
WD16
MICROCOMPUTER

(Using Mep 3-Chip Microprocessor Set)

PROGRAMMER'S REFERENCE MANUAL

WESTERN j) DIGITAL
CORPORAi TION

WD1600 MICROCOMPUTER

(Using MCP 3-Chip Microprocessor Set)

PROGRAMMER'S REFERENCE MANUAL

4 OCTOBER 1976

©1977-WESTERN DIGITAL CORP.
NEWPORT BEACH, CA. 92663

TABLE OF CONTENTS

CHAPTER ONE - GENERAL
Abbreviations
Processor Status Word
Registers

CHAPTER TWO - INTRODUCTION
Addressing Modes
Stack Operations
Interrupt Lines
Priori ty Mask
External Status Register
Power Up Options
Halt Options
User Bootstrap Rout:ine
System Error Traps
Reserved Core Locations

CHAPTER THREE - OP CODES
Format 1 Op Codes
Format 2 Op Codes
Format 3 Op Codes
Format 4 Op Codes
Format 5 Op Codes
Format 6 Op Codes
Format 7 Op Codes
Format 8 Op Codes
Format 9 Op Codes
Format lOOp Codes
Format 11 Op Codes

APPENDIX A - Numeric Op Code Table
APPENDIX B - Assembler Notes
APPENDIX C - Programming Notes
APPENDIX D - Microm State Code Functions
APPENDIX E - Op Code Timings

PAGE
1.1

2.1

3.1

Al
B1
C1
D1
E1

CHAPTER 1 - GENERAL

The WD16¢¢ microcomputer is a 16 bit machine with both word and byte
addressing, an automatic push down hardware sta.ck, vectored interrupt
handling, eight 16 bit registers, and PC relative addressing. A byte is
defined as 8 bits, and a word is defined as 2 bytes. A memory address
increment of one is an increment of 1 byte. An address increment of two
is an increment of 1 word. Word addresses always start on even bytes.
For any memory location the even byte is the least significant byte.
Bit ¢ is defined as the LSB of a memory location.

(MSB) 15 8 7 ¢ (LSB)

I High Byte Low Byte J .~, ~'--- --...r-
Byte Address Byte Address

~~-~ X (EVEN) J
Word Address :x: (EVEN)

Unless otherwise stated, word addressing is implied. All addresses
and op codes are done in hex unless otherwise stated. All hex numbers
are enclosed within double quotes.

LEGEND OF ABBREVIATIONS

REG Register

SRC Source Address

(SRC) = Contents of Source Address

DST Destination Address

COST) Contents of Destination Address

(SRC) B Contents of Source Byte Address

(DST) B Contents of Destination Byte Address

1

x = Ones Complement of X

~.x Twos Complement of X

/). Logical And

V Logical Or

SJ.. Exclusive or

@ Indirect

{- Push

t Pop

+ Destination Direction

+ Addition

Subtraction

* Multiplication

/ Division

Double Precision Chain Link

PROCESSOR STATUS WORD

A 16 bit Processor Status (PS) Word exists. The format is as follows:
15 8 7 4 3 2 1 ¢
tEXt. Status Reg. I ALU I N [IT~.L~J

Where bits 8-15 are the contents of the external status register
(see chapter 2), bits 4-7 are the status of the microprocessorALU flags,
and bits ¢ -3 are the status of the condition indicators at the time the
PS is formed. The ALU flags are of no· use or concern to the programmer.
They are stored along with the condition indicators automatically as a func- ~

tion'of the micro-op. The four condition flags are updated during the exe­
cution of most op codes, and are used by the branch instructions to test
for valid branch conditions. The exact status of each indicator is de-
fined along with the descriptions of individual op codes in chapter 3.
In general, however, the indicators are set by the following conditions:

N set if the MSB of the result is set.
Z set if the result is zero.
V set if arithmetic overflow (underflow) occurs during addition (subtraction).

Set to exclusive -or of Nand C indicators otherwise.
C= set if carry (borrow) occurs during addition (subtraction). Also set

to last bit shifted out during a shift operation.

REGISTERS

There are 8 registers in the WD1600. All are 16 hits lo.ng.. Six
can be hsed as either accumulators or index r~gisters, one is the
stack po.inter (SP), and one is the program co.unter (PC). The registers
are numbered R~ - R7 with R6 = SP and R7 = pc. The register set is
usually referred to. in the fo.llowing manner: ~ - RS, SP, pee

CHAPTER TWO - INTRODUCTION

ADDRESSING MODES

In general there are 8 addressing lmodes for both source and
destination addressing. Not all op codes accept all 8 modes (see
chapter 3). Those that do use the following format: 3 bits for
the index register (R~ - RS, SP, PC) and 3 bits for the mode. The
mode bits are the upper 3 bits of the 6 bit set. The modes are de­
fined below. The numbers :in parenthesis refer to notes that follow
the definitions.

MODE

~
1
2

3

4

5

6

7

NAME SYMBOLIC

Direct Register
Indirect Register
Auto-increment

Auto-increment
deferred

Auto-decrement

Auto-decrement
deferred

Indexed register

Indexed register
deferred

REG
@REG
(REG) +

@(REG)+

- (REG)

@- (REG)

X(REG)

@X(REG)

DESCRIPTION

REG is or contains operand.
REG contains address of operand.
REG contains address of operand.
REG is post-incremented (1).
REG contains address of add­
ress of operand. REG is post­
incremented by 2.
REG is predecremented (1). REG
then contains address of operand.
REG is predecremented by 2. REG
then contains address of address
of operand.
Contents of REG plus X is address
of operand (2).
Contents of REG plus X is address
of address of operand (2).

NOTE 1: For word operations the increment/decrement is 2. For byte
operations the increment/decrement is I unless the index register
is SP or PC. In 'this case the increment/decrement is always 2.

NOTE 2: The contents of REG remain unchanged.

MODE

2
3

6

7

When using PC as 'the index register the assembler accepts the
following 4 formats in place of the formats mentioned above for
ease of programming.

NAME

Immediate
Absolute

Relative

SYMBOLIC

#N
@#N

A

Relative deferred @A

DESCRIPTION

Operand N follows op code.
Address of operand is N and it
follows the op code in memory.
PC relative offset to address A,
which contains operand, follows
op code.
PC relative offset to address A,
which contains address of operand,
follows the op cbde.

The 8 modes are referred to as Source Mode ~. to Source Mode 7
(S~ -SM7) and Destination Mode ~ ... to Destination Mode 7 (DM!if -DM7). In
Chapter 3 these modes are :~eferred to in general terms during ap code def­
ini tions as "SRC" and "DS'D".

I

STACK OPERATIONS

Although automatic stack operations are provided for, no
specific area of memory is set aside for the stack. The user must
assign an area of memory by loading the stack pointer with the top
address of the designated stack area. Stack operations are push-­
down pop-up operations with predecrements and post-increments of SP.
Stack operations may also be executed explicitly by using SP as em
index register with op codes that allow SM~ - SM7 and/or OM~ - OM7
addressing.

When pushing the PS the word is formed just prior to the push.
When popping the PS the condition indicators and interrupt enablE~ flag
are set to the status of the appropiate bits in the popped PS. Other
than that the popped PS goes nowhere. Unless otherwise stated popping
the PS from the stack performs the above mentioned operations and only
the above mentioned operations.

When pushing the PC onto the stack PC will be set to the address
of the op code that follows the op code that caused the push. nlere
are cases where some op code formats can alter this rule. They qen­
erally involve advanced progranuning techniques. A few are mentioned
in appendix C. In particular, system errors that are caused by pro­
granuning errors and not real time error conditions will push a PC
that points to the op code that follows the op code that caused 1:he
error. The stored PC must be decremented by two to get the addrE!ss
of the offending op code.

INTERRUPT LINES

There are 4 interrupt lines available to the system. They are
labeled I~ - 13. These lines are assigned functions as follows:

I~ Vectored interrupt line
II Nonvectored interrupt line
12 Enable/disable for I~ and II.
13 Halt switch

The priority among the lines is as follows:

13, IlhI2, I~~I2.

Note that 13 is always enabled. Note also that the nonvectored i.nter­
rupt has priority over the vectored interrupt. The system is currently
set up so that power fail and a real time clock can be assigned t~o II,
and up to 16 devices assigned to I~. * The two interrupts operate a.s follows:
A) Nonvectored Interrupt (II)

PS and PC are pushed onto the stack. 12 is disabled. The external
status register is tested for a power fail. If power fail is true
PC is fetched from location "14". If power fail is false PC is
fetched from location "2A", and a mierom state code is transmitted
to clear the line clock (see appendix 0) .

B) Vectored Interrupt (I~)

*

PS and PC are pushed onto the stack. 12 is disabled. An Interrupt
Acknowledge is executed, and the device code of the interrupting de­
vice is read in and stripped to bits 1- 4~ PC is fetched from location

NOTE: AI though only a, 4 bj.. t device cqde i~ cUJ;rently used, a minor microm
change can allow a device code of from i-IS bits.

2

"28" and the device code is added to it:. The contents of this inter­
mediate location are read in and added to PC to form the final address.
Each intermediate location is a table entry that contains the PC rela­
tive offset from the start of the device handler routine to itself. The
absolute address of the start of the table is in location "28".

PRIORITY MASK

Associated with the interrupts is a priority interrupt mask. This
is a 16 bit mask where each bit posi ticm represents a priority level.
Each priority level can be assigned to one or more devices. A one in any
bi t position can represent an interrupt: enable or disable for its associ­
ated devices as the hardware dictates. The SAVS, RSTS, and MSKO op codes
each alter the mask. When the mask is altered it is written into location
"2E" for storage. While the mask is on the bus a microm state code is
transmitted (see appendix D) to signal the I/O devices that a new mask is
being transmitted. Each device can thE~n look at its assigned mask bit
while the memory write· to location "2E" is taking place. Whether or not
the mask feature is actually used by the I/O devices in no way alters
the operations of the op codes mentionE~d above.

EXTERNAL STATUS REGISTER

As a part of the hardware external to the CPU the External Status
Register supplies the CPU, upon demand " with information about the status
of certain hardware areas. This regis1:er is gated onto the bus when its
associated microm state code is presen1: (see appendix D). The format
of the register is as follows:

Bit 7 = Power Fail Status
Bit 6 Bus Error (Time Out) Status
Bit 5 Parity Error Status
Bit 4 = 12 Interrupt Line Status
Bit 3 Halt Option Jumper #2
Bit 2 = Halt Option Jumper #1
Bit 1 = Power Up Option Jumper #2
Bit ~ = Power Up Option Jumper #1

Bits 8-15 are don't care. Bits 5-7 are real time error conditions that
also generate a system reset (see next section). Bit 4 is the interrupt
E~nable status. The jumpers can be logic units, switches, or hard wired
jumpers as the user wishes. The various options associated with the 4
jumpers are discussed later.

POWER UP OPTIONS

A system reset indicate one of 4 conditions: power fail, bus error,
parity error, or power up. There are 2 levels of power fail possible in
this system (see appendix C): minor and major. Only a major power fail
generates a system reset. Both types set bit 7 in the External Status
Register. The following steps are performed after a system reset.

AI) Trace and wait flags are reset if on.
A2) The external Status Register is fetched.

3

A3) The Line-clock-clear state code is transmitted~
A4) I2 is reset.
AS) If power fail bit is set go to 01.
A6) If bus error bit is set go to Cl.
A7) If parity error bit is set go to Bl.
A8) Go to 02 otherwise.

Bl) Push PS and PC onto stack.
BJ) Fetch PC from location "12"and begin execution.

Cl) Push PS and PC onto stack.
C2) Fetch PC from location "18" and begin execution.

01) Wait until power fail status = $!1.
02) Send a'H system -reset microm state code.
D3) Wait 300 cycles.
04) Execute power up option 1,2,3 or 4 per jumpers.

For a proper initial power up either bit 7 must be set or bits 5--7 must
be reset when the system reset line is released.

The 4 power up options are as follows:

LTUMPERS

10
11

OPERATION

Execute user bootstrap routine.
Pick up R0-RS, SP, PC, and PS from memory
locations 0-"10".
Execute selected halt op-tion.
Fetch PC from location "16".

HALT OPTIONS

When the halt switch (13) is set during program execution one of 4 halt
options is selected. The halt op code* and power up option #2 also select
the halt option specified. The options are as follows:

JUMPERS

10
11

OPERATION

Execute user bootstrap routine.
Save R.0-RS,sP,PC and PS in memory locations
0-"10". Wait until 13 = .0, then restore R0-
RS,SP,PC and PS from memory locations .0-"10".
Lock up processor (requires a system res4~t to clear) .
Fetch new PC from location "16".

*NOTE: Conditional. See Chapter 3.

USER BOOTSTRAP ROUTINE

When the user bootstrap routine is selected as an option the systE~m creates
the starting address by placing address "C0.00" in PC and then replacing
bits 8-13 with the contents of the 6 bit External Address Register. This
register is gated in with a microm status code (see appendix 0) .

4

It allows the user 64 different startin9 addresses in the range IiCfi'~fi'''

to "FFfi'~".

SYS~rEM ERROR TRAPS

Wi th the exception of the major pO~Ner fail error that is a function
of a system reset, all error conditions perform a common routine as outlined
below. A non-vectored interrupt and some op codes also use this routine.
The numbers in parenthesis refer to nobas that follow the table.

1) PS is pushed onto the stack
2) PC is pushed onto the stack
3) PC is fetched from location X where "X" is from the following table

(I) (2) (3) 12" for bus erro:r PC
(1) (2) (3) 14" for nonvectored interrupt power fail PC
(1) (2) (3) 18" for parity error PC
(1) (2) (3) lA" for reserved op code error PC
(1) (2) (3) lC" for illegal op code format error PC
(I) (2) (3) IE" for XCT error PC
(1) (2) 2~" for XCT trace PC
(1) (2) (3) 2A" for nonvectored interrupt PC
(1) (2) 2C" for BPT PC

NOTE 1: wait flag reset if on
NOTE 2: trace flag reset if on
NOTE 3: interrupt enable (12), reset if on

The meaning of the wait and trace flags is discussed in chapter 3. Note
that the nonvectored interrupt power fail PC is a minor power fail condition,
not a major one. See appendix C for full detail on how to include both
major and minor power fail conditions in the hardware.

RESERVED CORE LOCATIONS

The following is a complete list of memory locations that are re­
served for specific system functions or options. Byte addresses are given.

LOCATIONS

~ - "ll"
"12" - "13"
"14 - "15"
"16" - "17"
"18" - "19"
"lAiI -nIB"
"Ie" - "ID"
"IE" - "IF"
"2.0" - "21"
1V22" - "23"
1924" - "25"
1U26" - "27"
1028"- "29"
n2An - "2B"
u2C" - "2D"

"2E" - 2F"
"3ftl" - "3F"

RESERVED FUNC'I'ION

R~ - RS, SP, PC and PS for power up/halt options
bus error PC
nonvectored interrupt power fail PC
power up/halt option power restore PC
parity error PC
reserved op code PC
illegal op code format PC
XCT error PC
XCT trace PC
SVCA ~able address
SVCB PC
SVCC PC
vectored interrupt (1.0) table address
nonvectored interrupt (II) PC
BPT PC
I/O priority interrupt mask
reserved for floating point option

5

CHAPTER 3 - OP CODES

This chapter is divided into a number of sections, each repre­
senting one class of op codes. At the beginning of each section there
is a detailed description of the format. for that class. A list of op
codes and their base numeric values, less arguments, is also included.
A detailed description of each op code in the class then follows.

FORMAT 1 OP CODES

Single word - no arguments

15 12 11 8 7 4 3 o
I I OPC

There are 16 op codes in this class representing op codes "~~~~" to
"~~~F". Each is a one word op code with no arguments with the exception
of the SAVS op code which is a two word op code. Word two of the SAVS
op code is the I/O priority interrupt mask. The op codes and their mnemoni~s
are:

BASE OP CODE

~(i1¢(i1

(i1¢~1

¢~!i12
f6~¢3
f6!i1f44
~~~5 
f4~~6 
~~~7 
f69J~8
f6~~9
~~~A 
f6~~B 
~f6~C 
f69J~D 
f6¢f6E 
~~~F 

NOP

FORMAT:
FUNCTION:
INDICATORS :

RESET

FORMAT:
FUNCTION:
INDICATORS:

MNEMONIC

NOP
RESET
lEN
IDS
HALT
XCT
BPT
WFI
RSVC

·RRTT
SAVE
SAVS
REST
RRTN
RSTS
RTT

NO OPERATION

NOP
No operations are performed
Unchanged

1,:/0 RESET

RESET
An 1/0 reset pulse is transmitted
Unchanged

1

lEN

FORMAT:
FUNCTION:

INDICATORS:

IDS

FORMAT:
FUNCTION:

INDICATORS:

INTERRUPT ENABLE

lEN
The interrupt enable (I2) flag is set~. Allows
one more instruction to execute before inter­
rupts are recognized.
Unchanged

INTERRUPT DISABLE

IDS
The interrupt enable (I2) flag is reset.
This instruction can honor interrupts, but
the 12 bit in the PSthat is stored on the stack
is reset if an interrupt occurs.*
Unchanged

*NOTE: On some machines I2 will be set or reset during the lEN or
IDS. If so the change will be valid immediately, not one op
code later.

HALT

FORMAT:
FUNCTION:

INDICATORS :

XCT

FORMAT:
OPERATION:

FUNCTION:

HALT

HALT
Tests the status of the Power Fail bi.t in the
external status regis·ter. If the bit~ is set it
is assumed that the HALT occured in a. power fail
routine, and the following operations occur:
1) The interrupt enable (I2) flag is reset
2} The CPU waits until the Power Fai.l bit is reset
3) PC is fetched from location "16", and program

execution begins at this new loca.tion
If the power fail bit is reset then t~he CPU waits
until the halt switch (I3) is set. A.t that time
the selected halt option (see chapter 2) is executed.
The interrupt enable flag is also reset.
Unchanged

EXECUTE SINGLE INSTRUCTION

XCT
PC + @SP, SP t
PS ~ . @SP, SP t
Trace flag set, execute op code
{-SP,. @SP + PS
{- SP, @SP + PC
Trace flag reset
PC + (loc "2~") if no error
PC -+- (loc "lE") if error
PC and PS are popped from the stack, but I2 is no t
altered. The trace flag, which disables all inter:­
rupts except I3, is set. The op code is executec
PS and PC are pushed back onto the st.ack) and PC
is fetched from location "2~". The t.race flag is
reset. If the program tries to execu.te a HALT, XCT,
BPT, or WFI the attempt is aborted, PS and PC are

2

pushed onto the stack, and PC is fetched from location "lE" instead.
I2 is also reset.
INDICATORS: Depends upon executed op code

BPT BREAKPOINT TR1~P
~---

FORMAT:
OPERATION:

FUNCTION:

INDICATORS :

BPT
-to SP, @SP +- PS
.} SP, @SP +-PC
PC +-'(loc "2C lI

)

PS and PC are pushed onto the stack. PC is
fetched from location "2C lI

Unchanged

WFI ___________________________ W,_A_I_T __ F_O_R __ IN_T_E_l_~_UP __ T ____________________ ___

FORMAT:
FUNCTION:

INDICATORS :

SAVE

FORMAT:
OPERATION:

FUNCTION:
INDICATORS :

SAVS

FORMAT:
OPERATION:

FORMAT:

INDICATORS :

WFI
The CPU loops internally without accessing
t:he data bus lmtil an interrupt occur~. Program
execution continues with the op code that follows
the WFI after the interrupt has been serviced.
The interrupt enable flag is also set.
Unchanged

SAVE REGISTERS

SAVE
-t SP, @SP +- R5
+ SP, @SP' +- R4
+ SP, @SP+ R3
-} SP, @SP +- R2
'kSP, @SP +- RI
+ SP, @SP +- ~
Registers R5 'to R¥J are pushed onto the stack.
Unchanged.

SAVE STATUS

SAVS MASK
SAVE

, '-} SP, @SP +- (loc "2E II)
(loc "2En) -+< (loc "2E") V mask

MsKO
IEN
Registers R5 ·to R~ and the priority mask in location
"2E"are pushed onto the stack. The old and new masks
are ORED toge'ther and placed in location II 2E" •
A mask out state code (see appendix D) is transmitted
and the inter:rupt enable (I2)" flag is set.
Unchanged

RES_T _______________________ RE __ S_TO __ RE ___ RE __ G_I_S.1_rE __ RS ______________________ _

FORMAT:
OPERATION:

REST
R~ ~. @SP I SP'~

Rl +- " @SP, SP ~~

R2 +- @SP, SP ,~

3

R3 +- @SP, SP +
R4 +- @SP, SP t
RS·+ @SP, SP t

FUNCTION: Registers R9 to ~ are popped from the stack,
INDICATORS: Unchanged

RTT

FORMAT:
OPERATION:

FUNCTION:
INDICATORS:

RRTN

FORMAT:
OPERATION:

:FUNCTION:

INDICATORS :

RRTT

FORMAT:
OPERATION:

E'UNCTION:

INDICATORS:

RSTS

FORMAT:
OPERATION:

FUNCTION:

INDICATORS :

RSVC

l"ORMAT:
OPERATION:

RETURN FROM TRAP

RTT
PC +@SP, SP t
PS +-@SP, SP t
PC and PS are popped from stack
N Set per PS bit 3
Z Set per PS bit 2
V Set per PS bit 1
C Set per PS bit ~

RESTORE AND RETURN FROM SUBROUTINE

RRTN
REST
PC +- @SP, sPt
Registers R¢ to RS and PC are popped
from the stack
Unchanged

RESTORE AND RETURN FROM TRAP

RRTT
REST
RTT
Registers ~ to R5, PC and PS are popped
from the stack.
Set per PS bits ~ - 3

RESTORE STATUS -

RSTS
(LOC "2E") +- @SP, sPt

MSKO
REST
RTT
The priority mask is popped from the stack and
restored to locaton "2E". A MASK OUT state code
(See Appendix D) is transmitted. Registers ~
to IO. PC and PS are popped from the stack.
Set per PS bits ~ - 3

RETURN FROM SUPERVISOR CALL (B or C)

RSVC
REST
SPI­
RTT

4

FUNCTION:

INDICATORS:

Registers R¢ to RS, PC and PS are popped from
the stack with the saved SP bypassed.
Set per PS bits ~ - 3

5

FORMAT 2 OP CODES

SINGLE WORD - 3 BIT REGISTER ARGUMENT

15 12 11 8 7 3 2 o

OPC REG

There are 4 op codes in this class representing op codes "~~l~"
to "~~2F". Each is a one word op code with a single 3 - bit register
a.rgument. The op codes and their mnemonics are:

BASE OP CODE

~~l~
~~18
~~2~
~~28

IAK

FORMAT:
FUNCTION:

INDICATORS:

RTN

FORMAT:
OPERATION:

FUNCTION:

INDICATORS :

MSKO

FORMAT:
OPERATION:

FUNCTION:

INDICATORS:

PRTN

.FORMAT:
OPERATION:

MNEMONIC

IAK
RTN
MSKO
PRTN

INTERRUPT ACKNOWLEDGE

IAK REG
An in,terrupt acknowledge (READ and lACK) is
executed, and the 16 bit code that is returned
is placed in. REG unmodified. Used wii:h the
nnnvectored interrupt when the user does
not wish to use the vectored format.
Unchanged

RETURN FROM SUBROUTINE

RTN
PC
REG

REG
REG
@SP,SP t

The linkage register is placed in PC and the
saved linkage register is popped from the stack.
The register used must be the same onE~ that was
used for the subroutine call.
Unchanged

MASK OUT

MSKO
(LOC "2E"

MSKO

REG
) + REG

The contents of REG are written into location
"2E" and a MASK OUT state code (see appendix D)
is transmitted.
Unchanged

POP STACK AND RETURN

PRTN REG
TMP + @SP
SP + SP+ (TMP*i2)
RTN REG

6

FUNCTION:

INDICATORS :

Twice the value of the top word on
the stack is~added to SP, and a standard
RTN call is then executed.
Unchanged

7

FORMAT 1 OP CODES

SINGLE WORD - 4 BIT NUMERIC ARGUMENT

15 12 11 8 7

I OPC

There is only one op code in this class representing op codes
"~~3~" to 1~~3F". It is a one word op code with a 4-bit numeric argument.

BASE OP CODE MNEMONIC

f6~3f6 LCC

LCC LOAD CONDITION- CODES

FORMAT: LCC ARG
FUNCTION: The 4 indicators are loaded from bits ~-3

of the op code as specified.
INDICATORS : N = Se t per bit 3 of op code

Z = Set per bit 2 of op code
V= Set per bit 1 of op code
C = Set per bit f6 of op code

8

FORMAT 4 OP CODES

SINGLE WORD - 6 BIT NUMERIC ARGUMENT

I OPC I ARG i 15 12 11 8 7 6 5

There are 3 op codes in this class .representing op codes
"f6!l4{a"r to "f6f6FF". All 3 are supervisor calls. All 3 are one word
op codes with a 6-bit numeric argument.

BASE OP CODE

SVCA

FORMAT:
OPERATION:

FUNCTION:

INDICATORS:

SVCB
SVCC

FORMAT:

OPERATION:

FUNCTION:

MNEMONIC

SVCA
SVCB
SVCC

SUPERVISOR CALL "A"

SVCA ARG
+SP, @SP ~ ~S:;; + SP, @SP+ PC
PC -+ (LOC "22") + (ARG *2)
PC +PC + @PC
PS and PC are pushed onto the stack. The
contents of location "22" plus twice the value
of the argument (which is always positive) is placed
in PC to get the table address. The contents
of the table address is added to PC to get the
final destination address. Each table entry is the
relative offset from the start of the desired
routine to itself.
Unchanged

SUPERVISOR CA.LL "B"
SUPERVISOR CALL "c"

SVCB ARG
SVCC ARG
TMPA + SP
''''SP, @SP+ PS
-+-SP, @SP+ PC
TMPB +SP
--+ SP, @SP+ 'I'MPA

SAVE
Rl -+- TMPB
R5+ ARG*2
PC +- (LOC "24:") if SVCB
PC ~-- (LOC "26") if SVCC

PS and PC are pushed onto the stack. The value
of SP at the start of op code execution is the
pushed followed by registers R5 to Rf6. The address
of the saved PC is placed in Rl, and twice the value
of the 6-bit positive argument is placed in R5.

9

INDICATORS :

PC is loaded from location "24"
for SVCB or "26" for SVCC.
Unchanged.

10

FORMAT 5 OP CODES

SINGLE WORD - 8 BIT SIGNED NUMERIC ARGUMENT

15 8 7 ~
OPC I DISPLP~CEMENT c= I

There are 15 op codes in this class representing op codes
n~l~¢" to "~7FF" and "8~~~" to "87FF". All are branches with a
signed 8 bit displacement that represents the word offset from PC
(which points to the op code that follows) to the desired branch
location. The op codes consist on one unconditional branch, B
signed conditional branches, and 6 unsigned conditional branches.
No op code in this class modifies any of the indicator flags. Max­
imum branch range is +.128, -127 words from the branch op code.

BASE OP CODE

¢l¢¢
¢29191
¢3~¢
04910
¢591¢
¢6~91
¢7910
8~91¢
8100
82¢~
83~~
84~0
85¢~
86¢~
87~0

MNEMONIC

BR
BNE
BEQ
BGE
BLT
BGT
BLE
BPL
BMI
BHI
BLOS
BVC
BVS
BCC, BHIS
BCS, BLO

_B.;;...R ___________ . __ B....;;RAN~....;C~H. UNC~)NDITIONALLY

FORMAT:
OPERATION:
FUNCTION:

BR DEST
PC +-PC+ (DISP *2)
Twice the value of the signed displacement
is added to PC.

SIGNED BRANCHES

_B_N E _______ ~ ______ B_RA_N_C_H IF NOT EQUAL TO ZERO

FORMAT: BNE DEST
OPERATION: IF Z _. ¢, PC + PC + (DISP *2)

BRANCH IF EQUAL TO ZERO ~-----------------------.----------~----.-=-------------------
FORMAT: BEQ DEST
OPERATION: IF Z = 1, PC + PC + (DISP *2)

BGE BRZ\.NCH IF GREATER THAN OR EQUAL 1'0 ZERO

FORMAT: BGE DEST
OPERATION: IF N9v = ¢, PC + PC + (DISP *2)

11

BLT

FORMAT:
OPERATION:

BGT

FORMAT:
OPERATION:

BLE

FORMAT:
OPERATION:

BPL

FORMAT:
OPERATION:

BMI

FORMAT:
OPERATION:

BHI

FORMAT:
OPERATION:

BRANCH IF LESS THAN ZERO

BLT DEST
IF N~V = 1, PC + PC + (DISP *2)

BRANCH IF GREATER THAN ZERO

BGT DEST
IF Z v(~) = ~, PC + PC + (DISP *2)

BRANCH IF LESS THAN OR EQUAL TO ZERO

BLE DEST
IF ZV (WV) = 1, PC -+- PC + (DISP *2)

BRANCH IF PLUS

BPL
IF N

DEST
~, PC + PC + (DISP *2)

BRANCH IF MINUS

BMI DEST
IF N = 1, PC + PC + (DISP *2)

UNSIGNED BRANCHES

BRANCH IF HIGHER

BHI DEST
IF CVZ = ¢, PC + PC + (DISP *2)

BRANCH IF LOWER OR SAME ---------------------------
FORMAT: BLOS DEST
OPERATION: IF CVZ = 1, PC + PC + (DISP *2)

BVC BRANCH IF OVERFLOW CLEAR

FORMAT: BVC DEST
OPERATION: IF V = ¢, PC + PC + (DISP *2)

BVS BRANCH IF OVERFLOW SET

FORMAT: BVS DEST
OPERATION: IF V 1"PC + PC + (DISP *2)

BCC BRANCH IF CARRY CLEAR

BHIS BRANCH IF HIGijER OR SAME

FORMAT: BCC DEST
BHIS DEST

OPERATION: IF C = ¢, PC + PC + (DISP *2)

12

BG£ BMNCR IF CARRY SET
BLO BRANCH IF LOWER

FORMAT: BCS DEST
BLO DEST

OPERATION: IF C = 1, PC-+ PC + (OISP *2)

13

FORMAT 6 OP CODES

S.INGLE WORD - SINGLE OPS - SPLIT FIELD - DMf6 ONLY

15 9 8 6 5 4 3 o
I OPC BASE I REG I OPC I COUNT

There are 12 op codes in this class representing op codes "~8~~"
to "~9FF", "88~~" to "89FF", and "8E~~" to "8FFF". There are 4 immedi­
ate mode op codes with a register as a destination, 4 multiple count
single register shifts, and 4 multiple count double register shifts.
In all op codes the actual count (or number in the case of the immedi­
ates) is the value of bits ~ - 3 plus one. COWlt is always a positive
number in the range 1 - "l~", but it is stored in the op code as ~ -
"F". All' of these op codes are one word op codes with the op codes them­
selves spli·t between bits 9-15 and 4-5.

In the case of the double shifts the 32 bit number (REG:t l)
(REG) is the operand. If REG = PC then (REG+l) = R{2f.

BASE OP CODE

~8~~
~8l~
~82~

~83~
88~~
88l~

882~

883~

8E~~
8El~

8E2~
8E3~

hDDI

FORMAT;
OPERATION:
E'UNCTION:

INDICATORS :

SUBI

FORMAT:
OPERATION:
FUNCTION:

MNEMONIC

ADD I
SUBI
BICI
MOVI
SSRR
SSLR
SSRA
SSLA
SDRR
SDLR
SORA
SOLA

ADD IMMEDIATE

ADD I NUMBER, REG
REG +. REG + COUNT + 1
The stored number plus one is added to the
destination register.
N Set if bit 15 o~ the result is set
Z = Set if the result = ~
V = Set if arithmetic overflow occurs; i.e. set
if both operands were positive and the sign of
the result is negative
C = Set if a carry was generated from bit 15
of the result

SUBTRACT IMMEDIATE

SUBI NUMBER, REG
REG + REG - (COUNT +1)
The stored number plus one is subtractE~d from
the destination register .•

14

INDICATORS :

BICI

FORMAT:
OPERATION:
FUNCTION:

INDICATORS :

N :::; Set if bit .15 Q:t; th..~. l;'e~ul t .ts set
Z :::; Set if~ the result:::; [a
V :::; Set if' arithmetic underflow occurs; i.e. set

if the operands .were of opposite signs and
the sign of the result is posi'ti ve

C Set if a borrow was generate from bit 15
of the result

BIT CLEAR IMMEDIATE

BICI NUMBER, REG
REG + REG II (COUNT + 1)
The stored number plus one is one's complemented
and ANDED to the dfiistination register
N Set if bit 15 o'f the result is set
Z Set if the result = ~
V :::; Reset
C Unchanged

MOVI MOVE IMMEDIATE ------------------.-------- ------------------------------
FORMAT:
OPERATION:
FUNCTION:

INDICATORS :

MOVI NUMBER, REG
REG +- COUNT + 1
The stored number plus one is placed in
the destination register
N Reset
Z Reset
V := Reset
C Unchanged

_S_S~RR~ _________ S_H_I_F_T_, SINGLE RIGHT ROTATE

FORMAT:
FUNCTION:

INDICATORS:

SSLR

FORMAT:
FUNCTION:

INDICATORS:

SSRR REG, COUNT
A 17-bi:t right rotate is done stored count+l
times on REG:C-Flag. The C-Flag is shifted into
bit 15 of .REG, and the C-Flag gets the last bit
shifted out of REG bi t ~.

N :::; Set if bit 7 of REG is set
Z = Se t if .REG :::; ~
V Set to exclusive or of Nand C flags
C Set to the value of the last bit shifted
out of REG bit ~

SliIFT SINGLE I£FT ROUTINE

SSLR REG, COUNT
A 17-bit lE~ft rotate is done stored count+l
times on C--Flag: REG. The C-Flag is shifted
into bit s;J of REG an d the C-Flag gets the
last bit shifted out of REG bit 15.
N :::; Set if bit 15 of REG is set
Z = Set if RE~ = s;J
V :::; Set to exclusive or of N and C flags
C = Set to the value of the last bit shifted

out of REG bit 15.

15

SSRA

FORMAT:
FUNCTION:

INDICATORS :

SSLA

FORMAT:
FUNCTION:

INDICATORS:

SDRR

FORMAT:
FUNCTION:

INDICATORS:

SDLR

FORMAT:
FUNCTION:

INDICATORS:

SHIFT SINGLE RIGHT ABlTHMETIC

SSRA REG, COUNT
A 17-bit right arithmetic shift is done
stored count+l times on REG: C-Flag. Bit
15 of REG is replicated. The C-Flag gets the
last bit shifted out of REG bit~. Bits shifted
out of the C-Flag are lost.

N = Set if bit 7 of REG is set
Z Set if REG=~
V = Set to exclusive or of Nand C flags
C = Set to the value of the last bit shtfted

out of REG bit ~

SHIFT SINGLE LEFT ARITHMETIC

SSLA REG, COUNT
A 17-bit left arithmetic shift is done stored
count+l" times on C-Flag:RgG. Zerosa~e shifted
into REG bit ~, and the C-FLAG gets the last bit
shifted out of REG bit 15. Bits shifted out of the
C-Flag are lost-
N Set if REG bit 15 is set
Z = Set if REG=~
V Set to exclusive or of N and C flags
C Set to the value of the last bit shifted

out of REG bit 15

SHIFT DOUBLE RIGHT ROTATE

SDRR REG, COUNT
REG+l:REG:C-F1ag is rotate right stored
count+1 times. The C-Flag is shifted into
REG+l bit 15, REG+l bit {iJ "is shifted into
REG bit 15, and REG bit ¢ is shifted into the C-Flag.
N Set if bit 7 of REG is set
Z = Set if REG = ~
V = Set to exclusive or of N and C flags
C = Set to the value of the last bit shifted

out of REG bit ~

SHIFT DOUBLE LEFT ROTATE

SDLR REG, COUNT
A 33 bit left rotate is done stored coullt+l
times on C-Flag:REG+l:REG. The C-Flag is
shifted into REG bit ~, REG bit 15 is sh.ifted
into REG+l bit~, and REG+l bit 15 is shifted
into the C-Flag
N = Set if REG+l bit l5 is set
Z = Se t if REG+ 1 = ~
V = Set to exclusive or of N and C flags
C = Set to the value of the last bit shifted

out of REG+l bit 15.

16

SDRA

FORMAT:
FUNCTION:

INDICATORS :

SDLA

FORMAT:
FUNCTION:

INDICATORS:

SHIFT DOUB:LE RIGHT ARITHMETIC

SDRA REG, COUNT
A right arithmetic shift is done stored
count+l times on REG+l:REG:C-Flag.
Bit 15 of REG+l is replicated. Bit ~ of
REG+l . is shifted to bit 15 of REG. Bit
~ of REG is shifted to the C-Flag. Bits
shifted ou·t of the C-Flag are lost.
N = Set if bit 7 of REG is set
Z Set if REG = ~
V Set to exclusive or of Nand C flags
C Set to the value of the last bit

shifted out of REG bit ¢

SHIFT DOUBLE LEFT ARITHMETIC

SDLA REG, COUNT
A left ari'thmetic shift is done stored
count+l times on C-Flag:REG+l:REG.
Zeros are shifted into REG bit ~, REG bit
15 is shifted to REG+l bit~. REG+l
bit 15 is shifted to the C-Flag. Bits
shifted out of the C-Flag are lost.
N Set if REG+l bit 15 is set
Z Set if REG+l = 0
V Set to exclusive or of N and C flags
C Set to the value of the last bit shifted

out of REG+l bit 15

17

FORMAT 7 OP CODES

SINGLE OPS - ONE OR TWO WORDS - DM~ TO DM7

15 6 5 3 2 o
OPC I MODE REG I

There are 32 op codes in this class representing op codes
"~A~f6" to "~DFF" and "SA~~" to "SDFFIt. All addressing modes from
f6 to 7 are available with all registers available as index regis­
ters (see chapter two). A one word op code is generated for ad­
dressing modes ~ to 5. A two word op code is generated for addres'­
sing modes 6 and 7 with the offset value in word two. For DM6 and
DM7 with PC as the index register PC is added to the offset from word
two affer the offset is fetched from memory. The offset is therfa­
fore relative to a PC that points to the op code that follows (i.e.
current op code + 4). Codes "8A~f6" to "8CC~" are BYTE ops.

BASE OP CODE

~A~~
flfA4flf
flfA8flf
~AC~
~Bflfflf
flfB4~
~B8{1
¢BC~

~C~flf
~C4flf
~CSflf
~CC~
~D~~
~D4flf
flfD8~
~DC~

ROR

FORMAT:
FUNCTION:

INDICATORS:

ROL

FORMAT:
FUNCTION:

MNEMONIC BASE OP CODE MNEMONIC

ROR SA~~ RORB
ROL 8A4~ ROLB
TST 8A8~ TSTB
ASL 8AC~ ASLB
SET 8B~flf SETB
CLR 8B4~ CLRB
ASR 8BS~ ASRB
SWAB 8BCflf SWAD
COM scflf~ COMB
NEG 8C4~ NEGB
INC 8C8~ INCB
DEC 8CC~ DECB
IW2 8D~~ LSTS
SXT eD4~ SSTS
TCALL 8D8~ ADC
TJMP 8DC~ SBC

WORD OPS

ROTATE RIGHT

ROR DST
A I-bit right rotate is done on (DST) :C-Flag
'Ihe C-Flag is shifted into (DST) hit 15, and (DST)
bit flf is shifted into the C-flag.
N = Set if bit 7 of (DST) is set
Z Set if (DST) = ~
V = Set to exclusive or of N and C flags
C Set to the value of the bit shifted out of (DST)

ROTATE LEFT

ROL DST
A l-bit left rotate is done on C-Flag: (DST). The

18

INDICATORS :

TST

FORMAT:
OPERATION:
FUNCTION:

INDICATORS:

ASL

FORMAT:
FUNCTION:

INDICATORS :

SET

FORMAT:
OPERATION:
FUNCTION:
INDICATORS :

CLR

FORMAT:
OPERATION:
FUNCTION:
INDICATORS :

ASR

FORMAT:
FUNCTION:

C-Flag i$ shifted i.nto (OST) bit ~, and COST)
bit 15 is shifted intq the C-Flag.
N = Set if bit 15 of (OST) is set
Z = Set if COST) = ~
V = Set to exclusive or of Nand C flags
C Set to the value of the bit shifted out of (OST)

TEST WORD

TST DST
(DST) II (DST)
The indicators pre set to reflect the destination
operand status.
N Set if (OST) bit 15 is set
Z = Set if (DST) = ~
V = Reset
C = Unchang~(l

ARITHMETIC SHIFT LEFT

ASL DST
A l-bi t left arithmetic shift is done on (DST). A
zero is shifted into (DST) bit ~, and (DST) bit 15
is shi.fted into the C-Flag.
N - Set if (DST) bit 15 ~s set
Z = Set if (DST) = ~
V = Set to exclusive or of N and C flags
C = Set to the value of the bit shifted out of (OST)

SET TO ONES

SET DST
(OST) +' nFFFF n

The destination operand is set to all ones
N Set
Z Reset
V Reset
C = Unchanged

CLEAR TO ZEROS

CLR DST
CDST) +- ~
The destination operand is cleared to all zeros
N Reset
Z = Set
V Reset
C = Unchanged if oM¢. Reset if DM1-OM7.

ARITHMETIC SHIFT RIGHT ---------------------------------
ASR DST
A l-bit right arithmetic shift i.s done on (DST). Bit
15 of COST) is replicated. Bit ~ of (DST) is shifted.
'in to 1!he C Flag.

19

INDICATORS :

SWAB

FORMAT:
OPERATION:
FUNCTION:
INDICATORS :

COM

FORMAT:
OPERATION
FUNCTION:
INDICATORS:

N Set if (OST) bit 7 is set
Z = Set if (OST) = ~
V Set to exclusive or of N and C flags
C = Set to the value of the bit shifted out of (DST)

SWAP BYTES

SWAB OST
(OST) 15-8 t (OST) 7-~
The upper and lower bytes of (OST) are exhanged,
N - Set if (OST) bit 7 is set
Z = Set if (OST) lower byte = ~
V = Reset
C = Unchanged

COMPLEMENT

COM OST
(OST) +- (DST)
The destination operand is one's complemented,
N = Set if (OST) bit 15 is set
Z = Set if (OST) = ~
V = Reset
C = Set

NEG.~ ______________ N_E __ GA_T_E __ __

FORMAT:
OPERATION:
FUNCT;ION:
INDIT:CATORS:

INC

FORMAT:
OPERATION:
FUNCTION:
INDICATORS:

DEC

FORMAT:
OPERATION:
FUNCTION:
INDICATORS :

NEG DST
(DST) +- - (OST)
The destination operand is two's complemented.
N Set if (OST) bit 15 is set
Z Set if (OST) = ~
V Set if" (OST) = "8~~W'
C = Reset if (OST) = f6

INCREMENT

INC OST
(OST) +- (OST) + 1
The destination operand is incremented by one ~

N Set if (DST) bit 15 is set
Z = Set if (DST) = ~
V Set if COST) = "8~f6~"
C Set if a carry is generated from (DST) bit l~)

OE CRE ME NT

OEC OST
(OST) ~ (OST) - 1
The destination operand is decremented by one~
N = Set if (OST) bit 15 is set
Z = Set if (OST) = ~
V = Set if (OST) = 1I7FFF"
C = Set :if a borrow is generated from (DST) bit 15

20

IW2

FORMAT:
OPERATION:
FUNCTION:
INDICATORS:

SXT

FORMAT:
OPERATION:

FUNCTION:
INDICATORS :

TCALL

FORMAT:
OPERATION:

FUNCTION:

INDICATORS:

TJMP

FORMAT:
OPERATION:

FUNCTION:

INDICATORS :

LSTS

FORMAT:
FUNCTION:

INDICATORS:

SSTS

FORMAT:
FUNCTION:
INDICATORS :

INCREMENT WORD BY TW~O~ ____________________ __

IW2 DST
(DST) ~ (DST) + 2
The destination operand is incremented by two"
N = Set if (DST) bit 15 is set
Z = Set if (DST) = ~
V = Set if (DST) = "8~~~" or "8~~1"
C = Set if a carry is generated from (DST) bit 15

SIGN EXTEND

SXT DST
IF N = fl1, (DS T) + ft1
IF N = 1, {DST~ + "FFFF"
The N-Flag status i.s replicated in the destination operand
Uti<;::hanged

TABLED SUBROUTINE CALL

TCALL DST
{- SP, @SP +- PC
PC -+: PC + (DST)
PC+ PC + @PC
PC, which points to the op code that follows, is pushed
onto the stack. The destination operand is added to
PC. 'l'he contents of this intermediate table address is
also added to PC to get the final destination address.
Note that at least one op code must exist between the
TCALL and the tablE~ for a subroutine return.
Unchanged

TABLED JUMP

TJMP DST
PC + PC + (DST)
PC+ PC + @PC
The destination opE~rand is added to PC, and the contents
of this intermediate location is also added to PC to get
the final destination address-
Unchanged

LOAD PROCESSOR STA~ruS

LSTS DST
The four indicators and the interrupt enable (12)
are loaded from thE~ destination operand.
Set to the status of (DST) bits f4 - 3

STORE PROCESSOR STATUS

SSTS DST
The processor status word is formed and stored in (DST).
Unchanged

21

ADC

FORMAT:
OPERATION;
FUNCTION:
INDICATORS :

SBC

FORMAT:
OPERATION:
FUNCTION:
INDICATORS :

ADD CARRY

ADC DST
(PST) ~ (DST) + C -fl,ag
The carry flag is added to tQe destination opercmd
N= Set if (DST) bit 15 is set
Z set if (DST) = ~
V = Set to exclusive or of N and C flags
C = Set if a carry is generated fx-om CDST} bit 15

SUBTRACT CARRY

SBC DST
(DST) + (DST) - C-Flag
The Carry flag is subtracted from the destination operand
N = Set if (DST) bit 15 is set
Z = Set if (DST) = ~
V = Set to exclusive or of N and C flags
C = Set if a borrow is generated from (DST) bit 15

BYTE OPS

For DM~ addressing only the lower byte of the destination register
is affected by a byte op code. For DMl-DM7 addressing only the speci­
fied memory byte is affected by a byte OPe For even memory addresses
tile lower byte is altered, and for ddd memory addresses the upper byte
is altered.

RORB

FORMAT:
FUNCTION:

INDICATORS:

ROLB

FORMAT:
FUNCTION:

INDICATORS:

TSTB

F;ORMAT:
OPERATION:

ROTATE RIGHT BYTE

RORB DST
A I-bit right rotate is done on (DST)B:C-Flag. Bit
~ of (DST)B is shifted into the C-Flag, and the C-Flag
is shifted into {DST)B bit 7.
N Set if {DST)B bit 7 is set
Z = Set if {DST)B = ~
V = Set to exclusive or of N and C flags
C = Set to the value of the bit shifted out of (DST)Bbit'¢

ROTA TE LEFT BYTE

ROLB DST
A I-bit left rotate is done on C-flag : (DST)B. Bit 7
of (DST)B is shifted into the C-flag, and the C-flag
is shifted into {DST)B bit ~

N = Set if (DST)B bit 7 is set
Z Set if (DST)B = ~
V = Set to exclusive or of N and C flags
C = Set to the value of the bit shifted out of (DST)B bit 7

TEST BYTE

TSTB DST
{DST)B 6 (DST)B

22

FUNCTION:
INDICATORS :

ASLB

FORMAT:
FUNCTION:

INDICATORS:

The destination operand status sets the indicators,
N Set if (DST)B bit 7 is set
Z Set if (DST)B = ¢
V Reset
C = Unchanged

ARITHMETIC SHIFT LEFT BYTE

ASLB DST
A l-bi·t left arithmetic shift is done on C-Flag: (DST) B
A zero is shifted into (DST)B bit ¢, and (DST)B bit 7 is
shifted into the C-flag.
N set if (DST)B bit 7 is set
Z Set if (DST)B = ¢
V = Set to exclusive or of Nand C flags
C Set to the value of the bit shifted out of (DST)B bit 7

~SE~T~B ______________ ~S_E_T BYTE TO ONES

FORMAT:
OPERATION:
FUNCTION:
INDICATORS:

CLRB

FORMAT:
OPERATION:
FUNCTION:
INDICATORS:

ASRB

FORMAT:
FUNCTION:

INDICATORS :

SWAD

FORMAT:
FUNCTION:

INDICATORS :

SETB DST
(DST) B + "FF"
The destination byte operand is set to all ones
N Set
Z Reset
V = Reset
C Unchanged

CLEAR BYTE TO ZEROS

CLRB DST
(DST) B +' ¢
The destination byt.e operand is cleared to all zeros <#

N Reset
Z Set
V Reset
C = Reset

ARITHMETIC SHIFT RIGHT BYTE

ASRB DST
A I-bit right arithmetic shift is done on (DST)B:
C-flag. Bit 7 of (DST)B is replicated. Bit ¢ of
(DST)B is shifted into the C-flag. .
N = Set if {DST)B bit 7 is set
Z Set if (DST) = ¢
V = Set to exclu~ive or of Nand C flags
C = Set to the valu.e of the bit shifted out of (DST)B bit ¢

SWAP DIGITS

SWAD DST
The two hex digits in the destination byte operand
are exchanged with each other,
N Set if (DST)B bit 7 is set
Z Set if (DST)B = ~
V = Set if {DST)B bit 7 is set
C Reset

23

COMB

FORMAT:
OPERATION:
FUNCTION:
INDICATORS :

NEGB

FORMAT:
OPERATION:
FUNCTION:
INDICATORS :

INCB

FORMAT:
OPERATION:
FUNCTION:
INDICATORS:

DECB

FORMAT:
OPERATION:
FUNCTION:
INDICATORS:

COMPLEMENT BYTE

COMB DST

(DST) B +- (bSTJ B
The destination byte operand is one I s complement:ed
N = Set if (DST)B bit 7 is set
Z Set if (DST)B = ~
V Reset
C Set

NEGATE BYTE

NEGB DST
(DST) B + - (DST) B
The destination byte operand is two I s complement:ed
N Set if (DST)B bit 7 is set
Z Set if (DST)B = ~
V = Set if (DST)B = "8~~~"
C Reset if (DST)B = ~

INCREMENT BYTE

INCB DST
(DST) B + (DST) B + 1
The destination byte operand is increroonted by one
N = Set if (DST)B is set
Z Set if (DST)B = ~
V Set if (DST)B = "8~~~"
C = Set if a carry is geperated from (DST)B bit 7

DECREMENT BYTE

DECB DST
(DST) B + (DST) B-1
The destination byte operand is decremented by one
N = Set if {DST)B bit 7 is set
Z = Set if {DST)B = ~
V - Set if (DST)B = "7FFF"
C = Set if a borrow is generated from (DST) B bi t~ 7

24

FORMAT 8 OP CODES*

DOUBLE OPS - SINGLE WORD - SM~ AND D~ ONLY

15 6 5 3 2 ~
OPC I S REG I D REG I

There are 8 op codes in this class representing op codes
"~E~W' to "~FFF". Only addressing mode ~ is allowed for both the
source and destination. All are one w'ord op codes I and all are block
move instructions. The last 4 can be used as pseudo DMA ops in some
hardware configurations. In all cases the source register contains
the address of the first word or byte of memory to be moved, and the
destination register contains the address of the first word or byte
of memoI1Y to 'receive the· data being moved. The number of words or
bytes being moved is contained in R~. The count ranges from 1-65536
(~ = 65536) words or bytes. The count~ in R~ is an unsigned positive
integer. None of the indicators are altered by these op codes.

Each of these op codes is interruptable at the end of each word
or byte transfer. If no interrupt requests are active the trans-
fers continue. PC is not incremented to the next op code until the
op.code is completed. This allows for complete interruptability
as long as register integrity is maint~ained during the interrupt.

BASE OP CODE

~E~~
~E4~
~E8~
~EC~
~F~~
~F4~
~F8~
~FC~

* NOTE: These

MBWU

FORMAT:
FUNCTION:

MBWD

FORMAT:
FUNCTION:

MNEMONIC

MBWU
MBWD
MBBU
MBBD
MBWA
MBBA
MABW
MABB

op codes are all in the third microm.

MOVE BLOCK OF WORDS UP

MBWU SRC, DST
The word string beginning with the word addressed
by the source regist:er is moved to successively
increasing word addresses as specified by the des­
tination register. The source and destination reg­
isters are each incremented by two after each word
is transferred. R~ is decremented by one after each
transfer, and transfers continue until R~ = ~.

MOVE BLOCK OF WORDS DOWN

MBWD SRC , DST
The word string beginning with the word addressed
by the source regis1:.er is moved to successively

25

INDICATORS:

MBBU

FORMAT:
FUNCTION:

INDICATORS:

MBBD

FORMAT:
FUNCTION:

INDICATORS:

MBWA

FORMAT:
FUNCTION:

INDICATORS:

MEBA

FORMAT:
FUNCTION:

INDICATORS :

MABW

FORMAT:
FUNCTION:

INDICATORS:

MABB

FORMAT:
FUNCTION:

INDICATORS:

decreasing word addresses as specified by the d.es­
tination register. The source and destination reg­
isters are each decremented by two after each word is
transferred. ~ is decremented by one after each
transfer, and transfers continue until ~ = ~.
Unchanged

MOVE BLOCK OF BYTES UP

MBBU SRC, DST
The byte string beginning with the byte addressed by
the source register is moved to successively increas­
ing byte addresses as specified by the destination_
register. The source and destination registers are
each incremented by one after each byte is transfer­
red. ~ is decremented by one after each transfer,
and transfers continue until ~ = ~.
Unchanged.

MOVE BLOCK OF BYTES DOWN

MBBD SRC, DST
The byte string beginning with the byte addressed by
the source register is moved to successively decreas­
ing byte addresses as specified by the destination
register. The source register, destination register,
and R~, are each decremented by one after each byte is
transferred. Transfers continue until R~ = ~.
Unchanged

MOVE BLOCK OF WORDS TO ADDRESS

MBWA SRC, DST
Same as MBWU except that the destination register is
never incremented.
Unchanged

MOVE BLOCK OF BYTES TO ADDRESS

MBBA SRC, DST
Same as MBBU e~cept that the destination registE!r is
never incremented.
Unchanged

MOVE ADDRESS TO BLOCK OF WORDS

MABW SRC, DST
Same as MBWU except that the source register is never
incremented.
Unchanged

MOVE ADDRESS TO BLOCK OF BYTES

MABB SRC, DST
Same as MBBU except that the source register is never
incremented.

Unchanged

26

FORMAT 9 OP CODES

DOUBLE OPS - ONE OR TWO WORDS - SM~, DM~ to DM7

..... 1"""S _____ 9=--r-..:8::...-. __ 6 5_, __ --.-;3~....;;2~-_...J@~
I ope I S REG ~ 0 MODE D REG f

There are 8 op codes in this class representing op codes
"7~~~" to "7FFF". Source mode ~ addre:ssing only is allowed, but des­
tination modes ~ - 7 are allowed for all op codes exoept 3: JSR and
LEA with DM~ will cause an illegal instruction fonnat trap (see chap­
ter 2), and SOB is a special format unique to itself. It is includ­
ed here only because its destination field is 6 bits long. SOB is
a branch instruction. Its 6 bit desti.nation field is a positive
word offset from PC, which points to t~he op code that follows,
backwards to the desired address. FOIward branching is not allowed.
SOB is always a one word op code, and it is used for fast loop con­
trol. All other op codes are one word long for DM~ to DM5 addressing
and two words long for DM6 or DM7 addressing. The rules for PC rel­
ati ve addressing with DM6 or DM7 are t~he same as they are for the
format 7 op codes.- Preliminary decodi.ng of all these op codes ex­
cept SOB presets the indicator flags as follows: N = 1, Z = ~,
V = f/J, C = 1.

BASE OP CODE

7~~~
72~~
74~ft1
76~~
78~~
7A~~
7C~~
7E~¢

JSR

FORMAT:
OPERATION:

FUNCTION:

INDICATORS :

LEA

FORMAT:
OPERATION:

MNEMONIC

JSR
LEA
ASH
SOB
XCH
ASHC
MUL
DIV

JUMP TO SUBROUTINE

JSR REG, DST
-} SP, @SP + REG
REG +PC
PC +DST
The linkage registel:' is pushed onto the stack; PC,
which points to -the op code that follows, is placed
in the linkage register; and the destination add­
ress is placed in pc. DM~ is illegal. The assem­
bler recognizes the format "CALL DET" as being
equivalent to "JSR PC, DST".
Preset

LOAD EFFECTIVE ADDRESS

LEA REG, DST
REG.+ DST

27

FUNCTION:

INDICATORS :

XCH

FORMAT:
OPERATION:
FUNCTION:

INDICATORS:

SOB

FORMAT:
OPERATION:

FUNCTION:

INDICATORS :

The destination address is placed into the source
register. D~ is illegal. The assembler recognizes
the format "JMP DST" as being equivalent to "LEA PC,DST".

Preset

EXCHANGE

XCH REG, DST
REG ;t. (DST)
The source register and destination contents are
exchanged with each other.
Preset

SUBTRACT ONE AND BRANCH (IF ~ ~)

SOB REG, DST
REG+ REG - 1
IF REG ~ ~, PC +. PC - (OFFSET *2)
The source register is decremented by one. If the
result is not zero then twice the value of the des­
tination offset is subtracted from PC.
Unchanged

AS_H _______________ A_RI __ T_H_ME __ T_I_C __ SH_I_FT ______________________________ __

FORMAT:
FUNCTION:

INDICATORS:

ASHC

FORMAT:
FUNCTION:

INDICATORS :

ASH REG, DST
The source register is shifted arithmetically with
the number of bits and direction specified by the
destination operand. If (DST) = ~ no shifting occurs.
If (DST) = -x then REG is shifted right arithmetically
X bits as in an SSRA. If (DST) = +X then REG is shifted
left arithmetically X bits as in an SSLA. Only an 8
bit destination operand is used. Thus, DST is a byte
address. For DM~ only the lower byte of the destin­
ation register is used.
Preset if (DST) = ~. Otherwise:
N = Set if REG bit 15 is set
Z Se t if REG = ~
V Set to exclusive or of N and C flags
C Set to the value of the last bit shifted out of REG

ARITHMETIC SHIFT COMBINED

ASHC REG, DST
Exactly the same as ASH except that the shift is done
on REG+l:REG. All other comments apply_
Preset if (DST) =~. Otherwise,
N = Set if REG+l bit 15 is set
Z = Set if REG+l: REG = ~

V - Reset
C = Set to the value of the last bit shifted out~

28

MUL

FORMAT:
OPERATION:
FUNCTION:

INDICATORS :

DIV

FORMAT:
OPERATION:

FUNCTION:

INDICATORS:

MULTIPLY

MUL REG, DST
REG+l: REG_ + REG * (DST)
An unsigned multiply is perfo;r;'med on the source
register and the destination operand. The unsigned
32 bit result 1s placed in REG+l:REG.
N = set if REG+l bi-t 15 is set
Z Set if REG+l:REG = ~
V Reset
C Indeterminate

DIVIDE

DIV REG, DST
REG + [REG+l:REG/(DST)]
REG+ 1 + REMAINDER
An unsigned divide is performed on the 32 bit source
op::~rand REG+l:REG and the destination operand. The
unsigned result is placed in REG, and the unsigned
remainder is placed in REG+l.No divide occurs and ~e
V-flag is set if REG+l is greater than or equal to (DST)
since the result will not fit into 16 bits. If the
divisor is zero both the V and C flags are set.

If no division error:
N Set if REG bit 15 is set
Z = Set if REG = ~
V Reset
C Indeterminate
If division error:
N = Reset

Reset
Set

Z

V
C set if (DSrr)

29

FORMAT lOOP CODES

roUBLE OPS - ONE TO THREE WORDS - S~ TO SM7, DMf.l TO DM7.

15 12 11 9 8 6 5 3 2 ~

~1~O_p~c ____ ~I ___ S_M~O~D_E __ ~I __ S __ RE~G __ ~I_D __ M~O~DE __ -+I~D~.REG -J
There are 12 op codes in this class representing op codes "l¢f.lf.l"

to "6FFF" and "9~~f.l" to "EFFF". Nine of the op codes are word ops.
Three are byte ops'.. Full source and destination mode addressing with
any register is allOwed. A one word op code is generated for SM~-·
SMS and DM~-DM5 addressing. A two word op code is generated for either
SM6-SM7 or DM6-DM7 addressing, but not both. For both SM6-SM7 and
DMc-DM7 addressing a three word op code is generated. For a two word
op code with word #1 at location X: X + 2 contains the source 01:

destination offset and PC ~ X + 4 if PC is the register that appli.es
to the offset in location X + 2. For a three word op code with word
#1 at location X: X + 2 contains the source offset and X + 4 contains
the destination offset. If the source register is PC then PC = X + 4
when added to the offset to compute the source address. If the de:stin­
ation register is PC then PC = X + 6 when added to the offset to compute
the destination address.

BASE OP CODE

1~~~
2~~~
3~~~
4~~~
5~~~
6ftf~~
9~~~
A~~~
B~~~
C~~~
D~~~
EfI~~

ADD

FORMAT:
OPERATION:
FUNCTION:

INDICATORS :

MNEMONIC

ADD
SUB
AND
BIC
BIS
XOR
CMF
BIT
MOV
CMPB
MOVB
BISB

WORD OPS

ADD

ADD SRC, DST
(DST) + (SRC) + (DST)
The source and destination operands are added to­
gether, and the sum is placed in the destination.
N = Set if (DST) bit 15 is set
Z = Set if (DST) = ~
V = Set if both operands were of the same sign and
the result was of the opposite sign
C = Set if a carry is generated from bit 15 of the
result

30

SUB

FORMAT:
OPERATION:
FUNCTION:

INDICATORS :

AND

FORMAT:
OPERATION:
FUNCTION:

INDICATORS:

BIC

FORMAT:
OPERATION:
FUNCTION:

INDICATORS:

BIS

FORMAT:
OPERATION:
FUNCTION:

INDICATORS:

XOR

FORMAT::
OPERATION:
FUNCTION:

SUBTRACT

SUB SRC, DST
(DST) +" (DST) - (SRC)
The two I s comp1emen't of the source operand is added
to the destination operand, and the sum is placed
in the destination.
N = Set if (DST) bit 15 is set
Z = Set if (DST) = ~
V = Set if operands were of different signs and
the sign of the result is the, salOO as the sign
of th~ source operand
C = Set if a borrow is generated from bit 15 of the
result

AND

AND SRC, DST
(DST) ,,+, (SRC) A (DS'r)
The source and destination operand Q ;:4,re logically
ANDED"l;i.ogether, and the result is c.placed ih the
destination.
N = Set if '~DST) bi,t 15 is set
Z = Set if (DST) = ~
V = Reset
C = Unchanged

BIT CLEAR

BIC SR~DSr.I.'

(DST) -t- (SRC) b.. (DST)
The onE~ I s complement of the source operand is log­
ically ANDEO with ~le destination operand, and the
result is placed in the destination.
N = Set if (DST) bit 15 is set
Z Set if (DST) = ~
V = Reset
C = Unchanged

BIT SE~r

BIS SRC, DST
(DST) -t- (SRC) 'iJ (OS~r)

The source and destination operands are logically
ORED ,and the result is placed in the destination.
N Set if (OST) bit 15 is set
Z = Set if (DST) = ~
V = Reset
C = Unchanged

EXCLUSIVE OR

,XOR SRC, DST
(OST) ~- '(SRC) st (OST)

The source and destination operands are logically EX­
CLUSIVE OREO, and 'the result is placed in the destin~tion.

31

INDICATORS :

CMF

JfORMAT:
OPERATION: .
FUNCTION:

INDICATORS :

BIT

FORMAT:
OPERATION:
FUNCTION:

INDICATORS :

MOV

FORMAT:
OPERATION:
FUNCTION:

INDICATORS:

N = Set if (OST) bit 15 is set
Z = Set if (OST) = ~
V = Reset
C = Unchanged

COMPARE

CMP SRC, OST
(SRC) - (OST)
The destination operand is subtracted from the
source operand, and the result sets the indicators.
Neither operand is altered.
N = Set if result bit 15 is set
Z = Set if result = ~
V = Set if operands were of opposite sign and the
sign of the result is the same as the sign of CDST)
C = Set if a borrow is generated from bit 15 of the
result

BIT TEST

BIT SRC, OST
(SRC) Ii COST)
The source and destination operands are logically
ANOEO, and the result sets the indicators. Neither
op~rand is altered.
N = set if result bit 15 is set
Z = Set if result = ~
V = Reset
C = Unchanged

MOVE

MOV SRC, OST
(OST) +- (SRC)
The destination operand is replaced wi til. the SOtLrCe
operand.
N = Set if COST) bit 15 is set
Z = Set if (OST) = ~
V = Reset
C Unchanged

BYTE OPS

For SM~ addressing only the lower byte of the source registel~ is
used as an operand. For SM1-SM7 addressing only the addressed menIDry
byte is used as an operand. For D~ addressing only the lower byt:e
of the destination register is used as an operand with one exception:
MOVB will extend the sign through bit 15. For OM1-DM7 addressing only
the addressed memory byte is used as an operand.

CMPB COMPARE BYTE

FORMAT: CMPB SRC, DST
OPERATION: {SRC)B - (DST)B

32

FUNCTION:

INDICATORS:

MOVB

FORMAT:
OPERATION:
FUNCTION:

INDICATORS:

BISB

FORMAT:
OPERATION:
FUNCTION:

INDICATORS :

The destination operand is subtracted from the
source operand, and 1the result sets the indicat­
ors. Neither operand is altered.
N = Set if result bi"t 7 is set
Z = Set if result = ~
V = Set if operands ~flere of different signs and
the sign of the result is the same as the s~gn
of (DST)B.
C = Set if a borrow is generated from result bit 7

MOVE BYTE

MOVB SRC, DST
(DST) B -E- (SRC) B-
The destination operand is replaced with the source
operand. If DM9J thl~ sign bit (bit 7) is replicat­
ed through bi t 15.
N = Set if (DST)B bit 7 is set
Z - Set if (DST)B = ~
V Reset
C = Unchanged

BIT SET BYTE

BISB SRC, DST
(DST) B -*- . (SRC) B V (DST) B
The source and destination operands are logically
ORED, and the result is placed in the destination.
N = Set if (DST)B bit 7 is set
Z Set if (DST)B = ~
V = Reset
C = Unchanged

When using auto incremants or decrements in either the source
or destination (or both) fields the uSlsr must remember the following
rule: All increments or decrements in the source are fully completed
before any destination decoding begins even if the same index regis­
'ter is used in both the source and des,tination. The two fields are
totally independent.

33

FORMAT 11 OP CODES

DOUBLE OPS - ONE WORD - FLOATING POINT.

I 1111
15 12 11 876 432

OPC I I I SRC I I I DST

~rhere are 16 OP Codes in this class representing OP Codes "Ff6f6f6" to
"FFFF". Only five are currently defined. They reside in the third
microm along with the Fonnat 8 OP Codes. The remaining 11 OP Codes
are mapped to the fourth microm for future expansion or customizE!d
user OP Codes. All are one word long. Two source and destination
addressing modes are available. These two modes, FP~ and FPl, are
'Wlique to these OP Codes. Each consists of a 3-bit Register Desig­
nation and a 1 bit indirect flag preceeding the register designa1:or.
For FP,0 the indirect bit is {l, and FPl it is one. Both the sourGe and
destination fields have both addressing modes. The modes are defined
as follows:

FPf6 The designated register contains the address of the oper&ld.

FPl The designated register contains the address of the addreBs
of the operand.

FPf6 is the same as standard addressing mode 1, and FPl is the same
as standard addressing mode 7 with an offset of zero.

The computed address is the address of the first word of a 3 word
floating point operand. The first word contains the sign, exponent,
and high byte of the mantissa. The next higher address contains the
middle two bytes of the mantissa, and the next higher address after
·that contains the lowest two bytes of the mantissa. This format is
half way between single and double precision floating point formi:its,
and it represents the most efficient use of microprocessor ROM and
register space. The complete format is as follows:

1. A 1 bit sign for the entire number which is zero for positive.

2. An 8-bit base-two exponent in excess-128 notation with a ran<ge of
+127, -128. The only legal number with an exponent of -128 is
true zero (all zeros).·

3. A 40 bit mantissa with the MSB implied.

Since every operand is assumed to be normalized.upon entry and every
result is normalized before storage in the destination addresses,
and since a normalized mantissa has a MSB equal to one, then only 39
bits need to be stored. The MSB is implied to be a one, and the
bit position it normally occupies is taken over by the exponent to
increase its range by a factor of two. The full format of a floating
point operand is a follows:

15 14 7 6 fI
LOCATION X: [S I EXPONENT I MANTISSA (HIGH) J

15 8 7 @ I
LOCATION X+2: · 1 _....;MANT=--.:I::.;;:S;.;;:S=A=-.... :_..a.;(MI;.;;;;;.;D~D;;;.;;L;;;.::E:,(,} ____ --'

15 8 7 fI

34

True zero is represented by a field of 48 zeroes. In effect, the CPU
considers any number with an exponent of all zeroes (-128) to be a zero
during multiplication and division. For add and subtract the only legal
number with an exponent of -128 is true zero. All others cause erroneous results.
No registers are modified by any Format 11 OP Code. However, to make room
internally for computations 4 registers are saved in memory locations
"30" - "3:8" during the exelution of FADD, FSUB, FMUL and FDIV. These
registers are retrieved at the completion of the OP Codes. The
registers saved are: the destination address, SP, PC and~. No
Format 11 OP Code is interruptable (for obvious reasons). FMUL uses
location "38" for temporary storage of partial results.

FLOATING POINT ERROR TRAPS

Location "3E" is defined as the floating point error trap PC. When­
ever an overflow, underflow, or divide by zero occurs a standard trap
call is executed with PS and PC pushed onto the stack, and PC fetched
from location "3E". I~~ is not altered. The remaining memory locations
that are reserved for the floating point option ("3A and "3C") are
not currently used. The status of the indicator flags and destina­
tion addresses during the 3 trap conditions are defined as follows:

. RESERVED TRAPS

FOR UNDERFLOW (FADD, FSUB,FMUL, FDIV)

N
Z

V
C

1

~
1
~

Destination contains all zeroes
(true zero).

FOR OVERFLOW (FADD, FSUB, FMUL)

N

Z
V
C

Destiriation not altered in any way.

FOR OVER FLOW (FDIV)

N = !if.
Z f{1
V 1
C = ~

Destination not altered if overflow detected
during exponE;:mt computation. Undefined
otherwise. (Used to save unnormalized
partial results during a divide) •

FOR DIVIDE BY ZERO (FDIV)

N = 1
Z = ~
V = 1
C = 1

Destination not altered in any way.

If the third microm is in the system and the fourth is not then the
last 11 r).oating point OP codes are the·.anly ones that will cause a
·reserved OP code trap if executed. If the third mi.c.rom is not in the
system then all Format 8 and 11 OP Codes will cause a reserved OP code
trap if executed. However, since the Format 8 OP Codes are: interrupt-

35

able the PC is not advance until the completion of the moves. In
all other cases PC is advanced when the OP Code is fetched. For
these reasons the PC that is s.aved onto the stack will point to the
offending OP Code during a reserved OP Code trap if and only if
the offending OP Code is a Format 8 OP Code. For the Format 11
OP Codes the saved PC will point to the OP Code that follows the
offending OP Code. If the User wishes to identify which OP Code
caused the reserved OP Code trap he must not preceed a Format 8
OP Code with a Format 11 OP Code or a literal that looks like a
Format 11 OP Code.

BASE OP CODE

F~{1f'1
Fl{1~

F2{1~

F3{1~

F4{1f'1
F5~~
F6{1f'1
F7~{1

F8~~
F9{1~

FA{1{1
FBf'1{1
FC{1~

FDrt'rt'
FEf'1f'1
FF~~

FADD

FORMAT:
OPERATION:

FUNCTION:

INDICATORS:

FSUB

FORMAT:
OPERATION:

FUNCTION:

MNEMONIC

FADD
FSUB
FMUL
FDIV
FCMP

FLOATING POINT ADD

FADD SRC,DST
(OST) + (DST) + (SRC)
The source and destination operands are added
together, normalized, and the result is stored
in place of the destination operand.
(if no errors)
N Set if the result sign is negative (set).
Z Set if the result is zero
V = Reset
C = Reset

FLOATING POINT SUBTRACT

FSUB SRC I DST
(OST) + (OST) - (SRC)
The source operand is subtracted from the
destination operand. The result is nOl~alized
and stored in place of the destination operand.

WARNING: THIS OP CODE COMPLEMENTS THE SIGN OF THE SOURCE OPERAND IN
MEMORY AND DOES AN FADD.

INDICATORS: (if no errors)
N = Set if the result sign is negative (set)
Z = Set if the result is zero.

36

FMUL

FORMAT:
OPERATION:

FUNCTION:

INDICATORS;

FDIV

FORMAT:
OPERATION:

FUNCTION:

INDICATORS;

FCMP

FORMAT:
OPERATION:

FUNCTION:

INDICATORS:

v = Reset
C = Reset

FLOATING POINT MULTIPLY

FMUL SRC, DST
(OST) +(DST) * (SRC)
The source and destination operands are multi­
plied together, normalized, and the result is
stored in place of the destination operand.
(if no errors)
N = Set if t:he sign of the result is negative (set).
Z = Set if t:he result is zero
V = Reset
C = Reset

FLOATING POINT DIVIDE

FDIV SRC, DST
(DST) +(DST) / (SRC)
The destina1:ion operand is divided by the source
operand.. The result is normalized and stored in
place of ~:thE~ destination operand.
(if no errors)
N = Set if 1:he sign of the result is negative (set).'
Z = Set if the result is zero
V = Reset
C = Reset

FLOATING POINT COMPARE

FCMP SRC, DST
(SRC) - (OST)
The destination operand is compared to the source
operand, and the indicators are set to allow
a SIGNED conditional branch.
N = Set if :result is negative
Z = Set if result is zero
V = Set if arithmetic underflow occurs.*
C Set if a borrow is generated. *

*NOTE: True if first words of both operands are ~ equal.

CAUTION: The same physical operand m~y be used as both the source and
destination operand for any of the above floating point OP
Codes with no abnormal results except two. They are:
1) If an error trap occurs the operand will probably be altered.
2) An FSUB gives an ans~er of -2x, if x #~, instead of ¢.

37

APPENDIX A

NUMERIC OP CODE ITABLE

OP CODE MNEMONIC

fc1¢~~ ~~~~ ~~~~ ~~~~ NOP
fc1~~~ ~~¢¢ ~~~~ ~¢~l RESET
¢ft1~¢ ~¢~~ fc1fi1fi1¢ ¢~l~ lEN
¢¢fi1~ ~fi1fi1¢ fi1¢fi1fi1 fi1fi111 IDS
~¢fi1~ ¢fi1~~ ~~~~ ~l~~ HALT
~f6¢~ ¢¢¢¢ ¢¢¢¢ ~l¢l XCT
f2/¢¢¢ ¢¢¢¢ ¢¢~¢ JJll¢ BPT
f2/ft1~~ ~¢~¢ ¢¢~¢ ¢lll WFI
f2/¢¢¢ ¢¢¢¢ ¢¢~¢ l¢¢¢ RSVC
fc1¢¢¢ ¢¢¢¢ ~¢¢¢ Ifc1¢l RRTT

¢¢¢¢ ¢¢¢¢ ~¢¢~ Ifc11¢ SAVE
¢fI¢¢ ¢¢¢fc1 ~¢¢¢ I¢ll SAVS
fc1¢¢¢ ~¢¢¢ ¢¢¢¢ ll~~ REST
¢1l1~~ ~~¢¢ ~~¢~ 11¢1 RRTN
fi1¢fi1fi1 ¢¢~¢ ¢¢~¢ 111¢ RSTS
¢¢¢¢ ¢¢¢¢ ¢¢¢~ 1111 RTT
~¢¢¢ ~¢¢¢ ¢¢¢l ¢REG IAK
~¢~~ ¢fA¢¢ ¢fA¢l lREG RTN
1l1¢¢¢ ~¢¢¢ ¢~1¢ ¢REG MSKO
¢¢~¢ ¢~r&¢ ¢¢l¢ lREG PRTN
1l1¢¢¢ ~¢~¢ ¢~11 ARGU LCC
fi1¢¢¢ ~¢¢fi1 ~lAR GUME SVCA
¢¢¢¢ ¢¢¢~ l~AR GUME SVCB
¢¢¢¢ ~¢¢r& llAR GUME SVCC
f2/¢¢¢ ~¢¢l DISP LACE BR
¢¢~¢ ¢¢1JJ DISP LACE BNE
¢¢¢¢ ¢¢ll DISP LACE BEQ
¢~¢¢ ¢l~¢ DISP LACE BGE
¢¢¢¢ ¢l~l DISP LACE BLT
¢¢¢¢ ¢ll¢ DISP LACE BGT
¢¢¢¢ ¢lll DISP lACE BLE
¢¢¢¢ l¢¢R EG¢¢ VALU ADD I
¢¢¢¢ l¢¢R EG¢l VALU SUBI
¢¢¢¢ ·l¢¢R EGl¢ VALU BICI
¢ft1~¢ l¢¢R EGll VALU MOVI
f2/¢~¢ l¢l¢ ¢¢MO DREG ROR
¢~¢¢ .l¢l¢ ~lMO DREG ROL
¢¢¢¢ l~l¢ I¢MO DREG TST
¢¢~¢ l¢l¢ IlMO DREG ASL
¢¢¢¢ l~ll rt1~MO PREG SET
¢¢~¢ l¢ll ¢lMO DREG CLR
rt1¢¢¢ lrt111 l~MO DREG ASR
¢¢¢¢ l¢ll llMO DREG SWAB
f6f1fiYfiY ll¢¢ ¢¢MO DREG COM
~¢~¢ ll¢¢ ¢lMO DREG NEG
¢¢¢¢ ll¢¢ l¢MO DREG INC
¢¢¢¢ ll¢¢ llMO DREG DEC

1

OP CODE MNEMONIC

¢¢¢~ 11¢1 fIlfllMO DREG IW2
f{JfIlfll~ 11¢1 ~lMO DREG SXT
Ja~~Jl 11~1 l¢MO DREG TCALL
¢f6f6~ 11f{J1 llMO DREG TJMP
fIlf6f6f1l 111~ f{Jf6SR CDST MBWU
¢f{Jf6f6 111f6 f{J1SR CDST MBWD
fdfllfllfll 111f/J 1f1lSR CDST MBBU
¢¢fIl~ 111f6 11SR CDST MBBD
¢f6f1l¢ 1111 fIlfllsR CDST MBWA
¢fIlfll~ 1111 fIl1SR CDST MBBA
¢f6f1l~ 1111 l¢SR CDST MABW
f6f1lf6f6 1111 11SR CDST MABB
f6¢¢1 SRCR EGDS TREG ADD
f6f61~ SRCR EGDS TREG SUB
flJf611 SRCR EGOS TREG AND
¢1¢¢ SRCR EGDT TREG BIC
f61¢1 SRCR EGDT TREG BIS
¢11f{J SRCR EGDS TREG XOR
fi1111 ~~f6R RRDS TREG JSR
¢111 f6f61R RRDS TREG LEA
flJ111 flJ1f6R RRDS TREG ASH
f6111 f611R RROF FSET SOB
f6111 1f6f6R RRDS TREG XCH
f{J111 1f{J1R RRDS TREG ASHC
f6111 11¢R RRDS TREG MUL
flJ111 111R RRDS TREG DIV
1f6f1l¢ f6f1lf6fIJ DISP LACE BPL
1f6f6f6 fIlf6f61 DISP LACE BMI
1f6f6f6 f6f61f6 DISP LACE BHI
If6¢f6 f6f611 DISP LACE BLOS
If6f6f6 fIl1f6f6 DISP LACE BVC
1f6f6f6 f61f61 DISP LACE BVS
1f6f6f6 f611f6 DISP LACE BCC, BHIS
If6f6f6 f6111 DISP LACE BCS, BLO
l¢f6f1l l¢¢R EGf6¢ VALU SSRR
If6¢¢ l¢¢R EGfIl1 VALU SSLR
1f6f6f6 1f6f6R EG1f6 VALU SSRA
1f6¢f6 1f6f6R· EGl1 VALU SSLA
1f6f6f6 1f61f6 ~f6MO DREG RORB
1f1lf6f6 1¢1f6 f61MO DREG ROLB
If6f1Jf6 1f61f6 If6MO DREG TSTB
1¢¢f6 1¢1f6 lIMO DREG ASLB
If{Jf6f6 1¢11 f6f6MO DREG SETB
l¢¢fA 1¢11 ¢lMO DREG CLRB
1¢¢f{J 1¢11 1f{JMO DREG ASRB
1¢¢f{J 1¢11 lIMO DREG SWAD
1¢¢f{J 11f{Jf6 ~f{JMO DREG COMB
If6¢¢ 11¢f{J ¢lMO DREG NEGB
1fiffiff6 11¢¢ l¢MO DREG INCB
If6¢f{J 11¢f{J llMO DREG DECB

2

Op coot MNEMONIC

1¢¢¢ 11¢1 ¢~MO OREG LSTS
1¢~~ 11¢1 ¢lMO OREG SSTS
1¢¢~ 11~1 l~MO OREG ADC
1¢~~ 11~1 llMO OREG SBC
1~~~ 111R EG~~ VALU SORR
1~~~ 11lR EGf,1l VALU SOLR
l~~¢ lllR EG1~ VALU SORA
1~~~ 11lR EG1l VALU SDLA
l~~l SRCR EGOS TREG CMP
1~1~ SRCR EGOS TREG BIT
l~ll SRCR EGOS TREG MOV
11~~ SRCR EGOS TREG CMPB
11~1 SRCR EGOS TREG MOVB
111¢ SRCR EGOS TREG BISB
1111 ¢¢~~ ISRC lOST FAOO
1111 ~~~l ISRC IDST FSOB
1111 ¢~1~ ISRC lOST FMUL
1111 ~~11 lSRC lOST FDIV
1111 ~1~¢ ISRC lOST FCMP
1111 ~1¢1 lSRC lOST
1111 ¢11¢ ISRC lOST
1111 ~111 lSRC lOST
1111 1~¢~ rSRC rOST
1111 1~~1 rSRC rOST
1111 1~1$3 rSRC lOST
1111 1~11 rSRC rOST
1111 11¢~ ISRC lOST
1111 11~1 rSRC rOST
1111 111~ rSRC lOST
1111 1111 rSRC rOST

3

APPENDIX B

ASSEMBLER NOTES

FORMAT 1 OP CODES

All are one word op codes except SAVS which is a two word op
code. The second word of the SAVS op code is an absolute value.

FORMAT 2 OP CODES

All are one word with a 3 bit register argument

FORMAT 3 OP CODE

A one word op code with a 4 bit numeric argument

FORMAT 4 OP CODES

All are one word with a 6 bit numeric argument

FORMAT 5 OP CODES

All are one word with an 8 bit signed PC relative word rlic;­

placement. The displacement is relative to op code+2. Maximum
displacement from the op code is +128, -127 words.

FORMAT 6 OP CODES

All are one word with a 3 bit register and a 4 bit numeric argu­
ment. The stored numeric argument is a positive number from ~ -"F"
that equals the actual numeric argument (l-"l~") minus one.

FORMAT 7 OP CODES

All are one word op codes for DM~ - DMS addressing and two word
op codes for DM6 - DM7 addressing. For DM6- DM7 addressing the off­
set is in the second word. If the index register is PC with DM6 -
DM7 the offset is relative to op code+4.

FORMAT 8 OP CODES

All are one word with a 3 bit source and a 3 bit destination reg­
ister argument. The count register is implied to be R~.

FORMAT 9 OP CODES

All have a 3 bit register argument with a 6 bit destination argu­
ment that allows D~ - DM7 addressing. For DM~ - DMS a one word op code
is generated. For DM6 - DM7 a two wo:rd op code is generated with the
offset in word two.. If the index regi.ster is PC with DM6-DM7 then the
offset is relative to op code+4.

1

FORMAT lOOP CODES

All have a 6 bit source and a 6 bit destination argument! that
allow S~ - SM7 and DM~ - DM7 addressing. For S~ - SM5 and DM~ .­
DMS combined addressing a one word op code is generated. For SM6'­
SM7 or DM6 - DM7 but not both a two word op code is generated with
the offset in word two. If the field with mode 6 or 7 addressing
uses PC as the index register then the offset is relative to the <op
code + 4. For SM6 - SM7 and DM6 - DM7 combined addressing a 3 wo,rd
op code is generated. Word two contains the source offset, and
word 3 contains the destination offset. For SM6 - SM7 with PC the
offset is relative to the op code + 4. For DM6 - DM7 with PC the
offset is relative to the op code + 6.

Any autoincrements/decrements in the source are fully comple-
1:ed before any destination decoding begins.

}<'ORMAT 11 OP CODES

All are one word op codes with a 4 bit source and a 4 bit des­
tination argument. Each argument consists of a 3 bit register ar­
gument preceeded by a 1 bit indirect argument.

2

APPENDIX C

PROGRAMMING NOTES

Several of the op codes and addressing modes have person­
ali ty peculiarities that 'the user should be aware of. Most of
these can be put to good use in particular situations. This
appendix attempts to list most of them.

IEN: This instruction allows one more instruction to begin ex­
ecution before enabling 12.

IDS: This instruction allows one more instruction to begin ex­
ecution before disabling 12. IDS is therefore interruptable.
If such a situation occurs the status of 12 that is included
in the pushed PC will equal ~.

HALT: There is no halt in the microcode. A selection of op­
tions is therefore given 'that allows the user to define HALT for
himself.

ADDRESSING MODES

In order to clarify the function of the various add,ress­
ing modes several programming examples are given. In each case
assume that the first word of the op code is at location x.

SET ~

Register R~ is set to all ones.

CLR @R2

'fhe memory location pointed to by R2 is cleared to zeros. If R2
contained a "~l~~" the memory word address "~l~~" would be cleared.

INC (R3)+

~rhe memory location pointed to by R3 is incremented by one . R3 is
then incremented by 2.

DEC (PC) +

Location X + 2 is decremented by one, and program control is ad­
vanced to location X + 4. This allows for in-line literals in a
program, a method that saves a word of memory in most cases.

SWAB @(R4)+

If R4 contains a "~l~~" and location "~l~~"contains a "~2~~" then
the two bytes in location "~2~~" are swapped and R4 is incremented
1:0 "~lJi"2"o

1

COM - (RS)

RS is decremented by two. The address specified by the altered ~)
i.s one's complemented.

NEG -(PC)

A BOZO no-no since location X is the location negated and program
control is again transferred to location X after the negation is
completed.

TST @- (RI)

If R = "YflYf41t and location "YfIYf2" contains a "IYfYfyJ" then the following
sequence occurs: (1) RI is decremented by 2 to "yJlyJ2". (2) The contents
of location ".01.02" (i.e. "lyJYfW') becomes the address of the operand
1:0 be tes ted.

ROR 4 (R4)

r£he contents of memory location R4 + 4 is rotated right. R4 is not
altered. Word two of this op code contains a 4. Program control is
advanced to location X + 4 at the completion of the rotate.

ROL @6(SP)

'rhe contents of memo~y location SP + 6 contains the address of the
operand to be rotated. Word two of this op code contains a 6. Pro­
gram control is advanced to location X + 4 at the completion of the
rotate.

JSR PC,TAG

Location X + 2 contains the byte offset from location "TAG" to location
.x + 4. The address of location X + 4 is pushed onto the stack, ail1d the
address of location "TAG" is placed in PC.

,JSR R5 I TAG -

Location X + 2 contains the byte offset from location "TAG" to location
X + 4. The content of register RS is pushed onto the stack, the ad­
dress of location X + 4 is placed in RS, and the address of locat:ion
"TAG" is placed in PC.

JSR PC, (R4) +

Location X + 2 is pushed onto the stack, R4 is moved to PC, and R4 is
incremented by two.

JSR PC,@(~P)+

This is a co-routine call. Pay attention:
1) The contents of the location pointed to by SP is saved in CPU

register "TMPA".

2

2) SP is incremented by two.
3) The address of location X + 2 is pushed onto the stack
4) CPU register "TMPA" is moved to PC

The effect of all this is to swap the top word on the stack
with the address of location X + 2 without altering SP or stack size.

Consider the following routine.
SUBR: JSR PC,2(PC)
TAGA: JSR PC,@(PC)
TAGB:

RTN PC

The first JSR places the address of TAGA on the stack and exe­
cutes the routine starting at TAGB. The RTN PC transfers control
to location TAGA when it is executed. The second JSR places address
TAGB onto the stack and into PC, effectively leaving PC unaltered.
The second time the RTN PC is executed program control passes to lo­
cation TAGB. The third time the RTN PC is executed program control
passes back to the routine that call subroutine SUBR. Since TAGA
and TAGB are never addressed explicitly both of the labels could be
eliminated from the program. If left in then the "2(PC)" could be
replaced with "TAGB".

CMF (R¢) +, (R¢) +

If R~ = "~l~~" then the contents of location "~10W' is compared to
the contents of location "0102" , and R~ is incremented to "0l~4".
All source auto increments or decrements are completed before destin­
ation decoding begins.

MOV @R2,- (R2)

If R2 = "01~6" then the contents of location "~106" is .. moved to lo­
cation "01~4", and R2 is decremented to "01~4".

BIT #2,@#4

The contents of absolute memory location 4 is tested against the lit­
eral value 2. This is a three word op code with word two containing
a 2 and word three containing a 4. This op code works on location 4
from anywhere in memory ..

CMF (PC) + ,TAG

This won't work. The assembler generabes a two word op code for this
wi th the destination offse·t in word two. The execution of the op
code, however, uses word two as a literal and word three (which does
not exist) as the destination offset. By swapping the source and
destinations around then an in-line literal could be used for word
three, and word two would contain a valid source offset.

3

JSR PC, (PC) +

The address of location X + 4 is pushed onto the stack, and PC gets
the address of location X + 2.

JSR R5, (PC) +

The contents of R5 are pushed onto the stack, R5 gets the address of
location X + 4, and PC gets the address of location X + 2.

MOVB (RJl) +, (R¢) +.

If R.0 = ".01.02" then the contents of memory byte location "~1~2n is moved
to memory byte location n.0l.03 n , and R.0 is incremented to "~l.04n.

MOVB (SP)+,Rl

The contents of the memory byte addressed by SP is moved to the lower
byte of Rl, the sign bit (bit 7) is replicated through bit 15 of Rl,
and SP is incremented by 2. SP is always autoincremented or aut.ode­
cremented by two.

CLRB (PC)+

The contents of the lower byte memory location X + 2 is cleared to
zeros. The upper byte (X + 3) is not affected. PC is incremented
by two. PC is always autoincremented or autodecremented by two.

BISB R¢, Rl

The lower bytes of register R.0 is logically ORED with the lower byte
of register Rl. The upper byte of Rl is not altered.

MOVB @(~)+,@-(R3)

If R2 contains a ".01.0.0" and R3 contains a ".02.0.0" then location "fi11.0~n

contains the byte address of the source operand and location "¢l.FE"
contains the address of the destination byte that is to receive the
source byte. R2 is incremented by two, and R3 is decremented by two
since they point to addresses of (16 bit) addresses.

JSR SP, TAG_

Not recommended since the value of the stack is lost. Perfectly le­
gal however.

SAVS and RSTS

Although designed to be used for automatic register and I/O priority
level saving and restoring, the lack of hardware priority maskin9
does not alter the operation or the op codes. The SAVS op code is
usually the first instruction executed in a device interrupt rou·tine,
.and the RSTS is the last. The priority mask can use a one bit as an
'~nable or disable with bit .0 the highest or lowest priority level.
Such decisions are made by the hardware.

4

POWER FAIL

Two levels of power fail are provided for in the firmware. The
hardware may use two, one, or no levels of power fail.The three
modes are discussed in increasing order of complexity.

NO LEVELS: External address register bi"t 7 is hardwired to ~,
and a prayer is offered.

ONE LEVEL: The detection of a power fail sets bit 7 of the exter­
nal status register and the CPU RESET line. When the
power fail disappears the CPU RESET line is reset, but
bit 7 of the external status register remains set. The
Line Clock Clear State Code (see appendix D) clears
bit 7 of the external status register (and bits 5, 6
if used). A system power up is then executed.

TWO LEVELS: This reql1ires two hardware functions, AC LOW and DC
LOW, plus two levels of power fail; AC and DC. It
all works like this: If AC power begins to deterior­
ate AC LOW is set first. This sets bit 7 of the ex­
ternal status register and generates an interrupt via
I~ or II. If AC power does not deteriorate too far then
nothing else happens except that bit 7 of the external
status register is reset when power is restored. If
AC power continues to deteriorate then eventually DC
power will begin to deteriorate. When this happens
DC LOW is set and DC LOW sets CPU RESET. AC LOW is
still set and it maintains bit 7 of the external status
register. When power is restored DC LOW is reset. This
resets CPU RESET. A power up sequence is initiated, and
the Line Clock Clear State (see appendix D) clears The
External Status Register bi~ 7 (plus 5 and 6 if they are
used). If the user wishes to be able to execute a pro­
grammed power fail routine even during a sudden and com­
plete power failure then the DC power supply must be
strong enough to run the CPU and MEMORY for at l~ast 2
milliseconds. The power fail interrupt must also be
programmed, and the interru.pts enabled.

The use of the Line Clock Clear State Code to clear bits 5-7 on
a CPU RESET function (plus the line clock of course) should have no
effect on normal system operation. Should an error occur during a
non-vectored interrupt the error would be cleared momentarily and then
set again as CPU RESET obviously could not have been generated. If it
had been then the system could not be in the non-vectored interrupt
routine.

PARITY AND BUS ERRORS

These functions are also part of the CPU RESET function along with
power fail/up. In order to get only one or the other the n bit 7 of
the external status regist.er must be re:set when the CPU RESET function

5

is activated. In order to generate a valid CPU RESET the CPU
RESET line must be held active for three clock cycles. Longer is
fine, but the CPU goes into a wait state until the CPU RESET is
reset. If more than one e'rror exists at one time then the highest
priority error is the one honored The priority, from highest to
lowest, is:

Power Fail
Bus Error
Parity Error

If all 3 functions are· reset a power up is assumed. All 3 funct~ons
have a bit associated with them in the external status register. Once
set these bits stay set until cleared by the Line Clock Clear State
Code (see appendix D) that is generated during the first phases of
the reset routine. See chapter two "Power Up Options".

6

APPENDIX D

MICROM STATE CODE FUNCTIONS

Below, is a list of MICROM STATE CODE FtmCTIONS for the WDl600 with a
brief de'E$crip'tion of what each does. tJlore elaborate descriptions,
where necessary, follow the table.

CODE

~~~l 
~~l~ 
~~ll 
~l~~ 
~l~l 
~ll~ 
~lll 

l~~~ 
l~~l 
l~l~ 
l~ll 

ll~~ 
ll~l 

lll~ 
1111 

MNEMONIC 

PMSK 
Rlm 

,IORST 
INTEN 
INTDS 
ESRR 
SRS 
BYTE 
RMWW 
RMWB 
RLCI 
EARR 

E'lmCTION 

Priority mask out 
lJlacro instruction fetch 
I/O reset 
I2 set 
I2 reset 
External status register request 
System reset 
Read byte operation 
Read-modify-write word 
Read-modify-write byte 
Reset line clock interrupt 
External address register request 
Duplicate of "BYTE" 
Duplicate of "RMWW" 
Duplicate of "RMWB" 

PMSK: The state code is generated on an. OUTPUT WORD instruction when 
a new mask is written into location "2E". It signals the I/O 
devices that a new interrupt mask. is on the DAL. 

RUN: Generated during macro instruction. fetch for a run light. 

IORST: Generated during a RESET macro op code to reset I/O devices to 
some preset state. 

INTEN: Enables the interrupt enable line -12. 

INTDS: Disables the interrupt enable line -12. 

ESRR: Generated during an INPUT STATUS BYTE micro op code to indicate 
that the external status register is being requested. See note 1. 

SRS: Generated during a power up for a master system reset. This code 
is followed by a 300 cycle wait to allow time for any reset func­
tions the hardware generates to be completed before any DAL re­
quests are generated. 

BYTE: Generated during an INPUT BYTE micro op code to indicate a read 
byte operation without a read-modify-write. 

RMWW: Generated dGXing an INPUT WORD micro op code with RMW active to 
indicate a read-modify-write word sequence. 

RMWB: Generated during an INPUT BYTE mi,cro op code with RMW active to 
indicate a read-modify-write byte sequence. 

1 



RLCI: Generated during a CPU RESET or a non-vectored interrupt with­
out a power fail to clear both the line clock interrupt and ex­
ternal status register bits 5-7. 

EARR: Generated during an INPUT STATUS BYTE micro op code to indicate 
a request for the external address register during the user boot­
strap routine. 

CODES "0" - "F": Duplicates of codes "8" - "A" respectively except that 
these codes appear as a part of the READ micro op codes 
instead of as a part of the INPUT micro op codes. Either 
or both may be used by the hardware as is convenient. 
These codes preceed the others. They are generated only 
once, however, instead of repeating in the event of a 
wait state as the others do. 

NOTE 1: INPUT STATUS BYTE is not a function of reply and does not gen­
erate a SYNC. For these reasons the DAL must be tri-stated if 
a DMA device also exists. The data is always gated onto the low­
er byte. The upper byte is ignored. 

NOTE 2: Lack of state codes "8" - "A" or "0" - ":F" during a READ - INPUT 
sequence implies a read word operation without read-modify-write. 

2 



APPENDIX E 

OP CODE TIMINGS 

All times are in cycles. Timings include all OP Code fetches, 
memory reads, and memory writes applicable to each. Timings 
assume that the memory is running with full speed with respect to 
the cpu. This requires a 16 Bit access time = 1 CPU cycle, and a 
16 Bi,t memory read/write cycle time = 2 CPU cycles. One cpu cycle 
300 NS @ 3.3 MHZ, U~~ NS @ 2.5 MHZ,and 500 NS@ 2 MHZ clock rates. 
Timings are included for SM~ and DM~ as basic with additions as 
necessary in tables that follow the OP.Codesfor SMl-7 and DMl-7 
timings. 

OP CODE 

NOP 
RESET 
lEN 
IDS 
HALT 
XCT 
BPT 
WFI 
RSVC 
RRTI' 
HAVE 
SAVS 
REST 
RRTN 
RSTS 
RT'1' 

OF CODE 

IAK 
RTN 
MSKO 
PRTN 
LCe 
SVCA 

. SVCB 
SVCC 

# CYCLES 

lfl 
l~ 
l~ 
l~ 
16+ 

FORMAT ONE OF CODES 

44 + OP CODE EXECUTED 
24 
16+ 
62 
60 
46 
65 
48 
52 
64 
13 

# CYCLES 

l~ 
12 
l~ 
22 
'7 
37 
73 
71 

FORMAT TWO-FOUR OP CODES 

FORMAT FIVE OP CODES 

All branches = 9 cycles if branch occurs or not. 

'1 



FORMAT SIX OP CODES 

OP CODE # CYCLES 

ADD I 9 
SUBI 9 
BICI 9 
MOVI 9 
SSRR 8 + (5 X # bits shifted) 
SSLR 8 + (5 X # bits shifted) 
SSRA 8 + (7 X # bits shifted) 
SSLA 8 + (5 X # bits shifted) 
SDRR 20 + (7 X # bits shifted) 
SDLR 20 + (7 X # bits shifted) 
SDRA 20 + (9 X # bits shifted) 
SDLA 20 + (7 X 3 bits shifted) 

FORMAT 7 OP CODES - DM~ 

OP CODES # CYCLES OP CODES # CYCLES 

ROR 1J£' RORB 9 
ROL 1~ ROLB 9 
TST 1J£' TSTB 9 
ASL 1J£' ASLB 9 
SET 1J£' SETB 1J£' 
CLR 1J£' CLRB 9 
ASR 12 ASRB 11 
SWAB 1J£' SWAl) 21 
COM 1J£' COMB 9 
NEG 1~ NEGB 9 
INC 1~ INCB 9 
DEC 1~ DECB 9 
IW2 1~ LSTS 15 
SXT 12 SSTS 1~ 
TCALL 21 ADC 11 
TJMP . 16 SBC 11 

FOR WORD OPS AND: FOR BYTE OPS AND: 

DM1 ADD 4 DM1 ADD 3 
DM2 ADD 4 DM2 ADD 3 * 
DM3 ADD 8 DM3 ADD 7 
DM4 ADD 6 DM4 ADD 5 * 
DMS ADD 1~ DMS ADD 9 
DM6 ADD 1~ DM6 ADD 9 
DM7 ADD 14 DM7 ADD 13 

For DM1 - DM7 and: 

CLR subtract 1 cycle 
SWAB subtract 1 cycle *NOTE: Add 2 more if SP or PC. 

2 



OP CODE 

MBWU 
MBWD 
MBBU 
MBBD 
MBWA 
MBBA 
MABW 
MABB 

OP CODE 

FORMAT 8 OP CODES 

# CYCLES (ASSUMES NO INTERRUPTS) 

17 + (16 X # words moved) 
15 + (16 X # words moved) 
17 + (15 X # bytes moved) 
15 + (15 X # bytes moved) 
19 + (16 X # words moved) 
19 + (15 X # bytes moved) 
19 + (16 X # wo't'ds moved) 
19 + (15 X # bytes moved) 

FORMAT 9 OP CODES - D~ 

CYCLES # 
----------~------

JSR* 
LEA* 
ASH 
SOB 
XCH 
ASHC 
MUL 
DIV 

*NOTE : 

:B'OR ALL 

DMI add 
DM2 add 
DM3 add 
DM4 add 
DM5 add 
DM6 add 
DM7 add 

OP CODE 

ADD 
SUB 
AND 
BIC 
BIS 
XOR 
CM!' 
BIT 
MOV 
CMPB 
MOVB 
BISB 

DM~ 

OP 

¢ 
2 
2 
2 
4 
4 
8 

22 
15 
19 if DST = ¢ i 22 + (5 X count) if DST>¢i· 25+ (7 X count) if DST < ¢. 
1¢ if no branch, 13 if branch 
23 
19 if DST = ¢; 38 + (7 X count) if DST>¢i 38+ (9 X count) if DST < ¢ 
183 
29 if divisor error, 2¢2 if no divisor error 

illegal. Used as base figure only. 

CODES EXCEPT SOB AND: 

FORMAT 1¢ OP CODES - SM¢ AMD D~f! 

# CYCLES 

11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
12 
11 

3 



For SM1: add 3 for word ops, 1 for byte ops. 
For SM2: add 4 for word ops, 2 for byte ops. * 
For SM3; add 7 for word ops, 5 for byte ops. 
For SM4; add 5 for word ops, 3 for byte ops. * 
For SM5; add 9 for word ops, 7 for byte ops. 
For SM6'.; add 9 for word ops, 7 for byte ops. 
For SM7; add 13 for word ops, 11 for byte ops. 

For DM1iadd 4 for word ops, 3 for byte ops. 
For DM2iadd 4 for word ops, 3 for byte ops. * 
For DM3;add 8 for word ops, 7 for byte ops. 
For DM4;add 6 for word ops, 5 for byte ops. * 
For DM5;add l~for word ops, 9 for byte ops. 
For DM6;add l~for word ops, 9 for byte ops. 
For DM7;add 14for word ops, 13 for byte ops. 

For MOVB and DM1-DM7 subtract 1 cycle. 

*NOTE : Add 2 if SP or PC 

FORMAT 11 OP CODES - ALL ADDRESSING MODES 

FADD: If exponent difference> 39 138-145 
Worst Case 638 
Typical 180-420 

FSUB: If exponent difference > 39 141-148 
Worst Case 641 
Typical 190-430 

FMUL: If either operand = C) 108-111 
Worst Case 805 
Typical 590-780 

FDIV: If divide by ~ 96 
If divide into ~ 118 
Worst Case 1596 
Typical 280-.1210 

FCMP: 49-86 


	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04

