NOTE: Western Digital Corporation reserves the right to change specifications
without notice at any time. Information furnished in this document by Western

wigital, Inc. is believed to be accurate and reliable; however, Western Digital,
Inc. assumes no responsibility for its use, nor for any infringements of patents
or other rights of third parties resulting from its use. No license is granted
under any patent rights of Western Digital Corporation.

2445 MCCABE WAY IRVINE, CALIFORNIA 92714 (714) 557-3550, TWX 210-595-1139

O

Naan

c o A P /

IESTERN DIGITAL
Advanced Systems Division

TECHNICAL
NOTE

NUMBER: M0013

ADVANCED
PROGRAMMING
PACKAGE

July 1981

SUMMARY: The following Technical Note describes the Advanced Programming
Package which provides MicroFngine users with details on accessing various
parts of the operating system. The package contains the following segments:

1) An implementation guide on concurrent processing techniques. It describes
in detail the "SIGNAL", "WAIT", "SEMINIT" and "ATTACH" cormmand. These
items are useful for users who need to know the structure of semaphores
and how queing is performed during concurrency operations.

2) A Pascal representation of the Microcode of "SIGNAL" and "WAIT". This data
illustrates how "SIGNAL" and "WAIT" are implemented.

3) An example of a U-Minus Frogram which illustrates how a programmer can access
the operating system global variables.

4) A general document that explains to you how to reference absolute memory
locations.

5) A document that details the I/0 and interrupt addresses.

6) A document on interfacing to the parallel port which illustrates Western
Digital's technique.

7) List of operating system globals.

8) Document on accessing the directory on a disk.

Because these techniques allow the user to access the operating system tables, we
recommend that only the more knowledgeable users in your organization should be
exposed to the details of this package.

TABLE OF CONITNTS

Introduction........... Cereeannas Ceteeeseteeerassseranasnenraanenan R |

Concurrent Processing Implementation GUIde..sceeeeeaeeeescconsscnaansnncacnons 2

Representation of "SIGNAL" & "WAIT".......... feteesceseaseteranatateaaraaann ..15
Example of U~Minus PrOgraMe..eseeecesncess eeteeeeneenean eeesennne ceeseea..-.18
Referencing Absolute-Memory LOCationS..veeievesvieneeaecanneas teemeeeieaan vee. 20
Interrupts and Special Addresses........... B sesensavnn cecsvencns 23
Interfacing to the MicroEngine Parallel Port................ N ceveeaaaenn 24
Operating System GlobalS....eeeseeerenanann. P 2 -
Directory ACCESS.......... e eiasaarretee e aaiaaaa. sevacsanvoenn Ceeatanaaan ..37

=

2445 McCABE WAY IRVINE, CALIFORNIA 92714 (714) 557-3550, TWX 910-595-113¢

e g e L . g o T e S Tt S

| High memory

CONCURRENT PROCESSES

- |

A

RELEASE VERSION 3.0

! ——- A Code Segment

i
i i
IMPLEMENTATION GUIDE IrC ————>i Body of the process a
i]
Preliminary
i i
]]
SBG ~~——- >4 R Qe
OUTLINE '
_______]
Main Stack
1 Memory- Layout During Task Execution......... seeseacas .. 3 !
v
1.1 Data Structures......ccivvvviiiaee . :
1.1.1 Task Information Block (TIB)....... Ceeeresracsensess b :
1
1.1.2 SemaphoresS..c.eveen. esrecsrentecnnns ceesressesasessnh Heap
i
1.2 Primitive Operations............ Ceeseteeressasenans veo 7 i
) —D { mmmm
1.2.1. S T= 11 ¢ 2 7 i
§ Task Local
1.2.2 Wait and Signal.......... ceecasasnann B & ; Activation Variables
: Record
1.2.2.1 Supporting Operations.....cceeciineeenencnnnns ceeaen i !
@ I @ !
1.2.2.1.1 ENgueue...ceeeeeneans Ceeeasenaasannns ceeetees ceeeen 8 : i ' |
: ! i !
1.2.2.1.2 Dequeut.ccveeneereees cveesesteacaerocne cesescenees§ MP ~emeed > | : MSCW ! —— Task Stack
1.2.2.1.3 PasksWitohn. cieveenniacenaannsns eereeaann eeenan .. 8 i i ! Stack i
; SP e >; v I
1.2.2.1.4 Idle...... seensecesrrrecnnnnn Cesessaesasetea e g9 . ! R qp—
1.2.2.1.5 Ifetch...cen... S, Cerieeriesieeeeeas ceeaeas .10 ‘ i TIB ;
H |]
1.2.2.1.6 Interrupts.ceeeeeeeeecenenes Chseserastserecnnnnaas 10 ' ' ‘
‘ | Low M T !
1.2.2 Waiteoesrennnnnnnnas e e ieeeeeeeeaaaaas ceeeea10 i v hemory i
1.2.2. Signal...coennn. et e .
g & 1 ‘ Figure 1 —-- Memory during Task Execution
At any given time, the P-machine may have
2 Attach. . eeneeeeseneraracosancencecns ceecsesarrenens B V4
1 task running
several tasks ready to run
several tasks waiting for each of various
3 Shart.eeeieereeni ittt reanens ceeessaesaans sressavenae <14 semaphores to be signalled.

A P-machine register curtsk always points to the TIB for the o
; currently executing task. Another register readyq points to the first
: in the list of the tasks ready to run. This is illustrated in Figure
2.

O
C

tib = record | Task Information Block}
"""" regs: packed record
CURTSK ———mm >/ TIB | -- > NIL {register -1} waitq: tibp; Queue link for semaphores }
""" prior: byte; Tasks CPU Priority
@ flags: byte State flags, not yet defined |
: splow: integerp; Lower stack pointer limit |}
READYQ ——w-e >I TIB | -->| TIB | -->| TIB |-->NIL {register -3} spupr: integerp; Upper limit on sback }
sp: integerp; Actual top-of-stack pointer }
mp: MSCWpP; Active procedure mscw ptr
bp: mscwp; Base addressing environment ptr }
"""""""" ipc: integer; Byte ptr in current code seg
| count : segb: “codeseg; Ptr to seg currently running
“““““ hangp: semp; Which task is waiting on
| waitq | ~=>! TIB | -->} TIB | -->} TIB | -->NIL xxx: integer; Not used)
""""" sibg: “sibvec; Array of sibs for 128..255 }
end {regs };
Figure 2 -~ P-Machine Task Configuration maintask: boolean; True if tib is root task
startnscw: mscwp Top mscw in task's stack
end { +ib }

.1 Data Structures
Figure 3 —-- Declaration of TIB
As noted above, there are three main data structures associated
with each task, the body, task stack (containing the task's activation
record) and Task Information Block (TIB). The body and activation
record structures are the same as those for ordinary procedures and the
task stack is like the main stack except for its allocation as a fixed

e A A A ___

MSB LSB
space on the heap. Thus, of these data structures, only the TIB
remains t0 be discussed. In addition, there is the newly introduced 0! qlink !
type semaphore which is also discussed below. :
@ ! % 1 | filags | prior |
! 2 | splow |
% 3 | spupr i
i 1 !
% 4 1 sp i
i 51 wp i
. :] b i
1.1.1 Task Information Block (TIB) | = I
i b !
As noted above, the TIB contains information which is used; 71 ipe !
when a task begins execution, to restore the execution 8 | segb !
environment (i.e P-machine registers) to its state before the !
task was interrupted. It also contains other fields which we i 9 ! hangp]
shall look at. \ '
10 | <reserved> |
A Pascal declaration of a TIB is shown in Figure 3. This) O '
corresponds to the structure in Figure 4. ; 11 | sibs !
! 12 | maintask i
Tyget 0..255 i
- yie = (R] tart i
B integerp = iﬁteger; 13 § startmscw H

mscwp = “mSCW;

semp = “semaphore;

sibp = “sib;

sibvec = array [0..0] of sibp;
tibp = “tib;

{ Mark-Stack Control Word }
{ Segment Info Block |}

© © .

Figure 4 -- Structure of a TIB

~The fields sp, mp, bp, ipc and sib contain the values %o
which the P-machine registers must be restored prior to commencing
execution of the task.

<« The priority field contains the priority level of this task.

. Qlink is only used when the process is part of a wait queue,
either of a semaphore or ready-to-run. It is used to construct a
linked list of TIBs, as was shown in Figure 2.

When a task is waiting on a semaphore, the field hangp is set to
point to that semaphore. If the task is not waiting on a semaphore
then hangp is nil. One of its purposes is to allow a process 1o be
removed from a semaphore's wait queue.

The flags field is intended to contain state flags for the task.
None of these flags are yet defined.

Sibs is a pointer to a mapping array used for segments with
numbers 128..255, the details of which have not yet been implemented.

The boolean field maintask simply asserts whether this TIB is for
the "root" or outer task, that is the task which invoked all other
tasks. Only the operating system task is in this state.

Startmscw points to the Mark-Stack Control Word of the procedure
which started this task. It is identical to the dynamic link of the
"Lopmost" MSCW in the task and is used to identify the outer block of
the process.

1.1.2 Semaphores

The funciion of the semaphore data type has been discussed in the
"Microengine Reference Manual in concurrent processes. An object of
type semaphore contains two elements* a count field and a queue field.
A Pascal equivalent declaration of type semaphore is shown in Figure 5,
and the field allocation is shown in Figure 6.

Type
semaphore = record
count: O..MAXINT;
waitqg: tibp
end semaphore ;

Figure 5 —- Pascal Declaration of Type semaphore
0| count |
11 waitq |

Figure 6 —— Structure of Type semaphore

1.2 Primitive Operations

The following discussion covers those operations which are
implemented ag P-machine instructions (wait and signal) as well as
seminit, which is compiled as an in-line sequence of instructions, and
the machine-dependent built-in procedure attach. To support. the
discussion of wait and signal, some internal operations (engeue,
dequeue, taskswitch and idle) are also described. This desciption is
intended to support an implementation of these primitives in assembly
language or microcode.

1.2.1 Seminit

The built-in procedure seminit accepts two arguements. (1) a
semaphore variable and (2) a positive integer (See Tutorial and Users'
Guide). The compiler generates in-line code to set the count part of
the semaphore to the integer value and the waitq part of the semaphore
to nil.

The code is genereated as follows:

GIVEN: seminit (sem, count)
CODE: Load address sem
DUP1
Load count
Store@
INC 1
LDCN
Store@

This code loads two copies of the semaphore address onto the
stack, loads the count and stores it in that address, then increments
the other copy of that address by one, making it point to the waitq
field of the semaphore, and stores nil there.

1.2.2 Wait and Signal

1.2.2.1 Supporting Operations

T T R RTRCCNERINE. S AL . L i e 4 A e e

1.2.2.1.1. Enqueune

The enqueue operation is used in the implementation of signal and executed and the task activated has a higher priority than the current
wait. Its function is to insert a task into a queue ordered by ' task. In the former case, the current task is engueued on the
priority. The queue is represented by a linked list of TIBs. A Pascal gg@ semaphore before Taskswitch, in the latter case, the current task is
description of enqueue is in Figure T. enqueued on readyq.

procedure enqueue (var ghead: +ibp; qtask: tibp) Taskswitch sees that all current P-machine registers are saved in

label 1; . 1 the TIB pointed to by curtsk, thus preserving the task's execution
var t1, %2: tibp; ; environment. In the example presented here, after Taskswitch is
begin . . i executed, the machine falls into Idle, which will activate the task
{ Find place in queue to insert the TIB 1} i at the head of the ready queue.
o o= qbead; ;
t2 : = nil; i TASKSWITCH:
Whiézi§1 <> nil do | with curtsk”.regs do
~ SN - . begin
if $1".regs.priority <qtask”.regs.priority then 1 % 8sp : = 8p;
ote s | o
. 1 p : 3 ev
{ else 3 j t ipe : = ipe;
f2 = 41y . t sib : = seg;
1 = t1".regs.qlink ! and;
end; !
1: . . Q Figare 9 -- Pascal Description of Taskswitch
gtask”.regs.qlink : = %1; i
if 42 = nil then ‘ 1.2.2.1.4 1Idle
qghead : = qtask i
else : The Idle loop is executed repeatedly when there are no tasks in
D p ¥y
t2".regs qlink : = gtask : the ready queue and the processor is waiting for a hardware-interrupt
end { enqueue 1}; - which has been attached %o some Pascal semaphore. When the interrupt
a @ is received, the processor jumps out of the Idle loop. The interrupt

will cause a signal and, since curtsk=nil, control will return %o
Figure 7 -- Pascal Description of enqueue : the Idle loop. If the signal caused a task to be placed in the ready
i queue, that task will now be activated, otherwise the Idle loop will
i be repeated again.

When the Idle loop is entered from Taskswitch, it kmust be the
case that readyg <> nil. Therefore, the loop will be bypassed and the
task at the head of the ready queue will be activated.

1.2.2.1.2 Dequeue

Dequeue is the complementary operation to enqueue. It is used to
remove a task from the head of a wait queue. In the Pascal description
of dequeue shown in FPigure 8, a pointer to the TIB of the task is

returned in gqtask. TASKSWITCH:

IDLE: while readyq = nil do

procedure dequeue (var ghead, gtask : tibp); begin

begin 3
. . curtsk : = nil
q;z:g : = ghead; ; ‘ if An interrupt is being asserted then
q 2= if Its not masked then

end { dequeue 7; goto Interrupt

end;
dequeue (readyq, curtsk);
with curtsk”. regs do

ghead”.regs.qlink t
|

Figure 8 —~- Pascal Description of dequeue i

1.2.2.1.3 Taskswitch beg;n = %t sp;
! , mp : =% mp;
The Taskswitch routine is executed when the currently running task base : = %t bp;
has been put in a wait queue and there is tagk at the head of the ready . ipe : = % ipo; *
queue to be executed. This situation can occur through either of @ @ seg : = t 8ib;
two different circumstances, (1) when a wait has been executed and end; !
the current task must wait on 2 semaphore or (2) when a signal has been goto Ifetch;

Figure 10 —- Pascal Description of the Idle Loop

et o i e e = o . . . - - " -

@ o o W e e e e i s e e Nt e ek 81 ‘ S abiade

“El

1.2.2.1.5 Ifetch

For completeness, we make mention of the Instruction Fetch
" (Ifetch) code. The only change from previous interpreters is that we
make explicit reference to the need for interrupt recognition.

IFETCH: If An interrupt is being asserted then
if Its not masked then
goto Interrupt;

Fetch opcode byte and execute normally;

Figure 11 —-- Description of Ifetch
1.2.2.1.6 Interrupts

From an architectural standpoint, the receipt of a hardware
interrupt which has been attached to a semaphore must cause a signal
operation to be executed on that semaphore. Whatever P-machine
instruction is executing when the interrupt is raised must be allowed
to complete before the signal is performed.

In the Pascal MicroEngine implementation by Western Digital,
interrupts are only acknowledged between P-instructions, thus it
is possible to immediately perform the signal. It is this
environment which has been reflected in the discussions of the
Ifetch and Idle code.

For related msterial, see attach.

INTERRUPT: Obtain vector address from device;

Push contents of mem word designated by vector onto stack

goto signal;

Figure 12 —— Western Digital Interrupt Handling

1.2.2.2. Wait
The use of the Pascal statement
wait (s)3

(where s is a variable of type semaphore) causes code of the
following form to be generated by the compiler:

LDA s ;5 Push address of s on stack.
WAIT
£y The wait operation pops the address off the stack and uses it to

test the count part of the semaphore. If the count is zero then the
current task is engueued on the semaphore and a Taskswitch is made.
Otherwise the count is decremented. A Pascal description of wait is
shown in Figure 13.

10

C ¥

®

{ var s: semp }
pop(s);
if s”.count = O then
begin
enqueue (s”.waitq, curtsk);
curtsk”.hangp : = s;
goto Taskswitch
end;
{ else }
g*.count : =
goto Ifetch

WAIT:

s".count-1;

Figure 13 -~ Pascal Description of wait

1.2.2.3 Bignal

The P-code generated by a signal operation is analogous to that
generated by the wait. The Pascal statement

signal (s)
causes the code

LDA 8
SIGNAL

; Push semaphore address

to be generated.

During the signal operation, the address of the semaphore is
popped off the stack and the queue part is tested. If found to be nil,
the count is incremented. If the queue part is non-nil, there are
tasks waiting on that semaphore; the task at the head of the semaphore
queue is removed and added to the ready queue.

If the priority of the currently running task is less than the pri-
ority of task newly readied (which must therefore be at the head of
the re ready queue, having a priority greater than all other ready
tasks). then a Taskswitch must be made. This preserves the
rerquirement that the currently executing task be the highest priority
task in the ready queue.

Otherwise the processor jumps directly to the Ifetch code and the
cur—- rently executing task continues to run.

One special case that can arise is when the CPU has been idling
(no current task), waiting for an interrupt. The interrupt is treated
as a signal. The only change for handling this case is that, instead
of jumping to Taskswitch or Ifetch, when complete, signal jumps back
into the Idle loop. This will cause the newly readied task to be
started since readyq is no longer nil.

11

@ L . P . e e e o e e i it s m e b o D T ; s e S -
Sy S o v e v e e b S L e e e e st St ki o TR iain

A Pascal description of the algorithm for signal is shown in Figure 14. Attach is called as one of the "standard procedures". For version

3.0, the standard procedures are all in segment 3; attach is procedure

SIGNAL: |{ var s: semaphore; gtask: tibp | number 23 within that segment, thus the call to attach is

it { S‘t)i> task)
1 S .Waiv 8 H)
bogin Lz AESE & D oxG 5,23

dequeue (s .waitq, qlask);
gtask”.hangp : = nil;
enqueue (readyq, gtask);
if curtsk = nil then

goto Idle;

The details of how attach works are strongly processor-specific
due to the varying nature of hardware interrupts. The approach used on
Western Digital Corporation's Pascal Microengine illustrates how simple
=%ttach can be.

{ else
if curtsk”.regs.priori Aow .priori To understand the Western Digital attach, we must first understand
begin gs-priority < qtask’.regs.priority then : the Microengine's interrupt structure. This machine designed %o
engueue (curtsk, readyq); execute P-code directly has as number of possible interrupt "vectors"
goto Taskswitch -e¢r, to be more pre-~ cise, "interrupt codes". A table is maintained in
end ! main memory which, indexed by interrupt code, contains the address of
{ else } ! the semaphore associated with each code. When the processor
goto Ifetch ! acknowledges an interrupt, the interrupting device returns its device-
end; . specific interrupt code. The processor then picks up the semaphore
{ else waitq = nil } i address associated with that interrupt code and signals it. To simplify
s".count := s”.count+1) ‘ matters further, the semaphore table is based at address 0, so that the
if curtsk = nil then H interrupt code is, itself the address of the table entry.
goto Idle i
{ else
goto Ifetch L e ———————
1 TR > |
Figure 14 -- Pascal Description of signal i i i : i i

e @ | | :

2 Attach :

The attach intrinsic procedure is intended to establish a logical :
correspondence between a semaphore and an "interrupt identifier" such ! i 1 1 i
that when the specified interrupt is raised by the hardware, the ;
specified semaphore will be signalled. A Pascal declaration of ; i 1 i 1 '
attach would be i

type samp : semaphore; ;
P ’ ! Interrupt Semaphores
procedure attach (8 : semp; interrupt id : integer); 5 Codes
(Addresses)
The variable s contains a pointer to the semaphore involved, while : . . :
interrupt id contains whatever the machine requires to identify a given ! Figure 16 —- Microengine Interrupt Structure
interrupt. When attach is called, the stack is as shown in Figure 15. i

Both parameters are popped off the stack by the time attach returns.
P POPP v This is the attach mechanism for the Microengine consits simply of a

Pascal procedure:

[HTTTETIEITT1010111171 I

procedure attach (s= : semp; Interrupt code : “semp);

! s ! begin
Interrupt code := s
8p —————>| interrupt id ! end | attach }, -

: FPigure 17 -- Microengine Implementation of Attach
Figure 15 —— Stack state when attach is called

12 ! ' 13

3. PROCESS START

Under the III.0 UCSD concurrency specification, processes are
declared in a manner similar to procedures. A process is invoked by
the start statement. The purpose of the start statement is to
“create a Task Information Block (TIB) for the process to be started
and to place this TIB representing the process on the ready queue,
which holds all processes that are ready to run when processing
resources are allocated to them.

Since a process is declared similarly to a procedure, a process may
have parameters. In order to insure that the parameters being
passed to the process being started are those values at the time of
the start statement, there is sychronization code implemented using
semaphores to assure that the main program cannot proceed until the
sub~process being started has received the parameter values at the
time of the start statement. This is implemented by semaphore
synchronization performed by compiler generated code in conjunction
with an operating system intrinsic. The mechanism basically causes
the program starting a process to wait on a semaphore that is
signalled when the subbtask has received all parameter values.

A process declaration takes the form:
Process < identifier) {formal parameter part)

A process is started by the procedure Start described by the
following format.

Start ({process statement) <{processid var)],
[stacking expressionp},
¢priority expression>]]]

There are three optional parameters for the Start procedure.

1) Processid - a pre-declared variable type in UCSD Pascal.
When present, ,assigns a value to the variable which
is unique to the process that has been started. This
points at the TIB created for the process.

2) Stacksize expression - determines how much stack space
will be allocated for this process. If no value is
given, the compiler allocates a default value of 200
words.

3) Priority expression - determines what processes are
handled first by the CPU. The higher priority processes
are executed before lower priority processes. If no
priority is given, the new process will inherit the
priority of its caller.

Start commands can only be called from a main task, such as the
Juter block of a user's program. If called from a subtask, a
run-time error is generated.

14

o

3

{PASCAL REPRESENTATION OF SIGNAL & WAIT}

{ This program is a pascal representation of the signal and
y wait commands. The program illustrates how to manipulate the
‘%@ ready and wait queues as well giving an insight into the
workings of the multi-tasking operating system.}
{$g+}
Program pseudointerp;
" Label 1, 2, 3, 4, 5, 6;
Type
tibp = “tib;)
tib = record {task information block}
regs: record
{working registers}
prior: integer;
glink: tibp
end { regs }
{ non~hardware specfic stuff follows }
end { tib };

semaphore = record
count: @..MAXINT; { number of times signalled }
waitq: tibp
end { semaphore } ;

var { processor registers }
curtsk,
readydq,

@ ghead,

gtask: tibp;
s: ~ semaphore;

task info block currently in execution }

list of tasks waiting for cpu time }

global list head operated on by enque and}

{ deque }

input and output var used in enque and deque}l
temp. storage for wait and signal }

—_— i i h

procedure enque;
label 1;
var tl, t2: tibp;
begin
tl := ghead;
t2 := NIL;
while tl1 <> NIL do
begin
if t1%,regs.prior < gqtask”.regs.prior then
goto 1;
t2 :=tl;
tl :=tl”.regs.qlink
end;
1:
gtask”™ .regs.glink := tl;
if t2 = NIL then
ghead := qtask
else
t2%.regs.qlink := qtask
end {enque};

g} | -]

15

R

procedure degque;

begin
gqtask := ghead;
ghead := ghead”.regs.qlink

end { deque } ;

function AnInterruptIsBeingAsserted : boolean;
begin end;

function ItsNotMasked: boolean;
begin end;

procedure FetchOpcodeByteAndDispatchNormally;
begin end;

procedure InteractWithDeviceOnBusAndObtainVectorAddress;
begin end;

procedure PushContentsOfMemWordDesignatedByVectorOnStack;
begin end;

procedure PopSemaphoreAddressIntoS;
begin end;

procedure SavelInternalCopiesOfRegistersInCurtskRegs;
begin end;

procedure RestorelnternalCopiesOfRegistersFromCurtskRegs;
begin end;

begin { pseudo-~interpreter }

1: { Ifetch }
If AnInterruptIsBeingAsserted then
if ItsNotMasked then
goto 2 { Interrupt };
FetchOpcodeByteAndDispatchNormally;

2: { Interrupt }
InteractWithDeviceOnBusAndObtainVectorAddress;

PushContentsOfMemWordDesignatedByVectorOnStack;
goto 4 { signal };

3: { wait }
PopSemaphoreAddressintoS;
if s".count = @ then

begin
ghead := s”.waitq;
gtask := curtsk;
enque;

s®.waitq := ghead;
goto 5 { Taskswitch }
end;
s”.count := s”.count-1l;
goto 1 { Ifetch };

16

R il

4: { signal }
PopSemaphoreAddressIntoS;
if s".count = @ then

if s".waitq <> NIL then
begin
ghead :=
deque;
s”.waitq := ghead;
ghead := readyq;
enque;
readyq := ghead;
if curtsk = NIL then
goto 6;
if curtsk”.regs.prior < gtask".regs.prior
begin
qtask := curtsk;
ghead := readyq; enque;
readyq := ghead;
goto 5 { Taskswitch } ;
end;
goto 1 { Ifetch }
end;
s”.count := s”.count +1;
if curtsk = NIL then
goto 6;
goto 1 { Ifetch };

~.waitqg;

5: { Taskswitch }

SavelnternalCopiesOfRegistersInCurtskRegs;

6: while readyq = NIL do

if AnInterruptIsBeingAsserted then
begin
curtsk = NIL;
if ItsNotMasked then
goto 2 { interrupt };
end;
ghead := readyq ;
deque;
curtsk := qtask;
readyq := ghead;
RestorelnternalCopiesOfRegistersFromCurtskRegs;
goto 1 { Ifetch }

end { pseudo~interpreter } .

then

$U-}

This program demonstrates $U-. This compiler option allows
a programmer to access operating sysiem globals. Be careful R
about altering operating system globals as this can have
a deleterious effect. This option also allows dynamic allocation of files
in the heap.}

program pascalsystemexample;

type
phyle = file;
inforec = record
worksym,workcode: “phyle;
errsym,errblk,errnum: integer;
slowterm,stupid: boolean;
altmode: char;
end;
var filler: array[0..6] of integer; { space holder for unused 0S globals]
userinfo: inforec;

segment procedure theprogram;
This segment procedure is the actual user program.}
The program's global variables should be declared here.}

type filep = “phyle;

var cp: filep;
arr: packed array[0..511] of char;
¢: char;

{Declare B8 segment procedures with no code to make subsequent
segment procedures fall in the user segments. This is necessary
as the operating system uses segments O and 2-7, while a user
program has segments 1 and 8 - 15. These 'forward' declarations
are only needed if the program contains other segment procedures.
Note that $U- allows forward procedures to remain unresolved,
since they are needed only as space holders. }

segment procedure num2; forward;
_segment procedure num3?; forward;
segment procedure num4; forward;
segment procedure num5; forward;
segment procedure numb; forward;
segment procedure num7; forward;

{The program's segment procedures, if any, g0 here, }
segment procedure firstuserses;
var i: integer;
begin
writeln (' in segment 8 ');
I o= 3 o+ 1y
end;

i8

.

e;m

ot P vt

begin

{This code is invoked when this program is executed.)}

‘In other words, this will be the outerblock of the program. }
for example, get the altmode character defined by SETUP |

¢ := userinfo.altmode;

{Dynamically allocate a file }

new(cp);

reset (cp”, 'dum.text');

if blockread(ep”,arr,2) <> 2 then writeln ('read error ');

{ call the first user segment procedure }
firgtusers;

end;

begin end. [This code will never be executed.]

19

Referencing Absnlute Memory Locations

Absolute memory locations can be addressed on the MicroEngine. This use is . floppyrec = record

discouraged as it is easy to corrupt operating system tables or code due to @b\ @ fstatcom : statcmdrec;

the power of this technique, Because the MicroEngine has memory mapped 1/0, track : integer;

even 1/0 control registers may be accessed, and in fact, the I/0 drivers sector : integer;

use this technique. Absolute addressing is performed by means of Pascal ' data : integer;

variant records. A variant record specifies that two different variables filler : array [p..3] of whole;
with possibly different types may occupy the same memory location, The Pascal fdma fields}

program below allows a user to access an absolute memory address interactively. dcontrol : integer;

dstatus : statcmdrec;
trcountl : integer;
trcounth : integer;

program examine;

type memrec = record) bufaddl : integer;
memcell : integer bufaddh : integer;
end; i memex : integer;
intid : integer;
. i end;
var memvariant : record case boolean of
true : (memadd : integer); serialrec = record
galse : {memconts : “memrec); data : integer;
end;

statsyndle : statcmdrec;
control2 : integer;
controll : integer;

i : integer; filler : array [P..3] of integer;
switch : statcmdrec;
. end;
begin :
write (' enter absolute address '); % VAR
readln (i); 6\3 @
memvariant.memadd :=i; . serialtrix : record case integer of
writeln (' contents of ,i,' = ',memvariant.memconts” .memcell); P: (sdevadd : integer);
end. 1: (serial : “serialrec);
end;

If an address of a MicroEngine I/0 port were entered, the program would return
the contents of the I1/0 port register, paraltrix : record case boolean of
true : (pdevadd : integer);
false : (parallel : paralrec);

statcmdrec' = record case boolean of end;
true : (command : integer); .
false : (status : packed array [P..7] of boolean); floppytrix : record case boolean of
end; for devices that use same reg for stat and cmdf true : (fdevadd : integer);
false : (floppy : floppyrec):
whole = @..maxint; end;

paralrec = record
porta : statcmdrec;
portb : integer;
portc : statcmdrec;
ncontrol : integer;
end;

Program Serialtest;

{This program illustrates the concepts of referencing absolute
memory locations by using varriant records. It writes to the
serial port using unitwrite.}

statcmdec = record case boolean of o
true : (command : integer);
Q- @ false : (status : packed array[@..7] of boolean);
end; (* for devices that use same reg for stat and and¥*)

20 21

serialrec = record
serdata : integer;
statsyndle : statemdrec;
control2 : integer;
controll : integer;
filler : array[@..3] of integer;
switch : statcmdrec;
end;
vVar
serialtrix : record case integer of
g : (devadd : integer) ;
1 : (serial : “serialrec);
end;

Procedure sunitwrite (ch: char);

Begin
with serialtrix do
begin
devadd := ~1008; (* FClg *)
with serial” do
begin
controll := 135; (*87 hex *)
control2 := 1; (* @1 *)
repeat
until statsyndle.status({@];
serdata := ord(ch);
end;
end;
end;
begin
sunitwrite ('h'); sunitwrite ('i');
end.

22

é

L T

o , ﬁ,ﬁa

Interrupts and Special Addresses

The MicroEngine supports not only I/0 devices in the I/9 address space, but
other functions such as interrupt handling and bootstrap tests. The 1/0
address space on the MicroEngine ranges from FCO0 to FC7F. On the single
board “icroEngine the I/0 address space contains the system value for NIL,

a bootstrap test, and interrupt latches. Addresses in this space on the
MicroEnaine are implemented using external logic. The table below summarizes
the addresses currently utilized in the I/0 address space.

FCO0 System value for NIL (used for software pointers)
FC10-FC13 Serial port A register addresses
FC18 Switch used for DMA EOB and DINTR signals

FC20-FC23 Serial port B register addresses
FC30-FC37 Floppy disk-DMA register addresses
FC40 Microcode uses this address during interrupt handling (see below)

FC48 Software writes to the latch at this address to to enable all
interrupts in the system. This is done as interrupts are disabled
after a hardware interrupt.

FC50 Autoload address for DMA (currently unused)
FC60 Nummy address used during interrupt handling (see below)
FC68 Microcode examines this address during system bootstrap to

determine whether to boot from floppy or ROM. See section 3.7.2
of the MicroEngine Software Manual.

FC70-FC73 Parallel port register addresses

The addresses FC40 and FC60 are required by the firmware for interrupt handling.
The address FC68 is used by the firmware to test whether to boot from floppy
disk or ROM during bootstrap. The address FC00 is the microcode recognized
value for a NIL pointer. The address FC30 which contains the floppy disk-DMA
devices is required by the firmware if boot from floppy disk is desired. In
addition, the DMA EOB (end of block signal) and the floppy controlier chip
signal, DINTR, must be interfaced to address FC18 at bit positions 5 and 4
respectively. The floppy - DMA interface at this address FC30 and the signals
at FC18 are not required if boot from ROM is implemented. Chip set users must
implement these addresses using external logic.

Interrupts generated by external devices are handled by the Pascal firmware using

the addresses FCA0 and FC60. A hardware interrupt signal generated by a peripheral
device causes the firmware to access address FC40. The write to FC40 is used to
latch the interrupt encoder so the interrupt address deesn't change while it is

being read. Refer to Table 5-3 in the MicroEngine Hardware Manual for the mapping
of devices to interrupt vector addresses. Also refer to the MicroEngine schematics
for details of an example hardware interface to the Western Digital Pascal processor.
As a part of the interrupt sequencé, the firmware executes an instruction that
raises IACK, the interrupt acknowledge signal in the firmware. This instruction
that raises IACK also must present an address on the bus., The firmware uses FC60

as this address. FC60 is basically a dummy address that must be reserved. The

TACK signal causes external lonic to gate the interrupt vector address generated =
by the encoder to nresent this interrupt vector address on the bus.

The interrupt vector address contains a pointer to a software semaphore
attached to the vector address. The firmware then executes the P-code
operator, SIGNAL, using the interrupt vector address as a parameter and
signals this semaphore. A software I/Q driver would WAIT for this sema-
phore to be signaled in order to proceed.

23

Interfacing to the MicroEngine Parallel Port

The MicroEngine includes a standard 8255 programmable
peripheral interface chip which is memory-mapped into
consecutive word addresses beginning at FC70. An 8255 has four
8-bit registers which appear on the data bus as the low-order 8
bits of the data at the four addresses starting at FCT70: Port A
is FC70, Port B is FCT71, Port C is FPC72 and the control

register (write—only) is FC73. These four consecutive addresses

are declared in a Pascal record and bit patterns are deposited
in (or read from) the low-order 8-bits of each address by means
of two Pascal variant records.

In order to refer to the absolute memory address of the
8255 registers, a variant record is declared to contain either
an INTEGER or a pointer to a data-type which maps the register
nanes to the B255 registers, depending on the field referred
to:

VAR
paraltrix: RECORD CASE BOOLEAN OF
true: (pdevadd: INTEGER);
false: (parallel: paralrec);
BND;

The pointer is made to point to the correct area of memory
by assigning the starting address, -912 (-912 signed decimal =
FC70 hex), to the field "paraltrix.pdevadd".

The data type which is pointed to is declared as tfour
censecutive words of memory:

TYPE
paralrec = RECORD

porta : statcmdrec;

portdb : statcmdrec;

portc : statcmdrec;

pcontrol INTEGER;

b

EBach of the first three of these words (pcontrol is the control
register which is write-only) is in turn declared in the second
variant record in such a way as to be either an INTEGER or a
series of eight individual bits depending on the field referred
to in a Pascal statement:

®IYPE
statcmdrec: RECORD CASE BOOLEAN OF
true: (command : INTEGER);

false : (status : PACKAGED ARRAY[0..7] OF BOOLEAN);

END;

24

T

6

©

ORI NS

B e L T eran R P N e

With these three declarations and the assignment of the
absolute memory address to paraltrix.pdevadd,the individual 8255
registers can be accessed by the names of the nested records.
For example, the refer to port A as an integer, the name
paraltrix.parallel.porta.conmand is used; to refer to the least
significant bit of port A, the name paraltrix.parallel.porta
.status [0] is used. Note that a packed array of booleans has
been im- plemented in exactly the way in which a systems
programmer thinks: .status [0] corresponds to the least
significant bit of the integer .command or, from a hardware
point-of-view, 'bit O.' The names of the first two of the nested
records can be put in a WITH statement and thereafter will be
implicit: viz., "WITH paraltrix, parallel DO BEGIN END."

The 8255 is configured on the MicroEngine board with Port A
as a buffered input port, with Port B as a buffered output port
and with Port C as two input lines and six output lines; only
four of the output lines of Port C are brought out to the J3 37-
pin connector. Only a few of the possible ways of programming
the 8255 will be consistent with this hardware configuration.

In particular, mode 2 which configures Port A as a bi-
%iregtional 8~bit data bus cannot be used on the MicroEngine
oard.

The simplest use of the parallel interface is referred to
as mode O. When programmed to mode O, Port A is an unlatched
input port whose data will continuously follow the logic level
presented to the assigned pins on the J3 connector and Port B
is a latched output port whose assigned pins on the J3
connector will reflect the data last transferred to Port B.

The attached program uses these declarations to program the

8255 and to exercise Port B as an output port. Because the
MicroEngine data bus is inverted as seen by the 8255, the bit
pattern to be deposited in the control register (pcontrol) must
be inverted before being converted to the signed decimal value
which is assigned to paraltrix.parallel.pcontrol. Conversion
routines are provided for going between binary and signed
decimal in either direction but the inversion is not done within
the programn.

[The MicroEngine Manual specifies that the operating system
programs the parallel port control register using the pattern
0110 011x and states that the result is that which would be
obtained, according to the specifications given in the manual,
with the pattern 1001 100x. The discrepancy is due to the
inversion of the data bus in relation to the 8255. 1In fact, the
operating system programs the parallel port control register
with the pattern 0110 1111 which sets Port A to unlatched input
and Port B and C to latched output. The difference is in bit 3
wh%ch controls the direction of the 4 high order bits of Port
C.

25

i et Ao e e e

UIPUE DD VREUE U SRS ¥ SR

) For mode 1 on both Ports A and B: 1011 0100 (inverted = 0100 1011=-181)
@ i @ in which case PC6 and PC7 will be available for output using the bit
set/reset function. The other bits of Port C are control signals for
Ports A and B in mode 1.

The alternative to the mode O operation programmed by the
operating system is called mode 1. In mode 1:

Port A is a strobed, latched input port with control signals of:

The output signals of Port B and PC!, PC5, PC6 and PC7 are buffered
using a T74LS136 exclusive-OR gate which is an open collector device
requiring a pull-up resistor of 1K ohms at the device end of the
connecting cable.

STBA- (STroBe A): an input signal to strobe data into the port;

IBFA (Input Buffer Full A): an output signal to acknowledge to the
peripheral that the data has been latched; and

INTRA (INTerrupt Reguest A): an output to interrupt the CPU when data
has been latched: becomes active (high) when the STBA- has gone in-
active (high), IBPFA is active and the interrupt enable flip-flop
(controlled by bit set/reset of PC4) is set (high).

Port B is a strobed, latched output port with control signals of:

OBFB - (Output Buffer Full B): an output signal informing the
?eri heral that data is available; reset when ACKB - becomes active
low).

ACKB - ACKnowledge B): an input signal from the peripheral sent when
the data has been accepted.

INTRB (INTerrupt Request B): an output signal to interrupt the CPU when @% @
data has been accepted by the peripheral: goes active (high) when ACKB -
is nn longer active (high), OBFB - is no longer active (high) and the
%ntergupt enable flip~flop (controlled by bit set/reset of PC2) is set
high).

The two remaining bits of Port C (PC6 and PC7) must be
programmed as output to match the hardware buffers. These two
bits can be used for output only by means of the bit set/reset
function (a write into the control register) and not by writing
directly to Port C.

The control register patterns for mode 1 operation are:

For mode 1 on Port A (input) but mode O on Port B (output): 1011 0000
(inverted = 0100 1111 = =177) in which case lower Port C will be de—
fined as output and OBFB -~ (PC1) will be available as an output signal
in addition to PC6 and PC7. PC3, PC4 and PC5 are control signals for
Port A in mode 1; PC2 is disabled because it is buffered as an input
signal and PCO is not available at the J3 connector.

For mode O on Port A (input) but mode 1 on Port B (output): 1001 0100 L
(inverted = 0110 1011 = =149) in which case upper Port C will be de-

fined as output and IBFA (PC5) will be available as an output signal

in addition to PC6 and PC7 (each usable only by means of the bit

set/reset function). PCO, PC!1 and PC2 are control signals for Port B e @

in mode 1 and PC3 is not available at the J3 connector.

26 ‘ 27 :

{su-}

{ FAAKIIIKIAKAIIKKAIFIIRKARK AT ATIAX R AT TKEAR ALK AR KA KA IR AA R I A A A AL kAkFkd

}
{ }
{ Copyright (c) 1979 Regents of the University of California. }
{ Permission to copy or distribute this software or documen- }
{ tation in hard or soft copy granted only by written license }
% obtained from the Institute for Information Systems. i
{ }

hhk kT KA AIRI AR T IAIAKAFIRA I AR A AKAR I I RARK AR A AR AR A A KA AAAF Ak k k&
program pascalsystem;

khkkkkkhkkkkhkhkkkhkhhkkkhhhkdhhihihihdhhkdkkhrhk ik

WESTERN DIGITAL CORPORATION

{ }
{ }
%)
{ UCSD PASCAL OPERATING SYSTEM GLOBALS }
{ }
% RELEASE LEVEL: III.0 %
{ }

kkkkkhkARhkhdhkkhkhkhkhkhhkkhhhhkhdhhhr kb krkrk ik

28

&

TYPE

mmaxint = 32767; | maximum integer value |}
maxdir = TTs max number of entries in a directory |}
vidleng = Ts number of chars in a volume id }
tidleng = 153 number of chars in title id
maxseg = 153 max code segment number }
fhlksize = 512; standard disk block length }
dirblk = 23 disk addr of directory
agelimit = 300; } mex age for gdirp...in ticks (5 seconds) }
eol = 13; { end-of-line ...ASCII cr }
dle = 16; } blank compression code
maxretry = 103 { retry count for disk drivers }
maxq = 79; { type-ahead queue index limit |}
ma xqpl = 80; type-ahead queue length }
*
minremgavail = 30; { Send Xoff when g down to this avail
remumegavail = 80; Send Xon when q back to this avail
*
hiiopriority = 250; | kbddriver (serial in) processes |}
midiopriority = 245; | disk in/out, parallel out, serial out |}
lowiopriority = 240; enabler process for kbddrivers }

iorsltwd = (inoerror,ibadblock,ibadunit,ibadmode, itimeout,
ilostunit,ilostfile,ibadtitle,inoroom,inounit,
inofile,idupfile, inotclosed, inotopen; ibadformat,
istrgovfl);

{ COMMAND STATES...SEE GETCMD }

(haltinit, debugeall, .
uprognou,uproguok, sysprog,
componly, compandgo, compdebug,
linkandgo, linkdebug);

cmdstate

I}

{ CODE FILES USED IN GETCMD }
sysfile = (assmbler,compiler,editor,filer,linker);

{ ARCHIVAL INFO...THE DATE }

. daterec = packed record

month: 0..123

day: 0..31;

year: 0..100
end { DATEREC } ;

0 IMPLIES DATE NOT MEANINGFUL }
DAY OF MONTH }
100 IS TEMP DISK FLAG }

{ VOLUME TABLES }
unitnum = O..maxunit;
vid = string[vidleng];

{ DISK DIRECTORIES }

dirrange = O..maxdir;
tid = string[tidlengj;

29

filekind = (untypedfile, xdskfile, codefile, textfile, infofile,
datafile, graffile, fotofile, securedir);

direntry = record
dfirstblk: integer; FIRST PHYSICAL DISK ADDR }
dlastblk: integer; POINTS AT BLOCK FOLLOWING }
case dfkind: filekind of
securedir,
untypedfile: { ONLY IN DIR[O]...VOLUME INFO }

(dvid: vid; NAME OF DISK VOLUME }
deovblk: integer; LASTBLK OF VOLUME |
dnumfiles: dirrange; NUM FILES IN DIR }
dloadtime: integer; PIME OF LAST ACCESS }
dlastboot: daterec); MOST RECENT DATE SETTING }

xdskfile,codefile, textfile,infofile,
datafile, graffile,fotofile:

(atid: +id;
dlastbyte: 1..fblksize;
daccess: daterec)

end { DIRENTRY } ;

{ TITLE OF FILE }
NUM BYTES IN LAST BLOCK }
LAST MODIFICATION DATE }

dirp = “directory;
directory = array [dirrange] of direntry;
{ FILE INFORMATION }

closetype = (cnormal, clock, cpurge, ccrunch);
windowp = "window;

indow = packed array [0..0] of char;
fibp = “fib;

fib = record
fwindow: windowp;
feof,feoln: boolean;
fstate: (fjandw,fneedchar,fgotchar);
frecsize: integer; { IN BYTES...O=>BLOCKFILE, 1=>CHARFILE }
case fisopen: boolean of

{ USER WINDOW...F", USED BY GET-PUT }

true: (fisblkd: boolean; FILE IS ON BLOCK DEVICE }
funit: unitnum; PHYSICAL UNIT # }
fvid: vid; VOLUME NAME }
freptent, # TIMES F"° VALID W/O GET }
fnxtolk, NEXT REL BLOCK TO IO }
fmaxblk: integer; MAX REL BLOCK ACCESSED |}
fmodified:boolean; SET NEW DATE IN CLOSE |
fheader: direntry; COPY OF DISK DIR ENTRY |}
flock : semaphore; File access lock.

case fsoftbuf: boolean of { DISK GET-PUT STUFF |}
true: (fnxtbyte,fmaxbyte: integer;
fbufchngd: boolean;
n fbuffer: packed array [0..fblksize] of char))
’ end { FIB } ;

{ USER WORKFILE STUFF }

inforec = record

30

&

WORKFILES FOR SCRATCH |}
ERROR STUFF IN EDIT }
STUDENT PROGRAMMER ID!! }
WASHOUT CHAR FOR COMPILER }
TITLES ARE MEANINGFUL }
PERM&CUR WORKFILE VOLUMES }
PERM&CUR WORKFILES TITLE }

symfibp, codefibp: fibp;
errsym,errblk,errnum: integer;
slowterm, stupid: boolean;
altmode: char;
gotsym, gotcode: boolean;
workvid,symvid, codevid: vid;
worktid,symtid, codetid: tid;
end { INFOREC } ;

declarations supporting idsearch / treesearch intrinsics ——
compiler using idsearch will have set up rw table with correct
len for rwinfo, and have sebt _syscom”.rwtable to point to it. }

alpha = packed array [0..7] of char;
trsnodep = “trsnode; symbol table node declaration }
trsnode = record —— used by treesearch
key : alpha;
rlink : trsnodep;
1link : trsnodep;
end;
idsinfo = record idsearch returns results via this
symcursor : 0..1023; "pseudo record". compiler must
sy : integer; declare vars in this order and
op : integer; pass its symcursor to idsearch.
id : alpha;
end;
rwtblrec = record
rwindex : array E‘A‘..'[’] of integer;
rwinfo : array [0..0] of

record
id : alpha;
sy : integer;
op : integer;
end;
end {rwtblrec};

SYSTEM COMMUNICATION AREA
SEE INTERPRETERS...NOTE
THAT WE ASSUME BACKWARD
FIELD ALLOCATION IS DONE
syscomrec = record
unused : array [O..1
sysunit: unitnum;

of integer; { 2 spare words. }
PHYSICAL UNIT OF BOOTLOAD |}
rwtable: “rwtblrec; regerved word table for treesearch }
gdirp: dirp; GLOBAL DIR POINTER,SEE VOLSEARCH }
diskinfo: packed record
dseekrate: integer;
dreadrate: integer;
dwriterate: integer;
end;
packed record | 5 words total |}
baudrates: packed array [0..7] of 0..15;

f 2 words, indices [0,4] not us®d }
xonoff: packed array tO..7] of boolean;
clockvalue: integer; tick clock rate |}
menudriven: boolean; using *system.menu }

end;
array [0..12] of integer;

STEP RATE FOR DISK DRIVE}
DISK READ COMMAND}
DISK WRITE COMMAND}

auxinfo:

expanstwo: {spare}

31

i

auxcrtinfo: packed record
verdlaychar:
end;
hightime,lowtime: integer;
miscinfo: packed record
nobreak,stupid,slowtern,
hasxycrt,haslcert,has8510a,hasclock: boolean;
userkind: (normal, aquiz, booker, pquiz)
end;
integer;
packed record
r1f,ndfs,eraseeol,eraseeos, home,escape: char;
backspace: char;
fillcount: 0..255;
clearscreen, clearline: char;
prefixed: packed array [O..Bj of boolean
end;
packed record

char

critype:
crtetrl:

certinfo:

width,height: integer;

right,left,down,up: char;

badch, chardel, stop, break, flush,eof: char;

altmode, linedel: char;

backspace,etx,prefix: char;

prefixed: packed array [0..13] of boolean
end

end { SYscoM };

miscinforec = record

msyscom: Syscomrec
end;
memlinkp = “memlink;
memlink = record
nextavail: wemlinkp;
nwords: integer
end { memlink } ;
markp = “marknode;
marknode = record
prevmark: markp;
availlist: memlinkp
end [marknode } ;
byte = 0..255;
integerp = "integer;
bytearray = packed array [0..0] of byte;
codeseg = record case boolean of
true: (int: packed array [0..0] of integer);
false: (byt: bytearray);
end;
3fbp = “sib;
sibvec = array [0..0] of sibp;
3ib = record | segment info block }
segbase: codeseg;{ memory address of seg }
segleng: integer; { # words in segment
segrefs: integer; active calls — microcode maintained }

32

segaddr: integer;
segunit: unitnum;
prevsp:
end { sib | ;

mscwp = "mScw;

mscew = packed record
nsstat: mscwp;
msdynl: mscwp;
msipc: integer;
msseg: byte;
nsflag: byte

end { mscw } ;

semp = “gemtrix;
tibp = “tib;

integerp;! SP saved by getseg for

absolute disk address |}
physical disk unit }

{ mark stack control word }

lexical parent pointer |}

ptr to caller's mscw)}

byte index in return code seg }
seg # of caller code }

tib = record { Task Information Block }

relseg cut back }

regs: packed record
waitq: tibp;
prior: byte;
flags: byte;
gplow: integerp;
spupr: integerp;
sp: integerp;
mp: MSCWp;
bp: mscwp;
ipc: integer;
segb: “codeseg;
hangp: semp;
iorslt : iorsltwd;
8ibs: “sibvec

end { REGS } ;
maintask: boolean;
startmscw: mscwp
end | TIB } ;

gsemtrix = record case integer of
0: (sem: semaphore);

QUEUE LINK FOR SEMAPHORES |
TASK'S CPU PRIORITY }

STATE FLAGS...NOT DEFINED YET }
LOWER STACK POINTER LIMIT }
UPPER LIMIT ON STACK }

ACTUAL TOP~-OF-STACK POINTER }
ACTIVE PROCEDURE MSCW PTR }
BASE ADDRESSING ENVIRONMENT PIR |}
BYTE PTR IN CURRENT CODE SEG }
PTR TO SEG CURRENTLY RUNNING
WHICH TASK IS WAITING ON
Result of last I/0 call.

ARRAY OF SIBS FOR 128..255 }

1: (fakesem: record
count: integer; outstanding signals }
waitq: tibp task queue
end);

end { sem

..

ports = 1..maxport;
cards = O..maxcard;

gstatecmdrec = record case boolean of

true :

(command : integer);

false : (status : packed array[0..7] of boolean);

end;
whole = O..maxint;
paralrec = record

porta : statcmdrec;
portb : integer;
porte : statcmdrec;
pcontrol : integer;

33

{ for devices that use same reg for stat and cmd }

L]

end; joinx,

. iobytes,
floppyrec = record @ : @ ioflags : integer
fstatcom : statcmdrec; end;
track : integer;
sector : integer; floppyio = record
data : integer; floppylock : semtrix;
fawitch : statcmdrec; floppysem : semaphore;
intprior : integer; : fselect : integer; { reflects unit number }
intbase : integer; H fa : windowp;
filler : integer; : fblock, finx, fbytes, fflags, fmode : integer;
[dma fields | ! . la : windowp; { ptr to 'local' buffer }
dcontrol : integer; floppytrix : record case boolean of
dstatus : statcmdrec; : true : 2fdevadd : integer);
trcountl : integer; ' false: (floppy : “floppyrec);
trcounth : integer; | end;
bufaddl : integer; i flready, flhaswork : semaphore;
bufaddh : integer; fstartit : boolean; { a trix flag }
memex : integer; end;
intid : integer
end; decmax = integer[36];
longtrix = record case integer of
serialrec = record 0: Eintar: array [0..0] of integer);
data : integer; 1: (BCDar: packed array [0..0] of 0..15);
statsyndle : statcemdrec; end {1ongtrix?;
control2 : integer;
controll : integer; memtrix = record case boolean of
filler : integer; @ @ true: (addr: integer);

false: (loc: integerps;
end;

switch : statcmdrec; :
special for single board system } ;
*% do NOT touch these fields in the modular ** } t
filler2 : array [0..1] of integer;
switch2 : statcmdrec;

devtype = (invalid, blocked, parallel, serial);

end; i VAR
; syscom: “syscomrec; MAGIC PARAM...SET UP IN BOOT }
sercontrol = record i gfiles: array [0..5] of fibp; | GLOBAL FILES, O=INPUT, 1=OUTPUT }
readsem, writebell, { userinfo: inforec; WORK STUFF FOR COMPILER ETC }
writesem, havch, qlock : semaphore; i ostibp: tibp; taskinfo block of op sys prog
front, rear : integer; : emptyheap: “integer; HEAP MARK FOR MEM MANAGING }
chq : packed array [0..maxq] of byte; ; inputfib, outputfib, CONSOLE FILES...GFILES ARE COPIES }
serialtrix: record case integer of . systerm,swapfib: fibp; CONTROL AND SWAPSPACE FILES |
0: (sdevadd: integer); z syvid,dkvid: vid; SYSUNIT VOLID & DEFAULT VOLID }
1: (serial: “serialrec); i thedate: daterec; TODAY...SET IF FILER OR SIGN ON }
end; ‘ state: cmdstate; FOR GETCOMMAND |

stst: semaphore; ! heapinfo: record { heap management }
stwaitno: integer; lock: semaphore;
sflag,fflag : boolean; { start/stop, flush |} topmark,
wrlock : sembrix; ‘ heaptop: mark

end; ‘ , end { heapinfo f ;

taskinfo: record { stuff for task management }
Jock: semaphore;
¥orequest = record Communication link between taskdone: semaphore;

ioready, unitread/unitwrite and the 6) @ ntasks: integer
iohavework, I/0 driver processes. ‘ end { taskinfo } ;
iodone : semaphore; ipot: array [O..4} of integer; INTEGER POWERS OF TEN }
iounit : unitnum; filler: string[41]; NULLS FOR CARRIAGE DELAY }
iowindowp : windowp; digits: set of '0'..'9';

34 35

pl: string;
chainname: string[23]; g chainer sets this - length > O means }
next getcmd executes chainname
unitable: array [unitnum] of { O NOT USED }
record
uvid: vid; { VOLUME ID FOR UNIT }
case uisblkd: boolean of
true: (ueovblk: integer);
end } unitable } ;
filename: array [sysfile] of string[23];
topofsibs: “integer;
safediskmode ; boolean ;
port : array [ports] of sercontrol;

......... Variable access by system U- programs ends here..eeeeenes)

paraltrix : array [cards] of

record case boolean of

true : (pdevadd : integer);
false : %parallel : “paralrec);

end;
flport : array [O..maxcard] of floppyio;
parsem : array |cards] of semaphore;
pariolock : array [cards] of semtrix;
enabletrix : memtrix; { for enabling interrupts }
is64kmem: boolean; | set by initjalize
unitvalid: packed array [unitnum] of boolean;
unittype: arrayl[unitnum] of devtype;
clockinfo: record

lock,

clocksem : semaphore;

tickrate : real;

end;

exceptint : semaphore ;
breaksem : semaphore;s { Signaled by 'kbddriver' on user break.
seroutport : array [ports] of iorequest;
parport : array [cards] of iorequest;
dirlock : semaphore;

36

J

e

i =

R

e T T e SRR

i

DIRECTORY ACCESS ON THE PASCAL MICROENGINE

A diskette is composed on granules called blocks. Each block contains 512 bytes. A
single-sided, single-density diskette contains 494 blocks mumbered from g - 493. A
double-sided, double-density diskette contains 1,976 blocks.

The directory for a diskette resides on block numbers 2-5 (i.e., it occupies 4 disk blocks
If there is a duplicate directory, this resides on blocks 6~9. Among other things, the
directory contains the name of the diskette, the name of each file on the diskette,
information concerning the starting and ending block for each file, and the date of

each file's creation.

The Pascal declaration for the directory is shown below. It is identical to that shown
in the operating system globals.

direntry = record
dfirstblk: Integer, (FIRST PHYSICAL DISK ADDR
dlastblk: Integer, {POINTS AT BLOCK FOLLOWI
case dfklnd: filekind of
securedir,
untypefile: fONLY IN DIR [4] ... VOLUME INFO}
(dvld: vild;

deovblk: Integer, §LASTBLK OF VOLUME}
dnumfiles: dlrrange; {NUM FILES IN DIR}
dloadtime: Integer; TME OF IAST ACCESS}
dlastboot: daterec); MOST RECENT DATE SETTING]

xdskfile,codefile, textfile, Infofile,
datafile,graffile,fotofile:
(atid: tid;
dlastbyte: 1..fblksize; {NUM BYTES IN LAST BLOCK}
daccess: daterec) fIAST MODIFICATION DATE
end §DIRENTRY] ;

dirp = A"directory;

directory = array [dirrange] of direntry;

The following program fragment reads the directory from disk drive #4.
VAR gdirp: dirp;
begin
new (gdirp):
unitread (4, gdirp.a, sizeof (directory), 2);

. wm
After this read from disk of the directory, the fields in the directory may be examined.
For example, to access the date on the diskette:

with gdirp [ﬁ] . dlast boot do
writeln ('today is', month, '/', day '/', yeaxr);

37

