(
WE%?‘E#?&;; ?i;?{?’gﬁ% |

c &z A P

Pascal MICROENGINE™ Product

. 80~-013007-00A2
TECH NOTES

SUMMARY GF 0SGO OPERATING SYSTEM

The following Tech Notes detail the fixes, changes and new features which
have been incorporated in the GO release.

Before using the 0SGO Operating system, the user must be aware of these
modifications.

1. The cabliag for serial port B (unit # 8) has been changed to
allow handling of remote printers with baud rates greater than
4800. Remote cables must be modified for the GO release. The
wire list in Appendix A indicates the change that must be made
for either remote CRT’s or printers.

The disk I/0 drivers in the operating system have been changed to
support double sided floppy disk drives. These new disk drivers
now ailocate double sided floppy disks in a cylindrical pattern.
That is, each cylinder contains two tracks (one per each floppy
side) and a disk step occcurs after a total cylinder transfer.
Users with double sided floppy drives should note that this new
capability causes an incompatibility with double sided disks that
were written with operating systems at level Fl] or lower. The
incompataebility happens because the GO operating system uses the
second side, whereas files written by pre-GO operating sysiems
did not.

In order to sclve this incompatibility, the user should perform

a two step process. First, the contents of disks with two-sided
capability should be transferred to single sided disks using 2
pre~GC0 cperating system. Next, the GO operating system should

be booted and the single sided disk just made should be transferred
Lo a double sided disk. This double sided disk is now GO compatible
and may be used iu all GU level systems. 0f course, this GO disk
caunot be read compatibly with pre-GO operating sysiems.

3. Segment proceduve handiing has been changed to handle problems in
the original implemsntation. With these changes, a bug where prograns
with both UNIT s and SEGMENT PROCEDURE’s could fail is now fixed. in
additicn, EX1T calls out of scgment procedures also work. However,
due to this chauge, only GO0 level software as provided on the 60
release diskette will run correctly on the GO level operating system.
Use of pre-GO scftware may cause improper program termination.

This change in cegment procedure handling also aifects programs that
were linked usiug the Fl level. It is recouwmended that programs

that need 1irking be recompiled and relinked on GO. If this iy not
performed, running a prograw may cause improper program termination.

0 > : IS O T : E
3128 REDHILL AVENUE, BOX 2i89 MEWPORT BEACH, CA 92863 (714) 557-3550, TWX §10-5585-1138

I
s

i

The-GO releasec of the Operating Systen includes the following new features.

Debugger
- See Appendix B8

Physical Mode for Disk
See Appendix C

Double Sided Floppy Disk Support
See paragraph 1, item 2.

The following problems have been fixed.
Operating System

1. U(ser Restart now works

2. EXIT statement works for seguments with more than 128 proucedures.
3. UNITBUSY now returns correct status fcr units 1,2,8.

44 NEW intrinsic checks for stack overflow.

5. Programs with UNIT’s and SEGMENT PROCEDURE’s now exacute
properly.

6. The system now correctly reinitializes after an <etx> is typed at
the outer level.

7. Serial port B now supports printers with baud rates greater than
4800.

Page 2

PSSP sudysti

pascal Ccmpiler

~
®). SYSTEM.SWAPDISK is now utilized correctly during compilation. This ’
file holds symbol table information for the compiler during i
- compilation of large programs having include files. H
2. Case statements in large p-° edures now compile correctly.
3. Multiple USES statements are now allowed. ;;
4. The compiler now emits a syntax error when a program allocates H
more than 32767 words at any nesting level. Without this :
syntax error, a rua~-time stack overflow would occur. i
5. Parameter checking and passing for variables of type CHAR
now works correctly.
6. Real constants without fractional parts now compile correctly.
7. Seven segments or units may be used in a prog}am, up from six
on the previous release. Note that the outer block of a
program is a segment.
8. ARCTAN is recognized 2s a synonym for ATAN.
Editor
1. Padded blanks which are added at the end of lines for editor
performance optimization will no longer accuuulate.
2. The “?° prompt now dispiays the additional editor commands:
move[<arrows>,<sp>,<ret>,=,P(age,direction[<,>],M(rgn,S(et,V(rfy.
3. Wheun deleted text cannot be copied, but the deletion 1s accepted
anyway, the copy buffer is marked invalid. It is also marked
invalid when a buffer overflow occurs in insert mode, even if an
<escape> is typed to escape thes deletion. -
4. During Delete in the forward direction, the screen display is
correct.
5. If a fille is too long for the editor’s buffer, a message is
displayed advising the user to use the L2 editor. This is
done so that the last portions of a file are not lost.
6, The Adjust command with a down arrow will remove accumulated
padded blanks at the end of each line.
7. In the Xchange command,the left and right arrow keys now move
over text without changing 1t. This is convenient for multiple
exchanges on a line.
8.

Spaces inserted after a carriage return are no longer lost when
only spaces are iunserted on the new line.

Page 3

Filer g’
1. Transfers from #8 to any other unit now work.
Other
1. SYSTEM.MISCINFO is changed so that the field ‘Has Clock” is set
false.
2. The FORMAT program now prompts to ask if a diskette is to be
formatted single or double sided.
3. YALOE is fixed to prevent integer overflow for /D or /J commands.
4. CALC now displays its real number output in non~-exponentlal form
when possible.
5. PATCH is fixed to use SYSTEM.MISCINFO settings for moving the
cursor.
6. L2 no longer fails when it encounters a line greater than 80
characterse.
7. Format has an extra prompt to ascertzin that both sides of a
disk are to be formatted. / g
E

8. Setup no longer allows a PREFIXED KEY FOR BREAK.
9. Copydupdir and Markdupdir now recognize lower case input.

10. Librarian will now work correctly on terminals having a screen
width less than 80 and screen height Jless than 24.

Page 4

APPENDIX A

ic #8) : APPENDIX B
Cz wire Lists for Serial Port B (Unit |

. .t for serial port B depend on whether
he changes ’?ql’iieisiicil‘ihiirioltii port. The diagrams below shouw the
» CRT OF ii?fln .ugger 18 provided as a tocl to debug user programs running the
1w wire s gru-ing system or tc debaug the operating system itself. The

T Wire List s bugger when invoked may insert or delete breakpoints in the work

cR §ie OT break at breakpoints ia the work file. Use of the BDebugger
ine J1 A @fyquires a familiarity with the UCSD operating system aund compiler.
Terminal Microengin

,» order to use the Debugger, it is often necessary tc have a

sompller generated listing of the program being worked oa, and at

) mmmm e ——— m————mm——— 2 ¥ simes 3 disasseubly listing may be needed. This is needed because

::><f : g reakpoints are inserted with reference to segment #, procedure #,
L J—— ———— ~ememmm—m== 3 god offset within a procedure. This information is listed on a

c«ompller-produced listing.
i A :
b |] «z1s Debugger has a functionality thet is similar to the Debugger
[S = 5 = 7 z4istributed with the UCSD system level I.5, but now no longer
7 ‘ 2 cistributed. The major difference is that the III.0 system allows

S —— e —————

{nrteractive placement of breakpoints in a code file, whereas with
c«ne I.5 debugger, breakpoints were compiled in.

There are two portions of the Debugger:

the Breakpeint landler and
+the Debugger.

The Debugger is invoked in two ways. The first is
: : whes a breakpoint is encounteéered in an executing work file. The
gerial Printer Wire List ; second is when a run-time
5 2

errcr occurs in any program. The Hreakpoint
Handler and both modes of Debugger invocation are described in the
s following sections.
3 engine J1 :
Terwinal Microeng

2 mmmmm— S ittt ™

A N S B

L e .._‘_ 4
. ! '.-&. 5 Low (:w) fnpin S s ferboridh olse.
hucopte @mse pind ougpallichbicd (d.h.

Low (=0V) am pin & Rithd re Aw%a/k
%(Mxmﬁw)/céwa@m’a& ‘
lhegs fofsallity Bt wied jodod
A hyerded dbtwfmy“ .

%# pin 19 is BUSY on NEC Spinwriter

Page 1

Page 1

Command : E(dit, R{un;

: Reply with D for D(ebungo invoke th
If a code file does not currently ex
work file, just like R{un.

e,Breaﬁpoint“hahdle:; '
ist, the system will compile the

Breakpoint handler prompt:

Debug: R(esume, I(nsert, L(ist, C(lear breakpoints, ‘Q(uit ?

Reply:
é% R{esume: to continue running the user proram.
I(nsert: to insert one or more breakpoints { max number = 10 }
For each breakpoint, the Breakpoint handler will prompt:
Enter segment number: (enter number in decimal); (3)
Enter procedure number: ——————
Enter procedure 1IPC: ————
% Validity checking is done for each vaiue.
If the iasertion is successful, then info about the
breakpoint will be displayed: ’
Index: i §# <seg> P# <proec> IPC <proc-ipe>(in hex) Op-code <op>(in hex)
then the Breakpoint handler wili prompt:
Insert another breakpoint ? (Y or N)
@ Reply:
Y: to go back to (3);
N: to stop the insertion and go back to (2).
L(ist: to list all breakpoints or to display ’No breakpoints”

then return to (2); { see breakpoint info. in I(nsert }

Page 2

SRR R BT

IEAETRY

®

i

=

C(lear: to clear breakpoints. The Breakpoint handler will prempt
A(ll, S(ingle ?
Reply:
A(1l: to clear ALL breakpoints;
for each breakpoint displays info { see I[(nserc }
with “remcved”.
S{ingle: to clear a single breakpoint.

The Debugger will list all breakpoints {
then prompt:

(enter selected index
number, as listed)

Clear breakpoint with index =

if clearing 1is successful then the Breakpoint
handler will prompt:

Continue clearing ? (Y or N)
Reply:
Y: to goc back to (4);
N: to go back to (2).

Q€uit: to go back to (1), the outer command level.

Breakpoint information 1s kept in block zero of the code file.

Block zero layout:
zolayout= record
otherdata

array [0..224] of integer;

. e

bkentrl packed record
: bkent: O..maxbrk <{bresakpoint count}
end;

bkinfar : array [0..maxindx] of {bp info array}
packed record
relsblk,saveop,opseg,opproc:
cpsipc: integer;
oppipec: fnteger;

end;

byte;

end;

where
maxbrk {max. number of breakpoiant} = 10;
maxindx {max. index value)} = maxbrk-l= 9.

Page 3

see L(ist }

(4)

i,

t;&i
[
.

The s 2r kpoi i ted
© Debugggr. (Called when a breakpoint s executed) S(tatus: to diplay the environment status:

, 1 h .
When a breakpoint is executed the DEBUGGER is invoked and the message User program BP = dec» value (hex wvalue) [1,1]

e Programmed break-point is output along w.ch: ‘Curtent MP = dec. value (hex. value) [seg,proc)
. S# <seg.number>, P# <proc.number>, I# <proec-ipc> a4 Q(uir: do return to (1), the outer command level. g
Then, the debugger is invoked, Status is displayed { see S(tatus below } | User program MP is the pointer to the MSCW of the user program
and the debugger prompt is shown. ; at the time the breakpoint occurred
Prompt: Current MP is the pointer to the current activation record as
rf d b he C(hat ommand bel .
Debugger: R(esume, D(ump, B(reakpoint, X(amine, S(tatus, Q(uit ? (5) | performe y the C(hain command { see beiow }
Reply: f NOTE: At the first call of the Debugger, user program MP = current MP.

R{esume: to continue running the work file. 69

D{ump: to dump the whole memory into *SYSTEM.DEBINFO file.
The Debugger will prompt:

Input your Notice: (max size= 80 char.)

This notice (or <space>) will be saved in block 0 of SYSTEM.DEBINFO
along with:
.« the conteats of registers -3..13;
@ . the run time error code that caused debugger invocarion
« the segment#, proc# and the ipc of the corresponding opcode; %@
. and the date (as displayed at boot time). |

The record describing this dumped inforumation is:

dumplayout = rvecord
regs: array[0..16] of integer;
errcode: integer;
@ seg: integer;
procs: integer; @
ipc: integer;
date: daterec; { 1 word }
filler: array{0..193] of integer;
notice: packed array{0..79] of char;
end;

B(reakpoint: to go to the Breakpoint handler
(Very much like in the breakpoint handling step in I.;
except:
o The code file in memory will also be updated
correspoadingly for I(msert and C{lear;
o Q(uit will return to (5), imstead of (1).)

Page 4 Page 5

Y(euine: to go to the memoxry eXamine mode. After every C(hain the following will be displayed:

Prcompt:
' qeutt

;- C(hain, O(ffset, re-D(isplay, A(lter, M(emory, S(tatus, R(ad thy In [seg,procl

Reply: O(ffset: to display the contents of memory at a word offset) 5
: e from the current MP { see C{hala).
C(hain: to move the current MP pointer along the dynami’ nr
static links.

PFrompt:)
(7

Offset is convenient to access values of variables zs all variables
are allocated at offsers from a mark stack. The offset corresponds
to variables offsets assigned by the compiler.

Prompt: (the Debugger will prompt 1f input data wmust be In Fex)

S(tatic, D(ynamic ?
Offset= { enter the offset value }

Reply: ' oo Length= { enter number 5f WORDS to be displayed }
: IR
ﬁg D(ynamic: to follow the dynamic link chain fi€ @% then, the requested words will be displayed.
mark stack comtrol word; e path
S(tatic: to follow the static link chain of &tV
stack control word. re-D(isplay: to display whatever O(ffset or M(emory was just
If D N h . previously displayed in the "other" radix. This option does
£ D{ynamic then prompt:) not change current radix. Re-display 1s not possible 1if the
immediately previous command was not O{ffset or M(emory.

6{lobal, L(ocal ?
A(lter: to modify one word in memorxry.

The Debugger wiil display the current Radix and prompt:

Reply:
]
. cxdul®
% L(ocals to move toward more recently called #£¢ Enter add
. ress: in current dix }
{ Limit: procedure {4,1], PRINTERROE 2,6‘1“" @ e (i current ra
G(lobalt: to move toward previously called pf¥ the 11 lay:
{ Limir: procedure {0,1] }. n will display:
Number of links: { enter n, a decimal number } ke to Hexadecimal or vice versa. The debugger will prompt:
) inks.
; - .
If o in {l1.. maxint] then traverse n dynamic 0‘1‘::« g swics Radix switched from Decimal to illex (or Hex to Decimal)
If D(ynamic then the chaining will be stopped 1 ;'4; . ; « . .
{ see (8)) are reached; else S(tatic chainin% w37 . NOTE: This Radix option is always reset to Decimal when the (run time)
@ otep 1f [1.1] is reached @‘ debugger is first invoked.
» .
4
ﬁ’glﬂ
NOTE: C(hain with S(tatic allows only G(lobal moves ant ¢
to the user program domain..
'

Page 6 Page 7

ROTE:

Q(uit: to go back to (5).

breakpoint the

Due to the mechanism used to return from a _)
active breakpoint in memory will be replaced by the original P cod:,
and it will be restored only when another breakpoint is encou?:ere .
This means a single breakpoint will NOT be restored until ano;h:r

is encountered. However, the breakpoint is still preserved in the
code file.

3. The Debugger: (called when a run-time error occurs) .

Run-time errors other than Stack overflow will display
the prompt:

D(ebug or Type <space> to continue

Reply: : .
p<Zpace>~ to follow the usual path of execution for an error;
e r 5))
I(ebug: to go to the Debugger { prompt (
(;fuihere ?s not encugh ;oom to load the Debugger, the systenm
will prompt: .
Nut enough room for Debugger
Fer debugger iavoration via a run time error, the invocation of the
Breakpoint Handler will not be allowed, as an X{ecute { from the outer

commands } of a pregram other thanm the workfile may have been requested.

Page 8

APPENDIX C

Physicz2l Sector Mcde

To provide enhanced flexibility for systems programwming, =

a mechanism is
provided for directly accessing physical sectors of a disk. This mode
may be enabled during the UNITREAD or UNITWKITE commands. Thea options
for UNITREAD and UNITWRITE are as follows:

UNITREAD(unitnumber, array, length, [blockaumber], [flags]);

where flags is an integer that may specify physical mede. in
flags is reset, logical sector mode, the normal mode on the Microengi
is performed. If bitr 1 is s=t, physical sector mede iz enabled. Thi
mode has the effect that block number is interpreted as
sector number. Cenceptually in this mode the disk looks
of tracks where each track is an array of sectors.
are numbered from 0 starting on track 0 6f the diskette, continue ascending
from 26 to 51 on track 1, etc. This mode is especially useful for
accessing track O of a diskette, where the bootstrap resides.,
the following code sequence reads all of track 0 into an array:

If bit

53 om

e

w

the physical
iike arn array
Physical sectors

For example,

var TrackBuf : array[0..3327) of 0..255;

unitread(4,Trackbuf,3328,0{ sector 0 Y5 2{ physical mode });

Page 1

g ;
;_ k-
)
»

&

APPENDIX D

The following sections were originally a part of the O0.F0 Tech note. The
documentation is included here as information for users with earlier Operating
Systems and for new users.

SETUP

The SETUP utility has been modified to add two fields:

VERTICAL DELAY CHARACTER: The pad character output after a slow terminal
operation such as home or clearscreen. (The default vertical delay char-
acter 1s NUL=0.)

KEY TO BACKSPACE: Configures the backspace key for a terminal.

The SETUP program also has three fields, “DISK SEEK RATE®, “DISK READ RATE",
and "DISK WRITE RATE® that tailor disk accesses.

The operating system tailors disk 1/0 operations by means of these fields.
This allows a user to configure the disk transfer deélays and stepping rates

of any type of floppy disk drive according to values set in SETUP. User
talloring of disk 1/0 commands is useful due to the wide variance of disk
drives. By allowing user configuration of disk I/0 commands, full advantage
can be taken of each type of disk drive. For example, some floppy disk drives
have a fast head stepping rate, so the system stepping rate would be modified
using SETUP to specify fust step rates. The SYS3TEM.MISCINFO that is shipped
has fields that reflect the slowest step rates and disk transfer delays.

Values that can be inserted into “DISK SEEK RATE' are:

Hex Decimal Step Rate

1B 27 15 ms. (slowest)
1A 26 10 ms.

19 25 6 ms.

18 24 3 ms. (fastest)

Fast drives can have a value of 24 for this field due to their fast step
capability. Slower drives may use a value of 27 or 26 as they have a slow
step rate. Note that the SYSTEM.MISCIRFO that is shipped has a value of 1F
hex, 31 decimal, which is the siowest step rate and also requests the 1791
Controller to verify that the seek is on the destination track. The verify

option may be removed to produce a command of hex 1B which is the slowest
step rate.

%e *DISK READ RATE® and *DISK WRITE RATE® fields

efore thead load.

Hex Decimal
90 144 no delay
94 148 delay

The values for 'DISK WRITE RATE® are:

Hex Decimal
176 no delay
22 180 delay

correspond to Western pigital

three fields
These 0% in section 5.6.4 ©

commands described
Reference Manual.

The values for “DISK READ RATE®

/

gspecify 1if there is a delay
are:

1791 Floppy Disk Contreller

f the Pascal MICROENGINE Hardware

UNITREAD AND UNITWRITE

H
UNITWRITE now have an option not to convert DLE control characters

" & UNITREAD and
inrte spaces, and an option not to append a line feed onto a carriage return.

The options for UNITREAD and UNITWRITE are as follows:
UNITREAD (unit number, array, length, [block numberj, [flagsl)
Where flags 1s an integer specifying the options:

MSB 15 4 3 2 1 0 LSB

@ Reserved NOCRLF NOSPEC Reserved

FBIT 0-1 Reserved

_BIT 2 NOSPEC SET implies no special character handling
for DLE.
RESET implies special character handling
for DLE, J.e., expand to blanks.

NOCRLF SET implies no LF’s are appended to CR’s.

'EE@ BIT 3

BIT 4~13

RESET implies LF’s are appended to CR’s.
Reserved

Examplie:

Var p: packed array [0..3] o€ char;
unitwrite (1,p,4,.4) {DLE not stripped and replaced by blanks}

Page 3

SYSTEM.LIBRARY

In addition to the LONGINT UNIT, the SYSTEM:L1BRARY contains a UNIT SCREEN-
up by

This unit accesses fields in the record SYSCOM, which is set
screen conteol

“CONTROL.
SYSTEM.MISCINFO. It contains several procedures that cause
the user’s terminal. In addition, there is

iaction or return information about
Fa procedure that returms the date.
UNIT are:

The procedures the user may access in this

PROCEDURE HOME; {Hlomes the cursor}

PROCEDURE CLEAREQS; {Clears the screen starcing at
the curvrent cursor position}
{Clears the line starting at the

i FUNCTION CLEAREOL;
current cursor position}

FUNCTION SCREENWIBTH: 1INTEGER;
{Returns the width of the screen)

FUNCTION SCREENHEIGHT: INTEGER;
{Returns the height of the screen)

PROCEDURE DATE(VAR M:MONTHS; VAR D:DAYS; VAR Y:YEARS);
{Returns the current date ss stored by the operating system.

MONTHS, DAYS, and YEARS are types declared in the INTLRFACE
and are therefore available to the user. The declaratlicus

are:
TYPE MONTHS = 0..12;
DAYS = 0..31;
YEARS = 0..99;}

Page 4

e

]

o
-
- THE SYNTAX FOR UNIT DEFINITION - 4
" - - - —-—

The following sheculd repitace Figure 3~4, Syntax for a Unit Definition, in the

Pascal Operatious Manual which is the second part of ths WD/90 Pascal MICRO-

ENGINE Refereuce Manual. .

<Compilation unit> ::= <Program heading>; {<Unit definition>;} : 4
<Uses part> <Block> i ok
<Unit definition>{; <Unit definition>}. i §

' <

<Unit defindition> ::= <Unit heading>; &
<Interface part>
<Implementation part>
End

<Unit heading> ::= Unit <Unit identifier>

<Unit identifier> ::= Interface :
<Uses part>) ;
<Constant definition part> '
<Type definition part>
<Variable declaration part>
<Frocedure and function heading part>

<Procedure and function heading part> E

::= {<Procedure or function heading>)} H
<Procedure or fuunction heading>
: 1= <procedure heading>‘<£uncticn heading>

<Implementation part> ::= Implementation .
<Label declaration part> i §
<Constant definition part>
<Type definition part>
<Variable declaration part>
<Procedure and Function declaration part>

<Uses part> 1= Uses <Unit identifier>

{, <Unit Identifier>}; | <Empty>

Page 5

O o IR 206 ST B S

(
WESTERK DIGITAL
c A ra o A A 7 / o N

Pascal MICROENGINE™ Product

SUMMARY OF OSHO OPERATING SYSTEM 20~013007-00A3

) TECH NOTES
The HO software relszase has improvemaents in software, hariwars,
and firmware. The mcst important aspect is that 1/7 interrunt
capability is provided.

New Features

The interruot capability is manifest to the user as four new features.,
The typeahead queue allows typed characters to be‘stored

until there is a programatic request. The tyrnea
is 80 characters in length.

head queue

The start/stop feature is the ability to suspend output to
the terminal znd then resume the output. The start/stop
key is specified by the user in the SETUP nrogram. The
default setting is control- S,

The flush feature gives the ability to terminate output to
ha terminal. The flush key is specified in the SETUP
¥ogram. The defaualt setting is control-~F.

‘The user break fesature provides the capability to interrupt
2 program's execution &t any time. The braak ey is
specified in the SETHIP program and its default setting is
the break key or for terminals without break xey it is
control-a,

As a part of the 40 release, new .microms are incorporated into
F,he Microengine board. These microms correct several nast microcode
problems. The following changes WLllnbe noticed by the user.

1. "Integer overflow reporting is inhibited. This was done to corresnond
to the UCSD standard.)

2, A floating point underflow reporting is inhibited. This now
corresponds to the UCSD standard for floating noint. Now a
floating point underflow causes the floating point resul: to be
reported as 0.0,

"
3. Te result of 1/9.0 now causes a floating peoint error.

EN
.

a
D

he stack overflow run-time error is now reported correctly.

5. The MQD operator now generates a run-time error message (value range
error) for I MOD J where J is :$s than or equal to zerc. This
corresponds to the proposed ANSL/I’EE Pascal standard.

a. A new operator, BNOT, has been added to the operator sec. Its

g Page

3128 REDHILL AVENUE BOX 2180 NEWPORT BEACH, CA 92663 {714) 557-3550,TWX 910-395-1138

instruction code is 159. This operator replaces the operator , R8P,
which was unused. The 2UO0T cperator is now generated where zhe LNGT
operator was generated previocusliy.
bits in a word, whereas the 2NOT cperator complements only the low
order %“it and zerces the 15 high order bits. This fixes pvroblems such
as ORD(NOT FALSE) which formerly returned a negative value and ORD(I >
0) where I is an integer which returned a negative wvalue when I was a
negative number.

Note that the AUOT cperator is always generzted when a NOT is
performed. Programs that need a whcle word complemeanted must use the
LMOT operator. This can be generated by use of the FMACHINE
constructa.

Concurrency

The START c¢nmmand is the system intrinsic that creates new tasks
in the system. Refer tc section 3.7.4 of the Hicroengine Pascal
Operations Manual for a discussicn of the START command. It may only
be called from a main task, such as the outer block »f a user
program. If START is called from &4 sub~task, & run-time error is
generared. Ag a part of the 3TART callinag sequence, the semaphure
primitives SIGNAL and WAIT are executed. The purpcse of this
semaphore synchronization for START is te assure that parameters
passed by a START call are received by the subtack before later
execution may alter them.

A user shculd note that this type of task switch occurs as a
part of task STARTing. Under the H0 oparating system, it should be
noted that calls to READ and WRITE execute the WAIT semavhore
operator 50 a task switch may occur during I/0. Thus a user shoul
realize that a task switch may occur at cther times than he has
explicitly programmed using SIGNAL and WAIT.

A correct concurrent program makes no assumptions abcut the
order of operations during concurrent processing. The corollary is:
a program must always be prepared for a2 task switch as interrupts
may happen any time. In order to protect indivisible operations, a
semaphore lock must be used. Note that a program that does not call

RT need not be concernad about concurrency and task switching as
the operation for a single task will handle all intertask
svynchronization.

Under the H0 software release, I/0 locks and associated critical
regions are implemented at the unit level, These semaphore locks are
used to assure that each I/0 operation is not interrupted until it
completes., This means that each UNITREAD, UMITWRITE, UNITCLEAR call
is an indivisible operation for a specific unit and that no other
task in the system may perform a unilt operation on the same unit
until the first operation completes.

Page

The LNOCT operator complements all & '

Iinterrupts

s Each time there is a hardware interrupt, a software semaphore is
signalled. When a hardware interrupt occurs, all interrupts are
disabled. Thus a typical, I/0 driver upon receipt of an interrupt
must re-enable interrupts after checking status and capturing the
I/0 data.

Interrupts may be enabled programatically. In order to enable
interrupts, the program must write to the interrupt enable register
which is at address FC48 hex. For example, the Pascal procedure
below enables interrupts.

procedure enableints;
var enabletrix: record
case boolean of

true: (addr: integer):
false: (loc: ®integer);
end;

kegin
enabletzix.addr := =952;
enahletrix.lsc® := =1;
end;

{ Fcag hex }

Interrupts may be disabled by a program at the I/0 device
level. That is eaci peripheral device, such as the WD 1931 on the
serial port or the AM38255 on the parallel port, has a specific bit or
bits that disable interrupts for the device. Refer to sections 3.4,
5.5, and 5.5 of the Microengine Hardware Manual for a description of
the specific control bits. For example, to disable interrupts on a
serial port(bits 1 and 2 of control register 1), the request tc send
bit and the receiver enable bit must be reset.

When an interrupt driven I/0 driver executes, a typical sequence is:
Set up device controller registers to parform I/0

Wait(device interrupt semaphore)

Capture data

Re~enable interrupts

In this sequence the microcode handles the conversion of a
hardware interrupt signal to a software signal. For a discussion of
semaphores, see section 2.7.4 of the Microengine Pascal Operations
Manual. When an interrupt is generated by the hardware, interrupts
are disabled for the entire system. The I/0 driver sequence above re-
enables interrupts as soon as possible after the interrupt signal is
received., Due to the necessity of re-enabling interrupts after an
i/0 interrupt, it must be guaranteed that when a hardware interrupt
attached semaphore is signalled, an I/0 process is at a high enough
prierity that it can execute in order to re-enable interrupts.

Page 3

-~

When an I/0 operation is regquested by a program, the ownerating
system temporarily raises the priority of the I/0 calling tasx. The
I/C interrupt causes arn 1/0 task to run so that it can re-enabdle
interrupts. This I/0 priority switch changes the pricrity of the
task requesting the I/7 to run at a priority becween 240 and 235. I:
order to keep the I/C :gks at highest priority, no cther rtask in th
system may run at a h.gner priority than this. Tc safeguard this, the
START command will not let a task run at a priority higher cthan
240, If a2 task must be started at a higher priority, massing the
stack space parameter as a negative number to the start command will
override this restriction.

Bl

=

©

Page 4

CONCURRENCY AND INTIRRUPT INTRINSICS

Below is a description of the c¢oncurrency and interrupt
intrinsics. See section 3.7.4 of the MICROEZNGINE Pascal Operations
Manual for furcher details on the Concurrency 2Primitives and
Interrupts.

PROCEDURE ATTACH(SEMAPHGORE, INTEGER) ;

This procedure will attach the semaphore to the interrupt address
specified by the integer, allowing a hardware interrupt to signal
a semaphore. 3See section S.1.3 Device Initiated Communicaticn
with the Processor: Interrupts in the MICROEWGINE Computer User's
Manual for the interrupt addresses.

PROCEDURE SEMINIT(SEMAPHORE, INTEGER);

This procedure initializes the semaphore. The integer value
specifies the number of times the semaphore has been signalled.
The following example initializes the semaphore SEM to not sigralled

SEMINIT(SEM, 0}

PRCCEDURE SIGNAL{SEMAPHORE];

The procedure increments the number of outstanding signals for

the semaphore. [f any tasks are waiting on the semaphore, the
first task on the queue for the signal is decremented. The highest
priority task no't waiting on the semaphore will then execute.

PROCEDURE S5TRRT(PROCESS(PARAMS) ,PROCESSID,INTEGER, INTEGER);

This procedure causes the process %o be initiated asynchronously.
The vrocessid wil be assigned to point to the TIB initialized.

The two integer parameters, STACKSPACE and PRIORITY respeciively,
specify the anount o¢f stack swace that the task will be allocated
and the pricrity at which it will run. PRIORITY is of type 2..255.
(See section 3.7.3 Resisters anrd Cperating System Tables for a
description of the TIR.)

PROCEDURE WAL.(SEMAPHORE);
This procedure will cause this task to wait until the semaphore

has been signalled. If the semaphore has already been signalled,
the task will be put on the ready gqueue and the number of outstanding

Page 5

*

signals for the semaphore will be decremented.
rask not waiting on a semaphare will then axecute.

EXAMPLES OF CONCURRENCY AND INTERRUPT INTRINSICS

progran ProcessExanple;
var pid1l,
pid2:processid;
Messagelock,
MessaqeReady,
ReceivedMessage:semaphore;
message:string;

process SendMessage(mess:string);
{1ocals are alloweq}

begin
wait(Messagelock);
megsage:=Ness;
signal(MessageReady);
wait{RecievedMessage);
signal(Messagelock);

end; SendMessage}

process PrintMessage;
begin

wait{MessaqgeReady);

writeln{message});

signal (RecaeivedMassage);
end; iPrintMessage}

begin . N
seminit(MessagelLock, 1);
seminit({MessageReady,0);
seninit(ReceivedMessage,0];

start(®rintilessage,pidl,85,200);
start{SendMessage(°The message'),pid2,85,290;
end.

The highest

pricrity

o)

Page 6

