
PROGRAMMING THE LINC

SECOND EDITION

Computer Systems Laboratory

Washington University

St. Louis, Missouri

PROGRAMMING THE LINC

Second Edition

Mary Allen Wilkes and Wesley A. Clark

Computer Systems Laboratory
Washington University

724 South Euclid Avenue
St. Louis, Missouri 63110

This work was supported by the Division of Research Facilities and Resources
of the National Institutes of Hea.lth under grant FR-218-01-03, and, in cooper
ation with the Bio-Sciences Office of the Nationa.l Aeronautics and Spa.ce
Administration, under NIH contract PH43-63-540. "Programming the LINC" orig
inally appeared as Section 2 of LINC Volume 16, Programming and Use I, Computer
Research Laboratory, Washington University, St. Louis, Missouri, June 1965.

First edition: June 1965
Reissue: August 1967
Second edition: January 1969

Copyright 1969 Washington University

For \",hom the gong perhaps chimes

PROGRAMMING THE LINe

Contents

1. 0 Introduct ion 0 •• 0 • 0 •• 0 • " • 0 • 0 ••••• 0 ••• n ••••••••••• 0 • 0 • • • • • • • • • • • .. • • • •• 1

2. Number Systems 0 0 • 0 • nO. n ••• 0 0 0 nO •••••••• 0 •••• 0 ••• 0 0 ••••••••• " • n ••• 0 • n 3

30 Simple Instructions • 0 0 0 n U 0 • nO. 0 •• 0 0 • " 00 •• 0 n 00 ••• 0 0 ••• 0 • n n n n " •• " n •• o. 5

4 0 S h i ft i ng n 0 0 " " " " " n • 0 0 0 0 0 0 0 0 • 0 • • 0 • • • • 0 • • • • • • • • • • • • • • • • • 0 0 • 0 0 • • • • • 0 0 0 •• 7

5. LINC Memory and Memory ,Reference Instructions .o •••••••••••• oo.~ oo 9
The STORE-,CLEAR Instruction .. 00 ••••• 00 • 0 •••••••••••••••••••••• 0" 10
The ADD Instruction and Binary Addition 0 •••••••••• 0 •••••••• 11

6. The Instruction Location Register 0 0 ••• 0 0 • , •••••••• " ••••• " •••• ". 12
T1he ,JlJMP Instruction ." 0 0 •••••••••••••••••• 0 • ' •• 0 ... n •• 0 • n ." 11+

7. Address Modification and Program "Loops" ...•. 0 •• 00 •••••• ".00 ••••••• 16
80 Index Class Instructions I •.... 0 •••• 0 ••••••••••••••••• 0 •••• 0 0 •• 21

:rndirect Address ing . 0 • , •• 0 0 0 0 0 • 0 ••••••• I) ••••••• no •••• 0 ••• " • • • • •• 21
Index Registers and Indexing 0 •••••••••••••••• 0 •••• 0 •• " •••• " •• " ". 21~
Logic Instructions 0 0 '> 0 0 0 " " ••• 0 0 •••••• ~ •••• 0 •••• 0 ••••• 0 0 0 " 0 " •• 0 ." 28

9" Special Index Register Instructions 0 ••••••••• 0 •••••• I) " •• 0 •••••••• o. 29
The INDEX AND SKIP Instruction ..•••..•••.....• " .. 0 ••••••••••••• " 29
The SET Instruction .0'.". 0 0 0 •••••••••• 0 ••••••• 0 ••• 0 •••••• 0 0 ••• '0. 31

100 Index Class Instructions II .. 0 •••••••••••••••••••••• 0 •••••••••• 0 ••• 34
Double R.egister Forms 0 0 • 0 ••• 0 ••••••••••••••••• 0 ~ 0 •• 0" • " •••• o. 34.
Multiple Length Arithmetic 0 ••••••••••••••••••••••••••••• " ••••••• 39
Multiplication ,,~ .. 0 0 " • 0 0 0 • 0 ••• 0 • 0 0 • 0 ••• 0 ••••••••• 0 ., • " • • • • • • • • • •• 45

11. Half-Word Class Instructions .. 0 ••••••••••••••••• 0 •••••••••••••••••• 50

12. The KEYBOARD Instruction .• 0 •••••••••••••••• 0 ••••• 0 ••• " ••••••••• 0 •• 054

13. The LINC Scopes and the Display Instructions .•.•...•••..•.••..•.•.. 57
Character" Display . 0 " •• 0 •• 0 0 •••••••••••••••••• 0 •• 0 ••••••• 0 • • • • • •• 59

14. Analog Input and the SAMPLE Instruction •..••••..•••.••••..•......•• 66

15. The Skip Class Instructions .••.. 0 •••••••••• o 0 ~ •• 0 Q 72

16. The Data Terminal Module and the OPERATE Instruction ...•..•.•..•••• 76
170 Subroutine Techniques 0 •.• ~ 0 0 ••••••••••• 0 •••••••••• 0 •••••••••••••• 77

180 Magnetic Tape Instructions 0 ••.• 0 ••••••••••••••••••••••••••••• 0 80
Block Transfers and Checking 0 • • • • • • • • • • ... 82
Group Transfers ••••. 0 n ••••• 0 • 0 ••••••• 0 • 0 0 ••• 0 •••••• 0 • • • • •• 92
Tape Mot"ion and the MOVE TOWARD BLOCK Instruction ..•...•....•... 94
Ta pe Format 0 0 0 0 10 0 • 0 0 0 Q •• () 0 0 0 ••••••• 0 ••• 0 0 • 0 ••• 0 •••• _ fiIi I) I) • 0 •• Don 0 0 98
Tape Motion Timing 0 101

Contents

Chart ·1. Classes of LINC Instructions 105

Chart II. Keyboard Code ... 106

Chart III. Pattern Words for Character Display 107

Chart IV. Instruction Code 108

Appendix I: Double Memory Programming

Appendix II: LINC Order Code Summary

Appendix III: LINC Modifications

Appendix IV: LINC Variants

References

Index of Programming Examples

10 Simple Sequence of Instructions 000000000.00000000000000000000000000 13

20 Simple Sequence Using the JUMP Instruction 0000000000000000000000000 15

3. Summing a Set of Numbers Using Address Modification 0000000000000.00 18

4. Packi.ng a Set of N'umbers 0 0 0 •.. 0 0 0 0 0 0 0 0 . 0 0 0 • 0 0 0 0 0 0 0 0 . 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 20

50 Indirect Addressing 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 . 0 0 0 0 • 0 0 00. 0 0 000 0 00" 0 0 0 23

6. Indexing to Clear a Set of Registers 0000000.00000000000000000000'.0 25

7. Memory Scanning 0 0 . 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " 0 0 0 0 0 0 0 0 26

80 Summing Sets of Numbers Term by Term 000000000000000000.000000000000 27

90 Index Registers Used as Counters 0.00'000000000.0000.00.000000000000 30

100 Indexing and Counting to Clear a Set of Registers .00'00000'0000'000 30

11. Setting Initial Index Register Values o. 0.0000.0000000000000'.000" 0 0 .33

1.20 Scanning for Values Exceeding a Threshold .0.0000000'.0,0000'0000000 37

1.3. Summing Sets of Double Length Numbers Term by Term 000000000'0000000 44

140 Multiplying a Set of Fractions by a Constant 00000000000000000000.00 48

15. Multiplication Retaining 22-bit Products 000.00000000000000.00000,.0 49

16. Filling Half-Word Table from the Keyboard 0.0.0.00000'0000000000000' 55

l70 Selective Filling of Half~,Word Table from the Keyboard 000' 0 0 0 000 0 . 0 56

18. Horizontal Line Scope Display "00000000000000000.0000000000000000000 58

19. Curve Display of a Table of Numbers 0 0 0 • 0 . 0 0 0 . 0 0 0 0 0 0 0 • 0 0 0 0 0 " 0 0 0 0 0 0 "0 59

20. Character Display of the Letter A 0000000000000.00000000000000.00.00 62

2lo Character Display of the Letter A Using DSC 00.0000 •.. 000.0.000 0 64

22. Displaying a Row of Characters 0" •. ,00000 .•. 000000.0.0'000000000,00 65

230 Simple Sample and Display 000"'0000.0.'000 .. 0000 .• "000.0.00000 .• 0000 68

240 Moving Windo'iv Display Under Knob Control .0000 0 .• 0 ". 0 • 0 0 0 0 . 0 0 0 0 0 .. " o. 69

250 Histogram Display of Sampled Data . 0 0 0 0 0 . 0 .•. 0 . 0 . 0 • 0 .. 0 . 0 •••••• 0 •. 0 0 71

260 Counting Samples Exceeding a Threshold 0' .. 000.000000'0 ••. 0.0 .• 0.000 74

27. Simple Sample and Display Ivith Keyboard Control 0 .• 0 0 0 0 000 0 000 0 0 0 •.• 75

28. Simple Check of an Entire Tape 0 .. 0000 •• 000".0 •••. 0000.0.0 ..•• 00.0.0 88

29. Dividing Large Programs Between Tape and Memory .. 00000 •• 0 •• 0 •• 0 ••.• 90

30. Collecting Data and Storing on Tape .000.00 ••••••.•.•••• 0 ••• 0 .•• 0 ••• 9l

3l. Tape and Memory Exchange with Group Transfer .000 .•• ".000.0000000.00 94

320 Block Search Subroutine 0.000"0.000 •• 00000 •• 00,.0000 •• 00 ••••••• 0.0 lOO

33 • Write and Check 'ivi th Fewest Reversals •. 0 .••• 0 •. 0 • 0 a •• 0 0 • 0 • 0 0 a 000 o. 103

340 Indexing Across Memory Boundaries 0.000 •.••••••••• 000 •• 0 Appendix I~ 3

Page Index of LINC Instructions

ADA · 21, 11-5 OPR · 76, 11-12

ADD · 11, 11-3 OVF · 111-5

ADM · 26, 11-6 PIN · 111-5

APO · 73, 11-4 RCG · 92, 11-14

ATR · 6, 11-1 RDC · 86, 11-13

AZE · 17, 11-4 RDE · 83, 11-14

BCL · 26, 11-7 ROL · 8, 11-2

BCO · 28, 11-7 ROR · 8, 11-2

BSE · 28, 11-7 RSW · 6, 11-12

CHK · 87, 11-15 RTA · 6, 11-1

CLR · 5, 11-1 SAE · 25, 11-7

COM · 6, 11-1 SAM · 66, 11-10

DIS · 57, II-II SCR · 8, 11-2

DSC · 63, 11-8 SET · 31, 11-10

ENI · 111-5 SIID · 52, 11-9

HLT · 13, 11-1 SKP · 72, 11-4

IBZ · 98, 11-4 SNS · 73, 11-4

JMP · 14, 11-3 SRO · ~ .. 61, 11-7

KBD · 54, 11-12 STA · 23, 11-5

KST · 74, 11-4 STC · 10, 11-3

LAM · 39, 11-6 STH · 51, 11-9

LDA · 23, 11-5 SXL · 72, 11-4

LDH · 50, 11-9 WCG · 92, 11-15

LSW · 11-12 WRC · 89, 11-15

LZE · 73, 11-4 WRI · 85, 11-15

MSC 13 11-1 XSK · 29, II-II

MTB · 96, 11-14 ZTA · 111-5

MUL · 45, 11-6 ZZZ · 111-5

NOP · II-1

PROGRAMMING THE LINC

1. Introduction

The LINC (Laboratory Instrument Computer) is a stored-program binary

coded digital computer designed to operate in the laboratory environment as

a research tool. The following description is intended to serve as a gen

eral introduction to basic programming concepts and techniques, and specif

ically as an introduction to LINC programming.

The "classic" LINC,l the basis of this document, has found variation in

manufacture in the form of the LINC-8 and the micro-LINC. Other variations

may yet appear. The fundamental programming techniques, however, are the

same for all varieties, and references to "the LINC" in the following can gen

erally be read without respect to variant. A summary on LINC Variants is pro

vided in Appendix IV. It especially affects Chapter 16, and all questions of

instruction execution times.

Like most digital computers, the LINC operates by manipulating binary

numbers held in various registers (storage devices for numbers), under the

control of a program of instructions which are themselves coded as binary num

bers ,and stored in other registers. LINC instructions generally fall into

types or classes, the instructions of a class having certain similarities. In

this description, however, instructions are introduced as they are relevant to

the discussion; reference to Chart I is therefore recommended when clasq char

acteristics are described. Furthermore, not all LINC instructions are describ

ed here in detail, specifically those resulting from modifications to the

computer as covered in Appendix III. Therefore, this document should be read

in conjunction with the LINC Order Code Summary, Appendices II and 1II-6.

2

The best way to begin is to consider only a few of the registers and

switches which are shown on the LINC Control Console:
2

the ACCUMULATOR (ACC)

which is a register of 12 lights, the LINK BIT (L), the LEFT and RIGHT

SWITCHES, which are rows of 12 toggle switches each, and one lever switch

labeled "DO. II The number systems and operation of several of the instruc

tions can be understood in terms of these few elements.

2. Number Systems

The elements (bits) of each register or row of toggle switches are to

be thought of as numbered from right to left starting with zero. This will

serve to identify the elements and to relate them to the numerical value of

the binary- integer held in the register. we shall use "C(ACC) Ii to deilote

"the contents of the Accumulator register," etc. If the Accumulator is

illuminated thus

ACCUMULATOR

~ ~ ~ I I ~ ~ I
11 10 9 8 7 6 5 4 3 2 1 0

then the binary number stored in the Accumulator is

C(ACC) = 010 011 100 101 (binary)

which has the decimal value

C(ACC) = 210 + 27 + 26
+ 25 + 22 + 20

= 1024 + 128 + 64 + 32 + 4 + 1

1253 (decimal)

~ Light Off

D Light On

We can also view this as an octal number by considering each group of three

bits in turn. In this example, grouping and factoring proceed as follows:

C(ACC) = (210) + (27+26) + (25) + (22+2°)

= (2
1

)'29 + (2
1

+20) '2
6 + (22) 023 + (22+20) .20

= (2) · 83 + (3) · 8
2 + (4) .81 + (5) . 80

= 2 3 4 5

= 2345 (octal)

3

Number Systems

Tio put this more simply, each octal digit can be treated as an independent

3-bit binary number 'i"hose value, (0, 1, ... , 7), can be obtained from the
2 1 a

weights 2 , 2 , and 2 :

I ACCUMULATOR

~ ~ ~ I I ~ ~
2 1 a 2 1 a 2 1 a 2 1 a
~ '--v---' L-y----J -'---y----J

2 3 4 5 2345 (octal)

This ease of representation (the eight possible combinations within a group

are easily perceived and remembered) is the principal reason for using octal

numbers. The octal system can be viewed simply as a convenient notational

system for representing binary numbers. Of course, octal numbers can also

be manipulated arithmetically.

The translation from one system to the other is easily accomplished in

either direction. Here are some examples:

1 a 7 3 a 2 6 5 7 2 4 6 (octal)

.I t \~
001 000 111 all

It\~
000 010 110 101

/1\~
111 010 100 110 (binary)

, I

Sometimes it is useful to view the contents of a register as a signed

number. One of the bits must be reserved for the sign of the number. The

left-most bit is therefore identified as the SIGN BIT (0 for +, 1 for -).

To'change the sign ofa binary number, we complement the number (replace all

ZEROS by ONES and vice-versa).3 Examples:

000 000 000 all = +3

111 111 111 100 = -3

all III 111 111 = +3777 } The largest positive and negative

100 000 000 000 = -3777
octal integers in the 12-bit
signed-number system.

Simple Instructions

We say that the pair of binary numbers 10.1111110011 and 010000001100 are

ones' complements of each other, (in octal these are 5763 and 2014), and

will denote the complement of the number N by N. Note that the sum of each

binary digit and its complement is the number 1, and that the sum of each

octal digit and its complement is the number 7. Note also that there are
-'---- _- ___ """'"'..J-J-...; ~.,..."rt
\.JW U J. Cl:JJ. COc:;J.J.IJCI·IJ~V '-' af the nu~oer zero:

000 000 000 000 = +0

111 111 111 111 = -0

Note finally that the sum of any binary number and its complement is always

a zero of the second kind, "minus zero,ii in this system.

3. Simple Instructions

The LINC instructions themselves are encoded as binary numbers and held

in various registers 0 The simplest of these instructions, namely those

'i-lhich operate only on the Accumulator, 'i-lill be described first 'i-lith reference

to the Left Switches.

Raising the DO lever (DO means "do toggle instruction tl
) causes the LINC

to execute the instruction 'iYhose binary code number is held in the Left

S'i-litches. The LINC 'i-lill then halt 0 For example, if we set the Left S'i-litches

to the code number for the instruction "CLEAR," which happens to be

0011 (octal), and then momentarily raise the DO lever, the Accumulator lights

'ivill all go out "and so 'i-lill the Li nk Bit light, so that C(ACC) = 0, and

C(L) = o. In setting a switch, "up" corresponds to " II one.

DO LEFT SWITCHES
\\' Left Switches set

~
\

t~~ ttcQ I ~t~ ~~~
to 0011 (octal),
the code number

STOP '----v--' '---y---J '---y----J '--y----J for "CLEAR."
0 0 1 1

6

I COM I

~iiJ
[RTA-!
\RSW I

Simple Instructions

Tersely: If C(Left Switches) = 0011 (octal), then DO has the effect

o -7 C(ACC) and 0 -7 C(L)o (Read "zero replaces the contents of the Accum

ulatDr,1! etc.).

CLEAR (or CLR) i.s an instruction of the class known as Miscellaneous

instructions. A second Miscellaneous Class instruction, COMPLEMENT (or COM),

with the code number 0017 (octal), directs the LINC to complement the con

tents of the Accumulator and therefore has the effect C(ACC) -7 C(ACC).

(Read ~ lithe complement of the contents of the Accumulator replaces the

contents of the Accumulator.i!)

Two other instructions of this class transfer information between the

AccumUlator and the Relay Registero The Relay Register, displayed on the

upper right corner of the Control Console, operates 6 relays which can be

used to control or run external equipment 0 An instruction ,,,i th the code

0014 (octal), called ACCUMULATOR TO RELAY, ATR, directs the LINC to copy the

contents of the right half of the Accumulator, i.e., the right=most 6 bits,

into the Relay Register. The Accumulator itself is not changed Hhen the

instruction is executed. Another instruction, called RELAY TO ACCUMULATOR,

RTA, ,,,ith the octal code 0015, causes the LINC to clear the AccumUlator and

then copy the contents of the Relay Register into the right half of the

Accumulator. In this case the Relay Register is not changed and the left

half of the Accumulator is left cleared (i.eo, containing zeros) 0

Another instruction called RIGHT SWITCHES, RSW, with the code number

0516 (octal), directs the LINC to copy the contents of the Right S,,,i tches

into the Accumulator. By setting the Left Switches to 0516, the Right

Switches to ,,,hatever value we want to put in the AccumUlator, and then

momentarily raising the DO lever, ,,,e can change the contents of the Accum

ulator to any new value we like 0 The drawing shows ho,,, the switches should

be set to put the number 6451 (,octal) into the Accumulator:

DO
~

LEFT SWITCHES I RIGHT SWITCHES

~
\

Ilt II ~~& IJcf~ 0& ~ &~~ IJ~§ ~~& I ~~~
STOP \, ~ ,

v V
Code number for RSW 6451 -7 C(ACC) '''hen
instruction = 0516 DO lever is raised

J

40 Shifting

After a number has been put into the Accumulator it can be repositioned

or 11 shifted, 11 to the right or left 0 There are two I'lays of shifting ~

rotation, in i,'lhich the end-elements of the Accumulator are connected together

so as to form a closed ring, and scaling, in which the end-elements are not

so connected.

L ~ll 0 ~ D IHI I~I I~I I
Rotation

L 11 0

D 1--71 1-71 I~I 1-7
Scaling

Examples of shifts of one place~

rotating Effect of scaling
ri lace ri ht 1 lace

before 000 000 011 001 000 000 011 001 :=: +25 (decimal)

after 100 000 001 100 000 000 001 100 = +12

before 111 111 ,100 110 111 111 100 110 :=: -25 (decimal)

after 011 111 110 011 111 111 110 011 = -12

Note that, in scaling, bits are lost to the right, which amounts to an error

of "rounding Off"; the original sign is preserved in the Sign Bit and

replicated in the bit positions to the right of the Sign Bit. This has the

effect of reducing the size of the number by poi,vers of two (analogous to

moving the decimal point in decimal calculations).

7

8

I ROR I
LBOLj
I SCR I

Shifting

The LINC has three instructions, called the Shift Class instructions,

which shift the contents of the Accumulator; these are~ ROTATE RIGHT,

ROTATE LEFT, and SCALE RIGHT. Unlike the .simple inftructions we have con

sidered so far, the code number for a Shift Class instruction includel? a

variable element whic~ specifies the number of places to shift. For example,

we write "ROL n," which means "rotate the contents of the Accumulator n

places to the left," where Dr'can be any number from 0 through 17 (octal)o

As a further variation of the Shift Class instructions, the Link Bit can

be adjoined to the Accumulator during rotation to form a 13-bit ring as shown

below, or to bit 0 of the Accumulator during scaling to preserve the lo\'l order

bit scaled out of the Accumulator:

Rotation \'lith Link Bit

QJ
Scaling \'lithLink Bit

The code number of a Shift Class instruction, e.g., ROTATE LEFT,there

fore includes the number of places to shift and an indication of whether or

not to include the Link Bit. We use the full expression ROL i n, which has

the octal coding:

ROL i n 0240 + 20i + n

t

ACC only

Link ~ ACC

number of places to shift
(n = 0, 1, ••. , 17)

so that, for example, RGrATE ACC LEFT 3 PLACES has the code number 0243, and

ROTATE ACC WITH L!NK LEFT 7 PLACES has the code number 0267. Note the

LINC Memory and Memory Reference Instr'uct ions

correspondence between the code terms and bit-positions of the binary-coded

instruction as it appears, for example, in the Left Switches~

the "i-bit il

J,
&&~

RnT, ; 7
..... -- - I

J '--_v_-_J Code number = 0267
n

Similar coding is used with ROTATE RIGHT, ROR i n, 300 + 20i + n., and SCALE

RIGHT, SCR i n, 340 + 20i + no

5. LINC Memory and Memory Reference Instructions

Before we can proceed to other instructions it is necessary to introduce

the LINC Memory. This Memory is to be regarded as a set of 1024 (decimal)

registers* each holding 12~bit binary numbers in the manner of the Accumulator.

These memory registers are numbered 0, 1, .•. , 1023 (decimal).~ or 0, l.~ a 0 • ,

1777 (octal), and we shall speak of tithe contents of register 3,i! C(3), lithe

contents of register X,." C(X), etc. J referring to 1i3i! and ItXII as Memory

Addresses.

The Memory actually consists of a remotely-located array of magnetic

storage elements with related electronics, but for introductory purposes we

can view it in terms of two registers of lights, namely the MEMORY ADDRE$S

register and the MEMORY CONTENTS register:
"

L ACCUMULATOR

D I I

I MEMORY ADDRESS MEMORY CONTENT S

IT] I I I I I I I 1 I -------.. 1 I I I

I Left Switches I Right Switches I

~~~ ~~~ ~~t ~~~ t~~ ~~~ ~~C(\ 

*See Appendix I for a discussion of the LINC as a "double memory" machine. 

9 



10 

I STC I 
The STORE=CLEAR Instruction 

By using these two registers in conjunction with the Left Switches it 

is possible to find out what values the memory registers containo If, for 

example, we are interested in the contents of register 3, we may set the Left 

Switches to the memory address 0003 and then push the button labeled EXAM. 

We will see 0003 in the Memory Address register, and the contents of 

register 3 will appear in the Memory Contents register. By setting the Left 

Switches to a memory address and pushing EXAM, we can examine the contents of 

any register in the LINC Memoryo 

The contents of any selected memory register may be changed by using both 

the Left and Right Switches and the pushbutton marked FILL 0 If, for example, 

we 'want the memory register whose addres s is 700 to contain ~l (i .. e., 7776 

octal) we again set the memory address, 0700, in the Left Switcheso We set 

the Right Switches to the value 7776 and push the FILL button. A 0700 will 

appear in the Memory Address register and 7776 will appear in the Memory Con~ 

tents register, indicating that the contents of register 700 are now 7776. 

Whatever value register 700 may have contained before FILL was pushed is lost, 

and the new value has taken its place. In this way any register in the LINC 

Memory can be filled with a new number. 

None of the LINC instructions makes explicit reference to the Memory 

Address register or Memory Contents register; rather, in referring to memory 

register X, an instruction may direct the LINC implicitly to put the address X 

into the Memory Address register and the contents of register X, C(X), into 

the Memory Contents register. 

The STORE-CLEAR Instruction 

Now we can describe the first of the memory reference instructions, 

STORE~CLEAR X, STC X, which has the code number 4000 + X, where 

o ~ X:s 1777 (octal). (From now on we will use only octal numbers for 

addresses.) Execution of STC·X has two effects~ 1) the contents of the 

Accumulator are copied into memory register X, C(ACC) .~ C(X), and 2) the 

Accumulator is then cleared, 0 ~ C(ACC). (The Link Bit is not cleared.) 

Thus, for example, if C(ACC) = 0503 andc(671) = 2345, and we set the code 



The ADD Instruction and Binary Addition 

number for SIC 671, ioe., 4671, in the Left SWitches" then raising the DO 

lever will put 0 into the Accumulator and 0503 into register 6710 The 

original contents of register 671 are losto 

It will be clear, now, that the Memory can be filled with new numbers 

at any time either by using the FILL pushbutton and the s"';;itches" or by 

loading the Accumulator from the Hi.ght Swi.tches with the RSW instruction and 

the IX) lever and then storing the Accumulator contents with the STC X instruc= 

tion and the DO lever. 

The ADD Instruction and Binary Addition 

STC is one of three Full Address Class instructions. Another instruc

ti.on in this class, ADD X" has the code number 2000 + X where 0 :S X :S 17770 

Execution of ADD X has the effect of adding the contents of memory register X 

to the contents of the Accumulator, i. e.;I C(X) + C(ACC) -7 C(ACC) . If the 

Accumulator is first cleared, ADD X "\"ill, of course, have the effect of merely 

copying into the Accumulator the contents of memory register X,j i 0 eo:; 

C(X) -7 C(ACC). In any case, the contents of memory register X are unaffected 

by the instructiono 

The addition itself takes place in the binary system, 3 within the 

limitations of the 12-bit registers. The basic rules for binary addition are 

simple~ 0 + O:~ 0; 1 + O:-z 1; 1 + 1 = 10 (i.eo., i1zero,~ with one to carry!!). 

A carry arising from the left=most column (I!end-carryi!) is brought around and 

added into the right-most column (l1 end=around carryli)c Some examples (begin 

at the right-most column as in decimal addition); 

001 111 010 001 111 100 010 011 

000 010 111 001 001 010 010 000 

11 111 1 1 (Carri.es) 11 1 (Carries) 
010 010 001 010 (Sum) 000 110 100 011 

11 

I A.DD I 

(1 
~ 1 (End=around carry) 

11 (Carries) 
000 110 100 100 (Sum) 

The reader should try some examples of his own, and incidentally verify the 

fact that adding a number to itself '\"i th end=around carry is equivalent to 



12 The Instruction Location Register 

rotating left one place. With signed-integer interpretation, some other 

examples are: 

000 000 000 101 = +5 

III III III 100 = -3 
III III 111 
000 000 000 001 

) 1 

1 
000 000 000 010 = +2 

III 

III 

III 
III 

III III 010 

III III 100 

III 11 
III 110 110 

) 1 

= -5 

= -3 

III III 110 III = -8 (decimal) 

It can be seen that subtraction of the number N is accomplished by addition 

of the complement of N, N. Of course, if either the sum or difference is too 

large for the Accumulator to hold, the result of the addition may not be 

quite the number \Ve would like to have. For example, adding 1 to the largest 

positive integer in this system (+3777, octal) results in the largest nega

tive integer (-3777, octal). This is sometimes called "overflowing the 

capacity of the Accumulator." * 

6. The Instruction Location Register 

It is clear that the code numbers of a series of different instructions 

can be stored in consecutive memory registers. The LINC is designed to 

execute such a "stored program" of instructions by fetching and carrying 

out each instruction in sequence, using a special la-bit register called 

the INSTRUCTION LOCATION register, (IL), to hold the address of the next 

instruction to be executed. Using the FILL pushbutton and the Left and 

* See Appendix III. 



The Instruction Location Register 

Right Switches already discussed, we can, for example, put the code numbers 

for a series of instructions into memory registers 20-24 which will divide 

by 8 the number held in memory register 30 and store the result in memory 

register 31: 

Start 

Memory 
Address 

> 20 

21 

22 

23 

24 

30 

31 

Memory 

CLR 

ADD 30 

SCR 

STC 

HLT 

N 

7N/8 

3 

31 

Contents 

0011 

2030 

0343 

4031 

0000 

N 

N/8 

Effect 

Clear the Accumulatoro 

Add the contents of register 
the Accumulatoro 

Scale C(ACC) right 3 places 
divide by 8. 

Store in register 310 

Halt the computerc 

Number to be divided by 80 

Result 0 

Example 1. Simple Sequence of Instructions. 

30 to 

to 

We can use the FI~L pushbutton and the Left and Right Switches to put the code 

numbers for the ins-tructions into memory registers 20 - 24 and the number to 

be divided into register 30. Pushing the console button labeled START 20 

directs the LINC to begin executing instructions at memory register 20s That 

is, the value 20 replaces the contf2nts of the Instruction Location register. 

As each instruGtion of the stored program is executed, the Instruction Loca~ 

tion register is increased by 1, C(IL) + 1 ~ C(IL)o When the Instruction 

Location register contains 24, the computer encounters the instruction HLT, 

code 0000, "\vhich halts the machine., To run the program again we merely push 

the START 20 pushbutton. (The code numbers for the instructions will stay 

in memory registers 20 - 24 unless they are deliberately changed.) 

13 

I HLTI 



The JUMP Instruction 

The last Full Address instruction, J1JMP to X, JMP X, with the code 

number 6000 + X, has the effect of setting the Instruction Location register 

to the value X; X ~ C(IL). That is, the LINC, instead of increasing the 

contents of the Instruction Location register by one and executing the next 

instruction in sequence, is directed by the JMP instruction to get its next 

i.nstructi.on from memory register Xc In the above example having a JUMP to 

20 instructionj' code 6020~ in memory register 24 (in place of HLT) would 

cause the computer to repeat the program endlessly. If the program were 

started with the START 20 pushbutton, the In8truction Location register 

would hold the succession of values~ 20, 21, 22, 23, 24, 20, 21, etc. 

(Later we will introduce instructions which increase C(IL) by extra amounts, 

causing it to !1skipoli) 

JMP X has one further effect ~ if JMP 20, 6020.~ is held i.n memory 

register 24, then its execution causes the code for !1JMP 25 11 to replace the 

contents of register 0; i. eo., 6025 ~ C( 0) . More generally, if JMP X is in 

any memory register Hp ,11 0 .:; p :s 1777:; then its execution causes 

II JMP p+ 1 II ~ C ( 0 ) • 

Memory 
Address 

o 

~ P 

p+l 

X 

Memory Contents 

JMPp+l 6000 + p+l 

JMP X 6000 + X 

[ 

Effect 

X ~ C ( IL), and IS JMP p+ lli .~ C ( 0) . 

Next instruction. 

This ?lJMP p+1H code replaces the contents of register 0 every time a JMP X 

instruction is executed unless X = 0, in which case the contents of 0 are 

unchanged. The use of "memory register 0 in this way is relevant to a pro~ 

gramming technique involving iisubroutines li which will be described later. 



The JUMP Instruction 

The following programming example illustrates many of the features 

described so far. It finds one~fourth of the difference between two numbers 

Nl and N
2

, which are located in registers 201 and 202, and leaves the result 

in register 203 and in the Accumulator. After filling consecutive memory 

registers 175 through 210 \-lith the appropriate code and data numbers, the 

program must be started at memory register 175. Since there is no :~oll'AliT i'75?~ 

button on the console, this is done by setting the Right Switches to 0175 

and pushing the console button labeled START RS (Start Right Switches). 

Memory 
Address 

Start> 175 

176 

177 

200 

201 

202 

203 

204 

205 

206 

207 

210 

Memory Content s 

CLR 

ADD 201 

COM 

JMP 204 

Nl 

N2 

(N2-Nl )/4 
ADD 202 

SCR 2 

STC 203 

ADD 203 

HLT 

0011 

2201 

0017 

6204 

N 
1 

N2 
(N

2
=N

l
) /4 

2202 

0342 

4203 

2203 

0000 

Effect 

o ~ C(ACC). 

Nl ~ C(ACC). 

Forms =N1 o 

Jumps around data; 204 ~ C(IL), 
and JMP 201 ~ C(O). 

}Data and result. 

(N2-Nl ) ~ C(ACC)o 

Divides by 4. 

Stores result in 203; C(ACC) ~ 
C(203); 0 ~ C(ACC). 

Recovers result in ACC. 

Halts the LINC. 

Example 2. Simple Sequence Using the JUMP Instruction o 

In executing this program, the Instruction Location register holds the 

succession of numbers: 175, 176, 177, 200, 204, 205, 206, 207, 210. 

15 



16 

7. Address Modification and Program HLoops" 

Frequently a program of instructions must deal with a large set of 

numbers rather than just one or two 0 Suppose, for example, that we want to 

add together 100 (octal) numbers and that the numbers are stored in the 

memory in registers 1000 through 1077. We want to put the sum in memory 

register 11000 We could, of course, write out all the instructions neces

sary to do this, 

Memory 
Address Memory Contents Effect 

~ 20 CLR 0011 o ~ C(ACC); o ~ C(L) 0 

21 ADD 1000 3000 Add 1st number. 

22 ADD 1001 3001 Add 2nd number. 

23 ADD 1002 3002 Add 3rd number. 

24 ADD 1003 3003 Add 4th numbers 

etc. etc. etc. 

but it is easy to see that the program 'viII be more than 100 (octal) 

registers long. A more complex, but considerably shorter, program can be 

'vritten using a programming t~chnique kno'vn as "address modification. Ii 

Instead of writing 100 (octal)' ADD'.;'~'_instructions, we write only ~ ADD X 

instruction, which 've repeat 100 (octal) times ,modifying the X part of the 

ADD X instruction each time it:, is repeated. In this case the computer first 

executes an ADD 1000 inst:r.uction; the program then adds one to the ADD in

struction itself and restores it, so that it is now ADD 10010 The program 

then jumps back to the location containing the ADD instruction and the 

computer repeats the entire process, this time executing an ADD 1001 

instruction. In short, the program is written so that it changes its own 

instructions while it is running. 



Address Modification and Program '~Loopsz: 

The process might be diagramm~d: 

Start 

Add 1 to the 
ADD X instruction 

Have 100 (octal) 
numbers been 

summed? 
no 

This technique introduces the additional problem of deciding when all 

100 numbers have been summed and halting the computer. In this context Ive 

introduce a new instruction ACCUMULATOR ZERO, AZE, code 0450. This is one 

of a class of instructions known as the Skip instructions; it directs the 

LINC to skip the instruction in the next memory register when C(ACC) = 
either positive or negative zero (0000 or 7777, octal). If C(ACC) # 0, 

the computer does not skip. For example, if C(ACC) = 7777, and Ive write: 

Memory 
Address Memory Contents 

~ P 

p+l 

p+2 

AZE 0450 ---l 
:~-J I 

the computer ,vill tak~ the next instruction from p+2. That is, when the 

AZE instruction in register' p is executed, p+2 will replace the contents of 

the Instruction Location register, and the computer wi~l skip the instruc

tion at p+l. If C(ACC) f 0, then p+l ~ C(tt) and the computer executes the 

next instruction in sequence as usual. 

17 
lAZE I 



18 Address Modification and Program HLoopSll 

The following example sums the numbers in memory registers 1000 through 

1077 and puts the sum into memory register 1100, using address modification 

and the AZE instruction to decide when to halt the computer. (Square brackets 

indicate registers whose contents change while the program is running.) 

Memory 
Address Memory Contents Effect 

10 ADD 1000 3000 

}constants used by 11 1 0001 program. 

12 -(ADD 1100) 4,677 

Start 
~ 20 CLR 0011 

21 ADD 10 2010 } Code for ADD 1000 --> C(25). 
o ~ C(ACC) 0 

22 STC 25 4025 

23 STC 1100 5100 o ~ C(1100), for accumulating sum. 

24 CLR I 0011 }Clear ACC and add C(X) to C(ACC). 
25 [ADD xJ [2000+X] 

26 ADD 1100 
I 

3100 Sum so far + C(ACC) ~ C(ACC). 

27 STC 1100 5100 Sum so far ~ C(1100). 

I 30 ADD 25 2025 }"ADD X instruction in register 25" 
~ C(ACC). Add 1 to C(ACC) 

31 ADD 11 

I 
2011 and replace in register 25. 

32 STC 25 4025 

33 ADD 25 I 2025 ~C(25) + C(12) --> C(ACC). If C(25) 

34 ADD 12 2012 
= "ADD 1100,11 then C(ACC) = 7777. 

35 AZE I 0450 Skip to register 37 if C(ACC) = 7777. ----, 
36 JMP 24 I 

I 
6024 If not, return and add next number. 

37 HLT ~_..J 0000 When C(ACC) = 7777, all numbers have 

I 
been summed. Halt the computer. 

1000 Nl I Nl 
1001 N2 N2 

I Numbers to be summed. 

1076 N77 I N77 
1077 N100 

I 

NIOO 
1100 [Sum] [Sum] 

Example 3· Summing a Set of Numbers Using Address Modification. 



Address Modification and Program :ILoops=: 

The instructions at locations 20 - 22 initially set the contents of memory 

register 25 to the code for ADD 1000. At the end of the program,? register 25 

will contain 3100, the code for ADD 1100. Adding (in registers 33 and 34) 

C(25) to C(12), Ivhich contains the complement of the code for ADD 1100~ re= 

sultt) .1.[1 the SLlw. 7777 CYlly ;·?he!l the program has finished summing all 100 

(octal) numbers 0 This repeating sequence of instructions is called. a ?11oop .1 !! 

and instructions such as AZE can be used to control the number of times a 

loop is repeatede In this example the instructions in locations 24· through 36 

Ivill be executed 100 (octal) times before the computer halts 0 

The following program scans the contents of memory registers 400 through 

450 looking for registers which do not contain zero. Any non-zero entry is 

moved to a new table beginning at location 500; this has the effect of "pack

ing" the numbers so that no register in the new table contains zero. When 

the program halts, the Accumulator contains the number of non-zero entries. 

19 



20 Address Modification and Program ~:LOOpS7~ 

Memory 
Address Memory Contents Effect 

4 ADD 400 I 2400 '''''''I 

5 S'I!C 500 4500 

I 6' . 1 0001 Constants used by the program. 

7 -(ADD 451) 

I 
5326 

10 -(STC 500) 3277 
;~ . · 

I 
. . · . 

S · 0 

tart)100 CLR 

I 
0011 } 101 ,,ADD 4 2004 Code for ADD 400 ~ c(106). 

102 STC 106 I 4106 

103 ADD 5 

I 
2005 } Code for STC 500 ~ C(112). 

104 STC 112 4112 

105 " CLR I 0011 " 
106 [ADD 400] [2000+X] c(X) ~ C(ACC). 

107 AZE I 0450 If C(ACC) = zero, skip to ----I location 1110 
110 JMP 112 I 

I 
6112 C(ACC) ~ 0, therefore JMP 

I to location 112. 
111 JMP 116~..J 6116 C(ACC) = 0, therefore'JMP 

I [4000+xl 
to location 116. 

112 -) [STC 500] Store non-zero entry in new tab 

113 ADD 6 

I 
2006 

114 ADD 112 2112 Jr_.Add 1 to the STC instruction 
in register 112. 

115 STC 112 I 4112 

116 YADD 6 2006 } 117 ADD 106 I 2106 Add 1 to the ADD instruction 
in register 106. 

120 STC 106 

I 
4106 

121 ADD 106 2106 } c(106) + C(7) ~ C(ACC). If 

122 ADD 7 

I 
2007 

c(106) = ADD 451, then 
C(ACC) = 777·7. 

123 AZE 0450 If C(ACC) = 7777, skip to ----.., 
I 

location 1250 
124 JMP 105 I 6105 If not, return to examine next 

I number. 

le. 

125 ADD 112~...J I 2112 If C(ACC) = 7777, then number 

126 ADD 10 2010 of non-zero entries ~ C(ACC) 

I 
and computer halts. 

127 HLT 0000 

Example 4. Packi ng a Set of Numbers. 



Index C1a·ss Instructions I 

At the end of the program, register 106 will contain the code for ADD 451, 

and all numbers in the table will have been examined. If, say, 6 entries 

were found to be non-zero, registers 500 - 505 will contain the non-zero 

entries, and register 112 will contain the code for STC 506. Therefore by 

adding C(112) to the complement of the code for STC 500 (in registers 125 -

126 above) -' the Accumulator is left containing 6, the number of non-zero 

entries. 

8. Index Class Instructions I 

Indirect Addressing 

The largest class of LINC instructions, the Index Class, addresses the 

memory in a somewhat involved manner. The instructions ADD X, STC X, and 

JMP X are called Full Address instructions because the 10-bit address X, 

o ~ X ~ 1777, can address directly any register in the 2000 (octal) register 

memory. The Index Class instructions, however, have only 4 bits reserved for 

an address, and can therefore address-only memory registers 1 through 17 

(octal). The instruction ADD TO ACCUMULATOR, ADA i f3, octal code 1100 + 20i + f3, 

is typical of the Index Class~ 

i == 0 or 1 

+ 
ADA i t3 1100 + 20i + t3 

l' l' 
ADA 1 ~ f3 ~ 17 

Memory register t3 should be thought of as containing a memory address, X, 

in the right-most 10 bits, 

11 10 9 0 

I I I I I I I I I 
J 

Y. 
X 

and we speak of fC(t3) , meaning the right 10-bit address part of register t3. 

The left-most bit can have any value whatever, and, for the present, bit 10 

must be zero.* In addressing memory register t3, ~n Index Class instruction 

* See Appendix I. 

21 

[AD£] 



22 Indirect Addressing 

tells the computer where to find the memory address to be used in execut

ing the instruction. This is sometimes called "indirect" addressing. 

For example, if we want to add the value 35 to the contents of the 

Accumulator, and 35 is held in memory register 270 J we can use the ADA 

instruct-ion in the following manner: 

Memory 
Address Memory Contents Effect 

~-- --~ 0270 Address of register containing 35. 
/ . \. / 

\. 
)( 

.,-

0270k. \. 0035 0035 
" \. 

\. . , . 
\. . 

~p ADA~ 1100 + ~ C(270) + C(ACC) ~ C(ACC). 

Note that the ADA instruction does not tell the computer directly Ivhere to 

find the number 35j it tells the computer instead Ivhere to find the address 

of the memory register Ivhich contains 35. By using memory registers 1 

through 17 in this way, the Index Class instructions can refer to any 

register in the memory. 



Indirect Addressing 

Tlvo other Index Class instructions, LOAD ACCUMULATOR, LDA i f3, and 

STORE ACCUMULATOR, STA i (3, are used in the follolving program Ivhich adds the 

contents of memory register 100 to the contents of register 101 and stores 

the result in 102. The LDA i (3 instruction, code :lOGO + 20i + (3, clears the 

Accumulator and copies into it the contents of the specified memory register. 

STA i (3, code 1040 + 20i + (3, stores the l:U[ltents of the ~1\.cc·!1m1J.12tor in the 

specified memory register; it does not, hOlvever, clear the Accumulator, 

Addition Ivith ADA uses 12-bit end-around carry arithmetic. 

Memory 
Address Memory Contents Effect 

10 Xl 0100 Address of Nl · 

11 X
2 0101 Address of N

2
0 

12 X3 0102 Address of (Nl '+ N2 )· 

Start. 
30 LDA 10 1010 N

1
, i. e", C( 100) , ~ C(ACC) . 

31 ADA 11 1111 N
2

, i . e ., C (101) , + C(ACC) ~ C(ACC). 

32 STA 12 1052 Nl +·N
2 
~ C( 102) . 

33 HLT 0000 

100 Hl 
}(;1 H2 

102 [N
1

+N
2 

] [ - J 

Example 5. Indirect Addressing. 



24 

Index Registers and Indexing 

When "iff is used Hith an Index Class instruction, that is, when i = 1, 

the computer is directed to add 1 to the X part of memory register f3 before 

it is used to address the memory. This process is called "indexing,tI and 

registers· 1 through 17 are frequently referred to as Index Registers. In 

the example belo,,,, -6 is loaded into the Accumulator after Index Register f3 

is indexed from 1432 to 1433 by the LDA i f3 instruction. 

Memory 
Address 

f3 

1432 

1433 

Memory Contents 

[X] 

LDA i f3 1020 + f3 

-6 7771 

Effect 
I r-------------------- , 
fi Address minus 1 of register 

containing 7771. 

X + 1, i.e.,1433, ~ C(f3), and 
c(1433) ~ C(ACC). 

When the LDA i f3 instruction is executed, the value X(f3) + 1 replaces the 

address part of register f3 (the left-most 2 bits of register f3 are unaffected). 

This new value, 1433, is nOH used to address the memory. Note that if the 

LDA instruction at p ,,,ere repeated, it ,,,ould deal Hith the contents of 

register 1434, then 1435, etc. The utility of Index Registers in scanning 

tables of numbers should be obvious. 

Indexing involves only 10-bit numbers, and does not involve end-around 

carry. Therefore the address tlfollowingU 1777 is 0000. (The same kind of 

indexing takes place in the InstructiDn Location register, ,,,hich "counts" 

from 1777 to 0000.) 



Index Registers and Indexing 25 

The following example using indexing introduces another Index Class 

instruction, SKIP IF ACCUMULATOR EQUALS, SAE i t3, code 1440 + 20i + f)o This 

instruction causes the LINC to skip one register in the sequence of pro

grammed instructions 'ivhen the contents of the Accumulator exactly match the 

contents of the specified memory register. If there is no match, the com

puter goes to the next instruction in sequence as usual. The program example 

clears (stores 0000 in) the set of memory registers 1400 through 1777; the 

SAE instruction is used to decide 'ivhether the last 0000 has been stored. 

Memory 
Address 

3 

4 

Start 7350 

351 

352 

353 

354 

355 

356 

Memory Contents 

[x] 

356 

CLR 

STA i 

ADD 

3 

3 

SAE 4 

,n.; 350i 
HLT ~- J 

1777 

0011 

1063 

2003 

1444· 

6350 

0000 

1777 

Effect 

Initial Address minus 1 for the 
STA instruction. 

Address of test number. 

Clear the Accumulat or. 

Index the contents of register 3; 
store C(ACC) in the memory 
register whose address = X(3). 

c( 3) ~ C(ACC). 

Skip to 0355 if C(ACC) = C(356). 
If not, return to store 0000 in 

next register. 
Halt the computer. 

Example 6. Indexing to Clear a Set of Registers. 

When the program halts at register 355, register 3 will contain 1777. The 

SAE instruction is used here (as the AZE instruction \Vas used in earlier 

examples) to decide when to stop the computer. The instructions in regis

ters 350 through 354, the "loop,ff will be executed 400 (octal) times before 

the program halts. Zero is first stored in register 1400, next in 1401, etc. 

ISAEl 



26 

[ApM] 
LBC]!] 

Index. Registers and Indexing 

Another program scans the memory to see if a particular number, Q, 

appears in any memory register 0 through 1777. Q is to be. set in the Right 

S\I;ritches, and the address of any register containing Q is to be left in the 

Accumulator. 

Memory 
Address 

17 

Start) 20 

21 

22 

23 

24 

25 

Memory Contents 

[, 1 
l .. J [- ] 

RSW 0516 

CSAEi

17 j 
1477 

6021 JMP 21 i 
CLR f-_J 0011 

ADD 17 2017 

liLT 0000 

Effect 

Address of register \"hose contents 
are to be compared with Right 
S1Vitches. 

C( RS) -7 C(ACC) . 

Index register 17, and compare 
C(ACC) with C(X). 

If not equal, return for next test. 

}

" .. If equal, clear ACC, copy address 
of register containing Q into 
ACC, and halt. 

Example 7. Memory Scanning. 

If no memory register 0 through 1777 contains the number Q, the program \vill 

run endlessly. The location of the first register to be tested depends on 

the initial contents of ~ndex Register 17. 

An Index Class instruction, ADD TO MEMORY, ADM i ~, code 1140 -+ 20i + ~, 
adds the contents of the specified memory register to C(ACC), using 12-bit 

end-around carry arithmetic (as ADD or ADA). The result is left, hOHever, 

not only in the Accumulator but in the specified memory register as Hell. 

The BIT CLEAR instruction, BCL i ~, code 1540 + 20i + ~, is one of three 

Index Class instructions w'hich performs a so-called !llogical lt operation. 

BCL is used to clear selected bits of the Accumulator. For every bit of the 

specified memory register which contains 1, the corresponding bit of the 

Accumulator is set to O. 



Index Registers and Indexing 

In the follo'ivi ng program two sets of numbers are summed term by term. 

The first set of numbers, each 6 bits ;Long, is in registers 500 - 577, 

bits 0 through 5; bits 6 through 11 contain unwanted information. The 

second set of numbers is in registers 600 - 677, and the sums replace the 

c.;ontel1t5 of registers 600 - 6'7'7, 

Memory 
Address 

3 
4 

5 

6 

Start) 400 

401 

402 

403 

)+04 

405 

406 

407 

410 

411 

Memory Contents 

[Xl] 

0410 

[X
2 

] 

0411 

LDA i 3 

BCL 4 

ADM i 5 

CLR 

ADD 3 

SAE 6 ----l 
JMP 400 I 
HLT ~_.J 

7700 

0577 

[0477] 

0410 

[0577] 

0411 

1023 

154.4 

1165 

0011 

2003 

1446 

6400 

0000 

7700 

0577 

Effect 

Initial address minus 1 of first set. 

Address of BCL pattern. 

Initial address minus 1 of second 
set. 

Address of test number for halting. 

Index X(3) and load number from 
first set into ACC. 

Clear the left 6 bits of the ACC. 

Index X( 5) ; Add number from 
second set to C(ACC)J and 
replace in memory. 

} Check to see if finished. 

C(3) I- C(411), i.e., ~ 0577. 

C(3) = 0577; halt the program. 

BCL pattern for clearing left 
half of ACC. 

Test number for halting. 

Example 8. Summing Sets of Numbers Term by Term. 

27 



28 

[j§~ 
LB~QJ 

Logic Instructions 

The three logic instructions, BCL i ~, BSE i ~, and BCO i ~, are best 

understood by studying the following examples. These instructions affect 

only the Accumulatorj the memory register M containing the bit pattern is 

unchanged. 

BCL i ~ BIT CLEAR code: 1540 + 20i + ~ 

Clear corresponding bits of the Accumulator: 

If C(M) 010 101 010 101 

and C(ACC) = 111 111 000 000 

then C(ACC) = 101 010 000 000 

BSE i ~ BIT SET code: 1600 + 20i + ~ 

Set to ONE corresponding bits of the Accumulator: 

If C(M) = 010 101 010 101 

and C(ACC) = 111 111 000 000 

then C(ACC) = 111 111 010 101 

BCO i ~ BIT COMPLEMENT code: 1640 + 20i + ~ 

Com:element corresponding bits of the Accumulator: 

If C(M) = 010 101 010 101 

and C(ACC) 111 111 000 000 

then C(ACC) = 101 010 010 101 

These instructions have a variety of applications, some of which will be 

demonstrated later. 



~ Special Index Register Instructions 

Before continuing 'ivith the Index Class, t'ivO special instructions which 

facilitate programming with the Index Class instructions will be introduced. 

These instructions do not use the Index Registers to hold memory addresses; 

rather they deal directly 'ivith the Index Registers and are used to change or 

examine the contents of an Index Register. 

The INDEX AND SKIP Instruction 

The INDEX AND SKIP instruction, XSK i a, code 200 + 20i + a, refers to 

registers 0 through 17 (0 ~ a ~ 17)0* It tests to see whether the address 

part of register a has its maximum value, i.en, 1777, and di.rects the LINC 

to skip the next register in the instruction sequence if 1777 is found. It 

'.vill also, 'ivhen i =. 1, index the address part (X) of register a by 1. Like 

the Index Class instructions, XSK indexes register a before examining it, and 

it indexes from 1777 to 0000 without affecting the left-most 2 bits. We can 

therefore give these 2 bits any value whatever. In particular, 've can set 

them both to the value 1 and then say that XSK i a has the effect of skipping 

the next instruction 'vhen it finds the number 7777, (-0), in register a. 

Now we can easily see ho,,, to execute any given sequence of instructions 

exactly n times, where n < 1777 (octal): 

-n 

Start_,-
----71" Given Se.quence of 
~ Instructions 

XSK i a ----l 

JMP X I 
I 
I 

HLT f- ---J 

} -n' stored in register a. 

} Given sequence held in register X, X + 1, etc. 

Index a and test. After 1st pass c(a) 
= -n + 1, after 2nd pass c(a) =. -n + 2. 
After n passes c(a) = -n + n =. -0 so 
-skip over the JMP X instruction and halt. 

* cf'. t3, 1:S t3 :S 17, which does not refer to register o. 

29 
j-i8K··J 



30 The INDEX AND SKIP Instruction 

Suppose, for example ~ that Ive want to store the contents of the Accum

ulator in registers 350 through 357. Us ing register 6 to "count, If we can 

write the short program: 

Memory 
Address 

5 

6 

S+ t _ ..Jar ) 200 

201 

202 

203 

Memory Contents 

[x] 

[-10 ] 

STA i 

XSK i 

5 

6 ----l 
JMP 200 I 
HLT (-_-.1 

[0347J 

[7767J 

1065 

0226 

6200 

0000 

Effect 

Initial address minus 1 for STA 
instructiono 

-n, where n = number of time-s to 
store C(ACC). 

Index register 5 and store C(ACC). 

Index register 6 and test for 
x(6) = 1777. 

x(6) f 1777, returno 

x(6) = 1777,·.halt. 

Example 9. Index Registers Used as Counterso 

Using the XSK instruction Ivith i .= 0, wlfich tests x(a) without index

ing, Example 6, p. 25,lvhj.ch stores zero in memory registers 1400 through 

1777, can be more efficiently written: 

Memory I 
~ddre~t-___ ~;~orY c~Te~:;771---

Start) 350 

351 

352 

353 

354 

CLR 

)STA i 3 

XSK 3 -----, 
JMP 351 I 
Hur (--_-.J 

I 0011 

I 1063 

0203 

I 6351 

I 0000 

Effect ---------_.--,-----
Initial address minus 1 for STA 

instruction. 

o ~ C(ACC). 

Index register 3 and store zero. 

Test for X(3) = 17770 

X(3) ~ 1777, return. 

X(3) = 1777, halt. 

Exampl.e 10. Indexing-and Counting to Clear a Set of· Registers. 

Here regi;:3ter 3 is indexed by the STA instructionj the XSK then merely tests 

to see whether Xl, 3) = 1777, Ivi.thout indexing X( 3). The reader should see that 

Example 8 on page 27 can also be more efficiently programmed using XSK. 



The SET Instruction 

The second special instruction which is often used with the Index Class 

instructions is SET i a, code 40 + 20i + a, where a again refers directly to 

the first 20 (octal) memory registers, 0 ~ a ~ 17. In some of the examples 

presented earlier, the contents of Index Registers are changed, either Cl.b 

counter values or as memory addresses, \vhi1e the program is running. 

Therefore, in order to run the program over again the Index Registers must 

be reset to their initial valueso 

The SET instruction directs the LINC to set register a to the value 

contained in \vhatever memory register we specifyo It is uni~uely different 

from the instructions so far presented in that the instruction itself always 

occupies 2 consecutive memory registers, say p and p + 1: 

Memory 
Address 

p 

p + 1 

P +2 

Memory Contents 

SET i a 40 + 20i + a 
c c 

The computer automatically skips over the second register of the pair, 

p + 1; that is the contents of p + 1 are not interpreted as the next 

instruction. The next instruction after SET is always taken from P + 2. 

The i-bit in the SET instruction does not control indexing. 

Instead, it tells the LINC how to interprE;t the contents of register p + 1. 

31 
I SET I 



32 The SET Instruction 

When i = 0, the LINC is directed to interpret C(p + 1) as the memory 

address for locating the value which will replace c(a). That is, register 

p + 1 is thought of as containing X, 

Memory 
Address 

10 

~p 

p + 1 

X 

Memory Contents 

[N] 

SET 

X 

N 

10 

[-] 

0050 

X 

N 

Effect 

C(X), ioe., N, ~ C(lO). 

and the contents of register X replace the contents of 10, C(X) ~ C(lO). In 

this case X is the right-most 10 bits, the address part, of register p + 1; 

the left-most bit of C(p + 1) may have any value and, for the present, bit 10 

must be zero.* 

In the second case, Ivhen i = 1, the LINC is directed to interpret 

C(p + 1) as the value which will replace C~). Thus, below, C(p + 1) ~ C(5): 

Memory 
Address 

5 

~ p 

p + 1 

Memory Contents 

[N] [-] 

SET i 5 0065 

* See Appendix I. 

Effect 

C(p + 1), i.e., N, ~ C(5). 



The SET Instruction 

The following program scans 100 (octal) memory registers looking for 

a value which matches C(ACC). It halts with the location of the matching 

register in the Accumulator if a match is found, or ,vi th -0 in the Accum

ulator if a match is not found. The numbers to be scanned are in 

registers 1000 - 1077. 

Memory 
Address Memory Contents Effect 

3 [-looJ 
I [7677J -(number of registers to scan). 

4 [ xJ 

I 

[0777] Scanning address. 

. 
Sta rt) 400 SET i 3 

I 
0063 C( 401), i. e., -100, --,) C ( 3 ) . 

401 -100 7677 

I 402 SET i 4 0064 c(403), i.e., T77, .~ C ( 4 ) . 

403 777 

I 
0777 

404 rSAE i 4 1464 Index X(4) and compare C(X) ---, 
I 

'vith C(ACC). 
405 JMP 411 I 6411 C(ACC) i C(X), jump to 411. 

406 CLR ~ _-.J 

I 

0011 
} C(ACC) =' c(x), copy location of 

407 ADD 4 2004 matching register into ACC 

410 HLT 

I 
0000 

and halt. 

411 4XSK i 3 0223 Index register 3 and test for ---, 
I 

X(3) = 1777· 
412 JMP 404 I 6404 X(3) f 1777, return. 

413 CLR f--.J 

I 
0011 

414 COM 0017 }X(3) ~ 1777; all numbers have be 
scanned so -0 --,) C(ACC) and ha 

415 HLT 
I 

0000 

Example 11. Setting Initial Index Register Values. 

The t,vo SET instructions are executed once every time the program is 

en 
It. 

started at 400; initially registers 3 and 4 may contain any values 1vhatever, 

since the program itself will set them to the correct values. 

33 



Index Class Instructions II 

Suppose He had ,vanted to SET tlVO Index registers to the same value, 

say -100. We could ,vrite either: 

We 

in 

Memory 
Address Memory Contents Effect 

11 

12 

-7 20 

21 

22 

23 

-7 20 

21 

22 

23 

or: 

--

I 

[-100J 

[-100J 

SET i 11 

-100 

SET 12 

21 

SET i 11 

-100 

SET 12 

11 

could also, of course, 

register 23, but there 

0071 C(21), i.e., -100, -7C(ll). 

7677 

0052 C(21) , i. e. , -100, -7 C ( 12 ) . 

0021 

0071 C(21), i.e., -100, -7 C( 11). 

7677 

0052 C ( 11) , i. e. , -100, -7 C( 12) . 

0011 

have written SET 1 12 in register 22 ,vi th -100 

are applications appropriate to each form. 

10. Index Class Instructions II 

Double Register Forms 

The Index Class lnstructions have been thought of as addressing an 

Index Register t3, 1 S; t3 :::; 17, ,vhich contains a memory address X to be used 

by the instruction. They have been presented as single register instruc

tions (unlike SET). HO,vever, when an Index Class instruction is written 

with t3 = 0, it becomes a double register instruction like SET, ,vhose operand 

address depends on i and p + 1. These two interpretations are shown for STA. 



Double Register Forms 

Case: i = 0, ~ = 0 

Memory ~ ~ Address Memory Contents Effect 

4;;- - ST~;;----T10h~ 20(0) + 0 C(ACC) ::. CC:nO;:-

451 330 I 0330 I 

When i = 0, the LINC is directed to use C(p + 1), i.e., C(451) as the 

memory address at Ivhich to store C(ACC). The left-most bit of C(p + 1) may 

have any value, and, for the present, bit 10 must be zero.* 

Case: i ~ 1, ~ = 0 

When i = 1, the LINC is directed to use p + 1, i.e., 451, directly as the 

memory address, and the contents of the Accumulator are stored in 451. Note 

that when ~ = 0 in an Index Class instruction, we are not referring to 

memory register o. In fact, Ivhen ~ = 0, no reference Ivhatsoever is neces

sarily made to the Index Registers. As Ivi th SET, the computer automatically 

takes the next instruction from register p + 2. 

* See Appendix I. 

35 



Double Register Forms 

vIe may nolY think of the Index Class instructions as having four 

alternative i,vays of addressing the memory., 'vhich depend on i and f3, and 

Hhich are summarized belo\v~ 

Index Class Address Variations 

Case i, f3 Example Form Comments 

I I I i 0 LDA f3 Single Register ~ holds operand address. 
1 

, -> 

i 
~ -f 0 Register ~ 

I 
I 
I 
I i = 1 LDA i ~ Single First, index register ~ by 1. 

2 
1 ~ f 0 Register Then, register ~ holds operand address. 
i i -

I 
3 

i - 0 LDA I Double Second register holds operand address. 
~ _. 0 X Register 

4 i = 1 LDA i Double Second register holds operand. 
~ =: 0 N Register 

The next programming example scans memory registers 1350 through 1447, 
counting the number of instances in which register contents are found to 

exceed some "threshold" value, T. In. other words if C(X) > T, X = 1350, 
1351, ... , 1447, then C( CTR) + 1 -+ C( CTR), where CTR is a memory register 

used as a counter, initially set to zero. The count, N, is to appear in 

the Accumulator upon program completion.* 

* The program does not, in fact, behave exactly as described here. Can the 
reader find the discrepancy? 



Memory 
Address 

14 

15 

_~tart)_3; 

31 

32 

.3.3 

34 

35 

36 

37 

40 

43 

44 

45 

46 

47 

50 

51 

52 

53 

54 

Double Register Forms 

Memory Contents Effect 

[xJ 
[ -nJ 

SET i 14 

1347 

SET i 15 

-100 

CLR 

STC 51 

-.~ LDA i 

-T 

ADA i 14 

BCL i 

6777 

SAE i 

0000 ----, 
JMP _~ I 
LDA i ( . --' _. I 

1 

ADM i 

[NJ 

XSK i 15 ----, 
JMP 36 

I 
HLT t- _.-J 

I 0074 

I 1347 

I 

I 
I 
I 

I 
I 
I 
I 
I 

I 
I 
I 
I 

0075 

7677 

0011 

4051 

1020 

1134 

1560 

6777 

1460 

0000 

6052 

l020 

0001 

1160 

0235 

6036 

0000 

Address of register to be tested. 

- (number of registers to test). 

Set Index Register 14 to initial 

Set Index Register 15 to -100. 

} Clear CTR; 0 ~ C(5l). 

C(37), i.e., -T,'~ C(ACC). 

Index the address in register 14 
and form C(X)-T in ACC. 

Clear all but the sign bit in ACC; 
C(42) = the bit pattern for 
clearing. Then if C(X) > T, 
C(ACC) = 0000, but if C(X) < T, 
C(ACC) = 4000. 

Does C(ACC) = C(44)? If so" 
skip to 46. 

If not, C(X) ~ T. 

If so, C(X) > T; 

Jump to 52. 

1 ~ C(ACC). 

C(ACC) + C(51), -ioe." N, ~ C(51) 
and ~ C(ACC) . 

Index register 15 and test for 77770 

C(15) f 77770 Return to check 
next register. 

C(15) = 7777, therefore halt 0 C(CTR), 
i.e., C(51), left in ACC. 

Example 12. Scanning for Values Exceeding a Threshold. 

Note that since the SAE instruction in locations 43 and 44 is written as 

a double register instruction, the LINC \"ill skip to location 46 (not 45) 

when the skip condition is satisfied. The next instruction "in sequence tl is, 

in this case, at location 45. 

37 



Double Register Forms 

Note also that if a double register instruction is written follo'iVing a 

skip instruction such as XSK, the LINC Hill try to interpret the second 

register as an instruction: 

Memory 
Address 

p 

p + 1 

p + 2 

Memory Contents 

XSK i i3 
----I 
LDA i I 

3 ~_..J 

Effect 

Go to P + 1 when X(i3) f 1777. 
Go to p + 2 Ivhen X(i3) = 1777. 

Since the XSK instruction sometimes directs the LINC to skip to P + 2, care 

must be taken to make sure that the LINC does not skip or jump to the second 

register of a double register instruction. 

It is interesting to compare the above statement of the,program made 

in what might be called "detailed machine language" Ivi th the follo\ving 

compact but entirely adequate restatement: 

1) 0 ~ C (CTR) . 

2) If C(X) > T then C(CTR) + 1 ~ C(CTR), for X = 1350, 1351, ... , 1447. 

3) C(CTR) ~ C(ACC). 

4) HALT 



Multiple Length Arithmetic 

An Index Class instruction, LINK ADD TO MEMORY, LAM i f3, "\vith the octal 

code 1200 + 20i + f3, makes arithmetic possible with numbers which are more 

than 12 bits long. Using LAM, one can work with 24-bit numbers for example, 

usine; 2 mpmoT'Y registers to hold right and left halves. It should be 

remembered that addition with ADD, ADA, or ADM, always involves end-around 

carry. With LAM, ho"\vever, a carry from bit 11 of the Accumulator during 

addition is saved in the Link Bit; it is not added to bit ° of the Accum

ulator. This carry, then, could be added to the low order bit of another 

number, providing a carry linkage bet"\veen right and left halves of a 24-bit 

number. For simplicity, the illustration uses 3 bit registers; the prin

ciples are the same for 12 bits: 

Link 

next 
addition 

ACC 

end-carry 
"\vith LAM 

If, for example, the number in this 3-bit Accumulator is 7 (all ones) and 

C(L) = 0, and "\ve add 1 with LAM, the Link Bit and Accumulator will then 

look like: 

L ACC 

0~< -

Furthermore, LAM is an add-to-memory instruction, so that the memory 

register to "\vhich the LAM instruction refers will now contain zero (as the 

Accumulator) . 

39 

[LAM I 



40 MultipleTIength Arithmetic 

In addition to saving the carry in the Link Bit the LAM instruction 

also adds the contents of the Link Bit to the low order bit of the Accum

ulator. That is, if, Ivhen the LAM instruction is executed C(L) = 1, then 

1 is added to C(ACC). Using the result pictured above, let us add 2, where 

2 is the .contents of some memory register M: 

Given: 

L 

1 

ACC 

000 

M 

010 

Using LAM, the LINC is directed first to add C(L) to C(ACC), giving: 

L 

o 
ACC 

001 

M 

010 

There is no end-carry from this operation, so the Link Bit is cleared. The 

LINe then adds C(ACC) to C(M), giving: 

L 

o 
ACC 

011 

M 

011 

which replaces both C(ACC) and C(M). Again there is no end-carry so the 

Link Bit is left unchanged. 

The operation of LAM may be summarized: 

1. C(L) + C(ACC) ~ C(ACC). 

2. End-carry ~ C(L). If no end-carry, 0 ~ C(L). 

3. C(ACC) + C(M) ~ C(ACC), and ~ C(M). 

4. End-carry ~ C(L). If no end-carry, the Link Bit is left unchanged. 



Multiple Length Arithmet.ic 

As an example of double length arithmetic let us postulate 2 numbers, 

Nl and N
2

, each 6 bits long, which occupy a total of 4 of our 3-bit memory 

registers, Ml through M4~ 

M~ 
~ 

000 

M, 
.L 

111 

M3 
001 

Nl = +7 

N2 = -26 

The sum, octal, of +7 and -26 is -17. Using the LAM instruction to get this 

we must 

1. Clear the Link Bit. 

2. Add C(M1 ) to C(M
3

) with LAM, saving any carry in the Link Bit. 

This sums the right halves of Nl and N
2

0 

3. Add C(M2 ) to C(M4 ) with LAM, which also adds in any carry from 

step 2. Thi.s sums the left halves of Nl and N
2

" Any new 

carry will again replace C(L)o 

000 111 Nl 
101 001 N2 

~ ~ 
I 110 I 000 Nl + N2 = -17 

I I 
2nd LAM L-lst LAM 
No end-carry End-carry 

We see upon inspection that only the first LAM produced an end-carry. 

41 



42 Multiple Length Arithmetic 

To complete the illustration lye must a,lso consider"'the case in which a final 

carry appears in the Link Bit, as in the addition of +12 and -2, 

001 010 +12 

III 101 - 2 

~ 000 ~ 111 + 7 I I 
I I 

2nd LAM LIst LAM 
End=carry No end=carry 

\-Ihose sum, in ones! complement notation is 001 000, or +10 (octal), but which 

\yith LAM results in +7 and an end-carry in the Link Bito Since ones' com~ 

plement representation depends on end-around carry, we must do some extra 

programming to restore our result to a true ones' complement number. This 

is, of course) the equivalent of adding 1 to our 2-register result, Assuming 

that the result is in ~ and M2 

L 

1 

I-Ie can again use the LAM instruction. We must first clear the Accumulator 

I-lithout clearing the Link Bit (this can be done with an STC instruction)o 

We then execute LAM with C(M
l

) which gives 

L 

1 

ACC 

000 

producing a new end-carry in the Link Bito We again clear the Accumulator 

(but not the Link Bit) and execute LAM with C(M
2

) which gives 

L 

o 
Ace 
001 

The result in M2 and Ml nmy looks like ~ 

M2 ~ 
001 000 = +10 (octal)~ 

".\ 

It should be clear to the reader that adding in ~ final end-carry as an end-

around carry cannot itself give rise to a new final end-carryo 



Multiple Length Arithmetic 

The following program illustrates the technique of double length 

arithmetic with tables of numbers; similar techniques would be used for 

other multiples of 12. Assume that 100 (octal) 24-bit numbers, NO' Nl , ... , 

N
77

, are to be added term by t.erm .to 100 (octal) numbers, RO' Rl , ... , R
77

, 

such that N" + R" = 8r\' N, + R]· = 8"], etc. All numbers occupy 2 registers: 
v v v ..L. ~ _ 

the left halves of NO' Nl , ... , N77 are in registers 100 - 177, the right 

halves in 200 - 277. The left halves of RO' Rl , ... , R77 are in 1000 - 1077, 

the right halves in 1100 - 1177. The left halves of the sums, 80 , 81 , ... , 

8
77

, will replace the contents of 1000 - 1077, the right halves will replace 

the contents of 1100 - 1177. A Ifmemory map!! is sometimes helpful Hhen 3 

program must move large amounts of data around the memory: 

Memory 
Address 

11 - 14 

100 - 177 

200 - 277 

377 - 4251 

1000 -
1077 

1100 -
1177 

Memory Contents 

~ registers used 

Left halves 
No-N

77 
Right halves 

N,q-N77 

Left halves 
RQ-~7' then 80-877 

Right halves 
RO-R

77
, then 80-8

77 

43 



44 

Memory 
Address 

10 

11 

12 

13 

14 

377 
Start) 400 

401 

402 

403 

404 

405 

406 

407 

410 

411 

412 

413 

414 

415 

416 

417 

420 

421 

422 

423 

424 

425 

Multiple Length Arithmetic 

Memory Contents 

[~ ] 

[X2 J 
[X

3
] 

[X4] 
[-n] 

SET i 10 

77 

SET i 11 

177 

SET 1. 12 

777 

SET i 13 

1077 

SET i 14 

-100 

CLR 

LDA i 11 

LAM i 13 

LDA i 10 

LAM i 12 

STC 377 

LAM 13 

STC 377 

LAM 12 

XSK i 14 ----, 
JMP 412 I 
HLT ~_.J 

[-] 

[ - J 
[-J 
[=] 

[-] 

1 

[~J 

0070 

1
0077 

0071 

1
0177 

I 
0072 

0777 

1 

0073 

1077 

1
0074 

7677 

1
0011 

1

1031 

1233 

11030 

1 1232 

14377 

1
121

3 

1
4377 

1

1212 

0234 

1
6412 

I 0000 

Effect 

Set index registers to initial 
addresses minus 1 for the 
4 tables 0 

Set index register 14 as a counter 
for 100 loop repetitions. 

o ~ C(ACC); 0 ~ C(L)o 

Right half of Ni ~ C(ACC)o 

Right half of N. + right half of 
R. ~ C(ACC),land ~ right half of 
R~o End-carry ~ C(L). 

Left l half of N. ~ C(ACC). 
l 

C(L) + C(ACC) + left half of R. ~ 
C(ACC), and ~ left half of lR.o 
End-carry ~ C(L) 0 l 

Clear Accumulator by storing in 
3770 Do not clear Link Bit. 

C(L) + right half of S. ~ C(ACC), 
. l and ~ rlght half of S. 0 End= 

carry ~ C(L). l 
Clear Accumulator. 

C(L) + left half of Si ~ C(ACC), 
and ~ left half of S .. 

Index 14 and test for 77777 

C(14) f 7777, return to form next sum. 

C(14) = 7777, so halt. 

Example 1.3 0 Summing Sets of Double Length Numbers Term by Term. 



Multiplication 

The instructions in locations 412 - 416 produce an initial 24-bit sum 

leaving any final carry in the Link Bit. The instructions in locations 

417 - 422 then complete the sum by addi.ng in the final end-carry. The Link 

Bit "\vill a1'ivays contain 0 after the computer executes the last LAM in 

location 42.2. register so that 

've can clear the Accumulator Hi thout clearing the Link Bit n 

Multiplication 

Another Index Class instruction which needs special explanation is 

MULTIPLY, MUL i f3, code 1240 + 20i + f3. This instruction directs the LINC 

to multiply C(ACC) by the contents of the specified memory register, and to 

leave the result in the Accumulator. The multiplier and multiplicand are 

treated as signed Il-bit ones~ complement numbers, and the sign of the product 

is left in both the Accumulator (bit 11) and the Link Bit. 

The LINC may be directed to treat both numbers either as integers or 

fractions; it may not, hOHever, be directed to mix a ~raction "\vith an 

integer. The left-most bit (bit 11) of register f3 is used to specify the 

form of the numbers. 

When bit 11 of register f3 contains zero, the numbers are treated as 

integers; that ie, the binary points are assumed to be to the right of 

bit zero of the Accumulator and the specified memory register. Given 

C(ACC) = -10, C(f3) = 400 (bit 11 of register f3 = 0), and c(400) = +2, then 

the instruction MUL f3 'ivill leave -20 in the Accumulator, and 1 in the Link 

Bit. OverfloH is, of course, possible when the product exceeds ±3777. 

Multiplying +3777 by +2, for example, produces +3776 in the Accumulator; 

note that the sign of the product lis correct, and that the overflo"\v effec

tiv~ly occurred from· bit 10, not from bit 110 

When bit 11 of register f3 contains 1, the LINC treats the numbers as 

fractions; that is, the binary point, is assumed to be to the right of the 

sign bit (bet'iveen bit 11 and bit 10) of the Accumulator and the specified 

memory register. Given C(ACC) = +.2, C(f3) = 5120 (bit 11 of register f3 = 1), 

and C(1120) = +~32, then execution of MUL f3 will leave +.064 in the Accum

ulator and 0 in the Link Bit. 



46 Multiplication 

Ivhen the LINC multiplies tHO l1-bit signed numbers" a 22-bit product 

is formed" For integers the right-most, or least signi,ficant, 11 bits of 

tllis product are left lvith the proper sign in the Accumulator, and for 

fractions the most significant 11 bits of the product are left Hith the 

proper sign in the Accumulator. If~ for example)) 

C(ACC) 

and 

001100000000 
bi,nary points --1' 1- binary points 

C(M) -
for fractions ~ ..r- for integers 

000010000000 

then C(ACC) can be thought of as either +.3 (octal) or +1400 (octal), and 

C(M) can be thought of as either +.04 (octal) or +200 (octal). The 22-bit 

product of these numbers looks like 

.000 001 100 00 00 000 000 000. , 
v 

2nd if bit 11 of register t3 contains 1, the most significant 11 bits with 

~':ce proper sign, 11il1 be left in the Accumulator: 

C(ACC) 

(+.3)x(+.04) 
= 0.000 001 100 00 

'-'y-I~~ 
+. 0 1 4 

Had bit 11 of register t3 contained zero, the Accumulator would be left Hith 

+~ as the result of multiplying (1400)x(200)o It is the programmer's 

responsibility to avoid integer overflow by programming checks on his data 

end/or by scaling the values to a Horkable size. 

The use of bit 11 of register t3 is new to our concept of Index Regis-

-:ers and shm'::.ld be noted in connection ,{ith the four memory addressing 

a1 ternati ves vlhich the Index Class instructions employ. When t3 f 0 then 



:Mul.t i.-plicat i on 

bit 11 of C( f3),~ that is.~ bi,t 11 of the register Ivhich contains the memory 

address ~ is used 0 The same is true when i :':.~ 0 and f3 :=: 0.'1 as in ~ 

Memory 
Address Memory Contents 

-p MUL 1240 

P + 1 h;X 4,000h + X 

rr!hat iS;l bit 11 of C(-p + lL the register containing the memory address,? is 

used,; We sometimes ca.1l th:i.s bit the b"bit?\Vhether in an Index Regis'ter 

or in register p + .1 n When~ ho\Vever~ i ::-.: 1 and f3 :::-: 0 ~ i,t \Vill be rec311ed 

that p '!- 1 is itself the memory address:: 

.Memory 
Address 

p 

p .1 

Memory Contents 

MOL i 

N 

1260 

N 

The re is no memory register which actually contai,ns the memory addreGs., 

and t;berefore there is no h~"bit 0 The computer always assumes :i.n thi,s case 

that h :::-: 0 '1 and the operands are treated as integers n 

In the following program, registers 1200 ~> 13T7 contain a table of 

fractions whose values are in the range ± 0 0176, that is, whose most sig~· 

nificant five bits after the sign (bits 6~10) duplicate the signo Each 

number is to be multiplied by a constant, ~~ 0 62J and the products stored at 

locations 1000 - 1.1770 To retain significance the values are first shifted 

left 5 -places 0 



48 

Memory 
Address 

6 

7 

10 

Start > 50~ 
501 

.502 

503 

504 

505 

506 

.507 

510 

511 

512 

513 

514 

515 

516 

Multi.plication 

Memory Contents 

SET i 6 

1177 

SET i. 7 

777 

SET i 10 

~200 

LDA i 6 

ROL5 

MUL 

4000+516 

STA i 7 

XSK i 10 ----I 
JMP 506 I 
HLT ~ --.J 

=e62 

0066 

1177 

0067 

0777 

0070 

7577 

1026 

024.5 

1240 

4516 

1067 

0230 

6506 

0000 

4677 

Effect 

Initial address minus 1 of table 
of fractions ~ c(6)o 

Initial address minus 1 for STA 
instruction ~ c( 7) 0 

=n ~ C(lO) 0 

Fraction ~ C(ACC). 

C(ACC)o25 ~ C(ACC) 0 

Multiply, as fractions.? C(ACC) 
by C(516). 

Store product. 

If not finished, return. 

If finished, halt 0 

Example 140 Multiplying a Set of Fracti.ons by a Constant 0 

The ROL instruction at location 507 rotates zeros or ones, depending on the 

sign, into the low order 5 bits of the Accumulator 0 Since this amounts to a 

11 scale left 1! operat ion, it thereby iritroduces no new information '''hich might 

inf~uence the product. The reader should also note that the original values 

remain unchanged at locations 1200 ~ 13770 

Another example demonstrates the technique of saving both halves of 

the product 0 * Fifty (octal) numbers, stored at locat ions 1000 - 1047, are to 

be multiplied. by a constant, +1633. The left halves of the products (the 

most significant halves) are to be saved at locations 1100 - 1147; the right 

halves (the least significant halves) at locations 1200 ~ 1247. 

* See also Appendix III. 



Memory 
Address 

3 
4 

5 
6 

7 

,~ 1400 

14.01 

1402 

1403 

1404 

1405 

1406 

1.407 

1410 

1411 

1412 

1413 

1414 

1415 

1416 

1417 

1420 

1421 

1422 

1423 

1424 

1425 

1426 

1427 

1430 

1431 

1432 

1433 

1434 

Multiplication 

Memory Contents Effect 

[Xl] 

[X
2 

:1 

[4.000+X
3 

] 

[X J 
3 

[=n] 

SET i 3 

1077 

SET i. 4 
1177 

SET i 5 

4·000+777 

SET 1. 6 

777 

SET i 7 
~50 

LDA i 

1633 

MUL i 5 

SCR i. 1 

STA i :3 
STC 1434 

ROR i. 1 

STC 1427 

.ADD 1413 

MUL i 6 

BCL i, 

4000 

BSE i. 

[=] 

STA i 4 

XSK 1. 7 -----, 
JMP 1412 I 

HLT ~_-1 

[-] 

Example 15. 

[1077] 

[1177] 

[4777] 

[0777] 

[7727J 

0063 

1077 

0064 

1177 

0065 

4777 

0066 

0777 

0067 

7727 

1020 

1633 

1265 

0361 

1063 

5434 

0321 

5)·127 

3413 

1266 

1560 

4000 

1620 
[po] 

1064 

0227 

7412 

0000 

[ .., ] 

}Addresses of products, 

}
Addresses of multiplier as fraction 

and integer. 

Counter a 

Set addresses for storing products. 

Set .5 to address multiplier as fraction. 

Set 6 to address multiplier as integer" 

}
Form left half of product i in 

Accumulator. 

C(bit 0 of ACC) .~ C(L). 

Store left half of product .. 
l 

o ~ C(ACC) n 

C(L) ~ C(bit 11 of ACC)o 

4000 or 0000 ~ C(1427). 

}
Form ri,ght half of product i in 

Accumulator. 

Clear bit 11 of right half. 

C(bit 0 of left half) ~ C(bit 11 of 
right half) 0 

Store right half of product .• 
l 

}Return if not finished, 

Multiplication Retaining 22-bit Products. 



Ealf=Word Class Instructions 

The instructions at locations 1415, 1420=1421, and 1424~1427 have the effect of 

making the two halves of the product contiguous; the sign bit value of the 

right half is replaced by the low order bit value of the left half, so that 

the product may be subsequently treated as a true z3double length 2Z number 0 

There are two remaining Index Class instructions, SKIP RGrATE, SRO i f3, 

and DISPLAY CHARACTER, DSC i f3J which will be discussed later in connection 

with programming the oscilloscope displayo 

110 Half=Word Class Instructions 

The LINe has 3 instructions which deal with 6=bit numbers or i!half= 

words'! (::word 1
; is another term for "contents of a register?!) 0 These 

instructions use the Index Registers and have the same four addressing 

variations as the Index Class, but speci.fy in addi.tion either the left 

half or right half of the contents of memory register X as the operando 

We speak of LH(X), meaning the contents of the left 6 bits of register X, 

and RH(X) J meaning the contents of the right 6 bits 0 We can then think of 

C(X) ::= LHIRH, or C(X) ~ 100LH+RHo 

Half-word instructions always use the right half of the Accumulator. 

The LOAD HALF instructi.on, LDH i f3, code 1300 + 20i + f3J clears the Accum= 

ulator and copies the specified half=word into the right half of the 

Accumulator; which half of C(X) to use is specified by bit 11, the h=bit, 

of register f3o/ 



Half-Word Class :nstYLlctions 

When h :=: 0, LH(X) ~ RH(ACC) 0 When h -" 1, RH(X) ~ RH(ACC) ~ 

Memory 
Address Memory Contents 

h;X 4000h+X 

Effect 

h -. 1 0 

p LDH r3 1300+r3 RH( X) ~ RH(ACC) and 0 ~ LH(ACC) 0 

x LH1RH 100LH+RH c(x) unchanged. 

The same interpretation of the h=bit applies when i = 0 and r3 = 0.9 

ioeo:; when the instruction occupies two registers~ 

Memory 
Addres's Memory Contents Effect 

40 LDH 1300 8ince h ::::: lJ RH(500), i 0 e 0 <9 

41 1;500 4500 '-t RH(ACC) 0 o -7 LH(ACC) . 

500 32176 

If register 4·1 contained 500,1 i. eo, h := 0 J then LH( 500) J or 32, would 

replace RH(ACC) 0 

76} 

The STORE HALF i.nstructi.on~ 8TH i $., code 1340 + 201. + r3, stores the 

right half of C(ACC) in the specified half of memory regi.ster Xo C(ACC) and 

the other half of memory register X are unaffected. To illustrate the case 

of i = 1 and r3 = 0, we can write~ 

Memory 
Address 

1000 

1001 

Memory Contents 

STH }, 

6015 

1360 

60i5 

Effect 

RH(ACC) -7 LH(lOOl)0 

This case, it will be remembered, uses p + 1 itself as the memory address. 

Since there is no h-bit, the computer assumes that h = 0, and therefore the 

~.half of C(lOOl) is affectedo If, for example, C(ACC) = 5017, then 17 

replaces LH(lOOl), and the contents of register 1001 become 1715. 

51 
[8TH I 



52 Half-Word Class Instructions 

SKIP IF HALF DIFFEHS, SHD i (3, code 1400 + 20i. + f3, causes the LINC to 

skip one memory register in the program sequence when the right half of the 

Accumulator does not match the specified half of memory register X~ When it 

does match, the computer goes to the next memory register in sequence for 

the next instructiono Neither C(ACC) nor C(X) is affected by the instructiono 

If C(ACC) = 5671, and we write: 

Memory 
Address 

376 

.~ 377 

400 

401 

402 

Memory Contents 

7152 

SHD 

4376 ---I 
= I 
_~--1 

7152 

1400 

4376 

Effect 

Skip to 402 if RH(376) * RH(ACC)0 

then the computer Ivill skip because RH(376), i.e., 52, :I: RH(ACC), or 71. Had 

Ive written 376 at location 400, that is, h = 0, then RH(ACC) Ivould equal 

LH(376) and the comp-qter would not skip. 

When f3 f 0, and Ivhen i = 1, the Half~Word Class instructions cause the 

LINC to index the contents of memory register f3, but in a more complex way 

than that used by the Index Class instructions 0 In order to have half-word 

indexing refer to consecutive half-Ivords, the computer adds 4000 to C(f3) with 

end-around carryo This has the effect of complementing h(f3) every time 

register f3 is indexed, and stepping X(f3) every other time. Suppose, for 

example, that our instruction is LDH i 3, and that register 3 initially con

tains 4377, that is , it "points 21 to the right half of register 3770 The com

puter Ivill first add 4000 to C(3) ~ 

4377 
4000 

q7i 
0400 

Original C(3) = 1;377 
Index h (3) 

End-around carry 
New C(3) = 0;400 

Ivhich leaves h = 0 and X = 400; C(3) nOlV "points" to the left half of regis

ter 400. The computer therefore loads the Accumulator from LH(400)0 Repeat

ing the instruction, C(3) will be indexed to 4400 and the Accumulator will be 



Half-Word Class Instructions 

loaded from RH(400)0 Continuing then, register 3 would contain the following 

succession of values or half-word references: 

4400 RH(400) 

0401 LH(401) 

4401 RH( 4.01) 

0402 
_. ~-;, - - \ 

L.tl\LtUc) 

4402 RH(402) 

0403 LH( 4.03) 

etc. etc 0 

Since half-word indexing occurs before the contents of register ~ are 

used to address the memory, lye may describe the memory address, when i = 1, as 

h;X+h 

where h represents the indexed value of h, and X+h represents the indexed 

value of X. The succession of values which will appear in register ~ can 

then be written~ 

h;X+h 

l;X+O 

O;X+l 

l;X+l 

0;X+2 

1;X+2 

etc. 

53 



54 
I KED I 

The KE:fBOARD :nstruction 

The four address variations for Half=Word Class instructions are summarized 

in the following tableo 

Half~Word Class Address Vari.ations 

Case .i" 13 Example Form Comments 

1 i -, 0 LDH 13 Single Register 13 holds half=word operand 
13 

I 0 Hegister address 0 =t-: 

i - 1 LDH i, 13 Single First:; index register 13 by 4000 with 
2 Hegister end=around carryo 

,13 I 0 Then, register 13 holds half~word ':p 

operand addresso 

3 
i -~ 0 LDH Double Second regi.ster holds half-word 
13 -, 0 h;X Register operand address 0 

4 i ::::: 1. LDH i Double Left half of second register holds 
13 = 0 LHjRH Register half-word operando 

For h = O} the operand is held in the left half of the specified memory 

registero For h '--' 1~ the operand is held in the right half of the specified 

memory registero 

120 The KEYBOARD Instruction 

Before continuing with Half~Word Class programming examples, the 

KEYBOARD i.nstruction, KBD i.? code SIS + 20i, is i.ntroducedo The LINC uses 

a simple} externally~connected keyboard for coded input 0 Each key has a 

6~bit code number, 0-5S (octal), (See Chart II), which can be transferred 

into the Accumulator by the KBD i instruction when a key is struck. KBD i 

directs the LINC to clear the Accumulator, copY' into the right half of the 

Accumulator the code number of the struck key, and release the keyo The 

i=bit is used here in a special way to synchronize the keyboard with the com

puter 0 When i :=: 1, if a key has not been struck,? the computer will wait for 

a key to be struck before trying to read a key code into the Accumulator. 

When i = 0, the computer does not wait, and the programmer must insure that a 

key has been struck before the computer tries to execute the KBD instructiono 



The KEYBOARD Instruction 

This use of the i-bit to cause the computer to pause is unique to a class 

of instructions knOlvn as the Operate Instructions, of which KBD is a member. 

As a class they are used to control or operate external equipment. 

The follo,ving program reads in key code numbers as keys are struck on 

the keyboard, and stores them at consecutive half-word locations, LH(lOO), 

RH(lOO), LH(lOl), 

stops the program. 

Memory 
Address 

7 

-7 20 

21 

22 

23 

24 

25 

26 

27 

o •• , until the Z, code number 55 (octal), is struck, ,vhich 

Memory Contents 

[h;X] 

SET i 7 
1;77 

KBD i 

SHD i 

5500 ----, 
HLT I 

STH i 7 ~ 

JMP 22 

0067 

4077 

0535 

1420 

5500 
0000 

1367 
6022 

Effect 

Half-word index register. 

Set index register 7 to one half-word 
location less than initial location. 

Read code number of struck key into 
RH(ACC), and release the key. 

Skip to location 26 if code number 
1= 55· 

Code = 55, so halt. 

Half-word index register 7, store 
code number, and return to read 
next key. 

Example 16. Filling Half-Word Table from the Keyboard. 

55 



The KEYBOARD Instruction 

Another example reads key code numbers and stores at consecutive half

Hord locations only those code numbers which represent the letters A through 

Z, codes 24 - 55 (octal). Other key codes are discarded, and the program 

stops when 100 (octal) letters have been stored. 

Memory 
Address 

5 
6 

~ 100 

101 

102 

103 

104 

105 

106 

107 

110 

III 

112 

113 

114 

115 

116 

117 

120 

121 

122 

Memory Contents 

[hjX] 

[-n] 

SET i 6 

-100 

SET i 5 

1;777 

KBDi 

STA i 

[-] 

ADA i 

-23 

BCL i 

3777 

AZE ----, 
JMP 104 I 
LDH ~ _--1 

1;106 

STH i 5 

XSK i 6 ----, 
JMP 104 I 
HLT f----' 

0066 

7677 

0065 

4777 
0535 

1060 

[-] 

1120 

7754 

1560 

3777 

0450 

6104 

1300 

4106 

1365 

0226 

6104 

0000 

Effect 

Set 6 to count 100 times. 

Set 5 for storing letters beginning 
a.t LH( 1000). 

Read keyboard. 

C(ACC) ~ c(106); store key 
code in 106. 

C(ACC)-23 ~ C(ACC). 

Clear all but the sign bit in ACC. 

If C(ACC) = 0, skip to location 115. 

C(ACC) ~ 0, so key code was less 
than 24. Return to read next key. 

Key code > 23 represents a letter. 
Therefore RH(106) ~ RH(ACC). 

Half-word index register 5 and 
store code for letter. 

Index register 6 and return if 
100 letters have not been struck. 

Example 17. Selective Filling of Half-Word Table from the Keyboard. 



13. The LINC Scopes and the Display Instructions 

The LINC has two cathode ray tube display devices called Display 

Scopes, each of which is capable of presenting a square array of 512 by 

512 (decimal) spots (1000 by 1000, octal) 0 A special instruction, DISPLAY} 

D1S :L o:,~ code l40 -:- 20i + cx, rrlorrlent8.rily -p-roduces a bright spot at one 

point in this arrayo The horizontal (H) and vertical (V) coordinates are 

specified in the Accumulator and in exo The vertical coordinate, 

~ 377 :S V :s +377 (octal), is held in the Accumulator during a DIS i ex 

instruction; the horizontal coordinate, 0 ~ H :5 777 (octal), is held in 

register ex, 0 ~ ex ~ 170 The spot in the lower left corner of the array has 

the coordinates (0, -3(7): 

(0, -1-3(7) 
.. II. 

(0, 0),., 

.. 1iIoc .. 
( 0, - 377.) 

Square array, 3" by 3", of 
1000 x 1000 (octal) points. 

I 
V 

H to lrH' v) 

(777, +31'7) .. 

... (777, 0) 

•• 
'III 

(777, -3(7) 

57 

I DIS! 



,58 'The LINC Scopes and the Display Instructions 

The coordinates are held in the right-most 9 bits of register a and the 

Accumulator, 

~ ACe I I I I I 
~ k ~ unused (-377 ~ V ~ +377) 

a h-bit~ JllJ) I I 
k (0 :5: H ~ 777) ~ 

so that if C(ACC) := 641, ioeo, ~136, and C(5) := 430, then DIS 5 will cause 

a spot to be intensified at (430, -136) on the scope(s)o 

Both scopes are positioned at the same timeo The production of a 

bright spot on either scope depends upon the state of the left-most bit 

(the h=bit) of register a and an external channel selector located on the 

face of each Display Scope. If h =: 0, then the spot is produced via Display 

Channel lID; if h ~. 1, then the spot is produced via Display Channel #10 

Either Display Scope may be manually set to intensify Channel #0, 
Channel #1, or botho 

The i-bit in DIS i a is used in the usual way to specify whether to 

index the right 10 bits of register a before brightening the spoto This in

dexing, of course, also increases the horizontal coordinate by oneo To illus

trate, the following program will display a continuous horizontal line through 

the middle (V=-O) of the scope(s) via Display Channel #o~ 

Memory 
Address 

5 

--7 20 

21 

22 

23 

24 

Memory Contents 

[- ] 

SET i 5 0065 

0 0000 

CLR 0011 

ems i 5 0165 

JMP 23 6023 

Effect 

Horizontal coordinate and channel 
selection. 

Set 5 to Channel #0 and horizontal 
coordinate =: O. 

Vertical coordinate = 0 --7 C(ACC)c 

Index H (actually index entire 
right-most 10 bits) and displayo 
Repeat endlesslyo 

Example 180 Horizontal Line Scope Displayo 



Character Display 

Another example displays as a curve the values found in a set of con= 

secutive registers, 1400 through 17770 The vertical coordinates are the 

most significant 9 bits of each valueo Since we have only 400 (octal) 

points to disp1ay.~ the curve will be positioned in the middle of the 

scope" Channel #1 is usedo 

Memory 
Address 

10 

11 

,-7 300 

301 

302 

303 

304 

305 

306 

307 

310 

311 

Memory Contents 

rSET i 10 
1377 

SET i 11 

1;177 

LDA i 10 

SCR 3 

DIS i 11 

XSK 10 ----I 
JMP 304 I 
,JMP 300~ 

[-J 
[4000+H] 

0070 

1377 

0071 

4177 

1030 

0343 

0171 

0210 

6304 

6300 

Effect 

Address of vertical coordinates 0 

Channel select and horizontal 
coordinate 0 

Set 10 to beginning address minus 10 

Set 11 to select Channel #1 and 
to begin curve at H = 200. 

Load ACC with value and scale 
right 3 places to position it 
as vertical coordinate 0 

Index the H coordinate and disp1ayo 

Check to see if X(lO) = 17770 

If 4008 points have not been dis
p1ayed J return to get next point 0 

If X(lO) = 1777, return to repeat 
entire displayo 

Example 190 Curve Display of a Table of Numbers o 

Character Display 

The Display Scopes are frequently used to display characters, for 

example keyboard characters, as well as data curves 0 Character display is 

somewhat more complicated since the point pattern must be carefully worked out 

in conjunction with the vertical and horizontal coordinates for each pointo 

59 



60 Character Display 

If, for example, Ive want to display the letter A, the array on the scope 

might look like~ 

5 II 17 23 
4 10 16 22 
3 9 15 21 

2 8 14 20 

I 7 13 19 

0 6 12 18 

6 

1 
fig. a figa b 

Hhere the shaded areas of fig. a represent points ,vhich are intensified, 

and the white areas points not intensified; the total area represented is 

6 vertical positions by 4 horizontal positions. If, for example, the lower 

left point has the coordinates (400, 0), then the upper right point has the 

coordinates (403, 5). 

We could, of course, store the H and V coordinates for every inten

sified point of the character in a table in the memory, but the letter A 

alone, for instance.~ would require 32 (decimal) registers to hold both 

coordinates for all the points which are intensified. Instead we arbitrarily 

decide upon a scope format, say 4 x 6, and make up a pattern word in which 

~ represent points to be intensified and zeros points which are not 

intensified. To specify a 4 x 6 pattern of 24 bits we need 2 memory regis

ters. We also decide, for efficiency of programming, to display the points 

in the order shown numerically in fig. b, that is, from lower left to upper 



Character Display 

right.? column by column. If i,-Je examine bit 0 of the pattern word first, 

bit 1 next, bit 2, etco, then the pattern i,-Jord for the left half of the 

letter A (the left ti,-Jo columns) will look like ~ 

First 
pattern Hord 

11 10 9 

11 10 10 I 
, « , , 

8 7 6 

1 10 I 0 I 
, r ' 

.5 4 :3 210 

,. 1 11 11 11 11 11 I 

where the bit positions of the pattern word correspond to the numbered 

scope positions 0 - 11 of fig. b. The pattern word for the right half of 

the letter will then look like~ 

Second 
pattern I\lord 

11 10 9 

I] 11 11 I 
8 7 6 

11 11 11 I 
5 4 :3 2 1 0 

1 I 0 1 0 I 11 I 0 101 

with bits 0 - 11 corresponding to scope positions 12 ~ 23 respectively. 

An Index Class instruction, SKIP ROTATE" SRO i f3.? code 1500 + 20i + f3., 

facilitates character display with the kinds of pattern words described 

above. SRO i f3 directs the LINC to ski,p the next register in the instruc

tion sequence i,-Jhen bit 0 of the specified memory register contains O. If 

bit 0 contains 1, the computer does not skip. In either case, however, 

after examining bit 0., the contents of the specified memory register are 

rotated 1 place to the right. Therefore, repeating the SRO instruction 

(with reference to the same memory register) has the effect of examining 

first bi.t 0, then bit 1, bit 2, etc. Executing the SRO instruction 12 times, 

of course, restores the memory i,-Jord to its original configuration. 

The following example repeatedly displays the letter A in the middle of 

the scope, using register '7 to hold the address of the first pattern word and 

register 6 to hold the H coordinate. Since 4 x 6 contiguous points on the 

scope array define an area too small to be readable, a delta of 4 is used 

to space the points, so that if the first point is intensified at coord

inates (370, 0) the second point will be at (370, 4), the 7th point at 

(374, 0), etc. (This produces characters approximately 0.5 cm. high.) 



.Me 
Ad 

mory 
dress 

6 

7 . 
60 

61 

62 

63 

64 

65 

66 

67 

70 

71 

72 

73 

74 

75 

76 

77 

100 

101 

102 

103 

10)-+ 

105 

106 

107 

110 

111 

I 
I 

I 

! 
I 
J 

Memory 

[0; HJ 

[x] 
. . 

) SET i 6 

0;370 

SET i 7 

110 

Character Display 

Contents 

I [~J 

I 
[~, ] 

I 
0066 

0370 

I 
0067 

0110 

Effect 

Channel s election and H coordinate. 

f pattern Ivord. Address 0: 

Set H coo 
left po 

Set 7 to 
pattern 

rdinate = 370 for lower 
into Select Channel #0. 

address of first half of 

I l---j LDA i 1020 Initial V 

7767 

coordinate .- =10 --7 C(ACC) 0 

I 
I 
I 
i 

I 

,~10 

I r~RO _7 I 

I I 
DIS 6 I 

I 

I ADD 75~ 
SEO i 

I 3737 ----, 
I JMP 66 I 

LDA i~~ 

I 4 

ADM I 6 

I SEO i 

252.5 ----I 
I JMP 64 I 

XSK i 7~ 
I 

SEO i 

I 2525 ----, 
I 

JMP 64 I 
JMP 60~ 

44,77 I 
7744 I 

1507 

0146 

207.5 

1520 

3737 

6066 

1020 

0004 

1140 

0006 

1520 

2525 

6064 

0227 

1520 

2525 

6064 

6060 

44,77 

7744 

h 

, .... 

Skip to 1 ocation 70 if bit 0 of 
word is zero. Eotate the 
word 1 place to right. 

pattern 
pattern 

If bi.t 0 
display 

of pattern word was one, 
one point. 

Add 4 to 

Skip to 1 
pattern 
Eotate 

Eeturn to 
Ivord Ivh 

When bit 
have be 
coordin 

Check to 

V coordinate in ACC. 

ocation 74 when 6 bits of 
word have been examined. 

C(72) 1 place to righte 
examine next bit of pattern 

en bit 0 of C(72) = 1. 

o of C( (2) ::: 0., 6 points 
en examined. Increase H 
ate by 4 to do next column. 

see if 2 columns have been 
edo Rotate C(lOl) 1 place 
to 

display 
to righ 

TlyO colum ns have not been displayed; 
to do next column. return 

TlvO co1um ns have been displayed; 
ddress of the pattern word. 
07 if both halves of pattern 
en displayedo 

index a 
Skip to 1 

have be 

Return to 

Entire pa 
once. 

} Pattern 1 

display 2nd half of pattern. 

ttern has been displayed 
Return and repeat. 

yards for letter A. 

Example 200 Character Display of the Letter A. 



Character Display 6j 

I DSC I 

,The SEO instructions at ,locations 71~ 100, and 104 determine 'when 1 column,j 

2 columns J and 4 columns have been displayedo After each column the H coor= 

dinate is increased by 4 and the V coordinate reset to -10. After 2 columns 
------..----

the address of the pattern 'vord is indexed by one, and after 4 colu~ns the 

entire process is repeated. 

DISPLAY CHARACTER, DSC i t3, code 1740 + 20i + f3,~ is the last of the 

Index Class instructions; it directs the LINC to display the contents of 

one pattern word, or 2 columns of points. Register t3 holds the address of 

the pattern word and the i-bit is used in the usual way to index X(t3)o The 

points are displayed in the format described above, i. eo, 2 columns of 

6 points each with a delta of 4 bet'veen points 0 The pattern word is examined 

from right to left beginning 'vith bit 0 and points are plotted from lower 

left to upper right, as above. When executing a DSC instruction the computer 

allvays takes the H coordinate and channel selection from register 1. The 

delta of 4 is automatically added to X(l) every time a new column is begun; 

furthermore this indexing i.8. done before the first column is displayed, so 

that if register 1 initially contains 0364, the first column will be displayed 

at H -- 370,? the second at H := 374., and register 1 'vill contain 0374 at the 

end of the instruction. 

The vertical coordinate is, as usual, taken from the Accumulator, and 

again +4 is automatically added to C(ACC) between points. The right=most 

5 bits (bits 0 = 4) of the Accumulator are always cleared at the beginning of 

a DSC instruction, so that if initially C(ACC) == +273, the first point 'vill be 

displayed at V = 240, the second at V := 244, etc. Characters can therefore 

be displayed using the DSC instruction only at vertical spacings of 40 on the 

scope,? eog., at initial vertical coordinates eClual to =77:; =37, 0, +40, +100,'1 

etc 0 Furthermore, the right-most 5 bits of the Accumulator always contain 

30 (octal) at the end of a DSC instruction, so that if the initial C(ACC) :::: +273.? 

the initial V Hill eClual +240 and C(ACC) will equal +270 at the end of the 

instructiono 



64 Character Display 

To display a character defined by a 4 x 6 pattern two DSC instructions 

are needed. The following example repeatedly displays the letter A in the 

mi.ddle of the s cope9 just as the program on p. 62 (Example 20) doe s ~ but wi.th 

greater efficiency using the DSC instruction. Since \'ve cannot have an initial 

V :=:; =10 with DSC? the program uses V = o. 

Memory 
Address 

1 

7 

~ 60 

61 

62 

63 

64 

65 

66 

110 

111 

Memory 

[O;H] 

[x] 

CLR 

SET i 1 

0';:364 

SET i 7 

110 

DSC 7 

DSC i 7 

JMP 61 

4477 

7744 

Contents 

[=] 

[=] 

0011 

0061 

0364 

0067 

0110 

1747 

1767 

6061 

4477 

7744 

Effect 

Channel selection and H coordinate. 

Address of pattern word. 

Initial V' :=:; 0 ~ C(ACC). 

Set 1 to initial H coordinate minus 
4, and select Channel #0. 

Set 7 to address of first half of 
pattern. 

Display, using 1st pattern word, the 
left 2 columns of the letter A, 
at initial coordinates of (370, 0). 

Index address of pattern word, X(7), 
and display right 2 columns of 
the letter A at initial coordi
nates of (400, 0). 

Return and repeat. 

}pattern "ords for letter A. 

Example 21. Character Display of the Letter A Using DSC. 

Aft~r the first DSC instruction (at location 65), C(l) = 0374 and C(ACC) = 30. 

After the second DSC instruction, C(l) = 0404, C(7} = 0111, and C(ACC) ::::: 30. 

C(llO) and C(lll) are unchanged. By adding more pattern words at .locations 

112 and follo\'ving locations, and repeating the DSC i7 instruction~ \'ve could, 

of course ,j display an entire row of characters. 



Character Display 65 

The following program repeatedly displays a row of 6 digitso The 

pattern words for the characters 0 - 9 are located in a table beginning 

at 1000 j i 0 e o,~ the pattern words for the character 0 are at 1000 and 1001, 

for the character 1 at 1002 and 1003, etc. The keyboard codes for the 

characters to be displayed are located in a half-·,yord table from 1400 

through 1402j ioe.,~ the first code value is LH(1400), the second RH(1400), 

etco The program computes the address of the first pattern word for each 

character as it is retrieved from the table at 1400. 

Memory 
Address 

1 

2 

3 

4 

-7 20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 

40 

41 

42 

43 

Memory Contents 

[l,;HJ 

[~n] 

[h:;XJ 

[x] 

~SET i 2 

-6 

SET :t, 3 

1;1377 

SET i 1 

1;344 

r7 LDH i 3 

ROL 1 

ADA i 

1000 

STC 4 

DSC 4 

DSC i 4 

LDA i 

4 

ADM 

1 

XSK i 2 ----l 
JMP 26 I 
JMP 20~ 

I 
[-] 

[-J 

[~J 

[-] 

0062 

7771 

0063 

5377 

0061 

4344 

1323 

0241 

1120 

1000 

4004 

1744 

1764 

1020 

0004 

1140 

0001 

0222 

6026 

6020 

Effect 

Channel selection and H coordinate. 

Counter for number of char"~cters 0 

Address of keyboard code values 0 

Address of pattern wordo 

Set 2 to count number of charac
ters displayed. 

Set 3 for loading code values begin~ 
ning at LH(1400)o 

Set 1 to initial H coordinate minus 
4, and select Channel #10 

Half~word index register 3 and put 
code value into Accumulator 0 

}

comp, ute address of pattern ,yord by 
multiplying code value by 2 and 
adding beginning address of 
pattern table. 

Address of pattern word -7 c(4)j 
o -7 C(ACC) 0 

} 
Display character at initial V =. 0, 

and initial H = C(l) + 4. 
! .. 

... 

Increase H by 4 to provide space 
> between characters. 

} 

Index X(2) ,a,nd ,check to see whether 6 
characters have been displayed. If 
not, return to get next character. 
If so, return to repeat entire 
display. 

Example 220 Displaying a Row of Characters. 



66 

\ SAM I 
Analog Input and the SAMPLE Instruction 

Suppo2e J for example, that one of the 6 code values is 07. The pattern word2 

for the character 7 are at location2 1016 and 1017. Multiplying the code 

value 07 by 2 (7 x 2 = 16 octal) and adding the beginning address of the 

pattern table (16 + 1000 = 1016) give2 U2 the address of the first pattern 

word for the character 7. It should be clear that we could add pattern 

words for all the keyboard characters to our pattern table; if we organize 

the pattern table to correspond to the ordering of the keyboard code values, 

the same technique of lital?le look-up!! usi.ng the code values to locate the 

pattern could be used to display any characters on the keyboardft 

14. Analog Input and the SAMPLE Instruction 

The SAMPLE instruction, SAM i n, refers to the LING's miscellaneous 

inputs. The LING has 16 input lines (numbered 0 ~ 17 octal) through which 

external analog signals may be received. The SAMPLE instruction samples the 

voltage on anyone of these lines, and 2upplies the computer with instan~ 

taneous digitalized "looks" at analog information. Input lines 0 through 7 

are slow speed inputs built to receive 2ignals in the range ~l to -7 volts 

at a maximum frequency of 200 cycles per secondo These eight lines are 

equipped with potentiometers, appearing on the Di2play panel as numbered black 

knob2, whose voltage is varied by turning the knob2. Lines 10 through 17, 

located at the Data Termi.nal module, are for high frequency 2ignals which may 

range from ~l to +1 volts at a maximum of ~ 20,000 cycles per secondo 

The number n in the SAMPLE instruction 2pecifies which line to sample. 

Built into the LING are analog-to-digital conversion circuits which receive 

the signal and convert it to a signed Il-bit binary number in the range :!:'177, 

leaving the result in the AccumUlator. Thus, for example, a voltage of zero 

on one of the high frequency lines will be converted to 0 when sampled with 

a SAM instruction, and the number 0 will be left in the Accumulator. Voltages 

'on the high frequency lines greater than or equal to +lV will, when sampled, 

* See Ghart III. 



Analog Input and the SAMPLE Instruction 

cause +177 (octal) to be left in the Accumulator 0 Voltages less than or 

equal to -lV Hill cause -177 to be left in the Accumulatoro 

Memory 
Address Memory Contents -+ .E:f~:_~_.!-_______ , 

T n I ltOrlVerb.LUU U.L VU.LlJCl.OC: on 
line n -7 C(ACC). 

bAiVl i n 100 + 20i 

The value of this facility, which makes it possible to evaluate data while 

they are being generated, can easily be seeno The SAMPLE instruction is fre

quently used with the DISPLAY instruction in this context. 

The i-bit in the SAMPLE instruction can be used to shorten the length of 

time the instruction requires, occasionally \vi th some sacrifice of precision. 

When i A., the SAMPLE instruction lasts 24 j..lsec.* and the conversion is com-

pleted for all bits of the Accumulator ( through bit 0). When i = 1, ho\vever, 

the computer proceeds to the next instruction in sequence after only 8 j..lseco 

and before the conversion process is finished. The conversion is not, how

ever, terminated. It 'Hill continue in the Accumulator for 14 more j..lsec. \vhile 

the computer executes succeeding instructions. If the Accumulator is not dis

turbed during this time, the correct converted value will be accessible after 

14 /J-sec. If the Accumulator is disturbed, ho\vever, the converted value in 

the Accumulator after 14 /J-sec. will be incorrect. 

During the 14 /J-sec. one bit is converted every 2 /J-sec., beginning with 

the most significant conversion bit (bit 6) of the Accumulator: 

Sign Converted value 
(r-__ ~A'-__ -.., ,-------"'---------"1\ 

000 000 000 000 C(Accumulator) 

T iii iii 
2 4 6 8 10 1~2 14 

~~ ____________ y____--___ J /J-sec. 

# /J-sec. for conversion 

* See Appendix II: LINC Order Code Summary, for instruction execution times. 



68 Analog Input and the SAMPLE Instruction 

Suppose that the instruction following a SAM i n when i :=. 1 is STC, Store

Clear. During execution of an STC instruction the contents of the Accumulator 

are stored in the memory 10 jlsec. after the STC instruction is initiated. 

The 10\\7 order 3 bits (bits 2~ 1, and 0, converted after 10, 12, and 14 J,lseco) 

'vill not be converted by this time, and should therefore be disregarded. 

Furthermore, the STC instruction may not leave the Accumulator clear, because 

the conversion process 'vill continue for 4 j..wec. after the clear time of the 

STC instruction. In general, examination of the Instruction Timing Diagrams 4 
will shmvwhen it is feasible to use SAM 'vi th i = 10 

To illustrate the use of this instruction, we look first at a simple 

example of a sample and display program. The following sequence of instruc

tions samples the voltage on input line #10, and displays continuously a plot 

of the correspondi.ng digital values. It provides the viewer with a continuous 

picture of the analog signal on that line. The sample values left in the 

Accumulator are used directly as the vertical coordinates. In this example, 

input #10 is sampled every 56 J,lsec. (This is determined by adding the execu= 

tion times for SAM i, 8 J,lsec.; DIS, 32 J,lsec.; and JMP 1002; 16 jlseco) 

Memory 
Address 

17 

-7 1000 

1001 

1002 

1003 

1004 

Memory Contents 

[O;H] [-] 

SET i 17 0077 

1777 1777 

SAM i io 0130 

DIS i 17 0177 

JMP 1002 7002 

Effect 

For channel selection and H coor
dinate. 

Set register 17 to begin H coor
dinate at H = 0; Channel #0. 

Sample input #10, leaving its value 
in the ACC as the V coordinate. 

Index the H coordinate and display. 

Return and repeat endlessly. 

Example 23. Simple Sample and Display. 

Note that since here we want a continuous display, it is not necessary to 

reset register 17 to any specific horizontal coordinate. 



Analog Input and the SAMPLE Inst-ruction 

A second example illustrates one of the uses of the potentiometers. 

This program plots the contents of a 512 (decimal) word segment of memory 

registers 0 through 1777. The location of the segment is selected by 

rotating Knob #5, whose value is used to determine the address at which to 

begin the display. As the viewer rotates the knob, the display effectively 

moves back and forth across the memory. 

Memory 
Address 

12 

13 

-7 20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

Memory Contents 

[X] 

[l;H] 

SET i 13 

4777 

SAM 5 

ADA i 

200 

ROL 2 

STC 12 

LDA i 12 

SCR 3 

DIS i 13 

XSK 13 ----, 
b: 

JMP 20 ~ 

[- ] 

[- ] 

0073 

4777 

0105 

1120 

0200 

0242 

4012 

1032 

0343 

0173 

0213 

6027 

6020 

Effect 

For channel selection, H coordi-
nate, and counter. 

Set register 13 to select Chan
nel #1 and to begin displaying 
at H :::: O. 

1 Sample Knob #5, add 200 to make 
the value positive, rotate left 
2 places to produce an address 
for display, and store in 
register 12. 

}

IndeX the address. of the vertical 
coordinate, and put the coordi
nate into the ACC. Position it 
for display, index the H coordi
nate and display. 

Check to see whether 512 (decimal) 
points have been displayed. 
( X( 13) = 1777?). 

If not, return to display next point. 

If so, return to reset counter and 
get new address from Knob #5. 

Example 24. Moving Window Display Under Knob Control. 

At locations 23 - 25 a memory .address is computed for the first vertical 

coordinate by adding 200 to the sample value. This leaves the value in the 

range +1 to +377; it is then rotated left 2 places to produce an initial 

address in the range 4 through 1774 for the display. 



70 Analog Input and the SAMPLE Instruction 

A final example illustrates the technique of accumulating a frequency 

distribution of sampled signal amplitudes appearing on line #12, and dis

playing it simultaneously as a histogram. The distribution is compiled in 

a table at locations 1401 - 1777, and the sample values themselves are used 

to form the addresses for table entry. Registers 1401 - 1777 are ::":litially 

set to -377 so that the histogram will be from the bottom of the scope. 

Note, at locations 104 and 105, that since we are using memory registers 

1401 - 1777, the same index register (register 2) may be interpreted both as 

address (location 104)" and counter (location 105). We do not need a sep

arate counter because the final address (1777) 'vill serve also as the basis 

of the skip decision for the XSK instruction. The same is true at loca-

tions 123 and 133. 



Memory 
Address 

Analog Ipput and the SAMPLE Instruction 

Memory Contents Effect 
-----+------------- ------ -------

2 

3 

~ 100 

10l 

lU2 

103 

104 

l05 

l06 

l07 

llO 

III 

l12 

113 

ll4 

115 

116 

117 

120 

121 

122 

123 

124 

125 

126 

127 

130 

131 

132 

133 

134 

-135 

[xJ 
[O;H] 

SET i 2 

1400 

LDA .i 

-377 

1--) STA i 2 

I XSK 2 

I ~;~04i 
~-~ SET i 2~J 

1400 

SET i 3 

200 

~SAM 12 

ADA i 

1600 

STC 122 

LDA i 

AIM 

[-J 

1 

LDA i 2 

DIS i 3 

DIS 

ADA i 

-1 

SAE i 

-400 

3 

----, 
JMP 125 I 
XSK 2 ~ ----, 

I 
JMP 113 I 
JMP 107 ~ 

0062 

1400 

7400 

1062 

0202 f 

6104 

0062 

1400 

0063 
0200 

0112 

1120 

1600 

4122 

1020 

0001 

1140 

[" - ] 

1022 

0163 

0143 

1120 

7776 

1460 

7377 

6125 

0202 

6113 

6107 

Address of vertical coordinates. 

Channel selection and H coordinate. 

lInitinl routine to cet ""C-; c1-."rf' 

1401 - 1777 to -377. 

Set register 2 to initial address 
minus one of vertical coordinates. 

Set register 3 to select Channel #D 
and begin display at II =: 201. 

Sample input line #l20 

}

Add lL~00+200 to the sample value 
to form an address for recording 
the event and store. 

1 Add 1 to the contents of the regis
ter just located by the sample J value to record the event. 

Index register 2 and put a histogram 
value in the Accumulator. 

Index the H coordinate and display. 

Display 'ivi thout indexing. 

Fill in the bar by decreasing the 
vertical coordinate by 1 and contin
uing the display until a point is 
displayed at V = -377. 

When bar is finished, check to see 
'ivhether 377 values have been dis
played. (X(2) =: 177(7). 

If not, return to get next sample. 

If so, return to reset vertical coor
dinate address, H coordinate, and 
repeat. 

Example 25. Histogram Display of Sampled Data. 

7l 



15. The Skip Class Instructions 

Instructions belonging to the Skip Class test various conditions of the 

Accumulator, the Keyboard, the Tapes, and the External Level lines of the 

Data Terminal module. The coding for these instructions includes the condi

tion or level line to be checked and an option to skip or not skip \{hen the 

condition is met or the external level is negative. 

condition 
SKP o :; c :; 13 
~ ~ 

SKP i c: 440 + 20i + c 

1 = 0: Skip only if condition c is met 
or level n is negative. 

or I = 1: Skip only if condition c is not 1 
{: 

met or level n is not negative. 

SXL i n: 400 + 20i + n 
l' l' 

SXL 0 < n < - - 13 
level line number 

In these instructions the i-bit can be used to invert the skip decision. 

When i = 0 the computer skips the next register in the instruction sequence 

when the condition is met or external level is negativee However, Hhen i = 1, 

the computer skips \{hen the condition is not met or the external level is not 

negative. Otherwise the computer always goes -to the next register in the 

sequence. 

The four situations which may arise are summarized in the following 

table. The Skip Class instruction is assumed to be in register p. 

Branching in Skip Class Instructions 

i Condition met or level negative? Location of next instruction 
""4LZ - ............. .....,.. 

0 yes· p + 2 (Skip) 
--____ ... r_' ..... 

0 no p + 1 

1 yes p + 1 

1 no p + 2 (Sk:ip) 
.... 



The Skip Class Instructions 

The SKP i c instructions test 13 conditions, 'ivhich, because of their 

variety, 'ive choose to describe 'ivith different 3-letter expressions. Thus the 

AZE i instruction already presented is the same as SKP i 10. Another instruc~ 

tion, APO i, synonymous 'ivith SKP ill, checks to see whether the ACCUMULATOR 

is POSITIVE (bit 11 = 0): 

Case: i = 0 

Memory 
Address 

p 

p + 1 

p + 2 

Case: i =: 1 

Memory 
Address 

p 

p + 1 

P + 2 

Memory Contents 

APO 440 + 11 
--I 

-~-1 
_~-1 

Memory Contents 

440 + 20 + 11 

Effect 

If C(bit 11 of ACC) = 0, go to 
P + 2 for the next instruction; 
if C(bit 11 of ACC) = 1, go to P + 1. 

Effect 

If C(bit 11 of ACC) =: 1, go to 
P + 2 for the next instruction; 
if C(bit 11 of ACC) =: 0, go to 
p + 1. 

Other SKP variations check whether C(L) = 0, (LZE i, code 452 +20i, 

which is synonymous with SKP i 12) or 'ivhether one. of the 6 Sense Switches on 

the console is up (SNS i 0, SNS i 1, •.. , SNS i 5, synonymous 'ivith SKP i 0, 

SKP i 1, ..• , SKP i 5). (The Sense S'ivitches are numbered from right to left, 

o through 5.) 

The SXL i n instruction, SKIP ON NEGATIVE EXTERNAL LEVEL, checks +or the 

presence of a -3 volt level on External Level line n, 0 ~ n ~ 13, at the 

Data Terminal module. It is often used with the OPERATE instruction, dis

cussed in the next section, to help synchronize the LINC with external 

equipment. 



The Skip Class Instructions 

The Skip instruction KEY STRUCK, KST i; code 415 + 20i, checks whether 

a keyboard key has been struck (and not yet released). KST i is synonymous 

,,,ith SXL i 15. 

To illustrate the use of these instructions the following program counts 

the signal peaks above a certain threshold, 100 (octal), for a set of 

1000 (octal) samples appearing on input line #13. The number of peaks 

exceeding the threshold '''ill be left in the Accumulator. 

Memory 
Address 

7 
10 

-71500 

1501 

1502 

1503 

1504 

1505 

1506 

1507 

1510 

1511 

1512 

1513 

1514 

1515 

Memory Contents 

SET i 7 

-1000 

SET i 10 

o 
SAM 13 

ADA i 

-100 

APO i 

~ ~lOl 
I 

XSK i 7~ 
~-~41 
LDA f----.J 

10 

HLT 

[-] 

[- ] 

0067 

6777 

0070 

0000 

0113 

1160 

7677 

0471 

0230 

0227 

7504 

1000 

0010 

0000 

Effect 

Counter for 1000 samples. 

Counter for number above 100 (octal). 

Set register 7 to count 1000 samples. 

Clear register 10 to count peaks. 

}

samPle input line #13 and subtract 
100 from the sample value. 

Is the Accumulator positive? 

If so, the value was above 100; add 
1 to the counter. If not, skip 
the instruction a.t location 1510. 

Index register 7 and test. 

If 1000 samples have not been taken, 
return. 

}

If 1000 samples have been taken, 
put the number of those above 
100 into the Accumulator and halt. 

Example 26. Counting Samples Exceeding a Threshold. 



The Skip Class Instructions 

Another program samples and displays continuously the input from 

line #14 until a letter, i. e., a key 'vhose code value is higher than 23 (octal), 

is struck on the keyboard. 

Mom""!",T I •• ~u.~~ oJ 

Address 

1 

~ 100 

101 

102 

103 

104 

105 

106 

107 

110 

111 

112 

113 

Memory Contents 

[l;HJ 

SET i 1 

4000 

~.) SAM 14 

DIS i 1 

KST ----l 
JMP 102 I 
KBD f- _.J 

ADA i 

-23 

APO -----l 
JMP 102 I 

I 
HLT~-J 

I 
I 
I 
I 

I 

I 

I 

I 
I 
I 

0061 

4000 

0114 

0161 

0415 

6102 

0515 

1120 

7754-

0451 

6102 

0000 

Effect 

Channel selection and H coordinate. 

Set register 1 to select Channel #1 
and begin display at H = 1. 

Sample line #14 and display its 
value. 

Has a key been struck? 

If not, return and continue sampling 
_ and displaying. 

}

If so, read the key code into the 
Accumulator and subtract 23 
(octal) from its code value. 

Is ACC positive? 

If not, the value 'vas less than 23 
(octal). Return and continue 
sampling. 

If so, the value was 24 or greater; 
halt. 

Example 27. Simple Sample and Display with Keyboard Control. 

Note that the KBD instruction at location 106 will be executed only 'vhen a 

key has already been struck (because of KST at location 104) and therefore 

does not need to direct the computer to pause. 

75 



16. The Data TerminaJ.], Module and the OPERATE Instruction 

We have already mentioned the OPERATE instruction (p. 55) in connection 

Ivi th KBD i. In general, OPERATE, OPR i n, code 500 + 20i + n, provides 

operating and synchronizing signals for external equipment. The number n, 

o $ ~ $ 13 (octal) refers to one of twelve Operate Level lines sent to the 

Data Terminal Module, as well as to one of the twelve External Level lines 

(mentioned under SXL). 

During the execution of an OPR instruction a negative output level 

is supplied on Operate Level line n 4 usec. after the begi.nning of the 

instruction;4 it remains for the duration of the instruction. The i-bit 

is used to direct the LINe to ~_se. If i. = 0, there is no pause. If i. = 1, 

the LINe pauses 4 usec. after the begi.nning of the instruction and sends a 

"Beginning of Operate Pausel! pulse, BEOP, 0.4 usec. duration, to the Data 

Terminal module to signal that the pause has begun. The computer then Ivai ts 

in thi.s state until a negative input signal is' sent back on External Level 

line n~ This signal automatically restarts the computer. 

For example, execution of the instruction OPR i 6, code 526, provides 

an output signal on Operate Level line #6 and directs the LINe to pause, 

permitting an external device associated with line #6 to be synchronized 

with computer operation. Then when the external device is ready or has 

completed its operation, it in turn supplies a negative signal on External 

Level line #6, Ivhich restarts the computer. 

In addition to the possible BEOP pulse, tlVO other 0.4 usec. pulses 

are sent to the Data Terminal module regardless of 'vhether the computer has 

paused or not. The first, called OPR2.1, occurs 6 usec. after the beginning 

of the instruction if there is no pause. If the computer has paused, the 

OPR2.1 pulse, ,vhich indicates that the computer is now running, will appear 

not less than 2 usec. and not more than 4 usec. after the restart signal is 

delivered by the external equipment over line n. The second pulse, OPR2.2, 

occurs 2 usec. after OPR2.1. 



Subroutine Techniques 

The OPR instruction may be used in a variety of '.vays depending on need 

and the type of external equipment involved. It can be used simply to sense 

the occurrence of an event (such as an external clock pulse), or it can be 

used tQ control the transfer of digital information between the LINC and 

external equipment (such as a tape recorder). In this context the user has 

the option of transferring a single word (12 bits) either in or out of the 

LINC Accumulator or Memory Contents register, or he can choose to transfer 

a group of words directly into or out of the LINC memory. Various enabling 

levels supplied by the user at the Data Terminal module define the path and 

type of information transfer. 

The Keyboard is a good example of a simple external device which is 

controlled by an Operate instruction, OPR i 15, synonymous with KBD i. The 

number 15 designates special external level and operate level lines, with 

Ivhich the Keyboard is permanently associated. 

17. Subroutine Techniques 

Before describing the remaining instructions, some mention should be 

made of the technique of '.vri ting subroutines. Frequently a progrhffi has 

to execute the same set of instructions at several different places in the 

program sequence. In this case it is an inefficient use of memory registers 

to write out the same set of instructions each time it is needed. It is 

more desirable to write the instructions once as a separate, or ;'sub, IY 

routine to which the program can jump whenever these instructions are to 

be executed. Once the instructions in the subroutine have been executed, 

the subroutine should return control (jump back) to the main program. 

77 



78 Subroutine Techniques 

For example, suppose that in two different places in a program vie must 

execute the same set of arithmetic operations. We can picture the general 

structure of such a program as follows: 

Main Program 

Memory 
Address 

Start) 100 

150 

151 

200 

201 

Memory Contents 

I
Main 

Program 

Instructions 

JMP 1000 ------~) Jump out to subroutine 

Continue ~<-- Return from subroutine 

Main 

Program 

Instructions 

JMP 1000 ----~) Jump out to subroutine 1 Continue ( Return from subroutine 

Enter 

Subroutine 

Memory 
Address 

Subroutine ~ 1000 

1020 

Memory Contents 

Subroutine } 
Instructions Arithmetic t Operations 

JMP MP ~ Return to Main Program 



Subroutine Techniques 

It appears from this example that jumping to the subroutine from the 

main program (at locations 150 and 200) is straightfor\vard. The subroutine 

must be able to return control to the main program, however, reentering it 

at a different place each time the subroutine is finished Q That is, \Ve 

must be able to change the JMP instruction at location 1020 so that the 

a "JMP 15111 and the second time with a IIJMp 201." 

It \vill be remembered that every time the computer executes a JMP 

instruction (other than JMP 0) at any location lip, II the instruction 

"JMP p + 1" replaces the contents of register zero. (See page 140) Thus, 

\vhen the IIJMp 1000" is executed at location 150, a IIJMp 151" is automatic

ally stored in register 0,- thereby saving the return point for the subroutine. 

'}lhe subroutine might retrieve this information in the following \Vay: 

Subroutine: 

Enter 

Memory 
Address 

Subroutine --7 1000 

1001 

1002 

1020 

Memory Contents 

.LDA 

o 
STC 1020 

[JMP P + lJ 

Effect 

C(O) --) C(ACC) j 
i. e ., It JMP P + 1" --7 C (ACC) . 

C(ACC) --7 C(1020). 

} Execute arithmetic operations. 

Return to main program. 

Clearly, a simple "JMP 0" at location 1020 will suffice when the subroutine 

does not, during its execution, destroy the contents of register zero. In 

this case, the instructions in locations 1000 - 1002 \vould be unnecessary. 

A problem arises in the above example when the subroutine is not free 

to use the Accumulator to retrieve the return point. Another method, 

79 



80 Magnetic Tape Instructions 

using the SET instruction, is possible when there is an available 

t3 register: 

Enter 

Memory 
Address 

Subroutine ~ 1000 

1001 

1020 

Memory Contents 

SET 10 

o 

JMP 10 

Effect 

C(o) ~ C(lO); i.e., "JMp p + 111 
is saved in a free ~ register. 

} 

Execute arithmetic operations; the 
Accumulator has not been disturbed. 

Return to main program by jumping 
to register 10. 

18. Magnetic Tape Instructions 

The last class of instructions, Magnetic Tape, requires some discussion 

of the LINC Tape Units and tape format. The LINC uses small reel (3-3/4" 
diameter) magnetic tapes for storing programs and data. There are two tape 

units on a single panel, on which tapes are mounted: 

LINC MAGNETIC TAPES 

Tape heads 

Tape Uni.t =lID Tape Unit #1 

Any Magnetic Tape instruction may refer to either the tape on Unit #0 or 

the tape on Unit #1; which unit to use is specified by the instruction 

itself; only ~ unit, how·ever, is ever used at one time. 



16-2 Magnetic Tape Instructions' 

A LINe tape can hold 131,072 l2-bit words of information, or the 

equivalent of 128 (decimal) full LINe memories. It is, hO'ivever, divided 

into 512 (decimal) smaller segments kno'ivn as blocks, each of 'ivhich contains 

256 (decimal) 12-bit 'ivords, a size equal to one-quarter of a LINe memory. 

Blocks are identified on any tape by block numbers, ° through 777 (octal); 

Magnetic Tape instructions specify which block to use by referring to its 

block number. A block number (BN) on the tape permanently occupies a 

12-bit space preceding the 256 'ivords of the block itself: 

Block 

~ ~~--------------~v~---------------
1 word 256 words 

There are other special words on the tape, serving other functions, 'ivhich 

complete the tape format. Before describing these, hO'ivever, lye may look 

more specifically at one of the Magnetic Tape instructions, READ TAPE, 

RDE i u. 

81 



82 

) 

( 

Block Transfers and Checking 

READ TAPE is one of six Magnetic Tape instructions which copy information 

either from the tape into the LINC Memory (called'READING), or from the 

memory onto the tape (called WRTIING). These are generally called block 

transfer instructions because they transfer one or more blocks of informa

tion bet'veen the tape and the memory: 

LINC Tape 

BN 21:)6 'ivord BN 256 'vord BN BLOCK 
.. 

BLOCK 
. . 

"' 
READ 

Tape 
to 

Memory 

WRTIE 

Memory 

256 word . .. 
BLOCK 

READ 
"-, 

WRITE 

LINe Memory 

256 
Memory 

Registers 

256 
Memory 

Registers 

256 
Memory 

Registers 

256 
Memory 

Registers 

1 



Block Transfers and Checking 

All of the Magnetic Tape instructions are double register instructions. 

RDE, typical of a block transfer instruction, is written: 

Memory 
Address 

p 

p + 1 

Memory Contents 

TIDE i u. 702 + 20i + 101.1. 

QN!BN 1000QN + BN 

The first register of the instruction has two special bits. The u-bit 

(bit 3) selects the tape unit: when u = 0, the tape on Unit #0 is usedj 

when u =: 1, the tape on Unit #1 is used. Magnetic Tape instructions require 

that the tape on the selected unit move at a speed of approximately 60 inches per 

second. Therefore, if the tape is not moving \{hen the computer encounters 

a Magnetic Tape instruction, tape motion is started automatically and the 

computer waits until the tape has reached the required speed before contin-

uing with the instruction. 

The i-bit (bit 4) specifies the motion of the tape after the instruc

tion is executed. If i = 0, the tape will stoPj if i = 1, it will continue 

to move at 60 ips. It is sometimes more efficient to let the tape continue 

to move, as, perhaps, when we want to execute several Magnetic Tape instruc

tions in succession. If we let it stop we will have to wait for it to start 

again at the beginning of the next tape instruction. Examples of this will 

be given later. 

In the second register of the RDE instruction, the right-most 9 bits 

hold the requested block number, BNj that is, they tell the computer which 

block on the tape to read into the memory. The left 3 bits hold the quarter 

number, QN, which refers to the memory. QN specifies which quarter of 



84 Block Transfers and Checking 

memory to use in the transfer. The quarters of the LINC Memory are numbered 

o through 7,* and refer to the memory registers as follows (numbers are 

octal) ~ 

Quarter 
Number Memory Registers 

0 0 - 377 
1 400 - 777 
2 1000 - 1377 

3 1400 ~ 1777 
4- 2000 - 2377 

5 2400 - 2777 
6 3000 - 3377 

7 3400 - 3777 

Suppose, for example, lye Hant to transfer data stored on tap~ into memory 

registers 1000 - 1377. The data are in, say, block 267 and the tape is 

mounted on Unit #1: 

Memory 
Address Memory Contents Effect 

-7 200 RDE u 0712 Select Unit #1; 

201 21267 1000x2 + 267 C(block 267) -7 C(quarter 2). 

This instruction Hill start to move the tape on Unit #1 if it is not already 

moving. It Iyill then READ block 267 on that tape into quarter 2 of memory 

and stop the tape Iyhen the transfer is completed 0 The computer will go to 

location 202 for the next instruction. After the transfer the information 

in block 267 is still on the tape; only memory registers 1000 - 1377 and 

the Accumulator are affected. Conversely, writing affects only the tape and 

the Accumulator; the memory is left unchanged. 

* See Appendix I. 



Block Transfers and Checking 

Another special word on the tape, located immediately following the 

block, is called the check ~, CS: 

~'-"-r--:~~-l-' I I n 
\ " ... I I Blnc:k I CS I i 

~J ~ ____________ ~y ______________ '~ 

1 word 256 words 1 word 

The check sum, a feature common to many tape systems, is used to check the 

accuracy of the transfer of information to and from the tape. On a LINC 

tape the check sum is the complement of the sum of the 256 words in the block. 

Such a number is formed during the execution of another block transfer 

instruction, WRITE TAPE, WRI i u. This instruction writes the contents of 

the specified memory quarter i.n the specified block of the selected tape: 

Memory 
Address 

p 

p + 1 

Memory Contents 

WRI i u 

QN'/BN 

706 + 20i + lOu 

1000QN + BN 

During the transfer the words being written on the tape are added together 

'ivithout end'-around carry in the Accumulator. This sum is then complemented 

and written in the CS space following the block on the tape. After the opera

tion the check sum is left in the Accumulator and the computer goes to p + 2 

for the next instruction. QN, BN, i, and u are all interpreted as for RDE. 

One means of checking the accuracy of the transfer is to form a new sum 

and compare it to the .check sum on the tape. This happens during RDE: the 

256 'vords from the block on the tape are added together without end-around 

carry in the Accumulator 'ivhile they are being transferred to the memory. 

This uncomplemented sum is called the data sum. The check sum from the tape 

is then added to this data sum and the result, called the transfer check, is 

left in the Accumulator. Clearly, if the information has been transferred 

correctly, the data sum '-Jill be the complement of the check sum, and the 



86 

I RDCI 

Block Transfers and Checking 

transfer check will equal -0 (7777). We say that the block "checks. 11 Thus, 

by examining the Accumulator after an RDE instru,ction, Ive can tell 1vhether 

the block was transferred correctly. The following sequence of instructions 

does this and reads block 500 again if it does not check: 

Memory 
Address 

~ 300 

301 

302 

303 

304 

305 

Memory Contents 

RDE 

31500 

SAE i 

7777 ----I 
JMP 300 I 

_ ~_..J 

0702 

3500 

1460 

7777 

6300 

Effect 

Read block 500, Unit #0, into quarter 3. 
Leave the transfer check in the Accum
ulator and stop the tape. 

Skip to location 305 if C(ACC) = 7777, 
i.e., if the block checks. If 
C(ACC) f 7777, return to read the 
block again. 

The remaining block transfer instructions check transfers automatically. 

READ AND CHECK, RDC i u, does in one instruction exactly what the above 

2equence of instructions does. That is., it reads the specified block of the 

selected tape into the specified quarter of memory and forms the transfer 

check in the Accumulator. If the transfer check does not equal 7777, the 

instruction is repeated (the block is reread, etc.). When the block is 

read correctly, 7777 is left in the Accumulator and the computer goes on to 

the next instruction at p + 2. The RDC instruction is written: 

Memory 
Address Memory Contents 

p RDC i u I 700 + 20i + lOu 

P + 1 QNIBN I 1000QN + BN 

One of the most frequent uses of instructions which read the tape is 

to put LINC programs stored on tape into the memory. Suppose we are given 

a tape, for example, Ivhich has in block 300 a program we want to run. We 



Block Transfers and Checking 

are told that the program is 100 (octal) registers long starting in regis

ter 1250. We can mount the tape on either unit and then set and execute 

either EDE or RDC in the Left and Right Switches. If we use RDE, we should 

look at the Accumulator lights after the transfer to make sure the transfer 

check == 7777. When double register instructions are set in the toggle 

s"\.;ritches, the first "\.;rord is set in the Le!"t S"\.;ritches, and the secoild ill the 

Right S"\.;ritches. If "\.;re mount the tape on Unit #1 and "\.;rant to use RDC, the 

toggle switches should be set as follows: 

Console 
Location 

Left Switches 

Right S"\.;ri tches 

Contents 

RDC u 

21300 

0710 

2300 

QN == 2 because the program in ,block 300 must be stored in memory regis

ters 1250 - 1347, \·!hich are -located in quarter 2. Raising the DO lever 

,.;rill cause the LINC to read the block into the proper quarter and check it. 

We then start at J250 from the console, using the Right Switches. 

The remaining block transfer instructions will be described later. 

A non-transfer instruction, called CHECK TAPE, CHK i u, makes it 

possible to check a block "\.;rithout destroying information in the memory. This 

instruction does exactly ,.;rhat RDE does, except that the information is not ' 

transferred into the memory; that is, it reads the specified block into the 

Accumulator only, forms the data sum, adds it to the check sum from the tape, 

and leaves the result, the transfer check, in the Accumulator. Since this is 

a non-transfer instruction, QN is ignored by the computer. Other\.;rise this 

instruction is written as the other instructions: 

Memory 
Address 

p 

p + 1 

Memory Contents 

CHK i u 

BN 

707 + 20i + lOu 

BN 



88 Block Transfers and Checking 

'l'he follolving program checks sequentially all the blocks on the tape on 

Unit #0. The program starts at location 200. If a block does not check, 

the program puts its block number into the Accumulator and halts at 

location 221. To continue checking, reenter the program at location 207. 

The program Hill halt at location 216 Ivhen it has checked the entire tape. 

Start 

Memory 
Address 

) 200 

201 

202 

203 

204 

205 

206 

Reenter> 207 

210 

211 

212 

213 

214 

215 

216 

217 

220 

221 

Memory Contents 

CLR 

STC 203 

~ 
[BN] ~ 

SAE i 

7777 

:mP2i7j 
LDA i ~J 

1 

AIM 

203 

SAE i 

1000 ---I 
JMP 202 I 
HLT (-_.J 

LDA 

203 

HLT 

0011 

4203 

0727 

[ - ] 

1460 

7777 

6217 

1020 

0001 

1140 

0203 

1460 

1000 

6202 

0000 

1000 

0203 

0000 

Effect 

}

store zero in register 203 as first 
block number. 

Check the block specified in regis
ter 203; transfer check ~ C(ACC); 
the tape continues to move. 

If the transfer check = -0, skip to 
location 207. 

If the block does not check, jump to 
location 217. 

Add 1 to the block number in regis
ter 203, and leave the sum in the 
Accumulator. 

If all the blocks have been checked, 
skip to location 216. Otherwise 
return to check next block. 

1 Load the block 

J 
Ivhichfailed 
and halt. 

number of the block 
into the Accumulator, 

Example 28. Simple Check of an Entire Tape. 

Note that the tape is left moving whenever the computer halts. This is gen

erally undesirable, since it must then be stopped manually by the user at 

the console. Another tape instruction, MTB, can be used to avoid this sit

uation, as will be shown in program exa.mple 33. 



Block Transfers and Checking 

A block transfer instruction WRITE AND CHECK, WRC i u, combines the 

operations of the instructions WRI and CHK, and, like READ AND CHECK, repeats 

the entire process if the check fails. That is, WRC "\"rites the contents of 

the specified memory quarter in the specified block, forms the check sum in 

the Accumulator and writes the check sum on the tape. It then checks the 

block just written. .If the resulting tr1?(wfe:c check dOeS not equal -0) the 

block is rewritten and rechecked. When the block checks, 7777 is left in 

the Accumulator and the computer goes on to the next instruction at p + 2. 

WRC is written: 

Memory 
Address Memory Contents 

p WRC i u I 704 + 20i + lOu 

p + 1 QNIBN I 1000QN + BN 

This process of WRITE AND CHECK may be diagrammed: 

WRI 

Start WRC , MEMORY ~ TAPE 
------------------~ 

~ Form and Write 
I--------------~/ CHECK SUM 

CHK 

TAPE ~ACCUMULATOR 
Form TRANSFER CHECK 

in Accumulator 

TRANSFER CHECK ~ -0 1 TRANSFER CHECK = -0 

Get next 
instruction 



90 Block Transfers and Checking 

The follo,ving sequence illustrates the use of some of the block transfer 

instructions. Since the LINC Memory is small, a program must frequently be 

divided into sections which will fit into tape blocks, and the sections read 

into the memory as they are needed. This example saves (writes) the contents 

of quarter 2 of memory (registers 1000 - 1377) on the tape. It then reads a 

program section from the tape into quarters 1, 2, and 3 (registers 400 - 1777) 

and jumps to location 400 to begin the new section of the program. Assume 

that the tape is on Unit #0. Memory quarter 2 will be saved in block 50; the 

program to be read from the tape is in blocks 201 - 203: 

Memory 
Address Memory Contents Effect 

~ 100 WRC i 0724 C(quarter 2) ~ C(block 50); transfer 

101 2150 2050 
is checked, and the tape continues 
to move. 

102 RDC i, 0720 C(block 201) ~ C( quarter 1), and 
103 1'/201 1201 C(block 202) ~ C(quarter 2); trans-

104 RDC i 0720 
fers are checked and the tape con-
tinues to move. 

105 2,1202 2202 

106 RDC 0700 C(block 203) ~ C(quarter 3) ; trans-

107 3/203 3203 
fer is checked and the tape stops. 

110 JMP 400 6400 Jump to the new section. 

c:- . 
400 [-J 

Example 29. Dividing Large Programs Bet'veen Tape and Memoryo 

At the end of the above sequence the contents of memory registers 400 - 1777 

and tape block 50 have been altered; quarter 0 of memory, in which the 

sequence itself is held, is unaffected. 



Block Transfers and Checking 

Another program repeatedly fills quarter 3wi th samples from i.nput 

line //14 and \vri tes the data in consecutive blocks on tape beginning at 

block 200. The number of blocks of data to collect and save is specified 

by the setting of the Right S.\vi.tches. When the requested number has been 

written, the program saves itself in block 177 and halts. The tape is on 

Unit #1. 

Memory 
Address 

10 

11 

-7 1000 

1001· 

1002 

1003 

1004 

1005 

1006 

1007 

1010 

1011 . 

1012 

1013 

1014 

1015 

1016 

1017 

1020 

1021 

1022 

1023 

Memory Contents Effect 

[X] 

[=n] 

RSW 

COM 

SITC 11 

SET i 10 

1377 

SAM 14 

STA i 10 

XSK 10 -----, 
JMP 1005 I 
WRC u (-J 

[31200] 

LDA i 

1 

AIM 

1012 

XSK i 11 ----, 
JMP 1003 I 
WRC u~ 

21177 

HLT 

Example 30. 

[~] 

[-, ] 

0516 

0017 

4011 

0070 

1377 

0114 

1070 

0210 

7005 

0714 

[~ ] 

1020 

0001 

1140 

1012 

0231 

7003 

0714 

2177 

0000 

Memory address for storing samples. 

Counter. 

Comple~ 

}

C(Ri. ght Switches).-7 C(ACC). 
ment the number and store in 
register 110 

Set register 10 to store samples 
beginning at 14000 

Sample input line #14, store value 
and repeat until 400 (octal) 
samples have been taken. 

When quarter 3 is full, \vrite it on 
tape and check the transfer. The 
-tape stops. 

Add 1 to the BN i.n register 1012. 

Index the counter and skip if the 
requested number has been collected. 

If notj return. 

If so, write this program in block 177, 
check the transfer, and stop the tape. 

Halt the computer. 

Collecting Data and Storing on Tapeo 

Since the program saves itself when finished, the user can continue to collect 

data at a later time by reading block 177 into quarter 2, and starting at 1000. 

91 



Group Transfers 

Since the BN in location 1012 will have been saved, the data ivill continue 

to be stored in consecutive blocks. 

Group Transfers 

Two other block transfer instructions, similar to RDC and WRC, permit 

a program to transfer as many as 8 blocks of information with one instruc

tiono These are called the group transfer instructions; they transfer infor

mation between consecutive quarters of the memory and a group of consecutive 

blocks on the tape. Suppose, for example, that we want to read 3 blocks from 

the tape into memory quarters 1, 2, and 3. The 3 tape blocks are 51, 52, 

and 530 Using the instruction READ AND CHECK GROUP, RCG i u, we write: 

Memory 
Address 

p 

p + 1 

Memory Contents 

RCG i u 

2151 

701 + 20i + lOu 

2051 

The first register specifies the instruction, the tape unit, and the tape 

motion as usual. The second register, however, is interpreted somewhat 

differentlYt It uses BN to select the first block of the group. In addi

tion, the right-most 3 bits of BN specify also the first memory quarter of 

the group. That is, block 51 ivill be read into memory quarter 1, (block 127 

ivould be read into memory quarter 7, etc.). The left-most 3 bits (usually QN) 

are used to specify the number of additional blocks to transfer. In the above 

example then, block 51 is read into quarter 1, and 2 additional blocks are 

also transferred: block 52 into quarter 2 and block 53 into quarter 3. 

The format for WCG i u, WRITE AND CHECK GROUP, is exactly the same as 

for RCG: 

Memory 
Address 

p 

p + 1 

Memory Contents 

WCG i u 

3/300 

705 + 20i + lOu 

3300 

The computer interprets the above example as: write and check quarter 0 in 

block 300, and make 3 additional consecutive transfers, quarter 1 into 



Group Transfers 93 

block 301, quarter 2 into block 302, and quarter 3 into block 303. When the 

left-most 3 bits are zero, that is lido zero additional transfers," the WCG 

instruction is like the WRC instruction in that only 1 block is transferred. 

The second word of'a group transfer instruction may be diagramed: 

p + 1 

11 10 9 

"-----y----J 

# of additional 
transfers 

8 7 6 5 4 ~ 

I I I I 

Initial Memory Quarter 

~ 

2 1 0 

~~------------------~v-----------------------J 
Initial Block Number 

RCG and WCG al'i'18ys operate on consecutive memory quarters and'tape 

blocks. Specifying 3 additional transfers 'i\Then the initial block is, say, 

336, will transfer information bet'i\Teen tape blocks 336, 337, 340, 341 and 

memory quarters 6, 7, 0, and 1, that is, quarter 0 succeeds quarter 7.* 
The transfers are al'i'18ys checked; 'i\Then a transfer does not check, the 

instruction is repeated starting 'i\Tith the block that failed. With WCG, 

all the blocks and their check sums are first written, and then all are 

checked. If any block fails to check, the blocks are rewritt~n beginning 

'i-lith the block that failed, and then all blocks are checked again. As' 'i-lith 

RDC and WRC, the group transfer instructions leave -0 in the Accumulator 

and go to p + 2 for the next instruction. 

* See Appendix I. 



Tape Motion and the MOVE TOWARD BLOCK Instruction 

Using RCG instead of RDC, the program example on p. 90 can be more 

efficiently written~ 

Memory 
Address Memory Contents Effect 

'-7 100 WRC i 0724 C( quarter 2) --7 C(block 50) j transfer 

101 2/50 2050 
is checked and tape continues to move. 

102 RCG 0701 Read blocks 201 - 203 into quarters 1 -

103 21201 ,2201 3j check the transfers and stop the 
tape. 

104 JMP 400 6400 Jump to the new section. 

Example 310 Tape and Memory Exchange with Group Transfer. 

Tape Motion and the MOVE TOWARD BLOCK Instruction 

When the computer is searching the tape for a required block, it looks 

at each block number in turn until it finds the correct one. Since the tape 

may be positioned an~vhere when the search is begun, it must be able to move 

either forward or backward to find the block. 

By for1vard is meant moving from the low block [lumbers to the high 

numbersj physically the tape moves onto the lefthand reel. 

For,vard Backlvard 

By backward is meant from the high numbers to the 101v j the tape moves onto 

the righthand reel. 



Tape Motion and the MOVE TOWARD BLOCK Instruction 

When searching for a reCluested block the computer decides whether the 

tape must move forward or back\,mrd by subtracting each block number it finds 

from the reCluested number, and using the sign of the result to determine the 

direction of motiono If the difference is positive the search continues in 

the for\vard direction; if negative, it continues in the backward direction. 

'l'his may, 01· course, mean that the Lcipe has to Te"iterSC directi8Yl in o:rde:r 

to find the reCluired block. 

Suppose, for example that the computer is instructed to read block 50, 

and that the tape is presently moving forward and just below block 750 The 

next block number found will be 75. The result of subtracting 75 from 50 

is -25, \vhich indicates not only that the tape is 25 blocks a\Vay from 

block 50, but also that block 50 is belo\v the present tape position. The 

tape will reverse its direction and go backward. 

To facilitate searching in the backHard direction a special word called 
~ 

a back\vard block number, BN, follo\vs the check sum for each block: 

BLOCK 1 

When searching in the forward direction the computer looks at for\vard block 

numbers, BN; \vhen searching in the back\vard direction it looks at back1vard 
r 

block numbers, BN. In either direction, each 'block number found is sub-

tracted in turn from the requested number, and the direction reverses as 

necessary, until the result of the subtraction is -0 in the for\vard direction. 

Transfers and checks are made only in the forward direction. 

Thus, in the above example, the tape will continue to move in the back

\vard direction until the result of the subtraction is positive, i. e., until 
r 

the BN for block 49 is found and subtracted from 50, indicating that the 

tape is no\V belo\v block 50. The direction will be reversed; the computer 

will find 50 as the next for\vard block number, BN, and the transfer 1vill be 

made because -0 is the result of the subtraction and the tape is moving 

forward. 

95 



Tape Motion and the MOVE TOWARD BLOCK Instruction 

For all Magnetic Tape instructions, if the tape is not moving 'ivhen the 

instruction is encountered, the computer starts the tape in the for'ivard 

direction and waits until it is moving at the required speed before reading 

a for'ivard block number, BN, and reversing direction if necessary. If the 

tape is in motion, however, (including coasting to a stop), the computer 

does not change the direction of motion until the block number comparison 

requires it. 

For all tape transfer or check instructions with i = 1, the tape con

tinues to move forward after the instruction is executed. 

For all Magnetic Tape instructions all stops are made in the backward 

direction. For transfer or check instructions this means that the tape abvays 

reverses before stopping. Furthermore, the tape then stops below the last 

block involved in the instruction, so that 'ivhen the tape is restarted, this 

block 'ivill be the first one found. This reduces the delay in programs which 

make repea.ted references to the same block. 

The last Magnetic Tape instruction illustrates some of the tape motion 

characteristics. MOVE TOWARD BLOCK, MTB i u, is written: 

Memory 
Address 

p 

p + 1 

Memory Contents 

MTB i u 

BN 

703 + 20i + lOu 

BN 

As in the other Magnetic Tape instructions, the u-bit selects the tape unit. 

The tape motion bit (the i-bit) and the second register, however, are inter

preted some'ivhat differently. MTB directs the LINC to subtract the next block 

number it finds on the tape from the number specified in the second Hord of 

the instruction, and leave the result in the Accumulator. QN is ignored 

during execution of MTB. For example, if the block number in the second 

register of the instruction is zero, and the tape is just below block 20 

and moving for'ivard, then -20, or 7757, will be left in the Accumulator. The 

MTB instruction can thus be used to find out 'vhere the tape is at any partic

ular time. 



Tape Motion and the MOVE TOWARD BLOCK Instruction 

When i :..: ° the tape is stopped as usual after the instruction is 

executed. When i = 1, however, the tape is left moving to'vard the specified 

block. The result of the subtraction is left in the Accumulator, and the 

tape direction is reversed if necessary as the computer goes on to the next 

instruction. MTE i does not actually find the block; it merely orients the 

tape motion to'vard it. 

The initial direction of motion and possible reversal are determined 

for MTB just as they are for all other Magnetic Tape instructions, as 

described above. Note, hO'vever, that since MTB i makes no further correc

tions to the direction of motion, the specified block may eventually be passed. 

The MOVE TOWARD BLOCK instruction serves not only to identify tape 

position, but also can be used to save time. If, for example, a program 

must read block 700, and then, at some later time, Ivrite in block 50, it is 

efficient to have the tape move to'vard block 50 in the interim 'vhile the 

program continues to run: 

Memory 
Address 

~ 100 

101 

102 

103 

300 

301 

Memory 

RDC i 

3'/700 

MI'B i 

50 

1 
WRI 

50 

Contents 

0720 

3700 

0723 

0050 

1 
0706 

0050 

Effect 

C(block 700) ~ C(quarter 3) ; tape 
move s forlvard. 

C(103)-next EN ~ C(ACC); tape 
reverses and moves 1nckward 

} toward block 50. 
Tape continues to move backward 

Ivhile program continues. 
C(quarter 0) -7C(block 50); tape stops. 

In this example it 'vould be inefficient to stop the tape (i =: 0) Ivi th the RDC 

instruction at location 100 or to let it cont inue to move forlvard unt il 

block 50 is called for. Although we may not be interested in the number 

left in the Accumulator after executing the MI'B at location 102, the MTB 

does serve to reverse the tape. Then, Ivhen block 50 is called for, the delay 

in finding it will not be so long. 

97 



Tape Format 

Certain other facts about the tape format should be mentioned. Other 

special words on the tape are shown: 

512 BLOCK ZONES 
r 

I --> -\."-----.v,....---

about 5 feet 

----- ......... 

} ~ 
INTER-

I BN G BLOCK CS C C G BN BLOCK 
ZONE 

'---yJ '-yJ'-"-___ --'--__ .... ----~J'__y__J'--y-J "-yJ'-yJ"---y-J'----y---J 

1 1 256 words 1 1 1 1 1 5 

At each end of the tape is an area called ~ ~ which provides physical 

protection for the rest of the tape. When a tape which has been left moving 

as the result of executing a tape instruction 'ivith i = 1 reaches an end zone, 

the tape stops automatically. (This prevents the tape from being pulled off 

the reel.) Words marked C and G above do not generally concern the programmer 

except insofar as they affect tape timing. Words marked C are used by the 

computer to insure that the tape 'ivriters are turned off following a write 

instruction. Words marked G, called guard 'ivords, protect the forward and 

backward block numbers when the write current is turned on and off. 

Inter Block Zones are spaces between block areas which can be sensed by 

the Skip Class instruction, IBZ i, when either tape is moving either forward 

or back'ivard. The purpose of such sensing is to make programmed block searching 



Tape Format 

more efficient. For example, suppose that somewhere in a program we must 

read block 500 into quarter 2; assume it does not matter when \Ve read it in 

as long as \ve do so before the program gets to the instructions beginning at 

location 650. The follo\ving illustration uses a subroutine to check the 

position of the tape and execute the read instruction if the tape is within 

2 blocks of block 500. If the tape is not at an inter block zone, the main 

progFam will then continue without having to \vait for a block number to 

appe·ar. For purposes of s implici ty let us as sume that the tape ( on Unit =lID) 

is moving. The program begins at location 400 and the subroutine at 

location 20. 

Note that the follo\ving example \vill work only if the tape is stopped 

by the RDC instruction in register 32 e If \ve do not stop the tape here, 

subsequent jumps to the subroutine may continue to find the tape at an inter 

block zone (locations 20 - 22) and block 500 may be read repeatedly. The test 

with the APO instruction at location 646, \vhich tells us whether the trans

fer has been made or not, is necessary to guarantee that the transfer \vill 

be made before \Ve get to location 650. At this point, if the transfer has 

not been made, the "JMP 32" at location 647 \-Jill be executed. 

99 



100 

Memory 
Address 

20 
21 

22 

23 
24 

25 
26 

27 
30 
31 

32 

33 
34 

35 

-7 400 

401 
402 

500 

600 

644 

645 
646 

647 
650 

Tape Format 

Memory Contents 

IBZ ----I 
(JMP 0 I 

MTBif---1 

500 
APO ----, 
COM I 
ADA i f--1 

-2 

APO i ----I 
(JMP 0 I 

RDC f- - -.J 

21500 
STC 645 

(JMP o 

CLR 

STC 645 

0453 

1 

6000 

0723 

1 0500 

I 

0451 
0017 

, 
1120 

7775 

1 

0471 
6000 

, 0700 

I 

2500 
4645 

, 6000 

1 OOll 

1 4645 

~ ,6020 

. ~ I J, r ,610 

T 1

610 

L~ i I 1020 

[-] [-] 

I 0471 APO i 
-- - --, 

I 6032 

I 

JMP 32) I 

t~J 

Effect 

Enter subroutine and sense tape position. 

Return if tape is not at an inter block 
zone. ~ 

If it is, subtract EN or EN from 
500. Tape continues to move tOlvard 
block 500. 

Is result positive? 

If negative, complement it. 

Add -2 to see if tape is within 2 
blocks of block 500. 

Is result positive? 

If result is positive, return to main 
program. 

If negative, tape is within 2 blocks of 
block 500. Make the transfer and 
stop the tape. 

}

Store.the transfer check = -0 in loca
tion 645 to indicate transfer has 
been made, and return. 

}
store positive zero in location 645 

to indicate transfer has not 
been made. 

Jump to subroutine at these points; 
return to p + 1 and continue with 
main program. 

Put test number (either 0000 or 7777) 
into Accumulator. 

Skip to location 650 if the transfer 
has been made; (C(ACC) = 7777). 

If not, jump to subroutine to make 
transf~r, and return to location 650. 

Example 32. Block Search Subroutine. 



Tape Motion Timing 

When a tape is moving at a rate of 60 ips, it takes approximately 

43 msec 0 to move from one fonvard block number to the next, Or 160 J,.1sec 0 

per \Vordo The follolving table summarizes some of the timing factors: 

LINC TAPE MOTION TIME 
_. ___ • .... ··~ ____ . ____ ...... '.r.,.._ . ...... _ .... __ ..... __ ._ ----'--

STAR.T (from no motion to 60 ips) approx. 0.1 sec. 

STOP (from 60 ips to no motion) " 0·3 sec. 
--

RE\lER.SE DIRECTION (from 60 ips to 
60 ips in opposite direction) $I 0.1 sec. 

--
CHANGE UNIT (from no motion to 

60 ips on new unit) tI 0.1 sec. 
--

.EN to .EN ( at 60 ips) II 43 msec. 
".~.' ,." '-- ... -.. ~- -" .•.. , .. , .. -.~ ... 

END ZONE to END ZONE ( at 60 ips) !I 23 sec. 

Some methods of using the tape instructions efficiently become obvious from 

the above tableo Generally speaking, tape instructions should be organized 

around a minimum number of stops and a minimum amount of tape travel timeo 

When deali ng Ivi th only one tape unit , it is usually efficient to use con

secutive or nearly consecutive blocks in order to reduce the travel time 

between blocks. 

It is also efficient to request lOlver-numbered blocks before higher,

numbered blocks, avoiding unnecessary reve·rsals. The WRITE AND CHECK 

instruction, requiring two reversals, is costly in this respect" It first 

101 



102 Tape Motion Timing 

must find and write in the block in the forward direction, then the tape 

must reverse and go backl'18rd until it is below the block, then reverse a 

second time and go forlvard to find and check the block: 

B'onvHrd 

INTER 
BLOCK 
ZONE 

1f~;d I 

~~ ____________ y,____________J 

Requested Block 

1 WRITE 
'\ 1 
Reverse 

< < < -E < ~ 
Backlvard 

Reverse 

1find I 1 CHECK 1 BN ~-~>---~ 
F'or\vard 

Because of these reversals it is sometimes more efficient to use two tape 

instructions, WRI followed by CHK, than to use WHC. This is true, for 

example., when more than one block must be written and checked, Suppose we 

> 



Tape Motion Timing 

\vant to '\Vrite quarters 1, 2" and 3 in blocks 100, 101" and 102, and check 

the transfers. Using WRC, this would take a minimum of six reversals" 

The fo.llo\ving sequence requires a minimum of t'\vo reversals ~ 

Memory I 
Address 

-7 20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 I 

36 
I 
I 37 
I 

40 I 41 I 

42 

43 

44 

45 

46 

47 

Memory Contents 

LDA 1000 

24 0024 

STC 32 4032 

WRI i 0726 

11100 1100 

WRI i 0726 

21101 2101 

WEI i 0726 

31102 3102 

CHK i 0727 

[BN] [ ~ ] 

SAE i 1460 

777'7 7777 ---, 
6020 

I 
JMP 20 I 
LDA i~-.J 1020 

I 1 0001 
j 
I AIM 1140 

32 0032 

SAE i 1460 

11103 1103 
---I 

6031 JMP 31 , I 
MrB ~_J 0703 

0 0000 

HLT 0000 

Effect 

}
put the BN of. the f~rst block to 

be checked In reglster 320 

Write 3 consecutive blocks on the 
tape on Unit #0 and leave the 
tape moving for'\vard after each 
transfero 

Check the blocks, beginning with 
block 100. 

}

rf a block does not check, repeat 
entire process. 

Add 1 to the BN in register 32. 
If the result f 11103, not all 
have be'en checked. Return and 
check the next block. 

[

When all have checked, execute 
MOVE TOWARD BLOCK to stop the 
tape, and halto 

.; 

Example 33 0 Write and Check '\vi th Fe'\vest Reversals. 

In this example the t'\vo reversals '\vill occur the first time the CHK instruc

tion at location 31 is executed 0 Clearly, other reversals may be necessary 

103 



104 Tape Motion Timing 

Ivhen the ccmputer ini ti ally search~s for block 100, and 'vhen a block does 

not check, but careful handling of the tape instructions can reduce some of 

these delays. It should be noted that there are 9 words on the tape between 

any CS and the next BN in the forHard directiono When the tape is moving at 

speed, it takes 1,440 f.1sec. to move over these 9 Ivords. Thus the program . . 

has time to execute several instructions betlveen consecutive blocks, i.e., 

before the next BN appears. In the above example, then, there is no danger 

that the next block will be passed Hhile the instructions at locations 33 -
44 are being executed. 



Chart I. Classes of LINC Instructions 

Miscellaneous 

HLT 

ZTA 

El'iII 

CLR 

MSC 13 

ATR 

RTA 

NOP 

COM 

Shift 

ROL 1. n 

ROR i n 

SeR i n 

Full Address 

ADD X 

STC X 

,JMP X 

Index 

LDA i f5 
STA 1. f3 
ADA i f3 
ADM i f3 
LAM i f3 
MUL i f3 
SAE 1 f3 
SRO i f3 
BC:L i f3 
BSE 1. f3 
BCO i f3 
DSC i t3 

Half~Word 

LDH i f3 
STH i f3 
SHD i f3 

Skip 

SXL i n 

KST i 

SKP i n 

SNS i n 

PIN i 

Ml!; i 

APO i 

LZE i 

IBZ i 

OVF i 

ZZZ i 

Operate 

OPR i n 

KBD i 

RSW 

LSW 

Magnetic Tape 

RDC i u 

RCG 1. u 

RDE i u 

MTB 1. u 

WRC i. u 

WCG 1. u 
'\ 

WRI i u 

CHK i u 

SA-M 1. n 

DIS 1. ex 

XSK i ex 

105 



106 

Chart 110 Keyboard Code 

[ SPACR 

The Keyboard Code in Numerical Order 

00 0 20 / + 40 M 

01 1 21 8/ I 41 N 

02 2 22 [ / # 42 0 

03 3 23 CASE 43 P 

04 4 24 A 44· Q 

05 .5 25 B R. 

06 6 26 C 46 s 
07 7 27 D 47 T 

10 8 30 E 50 U 

11 9 31 F 51 IT 

12 META/EOL 32 fi 52 W U· 

13 delete 33 H 53 X 

1)+ SPACE 34 I 54 y 

15 / i 35 J 55 z 

16 / p 36 K 

17 J / ~ 37 L 



Chart 1110 Pattern Words for Character Display 

A table of 24-bit patterns for 4 x 6 display, using the DSC 
instructi.on, of all characters on the LINe Keyboard. The table is 
ordered numerically as the characters are coded on the Keyboard. 
Table entries for non-displayable characters are zero. 

0 4136 A 4477 u 0177 
3641 7744 7701 

1 2101 :B 5177 IT 0176 
0177 2651 7402 

2 4523 C 4136 W 0677 
2151 2241 7701 

3 4122 D 4177 X 1463 
2651 3641 6314 

4 2414 E 4577 y 0770 
0477 4145 7007 

5 5172 F 4477 z 4543 
0651 4044 6151 

6 1506 G 4136 - 1212 
4225 264·5 1212 

7 4443 H 1077 u 01.07 
6050 7710 0107 

8 5126 I 7741 0500 
2651 0041 0006 

9 5120 J 4142 0001 
3651 4076 0000 

EOL 0000 K 1077 B 4577 
0000 4324 7745 

del 0000 L 0177 4177 
0000 0301 0000 

SPACE 0000 M 3077 
0000 7730 

i 0101 N 3077 
0126 7706 

p 3700 0 4177 
3424 7741 
0404 P 4.477 
0404 3044 

t 04·04 Q 4276 
0437 0376 

I 0000 R 4477 
0077 3146 

# 3614 S 5121 
1436 4651 

CASE 0000 T 4040 
0000 4077 

107 



108 

Chart IV. Instruction Code 

Alphabetical Numerical 

13 NOP 16 0 HLT 516 RSW 

ADA 1100 OPR 500 0 MSC 517 LSW 

ADD 2000 OVF 454 5 ZTA 700 MrP 

ADM 1140 PIN 446 10 ENI 700 RDC 

APO 451 RCG 701 11 CLR 701 RCG 

ATR 14 RDC 700 13 702 RDE 

AZE 450 RDE 702 14 ATR 703 MrB 

BCL 1540 ROL 240 15 RTA 704 WRC 

BCO 1640 ROR 300 16 NOP 705 WCG 

BSE 1600 RSW 516 17 COM 706 WRI 

CHK 707 RTA 15 40 SET 707 CHK 

CLR 11 SAE 1440 100 SAM 1000 LDA 

COM 17 SAM 100 140 DIS 1040 STA 

DIS 140 SCR 340 200 XSK 1100 ADA 

DSC 1740 SET 40 240 ROL 1140 ADM 

ENI 10 SHD 1400 300 ROR 1200 LAM 

HLT 0 SKP 440 340 SCR 1240 MUL 

IBZ 453 SNS 440 400 SXL 1300 LDH 

JMP 6000 SRO 1500 415 KST 1340 STH 

KBD 515 STA 1040 440 SKP 1400 SHD 

KST 415 STC 4000 440 SNS 1440 SAE 

LAM 1200 STH 1340 446 PIN 1500 SRO 

LDA 1000 SXL 400 450 AZE 1540 BCL 

LDH 1300 WCG 705 451 APO 1600 BSE 

LSW 517 WRC 704 452 LZE 1640 BCO 

LZE 452 WRI 706 453 IBZ 1740 DSC 

MSC 0 XSK 200 454 OVF 2000 ADD 

MTB 703 ZTA 5 455 zzz 4000 STC 

MTP 700 ZZZ 455 500 OPR 6000 JMP 

MUL 1240 515 KBD 



Appendix I 

Appendix I: Double Memory Programming 

The LINC actually has two 12-bit 1024 (decimal) word memories, sometimes 

referred to as "lower" and "upperTT memory, providing a total of 4000 (octal) 

words. The second, or upper, memory is addressable for data storage and 

retrieval; it carl rlot; 'hoVJever~ be used to hold running programs. 

Bit 10 of a register containing a memory address, e.g., a {3 register, is 

designated as the Memory Select bit. When this bit is 1, the second memory 

is addressed: 

Memory Select 

{3 010 000 000 000 
Bi t ~ ,~ ___ "",~,---__ -'J 

The addresses for the second memory may then be thought of as 2000 + X, where 

a < X ~ 1777, as usual. 

More simply perhaps, we speak of memory registers 2000 through 3777 

(octal). While this scheme makes the memory addresses of the two memories 

continuous, they can not always be treated as such by the programmer. The 

Instruction Location register, having only 10 bits, prohibits using the sec

ond memory to hold running programs; the next IT sequential IT instruction loca

tion after 1777 is always O. Moreover, the Full Address Class instructions 
~----'-'--' .. -"~ 

can address only registers a through 1777. 

All other memory reference instructions have available a Memory Select 

bit, and can address either memory. The instruct,ion 

p 

p + 1 

LDA 

2133 

will load the Accumulator with the contents of register 2133, i.e., register 

133 of the second memory. It must be remembered, however, that all instruc

tions which index the first 16 registers (Index Class, Half-Word 

1-1 



Appendix I 

Class " XSK, and DIS) ind~x 10 bits only, and thus index from 1777 to 0 
Ivi,thout affecting the Memory Select bit. Therefore, by setting bit 10, lYe 

can index through either memory we choose, but we cannot index from one 

memory to the othero E.g.~ 

Memory 
Address Memory Contents 

3 [2000 + xJ [- J 

,~ 40 SET i 3 0063 

41 3777 3777 
42 CLDAi

3 
1023 

)-1-3 6042 JMP 42 

In this example register 3 will contain the succession of values: 

3777, 2000, 2001, "0, 3777, 2000, etc., repeatedly scanning the second 

memoryo In order for the first execution of the LDA instruction ,at 

location 1.12 to index register'3 to 2000, register 3 must be set initially 

to 3777, i.eo, X(3) = 1777 and Memory Select bit = 1. 

For many purposes this indexing scheme presents no disadvantages. 

Often,hoHever, one Ivould like to use both memories, for example to collect 

a large number of data samples. The following program fills memory 



Appendix I 

registers 400 through 3777 I'li th sample values of the signal on input line 10. 

The sample-and,-store part of the program is written as a subroutine (loca

tions 31 - 40)J and the sample rate is controlled by an OPR i n instruction~ 

Memory I 
Address 

7 

10 

.~ 20 

21 

22 

23 
24 

25 
26 

27 
30 

31 

32 

33 

34 

35 
36 

37 
40 

Memory Contents 

[ - ] 

r7 [JMP x] 

SET i 7 

377 
JMP 31 
SET i 7 

3777 
JMP 31 
WCG 

6131 
HLT 

-7 SET 10 

o 
~OPR i. 1 

SAM 10 

STA i 7 

XSK 7 ----, 
JMP 33 I 
JMP 10 ~ 

I 
I 

[-] 
[-] 

I 0067 

I 
0377 
6031 

I 

I 

I 

I 

I 

I 
I 
I 
I 

0067 

3777 
6031 

0705 
6031 
0000 

0050 
0000 

0521 

0110 

1067 

0207 

6033 
6010 

EffecL 

For memory addresso 

For return pointe 

}

set 7 to initial address minus 1 
and jump to subroutine 0 

}

Return from subroutine; set 7 to 
initial address minus 1 for 
second memory~ and jump to 
subroutine. 

}

Return from subroutine; write 
memory quarters 1 through 7 in 
blocks 31 through 37 and halt. 

Enter sub rout ine and save return 
point in register 10. 

Pause until restart signal appears 
on External Level line 10 

}samPle input on line 10 and store. 

If X(7) f 1777, return to 
get next sample. 

When X(7) = 1777, return to main 
program via register 100 

Example 340 Indexing Across Memory Boundarieso 

I-3 



Appendix II 

LINC Order Code Summary 

Miscellaneous Class* 

lILT 0000 

HALTc Halt the computer. The Run light on ., c turned off, 

Perhaps the gong chimes. The computer· can be restarted only from the 

console. 

CLR. 0011 8 tJ,seco 

CLEAR. Clear the Accumulator, the LINK bit, and the Z register. 

l\1SC 13 0013 8 J.wec 0 

HLT 

CLR 

Turn on the write~gate for marking tapes if and only if the computer has 

been placed in the MARK mode by pressing the MARK button on the consoleo 

Warning; Thi.s instruction is to be used only for marki.ng tapes. 

ATR 0014 8 }.lseco ATR 

ACCUMULATOR TO :RELAY. Copy the contents of the right half of the Accum

ulator (bits 0 ~ 5) into the R.elay register. The contents of the 

Accumulator are not changed 0 

RTA 0015 RTA 

RELAY TO ACCUMULATOR. Copy the contents of the Relay register into the 

right half of the Accumulator (bits 0 ~ 5) and clear the left half of the 

Accumulator. The contents of the Relay register are not changed 0 ' 

NOP 0016 8 }.lseco NOP 

NO OPERATION. This instruction provides a delay of 8 }.lseco before pro= 

ceeding to the next instruction~ It does nothing 0 

! 

COM 0017 8 Ilsec. COM 

COMPLEMENT. Complement the contents of the Accumulator. 

* See also Appendix III-6. 

11-1 



TI=2 Appendix II 

Shift Class 

'* Execution Times 

n ( octal) 
0 <n ,::; 17 O~1,2~3 4"5,, 6, 7 10, IlJ 12" 13 14,15,16J17 

time 16 24 
(decimal) 

).1seco ,useco 32 JJ,seco 40 j.1seco 

HOL 1. n 240 + 20i + n * ROL 

HOIA.TE LEFT 0 Shift the contents of the Accumulator n places to the left, 

with or '\v:i thout the Li,nk Bit 0 The i-,bi t specifies one of two variati,ons ~ 

i :::.:: 0 i :::: 1 

ROR i n 300 + 20i + n ROR 

ROTATE RIGHT 0 Shift the contents of the Accumulator n places to the right, 

with or 'without the Link Bit. * The i-bit specifies one of two variations ~ 

i ' 1 

SCR i, n 340 +20i + n * SCR 

SCALE RIGHT 0 Shift the contents of the Accumulator, with or without the 

Li,nk Bit, n places to the right without changing the sign bit, replicating 

the sign in n bits to the right of the sign bito* The i~bit specifies one 

of two variations: 

i := 0 

L S 
Or--T-""T"""'"l 

o c:o= Ace .--.--.--. 

* See also Appendix III. 



Appendix II 

Full Address Class 

o ~ X ~ 1777 

ADD X 2000 + X 16 gseco ADD 

ADDo Add the contents of register X to the contents of the Accumulator 

and leave the sum in the Accumulator, using 12-bit binary addi ti.onwith 

end~around carry. The contents of register X are not changed 0 

STC X 4000 + X 1.6 gseco 

STORE AND CLEAR. Copy the contents of the Accumulator into register X and 

then clear the Accumulator. 

JMPX 6000 + X JMP 

JUMP. Set the Instruction Location register to X, i. e .. , take the next 

instruction from register Xo If X ~ 0" and if JMp X is executed at 

location p.? then the code number for JMP p + 1 is stored in register 00' 

* When X :=: O.? execution time is 8 usec; when:X f 0, 16 .usec. 

II~3 



I1=4 Appendix II 

Skip Class* 

Skip the next register in the instruction sequence if~ 

i - 0 and the specified condition is met 

or if~ 

i := 1 and the specified condition is not met 0 

Otherwise,9 go on to the next instruction in sequence 0 

SXL i n 400 + 20i. + n 8 u.sec. SXL 
~----------------------------------------------

SKIP ON NEGATIVE EXTERNAL LEVEL. Condi tion: The signal on external level 

line n is -3 volts (as opposed to 0 vOlts). o ~ n ~ 13. 

KST i 415 + 20i 8 j1sec 0 KST 

KEY STRUCK 0 Condition~ A key has been struck and is locked down 0 

SNS i n 44·0 + 20i + n 8 j1seco SNS 

SENSE SWITCHe Condition~ Sense Switch n is up. 0 ~ n ~ 50 
~.--------------------------------------------------------------------~ 

AZE i 450 + 20i. 8 jJ,seco AZE 

ACGUMULA'TOR ZEROo Condition~ Accumulator contains either 0000 or 77770 

APO i 451 + 20i 8 j1sec 0 APO 

ACCUMULATOR POSITlVEo Condition~ The sign bit of the Accumulator is 00 

LZE i. 452 + 20i 8 gseco LZE 

LINK ZERO. Condition~ The Link bit is 00 

IBZ i 453 + 20i 8 j1sec 0 IBZ 

INTERBLOCK ZONE 0 Condition~ Either tape unit is up to speed and at an 

interblock zone 0 

* See also Appendix 111-6. 



Appendix II 

Index Class 

Operand Location,? Y, in Index Class Instructions 

1 < f3 .::; 17 f3 -~ 0 -
i := 0 I i ::= 1 i ::= 0 i := 1 

f3 y f3 [Y~ll* 0 0 0 0 .. 0 

0 0 0 . 0 0 

0 . 0 . .-) P LDA ~p LDA i 0 0 

~p LDA f3 -)p LDA i f3 p + 1 Y y OPERAND 
0 0 0 0 0 0 . 0 . 0 0 0 0 . . 0 . . 0 . 

y OPERAND y' OPERAND Y OPERAND 

t := 16 f.lseco t := 8 Jlseco 
y - p + 1 

0 ~ y ~ 3777 0 <y< 1777 - -

.* rndexing~ The contents of the right-most 10 bits of register 

[3 are first indexed by l.~ using 10~bit binary addition without 

end carry 0 The left=most two bi t·s are not changed c Thus, 1777 

is indexed to 0000; 3777, to 2000; 5777, to 4000; and 7777, 

to 6000. 

LDA i f3 1000 + 20i + f3 (t + 8) jlse(!. LDA 

LOAD ACCUMULATORc Copy the contents of register Y into the Accumulator. 

The contents of register Yare not changed. 

STA i f3 1040 + 20i + f3 (t +'8) f.lsec. STA 

STORE ACCUMULATOR. Copy the contents of the Accumulator into register Yo 

The contents of the Accumulator are not 'changed. 

ADA i f3 1100 + 20i + f3 (t + 8) fJ,sec. ADA 

ADD TO ACCUMULATOR. Add the contents of register Y to the contents of the 

Accumulator and leave the sum in the Accumulator, using 12~bit binary 

addition with end-around carry. The contents of register Yare not 

changed. 

r1-5 



Appendix II 

Index Class (continu.:ed) 

ADM .i t3 1140 + 20i +- t3 (i .-!-. 16) J-lsec 0 ADM 
~------------------- ------------------ .. _----------_._---,-------1 

ADD TO MEMOHYo Add the contents of register y to the contents of the 

Accumulator and leave the sum i.n register Y and the Accumulator, usi.ng 

12-hit binary addition with end-around carryo 

LAM i t3 1200 + 20i, + f3 (t + 16) j1seco LAM 

LINK ADD TO MEMORYc First, add the contents of the Link Bit (the integer 0 

or 1) to the contents of the Accumulator and leave the sum in the Accum= 

ulator, using 12-bit binary addition with the end carry, if any, replacing 

the contents of the Li nk Bit; i.f there is no end carry~ clear the Link 

'Bit. Next 9 add the contents of register Y to the contents of the Accum~ 

ulator using l2-bit binary addition with the end carry, if any, replacing 

the contents of the Link .Bit (if no end carry arises., the contents of the 

Link Bit are not changed)c The sum is left in the Accumulator and in 

register Y. 

MUL i t3 1240 + 20i. -+ f3 (t -:- 104) usec, MOL 

MULTIPLY. Multi.ply the contents of the Accumulator by the contents of 

regi.ster Y and leave half of the product in the Accumulator 0 The contents 

of the Accumulator and register Yare treated as s igned 11~~bi t ones ~ com~ 

plement numbers and their full product as a signed 22=bit number,,* The 

i~h= bit, 11 i 0 e., bi.t 11 of the reg:i ster holding the address Y, specifies ~ 

h ::: 0 

Integer Multiplicati.on 

The least significant 11 bits 
of the product 1vi th proper sign 
are left in the Accumulator 0 

h ~::::: 1 
~--

Fraction Multiplicatio~ 

.'The most significant 11 bits 
of the product with proper 
sign are left in the Accum= 
ulatoro 

The sign of the product is also left in the Link Bito The contents of 

register Yare not changed 0 

If i = land t3 = 0, use integer multiplication 0 

* See Appendix III. 



Appendix II 

Index Class (continued) 

----------------------------------------------------------------------------, 
SAE i f3 1440 20i '-:- ~ (t + 8) usec. SAE --_._--_._-----
SKIP IF ACCUMULATOR EQUALS 0 If the contents of the Accumulator match the 

content.s of register 'I., skip the next register in the instruction 

oeq:UeIlCC; othcr';;ise., ge en to the Ylext instruct. icm in sequence 0 The 

contents of the Accumulator and of register 'I are not changede 

(See also the section on marking tapeso) 

SRO :i ~ 1500 .,.. 20i .. 6 (t + 8) j.1Sec. 
----------------------------

SKIP AND ROrATE, If the right-most bit of the contents of register t 

SRO 

is 0.1 skip the next register of the instruction sequence; otherwi.se J go 

on to the next instruction in sequence. In either case? rotate the con~ 

tents of register Y one place to the right and replace in register Yo 

The contents of the Accumulator are not changede 

BeL i f5 

BIT CLEAR. 

1540 + 20i. + ~ (t + 8) fJ-seco BCL 

For each b:i.t of register 'I which contains l,ll clear the corres= 

ponding bit of the Accumulator 0 The contents of register 'I and all other 

bits of the Accumulator are not changed 0 

:BSE 1. ~ 1600 + 20i + ~ (t + 8) Ilseco BSE 
.. 

. BIT SET. For each bit of register 'I which contains 1, set the correspond-

ing bit of the Accumulator to 10 The contents of register 'I and all other 

bits of the Accumulator are not changed 0 

Beo i. ~ 1640 + 20i + f3 (t + 8) fJ-seco BCO 

BIT COMPLEMENT. For each bit of register 'I '''hich contains l? complement 

the corresponding bit of the Accumulator 0 The contents of register 'I and 

all other bits of the Accumulator are not changed. 



II-8 Appendix II 

Index Class (continued) 

DSC i (3 1740 + 20i, + (3 (t + 112) fJ,seco DSC 

DISPLAY CHARACTER 0 Intensify points in a 2 x 6 pattern on the Display 

Scope. Register Y holds the pattern word, which is examined from right to 

left be.ginning wi,th bit 0; for each bit found to be 1 a point is inten-

sifiedo 

word~ 

Numbered poi,nts belo\v correspond to bit positions of the pattern 

(-, --V + 30-
\_1 

@@ 
@@) 
®® 
®® 
CDC?) 

(~,®® V----

I ! 
H H + 10 
I I 

The H coordinate is held in register 1, and bit 11 of register 1 selects 

the display channel. The initial contents of register 1, plus 4, is the 

H coordinate of point @. The V coordinate is held in the Accumulator. 

The initial contents of the Accumulator with the right-most 5 bits (ACCO_4) 

automatically cleared by the computer, is the V coordinate of point @. 
Spacing between points is +4 in both horizontal and vertical directions. 

At the end of the instruction the value in register 1 has been augmented 

by 10 (octal) and bits 0 - 4 of the Accumulator contain 30 (octa.l). The 

contents of bits 5 - 11 of the Accumulator and the contents of register Y 

are not changed. The contents of the Z register are destroyed. 



Appendix IT 

Half-Word Class 

Operand Location} Y, in Half-Word Class Instructions 

I < ~ < 17 
,r------------.-- , 
I 

., 

(3 

0 

·-4 P 

c 

y 

: () 

h:v Y ~ 
. (1 

(. 

0 

LDH ~ -7 P 

" 0 

" 
0 

0 

OPERAND Y 

t - 16 J.Lsec. 

"1 - 1 

'h-· (Y' ~\* _)\ .. =tl;-

LUH :i ~ 

OPEFAND 

o < y < 3777 

h,:Y I I I I I I I I I I I I I 
I · y ,I 

OPERAND- LH(Y)' if h .- 0 
.. .' RH(Y) :if h -- 1 

"1 

-7 

i _. 1 

0 

0 

0 

P LDH .1 

Y OPERAND 
., 
0 . 

t -' 8 J.Lsec. 
y .-- p + 1 

o < Y' < 17T7 
OPERAND.- LH( ''{ ) 

1.- Indexing~ h is value before indexing" The contents of register e 
are first indexed by 4000. Any end carry is added to the right,~most 
10 bits only; bit 10 js not changed. Thus~ Oi1777 is indexed 
to 1;1777; 1;1777 to 0;0000; 0;0000 to 1;0000; 130000 to 0;0001. 
0;3777 is indexed to 1;3777; 1J3777 to 0;2000; 0;2000 to 1J2000; 
1;2000 to 0,;20010 The Relay lights are probably not affectedo 

-----------------------------------------------------------------------~ 

.LDB i ~ 1,300 + 20i. + !3 (t + 8) lisec, LDH 
~-----------------------

LOAD HALF, Copy the contents of the designated half of register Y into 

the cight half of the Accumulator, Clear the left half of the Accumulator. 

The contents of register Yare not changed 0 

STH i ~ 1340 + 20i + ~ (t + 8) fJ,sec. STH 

ST!ORE HALF ~ Copy the contents of the right half of the Accumulator into 

the designated half of register Yo The contents of the Accumulator and of 

the other half of register Yare not changed. 

SHD i ~ 1400 + 20i + ~ (t + 8) J.Lsec. SHD 

SKIP IF HALF DIFFERS. If the contents of the right half of the Accumula~ 

tor do not match the contents of the designated half of register y~ skip 

t,he next register in the instruction sequence; otherwise J go on to the 

next :instruction in seqlience e The contents of the Accumulator and of 

register Yare not changed. 



Appendix II 

Operand Location, Y, in the SET Instruction 

i = 0 i = 1 

a [~J a [-] 
0 0 0 0 

0 0 0 0 

0 0 0 0 

.-?p SET a -7p SET i a 
p + 1 Y Y OPERAND 

0 0 0 

0 0 0 0 

0 o • 0 ~ 

y OPERAND ( 

if = 8 j..lseco t = 0 j..lseco 
o· ;S;' Y ;5; 3777 Y = p + 1 

o :s Y .$ 1777 
... 

SET i a 40 + 20 i + a (t + 24) j..ls e CoSET 

SET. Copy the ccmtents of register Y into register ao (o:s: a .$ 17). 
Take the next i~s~ruction from register p + 20 The contents of register Y 

are not chang.ed.· 

SAM i n 100 + 20i + a SAM 

SAMPLE 0 Sample the signal on input line n (0 .$n::; 17) and leave its 

numerical value, seven bits plus sign, in the'~ right-most 8 bits of the 

Accumulator, replicating the sign in the. left-most 4 bits of the Accum

ulator. Lines 0 through 7 are used by eight ~otentiometers located at 

the Display Scope'o Lines 10 through 17 ;are us~d by analog inputs at the 

Data Terminal module; on these lines ~I'voit corresponds to +177, and 

~l volt corresponds to -1770 The contentisdf,the Z register are destroyed. 

* Ti.ming: If i = 0, the instruction requires 24 j..lsec. for executiono If 

i = l,~ the computer goes on to the n~~' instruction after 8 i.wec., even 
~', ' '" 

though the conversion process will cofIf~fiue,i:Ln the Accumulator for 
1r " 

14 more j..lsec 0 If, therefore, 't-f!e 'in~tJ;'ucti~' is used with i = 1" care 
tl, . 

must be tak'en not to disturt: t~ Accumtllator during the 14 j..lsec. 

following the instructJon. 



/ 

Appendix II 

DIS i ex 140 + 20i + ex 32 I-lsec. DIS 

DISPLAY. Display on the scope a point whose vertical coordinate is 

specified by the right-most 9 bits of the Accumulator and 'i"hose horizon

tal coordinate is specified by the right-most 9 bits of register ex 

(0 5: ex ~ 17). The left-most bit of register ex specifies one of two 

display channels (further selected by a switch on the Display Scope). 

The left-most horizontal coordinate is 000; the right-most, 7770 The 

lowest vertical coordinate is -377; the highest, +377. The contents of 

bits 9 through 11 of the Accumulator and of register ex do not affect the 

position of the point. 

If i =: 1, the contents of the right-most 10 bits of register ex are first 

indexed by 1, using 10-bit binary addition without end carry. 

XSK i ex 200 + 20i + ex 16 j1sec. XSK 

INDEX AND SKIP e If the address part (the contents of the right-most 

10 bits) of re~ister ex (0 :5 ex :5 17) equals, 1777, skip the next register 

in the instruction sequence; otherwise, go on to the next'instructi,on in 

sequence. If i = 1, the address part of register ex is first indexed by 1, 

using 10-bit binary addition without end carry. The left-most t'i"O bits 

are not changed. Thus, 1777 is indexed to 0000; 3777, to 2000; 5777, 

to 4000; and 7777, to 6000. 

I1-11 



Appendix II 

Operate Class 

OPR 1. n 500 -+ 20i + n 16 ).Lseco minimum OPR 

OPERATE CHANNEL n, Generate a negative signal on output level line n 

(0 :s n :S 13) c If i·=.: 1, pause until a restart signal appears on external 

level line no Send other control signals to, and sense other signals 

from, eq,.uipment at the Data Terminal module; transfer data into or out of 

the memory or Accumulator as specified by these control signalso 

KBD i 515 + 20i 16 ).Lsec. minimum KBD 

KEYBOARD. If a key has been struck and is locked down, clear the Accumu

lator, release the key, and read its 6-bit code number into the right half 

of the Accumulator. If no key has been struck and i = 1, pause until a 

key is struck and continue as above. If no key has been struck and i 0, 

clear the Accumulator and go on to the next instruction. 

RSW 516 16 ).Lseco 

RIGHT SWITCHES 0 Copy the contents of the Right Switches into the 

Accumulator 0 

LSW 517 16 ).Lseco 

LEFT SWITCHES. Copy the contents of the Left Switches into the 

Accumulator 0 

RSW 

LSW 



p + 1 

Appendix II 

Magnetic Tape Class 

MTP i u 

QNI:BN 

700 + 20i + lOu 

1000QJ.\f + BN 

i. Motion Control 

., .. - 0 Tape stops ~rft,pr instruction executiono 

i-I Tape is left in motion after instruction executiono 

U~ Unit Selection 

QN~ 

BN~ 

u .~ 0 

u .~ 1 

Quarter 

Tape Unit #D. 
Tape Unit #1. 

Number o .:s; QN .::; 7 

QN Memory Registers QN 

0 o = 377 4 

1 400 - 777 5 

2 1000 ~ 1377 6 

3 1400 ~ 1777 7 

Block Number 000 < BN < 
~ ~ 

777 

1 Tape _. 512 (decimal) blocks. 

1 Block . -. 256 (decimal) words . 

1 Word = 12 (decimal) bits 0 

Memory Registers 

2000 - 2377 

2400 = 2777 

3000 ~ 3377 

3400 = 3777 

( octal) 

Data sum = sum without end=around carry of 256 ''lords in block. 

Check sum = complem~nt of data sum. 

Transfer check .- data sum + check sumo 

RDC i u 

= =0 if block is transferred correctly. 

# -0 if block is transferred incorrectlyo 

700 + 20i + lOu RDC 

READ AND CHECK. Copy block BN into me~ory quarter QN and check the trans~ 

fero If the block is transferred correctly, leave -0 in the Accumulator 

and go on to the next instructionj otherwise, repeat the instruction. 

The information on tape is not changed. 



II~14 Appendix II 

Magnetic Tape Class (continued) 

RCG i u 701 + 20i + lOu RCG 

READ AND CHECK GROUPo Copy block EN into the memory quarter whose number 

corresponds to the right-most 3 bits of BN (block 773 into quarter 3, 

etco) and copy the following consecutive QN blocks into the following con~ 

secutive memory quarters (block 000 follows block 777, quarter 0 follows 

quarter 7)0 . Check each block transfer and repeat if necessary until all 

blocks have transferred correctly, then leave -0 in the Accumulator and 

go on to the next instructiono The information on tape is not changed. 

RDE i u 702 + 20i + lOu 

READ TAPE. Copy block EN into memory quarter QN and leave the transfer 

check in the Accumulator. The information on tape is not changed. 

RDE 

MTB i u 703 + 20i + lOu MrB 

MOVE TOWARD BLOCKo Subtract the next block number encountered from BN, 

leaving the difference in the Accumulator. When i = 1, leave the tape 

moving forward if the difference is positive and backward if the differ~ 

ence. is negative or ~O. QN is ignored. 



Appendix II 

Magnetic Tape Class (continued) 

WRC i u 704 + 20i + lOu WEC 

WRITE AND CHECK 0 Copy the contents of memory quarter QN into block EN and 

check the transfer. If the memory contents are transferred correctly, 

leave ~O in the Accumulator and go on to the next instruction; otherwise, 

repeat the i.nstructiono The contents of memory are not changed. 

WCG 1. u 705 + 20i + lOu WCG 

WRITE AND CRECK GHOUPo Copy the contents of the memory quarter whose 

number corresponds to the right~most 3 bits of .EN into block BN (quarter 5 

into block 665, etco) and copy the contents of the following consecutive 

QN quarters into the following consecutive blocks (quarte~ 0 follows 

quarter 7J block 000 follows block (77)0 Check each transfer and repeat 

if necessary until all blocks have been 'written correctly, then leave -0 

in the Accumulator and go on to the next instructiono The conte~ts of 

memory are not changed 0 

WRI i u 706 + 20i + lOu 

WRITE TAPE. Copy the contents of memory quarter QN into block BN and 

leave the check sum in the Accumulator 0 The contents of memory are not 

changed. 

CHK i u 707 + 20i + lOu 

WRI 

CHK 

CHECK TAPE o Fi.nd block BN, form its transfer check and leave it in the 

Accumulator. The information on tape and the contents of memory are not 

changed 0 QN is igno~ed. 

II=.L5 



Appendix III: LINC Modifications 

Mishell J. Stucki and Maurice L. Pepper 

In August 1965, based on findings of 
the LINC Evaluation Program,5 an inter
rupt feature, the Z Register, and five 
new instructions were made available 
on the LINC. 

1. The Z Register 

This is a 12-bit register, not shown on the console, which can be 

thought of as being to the right of the Accumulator. It is used as a 

utility register with the DSC and SAM instructions, and it holds the least 

significant half of the product following a MIlL instruction. Each shift 

of the Accumulator during ROR and SCR also shifts the contents of the Z 

Register right with AO-+Z
ll

. (ROR 14 transfers C(ACC) to Z.) The Z 

Register is cleared by CLR. MUL, DSC, SAM, ROR, SCR, and CLR are the only 

instructions which alter the contents of the Z Register. 

Following MUL, the least significant 11 bits of the product are in Zl 

through Zll· Though the half product in the Accumulator is left with the 

proper sign, the half in the Z Register is always positive. Since the sign 

is left in the LJNK bit, the following will recover the least significant 

half as an ll-bit signed number: ZTA* 
LZE _.--. 
COM· .... 

The most significant 11 bits are lost if an integer multiplication is exe-

cuted. 

* See 111-6. 

111-1 



111-2 

2. Overflow 

The following instructions set an overflow flag: ADD, ADA, ADM, and 

LAM. If there is overflow during execution of one of these instructions, 

the overflow flag is set on; if there is no overflow, it will be set off. 

Overflow results when two numbers of the same sign are added and the sum 

is of the opposite sign. 

3. Interrupt Feature 

The interrupt feature permits a program to be interrupted in the 

course of its operation. This feature has no effect until activated by a 

special interrupt enable instruction, ENI (MBC 10). Thereafter, if an 

interrupt request occurs, the normal running of the program will be inter

rupted and the next instruction will automatically be taken from location 

21. Two kinds of interrupt, a program interrupt and a data interrupt are 

available. Which one of these will occur depends on the instruction in 

location 21. 

Data Interrupt: Data interrupts are used to transfer data between 

memory and an external piece of equipment. This is done by putting an OPR 

instruction in register 21 and executing it in the GULP mode. The BCOM 

operation normally performed at 2.2 time of an OPR is inhibited so that the 

Accumulator will not be affected unless it is intentionally disturbed by 

the assertion of CLEL, SNEL, or TNEL. At the end of the OPR instruction, 

the machine will resume running the interrupted program. 

Program Interrupt: A program interrupt allows the program to execute 

a special routine (service routine) whenever an interrupt occurs. This 

routine may be located anywhere in memory; it may not, however, begin in 

locations zero or 21. To arrange for a program interrupt, one puts the 

instruction "JMP X" in register 21 (X being the address of the service rou

tine). This accomplishes three things: 



1. It transfers program control to the service routine. 

2. It stores the instruction "JMp n" in register zero 

(n is the address of the next instruction in the inter

rupted program). 

3. It disables the interrupt feature so that the machine 

cannot be interrupted during the service routine. 

Requesting an Interrupt: A -3V level on the pin called INTREQ (FC30) 

will request an interrupt. The level may occur asynchronously with the 

main machine but it must remain until the interrupt actually occurs. At 

that time a -3V level will a.ppear on the pin called IIBDOINTFF1" (FC15), indi

cating that the instruction in register 21 is being executed. The inter

rupt request must be removed within 16 l1sec of the time this level appears. 

Where Interrupts Can Occur: If the interrupt mode has been activated 

and an interrupt request appears, the program will be interrupted as soon 

as one of the following occurs: 

1. The end of a non-JMP instruction. A program cannot be 

interrupted at the end of a JMP instruction. 

2. The end of a non-ENI instruction. A program cannot be 

interrupted at the end of the instruction ENI. 

NOTE: This assumes that the interrupt feature is 

being activated by the ENI. However, if the inter

rupt feature is already active, i.e., the ENI is 

redundant, an interrupt can occur at the end of the 

instruction. 

3. The occurence of a pause. An MTP or aPR instruction can 

be interrupted during the paused state. The instruction 

will be terminated abruptly and the interrupt executed. 

At the end of the interrupt the machine will return to 

the next instruction; it will'not return to the unfinished 

instruction. 

111-3 



111-4 

Writing Interruptable Programs: Programs utilizing the interrupt fea

ture must be specially written in any section that can be interrupted. 

1. Programs incorporating a program interrupt: The very 

first instruction in each subroutine must save the con-

tents of register zero. This is necessary since a pro

gram interrupt occurring during the subroutine will 

destroy the contents of register zero. 

NOTE: . .An interrupt cannot occur immediately before 

the first instruction in a subroutine since that 

instruction is preceded by a J.MP. 

2. Programs incorporating either interrupt: Whenever an 

instruction is interrupted in the paused state, a flip

flop called PINFF (Pause Interrupt Flip-Flop) is set to 

a one. The state of this flip-flop can be checked with 

the instruction PIN (SKP 6). The PINFF should be 

checked after every instruction that pauses and the in

struction should be repeated if an interrupt occurred. 

Example: WRe 
3/ 400 

PIN i - - --, 
I 

JMP p-31 
I 

~...J 



Wri ting Service Routines·: 

1. 

2. 

If a service routine uses 

A. the Accumulator: the initial contents of the 

Accumulator must be saved and restored to it 

at the end of the routine. 

B. a JMP instruction: the return JMP in regis-

ter zero must be saved. 

The interrupt feature is automatically disabled upon enter-

ing a service routine. If the interrupt feature is to be 

operative upon returning to the interrupted program, the 

service routine must reactivate it just prior to the return. 

The instruction ENI must be the very last instruction before 

the return J1VlP. If it occurs any earlier, the service rou

tine itself may be interrupted. 

Disabling the Interrupt Mode: 

1. Manually: Pushing the STOP switch on the console disables 

the interrupt mode. It also clears the PINFF. 

2. Programs incorporating a program interrupt: The inter

rupt mode is automatically disabled every time an 

interrupt occurs. If it is not reactivated by an EN"I 

at the end of the service routine, it will remain dis

abled. 

3. Programs incorporating either interrupt: Putting the 

instruction NOP in register 21 disables the interrupt 

mode. 

NOTE: This will not disable the interrupt mode 

until the next interrupt request occurs. At 

that time the NOP is executed and the interrupt 

mode disabled. At the end of the NOP, the 

machine resumes running the interrupted program. 

4. The paused state can not be interrupted while the PINFF 

is set to a one. 

111- 5 



111-6 

Additions: LING Order Code Summary 

Miscellaneous Class 

ZTA 0005 8 }J.sec. ZTA 

Z TO ACCUMULATOR. Clear the Accumulator and then transfer the contents 
of the Z register to the Accumulator. The transfer is offset, so that 
Zi-+Ai_l and O-+All. Zo 'is not transferred. 

ENI 0010 8p.sec. 

ENABLE INTERRUPT. Enable the interrupt mode. 

SKIP CLASS 

ZZZ i 455 + 20i 8 fJ.sec. 

Z ZERO ZERO. Condition: Bit zero of the Z Register contains O. 

OVF i 454 + 20i 8 fJ.sec. 

OVERFLOW. Condition: The overflow fla.g is on. This instruction 
does not clear the overflow flag. 

PIN i 446 + 20i 8 fJ.se c. 

ENI 

ZZZ 

OVF 

PIN 

PAUSE INTERRUPT. Condition: The PINFF(Pause Interru~t Flip-Flop) 
is set to a one. Execution of this instruction clea.rs the flip-flop. 



Programs 
written 

for the: 

Appendix IV: LINC Variants 

The chart outlines the main differences between the classic LINC, p-LINC 1, V-LINC 300, 
and LINC-8 that affect programming. It has been checked by the Digital Equipment 
Corporation and by SPeAR, Inc., manufacturers of the machines indicated. For the most 
part program modifications which may be necessary between machines are trivial. The 
chart and notes are intended simply as a guide; your attention is called to the refer
ences given. 

are compatible with the: 
Classic LINC )I-LINC 1 

unless program uses: 4 

p-LINC 300 
LINC-8 

(LINC mode) 

IV-l 

Classic 
LINC 

Programming the LINC 
unless p-LINC 1 has: 

3, 5 

unless program uses: 
1, 2, 4, 6, 7 

unless program uses: 
1, 2, 4, 7, 13 

J-l-LINC 1 

J-l-LINC 300 

LINC-8 
(LINC mode) 

unless program uses: 
3, 4, 8 

unless program uses: 
1, 3, 4, 9, 11, 12 

unless program uses: 
1, 3, 4, 10, 11 

Information from: 
SPeAR, Inc. 
Bear Hill Rd. 
\.Jaltham }Jass 02154 

unless program uses: 
1, 4, 9. 11, 12 

unless Jl-LINC 1 has: 
2, 5 

unless program uses: 
1, 4, 10. 11 

unless p-LINC 1 has: 
2, 5 

unless program uses: 
1, 2, 4, 6, 7, 8 

Micro-LINC-300 Order 
Code, SPeAR. Inc., 
Bear Hill Rd., 
Haltham, Mass. 02154 

unless program uses: 
1, 4, 6, 10 

unless program uses: 
1, 2, 4, 7, S, 13 

unless program uses: 
1, 4, 9, 12, 13, 14 

Small Comnuter Handbook, 
doc. C-800, and 
PROGOFOP, doc. DEC-LS
SFAO-D, D. E. C., Main 
St., Maynard. Hass. 
01754. 

1. Programmed timing loops. Instruction cycle time: classic LINC and p-LINC 1,8 psecs.; ~l-LINC 300, gen-
erally 1 psec.; LINC-8, generally 1.5 psecs. 

2. S-bit S&"'l values. 
3. 9-bit SAM values. 
4. Printer output. Cla~s~~~_~: unbuffered teletype printer usually connected through bit 0, Relay Register, 

and held off with a one in bit O. 
p-LINC 1: as classic LINC, or connected through channel 2 (aPR 2). 
p-LINC 300: as classic LINC, or buffered teletype (OPR 42), or buffered Kleinschmidt (OPR 45) printer. 

Kleinschmidt interprets vertical bar ASCII code as line feed. 
LINC-8: buffered teletype printer (OPR 14). 
There are other variations. (All machines have Soroban code as standard Keyboard input. A few individual 

installations, however, use ASCII.) 
5. 0 potentiometers. 
6. Potentiometers 4-7. 
7. OPR 0-14.* 
8. MTT (Magnetic Tape Two).** 
9. Operations LMB***, UMB***. MSC 2 (Set Flag). MSC 3 (Proceed from Tape Pause). }1SC 4 (TA to A), MSC 7 (Disable 

Interrupt), MSC 12 (Clear Flag). SKP 16 (Tape Transfer), SKP 17 (Flag), MTT**. aPR 0-14*. OPR 40-77. 
10. Operations LMB***, UHB***, OPR 13 (PDP), OPR 14 (TYP), EXC, OPR 0-12*. 
11. "Buffered" feature of 2nd word (block number) of tape instructions. The classic LINC and the }I-LINC 1 need 

this word in the memory until the tape operation is finished. 
12. Shift key to present upper case keyboard values directly to ACC. 
13. Tape blocks which may be occupied by the LINC-8 "Program of Operation," PROGOFOP (normally blocks 0-11). 
14. Memory bank 0 (reserved for PROGOFOP). 

*OPR 0-14 are compatible between the classic LINC and the p-LINC 1, but not between these t\vO, the Jl-LINC 300, 
and the LINC-S. The timing pulse generation is different between the first two and the p-LINC 300. The LINC-8 
OPR requires PDP-8 programming. There are thus slight logical differences in using OPR for buffered printer 
output on the p-LINC 300 and·the LINC-8. 

**The second tape transport is optional on the p-LINC 1 and Jl-LINC 300. The MTT instruction is compatible between 
machines which have the transport. 
The LINC-8 may have a second transport, addressable, compatibly, with MTT by modifying PROGOFOP. It will not 
then have a general purpose EXC instruction. 

***Memory bank selection logic is handled differently on the )l-LINC 300 and the LINC-8, although the LMB/UMB codin~ 
is the same. Either machine may have 4K to 32K words. The classic LINC and the p-LINC 1 have 2048 words, not 
paged. 



References 

1. Clark, Wesley A. and Charles E. Molnar, "A description of the LINC," 
in Computers in Biomedical Research II, R. W. Stacy and B. Waxman, 
Eds., Academic Press, New York, 1965. 

2. Wilkes, MBry Allen, LINC Control Console, Center Development Office, 
M.I.T., Cambridge, July 1963. 

, 3. Thomae, Irving, IIAn introduction to binary numbers and binary 
arithmetic," LINC Vol. 16, LINC Programming and Use I, Sec. 1, 
Washington University, St. Louis, April 1965. 

4. LINC Vol. 12, Logic Drawings and Timing Diagrams, from: Computer 
Systems Laboratory, Washington University, St. Louis. 

5. Convocation on the Mississippi, Proc. Final LINC Evaluation Program 
Meeting, Washington University, St. Louis, March 18-19, 1965. 

See also: 

Micro-LINC 300 Order dode, Spear, Inc., Bear Hill Rd., Waltham, Mass. 

Small Computer Handbook, doc. C-800, Digital Equipment Corp., 
Main St., Maynard, Mass. 

PROGOFOP, doc. DEC-L8-SFAO-D, Digital Equipment Corp., Ma.in St., 
Maynard, Mass. 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	A1-01
	A1-02
	A1-03
	A2-01
	A2-02
	A2-03
	A2-04
	A2-05
	A2-06
	A2-07
	A2-08
	A2-09
	A2-10
	A2-11
	A2-12
	A2-13
	A2-14
	A2-15
	A3-01
	A3-02
	A3-03
	A3-04
	A3-05
	A3-06
	A4-01
	References

