tasks during I/O

'waits'. For example, a command could be given to one IOP to print

data on the printer while, simultaneously, another IOP could be

connnunicating with a work station. Upon completion of their

respective tasks, each IOP will request service from the CP on a

priority basis, determined by the physical location of the IO? in the

computer chassis. Each IOP, while fundamentally the same as other

IOPs, is customized for the devices it controls by means of a Device

Adapter and a unique microprogram. The Device Adapter is the

interface between the IOP microprocessor and the peripheral device .

3-3

Each DevicP Adapter is p1up,ged into its corresponding IOP. There

are two basic typPc nf device adapters: one 1s for work stations and

printers; the other JH for disks.

'1'h<:! fol 1 mv·i n~ ilPV ice ad ante rs a re ;;va i 1ab1 e:

22V01

22V02

22V0'-+

22 VOS

22V06

Pri~t~r/Work~Lation IOF.

b~ppnTt3 one !l~{nter and Up to th~ee ~urkstatiOnS.

Disi':ette/10 Megabyt:E Disk IOP.

Supports c,ne :•2·1ov 'HS ,000-Byte Disket::e O:cive and up to

t"hree ?./~tia·v 10-Megabyte Fhed/Removabl.e Disk D""."h·es.

75/')8~·-Megab~rte t~emovdble ::Jiok Dr.ive IOP.

Suppcn:i:o any combination of up to four 2:.i.65-1 75-Megabyte

Removable Disk Drives and 21.65V-2-Megabyte Removable DiRk

Drives.

9-Track Tape Drive IOP.

Supports up to four 2209V 9-Track Magnetic Tape Drives.

Comm:.mications IOP.

Available ~1-. tl·.·~ models to support bisynchronous tele­

communications in the following combinations.

22V06-J. ·- Supports one bisynchronous line.

22V06-2 - Supports two bisynchronous lines.

3. 1. 2 DATA ORGANIZATION ll\1 THE 2200VS:
---~----

The foll-:>wing data ::::.-:11:111at specifications apply th;:·oughout 2200VS

sy~tem hardwa 1:e:

8-bit bytes may be handled separately or grouped together in

fields. A 'word: is a field of four consecutive bytes and is the

basic building tlock of instructions. A 'doubleword' is a field

3-4

•

•

consisting of two words and a 'halfword' is a field consisting of two

bytes. The location of any field or group of bytes is sp~cified by

the address of its leftmost byte, with 'alignment' required for words

c. doublewords.

Alignment:

Fixed-length fields, such as halfwords and doublewords, must be

'aligned' in main storage on an integral boundary for that unit of

information. A boundary is called integral for a unit of information

when its storage address is a multiple of the length of the unit in

bytes. For example, words (four bytes) must be located in storage so

that their address is zero, 4, or a multiple of the number 4. A half­

word (two bytes) must have an address that is zero, 2 or d multiple of

the number 2, and doublewords (eight bytes) must have an address that

is zero, 8, or a multiple of the number 8.

'Boundaries' for halfwords, words, and doublewords can be speci­

fied only by the binary addresses in which one, two, or three of the

low-order bits, respectively, are zero (Figure 2-2). For example, the

integral boundary for a word is a binary address in which the two

low-order positions are zero.

Variable-length fields are not limited to integral boundaries,

and may start on any byte location.

Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte

0 1 2 3 4 5 6 7 8 9 10

8 Bi ls

Halfword Halfword Halfword Halfword Halfword

0 1 2 3 4

16 Bits

Word Word Word

0 1 2

32 Bits

Double Word Double Word

0 1

64 Bits

3·-5

FIGURE 3-2

FIELD
ALIGNMENT

Eetch functional block is discussed in g;_·eater detail in Secti.on 3.2.

3. 2 THE L;E!i!TRAL PROCESSOR

To introduce this section, ~ cursory presentation of CP hardware

is rendered, followed by a more detailed discussion of each CP element

in paragrapl1 3.2.2. Any new voc~bulary encountered in 3.2.l is

furthe1 exµlained i~ ~.2.2.

3.2.l G~Nt:RAL

The Cen~;:.gl Processor lS the primary cont·.-oller of the 2200VS.

It contains facilitieR for sdcireHsl~s M~in Memory, for fetching and

storing info=mat~on, for arithmetic and logical operations, for

sequencing instructions in the desired order, and for initiating

communication betw2~n Mu in Memory and externa 1 devices. Generally

speaking, the pr~na=y task of the Central Processor is to execute its

ins t!'uc ti on set and t() monitor and manil'u late the !'esul ts of e·,~ecuticn,

Th2 CP has '.! basic modes of oper&i:ion, ea.ch being mut•.•ally exclu­

sive of the other:

1. 0µ2rai:ion uncier the 10pe'i:·ating System'.

2. Cont~ol Mode Operation.

Under th~ O?er~ting Syst~m, normal user taekn can ~e executed by

the CP. Dr.de-;.· :c..ontroi. Mode:, normal p•~i:gram execu::ion is halted and

certain other. feciU.ti.es are made available. Control Mode inter­

actions are pe;:- forrned exclusively through the System Console, and

Control ModP messages are displayed ~?-~. in the top line of the System

Console s.:rc2i1.

Control Mode facilities are divided into two groups, 'debug' and

'load'.

1. Debug - This group contains corii1Tlands for displaying and/or

modifying main memory, general registers, system registers

3-6

•

and the Program Control Word (*PCW). Also included in this

group are conunands for single step program execution, hard

copy dump of memory and registers, and virtual address

translation.

2. Load - This group contains comm&nds for initializing the

Operating System, loading 'stand-alone' programs, loading

diagnostic programs or restarting programs (from an

initialized state).

Major elements of the CP are as follows:

MASTER CLOCK:

The function of the master clock is to supply a means of

processing microinstructions. The time required to process one

microinstruction is referred to as a 'machine cycle'. A further

breakdown of a machine cycle occurs in units called 'sub-cycles'.

~ All instructions are processed in twelve 55 nsec sub-cycle times

•

= 660 nsec., with the exception of the three virtual address manipu­

lation instructions, which use sixteen subcycles (880 nsec) each.

REGISTER STRUCTURE:

a) General !egisters

The CP can address information in 16 'general' registers. The

general registers are used as index registers in address calculations

and as accumulators in fixed-point arithmetic and logical operations.

General registers have a capacity of one word (32 bits). These

registers are numbered 0-15 and are specified by a four-bit R

*PCW - Used to control instruction sequencing, and to hold and indi­

cate the status of the system in relation to the program currently

being executed. Further explanation follows.

3-7

'f
00

w
I ,.....,

N
N
0
0
<
Cll

(")
1:22

~
~
(")
1:22
Cll
Cll

~

•

··-·--- I
CDtl1UL\.2.'__j

'0(1 tPU
8 > l>llli:\ftM ()LO ti!.

-------•• ,~ OIU."t MIMOA1
lllA' ('""'"111\

• •

•

(Register) field in a microinstruction. Some instructions provide for

addressing multiple general registers by having several R fields. The

General registers are located in the CP 'stack'. (The CP 'stack' is

discussed separately in Section 3.

b) Floating Point Registers

Four floating point registers exist, they are specified as

registers 0, 2, 4 and 6. Each FP register is 64 bits in length (one

doubleword), and can serve to contain one long floating-point number.

These registers are addressed by the floating-point instructions

only. The Floating Point Registers are located in the CP 'stack'.

c) System Registers

The system registers provide a means of storing system control

information that is used in the execution of the machine instruction

set (do not confuse with microinstruction set). The System Registers

are located in the CP 'stack'.

d) A-Register, B-Register

These are 16-bit registers, used to hold the 'A' and 'B' operands

for the ALU.

c) C-Register

The C-Register holds a B operand for the 8-bit ALUs.

d) !rogram ~ask !egister

The PMR is an 8-bit register which holds the Condition Code,

system mask bits, and the Instruction Length Code; all of which are

discussed in Section 3.2.2.

e) Indirect Register

The IR is an 8-bit registPr used to store a CP Stack address.

The stored value iR used for indirect stack addressing operations.

Tile CI' co11tains i..wc ide11:::icc:l MARs (iwfARl and MAR2). Ea-:h MAR can

hold either i:I ~~·-:!:_'-2.sl m'~mory addr<.'sc; (used t•) calculate a physical

memory c:;Lidress)or -"l ; ··Ansiated ~hysical memo..:-y add1·ess. MARI and MAR2

are ide~tical in terms of the ~perationa that can be performed on

them. Th~ :·easl)n foi."' this duplication ir. related to the time frame

during which ::hey are used. As on12 HAR is being utilized, the other

can he loaded with information required for the next operation, thus

elirni-.i<:ll::..rig CPU 11·•aits' for ~tA'R avuilahility.

The i1DR is a 16-bit register which is used to transfer data

bett·Jeet1 M.sin Memory and the CP. Data moving to and from IOPs is also

handled by ::he MDR.

h) Status ~egister

Tn-i.s St8tus Register is a 16-bii: ;~eg:i.s::er which contains a repre­

sentation of ~:{i.:ernai c0nditions, J.200VS arithmetic: an<l i.ogical re­

sulti:;, and CM microprogram fl.ago (i.e., bits available for m·t=ro-

INTERNAL STACK:

ThE Internal Stack (also called the 'CP stack' or local storage')

is a RAM <.:·:m figured as 512 x 16 bi ts. A 9-bit address from the Stack

Address Regi.ster (SAR) is uceci to select a parti~~lar. 16-bit stack

element. When an 8--bit operation is performed, another address bit

selects ~byte> . rom the 16-bit stack clement. When an ~ddress

3-10

•

•

operand (24 bits) is used, a pair of stack elements is referenced.

Many of the stack elements ~epresent a major portion of the CP

register structure. Four other important elements of the Internal

Stack are the three Local Page Tables and the Local Page Frame Table

(see 'Virtual Memory', Section 2).

ARITHMETIC/LOGIC UNITS:

There are three ALUs in the CP:

a) 16-Bit Binary ALU

This is the primary ALU for the CP. It is capable of all

arithmetic and logical operations of the 74181 ALU chip.

b) 8-Bit Binary ALU

This is essentially the same as a), but is used for

single-byte instructions and as an extension to the 16-bit

ALU when manipulating 24 bit virtual addresses.

c) 8-Bit Decimal ALU

This ALU uses BCD, two digits at a time, for execution of

decimal microinstructions.

CONTROL MEMORY:

Control Memory (CM) provides a storage area for the CP's micro­

program. CM is based on the INTEL 2708 PROM. It is also referred to

as 'ROM'. Control Memory is addressed by the Instruction Counter

(IC). All CP operations are directed by Control Memory microcode.

BUS STRUCTURES:

a) Processor Connnunication Bus

The PCB carries commands and status information between CP and

IOPs.

3-11

b) Main ~emory Bus

The MMB is a direct Main ~emory !_~CCRS (DMA) channel that can

used by every processor.in the system.

c) 'C' Bus

The output c:f the ALU is routed to nen;::ly eve1·y register and

storage area in the CP via the C Bus.

3.2.2 CENTRAL PROCESSOR HA.t"U>WARE DETAILS

The CP exists physic~lly on three logic cards in the processor

cabinet: CPU #1 caru (7301), CPU #2 card (7302), and the ~ROM board

(7107) which is mounted on the CPU #2 card in a piggyback fashion.

ThP- MMB and PCB are located on other cards.

REGISTER STRUCTURE:

Memory Address Registers (MARl 1 MAR2)

Each MAR is ~ 24 bit register. iogically divided into three

parts: MARH, MARM and MARL.

3-12

•

•

-- VIRTUAL ADDRESS USAGE

PHYSICAL ADDRESS USAGE

~
VIRTUAL I-VIRTUAL PAGE

SEGMENT

FIELD ... PHYSICAL-PAGE--. ~VIRTUAL / PHYS DISPLACEMENT~
BIT : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 ?
J MARH MARM MARL 1

I \
MSB LSB

Since the maximum available physical memory is 512K (524,288

bytes), only 19 addressing bits are required for addressing of page

frames. The full 24 bits of each MAR can also be used to develop any

of 16, 777 ,216 virtual memory addresses, of which, only 1, 310, 720 at·e
presently valid.

Each MAR is designed so that it may be sequentially incremented

(+l or +2), or decremented (-1). This is accomplished by a 'ripple'

operation, specified in the memory field of certain microinstructions.

Ripple '+2':

A ripple +2 operation is used to alter the memory address in
halfword increments.

Ripple '+l' :

A ripple +l operation is used to alter memory address in one-byte

increments. A ripple +l operation would be performed under conditions

that require access to odd addresses .

3-13

Ripple '-1':

MAR also has the capability of being decremented by one. This

operation is required for certain machine instructions such as ADD or

SUBTRACT, during which a descending value in MAR is required.

b) Memory Data Register

The MOR is a 16 hit.register, logically divided into two parts:

MDRH and MDRL.

MOR

it 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 isl
0 1 2 3 4 5 6 7 0 1 2 3 4 5 ::,<~ ~

MD RI I -4:~ ... MDRL
'\ /

MSE LSB

The primary function of MDR is to transfer data between Main

Memory and the C~ in the following manner:

CP ALU

GP ALU

(read)

IOP

C-llUS (Devic:e MAIN MEMORY

(write) Address) (read)

~ irS
I I MD: I

IOP

(Device

Address)

3-14

MEMORY

(WC i te)

It 1erve1 a1 the main proce11ing regi1ter in the CP 1ince it

participates in the tranefer of data between Main Memory, local

storage and other CP regi1ter1. Data moving to the IOP1 ia also held

by the MDR and sent to the IOP via the PCB.

The output of the MDR i1 also an input to the ALU multiplexers,

thus allowing the MDR to be utllized in 16 bit and 8 bit arithmetic

and logic functions.

NOTE:

When communicating with the IOPs, only MDRL0-MDRL7

bits are used; MDRL contains both C011Ulland and address

information. When directed to the CP, these bits con­

tain status and address information necessary for the

execution of a machine instruction.

c) !rogram ~ask !egister

The PMR is an 8 bit register.

cc System Mask Bits ILC

0 l 2 3 4 5 6 7

The functions performed by its three fields are as follows:

Condition Code (CC) - PMR bits 0 and 1

The code in this field indicates the results of a machine

language instruction. The CC is then available to be inspected and

used for conditional branching. For instance, the results of a

Compare instruction would be placed in the CC field to indicate either

a Compare or a Non-Compare condition.

Condition code reflects the result of a majority of the machine

arithmetic, logical, and I/O operations. Each of these operations can

set the code to any one of four states, and the conditional branch can

3-15

specify any combi.,,ation of these four states as the criterion for

branching. For eY.ampie: the condition code reflects such conditions

as non-zero, first operand i1igh, <;.::iua·L, low, ove;:-flow, T./O device

busy, zero, etc. Once set, t~e co~dition code remains unchanged until

modi fieu b~· .<n-. jnsLL'~1c::ion that causec; Ft differ.ent condit:ior. code to

be set.

condition code sP.tt-i.ngs: O, i . .2, and 3. The specif:i.c meaning of any

setting depencls on the O?e:i.·ation thRL sets the ccndition code.

Rc··fer tc the -~?:P_OVS .!r~:::icipl~a of Opera_Eions mallual (WU/

800-1 lOOPO) for fu;:~:h::.r ex{)la·(,f1tions of 'condition codes'.

!Ystem Mask Bits:

The system mask bii:s are usecl to enable/disable the I./O

Interrupt, the Clock Inte;,rupt, and the Machine Check Interrupt logic

in the CP. (Interrupts a.:i.·e discussed in Section 3.2,4).

Instructicn Length Gode (Il.C) ·- PMF~ bits 6 and 7

This field i;iclica;:es the J.ength of t:he current machine ls.nguage

instruction.

PMR 6-7 = 00 iength = 2 bytes

PMR 6-7 .. Gl or 10 length = l. bytes

PMR 6-7 = 11 length ,.,, 6 bytes

ThePe bits are used to increment a MAR in order to obtain the

next inst·ruction address. The length represented by the !LC is

actually added to the address in MARl or MAR2 when a 'Jlachbe

inscruction is fetched.

3-16

The entire Program Mask register can also be used by the imme­

diate microinstructions as an 8 bit operand. Also, microinstructions

are available to set PMR6&7 from the opcode of a mechine instruction

in the MOR (MDR bits O&l).

d) Status Register

The SR is divided into 16 one-bit units:

lcA R PAGE STATE DEC CM 103 TIM OVF I04 IOl 102

0 1 2 3 4 5 6 7 10 11 12 13 14 15 - (BIT ~fo)

I '----- I MSB undefined bits LSB

These 16 one-bit units represent external conditions, CP

arithmetic and logical results, and microprogram flags. These bits

are available in groups of 4 for testing under a mask with the con­

ditional branch microinstructions. Fifteen of the 16 bits are

~ settable by microinstructions. Note that I/O 3 may not be set by

microinstruction. All 16 bits of the SR may be set by hardware.

•

C.A. - Carry - Status bit 0 (SO)

This bit is used as the "carry-in" and is set as the "carry out"

for certain ALU operations.

Status bit 1 (Sl) - Not Used

R - Result - Status bit 2 (S2)

This bit is set for all processing operations, all 8 bit and 16

bit moves, 16 bit move indirect, and immediate operations.

S2 • 0 means that: Result • 0

S2 • 1 means that: Result Not • 0

3-17

Page - Page bit - Status bit 3 (S3)

This bit is conditioned by the results of a L"ippl.e operation

performed on either MARI or MAR2.

When a ripple oper.ntion is called for, the page bit is set to 1.

After the ripple has been completed, this bit is checked by the micro­

program. When the p~.gP. bi.t ir:; set to ~· the updated page address

is in a page thc.t is different from the page initiaily addressed by

MAR. lf the page bit !,.c; set i:o ~· the new &ddL"ess is in the same

page initialiy addressed by MAR.

When page bit 0, for a:

Positive ripple - The present Yi.AR value points to the first byte

of the next page.

Negative ripple - 'The MAR points to the last b~•te of the

preceding page.

State - Status bit 4 (S4)

This bit represents ~egment protect:i.on info"."m~::ion am~ is used in

the WTRAN (Write/Translate) mici'."oinsl:ruction.

S4=1 Pi'."oblem or UsP.r StAte (Segmenf:G 0 and 1 are protected)

Slv·O Supervi;;or O'I.· Syster.: Stat£ (No pi'."otect on)

Dec - Dec~nal Er"."or hit - Si:atu~ bit: 5 (SS)

Set to 1 ii an nou-decimaJ. digit A16··P 16 was t•sed as an

operand in a decimal add or 1.lllbtract insti'."uction.

3-18

•

S6 - Tranalation Trap bit - Statue bit 6 (S6)

This bit is set to 0 or l when a trap for an invalid virtual

address or a page fault is taken (trap 0003). A zero indicates that

the contents of MAR 1 caused the trap; a one indicates MAR 2.

CM - Control Mode bit - Status bit 9 (S9)

This bit is set to 1 when the Control Mode button on the front of

the processor cabinet is pressed. S9 remains set until the Control

Mode button is released.

I03 - I/O Interrupt bit - Status bit 10 (SlO)

This bit is held by the hardware at 0 or l; it is not settable by

the microprogram. (It is held at 1 if one or more IOPs have their PCB

request-in lines high; otherwise its held at 0.)

NOTE:

The 'Request-In' lines are used to signal the CP

that an IOP wishes to be serviced. These requests

are handled on a priority basis by the PCB logic.

TIM - Timer bit - Status bit 11 (Sll)

This bit, also called the 'real-time clock tick', is set by the

hardware from the AC line frequency every 1/50 or 1/60 cf a second, in

order to increment the Real Time Clock (RTC).

OVF - Overflow bit - Status bit 12 (Sl2)

For arithmetic binary operations, when there is a carry-out from

the most significant digit position into the + sign position, an

'overfl~w' condition exists. Sl2 is set under such conditions .

3-19

104 - I/O Status bit - Status bit 13 (Sl3)

SlJ is ~~et hy the PCB iControl-ln St•obe' line whenever that line

1s raisec; by r.in TOP. The Control-In strobe is sent by an IOP to

strobe I/O ie12 plus the device address into MDRL. The CP microprogram

rnu3t reset this bi~ to ~;e.:ro at the end ot any PCB operation.

IOl & 102 ·- 8l:dl•1s bits 14 (SlL;) and 15 (SlS)

These bits are set by the PCB control lines whenever a

'Control-In Rt~obe' iR issued by an IOP.

I0.1.

0

0

1
,
!.

e) Indirect Register (I Reg)

I02

0

1

0

1

CONDITION:

IOP AND DEVICE READY

DEVICE BUSY

IOP BUSY

NOT O?ERABI.E

The I-Re:g is an 8-bit register used to address stack (local

storage) indi~ectly.

Indirect register atructure:

The"L1'! a1·e 3 forlilai:s fm.· this register:

1) General Regist~r - Indirect

Iu this fonr.at: a 16-bit register within the 32 x 16-bit

General ~egister area of the stack may be addressed.

3-20

•

•

2) System Register - Indirect

In this fonnat, a 16-bit register within the 32 x 16-bit

System Register area of the stack may be addressed. Four

indirect· bits .CIREG0-IREG3 or IREG4-IREG7) are used along

with a low-order address bit supplied by che microin­

struction.

3) Stack - Indirect

Any of the 512 x 16 bit elements within the stack can be

addressed by using a high order address bit from the

microinstruction along with IREG0-IREG7. This indirect

ability is incorporated in several microinstructions which

allow the movement of the selected stack element (16 bits)

to and from the MDR. These microinstructions may also cause

the contents of the IREG to be altered (+l).

INTERNAL STACK:

512 16-bit RAM 'halfwords' comprise the 'local storage' area of

the CP (i.e., the 'stack'). Contents of the stack are available only

for CP use. The stack is addressed by 9 address lines from the Stack

Address Register (SAR). Stack addresses may be loaded into the SAR

from the following sources:

MAR6-MAR12 (Memory Address Register)

XO-XS (B Register output)

X8-Xl3 (B Register output)

IREG0-IREG7 (Indirect Register)

MDR0-MDR3 (Memory Data Register)

CM6-CM17 (Control Memory bite)

lo 1 2 3 4

I
MSB SAR

3-21

5 6 7 sl
I

LSB

The high order 4 bits SAR0-SAR3 are used to select the group of

registers desired:

SAR0-SAR3 = 0000

Selects the file registers. These registers are temporary

storage areas for microprogram usage. 32 File registers are made

available fo~ CP use.

SAR0-SAR3 - OCJ\11.

Selects the system registers. Some elements contained in the

system re~isters are:

Program Control Word Trap Address:

The Program Control Word Trap Address contains information

required for proper machine instruction execution (Ref:

Section 3.XX)

Virtual Destination Trap Address:

Required by the Operating System for proper execution.

Time of Day Clock Word:

Contains a 32 bit binary quantity, which, tranclated, repre­

sents the time of day for such purposes as billing, logging

or./off, etc. Two 16-bit Stack iocations are allocated for

this purpose.

Clock Comparator:

A programmable, presettable 32-bit register. When time cf

day equals the value programmed into that register, an

interrupt is generated.

3-/.?.

•

•

Floating Point Registers:

Four floating point registers exist within the System

Register section of stack. Each FP register is 64 bits in

length and contain one floating-point number. These

registers are addressed by floating point instructions

only. In order to dddress the full 64 bits of an FP

register, four separate stack addresses are required.

SAR0-SAR3 = 0010

Accesses the Auxiliary registers. These 32 registers are also

temporary storage areas for use by the microprogram.

SAR0-SAR3 • 0011

Accesses the ~r-~eral registers. There are 16 general registers

that, for machine programs, can be used as index registers in

arithmetic and logical instructions, and as accumulators in fixed

point arithmetic and logical operations. The registers are 32

bits long, thus requiring 2 stack locations. The general regis­

ters are identified by the numbers 0-15 and are specified by a

four bit R field in a machine instruction.

For the entire preceeding group of registers in local storage

(stack), SAR0 through SAR3 generally select a register group; the

low order bits (SAR4 through SAR8) select the specific register

within a group.

Local Page Tables:

The two high order bits Qf the SAR are used for selecting one of

three Page tables:

SAR0-SAR3 • OlXX Local Page Table 0 selected

SAR0-SAR3 • lOXX Local Page Table 1 selected

SAR0-SAR3 • llXX Local Page Table 2 selected

The lower order bits (SAR3-SAR8) are used to select a 16 bit

element within the local page table. Each 16 bit local page table

element actually holcls tl·io 8-bit entries. The number of local page

table entries corresponds to the number of pages in a segment.

Page Table 0 Contains 128 entries for segment o.
Page Table I - Contains 256 entries for segment l. ...

Page Table '.l Contains 256 entries fol'.' segment 2.

Each page tabl~ entry is u~~d as a pointer to n physical page

frame during translation (see Section 2, 'Virtual Memory').

Local Page Frame Table:

In order to access the Page Frame table, the 3 high order bits of

the SAR are required {SAR0·-SAR2). See Section 2 for an explanation of

the local page frarae table.

SAR0-Sf\.it3 ·- OllX causes the Page Frame table to be referenced.

3-24

•

••

TABLE 3-1

STACK ALLOCATION

ELEMENT

ELEMENTS: SIZE: ADDRESSES:

000

File Registers (32) x (16) OlF

020

System Registers (32) x (16) 03F

040

Auxiliary Registers (32) x (16) OSF

060

General Registers (32) x (16) 07F

080

Page Table 0 (64) x (16) OBF

oco
P~e Frame Table (64) x (16) OFF

100

Page Table l (128) x (16) 17F

180

Page Table 2 (128) x (16) lFF

X = Element select field.

ARITHMETIC/LOGIC UNIT:

The CP contains 3 ALUs:

1) 16 bit binary ALU.

2) 8 bit binary ALU.

3) 8 bit decimal ALU.

.
VALUE OF

SAR 0- SAR 8

(0) (8)

boooxxxx! -
OOOlXXXXX

OOlOXXXXX

OOllXXXXX

OlXXXXXXX

OllXXXXXX

lOXXXXXXX

llXXXXXXX

The carry-out bit from the 16 bit binary ALU can be input to the

8 bit binary ALU, thus combining the two and forming a 24 bit ALU.

3-25

The 3 ALUs provide the capability to the CP to process binary

integers of fixed length, decimal integers of variable length, and

logical information of either fixed or variable length.

The basic ALU path utilizes the 16 bit ALU. A typical operation

would entail the referencing of a 1 6 bit staclt element. The output of

the stack would be temr.iorarily stored in tl1e i3 register, a sixteen bit

operand reeister. The output of the 11 register 1.11o~ld be 1 ooped back

around into the A register multiplexor and gated lnto the A register.

NOTE:

i'he ·'A' :;:-egister is a 16 bit op2rand register.

The st.'.lck ic, aga·in refe•enced and anothe'i.· 1.0 bit element is

1E1tched into th<: B ·~egis::er. 'J'he ALU now performs {t.:; oelecterl

a<ithmetic o;:- logical function anr1 pu::s thE:: ·;:-csul t ontQ the C hus.

The C bus is the !!lain t;·effic highway of the CP since it has access to

all CP •egist~~G and all C? registers have &ccess to it. One~ on the

C bus, a cl1eck for an all ze.-o condition on the bua is e;cecuted and

appropriate status can be r~ported to the st8tus register.

a;:e;

The 3 bit hine.~:-y ALU fl;nctions :d.ruilarly except that its operands

8) The output of the C r:::gister. Th~ C re~ister (no i~cJ.ation

to th1·~ 1 C-Bus') is a:i 8 bi. t .'\LU operand regir;ter that may he

b) Ths output from a m•.d i:ipie1<:or netwm:k whicl-. muy select thf!

S~atus Register, PMR, I Reg~ste;~, and i"iDR.

Th~ output of the 13 bit Ai.,iJ mRy bl'> latched in::o the T register

which 1s used for timing co11sidenttions ::,efore :i.t is placed on the C

bun.

3-26

•

The 8 bit decimal ALU is utilized with the decimal microinstruc­

tions and has the same operand capabilities as the 8 bit binary ALU.

CONTROL MEMORY (ROM):

The PROM chip used for CP Control Memory is the Intel 2708. PROM

can be written into by special equipment, thereby saving the device

from obsolescence due to microprogram changes. Each PROM chip has a

lK by 8 bit storage array. Five PROM chips are linked together to

obtain a lK by 40 bit storage array. The CP utilizes three more

levels of this 5 chip configuration, thus producing an 4K by 40 bit

PROM storage area. Another 4K is available for future expansion.

Addressing of (P)ROM is accompliBhed by the Instruction Counter

(IC), thus providing a means of fetching microinstructions from the

ROM in sequential order. After each new microinstruction has been

fetched, the Instruction Counter is incremented by +l. The

Instruction Counter addresses ROM via 13 address lines.

The sequential incrementing of the IC and fetching of microin­

structions can be changed by various conditions. Certain microin­

structions have the capability of loading the Memory Data Register ··· ..
(MOR) directly into ~he IC through the IC multiplexor. Also, whil~··.,
executing branch instructions, a destination address can be loaded

into the IC by use of the CM bits. The trap operations may also

interrupt sequential incrementing of the IC.

Trap operations are caused by external conditions not initiated

within the CP (such as a system power-on). In general, trap opera­

tions interrupt the microprogram by forcing an address into the IC.

The following is a list of trap addresses in Control Memory and

the reasons for trapping:

,, '""'""

0000 - Reserved.

0001 - Power 01-. trc.;p (circuit breaker placed~).

0002 - Load ~u~tcn oa f•c~t of p~ocessor cabinet ie p•eaaed.

0003 - Invalid virtu3l ~emory address <luring translation ..

000.': - 'i':'Hi1sL . .;tin11 tr<ip clue> to protection .-,f pdvileged daLR.

0005 - i"Je· .. 1oi.-y ::1·3p (b.:Jd address).

0006 - Memo:y 7rap (~ed parity).

0007 - Tr.:rp ,·,ii cn;.·~nst:ruction for word alignments.

0008 - L:Jc:,st",mi for "8.-a·,,ch on Inst.-uction trap.

0009 - 'i'rat> i1ll r~;~oinet >:'UC ti_Gi1 f'or CC./1'fask.

Inatruction Decoding ~nd c~ntrols

Notice in Fip.:·.: ·; ... 2 t!1at OiC-CM~· i;~rri used by ::he Instruci:ion

decoding and controls. ~he inst1:u..:·d.o;:i dec.:c•der provides a means of

decoding El harclw.<:.i"P. tunctiu-.1 from th~ 6 bit operation code of the

microinstruction reed f-::om ROM. Each of the Gl operations decoded

(three sre ununed) produce a. •.mique hardware functL:m, such as setting

up AJ,U functiono, ;;ielection of aource/deetination register~, and

directing L!•e overall flow a.I'. data.

3. 2. 3 INSTRUCTiON SET~

The 2200V~; L.~· a.ctua n 'i utiE:o:es .~ sets of instructions: the

machi:l~ instructic'.1 sei:, and the mic;:-oinstruction set. Tne machine
~- -~~

instruction set con~ists cf 165 instructionn that are nearly identical

to the IBM 360/370 L1si:rucdon set. The Ci' doeu not act11ally execute

these instructions. ;:r,st~ad, the CP decodes the operation codes of

each machine instruction iulo an address. Thia address poini:s to a -- ----.. -
microcoded subrouti~~esi_ding in Control Memory. These microin­

structions are the actual instructions tha;. the CP will execute.

3.2.3.1 MICROINSTRUCTION FORMAT IN CONTROL MEMORY:

There are 61 unique 40·-bit mi.croin~t1·uctions used in the CP 's

Control Memory; they are formatte<l as follows;

.....------ - - PR!!_tfil '![Ill" [14£ . "fi I - . - ... lliAilcii_fifi.n--·- ---.--
INSTllUCTIOll '"STllJC\'IOll ~ IT.!"f. :r:1lm!!' rr.: ·w r!J'" 111"-'T .,..1- - ·:;l!.T .. '~Hr
,,.c~~&tl CLAS~ ~l<Wl~~~kl\:f\14i~~i1{!~~l~1 .. .µ.-t'\ ;.,. • ,}{2_:-~.l__ITTh

ii. 1cn ,, n 0 0 0 ~ A A A A • • ft I I I I I " n n ' • , , •
82 AC OOOUllAAAAAAllllftftHl>Uft~FP•

,, •Cl n n n 0 I I ' A • A • A ft D ft • n I " D D ' • , ' r
An "' ICV n n 3 ' n i • A ' • • • ' ft I I I I >I n I> ' ' , , I

15 st t n n n 1 o • • • A • • • 1 1 I 1 n " n u • ' r ' '
a~ PllOCU!lflll Atn o o o I 1 r. • • A • • • • ' I ~ • I " 11 n ' ~ I ' r 1
~7 AC\' 'l 0 ~· l l ' A A A A A A ft I II I I I H n II J If f ' •

P" I ANll c u I " ' ,j • • A • • A • 1 1 1 1 1 " n n n n r 1 r
~1 o~ " r, I n ·' A A • A • A ~ I I I I I " n,, nn ! : ~ ' ~
12 A uO!OllAAAAAAall•ARM ' I'
,, Ari' l n i ... A A " A A ft • II I'- I b H n t1 ' ,. t' :" I'

.\1 •• l(llk '1 , ' I) f A A A A ,\ A I\ & I a • • " n fl I\ A F , •.
I'~ Pi\' :: , 1 : A A A A " " a B D 11 n a "1 o u " 11 r _...!._!..
B~ 1•TSTV ~ ' ' l-rn-x T"""lf T"TTT""ll',,.-,,..,., TI ,---·-

i7 JU:C:llTU ~V~I i: .f! I I I A A A A A A ft I " ft ft II M ti II.~ _! ._·_,_Y -·---·----------+-!
Oii" ~Ill.• ' "i~ • A • A • • I I I I n I M 0 II A M F , r
~1 I ·.;101.,. 11 1 1> o · A ,,. >. " " " " a I\ a 1 " "4 11 11 "' 11 ,. ~ i
(I~ \Hl.l" n I 11 0 1 l .\ A A A -. A " I D II I I H 0 D ti I' P , P
ft1 rootr.s1tH1· ··~'-''' 'J I ' ~ I 'I • A •• A .\ n I I I I n M D I' • p , , r

AZ a• I "" 11 1 ~_i' ~ c • A A A • ,, n 111 n 11n • H ~ 0Dn n ~ ~ 1 r r •
~5 ~'" ,, I _IL _11_ _AJJ..i..Ji...A_J.. • ..I. I. IL &_ ""I ..r......i:_tj..,.. -
B~ ~-fN';'!!! r.rTTT1 ooo~o no o o o o on on o o o o 01u()T"01ro·1rol)"-U-TT"1f

L_jz__ ~N' •• ;r.11 n 1 u 1 1 n u o o o o n o o o o n o o o (I o o o o o 01 _ o o '' o o D O O 0 O o
~- w--··f?l'TTIO" AAAAA 4000000 HU 0 IR t• Fr

11 M1'14 II I l 0 D A A A A A A 0 0 0 0 0 0 H 0 D M A ' f f
IZ HHS 0 t l 0 l t A A • A A A 0 0 0 0 0 0 M ~ D R ft r r
ll •m• I "'" " 1 1 o 1 • • • • • • 1 u o o o o H o o • R , 1 r

A, •• >l)V! >tt•• 0 l 1 l 0 c A •• A A • I 0 0 n ~ 0 " D D ft • , , r
BS H.iift 01110 AAAAAA!OOODOHOUftKrrr

I~ ~~~ ~ : : : : (~ : :l.:. -1LLLt1 ~ I ~ ~ ~ : : : ~ ~
'" 'ijffif I non oc A A t I t I I r I I D I H n D ' ft , r , ··------.-------~
ftl MANDI I ll n 0 D i A A t I t I t I t I I I II 0 D ft ' , ~ r
P2 IM:l!Ol•TF Oii I n 0 0 l 0 A A I t t t I I I I I I H D D l A F P I
~1 N~Olt I •1 0 0 I I A A I I II i it jl I ! I ~ 1 ~ ~ ~ l ~ r P F

A• ~· HVI -~~l I 0 C /, .'. t I I _l _l. _! DIM D D ' o !._Lt!---· -----------~
:: umm ~- ':~ITfrr.IUJ.J_lJ.J:: :1=1~ ~1:lL;_rr' ~- -·-·-
~i llllT ff01fT • o o " n o o o o o o o o H n o • n 1 r r

-..,, ftTllAN I n I 0 0 r. 0 0 0 0 0 0 0 0 0 0 0 0 H n D ft n , , ,
~1 HIS(. '.ITIIAN I 0 I 0 0 ~ n 0 0 II 0 0 ~ 0 0 0 0 0 M II D R R r I ,
ft2 CIU I :. 1 u ! ' 0 0 0 n 0 0 0 0 T T T T M 0 0 R • • , r
Bl osH 1 o 1 n • t o o o o o o o o o o -2. o HI ii ii P ~ r r rt··-------------~~

Al Bt "?!'!IT" • " Tlf11['f Ovoo lf lf 00 ·o -o- 0 H 1\li" I • , , , '
R~ Ct'l I 0 I I 0 I 0 J U 0 0 0 U 0 0 0 0 0 M 0 U ! M t ~ '
ft~ C:Olfll!TIOllAL CCS!l I 0 I I I ' r c 0 0 0 0 0 n 0 0 0 ~ I H ii~ ~ • I ,. .. r

iz CSCM I <I l I I _ii A ..!LA. A.A. A 0 D 0 0 D U I H _U R _A_ J: .• C...f-1-----------~-l 1!f "11RT 1TOOT00001100000000HDPftlrrr
11 M:<l•I I I 0 0 0 I 0 0 0 M 0 0 0 0 0 0 0 0 H 0 II R R r i ;·
92 ITACK lll<l·l I I 0 D I D 0 0 0 H 0 0 0 0 0 0 0 0 H 0 D k ' r r r
u tNDIUCT H~' I l 0 0 I I 0 0 0 H 0 0 11 0 0 0 0 0 " b n •• , r ,

A~ .~ HSI-I I I 0 I 0 0 0 0 D H 0 0 0 ~ ~ ~ ~ ~I H Un iio I~ ~ I~ 7r :
15 1151+1 I I 0 I 0 J 0 0 0 II 0 0 0 ..lL ..lL ..lL..lL 0 I H I n 8 IP r ----·-------1-1
Jt ~~~;;OH ~ 'T~rirTI ~; ~ I ~ i ~ l L ~ I: I : ~ I : ~ I: _i :
~ ull\lJllf non o o o o o -a- 3: ::2: ~::a: ::2: ·o- ro ro ·a ro a ro oa ro- -5· a o a ·a· JL:.R..::R.: o o o o

DI "1l1H .,..,-,nrln;-rm A rr· ~ o~ 0 -0 " 0 b R • , r , u DIV1 lllDIO.".AAAAA!OOOOOHD~R•rrr
DJ Hllft XOIU< J l 1 0 I I A A A A A A ! 0 0 0 0 0 rt 0 D R R P , r

A7 .. PROClll!HC At>! I I I I 0 0 " A ,\ ,\ A A I 0 0 0 0 0 H D n n • , , ,
DI ICCtt tlllDIAAl.AAAIDODOOMDURkP''I

:; :g: I : ; ; : ~1U~~~ _1 LLL1 g g g 1: I~ : I~ ~~ • .L ~1- ----------..1-J
A • A IUI l\EGllTZR
n • I 101 r.IGllTll\
c • COllD!TIOllAL r.io~
D • KDXIRV ILID/lllltTE ll'ICIP!C.\TIOK
I • "IOHll.OW ITACI IYTI Ul.ICT
1 • 111.ARtli OP-CODI IPICIPICATION

H " HIOU OIU>ll ITACK AllDUS• ll! !AO'
I • llftlDIATI OPl!WID
M • lllllOaY AllDR!ll lllDllTIR llLIC"C
I • MAJ PIPPLI IPICIP !CATION
I • ITACI AllDUll
T • CID moll IPICIPICATION

TABLE 3-2

THE CP MICRO­
INSTRUCTION SET

Bit positions in the microinstructions are referred to as

CM0-CM39, aa they are read from ROM; CMO being the most sjgnificant

bit (MSB) and CM39 being the least significant bit (LSS).

The Process field (CM0-CM17) of the microinstruction contains one

of the 61 microinstruction opcodes, the A operand, and the B operand.

The A and B operands are used to address various registers.

The Memory field (CM18-CM22) contains 3 elements:

1. R (CM18) is used to select one of the two memory address

registers (MAR) that are available in the CP.

O•MAR 1

l•MAR 2

2. MOP (CM19-CM22) contains the memory operation bits. These

specify what type of memory operation is to be performed, if

any. Memory operations available are:

00 = no memory operation.

01 = read 2 bytes into the memory data register (MDR).

10 = write 2 bytes from MDR into main memory.

L l = WT i te 1 byte from MDR into main memory.

3. ROP (CMzl-CM2~) a;e the ripple operation bit~ which will

determine how the Memory Address Register (MAR) is to be

incremented or decr~mented after the current value of the

MAR is ueed fo~ any memory opertion. The various

comb:i.m!~ion8 ~1f the cipple bi ts are:

0(; . - incx·ec:se ¥.AR b•r , .l •

~n = ir:c;.·e.:isc 'MAR by 2.

10 "" <lecrcment MAR by 1.

1i = nc ope;stio;i.

The Branch fi~i<~ (CM23-CM38) contains one of the foiiowing 3

branch cjlc:od~i:.;

000 - B.U. Branch unconditional i.y

001 - S.TI. - Subroutine branch

010 •. lL f. - Bra.nch o.-i i"inc~L1c Im;truction

OU ·· BT/BF ·· Branch l~OP<lit:i.onal ('1'rue/FaiF.:~)

100 - SR ·· 8ubnrntine Returii

101 - TRPT - Trap l (condition code/mask; cs.lled 'TRAP 9' in

harci"7a ;_-e)

llO - TRP2 - T;-i:ip 2 (alig!1ment; called 1TRAP 7' rn he.:-dware)

111 - SS - Set Status bit

3-30

TABLE 3-3

C.P. HARDWARE INSTRUCTION (MICROINSTRUCTION) SET

MNEMONIC

SC

sco
AC

Binary

Binary

Binary

INSTRUCTION

subtract with

subtract with

add with carry

carry in

carry in

in

ACZ Binary add wi.th carry in • 0

SCV SC with overflow bit set

• 1

SCI Binary subtract (inverted) with carry in

ACO Binary add with carry in • 1

ACV AC with overflow bit set

AND Logic.al 'AND' (A B)

OR Logical 'OR' (A+B)

A Binary add with carry in • 0 and no carry out

ACP Binary page add with carry in • 0

XOR Logical exclusive 'OR' (A+ B)

MV Move A-bus to B-bus

SHL4 Shift A-bus 4 bits left

SHR4 Shift A-bus 4 bits right

SHLZ4

SHRZ4

SHL4 with 4 bits in • 0

SHR4 with 4 bits in • 0

SHL Shift A-bus 1 bit left

SHR Shift A-bus 1 bit right

MVS Move system register

MVSI Move system register indirect

MMR

MRM

MMS

MSM

MMR8

MRM8

MMS8

MSM8

Move

Move

Move

Move

Move

Move

Move

Move

MDR to register

register to MDR

MDR to register

register to MDR

MDRH to register

register to MDRH

MDRH to register

register to MDRH

3-31

.A!'lDT

NANDT

i~XORI

TYiAR

TSTI{

Hr,?

RTi.~Ari

WTI!AN

CIO

DS!:T

CCSl

CCS2

CC SET

CSGN

MMI

MMHl

MMI-i.

MSI

MSI-1

MSI+l

IAD

ANDM

ORM

XORM

ACM

SCOM

DACM

DS<".:M

Log-i.cal 'AND' immediate

Logical 'AND' immediate. No result stored

Logical exclusive 'OR' i11U11ediate. No result stored

No process operntio~

Read i:i."di1s1ate

W'ii:e t~:'inslat~

Con t:ro 1 :: /0

'Der~-:·de' iH·t1;p

Condition ~ode set by status bits

Cond ;_ ·;: i an C'Od~ set by 11tatuo bits explicitly

Cond ~-ti. on •.;ode set explicitly

C;:ir,dit·:_on code S2i: by gign

ro'k'"e I1DP. i.·!d irec t, IR 11nchanged

Move i@R incli rect. IR i.1cremented 1

Move MDR ind~.;.-ect. 'i:R decremented 1

Move sti:.:~k fod i 'i'.'€C t . IR unchanged

Move stack indirect. l.tl decremented

!fove stack j_ iid i t·ec t . IR incremented

Inst:rt•<:ti•in ad<l:ceas u:>date

Base ~isplacement address generation

Logic<ll 'AND' ~to11~g ~IDR

Logicsl 1 OR' using MDR

Logical exclusive 10R; using MDR

:Binary add with cany in using MDR

1

1

Bir.ary subl:n1ct ~-r~i:h carry in = 1 using MDR

Decimal add using I-iDR

Decimal su.l:.tract ueing MDR

3-32

3. 2. 3. 2 MACHINE INSTRUCTION FORMAT:

Somewhat in the same manner as microinstruction format, each

machine instruction consists of two major parts: (1) an operation

code, which specifieR th" operation to be performed, and (?.) ~he

operands that will partici~ate in the instruction.

OPERANDS: - Operands can be grouped in three classes: operandc;

located in registers, immediate operands, and operands i:1 ;nai_n memory.

Regi8ter operands can be located in general, floating point or

control registers, and are spec Hied by identifying the r;~p.,ister tn a

four-bit field, called the R field, in the instruction.

Irmnedia-te operands are contained within the instrl!ct:on, and the

eight-bit field containing the inunediate operand is callPd the I field.

Main Memory operands may either have an implied length, be speci­

fied by a bit mask, or, in other cases, be specified by a four-bit or e eight-bit length specification, called the L field, in th~ instruc­

tion. The address~s of operands in main memory are specified by means

of a format that uses the contents of a general. register as part of

the main memory address.

•

For purposes of describing the

execution of instructions, op­

erands are designated as first,

second and third operands. In

general, only two operands par­

ticipate in an instruction ex­

ecution, and the result replaces

the first operand. An exception

is an instruction with "store" in

the instruction name, where the

result replaces the second op­

erand.

FIGURE 3-4

MACHINE INSTRUCTION
FORMAT

'I, 'l

l Flm Halfword I Socond H11fword I
By111 ; Byto 2-+-- ,-------'

'

Third H1lfword

.R19i1ter Fiegi1i•11
, Optr1nd 1 Operenti 2

RR I OPCod• G:Gl
:o '71 1111 IS

A'9i1t1r 1 l\ddrtN of
Operand 1 1 Operamt 2 1

RX 1 Op Codi r;r;~r~r ~----1'
10 '7 I II 12 IS 16 19 10 U

' ' ; lmmedlltt : A.ckJreu uf
1

1 Optr.nd , Optrond 1 1

61 Op Codi r-:-l~ ,~--,,
'7 • u 16 10 10 ll'

' '
Roglttor Roglnlr Addre• ol
Opertnd 1 Op1rond 3 Opertnd 2

RS Op Codo f?GI;;r-~--u~:J'
'7 I 1l 12 U 16 19 10 "'

: Length Addrna "' Addrne of
()perond 1 01>1rtnd 1 Oper1nd 1 Operend 2

l 0p Code GGJ7CL_o_, _ __.T_e_2 J __ -_02 __ __,

~ . 1 I 1112, U 16 JO 10 SI J1 U 16 41 1

SS t I '

' Ack.Ir .. of Addl"HI of 1

, Length : Optr1nd 1 1 Operend 2

Op Code n=r;r,... o, I B2 I D2

'7 I II U U H It liO U S2 II H

' ,I

I .,

A<ld
Add

NAMF..

Add Decimal
Add H~ 1 fw:n:d
Add Logical
Add Logical
Add Normalized
Adel Normalized
Add Unnonna 1 ized
And
And
And
And
Bit R~set
Bit Set
nit Test
Branch and Link
~ranch and Link
Branch and I.ink on

Condition Indirect
Branch and L:i.nk Sta.ck
Branch On Condition
Branch On Condition
Branch On Condition Stack
Branch On Count
Branch On Count
Branch On Index High
Branch On Index Low or

F.q1..1<.d
Compare
Compare
Compare (Floating Point)
Compare {Floating P0int)
CompaTe Dec :;J11.<:11.

COU1pa1.·e Ha·: fworJ
Compare J,c;g i. cal
Compare i .. ogical.
Compare 'J,ogical
Compare Lor,ical
Compare Lo~ical Charac-

tei'.'s Uuder Mask
Compare L.ogica l With Pad
Compre33 String
Control I/O
Convert To Binary

TABLE 3-4

MACHINE INSTRUCTION SET

MNEMOtHC

AR
A
AP
AH
ALR
AL
ADR
.!).!)

PB
Ni.1
N
HI
i~C

.tRESET
l3SE'i'
BTEST
BAL?.
BAL
DALCI

BAL3
BCR
BC
BCS
~CTR

BC'l'
nXH
:BKLE

CR
c
CDR
CD
CP
CH
Ci..R
GL
CLI
r.r.c
CLM

CLPC
COMP
CIO
eve

3-34

TYPE

RR
RX
SS
RX
RP.
RY-.
iEt
RX
RX
RR
..,,.
!\.l•

SI
88
SI
,, ...
1) I.

SI
t'J~

? .. X
RS

~

RR
RX
RR
RR

R.S
R8

P..X
5I
38
RS

SS
RP.

CODE

lA
5A

4A
iE
SE
2/a.

6E
14

94
D4
9D
9C
9E
05
45
9~

. 81
07
l~ 7
01
cs
1+6
86
87

i9
59
29
69

i5
'j5
95
D5
DD

ES
F6
oc
4F

OPERANDS
(Asse~oieL Format)

Rl ,R'.l
Rl,D2(X2,B2)
Dl(L1,Bl),D2(L2,B2)
Rl,D2(X2,B2)
Rl,R2
Rl,D2(X2,B2)
Rl ,R2
Rl,D:.'.(X2,B2)
Rl,D2(X2,B2)
Rl ,R2
Rl,D2(X2,B2)
D1(3i),I2
Di(L.,Bl),D2(B2)
DlCiH) ,Ml
Dl (~.~.),Mi.
iH(Bl) ,Ml
Rl ~.·:-t2
R~ ,D:l.(:t~2,B2)
Ml,R3,D2(J32)

S 1 , D2 (X:Z , B2)
Ml ,R2
Ml,D2(X2,B2)
Ml,S2
Ri: R?.
}!.l, D:l (X2, B2)
!\. i., R3 , 02 (B2)
Rl,R'.',D2(BZ)

R1 ~ R:l
Rl,D2(Y.2,B2)
R1.. ,R?.
Ri ;D2(X2;B2)
D~(L;,~l),D2(L2,B2)
RJ., D2 \}~2, B~)
·::n, R2
R~. ,u2(~2 ,B2)
·uHBl), n
Di(L~B1.),D2.(B2)
:n , !'13 , D~ (B2)

Dl(Ll,Bl),D2(L2,B2),L3
Dl(Rl,Bl),D2(R2,B2)
JU
Rl,D2(~2,J32)

•

OPERANDS e NAME MNEMONIC TYPE CODE (Assembler Format)

Convert To Decimal CVD RX 4E Rl,D2(X2,B2)
Convert Floating Point CDI 2F Rl ,R2

To Infeger
Convert Integer To CID 2E Rl,R2

Floating Point
Decrement and Inspect DSEM RX 51 Rl,D2(X3,B3)

Semaphore (p)
Dequeue DEQ RS AO Rl,D2(B3)
De stack DESK RS Al Rl,D2(B3)
Divide DR RR lD Rl,R2
Divide D RX SD Rl,D2(X2,B2)
Divide (Floating Point) DDR RR 2D Rl,R2
Divide (Floating Point) DD RX 6D Rl,D2(X2,B2)
Divide Decimal DP SS FD Dl(Ll,Bl),D2(L2,B2)
Edit ED SS DE Dl(L,Bl),D2(B2)
Edit and Mark EDMK SS DF DlCL,Bl) ,D2(B2)
Enqueue ENQ RX 52 Rl,D2(X3,B3)
Ens tack ENSK RX 53 Rl,D2(X3,B3)
Exclusive Or XR RR 17 Rl ,R2
Exclusive Or x RX 57 Rl,D2(X2,B2)
Exclusive Or XI SI 97 Dl(Bl),12
Exclusive Or xc SS D7 Dl(L,Bl),D2(B2)
Execute EX RX 44 Rl,D2(X2,B2)
Expand String XPAND SS F7 Dl(Rl,Bl),D2(R2,B2)
Halt I/O HIO RR 03 Rl
Halve HDR RR 24 Rl,R2
Increment and Inspect ISEM RS A2 Rl,D2(B3)

Semaphore (V)
Insert Character IC RX 43 Rl,D2(X2,B2)
Insert Characters un.:er ICM RS BF Rl,M3,D2(B2)

Mask
Jump To Subroutine On JSCI RX 61 Ml,D2(X2,B2)
Load LR RR 18 Rl,R2
Load L RX 58 Rl,D2(X2,B2)
Load (Floating Point) LDR RR 28 Rl ,R2
Load (Floating Point) LD RX 68 Rl,D2(X2,B2)
Load Address LA RX 41 Rl,D2(X2,B2)
Load and Test LTR RR 12 Rl,R2
Load and Test LT RX 4D Rl,D2(X2,B2)
Load and Test (Floating LTDR RR 22 Rl,R2

Point)
Load Character LC RX 62 Rl,D2(X2,B2)
Load Complement LCR RR 13 Rl ,R2
Load Complement (Floating LCDR RR 23 Rl,R2

Point)
Load Control LCTL RS B7 Rl,R3,D2(B2)
Load Halfword LH RX 48 Rl,D2(X2,B2)

•
3-35

OPERANDS
Ni'iME MNEMONIC TYPE CODE (Asflembler Format)

Load ~1ultiple LM RS 98 R 1 ~ i<.3 I D2 (82)
Load Negati-.re 1-NR RR 11 Rl ,R2
'Lo11d Negai:~ve (Floating

·:?oiul)
LNDP. RR 21 Rl ,R2

Lo8•.1 Page !'able LPTO RS A3 Rl, D2 (B'.£)
Loe•: :'age TE.:.i:-lr:: LPTi RS A4 Rl,l)2(B2)
i.•j.Scl Page Table tPT2 RS AS Rl,DZ(B2)
Load 'PCW LPCW s 82 Di.(l3l)
J.. .. oarl Phy si Cf\] i\<ldr~ss LPA RX Bl ti. l , !l2 (X2 , B2)
Lo.:Hi Pos i .::i VP. LPP. RR 10 Rl ,R2
i..OE·J Positive (Floating_ LFDR RR 20 Rl,R~

P·:ii.nt
Jvj.)m~ MVT SI 92 DJ. (Bi), ·i:z
iti~1'.re t-iVC SS D2 Dl(L,3l);D2(B2)
ifove Num~:.:- ic~J MVN SS Dl Dl(L, Bl), D2 (B2)
Move Wii:h Offset MVO SS Fl Dl(Ll,Bl),D2(L2,B2)
i.•1ove With Pad MVPC E2 Dl(Ll,Bl);D2(L2,B2)JI3
Move Zoe.es MVZ SS 03 J)l(T,, "Bl) ,D2(B2)
Multi),:•J.y MR RR lC Rl,R2
Mul t:l.plj M RX Sc Rl,D2(X2,B2)
Multiply {Float:i.i"!g Point) MDR RR 2C Rl,R2
Multiplf (Floating Po ind MD RX 6C Rl,U2(X2,B2)
Multi~ly Dedmal MP SS FC Dl(Ll,Bl),D2(L2,B2)
Multiply '.-111 l ::~t0'-."0 i>ll-i RX 4C R.l,D2(X2,B2)
Or OR RR 16 R1,R2
o-· 0 RX 56 Rl,DJ.(X2,B2) '·
Or OI SI 96 Dl(Bl),I2
u.L OG SS D6 Dl(L, Bl), D2 (B2)
Pack PACI<. SS F2 Dl(Ll,BJ.),D2(L2,B2)
Pack anci Ali~h PAL SS C4 Dl(Ll,Bl),D2(L2,B2)
Pop POP RR 08 Sl,R2
i.'op 1.:hl'.lrac ter.e 1'0PC SS D8 iH(L,Bl),D2(S2)
Pop Hal(wm:•J i:'OPH RR 09 Sl,R2
Fop Multii:>le ~OPM RS A6 Sl,R3,R2
~op l.~oi:hfog POPN RX 84 Sl,IJ2(X2,B2)
Push P.USH KR OS Sl,R2
Push Address PUS HA BO 31,D2(X2,B2)
?ush Cha".'.~c ters ::?USHC SS 1)9 Dl(L,~:·1) ,D2(B2)
Push Multiple PUS HM RS A9 s 1 ,";_{j • R. -~
Push Moth:i.ng PUSHN RX 85 Sl,02(.:t2,B2)
Reset Refe.rence and RRCB SI 9F Dl(Bl) ,N2

Char.ge Bits
:~,,,.r:,n·n On Condition RTC RR 04 Ml
Ss:ve Then 'Am>' Sy~tem STNSM AC R1,R3, :i:l.

Mast;.
Sa•1e Then 'OR' System STOSM AD IU,R3, I1

Mask

•
3-36

OPERANDS
NAME MNEMONIC TYPE CODE (Assembler Format)

Set Program Mask SPM RR OD R1
Shift and Round Pncimal SRP SS FO Dl(Ll,Bl),D2(B2),Il
Shift Left Double SLDA RS 8F R 1, D2 (B2)
Shift Left Double Logical SLDL RS 8D Rt ,D2(B2)
Shift Left Single SLA RS BB R 1, D2 (B2)
Shift Left Single Logical SLL RS 89 Rl,D2(B2)
Shift Right Double SRDA RS 8E Rl,D2(B2)
Shift Right Double Logical SRDL RS BC Rl,D2(B2)
Shift Right Single SRA RS BA Rl,D2(B2)
Shift Right Single Logical SRL RS 8B Rl,D2(B2)
Start I/O SIO RR 02 Rl
Store ST RX so Rl,D2(X2,B2)
Store (Floating Point) STD RX 60 Rl,D2(X2,B2)
Store Character STC RX 42 Rl,02(X2,B2)
Store Characters Under STCM RS BE Ri,M3,D2(B2)

Mask
Store Control STCTL RS B6 Rl,R3,D2(B2)
Store Diagnostic Data STDD s 9B Dl(Bl)
Store Halfword STH RX 40 Rl,D2(X2,B2)
Store Multiple STM RS 90 Rl,R3,D2(B2)
Subtract SR RR lB Rl,R2
Subtract s RX SB Rl,D2(X2,B2)
Subtract Decimal SP SS FB Dl(Ll,Bl),D2(L2,B2)
Subtract Halfword SH RX 4B Rl, 02, (X2, B2)
Subtract Logical SLR RR lF Rl,R2
Subtract Logical SL RX SF Rl,D2(X2,B2)
Subtract (Floating Point) SDR ~R 2B Rl, R2
Subtract (Floating Point) SD RX 6B Rl,D2(X2,B2)
Supervisor Call SVC RR OA I
Supervisor Call Exit svcx RR 27
Test Under Mask TM SI 91 Dl(Bl), I2
Translate TR SS DC DL(L,Bl),D2(B2)
Translate and Test TRT SS DD Dl(L,Bl) ,D2(B2)
Unpack UNPK SS Fl Dl(Ll,Bl),D2(L2,B2)
Unpack Unsigned UNPU SS F4 Dl(Ll,Bl),D2(L2,B2)
Un pal UNPAL SS DB Dl(Ll,Bl),D2(L2,B2)
Zero and Add ZAP SS FB Dl(Ll,Bl),D2(L2,B2)
Convert Block-in-extent- BFBV RR ·OE Rl,R2

list to Block-on-volume
Fix Page in Frame FIX RS B2 Rl,R3,D2(B2)
Scan Page Frame Table SPFT RS AE Rl,R3,D2(B2)
Set Time Slice STS SS C7 Dl(Rl,Bl),D2(B2)
Unfix Page On Frame UNFIX RS Bl Rl,Rl,D2(B2)

•
l-l7

NOTE thAt machine instructions for arithmetic and logical

operations fall into three classes: fixed-point ~rithmetic,

decimal a1ithmetic, and logical operations. These classes differ

in the data formats used, the regist~rs involved, the operations

provided, und the way field length is stated. A more detailed

discussion of openition 'classea' ;.s p:-esented on pages i.3

thi·ough 22 in the 13300 Principles of Opi:_ration manual (WL

#800-1 l OOPO) .

INSTRUCTION EXECUTION:

Nonnallv, th~ operation of the' CF ~s controlled by machine

instructions taken ln sequence. An inst•uc.:;.:ion is !:etched from a

location sp~cified by the instr~ction &drires~ in th~ :cu~rent PCW'.

The instruction ndd;·e.ss 1s then in(;re.a.1:1,~d by the 11ur.1be!" of bytes i;:i

the fetched instruction to address the next instr~ction in sequence.

The inst~uction is then executed and the same stepM e~e repeated u&ing

the new valu~ of the instruc~ion &ddr~~s.

A change from th is sequential operai:ion 111ay bf:: caused l-y

branch iug, status s"1itch ing, iaterrup::i.ons, er manu:1i i&1terve11d on.

The no~·ma1 sequential ~xecution of inst~uction~ is ch~~ged: a)

wtteTJ 1·e f e·a·oct: i:• ;irnde to .-:: sub rou i: i r;e, h) \·.'he;1 a tr;o-Wl(" choice is

encouilter:::ci, o·· cl wi1~11 a sep,i·1112r1i.: of ·:..i..:inp,, such 1:10.; l.o(ip, i.a to be

~epeated. All th~se tasks can be ~ccc~pliahed wi~h ~Tan~hin~

insti·ur tionH. "Provis ion is maac for st:broutine ll11kage, pe~itting

not only the introdu~tion of a new instruction add7eoe but also the

preserv&i.:ion of the n:t1~rn address (multi-·level s;1h:;:outine stacking).

Th~ Prug·.-,.rn Cont-:-ol Word

'!'hP p,·og•·am Control ifo;·d C-PCW), 8 bytes ·1.ung, c.ontRins the

informni:iu11 ·«·:ouired for proper executio:i of ;uachioe incr.ruci::i.on~;. Tt:

J-1R

•

•

M

includes statue and control infonnation, interruption codes and the

instruction address. In general, the PCW is used to control

instruction sequencing and to hold and indicate the statue of the

system in relation to the program currently being executed. The

active or controlling PCW is called the "Current PCW". By storing

current PCW during an interruption, the statue of the CP can be

preserved for subsequent inspection and resumption of a task. By

the

loading a new PCW, the state of the CP can be initialized or changed.

The PCW is made up of a one byte interruption code, a three byte

instruction address, a two byte statue field, a one byte program mask

field and one byte recovered for later options. The following figures

show PCW format.

SB~ Interru~ Instruction Address

Code

Bi t4t "" ~ 7 8 11 12 15 16 19 20 23 24 27 28 31

Di_g_i dt 1 I 2 3 4 5 6 7

continued

w c p x x I T M B D E s x

Bit# 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Digit# 9 10 11 12

continued

cc FPO DO EU SG x x x

Bit4t 48 l 49 50 51 52 53 54 j 55 56 59 60

Digitttl 13 14 15 16

PCW digits 1 and 2 are defined saisf actorily in the PCW
Conversion Chart on page 3-40. For more explicit definitions of PCW
digits 9 through 16, see pages 3-41 and 3-42 .

3-39

8
..... J

63• r-- LSB

TAbLE J·-5
l'RUt11'.l':': r;ur.TROL WCRD ~ rcvn

CONVERS:ION LHART

'/==Date A=Dec Overfl .

8=1<'ixe0 Pt, Ovf.

3~Execute G~Specifica~iou Q~Fixeri Pt. Div c~Supv Call R

3 --1~~s::~~ .. ::--1 '"A -------··-=·----J-r.:~-~-··-----..]
i' _A.D~E':'.' __ __j_ -·· -- · 1-· . . ·-·-·· ·---··--··11!

Nif, j f'liA NIA !HA c

~--t NIA~•~---~~~ NIA ·~ N7':·~·-~•-or.u·•·11

7 ::~ ==f+ :~ -·+::f ==--- ::f ·=~-.~:-·::11 ~r---·--·~ --~~~-·~~ ~-r---···· ··-·--j
NIA I NIA NEXT

I INSTRlJCTIOiij

--

1 Wait 8tat2 I Control Mode Mem. Proi'.ect ,')- I
c

! 1 Privileg~d RESERVED

j1o____,1--~~ ... ' I • Inoti"~ Ti"~· --·M I

' RESERVED I/O
0

foterrupt I Clock Inte·.-rupt j Mach. Check

l---u-· -,_ . .B . -·-. --- . - ·- ":~~ - --""T· ··-M:~- r·'. "~P; .. '.~~~~~
'' J PCW Add. res.c . Vfrtual Addre. •• I ~hys. Address ~ 5in.·g1e. Step

_j[5_omparo Trev j Mod. Trap ~d. 1:rap <'rap

:_~1~ -~~BES~R~~~~~~~~~-~~~·,·REs~iv~~==·=-~~jERVE~-~~~
13 I cc I cc Ii'PO DO

Conditio·:-i (:otl:.. 1 Condition Code Fixed Point Decimal
I
1 Overflow Mask Overflow

i--~---~t----T-~ .. ~~~ ---'-·-~- ----T-~-··----· -----~-·-·-----
14 EU ! SG

Exponent Urn1e;,,·- I Si gnifj cance

Flow Mask ~ iiasl~
t----1-5---o·-R-E ... SE~R-VE-D~~~--r- R·E-SERvED~----?-R-E.SERVED-· -- ·-r--R-E-S-ER_VE_D __ _.

t------~~---~~~~-.-v~~~~~-----1..------~----:-~~--=-~~-t
16

RESERVED RESERVED

RESF.RVF.:O RESERVED RESERVED RESERVED
L':=====~=======:;:;;· ·;;· ;:::::============~-----·

•

- ----------------------------

- .. --
PCW PCW NAME GIVEN IN
DIGIT ~! BIT # PCW CONVERSION CHART MEANT NC -

32 w Wait state:
O• Oper'tlt 1ng a·t3te
l• Wait state

-.. ·--·--...-·
33 c Control modt•:

Qa Normal operating mode
la: Control mode

-·--·---· ·--
9 34 p Memory proLPction violation

an Cl privTi~~·g·el1 instruction
trap:
Oal50 not tr dp on memory

protf!ct i.on violation or
priviledgecl instruction

l= Trap cm 111eni;1r~1 protection
violation (ff priviledged
instructi.on .. --...---..r---

35 Reserved

36 Reserved
-·-·-- ~

37 I I/O Interruption mask:
O= I/O Interrup"ts disabled
l= I/O Interrupts enabled

-~-

10 38 T Clock Inte~ruption mask:
Qa:: Clock Interrupts disabled
l• Clock Ir.terruµt.s t=::nabled ..,. _____

~

39 M Machine ehP.ck Interruption
mask: -·

O= Machine check Interrupts
disabled

la Machine check Interrupts
enabled

40 B PCW adciress compare trap:
O= No PCW address compare

trap in effect
1= Trap on PCW addrP.ss

compare equal

11 41 D Virtual address
mocHtication crap:

Qo: No virtual address
modification trap in effect

1= Trap on unequal compare

• with byte at specified
virtual address

,, ', ,,
·~

,,

3-41

3-./~ 2

3.2.4 INTERRUPTS

3.2.4.1 General

An interrupt is an error condition or a request-for-assistance

condition that will cause a break in the normal sequence of instruc­

tion execution. Should such a condition occur, the system supervisor

seizes control and action is taken to either flag/log/correct the

error condition or to service the request for assistance. An inter­

rupt can occur a~ter the execution of one instruction and before the

execution of the next instruction. Instructions are said to have been

completed, terminated, aborted, or suppressed at the time an interrupt

occurs.

An 'interrupt' system permits the 2200VS Operating System to

change state as a result of conditions external to the system,

conditions in I/O devices, or conditions in the CP itself. Five

classes of interrupt conditions are possible: I/O, clock, pro_gram,

supervisor call and machine check.

Simultaneous requests for interruptions at the end of an instruc­

tion are honored in the following order of priority (the conditions

are listed in descending order of priority):

Machine Check

Supervisor Call

Program

Clock

Input/Output

3.2.4.2 Types of Interrupts

Machine Check Interruption:

The machine check interruption provides a means for reporting the

occurrence of machine malfunctions to the Operating System. Informa­

tion is provided to assist the Operating System in determining the

location of the fault.

3-43

The cause of the malfunction is identified by the interruption

code. An interruption C•)de of l indicates a main memory parity

er~or. An interr~ption code of 2 indicates an urtexpected interruption

•equest from an I/O processor (IOP). A machine check interruption ms.y
I

be masked off ~y ~urning off the machine check interruption mask bit

in the PCW. A mach1uE check interrupt that has been masked off causes

entry to control mode.

Any program o;~ supervi3or-call i~terruptiona that would have

oc.;urred as a result of i.:i.e current operation are e 1 iminated. Any

instruction in prog·,·ess ~V"hen a machine check occurs is aborted.

S'lp 0 ·-·'J1'so·· C"'ll ·,- ····.:..···-·-,··,··1"on· -~--::.:. __ L_~_ .::.:~~··A. L •-r '- •

The aupervis0T-cell interruption occurs as a result of ~he

execution o.:: i:he 8uPERVISOR CALL instruction. It cAuses the r.11rreni:

PCW and ;:ii:het" infc·.:-mation to be stored in ::he system stack in Mair1

Memory and a nPK ?CW is constructed.

ihe name ":.rnpe!.·visor call" ir.dicates that one of the majo1·

purposes of i:he inte•:r•Jj)t1on is l'.\~::? switching of the Operating System

from problem to s;.:~ervisor state.

Exceptions rer.w·! .:iag from improper use of instructions and data

cau~P a p~og.:-am i~~z~ru~(ion.

The current ii:iatruction is completed, terminated, aborted, or

suppressed. Only one µrogram iuter•uption occurs for a given instruc­

tior1. The cccurrence o!· a i;.rogram interruption does not prer.1.u<le ;:he

siruult~neous occu~rence of other program-interruption9.

A description c.f the individual program exceptions follows. Some

of the exceptions iisted ~ay also occur in operations reaulting from

I/O inst~uctions.

3-44

•

Program Interruption Code1

Programming Errors

Operation

Priviledged Operation

Execute

Protection

Addressing

Specification

Data

Fixed Point Overflow

Fixed Point Divide

Decimal Overflow

Decimal Divide

Supervisor Call Range

Debugging Aids

PCW Trap

Virtual Destination Trap

Physical Destination Trap

Single Step Trap

Address Translation Exception

Stack Facility

Stack Overflow

Floating Point Exceptions

Floating Point Overflow

Floating Point Underflow

Significance

Floating Point Divide

3-45

01

02

03

04

05

06

07

08

09

OA

OB
oc

10

11

12

13

20

30

40

41

42

43

Clock Interruption:

The ciock interruption provides a means by which the CPU responds

to timi:1g con<litions set within the system. For example, e clock

interruption becomes 'pending' whenever the time-of-day clock value is

greater than Oi equal to the clock comparator value.

A r~quest for an I/O interruption may occur at any time, and more

than one request may occur at the same time. The requests are

preserved i~ the I/O device until accepted by the processor. More

than one evenc which establishes a pending interrupt may occur at a

de\rice. Each such e\rent is recorded at the device and, when the I/O

interruption fo-.- the device i R taken' the s~:or.e1i rnsw (I/O Status

Word) reflects the occurrence of all Duch events. Priority is

e::;tab i ished among devices so that only one ·1:;0 :i.nterrupi:ion request is

processed at at time.

3. 3 TfiG INPUT/OUTPUT PROCESSOR (7 llO pc)

The foput/0•1t:put Processor (IOP) is ::he heart of the :tn::erfAce

b~~tween tne centrai. processor c:nc: the u.:ir-!-:. All ::;.·snsfe:;:- of informa­

tion between the Central Processor (C.P.) and its ?eripheral equipment

is di.rer:ted ::hrough the IOP.

·n.~· i(JF , " used to couti"u 1 ir,~Lil: and output :;._·equc.3:::1. Starting

of the IOP i.s under the controi d i:!w CP, \'.'hereas Jtopp::.ng i:he: :we
can be ccn~~olled by the IOP or tn0 CF. Cnce started, the IO?

processe~ independently of the CP-

"i"ui;:; a I ii:Ht ion

Initialization of microprograms and hardware elements can be

tri~gc·red by using ei thei.· the Power--on or Load ~)uttons on the

Ct.' Initiali~ation involves re3etting bu& contrcller3 and I/O

3-46

•

•

FIGURE 3-5 IOP BLOCK DIAGRAM

MM

t .. MAIN CENTRAL
MEMORY

I
PROCESSOR

-.-
r 1- /--r - -1- - - - - -··- -- -, - - .

~ ~
BI I w I I/ PCB!
~

I I
_

' i I
MAIN MEMORY (PROCESSOR
BUS INTERFACE)

'
I COMMUNICATION

BUS INTERFACE)
MAIN MEMORY PROCESSOR

BUS LOGIC COMMUNICATION !
lt1BL BUS LOGIC

PCBL I
' ~ . . 1 ~

I I

I .--• ----!.. .. _ •... _t I
I

I MICROPROCESSOR IOP I

i
MP I

I
~ PCB# 7110 I

! r - - - - - -+- - - - -- -- -
I

I
I

I I

I
DEVICE ADAPTER I

D.A.
I I PCB# * I

I • - _J -· - - - - - - - - ·- - - -- --

r-· • .. l_ ~I
PERIPHERAL -- PERIPHERAL

.... -.] PERIPHERAL PER I PHERAL
DEVICE DEVICE l DEVICE DEVICE __.

~---I ~ r --i

*DEPENDENT UPON TYPE OF 1/0 DEVICE ATTACHED

•
3-4 7

devices to a neutral state and activating the appropriate

microprogram routines in the microprocessors (by means of ·a

"trap"). The details of initializ&Lion will be defined by the

hardware group.

NOTES:

1. An initialize line on the PCB is used to initial­

ize IOP's and 1/0 devices.

2. Initialization causes all MMB and PCB lines to be

'dropped' (i.e., no bus activity after initializa­

tion).

Resettiug of the I/O Devices

All I/O devicea are reset when the LOAD button is pushed, or when

a system power-on. sequence is completed. This causes the I/O

devj_cea to te;:-minate all I/O operations. Status information and

intP.rruption conditions in the devices are reset. Both data

transfer operations and control operations are immediately

tenninated and the results are unpredictable.

i.~ote that ee.ch de•Ji.ce h&s a one byte (8 bit) device address. All

values from 00 to FF are legitimate device addresses. The current IOP

supports four devfces; t!i:? high-m:der sbt bits are therefore the IOP

address and the lcw·flrder t•m bits .!!i'.'e the device address.

In the following paragraphs, each mAjor functional block of. the

IOP is discus3ed.

3. 3. 1 'f"h'G MICROilROCESSOR (MP)

~1le Microprocessor is to the IOP what the CP is to the overall

2200VS. The Microprocesscr consists of a variety of elemP.nts which

enable the manipulAtion of I/O data, I/O communication, sequencing of

I/O instructions, and the activating of 'interrupt' sequences.

"\ '· 0

•

•

3.3.1.1 Register Structure

Register mobility within the MP is accomplished through two 8-bit

paths and a 'pat~ master'; the path master selects the registers

specified, places the data in the input bus (called the A-bus), and

gates them through a function generator called the ALU. The output of

the ALU is placed in the output bus (called the C-bus), the path

master then gates the result to the specified register.

The following paragraphs des.cribe these registers, the tasks in

which they are involved, and their paths of interaction ..

Memory Data Register (MOR):

The Memory Data Register, also called the 'port register', is

used as the point of exchange between Main Memory data and the IOP

Microproces3or. Thia register is divided into two 8-bit registers,

M!iRL and MDRH. MDRL is used as the exchange point between the M.P.

and the Processor Communication Bus (PCB) interface. Both registers

are used for command and information sequencing at the Device Adapter

(DA). Both MDRL and MDRH are used in logical and arithmetic
processing.

Memory Address Register (MAR):

The Memory Address Register (MAR) consists of three sections, a

3-bit MARH, an 8-bit MARM, and an 8-bit MARL. These registers are

used to point to a predetermined location in Main Memory where some

form of data transfer is to take place between Main Memory and the IOP

Microprocessor. Thia regiater may be incremented or decremented by
ope or two .

3-49

SELEt;TS ADDRESS IN ;41\IN
MEMORY \iH~RE DATA EXCHAP!GE
IS TO TAKE PL-'C.E

•

,rt:J ,P,~•J! /.

MEM DATA REG H, I_
(PORT REG.) EXCHANGE
POINT BETIIEEll MAHI
MEMORY AHO MICRO
PROC. (KP)

SUBRO\fTir•E STAC!< REG r-- - .. - - ·-
USE!l TO STORE INST. I

... A .. DD...,FRG M·l·N .. ST_c .. ou ... H:i:T~ ... ~...u ... _L ~l/Af=L~L-- s P. s - ---i--

SHECTS INSTRIJCTJOI
IN CONT. HEl«IRY

.rN~r,.>ua~
rcuNT"l!!R

£615.rt-t
.re

.. ~ -JJITS I ~~ ,"&>1/Z ~
L -· - -- ·-- ·- - - -· - --· - ·-_-+------<! i

COMTROL ~1E1'DR'I CCllH i NS
16 BIT ltlSTRUCTIONS
MICRGPRO!:~AHS

USED av MIC.P.OPkCGllA/.l TO
PEP.r'ORM LOGIC ;\llD ARITI!.
OPS TO STORE rnro ABOUT
STATE OF !OP

AFFECTS LOGIC SEPARAYIO~
OF DEVICE CONTROL REGl3?ER
STACXS MAY BE USED A5 A
DEVICE SELECTOR

r ~ECE1 VE. INST.
CALLED UP BY IC

l

I
I
I
I
I
I
I
I
I
I
I

___ _L,

I
I
I
I
I

- ___ .J

t!ONrli'r>L IUL
Ol"E~RTIOAIS or MP

•

Establishing a new Main Memory address in IOP MAR may be

accomplished by sequentially incrementing or decrementing the MAR

value (.:!:,l or .:!:,2), or by parallel loading the MARH, MARM, and MARL

eight bits at a time (the IOP uses an 8 bit bus structure, while the

CP uses a 16 bit 'halfword' bus structure). Note that the IOP

addresses only physical (Main) memory, not virtual memory.

File Control Registers (CF):

The File Control Reghteir-d· Bre used by the microprogram to

perform logical and arithmetic operations, to store status and control

information pertaining to the general st"te of the IOP.

Device Control Registers (DF):

The Device Control Registers are divided into four groups of 16

eight bit registers each. They are used by the microprogram t~

perform logical and arithmetic operations and to store status and

control information pertaining to the general state of the devices

attached to the Device Level Tnterface (D.L.I.; 'device adapter').

Pointer Register (PT):

The Pointer Register is a 2-bit register that is used to select

one of four devices attached to the Device Adapter; or, it can select

any one of four sets of Device Control Registers (1 set = 16 regis­

ters), each belonging to one of the four devices attached to the

Device Adapter.

Status Register (S):

The Status Register is an 8-bit register that can be used for all

logical and arithmetic operations, except ADD with carry (AC), in the

IOP Microprocessor .

3-51

FORMAT:

0 1 r 2 I J 4 5 6 7
I -1-~

Ul IN
5V -~ U2 C2 Cl CA

Ul - Undefined.

IN - Input - This hie is set to 'O' by the CDLI microinstrur.tion

(hardware). Th(; DU sets this bit to 'l' when responding to

a CDI.I micrninstruction.

!'W - Servi•:e - 'i'his bii: is conditionally set by the PCB! to 'O'.

RB -· Ready/Huay - Thia bit is tested by the PCB!.

U2 ~ Undefined.

C2 - Greater/L2ss - This bit is set as a result of the compare

instruction.

Cl - Equal·- This bit is set as a result'of the compare

inst;:-uc~;ion.

CA - Can:y - This bit is used and set in the add with carry

ine true ti or;.

Instruction Counte~ ae~ister (IC):

The !OP Instr11ction C,:mnte-;:- Regir-ter is a 12-bit r-egiste;:- which

selects !OP Cont-::-ui. Memo-;:-y mj.croinstructions. Normally, IOP

micrr.iinstructions are e:tecuted sequentially. The !OP IC can be

condidonally incremen'-.e:t by 2 (skip microinstruction), or may be

loaded w{th a ·.;alue from the !OP Sub1:outine Stack, from the !OP

Instruction Register, o~ from the IOP Trap Handler.

Instruction Register (JR):

The IR recei•.res the 16-bit instruction 'c•de acldressed by the IC.

Eight of the Instruction Register's bits are s~nt to the IOP's

register~selecting logic (called the 'path master') €or iunnediate data

1-C:'•

•

•

instructions. Aleo, 11 bits are made available to the DLI, the MMBI,

and the PCBI as control information. The Instruction Register is also

called the 'Control Word Latch' (CWL).

Subroutine Stack Registers (SRS):

The Subroutine Stack Registers are a group of sixteen 12-bit

registers. Each of the sixteen registers is used to store the address

of an IOP microprogram instruction. Each can then be used as a

subroutine return address which is loaded into the IOP IC when return

conditions are met.

A and B Registers:

These registers receive the IOP's A-bus. Their contents are

gated to the IOP ALU.

3.3.1.2 Arithmetic Logical Unit (ALU)

At the center of the microprocessor is the ARITHMETIC LOGICAL

UNIT (ALU). The ALU is made up of an input section (2 latches), the

ALU itself, an ADD w/carry circuit, and a compare circuit. The output

of the ALU is the C-Bus. All arithmetic and logical functions are

processed through this network. Certain instructions (COLI, CMBI,

CPBI, SR, SB, and BU) are not arithmetic or logical and do not use the

ALU.

The IOP ALU is an 8-bit unit and is fed by two 8-bit input

latches, the A-Register and B-Register. Two operands (values to be

acted upon) are loaded into the ALU through the A and B Registers.

When the ALU is loaded, it processes the two operands according to the

controlling microinstruction (example: ADD). The resultant is placed

on the C-Bus. The microinstruction also specifies a target register,

where the result is to be placed •

3-53

3.3.1.3 Control Memory (CM)

IOP Cont-•ul Memory is a PROM storage block, 4096 x 16 bits. Each

of the 4,096 sixteen-bit microcode in3~ructions has 2 parity bits

attRched, thus making each IOP microinstruction 18 bits wide. These

IOP microprograms are used to control each pe~ipheral device and

manipulate data in the IOP.

3.3.2 MAIN l1EMORY BUS/LOGIC

Main Memory Bus Logic is that porticli of the IOP which controls

all dai:a. t;~.g,nsfers between the IOP snJ lilai::i. memory. Nain Memory Bus

Logic (MMBL) resides on the Microprocessor board. The actual

operationo conti'."olled by th~ MMBL !lre: READ 16 bits, FRITE 16 bits,

WRITE 8 bits and receive Main Memo&'.'y error cc:.-.1ditions when they

occur. When the IOP has data to send to the GP, the date is written

into Main Memory locations which_begin at an addresc calculated by the

IOP. The CP then reads Main Memory, beginning at that address~ The

same is true in reverse. The CP would give the addreGses of the data

needed by the JOP, and the IOP would then read those locations of Main

Memory.

Ope::-a:.:ians involving the IO,' and Mein Mcmm.-y are controlled by a

11 Contr1)i (the) Memory Bus Intei'."face:1 (CitiBI) i;lic;:oinstruction. Wnen 1

during a microinst;;uction routine, the CNJH instruction is detected,

the Main MEmory Buv Logic requests a memory cycle from Main Memory.

No oth~r mic~oinstructions will be proc2~s~d by the IOP until the

memory transter is complete. Note that ~-11 IOP'a in the syE1tem will

be requesting memory cycles; anc..l when niore th&n on~ '.::OP requests

access to memory a the same instant, the main memory co::i.trolter will

grant acc2~s to Main Memory by a priority basis determined by the

ph_·sical location of each IOP in the 2200VS chassie.

3-54

•

•

3.3.3 PROCESSOR COMMUNICATION BUS LOGIC (PCB)

The PCB is that portion of the IOP that controls all

conununication (handshake, protocol, etc.) between IOPs and the CP.

There are only two basic operations performed using the Processor

Communication Bus (PCB): 'Commanq-Out' and 'Grant-Interrupt'. The

operations are independent, not time-critical, and do not overlap as

far as the PCB hardware is concerned. The operations are basically

shoulder tap operations between the CP and an IOP; all decisions and

responses involving the state of a particular I/O device are handled

by the IOP.

The normal communication between the CP, main memory, and the

IOPs is as follows. The CP initiates a Start I/O (SIO) sequence. The

IOP receives the SIO and either accepts or rejects it. An IOP would

reject the SIO sequence due to that IOP or device being busy.

IOP BUSY

During certain critical operations required to control its I/O

devices, an IOP may be unable to accept a SIO or HIO (Halt I/O).

This condition is of limited duration and is relatively

infrequent. When the IOP is unable to accept a SIO or HIO, a

condition code indicating IOP BUSY is returned. The conditions

a~d times when an IOP will respond BUSY are device dependent.

Once an IOP has responded to an instruction with an indication of

IOP BUSY, it will present an IOP NOW READY interrupt after the

BUSY condition clears. Only one IOP NOW READY interrupt will be

presented no matter how many SIOs are rejected.

3.3.3.l Input/Output Interruptions

Input/Output interruptions provide a means for the system to

change its state in response to conditions that occur in I/O devices

and IOP's. These conditions are caused by termination of an I/O

operation or by operator intervention at the I/O device.

These conditions cause three types of I/O interruptions,

solicited, unsolicited, and IOP NOW READY. A solicited interruption

is c<'!.used by the completion of an I/O operation initiated by the CP.

An unsolicited interrup.tion is caused by operator action at the I/O

device 8uch as mounting a disk pack or striking a work station

attention key. An IOP NOW READY interruption is caused by an !OP

becoming available for acceptance of SIOs and H!Os after having

reported IOP BUSY in response to one of these instructions.

If an SIO sequence is accepted by the IOP, the !OP traps to a

predetermined location in the IOP microcode. This location (addresq

HEX 04) is a BRANCH microinstruction, directing the microprocessor to

address another location in IOP Control Memory. There, a microcod~d

(subroutine) determines which device attached to a given !OP has been

requested for service. The microprogram wilt then calculate an

address in Main Memory where the Input/Output Command Address (IOCA)

is located for that particular device.

I/O COMMAND ADDRESS

The I/O counand address (IOCA) area starts at main storage

location 128 and contains a half-word entry for every possible I/O

device address from zero to the highest device address attached to the

system (up to 255). The IOP uses the device address received on an

SIO instruction as an index into the IOCA area. The IOCA has the

address of the I/O COllllland word (IOCW) to be executed.

IOCW addreH

0 15
IOCA Format

The IOCA contains the 16-bit address of the IOCW.

'l .. ,

e-

•

Calculate IOCA address by multiplying the perpheral device e addre&11 (the 'IOCA index') by 21 and adding that answer to binary 128.

•

Example .1f Computation

(HEX)

Device Address • 21
Multiply by 2 ~ 42
Add 128 (Binary)
IOCA Address C2

NOTES:

BINARY

0010 0001
0100 0010

+1000 0000
noo 0010

1. The device address has a six-bit IOP

portion and a two-bit peripheral de­

vice portion.

Example:

IIIIIIPP • 4 DEVICE IOP

I•IOP portion of device address (4 or 6 bits)

total of 64 4-Device IOP1.P•Peripheral device

portion of device address(2 bits) total

of 4 devices per IOP.

2. For the purpoae of address computation, the IOP

portion and the device protion of the addreaa

is treated as a single 8-bit address.

This calculated address is moved into the IOP MAR. The IOP

microprogram then reads 16-bits from main memory at that calculated

address. This results in the IOCA being placed in the IOP MDRH and

MDRL registers. The IOCA is an address in M~in Memory where the

Input/Output Control Word (IOCW) ia located. The microprogram does

another read from Main Memory at the addresa specified by the IOCA.

The IOCW, read from Main Memory by the IOP, ia then stored in the IOP .

3-57

--- --------------------------------.

The IOCW specifies the command to be executed and contains all

information necessary to perform any task involving a peripheral

device. Such tasks would include reading from an I/O device, writing

to an I/O device, or controlling an I/O device. The IOCW tells the

IOP wher.e in main memory any transier is to begin, how many bytes of

data are to be transferred, or in the case of control functions, the

initi.<tting of operations with a specific: device 11ot involving data

transfer (such as a skip to headin~, on a printer, or a re3tore on a

disk device).

The IOCW consists of a six byte general section and is followed

by a device depen<lent section. The device dependent section can be of

any length, but is fixed for each device. The IOCW rr.ust be fullword

aligned.

~~-~-o~d-e~li--~--~--- Da_t_a_A_d_d_r_e_s_s----~-__.·l
0 8 Jl

Date: Count
__ n_e_v_i_c_e_n_·~~-=1

32 47 48 end

I/O COMMAND WORD FOPJ1AT

Th~ fields in the IOCW are <il L.>ccilecl for the followi~•g purpose:

'Connnancl CodP. 1 - Bits 0-7 specify the opcrcti.on to be performed.

'Dara Address' (DA) - Bits 8-31 specify the physical address of

an eight-bit byte in main memory, which must be fullword

aligned. This byte location LS the beginning of the data area

f01: the specified operation, or is the beginning IJf an Indirect

Data Address List, which in turn addresses the <latn area(s) for

the oper.<ttion. The entire Indirect Addrel'ls l,Hit: must reside

within the first 64K bytes of physical memm:y.

3-58

•

'Data Count Field' (DC) - Bita 32-47 apecify the number of

eight-bit byte locationa in memory to be transmitted either to or

from the device.

Command Code

The conunand code, bit positions 0-7 of the IOCW, specifies to the

I/O device the operation to be performed.

Bits 0 and 1 of the coaanand code are the conunand typ~, and bits

2-7 are the command modifier bits. The following four command types

are defined:

1) Reserved - 'OO'

2) Read - 'Ol'

3) Write - 1 10'

4) Control - '11'

Connnands

'Reserved' - This code is reserved.

'Write' - A write operation is initiated at the I/O device, and

data is transferred from main memory to the I/O device. Data in

memory is fetched in ascending order of addresses, starting with

the address specified in the IOCW.

'Read' - A read operation is initiated at the I/O device, and

data is transferred from the device to main memory. Data in

memory is placed in ascending order of addresses, starting with

the address specified in the IOCW.

3-59

'Control' - A control operation is initiated at the I/O device.

A control connnand is used to initiate an operation not involving

transfer of data. For most control functions, the entire

operation is specified by the modifier bits in the connnand code.

If the conunand code does not specify the entire control function,

the device dependent field of the IOCW can be used. The data

address field is always ignored for a control couunand.

Connnand Modifier Bits

The use of the modifier bits is device dependent. The modifier

bits of the conunand specify to the device how the command is to be

executed. ThP fifth modifier bits (bit 6 of the connnand code) is set

to indicate Indirect Data Addressing for those devices which support

that option.

When the IOCW designated contains an invalid field, an I/O

interrupt is generated with the invalid condition indicated in the

IOSW.

3.3.3.2 I/O Task Termination/Completion

Upon completion of a task described by an IOCW, the IOP

microprogram activates the PCB "Request-In-Line". This request fa

referred to as a "solicited interrupt". The IOP will leave this

request line active until granted service by the CP. The CP will

acknowledge this PCB request on a priority basis. When acknowledged,

the IOP then. writes an Input/Output Status Word (IOSW) into main

memory location "O". This IOSW will contain ail necessary information

as to the 'completion status' of the 1/0 operation that the IOP just

performed.

Normally, an I/O operation is 'completed'; however, the system

can force an I/O operation to terminate prematurely under certain

other conditions:

3-60

Datti Transfer Terminations:

When the device accepts a data transfer command, the operation

can be terminated b.y one of the following five condition1:

1. A HALT I/O instruction was issued to the device.

2. The count field in the IOCW has gone to zero. (IOCW

exhaustion.)

3. As many bytes have been transferred as are indicated by the

sum of the lengths specified in an Indirect Address List.

(List exhaustion.)

4. The device has indicated that there is no more data to be

transferred. (Data exhaustion.)

5. Hardware malfunction.

The end condition causes the operation to be terminated and an

interruption condition to be generated. The status bits in the

associated IOSW indicate the reasons for termination. The device

can signal termination at any time after initiation of the

operation and the signal may occur before any data has been

transferred. The duration of data transfer operations is

variable and is controlled by the device and its IOP.

HALT I/O Terminations:

If accepted by the IOP, instruction HALT I/O causes the current

operation at the addressed device to be terminated immediately.

If an interruption for the addressed device was pending, that

interruption remains pending. If an I/O operation was active,

the operation is terminated and a completion interruption becomes

pending.

3-61

Equipment Malfunction Terminations:

When equipment malfunctioning is detected, the recovery procedure

and the subsequent Htates of the devices depend on the type of

error. Normally, the device attempts all appropriate error

recovery procedures. If the reccvery is successful, the I/O

operation is completed and the IOSW indicates a soft error. If

the recovery is unsuccessful, the operation is terminated, and a

hard error is indicated in the IOSW.

An IOSW is stored for every I/O interrupt, and is of the

following forr.iat:

COMPLETIONr TOP/DEVICE RETRY COUNT DEVICE-DEPENDENT RESIDUAL BYTE
STATUS STATUS STATUS BYTES COUNT

(DEVICE PROBLEM
DESCRIPTION)

0 3 4 15 16 19 20 31 32

COMPLETION STATUS:

IRQ - Intervention Required

This hit 18 set with error completion (~C) and without normal

completion (NC) to indicate that the device was in a not-ready state

when a Start I/O was accepted, or that no device with the specified

device number was attached to the speciEed I/O prccesaor. This

conditicn requires operator interv~nti~1 to return the device to the

ready state.

NC - Normal Completion

47

This bit is set to indicet:~~ compiet:ion of a.n I/O operation

without permanent error. An jnterruption with NC or EC set will occur

exactly once for each SIO accepted.

j-62

•

EC - Error Completion

Thia bit i1 1et to indicate completion with error of an I/O

operation. If NC ia al10 1et 1 the operation was successful after at

least one retry by the device or IOP. If this bit is set, the errors

detected will be indicated in the error 1tatus byte or device

dependent status bytes, whether or not NC ia also set.

Thus we have:

NC EC

0 0 Completion not indicated
1 0 Normal completion
0 1 Completion with permanent error
1 1 Completion with corrected error

U - Unsolicited (Attention/Device Now Ready)

ntis bit is set when the device signals an unsolicited inter­

rupt. An unsolicited interrupt is one not caused by I/O completion.

This indicates that either the device has become available for I/O

operations or that a user is signalling the CP (attention). This bit

is independent of, but may b~ set with the NC, EC or PC bits on.

PC - IOP Now Ready

ntis is an indicatio1·1 that an IOP may now accept a SIO. ntis bit

can be set in conjunction with NC or EC (I/O completion) or U (unsoli­

cited). Whenever a SIO is rejected with condition code 2 (IOP BUSY),

an interruption with PC set will eventually be presented. If more

than one SIO to devices on the same IOP is rejected with condition

code 2 without an intervening interruption with PC set, then only one

interruption with PC set will be presented,

3-63

!OP/DEVICE STATUS:

IC - Invalid Command

This indicates that part of the IOCW or the device dependent

control information was invalid (e.g., invalid connnand code, invalid

data address alignment, etc.). This condition also causes hard er.~or

to be indicated.

MPE - Memory Parity Error

Memory parity error is indicated whenever there is a parity error

while the IOP associated with the 1/0 device is accessing memory.

This is the method by which a machine check is indicated during an I/O
operation.

MAE - Memory Address Error

Memory address error is indicated whenever an attempt is made to

address outside of the available memory on the machine during an I/O

operation. This is the method by which an addressing exception is

indicated during an I/O operation.

DM - Device Malfunction

Device malfunction indicates that an equipment error has oc:cU&.·red

during an I/O operation or that the I/O operation cannot be completed

normally. Device malfunction is not indicated in the case where oper-·

ator intervention will correct the problem. Thus device malfunction

is not indicated when intervention required (IRQ) is set.

DAM - Memory or Device Damage

This bit indicates that the data transfer was interrupted while

in process and that either the data at the device or in memory has

been changed. This indicates that the receiver of the data trans

3-64

•

mission has unpredictable data, and the data mu1t be retran1mitted (if

poaaible) to correct the problem. Thia may alao mean that the

device'a atatus has changed (e.g., for a magnetic tape, the tape baa

been repositioned). Thi.a bit will be aet only if the hard error
indication ie set.

IL - Incorrect Length

Thie bit is set if the length of the data apecified in the data

count of the IOCW and length of the correaponding item of data at the

device were different. If thia bit ia aet, thia will caua~ the ~rror

completion bit (EC) to be aet. If this bit is aet and the device

supports storing of the residual data count, a valid reaidual data
count will be stored.

RETRY COUNT:

Self explanatory.

DEVICE DEPENDENT STATUS BYTES:

(DEVICE PROBLEM DESCRIPTION)

Identifies such peripheral device failurea aa CRC, LRC, 'short

sector', sector overrun, compare error, invalid addre11.

RESIDUAL BYTE COUNT:

This indicates the byte count remaining at the time of I/O com­

pletion. Not all devices aupport atoring of the byte count.

The IOCW and the IOSW are two of the moat uaeful piecea of

information in the troubleshooting and repair of the ayatem, and/or

the varioua peripheral devicea attached to the aystem •

3-65

TABLE 3-6

DI~~ IOSW CONVERSION CHART

~ I 8 BIT 4 BiT 2 BIT l BIT

I R Q NC EC u
l INTERVENTION REQ'D NORMAL COMPLETE I ,'OR COMPLETE UNSOLICITED __ _,

1-- -
PC 0 0 0

2 IO P NOW READY ALWAYS ZERO ALWAYS ZERO ALWAYS ZERO

IC Ml'E HAE DH
3 INVALID COMMAND MF.MORY ~ARJ.TY ERROR MEMORY AnDRESS ERR DEVICE MALFUNCTION

fl AH 'LL 0 0
4 HEH OR DEVICE DAHAG INCORRECT LENGTH ALWAYS ZERO ALWAYS ZERO -

SRW HSR 0 0
5 SECT REFORMAT-WRITE HEADER SKIPPED-READ ALWAYS ZERO ALWAYS ZERO

--
IDA IDC so SI

6 INVALID DISK ADDRESS INVALID DATA COUNT SECTOR OVERRUN SEEK INCOMPLETE

WP NRO ST DC
7 WRI'l't PROTECT NOT RDY DURING OPH SECTOR TIMEOUT PATA COMPARE ERROR

-·
IID CRC 0 ISP

8 INVALID SECTOR ID INVALID CRC OR ECC OVERRUN (DATA FIFO) SHORT SECTOR

RDC RDC RDC R.DC
9 RESIDUAL DATA COUNT ·-
10 RDC RDC RDC RDC

ll RDC RDC RDC RDC

RDC RDC RDC RDC
12 RESIDUAL DATA CO

RETRY SETUP (CDC)
13 O•NORHAL l•DATA STROBE EARLY 2•DATA STROBE LATE 3-0FFSET 4-0FP'SET~·

5•EARLY & - 6•EARLY & + 7•LATE & - 8,.J.A'fE & + 9•HARD ERROR (F.CC USED)

14 RETRY COUNT FOR SETUP IN DIGIT 13

15

PCB SIGNALS:

The PCB consists of 28 lines aR follows:

1. PCB Grant-Out Strobe line (8). PCB Request-In lines (8; one per

IOP).

These 16 lines are used in the PCB Grant-Interrupt operation.

3-66

•

•

•

2. PCB Device Addresa linea (8).

These bi-directional lines ar~ used to transfer an 'I/O device

address.

a. From IOP to CP - Grant-Interrupt Operation. Also

Command-Out Operation response.

b. From CP to IOPs - Command-Out operation.

3. PCB Control lines (2).

4 .

These bi-directional lines are used to transmit a connnand from

the CP to an IOP or to transmit a response from and IOP to the CP.

a. Command (CP to addressed IOP) Command-Out Operation.

00 - Alert

01 - Start

10 - Stop

11 - Undefined

Note: The PCB Hardware is not concerned at all with the

above codes. Only the IOP distinguishes between the

different conanands.

b. Response.

Command-Out Operation (addressed IOP to CP).

Grant-Interrupt Operation (selected IOP to CP).

00 - Available

01 - Device Busy

10 - IOP Busy

11 - Device not operable

Note: The IOP can generate the IOP busy code based on a

simple yea/no condition at the IOP. Other than this case,

the PCB hardware is not concerned with these codes.

PCB Control-Out Strobe line (1).

A strobe line from the CP to the IOP is used to strobe a command

(PCB Control lines) and address during the Command-Out operation.

3-67

5. PCB Control-In Strobe linP (1).

• £ ~h To~ ~ ~k c-_µ_ ,·s used to $tr~be in ~ A strobe: 11ni:: .. ro1!l ... e ~ ~ ... o ,_ .. c~

response (PC.6 Co;1tr.i:.il lines) for either PCB opei:atior.. (Res~on;;e

inci.ud~3 de'Tice o.dd1·ess ((ron1 IOP to Cf), uei·.:g PCB De1·i~~

Address lines.)

3ummaLy of PCB Lines

Common bi··dii:·ectional lines

1. PCB D~vicr. Addreas lines (8)

2. PCE Control ~ines (2)

Commcn liueR (CP to IOPs)

1. PCB Control-Out Strobe (1)

Common lines (IOPs to CP)

1. PCD Control-In Strobe (1)

Independent lines (one per IOP to CP)

1. PCB Reqt1.eRt-In lines (8)

2. PCB Grant-Out Strobe (8)

3.3.4 DEVICE ADAPYllR (DL! or ~A)

Each Device AGapter basica~ly controls the flow of data and

status information betweeu a peripheral device and its IOP.

Whe11 data is to be tran1fer"i:'ed ~ the IOP Mict"oprocessor to a

peripheral device, the DA r;~cepts· d;ita frCJUI the IOP MP into its Ou~pu;:

Register. The output of this r:!gister is felt el: the Device/Port

selection circuitry. The pointer register stores this information

which is used to dete;:-mine which device the data should go to. The

data is then gated to the .co~rect port (actual plug on the DA).

3-68

•

•

When data is being passed from the peripheral device to the IOP - -
Microproceasor, the DA accepts data from the device into its "Input

Register" via the Input Data Multiplexer. Thia multiplexer is

controlled by the p,int~r register. The output of the Input Register

is transferred to MDRH and MDRL.

The microinstruction within the IOP which controls the device is

the CDLI instruction (CONTROL (the) DEVICE LEVEL INTERFACE). The CDLI

instruction passes a cormnand to a specific device, and that device

responds with a completion bit. This microinstruction is sent to a

device for the purpose of issuing a command such as a read or write.

One variation of the CDLI instruction, referred to as a '5002' CDLI

command, is used for the purpose of checking peripheral device

status. This gives the IOP MicroprocesLJr the capability of scanning

any number of devices to find out their current status (ready, not

ready, busy, out of paper, etc.).

3.3.5 THE IOP MP MICROINSTRUCTION SET

The Instruction Set is the set of microinstructions which control

the activity of the microprocessor. These microinstructions, in a

logical sequence, make up the microprograms stored in Control Memory.

A list of the si.~teen microinstructions used in the WCS 60/80 IOP

follows. It is for general information only, as a more detailed

explanation will be included during training:

Instructions 1 through 10 are considered "logical and arithme­

tic". Instructions 11 and 12 are considered "conditional", while

instructions 13 through 15 are considered "unconditional". "Interface

Operations" is the class name given to instructions 16 through 18.

These eighteen instructions control all processing within the IOP, and

are what gives the IOP the capability of processing independently from

the CP •

3-69

TABLE 3-7

IOP MICROINSTRUCTION SET

~~====R=~==:.:::0::.=1==2====3==1=.::-..==5==:=6:.=..:==7~-==8====9~,=...:===::=~==~·:::::=:::=::======l=5~,
- 10 11 12 13 14

--· -
l AND 0 0 l 1 1 0 A A A A B B B B

2 OR 0 0 0 0 l 0 A A A A A B B B B B

~l--·-A-3 •• -. ~:-OR-1i~:--~-~-. -:-. --::::O_l~~~~:~~~-:-~w~:--~~~-:~_-_~~-:~~~-~-t>..--_-_-_-:::_-_-:_-_-_-_-:_-:_-_-:_-_-_-_-_-:_-~
U-2-.~~c I -~o~·-?_i_·--· ~1-~1-~A--A--A~_A __ A ___ n_~B-_B __ B ___ B__.

~ - ~ b MV,0010 l 0 A A A A ABB BB B
I ~~-·~~----~~---~~---~----------1 ~-~·-1-~- 0 1 -1--;- 1 A A A A A B B B B B

8 LM I 0 0 l 0 0
.....

0 A A A A A s s s
I I 9 MVI I 1 0 0 I I I I

~~---;-~~~~~~~~--~--~~--~-----------------1
I I I I B B B B B

10 OR~~-O·~-l~-·~-I~~l---I--l~-I--I---I~~B-~-B----B--B---B-1
11 .::.....!-: . .! l __ I I I .L I I I I B B B B B

~ -··--~--~-~--·~-----------"
12. 5F I 1 1 0 I I I I I I I I B B B B B

13 B O l 1 0 ICO ICl IC2 IC3 IC4 !CS IC6 IC7 IC8 IC9 IClO ICll

11+ SB i O 1 l 1 ICO ICl IC2 IC3 IC4 IC::i IC6 IC7 IC8 IC9 IClO ICll
i---- ~ .. ·"~'·-----~~~----------~-~-----~-----I
lJ SR I 0 1 0 J 1
t--~·--L.......~---~-----~---~--~-~·-~~~---------·--1
116 ~B10 l ~._o __ -__ -__ -__ -__ -__ -__ o __ M __ M __ R __ R~

~~!_:~~j_o~.~-0--1----~-·--------------c--c---c--c----c_.
1 s cn11I o ~=o=~=-===o==c===c ==c==c==c==c==c==c==c==c===c::::::!.I

3-70

•

Values for B B B B B:

0 0 0 0 0 to 0 1 0 l l - CFO to CFB

0 1 1 0 0 - PT

0 1 1 0 1 - ST

0 1 1 1 0 - MDRH

0 1 1 1 1 - MDRL

1 0 0 0 0 to 1 1 l l t - DFO to DFP

Values for A A A A A~

Same as for B B B B B but with PT disallowed.

Values for S S S:

001-MARH

010-MARM

1 0 0 - MARL

3.4 MAIN MEMORY

A minimum of one, and a maximum of eight RAM cards (7104), 64K

each, comprise the 2200VS Main (physical) Memory. Maximum memory size

is actually 524,288 bytes. Note, however, that 'K' only expresses

memory size as a decimal equivalent of 2x. Thus, 524,288 bytes is

described as 512K (2 19).

Memory cards are loaded with dynamic RAM, each chip having a

capacity of 4K. 2200VS RAM is addressed in 16 data bit 'halfwords'.

The lowest order address bit to RAM selects which 8-bit byte of the

16-bit halfword is to be used in 8-bit instructions. This selection

is performed on. the 7103 card. Each halfword also has !!! parity bits

attached to it (explanation follows).

Main Memory data format is as follows:

4------- 16 Bi ts ..-6 Bits_., ------------------..... ---------~· ______ ..,. ________ __,
DATA PARITY

4--------- 22 Bits - ·---------_.

3-71

..

Error Correction

An 'Error Correction Code' (ECC) givee 2200VS hardware the

capability of correcting single-bit errors in data that is read from

RAM (Main Memory); no error correction occun; on RAM w;.·ites.

The correction of one-bit RAM READ en·ora is transparent to l:he

user; however, ECC facilities may be ha~dware-disabled in a 2l00VS for

RAM diagnostic procedures. If, <luring any 16-bit READ from Main

Memory, ~than one~ bit is bad, the Central Proceoam:· 'traps'

to a predetermined error routine address in Control Memory.

A simplification of 2200VS RAM/ECC circuii:ry fcJ JDwo ~

3-72

•

MAIN MEMORY - SIMPLIFICATION OF ECC HARDWARE

..,. IT[
DATA L INES 5CMtAATQaS

~o.:,1.J,4,,,11 11 - A

t'_ ~I Z I I 7,t,14 B

!'-... 3,4,1,1,7,10,11,11 - c --.

"l,J,l l,t,10,11,11 .. D --..

" 1.1.1.•.10.11.14.11 .. E

l\._l.4.7 tlhlt.1J.li,U. F

0

~~
3 "-
4 "-

s "-
,.

6 "-

7"
I "'-.: q"
0 ""' 1~
r "-
3 "-. "-,,

FIGURE 3-7

,Al _A ,..
22 BIT

M
'AR. I__.. .. E

M

0

,AR, C R

y

PAR. 0 __.

PM. t _.
- ..

'AR r __..

__..

--.....
.....
.....

..... ...
.....
......
......
.....
.....

.....

~~Bil! III ~

..L.lal.J, M. it ,U

PA611 Y_l IT _l

...ll..l....l.J.&.J • -" v
'~Jl_lll c

J.4. I.I .Lll.lLll

_.1Ml!l.JJT 0

_l.s.1.1.1.10.n.a v
_»a ITV llT E

l.1.1.1.111.1 , "..11 v
~ITY llT r

w..!.i.11. I L.lli 1~11 v
,/

,/

/

~
,)

,/

j

,/

,/

J

---'-
;

;

;

3-73

'AAllY
CHECUU

...

A' ~ ..
- ..

..
B' ~ ..

...
C' ~

~

l-

.. ..
D' ~

... .

.. ..
E' i-.

--.
F' I-+ 'Min,.

......

_,.-
~1

z
..... ,

4
~I

' 7
•

~I UAD
DATA

t
__.. 10

11
_... 11

u
....... 14
..... 11 -

Betore a ~clfword is written into memory, a uu.&.que combination of

eight data bits in that 16-bit data pattern is presented to a

~-parity generator. There are six such write-parity generatoro

(named 'A' through 'F'); therefore, odd-parity is similarly generated

for 5 other unique combinations of the 16 data bits prior to a RAM

·.rrite. The restolting six parii:y bits, plus the. initial data halfword

are written into RAM (22 bits total).

When either the CP or an IOP calls for that same halfword, all 22

bits are read. The 16 bits of RAii data (of the 22 bits read) are

latched into a register. Those same 16 bits are presented in unique

combinaticns of 8 data lines pius one parity bit to six 9-bit RAM

even/odd parity-~heck chips.

NOrE that th~ same data bit combination presented to write-parity

generator !A' (for instance) is also presented to a corresponding

9-l:lii: parity checker 'A '. Also, each RAM write-parity bit

5enerated (parity bit 'A', for instance) is presented to that

same even/odd parity checker ('A'). Similar circuit operation

occurs [or 'B' thru 'F' and 'B ' through 'F '

An actual ECC from i:he outputs of the six even/odd parity

checkers ('A ' through 'F ') is also latched, then decoded into one of

16 error-correcting bits. One ~rror correction bit exists for each

data line. If sny data bit is baG when read from RAM, when that data

bit and its corresponding error-correcting bit are EXORed, the data

bit is inverted. All of the above actions occur prior to loading

either the C? ~IDR oc an IOP MDR; i.P.., all 1ystem processor3 receive

corrected data only.

At this point, further explanation of ECC operational theory can

be illustrated using a chart:

DATA nm

llSB ~ Do 01 02 DJ 04 05 06 D7 oa Dg DlO o.11 012 013 014 Du+-U•

FIGURE 3-8

3-74

ECC CHART

In each vertical column, note that any aiven .!!.!!!. !!.:, i1

a11ociated with exactly ~ !CC !.!.!.!.· Each of the 16 data bit1 ha1

it1 own, unique three-bit !CC. Note, however, that the actual

decoding of !CC hardware require• 1ix bit1 ('A' through 'F ').

An 'X' in any box of the chart indicate1 an unuaed chart po1ition

(corre1ponding, in circuitry, to a data bit line not connected to any

given even/odd parity-check chip).

Error correction can be demon1trated by example:

EXAMPLE: Generate the !CC fori and correct a one-bit error in the

hexadecimal number CA26 (1100 1010 0010 0110 in binary)

recalled from RAM.

Let us assume that the Hex CA26 previously written in RAM i1 read

as Hex CAA6. The 16 bits compr~1ing the binary equivalent of Hex CAA6

are presented to the even/odd parity checkers. Parity checker~ A, D,

and E indicate ~ parity. The error code compare logic identifies

ECC A B C D E F (combination ADE in the ECC chart) as belonging to

data bit 8. Bit 8 is complemented and Hex CAA6 becomes Hex CA26.

DATA llTI

1111 D2 Dl D4 D5 DI D7 DI D9 DlO Dll DU r.1) " DU Lii ·1;,

"'
I I

c c

CD

I

r

1 0 0 0 0 1 0 0 0 1 0

BAD
IIT

*PAIITY IUOI

3-75

FIGURE 3-9

MAlN MMTUK. Y KEAD LOGIC

ERROR CODE LOGIC
PARITY - CHECUAS

--.,
..ll8.l.TY ET A

22 BIT
A' j--.. MAITY '" H 0 1,1 J 4 I 11 1J _., (!VIII/ODD)

- A .
R
D

M P~ITY lllT_l .. w
B' A

E ~PARITY 11' R
... D..l.l.- !LI_ 1 - • ..ll

(IVltll/ODD)

v E

M

0 I E ...mrn_11r c

~ PAllJnC' I R .
R C' R

...L!_.!l.'J~1a.u.111
(!VIII /ODD) 0 ..

y v -- R

PARITY lllT D _ .. c .
D' 0
~ PAllln O' R

_lJ_J.I. t,10.lLJl (gyD/ODD) _., R v ..
E
c
T 1,Alt !TY II IT E -• .. I

E' ~ PARln E' 0
_l.,.111.1. 1DJl, 11.15

(IVlll/ODD)
N .. v ..

c
PARITY en F .. 0 -- 1

D F' ~ PMln F'
l..L~..L11-J11LU, 14, 11 (IYlll /ODD) E

v __,..

-
L -"·-_L

...... 1- SINGLE-_L

11
...... z- BIT

/
J-- COMPLEMENT

_L
=t: I- LOGIC
..... 11-

L . ' , __
_L

_/
7-

BQ,j~ ~- COR!l. B T CORR.
/ © DATA 9-
L BIT
/

10.
DATA BIT 11-

j I of I'
~

...... lZ--1

_L
..... ,,_,
...... 14

J
11

.

ECC
DlSABt,g

I

MULTIPLE­
~ BIT ERROR

FLAG (MMP)

HIGH ERROR­
CORRF.CT1 ON

~COUNT
{ S'RT LIGHT)

fM!TY

I
JIIT• '

~-'4
ifllll(f.t CX»lll iMAHOn'

i
t
l
~

5
6
7
3
9
10
11
12
13
14
15

ERROR-CO
B

~ l
....., \;

!"-

....._

.,
0 --_.. 1 ~

..... 2

-- 3
~ 4

.... ')

~ 6
;--p 7

..... 8 .
9

1---·ti> 10
t-... 11

..... 12
t---~13
t---... 14

15

~:~1'.N,...aWWW

fl l! ll
A' !J'!I
,\· ;i·r,
A.' c' D'
t{ C'!''
ll'C''t ..
&'c'~.

11'.C'i'; Ai
t.'D'l!' •
B'D'~'
C'nJ::'
A' D' P'
C'D' I'"
/1: c· I>'
Jl'i!'l''
c' Ii 't'

RRT~CTION
ITS

COP.REC TEO
READ DATA
TO MDR 1 s

FIGURE 3-10

•

If more than one bit has been changed, the !CC will not match any

of the sixteen 3-bit patterns shown in the !CC table. A multiple-bit

error flag signal, MMP, generate1 an interrupt to the Central

Processor to identify a major memory fault.

One section of the ·22oovs ECC logic not shown in this di1cu11ion

contains a counter which keeps track of the number of single bit

errors that have occurred. When that counter exceeds 65,536 counts, a

light on the processor panel is lit. This light informs the system

user that a Main Memory problem exists in the system.

Whatever the nature of the single-bit failure, the bit is wrong

and must be inverted. It is important to stress that the error is not

corrected in memory. It is corrected only on the memory output

lines. A correction in memory would require an additional memory

cycle and an attempted correction would probably fail for the same

reason the data was incorrect the first time.

DIRECT MEMORY ACCESS

Direct Memory Access (DMA) is available to each of the 8 I/O

Proce1sors (IOP) and the CP on a priority basis. Priority encoding

logic on the 7303 card gives highest priority to the IOP in slot

number one. The remaining IOP slots are from 2 to 8 1 in order of

priority. The CP has the lowest priority due to its ability to steal

memory cycles.

7he disk IOP always goes in slot number one because of the high

data transfer rate of the dis~. The IOP gets serial data directly

from disk and converts to parallel data. The IOP has only a small

buffer. If memory cycles were not instantly available, the IOP buffer

would run out of room (disk 'overrun'). If the IOP buffer gets

overrun, a retry must be performed on the next revolution of the

disk. Retries slow down system operation.

There are eight request lines and nine grant lines on the 7103.

An IOP (or the CP) raises its request line when it wants a memory

cycle and waits for its grant line to go true. The CP has no request

line, •• suchj instead, the MMB controller look1 at the MOP field of

the CP microinstruction to see if a memory operation is called for.

3-77

When a processor is granted a memory cycle, auu•c~s and read/write

control signals are sent via the Main Memory Bus (MMB). Data is

transferred on the MMB's memory data lines.

During a refresh cycle, all priority encoding is disabled. Thus

the refresh cycle has, in effect, top priority. The same row address

is refreshed at the same time on every memory chip on every board. In

a 512 K system, for instance, 1,308 RAM chips are all having one row

refreshed at the same time.

3.5 DISK STORAGE PHYSICAL DESCRIPTION

Disk volumes on the Wang 2200VS system are divided into logical

256-byte sectors, numbered in ascending order, from zero. Actual disk

sectorization is implemented in 256 or 2,048-byte sectors, depending

on device type. Although actual sectors may be addressed by certain

I/O counnands, the Operating System I/O and Paging routines always

address 2,048-byte 'blocks' of disk storage.

'Files' on such a volume are recorded in one or more contiguous

areas called 'extents'. Each 'extent' spans one or more consecutively

numbered blocks (pages). The presence of a file on a volume is

indicated in a 'volume table cf contents' (VTOC), which can be located

through the 'volume label'. 'Extents', 'VTOC', 'volume label', and·

other terms concerning disk storage are discussed in subsequent text.

3.5.l VOLUME LABEL

The volume label occupies sector l (the second sector) of any

disk volume. It contains the name of the volume (the volume serial

number), the location (extent descriptions) of the volume's table of

L~ntents, and other descriptive informetion defining the size and

physical organization of the volume.

3.5.2 VOLUME TABLE OF CONTENTS

The volume table of contents on a disk volume has blocks of four

types:

l.

2.

Available Space Blocks.

High-level Index Blocks.

3. Low-level Index Blocks.

4. File Descriptor Blocks.

- 8

•

The first block of the volume table of contents is an 'available

space block' (FDAV). Any search for available space on the volume

(for a newly-allocated file or an additional extent) begins by

searching this block, followed by its chained blocks, for a

sufficiently large area of space.

The second block of the volume table of contents is a chain of

'top-level index blocks' (FDXl). Contained in each FDXl is a series

of library names and a pointer to the 'low-level index block' (FDX2i

the third block of the VTOC). Each FDXl points to one or more chained

FDX2s. Each FDX2 contains a file~ and a pointer to one or more

chained 'file descriptor' blocks (FDRl)i the fourth block of the

VTOC. Each FDRl contains a library and file name, plus pointers to

the initial 'extents' occupied by a particular file.

When a file is initially allocated space, an attempt is mad.e to

acquire a single extent of sufficient size on the specified volume.

If such an extent is not available, up to 3 extents may be allocated

~ initially.

Whe·:a a file is enlarged, and thereby exc !!eds the capacity of

extents previously allocated for it, the system allocates an

additional extent. This may require that an additional FDR be

allocated to contain the additional extent information. FDRs

describing additional areas occupied by a file are referred to as

FDR2's. A file may encompass a maximum of 13 extents (described in

one FDRl record and one FDR2 record).

3.5.3 EXTENTS

Each block on a volume, with the exception of the first block and

blocks containing the volume table of contents, is part of an 'extent'

(defined contiguous area) of either free space or file space. Extents

of free space are recorded in available space records of the volume

table of contents. Extents of file space are recorded in 'File

~ Descriptor Records' (FDRs) in the volume table of contents, where each

FDR is associated with a particular file.

FOX 1 - CONTAINS:

LIBRARY NAME AND A
INTER TO ANOTHER FOX

(OR)
POINTER TO AN FOX 2

FOX 2 - CONTAINS:

FILE !!!_ AND A

INTER TO ANOTHER FDX2 - -
{OR)

POINTER TO AN FDR 1

..
FDR 1 - CONTAINS:

LIBRARY l FILE ~
tifERT btscRiP'f'
OF A PARTICULAR FILE

N A PARTICULAR L BRAR1
POINTER TO FDR

FDR 2 - CONTAINS:

SAME INFO. AS FDR 1
(FOR ADD IT IOllAL

EXTENTS ALLOCATED TO
A FILE)

--·
FDX 2s

FIGURE 3-11

DISK STORAGE

VOLIJ1E LABEL

VTOC

FREE SPACI:'.
Al.LOCAllOf4

(VOLlK NAME)

~PO!NTERS TO
. Ali. BLOCKS)

(S~ isTiil.l\T' ANO
'E~u' ~RIES
Of C.UftRHYLY
'FRt[1 EKi'EMTS)

FREE SPACE

I

•

'

4.1 INTRODUCTION

SECTION 4

WORKSTATION CHARACTERISTICS

The workstation for the Wang 2200VS baa two main parts, the

display screen (the 'CRT') and the keyboard. Thia device ia designed

both to simplify the operator's job and to reduce processing time

required by the CP to handle workstation I/O.

4. 2 THE CRT

4.2.1 THE SCREEN AND CURSOR

The display screen can display up to 24 rows of 80 characters

each. Each ch8'i:·acter position can display any of the characters de­

fined in the workstation display character set. A 'cursor' indicates

where on screen the next character entered from the keyboard will be

stored. The cursor ia displayed on screen only when data can be keyed

by the operator. If the cursor is not displayed, the keyboard is

locked. This has no effect on the display or the computer interface

with the workstation, but does directly effect data entry from the

keyboard. Each position of the screen is referenced by its row (1-24)

and column (1-80) numbers. The first position of the screen (upper

left corner) is called row one, column one. The columns are numbered

from left to right and the rows from top to bottom. Position two, for

instance, is the second character (col. #2) from the left on the first

line (row # 1) •

4.2.2 SCREEN FORMATTING

An important feature of the workstation is its ability to set off

any portion of the display screen into special 'fields' of character

groups. Theae 'fields' control operation of both keyboard entry and

CP/workstation I/O cODDunications. A field is defined as the group of

~ character• that exi1t between one 'field attribute' char4cter and the

n.ixt.

4-1

4.2.1 FIELDS

Fields can be of any length from zero to 80 characters:

Selected field: This field has been modified by user data

en tr~· at the works tat ion.

Underscore field: The characters in this field are under­

scored when displayed on the screen.

Intensified display field: The characters in this field are

displayed at a higher intensity than those in a low inten­

sity display field.

Low intensity display field: The characters in this field

are displayed at normal intensity.

Blinking display field: The characters in this field are

displayed alternately in the intensified display/display

mode. The display will change intensity at a fixed rate of

about 3 times a second.

Nondisplay field: The characters in this field are not

displayed. This field will look as if it contained all

blanks.

Unprotected field: Any or all of the positions of this

field can be changed by the operator. (Also called the

modifiable field.)

Protected field: No position of this field can be modified

by the operator.

Alphanumeric field: Allows keyin oi any character on the

keyboard.

4-2

•

Uppercaae ahift field: Lettera are diaplayed and atored

only as uppercase. This ia without regard to whether shift

or lock are depressed. All other keya respond to the shift

and lock keys as they normally would.

Numeric only field: Only the characters 0-9, decimal point

(.), or minus (-)may be entered into this field or the

keystroke is ignored and the alarm sounds.

Reserved: This is not a valid field at this time. It is

intended for addition of later options. Its use may yield

unpredictable results.

All characters in a field have the same attributes, as defined by
' .

the field attribute character preceding the field.

4.2.4 FIELD ATTRIBUTE CHARACTERS

. · • An 'assumed' field attribute character exists just before the

•

first character in each row and just after the last character in each

row. Assumed field attribute characters do not take up space on the

screen. They have a default value of low intensity, protected, and

alpha-numeric upper/lower case. All other field attribute characters

display as a blank, no matter what their value or in-screen position.

The possible attributes are defined in the following table.

Bit Field Description

0 Must be set to one

1 Selected-Field Tag
for READ ALTERED and WRITE SELECTED

2 One for underscore

4-3

----·-- ---,
NOTE:

b 7 always

r!Quals zero •

,, 1· ' ' I
1,,.JLJ' 'f• •

DISPLAYABLE CHARACTERS

1 I
b6 > 0 0 :o 0

I b5 .. 0 0 1 I

b4 -S> c 1 I
I

0 1

l T
1

0 11 !)
11

1

. I
II

I I I
H1gh-Ordc~r D1g•t ~ ., _ 0 1 21 .. 1111!ls 6

1

I
:

u 1

7

Low-Order Digit I j ! I
I I I

1.-i:_.,jo:!-i.':..:.+--:--! +----~:---+---+-s~ +-Jd~ttl_: i ~
i-04-0-+--0-I-! -1-1-----, ----tl-~-t-[--;e I I 1 ! A J 0 i a l q

" ,--,___,-- ,----+- 1
o o 1.io 2 lt•"j2'BiM!t>lr

:--f.-----;--r__L_+-=-f-~--_1_-1 · -·+-
o 1 o , , , • a _I # I , I c ! s l ,

1

._

.__o-+--,-+--0-1--0-t----4----+--+---+-~- j~-l~ · -i· d. ~-
o 1 O 1 5 -- 'a' l % I 5 I E lJ ~ •J

~~-~--+-+-----·- 1-
~-+0_1-+--1-!--o-+----6----· I ~.I_~_]! __ ~- f v

O 1 11 7 .. i, 7 G W glw
1 0 I 0 0 B ,, "c) (8 H x. --~Tr.·-

----1-·-----t------------~ ---1---~t----~-...l-t-l---
1 0 0 1 9 ' ..) •• I, I.., . y

U ., . : , j I

1 0 1 0 A \ a J-'Z-rj
I

1 0 11 B 19e +; K [k ~
t----+---+----1-----------·-+---+-- I ·-- --1··-j·---

·-

---!---+----~---·--------+--!!--!-~-- -+--+-·--'.~ , I . . . ,,.
1 , 0 0 I c ! ! \': I <.*L \ . .t.:

1 1 0 1 D ~ j A -- "" M I m e
t---+--+--+--+----------t--~T-.-.-+--1--

1 1 i o E I aha > '-N t n ~
~--t--+--+--1---------,.__--+-.-.-~-+--! ---

11 11 F ~U I? 0 ._ o ¢
......... ___._,..,__~~~~~--~~~w.J..J___ ·~ - -

*Bit combinatio!'ls 10000000 through 11111111 are field attribute chilrocters.

4-4

•

•

3-4 Display control
• 00 Intensified display
• 01 Low intensity display
• 10 Blinking display
• 11 Nondisplay

5 Protect bit
• 0 Modifiable field
• 1 Protected field

6-7 Valid keyable data specification
• 00 Alpha-numeric upper and lower case
• 01 Alpha-numeric upper case shift
• 10 Numeric only
• 11 Reserved

4.2.5 TABS

There are ten (10) program settable tabs. These can be set to

any column of the workstation's screen (1-80). They do not take a

screen location and are not displayed. They allow forward tabbing

operations to stop at locations within modifiable fields. A tab

position is specified by column number, and affects that column of

every row in which the specified column is modifiable. Tabs have no

effect within protected fields or during back tab operations. When

the workstation is powered on, all of the tabs are cleared.

4.2.6 AUDIO INDICATORS

Audible alarm: A short tone is sounded whenever an illegal

keying operation is attempted. Thia can be caused by the

operator attempting to enter data into a protected field, trying

to move the cursor past the end of the screen with a field aen­

ai tive key or trying to enter data when the keyboard is locked.

Mechanical clicker: This is a small relay attached to the

keyboard. It clicks each time a key is struck .

4-5

.... 3 THE KEYBOARD

4.3.1 CURSOR POSITIONING KEYS

A. Nonfield sensitive

This set of keys will position the cursor, but are not affected

in any way by fields and field attribute characters. They can

position the cursor ·to any location of the screen. There are

four keys in this group. These are:

(up arrow) This key will position the cursor in the same

column but up one row. If the cursor started in

the first row, it will be positioned in the same

column, but in the last row.

(down arrow) - This key w~ll position the cursor in the same

column but in the next row. If the cursor

started in the bottom row of the screen, it will

be positioned in the same column but on the first

row of the screen.

(left arrow) - This key will move the cursor one position left

in a row. If the cursor was at the start of a

row, it will move it to last position in the

preceding line. If the cursor is in the first

location of the screen, it will be positioned to

the last position of the screen.

(right arrow)- This key will move the cursor one position right

in a row. If the cursor was at the end of a row,

it will be positioned to the first position of

the next row. If it was at the last position of

the screen, it will be positioned to the first

position of the screen.

4-6

'--------------------------------- ---

•

• •
rr;;;.ii fl;..J rr;;.-11 [,,,, ~ ["'] r.;;;TI [';"]['"'] ~~ [""] ~ ff .. n~rr;;;nn.;;n rr;;;n LI.:!..Jj u..:.u LI.:!JI Pf 4 P'FS u.:::.u Pf 7 Pf I ll.::!.Jj u.::.LJ Pf 11 ll:.!!J.I Pf ll ll:!:ll ll.:!!.ll ll:!!ll

mmrf#Ommn:::;nmflT]mmnn+llEJ ~ na~ o~]
WWIWWWWWWWWLIU - IJ.!:.JI u...::.Jl u.:J.1 ...

0

NOTE:
Space Bar, as well as t, l, .--, and keys

provide Auto Repeat Feature

B. Field sensitive cursor positioning

The following keys wil 1 normally move the cursor two or more

positions with one depression of a key. These keys are used to

position to the start of a field or a new line. The keys can be used

to simplify data entry. They will position the cursor to a modifiable

position.

These keys are sensitive to modifiable positions. None of these

keys modify any position. The four keys of this set are:

(TAB)

(BACK-TAB)

(NEW LINE)

This key will position the cursor to the next

tabable position. A tabable position is either

the first character of a modifiable field or a

tab column within a modifiable field, or the

first character of a protected numeric-only

field. If there is no next tabable position, the

alarm will sound and the cursor will not move.

This key will position the cursor to the closest

first byte of a modifiable field preceding the

current curcor location. If the cursor is in a

modifiable field and in other than the first

location, the cursor will be positioned to the

start of that field. If there is no preceding

modifiable location, the alarm will sound and the

cursor will not move.

This key will advance to the first position of

the next line. It then will position the cursor

to the first position that is modifiable at or

following the start of the line. This key may

cause the cursor to be positioned sever.al lines

from the original position. If at or following

the start of the next line there is not a modi­

fiable location, the alarm will sound and the

cursor will not move.

4-8

•

•

(HOME) The HOME key will position the cursor to the

first modifiable location on the screen. If

there is no modifiable location on the screen,

the alarm will sound and the cursor will not move.

4. 3. 2 DATA EN'l'RY KEYS

None of the keys discussed to this point change the contents of

any screen display position. The data entry keys' sole function is to

enter data into positions of the screen. For all of these keys the

cursor must be in a modifiable field. If. the cursor is not in a

modifiable field, the key stroke is not honored, and the alarm will

sound. The keys in this group are:

The normal character keys: These include the letters, numbers

and special characters. These keys will enter characters the same as

a ty~ewriter (with the use of LOCK and SHIFT). If any of the char­

acters other than (0-9) (-) (.) are struck in a numeric attribute

field, the same action as for a protected field is taken. If the

field is an upper case character attribute field, lower case letters

will be interpreted as upper case letters.

When the cursor is in the last position of a field and one of

these keys is struck, the character will be entered into the location

and the cursor will be positioned to the next modifiable location.

This may involve the skipping of the field attribute character or

skipping of several lines.

If the cursor is in currently at the last modifiable location on

the screen, the keystroke will be honored, the alarm will sound, and

the cursor will not be moved.

~RASE - This key will set the cursor location and all following

locations of the field it is in to blank characters. Any loca­

tions preceding the cursor will not be changed. The cursor does

not move.

4-9 !:A····----------------------------

INS (insert) - Striking this kPy will place a blank at the cursor

location and shift a11 of the characters in the currc-nt fif'ld

starting with the one at the cursor location up to but not

including the last character in the field, right one character.

The last character in the field will be lost. If the last

character in the field is not a blank or a pseudo blank, no

screen location is changed, the alarm sonds and the cursor doei:;

not move. Pseudo blanks are the characters hex OB and hex 05 in

a modifiable field.

DEL (delete) - This key deletes the character at the cursor

location and moves the characters in the field after the cursor

location to a screen address location one less. ThP last

character moved will be the last character in the field. The

last character moved will be replaced with a blank. If the

cursor is not in a modifiable field, the key will not be honored

and the alarm will sound. This key is reciprocal in action to

the INS key.

4.3.3 SPECIAL KEYS

There are four keys that do not seem to fit other categories.

These are:

SHIFT - This k~y basically has the same effect as SHIFT does on a

typewriter. On keys with an upper and lower character on the key

face it will always select which character is entered. It will

have absolutely no effect on entering letters in an uppercase

attribute field. These will be entered as uppercase whether this

key is depressed or not. Striking this key when the SHIFT light

is on will cause the SHIFT light to be turned off and will

unSHIFT the keyboard.

4-10

•

•

LOCK - Striking thi1 key will turn on the SHIPT light. The

workstation then behaves aa if the SHIPT key was being held

continuously depre1sed. Striking the SHIFT key will turn off the

SHIFT light, returning the keyboard to an unSHIP'Ted state.

Normal power on sequence will cause the device to be in an

unLOCKed state.

4.3.4 KEYS COMMUNICATING WITH THE COMPUTER

Thie set of keys cause an interrupt to be presented to the

computer. All keys except the HELP key are locked after striking any

computer communication key, and the alarm will sound . The cursor is

removed from the screen during execution of these operations. The

keys are:

HELP - This key acts the same as the ENTER key. It is intended

for Operating System use. The shift key does not affect its

action. The only time the key cannot be honored is when an

unsolicited interruption is pending for the same device. At any

other time the key will be honored. This includes both the times

when the keyboard is locked for any of the data .entry keys and

during a READ or WRITE to the workstation. A HELP key struck

while a READ or WRITE is in progress will result in a separate

attention interruption occurring after the READ or WRITE

completion interruption.

PF1-PF32 {program function) - These keys act the same as the

ENTER key except for the AID byte value telling which key was

struck. There are 16 keys; the lower case values for these keys

represent PF1-PF16, and the shifted {upper case) values PF17-PF32.

ENTER - This key is the normal way to terminate data entry and

reque~t the program to process the data. The shift key does not

affect the action of the ENTER key. The ENTER key is not honored

when the keyboard is locked for data entry keys .

4-11

•

ABEND - Abnormal end of j~b.

AF!"!NDIX A
GLOSSARY

ABEND dump - A display of register contents, storage contents, and any
pertinent information that the system can provide at the point where a job
cannot be allowed to continue execution because of the occurrence of an
exceptional condition.

absolute address - See explicit address.

absolute assembler - An assembler that calculates absolute memory addresses
for each source program instruction and data item.

absolute expression - An expression whose value is not affected by program
relocation. It can represent an absolute address.

absolute loader - A loader routine with error-checking capability that deter­
mines if the program it loads is a correct sequence of bytes for a previously
written valid object program. Programs and data are recorded in a strict
format after other systems software has calculated all storage addre11ea".

access method - A technique for moving data between main storage and
input/output devices.

actual address - Same as absolute address.

address - The value by which a programmer references a storage location.

address constant - A constant requested by the programner and defined by the
assembler to contain a complete storage address.

address space - The complete range of addresses that is available to a
programner.

address translation - (1) The process of changing the address of an item of
data or an instruction to the address in main storage where it is to be loaded
or relocated. (2) In virtual storage systems, the process of changing the
address of an item of data or an instruction from its virtual storage address
to its real storage address.

algebraic shift - The type of shift in which all bits do not participate
equally. The le£t-most bit is treated as the sign.

algorithm - A preset procedure designed to create a step by step solution to s
problem:·-

A-1

- - -- --------

alignment - See boundary alignment.

allocate - To assign a resource for use in performing a specific task.

alphabetic character - The characters A through Z and @, #, and $.

alphameric characters - The characters A through Z, digits 0 through 9, and @,
#, and $.

ALU - Arithmetic and logic unit. The portion of the hardware that handles
Brrthmetic operations and logical operations such as comparisons.

American National Standards Institute - An organization sponsored by the
Business Equipment Manufacturers Association (BEMA) for the purpose of
establishing voluntary industry standards. Abbreviated ANSI.

analog - A computer that performs mathematical operations on data received
that is converted into electrical impulses. Receives its data in a continuous
stream.

ANSI - Abbreviation for American National Standards Institute.

argument - That portion of an element in a search reference table that is
checked for a match to the argument being searched for. It is the key to each
element.

arithmetic and logic unit - See ALU.

ASA - American Standards Association. A former name for the American National
Standards Institute.

ASA control characters - Characters placed in the first byte of an output
record destined for the printer. It is not printed itself, but is used to
control the spacing of the lines; single spacing, double spacing, or eject.

assemble - The translation of a source module in the assembler's symbolic
language to an object module in machine language.

assembler - A program that performs the translation of an assembler source
module to a machine language object modul~.

assembler language - A source language that includes symbolic machine language
statements in which there is a one-to-one correspondence with the instruction
formats and data formats of the computer.

assembler listing - See listing.

assembly - The output of an assembler.

assembly, conditional - Typically used to facilitate tailoring of programs to
varying system configurations by including only those code segments required
to handle existing devices.

A-2

~----------------------·--

•

•

assembly-output language - An opt:onal symbolic assembly-language listing of
the object-code output from a high-level language compiler. Can be quite
helpful as a debugging tool because it shows exact machine code in a readable
format.

assembly time - The time at which an assembler translates the symbolic lang­
uage statements into their object code form (machine instructions) •

. --·,'···'

asterisk - Refers to the current value of the location counter when used where
a relocatable value is expected. A special character (•) that denotes a
cormnent statement (full card connnent) when it appears in column one of a
source statement.

A-type constant - See address constant.

automatic datayrocessing - See data processing system.

auxiliary storage - Data storage other than main storage; for example, storage
on magnetic tape or direct access device.

base address - The beginning address for resolving symbolic references to
storage.

base register - A general purpose register that has been designated and
contains the base address to be used in resolving symbolic references to
storage locations.

batch processing - See stacked job processing.

batched job - A job that is grouped with other jobs as input to a computing
system. Synonymous with stacked job.

benchmark - A test point for facilitating measurement of product performance.
Typically, a program or set of programs run on several computers for purposes
of comparing speed, throughput and ease of conversion.

binary-coded decimal character code - A set of 64 characters, each represented
by six bits. See also extended binary-coded decimal interchange code.

binary number system - A number system containing 2 symbols; 0 and 1. Base 2.

bind - To fix or assign a value to a symbol, parameter, or variable.

binding time - The point in time when a value is fixed or assigned to a
'S'ymbol, parameter, or variable.

bit - A term generally used to refer to a binary digit.

blank character - On input, a blank will be converted to the ASCII representa­
tion of a blank a hexadecimal 20.

~ - See physical record .

A-3

blocking - Combining two or more logical records into one physical record or
block.

blocking factor - The number of logical rPcords combined into one physical
record or block.

block length - The number of bytes in a physical record or block.

block size - Same as block length.

boundary - See boundary alir,nment.

boundary alignment - The position in main storage of a fixerl-length field,
such as a halfword or doubleword, on an integral boundary for that unit of
information. A halfword boundary is a storage address that is evenly divis­
ible by two and a doubleword boundary is a storage address that is evenly
divisible by eight.

branch - An instruction that changes the sequence of instruction execution.

branch table - A table in which each element is a branch instruction.

branch target - The subject instruction of the branch instruction. The next
instruction that will be executed if the branch is taken.

breakpoint - A specific place in a program or subroutine that facilitates de­
bugging by requesting interruption for manual evaluation and/or modification
before continuing execution. (See also set breakpoint.)

buffer - An area that data may be read into, while processing continues. Also
the I/O area used by the data management routines.

bug - A problem in a program which prevents it from executing successfuliy.
ttcan be a syntax error, an error at execution time, or an error in the logic
of the solution to the problem.

byte - A sequence of eight adjacent binary digits that are operated upon as a
unit and that constitute the smallest addressable unit in the computer's
storage (BAU).

call - See subroutine call.

call by name - Passing the addresses of the parameters to a subroutine.

call by value - Passing the actual values of the parameters to a subroutiPe.

called routine - A subroutine which is called or receives control.

calling routine - A subroutine which calls or passes control to another
routine.

•

callinf sequence - The set up of parameters and actual branch which tran1fer1
contro .

card field - One or more consecutive card columns assigned to data of a
specific nature. For example, card columns 15-20 can be a11igned to
identification.

carriage-control character - See ASA control character.

central processing unit - That part of the computer system that keeps track of
the next instruction to be execute<l, and interprets and executes all instruc­
tions. It can be abbreviated CPU.

chain - (1) Any series of linked items. (2) Referring to the sequential
processing of successive program segments, each of which depends on the
previous segment for its input.

chained list - A means of connecting a collection of data items when they are
not in contiguous areas of storage. The connection is made through addresses
kept in each item or block. See headers.

character - An 8-bit code represented in a byte, making 256 different bit
combinations possible.

character expression - A character string enclosed by apostrophes. The
enclosing apostrophes are not part of the value represented.

~ ch~racter set - A fixed group of graphic representations, called characters.

closed loop - A group of instructions that are repeated indefinitely. Same as
infinite loop.

•

collating sequence - A logical sequence used to order items of data.

comments field - The fourth field of an assembler language statement. It
follows the operand field preceded by a blank. It : not checked for syntax
errors in the assembler's scan of the statement.

comment statement - A statement used to include information that may be help­
ful in running a job or reviewing a listing. It is noted to the assembler by
the appearance of an asterisk in column one of the statement.

comparison - The examination of the relationship between two items of data.
ft is usually followed by a deciAion.

compiler - A computer program that translates high-level source code into
machine-language code by selecting appropriate machine-language subroutines
and performing the necessary linkage to generate a single object program.

concatenated data sets - A group of logically connected data sets that are
treated aa one data set for the duration of a job step .

A-5

condition-controlled loop - A loop in which the decision to stop execution ls
based on the occurrence of a particular condition.

conditional assembly - An assembler facility for altering at pre-assembly time
the content and sequence of source statements that are to be assembled.

conditional assembly instruction - An assembler instruction that performs a
conditional assembly operation. Conditional assembly instructions are
processed at pre-assembly time.

conditional branch - A branch instruction in which a test for a particular
condition is made and if the condition ls met, the branch is taken.

conditional jump - Same as conditional branch.

condition code - A code that reflects the result of a previous arithmetic or
logical operation.

constant - A fixed or invariable value or data item.

contiguous - Physically adjacent-e.g.~ consecutive bytes in storage. For
example, the byte with the address 2 follows the byte with the address 1.
Bytes addressed 1 and 2 are contiguous.

control - Part of data processing system that determines the order for
performance of basic functions.

control character - See carriage-control character.

control routine - A routine (effectively part of the machine) that controls
the loading and relocation of other routines, sometimes employing instructions
not available to the user. (See also monitor.)

control routine, interrupt - A control routine that responds to interrupts.
It stores information on the interrupted environment, evaluates the interrupt
to determiue appropriate reaction, and eventually returns control to the
interrupted routine.

control section - That part of a program specified by the programmer to be a
relocatable unit, all elements of which are to be loaded into adjoining
storage locations. It is abbreviated CSECT.

corner cut - A corner removed from a card for orientation purposes.

count-controlled loop - A loop which is executed a finite number of times. A
special case of a condition controlled loop, count reached being the condition.

counter - A location, storage or register, in which a programmer keeps a count
of the number of times a particular event has occurred.

CPU or CP - Central processing unit.

A-6

•

•

cross assembler - An assembler used in one computer to generate object-code
instructions for another computer. Frequently used in conjunction with a
down-line load capability for remote control of an unattended microprocessor.
(See also resident assembler.)

cross compiler - A compiler that runs on one computer system but generates
machine code for another computer system. Typically it runs on a large
computer and generates code for a microcomputer, speeding up software
developmP.nt.

cross-reference table - A table produced by the assembler from information
encountered in the source module. It contains each symbol, attribute, state­
ment numbers of where the symbol is defined and every statement in which the
symbol appears in the operand.

CSECT - Abbreviation for control section.

DASD - See direct-access storage device.

data Characters that are capable of having meaning assigned to them, by a
progranuner, for a particular purpose.

data base - A collection of data fundamental to an enterprise.

data conversion - The process of changing data from one form of representation
to another.

data file - A collection of related data records organized in a specific
manner. For example, a payroll file (one record for each employee, showing
his rate of pay, deductions, etc.). See also data set.

data management - A major function of operating systems that involves organ­
izing, cataloging, locating, storing, retrieving, and maintaining data.

data medium - See medium.

data organization - The arrangement of information in a data set; for example~
sequential organization.

data processing - The handling of data to produce desired results.

data processing system - A network of machine components capable of accepting
information, processing this information according to a plan (a program) and
producing the desired results.

data protection - A safeguard that prevents the loss or destruction of data.

debugging statement - Logical extensions to programming languages or compiler
options that facilitate detection of program errors at run time. Examples of
debug aids include a printout of program identifier cross-reference; a printed
trace of variable value changes and/or flow of execution logic from routine to
routine; the ability to alter or insert statements at run time and selective
execution capability .

A-7

decimal, binary coded (BCD) - A numbering system that represe2ts ~ach2 decimal
d~git by four binary digits, with each place value equal to 8 , 4 , 2 ,
l , reading from left to right.

decimal number system - A number system containing 10 symbols; 0, 1, 2, 3, 4,
5, 6, 7, 8, and 9. Base. 10.

decision - See branch.

decision table - A table showing conditions that can be present in a parti­
cular s1tuat1on, and the resultant actions taken.

default value - The choice among exclusive alternatives made by the system
when no explicit choice is specified by the user. For example, keyword
parameters on a macro call.

define the file - See DTF.

delimeter - A character or location that groups or separRtes words or values
in a line or statement. For instance, column 72 is the delimeter for s.n
assembler language statement, and a comma is the delimeter that separates each
operand in the statement.

dclimeter statement - A job control statement used to mark the end of data
(/*), or the end of the job (// in OS-based systems and /& in DOS-based
systems).

demand paging - In virtual storage systems, transfer of a page from ext~r.nal
page storage to real storage at the time it is needed for execution.

desk checking - Debugging a program at coding time. Involves use of flow­
chart, commenting code, undefined symbol check, and a one for one check of
keypunching.

device independence - The ability to request I/O operations without regard for
~haracteristics of specific types of input/output devices. See also
symbolic unit name or logical unit name.

device type - The general name for a kind of device; for example, 1403: 3330,
or 3400. See also group name.

diagnostic error message - Error messages produced by the assembler following
the listing of the source module, explaining problems it has noted as it
scanned the instructions.

diagnostics - Error statements produced by executive routine that tell the
progranmer of a specific problem. (See also routine, di~gnostic.)

digital computer - A computer that operates directly on the data it receives.
The data is in discrete pieces rather than a continuous stream.

direct access storage device - A device in which the access time is effec­
tively independent of the location of the data. Abbreviated DASO.

A-8

•

•

direct reference table - A table in which each element containa only a func­
tion portion. The key i1 u1ed to directly reference a particular element
rather than 1earching a aeriea of arguments in each element.

displacement - Poaitive number which can be added to the contents of the base
register to calcu:ate an ~ffective address.

documentation - Supporting informstion about a program, such as comments,
flowcharta, and writeup.

double threaded - A type of chained list or queue that has a chain of
addresses pointing back to the previous blocks as well as forward to the next
blocks. See single threaded.

doubleword - A contiguous aequence of 64 bits or 8 bytes of storage. It is
capable of being addresaed as a unit by referencing its first byte which has
an address that is evenly diviaible by eight.

downtime - The period of time in which the system or a particular device is
inoperative.

driver - A program or routine that controls either external devices or other
programs.

DSECT - Abbreviation for Dunmy Section. Also referred to as Dunmy Control
Section.

du11D11y control aection - A control section that an assembler can use to format
an area of atorage without producing any object code. Abbreviated DSECT.

dump - A diaplay of the contents of storage as well as register contents and
other pertinent information.

dump, memory - A printout, generally in hexadecimal format, of the contents of
all memory areas currently assigned to the program (inclu~es both program and
data areas). THis output then serves as a diagnostic tool to facilitate
troubleahooting.

duplication factor - A value that indicates in a DC statement the number of
times that the data specified immediately f~llowing it is to be generated.

dynamic address translation - In virtual storage systems, the change of a
virtual storage address to a real storage address during the execution of an
instruction. Also a hardware facility that performs the translation.
Abbreviated DAT.

dynamic relocation - A type of relocation which fixes the time of binding to
the latest possible point - when it is loaded. Not until a portion of code is
needed at execution time is a relative address translat~d to a real storage
addre11.

EBCDIC - Extended binary coded decimal interchange code .

A-9

edit - The process of inserting chara~rers into an output field to create more
legible reports.

effective address - An actual real otorage address. A displacement added to
the contents of a base register and an index register if one is present.

electronic data processing - Data processing using electronic equipment.

element - A discrete portion of a table that is referenced by its location in
relation to the beginning of the table.

emulation - Techniques of software or microprograllDRing that permit one com­
puter to execute the machine-language code of another computer. Typically
used to minimize reprogramming during conversion from one system to another.

end-of-file - Condition reached when all the records have been read in a
sequential input file. Abbreviated EOF.

end-of-file-mark - A code that signals that the last record of a f~le or data
set has been read. Abbreivated EOF.

entry code - The code that handles standard linkage conventions as a routine
first receives control, the storing of register contents, establishing
addressability, and preparation of a new save area.

entry name - A name within a control section that defines an entry point and
can be referred to by any control section.

entry symbol - An ordinary symbol that represents an entry name or control
section name.

EOF - Abbreviation for End-of-file.

EQU - Abbreviation for equate.

equate - An assembler pseudo op that allows the assignment of a value to a
symbol. The symbol can be either absolute or relocat~ble depending on the
value assigned.

Error condition - The state that results from an attempt to execute instruc­
tions in a computer program that are invalid or that operate on invalid data.

ESD - External symbol dictionary.

establish addressability - The process of info.'"tlling the assembler which
register it can use as a base register and ,lhat value will be in that
register. Also the filling of that register with the promised value at
execution time.

E-time - See execution time.

A-10

even-odd coupled regi1ter pair - Two consecutive registers, the first having
an Even number and the second the next higher numbered register. For example,
registers 4 and 5, or 8 and 9.

exception - See error condition.

excess sixty-four binary notation - A binary notation in which the character­
istic component of a floating-point number is represented in storage.

execute - to carry out an instruction or perform a routine.

execution time - The time during which an instruction is decoded and per­
formed. See also instruction time. Abbreviated E-time.

explicit address - An address in which the base register and displacement are
coded in the instruction by the programmer rather than coding a symbol and
letLing the assembler substitute the base register and displacement.

explicit length - A length, in bytes, specified in the operand it refers to
rather than letting the implied length of the symbol in that operand apply.
Generally used in SS-type instruction~.

expression - A term or arithmetic combination of terms representing a value.

extended binary coded decimal interchange code - A set of 256 characters, each
represented by eight bits. Abbreviated EBCDIC. See also binary coded decimal
character code.

extended mnemonic - Special mnemonic opcodes that make it easier for the
programmer to specify branching instructions. The mnemonic used not only
states that this is a branch instruction, but also the mask to be used to
determine what conditions.

external page storage - In virtual storage sytems, the portion of auxiliary
storage that is used to contain pages.

external page table - An extension of a page table that identifies the
location on external page storage of each page in that table.

external reference - A reference to a symbol that is defined as an external
name in another module. Also, a symbol that is not defined in the module that
references it.

external storage - Same as auxiliary storage.

external symbol - A control section name, entry point name, or external refer­
ence that is defined or referred to in a particular module. An ordinary
symbol that represents an external reference.

external symbol dictioncry - Control information, associated with an object or
load module, that identifies the external symbols i~ the module. Abbreviated
ESD.

A-11

externally referencable symbol - See entry symbol.

EXTRN - External reference declarative.

fail soft - A m~thod of system implementation thRt prevents irrecoverable loss
of computer usage due to failure of any system resource. It provides fof'
graceful degradation of service.

fetch - To locate and retrieve something from storage. For example, the next
sequential instruction or a word of data for a register.

fetch protection - A storage protection feature that determines the right to
accessBE'Orage by matching a protection key associated with a fetch reference
to storage.

field - A specific group of contiguous bytes in a record which are treated as
aunTt.

FIFO - A technique for handling a chained list on a first-in-firct-out basis.

file - A collection of related records treated as a unit.

firmware - Softwai:-e instructions committed to a read-only memory control
block. Can inc~ease a computer's instruction set by having the ROM code
cu.wert extended instructions into sets of actual machine instructions.

fixed-length data - ;'lata of a specific length (two, four, or eight bytes) that
reside on integral boundaries (halfword, fullword, and doubleword, respec­
tively).

fixed-length record - A data set in which a logical record contains the same
number of bytes as every other record in the data set.

floating-point arithmetic - An arithmetic technique in which the computer
maintains dec1malpoiut location (as opposed to fixed-point arit:hil\etic). (See
also subroutine package, floating point.)

fixed-point binary number - Occupy fullwords and halfwords. In each cace the
first bit in the field is the sign (0 is positive, 1 is neg~tive). A negative
number is stored in two's c~mplement form.

floating-point number system - A number system in which very lc.i:ge anrt very
smali numbers can o-e represented because the decimal point can be mo'lt:d,

flowchart - A pictorial method of displaying the steps involved in the logic
of a solution to a problem.

foreground/background programs - In a multiprogramming environment, those
programs that require real-time response are high priority (foreground) tasks
which utilize system resources on demand. Conversely, background tasks,
typically batch processing jobs, execute only during idle times and must
always yield to demands from foreground programs.

A-12

•

fragmentation - Inability to as1ign real 1torage locations because the avail­
able spacea, though many, are smaller than needed.

full-line comment - A sou1·ce statement with an asterisk (*) in column one, It
ti" not scanned by the .\.saembler and can be used to document the pr1:>gram.

fullword - See word.

function - That portion of an element in a search reference table that is
referencEd for information once the correct element has been found.

fwb - Abbreviation for fullword boundary.

garbage - Data to whi~~ no meaning has been assigned for this particular usage.

general purpose register - See register.

generate - To produce assembler language statements from the model statements
of a macro definition when the definition is called by a macro instruction.

£!!. - To obtain a logical r~~ord from 4n input file.

group name - A generic name for a collection of I/O devices, for exampl.e, DISK
or TAPE.

guard digit - u~ed in execution of short form add, subtract, and divide
floating-point operations. One spare hexadecimal digit which serves as extra
(sev~nth) digit to improve precision.

halfword - A contiguous sequence of 16 bits or two bytes, which are capable of
being treated as a unit. The first byte of the halfword occupies a storage
location whose address is evenly divisible by two.

hard copy - A printed copy of machine output in a visually readable form; for
example, printed reports, listings, and documents.

hardware - The mechanical equipment necessary for a computing system.

header statement - The MACRO statement which indicates the beginning of a
macro definition to the assembler.

header - Contains the address of the beginning of a chained list. A
single-chreaded list has one header and a double-threaded list has t•m headers
(second header contains the address of the last element in the chain). Same
as queue control words.

hexadecimal number 1yst81D - A number system containing 16 symbols; 0, 1, 2, 3,
41 5, 61 71 81 91 A, B, C, D, !, and F. Base 16.

hexadecimal 1horthand - A means of referring to the contents of a byte as two
hexadecimal digits rather than eight binary digits .

A-13

high-level language - A language that allows progranuners to specify
problem-solving procedures in a notation more familiar than the computer's
machine code. Such programs must be fed into 8 compiler or interpreter for
translation into machine executable code. Examples include Fortran, Cobol,
Algol, Basic and APL.

~igh-order - Leftmost. For instance, bit 0 in a register.

hit - See match.

host computer - (1) The master or controlling computer in a multicomputer
network. {2) A computer that prepares programs to be run on another computer
system.

housekeeping - Operations or routines that do not contribute directly to the
solution of the problem, but do contribute directly to the operation of the
computer.

hwb - Abbreviation for halfword boundary.

i11DJ1ediate addressing An addressing mode in which the instruction contains
the operand value in the address field:

innnediate data - One byte of data that appears in the instruction itself
rather than the symbolic name of the one byte of data. The data is
imnediately available from the instruction.

implicit address - A symbolic reference to storage that must be converted into
its explicit base-displacement form before it can be assembled into the object
code of a machine instruction.

!mplied length - The length associated with a symbol .. This length will be
used on a variable length operand if a length is not explicitly specified in
the operand.

Indexed addressing - A method of computing storage addresses by adding an
index value to a previously determined base address to produce a new address.

indexing - A technique of address modification implementated by the use of
general purpose registers referred to as index registers.

index register - A register whose contents are added to the address derived
from a combination of a base address with a displacement or an implicit
address converted to a base and displacement.

indirect addressing - A method of storage addressing in which an addressed
location contains an address rather than data. Quite often, several levels of
indirect addressing may occur before the sought-after data item is obtained.

infinite loop - Same as closed loop.

information - Data to which a meaning has been assigned for this particular
usage.

A-14

•

•

initialization - Initial values a~e assigned outs1de the loop to all counters,
conditions, and variables needed within the body of the loop.

input/output - A general term for the equipment us~d to communicate with a
computer, commonly called I/O. Aleo the data involved in such a communication.

input stream - The sequence of job control statements and data submitted to an
operating system on an input unit especially activated for this purpose by the
operator. Synonymous with input job stream, and job input stream.

input stream data set A data set that physically resides in the input stream.

instruction - A requeit to. the computer to perform one of its basic functions.

instruction classes - The different formats of machine instructions used on
the computer {RR, RX, RS, SI, and SS).

instruction address counter - A location within the CPU where the address of
the beginning of the next instruction to be executed is kept.

instruction format - The allocation of.bits or charactero of a machine
instruction to specific classes of instructions.

instruction repertoire - The list of mnemonic opcodes thAt an assembler
recognizes as valid.

instruction time - The time during which an instruction is fetched from
storage of a computer into an instruction register. Abbreviated I-time.

integral boundary - A location in main storage at which a fixed-length field,
such as a halfword or doubleword, must be positioned. The address of an
integral boundary is a multiple of the length of the field in bytes. See also
boundary alignment.

internal sort - A sorting technique that c~eates sequences of records or keys
or elements of a table. All the items that participate in the sort in storage
as the sort is being accomplished.

interpreter - An executive routine that translates a program into machine code
subroutines and immediately performs the resulting operations prior to the
next translating function. This contrasts with compilers that translate
complete programs into machine code for execution at a later time.

interrupt - The supervisor seizing control when an error condition has
occurred or assistance is needed to provide I/O.

interruption - A break in the normal sequence of instruction execution. It
causes an automatic transfer to a preset location (trap) where appropriate
action is taken .

A-15

interrupt program, I/O - An efficient method of I/O handling that interrupts
the processor whenever a peripheral device signals that it's ready for
information transfer. The processor first stores the necessary information to
enable it to return to the present operating mode, then jumps to the routine
appropriate for exercising the requested transfer. Upon completion of the I/O
transfer, the processor restores either the previously running task or another
task, depending on priorities and available resources.

interrupt vector - Facilitates fast handling of external interrupts by having
the hardware supply a value corresponding to the device causing the inter­
rupt. This value then becomes an index into the interrupt vector that con­
tains a pointer to the appropriate interrupt service routine.

I/O - See Input/Output.

iterate - To repeatP.dly execute a loop or series of steps, for example, a loop
in a routine.

I-time - Instruction time.

job - A unit of work to the computer; consists of one or more job steps, and
each step involves the execution of a program.

job step - A unit of work associated with one processing program or one
cataloged procedure and related data. A job consists of one or more job
steps.

jump - See branch

!: - 1024 Bytes: used in referring to storage capacity.

keyword - One of the significant and informative words in a title or document
that describes the content of that document. A symbol that identifies a
parameter. A part of a command operand that consists of a specific character
string (such as DSNAME=).

keyword parameter - A parameter that consists of a keyword, followed by one or
more values. see also positional parameter.

label - An identification record for a tape or disk file. A name entry in an
assembler language statement.

least significant - The digit with the smallest place value in the n11mber.
Rightmost.

left-justify - To align on the left hand side of the field.

length attribute - The length, in bytes, associated with a symbol.

length modifier - A subfield which can be specified in the operand of a DC or
DS statement. For .example: DS CL6. If used on a fixed length definition
(F,H or D) the automatic alignment will be ov~rridden. •

•

LIFO - A technique for handling a chained list on a last-in-first-out basis.
Often used for priority queues.

link field - The pointer field in data items in a chained list which connects
the data items to each other.

linkage conventions - A set of rules for calling routine responsibilities when
using subroutines.

linkage editor - A program which processes object modules preparing them for
execution. Tt resolves cross references between separately assembled object
modules.

linking loader - A relocatable loader that links various object modules into a
single load module, resolving external references in the process. This lets
users load their programs into any memory area.

listing - A printout, usually prepared by a language translator, that lists
the source language statemente and contents of a program.

literal - A literal represents data. It can be used in instruction operands
to introduce data. It is a means to avoid defined constants and using the
symbolic names of these constants in instructions. Literals will be assembled
and are relocatable values; but it is the assembler that defines them in
literal pools rather than the programmer.

literal pool - An area of storage into which the values of the literals
specified in a source module are assembled.

load - To fetch a fullword from storage and place it in a register. Also to
place a load module into real storage.

load module The output of the linkage editor; a program in a format suitable
for loading into main storage for execution.

loader - A program that handles the transfer of information from off-line
memory to on-line memory.

location counter - A value kept by the assembler to tell it which is the next
byte available for allocation as it builds the object module. Its value is
displayed to the left of each instn.ction in the source listing.

logical expression - A conditional assembly expression that is a combination
of logical terms, logical operators, and paired pnrentheses.

logical record - A record from the standpoint of its content, function, and
use rather than its physical attributes; that is, one that is defined in terms
of the information it contains.

logical relation - A logical term in which two expressions are separated by a
relational operator. The relational operators are EQ, GE, GT, LE, LT and NE .

A-17

logical shift The type of shift in which all bite participate equally.

logic error - A case where a program seems to execute correctly but provides
incorrect results.

look-up, table - A method of retrieving from a table of function values a
specific function value corresponding to an argument.

loop - A prograrmning technique which permits the reuse of a group of
instructions a specified number of times or until a particular condition
occurs.

loop body - The instructiqns which are reused.

loop control - The instructions in the loop which determine when the reuse of
the instructions should be stopped.

loop counter - A counter used to prevent excessive loopiug.

low order - Rightmost. For instance, bit 31 in. a register.

machine address - See absolute address.

machine language - The lowest-level language of a par.t~cular type of computer;
a string of binary numbers (ls and Os).

macro - See macro definition, macro instruction, and mncro prototype statement.

macroassembler - An assembler that facilitates definition of macro's f~r
frequently used code segments. Marco's simplify program ~oding; however,
unlike subroutine calls, they generate i.n-line code fo;.· each reference.

macro body - The body is all statements that follow the µrototype statement
and preceae the MEND statement in a macro definition.

macro call - An assembler language statement that causes the assembler to
process a predefined set of statements called a macro definition. The
statements normally produced from the macro definiti.on replace the macro
instruction in the program and they are identified by a plus (+) Aign that
precedes each statement. Same as macro instruction.

macro definition - A set of st11tements that defines the nara:? of, format of,
and conditions for generating a sequence of assembler language statements.
Contains assembler language control and machine instructions.

macro expansion - The sequence of statements that result from a macro gener-
.....--ation operation.

macro-generated instruction. A statement that results at pre-assembly time as
the macro definition is being handled.

P..-18

•

•

macro generation -
aasembler language
macro instruction.
onymous with macro

An operation in which an assembler produces a sequence of
statements by processing a macro definition called by a
Macro generation takes place at preassembly time. Syn­

expansion.

macro instruction - See macro call.

macro instruction operand - An operand that supplies a value to be assigned to
the corresponding symoblic parameter of the macro definition called by the
macro instruction.

macro library - A library of macro definitions used during macro expansion.

macro prototype statement - A statement used to give a name to a macro defini­
tion and to provide a model for the macro instruction, that is, to call the
macro definition.

main storage - All program-addressable storage from which instructions may be
executed and from which data can be loaded directly into registers. Contrast
with auxiliary storage.

mask - A pattern of 4 or more bite used in the testing of alteration of
another field. For example, the 4-bit mask in a Branch on Condition
instruction or the 8-bit mask in the Test under Mask instruction.

masking - A technique for detecting the presence or absence of ,specific binary
conditions by performing some logical operation (e.g., AND, OR, etc.) between
a progra~ variable and a preset mask. Also used for setting or resetting
binary conditions in other variables.

match - An equal condition occurring when two items are compared.

~ - The material on which data is recorded, such as magnetic tape, or
paper.

microsecond - One-millionth of a second.

millisecond - One thousandth of a second.

mnemonic operation code - An easy to remember symbol that represents a machine
opcode and helps a human understand the nature of the operation to be per­
formed, the type of data used, and the format of the instruction performing
the operation.

model statement - A statement in the body of a macro definition from which an
assembler language statement can be generated at preassembly time. Values can
be substituted at one or more points in a model statementj one or more iden­
tical or different statements can be generated from the same model statement
under the control of a conditional assembly loop.

module - A discrete programming unit. For example, source module, object
module, and load module .

A-19

monitor - A resident debug routine providing real-time breakpoint capabilities
and a capability for examining and altering memory locations and system status
variables. Also contains the necessary linkage points to allow user programs
to call the monitor routines.

most significant - The di·git with the largest place value in the number.
Leftmost.

~ultiple-p;..·ecision notation - A technique '1-•hereby two or mure computer "iOrds
represent a s~ngle numeric quantity.

multiprocessing system - A computing system employing two or more inte~con­
nec ted processing units to exec.ute programs simultaneously.

multiprogranuning system - A system that can process two or more program3
concurrently by interleaving their execution.

mult:i.task~_1:.!l - A method of achieving concurrency hy aeparating a progr.am o'\.·
programs into two or more interrelated tasks that sha~e code, buffers a~d
filei:; while running.

nanosecond - One-thousand-millionth of a second.

nesting - A progr.amming technique involving the embedding of routines within
other routines.

next sequential instruction - Physically the next instruction in storage, the
next instruction in the program.

normalized form - A form in which a floating-point number is kept with a
non-zero high-order digit. A number can be normalized prior to the execution
of the operation (prenormalization), or after the execution (postnormali­
zatiou), or both before and after.

NSI - Abbreviation for next sequential instruction.

null character string - A character string of length zero. A bl~nk is not a
null charactzr string because it has a length of one.

null operand - The absence of an oper.and. Usually used when passing posi­
tional parameters in a macro call. For instance, NAME. MAC FIRST,, THIRD where
the second parameter is not being passed.

numeric punch - A punch in ol'le of the ten rowo numbered 0-9 on a sta11dard
punched card.

object module - The block of machine code created by the assembler when it
translates the source module.

object program - A set of problem solving machine-language instructions
obtained through the compilation or assembly of the related source program.

A-20

•

•

opcode - The most important part of an instruction. It informs the system
wnat operation is to be performed and the type of data to be used.

open subroutine - A subroutine that lies wholly within the main routine. No
special instructions are necessary to pass control to an open subroutine.

operand - The data to be used in an operation or the location of that data.

operating system - The software, programs, that aid in the ~peration of the
mechanical deVICes, the hardware. They aid in I/O operations, error condi­
tions handling, and resource management. For example, DOS, DOS/VS, or OS.

Operation code - See opcode.

operators - Symbols that represent mathematical or logical operations
performed on one or more operands. For example, + , ~, etc.

ordinary symbol - A symbol that represents an assembly-time value when used in
the name or operand field of an instruction.

output - The results of the operation of a data processing system.

output stream - Diagnostic messages and other output data issued by an opera­
ting syster.i'"Or a processing program on output devices especially activated for
this purpose by the system operator. Synonymous with job output stream,
output job stream.

output stream data set - A data set that resides in the output stream.

overflow - A condition that sets the condition code and at times abends the
program. Can occur when the result of an addition or subtraction requires
more bits than are available. Also occurs when a left algebraic shift results
in shifting into the sign bit position a different value than was there before
the operation.

overlapping fields - Fields overlap when at least one byte is common to both
fielCls

packed-decimal format - Each byte in this format contains two digits, except
the right most byte in the field which contains the sign of the number in its
rightmost 4 bits.

pad - To fill an area with a prescribed character. For example, unfilled area
rn-a character constant is padded with blanks.

page - In virtual storage systems, a fixed-length block of instructions, data,
"Or"both, that can be transferred between real storage and external pag~
storage; also the action of transferring instructions, data, or ~oth, between
real storage and external page storage.

page fault - In virtual storage systems a program interruption that occurs
when a page that is marked "not in real storage" is referred to by an active
page. Synonymous with missing page interruption and page translation
exception.

A-21

page frame - In virtual storage b)~tems, a 01:..h.:K of real storage that can
contain a page. Synonymous with frame.

page frame table - In virtual storage systems, a table that contains an entry
10'i· each frame. Each frame table entry describes how the frame is being used.

pa.ge-in - In virtual storage systems, the process of transferring a page from
e~ternal page storage to real storage.

page-out - In virtual storage systems, the process of transferring a page from
real storage to external page storage.

page table - In virtual storage systems, a table that indicates whether a page
1s 1n real storage and correlates virtual addresses with real storage
addresRes.

parameter - See symbolic parameter ..

patch - (1) To alter or correct existing software. (2) Inserted code is
often referred to as a "patch."

physic:a:l record - A record from the standpoint of the form in which it is
stored, retrieved, and moved; that is, one that is defined in terms of
physical quantities. A physical record may contain one or more logical
records.

"play computer" - To manually excute the instructions of a program in sequence
JUSt as the co.nputer would to ensure that the program does what it is expected
to do. Substitute values for variables and follow logic through flowchart.

pointer - An address or other indication of location.

positional notation - A means of representing a number by specifying the value
of each of its digits by a power of the base of the number raised to the power
equal to the position of the digit being evaluated in the number.

positional operand - An ope~and in a marco instruction that assigns a value to
the corresponding positional parameter declared in the prototype statement of
the called marco definition.

positional parameter - A parameter that must appear in a specified location,
relative to other parameters. See also keyword parameter.

postmortem dump - A dump taken when a program has done something in error
which causes the supervisor to abend the program.

pre-assembly time - The time at which an assembler processes macro definitions
and performs conditional assembly operations.

print control character - See carriage-control character.

printer - A device that writes output data f!."om a system on pap~r or other
media.

A-22

•

•

privileged instruction - An instruction that can be executed only when the
central processing unit is in the supervisor state.

problem program - Any program that is executed when the central processing
unit is not in the supervisor state. Any program that does not contain
privileged instructions.

problem st.'lte - A state during which the CPU cannot execute privileged
instruction;:' Contrast with supervisor state.

procedure - See cataloged procedure.

processing program - A gen~ral term for any program that ie not a control
program.

program - A series of instructions, in a language understood by a computer,
which solve a problem.. Also the process of creating the series.

program check interruption - An interruption caused by unusual conditions
encountered in a program, such as incorrect operands.

program flowchart - See flowchart.

progranuner - An individual capable of breaking a problem down into discrete
steps and expressing those steps in one of the languages understood by the
computer.

progranuning - A skill that requires that problem solutions be broken down into
steps anCi"'e'xpressed in a language understood by A computer.

progrRmming language - A language understood by the computer and used by the
programmer to say which instructions are to be executed and in what order.

program status word - A doubleword in storage used to control the order in
which instructions are executed, and to hold and indicate the status of the
computing system in relation to a particular program. Abbreviated PSW.

prototype statement - Same as macro prototype statement

pseudo op - An opcode for an instruction that gives information to the
assembler. It does not represent a machine instruction.

PSW - Abbreviation for Program Status Word.

pushdown list - A list of items maintained in a Last-In-First-Out (LIFO)
order, where each item is effectively "puched down" by the addition of a new
item. (See also stack.)

push operation - Refers to the storing of operand(s) from a general register
(s) into the most current top location in a pushdown memory stack. (See also
Stack.)

A-23

queue - A waiting line or list formed by items in a system waiting for ser­
vrce; for example, ml!ssap,es to be pri :1ted. A1 so, to arran~e in, or form, a
queue.

queue control word - See header.

radix - A 'lumber thRt is used &s the base of a number system.

LP.nl storage - In virtual storage systems, Lhe storage of a System/370
computing system from which tile central p•ocessing unit cnn directly obtaia
instructions and data, and to which it can directly return results.

reRl time - (1) As related to problem solvin~~ a rate that provides aoiutions
within the actuai time that the problem must be solved. (2) Performing com­
putations in the actu8l time needed to control a related physical procesa.

receiving field - The oper;ind receiving the data that is)ll:lrticipating in an
operation.

record - i~ collection of related date ii:ems, .or fields, which are treatec! Ha a
unit.

record length - The number of bytes in a logical 1·eco1·d.

register - Special areas of storage in the processor. 'fhere are 16 end E:ach
holds 32 bits or 4 bytes. They are u~ed in certain operations.

relational operator - An operator that c,11n be used in an arithmetic or
character relation to indicate the comparison to be performed between the
terms in the relation. The relational operators are EQ (equal to), GE
(greater than or equal to). GT (greater than), LE (less than or equal to).
LT (less than), and NE (not equal to).

relative address - An address specified as a relationship to a reloc~table
_s_ym __ b_o_,1-.-.... T-h_e_s_ym-.bol is followed by a plus (+) "3ign imd a decimal number. For
example, LOC + 6 i& an address 6 bytes past the addr~ss LOC.

relocatable - The attribute of a set of code whose address constants can be
modified to compensate for a change in origin.

relocatable assembler - A program that translai:es object code frOlll an
aasembly-language source program with memo!'y loce.tions specified as
displacements from a relative origin o~ as external references. This
facilitates the runniug of programs !n any memory area.

relocatable expression - An assembly-time expression whose value is affected
by program relocatioii:- A ~elocatable expression can Lepresent a relocatable
address.

relocatable term - A term whose value is affected by program relocation. Its
value is assigned by the assembler.

A-24

•

•

relocation - The modification of addre11 conetanta to compensate for a change
in origin of a module, program, control section, or page.

resident assembler - An aaaembler that runa on the machine for which it
generates code. Eliminates the need for another computer system or
time-sharing service, as ·required by a croes-assembler.

resident compiler - A compiler that runs on the machine for which it generates
code. Eliminates the need for another computer system, as required by a
cross-compiler.

resource - Any facility of the computing system required by a job or task,
including storage, input/output devices, the central processing unit, data
sets, and control of processing programs.

return code - The return code is a flag (expressed as a decimal number) that
is passed to a calling routine (such as the Command Processor or some other
program/procedure) to indicate the results of program execution. By conven­
tion, a return code of zero indicates normal completion; non-zero return codes
indicate error conditions. Typically, the higher the return code, the more
severe the error. The return code must be defined in both the calling routine
and the routine called, ao that proper action may be taken by the calling
routine for non-zero return codes. In the 2200VS, the return code ia always
stored in General Register zero.

right-justify - To align on the right-hand aide of the field.

routine - See subroutine.

routine, diagnostic - Any program designed to aid in the detection of hardware
or software malfunctions.

RR-type instruction - An. instruction in which both operands are contained in
registers.

RS-type instruction - An. instruction in which the first (and third, if
present) operand is a register and the second a storage address.

RX-type instruction - An. instruction in which the firat operand ia a register
and the second a storage addreaa which may be indexed.

save area - An 18-word area used to store the calling routine's register
contents when control is received by a subroutine.

scan - The assembler's examination of the syntax of a source statement from
~left to right across the statement.

search A systematic check for a particular value or values.

search argument - The value that is used to locate a match, if possible, with
an argument in a search reference table •

search reference table - A table in which each element has two parts, an
argument and a function.

search key - Same as search argument.

secondary storage - Same as auxiliary storage.

segment - In vitual storage systems, a contiguous area of virtual storage that
is allocated to a job or system task.

segmentation - The process of dividing a program up into pieces to allow the
possibility for part of the program to be in storage and execute without
having to have the entire ,program in storage.

segment table - In virtual storage systems, a table used in dynamic address
translation to control user access to virtual storage segments. Each entry
indicates the length, location, and availability of a corresponding page table.

self-defining term - An absolute term whose value is implicit in the specifi­
cation of the term itself.

semantics - The relationship between symbols and their meanings.

sequence symbol - A symbol used as a branching label for conditional assembly
instructions. It consists of a period, followed by one to ~even alphameric
characters, the first of which must be alphabetic.

sequential access method - Storing and retrieving logical. records in a
continuous stream. To read the third record, the first and second records
must be read first.

sequential data set - A data set whose records are organized on the basis of
their successive physical positions, such as a magnetic tape file or a deck of
punched cards.

sequential operation The execution of instructions one after another in the
sequence in which they appear in the program. See NSI.

set breakpoint - A user debug command that causes the setting of a breakpoint
in a specified memory location. At program execution, encountering this
breakpoint causes temporary program suspension and a transfer of control to
the system debug routine. (Se~ breakpoint and monitor.)

SET symbol - A variable symbol used to cormnunicate values during conditional
assembly processing.

severity code - A code assigned to an error detected in a source module.

shift - A set of eight instructions which move bits left or right in registers.

SI-type instruction - Instructions with a storage address in the first operand
and a byte of inunediate data in the second operand.

A-26

•

SS-type instruction - Instructions with atorage addresses in both operands.
In some, one length is specified with the first operand, and in others,
lengths are specified with both operands.

sign bit - Bit 0 in a fixed-point binary field; 0 indicates a positive value
and 1 a negative value.

significant digit - A digit whose value is greater than zero.

simulator program - A program that causes one computer to imitate the logical
operation of another computer for purposes of measurement and evaluation.
Primarily used to exercise program logic independent of hardware environment.
Extremely useful for debugging logic prior to committing it to ROM.

single threaded - A type of chained list or queue in which each block of data
contains a single pointer to the block ahead of it in the chain and the last
block contains a zero. See also double threaded.

slot - In OS/VS, a continuous area on a paging device in which a page can be
BtOred.

SNAP dump - A dynamic dump on an OS-based system.

software - The programs which aid the problem program in its execution.

sort - A programming routine that orders data.

source field - The operand that provides the data that is to participate in an
operation. For example, the data that is moved by an MVC.

source module - The source statements that constitute the input to a language
translator for a particular translation.

source program - A set of user-written instructions designed to solve a
problem after compilation or assembly into machine-language object code.

source statement - A statement written in symbols of a programming language.

s~ecial character - A graphic character that is not an A-Z, 0-9, @, #, or $.

stack - A reserved storage area for holding temporary data.

stacked job - See batched job.

stacked job processing - A technique that permits multiple job definitions to
be grouped (stacked) for presentation to the system, which automatically
recognizes the jobs, one after the other.

stack, interrupt - A reserved memory area that automatically stores important
registers whenever a program is interrupted. By accessing the stack from one
end on a Last-In-First-Out (LIFO) basis, return from interrupts proceeds in
exactly the reverse order.that they occurred. Stack architecture needs fewer
registers for temporary storage, provides easy handling of multiple-level
interrupts and permits almost unlimited subroutine nesting.

A-27

standardization - Input media for cumputers is standardized by set codes on
cards, tape, disk, etc. The media themselves are standardized in oize, shape,
thickness, etc., as they can be handled by machineR.

static relocation - Really a case of no relocation at all. All programs a•:e
loaded at the same address.

storage - Part of the computer system into which ~ata is entered .:nc) sto;:eci o;.
from which data is retrieved.

storage fragmentation - See fragmentation

storage protection - A means of preventing a
in areas of storage that don't belong to it.
prevented from access of such an area.

program from t-rdtiug o~ ,:;i:o;:-ing
In oom~ casec: a prog?.·am is :->.ve\l

~ - The process of placing data in storage n-;:· :u: auxiliary dev:i.ce.

stored program computer - A computer that is capable cf h~ldin~ not only the
data to be iperated upon, but the instructions which make up the program ttat
handles the data.

subroutine - A block which implements a section of the logic fo;: solud.on of a
problem. May be part of or separate from the rest of the i"Outine.

subroutine call - The process of passing control to a aubroutine.

subroutine, package, floating point - A subroutine that achieves
floating-point arithmetic functions without additional hardware. usually
consists of routines for fixed to floating point conversion aucl vice veraa,
conversion from decimal to floating point and vice versa, and floating-point
move, as well as such floating-point arithmetic functions as addition,
subtraction, multiplication and division.

supervisor - The part of a control program that coor<lins.tee the use of
resources and maintains the flow of CPU operations.

supervisor call - An instruction that interrupts the program being executed
and passes control to the supervisor so that it can perform a specific service
indicated by the instruction. Abbreviated SVC.

supervisor state - A state during which the central proceesing unit can ·~
execute input/output and other privileged instructions. =~ontrast with problem
state.

SVC - Abbreviation for supervisor call.

s~itch - A programming device used to remember a condition.

symbol - Any group of eight or less alphameric and national characters that
begins with an alphabetic or national (#,@,$) character, Same as symbolic name.

A-28

•

symbolic addrr,~s - The specification of an address by using symbols which the --- -·--asse.11.)l~r re,· 1 .:.:i ir:Lo a base register and displacement.

symbolic language - A progranuning language which permits the progrannner to use
symbolic names, or mnemonics, to specify opcodes and the data for the opera­
tion. Th is makes t '1e prograrrmer 's job much easier.

symbolic linkage - Symbols defined in one csect which can be referred to from
another csect. They permit transfer of control in subroutines.

symbolic name - See symbol.

symbolic name space - The block of space occupied, or defined, by a source
program.

symbolic parameter - A variable symbol declared in the prototype statement of
a macro definition. A symbolic parameter is usually assigned a value from the
corresponding operand in the macro instruction that calls the macro defini­
tion. See also keyword parameter, and positional parameter.

symbolic unit name - See logical unit name.

symbol table - See cross-reference table.

syntactically valid - The instruction follows all the rules that govern the
structure of the assembler language.

syntax error - A specification in an instruction which does not follow the
rules that govern the structure of assembler language. For example, an index
register specified in the operand of an MVC instruction

system input device - A device specified as a source of an input stream.

system output device - A device assigned to record output data for a series of
jobs.

system programmer - A programmer
controls the use of an operating
productivity of an installation.
systems.

who plans, generates, maintains, extends, and
system with the aim of improving the overall

Also, a programmer who designs progranuning

systems software - Generally, supervisory and support modules, as opposed to
application programs. May include such programs as an operating system, an
assembler, compilers, debug routines, text editors, library maintenance,
utilities, I/O drivers and a linking loader.

table - A collection of related data items that are contained in elements
Wlli.Ch reside in continuous areas of storage.

table argument - See ::irgument.

table function - See function .

A-29

----------·---

table look up - The process of comparing a search argument to each arg4ment
portion in a table to locate a possible match.

target instruction - The instruction that is executed as the result of an
execute (EX) instruction.

task queue - A queue that contains control information for all tasks in a
system at any given time.

teleconnnunications - Data transmission between a computing system and remotely
located devices via a unit that performs the necessary format conversion and
controls the rate of transmission.

teleprocessing - The processing of data that is received from or sent to
remote locations by way of teleconununication lines.

temporary data set - A data set that is created and deleted in the same job.

term - The smallest part of an expression that can be assigned a value.

throughput - The total volume of work_perfor.med by a computing aystem over a
given period of time.

time sharing - A method of using a computing system that allows a number of
users to execute programs concurrently and to interact with the programs
during execution.

time slicing - A feature that can be used to prevent a job from monopolizing
the central processing unit and thereby delaying the assignment of CPU time to e
other jobs. In systems with time sharing, the allocation of time slices to
terminal jobs.

trace - A debugging tool that prints or displays a specific set of registers
and'?'Or memory locations as they are encountered throughout the execution of a
program. Program execution is not interrupted, but a t~ace of the contents of
key variables and registers is provided for later problem analysis.

trailer statement - The statement (MEND) that marks the end of a macro
definition.

transfer - See branch.

translators - See assemblers and compilers.

~ - Halts inserted in object code that, when encountered during execution,
cause a branch to a debug program. (See also breakpoint.)

trouble shoot - See debug.

truncate - Chopped off or ignored. For example, if 87.657 is truncated to 4
d1g1ts, the result is 87.65 , the 7 is simply ignored.

A-30

•

•

two's complem~nt notation - Representation of negative binary numbers.
Created by subtracting each digit of the number from the value of one and then
adding one to the least significant digit.

type attribute - The type associated with a symbol. For example, F for full­
word, H for halfword. Can be tested in conditional assembly instructions.

type subfield - A portion of a DC or DS statement that informs the assembler
which type of constant is to be defined.

unary operator - An arithmetic operator having only one term. They can be
used in absolute, relocatable, and arithmetic expressions. They are positive
(+) and negative (-).

unconditional branch - An instruction which causes a branch to be taken each
and every time it is executed.

USASCII. - Same as ASCII.

utilities - Standard routines of often-used functions, usually supplied as
part of system software.

utility program - A problem program designed to perform an everyday task, such
as transcribing data from one st~rage device to another.

validity check - A check that a code group is actually a character of the
particular code in use. For example, a check to see that the combination of
holes punched into a column of a card is a valid combination.

value subfield - The portion of the operand of a DC statement that specifies
the constant to be assembled. If specified in the operand of a DS statement
it is only used to establish the length of the constant.

variable - A symbolic location that can contain a variety of values.

variable-length data - Data which consists of a string of bytes of no fixed
length and located on no specific integral boundary.

variable symbol - A symbol used in macro and conditional assembly processing
that can assume any of a given set of values.

virtual address - In virtual storage systems, an address that refers to vir­
tual stor~ge and must, therefore, be translated into a real storage address
when it is to be used.

virtual address space - In virtual storage systems, the virtual storage
assigned to a job.

virtual storage - Addressable space that appears to the user to be real
storage, from which instructions and data are mapped into real storage loca­
tions. The size of virtual storage is limited by the addressing scheme of the
computing system (or virtual machine) and by the amount of auxilliary storage
available, rather than by the actual numbe~ of real storage locations.

A-31

volume - A recording medium that is mounted and demounted as a unit, for
example, a reel of tape or a disk pack.

volume serial number - A number in a volume label that is assigned when a
volume is prepared for use in the system.

volume .table of contents - A table on a direct access volume, that describes
each dataset on the volume. Abbreviated VTOC.

VTOC - Abbreviatic1n for volume table of contents.

word - A contiguous series of 32 bits, or four bytes, in storage which cnn be
addressed as a unit. The address of the first byte of the word is evenly
divisible by four.

work area - An area used to reference an input record or build an output
record. Its name is specified in the GET or PUT instruction.

zoned-decimal format - A format in which each character occupieo one byte with
the first four bits being the .zone protion and the second four bits the digit
portion. The zone portion of the low-order byte is the sign of the nu~ber (A,
C, E and Fare positive signs, and Band Dare negative).

A-32

•

'

•

APPENDIX B

This section contains descriptions of integrated ci~cuita that are

commonly used throughout.the 2200VS.

DESCRIPTION

7485

4-BIT MAGNITUDE COMPARAT.OR

/(D

cc

A>B
A=B
A<B

5
6
7

This device checks the following functions between the two four-bit

words. A•B, AB, AB.

TRUTH TA8LI!

COMPARINO CASCADING
INPUTS INPUTS

OUTPUTS

A:l, 13 AZ,82 A1,81 A0,80 A>8 A<8 A•B A>B A<B A•B
A3> 83 x x x x x x H l L.
A3< B3 x x x x x x l H l
A3• B3 A2 > 82 x x x x x H l L.
A3• B3 A2< B2 x x x x x l H L
A3• 83 A:Z• 82 Al> Bl x x)()(H L. L.
A3• 83 A:Z• 82 Al< Bl x)()()(l H l
A3•83 A2•82 A1•81 AO> BO x)(x H l L.
A3• 13 A2• 82 Al• Bl AO< BO)()(x l H l
A3• B3 A:Z •82 Al• Bl AO ·80 H L l H l l
A3• B3 A2•82 Al• Bl A0•80 l H l l. H l.
A3• 83 A2• 82 A1 •Bl AO• BO L l. H l l. H

NOTI!: H • hlth lewl, l Q low 1-1. >C • lrreteven1

A-33

7493

4-BIT BINARY COUNTER

Vee 5
14 12

A In
I Bin

9

RC1 RQ2D
JI

2 3

DESCRIPTION

For this device, a high level on both RO inputs will cause the counter to

reset to "O". A low level on RO will cause a count on the next pulse.

Without resetting, ·this device will count from 0-15 with the A output being

the least significant bit.

A-34

7:1UTH TABLE IS. Ne9 1 end ZI

COUNT
OUTPUT

D c • A

0 0 0 0 0
1 0 0 0 1

2 0 0 1 0
3 0 0 1 ,
4 0 1 0 0

5 0 1 0 1

8 0 1 , 0
7 0 , , I
8 I 0 0 0
9 I 0 0 ,
1l'I 1 0 I 0
11 I 0 , 1

12 I 1 0 0
13 , I 0 I
14 1 1 I 0
15 I 1 I I

NOT ES: 1. Output A conn.cted to Input I.
2. To r-11!1OUlpuU10 I01lcll 0 both 110111

and P.0121· lnpua mull be 111 loolcll 1.
3. llllhrr lor bo1"I .-e1 lnpua 110111 ind lloi 21 •

mu•t b& II • lotkll 0 to count.

•

74139

DUAL 2 TO 4 DECODERS

DESCRIPTION

With this device, a low level on the G input will cause the combination

of A and B inputs to be decoded at the Y output.

'Lll:tl, 'IUI

llo\TA
DUTP\ITI

A-35

'LIUI, 'llU
llACH DICODlll/DIMUL TIPLllClll!

PUNCTIDN TAii.i

INPUn OUTPUn
INAILI llLICT

Q I " VD VI VI VI
H x x H H H H

L I. L L H H H

L L H H L H H

L H L H H L H

L H H H H H L

H • hllft 11¥91, L • low lew•I. X • lrrelew.•n

74148

8 TO 3 LINE PRIORITY ENCODER

I''°
10 Vcc _,. 0 """'

11 _,. 1 """'
12

~2 AO~ 9

13 _,. 3 Al I.. 7
"" ~

l -<: 4 A2 ._ 6
2 -: 5

3 6

4 -: 7 GS I- 14
""'

5
~EI EO

._ 15
""' ta/"10

DESCRIPTION
TB

This device insures that only the highe13t-order data line is decoded.

The El input enables the 8 inputs to be encoded in a BCD count.

FUNCTION TABLE
INPUTS OUTPUTS

El 0 , 2 3 • 5 6 1 AZ A1 AO GS EO
H)()(x)(x x x x H H H H H
L H H H H H H H H H H H H L
L x x x x x x x L L L L L H
L x x x x x x L H L L H L Ii
L x x x x x L H H L H L I. H
L x x x x L H H H L H H L H
L x x x L H H H H H L L L H
L x x L H H H H H H L H L H
L x L H H H H H H H H L L H
L L H H H H H H H H H H L H

•
A-36

L------------··-·· ····--·-·--------------·--- ----

•

74151

8-BIT DATA SELECTOR/MULTIPLEXER

I I 10 9

DESCRIPTION

When this device is strobed low, the Y output will yield a selected D

input . The W output is the inverted Y output.

IMIUTI OUTPUTI
c I A ITRDHIU ~ P1 D__.1_ D:t D4 -°' °' DJ VIO w
IC x x , I(x lC lC lC x IC)(0 ,
0 0 0 0 0 lC lC lC lC lC)(IC 0 ,
0 0 0 0 , lC)()()()()()(, 0

0 0 0)(0)()(x IC x)(0 ,
0 0 0 IC , :]")()()(x IC , 0

0 , 0)()(0 lC)(IC)(IC 0 ,
0 I 0 x)(,)()()(IC IC , 0
0 , 0 IC)()(0 lC IC IC)(0 1

0 , 0 x x x I x)(x)(, 0

1 0 0 x)()(lC 0)()()(0 , , 0 0 x)()(lC ,)C)()(I 0 , 0 0 x lC)()(lC' 0 IC IC 0 , , 0 0 x)(lC)()(,)()(, 0 , , 0 IC)(lC)()()(0 "I 0 , , , 0 IC IC IC)()()(, IC , 0 , , 0 IC IC)()(IC IC I(0 0 ' I , 0 IC)()()(IC)(x I , 0

>C • lrrlll'll"'·

A-37

74153

DUAL 4-LINE-T0-1-LINE DATA SELECTOR

-6 ~ST. IG
5-.,....--1co

fCI
--4 -tC2 3 --tC3

DESCRIPTION

1Y
7

~~sr. 2G
~2CO
~2CI
~2C2

2C3

2Y 9

8

When this device is strobed low, it will decode the A & B inputs,

and put the corresponding C input on the Y output.

TRUTH TABLE

ADDRESS
I~UTS DATA INPUTS STROBE OUTPUT

B A co Cl C2 C3 G y

x x x x x x 1 0
0 0 0 x x x 0 0
0 0 1 x x x 0 l
0 1 x 0 x x 0 0
0 1 x 1 x x 0 1
1 0 x x 0 x 0 0
l 0 x x 1 x 0 1
l l x x x 0 0 0
1 l x x x 1 0 1

Address inputs A and B are common to both sections.
X • irrelevant.

A-38

•

•

74157

QUAD 2-TO-l LINE DATA SELECTOR

DESCRIPTION

If the select line of this device is low when the device is

strobed, the A inputs will appear on the Y outputs, or if the select

line is high when the device is strobed, the B inputs will appear on

the Y outputs.

121

IA-·-·-·--c·~ ·~I
18 IJI :;:',~-·IV

PUNCTION u.1u
INPUT& OUTPUT V

'117, 'L 1111, 'Ll1111
STROH SELECT A • ju111:1111 '11 Ill

21 161 H)()()(L H
L L L)(L H

L L H)(H l

l H)(l l H

l H)(H H L

38 1101 H • tugn level, L • low 1eve1. JC • ,,,.,...,."'

1131
40 -·----------1--L-.r--..

m:oa• u -~~-~- • .----..
£HfC'f S ~-r;:

)---
----<!!-·

A-39

--- --- -------------------------,

DESCRIPTION

74161

SYNCHRONOUS 4-BIT COUNTER

9

QA
QB
Qc
Qn

CLK COUT

ENS T
ENS P

15

This device is fully progranmable; the outputs may be set to

either state. If Load goes low, the A, B, C, D inputs will appear at

the QA, QB, QC, QD outputs on tht next clock pulse. Both enable

inputs must be high to clock the counter.

DESCRIPTION

, Same as 74161.

74163

SYNCHRONOUS 4-BIT COUNTER

A-40
•

•

74164

8-BIT SERIAL TO PARALLEL CONVERTER

Ql

Q2 4

Q3 s
Q4 r.

IN .ti.
2 (/5 H'

IM ~
Q6 11

Q7 l?
CLK Q8

CLR

9

DESCRIPTION

This device "Mt.is" the A & B inputs, and shifta this through the

register, from Ql to Q8, with each clock pulse. A low level on the

clear line resets the entire register.

~
~ CLOCK CLIAR

•RIAL INNTI

PIN NAMl!S

CP

Ci.R
1', B
0,A to QH

A-41

TRUTH TABLE

SERIAL INPUTS A AND I
INPUTS

AT In
A a
H H

L H
H L
L L

Clock Pul11 Input
Clear Input
Slrl1I lnput1
Per11111 Outputa

OUTPUT

AT tn+1
QA.-_

H

L

L

. .!:._

74173

4-BIT D-TYPE REGISTERS WITH TRI-STATE OUTPUTS

DllTA IN~UTS .

DESCRIPTION

This device allows the data inputs to be clocked into the device,

if both data enables are at a low level. The data will be present on

the outputs if the M and N lines are held low. If the M and N lines

are at a high level, the outputs go to the high impedance state, but

do not interfere with any data being clocked in.

clear pin will clear the entire register.

A high level on the

DA'• 1IJ• ..
'" Cl.OCll

o.n ... 1n1 ,.

FUPJCTION TllRLE

INPUTS
O,\TA ENABLE DATA

ourPuT
CLEA A CLOCK

01 02 D
ll

H x x x x L

L L x x x Oo
L J H x x Oo
L I)(II)(a~
L I L L L L

L J L L H H

When either M &Jr N lor bolhl ii lu,.I high thf output i1

d11.Jbll'C'I to th~ high-1n,ped1nc-1 1t•1e; howevu 1equen1i1I

o~r1t1on of thlf fhp-flops 11not1fftc11d •

H • high l••1el ltht.,.Sy 1t.n•)

L • lo~ 1ev111 111•1\.tv n1te1

t • IOiN·tO·high·l•v•I rr•n•ith.an

)(• lutlevint l•nv inO\oll inclucJlng tnn1ltlun1)

o.1 •'he1.-..11 ot U lu•~"• th• indlcat••J ttlDl.IY 1t1tt Input

cond1:1on1 w~·'• e·.utt•lhl'd.

•

•

DESCRIPTION

i t ~ I t

HEX D-TYPE FLIP-PLOPS

3,4,6
11,13,14

I)

,__..;..9_-iC

Q

CL~

2,5,7

10,12,15

This device transfers the data from the D input to the Q output

with each clock. A low level on the clear will clear all six

flip-flops.

10 !al

c•

CLOCK

CLIAR

A-43

PUNCTION TAILI
llACH PLl,·PLOPl
INPUTS

CLIAll CLOCK 0
L IC IC
H T H
H t L
H L IC

H • t'tllh level IHHdv ,,.,.,

L • IM 11¥11 IUHdy ltlll)

X • lrr111w1nt

OUTPUTI
0
L
H
L

Co

t • tr1n1ltlon ftam law 10 hlth 11ve1

Oo • "'' llvll at Q btlart ,,,, lnGICIU•d UHGY·ltltl
Input 1one1111on1w1tt1 hllbll1h1C1 •

5

CLOCK

CLEAR

74175

QUAD D-TYPE FLIP-FLOPS

Dl 2

Cl~
.J QT

l'WIC1'ION TAaLI
llM:M PUHLOPI CLR IWUTI.

OUTPUTS

D2
7 Q2

Cl~
G Q2

CLIAll C&.OC1l D
L x x
H t H
H t L
H L x

H•"""-1-.1-I
L·--C.-M\t1-I

Q

L
H
L

Qg

, _1_,,_

Qt

H
L
H

Clo

cu~ Ou• tlM - or Q ...,_""' lncllca..., •-v .. 1a• ._, _____ llllled.

1)3 10 Q3

Cl~

DESCRIPTION

TheM monolithic, Pa111ive·edga-1roggered fllp.flop1 u:1li1t1 TTL
clrculu 10 Implement 1he D·1ype lllP·flap logic. In lormuian 11
Input 0 la IFlnaferred 10 lhe Q OUIPL'I On lhe POlillve·uo;ng ed~e
of 1he clock pulae. Clock 1r1119.,ing occura 11 • vo111ge level al 1h1
clock pulae end la not directly rel11ed 10 rhe 1ranai1ian rime of the
poaltlve·gaing pulH. When the clock lnpu1i111 elthwr t~o high or
law level, rhe D·lnpur slgnel hH no effect.

A-44

•

e CLEAR

LOAD

A

DATA

c

0

COUNT
UP

COUNT
DOWN

QA

09

OUTPUTS

Oc

Do

CARRY

BORRUW

UOUENCE
ILLUITRIHEO

74193

SYNCHRONOUS 4-BIT UP/DOWN BINARY COU~TER

_J

.J

II LOAD 15
I A OA

B 08
c gg 7 D

CLR

14

Illustrated below is the following sequence:

1. Clear outputs to zero.

2. Load (preset) to BCD thirtHn.

3. Count up to fourtHn, fiftHn, e1rry, zero, one, end two.

4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen.

I
L-..
I
r-

,­
L..
I .-------.1-_J

I =1 I
=1

I

=1

L..
I

u

I

I

L_
I

I I I
~----, ____ I ____________________ ,----, --~--....,LJ I

I 0 I 11] I I 1• u 0 1 21 I 1 0 15 14 1]1 r-- COUNT UP ---, r-- COUNT DOWN---,

~~

NOTES· A. c1 .. , overridff loed, d•tl, end coun1 1npu11.

I. When counUnt up, count·down Input mun bl hl1h; when counting down, count uo lnE>u1 mull be hlth.

74194

4 BIT BI-DIRECTIONAL SHIFT REGISTER

Vee a,. o~ Cc oo tUY.« :t• y

eLlAA so

doscription

These bidirectional !hilt regmer: are designed 10 incorpo1 ate vinuelly all ol tho feature. a sy1t1m designer may want in
a shift revinor. Tho ci•cuil CO~l•ins 46 equival•nt gates •nd teatu•es p;:rallel inpu:,, rarallel C'Ulpuu, righl·Shih and
lefl-Stiifl serial iniiuu, operating·mode·control inputs, and a direct overrid;~g cl••• lino. ihe regilter has four dillinct
modes of operation, namely:

Parall•I {Bro:dJid~I Lolld
Shift Right {In the rliroction OA toward Ool
:;hilt L~ft {In the di•oc:ion Oo toward CAI
Inhibit Clock {Do nothing)

Synchrc:nous parallel lollding is accomplished by applying C:e four bits of data and taking both mode r.ontrol inpull, So
and St. high. The data is loaded into the ••~ociated fl1r-·!lop l"U appears II the outputs aftor thn po,itive transition of
the clock input. During londinq, se:ial rfat• i1ov1 is inhibitod.

Shilt right is accomplishM synchronou<lv with the risirg edge of the clock pu!:e when Soi: high and St is low. Serial
data tor this mtKle is entered II ti•• mitt-right data input. Wh•n So is low and St is high, rllla :.hilt; left synchronously
and new cl•ll is entered 11 the shifl·l1!1 ~rial input.

Clocking cl the fhp·lhio i: inhibited when both mode cortrol input; are I01··. Tho mode controls of the SN54 t94/
SN74194 should be changed only Y'•hilo the clock input 1s h1gl..

r CLEAR ~ s, ~o

L x x
H x x
H H H

H L H

H L H

H H L

H H L

H L L

fUlleTIOll 71\lllt ·-----·
INPUTS

----·- ·-------- .,
--··· _j -· CUTrUT.!_ ·-·•

CLOCK f__SEnl.l',L 1. t•Arl/\ll.c!. l
.. r. o ''" oa oc oo LEFT RIGHT /\

x x ;(" r. ~ x L L L L

L x x v x x r. 011.0 Ooo aco Ooo
1 x x • b d b d
1 x H x x H DAr Oen Oen
1 x L)()(x x I. QA• Oen Oen
l t' x " x x x Oen Oen Oon H

I L x x x)". v Oen Oen Oon L
x x)(r. x r. x CAO O~o Oco Con

A-46

11" .,igt, IJ'JO.I (wt11t;d•,• rtotol

L • low level ''''"'•dy ct11al
Y. " 1•rrtevar-:: \pny trpu~. lrcludl""9 nen111lo:n)
' • 1•1n11l10., frnrn low l"I :1ig., l1v•I

I, b, C, 4 •th• ltv1I rf HHdV·ltl11 l:iput It

1n~1·n A, 0, C, or 0, r11pectiv1ly

aAo 0 80. ac0. 0 00 • t~• 11ve1 "'' QA· 0 8 •
ac. or Oo. r11e>ectlve·
I•,•, holo•• thl IPMtlca·
••d 1t .. dv·111t1 Input
c:.ond1t•on• w9fe 11t•b·
llO:hed

n,. ,, Cl Uri· Oen. Clon • 1hl l~tl ot QA, 09.
ac. Cc. r1•p•ct1v•lv.
before th• rnon·rec•nt

t tren1111on at th•
c•ock

........

•

74195

4-BIT SHIFT REGISTER

CLI Aft IHlfU
LDAlJ

CUA14 J 0 GllU

'---v--' '----..~--J
SI RIAL 1'1!PIJll ,AHAll ll .,~,Ullo

functional ':•)l'~ dia~r"M
....... \
~

•II 1J1 '" ...

r
I

"''~I
LltJt• --- --· . ~-

~t' L._
···~ c,,,. .. __ - ----.V,... --- ---

;j; t ' ,
•h I -- r-"

I I

o. ~ L{>
,,,,j

"' '"

••
'-------

.. .. •• Clo ·--------...,
PAUU,h C.UIPUI& 'Ttil1conri1ct1an11 m1da on ·1ua o,,ly,

OUTPUTS H • high l•vtl 111 .. dy 11111)

L • tow level hlHdY 111111

QA as ac ao Do -. • ur111111n1 tiny 1n1•1,t, 1nC'luC11n1 tr1n1111on11

I • 1r1111111on ham low to high lhll

L L L ~ H I, b, C, d "' lhl 11"11 DI tlllCIY Ulll 1np1.11 II A.. C, x x x)()()()(
C, or 0, r11p1Cth111y H L x b c d b c d ii OAO· Oau. Ceo Coo.'"' 1••11 •• QA, 09. Oc.

H H L)(x K)(x x CAO aeo Ceo Coo Cioo •• Oo. fllDICtiv1ly, b"

CAO Con Oen Oen for1 th• lndtc..ted tllllct'f H H L H K)()(x CAO
llltl •npMI c:ona111on1 H H L L)(J(J(J(L OAn Oen Oen Oen ~lrl IUlbllthld

H H H H K)()()(H 0An Oen Oen Oen OAn· Oen• Oen • '"' 11v11 of QA, 09, or Oc.
CA" Cl~Q,, Oc,,_ 5r. .. r•1Dtcllv11v, ... ,fore ,,,o mo1t· H H H L l()(l()(

r•c.M u1nti1IC'11 af 11 ... c10'•

A-47

74251

DATA SELECTORS/MULTIPLEXERS WITH TRI-STATE OUTPUTS

UUAollol\ill tl•l•u1i.'

~~

DESCRIPTION

,. ' With this device, the decoded data-selects will cause the corres-

ponding data input to be output. This can only happen with a low

level strobe. The Y output is the t~ue output, while the W output is
inverted.

functional block diagnlm

A-48

!'UNCTION TAILE
INPUTI OUTl'UTS

IE LE CT ITllOIE y c I A I
x x x H z
L L L L DO
L L H L DI
L H L L D2
L H H L D3
H L L L IM
H L H L D!I
H H L L D6
H H H L 07

H • high •ooic levef, L • IO"N l09tc level
>c • ... ~.,,,. Z • hi.., 1mped•nc• CofU

w

z
60
Di
62
63
i;4

65
Di
ii1

DO, D1 , •• D7 • tltt lilv•I ot lh1 rnpec1ive D '"'"''

•

74280

9-BIT ODD/EVEN PARITY GENERATOR/CHECKER

IWUTI

I L L •O
IWUT , ""'' ODO , OU.;.,..

DESCRIPTION

With this device, if 0, 2, 4, 6, or 8 total inputs are high level

then, even output wilt be high level and odd output wi t1 be low

leve 1. If 1,3,5,7, or 9 total inputs are high level then, even

output will be low level and odd output will be high level.

!'UNCTION TAILI

NUMllR 01' INPUTI A OUTPUTI

THRU I THAT ARI HIGH l:IVIN J:ODD
0, 2,4,l,I H L
1,3, I, 7,1 L H

•
A-49

QUAD 2-INPUT MULTIPLEXERS W/STORAGE

OUTPUTS DA TA
~----•----...,. WORD IN,UT

ac Oo CLOCK SELECT

13

112 Cl

DI

'------....,yr-------'
DATA IN,UTS

DESCRIPTION

When the word select input is low, word 1 is app1ied to the

flip-flops. A high input to word select will cause word 2 to be

selected. The selected word must then be clocked into the flip-flops.

functional block diagram

CLOU =--------!!>>-------'
I -· I

Dvn1m1c 1t1put 1ct1vu.c11 by 1 111n1111on from 1 t\1Qt'I 11v1I

to a low 11v11

A-50

FUNCTION TABLE
INPUTS OUTPUT$

WORD
SELECT CLOCK QA 09 Oc Oo

L I II bl c1 d1
H I 12 b2 c2 d2
x H OAo 090 Oco Ooo

H • hllf't lev1I tHHdy 11111,
L • IDw lev•I htHdy Hlttl

X • lrr1/tv1nt (1ny Input, lncludin1 tr1n1IUon1I
' • tr1n11tlon from hitlf\ to low level
11, 12, etc.• itt• l•v1I of 1111dy·11111Input11 A.1, A2, He,

CAO• 010. etc, • the l1v11 of OA, 09. etc, entered on the
mott·rec1nt • tren1ltlon of thl clock Input.

•

•

75107

DUAL LINE RECEIVER

1"-·u, 11uw1 OU"\11 alMO&l
v". Vu. u a •C IY II

l•PUT IWUT llC DU1•UT UROll :;T~Oll GNO
lltl IY IG S

The 75107A features independent channels of common voltage supply and
ground terminals, a TTL-compatible active pull-up (totempole) output, high
input impedance and low input currents which induce very little loading on
the transmission line, and individual strobe inputs for each channel and a
strobe input common to both channels for logic versatility.

TRUT H TABLE

DIFF£:f\EN l"IAL
INPUTS STROBES OIJTPUT

A-B G s v
VIJ) :) 25 mV L or H Lor tt H

L or H L H

-25 mV < V1o < 25 mV L Lor H H ----
H H INDETERMINATE -· L or H L H

V10 ~ -25 ,.,y L Lor H H

H H L

A-51

MR r ~11 IJll

1'

'\• ('_- ~(It
~ 11

-L· ,,

.J.L
.~

,) ..
--1

Jl_-·

9314

QUAD LATCH

STI I r:
QO IJO

Si 13
JJ. Ql
S2 12
J2 lJ2

--..JJ Q3
JJ ~

PIN NAMES

'E.
Do, 01, D2, D3
so. 51. 52. "!"3
Mlt
Oo. o1, 02. o3

r-·. r1~i •:1.".''" "'· ··-·

TRUTH TASLE

MR e D s QN OPERATION -H L L L
H L H L
H H x x
H L ·L L
H L H L
H L L H
H L H H
H H x x
L)(x x

)(• Don't C•r•
L • LOW Volt911e Lev•I
H • HIGH Volleg• L8Vel
ON-1 • Pr8Vious Oulput Stele
ON • Pr.,ent Output Stet•

A-52

L 0 MODE
H

ON-1
L RJS MODE
H
L

ON-1
ON-1

L RESET

(Active LOWI Enable Input
D1t11 Inputs
Sit !Active LOWI Inputs
Mester Reset (Active LOWI Input
Lltch Outputs

•

•

•

9321

DUA!, ONE-OF-FOUR DECODER

0 4
r r

T ~

2
/\O 2

G

A1 3 .) 7

~5 cr· 12 - t 11
14

1
10

13 Ao i
/\1

1 .9.. ..
I

DESCRIPTION

With this device, when the E input is a low level, the A inputs

will be decoded, appearing as low truth outputs.

"

-·
E Ao

L L

L H

L L

L H

H x

TRUTH TABLE

DECODER 1Ii2

A1 'IJ T

L L H

L H L
H H H

H H H

x H H

H • HIGH Voltage L.evel
L. • L.OW Volt1ge L.1v1I

'2 ~

H H

H H

L H

H L
H H

• X • L.1v11 00•1 Not Affect Output

PIN NAMES

Decoder 1 ind 2

A-53

Enable (Active LOWI Input
Addreu Inputs
1Active LOWI Outputs

9401

CRC GENERATOR CHECKER

CP
p

so
MR

sl
N.C.

GND

"•L"t ,. .. "'I• r.. ,,.

1

2

3

4

5

6

7

\.

'· ... 11.0l'I

Cllf< WM.9 ,,.,._ ___ _,

1"11 • tfr

A-54

14 v cc
13 ER

12 Q

11 D

10 CWE

9 N.C.

8 s2

Dotf11

•I--- ••"'"" •

•

MC 3450

• OUAO ~INF. RECEIVER

•
A-55

MC 3453

QUAD LINE DRIVER

.,
OU~UTA

z
z

OUTPUT C .,
INHlllT

INPUT C

TllUTHTAILI
lPD••1v1 k>Qtd

INPUT•

.,
OU~UTI

z
z

OUTPUT D
v

INPUT D

OUTPUT
LOC.IC INHllllT L....;1;:;'U:;R.;;1,;.:1E;.;.N;;,.;T_-f
1~"''.I" llllPUT Z Y

H H O• 011

I. " CU On

H I. 011 Off
L L ('ti 011

L • \.Ow ~ Lnel
M• Hi ... LOftC

A-56

•

-

•

APPENDIX C

UPGRADING THE WCS/60

The user who wishe~ to upgrade his WCS/60 CPU can expand it to a

WCS/80 CPU. The WCS/80 can support up to 512K bytes of main memory,

up to 23 Workstations, and 600 megabytes of on-line disk storage.

Additional options for the WCS/60 include:

Memory upgrade - increments of 64K (256K maximum)
Additional Language - COBOL or BASIC
2246P Workstations - up to 15 additional workstations
IOP's (up to four additonal)

22V01
22V02
22V03

22V05

Disk Drives

2260V
2265V-l

Tape Drive

2209V

Printers

2281

2231W-l
2231W-2
2221W
2261W
2263V-l
2263V-2

Printer Workstation !OP
10 megabyte fixed/removable disk !OP
75 megabyte removable disk !OP (one per
system)
9-track, 1600 bpi, 120 kilobyte/sec
(75 ips) magnetic tape IOP

10 megabyte fixed/removable disk drive
75 megabyte removable disk drive

9-track, 1600 bpi, 120 kilobyte/sec
(75 ips) magnetic tape drive

Daisy Output Writer (SO cps)
Pin feed forms feeder for 2281V
Wang Line Printer (112 col./120 cps)
Wang Lit1e Printer (132 col. /120 cps)
Wang Line Printer (132 col./200 cps)
Wang Printer (240 lpm)
Line Printer (400 lpm)
Line Printer (600 lpm)

A-57

-

UPGRADING THE wcsjso

Additional options f.o~ the ~CS/80 include:

Memory upgrade - increments of 64K (512K maximum memory)

AdditionAl language - COBQJ, or BASIC

2246P Workstations - up to 22 additional Workstations

Additional IOP's (sy~tem suppo=ts a total of eight)

22V01

22V04

22VOS

Disk Drives

Printer/Workstation IOP

BOMB rer11ovable disk IOP (up to two per

system)

9 track, 1600 ;,pi, 120 kilobyte/ sec

(75 ips) magnetic tape IOP (controls up

to fo~~ reQgnetic tapes)

2265U-l 75MB removable diuk driv~

7ape D:::-ives

2209'1

Printers

?.:l81

2231 W-1

2231W-2

2221W

2263V-l

2263V-2

9 T~ack, 1600bpi, 120K kilobyte/sec

(75 jps) magnetic tape drive

Daisy nutput t-,1~~ii:~1· (40 cpti)

pin teed forms feede~~ for 2281V

Wang line printe-.:- (112

Wang 1.i:ie printer (132

H;ing line printer (132

T.ine PriLJ.tet' (!<JO lpm)

Line Printer (. JO lpm)

A-58

col/120cp13)

co1/120cps)

col/'200cps)

•

-

APPENDIX E·
CONFIGURATIONS

WCS/60 -

MINIMUM MAXIMUM

MEMORY 64KB 256KB

I/O PROCESSORS 2 6

WORKSTATIONS 1 16

TAPE DRIVE

DISKETTE DRIVES 1 1

DISK DRIVES -

10 MEG F/R 1
80 MEG R 1 2

PRINTERS (ANY TYPE) 1

WCS/80 -

MINIMUM MAXIMUM

MEMORY 256KB 512KB

I/O PROCESSORS 3 8

WORKSTATIONS 1 24

TAPE DRIVES

DISKETTE DRIVES 1 1

DISK DRIVES -

10 MEG F/R
80 MEG R 2 8

PRINTERS (ANY TYPE) 1

MEMORY IS IN 64KB INCREMENTS

•
A-59

WCS/60

SMALL

(Continued)

WCS/60-2, 64K, 1 WORKSTATION, 10-MEG DISK, DISKETTE,
240-LPM PRINTER

MEDIUM

WCS/80

LARGE

WCS/60-6, 192K, 6 WORKSTATIONS, 2 10-MEG DISKS, 1 240-LPM
PRINTER, DISKETTE

WCS/60-8, 256K, 10 WORKSTATIONS, 2 80-MEG DISK DRIVES, 1
600-LPM PRINTER, DISKETTE

SMALL

WCS/80-8, 256K, 2 80-MEG DISK DRIVES, 1 WORKSTATION,
600-LPM PRINTER, DISKETTE

MEDIUM

WCS/80-12, 384K, 10 WORKSTATIONS, 600-LPM PRINTER, 3 8-MEG
DISK DRIVES, DISKETTE

LARGE

WCS/80-16, 512K, 18 WORKSTATIONS, 4 80-MEG DISK DRIVES, 1
9-TRACK TAPE DRIVE, 2 600-LPM PRINTERS, DISKETTE

A-60

•

-

•

APPENDIX F

SPECIFICATIONS

2200VS CENTRAL PROCESSING UNIT

Memory Size: 64K, 128K, 1924K, 256K (WCS-60)

Memory Size: 256K, 320K, 384K, 448K, 512K (WCS-80)

Size

Height 41 in.

Depth 32 in.

Width 36 in.

Weight

Cable

Power Requirements

115 VAC (+ 10%)

60 HZ (+ 1 HZ)

12 Amp.

(104 cm)

(81 cm)

(9 com)

Independent Power Line Reconunended

Operating Environment

50 F to 90 F (10 C to 32 C)

20% to 80% Relative Humidity

Recommended Relative Humidity

35% to 65%

2200VS GENERAL SPECIFICATIONS

Memory Cycle Time

660 nanoseconds per two bytes

A-61

Word Length

32 bits (4 bytes)

Registers

Sixteen 32-bit General-Purpose Registers

Four 64-bit Floating-Point Registers

Eight 32-bit Control Registers

Types of Arithmetic

Binary

Packed Decimal

Floating Point

A-62

•

•

•

APPE.~01~ G

2260V PIX!D/IEMOVABLE DISK

Storage Capacity

Tracks/Cylinder .

Cylinders . • • .

Sector Size ..•

....

Sectors per Track .. • •

Total Storage (in Million Bytes).

AcceH Time

Average

Maximum .

Minimum

Full Rotation Time ..

Data Transfer Rate .•

Power Requirement•

115 VAC (+ 10%)

60 HZ (+ 1 HZ)

5.2 Amp.

.

A-63

4

408

256 bytes

24

10.03

35ms

103ms

9ms

25ms

312kb/sec.

-

APPENDIX H

2265V-l REMOVABLE DISK PACK

Storage Capacity .

Tracks/Cylinder ,
Cylinders .
Sector size . . .
Sectors peT Track .
Total Storage (in Million Bytes).

AccP.ss Time

Average
Maximum .
Minimum

....

Full Rotation Time.
Data Transfer Rate.

Power Requirements

115 VAC (+ 10%)
60 HZ (+ T HZ)
8.2 Amp-:- (ope~ating), 1.5 Amp.
Starting current 10 seconds at

WCS-60/80 DISKETTE

Storage Capacitz

Cylinders .
Sector Size
Sectors per Track . ,

(standby)
40 Amp.

Total Storage (in Million Bytes) ...

Access Time

Av~rage

Maximum
Minimum .
Full Rotation Time.
Data Transfer Rate.

A-64

45
823

2048 bytes
9

75.85

30ms
55ms

6ms
16.66ms

1. 2mb/ sec.

77
256 bytes

16
.3154

424ms
847rus

llms
167ms
3lkb/sec.

•

•

I

- I

•

CRT

Display Size •..•

APPENDIX I
WORK STATION

I ' e I I ' I I I I I

Capacity

Character Size

height .

width

Power Requirements

115 or 230 VAC + 10%

50 or 60 Hz + 1/2 Hz
125 Watts

Fuses -
2.0A@ SB 115V

1. OA@ SB l 30V

Operating Environment

50 F to 90 F (10 C to 32 C)

20% to 80% Relative humidity allowable

35% to 65% Relative humidity reco111rie1\ded

Cable

One 8ft (2.4m) cord to power source

12 in. diagonal

(30.4cm)

24 linest 80

characters/line

0.16 in (0.4064cm)

0.09 in (0.2286cm)

One length of 25ft (7.6m) direct connection cable is provided

with each 2246P workstation; extension cables in increments for

distances up to 500ft (152m) are available optionally. Each

cable i1 equipped with a 36-pin amphenol connector.

A-65

Printer Size:

height

depth.

width.

weight

speed.

2261V PRINTER

Character Configurations

36 inc. (91cm)

26 in. (66 cm)

27 in. (68.6crn)

210 lb (94.Skg)

240 lines/min

llx8 ii.nd 9x8 dot matrix (dot11 not in adj'acent columns of same

row.)

10 char/in. (4 char/cm) or 11.76 char/in. (4.6 char/cm),

selectable 6 lines/in (2.4 lines/com) or 8 lines/in. (3.1

lines/cm), selectable

Character Set:

full ASCII, 96 characters, both upper and lowercase

Line Width

136 characters, maximum with 10 pitch

(68 cha.-ac ters, expanded)

160 characters, maximum wi. th 12 pitch

(80 characters, expanded)

Ribbon:

Nylon, double spool, reveraable

1 1/2 in. (3.8 cm) wide

64 yd. (58.5 m) long

A-66

•

•

Switchee/lamps:

ON/OFF 1 SELEC.T, PITCH, LINE/IN., LINE FEED, TOP OF FORM, CLEAR,

FORMS OVERRIDE, paper out. alarm and lamp, power on lamp, select

lamp, and alarm tone.

VerticAl Format Control:

3-char.nel, std - l inch (2.54 cm) tape. Vertical Tab, Top of

Fann, Page Eject.

Paper Size:

Maximum width 14.9

Minimum width 5.0

Pape'!'.' ...,; dth settings adjustable

Maximum form length 11.

Up to four co s pluu original can be printed.

Cable:

6ft (l.8m) to power source

12ft (3.7m) to controller

Power Requirements:

115 or 230 VAC+l0%

50 or 60 HZ+l Hz

460 watts

Fuses:

SA (SB) for 115 VAC

2.5A (SB) for 230 VAC

A-67

in. (37.Bcm)

in. (12.7cm)

in. (27.9cm)

Operating Environment:

50 to 90 F (10 to 32 C)

40% to so· relati~e humidity. non-condensing. allowable

40% to 65% reconnended

A-68

•

•

