(
From: JaoNDY Sub}: Virtos. Segments Article

Since 1 wrote the S/W for Version 1.5, | have discovered how to get it
working on Verslion 111.0 (and IV.0 Is similar to 111.0 in this reqgsard).

On the Microengine verslion IV.0 there are no seqgment tables to load, so |
played with the Seagment Information Blocks (SIBs). These are described In
the 1V.0 manual on page 34, and the format for the Microengine Is glven
below:

S18 = record
Segbase t “Integer;

Seglenq : integer;

XXX t Integer;

Segaddr : Inteqer;

Sequnit t integery

Segref 1 inteqer;

SeqSP : Integery
end;

There-Is a p-machine register on the Microengline which Is a pointer to
an "arraylsegrangel of “SIB", and the value of this reglster may be losded
Into the varlable "ptr" with

PMACHINE (“ptr,(-2),LPR,STO)
where LPR = 157 and STO = 196. One can then mess with the SIR for
segnent ‘1’ with ptr*lf11 . fleldname, and this is how | made Virtual Segments
work on the Microenglne; 1 assume that making It work under IV.0 would be
similar,

Here I8 the erticle

Virtual Segment Procedures under UCSD.Pascal Page 1

Virtual Segment Procedures under UCSD Pascal
by
Jon Rondy
Rox 148, Ardmore, Pa, 19003

This s8rticle Is copyrighted by Microsystems (Box 1192,
Mountainside, NJ, 07092) and Is reprinted with thelr
permission,

One of the nilce features of WUCSD Pascal 1Is 1its support of segment
procedures. A segment procedure ls like any other Pascal orocedure except
that whenever It is called (except for recursive calls) it Is loaded from

diek into memory prlor to being executed, and after It exits, the memory Is
reclalmed. In fact, the segment procedure is loaded onto the stack, slnce
the pattern of memory use Is nested In a very “stack-like’ manner.

Segnent procedures allow the progremmer to manaqe memory resources
explliclitly and conveniently, and really are a form of overlay. In laraqe
progrems, it is not uncommon to dedicate & segment procedure to

Initialization, since that code need not reside In memory after the proqram
starts. Segment procedures may have Internal procedures and functions, all]
of which are loaded with the segnent procedure code, allowina functional
groups of routines to be brought Into memory in a sinqle operation, and
executed.

Unfortunately, L[i Pascai allows the progremmer access ‘to only six segmnent
procedures under nurmal clrcumstances. This Is flne for small proqrems
(under 3000 lines), but when one starts to get serlous about an
application, one really needs more segment procedures. One reason for this
Is that the UCSD Pascal separate complilaetion construct (LNiTs) uses one of
these s8lx segment procedure “slots’ even If It Is not loaded Into memory
dynamically, wasting this scarce resource. Thls sltuation should Imnrove
very soon (perhaps by the time .this article is printed) because Softech Is
planning to announce features in UCSD Pascal Version IV.O to solve some of
these problems.

| work for a compeny (Energy Data Systems) which has been trying to do some
fairly complex epplications in UCSD Pascal, and we ran into the ‘segment
barrler’ In the spring of this year. We consldered modifylng the LICSD
operating system, since we had source for It, but decided to try to stick
to solutions which required as few modificatlons to operating system code
as possible. After 'some thought | caeme up with an Iinterim means of
emel lorating the problem, which | will describe In this aiticle. .

When a segment procedure Is called by the UCSD Pascal p-machine, & speclial
op-code I8 wused to do so. This op-code first looks In an operating system
‘segment table’ to see If the Indiceted procedure has been called more than

zero times (reference count, in case It is e recursive call .and the code
need not be reloaded). If it is already In memory (reference count > 0n),
It Is executed llke any other procedurej If not, the op-code looks in the

segment table for the block number on the disk where it cen find the code

Copyright 1981 by Microsystems

Virtual Segment Procedures under UCSD Pascal Paqe ?

for the segment procedure, and the number of bytes In the code. It then
loeds the code onto the stack and calls the procedure, Incrementing the
reference count to one. Upon exit, the segmnent procedure return op-code
decrements the reference count by one, and clears the stack back un to
where It was prlior to the call If the count has hecome zero.

The idea which | had wes to somehow write data Into the seagment tahbles
prior to each segment procedure call In such a way that when the ahove
op-code was Invoked it would find data describinqg different seament
procedures each time; It would In fact be faked into loading different code
segments Into memory for each call, even though the seme seament procedure
was beling cslled each time.

In order to do this, I first had to find where the seagment tahles were
located In memory. The first qlobal varlable declared in the LICSD Pascal
operating system code is a pointer to a special record, called the system
communicetion record, or SYSOOMREC, and the segment tables are a part of
this record. There Is a special ‘switch” In the \ICSD Pascal comniler (the
‘U’ switch), and when Its value Is “-°, programs function very differently
than usual. The ‘main program’ does not execute at all, but rather the
first segment procedure declared In the progran executes Instead. Also,
the varlable definitions are “allased” on ton of the definitions for the
operating system (like an EQUIVALFNCE In FORTRAN), allowlinq the nroaram to
read and write those variables. WUsually, one wuses exactly the same
varlable definitions as were used when the operating system was complled,
in order that one’s proqrem sqree with the aperating system definitions.
In this case, however, I simply made my own definitions, since all | wanted
was to determine the value of the nolnter to SYSOOMREC. Since 1.5 stores
pointers as actual memory addresses, hv printing the value of the polinter |
could determine where in memory SYSCIIRFEC was stored.

o
A (

! wrote the following progrem snd was able to locate SYSOOMREC, It was
part trial and error, slince after | thought | had “found’ SYSOCOMREC the
first time, | was forced to look through dumps to figure out why | hsd been
wrong... Anyway, the program below will tell you where in memory any
SYSOOMREC s under Version [,5 (it is at location 718 Tdecimall for my Z-80
version of 1.5), and probably under Version I11.0;3 1 have not tried It with
it11.0.

[su-1}
program find;
var
i ¢ integer; | allased to ~syscomrec |

segnent procedure findsyscom;
begin .
writeln('Syscomrec is located at address “,1,” decimal,’);
end;

begin
end.

| then needed to flgure out how far from the start of SYSOOMREC the segment
tahles started., Fortunately, the UCSD Pascal operating system varliable
definitions, found In a flle called GLOBALS.TEXT, were distributed with
LCSD Pascal Versions 1.4 and 1.5, so I had then at my dispossl, [The

Copyright 1981 by Microsystems

Virtual Segment Procedures under UCSD Pascal Page 3

(AORALS.TEXT file, along with all other UCSD Pascal source code, is
cooyright by the University of Celifornis at San Dliegoy some of the
(L.ORALLS.TEXT file 1Is presented 1In this srticle (the portions of Pascal
source in ceplitsl letters) with the permissfon of Softech Microsystems Inc,
thelr llcensee.l 1 am informed that thea SYSOOMREC date lsyout hss not
changed with the varlous WCSD Pascal Verslions, so you should be able to
locate the segment tablies st 96 bytes psst the start of your SYSOCOMREC,
This means that [f one were to write to location Bla In my memory, one
would by writing on the first byte of the segment tsbles.

Ths segment tebles are defined as follows:
type

sendesc = record
diskaddr : integerj (absofute block number on disk |
codeleng : integer; ! In bytes }
and}

seqtab = array Tsegrangel of record
unit : unitnum; ? dlgk unlt number (an integer))
codedesc : segdesc; ! as above :
end;

where “segrange’ is the nunher of segnent procedures defined for the UCSD
system being wused (°0..15° in the case of Version 1.5). If one declared a
pointer “segptr’ which pointed to a record of type ‘aseqtab’, one could
refer to that record es ‘seqptr"°, to the unit (disk drive) on which the
code for the third segnent procedure was located as “seqptr-T3l.unit’, and
to the number of bytes in the code for that oprocedure as

" could write a procedure to performa ‘call’ to the ‘i-th’ such segrent

- .
¥ A

seygplr O, couedesc.eoueieny LI CUUIU ESLuUl N LIt LUttt CRIN R 1o
that pointer with the following record definition:

var

allas : record case boolean of
true ¢ (I : Integer);
false: (p : “segtab);
end;

This record definition states that one will either use the storage for the
racard “allas’ ss an integer (denoted “alias.l’) or as 8 polinter to a
variable of type ‘segtab’ (denoted “alias,p’). Since the same storage is
used for both velues, iIf one were to write Into the integer part, one could
then use that value as a pointer; one could “fake’ Pascal Into thinking
that a varlable of type “segtype’ was being pointed to.

By stating “aliss.] = 718 + 96°, I could access the actual operating
system segment table as ’"aliss.p~". 1 could then write .Into the sBegment
table entries of any segment which | chose, forcing the system to losd the
code | wanted to when | called the sppropriate procedure.

Suppose, for Instance, that | knew that | wsnted to execute each of a
series of ten segment procedures which were located on “unitl i1, had
tength ‘“lengthfi1° bytes, and sterted at disk block number “blockfli1”. I

Copyright 1981 by Microsystems

Virtual Segment Procedures under UXCSD Pascal Page 4

procedure as follows:
program test;

type

segdesc = record
diskaddr : Integer; | absolute block number on disk |
codeleng : Integer; [In bytes .
end;

seqtab = array fseqrangel of record
unit ¢ unlitnun; ? disk unit number |}
codedesc : segdescy; | as sbove)
end;

var
alias : record case boolean of
true ¢ (I : integer);
false: (p : “segtab);
end;
unit : arrayfl1..107 of integer;
tength : errayl1..101 of integery
block : arrayl1..107 of inteqer;
I ¢+ integer;

segnent procedure 'virtual;
beqin | need not have any code, since it will never execute --
the othecr ten segment procedures will execute instead !
end; | virtual

procedure dovirtual(i : intener);

begin
set up to call virtual segment !
alias.p~T10).codeunit := unitlil; Virtual Segment Procedures under UCSD Pascal Paqge 6
alias.p~T107.codedesc.codeleng := lengthlil; ’
alias.p*l101.codedesc.diskaddr := blocklil;
[call virtual segment loaded above } OONS T .
virtual; MAXUNIT = 12 (*MAXIMM PHYSICAL INIT # FOR LREAD*)
end; | dovirtual | MAXDIR = 77; (*MAX NUMRER OF ENTRIES IN A DIRECTORY*)
. VIDLENG = 7; (*NUMBER OF (HARS IN A VOLLME 1D%)
begin . TIDLENG = 15; (*NLMRER OF OHARS IN TITLE 1D*)
set up pointer to real segment table | . FBLKSIZE = 512; (*STANDARD DISK ALOOK LENGTHH*)
alias.i := 718 + 963 : . DIRBLK = 2; (*DISK ADDR OF DIRECTORY*) .
call the ten virtual procedures } MAXSEG = 153 {(*MAX OODE SEQVENT RNL.MRER*) R
for i := 1 to 10 do dovirtual(il;
end. | test !} TYPE
b The above program will actually work, but it has a few problems which make DATEREC = PACKED RECORD
i it a bit awkward to wuse. First off, procedure calls which previously MONTH: 0..12;: (*0 IMPLIES DATE NOT MEANINOFUL*)
o looked like a pnice name now are reduced to a cryptic statement like DAY : 0“31;' ? (*DAY OF MONTH*) - B
o ‘dovirtual (3)°. This can be taken care of by creating constants at the YEAR: 0..100 (*100 1S TEMP DISK FLAG*)
‘ start of the program with values from 1 to 10, and calling “dovirtual” with END (*DATEREC*) ; - X
those constant values; a procedure to clear the screen might then be called - !
; as “dovirtual(clrscreen)’, a significant improvement. UNITNUM = 0. .MAXUNIT;

. VID = STRINGIV NG1;
. The other problem is that it is NOT EASY to find out some of the R IDLENGT;
L information which | so casually stated would be found in the “length’ and DIRRANGE = 0..MAXDIR;

TID = STRINGI TIDLENG1;

Copyright 1981 by Microsystems FILEKIND = (UNTYPEDF ILE ,XDSKF ILE ,CODEF ILE , TEXTF ILE,
INFOF ILE ,DATAF ILE ,GRAFF ILE ,FOTOF ILE , SECLREDIR) 5
| DIRENTRY = RECORD
- . - . * A"If *
v Virtual Segment Procedures under UCSD Pascal Page 5 SFLA?%E:;K“L?EEEE?’ E*%?§¥Sﬁz¥g£gﬁ<oggj‘0m;§nl)
CASE DFKIND: FILEKIND OF
i . .) . i SECLREDIR, .
bltock” arrays. To do so involves reading the “segment table’ of the code UNTYPEDF 1LE : (*ONLY IN DIRIOT. . VOLUME INFO*)
file in which one of the virtual segments exists, in order to determine (DVID: VID; {(*NAME OF DISK VOLUME*)
that information. Unfortunately, the disk address information stored in DEOVBLK 'INTEGFR~ (*LASTBLK OF VOLUME*)
the segment tables of a code file is slightly different than that stored in DNLME TLES : DIRFiAI(GF- (*I\LJ:/I FILES IN D(R‘;)
the operating system’s segment tables. The normal code file disk addresses DLOADT IME : lNTEGFR-—' (*TIME OF LAST ACCESS*)
are relative to the start of the entire code file; the system addresses are DLASTBOOT : DATER!-EC‘)' (*"DST RECENT DATE SETTING*)
the absolute disk block number. This means that in order to convert the XDSKF ILE .CODEF ILE . TEXTF ILE . INFOF ILE o - '
data In the code file’s segment table into ‘useful’ information, we must DATAFILE CRAFFILE FOTOFILE: !
also know the absolute address of the start of the code file. And in order (DTID: 1D ,FC H (STITLE OF FILE®)
to determine this, we must read (and understand) the directory of the disk. DLAS%BYTE: 1..FALIKS I 7E; NS Y AYTES IN LAST ALOCK*)
Whew! . .. ' oLl 4 s ! 8

DACCESS: DATEREC) (*LAST MDIFICATION DATE®*)

Taking it a step at a time, the format of a UCSD Pascal disk directory is END (*XDIRENTRY*) ;

given below. It is a portion of the UCSD GLORALS.TEXT file mentioned

earlier (and is copyright by UCSD). var

directory : arrayfdirrangel of direntry;

Given the above definitions, after a bit of studying we can see that each
directory entry always contains the disk address (in blocks) of the first
and last blocks af the file for which it is an entry. If the entry is a
volume ID entry, it also contains the volume (diskette) name, the number of
blocks on the volume (“deovblk’), the numher of files on the volume
(‘dnumfiles’) and the time (date) when it was last accessed. Normally one
finds this entry as the first entry in the directory (or “directoryl01°).

5 If the entry is a naormal file entry, it contains the file ID (name), the
L number of bytes in the last block which really contain data, and the date
b

iy Copyright 1981 by Microsystems

Virtusl Segment Procedures under UCSD Pascal Page 7

of the last modification to the file. The abhove definitions also tell us
where to find the directory, nemely at “dirblk’, or block two.

We can read the directory into memory with the statement
unitread(unitnum,directory,slzeof(directory),dirblk);

This stastement uses twoe UCSD intrinsics, the “slizeof’ function =8nd the
"unitread” procedure, The former returns the number of bytes in a glven
data structure; in our case, It ts the number of bytes In the “directory”,
The “unitresd’ procedure reads from unit (disk drive) ‘unltnun’ into memory
al the address of the "directory’ structure for “sizeof(directory)’ hytes
starting at absolute disk block “dirblk’

With this Informatiaon in memory, we can search the directory for s8an entry
for 8 given file. Suppose that we wanted to see If the file “semple.code’
were in the directory., We could say

numfiles 1= directoryTnl.dnumnfi18%; | number of valid entries }
I := 0; [will iIndex into directory
done := false; | will become “trus’ when we are done }
while (1 < nunfiles) and not done do begin
it (d

i
i s 1
trectoryl1].dtid = ‘sample.code’) then done := truej
end; ’)

'l we come out of this loop with "done’ having a velue of “true’, then we
have Indeed found an entry for the required filej If not, the file was not
present. If it was found, then the absolute address of the firet block of
the file on disk I8 simply “directoryl11.dfliratblk’, We have then found
the first thing we needed, the absolute disk address of the code file, We
now need to get the code tength and relative disk sddress informetion from
the code file‘s segment tables,

The format of the flirst block of a code file Is as shown below, whers the
previous type definitions hold as before,

segtable : arrayfoeqrangeT'of segdesc;

1T we Manled to find the necessary information sbout a particular code
fite, we could use the UCSD Pascal system intrinsic procedure ‘unitresd’ to
read the segment table data from that file Into the asbove data structure.
Then, If we wanted the information about the tenth segment procedure in a
code flle, we could simply use the tenth element of that array., For
example, to determine the “length’ and “block’ data for segment procedure

nunber ten in a file called “sample.code’ on unit five, one could do the
following:

1',? 1

Virtual Segment Procedures under UCSD Pascal Page B

progrem find;
var
codeflle : filey .
segteble : arrayfsegrangel of seqdesc; | “segdesc’ defined as hefore)
I : iInteger; '

begin
unit := 53 .
[read in segment table -- assume “directory’ resd in as shove first,

. and “directoryl 11" Is data for file which is of interest to us
unitread(unit, segtable, sizeof(seqtahle), directorfil,dfirstblik);
length 1= seqtablel10).codeleng;
block := segtablelint.diskeddr; | relative block number !
block 1= block + directoryfil.dfirstbik; { ebsolute block number }
end. | find |

So, we finally have the entire ball of wax. We can read s UUCSD disk
directory to find out where on disk s file 1is stored; we can read and
understand the Information In the segment table of a code flle; we can
convert the relative block nunbers in the code. file seoment tahles to
absolute block numbers; and we can use that Information to invoke virtual
segment procedures, To tie everything together, you will find helow a
single -program which does It all. The procedure “virtinit initializes an
internal table of unit, length, and block Informetion before the orogram
really gets golng. It does this by reading in the disk directory and
calling “virtlink” for esch virtual segment procedure which it will call
later, The “virtlink’ procedure looks In the directory for the code file
requested and puts the required information In the Internsl tsble, The
main progrem then invokes the virtual segments as a test, Following this
program is a sample of one of the progrems which defines a virtual segment
procedure, Note that in both the program which calls the virtual segments
and the progrem which defines one of them, the virtual segments are defined
as the first executable code In the file, This s necessary, slince the
technlque which | have shown requires that both segment procedures have the
same ‘segment numbers’, '

Copyright 190V by Microsystems

Virtusl Segment Procedures under UCSD Pascal Page 9 Virtuel Segment Procedures under UCSD Pascal Page 10
program vsegtest; godeunit : unltnum;
codedesc : segdesc;
OONST . end;
MAXINIT = 12%¢ (*MAXIMM PHYSICAL INIT # FOR UREAD*)
MAXDIR = 7734 (*MAX NLMBER OF ENTRIES IN A DIRECTORY*) var .
VIDLENG = 73 (*NUMAER OF (CHARS IN A VOLLME |D*) .allas : record case boolean of | allow manual setup of *syscomrec }
‘TIDLENG = 153 (*NUMRER OF CHARS IN TITLE 1D*) . true : (1 1 integer);
FRLKSIZE = 5123 (*STANDARD DISK ALOOK LENGTH*) false: (p t+ “segtabtype);
DIRALK = 23 (*DISK ADDR OF DIRECTORY*) end;
MAXSEG = 153 (*MAX DODE SEVENT NMRER*) disk : file; ! file to read directory and seq tabhles from !
. f global In which to store processed seq table for later use !}
TYPE vseqgs t segtabtype;
DATEREC = PACKED RFEOORD ‘segment procedure virtual;
MNTH: 0..12; (*0 IMPLIES DATE NOT MEANINGFUL*) begin writeln(’l am the REAL segment procedure 10.°);
DAY: f1..31; (*DAY OF MONTH*) end; [virtual -- duvmy
YEAR: 0..100 (*100 1S TEMP DISK FLAG*)
END (*DATEREC*) ; prgce(‘]ure dovirtual{vsegnum : vseqranqge);
begin
WNITNLM = 0, .MAXINIT; If (vsegslvsegnuml.codeunit = 0) then begin
VID = STRINGIVIDLENGYg writeln{ Attempt to execute unlinked virtusal seg number “,vseqnum,’.”)
exlt(dovirtual); [not linked } -
DIRRANGE = 0. MAXDIR;) end;
TID = STRINGITIDLENG1; { load segment register 10 with segment data from |°th segment procedure)
allas.p-f101 := vsegslvsegnuml;
FILEKIND = (UNTYPEDF ILE,XDSKF ILE ,CODEF ILE , TEXTF ILE, virtual;
INFOF ILE ,DATAF ILE ,GRAFF ILE ,FOTOF ILE , SEQLREDIR) 3 end; | dovirtual |}
DIRENTRY = RECORD procedure virtinit;
DFIRSTARLIK: INTEGER; (*FIRST PHYSICAL DISK ADDR*) [initlatize tables for calling v segment procedures |
DLASTALK: INTEGER; (*POINTS AT ALOK FOLLONING*) conat
CASE DFKIND: FILEKIND OF) unum = 53 | unlt number where v.segment procs are found |}
R SEQLREDIR, var -
UNTYPEDF ILE (*ONLY IN DIRTOV,, .VOLUME INFO*) i : iInteger; [temp var |}
¢ (DVID: VID; A (*NAME OF DISK VOLLME®) . directory : array fdirraengel of direntry; { holds disk directory !
3 DEOVALK: INTEGER; (*LASTALK OF VOLUME®) numfiles t dirrange; | number of flles in disk dir } .
N DNOME TLES: DIRRANGE (*NLM FILES IN DIR#)
) DLOADTIME: INTEGER i (*TIME OF LAST ACCESS*) procedure virtlink(fneme : string; vseqnum : vaeqrange):
DLASTROOT: DATEREC); (*MDST RECENT DATE SETTING*) var
XDSKF I1LE ,OODEF [LE , TEXTFILE, INFOF ILE,) I ¢ Integery
DATAF ILE ,GRAFFILE ,FOTOF ILE: done t boolean; .
(DTID: TID; . (*TITLE OF FILE*) firstblk : integer; | blk number of first blk of fake seq code file)
DUASTBYTE: L..FALKSIZE; (*NLM BYTES IN LAST RLOCK*) lsegtable 1 array fseqrangel of seqdesci ! holds seq th! from disk |
DACCESS: DATEREC) (*LAST MODIFICATION DATE*) begln
o END (*DIRENTRY*) ; . [find file In directory |}
| := 03 done := false:
5 SEGRANGE = 0..MAXSEG: while (I <= nunfiles) and not done do beqin
£ SEGDESC = RECORD bos= 1o+ L5 -
b DISKADDR: INTEGER} (* REL ALK IN CODE...ARS IN SYSCOM») If (directoryliV,.dtid = fneme) then done := true:
5 CODELENG: INTEGER (*# AYTES TO READ IN®) end;
END; (*SEQDESC*) If not done then begin
writeln(uneable to find flle *,fname,” .); .
vseqgrange = 0..15; [virtusl segment numher | ex;l(virtlink);
- end;
[segment teble In syscomrec and Iin this progrem ! writeln(°File *,fname,’ found.);
segtabtype = array [seqranael of recdrd

Copyriaht 198 by Microsystems
Copyright 1981 by Microsystems

GE

W
o p)

Virtual Segment Procedures under UCSD Pascal Page 11

{ read in segment table }

firstblk := directorylil.dfirstblk;
unitread(unum,lseqtable,sizeof (I1segtable),firstblik); :
[enter data from segment 10 in found file into v seq tabie !
vsegslvsegnuml.codeunit := unum;
vsegsfvsegnuml,.codedesc.codeleng :
vsegsfvsegnuml,codedesc.diskaddr :
writeln('Finished with association of file ",fname, .");
end; ! virtlink }

Iseqtablel 101.codeleng;

begin

[initialize vseqg table so that all units are zero (vseg undefined) }
for i :=0 to 15 do vseqgsPil.codeunit :=.0;

[set up pointer to syscomrec’s seg table located by "find” program }
alias.i := 718 + 96: | 96 bytes in syscom rec before seg tables }

[read directory into memory
unitread(unum,directory,sizeof(directory),dirblk,0);

numfiles := directorylnl.dnumfiless

writeln('Directory of unit “,unum,” read in,");

{ tink file names with v seg numbers

virtlink('FAKED.CODE ,0);

virtlink("FAKE1.QODE ", 1)

virtlink(FAKE2.00DE ,2):

virtlink('FAKE3.CODE",3);

virtlink(FAKES.CODE",4)s

virtlink(FAKES.CODE,5):

virtlink(FAKE6.CODE",6)3

virtlink("FAKE7.CODE",7);

end; { virtinit }

begin { main 1
virtinit;

dovirtual(0);
dovirtual (1);
dovirtual(2);
dovirtual (3);
dovirtual(4);
dovirtual (5);
dovirtual(6);
dovirtual (7);
end.

program fake0D;

segment procedure fakeOalso;
begin
writeln(’1 think that [am virtual segment procedure 0.7);
end;

begin | main }
end.

GO

- Iseqtablef1n1.diskaddr + firsthtk;

e

They looked for me.
The wondered where | was,
Was 1 operating a system,
Was | processing 8 micro,
Was 1 wearing hard;
They wondered where | was,
Was 1 listing to one side,
Was 1 seeking to the end,
Was 1 tracking down a bug;
They wondered where 1 was,
Was 1 terminally ill,
Was | caught in a calm pile,
Was 1 filing it away;
They wondered where 1 was,
Was 1 designing a principle,

Was | comparing a language,
Was 1 analyzing an algorithims

They wondered where | was,

And they checked ocut all their sums,
They ordered high and low,
They searched down all their nodes;

And Still:
They wondered where | was,

They looked in all their tables,
They opened all their ports,
They raised up all their flags,

All their searching failed,
Their scanning ran to end,

I wasn’t in their banks,

1°d slipped off all their discs;

They decided that [wasn’t,
They gave up sll their hope,
They dried out all their boots,
And cleaned out all their bhins;g

wasn’t marked upon their tapes,
was deleted in their files,

had no sector$ on their disc,
wasn’t on their heap;

Free to smell the flower,

Free to see the beach,

Free with all the power,

Of a wet-core security hreach.

kasf1y/20/781

