¢ Customer
Engineering

vision

WANG COMPUTER
} SYSTEMS 60 &80

Volume 1

System Introduction

© Wang Laboratories, Inc., 1977
2ND Edition (Reprint) MAY,1982

NOTICE:

This document is the property of Wang Laboratories, Inc.
Information contained herein is considered company
proprietary information and its use is restricted solely to the
purpose of assisting you in servicing Wang products.
Reproduction of all or any part of this document is prohibited
without the consent of Wang Laboratories.

03-0086

G LABORATORIES, INC.
‘ U AN ONE INDUSTRIAL AVENUE. LOWELL, MASSACHUSETTS 01851, TEL. (617) 861-4111, TWX 710 343-6760, TELEX 94-7421

November, 1977
PREFACE

The WCS 60 and 80 systems represent a significant departure from
Wang's pre-1977 product lines. At the heart of a WCS 60/80 system,
the 2200VS Central Processor operates on a completely differert set of
concepts. New terminology introduced in this text during the
development of each concept must be understood before details of
2200VS hardware are studied.

Publications for WCS 60/80 Service training/support are grouped
into four categories: 1)Pretraining, 2)In-class handouts, 3)a

Post-training package, and 4), Miscellaneous 2200VS documentation.

Pretraining documentation is primarily intended for individuals
scheduled for formal WCS 60/80 training at the Home Office. Each of
the publications in the 'Pre-training package' must be read thoroughly

before the prospective trainee attends class.
Pre-Training Publications:

1. 2200vS, Volume I - System Introductory Manual (CE)
2. 2200VS Programmers's Introduction (WL#800-1101PI)
3. CDC Microcircuits Manual (OEM)

In-class handouts will be used as training aids for daily
classroom and laboratory sessions.. The following publications

comprigse the 'in-class handouts' package, and must be kept in class.
In-Class Handouts:

1) CP Hardware Manual (CE)

2) IOP Master Processor Manual (CE)

3) Parallel Workstation IOP Manual (CE)
4) IOP Tester Manual (CE) |

5)
6)

7)

8)

9)

10)
11
12)
13)
14)
15)
16)
17)

18)

19)
20)
21)
22)

The

attended

Hard/Floppy Disk I/0 Manual (CE)

2200VS, Volume II ~ System Installations, Diagnostics, and
Troubleshooting (CE)*

2200VS, Volume ITI-Preventive Maintenance (CE)*
2200VS Pre-Instaliation Guide (Site preparation)¥*
2200VS Principles of Operation (WL#800-1100P0)

2200VS Assembly Language Manual (WL#800-1200AS)
2200VS System Frogrammer's Guide (WL#800-1103SP)

IBM Assembly Language Ztudent Text (IBM #SC20-1646-6)
Chaintrain - Logic & Troubleshooting Manual (OEM)
Chaintrain - Maintenance Instructions ianual (OEM)
Chaintrain - Operation iInstructions Manual (OEM)
Chaint=ain - Principles of Operation Manual (OEM)

CDC 75 Meg Disk Manuals (DEM):

a) CDC Storage Module Drive BKAXX-BK5XX

b) CDC BX4XX-BX5XX Instailation & Checkout

¢) CDC BK4XX-BK5XX Diagrams & Wire Lists

CPC 288 Meg Disk Manuals (OEM)

a) CDC Storage Module Drive BK6XX-BK7XX

b) CDC BK6XX-BK7XX Installation & Checkout

CDC Field Test Unit Manual (OEM)

Kennedy Mod. 91C0 Vacuum Column Tape Transport Manual (OEM)
Kennedy Mod. 9219 Formatter Meaual (OEM)

Schemat ‘cs for all Vang circuit boards

Post-training package can be used by those who have already

a WCS 60/80 seminar. These publications are as follows:

Post-Training Package:

1)
2)
3)
4)
5)

Model 61V Printer Manual (CE)*

Zilog Z-80 Manual (CE/OEM)

9200VS Cobol Language Ref. Manual (WL#800-1201CD)
2200VS Executive introduction Manual (WL#800~-1105ET)
2200VS BASIC Language Ref. Manual (WL#800~-XXXX) *

*Not published as of November, 1977.

ii

6)
7)
R)
9)

2200VS File Management Utilities Manua) (WL#800-1300 FM)
2200VS RPG II Referonce Manual (WLHB00-XXXX)*

CDC 'Hawk' Training Menual (CE/OFM)

CNC 'Hawk' Training Manual (CE/OEM)

The final category is rather informal, and consists of certain

user manuals, data sheets, product bulletins, competetive profiles,

etc. The present list of such publications is as follows:

Miscellaneous Documentation:

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)

2200VS Brochure (W1#700-4507)

2200VS Product Bulletin - No. 155

2200VS/WCS 60/WCS 80 Neta Sheet (WI#800-2101, 2201)

2200VS Peripherals Data Sheet (WL#800-2102)

2200VS Languages Data Sheet (WL#800-2201)

2260V Ten-Megabyte Disk Data Sheet (WL#800-XXXX)*

2265V-1 (75-Meg Disk) Data Sheet (WL#800-XXXX)*

2265V-2 (288-Meg Disk) Data Sheet (WL#800-XXXX)*

2231W-1 (120 cps Matrix Printer) Data Sheet (WL#B00~XXXX)*
2231W-2 (120 cps Matrix Printer) Data Sheet (WL#800-XXXX)*
2221w (200 cps Matrix Printer) Data Sheet (WL{#B00~XXXX)*
2261W (240 lpm Matrix Printer) Data Sheet (WL#800-XXXX)*
2263V-1 (400 1pm Train Printer) Data Sheet (WL#800-XXXX)*
2263V-2 (600 lpm Train Printer) Data Sheet (WL#800-XXXX)*
2209V (1600V)T 9-Track Tape) Data Sheet (WL#800-XXXX)*
220V06 Telecommunications Data Sheet (WL#800-XXXX)*

Presently, requests for 2200VS documentation 'packages' can only

be honored for prospective WCS 60/80 students.

The remaining 11 items of this memorandum generally describe the

contents of existing and proposed 2200VS user manuals.

*Not published as of November, 1977.

iii

2200VS PROGRAMMER'S INTRODUCTION (WL #800-1101PI)

This manual was previously known as the '"8300 System Introduc-
tion". It preserves all of the material from the original System
Introduction with the exception of Chapter 1 (general discussion
of system features), which moves to the new "EXFCUTIVE JTNTRO-
DUCTION TO THE 2200VS" (see next page). New material was added
on Data Management functions (file types and access methods,
shared files, etc.). Specifically, the manual covers the

following topics:

Introductory Concepts
Workstation Characteristics
Command Processor

System Utilities

Procedure Language

Data Management Functions
2200VS COBOL REFERENCE MANUAL (WL #800-1201CB)
Reference manual for 2200VS COBOL, with material on multiple in-
dexing, additional workstation support features, shared files,
etc.

2200VS PRINCIPLES OF OPERATION (WL #800-1100P0)

General descriptions of machine architecture, machine instruction

set, and 1/0 devices.
2200VS ASSEMBLER LANGUAGE REFERENCE MANUAL (WL #800-1200AS)

Reference text for 2200VS macroassembler.

*Not published as of November, 1977.

iv

2200VS SYSTEM PROGRAMMER'S GUIDE (WL #800-1103SP)

A collection of "all the things you wanted to know about the
system but were afraid to ask'. Included are descriptions of all

super- visor calls (SVC's), system macros, and control blocks.
EXECUTIVE INTRODUCTION TO THE 2200VS (WL #800-~1105)

A brief, general introduction to major system features intended
for the edification of management. This manual will incorporate
material from Chapter 1 of the present "8300 Systrm Introduc-

tion", as well as the 2200VS Product Bulletin, to provide clear,
simplified discussions of concepts such as virtual memory, print

spooling, background processing, etc.
2200VS BASIC LANGUAGE REFERENCE MANUAL (WL #800-XXXX)*

Reference manual documenting the elusive 2200VS version of BASIC.

2200VS FILE MANAGEMENT UTILITIES (WL #800-1300FM)

Documentation of the CONTROL, DATENTRY, and REPORT utilities.

Oriented towards non-programmers who wish to use these utilities

for data entry and report generation.
2200VS SYSTEM MANAGEMENT GUIDE (WL #800-XXXX) *

A manual intended for use by system administrators. This manual

covers topics of interest to those responsible for system admin-

istrative functions, including:

Security (transplanted from "Conscle Operator's Guide")
File Backup Procedures

Error Reporting and Generating Formatted Dumps
System I/0 Error Log

System Performance Evaluation (when is more nmemory needed,
or another disk, etc.)

10. 2200VS SYSTEM OPERATION GUIDE (WL #800-110250)

Previously titled "8300 Console Operator's Guide", this manual ‘
covers various topics of interest to the system operator, in-

cluding:
Print Spooling
Background Processing
Operational Characteristics of ell peripherals

11. 2200VS RPG II REFERENCE MANUAL (WL #800-XXXX) *

Reference Manual for RPG II.

———

DIRECT ALL COMMENTS ON THIS MANUAL TO THE TECHNICAL WRITING STAFP
OF WANG LABS' CUSTOMER ENGINEERING DTVISION. .

*Not published as of November, 1977.

vi

TABLE OF CONiENTS

SECTION 1 SYSTFM OVERJTEW

1.1 TNTRODUC Y TON 1--1
L.2 INTERACTTVY OPRRATION 1-1
1.3 THE 'COMMAND PROCESSOR' 1-2
1.4 MULTIPLE USERS 1--6
1.5 MULTILINGUAL SYSTI: 1-7
1.6 LARGE OM-1,IN% WILES/F1I® MANAGEMENT T'ACTI.[TIES 1-8
1.7 VIRTUAL MEMOXY 1-9
1.7.1 GENERAL -9
1.7.2 ADVANTAGHES AND DISADVANTAGES OF "VIRTUAL MFMORY" 1-11
1.8 EXPANDARILITY 1

1
—
wr

1.9 MAJOR PERFORMANCE FRATURES

1-15

1.7.1 AUTOMATYC PROGRAM SHARTING 1-15

1.9.2 I¥DFPENDENT T/0 PROCESSORS 1-16

1.9.3 AUTOMATT® DATA COMPACTION 1-16

1.9.4 AUTOMATIC TRINT SPOOLING 1-17

| 1.9.5 BACKGROUND PROCESSING 1~-17
‘ 1.10 USER COMVENIEMCE FEATURES 1-18
; 1.10.1 DATA EMTTY/FILE MAINTENANCE 1-18
| 1.10.2 JN¥FRACTIVE TEXT EDITOR 1-19
| 1.10.1 INTFRACTIVE RFRU; FACTLITY 1-19
| .11 ADDITIONAT. SYSiF UVILITUES 1-19
‘ ’ 1.12 FIIE PROTSOTION AYND SFGURITY 1~22
| 1.13 RELIABTLIT™Y 1-23
1.14 HARDWARE -- “FNERAL 1-23

J.14.1 THE CENTRAL PROCRSSING USTYy (CPU) 1-24

1.14.2 T/0 PROCKESSOR: ‘107'8) 1-25

1.14.3 WORKSTATION 1-26

1.14.4 DISKS 1-27

1.14.5 PRINTERS 1-30

1.14.6 TA¥% DRIVE 1-34

1.14.7 COMWINLCATTONS 1-35

SECTION 7 SYSTEM CONCEPTS
2.1 200VS - VIRTUAL MEMORY 2-1
1.1 A COMPARISON TO EXTSTING 2200's 2-1
RELATION OF VIRTUAL MEMCRY TO PHYSICAI. MEMORY 2-2
2-1
2-1

1.2

OMPTLERS, LNTFRPRETFRS, AND ASSEMBLERS
.1 COMPILERS

2 INTERPRETFRS 2-15

3 ASSEMBLERS 2-16

2.3 THE 'OPERATING SYSTFM' 2-18

2
2
2.1
2.2 ¢
2.2
2.2.
2.2

SECTION 3 INTRODUCTION TO 2200VS HARDWARE

3.1 SYSTFM RLOCK OVFRVIFW 3-1 ‘
3.1.1 GENERAL 31
3.1.2 DATA ORGANIZATION IN TUE 2200VS§ 3--h
3.2 THE CENTRAI, PROCESSOR J-H
3.2.1 CGFNFRAL Ak
3.2.7 CFNTPAL PPOCESSOR HARDWARE DETATLS 3-12
3.2.3 INSTRUCTION SETS 3-23
3.2.3.1 MTGROINSTRUCTION FORMAT TN CONTROL 3-28
MEMORY
3.2.3.2 MACHINE INSTRUCTICN FORMAT 3-33
3.2.4 1NTERRUPTS 3~43
3.2.4.1 GENERAL 343
3.2.4.2 TYPES OF TNTERRUPTS 3-43
3.3 THE TNPUT/OUT“UT PROCFSSOR (7110 PC) 3-46
3.3.1 THE MICROPROCFSSOR (MP) 3-45
3.35.1.1 REGISTER STRUCTIRE 3-89
3.3.1.2 ARITHMRTIC LOGTCAL UNIT {ALU) 350
3.3.1.3 CONTROL MFMORY (CM) 3--54
3.3.2 MAIN MFMORY RUS/LOGIC 354
3.3.3 VEOCR4SOR COMMINICATION RUS LOGTC (PCR) 1--55
3.3.3.1 INPUT/OUTPUT TNTUWRRIIPTLIONS 3-85
3.3.2.2 1/0 TASK TERMINATTON/COMPLETION 3-60
3.3.4 DEVICFE ADAPTER (DLI OR [LA) 3--68
3.3.5 THE TOP MP MICROINSTRUCTIGN SET 305
3.4 MATN MEMORY 27!
3.5 DISX STORAGF PHYSICAL DESCRIPTTON 3-78
3.5.1 VOLIME LABFL 3-78
3.5.2 VOLUME TABLE OF COMTENTS 3-78
3.5.3 EXTENTS 3-79
SECTION 4 WORKSTATION CHARACTERISTICS
4.1 INTRODUCTION heel
4. THE CRYT L-]
4.2.1 THE SCREEN AND CURSOR 4 -1
4.2.2 SCREEN FORMATTING 4-1
4.2.3 FIELDS 4-2
4,2.4 FIELD ATTRIRUTE CHARACTERS 4-3
4.2.5 TABS L5
4.2.6 AUDTO INDICATORS 4-5
4.3 TBE XKEYBOARD 46
4.3.1 CURSOR POSITIONING KEYS 4-6
4.3.2 DATA ENTRY KEYS 4-9
4.3.3 SPECIAL KEYS 4=10
4.3.4 KREYS COMMUNICATING WITH THE COMPUTER 4-11

viii

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPFNDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

GLOSSARY

2200VS COMMON IC'S
UPGRADING THE WCS/60
UPGRADING THE WCS/80
CONFIGURATTONS
SPECIFICATIONS

2260V FIXED/REMOVABLE DISK
2265V~1 REMOVABLE DISK PACK
WORK STATTON

2261V PRINTER

A-33
A-57
A-58
A-59
A-61
A-63
A-64
A-65

A-66

SECTION
w 1
SYSTEM
OVER-
VIEW

SECTION 1
SYSTEM OVEKVIEW

1.1 INTRODUCTION

The Wang 2200VS, also known as the 8300, is an interactive,

multiuser, general-purpose computer.

Initially, the 2200VS will be offered in two packaged systems,
the WCS/60 and the WCS/80. A standard WCS/60 System will include the
2200VS computer with 64K of memory, a 308K diskette drive, a 10 mega-~
byte disk drive, one workstation, and a 240 lpm printer. A standard
WCS/80 will include a 2200VS compnter with 256K of memory, a 308K
diskette drive, two 75 megabyte disk drives, a workstation, and a
240-line-per-minute printer. Both sysctems can be expanded with
additional memory, more disks, and more workstations. Both are de-
signed to serve, even in their minimal configurations, as complete

commercial data processing systems.
1.2 INTERACTLVE OPERATION

The 2200VS, like all previous 2200 systems, is "interactive",
allowing users to communicate directly with the system from work-
stations. The system requests user-specified date and provides useful
information in a series of clear, nontechnical prompts displayed on
the workstation screen. Such promptc may ask the user to "fill in the
blanks" with requested data, or select a desired item from a number of

displayed options.

Many other systems vrequire the use of a complex special language
for issuing instructions to the system and controlling system func-
tions. On the 2200VS, no special lenguage is required. All system
functions are invoked through a special progrem called the 'command
processor'. The user simply chooses the desired function from a dis-
played menu, then responds to any subsequent prompts asking informa-
tion for that function. If the user response is erroneous or insuffi-
cient, the system returns an error message which identifies the

problem, and, in many cases, suggests a possible solution.

1-1

Running a program on any existing 2200 processor is a trivial
task: The user simply loads the program, then keys RUN and EXECUTE.
On the 2200VS, it is scarcely more complicated. The user simply .
chooses the RUN PROGRAM function from the Command Processor Menu, then
tvpes in the program name, disk library, and volume in which it is
located (this is the equivalent of performing a LOAD DC operation on
the 2200). When this information is entered, the user keys ENTER to

begin program execution.

At any point during the execution of a program, a user can in-
terrupt the program by keying HELP. The HELP key is somewhat analo-
gous to the HALT/STEP key on the 2200: it temporarily halts program
execution, without destroying any critical information or closing any
files. The program can be resumed from the point of interruption with
a CONTINUE command. While a program is interrupted, the user has
access to all system functions. He can, for example, examine the
status of open files or I/0 devices, scratch or rename files, or begin
debug processing. Once these funcitions are completed, normal execu-

tion of the interrupted program cait be continued.

1.3 THE 'COMMAND PROCESSOR'

All user communication with the 2200VS is carried out by issuing
interactive 'commands' which direct the Operating System* to perfoim a
variety of tasks. Commands, selected from a 'Command Processor Menu',
are used to perform such operations as running programs, setting
default parameters, scratching and renaming files, initiating debug

processing, and examining and modifying various aspects of the system

status.

In general, if any program parameter is inadvertently omitted or
specified incorrectly, the Command Processor simply repeats the appro-

priate screen prompt so that the user may enter the correct value.

The Command Processor has two slightly different versions of its

menu. The "normal" Command Processor menu is displayed whenever no

program is running at a given work station. The user is therefore

1-2

provided immediate access to the system upon completion of any pro-
gram, so that a new program or command can be initiated at once. If a
running program is interrupted prior to completion, as the result of a
fatal execution error, etc., the Command Processor displays a modified
Command Processor Menu, which permits the user to either continue

program execution or cancel the program.

A program cannot be continuved while a selected 'command' from the
modified menu is executing. Nor, can a second program be run at the
same work station while the first program is interrupted. In order to
run a new progrum, the current program must be terminated, either
through normal completion or cancellation by the user. For this
reason, the RUN command does not appear in the modified Command

Processor Menu. RUN is replaced by CONTINIE.

The diagram on the following page is a map of the 2200VS/8300
Command Processor. Each circle on the map indicates that some key-
board function takes place; each rectanglc on the map represents a
screen that is presented to the user by the Command Processor. The
map takes the workstation operator from LOGON, through all primary
functions of the Command Processor, including the Debug Processor.
Note that certain screens may be invoked by either the Command Pro-
cessor or the Modified Command Processor. When the HELP key is used
during a program run, the Modified Command Processor is invoked,
rather than the Command Processor. The Command Processor map should
be used in conjunction with the Programmer's Introduction Manual (WL#

800-1101PI-01) when familiarizing oneself with the 8300 workstation.

*See Section 2; Introductory Concepts.

1-3

-~

r-F

weLP

{

‘erowW v3
voLuUMES * oW

(m voauMes

HELP

‘swow
[1.1 %

NELP

e
(-

j‘im

)
R
sMow
PRINTERS®
&)
Y
‘sHow

WORKSTATIQHS,

neLr

SHOW
LIBRARIES
on vVOLUME*

N\ 4 ‘suow @

JLes o
LIBRARY*

MELP

‘sHow @

FILL

ATTRIBUTES®
UAPAGALY ik e ENA)]

(14]
FAEE EXTENTS
ON VOLUME *

DISK
voLume *

‘mounTt @ “J

WELP

{

’ xR
DISMOUNT
DISK
VOLUME*

N\]
\+— HELP

k|
1 1)
RENAME D
FiLes"®

CIALLT TN DY

\-4—4 WELP

&
’SCRATCH w
FlLes®

"‘"CI’V V&.ﬂ‘ ‘“. ouv,

Ll
Review or)

Med:fy Fila-
PreTaction
: Wd,
1L
‘sHow)
SYSTEM
STATUS®
. 12
ATTACH
DEVICE®
- I3
*DETALN &)
oevice®

RUN
3
D
S * WANG 3300 ‘wAne 8200
4 ’ | COMMAND
COMMAND PRACESSOR PROCEGSOR’®
-
|
®
trow vYoLuMes
AnD DEVICES®
’sHOW VOLUMES WA
AND CONTENTS®
sl
D) WELP L) 7J
"MANAGE voLune s ‘<———-(°';‘:”" 3
AND DEVICES . yﬂ
OBl [B o7 \. ,;‘1
*RENAME FILES' [T | REiWE
‘".'"""'?‘mi ulﬁrh \
s DN ';4
[J L}
SCRATCH FILES KMTHTE
BPLCIFY TOLUNE | e p 4
T’J Cab AV
PROTECT FILES | PROTECT
vt
AT —
A
' WANE $300) " o)
/] MISCELLANZOUS COMHANDSY <
() HELR
) L3 [kl
PRINT S
L
J HELP s 23 s |
ABHCW PROGRAM . 200w
COMMLETion NErORT | | TROGR/M
umhv? 2 ,
\osore wie
J/

PROBRAM
SYATUS'

ow
HELP FILE S AND
DEVICES

wmuse”

swow
HWELP BUFFER

WANG 8300 COMMAND

4 o
e OO
4
F— A)
SYMBOLS:

a SCREEN PRINTOUT
RUPARAICE

"PROCESSOR

FIGURE 1-1

1-a

LW} ! .
WANG 9300 - — -l
‘ A - > i A -
— B PROCLISOR

PFs \ ™6
TR dl)

(»
@ | insPEcT AnD MODIFY' L <
%4
led} e 1,234,560

Y

‘rnar’
(sScIFY orTions)

“\nsrpcT
PROGRAM

SUBROUTING ,f
BVE LINRAGR® |

‘serecT
$ECTION'

: >
| N or?'s e s
neas/
rewW
i
A 4
A MEMON ~ <+—
o - o{ DEBUG }——pn - >
] £\ _ - g
' PET2

(M0 PATR WEWED i~ |ag

N ——fiar ‘nsPECT . @

MEMORY *

-4 ‘;:svm 2| (INSPECT REGISTER

fInsPECT
rMemonry*®

PROGRAM
CONTROL
WORD*

MEMORY *

1

‘ FIGURE 1-1
\ 2 A

(Continued)

1-5

It is important to understand that, although the system can pro-
cess two or more tasks concurrently from several work stations, a

single work station cannot perform two or more tasks concurrently.

Only one program or procedure may be run from each work station at any

time.
1.4 MULTIPLE USERS

The 2200VS supports multiple workstations; in a WCS/60 configur-
ation, a maximum of 16 workstations can be supported; in a WCS/80, the
maximum is 24. Each workstation can be running its own job concur-
rently with the others. 3Since eacli "job" is actuslly a separate
program, such a system is often referved o as & ‘multiprogramming'’
system. Of course, since there is only one central processor and one
memory, it is not possible for two or more programs actually to be
executing at exactly the same instant. On the 2200VS, all programs
share a common set cf resources. Each program (or some portion of it)
is kept in its own location(s) in memory. The central processor per-
mits each program tc run for a short period of time, then interrupts
and permits another program to run for a similar brief period; this
process continues indefinitely, or until all programs terminate.
Because the central processcr is fast and is managed efficiently, the
illusion is created that each user's program is ruaning without in-

terruption, simultanecusly with zll other programs.

The key to the success of such a schemz is the Operating System
software, which must manage the use of common resources such as the
central processor, memory, and I/0 devices, with maximum efficiency.
The 2200VS operating system is designed for such efficiency; it is
degigned to guarantee that each user will have reasonable response
time for his program, and zlso ensure thai each program runs without
interference from others. The process of sharing a single computer
among many users is called 'distributed processing'. Each user can

proceed exactly as if he had access to his own private system.

1-6

The 2200VS Operating System imposes no special restrictions on
the types of jobs which can be run concurrently from each work-
station. It is not unlikely, for example, that an installation might
have two or more workstations running a large data entry application,
while other workstations are running an order-entry program, and still
other workstations are being used by programmers for program develop-
ment. Such a system obviously provide-~ great flexibility for the
user, who is not forced to purchase several different systems to

perform different jobs.

Typically, in a multi-workstation configuration, one workstation
is designated as the 'system console'. 1In addition to running normal
programs, the system console provides a second mode of operation in
which it can control a number of special system features not access-
ible from regular workstations, including 'print spooling' and

'background processing', explained in paragraphs 1.8.4 and 1.8.5.
1.5 MULTILINGUAL SYSTEM

Unlike previous 2200 Systems, the 2200VS supports multiple
languages. ANSI COBOL and BASIC, as well as Assembler Language is
currently available. Also unlike previous systems, 2200VS languages

are 'compiled' rather than 'interpreted'.

COBOL, (Eommon Business Oriented Egnguage), is one f the most
popular programming languages in use today for commercial data
processing applications. COBOL programs read like ordinary business
English, yet the language provides an array of powerful record
formatting, data manipulation, and file handling capabilities which
are particularly important for data processing applications. In part,
also, COBOL's popularity derives from the fact that it is the only
major language subject to an industry-wide standard, administered by

the American National Standards Institute (ANSI).

For the programmer who wishes to obtain a greater degree of
.control over the system and write more efficient programs, the 2200VS

also provides an Assembler language. Since the instruction set of a

machine defines the complete set of elementary capabilities provided
by the machine, Assembler language provides the programmer with access

to the machine's total repertoire of functions.

The 2200VS Assembler also allows a programmer to define a routine
consisting of & series of instructions, and assign a name to the rou-
tine. The name can then be specified (instead of the entire routine)
as a single instruction in a program. Such named routines are called

' and the names assigned to them are called "macroinstruc-

"“"macros,'
tions." Because the 2200VS Assembler permits the definition of

macros, it is also referred to as a 'macroassembler'.

It is important to note that the machine instruction set of the
2200VS contains all instructions available on the IBM 360, along with
most available on the 370. Programmers familiar with IBM 360/370

Assember Language should therefore find 2200VS Assembler easy to learn.

The 2200VS Procedure Language allows users to create special text
files which perform many of the operations normally executed inter-
actively by the user at a workstation. Some typical procedures would
be: running two or more programs sequentially, supplying run-time
parameters to a program, and scratching or renaming programs. Proce-
dures can reduce the number of keystrokes and interactions required of

a user who is running a program-

'Compilers', 'Interpreters', and 'Assemblers' are discussed more

thoroughly in Section 2.

1.6 LARGE ON-LINE FILES/FILE MANAGEMENT FACILITIES

To support applications with large on-line data base require-
ments, the 2200VS supports extensive on-line data storage capacity.
Both the 10-megabyte and 75-megabyte disk units are supported. 1In a
WCS/60 configuration, the maximum disk storage capacity is 150

megabytes; in a WCS/B80, the maximum is 600 megabytes.

The 2200VS 'Data Management System' provides a comprehensive disk
file access and maintenance capability. Two types of 'files' are
supported on the system: 'sequential files', in which records are
stored in the order in which they are written; and 'indexed files', in
which records are stored in order of their key values. 1In both types
of files, records may be accessed either sequentially or randomly. A
third access mode, dynamic access mode, permits a program to switch
back and forth between sequential and random access on the same data
file.

The indexed file system permits multiple indexes for a single
file. This feature enables a record to be accessed on different keys
for different purposes. An employee record, for example, may be
accessed by employee name for personnel purposes and by employee

number for payroll purposes.

A single file can be shared among several different users.
Several users may therefore perform updates and/or inquiry operations
on a common file concurrently. In data entry applications, for ex-
ample, all operators can directly update a single master file. The
additional steps of creating temporary files for all operators, and

then merging them together are therefore eliminated.

The 'Data Management System' is discussed in more detail in

Section 2.
1.7 VIRTUAL MEMORY
1.7.1 GENERAL

To understand the need for virtual storage, one must first

understand the characteristics and shortcomings of conventional real

storage management.

When a program is entered into a computer, it must be tailored by
the programmer to fit within the confines of that computer's physical
(real) memory. Secondly, the memory space taken up by that program
must be allocated in one piece. Other data or programs cannot be
allocated to the same section of real memory. If a program requires
(for example) 50,000 bytes of real storage, but during execution uses
only 12,000 bytes actively, the remaining 38,000 bytes of real storage
are effectively wasted. 1If a program is too large to fit into the
available memory, it must be broken up into a series of modules, or
overlays, each of which is small enough to fit in memory. Similarly,
if there is not enough memory to hold all of the data used by a pro-
gram, special procedures must be written into the program to handle

the data in smaller chunks.

To further complicate problems, Operating System routines also
take real memory space. Real storage tends to become 'fragmented';
that is, a condition occurs where there are many unused storage loca-
tions, but these are spread out all through real memory, and there is
no single piece of contiguous storage large enough to meet a current

demand for real memory space.

Finally, if a memory upgrade is purchased, programs must be re-
vised, sometimes extensively, to take advantage of the added memory.
The net effect of these considerations is that programs must be de-
signed to meet the restrictions imposed by a particular machine,

rather than to most efficiently deal with the problems these machines

are intended to solve.

To provide efficient management of real storage space, memory
allocation responsibilities must be taken away from the user. In the

2200vs, this management function is performed by the Operating Svstem.
The process by which blocks of program address space are placed

in ('bound' to) a computer's real storage space for execution is

called 'relocation'. The 2200VS uses a 'dynamic relocation' process

1-10

as the foundation for its virtual memory system. Indeed, one of the
most important features of the 2200VS is its 'virtual memory' system.
The term 'virtual memory' more specifically refers to a technique of
memory management ir which the Operating System uses disk storage as
an extension of physical memory, automatically ensuring that only
those sections of a program and its associated data which are
frequently referred to or 'referenced' during program execution are

kept in physical memory; less frequently referenced sections are kept

on disk until needed.
1.7.2 ADVANTAGES AND DISADVANTAGES OF "VIRTUAL MEMORY"

Virtual memory can best be explained by comparison with many
larger computer systems (ia the 2200VS's price range) that do not have
virtual memory capability. On previous 2200 models, if a programmer
wrote a program that exceeded the total available real memory space,
he would have had to carefully break the program into a series of
modules, or overlays, each of which would have been small enough to
fit in real memory. As previously stated, this procedure involves the

addition of special software (a 'procedure') to control the overlay

process.

On a multiprogramming system, where several users share the same
physical memory, this problem becomes even more complex. Each user
must know how much of the total memory is available to him. One
golution is to divide the total memory into a number of 'partitions'

of fixed size, and give each user his own partition. Such systems are

called fixed partition systems. They are simple but inefficient,
since when a user is not using his entire partition, the unused
portion remains vacant, even if a user in another partition requires
more memory for his application. A refinement of this technique,

called dynamic partitioning makes more efficient use of memory by

expanding or contracting the size of each user's partition as his
memory requirements increase or decrease (subject, of course, to the

requirements of other users). Partitioning systems have commonly been

1-11

used on minicomputers (such as certain DEC systems). An alterna ive
to partitiouning used on some systems is swapping. 1in a system that
employs swapping. each user has access to all of the available real
memory. The system man:zges this by swapping eatire programs in and
out of memory from the disk. Each program is brought into memory,
permitted to run for a brief intervai ('time siice'), and then is
swapped ocut while another program takes its place in rcamory. One
example of a competitive system which utilizes swapping 13 the IBM

System 34.
These systems still share two sevious inefficiencies:

i. They foirce the progiammer tc tailor progrvams to fit the

available memorv.

2. hey requive the user to modify nis software in order to

take advantage of additional memory.
These dravbacks are eliminated with a virtual memory system.

In a virtual memory svstem, the Operating System (rather than the
programmer) autowatically verforms the funution of fitting a program
to the available real wmemory space. The Operating Sysztem accomplishes
this task by first dividing the available phvsicsl memory into a
number of fixed--gize 'page frames'. On the 2200VS, each page frame is
2K bytes in size; thus a 64K system would be divided into 32 page

frames. The program addiress space 1s correspondingly divided into a

number of pages, also 2K bytes in size. When prograwm execution
begins, the Operating System loads the first page of the program into
an available page frame (2K block) in phvsical memoxy. Other page
frames may be loaded with the 'first pages' from other programs. If
additional page frames are avaiiable, the syvstem loads in as many

pages of the programs as there are avaiiable page frames in memory.

1-12

As program execution proceeds, reference may be made (either
through the normal sequence of execution or as the result of a branch)
to a secticn of the program not currently located in physical memory.
When such a reference occurs, the system automatically interrupts
program execution. It then locates the referenced page in virtual
memory (on disk); loads that page into an available page frame in
physical memory, and resumes execution of the program. This entire
process takes place automatically without the user's intervention or

knowledge.

Because the Operating System automatically handles the job of
overlaying each program and transferring pages in and out of memory as
necessary, the amount of physical memory available does not impose any
constraint on the program size. The programmer can write his program
to meet the needs of the application most efficiently, without regard
for the size of that program or the physical characteristics of the

system.

The total amount of virtual memory accessible to each user on the
2200VS is one megabyte. Each user has, in effect, his own
one-megabyte computer. So long as his program and its associated
variable data do not exceed one million bytes in size, there is no
need to break it into overlays. Note that the one megabyte figure for
each user's accessible virtual memory space is constant, and is not
dependent upon the amount of physical memory available, nor upon the
number of users on the system. A 64K system with 16 users provides
each user with one megabyte, as does a 512K system with only four

ugsers.

Although the amount of memory accessible to each user does not
vary with the physical memory size or number of users, the system's

response time is affected by these factors. The system guarantees

each user one megabyte of virtual memory by keeping all unreferenced
program pages on a disk, and storing only as many of these pages in

physical memory as there are available page frames. If there are many

1-13

users on the system and relatively little physical memory, the total

number of pages from each program which can be kept in memory at any

time will be smaii. 1In this case, the system must spend a good deal ‘
of time transferring pages in and out of memory as program execution

proceeds. (But even in this situation, a virtual memory system would

still offer better performance than either a partitioning or a

swapping system.) Since the disk I/0 operations involved in page

rransfers are relatively slow compared to actual execution time once a

page is in memory, inadequate memory with too many users can degrade

system performance.

Conversely, whenever 2 memory upgrade is purchased in a virtual
memory system, all programs experience an immediate improvement in
response time with no changes in the software itself. 1In other types
of systems, such performance improvement may be immediate, or may
require software modification. Virtual memory is the only system
which guarantees automatic performance improvement without software

modification when more memory is added.

In summary, 2200VS v.rtual memory offers the following advantages:

1. Allocation of memory is managed among several users more
efficieatly than other, less sophisticated memory management

techniques.

2. Each user is provided with access to a one-million-byte
virtual memory (% Meg program address space, % Meg

modifiabie data space). .

3. Program size is made independent of memory size. Programs
can be designed tc meet the needs of the application, not
the restrictions of a particular machine. The same programs
will run on other 2200VS systems with different memory

configurations.

4. Memory upgrades will automatically improve performance,

without requiring modifications to existing software.

1.8 EXPANDABILITY

The modular design of the 2200VS permits it to be readily
expanded with additional physical memory, more disks, and additional
workstations and printers. (Expansion can be carried out with no

impact on existing software.)

A WCS/60 configuration can be expanded from the minimum 64K of
memory to a maximum of 256K, in 64K increments. Disk capacity can be
increased from the minimum 10 megabytes to a maximum of 150 mega-
bytes. Up to 16 additional workstations can be added (for a total of

17). High-performance printers are also available.

A WCS/80 configuration can be expanded from the minimum 256K of
memory to & maximum of 512K, with disk storage expandable from 150

megabytes up to 600 megabytes. The WCS/80 can support up to 23
workstations.

The user with distributed data processing requirements can
therefore, purchase several system configurations of differing size

and complexity, and utilize a common set of application software on
all systems.

1.9 MAJOR PERFORMANCE FEATURES

In addition to those already mentioned, the 2200VS provides a
diversity of features designed to increase total throughput and
improve system performance. Among these are: automatic program
sharing, independent I/0 processors, automatic data compactionm,

automatic print spooling, and background processing.

1.9.1 AUTOMATIC PROGRAM SHARING

When two or more users are running the same program at the same
time, it would be wasteful to keep a separate copy of the program in

memory for each user. To avoid such duplication, the system auto-

1-15

matically causes several users to share the same copy of a program in

memory whenever possible. The amount of memory saved by this feature

can be substantial when, for example, a number of users are running a
large data entry program, or several programmers are compiling COBOL
programs. Yrogram sharing also improves performance for all users by
reducing the total number of pages which must be transferred in and

out of memory.

1.9.2 INDEPENDENT I/O PROCESSORS

Most conmeicial application programs spend A good deal of their
time performing 1/0 operations, such as reading and writing disk
files, or sending output to a printer. On the 2200VS, I/O operations
are handled by independent I1/0 processors, which control the transfer
of data between memory and the various 1/0 devices. When a program
requests an 1/0 cperation, the central processor notifies the appro-
priate 1/0 processor, supplies it with any nzcessary information, then
tutns its atteuntion to other processing while the I/0 operation is

carried out. Because each I/0 processor can transfer information

directly to or from memory without central processor involvement
(i.e., 'Direct Memory Access -DMA'), the central processor is able to
perform internal processing concurrently with 1/0 oparations. This
overlap of 1/0 processing and internal processing guaranteeg that
maximum use is made of the central processor, and increases cverall

system throughput.

1.9.3 AUTOMATIC DATA COMPACTION

To conserve disk storage and hasten daica transfer, the sysiem
provides an option to compress data records automatically before
storing them or disk. In the compaction process, characterc which are
repeated three or more times in sequence are siored as a single
character and a repetition count. Data compaction is performed
automaticaliy on all print files, and is performed on a data file if

the 'compressed records' option is specified when the file is

created. Compressed records are automatically expanded to their
original format by the system when they are read back into memory,
making the entire compaction process completely transparent to the
user's software. Data compaction can reduce the disk storage
requirements of many {iles up to 50% and contributes to improved
performance by reducing the total number of characters which must be

transferred between disk and memory for each record access.
1.9.4 AUTOMATIC PRINT SPOOLING

Print spooling is a technique by which a job scheduled for
printing is temporarily stored in a disk file rather than being sent
directly to the printer. The 'Print files' thus created on disk are

placed in a print queue under the control of the system console. When

a printer becomes available, each job is then printed in the order
determined by the print queue. Print spooling has the dual benefit of
freeing individual workstations from dependence upon printer avail-

ability, and enabling the printers to be efficiently scheduled.

In most installations, printers are a common resource shared by
all users. If printers are not used efficiently, system performance
can be seriously degraded. For example, a user at one workstation who
wishes to print only a few pages could be held up for hours while
another user is printing a lengthy report. To avoid this situation,
the 2200VS system provides this automatic 'print spooling' feature.
Print spooling is one function of the 'Data Management System', which

in turn is a subset of the Operating System software.

1.9.5 BACKGROUND PROCESSING

Background processing is the automatic execution of batched

lower-priority programs whenever there are no higher-priority programs

being handled by the Operating System.

Although the 2200VS is designed primarily for interactive

operation, it is possible to run jobs which require large amounts of

1-17

processor or 1/0 time, with a minimum amount of operator interaction,
on a 'background' basis. Background jobs are run in a batch from the

system conscle, rather than from the individual workstations. All

workstations therefore remain available for interactive use even while

a background job is running.
1.10 USER CONVENIENCE FEATURES

While they may serve as useful first criteria for evaluating a
system, performance and throughput do not tell the whole story. A
system must also be designed so that its users can make the most
effective use of its facilities, without being forced to undergo a
long and arduous learning process. The 2200VS is a user-oriented
system which offers a multitude of convenience features that make it
easier to use by programmers and non-programmers alike. Among these
features are: a versatile data entry, file maintenance, and report
generation facility; an interactive text editor for entering and
editing source programs; an easy-to-use symbolic debug facility for
program debugging; and an assortment of system utility programs,

including sort, copy and link routines.
1.10.1 DATA ENTRY/FILE MAINTENANCE

Included in the 2200VS system software is a package of three
programs designed to facilitate the creation and maintenance of data
file, and the creation of reports based on such files. A setup
utility permits the user to define a data file by specifying the types
of data in each record of the file, and to design the screen display
used to prompt an operator for information to be entered for each
record. A data entry program can then be used to solicit operator
input by displaying the defined prompts and accepting and validating
entered data. A report utility, intended for use by management as
well as programmers, provides great flexibility in the design of

custom reports which present information from a data file in a useful

and coherent format.

1-18

1.10.2 INTERACTIVE TEXT EDITOR

Program development is greatly facilitated on the 2200VS by an
interactive text editor. With the editor, a programmer can create and
modify program files interactively using any one of the supported
languages. Entering program text is as easy as typing it into the
display, and editing an existing program is equally simple with the
many editing functions provided. Interactive program development
permits programmers to work with maximum productivity in the

development and maintenance of programs.
1.10.3 INTERACTIVE DEBUG FACILITY

In many cases, the process of identifying and correcting bugs in
a program is more time-consuming than the writing process itself. To
assist the programmer in this task, the 2200VS supports an easy-to-use

interactive debug facility.

The 2200VS Debug Processor permits inspection of wrogram code,
and permits inspection and modification of data by memory address. In
addition, an easy-to-use 'symbolic' debug feature is provided that
displays sectic 1 of source code in a program 'window' on the work-
station screen, and permits data values to be examined and modified by
symbolic data name rather than by address. The 2200VS Debug Processor
also includes facilities for examining and modifying internal regis-
ters and the Program Control Word. Breakpoints can be set in a pro-
gram, and another feature allows the user to manually step through

program execution.
1.11 ADDITIONAL SYSTEM UTILITIES

A variety of additional system utility programs are provided to
support the general programming task. These include, among others,
copy, sort and linker utilities. The versatile copy utility permits

the user to copy a single program or data file, an entire library of

such files, or a complete disk volume. For data files, the copy
utility provides an option to change the file organization from
sequential to indexed or vice-versa. The sort utility provides
high-speed sort and merge capabilities for both indexed and sequential
files, with either fixed or variable-length records. The linker,
finally, is used to link together two or more program modules into a
single large program, and optionally to remove the symbolic debug
information previously inserted in a program for debugging purposes.
Other utilities include a translation utility which translates from
EBCDIC to ASCII and vice;versa; a special copy utility which copies
and automatically translates 2200 program and data files to 2200VS
format (and vice-versa); and a display utility, which can be used to

display and/or print printer files.

The following list contains the names and descriptions of all
2200VS system utility programs. A detailed description of each system
utility is documented in the 2200VS File Management Utilities Manual,
WL# 800-1300FM.

ASSEMBLE - Assembles a source program written in 2200VS
macroassembler language.

BASIC - Compiles a program written in 2200VS BASIC.

COBUL - Compiles a program written in 2200VS COBOL.

CONTROL - Used to define attributes and validation criteria
for a data file.

COPY - Copies files, libraries, or entire volumes from
one location to another.

COPY 2200 - Copies and automatically converts files from 2200
standard format to 2200VS format, and vice versa.

DATENTRY - Used to create and update data files.

1-20

DISKINIT

DISPLAY

DUMP

EDITOR

EZFORMAT

LINKER

LISTVTOC

PRINT

REPORT

RPG II

SORT

TRANSL

Initializes a new disk volume in 2200VS format,

with a volume label and Volume Table of Contents.

Displays the contents of a file on the work

station screen.

Produces a printed copy of a task dump previously
written to diskette with the DUMP AND CANCEL
function of the Debug Processor.

Used to enter and edit source program text.

Used to create display files for formatting the

work station screen.

Combines two or more program modules into a single

executable program.

Produces complete or selective listings of a
specified volume's Table of Contents, and examines
the VTOC for errors.

Prints the contents of a print file.

Used to produce customized reports from a data
file.

Compiles source programs written in 2200VS RPG II.

Sorts a data file, with an optional capability to

merge two or more sorted files.
Automatically translates the contents of a

specified file from EBCDIC to ASCII (the code used
internally by the 2200VS), or vice versa.

1-21

1.12 FILE PROTECTION AND SECURITY

All disk and tape files on the 8300 are classified according to a
flexible file protection and security system, tailored at each
installation to suit the requirements of the specific applications in
use. At each installation, the file protection and security system is
under the direct control of the Security System Administrators. The
Security System Administrators are gspecially recognized users who
determine the meaning and use of the file protection classes. They
are able to access all files on the system, including the System User

List and the Special Privilege Program List.

Every program, procedure, and data file on the system can be
placed in one of twenty-eight file protection classes. Classes A
through Z are used to represent protection classes whose meanings are

determined by the Security System Administrators. For example:

Class W - The Workorder File

Class P - The Product File

Class C - The Customer File

Class Q - The Sales Quota File

Class R - The Pension Administration File

Class M - The Payroll File

Class X - Proprietary Programs and Procedures

Class D - Confidential Project Documentation Files

Classes "#" and " " (blank) are reserved for specific uses:
Class " '" - Unprotected Files

Class "#" - Private and Security System Administration Files

The class of unprotected files is specified by setting the file
protection class to blank. An unprotected file can be accessed by any
user of the system. Class "#", unlike the other file protection
classes, is ugsed to define one protection class for each user. When
specified, Class "#'" identifies those files which can be accessed only
by the user who created them (and by the Security System Adminis-

trators).

1-22

Before any user of the system can access a protected file, he
must identify himself using the Logon command. At Logon Time, by
lookup in th System User List, the user's Logon-ID and Password are
validated, and his "access rights", relative to the defined file
protection classes, are determined. The access rights are listed in
the System User List (for each file protection class) to specify three

different levels of privilege in order of increasing responsibility:

1) Execute Only Access (EXEC)
2) Execute and Input Access (READ)

3) Execute, Input, Update, Rename, Scratch and Debug Access
(WRITE)

These access rights are checked whenever a user attempts to
execute a program or procedure, whenever he attempts to open an

existing file, and whenever he attempts to rename or scratch a file.

1.13 RELIABILITY

To ensure the integrity of information stored in memory and on
external storage devices (disk or tape), the system provides automatic
error detection and correction facilities. In physical memory, all
single~bit errors are corrected automatically, while multi-bit errors

cause an error indication. Similar checks also are performed on

information stored on disk or tape.

1.14 HARDWARE - GENERAL

This section describes the Central Processing Unit, I/0 Pro-

cessors, available options, and peripheral devices for the WCS/60 and
WCs/80.

1-23

1.14.1 THE CENTRAL PROCESSING UNIT (CPU)

The CPU is the central component of the WCS/60 and WCS/80 sys-
tems. It is a compact cabinet which houses the 2200VS computer
(including main memory and I/0 Processors) and the system diskette

drive.

FIGURE 1-2 CENTRAL PROCESSING UNIT (cry)
THE WCS/60 CPU

The WCS/60 CPU contains the 2200VS computer, the 2270V
308,000-byte diskette drive, and two IOP's:

1) A 22V01 Printer/Workstation IOP, which supports one printer
and up to three workstations.

2) A 22V02 Diskette/10 Megabyte Disk IOP, which supports the
2270V system diskette drive and up to three 2260V 10
Megabyte Fixed/Removable Disk Drives.

Up to four additional I0P's support other peripherals and commun-

ications options.

1-24

‘ Minimum memory for the WCS/60 is 64K bytes. Memory upgrades are

available in increments of 64K, to a maximum of 256K bytes.
THE WCS/80 CPU

The WCS/80 CPU contains the 2200VS computer, a 2270V 308,000-byte
diskette drive, and three IOP's:

1) A 22V01 Printer/Workstation IOP, which supports one printer
and up to three 2246P workstations.

2) A 22V02 Diskette/10 Megabyte Disk IOP, which supports the
2270V system diskette drive and up to three 2260V 10
megabyte fixed/removable disk drives.

3) A 22V04 Removable Disk Pack Disk IOP, which supports a
combined total of four 2265V-1 75 megabyte disk drives,
and/or 2265V-2 288 megabyte disk drives.

‘ Up to five additional IOP's support other peripherals and commun-

ications options.
1.14.2 1I/0 PROCESSORS (IOP'S)

I1/0 Processors control the operations of peripheral devices. The

following IOP's are available:

|
|
22V01 Printer/Workstation IOP.
Supports one printer up to three workstations.

22v02 Diskette/10 Megabyte Disk IOP.
Supports one 2270V 308,000 Byte Diskette Drive and up to
three 2260V 10 Megabyte Disk Drives.

22V04 75 Megabyte Removable Disk Drive IOP.
Supports two 2265-1 75 Megabyte Removable Disk Drives.
‘ (Used only for WCS/60; only one 22V04 IOP per system is

allowed.)

22v05 9 Track Tape Drive IOP.
Supports up to four 2209V 9 Track Magnetic Tape Drives.

22V06 Communications IOP.
Available in two models to support bisynchronous tele-
communications in the following combinations.
22V06-1 - Supports one bisynchronous line.

22V06-2 - Supports two bisynchronous lines.

1.14.3 WORKSTATION

The 2246P workstation is the means by which users communicate

with the system.

FIGURE 1-3 2246P PARALLEL WORK STATION

The workstation consists of a display screen and keyboard. The
12-inch diagonal CRT display screen has a total display capacity of
1920 characters (24 rows, with 80 characters per row). Characters can
be displayed in bright or dim intensity, and the screen can be
formatted into 'fields'. The keyboard contains the familiar
typewriter-like arrangement of alphabetic, numeric, and special
character keys. A strip of 16 Program Function keys is placed along

the top of the keyboard.

Workstations can be attached locally or remotely. A local
workstation may be a maximum distance of 250 ft. from the CPU. A
remote workstation may be located anywhere adjacent to a telephone
line; it communicates with the CPU via the 22V06 communications IOP.
(See the discussion of the communication IOP at the end of this

chapter.)
1.14.4 DISKS

In addition to the system diskette drive, three hard-disk models
are available, ranging in storage capacity from 10 megabytes to 288

megabytes.
2270V SYSTEM DISKETTE DRIVE

The 2270V diskette drive, mounted in the Central Processing Unit,

holds a single removable diskette.

Each diskette has a storage capacity of 308,000 bytes. Diskettes
can be used to store programs or small, transient data files; they
also serve as a convenient means of transferring information between
two WCS systems, or between a WCS system and a foreign computer
system. In addition, all updates to the WCS/60 and WCS/80 system

software made by Wang Laboratories will be provided on a diskette.

1-27

FIGURE 1-4 2270V SYSTEM DISKETTE DRIVE
2260V TEN-MEGABYTE FIXED/REMOVABLE DISK DRIVE

The 2260V provides an approximate storage capacity of 10 million

bytes, equally divided between a fixed and removable platter.

Because the disk unit contains both a fixed platter and a
removable cartridge, backup operations can be performed easily.
Cartridges containing backup file copies or information which is not
currently needed can be stored "off-line" and remounted in the disk

unit as required.

1-28

FIGURE 1-5 2260V FIXED/REMOVABLE DISK DRIVE
10 megabytes

2265V REMOVABLE DISK PACK DISK DRIVE

The 2265V is a high-performance, high-capacity disk unit which

‘ provides fast access to large volumes of information.

FIGURE 1-6 2265V-1, -2 REMOVABLE DISK DRIVE
75 megabytes (2265V-1)
288 megabytes (2265V-2)

1-29

The 2265V is available in two models:

1) The 2265V-1, with a storage capacity of 75 million bytes.
2) The 2265V-2, with a storage capacity of 288 million bytes.

Each model holds a single, removable disk pack.In addition to its
high speed and large storage capacity, each model of the 2265V also
provides extensive automatic error checking and correction facilities

to ensure greater reliability.

On the WCS/60, a maximum of two 2265V-1 75 megabyte drives are
allowed. The 2265V-2 288 megabyte drive is not supported on the
WCS/60.

On the WCS/80, a combined maximum of eight 2265V disk drives are
allowed (2265V-1 and/or 2265V-2).

1.14.5 PRINTERS
A variety of different printers are available for the WCS/60 and
WCS/80, offering different speeds and print types. There is no re-

striction on the printer models which may be attached to a particular

system.

2221V MATRIX PRINTER

The 2221V is a versatile matrix character printer. Characters
are formed using a 9 x 7 dot matrix (for some characters, a larger 9 x

% matrix is used for better detail).

FIGURE 1-7 2221V MATRIX CHARACTER PRINTER
200 characters per second

1-30

.

The 2221V provides a character set of 96 characters, including
upper and lowercase and special characters. Multipart forms with up
to four carbons plus an original can be handled. Paper in widths from
3 1/2 inches (8.9 cm) to 14.9 inches (37.2 cm) can be mounted. The
printer provides automatic vertical formatting, programmable audio

alarm, and an expanded-print capability.

The 2221V prints scrially at 200 characters per second. The
number of lines per minute actually printed varies, according to the
line length, from 65 to about 300 lines per minute.

2231V MATRIX PRINTER

The 2231V is an economical matrix printer which offers many of

the features of the 2221V, but with a somewhat slower printing speed.

FIGURE 1-8 2231v-1, -2 MATRIX CHARACTER PRINTER
120 characters per second

The 2231V provides a full 96-character set, including upper and
lowercase and special characters, using a 7 x 9 dot matrix to form
each character. The 2231V is available in two models: the 2231V-1
prints a 112-character line (10 pitch); the 2231V-2 prints a
132-character line (12 pitch). Multipart forms and variable paper
widths can be handled, and an audio alarm and expanded print

capability are provided (see the 2221V).

1-31

The 2231V prints serially at a rate of 120 characters per

second. The actual printing speed varies, according to the line

length, from 45 to about 250 lines per minute.
2261V MATRIX LINE PRINTER

The 2261V printer is a high-performance matrix line printer which

produces quality output at much higher speed than serial printers.

FIGURE 1-9 2261V MATRIX LINE PRINTER
240 lines per minute

The 2261V produces high-quality output using a 9 x 8 dot matrix
to form each character. (An 11 x 8 matrix is used for some characters
to obtain better detail.) A complete set of 96 characters, including

upper and lowercase and special characters, can be printed.

A switch-selectable pitch features enables you to switch from 10
pitch (132-character line) to 12 pitch (160-character line). Line
density is also switch-selectable at either 6 line per inch or 8 lines

per inch.

An original and up to four carbon copies can be printed, with

paper width varying from 3 1/2 inches (8.9 cm) to 14.9 inches (37.8

cm).

1-32

The printer offers a number of other useful features, including

automatic formatting, expanded print, and a programmable audio alarm.

The 2261V prints bidirectionally, using four matrix impacter
printing heads to achieve a print speed of 240 lines per minute,

independent of line length.

2263V LINE PRINTER

The 2263V is a solid-character line printer which produces
quality printed output at high speed. The 2263V is available in two
models: the 2263V-1, with a printing speed of 400 lines per minute;
and the 2263vV-2, with a printing speed of 600 lines per minute.

FIGURE 1-10 2263V-1, -2 LINE PRINTER
400 lines per minute (2263V-1)
600 lines per minute (2263V-2)

The 2263V prints one entire line (up to 132 characters) at a

time. It can print one original and up to five carbon copies. Paper
widths from 3.5 inches (8.9 cm) to 19.5 inches (48.8 cm) can be
handled. The printer provides a number of useful features, including
an automatic paper .puller, static eliminator, and programmable audio
‘ alarm. Different typefaces and special character sets (including

foreign language character sets) are optionally available.

1-33

2281V WHEEL PRINTER

The 2281V produces typewriter-quality output at 30 characters per

second.

FIGURE 1-11 2281V WHEEL PRINTER
30 characters per second

The 2281V is a bidirectional output writer which utilizes a daisy
character wheel with an 86-character set (upper/lowercase and special
characters). Character wheels are removeable/replaceable for changing

character sets.

The 2281V prints either a 132 or 158-character line at 30 char-
acters per second. Among its features are programmable character
underscoring, format tabbing, and color print selection.

1.14.6 TAPE DRIVE

2209V NINE-TRACK TAPE DRIVE

The 2209V Nine-Track Magnetic Tape drive is particularly useful
for transferring information between a WCS/60 or WCS/80 and other

computer systems.

1-34

FIGURE 1-12 2209V NINE-TRACK MAGNETIC TAPE DRIVE

The 2209V can read from or write to any 1600 bytes-per-inch (bpi)

Phase Encoded magnetic tape. It supports both ASCII and EBCDIC char-
acter codes.

The Model 2209V operates in the Phase Encoded mode at a density
of 1600 bpi. The drive transports tape at a velocity of 75 inches per
second during read and write operations, and up to 200 inches per
second during rewind. The unit contains a dual-gap read/write head,
full width erase head, tape cleaner, and photo electric sensors to
detect reflective tape markers and tape breakage. The Model 2209V
provides read-after write verification and automatic correction for
single track errors, and for multiple track errors which can be

reduced to a single track.
1.14.7 COMMUNICATIONS
22V06 COMMUNICATIONS IOP
The 22V06 Communications IOP is an I/0 Processor which supports
bisynchronous communication with a variety of line speeds and industry

standard protocols. It is available in two models:

1) The 22V06-1 supports a single bisynchronous line.
2) The 22V06-2 supports two bisynchronous lines.

1-35

A number of different line speeds are available including 1200,
2400, 4800, and 9600 baud. At least one line can support an automatic

calling unit.

A number of industry standard protocols are supported for bisyn-

chronous transmission:

1) 2780/3780 emulation.
2) 3270 emulation.
3) HASP.

On the 22V06-2, each line is independently programmed; thus it is
possible to run different protocols on separate lines concurrently

from the same IOP.

Remote 2246P workstations can be attached to the system via the
22V06 IOP. Such workstations function as local workstations, enabling
users in remote locations to communicate directly with the system and
interactively access all system facilities, just as if they were

logged on locally.

1-36

Wang

Computer

Systems

Technical
Information

GENERAL PERFORMANCE PHYSICAL ENVIRONMENTAL
DEVICE SPECIFICATIONS SPECIFICATIONS SPECIFICATIONS REQUIREMENTS
Mods! 2246P CRT ® 2K Random Access Memory ® Physical Dimensions ® Power Requirements
Parallel Workstation @ 12.nch diagonal display screen Heght = 1310 (33cm) 115 or 230 VAC (£10%)
® 24 hines, BO characters per hine Width - 1950 (48.5¢cm) 50 or 80 He (21 Hn)
® Scraen can be formatted into Depth - 18.6n (495 cm) 125 watts
discrate fields ® Waght ® Operating Environment
® Manual controls for contrast 40 1h 118.2 kg) 50°F 10 90°F
and brightnoss ® Heat Disipation (10°C 10 32°C)
® Bright and dim intensity for 427 8TUN 35% 10 65% relative humidity
instant recognition of field ® Cable
modifiability 600 ft maximum
® User-programmable blinking
cursor for next-charscter
position
® Anti-glare filter
Keyboard
® Typewriter-like keyboard
® Cursor positioning keys
® Character insartion snd
deletion keys
® Numeric keyped
® 18 Program Function keys
® Programmable Audio Alarm
10P - 22V0!
Mods! 2260V ©® 10 magabytes/drive ©® Rotational Spaed 2400 RPM ® Physics! Dimenilons ©® Power Requirements
Fixed/Ramovable Disk ©® One tixed 6-megabyte platter ® Aversge Access Time I8 ms Helght — 32.5in. (82.8 em) 116 or 230 VAC (£ 10%)
and ona removable 6:megabyte ® Average Latency Time Width - 12.5n. (44.8 cm) . 60 or 80 Hz (21 Hz)
platter par drive for convenient 12,6 ms Depth - 20in (73 cm) 800 watts start up
backup and off-line storege ® Track-to-Track Head Posi ® Waelght 426 watts running
® 408 tracks per platter tioning Time 9 ms ® Heat Dissipation ® Operating Environmant
® Data Transter Rste 2043 BTU/hr BOOF to 98OF
@ |OP - 22V02 312 kilohytus/sec (109C 10 35°C)

20% to 80% relative humidity
Mods! 2266V-1 ® 75 magabytes/drive ® Rotation Spesct 3600 RPM ® Physical Dimansions ©® Powar Requirements
75.Megabytes Removable ® 5 usable surfaces/pack ® Average Access Time 30 ms Helght - 41in, (104 cm) 110 VAC (£10%)

Disk Pack Disk Drive ® 823 cylinders/pack ® Average Latency Time Width - 24in. (81 cm) 80 or 80 Hz (21 Ha)
8m Depth — 38in. (91 cm) 40 amp start up
® 0P 22Vv03 for WCS/80 ® Track to-Track Heat Pos ® Welght 8.2 amp operating
22V04 for WCS/80 tioning Time 8 ms 800 Ib (227 kg) 1.6 amp standby
® Data Transfer Rate ® Host Dissipation ©® Operating Environment
® Raestriction: Maximum of twu 1.2 megabytes/sec 2680 BTU/hr 80°F 1o 90°F
drives on WCS/80 (189C to 32°C)

38% to 85% relative humidity *
Model 2268V-2 ©® 288 megabytesdrive ® Rotationsl Spesd ® Physical Dimensions ® Powaer Requiraments
288-Maegabyte Removable ® 18 usable surfaces/psck 3600 RPM Heght = 41in. (104 cm) 208 VAC (210%)

Oisk Pack Disk Drive ® 823 cylindersipack ® Average Access Time 30 ms Width - 24.n (81 cm) 50 or 80 Hz (£1/2 H2)
® Average Latency Time 8 ms Depth - 36n. (81 cm) 400 amp startup
® |0OP: 22V04 ® Track-to-Track Heat Pos: ® Weight 8.0 amp operating
tioning Time 8 ms 650 In (260 kg) 2.0 smp standby
® Restriction: Only for WCS/80 ® Data Transfar Rate ® Heat Diswpation ® Operating Environment
1.2 megabytes/sec 3080 8BTU/hr 80OF to BOOF

1189C 10 32°C)

35% to 85% relative humidity
2200V Magnetic ® 25 mugabyte capacity (with ® Resd/MWrite Speed @ Pnyncal Dimensions ® Power Requiremants
Taps Drive 2k blocks) 76 inches par second Height = available with 116 VAC (£10%)

® Can hold up to 2400 1 ® Rewind Spesd integral storage B0 Hz ¢V He
(731 5 m) of tepe (standard 200 inches per sscond cabinet in heights 4.1 amp
thickness) ® Dats Transfer Rate from 34 in 1o 64 in. ® Operating Environment
® Records at 1600 bpi phase 120 kilobytes per tecond (83 ¢m to 182.2cm) B80°F 10 80°F
encodad Width ~ 24 1n, (81 cm) (189C tn 320C)
® Holds & standard 106 1n. Depth ~ 26.n (66 cm) 36% to B5% relative humidity,
(26 7 cm) renl ® Waight non-condensing
® Duai-gap read-aftar-write 1701b (77 4 kg)
head ® Heat Dissipation
1623 BTU/hr
10P: 22V0B

1-37

Wang
Computer
Systems

Technical

Information

GENERAL PERFORMANCE PHYSICAL ENVIRONMENTAL
DEVICE SPECIFICATIONS SPECIFICATIONS SPECIFICATIONS REQUIREMENTS
Model 2221V ® High quality 9 x 9 and 9 x 7 dot ® Print Speed

Matrix Character Printer

matnix impact pninter
Expanded print capatnhity

Up to tive-part forms

Up 10 132 characters/in

Full ASCII set of 96 characters
Full line butfering
Programmable Audio Alarm

14 9.n (37 8 cm) maximum
forms width

3 channel vertical format unit

® Bottom load paper teed

® |0P: 22Vv0)

200 characters per second
65 10 300 lines per minute,
depending upon length

® Physical Dimensions
Height - 121n (31 cm)
Width - 29.n. (74 cm)
Depth — 251n. (64 cm)
® Weight
85 1b (38.6 kg)
® Heat Dissipation
1025 BTU/be

Power Requirements

1156 VAC (£10%)

56 or 60 Hz (¢ Hz)

(10°C 10 32°C)

35% to 66% relative humidity,
non-condensing

Models 2231V-1 and
22312

® High quality 7 x 9 dot matrix
impact printer

® Punt speed
120 characters per second

® Physical Dimensions
Height — 10in. (25 cm)

Power Requirements
115 or 230 VAC (210%)

Matrix Character Printers ® Expanded print capability 45 1o 250 lines per minute, Width - 24.n. (61 cm) 50 0r 60 Hz {t1 H2)
® Model 2231V-1 prints 112 depending upon length Depth — 181n. (46 cm) 140 watts
character hne ® Weight ® Operating Environment
® Model 2231V 2 prints 132 68 1b (31 kg) 50°F to 90°F
character hine ® Heat Dissipation (10°C to 32°C)
® Full ASCIlI set of 96 characters 478 BTUM 35% to 65% relative humidity,
® Up o 5 part forms
® Full hne butfer
& Programmable Audio Alarm
® Manual line feed
@ 2 channel vertical format unit
10P: 22V01
Model 2281V ® High Quality 11x8and9x 8 ® Print Speed ® Physical Dimensions O Power Requirements

Matrix Line Printsr

dot matrix impact printer

240 lines per minute,

Height — 36 in. (91cm)

115 or 230 VAC *+10%

® Expanded print capability independent of characters- Width - 27 in. (68.6cm) 50 0r 60 Hz (¢ 1 H2)
® Up to 5-part forms per-line and pitch Depth — 26 in. {66cm) 460 watts
©® 132 character line ® Weight © Operating Environment
(10 pitch format) or 160 210 Ib (94.5kg) 50°F 10 90°F
character line (12 pitch format) ® Heat Dissipation (10°C 10 32°C)
® Full ASCII set of 96 characters 1572 BTU/hr 35% to 65% relative humidity,
® Line density switch selectable non-condensing
at 6 lines/inch or 8 lines/inch
® Full line buffering for taster
throughput
® 14.9 inch (37.8cm) maximum
forms width
® Automatic formatting
® Programmable Audio Alarm
® 4 matrix impacter heads,
bidirectional printing
® 3 channel vertical format unit
® 10P: 22V01
Models 2263V-1 ® Chain Printer ® Print Speed ® Physical Dimensions ® Power Requirements
snd 2263V-2 ® Removable print character links ~ 400 lines per minute for Height - 42.n. (106.7cm) 115 or 230 VAC (£ 10%)
Line Printers ® Optional character sets and Model! 2263V-1 Width - 36.5n. (92.7¢m) 50 0r 60 Hz (*1 H2)
foreign language type - 600 lines per minute for Depth - 32:n. (81.3cm) 690 watts
@ Gothic print set Model 2263V-2 ® Weight @ Operating Environment
® 132 characters per line ® Single Line Advance Speed 570 Ib (258.5kg) 400F to 95°F
® 64 ASCII character set 20ms ® Heat Dissipation (4.49F 10 35°C)
(upper case) ® Slew Speed 2700 BTU/hr 35% to 65% relative
® Up to 6-part forms 20 in./second humidity, noncondensing
® Full-line buffering
® 35inch to 19.5inch

paper width
® B-channel vertical format
unit
Static eliminator
Automatic paper puller
Programmable Audio Alarm
Precise form positioning
Off-line test capabitity
Diagnostic panel

® |0P: 22V01

1-38

Wang

Computer

Systems

DEVICE

GENERAL
SPECIFICATIONS

PERFORMANCE
SPECIFICATIONS

PHYSICAL
SPECIFICATIONS

Technical
Information

ENVIRONMENTAL
REQUIREMENTS

Modsl 2281V
Wheas! Printer

Daisy character wheel
impact printer

Removable character wheel
and interchangeable
character sets
Typewriter-like print
registration

86 ASCI! character set, both
upper and lower case

132 characters per line
(10 pitch format), 158
characters per line

(12 pitch format)
Black/red ribbon cartridge
Full-line butfering
Programmable character
underscoring

Format tabbing

Top of form switch

Pin feed forms tractor
mechanism (optional)

® Print Speed
30 characters per second

©® Physical Dimensions
Height = 14in (35.6¢cm)
Width - 24.n. (61cm)
Depth - 22in. (65.9¢m)
® Weight
37 1b (16.8kg)
©® Heat Dissipation
850 BTU/hr

©® Power Requirements
115 or 230 VAC (£10%)
650 0r 60 Hz (21 Hz)
250 watts
® Operating Environment
450F 1o B5°F
{79C t0 35°C)
35% to 65% relative
humidity, non-condensing
@ Duty Cycle
Medium-average
actudl printing time — up t0
4 hours per day

® Adjustable platen

® |0P: 22V01
Model 22V06 ® 22V06 1 supports | @ 1200, 2400, 4800 or 9600 band | ® Requires one |0OP slot in CPU
Communications isnychronaus line
1op ® 22V06-2 supports 2

isynchronous hines
Protocols supported:

1) 2780/3780 emulation

2) 3270 smulation

3) remote 2200VS work-:

station

4) HASP
At least one bisynchronous
line supports automatic
calling unit

1-39

 SECTION

“ 2
SYSTEM

CONCEPTS

SECTION 2
SYSTEM CONCEPTS

2.1 2200VS - VIRTUAL MEMORY

In small computers with, for instance, 4K of RAM, a programmer
often overcomes the physical RAM size limitations with program
overlays and small disk records. The smaller the physical memory, the
more frequently the disk must be used. Software required to support
disk operations adds to program overhead and increases the chance of
programming errors. Changing physical memory size causes further

problems by necessitating changes ir software.

In a virtual memory system, the larger the physical memory, the

faster programs can be run. Fewer disk operations are required.
We can explain the above points by example:
2.1.1 A COMPARISON TO EXISTING 2200's

DIM A$(20,20)32, sets up a four hundred (20 x 20) element array
(each element 32 characters, max.), using 12.8K bytes of memory (in a
2200 with more than 12K of RAM). On a 4K Model 2200, to accomplish
the same, DIM A$(20)32 would be used, adding at least twenty disk
operations to keep the array loaded with currently needed data. These

extra disk operations must be written into the existing software.

A virtual memory computer does all the disk overlay work for the
programmer. If the 4K Model 2200 referenced here had virtual memory,
the 12.8K array dimension would work; the excess being put on a disk
scratchpad. Whenever an array reference was made beyond the physical
memory limits, the 2200 CPU would exchange a portion of current
physical memory with a portion of disk data, and then proceed. The
user would not be aware of the true memory size, or the number of

overlays. The same would be true for long program text.

2-1

Although the user is 'not aware' of the specific functions
involved in providing him with a virtual memory, larger than the
physical memory, an understanding of the paging mechanism is useful.
Also, a general awareness of how paging is implemented may help any

programmer write more efficient code for the machine.
2.1.2 RELATION OF VIRTUAL MEMORY TO PHYSICAL MEMORY

Physical memory of the 2200VS is limited to a maximum of 512K
bytes. However, at the present stage of 2200VS developement, machine
instructions can reference any of 1,310,720 one-bvte virtual address

locations.

'"Translation' of virtual addresses to physical ('absolute')
addresses is performed by routines of the Operating System. Three key
information units recognized by the Operating System during transla-

tions are: 'segments', 'pages', and 'page frames'.

A segment is a block of contiguous one-byte virtual memory
locations that begin on a decimal virtual address of zero, 1,048,576,
or some multiple of 1,048,576. This start-point for each segment is
commonly referred to as & 'l Meg Boundary'. Segments 1 and 2 are
allocated to each user at LOGON time by the Operating System. Segment
zero is shared by every user. Segment 0 begins at virtual address 0,
ends at virtual address 262,143, and comprises 128 pages. Supervisory
routines and data of the Operating System are in segment zero. Seg-
ment 1 for each user starts at virtual address 1,048,576, ends at
virtual address 1,572,863, and comprises 256 pages. User programs are
in segment one. Segment 2 for each user starts at virtual address
2,097,152, ends at virtual address 2,621,439, and also comprises 256
pages. User 2353 is in segment two. References to segments 3 through
15, presently invalid, are treated as program errors. Note that there
are gaps of nonaddressable virtual locations between segments. These

gaps are defined as follows:

2-2

VIRTUAL ADDRESSES 262,144 - 1,048,575 (inclusive) constitute
the gap between segment 0 and segment 1
This gap is somtimes called the 'segment 0
Non-addressable' area.

VIRTUAL ADDRESSES 1,572,864 - 2,097,151 (inclusive) constitute
the gap between segment 1 and segment 2.
This gap is sometimes called the 'segment 1

Non-addressable' area.

Each user's 1 Meg virtual address space (segments 1&2) is
assigned to a unique disk space, even though the virtual addresses for
every user are identical. Some additional element such as workstation
number or task number is provided by the Operating System to identify

each user's unique disk space (files).

A 2200VS machine instruction Egglg_reference any of 16,777,216
one-byte virtual memory locations; however, at the present stage of
2200VS development, only segments 0, 1, and 2 are allocated to each
user at LOGON time, thus accounting for the addressability of only
1,310,720 locations.

The following diagram illustrates the present segment struc-

" ture of 2200VS virtusal memory. Note that this diagram bears

no resemblance to physical memory; all blocks represent disk
files:

FIGURE 2-1

]
(OPERATING SYSTEM ROUTINES AND DATA (protected from user modificatioﬁ5

SEGMENT O {SYSTEM SEGMENT)
SHARED BY ALL USERS

STARTING VIRTUAL ADDRESS: O

(HEX 0)

END VIRTUAL ADDRESS: 262,1@3 (HEX 3FFFF)

it

— — — - o e o= o e - ——

STARTING VIRTUAL ADDRESS: 1,048,576

USER PROGRAMS (Non-modifiable)
! |
CODE IN THIS AREA CAN BE SHARED BY .2 OR MORE USERS

(HEX 100000)

SEGMENT
1
(USER #1)

SEGMENT SEGMENT
1 1
(USER #2) (USFR #3)

SEGMENT
1
(USER #4)

etc.
Per LOG

\ { 1
END VIRTUAL ADDRESS: 1,572,863 (HEX 17FFFF)
R A e e el e e o — - - —

USER'S MODIFIABLE DATA

;
STARTING VIRTUAL ADDRESS: 2,097,152

(HEX 200000)

ON

s

SEGMENT
2

(USER #1)

SEGMENT

2

&L

(USER #2)

SEGMENT
b2

| (USER #3)

SEGMENT
2

(USER #4)

etc.
Per LOG
ON

END VIRTUAL ADDRESS: 2,621,407

(HEX 27FFFF)

NOTE:

In the above diagram. it can be seen that es.n user is allocated

approximately 1 Meg of virtual memory :pace, once logged onto the

system. Thus, with four users logged on (for example), the total

requirements for virtual storage space is & Meg.The four-user

system described in this exampie would probably require a 10 Meg

hard disk to support minimal configuraiion demands.

2-4

A page is a block of 2,048 contiguous one-byte virtual memory
locations that begin at an address of zero, 2,048, or some multiple of
2,048. This start-point for each page is commonly called a '2K

boundary'. A page of virtual memory currently residing in physical

memory is said to be 'framed', or can be called a page frame. Page
frames, therefore, are 2K blocks of contiguous one-byte physical
memory locations that begin at a physical (main) memory address of

zero, 2,048, or some multiple of 2,048.

A 128K system would, for example, have sixty-four 2K page frames
in physical memory. Certain page frames must be occupied by
top-prior{ty routines of the Operating System (i.e., the 'paging
routines' and other Operating System 'control blocks'); such routines
cannot be 'paged-out' of physical memory, and are said to be 'perman-
ently resident', or 'permanently fixed'. Certain cher page frames
are considered 'temporarily resident' or 'temporarily fixed' if
allocated for an I/0 DMA*. As soon as the I1/0 DMA is complete, any
page or pages allocated for that I/0 DMA become 'replaceable'.
Remaining page frames (also replaceable) can be occupied by any

other User/Operating System routines and data, as required.

Pages of a program or data may be framed at any position in
Physical Memory, and still be executed as if each page were adjacent.
Pages need not be contiguous, since each one is linked, or 'threaded'
to thé next by an address pointer (a 3-byte entry in the Program
Control Word**). This concept of initiating a program that begins at
any page frame and randomly occupies any number of additional page

frames is called 'relocatability'.

Programs which repetitively jump from one page to another will
require more frequent disk access. The same is true for data refer-
ences. A programmer who wants maximum execution speed will try to
remain within one page frame as long as possible before branching
elsewhere. This desirable quality in structuring programs is called

'locality of reference'.

* - I/0 DMA: Input/Output Direct Memory Access
** ~ PCW: Program Control Word

Three 'local page tables' (0, 1, and 2), located in stack (CP
LOCAL STORAGE), are also required in the virtual-to physical address

translation process. There is one local page table (LPT) allocated

for each segment in virtual memory. Each local page table contains

one entry for every virtual page in its corresponding segment. Local
page table entries are one byte long, and contain either the eight
high order address bits of a physical page frame start boundary, or
zero. If the entry is zero, the corresponding page is not currently

framed; such an entry would thus be called 'invalid'.

At this point, to further understand how virtual addresses are

translated into physical addresses, the 2200VS virtual address format

must be explained. 2200VS virtual memory addresses are always in the
following 24 bit form:

VIRTUAL VIRTUAL BYTE
SEGMENT PAGE DISPLACEMENT
FIELD FIELD FIELD

(Segment Index) (Page Index) (Byte Index)
4 bits 9 bits 11 bits

The hardware uses the segment index portion of the virtual

address to select'one of the three local pagé tables in the CP stack:

SEGMENT SEGMENT INDEX
NO.: (IN BINARY):
0 0000
0001
2 0010

The page index is used as a CP stack address, in order to select
an entry from the local page table. Bit four indicates whether the
virtual address is valid or illegal. Bits 5 - 12 gelect the 8-bit
stack element:

PAGE TABLE LPT ADDRESSES NUMBER OF
NO.: (IN HEX): TABLE ENTRIES

0 00-7F 128

00-FF 256

2 00-FF 256

In the translation diagram that follows (next page), one may note
that when bit 12 of the virtual address is 0, the high order table
element is selected; when bit 12 = 1, the low order table element is

selected.

The byte index or 'displacement' is carried over to the physical

address unchanged. ('Displacement' is discussed in greater detail in
subsequent text of this section.)

When no error conditions ('exceptions') are encountered in the
translation process, the page table entry and the byte index are
'concatenated', or joined, thus producing the full 19-bit physical
memory address.

There are, of course, many combinations of the 13 page and
segment bits from the virtual address that cannot be translated into
an 8-bit physical page address. In general, when translation is

impossible, one of the following errors will occur:

PAGE FAULT- An error condition indicating that a valid,
referenced virtual page does not currently
occupy any page frame.

PROTECTION VIOLATION- An error condition indicating that a write
operation war attempted in either segment 0 or
segment 1, or that a segment 0 access was
attempted by a user.

ADDRESS EXCEPTION- An error condition indicating that the virtual

address referenced is invalid.

The above error conditions will, in turn, cause one or both of
the following actions:

PROGRAM INTERRUPT- The Operating System seizes control and halts
processing of that task.

SUPPRESSED OPERATION- The Operating System inhibits a particular
operation, such as a write into a protected

area.

An illustration of virtual-to-physical translation follows:

VIRTUAL ADDRESS (24 BITS)
_AL

LOCAL ' N\
PAGE TABLE. SEG. . PAGE BYTE
SELECTION INDEX INDEXA4 INDEX
r-mo 3 4\ 12913 ~— 2;-—1
MSB LSB
(VALIDATION
BIT) (STACK (DISPLACEMENT)
LOCAL (STACK ADDR.) ELEMENT

PAGE TABLE 0 // SELECTOR)
[y
(FOR SEGMEWT 0)

PACE ADDRESS|PAGE ADDRESS
Bit 12=0 Bit 12=1
(SELECT (SELECT
HIGR ORD.EL)] LO ORDER EL)

LOCAL PHY SICAL,ADDRESS .
PAGE TABLEl [Y N
, X
(FOR SEGMENT 1) PAGE BYTE
ADDRESS DISPLACEMENT
%\ 78 18
MSB LSB
_J
LOCAL

PAGE TABLE 2
|
(FOR SEGMENT 2)

\

FIGURE 2-2

2-8

Note that LPT 0O is permanently resident, and is updated whenever
a 'paging task'* is executed for the Operating System itself. Since
each user has his own segments 1 and 2, each user also has a unique
LPT]l and LPT2. At the end of a user's time slice, that user's LPTI
and LPT2 are swapped out of local storage ('stack') and the next
user's LPTl and LPT2 are brought in to the stack for the duration of
his time slice. This swapping of LPTs allows a cémpletely new set of

page frames to be addressed from the same set of virtual addresses.

DISPLACEMENT:

Each address within a page frame must be specified relative to
the starting, or 'base' address of that page frame. Each new address
is 'displaced' a specified number of byte locations beyond the base

address. Look at the following example.

BYTE # BCDEFGHIJKL@NO

Relative ;
Displacement 0 1 2 3 4 S5 6 7 8 9 10 11 12 13 14

DISPLACEMENT .1

In this example, byte A resides at the base address; byte M is

Start of page frame
(Base Address)

displaced by 12 locations. Byte M's 'displacement' therefore equals
12,

The displacement is added to the base address, and the resulting
sum corresponds to an 'absolute' or 'true' physical address in main
memory. The displacement number, indicated by a field of 11 bits, has
211 = 2,048 possible combinations, corresponding to the 2,048 byte
locations per page frame. Displacement, therefore, actually indicates

byte address within a page frame.

*Explained in subsequent text.

2-9

PAGE REPLACEMENTS:

Now, one must ask: "What happens if the next item referenced in
a program is located on & page not curvently framed"? Keeping track
of which pages are framed is another function of the Operating System.
Pages sre brought into physical memory in a manner that can best be

described as 'demand paging'.

When, during transisticn, 2 referenced page of memory i3 found to
be missing from physical memory, a 'page fault exception' is reported
to the Operating Sysiem, which ia tuvrn calis for a 'paging task'. The
Program Intervupt Service first sthempis to locate a page frame, the
contents of which may be replaced with the required page from virtual
memory (currently on disk). To aid in this determination of which
page will be repliaced, the 2200VS Operating System uses a ‘Least
Recently Used (LRU) algorithm. If a page has not been referenced
recently, that page will probably not be needed in the immediate
future, and is therefore 'replaceable' according to the LRU. The LRU
mekes this determination based on an 'Age Count', which is maintained

for each page frame.

Age couni, and other page frame-related information is neld
permanently fixed im an area of main memoiy called the 'main memory
Page Frame Tabie’ (PFT; do po% ccnfuse with Local Page Tables). The
main memory Page Frame Table is maintained as a 'control block' of the
Operating System. [ach page frame's age court is zevoed by & corres-
ponding 'weferepce bit', every time that page frame is refevenced.
This reference bit iz maintained in a 'Local Page Frame Table’

(LPFT). The LPFT occuppies another portion of the CP stack. One four
bit LPFT entry exists for each page frame. The paging routine uses
the page address obisined from a Local Page Table to index into the

Local Page Frame Table .

2-10

LPFT entries have the following page frame status information:

|
:
Undefined Ref. Change
|
Bits Bit Bit
|
1
0 1 2 3

If a page frame has been modified by a write instruction to main
memory (WTRAN), the 'change bit' (in the LPFT entry belonging to that
page frame) is set. That page no longer matches its original form,
still on disk. Thus, during a paging task, before replacing the
contents of that page frame, the modified frame must first be
rewritten on disk (paged out). This will update the contents of

virtual memory. If a currently framed page has not been modified,
that frame may be directly overwritten with a new page from disk.
Scanning of the Main Memory PFT and the LPFT for 'age count' and
‘ 'change bit' status during the LRU routine is performed by the Scan

Page Frame Table(s) (SPFT) instruction, which is used exclusively by
the Operating System.

There are four 4-bit page frame table entries in each of the
sixty-four 16-bit LPFT stack elements.

To summarize LPFT entries:

R-Reference bit

1 = page frame was not referenced by translation
microinstruction

0 = page frame was referenced by translation microinstruction
(not immediately replaceable)

C-Change bit
1 = contents of page frame was not changed

‘ 0 = contents of page frame was changed
(page must be recopied to disk)

2-11

Once the LRU algorithm determines which page will be replaced,
the page being searched by the current task (program) must be located
and brought in from disk. To locate that page, the main memory PFT
entry for the cuivent (waiting) page frame supplies a three-byte
pointer. This pointer is a virtual address, which, when translated,
yields the locacion of a ‘File i.ength and User Block' (FLUB), also in

main memory. There is otz TLUB held in main memory for each active

file in the system. TFor exampi2, if e 2200VS system has nine users
logged on, and esch usew I3 executing a task, nine FLUB's are
established in main wmewory, cne for esch user's task; other FLUBs are
established. for paging of active Operating System files. Each FLUB
contains 211 primary information necessary to locate the active file
on disk. fhe virtual page 2ddress (for the required page) is then

used as an index or displacement into that file, thus enabling the

missing page to be rezd and subcequently 'paged in' via I/0 DMA to the

1

page frame that hLes been veserved by the LRU algorithm. This
accomplished, the propeir LPT is updated, and the curvent task resumes

execuiion,

hny user cr Gperating Svstem task that needs a page from disk is

forced to wsii uniii ihe paging task has been completed, and the local

and main wemoTyv tage <¢in¢ puge frame tables have been updated. Keeping

1

track of which tesks are held up £2r 'page~in waits' is a function

ser formed by another of the Gperating System's control blocks,

T
=
«
re
7]
~J

the ‘Page Frame Semuphore Area’ {P¥SA). The PFSA is permanently fixed
in main memovy and helde: 1) the virtual page number required for

page~iwu, %) tha wumber of the page

[

vamz hiat has been gelected by the
LRU. and 3) ihe FLUD address vequived #for page-in. Note that item 3

ie not uzced as che actual pointer Lo the FLUB.

The foiluvwing flow diagrawm {ilustrates a tyoical paging operation:

BLCIA TAS)

VIRTUAL ADDRE S8

. :
t
6. INDL L)
INT TO kel SR

TRAPS

‘ADORINS
MCEPTIoNS

YES

18
THR C P s
N THE ‘USER
ITA;"

NO NO
(sysvam
STATR)

yes

FPROTRCTION
VIOLATION?

\RT, ADDAY
REPERRN
SLOMENT

IRT. ADDR. {3 STRUC
REFLREN CIFY
({3 !'”TCl AlN

N0 Gaes) ' NO)

usts ¢

‘PROTECTION
VIOLATION *

GwrRAN)

OPBRATY
Lwn’ln (P vALLT xcuPTION)

FIGURE 2-3
TYPICAL PAGING OPERATION

CALL FOR
*PAGING
TASK'

|

'

WALCUTE LRU

TO WIND A

REPLACEABLE
PAGE

NOTE ‘
THE MASTRER CONTROL
BLOCK ‘CONTAINS vomu:l\
TO ALL OTHER CONTROL

BLOCK'S, BUGH A% THE
MAIN MEM. PET.

REFERINCE THE
MAIN MEM, PRT
VIAMASTER ConTIROL

SCAN MAIN MEM,
PET FOR AGE
COUNTSS HIGHEST =
LEAST RECENTLY

AN MAN MEM,

2-13

BT

MADY QuEl
T SK - PAGING

COMPLETED

PET Prgd

2.2 COMPILERS, INTERPRETERS, AND ASSEMBLERS

Any machine vsing high-level programming languages (BASIC, COBOL,
RPGII, FCRTRAN, eic.) cannot directly execute any statement writter in
that language. Each statement must first be transformed, by some

means, into & series of executable machire language insttructions.

2.2.1 COMPILERS
2200vS Languages are 'compiled'. 1In .a compiler eystem, a program
is first =ntered in cne of the available high-level languages (COBOL

or BASIC in theo 2200¥2) by interacting with a 'text editor' program.

\

Entering iexi via 'tzx: editor' 18 very simiiar to typing text into a

&
word proce

pae
5
]
F_!
[
0
=2
e
3
(0]

84 The prograumer may enter anything he wants.
The text editor orogram camwses the machine ¢ blindly sccepi the
user's program toxi. ailowing bim to edit his text on eniry, and
giving no indiczation of programming errors. This initial entry of
high-levei user progiam itext is called the ‘source program’ (alsoc

'source text' or ‘source module'), and is not machine executable.

After taxi hus been entered and edited, another function of the
text editoi program steres this source program on disk. Once on disk,
the source nvrogrsm hecomes & ‘source file®, etill not machine

executable.

Once the scurce file haec been created, the programacr loads a
'compiler® progrew, «witten in machine language. The COROL or BASIC
compiler will use ihe source file as input to produce a 'compiled'
version of the user’s program in machine language, called the 'object
program' or 'object code'. The compiler program then creates an
'object file' or 'program file' on disk, aud them generates a printout
of source code, objeci code, syntax errors, and other relevant infor-
mation for the programmer ‘s uwse. ([t 3s only this 'object® os
'program’ file that can be erecuted on the system; source code cannot

be executed.

2-14

In a compiler system such as the 2200VS, therefore, two versions
of each program are produced: the source program, written in a
high-level language; and the object program, consisting of machine

language statements and produced by a compiler.

To run the object program, the object file is loaded and run.
Errors of execution will show up at this time. On the 2200VS, error
messages are in plain English, not number codes. When an error is
encountered, the user program goes into a debug mode. Machine code,
memory, and registers may be examined and changed. The program can be

stepped, rerun, or cancelled.

On the 2200VS, because all programming languages ultimately com-
pile to the same machine code, a program may have different portions
written in different languages. It is not unugual to write a machine
code routine for something that is not convenient in a high-level
language. The various pieces are put together by a system program
called a 'linkage editor' which works with the object files.

In a compiler system, a programmer will be more efficient if he
makes flow charts and 'desk checks' his code in advance. Since a pro-
gram is usually run many times after it is written, it is better to

slow down the coding process and speed up run time.

2.2.2 INTERPRETERS

An Interpreter is a program that will translate high-level lang-
uage program statements (source code), as encountered, directly into

individual sets of executable machine instructions. An interpreter

does not generate the object code for each source statement, and save
that object code for later execution. The major disadvantage of an
interpretive system is speed. An interpreter may generate results 10
to 20 times slower than the equivalent compiled code. For example, in
an interpretive system, a statement describing a 1,000-pass loop must:
be retranslated and executed for each of the 1,000 passes in that
loop. The interpreter is, however, superior to the compiler in that

the executing program can easily be interrupted, changed, or resumed.

Most commercially available BASIC language systems, such as
Wang's 2200C, S, or T use an interpreter program for execcution of
source code. A 2200 program would run much faster if all source code
were compiled instead of being interpreted. 1In the loop example
above, the loop would be translated to machine code just once, not
1000 times. However, the resulting machine code (object code) would

produce the same end result, but much faster.
2.2.3 ASSEMBLERS

An 'assembler', also known as an 'asscmbly routine' or 'assembly
program', is a program designed to donvert a set of non-executable
symbolic (mnemonic) instructions directly into execuiable machine
language instructions. Assembler language therefore permits a
programmer to write machine-level instructions. Each assembler
symbolic instruction has a one-to-one correspondence to a machine
language instruction. For example, a typical assembly language source

program for a Wang Model 700 calculator might look like this:

Step # Mnemonic Instruction
1 1
2 up
3 WR AL
4 CR/LF
5 END AL

After 'assembly', the object code wouid be:

§£E£_f 700 Machine Code
1 0701
2 0604
3 0412
4 0108
5 0413

2-16

Notice the one-to-one relationship between assembly language

steps and machine code. This is what distinguishes an assembler from

a compiler.

Since the instruction set of a machine defines the complete set
of elementary capabilities provided by the machine, Assembler language

provides the programmer with access to the machine's total repertoire
of functions.

Again, it is important to note that the machine instruction set
of the 2200VS contains all instructions available on the IBM 360,

along with most available on the 370.

The 2200VS Assembler also allows a programmer to define a routine
consisting of a series of instructions, and assign a name to the
routine. The name can then be specified (instead of the entire
routine) as a single instruction in a program. Such named routines
are called "macros'", and the names assigned to them are called
"macroinstructions'. Because the 2200VS Assembler permits the

definition of macros, it is also referred to as a "macroassembler".

Macroinstructions used in preparing and assembler language source
program fall into two categories: 'system macroinstructions', pro-
vided by Wang, which relate the object program to components of the
operating system; and 'programmer-created macroinstructions', speci-
fically for use in the user program at hand, or for incorporation in a
library for future use. All current system macros belong to the

library named '@ MACLIB @'; the following is a list of system macros:

AIR FREEMEM REWRITE
ALEX GETBUF RMSG
AXD1 GETMEM SCRATCH
AXDGEN GETPARM SEND
BCE IORE SETIME
BCTBL KEYLIST START
BCTGEN LINK STMB
CALL LNKB SVCE
CANCEL LOowW SVCT
CHECK MCB SYSCODE
CLOSE MSGLIST TCB

2-17

CMSG OFR TIME

CREATE OPEN TPLAB
DBTE PATCH TPLB2
DELETE PCEXIT TQEL
DESTEOY PF3 T8 .
DPT TF5A UCB
ETCB PFT UFB
EXTRACT PFTX UFB2
FDAV PT UFBGEN
FDR1 PUTPARM VCB
FDR2 PXE VoLl
FDX1 READ WAIT
FDX2 REGS WRITE
FLUB RENAME X10
TMSG RESETTHE XMBUF
PMILIST RETURN KMIT
FRERBUF

'Prograrmer~created macroinstructions' are used to simplify the
writing of a program and to enaure that a standard sequence of in-
structions is vsed to accomplish & desired function. For instance,
the logic of a prsgram may require thc same instruction sequence to be
executed again and again. Rather than code this entire sequence each
time it is needad, the programmer creates a macroinstruction to rep-
resent the eequence and then, each time the sequence is needed, the

programmer simply codes the macroinstruction statemeant. During

agsembiy, the sequence of instructions represented by the macro-

instruction js inserted in the object program.

NOTE:

MORE DETAILED INFORMATION ON SYSTEM
MACROINSTRUCTIONS CAN BE FOUND IN THE
2200VS ASSEMBLER LANGUAGE REFERENCE MANUAL
(wis# 800-1200AS)

The aasembier language also contains mnemonic assembler-instruc-
tion operation codee to specify suxiliary functions performed by the
assembler. These are imstructions to the assembler program itself,
and with a rew exceptions, result in the generation of no

machine-1gnguage object code bv the ascembler program.

2.5 THE 'OPERATING SYSTWRM'

To introduce thias subject, s typical single-user system (the
2200VP) will be discussed.

2-18

User 'A', at the console of a 2200, runs a job; other users must
wait to use the system. User A's job is typical, consisting of Input,

Computation, and Output phases.

During the Input phase, the CPU prompts the operator with ques-
tions, waits for responses, and stores these responses in memory to
await the Computation phase. Assuming that user 'A' is an efficient
typist, and reads prompts quickly, the CPU might receive one data item
per second. At that rate, the CPU is idle about 99.99 percent of the
time. User 'A' has also pre-punched a card deck for input. At 300
cards per minute, the CPU still remains idle approximately 99.54

percent of the time.

The Computation phase is 100 percent efficient, but brief;
however, if any disk access is required, the CPU waits an average of

77 percent of the access time.

A 600 LPM printer leaves the CPU idle 98.5 percent of the time.
With a 2201, the Output phase leaves the CPU idle 99.98 percent of the

time, not counting carriage returns.

Obviously, no customer would buy a single-user machine for a
situation where several users are always waiting to access the
system. The above example shows that there is adequate CPU time for

all jobs (tasks), without having to delay one task for another.

Another inefficiency in a single user system is memory utiliza-
tion. The entire 64K memory of a 2200VP is available to only one
task, whether the task requires 100 bytes or 60 thousand bytes. Fur-
thermore, even in a large task, only one phase is being executed at a

time. The immediate memory requirements of any program are usually
small.

Peripheral devices in a single-user system are not utilized

efficiently. In the example, the card reader was used only during

user A's Input phase; the printer was used only during user A's Output
phase; and the disk was used mainly during user A'e Computation

phase. Each peripheral was actually idle during most of user A's task.

Another weak area in single-user.systems is the management of
disk and tape storage facilities. Considerable storage space is
wasted if each user decides to have a personal disk or tape. Software
overhead devoted to file management in a user's program is also a

common weakness.

ANY COMPUTER SYSTEM HAS FOUR MAJOR RESOURCES:
1. Processor time
2. Resident memory space
3. 1/0 devices
4

External data stbrage space

T7f a second task could be run using the idle CPU time and wasted
storage space of the first task, the second task would run as if it
were the only task being executed. 1In fact, there is so much waste in
almost any single user system tasl, that the optimum number of tasks
that could run efficiently, concurrently, could be much higher. This

technique is called 'concurrent processing’ or ‘interleaving'.

As the number of users on a system increases from zero, the
system becomes more and more efficient. All systen devices decrease
their waste time percentages with more users. Even though the
operating system overhead is significant, a ?200VS is far better off

than a single user system.

However, as users are added, a breaking point can be reached., 1In
a virtual memory system, the breaking point can be defined as having
page faults repeatedly occur during paging operations. When a system
reaches this condition, the disk drives become extremely active. So
much time is tied up in the operating system paging routine and disk
I/0, that little or nothiug is getting done on any user task. A
system in this condition is said to be 'thrashing'. Thrashing can
also be defined as a system condition where the users would be better

off on a similar single-user machine.

The fundmental cause of thrashing is running too many tasks for
the physical memory size. A system on the edge of thrashing can be
pushed into that condition by a number of tasks all competing heavily

for disk 1/0 or a bad disk that is consuming time in retries.

DEFINITION:

The Operating System is a software package which interfaces user
tasks to the hardware system in such a way as to make optimum use of

system resources.
GOALS OF THE OPERATING SYSTEM:

1. Processor Time
a) Keep the processor computing some user task 1002 of the
time, switching from task to task to maintain 100% utili-
zation.

b) Not to delay any task due to unavailability of processor

time.

2. Memory Space
To allocate space for user tasks in such a way as to use all of

memory most efficiently.

3. 1/0 Devices
a) To keep I/0 devices from having any idle time.
b) To minimize task execution delays caused by busy devices.
c¢) To prevent user task conflicts (e.g.: two tasks writing the

same file).

4, Data Storage Space
a) Prevent wasting disk or tape space with unused areas or
repetitions of a single character.
b) Maintain a Volume Table Of Contents (VTOC) for each disk for

quick access.,

A CONCEPTUALIZATION OF WCS 60/80 OPERATION

FIGURE 2-4

All of these goals are, of course, ideals. In the real world,
compromises must be made. The following section examines resource

management in more practical terms.

PROCESSOR MANAGEMENT

A user task is submitted to the operating system by the user.
The task immediately enters a hold state, waiting for time on the
processor. When the task is allowed to begin processing, it is

allocated an amount of time called a 'Timeslice'. During this

timeslice, the job continues in a RUN state until:

2-22

1. The task needs an I/0 function or a virtual memory paging
operation,

. A programming error occurs.

A higher priority task takes over.

The timeslice expires.

[, S - I VC I 8

The task is finished.

If conditions 1, 2, or 3 occur, the task goes into a wait state

until the condition is corrected.

Once the condition (1, 2, or 3) is corrected or a task's time-
slice has expired, it goes into a READY state and is queued (sche-

duled) for further processing.

When a task is complete, it is removed from the queueing
(scheduling) process and any system resources allocated to it become

available for other scheduled tasks.

Only one task is in a run state at any time. All other active
tasks are either in the WAIT or the READY state. As soon as any task
leaves the RUN state, another READY state task is brought to the RUN

state. In this manner, the processor is always doing something useful.

The operating system itself needs processor time to do its
functions. However, there are operations it must do that a user task
MUST NOT do (such as I/0O Control and Memory Paging). To implement

such operations, the CPU has two states:

1. Problem State
User task running; no 'privileged' operations allowed. A
'privileged' operation is any task that is executed only by the
Operating System (such as initiating an I/0 operation); the user

has no access to privileged operations.

2, Supervisor State

All operations allowed.

When a user task requires a privileged operation, such as I/0,
the task must issue a 'supervisor call' and enter the 'wait' state.
The Operating System does the privileged operation when expedient and

puts the user task back in the READY state.
MEMORY MANAGEMENT:

In a virtual memory system, there are two important considera-

tions in memory management:

1. As many tasks as possible should be in hardware memory ready to
process. This is accomplished by loading only those portions of
a task which are active at the moment. For example, a program's
final print routine would not be loaded until near the end of a

task.

2. An algorithm must be used to implement page replacement deci-
gions. The 2200VS uses a Least Recently Used (LRU) algofithm.
The operating system occupies certain pages that must not be
paged out (e.g., the paging routines). These pages are

permanently resident.
1/0 DEVICE MANAGEMENT
WORK STATIONS:

The 2200VS is an interactive system, not a batch processor.
Because of that, there is no practical way to share a work station
among several tasks. Therefore, the idle time of a work station
gimply has to be tolerated. However, an idle workstation does not
slow down the system. Each user work station has 1.25 Meg of virtual

memory space allocated to it.
One work station (address 0) is designated as the System Con-

sole. Limited control of overall system operation is possible from

only this work station. When the Operating System is running, the

2-24

'system console' cannot run any user task, nor can its running of the
'System Console Program' be interrupted. The Command Processor cannot
be invoked by the system console. The System Console Program consists
basically of maintaining a print queue and an I/0 error log. The
operator of the 'system console' is called the 'system operator'.

Other work station operators are usually called users or system users.

The operating system may optiorally require that users 'log on'
with a prearranged designation and, optionally, a password. This
arrangement can be used to control disk file access and/or generate

billing for user time.
To be more specific, the Security System consists of:

1) A system user list, with loé on I.D., password, special log
on procedure, and a three-tiered access classification for
all the files on the system.

2) A flexible system of file protection classes, which can be
tailored to suit the specific requirements of each installa-
tion.

The security system is under the direct control of the security
system administrators. These are specially recognized users who are
responsible for the meaning and use of file protection classes, and
who are able to access all files on the system, including the system
user list which identifies all users who have access rights to the

system and the special privilege program list.

When a user sits down at a work station, the first display
encountered is the LOGON display. LOGON requires the user to enter a
USER ID ar.d a PASSWORD; the entered values are then checked against
the System-User List, and, if they are located in the list, the user
‘is immediately logged on to the system. Otherwise, LOGON returns a
message indicating that an invalid USER ID or PASSWORD has been
specified, and the LOGON prompt remains displayed.

NOTE:

To provide an additional measure of security for

system users, the PASSWORD is not displayed as it
is typed in.

The process of logging a new user on to the system from a
particular work station involves automatically resetting all default
parameters to the system defaults (in effect wiping out any defaults
gset by the previous user at that work station), and passing control to
the Command Processor. The Command Processor Menu is then displayed

on the work station screen.
DISKS

The Operating System relies heavily on di:ck operations, since
disk I/0 is faster than any other 2200VS system I/0. The primary
considerations for disk 1/0 operations are 'TRIORITY OF ACCESS' and
'DATA INTEGRITY'.

Virtual Memory Paging is the highest priority disk operation. 1If
this were not so, system performance would be degraded. Also, the
operating systew will not &llow the system disk, containing virtual

memory and the Operating System, to be removed from the drive.

The system also makes it impossible to remove or exchange a disk

pack that another task is using.

Data integrity is protected by header and Cyclic Redundancy
checks. The 75 Meg disks are also written with an ECC (Error
Correction Code) that will correct up to 12 bad bits per page. All
1/0 errors, whether hard of soft, are logged and available for

printout via the system console.
PRINTERS

The printer is usually a bottleneck in the system. Direct time

sharing of a printer is not possible, due to certain obvious physical

2-26

impracticalities. The other extreme is to assign a printer to tasks
on a first-come, first-served priority basis. That mode of operation
would bring back most of the printer problems associated with a

single-user system.

With the 2200VS system, printed output is not obtained directly.
The Data Management System intercepts output sent to the printer,
temporarily stores it in a disk file for subsequent printing, and
informs the System Console Program of its presence. The System
Console Program records the names and types of files to be printed in

the 'Print Queue', and schedules each job for printout later.

Whenever a print file is created, the Data Management System does

two things:

1) It places this file in the 'User's Print File Library'.

2) It passes the name, location, and status (spool or hold) of
the print file to the System Console Program. The System
Console Program can retrieve any of these files for sub-

sequent printing.

This process is called 'print spooling'. As far as a user pro-
gram is concerned, if a print task is generated, once that task has
been 'spooled', the printing portion of the user task is considered to
be already dome. Thus, the Operating System is using disk as a
'Virtual Printer'. All user tasks therefore run much faster because

of the speed difference between disk and printer.

The printer can be utilized almost continuously, printing files
in the order queued. The system operator may adjust the queue

sequence manually at the system console to allow for changing job
priorities, job length, etc.

The system operator may also release printers to specific tasks
for high-priority, on-line use. Anything queued to a released printer
will be held until the system reacquires the printer. Releasing and

acquiring printers is strictly a software function, requiring no cable
changing or switch setting.

DATA STORAGE MANAGEMENT HIERARCHY: FILES, LIBRARIES, AND VOLUMES

The creation and maintenance of files is controlled by the 2200VS
Data Management Subsystem. A '"file" is a logical unit consisting of
one or more records. A file may contain source program text (a
"source file") or object progrsm code (a "program file"), or it may
contain data records. Files can be opened and named by the user; Data
Management automatically handles the complex "housekeeping" chores
asgociated with creating and maintaining an external file. Each file
is located within a hierarchical structure consisting of two higher

levels: libraries and volumes.

The most comprehensive unit in the file management hierarchy is
the volume. A volume is an independent physical storage medium, such
as a diskerve or a disk pack. The volume name provides a device-inde-
pendent means of identifying physical storage units. Once a diskette
or disk peck has been assigned a velume name, it caun be mounted at any
available drive unit and accessed by nane, withéut reference to the

address or physical characteristics of the disk unit itself.

Immediately below the volume in the hierarchy is the library. A
volume may contain one or more user libraries, but a single library
may not continue onto a second volume. Fach library contains one or
more files. Every file must be assigned to a library. Files are not
always in one contigucus area on a volume. Sections of each file are
put wherever they will fit, in corder to gain full utilization of the
disk. The 2200VS pliaces nc particuiar restrictions on the types of
files placed in a library; a single iibrary may be used for source,
program, and data files, or special libraries may be designated for
each file type. The conventions governing library usage are com-
pletely determined at each individual installation, based on its

particular needs and standards.

Duplicate file names cannot be used within the same library, but
they may be used in different libraries. Similarly, duplicate library
names are not permitted on the same volume, but may be used on
separate volumes. Finally, duplicate volume names are sllowed but not

recommended.

2-28

To avoid possible ambiguity, each file name must be qualified
with the names of its associated library and volume when the file is
opened. Such qualification is not required, however, when running
programs from the System Program Library, because the System Library
and Volume are used automatically whenever the named program is not
located in the user program library, or no user library is supplied.
Because all system utilities are stored in the System Program Library,
it is never necessary to specify a library or volume name when

invoking a system utility program.
SYSTEM PROGRAM LIBRARY

In the special case of program files, an additional level of
default is provided by the system. The system program library is used
as a default library by the RUN command whenever the named program
cannot be found in the specified user program library or whenever no
user library is supplied. (Note that the names of the system program
library and its associated volume are not displayed in the RUN prompt;
the library and volume name fields remain blank.) This feature
permits the user to run system utility programs without specifying a

library or volume name; without, indeed, ever needing to know those

names.

If the user has specified his own default names for Program
Library and Volume, he need not change or erase these names when
running a system utility. The RUN command first checks the user
program library for the specified program. If the program is not
found there, RUN then automatically checks the system program
library. A system utility program may therefore be run without
entering a program library or volume name, whether or not

user-specified defaults for these names appear in the RUN prompt.

SECTION
3

INTRODUCTIONTO

2200VS HARDWARE

SECTION 3
INTRODUCTION TO 2200VS HARDWARE

3.1 SYSTEM BLOCK OVERVIEW

3.1.1 GENERAL

The WCS-60/80 (2200VS) is a multiple-processor system. At the

heart of this system are four major functional elements.

Central Processor (CP).

Processor Communication Bus (PCB).
Main Memory (MM).

Main Memory Bus (MMB).

s LN

The Central Processor contains facilities for addressing Main
(physical) Memory, for fetching or storing information, for arithmetic
and logical processing of data, for sequencing instructions in the
desired order, and for initiating communication between Main Memory
and external devices. In general, the primary task of the Central
Processor is to execute the machine instruction set and monitor the
results of executiecn. (There are actually two instruction sets in the
Central Processor, the machine instruction set and the micro instruc-
tion set. Each machine instruction is actually a microcoded routine,
stored in the Central Processor.) Included in the Central Processor
are multipurpose registers, Control Memory, and a binary clock. Con-
trol Memory provides a storage area for the 2200VS microcode. This
memory is also referred to as PROM (Programmable Read-Only Memory), or
simply, ROM (Read-Only Memory). The binary clock runs at power line
frequency and provides the CP with a date and time of day as a refer-

ence for such functions as allocating CP usage.

The Processor Communication Bus controls all operations between

v

the Input/Output processors and the Central Processor. It is the

Processor Communication Bus logic which maintains 'hand shake'

protocol between IOP's and the CP.

1OVId AD0Td
T-¢€ TNOId

SAQ0QCC dHI 40

I

MAIN (PHYSICAL)
MEMORY
(RAM)

A

;

MATH MLEMORY
BUS CONTROLLER

TIRTTRROPT |
FRIOKITY EHCODER

MATN MEMORY BUS)]
A ! A A L}
] PROGRAM |
| \ CLOCK |
I - r— s I
P 1 o p
! R N {’1 QLGISTERS 0 |
. lx_: A \ 5 CorTct fed— CENTPAL . 0
" S ‘ 2 MEMURY PROCE SSOR TACLES ¢ |
SJATION >t b] ot R - e
¢ . S It S
£ 0 | 3 . 5 |
__al ,] R
PCB CONIROLLER
| TRYERROP T !
| PRIORITY ENCODER |
| |
[v \ v '
I C PROCE SSOR COMMUNICATION BUS] !
l) \ R '
| 1 o
sva | Lo g
o 0 Al
= 1# E DI Lpqtr ov ! T
opTIONAL ! 1Al b e | o c
1opTAC: sl D Pl o] e i 010 E ey Lo 00 Epp — ——p»
1 STATIONS - IO C I" IN S N S
! \NE Oy A S | A 5|
I L; 8 :L 01 t 0,
L S; R R
- L i_l' | sl

.

1/0 PROCESSOR

w (FOR SYSTEM DISK)

DEVICE ADAPTOR
(FOR SYSTEM DISK)

SYSTEM
DISK(S)

- -

v R
[
VoA
(I
¢
t 0

R

(7
PED

|TVvA

RNl

vo ¢ T

iNt o)

VAR

sl

| S

e F—— PRINTER
i ‘

-=>| |
|PLRIPHLIALS

[

OP TTONAL

| S

Main Memory is a dynamic random-access memory with automatic
error-correction circuitry. All processors in the system have the
ability to access Main Memory using the Main Memory Bus. The Main
Memory Bus controls all data transfers between IOPs and Main Memory,
and between the CP and Main Memory. Direct Memory Access (DMA) 1is
available to each Input/Output Processor and the Central Processor on
a priority basis. Processor requests for Main Memory access are
sequenced at the start of each Main Memory cycle. The CP is given
lowest priority for memory access, due to its ability to use memory
cycles that occur between IOP memory accesses. A Main Memory
operation consgists of a transfer of one or two bytes between Main
Memory and a processor. The maximum Main Memory size is 512K
(WCS-80). Address translation hardware supports a virtual memory
configuration using a 'system disk' which effectively provides each

user with one megabyte of memory space.

On the periphery of the Central Processor, one or more subor-
dinate processors (Input/Output Processors-IOPs) receive commands from
the CP and control their respective peripherals. Starting and
stopping of any IOP is controlled by the CP; however, once initiated,
an IOP processes independently of the CP. This allows concurrent I/0

processing.

After completion or rejection of any command from the CP, the IOP
'"interrupts' the CP to report status. This interrupt capability
allows the Central Processor to perform other tasks during I/0
'waits'. For example, a command could be given to one IQP to print
data on the printer while, simultaneously, another IOP could be
communicating with a work station. Upon completion of their
respective tasks, each IOP will request service from the CP on a
priority basis, determined by the physical location of the IOP in the
computer chassis. Each IOP, while fundamentally the seme as other
I0Ps, is customized for the devices it controls by means of a Device
Adapter and a unique microprogram. The Device Adapter is the

interface between the IOP microprocessor and the peripheral device.

Each Device Adapter is piugged into its corresponding IOP. There

are two basic tvpes of device adapters: one 15 for work stations and

rinters; the othev is for disks.
p H

"he foliowing device adanters are available:

22v01

22v02

22V04

22vQ5

22V06

Printer/Yorkaiation IOF.

Supperis one pointer and up to three worksfations.

Disrette/10 Megabyte Disk I0P.
bupports one Y270V 315,000-Byte Diskette Drive and up to

vhree 2260v i0-Megabyte Fixed/Removable Disk Drives.

75/783-Megabyte Femovable Disk Drive IOP.
Supporis any combination of up to four 2465-1 75~Megabyte
Removable Disk Drives and 2265V-2-Megabyte Kemovable Disk

Drives.

9-Track Tape Diive IOP.
Supports up to four 2209V 9-Track Magnetic Tape Drives.

Communications IOP.
Available i two wodels to support bisynchronous tele-
communications in the following combinations.

22V06-1 - Supports one bisynchronous line.

22V06~Z - Supports two bigynchronous lines.

3.1.2 DATA ORGANIZATION XN THE 2200VS:

The followiug data forwat specifications apply throughout 2200VS

svstem hardwave:

8-bit bytes may be handled separately or grouped together in

fields. A 'word® is a field of four comsecutive bytes and is the

bagic building tlock of imstructions. A 'doubleword' is a field

3-4

congisting of two words and a 'halfword' is a field consisting of two
bytes. The location of any field or group of bytes is specified by
the address of its leftmost byte, with 'alignment' required for words

c. doublewords.
Alignment:

Fixed-length fields, such as halfwords and doublewords, must be
'aligned' in main storage on an integral boundary for that unit of
information. A boundary is called integral for a unit of information
when its storage address is a multiple of the length of the unit in
bytes. For example, words (four bytes) muét be located in storage so
that their address is zero, 4, or a multiple of the number 4. A half-
word (two bytes) must have an address that is zero, 2 or a multiple of
the number 2, and doublewords (eight bytes) must have an address that

is zero, 8, or a multiple of the number 8.

'Boundaries' for halfwords, words, and doublewords can be gpeci-
fied only by the binary addresses in which one, two, or three of the
low-order bits, respectively, are zero (Figure 2-2). For example, the
integral boundary for a word is a binary address in which the two

low-order positions are zero.

Variable~length fields are not limited to integral boundaries,

and may start on any byte location.

Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte
0 1 2 3 4 5 6 7 8 9 10
8 Bigg N
Halfword Halfword Halfword Halfword Halfword
0 1 2 3 4
16 Bits -
Word Word Word
0 1 2
32 Bits .
Double Word Double Word
0 1
64 Bits -

FIGURE 3-2

FIELD
ALIGNMENT

Zach functional block is discussed in greater detail in Section 3.2.

3.2 THE CENTRAL PROCESSOR

To introduce this secticn, a cursory presentation of CP hardware
is rendered, followed by a more detailed discussion of each CP element
in paragraph 2.2.2. Aay new vocabulary encountered in 3.2.1 is
further explained in 5.7.2.

3.2.1 CENERAL

The Cenitial Preocessor is the primary controller of the 2200VS.

re
(@]
o
j=]
=
N
e
o
w

I facitities for adaressing Main Memory, Ior fetching and

storing information, for arithmetic and logical operations, for
sequencing inscructions in the desired order, and for initiating
communication between Main Memory and external devices. Generally
speaking. the primary task of the Ceniral Processor is to execute its

instruction set and to monitor and manipulate the results of executicn.

The CP has % basic modes of operaiion, each being mutwually exclu-

sive of the other:

1. Operaiion under the 'Opevating System'.

2. Contiol Mcde Operation.

Under the Operating System, normal user taeks can Ue executed by
the CP. Under ‘Control Mode’, normal pvegram execution is halted and
certain other facilities are made available. Control Mode inter-
actions are performad exclusively through the System Console, and
Control Mude messages are displayed only in the top line of the System

Console screen.

Control Mode facilities are divided irnto two groups, 'debug' and

'load’'.

1. Debug - This group contains commands for displaying and/or

modifying main memory, general registers, system registers

and the Program Control Word (*PCW). Also included in this
group are commands for single step program execution, hard
copy dump of memory and registers, and virtual address
translation.

2. Load - This group contains commends for initializing the
Operating System, loading 'stand-alone' programs, loading
diagnostic programs or restarting programs (from an

initialized state).
Major elements of the CP are as follows:
MASTER CLOCK:
The function of the master clock is to supply a means of
processing microinstructions. The time required to process one
microinstruction is referred to as a 'machine cycle'. A further

breakdown of a machine cycle occurs in units called 'sub-cycles'.

All instructions are processed in twelve 55 nsec sub-cycle times

= 660 nsec., with the exception of the three virtual address manipu-

lation instructions, which use sixteen subcycles (880 nsec) each.

REGISTER STRUCTURE:

a) General Registers

The CP can address information in 16 'general' registers. The
general registers are used as index registers in address calculations
and as accumulators in fixed-point arithmetic and logical operations.
General registers have a capacity of one word (32 bits). These

registers are numbered 0-15 and are specified by a four-bit R

*PCW - Used to control instruction sequencing, and to hold and indi-
cate the status of the system in relation to the program currently

being executed. Further explanation follows.

8-t

£—¢ TANOIA

¥YOSSIONYd TVYINID SAQ00CT HHL

]

~©s
PCO ComTaeLLLR ‘

r

bo3 oy

Cof et
100 &=y

B ey

Lom 08

BATA

WK AND WMEMORAY

[{-RRITINN A 3

r

o 100 segv>
e St
,."’_'m Twd

=

Lo 13-t

11 1IN

- e g

-

PAGE Atk
Jatk

PAGE TAOLE 2
[EYilY

o
&\, AT

TONP - LerATEX)
0000 090 Voo AW

I

el Pt PRSI

LAR G .- ML

{

) [8, Gt —cuy
R

. 0

L

RLTARNIVY [T 19

COUNTIA

13 B - MAr Q1 QoM

] LLLLIS)

AU W &G, l o

o9
A9 A

=

L

Z

.
1L Intatmant)

MMy OIS

xo_— R§

16—)

T - 11

MP2e — MM

S

[N

CME — v

Clap =-tMs___

EERE IPUA BRI L)

“to!

St
(O

l jmnmnou.l

VEL0DING

Cro « CKA

RtAn

onL

MEmoay

(yAvanTEQ dontd

[YT

courboLy

b

8300 CPY
BLOCK DIAGRAM

(Register) field in a microinstruction. Some instructions provide for
addressing multiple general registers by having several R fields. The
General registers are located in the CP 'stack'. (The CP 'stack' is

discussed separately in Section 3.
b) Floating Point Registers

Four floating point registers exist, they are specified as
registers 0, 2, 4 and 6. FEach FP register is 64 bits in length (one
doubleword), and can serve to contain one long floating-point number.
These registers are addressed by the floating-point instructions

only. The Floating Point Registers are located in the CP 'stack'.
c) System Registers
The system registers provide a means of storing system control

information that is used in the execution of the machine instruction

set (do not confuse with microinstruction set). The System Registers

are located in the CP 'stack'.
d) A-Register, B-Register

These are 16-bit registers, used to hold the 'A' and 'B' operands
for the ALU.

c) C-Register

The C-Register holds a B operand for the 8-bit ALUs.

d) Program Mask Register

The PMR is an 8-bit register which holds the Condition Code,
system mask bits, and the Instruction Length Code; all of which are

discussed in Section 3.2.2.

e) Indirect Register

3-9

The IR is an 8-bit register used to store a CP Stack address.

The stored value is used for indirect stack addressing operations.
1) Memery Addisss Regiscer(s)

The CV countains iwe ideuzical MARs (MARLl and MAR2). Each MAR can
hold either a vivtuel memory address (used to calculate a physical
memory &ddress)or s i -anslated physic%l memo oy address. MAR] and MAR2
are identical ia terms of the operations that can be performed on
them. The reason for this duplication is related to the time frame
during which they are used. As one MAR is being utilized, the other

can he loaded with iniormation required for the next operetion, thus

eliminating CPU ‘waiis' for MAR avuilability.

g) Memory Data Register

The MDR 15 a 16-bit register which is used to transfer data
betweei: Msin Memory and the CP. Data moving to and from IOPs is also
handled by tine MDR.

h) Status Register

This Status Register is a 16-bii regisier which contains a repre-
sentation of external conditions, 2200VS arithmetic and jogical re-
sults, and (M wmicroprogram flags (i.e., bits available for mizro-

prog:sm usage) .

INTERNAL STACK:

The Taternal Stack (also called the 'CP stack' or local storage')
is a RAM configured as 512 x 16 bits. A 9-bit address from the Stack
Address Register (8AK) is used to select a particular i6-bit stack

element. When an 8-bit operation is performed, another address bit

selects one byte .rom the i6-bit stack clement. When an address

3-10

operand (24 bits) is used, a pair of stack elements is referenced.
. Many of the stack elements vepresent a major portion of the CP

register structure. Four other important elements of the Internal

Stack are the three Local Page Tables and the Local Page Frame Table

(see 'Virtual Memory', Section 2).

ARITHMETIC/LOGIC UNITS:

There are three ALUs in the CP:

This is the primary ALU for the CP. It is capable of all
arithmetic and logical operations of the 74181 ALU chip.

a) 16-Bit Binary ALU
b) 8-Bit Binary ALU
This is essentially the same as a), but is used for

’ single-byte instructions and as an extension to the 16-bit
i ALU when manipulating 24 bit virtual addresses.
|
c) 8-Bit Decimal ALU

This ALU uses BCD, two digits at a time, for execution of

decimal microinstructions.

CONTROL MEMORY:

Control Memory (CM) provides a storage area for the CP's micro-
program. CM is based on the INTEL 2708 PROM. It is also referred to
as 'ROM'. Control Memory is addressed by the Instruction Counter

(1C). All CP operations are directed by Control Memory microcode.

BUS STRUCTURES:

a) Processor Communication Bus

. The PCB carries commands and status information between CP and

I0Ps.

3-11

b) Main Memory Bus

The MMB is a direct Main Memory aucess (DMA) channel that can

used by every processor.in the system.
c) 'C' Bus

The output cf the ALU is routed to nearly every register and

storage area in ihe CP via the C Bus.

3.2.2 CENTRAL PROCESSOR HARDWARE DETAILS

The CP exists physically on three logic cards in the processor
cabinet: CPU #1 cavd (7301), CPU #2 card (7302), and the PROM board
(7107) which is mounted on the CPU #2 card in a piggyback fashion.

Th.e MMB and PCB are located on other cards.

REGISTER STRUCTURE:

Memory Address Registers (MARl, MAR2)

Each MAR is = 24 bit register logically divided into three
parts: MARH, MARM and MAKL.

3-12

e VIRTUAL ADDRESS USAGE =

f———————PHYSICAL ADDRESS USAGE ————
[t »
VIRTUAL| [<VIRTUAL PAGE —~
SEGMENT

FIELD | | PHYSICAL PAGE—s| ‘VIRTUAL / PHYS DISPLACEMENT 7

| SE—e——— ————

BIT:{ 0 1 2 3|45 6 7[8 9 10 11 12|13 14 15[16 17 18 19 20 21 22 23
0123l4l567(01 2 3 4/5 6 700 1 2 3 4 5 6 7
H-‘T———MARH - MARM e |- MARL ‘
MSB LSB

Since the maximum available physical memory is 512K (524,288
bytes), only 19 addressing bits are required for addressing of page
frames. The full 24 bits of each MAR can also be used to develop any

of 16,777,216 virtual memory addresses, of which, only 1,310,720 are
presently valid.

Each MAR is designed so that it may be sequentially incremented
(+#1 or +2), or decremented (-1). This is accomplished by a 'ripple’

operation, specified in the memory field of certain microinstructions.

Ripple '+2':

A ripple +2 operation is used to alter the memory address in
halfword increments.

Ripple '+1':

A ripple +1 operation is used to alter memory address in one-byte
increments. A ripple +1 operation would be performed under conditions

that require access to odd addresses.

3-13

Ripple '-1':

MAR also has the capability of being decremented by one. This
operation is required for certain machine instructions such as ADD or

SUBTRACT, during which a descending value in MAR is required.
b) Memory Data Register

The MDR is a 16 bit.register, logically divided into two parts:
MDRH and MDRL.

MDR
Bit o 1 2 3 5 718 9 10 11 12 13 14 15
0o 1 2 3 4 5 6 710 1 2 3 4 5 6 7
Lf‘ MDRI -+~ MDRL < >
N\ —~
MSE LSB

The primary function of MDR is to transfer data between Main

Memory and the CP in the following manner:

0P
CP ALU C-BUS (Device MAIN MEMORY
(write) Addregs) (read)
— /
v
‘ MDR

AN
A W .

4

CP ALU A-REGISTER MAIN MEMORY
(read) 10P (write)
(Device

Address)

It serves as the main processing register in the CP since it
. participates in the transfer of data between Main Memory, local
) storage and other CP registers. Data moving to the IOPs is also held
by the MDR and sent to the IOP via the PCB.
|

| The output of the MDR is also an input to the ALU multiplexers,
thus allowing the MDR to be utilized in 16 bit and 8 bit arithmetic

and logic functions.

NOTE:
| When communicating with the IOPs, only MDRLO-MDRL7
bits are used; MDRL contains both command and address
information, When directed to the CP, these bits con-
tain status and address information necessary for the

\

|

| execution of a machine instruction.
\

c) Program Mask Register

. The PMR is an 8 bit register.
CC System Mask Bits ILC
| 0 1 2 3 4 5 6 7

The functions performed by its three fields are as follows:

Condition Code (CC) - PMR bits 0 and 1

The code in this field indicates the results of a machine
language instruction. The CC is then available to be inspected and
used for conditional branching. For instance, the results of a
Compare instruction would be placed in the CC field to indicate either

a Compare or a Non-Compare condition.

Condition code reflects the result of a majority of the machine
. arithmetic, logical, and I/0O operations. Each of these operations can

set the code to any one of four states, and the conditional branch can

specify any combination of these four states as the criterion for
branching. For erampie, the condition code reflects such conditions
as non-zero, first operand nigh, eguai, low, overflow, 1/0 device
busy, zero, etc. Once set, tae cordition code remains unchanged until
modified by an imsticuction that causes a different cendition code to

be set.
The two bits of the condition cods piovide for four vossible
condition code seitings: €, 1, 2, and 3. The specific meaning of any

setting depends on the operation that sets the cendition code.

Refer te the -2200VY8 Principles of Operations manual (WL#

800-1100P0) for further explaaations of 'condition codes'.

System Mask Bits:

The system wask bits are used to enable/disable the T/0
Interrupt, the Clock Interrupt, and the Machine Check Interrupt logic

in the CP. (Interrupts are discussed in Section 3.2.4).

Instructicn Length Code {ilC) ~ PME bits 6 and 7

This field indicaies the length of the current machine lenguage

instruction.

PMR 6-7 = 00 iength = 2 bytes
PMR 6-7 := 01 or 10 length = 4 brtes
PMR 6-7 = 11 length = & bytes

Theee bits are used to increment a MAR in order to cbiain the

next instruction address. The length represented by the ILC is

actually added to the address in MAR] or MAR2 when a machi:e

insitruction is fetched.

3-16

The entire Program Mask register can also be used by the imme-

diate microinstructions as an 8 bit operand.

Also, microinstructions

are available to set PMR6&7 from the opcode of a machine instruction
in the MDR (MDR bits 0&1).

d) Status Register

The SR is divided into 16 one-bit units:

CA R|PAGE|STATE |DEC CM|IO3|TIM|OVF|104({101] 102
0j1}2] 3 4 5 71 10) 11} 12| 13} 14| 15
MSB undefined bits LSB

- (BIT #)

These 16 one-bit units represent external conditions, CP

arithmetic and logical results, and microprogram flags.

These bits

are available in groups of 4 for testing under a mask with the con-

ditional branch microinstructions.

settable by microinstructions.

microinstruction.

C.A. - Carry - Status bit 0 (S0)

Fifteen of the 16 bits are

Note that I/0 3 may not be set by
All 16 bits of the SR may be set by hardware.

This bit is used as the "carry-in" and is set as the "carry out"

for certain ALU operations.

Status bit 1 (S1) - Not Used

R - Result - Status bit 2 (s2)

This bit is set for all processing operations, all 8 bit and 16

bit moves, 16 bit move indirect, and immediate operations.

S2 = 0 means that: Result = 0

S2 = 1 means that: Result Not = 0O

3-17

Page - Page bit - Status bit 3 (S3)

This bit is conditioned by the results of a ripple operation

performed on either MARI or MAR2.

When a ripple operation is called for, the page bit is set to 1.
After the ripple has been completed, this bit is checked by the micro-
program. When the p=ge bit is set to zero, the updated page address
is in a page that is Jifferent from the page initially addressed by
MAR. T1f the pagé bit {s sct to one, the new address is in the same
page initially addressed by MAR.

When page bit = 0, for a:

Positive ripple - The present MAR value points to the first byte

of the next page.

Negative ripple - The MAR points to the last byte of the '

preceding page.
State - Status bit 4 (84)

This bit represents segment protection information and is used in

the WTRAN (Write/Translate) microinstruction.

g4=1 Troblem or User State (Segments C and 1 are protected)

$4~0 Supervizor or System State {No protect on)
Dec - Decimal Error bit - Status bit 5 (85)

Set to 1 it an non-decimal digit A‘6"F16 was used as an
A

operand in a decimal add or subtract instruction.

3-18

86 - Translation Trap bit - Status bit 6 (86)

This bit is set to 0 or 1 when a trap for an invalid virtual

address or a page fault is taken (trap 0003). A zero indicates that

the contents of MAR 1 caused the trap; a one indicates MAR 2.
CM - Control Mode bit - Status bit 9 (S9)

This bit is set to 1 when the Control Mode button on the front of
the processor cabinet is pressed. S9 remains set until the Control

Mode button is released.
103 - I/0 Interrupt bit - Status bit 10 (S10)

This bit is held by the hardwaré at 0 or 1; it is not settable by
the microprogram. (It is held at 1 if one or more IOPs have their PCB

request-in lines high; otherwise its held at 0.)

NOTE:
The 'Request-In' lines are used to signal the CP
that an IOP wishes to be serviced. These requests

are handled on a priority basis by the PCB logic.
TIM - Timer bit - Status bit 11 (S11)

This bit, also called the 'real-time clock tick', is set by the
hardware from the AC line frequency every 1/50 or 1/60 cf a second, in
order to increment the Real Time Clock (RTC).

OVF - Overflow bit - Status bit 12 (S12)
For arithmetic binary operations, when there is a carry-out from

the most significant digit position into the + sign position, an

‘overflow' condition exists. S12 is eet under such conditions.

3-19

104 - I/O Status bit - Status bit 13 (S13)

§13 is set by the PCB ‘Control-In Strobe' line whenever that line
is raised by an I0P. The Coatrol-In strobe is sent by an IOP to
strobe 1/0 1&2 plus the device address into MDRL. The CP microprogram
wmust rezet this bit to zero at the end ot any PCB operation.

101 & 102 - Siatus bits 14 (S14) and 15 (815)

These bits are zet by the PCB countrol lines whenever a

'"Control-Ir Strobe’ is issued by an IOP.

__I0i 102 CONDITICN:
0 0 IOP AND DEVICE READY
0 1 DEVICE BUSY
1 0 10P BUSY
i 1 NOT OPERABLE

e) iIndirect Register (I Reg)

The I-Reg is an 8-bit register used to address stack (local
storage) indivecily.

Indirect vegister structure:

el LSB

There ave 3 formais for this registes:
1) General Register - Iadirect

In this format, a 15-bit register within the 32 x 16-bit

General Register arvea of the stack may be addressed.

3-20

2) System Register - Indirect
In this format, a 16-~bit register within the 32 x 16-bit

System Register area of the stack may be addressed. Four
indirect bits (IREGO-IREG3 or IREG4-IREG7) are used along

with a low-order address bit supplied by che microin-

struction.

3) Stack - Indirect

Any of the 512 x 16 bit elements within the stack can be

addressed by using a high order address bit from the
microinstruction along with IREGO-IREG7. This indirect
ability is incorporated in several microinstructions which
allow the movement of the selected stack element (16 bits)
to and from the MDR. These microinstructions may also cause

the contents of the IREG to be altered (:1).

INTERNAL STACK:

512 16-bit RAM 'halfwords' comprise the 'local storage' area of
the CP (i.e., the 'stack'). Contents of the stack are available only
for CP use. The stack is addressed by 9 address lines from the Stack
Address Register (SAR). Stack addresses may be loaded into the SAR

from the following sources:

MAR6-MAR12 (Memory Address Register)
X0-X5 (B Register output)

X8-X13 (B Register output)
IREGO-IREG7 (Indirect Register)
MDRO-MDR3 (Memory Data Register)
CM6-CM17 (Control Memory bits)

MSB SAR LSB

The high order 4 bits SARO-SAR3 are used to select the group of

registers desired:

SARO-SAR3 = 0000
Selects the file registers. These registers are temporary
storage areas for microprogram usage. 32 File registers are made
available for CP use.

SARO-SAR3 = 0001

Selects the system registers. Some elements contained in the

system registers are:

Program Control Word Trap Address:
The Program Control Word Trap Address contains information
required for proper machine imstruction execution (Ref:
Section 3.XX)

Virtual Destination Trap Address:
Required by the Operating System for proper execution.

Time of Dav Clock Word:
Contains a 32 bit binary quantity, which, tranclated, repre-
sents the time of day for such purposes as billing, logging
on/off, etc. Two 16-bit Stack locations are allocated for
this purpose.

Clock Comparator:

A programmable, presettable 32-bit register. When time cf

day equals the value programmed into that register, an

interrupt is generated.

Floating Point Registers:

Four floating point registers exist within the System
Register section of stack. Each FP register is 64 bits in
length and contain one floating-point number. These
registers are addressed by floating point instructions
only. In order to address the full 64 bits of an FP

register, four separate stack addresses are required.
SARO-SAR3 = 0010

Accesses the Auxiliary registers. These 32 registers are also

temporary storage areas for use by the microprogram.
SARO-SAR3 = 0011

Accesses the gquzgl registers. There are 16 general registers
that, for machine programs, can be used as index registers in
arithmetic and logical instructions, and as accumulators in fixed
point arithmetic and logical operations. The registers are 32
bits long, thus requiring 2 stack locations. The general regis-
ters are identified by the numbers 0-15 and are specified by a

four bit R field in a machine instruction.

For the entire preceeding group of registers in local storage
(stack), SAR,
low order bits (SAR

within a group.

through SAR3 generally select a register group; the
4 through SAR8) select the specific register

Local Page Tables:

The two high order bits of the SAR are used for selecting one of
three Page tables:

SARO-SAR3 = 01XX Local Page Table 0 selected
SARO-SAR3 = 10XX Local Page Table 1 selected
SARO-SAR3 = 11XX Local Page Table 2 selected

The lower order bits (SAR3-SAR8) are used to select a 16 bit
element within the local page table. Each 16 bit local page table

element actually holds two 8-bit entries. The number of local page

table entries corresponds to the number of pages in a segment.
Page Table 0 - Contaius 128 entries for segment O.

Page Table ! - Contains 256 entries for segment 1.

Page Table ? - Contains 256 entries for segment 2.

Each page table eantry is used as a pointer to a physical page

{rame during translation (see Section 2, 'Virtual Memory').

Local Page Frame Table:

In order to access the Page Frame table, the 3 high order bits of
/

the SAR are required {SAR0-SAR2). See Section 2 for an explanation of

the local page frame table.

S8AR0-S/R3 = 0OliX causes the Page Frame table to be referenced.

3-24

TABLE 3

-1

STACK ALLOCATION

ELEMENT VALUE OF
|_stze: | Avoeesses:

File Registers (32) x (16) O1F 5000XXXXX
020 o

System Registers (32) x (16) 03F 0001XXXXX
040

Auxiliary Registers|(32) x (16) O5F 0010XXXXX
060

General Registers |[(32) x (16) O7F 00 11XXXXX
080

Page Table 0 (64) x (16) OBF 01XXXXXXX
0co

Page Frame Table (64) x (16) OFF 011XXXXXX
100

Page Table 1 (128) x (16) 17F 10XXXXXXX
180

Page Table 2 (128) x (16) 1FF 1 1XXXXXXX

X = Element select

ARITHMETIC/LOGIC UNIT:

field.

The CP contains 3 ALUs:

1) 16 bit binary

ALU.

2) 8 bit binary ALU.

3) 8 bit decimal

The carry-out bit from the 16 bit binary ALU can be input to the
8 bit binary ALU, thus combining the two and forming a 24 bit ALU.

ALU.

3-25

The 3 ALUs provide the capability to the CP to process binary
integers of fixed length, decimal integers of variable length, and

logical information of either fixed or variable length.

The basic ALU path utilizes the 16 bit ALU. A typical operationm
would entail the referencing of a '6 bit stack element. The output of
the stack would be temporarily stored in tlie B register, a sixteen bit
operand register. The output of the B register would be looped back

around into the A register multiplexor and gated into the A vegister.

NOTE :

v

vhe 'A' register is a 16 bit operand register.

The stack i« again referenced and another 1§ bit element is
latched into the B vegister. The ALU now performs its selected
arithmetic or logicsl function and puis the result onto the C bus.

The C bus is the main traffic highwav of the CP since it has access to
all Cp registavs and al! CP wegisters have sccess to if. Once on the
C bus, a check for am all zero condition on the bus is executed and

appropriate status can be reported to the status regisier.

“he & bit binerv ALU functions zimilarly except that its operands

are;

a) The output of the C register. The C register (no ielation
to the 'C-Bus') is an 8 bit ALU operand register that may be
accessed by immediate microimstcuctions or ihe E vegisier.

b) The output from a mtiiipiexor netwoik which may select the

Status Register, PMR, I Registei, and MDR.
The outout of the 8 bit ALY may be latched into the T register

which is used for timing cousiderations before it 1s placed on the C

bus.

3~26

The 8 bit decimal ALU is utilized with the decimal microinstruc-

tions and has the same operand capabilities as the 8 bit binary ALU.

CONTROL MEMORY (ROM):

The PROM chip used for CP Control Memory is the Intel 2708. PROM
can be written into by special equipment, thereby saving the device
from obsolescence due to microprogram changes. Each PROM chip has a
1K by 8 bit storage array. Five PROM chips are linked together to
obtain a 1K by 40 bit storage array. The CP utilizes three more
levels of this 5 chip configuration, thus producing an 4K by 40 bit

PROM storage area. Another 4K is available for future expansion.

Addressing of (P)ROM is accomplished by the Instruction Counter

(1C), thus providing a means of fetching microinstructions from the
ROM in sequential order. After each new microinstruction has been
fetched, the Instruction Counter is incremented by +1. The

Instruction Counter addresses ROM via 13 address lines.

The sequential incrementing of the IC and fetching of microin-
structions can be changed by various conditions. Certain microin-
structions have the capability of loading the Memory Data Regiate{
(MDR) directly into the IC through the IC multiplexor. Also, while™
executing branch instructions, a destination address can be loaded
into the IC by use of the CM bits. The trap operations may also

interrupt sequential incrementing of the IC.
Trap operations are caused by external conditions not initiated
within the CP (such as a system power-on). In general, trap opera-

tions interrupt the microprogram by forcing an address into the IC.

The following is a list of trap addresses in Control Memory and

the reasons for trapping:

[N R

0000 - Reserved.

0001 - Power on trap L(circuit breaker placed 22).

0002 - TLoad dution oa frent of processor cabinet is pressed.
0003 - TInvaiid virtual! memory address during translation..
000 - Translation trap due to protection of privileged daia.

9005 - Mewory “iap (bad address).
0006 - Memory +rap (bad parity).

0007 - Trap micreinstruction for word aligaments.
0008 - TLocgtion for Brauch on Instruction trap.
0009 - ‘irap wicroinstructicn for CC/Mask.

Instruction Decoding =nd Uontrols

NMotice in Figu:re¢ 3-Z that CMC-CM. ar~ used by the iInstrucuion
decoding and contvols. +The instructiion deccder provides a means of
decoding a hardwaie punctiua from the 6 bit operation code of the
microinstruction read fvom ROM. Each cof the 91 operations decoded
(three are unused) produce a unique hardware function, such as setting
up ALU functions, aslection of source/dectination registers, and

directing the overali flow c data.
3.2.3 INSTRUCTiICH SETS

The 2200VS (T actuaily utilires two sets of instructione: the

machina instructicn sei, and the microinstruction set. The machine

v r— —

instruction set comsists of 165 instructions that are nearly identical
to the IBM 360/370 iastruciion set. The CP does not actvally executc
these instructions. Iustzad, the UP deccdes the operation codes of

each machine iunstruction into en address. This address poinis to a

microcoded subroutine cesiding in Control Memory. These microin-

structions are the actual instructions tha: the CP wiil execute.
3.2.3.1 MICROINSTRUCTION FORMAT IN CONTROL MEMORY :

There are 61 unique 40-bit microinstructions used in “he CP's

Control Memory; they are {ormatted as follows:

3-8

1f

1J

g3

-
=

I

==d
=X=1
o O
o ©
o o
o o
X

o o

10

THE CP MICRO-
INSTRUCTION SET

TABLE 3-2

: oo ¢ !
iy ! ; _
‘ ..m oo i |“
A NP O S RPN PN SOoim mxmnn 'rl'.l-rjv.v.frv.rr.A...Jlfrlrlv.v. (A |
" fo T P U NP R 0077”...V'FLP..PFPVLY!D'('!._[.V..PPTIPI % A e B g
“ .uul""r"—’"yf. oo."”"'l'r'r'_?}"r'V.'}‘erﬂl’-’r' | e W o A L
nw_.uk-\lll..kﬁnuul colxoerxxxilunacxdeale cx e da x x Ju x < o< o o o o x & a oo
cc cocoooadocococfcazaczacoojedofanncanqg

P ,*HDDDUDUDDDDD

D

coocacooano

K » HIQIl ORDER STACK ADDRESH BiT (AO:

1 » TRIEDIATE OPRRAND
W = MEMORY ADDRESS REOISTRR BELECT
R = MAR PIPPLE SPECIPICATION

§ = STACK ADDRRSS
T = CIO STROBK SPECIFICATION

11100300000 0f9 o o o0 o0 o0lolo 010 0fo 0 00 0 0 0 0 0 0 0 0 0 0 00

D = NEDMORY RRAD/WRITE SPRCIPICATION
B « HIOH/I.OW BTACK BYTE SELECT
7 = BRANCH OP-CODR SPRCIFICATION

A = A BUS ZGLETIR
N~ B WS LRGIOTRN

C = CONDITIONAL €OD!

.
}

H' Exxxzxxrxzrxr> colxrrxxxxgx=xrxrdrrrxxfrxrgxrxrxxxgdxygdojxx T X XXM
[k crmmcnoccca50 ccwecrzdcclooococoooomamannulcooroocolocoocomaladoccoood
Y mmcmmneccncos coemadcolcocoocooof=mmm~ dunuocooofoocalooo oo d OOOOOOL
l‘l".“"!nnal"u bnalb!ouo0000000"1!"LaAOOOToooouoooooo-\.o jooocoococ ooy
Y mmncocccne=an memomdqoojoocoococoo|e e Jumocococoloocfooocooonooccoocoq
-ﬂlnlllllhllllll cxecodocloocumummuide - = den oo c oo cfo o0 ofoc oo ofacy oy s o 0e 0t 2 0f

— c<<<<<<<<<<<< <<<<qcol<<<<<<<qd-=~——duuoococcloocdqoococolmojojc<<<<<q

€« €€ << << <P AAAAAAOOAAAAAAAAIIIXX'SOO”OOOOOAHKNNNH.\.O f« <<t < <<
o < Cr < ccCcCC< << <<<<<<qoojc<<<<<<<|-——m~—fcojc cOoDCPOOq0CcnOOO ofolc < < =t <
<< <<<e<ccc<<< <<<<qcolc<<c<<<< << <<<-Jooloocoolpauoocooocjolk<ccc<c<
ML CC s cCCCCL << << <cc<<a<qdoclcc<c<c<c<c<c<|c<c<<<jpoloccoofct cjooocooof o ce<<<
oo T—woT=T T T T T O T T = DI T =5 S~ = 40 —= O ~ C —fC ~fO O ~ 0 — O
e ~~CC = C— =T OllDOIIOOlIODllOOllDfIr.ﬂO!.. O = —j0O =~ 0O ~OO ~ ~ DO~ —
ooc--~——ccoc- cc-+4--poco~w~=—jccco~l -0 Ct~~~0cOOCO -~ <O OO~~~
Ypcocomcon~—- -~ ~zc¢c ool e ~w~alcccockclc ~n— - -~ OO O OOOP O~ 0
L bcoccconocce &k Sfm—— -~ 4-—f ~—~==mm—jcsczokofpccnofsoclmnmm o
m ScccoccoccC LT S LK CK T O TO0O000)— = = — —~ R e il i B e Rl andhnd po e v v -
3 t
g .33, B8 sssshE_ = _pxl 33 gzl 33 3%
o - = = =i oY By D :
2l conpoess. cx. bElEdsd Yok s 355 2 5 BEEEE 2l ki cokaEEEE5E%E
EPallPadlisd«=x¢% .M»\..M..:WU.I.NMNMHMK\NO.NW TWK..CDWCC“ TEL o oBEREQRS83R
—1 =

-3 H3 = E = 2

b= z “ 3 =

= - < = - = < - . = -

So <. = = = = £ S - =

- m..l - -— - - Ku .M = na

22 - - = a 4 . - S 8

- - o -~ - S o € < = = m

"o s k=4 a2] 3 p o2 N e

= - 3 - g - - x 8 =

b

B

-

mm P41 R A Comhoesssocsaos s o© ot denconne 22333882

"c

- - -] b3 ~
= 3 < - - < < < <

ferred to as

10ons are tve

icroinstructi

Bit positions in the m

CMO0-CM39, as they are read from ROM; CMO being the mest significant

bit (MSB) and CM39 being the least s

t bit (LSB).

ican

ignif

i ins one

truction conta

1croins

The Process field (CMO-CM17) of the mi

of the 61l m

des, the A operand, and the B operand.

ion opco

truct

i1croins

The A and B operands are used to address various registers.

The Memory field (CM18-CM22) contains 3 elements:

d to select one of the two memory address

18 use

R (CM18)

1.

registers (MAR) that are available in the CP.

0=MAR 1
1=MAR 2

The

branch cpcodes.

MOP (CM19-CM22) contains the memory operation bits. These

specify what type of memory operation is to be performed, if

any. Memory operations available ave:

00 = no memory operation.
01
10

read 2 bytes into the memory data register (MDR).

1}

write 2 bytes from MDR into main memory.

1] = write 1 byte from MDR into main memory.

%OP {CM21-CM22) are the ripple operatiocn bitg which will

determine how the Memory Address Register (MAR) is to be

incremented or decremented after the current value of the
MAR is uesed for any memory opertion. The various

combinztions of the ripple bits are:

0U = increase MAR by 1.
01 = incireasc MAR by 2.
10 = decrement MAR by 1.

11 = nc opersticu.

Branch £ie1¢ (CM23-CM38) contains one of the following 3

s = e r——

- B.U. - Branci: unconditionaliy
-~ §.3. - Gubroutine branch
.- B.Jj. - Brauch oa Machine Instruction

———— -

. BT/BF - Branch cordiiional (1rue/Faica)

~ SR -- Gebiroutine Reifurn

~ TRPT - Trap | (condition code/mask; called 'TRAP 9' in
hardware)

~ TRP2 - Trap 2 (aligmment; called 'TRAP 7' in hardware)

- 8§ - Yei Status bit

TABLE 3-3
C.P. HARDWARE INSTRUCTION (MICROINSTRUCTION) SET

MNEMONIC INSTRUCTION

SC Binary subtract with carry in

sco Binary subtract with carry in = 1
AC Binary add with carry in

ACZ Binary add with carry in = 0

scv SC with overflow bit set

SCI Binary subtract (inverted) with carry in
ACO Binary add with carry in =1

ACV AC with overflow bit set

AND Logical 'AND' (A B)

OR Logical 'OR' (A+B)

A Binary add with carry in = 0 and no carry out
ACP Binary page add with carry in = 0
XOR Logical exclusive 'OR' (A + B)

MV Move A-bus to B-bus

SHL4 Shift A-bus 4 bits left

SHR4 Shift A-bus &4 bits right

SHLZ4 SHL4 with 4 bits in = 0

SHRZ4 SHR4 with 4 bits in = 0

SHL Shift A-bus 1 bit left

SHR Shift A-bus 1 bit right

MVS Move system register

MVSI Move system register indirect
MMR Move MDR to register

MRM Move register to MDR

MMS Move MDR to register

MSM Move register to MDR

MMR8 Move MDRH to register

MRM8 Move register to MDRH

MMS8 Move MDRH to register

MSM8 Move register to MDRH

3-31

ANDT
NANDT
ORI
WXORI
MVT

TSTR

NeT
RTRAN
WTRANM

CCSsl1
CCs2
CCSET
CSGN

ANDM
ORM

XORM
ACM

SCOM
DACM
DSCM

Logical 'AND' immediate

Logical 'AND' immediate. No result stored ’
Logicai 'OR’ iumediate

Logical exclusive 'OR' immediate. No result stored

Move wamgediate

Transfer MAR o stack

Transier :tack o MAR

No process operation
Read irausliate

Write tvansiate
Control /0

'Decade’ setup

Condition code set by status bits
Cond;iion code set by status bits explicitly
Cendition code set explicitly

Couditwon code sa2t by sign

Move MDR iadirect. IR unchanged

Move VDR indirect. IR incremented 1

Move MDR iandirect. iR decremented 1
Move stack indirveci. IR unchanged
Move stack indirect. TR decremented 1
Move stack iundivect. IR incremented 1
Instrueitiom addeess undate

Basa cCisplacement address generation

Logical 'AND' nsing MDR

Logical ‘Ok' using MDR

Logical exciusive 'CR' using MDR

Birary add with carry in using MDR

Birary subtvact with carry in = 1 using MDR
Decimal add using DR

Decimal suktract ueing MDR

3-32

3.2.3.2 MACHINE INSTRUCTION FORMAT:

Somewhat in the same manner as microinstruction format, ecach

machine instruction consists of two major parts:

(1) an operation

code, which specifies the operation to be performed, and (2) the

operands that will participate in the instruction.

OPERANDS: - Operands can be grouped in three classes:

operands

located in registers, imnediate operands, and operands in main memory.

Register operands can be located in general, floating point or -

control registers, and are sgpecified by identifying the register in a

four-bit field, called the R field, in the instruction.

Immediate operands are contained within the instruct.cn, and the

eight-bit field containing the immediate operand is caliled the T field.

Main Memory operands may either have an implied length, be speci-

fied by a bit mask, or, in other cases, be specified by a four-bit or

eight-bit length specification, called the L field, in the instruc-

tion. The address=s of operands in main memory are specified by means

of a format that uses the contents of a general register as part of

the main memory address.

For purposes of describing the
execution of instructions, op-
erands are designated as first,
second and third operands. In
general, only two operands par-
ticipate in an instruction ex-
ecution, and the result replaces
the first operand. An exception
is an instruction with "store'" in
the instruction name, where the
result replaces the second op-

erand.

FIGURE 3+4

MACHINE INSTRUCTION
FORMAT

RR

RX

]

Firmt Heltword

Byte

Byto 2

'
t

| Socund Helfword Third Haltword

0

Ope

e .\
300 .
|

Register Registes
rend 1 Opaerand 2

78 1112
'

Register
Operand 1

s

\

: Address of
' Ovberent 2 '
da

[N

Op Code

Tl

T o]

(]

7 U2
'

1516 1920 s
i .

| Immediate | Address ot
1 Operend Operond 1 !
A e A

Op Cods

12

mJ ny 4J

78

1516 19 20 i

' ' 1
Reglster Register Addrems of '
Operend 1 Opersnd3 Operand 2 !

e e |

——— e e

-\

IOpCodo n,ln,[a;[03 _]

lo 78 1113 1516 1920 n'

' . .)

1 i Length | Address of : Address of

' Operand 1.Opsrend 2 Operand 1 , Operend 2
e

Opcw.g] L,l Lzl n,J 01 l s;l 0,

° 70 1112, 1516 19120 3132 3828 4
) , .

' ' i Address of ! Addres of

! 1 Length) Opserand 1 ' Opersnd 2

: — -

[7090ua L [311 0 [agl 02

[)

76 un

1516 1920 NI uM

TAELE 3-4

MACHINE INSTRUCTION SET

NAME MNEMONIC TYPE CODE
Add AR RR 1A
Add A RX 5A
Add Decimal AP SS Fi
Add Halfword AL RX LA
Add Logical ALR RP. 1E
Add Logical AL RX 5%
Add Normalized ADR RR 24
Add Normalized 2D RX 04

~Add Unnormalized AW RX GF
And R RR 14
And N RX 4
And I ST 94
And aC 8S D4
Bit Reset BRESET St 9D
Bit Set BSET ST 9C
Bit Test BTEST SI oF
Branch and Link BALR [05
BRranch and Link BAL X 45
Branch and Link on BALCI RS 99

Condition iIndirect
Branch and Link Stack BALS X .81
Branch On Coanditiion BCR RR 07
Branch On Condition BC RX &7
Branch On Condition Stack BCS RR 01
Branch 0On Count BCTR RR Co
Branch On Count BCT RY h6
Branch On Index High BXH it 86
Branch On Tndez Low or BYLE RS 87

Fquai
Compare CR PR 19
Compare C RX 59
Compare (Floating Point) CDR RE 2
Compare {(Floating Point) c X 69
Compare Decimal cp &s o
Compare Haifword CH AN 4y
Compare logical CLR RR 15
Compare iogical CL BX. 55
Compare Logical CLI 51 o5
Compare iwgical C1C 58 D5
Compare Logical Charac- CLM RS DD

ters Uuder Mask
Compare Logical With Pad CLPC g5
Compress 5Stving COMP SS F6
Countrol T/0 £10 RR oc
Conver: To Binary CvR RY 4%

OPERANDS
(Assembler Format)

R1,R2
R1,D2(X2,B2)
i(Li,Bi),p2(L2,B2)
®1,D2(X2,B2)
R1,R2
R1,D2(X2,B2)
R1,R2
R1,D2{X2,B2)
nL,uz(xz,Bz)
R1,R2
R1,D2(X2,B2)
R1{31),12
p1{l,B1),D2(B2)
pi{p1),M1
D1(R1), M1
DLBi), ML

RL.RZ
R1.DZ(%2,B2)
M1,R3,D2(32)

S$1,D2(X2.,B2)
M1,R2
M1,D2(X2,B2)
M1,82
Ri.R2
11.n2{X2,82)
R.,R83,D2(B2)
R!,R2,D2(B2)

R1.R2

R1,n2(%2,B2)

R1,%2

R7.D2(%2.B2)
v,\u;,Bi),ni(LZ,BZ)
R},B2{%2,B2)

R1,R2

% ,02(X2,82)
01(31),17

pi(i.,B1),D2(82)
21,M3,07(82)

pi{11,B1),p2(L.2,B2),L3
p1(#1,B1),D2(R2,B2)

Ri

R1,D2{%2,R2)

OPERANDS
‘ NAME MNEMONIC TYPE CODE (Assembler Format)

Convert To Decimal CcVD RX 4E R1,D2(X2,B2)
Convert Floating Point (0))) 8 2F R1,R2
To Integer
Convert Integer To cID ' 2E R1,R2
| Floating Point
| Decrement and Inspect DSEM RX 51 R1,D2(X3,B3)
| Semaphore (P)
| Dequeue DEQ RS A0 R1,D2(B3)
| Destack DESK RS Al R1,D2(B3)
Divide _ IR RR 1D R1,R2
Divide D RX 5D R1,D2(X2,B2)
Divide (Floating Point) DDR RR 2D R1,R2
Divide (Floating Point) DD RX 6D R1,D2(X2,B2)
Divide Decimal DP SS FD p1(L1,B1),Dp2(L2,B2)
Edit ED ss DE p1(L,B1),D2(B2)
| Edit and Mark EDMK ss DF p1(L,B1),D2(B2)
‘ Enqueue ENQ RX 52 R1,D2(X3,B3)
| Enstack ENSK " RX 53 R1,D2(X3,B3)
| Exclusive Or XR RR 17 R1,R2
| Exclusive Or X RX 57 R1,D2(X2,B2)
Exclusive Or X1 SI 97 D1(B1),12
Exclusive Or XC SS D7 p1(L,B1),D2(B2)
Execute - EX RX b4 R1,D2(X2,B2)
. Expand String XPAND Ss F7 D1(R1,B1),D2(R2,B2)
Halt 1/0 HIO RR 03 R1
Halve HDR RR 24 R1,R2
Increment and Inspect ISEM RS A2 R1,D2(B3)
Semaphore (V) :
Insert Character IC RX 43 R1,D2(X2,B2)
Insert Characters Unier ICM RS BF R1,M3,D2(B2)
Mask
Jump To Subroutine On JSCI RX 61 M1,D2(X2,B2)
Load LR RR 18 R1,R2
Load L RX 58 R1,D2(X2,B2)
Load (Floating Point) LDR RR 28 R1,R2
Load (Floating Point) LD RX 68 R1,D2(X2,B2)
Load Address LA RX 41 R1,D2(X2,B2)
Load and Test LTR RR 12 R1,R2
Load and Test LT RX 4D R1,D2(X2,B2)
Load and Test (Floating LTDR RR 22 RL,R2
Point)
Load Character LC RX 62 R1,D2(X2,B2)
Load Complement LCR RR 13 R1,R2
Load Complement (Floating LCDR RR 23 R1,R2
Point)
Load Control LCTL RS B7 R1,R3,D2(B2)
Load Halfword LH RX 48 R1,D2(X2,B2)

3-35

NAME

Load multiple

Load Vegatiwve)

Load Negaiive (Floating
Point)

Losd Page Tabie

Lees Tage Tetle

Load Page Tasble

Load PCW

Load Phvsical Addrass

Load Posiuvive

wed Positive {Floating
Point

Mowve

move

Move NMumerics

Move Wiith Offset

Mlove With Pad

Move Zores

Multiply

Multiply

Multiply (¥loating Point)

Multiply (Flcating Point)

Multinly Decimel

Multiply Yallwowd

Or

O

Or

Ur

Pack

Pack and Aligu

Pop

Pop tharacters

Pop Half{wo:i:

Fop Multiple

Pop woihing

Push

Push Address

Push Characters

Push Multiple

Push Nothing

Reset Refereiice and
Char.ge Bits

Refurn On Zondition

Ssve Then ‘AND’ System
Masl:

Save Then 'OR' System
Mask

MNEMONIC

LM
LNR
LNDR

LPTO
LPT1
LPT2
LPCW
LPA

LPR

LFOR

MVT
MVC
MVN
MYO
MVPC
MVZ
MR

M
MDR
MD

MP
MY

OR

0

0l

0e
PACK
PAL
POP
PoPC
POPH
SOPM
POPH
PUSH
PUSHA
PUSHC
PUSHM
PUSHN
RRCB

RTC
STNSM

STOSM

TYPE

RS
RR
RR

RS
RS
RS
S

RX
RR
RR

SI
SS
SS
SS

S8
KR
RX
RR
RX
SS
RX
RR
RX
St
SS
SS
1]
RE
Ss
RR
RS
RX
RR

SS
RS
RX
ST

CODE

98
11
21

A3
Ab
A5
82
Bl
10
20

92
D2
D1
F1
E2
D3
1C
5C
2C
6C
FC
4c
16
56
96
D6
F2
Ch4
08
D8
09
A6
84
08
BO
B9
A9
85
9F

04
AC

AD

OPERANDS
(Asprembler Format)

R1,R3,D2(B2)
R1,RZ
K1,R2

K1,D2(B2%)
R1,D2(B2)
Ri,D4(B2)
Di(R1}
K:,D2(Xx2,B2)
R1,R2

R1,R%

B1(Bi), (Z
D1(L,B1),D2(B2)
D1(L,B1),02(B2)
p1{L1,B81),p2(L2,B2)
D1(1.1,81),d2(L2,B2),13
n1(i,381),02(82)
R1,R2

R1,D2(X2,BZ)

R1,R2

R1,D2(X2,B2)
p1(L1,B1),n2(L2,B2)
®1,D2(X2,B2)

R1,R2

R1,D2(X2,R2)
D1(B1),12
D1(L,B1),D2(B2)
»n1(L1,B1),02(L2,B2)
D1(1,1,81),p2(L2,B2)
S1,R2
i{i,31),D2(82)
S1,R2

S1,R3,R2
S1,12(%2,52)

S1,R2

51,D2VXZ,B2)
D1(L,41),D2(B2)
S1,%3,R?
St,02{(%2,82)
D1{B1),M2

ML
R1,R3,31

R1,R3,11

NAME

Set Program Mask

Shift and Round DMrcimal

Shift Left Double

Shift Left Double Logical

Shift Left Single

Shift Left Single Logical

Shift Right Double

Shift Right Double Logical

Shift Right Single

Shift Right Single Logical

Start I/0

Store

Store (Floating Point)

Store Character

Store Characters Under
Mask

Store Control

Store Diagnostic Data

Store Halfword

Store Multiple

Subtract

Subtract

Subtract Decimal

Subtract Halfword

Subtract Logical

Subtract Logical

Subtract (Floating Point)

Subtract (Floating Point)

Supervisor Call

Supervigor Call Exit

Test Under Mask

Translate

Translate and Test

Unpack

Unpack Unsigned

Unpal

Zero and Add

Convert Block-in-extent-
list to Block-on-volume

Fix Page in Frame

Scan Page Frame Table

Set Time Slice

Unfix Page On Frame

MNEMONIC

SPM
SRP
SLDA
SLDL
SLA
SLL
SRDA
SRDL
SRA
SRL
SIO
ST
STD
ST
STCM

STCTL
STDD
STH
STM
SR

S

SP
SH
SLR
SL
SDR
SD
svc
SVCX
™
TR
TRT
UNPK
UNPU
UNPAL
ZAP
BFBV

FIX
SPFT
STS
UNFIX

3-37

TYPE

RR
SS
RS
RS
RS
RS
RS
RS
RS

bl
wn

BRERE

RERERERAREEE"]

RS
RS
SS
RS

CODE

0D
FO
8F
8D
8B
89
8E
8C
8A
88
02
50
60
42
BE

B6
9B
40
90
1B
5B
FB

© 4B

1F
5F
2B
6B
0A
27
91

DD
F3
F4
DB
F8
‘0E

B2

c7
B3

OPERANDS
(Assembler Format)

R1
p1(L1,B1),D02(B2),13
R1,D2(B2)
R1,D2(B2)
R1,D2(B2)
R1,D2(B2)
R1,D2(B2)
R1,D2(B2)
R1,D2(B2)
R1,D2(B2)

R1
R1,D2(X2,B2)
R1,D2(X2,B2)
R1,D2(X2,B2)
KR1,M3,D2(B2)

R1,R3,D2(B2)
D1(B1)
R1,D2(X2,8B2)
R1,R3,D2(B2)
R1,R2
R1,D2(X2,B2)
p1(L1,B1),D2(L2,B2)
R1,D2,(X2,B2)
R1,R2
R1,D2(X2,B2)
R1,R2
R1,D2(X2,B2)
I

D1(B1),12
DL(L,B1),D2(B2)
p1(L,B1),D2(B2)
p1(L1,B1),p2(L2,B2)
p1(L1,B1),p2(L2,B2)
p1(L1,B1),D2(L2,B2)
p1(L1,B1),D2(L2,B2)
R1,R2

R1,R3,D2(B2)
R1,R3,D2(B2)
D1(R1,B1),D2(B2)
R1,R3,D2(B2)

NOTE that macnine instructions for arithmetic and logical
operations fall into three classes: Uixed-point arithmetic,
decimal arithmetic, and logical operations. These classes differ
in the data formats used, the registers involved, the operations
provided, and the way field length is stated. A more detailed
discussion of operation 'classes' is presented on pages 13
thiough 22 in the 8300 Principles of Operation manual (WL
#800-1100P0) .

TNSTRUCTTON EXECUTION:

Nommally, the cperation of the C¥ is contirolled by machine
instructions taken 1n sequence. An instiruccion is fetched from a
location specified by the instruction address in the 'cuvrent PCW'.
The instruction addiess is then increasad by the aumber of bytes in
the fetched iustruction to address the next instructiou in sequence.
The instvuction is then executed and the same steps are vepeated using

the new vaiue of the instruction addrsss.

A change fiom this sequential operacion w8y be caused ty

branching, status switching, interrupiions, cr ma&nual interveution.

Braunching

The nowvmal sequential execution of instiucticas is changed: a)
when reference ia made to 2 subvouiine, D) when a two-wav choice i3
encountered, o @) waen a segaenit of vouing, such as & loop, ig to be
repeated. All these tasks can be zecomplashed with branching
instructions. Provision is inade for subroutine linkege, permitting
not only the intrcduction of a new imstruction address but also the

preservvacion of the return address {multi-level subroutine siacking).
The Progvam Control Word

The Program Control Woid (pcW), 8 byies tong, contains the

information veauired for proper execution of wachine inccruciions. Tt

includes status and control information, interruption codes and the

instruction address.

In general, the PCW is used to control

instruction sequencing and to hold and indicate the status of the

system in relation to the program currently being executed.

active or controlling PCW is called the '"Current PCW".

current PCW during an interruption, the status of the CP can be

preserved for subsequent inspection and resumption of a task.

The

By

loading a new PCW, the state of the CP can be initialized or changed.

The PCW is made up of a one byte interruption code, a three byte

instruction address, a two byte status field, a one byte program mask

field and one byte recovered for later options.

show PCW format.

By storing the

The following figures

MSB Interruption Instruction Address
‘\\\& Code
pie# p 708 1fiz 15| 19f20 23fas 27f28 31
pigit#|1 | 2 3 4 5 6 7 8
continued < -
Wl C| P} x| x{ I} T|{ Mj B} D} E} S X
Bit# 32133|34§35036]37]|38|39§40|41|42]43] 44 45 46 47
[Digit# 9 10 11 12
continued < —!
\
CcC FPO DO EU SG X X X
Bit#]48 | 49 50 51 52 53 54 | 55 56 59 60 634—LSB
Digit# 13 14 15 16

PCW digits 1 and 2 are defined saisfactorily in the PCW

Conversion Chart on page 3-40.

digits 9 through 16, see pages 3-41 and 3-42.

3-39

For more explicit definitions of PCW

TABLY 3--5

PROGR/AT NURTROL WCRD (PCW)

CONVERSION CHART

e e e et e -
S"' BIT 4 ‘
N !
DIGIT # Sy !8 BIT A E . T . L '_"__]
p_-'xw-_-ﬂr's‘gaué!gzexu==n==sh?fgzzT;é pt. Addr. E;ZHZTT—‘F-SEBGQgTQE_—-"
Exception Lxception r-rw__-éie‘m-_.".nh_
! |___smack ovewmow
2 Digit #2= Programming Errors:
I=Operetion 4=Proiiection /=Data A=Dec Overfl.
i Z=Privileged Dp. Jraddresaing 8=rixes Pt. Ovf. B=Dec¢ Divide
3=Execute 6=Specifica:idn G=Fixed fi. Div. C”oupv Call R
R E ' T I
! TISTRUCTICN g NIA NTIA WLA
i pomess) I
b nu i b,m _NIA NL_A:_ .)
5 B NIA ey NIA
6 NIA NIA NTA N o
7w] LA NIA
' 8 NIA NIA NIA NEXT
INSTRUCTION
| I N] BODRESS |
9 W C P
Wait State Control Mode Mem. Proiect &
] Privilegad RESERVED
Inzivr. Trap
10 o I T ‘ -M—r T
RESERVED I/0 Interrupt Clock Intevrupt | Mach. Check
Mask Mask ntipis wask
=y } mi—— m— R el
PCW Addresc Virtual Address | ?hys. Address Single Step
Comparc Trap Mod. Trap Mod Traa Lfap
BEST RZSTRVED RESERVED B RESKRVED RESERVED
1 e cc | wo T T
Conditioa Cod:o Condition Code | Fixed Point Decimal
Overflow HMask Overflow
14 _—-HYE_IU-" T S(;“' '
Exponent Uider- Significance RESERVED RESERVED
Flow Mask ; ____Hi‘ﬁasl:
15 RESERVED | RESERVED RESERVED | RESERVED
16 ' RESERVED) RESERVED RESERVED RESERVED

PCW PCW NAME GIVEN IN
DIGIT # BIT # PCW CONVERSION CHART MEANTNC
32 W Wait state:
O= Operaling state
1= Wait state
33 C Control mode:
0= Normal operating mode
1= Control mode
9 34 P Memory protection violation

and priviiedged instruction

trap: h

0= Do not trap on memory
protection violation or
priviledged instruction

1= Trap on memory protection
violation ov priviledged
instruction

35 Reserved
36

—

Reserved

37

—— -

1/0 Interruption mask:
0= I/0 Interrupts disabled
1= 1/0 Interrupts enabled

10

38

Clock Interruption mask:
0= Clock Interrupts disabled

39

40

enabled
—

B

1= Clock Interrupts enabled

Machine check Interruption
mask:

0= Machine check Interrupts
disabled

1= Machine check Interrupts

PCW address compare trap:
0= No PCW address compare
trap in effect
1= Trap on PCW address
compare equel

11

41

Virtual address
modification trap:
0= No virtual address
modification trap in effect
1= Trap on unequal compare
with byte at gpecified
virtual address

dp X SSEE

PCW

14

moLusmr omcoew

DIGIT #

ﬁaﬁ====ﬁ,;_qz%,g$al

- e

PCw
BIT #

/Iz

L)

TSI LR TRIT TNt TT W rrew veee m— ey

NAME CIVEN IN
PCW CONVERSION CHART

E

ORI T SRR PRIt e S g T e o

MEANING

fe

Phvsical address
modi{<cation trap:
0= Ne physi~al address
wedifiration trap
I= Trap on uiequai compare
with byie ac specified

_physicai address

in effect

T TN T T ITUIT L W ety ey~ gty g -t -~

2
]
»
B e

1 L4 e oo e v wre s e Ty & AL 3T -’-~—--—1 e
e ———— ¥ e~ e

2

e n‘g

—-—._F- e m—— — "

jos}
i
O
-
-~
D
=
[CR
o
P
[}
0]
<~
s
-
o]
3

K

Tion after extecation of

next jsscruciion

Resevved

W= L - s —ver
v—— sy s

- s rem—— o
= —

O ——l—r—._ po— 3 v . m——
T e e S v o —

Conditign Code

- 2 s 2

#ixed-poinf ovarflow mask:
0= Do not 1incerrupt on
overilow
1= Over{low wil]

intercupt

cauvse

i

| i e mram

be weemia i

e T vm e

W1
N

53

i
]
{
L

DO

m——-"——'.a-.;_'"

SG

cfiow:

Decimel oves
Do met 1ncerrupt o
cverflow

1= Overflow will cause

incerrupt

TR AT WY ww vvew
e

[&]
i}

=3 sy v e g

Exponent undurflow qask

cwrrel e —

A
(Fioating-woine instruciions)

jcance magk
Rty
£o1.C Jnstruciions)

= F m—"u—“m‘

- —— L R rn--»—‘q,-— T e———— Ve T W IWWW amt vt S e ewir s %

N ._l

H4-55

v R v e Y AW AT v

I e 4" T Arwem ¥ CTWRCY BT rT W

i e

15

et et

56-54

— v

d

1

J Reserved
=

!

Yererved

L TwErer At e Al vl TET ity TIT AL SWLW T YW W vy e mw W e e
e —— —_————

16

60-63

Reserved

I —e— - YRS 1 4

T T T e A

342

el Ceree AL ¢ WA vwE Vm Y SE e e mmremue G msmew m immmermc.
— i r— T e ——

¢ —— s

LTIy e e
S v

3.2.4 INTERRUPTS
3.2.4.1 General

An interrupt is an error condition or a request-for-assistance
condition that will cause a break in the normal sequence of instruc-
tion execution. Should such a condition occur, the system supervisor
seizes control and action is taken to either flag/log/correct the
error condition or to service the request for assistance. An inter-
rupt can occur after the execution of one instruction and before the
execution of the next instruction. Instructions are said to have been

completed, terminated, aborted, or suppressed at the time an interrupt

occurs.

An 'interrupt' system permits the 2200vs Operating System to
change state as a result of conditions external to the system,
conditions in I/0 devices, or conditions in the CP itself. Five
classes of interrupt conditions are possible: 1I1/0, clock, program,

supervisor call and machine check.

Simultaneous requests for interruptions at the end of an instruc-
tion are honored in the following order of priority (the conditions

are listed in descending order of priority):

Machine Check
Supervisor Call
Program

Clock
Input/Output

3.2.4.2 Types of Interrupts

Machine Check Interruption:

The machine check interruption provides a means for reporting the
occurrence of machine malfunctions to the Operating System. Informa-

tion is provided to assist the Operating System in determining the

location of the fault.

.

The cause of the malfunction is identified by the interruption
code. An interruption code of 1 indicates a main memory parity
ersvor. An intercuption code of Z indicates an uriexpected interruption
request from an 1/0 processor (IOP). A machine sheck interruption may
be masked off by turning off the wmachine check interruption mask bit

in the PCW. A wachiae check iaterrupt that has been masked off causes

entry to contiol mode.

Any program o supervisor-call iaterruptions that would have
occurved as a result of the current operation are eliminated. Any

instruction in progress when a machine check occurs is aborted.

Supervisor Call Iateciupoion:

———— — — ce—e —

The superviscv-czil interruption occurs as a result of the
execucion of the SUPERVISOR CALL instruction. It causes the eurrent
PCW and oitner infcriration tc be stored in the system stack in Main

Memory ond a new PC¥W is constructed.

The name "supervisor call" indicates that one of the major
purposes of the intevruption is tl2 switching of the Operating System

from problem to supervisor state.

:Program Interruption:

Exceptions resu!.ing from improper use of instructions and data

caugF a program iniIvruscion.

The current insiruction is completed, terminated, aborted, or
suppressed. Only one program iunterruption occurs for a given instruc-
tion. The ccourrence o a wrogram interruption does not preciude ihe

simulturecus occurrence of other program-interruptions.

A description of the individual program exceptions follows. Some
of the exceptions listed may also occur in operations resulting from

I/0 instructions.

3-44

Program Interruption Codes

Programming Errors

Operation
Priviledged Operation
Execute

Protection
Addressing
Specification

Data

Fixed Point Overflow
Fixed Point Divide
Decimal Overflow
Decimal Divide

Supervisor Call Range

Debugging Aids

PCW Trap
Virtual Destination Trap
Physical Destination Trap

Single Step Trap

01
02
03
04
05
06
07
08
09
0A
0B
0c

10
11
12
13

20

Address Translation Exception

Stack Facility
Stack Overflow

Floating Point Exceptions

Floating Point Overflow
Floating Point Underflow
Significance

Floating Point Divide

3-45

40
41
42
43

Clock Interiuption:

The clock interruption provides a means by which the CPU responds
to timing conditions set within the system. For example, a clock
interruption becomes 'pending' whenever the time-of-day clock value is

i

greater than oi equal to the clock comparator value,

Tnpui/Outpui Interrupiion:

—— — o -~ a——_ —— . ———

equest for an I/0 interruption may occur at any time, and more

i

A
than one rejuest may occur at the same time. The requests are
preserved iu the I/0 device until accepted by the processor. More
than one evenc which establishes a pending interrupt may occur at a
device. [Lach such event is recorded at the device and, when the I/0
iaterruption fov the device is taken, the stored I0SW {I/0 Status

Word) reflects the occurrence of all such events. Priority is

rf

estabiished among devices so that only one 1/0 interrupiion request is

procesgsed at at time.

3.2 TEZ INPUT/OUTPUT PROCESSOR (7110 pc)

The tnput/Output Processor (IOP) is the heart of the inierface

}ee

I+

between the central precessor ana the user. All trsusfer of informa-
tion between the fentral Processcr (C.P.) and its peripheral equipment
is dirented through the IOP.

‘Thoe JOF is used to control inmput and cutput vequests. Starting
of the IOP is under the controi i the CP, whereas stoppiag the 10f
can he centivolied by the TOP or the CP. Cnce started, the I0P

processes independently of the CP.

Jaivializaticn

Initialization of microprograms and hardware elements can be
triggered by using either the Power-on or Load buttons on the

cy initialization involves reseftting bus contrcilers aand I/0

3-46

FIGURE 3-5 1IOP BLOCK DIAGRAM

MAIN ' CENTRAL

MEMORY PROCESSOR
l |

A | \

- - - l_ —_— — 4. — — e e e = — — — ‘._ —_ -
—t >
Bl : ’, | © pcBI

/ i
AN I : i >‘L—_-_|_<
(MAIN MEMORY } (PROCESSOR
BUS INTERFACE) | y COMMUNICAT ION
1 ocr oo BUS INTERFACE)
MAIN MEMORY COMMUNICATION !
BUS LOGIC ol
MMBL PCAL |
| g l
| y__| |
‘ MICROPROCESSOR I O D |
| ¥ -
| PCBY 7110 l
|
r — J— —_— — J— —_-— — — — — —— —_— —— —
|
| ‘ |
DEVICE ADAPTER]
| D.A. \
‘ PCBY# * |
I Y
[
ot ———— ——a
PERIPHERAL PERIPHERAL PERIPHERAL PERIPHERAL
DEVICE DEVICE DEVICE DEVICE
— - e —————

*DEPENDENT UPON TYPE OF 1/0 DEVICE ATTACHED

3-47

devices to a neutral state and activating the appropriate

microprogram routines in the microprocessors (by means of a

"trap"). The details of initialization will be defined by the

hardware group.

NOTES:
1. An initialize line on the PCB is used to initial-
ize IOP's and 1/0 devices.
2. Initialization causes all MMB and PCB lines to be
'dropped’ (i.e., no bus activity after initializa-

tion).

Reseiting of the I/0 Devices

All 1/0 devices ave reset when the LOAD button is pushed, or when
a system power-on sequence is completed. This causes the 1/0

. devices to terminate all I/0 operationms. tatus information and
interruption conditions in the devices are reset. Both data

trangfer operations and control operations are immediately

terminated and the results are unpredictable.

ilote that eecli device hes a one byte (8 bit) device address. All
values from 00 to FF are legitimate device addresses. The current IOP
supports four devices; ihe high-ovder six bits are therefore the IOP

address and the lcw-order two bits are the device address.

In the foilowing paragraphs, each major functional block of the
I0P is discussed.

3.3.1 THE MICRCPROCESSOR (MP)

The Microprocessor is to the IOP what the CP is to the overall
2200VS. The Microprocesscr consists of a variety of elements which
enable the manipulation of 1/0 data, I/0 communication, sequencing of

I/0 instructions, and the activating of 'interrupt' sequences.

3.3.1.1 Register Structure

Register mobility within the MP is accomplished through two 8-bit
paths and a 'path master'; the path master selects the registers
specified, places the data in the input bus (called the A-bus), and
gates them through a function generator called the ALU. The output of
the ALU is placed in the output bus (called the C-bus), the path

master then gates the result to the specified register.

The following paragraphs describe these registers, the tasks in

which they are involved, and their paths of interaction..

Memory Data Register (MDR):

The Memory Data Register, also called the 'port register', is
used as the point of exchange between Main Memory data and the IOP
Microprocessor. This register is divided into two 8-bit registers,
MERL and MDRH. MDRL is used as the exchange point between the M.P.
and the Processor Communication Bus (PCB) interface. Both registers
are used for command and information sequencing at the Device Adapter
(DA). Both MDRL and MDRH are used in logical and arithmetic
processing.

Memory Address Register (MAR):

The Memory Address Register (MAR) consists of three sections, a
3-bit MARH, an 8-bit MARM, and an 8-bit MARL. These registers are
used to point to a predetermined location in Main Memory where some
form of data transfer is to take place between Main Memory and the IOP

Microprocessor. This register may be incremented or decremented by
one or two.

3-49

MP TIMING

SELECTS INSTRUCTION
IN CONT. MEMORY

FROM TRAP >—
(MASTER CLOCK) x
SUBROUTINE STACX REG S [P=VPPF 725 ¥
USED 70 STORE INST. | CUNTER
72 CoNTROL ADD FROM INST COUNTER | ——— REG! 4
oF L MP TIMING | N s| sms N Ic
‘l-aw 4575 | 6 R 2 ‘&2 -BITS I
o] rq - - - - - T — —————'
i T »
COMTROL MEMORY COMTAINS [| =mr=rarsirm, | |conTROL MEMOTY |
=3 T RS —— 16 BIT INSTRUCTIONS ——— [USRS LL I
N o seme || MSED FOR ALL LOGIC MICRGPROCRAMS | "--\# CONTRCL MOMORY,
= z H_AND ARTHME:TC OPLRATIONS per— rnraz=) I x 16 |
58 ¢ / N o X = [Fsmmnn | [cowraor memomv]
Qe o . USED 3Y MICPOPRCGRAM TO RECEIVE IKST. 27 Kkxis
w & CRON) AMSL EC 81 PCBL q PERFORM LOGIC AWD ARITH. CALLED UP BY IC \ l c'o;l/rrpoz wmemor] |
E Q \ ' OPS TO STORE I:NFO ABOUT . |77 1xxss |
=3 STATE OF [0P |
) \ — \ | |
[\ W Bus (o-B7S)] | |
N CONTPOL WOXD (#FeH
- AN - —] 3 l
O MM.SL L_J l_.. ~ 1_ —I | /6 -5TS l
=== | | N
/ AN A N | ' I ‘- RFG | l—l——-—-_— —_———— '
_ N T O | (D sT4cx 3 F-BI7TS Y
| - /‘; : ! ! sexa I = l |
{] | y Wl : | [
[{] ' QI s ormarion pecapk] |
i --_—-L.—-_—J —_— Yo e - -49 \
: — — - L r-sTacns
‘ ! w1 | I N o 4 L__ !
! NATTH | AL UPAL | AMERL MDA | wite | [srarus) RVALLER A Npm-srmexd] ALil |
| 3-2/75| & -u17S | 8-..TS { S-By7S| 2-375 | | | 3-27s 2-373 | 3| sx] 2-0iTs L - 3
. ; 7 | e L E i |3 ISR I U U D
Ll e i) e = 4 R e s | 1‘____' U ,_/1 e l
. ' [F"--——l | _F _— == - Maniand Rahandihs —_—l—— 1 =y —L/ ._l
'I r— [S —_— - e | e i ~ o ——— eae _\1{_._..._.___
[el sus (§-807S)) -
v ; o 5 l so son m‘am. ro oAz \ USED BY MICROPROGRM T0 o MargL
To DAl ! © Y | o ne > k PERFORM LOGIC AND ARTTH.
| OFS. ALSO STORE INFO ABOUT
\ ! L DEVICES ATTACHED TO DLI A !
' \ / /
FROM DHT FiOoM Ainih FRONG DAY . 70 DRI (TP FCBL
ST LTI Y
\
SELECTS ADDRESS IN MAIN

MEMORY WHERE DATA EXCHAMGE
IS TO TAKE PLACE

L S
MEM DATA REG H, L

(PORT REG.) EXCHANGE
POINT BETWEEN MALil
MEMORY AND MICRO

PROC. (NP)

s o3 d

AFFECTS LOGIC SEPARAYION
OF DEVICE CONTROL REGISTER
STACAS MAY BE USED AS A

DEVICE SELECTOR

CONTROL AlL
OFPERRTIONS OF MP

Establishing a new Main Memory address in IOP MAR may be
accomplished by sequentially incrementing or decrementing the MAR
value (+1 or +2), or by parallel loading the MARH, MARM, and MARL
eight bits at a time (the IOP uses an 8 bit bus structure, Qﬁile the
CP uses a 16 bit 'halfword' bus structure). Note that the IOP

addresses only physical (Main) memory, not virtual memory.

File Control Registers (CF):

The File Control Register are used by the microprogram to
perform logical and arithmetic operations, to store status and control

information pertaining to the general st~te of the IOP.

Device Control Registers (DF):

The Device Control Registers are divided into four groups of 16
eight bit registers each. They are used by the microprogram to
perform logical and arithmetic operations and to store status and

control information pertaining to the general state of the devices

attached to the Device Level Tnterface (D.L.I.; 'device adapter').

Pointer Register (PT):

The Pointer Register is a 2-bit register that is used to select
one of four devices attached to the Device Adapter; or, it can select
any one of four sets of Device Control Registers (1 set = 16 regis-
ters), each belonging to one of the four devices attached to the

Device Adapter.

Status Register (S):

The Status Register is an 8-bit register that can be used for all

logical and arithmetic operations, except ADD with carry (AC), in the

IOP Microprocessor.

3-51

FORMAT:

0 1 2 3 4 5 6 7

Ul IN 3V RB U2 c2 Cl CA

Ul - Undeficed.

IN ~ Input - This bit is set to '0O' by the CDLI microinstruction
(hardware). The DLI sets this bit to 'l' when responding to
a CDLI micvoinstruction.

AV - Service ~ This bii is conditionally set by the PCBI to '0'.

RB - Ready/#usy ~ This bit is tested by the PCBI.

U2 -~ Undefined.

C2 - Creater/Less - This bit is set as a result of the compare
instruction.

Cl - Equal -~ This bit is set as a result of the compare
instruction.

CA —~ Carvy ~ This bit is used and set in the add with carry

instructio.

Instruction Counter 2egister (IC):

The IOP Instrnction Counter Regirter is a 12-bit register which

selects IOP Contvtul Memory wmicroinstructions. Normally, IOP

microingtructions are executed sequentially. The IOP IC can be

conditionally incremenied by 2 (skip microinstruction), or may be

loaded with a value from the IOP Subroutine Stack, from the IOP

instruction Register, ox from the IOP Trap Handler .

Instruction Register (TR):

The IR receives the 16-bit instruction ¢rde acdressed by the IC.

Eight of the Instruction Register's bits are svnt to the IOP's

register-selecting logic (called the 'path master') for immediate data

-

instructions. Also, 11 bits are made available to the DLI, the MMBI,
and the PCBI as control information. The Instruction Register is also
called the 'Control Word Latch' (CWL).

Subroutine Stack Registers (SRS):

The Subroutine Stack Registers are a group of sixteen 12-bit
registers. Each of the sixteen registers is used to store the address
of an IOP microprogram instruction. Each can then be used as a
subroutine return address which is loaded into the IOP IC when return

conditions are met.

A and B Rggistera:

Thése registers receive the IOP's A-bus. Their contents are
gated to the IOP ALU.

3.3.1.2 Arithmetic Logical Unit (ALU)

At the center of the microprocessor is the ARITHMETIC LOGICAL
UNIT (ALU). The ALU is made up of an input section (2 latches), the

ALU itself, an ADD w/carry circuit, and a compare circuit. The output
of the ALU is the C-Bus. All arithmetic and logical functions are
processed through this network. Certain instructions (CDLI, CMBI,

CPBI, SR, SB, and BU) are not arithmetic or logical and do not use the
ALU.

The IOP ALU is an 8-bit unit and is fed by two 8-bit input
latches, the A-Register and B-Register. Two operands (values to be
acted upon) are loaded into the ALU through the A and B Registers.
When the ALU is loaded, it processes the two operands according to the
controlling microinstruction (example: ADD). The resultant is placed
on the C-Bus. The microinstruction also specifies a target register,
where the result is to be placed.

3-53

3.3.1.3 Control Memory (CM)

I0P Contiol Memory is a PROM storage block, 4096 x 16 bits. Each
of the 4,096 sixteen-bit microcode instructions has 2 parity bits
attached, thus making each IOP microinstruction 18 bits wide. These
IOP microprograms are used to control each peripheral device and

manipulate data in the IOP.
3.3.2 MAIN MEMORY BUS/LOGIC

Main Memory Bus Logic is that porticn of the IOP which controls
all data transfers between the IOP and main memory. Main Memory Bus
Logic (MMBL) resides on the Microprocessor boavrd. The actual
operations controiled by the MMBL are: READ 16 bits, WRITE 16 bits,
WRITE 8 bits and receive Main Memory error conditions when they
occur. when the IOP has data to send to the CF, the dats is written
into Main Memory lccations which begin at an address calculated by the
I0P. The CP then reads Main Memory, beginning at that address. The
same is true in reverse. The CP would give the addresses of the data
needed by the T7OP, and the IOP would then read those locatione of Main

Memory.

Operatious involving the I0 and Mein Mcmory are controlled by a
"Control (the) Memory Bus Interface’ (CMBI) micwoinstruction. When,
during a microinstjuction routine, the CMBL instruction is detected,
the Main Memory Bus Logic reaquests a memory cycle from Main Memory.
No other micioinstructions will be processaed by the IGP until the
memory transyer is complete. Note that all IOP's in the svstem will
be requesting memory cycles; and when more than ona IOP réqueats
access to memory a the same instant, the main memory coatroller will
grant acczss to Main Memory by a priority basis determined by the

ph-sical location of each IOP in the 2200VS chassie,

3-54

3.3.3 PROCESSOR COMMUNICATION BUS LOGIC (PCB)

The PCB is that portion of the IOP that controls all
communication (handshake, protocol, efc.) between IOPs and the CP.
There are only two basic operations performed using the Processor
Communication Bus (PCB): 'Command-Out' and 'Grant-Interrupt'. The
operations are independent, not time-critical, and do not overlap as
far as the PCB hardware is concerned. The operations are basically
shoulder tap operations between the CP and an IOP; all decisions and

responses involving the state of a particular I/0 device are handled
by the IOP.

The normal communication between the CP, main memory, and the
IOPs is as follows. The CP initiates a Start I/0O (SIO) sequence. The
IOP receives the SIO and either accepts or rejects it. An IOP would

reject the SIO sequence due to that IOP or device being busy.

IOP BUSY

During certain critical operations required to control its I/0
devices, an IOP may be unable to accept a SIO or HIO (Halt I/0).
This condition is of limited duration and is relatively
infrequent. When the IOP is unable to accept a SIO or HIO, a
condition code indicating IOP BUSY is returned. The conditions
and times when an IOP will respond BUSY are device dependent.
Once an IOP has responded to an instruction with an indication of
IOP BUSY, it will present an IOP NOW READY interrupt after the
BUSY condition clears. Only one IOP NOW READY interrupt will be

presented no matter how many SIOs are rejected.
3.3.3.1 1Input/Output Interruptions

Input/Output interruptions provide a means for the system to
change its state in response to conditions that occur in I/0 devices
and IOP's. These conditions are caused by termination of an I/0

operation or by operator intervention at the I/0 device.

These conditions cause three types of I/0 interruptions,
solicited, unsolicited, and IOP NOW READY. A solicited interruption
is caused by the completion of an 1/0 operation initiated by the CP.
An unsolicited interruption is caused by operator action at the I1/0
device such as mounting a disk pack or striking a work station
attention key. An IOP NOW READY interruption is caused by an I10P
becoming available for acceptance of SIOs and HIOs after having

reported IOP BUSY in response to one of these instructions.

If an SIO sequence is accepted by the IOP, the IOP traps to a
predetermined location in the IOP microcode. This location (address
HEX 04) is a BRANCH microinstructioﬁ, directing the microprocessor to
address another location in IOP Control Memory. There, a microcoded
(subroutine) determines which device attached to a given IOP has been
requestéd for service. The microprogram will then calculate an
address in Main Memory where the Input/Output Command Address (IOCA)

is located for that particular device.

I1/C COMMAND ADDRESS

The I/0 command address (IOCA) area starts at main storage
location 128 and contains a half-word entry for every possible I/0
device address from zero to the highest device address attached to the
system (up to 255). The IOP uses the device address received on an
SIO instruction as an index into the IOCA area. The IOCA has the
address of the I/0 command word (IOCW) to be executed.

IOCW address

IOCA Format

The IOCA contains the 16-bit address of the I0CW.

Calculate IOCA address by multiplying the perpheral device
’ address (the 'IOCA index') by 2, and adding that answer to binary 128.

Example of Computation

(HEX) BINARY
Device Address = 21 0010 0001
Multiply by 2 = 42 0100 0010
Add 128 (Binary) +1000 0000
IOCA Address c2
NOTES:
1. The device address has a six-bit IOP

\
l portion and a two-bit peripheral de-

vice portion.

Example:

ITIITIIPP = 4 DEVICE IOP

I=IOP portion of device address (4 or 6 bits)
. total of 64 4-Device IOPs.P=Peripheral device
portion of device address(2 bits) total

of 4 devices per IOP.

2, For the purpose of address computation, the IOP
portion and the device protion of the address

is treated as a single 8-bit address.

This calculated address is moved into the IOP MAR. The I0P
microprogram then reads 16-bits from main memory at that calculated
address. This results in the IOCA being placed in the IOP MDRH and
MDRL registers. The IOCA is an address in Main Memory where the
Input/Output Control Word (IOCW) is located. The microprogram does
another read from Main Memory at the address specified by the IOCA.
The IOCW, read from Main Memory by the IOP, is then stored in the IOP.

3-57

The TOCW specifies the command to be executed and contains all
information necessary to perform any task involving a peripheral '.
device. Such tasks would include reading from an I/0 device, writing
to an 1/0 device, or controlling an I/0 device. The IOCW tells the
I0P where in main memory any transier is to begin, how many bytes of
data are to be transferred, or in the case of control functions, the
initiating of operations with a specific device not involving data
transfer (such as a skip to heading on a printer, or a restore on a

disk device).

The IOCW consists of a six byte general section and is followed
by a device dependent section. The device dependent section can be of

eny length, but is fixed for each device. The TOCW must be fullword

aligned.
|
\
|
’ |
I Command Code) Data Address
|-
0 8 31
Data Count Device Detrendent
32 47 48 end

1/0 COMMAND VORD FORMAT
The fields in the TIOCW are allocated for the followiug purpese:
'Command Code' - Bits 0-7 specify the operction to e performed.

'Data Address' (DA) - Bits 8-31 specify the physical address of
an eight-bit byte in main memory, which must be fullword

aligned. This byte location is the beginning of the data area
for the specified operation, or is the beginning of an Tadirect

Data Address List, which in turn addresses the data avea(s) for

the operation. The entire Indirect Addreas Lisf must reside

within the first 64K bytes of physicul memoiy.

3-58

'Data Count Field' (DC) - Bits 32-47 specify the number of
eight-bit byte locations in memory to be transmitted either to or

from the device.

Command Code

The command code, bit positions 0-7 of the IOCW, specifies to the

I1/0 device the operation to be performed.

Bits 0 and 1 of the command code are the command typ., and bits
2-7 are the command modifier bits. The following four command types

are defined:

1) Reserved - '00'
2) Read - 'O1'

3) Write - '10'
4) Control - '11'

Commands
'Reserved' - This code is reserved.

'Write' - A write operation is initiated at the I1/0 device, and
data is transferred from main memory to the I/O device. Data in
memory is fetched in ascending order of addresses, starting with

the address specified in the IOCW.

'Read' - A read operation is initiated at the I/0 device, and
data is transferred from the device to main memory. Data in
memory is placed in ascending order of addresses, starting with

the address specified in the IOCW.

3-59

'Control' - A control operation is initiated at the I/0 device.
A control command is used to initiate an operation not involving

transfer of data. For most control functions, the entire

operation is specified by the modifier bits in the command code.
I1f the command code does not specify the entire control function,
the device dependent field of the IOCW can be used. The data

address field is always ignored for a control command.

Command Modifier Bits

The use of the modifier bits is device dependent. The modifier
bits of the command specify to the device how the command is to be
executed. The fifth modifier bits (bit 6 of the command code) is set

(S28 1

to indicate Indirect Data Addressing for those devices which support

that option.

When the IOCW designated contains an invalid field, an 1/0

interrupt is generated with the invalid condition indicated in the
IOSW.

3.3.3.2 1/0 Task Termination/Completion

Upon completion of a task described by an IOCW, the TOP
microprogram activates the PCB "Request-In-Line". This request 1s
referred to as a '"solicited interrupt". The IOP will leave this
request line active until granted service by the CP. The CP will
acknowledge this PCB request on a priority basis. When acknowledged,
the IOP then writes an Input/Output Status Word (IOSW) into main
memory location "0". This IOSW will contain ail necesgsary information

as to the 'completion status' of the I/0 operation that the IN® just
performed.

Normally, an I/0 operation is 'completed'; however, the system

can force an I/0 operation to terminate prematurely under certain
other conditions:

3-60

Datu Transfer Terminations:

When the device accepts a data transfer command, the operation

can be terminated by one of the following five conditions:

A HALT I/0 instruction was issued to the device.

The count field in the IOCW has gone to zero. (IOCW
exhaustion.)

As many bytes have been transferred as are indicated by the
sum of the lengths specified in an Indirect Address List.
(List exhaustion.)

The device has indicated that there is no more data to be
transferred. (Data exhaustion.)

Hardware malfunction.

The end condition causes the operation to be terminated and an

interruption condition to be generated. The status bits in the

associated IOSW indicate the reasons for termination. The device

can signal termination at any time after initiation of the

operation and the signal may occur before any data has been

transferred. The duration of data transfer operations is

variable and is controlled by the device and its IOP.

HALT I/0 Terminations:

If accepted by the IOP, instruction HALT I/0 causes the current

operation at the addressed device to be terminated immediately.

If an interruption for the addressed device was pending, that

interruption remains pending. If an I/0 operation was active,

the operation is terminated and a completion interruption becomes

pending.

3-61

Equipment Malfunction Terminations:

When equipment malfunctioning is detected, the recovery procedure
and the subsequent states of the devices depend on the type of
error. Normally, the device‘attempts all appropriate error
recovery procedures. TIf the veccvery is successful, the I/0
operation is completed and the IOSW indicates a soft error. If
the recovery is unsuccessful, the operation is terminated, and a

hard error is indicated in the IOSW.

An TOSW is stored for every T/0 interrupt, and is of the

following format:

COMPLETION]| TOP/DEVICE| RETRY COUNT| DEVICE-DEPENDENT| RESIDUAL BYTE
STATUS STATUS STATUS BYTES COUNT
(DEVICE PROBLEM
DESCRIPTION)
0 314 15 |16 19 |20 31 |32 47

COMPLETION STATUS:

IRQ - Intevvention Required

This bif is zet with error completion (EC) and without normal
completion (NC) to indicate that the device was in a not-ready state
when a Start I/0 was accepted, or that no device with the specified
device number was attached to the specified I/0 prcecessor. This
conditicn requitves operator interventicn to return the device to the

ready state.
NC - Normal Completion
This bit is set to indicate compietion of an I/0 operation

without permanent error. An interruption with NC or EC set will occur

exactly once for each SIO accepted.

3-62

EC - Error Completion

This bit is set to indicate completion with error of an I/0
operation. If NC is also set, the operation was successful after at
least one retry by the device or IOP. If this bit is set, the errors
detected will be indicated in the error status byte or device

dependent status bytes, whether or not NC is also set.

Thus we have:

NC EC

0 0 Completion not indicated

1 0 Normal completion

0 1 Completion with permanent error
1 1 Completion with corrected error

U - Unsolicited (Attention/Device Now Ready)

This bit is set when the device signals an unsolicited inter-
rupt. An unsolicited interrupt is one not caused by I/0 complétion.
This indicates that either the device has become available for I/0
operations or that a user is signalling the CP (attention). This bit

is independent cf, but may be set with the NC, EC or PC bits on.

PC - IOP Now Ready

This is an indicatios that an IOP may now accept a SIO. This bit
can be set in conjunction with NC or EC (I/0 completion) or U (unsoli-
cited). Whenever a SIO is rejected with condition code 2 (IOP BUSY),
an interruption with PC set will eventually be presented. If more
than one SIO to devices on the same IOP is rejected with condition
code 2 without an intervening interruption with PC set, then only one

interruption with PC set will be presented.

3-63

IOP/DEVICE STATUS:

IC - Invalid Command

This indicates that part of the IOCW or the device dependent
control information was invalid (e.g., invalid command code, invalid
data address alignment, etc.). This condition also causes hard error

to be indicated.
MPE - Memory Parity Error

Memory parity error is indicated whenever there is a parity error
while the IOP associated with the I/0 device is accessing memory .

This is the method by which a machine check is indicated during an 1/0

operation.
MAE - Memory Address Error

Memory address error is indicated whenever an attempt is made to
address outside of the available memory on the machine during an I/0
operation. This is the method by which an addressing exception is

indicated during an I/0 operation.

DM - Device Malfunction

Device malfunction indicates that an equipment error has occurred
during an I/0 operation or that the I/0 operation cannot be completed
normally. Device malfunction is not indicated in the casge where oper-
ator intervention will correct the problem. Thus device malfunction

is not indicated when intervention required (1RQ) is set.

DAM - Memory or Device Damage

This bit indicates that the data transfer was interrupted while
in process and that either the data at the device or in memory has

been changed. This indicates that the receiver of the data trans

3-64

mission has unpredictable data, and the data must be retransmitted (if
possible) to correct the problem. This may also mean that the _
device's status has changed (e.g., for a magnetic tape, the tape has
been repositioned). This bit will be set only if the hard error
indication is set.

IL - Incorrect Length

This bit is set if the length of the data specified in the data
count of the IOCW and length of the correspondiqg item of data at the
device were different. 1If this bit is set, this will cause the error
completion bit (EC) to be gset. If this bit is set and the device

supporte storing of the residual data count, a valid residual data
count will be stored.
RETRY COUNT:

Self explanatory.

DEVICE DEPENDENT STATUS BYTES:
(DEVICE PROBLEM DESCRIPTION)

Identifies such peripheral device failures as CRC, LRC, 'short

sector', sector overrun, compare error, invalid address.

~
RESIDUAL BYTE COUNT:

This indicates the byte count remaining at the time of I/0 com-

pletion. Not all devices support storing of the byte count.
The IOCW and the IOSW are two of the most useful pieces of

information in the troubleshooting and repair of the system, and/or

the various peripheral devices attached to the system.

3-65

TABLE 3-6

DISY IOSW CONVERSION CHART

BIT
DIGIT # 8 BIT 4 BIT 2 BIT 1 BIT
IRQ NC EC U
1 INTERVENTION REQ'D NORMAL COMPLETE I "OR COMPLETE UNSOLICITED
PC 0 0 0
2 IOP NOW READY ALWAYS ZERO ALWAYS ZERO ALWAYS ZERO
IC MPE MAE DM

INVALID DISK ADDRESS

INVALID DATA COUNT

SECTOR OVERRUN

3 INVALID COMMAND MEMORY ¢ARJTY ERROR MEMORY ADDRESS ERR DEVICE MALFUNCTION
DAM iL 0 0
4 MEM OR DEVICE DAMAG INCORRECT LENGTH ALWAYS ZERO ALWAYS ZERO
SRW HSR 0 0
SECT REFORMAT-WRITE HEADER SKIPPED-READ ALWAYS ZERO ALWAYS ZERO
IDA inc S0 SI

SEEK INCOMPLETE

WP
WRITE PROTECT

NRO
NOT RDY DURING OPN

ST
SECTOR TIMEOUT

DC
DATA COMPARE ERROR

JID
INVALID SECTOR ID

CRC
INVALID CRC OR ECC

0
OVERRUN (DATA FIFO)

ISP
SHORT SECTOR

RDC RDC RDC RDC
RESIDUAL DATA COUNT
RDC RDC RDC RDC
11 RDC RDC RDC RDC
RDC RDC RDC RDC
12 RESIDUAL DATA CO
RETRY SETUP (CDC)
13 0=NORMAL 1=DATA STROBE EARLY 2=DATA STROBE LATE 3=OFFSET 4=OFFSET+
S=EARLY & - 6=EARLY & + 7=LATE & - 8=IATE & + 9=HARD ERROR (ECC USED)
14 RETRY COUNT FOR SETUP IN DIGIT 13
15

PCB SIGNALS:

The PCB consists of 28 lines as follows:

1. PCB Grant-Out Strobe line (8).

10P).

PCB Request-In lines (8;

one per

These 16 lines are used in the PCB Grant-Interrupt operation.

3-66

2. PCB Device Address lines (8).

These bi-directional lines arc used to transfer an 1/0 device

address.

a. From IOP to CP - Grant-Interrupt Operation. Also
Command-Out Operation response.

b. From CP to IOPs - Command-Cut operation.

3. PCB Control lines (2).

These bi-directional lines are used to transmit a command from

the CP to an IOP or to transmit a response from and IOP to the CP.

a. Command (CP to addressed IOP) Command-Out Operation.

00 - Alert
' 01 - Start
10 - Stop

‘ 11 - Undefined

Note: The PCB Hardware is not concerned at all with the
above codes. Only the IOP distinguishes between the
different commands.

b. Response.
Command-Out Operation (addressed IOP to CP).
Grant-Interrupt Operation (selected IOP to CP).

00 - Available

01 - Device Busy

10 - IOP Busy

11 - Device not operable

Note: The IOP can generate the IOP busy code based on a
simple yes/no condition at the IOP. Other than this case,
the PCB hardware is not concerned with these codes.

4, PCB Control-Out Strobe line (1).

‘ A strobe line from the CP to the IOP is used to strobe a command

(PCB Control lines) and address during the Command-Out operation.

3-67

5. PCB Control-In Strobe line (1).

A strobe line from the IGP to the C» is used to strobe in 3
response (PCB Coniroi lines) for either PCB operstion. (Resgonse
inciudes device addvess ({rom I0P to GF), usiug FCB Device

Address lines.)
Rummary of PCR Lines

Common ti--directional lines
1. PCB Device Address iines (8)

2. PCP Conirol lines (2)

Commen lines (CP to IOPs)
1. PCB Control-Out Strobe (1)

Common lines (IOPs to CP)
1. PCB Control-In Strobe (1)

Independent lines (one per I0P to CP)
1. PCB Requast-In lines (8)
2. PCB Grant-Out Strobe (8)

3.3.4 DEVICE ADAPTER (DLY or DA)

Each Device Acapter basically controls the flow of data and

status information between a peripheral device and its IOP.

When data is to be transferred from the IOP Microprocessor to &

peripheral device, the DA ~ncepts data frum the IOP MP into its Outpu:

is felt ef the Device/Port

The pointer register stores this information

Register. The output of this register
selection circuitry.

which is used to detesmine which device the data should go to. The

data is then gated to the .correct port {actual plug on the DA).

3-68

When data is being passed from the peripheral device to the IOP
Microprocessor, the DA accepts data from the device into its '"Input
Register" via the Input Data Muitiplexer. This multiplexer is
controlled by the Fointer register. The output of the Input Register
is transferred to MDRH and MDRL.

The microinstruction within the IOP which controls the device is
the CDLI instruction (CONTROL (the) DEVICE LEVEL INTERFACE). The CDLI
instruction passes a command to a specific device, and that device
responds with a completion bit. This microinstruction is sent to a
device for the purpose of issuing a command such as a read or write.
One variation of the CDLI instruction, referred to as a '5002' CDLI
command, is used for the purpose of checking peripheral device
status. This gives the IOP Microprocessor the capability of scanning
any number of devices to find out their current status (ready, not

ready, busy, out of paper, etc.).
3.3.5 THE IOP MP MICROINSTRUCTION SET

The Instruction Set is the set of microinstructions which control
the activity of the wmicroprocessor. These microinstructions, in a
logical sequence, make up the microprograms stored in Control Memory.
A list of the sivteen microinstructions used in the WCS 60/80 IOP
follows. It is for general information only, as a more detailed

explanation will be included during training:

Instructions 1 through 10 are considered "logical and arithme-
tic". 1Instructions 11 and 12 are considered "conditional', while
instructions 13 through 15 are considered "unconditional". '"Interface
Operations' is the class name given to instructions 16 through 18.
These eighteen instructions control all processing within the IOP, and

are what gives the IOP the capability of processing independently from
the CP.

3-69

TABLE 3-7

IOP MICROINSTRUCTION SET

NﬁégEi_ch 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 "
] AD[0 0O 1 1 1 0 A A A 5 A B B B B B
2 OR 0 d-_;"o 1 0 A A A A A B B B B B
3 XOR| O O O 1 O 0 A A A A A B B B B B
4 A 0 G 0 1 1 0 A A A A A B B B B B‘_I
,,,,, S S
0 0 0 1 1 1 A A A A A B B B B B n
1 0 —'1 9 A A A A A B B B B B
| 1 Eﬁ-QE‘ 1 A A A A A B B B B B
I i 0 0 0 A A A A A S S S - -
| 0 1 I I 1 I I I I B B B B B
’ 1 1 I 1 I I 1 I I B B B B B
|
;] 1 I I T I 1 I I B B B B B
0o 1 I I —I I I I T B B B B B
1 6 1IcO ICl IC2 1IC3 1IC4 1IC5 IC6 IC7 IC8 1IC9 1IC10 ICll
1 1 1IcO ICi IC2 1IC3 1IC4 1IC5 1IC6 IC7 1ICc8 1IC9 1ICl0 ICll
-’1;—1 1 ~ - - - - - - - - - -
\ e — -~ —
16 c¢MBL 0 1 0 0 O - - - - - - D M M R R
i7 cpBI} C 1 0 0 1 - - - - - - C Y C c c
18 c©pLI] O ! 6 T 0 C C C C C C C c c C C

3-70

Values for B B B B B:
00000tc 01011 - CFO to CFB
01100 -PT
01101~ 8T
01110 - MDRH
01111 - MDRL
10000to11111 - DFO to DFF

Values for A A A A A:
Same as for BB B B B but with PT disallowed.

Values for S S S:

0 0 1 - MARH
010 - MARM
1 0 0 - MARL

3.4 MAIN MEMORY

A minimum of one, and a maximum of eight RAM cards (7104), 64K
each, comprise the 2200VS Main (physical) Memory. Maximum memory size
is actually 524,288 bytes. Note, however, that 'K' only expresses
memory size as a decimal equivalent of 2%, Thus, 524,288 bytes is
described as 512k (219).

Memory cards are loaded with dynamic RAM, each chip having a
capacity of 4K. 2200VS RAM is addressed in 16 data bit 'halfwords'.
The lowest order address bit to RAM selects which 8-bit byte of the
16-bit halfword is to be used in 8-bit instructions. This selection
is performed on the 7103 card. FEach halfword also has Eii parity bits

attached to it (explanation follows).

Main Memory data format is as follows:

- 16 Bits : > |a= 6 Bitg =
DATA PARITY
- 22 Bits . >

3-71

Error Correction

An 'Error Correction Code' (ECC) givee 2200VS$ hardware the
capability of correcting single-bit errors in data that is read from

RAM (Main Memory); no error correction occurs on RAM writes.

The correction of one-bit RAM READ errora is transparent to fhe
user; however, ECC facilities may be hzidware-disabled in a 2200VS for
RAM diagnostic procedures. If, during any l6-bit RE4D trom Main

Memory, more than one data bit is bad, the Centrzl Processor 'traps'

to a predetermined error routine address in Control Memory.

A simplification of 2200VS RAM/ECC circuiiry fcllows:

3-72

MAIN MEMORY - SIMPLIFICATION OF ECC HARDWARE

22 BIT

x o E" mMm X

AT LIKES cEntaATORs
N QL8110 A TR
N_0,1,2:8,6,7,9,14 | B "R, D
N 28:8:6.7,10,12.08 C AR, €
N_L3.8,0.9,10,11,12 D PAR. D
N\ LL8000,3000 o f £ [P E
1
NS XRAIRTRFRIRTS F M F
TN .
N
, N\ -
JdN .
s [\
. N
1N
)
9 § ' >
10 N\ >
I\
1
i) N\
R
o N
FIGURE 3-7

3-73

PARIYY
CHECKERS
DARLYY RIT A >
A' e MRITY A
(AR}
PARLTY BIT B >
B' [raITY M
/_n.x.u.u.ut__.
PARITY RITC
' C' lp maumre
PARJTY BIT D >
D' |—p PMITY O
PARITY BIT € >
E' | PAMITY E!
_PARITY BIT F >
F' [PARITY P
TR ALAT AT
y. w
2 —_]
V. 2
= —)
4 -
y -
V. N}
>-7 L AtAD
> DATA
—9
j A"
4 —-1
4 i | 4
W T
eanamen———

ZOre 4 OOMOVXOOO DVDOVOM

moooO

Betore a hclfword is writtea 1nto memory, a unique combination of
eight data bits in that 16-bit data pattern is presented to a

write-parity generator. There are six such write-parity generators

(named 'A' through 'F'); thereforz, odd-parity is similarly generated
for 5 other unique combinations of the 16 data bits prior to a RAM
write. The resulting six parity bits, plus the. initial data halfword

are written into RAM (22 bits total).

When either the CP or an IOP calls for that same halfword, all 22
bits are read. The 16 bits of RAM data (of the 22 bits read) are
latched into a register. Thosz same l6 bits are presented in unique
combinaticns of 8 data lines pius one parity bit to six 9-bit RAM

even/odd parity-check chips.

NOTE that tha2 same data bit combination presented to write-parity

generator ‘A’ (for instance) is also presented to a corresponding
9-bii parity checker 'A '. Alsé, each RAM write-parity bit
generated (parity bit 'A', for instance) is presented to that
same even/odd parity checker ('A '). Similar circuit operation

occurs for 'B' thru 'F' and 'B ' through 'F '.

An actual ECC from the outputs of the six even/odd parity
checkers ('A ' through 'F ') is also latched, then decoded into one of

16 error-corracting bits. One arror correction bit exists for each

data line. If sny data bit is bad when read from RAM, when that data
bit and its corresponding error-correcting bit are EXORed, the data
bit is inverted. All of the above actioms occur prior to loading
either the CP MDR or an IOP MDR; i.e., all s3ystem processors receive

corrected data only.

At this point, further explanation of ECC operational theory can

be illustrated using a chart:

W80, D Dy Dy D, Dy Dy D, Dy DBy Dy Dy Dy Dy Dy, Dyge—LsH

FIGURE 3-8 P : Z
els C ECC CHART

O
-
-
A

Ty(’\

<

X
.

In each vertical column, note that any !iven data bit is
associated with exactly three ECC bits. Each of the 16 data bits has
its own, unique three-bit ECC. Note, however, that the actual
decoding of ECC hardware requires six bits ('A ' through 'F ').

An 'X' in any box of the chart indicates an unused chart position
(corresponding, in circuitry, to a data bit line not connected to any

given even/odd parity-check chip).

Error correction can be demonstrated by example:

EXAMPLE: Generate the ECC for, and correct a one-bit error in the
hexadecimal number CA26 (1100 1010 0010 0110 in binary)

recalled from RAM.

Let us assume that the Hex CA26 previously written in RAM is read

as Hex CAA6. The 16 bits comprising the binary equivalent of Hex CAA6
are presented to the even/odd parity checkers. Parity checkers A, D,
and E indicate even parity. The error code compare logic identifies
ECC ABCDEF (combination ADE in the ECC chart) as belonging to
data bit 8. Bit 8 is complemented and Hex CAA6 becomes Hex CA26,

DATA BITS

W Db b D by DB DBy Dg Dy Dy Dy Dy Dy Py Py Py _21? L
ﬁj 1| 1lofo |2 1 0 1 1
i) 1l1]o o 1| o 0) 1
cle o {1 {ofl1]o 1 0 0 0
ch |2 0 0 1ol 1]ofo 1
[1 1 1o 1|10 0*
r 0 1 0 ofolalafo 0
¥ ¥

BIT

*PARITY ERROR

3-75

FIGURE 3-9

22 BIT

MAIN MEMUKY KREAD LOGIC

ERROR CODE LOGIC

PARITY
CHECKERS
— _ MULTIPLE-
PARITY BIT A > fe—-———1> BIT ERROR
FLAG (MMP)
A' | PARITY A
0,1,2,3,4,8,11,13 (EVEN/ODD) H
P A
R HIGH ERROR-
D CORRECT1ON
COUNY
PARITY BIT
A — X (SAT LIGHT)
B8 PARITY 3
- PAITY 3' |
0.0.2.5.6.2.9.14 (xvEN/0DD)
P E
£ce
E DISABLE,
PARITY BIT C : - R
' p PARITYC' I R
C (EVEN/0ODD) 0
“ > R
PARITY
BIT: ARRC2 COMBiNATION:
PARITY BIT D c DI
> i A5’
D! PARITY D' 0 i‘ yEy
- AC'D’
9,10,11,1 (evew/oon) | R o N
/-JIM!LI—L_L‘_»_ R Z !’C'O‘:
p'Cc'R
E 7 njg’v"
C 3 AD'e’
PARITY BIT E T To L
— | I 11 AD'F
E' mar e | 0 13 e
_-> (xVEW/0DD) N 14 ”,g,:
/-L‘Awau__»_ 15 cuy
C ERROR-CORRIECTION
PARITY BIT F > 0 BITS
'I'D
F' | MaITY ¢
ARAIRTAFATATING (xvanjoon) | B g
/)
“ 0
—1— SINGLE- S 0
/ =3 COMPLEMENT ——p 2
4 4 LOGIC L 3
y. e p—_— 4
4 —r] R > 5 CORRECTED
4 >8 CORR. BIT corr. [~ 67’ READ DATA
Va 0] DATA TO MDR's
4 104 pir [8
/] ;n-- DATA BIT — 9
4 2] /1 F /¢ —> 10
13 >11
4 14 12
< - =13 p1GuRE 3-10
—> 14
j—>

If more than one bit has been changed, the ECC will not match any
of the sixteen 3-bit patterns shown in the ECC table. A multiple-bit
error flag signal, MMP, generates an interrupt to the Central

Processor to identify a major memory fault,

One section of the '2200VS ECC logic not shown in this discussion
contains a counter which keeps track of the number of single bit
errors that have occurred. When that counter exceeds 65,536 counts, a
light on the processor panel is lit. This light informs the system

user that a Main Memory problem exists in the system.

Whatever the nature of the single-bit failure, the bit is wrong
and must be inverted. It is important to stress that the error is not

corrected in memory. It is corrected only on the memory output

lines. A correction in memory would require an additional memory
cycle and an attempted correction would probably fail for the same

reason the data was incorrect the first time.
DIRECT MEMORY ACCESS

Direct Memory Access (DMA) is available to each of the 8 I/0
Processors (IOP) and the CP on a priority basis. Priority encoding
logic on the 7303 card gives highest priority to the IOP in slot
number one. The remaining IOP slots are from 2 to 8, in order of
priority. The CP has the lowest priority due to its ability to steal

memory cycles.

The disk IOP always goes in slot number one because of the high
data transfer rate of the disk. The IOP gets serial data directly
from disk and converts to parallel data. The IOP has only a small
buffer. If memory cycles were not instantly available, the IOP buffer
would run out of room (disk 'overrun'). If the IOP buffer gets
overrun, a retry must be performed on the next revolution of the

disk. Retries slow down system operation.

There are eight request lines and nine grant lines on the 7103.
An IOP (or the CP) raises its request line when it wants a memory
cycle and waits for its grant line to go true. The CP has no request
line, as such; instead, the MMB controller looks at the MOP field of

the CP microinstruction to see if a memory operation is called for.

3-77

When a processor is granted a memory cycle, dudicss and read/write
control signals are sent via the Main Memory Bus (MMB). Data is

transferred on the MMB's memory data lines.

During a refresh cycle, all priority encoding is disabled. Thus
the refresh cycle has, in effect, top priority. The same row address
is refreshed at the same time on every memory chip on every board. In
a 512 K system, for instance, 1,308 RAM chips are all having one row

refreshed at the same time.

3.5 DISK STORAGE PHYSICAL DESCRIPTION

Disk volumes on the Wang 2200VS system are divided into logical
256-byte sectors, numbered in ascending order, from zero. Actual disk
sectorization is implemented in 256 or 2,048-byte sectors, depending
on device type. Although actual sectors may be addressed by certain
1/0 commands, the Operating System I/0 and Paging routines always

address 2,048-byte 'blocks' of disk storage.

'Files' on such a volume are recorded in one or more contiguous
1 1) 1 1) :
areas called 'extents'. Each 'extent' spans one or more consecutively

numbered blocks (pages). The presence of a file on a volume is

indicated in a 'volume table cf contents' (VTOC), which can be located
through the 'volume label'. 'Extents', 'vToc', 'volume label', and

other terms concerning disk storage are discussed in subsequent text.

3.5.1 VOLUME LABEL

The volume label occupies sector 1 (the second sector) of any
disk volume. It contains the name of the volume (the volume serial
number), the location (extent descriptions) of the volume's table of
contents, and other descriptive informetion defining the size and

physical organization of the volume.

3.5.2 VOLUME TABLE OF CONTENTS

The volume table of contents on a disk volume has blocks of four

types:

1. Available Space Blocks.
2. High-level Index Blocks.
3. Low-level Index Blocks.

4. File Descriptor Blocks.

The first block of the volume table of contents is an 'available
space block' (FDAV). Any search for available space on the volume
(for a newly-allocated file or an additional extent) begins by
searching this block, followed by its chained blocks, for a

sufficiently large area of space.

The second block of the volume table of contents is a chain of
'top-level index blocks' (FDX1). Contained in each FDXl is a series
of library names and a pointer to the 'low-level index block' (FDX2;

the third block of the VTOC). Each FDX1 points to one or more chained

FDX2s. Each FDX2 contains a file name and a pointer to one or more
chained 'file descriptor' blocks (FDR1); the fourth block of the

VTOC. Each FDR]1 contains a library and file name, plus pointers %o

the initial 'extents' occupied by a particular file.

When a file is initially allocated space, an attempt is made to
acquire a single extent of sufficient size on the specified volume.
If such an extent is not availaﬁle, up to 3 extents may be allocated

initially.

Wheu a file is enlarged, and thereby exc:eds the capacity of
extents previously allocated for it, the system allocates an
additional extent. This may require that an additional FDR be
allocated to contain the additional extent information. FDRs
describing additional areas occupied by a file are referred to as
FDR2's. A file may encompass a maximum of 13 extents (described in

one FDR1 record and one FDR2 record).
3.5.3 EXTENTS

Each block on a volume, with the exception of the first block and
blocks containing the volume table of contents, is part of an 'extent'
(defined contiguous area) of either free space or file space. Extents
of free space are recorded in available space records of the volume
table of contents. Extents of file space are recorded in 'File
Descriptor Records' (FDRs) in the volume table of contents, where each

FDR is associated with a particular file.

FOX 1 - CONTAINS:
LIBRARY NAME AND A

(0R)
POINTER TO AN FOX 2

FDX 2 - CONTAINS:

INTER TO ANOTHER FOXTH- — o=

FILE NAME AND A

(0R)
POINTER TO AN FOR 1

+OINTER TO ANOTHER FDXZ);__,

—

FOR 1 - CONTAINS:

LIBRARY & FILE %

OF A PARTICULAR FILE

N A PARTICULAR LIBRARY

POINTER TO FDR

Y

FOR 2 - CONTAINS:

SAME INFO. AS FDR 1

(FOR ADDITIOMAL
EXTENTS ALLOCATED TO
A FILE)

VOLUME LABEL (VOLUME NAME)
v10C ;I {POINTERS TO
T‘“"" ALi. BLOCKS)
FREE _SPACE (SHOMS *START® AND
ALLOCATIOR 1 “Seun' GOUNDARIES
GF CURRENTLY
'FRER’ EXTENTS)
FOX 1s —‘
-3
L ——
FDX 2s
- - ->
L]
FREE SPACE

FIGURE 3-11

DISK STORAGE

SECTION
4

WORKSTATION
CHARACTERISTICS

SECTION 4
WORKSTATION CHARACTERISTICS

4.1 TINTRODUCTION

The workstation for the Wang 2200VS has two main parts, the
display screen (the 'CRT') and the keyboard. This device is designed
both to simplify the operator's job and to reduce processing time

required by the CP to handle workstation I1/0.
4.2 THE CRT
4.2.1 THE SCREEN AND CURSOR

The display screen can display up to 24 rows of 80 characters
each. Each chaiacter position can display any of the characters de-
fined in the workstation display character set. A 'cursor' indicates
where on screen the next character entered from the keyboard will be
stored. The cursor is displayed on screen only when data can be keyed
by the operator. If the cursor is not displayed, the keyboard is
locked. This has no effect on the display or the computer interface
with the workstation, but does directly effect data entry from the
keyboard. Each position of the screen is referenced by its row (1-24)
and column (1-80) numbers. The first position of the screen (upper
left corner) is called row one, column one. The columns are numbered
from left to right and the rows from top to bottom. Position two, for
instance, is the second character (col. #2) from the left on the first

line (row #1).
4.2.2 SCREEN FORMATTING

An important feature of the workstation is its ability to set off
any portion of the display screen into special 'fields' of character
groups. These 'fields' control operation of both keyboard entry and

CP/workstation I/0 communications. A field is defined as the group of

characters that exist between one 'field attribute' character and the
naxt.

4-1

4.2.3 FIELDS

Fields can be of any length from zero to 80 characters:

Selected field: This field has been modified by user data

entr; at the workstation.

Underscore field: The characters in this field are under-

scored when displayed on the screen.

Intensified display field: The characters in this field are

displayed at a higher intensity than those in a low inten-

sity display field.

Low intensity display field: The characters in this field

are displayed at normal intensity.

Blinking display field: The characters in this field are

displayed alternately in the intensified display/display

mode. The display will change intensity at a fixed rate of

about 3 times a second.

Nondisplay field: The characters in this field are not.

displayed. This field will look as if it contained all
blanks.

Unprotected field: Any or all of the positions of this

field can be changed by the operator. (Also called the
modifiable field.)

Protected field: No position of this field can be modified

by the operator.

Alphanumeric field: Allows keyin of any character on the

keyboard.

Uppercase shift field: Letters are displayed and stored

only as uppercase. This is without regard to whether shift
or lock are depressed. All other keys respond to the shift
and lock keys as they normally would.

Numeric only field: Only the characters 0-9, decimal point

(.), or minus (-) may be entered into this field or the

keystroke is ignored and the alarm sounds.

Reserved: This is not a valid field at this time. It is
intended for addition of later options. Its use may yield

unpredictable results.

All characters in a field have the same attributes, as defined by
s .

the field attribute character preceding the field.
4.2.4 FIELD ATTRIBUTE CHARACTERS

An 'agsumed' field attribute character exists just before the
first character in each row and just after the last character in each
row. Assumed field attribute characters do not take up space on the
screen. They have a default value of low intensity, protected, and
alpha-numeric upper/lower case. All other field attribute charac;ers

display as a blank, no matter what their value or in-screen position.

The possible attributes are defined in the following table.

Bit Field Description
0 Must be set to one
1 Selected-Field Tag

for READ ALTERED and WRITE SELECTED

2 One for underscore

4-3

|
{ b, ———i0 [0 {0 [0 |t ji 11 |1
NOTE: , 6
b, always by —] 0 |0 1 110, 041 1
/ . i
equals zero b, — > o . 0 : . 9 1
|
High-Order Digit ———~| 0 | 1 | 2 3148 € 7
P3| Py | by | b Low-QOrder Digit '
IEIRIE i Lt
oloj o] o0 0 SisPro|le | v]| p
!b-
ol o o! 1 1 sle |1 1a] Cia |9
ol of 1|0 2 SRR
L - . - ——
0y 0 1|1 3 el B &l 3 jCclelc s
- 0 7
ol 1| o] o 4 ~lu|s$|a]|D ;i ld]-
0] 1 0] 1 5 ~|{ad|% !5 £ U e u
——n
ol 1| 1o 6 lle &l6 |F v] s]|v
ol 1] 1] 7 il .17 |6 |w]|aglw
P S SR
110 0|0 8 /|0 (18 1 X | h | x
1o of1 5 Gl e A
110} 1170 A ~la . J{z iz
110 1]1 B B e | +1; K1l |k |
S SRS -
1{1] o]0 c T I S B BN PR
Tf1] 01 D VA - M| €
1] ilo E 8| O >IN 1 in|s
IR F qlu /]2 lol«|o]e¢

“Bit combinations 10000000 through 11111111 are field attribute characters.

b=

3-4 Display control

00 Intensified display
01 Low intensity display
10 Blinking display

11 Nondisplay

5 Protect bit
= 0 Modifiable field
=] Protected field

6-7 Valid keyable data specification

00 Alpha-numeric upper and lower case
01 Alpha-numeric upper case shift

10 Numeric only

11 Reserved

4.2.5 TABS

There are ten (10) program settable tabs. These can be set to
any column of the workstation's screen (1-80). They do not take a
screen location and are not displayed. They allow forward tabbing
operations to stop at locations within modifiable fields. A tab
position is specified by column number, and affects that column of
every row in which the specified column is modifiable. Tabs have no
effect within protected fields or during back tab operations. When

the workstation is powered on, all of the tabs are cleared.

4.2.6 AUDIO INDICATORS

Audible alarm: A short tone is sounded whenever an illegal
keying operation is attempted. This can be caused by the
operator attempting to enter data into a protected field, trying
to move the cursor past the end of the screen with a field sen-

sitive key or trying to enter data when the keyboard is locked.

Mechanical clicker: This is a small relay attached to the

keyboard. It clicks each time a key is struck.

4=5

*.3 THE KEYBOARD

4.3.1 CURSOR POSITIONING KEYS
A. Nonfield sensitive

This set of keys will position the cursor, but are not affected
in any way by fislds and field attribute characters. They can
position the cursor -to any location of the screen. There are

four keys in this group. These are:

(up arrow) - This key will position the cursor in the same
column but up one row. If the cursor started in
the first row, it will be positioned in the same

| column, but in the last row.

(down arrow) - This key will position the cursor in the same
column but in the next row. If the cursor

started in the bottom row of the screen, it will

be positioned in the same column but on the first

row of the screen.

(left arrow) - This key will move the cursor one position left
in a row. If the cursor was at the start of a
row, it will move it to last position in the
preceding line. If the cursor is in the first
location of the screen, it will be positioned to

the last position of the screen.

(right arrow)- This key will move the cursor one position right
in a row. If the cursor was at the end of a row,
it will be positioned to the first position of
the next row. If it was at the last position of
the screen, it will be positioned to the first

position of the screen.

4-6

L=Y

PF18 PF23 PF24 PF25 PF26 PF21 PF28 PF32
PF2 PF7 PF8 42 PF10 PF11 PF12 PF16

DO (] =
RS
L e dloJlfle Ll L e) fsllape] Ll Te)

a3 .j) Ll IE

NOTE:
Space Bar, as well as 1, |, «, and — keys
provide Auto Repeat Feature

&
<
S
>
]
o

o
t
=
2
wn
5
=,
[
Qo
=4

I-% TIN9I1d

B. Field sensitive cursor positioning

The following keys will normally move the cursor two or more
positions with one depression of a key. These keys are used to
position to the start of a field or a new line. The keys can be used
to simplify data entry. They will position the cursor to a modifiable

position.

These keys are sensitive to modifiable positions. None of these

keys modify any position. The four keys of this set are:

(TAB) - This key will position the cursor to the next
tabable position. A tabable position is either
the first character of a modifiable field or a
tab column within a modifiable field, or the
first character of a protected numeric-only
! field. If there is no next tabable position, the

alarm will sound and the cursor will not move.

(BACK-TAB) - This key will position the cursor to the closest
first byte of a modifiable field preceding the

current curcor location. If the cursor is in a

location, the cursor will be positioned to the
start of that field. If there is no preceding
modifiable location, the alarm will sound and the

modifiable field and in other than the first
cursor will not move.

(NEW LINE) - This key will advance to the first position of
the next line. It then will position the cursor
to the first position that is modifiable at or
| following the start of the line. This key may
: cause the cursor to be positioned several lines
i from the original position. If at or following
‘ the start of the next line there is not a modi-
| fiable location, the alarm will sound and the ‘

cursor will not move.

4-8

(HOME) - The HOME key will position the cursor to the
first modifiable location on the screen. If
there is no modifiable location on the screen,

the alarm will sound and the cursor will not move.

4.3.2 DATA ENIRY KEYS

None of the kcys discussed fo this point change the contents of
any screen display position. The data entry keys' sole function is to
enter data into positions of the screen. For all of these keys the
cursor must be in a modifiable field. If the cursor is not in a
modifiable field, the key stroke is not honored, and the alarm will

sound. The keys in this group are:

The normal character keys: These include the letters, numbers
and special characters. These keys will enter characters the same as
a tyvewriter (with the use of LOCK and SHIFT). If any of the char-
acters other than (0-9) (-) (.) are struck in a numeric attribute
field, the same action as for a protected field is taken. If the
field is an upper case character attribute field, lower case letters

will be interpreted as upper case letters.

When the cursor is in the last position of a field and one of
these keys is struck, the character will be entered into the location
and the cursor will be positioned to the next modifiable location.
This may involve the skipping of the field attribute character or

skipping of several lines.

If the cursor is in currently at the last modifiable location on
the screen, the keystroke will be honored, the alarm will sound, and

the cursor will not be moved.

ERASE - This key will set the cursor location and all following
locations of the field it is in to blank characters. Any loca-

tions preceding the cursor will not be changed. The cursor does

not move.

4.3.3

INS (insert) - Striking this key will place a blank at the cursor
location and shift all of the characters in the current field
starting with the one at the cursor location up to but not
including the last character in the field, right one character.
The last character in the field will be lost. Tf the last
character in the field is not a blank or a pseudo blank, no
screen location is changed, the alarm sonds and the cursor does
not move. Pseudo blanks are the characters hex OB and hex 05 in

a modifiable field.

DEL (delete) - This key deletes the character at the cursor
location and moves the characters in the field after the cursor
location to a screen address location one less. The last
character moved will be the last character in the field. The
last character moved will be replaced with a blank. If the
cursor is not in a modifiable field, the key will not be honored
and the alarm will sound. This key is reciprocal in action to

the INS key.

SPECIAL KEYS

There are four keys that do not seem to fit other categories.

These are:

SHIFT - This key basically has the same effect as SHIFT does on a
typewriter. On keys with an upper and lower character on the key
face it will always select which character is entered. Tt will
have absolutely no effect on entering letters in an uppercase
attribute field. These will be entered as uppercase whether this
key is depressed or not. Striking this key when the SHIFT light
is on will cause the SHIFT light to be turned off and will

unSHIFT the keyboard.

LOCK - 8triking this key will turn on the SHIPT light. The
workstation then behaves as if the SHIFT key was being held
continuously depressed. Striking the SHIFT key will turn off the
SHIFT light, returning the keyboard to an unSHIFTed state.

Normal power on sequence will cause the device to be in an
unLOCKed state.

4.3.4 KEYS COMMUNICATING WITH THE COMPUTER

This set of keys cause an interrupt to be presented to the
computer. All keys except the HELP key are locked after striking any
computer communication key, and the alarm will sound . The cursor is
removed from the screen during execution of these operations. The

keys are:

HELP - This key acts the same as the ENTER key. It is intended
for Operating System use. The shift key does not affect its
action. The only time the key cannot be honored is when an
unsolicited interruption is pending for the same device. At any
other time the key will be honored. This includes both the times
when the keyboard is locked for any of the data entry keys and
during a READ or WRITE to the workstation. A HELP key struck
while a READ or WRITE is in progress will result in a separate
attention interruption occurring after the READ or WRITE

completion interruption.

PF1-PF32 (program function) - These keys act the same as the
ENTER key except for the AID byte value telling which key was
struck. There are 16 keys; the lower case values for these keys
represent PF1-PF16, and the shifted (upper case) values PF17-PF32.

ENTER -~ This key is the normal way to terminate data entry and
request the program to process the data. The shift key does not
affect the action of the ENTER key. The ENTER key is not honored
when the keyboard is locked for data entry keys.

4-11

APPENDIX
A

GLOSSARY

m

O

FPENDIX A
GLOSSARY

ABEND - Abnormal end of job.

ABEND dump - A display of register contents, storage contents, and any
pertinent information that the system can provide at the point where a job
cannot be allowed to continue execution because of the occurrence of an
exceptional condition.

absolute address - See explicit address.

absolute assembler - An assembler that calculates absolute memory addresses
tor each source program instruction and data item.

absolute expression - An expression whose value is not affected by program
relocation. It can represent an absolute address.

absolute loader - A loader routine with error-checking capability that deter-
mines 1f the program it loads is a correct sequence of bytes for a previously
written valid object program. Programs and data are recorded in a strict .
format after other systems software has calculated all storage addresses.

access method - A technique for moving data between main storage and
input/output devices.

actual address - Same as absolute address.

address - The value by which a programmer references a storage location.

address constant - A constant requested by the programmer and defined by the
assembler to contain a complete storage address.

address space - The complete range of addresses that is available to a
programmer.

address translation - (1) The process of changing the address of an item of
data or an instruction to the address in main storage where it is to be loaded
or relocated. (2) In virtual storage systems, the process of changing the
address of an item of data or an instruction from its virtual storage address
to its real storage address.

algebraic shift - The type of shift in which all bits do not participate
equally. The left-most bit is treated as the sign.

algorithg - A preset procedure designed to create a step by step solution to a

problem.

alignment - See boundary alignment.
allocate - To assign a resource for use in performing a specific task.

alphabetic character - The characters A through Z and @, #, and §.

alphameric characters - The characters A through Z, digits 0 through 9, and @,
#, and S.

ALU - Arithmetic and logic unit. The portion of the hardware that handles
arithmetic operations and logical operations such as comparisons.

American National Standards Institute - An organization sponsored by the
Business Equipment Manufacturers Association (BEMA) for the purpose of
establishing voluntary industry standards. Abbreviated ANSI.

analog - A computer that performs mathematical operations on data received
that is converted into electrical impulses. Receives its data in a continuous
stream.

ANST - Abbreviation for American National Standards Institute.

argument - That portion of an element in a search reference table that is
checked for a match to the argument being searched for. It is the key to each
element.

arithmetic and logic unit - See ALU.

ASA - American Standards Association. A former name for the American National
Standards Institute.

ASA control characters - Characters placed in the first byte of an output
record destined for the printer. It is not printed itself, but is used to
control the spacing of the lines; single spacing, double spacing, or eject.

assemble - The translation of a source module in the assembler's symbolic
Tanguage to an object module in machine language.

assembler - A program that performs the translation of an assembler source
module to a machine language object module.

assembler language - A source language that includes symbolic machine language
statements i1n which there is a one-to-one correspondence with the instruction
formats and data formats of the computer.

assembler listing - See listing.

assembly - The output of an assembler.

assembly, conditional - Typically used to facilitate tailoring of programs to
varying system configurations by including only those code segments required
to handle existing devices.

assembly-output language - An optional symbolic assembly-language listing of
the object-code output {rom a high-level language compiler. Can be quite
helpful as a debugging tool because it shows exact machine code in a readable
format.

assembly time - The time at which an assembler translates the symbolic lang-
uage statements into their object code form (machine instructions).

asterisk - Refers to the current value of the location counter when used where
a relocatable value is expected. A special character (*) that denotes a
comment statement (full card comment) when it appears in column one of a
source statement.

A-type constant - See address constant.

automatic data processing - See data processing system.

auxiliary storage - Data storage other than main storage; for example, storage
on magnetic tape or direct access device.

base address - The beginning address for resolving symbolic references to
storage. ’

base register -~ A general purpose register that has been designated and
contains the base address to be used in resolving symbolic references to
storage locations. .

batch processing - See stacked job processing.

batched job - A job that is grouped with other jobs as input to a computing
system. Synonymous with stacked job.

benchmark - A test point for facilitating measurement of product performance.
Typically, a program or set of programs run on several computers for purposes
of comparing speed, throughput and ease of conversion.

binary-coded decimal character code ~ A set of 64 characters, each represented
by six bits. See also extended binary-coded decimal interchange code.

binary number system - A number system containing 2 symbols; O and 1. Base 2.

bind - To fix or assign a value to a symbol, parameter, or variable,

binding time - The point in time when a value is fixed or assigned to a
symbol, parameter, or variable.

bit - A term generally used to refer to a binary digit.

blank character - On input, a blank will be converted to the ASCII representa-
tion of a blank a hexadecimal 20.

block - See physical record.

blocking - Combining two or more logical records into one physical record or
ock.

blocking factor - The number of logical records combined into one physical ‘
record or block.

block length - The number of bytes in a physical record or block.
block size - Same as block length.
boundary - See boundary alignment.

boundary alignment - The position in main storage of a fixed-length field,
such as a halfword or doubleword, on an integral boundary for that unit of
information. A halfword boundary is a storage address that is evenly divis-
ible by two and a doubleword boundary is a storage address that is evenly
divisible by eight.

branch - An instruction that changes the sequence of instruction execution.

branch table - A table in which each element is a branch instruction.

branch target - The subject instruction of the branch instruction. The next
instruction that will be executed if the branch is taken.

breakpoint - A specific place in a program or subroutine that facilitates de-
bugging Dy requesting interruption for manual evaluation and/or modification
before continuing execution. (See also set breakpoint.)

buffer - An area that data may be read into, while processing continues. Also
the 1/0 area used by the data management routines.

bug - A problem in a program which prevents it from executing successfully.

It can be a syntax error, an error at execution time, or an error jin the logic
of the solution to the problem.

byte - A sequence of eight adjacent binary digits that are operated upon as a

unit and that constitute the smallest addressable unit in the computer's
storage (BAU).

call ~ See subroutine call.

call by name - Passing the addresses of the parameters to a subroutine.

call by value - Passing the actual values of the parameters to a subroutire.

called routine - A subroutine which is called or receives control.

calling routine - A subroutine which calls or passes control to another
routine.

calling sequence - The set up of parameters and actual branch which transfers
control.

card field - One or more consecutive card columns assigned to data of a
specific nature. For example, card columns 15-20 can be assigned to
identification. :

carriage~control character - See ASA control character.

central processing unit - That part of the computer system that keeps track of
the next Instruction to be executed, and interprets and executes all instruc-
tions. It can be abbreviated CPU.

chain - (1) Any series of linked items. (2) Referring to the sequential
processing of successive program segments, each of which depends on the
previous segment for its input.

chained list ~ A means of connecting a collection of data items when they are
not 1in contiguous areas of storage. The connection is made through addresses
kept in each item or block. See headers.

character - An 8-bit code represented in a byte, making 256 different bit
combinations possible.

character expression - A character string enclosed by apostrophes. The
enclosing apostrophes are not part of the value represented.

character set - A fixed group of graphic representations, called characters.

closed loop - A group of instructions that are repeated indefinitely. Same as

infinite Ioop.

collatig§¥sequence -~ A logical sequence used to order items of data.

comments field - The fourth field of an assembler language statement. It
follows the operand field preceded by a blank. It ° not checked for syntax
errors in the assembler's scan of the statement.

comment statement - A statement ugsed to include information that may be help-
ful 1n running a job or reviewing a listing. It is noted to the assembler by
the appearance of an asterisk in column one of the statement.

comparison - The examination of the relationship between two items of data.
Tt 1s usually followed by a decision.

compiler - A computer program that translates high-level source code into
machine-language code by selecting appropriate machine-language subroutines
and performing the necessary linkage to generate a single object program.

concatenated data sets - A group of logically connected data sets that are
treated as one data set for the duration of a job step.

condition-controlled loop - A loop in which the decision to stop execution is
based on the occurrence of a particular condition.

conditional assembly - An assembler facility for altering at pre-assembly time
the content and sequence of source statements that are to be assembled.

conditional assembly instruction - An assembler instruction that performs a
conditional assembly operation. Conditional assembly instructions are
processed at pre-assembly time.

conditional branch - A branch instruction in which a test for a particular
condition 1s made and if the condition is met, the branch is taken.

conditional jump - Same as conditional branch.

condition code - A code that reflects the result of a previous arithmetic or
logical operation.

constant - A fixed or invariable value or data item.

contiguous - Physically adjacent-e.g., consecutive bytes in storage. For
example, the byte with the address 2 follows the byte with the address 1.
Bytes addressed 1 and 2 are contiguous.

control - Part of data processing system that determines the order for
performance of basic functions.

control character - See carriage-control character.

control routine - A routine (effectively part of the machine) that controls
the loading and relocation of other routines, sometimes employing instructions
not available to the user. (See also monitor.)

control routine, interrupt - A control routine that responds to interrupts.
It stores information on the interrupted environment, evaluates the interrupt
to determiue appropriate reaction, and eventually returns control to the
interrupted routine.

control section - That part of a program specified by the programmer to be a
relocatable unit, all elements of which are to be loaded into adjoining
storage locations. It is abbreviated CSECT.

corner cut - A corner removed from a card for orientation purposes.

count-controlled loop - A loop which is executed a finite number of times. A
special case of a condition controlled loop, count reached being the condition.

counter - A location, storage or register, in which a programmer keeps a count
of the number of times a particular event has occurred.

CPU or CP - Central processing unit.

cross assembler - An assembler used in one computer to generate object-code
lnstructions for another computer. Frequently used in conjunction with a
down-line load capability for remote control of an unattended microprocessor.
(See also resident assembler.)

cross compiler - A compiler that runs on one computer system but generates
machine code for another computer system. Typically it runs on a large
computer and generates code for a microcomputer, speeding up software
development.

cross-reference table - A table produced by the assembler from information .
encountered in the source module. It contains each symbol, attribute, state-
ment numbers of where the symbol is defined and every statement in which the
symbol appears in the operand.

CSECT - Abbreviation for control section.

DASD ~ See direct-access storage device.

data - Characters that are capable of having meaning assigned to them, by a
programmer, for a particular purpose.

data base - A collection of data fundamental to an enterprise.

data conversion - The process of changing data from one form of representation
to another.

data file - A collection of related data records organized in a specific
manner. For example, a payroll file (one record for each employee, showing
his rate of pay, deductions, etc.). See also data set.

data management - A major function of operating systems that involves organ-
1zing, cataloging, locating, storing, retrieving, and maintaining data.

data medium - See medium.

data organization - The arrangement of information in a data set; for example,
sequential organizationm.

data processing - The handling of data to produce desired results.

data processing system -~ A network of machine components capable of accepting
information, processing this information according to a plan (a program) and
producing the desired results.

data protection - A safeguard that prevents the loss or destruction of data.

debugging statement - Logical extensions to programming languages or compiler
optione that facilitate detection of program errvors at run time. Examples of
debug aids include a printout of program identifier cross-reference; a printed
trace of variable value changes and/or flow of execution logic from routine to
routine; the ability to alter or insert statements at run time and selective
execution capability.

decimal, binary coded (BCD) - A numbering system that represepts Eachzdecimal
dygit by four binary digits, with each place value equal to 87, 47, 2,
17, reading from left to right.

decimal number system - A number system containing 10 symbols; O, 1, 2, 3, 4,
5, 6, 7, 8, and 9. Base 10.

decision - See branch.

decision table - A table showing conditions that can be present in a parti-
cular situation, and the resultant actions taken.

default value - The choice among exclusive alternatives made by the svstem
when no explicit choice is specified by the user. For exampie, keyword
parameters on a macro call.

define the file - See DTF.

delimeter - A character or location that groups or separates words oi values
————— - : ’)
1n a line or statement. For instance, column 72 is the delimeter for &an

assembler language statement, and a comma is the delimeter that separates each
operand in the statement.

delimeter statement - A job control statement used to mark the end of data

(/*), or the end of the job (// in 0S-based systems and /& in DOS-based
systems).

demand paging - In virtual storage systems, transfer of a page from extevnal
page storage to real storage at the time it is needed for execution.

desk checking - Debugging a program at coding time. Involves use of flow-

chart, commenting code, undefined symbol check, and a one for one check of
keypunching.

device independence - The ability to request I/O operations without regard for
the characteristics of specific types of input/output devices. See also
symbolic unit name or logical unit name.

device type - The general name for a kind of device; for example, 1403, 3330,
or 3400. See also group name.

diagnostic error message - Error messages produced by the assembler following

the listing of the source module, explaining problems it has noted as it
scanned the instructionms.

diagnostics - Error statements produced by executive routine that tell the
programmer of a specific problem. (See also routine, di~gnostic.)

digital computer - A computer that operates directly on the data it receives.
The data 1s in discrete pieces rather than a continuous stream.

direct access storage device - A device in which the access time is effec-
tively independent of the location of the data. Abbreviated DASD.

direct reference table - A table in which each element contains only a func-
tion portion. The key is used to directly reference a particular element
rather than searching a series of arguments in each element.

displacement - Positive number which can be added to the contents of the base
register to calcuiate an effective address.

documentation - Supporting informstion about a program, such as comments,
flowcharts, and writeup.

double threaded - A type of chained list or queue that has a chain of
addresses pointing back to the previous blocks as well as forward to the next
blocks. See single threaded.

doubleword - A contiguous sequence of 64 bits or 8 bytes of storage. It is
capable of being addressed as a unit by referencing its first byte which has
an address that is evenly divisible by eight.

downtime -~ The period of time in which the system or a particular device is
—_——
inoperative.

driver - A program or routine that controls either external devices or other
programs.

DSECT - Abbreviation for Dummy Section. Also referred to as Dummy Control

Section.

dummy control section - A control section that an assembler can use to format
an area of storage without producing any object code. Abbreviated DSECT.

dump - A display of the contents of storage as well as register contents and
other pertinent information.

dump, memory - A printout, generally in hexadecimal format, of the contents of
all memory areas currently assigned to the program (includes both program and
data areas). THis output then serves as a diagnostic tool to facilitate
troubleshooting.

duplication factor - A value that indicates in a DC statement the number of
times that the data specified immediately fcllowing it is to be generated.

dynamic address translation - In virtual storage systems, the change of a
virtual storage address to a real storage address during the execution of an

instruction. Also a hardware facility that performs the translation.
Abbreviated DAT.

dynamic relocation - A type of relocation which fixes the time of binding to
the latest possible point - when it is loaded. Not until a portion of code is

needed at execution time is a relative address translated to a real storage
address.

EBCDIC - Extended binary coded decimal interchange code.

edit - The process of inserting characters into an output field to create more
Tegible reports.

effective address - An actual real storage address. A displacement added to
the contents of a base register and an index register if one is present.

electronic data processing - Data processing using electronic equipment.

element - A discrete portion of a table that is referenced by its location in
relation to the beginning of the table.

emulation - Techniques of software or microprogramming that permit one com-
puter to execute the machine-language code of another computer. Typically
used to minimize reprogramming during conversion from one system to another.

end-of-file - Condition reached when all the records have been read in a
sequential input file. Abbreviated EOF.

end-cf-file-mark - A code that signals that the last record of a file or data
set has been read. Abbreivated EOF.

entry code - The code that handles standard linkage conventions as a routine
—_——1 = - . "o

first receives control, the storing of register contents, establishing
addressability, and preparation of a new save area.

entry name - A name within a control section that defines an entry point and
can be referred to by any control section.

entry symbol - An ordinary symbol that represents an entry name or control
section name.

EOF - Abbreviation for End-of-file.

EQU - Abbreviation for equate.

equate - An assembler pseudo op that allows the assignment of a value to a
gsymbol. The symbol can be either absolute or relocatable depending on the

value assigned.

Error condition - The state that results from an attempt to execute instruc-
tions in a computer program that are invalid or that operaie on invalid data.

ESD - External symbol dictionary.

establish addressability - The process of info.ming the assembler which
register it can use as a base register and vhat value will be in that
register. Also the filling of that register with the promised value at
execution time.

E-time - See execution time.

A-10

even-odd coupled register pair - Two consecutive registers, the first having
an even number and the second the next higher numbered register. For example,
registers 4 and 5, or 8 and 9.

exception - See error condition.

excess sixty-four binary notation - A binary notation in which the character-
istic component of a floating-point number is represented in storage.

execute - To carry out an instruction or perform a routine.

execution time - The time during which an instruction is decoded and per-
formed. See also instruction time. Abbreviated E-time.

explicit address - An address in which the base register and displacement are
coded 1n the 1nstruction by the programmer rather than coding a symbol and
letiing the assembler substitute the base register and displacement.

explicit length - A length, in bytes, specified in the operand it refers to
rather than letting the implied length of the symbol in that operand apply.
Generally used in SS-type instructions.

expression - A term or arithmetic combination of terms representing a value.

extended binary coded decimal interchange code - A set of 256 characters, each
represented by eight bits. Abbreéviated EBCDIC. See also binary coded decimal
character code.

extended mnemonic - Special mnemonic opcodes that make it easier for the

programmer to specify branching instructions. The mnemonic used not only
states that this is a branch instruction, but also the mask to be used to
determine what conditions.

external page storage - In virtual storage sytems, the portion of auxiliary
storage that 18 used to contain pages.

external page table - An extension of a page table that identifies the
location on external page storage of each page in that table.

external reference - A reference to a symbol that is defined as an external

name 1n another module. Also, a symbol that is not defined in the module that
references it.

external storage - Same as auxiliary storage.

external symbol - A control section name, entry point name, or external refer-
ence that 18 defined or referred to in a particular module. An ordinary
symbol that represents an external reference.

external symbol dictionery - Control information, associated with an object or
load module, that 1dentifies the external symbols in the module. Abbreviated
ESD.

A-11

externally referencable symbol - See entry symbol.

EXTRN - External reference declarative.

fail soft - A method of system implementation that prevents irrecoverable loss
of computer usage due to failure of any system resource. It provides for
graceful degradation of service.

fetch - To lccate and retrieve something from storage. For example, the next
sequential instruction or a word of data for a register.

fetch protection - A storage protection feature that determines the right to

access storage by matching a protection key associated with a fetch reference
to storage.

field - A specific group of contiguous bytes in a record which are treated as
==
a unit,

FIFO ~ A technique for handling a chained list on a first~in-firct-out basis.

file - A collection of related records treated as a unit.

firmware - Software instructions committed to a read-only memory control
block. Can increase a computer's instruction set by having the ROM code
cuavert extended instructions into sets of actual machine instructions.

fixed-length data - Nata of a specific length (two, four, or eight bytes) that
reside on integral toundaries (halfword, fullword, and doubleword, respec-

tively). ‘

fixed~length record -~ A data set in which a logical record contains the same
number of bytes as every other record in the data set.

floating-point arithmetic ~ An arithmetic technique in which the computer
maintains decimal point location (as opposed to fixed-point arithimetic). (See
also subroutine package, floating point.)

fixed-point binary number -~ Occupy fullwords and halfwords. In each case the
first bit 1n the field iIs the sign (0 is positive, 1 is negative).
number is stored in two's ccmplement form.

A negative

floating-point number system - A number system in which very lsrge and very
small numbers can be represented because the decimal point can be moved.

flowchart - A pictorial method of displaying the steps involved in the logic
of a solution to a problem.

foreground/background programs - In a multiprogramming environment, those
programs that require real-time response are high priority (foreground) tasks
which utilize system resources on demand. Conversely, background tasks,
typically batch processing jobs, execute only during idle times and must
always yield to demands from foreground programs.

A-12

fragmentation - Inability to assign real storage locations because the avail-
able spaces, though many, are smaller than needed.

full-line comment - A source statement with an asterisk (%) in column one. It
1s not scanned by the Assembler and can be used to document the program.

fullword - See word.

function - That portion of an element in a search reference table that is
referenced for information once the correct element has been found.

fwb - Abbreviation for fullword boundary.
garbage - Data to whi-~h no meaning has been assigned for this particular usage.

general purpose register - See register.

generate ~ To produce assembler language statements from the model statements
of a macro definition when the definition is called by a macro instruction.

GET - To obtain a logical record from an input file.

group name - A generic name for a collection of I/0 devices, for example, DISK
or TAPE.

guard digit - Used in execution of short form add, subtract, and divide
floating-point operations. One spare hexadecimal digit which serves as extra
(seventh) digit to improve precision. ‘

halfword - A contiguous sequence of 16 bits or two bytes, which are capable of

being treated as a unit. The first byte of the halfword occupies a storage
location whose address is evenly divisible by two.

hard copy - A printed copy of machine output in a visually readable form; for
example, printed reports, listings, and documents.

hardware - The mechanical equipment necessary for a computing system.

header statement - The MACRO statement which indicates the beginning of a
macro definition to the assembler.

header - Contains the address of the beginning of a chained list. A
single-threaded list has one header and a double-~threaded list has tvwn headers

(second header contains the address of the last element in the chain). Same
as queue control words.

hexadecimal number system - A number system containing 16 symbols; 0, 1, 2, 3,
4, 5,6,7,8,9,A, 8,C,D, E, and F. Base 16. '

hexadecimal shorthand - A means of referring to the contents of a byte as two
hexadecimal digits rather than eight binary digits.

A-13

high-level language - A language that allows programmers to specify
problem-solving procedures in a notation more familiar than the computer's
machine code. Such programs must be fed into & compiler or interpreter for
translation into machine executable code. Examples include Fortran, Cobol,
Algol, Basic and APL.

high-order - Leftmost. For instance, bit O in a register.

hit - See match.
host computer - (1) The master or controlling computer in a multicomputer

network. (2) A computer that prepares programs to be run on another computer
system.

housekeeping ~ Operations or routines that do not contribute directly to the
solution of the problem, but do contribute directly to the operation of the
computer.

hwb - Abbreviation for halfword boundary.

immediate addressing - An addressing mode in which the instruction contains
the operand value 1in the address field.

immediate data - One byte of data that appears in the instruction itself
rather than the symbolic name of the one byte of data. The data is
immediately available from the instruction.

implicit address - A symbolic reference to storage that must be converted into
1ts explicit base-displacement form before it can be assembled into the object
code of a machine instruction.

implied length - The length associated with a symbol. . This length will be
used on a variable length operand if a length is not explicitly specified in
the operand.

Indexed addressing - A method of computing storage addresses by adding an
index value to a previously determined base address to produce a new address.

indexing - A technique of address modification implementated by the use of
general purpose registers referred to as index registers.

index register - A register whose contents are added to the address derived
from a combination of a base address with a displacement or an implicit
address converted to a base and displacement.

indirect addressing - A method of storage addressing in which an addressed
Tocation contains an address rather than data. Quite often, several levels of
indirect addressing may occur before the sought-after data item is obtained.

infinite loop - Same as closed loop.

information - Data to which a meaning has been assigned for this particular

usage.

A-14

initialization - Initial values are assigned outside the loop to all counters,
conditions, and variables needed within the body of the loop.

input/output - A general term for the equipment used to communicate with a
computer, commonly called 1/0. Also the data involved in such a communication.

input stream -~ The sequence of job control statements and data submitted to an
operating system on an input unit especially activated for this purpose by the
operator. Synonymous with input job stream, and job input stream.

input stream data set - A data set that physically resides in the input stream.

instruction - A request to the computer to perform one of its basic functionms.

instruction classes - The different formats of machine instructions used on
the computer (RR, RX, RS, SI, and SS).

instruction address counter - A location within the CPU where the address of
the beginning of the next instruction to be executed is kept.

instruction format - The allocation of bits or characters of a machine
Instruction to specific classes of instructions.

instruction repertoire - The list of mnemonic opcodes that an assembler
recognizes as valid.

instruction time - The time during which an instruction is fetched from
storage of a computer into an instruction register. Abbreviated I-time.

integral boundary - A location in main storage at which a fixed-length field,
such as a halfword or doubleword, must be positioned. The address of an
integral boundary is a multiple of the length of the field in bytes. See also
boundary alignment.

internal sort - A sorting technique that creates sequences of records or keys
or elements of a table. All the items that participate in the sort in storage
as the sort is being accomplished.

interpreter - An executive routine that translates a program into machine code
subroutines and immediately performs the resulting operations prior to the
next translating function. This contrasts with compilers that translate
complete programs into machine code for execution at a later time.

interrupt - The supervisor seizing control when an error condition has
occurred or assistance is needed to provide I/0.

interruption - A break in the normal sequence of instruction execution. It
causes an automatic transfer to a preset location (trap) where appropriate
action is taken.

A-15

interrupt program, I/0 - An efficient method of I/O handling that interrupts
the processor whenever a peripheral device signals that it's ready for
information transfer. The processor first stores the necessary information to
enable it to return to the present operating mode, then jumps to the routine
appropriate for exercising the requested transfer. Upon completion of the I/0
transfer, the processor restores either the previously running task or another
task, depending on priorities and available resources.

interrupt vector - Facilitates fast handling of external interrupts by having
the hardware supply a value corresponding to the device causing the inter-
rupt. This value then becomes an index into the interrupt vector that con-
tains a pointer to the appropriate interrupt service routine.

1/0 - See Input/Output.

iterate - To repeatedly execute a loop or series of steps, for example, a loop
———
in a4 roucine.

I-time - Instruciion time.

job - A unit of work to the computer; consists of one or more job steps, and
each step involves the execution of a program.

job step - A unit of work associated with one processing program or one

cataloged procedure and related data. A job consists of one or more job
steps. '

jump - See branch

¥ - 1024 Bytes: used in referring to storage capacity.

keyword -~ One of the significant and informative words in a title or document
that describes the content of that document. A symbol that identifies a

parameter. A part of a command operand that consists of a specific character
string (such as DSNAMF=).

keyword parameter - A parameter that consists of a keyword, followed by one or
more values. See also positional parameter.

label ~ An identification record for a tape or disk file. A name entry in an
assembler language etatement.

least significant - The digit with the smallest place value in the number.
Rightmost.

left-justify - To align on the left hand side of the field.

length attribute - The length, in bytes, associated with a symbol.

length modifier - A subfield which can be specified in the operand of a DC or
DS statement. For example: DS CL6. If used on a fixed length definition
(F,H or D) the automatic alignment will be overridden.

LIFO -~ A technique for handling a chained list on a last-in-first-out basis.
Often used for priority queues.

link field - The pointer field in data items in a chained list which connects
the data items to each other.

linkage conventions - A set of rules for calling routine responsibilities when
using subroutines.

linkage editor - A program which processes object modules preparing them for
execution. It resolves cross references between separately assembled object
modules.

linking loader - A relocatable loader that links various object modules into a
single 1oad module, resolving external references in the process. This lets
users load their programs into any memory area.

listing - A printout, usually prepared by a language translator, that lists
the source language statemente and contents of a program.

literal - A literal represents data. It can be used in instruction operands
to introduce data. It is a means to avoid defined constants and using the
symbolic names of these constants in instructions. Literals will be assembled
and are relocatable values; but it is the assembler that defines them in
literal pools rather than the programmer.

literal pool - An area of storage into which the values of the literals
specified in a source module are assembled.

load - To fetch a fullword from storage and place it in a register. Also to
place a load module into real storage.

load module The output of the linkage editor; a program in a format suitable
for loading into main storage for execution.

loader - A program that handles the transfer of information from off-line
memory to on-line memory.

location counter - A value kept by the assembler to tell it which is thé next
byte available for allocation as it builds the object module. Its value is
displayed to the left of each instruction in the source listing.

logical expression - A conditional assembly expression that is a combination
of logical terms, logical operators, and paired parentheses.

logical record - A record from the standpoint of its content, function, and

use rather than its physical attributes; that is, one that is defined in terms
of the information it contains.

logical relation - A logical term in which two expressions are separated by a
relational operator. The relational operators are EQ, GE, GT, LE, LT and NE.

A-17

logical shift - The type of shift in which all bite participate equally.

logic error - A case where a program seems to execute correctly but provides
—2
incorrect results. ‘

look-up, table - A method of retrieving from a table of function values a
specific function value corresponding to an argument.

loop - A programming technique which permits the reuse of a group of
instructions a specified number of times or until a particular condition
occurs.

loop body - The instructions which are reused.

loop control - The instructions in the loop which determine when the reuse of
the 1nstructions should be stopped.

loop counter — A counter used to prevent excessive loopiug.

low order - Rightmost. For instance, bit 31 in a register.

machine address - See absolute address.

machine language - The lowest-level language of a particular type of computer;
a string of binary numbers (ls and 0s).

macro - See macro definition, macro instruction, and macro prototype statement.

macroassembler - An assembler that facilitates definition of macro's for
frequently used code segments. Marco's simplify program coding; however,
unlike subroutine calls, they generate in-line code for each reference.

macro body - The body is all statements that follow the prototype statement
and precede the MEND statement in a macro definitionm.

macrc call - An assembler language statement that causes the assembler to
process a predefined set of statements called a macro definition. The
statements normally produced from the macro definition replace the macro
instruction in the program and they are identified by a plus (+) sign that
precedes each statement. Same as macro instruction.

macro definition - A set of statemenis that defines the name of, format of,
and conditions for generating a sequence of assembler language statements.
Contains assembler language control and machine instructions.

macro expansion - The sequence of statements that result from a macro gener-
ation operation.

macro-generated instruction. A statement that results at prc-assembly time as
the macro definition 1s being handled.

A-18

macro generation - An operation in which an assembler produces a sequence of
assembler language statements by processing a macro definition called by a
macro instruction. Macro generation takes place at preassembly time. Syn-
onymous with macro expansion.

macro instruction - See macro call,

macro instruction operand - An operand that supplies a value to be assigned to
the corresponding symoblic parameter of the macro definition called by the
macro instruction.

macro library - A library of macro definitions used during macro expansion.

macro prototype statement - A statement used to give a name to a macro defini-
tion and to provide a model for the macro instruction, that is, to call the
macro definition.

main storage - All program-addressable storage from which instructions may be
executed and from which data can be loaded directly into registers. Contrast
with auxiliary storage.

mask - A pattern of 4 or more bits used in the testing of alteration of
another field. For example, the 4-bit mask in a Branch on Condition
instruction or the 8-bit mask in the Test under Mask instruction.

masking ~ A technique for detecting the presence or absence of specific binary
conditions by performing some logical operation (e.g., AND, OR, etc.) between
a program variable and a preset mask. Also used for setting or resetting
binary conditions in other variables.

match - An equal condition occurring when two items are compared.

media - The material on which data is recorded, such as magnetic tape, or
paper.

microsecond - One-millionth of a second.

millisecond - One thousandth of a second.

mnemonic operation code - An easy to remember symbol that represents a machine
opcode and helps a human understand the nature of the operation to be per-

formed, the type of data used, and the format of the instruction performing
the operation.

model statement - A statement in the body of a macro definition from which an
assembler language statement can be generated at preassembly time. Values can
be substituted at one or more points in a model statement; one or more iden-
tical or different statements can be generated from the sazme model statement
under the control of a conditional assembly loop.

module - A discrete programming unit. For example, source module, object
module, and load module.

A-19

monitor - A resident debug routine providing real-time breakpoint capabilities
and a capability for examining and altering memory locations and system status
variables. Also contains the necessary linkage points to allow user programs

to cail the monitor routines.

most significant - The digit with the largest place value in the number.
Leftmost.

multiple-precision notation - A technique whereby twc or more computer #ords
represent a single numeric quantity.

multiprocessing system - A computing system employing two or more inkteicon-
nected nrocessing units to execute programs simultanecusly.

multiprogramming system - A system that can process two Oor more programs
concurrently by interleaving their execution.

multitasking - A method of achieving concurrency by separating & program ov

programs into two or more interrelated tasks that share code, buffers and
files while running.

nanosecond - One-thousand-millionth of a second.

nesting - A programming technique involving the embedding of routines within
other routines.

next sequential instruction - Physically the next instruction in storage, the
next instruction in the program.

normalized form - A form in which a floating-point number is kept with a
non-zero high-order digit. A number can be normalized prior to the execution

of the operation (prenormalization), or after the execution (postnormali-
zation), or both before and after.

NSI - Abbreviation for next sequential instruction.

null character string - A character string of length zero. A blank is not a
null character string because it has a length of one.

null operand - The absence of an operand. Usually used when passing posi-

tional parameters in a macro call. For instance, NAME MAC FIRST,, THIRD where
the second parameter is not being passed.

numeric punch - A punch in one of the ten rows numbered 0-9 on a standard
punched card.

object module - The block of machine code created by the assembler when it
translates the source module.

object program - A set of problem solving machine-language instructions
obtained through the compilation or assembly of the related source program.

opcode ~ The most important part of an instruction. It informs the system
what operation is to be performed and the type of data to be used.

open subroutine - A subroutine that lies wholly within the main routine. No
special instructions are necessary to pass control Lo an open subroutine.

operand - The data to be used in an operation or the location of that data.

operating system - The software, programs, that aid in the operation of the
mechanical devices, the hardware. They aid in I/0 operations, error condi-
tions handling, and resource management. For example, DOS, DOS/VS, or OS.

Operation code - See opcode.

operators - Symbols that represent mathematical or logical operations
performed on one or more operands. For example, + , -, +, etc.

ordinary symbol - A symbol that represents an assembly~time value when used in
the name or operand field of an instruction.

output ~ The results of the operation of a data processing system.

output stream - Diagnostic messages and other output data issued by an opera-
ting system or a processing program on output devices especially activated for
this purpose by the system operator. Synonymous with job output stream,
output job stream.

output stream data set - A data set that resides in the output stream.

overflow - A condition that sets the condition code and at times abends the
program. Can occur when the result of an addition or subtraction requires
more bits than are available. Also occurs when a left algebraic shift results

in shifting into the sign bit position a different value than was there before
the operation.

overlapping fields - Fields overlap when at least one byte is common to both
fields

packed-decimal format - Each byte in this format contains two digits, except
the right most byte in the field which contains the sign of the number in its
rightmost 4 bits.

pad - To fill an area with a prescribed character. For example, unfilled area
in a character constant is padded with blanks.

page - In virtual storage systems, a fixed-length block of instructions, data,
or both, that can be transferred between real storage and external page

storage; also the action of transferring instructions, data, or hoth, between
real storage and external page storage.

page fault - In virtual storage systems a program interruption that occurs
when a page that is marked "not in real storage" is referred to by an active

page. Synonymous with missing page interruption and page translation
exception,

A-21

page frame - In virtual storage »y.tems, a viuck of real storage that can
s - .
contain a page. Synonymous with frame.

page frame table - In virtual storage systems, a table that contains an entry
for each frame. Each frame table entry describes how the frame is being used.

Efge—in - In virtual storage systems, the process of transferring a page from
external page storage to real storage.

page-out - In virtual storage systems, the process of transferring a page from
real storage to external page storage.

page table - In virtual storage systems, a table that indicates whether a page
e ——— 0 .

18 1n real storage and correlates virtual addresses with real storage
addresses.

parameter - See symbolic parameter.

patch - (1) To alter or correct existing software. (2) Inserted code is
often referred to as a "patch."

physical record - A record from the standpoint of the form in which it is
stored, retrieved, and moved; that is, one that is defined in terms of
physical quantities. A physical record may contain one or more logical
records.

"play computer' - To manually excute the instructions of a program in sequence
Jjust as the computer would to ensure that the program does what it is expected
to do. Substitute values for variables and follow logic through flowchart.

pointer - An address or other indication of locationm.

positional notation - A means of representing a number by specifying the value
of each of 1ts digits by a power of the base of the number raised to the power
equal to the position of the digit being evaluated in the number.

positional operand - An operand in a marco instruction that assigns a value to
the corresponding positional parameter declared in the prototype statement of
the called marco definition.

positional parameter - A parameter that must appear in a specified location,
relative to other parameters. See also keyword parameter.

postmortem dump - A dump taken when a program has done something in error
which causes the supervisor to abend the program.

pre-assembly time - The time at which an assembler processes macro definitions
and performs conditional assembly operatioms.

print control character - See carriage-control character.

printer - A device that writes output data from a system on paper or other

mea 1a.

A-22

privileged instruction - An instruction that can be executed only when the
. central processing unit is in the supervisor state.

problem program - Any program that is executed when the central processing
unit 1s not in the supervisor state. Any program that does not contain
privileged instructions.

problem state - A state during which the CPU cannot execute privileged
e ; .
instructions. Contrast with supervisor state.

procedure - See cataloged procedure.

processing program - A general term for any program that is not a control
program.

program - A series of instructions, in a language understood by a computer,
which solve a problem. Also the process of creating the series.

program check interruption ~ An interruption caused by unusual conditions
encountered in a program, such as incorrect operands.

program flowchart - See flowchart.

programmer - An individual capable of breaking a problem down into discrete
steps and expressing those steps in one of the languages understood by the
computer. :

. programming - A skill that requires that problem solutions be broken down into
steps and expressed in a language understood by a computer.

programming language ~ A language understood by the computer and used by the
programmer to say which instructions are to be executed and in what order.

program status word - A doubleword in storage used to control the order in
which Instructions are executed, and to hold and indicate the status of the
computing system in relation to a particular program. Abbreviated PSW.

prototype statement - Same as macro prototype statement

pseudo op - An opcode for an instruction that gives information to the
assembler. It does not represent a machine instruction.

PSW - Abbreviation for Program Status Word.
pushdown list - A list of items maintained in a Last-In-First-Out (LIFO)

order, where each item is effectively "puched down" by the addition of a new
item. (See also stack.)

push operation - Refers to the storing of operand(s) from a general register
(s) into the most current top location in a pushdown memory stack. (See also
Stack.)

A-23

queue - A waiting line or list formed by items in a system waiting for ser-
—y———— . . .

vice; for example, mcssages to be priated. Also, to arraage in, or form, a
queue.

queue control word - See header.

radix - A number that is used as the base of a number system.

real storage - In viriual storage systems, the storage of a System/370
Aot <5) . ; .))
computing system from which the central processing unit can directly obtain
instructions and data, arnd to which it can directly return results.

real time - (1) As related to problem soiving, a vate that provides soiutions
rea. e I .

within the actuai zime that the problem must be solved. (2) Performing com-
putations in the actual time needed to control a related physical process.

receiving field - The operand receiving the data that is participating in an
operation.

record - A collection of related date items, or fields, which are treated «s3 a
unit.

record length - The number of bytes in a logical record.

register - Special areas of storage in the processor. 'here are 16 end each
holds 32 bits or 4 bytes. They are used in certain operations.

relational onerator - An operator that can be used in an arithmetic or
character relation to indicate the comparison to be performed between the
terms in the relation. The relational operators are EQ (equal to), GE
(greater than or equal to). GT (greater than), LE (less than or naqual to).
LT (less than), and NE (not equal to).

relative address - An address specified as a relationship to a relocatable
symbol. The symbol is followed by a plus (+) sign and a decimal number.
example, LOC + 6 is an address 6 bytes past the address LOC.

For

relocatable - The attribute of a set of code whose address constents can be
modified to compensate for a change in origin.

relocatable assembler - A program that translaces object code from an
assembly-language source program with memory locations specified as
displacements from a reiative origin or as external references. This
facilitates the running of programs in any memory area.

relocatable expression - An assembly-time expression whose value is affecied

by program relocation. 4 relocatable expression can vepresent a relocatable
address. :

relocatable term - A term whose value is affected by program relocation.

Its
value 1s asgssigned by the assembler.

A-24

relocation - The modification of address constants to compensate for a change
b bihd=bedd ,
in origin of a module, program, control section, or page.

resident assembler - An assembler that runs on the machine for which it
generates code. Eliminates the need for another computer system or
time-sharing service, as required by a cross-assembler.

resident compiler - A compiler that runs on the machine for which it generates
code. FEliminates the need for another computer system, as required by a
croas-compiler.

resource - Any facility of the computing system required by a job or task,
including storage, input/output devices, the central processing unit, data
sets, and control of processing programs.

return code - The return code is a flag (expressed as a decimal number) that
1s passed to a calling routine (such as the Command Processor or some other
program/procedure) to indicate the results of program execution. By conven-
tion, a return code of zero indicates normal completion; non-zero return codes
indicate error conditions. Typically, the higher the return code, the more
severe the error. The return code must be defined in both the calling routine
and the routine called, so that proper action may be taken by the calling

routine for non-zero return codes. In the 2200VS, the return code is always
stored in General Register zero.

right-justify - To align on the right-hand side of the field.

routine - See subroutine.

routine, diagnostic - Any program designed to aid in the detection of hardware
or software malfunctions.

RR-type instruction - An instruction in which both operands are contained in
reglisters.

RS-type instruction - An instruction in which the first (and third, if
present) operand 18 a register and the second a storage address.

RX-type instruction - An instruction in which the first operand is a register
and the second a storage address which may be indexed.

gsave area - An l8-word area used to store the calling routine's register
contents when control is received by a subroutine.

scan - The assembler's examination of the syntax of a source statement from
the left to right across the statement.

search - A systematic check for a particular value or values.

search argument ~ The value that is used to locate a match, if possible, with
an argument in a search reference table.

A"

search reference table - A table in which each element has two parts, an
argument and a function.

search key - Same as search argument.

secondary storage - Same as auxiliary storage.

segment - In vitual storage systems, a contiguous area of virtual storage that
1s allocated to a job or system task.

segmentation - The process of dividing a program up into pieces to allow the
possibility for part of the program to be in storage and execute without
having to have the entire program in storage.

segment table - In virtual storage systems, a table used in dynamic address
translation to control user access to virtual storage segments. Each entry
indicates the length, location, and availability of a corresponding page table.

self-defining term - An absolute term whose value is implicit in the specifi-
cation of the term itself.

semantics - The relationship between symbols and their meanings.

sequence symbol - A symbol used as a branching label for conditional assembly
Tnstructions. 1t consists of a peried, followed by one to ~even alphameric
characters, the first of which must be alphabetic.

sequential access method - Storing and retrieving logical records in a
continuous stream. To read the third record, the first and second records
must be read first.

sequential data set - A data set whose records are organized on the basis of
thelr successive physical positions, such as a magnetic tape file or a deck of
punched cards.

sequential operation - The execution of instructions one after another in the
sequence 1in which they appear in the program. See NSI.

set breakpoint - A user debug command that causes the setting of a breakpoint
In a specified memory location. At program execution, encountering this
breakpoint causes temporary program suspension and a transfer of control to
the system debug routine. (Sea breakpoint and monitor.)

SET symbol - A variable symbol used to communicate values during conditional

assembly processing.

severity code — A code assigned to an error detected in a source module.

shift - A set of eight instructions which move bits left or right in registers.

SI-type instruction = Instructions with a storage address in the first operand
and a byte of immediate data in the second operand.

SS-type instruction - Instructions with storage addresses in both operands.
In some, one length is specified with the first operand, and in others,
lengths are specified with both operands.

sign bit - Bit 0 in a fixed-point binary field; 0 indicates a positive value
and | a negative value.

significant digit - A digit whose value is greater than zero.

simulator program - A program that causes one computer to imitate the logical
operation of another computer for purposes of measurement and evaluation.
Primarily used to exercise program logic independent of hardware environment.
Extremely useful for debugging logic prior to committing it to ROM.

single threaded - A type of chained list or queue in which each block of data

contains a single pointer to the block ahead of it in the chain and the last
block contains a zero. See also double threaded.

slot - In 0S/VS, a continuous area on a paging device in which a page can be
stored.

SNAP dump - A dynamic dump on an 0S-based system.
software - The programs which aid the problem program in its executica.
sort - A programming routine that orders data.

source field - The operand that provides the data that is to participate in an
operation. For example, the data that is moved by an MVC.

source module - The source statements that constitute the input to a language
translator for a particular translation.

source program - A set of user-written instructions designed to solve a
problem after compilation or assembly into machine-language object code.

source statement - A statement written in symbols of a programming language.

special character - A graphic character that is not an A-Z, 0-9, @, #, or §$.

stack - A reserved storage area for holding temporary data.

stacked job - See batched job.

stacked job processing - A technique that permits multiple job definitions to
be grouped (stacked) for presentation to the system, which automatically
recognizes the jobs, one after the other.

stack, interrupt - A reserved memory area that automatically stores important

reglsters whenever a program is interrupted. By accessing the stack from one
end on a Last-In-First-Out (LIFO) basis, return from interrupts proceeds in
exactly the reverse order -that they occurred. Stack architecture needs fewer
registers for temporary storage, provides easy handling of multiple-level
interrupts and permits almost unlimited subroutine nesting.

standardization - Input media for cumputers is standardized by set codes on
cards, tape, disk, etc. The media themselves are standardized in size, shape,
thickness, etc., as they can be handled by machines.

static relocation - Really a case of no relocation at all. All programs a:e
loaded at the same address.

storage - Part of the computer system into which data is entercd zn¢ stored o
from which data is retrieved.

storage fragmentation - See fragmentation

storage protection - A means of preventing a program from writing or sioring
1n areas of storage that don't belong to it. 1In come cases a program ie =ven
prevented from access of such an area.

store - The process of placing data in storage or an auxiliary device.

stored program computer - A computer that is capable cf holding not only the

data to be 1iperated upon, but the instructions which make up the program that
handles the data.

subroutine - A block which implements a section of the logic for soluiion of a
problem. May be part of or separate from the rest of the ioutine.

subroutine call - The process of passing control to a subroutine.

subroutine, package, floating point - A subroutine that achieves
floating-point arithmetic functions without additional hardware. Usually
consists of routines for fixed to floating point conversion and vice versa,
conversion from decimal to floating point and vice versa, and floaring-point
move, as well as such floating-point arithmetic functions as addition,
subtraction, multiplication and division.

supervisor - The part of a control program that coordiuates the use of
resources and maintains the flow of CPU operations.

supervisor call - An instruction that interrupts the program being executed
and passes control to the supervisor so that it can perform a specific service
indicated by the instruction. Abbreviated SVC.

supervisor state - A state during which the central processing unit can -

execute 1nput/output and other privileged instructions. <ontrast with problem
state.

SVC - Abbreviation for supervisor call.
switch - A programming device used to remember a condition.

symbol - Any group of eight or less alphameric and national characters that

be

gins with an alphabetic or national (#,@,$) character, Same as symbolic name.

A-28

symbolic address - The specification of an address by using symbols which the
’ assesisler ver i .3 inlo a base register and displacement.

symbolic language - A programming language which permits the programmer to use
symbollc names, or mnemonics, to specify opcodes and the data for the opera-
tion. This makes t'e programmer's job much easier.

symbolic linkage - Symbols defined in one csect which can be referred to from
another csect. They permit transfer of control in subroutines.

symbolic name - See symbol.

symbolic name space - The block of space occupied, or defined, by a source
program.

symbolic parameter - A variable symbol declared in the prototype statement of
a macro definition. A symbolic parameter is usually assigned a value from the
corresponding operdnd in the macro instruction that calls the macro defini-
tion. See also keyword parameter, and positional parameter.

symbolic unit name - See logical unit name.

symbol table ~ See cross~reference table.

syntactically valid - The instruction follows all the rules that govern the
structure of the assembler language.

| . syntax error - A specification in an instruction which does not follow the
‘ rules that govern the structure of assembler language. For example, an index
register specified in the operand of an MVC instruction

system input device - A device specified as a source of an input stream.

system output device - A device assigned to record output data for a series of
jobs.

system programmer - A programmer who plans, generates, maintains, extends, and
controls the use of an operating system with the aim of improving the overall
productivity of an installation. Also, a programmer who designs programming
systems.

systems software - Generally, supervisory and support modules, as opposed to
application programs. May include such programs as an operating system, an
assembler, compilers, debug routines, text editors, library maintenance,

. utilities, I/0 drivers and a linking loader. '

table - A collection of related data items that are contained in elements
which reside in continuous areas of storage.

table argument -~ See argument.

table function - See functionm.

table look up - The process of comparing a search argument to each argument
portion in a table to locate a possible match.

target instruction - The instruction that is executed as the result of an
execute (EX) 1instruction.

task queue - A queue that contains control information for all tasks in a
system at any given time.

telecommunications - Data transmission between a computing system and remotely
lTocated devices via a unit that performs the necessary format conversion and
controls the rate of transmission.

teleprocessing ~ The processing of data that is received from or sent to
remote locations by way of telecommunication lines.

temporary data set - A data set that is created and deleted in the same job.

term - The smallest part of an expression that can be assigned a value.

throughput - The total volume of work,performed by a computing system over a
given period of time.

time sharing - A method of using a computing system that allows a number of
users to execute programs concurrently and to interact with the programs
during execution. '

time slicing - A feature that can be used to prevent a job from monopolizing
the central processing unit and thereby delaying the assignment of CPU time to
other jobs. In systems with time sharing, the allocation of time slices to
terminal jobs.

trace - A debugging tool that prints or displays a specific set of registers
and/or memory locations as they are encountered throughout the execution of a
program. Program execution is not interrupted, but a tirace of the contents of
key variables and registers is provided for later problem analysis.

trailer statement - The statement (MEND) that marks the end of a macro
definition.

transfer - See branch.

translators - See assemblers and compilers.

traps - Halts inserted in object code that, when encountered during execution,
cause a branch to a debug program. (See also breakpoint.)

trouble shoot - See debug.

truncate - Chopped off or ignored. For example, if 87.657 is truncated to &4
digits, the result is 87.65 , the 7 is simply ignored.

two's complement notation - Representation of negative binary numbers.
Created by subtracting each digit of the number from the value of one and then
adding one to the least significant digit.

type attribute - The type associated with a gymbol. For example, F for full-
word, H for halfword. Can be tested in conditional assembly instructions.

type subfield - A portion of a DC or DS statement that informs the assembler
which type of constant is to be defined.

unary operator - An arithmetic operator having only one term. They can be
used 1n absolute, relocatable, and arithmetic expressions. They are positive
(+) and negative (-).

unconditional branch - An instruction which causes a branch to be taken each
and every time 1t 18 executed.

USASCII. - Same as ASCII.

utilities - Standard routines of often-used functions, usually supplied as
part of system software.

utility program - A problem program designed to perform an everyday task, such
as transcribing data from one storage device to another.

validity check - A check that a code group is actually a character of the
particular code in use. For example, a check to see that the combination of
holes punched into a column of a card is a valid combination.

value subfield - The portion of the operand of a DC statement that specifies
the constant to be assembled. If specified in the operand of a DS statement
it is only used to establish the length of the constant.

variable - A symbolic location that can contain a variety of values.

variable-length data - Data which consists of a string of byces of no fixed
Tength and located on no specific integral boundary.

variable symbol - A symbol used in macro and conditional assembly processing
that can assume any of a given set of values.

virtual address - In virtual storage systems, an address that refers to vir-
tual storage and must, therefore, be translated into a real storage address
when it is to be used.

virtual address space - In virtual storage systems, the virtual storage
assigned to a job.

virtual storage - Addressable space that appears to the user to be real
storage, from which instructions and data are mapped into real storage loca-
tions. The size of virtual storage is limited by the addressing scheme of the
computing system (or virtual machine) and by the amount of auxilliary storage
available, rather than by the actual number of real storage locations.

A-31

volume - A recording medium that is mounted and demounted as a unit, for
example, a reel of tape or a disk pack.

volume serial number - A number in a volume label that is assigned when a
volume 18 prepared for use in the system.

volume table of contents - A table on a direct access volume, that describes
each dataset on the volume. Abbreviated VTOC.

VTOC - Abbreviaticm for volume table of contents.

word - A contiguous series of 32 bits, or four bytes, in storage which can be
addressed as a unit. The address of the first byte of the word is evenly
divisible by four.

work area - An area used to reference an input record or build an output
record. 1Its name is specified in the GET or PUT instruction.

zoned-decimal format - A format in which each character occupies one byte with
the first four bits being the zone protion and the second four bits the digit

portion. The zone portion of the low-order byte is the sign of the number (A,
C, E and F are positive signs, and B and D are negative).

APPENDIX
B
2200 VS
COMMON
1C’S

This section contains descriptions of integrated circuits that are

APPENDIX B

commonly used throughout the 2200VS.

DESCRIPTION

/1

7485
4-BIT MAGNITUDE COMPARATOR
/s
a0 e
Al
A2
A3 5
BO A>B—7§
B/ A=B——7-
B2 A<B—L

LT

PERE

B3
A>
|4 o=

A< ﬁmsg

This device checks the following functions between the two four-bit

words. A=B, A B, A B.
TRUTH TABLE
COMPARING CASCADING
INPUTS INPUTS ouTPUTS
A3, B3 | A2,B2 | A1 BI A0, BO A>B A<B A=B >n A<B -8
A3>83 3 X X X X X H L L
A3<B3 X X x X X X L H L
A3-83 | A2>82 X X X X X H L L
A3=B3 | A2<B2 X X X X X L H L
A34B3 | A2-B2 | A1>81 X X x X H L L
A3=83 | A2=82 | A1<B) X X X X L H L
A3=B3 | A2=B2 | A1=B1 | AO>BO X X X H L L
A3-83 | A2+-B2 | A1=B1 | AD<BO X X P L H L
A3=83 [A2=82 | A1=81 | AQ .80 H L L H L L
A3=83 | A2=82 | A1=B1 | A0-BO L H L L H L
A3=83 | A2.82 | A1=B1 | AO-BO L L H L L H

NOTE: H = high level, L = low level, X = irrelevant

A-33

7493
4-BIT BINARY COUNTER

b&c‘jf

—A In A
/———B In B
C

RC1 RO2D

2

X
N

= ko o |

\

| DESCRIPTION

For this device, a high level on both RO inputs will cause the counter to
reset to "0". A low level on RO will cause a count on the next pulse.

Without resetting, this device will count from 0-15 with the A output being

the least significant bit.

TAUTH T 1
INPUT OUTPUTS OUTPUTS INPUT [ABLE (See Netes 1 and 2)
R ,_-—L—A 5\ —~ :'—'\.) COUNT o
. |) D C 8 A
0 0 0 0 0
0 C] b_l 1 1] [\]) 1
o cr 2 0 0 1 0
3] 0 1 1
« o lk_ o 4 0o |1]ofo
3 5 [) 1) 1
6 0 1 1 0
r——?:::::t:>__ 7 o |1 [1
LTI P 2 . g 2 -
9 1 0 0 1
10 1 0 1 0
" 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1
NOTES: 1. Output A connected to input B.

2. To reset all outputs to logicel O both Rg(y)
and Rg(2). Inputs must be at a loglcal 1.

3. Cither (or both) reset Inputs Rg(y) end Rg(2)
must ba st a logicel 0 to count.

DESCRIPTION

74139
DUAL 2 TO 4 DECODERS

et OATA
(YY) _/’\“,—ﬂ_\
v vo vy Qv v

.
hast

LYY

DAtaOUTAUTY

With this device, a low level on the G input will cause the combination

of A and B inputs to be decoded at the Y out:ﬁut:.

‘L8129, ‘8139
—-ﬂ_nd
sy 10 > _D_
l 5”@""
R
stueer “"'D" 4 m
INPUTS . t] 1v3
PF::),M
INARLE m"" nn
Al
N IIOI: va
e
stuer | 0D "
INPUTS ,.l‘) m
N ’

A-35

OATA
WWY‘

‘L8130, ‘8138
{EACH DECODER/DEMULTIPLEXER!
PUNCTION TABLE
INPUTS
anABLE | siLecy] OUTVT
a B A YO0 Yivavl
H X XiH H HH
L L oLl HwHH
L L HiH L HH
L H L H H L H
L H H{H H H L

H = high level, L = low level. X = irrelevant

74148

8 TO 3 LINE PRIORITY ENCODER .
\/é

_10__0 0 vee

L _dq1

1242 A0 o—2

L 43 Al p—1

I g A2 b—2

2 g5

2 ds

L q7 cSs o—14

= _gEI EO jo—>3
GND
|8

DESCRIPTION
This device insures th;t only the highest-order data line is decoded. ’

The El input enables the 8 inputs to be encoded in a BCD count.

FUNCTION TABLE
INPUTS OUTPUTS
El|]0 v 2 3 4 5 6 7|A2 A1 AolGs €O
HIx X X X X X X X|H H H|[H H
LIH H H H H H H H|IH H HIH o
LIXx X x x x x x tlu v olue =W
LIX X X X X X L HlL L HluL o
LIX X X X X L H HIL H L] H
LiX X X X L H H H{L H H|L #
LIX X X L H H H H|H L tiL H
LIX X L H HH H H|IH L H|L H
LIX L HH H HH H|H H L{L H
LIL HHHHHHH|IH H HlL ©w

74151
8-BIT DATA SELECTOR/MULTIPLEXER

3

//' 10

DESCRIPTION

trobed low, the Y output will yield a selected D

18 8

When this device

The W output is the inverted Y output.

t.

inpu

w

OoUTPUTS

viv

0y

D4

INPUTS

Y

Qo

STROBE(1)

A

X s irrelovent,

A-37

74153
DUAL 4-LINE-TO-1-LINE DATA SELECTOR

15
L——QSTIG 2487 26
6__lco > 19 loco
5 TP 9
2 1Cl 1Y 5 2Y
L 151554

G534 B "4 B

11412 |/4 '2

DESCRIPTION

When this device is strobed low, it will decode the A & B inputs,

and put the corresponding C input on the Y output.

TRUTH TABLE

ADDRESS
INPUTS DATA INPUTS STROBE | OUTPUT

C c

- - =0 OO Ol |
O Ol {0 O |>
K ¢ XX X OO
P< DDE M= O DS DX |P< {=
> = OX <k XX
= O 26> D M jw
O O|O oo oo o~ |O
= Ol O~ O~ Oolo =<

Address inputs A and B are common to both sections.
X = irrelevant.

A-38

74157
QUAD 2-TO-1 LINE DATA SELECTOR

INPUTS OUTPUT INSUTS OUTPUY

VCe STRONE 4A a8 4Y JA U0 Yy

SLLLCT 1A w 1"y /A 79 Y
\ \ .

INFUTS Lot INPYTS Ouirur

DESCRIPTION

If the select line of this device is low when the device is
strobed, the A inputs will appear on the Y outputs, or if the select
line is high when the device is strobed, the B inputs will appear on

the Y outputs.

(2)

A —-
- 4)
8 (2 g —-1Y
q) FUNCTION TABLE

o INPUTS OUTPUT ¥
A | 18,1157, ‘L8158
STROBE [SELECT| A s w58 B188

(6) (LUP H X X X T H

Ll L L L x L H

[L L H X W L

) L H X L L H

L H X H L

3A -
" -
. - S . u’
2 (10) — L ay M = nigh level, L = 10w level, X © irrelevant
-

(14)

i o

(15)

STROBE G e g
SELECT § L“--]—D” ,
p—

———

e

A-39

74161
SYNCHRONOUS 4-BIT COUNTER

¢

3 LOAD 14

A R I

a s

C <

ID Qo 1

15

J"Cl_l(Coutr —
10 JENB T
I.ENB p

DESCRIPTION

This device is fully programmable; the outputs may be set to
either state. If Load goes low, the A, B, C, D inputs will appear at
the QA, QB, QC, QD outputs on the next clock pulse. Both enable

inputs must be high to clock the counter.

74163
SYNCHRONOUS 4-BIT COUNTER

DESCRIPTION

. Same as 74161.

A-40

' DESCRIPTION

8-BIT SERIAL TO PARALLEL CONVERTER

,N l—‘

74164

IN A
IN R

CLK
CLR

Q
Q2
Q3

(5
Q6
Q7
Q3

mEA

— e e |
N =

2

clear line resets the cntire register.

This device "ADs" the A & B inputs, and shifts this through the

register, from Q1 to Q8, with each clock pulse. A low level on the

ouUTPUT ouTruT OouUTPUT OuTPUY ourrur ouTPuT
Qg Q¢ Op Og op
Q s S s G s O s O s G
cioen cuoce cuoce cuoce cuoce
a 9 n % s S0 " O a O " G
croan Crian [cigan CLoan
PIN NAMES
4 0, CLOCK CLEAN C—P-..
SERIAL INPUTS CLR
A, B
Qa to Qy
A=-41

TRUTH TABLE
SERIAL INPUTS A AND B
INPUTS OUTPUT
AT t, AT theq

A B Qp |
H H H

L H L

H L L

L L L

Ciock Pulse Input
Clear Input

Serial Inputs
Parallel Outputs

14173
4-BIT D-TYPE REGISTERS WITH TRI-STATE OUTPUTS

UATA ENABLE
DATA INPUTS INPUTS

V CLFAR "D 20 10 40 [H G1

sy peuijegjs

CIFAR 10 20 30 <0 D\IA
ENABLE
QUTPUT
CONTHOL 1@ 20 30 _aa CX

e

IBIEAIER IR KR IR IRE L

M N 1 20 2 c
\ ;)\ Q ; CLOCK GN
OUTPUT CONTROL QUTPUTS

DESCRIPTION

This device allows the data inputs to be clocked into the device,
P if both data enables are at a low level. The data will be present on
the outputs if the M and N lines are held low. 1If the M and N lines
are at a high level, the outputs go to the high impedance state, but

|

|

do not interfere with any data being clocked in. A high level on the
clear pin will clear the entire register.

|

FUMCTION TARLE

' '{.‘ \ e OurvPUT
ouTPy
cournol ::D—— DATA ENABLE | DATA
£ CLEAR | CLOCK
3 J G1 a2 0 a
DaATa (141 ° o H x x x x L
"o — L L X x x 0
b ce 3
L t H X x Qg
9 [y = 2
cara J' L ' X " X Qp
.nu.M;;:[:y4>« cotan . .) A\ : "
_.___T L t L L H H
ED_L J When either M cr N (or bothl is (are) high the output is
" . :D o N disabled to the high-mpedance state; however sequential
u:;.] 9 operation of the flip-fiops 1s not sffected,
- cx
o Bo—i 10 H = high leval (ste..3y state)
m Cutan L = low level (steauy state)
ceocx T 1 = low-to-high-lavel transition
1 X = irrelevint (any input including transitions)
Q,y = the level of Quetore the indicated stecdy state input
- ol condiiions were e tatiished.
DATA NN - °
0 }-J
- 43
o r_‘ 18 20
Cilan
ocata M1 ..D o o J
40
cs
o 18) «©
Citra
cLtan UL J\va J

A=4L2

ivido

' HEX D-TYPE FLIP-FLOPS
3.4.6 f) Q 2.5.7
11,13,14 10,12,15
2 ¢
CLR

b

COMMON TO ALL F/F
DESCRIPTION

This device transfers the data from the D input to the Q output
with each clock. A low level on the clear will clear all six

flip-flops.

FUNCTION TABLE
(EACH FLIP.FLOP)
INPUTS ouTPUTS
[cLeanciock b | o
L X

X
H
L
X

L

H

L
Qp

T XX

t
t
L

'1 ® high level (steady state)

L = low level (1teady state)

X = [rrelovent

t = transition from low to high level

Qg = the lavel of Q before the Inaicatud steady-state
Input conditions were estadlished,

74175
QUAD D-TYPE FLIP-FLOPS

S|
4 0] 2]
—d .
CK (3 Qa1 FUNCTION TASLE
(RACH FLIP-FLOP)
CLR INPUTS ouTPUTS
at
— B
5 : " t Wl wWw oL
02 ' Low
-7—02 : L ; [
q CI — H = high lovel (sswady state)
0 Q2 ::rh:“(n-ﬂvnw)
te tion from low to high level
CL 14 Qg = the level of Q béfore the indicsted steady-state
SJ input conditions were sstsbiished.
1 3 fo 03
L——C CK
1] Q3
CcLR
- 04 N5 4
4 —q CK
cLUCK 91'>& 0
CLR
CLEAR % J

DESCRIPTION

These monolithic, Positive-edge-triggered flio-tiops uulize TTL
circuits to implement the D-type tlip-tiop logic. Information st
input O Is transferred to the Q output on the Positive-going edne
of the clock puise. Clock triggering occurs et a voltage level of the
clock pulse and is not directly related to the transition time of the
positive-going pulse. When the clock input is at either the high or
low level,the D-input signal has no effect,

74193
SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTER

Z—ION BORROW}—12
UP CARRY {12

|

/]
L UZOAD QA2
B QB—=2
c gczé,
D CLR DL

B

il

IHlustrated below is the following sequence:
1. Clear outputs to zero.
2. Load (preset) to BCD thirteen.
3. Count up to fourteen, fifteen, carry, zero, one, and two.
4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen.

DATA <

| N N B

% _ 1

ouTPUTS J 1))

°cZIIL'_l

!
I
|
I
1 I
I
I
!

|
!
I
:
-
[
:
i

I 1 |
~ I] |
CARRY]) Lr | | ~
L | :
BORRUW 11 | - . —LJ I
SEQUENCE lo I l" "o 0 ' 2 1 0 ® w13
ILLUSTRATED COUNT UP COUNT DOWN

CLEAR PRESET

NOTES: A. Cloar overrides load, data, and count inputs.
8. When counting up, count-down input must be high; when counting down, count up Input must be high.

74194
4 BIT BI-DIRECTIONAL SHIFT REGISTER

vee Oa s Q. Op cLock 31 S0
w5 [w][u]]n
P]

Us Ooc Op

(2]
L £ ¢

>

>

A [s]
1 3 6
CLEARSHIFT A [] 4 O SHIFT GND
RIGHY LErT
SERIAL PARALLCL INPUTS SFRIAL
INPUT INPUT

doscription

These bidirectional chift registars are designed to incorpoiate virtuslly all of the features a system designer may want in
a shift register. The circuit contains 46 equivalant gates and features parallel inpuss, parallel outputs, right-shift and
left-shift serial inouts, operating-mode-control inputs, and a direct overridirg clear lino, The register has four distinct
modes of opsration, namely:

Parallel {Broxdsid2) Losd

Shift Right (In the direction Qp toward Op)
Ghift Laft (In the diraction Qp toward Qa)
Inhibit Clock (Do nothing)

Synchrcnous parallel losding is accomplished by applyirg te four bits of data and taking both mode control inputs, Sg
and Sq, high. The data is looded into the associated flin-flop a~d appears at the outputs after the positive transition of
the clock input. During loeding, serial data i1ovs is inhibited.

Shift right is accomplished synchronously with the risirg ecge of the clock pulze when Sp iz high and S is low. Serial
data for this mnde is entered at tha shitt-right data input. When Sg is low and Sy is high, data shifts laft synchronously
and new data is enterad at the shift-left serial input.

Clocking of the fhip-flno iz inhibited when buth mode cortrol inputs are lov. The mode controls of the SN54194/
SN74194 should be changed only while the clock input 1s high.

FUNCTION TABLL

INPUTS CUTFUTS 1 14~ Nigh 13521 {nacdy rrate)
MODE SERIAL | PARALLEL | TTT T U low leval (zttady staa)
B . . U
CLOCK Q Q 0 o X = arretovar: (2ny irpus, Ircludiag tranmitions)
CLEAR Sy Sp LEFT RIGHT|A & € D A 8 c .. 1780111101 frorm low 1 high fevael
T X X X x P3 X 7 X X L L L 8, b,.c. 9= the 'svo! rf gtoadv-state (nput ot
¢ x x xlo a i vty A, 8, C, or D, respectively
H X X L X X o ® X ¥10ap Qoo Oco QDo aup Ggg. Qcg. Qpp = ™he lavet of Qp. Qg
H H H 1 X X 2 b c d| a b - d Qc. or Qp. respective-
H L H ' X H X X ¥ M oAr OB" an fv, nofore the Indlcs:
ted stesdy-state input
H L H 1 X L ¥ X X X| L Qan Qgn Qcn CONAINON were esteb-
H H L ¢ H X A X X X|O0gn Qcp Opn H lizhed
H H L 1 L X |X x ¥ ¥%|O0gy Ogcn Qpy, L | @A~ Qun.Qcn Opn= g-- I:-' of Qp. Q's-
c. Qp. respectively,
H L L X X X % _X % X]0a0 Qw0 Qco %pn before the mort-recant
* trensinion of the
c'ock

74195

4-BIT SHIFT REGISTER

Uiy
—A

o i
LT

23, ’ s E’;
i [‘f I-‘Jr.‘.;']:{.‘li
Ua Qp

CLLAN

o 0 O o

BHIFY/
LOAL

SMIFT/
LOAD

SERIAL INPUTS

functional >*ack diagram

(LTS
[

Ghu

PAKALLEL INPUTS

PARALLEL INPUTY
v\

LA™
\0AD ‘LDO
conIAOL

.

!r_

A-47

o U2 D Y
R e .
(4 —-—— ——ee . — @ e e L 4
| (tan -&-—-_<Do. ' Ij' ._.‘___ I —_—
| +_.r‘1rr‘ ! o .'L R
L_.Jsc- Pon
*{> ds oal— 4y o
- Y ne ny) ‘J At
‘ 0a o Ac %o 8o
\ /
unﬁ(c 1Puts
TThis connection i1s mado on *198 only. Heo
FUNCTION TABLE N ,)
H = high leve! (s1eady state
INPUTS OouTPUTS L = tow level (steady statel
SHIFT/ SERIAL| PARALLEL X = irrelevant (any inprat, inciuding trensitions)
CLEAR LOAD CLOCK J Kla B co Ga 0g O¢ 0p Gp ! = trantition from iow to high leval
8, b, c, driheievel of stasdy state input st A, t.
L X X X XX x x x L oL L) H C.or D, respectively
H ' X X]a b c d| a b < d d Qa0 Q8u. Qo Qpo ® the level of Q,, Qp, Q.
H L X XX X X X|Qap Qgo Qco QGpo Qpo or Qp. respectively, ba
Q Q -0 fore the Indicated 1Haany
H K L H|X X X X|Qap Qap Qpn Qcn 9cn stete nput conditions
H t L L]x X X X[L Qan Qgn Ocn Qcn ware astabhished
" 1} H H|[Xx X X X| H Qan Qgn Qcn 6Cn Qan. Qan Qcp = the level of Qna, O, or Q¢,
; " respectively, hefore tho most.
Ho t H L |Xx x x X|8an Oan Qp, Ony 3r, racent tramsitlon of the ciock

74251
DATA SELECTORS/MULTIPLEXERS WITH TRI-STATE OUTPUTS

DESCRIPTION

e L)
With this device, the decoded data-selects will cause the corres-
ponding data input to be output. This can only happen with a low

level strobe. The Y output is the true output, while the W output is
inverted.

functional block diagram

FUNCTION TABLE
INPUTS OUTPUTS
1 SELECT [sTROBE

C B A $ vow

X X H z 2

! L oL oL L 0o o0
hi L L H L D1 D1
L P L H L] L |o2 B3
; L H H L D3 B3
I H oL L L D4 D4
1 H L H| L |os B8
: H W L L 06 D6
H H H L 07 b7

H = high logic level, L = low logic leve!
X = rerel , 2 = high (oth)
D0, D1 ... D7 = the level of the respective D input

A-48

74280

9-BIT ODD/EVEN PARITY GENERATOR/CHECKER

W nLn " w

~
™
-
-

DESCRIPTION

With this device, if 0, 2, 4, 6, or 8 total inputs are high level

then, even output will be high level and odd output will be low

level. If 1, 3, 5, 7, or 9 total inputs are high level then, even

output will be low level and odd output will be high level.

¥ ¥y
v vy
¥

!

110} 0 g

c (4] L]

. 1131

I

iyl Yy

[
L]
t g 4 >—14
1 :!
N
[

g

> <

A-49

FUNCTION TABLE

NUMBER OF INPUTS A OUTPUTS
THRU | THAT ARE HIGH | T EVEN T ODD
0.2.4.0.8 H L
1,3,6,7,9 L W

H ® high jevel, L = low leve|

14420

QUAD 2-INPUT MULTIPLEXERS W/STORAGE

OUYEUTS DATA

e —— WORD INPUT
vVece Oa Q8 Q¢ QOp CLOCKSELECT C1

A2_Ar_ 81 C2 D2 DI
IHIEBIERIER IR R I IREIL
LBZ LYY 81 c2 D2)] 4, GNO

Dmlqwms
DESCRIPTION

When the word select input is 16w, word 1 is applied to the
flip-flops. A high input to word select will cause word 2 to be
selected. The selected word must then be clocked into the flip-flops.

FUNCTION TABLE
INPUTS OUTPUTS
WORD
SELECT CLOCK | Qs Q¢ Qp

PYp E— L ' 1 b1 o1
J‘o&g no D TR o, H) 2 b2 c2 d2
R 7 F‘L“ X H Qap Qpo Qcp Qpo

i
0‘ | L H = high level (steady stare)

ot L = low level (steady stare) .
——— X = irrelevant (any input, Including transitions)
| D s [yl o 1 = tranution from high 10 low level
. . b—ﬁbu 81, 82, etc. = the level of steady-state input st A1, A2, etc,
L]

functional block diagram

Qagp. Qpp. otc. = the level of Qa, Qg. otc, entersd on the
most-recent . transition of the clock input.

(3]

-~ .. - Dynamic input activated by a transition from s high level
10 8 low leve!

75107
‘ DUAL LINE RECEIVER

m u ey QulPul >1HOBL

Wlfi]fo) r"u—u—m

Tfim 1]

ll'!" iUt NC OUTPUT STROSt STRONE GNO
A " 1y 16

The 75107A features independent channels of common voltage supply and
ground terminals, a TTL-compatible active pull-up (totempole) output, high
input impedance and low input currents which induce very little loading on

‘ the transmission line, and individual strobe inputs for each channel and a
strobe input common to both channels for logic versatility.

TRUTH TABLE

DIFFERENTIAL
INPUTS STROBES OUTPUT

A-B G S Y

Vipy 2 25 mV LorH|LorH H

Lor H L H

5mv<vp<2Bmv|[L [LorH H
H H INDETERMINATE

- LorH| L H

Vip & -25 mV L Lor H H

H H L

A-51

N Iy (’ n

9314

QUAD LATCH
1
) —
——S E 5
A4~ 51
A ol] 13
,—]Q—— J2 Q2
A=Y 53
-2 1 Jg ™ Q3 —10

PIN NAMES

1 "

€.
Do. Dy, D2, D3
So. 51,52, 53
MR

Qp, Q¢, Q2, Q3

O pan s o,

TRUTH TABLE

mrR| E | o 5 Qn | OPERATION
AL L L L 0 MODE
Hi{L | W L H

H H X X QN -1

WL | L L L | R/ MODE
H| L H L H

H| L L H L

H L H H QN-—¢

H H X X QN -1

L | x| x X L RESET

X
L

= Don’'t Care
= LOW Voitage Level

(Active LOW) Enable Input

Data Inputs

Set (Active LOW) Inputs

Master Reset (Active LOW) Input
Latch Outputs

H = HIGH Voltage Level
QN-1 = Previous Output State
Qu = Present Output State

A-52

‘ DESCRIPTION

9321

DUAL, ONE-OF-FOUR DECODER

9 4

—t 9 ;

) 1 O——
3 A0 2 O——ﬁ-
- 3 jpr—L-
s | iy -
_—-—]. 7 b—1
T— Ao 5 fo—0W0
! o S

With this device, when the E input is a low level, the A inputs

|
i will be decoded, appearing as low truth outputs.
|

i

PIN NAMES

Decoder 1 and 2
-

2941

723

of

A-53

TRUTH TABLE
DECODER 1 & 2

E Ag Ay T 7T 2 3
L L L L H H H
L H L H L H H
L L H H H L H
L H H H H H L
H X X H H H H

H = HIGH Voltege Level

L = LOW Voltage Leve!

X = Level Does Not Affect Output

Enable (Active LOW) Input
Address Inputs
{Active LOW) Outputs

9401
CRC GENERATOR CHECKER

CP 1 141 v
cc
P 2 13| ER
S0 3 12 Q
MR 4 11| D
S1 5 10| CWE
N.C.| 6 9 N.C.
GND | 7 8 82
PoLy MomidL g
oLt cT —d §, Rom™m
—_—,
y
CNEIX Weas Bnamd
PRE sdr ———] l S
Dara — o DA
Cuoex ——— P ':I:‘:Nt ap—— our PuY
L.13
masria l.l(r___]
ERaeR tll’ﬁ‘-"‘l.‘-—— [LT

A-54

MC 3450
QUAD LINE RECEIVER

A4
mun"E ,‘:t BVGC
A
’E r‘EJ_lwuru
avrenn AE "E* »
SYRORF E._.D rurrur s
RO LI cE B\"
mruvs*E] [Bf‘m\l uro
¢ ol
-E .‘d*'w'\]'ﬂ
om:q [%)- D

TEUTH TABLE

INPUT M mn
Vip® L M \ -
+25 my [Open .
AMwmvV G L L
VIE‘WMV ['] Open
Vip] T 17
-2 mV) Open .
e lew Nata
Ha Loqic Steta
Ooen =gk iflp, PN
I= wS1=t

A-55

MC 3453
QUAD LINE DRIVER

w
veut A 1 he Vee
v 3 Y iNPUT S
OUTPUT A
2 E 3 Y
ouTruTs
z (4 ERE
ouTeuT ¢
v E E z
ouTPUT D
inviaiT o B v
weurc 7] E INPUT D
ono (3] D Vae
TRUTN TABLE
{pomtive loy:)

QuUTPUT

LOGIC| INHIBIT CURINENY
NeUT | INPUT 2 Y

o) H On o

L [cn on

- L o on

L L (5] ot

L= Low Lugic Level
He High Logic Level

A-56

APPENDIX
C
UPGRAD-

ING
THE

- WCS/60

APPENDIX C

UPGRADING THE WCS/60

The user who wishes to upgrade his WCS/60 CPU can expand it to a
WCS/80 CPU. The WCS/80 can support up to 512K bytes of main memory,

up to 23 Workstations, and 600 megabytes of on-line disk storage.

Additional options for the WCS/60 include:

Memory upgrade - increments of 64K (256K maximum)
Additional Language - COBOL or BASIC

2246P Workstations - up to 15 additional workstations
I0P's (up to four additonal)

22vo0l
22v02
22v03

22V05

Disk Drives

2260V
2265v-1

Tape Drive

2209V

Printers
2281

2231w-1
2231w-2
2221w
2261w
2263v-1
2263v-2

Printer Workstation IOP

10 megabyte fixed/removable disk IOP

75 megabyte removable disk IOP (one per
system)

9-track, 1600 bpi, 120 kilobyte/sec

(75 ips) magnetic tape IOP

10 megabyte fixed/removable disk drive
75 megabyte removable disk drive

9-track, 1600 bpi, 120 kilobyte/sec
(75 ips) magnetic tape drive

Daisy Output Writer (50 cps)

Pin feed forms feeder for 2281V
Wang Line Printer (112 col./120 cps)
Wang Line Printer (132 col./120 cps)
Wang Line Printer (132 col./200 cps)
Wang Printer (240 lpm)

Line Printer (400 1lpm)

Line Printer (600 1pm)

A-57

APPENDIX
D
UPGRAD-
ING
THE
WCS/80

UPCRADING THE WCS[S0

Additional options :or the WCS/80 include:

Memory upgrade - increments of 64K (5]2K maximum memory)
Additional language —~ COBOT. or BASIC

2246P Workstations — up o 22 additional Workstations
Additional 10P's (system supporis a total of eight)

22v01 Printer/Workstation IOP

22V04 80MB removable disk IOP (up to two per
gystem)

22V05 9 track, 16006 bpi, 120 kilobyte/sec

(75 ips) magnetic tape IOP (controls up

to four magnecic tapes)
Disk Drives
2265v-1 75MB remcvabie disk diive
Tape Drives

{ 2209V 9 Teach, 1600bpi, 120K kilobyte/sec
|

(75 ips) megnetic tape drive

Printers
2281 Laisvy outpui wricer (40 cps)
piv feed forms feeder for 2281V

2231w-1 Wang line printer (112 col/120cps)
2231W-2 Viang line printer (132 co01l/120cps)
2221W Wang line printer (132 col/200cps)
2263V-1 Tine Printesr (400 1lpm)

2263V-2 Line Printer (.J0 lpm)

A-58

APPENDIX
E
- CONFIG-

URATIONS

WCcs/60 -

MEMORY

1/0 PROCESSORS
WORKSTATIONS
TAPE DRIVE
DISKETTE DRIVES
DISK DRIVES -

10 MEG F/R
80 MEG R

PRINTERS (ANY TYPE)

WCs/80 -

MEMORY

1/0 PROCESSORS
WORKSTATIONS
TAPE DRIVES
DISKETTE DRIVES
DISK DRIVES -

10 MEG F/R
80 MEG R

PRINTERS (ANY TYPE)

APPENDIX E-
CONFIGURATIONS

MINIMUM
64KB

2

MINIMUM

256KB

MEMORY IS IN 64KB INCREMENTS

A-59

MAXIMUM

256KB

16

MAXIMUM

512KB

24

W

(Continued)
Wwecs/60
SMALL
WCS/60-2, 64K, 1 WORKSTATION, 10-MEG DISK, DISKETTE,
240-LPM PRINTER
MEDIUM
WCS/60-6, 192K, 6 WORKSTATIONS, 2 10-MEG DISKS, 1 240-LPM
PRINTER, DISKETTE
LARGE
wes/60~-8, 256K, 10 WORKSTATIONS, 2 80-MEG DISK DRIVES, 1
600~-LPM PRINTER, DISKETTE
WCS/80
SMALL
WCS/80—8, 256K, 2 80-MEG DISK DRIVES, 1 WORKSTATION,
600~-LPM PRINTER, DISKETTE
MEDIUM

WCS/80-12, 384K, 10 WORKSTATIONS, 600-LPM PRINTER, 3 8-MEG
DISK DRIVES, DISKETTE

LARGE

WCS/80-16, 512K, 18 WORKSTATIONS, 4 80-MEG DISK DRIVES, 1
9-TRACK TAPE DRIVE, 2 600-LPM PRINTERS, DISKETTE

A-60

APPENDIX
~F
SPECIFI-

CATIONS

R BB T

|
|
|
|

APPENDIX F
SPECIFICATIONS

2200VS CENTRAL PROCESSING UNIT

Memory Size: 64K, 128K, 1924K, 256K (WCS-60)
Memory Size: 256K, 320K, 384K, 448K, 512K (WCS-80)

Size

Height 41 in. (104 cm)

Depth 32 in. (8) cm)
Width 36 in. (9 com)
Weight
Cable

Power Requirements

115 vAC (+ 10%)
60 HZ (+ 1 Hz)
12 Amp.

Independent Power Line Recommended

Operating Environment

50 F to 90 F (10 C to 32 C)
20% to 80% Relative Humidity

Recommended Relative Humidity

35% to 65%

2200VS GENERAL SPECIFICATIONS

Memory Cycle Time

660 nanoseconds per two bytes

A-61

Word Length

32 bits (4 bytes)

Registers

Sixteen 32-bit General-Purpose Registers

Four 64-bit Floating-Point Registers
Eight 32-bit Contrcl Registers

Types of Arithmetic
Binary

Packed Decimal

Floating Point

A-62

APPENDIX

G
FIXED/

2260V
REMOVABLE DISK

APPENDIY G
2260V FIXED/REMOVABLE DISK

Storage Capacity

Tracks/Cylinder « « « .« « .« . 4
Cylinders « « ¢« v ¢« v o o« o v+ . . 408
Sector Size+ + + ¢« ¢+ s 4+« + + .« 256 bytes
Sectors per Track « + ¢ « ¢ « o+ 24

Total Storage (in Million Bytes). 10.03
Access Time

Average +« + 4 4 4 4 o 4 v e 4 o v« 35ms
Maximum « « ¢ « o . e e+ ... 103ms
Minimum . . .+ « + o« v v o e 0 e e e e 9ms
Full Rotation Time. « « « « 25ms
Data Transfer Rate. 312kb/sec.

Power Requirements

115 VAC (+ 10%)
60 HZ (+ 1 HZ)
5.2 Amp.

A-63

- APPENDIX

H

2265V-1
REMOVABLE
DISK PACK

APPENDIX H
2265V-1 REMOVABLE DISK PACK

Storage Capacity

Tracks/Cylinder 45
Cylinders 823
Sector size2148 bytes
Sectors per Track e e e 9

Total Storage (in M11110n Bytes). .« . . . 75.85

Access Time
bl

Average, 30ms
Maximum 55ms
Minimum . . . e e e e e e e e e e e 6ms

Full Rotation Tlme. e e e e e e e e 16.66ms
Data Transfer Rate. 1.2mb/sec.

Power Requirements

115 VAC (+ 10%)

6C HZ (+ T Hz)

8.2 Amp. (operating), 1.5 Amp. (standby)
Starting current 10 seconds at 40 Amp .

WC5-60/80 DISKETTE

Storage Capacity

Cylinders, e e 77
Sector Size 25 bytes
Sectors per Track e e e 16
Total Storage (in M11110n Bytes) e e L3154

Access Time
iR

Average 424ms
Maximum, ., ., ., . ., . .. « « +« . 847us
Minimum . e e e e e e e e, llms
Full Rotation Time. « 167ms
Data Transfer Rate. 31kb/sec.

APPENDIX

APPENDIX I
WORK STATION

cRT

Display Size. +.¢ ¢« + . « + + + . 12 in. diagonal
(30.4cm)

Capacity. . . « + « « + v « v v« o o v+« 24 lines, 80

characters/line

Character Size
height+ ¢+ ¢+ . .. 0.16 in (0.4064cm)
width+ +v v v v v e v ... 0.09 in (0.2286cm)

Power Requirements

115 or 230 VAC + 10%
50 or 60 Hz + 1/2 Hz
125 Watts

Fuses

2.0A@ SB 115V
1.0A@ SB 130V

Operating Environment

50 F to 90 F (10 C to 32 C)
20% to 80X Relative humidity allowable
35% to 65X Relative humidity recommended

Cable

One 8ft (2.4m) cord to power source

One length of 25ft (7.6m) direct connection cable is provided
with each 2246P workstation; extension cables in increments for
distances up to 500ft (152m) are available optionally. Each

cable is equipped with a 36-pin amphenol connector.

A-65

APPENDIX
J

2261V
PRINTER

.

Printer Size:

height .
depth.
width.
weight .

speed.

Cha L LibeU

2261V PRINTER

v« e 4« v v . 36 inc. (9lcm)

.« . .+ . 26 1in. (66 cm)

27 in. (68.6cm)

s e e 210 1b (94.5kg)

240 lines/min

Character Coufigurations

11x8 and 9x8 dot matrix (dots not in adjacent columns of same

rov.)

10 char/in. (4 char/em) or 11.76 char/in. (4.6 char/cm),

selectable 6 lines/in (2.4 lines/com) or 8 lines/in. (3.1

lines/cm), selectable

Character Set:

full ASCII, 96 characters, both upper and lowercase

Line Width

136 characters,
(68 charcacters,
160 characters,

(80 characters,

Ribbon:

maximum with 10 piich
expanded)
maximum with 12 pitch

expanded)

Nylon, double spool, reversable
1 1/2 in. (3.8 cm) wide

64 yd. (58.5 m)

long

A-66

Switches/lamps:

ON/OFF, SELECT, PITCH, LINE/IN., LINE FEED, TOP OF FORM, CLEAR,
FORMS OVERRIDE, paper out alarm and lamp, power on lamp, select

lamp, and alarm tone.

Vertical Format Control:

3-chanrnel, std - 1 inch (2.54 cm) tape. Vertical Tab, Top of

Form, Page Eject.

Paper Size:

Maximum width 14.9 in. (37.8cm)
Minimum width 5.0 in. (12.7cm)
Pgper width settings adjustable

Maximum form length 1ll. in. (27.9cm)
Up to four co s plus original can be printed.

Cable:

6ft (1.3m) to power source

12ft (3.7m) to controller

Power Requirements:

115 or 230 VAC:IOZ
50 or 60 HZ+l Hz
460 watts

Fuses:

sa (SB) for 115 VAC
2.5A (SB) for 230 VAC

A-67

Operating Environment:

50 to 90 F (10 to 32 C)
40% to 80" relative humidity, non-condensing, allowable
40% to 65X recommended

A-68

