

THE tlICROENGINE COMPANY

tm
Pascal MICROEHGINE Computer

User's Manual

Preliminary Edition

March, 1979

Software is provided on a licensed basis only and is the property of the
University of California with per•issi1:m granted for use on an individual
systell basis only. Copies may be made for archival purposes only.

Infor•ation furnished by The MICROENGI!E Company is believed to be accu'l'ate
and reliable. However, no responsibility is assumed by The tlICROEMGIME
Company fol' its use; nor for any infringements of patents or other rights of
third parties which 11ay result fr·:>ll its use. No license is granted by
implication or o·therwise under any pat.ent or patent rights of The MICROENGIME
COllJ>any. The MICROEHGINE CQ11Pan~1 reserves the right to change product
specifications at any ti111e without notice.

Copyright <c> 1979 lb~ The MICROENGIHE Company

First PriTited March 1979

All t'igl:ts reserved.

No part of this doc:umErnt may be reproduced by
any aeans, nor ·t;rar,slated, nor tranStAi tted
into a machine la119ui:19e without the 11ritten
per111ission of The 11ICJi~OENGINE Company.

MICROEHGIHE is a R6'9istered Trademark of
Uestern Digital Co·rpol'ation.

The MICROENGIHE 'Company is a wholly··mvned
subsidiary of UestE?rn Digital Corporation.

PREFACE

This manual describes the use and operation of the MICROEMGINE Company's
microca.puter products for developing and executing programs in the Pascal
language. These products are:

o the YD/900 Pascal MICROENGINEtm Single-Board Computer,
an B by 16-inch board containing a WD/9000 16·-bit
aicroprocessor that directly executes UCSD's Pascal P­
code, 64K bytes of memory, 2 RS-232 asynchronous serial
ports, 2 8-bit parallel ports, and a Floppy Disk
Controller; and

o the WD/90 Pascal MICROENGINE Co1tputer, a desktop
microcomputer comprised of a Pascal MICROEMGINE Single­
Board Computer and pot1er supplies enclosed in a
stylized housing.

The• 1Ranua l is intended to serve both as an i ntroduc tor y guide and as a
reference source. Chapter 1 presents an overview of the computer. It briefly
describes hardware components of the computer; the software provided with the
c01111puter; the mechanical, environmental, and electrical requirements of the
computer; and the computer operation. Chapters 2, 3, and 4 provide "how-to"
inf'ormation: how to install a new computer, how to operate the computer, and
how: to perform troubleshooting procedures. Chapter 5 presents detailed
information on the c01Aputer's operation.

The, software provided with the computer is the Pascal Operating System
developed at the University of California at San Diego <UCSD>. This operating
system is described in the Pascal III.O Operating System Reference 11anual.

ltlHBB!

This manual was prepared and edited using the
UCSD Pascal Screen Oriented Editor and was
printed using a PRINTRONIX 11odel P300
lineprinter. The lineprinter was provided by
PRINTRONIX Corporation, Irvine, California.

CONTENTS

1. CJ\IERVJEtJ • • • • • • • • • • • • • 11 • 111 • • It • • • • • • • • • • • • 111 • • • • • • • 11 • • • • • • • • • • 11 a • • • • • II • • • 1
1.1 Components of the Co11puter •••••••••••••••••••••••••••••••••"•• l
1.2 Pascal Operatin9 System ••••••••••••••••••••••••••••••••••••••• 2
1.3 Requirements of the Computer •••••••••••••••••••••••••••••••••• 3
1.4 Computer Operation •••••••••••••••••••••••••••••••••••-•••••a•• 3

2. INSTALLATION PROCEDURES ••••••••••••••••••••••••••••••················ 5
2.1 Settin9 Option Switches ••••••••••••••••••••••••••••••••••••••• 5

2.1.1 Opening the Computer Housing •• _....................... 5
2.1.2 Setting the Floppy Disk Controller Option

Switches ••• 7
2.1.3 Setting the System Terminal Specifications

Switches ••• 8
2.1.4 Setting the Serial Port Baud Rate Switches ••••••••••• 10
2.1.5 Reclosing the Computer Housing ••••••••••••••••••••••• 10

2.2 Installing System Components •••••••••••••••••••••••••••••••••• 11
2.2.1 Installing the Computer •••••••••••••••••••••••••••••• 11
2.2.2 Connecting the Peripherals ••••••••••••••••••••••••••• 11
2. 2. 3 Plugging in the Power Cord ••••••••••••••• .- • • • • .. • • .. 12

3" OPERATING PROCEDURES••••••••••••••••••••••••••••••••··········~······ 13

4.

3.1 Starting and Stoppin9 the System •••••••••••••••••••••••••••••• 13
3.1.1 Turning On the Power ······················~·········· 13
3.1.2 Loading the System Software •••••••••••••••••••••••••• 14
3.1.3 Stoppin9 the System •••••••••••••••••••••••••••••••••• 14

3.2 Changing Hardware Option Switch Settings •••••••••••••••••••••• 15

TROUBLESHOOTING PROCEDURES •••••••••••••••••••··············-·········
4.1 The Troubleshooting Process: A General Discussion •••••••••••••
4.2 Symptom 1: Operatin9 System Fails to Announce Itself •••4••••••

4.2.1 Repeating the Software Loading Procedure •••••••••••••
4.2.2 Checking the Floppy Disk Controller Option

17
17
18
18

Switches ••• 18
4.2.3 Measuring and Adjusting the Power Supplies ••••••••••• 19

4.3 Symptom 2: Transfers to the System Terminal Fail •••••••••••••• 20
4.4 Symptom 3: Transfers to the Parallel Ports Device or

Floppy Disk Fail ••••••••••••••••••••••••••••••••••• 21
4.5 Symptom 4: System Fails to Pass Diagnostic Program •••••••••••• 21
4.6 The Troubleshoo·ting Process: a Summary Flow Chart

5. THEORY OF OPERATIONS•••······ 2~
5.1 Processor/Memory and Processor/Peripherals Communication ••• a ••• 25

5.1.1 Processor/Memory Communication •••••••••••••••••••••••• 28
5.1.2 Processo1•-Initiated Communication with Peripheral

Devices ••• 28
5.1.3 Device-Initiated Communication with the P1·oce!:•sor

Interrupts •• 29
5.2 Pascal MICROENGINE Processor ••••••• H•••••••••••••••············ 30
5.3 l'lefttory. W • • # # # # # # # • • # # # # # # # ######•a# M ##a•#######•• D # # • 11 #•a••••"• 31

5.4 Se1'ial Ports•••••••••••••••••••••••••••••a•••••-•••M•••••••••••• 31

Fi9UT"e

5.4.1 Default Operation of the Serial Ports ••••••••••••••••••••• 3~
5.4.2 Device Pro9rammin9 Me•chanism: the Control Registers ••• u•• 37

5.5 Parallel Ports ..••.•. o•"••••••••••••••••••••••#••u•••••··~······ 43
5.5.1 Default Operati1)n c1f the Parallel Ports ••••••••••••••••• .q~:J

5.5.2 Device PrograM:ing Mechanism: the Control Regj.ster •••• .a 46
5. 6 Floppy Disk Controller and DtlA Controller 49

5. 6.1 Start-Up Proced1Jre~• Involving the DMAC and FL>C- H 51
5.6.2 Processor-Initi.~tecl Communication with the DtlAC and FDC. 51
5.6.3 OMA Controller Orgc:inization and Operation 53
5.6.4 Floppy Disk Con'tro:.ler Organization and Operati011 ••••••• 58

ILLUSTRATIONS

Number Title

1-1 Pascal MICROEHGINE Computer " 1

2-.. 1 Removin9 the Rear Panel ••••••. ••••w•••••••••••••a•••ll•"•"•••U•••••• 5
2-2 Removing the PC Board •••••••••·•••••••••••••••••·-·•~a•••••••••••••• 5
2--:J Location of the Option Slui t·ch Pack ages ••••••••••••••••• u .. u....... 6
2-.. 4 Air Vents ••••••••.•••••••••••.•••••••••••••• n ••• " •• ,. ,, • ,. ••• ,, • - ••• a • • 11
2·-~> Rear Panel •••••••••••••••••••. , ••••••••••••••••••••••••••••• ¥111•••••• 11

3-1 ON/OFF Switch ... lJ

4-1 RESET Button Location ••••••••11••••••••••••••••••••••••••••••v•••••• 19
4-2 Locations of the Power Supp lie!> • • • • • • • • • • .. • • • • • • • • • • • • • • • .. • • • • • • • • • 1r1

4-3 Measuring and Adjusting a Power Supply··················"·········· 20
4-4 Fault-Finder Flow Chart ••••••·••••••••••••••••••••••••••a•••r••••••• 22

5-l Pascal MICROENGIME COfRPuter COlnponents ••••••••••••••••••••••••••••• 26
5·-2 Default Parallel Port Control l~egister Values ••••••••••••• "" •••••••• 48
5-3 Format of First Data Word Tran·>mitted to the FDC 53

T~LES

Table·
Number Title

2-·1 Floppy Disk Controller Option Switch Settings u..... 7
2-2 Standard System Terminal Su1itch Settings • • • • • • • • • • • • • .. • • • • • .. • • • • • • • B
2-3 System Terminal Specifications Switch Settings 9
2-4 Serial Port Baud Rate S.itch Settings 10

5-1 Communication Bus Structure• Control Lines ••••••••••••••••••••••••••• 27
5-2 Standard General Device Adclresses ••••••••••••••••••••••••••••••••••• 29
5-3 Interrupt Conditions and Ve~ctor Addresses A................. 30
5-4 Serial Port Cable Connector· Pin Assignments •••••••• u-.••••--H••••• 32
5-S Serial Port Addresses ••••••• ~·······•••••••••••••••••••••#••••······ 34
5-6 Seri a 1 Port Status Re9i ster· Contents.................................. 3~

5-7 Serial Port Control Register 1 Contents ••••••••••••••••••••••••••••• :37
5-B Serial Port Control Register 2 Contents ••••••••••••••••••••••••••••• 41
5-9 Serial Port SYN, OLE, and Control Register Addresses ••••• ~··a••••••• 42
5-10 Parallel Port Cable Connector Pin Assignments ••••••••••••••••••••••• 44
5-lll Parallel Ports Control Lines (Port C) ••••••••••••••••••••••••••••••• 45
5-12 Parallel Ports Addresses ... 46
5-ll3 Parallel Ports Control Register Contents •••••••••••••••••••••••••••• 47
5-14 Floppy Disk Cable Connector Pin Assignments ••••••••••••••••••••••••• 50
5-15 DMAC/FDC Addresses•••••••••••••••••••••••a•o•••••«•••••••••••a•••••• 52
5-16 DMAC Control Register Contents •••••••••••••••••••••••••••••••••••••• 54
5-17 DMAC Status Register Contents ••••••••••••••••••••••••••••••••••••••• 55
5-18 Stepping Motor Rates for FDC Type I Commands •••••••••••••••••••••••• 59
5-19 FDC Command Register Values for Type I Commands ••••••••••••••••••••• 60
5-20 FDC Status Register Contents for Type I Commands •••••••••••••••••••• 61
5-·21 FDC Command Register Values for Type II Commands •••••••••••••••••••• 6J
5-22 FDC Command Register Values for Type III Commands ••••••••••••••••••• 64
5-23 FDC Status Register Contents for Type II and Type III

Commands••#•••••••u• 64
5-24 FDC Command Register Values for the Force Interrupt Command

CT~e IV> ••• 65

1. OVERVIEW

The WD/90 Pascal MIC~OENGlNE Computer is a desktop microcomputer for
developing and executing programs in the Pascal language. figure 1-1 shows the
out:11.1ard appearance of the computer.

Figure 1-1. W0/90 Pascal MICROENGINE Computer

To create a complete computer system, the user need only add a system
terminal, floppy disk drive, and any other desired I/O peripheral devices.

Thi!s introductm·y chapter provides an overview of the hardware
components of the computer; the software provided with the computer; the
mechanical, environmental, and electrical requirements of the computer; and
the computer's operation. Subsequent chapters describe procedures for using
the computer and also provide detailed information on the operation of the
compu·ter and its components.

1. 1 COMPONENTS OF TiiE COl1PUTER

The WD/90 Pascal MICROENGINE Computer is driven by Western Digital's WD/9000
Pascal MICROEHGINE chip set, a stack-oriented 16-bi t processor that directl\J
exect1tes UCSD' s Pasca 1 P·~code. The processor and the o·ther hardwal'e
comJ)Onents of the computer are on an 8 by 16-inch board enclosec.J in a low­
profile (5-1/4 by 16-1/4 by 13-1/2 inch> stylized housing.

Page 1

The WU/9000 processor is a hardware realization of UCSO's pseudo P-machine.
The J)rocessor is comprised of fivu U::I/MOS circuits, each contained in a 40-
pin package. The individual circuit!> are:

o The Data Chip, containing the 11icroinstruction d1¥=odP.r,
the arithmetic and logic un:Lt <ALU» and the register
file.

o The Control Chip. containinf1 the niacroinstruction
decoder, portions of the control circuitry, the
microinstruction counter, anc1 input/output control
logic.

o Three 22 by 512-bit MICROl'I 1:hips, containing processor
microinstructions.

The p1rocessor uses 4 power supplies <+~iV, +12V, -12V, and -5V> and runs off a
3 MH:z clock signal that is subdivided into 4 nonoverlapping phases <75
nanoseconds per phase). All I/O •signals are C011patib le with tt'ansistor­
transistor 109ic cnu.

In addition to the five processor clhipH1 the board contains:

o 64< bytes <321< 110rds) of ra·ndon-access memory <RAM>.

o Two RS-232 asynchronous serj.al ports 111ith switch­
selectable baud rates fr•IJllll 110 to 19,200 bits per
second.

o Two 8-bit parallel ports.

o A Floppy Disk Controller that :ls switch-selectable for
single or double-density 5-·1/4 or 8-inch floppy disks
and which can control up to 4 drives of the same type.
The Floppy Disk Controller 1:>perates under control of
the Direct l'lealory Access Contr1lller.

1 .. 2 PASCAL OPERATING SYSTEM

The software provided with the Pa~Kal MICROENGINE Computer is the Pascal
Operating System developed at the University of California at San Diego
<UCSO>. This operating syste. include·:.:

o A Pascal Compiler.

o A BASIC Collpiler.

o A File Manager.

o A Screen-Oriented Text Edi tot·.

o A Debugging System.

Pal}E' 2

The operating system is available in any of the following forms:

o One B-inch single-density floppy disk.

o One 8-inch double-density floppy disk.

o TlllO 5-1/4-inch single-density floppy disks.

o Two 5-1/4-inch double-density floppy disks.

Chapter 3 of this manual describes the procedures for loading the operating
system into the computer. Complete information of the use of the operating
system is provided in the Pascal III.O Operating System Reference Manual.

1.3 REQUIREMENTS OF THE COMPUTER

The Pascal MICROENGINE Computer has a straight forward set of easily satisfied
requi reinents:

o The computer requires a flat, hard surface to hold the
board enclosure, which is 5-1/4 inches high, 16-114
inches wide, and 13-1/2 inches deep.

o The computer can operate in temperatures in the range
0-50 degrees C. HUlftidity can range between OI and 95%
without affecting the coaputer's operation.

o The computer normally runs on 110 volts AC. Optionally,
the user can order a Pascal MICROENGINE Computer which
runs on 220 volts AC. In either case, the line frequency
range is 48-63 Hz.

1.4 COMPUTER OPERATION

Communication between components of the computer -- processor, memory.
peripheral ports, and controllers -- is achieved via a processor-controlled
bus structure. This structure is comprised of an address bus and latch. a
bidirectional data bus, and several control lines.

The processor initiates communication with a peripheral device or a location
in meaory by loading the appropriate address onto the address bus. A
peripheral device can initiate cOIMlunicaton with the processor by generating
an interrupt. Memory cannot initiate communication with the processor; all
processor-memory communication is initiated by the processor. In addition. the
Floppy Disk Controller operates under control of the Direct Memory Access
Controller, allOU1ing data transfers between a floppy disk and memory without
involving the processor. Each of these communication mechanisms is discussed
in Chapter 5.

,

Page 3

2. INSTALLATION PROCEDURES

When a new Pascal MICROENGINE Computer is received, the first step is to
unpack the components and verify that all or the items listed on the packing
slip have been included and are intact. <In the event that any of the
components are missing or have been damaged in shipping. cont.act your
MICROENGINE Company representative immediately.>

After verifying that the delivery is in order, take the steps outlined in this
chapter to install the computer.

2.1 SETTING OPTION SUITCHES

The Pascal MICROENGINE Computer provides switches for specifying the
cha1·acteristics of the floppy disk containing the Pascal Operating System, for
providing information about the system terminal, and for selecting the baud
rate for each of the two serial ports.

2.1.1 Opening the Computer Housing

The first step is to open the computer housing. Begin by turning the computer
on its side with the OH/OFF switch toward the top. <CAUTION: the computer
housin9 has sharp edges. Be careful not to scratch your table top.> Remove
the four screws located on the rear panel as illustrated in Figure 2-1.

Slide the rear panel and attached PC board about half way out as illustrated
in IFigure 2-2.

Fiyure 2-1. Re1ROving the Rear Panel Figure 2-2. Removing the PC Board

Page 5

X14

FLOPPY DISK
CONTROLLER
OPTION SWITCHES
L9

SYSTEM TERMINAL
SPECIFICATION SWITCHES

ffi145678

SERIAL PORT
BAUD RATE
SWITCHES

8
7
6

3
2

-··-------·--'--·

Fi_gure 2-3. Location G<f the Option Switch Packages

Pa.·~ 6

2.1.2 Setting the Floppy Disk Controller Option Switches

Loc:ate the Floppy Disk Controller option switch packa.Qe (component
designation L9) on the board as shown in Figure 2-3.

Th:ls package contains two switches. Switch 51 OFF corresponds to sin9le··
density mode, and switch 1 ON corresponds to d()Ub le-density mode a Switch S~!

OFF corresponds to 8-inch disks, and switch 2 ON corresponds to 5-·1/Ll-inch
di!:.ks.

Set these switches according to the characteristics of th<:.' floppy disk (s)
containing the Pascal Operating System. Table 2···1 summarizes the possibll~
combinations of disk characteristics and the corr-espooding option switch
settings.

Table 2-1. Floppy Disk Controller Option Switch Settj.ngf~

Operating System Resides On:

8-inch double-density disk
8-inch single-density disk
5-1/4-inch double-density disks
5·-1/4-inch single-density disks

Set Sl to: Set S2 to:

ON OFF
OFF OFF
ON ON
OFF OH

2. 1. 3 Setting the System Terminal Sp1?r.Hications Switche~,

After setting the Floppy Dis.k Controlle1· option switches, the next step is to
provide some information about the sy•>tem terminal, i.e., the terminal to be
us.ed as the vehicle for communication b1l!tween the computer and t.he user. 1)

harduJal'e option switch packa9e <XL.ii) is pl'ovided for supplyj.n9 this
infor111at:ion, located as shrn11n in Fi_qur·e 2-3.

Ei.Qht suai tches al'e provided.

Set these stuitches according to the cha··-acteristics of the system terminal.
Table 2-2 outlines the settings fo:' a standard system terminal: Table 2--3
describes the f1Jnction of each switch. The controls on the system terminal
must be set to inhibit parity gern?l'ation <Operating System constraint>.
Switches 57 and S8 must be set tu matc:h the number of bits per charactel'
generated by the terminal.

Table 2-2. Standard Systc:om Terminal Suiitch Settings

Switch Setting
·-·-~ .. ·-·--.. __ ,_ .. ,._, ____

S1 1 ("OFF" or "OPEN">
S2 0 ("OH" or "CLOSED">
53 0 ("ON" or "CLOSED">
S4 1 <"OFF" or "OPEN">
55 Don't 1:0l'e
S6 1 <"Off" or "OPEN")
57 x <Bits oer character; 111ust
58 y match iettin9 on terminal.)

PARITY MUSl BE TUR:'ifD OFF AT TERMINAL

PagP. 8

Table 2-3. System Terminal Specifications Switch Set.ting!,;

Switch

Sl-3

S4

55

S6

Functlon

Select the transmit and receive clock:
S:i S2 S1

0 0 0 - Transmit and receive clock input: OX>
0 0 1 - Rate 1 (32X>
0 1 0 - Rate 2 C32X>
0 1 1 - Rate 3 (32X>
1 0 O - Rate 4 (32X>
l. 0 1 - Rate 4 - 2 <64X>
1 1 0 - Rate 4 - 4 (128X)
1 1 1 - Rate 4 - 8 < 2~56X>

In asynchronous mode <switch 6=0), contr·ols thr>
alternate Receiver clock rate:

0 - Receiver clock rate determined by
swi tc:hes 1-3.

1 - Receiver clock rate = Rate 1.
In synchronous mode (switch 6=1), controls SYN
character stripping:

1 - SYN character stripping enabled.
O - SYN character strippin9 disabled.

Controls lllhether parity is odd or even:
1 - odd pari tyM
0 ··• even parity.

Controlc; the character modP:
1 -· synchronous mode.
0 - asynchronous mode.

S7-B Select the number of bits per charact.m':
SB H7

O O ·- 8 bits.
0 1 - 7 bits.
1 O - 6 bits.
1 1 - 5 bi ts.

where: "0" corresponds to "ON" or "CLOBED"
"1" corresponds to "OFF" or "OPEN"

Pa.Qe 9

2., 1.4 Setting the Serial Port Ba1Jd •!ate Switches

Locate the serial port baud rate selection switch package <X16) on the board a~.

shown in Fi.gure 2-3.

Four switches are provided for each serial port, allowing 16 possible rate
selections for each port.

Set the Sloli tches for each seria 1 port i;o the baud rates appropriate to the
type of device to be connected to thai; port. Table 2-4 outlines the settin9s
for cOlllfRonly-used baud rates.

"fable 2-4. Serial Port Baud Rate Switch Settings

Baud Rate

50
75

110
.134.5
150
300
600

1200
1800
2000
2400
3600
4800
7200
9600

19200

Switch Settings
Port A Port B
:t 2 3 4 5 6 7 8

0 0 0 0
:l 0 0 0
() 1 0 0

I 1 0 0
0 0 1 0
:. 0 1 0
() 1 1 0
:l 1 1 0
0 0 0 1
.l 0 0 1
0 1 0 1
.l 1 0 1
0 0 1 1
L 0 1 1
I) 1 1 1
L 1 1 1

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

where: "O" correspo·ids to "ON" or "CLOSED"
11 l11 correspo·ids to "OFF" or "OPEN"

Rec losi n.9 the Compute1· Housi n ~

The computer housing can be reclosecl by reversing the steps outlined in
subsection 2.1.1. Slide the PC boa·:-d and rear panel back in place and then
attach the rear panel by replacing the four screws.

2. ;~ INSTALLING SYSTEM COMPONENTS

Onc:e the option switches have been set, the various components of the system
can be installed.

2. ~~-1 Installin9 the Computer

Place the housing containing the Pascal MICROEMGINE Computer on a fl~t, hard
surface. Be sure that neither the air intake vent nor the air outlP.t vent is
blocked. As illustrated in Figure 2-4, The air intake vent is located on the
boi:tom panel of the computer housin9, and the air outlet vent is located on
thf~ rear pane 1.

Be sure that the computer is located near an electrical outlet, preferably
111it;hin six feet, the length of the power cord.

AIR OUTLET VENTS

AIR INTAKE VENTS

Fi.9l1re 2-4. Air Vents

Connecting the Peripherals

.J4 FLOPPY DISK

J3 PARALLEL PORT

J2 SERIAL PORT B

J1 SERIAL PORT A

ON/OFF SWITCH
POWER
CORD CONNECTION

RESET BUTTON

Figure 2--5. Rear Panel

Bef'ore connecting any periphera 1 device to the Pase a 1 MlCROEHGINt.
Computer, review the documentation provided by the manufacturer of that
device. Perform the specified inspections and off·-line start-up procedures.

Aft.er c011pletin9 the peripheral device pre-installation inspe{"tion and
verification procedures, locate the port connections on the rear panel of the
computer housing, illustrated in Figure 2--5 ..

Connect the floppy disk drive cable to the connection labeled J4 FL£1PPY DISi<.

Page 11

Ccnnect the cab le from the tern1i nc:11 to be used for system/user communicaticin
\;o thP connection la be led Jl SER I AL PORT A.

tf other deYices are to be connected to the auxiliary s.er1al port and/or the
parallel port, connect those cables a1:cordin9ly.

When a device is connected to the peripheral ports, the cable connector must
hi? lld red for ei t:her true data or fa ls,e data. For true data, conner.t the TIJO
.md TDI lines, (pins 32 and 8, respectively> to .Qround \pin '/). For false
data, cmrnect TOO and TOI to the +5 volt supply (pin 26).

P lu9,9in9 In the Power Cord

Next, locate the ON/OH rock er smi tch on the rear pane 1 of the computer
housi 119, as i llustrat.ed 3 n 2--5 ..

BE. SURE THAT THIS SWHCH IS SET TD Off. Then, lociltn t.hP power· corcl
connection near the ON/OH s1ui t.c:h on tt' e rear panel. l1 lu9 the syi:;1;em polller
cor·d into this connection.

ff tlH? computer was ordered to ope1·atE· on 110 volts, t~w pou•E-11' cord is
delivered with a standard wall outlet plug attached. If the system war.,
nrdert~d to operate on 2~~0 vol tr;;., tht? power cord is delivered without an outlet
plu.9- Attach an approprjate plu9 to tte cord.

fifter AC power is applied, the system is ready for operation.
procedures are outlined j_n Chapter :3.

Uperatin9

3. OPERATING PROCEDURES

When the Pascal MICROEMGINE Computer is pr·operly installed <see Chapter 2),
operation consists primarily of starting and stopping the system.

3.1 STARTING AND STOPPING THE SYSTEM

System start-·up involves three operations:

1. Turn on the power.

2. Load the system diskette into the disk drive.

3. Depress the RESET butt:on.

3.1.1 Turning On the Power

Turn on the power by setting the ON/OFF rocker switch t.ri ON~ The ON/OFF
switch is located on the rear panel of the computer housin91 as illustrated in
Figure 3-1.

The ON/OFF switch lights when set to ON to indicate that the computer is
rece1 v1 ng power. (If the swi t.ch fails to light, make sure that both end5 of
the power cord are plugged in properly. If the switch still fails to light,
the user can assume· that the wall outlet is not supplyin.Q power, since the
switch light is wired directly to the power cord connectio11. >

RESET
BUTTON

POWER CORD
CONNECTION

Figure 3-1. ON/OFF Switch

Page 13

3.1.2 Loading the System Softwar1:i

The softuJare provided with the Pasc,:il rtICROEMGIHE Computer is the Universit1J
of California at San Diego <UC3D> Pascal Operating tiyst:em. lhis system
includes:

o Pase a 1 Compiler

o BASIC COlllpiler

o File Manager

o Screen-Oriented Text Editerr

o Debugging System

To load the operating system, simply load the operating system floppy disk
into floppy disk drive (0) and deprc?ss the RESET button located next to the
pmuer cord connection on the rear panel <see Figure 3-1).

NOTE: The MICROENGINE Company recommends that whenevet•
the system is started, the steps just discu1:>~•ed

be performed in the 1>rder described. That is,
the ON/OFF switch should be set to OM before a
floppy disk is loaded.

The operating system announces itself ,md then generates the line:

Command: E(dit, R<un, F<ile, C<omp, L<ink, X<ecute, A<ssem, D<eb1J9

to the screen of the system terminal, indicatin__g that the system has been
loaded successfully and is ready to accept any of the listed r.omm.Jnds. The
Pascal III.O Operating Syste• Referenc1:i Manual provides complete information
on the user / s options at this poi n·t;. In the event that the command prompt
line fails to appear repeat the above 1)rocedL•res carefully. If the prompt line
sti 11 fails to appear consult Sec t;ion ll. 2.

3.1. 3' Stopping the System

At the end of a session with the Pascal MICROENGINE Computer system, simply
remove the software floppy disk<s> from the floppy disk drive<s> and set the
ON/OFF switch to OFF.

NOTE: The MICROENGIME Company
procedures be performed in
the system is stopp1?d.
disk<s> should be rernoved
switch is set to OFF.

recommends that these
this order wheneve1·
That is, the floppy
before the ON/OFF

3. ;~ CHANGING HARDWARE OPTION SWITCH SETTINGS

Chapter 2 outlines the procedures for setting the Pase al ttICROE:.MGIME Computer
hal'dware option S\l.li tches as part of the system installation process~ <Sud tches
arE~ provided for specifying the floppy disk, system terminal and baud ratei:,
for• the serial ports.> H the user wishes to change these settings, he tollo111s
thE~ same procedures, outlined in Chapter 2.

Page 15

4. TROUBLESHOOTING PROCEDURES

The Pascal 11ICROENGINE Computer requires no preventive maintenance. fh:i.s
chapter outlines procedures that are required only if a problem arises with
tht~ operation of the system.

After a general discussion of the troubleshootin_g process, this chapter
describes specific procedures, presented in terms of the "symptom" displayed
by the system# That is, this chapter details the steps to be taken if:

o the Pascal Operating System fails to announce itt..eH
on the system terminal Lapon loading;

o data transfers to/from the system termina L the J.j llf~

printer or other device connected to the parallel
ports, or a floppy disk fail> or

o the system exhibits none of the above symptoms but
operates erratically#

The last section of this chapte1· summarizes the total fault-·Hnd:i.n9 procec~s­

for a complete Pascal 11ICROENGINE Computer system, again in flow chcn·t f1,rm ..

NOTE.: This chapter assumP.s that each of the system-'s
periphera 1 devices was thoroughly inspected and te~>t.l?d

befo1·e it was installed. If this is not the case, The
MICROEHGINE Company strongly recommends that the user
perform these procedures before be9inrsin9 t.he fault­
finding process. Peripheral inspection and testin9
procedures are discussed in subsection 2 .. .2 •. 2u

4 .. 1 THE TROUBLESHOOTING PROCESS: A GENERAL DISCUSSION

Fault-finding is largely a process of elimination. lJy per f'ormin9 the
verification procedures outlined in this chapter, the ust?r syst<.!matica lly
rules out possible sources of the problem unti 1 the ma lfunctimfi ng componE•nt
is isolated. The procedures require a high-quality oscilloscope capable of
resolving pulses of approximately 200 nanoseconds and a high input impedence
(10 meg ohms or greater> digital voltage meter.

Once the defective component has been isolated, three possible courses Gt
action are open:

o Repair the component, following appropriate wirin.<J
dia_grams.

o Install a replacement component, obtained from a The
MICROENGINE Company distributor or ordered directly
from The MICROENGINE Company. A distributor list is
available from any ttICROENGINE Company representative.,

o Return the component for service.
device is malfunctioning, return the

Page 17

If a periphera 1
device to :i ti..

manufacturer for service accordin9 to that
manufacturer's service agreeme·llt. In the case of a
malfunctionin9 Pascal MICROEliGINE Computer component,
send that component to The MICROEHGINE Company's
factory for repair. If the computer is under
warranty. the cust01111er is responsible only for
shippin9 the co~onent to The MICROENGIME Company;
The MICROENGINE Company provi~es required parts ancl
labor and return shipping. If the computer is not
under warranty, there is a fixed repair fee and thP
customer is responsible~ for all shipping. <For
details, see the Pascal MICRIJENGIME Computer warranty
statement and factory servjce agreement.

4. 2 SYMPTOM 1: OPERATING SYSTEM FAILS TO ANNOUNCE ITSELF

Normally, when the Pascal Operatin9 system is loaded, it announces
on the system terminal and prompts the user to enter a c0111mand.
announcement and prO#lpt line do not appear when the operating system is
follow the procedures outlined in this section.

Repeatin9 the Software Lo«tding Procedure

itself
If the
loaded.

First, try pressing the RESET butt<>n. This button is located on the rear panel
of the c01Aputer housing, as illustrate•d in Figure 4-1.

If the operating system still fail!; tc• announce itself, try reloading the
floppy disk and pressing RESET.. If this operation does not correct tl'le
problem, verify that the system termiT1al OH/OFF switch is set to OHM If it is
not, set the switch to OH and th•a'n ~·ress the RESET button. If the operatin.Q
system still fails to announce its1a'lf, try loading the backup operating system
Ploppy disk and pressing RESET.

Checking the Floppy Disk Gcmtroller Option Switches

If n,one of the procedures outlined in subsection 4.1.1 correct the problem,
check the settings of the Floppy Disk Controller hardware option switches#
•(As explained in subsection 2.1. 2, tht:ise switches are set according to the
size and density of the floppy disk 01· disks being loaded.>

:cf the switches are not set appropri.a·tely, change their settings as described
:in Section 2.1.1. Reclose the computer housing, reload the floppy disk, and
press the RESET button.

Page 18

Figure 4-1. RESET Button Location fligure 4-2. Locatio11 of the Power
Supp lie>~>

4.2.3 Measuring and Adjusting the Power Supplies

If the operating system still fails to announce itselr after the Floppy Disk
Controller option switch settin9s have been checked, verHy that the system
power supplies are functioning properly and adjust them if they are not.

Be9in by unplugging the system and opening the cc.mputer housing. Turn the
computer on its side with the ON/OFF switch located at the top. <Caution:
the computer housing has sharp edges, so be careful not to scratch your
table top.> Remove the four screws on the computer panel and slide the rear
panel and attached PC board all the way out of its mounting rails. Slide the
top cover all the way out of its mounting rails and then replace the printed
circuit board part-way back into its mounting rails. Locate the powP.r supp lies
as illustrated in Figure 4-2.

Note that the board includes 4 adjustable power supplies: +5 volts, t12 volts,
-12 volts, and -5 volts. 11easure the voltage of each by c lippi n9 a digi ta 1
vattmeter across each pair of terminals as illustrated in FigtJl'e lf·-3~

Page 19

GND

-12V

•';:JV ADJ

' . ~·.-··
-~·--.-•5V t.-·

t ...

Figure 4-3. Measurin_9 and Adjusting a Powc>r Supp hJ

If any of the supp lies aT'e not pT'OdL•nng pT'oper volt.age, adjust them to within
10 millivolts of their nominal level. Insert a screwdriveT' into the sfot:
pT'ovided on the power supply adjustme11t wheel for this purpose; turn the wheel
to the ri.Qht to increase the volta_ge 1Jr to the left to decrease the voltage.
<See Figure 4-3.)

NOTE: When replacin9 a pawHr supply <or the entire
board>, meaE.ure the voltage produced by each neu•
supply and, if nece!;;sar1J, adjust it by followi n_g
the procedure just outlined.

After verifying that the hardware option switches are set correctly, -the next
step depends on whether the floppy disk drive is active OT' not~ <Activitl.,J on
the drive can be detected by c lirk ing noises pr·oduced when a f'loppy disk is
loadC?d into it.) The fault-finder floui chart presented in figure 4·-4
diagrams the steps to be taken in either situation; see Section 4.6.

4. ~1 SYMPTOM 2: TRANSFERS TO THE 3YSTEM TE~MINAL FAIL

H the Pascal Operating SysteH aTinounces itself on the system te1'minal and
accepts commands from the terminal, but is unable to transmit data to the
syst...em termina 1 successfull1J, chE~Ck the confi9uration of the Pase al UpeT'atin9
System. See the Pascal III.O Operatjn9 System Reference 11anual.

4.4 SYMPTOM 3: TRANSFERS TO THE PARALLEL PORTS DEVICE OR FLOPPY DISK FAIL

If the system is unable to perform successful trans·PHrs to the de,licf?.
connected to the parallel ports (e.9., a line printer) or t.o the fi0ppy dh:·k ..
perform the procedures dia9rammed in Figure 4-4; see Section 4.6r

4. ~:; SYMPTOM 4: SYSTEM FAILS TO PASS DIAGNOSTIC PROGRAM

If the system displays none of the symptoms discussed in Sections 4 • .2 - ll. LJ
but behaves erratically, execute the system diagnostic progri:HR. Rep lace
malfunctioning cOll'lponents according to the directions supplied by the program.

4.b THE TROUBLESHOOTING PROCESS: A SUMMARY FLOW CHART

Figure 4~.4 presents a flow chaT't diagT'ammiTt.9 the completE- fault-findin<J
process.

NOTE: Use of this flow chaT't assumes a high fovt?l Clf'

COll'lpetence with advanced digital circuits and a
background in the use and operation of all
peT'ipherals used in the complete Pascal
11ICROENGINE Syst.em. Users not fami lia1· with
digital logic are advised to return the complete
unit to The MICROENGINE Company for compT'ehensivP
autOlftated analysis. This procedure saves t~e

user downtime and learnin9 delays encountered
when trying to fault·-find an advanced elec:tT'onic
unit such as the Pascal MICROENGINE.

To initiate use of the fault-finder flow chart. the followin9 conditions
must be met:

1) All line cords aT'e plugged in. all
"ON" with appropriate indicator
peripherals are on-line.

power switches
also "ON", and

arP.
all

2> Operating system disk is in disk d'l'ive <> and is in
"RESET" condition.

3:> User must have a high quality oscilloscope capabk
of resolving 200 nsec pul~es and a high input
impedence < lOMe9 ohm or greater) D. V. M. for acn1ri1te
1•eadings without circ:ui t loading.

4) Pre-installation inspection and testing p'l'ocedures
have been performed for each peripheral device.

Page 21

FAUL T·FINDER
FLOW CHART

FaJlt-Finder

STA:·--)

PUSH
MASTER
RESET

A-
< OS >YES ANNOUNCE.D

ON CAT

/

01-4------<..

[

REPLACE DISK AND
GOTO@

[

>ISK, DISK DRIVE
JR INTERCONNECTS
1AE SUSPECT.
SOLATE AND GO
·o@

rJM 1883 IS SUSPECT
~EPLACE AND GO TO
3) QA RETURN
UNIT TO W/D

NO

>

>

Flow Ola rt

CHECK OPERATING
SYSTEM
CONFIGURATION

REPLACE CHIPS
PEA INTERACTIVE
DIRECTIONS

YES

EXERCISE
SYSTEM

PERIPHERAL
FUNCTIONS

EXERCISE
INTERNAL

STRUCTURES

AUN
SYSTEM

DIAGNOSTICS

SYSTEM
FUNCTIONAL
READY FOR USE

STOP

Figure 4-4. Fault-Finder Flow Chart <Continued>

NO FLOPPY
ACTIVITY

SWITCH DISK TO
PROPER DRIVE AND
GOTO@

[

CHIP SET SUSPECT
RETURN TO WID

NO

NO

REPLACE DRIVE
AND GOTO@

RETURN DEFECTIVE
DRIVE TO
MANUFACTURER

Page 23

µCHIPSET IS
SUSPECT. RETURN
UNITTOWID

FD1791 IS SUSPECT
REPLACE AND GO
rn@oR
RETURN TO WID

M.1.8. DEFECTIVE
RETURN UNIT
TOW/D

INTERNAL LOGIC
ERROR.RETURN
TOWID

WD1931 SUSPECT.

NO

NO

NO

NO

REPLACE AND GO NO
TO @ OR .RETURN
TOWID

YES

CRT OR INTERCONNEC­
TIONS ARE SUSPECT.
RECHECK ALL CABLES
AND WIRING DIAGRAMS.
REFER TO CRT CUSTO­
M ER MANUAL FOR
PERFORMANCE VALI­
DATION TESTS.

Figure 4-4. Fault·-Firider FlOlll Chart <Continued>

NO DAT A TRANSFER
TC> LINE PRINTER

l;EYBOARD IS SUSPECT
lEFER TO KB MANUAL
'OR PERFORMANCE
IERIFICATION.

[

ND1931 IS SUSPECT .•

~EPLACE AND GO TO
@ OR RETURN TO W/D.

[

M.l.B., MEMORY OR
µCHIPSET IS
DEFECTIVE. RETURN
UNITTOW/D.

[

Z9 (8225A) IS
SUSPECT. REPLACE
AND GOTO@ OR
RETURN UNIT TO W/D.

A WRITE FAULT FLAG
HAS BEEN RECEIVED
BY THE FD1791 (A 16).
EITHER DISK DRIVE,
DISK, OR INTERCON·
NECTIONS ARE
INCORRECT. REFER TO
APPROPRIATE MANUALS.

NO

NO

NO

NO

NO

U
- ·----·] NE PRINTER AND
P INTEFlCONNEC
IONS SUSPECT
EFER TO L.P. MANUA:.
ND WIRING
IAGRAMS FOR
ERIFICATION

---·----·

" /

NO DATA TRANSFER
TO FLOPPY

lJISABLE .. WRITE

PROTECT AND

GOTO©

PUSH MASTER RESET. IF
PINS 3 & 39 DON'T GO
LOW, RETURN UNIT TO
W/D. IF PINS GO LOW,
GO TO@. IF PROBLEM
PERSISTS RETURN
UNIT TO W/0.

KEYBOARD IS SUSPECT
REFER TO KB MANUAL
FOR PERFORMANCE
VERIFICATION.

WD1931 IS SUSPECT.
REPLACE ANO GO TO
@ OR RETURN UNIT
TOW/O.

M.1.B. µCHIPSET, OR
MEMORY IS SUSPECT.
RETURN UNIT TO W/D.

DISK DRIVE IS STILL
WRITE PROTECTED .

YES

NO

NO

NO

NO

OR INTERCONNECTIONS NO
ARE OPEN OR
INCORRECT. RECHECK
DRIVE UNIT AND CABLE.
RETURN UNIT TO W/D
IF PROBLEM PERSISTS.

YES

·-------------------~

YES
"'.Jo..----<

DISK DRIVE IS
SUSPECT. REFER TO
CUSTOMER MANUAL
FOR PERFORMANCE
VERIFICATION.

NO
FD1791 OR DM1883 IS
SUSPECT. REPLACE
CHIPS OR RETURN
UNIT TO WiD.

5. THEORY OF OPERATIONS

This chapter describes the operation of the following Pascal 11ICROENGINE
Computer components:

o Pascal MICROENGINE processor

o Memory

o Seri a 1 ports

o Parallel ports

o Floppy Disk Controller and OMA Controller

Before discussing the operation of these components individually, this chapter
pre•sents an overview of the mechanisms for communication between the processor
and memory and between the processor and the ports and controllers.

5.1 PROCESSOR/MEMORY AND PROCESSOR/PERIPHERALS COMMUNICfHION

The Pascal MICROENGINE processor communicates with the peripheral ports and
controllers and with memory via a 16-bit data bus, a 16-bit address bus, and
several control lines. These busses and control lines emanate from a processor
controlled bus structure. This structure is comprised of a 16-bit address
bus, 16-bit addr·ess latch, a 16·-bit bi-directional data bus, and latcher; and
bus drivers as required for the control lines. The key control lines in this
structure are listed in Table 5-1.

The processor initiates communication with a peripheral device or a location
in memory by loading the appropriate address onto the addl'ess bus. A
peripheral device can initiate communication with the processor by requesting
an interrupt. <Memo·ry cannot initiate communication with the processor; all
processor-memory communication is initiated by the processor.) The following
subsections describe each of these communication mechanisms.

In .addition. the Floppy Disk Controller operates under control of the Di1'ect
tlemory Access Controller, allowing data transfers between a floppy disk and
memory without involving the processor. This type of communication is
described in section 5.6-

Page 25

Figure 5-1 illustrates the location of these components on the PC board.

----· ::=:::::=.::.;::.::::::::..:::..::.:...----·----, ==::::::.:.,,____________ --------~---· --- --------~--------·---·------~----· ---........ ~
,~:~o- SERIAL PORT A SERIAL PORT B PAflALLEL PC RT FLOPPY DISK PORT •oooouoooo

~- "iTiTT11 1 c i'TTT'IY:.:i' iUnnrn 1 ·: "~ rrrrnn f 1 ;~~;;:~~D1H tHL
11 ~:::::::~ =~:::::::,, ::::~~~·'.~~:.::::::: 11 r·1 r1 r1r1r1 :~:::::::::::::::::: 1 1 11 11 :== QQ.lt........ AO[IBESS DECOCE ANO --~ ri

11
. 1

1
i

1
1 f i

I ·1111wmf1 rm I m 1'ITT1Tf n 1 1 1
1

..
11 ~ n: Ii

! 1 I _. I t h .. , ['. ·::·"c
~ " " " " " " " · • ~EMOli~1,:;~~J~OL & PROCESSOR ANO SIGNAL BUFFERS PROCESSOR

__ 64K MEMORY ARRAY _'.'._ J I ,ilJiJ :LUJll !IJlilJiJ JUIJ1,:Jill ;JiJIJiJ1ii1i1uiJi][J[:! IHJiJi1[;i)[jiJii[jLJi)LJiJ[j(JiJ L TIMING

Figure 5-1. Pascal li'IICJ:OENGINE Computer ComponP.nts

Table 5-1. Communication Bus Structure Control Lines

Line

SYNC

Function

used by the processor to initiate a data
transfer operation

REPLY used by the ports and controllers to respo11d
to the processor's data transfer signals.

DIN <Data-In> used by the processor to cause the Read Data
to be enabled onto the data bus.

OOUT <Data-Out> used by the processor to cause the W1·ite Data
to be enabled onto the data bus.

t.18 <Write/Byte> used by the processor to signify a byte
<rather than word> output operation.

IO, Il, 121 and 13 <Interrupts>
used by the ports and controllers to request a
processor interrupt. <Only IO is used for all
interrupts in the Pascal MICROENGINE Computer>

IACK <Interrupt Acknowledge)

BUSREQ

BUSGRNT

BUSY

COMPUTE

used by the processor to signify that it is
respondin9 to an interrupt.

used by the OMA Controller to request access
to a bus for a word transfer operation.

used by the processor to signal the OMA
Controller that the requested bus is being
relinquished to the controller for a word
transfer operation.

used by the OMA Controller to signal that t~e

bus requested by the processor is not
currently available.

used to control execution of mic1·oinstructions
by the processor. This line is tied true.

Page 27

5.1. .l Processor/Memory Communication

To initiate communication with a 11JCation in memory, the processor louds a 16·­
bit value between 0000 and EFFF onto the address bus. Any value in this ran_9e
is a valid memory address and alerts memory for communication; the particular
value corresponds to a 16-bit word at one of the 32,000 locations in memory.

The processor also signals either the Data-In <DIN) contr·ol line or the Data­
Out <DOUT> control line, as approp1·iate to the type of l/O to be performed.
The memory unit acknowledges the communication and generates REPLY to the
processor and then responds to the Drn or DOUT line. On a HPilcl operation, the
memo·ry unit places the contents of th1~ addressed word onto the data bus; on a
Write operation. data from the data bus is loaded into the addressPd word in
me1J1ory.

5.1..2 Processor-Initiated Coml'IUnic.ltion with Peripheral Devices

To initiate communication with a pe•r:i.pheral device, the processor loads a 16-
bit address onto the address bus. a!:, 1uhen addressing memory. Unlike a memory
dddress, which has a simple one-for-une correspondence with a usord in memory,
a device address has two components: hi ts 4-15 identify the port or controller
to which the desired device is at·tached, and bits 0-·3 identify the desired
element within that port or controlle1·. For example, the value:

FC20 (:=1111 1100 0010 0000)

addresses the control register of serial port B. FC2x is the general address
Qf ser·ia 1 port B, wher-e the value oP "x" <O in the example above) identifies
the particular element (the control r~gister in the example) of the serial
por·t.

The processor addresses all peripht?ral devices in this manner, with one
exception. The general address FClx references either serial port A or the
Sl.fst:em terminal specifications hardware option s111itches. (lhese switches are
discussed in section 2.1.) If bit 3 is set. these switches are activated and
bits 0-2 are ignored; if bit 3 :is not set, serial port A is addressed and bits
0 and 1 identify the desired elellE•nt of that port.

Table 5-2 lists the standard gE>neral device addresses. The values for
seleoeting particular device elE•ini?nts are detailed in subsequent sections of
this chapter.

Oc;ge 28

Table 5-2. Standard General Device Addresses

Address

FC7x
FC6x
FCSx
FC4x
FC3x

FC2x
FC1x

FCOx

Unit

Parallel ports
Reserved
Auto load
Reserved for Interrupt priority latch
Floppy Disk Controller and Dl'1A
Controller
Serial port B
Serial port A and system terminal
specifications switches
System value of nil

As in a memory access, the processor also signals the DIN or DOUT line when
addressing a port or controller. The port or controller acknowledges the
communication and generates REPLY to the processor and then responds to
the DIN or DOUT line. On a Read operation, the device places data on the data
bus; on a Urite operation, data is loaded from the data bus into the device.

5.1.3 Device-Initiated Communication with the Processor: Interrupts

When an 1/0 device requires service, it signals the IO control line. When the
processor detects the signal, it enables the IO line and disables the 11, I2,
and 13 lines by loading the general device address FC4x onto the address bus,
with:

0 0 0 1

as the value of 0 x." The device then places a vector address on the data
bu!~. A vec"t:or address is a code used to direct the appropriate interrupt
service routine. The processor signals the IACK control line to signify that
it is responding to the interrupt.

If multiple interrupts occur simultaneously, the processor responds to them
onE~ at a time, in order of priority. Table 5-3 lists the interrupt
conditions, their priorities, and the associated vector addresses.

Paye 29

Table 5-3. Interrupt Conditions and Vector Addresses

Interrupt Priority

OMA Hi.ghest
Serial port A receive
Serial port B trans1Rit
Serial port B receive
Serial port A transmit
Serial port A or B exception
Parallel input port
Parallel output port 2 LOUJest

5.2 PASCAL MICROENGINE PROCESSOR

Vee: tor
Address

0020
0024
0028
002C
0030
0034
0038
003C

The Pascal MICROENGINE Col!lputer is driven by the Pascal l'IICROENGINE
processor. This processor is comprised of five LSI/MOS circuits, each
contained in a 40-pin package. The c:h ips are:

o The Data Chip. containing the microinstruction decoder,
the Arith111etic and Logic Unit <ALU>, and the register
file.

o The Control Chip. containing the macroinstruction
decoder. portions of the control circuitry, the
microinstruction counter, and input/output control
logic.

o Three 22 by 512-bit MICROM chips. holding the
microinstructions.

The processor uses four power supp lies (+5 volts, +12 volts. -·12 volts, and
-5 volts> and runs off a 3-MHz c: lt:>ck signal that is subdivided into 4
nonover lapping phases <75 nanose~c1lnds per phase>. All l/O signals are tri­
state•.

Fi9ur·e 5-1 demonstrates the locaticm of the processor chips on the board.

The processor chips are interconnec:t1ed by an 18-bit microinstruction bus which
provides bidirectional co11u1unic:a·tion between chips for addresses and
instr·uctions. The 16-bit data acc:e·ss bus provides access to the inter­
compcment c011111unication bus structure. As described in section 5.1. this
struc:ture allows the processor to c:ommunicate with memory and the peripheral
ports• and controllers.

Pa!;e 30

For moY'e information on the Pascal MICROENGINE processor, set? the "WD/9000
Pam.cal 11ICROENGINE Microprocessor Chip Set .. data sheet ..

5. 3 11El'IORY

The Pascal MICROENGINE Computer includes 32 161< RAM chips, providing 64K bytes
(32K words> of MOS dynamic random access memory <RAM>. Each Rf,11 chip is
organized as 16, 384 110rds by 1 bit, and is packaged in a standard 16·-pin dual
in-~line package. Figure 5-1 illustrates the location of the memory package on
the board.

Section 5.1 describes the mechanism by which the processor communicates with
memory. In the Pascal MICROENGINE Computer, the Floppy Disk Controller
operates under control of the OMA Controller. As described in section 5.6,
the OMA Controller allows for direct data transfers between the Floppy Disk
Controller and memory, without involvin9 the processor.

5.4 SERIAL PORTS

Two RS-232 asynchronous serial ports are provided with the Pascal 111CROENGIME
Computer. One of these ports -- the A port -- is used for connecting the
system terminal to the system. The second port -- the B pm·t -- is available
fo1· connectin9 any other RS-232 device to the system. <Section 2.2 describes
thE~ procedures for connecting terminals to the serial ports.) The location of
the serial ports is presented in Figure 5-1.

Communication between the serial ports and the processor is achieyed via the
inter-component communication bus structure, described in section 5.1. A
terminal is connected to a serial port via a serial port cable connector.
TMls section is concerned with the operation of the serial ports within this
str·ucture. Table 5·-4 lists the pin assi9nments of a serial port cable connector.

Page 31

Table 5-4 Serial Port Cable Connector Pin Assignment!:>

Pin Number

Jl-1 01· J2-1
Jl -2 or .J2--2
Jl-3 or J2-3
Jl-4 01· J2·-4
Jl-5 or J2-5
Jl-6 or J2-6
Jl-7 or J2-7
Jl-8 or J2-8
Jl-9 or J2-9
Jl-10 or J2-10
Jl-11 or .. J2-ll
Jl-12 or J2-12
Jl-13 or J2-13
Jl-14 or J2-14
Jl-15 or J2-15
Jl-16 or J2-16
Jl-17 or J2-17
Jl-18 or J2-18
Jl-19 or J2-19
Jl-20 or J2-20
Jl-21 or J2-21
Jl-22 or J2-22
Jl-23 or J2-23
Jl-24 or .. J2-24
Jl-25 or J2-25

Signal

AA
BA
BB
CA
CB
cc
AB
CF

DB

DD

co

CE

Description

FRAME GROUHD
TD- WD 1931
RD- YD 1931
RTS WO 1931
CTS lJD 1931
DSR WO 1931
SIGNAL GROUND
CARD WO 1931

IXRC WO 1931

IXRC YD 19~H

OTR I.JD 1931

The serial ports have been implemen1;ed with two UC1931A/B devices. The UC1931
offer!i a number of pro9ra11111able capabilities: the device can operate in either
synchronous or asynchronous lflode, fDr e•xample. When the Pascal Operating
System is loaded, it automatically pro9rams the serial port devices according
to a pre-defined set of specificati()ns. Some of these specifications are
provided within the operating system; cithers are read from the hardware option
switches. <Recall frOlll section 2.1 ~cha~: the system provides hardware option
switches for specifying system te·rm:inal characteristics and for defining the
baud l'ate for each serial port .. >

Subsec:tion 5.4.1 describes how the 1ierjal ports operate under this set of
specifications. For the user who w:ishe•s to program the serial port devices to
operate in some other 11anner, subsec:ticm 5.4.2 describes the mechanisms for
prograuing the devices and briefly di~.cusses their full programmable
capabilities.

t>a.91 1 32

5.,l.1 Operation of the Serial Ports

Each serial port device includes several registers. Of primary interest are:

o Receiver Register. This 8-bit shift register receives
data ·Prom the attached device. The incoming data is
assembled and then transferred to the Receiver Holdin9
Register with logic zeros filling any unused hi9h-01·der
bit positions.

o Receiver Holding Register. This 8-bit parallel buffe1'
register presents the assembled characters to the data
bus when requested through a Read operation. The term
"Receiver" is used in this manual to refer· to the
Receive1· Register and the Receiver Holdin.9 Register.

o Transmitter Holding Register. This 8-bit parallel
buffer register holds parallel data transferred from
the data bus by a Write operation. ·rhis data is
transferred to the Transmitter Re.Qister u1hen
transmission is enabled.

o Transmitter Register. This 8-bit shift regis·ter is
loaded from the Transmitter Holding Register. The data
is serialized and presented to the attached device when
transmission is enabled. In this manual, the term
"Transmitter" refers to the Transmitter Holding
Register and the Transmitter Register.

o Control Registers. These two 8-bit registers hold
device programmed control words. The contents of these
registers are described in subsection 5.4.2.

o Status Register. This 8-bit register holds information
on the status of the port's operation.

The timing of the transfer of data to and from the data bus and the attached
device is controlled by a BR1941L-6 Baud Rate Clock. The rate supplied by the
Baud Rate Clock to each of the serial ports is set by the hardware option
switches provided for this purpose. <These switches are described in
subsection 2.1.3.)

Recall from section 5.1 that the processor initiates communication with serial
port A by loading the general address FC1x onto the address bus; to address
serial port B, the processor loads FC2x. In both cases, the value of 11 x11

determines which serial port register is selected. Recall further that the
general address for serial port A is used also to activate the system terminal
spec:Hic:ations switch.

Table 5-5 lists values used to address serial port registers and the system
terminal specifications switch.

In this table, <and subsequent tables in this chapter), a hyphen <·-) denotes a

Page 33

"don'·t care" value; i.e •• any value mau appear in the corresponding position.

Table 5-5.

r..eneral
Operation Address

Input from
Serial Port A FC1x

Output to
Serial Port A FC1x

Activate System
Ter•i na 1 Spec i -
fications SWitch FClx

Input froa
Serial Port B FC2x

S.e1·ia 1 Port Addresses

Vii lue of "x"

0 - 1 0
0 - 1 1

0 - 1 1

1 - - -

1 0
1 1

Element Selected

Status Regi~ter
Receiver Holdjng
Registe1·

Transmitter Holding
Re9ister

Status Register
Receive1· Holding
Register

Character fra•ing is provided by a Start bit <logic zero> at the begtnning of
a character and a Stop bit <logic cint?) at the end of a character. '-lhen
information is transferred frOll the• Transmitter Holding Register, transmission
is initiated. A Start bit is inser·ted, followed by the serial output of the
character <least significant bit; first> 111ith parity (if enabled> after the
most significant bit. A stop condition (!, 1.5, or 2-bits> is then inserted. If
the Transmitter Holding Register· is full, the next character transmission
starts after the Stop bit<s> of ·thE! character currently in the Transmitter
Register have been transmitted. Otherwise, the Mark <logic one> condition is
continually tranuitted until the Transmitter Holding Register is loaded.

ReceJttion of a character into the Receiver Register is initiated when the
first Start bit after a preceding Stop bit is recognized. During the assembly
of the character from serial to parallel, the Start and Stop bits <and the
parity bit, if enabled> are strippod off. The assembly is c0111pleted when the
Stop bit following the last charac·ter bit is received. If the Stop bit is a
logic: one, the character is deter•ilned to have correct framing and the port is
prepared to receive the next chitracter. If the Stop bit is a logic zero, a
framin9 error has ocurred. The device• assumes that the bit is the Start bit
of the next char act.er. Character as.selRb ly continues if the input is sti 11 a
109ic zero amen sampled at the thee>reUcal center of the asSUIRed Start bit. As
lon9 as the received input is spacing, all zero characters are assembled.
Error flags and data received inte1·rupts are generated so that line breaks can
be deterained. After a character of all zeros is assembled along with a zero
in the Stop bit location, the firs~t: re•ceived logic one is accepted as a Stop

Pape 34

bit; when this bit is received, the device is prepared to receive the next
character.

As Table 5-5 has demonstrated, the contents of the serial port status
re.gisters can be read onto the data bus. Table 5-6 outlines the significance
of each bit in the status register.

Table 5-6. Serial Port Status Register Contents

Bit Mame

0 TRANSMITTER HOLDING
REGISTER EMPTY

1 DATA RECEIVED

2 OVERRUN ERROR

Meaning

This bit is set to a 1 bit when
the Transmitter Holding Register
does not contain a character and
the Transmitter is enabled. It
is set to a 1 bit when thP
contents of the Transmitter
Holding Register are transferred
to the Transmitter Register. It
is cleared to a 0 bit llhen the
Transmitter Holding Register is
loaded from the data bus or the
Transmitter is disabled.

This bit is set to a 1 bit when
the Receiver Holding Register is
loaded from the Receiver
Register and the Receiver is
enabled. It is cleared to a O
bit UJhen the Receiver Holding
Register is read onto the data
bus or when the Receiver is
disabled.

This bit is set to a 1 bit when
the previous character in the
Receiver Holding Register has
HOT been read when a new
character is ready to be
transferred to the Receiver
Holding Register.
Otherwise, the bit is cleared
.men a character is transferred
to the Receiver Holding
Register. It is cleared when
the Receiver is disabled.

Page 35

3 PARITY ERROR

4 FRAMING ERROR

5 CARRIER DETECTER

6 DATA SET READY

7 DATA SET CHANGE

Thi~s bit is set to a 1 bit mtmn
thE~ 'Receiver and parity are
enabled and the last received
chilracter has a parity error.
ThE? bit is set to a O bit if the
ch<1racter has correct parity.

This tit is set to a 1 bit if
ttm bjt aftPr the last data bit
of a character is a zero and the
Re::eiver is enabled~ This bit
is set: to a 0 bit if the bit
after the last data bit of a
ch.'lrac ter is a one.

This tiit is the complement of
th1;.a CllRRIER DETECTOR input <pin
391.

This bit is the complement of
th1~ DillA SET READY input <pin
33>.

This bit is set to a 1 bit when
th1~re is a change in the state
of thE~ DATA SET READY 01· CARRIC.R
DETECTOR inputs with the DATA TERl11NAL
RE1eiOY·· output <pin 17> on, or the
Ri·ng ::ndicator is turned on with
th 1e DlffA TERMINAL READY- output off.
This hit is cleared to a 0 bit when
the Si;atus Register is read onto
the dilta bus.

Page 36

5.4.2 Device Programming Mechanism: the Control Registers

Each of the serial ports can be individually progra!Mled to operate in either
synchronous mode or asynchronous mode. Asynchronous mode is the default when
the Pascal Operating System is loaded; the operation of a serial port in
asynchronous mode has been described in subsection 5.4.1. In synchronous
mode, two registers are of interest in addition to those discussed in sub­
section 5.4.1:

o SYN Register.
synchronization
synchronization.

This
code

8-bit register holds the
used to establish character

o OLE Register. This 8-bit register holds the OLE
character used when the optional transparent mode is
in effect.

In !:>ynchronous mode, character framing is achieved by the SYN character,
transmitted at the beginning of a block of characters. When the Receiver is
enabled, it searches for two continuous characters matching the bit pattern
contained in the·SYH Register.

The serial port devices are programmed via
Control Register 1 and Control Register 2.
contents of these registers.

two 8-bit control registers:
Tables 5-7 and 5-8 outline the

Table 5-7. Serial Port Control Register 1 Contents

Bit Name

0 DATA TERMINAL READY

Function

This bit controls the DATA
TERMINAL READY- output <pin 17),
which controls the CO circuit of
the attached terminal. When
this bit is set to a 1 bit, the
Carrier On and Data Set Ready
interrupts are enabled. Yhen
this bit is set to o, only the
Ring On interrupt is enabled.

Page 37

1

2

3

4

REQUEST TO SEND

RECEIVER ENABLE

PARITY ENABLE

ECHO MODE, DLE STRIP,
or MISCELLANEOUS

This bit controls the REQUEST TO
SEND- output <pin 32), which
controls the CA circujt of the
attached terminal. When thi!>
b1t is set to a l bit and the
CLEl.\R TO SEND- <pin 29> input is.
low. transmission of data to the
attached terminal is enabled and
Transmitter Holding Register
Empty interrupts are generated.
When this bit is set to a 0
b:it, transmission is disabled
after any current character has
bl'~en transferred.

When set to a 1 bit, this bit
enables the Receiver. allowing
rto>ceived characters to be placed
in the Receiver Holding
Re9ister. Status bits 1, 2.
and 3 are updated and a Data
Received interrupt is
g1'!'nerated. Character reception
starts with a Start bit when in
asynchronous mode or with 2
m.iitches to the contents of the
SYN Register when in synchrono1.Jr,
miooe. If When the RECEIVER ENABLE
bit is set to a O bit, status
bi ts 1, 2. 3. and 4 aJ•e cleared.

When this bit is set to a 1 bit.
parity checking on received
characters is enabled. Jn
as~1nchronous mode. If generation
of parity for transmitted
characters is also enabled. When
this bit is set to a 0 bit,
parity checking and generation
arE· both disabled in either
moc.e.

ThE• function of this bit depends
on whether the device is
opE~rating in synchronous or
asqnchronous mode.If Jn
as~inchronous mode. bit 4
co11trols echo mode. If the
Rec:eiver is enabled and this bit
is set to a 1 bit, the received
da1;a is echoed with a 1-bit
deJ.ay. The clocked regenerat~·d
da1;a, rather than the out.put of
thE! Transmitter Register or a

5 STOP BIT SELECTION,
MISCELLANEOUS, TRANSMIT
PARITY ENABLE, or
FORCE OLE

steady marking. is presented to
the TRANSMITTED DATA output
<pin 25). The l"ransmittPr nP.eri
not be enabled. In synchronous
mode, the function of this bit
is further dependent on u•hethrr
the Receiver is enabled or- not.
If the Receiver is enablert. and
bit 4 is set to a 1 bit,
received characters which match
the contents of the OLE
Register are stripped out and
parity checking is disabled.
When the Receiver is not
enabled, bit 4 controls the
MISCELLANEOUS- output <pin 5>­
When this bit is set to a 1 b)t,
this output is made low; 11.then
the bit is set to a O bit, the
output is made high- When
operating with a 32X clock <see
Tab le 5-B, Bi ts 2-0» a 1 bit
with the Receiver not enabled
causes the Receiver bit timing
to synchronize on mark-space
transitions. ·

The function of this bit depends
on whether synchronous or
asynchronous mode is in effe<::t. ~
In asynchronous mode with ttw
Transmitter enabled, bit 5 set
to a 1 bit causes a s).n_9lr-> Stop
bit to be transmitted; bH: 5 f.et
to a 0 bit causes 2 Stop bits to
be transmitted f'or character
lengths of 61 7, or 8 bits, and
1.5 Stop bits for a charac:t~r
length of 5 bits. When the
Transmitter is not enabled, bit
5 controls the MISCELLANEOUS­
output <bit 5). When this bit
is set to a 1 bit, this output
is made low; when the bit is 5et
to a 0 bit, the output is made
high. In synchronous mode, th~

function of bit 5 is furthe1'
dependent on bit 6. If b(.)U1
bits are set to a 1 bit, the
contents of the OLE l~egister are
transmitted prior to the next
character loaded in the
Transmitter Holdin9 Re9isterg
lJhen bit 5 is set to a 1 bit and

Page 39

.I

BREAK or TRANSMIT
TRANSPARDl'J

LOOP/NORMAL

bit 6 is set to a 0 bit,
trar1smit parity is enab1Pd ..
IJhen bit 5 is set to a 0 bJ.t, no
parj.ty is generated.

The function of this bit depend5
l)n tilhether synchronour,. or
.aisynchronous mode is in effect. n
In <rsynchronous mode. when bit 6
is ~;et to a 1 bit and the
Transmitter is enabled, the
TRANSMITTED DATA output (pin 25)
is held in a spacing condition
·:.tar·tin9 with the end of any
i:unent character. Normal
Tra11smitter timing continues so
tha1: the break can be tiAled out
by :.oading charaters into the
Tra11s111itter Holding Register.
·rhat is, interrupts are 9enc-~·1·ated

and the Transmitter oper·ates
'rtor111a lly except for the output
1uhic:h remains low while bit 6 if.
·;et to a 1 bit. In synchronous
111CJdp, bit 6 set to a 1 bit
cam;es the Transmitter to be
i:oncfitioned for the transparent
trarismission: idle fill is
l:>LE··SYN and a DLE can be forced
.3he.:1d of any character in the
Transmitter Holding Regii:>ter by
•Jse of bit 5.

1.Jhen this bit is set to a 0 bit,
the device is configured to
!ilrovide an internal data and
·crmi;rol loop and the Ring On
intnrrupt is disabled. Yhe11
thi!> bit is set to a 1 bit, the
.::Jev:;ce is normal full duplex
configuration and the Rin9 On
intHrrupt is enabled.

11 Syn·chronous/asynchronous mode is ·coni;rolled by bit 5 of
Control Register 2 <Table 5-8).

Table 5-B. Serial Port Control Register 2 Contentr.o.

Bit(s) Name

2-0

3

4

5

CLOCK SELECT

ALTERNATE RECEIVER
CLOCK or STRIP SYN

PARITY ODD/EVEN

CHARACTER MODE

Function

These bits select the transmit ~nd
receive clock as follows:

0 0 O - Transmit and 1-en•ive
clock input OX>

O O 1 - Rate 1 (32X>
0 l. 0 ·- Rate 2 <:~2X>

O 1 1 - Rate 3 <32X>
1 O O - Rate 4 <32X>
1 O 1 - Rate 4 - 2 (32X> (64X>
1 1 0 - Rate 4 - 4 (32X> <120X)
1 1 1 - Rate 4 ... 8 <:32X> <Z>6X)

The function of this bit depends
on whether bit 5 selects
asynchronous or synchronous
mode. In asynchronous mode, if
bit 3 is set to a 0 bit, Rate l
is selected as the Receiver
clock rate; if bit a is set to a
1 bit, the Receiver clock 1·ate
is determined by bi ts 2· .. 0. Of'
lX clocking is selected in hih.
2-0, bit 3 must be 1.) In
synchronous mode, H bit ~i i1~

set to a 1 bit and the ~eceiver
is enabled, received charactP1's
which match the contents of th~
SYN Register are stripped out
and thP. SYN status bit is set
with the next character~ No SYN
stripping occurs if bit 3 ir-:. r.et:
to a 0 bit.

Odd parity is selected when th if.
bit is set to a 1 bit; when :i.t
is set to a 0 bit, even parity
is selected.

When this bit is set to a 1. bit,
asynchronous mode is selected;
when it is set to a 0 bit,
synchronous mode is selected.

Page 41

7-6 CHARACTER LENGTH Th1;-se bits select the number of
bHs per character as follmvs:

<J o - 8 bits
1) 1 - 7 bits
l O - 6 bits
l 1 - 5 bits

For example, llhen the Pascal Operating System is loaded, it reads the system
terminal specifications hard1Dare· o:;,tion switc:hes and then loads the serial
por1:; A Control Register 2 with tne corresponding values. Switches 1-8
conespond to Control Register 2 values 0-7 respectively.

The processor can load a value into either control register of either serial
port, and it can read the cl1r1·ent contents of either cont:rol register of
either port. The processor can also load values into tha SYN and OLE
reghters for use in synchronous mode; these registers cannot be read. Table
5-9 lists the values used by the p1rocessor to address the serial ports SYH,
OLE, and control registers.

Table 5-9. Serial Port SYN,. OLE, and Control Register Addresses

General
Operation Address Value of "x" E leaent Se lect.ed
--------- ------- ·------------ ----------------
Input frDll
Serial Port A FClx 0 - 0 0 Control Regi£>te1· 1

0 - 0 1 Control Rf~gi£'ter 2

Output to
Serial Port A FClx 0 - 0 0 Control Register 1

0 - 0 1 Control Register 2
0 - 1 0 SYN and OLE Registers

Input froa
Serial Port B FC2x - - 0 0 Control Registe1· 1

- - 0 1 Control Register 2
Output to
Serial Port B FC2x - - 0 0 Control Register 1

- - 0 1 Control Register 2
- - 1 0 SYN and OLE Registers

For 1AOre inforaation of the serial pc•rt devices, see the "UC1931A/B" data
sheet, available froa Western Dig:ital Corporation.

S.5 PARALLEL PORTS

The Pascal MICROENGINE Computer provides a parallel I/O capability in the form
of an 0255A Programmable Peripheral Interface device, a standard 40-pin dual
in·-line package with 24 pro9ra1D1Dable pins. See Figure 5-1.

Cowmmication between the parallel ports and the processor is achieved via the
intr·a-cooiponent communication bus structure, described in section 5.1. A
terminal is connected to the parallel ports via a parallel port cable
connector. Table 5-10 illustrates the pin assignments of a parallel port
cable connector.

This section is concerned with the operation of the parallel ports within this
configuration. Subsection 5.5.1 describes the normal operation of the Pascal
MICROEHGINE Computer parallel ports device; that is, it explains how the
devke operates when it is programmed automatically by the Pascal Operating
System. For the user who wishes to program the device to operate in somP
other manner, subsection 5.5.2 describes the mechanism for programming the
device and briefly discusses the aocles in which it can operate.

5.5.1 Default Operation of the Parallel Ports

When the Pascal Operating System is loaded, it automatically progr·ams the
parallel ports device to provide an B-bit input port <Port A> for reading from
the attached peripheral device, an 8-bit output port <Port B> for writing to
the peripheral device, and an B-bit control port <Port C>. I/O data is
transferred between the peripheral device and Ports A and B in conjunction
with strobes, or 11handshakin911 signals. These signals are generated or
accepted on Port C lines, as listed in Table 5-11. Input and output data are
both latched.

Page 43

Table 5-·10 Parallel Port Ct3ble Connector Pin Assignmentr~

Pin
Number

,J3·-1
.1::~-2

,J:~--3

J3··1J
... n-s
.n-·b
,J:J-7
,J3-8
J3·'l
J3···l0
,J:'.)-11
,j3-1;.~

J3-l3
J3··14
J3-15
J3-16
J3-17
... 1::1--18
J3-·l9
J3·-20
J3--21
J3··22
J3-23
•. n-2•1
J3·-25
J3·-26
J3··27
,JJ-·28
... J3-·29
J3-·30
J3-31
J3-32
J3-33
J3-34
,J3-35
J3-36
J3-37

GHD
PA1
PAO
PAI!
PAb
SACKR­
STBA­
PABJF­
SPC7
SOBFB­
I/OPC6
IBFA

PB6
PtM
PB3
PBO
RESET
GHD
PA2
PA3

PA~>

PA7
ACKB-

SPC6-

I/OPC7
OBFB­
SIBFB­
PBBOF
PB7
PB~

PB2
PIH
GHD

Page· 44

Description

DATA 1 PORl 1~

DATA 0 PORT fl
DATA 4 PORT A
DATA 6 PORTA
ACKMOWLF.DGF B
STROBE A
OPEN- PA BUS IN FAl. SE
DATA 7 PDIH C
OUTPUT BUFFER FULL B

INPUT BUFFER FULL 1~

DATA 6 PORT B
DATA 4 Porn B
DATA 3 PORT B
DATA 0 PORT B

DATA 2 PORl A
DAlA 3 PORT A
DATA 5 PORT A
DATA 7 POR.I A
ACKNOWLEDGE B

DATA 6 PORT C

OUTPUT BUFFER FULL B
INPUT BUFFER fULL B
OPEN PB BUS OUT FAL SF
DATA 7 PORT B
DATA 5 PORl B
DATA 2 PORT B
DATA 1 PORT B

Table 5-11. Parallel Ports Device Control Lines (Port t)

Bit Name

0

1

2

3

5

6

7

INTRB <Interrupt
Request, Port 8)

OBFB- <Output Buffer
Full>

ACKB- <Acknowled9r.
Input) or INTEB-
< Interrupt Enable,
Port B>

INTRA <Interrupt
Request, Port A>

STBA- <Strobe Input>

IBFA <Input Buffer
Full>

JNTEA

Function

A high on this output interrupts
the processor when Port 13 i£.
requesting service.

A low on this output indicates
that data has been loaded into
the Port B latch for out.put; it
is, in essence, an acknowledgement ..

On output, a high on this pin
enables interrupts f1rom Po1-t B.
On input, a low on this pin indicates
that data output from Port B has
been accepted by the peripheral
device. When the Pascal
Operating System is loaded, it
makes this pin high to enable
Port B interrupts.

A high on this output int.ern1pts
the processor when Port A j s
requesting service.

A low on this input loads data
into the Port A latch for input ..

A high on this 0L1tput ind:i.cat£.~s

that data has been loaded into
the Port A latch for input; it
is, in essence, an ackn0111ledgement.

A high on this output enables
interrupts from Port A. When
the Pascal Operating System is
loaded, it makes this pin low to
disable Port A interrupt,#

This pin is not used.

Page 45

Recall from section 5.1 that the p1'ocessor initiat@!i COfMlmication with thP.
parallel ports by loading the generc:11 address FC7x onto the address bus, wher<~

the value of "x" determines 11.1hich device element is selected. lable 5-12
lists the values used to address Por·t•; A, a, and C.

Table 5-12. P.:1Nllel Ports Addresses

General
Operation Address Value o·r "x" Element Selected

Input from or
output to
parallel ports

FC7x - ·· 1) 0 Port A
- -· 1) 1 Port B

1 0 Port C

:5.5.2 Device Programming Mechanism: the Control Re9jster

Parallel Ports A and B can be individ1Jally programmed to operate in any of
three IDOdes:

o Mode O, the basic input/outi•u't mode. In this lflOCle,
data is simply read from •Jr 111r i tten to the port; no
"handshaking" signals are required.

o Mode 1, the strobed input/output mode. This is the
mode selected in the def-a1Jlt device programmin9,
described in subsection 5.5.1.

o Mode 2, the strobed bidir·tKtional bus iftput/output
mode. In this mode, data jLs transferred to and from a
peripheral device on a single 8-bit bus. Handshaking
signals are provided tcJ. maintain proper bus flow
discipline in a 1J1anner si1111ilar to Mode 1.

Port. C is pro9ra111med in two sections: the upper half (bits 0-3) and the lower
naH (bits 4-7>. The mode of the upp.i:1r half of Port C is defined with the
mode· of Port A; the mode of the lo•wer half is defined with the mode of Port B.

fhe parallel ports device is programmed via the 8-bit Control Register. Table
5-13: outlines the contents of this. register.

Page 46

Bit

0

1

2

3

4

Table 5-13. P•allel Ports Control Register Contt.mts

Ha me

LO\,,IER PORT C
DIRECTION

PORT 8 DIRECTION

PORT 8 AND LOWER
PORT C MODE

UPPER PORT C
DIRECTION

PORT A DIRECTION

PORT A AND UPPER
PORT C l"fOOE

Function

When this bit is set to a 1 bit,
the lines on the lowe1· ha H of
Port C are used as input: lines~

When this bit is set to a 0 bjt,
these lines are used as output
lines.

This bit, when set to a l bit.
defines Port B as an :input
port. When this bit is set to ;:
0 bit, Port B is used as an
output port.

When this bit is set to a 1 bit.,
Mode 1 is selected for Port B
and the lower half ofl Port: C.
When this bit is set to a O bit,
Mode O is selected.

When this bit is set t:o a 1 bit;,
the lines on the upper half of
Port C are used as input lines.;
when this bit is set to a O bjt,
these lines are used as output
lines.

When this bit is set to a 1 bit,
Port A is used as an input
port. When this bit is set to a
0 bit, Port A is used as an
output port.

These bits select the mode r-or
Port A and the upper half or
Port C as follows:

0 O Mode O
0 1 Mode 1
1 ·- Mode 2

Page 147

7 MODE SET FLAG Th is bit controls the mode.~ set
fl.3_9. When it is set to a 1
bit;, this flag is active. ~Jhr.n

j,t is set to a O bit, this flag
lS inactive. <This flag is
normally inactive only while
rm:les are being changed.>

For example, the value automatically loaded into the Control Register by the
Pascal Operating System is shown in Figut·e 5-.2.

7 0

1 0 1 1 0 1 0

: -·-·---Port C lower = input 01· out.ptit
: ----·-·---Port B = output

:---------·----Port B & Port C lower = i'lode 1
: ----------·----Port C upper = input

: --·-----------------Port A = input
-·---·------·-----------P01·t A & Port C uppe1· - 11ode 1

:-·--·--------·-------------·----Mode set fla_g = active

Figure 5-2. Default Parallel Port Control Register Va.lues

To load a value into the Control l~egjster, the processor uses the parallel
port address, FC7x, UJith

as the value of "x."

5.6 FLOPPY DISK CONTROLLER AND DtlA CONlROLL.ER

The F01791/2 Floppy Disk Controller <FDC> provided with the Pase a 1 11ICROENGINE
Computer is switch···selectable for sin9le- or double-density 8-inch or 5--1/LJ-·
inch disks and can handle up to four disk drives of the same type. ·1he Floppy
Dis.k Controller operates under control of the DM1883A/B Direct l'lemory Access
Controller <Dl1AC>, allowin9 data transfers between the flopp1,1 disk and memory
without involving the processor.

Both the FDC and the OMAC are standard 40·-pin dual in···line packages, located
on the board as shown in Figure 5-1"

Communication between these controllers and the processor is achieved via the
inter-component communicatic<n bus structure, described in sectimi 5. L fi
floppy disk drive is connected to the floppy disk controller via a I· loppy O:isk
Controller cable connector. T11ble 5·-14 lists the pin assignments of the FOC
cable connector.

This section is concerned with the operation of the Floppy Disk Controller and
the OMA Controller within this configuration. Subsection 5.6.1 describes
automatic system start-up procedures that involve the Dl1AC and thP. FDC. In
sub~section 5.6 .. 2, the mechanism by which the processor initiates com1nunicatio11
witlh these controllers is discussed. Subsections 5-6 .. 3 and 5 .. 6.4 provide
information on the operation of the DMAC and FDC, respectiv~l~ ..

Page 49

Table 5-14. Floppy Oj.sk Cable Connector Pin Assignments

Pin
Nullber Sign.;1 l
------ -----·-

J4-1 GHD
J4-2 OSI
J.lf-3 053
J4-4 SDSEL
J4-5 GHD
J4··6 STEP·-
J4-7 GHO
J4-8 w
J4-9
J4-10 '-'PRT·-
J4-11 t,lfl)

J4-12 TRKO·-
J4-13 GHO
J4-1"1 ROTA
J4-15 GM)

J4-16 READ'Y
J4-17 GND
J4-18
J4-19 UF.

J.ll-20 GHO
J.lf-21 DS2
J4-22 DS4
J.lf-23 HLD-
J4-24 GHD
J.lf-25 DIRC
J4-26 GMO
J4-27 Ye-
J4-28 GHO
J4-29 TG4.1
J.lf-30 GND
J4-31 IP
J.lf-32 GHO
J4-33 ROJ<
J4-34 GHD
J4-35 +5
J4-36 +5
J4-37 HLT

Page 50

Description

UHll SELECT 1
UHIT SELECT 2
SIDE SELECT

STEP

'-'RITE DATA

WRHE PROTEt;T

TRACI< 00

RAY READ DATA

DRIVE READY

UR ITE FAULT

UNIT SELECT 2
UHIT SELECT 4
HEAD LOAD

WRITE GATE

TRACI< 43

IMDEX PULSE

READ CLOCK

HEAD LOAD TIMING

5.6.1 Start··Up Procedures Involving the DMAC and FDC

When the Pascal MICROENGINE Computer is started, the settings of the Floppy
Disk Controller hardware option switches take effect. <Recall from subsection
2.1.2 that the user sets these switches according to the charac·teristics cf
the floppy disk or disks to be loaded.>

o If the switch settings specify
operation, the ODEN- input (pin 37>
..ade low. If single-density operation
ODEN- is made high.

doub le-·densi ty
of the FDC is

is indicated,

o If the switch settings call
disk, a 2 MHz clock si9nal
input <pin 24) of the FDC.
disks are indicated, a 1
supplied to the CU< input.

for an 8-inch floppy
is supplied to the CLK
If 5-1/4-inch Floppy
MHz clock signal is

Also at system start-up, the AUTLD input <pin 37> of the OMAC is made hi.Qho
When a floppy disk is loaded into a drive, this input causes an automatic boot·
loading of the first 64K words from the floppy disk into memory, starting at
me1DOry location O. A high on the AUTLD input also places the DMAr, in run mode
and enables two of the device's three interrupt conditions. <See subsection
5.6.3.)

5.6.2 Processor-Initiated COlllfRUnication with the DMAC and FDC

Recall from section 5.1 that the processor initiates COiDllUnication with the
DMAC or the FDC by loading the general device address FC3x onto the address
bus.. This address is transmitted to the DMAC, which tests bit 3 of the "x"
field of the address. If this bit is high, one of the DMAC registers is
selected, according to the value of bits 0-2, and the DMAC is prepared to
respond to a Read or Write operation. If bit 3 is low, one of the FOC
registers is selected. In this case, the DMAC is not prepared t.o respond to a
Read or Urite operation. Instead, the DMAC signals the FOC and the address is
transmitted to the FDC. As when the DMAC is selected, the particular register
of the FDC is selected according to the value of bits 0-2 of the device
address "x" field.

Table 5-15 lists the values used by the processor to address the Dl1AC and the
FDC. Information on the individual DMAC registers and FDC registers is
provided in subsections 5.6.3 and 5.6.4.

Page 51

Genera 1
Operation Address

f'utc:.iload
from floppy
1Ji~,k FCSx

:Cnpu"t from
FDC FC3x

Output to
FOC FC3x

Input fr-oll'I
or output
to 01'1AC FG3x

Table 5-15. DMAC/FDC Addresses

Va lue of " x"

0 - 0 0
0 - 0 .l
0 -- l 0
() .. 1 1

0 0 0
0 - 0 l
0 ... 1 0
0 .. 1 1

1 0 0 0
1 0 0 l
l 0 1 0
1 0 1 1
l 1 0 0
1 1 0 1
1 1 1 0
l 1 1 1

Element Selected

DMAC AUTLD input

Status Register
Trar:k Register
Sertor Re_gister
Data Regi5ter

Command Register
Track Re9ister
Sector Register
Data ~egister

Control Register
Status Register
Transfer Count Low Register
Transfer Count High Regjster
Memory Address Low Register
MemC\ry Address High Reg:i s:ter
Memory Address Ext Re9ister
Interrupt Code Register

When the processor address.es the Floppy Disk Controller, it identifies the
particular drive to be accessed and the side of the floppy disk to be
accr~ssed. Thj.s information is provided in the upper byte of each command word
loaded onto the data bus after co1r.munication is established. Figure 5-3
dia9rams the contents of this word.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Not used :--:--:-·-:--:--:--:--:-··--Control 14ord BytP

: ---- -·---···-----------·-·-------Unit 1 Se lee t Bit I
1-------··-.. ··--·-· ·--·-----·---------·· ·- -·-Unit 2 Se lee t B j, t I

> Om? U11ly
·---·-------·--·--·--·-·-- ----------- ----Unit 3 Select B :i. t:

: --·-·-·------·--.. ··-------·--.. --------------.. -··-Unit 4 Se lee: t Bit I

: -·------------·---------·-------- -----------------·- ... -Si de Sc- lt·c t Bit:
0 ... siclP .t
1 -· siciP 2

Figure 5-3. Format of First Data Word Transmitted to the FDC

5.6 .. 3 OMA Controller Organization and Operation

The OMAC includes several re.Qisters. Of primary interest are:

o Transfer Count Register. This 16-bit counter re9ister
holds the two's complement of the block size -- i~e.,

the transfer count <in words> ·-- for OMA tl'ansrer
operations. The low-order 8 bi ts are in TC Lotv and
the high-order 8 bi ts are in TC Hj.gh4 This count is
incremented after each OMA transfer.

o Memory Address Register. This 18-bit register
occupies 3 OMA registers: bits 0-7 are held in MA Low,
bit5 S-15 are held in MA High, and bits 16 and 17 are
held in MA Ext. The carry from bit 15 to 16 is
enabled if and only if bit 6 of the Control Registe1·
is set to a 1 bit. (See Table 5-16.) The Memory
Address Register is incremented by two after every Dl1A
transfer and bit O is f-orced to O.

o ID Code Register. This 8-bit programmable register
contains a code for establishing a vector address
during a DMAC int~J'rupt. This register is not used~

o Control Register. This 8-bit register holds device
programming specifications. The contents of this
register are outlined in Table 5-16.

o Status Register. This. B-bjt re.9ister contains :J
interrupt c:ondi ti on indicatc'r bi ts and 5 b:l ts 1uhit'h
N.•flect the status of the Control Register. Thr.
contents of the Status R~l,)gi ~.ter are outlined in Tab l<~
5-17.

Table 5-16. DMAC Control Register Contents

Bit Name FLinction

0

1

2

RUN

DEVICE
INTERRUPT

TIME-OUT
INTERRUPT

TRANSFER COUNT
LERO INTERRUPT

INPUT/OUTPUT
ttODE

!·lhen thi:. hit is set to a 1 bit, thP
DMAC is p.1.1ced in run mode; when it j s
~~Pt to a 0 bit, DMAC operation i!:;
te1·mi natE'd"

ThiF, bit d4?termines whether the device
interrupt is enabled or not~ When this
bit is set to a 1 bit, a hi 9t1 on t.he
DINTR input <pin :39) sets the INTR
out.put (pi 1 40) 10111.

This bj.t C•Jntrols the timE-.'--out;
interrupt. When this bit is set to a 1
bit. the time-·out one-·shot sets the INTR
out;put <pi·1 40> low. When thii:; bit i~>

set to a 0 bit, this interrupt is
disabled. The time-out interrupt is set
during a D·1A transfer· if REPLY- <pin 3)
does nc't .!P low within 5 microseconds o P
MSYNC- (pin 16) going low.

This bit controls whether the transfer
count E'quals zero interrupt is enabled
or not. IJhen this bit is set to a 1 bit,
a :r.nro in the lransfer Count Re_9i~:.ter
sets the HITR- output <pin 40) low. When
this bit is set to a 0 bit, this
interrupt is disabled.

This bit controls the I/O direction of
the device. When set to a 1 bit, this
bit s.e1;s Read mode; i.e., data if,
transfE~rred from the Floppy Disk
Contro:ner to memory. When set to a 0
b1t, this bit sets Write mode; i.e.,
data fo transferred from memory to the
Floppy Di!:k Controller.

P.: 9c 5.ll

5

6

7

Bit Name

HOLD BUS

ADDRESS
EXTENSION
CARRY ENABLE

When this bit is set to a 1 bit, the
DMAC retains control oF the data bus
throughout the transfer of the entire
block. When this bit is set to a 0 bit,
the DMAC releases the data bus aftm'
each word transfer.

When set to a 1 bit, this bit allows a
carry from OMA addr·ess bit 15 to
propogate into bit 16. When this bit is
set to a O bit, address extension carry
is disabled.

This bit is not used.

Table 5·-17. DMAC Status Register Contents

Function

0 BYTE OR WORD This bit indicates the status of the BOW
input <pin 36). This bit is always s~t
to a O bit, indicating that word mode is
in effect. In word mode, the OMA memory
address is incremented by two <bit O is
Forced to a O bit> after each OMA
transfer. Bit O is a read-only bit.

"·.-

Page 55

1

3

5

7

DEVICE
INTERRUPT

TIME-OUT
INTERRUPT

TRANSFER COUNT
ZERO INTERRl.J>T

INPUT/OUTPUT
MODE

HOLD BUS

ADDRESS
EXTENSION CARRY
ENABLE

BUSY

This bit is ~•et to a 1 bit when a devic~
interrupt condition occurs. Resetting
this bit to ii 10 bit resets the INTR-·
output <pin '10>. Bit 1 is a read/write
bit.

This bit is ~;et to a 1 bit when a
time-out intt~rn:pt condition occurs.
Resettin9 th:ls bit to a 0 bit resets the
IHTR- output <pin 40>. Bit 2 is a
reau/11rite b:lt.

This bit is !~et to a 1 bit when a
transfer count E•quals zero interrupt
condition oc1:ur~ .• When set, this bit
sets the EOB output <pin 38) y This bit
is set to O u1he11 the Transfer Count
Re9ister is loacled with a non-zero
value. Bit :3 i~• a read-only bit.

This bit reflects the status of' bit .i.J in
the Control l~egi.ster. Yhen this bit is
set to a 1 bit, the DMAC oper-ates in
Read lllOde; wlhen it is set to a O, the
DMAC operates in Write mode. Bit 4 is a
read-only bit.

This bit reflec1;s the status of bit 5 in
the Control Re•g:tster. When this bit is
set to a 1 bit, the DMAC retains control
of the data bus th'l'oughout an entire
block transfer·. When this bit is set to
a O bit, the DM1~C releases the bus aftf:~r

each word trans·?er. Bit 5 is a read-only
bit.

This bit reflects the status of bit 6 in
the Control RE?gister. When this bit is
set to a 1 bit, a ca'l'ry is allowed frOll
OMA address bit 15 to propagate into bit
16. lJhen this bit is set to a 0 bit.
address e:cte·nsi::m carry is disabled.
Bit 6 is a read-only bit.

This bit reflects the status of bit 0 of
the Control Register. ~hen this bit is
set to a l bit, the DMAC is in run
mode. When this bit is set to a O bit,
DtJAC operation is terminated. In the
Status Re,gi ~•ter, BUSY is a read-only
bit.

:ia9e 56

When the DMAC is in run mode, it waits for a Data Request input -Prom the FDC.
When a request is received, the DMAC requests control of the data bus from the
processor. Once this request is granted, the DMAC cont1·ols data transfers
between the FDC and memory. The direction of the transfer is determined by
the status of the R/W output <pin 17), which is tied directly to bit 4 of the
Cont:1·01 Register.

Three interrupt conditions can occur during DMAC operaticm:

o Device Interrupt. This condition occurs when the
DIHTR input <pin 39) is made high.. A devict~

interrupt occurs when the device requires service,
when a failure occurs, when a task is completed, or in
other situations.

o Transfer Count Equals Zero. This condition occurs
when the Transfer Count Register is incremented to Ou

o Time-Out Interrupt. During a OMA transfer, the
leading edge of the MSYNC- output <pin 16) triggers an
internal time delay of about S microseconds. If the
DMAC does not receive an active low REPLY- input (pin
3) within that time delay, a time-out interrupt
condition occurs.

If any of these conditions occurs, the conesponding bit in the Status
Register is set and the Status Register RUN bit is reset. If the appropriate
enable bit in the Control Register is set, the INTR- output <pin 40) is made
active.

For more information on the OM1883 device, see the "DM1883A/B Direct Memory
Access Controller" data sheet, available from Western Digital Corporation.

Page 57

Floppy Disk Controller Organization and Operation

The Floppy Disk Controller includes Si:?veral registers.
are:

Of primary interest

o Data Shift Register. This :3-bit register assembles
serial data from the RAW Rl~AD·- input <pin 27> durin9
Read operations and transf1:rs serta l data to the
WRITE DATA output <pin 31) during Write operations.

o Data Register. This 8-bit register is used as a
holding register during Disk Read and Write
operations. In Disk Read o'erations, the assembled
data byte is transferre·d in parallel to the Data
Re9ister from the Data Shift Register. In Disk Write
operations, information is transferred in parallel
from the Data Register tci the Data Shift Register.
In a Seek operation, the Data Register holds the
address of the desired Track position. (The Disk
Read, Disk Write, and Seek operations are described
later in this subsection.>

o Track Re.9ister. This £1-bi t register holds the track
number of the current Reacl/Write head position. This
register is incremented by 1 each time the head is
stepped in (toward track 76> and decremented by l
each time the head is :.tepped out <toward track O>.

o Sector Register. This 8-bit register holds the
address of the desired sec:tor position.

o Command Register. This 8-bit register holds the
command currently in execution.

o Status Register. This El-bit register holds device
status information.

o CRC Logic Register. This lo~ic is used to check or
generate the 16-bit Cy<: lie Redundancy Check <CRC>.
The polynomial is:

16 12 5
F<x> = x + x + x + 1

The CRC includes a 11 :infc1rmation starting with the
address mark up to the CRC d aracters.

klhen data is read from a floppy dis~, it passes through the Data Separator, a
counter separator comprised of tllil> irtegrated circuits. The Data Separator is
located on the board as shown in Figure 5-1.

The Data Separator 109ic serves t«i> df.'rive the flux transition spacings from
the raw data; this rate is then supp;.ied to the RCLK- input (pin 26>. The raw

data is supplied to to the RAY READ- input (pin 27).
transition on RAlJ READ- loads the Data Separator countef'.
reat:hes o, the RCU< flip/flop is toggled.

Essentially, any
When this counter

The Floppy Disk Controller accepts 11 commands, grouped into 4 types. The
following paragraphs describe the command types and the individual commands
within each type.

TypE~ I commands include the Restore, Seek, Step, Step In, and Step Out
commands. Each of these commands includes a T'ate field <bits 0 and 1> which,
in conjunction with the frequency of the CLK input, defines the stepping
motor rate, as outlined in Table 5-18.

Table 5-18. Stepping Motor Rates for FDC Type I Commands

CLK Frequency Rate Field Value Rate Selected

2 MHz 0 0 3 ms
0 1 6 ms
1 0 12 ms
1 1 15 ms

1 MHz 0 0 6 ms
0 1 12 ms
1 0 20 ms
1 1 30 ms

Bit 2 of all Type I commands is a verification flag. If this bit is set to a
1 bit, a ve·rHication operation is performed on the destination track. If
this bit is set to a 0 bit, no verification is performed.

The Type I commands also contain a head load flag in bit 3. If this bit is
set to a 1 bit, the Read/Urite head is loaded -· - i..e., the HLO output (pin
28) is made active -- at the beginning of the command. If bit 3 is set to a O
bit, HLD is deactivated at the beginning of the command. Once the head is
loaded, it remains en9aged until the FOC receives a command lllhich specifically
disen9a9es the head. Or, if the FDC is busy for 15 revolutions of the disk,
the head is disengaged automatically.

The Step, Step In, and Step Out commands include an update flag in bit 4. When
this bit is set to a 1 bit, the Track Register is updated by 1 for each step.
When this bit is set to a 0 bit, the Track Register is not updated~

The Type I commands are:

o Restore. If the Read-Write head is positioned over
track 0 when this comaand is received, the Track
Register is loaded with zeros and an interrupt is
generated. Otherwise, stepping pulses at the

Page 59

!:'J)ecified rate <see Table ~>-17) are issued until the
head is located over track O.

o Seek. This command assunes that the Track Register
contains the track nUlllber ot= the Read-Write head's
current position and that 1;he Data Register contains
the desired track nUlllber. Stepping pulses in the
appropriate direction are is!>ued until the contents of
the Track Re9i ster are equal 1;o the contents of th•~

Data Register.

o Step. This command cause~. the FDC to isstie onr>
stepping pulse to the disk d1·ive in the same direction
as the previous Step, Step In. or Step Out command.
<At least one Step In or Step Out command must be
executed before a Step c:ommcind is received.>

o Step In. This command c:auses the FDC to issue one
stepping pulse in the directi1>n toward track 76.

o Step Out. This command c.wses the FDC to issue one
stepping pulse in the directii)n tOU1ard track O.

Table 5-19 SUl!Mllarizes the Command Register values for Type I commands.

Table 5-19. FDC Comaand Re:~ister Values for Type I Commands

Conand

Restore
Seek
Step
Step In
Step Out

Colllland Re9i ·:.ter Value

O O O O h v ~1 r2
0 0 0 1 h v rl r2
0 0 1 u h v rl r2
O 1 O u h v rl r2
0 1 1 u h v rl r2

where: h - head load flag:
1 - load head at beginning

of couand
0 - unload head at beginning

of cOMmand
u - update flag:

l - update Track Regi str~r
O - do not update Track

Re,qister
•1 - verification flag:

1 - verify on last track
O - do not verify

d and r2 - stepping 1110tor rate
<see Table 5--18)

!)age 60

Table 5-20 lists the Status Register contents when a Type 1 command is executed~

Table 5-20. FDC Status Register Contents for Type I Commands

Bit Name

0 BUSY

1 INDEX

2 TRACI< 00

3 CRC ERROR

SEEi< ERROR

5 HEAD LOADED

6 PROTECTED

Meaning

IJhen set to a 1 bit, this bit indicates
that command execution is in progressn
tJhen no command execution is in
pro9rP.ss1 this bit is set to a O bit,

This bit is set to a 1 bit when an index
mark is detected on the drive;
otherwise, this bit is set to a 0 bit.
This bit is an inverted copy of the IP
input <pin 35).

This bit is set to a 1 bit when the Read­
Write head is positioned to Track 00;
otherwise, this bit is set to a 0 bit.
This bit is an inverted copy of the TROO
input (bit 34>.

This bit is set to a 1 bit when c~c
characters are encounter·ed in an ID
field; otherwise, this bit is set to a O
bit.

This bit is set to a 1 bit when the
desired track was not verified;
otherwise, this bit is set to a 0 bit~

This bit is set to a 1 bit when thP. Read­
Write head is loaded and engaged;
otherwise, this bit is set to a O bit.
This bit is the logical AND of the HLD
output <pin 28) and the HLT input (pin
23).

This bit is set to a 1 bit when Write
Protect is activated; otherwise, it is
set to a O bit. This bit is an inverted
copy of the WRPT- input (pin 36>.

Page 61

7 MOT READY Thi.s bit: is set to a 1 bit if the drive
is not ready. If the drive is ready> this
bit is set to a 0 bit. This bit is
tln inver·ted copy of the READY input <pin
:J2), lofJit:ally ORed with the MR- inpl1t
(pin 19>.

The Type II commands are Read SectC1r and Write Sector. Prior to loadin_g a
Type II command into the Command Register> the proc:essor loads the desired
sectc1r number into the Sector Regi~>·ter. When a Type II command is received
and an ID field is located on the disk, the track number of the ID field is
compared with the Track Register. If they do not match, the next lL.l field is
read. If there is a match, the sector number of the ID field is compared u:it:h
the Sector Register. If they do not natch, the next ID field is read. If
therE~ is a match, the CRC of the IO field is tested. If the CRC is incorrect,
the next ID field is read. If the CRC is correct, the data f:ield is then
located and its contents are either T'ead or written. The FDC must find an ID
field with the correct track numb1~r, sector number, and CRC within four
revolutions of the disk.

The Type II commands each provide ·Fla!IS for requesting a 15·-microsecond delay
befor-e the Read-Write head is l1ladE•d against the medium, and for specifying
that multiple sectors are to be re.~d cir- written. The Wl'ite Sector c:ommand also
prov:ldes a flag for controlling th1~ writing of the data address mark.

The Type II commands al'e:

o Read Sector. This co111mand causes the data field
associated with the select~~d ID field <correct track
number, sector m.msber, and Cf'.C) to be presented to the
processor.

o Write Sector. This COfllrnan<I causes the FDC to 111rite
data bytes from the Data Shift Register to the data
field of the selected sector <correct track number,
sector nl.Nllber, and CRC>.

lrhe Command Register values for Type• ::I commands are listed in Table 5-21.

Table 5-21. FDC Command Register Values for Type 11 Commands

C()mmand

Read Sector
Write Sec tor

Command Register Value

l001n·-eOO
1 O l m - e - a

where: m - multiple record flag:
1 - multiple records
O - single sector

e - head loading delay flag:
l ... 15-ms delay
0 - no delay

a - data address mark f la9:
1 - FB (Deleted Data t1a1·k)
0 - FB (Data 11ark >

The contents of the Status Register have the same meanings on a TtJpe lI
command as on a Type III command. The Status Register contents for Type lI
and III commands are described in Table 5-23, p1·esented after the discussion
of the Type III command~>n

The Type III commands are:

o Read Address. This command causes the 6 bytes oP the
next encountered ID field to be assembled and
transferred to the Data Register. The IO field byt:es
are: track address, side number, sector address,
sector length, CRC 1, and CRC 2#

o Read Track. This command causes reading to begin with
the leading edge of the next encountered index mark
and to continue until the next index pulse. As each
byte is assembled, it is transferred to to the Data
Register.

o Write Track. This command causes bytes from the Data
Register to be written to the disk, starting with the
leading edge of the next encountered index pulse and
continuing until the next index pulse.

Table 5-22 lists the Command Register values for Type III commands.

When a Type II or Type III command is executed, the cont~nts of the Statu5
Register are as listed in Table 5-23.

Page 63

Table 5-22. FDC Command Fte9ister Values for Type III Commands

Commr'lnd

Read Address
Read 'Tt·ack
Wri tt~ Track

Command Re9i ~>ter Value

1 1 0 0 0 1 () 0
1 l 1 0 0 1 () -
l 1 l 1 0 1 () 0

Tab le 5-23. FDC Status Register Contents for Type II
and Type Ill Commands

Bit Name Mean:in9

0

1

2

3

5

BUSY

DATA REGUEST

LOST DATA

CRC ERROR

RECORD TYPE/
WRITE FAULT

lJhen set to a 1 bit, this bit indicates
that a command is under execution. Jf
no cllmm.:nd is under execution, this bit
is s1?t i:o a 0 bit.

This bit is a copy of the DRG output
<pin 38). When set to a 1 b).t, it
indil:atE•s that the Data Registe•· is full
on a Re;:,d operation or empty on a Yrite
oper.iticm. Otherwise. this bit is ,et
to a 0 tiit.

This bi1: is set to a 1 bit if the
proc:1E!ssor does not respond to a DRQ
si9n,3l •pin 38> in one byte time.
Othe·rwise. this bit is set to a 0 bit.

lhis bit is set to a 1 bit H an erro1·
is f,:luncl in one or more ID fields or in
the .::lat11 field. otherwise. this bit is
!;et to it 0 b it.

On a Rei1d Sector command. this bit
i ndi·i::atus the record-type code from t.he
data fit? ld address mark. On any WT'i tP
co1Dt11and, this bit is set to a 1 b]t if a
wr·it·e filult occurs. This bit is not
used by the Read Track command.

6

7

YRITE PROTECT

MOT READY

On any Write command, this bit is set to
a 1 bit if Write Protect is active~
otherwise, it is set to a 0 bit. Th3s
bit is not used by the Read Sector or
Read Track command.

This bit is set to a 1 bit if the drive
is not ready. If the drive ir;. ready,
this bit is set to a 0 bit. This bit i£;.

an inverted copy of the READY input <pin
32>, logically ORed with the t·JR input
<pin 19).

Type IV consists of a single cOIBlland: the Force Interrupt command. Ir another
cotnmand is under execution when the Force Interrupt command is loaded into the
Command Register, that com11and is terminated. Depending on the value of bits
0-3 of the CoMand Register, an interrupt may be generated. Table 5-24 lists
the Co111111and Register values for the Force Interrupt Command.

Table 5-24. FDC C01111Dand Register Values for the Force
Interrupt Command <Type IV>

Coimnand Command Register Value

f 4)rce Interrupt, no
interrupt generated 1 1 O 1 0 O O O

Force Interrupt, Not­
Ready to Ready Transi-
tion interrupt generated 1 1 0 1 0 0 0 1

Force Interrupt, Ready
to Not-Ready Transition
interrupt generated 1 1 0 1 0 O 1 O

Force Interrupt, Index
Pulse interrupt generated 1 1 O 1 O 1 0 0

Force Interrupt, IIRmediate
Interrupt generated 1 1 0 1 1 0 O 0

Page 65

If a Force Interrupt command is r·eceived while another command is under
execution, the Status Register BUSY bit <bit O> is reset and the rest cf the
Status Register bits are unchanged. If a Force Interrupt command is received
while~ no other command is bein.9 e•xecuted, the BUSY bit is reset: and the r·est
of the Status Register bits are upclated or cleared. In this casp, the Status
Register bits have the sa111e meariings as on a lype I command, as outlined in
Table~ 5-20.

For more information on the Fo175i1 Floppy Disk Controller, see the "FD1791/2
Floppy Disk Controller" data sheet, .available from Western Digital Crn·poration.

Pane 66

TME MICROENGINE COMPANY

tm
Pt1stal MICROENGINE Compute1·

Pascal Operations Manual

Preliminary Edition

Software is provided on a licensed basis only and is the property of the
University of California with permi!:>sion granted for use on an individual
sy~,tem basis only~ Copies may be mdde for archival purposes only.

Information furnished by The tllCROENGINE Company is believed to be accurate
and reliable. However, no re!:.ponsibi lity is assumed by The l"IICROENGINE
Company for its use; nor for any infringements of patents or other rights of
third parties which may result from its use. No license is granted by
impli.cation or otherwise under anq patent or patent rights of The i1ICROENGINE
Company. The MICROENGINE Company reserves the right to change product
spec:i fications at any time without notice.

Copyright <c> 1979 by The MICROENGIME Company

Firi:.t Printed March 1979

All ricITTts reserved.

No part of this doc:ume•nt may be reproduced by
any means, nor tr.:nslated, nor transmitted
into a machine language without the written
permission of The 11IC~'.OENGINE Company.

MICROENGINE is a F'.egistered Trademark of
!Jestern Digital Co1l"po1·ation.

The MICROENGINE Go1ni•any is a wholly-owned
subsidiary of West<E?rn Digital Corporation.

PREFACE

This manual is or9anized primarily for reference purposes. The first section
gives a brief overview of the Pascal Operating Sys't;em. Section 2 gives
details, including commands, of each of the separate pa1·ts of the system.
Section 3 deals with Pascal pro9rammin9 considerations necessary to function
wi·thin the system. Section 4 describes the utilities availableu Appendices
are for quick reference capability.

IUOHBf

This manual was prepared and edited using the
UCSD Pascal Screen Oriented Editor and was
printed using a PRINTRONIX Model P300
lineprin"ter. The lineprinter was provided by
PRINTRONIX Corporation, Irvine, California.

Section 1

Section 2

Section 3

WESTERN DIGITAL

PASCAL OPERATIONS MANUAL

OUTLINE

PASCAL OPERATING SYSTEM •• :.i
2.1
2.2
2.4

2.5

2.6

2.7

2.8

2.9

2.10

The Operating System Hierarchy ••••••••••••••••••••••••••• ::i
OtJtet"' Level Commands •••••••• "' ••• JI ••• a ••• ,,,, •• ,,." II~ ••••••• ML)

Screen Or·iented Edi tor •••••..••.•••.••• ,,"~,,. ii~,," g ••• II n II". 6
2.4.1 Moving Commands ••••••••••••• a-••~·••PP~~····••"•6
2.4.2 Text-Chan9in9 Commands •••••••••••••••••••••••••• n
2.4.3
2.4.4
2.4 .. 5

Fo1·1r1atti n9 Com1nands l~
Miscellaneous Commands ••••••••••••••••••••••••• 16
L2 Edi tor ,, " • ti •••• a •••• " •••• g •• II • ,. ,. 0 • n .. .l 'I

Yet Another Line-Oriented Editor <YALOE) •••• ~.6·~···" u.22
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5

2.6.1
2.6.2
Pascal
2.7.1
2.7.2
Basic
2.8.1
2.8.2

Special l<ey Commands " •• ""·-··~··•J•"••••a"'"":c?.~~
Input/Output Commands ••••••••••• ,,.a••··········~.lJ
Moving Commands •••• u••~•a••4•J•tt•••o•~····••••"26
Text-Chan9in9 Commands ••••••••••••••••••••••••• 28
11iscellaneous Commands ••••••••••••••••••••••••• 30

"F" Prompt Line Commands ••••••••••••••••••••••• 3~J
"?"Prompt Line Commands 39

Comp i ler • ,. ,. •••••••••• " •••••••••••• 4:-J
Compiler Option Syntax ••••••••••••••••••••••••• 45
Compiler Options ••• #•••n••••••••·-·~···n•••n•••45

Compiler••••••••••••••••••••••••••n••~a•••••••••••49
Features of UCSO Basic ••••••••••••••••••••••••• 49
UCSD Basic Enhancements 53

Link~r •• 53
(Jsing the Linkel'•••mi•••••••••11•••••n~a,.., ••• a ••• 5'1
Linker Conventions and Implementation •••••••••• 5~

Debugger••••••••o•aaa••a••••••••••••••••aRa•••••n•••a••-5/

2.10.1 Oebu99er Modes ••••••••••••••••••••••••••••••••• ~2'
2.10.2 Commands ••.••••••••••.••• ~·a••••••••~••a•••••••5Y

PASCAL PROGRAMMING CONSIOERATIONS ••••••••••••••••••••••••••••• 63
3.1 Intrinsics ... 63

3.2

3.Ll
3.1.2
3.L3
3.1.4

Character Array Manipulation Intrinsics •••••••• 64
1/0 Intrinsics" ,. .• "" . .,.,, ... "",.", ... 66
String Intrinsics •••••••• " 69
11iscellaneous Intrinsic Routines u 71

Files ••• 7~
3.2.1
3.2.2
3.2.3
3.2.4

Text Files ••••••••••••••••••••••••••••••••••••• 72
f,ode Files ••• D••••••••••••••••·····~··~g·······72
Data Files ••••••••••••••••••••••••• a.,. ••••••••• 73
Foto Files•••••••••••••••••••M•u•~••a•~"•••••••7J

Section 4

;J. 3
3. 4

3.5
:~. 6

3.2.5
3.2.6
3.2.7
3.2.8

Bad Fil~s······························~·······/3
\Jork Fi J.es • ••••••••••••••••••• ,. ••••• " • "" •••••••• 7~-J
Vo lu1nes • ,, " ••• ., 7 :J
Fi le Na1ues • •••••••••• u ••••••••••••• Ill ,, " q 75

Se~gmc·1•ts11 ••••..••••••••••••••••••••••••• ,. •• ,, ••• II • ,, ••••••• 75
Linka_ges ••••• ..••.•••••••••••• ,. •••••••••••• ,, •• p •• II ••• n ••• ~76

3.4.1 Pascal to Pascal Linkages <Units> 76
Long Integers a ••• ".,,.". 11 ••••• ti ••• l'l
ucso
3.6.1
3.6.2
3.6.3
3.6. LI
3.6.5
3.6.6
3.6.7
3.6.8
3.6.9
3.6.10
3. 6. 11
3.6.12
3.6.13
3.6.14
3.6.15
3.6.16
;J. 6.17
3. 6.18
3.6.19

Pase al Enh.:1ncements •••••••••••••••• •~• ••••••••••••• 80
Case Stcttements • •• IJ " •••• 0 d"' • 1il " " ••• a II. II .. uo
Comn1ient~1 • ••••••••••••••••••••••• II • ti n • " II If ••••• 11 a 81
Dynamic Memory Allocation •••••••••••••••••••••• 81
EOF(F> ••• 81
EOLN (f) .••••••••••••••••••••••••••••••••••••••• s;.~
Files ••.••••••••••••••••••••••••••••••••••••••• 02
GOTO and EXIT Statements ••••••••••••••••••••••• lM
Pack ·ed Uar iab les ••••••••••••••••••••••••••••••• 0.14
Parame•t1· ic Procedures and Function!'> •••••••••••• Bl
Program Headings •••••••••• L•••••···············37
READ and READLN •••••••••••••••••••••••••••••••• U7
RESET (f :· " •.•.•. ,,. BB
RElJR'Il"Ei:f) ••••••••••••••••••••••• ,, ••• ii. II,, ,,. U8
Segment Procedures ••••••••••••••••••••••••••••• UB
Sets. • • ll •If ••a••• ••II••• II• • •II 0 a• 6' #II • M II II fl #II 11 II•# II II If 89
Strings.(•• ., n •• " .: BY
WRITE and WRITELN •••••••••••••••••••••••••••••• 90
Implementation Size Limits ••••••••••••••••••••• 90
Extended Comparisons ••••••••••••••••••••••••••• 91

UTILITY PROGRAMS •••••• ,, •••••••• ,, ••• ,, ••• II •••••••• ,,.,. .. .,."' •••••• " ~'a

4.1 Setup•.•............ ,.n .. •••••••11'1~:!

4.2
4.3
4.4
4.5
4.6

4.7

4.8
4.9

4.1.1
4.1.2
4.1.3
4.1. 4

Miscell.3neous Information ••••••••••• 4 •••••••••• 9:J
General Terminal Information ••••••••••••••••••• 93
Control Key Information •••••••••••••••••••••••• 94
Video S•:reen Control Characters •••••••••••••••• 9b

Bootstrap Copier .••••••••••.•••••• u··~·····~··~••••••••u97
Duplicate Direc:t1Jry Utilities ••••••••••••••••••••••••••• ??
Libra 1' i an . II • • • • • o'f •••••• /1 n • a • " • II rt :t If ii • tr •••••• " 'IS
Library MaP·············-··••••••••••••••••dd•••••••,.•••99
P-Code Di sass.emb ler ••••••••••••••••••••••••••••••••••••• 99
4.6.1
4. 6. 2
4.6.3

P-Co:dE~

Data Segment Reference Statistics ••••••••••••• 100
Opcc:dt~, Procedure Ca 11 and Jump Statistics •••• 102

Patch/Dump " ••• If ••••••••••••• a,. n" ••• ., p II - Q 102
44 7 It 1 (;ons.o le t1odE:! II W &I R • a # a II a • • II a a a II • II II ii II « 11 If • • Q W • • • .. • 1 o~
4. 7 -~2 Patchwork l'lode •••••••••••••••••••••••••••••••• 103
4.7.3 1Jholeu1riter Mode 104

GOTOXY Procec!:u1·e Binder 106

APPENDICES

Appendix A
A.1
A.2
A.3
A • .q
A.5
A.6

Ou·t;.e1"' Level • ,, ••••• ,, ••••••• 1 Ol
Screen Oriented Editor 107
YALOE •••• ,," • II " •• " ,. It If ,, "'" ll • • 11111 u •• .l Otl
File Handler •••••••••••• n•••••••#•••n•••~••••a••••••ft••109
Pascal Compiler" •••• ,, ••••• u.a•••••••••• .. •••••••••••••••110
Debugger ,.,, •••••••••••••• 1.11

Appendix B Tables ••• 11~
B .. 1
B.2
B.3
B • .q
B.5
B.6
B.7

Runtime Er 1' ors • " a •• " •• " •• ,. • It II ••••• ,, 113
Syntax E1·rors Version 3 •••••••••••••••• ., 1111
I/O Results ... 117
Unit NL1Rtbers •••••••••••••••• a •• ~····•••••••••••••••••••ll/
P-Machine Op Codes Version 3 118
Assembler Syntax Errors •••••••••••••••••••••••••••••••• 127
ASCII Codes••••••••••••••••••···~··•••••••••a••MA••••••129

Appce:-ndix C UCSD Pascal Syntax Diagrams •••••••••••••••••••••••••••••••••• 131

Appt!O'ndix D

2-·l
2-2
2-·3
2-4
2-~

2-6
2-·"/
2···8
2-9
2--10
2-U
2-12
2-·.t:l
.2-·14

3-·1
3-·2
3-3
3-4
3-5
3-6
3-7
3-·8
3-·9
3-10
3-1.1.

4-1
4-·1

ILLUSTRATIONS

Operating System Overview •••••••••••• g •••••••••••••••••••••••••••••• J
Example of Auto-Indent ••••••••••••••••••••••• a••••·······~~•-U•••R••9
Example or Delete Command•••••••••••••••••••••••••••n••••••••••••••10
Example of Exchange •••••••••••••••••••••• s•··········••o••n•M••••••12
Example of Replace ••• ~··•••••••••••••••••a••••••••••••••A•••~a •••• ,,15
Example of Ma1'9inaww•n••••·····················•4D••······--Pa••an•16
Examples of Moving Commands ••••••••••••••••••••••••••••••• a ~8

Examples of Text-Changing Commands ••••••• ~·························2?
Example of Macro Command ••••• a••••••••••••••-a•••a•M-~~······~·····32
File Specification ••••••••••••••••••••••• a••••••••••--•••o•a•"•••••33

Example of Compiler Display ... 45
Example of Compiled Program Source Listing , •••••• ~/
E~ample of Entering Examine Mode ••••••••••••••••••••••••••••••••••• 58
Using Debugger Commands to Debug a Program 60

Examples of Characte1· Array Manipulation Intrinsics u. "°ND 65
Examples of String Intrinsics •••••••••••••••••••••••••••••••••••••• 70
I/O Devices •• ••••••••a•••••••••••••••••••••••••••••••«•••••~•a•••••75
Syntax for a Unit Definition .. 78
Example Uses of Long Integers •••••••••••••••••••••••••••••••••••••• 80
Example of Fallthrough in a Case Statement, •••••• 81
Using Mark
Example or

and Release to Change Heap Size ••••••••••••••••••••••••• 82
Using Untyped Files 84

Example of using the Exit Statement •••••••••••••••••••••••••• ~ ••••• 85
Examples of Packed Arrays and Records •••••••••••••••••••••••••••••• 86
Examples of Set Comparisons •• 89

Disassembly Example ••• 101
Calculator Examples •• "•••••••••••••••••••••••••••••••a••••••••••••l05

SECTION 1

IMTRODIJCTI ON

The Pascal Operating System described in this document is designed to run on
the MICROENGINEtm computer. For optimum use of the system, a CRT is
recommended for use as the operator's console, The Pascal language used in the
system is the modification of Standard Pascal developed at the University of
California, San Diego <UCSD Pascal).

The Operating System consists of a number of modules, each designed for a
particular program control purpose. These modules are accessed by commands
that are displayed in a prompt line on the operator's console. As each
module is accessed, it generates the display of a prompt linP 9iving the
commands that are to be used in it. The modules are:

o Editor (either for a CRT or line-oriented console)

o File Handler

o Pascal Compiler

o Basic Compiler

o Linker

o Debugger

Basic to the design of the system is the "work file", which is an area used
for program development. Only one work file area is provided by the system.
If another is needed, the contents of the work file may be saved under a
separate file name for later reference <see Section 2.6, File Handler, the
S<ave command). However, any number of files can be retrieved and combined
into one work file.

This document was written with the assumption that the user is already familiar
with the Pascal language and using computer systems. The following documents
will provide supplemental inrormation on both Pascal and this system:

o Pascal User Manual and Report <Standard Pascal>
Kathleen Jensen and Niklaus ~irth
Springer-Verlag, New York, <c>1975

o Microcomputer Problem Solving Using Pascal
Kenneth L. Bowles
Springer-Verlag, Hew York, (c)1977

o Pascal MICROENGINE Computer User's Manual

Pa_ge 1

SECTION 2

PASCAL OPERATING SYSTEM

2~l THE OPERATING SYSTEM HEIRARCHY

The Pascal Operating System has what can be described as
The root of the tree corresponds with the outer level.
root reach out to activate the leaves, or lower
Fi_gure 2-1 dia9rams this tree-like heirarchy.

OPERATING SYSTEM OVERVIEW

a tree· .. like structure.
Commands from the

leveli; of the system.

Out1:?r Commands: E<di t, F<i le, R<un, C(omp. L< ink, X<ecute, [)(el.Ju9

-·-·Edit: A<dJust, C<py, D<lete, F<ind, Hnsrt, J(mp, R<place, <Huit, X<chng, Z<ap

·--·File1·: G<et, S<ave, W<ha·t, N<ew, L<dir, R<em, C<hng, T<rans, D<ate, <Huit

--Run: Invokes the Compiler, Linker and executes the prograllln

--C<lmpi le: Translates Pasca 1 source programs into P-code. Options are placed
in program text.

--·Link: Links the system library to translated program.

--Execute: Executes compiled and linked programs.

--·Debug: Interactive program which aids in debugg:ing executing program:.

The UCSO Pascal Operating System is a single user program development system
which aids in developing and executing user application programs.

Figure 2-1. Operating System Overview

The lowe1· levels of the system are accessed by outer level CDIMl<mds. A
command structure within each level enables the user to direct its execution.
The commands are listed in a prompt line. The prompt line for the outer
level commands appears after Autoload, after execution or a lower level, and
following the entry of some lower level commands, such as G<uit in the File
Handler. Within each of the lower levels, infrequently used colftlllands may
not appear on the prompt line if there is insufficient room on the line.

Page 3

The lowe1· levels of the Pascal Operati n_g System are:

o Screen-Oriented Editor An editor specifically
desi9ned for use with vide:> display terminals to
insert or delete text in the work file or any tPxt
file.

o Line-Oriented Editor (rALOE> An edit-or·
specifically designed for lJSe with teleprintP.rs to
insert or delete text in the work file or· any text
file.

o File Handler Used primirily for maintenance of
files stored on the disk.

o Pascal Compiler A one-pass compiler used to
compile programs#

o Basic COlnpi ler ·- Used to com:>i le programs.

o Linker - Used to combine pre:ompiled files, written
in Pascal •

o Debugger - Used to facilitate debu99ing.

Normally. an installation wi 11 have just one of the editors and one of the
compilers. depending on system configuration and need.

Other functions are available as utilities. These include the desk calculator,
the patch/dump utility, the termi na 1 configuration setup pro91·am and a
bootstrap mover.

2.2 OUTER LEVEL COMMANDS

The prompt line for the outer level commands appears automatically after
Autoload and after any of the lower levels have completed execution.
The prompt 1i ne offers a co1M1and for ear.h of the other levels of the
operating system. The format of the prompt line is:

Command: E<dit. R<un, F<iler. C<omp. L<ink. X<ecute, D(ebu9

The operator invokes the execution of the individual commands by entering
the capitalized character on the operator's console. The function of each
command is as follows:

E<dit
By entering an "E", either the Screen·-Oriented
Editor or the Lir1e·-Oriented Editor <YALOE> is
brought into memor~J from disk, depending on
whether a CRT or a teleprinter is used as t;he
operator's console in the system. The work filf~

text is read into the Editor buffer
automatically if onE~ is present. Other111ise. the
Edi tor prompts for .:1 file.

Page 4

R<un

F<i le

C<o111p

L(ink

X<ecute

D<ebug

Entering an "R" causes the code file associated
with the current aiork file to be executed. If a
code file does not currently exist, the syst.em
Compiler is called au·tomatically. If thP.
cOR1pilation requires linkage to separately
compiled code, the Linker also is called
automatically and assumes the use of the file
ti SYSTEM. LIBRARY. The prog·ram is executed a·Pi:er
a successful compilation and linkage.

Entering an "F" calls the Fi le Handler into
memory from disk.

Entering a 11C11 initiates either the Pascal
Compiler or the Basic Compiler, whit.:hevf!r is a
part of the system.

The "L" command starts the Linker to allow users
to link routines from libraries other than
tiSYSTEM.LIBRARY.

After an 11X11 command is entered, the U!'>er is.
prompted for the file name of a previously
compiled code file. If the file requested
exists, it is executed. Otherwise, the message
"can't find file" is returned. <Note: ThP
11

• CODE" suffix on such a file is imp lie it and
does not need to be entered.) If the code file
is composed of several separately compiled
files, and one part has not been linked, thP
message "file (fileid> not linked in" i£­
returned. Programs can be executed either by
use of X<ecute for a file that has already been
compiled or by use of F< i le, G<e·b the fi lb
G<uit the Filer, and then R<un the program.

Entering a 11011 causes the current work file to
be executed. If the program in the work file has
not been compiled, the Compiler will be called
first, as with the R<un command. During
execution, if a runtime error occurs or if a
user- defined breakpoint or halt is encountered,
the Debugger is called.

The X<ecute com111and can be used to execute utility functions. Thesl:'
functions include a desk calculator, a librarian and library map, and a
GOlOXY procedure binder, among others. These are described in Section 4.

Page 5

2 . .4 SCREEN--ORIEHTED EDITOR

The Screen-Oriented Editor is desi9necl to provide a window into the file with
the video display terminal. The window shows that portion of the rilP in which
1:?ditin9 is takin9 place. When enter-h.Q any file, the Editor displays the start
Clf the Fi le in the upper left cormn· of the screen. That is where the cursor
is originally positioned, also. The 1:ursor is a marker that indicates where
the action is taking place. When the user enters an Editor commanrl to 90 to
a part of the file that is not displaJed, the window is updated to show that.
portion of the file. Thus, the user does not need to operate on any portions
of the text that are not seen on the ·:;creen; however, he has the option to
do so.

When the Editor has been called by em·terin9 the outer level "E" comma·nd, tire
Editor displays a prompt line at the top of the screen. The prompt line
reminds the user of the current lllOdE~ .md the options available for that modeJ
Only the most comrnon ly used optio'lS appear on the prompt line. The format
:is:

>Edit: A(djust C<py D<lete F<ind Hnsrt J(mp R<place <Huit X<chng Z<ap

Note that the cursor is never really "at" a character position; it is
between the character where it appears (for ease of display) and the one
immediately preceding. This is most 1:learly noticed in the I<nsrt command
111hich inserts in front of the charac'ti:or at which the cursor is located.

[n the Edi tor, some of the options c11r1:0 referred to as commands and some as
modes. lJhen an option executes a task and returns control to the Edi tor,
that option is called a command. Whe·ll an option issues a prompt fm' another
level of options, it is called a mode. On entering or returning to the edit
level, the Editor always displays the "Edit:" prompt line.

Repeat factors are allowed by any of the commands to repeat the action of
the command as many times as indicate,j by the immediately precedin.g number.
For example, enterin9

2 (down-arrow>

<down-arrow> command to be repeated twice, moving the cursor
down two lines. The assumed repeat f.3ctor is 1 if no number is typed before
the co11111and. A slash (/) typed before the command indicates an infinite
number of repeats.

1vi 11 cause the

Some cOnYRands are directional. If their direction is forward, they operate
·Forward through the file; if backwaT·ds, they operate in the revers£•. When
direction affects the commands, it is specifically noted.

:2. 4.1 Moving Commands

The moving commands move the cursor from one location to another to position
it f'or the next editin9 function. Many of these commands are initiated by
li<eys. on the CRT keyboard. They inclu::le:

Page 6

Command/Key
<down-arrow>
<up-arrow>
<right-arrow>
< left-arrow>
11

(
11 or 11

," or "-"
II)" or II. II or II+"

<space>
<back-space>
<return>

Function
Moves cursor down
Moves cursor up
Moves cursor right
Moves cursor left
Changes the direction to backward
Changes the direction to forward
Moves direction
Moves left
Moves to the beginning of the next line

Direction is always indicated by an arrow<> or() in front of the prompt
lim?. The direction is forward when the Edi tor is entered, but can be
changed by typing the appropriate command whenever the "Edit:" prompt line
is present. On many standard keyboards, the period (.) can be used for
forward because it is the lower case for 11

)
11

; and the comma (,) can be used
for backward, being the lower case for 11 <11

•

Repeat factors can be used with any of the keyboard commands given above.

The Editor maintains the column position of the cursor when executing the
< up··arrow > and <down-arrow> commands. When the cursor is outside the text,
the Editor treats the cu1·sor as though it were immediately after the last
character or before the first in the line.

The moving commands that do not have special function keys on the CRT keyboard
are jump, page and equals. They are described below.

)JUl1P

JUMP mode is entered by typing "J11 for J(mp. When the
JUMP mode is entered, the prompt line appears:

JUMP: B<eginning E<nd M<arker <esc>

Entering 11811 or "E" moves the cursor to the beginning
or end of the file, displays the "Edit:" prompt line
and the first or last page of the file. Entering "M"
produces the pr01Apt line:

Jump to what marker?

The user then enters the name of the marker, follOUled
by a <return>. The Editor moves the cursor to the
place in the file where the marker having that name
was previously set. If a marker of that name is not
in the file, the error message displayed will be:

ERROR: Marker not there. Please press <space-bar>
to continue.

The instructions for setting a marker in a file are
given in Section 2.4.4, Miscellaneous Commands, under
Set.

Page 7

PAGf

EGIJAt.S

The PAGE
"P". PAGE
depending
be9innin9
start of
time, the

command is execut:?d in response to typj.n9
moves the cursor on;:? whole page up or do111n,
on the direction of the arrow at the

of the prompt line.. The cursor moves to the
the top lineM To nove several pages at one

repeat factor 111ald! be used with this command.

The EQUALS command is execLited in response to 11=11
• It

makes the cursor ,jump t.o the beginning of the last
section of text that was inserted, found or replaced
from anywhere in the file. EQUALS works from
anywhere in the file and is not direction-sensitive.
Uhen an INSERT, FINO or REP~ACE command is executed,
the beginning of that functi<)n is saved. However, if
a copy or deletion has bee·n made betwei:m the be9innin9
of the .Pile and that absolL1te ;>osition, the beginning
location is altered and is no longer correct for an
EQUALS c04Bllland.

2.4.2'. TEXT-CHANGING COMMANDS

The commands described below change· the text of the file.

INSFRT

INSERT 1AOde is entered by typing "I" for I<nsrt. Whc11
the INSERT mode is entered, the prompt line appears:

Insert: Text<<bs> a char, (del> a line} r<etx>
accepts, < esc > e~scapesJ

The text to be inserted is typed in. It may be
followed immediately blJ < etx > or < esc >. Before
insertion, a character can be deleted by backspacing
((bs > a char> or an entir-e line can be deleted ((de 1 >
a line>.

A new line can be star1;ed at a level of indentation
set by options in the SET mode by typing:

<return>

Direction does not affect the INSERT mode1 but is
indicated by the arrow in the first position oF the
prompt line.

An insertion that is 111acle and corrected is available
for use in the COPY mode. Ho~ever, if <esc> is used,

Page 8

no s'tring is available f-or COPY.

AUTO-INDENT and FILLING

LinE~ 1
Line• 2

U.ne 3
U.ne 4

Line 5

DELElE

AUTO-INDENT and FILLING are used to control the left.
and right mar9ins, respectively. Both are in effect
if True and not in effect if False. <See SET for
setting them to True or False.)

If AUTO-INDENT is True, a <return> causes the next
line to start at the same level of indentation as the
immediately preceding line. If False, i.ndentation has
to be adjusted by spacing for any line that is not to
start at the normal left··most position in the line.
An ex amp le is shown in Figure 2·-2. When the lPft
margin is controlled by AUTO-INDENT <True), the level
of indentation is changed by using the <space> and
(backspace> keys immediately following a <return>.

If FILLING is True, all insertions are forced within
the right margin by automatically inserting a <return>
between words whenever the right margin would have
been exceeded. The Editor considers anything bet1ueen
two spaces or between a space and a hyphen to be a
word. An example is shown in Figure 2-2. <See SET
to set margins.>

FILLING also causes adjustment of the rj,ght margin on
the portion of the paragraph following an im:.erticm.
However, any line beginning with the Command character
(see SET> is not touched, and that line is conside1·ed
to terminate the para91·aph.

Original indentation
<RET> causes indentation to the level of the line above
Indention was changed by <~pace> <space>
<RET> causes indentation to the level of the line above
Indentation was changed by <Backspace>

Figure 2-2. Example of Auto-Indent

DELETE mode is entered by typing "D" for D<lete. On
entering DELETE mode, the following prompt Hne
appears:

>Delete: < ><Moving commands> <<etx> to delete,
,(esc> to abort}

Page 9

The cursor must be positioned at the first character
to be deleted. When enter in.9 DELETE.· the Editor
remembers ll•here the cur~;or is. That position is
called the anchor. As the· cursor is moved from the
anchor position using the moving commands, text in its
path wi 11 disappear. To ,; ccept the deletion, type
<etx>; to escape, type <esc:>. When <etx> is typpd, the
Editor saves everythin9 th.:t was deleted for COPY to
use. When < esc > is type::!, noth in 9 is deleted but ttw
copy buffer contains what would have been deleted. An
ex amp le is shown in Fi911re 2-:1.

lhis is the te)t before deletin9:

This sentence of the text is to remain the same. This
sentence is to be IRodifie·d by the delete command.

Posi t:ion the cursor over the "T" in tt e second occurrence of "to". Fnter a
"D" followed by typin9 5 <space> k1?ys and a <etx> key. This will rei-.;.ult in
the •Pollowing text:

ZAP

This sentence of the 't;exi. is to remain the same. Thi~;

sentence is modified by the delete command.

Fi !Jure 2-·3. Ex amp le of Delete Command

The repeat factor may be u~;ed to delete several lines
at once by prefaci n9 a < re•turn > or any other of the
movin.Q commands with the d1?sired repeat number while
in DELETE mode.

The ZAP command is execute•d by typin9 "Z" for Z(ap.
lhis command deletes all text between the start of
what was previously found, replaced or inserted and
the current position of th1? cursor. ZAP is designed
to be used immediately a·~ter FINO, REPLACE or INSE.R"J.
If more than 80 charactl?rs are being zapped, thr>
Edi tor wi 11 ask for veri fie a ti on.

If a FIND or REPLACE is made mi th a repeat factor and
then ZAP is called, only the last find or replace will
be zapped.

Paue 10

COPY

EXCHANGE

Whatever is deleted by ZAP is available for usP. with
COPY.

COPY mode is entered by typing 11C" for C<py. Whcm
entering the COPY mode, the following prompt linP
appears:

>COPY: B<uffer F<ile (esc>

Enter "B" to copy text in the copy buffer into the
file at the location of the cursor when the 11C11 tuat~

typed. On completion of the COPY, the cursor returns
to a position immediately preceding the text that 111a!".

copied. The use of COPY does not change the contents
of the copy buffer.

Enter 11F11 to copy text from another file. ThP
following prompt line wi 11 appear:

>COPY: FROM WHAT FILErMARKER,MARKERJ?

Any file may be specified. Text is assumed. 11at'kerr,
can be set so that a given portion of a file can be
copied. On completion of the COPY (from file), ttH~

cursor returns to the beginning of the tex·t ,iust
copied from the file. Use of COPY does not altPr thP
contents of the file being copied.

The copy buffer is affected by the following commands:

DELETE -· On accepting a deletion, the buffer is
loaded with the deletion; on escape, the buffer is
loaded with what would have been deleted.

INSERT - On accepting an insertion, the buffer j.s

loaded with the insertion; on escape, the buffer is
empty.

ZAP When the ZAP command is used, the buffe1' is
loaded with the deletion.

When the deletion is greater than the buffer spate
available, after typing <etxh the Editor will g).vH
the warning:

There is no room to copy the deletion. Do you wir.h
to delete anyway? (y/n)

EXCHANGE mode is entered by typing 11X11
• On entering

Page 11

the EXCHANGE mode, the follm11in9 prompt line app~ars:

t:XCllANGE· TEXT {(bs> a char:- r<esc> escapes; <etx>
accept~;]

EXCHl'lNGE replaces one character l'll a file for each
character of text entered. All example is shomn in
Figure 2-·4. Backspacing ::rne characte1· wi 11 cause the
original character in that position to reappear.
Typing <esc > leaver-:. thf' ~:>::CHANGE mode without mak:in_q
any of the chan9es indicated s:.nce entering the mode;
while typin9 <etx > acct:•pts the changes as part of the
file.

NOTE': EXCHANGE does not allo1J t1,1pin9 past the end of
the line or typ:i.n9 in a carriage return.

This is the text before exchan9in9:

PROGRAl1 EXCHAHGL
BEGIN

END.

WRITEUH'.fHIS TEXT IS FINF.');
WRJTELN< 'THIS TEXl IS NOTFINE');

Po!:;i ti on the cursor to the first "N" in "NOTFINE". Enter an "X" followed
bq typing "CHANGED" and a < etx > key. ·rhis wi 11 result in the Follown_9 tex·t:

FIND and REPLACE

PROGRAM EXCHAHGE;
BEGIN

WRITELN<'THIS TEXT IS FINE');
WRITELN< 'THIS TEXT IS CHANGED'>;

END.

Fi_oure 2--4. E <amp le of Exchange

'f he followin.Q rules apply to bQth FIND and REPLACE:

1. The repeat factor is valid and must be typed
before typing 11F11 or "R '. The current repPat
factor appears in brackets on the prompt line.

2. The Editor provide~; two strin.Q stora.rw
variables:

targ the target string (used by both)
sub the substitute <REPLACE on 11.:1>

Both delimiters of either string will be tlu•
same. The Edi tor considers any chat'acter that
is not alphabetic or numeric to be a delimiterp
(space> is a particularly common delimiter.

3~ Text; is scanned in the direction of the arrow rm
the prompt lint?. The target pattern can br>
round onl~1 if :it appears in that section ot thP
text.

4. In LITERAL mode, the Edi tor 1td. ll look for ilntl

occurrences of! the target string; in TOKEN mode,
it looks for an isolated occurrenceu Isolation
means a string is surrounded by any combinatfor1
of delimiters. "fo use · the LITERAL mode, t1;tpl!

"L" after the prompt line and before the tar9et
line; to use TOKEN, type "T". The default
value found in the Environment may be overridden
by typing 11 L11 or 11T11

• TOKEN ignores sparer;
within strin.Qs so that both 11

(',')"and(',')
are considered to be the same string.

5. lo use the same string as used previously, typP
"S". For example, t:yping 11 RS/(any-.. shin.o }/"
causes REPLACE to use the previous taq1ct
string; while typing "Rl<any··string}/S" caut.-P.~>

the previous substitute string to be used.

FIND mode is entered by typing "F". On entering FIND
mode, one of the pr·ompt lines below wi 11 appear:

>Find[nJ:
>Find[nJ:

L< it «target> = >
T<ok <target> = >

FIND mode finds the repeat factor rnJ occurrence of
the < tal·get > strin9 sta1·tin9 with the current position
and moving in the direction shown by the arrow~

REPLACE mode is entered by typing "R". On enterin_o
the REPLACE mode, one of the prompt lines below w:i 11
appear:

>Rep lacernJ:
>Rep lacefn]:

L<it V<fy <tart> <sub>=>
T<ok V(fy <targ> <sub>=)

REPLACE mode finds the repeat factol"' rnJ occurrence of
the target string and replaces it uiith the subi;;.titute
string.

The verify option (V(fy) allows examination of the

Page 13

tar.Qet strin9 <to the limit st?t by the
to decide if it is to be rf~placed.
has found the target pattnrn in
verification has been reque!;ted, the
line appears:

repeat faclor)
Whenever REPLACE
the file and
following prompt

>Replace: <esc> abor·ts, '1·' replaces, ' ' doesn't

lyping an "R" wi 11 cau~>e rep 111cement; typing a spacP
u•i 11 cause a con ti mJ<1ti DT1 of a search for the nP:d:
occurre11ce if the limit t1f th1? repeat factor has not
~~et been reached. The reoe·a1; factor counts the numher
of times an occurrence i~; found, not the number of
times "R" is entered. If <1 slash (/) is used as lhP.
repeat factor, every occurre·nc:e of the target st1'in9
11.1ill be replaced.

If the Editor cannot find the target string, the enor
message appears:

ERROR: Pattern not j n the file. Please pre!'>s
<space bar> to ::on1;inue.

A11 e)(ample of REPL1)CE i~. s.1ow11 in Figure 2-5.

This is the te):t before replr.icin.<r

PROGfMM REPLACE.;
REG JN

l4RJTELN< 'SOllE WORDS');
\JRITH.N('MOl?E WORDS');
!.JIUTEL.N< 'EVEN MORE WORDS').:

END.

Posi t:ion the cursor to the be9innin9 of the text. Enter a 3R and thr.- follo11.1in.Q
would be displayed:

>REPLACEr3J · l(it V< fy < tar_g > <sub?> = > T /WORDS//STLIFF/

ihis lllill result in the follou.11n_9 te·x1;:

PfWGRAM REPLACE,
BEGIN

lJR ITEl.N (I SOl1[STUFF ..) .:

~JlflTELM< 'l'IOf~E STUFF'>:
!JR I TEL.N (I EVEN MORE STUFF I) ;

END ..

.
Figure 2··5. Ex amp le of Rep lace

2.4.3 Formatting Commands

The formatting commands ADJUST and MARGIN are used to control indentation and
page format on a line-by·· line basis <ADJUST> or by para91·aph <MARGIN).

AO ... JllST

MARGlN

ADJUST mode is entered by typing "A". On enterin,9 the
ADJUST mode, the following prompt line appears:

)Adjust: l<just R(just C<enter <left,right,up,down­
arrows> {(etx> to leave}

ADJUST mode adjusts indentation on a line-by··line
basis. On any line, the right-·arrow and left-a1·row
commands move the whole line one space to the right or
left, respectively, each time the arrow is typPd"
Type <etx> when indentation is adjusted.

To adjust a sequence of lines, adjust one, then usP
the up-arrow and down·-arrow commands to ad,just the
line above or below, respectively, by the same
amount. Repeat factors can be used before any of the
arrows.

"L" and "R" are used to left- and right-justify lines
to margins set in the Environment. "C" tvi 11 center
the line between the set margins» Typing an up-· or
down-arrow will justify or center the line above or·
below to the same specification.

The MARGIN command is executed by typing "M".
command does not appear on the prompt linen
is Environment-dependent and cannot be executed
when FILLING is set to True and AUTO-INDENT is
False.

This
MARGIN
except
set to

Three parameters are U£-ed by mar.Qin: right·-, left- and
paragraph- margin. MARGIN deals with only one
paragraph at a time. It realigns the text to compress
it as much a5 possible without violating the three
margins. To set the margin values, see SET mode- An
example is shown in Figure 2-6~

Page 15

This para9raph has been r!AF'.GINed mith the paramet:ers set:

L"?ft marqin 10
R i g:ht margin 70
P ~ra11raph mar_gin 18

The Margin Command J.s executed by typing "M" 11ihel1

the cursor is in the panqr<1ph to bE· margined. The Mal'J,1i11
Command deals with or1 lt.j one p.:H'a9raph at a time and
realigns the text to the spE~cification set in thP
1:mvi ronment.

This paragraph has been rtHRGINed with the parameter· set:

L:'?H mar_gi n 20
Ri9ht margin 60
P":lraqr-aph mar51in ()

the l"largin Command is executed by ty;p:.n9 "rl" when the
cur-sor is in ti1e par-aqT'aph to be
margined. The May·_qin Command deals
with only one paragraph at a time and
realiqns the t·~xt to the specification
set in the enviro11ment.

;::-igure 2-.S. Ex amp le of Mal'.9i n

For purposes of format:tin9, a paragraph is defined as
the lines of text occurring butween two blank lines.
To MARGIN a para_9raph, 111ol!'e i;he cursor anywhere in the
paragraph and type "M". .,Ji th an exceptionally long
paragraph, the routine ~ay take several seconds in
execution before redispl~yin9 the paragraph.

Any 9iven line of text can be protected from being
11ARGINed if the the Comman::I character appears as th1-1
first non-blank character on the line. The MARGIN
treats that line as though :~t were entirely bl;mL
<See SET for setting the Command characters.)

WARNING: Do not use MARGIN within a line that
starts mith the ~)mmand character.

'.L tt 14 i1iscellaneous Commands

SET mode is entered by typin9 "S". This command dom>
not appear on the prompt l.ine. On entering the SEl
mode, the follo111in9 prompt l.i 'le appears:

>Set: M<arker E<nvironment <esc>

Markers are a convenience in a long file. They are set
by movin9 the cursor to the position in the "text to be
marked, then typing "11". The following prompt; Jjne
wj. 11 appear:

Name of marker?

The name may be up to 8 characte1's followed by a
<return>. 11arker names are case-sensitive; upper and
lower cases of the same letter are considered to he
different letters. If the marker already existed, it
wi 11 be reset.

Only ten markers are permitted in a file at any one
time. On typing 11 SM 11

, if an overflow occurs, the
following prompt mi 11 appear:

~larker ovflw.

Which one to replace.

1) name2

9) name10

Choose a number 0 through 9, type that number, anc1 now
that space will be available for setting the desired
mar·ker.

Once markers are set, they can be Jumped to by using
the M<arker option in the JUl'IP mode.

If a copy or deletion is made between the beginning of
the file and the position of the marker, the absolute
position of the marker will be changed.

Through SET mode, the Editor enables the usc.>r to set
the Environment to meet the needs of the editing to be
done- tJhen 11E11 for E<nvironment is typt?d, the
following prompt appears:

>E<nvironment: {options} <etx> or <sp> to leave

A<uto indent
F<i lling
L(eft margin
R <ight margin

Trut.~

False
0
79

Page 17

VEl<lFY

QUJT

P(ara mar.gin
CCommand r.h
T<oken def

,, 5

nnnn bytes used, nnnn available

Patt~rns:

target ·- 'x tJZ ', subr>t = 'abc'

The option values given i.n t1e prompt are defaults for
the Sorok 120. By typing thE? appropriate letter, any
or all of the options may be changed. Each option is
described below.

A (uto j, n dent Set to
"AT" ancl to Fal~.i.e by "AF" ..
mode.

rrue <turned on> by typ:i.ng
Affects only the INSERT

F< i lling - Set to True <turned on> by "FT" and to
False by "FF". Affects the INSERT 111ode and allows
the MARGIN command to function.

tlargins - Set by typin.9 the appropriate letter ("l",
"R" or "P") follo1L•ed by a positive integer of les~;

than 4 digits and a <space>. When Filling is T1·ue.
the margins set here are• the ones that affect INSERT
and MARGIN and the center and justify commands in
AD .. IUST.

C<ommand ch Set b\J typing "C" followed by any
character. Affects thP MARGIN command and the
Fi llin9 option of the INSERT mode.

T<oken def - Set to TrUE~ by "TT" and to False by
"TF". If True. Token is the default; if False.
Literal is the default. Affects FIND and REPLACE.

The VERIFY command is executed in response to typing
"I)". TI1e status of the Edi tor is verified b\J
displaying the updated sc:reen. The Editor attempts
to ad,just the u.tindow so the the cursor is at the
center of the screen.

QUIT mode is entered by t1JpiTig "G". On entering the
QUIT mode, the following pronpt appears:

}Quit:
U(pdate the workfile ard leave
E<xit without updating
R (et1J1'n to the editor uii thout updating

Pt: .Qt~ 18

W<rite to a H J.e name and t'eturn

One of the four options must be sele~:ted by typing t:he
appropriate letter. The options are described below:

U(pdate - The Editr..1r writes the file Just modi Hed
into the u.iork file and stores it as SYSTEM. WRKn TEXT.
It is available f01· either the Compile ot' Rur1
options or for the Save option in the Filer. ThP
Filer regards it as the text file.

E<xit - The Editor leaves without makin.9 any chan9es
in SYSTEM. IJRK. TEXT. Any modifications made since
entering the Editor are NOT recorded in thP
permanent work H le.

R<eturn ·-· The Editor returns without updatin_q. Thf)
cursor is returned to the exact place in the file
it occupied when "G" was typed. Usually, tt'd.r.;
command is used after typing "G" uni nten·tiona ll1J.

IJ(rite - With this option, a further prompt appears:

)Quit:
Name of output fi le <<er > to return> -- >

The modified file may be written to any file name.
H it is an existing f-i le, the modified fi l<~ w:i.11
replace it. The command can be aborted by typing
<return> instead of a file name; r·eturn wi 11 be to
the Editor. After the file has beer1 written to
disk, the prompt will be:

>Guit:
Writing ••• # •••

Your file is nnnn bytes long.
Do you want to E(xit from or R<etuf'n to the Editm-?

Typing "E" exits f'rom the Editor and r·eturns to the
Outer Command level.. Typing "R" returns the cu1-sor
to the same position in the file as when the 11 G" 111as
typed ..

L2 Editor

The l2 Editor handles files larger than can fit into the m.1in memnr~1 buffer
at one time (i.e., what can fit into the space avuilable on t.he disk).
Also, it automatical11.:1 makes a bacl<up copy of the file being edit:ed. lhe1-e
are very few differences between the L2 Editor and the Screen-·Oriented
Editof' previously defined in this section. The differences are described
bf? lc.iw.

If, on entering the Editor by typing "E", there is not room enough on the

Page 19

dis~, the following error me~,sa9e will be displayed:

ElmOR: Not enou9h room for backup•

The disk must be K<runched btl the File1· to combine unused bloc~s at the
end, or a file must be removed.- or another disk must be used. 'fhf>n. when
"E" i!::. typed, tht• fo llowi n .9 prompt 1i nes appear:

Copyin9 to filename.back.
>Edit <same as for standard Edi tor)
Reading

In Section 2.::i. the description of entering a workfile and getting a program
applies also to the L2 Editor.

When all changes and additions have been made, the Editor i~ exited as
by typing "Q", except that the W<1·ite option is not available. lhe
thrE?e options have added features:

IJ<pdate - supp lies addit.iona J infor·mation to ind:irr1tt'!'
the file riame and lPngth. Belo111 is an ex amp le of the
extra infoT'mation .9iven 111hen a new file is created:

Writing.Ii
The workfile, li:Fl.TEXT, is. 73 blocks long~

The backup filP is X:F:l...BACJ.(.

The newly edited file is .. TEXT; and the or·:i..9inal file>
mi th no modifications is .. BACK.

f:(x:i.t -· no .BACK file is made• and the existing one is
removed.

IHeturn ·- no chan{Jes.

A f4?1U of the Editor commands are handled differently. They a1·e:

• .IUMP - lhf? prompt line is. thP satfle, however the "B"
and "E" refer to the be9innin9 and end of the buffet',
not the file.

FINO The Editor displc1y~; "Findin.9
the pattern. If the pattern :.s not in the
displays:

• " and .Qi VPS

buffer, i -~.

End of buffer encountfJre•d. Get more from disk?
(Y/N)

On typin_g "Y", the Editor will move another section of
the file into the buffer and continue searchin9. FINO
is still di1·ectional.

SET Marker-s are
!0.tandard Edi tor.

t.et brJ
However,

typing
up to

"SM".• as in the
20 markers are

usua 1 ..
other

permitted, rather than 10. The envir-onment is set by
typin.9 11SE 11

• The prompt di!:;played gives additional
information, as follows:

>Environment: options <etx> or <sp> to lave
A< uto Indent
F(illin9
L<eft mar9in
R<ight mar9in
P<ar·a margin
C<ommand ch
l<oken def

nnnn bytes used. nnnn available~

There are n pa9es in the left stack, and n p,;19es in
the right stack. You have n pages of! room, and at
most n pages worth in the buffer"

Markers: <Pl P2 >P3
(no anow indicates the marker is in the
cur1·ent buffet•)

Created mm dd yy: Last updated mm dd yy rnevi!>ion
n>.

The L2 Edi tor contains two new commands, BANISH and NEXT. They are described
below ..

NEXI

BANISH is entered by typin_g "B". The following prtlmpt
line will appear:

>Banish: To the L<eft or R<ight <esc>

BANISH moves characters from the buffer into the stack
to provide more room in the buffer to avoid overflow
when doing a large insertion or cop1J. The left irnd
right stacks are ahead of and behind the cursm·1
respectively. The screen is the boundary for th~
operation.

NEXT is entered by typing "N" to move beyond the
bounds of the buffer. The following prompt lin~
appears:

Next: F(orwards1 B<ackwards in the file: S<tart1
E<nd of the file. < esc >

When using "F" or 11811
1 an implicit banish occurs using

the cursor as the point of referencen With "F" 1

Page 21

"') .: _)

everything above the scree11 is banished to the lef't
stack. 11ore characters art? added to the bottom of the
screen to extend the buffer in the for111ard direction.
With "B", the characters bE~loll the cursor are banis.hc:.>d
to the right stack and the lower part of the sneen
becomes blank. More characters are added above the
screen. Thus, the s1,11nbolic file can be diagrammed .;is
shown be low.

LEFT STACK RIGHT ST ACK

BACKlJARD BUFFER FORl.JARD

START END

YET ANOTHER LINE-·ORIENTED EDITCIR (YALOE>

The Yf,LOE text editor is desi_9ned ·Por use in systems that have a teleprinter
or teletypewriter as the system op1:?rator's console rather than a video display
terminal.

The Editor assumes the exist1:1nu• of a workfile, but is not dependent on it.
The workfile can be created after enterin9 YALOE. If a wor'kfilP already
exists, the Editor will print:

Workfile STUFF read in.

If the Editor is called and the workfile is empty. the Editor will 9ive the
mes~-age:

No oork file read in.

The Editor operates in either Command Mode or Text Mode~ The EiHtor is in
Command Mode when entered. In Command Mode, all keyboard input is assumed to
be commands. Each command may be te•rrriinated by <esc >. The commands may be
strung to_gether. No commands in a •;trin9 <or sin9ly) wi 11 be exec:uted unti 1
l;he final command in the strin_q is followed by <esc> <esc>. Spaces, carriage
returns and tabs within a command S"~ring are ignored Linless they appear in a
text string. lJhen the execution of a command string is complete, the Editor
prompts for the next command with an .isterisk (It). In contrast to other levels
of the Pase a 1 Operatin9 System, a prompt line of available commands is not
given.

If an error is encountered during c:ommand execution, the command will be
":;erminated at that point without comp letin9 execution.

The Text Mode is entered whenever a c1)mmand is typed that must be follo111ed
by text. Then a 11 succeedin9 char·a•:ters are considered to be text until the
.1ext <esc >. The commands that requj.r•:? text are F<ind, G<et, I<nsert, M<ano
dehne, rHead file, W<rite to file, a:'!d eX(chan9e.

Paoe 22

NOTE: When typed, <esc> echoes a dollar sign ($). The (esr.> te·rminates
each text string and causes the Editor to re-enter the Command Mode. A
double (esc> terminates the command string and causes the Editor to sta1·t
execL1tion.

The workfile is stored in the text buffer. This area is alfocated dynamically
by the ? command (section 2. 5. 5). The Edi tor can 11.1ork only on files that
fit completely within the text buffer.

The cursor is the posH;ion in the file where the next command wi 11 be executed.
11ost edit commands function in relation to the cursor.

Some of the YALOE commands described
precede the command letter.. Usually, the
times the command should be performed
be affected by the command. With some
implicit and no argument is needed.
ell'{~:

here require a command ar9um1:>nt to
argument specifies the numbE.•r of
or the particular portion of text to
commands, the specifications are
The command arguments useti by YALU!:.

n Any integer, signed or unsigned. Unsi,9ned integers
are assumed to be positive. In a command that accepts
an argument, the absence ofl one implies 1 (only orie
execution) or minus 1 if only the minus sign is
present.

m A number in the range of 0 through 9.

o The be9innin9 of the curJ'ent line.

/ The same as 32700. A "--/" is -32700. It is used r-01·
a large repeat factor.

-· Represents -n where n equals the length of: the last
text argument used. App lies only to the J, o, and C
commands.

2.5.1 Special Key Commands

Various keys on the keyboard have special functions, some of which are
unique to YALOE. These commands are described below. Those cont.rel keys
that do not appear below are ignored and discarded by YALOE.

< e£.c >

RUBOUT

The escape key is echoed as a dollar sign ($) on the!
opercrtor's console. A single <esc> terminates a text
string. A double <esc> executes a command string.

< linedel>

On hard-copy terminals, line
"<ZAP" and a carriage ret..urn.

delete is
On others,

Page 23

echoed as
it c lPars

the current line on the s1:reen. In both car.-es, the
contents of that line are discarded by the Edi t()r.

CTRL H
<chardel>

CTf<L X

cmL o

CTR! F
f-1U£Al

CTRL 5
~•top

On hard-copy terminals, characteT' delete is echoed as
a percent sign (X) follolll€d by the charar.ter deleted.
Deletions aT'e done ri_9ht to left, with each characte1·
deleted erased by the /., L'P tJ the be9innin9 of the
comm.:rnd strin_g. CTRL !-<' may be used in both Command
and Text t'lodes.

CTRL X causes the Editor t:o ignore the entire command
stl'in9, and respond with a cania_9e r·etur-n and an
asterisk < 10 to prompt for another command. The
command strin9 being igr1ored may be on sever a 1 lines.
All lines back to the previous ~ prompt are ignored.
<A character delete is confined to one line.)

CTRL 0 causes the Editor to switch to the optional
character set <bit I turnE~d on). This applies only to
the TERAK 8510f).

NOTE: If str-.:rnge charactPrs start appearing on the
terminal CRTL 0 may have been hit accidentally.
This is corr·ected b1J t~!pin.9 CRTL 0 again.

CTRL F causes the Editor tc• discard all output to the
termina 1 unti 1 the next CTRL F is typed.

CTRL S causes the Editor to hold a 11 output to the
termi na 1 unti 1 the next CTRL S is typed.

Input/Output Commands

The commands that control I/O are de!>cribed below.

UST

The LIST command
L(ist. It causes
number of 1i nes on
cursor. Variations

lS

the
the
of

specified by typing "L" for·
Editor to print a specified
ter111inal without moving the

this command are illustrated in

VEl~lFY

WRITE

READ

the examples below.

tt-3L$$ Prints all characters starting at the third
preceding linf.' and ending at the cursm'.

tt5L$$ Prints all characters beginning at the cursor
and terminating at the fif:th carriage return
<line).

lf0L$$ Pt•ints from the beginning of the current line
up to the cursor.

The VERIFY command is specified by typing "V" for
V<erifyn It causes the Editor to print the current
text line on ·the terminal. The position of: the
cursor within the 1i ne has no effect on the command
and the cursor is not moved. No arguments are used.
VERIFY is equivalent in effect to a "110L'$$ 11 list
command.

The WRITE command is specified
t.J(rite followed by the file title,
format:

ttW< Fi le title)$

by typing "W" for
in the follomin9

The file title is any legal file title described in
Section 3.2, except that the file type is not given.
The Edi tor wi 11 automatically append 11

• TEXT" as a
suffix unless the title ends with".", "]"or ".TEXT" ..
If- the tit le ends in ". ", the period wi 11 be stripped
from it.

The WRITE command will write the entire text buffer to
a file having the given file title. It will not move
·t::he cursor or alter the contents of the text buffer.
If the volume specified by the file title has
insuffir:ient room for the text buffer, the f'ollowin_g
error message will be given:

OUTPUT ERROR. HELP !

The text buffer can be written to anot.her volumea

The READ command is s.peci fied by typing "R" for R (ead
followed by the file title, in the following format:

»R< .Pi le title)$

Page 25

GlJll

ERA~-\E

0

2.~.3

The Editor will attempt tc locate the file title as
given. If no f'ile is found havin9 that title, a
".TEXT" is appended and a new search is made.

The READ command inserts the !:.pecified file into the
text buffer st.artin9 at tte location of the cursor.
If the file read in does noi: fit, the entire text
buffer wi 11 be undefined j n content. This is an
unrecoverable error.

The QUIT command is sp1~ci fied by typing "G" f01·
<Huit. It has several forms, as follows:

GU Quit and update by writin.Q out a new SYSTEM.WRK. TEXT
QE Gui t and escape Erh tot·; do not alter the work file.
GR Do not quit; return to the Edi tOT'

If "G" is typed alone, a prompt will be sent to the
termina 1 giving the above ::ho:.ces. An option must be
entered (U, E or R>.

The "GU" command is a spec:ia l case of the WRITE
command. If GU does not taork, "IJ" can be used to
wl'ite out SYSTEM.IJRK.TEXT follo111ed by "GE" to exit
from the Edi tor. "GR" is used to return to the
Edi tor after a "G" has been t1Jped accidentally.

The ERASE command is specified by typing "E" for
E(rase. It fLinctions onlJ with video display
terminals and causes the Editm' to erase the screen.

The 0 command is specified by typing 11 011
• It

functions only with video dis.play terminals and causes
the Editor to display the tex't around the cursor e;1ch
time the cursor is moved. The argument for the 0
command specifies the num·:>er of lines to be
displayed. This option i!; in a disabled state when
the Editor is entered. If needed, it must be enabled
by usin9 the 0 command. A second O disables the
option. The location of t.he c:ursor is denoted by a
split in the line of text.

l1ovin9 Commands

The moving commands relocate 1:h1~ cursor to a new position. Thes.e commands
are important because most other E•d:iting commands are dependent on cursor
positioning. The moving commands are described below.

The direction of cursor movement is specified in the commands by the si9n
of the argument. A positive (+n) argument gives the number of characters
or lines to move in a forward direction; and a negative argument (-·n).. in
a backward direction.

Carriage return characters are treated the same as any ot;her character in
text except that the <er> denotes the end of a line of text.

Examples of the movin9 commands are given in Figure 2-7. In t:hc.• examples,
the cursor position is indicated by an up arrow ('') although the cursor does
not actually appear on the teleprinter or teletypewriter.

Jlll1P

ADVANCE

The JLn1P command is specified by typing "J" for
J(ump. JUMP moves the cursor a specified number of
characters in the text buffer. Movement may be either
forward or backward and is not restricted to ,just the
current 1i ne.

The ADVANCE command is specified by typing "A" For
A<dvance. ADVANCE moves the cursor a specified number
of lines. The cursor is then positioned at the
beginning of the line to which it moved. An argument
of zero moves the cursor to the beginning of the
current line. Movement may be either forward OJ'

backward.

-------·-------
Here are the original lines and the cursor position.

THE TIME HAS COME< er>

THE WALRUS SAIOA<cr>

TO TALK OF MANY THINGS< er>

Example 1. H8d$$ moves the cursor forward B characters to the next line
between the K and the spaceo

TO TALKA OF MANY THINGS<cr>

Example 2. H-2A$$ moves the cursor to the beginning of t.he second preceding
line.

"THE TIME HAS COtlE < ct' >

Example 3. HBGTWINE$=J$$ moves the cursor to the be9inning of the text
bui!rer, then starts searching for the string "TWINE". When the !!>tdng is
found, the cursor will be positioned immediately before it.

Page 27

Figure 2-7. EXAMPLES OF THE MOVING COMrlANDS

BEGJNNIHG

The BEGINNING command is specified by typing a 11811 for
B<e9innin9. BEGINNING moves the cursor to the
beginning of the text buffer.

GET and FIND

2~5.4

The search commands GET aTid FIND are synonymous. GET
is specified by typing 11 G" and FIND by typing "F".
With either command, the current text buffer j_s

searched startin_g from the location of the cursor for
the nth occurrence of a specified text string. Upon
completion of a success.ful search, the cursor is
positioned immediately fol.lowing the nth occurrence if
n is positive and immediately before if n is
negative. If the search is unsuccessful, the Editor
_9enerates an error 11essa9e, and the cursor is
positioned at the end of i;he buffer if n is positive
and at the beginning if n is negative.

Text Changing Commands

The text-changing commands add to, remove or change the text.
desc:ribed below. Examples are given in Figure 2-8.

INSERT

The INSERT command is specified by typing "I" for
I<nsert. INSERT causes the Editor to enter Text 11odP.
to add characters immediately following the cursor
until an <esc > is t1,JJ1ed. After insertion is
completed, the cursor is positioned immediately
following the last character inserted.

Occasionally with a la1·9e insertion, the tempora1·y
buffer wi 11 become full. E:efore this happens, the
following message is printed on the operator's
console.

Please finish.

Typing <esc> <esc> will ter·minate the insertion at
that point so that the tie.>mporary buffer can be emptied
into the text buffer. Insertion can then be continued
by again typing "I" to re-enter the Text Mode.
Forgetting to type the "I" w:.11 cause the characters
that are next entered as insertions to be interpreted
as commands.

P.•ge 28

They are

Deletes the four characters immediately precedin9 the
cursor, even if they are on the previous line.

1t8$GHHME $=0$$ Moves the cursor to the beginning of the text buff'er,
searches for the string 11 Tt..IINE", and deletes it-

Deletes all lines in the text buffer from the line in which
the cursor is positioned to the end of the buf'fer.

1tOCAAA$$ Replaces the characters from the beginning of the line to
the cursor with 11 AAA 11 (same as itOXAAA$$).

1tBGA$=CB$$ Searches for the first occurrence of "A" and replaces it
with 11811

•

1t--3XNfJJ$$ E~changes all characters beginning with the first character
on the third line back and ending at the cursor with the
string "NEW".

---·-·----·-----·------------------------·.-------

DELETE

KILL

CHANGE

Figure 2-8. EXAMPLES OF TEXT-CHANGING COMMANDS

The DELETE command is specified by typing "D" for
D<elete. DELETE removes a specified number of
characters from the text buffer, starting wit:h the
position of the cursor. On completion of the
deletion, the cursor is positioned immediately
following the deleted text.

The KILL command is specified by typing "K" for
K<ill. KILL deletes a specified number of lines from
the text buffer starting at the position of the
cursor. On completion, the cursor is positioned at
the beginning of the line following the deleted text.

The CHANGE command is specified by typing 11C11 for
C<hange. CHANGE replaces n charactersl starting at
the position of the cursor, with the given text
string. On completion, the cursor is positioned
immediately following the changed text.

EXCHANGE

The EXCHANGE command is specified by typing "X" for

Page 29

2.5.5

SAVE

UN SAVE:.

MACRO

eX(chan9e. EXCHANGE exchanges n lines, starting with
the line on which the cursor is located, with the
indicated text string. The cJrsor remains at the end
of the chan.ged text on comp le ti on of the command.

11iscellaneous Commands

The SAVE command is specified by typing "S" for
S(ave. SAVE copies the 5.pecified number of lines into
the save buffer, 5.tartin9 at the cursor. On
completion, the cursor position is unchanged and the
contents of the text buffe·r are unaltered. Each time
save is executed, the previous contents of the save
buffer, if any, are destroyed. If executing a SAVE
will cause the text buffer to over- flow, the Editor
will generate a message and not perform SAVE.

The UMSAVE command is specified by typing "U" for
U(nsave. UHSAVE inserts the entire contents of the
save buffer into the text buffer at the cursor. On
completion, the cursor is still positioned before the
inserted text. If the text buffe1· does not have
enough room for the contents of the save buffer, the
Editor will generate a 111essa9e to this effect and
and not execute the unsave•.

The save buffer may be re111oved by typing "OU".

A macro is a single command that performs a strin_g of
standa1·d, but related commands. Ant,1 9roup o.P
f-requently used commands can be grouped into a macro
to eliminate the need for havin9 to write the whole
setof instructions whenevt:•r they are needed. The user
may create macros by using the tt<acro command. The
MACRO command is specifiecl by typing "M" for tl<acro in
the following format:

mMXcomm~nd strin_g/.

u.1here m is an integer :in the range of 0 through 9.
MACRO is used to define a maximum of 10 macros. The
default number is 1. The command string is stored
into the macro buffer m. The command string delimitP.r
n: in the above case) i!:> always the first character
following the 11M11

• The dt:~l:imi ter may be any character
that does not appear in the macro command string
itself. The second occurrence of the delimiter
terminates the macro.

tlage 30

All characters except the delimiter are lega 1 mac1-o
command strin9 characters, including a single <esc > ..
All YALOE commands are legal. An example is given in
Figure 2-9 ..

If an error occurs when defining a macro, thP
folfowing error message is generated:

Err01' in macro definition.

The macro wi 11 have to be redefined.

N <Execute Macro)

? (List>

The N command is specified "N" in the following
for·mat:

nNm$

to execute a specified macro command string. The n is
simply any command argument <E.G., a repeat facto}')
and m is the macro number to be executed. If m is
omitted, 1 is assumed. Because m is technically a
command text string, the N command must be terminated
by <esc> (echoed as$) ..

Attempts to execute undeFined macros result in the
generation of the following error message:

Unhappy macnum.

Errors encountered during macro execution generate:

Error in macro.

The ? command is specified by typing "?" to print a
list of all commands and the sizes of the text buffer,
save buffer, and the memory sti 11 available For
expansion.

~411f.FPREFACE$:CEND PREFACE$V$%$$

This example defines macro number 4. IJhen macro 4 is
executed, the Edi tor wi 11 look for the string "PREFACE",
change it to "END PREFACE 11

, and then display the change
to verify it.

Page 31

Fi_gure '2.-·9. EX~MPLE OF MACRO COMMAND

2.6 FILE HANDLER

The Fi le Handler handles, identi f:~es, structures and restructures the files
described in Section 3. 2. The file basic to the Pasca 1 operating system is
the work file which is a temporar1J cc,py of the file being modified or created.
The work file name on the diskett1? i!:. lfSYSTEM.WRK. TEXT when the text of a file
is bein.g changed. When a code version is first created, the name is
lfSYSTEM.WRl<.CODE.

Manq File Handler commands requir1? a file specification. The dia_qram in
Figure 2-10 illus·t;rates the s1Jntax of file specification. tlheneve1' a
spec:i fication is requested, as man~1 files as desired m.iy be specified,
sepc~ratin.9 the specificatiorrs l~or each file with commas and termjnatin.Q the
list with a carriage return. Co11111ancs operating on single file names will
keep reading the names from the list and operating on them until there are
no More names. Commands operatin9 or two file names at once (eJ pu, CHtiNGl::
and TRANSFER> wi 11 take file nan1es in pairs until one or none remain. In
this case, if only one name remains, the File Handler will prompt f()r the
second name. If an error is detE•cted in the list, the entire list wi 11 be
flui;,hed.

The rules for legal file and volume r.ames are given in Section 3.11 Files.

The File Handler performs the rei~Ue!:.ted action on a 11 files mectin_g the
specifications. The wild card ch.:1racters 11=11 and 11 ?" are usetl to sped f'y
subsets of the directory. For ex amp J.e, a file specification containing the
subset-specifying string "PUB=TEXT'' notifies the File Handlet' to perform
the requested action on a 11 fi lP.s whose names begin with the strin9 "PUB" and
end with the string "TEXT".

If a "?" is used instead, the Filu Handler requests verification before
performing the requested action o·n e<1ch file meeting the specified criteria.

Either or both strings may be empty.. For example, a subset specification
"=<string>" or 11 <strin9>=" or evEm "=" is valid. In the last c:as.e, where
both strings are empty, the File Handler acts on every file in the volume
directory. The same applies to "?" used a lone, except here the h le Handler
ved fies first.

P.~ge 32

file Bpeaificat-i.on volwne ID

~-wneID string string

unitnwnber

volname

L------IW * __ _,

Figure 2-10 • FILE SPECIFICATION

The File Handler is entered by typing "F" when at the Outer Level of commands.
The following prompt line will appear:

Fih~r: G<et, S(ave, l.J(hat, tHew, L<dir, R<em, C<hng, T<rans, D(ate, (Huit

Additional File Handler commands are displayed
The prompt line is:

in response to typing

Filer: B(ad-blks, E(xt-dir, K(rnch, M(ake, P<refix, V<ols, XCamine, Z<ero

The operator invokes the execution of individual commands by typin9 the
character on the operator/s console. Many of the commands give additional
prompt lines to get all of the information necessary for execution. Ansu.1erin9
a Yes/No question on a prompt line with any character other than "Y"
constitutes a Mo answer. Typing an <esc> will return control to the Outer
level of commands.

2.6.l

GEl

"F" Prompt Line Commands

The GET command is specified by typing "G" for G<et~
GET loads the designated file into the workfile. When
"G" is typed, the Fi le Handler responds with the
following prompt line:

Get what file?

The entire file specification is not necessary. If
the volume ID is not given, the default disk is
assumed. Wildcards are not allowed, and the si7P.
specification is ignored. The suffixes ".TEXT" and
".CODE" are not required if both are present and both
are loaded. If only one is present> the File Handler
will load that one regardless of whether code or text
has been specified.

!3AVF

IJHAl

NEW

When the File Handler has completed loadin.Q• it
responds with one of the follc)win9 messages:

Text and Code file loaded.
Code file loaded.
Text file loaded.

The SAVE command is speciflied by typing "S" for
S<ave. SAVE saves the worl< file under the file namP
specified by the user in resp1Jnse to the prompt:

Save as what fi 1€/?

The entire file specification is not necessary. If
the volume ID is not giv•?n, the default dir:.k if,
assumed. Wild cards are not allowed, and the size
option is ignored. The File Handler automatically
appends ".TEXT" or ".CODE", as appropriate, so these
suffixes must NOT be entered.

Any illegal characters in the file name will be
ignored except a colon (:). If the file
specification includes the volume ID, the File Handler
assumes that the work file is to be saved on another
file. In that case, a colon is assumed to separate the
file name from the volume nam·i?.

For example, if the operator enters "BLACK:BART" in
response to the pr·ompt "Save as what file?", the Fi le
Handler will generate the prompt line:

Would you like BARl. TEXT written to BLACK: ">

A "Y" answer to this prompt wi 11 cause the Fi le
Handler to attempt a transfer of the work ·Pi le to the
specified volume and file (see TRANSFER>.

The IJHAT command is spiecified by typing "lJ" for
lJ(hat. WHAT identifies the name and status (saved or
not saved) of the work file.

The NEW command is specihed
MEW clears the work f'ilE~.

permitted. If a work fille
File Handler responds with:

by typing "N'' for N(Pw.
No file specifications are
is already present, the

Throw away current 111ork f~i le?

:Jage 34

LISl

REMOVE

A response of "Y" wi 11 clear the work file, while "N"
returns the user to the outer leve 1 of the Fi le
Handler. If a backup 11.1ork file exists, the following
prompt line is generated:

Remove <workfile name>.BACK?

The LIST command is specified by
L<dir. LIST lists a disk directory.
the1·eof, to the volum+z· and file
defau H is CONSOLE: • The Fi le Handler
with the following prompt line:

Dir listing of mhat vol?

typing "L" for
or some subset
specified. Thf?
responds to "L"

The user miHJ list any subset of the directory us:i.n9
the wildcard option. and may also write the directory
01> a subset to a volume or H le name other than
CONSOLE. File specification must be in terms or~

source and destination.

Source file specification consists of a mandatnry
volume ID and optional subset-specifying strings.
which may be empty. If the latter are used, one of­
the wildcard characters is required. A string (i.e •..
the full file name i.nc luding 11

• TEXT") may not be used
as part of the source file specification un lesr. a
wi ldca1·d character is used. Source file information
is separated from destination file information by a
comma.

Destination file specification includes a volUIJle ID
and, if the volume is block-structured. a file name.
File size will be ignored.

This command is most frequently used to list an entire
directory. The bottom line of the listing gives the
number of files listed out of the number on thP
volume. and the number of blocks used> and the number
of blocks unused.

The REMOVE command is specified by typing "R" for
R<em. REMOVE removes file entries from the
directory. When "R" is typed. the Fi le Handler
responds with the following prompt line:

Remove what file?

One specification is required for each f-i le to be

Page 35

CHANGE

removed. Wildcards are le9al.
ignored.

Size information i~-

NOTE: SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE should be
removed only by the NEW command.

The use of ,just the initial letter of several file
names will remove all files beginning with that
letter. Typing the file specification 11=11 will remove
every file in the directory unless a subset<s> is also
specified. However, before finalizing any wildcard
removes, the Fi le Handler pro1npts with:

Update directory?

A "Y" causes all specified files to be removed. "N"
returns the user to the 01Jter level of the File
Handler without removing anything.

lhe CHANGE command is specified by typin9 "C" for
C<hange. CHANGE changes th•~ file or volume name.
Uhen "C" is typed, the Fi le Handler responds with the
following prompt:

Change what file'?

This command requires two ·i::ile specifications: t.hP
file to be changed, and the new name. The first is
separated from the second b:J either a <ret> or a
comma. Any volume ID information in the second file
specification is ignored because the old and new files
are on the same volllme. Size is also ignored.

Wildcard specifications are legal. If a wildcard
character is used in the first file specification,
then it must be used in the second. The subset­
specifying strings in the first are replaced by the
analogous strings (replacement strings> in the second.

The File Handler will not m.ike the name change if the
new name exceeds 15 character·;.

On completion of the change. the File Handler reports
what changes 111ere made. For· 1~xamp le, in response to:

HIGH: ST=TEXT, LOW=-.:END

The File Handler will respond with:

HIGH: START. TEXT changed to l_OWRT. END
HIGH: STOPS. TEXT chan_9es to l_OWPS. END

TRANSFER

The TRANSFER command is specified by typing "T" for
T<ransfe1·. TRANSFER copies the specified file to the
given destination, leaving the source filP. intacta When
"T" is typed, the Fi le Handler responds with the prompt
line:

Transfer what file?

File specifications for both the source and
destination files are required, separated by a < 1·et >
or a comma. Wildcards are permitted, and size
information is recognized for the destination file.
The source specification is given in response to the
above prompt line. If the destination is not also
given, the File Handler then responds with the prompt
line:

To where?

On a one-drive machine, the source disk must NOT be
removed until prompted to insert the destination disk,
as follows:

Put in <destination volume>
Type <space> to continue

After the transfer has taken place, the File Handler
notifies the use1· as follows:

<source vol:file> transferred to <destination vol:filP.)

On a one-drive machine the user will have to alternate
inserting the source and destination disks until the
transfer h complete.

A file can be transferred to another volume without
changing name and without specifying the destination
file name by other than a dollar si.!;m ($) to signify
that the name is the same. The destination volume
still must be specifieda

YARNING: The file name for the destination cannot be
omitted completely. Otherwise, the directory for the
complete volume may be wiped out. If the file name is
omitted and no 11$ 11 is used, the File Handler mill
query:

Possibly destroy directory of <destination vol> ?

A "Y" answer will wipe out the directory of the whole
destination volume.

Page 37

Files may be transferred to volumes that are not block
structured (e.9., CONSOLE or PRINTER> by specifying
the appropriate volume ID. f.1 1~i le name then is
ignored. The user should ma.kt? certain that the
destination volume is on-line.

Transfer can also be made fr or~ a non-b lock-structur·ed
device if it is an input device. In this case, any
file name in the source file· !;.pecification is
unnecessary and tvi 11 be i9nc1rt?d, if present.

If the source fi le specific ab on inc ludes a wi ldc ard
character, and the destination is to a block·­
structured device, then the d1?stination file
specification must also conta:,n a wildcard character.
The subset-·specifyin9 strings for the source wi 11 be?
replaced by analogous strings (replacement strings) in
the destination. Any of the subset-specifying or
replacement strings may be e•mpty. The file
specification of ":::" specif'ie!; every file on the
volume.

WARNING: The output buff'er 1ria1J overflow if the
transfer of the whole disk is handled in this way. A
better way of handling volume--to-volume transfers is
by specifying only the source and destination volume
IDs. Transferring from one block-structured vol1.1me to
another causes the destination volume to be "wiped
out" so that it becomes an e•xi1ct copy of the source.
A prompt is 9enerated to veriiiy if that is what
is wanted:

Possibly destroy dirt:octory of <destination vol> ?

With a "Y" answer, the directory will be destroyed~ A
"N" answer wi 11 return control to the outer level of
the File Handler. Often the ""'" answer is desirable to
c:reate a copy of the source d:.sk for backup purpo~es.
In this case, the name of the destination volume
probably should be changed to indicate that it is a
backup of the source volume <see CHANGE for name
change). The source volume w:~ 11 not be destroyed.

IJsi ng "=" as the des ti nati oTI H le name specification
has the effect of replacing the subset--specifying
strings in the source specification with nothing. The
"'>" may be used in place of the "= 11

, but then the u&r~r
11•i 11 be asked for a veri ficat:,on before the transfer
is performed.

WARNING: Wi ldcard character!:!. :1n specifications should
not be used on same-disk tran~>fers. The results are
unpredictable.

QUI'T

A file can be transferred from a volume to the same
volume by spetifyin.g the same volume name fOJ' both
source and destination. This is useful to relocate a
file on the disk. Spedfying the number of blocks
desired will cause the File Handler to copy the file
into the first available area of at least that size.
If no ~dze specification is given, the fli le is
written into the lar9est unused area.

On a same-disk transfer, if the same file name is
specified for both the source and destination, the
File Handler rewrites the file to the size·-specified
area and removes the older copy"

The GUIT command is specified by typing "G" for
(Huit. QUIT returns the user to the Outer Level o·f­
commands. Mo file specification is allowed.

"?" prompt Line Commands

BAO BLOCKS

The BAD BLOCKS command is specified by typin.Q "B" for
B<ad blocks. BAD BLOCKS scans the disk and detects bad
blocks. When "B" is typed, the File Handler responds
with the following prompt line:

Bad blocks scan of what volume?

The user must specify the volume IO. The File Handler
checks each block on the given volume for errors and
lists the number· of each bad block. Bad blocks can
often be fixed or marked <see EXAMINE>.

EXTENDED LIST

KR UNCH

The EXTENDED LIST command is specified by typing "E"
for E<xt-dir. EXTENDED LIST lists the directory in
more detail than the LIST command. All prompts and
wildcard options are the same as for the LIST command.
All files and unused areas are listed alon9 with the
corresponding block length, last modification date,
starting block address, number of bytes in the last
block in the file, and the file kind. The summaticm
line at t~e end of the list is the same as that for
LIST.

The KRUNCH command is specified by typin9 "K" for
K<runch. KRUNCH moves the files on the specified

Page 39

tlAKE

PRH·IX

volume so th at unused block !5 are grouped at the end.
When "K" is typed, the File Handler responds with the
following prompt line:

Crunch mhat vol?

When the user responds with the· vol1Jme ID, the Fi le
Handler generates:

Are you sure you want to crurch <volume ID> ?

A "Y" answe•r- initiates th1? crunch. A "N" returns the
lJser to the outer- level of t:he File Handler.

The specified volume
scan of the volumP.
recommended in order
areas of the disk. If
be either fixed or
EXAMINE>.

must te on-line. A bad block
before crunching is strongly
to dYoid writing files over bad

bad blocks are found, they must
marl<ed before crunching (see

f's each file is moved, it~. name is reported on the
consoleu If SYSTEl1. PASCAL :is moved, the system mud~

be reinitialized by boot!;;trc:1ppin9. Until this task
has been completed, do not: touch the disk, reset­
switch or dis.k-drive door.

The MAKE command is specified by typing "11" for
11(ak e. MAKE creates a d:irec tory entry with the
specified file name. l.Jh4:.'n "11" is typed, the File
Handler responds with the ·follc1wing prompt line:

Make what file?

The file specification must be entered. In this case,
the size is extremely useful because, if it is
omitted, the File Handler creates the file by using
the largest unused area of disk. The file size is
given by following the volume JD and file name with
the desired number of bloc~s enclosed in brackets.
TUJO special ways of specify:in9 size are:

[OJ The same as omitting she. The file is
created in the large•;;t unused area.

ritJ The file is created :in the second largest
or half lar9est unus1:od c:irea, whichever is
larger.

The PREFIX command is specHied by typing "P" for
P(refix. PREFIX changes th1:.' current default to the

Page> 40

t}()LllNES

EXAMINE

volume specified. The usf1r must enter a volume ID.
The rest of a file specification is unnecessary. lhe
spec if'ied volume does not have to be on-· U ne.

lJhen "P" is typed, the File Handler responds with the
p1'ompt line:

Prefix titles by mhat vol?

The current default volume can be det.ermi ned by
respondin9 to ·the prompt with II ' II

The VOLU~lES command is specified by t:yp:in9 "V" for
V(ols. VOLUMES lists all of the volumes currently on··
line.. a lcm9 with their associated unit <device)
numbers. No prompt line is displayed and no file
specification is allowed. An example list of volume~;

i!:..:

Volumes on -line
1 CONSOLE:
2 SYSTERM:
3 1< OMDISK
4 PRINTER:

Pr0f'ix is - ONDISI<

The asterisk (H) denotes the system (or boot-·disk)
volume- This is the default volume unless the pr·efix
has been changed (see PREFIX>. B lock-·structUT·ed
devices are indicated by "H" or "*""

The EXAMINE command is specified by typing "X" for
X<amine. EXAl'lIME attempts to physir.a lly recove1'
suspected bad blocks that have been detected by the
B<AD BLKS command. When 11X11 is typed, the File
Handler responds with the following prompt line:

Examine blocks on what volume?

When the use'!' responds by typing in a volume ID, the
prompt is generated:

Block number range?

The user enters the block number (s) detected by the
BAO BLOCl<S scan. If any files are endangered, thP
rollowing prompt appears:

File(s) endangered:
filename

Page 41

I rtJ t:c1 fix them?

1i "Y" answer 11iill caur-.e the File Handler to exam:i.ne
the blocks and return either 1Jf the messa9es:

Block <block number> may be ok
Block (block number> is bad

.In thr:• first cas~.· the bad b fock has probably a lread1J
hPen fl xed. In the second c.3se, the FilP. handler wi 11
offer the user thP. option of inark in9 the- blocks.

The use1· responds by 9ivi1g the block number(s) of
thDse to mark bad. These b lods wi 11 not be shiftl:'cl
by KRUNCM and wi l1 be render·ed effectively harm less.

An "N" answer to the "fix th1:-m? 11 prompt returns the
usel' to the outer l~ve 1 of th1? Fi le Handler·.

The volume to be examined must be on-line.

WARNING: A block which "may be ok" is probably
ph1Jsically ok but may contain 9arba9e. Fixing a block
mrans that the block is ~ead, written out to the
block, and read a9ain. If th 1? two reads are the same,
the message "1na1J be ok 11 .3pp lies. If the reads are
different, the block is dee I.red bad and may be marked
as such.

The ZERO command is speci f'ied by typing "Z" for
Z<ero. ZERO reformats the sp.~cified volume, rendel'ing
the previous directory un·)btainab le. When "Z" is
typed, the File Handler resp·Jnds with the followin9
prompt line:

Zero dir of whwt vol?

The us.el' then enters the volume ID. This is followed
by the prompt line:

Destroy <volume namP} ?

A "Y" ans111er prompts:

Duplicate di r?

H the answer is "Y", a duplicate directory will be
maintained~ In ca£-e the· di ;k directory is. destroyed,
a utility COPYDUPDIR can use the duplicate director~

to restore the disk. The File Handler will then 9ivr.
the current number of blocks ::m the disk and a5k if
that is the desired number:

NO OF
BLOC•<S

156

31;~

6214

494

988

1976

<current number of blocks on disk> blocks?

A "N11 answer generates a prompt requesting the desired
numbm·:

tt of Blocks?

Tab le .2-1 9i ves the correct number of blocks for
several types of disks. A 11 Y" ansmer to "cunent
number of blocks" generates:

New vol name?

The user can enter any valid volume name.
Handler then queries to validate the name:

The Fi le~

<new volum1? name> correct?

A "Y" answer causes the Fi le Handler to gene1'ate the
message:

<new volume name> zeroed

A "N" answer to the "new volume name" question and to
the questions "destroy volume name" and "duplicate-!
directory" returns the user to the outer level of thP
File Handler.

Tab le 2-1. BLOCK GUANTITIES ON 0151<

DISK TYPE

Single-dem:,i ty, soft-sectored, 5 1/4"
floppy
Double-density .. soft··sectored, 5 1/411

floppy
Double-density, dual sided, soft-sectored, 5 1/IJ"
floppy
Single-density, soft-sectored, B"
floppy
Double-density, soft--sec tored, 911
floppy
Do1Jb le-density, dual sided, so t:-sec tored 8"
rloppy

2.7 PASCAL COMPILER

The Pascal Compiler is a one-pass recursive descent compiler. 1t is invoked

Page 43

by usin9 the C(ompile or R<un cc1mmands in the Outer Level of the Pascal
OpPrating System commands.

The Compiler normally compiles the work file, iF one exists. OthPr11.1ise, it
prompts the user For a source file nanre by the following prompt linP:

Compile what text..,

Duriin9 the' course of' compllat10n, the Compiler will display messages on the
operator / s console detailing t.h~:? r:rogress of the compilation. Note that
t;his display can be inhibited in one c1f two ways. The G+ (quiet compile>
option, which is described later· in this section, will suppress the display.
~\lso .. if the HAS SLOW TmMINAL boolea11 in the system communication area is
False, the display is suppressed Csee Section 4.1).

An e.xample of the output to the op1::irator's console is shown in Figure 2·-11.
fhe identifiers appearin.9 on the ·:;cre~en are the same as those in the pro9ram.
The identifier for a pr·ocedure is dis~·layed as soon as its compilation has
started. The numbers appearing within r J give the number of 16-bit word~:;.
available for 5ymbol table storage at that point. The numbers within < > are
the current line numbers. Each dot on the screen represents one source line
compi lPd.

Compiling •••

PASCAL Compiler [3. OJ (Unit Compi le1->
(-·--0) a • • • w • • • • • • " • • • • • 11 • • • • • • a ' • • a • • • • • •

LAIMIT £"1710 words]
< -~ ... 43),,, •••••••••
GETFILE f 1692 words]
< ---52),, Ill •••• " ,, U' ,. •

WRITEIT r1674 words]
< --71) a # a It A • W ., a # • 0 d

NEtJLINE f 1634 words]
(·--84). d W •••a Ill' a a a• a a•• W d •ad• a Ill. II WW a·-· a• al W a W a a a a II a-a• a.•• II If a It a-a II#, a• D a,,

<, 134) a d • U a • W • a ••• # d a ff • W • a a II • W W II W a •• • ••• W ,, If •• # •• W a • # a • # •••• If If II • It a •• ft •

< -184) ot 0 ••• IJ ·' J

COPYIT [1616 words]
<·-192> •••••••••
SEND f 1627 words]
< --205 } •••••

211 lines
Smallest available space - 161b 11.1ords

Pa ~P. 44

Figure 2-11. EXAMPLE OF CO~IPILER DISPLfW

If no syntax errors are detected, the compilation is considered to be success­
ful. In this case, the Compiler writes a code file called ~SYSTEM.WR~aCODE to
diske This is the code file that is executed if the user has specified the
!<Cun command.

When the Compiler detects a syntax error, the symbol in the source tvhere the
error is detected is indicated by the marker "<<<<" and the text surrounding
the error and an error number are displayed. If both the Q+ (quiet compile)
and L+ (list source on disld options are selected, the compilation 11.ti 11
continue with the syntax error being listed on thP. file and thP con so le
rem.i3inin9 undisturbed.

If those options are not selected, the Compiler gives the user the choice of
three options--typin9 <space), < esc > or "E".

A <space> instructs the Compile1· to continue with the compilation; an <es<.>
causes termination; and "E" is an E<ditor command that puts the system under
control of the Editor with the cursor located at the er1·or. Syntax errors
are listed in Appendix Bu 2. All error numbers wi 11 be accompanied by a
text message of explanation on entry to the Editor if the file MSYSTEM.SYNTAX
is ~:wailable.

2.7,, 1 Compiler Option Syntax

The Compiler may be instructed to generate code accordin9 to certain options.
These options are written as comments in the program text and are preceded by
a dollar sign ($). The general format is:

(M$(option sequence> <any comment>*>
Where (M and M) bracket a comment.

In the option sequence, options are separated by commas" Each option is
designated by a letter foll0u.ted by either a plus, if the option is to be
activated, or by a minus, if the option is negated. When "+" or "-" is
not specified, a + is assumed. When default options are desired, they do not
need to be included in the option sequence. Three of the options may be
followed by file names rather than 11+11 or "-"s They are I (when including
another source file» L (when listing to a non-·default destination» and
U (when namin9 the system library file).

0

The D option causes the Compiler to issue breakpoint
instructions in the code file during compilation so
that the Debugger can be used more effectively. The
default value is 0--·. The effects of 11 +11 and 11

-
11 are:

0-· Omit breakpoint instructions during compilat.icma

Page 45

r

:c

D+ In~A?rt breakpoint i.nstructions.

The G option affects the boolean variable GOTOOK i11
the Compiler. This boolean is used b•~ the Compiler to
determine whether it s.hou ld al low the use of thP.
Pascal GOTO statement within the pro9ram. The default
value is r;-, The efff:•c.:t:s of"+" and "-·"are:

G- Generate a •;yntax f~rrcr on enc:ountering a GOTO
statt::mt'?n·L

G+ Allow the usf.:> of the GOTO statement..

NOTE: In the Pa:,c;d pro9ram, in some cases whP.re the
GOTO statement ma4 be us.ed, ather statement such as
FOR, WHILE or REPEAT may bE! more appropriate.

The I option has two forms. When it is foll.owed
immediately by a "+" or

tt __ .,

it affects th£~ bool<?an ,
variable IOCHF.CK in the Compiler. When it is
followed by a file name, it causes the Comp] ler to
.include a different :,ource Fi le into the compi laton at
that point.

When followed by "+" or 11
-

11
, the default value is I+.

The effects of the signs are:

I•· Generate codP. after' each I/O statement to !'>ee
if the I/O wasaccump Ii shed successfully. 1f- nut,
the program mi 11 bE~ terminated with a runtime
er·ror.

I- Do not .9enerate anq I/O checking. In case of an
unsuccessful I/O operation, the program is NOT
te1·mi nated with a r·unt ime error.

The I-· option is frequently used with system leve 1
programs that already check the IORESULT function
aft~r each I/O operation. The system program can
then detect and report I/O errors 1vithout terminating
abnormally. Ho111ever, this may be at the expense of
increased I/O errors and possibly severe pro_gram bugs.

The synt.ax for instructin9 the Compiler to include
anothe1· source file is:

(~$I(file name) ~)

The comment must be closed at the end of the fih>
name, and no other opticms ca11 follow. If a file name
starts uJi·th a "i·" or "-", a blank must be inscrt~d

Pa.£e 46

L

between the "I" and the file name.

H the initial attempt to open the included file
fails, the Compiler appends 11 .TEXT 11 to the name and
tries again. If the second attempt .Pai ls, or if an
l/O error occurs while reading the included file, thH
Compiler responds with a .Patal syntax error.

An included .Pile may be inserted at any point into thP
original program, provided the rules governing the
normal ordering of Pascal declarations will not br~

violated. The Compiler wi 11 even accept included
files that contain the declarations CONST> TYPE. VAR,
PROCEDURE and FUNCTION even though the original
program has already completed its declarations. To do
so, the 11 ! 11 comment must appear between the last VAR
dee laration and the f-:i.rst PROCEDURE or FUNCTION
declaration of the original program.

The Compiler cannot keep
comments. If an included
include comment, a fatal
generated.

track of nested include
file contains another

syntax err<:>r wi 11 be

The include comment is useful for compiling very large
programs in smaller, more easily managed segments.

The L option tells the Compiler whether to 9enerate a
source program listing to a given file. The def!ault
value is L-. The effect of the sign is:

L- No compiler listing will be made.
L+ The compiler listing will be sent to a disk

file named "lfSYSTEM.LST.TEXT".

The user may override this default destination by
specifying a file name following "L". To specify a
file name within a control comment, refer to the
description of the "I" option <include another source
file>.

NOTE: The file containing the program listing may be
edited the same as any other file if the file namr.
contains the suffix ".TEXT". Otherwise, the file
will be treated as data rather than text.

Next to each source line in the program listing, ·the
Compiler lists the line number, segment procedure
number, procedure number and the number of bytes or
words (bytes for code, words for data) required by
that procedure's declarations or code to that point.
The Compiler also indicates if the line is within the

Page 47

c

corle to be executed or is part of the declarations for
the procedure by fla99in_9 the line with "D" for
dee la ration and an i nte_qer rn through 9) for the
lexical level of stat.Pment nestin_g within the cndP
part. If the D+ option is se•fo•cted, the listing will
include an "~" to spec i f1~ bre~al< points.

The G option is for the "qui•:>t compiler". It is used
t:o suppress the output of procedure names and line
numbers detai li n9 the pro9r<:·ss of the cc.mpi lation to
the operator's console. The d·~fault value is set to
the current value of the '3LOWTERM attribute of the
system communication recor 1j SYSCOM"' (actually
~JYSCOMA. tlISCINFO. SLOWTERM>. The effect c.f thP signs

(H Suppre.•ss output to the CONSOLE device.
Q-· Send procedure name and line number output

to the CONSOLE devicP.

The R option affects the valu~ of the boolean variable
RANGECHECK in the Compiler. If RANGECHECK is T1·uc;,
the Compiler will output ad:Htional code to check on
array subscripts and the assignments to variables of
!;ubrange types. Th•? default value is R+. The eff'~ct
of the signs is:

R • Turns on range check :Ln9.
I<- Turns off range chedc in_g.

MOTE: Pro_9r-ams compiled u1ith the R·- option selected
will run slightly faster. However, if an invalid
index occurs or if an invalid assi.Qnment is made, the
pro9r·am wi 11 NOT be term:i na1te::I with a runtime error.

The S option det;ermines whether the Compiler wi 11
operate in swapping mode. In swapping mode, only one
of the two main parts (declarations or statements> is
:in mt"'lin memory at one time. This makes an additional
Z500 words available for· symbol table stora9e.
However, compilation is sJlower. On full size, single­
densi ty floppy disks, the comp i le time is doubled~

This option must be set bE~fore the Compiler encounters
any Pascal syntax. The default value is S-. The
f'ffect of the signs is:

S+ Puts the Compiler J. n swapping mode.
S-· Puts the Compiler in nonswapping mode.

Page 48

u

This option sets the boolean variable SYSCOMP in the compiler
which is used to determine whether the compilation is a user
pro9ram compilation or a system pro9ram compilation. lhe
default value is U+. The effect of the signs is:

U-t· The compilation is to take place on the user program
lexical leveL

tJ- Compilation is to take place at the system lexical
level. This also sets the following options: r<- ..
G+, and I-.

NOTE: Selecting U- will generate programs that may not
behave as expected. It is not recommended for non··
systems work without knowing the method of operation.

The U option a lcs.o is used to name d library file. The
named file becomes the file in which subsequent USEd
lJNITs are sought. The default file for the lib1·ary is
"itSYSTEM.LIBRARY".

An example of a USES clause with the U option is 9iven
below.

USES LINITA,UNITD, Found in 11SYSTEM.LIBRARY
$U NEW.CODE

UNI TB
$U OLD.CODE

UNITC, UNITE;

2.8 BASIC COMPILER

The Basic Compiler has been written in the Pascal lan9ua9e. It is invoked
the same as the Pasca 1 Compiler as a result of the C<ompile or IHun command
given when at the Outer Level of commands for the Pascal Operatin9 System.
The file name for the Basic Compiler must be changed Prom its. <Jr:t.Qi na l
name of BASIC~COMPILER to ~SYSTEM. CDr1PILER for it to be invoked b1,1 the system.
Thus, only one compiler will be in the system configuration, Basic or Pascal.

The Basic program is created by using one of the system editors. The main
features of UCSD Basic are described below in sufficient detail for those
who are already familiar u.tith Basic to understand what is requ:i.red by this
Co11~dler.

2.H.1 Features of UCSD Basic

The Basic Compiler has real and string variables. When a r·eaJ. 'lul'iable is
applied to indexing or other integer purposes, the rounded value of the nL1mber
is used. In the functions described below, "x" and "y" can be real variables
or expressions which are equivalent to real variables. In like manner, "sl"
and "s211 can be strin9 variables or expressions which are equ:il/alent to u

Page 49

stl'in9.

VARI1~BLE NAMES

Real variables: letter<di~~it)

String variables: letter (digit)$. <The digit is optional.)

INTR:IMSIC ARITHMETIC FUNCTIONS

ATN< x)

EXP<x>

INT< x>

LOG(x)

LN<x>

MOD<x,y)

SIN< x>

COS<x>

Returns th·e an_gle in radians whose tangent is x.

Returns the base of the natural 109arithm5 raised
to the pow·er of x.

Retur·ns the vii lue of x rounded to the nearest integer.

Returns the lu9 <base 10> of x.

Returns the niltural 109 of x.

Returns x to r~odulo y

Returns the s:rne of an,9le x. where x is in radians.

Returns the ctJsine of angle x, where x is in radians.

INTRINSIC STRING FUNCTIONS

CAT$(s1.s2 •••• > Retw·ns a ·~trin9 which is equal to the concatenation
of all the st~ings in the parameter list.

COP$(s1. x, y>

DEL$(sL x, y>

INS$(sl,s2.x>

LEN$<s1)

POS$(s1,s2>

OTHER FUNCTIONS

ORD<s>

Returns a cnpy of a portion of the string s1, y
consecutive ciaracters, starting with the character
position x.

Returns the contents of the string sl wi'th y consecLt··
tive characters deleted, starting with character
position i1.

Returns the contents of s2 with sl inserted immediately
bef-ore ch,;;racter position x.

Returns ar1 integer that is equal to the position of
the first character in the first occurrence of the
string s1 in the string s2.

Returns the PSCII value of the first charactm· of the
!>trin9(s).

P.:;_ge 50

STR$(x)

GET$

OLO(c, s>
NEIJ(c, s>

PROGRAMMING STATEMENTS

Returns the strin9 containing the character associated
with the ASCII WJ lue x.

Reads a single character from the keyboard without
prompt or ec:hoin9, and returns it as a st1·:i n9; no
arguments are required.

The numeric constant c (no traction part) b!'xomes
associated with the disl: file whose nam€: i:> .in s.
OLD expects the file to already exi:;t; MEW ueat.es
a new one wifo the name s, removin9 .:my previous
file of that name. These functions must occur before
related print or input statements. The numtH?rs may
be reassi9ned, and must be in the range 0 hl 16. For
best results, use only at the beginning of: a pro91·am ..
".TEXT" must be appended to the file name.! for the fi l<'
to be edited by either of the system editors. fhese
functions return IORESUL.T.

Arithmetic statement:s and operations

-,i· subtract, add

/,~ divide, multiply

A,~~ exponentiation

Relational operators

(» ><

)

(

(::, =<

INPUT list
INPUT ttc 1i st

equals

not equals

greater than

less than

greater than or equa 1

less than or equal

Inputs from the main system device, usua ll~J thE·
keyboard. If' the optional tk is present, input is from
the disk file number c. The input list may contain
any combination of real and string variables. When
a program expects input, the prompt "?" is printed.
Input or real numbers may be terminated with anq
non-·numeric character. Input of strings mus:t. be
terminated with a <ret>.

Page 51

2.8.2

determined by the variable name. The array indices
are O •• n1. O •• n2,. • • Both real and strin9 multi···
dimensional arrays can be used. If no dimensions arP.
dee lared, they are assumed to be 0." 10, Op • .tO, O •• 1,
0 •• 1, ••• The number of dimensions autumatically
declared depends on the number that are used in t.he
pro9ram, but must be constant over a 11 uses. of the
arr·ay.

GOSUB linenumber Executes a subroutine call. The callin9 address
is placed on the subroutine stack. ~:iubroutim~ calh.;
may be recursive.

RETURN

GOTO Ii nenumber
REM text

Returns to the line after the last; GOSUEl that is still
pending. It pops the top addr·ess off! the stack and
uses it as the return address. A RETURN when no
GOSUBs are pendin9 is an error.

Program execution jumps to the 9iven line number.
Remark line.

UCSD Basic Enhancements

The Follo111in9 are unique to lJCSD Basic:

o For loops, var=exp 1 is done before exp2 or exp3 are eva lui1ted.

o Continuation of sta·tements is allowed. Any line not be9innin9
with a line number is assumed to be a continuation.

o All parameter functions are called by value. Parameters cannot be
used to return values from a function. Function calls are allowed
to be recursive.

o Arrays of more than two dimensions are allowed4 Strin9 functions
and procedures are those found in the UCSD Pascal lan9ua9e.

o Tab stops are not allowed in printin9. All list elements are
printed without spaces between them. The carriage return can be
suppressed by ">" as the last symbol of the line.

o Subroutines may be recursive.

o In-line comments may be inserted. The portion of any linP followin9
"@" is ignored by the Compiler.

o The code of PASCAL FUNCTIONs may be added to the Basic Compiler as
new standard Basic functions. This is accomplished by D straight­
forward addition to the Basic Compiler.

2.9 LINKER

The Link er allows the user to combine pre-compiled Pasca 1 files so that they

Page 53

may be executed as one file. Nc•rm:i lllJ.· the pre·-compiled files i:lre re~,idi;mt in
the file !*SYSTEM. LIBRARY and are combined with the current work file,,

In 1.ul'itin9 programs that utilize pre-compiled routines or subpro.Qrams .. the
user must declare them in the callinQ program to be EXfERNAL or as SE.Gt'lt:NT
PROCEDURES much as PROCEDURES or FUNCTIONS may be dee lared tu be FORWARD (!:.•ee
Section 3.3 for further details on se!Jmenting a program>~ ·1he Compiler will
then inform the system that linking :.s required before execution. lhe Linker
also can be used to link in UNITs.. 91·oups of routines that will be usGd
together to perform a common task. Any files that reference UNlls or EXTERNAL
routines and have not yet been linke·d may be compiled and saved, but must be
linked before execution.

Using the Linker

The Linker may be entered by typrn9 either "L" for L<inker tor "R" For R<ul1
when in the Outer Level of commands. The Linker must be invoked exp licitly in
the following cases:

o If the file into which the routines are to be
linked is not the work file.

o The external routine•; to be linked reside tn
library files other ·than ~SYSTEM. LIBRARY.

When 11 L. 11 is typed, the Linker respond~; with the following prompt:

Host file?

The host file is the file into which the routines or uni ts are to be linked.
If the work file is to be used, an a;terisk and a return is typed rather than
a file name. Any file name entered wi 11 automatically be appended with
".CODE" by the Linker. The Linker than asks for the name(s) of the librar1,1
Pile(s) in which the units or external routines are to be found:

Lib file? < codefi le ldentifier >

Up to eight library file names mai:i be entered. Typing an asterisk (it) and a
return will cause the Linker to reference the ~SYSTEM.LIBRARY. The Linker
notifies the user about each librarq file that is successfully opened.• for
example:

Lib File? it < ret >

Whet1 a 11 library file names have been entered, the user must type a return to
p roe eed. The Link er then prompts with:

11ap file? <file idEmtifier > < ret >

The Linker writes the map file to the file requested. The map file contains
information relevant to the linkifl9 process. Responding with a return will
suspend this option. Un less a peri•Jd is the last letter of the ti le name, the

Jage 54

Linker will automatically append ".TEX.f" to the name.

After the Linker has read all of the segments re.•quired to enable the linking
process, it prompts the user for the destination file name for the linked code
outi1ut:

Des ti nation Fil+??

The destination file often wi 11 be the same as the host ti le. Linking wi D
begin after a (return) is typed following the output file name. Simply a
<return> only causes the output file to be placed on the wm·k fik• ..
11SYSTEM.WRl<.COOE.

During the linking process, the Linker will report on the operator's console
all segments being linked and all external routines being copied into th~?

output file. The linking process will be aborted if any required se9ments or
routines are missing or undefined. The user will be informed by om~ of thr>
following messages, as appropriate:

Unit (identifier> undefined

Proc < iden't;Hier > undefined

Fune <identifier> undefined

Global <identifier> undefined

Public (identifier> undefined

When typing "R" for R<un, if the program in the work file contains EXfERNAL
dee larations or uses UNITs, the Linker is automatically invoked after the
Compiler. The Linker will search the liSYSTEtl .. LIBRARY for the routines or­
units specified and will attempt to link them.

H the routine or unit is not in the IESYSTEM.LIBRARY, the Linker will respond
with one ofl the messages given above, as appropriate.

Linker Conventions and Implementation

A codefi le may contain up to sixteen segments. B lclck O of the pro_qram code
.Pi le contains information regarding name .. kind, relative address and length of
each code segment. This information is called the se9tab le, and is for·matted
in a record as follows:

RECORD
OISKIMFO: ARRAYro. • 15J OF

RECORD
CODELENG, CODEADDR: INTEGER

END
SEGNAME: ARRAYro.. • !SJ OF PACKED ARRAYro. • 7] OF CHAR;
SEGKINO: ARRAYfO •• 15J OF (LINKEO,HOSTSEG,SEGPROC,UNITSEG,

SEPRTSEG>;
TEXTAODR: ARRAYro •• lSJ OF INTEGER;

ENtJ

Page 55

CODELENG gives the length of the c.;e_gment in words, and COOEAOOH 5Jj.ves the
b loc:k address. A description of ~>EGl.(IND follows:

LINKED The c:ode ~;e9rnent is fully executr.ible. btlim' all
extern a 1 1·ef!erences have been resolved or none were
present.

HOSTSEG The outer blcck of a Pascdl program if the p1·09ram
has external references.

SEGPROC A Pa!:;.c.:i 1 !:>e9ment procedure.

lJNITSEG A compi lP.d sf•gment.

SEPRTSEG A separatt? ly compiled procedure of function (e. 9.,
assembly lan9ua9e code Piles or Pascal UNI1s that art?
not SEGMEIH UNITs.

If .a segment contains unresolved •:?XtPrnal references, the Compiler generates
linl~er information. This informai:ion is in a series of variable-length
1•ecords, one for each UNIT, routine· or variable that is referenced in but is
external to the source. The first e:~ght words of each record contain:

UENTRY=RECORD
NAME: ALPHA;
CASE LITYPE: LITYPES OF

UNITREF,
GLOBREF,
PUBLREF,
PRIVREF,
SEPPREF,
SEPFREF,
CONSTREF:

<FORMAT: OPFORMAT;

NFEFS: INTEGER;

NWORDS: LCRANGE:>;
GLOBDEF:

<HOMEPROC: PROCRANGL
ICOFFSET: ICRANGE);

PUBLDEF:
<BASEOFFSET: LCRANGE>;

CONSTDEF:
<CONSTVAL: INTEGER);

EXTPROC, EXTFUNC,
SEPROC, SEPFIJNC:

<SRCPROC: PROCRANGE;
NPARAMS: INTEGER);

EOFMARK:
<NEXTBASELC: LCRANGE);

END(lientry)

Pormat of lientry; name can be BIG,
BYTE, or WORD
tt of references to lientry name in
r.ompi led code se9mtmt
size of privates in umrd~.

which procedure it is in
byte offset in p-·code

compi !er-assigned word offset

user's defined value

procedure " in srn.wce se9ment
tt of parameters expected

private var allocation info

~age 56

If the LITYPE is one of the first case variant, a list of code pointers into
the code segment follows this portion of the record. Each pointer is the
absolute byte address within the code segment of a reference to a variable,
UNIT or routine named in lientryo These are 8-word records; but on 11J thr?
first NREFs are valid.

2.10 DEBUGGER

The Interactive Debugger is included in the Pascal Operating System to
facilitate debugging the Pascal program. For optimum use of the Debu,9ger, two
Compiler options should be turned on: D+ and L+. The D+ option generates
breakpoint instructions within a program as it is being compiledo The break­
points are necessary for the use of the Crawl, Walk or Breakpoint commands.
The L+ option writes a compiled source listing oP the pro9ra1n on disk. 'lhe
Debu.99er uses this listing (file name ttSYSTEM.LST. lEXT> while in the CRAWL or
WALK mode or when a breakpoint is executed.

Both options have their drawbacks. D+ causes a sightly larger code file to be
created; L+ requires space on disk. However, these options can be turned on
and off as needed so that they can be activated for troublesome pieces of
code only, if desired.

A sample pro9ram to be debu99ed is shown in Figure 2-12. In the compiled
source listing shown, the first column contains the line numbers, the second
has the segment numbers, and the third, the procedure numbP.rs. In the
procedure number column, as asterisk (10 after the number indicates that the
line has at least one conditional halt (breakpoint> associated with it;
otherwise .. a colon (:) appears. The letter following the asterisk or colon
indicates whether the offset represents a code <C> or data <D> offE.etu If the
offset is "C", the offset for that procedure is given as the first instruction
generated for the line. If the offset is 110", the number 9ive11 as the first
instruction represents the lltord offset in the data area where sto1·a9e for that
line of the procedure begins.

1 1 1: D 1 (~$0+,LDEBUG.TEXlR)
2 1 1:0 1 PROGRAM DEBUG;
3 1 1: 0 3 VAR A : INTEGER;
4 1 1: D 4
5 1 2:0 1 PROCEDURE DIVIDE;
6 1 2:0 1 VAR B : RE•'.\L;
7 1 2:0 0 BEGIN (HOIVIOE~)

8 1 .2H1 0 B : = 5/A;
9 1 2tt0 11 END (MDIVIDE~);

10 1 2:0 26
11 1 1: 0 0 BEGIN <~DEBUGff)

12 1 1 ttl 0 A : = 0;
13 1 lttl 7 DIVIDE;
14 1 1~0 11 END (MDEBUGttL

Page 57

The debugger is entered by typing "I)" for D<ebu9, rather than "R" for R<un,
while in the Outer Level of colll4!k1nds fcir the Pasca 1 Operatin.Q System. If the
program work file has not been comp:lled, the Compiler wi 11 be called first,
automatically. However, if a runtime i?rror occurs durin.Q compilation, or if a
breakpoint or halt is encountered, DE~bugger is called.

After "0" is typed, the Debugger displ3ys a message giving the release number
and date of the release:

PASCAL INTERACTIVE DEBUGGER - January 1978

The Debugger is in EXAMINE mode 11:1h,:!n entered. This mode is used to peruse
portions of memory, set or clear breakpoints, resume execution of the pro.9ram,
or e·nter WALK or CRAWL mode to exec,Jte the program one statement at a time.
The execution options are pro111pted by:

>EX.AMINE: 1 •• ((links, M<ove. (, » Uink, D<ata, S<tack, H<eap,
IE(rase, U(pdate, <crtl-U<p>. <crt.1--D<own>. C<rawl, W<alk, R<esume,
<rsc >

R<esl.J!llle runs the pro9ram normally L1ntil a BREAK or breakpoints are encountered
or a non-fatal runtime error occL•rs. C<rawl puts the program into the CRAWL
mode to execute one statement at a time, waiting for input from the us~r

betwe•en steps. W<alk puts the program into WALK mode to execute the program
one statement at a time at an acljustable rate. The other commands are
described later in this section. Whenever the EXAMINE mode is entned, the
prompit line appears. If entered a!:• a result of an execution error, additional
infor·mation is given, as shown in Fi9ure 2-13.

< 1t$D1·, LDEBUG. TEXT ti)
PROGFtAM DEBUG;
VAR ~\ : INTEGER;

PROCEDURE DIVIDE;
VAR El : REAL;
BEGrn (110IVIDEI()
a : == 5/A;

EMO .; 1(0JVI0Elf);

BEGit4 OOEBUGI()
A : == 0;
DIVIDE;

EMO 1: lfDEBUGI().

Figure 2-13. EXAl1PLE: OF ENTERING EXAMINE MODE

The bottom line gives the reascln u1hy the EXAMINE mode was entered. It may
be some type of execution error, a usE•r break, termination of YAU< or CRAWL
mode,, or execution of a breakpoiT!ted statement. In the case shown above,
it was a floating point error (a divide by zero, to be specific). The
procedure in which the error occur-red is given by Proc and Seg,

In the CRAWL mode, information ab1::>ut a
execution. If ttSYSTEM.LST. TEXT 1exi!;ts,

Pane 58

statement is given prior to its
the compiled listing line containing

the statement is displayed. Otherwise, the information displayed includes
the line number, the number of the segment and procedure, and the code offset
of the first instruction. The user then has two options.

If <space> is typed, the Debug,ger wi 11 execute the line and cont:i nue. H
"G" is typed, the Debugger will leave the CRAWL mode and reenter the EXAMINE
mode.

As in the CRAWL mode, when in the WALK mode information is displayed prior
to execution of the statement. On typing "W" to enter the WALK mode, ·the
following prompt line appears:

DELAY:

The user then enters an integer that the Debugger uses as the
seconds to delay between executing each statement in the program.
key is used to reenter the EXAl1INE mode.

number of
The BRt:1.'.!i.<

2.10.2 Commands

An example of how the commands are used to debug a program is given in Fi.gure
2-14. The commands are described below.

tt LINKS

MOVE

Entering a number between 0 and 9 gives the number of links to move
up or down the dynamic or static chain. The direction is determined
by the first character of the EXAMINE prompt line. A for111ard arrow
indicates that movement wi 11 be in the direction of the older calls
(if dynamic) or ancestors (if static). The reverse arrow indicates
that movement will be towards more recent calls. The type of links
to be traversed, STATIC or DYNAMIC, is specified to the right of
DEFAULTLINK <as shown in the example in Figure 2-12).

NOTE: Movement towards descendents is not allowed.

Typing 11M11 speci Hes the M<ove command that is used to find a
specified procedure and make it the CL•rrent procedure. lhis command
has two parameters:

PROC

Procedure number of the desired procedure. Default is the number
of the bombed procedure (the one at the bottom of the call chain).
Typing <return> will give the default and bypass the normal
search.

SEG

Segment number of the desired procedure" Typing < rettirn > wi 11 give
the default segment <which must be preceded by a <return> for the
default procedure).

Page 59

Fi.QUre 2·-14. USING DEBUGGER COl1MANDS TO DEBUG A PROGRArl

After the procedure and segment n1JmbPrs have been entered, the Debugger wi 11
search up the dynamic links staT·ting at the caller of the current prGcedure.
Note that this imp lies that one •:an never move to the current procedure
because the Debugger will not find it. If the specified procedure is found,
it becomes the current procedure and the information in the prompt line wi 11
be updated. Otherwise, the current procedure remains unchanged.

<

>

LINK

DATA

Typing 11 < 11 or 11
," changes 1;he direction of link traversal <movement)

to be down the call chain <i.e., 90 towrirds the calleer.).

Typing"}" or"." changes 1;he direction of link trave1'sal to be up
the call chain (i.e •• gD towards the callers>.

Typing "L" specifies th•? L(ink command to toggle the DEFAULTLINK
from DYNAMIC to STATIC, and vice versa.

Typing "D" specifies the o:ata command to examine the data and
parameter segment of a procedure. The Debugger prompts for four
parameters:

The only parameters that m:ied to be entered are those other than the
defaults. Typing <er> at .my point tells the Debu99er to use the
default values for the remaining parameters~ lypin9 <space>
delimits a parameter and 11:its the Debugger prompt for the next one.
The parameters are:

OFFSET

Default value is the last offset displayed plus 1. Beginning value
is 1. The offset may' be changed by entering an integer.

LENGTH

The be.ginning default value is the m1n1mum of the text buffer size
<15 for 24·-line screens> and DATA plus PARAM. After that, it is
the last length specified in the D<ata or S<tack commandr LENGTH
determines the number of words to be displayed~

PROC

Page 60

STACK

HEAP

UPDA"f'E

CRTL···U

The default value is the number of the current procedure. An~~

procedure may be specified that is highe·r in the call c:hain.

SEG

The default valtm is the segment to which the current procedure
belongs.

When the Debugger finds the specified procedure, it will display the
data, wrappin.Q around to the top of the screen and erasin9
information in the memory display data bu99er, if- necessary.

When an offset to be displayed is larger tllan PAl~AM plus DATA for a
procedure, the message is generated at the bottom of the sc:reen:

Warning - offset too large

The invalid data will not be displayeda

Typing "S" specifies the S<tack command that is used
the s~ack area belonging to a specific procedure.
specified in the same way as for the DATA command;
offset is o, not 1.

ror examinin.o
Parameters are

but the first

Typing "H" specifies the H<eap command that displays a portion of'
memory specified by an octal addl'ess and a len9th~

Typing "E" specifies th1:-~ E(J'ase command that clears the memory
display buffer on the scJ'een"

Typing "U" specifies the U(pdate com111and that refreshes the memory
display buffel'. S<tack, D<ata and H<eap commands save the procedure
numbers and offsets displayed in the memory buffer" IJhen "U" is
typed, the buffer is erased. The saved numbers are used ·to locate
any information belonging there. UPDATE is not able to refresh an1,1
of the information that belongs to procedures that are belo1t• ·the
current procedure in the call chain. It will generate the message:

Proc not found.

Typing "U" specifies the < CRTL-·U(p > command that moves the astel'isk
<I!) up one line.

Page 61

CTRL-·D

CRA~IL

WALK

RESUME

ESCAPE

Typing "D" specifies the < CRTL-D<own > command that moves the
asterisk < 11) down one line.

Typing "C" specifies t:hP C<rawl command that resumes e:<ecution of
the program in CRAWL mode at the point in the program where the
Debugger was invoked.

Typing "l.J" specifies thH l,,l(alk command that resume!'> execution of the
program in the WALK moch~ starting where the Debugger was invoked.

Typing "R" specifies the R <esume command that resumes n01'ma l
execution of the progra~~ where the Debu99er was invoked.

Typing <esc> specifie!; e·scape, return to the Outer Level of
commands.

CARRIAGE RETURN

BRE1~KPOINT

Typing <er> specifies a carriage return that clears the line with
the asterisk (11) and moves down one line.

Typing "S" for S(et: or ''C" for C< lear ~';ets or clears a br·eakpoint.
They both require line '!lumbers.

SET

Enter a line number or a line that has an astel'isk in the compiled
listing. tJhenever a statement in that line i!:"• about to be
executed, the Debugge·r wi.11 be called.

CLEAR

Enter <c:r> to clear all breakpoints or enter the line number of an
active breakpoint.

P.~ge 62

SECTION 3

PASCAL PROGRAMMING CONSIDERATIONS

Many aspects of the Pascal Operating System need to be considered when
pro9ramming in Pascal because they have an influence on how a program should
be written. These aspects are described in this section.

3.1 INTRINSICS

Users of intrinsics should be fluent in Pascal and experienced in the use of
the Operating System. All necessary range and validity checks are the
responsibility of the usern Some intriniscs do no range checking. "fhose 11•hich
are particularly dangerous are noted in their descriptions.

The required parameters are listed along with the function/procedure
identifier. Optional parameters are in square brackets f]M The default
values are in metabrackets {} on the line below. Within each subsection,
functions and procedures are given in alphabetic order.

The following terms are used in the explanation of the Intrinsics:

ARRAY

BLOCK

BLOCKS

BLOCKNUMBER

BOOLEAN

CHARACTER

DESTINATION

EXPRESSION

FILElD

INDEX

NUMBER

RELBLOCK

a PACKED ARRAY OF CHARacters

one disk block, (512 bytes)

an INTEGER numbe1· of blocks

an absolute disk block address

any BOOLEAN value

any expression which evaluates to a charactp1·

a PACKED ARRAY OF CHARacters to write intn or
a STRING, contex·t dependent

part or a 11 of an expr·ssion1 to be specified

a file identifier, must be
VAR fileid: FILE OF <type);

or TEXT;
or INTERACTIVE;
or FILE;

an index into a STRING or PACKED ARRAY OF CHAR-·
acters, context dependent or as specified.

a literal or identifier whose type is either
INTEGER or REAL.

a relative disk block address, relative to the
start of the file in context, the Hrst blcick
being block zero.

Sil1JJLVARIABLE

SIZ[:

SOURCE

SCHEEN

STl<INt;

TrtLE:

UN:ITNUMBER

VULID

ant,J dee lare·d PASCAL. variable which ir. of mm
of the ~~ollowin_g TYPEs:

BOOLEAN CHAR REf)L STRING
cw p.:cked array r..] OF CHAH

an INTEGER number of bytes or characters; any
i ntt•9e1- va Jue

a STRING or PACKED ARRAY OF CHA~acters to be
used as a read-only array, context dependent
or us specjfied. 1111

an tlrra1J 9t100 bytes lon_g; or as needed

any STRING, call-by-value unless otherwise
otherwise ~•pcified, ie. may be a quoted
stl'in9, or strin9 variable or funrt:ion
which evaluates to a STRING

a STRING ccmsistin_g of a file namP

physical dE~vice numbr used to determine
device handler used bl,l the interpreter

a vCJlum1:.> iclentifier, STRING l7J

1111 in string intrinsics, SOURCE is. HOin9 to have to be a string, in :intrinsics
that deal with packed arrays of characters, it may be eithf~r. A word of'
caution about using STRINGs in i11trinsics that expect character arrays, the
zeroeth element of the st-rin!J is the len.gth bytp, which may cause the
programmer some unexpected prob lE!ms were he not aware of' that fact..

3. 1.1 Character Array Manipulation Intrinsics

The Character Array Manipulation Intrinsics are byte oriented. No range
checking of any sort is performed on the parameters passed to them; so hand le
with care. The user must know what he is doing because the syt-tem does nnt
protect itself from these operai;ions. Examples are shown in h_qure '.:J-1.
The intrinsic SIZEOF <Section 3.1.LJ: is meant for use with these
to "remember" the number of bytes 01~ a parameter.

Example of SCAN:

PROGRAM SCANTEST;
VAR EX PACKED ARRA'([O •• 37J OF CHAR;

:C : INTEGER;

BEGIN (llSCANTEBT11)
EX : = / EXAMPLE OF CHARACTER ARRAY INTRINSICS',;
I : :: SCAN<--25,::: I: I, E:Xf 25]);
WRil'ELN <I>;

Page 64

intrinsics

I :~ SCAN<lOO,(>' ',EXrOJ);
WRITELN <I»

END (HSCANTEErJ I!) •

IE x amp le~; of NOVEL.EFT
MOVFRIGHT

PROGRAM MOVETEST;
VAR BUF1 PACKED ARRAY rou 19J OF CHAR;

BUF2 : PACKED ARRAY ro •• 20J OF CHAR;

BEGIN (1!MOVETEST1!)
BUF1 : = 'MOVE CHARACTERS LEFT';
BUF2 :='THESE CHARACTERS ••••• ';
MOVELEFT<BUF1, BUF~» 5>;
WRITELN <BUF2>;

END < i!MOVETESTI!>.

Figure 3-1. EXAMPLES OF CHARACTER ARRAY MANIPULATION INTRINSICS

FUNCTION SCAN <LENGTH, PARTIAL EXPRESSION, ARRAY> : INTEGEH;

This function returns the number of characters from the startin.o
position to where it terminated. Termination comes when matc:hin9 the.
specified LENGTH or satisfying the EXPRESSION. The ARRAY should be
packed and may be subsr.t•ipted to denote the starting point.. If t:he
EXPRESSION was satisfied on the charach.•r a"t: which ARRAY ifi pointed ..
the value returned wi 11 be zero. If the LENGl'H passed was negative ..
the number returned wi 11 be ne_9ative and the function u1:i. ll have
scanned backward. The PARTIAL EXPRESSION must be in the followinq
format:

"< >" or 11=11 followed by character expression

PROCEDURE FILLCHAR <DESTINATION, LENGTH, CHARACTER>;

This procedure takes a (subscripted) packed array of characters and
fills it with the number <LENGTH> of CHARACTERs specified. This can
be done using a MOVELEFT procedure <described below); but FlLLCHAR is
twice as fast because no memory reference is needed for the source.
FILLCHAR will optimize word moves only iT the DESTINATION is below the
I/O page. t.lord moves are not done to the I/O page beciluse some
hardware relies on byte addressing in this address space.

PROCEDURE MOVELEFT <SOURCE, DESTINATION, LENGTH>;
PROCEDURE MOVERIGHT (SOURCE, DESTINATION, LENGTH>;

These procedures do mass moves of bytes for the LENGTH specified.
MOVELEFT starts from the lef-t end of the SOURCE and move~> blrt.es to the

Page 65

3.1.2

left end of the DESTINATION, traveling right. tlOVERlGHT st.ilrts from
the right end, traveling left. Both are needed 111hen working on a
single array in which the order of the characters moved is critical.

MOVERIGHT never attempts to optimize word moves. MOVE.LEFT wi 11
optimize only if the DESTINATION is at an address below the I/O page.
Word moves are not done to the I/O page because some ha1·dware relies
on byte addressin9 in thi~• address space.

I/O Intrinsics

PROCEDURE CLOSE <FILEID OPTION>;

OPTIONS include ", LOCK", ", NORMAL", ", PURGE" and ", CRUNCH".
Mote the commas.

A norma 1 CLOSE is donu when the OPTION is null.
the file state to closed. If the file was opened
is a disk file, it is defoted from the directory.

CLOSE simply sets
using IU:.t.JRITE and

The LOCK option will caus1~ the disk file associated with th{~ FILEID
to be made permanent in the directory if the fi lP is on a directoriJ
structured device and the file was opened with a REWRITE; other~ise

a normal close is done.

The PURGE option wi 11 defote the title associated with the FILE![)
from the directory. The unit will go off-line if the device is not
block-structured.

The intent of the CRUNCH option is to lock a file with a minimum
number of blocks of useful iliformation. <This option is currently
undefined.>

Regard less of option, a 11 CLCISEs wi 11 mark the file c lClsed and wi 11
make the implicit vari.:iblE~ FILEID11. undefined. CLOSEin_g an already
closed file causes no act.ion.

FUNCTION EOF <FILEID> : BOOLEAN;
FUNCTION EOLN <FILEID> : BOOLEAN;

EOF and EOLN return Fa lst! after the file specified is 1·eset. They
both return True on a closed file. If FILEID is not p1·e~~ent. the
fileid INPUT is assumed (e.g., IF EOF THEN •••). When E.OF <FILE:CO)
is True, FILEID11. is undefined.

When GET <FILEIO> sets F::LEID11. to the EOUI or EOF character, EOLN
<FILE ID> wi 11 return True. and FI LEID·' <in a FILE OF CHAR) wi 11 be
set to blank.

lJhile doing puts or writes a·:: the end of a file, if the file cannot
be expanded to accommodate ·::he PUT or WRITE, EOF <FILE.ID> wi 11 re·turn
True.

P,ige 66

PROCEOURE GET <FILEIO);
PROCEDURE PUT <FIL.EID>;

GET <FILEID> will leave the contents of the current 109ir.al record
pointed at by the file pointers in the implici'tl1,1 declared window
variable FILEIDA and increment the file pointer.

PUl <FILEID> puts the contents of FILEIDA into t.:he Hle at the location
of the current file pointers and then updates those poin·ters.,.

Both procedures are used on typed files, files for which a type is
specified in the variable declaration <Le., "FILEID : FILE OF type "L
Untyped files are simply dee la red as 11 FILE ID: FILE; 11

• "F: FILE OF
CHAR" is equivalent to "F: TEXT". In a typed file, t'?ach 10_9ical
record is a memory image fitting the description or a variable of the
associated <type>.

FUNCTION IORESULT : INTEGER;

1~fter any I/O operation, IORESULT contains an INTEGER value that
1corresponds to the values given in Appendix B.3.

PROCEDURIE PAGE <FILEID>;

!PAGE CFILEID> sends a top-of-form <ASCII FF> to the file.

PROC:EDURIE READ<LN} <FILEIO, SOURCE>;
PROC:EDURIE WRITE{LN} CFILEIO, SOURCE>;

These procedures may be used only on TEXT <FILE Of CHAR> or
INTERACTIVE files for IIO. The three types of INTERACTIVE files
are INPUT, OUTPUT and KEYBOARD. INPUT results in echoing of characters
typed to the console. OUTPUT allows the user to halt or flush the
output. KEYBOARD does no echo; it allows the proyramft'lf)r complete
response to user typin9.

If "FILEIO," is omitted, INPUT or OUTPUT (as appropriate)
A READ <STRING> will read up, but not including, the
character (carriage return) and leave EOLN <FILE!D) True.
that any subsequent reads of str i n_g variables wi 11 retttrn
strin9 until a READLN or READ <character) is executed.

PROCEDURE RESET <FILEID, rTI1l.EJ);
PROCEDURE REWRITE CFILEIO, TITLE>;

is assumed.
encl-of-· line
This means
the nL•ll

These procedures open files for reading and writing and mark the file
as open. The FILEID may be any Pascal-structured file.. TITLE is
a string containing any legal file title. REWRilE creates. a new
Hle on disk for output files; RESET marks an already existing file
open for I/O. If the device specified is a non-directory-structured
device <e.g., PRINTER), the file is opened for input, output or

Page 67

both, in either case.

If the Fi le is a lread~I open when the RESET or RElJHITE is attempted,
an error is returned in IORESULT. The state of the file remains
unchanged.

RESET <FILEID> without an optional string parameter rewinds the
file by settin.Q the file pointers back to the be.oinnin.o <O record)
of the file. The boolean flmc·;;ions EOF and EOLN will not be set b1,1
the imp lied GET in RESET.

With files or the INTERACTIVE ·:;ype. these functions act dHferentl1,1.
On files of other types, RESET wi 11 do an initial Gl:.l to the file ..
setting the window variable to the first recm·d in the f'i lP. On
INTERACTIVE Files, RESET wi 11. not do the GET.

PROCEDURE SEEK <FILEIO, INTEGER>;

SEEK changes the file pointt:-rs so that the next. GlT or Pu-I uses the
INTERGERth record of FIL.EID. Records in files are numbered starting
with 0.. A GET OT' PUT mus·:; be executed bet1L•een SEC:;l< ca iis because
two consecutive SEEKs ma4 caus1: unpredictable ,;uni; to be held in th<-?
window and associated buffers.

FUNCTION UNITBUSY <UNITNUMBER) : BOOLE1~N

This function returns a boolean
device specHied is waitin.g f-01' an
example:

value. If the valuP is Tr·ue, the
110 transfer to comp lPte. For

UNITREAD (l(iiCONSOLEii), CH[OJ, l(iilchaT'acter» l(llASYMCHI!);
WHILE UNHBUSY (1) (Hwhile read hasn't taken placet1) DO
WRilELN <'Please type a c:hdracter. ');

Execution of the example will result in the continuous ouptut of the
line 'Please type a character·' until a character is typed.

PROCEDURE UNITCLEAR WNITNUl·IBER>;

This procedUl'e cancels all I/O·~ to the specified unit. and resets
t.he hardware to its poweJ·-up state.

PROCEDURE UNITREAD <UNITNUMDE~, ARRAY, LENGTH, rBLOCKHUMBERJ, fINTEGF~J>;

PROCEDURE UNITWRITE <UNITNUl1BER1 ARRAY, LENGTH, rBLOCKNUMBERJ, fINTEGERJ);
{SEGIJENTlAL} (()}

These pT'ocedures are dan9erot1s because no ran9e check in9 is done.

These are the low-level proced1Jres that do I/Os to variou~ devices.
The UHITNUMBER is the inte.1er name of the device. ARRAY is anq
dee lared packed array. It may be subscripted to indicate a startin.Q
position to do the transfers f,•om/to. LENGTH i!:=- an inte9e1· .9iving the

number of bytes to transfer. BLOCKNUMBER is required only when L•sin9
a block-structured device, and is the absolute block number where the
1;1-ansfer wi 11 start from/to. If omitted, BLOCKMUMBER is assumed to be
O. The INTEGER value is optional and assumed to be O. If 1, it
indicates that the transfer is asynchronom;. If BLOCK-· NUl·IBER is
omitted, but INTEGER is included, a comma is used to hold the
placement of parameters.

PROCEDURE UNITWAIT <UNITNIJl1BER > ;

This procedure waits for the specified devir.:e to complete the l/O
in progr·ess.

Stl'ing Intl'insics

To maint.:lin the integrity of the LENGTH of a string, only strin_g functions or
full·-s·l:;ring assignments should be used to alter strings~ Moves and single-·
character· assignments do not affect the length of a string, which means that
the pro9rammer must do range checking. The individual elemPnts of STRING are
of CHAR type and may be indexed 1. • LENGTH<STRING>. Acce!;sin9 t.:he strin9
outside this range wi 11 have unpredictable resuHs if ran9e-check in9 is off,
or may cause a runtime error if range-checking is on.

Examples of String Intrinsics are given in Figure 3-2#

FUNCTION CONCAT <SOURCEs> : STRING

This function returns a string that is the concatenation of a 11 the
~;trings passed to it. There may be any number of source strings,
~>eparated by commas.

FUNCTION COPY <SOURCE, INDEX, SIZE> : STRING

This function returns a string containing SIZE characters copied from
SOURCE starting at the IMDEXed position.

FUNCTION LENGTH <STRING> : INTEGER

This function returns the integer value of the length of ST~JMG.

Page 69

PROGRAM STRINTST;

VAR name, text., patter·n, first, second, third STRIMG;
start, _get, toomany, more : STRING;
lon.9 : INTEGERrBJ;
I : INTEGER;

BEGIN <~STRINTST~>

I : = LENGTH (I ABC I) j

WR ITELN (I> ;
name : = 'JOHN Sl1ITH';

I := LENGTH<name);
WR ITELN (I> ;
text := 'THIS IS AM EXAMPLE OF STRIMG INTRINSIC';
pattern := 'EXA';

1 : = POS(patt.ern, tHxt>;
WRITELN< I>;

first : = -'ABCDE';
second :='FGHIJ';
third : = CONCAT<fil'st, second);
IJRITELN <third);

start : = 'HERE IS I~ SlRING OF CHARACTERS';
get : = COPY<start, POS('C', start>, 10);
WRITEUl(get>;

t.oomany : ='THIS STnINC: HAS TOO MANY CHARACTERS';
DELETE<toomany, 17, 1n;
WRITELN<toomany);

more : =1 TOO MANY'.
INSERT< more, tooman1J, U.);
\JRITELN<toomany);

long := 1000000;
SlR (long, more);

WRilEUH '$',more);
EMDOSTRINTST!i).

Figure 3-2a EX1,MPLES OF STRING INTRINSICS

FUNCTION POS <STRING, SOURCE> : INTEGER

This function returns the position of the first occurrence of the
pattern <STRING> to be scanned in SOURCE.. The INTEGER value of the
first position in the matched pattern wi 11 be returned- If the
pattern was not found, zero will be returned.

PROCEDURE DELETE <DESTINATION, INDEX, SIZE> : STRING

This procedure deletes SIZE characters from DESTINATION startin_g at
t~e INDEXed position.

PROCEDURE INSERT <SOURCE, DESTINATION, INDEX>

This procedure inserts SOURCE into DESTINATION sta1·ting with the
INDEXed position in DESTINATION.

Miscellaneous Intrinsic Routines

PROCEDURE GOTOXY <XCOORD, YCOORO>;

This procedure sends the cursor to the specified coordinates. The
upper left corner of the screen is assumed to be o,o.. lhis procedure
defaults to a Datamedia-terminal. For systems other than Datamedia
or Terak 8510a, a new GOTOXY must be bound in (see Section 4.10).

PROCEDURE HALT;

This procedure generates a HALT opcode that causes a non··fatal runtime
error to occur. When HALT is executed, the Debu99er is invoked.
If the Debu99er is not in core when a HALT occurs, a fatal runtime
error will occur (#14>.

FUNCTION LOG <NUMBER> : REAL;

This function returns the log base ten of NUMBER.

PROCEDURE MARK <VAR HEAPPTR: "INTEGER);
PROCEDl~E RELEASE <VAR HEAPPTR: ~INTEGER>;

These procedures allocate and return heap memory allocations to the
system. HEAPPTR is of type "INTEGER. MARK sets HEAPPTI~ to the current
top- of-·heap. RELEASE sets the top-of-heap poi nte'f' to HEAP Pm.

FUNCTION PWROFTEN <EXPONENT: INTEGER> : REAU

This function returns the value of ten to the EXPONENT power.
EXPONENT must be an integer in the ran9e of 0 through 37.

FUNCTION SIZEOF <VARIABLE OR TYPE IDENTIFIER>: INTEGER;

This function returns the number of byte!5- that a parameter occupies in

Pa,ge 71

the stack. It is used with the FILLCHAR and MOVExxxx intrinsics.

PROCEDURE TIME <VAR HIWORD> LOWORD: CNTE:GER);

This procedure returns the currEmt value of the system c: lcwi<. lhP.
value is given in 60ths of •:;eccmd> assumin9 a 16-·bit i!lteger size and
a 32-bit clock word. HIWORD contains the most significant portion ..
Both HIWORD and LOWORD must be VARiables of type INTEGER.

WARNING: The sign of LOWORD ma~1 be negative
represented as a 3~!··-bi t unsigned
currently is undef inecl.

because
number.

thr time is
·1 hit; function

~:J.2 FILES

A file may be defined as a body of infurmation that is stm'ed on an l/U
device .• A file is referenced by the Pascal pl·o9ram and the Pascal Operatin9
System by the file name. The suffix of the file name is dependent on file
type. The following types of Piles .are used by the Pascal Operating System:

3.2.1

Reserved
Suffix

• TEXT
.CODE
.DATA
.FOTO
oBAD

Text Files

Contents of ~=-i lt~

Human-·readab le i;ext
Machine-exec•Jt.ab le code
Data fi lf~
One Terak screen image
A physically dan.:sged area of disk

The text file is composed of 1024-·byte· pages> where a pa9P is defined a~.;:

< fDLEJf indentJrtextJfCRJrDLEJfindentJrtextJfCRJ ••• rnullsJ >

Data Link Escapes are followed by an indent code, 1uhich is a byte that
contains the value 32+ (number to indeni:;). The nulls at the end of the page
follow a carria9e return in a 11 cas1~s. They pad to the end of the pa.9e to
give the Compiler inte9ral numbers of l:lnes on a page. The OLE and indent
code are optional.

The first page of a text file is the hedder page that is reserved for infor-·
mation for the Text Editor. ~hen a user program opens a text file and
REl.JRITEs or RESETs it with a title ending in ".TEXT"> the- 1/0 subsystem will
create> then skip over> the heade•r page. This page facilitates users in
editing their I/O data. The File Hand l•?r wi 11 transfer the header pa9e only
on a disk-to-disk transfer> and 11.iill omit it on a transfer to a serial device
<e.9.> to a PRINTER or CONSOLE>.

3.2.2 Code Files

The first block of information in a cc>d~? file describes the code kept rn the
file. Heading the block is an array of 16 word pairs, a pair for each segment

on the dii;k. The first word of the pair gives the block number lld.th:in the
segment ~mere code be9ins. The second word gives the numbm· of byte~~ of code
located there.

Following this array
the se9ments by name.
timep

is a series of 16 eight-character arrays that desrribe
These eight characters identify the segment at compile

Then follows a 16-word array of state descr·iptors.. The values :in thfo ;n·1·at1
tell what kind of segment is at the described location.. The values <ire:

LINKED
HOSTSEG
SEGPROC
UNITSEG
SEPRTSEG

The remaining 144 words of the block are reserved for future usi.,~.

3.2u3 Data Files

The content and format of the data files are up to the user.

Foto Files

Foto file!:; contain screen images. Each one is dee lared in Pase al as follows:

3.2.5

TYPE SCREEN = PACKED ARRAYrO •• 239, O •• 319J OF BOOLff~N;

WIR FOTOFILE: PACKED FILE OF SCREEN

Bad Files

Bad file!:> are those files that protect a user from usi n9 a phy~:.ica lly bad
block of disk. They are marked bad by the File Handler aft1'?r a bcid block scal1
has been clone and the bad blocks have been examined (see Section .2.6>.

3.2~6 ~lork Fi le

In addi tfon to the permanent files described above. the Pase al Upe,rati n9
System supports a work file that is a temporary copy of the file beinp
modified. The work rile is used by the File Handler. Editor and Compiler.
l.Jhen the 1;ext pa1·t of a work file is changed, the s1,1stem stort?s il cm dis:k as
"11SYSTEl1.~IRI<. TEXT". When the code version is first cre;lted, it is nam<:>d
11 11SYSTEM. ~IRK. CODE".

3.2.7

A volume is any I/O device. A block·-structured device is one that can have a
directory (e.9 •• disk). A non--block--structured device does. not have .rn
internal s>tructure. It simply prodL•ces or consumes a st1·£:1am c.f characters
<e.g •.• printer and console). Table 3-·3 gives the volume names res.r>rved for
non·block··st1·uctured devices. the unit nL•mber associated with each device. and
the unit numbers associated with the system and alternate disks..

Page 73

Pc39e 74

FIGURE 3-3 I/O DEVICES

UNIT
MutlEJ:ER VOLUME ID DESCRIPTION

1
2
4
5
6
a

CONSOLE:
SYSTERM:
<volume name>:
(volume name?>:
PRINTER:

Screen and k eyboar·d with echo
Screen and keyboard without echo
System disk
Alternate disk
Line Printer

9··-1~?

Rr::tlOTE:
<volume namt:~ }:

Additional peripherals
Additional disk drives

Volume names for block-structured devices can be ass.igned by the user. The
name mu1st not exceed seven characters in length and may not contain 21=11

,
11 ~i 11 ,

"?" or 11
,

11
u The character 11 it" is the reserved volume ID of' t.he syr.tem disk,

the dis.k upon which the system was booted. The chirrcH:ter 11
: ", when used

alone, is the volume ID of the default disk. The system and default disks at·e
equivalent unless the def!ault prefix has been changed (see Section 2.6,
PREFIX>. "M(unit number>" is equivalent to the name of the volume in the di!'Elt
drive at the current timE?.

3.2.8 File Names

A legal file name may not exceed 15 chriracters and may not include t:he
characters "=", "$", 11? 11 or ", ".. Lower-case letters will be translated
to upper case.. Blanks and non-·printin9 characters will be 1·emovt~d. Legal
characters are the a lphanumberics and the specia 1 characters 11

·-
11

, "/" "\",

11
_

11 and " " Specia 1 characters normally are used to indicate heirarchic
relationships between files and to distinguish related files of different
types. The wild card characters "=" and "?" are used to specify subsets
of the directory <see Section 2.6, File Specification>.

3.3 SEGMENTS

Segmenting a program so that procedures have to be in memory only when theij
are in use has many advantages:

o Large pieces of one-time code (e.9"' initializahon procedures)
can be put into a segment.

o The work can be divided among
compiling and debugging his
the Linker program.

several pro9ramme1·s, each codin.o ..
own segment, to be linked later b~

o A program can be configured to suit storage requirement!'.•.

A maximum of six SEGMENT procedures are available to the Pascal pro9rammer.
The disk that holds the code file for the program must be on-line and ill the
same drive as when the program was started whenever a SEGl1ENl is called.

Other11.tisc the SL1Stem 1ui 11 attempt to r.~trieve and execute what.ever informaUcm
cune11tly res1dt:s on that. partic-ular l·JCation on the disk.

SEGi'ILNT procedures must be the fir~;t proceduf'e dee lar·ations containing code-·
generating statements. Declarations o~ SEGt1l:.NT procedures anti funr.tions in
UC'.3L> Pas.ca 1 are identj cal to thosf.> rn standard Pase a L except that thf~Y arE'
preceried b ll the resHYed word "SEGl1ErlT '.

As an example, whrm tne user wishes to put initialization procedures into a
seQment because they are one-·time·-·on ly procedures .. the dee laration mi9ht be:

Sf.GMENl PROCEDURE INITIALIZE;
BCGJM

(~ Pascal cod~ n)
H~D;

rhe Linker prooram t:hc1t c:an link •;epar·atel1,1 compiled SE:.GMENTs together is
de$CT'ibed Jn S~:t1on 2.9.

Frequently used routines and data structures can be separately co111pi led Of'
assembled and can be stored in l:~braries until needed (see Section 4.4 ..
librarian). These e-.:teroa llll cccmpi led structures then can be inte.9f'ated
intn the files nePdin9 their capabilities. A file that refP.rem:es such a
shuctL•re need not compile it dJrectly into its code file; the Linl:er copies
the existing code of the struct:uN? into the host code file (se~ Section 2.9,
L.inh-r>.

the INTERFACE part of the UNrT as thou9h that part belonged to the host
program itself. Because the constants> type!'>> val'iables> f-unrtions arid
procedures dee lared in the INTERFACE part are .Qh>ba L name conflicts may arise•
with identifiers in the host program. The programmer may not us.e idf:'ntifiers
that are in use b1J the UNIT. Procedures and functions may not Use UNn s
lotally.

The syntax for a UNIT definition is shown in Fi.9ure 3--4,. The declarations of'
routine headings in the INTERFACE part are similar to forward dee larations;
therefore, when the corresponding routines ar·e defined in the Il'l!JL.El'IENTATlD~4

part, f01·mal parameter specifications are not repeated~

A LINH may use- another UNIT .. as shown in the exampll'l in Fi911re :~-··5.. In thfr,
case> the USES declaration must appear at the beginning of the n.ITERfACE
pa1·t.

NOTE: Variables of= t1.Jpe FILE must be declared in ttw
INTERFACE part of a UNITS. A FILE dP.clared in
the IMPLEMEN'TATION part wi 11 cause a syntax enrn·
at compile time.

A user may define a UNlT in-line, after the headin9 nf the host program. In
this case, the user compiles both the UNIT and the host program together.
Subsequent changes in either require a recompi la ti on of! both.

Page 77

(Compilation unit>

<Unit defi ni ti on>

<Unit headin9>

<Unit idtmtifj r;•r}

<Interface part>

<Implementation part>

(Uses part>

- < Pro9r·am heading}; <Unit de{.:inition >.~
< !Jses part> <B l11ck } :
< Jni t defi ni ti on>; (Unit deH ni tion }"

-· <Unit headin_gh
<Interface pr1rt >
<Implementation part>
End

- Unit (Unit identifier> :
S~parate unit <Unit identif:i.PT»

- < Iden ti fiet' >

-·· Int£rface
< JsP.s part>
< :onstant definition part>
< fype definition part>
<Variable declaration part>
<~rocedure headin_9> : <Function headin9>

-· Implementation
<~abel declaration part>
<Constant definition part>
<Type definition part>
<Variable declaration part>
< ilrocedure and Function dee laration part>

- Uses <Unit identifier>
, <Unit identifier); : <Empt~1>

Figure 3-4. SYNTAX FOR A UNIT DEFINITION

A UNIT or groL•p of UNih can be compiled separately and stored in a library.
After compi lin9 a host pro_gra:n that uses a UNIT that is storerl in a libraq,i,
the user must link that UNIT into the host program by execotin9 thP Linker.
If a user calls R<un and an unlinked code file has been requested, the Linker
will be called automatically. If X<ecute is called in such a case, the system
1uill issue a reminder to hnk the code (see Section 2.2. Outer Level Commands).

ff the host program has changes, the user must recompile and link in the UMH.
If the IMPLEMENTATION part is changerL the UNIT must be recompiled, and then
a 11 compilation units that use the UNIT must be relinked. Changes in the
IN"fERFACE part require a recompilation of not cm ly the UNIT. hut. of a 11
compilation units that 1JSE~ it. Then. all compilation units must be relinked.

The Compiler genf~rates Linker· information in the conti91mus blocks that
Pollou1 a pro9r·am that uses UMITs. This information includes locations of
references to externally defined identifiers (see Section 2.1.J, Linlwr).

P::ige 78

3. ~> LONG INTEGERS

is suitable for business, scientific or other applications wheT'e there is a
need for extended number length with complete accwracyJ The f-our basic
standard arithmetic operations (addi-tion, subtraction, multiplici:1tion and
division) are supported, as mell as routines facilitat:in_g conversion to
strings and standard INTEGERs. Strong type checking is enforced to reduce
potential errors. I/O, in-line declaration of constants, and inclusion in
structured types are fully supported and are ana 109ous to the usage c.f
standard INTEGERs.

LOMG INTEGERS are dee lared by using the standard identifier "INTEGEI-<" followed
by a length attribute enclosed in square brackets. The length is 9iven as an
unsigned number, not larger than 36, that denotes the minimum number of
decimal digits to be represented. In the example b~low, the variable Z is
capable of storing up to a 12-decimal di9it signed number:

VA~ Z: 1NTEGERf 12J;

LONG INTEGERs may be used, generally, anywhere a REAL would be s1,mtaticall1.~

correct. However, care must be taken to ensure that sufficfont \ltords havP
been allocated by the dee lared length attribute for stora9e of the result of'
assi.onment or arithmetic expression statements. INTEGER expressions are
impi licitly converted as required upon assignment to, or ari t.hmetic operations
with, a LONG INTEGER.

However, the reverse is not true. The LONG INTEGER probably should not be
used as a subrange. Examples of uses of the LONG INTEGER are shown :i.r1 Fi9ure
3-5.

Arithmetic operations that may be used in conJunction witt1 the LONI; INTl-.Gt.R
ar£<

+, -, ~. DIV, unary plus/minus

On assignment, the length of! the LONG INTEGER is adjusted during execution to
the declared length attribute of the variable. Therefore, an interrupt
(overflow> may result when the intermediate result exceeds the number of words
required to store at least 37 decimal digits, or when the final result is
assigned to a variable with an insufficient length attribute. 1UJ. of the
sta:ndard relational operators may be used with mixed INTEGEk and LUNG INTEGER.

The function TRUNC will accept a LONG INTEGER as well as a Rt-AL as an
ar9L1ment. The function becomes TRUNC<U, where 11L" i5 a LONG INTEGEH"
Interrupt (overflow) wi 11 result if\ 11L11 is greater than MAXINL

The• procedL1re STR<L,S) will convert the INTEGER or LONG INTEGER "L" intLi a
string, complete with minus si_gn if needed, and will place it in tf·w STRING
115u.

An attempt to dee lare a LONG INTEGER in a parameter list other than for tht~

routines TRUNC and STR wi 11 result in a compi le-·time error. Tht-~ error may be

Page 79

r:ircumvEmted by creatinq rl type that is called LOl-iG INlEGEJ~, a!;; folJPttis·

PROGRAI'" L.INTEGER;
1,i.w i_ · INTEGER l20 J;

I INTEGER,
fiECn! (liLINTEGERn

I 9U7 65LJ::J210;
L -- ·L>

i·L
i ~!~.jb;

r Il'.UNC(U,
I.ND (~!_:LMTEGER11).

TYPE LONG ,,. HITEGEJ? 15
PrWCl:])URE OVER~.;IZE<ACCOUNT: LONG>;

f:i.9ure 3-·5. !:XAMPLE USES OF LONG INTEGERS

The LONG INTEGrn is stored as a multi-11.1ord, twos-complement bini'!ry number,
Syst:Fm routin+:--:>s dn the 1/0 convE•rsions as required. l'l<iximnm stor·age
efficiency is achieved by dynamic expansion and contraction of worrt allocation
as required. Durin9 LOMG INTEGER oper·ations, the len_qth is placed on the
·:;tack above the number itself. Mote th.it the declared len9th attrib1Jte may be
i?qual to or less. than this length.

]. 6 UCSD PASCAL ENH1~MCEMLNTS

Presented here is a summary of thE:.· dreas in which UCSD Pascal differs from
Standa1·d Pase a 1 as we 11 as specia 1 enhancements offered b4 ULSD Pase a L The
Standard Pascal referred .to hen,· is dt?fined in PASCAL USEI< MANW'\L ANO REPORT
0:2nd edition> b1J l<athleen Jensen and Miklaus Wirth (Sprin9er--Verla_9.. 197~>.

Man1,1 of thE' di f'ferences are in the a:·eas Gf files and I/O. Some of the key
differences from a pro9rammin9 standpoint are in EOF, EOLN .. READ, IJIHTE.. RESET
and REWRITE.

3 .. 6 • .1 Case Statements

In Standard Pascali if no labc~l is equal to the value of the casP statement
selPctor. the result of the case statem1:-nt is undefined (Jensen and Wj.rth).

In UCSD Pasca L if no labe 1 matches the value of the case s.e lect.or, the next
statement executi:.>d is the st.atement follolliin.9 the case statemf:mt. An example
i•; shoum in Fi9ure 3-8. Note that 3 semicolon is NOT permitted before the
"END" of a case 11ariant field dee la ration within a RECORD dee laration. See
Appendix B.2 for revised syntax dia9ram 1

; for <field list>.

PROl;RAM FA_LTHRU;
VAi< I : I ·HEGER;

Pa.tJe BO

BEGIN (llFALLTHRUti)
I : = 25;
CASE I OF
0 : WRITELN<'I - O'>;
1 : WRITELNC'I - 1');

END(t!CASE1n;
t4R I TELN (I NE: I THER I) ;

END < 1tFALL.rHFW1t).

Fiyur·e 3···6. EXAMPLE OF FALL 'THROUGH IN A Cf.)f)E 5Tf'ITEl'1LHT

Comments

A comment is any text that appears betu.•een the symbols 11
(Ii" and "t;)" or t:tH:

symbols "{" and 11
}". Comments are i.gnored by the Compiler un lef;;s the f H"~·t

character of a commen·t is 11$ 11
, in whkh case, the commeJit :is interprnt.ed to t•e

a Compiler control comment (see Section 2. /, Pase al Compiler), Ho"te t:1·1at
matching symbols must be used; they may not be mixed. This feature a ilows d

user to nest comments. For Gxample:

{ XCP : = XCP + 1; < 11 NESlEO COMMENT tt) }

The matching symbols have been used as pairs within pair~-.. of different
symbols. Using the same pair .Por nesting 11.1i ll result in a syntax f:'l"l'flr.

3a6.3 Dynamic: 11emory Allocation

In Standard Pascal, DISPOSE asks that storage occupied bl:f one particular
va·riable be released by the system for other uses ..

In UCSD Pascal. DISPOSE is not implemented" Ho111ever, it can be approximat&d
by a combined use of the intrinsics MARK and RE.LEASE.

Storage is allocated for variables by the standard pr·ocedure MEW :i.n .:1 stark­
like structure called a "heap". The program in Fi_qure :..i···9 i ll1J~:t:ratr~s how
MARK and RELEASE can be used to ch an 9e the size of the heap. As NEW ts used
to create a new variable, the size of' tne heap is dugmented by the s1rn of' lhe
vadab le. When the variable is no longer needed, RELEASE resets ·t:he t.op ·of'­
heap address that was set originally by MARK~

A !;eries of ca llc;. to NEW between calls to l'IARK and RELEASE wi 11 reHLI l.t j_n the
immediate release? of storage occupied by several variables at Rl.:LEASE time.
Note that, dL1e to the stack natur·e of the heap .. it is not possible to release
memory used by a single item in the middle of the heap. This is 11.1hy l'IARK and
RELASE only approximate the function of DISPOSE..

Ca1·eless use of MARK and RELEASE can lead to "dangling pointers" that: point to
areas of memory that are no longer a part of the defined heap space ..

EOF<F>

WhEm text file F is being used as an input file from the CUMSOLE device, t:o

Page 8.1

set EOF to True, the user must t1.:1pe t:hP EOF character. The system defaL•lt EDF
character is control-C. (To ch<rn_ge tht~ default character, see Section 4. L
Set.up.)

If F is closed, EOF(F) will return Tru1~ for any FILE F. If F is a
tiJpe TEXT and EOF<F) :is True, then EOLN(F) is also True. Aftl'r a
EOF<F) is False. If EOF(F> becomes True (end-of-file is reached)
GET<F) or READO:>, the data obtained i•; invalid.

PROGRAM HF.:1-WCliNG;
TYPE S1l.IDENI ,,

t~El:Of~l.J

NA!1E-.
:w

1~:N1>;

PACKED ARRAY ro .• !OJ OF CHN<.<
INTf GER

VAR S : "STlll>ENl; < 11 ·• ·"' MEANS POINTER II)
HEAP : "ItflH;FR;

BEGJN (1tHEAPCHNG1t)
MARK<Hl:AP);
NEW<S>;
S"~NA!1E : ::: 'S~IJTH, J1JHN';
S". ID : :::. 2656,
RELEASI:: < HEt-W > ;

ENO (itHEAPCHNGI!).

Fi9ure 3-7. USING MARI-< ANO RELEASE:" TO CHANGE HEAP SJZI-.

file c,f
RESE:.T ff) ..

du1' i n.9 a

When a user pro9ram starti;;. execution, the system automatir.;i 111.J pP.rforms a
RESEi on the predeclared files INPUT, OUTPUT and KEYBOARD.

The default file for EOF and EOLM is INPllT..

EOLN<F>

EOLM<F> is defined only if F is a te:(t file. F is defined as a text file
when the window variable F" is of <type>CHAR. EOLN becomes True after
reading the end--oF-line character < cr >. The carriage return must be typed
immediately followin9 the last character on the line. If a sp;ice is typed
first, tllen followed bu a <er>, EOLN will remain False, and another READ will
take place ..

3.6.6 Files

Several aspects of file> handlir19 are described below. lhc enhancements
pT'esented bring UCSD Pascal closel' to the standard definition of the language.
Note that IJCSU Pascal includes untyped files that are not available to the
Standard Pascal user.

WARNING· It is not currently possible to RE.AD or WfHTE to filer, of types

ot.:her than TEXT or FILE OF CHAR.

Interactive Files

'fhe standard predeclared file!; INPUT and OUTPUT 1ui 11 a 1Wt11J5 be defined
.:is type INTERACTil.1E. They behave exactly as do f-i les of type TEX"f.
fUl files other than INTERACTIVE operate exactl1;1 as described in Jensen
and Wirth.· inc ludin9 the functioning of EOFff), EOLNff) and RESET ff).
For more details concernin_q files of type INTERACTil)E, sr.'e Sr.•ction 2.6
(READ, READLN and RF.SET> •

Unt1,.1ped Files

Untyped files a·re unique to UCSD Pase a 1. An untyped Pi le can be
thought of as a file without a window variable F" t;o which all I/O
must be accomplished <using BLOCKREAD and BLOCKWRITE>. 1~ny number
of blocks can be transferred usi n9 either BLOCKREAD or EH.flCKWR HE.
These functions wi 11 ret:urn the actua 1 number of blocks read/written.
t.Jhen untyped files are used, it is advisable to specify thr! Compile
option "I", thus requiring that the function IORESULT and the number
of blocks tr-ansfened wi 11 be checked after each BLOCKREAD or BLOCK­
WRITE to detect any 110 errors. An example of a program that uses
untyped files is shown in Figure 3-·8 ..

Random Access of Files

Individua 1 records in a file can be accessed randomly by the intrinsic
SEEK.. The two parameters for SEEK are the file identi f'ier and an
inte.ger .9iving the record number to which the windo11.1 should be moved.
The first record of a structured file has the number 0. SE.EK always
s.ets EOF and EOLN to FalHe. The subsequP.nt GET or PUT will set these
conditions as appropriate. Attempts to PUT records beyond the physical
end of file will set EOF to True.

(1:1$1··~)

PROGRA11 FlLEXAl'IP;
VAR S, D : FILF;

BUF : PACKED ARRAYro •• 5.t:lJ OF CHAR;
BLKN, BLKSTRAN : INTEGER;
IOERR : BClOl.J:1-~N.;

BEGIN (UFILEXAl'IPt:1};
IOERR : "" FALBE;
RESET< S, 'FROrl. DATA-');
REWRITE<D, 'TO');
Bl.KN : "" 0;
Bl.KSTRAN : "'' BLOCl<READ (S, BUF, 1, BLKN> ;
WHILE <NOT EOF\S)) AND <IORESULT ::'. 0)

AND <NOT IOERR) AND <BLKSTl<AN~,1> DO
BEGIN

BLKBTRAN : :::: BLOCKWRHE<D, BUF, 1, BLKN>;
IOERR : ::: (<BLKSTRAN < 1) OR (IORESULT < > 0));

BLKN : = BLKN + 1;

3.6,7

Bl.J.i!STr<AM :== HLOCKRLi"lD<S,BLJF,LBU<N);
F:.ND (lilJHIU::li);

CLOSE (D, U.JCK>;
END (~F 1LEXAl1Pu) ,

Fi.9ure J ··U. EXAMPLE OF USING UHIYPED FILES

GOTO and EXIT Statement<>

The GOTO statement prohibits e1 GClO to a label that is not within "'.;he same
block as the statement. This 1.s a limitation that is not imposed on the GU'f(J
s.tatement in Standard ~·ascaL Because of' this limitation, the examples on
pa9es 31-32 of Jensen and Wirth do net appl1,1.

EXH is a UCSO extension statemt:nt. Its on .ly paramP.ter is the identifier
of the procedure to be e:nted. The EXIT statement was created because of
the occasional need for a mean!; tc abort a complicated, and poss1b le deep J.4
nested, series of procedure calls upc1n encountering an error. lh~ recursive
descent UCSD Pascal Compiler contains an example of the EXIT statement bein53
used in this way. However, the use c,f this statement is disr:oura9ed.

MOTE: The use of an ~XIT statement to exit a function
can result in the function returning undefined
values if no assi_qnmf·nt is made to the function
idPnti fier prior to tht:· execution of the LXIl
statement.

If the identifier in the EXIT statemE·nt is that of a recursive procedure, the
most rerent invocation of that ~"rocedure wi 11 be exit.ed. Upon iEXlT. an
implicit CLOSE<F> is done on local files that were opened duhn9 executio·n
of the procedure bein_Q exited. Ar' example of usin.Q EXIT is shown in Fi9t.•re
~~-·~I.

::i:. 6, 8 Packed Var1ables

Described below are packed arrays alld records, us1n.Q packed variables as
parameters, and <not) usi n9 Pf,CK and UNPr~CK.

PROGRAM EXITTEST;
1,•Af< S STIHNC;

I INlEGER;

PRDCEl.JIJRE CALL FORWARD;

PIWCEDURE PR ENT;
IJEGJ t-1 C l*PRIIH~)

\JUI ll:LN('-· - }');
nrADLN<:3);
!.JR ITEL.N < S) .

Packed Arrays

IF Sfll ~ ·~· THEN EXITCCALL);
IJRITELN< 'LEAVE PrHNT');

END (1tPRINT1t);

PROCEDURE:: CALL
BEGIN (1tCALLiO

PfHNT;
t4R I TEL.N (I LEAVE CALL I) j

END (fiCALUO ;

PROCEDURE COUNT;
BEGIN (~COUNTll)

IF I < ::0 1 O THFM CALL;
\,JR l TELN (I LEAVE COUNT I } i

END (iiCOUMT!i);

BEGIN (llEXITTE.STtt)
l : :::: 0;
l·.IHILE NOT EDF DO

l.JEGJN
I : ;;: Itli
COUNT;
WRITELN;

END C *Wl·IIU:)i) ;
END (it EX ITTESTll) •

Fi_gw·e 3-·9. EXAMPLE OF USING THE EXI1 SlMEMENT

The UCSD Pase a 1 Compiler wi 11 pack arr a vs if' the ARRAY dP.c larat'lc:m
is prE•ceded by the wo·rd PACl<EO. For e:<amp le:

r~RRAYro •• 9J OF CHt-)R;
PACKED ARRflYf0 •• 9J OF CHAR;

The array in the first dee laration wi 11 occuptJ ten 16-bi t words of
memory> uiith t•ach element occupyin9 one 111ord. The anay in the
second declaration will be packed into a total of' five 111ords, since
each 16--bit word contains t11io 8--bit cha1·acters. Thus each element
is ei9ht bits lon9.

Examples of packed arrays that ar-e not of type CHAr~ are g1vem in
Fi9u1·e 3-10.

Due to the recursive nature r.lf the Compiler, the folJ.m1Jin9 two
declc.wations are not equivalent:

P?\CKED l~RRAYro •• 9] OF ARRAYro ... 3J OF CHAR;
PAC~EO fiRRAYf0 •• 9,0 •• JJ OF CHAR;

In the first dee lara·t;ion, the second ocurrence of Arm1-W r:auses tht:

packin9 option in the Compiler to be turned off, _c~ivin9 an unpacked
anay of .t.10 wor·ds. The array in the second dee laration occupies a
tota 1 of 20 words ber.c:use ARNAY appf~ars only once. If the sE•cond
occurrence of Al~RAY in thf• ·~irst declaration had afr,o been preceded
by Pf)CKEO, the two d•.:-c laratwns would have been equiva ler1t.

PROGRAM Pf)CV.TST;
W'IR A: PACKED ARRA"f rou. 9J OF O~, 2000;

i{: PACKFD Af<RAY ro •• 15J OF BOOLEAN;
C: P11CKEO RECOIW

BEGIN
f:NO.

D: HOOUAI~;

CASF E: BOOLEAN OF
Tl<UE: <F: IN'TEGER>;
f?)LSE: (G PAC~\[0 ARRfW ro .• lJ OF CHAR>
L-Hn;

Figure 3-10. £X~'%11PLE3 OF PACKED ARRAYS ANO RECORDS

An array will be packed only if the final type of array is scaler,
~;ubrange, or a set that :an be represented in ei9ht bi th 01· less or
if the fin a 1 type is BUOLEA'.'I or CHAR. Mo pack in.Q is donE• if tlH_•
arra4 cannot be· expressed in a field ()f eight bits.

No p~cking occL1rs acro!:',s word boundaries. If' the typf:.' of elt:ment to
be packed reou1res a number of bits that does not divide evenly by
16, unused bi ts. wi 11 be at the hi9h end Gf each ot the words that
comprise the ar·rayM

NOTE: It is illegal to ,3ssi9n a string constant to c:;n unpacked
ARRAY OF CHA~~, although it may be assi9necl to a P1~CKEll ARRAY Cf
CHAR. Also, compar·isons between an Al~RAY OF CHAR and a strin.9
constant are illegal. This is because of size dif+ere11ces.

A PACKED ARRAY OF CHAR ma :,i be output with a single wrnTE statement,
and may be initialized by using the intrinsics FILLCHAf< and Bilt:OF.

Pac.keel RecorrJs

As with arraqs, the Compiler will pack r·ecur·ds if
declaration is preceded by PACKED. In the example below,
n•cord is packed into one 16-··bi t word.

VAR A: PACKED RECORD
Q, R, S: O •• 31;
B: BOOl.U1N

END;

Pa_ge 86

t:ht.' RECORD
the entire

The val'iables G, R and S each take up five bits. The boolean variable
is allocated to the sixteenth bit.

PACKED RECORDS may contain fields that alt-o are packed, either ana1;1s
or records. But PACKED 1nust occur before every occurrence of RECORD t;o
retain packed qualities throughoU"t all fields of' the record.

A case variant may be used as the last field of a PACKED RECORD. The
amount of space allocated to it will be the size of the lflr9est variant
among the cases.

Usin9 Packed Variables as Parameters

Packed variables may be passed as ca 11-by-va lue parameters to a pro-·
cedure or function. However, they may not be passed as call-·by···
reference parameters.

PALK arid UNPACK

UCSD Paf,ca l does NOT support the standard procedures PACK and UNPACK.
<Jensen and Wirth, 106).

Parametric Procedures and Functions

UCSD Pase a 1 does NOT support the use of procedures and funr:bons as formal
parameters in the par~meter list of a procedure or function.

Program Heading~

A list of file parameters may fol1011.1 the file identifier. However, the1J are
IGNORED by the Compiler and have no effect on the program being compiled.
Any f:i le dee: larations other than the three predec lar·ed files (INJ1UT, OUfPUT
and KEYBOARD> of type INTERACTIVE must be dee lared a long with the other VAi~

declarations for the program~

3.6 .. 11 RE1-)D and READLN

In Standard Pascal, the procedut·e READ reqllires that the window variable
fl'· be loaded with the first character of the file when the file is opened.
If effect, the statement READff ,CH> would be equivalent to:

CH: =F";
GET<F>;

To be responsive to the demands or an interactive programming environment,
UCSD Pascal defines the additional file type INTERACTIVE. Declarin9 a file to
be of type INTERACTIVE is equivalent to declaring it to be typP. TEXT, except
that the definition of RE:.,D<F,CH> is reversed:

GET<F>;
CH: ::::F";

Page 87

The standard definition c;.f the prClcedure R£1-)D requires tha the process of
optmin9 a file include loading the 111indow variable F"' with the first
character of the file. In an inh.•rcictive environment it is inccmvPnient to
require a user t.o type a character of the input file when it is open to avoid
the program "han9in.9" when it is first opened. lo over·come this, UCSf> Pascal
has reversed the order. This difference affects the way in which t.OLM must be
ust?d when reading from .3 text f.i.Le cf the type interactive. EOLN onl1.J becomes
true after reading the end of line character, a <return>.. The character
returned as a result of the l<EAU is a blank.

Three predeclared text files (HIPUT, OUTPUT and KEYUOARD> of type HITER­
ACTll/E are opened automatically for a user program. The Pi le INPUT defaults
to thP cor1sole device. fhe statemf•nt READ<INPUT, CH), whe1'e CH is a character
va1•iab le, wi 11 ec:ho the character tqµt::d from the console back to the console.
WRITE:: statements to the file Grn'PUT wi 11 cr.iuse the output tD appear on the
con!;;ole, bq default. Th,e file Kf.YEi.OriRD .is the non-echoing equivalent to
IMMJf. For example.. the fol.lo111inq two statements are equivalent to
~fa)[)(INPUT, CH

READ O<FYBOARD, CH);

\.l!HTE (()trf Plfl I CH> J

V.ESEl (F)

In Standard Pascal, the proceduH? Rt.SET resets the file !t.tindow to the
be9innin,9 of file F. lhe m~xt GE:.T:F> or PUHF> affects rec01-d 0 of the f:il£:>.
r41so, the window variable F" is loaded 11rith the first record of the file.

In UCSD Pascal, the standard crmve·1tions hold true unless the file i•,; of type
INTERACTIVE. In that case, the 111in 11ow variable is NOT loaded. Thus, the UCfm
equivalent of the Standard RESET<F) is the tiuo-statement sequence:

l~ESET(F);

GET<F>;

UCSD Pase a 1 also provides an a lt:ernative form of opening a pre-existin9 file.
In it, RESET has two parameters.; the file identifier f-ollo11.1ed b\I either a
strin_g constant or var·inb le, whichever conespond!:, to the djrector~J file name
lJf the file bein9 reopened.

REWRITUF)

REWIHTE opens and cr·eates a new fi l•?. It has tu.10 paramete1's: the file
1denti fier followed bq either a str i n9 constant or vuriab le, whichever
corresponds to the di'rectort,1 filt.,. name of the file being created.

REWRllE performs the same as the UCSD intrins:i.c OPENNEW1 and will rr~plar.:e it
eventually <s~e Section 3.1, lntrirsics>.

3 .. b .. 14 Segment Pron:-dures

The SEGMENT PROCEDURE i!;; a LICSD f.:.')tension to Pas.cal. With it~ the prog·rammer

can segment a lar9e program so that the entire program does not have to be in
memory at once. For further information, see Section 3.3, Se9ments.

3.b~15 Sets

All of the Standard Pasca 1 construr.ts for t:;ets are supported by UCSD Pase al
<see p. 50-51 of Jensen and Wirth). Sets of enumeration values are limited to
positive integers only. Also, a set is limited to 255 words and 4080
efoments. Comparisons and operations are allowed only between seh; that are
either of the same base type or subran9es of the samP under lyi n9 type.
Examples are shown in Fi9ut'e 3-11.

PROGRAM SETST;
VAR SET.1: SET OF 0 •• 49;

SET2: SET OF 0 •• 99;

BEGIN (llSFTSTu)
SETl := [0,5,10];
SET2 : = f10, 20, :-JOJ;
IF SET 1 :: SET2 THEN

!JRITELM<'THEY ARE EGUAL')
ELSE

WRITELN('THEY ARE NOT EGUAL I);

ENO<uSETSTu).

Sets of dif·Perent underlying types cannot be compared:

PROGRAM SETCOtlP;
TYPE INGREDIENTS = <FLOUR, SUGAR, EGGS, SALT> ;

VAR I: SEl OF INGREDIENTS;
N: SET OF 0 •• 49;

BEGIN (HSFTCOMPIO
I : =: rFLOURJ;
N := lt,2,3,4,5J;
IF I == N THEN < -·-·--·- ERROR WILL OCCUR HERE
WRITELN<'EGUAL');

END (lfSETC011P If) a

Fi9ure 3-11. EXAMPLES OF SET COrtPARISONS

Strin9s

STRIMG variable~:. are unique to UCSD Pase al. Essentially, they are PACl-<ED
ARRAYr. of CHAR with a dynamic LENGTH attribute. the valLte of u.1hich is returned
by ·the strin9 intrinsic LENGTH. The default maximum len9th of a string
variable is 80 characters. This value can be overridden in the declaration of
a string by appending the des:ired length within rJ after the type iden·- tifier

Page 89

STRING. For further information and examples, see Section 3.1.1, Strin9
Intrinsics.

A strin9 variable has an absolute maximum len9th of 255 characters. Assi9n-·
ment to string variables can be performed using the assignment statement, UCSD
strin9 intrinsics, or with a READ statement. For example:

TITLE:=' THIS IS 11Y STRING Ii

READLM<MYSTRING>;
NAME:= COPY<MYSTRING,1,21);

The individual character·s within a string are indexed from 1 to the len.gth of
the string. A string v.:iriab le may riot be indexed beyond its cunent dynamic
length.

String variables may be compared to other string variables, no matter wlhat the
current dynamic length of either. ThE· len9ths do not have to be equal.

One of the most common uses of string variables in UCSD Pascal is readin9 file
names from the console device. When i:1 string variable is used as a parameter
to READ or r<EADLN, all characters up to the end-of-line character <carriage
return> in the source file wi 11 be assigned to the string variable. In readin.g
string variables, the single statement READLN<Sl,52) is equivalent to the two­
statement sequence:

:3. 6~ 17

READ<S1>;
RFADLN<S2>;

WRITE and WRHELM

The procedures WRITE and WRITELH follow the conventions of Standar·d Pascal
except when applied to a variabl~~ of type BOOLEAN. UCSO Pascal does not
support the output of the words TRUE •Jr FALSE when writing out the value of a
boolean variable.

For writing variables of type STRING, see Section 3.1p1, String Intrinsics.
When a string variable is written witl1out speciFying a field width, the actual
number of characters written is equal to the dynamic length of the string. If
·the field width specified is longer than the dynamic length, leadin9 blanks
are inserted. If the field width i 1

:. smaller, excess characters will be
truncated on the right.

3.6.18 Implementation Size Limits

The maximum size limitation of UCSD Pascal are:

1. Maximum number of bytes of object code in a procedure or function
is 1200. Maximum number of words for local variables in a
procedure or function is 16383.

2. Maximum numbe~r of characters in a string variable is 255.

3. Maximum numbe~r of elements in a set is 255 If 16 = 4000.

4. Maximum number of segment procedures
which nine are reserved for the Pascal
available to the user.

and functions is 16, of
system and seven are

5. Maximum number of procedu1·es or functions within a segment is 12/.

3"6.19 Extended Comparisons

UCSD Pascal permits - and < > comparisons of any array or record structure.

Page 91

SECTION 4

UTILITIES

4. J SETUP

Certain informaUon abmit the user's system configuration is kept in a ti le
called SYSTEM.MISCINFO. During system initialization, this file is read into
memory. From there, it is accessed by many parts of the Pascal Operating
System, particularly, where applicable, by the Screen-Oriented Edit:or.

Mur:h of' the information in this file must be set up by the user to conform to
his hardware configuration and particular needs. Most concerns the nature of
the terminal and keyboard, although there is some miscellaneous information.

SETUP is run by typing "X" for eX(ecute at the Outer Level of commands, then
the f-ile name SETUP, followed by a carriage return. The following prompt line
appea1·s:

SETUP: C <HANGE T (EACH) H (ELP) (HUIT)

The pro91·am is self-·teachin9. Typing
explanation of what the other commands do.
disk, the followin.g message will appear:

"H" for H<ELP> uii 11 produce an
If the SETUP p1·0.m·am is not on the

no file setup.CODE

SETUV does not tell the system how to do random cursor addressing on the
user's terminal. If this feature is part of the user's hardware
confi9uration, information on using the feature can be found in Section 4. 9,
GOTOXY ProcedUJ'e Binder.

4.L1 Miscellaneous Information

HAS 8510A

If TRUE, the system is running on a Terak 8510A hardware
configuration; otherwise FALSE.

HAS CLOCK

4.L2

If TRUE, a real·-time c:lock is available; otherwise FALSE. The real­
time clock module is assumed to be a line frequency cloc:k. When
available, the clock is used by the system to optimize disk directory
updates <see Section 3.1.6, Time Intrinsics).

General Te1·mina l Information

HAf\ LOYER CASE

If TRUE, the terminal has lower case; otherwise FALSE.

HAS RANDOM CURSOR ADDRESSING

Page 93

If TRUE, the terminal has random cursor addressin9; otherwise FALSE"
This applies only to video terminals.

HAS SLOY TERMINAL

If TRUE, the termina 1 has a b,:iud rate of 600 or less; othcrwi~.e FALSL
IJhen TRUE, the system issues abbreviated prompt lines and messages.

NON-·PRINTING CHARACTER

Any printing character may be entered here to indicate the r.haracter
that should be displayed to indicate the presence of a non-printin9
character. The suggested character is ASCII "?".

SCREEN HEIGHT

Enter the number of lines displayed on the screen of a video terminal.
Otherwise, enter 0 for hard··copy terminal or one in which paging is
not appropriate.

VERTICAL MOVE DELAY

4.L3

Enter the numbe·r of nulls to send after a vertical curso1' move. The
nulls will be sent after a carriage return, ERASE TO END OF LINE,
ERASE TO END OF SCREEN and MOVE CURSOR UP. Many types of terminals
require a delay after certain cursor movements to enable the terminal
to complete the movement before the next character is sent-

Control Key Information

Some keyboards generate two codes when a single key is typed" That is
indicated according to the foll0111in9 format:

PREFIXEDf<fieldname>J TRUE

The prefix for all such keys must be the same. For example. many keys
function as escape keys in addition to their named function. If a user's
keyboard had a vector padi that generated the value pairs ESC "U" and ESC "0"
for the Uparrow and Downarrow keys,. respectively. the following values should
be entered:

KEY FOR MOVING CURSOR UP
KEY FOR MOVING CURSOR DOYN
LEAD-IN KEY FOR KEYBOARD
PREFIXEDfKKEY FOR MOVING CURSOR UPJ
PREFIXEDf KEY FOR MOVING CURSOR DOWNJ

The follo11Jin9 keys may ap:p ly to a 11 terminals.

KEY FOR BREAK

ASCII "U"
ASCII "D"
ESC
TRUE
TRUE

Typing the BREAK key causes the program currently executing to be
terminated immediately with a runtime error. This should be set to
something that is difficult to hit accidentally.

Page 94

KEY TO DELETE CHARACTER

This key removes one character from the current l:i.ne. It may be t1:1ped
unti 1 nothing is left on the line. The suggested setting is ASCII BS.

l<EY TO DELETE LINE

This key will cause the current line of input to be erased. The
su_qgested setting is ASCII DEL"

KEY TO END FILE

This is the console end-of-file character that sets the boolean
function EOF to True. This applies only to INPUT or KEYBOARD files or
the unit CONSOLE. The suggested setting is ASCII ETX.

KEY FOR FLUSH

This is the console output cancel character. When the FLUHH key is
pressed, output to the file OUTPUT is undisplayed until FLUSH is
pressed again or the system writes to the file KEYBOARD. Processing
is uninterrupted even though the output is not displayed. The
suggested setting is something that is dirficult to hit accidenta llya

KEY FOR STOP

This is the console output stop character. When preseed. output to
the file OUTPUT ceases. Output resumes where it left off when the key
is pressed again. This function is useful for reading data that is
being displayed too fast for easy reading. The suggested setting is
ASCII DC3.

The following keys are applicable only to video terminals that have selective

EDITOR "ACCEPT" KEY

In the Screen-Oriented Editor, this key is used to accept commands,
thus makin9 permanent any action taken. The su99ested settin9 is
ASCII ETX.

EOll OR "ESCAPE" KEY

In the Screen-Oriented Editor, this key is used to escilpe from
commands, reversing any action taken. The suggested setting is ASCII
ESC.

KEY TO 110\IE CURSOR LIP
DOWN
LEFT
RIGHl

These keys are used by the Screen-Oriented Editor for cursor control.

Page 95

If the keyboard has a vector ~ad, the keys must be set to the value it
9enerates. 1Jther1uise, four keys may be chosen in the pattern of a
vector pad <e.9 •• "O", ".", "~" and "; ") and be assigned the control
codes that cmTesprsnd t:o them. A prefix character may also be used.

Video ~lcreen Control Characte-r·s

!"he video screen control characters are sent by the computer to the terminal
to control the actions of the termina:,. The terminal manual will give the
apprt)priate values. If a termi na 1 does not have one of these characters, the
field should be set to (), unless other wise directed.

On some terminals, a two-character sequence is required for some functions
<e.g .. , ESC plus a character). If the first character for all of the functions
is the same, it can be set a!:> the va:lue of the field LEAD-IN TO SCkEEN. Then
the -Field PREFIXr< fieldname >J must be set to TRUE for each two-character
function.

BACKSPACE

This character causes the '::ur~;or to move one space to the le.Pt.

ERASE LIME

This character causes the erasure of all characters on the line where
the cursor is currentll~ locatE!d. The cursor is relocated to the
beginning of the line.

Er<f.~tiE SCREEN

This character erases the entire screen. The cursor is repositioned
in the upper left hand cornPr of the screen.

ERASE TO END OF LINE

This character causes the er·asure of a 11 characters from the current
position of the cursor to the end of the line. The cursor location is
tmchan.9ed.

ERASE TO END OF SCREEN

This character causes the er·a•;ure of a 11 characters from the current
position of the cursor to th1~ end of the screen. The cu1·sor location
is unchan9ed ..

110VE: CURSOR HOME

This character causes the cur:.or to be relocated to "home", which is
the upper left hand corner of the screen.

MOTE: If the terminal does n1lt have such a character, the field
!3-hould be s.et to ASCII :R <carriage r·etu1•n).

MOVI:. CURSOR UP

Pa9e 96

LEFT

These characters cause the cursor to move non-·destructively one space
in the direction indicated.

4. 2 BOmSTRAP COPIER

The bootstrap copier writes the first t1t•o blocl<s of the specified file to the
specified unit. This utility is on the file BOOTER.CODE~ It is run by typing
"X" for eX<ecute at the Outer Level C)f commands, followed by BOOTER. A prompt
line appears to ask for the unit number of the volume on which to write the
bootstrap.

Followin9 the entry of the unit number <see Appendix B.4» the file name to
write as the boots·tr ap wi 11 be asked for.

To copy the bootstrap from an existing disk, give the disk name.
bootstrap llii 11 be copied from the disk named to the unit numbe1·ed.

4. 3 DUPLICATE DIRECTORY UTILITIES

Then the

These are two utilities to handle duplicate directories. COPYDUPOIR copies
the duplicate directory, and MARKDUPDIR marks a disk that currently is not
maintaining a duplicate directory# They are described below.

COPYDUPDIR

This program copies the duplicate directory into the primary directory.
location. It is entered by typing "X" for eX(ecute while in the Outer
Level of commands, followed by COPYDUPDIR. The program then prompts
for the drive <4 or 5> in which the copy is to take place.

If the disk is not currently maintaining a current directory. a
message is generated.

If no duplicate directory is found after the drive number has been
entered, a message is generated.

If a duplicate directory is found> then a prompt will ask if the
directory currently in blocks 2-5 is to be destroyed.

A "Y" answer wi 11 cause the execution of the copy. Any other answer
will abort the program.

If the disk is not currently maintaining a current directory, the
RECOVER program should be run. This is described

MARKOUPDIR

This program wi 11 mark a disk that is currently not maintaining a
duplicate directoryn It is entered by typing "X" for eX<ecute while
in the Outer Level of commands, followed by MARKDUPDIR~ lhe program
will prompt to get the unit (Lf or 5> that is to be marked,

Page 97

4.4

Blocks 6-9 must bE? free. The program will check for this and will
give the following message if the blocks appear to be in use:

A "Y" response, indicating that the use1· is sure
that the blocks are free, wi 11 execute th~ mark.
Any other character wi 11 cbort the program.

Blocks 6-9 can be checked bt• using the E<xtended command in the file
Handler. The extended listin$1 will show where the first file starts.
If the first file starts at block 6, or it if starts at block 10 but
there is a four-block unused ~:.ection at the top. then the disk has not
been marked. Hou.aever, if the first file starts at block 10 and these
are no unused blot:ks at the bE·.qinning, the disk has been marked.

In the examples below, the di~>ks have not been marked.

SYSTEM.PASCAL 31 10-Jan-79 6 Codef-ile

unused 4 10-Jan-79 6 Codefile
SYSTEM.PASCAL 31 10-Jan-79 10 Codefile

Below is the directory of a pr·oper ly marked disk.

SYSTEM.PASCAL 31 10-Jan-79 10 Codefile

LIBRARIAN

The librarian allows the user to link separately compiled Pascal units and
separately assembled subroutines into a library file. The librarian is
entered by typing "X" for eXCecute whde in the Outer Level of commands,
followed by LIBRARY.

Before adding a segment to the ~SYSTEl1.LIBRARY, the user must create a new
file into which each segment that is wanted from the original ~SYSlEM.LIBRARY
is linked. Then it is possible to add segments by linking from another code
file into the new file being created.

On entering the librarian program, th 1a user is prompted for the name of the
output code file:

Output Code File ->

The program then prompts:

Link Code Fi le ->

to which the user should respond with MSYSTEM.LIBRARY. Then the program
displays the names of all segments currently linked into the input library, as
well as their length in bytes. A maximum of 16 segments are permitted in any
Pascal program or library. After the program lists the segments, it prompts:

Segment ti to lin~ and <space» I-Hew file, <Huit, A<bort

The ur.er responds with the number of the segment within the link code file

:Ja9e 98

·that is to be linked into the new library file~ followed by <space>. Next,
the user enters the number of the segment in the output file to be linked into
(i.f?., the new library), followed by a <space>. For each segment linked, the
program reads the segment from the input file and writes it to the output file
at the segment requested. It then displays the segments currently in the
output library.

When all needed segments have been linked, a new input filf~ is requested by
typing 11N" for N<ew. Once the needed segments from all input files have been
linked, the user locks the output file by typing 11 G" for Q(ui t, followed by
< c1· >. The linking process is aborted by typing 11 A11 for A<bort. In that case,
control returns to the Outer Level of commands.

The old lfSYSTEM.L.IBRARY should either be removed or have its name changed if'
it resides on the same disk as the new. The name of the new library should be
changed to lfSYSTEM.LIBRARY in order to be used.

4. ~> LIBRARY MAP

The library map program produces a map of a library or code file and lists the
linker information mantained for each segment of the file. It is entered by
typing "X" for eX<ecute while in the Outer Level of commands, followed by
LIBl1AP. The prog1·am wi 11 return with a prompt asking for a libra1·y file name.

An asterisk <~> will indicate lfSYSTEM.LIBRARY. The ".CODE" suffix may be
suppressed when requesting a library or file other than the 1tSYSTEM.LIBRARY by
appending a period to the full file name. For example:

typing:

If

DIGITAL
DIGa LIBRARY.

will reference the file:

MSYSTEM.LIBRARY
:DIGITAL.CODE
:DIG.LIBRARY

The library map utility usually is used to list library definitions. However,
when the program prompts for a reference list.

typ:ing a "Y" io response will cause the program to include intra-library
symbol references. A negative response is indicated by typing a <space> or
<er>. Then the program prompts for an output file name.

If the extra period at the end of the file name entered is not used, the
program wi 11 au·tomatica lly append 11

• TEXT".

Several libraries may be mapped at the same time. Typing a <er> when prompted
for a file name will quit the program and return control to the Outer Level of
commands.

4.6 P-CODE DISASSEMBLER

The P-code disassembler inputs a UCSD code file and outputs symbolic pseudo­
assembly code (P-code) along with statistics on opcode frequency, procedure
calls and data segment references. The disassembler is helpful to the L1ser in
optimizing programs and provides a source of information on the subtleties of

Page 99

the UCSD implementation of Pascal. All statistics gathered are static: :in that
they are collected by makin9 a pass through the code file rather than
collecting them dynamically 11.!hi le the code file is runnin9.

4.b.1 Disassembly

The disassembler is invoked by typing "X" for eX<ecute while at the Outer
Level of commands, followed by DlSAStl. 15. The file OPCODES. 15 must be on the
system disk. On entering the disassen1bler, the first prompt is for an input
c:ode f i le:

The suffix ".CODE" is assumed, and thHefore is not required. The cod1~ file
must be one that has been generated b~1 the Pascal Compiler. If a p1·09r,3m USE:.5
a UNIT, the disassembly program will include the UNIT only if the cod1~ file
has been linked. Assembly language· routines linker! into a Pascal ho!:.t will
not be included in the disassembly.

The next prompt asks if the first ph~tsical byte <byte 0) of a machine 1uord is
the most significant bytP. of the word.

The next prompt is for an output fi le for the di sasseinb led output. Bee ause
the <Jutput file has not been defined by type. either CONSOLE: or PRINTER: (if'
on--line) may be used.

Then the user must decide if he wishes to take control oF the dis.:1~sembly to
disassemble only selected procedures rather than a 11 of them in the file.

If the user responds with a "Y", a me,ssage warns that all statistics are
gathered only on the proct?dures that are disassembled. The Segment Guide then
displays the segments in the file by 11ame so that a particular segment can be
selected. Then the Procedure Guide is listed llthen an "L" is typed to give the
procedures contained in the segment (see Section 4.6.2 below for mm·e
details>.

The Segment Guide may be reentered by typing "G" while in the Procedure Guide,
enabling the user to disassemble several procedures in several segments on a
selective basis. The Segment Guide is exited by typing "G". Figure 4-1 gives
an example of a Pascal pr<>9ram, its disassembly and its statistics"

Pa_!;;e 100

1 1 1: 0 1 (~$L DISASSM.TEXTH)
2 1 l: D 1 PROGRAM OISASSM;
3 1 1: D 3
4 1 .l:D 3 VAR J, I INTEGER;
5 1 1:0 5 BUF ARRAYf0 •• 6J OF INTEGER;
6 1 1: D 12
7 1 1: 0 0 BEGIN
0 l 1:1 0 d : ::.:l.j;
9 1 1: 1 5 I : =J+l;

10 1 1:1 10 BUHJJ : =200;
11 1 1: 0 22 END.

Sample Pascal Pro9ram

Sample Pro9ram Disassembled

Figure 4-1. DISASSEMBLY EXAMPLE

Page 101

4. 6. ;?. Data Segment ReifE?rence Statistici:.

The most common use of the references to data segments for a particular
procedure is to optimize the procedure's code file. By rearranging the order
of the declaration of variables, the offset for a given variable may be
changed within the data segment. The first 16 words offset into the data
se.9ment are the fasteist and have optimized one-byte instructions. Offsets
from 17 to 127 result in i1nstructions at least two bytes long; 9reate1· than
127, at least three bytes long. If the most frequently used variables ha•1e
the smallest offsets, considerable code file space, and possible erncution
time, may be saved.

The Procedure Guide listin_g gives all of the procedL•res in a selected segment
by number, lex level and data s.egment size. Refering to the previoL•s section,
the listing is made in response to typing an "l" after the segment has been
selected.

4.6.3 Opcode, Pf'ocedL•rE~ Call and Jt.mp Statistics

The opcode, procedure c:a 11 and jL·mP statistics are collected as an aid to
optimizing the architecture of P-code. They are of little U!'>e to thE? pro··
grammer. The last prompt of the program asks for the name of the file to
which these statistics should be dumped.

4.7 PATCH/DllMP

The patch/dump program is entered by typing "X"
Oute1· level of commands, followed by PATCH.
following prompt line appt?ars:

C<onsole, P<atchwrite, \.J(holeu1rite, <Huit

for eX<ecute while :in the
On entering the program, the

Typing "C" puts the program into consc,le mode for working with and altering
the file. Typing "P" puts the pro9f'a111 into patchwrite mode for dumping a file
in hex, decimal, octal or ASCII format. Typing "W" puts the program into
wholewrite mode for dumping, concatentating and/or moving blocks in files.
"G" exits from the patch/dump program and returns control to the 01.rter level
of commands. Console, patchwf'ite and wholewrite modes are described below.

4J. :L Console Mode

In the console mode, the prompt Hne changes with each commandQ The full
prC)mpt line on entering the mode is:

Patch: R<ead, H<ave, H<ex,. M<ixed, G<et, <Huit fnnJ

The numbe1· in the square bracket at ttie end of the Ii ne is the current block
being patched. The first command tc• use is G<et, which will return with ·t;he
prOB1pt:

Filename: < r.r for unit i/o >

In response, the name of the file to
carriage return is typed instead

be patched
if the disk

is
<or

entered. However, a
other device) has no

directory or has some problem with the directory. Typing <er> will generate
the prompt:

Unitnum to patch f4,S,9 •• 12J (0 will Guit)

When either a file name or a unit number has been entered, the next command to
execute is R<ead, which will read a block from the file/unit. On entering
R(ead, the prompt is:

BLOCK:

The block number of the file/unit specified is entered. Note that no range
checking is provided on this read. Now, using the H<ex command will display
the, block entirely in hexadecimal characters. The M<ixed command will display
the· block in ASCII characters, where possible, and hexadecimal values else­
where. The prompt for N< ixed is:

Alter: pad vector 1,5,3,0 o •• F hex characters, S(tuff, Q(uit

The vector keys on the terminal control cursor movement. Note that the cursor
will not move off the data. Typing a hex character changes the character at
the location of the cursor only if one or more of the data positions is
changed.

The S<tuff command displays the prompt line:

Stuff for how many bytes:

Enter a numbe1· from 0 to 512, followed by a carriage return to cause patch to
accept the number. The next prompt line is:

Fill with what hex pair:

Enter a byte value if hexadecimal. The data will reappea1· on the sneen with
the number of bytes specified filled with the value specified. Fillin.9 starts
with the location of the cursor.

Typing a 11G11 wi 11 transfer control from the alter mode back to the console
mode. S<ave is the next command to be executed to write the changed data back
where it was read from.

The console mode clears its memory after each session.

4.7.2 Patchwork Mode

In the patchwork mode, a full screen prompt appears:

lhis procedure writes out sequential blocks to any file as a patch dump.
1\Jpe the prefix character of the option to be changed. Type 1 P1 to PRINT,
1 G' to QUIT.

A< Input File
B< Begin Block #
C(Num. of Blocks

Page 103

E< Output: Fi lt?
G(Hexadecimi'l l
H< ASCII
I(Decima 1
,J(Octal
K< Decimal Bytt:~s

L(Oc td 1 Byte!:;
11(Krtmch
N(Doub Je Span.·

Followin9 each field i!; its current ·.,1alue. Typing the character in front of
the field positions the cursor after the field and removes the current value.
Typing "Y" or "T" sets a boolean value to True; any ot:her churacter sets the
field to False. The input and output file fields require a file name followed
by a carriage return. ThE~ inte_ger fields <begin block and num. of blocks)
require a number folfou1ed by a carr ia.Qe return or space. Any other character
sets the field to some un~>pecified value.

Both Print and Quit cause control to return to the outer
dump program. Print first dumps the file in the requested
may be specified by the options kr•Jnch and double space.
removes blank lines between 109ic~l output lines. Double
double spaces all output. The default is none.

level of the patch/
format. lhe format

Krunch, u•hen True,
space, when True,

Note that the patchwrite mode remembers its parameters across sessions while
remaining in the patch/dump program. Patchwrite pa_ginates its output. M::ter
each block is written, a form teed is _generated, PAGE<OUTPUTFILE>.

t.Jhole111ri te Mode

In the wholewrite mode .. a full screen prompt appears:

'lhis procedure
Pi le, unchanged.
PUl, 'G' to GUIT.

writes any nUfl'lber of blocks from an existing file to a new
Simpl1J specify the necessary parameters. Type 'P' to

I<nput Fi le
S(tart Block
N <umber of Blocks
O<utput File

Fields are changed the same way as for the patchwork
allows mi xi ng/matchin.Q and minglinp of files.
contT·ol to the outer level of the patch/dump program.
filf'.

mode. Wholf'WJ'i t1? mode
Both Put and G11i t return

Put first writes to the

Note that the wholewri·te mode remembers its parameters across sessions while
remaining in the patch/dump program.

4.'3 THE CALCULATOR

The ca lcu la tor pro9r am
Outer Level of commands.
appears:

is entered by typing "X" for eX<ecute while in the
On entering the calculator, the following prompt

->

Thi1; prompt expects a one·~line expression in algebraic form as a response. Up
to 25 different variables are available, each with different values assi9ned
using the syntax of~ the given grammar. Only the first eight letters may be
used to distinguish betllieen vaf'iab les. Vari ab 1es having a Vii lue may be used
as constants. The two built-·:in variables are PI<3.14P.>9~1) and E(2.71828~).
No distinction ii~ madr~ betu.1eem upper and lou.•er case lette1·s.

The Pascal MOO function (\) rounds the operands t.o integers. \41'.\r~tHNG: bec:aust~

this uses the Pase: a 1 defini hon of MOD (Jensen and Wirth, p.100>, thf:• results
obtained may not be as exped:~~d.

The operand of the factorial FAC function also is rounded to an integer 111hich
must be bet\lleen 0 and 33, inclusive, or· the expression wi 11 be re,iected.

The uparrow is used for· expc:mentiation. The answer is calrulated by usin.IJ
e " Y LN <X>. Therefore, thf?? operand mu!)t be positive or the expression wU.1
be 1r-e~iected.

The constant L.ASTX is assi9ned the value of the previous correct expression
and may be used in the next expression. This does awal;J with the necPssity for
reellltering the same expression.

An.Qles for the TIUG functions must be in RADIANS. Degree-to-·radian conversion
is accomplished by RADANGLE ·· <PI/180) I{ DEGANGLE.

The calculator program wi 11 bomb on an execution en or if an overffo111 or
underflow occurs. If this happens, a 11 user···assigned variable!:> and their
values will be lost. Type carriage return immediately followin.Q the pro;:ipt to
leave the calc:uhtor. Calculat.:or examples are given in Fi9ure 4··2.,

·· > Pl
:~.14159

.... > E'
2.71828

-> A ~ <FAC<3>/2)
3.00000

·-> 3 ... 6
9 .. 00000

... > A .f· 6
9~00000

... > < RET > To end the program

Fi9ure 4-2n CALCIJU\TOR EXAtlPLES

Page 105

4. 9 GOTOXY PROCEDURE B HIDER

The GOTDXY binder alters the SYSlEM.PASCAL on the default P<n~fix disk to
crP.ate and bind into the 15ystem (once only> the GOTOXY procedure that enables
the system to communicatP. correctly with a video ter-minill. Only system
c:onPi9uNtions containing a video terminal need GOTOXY. The coordinates for
the upper lefthand corner of the videc screen must be X==O, Y=O.

The GOTOXY binder is entered by typin51 "X" for eX(ecute while in the Outer
level of commands, followt::.>d by BINDER. When entered, it prompts for:

local GOTOXY

thP procedure that must be creatE·d to suit the needs of the par-ticular
installation.

To create "local GOTOXY", examine the file GOTOXY.TEXT, that is on the release
di5k, with the Screen-·Oriented Edi tor. This file contains a few procedures
ror doing GOTUXY cursor addressin9 on several types of video terminals. If
the procedu1·e needed is in tht:.> file, remove it from comments, comment out any
other procedures, recompile it ancl run BIMDER on it. BIMDER is a self­
instructing program. Directions for E•nterin9 it are given above. Possible
er1'ors that may occur while reviewir19 the GOTOXY. TEXT and selecting the pro­
ce<.lurE.• needed are:

Possible Error

Mi 1 memory reference ,at
compile timE!

l)a lue ran9e error when
executing BINDER

Fix

Remove the pro9ram heading and
try again

(IBllJ-ii) should be the first thing
in the GOTOXY file.

If the needed procedure is not in the file, it must be created. The created
procedure cannot be named GOTUXY because this identifier is predeclared at the
"$U-· 11 level of comp i latio·n.

A(s!~f.?m

C<1lmp
D<ebu9
E<d:i.t

eX(1?cute
F < i .1£-.•r
L(ink
R<un

<down-arrow>
< up--arrO\U >
< r i 9ht-arrow >
< lef't-anow >
(Spi~Ce)

<back ··space>
<tab>
<return>

II(II

II)II

II;: II

It II
I

II II .
u_tt

11+11

APPENDIX A

COMMAND SlJtltlAR I ES

A~1 Outer Level
A~2 Screen-Oriented Edit;or
1~. :-J Line-·Oriented Editor
A.4 File Handler
A .. 5 Pasca 1 Compiler
A.6 Debu99er

Appendix A.l Outer Level

Invokes the system Assembler.
Invokes the system Compiler <Pascal or Basic).
Invokes the Debugger.
Invokes the syste111 Editor <Screen·-Oriented Editor or
Yet Another Line-Oriented Editor>~
Executes the code file.
Invokes the File Handler.
Invokes the Linkera
Executes the code file associated with the current work file.
If none exists> the Compiler is automatically called> followed
by the Linker, if necessary, before executiona

Appendix A.2

moves <repeat-factor>
II II

" II

II II

SCREEN··ORIENTEO EDITOR

lines down
lines up
spaces right
spaces left

11 11 spaces in direction
" " spaces lef·t:

moves <repeat-·factor> tab positions in direction
moves to the beginning of line <repeat-fact.or> 1 i nP.s in
direction.

change direction to backward
change direction to forward
moves to the beginning of' what was just round/replaced/
inserted/exchanged

A<d,just: Adjusts the indentation of the line that the curso·r is on. Use
the arrow keys to move. Moving up (down> adjusts line above (below)
by same amount of adjustment as current line. Repeat factors are
valid.

Page 107

C<opy: Copies what was. last ins.erted/deleted/zapped into the file at the
position of the cur£-or.

D\elete: Tr<:'ats the startin.<J pos:i.tion of the cursor as the anchor. Use an1,1
movrn.9 com111ar1do;. to mrNP thE· cursor. <etx> deletes everyth:in9
betw1::-en thP cursor and the anchor.

FdnrJ: Op•?riltes in L<iteral or T<oken mode. Finds the <targ> string. Repei:lt
factors are valid, direction i•> applied. "S" = use same string as
bF.fm·e.

r<ns.prt: Ins~rh; text. Can use <back ~:;pac:e > and < del> to reject part. of your
i n ~:;e1'1.: i ors •

~Hump: Jump:, to the be9innin9, end or previously set marker.

M\ar9in: Adju!:.ts anythin.o bettl1een two blank lines to the margins which have
been set. Ccimmand cha1·acter!; protect text from bein9 mar9ined.
Invalid ates the copy buffer.

!J(age: Moves the cursor one pa,9e in direction. Repeat factors are valid,
direction is applied.

(Huit: Leaves the edit()r. You may U>pdate, E>xit, W>rite.» or 1<>etu1·n.

R<eplace: Operates in Uiteral or T(ol<en mode. Replaces the <targ> string
111:i.th the <subs> strin9. ~>(1?rify option asks you to verify befol'e
it replaces. "S" option us1?s the Same string as before. Repeat
factors replace the target ·3everal times. Direction is valid.

!}(P.t: Sets M<arkers by assigning a st·,..in9 name to them. Sets E<nvironment
for A<uto-indent, F<illing, mar9ins, T<oken, and C<ommcind cha1·acters.

V<erify: Redisplays the screen with the cursor centered.

eX<c.han9e: Exr.:han9es the curretit text for the text typed while in this mode.
Each line mL•st be done sep3rately. <back-space> cal.•ses the
twi9inal character to re-aopear.

Z<ap: Treats the startin9 position of the last thin9 found/replaced/inserted
as an anchor and deletes ever1Jtnin9 between the anchor and the current
cursor position.

< repeat·-·far.tor > is any number typed before a command. Typing a I i "· the
i nfi ni tP number·.

Appendi:< A. 3 YALOE

n - an a1·9ument m -· mi.lrr·u m.•mber·

n1~: Advance the cursor· to the be9innin9 of the n th line from thP. current

position.
B: Go to the Beginnin.Q cf the file.

nC: Change by deletin.Q n characters and inserting the roll.owing text.
Te1·minat~ text uiith <esc >.

nD: Delete n characte'l"s.
F. · EJ·ase the scrt•en.

nF: Find the n th occurrence from the current cursor position of t:he
follo1uin9 string. Terminate target string with < esc >.

nG: Get ·· di ttn ...
H: - invalid -·
I: Insert the following text. Terminate text with (esc) ..

nJ: ~lump cursor n characters.
nK: Ki 11 n lines of text. If current cursor position is not at the start:

of the line, the first part of the line f'{?mains.
nL: List n lines of textn
mM: Define macro numbe1· m.
nNm: Perform macro number m, n times.
nO: On, off ·toggle. If on, n lines of text 11iill be displayed above and

below the Cllrsor each time the cursor is moved. If' the cur!:;OJ' is in
the middle of a line then the line will be split into tmo parts.
The default is whatever fills the screen. Type () t<J tu1·n off.

P: - invalid -
G: Quit this session,

U: (pdate
E: (scape
R; <etu1'n

followed by:
W1·ite out a new SYSTErl.WRK. nxr
Escape fr·tJm session
Return to editor

R: Read this file into buffer (insert at cursor>;
'R' must be followed by <file name> < esc);
WARNING: If the file will not fit int:o the buffer, the content
of the buffer becomes undefined!

nS: Put the next n lines of text from the cursor position into the Save
Buffe1·.

T: - invalid -
U: Insert Wnsave> the contents of the Save Buffer into the text at

the cursor; does not destroy the Save Buffer.
V: Verify: display the current line
W: Write this file (from start of buffer);

1 W1 must be followed by <file name> < esc: >
nX: Delete n lines of text, and insert the following text; terminate

with < esc >
Y: - invalid -
Z: - invalid -

C(han_ge

O<ate

Appendix A.4 Fi le Hand le1·

Scans the disk and detects bad blocks, listing the number of
each.

Changes file or volume name.

Lists current system date and enables user to change date.;
format is dd-mmm-yy.

Page l.09

E<xt ·dir

G<et

K(ru11ch

L<dir

M(al:e

P<refix

R<em

S(ave

W(hat

X<amine

Z (nro

D:

G:

I:

Lists the directory in more detail than the L<dir command.

Loads the desi9nated file into the work file.

Moves the files on the specified volume so that unused blocks
are combined at the end of the disk; disk f-i les rJn ly.

Lists. a d1sk dirt•cto':'y, or subset of one, to the volume and
fi le spec j. fi ed; def au 1 t is CONSOLE:) •

Creates a directory entry with the specified filename.

Clears thf~ work file.

Chan.Qe!; the current default volumE to the volume speU.fied.

Return!:. ce>ntrol to the Outer Level of commands.

Remove!~ H le entries from the directory.

Saves the work Ti le.1 under the specified file name,

Copies <hansfers) the sper.i fied file to the spec:i Pied
destination volume; directories are not changed automatically.

Lists the volumes cu-rrently on-line along with their
corresponding device numbers.

I dent Hi eE> the file ·name and state (saved or not) of thE~ wort:
file.

Attempts to recover bad blocks physically; a bad-block scan
should be done first.

Reform.ats the specified volume and makes the old director1,1
i rretr .i.ev.:1b le.

Appendix t\. S Pascal Compiler

Causes thE? Compiler· to insert breakpoint instructions into
the code Fi le durin9 compilation so that the Debugger can be
used more effectively. Default is 1

-
1

, no breakpoint.

Affects the boolean v'ariable GOTOOI< to allow the use of the
Pase al GOTO statement in the program. Default is / ·- 1

, no
GOlO.

When f•Jllowed by a 1 t-', causes the Compiler to gene1-ate code
after any I/O stateme11t to check for succes~.Ful complt•tion of
110. Thi!; is the defciult.

When followed by a '-', inhibits I/O checking.

L:

G:

R:

S:

U:

EXECUTE OPTIONS

R<esume

W<a lk

When -followed by a file name, includes another smwce file
into the compilation.

Causes the Compiler to generate a listing of the sotn'ce
program on a specified file. If a '+', the default file is
IESYSTEM.LIS'f.. TEXT. Default if '-', no listi119.

"Guiet compile11 option used to suppress output: to the CONSOLE
listin9 procedure names and line numbers durin9 compilationn
Default is set to the current value of SYSCOM·'. IHSCINFO. SLOW­
TERN.

Affects the value of the boolean variable RANGECHECJ< to perform
checking on array subscripts and assignments to variables of
subran9e types. Default is '+', code for checking is inserted.

Causes the Compiler to operate in swappin9 mode so that only
one of the two main parts of the Compiler (dee larations proces-­
sor or statement handler> is in main memory at one tjme;
freeing about 2500 words for symbol tab le st01·a9e. Default is
'-', no swapping.

Affects the boolean variable SYSCOMr> to determinP if the
compilation is of a user program or a system program. Default
is '+', uspr program.

When followed by a file name. U: names the library file.

Appendix A.6 Debugger

Executes a program one statement at a time, waiting for input
from user between stops.

Runs program normally until a BREAK or breakpoint is encountered
or a non-fatal runtime error occurs.

Runs a program one statement at a time at an adjustable ratea

EXAl1INE MODE OPTIONS

'<' or

')' or

< es1: >

<crn

I I
I

I I .

Changes the direction of link traYersal to 90 totviJrd the
callees, down the call chain.

Changes the direction of link traversal to 90 towat'd the
callers, up the call chain.

Returns control to the Outer Level of commands.

Clea rs the 1i nr. with the 'IE' and moves dOUJn one H ne ~

Page 111

(C'I l<L ·D >

< C'IUL ·U}

$t links

IJ <real< po:i. nt

l.(ink

Ml.cwP

R (e~:-ume

l..l<pdate

~}(a lk

Moves the / ~' doum one 1 i ne.

rtoves the l~I up Oflf? line-.

Indicates how many links to move L•p or do1;m the dtJnr.iml.c or
static ch~in; enter a number 0-9.

Used to SCet or CClear a breakpoint.

Resumes running the pro_qram in crawl mode at the point the
Debu99er ll•as invoked.

Used to examine~ thf? D1HA and parameter se_9ments of a procedure.

Clars the memor·4 d:i.splay buffer on the scrPen.

Displays the portion c1 f memory specified by the octal address
and lf'n<J"t..h.

Toggles the default link from dynamic to static, and vice-versa.

Finds tt"te ~;.per.Hied procedure and makes jt the curr-ent pro­
c:Pdw·f!.

Resumes normal execution of the program at the poj. nt th~:?

Oc~bu9_oer· 11.1as invoked.

Examines the stack an·a belon.Qin.Q to the specified procedure ..

Refreshes the memory c:isplay buf.Pe;o

Resumes P.J:ecution of the program in walk modf~ .:it the point whert?
the Debu99er 111as i nvo~ ed.

~·a,~e 112

APPENDIX B
TABLEt>

B .1 RLintime Errors
B .. 2 Syntax Errors
Bn 3 110 Resul-ts
B .. 4 Unit Mumbers
B. 5 P-rlachine Opcodes
B.6 Assembler Syntax Error!~
B .. 7 ASCII

1~ppendix B. 1 RUNTil1E ERRORS

Version 3

0 System error Ff)Tf<1L
1 Invalid index, value out: of range <XINVNDX>
2 No se9ment, bad code file <XNOPROC)
3 Procedure not present at exit time <XNOEXlD
4 Stack overflow <XSTl<OVR>
5 Integer· ove1·fllow <XJNTOVR>
6 Divide by zero <XDIVZER>
7 Invalid memory reference (bus timed out> <XB(--'!DMl-.:J'l>
B User Break (XllBREAIO
9 System I/O error <XSYIOER> FATAL
10 User I/O error <XUIOERR>
11 Unimplemented instruction <XNOTlMP)
12 Floating Point math error <XFPIE~R)

13 String too long CXS2LONG>
14 Halt, Breakpoint <without debugger in core) <XHLTBPT>
15 Bad Block

All fatal errors either cause the system to rebootstrap, or if thP. error was
totally lethal to the system. the user wi 11 have to reboot. All enors r.au~:;e

the system to re-initialize itself (c111l system procedure IMITIAUZD.

Appendix B.2 SYNTAX ERRORS

Vm·sion 3

Page 113

.L:
2:
:J:
4:
5:
.s:
?:
a:
9:

10:
.LJ:
.12:
13:
.t4:
15:
16:
17:
18:
19:
20:
2L
22:
23:
.24:

'50:

Error in simple type
Identifier expecterl
'PROGRAM' expected
')' expected
':' expected
I l legil 1 syalbo 1
Error in parameter list
'OF' expected
' (' expected
Error in type
'[' expected
'J' expected
'END' expected
'; ' expected
Inte_ger expected
1 = 1 expected
'BEGIN' expected
Error in declaration part
Error in (field-list>
'.'expected
'~' expected
'Interface' expected
'Implementation' expected
'Unit' expected

Error in constant
51: ':.,' expected
5?: 'THEN' expected
53: 'UNTIL' expected
54: 'DO' expected
5~5: 'TO' or· 'OOWNTO' expected in for statement
5,~: 'IF' expected
57: 'FILE' expected
58: Error in (factor> (bad expres!:.iun>
59: Error in variable

101: Identifier declared twice
102: Low bound exceeds hi_qh bound
103: Identifier is not of the appropriate c la!:>s
.104: Undeclared identifier
.10~: Si9n not allowed
106: Number expected
107: Incompatible subrange types
108: File not allowed here
109: Type must not be renl
110: < tagfield > type must be sea lar· 1Jr subrange
111: Incompatible with (ta9field > part
112: Index type must not. be real
113: Index type must be a scalar or a subrange
114: Base type must not be real
115: Base type must be a: scalar or a subrange
116: Error in type of standard procedure parameter
117: Unsatisfied forward reference

Page 114

118: Forward reference type identifier in variable declaration
119: Re-specified pa rams not OK for a forward dee la red procedure
120: Function result type must be scalar, subrange or pointer
121: File value parameter not allowed
122: A forlvare declared functicm's result type can't be re·-specified
123: l'lissin9 result type in f:unc:tion dee laraticm
1211: F-format for reals only
125: Error in type of standard procedure parameter
126: Number of parameters does not agree with declaration
127: Illegal parameter substitution
128: Result type does not a9ree with declaration
129: Type conflict of operands
130: Expression is not of set type
131: Tests on equality allowed only
132.: Strict inclusion not allowed
13;1: File comparison not allowed
134:: Illegal type of operand<s>
135: Type of operand must be boolean
1:36:· Set element type must be sea lar or subrange
137: Set element types must be compatible
138: Type of variable is not array
139: Index type is not compatible with the dee larat:ion
140: Type of variable is not record
141: Type of variable must be file or pointer
142: Illegal parameter solution
143: Illegal type of loop control variable
144: Illegal type of expression
145: Type conflict
146: Assignment of files not allowed
147: Label type incompatible with selecting expression
148: Subrange bounds must be scalar
149: Index type must be integer
150: Assignment to standard function is not allowed

151: Assignment to formal function is not allowed
152: No such field in this record
153: Type error in read
154: Actual parameter must be a variable
155: Control variable cannot be formal or non-local
156: Multidefined case label
157: Too many cases in case statement
158: No such variant in this record
159: Real or string tagfields not allowed
160: Previous declaration was not forward
161: Again forward declared
162: Parameter size must be constant
16:~: 11issing variant in dee laration
164: Substitution of standard proc/func not allowed
165: Multidefined label
166: Multideclared label
167: Undeclared label
160: Undefined label
169: Error in base set
170: Value parameter expected

Page 115

1/ .t: Standard file 11.1as re·-dec lared
11~: Undeclared external file
114: Pas.ca 1 function or procedure expected
18~: Nested units not allowed
183: Exte1-nal dee laration not alloweC1 at this nesting levl~l

184: Externa 1 dee laration not a llowec~ in interface section
185: Segment declaration not allowed in unit
186: Labels not allowed in intPrface section
187· Attempt to open lib·rary unsucce~;sful
189: Unit not declared in previous uses declaration
189: 'Uses' not allowed at this nes·t;;~ng level
190: Unit not in library
191: No private files
192: 'Uses' must be in interface sec~;ion
198: Not enou9h room for this operahon
19.1.1: Comment must appear at top of program
195: Unit not importable

201: Error in real number - digit expected
202: St1·in.<;1 constant must not exceed source line
203: Integer constant exceeds range
.20•1: 8 or 9 in octal number
250. Too many scopes of nested identifiers
251: Too many nested procedures or f1Jnctions
252: Too many forward references of procedure entries
:2'53: Procedure too long
254: Too many long constar1ts in this procedure
.256: Too many external references
257: Too many externals
2"5B: Too many local files
25~: E~pression too complicated

300: Division by zero
301: No case provided for this value
:302: Index expression out of bounds
:J\X~: Value to be assi.Qne•d is out of bounds
304: Element expression out of range
398: Implementation restriction
'39'1: Implementation restriction

·~<>O: Illegal character in t~xt
,'.101: Unexpected end of' input
402: Error in writing code file, not enough room
4•:Ja: Error in readin9 include fi :te
LJ0-<1: El-ror in writin.9 list file, not enou_gh room
405: Call not allowed in separate procedure
406: Include file not legal

Appendix B.3 IIO RESULTS

Verr.ion 3

O No error
1 Bad Block, Parity error (CRC>
2 Bad Unit Numer
3 Bad Mode, Illegal operation
4 Undefined hardware error
5 Lost unit, Unit is no longer on-line
6 lost file, File is no longer in directory
7 Bad Title, Illegal file name
8 Mo room, insufficient space
9 No unit, No such volume on line
10 No file, No such file on volume
11. Dup lie ate file~
12 Not closed, attempt to open an open file
13 Not open, attempt to access a closed file
14 Bad format, erro·r in readin_g rea 1 or inte9er
15 Ring buf·Per over.Plow

NUMBER
0
1
2

5
6
l
8
9
1()

u
J2

Devices 9

Appendix B.4 UNIT NUMBERS

VOLLl11E NAME
<empty>
CONSOLE
SY ST ERM
GRAPHIC
floppyO
floppyl
PRINTER

Version 3

available - <unimplemented>
REMOTE <reserved for future IJSP >
block 1
block2
block3
block4

12 are bloc:k-shuctures devices, in most cases <RK-05).

Page 117

Appendix B.5 P-MACHINE OP-COl>ES

Version 3

" 1

Mnemonic
Instruction

Code Parameter!: Description

Constant One Word Loads

SLDC o •• 31

LDCN 152

LDCB 128

LDCI 129

LCA 130

Local One Word Loads and Store

SLOU •• 16 32 •• 47

U>L 135

LLA 132

STL 164

Global One Word Loads and Store

SLDOl •• 16 .l\8 •• 63

UB

w

B

B

B

B

Short Load Word Constant (Value 0-31).
Pushes the opcode, with h:i,9t1 byte
zero, onto stack.

Load Constant Nil. Pushes nil onto
stack.

Load Constant BlJte. Pu!:'..hes UB, tui th
high byte zero, onto stack.

Load Constant Word. PushPs IJ onto
stack.

Load Constant Address. Pushes the word
Address of the constant with offset B
in constant word block.

Short Loan Local Word. SLDLX fetches
the word with offset X in 1·1p activation
record and pushes it.

Load Local Word. Fetches the word with
offset B in MP activation record and
pushes it.

Load Local Addre!:>s. Fetches address of!
the word with offset B in i'IP activation
record and pushes it.

Store Local. Stures Tos into word with
offset B in MP activation record.

Short Load Globa 1 ~lord. SLOOX fetches

Pa~e 118

LPO 133

LAO 134

BRO 165

B

B

B

the word with offset X in base
activation record and pu~~hes l.t.

Load Global Word. Fetches the umrd
wj.th offset B in base activation
record and pushes it.

Load Glob a 1 Address. Pushes the 11.1ord
addres o.P the word with offset B in
base activation record.

Store Global Word. Stort:.>s Tm:> into the
word with offset B in base activation
record.

Intermediate One-Word Loads and Store

LOO 137

LOA 136

STR 166

Indirect One-Word Loads and Store

STD 196

Extended One-Word Loads and Store

LOE 154

LAE 155

STE 217

Load Intermediate Word. DD i·ndicate•;,
the number of static links to traverse
to -Find the activation record to use.
B is the offset within the activation
record a

Load Intermediate Address.

Store Intermediate Word.

Store Indirectp Tos ir:i- stored into the
word pointed to by Tos··-1.

Load Word Extendeda UB is segment
numberp B is the offset within the
segment.

Load Address Extended.

Store Word Extended.

Multiple Word Loads and Stores <Sets and Reals>

LDC 131

LDM 208

B,UB

UB

Load Multiple lJord Constant. B is the
offset within the constant word block,
and UB is the number of words to loada
Push the block onto the stack-

Load Multi.ple tJords. lo~> is a pointer

Page 119

STM 142

Byte Arrays

I. DB 167

HlB 200

LIB

to the beginni n~J of a block of LJJj words.
Push the b loC'k onto the stack.

Store Multiple Words. Tos i£. a block of
UB words, Tos-1 is a umrd pointer to
a similar block. Transfer the block
from the stack to the destinat.i1:m
block.

Load Byte. Push thP byte (after
zeroin_g hi9h byte) pointed to by btJl.;P

poiuter Tus.

Store Byte. Store byte Tos into the
1ocation specified by Byte Pointer
Tos-·1.

Record and Array Indexin9 and Assignment

110V 197

GHID0 •• 7 120 •• 127

230

INC 231

lXf't 215

IXP 216

B Move Words. Tos is a s.ource µt)inter
to a bloC'k of B words, los-J i~; a
destination pointer to a similar blocka
Transfer the block from the source to
the destination.

Short IndP.X and Lo()d Word. HJNL>X
indexes the word pointer Tos bq X
words, and pushes the wod pointed to
by the result.

B Static Index and Load Word. Indexe
the word pointer Tos by B words, and
pushes the word pointed to.

B Increment Field Pointer. lhP umrd
pointer Tos is indexed by B wurds and
the resultant pointer is pushed.

B Index Anay. Tos is an inte9er index,
Tos-1 is the array base word pointer,
and B is the size <in words> of an
array element. A ~rd pointer to the
indexed element is pushed.

UBl, UEJ;! Index Packed Array? Tos is an integer
:index, Tos-1 is the arrat..J base word
pointer. UCH 1) is t.he number of
element·-per-word, and Llf.1(2) is the
field-width (in bits). Compute and
push a packed field point~r.

P.1_9e 120

LDP 201

STP 202

Logicals

LANO 161

LOR 160

LNOT 220

LEIJSW 180

GEllSW 181

Inte9e1's

AB:C 224

NGI 225

162

SBI 163

11PI 140

DUP1 226

DVI 141

Load A Pac:ked Field.. Push thP field
described by the packed field pointer
Tos.

Sto·re Into A Packed Field. Tos is t:he
data, Tos-1 is a packd field pointer.
Store Tos in·to the field dE~snibed
by Tos-1.

Logical And. And Tos into Tor,-·1 ..

Logical Or. Or Tos :into Tos-1 ..

Logical Not. Take cme's complement
of Tos.

Compare Unsi9ned Word <=. Compare
unsigned word of Tos·-1 t.o unsigned
word of Tos and push trun or fa foe.

Compare Unsi9ned Word >=. Compar·e
unsigned word of Tos·-1 to unsigned
word of Tos and push true or false.

Absolute Value of Integer. lake
absolute value of integer los. Result
is undefined if Tos is initiall\J
-32768.

Negate Integer.. Take the two's co
complement of Tos.

Add Integers. Add Tos and Tos-L

Subtract Integers., Subtract los from
Tos-1.

Multiply Integers. Multiply Tos and
Tos-1. This instruction may cause
overflow if result if larger than
16 bits.

Copy Integer. Duplicate one word
on Tos.

Divide Integers. Divide Tos·-1 b1,1
Tos and push quotient.

Page 121

11001

CHK

EGUI

NE.GI

LEGI

GEGI

143

203

176

177

178

179

Modulo Integers. Divide Tos·-1 by Tos
and push the remainder.

Check Against Sub1·irn9e Bounds. Insure
that Tos-1 < = Tos··2 < = Tos, leavin_g
Tos-2 on the sta:.:k.. If conditions are
not satisfied a run-tlme error occurs.

Compare Integer -. Gomp<:1re Tos-1 tt1

to Tos and push true OT' fa 15.e.

Compare Integer < >. Compare Tos·-1 to
to Tos and push true 01· false.

Compare Integer <=. Compare Tos··l to
to Tos and push true m· false.

Compare Integer >=. Compare los·-1 to
to Tos and push true or- fa h>e.

Rea ls <All Over/Underflows Cause a R1Jn-Time Error>

FLT 204

TNC 190

RND 191

227

ADR 192

MGR 228

SBR 193

t1PR 194

DLIP2 198

UVR 195

EGUREAL 205

float ·rop-of--Stac:k. The intpger Tos
is converted to a f!loati n.9 point:
number.

Truncate Real. The 1·eal Tm; is
truncated and converted to an integer.

Round Rea 1. The real Tos is r·ounded,
then truncated and converted to an
inte_ger.

Absolute Value of Real. Take the
absolute value of the real lo~:..

Add Rea ls. Add Tos t1nd Tos··L

Negate Real. Negate the Real Tosn

Subtract Reals. Subtract Tos from
Tos-1.

Multiply Reals. Multiply los and
Tos-1.

Copy Real. Duplicate two words on
Tos.

Divide Reals. Divide Tos-1 by Tos.

Compare Real :::. Coapare Tos-1 to Tos

~·age 122

LE GR EAL 206

GE GR EAL 20/

Sets

AD.J 199

SRS 188

INN 218

UNI 219

INT 220

DIF 221

EQUPUR 182

LEGPtJR 183

GEOPWR 184

Byt.e Arrays

EGUBYT 185

LE QB YT 186

GE GB YT 187

UB

B

B

B

and push truP. or fa h;.e.

Compare Real < =. Compare Tos·-·1 to ·1 os
and push true or false.

Compare Real >=. Compare ·1os··l to ·10s

and push true or fa h•e.

Adjust Set. The set Tos is f-orced to
occupy UB words, either by expansion
(put·tin9 zeroes "betu.ieen" los. and
Tos-1> or compression <chopping of
high words of set), and its length
word is discarded.

Build Subrange Se·t;. The inte_gers Tos
and Tos-1 are checked to insure that
O< =Tos< =4079 and 0(::.::Tos-H =4079, a
run-time errm· occuring if not. The
set fTos .. ·1 TosJ is pushed. <The set
r J is pushed if Tos-l > Toh ..)

Set Membership. See if integer Tos·-1
is in set Tos, pushin9 true or false ..

Set Union. The union of sets Tos and
Tos-1 is pushed.. <Tos. or los-·L >

Set Intersection. The intersection of
sets Tos and Tos·-1 is pushed. <Tos
and los-1. >

Set Difference. The difference of &ets
Tos-1 and Tos is pu$hed. <Tos.-1 and
not Tos.>

Set Compare ::..

Set Compare<= <Subs.et of!> ..

Set Compare >= <Superse·t; of>,

Byte Array Compare =.

Byte Array Compare <=.

Byte Array Compare >~.

Page 123

Jumps

UJP 138

F .. .IP 212

EFJ 210

NFJ 211

UdfJL 139

213

XJP 214

SB

SB

SB

SB

IJ

B

Unconditional J\.Jmp.

False Jump. Jump is Tos ir, fals!?.

Equal False Jump. Jump if inte91?r
Tos < > Tos--1.

Not Equal False Jump. Jump if inte9er
l OS = Tos--1.

Unconditional long Jump. Jump
unconditionally to location with otf~'.)et

IJ from current location ..

False Long Jump. Jump to location w:ith
offset W from current location if Tos
is false.

Case Jump. The fir£-t word with offset
B in constant word block, ~H. is word-·
aligned and is the minimum index of
the table. The next. word up. W.2, is
t:he maximum indexp The case table is
the next IJ2-IJ1 wordsv

If To!:>. the actual index. i~. fr1 the
range of Wl •• W2 then ,iump to location
with offset W3 from cunent location.
IJhere W3 is the contents. of the wore!
pointed by Tos in the case tahle.

Procedure and Function Calls and Retur 1:"1s

CPL 144

CPG 145

CPI 146

LIB

UB

00, UB

Call Local Procedure. Cal pr·oceduT'e
UB, which is an immediate child of the
currently executing procedure and in
the same segment. Static link Cif i1SCIJ
is set to old 11P.

Call Global Procedure. C.:a l procedure
UB, which is at lex levc·~ l 1 and in the
same segment. The statk link of the
MSCW is set to base.

Call Intermediate Procedure. Ca 11
procedure UB, which is at lex level DO
less than the currently executing
procedure and in the same segment. UsP
that activation record's static link
as the static link of the uew MSCW.

Page 124

CXI.. 147

CXG 148

CXI 149

CPF J.51

RPU 150

LSL 153

Syi::,tem Contro 1

SIGNAL 222

IJAJT 223

157

BPR 209

UB1,UB.2 Call Local External Procedu1·£>~ Call
procedure UB<2> which is an immediate
child of- the cunentJ.y executin9
procedure and in the segment 08(1).

UB1,UB.2 Call Global External Procedu1·en Call
procedure UB<2> which is at lex level
1 and in the se9mEmt IH 1).

UB1,0B,UB2 Call Intermediate External Procedure ..

a

DB

Call procedure LIB(2) which :i& at lex
level DB less than the cu1Tently
executing procedure, and in the segment
UIH1).

Call Formal Procedure. To5 containf,
segment number and procedure number an<.i
Tos-1 contains sta·tic link f'or the
called procedure.

Return From User Procedure. Static 1
link if discarded, tlP is reset from
11SDYN, IPC is also reset from MSIPC.
If segment number is not zero, se9ment
pointer is set from segment dictionary.
Stack pointer is decremented by B.

Load St~tic Link Onto Stack. DB
indicates the number of 5tatic link
to traverse to get the static link t:o
load.

Signa 1.. Tos is a semaphore ;1ddress
signal on this semaphor·e~

Wait on Semaphore. Tor. is a semaph01·e
address wait on this semaph01·e"

Load Processor Registerp Tos is a
Reg H <If it is positive it is one of
the TIB registers. If not ·-1 is
current task pointer, -·2 is segment
die. pointer and -3 is ready queue
pointer.) Load contents of this
register on top of stack.

Store Processor Register~ Tos-1 is a
register number (same definition as
LPR>. Store Tos in this re9jster.

Page 125

BPT 158

HBP 159

11iE.ce llaneous

MOP 156

189

B1·eak Point.

Return From Breakpoint.

No Operation.

Swap Top·-of-Stack with Mext to
Top-.. of-Stack.

Pape 126

Appendix B.6 ASSEMBLER SYNTAX ERRORS

Version 3

'This section lists all the _9eneral errors found in the t:RROkS file, specific
mac:hine errors are found in the se.ctions below dealing with machine specifics.

1 : lJndl~fi ned label
2: Ope1·and out of range
3: Must have procedure name
4: Number of parameters expected
5: Extt·a garbage on line
6: Input line over 80 characters
7: Mot enough ifs
8: Must be declared in ASECT before use
9: Identifier previously declared

10: Improper format
11: EGU expected
12: Must EGLI be·f:ore use if not to a label
13: Macro identifier expected
14: Wot•d addressed tni:lc:hine
15: Backward ORG not allowed
16: Identifier expected
17: Constant expected
18: Invalid structure
19: Extra special symbol
20: Branch too far
21: Vat'iable not PC relative
22: Illegal macro parameter index
23: t-lo"t enough macro paramet.ers
24: Operand not absolute
25: Illegal use of special symbols
26: Ill-formed expr·ession
27: Not enough operand5
28: Cannot handle this relative
29: Constant overflcmJ
30: Illegal decimal constant
31: Illegal octal constant
32: Illegal binary constant
33: Invalid key word
34: Unexpected end of input - after macro
35: Include files must not be nested
36: Unexpected end of input
37: Bad place for an include file
38: Only labels & comments may occupy column one
39: Expected local label
40: Local label stack overflow
41: String constant must be on 1 line
42: Stl'ing constant exceeds 80 chars
43: Illegal use of macro parameter
44: No local labels in ASECT
45: Expected key word
46: String expected
47: Bad block, parity error (ere)

Page 127

48: Bad unit number·
49: Bad mode, illegal operation
50: Undefined hard111are error
51: Lost unit, no longer on-line
52: Lost file, no lcmSJel' in directory
53: Bad title, illegal file name
54: No room, insufficient space
55: No unit, no such volu11m on-line
56: No file, no suc:h file on volumn
57: Duplicate file
58: No closed, attempt to open an open file
59: Mo open, attempt to access a closed file
60: Bad format, err-or in reading real or intf:ger

1::>a9P 128

Appendix B.7 American Standard Code for Information lnte1-chan9e

Version 3

0 000 00 NUL 32 040 20 SP 64 100 40 @. 96 140 60 '
1 001 01 SOH :~3 040 2l 65 101 41 A 97 141 64 a
2 002 02 STX 34 04.2 22 " 66 10.2 42 B 98 142 62 b
3 003 03 ETX 35 043 23 " 67 103 43 c 99 143 63 c
4 004 04 EDT 36 04-lf 24 $ 78 104 44 D 100 144 64 d
5 005 05 ENG 37 045 25 i. 69 105 45 E 101 145 65 e
6 006 06 ACK 38 046 26 & 70 106 46 F 102 146 66 f
7 007 07 BEL a9 047 27 I 71 107 47 G 1oa v.11 67 .9
8 010 08 BS 40 050 28 (72 110 48 H 104 150 68 h
9 011 09 HT 41 051 29) 73 111 49 I 105 15.t 69 i

10 012 OA LF 42 052 2A If 74 112 4A ·' 106 l.52 6A ,i
11 013 OB VT 43 0~~3 20 + 75 113 48 K 107 1.53 68 j{

12 014 oc FF 44 054 2C , 76 114 4C L lOB 154 6C 1
13 015 00 CR 45 055 20 - 77 115 40 M 109 155 60 m
14 016 OE so 1.16 056 2E . 78 116 4E N llO l56 6E 1l

15 017 OF SI 47 057 2F I 79 117 4F [l HJ 157 6F 0

16 020 10 OLE 48 060 30 0 BO 120 SO p 112 160 70 p
17 021 11 DC1 49 061 31 1 81 121 51 G 113 161 71 q
18 022 12 DC2 50 062 32 2 82 122 52 R 114 162 72 1'

19 023 13 DC3 51 063 33 3 83 123 53 s 11~; 163 73 s
20 024 14 DC4 52 064 34 l.J 84 124 54 T lib 164 /4 t
21 025 15 NAI< s:3 064 35 5 85 125 55 u 117 165 75 u
22 026 16 SYN 54 066 36 6 86 126 56 v 110 166 76 v
23 027 17 ETB 55 067 37 7 87 127 57 w 119 167 77 w
24 030 18 CAN 56 070 38 8 89 130 58 x 120 J.70 78 x
25 031 19 EM 57 071 39 9 89 131 59 y 121 171 79 y
26 032 1A SUB 58 072 3A 90 132 SA z 1.22 172 7A 1

27 033 1B ESC 59 073 38 91 133 SB r J.23 173 7B {

28 034 1C FS 60 074 3C (92 134 SC \ 124 174 7C
29 035 10 GS 61 075 30 = 93 135 50 J 125 175 70 }

30 036 1E RS 62 076 3E > 94 136 SE A 126 1.76 7E
31 307 1F us 63 077 3F ? 95 137 SF 127 177 7F DEi.

Page 129

Page-· 130

APPENDIX C

UCSD PASCAL SYNTAX DIAGRAMS

Appendix C UCSD Pasr.al Syntax Diagrams

Page 131

UCSD PASCAL SYNTAX DIAGRAMS

IDENTIFIER

UNSIGNED INTEGER

UNSIGNED NUMBER

UNSIGNED CONSTANT

---·----·---1- ·~3---·----· -·-----··········--.....(in!.1qned num11er t---

-- --· ···----·~-
----O-f•(cha•acte• }J..()-

CONSTANT

.... -.... _I~-- ~r+l"constant" •dentd•e• 1-y --··--- __ __.,

[
LQ-1 4J uns•gned constant J-rJ
----~0-----

SIMPLE TYPE

l'YPE

1dentif1er~---···---+I

--·---~--------

------- ~-----

----- ~0-------

VARIABLE

FACTOR

----------•) unsiqned consrnrrt"}------------

------~·----------

__. "function" 1dent1f1er

- -·- ----------11"4

1!xpress1on

TERM

factot

SIMPLE EXPRESSION

EXPRESSION

PARAMETER LIST

r - ~.:...>-- ---1

_l - [~n~er J-- _I -

I
I

_J

~ <11)1? 132

STATEMENT

UCSD PASCAL SYNTAX DIAGRAMS

BLOCK

statement

COMPILATION

PROGRAM

-------------1·~~ unsigned integer)1-------------<

DASHED LINES 1--1 ARE NOT INCLUDED

SHADED AREAS REPRESENT UCSD EXTENSIONS

type 1dent1f1er

APPENDIX D

GLOSBARY

Appendix D Gloss.ar~

ARl<AY
An ordered arrangement of characters; a PACKEO

BACKUP FILE
A copy of a filE• created for protection in case
destroyed unintentionally.

BAD BLOCK
A defective block on a stora9e medium, such
a hal'du.1are error when attempting to read or

BASE SEGMENT

BLOCK

The portion of a segmented program that is

A group of charactet'f.> OI' bytes transmi tte-d a!i
of 512 bytes.

BOOLEAN VARIABLE
A variable 111hkh, when evaluated,
result.

BOOTSTRAP
A routine whose first instl'uctions
of the routine into memory from an
a comp lex sys't;em of programs.

BREAl<POINT
A progl'am point indicated by a breakpoint in•ttw1{
inserted by the Compiler to inter-rupt the prOfr·M.
can be checked before continuin.9 to compl•ti•u :.~,

Page 135

,.-.

BUFl~EI<

A stora9e area used to hold information temporarily 111hen it is bein.q
transferred bet1oeen two devices or between a device .rnd memc•rlJ.; often
a specially designated area of memory.

CODE FILE f' file containin9 code to be executed.; has the sufH x of ".CODE".

COl1i1AND or COtll1AND NAME
A word, mnemoruc or character, by virtue of its syntax in a line of
input, causes a predefined operation to be performed.

COi11'ltiND STR I MG

CDrlPILE

COl1PILER

A line of input that include!:,, generally. a command, one or more
file specifir:ations, and opt:ional qualifiers.

The pr·oduction of binary code <machine··readable) from symbolic
instructions WJ'itten in a high-level language.

Translates high-level lan9ua9e <Pascal or Uasci) into machine code.

CONFJGURA TION

CONSOLE

CONSlANT

A particular selt~ction of hardware devices or software routines or
programs that function to9etl"er.

The terminal that acts as the primary inter·face between thr~ computer
operator/user and the system; used to initiate and dir~ct ov0ra.U
system operation ..

A value that remains the same throughout a distinct opeT'ation; as
compared to a Vul'iable.

CONJRDL CHARACTER
Controls an action rathe1' that passin.Q on data to a pro9ram.

lo open, write ddta to, and close a filP for the first time,

DAlf1 FILE
fi file containing data to be manipulated b1,1 a p1·09rama

DEBUGGING

DEFl'll.Q.T

·DEVI Cf:

Searchin9 for, and el:iminati119, sou1-ces of error <bttgs) in a prc•qram"

The valuP of an argument, operand or field assumed by a program if a
specific assignm<:>nt is nnt specified by the user.

A hard1uare unit !:.uch a:.; an I10 peripheral (e •. 9., disk, video ti=rminal).;

P,19e 136

the physical unit as opposed to VOLUME, the 109ical unit~

DrnECTORY
A table that contains tht~ names of, and pointers to, files on a mass-·
storage device.

DI SABSEtlBLER
A program that translates object code back to source stat;ements.

EXPRESSION

FILE

A combination of commands and operands that can be evaluated t.o a
distinct result.

A logical collection of data treated as a unit; may be work, code.
text, foto or data filE:>.

FILE SPECIFICATION

FUNCTION

A name that identifies uniquely a file maintained in any sysh•m.;
must contain, at a minimum, the rile name; may also contain the volL•me
number and namp.

A routine that returns a value.

HEXADECil1AL
\Jhole numbers in positional notat.ion using 16 as a bast?.

HIGH .. LEVEL LANGUAGE
A problem~·oriented language rather that a machine-oriented one.

INITIALIZE
Setting a 11 hardware and software controls to starting va lt1P.r· at the
beginning of a new program.

INTERRUPT
The suspension of the normal programminp routine to handle a sudden
request for service.. After completion of interrupt service, the
program is resumed where it left off.

KEYBOARD ENTRY DEVICE

LIBRARY

LISTING

LITERAL

A device with a keybord (e.9., teletypewriter, video termi.nal) L1sed
by the system operator to control the system; CONSOL£:..

A collection of programs or subprograms contained as segment~; in
a library file; normally contains frequently needed routines that m~y
be accessed by other programs.

A hard copy ,generated by a line printer.

The explicit representation of character strings.

Pagr> 1a7

!..OAP

LOG:tCJ.)L DFVICf Nllt1E
An a lphanumer-ic name a·~s:i _9ned by the user to represent a phy~ica l
device.; used synonymousl1.~ 11.1it11 the physical device name/number in the
109:i.ca :t. pr·oqram ..

11A(J 11 NE U'MGUAEE
Instructions in binar~ code tnat can be operated on b~ the computer;
as cc.impar·ed with hi9h-·level lan_guages that can be l'ead and understood
by the user.,

MAIN ~lEMORY

NE::.n ING

A set. of stora9e location!-:- connected dir1~ctl4 to the proces!-:-m'.

Rout:lnes enclo..::ed within la1'9er routines but not: neces!::al'ily a part
of the larger; a series of loapin_9 instr·uctions may be nesh•d.

OB~IFCl CODE
l~e locatr>b le mac Iii ne- langua.q1:' code.

OB&CT PROGRAM

ON-l JNt

The source lan_quage pro.gram a Fter it has been transl~ted fot:o machine
lan9ua_91~, out.put of' the Compiler.

Equipment and devices directly connected to, and controlled by, the
central prm:essin_q unit.

OVERLAY SEGMEMT
A segment of code· treatefl as a unit: that can ove1·lay codP al•·eady in
memory and be uve•rlaici by other segment!:,,,

OVERLAY STRUCTURE

PACI~

An ove1· lay system con!::·isti n9 of a r·oot segment and, optionally, one
nr mo1·e over lay sP.9mPntc:: .•

lo COl!lf.)ff'SS data in st<wa9e ..

PIWCE.lJURE
A routine that does not return a valuP.

GUAI. JFIER
1~ parameter spec:i fied in a command string that modifies some other
parametPr- ·'

SOURCE LANGLl(-lGE
1'1 system of- symbols and syntax easi 11,1 understood by people that is
used to describe a procedure t;hat a computer can execute.

STACK
A block of successive memory locations accessible from one encJ cm i:I

LIFO basis (last-in-first-out>.

SUBSCRIPT

Sl.IAPPING

UTILITY

1,1ARIABLE

A numerically valued expression or expr-es:.sion element that is appended
to a variable name to uniquely identify elements of .:m at'I'rHJ,·

Copying areas of' memory to mass !:rtorage and bad in order to use the
memory for two or mo1·e purpo~.;.es ..

Any genera 1-purpose progtam included in an opera ti n9 s1Jstem t:o perform
common functions ..

The symbolic representation of a logical sto1·a9e J.ocatinn that caii
contain a value that. chan9es durin9 a discrete processin_g npP.rat:i.on.;
as compal'Pd ·to constant.

3128 REDHILL AVENUE, BOX 2180
NEWPORT BEACH, CA 92663
(714) 557-3550, TWX 910-595-1139

PRINTED IN U.SA. .~

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	OS_0000
	OS_0001
	OS_0002
	OS_0003
	OS_0004
	OS_0005
	OS_0006
	OS_0007
	OS_001
	OS_002
	OS_003
	OS_004
	OS_005
	OS_006
	OS_007
	OS_008
	OS_009
	OS_010
	OS_011
	OS_012
	OS_013
	OS_014
	OS_015
	OS_016
	OS_017
	OS_018
	OS_019
	OS_020
	OS_021
	OS_022
	OS_023
	OS_024
	OS_025
	OS_026
	OS_027
	OS_028
	OS_029
	OS_030
	OS_031
	OS_032
	OS_033
	OS_034
	OS_035
	OS_036
	OS_037
	OS_038
	OS_039
	OS_040
	OS_041
	OS_042
	OS_043
	OS_044
	OS_045
	OS_046
	OS_047
	OS_048
	OS_049
	OS_050
	OS_051
	OS_053
	OS_054
	OS_055
	OS_056
	OS_057
	OS_058
	OS_059
	OS_060
	OS_061
	OS_062
	OS_063
	OS_064
	OS_065
	OS_066
	OS_067
	OS_068
	OS_069
	OS_070
	OS_071
	OS_072
	OS_073
	OS_074
	OS_075
	OS_076
	OS_077
	OS_078
	OS_079
	OS_080
	OS_081
	OS_082
	OS_083
	OS_084
	OS_085
	OS_086
	OS_087
	OS_088
	OS_089
	OS_090
	OS_091
	OS_092
	OS_093
	OS_094
	OS_095
	OS_096
	OS_097
	OS_098
	OS_099
	OS_100
	OS_101
	OS_102
	OS_103
	OS_104
	OS_105
	OS_106
	OS_107
	OS_108
	OS_109
	OS_110
	OS_111
	OS_112
	OS_113
	OS_114
	OS_115
	OS_116
	OS_117
	OS_118
	OS_119
	OS_120
	OS_121
	OS_122
	OS_123
	OS_124
	OS_125
	OS_126
	OS_127
	OS_128
	OS_129
	OS_130
	OS_131
	OS_132
	OS_133
	OS_134
	OS_135
	OS_136
	OS_137
	OS_138
	OS_139
	xback

