PROGRAMMING THE LINC

SECOND EDITION

Computer Systems Laboratory
Washington University

- St. Louis, Missouri

PROGRAMMING THE LINC

Second Edition

Mary Allen Wilkes and Wesley A. Clark

Computer Systems Laboratory
Washington University
T2k South Euclid Avenue

St. Louis, Missouri 63110

This work was supported by the Division of Research Facilities and Resources
of the National Institutes of Health under grant FR-218-01-03, and, in cooper-
ation with the Bio-Sciences Office of the National Aeronautics and Space
Administration, under NIH contract PH43-63-540. "Programming the LINC" orig-

inally appeared as Section 2 of LINC Volume 16, Programming and Use I, Computer
Research Laboratory, Washington University, St. Louis, Missouri, June 1965.

First edition: June 1965
Reissue: August 1967
Second edition: January 1969

Copyright 1969 Washington University

For whom the gong perhaps chimes

10,

11,
12.
13.

14,
15.
16,

17.
18.

PROGRAMMING THE LINC

Contents

Introduction heamecocesesaoaanon ceeennenes cecososessensansenao 1
Number Systems «cocenoonoccooocoocsoseseansosoossosossansssossonnnsa one 3
Simple Instructions .coesvooscossnsccocccssonoocancaocasns cenoonneancenna O
Shifting ssovnnneoe ceocaaco o s hcsonscescoseseasccnasoucnooaanesoosose T

LINC Memory and Memory Reference Instructionsco.c.e ootoooeacnnn 9
The STORE-CLEAR Instruction ..cceesooacs s eecesenvoscoaneoes evensn 10
The ADD Instruction and Binary Addition .ccecoeooeccacanoacannnas 11

The Instruction Location Register ...c..cccevnone ceveenan e oecannannne 12
The JUMP InstruCtion «.ooseoesooseocsoscsasassoososaoss Mo ceuososanan 14

Address Modification and Program "Loops" ...eeecnacccoccononaocaenss 16

Index Class Instructions T ceooceeeesrosessescesossasscnaonosaonnconss 21
Indirect Addressing .ccsnveoooocoonoscsosocscaonscossonnosonnnnnsan 21
Index Registers and IndeXing c.oeeeoccocsoosnonecnsoonooonnsososoocan oh
Logic TNSEIUCLIONS oo ononnnoncososessoscasossososaeanossnsoscans 28

Special Index Register Instructions .ec.osecosconcescons senssansesoo 29
The INDEX AND SKIP ITnstruction .cssococsnsscsncncnscocs oneoan conasen 29
The SET Tnstruction soasosnscececsoscancoossssnnaosnancanscaa oooseoas 3L

Index Class Instructions TT ceoeooceocecnneasconconsoccanannas cnionn. 3k
Double Register FOXmMS «cooovesoonnanonscansoonconsancsnanannana oea 3b
Multiple Length Arithmetic .covoconsovcocsosocscsnoonsnscsosas eans 39
Multiplication coesvoeos cconemssnoe ccecoecosnecnanan 6nanoooessoeonen L5

Half~-Word Class Instructions cecececncocecconooaoescsacoaneanocesa ona 950
The KEYBOARD Instruction cooesncoos s e eescnscosecaeossoasonnneo eoenae Sk

The LINC Scopes and the Display Instructions ...ccecencocosconncnace DT
Character Display cooenconccsss ensaesoscecscosesosnosccssennnense OO

Analog Input and the SAMPLE Instruction «e.oensoscnrooncocosonsasansa .o 66
The Skip Class Instructions ..cecoessoeccsseoenoanooooncosnsssncacanon (2
The Data Terminal Module and the OPERATE Instruction «..oeoceevcesas [0
Subroutine TechniQues ocoososscccssssccsosesesssonssssonosscsssoccsonna [

Magnetic Tape Instructions ceeovocesscocsssoassasscocssssosscoscancea GO
Block Transfers and CheCKiNg «»eseeneeocacssosssssonsocoosncaonos OO
Group Transfers coeccecasnsnosnsosonccosssasososssosssosasssncnnssons 2
Tape Motion and the MOVE TOWARD BLOCK Instructionceececesn. QU
Tape FOrmat «cocooeooooscossosssssesosssosaosasoasssnnnssssansass 98
Tape Motion Timing ocescoescconcesssosesesssosccosoconsnncannscen 101

Chart -I.
Chart II.
Chart III.
Chart IV.
Appendix I:
Appendix II:

Appendix III:

Appendix IV:

References

Contents

Classes of LINC Instructionsc.eeeeeeeeeens e tec e 105
Keyboard COGE weueuereneenenneneeeenesenenensesenenannens 106
Pattern Words for Character Display ...ievevirinenennnn. 107
Instruction Code «.vveevvnenennnnns. e, ceve... 108

Double Memory Programming
LINC Order Code Summary
LINC Modifications

LINC Variants

°

°

o

w W DD MM NN D D DD PP D NP NN HH O H B e e
H O 0 0 3 O U F w D H O N0 o1 o0\ F w N e O

32.
33.
3k,

Index of Programming Examples

Simple Sequence of Instructions ceoecooooesosncossssosossssssossacns L3

Simple Sequence Using the JUMP Instruction cecoecsvoscons s cconnanoo 15
Summing a Set of Numbers Using Address Modification ceoceooocoonooaso 18
Packing a Set of Numbers ocos0» 6 0000060 noeanoocsooossocsnssoossoccscocs 20
Indirect Addressing «.oo.. 0 6 05 a0 050 00 a0 oo enceeesaseoeeooeeosenan sas 23

Indexing to Clear a Set of Registers ceovococooocsocosoooscssosoanos 2D

Memory Scanning coovocesocoosnsscoconanasa o000 e e s acoecacooaoccanenonoes 26
Summing Sets of Numbers Term by Term coooooo cobossons sesacoooananoan 27
Index Registers Used as Counters crosccecocsnens 6oscconcavosnon 30
Indexing and Counting to Clear a Set of Registers .ocooceoooncoosnson 30
Setting Initial Index Register Values ..coooeococcsoosoncosonnscocns 33
Scanning for Values Exceeding a Threshold .coecocococsoscsooos eso0oao 37

Summing Sets of Double Length Numbers Term by TeTmM sooccccocoaosoooo W

Multiplying a Set of Fractions by a Constanteccococcocoacocs .. 48
Multiplication Retaining 22-bit Products ceeoeecoso o000 0acaonneo ceose U9
Filling Half-Word Table from the Keyboard .c.oocsococssccosconocsocnoase DD
Selective Filling of Half-Word Table from the Keyboard .ceovoeccoacas 56
Horizontal Line Scope DicpPlay .oeeocoooccacons Ceeecccaccennananeanan 58
Curve Display of a Table of Numbers .ocoooooos s oo e nonoo e conoen D9
Character Display of the Letter A .oovvonons soceacons san oo ounaannees 62
Character Display of the Letter A Using DSC ..coecow cecssnso b eanoo .. 64
Displaying a Row of Characters ﬂnoo.ou.,on,ooou,.,,,o.oo.a,,ooo,o,{o 65
Simple Sample and Display .oeeceoocooo s asseceeesecaoonas cecnancass 08
Moving Window Display Under Knob Control s eo0ononoeasanonesaas . 69
Histogram Display of Sampled Data s sososoacosbsasasosnonooaoso . 7L
Counting Samples Exceeding a Threshold . .eoceooooeoossoosososocossesso 4

Simple Sample and Display with Keyboard Control ...ccovccecacccccoos [D
Simple Check of an Entire Tape o eseoscssosocosasoscscosnsossscnoasss OO
Dividing Large Programs Between Tape and Memory ..cccocccosososncocos 90
Collecting Data and Storing on Tape cccoeococcscocsocooaos soooe0onooassos 9L
Tape and Memory Exchange with Group Transfer ccocceoosococcsssascooss Ol
Block Search Subroutine soooooos cecascnooos e Ko 6
Write and Check with Fewest Reversals coececocsococsncoscsccssosssosoocse 103

Indexing Across Memory Boundaries ..cccess cssesconncaces Appendix I: 3

Page Index of LINC Instructions

ADA .iiiieeannn 21,
ADD t'iveievnnnnnnns 11,
ADM iviennnnnnnnn 26,
APO tivivevnnnnnnnn 73,
ATR ©iviinnnnnnnnn. 6,
AME iiiiinnnnenns 17,
BCL vvivveennnnanns 26,
BCO vivevnrnneennan 28,
BSE tvvevnnnnannnnn 28,
CHK +vvvvnennnnnnns 87,
CIR vevvrenennnnnn 5,
6710 6,
DIS tevrrnnnnconens 57,
DSC veveveennnnnnnn 63,
ENT ©oveiennenennnnnns
HLT vovinevnnnnnnns 13,
IBZ veeeiennnenannn 98,
JMP ivvnivnnennns 1k,
KBD vivvveennnnnnnn 5k,
KST tvvevnennenennn Tk,
TAM vivneevnnnnnns 39,
IDA tveiiennnnnnns 23,
IDH tvvervnnannnnns 50,
LW teteeennennnnnnenns
IZE tiveeennnnnnnnn 73,
MSC 13 eevvevnnnrncenns
1 7= S 96,
MUL ©evenernncnnnns 45,
1[0

OPR tiveernennnnnas 76,
072
PIN tiieiievnnnnnnnnns
2(07¢ SEUR 92,
RDC tevvnnevnnennns 86,
RDE tvvvvrinnnnnnns 83,
1:(0) PN 8,
ROR tevevrrnnnnnnnn 8,
ROW tveveninnnnnns 6,
RTA .vvivvinnnnnn. 6,
SAE tiiiiiiiinnnnn 25,
SAM tiiiiineinaens 66,
SCR tevvnnnnennnnns 8,
SET tiviiennnnannns 31,
SHD vovivnnnrennnns 52,
SKP tiiennnnennnnns T2,
SNS vovvnnennannns 73,
SRO tvvvrvnnnrnncen 61,
STA tvviiirnnnnnns 23,
STC vvveeevnnannns 10,
STH vvvvvvrrennnnes 51,
SXL vvvevrrnnannnnn T2,
WCG wvvvnnnnnnns .. 92,
WRC civernnnennnns . 89,
WRI voevvvennnnnnnn 85,
XK tverenrnnnnanns 29,
ZTA vveveennennnnannns
7727 Ce et

PROGRAMMING THE LINC

1. Introduction

The LINC (Laboratory Instrument Computer) is a stored-program binary-
coded digital computer designed to operate in the laboratory environment as
a research tool. The following description is intended to serve as a gen-
eral introduction to basic programming concepts and techniques, and specif-

ically as an introduction to LINC programming.

The "classic" LINC,l the basis of this document, has found variation in
manufacture in the form of the LINC-8 and the micro-LINC. Other variations
may yet appear. The fundamental programming techniques, however, are the
same for all varieties, and references to "the LINC" in the following can gen-

erally be read without respect to variant. A summary on LINC Variants is pro-

vided in Appendix IV. It especially affects Chapter 16, and all questions of

instruction execution times.

Like most digital computers, the LINC operates by manipulating binary
numbers held in various registers (storage devices for numbers), under the

control of a program of instructions which are themselves coded as binary num-

bers and stored in other registers. LINC instructions generally fall into
types or classes, the instructions of a class having certain similarities. In
this description, however, instructions are introduced as they are relevant to
the discussion; reference to Chart I is therefore recommended when class char-
acteristics are described. Furthermore, not all LINC instructions are describ-
ed here in detail, specifically those resulting from modifications to the
computer as covered in Appendix III. Therefore, this document should be‘read

in conjunction with the LINC Order Code Summary, Appendices II and III-6.

The best way to begin is to consider only a few of the registers and
switches which are shown on the LINC Control Console:2 the ACCUMULATOR (ACC)
which is a register of 12 lights, the LINK BIT (L), the LEFT and RIGHT

SWITCHES, which are rows of 12 toggle switches each, and one lever switch

labeled "DO." The number systems and operation of several of the instruc-

tions can be understood in terms of these few elements.

2. Number Systems

The elements (bits) of each register or row of toggle switches are to
be thought of as numbered from right to left starting with zero. This will
serve to identify the elements and to relate them to the numerical value of
the binary integer held in the register. We shall use "C{ACC)" to denc

1

"the contents of the Accumulator register," etc. If the Accumulator is

illuminated thus

r— —

ACCUMULATOR] Liant ofr

2;7 ?1/ % ;%?ézy 42; Light On

11 10 9 8 7 6 5 4 3 2 1 0

L.
!

4

N

- |

then the binary number stored in the Accumulator is
c(ACC) = 010 011 100 101 (binary)

which has the decimal value

10 7 6 5 2 0

c(acc) 277+ 2 + 2 + 27 + 2+ 2

]

1024 + 128 + 64 + 32 + 4 + 1

1253 (decimal)

il

We can also view this as an octal number by considering each group of three

bits in turn. In this example, grouping and factoring proceed as follows:
(20 + (27420 + (%) o+ (2P0)
(21) 27 + (21+2O)-26 + (2%).23 + (2°420).2°

(2)-8 + (3):8° + (u)-8" + (5)-8°

1l

c(ace)

1

Il

= 2 3 Iy 5

il

2345 (octal)

Number Systems

To put this more simply, each octal digit can be treated as an independent
3-bit binary number whose value, (0, 1, ..., 7), can be obtained from the

weights 22, 21, and 20:

- ACCUMULATOR ' |
7 % 7 %
2 %) |
NE i} o, 2 ~&» 0, 2 1 0 2 1 0
2 3 i 5 = 2345 (octal)

This ease of representation (the eight possible combinations within a group
are easily perceived and remembered) is the principal reason for using octal
numbers. The octal system can be viewed simply as a convenient notational
system for representing binary numbers. Of course, octal numbers can also

be manipulated arithmetically.

The translation from one system to the other is easily accomplished in

either direction. Here are some examples:

/lj 7’5\ /O 2 6&?\ /75‘ h&é\ o
001 000 111 0l1 000 010 110 101 111 010 1@9 110 (binary)

Sometimes it is useful to view the contents of a register as a signed
number. One of the bits must be reserved for the sign of the number. The
left-most bit is therefore identified as the SIGN BIT (O for +, 1 for -).

To change the sign of a binary number, we complement the number (replace all
ZEROS by ONES and vice—versa).3 Examples:

000 000 000 O0ll = +3

111 111 111 100 = =3

011 111 111 111 = +3777 j} The largest positive and negative
_ octal integers in the 12-bit

100000 000 000 = -3777 signed-number system.

Simple Instructions

We say that the pair of binary numbers 101111110011 and 010000001100 are
ones' complements of each other, (in octal these are 5763 and 2014), and
will denote the complement of the number N by N. ©Note that the sum of each

binary digit and its complement is the number 1, and that the sum of each
octal digit and its complement is the number 7. Note also that there are

A cammmmaa A T +
owo Tepresentaticns ¢f the number zero:

000 000 000 000 = +0
111 111 111 111 -0

Note finally that the sum of any binary number and its complement is always

¥

a zero of the second kind, "minus zero," in this system.

3. Simple Instructions

The LINC instructions themselves are encoded as binary nunbers and held
in various registers. The simplest of these instructions, namely those
which operate only on the Accumulator, will be described first with reference

to the Left Switches.

Raising the DO lever (DO means "do toggle instruction") causes the LINC
to execute the instruction whose binary code number is held in the Left
Switches. The LINC will then halt. For example, if we set the Left Switches

1"

to the code number for the instruction "CLEAR," which happens to be
0011 (octal), and then momentarily raise the DO lever, the Accumulator lights
will all go out and so will the Link Bit light, so that C(ACC) = 0, and

¢(L) = 0. In setting a switch, "up" corresponds to "one."

S { LEFT SWITCHES |
. \ J Eefgoiyi’gchisliet
(:::> / é? o] octal),
STOP \% § %j L% % %J \% % ol \% ? / ggi ﬁggag?ﬂber
0] 0 1 1

‘CLRl

Simple Instructions

Tersely: If C(Left Switches) = 0011 (octal), then DO has the effect

0 = C(ACC) and 0 - C(L). (Read "zero replaces the contents of the Accum-

ulator,” ete.).

CLEAR (or CLR) is an instruction of the class known as Miscellaneous |
instructions. A second Miscellaneous Class instruction, COMPLEMENT (or COM),
with the code number 0017 (octal), directs the LINC to complement the con-
tents of the Accumulator and therefore has the effect'ECKEET-a c(AcCC).

(Read: "the complement of the conteuts of the Accumulator replaces the

contents of the Accumulator."”)

Two other instructions of this class transfer information between the
Accumulator and the Relay Register. The Relay Register, displayed on the
upper right corner of the Control Console, operates 6 relays which can be
used to control or run external equipment. An instruction with the code
0014 (octal), called ACCUMULATOR TO RELAY, ATR, directs the LINC to copy the
contents of the right half of the Accumulator, i.e., the right-most 6 bits,
into the Relay Register. The Accumulator itself is not changed when the
instruction is executed. Another instruction, called RELAY TO ACCUMULATOR,
RTA, with the octal code 0015, causes the LINC to clear the Accumulator and
then copy the contents of the Relay Register into the right half of the
Accumulator. In this case the Relay Register is not changed and the left

half of the Accumulator is left cleared (i.e., containing zeros)c

Another instruction called RIGHT SWITCHES, RSW, with the code number
0516 (octal), directs the LINC to copy the contents of the Right Switches
into the Accumulator. By setting the Left Switches to 0516, the Right
Switches to whatever value we want to put in the Accumulator, and then
momentarily raising the DO lever, we can change the contents of the Accum-
ulator to any new value we like. The drawing shows how the switches should

be set to put the number 6451 (octal) into the Accumulator:

DO N f——— LEFT SWITCHES —— I RIGHT SWITCHES —

@' s19% 938 g88 d9q 883 dgq Iqd ggd

STOP ~ -~

Code number for RSW 6451 — C(ACC) when
instruction = 0516 DO lever is raised

—~1

4., Shifting

After a number has been put into the Accumulator it can be repositioned
or "shifted,” to the right or left. There are two ways of shifting:
rotation, in which the end-elements of the Accumulator are connected together
so as to form a closed ring, and scaling, in which the end-elements are not

so connected.

L 11 0]
&« > >
Rotation
L 11 0
— - - —>
Scaling

Examples of shifts of one place:

Effect of rotating Effect of scaling
right 1 place right 1 place
before 000 000 011 001 000 000 011 001 = +25 (decimal)
after 100 000 001 100 000 000 001 100 = +12
before 111 111 100 110 111 111 100 110 = =25 (decimal)
after 0l1 111 110 o011 111 111 110 011 = =12

Note that, in scaling, bits are lost to the right, which amounts to an error
of "rounding off"; the original sign is preserved in the Sign Bit and
replicated in the bit positions to the right of the Sign Bit. This has the
effect of reducing the size of the number by powers of two (analogous to

moving the decimal point in decimal calculations).

Shifting

el

@3]
Q
=

The LINC has three instructions, called the Shift Class instructions,
which shift the contents of the Accumulator; these are: ROTATE RIGHT,
ROTATE LEFT, and SCALE RIGHT. Unlike the .simple inetructions we have con-
sidered so far, the code number for a Shift Ciass instruction includes a
variable element which specifies the number of places to shift. For example,

!

we write "ROL n," which means "rotate the contents of the Accumulator n

places to the left," where n can be any number from O through 17 (octal).

As a further variation of the Shift Class instructions, the Link Bit can
be adjoined to the Accumulator during rotation to form a 13-bit ring as shown
below, or to bit O of the Accumulator during scaliug to preserve the low order

bit scaled out of the Accumulator:

— < <> >

Rotation with Link Bit

L 11 f 0 -;:>
=l e

- Scaling with Link Bit

The code number of a Shiftlclass instruction, e.g., ROTATE LEFT, there-
fore includes the number of places to shift and an indication of whether or
not to include the Link Bit. We use the full expression ROL i n, which has
the octal coding:

i=0: ACC only
i =1: Link € ACC
ROL i n 0240 + 201 + n

number of places to shift
(n=0, 1, «.., 17)

so that, for example, ROTATE ACC LEFT 3 PLACES has the code number 0243, and
ROTATE ACC WITH LTNK LEFT 7 PLACES has the code number 0267. Note the

LINC Memory and Memory Reference Instructions

correspondence between the code terms and bit-positions of the binary-coded

instruction as it appears, for example, in the Left Switches:

the "i-bit"

@@%‘@@@ @@% 88 d ROL 1 7
— — \ -~ J Code number = 0267
ROL n

Similar coding is used with ROTATE RIGHT, ROR i n, 300 + 20i + n, and SCALE
RIGHT, SCR i n, 340 + 20i + n.

5. LINC Memory and Memory Reference Instructions

Before we can proceed to other instructions it is necessary to introduce
the LINC Memory. This Memory is to be regarded as a set of 1024 (decimal)
registers® each holding 12-bit binary numbers in the manner of the Accumulator.
These memory registers are numbered 0, 1, ..., 1023 (decimal), or 0, 1, css,
1777 (octal), and we shall speak of "the contents of register 3," C(3), "the
contents of register X," C(X), etc., referring to "3" and "X" as Memory

Addresses.

The Memory actually consists of a remotely-located array of magnetic
storage elements with related electronics, but for introductory purposes we
can view it in terms of two registers of lights, namely the MEMORY ADDRESS
register and the MEMORY CONTENTS registe?: K

L j————— ACCUMULATOR ———i|
0 [OO O o1

}——— MEMORY ADDRESS e F____;_ ' MEMORY CONTENTS ——
] 117 IT17 11 HEEEEEEEEEEREER
Left Switches ——— j————— Right Switches —

%‘M& T} [V} RXQ LT TR} QR /IR

*See Appendix I for a discussion of the LINC as a "double memory" machine.

10
STC

The STORE-CLEAR Instruction

By using these two registers in conjunction with the Left Switches it
is possible to find out what values the memory registers contain. If, for
example, we are interested in the contents of register 3, we may set the Left
Switches to the memory address 0003 and then push the button labeled EXAM,
We will see 0003 in the Memory Address register, and the contents of
register 3 will appear in the Memory Contents register. By setting the Left
Switches to a memory address and pushing EXAM, we can examine the contents of

any register in the LINC Memory.

The contents of any selected memory register may be changed by using both
the Left and Right Switches and the pushbutton marked FILL. If, for example,
we want the memory register whose address is 700 to contain -1 (iue,, 7776
octal) we again set the memory address, 0700, in the Left Switches. We set
the Right Switches to the value 7776 and push the FILL button. A 0700 will
appear in the Memory Address register and 7776 will appear in the Memory Con-
tents register, indicating that the contents of register 700 are now T7776.
Whatever value register TOO may have contained before FILL was pushed is lost,
and the new value has taken its place. In this way any register in the LINC

Memory can be filled with a new number.

None of the LINC instructions makes explicit reference to the Memory
Address register or Memory Contents register; rather, in referring to memory
register X, an instruction may direct the LINC implicitly to put the address X
into the Memory Address register and the contents of register X, C(X), into

the Memory Contents register.

The STORE-CLEAR Instruction

Now we can describe the first of the memory reference instructions,
STORE-CLEAR X, STC X, which has the code number 4000 + X, where
0 <X <1777 (octal). (From now on we will use only octal numbers for
addresses.) Execution of STC.X has two effects: 1) the contents of the
Accumulator are copied into memory register X, C(ACC) — C(X), and 2) the
Accumulator is then cleared, 0 — C(ACC). (The Link Bit is not cleared.)
Thus, for example, if C(ACC) = 0503 and C(671) = 2345, and we set the code

o

The ADD Instruction and Binary Addition 1
ADD

number for STC 671, i.e., 4671, in the Left Switches, then raising the DO
lever will put O into the Accumulator and 0503 into register 671. The

original contents of register 671 are lost.

It will be clear, now, that the Memory can be filled with new numbers

witches, or by

(&)

at any time either by using the FILL pushbutton and the s
loading the Accumulator from the Right Switches with the RSW instruction and
the DO lever and then storing the Accumulator contents with the STC X instruc-

tion and the DO lever.

The ADD Instruction and Binary Addition

STC is one of three Full Address Class instructions. Another instruc-
tion in this class, ADD X, has the code number 2000 + X where O < X < 1777
Execution of ADD X has the effect of adding the contents of memory register X
to the contents of the Accumulator, i.e., C(X) + C(ACC) — C(ACC). If the
Accumulator is first cleared, ADD X will, of course, have the effect of merely
copying into the Accumulator the contents of memory register X, i.e.,
C(X) - c(ACC). 1In any case, the contents of memory register X are unaffected

by the instruction.

The addition itself takes place in the binary system,3 within the
limitations of the 12-bit registers. The basic rules for binary addition are
simple: 0+ 0=0; 1+0=1; 1+ 1=10 (i.e., "zero, with one to carry”).
A carry arising from the left-most column ("end-carry"”) is brought around and
added into the right-most column (“"end-around carry"). Some examples (begin

at the right-most column as in decimal addition):

001 111 010 001 111 100 010 011
000 010 111 001 001 010 010 000

11 111 1 1 (Carries) 1 11 1 (Carries)
010 010 00L 010 (Sum) (:T 000 110 100 011

> 1 (End-around carry)

11 (Carries)
000 110 100 100 (Sum)

The reader should try some examples of his own, and incidentally verify the

fact that adding a number to itself with end-around carry is equivalent to

The Instruction Location Register

rotating left one place. With signed~integer interpretation, some other

examples are:

000 000 000 101 = +5 111 111 111 010 = -5
11r 111 111 100 = -3 111 111 111 100 = -3
1 111 111 111 1 111 111 11
<i— 000 000 000 001 <:- 111 111 110 110
—> 1 > 1
1
000 000 000 010 = +2 111 111 110 111 = -8 (decimal)

It can be seen that subtraction of the number N is accomplished by addition
of the complement of N, N. of course, if either the sum or difference is too
large for the Accumulator to hold, the result of the addition may not be
quite the number we would like to have. For example, adding 1 to the largest
positive integer in this system (+3777, octal) results in the largest nega-
tive integer (-3777, octal). This is sometimes called "overflowing the

capacity of the Accumulator.” ¥

6. The Instruction Location Register

It is clear that the code numbers of a series of different instructions
can be stored in consecutive memory registers. The LINC is designed to
execute such a "stored program" of instructions by fetching and carrying
out each instruction in sequence, using a special 10-bit register called
the INSTRUCTION LOCATION register, (IL), to hold the address of the next
instruction to be executed. Using the FILL pushbutton and the Left and

¥ See Appendix III.

The Instruction Location Register 13

Right Switches already discussed, we can, for example, put the code numbers
for a series of instructions into memory registers 20-24 which will divide
by 8 the number held in memory register 30 and store the result in memory

register 31:

Memory
Address Memory Contents Effect
Start
—> 20 CLR 0011 Clear the Accumulator.
21 ADD 30 2030 | Add the contents of register 30 to
. the Accumulator.
22 SCR 3 0343 | Scale C(ACC) right 3 places to
divide by 8.
23 STC 31 4031 | Store in register 31.
ol HLT 0000 | Halt the computer.
30 N ‘ N Number to be divided by 8.
31 >N/8 N/8 | Result.

Example 1. Simple Sequence of Instructions,

We can use the FILL pushbutton and the Left and Right Switches to put the code
numbers for the instructions into memory registers 20 - 24 and the number to
be divided into register 30. Pushing the console button labeled START 20
directs the LINC to begin executing instructions at memory register 20. That
is, the value 20 replaces the contents of the Instruction Location register.
As each instruction of the stored program is executed, the Instruction Loca-
tion register is increased by 1, C(IL) + 1 — C(IL). When the Instruction
Location register contains 24, the computer encounters the instruction HLT,
code 0000, which halts the machine. To run the program again we merely push
the START 20 pushbutton. (The code numbers for the instructions will stay

in memory registers 20 = 24 unless they are deliberately changed.)

1k

The JUMP Instruction

The last Full Address instruction, JUMP to X, JMP X, with the code
number 6000 + X, has the effect of setting the Instruction Location register
to the value X; X — C(IL). That is, the LINC, instead of increasing the
contents of the Instruction Location register by one and executing the next
instruction in sequence, 1s directed by the JMP instruction to get its next
instruction from memory register X. In the above example having a JUMP to
20 instruction, code 6020, in memory register 24 (in place of HLT) would
cause the computer to repeat the program endlessly. If the program were
started with the START 20 pushbutton, the Instruction Location register
would hold the succession of values: 20, 21, 22, 23, 24, 20, 21, etc.
(Later we will introduce instructions which increase C(IL) by extra amounts,

causing it to "skip.")

JMP X has one further effect: if JMP 20, 6020, is held in memory
register 24, then its execution causes the code for "JMP 25" to replace the
contents of register 0; i.e., 6025 - C(0). More generally, if JMP X is in
32

any memory register "p,

"IMP p+l" - C(0).

0 <p <1777, then its execution causes

Memory
Address Memory Contents Effect
0 JMP p+l | 6000 + p+l
> P 6000 + X X - ¢(IL), and "JMP p+1" — C(0).
p+l .
X - Next instruction.

This "JMP p+l" code replaces the contents of register O every time a JMP X

instruction is executed unless X = 0, in which case the contents of O are

unchanged. The use of memory register O in this way is relevant to a pro-

gramming technique involving "subroutines" which will be described later.

The JUMP Instruction

The following programming example illustrates many of the features
described so far. It finds one-fourth of the difference between two numbers
Nl and N2, which are located in registers 201 and 202, and leaves the result
in register 203 and in the Accumulator. After filling consecutive memory
registers 175 through 210 with the appropriate code and data numbers, the
program must be started at memory register 175. Since there is no “SLART 1757
button on the console, this is done by setting the Right Switches to 0175

and pushing the console button labeled START RS (Start Right Switches).

Memory
Address Memory Contents Effect
Starty 105 CLR 0011 0 - c(Aace).
176 ADD 201 2201 Ny - Cc(ACC),
177 COM 0017 Forms =N, .
200 JMP 204 620k Jumps around data; 204 — C(IL),
and JMP 201 — C(0).
201 Ny
202 5 Né Data and result.
203 (Ng-Nl)/h (Néle)/h
20k ADD 202 2202 (Néle) - C(ACC).
205 SCR 2 0342 Divides by L.
206 STC 203 4203 Stores result in 203; C(ACC) —
¢(203); 0 — C(ACC).
207 ADD 203 2203 Recovers result in ACC.
210 HLT | 0000 Halts the LINC.

Example 2. Simple Sequence Using the JUMP Instruction,

In executing this program, the Instruction Location register holds the

succession of numbers: 175, 176, 177, 200, 204, 205, 206, 207, 210.

15

16

. 7. Address Modification and Program "Loops"

Frequently a program of instructions must deal with a large set of
numbers rather than just one or two. Suppose, for example, that we want to
add together 100 (octal) numbers and thét‘the numbers are stored in tThe
memory in registers 1000 through 1077. We want to put the sum in memory
register 1100. We could, of course, write out all the instructions neces-

sary to do this,

Memory
Address Memory Contents Effect
- 20 CLR 0011 0 » c(AcC); 0 - c(L).
21 ADD 1000 | 3000 Add 1st number.
22 ADD 1001 | 3001 | Add 2nd number.
23 ADD 1002 | 3002 Add 3rd number.
24 ADD 1003 | 3003 Add 4th number.
etc, l etc. etc.

but it is easy to see that the program will be more than 100 (octal)
registers long. A more complex, but considérably shorter,/program,can be
written using a programming technlque known as "address modification.”
Instead of writing 100 (octal) ADD X 1nstructlons, we write only one ADD X
instruction, which we repeat 100 (octal) times, modifying the X part of the
ADD X instruction each time it, is repeated. In this case the computer first
executes an ADD 1000 instfugtibn; the program then adds one to the ADD in-
struction itseif and restores it, so that it is now ADD 100l. The program
then jumps back to the location containing the ADD instruction and the
computer repeats the entire procéss, this time executing an ADD 1001
instruction. In short, the program is written so that it changes its own

instructions while it is running.

Address Modification and Program "Loops™ 17
AZE

The process might be diagrammed:

Start s ADD X

Add 1 to the
ADD X instruction

Have 100 (octal)
numbers been
summed?
no yes

Halt

This technique introduces the additional problem of deciding when all
100 numbers have been summed and halting the compute;; In this context we
introduce a new instruction ACCUMULATOR ZERO, AZE, code O450. This is one
of a class of instructions known as the Skip instructions; it directs the
LINC to skip the instruction in the next memory register when C(ACC) =
either positive or negative zero (0000 or 7777, octal). If C(ACC) # O,
the computer does not skip. For example, if C(ACC) = 7777, and we write:

Memory
Address Memory Contents
- p AZE 0k50
P+l - -
p+2 - ¢ ’ -
(

the computer will take the next instruction from p+2. That is, when the
AZE instruction in register p is executed, p+2 will replace the contents of
the Instruction Location register, and the computer will skip the instruc-
tion at p+l. If C(ACC) # O, then p+l — C(IL) and the computer executes the

next instruction in sequence as usual.

18

Address Modification and Program "Loops”

The following example sums the numbers in memory registers 1000 through

1077 and puts the sum into memory register 1100, using address modification

and the AZE instruction to decide when to halt the computer.

(Square brackets

indicate registers whose contents change while the program is runningo)

Memory
Address Memory Contents Effect
10 ADD 1000 3000
11 1 0001 Constants used by program.
12 -(ADD 1100) LeTT
Start 5 o9 CLR 0011
Code for ADD 1000 — C(25).
21 ADD 10 2010 0 - C(ACC).,
22 STC 25 Lo25
23 STC 1100 5100 0-C 1100), for accumulating sum.
2h — CLR O0LL 1L qear ACC and add C(X) to C(ACC).
25 [ADD x] [2000+X]
26 ADD 1100 3100 Sum so far + C(ACC) — C(ACC).
27 STC 1100 5100 Sum so far — C(llOO)
30 ADD 25 2025 "ADD X instruction in register 25"
~ ‘ - C(ACC). Add 1 to cC(AcCC)
3% ADD L 2011 and replace in register 25.
32 STC 25 Lo2s
33 ADD 25 2025 0(25) + ¢(12) - c(ace). 1If c(e5)
— n 1
3l ADD 12 5010 ADD 1100," then C(ACC) = TT77.
35 ég;E______l o450 Sklp to register 37 if C(ACC) = T7777-
36 JMP 24 | 6024 If not, return and add next number.
37 HIT & —- 0000 | When C(ACC) = 7777, all numbers have
been summed. Halt the computer.
1000 Nl Nl
1001 Né Né
S . Numbers to be summed.
1076 N, N,
! 7 7
1077 N 00 N100
1100 [Sum] [Sum]
Example 3. Summing a Set of Numbers Using Address Modification.

Address Modification and Program "Loops” 19

The instructions at locations 20 - 22 initially set the contents of memory
register 25 to the code for ADD 1000. At the end of the program, register 25
will contain 3100, the code for ADD 1100. Adding (in registers 33 and 34)
c(25) to ¢(12), which contains the complement of the code for ADD 1100, re-

sults in the sum 7777 only when the program has finished summing all 100
(octal) numbers. This repeating sequence of instructions is called.a “loop,”
and instructions such as AZE can be used to control the number of times a

loop is repeated. In this example the instructions in locations 24 through 36

will be executed 100 (octal) times before the computer halts.

The following program scans the contents of memory registers 400 through
450 looking for registers which do not contain zero. Any non-zero entry is
moved to a new table beginning at location 500; this has the effect of "pack-
ing" the numbers so that no register in the new table contains zero. When

the program halts, the Accumulator contains the number of non-zero entries.

Address Modification and Program “Loops™

Memory .
Address Memory Contents Effect
L ADD Loo 2400 M
5 STC 500 4500
6 * 1 0001 > Constants used by the program.
7 ~-(ADD 451) 5326
10 -(STC 500) 3277 |
Starty oo CLR 0011
101 ADD L 2004 Code for ADD L00 — C(106).
102 STC 106 4106
103 ADD 5 2005 } Code for STC 500 — C(112).
104 STC 112 Li1p2
105 —> CLR 0011
106 [ADD 4001 [2000+X] c(x) — c(Acc).
107 AZE 0450 If C(ACC) = zero, skip to -
B location 111.
110 MP 112 | 6112 c(Acc) # 0, therefore JMP
| to location 112.
111 JMP 116 & 6116 c(ACC) = 0, therefore JMP
to location 116.
112 = [STC 500] [L000+X] . Store non-zero entry in new table.
113 ADD 6 2006
11k ADD 112 5112 wAdd.l to ?he STC instruction
in register 112.
115 STC 112 4112
116 —>ADD 6 2006
117 ADD 106- 5106 Add.l to ?he ADD instruction
in register 106.
120 STC 106 4106 ,
121 ADD 106 2106 } c(106) + ¢(7) - c(Acc). If
Cc(106) = ADD 451, then
122 ADD 200 ’
T 1 c(acc) = T777.
123 AZE 0450 If C(ACC) = 7777, skip to
1 location 125.
124 JMP 105 | 6105 If not, return to examine next
| nunber.
125 ADD 112 & 2112 If C(ACC) = 7777, then number
126 ADD 10 2010 of non-zero entries — C(ACC)
and computer halts.
127 HLT 0000

Example 4. Packing a Set of Numbers,

Index Class Instructions I 21
, o

At the end of the program, register 106 will contain the code for ADD 451,
and all numbers in the table will have been examined. If, say; 6 entries
were found to be non-zero, registers 500 - 505 will contain the non-zero
entries, and register 112 will contain the code for STC 506. Therefore by
adding C(112) to the complement of the code for STC 500 (in registers 125 -
126 above), the Accumulator is left containing 6, the number of non-zero

entries.

8. Index Class Instructions I

Indirect Addressing

The largest class of LINC instructions, the Index Class, addresses the
memory in a somewhat involved manner. The instructions ADD X, STC X, and
JMP X are called Full Address instructions because the 10-bit address X,
0 < X< 1777, can address directly any register in the 2000 (octal) register
memory. The Index Class instructions, however, have only 4 bits reserved for
an address, and can therefore address “only memory registers 1 through 17
(octal). The instruction ADD TO ACCUMULATOR, ADA i B, octal code 1100 + 20i + B,
is typical of the Index Class:

i=0o0r1l

ADA i B 1100 + 20i + B

? 1
ADA 1<B<1T

Memory register B should be thought of as containing a memory address, X,

in the right-most 10 bits,

11 10 9 0

=V
X
and we speak of X(B), meaning the right 10-bit address part of register B.
The left-most bit can have any value whatever, and, for the present, bit 10

must be zero.¥* In addressing memory register B, an Index Class instruction

* See Appendix I.

22

Indirect Addressing

tells the computer where to find the memory address to be used in execut-

ing the instruction. This is sometimes called "indirect" addressing.

For example, if we want to add the value 35 to the contents of the
Accumulator, and 35 is held in memory register 270, we can use the ADA

instruction in the following manner:

Memory .
Address Memory Contents Effect
_...- ~=3(0270 0270 Address of register containing 35.
. \ // ° ° .
o N / ° °
Y ° °
rd
o270% [N 0035 0035
\
° N\ ° °
o \N .
. \ o o
- p ADA 1100 + g | c(270) + c(Acc) — c(Acc).

Note that the ADA instruction does not tell the computer directly where to
find the numbér 35; it tells the computer instead where to find the address
of the memory register which contains 35. By using memory registers 1
through 17 in this way, the Index Class instructions can refér to any

register in the memory.

Indirect Addressing 23
LDA
STA

Two other Index Class instructions, LOAD ACCUMULATOR, LDA i B, and
STORE ACCUMULATOR, STA i g, are used in the following program which adds the
contents of memory register 100 to the contents of register 101 and stores
the result in 102. The LDA i B instruction, code 1000+ 201 + B, clears the
Accumulator and copies into it the contents of the specified memory register.
STA i B, code 1040 + 20i + B, stores the coubents of the Accumulator in the
specified memory register; it does not, however, clear the Accumulator.

Addition with ADA uses 12-bit end-around carry arithmetic.

Memory
Address Memory Contents Effect
10 X1 0100 Address of Nl'
11 XE 0101 Addresgs of N2°
12 X3 0102 Address of (Nl-th).
S ,_ ,
start . ., LDA 10 1010 Ny, i.e., C(100), - C(ACC).
31 ADA 11 1111 N,, i.e.,C(101), + C(ACC) — c(ACC).
32 STA 12 1052 N, +N, - c(102).
33 HLT 0000
100 Ny -
161 -
101 N,
102 . [Nl'rNg] (-]

Example 5. Indirect Addressing.

2l

Index Registers and Indexing

When "i" is used with an Index Class instruction, that is, when i = 1,
the computer is directed to add 1 to the X part of memory register B before
it is .used to address the memory. This process is called "indexing," and
registers 1 through 17 are frequently referred to as Index Registers. In
the example below, =6 ié loaded into the Accumulator after Index Register B

is indexed from 1432 to 1433 by the LDA i B instruction.

Memory ;
Address Memory Contents % Effect
P
B [x] [1432] | Address minus 1 of register
. . . ! containing 7771.
- p IDA i B 1020 + B ;| X + 1, i.e., 1433, - Cc(B), and
. . . c(1433) — c(AcC).
1432 - -
1433 -6 e
i,

When the LDA i B instruction is executed, the value X(p) + 1 replaces the
address part of register p (the left-most 2 bits of register B are unaffected).
This new value, 1433, is now used to address the memory. Note that if the

LDA instruction at p were repeated, it would deal with the contents of
register 1434k, then 1435, etc. The utility of Index Registers in scanning

tables of numbers should be obvious.

Indexing involves only 10-bit numbers, and does not involve end-around

carry. Therefore the address "following" 1777 is 0000. (The same kind of
indexing takes place in the Instruction Location register, which "counts"
from 1777 to 0000.)

Index Registers and Indexing

The following example using indexing introduces another Index Cla;s
instruction, SKIP IF ACCUMULATOR EQUALS, SAE i B, code 14kO + 201 + p. This

instruction causes the LINC to gkip one register in the sequence of pro-

grammed instructions when the contents of the Accumulator exactly match the

contents of the specified memory register. If there is no match, the com-

puter goes to the next instruction in sequence as usual. The program example
clears (stores 0000 in) the set of memory registers 1400 through 1777; the
SAE instruction is used to decide whether the last 0000 has been stored.

Memory
Address Memory Contents Effect
3 [x] [1377] Initial Address minus 1 for the
STA instruction.
L4 356 0356 Address of test number.
St
—-EE&L>35O — CLR 0011 Clear the Accumulator.
351 STA 1 3 1063 Index the contents of register 3;
store C(ACC) in the memory
register whose address = X(3).
352 ADD 3 2003 c(3) - c(Ace).
353 SAE) ikl | Skip to 0355 if C(ACC) = C(356).
354 JMP 350 : 6350 If not, return to store 0000 in
next register.
355 HLT ¢— - 0000 Halt the computer.
356 1777 17T

Example 6. Indexing to Clear a Set of Registers.

When the program halts at register 355, register 3 will contain 1777. The

SAE instruction is used here (as the AZE instruction was used in earlier

examples) to decide when to stop the computer. The instructions in regis-

ters 350 through 354, the "loop," will be executed 400 (octal) times before

the program halts. Zero is first stored in register 1400, next in 1401, etc.

26 | Index Registers and Indexing

(anv]
(BeL]

Another program scans the memory to see if a particular number, Q,
appears in any memory register O through 1777. Q is to be set in the Right

Switches, and the address of any register containing Q is to be left in the

Accumulator.
Memory
Address Memory Contents Effect
17 [%] [-] Address of register whose contents
are to be compared with Right
Start Switches.,
2205 20 RSW 0516 C(Rs) — C(ACC).
21 SAE 1 17 1477 Index register 17, and compare
| C(ACC) with C(X).
22 JMP 21§ . 6021 -| If not equal, return for next test.
¢ | >
23 CLR< 0011 If equal, clear ACC, copy address
2k ADD 17 2017 of register containing Q into
o5 HLT | 0000 ACC, and halt.

Example 7. Memory Scanning.

If no memory register O through 1777 contains the number Q, the program will
run endlessly. The location of the first register to be tested depends on

the initial contents of Index Register 17.

An Index Class instruction, ADD TO MEMORY, AIM i B, code 1140 + 20i + B,
adds the contents of the specified memory register to C(ACC), using 12-bit
end-around carry arithmetic (as ADD or ADA). The result is left, however,
not only in the Accumulator but in the specified memory register as well.

The BIT CLEAR instruction, BCL i B, code 1540 + 20i + B, is one of three
Index Class instructions which performs a so-called "logical" operation.
BCL is used to clear selected bits of the Accumulator. For every bit of the
gpecified memory register which contains 1, the corresponding bit of the

Accumulator is set to O.

Index Registers and Indexing 27

In the following program two sets of numbers are summed term by term.

The first set of numbers, each 6 bits long, is in registers 500 - 577,

bits O through 5;

bits 6 through 11 contain unwanted information. The

second set of numbers is in registers 600 - 677, and the sums replace the

coutents of registers €00 - A77.
Memory -
Address Memory Contents Effect
3 [Xl] [ou77] Tnitial address minus 1 of first set.
4 0410 0410 Address of BCL patterm.
5 [Xé] [0577] Initial address minus 1 of second
set.
6 ok11 oh11 Address of test number for halting.
Start .
222225400 ~LDA i 3 1023 Index X(3) and load number from
first set into ACC.
ko1 BCL 4 15k Clear the left 6 bits of the ACC.
Log ATM i 5 1165 Tndex X(5); Add number from
second set to C(ACC), and
replace in memory.
403 CLR 0011
Lok ADD 3 2003 Check to see if finished.
Lo5 SAE _6 . 1446
ko6 [_JMP 400 | , 6400 c(3) # c(hir), i.e., # 0577.
LoT7 HLT & —- | 0000 c(3) = 0577; halt the program.
410 7700 7700 BCL pattern for clearing left
half of ACC.
411 0577 0577 Test number for halting.

Example 8.

Summing Sets of Numbers Term by Term,

Logic Instructions

The three logic instructions, BCL i 8, BSE i B, and BCO i B, are best
understood by studying the following examples. These instructions affect
only the Accumulator; the memory register M containing the bit pattern is

unchanged.

BCL i B . BIT CLEAR code: 1540 + 201 + B

Clear corresponding bits of the Accumulator:

010 101 010 101
111 111 000 000
101 010 000 000

If ¢(M)
and C(ACC)
then C(ACC)

BSE i B BIT SET code: 1600 + 20i + B
Set to ONE corresponding bits of the Accumulator:

If ¢(M)
and C(ACC)
then C(ACC)

010 101 010 101
111 111 000 000
111 111 010 101

1]

BCO i B BIT COMPLEMENT code: 1640 +20i + B

Complement corresponding bits of the Accumulator:

If c(M)
and C(ACC)
then C(ACC)

010 101 010 101
111 111 000 000
101 010 010 101

These instructions have a variety of applications, some of which will be

demonstrated later.

29

(XK |

9. BSpecial Index Register Instructions

Before continuing with the Index Class, two special instructions which
facilitate programming with the Index Class instructions will be introduced.
These instructions do not use the Index Registers to hold memory addresses;
rather they deal directly with the Index Registers and are used to change or

examine the contents of an Index Register.

The INDEX AND SKIP Instruction

The INDEX AND SKIP instruction, XSK i o, code 200 + 201 + @, refers to
registers O through 17 (O <a<L 17).* It tests to see whether the address
part of register & has its maximum value, i.e., 1777, and directs the LINC
to skip the next register in the instruction sequence if 1777 is found. It
will also, when i = 1, index the address part (X) of register & by 1. Like
the Index Class instructions, XSK indexes register « before examining it, and
it indexes ffom 1777 to 0000 without affecting the left-most 2 bits. We can
therefore give these 2 bits any value whatever. In particular, we can set
them both to the value 1 and then say that XSK i & has the effect of skipping
the next instruction when it finds the number 7777, (-0), in register Q.

Now we can easily see how to execute any given sequence of instructions

exactly n times, where n < 1777 (octal):

-n }«qrstored in register Q.
Start) . [.
————=—) Given Sequence of Given sequence held in register X, X + 1, etec.
Instructions
l)
XK Lo
1 Index @ and test. After 1lst pass C(@)
| = «n + 1, after 2nd pass cla) = -n + 2
P X 2 N ‘
M | ® After n passes c@) = -n+n= -0 so
| skip over the JMP X instruction and halt.
HLT & — -

*ef. B, L <B <17, which does not refer to register O.

- 30 E The INDEX AND SKIP Instruction

Suppose, for example, that we want to store the contents of the Accum-
ulator in registers 350 through 357. Using register 6 to "count," we c¢an

write the short program:

Memory
Address Memory Conternts Effect
5 [x] [0347] Initial address minus 1 for STA
instruction.
6 [-10] [77671 -n, where n = number of times to
store C(ACC).
Start . ;
——> 200 1065 Index register 5 and store C(ACC).
201 0226 Index register 6 and test for
x(6) = 1777. ‘,
202 6200 X(6) # 1777, return.
203 0000 X(6) = 1777, halt.

Example 9. Index Registers Used as Counters,

Using the XSK instruction with i = 0, which tests X(o) without index-
ing, Example 6, p. 25, which stores zero in memory registers 1400 through

1777, can be more efficiently written:

Memory
Address Memory Contents Effect
3 [X] [1377] Initial address minus 1 for STA
. s instruction.
Start ~
——> 350 CLR 0011 0 — C(ACC).
1063 Index register 3 and store zero.
0203 Test for X(3) = 1777.
6351 x(3) #£ 1777, return.
0000 X(3) = 1777, halt.

Here register 3 is Indexed by the STA instruction; the XSK then merely tests
to see whether X(2) = 1777, without indexing X(3). The reader should see that

Example 8 on page 27 cen also be more efficiently programmed using XSK.

31
SET

The SET Instruction

The second special instruction which is often used with the Index Class
instructions is SET i o, code L0 + 20i + a, where @ again refers directly to
the first 20 (octal) memory registers, O < @ < 17. In some of the examples
presented earlier, the contents of Index Registers are changed, either as
counter values or as memory addresses, while the program is running.
Therefore, in order to run the program over again the Index Registers must

be reset to their initial values.

The SET instruction directs the LINC to set register & to the value
contained in whatever memory register we specify. It is uniquely different
from the instructions so far presented in that the instruction itself always

occupies 2 consecutive memory registers, say p and p + 1:

Memory
Address Memory Contents

D SET 1 « Lo + 201 + «
p + 1 c ¢
p+2 - : -

The computer automatically -skips over the second register of the pair,
p + 1; that is the contents of p + 1 are not interpreted as the next

instruction. The next instruction after SET is always taken from p + 2.

The i-bit in the SET instruction does not control indexing.

Instead, it tells the LINC how to interpret the contents of register p + 1.

32 The SET Instruction

When i = O, the LINC is directed to interpret C(p + 1) as the memory

address for locating the value which will replace ¢(a). That is, register

p + 1 is thought of as containing X,

Memory
Address Memory Contents » Effect
10 (] (-]
- p SET 10 0050 ¢(x), i.e., N, - C(10).
p+1 X X
X N N

and the contents of register X replace the contents of 10, C(X) - C(10). 1In
this case X is the right-most 10 bits, the address part, of register p + 1;

the left-most bit of C(p + 1) may have any value and, for the present, bit 10
must be zero.¥

In the second case, when i = 1, the LINC is directed to interpret

C(p + 1) as the value which will replace C(a). Thus, below, C(p + 1) » C(5):

Memory
Address Memory Contents Effect
5 (] (-]
- D SET 1 5 0ne65 C(p + 1), i.e., N, » C(5).
p+1 I)

* See Appendix I.

The SET Instruction 33

The following program scans 100 (octal) memory registers looking for

a value which matches C(ACC).

It halts with the location of the matching

register in the Accumulator if a match is found, or with -0 in the Accum-

ulator if a match is not found.

registers 1000 - 1077.

The numbers to be scanned are in

Memory
Address Memory Contents Effect
3 [-100] [7677] -(number of registers to scan).
i [x] [0777] Scanning address.

Start . ' .

-5 400 SET i 3 0063 c(ho1), i.e., -100, — C(3).
Lol -100 7677
Lo2 SET i k4 006k Cc(403), i.e., TT77, — C(4).
Lo3 7 o7
Lok —> SAE i L 146k Index X(4) and compare C(X)

- I with C(ACC).
405 JMP 411 | 6411 c(Acc) £ C(X), jump to 411.
—
k06 CIR < 0011 Cc(ACC) = C(X), copy location of
Lot ADD 4 2004 matching register into ACC
410 HLT 0000 and halt.
k11 XSK i 3 0223 Index register 3 and test for
l X(3) = 1777.
hio JMP Lok | 640k X(3) # 1777, return.
413 CLR ¢ —- | oo11
X(3) = 1777; all numbers have been

b1k com O0LT scanned so -0 — C(ACC) and halt.
415 HLT 0000

Example 11.

Setting Initial Index Register Values.

The two SET instructions are executed once every time the program is

started at 400;

initially registers 3 and 4 may contain any values whatever,

since the program itself will set them to the correct values.

Index Class Instructions II

Suppose we had wanted to SET two Index registers to the same value,

say -100. We could write either:

Memory

Address Memory Contents Effect
11 [-100] (76771
12 [-100] [7677]

- 20 SET i 11 0071 ¢(e1), i.e., -100, — C(11).
21 -100 7677
P SET 12 0052 ¢(e1), i.e., -100, — C(12).
23 21 0021

or.

- 20 SET 1 11 0071 c(21), i.e., =100, — C(11).
21 -100 7677
22 SET . 12 0052 c(11), i.e., =100, - C(12).
23 11 0011 ‘

We could also, of coursé, heve written SET i 12 in register 22 with -100

in register 23, but there are applications appropriate to each form.

10. Index Class Instructions II

Double Register Forms

The Index Class instructions have been thought of as addressing an
Index Register B, 1 < B < 17, which contains a memory address X to be used
by the instruction. They have been presented as single régister instruc-
tions (unlike SET). However, when an Index Class instruction is written
with B = 0, it becomes a double register instruction like SET, whose operand
address depends on i and p + 1. These two interpretations are shown for STA.

-

Double Register Forms

Memory
Address Memgry Contents Effect L
w50 | oma { 1040 + 20(0) + 0 | C(ACC) - C(330).
451 ' |
i

330 ! 10330

When i = O, the LINC is directed to use C(p + 1), i.e., C(451) as the
memory address at which to store C(ACC). The left-most bit of C(p + 1) may

have any value, and, for the present, bit 10 must be zero.*

Memory

Address Memory Contents Effect
450 STA i 1060 c(Aace) - c(bs1).
451 (-] | (-]

When i = 1, the LINC is directed to use p + 1, i.e., 451, directly as the
memory address, and the contents of the Accumulator are stored in 451, Note
that when B = O in an Index Class instruction, we are not referring to
memory register O. In fact, when p = 0, no reference whatsoever is neces-~
sarily made to the Index Registers. As with SET, the computer automatically

takes the next instruction from register p + 2.

* See Appendix I.

35

(A)

Double Register Forms

We may now think of the Index Class instructions as having four
alternative ways of addressing the memory, which depend on i and B, and

which are summarized below:

Index Class Address Variations

Cacge i, B Example Form Comments
1 i=20 LDA B Single Register B holds operand address.
B # 0 Register
o i=1 ILDA i B | Single First, index register B by 1.
B #0 Register Then, register B holds operand address.
3 i=20 LDA Double Second register holds operand address.
B =0 X Register
I i=1 LDA 1 Double Second register holds operand.
B =0 N Register

The next programming example scans memory registers 1350 through lhh?,
counting the number of instances in which register contents are found to
exceed some "threshold" value, T. In other words if C(X) > T, X = 1350,
1351, ..., 1447, then C(CTR) + 1 — C(CTR), where CIR is a memory register
used as a counter, initially set to zero. The count, N, is to appear in

the Accumulator upon program completion.¥*

* The program does not, in fact, behave exactly as described here. Can the
reader find the discrepancy?

Double Register Forms

Memory
Address Memory Contents Effect
1h4 [x] (-] Address of register to be tested.
15 [-n] L] -(number of registers to test).
Start_ .’ : : . e
=330 SET i 1k4 00Tk Set Index Register 1L to initial
addvoaca minung 1.
31 1347 1347 TThmamem e e
32 SET 1 15 0075 Set Index Register 15 to -100.
33 -100 67T
3k CLR 0011 Clear CTR; 0 — C(51).
35 STC 51 4051
36 —3 LDA 1 1020 c(37), i.e., -T, — C(ACC).
37 -T =T
4o ADA i 1L 1134 Index the address in register 1k
and form C(X)-T in ACC.
b1 BCL 1 1560 Clear all but the sign bit in ACC;
C(42) = the bit pattern for
ke 1T orT clearing. Then if C(X) > T,
c(ACC) = 0000, but if C(X) < T,
' Cc(ACC) = 4000.
43 SAE i 1460 Does C(ACC) = C(L44)? If so,
)l 0000 0000 skip to 46.
L5 JMP 52 | 6052 If not, C(X) < T. Jump to 52.
L6 IDA i~ ! 1020 If so, C(X) >T; 1 - C(ACC).
L7 1 0001 _
- 50 ADM i 1160 c(acc) + ¢(s51), i.e., N, - C(51)
a ACC).
51 (] [-] and - C(ACC)
52 L—>§§E;%_%z 0235 Index register 15 and test for T777.
53 JMP 36 6036 c(15) # T777. Return to check
I next register.
5k HLT ¢ — — 0000 c(15) = 7777, therefore halt. C(CTR),
' i.e., C(51), left in ACC.

Example 12,

Scanning for Values Exceeding a Threshold.

Note that since the SAE instruction in locations 43 and 4h4 is written as

a double register instruction, the LINC will skip to location 46 (not 45)

when the skip condition is satisfied.

in this case, at location U45.

The next instruction "in sequence" is,

37

38 - Double Register Forms

Note also that if a double register instruction is written following a
skip instruction such as XSK, the LINC will try to interpret the second

register as an instruction:

Memory
Address Memory Contents Effect
P XK 18
p+ 1 LDA i _1 Go to p + 1 when X(B) # 1777.
pt2 3¢&—4 Go to p + 2 when X(B) = 1777.

Since the XSK instruction sometimes directs the LINC to skip to p + 2, care
must be taken to make sure that the LINC does not skip or Jump to the second

register of a double register instruction.

It is interesting to compare the above statement of the program made
in what might be called "detailed machine language" with the following

compact but entirely adequate restatement:
1) 0 — C(CIR).
2) If ¢(X) > T then C(CTR) + 1 — C(CTR), for X = 1350, 1351, ..., LlhkL7.
3) C(CTR) — c(AcQ).

L) HALT

Multiple Length Arithmetic

An Index Class instruction, LINK ADD TO MEMORY, LAM i B8, with the octal
code 1200 + 201 + B, makes arithmetic possible with numbers which are more
than 12 bits long. Using LAM, one can work with 2Lh-bit numbers for example,
using 2 memory registers to hold right and left halves. It should be
remembered that addition with ADD, ADA, or AIM, always involves end-around
carry. With LAM, however, a carry from bit 11 of the Accumulator during
addition is saved in the Link Bit; it is not added to bit O of the Accum-
ulator. This carry, then, could be added to the low order bit of another
number, providing a carry linkage between right and left halves of a 2h-bit
number. For simplicity, the illustration uses 3 bit registers; the prin-

ciples are the same for 12 bits:

Tiink ACC

< 7 0 (€ I {11
y |

next end-carry

addition with LAM

If, for example, the number in this 3-bit Accumulator is 7 (all ones) and
C(L) = 0, and we add 1 with LAM, the Link Bit and Accumulator will then
look like:

L ACC

Furthermore, LAM is an add-to-memory instruction, so that the memory
register to which the LAM instruction refers will now contain zero (as the

Accumulator).

Multiple-Length Arithmetic

In addition to saviﬁé the carry in the Link Bit the LAM instruction
also adds the contents of the Link Bit to the low order bit of ﬁhe Accum-
ulator. That is, if, when the LAM instruction is executed c(L) = 1, then
1 is added to C(ACC). Using the result pictured above, let us add 2, where

2 is the contents of some memory register M:

L ACC M
Given: 1 000 010

-~

Using LAM, the LINC is directed first to add C(L) to C(ACC), giving:

L ACC M
001 0lo

There is no end-carry from this operation, so the Link Bit is cleared. The

LINC then adds C(ACC) to C(M), giving:

ACC ‘M
0 0l1 011

vhich replaces both C(ACC) and C(M). Again there is no end-carry so the
Link Bit is left unchanged.
The operation of LAM may be summarized:
1. C(L) + c(Acc) —» c(Aace).
2. End-carry — C(L). If no end-carry, O - C(L).

3. C(Acc) + c(M) —» c(AcC), and — C(M).

4. End-carry —» C(L). If no end-carry, the Link Bit is left unchanged.

Multiple Length Arithmetic sl

As an example of double length arithmetic let us postulate 2 numbers,

Nl and NE’ each 6 bits long, which occupy a total of L4 of our 3-bit memory

registers, Ml through MA:

M. M,
000 111 Nl = +7
M, M3

101 001 N2 = =26

The sum, octal, of +7 and -26 is -17. Using the LAM instruction to get this

we must
1. Clear the Link Bit.

2. Add C(Ml) to C(MB) with LAM, saving any carry in the Link Bit.
This sums the right halves of Nl and N2,

3. Aad C(Mé) to C(Mh) with LAM, which also adds in any carry from

step 2. This sums the left halves of Nl and NQ. Any new

carry will again replace C(L).

000 111 Nl
101 001 Né
I;l *
| 110 | 000 Nl + N2 = =17
l |
2nd LAM L—-1st LAM
No end-carry End-carry

We see upon inspection that only the first LAM produced an end-carry.

o

Multiple Length Arithmetic

To complete the illustration we must also consider the case in which a final

carry appears in the Link Bit, as in the addition of +12 and -2,

001 010 +12
111 101 - 2
1 0
| 000 | 111 + 7
| l
ond LAM Li1st LAM
End=carry No end=carry

whose sum, in ones' complement notation is 001 000, or +10 (octal), but which
with LAM results in +7 and an end-carry in the Link Bit. Since ones' com-
plement representation depends on end-around carry, we must do some extra
programming to restore our result to g true ones' complement number. This
is, of course, the equivalent of adding 1 to our 2-register result. Assuming
that the result is in M1 and Mé

L M2 Ml

1 000 111

we can again use the LAM instruction. We must first clear the Accumulator

without clearing the Link Bit (this can be done with an STC instruction).

We then execute LAM with C(Ml) which gives

L ACC Ml

1 000 000

producing a new end-carry in the Link Bit. We again clear the Accumulator
(but not the Link Bit) and execute LAM with C(Mé) which gives

L ACE M2

001 00l

The result in M. and M. now. looks like:

2 1
My oM

001 000 = +10 (octal):

It should be clear to the reader that adding in & final end-carry as an end-

around carry cannot itself give rise to a new final end-carry.

Multiple Length Arithmetic L3

The following program illustrates the technique of double length
arithmetic with tables of numbers; similar techniques would be used for

other multiples of 12. Assume that 100 (octal) 24-bit numbers, N, Npy ovees

N o B

such that NO + RO = SO’ N, + R;- = 8,, etc. All numbers occupy 2 registers:
the left halves of NO, N j ...: NTT*are in registers 100 - 177, the right
halves in 200 - 277. The left halves of Ry, Ry, ..., RTT are in 1000 - 1077,
the right halves in 1100 - 1177. The left halves of the sums, SO, Sl, ceey
877, will replace the contents of 1000 - 1077, the right halves will replace

, are to be added term by term to 100 (octal) numbers, Ry, By,

the contents of 1100 - 1177. A "memory map" is sometimes helpful when a

program must move large amounts of data around the memory:

Memory ‘)
Address Memory Contents
11 - 14 B registers used
100 - 177 Leﬁt-galves
. 0 _TT
200 - 277 RigiTlt Ealves
0 TT

377 - hes Program: N;j+R;=S;

1000 -~ Left halves
1077 . BQ-R77, then SO-SIY
1100 - Right halves
1177 RO—R77’ then SO-SZT

Multiple Length Arithmetic

Memory
Address Memory Contents Effect
10 [x] [-]
11 [X] (-]
12 [X] [-]
13 fX] [-]
1L [- n] [-]
377 (-] (-]
: 3
Start 5 1o SET 1 10 0070
Lo1 77 0077
Lo2 SET 1 11 0071
Set index registers to initial
ko3 LT oLTT & addresses minus 1 for the
Lok SET i 12 0072 4 tables.
405 Ty oTrT
Lo6 SET i 13 0073
Lo7 1077 1077)
410 SET i 1k 0074 Set index register 14 as a counter
n11 -100 7677 for 100 loop repetitions.
412 —> CLR 0011 0 - C(AcC); 0 - c(L).
413 ILDA i 11 1031 Right half of N; — c(AcC).
L1k IAM i 13 1233 Right half of Ni + right half of
R, - C(ACC), and — right half of
R;. Bnd-carry - c(n).
415 LDA i 10 1030 Left half of N, - c(Acc).
16 LAM i 12 1232 ¢(L) + c(ace) + left half of R, -
c(AcC), and — left half of R
End-carry — C(L).
h17 STC 377 4377 Clear Accumulator by storing in
377. Do not clear Link Bit.
420 LAM 13 1213 C¢(L) + right half of 8; = C(Acc),
and — right half of S End-
carry — C(L).
4ol STC 377 377 Clear Accumulator.
Lpp LAM 12 1212 C(L) + left half of 8, — c(Ace),
and - left half of Sio
423 XSK i_;&_j 0234 Index 14 and test for T777-
Lok JMP Ll12 | 6hl12 c(1k4) # 7777, return to form next sum.
ko5 HLT & — - | 0000 c(14) = 7777, so halt.

Example 13. Summing Sets of Double Length Numbers Term by Term.

Multiplication L5

The instructions in locations 412 - 416 produce an initial 24-bit sum
leaving any final carry in the Link Bit. The instructions in locations

L17 - 422 then complete the sum by adding in the final end-carry. The Link
Bit will always contain O after the computer executes the last LAM in
location 422, Register 377 is uscd cimply as a "garbage' register so that

we can clear the Accumulator without clearing the Link Bit.

Multiplication

Another Index Class instruction which needs special explanation is
MULTIPLY, MUL i B, code 12L0 + 201 + B. This instruction directs the LINC
to multiply C(ACC) by the contents of the specified memory register, and to
leave the result in the Accumulator. The multiplier and multiplicand are
treated as signéd 11-bit ones’ complement numbers, and the sign of the product

is left in both the Accumulator (bit 11) and the Link Bit.

The LINC may be directed to treat both numbers either as integers or
fractions; it may not, however, be directed to mix a fraction with an
integer. The left-most bit (bit 11) of register B is used to specify the

form of the numbers.

When bit 11 of register B contains zero, the numbers are treated as
integers; that isg, the binary points are assumed to be to the right of
bit zero of the Accumulator and the specified memory register. Given
C(ACC) = -10, C(B) = 400 (bit 11 of register B = 0), and C(LOO) = +2, then
the instruction MUL B will leave -20 in the Accumulator, and 1 in the Link
Bit. Overflow 1s, of course, possible when the product exceeds i'3777.
Multiplying +3777 by +2, for example, produces +3776 in the Accumulator;
note that the gign of the product is correct, and that the overflow effec-

tively occurred from bit 10, not from bit 11.

When bit 11 of register B contains 1, the LINC treats the numbers as
fractions; that is, the binary poiﬁt,is assumed to be to the right of the
sign bit (between bit 11 and bit 10) of the Accumulator and the specified
memory register. Given C(ACC) = +.2, C(B) = 5120 (bit 11 of register g = 1),
and C(llZO) = +,32, then execution of MUL B will leave +,064 in the Accum-
ulator and O in the Link Bit.

Ue

Multiplication

When the LINC multiplies two 1ll-bit signed numbers, a 22-bit product
i1s formed. For integers the right-most, or least significant, 11 bits of
this product are left with the proper sign in the Accumulator, and for
fractions the mogt significant 11 bits of the product are left with the

proper sign in the Accumulator. If, for example;

C(ACC) = 001100000000,

and binary points -2 T—binary points
for fractions —, $—for integers
C(M) = 000010000000

then C(ACC) can be thought of as either +.3 (octal) or +1400 (octal), and

C(M) can be thought of as either +.0k (octal) or +200 (octal). The 22-bit

product of these numbers looks like

.000 001 100 0O 00 000 000 000.
AN J

. J
Y N

.01h 0.

end if bit 11 of register B contains 1, the most significant 11 bits with
ne proper sign, will be left in the Accumulator:

C(ACC) = 0,000 001l 100 00
LR S
(+.3)x(+.04) =+, 0 1 L

1l

Had bit 11 of register p contained zero, the Accumulator would be left with

+0 as the result of multiplying (1400)x(200). It is the programmer's

5

ecsponeibility to avoild integer overflow by programming checks on his data

[\Y)

rnd/or by scaling the values to a workable size.

The use of bit 11 of register B is new to our concept of Index Regis-
ters and chould be noted in connection with the four memory addressing

alternatives which the Index Class instructions employ. When B % O then

Multiplication ' 47

bit 11 of C(B), that is, bit 11 of the register which contains the memory

address, is used. The same is true when i = O and B = O, as in:

Memory
Address Memory Contents
g MUL I 1240
p i1 h; X ‘ 1000h + X

That is, bit 11 of C(p + 1), the register containing the memory address, is
used. We sometimes call this bit the h~bit, whether in an Index Register
or in register p + 1., When, however, i = 1 and B = O, it will be recalled

that p + 1 is itself the memory address:

Memory
Address Memory Contents
D MUL 1] 1260
p o+ 1 N | N

There is no memory register which actually contains the memory address,
and therefore there is no h-bit., The computer always assumes in this case

that h = O, and the operands are treated as integers.

In the following program, registers 1200 - 1377 contain a table of
fractions whose values are in the range %.0176, that is, whose most sig-
nificant five bits after the sign (bits 6-10) duplicate the sign. Each
number is to be multiplied by a constant, -.62, and the products stored at

locations 1000 - 1177. To retain significance the values are first shifted

left 5 places.

Multiplication

Memory
Address Memory Contents Effect
6 [le ;u]
7 [x,] (-]
10 [«n] [=]
§E§£E€>506 SET 1 6 0066 Initial address minus 1 of table
501 1177 1177 of fractions — C(6).
502 SET i 7 0067 Initial address minus 1 for STA
503 77 0777 instruction — C(7).
50k SET i 10 0070 -n - C(10).
505 =200 o7
506 >IDA 1 6 1026 Fraction — C(ACC).
507 ROL 5 0245 ¢(ACC) 27 — C(ACC).
510 MUL 1240 Multiply, as fractions, C(ACC)
511 L000+516 1516 | by C(516).
512 STA i 7 1067 Store product.
513 XSK 1 10 0230
510 IMP 506—} 6506 If not finished, return.
515 HIT & — 0000 If finished, halt.
516 -, 62 LeTT7

Example 14. Multiplying a Set of Fractions by a Constant,

The ROL instruction at location 507 rotates zeros or ones, depending on the

sign, into the low order 5 bits of the Accumulator. Since this amounts to é
“scale left" operation, it thereby introduces no new information which might
influence the product. The reader should also note that the original values

remain unchanged at locations 1200 = 1377.

Another example demonstrates the technique of saving both halves of
the producto* Fifty (octal) numbers, stored at locations 1000 = 1047, are to
be multiplied by a constant, +1633. The left halves of the products (the
most significant halves) are to be saved at locations 1100 - 1147; +the right
halves (the least significant halves) at locations 1200 - 1247,

¥ See also Appendix IIT.

Multiplication

Memory
Address Memory Contents Effect
3 [Xi1 [1077] :}Addresses of products.
L (%] (11771
0 [hOOO+X3] (4777] }Addresses of multiplier as fraction
6 [X§] lo777] and integer.
7 [-n] [7727] Counter.
- 1&05 SET 5 3 0663
1401 1077 1077 Set addresses for storing products.
1402 SET i L4 006k
1403 1177 1177
140k SET i 5 0065 Set 5 to address multiplier as fraction.
1L05 LOOO+TTT LTt
1406 SET i 6 0066 Set 6 to address multiplier as integer.
1407 77 oTTT
1410 SET i 7 0067
1411 =50 7727
1412 —» LDA 1 1020
way || aem e [(FOmleft belt of produty in
141k MUL i 5 1265
1415 SCR i 1 0361 C(bit O of ACC) — C(L).
1416 STA i 3 1063 Store left half of product,.
1417 STC 1434 53l 0 - C(ACC).
1420 ROR i 1 0321 C(L) - ¢(pit 11 of ACC).
1421 STC 1427 5h27 4000 or 0000 — C(1427).
1h22 ADD 1413 3413 }jbrm right half of product, in
1423 MUL i 6 1266 Accumulator. +
1hok BCL i 1560 Clear bit 11 of right half.
1425 4000 Looo
1426 BSE i 1620 C(bit O of left half) — C(bit 11 of
127 [-] (-] right half).
1430 STA i 4 1064 Store right half of product, .
1431 XX 1 —7—| o227 }Return if not finished.
1432 JMP 1412 | 412
1433 HIT & — - | 0000
143k [~] | [-]

Example 15.

Multiplication Retaining 22-bit Products.

49

50 Half-Word Class Instructions
LDH

The instructions at locations 1415, 1420-1421, and 1424-1427 have the effect of
making the two halves of the product contiguous; the sign bit value of the
right half 1s replaced by the low order bit value of the left half, so that

the product may be subsequently treated as a true “double length” number.

There are two remaining Index Class instructions, SKIP ROTATE, SRO i B,
and DISPLAY CHARACTER, DSC i B, which will be discussed later in connection -

with programming the oscilloscope display.

11. Half-Word Class Instructions

The LINC has 3 instructions which deal with 6-bit numbers or "half-
words” (“word” is another term for "contents of a register”). These
instructions use the Index Registers and have the same four addressing
variations as the Index Class, but specify in addition either the left
half or right half of the contents of memory register X as the operand.

We speak of LH(X), meaning the contents of the left 6 bits of register X,
and RH(X), meaning the contents of the right 6 bits. We can then think of
C(X) = LH|RH, or C(X) = 1OOLH+RH.

Half-word instrucfions always use the right half of the Accumulator.
The LOAD HALF instruction, IDH i B, code 1300 + 20i + B, clears the Accum-
ulator and copies the specified half-word into the right half of the
Accumulator; which half of C(X) to use is specified by bit 11, the h-bit,

of register B..

g

Half-Word Class Instructiouns 51

When h = 0, LH(X) — RH(ACC). When h = 1, RH(X) — RH(ACC):

Memory

Address Memory Contents Effect
B hsX LooOn+X h=1.
P LDH B 130048 RH(X) — RH{ACC) and 0 - LH(ACC).
X LH|RH 100LH+RH C(X) unchanged.

The same interpretation of the h-bit applies when i = 0 and B = O,

i.e., when the instruction occupies two registers:

Memory
Address Memory Contents Effect
Lo LDH 1300 Since h = 1, RH(500), i.e., 76,
b1 13500 4500 - RH{ACC). 0 — LH(ACC).
500 32|76 3276

If register 41 contained 500, i.e., h = O, then LH(500), or 32, would
replace RH(ACC).

The STORE HALF instruction, STH i B, code 1340 + 201 + B, stores the
right half of C(ACC) in the specified half of memory register X. C(ACC) and
the other half of memory register X are unaffected. To illustrate the case

of 1 =1 and B = 0, we can write:

Memory

Address Memory Contents Effect
1000 STH i | 1360 RH(ACC) — LH(1001),
1001 6015 | 6015

This case, it will be remembered, uses p + 1 itself as the memory address.

Since there is no h-bit, the computer assumes that h = 0, and therefore the
left -half of C(1001) is affected. If, for example, C(ACC) = 5017, then 17

replaces LH(1001), and the contents of register 1001 become 1715.

Ui

(6]

N

Half=-Word Class Instructions

SKIP IF HALF DIFFERS, SHD i B, code 1400 + 20i + B, causes the LINC to
skip one memory register in the program sequence when the right half of the
Accumulator does not match the specified half of memory register X. When it
does match, the computer goes to the next memory register in sequence for
the next instruction. Neither C(ACC) nor C(X) is affected by the instruction.
If C(ACC) = 5671, and we write:

Memory
Address Memory Contents Effect
376 7152 1152
- 377 SHD 1400 Skip to Lo2 if RH(376) ¥ RH(ACC).
L0oo 4376 4376
K01 - -
Lo2 - &« I -

then the computer will skip because RH(376), i.e., 52, E: RH(ACC), or 7l. Had
we written 376 at location 400, that is, h = O, then RH(ACC) would equal
LH(376) and the computer would not skip.

When B # O, and when i = 1, the Half-Word Class instructions cause the
LINC to index the contents of memory register B, but in a more complex way
than that used by the Index Class instructions. In order to have half-word
indexing refer to consecutive half-words, the computer adds 4000 to C(B) with
end-around carry. This has the effect of complementing h(pg) every time
register B is indexed, and stepping X(B) every Other time. Suppose, for
example, that our instruction is LDH i 3, and that register 3 initially con-
tains 4377, that is, it "points™ to the right half of register 377. The com-
puter will first add 4000 to C(3):

4377 Original C(3) = 1;377

4000 Index h(3)
0377

1l End-around carry

0400 New C(3) = 0;400
which leaves h = 0 and X = 400; C(3) now "points" to the left half of regis-
ter 400. The computer therefore loads the Accumulator from IH(400). Repeat-

ing the instruction, C(3) will be indexed to 4400 and the Accumulator will be

Half-Word Class Instructions 53

loaded from RH(400). Continuing then, register 3 would contain the following

succession of values or half-word references:

4400 : RH(L400)
okol : LH(401)
4401 ¢ RH(401)
0ko2 : LH{402)
Lhop : RH(LO2)
0403 : LH(LO3)

etc, etc.

Since half-word indexing occurs before the contents of register B are

used to address the memory, we may describe the memory address, when i = 1, as
h s Xth

where h represents the indexed value of h, and X+h represents the indexed
value of X. The succession of values which will appear in register B can

then be written:

;

13X+0
O3 X+1
1;X+1
03 X+2
13X+2

etc.

The KEYBCAED “mnstruction

The four address variations for Half-Word Class instructions are summarized

in the following table.

Half=Word Class Address Variations

Cage | 1, B Example Form Comments
1 i=20 LDbHE B Single Register B holds half-word operand
’ B % 0 Register address.
i=1 IDH 1 B Single First, index register B by 40OCO with
2 Register end=around carry.
B # 0 Then, register B holds half-word
operand address.
3 i =20 LDH Double Second register holds half-word
B =20 h3X Register operand address.,
I i =1 LDH i Double Left half of second register holds
B =0 LH[RH Register half-word operand.

For h = 0, the operand is held in the left half of the specified memory
register. For h = 1, the operand is held in the right half of the specified

memory register.

12. The KEYBOARD Instruction

Before continuing with Half-Word Class programming examples, the

KEYBOARD instruction, KBD i, code 515 + 201, is Introduced. The LINC uses

a simple, externally-connected keyboard for coded input. FEach key has a
6-bit code number, 0-55 (octal), (See Chart II), which can be transferred
into the Accumulator by the KBD i instruction when a key is struck. KBD i
directs the LINC to clear the Accumulator, copy into the right half of the
Accumulator the code number of the struck key, and release the key. The
i~bit is used here in a special way to synchronize the keyboard with the com-
puter. When i = 1, if a key has not been struck, the computer will wait for
a key to be struck before trying to read a key code into the Accumulator.
When i = O, the computer does not wait, and the programmer must insure that a

key has been struck before the computer tries to execute the KBD instruction.

The KEYBOARD Instruction 55

This use of the i-bit to cause the computer to pause is unique to a class
of instructions known as the Operate Instructions, of which KBD is a member.

As a class they are used to control or operate external equipment.

The following program reads in key code numbers as kéys are struck on
the keyboard, and stores them at consecutive half-word locations, LH(100),
RH(100), LH(10l), ..., until the Z, code number 55 (octal), is struck, which

stops the program.

Memory
Address Memory Contents Effect
7 (n;x] [-] Half-word index register.
- 20 SET 1 7 0067 Set index register 7 to one half-word
o1 1577 HOT7 location less than initial location.
22 — KBD i 0535 Read code number of struck key into
RH(ACC), and release the key.
23 SHD i 1420 Skip to location 26 if code number
2k _ 5500 5500 # 5
25 HIT _} 0000 Code = 55, so halt.
26 STH i 7¢4 1367 | Half-word index register 7, store
' code number, and return to read
27 JMP 22 6022 next key.

Example 16. Filling Half-Word Table from the Keyboard.

The KEYBOARD Instruction

Another example reads key code numbers and stores at consecutive half-

word locations only those code numbers which represent the letters A through

Z, codes 24 - 55 (octal).

Other key codes are ‘discarded, and the program

stops when 100 (octal) letters have been stored.

Memory
Address Memory Contents Effect
5 [h;X] (-]
6 [-n] (-]
- 100 SET i 6 0066 Set 6 to count 100 times.
101 ~-100 7677
102 SET 1 5 0065 Set 5 for storing letters beginning
at LH(1000).
103 1777 Lrrr ()
104 —>KBD i 0535 Read keyboard.
105 STA i 1060 C(ACC) — C(106); store key
106 [-] [-] code in 106.
107 ADA i 1120 | c(Acc)-23 - C(ACC).
110 -23 TT54
111 BCL i 1560 Clear all but the sign bit in ACC.
112 3777 3777
113 AZE 0450 | If C(ACC) = O, skip to location 115.
114 JMP 104—1 6104 c(Acc) £ 0, so key code was less
‘ than 24. Return to read next key.
115 IDE ¢ —— | 1300 | Key code > 23 represents a letter.
116 15106 4106 Therefore RH(106) — RH(ACC).
117 STHi 5 1365 Half-word index register 5 and
store code for letter.
120 XK i 6 0226 Index register 6 and return if
1 100 letters have not been struck.
121 JMP 104 | 6104
122 HLT & — - | 0000

Example 17.

Selective Filling of Half-Word Table from the Keyboard.

o1
DIS

13. The LINC Scopes and the Display Instructions

The LINC has two cathode ray tube display devices called Display
Scopes, each of which is capable of presenting a square array of 512 by
512 (decimal) spots (1000 by 1000, octal). A special instruction, DISPLAY,
DIS 1 &, code 140 + 201 + ¢, momentarily produces a bright spot at one
point in this array. The horizontal (H) and vertical (V) coordinates are
specified in the Accumulator and in &. The vertical coordinate,
-377 < V < +377 (octal), is held in the Accumulator during a DIS i «
instruction; +the horizontal coordinate, 0 < H < 777 (octal), is held in
register @, 0 < @ < 17. The spot in the lower left corner of the array has
the coordinates (0, -377):

(0, +377) (777, +377)
- 9

Square array, 3" by 3", of
1000 x 1000 (octal) points.

(0, 0)® | 9 (177, 0)

L 4 -0
(0, -377) (777, -377)

58

The LINC Scopes and the Display Instructions

The coordinates are held in the right-most 9 bits of register & and the

Accumulator, sign

AcCc

\.__.._.v__/
unused —— (377 <V < #377)

e
h-bit:T unused k%————————‘ (0 <H<T77) “_‘—“‘“‘“4

so that if C(ACC) = 641, i.e., -136, and C(5) = 430, then DIS 5 will cause
a spot to be intensified at (430, -136) on the scope(s)°

Both scopes are positioned at the same time. The production of a
bright spot on either scope depends upon the state of the left-most bit
(the h=bit) of register & and an external channel selector located on the
face of each Display Scope. If h = 0, then the spot is produced via Display
Channel #0; if h = 1, then the spot is produced via Display Channel #la
tither Display Scope may be manually set to intensify Channel #0,
Channel #1, or both.

The 1-bit in DIS i1 & is used in the usual way to specify whether to
index the right 10 bite of register O before brightening the spot. This in-
dexing, of course, also increases the horizontal coordinate by one. To illus-
trate, the following program will display a continuous horizontal line through

the middle (V=0) of the scope(s) via Display Channel #O:

Memory
Address Memory Contents Effect
5 [osH] [-] Horizontal coordinate and channel
. selection.
— 20 SET i 5 0065 Set 5 to Channel #0 and horizontal
o1 0 0000 coordinate = O, '
22 CLR 0011 Vertical coordinate = 0 — C(ACC).
23 DIS 1 5 0165 Index H (actually index entire
| TMP right-most 10 bits) and display.
2k 23 6023 . Repeat endlessly.

Example 18. Horizontal Line Scope Display.

Character Display 29

Another example displays as a curve the values found in a set of con-
secutive registers, 1400 through 1777. The vertical coordinates are the
most significant 9 bits of each value. Since we have only 40O (octal)
points to display, the curve will be positioned in the middle of the

scope, Channel #1 is used.

Memory
Address Memory Contents Effect
10 (x] (-] Address of vertical coordinates. .
11 [15H] [LOOO+H] Channel select and horizontal
o o . coordinate. *
— 300 —>SET i 10 0070 Set 10 to beginning address minus 1.
301 1377 1377
302 SET 1 11 0071 Set 11 to select Channel #1 and‘i
303 15177 w177 to begin curve at H = 200.
304 ~»LDA i 10 1030 Load ACC with value and scale
. right 3 places to position it
305 SCR 3 0343 as vertical coordinate.
306 DIS i 11 0171 Index the H coordinate and display.
307 XSK 10 0210 Check to see if X(10) = 1777.
310 JMP 304 | 6304 If 400, points have not been dis-
played, return to get next point.
311 | | amp 300¢ | 6300 Tr X(10) = 1777, return to repeat
| entire display.

Example 19. Curve Display of a Table of Numbers.

Character Display

The Display Scopes are frequently used to display characters, for
example keyboard characters, as well as data curves. Character display is
somewhat more complicated since the point pattern must be carefully worked out

in conJjunction with the vertical and horizontal coordinates for each point.

Character Display.

1f, for example, we want to display the letter A, the array on the scope

might look like:

. N

/ 5(11]17]23
v 4]10]16]22
: 3| 9lis |2l
NN 2|8 14|20
% 7 L {7 [13]19

4 oleli2]is

k— b —)

Tig. a fig. b

wvhere the shaded areas of fig. a represent points which are intensified,
and the white areas points not intensified; the total area represented is
6 vertical positions by 4 horizontal positions. If, for example, the lower
left point has the coordinates (HOO, O), then the upper right point has the
coordinates (403, 5).

We could, of course, store the H and V coordinates for every inten-
sified point of the character in a table in the memory, but the letter A
alone, for instance, would require 32.(decimal) registers to hold both
coordinates for all the points which are intensified. Instead we arbitrarily
decide upon a scope format, say 4 x 6, and make up a pattern word in which
ones represent points to be intensified and zeros points which are not
intensified. To specify a 4 x 6 pattern of 24 bits we need 2 memory regis-
ters. We also decide, for efficiency of programming, to display the points

in the order shown numerically in fig. b, that is, from lower left to upper

Character Display : 61
SRO

right, column by column. If we examine bit O of the pattern word first,
bit 1 next, bit 2, etc., then the pattern word for the left half of the
letter A (the left two columns) will look like:

First 1110 9 8 7 6 5 L 3 > 1 0
pattern word 1[0]0 1{01}0 (11 1)1 1911

where the bit positions of the pattern word correspond to the numbered
scope positions O -~ 11 of fig. b. The pattern word for the right half of
the letter will then look like:

Second
pattern word 11111 R T 1

with bits O - 11 corresponding to scope positions 12 - 23 respectively.

An Index Class instruction, SKIP ROTATE, SRO i B, code 1500 + 201 + B,
facilitates character display with the kinds of pattern words described
above. SRO i B directs the LINC to skip the next register in the instruc-
tion sequence when bit O of the specified memory register contains 0. If
bit O contains 1, the computer dces not skip. In either case, however,
after examining bit 0, the contents of the specified memory register are
rotated 1 place to the right. Therefore, repeating the SRO instruction
(with reference to the same memory register) has the effect of examining
first bit O, then bit 1, bit 2, etc. Executing the SRO instruction 12 times,

of course, restores the memory word to its original configuration.

The following example repeatedly displays the letter A in the middle of
the scope, using register 7 to hold the address of the‘first pattern word and
register 6 to hold the H coordinate. Since 4 x 6 contiguous points on the
scope array define an area too small to be readable, a delta of L4 is used
to space the points, so that if the first point is intensified at coord-
inates (370, 0) the second point will be at (370, 4), the Tth point at
(374, O), etc. (This produces characters approximately 0.5 cm. high,)

62

Character Display

Memory
Address Memory Contents Effect
6 [03H] [-] Channel selection and H coordinate.
7 [x] [-] Address of pattern word.
- 60 —>SET 1 6 0066 Set H coordinate = 370 for lower
61 03370 0370 left point. Select Channel #0.
62 SET i 7 0067 Set 7 to address of first half of
63 110 0110 pattern.
6l —>LDA i 1020 Tnitial V coordinate = =10 — C{ACC).
65 ~10 7767
66 5SRO T 1507 Skip to location 70 if bit O of
~ pattern word is zero. Rotate the
| pattern word 1 place to right.
67 pIS 6 | 0146 If bit O of pattern word was one,
| display one point.
70 ADD 75 GJ 2075 Add 4 to V coordinate in ACC.
71 SRO i 1520 Skip to location T4 when 6 bits of
pattern word have been examined.
e —-éjij———1 3737 Rotate 0(72) 1 place to right.
73 JMP 66 | 6066 Return to examine next bit of pattern
word when bit O of C(72) = 1.
yen LDA 1 é——J 1020
75 4 000k When bit O of C(72) = 0, 6 points
. . have been examined. Increase H
76 ADM llhq coordinate by 4 to do next column.
77 6 0006
100 SRO 1 1520 Check to see 1f 2 columns have been
101 2505 p5p5 dlsp%aygdo Rotate C(101) 1 place
—== = tom@u
102 JMP 6l ‘ 6064 Two columns have not been displayed;
return to do next column.
103 XSK 1 7<—J 0227 Two columns have been displayed;
index address of the pattern word.
104 SRO i 1520 Skip to 107 if both halves of pattern
105 0505 o505 have been displayed.
T B
106 JMP 64 | 6064 Return to display 2nd half of pattern.
107 JMP 60 ¢ 6060 Entire pattern has been displayed —
once. Return and repeat.
110 b7 7T Pattern words for letter A.
111 T7hh ‘ T7kh
Example 20. Character Display of the Letter A.

Character Display 63

The SRO instructions at locations 71, 100, and 104 determine when 1 column,
2 columns, and 4 columns have been displayed. After each column the H coor-
dinate is increased by 4 and the V coordinate reset to -10. After 2 columns
the address of the pattern word is indexed by one, and after L4 colﬁa;é the

entire process is repeated.

DISPLAY CHARACTER, DSC i B, code 1740 + 20i + B, is the last of the
Index Class instructions; i1t directs the LINC to display the contents of
one pattern word, or 2 columns of points. Register B holds the address of
the pattern word and the i-bit is used in the usual way to index X(g). The
points are displayed in the format described above, i.e., 2 columns of
6 points each with a delta of U4 between points. The pattern word is examined
from right to left beginning with bit O and points are plotted from lower

‘left to upper right, as above. When executing a DSC instruction the computer

always takes the H coordinate and channel selection from register 1. The

delta of 4 is automatically added to X(1) every time a new column is begun;
furthermore this indexing is. done before the first column is displayed, so
that if register 1 initially contains 0364, the first column will be displayed
at H = 370, the second at H = 374, and register 1 will contain 0374 at the

end of the instruction.

The vertical coordinate is, as usual, taken from the Accumulator, and

again +4 is automatically added to C(ACC) between points. The right-most

5 bits (bits O - 4) of the Accumulator are always cleared at the beginning of
a DSC instruction, so that if initially C(ACC) = +273, the first point will be
displayed at V = 240, the second at V = 244, etc. Characters can therefore

be displayed using the DSC instruction only at vertical spacings of 40 on the
scope, e.g., at initial vertical coordinates equal to =77, =37, 0, +40, +100,
etc. Furthermore, the right-most 5 bits of the Accumulator always contain

30 (octal) at the end of a DSC instruction, so that if the initial C(ACC) = +273,
the initial V will equal +240 and C(ACC) will equal +270 at the end of the

instruction.

6k

Character Display

To display a character defined by a 4 x 6 pattern two DSC instructions
are needed. The following example repeatedly displays the letter A in the
middle of the scope, just as the program on p. 62 (Example 20) does, but with
greater efficiency using the DSC instruction. Since we cannot have an initial

V = ~10 with DSC, the program uses V = O,

Memory
Address Memory Contents Effect
1 [03H] (-] Channel selection and H coordinate.
% [x] [-] Address of pattern word.
S 60 CIR 0011 Initial V = 0 — C(ACC).
61 ~> SET i 1 0061 Set 1 to initial H coordinate minus
6o 03364 036k 4k, and select Channel #O.
63 SET i 7 0067 Set 7 to address of first half of
6l 110 - 0110 pattern.
65 DsC 7 17h7 Display, using lst pattern word, the

left 2 columns of the letter A,

at initial coordinates of (370, 0).
66 DSC i 7 1767 Index address of pattern word, X(7),
and display right 2 columns of

the letter A at initial coordi-
nates of (400, 0).

67 JMP 61 6061 Return and repeat.

110 W77 W77
111 T4k l yann

}Ihttern words for letter A.

Example 21. Character Display of the Letter A Using DSC.

After the first DSC instruction (at location 65), C(1) = 0374 and C(ACC) = 30.
After the second DSC instruction, C(1) = okok, c(7) = 0111, and C(ACC) = 30.
C(110) and C(111l) are unchanged. By adding more pattern words at-locations
112 and following locations, and repeating the DSC i -7 instruction, we could,

of course, display an entire row of characters.

The following program repeatedly displays a row of 6 digits.

Character Display

The

pattern words for the characters O - 9 are located in a table beginning

at 1000;

for the character 1 at 1002 and 1003, etc.

i.e., the pattern words for the character O are at 1000 and 1001,

The keyboard codes for the

characters to be displayed are located in a half-word table from 1400

through 1402;

etc.

i.e., the first code value is LH(1400), the second RH(1400),

The program computes the address of the first pattern word for each

character as it is retrieved from the table at 1400.

Memory
Address Memory Contents Effect
1 [1:H] (-] Channel selection and H coordinate.
2 [-n] [-] Counter for number of charucters.
3 [hyx] [-] Address of keyboard code values.
L [X] [-] Address of pattern word.
- 20 —>SET i 2 0062 Set 2 to count number of charac-
o1 -6 7L ters displayed.
22 SET i 3 0063 Set 3 for loading code values begin-
ning at LH(1L400).
23 1;1377 5377 € (1400)
2L SET i 1 0061 Set 1 to initial H coordinate minus
. I .
o5 1534k i3l i, and select Channel #1
26 —~LDH 1 3 1323 Half-word index register 3 and put
code value into Accumulator.
27 ROL 1 0241 Compute address of pattern word by
. multiplying code wvalue by 2 and
30 ADA 1 1120 adding beginning address of
3L 1000 1000 pattern table.
32 sTCc b Look Address of pattern word — C(L4);
0 - C(ACC).
33 psc b 17hk Display character at initial V = O,
3k DSC i 4 176k and initial H = C(1) + k.
35 LDA i 1020]
36 L 000k Increase H by 4 to provide space
P
37 ADM 1140 between characters.
Lo 1 0001 = |J
b1 XSK i 2 0222 |] Index X(2) and check to see whether 6
characters have been displayed. If
ke VP26 l 6026 [not, return to get next character.
43 JMP 20 ¢! 6020 |J If so, return to repeat entire

Example 22.

display.

Displaying a Row of Characters.

65

66

Analog Input and the SAMPLE Instruction

Suppose, for example, that one of the 6 code values is 07. The pattern words
for the character 7 are at locations 1016 and 1017. Multiplying the code
value 07 by 2 (7 x 2 = 16 octal) and adding the beginning address of the
pattern table (16 + 1000 = 1016) gives us the address of the first pattern
word for the character 7. It should be clear that we could add pattern

words for all the keybocard characters to our pattern table; 1f we organize
the pattern table to correspond to the ordering of the keyboard code values,
the same technique of "table look-up" using the code values to locate the

pattern could be used to display any characters on the keyboard*

14. Analog Input and the SAMPLE Instruction

The SAMPLE instruction, SAM 1 n, refers to the LINC's miscellaneous
inputs. The LINC has 16 input lines (numbered O - 17 octal) through which
external analog signals may be received. The SAMPLE instruction samples the
voltage on any one of these lines, and supplies the computer with instan-
taneous digitalized "looks" at analog information. Input lines O through 7
are slow speed inputs built to receive signals in the range -1 to -7 volts
at a maximum frequency of 200 cycles per second. These eight lines are
equipped with potentiometers, appearing on the Display panel as numbered black
knobs, whose voltage is varied by turning the knobs. Lines 10 through 17,
located at the Data Terminal module, are for high frequency signals which may

range from -1 to +1 volts at a maximum of ~ 20,000 cycles per second.

The number n in the SAMPLE instruction specifies which line to sample.
Built into the LINC are analog-to-digital conversion circuits which receive
the signal and convert it to a signed ll-bit binary number in the range fl77,
leaving the result in the Accumulator. Thus, for example, a voltage of zero
on one of the high frequency lines will be converted to O when sampled with

a SAM instruction, and the number O will be left in the Accumulator. Voltages

on the high frequency lines greater than or equal to +1V will, when sampled,

¥ See Chart III.

Analog Input and the SAMPLE Instruction

cause +177 (octal) to be left in the Accumulator. Voltages less than or
equal to ~1V will cause -177 to be left in the Accumulator.

Memory
Address Memory Contents Effect
- P SAM 1 n | 100 + 201 + n Conversion of voltage on
l line n — C{ACC).

The value of this facility, which makes it possible to evaluate data while
they are being generated, can easily be seen. The SAMPLE instruction is fre-

quently used with the DISPLAY instruction in this context.

The i-bit in the SAMPLE instruction can be used to shorten the length of
time the instruction requires, occasionally with some sacrifice of precision.
When 1 = O, the SAMPLE instruction lasts ol usec.¥ and the conversion is com-
pleted for all bits of the Accumulator (through bit 0). When i = 1, however,
the computer proceeds to the next instruction in sequence after only 8 usec.
and before the conversion process is finished. The conversion is not, how-
ever, terminated. It will continue in the Accumulator for 14 more usec. while
the computer executes succeeding instructions. If the Accumulator is not dis-
turbed during this time, the correct converted value will be accessible after
1k psec. If the Accumulator is disturbed, however, the counverted value in

the Accumulator after 14 usec. will be incorrect.

During the 14 usec. one bit is converted every 2 usec., beginning with

the most significant conversion bit (bit 6) of the Accumulator:

Sign Converted value
(A~ N & \
000 000 000 000 C(Accumulator)
2 468 1012 W psec.

v

usec. for conversion

* See Appendix II: LINC Order Code Summary, for instruction execution times.

67

68

Analog Input and the SAMPLE Instruction

Suppose that the instruction following a SAM i n when i = 1 is STC, Store-
Clear. During execution of an STC instruction the contents of the Accumulator
are stored in the memory 10 usec. after the SIC instruction is initiated.

The low order 3 bits (bits 2, 1, and 0, converted after 10, 12, and 14 usec.)
will not be converted by this time, and should therefore be disregarded.
Furthermore, the STC instruction may not leave the Accumulator clear, because
the conversion process will continue for L ysec. after the clear time of the

L

STC instruction. In general, examination of the Instruction Timing Diagrams

will show when it is feasible to use SAM with 1 = 1.

To illustrate the use of this instruction, we look first at a simple
example of a sample and display program. The following sequence of instruc-
tions samples the voltage on input line #lO, and displays continuously a plot
of the corresponding digital values. It provides the viewer with a continuous
picture of the analog signal on that line. The sample values left in the
Accumulator are used directly as the vertical coordinates. In this example;
input #10 is sampled every 56 usec. (This is determined by adding the execu-
tion times for SAM i, 8 usec.; DIS, 32 usec.; and JMP 1002; 16 usec.)

Memory
Address Memory Contents Effect
17 [o;H] [-] For channel selection and H coor-
dinate.

— 1000 SET 1 17 - 0077 Set register 17 to begin H coor-
1001 1777 1777 dinate at H = Q; Channel #0.
1002 SAM i 10 0130 Sample input #lO, leaving its value

in the ACC as the V coordinate.
1003 DIs i 17 oLTT Index the H coordinate and display.
1004 JMP 1002 7002 Return and repeat endlessly.

Example 23. Simple Sample and Display.

Note that since here we want a COntinuous'display9 it is not necessary to

reset register 17 to any specific horizontal coordinate.

Analog Input and the SAMPLE Instruction

A second example illustrates one of the uses of the potentiometers.
This program plots the contents of a 512 (decimal) word segment of memory
registers O through 1777. The location of the segment is selected by
rotating Knob #5, whose value is used to determine the address at which to
begin the display. As the viewer rotates the knob, the display effectively

moves back and forth across the memory.

Memory
Address Memory Contents Effect
12 [x] (-]
13 [1;H] [-] For channel selection, H coordi-
nate, and counter.
— 20 —> SET 1 13 0073 Set register 13 to select Chan-
o1 w777 w777 nel #1 and to begin displaying
. at H = 0.
22 SAM 2 0105 Sample Knob #5, add 200 to make
23 ADA 1 1120 the value positive, rotate left
ol 200 0200 , 2 pla?es to produce an éddress
for display, and store in
25 ROL 2 o2k register 12.
26 STC 12 Lol2 J
27 —>IDA i 12 1032 | Index the address of the vertical
coordinate, and put the coordi-
30 SCR 3 03k3 nate into the ACC. Position it
31 DIS i 13 0173 J for display, index the H coordi-
nate and dispiay.
32 XSK 13 0213 Check to see whether 512 (decimal)
1 points have been displayed.
| (x(13) = 17772).
33 JMP 27 | 6027 If not, return to display next point.
34 JMP 20(—J 6020 If so, return to reset counter and
get new address from Knob #5.

Example 24. Moving Window Display Under Knob Control.

At locations 23 - 25 a memory .address is computed for the first vertical
coordinate by adding 200 to the sample value. This leaves the value in the
range +1 to +377; it is then rotated left 2 places to produce an initial
address in the range 4 through 1774 for the display.

69

70

Analog Input and the SAMPLE Instruction

A final example illustrates the technique of accumulating a frequency
distribution of sampled signal amplitudés appearing on line #12, and dis-
playing it simultaneously as a histogram. The distribution is compiled in
a table at locations 1401 - 1777, and the sample values themselves are used
to form the addresses for table entry. Registers 1401 - 1777 are Z.aitially
set to =377 so that the histogram will be from the bottom of the scope.

Note, at iocations 104 and 105, that since we are using memory registers
1401 - 1777, the same index register (register 2) may be interpreted both as
address (location 104) and counter (location 105). We do not need a sep-
arate counter because the final address (1777) will serve also as the basis
of the skip decision for the XSK instruction. The same is true at loca-

tions 123 and 133.

Analog Input and the SAMPLE Instruction 7L

Memory
Address Memory Contents Effect
2 [x] [-] | Address of vertical coordinates,
3 [0;H] [-] Channel selection and H coordinate.
— 100 SET i 2 0062
101 1400 1400
Loz LDA 1 1020 Tnitial routine to cet registers
)- - "_
103 377 Thoo || 1801 - 1777 to -377
104 —>STA i 2 1062
105 XK 2 - 0202
106 [__JMP 10k 6104
107 ———> SET i 2¢4 0062 | Set register 2 to initial address
110 1400 1400 minus one of vertical coordinates.
111 SET i 3 0063 | Set register 3 to select Channel #0
112 500 0200 and begin display at H = 201.
113 —>SAM 12 0112 | Sample input line #12.
1l =\
11k ADA 1 1120 11 aga 14004200 to the sample value
115 1600 1600 | 7 to form an address for recording
116 STC 122 4o the event and store.
LT LDA 1 1020 Add 1 to the contents of the regis-
120 1 0001 ter just located by the sample
4
101 ATM 1140 value to record the event,
122 (-] (-]
123 IDA i 2 1022 Index register 2 and put a histogram
value in the Accumulator.
12k DIS i 3 0163 | Index the H coordinate and display.
125 —>DIS 3 0143 | Display without indexing.
126 ADA 1 1120 Fill in the bar by decreasing the
127 -1 7776 vertical coordinate by 1 and contin-
o uing the display until a point is
130 SAE 3 1460 displayed at V = -377.
131 _ zh00 377
132 JMP 125 6125
133 XK g;éJ 0202 When bar is finished, check to see
- whether 377 values have been dis-
I played. (X(2) = 17777).
134 JMP 113 | 6113 | If not, return to get next sample.
135 JMP lO?'éJ 6107 If so, return to reset vertical coor-

Example 25.

dinate address, H coordinate, and
repeat.

Histogram Display of Sampled Data.

15. The Skip Class Instructions

Instructions belonging to the Skip Class test various conditions of the
Accumulator, the Keyboard, the Tapes, and the External Level lines of the
Data Terminal module. The coding for these instructions includes the condi-
tion or level line to be checked and an option to skip or not skip when the

condition is met or the external level is negative.

condition
SKP 0<c<13
¥
SKP i c: 4ho + 20i + c
l i = 0: OSkip only if cordition c is met
' or level n is negative.
or
i =1: Skip only if condition c¢ is not
met or level n is not negative.
SXL i n: 4OoO + 201 + n
0
SXL 0<n<13
level line number

In these instructions the i-bit can be used to invert the skip decision.

When i = O the computer skips the next register in the instruction sequence
when the condition is met or external level is negative. However, when 1 = 1,
the computer skips when the condition is not met or the external level is not
negative. Otherwise the computer always goes to the next register in the

sequence.

The four situations which may arise are summarized in the following

table. The Skip Class instruction is assumed to be in register p.

Branching in Skip Class Instructions

i Condition met or level negative? Location of next instruction
0 yes - 15 + 2 (Skip)

0 no p+1

1 yes ‘ p+1

1

no p+2 (Skip)

The Skip Class Instructions T3
' APO
[sns]
The SKP i c instructions test 13 conditions, which, because of their
variety, we choose to describe with different 3~letter expressions. Thus the
AZE i instruction already presented is the same as SKP i 10. Another instruc-
tion, APO 1, synonymous with SKP i 11, checks to see whether the ACCUMULATOR
is POSITIVE (bit 11 = 0):

Case: 1 =0

Memory
Address Memory Contents Effect
p APO Who + 11 If C(bit 11 of ACC) = 0, go to
_1 p + 2 for the next instruction;
p+1 - & -
if C(bit 1L of ACC) = 1, go to p + 1.
p+ 2 - ¢ -
I
Case: 1 =1
Memory
Address Memory Contents Effect
D APO i i Lho + 20 + 11 If C(bit 11 of ACC) = 1, go to
1 _<:_1 _ p + 2 for the next instruction;
P . if C(bit 11 of ACC) = 0, go to
p + 2 - Q—J - p + L.
l

Other SKP variations check whether C(L) = 0, (LZE i, code 452 + 20i,
which is synonymous with SKP i 12) or whether one of the 6 Sense Switches on
the console is up (SNS i 0, SNS i 1, ..., SNS i 5, synonymous with SKP i 0,
SKP 1 1, ..., SKP i 5). (The Sense Switches are numbered from right to left,
O through 5.)

The SXL i n instruction, SKIP ON NEGATIVE EXTERNAL LEVEL, checks for the
presence of a -3 volt level on External Level line n, 0 < n < 13, at the
Data Terminal module. It is often used with the OPERATE instruction} dis-
cussed in the next section, to help synchronize the LINC with external

equipment.

Th The Skip Class Instructions
KST

The Skip instruction KEY STRUCK, KST i, code 415 + 20i, checks whether
a keyboard key has been struck (and not yet released). KST i is synonymous
with SXL i 15.

To illustrate the use of these instructions the following program counts
the signal peaks above a certain threshold, 100 (octal), for a set of
1000 (octal) samples appearing on input line #13. The number of peaks
exceeding the threshold will be left in the Accumulator.

Memory
Address Memory Contents Effect
7 [=n] [-] Counter for 1000 samples.
10 [n] [-] Counter for number above 100 (octal).
- 1500 SET i 7 0067 Set register 7 to count 1000 samples.
1501 -1000 6777
1502 SET i 10 0070 Clear register 10 to count peaks.
1503 0 0000
1504 > SAM 13 0113 Sample input line #13 and subtract
1505 ADA i 1160 100 from the sample value.
1506 -100 7677
1507 APO i okT1 Is the Accumulator positive?
1510 XSK i 10—1 0230 If so, the value was above 100; add
| 1 to the counter. If not, skip
the instruction at location 1510.
1511 Z§K_i_“1ﬁj 0227 Index register 7 and test.
1512 JMP 1504 1 7504 If 1000 samples have not been taken,
;] return. '
1513 LDA ¢~ — 1000 Tf 1000 samples have been taken,
151k 10 0010 put the number of those above
1515 HLT 0000 100 lpto the Accumulator and halt.

Example 26. Counting Samples Exceeding a Threshold.

The Skip Class Instructions 5

Another program samples and displays continuously the input from
line #14 until a letter, i.e., a key whose code value is higher than 23 (octal),

is struck on the keyboard.

Memory
Address Memory Contents Effect
1 [1;H] (-] Channel selection and H coordinate.
- 100 SET i 1 0061 Set register 1 to select Channel #1
101 4000 4000 and begin display at H = 1.
102 ~> SAM 1k 011k Sample line #14 and display its
103 DIS i 1 0161 value.
10k K@E______] ok15 Has a key been struck?
105 JMP 102 ' 6102 If not, return and continue sampling
B . and displaying.
106 KBD ¢ — 0315 If so, read the key code into the
107 ADA i 1120 Accumulator and subtract 23
110 23 775k (octal) from its code value.
111 éfQﬂ___»_] oks1 Is ACC positive?
112 JMP 102 l 6102 If not, the value was less than 23
l (octal). Return and continue
sampling.
113 HIH?é—-—-J 0000 If so, the value was 24 or greater;
| halt.

Example 27. ©Simple Sample and Display with Keyboard Control.

Note that the KBD instruction at location 106 will be executed only when a

key has already been struck (because of KST at location 104) and therefore

does not need to direct the computer to pause.

76
{OFR |

L

. 16, The Data Terminal Module and the OPERATE Instruction

We have already mentioned the OPERATE instruction (p. 55) in connection
with KBD i. In general, OPERATE, OPR 1 n, code 500 + 201 + n, provides
operating and synchronizing signals for external equipment. The number n,

0 < n‘s 13 (octal) refers to one of twelve Operate Level lines sent to the
Data Terminal Module, as well as to one of the twelve External Level lines

(mentioned under SXL).

During the execution of an OPR instruction a negative output level
is supplied on Operate Level line n 4 usec. after the beginning of the
instruction;l‘L it remains for the duration of the instruction. The i-bit
is qsed to direct the LINC to pause. If i = 0, there is no pause. If i1 =1,
the LINC pauses 4 usec. after the beginning of the instruction and sends a
"Beginning of Operate Pause" pulse, BEOP, 0.4 usec. duration, to the Data
Terminal module to signal that the pause has begun. The computer then waits
in this state until a negative input signal is sent back on External Level

line n. This signal automatically restarts the computer.

For example, execution of the instruction OPR i 6, code 526, provides
an output signal on Operate Level line #6 and directs the LINC to pause,
permitting an external device associated with line #6 to be synchronized
with computer operation. Then when the external device is ready or has
completed its operation, it in turn supplies a negative signal on External

Level line #6, which restarts the computer.

In addition to the possible BEOP pulse, two other 0.4 usec. pulses
are sent to the Data Terminal module regardless of whether the computer has
paused or not. The first, called OPR2.1, occurs 6 usec. after the beginning
of the instruction if there is no pause. If the computer has paused, the
OPR2.1 pulse, which indicates that the computer is now running, will appear
not less than 2 usec. and not more than 4 usec. after the restart signal is
delivered by the external. equipment over line n. The second pulse, OPR2.2,

occurs 2 usec. after OPR2.1.

Subroutine Techniques

The OPFR instruction may be used in a variety of ways depending on need
and the type of external equipment involved. It can be used simply to seunse
the occurrence of an event (such as an external clock pulse), or it can be
used ta control the transfer of digital information between the LINC and
external equipment (such as a tape recorder). In this context the user has
the option of transferring a single word (12 bits) either in or out of the
LINC Accumulator or Memory Contents register, or he can choose to transfer
a group of words directly into or out of the LINC memory. Various enabling
levels supplied by the user at the Data Terminal module define the path and
type of information transfer.

The Keyboard is a good éxample of a simple external device which is
controlled by an Operate instruction, OPR i1 15, synonymous with KBD i. The
number 15 designates special external level and operate level lines, with

which the Keyboard is permanently associated.

17. Subroutine Techniques

Before describing.the remaining instructions, some mention should be
made of the technique of writing subroutines. Frequently a program has
to execute the same set of instructions at several different places in the
program sequence. In this case it is an inefficient use of memory registers

to write out the same set of instructions each time it is needed. It is

i 11

more desirable to write the instructions once as a separate, or "sub,

routine to which the program can jump whenever these instructions are to
be executed. Once the instructions in the subroutine have been executed,

the subroutine should return control (jump back) to the main program.

7

T8

Subroutine Techniques

For example, suppose that in two different places in a program we must

execute the same set of arithmetic operations.

structure of such a program as follows:

Main Program

Memory Contents

Memory
Address

S
tart; 100
150
151
200
201

Main

Program

JInstructions

JMP 1000 ———> Jump out to

Main

Program

wInstructions

JMP 1000 —————> Jump out to
Continue €—— Return from

Continue €é——— Return from

We can picture the general

subroutine

subroutine

subroutine

subroutine

Subroutine
Memory
Address Memory Contents
Enter
Subroutine — 1000 Subroutine
. Instructions Arithmetic
. Operations
1020 JMP MP —> Return to Main Program

Subroutine Techniques

It appears from this example that jumping to the subroutine from the
main program (at locations 150 and 200) is straightforward. The subroutine
must be able to return control to the main program, however, reentering it
at a different place each time the subroutine is finished. That is, we

must be able to change the JMP instruction at location 1020 so that the

A
“

ct
-

i urn to the main program with

Tirst time ULhe subrouvine is use
a "JMP 151" and the second time with a "JMP 201."

It will be remembered that every time the computer executes a JMP
instruction (other than JMP 0) at any location "p," the instruction
"JMP p + 1" replaces the contents of register zero. (See page 14.) Thus,
when the "JMP 1000" is executed at location 150, a "JMP 151" is automatic-
ally stored in register O,- thereby saving the return point for the subroutine.

The subroutine might retrieve this information in the following way:

Subroutine:
Memory
Address Memory Contents Effect
Enter
Subroutine — 1000 LDA c(0) -» c(ACC);
. . . 1" + n .
1001 0 i.e., "JMP p + 1" — C(ACC)
1002 STC 1020 , c(AcC) — ¢(1020).
. . Execute arithmetic operations.
1020 [oMP p + 1] Return to main program.

Clearly, a simple "JMP O" at location 1020 will suffice when the subroutine
does not, during its execution, destroy the contents of register zero. In

this case, the instructions in locations 1000 - 1002 would be unnecessary.

A problem arises in the above example when the subroutine is not free

to use the Accumulator to retrieve the return point. Another method,

[

80 Magnetic Tape Instructions

using the SET instrﬁction, is possible when there is an available

B register:

Memory '
Address Memory Contents Effect
Enter
Subroutine — 1000 SET 10 c(o) » c(10); di.e., "IMP p + 1"
1001 0 is saved in a free B register.
. . Execute arithmetic operations; the
. . Accumulator has not been disturbed.
1020 JMP 10 Return to main program by jumping
to register 10.

18. Magnetic Tape Instructions

The last class of instructions, Magnetic Tape, requires some discussion
of the LINC Tape Units and tape format. The LINC uses small reel (3-3/4"
diameter) magnetic tapes for storing programs and data. There are two tape

units on a single panel, on which tapes are mounted:

LINC MAGNETIC TAPES

—— Tape heads

v
N

Tape Unit #0 Tape Unit #1

Any Magnetic Tape instruction may refer to either the tape on Unit #0O or
the tape on Unit #l; which unit to use is specified by the instruction

itself; only one unit, however, is ever used at one time.

16-2

Magnetic Tape Instructions

A LINC tape can hold 131,072 1l2-bit words of information, or the
equivalent of 128 (decimal) full LINC memories. It is, however, divided
into 512 (decimal) smaller segments known as blocks, each of which contains
256 (decimal) 1l2-bit words, a size equal to one-quarter of a LINC memory.

Blocks are identified on any tape by block numbers, O through 777 (octal);

Magnetic Tape instructions specify which block to use by referring to its
block number. A block number (BN) on the tape permanently occupies a

12-bit space preceding the 256 words of the block itself:

Block
{ Number Block %

\ P J o —

1 word 256 words

There are other special words on the tape, serving other functions, which
complete the tape format. Before describing these, however, we may look

more specifically at one of the Magnetic Tape instructions, READ TAPE,
RIE i u.

81

82

Block Transfers and Checking

READ TAPE is one of six Magnetic Tape instructions which copy information

either from the tape into the LINC Memory (called READING), or from the

memory onto the tape (called WRITING).

transfer instructions because they transfer one or more blocks of informa-

tion between the tape and the memory:

LINC Tape

These are generally called block

BN

256 word |, . |gy | 256 word
BLOCK BLOCK

BN

256 word
BLOCK

/

READ

WRITE

Memory
to

Tape
to
Memory

READ

LINC Memory

WRITE

256
Memory
Registers

256
Memory
Registers

Tane
S

256
Memory
Registers

256
Menmory
Registers

Block Transfers and Checking | 83
RDE

All of the Magnetic Tape instructions are double register instructions.

RDE, typical of a block transfer instruction, is written:

Memory
Address Memory Contents

P [mEiuw | 702 +20i+ 10w
p+ 1l I QN{BN | 1000QN + BN

The first register of the instruction has two special bits. The u-bit

(bit 3) selects the tape unit: when u = 0, the tape on Unit #0 is used;

when u = 1, the tape on Unit #1 is used. Magnetic Tape instructions require

that the tape on the selected unit move at a speed of approximately 60 inches per
second. Therefore, if the tape is not moving when the computer encounters

a Magnetic Tape instruction, tape motion is started automatically and the
computer waits until the tape has reached the required speed before contin-

uing with the instruction.

The i-bit (bit 4) specifies the motion of the tape after the instruc-
tion is executed. If i = 0, the tape will stop; if i = 1, it will continue
to move at 60 ips. It is sometimes more efficient to let the tape continue
to move, as, perhaps, when we want to execute several Magnetic Tape instruc-
tions in succession. If we let it stop we will have to wait for it to start
again at the beginning of the next tape instruction. Examples of this will

be given later.

In the second register of the RDE instruction, the right-most 9 bits
hold the requested block number, BN; that is, they tell the computer which
block on the tape to read into the memory. The left 3 bits hold the guarter

number, QN, which refers to the memory. QN specifies which quarter of

8k

Block Transfers and Checking

memory to use in the transfer. The quarters of the LINC Memory are numbered
O through 7,* and refer to the memory registers as follows (numbers are
octal):

Quarter
Number Memory Registers
0 o - 377
1 Loo - 777
2 1000 - 1377
3 1400 - 1777
b 2000 -~ 2377
5 2Lkoo - 2777
6 3000 - 3377
7 3400 - 3777

Suppose, for example, we want to transfer data stored on tape into memory
registers 1000 - 1377. The data are in, say, block 267 and the tape is
mounted on Unit #1:

Memory
Address Memory Contents ‘ Effect
- 200 RIE u ' o712 Select Unit #1;
501 21067 | 1000x2 + 267 C(block 267) — C(quarter 2).

This instruction will start to move the tape on Unit #1 if it is not already
moving. It will then READ block 267 on that tape into quarter 2 of memory
and stop the tape when the transfer is completed. The computer will go to
location 202 for the next instruction. After the transfer the information
in block 267 is still on the tape; only memory registers 1000 - 1377 and
the Accumulator are affected. Conversely, writing affects only the tape and

the Accumulator; the memory is left unchanged.

* See Appendix I.

Block Transfers and Checking 85

Another special word on the tape, located immediately following the

block, is called the check sum, CS:

e~

e =

BN _ Block CS
v \ e I
1 word 256 words 1 word

The check sum, a feature common to many tape systems, is used to check the
accuracy of the transfer of information to and from the tape. On a LINC

tape the check sum is the complement of the sum of the 256 words in the block.
Such a number is formed during the execution of another block transfer
instruction, WRITE TAPE, WRI i u. This instruction writes the contents of

the specified memory quarter in the specified block of the selected tape:

Memory
Address Memory Contents

D WRT i u I 706 + 20i + 10u
p+1 QN| BN I 1000QN + BN

During the transfer the words being written on the tape are added together
without end-arcund carry in the Accumulator. This sum is then complemented
and written in the CS space following the block on the tape. After the opera-
tion the check sum is left in the Accumulator and the computer goes to p + 2

for the next instruction. QN, BN, i, and u are all interpreted as for RDE.

One means of checking the.accuracy of the transfer is to form a new sum
and compare it to the check sum on the tape. This happens during RDE: the
256 words from the block on the tape are added together without end-around
carry in the Accumulator while they are being transferred to the memory.
This uncomplemented sum is called the data sum. The check sum from the tape
is then added to this data sum and the result, called the transfer check, is
left in the Accumulator. Clearly, if the information has been transferred

correctly, the data sum will be the complement of the check sum, and the

86
RDC

Block Transfers and Checking

transfer check will equal -0 (7777). We say that the block "checks." Thus,
by examining the Accumulator after an RDE instruction, we can tell whether
the block was transferred correctly. The following sequence of instructions

does this and reads block 500 again if it does not check:

Memory ,
Address Memory Contents : Effect
- 300 | PRIE 0702 Read block 500, Unit #0, into quarter 3.
Leave the transfer check in the Accum-
301 3|5OO 3500 ulator and stop the tape.
302 SAE i 1460 Skip to location 305 if C(ACC) = 7777,
- i.e., if the block checks. If
303 --Iizz-j et c(ACC) # 7777, return to read the
304 JMP 300 6300 block again.
305 -c—-] -

The remaining block transfer instructions check transfers automatically.
READ AND CHECK, RDC i u, does in one instruction exactly what the above
gequence of instructions does. That i1s, it reads the specified block of the
selected tape into the specified quarter of memory and forms the transfer
check in the Accumulator. If the transfer check does not equal 7777, the
instruction is repeated (the block is reread, etc.). When the block is

read correctly, 7777 is left in the Accumulator and the computer goes on to

the next instruction at p + 2. The RDC instruction is written:

Memory
Address Memory Contents
p RIC 1 u 700 + 20i + 10u
o+ 1 QN| BN l 1000QN + BN

One of the most frequent uses of instructions which read the tape is
to put LINC programs stored on tape into the memory. Suppose we are given

a tape, for example, which has in block 300 a program we want to run. We

Block Transfers and Checking 87

are told that the program is 100 (octal) registers long starting in regis-
ter 1250. We can mount the tape on either unit and then set and execute
either RDE or RDC in the Left and Right Switches. If we use RDE, we should
look at the Accumulator lights after the -transfer to make sure the transfer
check = T777. When double register instructions are set in the toggle
switches, the first word is set in the Lett Switches, and the second in thc
Right Switches. If we mount the tape on Unit #1 and want to use RDC, the
toggle switches should be set as follows:

Console
Location Contents
Left Switches RDC u | 0710

Right Switches 2300 l 2300

QN = 2 because the program in block 300 must be stored in memory regis- .
ters 1250 - 1347, vhich are-located in quarter 2. Raising the DO lever

will cause the LINC to read the block into the proper quarter and check it.

We then start at 1250 from the console, using the Right Switches.

The remaining block transfer instructions will be described later.

A non~-transfer instruction, called CHECK TAPE, CHK i u, makes it
possible to check a block without destroying information in the memory. This
instruction does exactly what RDE does, except that the information is not °
transferred into the memory; that is, it reads the specified block into the
Accumulator only, forms the data sum, adds it to the check sum from the tape,
and leaves the result, the transfer check, in the Accumulator. Since this is
a non-transfer instruction, QN is ignored by the computer. Otherwise this

instruction is written as the other instructions:

Memory
Address Memory Contents
P CHK i u | 707 + 201 + 10u
p+1 | BN | BN

Block Transfers and Checking

The following program checks sequentially all the blocks on the tape on
Unit #0. The program starts at location 200. If a block does not check,
the program puts its block number into the Accumulator and halts ét
location 221. To continue checking, reenter the program at location 207.

The program will halt at location 216 when it has checked the entire tape.

Memory
Address Memory Contents Effect
332{3—) 200 CLR 0011 Store zero in register 203 as first
501 STC 203 4203 block number. .
202 —> CHK i 0727 | Check the block specified in regis-
ter 203; transfer check — C(AcC);
203 (B (-] the tape continues to move.
20k SAE i 1460 | If the transfer check = -0, skip to
location 207.
205 7t | T -
206 JMP 217 | 6217 | If the block does not check, Jjump to
location 217.
Reentery no7 oA i ¢ | 1020
Add 1 to the block number in regis-
210 L 0001 ter 203, and leave the sum in the
211 ATM 1140 Accumulator.
212 203 0203
213 SAE i 1460
If all the blocks have been checked,
21k -AQQQ-—1 1000 skip to location 216. Otherwise
215 JMP 202 | 6202 return to check next block.
216 HLT &—- | 0000 |J
3
2L7 ~LDA 1000 Load the block number of the block
220 203 ‘0203 | 7 which failed into the Accumulator,
021 HIT oooo || &nd halt.

Example 28. Simple Check of an Entire Tape.

Note that the tape is left moving whenever the computer halts. This is gen-
erally undesirable, since it must then be stopped manually by the user at
the console. Another tape instruction, MIB, can be used to avoid this sit-

uation, as will be shown in program example 33.

Block Transfers and Checking

A block transfer instruction WRITE AND CHECK, WRC i u, combines the
operations of the instructions WRI and CHK, and, like READ AND CHECK, repeats
the entire process if the check fails. That is, WRC writes the contents of
the specified memory quarter in the specified block, forms the check sum in
the Accumulator and writes the check sum on the tape. It then checks the
block just written. If the resulting transfer check does not egual -0, the
block is rewritten and rechecked. When the block checks, 7777 is left in
the Accumulator and the computer goes on to the next instruction at p + 2.

WRC is written:

Memory
Address Memory Contents
P WRC 1 u | 704 + 201 + 10u
p+ 1 QN| BN I 1000QN + BN

This process of WRITE AND CHECK may be diagrammed:

WRI

Start WRC MEMORY — TAPE
Form and Write
CHECK SUM

CHK

TAPE — ACCUMULATOR
Form TRANSFER CHECK
in Accumulator

TRANSFER CHECK % =0 TRANSFER CHECK = -0

Get next
instruction

89

Block Transfers and Checking

The following sequence illustrates the use of some of the block transfer
instructions. Since the LINC Memory is small, a program must frequently be
divided into sections which will fit into tape blocks, and the sections read
into the memory as they are needed. This example saves (writes) the contents
of quarter 2 of memory (registers 1000 - 1377) on the tape. It then reads a
program section from the tape into quarters 1, 2, and 3 (registers 400 - 1777)
and jumps to location 400 to begin the new section of the program. Assume
that the tape is on Unit #0O. Memory quarter 2 will be saved in block 50; the
program to be read from the tape is in blocks éOl - 203:

Memory
Address Memory Contents Effect
- 100 WRC i 0724 C(quarter 2) — C(block 50); transfer
; & 1
101 2150 2050 is checked, and the tape continues
to move.
102 RDC, . 0720 |l ¢(block 201) —» C(quarter 1), and
103 1]201 1201 C(block 202) — C(quarter 2); trans-
104 RIC i 0720 f§r§ arg checked and the tape con-
tinues to move.
105 2202 2202
106 RDC 0700 | C(block 203) — C(quarter 3); trans-
i t .
107 3,203 3203 fer is checked and the tape stops
110 ___JMP %00 6400 Jump to the new section.
400 —> [-] (-]

Example 29. Dividing Large Programs Between Tape and Memory.

At the end of the above sequence the contents of memory registers 40O - 1777
and tape block 50 have been altered; quarter O of memory, in which the

sequence itself is held, 1s unaffected.

Block Transfers and Checking

Another program repeatedly fills quarter 3 with samples from input

line #14 and writes the data in consecutive blocks on tape beginning at

block 200.
by the setting of the Right Switches.

written, the program saves itself in block 177 and halts.

The number of blocks of data to collect and save is specified

When the requested number has been

The tape is on

Unit #1.
Memoxry
Address Memory Contents Effect
10 (x] [-] Memory address for storing samples.
11 [-n] [-] Counter.
— 1000 REW 0516 || (Right Switches) — C(ACC). Comple-
1001 CcoM 0017 ment the number and store in
1002 STC 11 4011 register 1l.
1003 —» SET 1 10 0070 Set register 10 to store samples
100k 1377 1377 beginning at 1400.
1005 SAM 1k 011k
1006 STA 1 10 1070 Sample input line #1L, store value
1007 YSK 10 0210 and repeat until MQO (octal)
== /" samples have been taken.
1010 JMP 1005 ‘ 7005
1011 WRC u & 071k When quarter 3 is full, write it on
; s . T
1012 [3]2001 [-] tape and check the transfer he
tape stops.
1013 LDA 1 1020
1014 L 0001 Add 1 to the BN in register 1012.
1015 ADM 1140
1016 1012 1012
1017 XSK 1 11 0231 Index the counter and skip if the
.] requested number has been collected.
1020 JMP 1003 | 7003 If not, return.
1021 WRC u (—J 071k If so, write this program in block 177,
1009 2]177 2177 check the transfer, and stop the tape.
1023 HIT 0000 Halt the computer.
Example 30. Collecting Data and Storing on Tape.

Since the program saves itself when finished, the user can continue to collect

data at a later time by reading block 177 into quarter 2, and starting at 1000.

91

92 Group Transfers
RCG
WCG

Since the BN in location 1012 will have been saved, the data will continue

to be stored in consecutive blocks.

Group Transfers

Two other block transfer instructions, similar to RDC and WRC, permit
a program to transfer as many as 8 blocks of information with one instruc-

tion., These are called the group transfer instructions; they transfer infor-

mation between consecutive quarters of the memory and a group of consecutive
blocks on the tape. Suppose, for example, that we want to read 3 blocks from
the tape into memory quarters 1, 2, and 3. The 3 tape blocks are 51, 52,

and 53. Using the instruction READ AND .CHECK GROUP, RCG i u, we write:

Memory
Address Memory Contents
p RCG i u | 701 +20i + 10u
p + 1 2|51 l 2051

The first register specifies the instruction, the tape unit, and the tape
motion as usual. The second register, however, is interpreted somewhat
differently. It uses BN to select the first block of the group. In addi-
tion, the right-most 3 bits of BN specify also the first memory quarter of
the group. That is, block 51 will be read into memory quarter 1, (block 127
would be read into memory quarter 7, etc.). The left-most 3 bits (usually QN)
are used to specify the number of additional blocks to transfer. In the above
example then, block 51 is read into quarter 1, and 2 additional blocks are

also transferred: block 52 into quarter 2 and block 53 into quarter 3.

The format for WCG i u, WRITE AND CHECK GROUP, is exactly the same as

for RCG:
Memory A
Address Memory Contents
P WCG 1 u l 705 + 20i + 10u
p+ 1 3]300 | 3300

The computer interprets the sbove example as: write and check quarter O in

block 300, and make 3 additional consecutive transfers, quarter 1 into

Group Transfers ‘ : 93

block 301, quarter 2 into block 302, and quarter 3 into block 303. When the
left-most 3 bits are zero, that is "do zero additional transfers," the WCG

instruction is like the WRC instruction in that only 1 block is transferred.

The second word of a group transfer instruction may be diagramed:

Initial Memory Quarter

_ A
11 10 9 8 7 6 5 4 3 2 1 0
p+ 1
[}) \ v) . J
of additional Initial Block Number
transfers

RCG and WCG always operate on consecutive memory quarters and tape
blocks. Specifying 3 additional transfers when the initial block is, say,
336, will transfer information between tape blocks 336, 337, 340, 341 and
memory quarters 6, T, O, and 1, that is, quarter O succeeds quarter T.*
The transfers are always checked; when a transfer does not check, the
instruction is repeated starting with the block that failed. With WCG,
all the blocks and their check sums are first written, and then all are
checked. If any block fails to check, the blocks are rewritten beginning
with the block that failed, and then all blocks are checked again. As'with
RDC and WRC, the group transfer instructions leave -0 in the Accumulator

and go to p + 2 for the next instruction.

* See Appendix I.

ol

Tape Motion and the MOVE TOWARD BLOCK Instruction

Using RCG instead of RDC, the program example on p. 90 can be more

efficiently written:

Memory

Address Memory Contents Effect

- 100 WRC i oT72L C(quarter 2) — C(block 50); transfer
101 2,50 2050 is checked and tape continues to move.
102 RCG 0701 'Read blocks 201 - 203 into quarters 1 -
103 .2|201 2001 g;pe?heck the transfers and stop the
104 JMP 40O ' 6400 Jump to the new section.

Example 31. Tape and Memory Exchange with Group Transfer.

Tape Motion and the MOVE TOWARD BLOCK Instruction

When the computer is searching the tape for a required block, it looks
at each block number in turn until it finds the correct one. Since the tape
may be positioned anywhere when the search is begun, it must be able to move

either forward or backward to find the block.

By forward is meant moving from the low block numbers to the high

numbers; physically the tape moves onto the lefthand reel.

Forward : Backward

By backward is meant from the high numbers to the low; the tape moves onto

the righthand reel.

Tape Motion and the MOVE TOWARD BLOCK Instruction

When searching for a requested block the computer decides whether the
tape must move forward or backward by subtracting each block number it finds
from the requested number, and using the sign of the result to determine the
-direction of motion. If the difference is positive the search continues in
the forward direction; if negative, it continues in the backward directiom.
lhis may, ol course, mean that the lLape has to reversc directicn in order

to find the required block.

Suppose, for example that the computer is instructed to read block 50,
and that the tape is presently moving forward and Jjust below block 75. The
next block number found will be 75. The result of subtracting 75 from 50
is =25, which indicates not only that the tape is 25 blocks away from
block 50, but also that block 50 is below the present tape position. The

tape will reverse its direction and go backward.

To facilitate searching in the backward direction a special word called

e—
a backward block number, BN, follows the check sum for each block:

6__
BN BLOCK Ccs BN
\...v_.)

1 word

When searching in the forward direction the computer‘looks at forward block
numbers, BN; when searching in the backward direction it looks at backward
block numbers, BN. 1In either direction, each block number found is sub-

tracted in turn from the requested number, and the direction reverses as

necessary, until the result of the subtraction is -0 in the forward direction.

Transfers and checks are made only in the_forward directioﬁ.

Thus, in the above example, the tape will continue to move in the back-
ward directidn until the result of the subtraction is positive, i.e., until
the EN for block 49 is found and subtracted from‘50, indicating that the
tape is now below block 50. The direction will be reversed; the computer
will find 50 as the next forward block number, BN, and the transfer will be
made because -O is the result of the subtraction and the tape is moving

forward.

95

96

(3]

Tape Motion and the MOVE TOWARD BLOCK Instruction

For all Magnetic Tape instructions, if the tape is not moving when the
instruction is encountered, the computer starts the tape in the forward
direction and waits until it is moving at the required speed before reading
a forward block number, BN, and reversing direction if necessary. If the
tape is in moﬁion, however, (including coasting to a stop), the computer
does notvchange the direction of motion until the block number comparison

requires it.

For all tape transfer or check instructions with i = 1, the tape con-

tinues to move forward after the instruction is executed.

For all Magnetic Tape instructions all stops are made in the backward
direction. For transfer or check instructions this means that the tape always
reverses before stopping. Furthermore, the tape then stops below the last
block involved in the instruction, so that when the tape is restarted, this
block will be the first one found. This reduces the delay in programs which

make repeated references to the same block.

The last Magnetic Tape instruction illustrates some of the tape motion

characteristics. MOVE TOWARD BLOCK, MIB i u, is written:

Memory
Address Memory Contents
P MIB i u l 703 + 20i + 10u
p+ 1 BN ' BN

As in the other Magnetic Tape instructions, the u-bit selects the tape unit.
The tape motion bit (the i-bit) and the second register, however, are inter-
preted somewhat differently. MTB directs the LINC to subtract the next block
number it finds on the tape from the number speéified in the second word of
the instruction, and leave the result in the Accumulator. QN is ignored
during execution of MIB. For example, if the block number in the second
register of the instruction is zero, and the tape is Just below block 20

and moving forward, then -20, or 7757, will be left in the Accumulator. The
MIB instruction can thus be used to find out where the tape is at any partic-

ular time.

Tape Motion and the MOVE TOWARD BLOCK Instruction 97

When 1 = O the tape is stopped as usual after the instruction is
executed. When i = 1, however, the tape is left moving toward the specified
block. The result of the subtraction is left in the Accumulator, and the
tape direction is reversed if necessary as the computer goes on to the next
instruction. MIB i does not actually find the block; 1t merely orients the

tape motion toward it.

The initial direction of motion and possible reversal are determined
for MIB just as they are for all other Magnetic Tape instructions, as
described above. Note, however, that since MIB i makes no further correc-

tions to the direction of motion, the specified block may eventually be passed.

The MOVE TOWARD BLOCK instruction serves not only to identify tape
position, but also can be used to save time. If, for example, a program
must read block 700, and then, at some later time, write in block 50, it is
efficient to have the tape move toward block 50 in the interim while the

program continues to run:

Memory
Address Memory Contents Effect
- 100 RDC i 0720 C(block 700) — C(quarter 3); tape
101 3]700 3700 moves forward.
102 MIB i 0723 C(103)-next BN — C(ACC); tape
reverses and moves backward
103 o0 0050 toward block 50.
. 'L -l Tape continues to move backward
. while program continues.
300 WRI 0706 C(quarter 0) - C(block 50); +tape stops.
301 50 0050

In this example it would be inefficient to stop the tape (i = 0) with the RDC
instruction at location 100 or to let it continue to move forward until
block 50 is called for. Although we may not be interested in the number
left in the Accumulator after executing the MIB at location 102, the MIB
does serve to reverse the tape. Then, when block 50 is called for, the delay

in finding it will not be so long.

98

(282]

Tape Format

Certain other facts about the tape format should be mentioned. Other

special words on the tape are shown:

512 BLOCK ZONES

A,

055 7

N v J P ~ -
about 5 feet - T~
- ~
// ~ ~ ~
- — - ~
| INTER-
BN| G BLOCK cs| cle | ¢lmy | BLOCK
ZONE
NN — NN N N
1 1 256 words 1 1 1 1 1 5

At each end of the tape is an area called end zone which provides physical
protection for the rest of the tape. When a tape which has been left moving
as the result of executing a tape instruction with i = 1 reaches an end zone,
the tape stops automatically. (This prevents the tape from being pulled off
the reel.) Words marked C and G above do not generally concern the programmer
except insofar as they affect tape timing. Words marked C are used by the
computef to insure that the tape writers are turned off following a write
instruction. Words marked G, called guard words, protect the forward and

backward block numbers when the write current is turned on and off.

Inter Block Zones are spaces between block areas which can be sensed by

the Skip Class instruction, IBZ i, when either tape is moving either forward

or backward. The purpose of such sensing is to make programmed block searching

99

Tape Format

more efficient. For example, suppose that somewhere in a program we must
read block 500 into quarter 2; assume it does not matter when we read it in
as long as we do so before the program gets to the instructions beginning at
location 650. The following illustration uses a subroutine to check the
position of the tape and execute the read instruction if the tape is within
2 blocks of block 500. If the tape is not at an inter block zone, the main
program will then continue without having to wait for a block number to
appear. For purposes of simplicity let us assume that the tape (on Unit #0)
is moving. The program begins at location 400 and the subroutine at

location 20.

Note that the following example will work only if the tape is stopped
by the RDC instruction in register 32. If we do not stop the tape here,
subsequent jumps to the subroutine may continue to find the tape at an inter
block zone (locations 20 - 22) and block 500 may be read repeatedly. The test
with the APO instruction at location 646, which tells us whether the trans-
fer has been made or not, is necessary to guarantee that the transfer will
be made before we get to location 650. At this point, if the transfer has
not been made, the "JMP 32" at location 647 will be executed.

100

Tape Format
Memory
Address Memory Contents Effect
20 ;@?____ o453 Enter subroutine and sense tape position.
21 : JMP 0 6000 Return if tape is not at an inter block
| zone. -
22 MIB i ¢« 0723 If it is, subtract BN or BN from
500. Tape continues to move toward
23 200 0500 block 500.
2k APO - oks1 Is result positive?
25 CcoM | 0017 If negative, complement it.
26 ATA i ¢ - 1120 Add -2 to see if tape is within 2
o7 0 75 blocks of block 500.
30 égp'i’_'—ﬁ o471 Is result positive?
31 ¢ JMP 0 6000 If result is positive, return to main
I progran.
30 RDC € — 0700 If negative, tape is within 2 blocks of
block 500. Make the transfer and
33 2]500 2200 stop the tape.
34 STC 645 Lehs Store the transfer check = -0 in loca-
tion 645 to indicate transfer has
35 (T;EQi__JZ 6000 been made, and return.
- 400 CLR 0011 }Store positive zero in location 645
Lol STC 645 4645 to indicate transfer has not
been made.
Lo2 JMP 20 s 6020
. Vv A\ 4 Jum L . .
p to subroutine at these points;
200 QME——§9—€> 6020 > return to p + 1 and continue with
main program.
: \\ 4 Vv
600 JMP 20 6020
’ I \Z J
6L LDA i 1020 Put test number (either 0000 or T7T77T)
645 [-] [-] into Accumulator.
646 APO i ok71 Skip to location 650 if the transfer
7 has been made; (C(ACC) = T7777).
647 JMP 32 | 6032 If not, jump to subroutine to make
transfer, and return to location 650.
650 &«

Example 32. Block Search Subroutine.

Tape Motion Timing

When a tape is moving at a rate of 60 ips, it takes approximately
43 msec. to move from one forward block number to the next, or 160 usec.

per word. The following table summarizes some of the timing factors:

LINC TAPE MOTION TIME

START (from no motion to 60 ips) approx. 0.1 sec.

STOP (from 60 ips to no motion) " 0.3 sec.

REVERSE DIRECTION (from 60 ips to
60 ips in opposite direction) " 0.1 sec.

CHANGE UNIT (from no motion to

60 ips on new unit) " 0.1 sec.
BN to BN (at 60 ips) " 43 msec.
END ZONE to END ZONE (at 60 ips) " 23 sec.

a— sl

Some methods of using the tape instructions efficiently become obvious from
the above table. Generally speaking, tape instructions should be organized
around a minimum number of stops and a minimum amount of tape travel time.
When dealing with only one tape unit, it is usually efficient to use con-
secutive or nearly consecutive blocks in order to reduce the travel time

between blocks.

It is also efficient to request lower-numbered blocks before higher-
numbered blocks, avoiding unnecessary reversals. The WRITE AND CHECK

instruction, requiring two reversals, is costly in this respect. It first

101

102 Tape Motion Timing

must find and write in the block in the forward direction, then the tape
must reverse and go backward until it is below the block, then reverse a

second time and go forward to find and check the block:

-— INTER
BN BLOCK BN G BLOCK s
ZONE
[—_ -/
Requested Block
Forward lfindl J . J
— \B:Nlll WRITE ,l\
Reverse
find
dok e
//”— - [\ Backward .
Reverse .
find
- > JBNI CHECK S
Forward ,] l

Because of these reversals it is sometimes more efficient to use two tape
instructions, WRI followed by CHK, than to use WRC. This is true, for

example, when more than one block must be written and checked. Suppose we

Tape Motion Timing

103

want to write quarters 1, 2, and 3 in blocks 100, 101, and 102, and check

the transfers.

Using WRC, this would take a minimum of six reversals.

The following sequence requires a minimum of two reversals:

Memory
Address Memory Contents Effect
— 20 — LDA 1000
; Put the BN of the first block to
al 2k QOQM be checked in register 32.
20 STC 32 L0322
23 WRT i 0726 |
2k 1|lOO 1100 Write 3 consecutive blocks on the
25 WRT 1 0726 [, tape on Unit #0 and leave the
o6 2'101 5101 tape moving forward after each
transfer.
27 WRI 1 0726
30 3]102 3102 |
31 >CHK 1 0727 Check the blocks, beginning with
33 SAE i 1460 |)
If a block does not check, repeat
34 __ZZYZ_.j Tt (entire process.
35 JMP_20 6020 |,
36 LDA i< - | 1020 |)
37 1 0001
4o ATM 1140 Add 1 to the BN in register 32.
. If the result # 1|103, not all
In)
H 32 0032 have been checked. Return and
hp SAE i 1460 check the next block.
L3 1]103 1103
—
Ll JMP_ 31 | 6031 ||
—d h
45 MIB & 0703 When all have checked, execute
L6 0 0000 [MOVE TOWARD BLOCK to stop the
7 HLT 0000 |J tape, and halt.
l
Example 33. Write and Check with Fewest Reversals.

In this example the two reversals will occur the first time the CHK instruc-

tion at location 31 is executed.

Clearly, other reversals may be necessary

1ok

Tape Motion Timing

when the computer initially searches for block 100, and when a block does
not check, but careful handling of the tape instructions can reduce some of
these delays. It should be noted that there are 9 words on the tape between
any CS and the next BN in the forward direction. When the tape is moving at
speed, iﬁ takes 1,440 wusec. to‘move‘over these 9 words. Thus the program
has time to execute several instructions between consecutive blocks, i.e.,
before the next BN appears. In the above example, then, there is no danger
that the next block will be passed while the instructions at locations 33 -

Ll are being executed.

Chart I.

Miscellaneous

HLT
ZTA
ENI
CLR
MSC 13
ATR
RTA
NOP
COM

Shift

ROL i n
ROR i n
SCR i n

Full Address

ADD X
STC X
JMP X

Index

LDA 1
STA 1
ADA i
ADM i
TAM i
MUL i
SAE i
SRO i
BCL i
BSE i
BCO i
DSC 1

W T ® T ™ T m® T’ ™ T T’ W™

Half=Word

LDH i B
STH i B
SHD i B

Classes of LINC Instructions

Skip

SXL
KST
SKP
SNS
PIN

OVF
277

1
i

i

i
i

i

Operate

KBD
RSW
Lsw

1

OPR i n

Magnetic

Tape

RDC
RCG
RDE

i
1

i

£ .2 ¢

<

SET

SAM

DIS

XSK

106

Chart IT.

Keyboard Code

[>

[3
J
03

L

D

-
Y] U J
54 So

Lad (g ()

4 Ll L)

)
[

L sl
2Ll

&>
(O

] FWETA
- EOL |,

:

SPACHE

00
01
02
03
ok
05

~

06
o7
10
11
12
13
14
15
16
17

The Keyboard Code in Numerical Order

N = O

o 3 O U W

9

META /EOQL

delete
SPACE
= /i
«/p
» /-

20

o1

22
23
ok
25
26
27
30

31

32
33
3k
35
36
37

R /‘ 4
e/ |
L/ #

CASE

HoEH g o W

H N 49 H oI Q@

L6
b7
50

51
52
53
5k
55

o0 L "9 O

N < X =5 < o =3 W

A table of 24-bit patterns for L4 x 6 display, using the DSC
instruction, of all characters on the LINC Keyboard.
ordered numerically as the characters are coded on the Keyboard.
Table entries for non-displayable characters are zero.

EOL

del

SPACE

CASE

Chart III. Pattern Words for Character Display

4136
3641
2101
o177
4523
2151
k122
2651
241k
ol7T
5172
0651
1506
Lops
Lk
6050
5126
2651
5120
3651
0000
0000
0000
0000
0000
0000
0101
0126
3700
3uol
oLokL
o4Ok
oLol
0437
0000
ooTY
3614
1436
0000
0000

W77
T7hk
5177
2651
L4136
o2k
177
3641
Ls7T
L1hs5
by
Lokl
4136
2645
1077
7710
7741

fo0ok1

hilo
4076
1077
4324
oLlTT
0301
3077
7730
3077
7706
L177
TTHL
LuTT
304
ho76
0376
477
3146
5121
4651
Loko
LoTT

The table is

v

oLT7T
7701
0176
7402
0677
7701
1463
6314
0770
7007
4543
6151
1212
1212
0107
0107
0500
0006
0001
0000
L5777
TT45
L1ty
0000

107

108

Chart IV.
Alphabetical

13 Nop 16
ADA | 1100 OPR | 500
ADD | 2000 OVF | L5k
ADM | 11ko PIN | 446
APO Ls51 RCG | TO1
ATR 14 RDC | TOO
AZE 450 RDE | T02
BCL | 15k0 ROL | 2ko
BCO | 1640 ROR | 300
BSE | 1600 RSW | 516
CHK 707 RTA 15
CLR 11 SAE | 14ko
CcoM ING SAM | 100
DIS 140 SCR | 340
DsC | 17ko SET Lo
ENT 10 SHD | 1400
HLT 0 sKkp | 4Lo
IBZ 453 SNs | 4ko
JMP | 6000 SRO | 1500
KBD 515 STA | 10k0
KST 415 sTC | k000
LAM | 1200 STH |1340
LDA | 1000 sxt | koo
ILDH | 1300 WwCeaG | 705
LSW 517 WRC | TOk
LZE L52 WRI | T06
MSC 0 XSK | 200
MTB 703 ZTA 5
MTP 700 777, | b55
MUL | 12ko

Instruction Code

Numerical

HLT 516 | Rsw
MSC 517 | Lsw
ZTA 700 | MIP
10 | ENI 700 | RDC
11| CIR TOL | RCG
13 T02 | RDE
14 | ATR T03 | MTB
15 | RTA 7ok | WRC
16 | NOP 705 | wea
17| com 706 | WRI
Lo | sET 707 | CHK
100 | sAM 1000 | LDA
140 | pIS 1040 | sTA
200 | xsK 1100 | ApA
2ko | RroL 1140 | ADM
300 | ROR 1200 | LAM
3L0 | scr 1240 | MuUL
Loo | sx1. 1300 | LDH
415 | kst 13k0 | sty
Lho | skP 1400 | sHD
Lho | sns 1440 | SAE
L6 | pIn 1500 | SRO
450 | AzZE 1540 | BCL
451 | APo 1600 | BSE
k52 | 1ZE 1640 | BCO
453 | 1BZ 1740 | DSC
454 | ovr 2000 | ADD
455 | zzz, Looo | stC
500 | OPR 6000 | JMP

515 | KBD

Appendix I

Appendix I: Double Memory Programming

The LINC actually has two 12-bit 1024 (decimal) word memories, sometimes
referred to as "lower" and "upper" memory, providing a total of 4000 (octal)
words. The second, or upper, memory is addressable for data storage and

however, be used to hold running programs.

Bit 10 of a register containing a memory address, e.g., a B register, is
designated as the Memory Select bit. When this bit is 1, the second memory

is addressed:

B Ol? 000 000 OOQ

Memory Select Bit-———;T X

The addresses for the second memory may then be thought of as 2000 + X, where
0<X< lTTT, as usual.

More simply perhaps, we speak of memory registers 2000 through 3777
(octal). While this scheme makes the memory addresses of the two memories
continuous, they can not always be treated as such by the programmer. The
Instruction Location register, having only 10 bits, prohibits using the sec-
ond memory to hold running programs; the next "sequential" instruction loca-

tion after 1777 is always O. Moreover, the Full Address Class instructions

can address only registers O through 1777.

A1l other memory reference instructions have available a Memory Select

bit, and can address either memory. The instruction

jo) LDA
p+ 1 2133

will load the Accumulator with the contents of register 2133, i.e., register
133 of the second memory. It must be remembered, however, that all instruc-

tions which index the first 16 registers (Index Class, Half-Word

I-1

i~

Appendix I

Class, XSK, and DIS) index 10 bits only, and thus index from 1777 to O
without affecting the Memory Select bit. Therefore, by setting bit 10, we

can index through either memory we choose, but we cannot index from one

memory to the other. E.g.:

Memory :
Address Memory Contents
3 [2000 + X] [-]
- Lo SET i 3 00€3
L1 3777 3777
Lo LDA i 3 1023
I3 JMP L2 60k2

In this examplé register 3 will contain the succession of values:

3777, 2000, 2001, ..., 3777, 2000, etc., repeatedly scanning the second
memory. In order for the first execution of the LDA instruction at
location 42 to index register '3 to 2000, register 3 must be set initially

to 3777, i.e., X(3) = 1777 and Memory Select bit = 1.

For many purposes this indexing scheme presents no disadvantages.
Often, ‘however, one would like to use both memories, for example to collect

a large number of data samples. The following program fills memory

Appendix I

registers 400 through 3777 with cample values of the signal on input line 10.

The sample-and-store part of the program is written as a subroutine (1oca~

tions 31 - 40O), and the sample rate is controlled by an OPR i n instruction:

Memory
Address Memory Contents BEffect
7 (-] (-] For memory address.
10 ‘i)[JMP X] (-] For return point.
: . . J
. ,
— 20 SET i 7 0067
. , Set 7 to initial address minus 1
3
el 3T 0317 and jump to subroutine.
22 JMP 31 6031 J
23 SET 1 7 0067 Y Return from subroutine; set 7 to
N _ initial address minus 1 for
2 3rre 30Tt (second memory, and Jjump to
25 JMP 31 6031 |J subroutine.
26 WeG 0705 Return from subroutine; write
27 6131 6031 memory quarters 1 through 7 in
30 HLT 0000 blocks 31 through 37 and halt.
31 —> SET 10 0050 Enter subroutine and save return
30 0 0000 point in register 10.
33 —>OPR i 1 0521 Pause until restart signal appears
on External Level line 1.
3k SAM- 10 DEL0 Sample input on line 10 and store.
35 STA i 7 1067
36 XK 7 0207 1f X(7) # 1777, return to
T et next sample.
31 IMP_ 33 6033 © P
4O JMP 10 ¢ 6010 | When X(7) = 1777, return to main

program via register 10.

Example 34. Indexing Across Memory Boundaries.

IT-1

Appendix II
LINC Order Code Summary

Miscellaneous Class™®

HLT o6ooo emee=- HILT

HATT. Halt the computer. The Run light on the conscle igs turned off.
Perhaps the gong chimes. The computer can be restarted only from the
console.,

CLR 0011 8 usec. ' CLR

CLEAR. Clear the Accumulator, the LINK bit, and the Z register.

MSC 13 0013 8 usec. -

Turn on the write-gate for marking tapes if and only if the computer has
been placed in the MARK mode by pressing the MARK button on the console.

Warning: This instruction is to be used only for marking tapes.

ATR 0oLk 8 usec. ATR
ACCUMULATOR TO RELAY. Copy the contents of the right half of the Accum-
ulator (bits O = 5) into the Relay register. The contents of the

Accumulator are not changed.

RTA 0015 8 usec. RTA .
RELAY TO ACCUMULATOR. Copy the contents of the Relay register into the
right half of the Accumulator (bits O - 5) and clear the left half of the

Accumulator. The contents of the Relay register are not changed.

NOP 0016 8 usec. ‘NOP

NO OPERATION. This instruction provides a delay of 8 usec. before pro-

ceeding to the next instruction. It does nothing. e

CoOM 0017 8 usec, : CcoM
COMPLEMENT. Complement the contents of the Accumulator.

* See also Appendix III-6.

Appendix TII

Shift Class

* Execution Times
n {octal) ,
0 <n <17 0,1,2,3 h,5,6,7 10,11,12,13 14,15,16,17
time ‘
. SEC, . Lo usec.
(decimal) 16 usec 2L usec 32 usec 10 usec
ROL i n 240 + 201 + n * ROL

ROTATE LEFT. Shift the contents of the Accumulator n places to the left,

with or without the Link Bit. The i-bit specifies one of two variations:

i=0 i=1

L (1l ACC) L U ACC 0
E]CHIHHHHHIIK) C-I:IP{HHHHIIHIIr<>
ROR i n 300 + 201 + n * ROR

ROTATE RIGHT. Shift the contents of the Accumulator n places to the right,

with or without the Link Bit.* The i-bit specifies one of two variations:

i 0
ACC 0
W %_’(TTHIFHHHHIJ
SCR i n 340 + 201 + n * SCR

SCALE RIGHT. Shift the contents of the Accumulator, with or without the
Link Bit, n places to the right without changing the sign bit, replicating
the sign in n bits to the right of the sign bit.* The i-bit specifies one

of two variations:

i =0 1 == 1
L S ACC 0 l ACC 0
O EBPIIPOTreOrE C’Dl‘bll"l”ﬂlll—ﬂlll’)

* See also Appendix III.

Appendix ITI

Full Address Class

0 <X <1777

ADD X 2000 + X 16 usec, ADD

ADD., Add the contents of register X to the contents of the Accumulator

!

and leave the sum in the Accumulator, using 12-bit binary addition with

end-around carry. The contents of register X are not changed.

STC X 4000 + X 16 usec. STC

STORE AND CLEAR. Copy the contents of the Accumulator into register X and

then clear the Accumulator.

JMP X 6000 + X * JMP

JUMP., Set the Instruction Location register to X, i.e., take the next
instruction from register X, If X # 0, and if JMP X is executed at

location p, then the code number for JMP p + 1 is stored in register O..

* When X = 0, execution time is 8 usec; when X # 0, 16 usec.

TT-3

I1-h Appendix II

Skip Class*

Skip the next register in the instruction sequence if:
i1 = 0 and the specified condition is met

or if:
i1 = 1 and the specified condition is not met.

Otherwise, go on to the next instruction in sequence.

SXL i n LOoO + 20i + n 8 usec. SXL

SKIP ON NEGATIVE EXTERNAL LEVEL. Condition: The signal on external level
line n is -3 volts (as opposed to O volts). O0< n < 13.

KST i 415 + 201 8 usec. KST

KEY STRUCK. Condition: A key has been struck and is locked down.

SNS i n 4o + 201 + n 8 usec. SNS

SENSE SWITCH. Condition: Sense Switch n is up. 0 <n < 5.

AZE i 450 + 201 8 usec. AZE

ACCUMULATOR ZERO. Condition: Accumulator contains either 0000 or TT777.

APO i 451 + 20i 8 usec. APO

ACCUMULATOR POSITIVE. Condition: The sign bit of the Accumulator is O.

LZE i Lsp + 201 8 usec. LZE

LINK ZERO. Condition: The Link bit is 0.

IBZ i L53 + 201 8 usec. IBZ

INTERBLOCK ZONE. Condition: Either tape unit is up to speed and at an

interblock zone.

* See also Appendix III-6.

Appendix II

Index Class

Operand Location, Y, in Index Class Instructions

L<p <17 p =0
i =0 i=1 0 i=1
B Y B [y-1]#
: : : D LDA > p LDA 1
=P LDA B) LDA 1 8 + Y Y OPERAND
Y OPERAND Y OPERAND Y OPERAND
t = 16 usec. t = 8 usec.
Y=p+ 1
0 <Y <3777 0 <Y <1777

* Indexing:

The contents of the right-most 10 bits of register

3 are first indexed by 1, using 10-bit binary addition without

end carry. The left-most two bits are not changed. Thus, 1777
is indexed to 0000; 3777, to 2000; 5777, to L000; and TTT s
to 6000. R
LDA i B 1000+ 20i + B (t + 8) usec. LDA

LOAD ACCUMULATOR. Copy the contents of register Y into the Accumulator.

The contents of register Y are not changed.

STA 1 B 1040 + 201 + B (t +:8) usec. STA

STORE ACCUMULATOR. Copy the contents of the Accumulator into register Y.

The contents of the Accumulator are not -changed.

ADA i B 1100 + 20i + B (t + 8) usec. ADA

ADD TO ACCUMULATOR., Add the contents of register Y to the contents of the
Accumulator and leave the sum in the Accumulator, using 12-bit binary
addition with end-around carry. The contents of register Y are not

changed.

II-5

11-6

Appendix II

Index Class (continqed)

ADM i B 1140 + 201 + B (t + 16) usec. ADM

ADD TO MEMORY. Add the contents of register Y to the contents of the
Accumulator and leave the sum in register Y and the Accumulator, using

12-bit binary addition with end-around carry.

LAM i B 1200 + 201 + B (t + 16) usec. : LAM

LINK ADD TO MEMORY. First, add the contents of the Link Bit (the integer O
or 1) to the contents of the Accumulator and leave the sum in the Accum-
ulator, using 12-bit binary addition with the end carry, if any, replacing
the contents of the Liunk Bit; if there is no end carry, clear the Link
Bit. WNext, add the contents of register Y to the contents of the Accum-
ulator using 12-bit binary addition with the end carry, if any, replacing
the contents of the Link Bit (if no end carry arises, the contents of the
Link Bit are not changed). The sum is left in the Accumulator and in

register Y.

MUL i B 1240 + 201 + B (t + 104) usec. MUL

MULTlPLYf Multiply the contents of the Accumulator by the contents of
register‘Y and leave half of the product in the Accumulator. The contents
of the Accumulator and register Y are treated as signed ll-bit ones® com-
plement numbers and their full product as a signed 22-bit number.* The

“h=bit," i.e., bit 11 of the register holding the address Y, specifies:

h =0 h o= 1
Integer Multiplication Fraction Multiplication
The least significant 11 bits ,Thebmost significant 11 bits
of the product with proper sign of the product with proper
are left in the Accumulator. sign are left in the Accum-
ulator.

The sign of the product is also left in the Link Bit. The contents of
register Y are not changed.

If i =1 and B = 0, use integer multiplicé%iono

* See Appendix III.

Appendix II

1I-7

Index Class (continued)

SAE i B 1440 - 201 + B (t + 8) usec. SAE

SKIFP IF ACCUMULATOR EQUALS. If the contents of the Accumulator match the
contents of register ¥, skip the next register in the instruction

¢ on to the next instruefion in sequence. The
contents of the Accumulator and of register Y are not changed.

(See also the section on marking tapeso)

SRO i B 1500 + 20i - B (t + 8) usec. SRO

SKIP AND ROTATE. If the right-most bit of the contents of register ¥
is 0, skip the next register of the instruction sequence; otherwise, go
on to the next instruction in sequence. In either case, rotate the con-
tents of register Y one place to the right and replace in register Y.

The contents of the Accumulator are not changed.

BCL i B 1540 + 201 + B (t + 8) usec. BCL

BIT CLEAR. For each bit of register Y which contains 1, clear the corres-
ponding bit of the Accumulator. The contents of register Y and all other

bits of the Accumulator are not changed.

BSE i B 1600 + 201 + B (t + 8) usec. BSE

BIT SET. For each bit of register Y which contains 1, set the correspond-
ing bit of the Accumulator to 1. The contents of register Y and all other

bits of the Accumulator are not changed.

BCO i B 1640 + 201 + B - (t + 8) usec. BCO

BIT COMPLEMENT. TFor each bit of register Y which contains 1, complement
the corresponding bit of the Accumulator. The contents of register Y and

all other bits of the Accumulator are not changed.

I1-8

Appendix II

Index Class (continued)

DSC i B 1740 + 201 + B (t + 112) usec. DSC

DISPLAY CHARACTER. Intensify points in a 2 x 6 pattern on the Display
Scope. Register Y holds the pattern word, which is examined from right to
left beginning with bit O; for each bit found to be 1 a point is inten-
sified. Numbered points below correspond to bit positions of the pattern

word:

)

(D V + 30—
@O
Rolo
O©E v
+:1 H-%-IO

The H coordinate is held in register 1, and bit 11 of register 1 selects
the display channel. The initial contents of register’l, plus 4, is the

H coordinate of point C). The V coordinate is held in the Accumulator.
The initial contents of the Accumulator with the right—mostAB bits (ACCO—h)
automatically cleared by the computer, is the V coordinate of point (:).
Spacing between points is +4 in both horizontal and vertical directions.

At the end of the instruction the value in register 1 has been augmented
by 10 (octal) and bits O - 4 of the Accumulator contain 30 (octal). The
contents of bits 5 - 11 of the Accumulator and the contents of register Y

are not changed. The contents of the Z register are destroyed.

Appendix I1

Half-Word Class

Operand Location, Y, in Half-Word Class Instructions

Ml Q 1= 1 i = 0 { = 1
B hsY B hi(Ye-n)* . . .
. . . . - P LDH - p LDE i
- P LDH B - P LDH 1 B p + 1 h;Y Y OPERAND
Y OPERAND Y OFERAND { OPERAND
t = 16 usec. 0<Y <3777 t = 8 usec.
) Y = P 4+ 1
ney COLT IO 111 wp - LE(Y) if b =0 0 <Y <ITTT
SR E - 7 OPERAND = pyiv) y¢pn - 1 | OPERAND = LH(Y)

* Indexing: h is value before indexing. The contents of register B
are first indexed by L000. Any end carry is added to the right-most
10 bits only; bit 10 is not changed. Thus: O;1777 is indexed

to 1317775 131777 to 03;0000; 030000 to 13;0000; 130000 to 03;0001.
033777 1s indexed to 1;3777; 133777 to 032000; 052000 to 132000;
1;200C to 03;2001. The Relay lights are probably not affected.

LDH i B 1300 + 20i + B (t + 8} usec. LDH

LOAD HALF. Copy the contents of the designated half of register Y into

the right half of the Accumulator. Clear the left half of the Accumulator.

The contents of register Y are not changed.

STH i B 130 + 201 + B (t + 8) usec. STH

STORE HALF. Copy the contents of the righﬁ half of the Accumulator iunto

the designated half of register Y. The contents of the Accumulator and of

the other half of register Y are not changed.

SHD i B 1400 + 201 + B (t + 8) usec. SHD

SKIP IF HALF DIFFERS. If the contents of the right half of the Accumula-
tor do not match the contents of the designated half of register Y, skip
the next register in the instruction sequence; otherwise, go on to the
next instruction in sequence. The contents of the Accumulator and of

register Y are not changed.

II-10

Appendix IT

Operand Location, Y, in the SET Instruction
i=20 i=1
o [-] a [-]
) SET o« - p SET i«
p + 1 Y Y OPERAND
Y OPERAND ‘ ¢
¥ = 8 usec. t = O usec.
0 <Y <3777 Y=p+1
o 0 <Y <1777
SET i « 4o + 201 + « (t + 24) usec. SET

SET. Copy the comtents of register Y into register a. (O‘S a< 17).
Take the next ¥ustruction from register p + 2. The contents of register Y

are not changedo5

SAM i n ' 100 + 20i + ‘ * SAM

SAMPLE, Sample the signal on input line n (0 < n < 17) and leave its

numerical.véiue; seven bits plus sign, in theﬁright—most 8 bits of the

‘Accumulator, replicating the sign in the left-most 4 bits of the Accum-

ulator. Lines O through 7 are used by eight potentiometers located at
the Display Scope. ILines 10 through 17 are used by analog inputs at the
Data Terminal module; on these lines +I'volt corresponds to +177, and

-1 volt corresponds to -177. The contents oOf the Z register are déstroyed.

* Timing: If i = 0, the instruction requires 24 usec. for execution. If
i =1, the computer goes on to the neit: instruction after 8 usec., even
though the conversion process wili cbﬁﬁ?ﬁUeﬁin the Accumulator for

14 more psec, If, therefore;»ﬁhe‘inamfgc£i§m’is used wifh i=1, éare
must be taken not to disturb tHe Accumulatéf during the 1k usec.

following the instruction.

Appendix IT

II-11

DIS i « 140 + 20i + « 32 usec. DIS

DISPLAY. Display on the scope a point whose vertical coordinate is
specified by the right-most 9 bits of the Accumulator and whose horizon-
tal coordinate is specified by the right-most 9 bits of register C

(o,g a < 17)‘ The left-most bit of register & specifies one of two
display channels (further selected by a switch on the Display Scope) .
The left-most horizontal coordinate is 000; the right-most, T777. The
lowest vertical coordinate is =377; the highest, +377. The contents of
bits 9 through 11 of the Accumulator and of registe; & do not affect the

position of the point.

- If 1 = 1, the contents of the right-most 10 bits of register @ are first

indexed by 1, using 10-bit binary addition without end carry.

XSK i «a 200 + 20i + « 16 usec. XSK

INDEX AND SKIP. If the address part (the contents of the right-most

10 bits) of register & (0 < @ < 17) equals 1777, skip the ne§t register
in the instruction sequence; otherwise, go on to the next ‘instruction in
sequence, If 1 = 1, the address part of register & is first indexed by 1,
using 10-bit binary addition without end carry. The left-most two bits
are not changed. Thus, 1777 is indexed to 0000; - 3777, to 2000; 5777,

to 4000; and 7777, to 6000. \

-
it

Appendix II

Operate Class

OFR i1 n 500 + 20i + n 16 usec. minimum ~ OPR

OPERATE CHANNEL n. Generate a negative signal on output level line n
(0<n<13). Ifi=1, pause until a restart signal appears on external
level line n. Send other control signals to, and sense other signals
from, eguipment at the Data Terminal module; transfer data into or out of

the memory or Accumulator as specified by these control signals.

KBD 1 515 + 201 16 usec. minimum KBD

KEYBOARD. 1If a key has been struck and is locked down, clear the Accumu-
lator, release the key, and read its 6-bit code number into the right half
of the Accumulator. If no key has been struck and i = 1, pause until a
key is struck and continue as above. If no key has been struck and i = O,

clear the Accumulator and go on to the next instruction.

RSW 516 16 usec. RSW
RIGHT SWITCHES. Copy the contents of the Right Switches into the
Accumulator.

LSw 517 16 usec. LSW

LEFT SWITCHES. Copy the contents of the Left Switches into the

Accumulator.

Appendix II II-.3

Magnetic Tape Class

—D MTP i u 700 + 201 + 10u
p+1 QN BN 1000QN + BN
i Motion Control

i =0 Tape gtops after instruction execution.

i =1 Tape is left in motion after instruction execution.

us Unit Selection
u =0 Tape Unit #0.
u =1 Tape Unit #1.

QN: Quarter Number O<@QN<T
QN | Memory Registers QN | Memory Registers
0 0= 377 L 2000 - 2377
1 Loo - 777 5 2400 - 2777
2 1000 - 1377 6 3000 - 3377
3 1400 - 1777 T 3400 - 3777
BN: Block Number 000 < BN < 777 (octal)
1 Tape = 512 (decimal) blocks.
1 Block = 256 (decimal) words.
1 Word = 12 (decimal) bits.

Data sum = sum without end-around carry of 256 words in block.
Check sum = complement of data sum.

Transfer check = data sum + check sum.

= =0 if block is transferred correctly.

% =0 1f block is transferred incorrectly.

RDC i u 700 + 201 + 10u RDC

READ AND CHECK. Copy block BN into memory quarter QN and check the trans-
fer. If the block is transferred correctly, leave -0 in the Accumulator

and go on to the next instruction; otherwise, repeat the instruction.

The information on tape is not changed.

II-1L

Appendix IT

Magnetic Tape Class (continued)

RCG 1 u 701 + 201 + 10u RCG

READ AND CHECK GROUP. Copy block BN into the memory quarter whose number
corresponds to the right-most 3 bits of BN (block 773 into quarter 3,
etc.) and copy the following consecutive QN blocks into the following con-
secutive memory quarters (block 000 follows block 777, quarter O follows
quarter 7). ~Check each block tfansfer and repeat if necessary until all
blocks have transferred correctly, then leave -0 in the Accumulator and

go on to the next instruction. The information on tape is not changed.

RDE 1 u ‘ 702 + 201 + 10u RDE

READ TAPEub Copy block BN into memory quarter QN and leave the transfer

check in the Accumulator. The information on tape is not changed.

MTB i u ’ 703 + 201 + 10u MIB

MOVE TOWARD BLOCK. Subtract the next block number encountered from BN,
leaving the difference in the Accumulator. When i1 = 1, leave the tape
moving forward if the difference is positive and backward if the differ-

ence is negative or -0. QN is ignored.

Appendix II

II-15

Magnetic Tape Class (continued)

WRC i u 704 + 20i + 10u WRC

WRITE AND CHECK. Copy the contents of memory quarter QN into block BN and
check the transfer. If the memory contents are transferred correctly,
leave -0 in the Accumulator and go on to the next instruction; otherwise,

repeat the instruction. The contents of memory are not changed.

WCG 1 u 705 + 20i + 10u a WCG

WRITE AND CHECK GROUP. Copy the contents of the memory quarter whose
number corresponds to the right-most 3 bits of BN into block BN (quarter 5
into block 665, etc.) and copy the contents of the following consecutive
QN quarters into the following consecutive blocks (quartef 0 follows
quarter 7, block 000 follows block T77). Check each transfer and repeat
if necessary until all blocks have been written correctly, then leave -0
in the Accumulator and go on to the next instruction. The contents of

memory are not changed.

WRI i u 706 + 201 + 10u ‘ WRI

WRITE TAPE. Copy the contents of memory quarter QN into block BN and
leave the check sum in the Accumulator. The contents of memory are not

changed.

CHK i u 707 + 201 + 10u CHK

CHECK TAPE. Find block BN, form its transfer check and leave it in the

Accumulator. The information on tape and the contents of memory are not

changed. QN is ignored.

Appendix ITI: LINC Modifications

Mishell J. Stucki and Maurice L. Pepper

In August 1965, based on findings of
the LINC Evaluation Program,5 an inter-
rupt feature, the Z Register, and five
new instructions were made available
on the LINC.

1. The 7Z Register

This is a 12-bit register, not shown on the console, which can be
thought of as being to the right of the Accumulator. It is used as a
utility register with the DSC and SAM instructions, and it holds the least
significant half of the product following a MUL instruction. Each shift
of the Accumulator during ROR and SCR also shifts the contents of the Z
Register right with A —Z,,. (ROR 1L transfers C(ACC) to Z.) The Z
Register is cleared by CLR. MUL, DSC, SAM, ROR, SCR, and CLR are the only

instructions which alter the contents of the Z Register.

Following MUL, the least significant 11 bits of the product are in Zl
through le. Though the half product in the Accumulator is left with the
proper sign, the half in the 7 Register 1s always positive. Since the sign
- is left in the LINK bit, the following will recover the least significant

half as an 11-bit signed number: ZTA¥

The most significant 11 bits are lost if an integer multiplication is exe-

cuted.

* See III-6.

ITT-1

ITI-2

2. Overflow

The following instructions set an overflow flag: ADD, ADA, ADM, and
LAM. If there is overflow during execution of one of these instructions,
the overflow flag is set on; if there is no overflow, it will be set off.
Overflow results when two numbers of the same sign are added and the sum

is of the opposite sign.

3. Interrupt Feature

The interrupt feature permits a program to be interrupted in the
course of its operation. This feature has no effect until activated by a
special interrupt enable instruction, ENI (MSC 10). Thereafter, if an
interrupt request occurs, the normal running of the program will be inter-
rupted and the next instruction will automatically be taken from location
21. Two kinds of interrupt, a program interrupt and a data interrupt are
available. Which one of these will occur .depends on the instruction in

location 21.

Data Interrupt: Data interrupts are used to transfer data between

memory and an external piece of equipment. This is done by putting an OPR
instruction in register 21 and executing it in the GULP mode. The BCOM
operation normally performed at 2.2 time of an OPR is inhibited so that the
Accumulator will not be affected unless it is intentionally disturbed by
the assertion of CLEL, SNEL, or TNEL. At the end of the OPR instruction,

the machine will resume running the interrupted program.

Program Interrupt: A program interrupt allows the program to execute

a special routine (service routine) whenever an interrupt occurs. This
routine may be located anywhere in memory; it may not, however, begin in
locations zero or 21. To arrange for a program interrupt, one puts the
instruction "JMP X" in register 21 (X being the address of the service rou-

tine). This accomplishes three things:

ITI-3

1. It transfers program control to the service routine.

2. It stores the instruction‘”JMP n" in register zero
(n is the address of the next instruction in the inter-
rupted program).

3. It disables the interrupt feature so that the machine

cannot be interrupted during the service routine.

Requesting an Interrupt: A -3V level on the pin called INTREQ (FC30)

will request an interrupt. The level may occur asynchronously with the

main machine but it must remain until the interrupt actually occurs. At
that time a -3V level will appear on the pin called "BDOINTFFl" (FC15), indi-
cating that the instruction in register 21 is being executed. The inter-

rupt request must be removed within 16 usec of the time this level appears.

Where Interrupts Can Occur: If the interrupt mode has been activated

and an interrupt request appears, the program will be interrupted as soon
as one of the following occurs:

1. The end of a non-JMP instruction. A program cannot be
interrupted at the end of a JMP instruction.

2. The end of a non-ENI instruction. A program cannot be
interrupted at the end of the instruction ENI.

NOTE: This assumes that the interrupt feature is
being activated by the ENI. However, if the inter-
rupt feature is already active, i.e., the ENT is
redundant, an interrupt can occur at the end of the
instruction.

3. The occurence of a pause. An MIP or OPR instruction can
be interrupted during the paused state. The instruction
will be terminated abruptly and the interrupt executed.

At the end of the interrupt the machine will return to
the next instruction; it will not return to the unfinished

instruction.

Writing Interruptable Programs: Programs utilizing the interrupt fea-

ture must be specially written in any section that can be interrupted.
1. Programs incorporating a program interrupt: The very

first instruction in each subroutine must save the con-

tents of register zero. This is necessary since a pro-

gram interrupt occurring during the subroutine will
destroy the contents of register zero.
NOTE: An interrupt cannot occur immediately before
the first instruction in a subroutine since that

instruction is preceded by a JMP.

2. Programs incorporating either interrupt: Whenever an
instruction is interrupted in the paused state, a flip-
flop called PINFF (Pause Interrupt Flip-Flop) is set to
a one. The state of this flip-flop can be checked with
the instruction PIN (SKP 6). The PINFF should be

checked after. every instruction that pauses and the in-

struction should be repeated if an interrupt occurred.

Example: > WRC
3| koo
PIN i
o
JMP p-31

Writing Service Routines:

1.

If a service routine uses
A. the Accumulator: the initial contents of the
Accumulator must be saved and restored to it
at the end of the routine.
B. a JMP instruction: the return JMP in regis-
ter zero must be saved.
The interrupt feature is automatically disabled upon enter-
ing a service routine. If the interrupt feature 1s to be
operative upon returning to the interrupted program, the
service routine must reactivate it just prior to the return.
The instruction ENI must be the very last instruction before
the return JMP. If it occurs any earlier, the service rou-

tine itself may be interrupted.

Disabling the Interrupt Mode:

1.

2.

Manually: Pushing the STOP switch on the console disables
the interrupt mode. It also clears the PINFF.
Programs incorporating a program interrupt: The inter-
rupt mode is automatically disabled every time an
interrupt occurs. If it is not reactivated by an ENI
at the end of the service routine, it will remain dis-
abled. »
Programs incorporating either interrupt: Putting the
instruction NOP in register 21 disables the interrupt
mode.
NOTE: This will not disable the interrupt mode
until the next interrupt request occurs. At
that time the NOP is executed and the interrupt
mode.disabled. At the end of the NOP, the
machine resumes running the interrupted program.

Thé paused state can not be interrupted while the PINFF

is set to a one.

ITI-5

TI1-6

Additions: LINC Order Code Summary

Miscellaneous Class

ZTA 0005 8 usec. ZTA

7Z TO ACCUMULATOR. Clear the Accumulator and then transfer the contents
of the Z register to the Accumulator. The transfer is offset, so that

Zi—*Ai_l and O-+All. ZO is not transferred.

ENI 0010 8 usec. ENI

ENABLE INTERRUPT. ZEnable the interrupt mode.

SKIP CLASS

727 i 455 + 201 8 usec. 7227

7, ZERO ZERO. Condition: Bit zero of the Z Register contains O.

OVF i 45k + 201 8 usec. OVF

OVERFLOW. Condition: The overflow flag is on. This instruction
does not clear the overflow flag.

PIN i L6 + 20i 8 usec. PIN

PAUSE INTERRUPT. Condition: The PIMEF(Pause Interrupt Flip—Flop)
is set to a one. IExecution of this instruction clears the flip-flop.

Iv-1

Appendix IV: LINC Variants

The chart outlines the main differences between the classic LINC, p-LINC 1, p-LINC 300,
and LINC-8 that affect programming. It has been checked by the Digital Equipment
Corporation and by SPeAR, Inc., manufacturers of the machines indicated. For the most
part program modifications which may be necessary between machines are trivial. The
chart and notes are intended simply as a guide; your attention is called to the refer-
ences given.

are compatible with the: LINC-8

Classic LINC p-LINC 1 pM-LINC 300 (LINC mode)
Programs
written
for the: unless program uses: 4 unless program uses: unless program uses:
Classic Programming the LINC 1, 2, 4, 6,7 1, 2, 4,7, 13
LINC unless pu~LINC 1 has:
3,5
unless program uses: unless program uses: unless program uses:
3, 4, 8 1, 2, 4, 6, 7, 8 1, 2, 4, 7, 8, 13
p-LINC 1 Information from:
SPeAR, Inc.
Bear Hill Rd.
W m, Ma 02154
unless program uses: unless program uses: Micro-LINC-300 Order unless program uses:
1, 3, 4, 9, 11, 12 1, 4, 9, 11, 12 Code, SPeAR, Inc., 1, 4, 9, 12, 13, 14
p-LINC 300 Bear Hill Rd.,
unless p-LINC 1 has: Waltham, Mass. 02154
2,5
Small Computer Handbook,
unless program uses: unless program uses: unless program uses: doc. C-800, and
LINC-8 1, 3, 4, 10, 11 1, 4, 10, 11 1, 4, 6, 10 PROGOFOP, doc. DEC-L&-
(LINC mode) SFAO-D, D. E. C., Main
unless p-LINC 1 has: St., Maynard, Mass.
2, 5 01754.
1. Programmed timing loops. Instruction cycle time: classic LINC and p-LINC 1, 8 psecs.; p-LINC 300, gen-
erally 1 psec.; LINC-8, generally 1.5 psecs.
2. 8-bit SAM values.
3. 9-bit SAM values.
4, Printer output. Classic LINC: wunbuffered teletype printer usually connected through bit 0, Relay Register,
and held off with a one in bit 0.
u~-LINC 1: as classic LINC, or connected through channel 2 (OPR 2).
p-LINC 300: as classic LINC, or buffered teletype (OPR 42), or buffered Kleinschmidt (OPR 45) printer.
Kleinschmidt interprets vertical bar ASCII code as line feed.
LINC-8: buffered teletype printer (OPR 14).
There are other variations. (All machines have Soroban code as standard Keyboard input. A few individual
installations, however, use ASCII.)
5. O potentiometers.
6. Potentiometers 4-7.
7. OPR 0-14.%
8. MIT (Magnetic Tape Two).*%*)
9. Operations LMB#*#* UMB*** 6 MSC 2 (Set Flag), MSC 3 (Proceed from Tape Pause), MSC 4 (TA to A), MSC 7 (Disable
Interrupt), MSC 12 (Clear Flag), SKP 16 (Tape Transfer), SKP 17 (Flag), MIT**, OPR 0-14%, OPR 40-77.
10. Operations LMB*#%, UMB*** OPR 13 (PDP), OPR 14 (TYP), EXC, OPR 0-12%,)
11. "Buffered" feature of 2nd word (block number) of tape instructions. The classic LINC and the p-LINC 1 need
this word in the memory until the tape operation is finished.
12, Shift key to present upper case keyboard values directly to ACC.
13. Tape blocks which may be occupied by the LINC-8 "Program of Operation,'" PROGOFOP (normally blocks 0-11).
14, Memory bank O (reserved for PROGOFOP).

*0PR 0-14 are compatible between the classic LINC and the p-LINC 1, but not between these two, the p-LINC 300,
and the LINC-8. The timing pulse generation is different between the first two and the p-LINC 300, The LINC-8
OPR requires PDP-8 programming. There are thus slight logical differences in using OPR for buffered printer
output on the p-LINC 300 and the LINC-8.

**The second tape transport is optional on the p-LINC 1 and p-LINC 300. The MIT instruction is compatible between
machines which have the transport.)
The LINC~8 may have a second transport, addressable, compatibly, with MTT by modifying PROGOFOP. It will not
then have a general purpose EXC instructionm.

*%**Memory bank selection logic is handled differently on the p-LINC 300 and the LINC-8, although the LMB/UMB coding

is
pa

the same. Either machine may have 4K to 32K words. The classic LINC and the p-LINC 1 have 2048 words, not
ged. . ,

See

References

Clark, Wesley A. and Charles E. Molnar, "A description of the LINC,"
in Computers in Biomedical Research II, R. W. Stacy and B. Waxman,
Eds., Academic Press, New York, 1965.

Wilkes, Mary Allen, LINC Control Console, Center Developmént Office,
M.I.T., Cambridge, July 1963.

Thomae, Irving, "An introduction to binary numbers and binary
arithmetic,” LINC Vol. 16, LINC Programming and Use I, Sec. 1,
Washington University, St. Louis, April 1965.

LINC Vol. 12, Logic DraWings and Timing Diagrams, from: Computer
Systems Laboratory, Washington University, St. Louis.

Convocation on the Mississippi, Proc. Final LINC Evaluation Program
Meeting, Washington University, St. Louis, March 18-19, 1965.

also:

Micro-LINC 300 Order Code, Spear, Inc., Bear Hill Rd., Waltham, Mass.

Small Computer Handbook, doc. C-800, Digital Equipmént Corp.,
Main St., Maynard, Mass.

PROGOFOP, doc. DEC-L8-SFAO-D, Digital Equipment Corp., Main St.,
Maynard, Mass. .

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	A1-01
	A1-02
	A1-03
	A2-01
	A2-02
	A2-03
	A2-04
	A2-05
	A2-06
	A2-07
	A2-08
	A2-09
	A2-10
	A2-11
	A2-12
	A2-13
	A2-14
	A2-15
	A3-01
	A3-02
	A3-03
	A3-04
	A3-05
	A3-06
	A4-01
	References

